LINEAR
DATABOOK

NATIONAL SEMICONDUCTOR
jąonpuopures ןeuohen

LINEAR
 DATABOOK

Voltage Regulators
 Voltage References
 Operational Amplifiers/Buffers
 Instrumentation Amplifiers

Voltage Comparators
Analog Switches
Sample and Hold
A to D, D to A
Industrial/Automotive/Functional Blocks/
Telecommunications
Audio, Radio and TV Circuits

Transistor/Diode Arrays

Appendices/Physical Dimensions

Ordering Information

PACKAGE
D - Glass/Metal Dual-In-Line Package
F - Glass/Metal Flat Pack
H - TO-5 (TO-99, TO-100, TO-46)
J - Low Temperature Glass Dual-In-Line Package
K - TO-3 (Steel)
KC - TO-3 (Aluminum)
N - Plastic Dual-In-Line Package
P - TO-202 (D-40, Durawatt)
S - "SGS" Type Power Dual-In-Line Package
T - TO-220
W - Low Temperature Glass Flat-Pack
Z - TO-92

DEVICE NUMBER
3, 4, or 5 Digit Number Suffix Indicators:
A - Improved Electrical Specification
C - Commercial Temperature Range

DEVICE FAMILY
AD - Analog to Digital
AH - Analog Hybrid
AM - Analog Monolithic
CD - CMOS Digital
DA . - Digital to Analog
DM - Digital Monolithic
LF - Linear FET
LH - Linear Hybrid
LM - Linear Monolithic
LX - Transducer
MM - MOS Monolithic
TBA - Linear Monolithic

Devices are listed in the table of contents alpha-numerically by device family (LH, LM, LX, etc.) and then by device number. With most of National's proprietary linear circuits, a 1-2-3 numbering system is employed. The 1 denotes a Military temperature range device $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$, the 2 denotes an Industrial temperature range device $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and the 3 denotes a Commercial temperature range device $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, i.e. LM101/LM201/LM301.

Exceptions to this are the LM1800 series of consumer circuits, which are specified for the commercial temperature range; some hybrid circuits which employ a " C " suffix to denote the commercial temperature range; and second-source products which follow the original manufacturers numbering system, i.e. LM741/LM741C or LM1414/LM1514.

Parts are generally listed in the table of contents by military part number first, i.e. LM139/LM239/LM339. Where a separate data sheet exists for a different temperature range, the device will be listed separately, i.e. LM119/LM219 and listed separately LM319. Where only one temperature range exists, the part will be listed in its proper order, i.e. LM340.

Table of Contents

Edge Index by Product Family. 1
Ordering Information 2
Alpha-Numerical Index. 9
Section 1—Voltage Regulators ${ }^{\dagger}$
Voltage Regulator Guide. 1-iii
Precision Regulator Guide. 1-vii
Definition of Terms. 1-viii
Fixed or Adjustable Voltage Regulators. 1-1
LM104/LM204/LM304 Negative Regulator. $1-2$
LM105/LM205/LM305/LM305A, LM376 Voltage Regulators. $1-5$
LM109/LM209/LM309 5-Volt Regulator. 1-10
LM117/LM217/LM317 3-Terminal Adjustable Regulator. 1-15
LM117HVILM217HV/LM317HV High Voltage 3-Terminal Adjustable Regulator. 1-23
LM120 Series 3 -Terminal Negative Regulators. 1-31
LM123/LM223/LM323 3 Amp, 5 Volt Positive Regulator. 1-39
LM125/LM325/LM325A, LM126/LM326 Voltage Regulators. $1-43$
LM130/LM330 3-Terminal Positive Regulators. $1-50$
LM137/LM237/LM337 3-Terminal Adjustable Negative Regulators. $1-56$
LM137HV/LM237HV/LM337HV 3-Terminal Adjustable Negative Regulators (High Voltage) 1-61
LM138/LM238/LM338 5 Amp Adjustable Power Regulators. $1-66$
LM140A/LM140/LM340A/LM340 Series 3-Terminal Positive Regulators. 1.74
LM140L/LM340L Series 3-Terminal Positive Regulators $1-82$
LM145/LM245/LM345 Negative Three Amp Regulator. $1-85$
LM150/LM250/LM350 3 Amp Adjustable Power Regulators. $1-89$
LM320L/LM320ML Series 3-Terminal Negative Regulators. $1-97$
LM341 Series 3-Terminal Positive Regulators 1-103
LM342 Series 3-Terminal Positive Regulators. 1-106
LM723/LM723C Voltage Regulator. 1-110
LM1524/LM2524/LM3524 Regulating Pulse Width Modulator. 1-115
LM2930 3-Terminal Positive Regulator. 1-130
LM78XX Series Voltage Regulators. 1-136
LM78LXX Series 3-Terminal Positive Regulators 1-139
LM78MXX Series 3-Terminal Positive Regulators. 1-145
LM79XX Series 3-Terminal Negative Regulators. 1-148
LM79LXXAC Series 3-Terminal Negative Regulators. 1-153
LM79MXX Series 3-Terminal Negative Regulators. 1-157
${ }^{\dagger}$ For additional information, see National Semiconductor's Voltage Regulator Handbook.
Section 2-Voltage References
Voltage Reference Guide 2-iii
Voltage Reference and Precision Reference Guides. 2-iv
LH0070 Series Precision BCD Buffered Reference. 2-1
LH0071 Series Precision Binary Buffered Reference. 2-1
LH0075 Positive Precision Programmable Regulator. 2-5
LH0076 Negative Precision Programmable Regulator. 2-10
LM103 Reference Diode. 2-15
LM113/LM313 Reference Diode. 2-18
LM129/LM329 Precision Reference. 2-21
LM136/LM236/LM336 2.5V Reference Diode. 2-26
LM185/LM285/LM385 Voltage Reference Diode 2-32
LM199/LM299/LM399 Precision Reference 2.38
LM199A/LM299A/LM399A Precision Reference. 2.44
LM3999 Precision Reference. 2.47
Table of Contents (Continued)
Section 3-Operational Amplifiers/Buffers ${ }^{\dagger}$
BI-FET ${ }^{\text {TM } / B I-F E T ~ I I ~}{ }^{\text {TM }}$ Op Amp Selection Guide. 3-v
Military Op Amp Selection Guide. 3-vii
Industrial Op Amp Selection Guide. 3 -ix
Commercial Op Amp Selection Guide. 3-x
Special Function Operational and Special Function Buffer Amplifier Guides. $3-x i i$
Definition of Terms. 3 -xiii
LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers. 3.1
LF347 Wide Bandwidth Quad JFET Input Operational Amplifier. 3-14
LF351 Wide Bandwidth JFET Input Operational Amplifier. 3-22
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier. $3-29$
LF13741 Monolithic JFET Input Operational Amplifier. 3-38
LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference. 3-49
LM101A/LM201A/LM301A Operational Amplifiers. 3-65
LH2101A/LH2201A/LH2301A Dual High Performance Op Amp. 3.72
LM102/LM202/LM302 Voltage Followers. 3.74
LM107/LM207/LM307 Operational Amplifiers. 3-79
LM108/LM208/LM308 Operational Amplifiers. $3-83$
LM108A/LM208A/LM308A, LM308A-1, LM308A-2 Operational Amplifiers. 3-88
LH2108/LH2208/LH2308, LH2108A/LH2208A/LH2308A
Dual Super Beta Op Amp. 3-93
LM110/LM210/LM310 Voltage Follower. $3-95$
LM112/LM212/LM312 Operational Amplifiers. 3-102
LM118/LM218/LM318 Operational Amplifiers. 3-106
LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902
Low Power Quad Operational Amplifiers. 3-113
LM143/LM343 High Voltage Operational Amplifier. 3-122
LM144/LM344 High Voltage, High Slew Rate Operational Amplifier. 3-129
LM146/LM246/LM346 Programmable Quad Operational Amplifiers. 3-135
LM148, LM149 Sèries Quad 741 Op Amps. 3-147
LM158/LM258/LM358, LM158A/LM258A/LM358A, LM2904
Low Power Dual Operational Amplifiers. 3-157
LM159/LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers. 3-167
LM192/LM292/LM392, LM2924 Low Power Operational
Amplifier/Voltage Comparator. 3-183
LM216/LM316, LM216A/LM316A Operational Amplifiers. 3-187
LM709/LM709A/LM709C Operational Amplifier. 3-190
LM725/LM725A/LM725C (Instrumentation) Operational Amplifier. 3-194
LM733/LM733C Differential Video Amp. 3-198
LM741/LM741A/LM741C/LM741E Operational Amplifier. 3-202
LM747/LM747A/LM747C/LM747E Dual Operational Amplifiers. 3-205
LM748/LM748C Operational Amplifier. 3-210
LM1558/LM1458 Dual Operational Amplifier. 3-213
LM2900/LM3900, LM3301, LM3401 Quad Amplifiers. 3-215
LM4250/LM4250C Programmable Operational Amplifier. 3-224
LH24250/LH24250C Dual Programmable Micropower Op Amp. 3-229
LM13080 Programmable Power Op Amp. 3-231
LH0002/LH0002C Current Amplifier. 3-238
LH0021/LH0021C 1.0 Amp Power Operational Amplifier. 3-241
LH0041/LH0041C 0.2 Amp Power Operational Amplifier. 3-241
LH0022/LH0022C High Performance FET Op Amp. 3-248
LH0042/LH0042C Low Cost FET Op Amp. 3-248
LH0052/LH0052C Precision FET Op Amp. 3-248tFor additional information, see National Semiconductor's Special Functions Databook.
Table of Contents (Continued)
Section 3-Operational Amplifiers/Buffers ${ }^{\dagger}$ (Continued)
LH0024/LH0024C High Slew Rate Operational Amplifier 3-255
LH0032/LH0032C Ultra Fast FET Operational Amplifier. 3-258
LH0033/LH0033C, LH0063/LH0063C Fast and Damn Fast Buffer Amplifiers. 3-263
LH0044 Series Precision Low Noise Operational Amplifiers. 3-274
LH0045/LH0045C Two Wire Transmitter. 3-280
LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier. 3-291
LH0062/LH0062C High Speed FET Operational Amplifier. 3-294
LH2110/LH2210/LH2310 Dual Voltage Follower. $3-300$
${ }^{\dagger}$ For additional information, see National Semiconductor's Special Functions Databook.
Section 4-Instrumentation Amplifiers ${ }^{\dagger}$
Special Function Instrumentation Amplifier Guide. 4-iii
Definition of Terms 4-iv
LF152/LF352 FET Input Instrumentation Amplifier. 4-1
LM121/LM221/LM321, LM121A/LM221A/LM321A Precision Preamplifiers 4-11
LH0036/LH0036C Instrumentation Amplifier. 4-19
LH0038/LH0038C True Instrumentation Amplifier. 4-27
LH0084/LH0084C Digitally Programmable Gain Instrumentation Amplifier. 4-38
\dagger For additional information, see National Semiconductor's Special Functions Databook.
Section 5-Voltage Comparators
Voltage Comparator Guide. 5-iii
Definition of Terms 5-iv
LF111/LF211/LF311 Voltage Comparators 5-1
LH2111/LH2211/LH2311 Dual Voltage Comparator. 5-7
LM106/LM206/LM306 Voltage Comparator. 5-9
LM111/LM211 Voltage Comparator. $5 \cdot 12$
LM119/LM219/LM319 High Speed Dual Comparator. 5-18
LM139/LM239/LM339, LM139A/LM239A/LM339A; LM2901, LM3302 Low Power Low Offset Voltage Quad Comparators 5-23
LM160/LM260/LM360 High Speed Differential Comparator. 5-31
LM161/LM261/LM361 High Speed Differential Comparators. 5-34
LM193/LM293/LM393; LM193A/LM293A/LM393A, LM2903 Low Power Low Offset Voltage Dual Comparators 5-37
LM311 Voltage Comparator. 5-44

- LM710/LM710C Voltage Comparator. 5.52
LM711/LM711C Dual Comparator. 5-55
LM1514/LM1414 Dual Differential Voltage Comparator. 5-58
Section 6—Analog Switches ${ }^{\dagger}$
Analog Switches/Multiplexers Selection Guide. 6-iii
Hybrid Analog Switch Selection Guide 6 -iv
Definition of Terms. 6 -iv
LF11331/LF13331 4 Normally Open Switches With Disable. 6-1
LF11332/LF13332 4 Normally Closed Switches With Disable. 6-1
LF11333/LF13333 2 Normally Closed Switches and 2 Normally Open Switches With Disable. 6-1
LF11201/LF13201 4 Normally Closed Switches. 6-1
LF11202/LF13202 4 Normally Open Switches. 6-1
LF11508/LF13508 8-Channel Analog Multiplexer. 6-11
LF11509/LF13509 4-Channel Differential Analog Multiplexer. 6-11
${ }^{\dagger}$ For additional information, see National Semiconductor's Special Functions Databook and FET Databook.

Table of Contents (continued)

Section 7-Sample and Hold ${ }^{\dagger}$
Sample and Hold Amplifier Guide. 7-iii
Definition of Terms 7-iv
LF198/LF298/LF398, LF198A/LF398A Monolithic Sample and Hold Circuits. 7-1
${ }^{\dagger}$ For additional information, see National Semiconductor's Special Functions Databook.
Section 8-A to D, D to \mathbf{A}^{\dagger}
A/D Converter/DVM Selection Guide. 8 -iii
D/A Converter Selection Guide. 8 -iv
General Data Acquisition System Block Diagram/Part Numbering System. 8-v
Definition of Terms. 8 -vi
AD7520/AD7530/AD7533 10-Bit Binary Multiplying D/A Converter. 8-1
AD7521/AD7531 12-Bit Binary Multiplying D/A Converter. 8-1
ADB1200 (MM5863) 12-Bit Binary A/D Building Block. 8-3
ADC0800 (MM4357B/MM5357B) 8-Bit A/D Converter. 8-10
ADC0801, ADC0802, ADC0803, ADC0804 8-Bit $\mu \mathrm{P}$ Compatible AID Converters. 8-21
ADC0808, ADC0809 8-Bit μ P Compatible A/D Converters with 8-Channel Multiplexer. 8-45
ADC0816, ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer. 8-56
ADC1210, ADC1211 12-Bit CMOS A/D Converters 8-67
DAC0800 (LMDAC08) 8-Bit Digital-to-Analog Converter. 8-77
DAC0808, DAC0807, DAC0806 8-Bit D/A Converters. 8-85
DAC1000 thru DAC1008 10-Bit, μ P Compatible,
Double-Buffered D to A Converters. 8-92
DAC1020 10-Bit Binary Multiplying D/A Converter. 8-114
DAC1200/DAC1201 12-Bit (Binary) Digital-to-Analog Converters 8-124
DAC1202/DAC1203 3-Digit (BCD) Digital-to-Analog Converters 8-124
DAC1220 12-Bit Binary Multiplying D/A Converter. 8-114
DAC1280, DAC1285 12-Bit (Binary) Digital-to-Analog Converters 8-131
DAC1286, DAC1287 3-Digit (BCD) Digital-to-Analog Converters. 8-131
DM2502, DM2503, DM2504 Successive Approximation Registers. 8-139
LF13300 Integrating A/D Analog Building Block 8-144
LM131A/LM131, LM231A/LM231, LM331A/LM331
Precision Voltage-to-Frequency Converters 8-162
LM1508/LM1408 8-Bit DIA Converter. 8-173
MM54C905/MM74C905 12-Bit Successive Approximation Register. 8-175
TP3000 CODEC System (TP3001 μ-Law, TP3002 A-Law). 8-180
LH009.1 True RMS to DC Converter 8-193
LH0094 Multifunction Converter. 8-198\dagger^{\dagger} For additional information, see National Semiconductor's Data Acquisition Handbook.
Section 9—Industrial/Automotive/Functional Blocks/ Telecommunications
Definition of Terms 9 -iv
LM122/LM222/LM322, LM2905/LM3905 Precision Timers. 9-1
LM134/LM234/LM334 3-Terminal Adjustable Current Sources 9-13
LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors 9-21
LM555/LM555C Timer. 9-29
LM556/LM556C Dual Timer. 9-35
LM565/LM565C Phase Locked Loop 9-38
LM566/LM566C Voltage Controlled Oscillator. 9-43

Table of Contents (continued)

Section 9—Industrial/Automotive/Functional Blocks/ Telecommunications (Continued)

LM567/LM567C Tone Decoder. 9-46
LM1014/LM1014A Motor Speed Regulator. 9-50
LM1801 Smoke Detector. 9-54
LM1812 Ultrasonic Transceiver. 9-58
LM1815 Adaptive Sense Amplifier. 9-64
LM1830 Fluid Detector. 9-67
LM2877 Dual 4-Watt Power Audio Amplifier. 9-73
LM2907, LM2917 Frequency to Voltage Converter. 9-79
LM3080/LM3080A Operational Transconductance Amplifier. 9-92
LM3909 LED Flasher/Oscillator. 9-96
LM3911 Temperature Controller. 9-100
LM3914 Dot/Bar Display Driver. 9-107
LM3915 Dot/Bar Display Driver. 9-120
LM13600/LM13600A/LM11600A Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers. 9-136
Section 10—Audio, Radio and TV Circuits
Audio Selection Guide. $10-\mathrm{iv}$
Definition of Terms. 10-viii
LM377 Dual 2 Watt Audio Amplifier. 10-1
LM378 Dual 4 Watt Audio Amplifier. 10-6
LM379 Dual 6 Watt Audio Amplifier. 10-10
LM380 Audio Power Amplifier. 10-14
LM381/LM381A Low Noise Dual Preamplifier. 10-18
LM382 Low Noise Dual Preamplifier. 10-21
LM383/LM383A 8 Watt Audio Power Amplifier. 10-24
LM3845 Watt Audio Power Amplifier. 10-28
LM386 Low Voltage Audio Power Amplifier. 10-32
LM387/LM387A Low Noise Dual Preamplifier. 10-36
LM388 1.5 Watt Audio Power Amplifier. 10-39
LM389 Low Voltage Audio Power Amplifier With NPN Transistor Array. 10-44
LM390 1 Watt Battery Operated Audio Power Amplifier. 10-51
LM391 Audio Power Driver. 10-56
LM1011, LM1011A Dolby B-Type Noise Reduction Processor. 10-67
LM1017 4-Bit Binary 7-Segment Decoder/Driver. 10-70
LM1019N Digital Tuning Station Detector. 10-74
LM1303 Stereo Preamplifier. 10-77
LM1310 Phase-Locked Loop FM Stereo Demodulator. 10-79
LM1391 Phase-Locked Loop Block. 10-81
LM1596/LM1496 Balanced Modulator-Demodulator. 10-84
LM1800 Phase-Locked Loop FM Stereo Demodulator. 10-88
LM1818 Electronically Switched Audio Tape System. 10-90
LM1828, LM1848 Color Television Chroma Demodulator. 10-99
LM1870 Stereo Demodulator With Band. 10-102
LM1877 Dual Power Audio Amplifier. 10-108
LM1880 No-Holds Vertical/Horizontal. 10-113
LM1886 TV Video Matrix D to A. 10-120
LM1889 TV Video Modulator. 10-125
LM1896/LM2896 Dual Power Audio Amplifier. 10-134
LM2000 Audio Driver 10-141
LM2001 Low Voltage Audio Driver. 10-147

Table of Contents (continued)

Section 10—Audio, Radio and TV Circuits (Contiriued)

LM2002/LM2002A 8 Watt Audio Power Amplifier. 10-152
LM2808 Monolithic TV Sound System 10-156
LM3011 Wide Band Amplifier. 10-160
LM3064 Television Automatic Fine Tuning. 10-162
LM3075 FM Detector/Limiter and Audio Preamplifier. 10-164
LM3089 FM Receiver IF System 10-166
LM3189 FM Receiver IF System 10-170
LM3820 AM Radio System 10-176
LM4500A High Fidelity FM Stereo Blend Demodulator. 10-180
TBA120S IF Amplifier and Detector. 10-181
TBA120U/TBA120T IF Amplifier and Detector. 10-184
TBA440C Monolithic Video IF Amplifier. 10-188
TBA510 Chrominance Combination. 10-190
TBA530 RGB Matrix Preamplifier. 10-194
TBA540 Reference Combination. 10-197
TBA560C Luminance and Chrominance Control Combination. 10-201
TBA920/TBA920S Line Oscillator Combination. 10-205
TBA950-2 Television Signal Processing Circuit. 10-208
TBA970 Television Video Amplifier. 10-212
TBA990 Color Demodulator. 10-215
TDA440 Video IF Amplifier. 10-217
TDA2522 Color Demodulation Combination. 10-221
TDA2530, TDA2531 R-G-B Matrix Preamplifiers With Clamps. 10-223
TDA2560 Luminance and Chrominance Control Combination 10-226
TDA2590 Line Oscillator Combination 10-229
Section 11—Transistor/Diode Arrays
Transistor/Diode Arrays Selection Guide 11-iii
LM194/LM394 Supermatch Pair. 11-1
LM195/LM295/LM395 Ultra Reliable Power Transistors. $11-7$
LM3045, LM3046, LM3086 Transistor Arrays 11-15
LM3146 High Voltage Transistor Array 11-20
Section 12-Appendices/Physical Dimensions
National A+ and B+Extended Quality and Reliability
Programs for Linear Circuits 12-1
MIL-STD-883/MIL-M-38510 12-6
Linear Cross Reference Guide. 12.7
Industry Package Cross Reference Guide. 12-11
Physical Dimensions. 12-13

For additional information on Linear Products, see National Semiconductor's Linear Applications Handbook.

Alpha-Numerical Index

AD7520 10-Bit Binary Multiplying D/A Converter. 8-1
AD7521 12-Bit Binary Multiplying DIA Converter. 8-1
AD7530 10-Bit Binary Multiplying D/A Converter. 8-1
AD7531 12-Bit Binary Multiplying D/A Converter. 8-1
AD7533 10-Bit Binary Multiplying D/A Converter. 8-1
ADB1200 (MM5863) 12-Bit Binary A/D Building Block. 8-3
ADC0800 (MM4357B/MM5357B) 8-Bit A/D Converter. 8-10
ADC0801 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter 8-21
ADC0802 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter 8-21
ADC0803 8-Bit μ P Compatible A/D Converter. 8-21
ADC0804 8-Bit μ P Compatible A/D Converter 8-21
ADC0808 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter with 8-Channel Multiplexer. 8-45
ADC0809 8-Bit μ P Compatible A/D Converter with 8-Channel Multiplexer. 8-45
ADC0816 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter with 16-Channel Multiplexer. 8-56
ADC0817 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter with 16-Channel Multiplexer. 8-56
ADC1210 12-Bit CMOS A/D Converter. 8-67
ADC1211 12-Bit CMOS A/D Converter. 8-67
DAC0800 (LMDAC08) 8-Bit Digital-to-Analog Converter. 8-77
DAC0806 8-Bit D/A Converter. 8-85
DAC0807 8-Bit D/A Converter. 8-85
DAC0808 8-Bit D/A Converter. 8-85
DAC1000 10-Bit, μ P Compatible, Double-Buffered D to A Converter 8-92
DAC1001 10-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converter 8-92
DAC1002 10-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converter 8-92
DAC1003 10-Bit, μ P Compatible, Double-Buffered D to A Converter 8-92
DAC1004 10-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converter 8-92
DAC1005 10-Bit, μ P Compatible, Double-Buffered D to A Converter 8-92
DAC1006 10-Bit, μ P Compatible, Double-Buffered D to A Converter 8-92
DAC1007 10-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converter 8-92
DAC1008 10-Bit, μ P Compatible, Double-Buffered D to A Converter 8-92
DAC1020 10-Bit Binary Multiplying DIA Converter. 8-114
DAC1200 12-Bit (Binary) Digital-to-Analog Converter. 8-124
DAC1201 12-Bit (Binary) Digital-to-Analog Converter. 8-124
DAC1202 3-Digit (BCD) Digital-to-Analog Converter. 8-124
DAC1203 3-Digit (BCD) Digital-to-Analog Converter. 8-124
DAC1220 12-Bit Binary Multiplying DIA Converter. 8-114
DAC1280 12-Bit. (Binary). Digital-to-Analog Converter. 8-131
DAC1285 12-Bit (Binary) Digital-to-Analog Converter. 8-131
DAC1286 3-Digit (BCD) Digital-to-Analog Converter. 8 8-131
DAC1287 3-Digit (BCD) Digital-to-Analog Converter. 8-131
DM2502 Successive Approximation Register. 8-139
DM2503 Successive Approximation Register. 8-139
DM2504 Successive Approximation Register. 8-139
LF111 Voltage Comparators 5-1
LF152 FET Input Instrumentation Amplifier. 4-1
LF155 Series Monolithic JFET Input Operational Amplifiers. 3-1
LF156 Series Monolithic JFET Input Operational Amplifiers. 3-1
LF157 Series Monolithic JFET Input Operational Amplifiers. 3-1
LF198 Monolithic Sample and Hold Circuit. 7-1
LF198A Monolithic Sample and Hold Circuit. 7-1
LF211 Voltage Comparator. 5-1
LF298 Monolithic Sample and Hold Circuit 7-1
LF311 Voltage Comparator. 5-1
LF347 Wide Bandwidth Quad JFET Input Operational Amplifier. 3-14

Alpha-Numerical Index (continued)

LF351 Wide Bandwidth JFET Input Operational Amplifier 3-22
LF352 FET Input Instrumentation Amplifier. 4-1
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier. 3-29
LF398 Monolithic Sample and Hold Circuit. 7-1
LF398A Monolithic Sample and Hold Circuit 7-1
LF11201 4 Normally Closed Switches 6-1
LF11202 4 Normally Open Switches. 6-1
LF11331 4 Normally Open Switches With Disable. 6-1
LF11332 4 Normally Closed Switches With Disable. 6-1
LF11333 2 Normally Closed Switches and 2 Normally Open Switches With Disable. 6-1
LF11508 8-Channel Analog Multiplexer. 6-11
LF11509 4-Channel Differential Analog Multiplexer. 6-11
LF13201 4 Normally Closed Switches. 6-1
LF13202 4 Normally Open Switches. 6-1
LF13300 Integrating A/D Analog Building Block 8-144
LF13331 4 Normally Open Switches With Disable. 6-1
LF13332 4 Normally Closed Switches With Disable. 6-1
LF13333 2 Normally Closed Switches and 2 Normally Open Switches With Disable. 6-1
LF13741 Monolithic JFET Input Operational Amplifier. 3-38
LH0002 Current Amplifier. 3-238
LH0002C Current Amplifier. 3-238
LH0021 1.0 Amp Power Operational Amplifier. 3-241
LH0021C 1.0 Amp Power Operational Amplifier 3-241
LH0022 High Performance FET Op Amp 3-248
LH0022C High Performance FET Op Amp 3-248
LH0024 High Slew Rate Operational Amplifier. 3-255
LH0024C High Slew Rate Operational Amplifier 3-255
LH0032 Ultra Fast FET Operational Amplifier. 3-258
LH0032C Ultra Fast FET Operational Amplifier 3-258
LH0033 Fast and Damn Fast Buffer Amplifier. 3-263
LH0033C Fast and Damn Fast Buffer Amplifier. 3-263
LH0036 Instrumentation Amplifier. 4-19
LH0036C Instrumentation Amplifier. 4-19
LH0038 True Instrumentation Amplifier. 4-27
LH0038C True Instrumentation Amplifier. 4-27
LH0041 0.2 Amp Power Operational Amplifier. 3-241
LH0041C 0.2 Amp Power Operational Amplifier. 3-241
LH0042 Low Cost FET Op Amp. 3-248
LH0042C Low Cost FET Op Amp. 3-248
LH0044 Series Precision Low Noise Operational Amplifiers. 3-274
LH0045 Two Wire Transmitter. 3-280
LH0045C Two Wire Transmitter. 3-280
LH0052 Precision FET Op Amp 3-248
LH0052C Precision FET Op Amp. 3-248
LH0061 0.5 Amp Wide Band Operational Amplifier. 3-291
LH0061C 0.5 Amp Wide Band Operational Amplifier. 3-291
LH0062 High Speed FET Operational Amplifier 3-294
LH0062C High Speed FET Operational Amplifier. 3-294
LH0063 Fast and Damn Fast Buffer Amplifier. 3-263
LH0063C Fast and Damn Fast Buffer Amplifier. 3-263
LH0070 Series Precision BCD Buffered Reference. 2-1
LH0071 Series Precision Binary Buffered Reference. $2-1$
LH0075 Positive Precision Programmable Regulator. 2-5
LH0076 Negative Precision Programmable Regulator. 2-10
LH0084 Digitally Programmable Gain Instrumentation Amplifier. 4-38

Alpha-Numerical Index (Continued)

LH0084C Digitally Programmable Gain Instrumentation Amplifier 4-38
LH0091 True RMS to DC Converter. 8-193
LH0094 Multifunction Converter 8-198
LH2101A Dual High Performance Op Amp 3-72
LH2108 Dual Super Beta Op Amp. 3-93
LH2108A Dual Super Beta Op Amp. 3-93
LH2110 Dual Voltage Follower. 3-300
LH2111 Dual Voltage Comparator. 5-7
LH2201A Dual High Performance Op Amp. 3-72
LH2208 Dual Super Beta Op Amp. 3-93
LH2208A Dual Super Beta Op Amp 3-93
LH2210 Dual Voltage Follower. 3-300
LH2211 Dual Voltage Comparator. 5-7
LH2301A Dual High Performance Op Amp 3-72
LH2308 Dual Super Beta Op Amp. 3-93
LH2308A Dual Super Beta Op Amp 3-93
LH2310 Dual Voltage Follower. 3-300
LH2311 Dual Voltage Comparator. $5-7$
LH24250 Dual Programmable Micropower Op Amp 3-229
LH24250C Dual Programmable Micropower Op Amp. 3-229
LM10 Op Amp and Voltage Reference. 3-49
LM10B(L) Op Amp and Voltage Reference 3-49
LM10C(L) Op Amp and Voltage Reference 3-49
LM101A Operational Amplifier. 3-65
LM102 Voltage Follower. 3-74
LM103 Reference Diode. 2-15
LM104 Negative Regulator. 1-2
LM105 Voltage Regulator $1-5$
LM106 Voltage Comparator. 5-9
LM107 Operational Amplifier 3-79
LM108 Operational Amplifier 3-83
LM108A Operational Amplifier. 3-88
LM109 5-Volt Regulator. 1-10
LM110 Voltage Follower. 3-95
LM111 Voltage Comparator. 5-12
LM112 Operational Amplifier 3-102
LM113 Reference Diode. 2-18
LM117 3-Terminal Adjustable Regulator 1-15
LM117HV High Voltage 3-Terminal Adjustable Regulator. 1-23
LM118 Operational Amplifier. 3-106
LM119 High Speed Dual Comparator. 5-18
LM120 Series 3 -Terminal Negative Regulators. 1-31
LM121 Precision Preamplifier. $4-11$
LM121A Precision Preamplifier. 4-11
LM122 Precision Timer. 9-1
LM123 3 Amp, 5 Volt Positive Regulator 1:39
LM124 Low Power Quad Operational Amplifier. 3-1.13
LM124A Low Power Quad Operational Amplifier. 3-113
LM125 Voltage Regulator. $1-43$
LM126 Voltage Regulator. 1-43
LM129 Precision Reference. 2-21
LM130 3-Terminal Positive Regulator. $1-50$
LM131 Precision Voltage-to-Frequency Converter. 8-162
LM131A Precision Voltage-to-Frequency Converter. 8-162
LM134 3-Terminal Adjustable Current Source. 9-13

Alpha-Numerical Index (Continued)

LM135 Precision Temperature Sensor 9-21
LM135A Precision Temperature Sensor. 9-21
LM136 2.5V Reference Diode $2-26$
LM137 3-Terminal Adjustable Negative Regulators. $1-56$
LM137HV 3-Terminal Adjustable Negative Regulator (High Voltage), $1-61$
LM138 5 Amp Adjustable Power Regulators 1-66
LM139 Low Power Low Offset Voltage Quad Comparator. 5-23
LM139A Low Power Low Offset Voltage Quad Comparator. 5.23
LM140 Series 3-Terminal Positive Regulators. 1.74
LM140A Series 3-Terminal Positive Regulators $1-74$
LM140L Series 3-Terminal Positive Regulators $1-82$
LM143 High Voltage Operational Amplifier. 3-122
LM144 High Voltage, High Slew Rate Operational Amplifier. 3-129
LM145 Negative Three Amp Regulator. 1-85
LM146 Programmable Quad Operational Amplifier. 3-135
LM148 Series Quad 741 Op Amps. 3-147
LM149 Series Quad 741 Op Amps. 3-147
LM150 3 Amp Adjustable Power Regulator 1-89
LM158 Low Power Dual Operational Amplifier. 3-157
LM158A Low Power Dual Operational Amplifier. 3-157
LM159 Dual, High Speed, Programmable Current Mode (Norton) Amplifier. 3-167
LM160 High Speed Differential Comparator 5-31
LM161 High Speed Differential Comparator 5-34
LM185 Voltage Reference Diode. 2-32
LM192 Low Power Operational Amplifier/Voltage Comparator. 3-183
LM193 Low Power Low Offset Voltage Dual Comparator. 5-37
LM193A Low Power Low Offset Voltage Dual Comparator. 5-37
LM194 Supermatch Pair. 11-1
LM195 Ultra Reliable Power Transistor. $11-7$
LM199 Precision Reference. 2-38
LM199A Precision Reference. $2 \cdot 44$
LM201A Operational Amplifier. 3-65
LM202 Voltage Follower. 3.74
LM204 Negative Regulator. 1-2
LM205 Voltage Regulator. $1-5$
LM206 Voltage Comparator. 5-9
LM207 Operational Amplifier 3.79
LM208 Operational Amplifier 3.83
LM208A Operational Amplifier 3-88
LM209 5-Volt Regulator. 1-10
LM210 Voltage Follower. 3-95
LM211 Voltage Comparator. 5-12
LM212 Operational Amplifier 3-102
LM216 Operational Amplifier. 3-187
LM216A Operational Amplifier. 3-187
LM217 3-Terminal Adjustable Regulator. $1-15$
LM217HV High Voltage 3-Terminal Adjustable Regulator 1-23
LM218 Operational Amplifier. 3-106
LM219 High Speed Dual Comparator. 5-18
LM221 Precision Preamplifier. 4-11
LM221A Precision Preamplifier 4-11
LM222 Precision Timer 9-1
LM223 3 Amp, 5 Volt Positive Regulator. 1-39
LM224 Low Power Quad Operational Amplifier. 3-113
LM224A Low Power Quad Operational Amplifier. 3-113

Alpha-Numerical Index (continued)

LM231 Precision Voltage-to-Frequency Converter. 8-162
LM231A Precision Voltage-to-Frequency Converter. 8-162
LM234 3-Terminal Adjustable Current Source. 9-13
LM235 Precision Temperature Sensor. 9-21
LM235A Precision Temperature Sensor. 9-21
LM236 2.5V Reference Diode 2-26
LM237 3-Terminal Adjustable Negative Regulator. 1-56
LM237HV 3-Terminal Adjustable Negative Regulator (High Voltage). $1-61$
LM238 5 Amp Adjustable Power Regulator. 1-66
LM239 Low Power Low Offset Voltage Quad Comparator. 5-23
LM239A Low Power Low Offset Voltage Quad Comparator. 5-23
LM245 Negative Three Amp Regulator. 1-85
LM246 Programmable Quad Operational Amplifier. 3-135
LM250 3 Amp Adjustable Power Regulator. 1-89
LM258 Low Power Dual Operational Amplifier. 3-157
LM258A Low Power Dual Operational Amplifier 3-157
LM260 High Speed Differential Comparator. 5-31
LM261 High Speed Differential Comparator. 5-34
LM285 Voltage Reference Diode 2-32
LM292 Low Power Operational Amplifier/Voltage Comparator. 3-183
LM293 Low Power Low Offset Voltage Dual Comparator. 5-37
LM293A Low Power Low Offset Voltage Dual Comparator. 5-37
LM295 Ultra Reliable Power Transistor. 11-7
LM299 Precision Reference. 2-38
LM299A Precision Reference 2-44
LM301A Operational Amplifier. 3-65
LM302 Voltage Follower. 3-74
LM304 Negative Regulator. 1-2
LM305 Voltage Regulator. $1-5$
LM305A Voltage Regulator. 1.5
LM306 Voltage Comparator. 5-9
LM307 Operational Amplifier 3-79
LM308 Operational Amplifier. 3-83
LM308A Operational Amplifier 3-88
LM308A-1 Operational Amplifier 3-88
LM308A-2 Operational Amplifier. 3-88
LM309 5-Volt Regulator 1-10
LM310 Voltage Follower. 3-95
LM311 Voltage Comparator. 5-44
LM312 Operational Amplifier 3-102
LM313 Reference Diode. 2-18
LM316 Operational Amplifier. 3-187
LM316A Operational Amplifier. 3-187
LM317 3-Terminal Adjustable Regulator. 1-15
LM317HV High Voltage 3-Terminal Adjustable Regulator. 1-23
LM318 Operational Amplifier 3.106
LM319 High Speed Dual Comparator. 5-18
LM320L Series 3-Terminal Negative Regulators $1-97$
LM320ML Series 3-Terminal Negative Regulators. $1-97$
LM321 Precision Preamplifier. 4-11
LM321A Precision Preamplifier. 4-11
LM322 Precision Timer. 9-1
LM323 3 Amp, 5 Volt Positive Regulator. $1-39$
LM324 Low Power Quad Operational Amplifier. 3-113
LM324A Low Power Quad Operational Amplifier. 3-113

Alpha-Numerical Index (continued)

LM325 Voltage Regulator. $1-43$
LM325A Voltage Regulator. 1-43
LM326 Voltage Regulator. 1-43
LM329 Precision Reference. 2-21
LM330 3-Terminal Positive Regulator. 1-50
LM331 Precision Voltage-to-Frequency Converter. 8-162
LM331A Precision Voltage-to-Frequency Converter. 8-162
LM334 3-Terminal Adjustable Current Source. 9-13
LM335 Precision Temperature Sensor. 9-21
LM335A Precision Temperature Sensor. 9-21
LM336 2.5V Reference Diode. 2-26
LM337 3-Terminal Adjustable Negative Regulator. 1-56
LM337HV 3-Terminal Adjustable Negative Regulator (High Voltage). 1-61
LM3385 Amp Adjustable Power Regulator. $1-66$
LM339 Low Power Low Offset Voltage Quad Comparator. 5-23
LM339A Low Power Low Offset Voltage Quad Comparator. 5-23
LM340 Series 3-Terminal Positive Regulators. 1-74
LM340A Series 3 -Terminal Positive Regulators. 1-74
LM340L Series 3 -Terminal Positive Regulators. 1-82
LM341 Series 3-Terminal Positive Regulators. 1-103
LM342 Series 3-Terminal Positive Regulators 1-106
LM343 High Voltage Operational Amplifier. 3-122
LM344 High Voltage, High Slew Rate Operational Amplifier. 3-129
LM345 Negative Three Amp Regulator. $1-85$
LM346 Programmable Quad Operational Amplifier 3-135
LM350 3 Amp Adjustable Power Regulator. 1-89
LM358 Low Power Dual Operational Amplifier. 3-157
LM358A Low Power Dual Operational Amplifier. 3-157
LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifiers 3-167
LM360 High Speed Differential Comparator. 5-31
LM361 High Speed Differential Comparator. 5-34
LM376 Voltage Regulator. 1-5
LM377 Dual 2 Watt Audio Amplifier. 10-1
LM378 Dual 4 Watt Audio Amplifier. 10-6
LM379 Dual 6 Watt Audio Amplifier. 10-10
LM380 Audio Power Amplifier. 10-14
LM381 Low Noise Dual Preamplifier. 10-18
LM381A Low Noise Dual Preamplifier. 10-18
LM382 Low Noise Dual Preamplifier. 10-21
LM383 8 Watt Audio Power Amplifier. 10-24
LM383A 8 Watt Audio Power Amplifier. 10-24
LM3845 Watt Audio Power Amplifier. 10-28
LM385 Voltage Reference Diode. 2.32
LM386 Low Voltage Audio Power Amplifier. 10-32
LM387 Low Noise Dual Preamplifier. 10-36
LM387A Low Noise Dual Preamplifier. 10-36
LM388 1.5 Watt Audio Power Amplifier. 10-39
LM389 Low Voltage Audio Power Amplifier With NPN Transistor Array 10-44
LM390 1 Watt Battery Operated Audio Power Amplifier. 10-51
LM391 Audio Power Driver. $10-56$
LM392 Low Power Operational Amplifier/Voltage Comparator. 3-183
LM393 Low Power Low Offset Voltage Dual Comparator. 5-37
LM393A Low Power Low Offset Voltage Dual Comparator. 5-37
LM394 Supermatch Pair. 11-1

Alpha-Numerical Index (continued)

LM395 Ultra Reliable Power Transistor $11-7$
LM399 Precision Reference. 2.38
LM399A Precision Reference. $2-44$
LM555 Timer. 9-29
LM555C Timer. 9-29
LM556 Dual Timer. 9-35
LM556C Dual Timer. 9-35
LM565 Phase Locked Loop. 9-38
LM565C Phase Locked Loop 9-38
LM566 Voltage Controlled Oscillator. 9-43
LM566C Voltage Controlled Oscillator. 9-43
LM567 Tone Decoder. 9-46
LM567C Tone Decoder. 9-46
LM709 Operational Amplifier. 3-190
LM709A Operational Amplifier 3-190
LM709C Operational Amplifier. 3-190
LM710 Voltage Cómparator. 5-52
LM710C Voltage Comparator. 5-52
LM711 Dual Comparator. 5-55
LM711C Dual Comparator. 5-55
LM723 Voltage Regulator. 1-110
LM723C Voltage Regulator. 1-110
LM725 (Instrumentation) Operational Amplifier 3-194
LM725A (Instrumentation) Operational Amplifier. 3-194
LM725C (Instrumentation) Operational Amplifier. 3-194
LM733 Differential Video Amp. 3-198
LM733C Differential Video Amp. 3-198
LM741 Operational Amplifier. 3-202
LM741A Operational Amplifier. 3-202
LM741C Operational Amplifier 3-202
LM741E Operational Amplifier. 3-202
LM747 Dual Operational Amplifier. 3-205
LM747A Dual Operational Amplifier. 3-205
LM747C Dual Operational Amplifier. 3-205
LM747E Dual Operational Amplifier. 3-205
LM748 Operational Amplifier. 3-210
LM748A Operational Amplifier 3-210
LM78XX Series Voltage Regulators. 1-136
LM78LXX Series 3-Terminal Positive Regulators 1-139
LM78MXX Series 3 -Terminal Positive Regulators $1-145$
LM79XX Series 3-Terminal Negative Regulators 1-148
LM79LXXAC Series 3-Terminal Negative Regulators 1-153
LM79MXX Series 3-Terminal Negative Regulators. 1-157
LM1011 Dolby B-Type Noise Reduction Processor 10-67
LM1011A Dolby B-Type Noise Reduction Processor. 10-67
LM1014 Motor Speed Regulator. 9-50
LM1014A Motor Speed Regulator. 9-50
LM1017 4-Bit Binary 7-Segment Decoder/Driver. 10-70
LM1019N Digital Tuning Station Detector 10-74
LM1303 Stereo Preamplifier. 10-77
LM1310 Phase Locked Loop FM Stereo Demodulator. 10-79
LM1391 Phase Locked Loop Block. 10-81
LM1408 8-Bit D/A Converter. 8-173
LM1414 Dual Differential Voltage Comparator. 5-58
LM1458 Dual Operational Amplifier. 3-213

Alpha-Numerical Index (continued)

LM1496 Balanced Modulator-Demodulator. 10-84
LM1508 8-Bit DIA Converter. 8-173
LM1514 Dual Differential Voltage Comparator. 5-58
LM1524 Regulating Pulse Width Modulator. $1-115$
LM1558 Dual Operational Amplifier. 3-213
LM1596 Balanced Modulator-Demodulator. 10-84
LM1800 Phase Locked Loop FM Stereo Demodulator. $10-88$
LM1801 Smoke Detector. $9-54$
LM1812 Ultrasonic Transceiver. 9-58
LM1815 Adaptive Sense Amplifier. $9-64$
LM1818 Electronically Switched Audio Tape System. $10-90$
LM1828 Color Television Chroma Demodulator. 10-99
LM1830 Fluid Detećtor. 9-67
LM1848 Color Television Chroma Demodulator. 10-99
LM1870 Stereo Demodulator with Blend. 10-102
LM1877 Dual Power Audio Amplifier. 10-108
LM1880 No-Holds Vertical/Horizontal. 10-113
LM1886 TV Video Matrix D to A 10-120
LM1889 TV Video Modulator. 10-125
LM1896/LM2896 Dual Power Audio Amplifier. 10-134
LM2000 Low Voltage Audio Driver. 10-141
LM2001 Low Voltage Audio Driver. 10-147
LM2002 8-Watt Audio Power Amplifier 10-152
LM2002A 8-Watt Audio Power Amplifier 10-152
LM2524 Regulating Pulse Width Modulator 1-115
LM2808 Monolithic TV Sound System 10-156
LM2877 Dual 4-Watt Power Audio Amplifier. 9-73
LM2900 Quad Amplifier. 3-215
LM2901 Low Power Low Offset Voltage Quad Comparator. 5-23
LM2902 Low Power Quad Operational Amplifier. 3-113
LM2903 Low Power Low Offset Voltage Dual Comparator. 5-37
LM2904 Low Power Dual Operational Amplifier. 3-157
LM2905 Precision Timer. 9-1
LM2907 Frequency to Voltage Converter. 9-79
LM2917 Frequency to Voltage Converter. 9-79
LM2924 Low. Power Operational Amplifier/Voltage Comparator. 3-183
LM2930 3-Terminal Positive Regulator. 1-130
LM3011 Wide Band Amplifier. 10-160
LM3045 Transistor Array 11-15
LM3046 Transistor Array 11-15
LM3064 Television Automatic Fine Tuning. 10-162
LM3075 FM Detector/Limiter and Audio Preamplifier. 10-164
LM3080 Operational Transconductance Amplifier. 9-92
LM3080A Operational Transconductance Amplifier. $9-92$
LM3086 Transistor Array. 11-15
LM3089 FM Receiver IF System. 10-166
LM3146 High Voltage Transistor Array 11-20
LM3189 FM Reçeiver IF System 10-170
LM3301 Quad Amplifier. 3-215
LM3302 Low Power Low Offset Voltage Quad Comparator 5-23
LM3401 Quad Amplifier. 3-215
LM3524 Regulating Pulse Width Modulator. $1-115$
LM3820 AM Radio System. 10-176
LM3900 Quad Amplifier. 3-215
LM3905 Precision Timer. 9-1
Alpha-Numerical Index (Continued)
LM3909 LED Flasher/Oscillator. 9-96
LM3911 Temperature Controller. 9-100
LM3914 Dot/Bar Display Driver. 9-107
LM3915 Dot/Bar Display Driver 9-120
LM3999 Precision Reference. 2-47
LM4250 Programmable Operational Amplifier. 3-224
LM4250C Programmable Operational Amplifier. 3-224
LM4500A High Fidelity FM Stereo Blend Demodulator. 10-180
LM11600A Dual Operational Transconductance Amplifier
With Linearizing Diodes and Buffers. 9-136
LM13080 Programmable Power Op Amp. 3-231
LM13600 Dual Operational Transconductance Amplifier With Linearizing Diodes and Buffers. 9-136
LM13600A Dual Operational Transconductance Amplifier With Linearizing Diodes and Buffers 9-136
MM54C905 12-Bit Successive Approximation Register. 8-175
MM74C905 12-Bit Successive Approximation Register. 8-175
TBA120S IF Amplifier and Detector. 10-181
TBA120T IF Amplifier and Detector. 10-184
TBA120U IF Amplifier and Detector. 10-184
TBA440C Monolithic Video IF Amplifier. 10-188
TBA510 Chrominance Combination. 10-190
TBA530 RGB Matrix Preamplifier 10-194
TBA540 Reference Combination 10-197
TBA560C Luminance and Chrominance Control Combination. 10-201
TBA920 Line Oscillator Combination. 10-205
TBA920S Line Oscillator Combination. 10-205
TBA950-2 Television Signal Processing Circuit. 10-208
TBA970 Television Video Amplifier. 10-212
TBA990 Color Demodulator. 10-215
TDA440 Video IF Amplifier. 10-217
TDA2522 Color Demodulation Combination. 10-221
TDA2530 R-G-B Matrix Preamplifier With Clamps 10-223
TDA2531 R-G-B Matrix Preamplifier With Clamps. 10-223
TDA2560 Luminance and Chrominance Control Combination 10-226
TDA2590 Line Oscillator Combination 10-229
TP3000 CODEC System 8-180
TP3001 μ-Law. 8-180
TP3002 A-Law. 8-180

Section 1
Voltage Regulators

Voltage Regulators ${ }^{\dagger}$

Section Contents

Voltage Regulator Guide 1-iii
Precision Regulator Guide. 1 -vii
Definition of Terms 1-viii
Fixed or Adjustable Voltage Regulators 1.1
Positive 3 -Terminal Fixed
LM109/LM209/LM309 5-Volt Regulator 1-10
LM123/LM223/LM323 3 Amp, 5 Volt Positive Regulator. 1-39
LM130/LM330 3-Terminal Positive Regulators. $1-50$
LM140A/LM140/LM340A/LM340 Series 3-Terminal Positive Regulators. 1-74
LM140L/LM340L Series 3 -Terminal Positive Regulators. $1-82$
LM341 Series 3-Terminal Positive Regulators. 1-103
LM342 Series 3-Terminal Positive Regulators. 1-106
LM2930 3-Terminal Positive Regulator. 1-130
LM78XX Series Voltage Regulators. 1-136
LM78LXX Series 3-Terminal Positive Regulators. 1-139
*LM78MXX Series 3-Terminal Positive Regulators. 1-145
Positive 3 -Terminal Adjustable
LM117/LM217/LM317 3-Terminal Adjustable Regulator. 1-15
LM117HV/LM217HV/LM317HV High Voltage 3-Terminal Adjustable Regulator. 1-23
LM138/LM238/LM338 5 Amp Adjustable Power Regulators 1-66
LM150/LM250/LM350 3 Amp Adjustable Power Regulators. 1.89
Positive Multi-Terminal Adjustable
LM105/LM205/LM305/LM305A, LM376 Voltage Regulators. 1-5
LM723/LM723C Voltage Regulator. 1-110
Negative 3-Terminal Fixed
LM120 Series 3-Terminal Negative Regulators. 1-31
LM145/LM245/LM345 Negative Three Amp Regulator 1.85
LM320LLM320ML Series 3-Terminal Negative Regulators. $1-97$
LM79XX Series 3 -Terminal Negative Regulators 1-148
LM79LXXAC Series 3-Terminal Negative Regulators. 1-153
LM79MXX Series 3-Terminal Negative Regulators. 1-157
Negative 3-Terminal Adjustable
LM137/LM237/LM337 3-Terminal Adjustable Negative Regulators 1-56
LM137HV/LM237HV/LM337HV 3-Terminal Adjustable Negative Regulators (High Voltage) 1-61
Negative Multi-Terminal Adjustable
LM104/LM204/LM304 Negative Regulator. 1-2
LM723/LM723C Voltage Regulator 1-110
Dual Tracking
LM125/LM325/LM325A Voltage Regulators. 1-43
LM126/LM326 Voltage Regulators. 1-43
Switching
LM104/LM204/LM304 Negative Regulator. 1-2
LM723/LM723C Voltage Regulator. 1-110
LM1524/LM2524/LM3524 Regulating Pulse Width Modulator. 1-115

[^0]3-TERMINAL POSITIVE VOLTAGE REGULATORS

Note 1: Line regulation is the change in output voltage for a change in input voltage.
Note 2: Load regulation is the change in output voltage due to a change in load current from no load to full load.

Voltage Regulator Guide

3-TERMINAL NEGATIVE VOLTAGE REGULATORS

$\mathbf{V}_{\mathbf{0}}$ - NOMINAL REGULATED OUTPUT VOLTAGE (V)
*All devices with TO-3 package designators (K or K STEEL) are supplied in steel TO-3 packages unless otherwise designated as. (AL) aluminum TO-3 package. All KC designated devices are supplied in aluminum TO-3.

Voltage Regulators

Definition of Terms

Current-Limit Sense Voltage: The voltage across the current limit terminals required to cause the regulator to current-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reductions in input voltage.

Feedback Sense Voltage: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.

Input Voltage Range: The range of dc input voltages over which the regulator will operate within specifications.

Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions at $125^{\circ} \mathrm{C}$ with maximum rated voltages and power dissipation for 1000 hours.

Maximum Power Dissipation: The maximum total device dissipation for which the regulator will operate within specifications.

Output-Input Voltage Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.

Output Noise Voltage: The RMS ac voltage at the output with constant load and no input ripple, measured over a specified frequency range.

Output Voltage Range: The range of regulated output voltages over which the specifications apply.

Output Voltage Scale Factor: The output voltage obtained for a unit value of resistance between the adjustment terminal and ground.

Quiescent Current: That part of input current to the regulator that is not delivered to the load.

Ripple Rejection: The line regulation for ac input signals at or above a given frequency with a specified value of bypass capacitor on the reference bypass terminal.

Standby Current Drain: That part of the operating current of the regulator which does not contribute to the load current.

Temperature Stability: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

Thermal Regulation: Percentage change in output voltage for a given change in power dissipation over a specified time period.

National Semiconductor
 Fixed or Adjustable Voltage Regulators

At National we see the trend moving toward the use of more adjustable regulators and we are broadening the adjustable line to satisfy this demand.

As you browse through this Voltage Regulator section you will notice many changes. We've expanded the adjustable regulator line and many voltage options on fixed regulators have been deleted.

The fixed voltage regulators, like the 7800 and 7900 series, resulted in customers having to stock and hold in inventory quantities of each voltage in order to always have on hand a specific device for a particular system. This proved to be very costly especially when production was stopped due to shortage of a particular voltage.
Adjustables combine versatility, performance and reliability, leading to increased popularity.

Versatility

[. Satisfy output voltage requirements from 1.2 V up to 47V

- Simplify inventory and purchasing since a single device satisfies many voltage requirements
- Allows precision application

Performance

- Improves system performance by having line and load regulation a factor of 10 better
- Has improved overload protection thus allowing greater output current over operating temperature range

Reliability

- Improves system reliability with each device being subjected to 100% thermal limit burn-in

As more and more applications use adjustable regulators, we believe that they will become the most popular regulators in the industry.

7 National Semiconductor LM104/LM204/LM304 Negative Regulator

General Description

The LM104 series are precision voltage regulators which can be programmed by a single external resistor to supply any voltage from 40 V down to zero while operating from a single unregulated supply. They can also provide 0.01 -percent regulation in circuits using a separate, floating bias supply, where the output voltage is limited only by the breakdown of external pass transistors. Although designed primarily as linear, series regulators, the circuits can be used as switching regulators, current regulators or in a number of other control applications. Typical performance characteristics are:

- Subsurface zener reference
- 1 mV regulation no load to full load
- $0.01 \% / \mathrm{V}$ line regulation
- $0.2 \mathrm{mV} / \mathrm{V}$ ripple rejection

Voltage Regulators

- 0.3% temperature stability over military temperature range
The LM104 series are complements of the LM100 and LM105 positive regulators, intended for systems requiring regulated negative voltages which have a common ground with the unregulated supply. By themselves, they can deliver output currents to 25 mA , but external transistors can be added to get any desired current. The output voltage is set by external resistors, and either constant or foldback current limiting is made available.
The LM104 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM204 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM304 is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

Metal Can Package

TOP VIEW
Order Number LM104H, LM204H or LM304H See NS Package H10C

Typical Applications

Operating with Separate Bias Supply

High Current Regulator

Basic Regulator Circuit

Switching Regulator

Absolute Maximum Ratings

	LM104/LM204	LM304
Input Voltage	50 V	40 V
Input-Output Voltage Differential	50 V	40 V
Power Dissipation (Note 1)	500 mW	500 mW
Operating Temperature Range		
LM104	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
LM204	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM304		
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics

PARAMETER	CONDITIONS	LM104/LM204			LM304			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Voltage Range		-50		-8	-40		-8.	V
Output Voltage Range		-40		-0.015	-30		-0.035	v
Output-Input Voltage	$\mathrm{I}_{0}=20 \mathrm{~mA}$	2.0		50	2.0		40	V
Differential (Note 3)	$\mathrm{I}_{0}=5 \mathrm{~mA}$	0.5		50	0.5	:	40	V
Load Regulation (Note 4)	$\begin{aligned} & 0 \leq \mathrm{I}_{\mathrm{O}} \leq 20 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{SC}}=15 \Omega \end{aligned}$		1	5		1	. 5	mV -
Line Regulation (Note 5)	$\begin{aligned} & V_{\text {OUT }} \leq-5 \mathrm{~V} \\ & \Delta \mathrm{~V}_{\text {IN }}=0.1 \mathrm{~V}_{\text {IN }} \end{aligned}$		0.056	0.1		0.056	0.1	\%
Ripple Rejection	$\begin{aligned} & \mathrm{C}_{19}=10 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\text {IN }}<-15 \mathrm{~V} \\ & -7 \mathrm{~V} \geq \mathrm{V}_{\text {IN }} \geq-15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$.	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Output Voltage Scale Factor	$\mathrm{R}_{23}=2.4 \mathrm{k}$	1.8	2.0	2.2	1.8	2.0	2.2	$\mathrm{V} / \mathrm{k} \Omega$
Temperature Stability	$\mathrm{V}_{\mathrm{O}} \leq-1 \mathrm{~V}$		0.3	1.0		0.3	1.0	\%
Output Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{O}} \leq-5 \mathrm{~V}, \mathrm{C}_{19}=0 \\ & \mathrm{C}_{19}=10 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 0.007 \\ & 15 \end{aligned}$.		$\begin{aligned} & 0.007 \\ & 15 \end{aligned}$		$\begin{gathered} \% \\ \mu \mathrm{~V} \end{gathered}$
Standby Current Drain	$\begin{aligned} I_{L}=5 \mathrm{~mA}, V_{O} & =0 \\ V_{O} & =-30 \mathrm{~V} \\ V_{O} & =-40 \mathrm{~V} \end{aligned}$		1.7 3.6	2.5 5.0		$\begin{aligned} & 1.7 \\ & 3.6 \end{aligned}$	2.5 5.0	mA mA mA
Lorig Term Stability	$\mathrm{v}_{0} \leq-1 \mathrm{~V}$		0.01	1.0		0.01	1.0	\%

Note 1: The maximum junction temperature of the LM104 is $150^{\circ} \mathrm{C}$, while that of the LM204 is $125^{\circ} \mathrm{C}$ and LM 304 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: These specifications apply for junction temperatures between $-55^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ (between $-25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ for the LM204 and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LM304) and for input and output voltages within the ranges given, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.
Note 3: When external booster transistors are used, the minimum output-input voltage differential is increased, in the worst case, by approximately 1 V .
Note 4: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.
Note 5: With zero output, the dc line regulation is determined from the ripple rejection. Hence, with output voltages between OV and -5 V , a dc output variation, determined from the ripple rejection, must be added to find the worst-case line regulation.

Typical Performance Characteristics

Supply Voltage Rejection

Current Limit Sense Voltage

Line Transient Response

Supply, Voltage Rejection With Preregulated Reference Supply

Regulator Dropout Voltage

Load Transient Response

Current Limiting

Ripple Rejection

Minimum Input Voltage

Standby Current Draịn

2

National
Voltage Regulators Semiconductor

LM105/LM205/LM305/LM305A, LM376 Voltage Regulators

General Description

The LM105 series are positive voltage regulators similar to the LM100, except that an extra gain stage has been added for improved regulation. A redesign of the biasing circuitry removes any minimum load current requirement and at the same time reduces standby current drain, permitting higher voltage operation. They are direct, plug-in replacements for the LM100 in both linear and switching regulator circuits with output voltages greater than 4.5 V . Important characteristics of the circuits are:

- Output voltage adjustable from 4.5 V to 40 V
- Output currents in excess of 10A possible by adding external transistors
- Load regulation better than 0.1%, full load with current limiting
- DC line regulation guaranteed at $0.03 \% / \mathrm{V}$
- Ripple rejection of $0.01 \% / \mathrm{V}$
- 45 mA output current without external pass transistor (LM305A)

Like the LM100, they also feature fast response to both load and line transients, freedom from oscillations with varying resistive and reactive loads and the ability to start reliably on any load within rating. The circuits are built on a single silicon chip and are supplied in either an 8 -lead, TO-5 header or a $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ metal flat package.

The LM105 is specified for operation for $-55^{\circ} \mathrm{C} \leq$ $\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, the LM205 is specified for $-25^{\circ} \mathrm{C} \leq$ $T_{A} \leq+85^{\circ} \mathrm{C}$, and the LM305/LM305A, LM376 is specified for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

Pin connections shown are for metal can.

Typical Applications

10A Regulator with Foldback Current Limiting

Order Number LM376N See NS Package N08B

Order Number LM105H, LM205H, LM305H or LM305AH See NS Package H08C
1.0A Regulator with Protective Diodes

LM105/LM205
 LM305/LM305A, LM376

Absolute Maximum Ratings	LM105
Input Voltage	50 V
Input-Output Differential	40 V
Power Dissipation (Note 1)	800 mW
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

LM205
50 V
40 V
800 mW
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

LM305	LM305A	LM376
40 V	50 V	40 V
40 V	40 V	40 V
800 mW	800 mW	400 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \mathrm{to}+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

PARAMETER	CONDITIONS	LM105			LM205			LM305			LM305A			LM376			UNITS
		MIN	TYP	MAX													
Input Voltage Range		8.5	'	50	8.5		50	8.5		40	8.5		50	9.0		40	\checkmark
Output Voltage Range		4.5		40	4.5		40	4.5		30	4.5		40	5.0		37	V
Input-Output Voltage Differential		3.0		30	3.0		30	3.0		30	3.0		30	3.0		30	V
Load Regulation (Note 3)	$\begin{aligned} & \mathrm{R}_{S C}=10 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S C}=10 \Omega, T_{A}=T_{A}(M A X) \\ & R_{S C}=10 \Omega, T_{A}=T_{A(M I N)} \\ & R_{S C}=0 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S C}=0 \Omega, T_{A}=70^{\circ} \mathrm{C} \\ & R_{S C}=0 \Omega, T_{A}=0^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \hline 0.02 \\ & 0.03 \\ & 0.03 \\ & 10 \leq 12 \end{aligned}$	$\begin{gathered} \hline 0.05 \\ 0.1 \\ 0.1 \\ \mathrm{nA} \end{gathered}$		$\begin{aligned} & \hline 0.02 \\ & 0.03 \\ & 0.03 \\ & 0 \leq 12 \end{aligned}$	$\begin{gathered} 0.05 \\ 0.1 \\ 0.1 \\ \mathrm{~mA} \end{gathered}$		$\begin{aligned} & \hline 0.02 \\ & 0.03 \\ & 0.03 \\ & 10 \leq 12 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.1 \\ & \text { nA } \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.03 \\ & 0.03 \\ & 10 \leq 45 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.2 \\ 0.4 \\ 0.4 \\ \mathrm{nA} \\ \hline \end{array}$		$10 \leq$	$\begin{gathered} 0.2 \\ 0.5 \\ 0.5 \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \hline \% \\ & \% \\ & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
Line Regulation	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \geq 5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.025 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.025 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.025 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.025 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.03 \end{aligned}$			$\begin{aligned} & 0.03 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \\ & \% / V \\ & \% / V \end{aligned}$
Temperature Stability	$\mathrm{T}_{\mathrm{A}}($ MIN $) \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {A }}($ MAX $)$		0.3	1.0		0.3	1.0		0.3	1.0		0.3	1.0				\%
Feedback Sense Voltage		1.63	1.7	1.81	1.63	1.7	1.81	1.63	1.7	1.81	1.55	1.7	1.85	1.60	1.72	1.80	V
Output Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{C}_{\text {REF }}=0 \\ & \mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$			$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$			$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$			$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$				*	$\begin{aligned} & \% \\ & \% \end{aligned}$
Standby Current Drain	$\begin{aligned} & V_{I N}=30 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{I N}=40 \mathrm{~V} \\ & \mathrm{~V}_{I N}=50 \mathrm{~V} \end{aligned}$		0.8	2.0	,	0.8	2.0		0.8	2.0		0.8	2.0			2.5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Current Limit Sense Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SC}}=10 \Omega, \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V},(\text { Note } 4) \end{aligned}$. 225	300	375.	225	300	375	225	300	375		300	375		300		$\cdots \mathrm{mV}$
Long Term Stability			0.1	1.0		0.1	1.0		0.1	1.0		0.1	1.0				\%
Ripple Rejection	$\mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}$		0.003	0.01		0.003	0.01		0.003	0.01		0.003				0.1	\%/V

 interval for the LM305

 conditions of high dissipation.
 added transistors.
Note 4: With no external pass transistor.

Current Limit Sense Voltage

Minimum Output Voltage

Optimum Divider Resistance Values

Transient Response

Standby Current Drain

Typical Performance Characteristics Lм376

Minimum Input Voltage

Standby Current Drain
$T_{A}=25^{\circ} \mathrm{C}$

Current Limiting Characteristics

Regulator Dropout Voltage

Supply Voltage Rejection

Current Limit Sense Voltage

Optimum Divider Resistance

Transient Response

Typical Applications (Continued)

Linear Regulator with Foldback Current Limiting

Voltage Regulators

LM109/LM209/LM309 5-Volt Regulator

General Description

The LM109 series are complete 5 V regulators fabricated on a single silicon chip. They are designed for local regulation on digital logic cards, eliminating the distribution problems associated with single-point regulation. The devices are available in two standard transistor packages. In the solid-kovar TO-5 header, it can deliver output currents in excess of 200 mA , if adequate heat sinking is provided. With the TO-3 power package, the available output current is greater than 1 A .

The regulators are essentially blowout proof. Current limiting is included to limit the peak output current to a safe value. In addition, thermal shutdown is provided to keep the IC from overheating. If internal dissipation becomes too great, the regulator will shut down to prevent excessive heating.

Considerable effort was expended to make these devices easy to use and to minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response somewhat. Input bypassing is needed, however, if the regulator is
located very far from the filter capacitor of the power supply. Stability is also achieved by methods that provide very good rejection of load or line transients as are usually seen with TTL. logic.

Although designed primarily as a fixed-voltage regulator, the output of the LM109 series can be set to voltages above 5 V , as shown below. It is also possible to use the circuits as the control element in precision regulators, taking advantage of the good current-handling capability and the thermal overload protection.

Features

- Specified to be compatible, worst case, with TTL and DTL
- Output current in excess of 1 A
- Internal thermal overload protection
- No external components required

Schematic Diagram

Connection Diagrams

Order Number LM109H, LM209H or LM309H See Package H03A

Typical Application

Fixed 5V Regulator

*Required if regulator is located more than 4"
from power supply filter capacitor.
\dagger Although no output capacitor is needed for stability. it does improve transient response.
C2 should be used whenever long wires are used to connect to the load, or when transient response is critical.

$$
\text { NOTE: Pin } 3 \text { electrically connected to case. }
$$

Adjustable Output Regulator

Absolute Maximum Ratings

Input Voltage
35 V
Internally Limited

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics

PARAMETER	CONDITIONS	LM109/LM209			LM309			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	4.7	5.05	5.3	4.8	'5.05	5.2	V
Line Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \\ & 7 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 25 \mathrm{~V} \end{aligned}$		4.0	50		4.0	50	mV
Load Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$							
TO-5 Package	$5 \mathrm{~mA} \leqslant \mathrm{I}_{\text {OUT }} \leqslant 0.5 \mathrm{~A}$		15	50		15	50	mV
TO-3 Package	$5 \mathrm{~mA} \leqslant \mathrm{I}_{\text {OUT }} \leqslant 1.5 \mathrm{~A}$		15	100		15	100	mV
Output Voltage	$\begin{aligned} & 7 V \leqslant V_{\text {IN }} \leqslant 25 \mathrm{~V}, \\ & 5 \mathrm{~mA} \leqslant \mathrm{I}_{\text {OUT }} \leqslant I_{\text {MAX }} . \\ & P<P_{\text {MAX }} \end{aligned}$	4.6		5.4	4.75		5.25	V
Quiescent Current	$7 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 25 \mathrm{~V}$		5.2	10		5.2	10	mA
Quiescent Current Change	$\begin{aligned} & 7 V \leqslant V_{I N} \leqslant 25 V \\ & 5 \mathrm{~mA} \leqslant I_{O U T} \leqslant I_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$			0.5 0.8	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz} \end{aligned}$		40			40		$\mu \mathrm{V}$
Long Term Stability				10			20	mV
Ripple Rejection	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	50			50			dB
Thermal Resistance, Junction to Case	(Note 2)							.
TO-5 Package			15			15		${ }^{\circ} \mathrm{C} / \mathrm{W}$
TO-3 Package			2.5			2.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply for $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 109,-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+150^{\circ} \mathrm{C}$ for the LM 209 , and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C}$ for the LM309; $\mathrm{V}_{I N}=10 \mathrm{~V}$ and IOUT $=0.1 \mathrm{~A}$ for the TO-5 package or IOUT $=0.5 \mathrm{~A}$ for the TO-3 package. For the TO-5 package, $I_{\text {MAX }}=0.2 \mathrm{~A}$ and $\mathrm{P}_{\text {MAX }}=2.0 \mathrm{~W}$. For the $T 0-3$ package, $I_{M A X}=1.0 \mathrm{~A}$ and $\mathrm{P}_{\text {MAX }}=20 \mathrm{~W}$.
Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about $150^{\circ} \mathrm{C} / \mathrm{W}$, while that of the TO-3 package is approximately $35^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the sink.
Typical Applications (Continued)

*Determines output current. If wirewound resistor is used, bypass with $0.1 \mu \mathrm{~F}$.

Application Hints

a. Bypass the input of the LM109 to ground with $\geqslant 0.2 \mu \mathrm{~F}$ ceramic or solid tantalum capacitor if main filter capacitor is more than 4 inches away.
b. Use steel package instead of aluminum if more than 5,000 thermal cycles are expected. ($\Delta T \geqslant 50^{\circ} \mathrm{C}$)
c. Avoid insertion of regulator into "live" socket if input voltage is greater than 10 V . The output will rise to within 2 V of the unregulated input if the ground pin does not make contact, possibly damaging the load. The LM109 may also be damaged if a large output capacitor is charged up, then discharged through the internal clamp zener when the ground pin makes contact.
d. The output clamp zener is designed to absorb transients only. It will not clamp the output effectively if a failure occurs in the internal power transistor structure. Zener dynamic impedance is $\approx 4 \Omega$. Continuous RMS current into the zener should not exceed 0.5 A .
'e. Paralleling of LM109s for higher output current is not recommended. Current sharing will be almost nonexistent, leading to a current limit mode operation for devices with the highest initial output voltage. The current limit devices may also heat up to the
thermal shutdown point $\left(\approx 175^{\circ} \mathrm{C}\right)$. Long term reliability cannot be guaranteed under these conditions.
f. Preventing latchoff for loads connected to negative voltage:

If the output of the LM109 is pulled negative by a high current supply so that the output pin is more than 0.5 V negative with respect to the ground pin, the LM109 can latch off. This can be prevented by clamping the ground pin to the output pin with a germanium or Schottky diode as shown. A silicon diode (1N4001) at the output is also needed to keep the positive output from being pulled too far negative. The 10Ω resistor will raise $+\mathrm{V}_{\text {OUT }}$ by $\approx 0.05 \mathrm{~V}$.

Crowbar Overvoltage Protection

INPUT CROWBAR

OUTPUT CROWBAR

*Zener is internal to LM109.
**01 must be able to withsiand 7A continuous current if fusing is not used at regulator input. LM109 bond wires will fuse at currents above 7A.
$\dagger 02$ is selected for surge capability. Consideration must be given to filter capacitor size, transformer impedance, and fuse blowing time.
$\dagger \dagger$ Trip point is $\approx 7.5 \mathrm{~V}$.

Typical Performance Characteristics

Note 1: Current limiting foldhack charactaristics are determined by input-output differential, not by output voltage.

Typical Performance Characteristics (Continued)

Voltage Regulators

LM117/LM217/LM317 3-Terminal Adjustable Regulator

General Description

The LM117/LM217/LM317 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 1.5 A over a 1.2 V to 37 V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM117 is packaged in standard transistor packages which are easily mounted and handled.

In addition to higher performance than fixed regulators, the LM117 series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Features

- Adjustable output down to 1.2 V
- Guaranteed 1.5 A output current
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- 100% electrical burn-in
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection

Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejections ratios which are difficult to achieve with standard 3 -terminal regulators.

Besides replacing fixed regulators, the LM117 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117. can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.

The LM117K, LM217K and LM317K are packaged in standard TO-3 transistor packages while the LM117H, LM217H and LM317H are packaged in a solid Kovar base TO-5 transistor package. The LM117 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM217 from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM 317 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LM317T and LM317MP, rated for operation over a $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range, are available in a TO-220 plastic package and a TO-202 package, respectively.
For applications requiring greater output current in excess of 3A and 5A, see LM150 series and LM138 series data sheets, respectively. For the negative complement, see LM137 series data sheet.

LM117 Series Packages and Power Capability

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN LOAD CURRENT
LM117 LM217 LM317	TO-3	20 W	1.5 A
LM317T	TO-220	2 W	0.5 A
LM317M	TO-202	15 W	1.5 A

Typical Applications

Absolute Maximum Ratings

Power Dissipation
Input-Output Voltage Differential
Operating Junction Temperature Range LM117
LM217
LM317
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Internally limited
40 V
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Preconditioning

Burn-In in Thermal Limit

100\% All Devices
Electrical Characteristics
(Note 1)

Note 1: Unless otherwise specified, these specifications apply: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM117, $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM 217 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the LM317; $\mathrm{V}_{\text {IN }}-V_{\text {OUT }}=5 \mathrm{~V}$ and IOUT $=0.1 \mathrm{~A}$ for the TO- 5 and TO-202 packages and IOUT $=0.5 \mathrm{~A}$ for the TO-3 package and TO-220 package. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-5 and TO-202 and 2OW for the TO-3 and TO-220. IMAX is 1.5 A for the TO-3 and TO-220 package and 0.5A for the TO-5 and TO-202 package.
Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.
Note 3: Selected devices with tightend tolerance reference voltage available.

Application Hints

In operation, the LM117 develops a nominal 1.25 V reference voltage, $V_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor $R 2$, giving an output voltage of
$V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2$

FIGURE 1.

Since the $100 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM117 was designed to minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM117 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 80 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.

Although the LM117 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM117 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectvely in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times \mathrm{I}_{\mathrm{L}}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or in this case, 11.5 times worse.

Figure 2 shows the effect of resistance between the regulator and $24 Q \Omega$ set resistor.

FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. However, with the TO- 5 package, care should be taken to minimize the wire length of the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge

Application Hints (Continued)

current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of VIN. In the LM117, this discharge path is through a large junction that is able to sustain 15A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge
occurs when either the input or output is shorted. Internal to the LM117 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance Figure 3 shows an LM117 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications (Continued)

Slow Turn-On 15V Regulator

Adjustable Regulator with Improved Ripple Rejection

High Stability 10 V Regulator

Power Follower

1A Current Regulator

1.2V-20V Regulator with Minimum Program Current

*Minimum load current $\approx 4 \mathrm{~mA}$
${ }^{\dagger}$ Solid tantalum

* Lights in constant current mode

0 to 30 V Regulator

* Minimum load current $=30 \mathrm{~mA}$
\ddagger Optional-improves ripple rejection

5A Constant Voltage/Constant Current Regulator

Typical Applications (Continued)

High Gain Amplifier
Low Cost 3A Switching Regulator

Adjusting Multiple On-Card Regulators with Single Control*

Short circuit current is approximately $600 \mathrm{mV} / \mathrm{R} 3$, or 120 mA
(compared to LM117H's 1 ampere current limit)
At 50 mA output only $3 / 4 \mathrm{~V}$ of drop occurs in R3, and R4

Typical Applications (Continued)

*R
Use of R_{S} allows low charging rates with fully $\mathrm{R}_{\mathrm{S}}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$ Use of RS allows
charged battery.

50 mA Constant Current Battery Charger

Connection Diagrams

LM117HVILM217HV／LM317HV High Voltage 3－Terminal Adjustable Regulator

General Description

The LM117HV／LM217HV／LM317HV are adjustable 3 －terminal positive voltage regulators capable of supplying in excess of 1.5 A over a 1.2 V to 57 V output range．They are exceptionally easy to use and require only two external resistors to set the output voltage．Further，both line and load regulation are better than standard fixed regulators．Also，the LM117HV is packaged in standard transistor packages which are easily mounted and handled．

In addition to higher performance than fixed regulators， the LM117HV series offers full overload protection available only in IC＇s．Included on the chip are current limit，thermal overload protection and safe area protec－ tion．All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected．

Features

－Adjustable output down to 1.2 V
－Guaranteed 1．5A output current
－Line regulation typically $0.01 \% / \mathrm{V}$
－Load regulation typically 0.1%
－Current limit constant with temperature
－ 100% electrical burn－in
－Eliminates the need to stock many voltages
－Standard 3－lead transistor package
－ 80 dB ripple rejection

Normally，no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed．An optional output capacitor can be added to improve transient response． The adjustment terminal can be bypassed to achieve very high ripple rejections ratios which are difficult to achieve with standard 3 －terminal regulators．

Besides replacing fixed regulators，the LM117HV is useful in a wide variety of other applications．Since the regulator is＂floating＂＇and sees only the input－to－output differential voltage，supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded．

Also，it makes an especially simple adjustable switching regulator，a programmable output regulator，or by connecting a fixed resistor between the adjustment and output，the LM117HV can be used as a precision current regulator．Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current．

The LM117HVK STEEL，LM217HVK STEEL，and LM317HVK STEEL are packaged in standard TO－3 tran－ sistor packages while the LM117HVH，LM217HVH and LM317HVH are packaged in a solid Kovar base TO－5 transistor package．The LM117HV is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ，the LM 217 HV from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM317HV from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．

Typical Applications

1．2V－45V Adjustable Regulator

${ }^{\dagger}$ Optional－improves transient response
${ }^{*}$ Needed if device is far from filter capacitors
$\dagger{ }^{+} V_{\text {OUT }}=1.25 V\left(1+\frac{R 2}{R 1}\right)$

Digitally Selected Outputs
5V Logic Regulator with Electronic Shutdown＊

＊Min output $\approx 1.2 \mathrm{~V}$

Absolute Maximum Ratings

Power Dissipation
Input-Output Voltage Differential
Operating Junction Temperature Range LM117HV
LM217HV
LM317HV
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Internally limited
60 V
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 117 \mathrm{HV},-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+150^{\circ} \mathrm{C}$ for the LM 217 HV and $0^{\circ} \mathrm{C} \leqslant T_{j} \leqslant+125^{\circ} \mathrm{C}$ for the LM317HV; $V_{I N}-V_{O U T}=5 \mathrm{~V}$ and IOUT $=0.1 \mathrm{~A}$ for the TO-5 package and IOUT $=0.5 \mathrm{~A}$ for the $\mathrm{TO}-3$ package. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-5 and 20W for the TO-TO-3. $\mathrm{I}_{\mathrm{MAX}}$ is 1.5 A for the TO-3 and 0.5 A for the TO-5 package.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
Note 3: Selected devices with tightened tolerance reference voltage available.

Typical Performance Characteristics (K and T Packages)

Output Impedance

Current Limit

Temperature Stability

Ripple Rejection

Adjustment Current

Application Hints

In operation, the LM117HV develops a nominal 1.25 V reference voltage, $V_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor R2, giving an output voltage of
$V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2$

FIGURE 1.

Since the $100 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM117HV was designed to minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM117HV to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 80 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.0 .1 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.

Although the LM117HV is stable with no output capacitors; like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM117HV is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectvely in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times \mathrm{I}_{\mathrm{L}}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or in this case, 11.5 times worse.

Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. However, with the TO-5 package, care should be taken to minimize the wire length of the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regülator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge

Application Hints (Continued)

current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of $V_{I N}$. In the LM117HV, this discharge path is through a large junction that is able to sustain 15A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge
occurs when either the input or output is shorted. Internal to the LM117HV is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM117HV with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications (Continued)

Slow Turn-On 15V Regulator

${ }^{\dagger}$ Solid tantalum
*Discharges C1 if output is shorted to ground

0 to 30V Regulator

> 5A Constant Voltage/Constant Current Regulator

${ }^{\dagger}$ Solid tantalum
*Lights in constant current mode

High Stability 10V Regulator

Power Follower

1A Current Regulator

1.2V-20V Regulator with Minimum Program Current

*Minimum load current $\approx 4 \mathrm{~mA}$

Typical Applications (Continued)

High Gain Amplifier

Low Cost 3A Switching Regulator

Precision Current Limiter

Tracking Preregulator

High Voltage Regulator

Adjusting Multiple On-Card Regulators
with Single Control*

Typical Applications (Continued)

*R $R_{S}-$ sets output impedance of charger $Z_{O U T}=R_{S}\left(1+\frac{R 2}{R_{1}}\right), ~\left(R_{S}\right.$ allows low charging rates with fully charged battery.

50 mA Constant Current Battery Charger

Connection Diagrams

(TO-3 Steel)
Metal Can Package

Order Number LM117HVK STEEL,
LM217HVK STEEL, or LM317HVK STEEL See Package K02A

Adjustable 4A Regulator

Current Limited 6V Charger

*Sets peak current (0.6A for 1Ω)
** $1000 \mu \mathrm{~F}$ is recommended to filter out any input transients.
(TO-39)
Metal Can Package

Order Number LM117HVH, LM217HVH, or LM317HVH See Package H03A

LM120 Series 3-Terminal Negative Regulators

General Description

The LM120 Series are three-terminal negative regulators with a fixed output voltage of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V , and up to 1.5 A load current capability. These devices need only one external component-a compensation capacitor at the output, making them easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation. Where other voltages are required, the LM137 Series provides an output voltage range of -1.2 V to -47 V .

Exceptional effort has been made to make the LM120 Series immune to overload conditions. The regulators have current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.

Although primarily intended for fixed output voltage applications, the LM120 Series may be programmed for higher output voltages with a simple resistive divider. The low quiescent drain current of the devices allows this technique to be used with good regulation.

Features

- Preset output voltage error less than $\pm 3 \%$
- Preset current limit
- Internal thermal shutdown
- Operates with input-output voltage differential down to 1 V
- Excellent ripple rejection
- Low temperature drift
- Easily adjustable to higher output voltage

LM120 Series Packages and Power Capability

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN LOAD CURRENT
LM120 LM320.	TO-3	20 W	1.5 A
	TO-5	2 W	0.5 A
LM320T	TO-220	15 W	1.5 A
LM320M	TO-202	7.5 W	0.5 A
LM320ML*	TO-202	7.5 W	0.25 A
LM320L*	TO-92	1.2 W	0.1 A

*Electrical specifications shown on separate data sheet

Typical Applications

LM120 Series

- 5 VOLT REGULATORS (Note 3)

Absolute Maximum Ratings

Power Dissipation	Internally Limited
Input Voltage	-25 V
Input-Output Voltage Differential	25 V
Junction Temperatures	See Note 1
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

[^1]
- 12 VOLT REGULATORS

Absolute Maximum Ratings

Power Dissipation	Internally Limited
Input Voltage	-35 V
Input-Output Voltage Differential	30 V
Junction Temperatures	See Note 1
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

ORDER NUMBERS		METAL CAN PACKAGE												POWER PLASTIC PACKAGE						UNITS
		LM120K-12(TO-3)			LM320K-12 (TO-3)			LM120H-12(то.5)			$\begin{gathered} \text { LM } 320 \mathrm{H}-12 \\ \text { (TO-5) } \end{gathered}$			LM320T-12 (TO.220)			LM320MP-12 (TO-202)			
DESIGN OUTPUT CURRENT (ID) DEVICE DISSIPATION (PD)		$\begin{array}{r} \hline 1 \mathrm{~A} \\ 20 \mathrm{~W} \\ \hline \end{array}$			$\begin{aligned} & 1 \mathrm{~A} \\ & 20 \mathrm{~W} \\ & \hline \end{aligned}$			$\begin{aligned} & 0.2 \mathrm{~A} \\ & 2 \mathrm{~W} \end{aligned}$			$\begin{gathered} 0.2 \mathrm{~A} \\ 2 \mathrm{~W} \end{gathered}$			$\begin{gathered} \hline 1 \mathrm{~A} \\ 15 \mathrm{~W} \\ \hline \end{gathered}$			$\begin{aligned} & \hline 0.5 \mathrm{~A} \\ & 7.5 \mathrm{~W} \\ & \hline \end{aligned}$			
PARAMETER	CONDITIONS INOTE 1)	MIN	TYP	MAX																
Output Voltage	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{~V}_{I N}=17 \mathrm{~V}, \\ & I_{\text {LOAD }}=5 \mathrm{~mA} \end{aligned}$	-12.3	-12	-11.7	-12.4	-12	-11.6	-12.3	-12	-11.7	-12.4	-12	-11.6	-12.4	-12	-11.6	-12.5	-12	-11.5	v
Line Regulation	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{LOAD}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$		4	10		4	20		4	10		4	20		4	20		4	24	mV
Input Voltage		-32		-14	-32		-14	-32		-14	-32		-14	-32		-14.5	-32		-14.5	V
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	56	80		56	80.		56	80		56	80		56	80		56	80		dB
Load Regulation, (Note 2)	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, V_{I N}=17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \leq I_{\text {LOAD }} \leq I_{D} \end{aligned}$			80		30	80			25		10	40			80		40	100	mV
Output Voltage, (Note 1)	$\begin{aligned} & 14.5 \mathrm{~V} \leq \mathrm{V}_{I N} \leq \mathrm{V}_{M A X} . \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{L O A D} \leq \mathrm{I}_{D}, P \leq P_{D} \end{aligned}$	-12.5		-11.5	-12.6		-11.4	-12.5		-11.5	-12.6	,	-11.4	-12.6		-11.4	-12.6		-11.4	v
Quiescent Current	$\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		2	4			4		2	4		2	4		2	4		2	4	mA
Quiescent Current Change	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$																			
	$\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		0.1	0.4		0.1	0.4		0.05	0.4			0.4			0.4			0.3	mA
	$5 \mathrm{~mA} \leq 1$ LOAD $\leq 1 \mathrm{D}$		0.1	0.4			0.4		0.03	0.4		0.03	0.4		0.1	0.4			0.25	mA
Output Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA}, \\ & V_{I N}=17 \mathrm{~V}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		400			400			400			400		.	400			400		$\mu \mathrm{V}$
Long Term Stability			12	120		12	120			120		12	120		24			24		$m \vee$
Thermal Resistance Junction to Case Junction to Ambient				$\begin{aligned} & 3 \\ & 35 \\ & \hline \end{aligned}$			$\begin{aligned} & 3 \\ & 35 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 150 \end{aligned}$			15 150		4 50			12 70		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$

Note 1: This specification applies over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ for the LM 120 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ for the LM320.

 tions apply only up to PD.

- 15 VOLT REGULATORS

Absolute Maximum Ratings

Power Dissipation
Internally Limited
Input Voltage
LM120/LM320
LM320T/LM320MP
Input-Output Voltage Differential
Junction Temperatures
30 V

Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics

Note 1: This specification applies over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ for the LM 120 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ for the LM 320 .

 tions apply only up to P_{D}.

Typical Performance Characteristics

Note: Shaded portion refers to LM320 series regulators.

Quiescent Current vs Input Voltage

Ripple Rejection
(All Types)

Minimum Input-Output Differential TO-3 and TO-220 Packages

Quiescent Current vs
Load Current

Note: Shaded area shows operating range of TO-5 and TO-202 packages.

Minimum Input-Output Differential TO-5 and

 TO-202 Packages

Maximum Average Power Dissipation (TO-3)

*These curves for LM120 and LM220. Derate $25^{\circ} \mathrm{C}$ further for LM320.

Typical Applications (Continued)

High Stability 1 Amp Regulator

Load and line regulation $<0.01 \%$ temperature stability $<0.2 \%$
${ }^{\dagger}$ Detarmines Zener current.
ttSolid tantalum.
An LM120-12 or LM120-15 may be used to permit higher input voltages, but the regulated output voltage must be at least -15 V when using the LM120-12 and -18V for the LM120-15.
**Select resistors to set output voltage. $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking suggested

Variable Output

Light Controllers Using Silicon Photo Cells

Typical Applications (Continued)

,

Connection Diagrams

Metal Can Package (TO-39) (H)

bottom view
Order Numbers:
LM120H-5.0
LM320H-5.0
LM120H-12
LM320H-12
LM120H-15
LM320H-15
See NS Package H03A

bottom view
Order Numbers:
LM320KC-5.0
LM320KC-12
LM320KC-15
See NS Package KC02A

bottom view
Order Numbers:
LM120K-5.0
LM220K-5.0
LM320K-5.0
LM120K-12
LM220K-12
LM320K-12
LM120K-15
LM320K-15
See NS Package K02A

Power Package TO-220 (T)

top view
Order Numbers:
LM320T-5.0
LM320T-12
LM320T-15
See NS Package T03B

Schematic Diagrams

-12 V and -15 V

National

The LM123 is a three-terminal positive regulator with a preset 5 V output and a load driving capability of 3 amps. New circuit design and processing techniques are used to provide the high output current without sacrificing the regulation characteristics of lower current devices.
The 3 amp regulator is virtually blowout proof. Current limiting, power limiting, and thermal shutdown provide the same high level of reliability obtained with these techniques in the LM109 1 amp regulator.
No external components are required for operation of the LM123. If the device is more than 4 inches from the filter capacitor, however, a $1 \mu \mathrm{~F}$ solid tantalum capacitor should be used on the input. A $0.1 \mu \mathrm{~F}$ or larger capacitor may be used on the output to reduce load transient spikes created by fast switching digital logic, or to swamp out stray load capacitance.
An overall worst case specification for the combined effects of input voltage, load currents, ambient
temperature, and power dissipation ensure that the LM123 will perform satisfactorily as a system element.

For applications requiring other voltages, see LM150 series data sheet.

Operation is guaranteed over the junction temperature range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. An electrically identical LM223 operates from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM323 is specified from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature. A hermetic TO-3 package is used for high reliability and low thermal resistance.

Features

- 3 amp output current
- Internal current and thermal limiting
- 0.01Ω typical output impedance
- 7.5 minimum input voltage
- 30W power dissipation
- 100% electrical burn-in

Schematic Diagram

Connection Diagram

Botrom view
Order Number LM123K STEEL, LM223K STEEL or LM323K STEEL See NS Package K02A

Typical Applications

"Required if LM123 is more than 4" from filter capacitor.
${ }^{\dagger}$ Regulator is stable with no load capacitor into resistive loads.

Absolute Maximum Ratings

Input Voltage
Power Dissipation
Operating Junction Temperature Range
LM123
LM223
LM323

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

Internally Limited

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Preconditioning

Burn-In in Thermal Limit

100\% All Devices

Electrical Characteristics
(Note 1)

- PARAMETER	CONDITIONS	LM123/LM223			LM323			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Voltage	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & V_{\text {IN }}=7.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \end{aligned}$	4.7	5	5.3	4.8	5	${ }^{\text {c }} 5.2$	V
Output Voltage	$\begin{aligned} & 7.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V} \\ & 0 \leq \mathrm{I}_{\mathrm{OUT}} \leq 3 \mathrm{~A}, \mathrm{P} \leq 30 \mathrm{~W} \end{aligned}$	4.6		5.4	4.75		5.25	V
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 15 \mathrm{~V} \end{aligned}$		5	25		5	25	mV
Load Regulation (Note 3)	$\begin{aligned} & T_{1}=25^{\circ} \mathrm{C}, V_{\text {IN }}=7.5 \mathrm{~V}, \\ & 0 \leq \text { IOUT } \leq 3 \mathrm{~A} . \end{aligned}$. 25	100	: \cdot	25	100	mV
Quiescent Current	$\begin{aligned} & 7.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V}, \\ & 0 \leq \mathrm{I}_{\mathrm{OUT}} \leq 3 \mathrm{~A} \end{aligned}$		12	20	\because	12	20	mA
Output Noise Voltage	$\begin{aligned} & T_{i}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz} \end{aligned}$		40			. 40		$\mu \mathrm{Vrms}$
Short Circuit Current Limit	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {IN }}=15 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=7.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5 \end{aligned}$		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
Long Term Stability				35			35	$m \mathrm{~V}$
Thermal Resistance Junction to Case (Note 2)	". . .		2			2.		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise noted, specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 123,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM223, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the LM323. Although power dissipation is internally limited, specifications apply only for $P \leq 30 W$.
Note 2: Without a heat sink, the thermal resistance of the TO-3 package is about $35^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the specified values of $2^{\circ} \mathrm{C} / \mathrm{W}$, depending on the efficiency of the heat sink.
Note 3: Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and a duty cycle $\leq 5 \%$.

Typical Applications (Continued)
Adjustable Output 5V - 10V 0.1\% Regulation

Typical Performance Characteristics

Peak Available Output Current

Quiescent Current

Load Transient Response

Typical Applications (Continued)

Adjustable Regulator 0-10V @ 3A

A_{1} - LM101A
$\mathrm{C}_{1}-2 \mu \mathrm{~F}$ OPTIONAL - IMPROVES RIPPLE REJECTION, NOISE, AND TRANSIENT RESPONSE

National

LM125/LM325/LM325A, LM126/LM326 Voltage Regulators

General Description

These are dual polarity tracking regulators designed to provide balanced positive and negative output voltages at current up to 100 mA , the devices are set for $\pm 15 \mathrm{~V}, \pm 12 \mathrm{~V}$ and $+5,-12 \mathrm{~V}$ outputs respectively. Input voltages up to $\pm 30 \mathrm{~V}$ can be used and there is provision for adjustable current limiting. These devices are available in three package types to accommodate various power requirements and temperature ranges.

Features

- $\pm 15 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$ tracking outputs
- Output currents to 100 mA
- Output voltages balanced to within 1\% (LM125, LM126, LM325A)
- Line and load regulation of 0.06\%
- Internal thermal overload protection
- Standby current drain of 3 mA
- Externally adjustable current limit
- Internal current limit

Schematic and Connection Diagrams

Absolute Maximum Ratings

Input Voltage
Forced $\mathrm{V}_{\mathrm{O}}{ }^{+}(\min)$ (Note 1$)$
Forced VO^{-}(max) (Note 1)
Power Dissipation (Note 2)
Output Short-Circuit Duration (Note 3)
$+30 \mathrm{~V}$
$-0.5 \mathrm{~V}$
$+0.5 \mathrm{~V}$
$P_{\text {MAX }}$
Indefinite

Operating Conditions

Operating Temperature Range	
LM125	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM325, LM325A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$	

Electrical Characteristics LM125/LM325/LM325A (Note 2)

Note 1: That voltage to which the output may be forced without damage to the device.
Note 2: Unless otherwise specified, these specifications apply for $T_{j}=-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ on $\mathrm{LM} 125, \mathrm{~T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ on LM325 and LM325A, $V_{I N}= \pm 20 \mathrm{~V}, I_{\mathrm{L}}=0 \mathrm{~mA}, I_{M A X}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=2.0 \mathrm{~W}$ for the $\mathrm{TO}-5 \mathrm{H}$ package. $\mathrm{I}_{\mathrm{MAX}}=$ $100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=1.0 \mathrm{~W}$ for the DIP N package.
Note 3: If the junction temperature exceeds $150^{\circ} \mathrm{C}$ the output short circuit duration is $\mathbf{6 0}$ seconds'.
Note 4: Without a heat sink, the thermal resistance junction to ambient of the TO-5 Package is about $150^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.

Absolute Maximum Ratings

Input Voltage	$\pm 30 \mathrm{~V}$
Forced $\mathrm{V}_{\mathrm{O}}{ }^{+}(\mathrm{Min})$ (Note 1)	-0.5 V
Forced $\mathrm{V}_{\mathrm{O}}^{-}(\mathrm{Max})$ (Note 1)	+0.5 V
Power Dissipation (Note 2)	Internally Limited
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	
LM126	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM326	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics LM126/LM326 (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage LM126 LM326	$T_{1}=25^{\circ} \mathrm{C}$	11.8 11.5	12	$\begin{aligned} & 12.2 \\ & 12.5 \end{aligned}$	V
Input-Output Differential		2.0			v
Line Regulation	$\begin{aligned} & V_{1 N}=15 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~T}_{1}=25^{\circ} \mathrm{C} \end{aligned}$		2.0	10	$m V$
Line Regulation Over Temperature Range	$V_{\text {IN }}=15 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$		2.0	20	mV
Load Regulation $\begin{aligned} & \mathrm{v}_{0}{ }^{+} \\ & \mathrm{v}_{0}^{-} \end{aligned}$	$\begin{aligned} & I_{L}=0 \text { to } 50 \mathrm{~mA}, V_{I N}= \pm 30 \mathrm{~V}, \\ & T_{1}=25^{\circ} \mathrm{C} \end{aligned}$		3.0 5.0	$\begin{array}{r} 10 \\ 10 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Load Regulation Over Temperature Range $\begin{aligned} & \mathrm{V}_{\mathrm{O}}{ }^{-} \\ & \mathrm{V}_{0} \end{aligned}$	$\mathrm{I}_{\mathrm{L}}=0$ to $50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}= \pm 30 \mathrm{~V}$		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
$\begin{aligned} & \text { Output Voltage Balance } \\ & \text { LM126 } \\ & \text { LM326 } \end{aligned}$	$T_{1}=25^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 125 \\ & \pm 250 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Output Voltage Over Temperature Range LM126 LM326	$\begin{aligned} & P \leq P_{\text {MAX }}, 0 \leq I_{O} \leq 50 \mathrm{~mA} \\ & 15 \mathrm{~V} \leq\left\|V_{I N}\right\| \leq 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 11.68 \\ & 11.32 \end{aligned}$		$\begin{aligned} & 12.32 \\ & 12.68 \end{aligned}$	V V
Temperature Stability of V_{O}			± 0.3		\%
Short Circuit Current Limit .	$\mathrm{T}_{1}=25^{\circ} \mathrm{C}$		260		mA
Output Noise Voltage ${ }^{\text {I }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{BW}=100-10 \mathrm{kHz}$		100		$\mu \mathrm{Vrms}$
Positive Standby Current	$\mathrm{T}_{1}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=0$		1.75	3.0	mA
Negative Standby Current	$T_{1}=25^{\circ} \mathrm{C}, I_{L}=0$		3.1	5.0	mA
Long Term Stability			0.2	.	\%/kHr
Thermal Resistance Junction to Case (Note 4) LM126H/LiM326H	,		45		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient LM326N			150		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: That voltage to which the output may be forced without damage to the device.
Note 2: Unless otherwise specified, these specifications apply for $T_{j}=-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ on $\mathrm{LM} 126, \mathrm{~T}_{j}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ on LM326, $V_{I N}= \pm 20 \mathrm{~V}, I_{L}=0 \mathrm{~mA} . \mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=2.0 \mathrm{~W}$ for the $\mathrm{TO}-5 \mathrm{H}$ Package. $\mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=1.0 \mathrm{~W}$ for the DIP N Package.
Note 3: If the junction temperature exceeds $150^{\circ} \mathrm{C}$ the output short circuit duration is 60 seconds.
Note 4: Without a heat sink, the thermal resistance junction to ambient of the TO-5 Package is about $150^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.

Typical Periormance Characteristics $\mathrm{V}_{1 \mathrm{~N}}= \pm 20 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Performance Characteristics (Continued)

time ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

LM125
Load Transient Response for Positive Regulator

TIME (tus/DIV)

TIME (2 $2 \mathrm{~s} / \mathrm{DIV}$)

TIME ($10 \mu \mathrm{~s} / \mathrm{DIV}$)

LM 126
Load Transient Response

tIME (1/is/DIV)

TIME (2 $2 \mathrm{~S} / \mathrm{DIV}$)

TIME (2 $2 \mathrm{~S} / \mathrm{DIV}$)

LM126
Line Transient Response

Typical Performance Characteristics
(Continued)

Typical Applications

Note. Metal can (H) packages shown.
2.0 Amp Boosted Regulator With Current Limit

$$
I_{C L}=\frac{\text { CURRENT LIMIT SENSE VOLTAGE (SEE CURVE) }}{R_{\text {CI }}}
$$

${ }^{\dagger}$ sollo tantalum
HSHORT PINS 6 AND 7 ON DIP.
${ }^{+1} \mathbf{r}_{\text {Cl }}$ CAN BE ADDED TO THE BASIC REGULATOR BETWEEN PINS 6 AND 5, 1 and 2 RCL CAN BE ADDED TO LIME
TO REDUCE CURRENT LIMIT.
*REQuired if regulator is located an appreciable distance from power SUPPLY FILTER.
**ALTHOUGH ND CAPACITOR is needed for stability, it does help transient RESPONSE. (IF NEEDED USE 1μ F ELECTROLYTIC).
***ALTHDUGH NO CAPACITOR IS NEEDED FOR STABILITY, it dOES HELP TRANSIENT RESPONSE. (IF NEEDED USE 10 μ F ELECTROLYTIC).

Typical Applications (Continued)

Positive Current Dependent Simultaneous Current Limiting

Boosted Regulator With Foldback Current Limit

Electric Shutdown

${ }^{\dagger}$ solid tantalum
t'SHORT PINS 6 AND 7 ON OIP
*REQuIRED IF REGULATOR IS LOCATED AN APPRECIABLE DISTANCE FROM POWER
SUPPLY FILTER.
*although no capacitor is needed for stability, it does help transient
RESPONSE. (IF NEEDED USE 1HF ELECTROLYTIC.)

LM130/LM330 3-Terminal Positive Regulators

General Description

The LM130 series of 3 -terminal positive voltage regulators feature an ability to source full output current with an input-output differential of 0.5 V or less. Familiar regulator features such as current limit and thermal overload protection are also provided.
The low in-out differential voltage makes the LM130 useful for certain battery applications since this feature allows a longer battery discharge before the output falls out of regulation. For example, a 9V battery supplying the regulator input voltage discharges to below $51 / 2 \mathrm{~V}$ before any change is noted in the output. Supporting this feature, the LM130 protects both itself and regulated systems from negative voltage inputs resulting from reverse installations of batteries.

Other protection features include line transient protection up to 50 V , when the output actually shuts down to avoid damaging internal and external circuits. Also, the LM330 regulator in the TO-202 package cannot be harmed by a temporary mirror-image insertion.

A fixed output of 5 V is available in the 3-lead hermetic metal can and the plastic TO-202 power package (LM330 only).

Features

- Input-output differential less than 0.5 V
- Output current of 150 mA
- Reverse battery protection
- Line transient protection
- Internal short circuit current limit
- Internal thermal overload protection
- Mirror-image insertion protection
- Available in plastic TO-202 (LM330)

Voltage Range

LM130H-5.0	5 V
LM330H-5.0	5 V
LM330P-5.0	5 V

Schematic

Absolute Maximum Ratings

Input Voltage

Operating Range
Line Transient Protection (1000 ms)
Internal Power Dissipation
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LM130	LM330
30 V	26 V
50 V	26 V
Internally Limited	Internally Limited
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+300^{\circ} \mathrm{C}$	$+300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter		Conditions	LM130			LM330			Units	
		Min	Typ	Max	Min	Typ	Max			
Vo	Output Voltage		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	4.8	5	5.2	4.8	5	5.2	V
	Output Voltage Over Temp	$\begin{aligned} & \hline 5<\mathrm{I}_{0}<150 \mathrm{~mA} \\ & 6<\mathrm{V}_{\mathrm{IN}}<26 \mathrm{~V} \\ & \hline \end{aligned}$	4.75		5.25	4.75		5.25		
ΔV_{0}	Line Regulation	$\begin{aligned} & 9<V_{I N}<16 V I_{0}=5 \mathrm{~mA} \\ & 6<V_{I N}<26 \mathrm{~V}, \mathrm{I}_{0}=5 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 7 \\ 30 \end{gathered}$	$\begin{aligned} & 15 \\ & 45 \end{aligned}$		$\begin{gathered} 7 \\ 30 \end{gathered}$	$\begin{aligned} & 25 \\ & 60 \end{aligned}$	mV	
	Load Regulation	$5<\mathrm{I}_{0}<150 \mathrm{~mA}$		14	25		14	50		
	Long Term Stability		20			20			mV/1000 hrs	
I_{0}	Quiescent Current	$\begin{aligned} & I_{0}=10 \mathrm{~mA} \\ & I_{0}=50 \mathrm{~mA} \\ & I_{0}=150 \mathrm{~mA} \end{aligned}$		3.5 5 18	5 7 30		3.5 5 18	$\begin{gathered} 7 \\ 9 \\ 40 \\ \hline \end{gathered}$	mA	
	Line Transient Reverse Polarity	$\begin{aligned} & V_{I N}=40 \mathrm{~V}, R_{L}=100 \Omega, 1 \mathrm{sec} \\ & V_{I N}=-6 \mathrm{~V}, R_{L}=100 \Omega \end{aligned}$		$\begin{array}{r} 25 \\ -80 \\ \hline \end{array}$	40		$\begin{array}{r} 25 \\ -80 \\ \hline \end{array}$			
Δl_{0}	Quiescent Current Change	$6<\mathrm{V}_{\text {IN }}<26 \mathrm{~V}$	10			10			\%	
$\mathrm{V}_{\text {IN }}$	Max Operational Input Voltage	,	30	35			35		V	
	Max Line Transient	$\begin{array}{ll} 100 \mathrm{~ms} & \mathrm{~V}_{0} \leqslant 5.5 \mathrm{~V} \\ 1 \mathrm{sec} & \mathrm{~V}_{0} \leqslant 5.5 \mathrm{~V} \end{array}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$			$\begin{aligned} & 60 \\ & 50 \end{aligned}$			
	Reverse Polarity Input Voltage	$\begin{array}{\|ll\|} \hline 100 \mathrm{~ms} & V_{0}>-0.3 V R_{L}=100 \Omega \\ D C & V_{0}>-0.3 V R_{L}=100 \Omega \\ \hline \end{array}$	$\begin{aligned} & -30 \\ & -12 \\ & \hline \end{aligned}$		$\begin{gathered} -15 \\ -6 \end{gathered}$	$\begin{array}{r} -30 \\ -12 \\ \hline \end{array}$				
	Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$.	50			50			$\mu \mathrm{V}$	
	Output Impedance	$\mathrm{I}_{0}=100 \mathrm{mADC}+10 \mathrm{mArms}$	200			200			$\mathrm{m} \Omega$	
	Ripple Rejection		56			56			dB	
	Current Limit		150	400	700	150	400	700	mA	
	Dropout Voltage	$\mathrm{I}_{0}=150 \mathrm{~mA}$		0.4	0.5		0.4	0.6	V	
	Thermal Resistance	Junction to Case TO-39 TO-202 Junction to Ambient TO-39 TO-202		40 - 140 -			$\begin{gathered} 40 \\ 12 \\ \\ 140 \\ 70 \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Note 1: Unless otherwise specified: $\mathrm{V}_{I N}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C} 1=0.1 \mu \mathrm{~F}, \mathrm{C} 2=10 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection are measured using pulse techniques ($\mathrm{t}_{\mathrm{w}} \leqslant 10 \mathrm{~ms}$, duty cycle 6%). Output voltage changes due to changes in internal temperature must be taken into account separately.

Typical Performance Characteristics

Low Voltage Behavior

Line Transient Response

Dropout Voltage

High Voltage Behavior

Load Transient Response

Typical Performance Characteristics (Continued)

Quiescent Current

Ripple Rejection

Quiescent Current

Quiescent Current

Ripple Rejection

Typical Performance Characteristics (Continued)

Typical Application

* Required if regulator is located far from power supply filter
** C2 must be at least $10 \mu \mathrm{~F}$ to maintain stability. May be increased without bound. Locate as close as possible to regulator.

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.

Input Voltage: The DC voltage applied to the input terminals with respect to ground.

Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.

Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.

Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.

Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.

Temperature Stability of $\mathbf{V}_{\mathbf{0}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

Connection Diagrams

Order Number
LM130H-5.0
LM330H-5.0
See Package H03B

LM137/LM237/LM337 3-Terminal Adjustable Negative Regulators

General Description

The LM137/LM237/LM337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -37 V . These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137 series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.

The LM137/LM237/LM337 serve a wide variety of applications including local on-card regulation, program-mable-output voltage regulation or precision current regulation. The LM137/LM237/LM337 are ideal complements to the LM117/LM217/LM317 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2 V to -37 V
- 1.5 A output current guaranteed, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.3%
- Excellent thermal regulation, $0.002 \% / W$
- 77 dB ripple rejection
- Excellent rejection of thermal transients
- $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- 100% electrical burn-in
- Standard 3-lead transistor package

LM137 Series Packages and Power Capability

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN LOAD CURRENT
LM137 LM237 LM337	TO-3	TO-39	2 W
LM337T	TO-220	15 W	$1.5 A$
LM337M	TO-202	7.5 W	$1.5 A$

Typical Applications

$-\mathrm{V}_{\text {OUT }}=-1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{120 \Omega}\right)$
${ }^{\dagger} \mathrm{C} 1=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability
*C2 $=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than 4 " from power-supply filter capacitor

Absolute Maximum Ratings

Power Dissipation
Input-Output Voltage Differential
Operating Junction Temperature Range
LM137
LM237
LM337
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Internally limited
40 V

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

100\% All Devices

Burn-In in Thermal Limit
Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LM137/LM237			LM337			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Line Regulation	$T_{A}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq\left\|V_{I N}-V_{O U T}\right\| \leq 40 \mathrm{~V}$ (Note 2)		0.01	0.02		0.01	0.04	\%/V
Load Regulation	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq 1 \text { OUT } \leq \mathrm{I}_{\text {MAX }} \\ & \left\|V_{\text {OUT }}\right\| \leq 5 \mathrm{~V} \text {, (Note 2) } \\ & \left\|V_{\text {OUT }}\right\| \geq 5 \mathrm{~V} \text {, (Note } 2 \text {) } \end{aligned}$							
			15	25		- 15	50	mV
			0.3	0.5		0.3	1.0	\%
Thermal Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms}$ Pulse		0.002	0.02		0.003	0.04	\%/W
Adjustment Pin Current			65	100		65	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq \mathrm{I}_{\mathrm{MAX}} \\ & 2.5 \mathrm{~V} \leq \mathrm{IV}\left\|\mathrm{~N}-\mathrm{V}_{\mathrm{OUT}}\right\| \leq 40 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		2	5		2	5	$\mu \mathrm{A}$
Reference Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \quad(\text { Note } 3) \\ & \left.3 \leq\left\|V_{I N}-V_{O U T}\right\| \leq 40 \mathrm{~V}, \text { (Note } 3\right) \\ & 10 \mathrm{~mA} \leq I O U T \leq I_{\text {MAX }}, \mathrm{P} \leq P_{\text {MAX }} \end{aligned}$	-1.225	-1.250	-1.275	-1.213	-1.250	-1.287	V
		-1.200	-1.250	-1.300	-1.200	-1.250	-1.300	V
Line Regulation	$3 \mathrm{~V} \leq\left\|\mathrm{V}_{1 N}-\mathrm{V}_{\text {OUT }}\right\| \leq 40 \mathrm{~V}$, (Note 2)	.	0.02	0.05		0.02	0.07	\%/V
Load Regulation	$\begin{aligned} & \left.10 \mathrm{~mA} \leq \mathrm{IOUT}^{\prime} \leq \mathrm{I}_{\text {MAX }}, \text { (Note } 2\right) \\ & \left\|\mathrm{V}_{\text {OUT }}\right\| \leq 5 \mathrm{~V} \\ & \left\|V_{\text {OUT }}\right\| \geq 5 \mathrm{~V} \end{aligned}$							
			20	50		20	70	mV
			0.3	1		0.3	1.5	\%
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {MAX }}$		0.6			0.6		\%
Minimum Load Current	$\begin{aligned} & \left\|V_{I N}-V_{O U T}\right\| \leq 40 V \\ & \left\|V_{I N}-V_{O U T}\right\| \leq 10 V \end{aligned}$		2.5	5		2.5	10	mA
			1.2	3		1.5	6	mA
Current Limit	$\left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 15 \mathrm{~V}$ K and T Package							
		1.5	2.2		1.5	2.2		A
	H and P Package $\left\|V_{\mid N}-V_{\text {OUT }}\right\|=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=+25^{\circ} \mathrm{C}$	0.5	0.8		0.5	0.8		A
	K and T Package	0.24	0.4		0.15	0.4		A
	H and P Package	0.15	0.20		0.10	0.20		A
RMS Output Noise, \% of V ${ }_{\text {OUT }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.003			0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & V_{\text {OUT }}=-10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{C}_{A D J}=10 \mu \mathrm{~F} \end{aligned}$		60			60		dB
		66	77		66	77		dB
Long-Term Stability	$T_{A}=125^{\circ} \mathrm{C}, 1000$ Hours		0.3	1		0.3	1	\%
Thermal Resistance, Junction to Case	H Package K Package T Package P Package		12	15		12	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			2.3	3		2.3	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
						4		${ }^{\circ} \mathrm{C} / \mathrm{W}$
						12		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 137,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM 237 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the LM337; $\mathrm{V}_{I N}-V_{\mathrm{OUT}}=5 \mathrm{~V}$; and $\mathrm{I}_{\mathrm{OUT}}=0.1 \mathrm{~A}$ for the $\mathrm{TO}-5$ package and TO-202 package and IOUT $=0.5 \mathrm{~A}$ for the TO-3 package and TO-220 package. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-5 and TO-202 and 20W for the TO-3 and TO-220. IMAX is 1.5 A for the TO-3 and TO-220 package and 0.5A for the TO-202 package, and 0.2A for the TO-39 package.
Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Load regulation is measured on the output pin at a point $1 / 8^{\prime \prime}$ below the base of the TO-3 and TO-39 packages.

Note 3: Selected devices with tightened tolerance reference voltage available.

Thermal Regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per Watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of VOUT, per Watt, within the first 10 ms after a step of power is applied. The LM137's specification is $0.02 \% / W$, max.
 FIGURE 1

In Figure 1, a typical LM137's output drifts only 3 mV (or 0.03% of $\mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}$) when a 10 W pulse is applied for 10 ms . This performance is thus well inside the specification limit of $0.02 \% / W \times 10 \mathrm{~W}=0.2 \%$ max. When the 10W pulse is ended, the thermal regulation again shows a 3 mV step as the LM137 chip cools off. Note that the load regulation error of about 8 mV (0.08%) is additional to the thermal regulation error. In Figure 2, when the 10 W pulse is applied for 100 ms , the output drifts, only slightly beyond the drift in the first 10 ms , and the thermal error stays well within $0.1 \%(10 \mathrm{mV})$.

FIGURE 2
Connection Diagrams

Typical Applications (Continued)

*The $10 \mu \mathrm{~F}$ capacitors are optional to improveripple rejection

Negative Regulator with Protection Diodes

*When C_{L} is larger than $20 \mu \mathrm{~F}$, D1 protects the LM137 in case the input supply is shorted
${ }^{* *}$ When C 2 is larger than $10 \mu \mathrm{~F}$ and $-\mathrm{V}_{\mathrm{OUT}}$ is larger than $-25 \mathrm{~V}, \mathrm{D} 2$ protects the LM137 in case the output is shorted
-5.2V Regulator with Electronic Shutdown*

Adjustable Current Regulator

Typical Performance Characteristics (K Steel, KC and T Packages)

LM137HV/LM237HV/LM337HV 3-Terminal Adjustable Negative Regulators (High Voltage)

Voltage Regulators

General Description

The LM137HV/LM237HV/LM337HV are adjustable 3 -terminal negative voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -47 V . These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137HV series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.

The LM137HV/LM237HV/LM337HV serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM137HV/LM237HV/ LM337HV are ideal complements to the LM117HV/ LM217HV/LM317HV adjustable positive regulators.

Features

- Output voltage adjustable from -1.2 V to -47 V
- 1.5 A output current guaranteed, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.3%
- Excellent thermal regulation, $0.002 \% / \mathrm{W}$
- 77 dB ripple rejection
- Excellent rejection of thermal transients
- $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- 100% electrical burn-in
- Standard 3-lead transistor package

Typical Applications

Adjustable Negative Voltage Regulator

$-\mathrm{V}_{\text {OUT }}=-1.25 \mathrm{v}\left(1+\frac{\mathrm{R} 2}{120 \Omega}\right)$
${ }^{\dagger} \mathrm{C} 1=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability
*C2 $=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than 4"' from power-supply filter capacitor

Absolute Maximum Ratings

Power Dissipation
Input-Output Voltage Differential
Operating Junction Temperature Range
LM137HV
LM237HV
LM337HV

Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Internally limited
50 V
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Preconditioning
Burn-In in Thermal Limit
100\% All Devices
Electrical Characteristics
(Note 1)

PARAMETER	CONDITIONS	LM137HV/LM237HV			LM337HV.			ÚNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Line Regulation	$T_{A}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq\left\|V_{I N}-V_{\text {OUT }}\right\| \leq 50 \mathrm{~V},$ (Note 2)		0.01	0.02		0.01	0.04	\%/V
Load Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}^{\prime}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq \mathrm{I}_{\mathrm{MAX}} \\ & \mathrm{~V}_{\text {OUT }} \mathrm{I} \leq 5 \mathrm{~V}, \text { (Note 2) } \\ & \left\|\mathrm{V}_{\text {OUT }}\right\| \geq 5 \mathrm{~V},(\text { Note } 2) \end{aligned}$				-			
			15	25		15	50	- mV
		,	0.3	0.5		0.3	1.0	- \%
Thermal Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms}$ Pulse		0.002	0.02		0.003	0.04	\%/W
Adjustment Pin Current			65	100		65	100	- $\mu \mathrm{A}$
Adjustment Pin Current Change	$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq \mathrm{I}_{\mathrm{MAX}}$		2	5		2	5	$\mu \mathrm{A}$
			3	6		3	6	$\mu \mathrm{A}$.
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Reference Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 3)	-1.225	-1.250	-1.275	-1.213	-1.250	-1.287	V
	$\begin{aligned} & 3 \leq \mid V_{I N}-V_{O U T} \leq 50 V,(\text { Note } 3) \\ & 10 \mathrm{~mA} \leq \text { IOUT } \leq I \text { MAX, } P \leq P_{M A X} \end{aligned}$	-1.200	-1.250	-1.300	-1.200	-1.250	-1.300	V
Line Regulation	$3 \mathrm{~V} \leq\left\|\mathrm{V}_{1 N}-\mathrm{V}_{\text {OUT }}\right\| \leq 50 \mathrm{~V}$, (Note 2)		0.02	0.05		0.02	0.07	\%/V
Load Regulation	$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq \mathrm{I}_{\mathrm{MAX}},(\text { Note } 2)$,					
	$\left\|V_{\text {OUT }}\right\| \leq 5 V$		20	50		20	70	mV
	$\left\|V_{\text {OUT }}\right\| \geq 5 \mathrm{~V}$		0.3	1		0.3	1.5	\%
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {MAX }}$		0.6			0.6		\%
Minimum Load Current	$\left\|\mathrm{V}_{1 N}-\mathrm{V}_{\text {OUT }}\right\| \leq 50 \mathrm{~V}$		2.5	5		2.5	10	mA
	$\left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 10 V$		1.2 .	3		1.5	6	mA
Current Limit	$\left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 13 V$							
	K Package	1.5	2.2	3.2	1.5	2.2	3.5	A
	H Package	0.5	0.8	1.6	0.5	0.8	1.8	A
	$\left\|V_{I N}-V_{\text {OUT }}\right\|=50 \mathrm{~V}, \mathrm{~T}_{\text {A }}=+25^{\circ} \mathrm{C}$K Package							
		0.2	0.4	0.8	0.1	0.4	0.8	A
	H Package	0.1	0.17	0.5	0.050	0.17	0.5	A
RMS Output Noise, \% of VOUT	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	$\stackrel{.}{ }$	0.003			0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=-10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{C}_{\mathrm{ADJ}}=10 \mu \mathrm{~F} \end{aligned}$.	60			60		dB
		66	77		66	77		dB
Long-Term Stability	$T_{A}=125^{\circ} \mathrm{C}, 1000$ Hours		0.3	1		0.3	1	\%
Thermal Resistance, Junction to Case	H Package K Package		12	15		12	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			2.3	3		2.3	3	$\bigcirc \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 137 \mathrm{HV},-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM 237 HV and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the LM337HV; $V_{I N}-V_{O U T}=5 \mathrm{~V}$; and $\mathrm{I}_{\mathrm{OUT}}=0.1 \mathrm{~A}$ for the TO-5. package and IOUT $=0.5 \mathrm{~A}$ for the TO-3 package. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-5 and 20 W for the TO-3. IMAX is 1.5A for the TO-3 package and 0.2A for the TO-5 package.
Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Load regulation is measured on the output pin at a point $1 / 8^{\prime \prime}$ below the base of the TO-3 and TO-5 packages.
Note 3: Selected devices with tightened tolerance reference voltage available.

Thermal Regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per Watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of VOUT, per Watt, within the first 10 ms after a step of power is applied. The LM137HV's specification is $0.02 \% / W$, max.

In Figure 1, a typical LM137HV's output drifts only 3 mV (or 0.03% of $\mathrm{VOUT}^{=}=-10 \mathrm{~V}$) when a 10 W pulse is applied for 10 ms . This performance is thus well inside the specification limit of $0.02 \% / W \times 10 \mathrm{~W}=0.2 \%$ max. When the 10 W pulse is ended, the thermal regulation again shows a 3 mV step as the LM137HV chip cools off. Note that the load regulation error of about 8 mV (0.08%) is additional to the thermal regulation error. In Figure 2, when the 10W pulse is applied for 100 ms , the output drifts only slightly beyond the drift in the first 10 ms , and the thermal error stays well within $0.1 \%(10 \mathrm{mV})$.

Connection Diagrams

\author{
TO-3
 Metal Can Package
 bottom view

Typical Applications (Continued)

Adjustable High Voltage Regulator

*The $10 \mu \mathrm{~F}$ capacitors are optional to improve ripple.rejection

Current Regulator

Negative Regulator with Protection Diodes

*When C_{L} is larger than $20 \mu \mathrm{~F}$, D1 protects the LM137HV is case the input supply is shorted
${ }^{* *}$ When C2 is larger than $10 \mu \mathrm{~F}$ and -V OUT is larger than $-25 \mathrm{~V}, \mathrm{D} 2$ protects the LM137HV in case the output is shorted

Adjustable Current Regulator

*Use resistors with good tracking TC $<25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Ripple Rejection

National
Voltage Regulators Semiconductor
LM138/LM238/LM338

5 Amp Adjustable Power Regulators

General Description

The LM138/LM238/LM338 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 5 A over a 1.2 V to 32 V output range. They are exceptionally easy to use and require only 2 resistors to set the output voltage. Careful circuit design has resulted in outstanding load and line regulation comparable to many commercial power supplies. The LM138 family is supplied in a standard 3-lead transistor package.

A unique feature of the LM138 family is time-dependent current limiting. The current limit circuitry allows peak currents of up to 12 A to be drawn from the regulator for short periods of time. This allows the LM138 to be used with heavy transient loads and speeds start-up under full-load conditions. Under sustained loading conditions, the current limit decreases to a safe value protecting the regulator. Also included on the chip are thermal overload protection and safe area protection for the power transistor. Overload protection remains functional even if the adjustment pin is accidentally disconnected.

Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve
very high ripple rejections ratios which are difficult to achieve with standard 3 -terminal regulators.

Besides replacing fixed regulators or discrete designs, the LM138 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded.

The LM138/LM238/LM338 are packaged in standard steel TO-3 transistor packages. The LM138 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM238 from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM338 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- Guaranteed 7A peak output current
- Guaranteed 5A output current
- Adjustable output down to 1.2 V
- Line regulation typically $0.005 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Guaranteed thermal regulation
- Current limit constant with temperature
- 100% electrical burn-in in thermal limit
- Standard 3-lead transistor package

Typical Applications

1.2V-25V Adjustable Regulator

10A Regulator

${ }^{\dagger}$ Optional-improves transient response
*Needed if device is far from filter capacitors
${ }^{\dagger t} \mathrm{~V}_{\text {OUT }}=1.25 \mathrm{~V} .\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$
*R1 $=240 \Omega$ for LM138 and LM238
**R1, R2 as an assembly
can be ordered from
Bourns.
MIL part no. 7105A-AT2-502
COMM part no. 7105A-AT7-502

Power Dissipation	Internally limited
Input-Output Voltage Differential	35 V
LM138	55 C to +150 C
LM238	25 C to +150 C
LM338	0 C to $+125^{\circ \prime} \mathrm{C}$
Storage Temperature	65 C to +150 C
Lead Temperature (Soldering, 10 seconds)	300 C

Burn-In in Thermal Limit

All Devices 100\%

Electrical Characteristics
(Note 1)

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leq T_{j} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 138,-25^{\circ} \mathrm{C} \leq T_{j} \leq+150^{\circ} \mathrm{C}$ for the LM 238 and $0^{\circ} \mathrm{C} \leq T_{j} \leq+125^{\circ} \mathrm{C}$ for the LM338, $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$ and IOUT $=2.5 \mathrm{~A}$. Although power dissipation is internally limited, these specifications are applicable for power dissipations up to 50W.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects are taken into account separately by thermal regulation.
Note 3: Selected devices with tightened tolerance reference voltage available.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Application Hints

In operation, the LM138 develops a nominal 1.25 V reference voltage, $V_{\text {REF }}$ between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor R2, giving an output voltage of

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{A D J} R 2 .
$$

FIGURE 1

Since the $50 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM138 was designed to minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM138 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 75 dB ripple rejection is obtainable at any output level. Increases over $20 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies, but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.

Although the LM138 is stable with no outout capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM138 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times \mathrm{I}_{\mathrm{L}}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or in this case, 11.5 times worse.

Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resis, tance from the case to the set resistor, by using 2 separate leads to the case. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $20 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of ViN. In the LM138 this discharge path is through a large junction that is able to sustain 25A surge with no problem. This is not true of other types of positive

Application Hints
 (Continued)

regulators. For output capacitors of $100 \mu \mathrm{~F}$ or less at output of 15 V or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM138 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM138 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

*R1 $=240 \Omega$ for LM138 and LM238
FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications (Continued)

Typical Applications (Continued)

Electronic Shutdown**

Slow Turn-ON 15V Regulator

*R1 $=240 \Omega$ for LM138 and LM238

Digitally Selected Outputs

5V Logic Regulator with
High Stability 10V Regulator
${ }^{\dagger}$ Solid tantalum
*Discharges C1 if output is shorted to ground

$$
\text { **R1 }=240 \Omega \text { for LM138 and LM238 }
$$

Adjustable Regulator with Improved Ripple Rejection

15A Regulator

*R1 $=240 \Omega$ for LM138 or LM238
**Minimum output $\approx 1.2 \mathrm{~V}$

*R1 $=240 \Omega$ for LM138 and LM238

Typical Applications (Continued)

Adjustable Current Regulator

5A Current Regulator

Precision Current Limiter

Tracking Preregulator

Adjusting Multiple On-Card Regulators with Single Control*

Typical Applications
(Continued)
Adjustable 15A Regulator
Power Amplifier

Simple 12V Battery Charger

* R_{S}-sets output impedance of charger $Z_{O U T}=R_{S}\left(1+\frac{R 2}{R 1}\right)$
Use of R_{S} allows low charging rates with fully charged battery.
** $1000 \mu \mathrm{~F}$ is recommended to filter out any input transients.

Current Limited 6V Charger

*Sets max charge current to 3 A
${ }^{* *} 1000 \mu \mathrm{~F}$ is recommended to filter out any input transients.

Connection Diagram

Metal Can Package

BOTtOM VIEW
Order Number LM138K STEEL, LM238K STEEL or LM338K STEEL See NS Package K02A

7 National Semiconductor

LM140ALLM140/LM340A/LM340 Series 3-Terminal Positive Regulators

General Description

The LM140A/LM140/LM340A/LM340 series of positive 3 -terminal voltage regulators are designed to provide superior performance as compared to the previously available 78XX series regulator. Computer programs were used to optimize the electrical and thermal performance of the packaged IC which results in outstanding ripple rejection, superior line and lóad regulation in high power applications (over 15W).
'With these advances in design, the LM340 is now guaranteed to have line and load regulation that is a factor of 2 better than previously available devices. Also, all parameters are guaranteed at 1 A vs 0.5 A output current. The LM140A/LM340A provide tighter output voltage tolerance, $\pm 2 \%$ along with $0.01 \% / \mathrm{V}$ line regulation and $0.3 \% / \mathrm{A}$ load regulation.

Current limiting is included to limit peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over limiting die temperature.

Considerable effort was expended to make the LM140-XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

The entire LM140A/LM140/LM340A/LM340 series of regulators is available in the metal TO-3 power package
and the LM340A/LM340 series is also available in the TO-220 plastic power package. Where other voltages are required, the LM117 series provides +1.2 V to +57 V .

Features

- Complete specifications at 1A load
- Output voltage tolerances of $\pm 2 \%$ at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ and $\pm 4 \%$ over the temperature range (LM140A/LM340A)
- Fixed output voltages available $5,12,15 \mathrm{~V}$
- Line regulation of 0.01% of $V_{\text {OUT }} / V \Delta V_{\text {IN }}$ at 1 A load (LM140A/LM340A)
- Load regulation of 0.3% of VOUT/A $\Delta I_{\text {LOAD }}$ (LM140A/LM340A)
- Internal thermal overload protection
- Internal short-circuit current limit
- Output transistor safe area protection
- 100% thermal limit burn-in
- Special circuitry allows start-up even if output is pulled to negative voltage (\pm supplies)

LM140 Series Package and Power Capability

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN LOAD CURRENT
LM140 LM340	TO-3	20 W	1.5 A
LM340T	TO-220	15 W	1.5 A
LM341	TO-202	7.5 W	0.5 A
LM342	TO-202	.7 .5 W	0.25 A
LM140L LM340L	TO-39	.2 W	0.1 A
LM340L	TO-92	1.2 W	0.1 A

Typical Applications

Absolute Maximum Ratings

Input Voltage ($\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$)
35 V
Internal Power Dissipation (Note 1)
Internally Limited
Operating Temperature Range (T_{A})
LM140A/LM140
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM340A/LM340
$\begin{array}{ll}\text { (TO-3 Package } \mathrm{K}, \mathrm{KC} \text {) } & 150^{\circ} \mathrm{C} \\ \text { (TO-220 Package T) } & 125^{\circ} \mathrm{C}\end{array}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$\begin{array}{ll}\text { TO-3 Package K, KC } & 300^{\circ} \mathrm{C} \\ \text { TO-220 Package T } & 230^{\circ} \mathrm{C}\end{array}$

Electrical Characteristics LM140A/LM340A
(Note 2)
${ }^{\text {IOUT }}=1 \mathrm{~A},-55^{\circ} \mathrm{C} \leq T_{j} \leq+150^{\circ} \mathrm{C}(\mathrm{LM} 140 \mathrm{~A})$, or $0^{\circ} \mathrm{C} \leq T_{j} \leq+125^{\circ} \mathrm{C}$ (LM340A) unless otherwise specified.

Note 1: Thermal resistance of the TO-3 package (K, KC) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $35^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient. Thermal resistance of the TO-220 package (T) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $50^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.
Note 2: All characteristics are measured with a capacitor across the input of $0.22 \mu \mathrm{~F}$ and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques $\mathrm{I}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Electrical Characteristics LM140
(Note 2)
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ unless, otherwise noted.

Note 2: All characteristics are measured with a capacitor across the input of $0.22 \mu \mathrm{~F}$ and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Electrical Characteristics LM340
 (Note 2)

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted.

Note 2: All characteristics are measured with a capacitor across the input of $0.22 \mu \mathrm{~F}$ and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Typical Performance Characteristics

Note. Shaded area refers to LM340A/LM340

 JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Note. Shaded area refers to LM340A/LM340

Note. Shaded area refers to LM340A/LM340

Typical Performance Characteristics (Continued)

Load Regulation
140AK-5.0, $V_{I N}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Equivalent Schematic

Application Hints

The LM340 is designed with thermal protection, output short-circuit protection and output transistor safe area protection. However, as with any IC regulator, it becomes necessary to take precautions to assure that the regulator is not inadvertently damaged. The following describes possible misapplications and methods to prevent damage to the regulator.

Shorting the Regulator Input: When using large capacitors at the output of these regulators that have VOUT greater than 6 V , a protection diode connected input to output (Figure 1) may be required if the input is shorted to ground. Without the protection diode, an input short will cause the input to rapidly approach ground potential, while the output remains near the initial VOUT because of the stored charge in the large output capacitor. The capacitor will then discharge through reverse biased emitter-base junction of the pass device, Q16, which breaks down at 6.5 V and forward biases the base-collector junction. If the energy released by the capacitor into the emitter-base junction is large enough, the junction and the regulator will be destroyed. The fast diode in Figure 1 will shunt the capacitor's discharge current around the regulator.

Raising the Output Voltage above the Input Voltage: Since the output of the LM340 does not sink current, forcing the output high can cause damage to internal low current paths in a manner similar to that just described in the "Shorting the Regulator Input" section.

Regulator Floating Ground (Figure 2): When the ground pin alone becomes disconnected, the output approaches the unregulated input, causing possible damage to other circuits connected to VOUT. If ground is reconnected with power "ON", damage may also occur to the regulator. This fault is most likely to occur when plugging in regulators or modules with on card regulators into powered up sockets. Pówer should be turned off first, thermal limit ceases operating, or ground should be connected first if power must be left on.

Transient Voltages: If transients exceed the maximum rated input voltage of the 340 , or reach more than 0.8 V below ground and have sufficient energy, they will damage the regulator. The solution is to use a large input capacitor, a series input breakdown diode, a choke, a transient suppressor or a combination of these.

FIGURE 1. Input Short

1
FIGURE 2. Regulator Floating Ground

FIGURE 3. Transients

Aluminum Package Order Numbers:

LM340KC-5.0
LM340KC-12
LM340KC-15 See NS Package KC02A

National

LM140L/LM340L Series 3-Terminal Positive Regulators

General Description

The LM140L series of three terminal positive regulators is available with several fixed output voltages making thém useful in a wide range of applications. The LM140LA is an improved version of the LM78LXX series with a tighter output voltage tolerance (specified over the full military temperature range), higher ripple rejection, better regulation and lower quiescent current. The LM140LA regulators have $\pm 2 \% \mathrm{~V}_{\text {OUt }}$ specification, $0.04 \% / \mathrm{V}$ line regulation, and $0.01 \% / \mathrm{mA}$ load regulation. When used as a zener diode/resistor combination replacement, the LM140LA usually results in an effective output impedance improvement of two orders of magnitude, and lower quiescent current. These regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow the LM140LA to be used in logic systems, instrumentation, $\mathrm{Hi}-\mathrm{Fi}$, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

The LM140LA/LM340LA are available in the low profile metal three lead TO-39 (H) and the LM340LA is also available in the plastic TO-92 (Z). With adequate heat sinking the regulator can deliver 100 mA output current. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes
too high for the heat sinking provided, the thermal shutdown circuit takes over, preventing the IC from overheating.

For applications requiring other voltages, see LM117 data sheet.

Features

- Line regulation of $0.04 \% / \mathrm{V}$
- Load regulation of $0.01 \% / \mathrm{mA}$
- Output voltage tolerances of $\pm 2 \%$ at $T_{j}=25^{\circ} \mathrm{C}$ and $\pm 4 \%$ over the temperature range (LM140LA) $\pm 3 \%$ over the temperature range (LM340LA)
- Output current of 100 mA
- Internal thermal overload protection
- Output transistor safe area protection
- Internal short circuit current limit
- Available in metal TO-39 low profile package (LM140LA/LM340LA) and plastic TO-92 (LM340LA)

Output Voltage Options

LM140LA-5.0 5V
LM140LA-12 12V
LM140LA-15 15V
LM340LA-5.0 5V
LM340LA-12 12V
LM340LA-15 15V

Equivalent Circuit

Connection Diagrams

Order Number:
LM140LAH-5.0 LM340LAH-5.0 LM140LAH-12 LM340LAH-12 LM140LAH-15 LM340LAH-15 See NS Package H03A

OUTPUT

Order Number:
LM340LAZ-5.0
LM340LAZ-12
LM340LAZ-15
See NS Package Z03A

Absolute Maximum Ratings

Input Voltage
$5.0 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V
Internal Power Dissipation (Note 1)
Operating Temperature Range

LM140LA

LM340LA

35V
Internally Limited
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Maximum Junction Temperature
$+150^{\circ} \mathrm{C}$
Storage Temperature Range
Metal Can (H package)
Molded TO-92
Lead Temperature (Soldering, 10 seconds)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

Test conditions unless otherwise specified
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (LM140LA)
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (LM340LA)
$I_{0}=40 \mathrm{~mA}$
$\mathrm{C}_{\text {IN }}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.01 \mu \mathrm{~F}$

Note 1: Thermal resistance of the Metal Can Package (H) without a heat sink is $40^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $140^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with 0.4 inch leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with 0.125 inch lead length to a PC board.
Note 2: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of tests.
Note 3: It is recommended that a minimum load capacitor of $0.01 \mu \mathrm{~F}$ be used to limit the high frequency noise bandwidth. Note 4: The temperature coefficient of $\mathrm{V}_{\mathrm{OUT}}$ is typically within $0.01 \% \mathrm{~V}_{\mathrm{O}}{ }^{\circ}{ }^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Maximum Average Power Dissipation (Plastic Package)

Typical Applications

*Required if the regulator is located far from the power supply filter. - "See note 3 in the electrical characteristics table.

$V_{\text {OUT }}=5 \mathrm{~V}+\left(5 \mathrm{~V} / \mathrm{R} 1+\mathrm{I}_{\mathrm{Q}}\right) \mathrm{R} 2$
$5 \mathrm{~V} / \mathrm{R} 1>3 \mathrm{I}_{\mathrm{a}}$ load regulation $\left(\mathrm{L}_{\mathrm{r}}\right) \approx[(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 1](\mathrm{L}$, of LM140LA-50)

National Semiconductor
LM145/LM245/LM345 Negative Three Amp Regulator

General Description

The LM145 is a three-terminal negative regulator with a fixed output voltage of -5 V or -5.2 V , and up to 3 A load current capability. This device needs only one external component-a compensation capacitor at the output, making it easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation.

Exceptional effort has been made to make the LM145 immune to overload conditions. The regulator has current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.
Although primarily intended for fixed output voltage applications, the LM145 may be programmed for higher

Voltage Regulators

Features

- Output voltage accurate to better than $\pm 2 \%$
- Current limit constant with temperature
- Internal thermal shutdown protection
- Operates with input-output voltage differential of 2.8 V at full rated load over full temperature range
- Regulation guaranteed with 25 W power dissipation
- 3A output current guaranteed
- Only one external component needed
- 100% electrical burn-in
output voltages with a simple resistive divider. The low quiescent drain current of the device allows this technique to be used with good regulation.

The LM145 comes in a hermetic TO-3 package rated at 25W. Two reduced temperature range parts, LM245 and LM345, are also available.

- 100 elor

Schematic Diagram

See NS Package K02A

воttom VIEW
Order Number LM145K-5.0, LM245K-5.0 LM345K-5.0, LM145K-5.2, LM245K-5.2, or LM345K-5.2

Connection Diagram
 Metal Can Package

Typical Applications

${ }^{\dagger}$ Required for stablity. For value given, capacitor must be solid tantalum. $50 \mu \mathrm{~F}$ aluminum electrolytic may be substituted. Values given may be increased without limit.
*Reqiured if regulator is separated from filter capacitor. For value given, capacitor must be solid tantalum. $50 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.

Fixed Regulator

Absolute Maximum Ratings

Input Voltage
20 V
Input-Output Differential
Power Dissipation
Operating Junction Temperature Range
LM 145
LM245
LM345
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

20 V
Internally Limited
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics
$(-5 \mathrm{~V} \&-5.2 \mathrm{~V})$ (Note 1)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LM145/LM245			LM345			
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Voltage 5.0 V 5.2 V	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~mA} \\ & V_{\text {IN }}=-7.5 \end{aligned}$	$\begin{aligned} & -5.1 \\ & -5.3 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -5.2 \end{aligned}$	-4.9 -5.1	$\begin{aligned} & -5.2 \\ & -5.4 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -5.2 \end{aligned}$	$\begin{aligned} & -4.8 \\ & -5.0 \end{aligned}$	V V
Line Regulation (Note 2)	$\begin{aligned} & \mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C} \\ & -20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq-7.5 \mathrm{~V} \end{aligned}$		5	15		5	25	mV
Load Regulation (Note 2)	$\begin{aligned} & \mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {IN }}=-7.5 \mathrm{~V} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 3 \mathrm{~A} \end{aligned}$		30	75		30^{\prime}	100	mV
Output Voltage	$-20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq-7.8 \mathrm{~V}$						-4.75	
$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 3 \mathrm{~A} \\ & \mathrm{P} \leq 25 \mathrm{~W} \end{aligned}$	$\begin{array}{r} -5.20 \\ -5.40 \end{array}$		-4.80 -5.00	$\begin{aligned} & -5.25 \\ & -5: 45 \end{aligned}$		-4.75 -4.95	V V
	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {MAX }}$							
Quiescent Current	$\begin{aligned} & -20 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq-7.5 \mathrm{~V} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 3 \mathrm{~A} \end{aligned}$		1.0	3.0		1.0	3.0	mA
Short Circuit Current	$V_{\text {IN }}=-7.5 \mathrm{~V}, \mathrm{~T}_{1}=+25^{\circ} \mathrm{C}$		4	5.0		4	5.0	A
	$V_{\text {IN }}=-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{i}}=+25^{\circ} \mathrm{C}$		2	3.5	,	2	3.5	A
Output Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=4.7 \mu \mathrm{~F} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		150			150		$\mu \mathrm{V}$
Long Term Stability		,	5	50		5	50	mV
Thermal Resistance Junction to Case	\cdots		2			2	.	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply: $-55^{\circ} \mathrm{C} \leq T_{j} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 145 ;-25^{\circ} \mathrm{C} \leq T_{j} \leq+150^{\circ} \mathrm{C}$ for the LM245 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the LM345. $\mathrm{V}_{\text {IN }}=-7.5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{OUT}}=5 \mathrm{~mA}$. Although power dissipation is internally limited, electrical specifications apply only for power levels up to 25 W . For calculations of junction temperature rise due to power dissipation, use a thermal resistance of $35^{\circ} \mathrm{C} / \mathrm{W}$ for the TO-3 with no heat sink. With a heat sink, use $2^{\circ} \mathrm{C} / \mathrm{W}$ for junction to case thermal resistance.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, pulse testing with a low duty cycle is used.

Typical Performance Characteristics

Typical Applications (Continued)

-2V ECL Termination Regulator

Dual 3 Amp Trimmed Supply

Variable Output (-5.0V to -15 V)

National Semiconductor
 LM150/LM250/LM350
 3 Amp Adjustable Power Regulators

Voltage Regulators

General Description

The LM150/LM250/LM350 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 3 A over a 1.2 V to 33 V output range. They are exceptionally easy to use and require only 2 external resistors to set the output voltage. Further, both line and load regulation are comparable to discrete designs. Also, the LM150 is packaged in standard transistor packages which are easily mounted and handled.

In addition to higher performance than fixed regulators, the LM150 series. offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is accidentally disconnected.

Features

- Adjustable output down to 1.2 V
- Guaranteed 3A output current
- Line regulation typically $0.005 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Guaranteed thermal regulation
- Current limit constant with temperature
- 100% electrical burn-in in thermal limit
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 86 dB ripple rejection.

Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejections ratios which are difficult to achieve with standard 3 -terminal regulators.

Besides replacing fixed regulators or discrete designs, the LM150 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM150 can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.

The LM150/LM250/LM350 are packaged in standard steel TO-3 transistor packages. The LM150 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM250 from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM350 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Typical Applications

Absolute Maximum Ratings

Power Dissipation
Input-Output Voltage Differential
LM150
LM250
LM350
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Internally limited
35 V
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Preconditioning

Burn-In in Thermal Limit
All Devices 100\%
Electrical Characteristics (Note 1)

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 150,-25^{\circ} \mathrm{C} \leq T_{i} \leq+150^{\circ} \mathrm{C}$ for the LM 250 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the LM350, $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{OUT}}=1.5 \mathrm{~A}$. Although power dissipation is internally limited, these specifications are applicable for power dissipations up to 30W.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
Note 3: Selected devices with tightened tolerance reference voltage available.

Typical Performance Characteristics

Ripple Rejection

Output Impedance

Current Limit

Temperature Stability

Ripple Rejection

Line Transient Response

Application Hints

In operation, the LM150 develops a nominal 1.25 V reference voltage, $V_{R E F}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R 1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor R2; giving an output voltage of

$$
V_{O U T}=V_{R E F}\left(1+\frac{R 2}{R 1}\right)+I_{A D J} R 2 .
$$

FIGURE 1

Since the $50 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM150 was designed to minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM150 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the outpùt voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 86 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies, but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.

Although the LM150 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing.. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM150 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times \mathrm{I}_{\mathrm{L}}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or in this case, 11.5 times worse.

Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO- 3 package, it is easy to minimize the resistance from the case to the set resistor, by using 2 separate leads to the case. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge
-current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of VIN. In the LM150, this discharge path is through a large junction that is able to sustain 25 A surge with no problem. This is not true of other types of positive

Application Hints (Continued)

regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM150 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM150 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications (Continued)

Typical Applications (Continued)

Slow Turn-ON 15V Regulator

Digitally Selected Outputs

5V Logic Regulator with Electronic Shutdown*

Adjustable Regulator with Improved Ripple Rejection

High Stability 10V Regulator

10A Regulator

5A Constant Voltage/Constant Current Regulator

Typical Applications (Continued)

12V Battery Charger

Adjustable Current Regulator

1.2V-20V Regulator with Minimum Program Current

Adjusting Multiple On-Card Regulators with Single Control*

Typical Applications (Continued)

Adjustable 10A Regulator

${ }^{*} R_{S}$-sets output impedance of charger $Z_{O U T}=R_{S} \quad\left(1+\frac{R 2}{R 1}\right)$ Use of R_{S} allows
charged battery.
** $1000 \mu \mathrm{~F}$ is recommended to filter out any input transients.

${ }^{*}$ Sets peak current (2A for 0.3Ω) ** $1000 \mu \mathrm{~F}$ is recommended to filter out any input transients.

Connection Diagram

Metal Can Package

Order Number LM150K STEEL, LM250K STEEL or LM350K STEEL See NS Päckage K02A

LM320L/LM320ML Series 3-Terminal Negative Regulators

General Description

The LM320L/LM320ML series of 3-terminal negative voltage regulators features fixed output voltages of -5 V , -12 V and -15 V , with output current capabilities in excess of 100 mA , for the LM320L series, and 250 mA for the LM320ML series. These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM320L/ LM320ML series, even when combined with a minimum output compensation capacitor of $0.1 \mu \mathrm{~F}$, exhibits an excellent transient response, a maximum line regulation of $0.07 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{V}$, and a maximum load regulation of $0.01 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{mA}$.

The LM320L/LM320ML series also includes, as selfprotection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/or adjustable voltages and currents. The LM320L series is available in the 3-lead TO-92 package, and the LM320ML series is available in the 3-lead TO-202 package.

For applications requiring other voltages, see LM137 data sheet.

Features

- Preset output voltage error is less than $\pm 5 \%$ over load, line and temperature
- LM320L is specified at an output current of 100 mA
- LM320ML is specified at an output current of 250 mA
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than 0.07% VOUT/V
- Maximum load regulation less than 0.01% VOUT/mA
- Easily compensated with a small $0.1 \mu \mathrm{~F}$ output capacitor

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN OUTPUT CURRENT
LM320ML	TO-202	7.5 W	0.25 A
LM320L	TO-92	0.6 W	0.1 A

Connection Diagrams

TO-202 Power Package (P)

front view

Order Numbers:
LM320MLP-5.0
LM320MLP-12
LM320MLP-15
See NS Package P03A

For Tab Formed TO-202 Order Numbers:

LM320MLP-5.0 TB
LM320MLP-12 TB
LM320MLP-15 TB
See NS Package P03E
"TO-92 Plastic Package (Z)

Order Numbers:
LM320LZ-5.0
LM320LZ-12
LM320LZ-15
See NS Package 203A

Absolute Maximum Ratings

Input Voltage

$\mathrm{V}_{\text {OUT }}=-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V
Internal Power Dissipation (Notes 1 and 3)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Molded TO-92
Molded TO-202
Lead Temperature (Soldering, 10 seconds)
$-35 \mathrm{~V}$
Internally Limited $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$$
+125^{\circ} \mathrm{C}
$$

$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics L.M320ML (Note 2) $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.

OUTPUT VOLTAGE			-5V		-12V			-15V	UNITS
INPUT VOLTAGE (unless otherwise noted)		-10V		-17V			-20V		
PARAMETER	CONDITIONS	MIN	TYP MAX	MIN	TYP	MAX	MIN	TYP MAX	
Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{lO}=250 \mathrm{~mA}$	-5.2	-5 -4.8	-12.5	-12	-11.5	-15.6	-15 -14.4	V
	$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 250 \mathrm{~mA} \\ & \left(\mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}}\right) \end{aligned}$	-5.25$\left(-20 \leq V_{I N} \leq-7.5\right)^{-4.75}$		$-12.6 \quad-11.4$$\left(-27 \leq V_{\text {IN }} \leq-14.8\right)$			$\begin{gathered} -15.75 \\ \left(-30 \leq V_{\text {IN }} \leq-18\right) \end{gathered}$		
$\Delta V_{O} \quad$ Line Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA} \\ & \left.\mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}}\right) \end{aligned}$	$1-25$	50 $\left.V_{\text {IN }} \leq-7.3\right)$	(-30	$\mathrm{V}_{1} \mathrm{~N} \leq$	40 $-14.6)$	$\left(-30 \leq V_{\text {IN }} \leq-17.7\right)$		$m V$ V
$\Delta \mathrm{V}_{\mathrm{O}}$, Load Regulation	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & 1 \mathrm{~mA} \leq 1 \mathrm{O} \leq 250 \mathrm{~mA} \end{aligned}$		- 50					150	mV
$\Delta \mathrm{V}_{\mathrm{O}} \quad$ Long Term Stability	$10=250 \mathrm{~mA}$		20		48	.		60	$\mathrm{mV} / 1000 \mathrm{hr}$
IQ Quiescent Current	$10=250 \mathrm{~mA}$		$2 \quad 6$		2	6		$2 \cdot 6$	mA
Quiescent Current Change	$1 \mathrm{~mA} \leq 1 \mathrm{O} \leq 250 \mathrm{~mA}$		0.3			0.3		0.3	mA V
	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA} \\ & \left(\mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}\right) \end{aligned}$	$\left(-20 \leq V_{1 N} \leq-7.5\right)$			$V_{I N}$	$\begin{array}{r} 0.25 \\ -14.8) \\ \hline \end{array}$	$(-30 \leq \mathrm{V} \text { IN } \leq-18)$		
$\mathrm{V}_{\mathrm{n}} \quad$ Output Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA} \\ & \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$		40			-		120	. $\mu \mathrm{V}$
$\frac{\Delta V_{I N}}{\Delta V_{O}}$: Ripple Rejection	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C}, 1 \mathrm{O}=250 \mathrm{~mA} \\ & \mathrm{f}=120 \mathrm{~Hz} \end{aligned}$	54		56			54		dB
Input Voltage Required to Maintain Line Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 10=250 \mathrm{~mA} \end{aligned}$		-7.3			-14.6		-17.7	V

Note 1: Thermal resistance of the TO-202 Package (P) without a heat sink is $12^{\circ} \mathrm{C} / \mathrm{W}$ junction to caše and $70^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.
Note 2: To ensure constant junction temperature, low duty cycle pulse testing is used.

Electrical Characteristics LM320L (Note 4) ${ }^{\prime} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.

Note 3: Thermal resistance, junction to ambient, of the TO-92 (Z) Package is $180^{\circ} \mathrm{C} / \mathrm{W}$ when mounted with 0.40 inch leads on a PC board, and $160^{\circ} \mathrm{C} / \mathrm{W}$ when mounted with 0.25 inch leads on a PC board.
Note 4: To ensure constant junction temperature, low duty cycle pulse testing is used.

Typical Performance Characteristics

Short-Circuit Output Current

Dropout Voltage, LM320L -5V

Output Voltage vs.
Temperature (Normalized to $\mathbf{1 V}$ at $\mathrm{T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Maximum Average Power
Dissipation (TO-92)

Dropout Voltage, LM320ML,
-5V

Dropout Voltage, LM320L

Ripple Rejection

Schematic Diagrams

$-5 \mathrm{~V}$
LM320ML (LM320L)

-12 V and -15 V
LM320ML (LM320L)

Fixed Output Regulator

*Required if the regulator is located far from the power supply filter. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
${ }^{* *}$ Required for stability. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.

Adjustable Output Regulator

$$
\begin{aligned}
& -V_{Q}=-5 V-\left(5 V / R 1+I_{Q}\right) \cdot R 2, \\
& 5 V / R 1>3 I_{Q}
\end{aligned}
$$

General Description

The LM341-XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM341-XX series is available in the plastic TO-202 package. This package allows these regulators to deliver over 0.5 A if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expended to make the LM341-XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For applications requiring other voltages, see LM117 data sheet.

Features

- Output current in excess of 0.5 A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-202 package
- Special circuitry allows start-up even if output is pulled to negative voltage (\pm supplies)

Schematic and Connection Diagrams

Plastic Package

FRONT VIEW

For Tab Bend TO-202 Order Number:
LM341P-5.0 TB LM341P-12 TB LM341P-15 TB See NS Package P03E

Absolute Maximum Ratings

Input Voltage
$\left(\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}, 12 \mathrm{~V}\right.$ and 15 V)
Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction. Temperature
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

35 V
Internally Limited
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+230^{\circ} \mathrm{C}$

Electrical Characteristics $\dot{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 1 \mathrm{IO}=500 \mathrm{~mA}$; unless otherwise noted.

OUTPUT VOLTAGE			5 V	12V	15V	UNITS
INPUT VOLTAGE (unless otherwise noted)			10 V	19V	23V	
	ARAMETER	CONDITIONS	MIN TYP MAX	MIN TYP MAX	MIN TYP MAX	
Vo	Output Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{array}{lll}4.8 & 5 & 5.2\end{array}$	$\begin{array}{lll}11.5 & 12 & 12.5\end{array}$	$\begin{array}{llll}14.4 & 15 & 15.6\end{array}$	V
		$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \leq 7.5 \mathrm{~W}, 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA} \\ & \text { and } \mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	$\begin{array}{lr} 4.75 & 5.25 \\ \left(7.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 20\right) \end{array}$	$\begin{array}{cc} \hline 11.4 & 12.6 \\ \left(14.8 \leq \mathrm{V}_{\text {IN }} \leq 27\right) \end{array}$	14.25 15.75 $\left(18 \leq V_{I N} \leq 30\right)$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ΔV_{O}	Line Regulation	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \end{aligned}$	50 $\left(7.2 \leq V_{\text {IN }} \leq 25\right)$	120 240 $\left(14.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right)$	150 300 $\left(17.6 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right)$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq 1 \mathrm{O} \leq 500 \mathrm{~mA}$	100	240	- 300	mV
$\Delta \mathrm{V}_{\mathrm{O}}$	Long Term Stability		20	48	60	$\mathrm{mV} / 1000 \mathrm{hrs}$
10	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	4. 10:	$4 \quad 10$	$\therefore 4 \quad 10$	mA
ΔI_{0}	Quiescent Current Change	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leq 10 \leq 500 \mathrm{~mA} \end{aligned}$	0.5	0.5	${ }^{0.5}$	mA
		$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$	$\begin{gathered} 1 \\ \left(7.5 \leq \vee_{\mathcal{N}} \leq 25\right) \end{gathered}$	$\left(14.8 \leq \vee_{\text {IN }} \leq 30\right)$	$\left(18 \leq \vee_{\mathrm{IN}} \leq 30\right)$	
V_{n}	Output Noise Voltage	$\mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{~Hz}-100 \mathrm{kHz}$	40	75	90	$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}}$	Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	78	71	69	V
1	Input Voltage Required to Maintain Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}^{\prime}=500 \mathrm{~mA}$	7.2	14.5	17.6	V

Note 1: Thermal resistance without a heat sink for junction to case temperature is $12^{\circ} \mathrm{C} / \mathrm{W}$ for the TO-202 package. Thermal resistance for case to ambient temperature is $70^{\circ} \mathrm{C} / \mathrm{W}$ for the TO-202 package.

Typical Performance Characteristics

National Semiconductor

LM342 Series 3-Terminal Positive Regulators

General Description

The LM342-XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to-be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.
The LM342-XX series is available in the plastic TO-202 package. This package allows these regulators to deliver over 0.25A if adequate heat sinking is provided. Current limiting is, included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.
Considerable effort was expended to make the LM342-XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response.

Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For applications requiring other voltages, see LM117 data sheet.

Features

- Output current in excess of 0.25A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-202 package
- Special circuitry allows start-up even if output is pulled to negative voltage (\pm supplies)

Voltage Range

LM342-5.0	5 V
LM342-12	12 V
LM342-15	15 V

Schematic and Connection Diagrams

Absolute Maximum Ratings

Input Voltage
$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V} 30 \mathrm{~V}$
$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ and $15 \mathrm{~V} \quad 35 \mathrm{~V}$
Internal Power Dissipation (Note 1) Internally Limited
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$
Maximum Junction Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 1 \mathrm{O}=250 \mathrm{~mA}$ (Note 2) unless noted.

OUTPUT VOLTAGE			5 V	12V	15V	UNITS
INPUT VOLTAGE (unless otherwise noted)			10 V	19V	23 V	
	PARAMETER	CONDITIONS	MIN TYP MAX	MIN TYP MAX	MIN TYYP MAX	
V_{0}	Output Voltage (Note 3)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{array}{lll}4.8 & 5 & 5.2\end{array}$	$\begin{array}{lll}11.5 & 12 & 12.5\end{array}$	$\begin{array}{llll}14.4 & 15 & 15.6\end{array}$	V
		$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 250 \mathrm{~mA} \text { and } \\ & \mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	$\begin{array}{lr} 4.75 & 5.25 \\ \left(8 \leq V_{\text {IN }} \leq 20\right) \end{array}$	$\begin{array}{lc} \hline 11.4 & 12.6 \\ \left(15 \leq V_{\text {IN }} \leq 27\right) \end{array}$	14.25 $\left(18 \leq V_{\text {IN }} \leq 30\right)$	V V
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$	$\begin{gathered} 55 \\ \left(7.3 \leq V_{\text {IN }} \leq 25\right) \end{gathered}$	$\begin{gathered} 100 \\ \left(14.6 \leq V_{\text {IN }} \leq 30\right) \end{gathered}$	100 $\left(17.7 \leq V_{\text {IN }} \leq 30\right)$	mV V
ΔV_{0}	Load Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq 1 \mathrm{l} \leq 250 \mathrm{~mA}$	50	120	150	mV
ΔV_{O}	Long Term Stability		20	48	60	$\mathrm{mV} / 1000 \mathrm{hrs}$
10	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	6	6	6	mA
$\Delta^{\prime} \mathrm{Q}$	Quiescent Current Change	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 250 \mathrm{~mA}{ }^{\text {. }}$	0.5	0.5	0.5	mA
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{MAX}}$	$\left(7.3 \leq \vee_{\mathrm{IN}} \leq 25\right)$	$\begin{gathered} 1.5 \\ \left(14.6 \leq V_{\text {IN }} \leq 30\right) \end{gathered}$	$\begin{gathered} 1.5 \\ \left(17.7 \leq \vee_{\mathrm{IN}} \leq 30\right) \end{gathered}$	$\begin{gathered} m A \\ V \end{gathered}$
V_{n}	Output Noise Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz}$	40	96	120	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{~V}_{\mathrm{OUT}}}$	Ripple Rejection	$f=120 \mathrm{~Hz}$	5064	$44 \quad 58$	4256	dB
	Input Voltage Required to Maintain Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}^{\prime}=250 \mathrm{~mA}$	7.3	14.6	17.7	V

Note 1: Thermal resistance of the TO-202 package (P) without a heat sink is $12^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: The electrical characteristics data represent pulse test conditions with junction temperatures as shown at the initiation of tests.
Note 3: The temperature coefficient of $\mathrm{V}_{\mathrm{OUT}}$ is typically within $0.01 \% \mathrm{~V}_{\mathrm{O}} /{ }^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Typical Ȧpplications

Fixed Output Regulator

*Required if the regulator is located far from power supply filter
**Although not required, C2 does improve transient response. (If needed, use $0.1 \mu \mathrm{~F}$ ceramic disc.)

$V_{0}=5 V+\left(5 V / R 1+I_{Q}\right) R 2$
$5 V / R 1>31 \dot{Q}$. Load Regulation $\left(L_{R}\right)=$ [(R1 + R2)/R1] • (L_{r} of LM342-05)

Current Regulator

$I_{\text {OUT }}=V^{2-3 / R 1+I_{Q}}$
$\Delta^{\prime} \mathrm{Q} \leq 1.5 \mathrm{~mA}$ over line and load changes

High Output Voltage Regulator

*Necessary if regulator is located far from the power supply filter
**D3 aids in full load start-up and protects the regulator during short circuits from high input to output voltage differentials
\pm 15V, 250 mA Dual Power Supply

Variable Output Regulator $0.5 \mathrm{~V}-18 \mathrm{~V}$

$V_{\text {OUT }}=V_{G}+5 V, R 1=\left(-V_{\text {IN }} / I_{Q}\right.$ LM342 $)$
$V_{\text {OUT }}=5 \mathrm{~V}(\mathrm{R} 2 / R 4)$ for $(R 2+R 3)=(R 4+R 5)$
A 0.5 V output will correspond to $(R 2 / R 4)=0.1,(R 3 / R 4)=0.9$
*Solid tantalum

7
National Semiconductor

Voltage Regulators

LM723/LM723C Voltage Regulator

General Description

The LM723/LM723C is a voltage regulator designed primarily for series regulator applications. By itself, it will supply output currents up to 150 mA ; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting. Important characteristics are:

- 150 mA output current without external pass transistor
- Output currents in excess of 10A possible by adding external transistors
- Input voltage 40 V max
- Output voltage adjustable from 2 V to 37 V
- Can be used as either a linear or a switching regulator.

The LM723/LM723C is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.

The LM723C is identical to the LM723 except that the LM723C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams*

Equivalent CCircuit*

Order Number LM723CN See NS Package N14A
Order Number LM723J or LM723CJ See NS Package J14A

Note: Pin 5 connected to case.
TOP VIEW
Order Number LM723H or LM723CH
See NS Package H10C

*Pin numbers refer to metal can package.

Absolute Maximum Ratings

Pulse Voltage from V^{+}to $\mathrm{V}^{-}(50 \mathrm{~ms})$ 50 V
Continuous Voltage from V^{+}to V^{-} 40 V
Input-Output Voltage Differential 40 V
Maximum Amplifier Input Voltage (Either Input) 7.5 V

Maximum Amplifier Input Voltage (Differential)
Current from V_{z}
Current from $V_{\text {REF }}$
Internal Power Dissipation Metal Can (Note 1)
Cavity DIP (Note 1) Molded DIP (Note 1)
Operating Temperature Range LM723
LM723C
Storage Temperature Range Metal Can DIP

25 mA
15 mA 800 mW 900 mW 660 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)

Electrical Characteristics(Note 2)

PARAMETER	CONDITIONS	LM723			LM723C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Line Regulation	$\begin{aligned} & V_{I N}=12 \mathrm{~V} \text { to } \mathrm{V}_{I N}=15 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\ & V_{I N}=12 \mathrm{~V} \text { to } \mathrm{V}_{1 \mathrm{~N}}=40 \mathrm{~V} \end{aligned}$		$.01$	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$. 01	0.1 0.3	\% $\mathrm{V}_{\text {OUT }}$ \% $\mathrm{V}_{\text {OUT }}$ \% $\mathrm{V}_{\text {OUT }}$
			$.02$	0.2		0.1	0.5	\% V OUT
Load Regulation	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq=+70^{\circ} \mathrm{C} \end{aligned}$. 03	0.15		. 03	0.2	\% V ${ }_{\text {Out }}$
				0.6				\%V out
							0.6	\%V out
Ripple Rejection	$f=50 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=0$		74			74		dB
	$\mathrm{f}=50 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F}$		86	.		86		dB
Average Temperature Coefficient of Output Voltage	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$. 002	. 015				$\% /{ }^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq+70^{\circ} \mathrm{C}$. 003	. 015	$\% /{ }^{\circ} \mathrm{C}$
Short Circuit Current Limit	$\mathrm{R}_{\text {SC }}=10 \Omega, \mathrm{~V}_{\text {OUT }}=0$		65			65		mA
Reference Voltage		6.95	7.15	7.35	6.80	7.15	7.50	V
Output Noise Voltage	$B W=100 \mathrm{~Hz}$ to $10 \mathrm{kHz}, C_{\text {REF }}=0$		20			20		μ Vrms
	$B W=100 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F}$		2.5			2.5		$\mu \mathrm{V}$ rms
Long Term Stability			0.1			0.1		\%/1000 hrs
Standby Current Drain	$I_{L}=0, V_{\text {IN }}=30 \mathrm{~V}$		1.3	3.5		1.3	4.0	mA
Input Voltage Range		9.5		40	9.5		40	v
Output Voltage Range		2.0		37	2.0		37	V
Input-Output Voltage Differential		3.0		38	3.0		38	v

Note 1: See derating curves for maximum power rating above $25^{\circ} \mathrm{C}$.
Note 2: Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=\mathrm{V}^{+}=\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}, \mathrm{~V}^{-}=0, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{SC}}=0, \mathrm{C}_{1}=100 \mathrm{pF}, \mathrm{C}_{\text {REF }}=0$ and divider impedance as seen by error amplifier $\leq 10 \mathrm{k} \Omega$ connected as shown in Figure 1. Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken into account separately for high dissipation conditions.
Note 3: L_{1} is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in . air gap.
Note 4: Figures in parentheses may be used if R1/R2 divider is placed on opposite input of error amp.
Note 5: Replace R1/R2 in figures with divider shown in Figure 13.
Note 6: V^{+}must be connected to a +3 V or greater supply.
Note 7: For metal can applications where V_{Z} is required, an external 6.2 volt zener diode should be connected in series with VOUT.

Maximum Power Ratings

LM723
Power Dissipation vs Ambient Temperature

LM723C
Power Dissipation vs Ambient Temperature

Typical Performance Characteristics

TABLE I RESISTOR VALUES (k Ω) FOR STANDARD OUTPUT VOLTAGE

POSITIVE OUTPUT VOLTAGE	APPLICABLE FIGURES	FIXED OUTPUT $\pm 5 \%$		OUTPUT ADJUSTABLE $\pm 10 \%$ (Note 5)			NEGATIVE OUTPUT VOLTAGE	APPLICABLE FIGURES	$\begin{aligned} & \text { FIXED } \\ & \text { OUTPUT } \\ & \pm 5 \% \end{aligned}$		$\begin{gathered} \text { 5\% OUTPUT } \\ \text { ADJUSTABLE } \\ \pm 10 \% \end{gathered}$		
	(Note 4)	R1	R2	R1	P1	R2			RT	R2	R1	P1	R2
+3.0	$\begin{aligned} & 1,5,6,9 \\ & 12(4) \end{aligned}$	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	102	2.2	10	91
+3.6	$\begin{aligned} & 1,5,6,9 \\ & 12(4) \end{aligned}$	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240
+5.0	$\begin{aligned} & 1,5,6,9, \\ & 12(4) \end{aligned}$	2.15	4.99	. 75	0.5	2.2	- -6 (Note 6)	3, 110	3.57	2.43	1.2	0.5	. 75
+6.0	$\begin{aligned} & 1,5,6,9 \\ & 12(4) \end{aligned}$	1.15	6.04	0.5	0.5	2.7	-9	3,10	3.48	5.36	1.2	0.5	2.0
+90	$\begin{aligned} & 2,4,(5,6, \\ & 12,9) \end{aligned}$	1.87	715	. 75	1.0	2.7	-12	3, 10	3.57	8.45	1.2	0.5	3.3
+12	$\begin{aligned} & 2,4,(5,6, \\ & 9,12) \end{aligned}$	4.87	7.15	2.0	1.0	3.0	-15	3,10	3.65	11.5	1.2	0.5	4.3
$+15$	$\begin{aligned} & 2,4,15,6, \\ & 9,121 \end{aligned}$	7.87	7.15	3.3	1.0	3.0	-28	3, 10	3.57	24.3	1.2	0.5	10
+28,	$\begin{aligned} & 2,4,15,6, \\ & 9,12) \end{aligned}$	21.0	7.15	5.6	1.0	2.0	-45	8	3.57	41.2	2.2	10	33
+45	7	3.57	48.7	2.2	10	39	-100	8	357	97.6	2.2	10	91
+75	7 .	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240

TABLE II FORMULAE FOR INTERMEDIATE OUTPUT VOLTAGES

Outputs from +2 to +7 volts [Figures 1, 5, 6, 9, 12, (4)] $V_{\text {OUT }}=\left\{V_{\text {REF }} \times \frac{R 2}{R 1+R 2}\right\}$
Outputs from +7 to +37 volts [Figures 2, 4, (5, 6, 9, 12)] $V_{\text {OUT }}=\left[V_{\text {REF }} \times \frac{R 1+R 2}{R 2}\right]$
Typical Applicati

. Note: $\mathrm{R} 3=\frac{\mathrm{R1} \text { R2 }}{\mathrm{R1}+\mathrm{A}_{2}}$ for minimum temper PERFORMANCE Note: $R 3=\frac{R 1 R 2}{R 1+R 2}$ for minimum temperature drift. $\begin{aligned} & \text { Regulated Output Voltage } \\ & \text { Line Regulation }\left(\triangle V_{1 N}=3 \mathrm{~V}\right)\end{aligned} \quad \begin{aligned} & 5 \mathrm{~V}\end{aligned}$

FIGURE 1. Basic Low Voltage Regulator ($\mathrm{V}_{\text {OUT }}=2$ to $7 . \mathrm{Volts}$)

TYPICAL PERFORMANCE
Regulated Output Voltage
Line Regulation $\left(\Delta V_{I N}=3 V\right)$
Load Regulation $\left(\Delta I_{L}=100\right.$
.FIGURE 3. . Negative Voltage Regulator

FIGURE 2. Basic High Voltage Regulator ($\mathrm{V}_{\text {OUT }}=7$ to 37 Volts)

TYPICAL PERFORMANCE
$\begin{array}{lr}\text { Regulated Output Voltage } & { }^{+15 \mathrm{~V}} \\ \left.\text { Line Regulation (} \Delta V_{\text {IN }}=3 \mathrm{~V}\right) & 1.5 \mathrm{mV}\end{array}$ Load Regulation ($\left.\Delta \mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}\right) \quad 15 \mathrm{mV}$
FIGURE 4. Positive Voltage Regulator (External NPN Pass Transistor)

Typical Applications (Continued)

FIGURE 7. Positive Floating Regulator

$\begin{array}{llr}\text { Note: Current limit transistor may be } & \text { Regulated Output Voltage } & \boldsymbol{+ 5 V} \\ \text { ussed for shutdown if current } & \text { Line Regulation }\left(\Delta V_{I N}=3 \mathrm{~V}\right) & \mathbf{0 . 5} \mathrm{mV} \\ \text { limiting is not required. } & \text { Lond Regulation }\left(\Delta I_{L}=50 \mathrm{~mA}\right) & \mathbf{1 . 5} \mathrm{mV}\end{array}$
FIGURE 11. Remote Shutdown Regulator with
Current Limiting

TYPICAL PERFORMANCE

FIGURE 6. Foldback Current Limiting

FIGURE 10. Negative Switching Regulator

> TYPICAL PERFORMANCE

Regulited Output Voltuge'
Regulated Output Voltuge
Line Regulation $\left(\Delta V_{\text {IN }}=10 \mathrm{~V}\right)$$\quad \begin{array}{r}\mathbf{+ 5 V} \\ 0.5 \mathrm{mV}\end{array}$ Load Regulation ($\Delta I_{L}=100 \mathrm{~mA}$) $\quad 1.5 \mathrm{mV}$
FIGURE 12. Shunt Regulator

FIGURE 13. Output Voltage Adjust (See Note 5)

General Description

The LM1524 series of regulating pulse width modulators contains all of the control circuitry necessary to imple－ ment switching regulators of either polarity，transformer coupled DC to DC converters，transformerless polarity converters and voltage doublers，as well as other power control applications．This device includes a 5 V voltage regulator capable of supplying up to 50 mA to external circuitry，a control amplifier，an oscillator，a pulse width modulator，a phase splitting flip－flop，dual alternating output switch transistors，and current limiting and shut－ down circuitry．Both the regulator output transistor and each output switch are internally current limited and，to limit junction temperature，an internal thermal shut－ down circuit is employed．The LM1524 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and is packaged in a hermetic 16 －lead DIP（J）．The LM2524 and LM3524 are rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and are
packaged in either a hermetic 16 －lead DIP（J）or a 16 －lead molded DIP（N）．

Features

－Complete PWM power control circuitry．
－Frequency adjustable to greater than 100 kHz
－ 2% frequency stability with temperature
－Total quiescent current less than 10 mA
－Dual alternating output switches for both push－pull or single－ended applications
－Current limit amplifier provides external component protection
－On－chip protection against excessive junction temper－ ature and output current
－ $5 \mathrm{~V}, 50 \mathrm{~mA}$ linear regulator output available to user

Block and Connection Diagrams

Order Number LM1524J，LM2524J
or LM3524J
See NS Package J16A
Order Number LM2524N
or LM3524N
See NS Package N16A

Absolute Maximum Ratings

Input Voltage
Reference Voltage, Forced
Reférence Output Current
Output Current (Each Output)
Oscillator Charging Current (Pin 6 or 7)
Internal Power Dissipation (Note 1)
Operating Temperature Ranges

LM1524
LM2524/LM3524

40 V
6 V
50 mA
100 mA
5 mA
1W

Maximum Junction Temperature

(J Package)	$150^{\circ} \mathrm{C}$
(N Package)	$125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics
Unless otherwise stated, these specifications apply for $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LM 1524 and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the LM2524 and LM3524, $V_{I N}=20 \mathrm{~V}$, and $\mathrm{f}=20 \mathrm{kHz}$. Typical values other than temperature coefficients, are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	LM1524/ LM2524			LM3524			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Reference Section	.				.			
Output Voltage		4.8	5.0	5.2	4.6	5.0	5.4	V
Line Regulation	$V_{1 N}=8-40 \mathrm{~V}$		10	20		10	30	mV
Load Regulation	$\mathrm{I}_{\mathrm{L}}=0-20 \mathrm{~mA}$		20	50		20	50	mV
Ripple Rejection.	$f=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		66			66		dB
Short-Circuit Output Current	$V_{\text {REF }}=0 ; T_{A}=25^{\circ} \mathrm{C}$		100			100		$\dot{m} A$
Temperature Stability	Over Operating Temperature Range		0.3	1.	/	0.3	1	\%
Long Term Stability	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		20			20		$\mathrm{mV} / \mathrm{khr}$
Oscillator Section								.
Maximum Frequency	$\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathbf{T}}=2 \mathrm{k} \dot{\Omega}$		350			350		kHz
Initial Accuracy	R_{T} and C_{T} constant		5			5		\%
Frequency Change with Voltage	$V_{1 N}=8-40 \mathrm{~V}, \mathrm{~T}_{A} \leqslant 25^{\circ} \mathrm{C}$			1			1	\%
Frequency Change with Temperature	Over Operating Temperature Range			2 \cdot			2	\%
Output Amplitude (Pin 3)	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		3.5			3.5		V
Output Pulse Width (Pin 3)	$\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5			0.5		$\mu \mathrm{s}$
Error Amplifier Section								
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		0.5	5		2	10	mV
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$.	2	10		2	10	$\mu \mathrm{A}$
Open Loop Voltage Gain	$\cdots \cdot$	72	80		60	80		dB
Common-Mode Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.8		3.4	1.8		3.4	V
Common-Mode Rejection Ratio -	TA $\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$		70			70		dB
Small Signal Bandwidth	$A V=0 \mathrm{~dB}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		3			3		MHz
Output.Voltage Swing	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5		3.8	0.5		3.8	V
Comparator Section								
Maximum Duty Cycle	\% Each Output ON	45			45			\%
Input Threshold (Pin 9)	Zero Duty Cycle		1			1.		V
Input Threshold (Pin 9)	Maximum Duty Cycle		3.5			3.5		V
Input Bias Current .			-1			-1		$\mu \mathrm{A}$
- Current Limiting Section								
Sense Voltage	$\begin{aligned} & V_{(\operatorname{Pin} 2)}-V_{(\operatorname{Pin} 1)} \geq 50 \mathrm{mV}, \\ & \operatorname{Pin} 9=2 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	190	200	210	180	200	220	$m V$
Sense Voltage T.C.			0.2			0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Common-Mode Voltage		-0.7		1	-0.7		1	V
Output Section (Each Output)								
Collector-Emitter Voltage		40			40			V
Collector Leakage Current	$V_{C E}=40 \mathrm{~V}$		0.1	50		0.1	50	$\mu \mathrm{A}$
Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$		1	2		1	2	V
Emitter Output Voltage	$\mathrm{V}_{\text {IN }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-250 \mu \mathrm{~A}$	17	18		17	18		, V
Rise Time (10% to 90\%)	$\mathrm{R}_{\mathrm{C}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2			0.2		$\mu \mathrm{s}$
Fall Time (90% to 10%)	$R_{C}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$		0.1			0.1		$\mu \mathrm{s}$
Total Standby Current	$V_{I N}=40 \mathrm{~V}, \operatorname{Pins} 1,4,7,8,11$ and 14 are grounded, $\operatorname{Pin} 2=2 \mathrm{~V}$, All Other Inputs and Outputs Open	-	5	10		5	10	mA

Note 1: For operation at elevated temperatures, devices in the J package must be derated based on a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, and devices in the N package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Typical Performance Characteristics

Test Circuit

Functional Description

INTERNAL VOLTAGE REGULATOR

The LM3524 has on chip a 5V, 50 mA , short circuit protected voltage regulator. This voltage regulator provides a supply for all internal circuitry of the device and can be used as an external reference.

For input voltages of less than 8 V the 5 V output should be shorted to pin $15, \mathrm{~V}_{\text {IN }}$, which disables the 5 V regulator. With these pins shorted the input voltage must be limited to a maximum of 6 V . If input voltages of $6-8 \mathrm{~V}$ are to be used, a pre-regulator, as shown in Figure 1, must be added.

${ }^{*}$ Minimum C_{o} of $10 \mu \mathrm{~F}$ required for stability.
FIGURE 1

OSCILLATOR

The LM3524 provides a stable on-board oscillator. Its frequency is set by an external resistor, R_{T} and capacitor, C_{T}. A graph of R_{T}, C_{T} vs oscillator frequency is shown in Figure 2. The oscillator's output provides the signals for triggering an internal flip-flop, which directs the PWM information to the outputs, and a blanking pulse to turn off both outputs during transitions to ensure that cross conduction does not occur. The width of the blanking pulse, or dead time, is controlled by the value of C_{T}, as shown in Figure 3. The recommended
values of R_{T} are $1.8 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$, and for C_{T}, $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$.

Functional Description (Continued)

ERROR AMPLIFIER

The error amplifier is a differential input, transconductance amplifier. Its gain, nominally 80 dB , is set by either feedback or output loading. This output loading can be done with either purely resistive or a combination of resistive and reactive components. A graph of the amplifier's gain vs output load resistance is shown in Figure 4.

The output of the amplifier, or input to the pulse width modulator, can be overridden easily as its output impedance is very high ($Z_{0} \simeq 5 \mathrm{M} \Omega$). For this reason a DC voltage can be applied to pin 9 which will override the error amplifier and force a particular duty cycle to the outputs. An example of this could be a non-regulating motor speed control where a variable voltage was applied to pin 9 to control motor speed. A graph of the output duty cycle vs the voltage on pin 9 is shown in Figure 5.

The amplifier's inputs have a common-mode input range of $1.8 \mathrm{~V}-3.4 \mathrm{~V}$. The on board regulator is useful for biasing the inputs to within this range.

CURRENT LIMITING

The function of the current limit amplifier is to override the error amplifier's output and take control of the pulse width. The output duty cycle drops to about 25% when a current limit sense voltage of 200 mV is applied between the $+C_{L}$ and $-C_{L}$ terminals. Increasing the sense voltage approximately 5% results in a 0% output duty cycle. Care should be taken to ensure the -0.7 V to +1.0 V input common-mode range is not exceeded.

OUTPUT STAGES

The outputs of the LM3524 are NPN transistors, capable of a maximum current of 100 mA . These transistors are driven 180° out of phase and have noncommitted open collectors and emitters as shown in Figure 6.

FIGURE 5

FIGURE 4

FIGURE 6

Typical Applications

FIGURE 7. Positive Regulator, Step-Up Basic Configuration (IIN(MAX) $=\mathbf{8 0} \mathbf{m A}$)

FIGURE 8. Positive Regulator, Step-Up Boosted Current Configuration

Typical Applications (Continued)

FIGURE 10. Positive Regulator, Step-Down Boosted Current Configuration

Typical Applications (Continued)

FIGURE 11. Boosted Current Polarity Inverter

BASIC SWITCHING REGULATOR THEORY AND APPLICATIONS

The basic circuit of a step-down switching regulator circuit is shown in Figure 12, along with a practical circuit design using the LM3524 in Figure 15.

The circuit works as follows: Q1 is used as a switch, which has ON and OFF times controlled by the pulse width modulator. When Q 1 is ON , power is drawn from $\mathrm{V}_{\text {IN }}$ and supplied to the load through L1; V_{A} is at approximately $V_{I N}, ~ D 1$ is reverse biased, and C_{O} is
charging. When Q1 turns OFF the inductor L1 will force V_{A} negative to keep the current flowing in it, D1 will start conducting and the load current will flow through D1. and L1. The voltage at V_{A} is smoothed by the L1, C_{o} filter giving a clean DC output. The current flowing through L1 is equal to the nominal DC load cùrrent plus some ΔI_{L} which is due to the changing voltage across it. A good rule of thumb is to set $\Delta I_{L p-p} \simeq 40 \% \cdot I_{o}$.

FIGURE 12. Basic Step-Down Switching Regulator

FIGURE 13

Typical Applications (Continued)
From the relation $\mathrm{V}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{d}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{t}}}, \Delta \mathrm{I}_{\mathrm{L}} \simeq \frac{\mathrm{V}_{\mathrm{L}} \mathrm{T}}{\mathrm{L} 1}$
$\Delta I_{L^{+}}=\frac{\left(V_{1 N}-V_{0}\right) \text { toN }}{L 1} ; \Delta I_{L}^{-}=\frac{V_{0} \text { toFF }}{L 1}$
Neglecting $V_{S A T}, V_{D}$, and settling $\Delta I_{L^{+}}=\Delta I_{L^{-}}$;
$V_{0} \simeq V_{\text {IN }}\left(\frac{t_{O N}}{\text { tOFF }+ \text { ton }}\right)=V_{\text {IN }}\left(\frac{t_{O N}}{T}\right) ;$
where $T=$ Total Period

The above shows the relation between $\mathrm{V}_{\mathrm{I}} \mathrm{N}, \mathrm{V}_{\mathrm{O}}$ and duty cycle.
$\operatorname{IIN}(D C)=\operatorname{IOUT}(D C)\left(\frac{\text { ton }}{\text { tON }+ \text { tOFF }}\right)$.
as Q1 only conducts during ton.
$P_{I N}=I_{I N}(D C) V_{I N}=\left(I_{O(D C)}\right)\left(\frac{t_{O N}}{t_{O N}+t_{O F F}}\right) V_{I N}$
$P_{0}=I_{0} V_{0}$
The efficiency, η, of the circuit is:
$\eta_{M A X}=\frac{P_{0}}{P_{\text {IN }}}=\frac{I_{0} V_{0}}{\frac{I_{0}\left(t_{O N}\right) V_{I N}+\left(V_{S A T}\right.}{T}}$
$=\frac{V_{0}}{V_{0}+1}$ for $V_{S A T}=V_{D 1}=1 \mathrm{~V}$.
η MAX will be further decreased due to switching losses in Q1. For this reason Q1 should be selected to have the maximum possible f T , which implies very fast rise and fall times.

CALCULATING INDUCTOR L1

$$
\begin{aligned}
& \operatorname{tON\simeq \frac {(\Delta I_{L}}{}{}^{+})\cdot L1}\left(V_{I N}-V_{0}\right)
\end{aligned}, \operatorname{toFF}=\frac{\left(\Delta I_{L}^{-}\right) \cdot L 1}{V_{0}}, \begin{aligned}
\operatorname{tON}+\operatorname{tOFF}=T= & \frac{\left(\Delta I_{L}{ }^{+}\right) \cdot L 1}{\left(V_{I N}-V_{0}\right)}+\frac{\left(\Delta I_{L}\right) \cdot L 1}{V_{0}} \\
& =\frac{0.4 I_{0} L 1}{\left(V_{I N}-V_{0}\right)}+\frac{0.4 I_{0} L 1}{V_{0}}
\end{aligned}
$$

Since $\Delta I_{L}{ }^{+}=\Delta I^{-}=0.4 I_{o}$

FIGURE 14

Typical Applications (Continued)

A complete step-down switching regulator schematic, using the LM3524, is illustrated in Figure 15. Transistors Q 1 and Q 2 have been added to boost the output to 1 A . The 5 V regulator of the LM3524 has been divided in half to bias the error amplifier's non-inverting input to within its common-mode range. Since each output transistor is on for half the period, actually 45%, they have been paralleled to allow longer possible duty cycles, up to 90%. This makes a lower possible input voltage. The output voltage is set by:
$V_{0}=V_{N I}\left(1+\frac{R 1}{R 2}\right)$,
where V_{NI} is the voltage at the error amplifier's noninverting input.

Resistor R3 sets the current limit to:
$\frac{200 \mathrm{mV}}{R 3}=\frac{200 \mathrm{mV}}{0.15}=1.3 \mathrm{~A}$.

Figure 16 and 17 show a PC board layout and stuffing diagram for the 5V, 1A regulator of Figure 15. The regulator's performance is listed in Table 1.

FIGURE 15.5V, 1 Amp Step-Down Switching Regulator

Typical Applications (Continued)
TABLE I

PARAMETER	CONDITIONS	TYPICAL CHARACTERISTICS
Output Voltage	$\mathrm{V}_{I N}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	5 V
Switching Frequency	$\mathrm{V}_{I N}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	20 kHz
Short Circuit	$\mathrm{V}_{I N}=10 \mathrm{~V}$	1.3 A
Current Limit		
Load Regulation	$\mathrm{V}_{I N}=10 \mathrm{~V}$,	3 mV
Line Regulation	$\mathrm{I}_{\mathrm{O}}=0.2-1 \mathrm{~A}$	
	$\Delta \mathrm{~V}_{I N}=10-20 \mathrm{~V}$,	6 mV
Efficiency	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	
Output Ripple	$\mathrm{V}_{I N}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	80%
	$\mathrm{~V}_{I N}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	$10 \mathrm{mVp-p}$

FIGURE 16. 5V, 1 Amp Switching Regulator, Foil Side

FIGURE 17. Stuffing Diagram, Component Side.

Typical Applications
 (Continued)

THE STEP-UP SWITCHING REGULATOR

Figure 18 shows the basic circuit for a step-up switching regulator. In this circuit $\mathrm{Q1}$ is used as a switch to alternately apply VIN across inductor L1. During the time, tON, Q1 is ON and energy is drawn from VIN and stored in L1;D1 is reverse biased and I_{0} is supplied from the charge stored in C_{o}. When Q 1 opens, tOFF, voltage V1 will rise positively to the point where D1 turns

ON. The output current is now supplied through L1,D1 to the load and any charge lost from C_{O} during toN is replenished. Here also, as in the step-down regulator, the current through L 1 has a DC component plus some $\Delta I_{L} . \Delta I_{L}$ is again selected to be approximately 40% of IL. Figure 19 shows the inductor's current in relation to Q1's ON and OFF times.

FIGURE 18. Basic Step-Up Switching Reguiator

v1

FIGURE 19

Typical Applications (Continued)

From $\Delta I_{L}=\frac{V_{L T}}{L}, \Delta I_{L}^{+} \simeq \frac{V_{I N t O N}}{L 1}$
and $\Delta I_{L}^{-} \simeq \frac{\left(V_{0}-V_{I N}\right) \text { tOFF }}{L 1}$

Since $\Delta I_{L}{ }^{+}=\Delta I_{L}{ }^{-}$, VINtON $=V_{\text {OtOF }}-$ VINtOFF, and neglecting $\mathrm{V}_{\text {SAT }}$ and $\mathrm{V}_{\mathrm{D} 1}$
$v_{0} \simeq v_{\text {IN }}\left(1+\frac{\mathrm{t}_{\mathrm{ON}}}{\text { tOFF }}\right)$

The above equation shows the relationship between $V_{I N}, V_{0}$ and duty cycle.

In calculating input current IIN(DC), which equals the inductor's DC current, assume first 100\% efficiency:
$P_{I N}=I_{I N}(D C) V_{I N}$

POUT $=I_{O} V_{O}=I_{O} V_{I N}\left(1+\frac{\text { tON }}{\text { tOFF }}\right)$
for $\eta=100 \%$, POUT $=$ PIN
Io $V_{I N}\left(1+\frac{\text { tON }}{\text { tOFF }}\right)=\operatorname{IIN(DC)} V_{I N}$
$\operatorname{IIN(DC)}=I_{0}\left(1+\frac{\text { tON }}{\text { tOFF }}\right)$

This equation shows that the input, or inductor, current is larger than the output current by the factor ($1+\mathrm{tON} /$ tOFF). Since this factor is the same as the relation between V_{O} and $\mathrm{V}_{\text {IN }}$, IIN(DC) can also be expressed as:
$\operatorname{IIN(DC)}=I_{0}\left(\frac{V_{0}}{V_{I N}}\right)$

So far it is assumed $\eta=100 \%$, where the actual efficiency or η MAX will be somewhat less due to the saturation voltage of Q1 and forward on voltage of D1. The internal power loss due to these voltages is the average I_{L} current flowing, or $I_{\mathbb{N}}$, through either $V_{S A T}$ or $V_{D 1}$. For $V_{S A T}=V_{D 1}=1 V$ this power loss becomes IIN(DC) (1V). η MAX is then:
$\eta_{\text {MAX }}=\frac{P_{0}}{P_{I N}}=\frac{V_{0} I_{0}}{V_{0} I_{0}+I_{I N}(1 V)}=\frac{V_{0} I_{0}}{V_{0} I_{0}+I_{0}\left(1+\frac{\text { tON }}{t_{O F F}}\right)}$

From $V_{O}=V_{I N} \cdot\left(1+\frac{\text { toN }}{\text { tOFF }}\right)$,
$\eta_{\max }=\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{V}_{\mathrm{IN}}+1}$

This equation assumes only DC losses, however 7 MAX is further decreased because of the switching time of Q1 and D1.

In calculating the output capacitor C_{o} it can be seen that C_{0} supplies I_{0} during toN. The voltage change on C_{o} during this time will be some $\Delta \mathrm{V}_{\mathrm{C}}=\Delta \mathrm{V}_{\mathrm{o}}$ or the output ripple of the regulator. Calculation of C_{O} is:
$\Delta \mathrm{V}_{\mathrm{O}}=\frac{\mathrm{I}_{\mathrm{o}} \mathrm{tON}}{\mathrm{C}_{\mathrm{O}}}$ or $\mathrm{C}_{\mathrm{O}}=\frac{\mathrm{I}_{\mathrm{ot}} \mathrm{ON}}{\Delta \mathrm{V}_{\mathrm{O}}}$
From $V_{O}=V_{\text {IN }}\left(\frac{T}{\text { tOFF }}\right) ;$ tOFF $=\frac{V_{\text {IN }}}{V_{0}} T$
where $T=$ tON + tOFF $=\frac{1}{f}$
toN $=T-\frac{V_{\text {IN }}}{V_{0}} T=T\left(\frac{V_{0}-V_{I N}}{V_{0}}\right)$ therefore:
$C_{0}=\frac{I_{0} T\left(\frac{V_{0}-V_{I N}}{V_{0}}\right)}{\Delta V_{0}}=\frac{I_{0}\left(V_{0}-V_{I N}\right)}{f \Delta V_{0} V_{0}}$
where: C_{O} is in farads, f is the switching frequency, ΔV_{0} is the p-p output ripple

Calculation of inductor $L 1$ is as follows:
$\mathrm{L} 1=\frac{\mathrm{V}_{\text {INtON }}}{\Delta \mathrm{I}_{\mathrm{L}}{ }^{+}}$, since during toN,
$V_{I N}$ is applied across L1
$\Delta I_{\text {Lp.p }}=0.4 I_{\mathrm{L}}=0.41_{\mathrm{IN}}=0.41_{\mathrm{O}}\left(\frac{V_{\mathrm{O}}}{V_{I N}}\right)$, therefore:
$L_{1}=\frac{V_{\text {INtON }}}{0.41_{0}\left(\frac{V_{0}}{V_{\text {IN }}}\right)}$ and since toN $=\frac{T\left(V_{O}-V_{\text {IN }}\right)}{V_{0}}$
$L 1=\frac{2.5 V_{I N}{ }^{2}\left(V_{0}-V_{i N}\right)}{f_{0} V_{0}{ }^{2}}$
where: L 1 is in henrys, f is the switching frequency in Hz

Typical Applications (Continued)

To apply the above theory, a complete step-up switching regulator is shown in Figure 20. Since $\mathrm{V}_{I N}$ is 5 V , $\mathrm{V}_{\text {REF }}$ is tied to $\mathrm{V}_{\text {IN }}$. The input voltage is divided by 2 to bias the error amplifier's inverting input. The output voltage is:

$$
V_{\text {OUT }}=\left(1+\frac{R 2}{R 1}\right) \cdot V_{I N V}=2.5 \cdot\left(1+\frac{R 2}{R 1}\right)
$$

The network D1, C1 forms a slow start circuit.
This holds the output of the error amplifier initially low thus reducing the duty-cycle to a minimum. Without the slow start circuit the inductor may saturate at turn-on because it has to supply high peak currents to charge the output capacitor from OV. It should
also be noted that this circuit has no supply rejection. By adding a reference voltage at the non-inverting input to the error amplifier, see Figure 21, the input voltage variations are rejected.

The LM3524 can also be used in inductorless switching regulators. Figure 22 shows a polarity inverter which if connected to Figure 20 provides a -15 V unregulated output.

MOTOR SPEED CONTROL

Figure 23 shows a regulating series DC motor speed control circuit using the LM3524 for the control and drive for the motor and the LM2907 as a speed sensor for the feedback network.

L1 $=>25$ turns No. 24 wire on Ferroxcube No. K300502 Torroid core.
FIGURE 20. 15V, 0.5A Step-Up Switching Regulator

FIGURE 21

FIGURE 22

LM2930 3-Terminal Positive Regulator

General Description

The LM2930 3-terminal positive voltage regulator features an ability to source 150 mA of output current with an input-output differential of 0.6 V or less. Efficient use of low input voltages obtained, for example, from an automotive battery during cold crank conditions, allows 5 V circuitry to be properly powered with supply voltages as low as 5.6 V . Familiar regulator features such as current limit and thermal overload protection are also provided.
Designed primarily for automotive applications, the LM2930 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as a load dump (40V) when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both internal circuits and the load. The LM2930 cannot be harmed by temporary mirror-image insertion.
Fixed outputs of 5 V and 8 V are available in the plastic TO-202 power package.

Schematic and Connection Diagrams

Absolute Maximum Ratings

Input Voltage

Operating Range	26 V
Overvoltage Protection	40 V
Reverse Voltage (100 ms)	-12 V
Reverse Voltage (DC)	-6 V
nternal Power Dissipation (Note 1)	Internally Limited
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$230^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

LM2930P-5.0TB $\left(V_{I N}=14 V, I_{O}=150 \mathrm{~mA}, T_{j}=25^{\circ} \mathrm{C}, \mathrm{C} 2=10 \mu \mathrm{~F}\right.$, unless otherwise specified)

Parameter	Conditions	Min	Typ	Max	Units
Output Voltage	$\begin{aligned} & 6 V \leqslant V_{I N} \leqslant 26 V, 5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 150 \mathrm{~mA},-40^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C} \\ & 9 V \leqslant V_{I N} \leqslant 16 V \quad I_{O}=5 \mathrm{~mA} \\ & 6 V \leqslant V_{I N} \leqslant 26 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	4.5	5	5.5	V
Line Regulation			7	25	mV
			30	80	mV
Load Regulation	$5 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 150 \mathrm{~mA}$		14	50	mV
Output Impedance	$100 \mathrm{~mA}_{\text {DC }}$ \& $10 \mathrm{~mA} \mathrm{rms} 100 \mathrm{~Hz}-,10 \mathrm{kHz}$		200		$\mathrm{m} \Omega$
Quiescent Current	$\mathrm{I}_{0}=10 \mathrm{~mA}$		4	7	mA
	$\mathrm{I}_{0}=150 \mathrm{~mA}$		30	40	mA
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$		140		$\mu \mathrm{V} \mathrm{rms}$
Long Term Stability			20		$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$		56	,	- dB
Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}$		0.3	0.6	V
Output Voltage Under					
Transient Conditions	$-12 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		-0.3	5.5	V

Electrical Characteristics (Note 2)

LM2930P-8.0TB $\mathrm{I}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C} 2=10 \mu \mathrm{~F}$, unless otherwise specified)

Parameter	Conditions	Min	Typ	Max	Units
Output Voltage	$\begin{aligned} & 9.4 \mathrm{~V} \leqslant V_{I N} \leqslant 26 \mathrm{~V}, 5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 150 \mathrm{~mA},-40^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C} \\ & 9.4 \mathrm{~V} \leqslant \mathrm{~V}_{I N} \leqslant 16 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \\ & 9.4 \mathrm{~V} \leqslant \mathrm{~V}_{I N} \leqslant 26 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	7.2	8	8.8	V
Line Regulation			12	50	$m V$
			50	100	mV
Load Regulation	$5 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 150 \mathrm{~mA}$		25	50	mV
Output Impedance	$100 \mathrm{~mA}_{\text {DC }}$ \& $10 \mathrm{~mA} \mathrm{rms}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$		300		$\mathrm{m} \Omega$
Quiescent Current	$\mathrm{I}_{0}=10 \mathrm{~mA}$		4	7	mA
	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}$		30	40	mA
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$		170		$\mu \mathrm{Vrms}$
Long Term Stability			30		$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$		52		dB
Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}$		0.3	0.6	V
Output Voltage Under					
Transient Conditions	$-12 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		-0.3	8.8	V

Note 1: Thermal resistance without a heat sink for junction to case temperature is $12^{\circ} \mathrm{C} / \mathrm{W}$ and for case to ambient temperature is $70^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: All characteristics are measured with a capacitor across the input of $0.1 \mu \mathrm{~F}$ and a capacitor across the output of $10 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($\mathbf{t}_{\mathbf{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Typical Performance Characteristics

Low Voltage Behavior

Line Transient Response

Dropout Voltage

High Voltage Behavior

Load Transient Response

Typical Performance Characteristics (Continued)

Peak Output Current

Quiescent Current

Ripple Rejection

Quiescent Current

Quiescent Current

Ripple Rejection

Typical Performance Characteristics (Continued)

Typical Application

* Required if regulator is located far from power supply filter
** C2 must be at least $10 \mu \mathrm{~F}$ to maintain stability. May be increased without bound. Locate as close as possible to regulator.

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.

Input Voltage: The DC voltage applied to the input terminals with respect to ground.

Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.

Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.

Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.

Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.

Temperature Stability of $\mathbf{V}_{\mathbf{0}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

Maximum Power Dissipation

National

LM78XX Series Voltage Regulators

Voltage Regulators

General Description

The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM78XX series is available in an aluminum TO-3 packàge which will allow over 1.0A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expended to make the LM78XX series of regulators easy to use and minimize the number
of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For applications requiring other voltages, see LM117 data sheet.

Features

- Output current in excess of 1A-
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
a Available in the aluminum TO-3 package

Voltage Range

LM7805C	5 V
LM7812C	12 V
LM7815C	15 V

Schematic and Connection Diagrams

Metal Can Package TO-3 (K) Aluminum

Order Numbers:
LM7805CK
LM7812CK
LM7815CK
See NS Package KC02A

Plastic Package TO-220 (T)

Order Numbers:
LM7805CT
LM7812CT
LM7815CT
See NS Package T03B

Absolute Maximum Ratings	
Input Voltage (VO $=5 \mathrm{~V}, 12 \mathrm{~V}$ and 15V)	35 V
Internal Power Dissipation (Note 1)	Internally Limited
Operating Temperature Range (TA)	
Maximum Junction Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
(K Package)	
(T Package)	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
TO-3 Package K	$300^{\circ} \mathrm{C}$
TO-220 Package T	$230^{\circ} \mathrm{C}$

Electrical Characteristics LM78XXC (Note 2) $0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant 125^{\circ} \mathrm{C}$ unless otherwise noted.

OUTPUT	UT VOLTAGE				5 V		12 V		15 V	UNITS
INPUT VOLTAGE (unless otherwise noted)					10V		19V		23 V	
PARAMETER		CONDITIONS		MIN	TYP MAX	MIN	TYP MAX	MIN	TYP MAX	
v_{0}	Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1 \mathrm{~A}$		4.8	$5 \quad 5.2$	11.5	$12 \quad 12.5$	14.4	$15 \quad 15.6$	v
		$\begin{aligned} & P_{D} \leqslant 15 \mathrm{~W}, 5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A} \\ & \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {MAX }} \end{aligned}$		$\begin{aligned} & 4.75 \\ & (7 \leqslant 1 \end{aligned}$	$\left.v_{\mathrm{IN}} \leqslant 20\right)$	$\begin{aligned} & 11.4 \\ & (14.5 \end{aligned}$	$\begin{array}{r} 12.6 \\ \left.v_{I N} \leqslant 27\right) \end{array}$	$\begin{aligned} & 14.25 \\ & (17.5 \end{aligned}$	$\begin{array}{r} 15.75 \\ \left.v_{\mathrm{IN}} \leqslant 30\right) \end{array}$	v
$\Delta \mathrm{V}_{0}$	Line Regulation	$\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{1 \mathrm{~N}} \end{aligned}$	$(7 \leqslant$	$\begin{gathered} 3 \\ \left.v_{I N} \leqslant 25\right) \end{gathered}$	(14.5	$\begin{array}{lr} 4 & 120 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leqslant 30\right) \end{array}$	(17.5	$\begin{gathered} 4 \\ \left.\leqslant V_{I N} \leqslant 30\right) \end{gathered}$	$\overline{m v}$
			$\begin{aligned} & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$		$\left.V_{I N} \leqslant 20\right)$		$\begin{array}{r} 120 \\ \left.v_{\text {IN }} \leqslant 27\right) \end{array}$	($18.5 \leqslant$	$\left.\leqslant V_{\text {iN }} \leqslant 30\right)$	$\overline{m v}$
		$10 \leqslant 1 \mathrm{~A}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \\ & \hline \end{aligned}$	$17.3 \leqslant$	$\begin{array}{r} 50 \\ \leqslant \end{array}$	(14.6	$\begin{array}{r} 120 \\ \left.\leqslant v_{I N} \leqslant 27\right) \end{array}$	(17.7 \leqslant	$\leqslant \begin{array}{r} 150 \\ \leqslant \end{array}$	mV v
			$\begin{aligned} & 0^{\circ} \leqslant T \mathrm{~T} \leqslant+125^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\text {IN }} \end{aligned}$		$\leqslant 1 N \leqslant 12)$		$\begin{array}{r} 60 \\ \left.v_{\text {IN }} \leqslant 22\right) \end{array}$		$\begin{array}{r} 75 \\ \left.\leqslant V_{I N} \leqslant 26\right) \end{array}$	mb V
$\Delta \mathrm{V}_{0}$	Load Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 5 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA} \end{aligned}$		$\begin{array}{ll} \hline 10 & 50 \\ & 25 \end{array}$		$\begin{array}{ll} \hline 12 & 120 \\ & 60 \end{array}$		$\begin{array}{ll} \hline 12 & 150 \\ & 75 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mv} \end{aligned}$
		$5 \mathrm{~mA} \leqslant 10 \leqslant 1 \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C}$			50		120		150	mV
10	Quiescent Current	$10 \leqslant 1 \mathrm{~A}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} 8 \\ 8.5 \\ \hline \end{gathered}$		$\begin{gathered} 8 \\ 8.5 \\ \hline \end{gathered}$		$\begin{gathered} 8 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Δl_{Q}	Quiescent Current Change	$5 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1 \mathrm{~A}$			0.5		0.5		0.5	mA
		$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A} \\ & V_{\text {MIN }} \leqslant V_{I N} \leqslant V_{\text {MAX }} \end{aligned}$			$\left.\leqslant V_{\mathbb{N}} \leqslant 20\right)$	(14.8	$\leqslant \begin{array}{r} 1.0 \\ \left.\mathrm{v}_{\mathrm{IN}} \leqslant 27\right) \\ \hline \end{array}$	(17.9	$\left.\leqslant \mathrm{V}_{\mathrm{IN}} \leqslant 30\right)$	mA V
		$\begin{aligned} & \mathrm{I}_{0} \leqslant 500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant V_{\text {MAX }} \end{aligned}$			$\left.v_{I N} \leqslant 25\right)$	(14.5	$\left.\leqslant V_{I N} \leqslant 30\right)$	$17.5 \leqslant$	$\left.\leqslant V_{I N} \leqslant 30\right)$	mA V
V_{N}	Output Noise Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$			40		75		90	$\mu \mathrm{V}$
$\frac{\Delta v_{\text {IN }}}{\Delta V_{\text {OUT }}}$	Ripple Rejection	$\begin{aligned} & f=120 \mathrm{~Hz}\left\{\begin{array}{l} 10 \leqslant 1 \mathrm{~A}, \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \text { or } \\ \mathrm{l} \leqslant \leqslant 500 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C} \\ V_{\text {MIN }} \leqslant V_{I N} \leqslant V_{\text {MAX }} \end{array}\right. \end{aligned}$		$\begin{aligned} & \hline 62 \\ & 62 \\ & \\ & \hline 8 \leqslant \\ & \hline \end{aligned}$	$\begin{gathered} 80 \\ \left.V_{I N} \leqslant 18\right) \end{gathered}$	$\begin{aligned} & \hline 55 \\ & 55 \\ & \\ & \left(15^{\circ} \leqslant\right. \\ & \hline \end{aligned}$	72 $\left.V_{I N} \leqslant 25\right)$	$\begin{gathered} 54 \\ 54 \\ \\ 18.5 \leqslant \\ \hline \end{gathered}$	70 $\left.V_{I N} \leqslant 28.5\right)$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} \\ \\ \mathrm{~V} \\ \hline \end{gathered}$
R_{O}	Dropout Voltage Output Resistance Short-Circuit Current Peak Output Current Average TC of VOUT	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \text { IOUT }=1 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C}, 1 \mathrm{O}=5 \mathrm{~mA} \end{aligned}$			$\begin{gathered} 2.0 \\ 8 \\ 2.1 \\ 2.4 \\ 0.6 \end{gathered}$		$\begin{aligned} & 2.0 \\ & 18 \\ & 1.5 \\ & 2.4 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{gathered} 2.0 \\ 19 \\ 1.2 \\ 2.4 \\ 1.8 \end{gathered}$	V $\mathrm{m} \Omega$ A A $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$V_{\text {IN }}$	Input Voltage Required to Maintain Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C} . .1 \mathrm{O} \leqslant 1 \mathrm{~A}$		7.3		14.6		17.7		V

Note 1: Thermal resistance of the TO-3 package (K, KC) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $35^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient. Thermal resistance of the TO-220 package (T) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $50^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.
Note 2: All characteristics are measured with capacitor across the input of $0.22 \mu \mathrm{~F}$, and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($\mathrm{t} \mathbf{\mathrm { W }} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Typical Performance Characteristics

Ripple Rejection

Voltage Regulators

General Description

The LM78LXX series of three terminal positive regulators is available with several fixed output voltages making them useful in a wide range of applications. When used as a zener diode/resistor combination replacement, the LM78LXX usually results in an effective output impedance improvement of two orders of magnitude, and lower quiescent current. These regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow the LM78LXX to be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM78LXX is available in the metal three lead TO-39 (H) and the plastic TO-92 (Z). With adequate heat sinking the regulator can deliver 100 mA output current. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

For applications requiring other voltages, see LM117 data sheet.

Features

- Output voltage tolerances of $\pm 5 \%$ (LM78LXXAC) and $\pm 10 \%$ (LM78LXXC) over the temperature range
- Output current of 100 mA
- Internal thermal overload protection
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-92 and metal TO-39 low profile packages

Voltage Range

LM78L05	5 V
LM78L12.	12 V
LM78L15	15 V

Connection Diagrams

Metal Can Package

BOTTOM VIEW

Order Numbers:

LM78L05ACH	LM78L05CH
LM78L12ACH	LM78L12CH
LM78L15ACH	LM78L12CH
See NS Package H03A	

Plastic. Package

Order Numbers:

LM78L15ACZ LM78L15CZ
See NS Package 203A

Absolute Maximum Ratings

Input Voltage

$$
\begin{aligned}
& V_{O}=5 \mathrm{~V} \\
& V_{O}=12 \mathrm{~V} \text { and } 15 \mathrm{~V}
\end{aligned}
$$

30 V

Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
35 V

Storage Temperature Range
Metal Can (H Package)
Molded TO-92 (Z Package)
Lead Temperature (Soldering, 10 seconds)

Internally Limited $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

LM78LXXAC Electrical Characteristics (Note 2)

$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$ (unless noted)

LM78LXXAC OUTPUT VOLTAGE			5 V	12V	15V	UNITS
INPUT VOLTAGE (unless otherwise noted)			10 V	19V	23 V	
PARAMETER		CONDITIONS	MIIN TYP MAX	MIN TYP MAX	MIN TYP MAX	
V_{0}	Output Voltage (Note 4)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{array}{llll}4.8 & 5 & 5.2\end{array}$	$\begin{array}{lll}11.5 & 12 & 12.5\end{array}$	14.4	V
		$\begin{aligned} & 1 \mathrm{~mA} \leq 10 \leq 70 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq \mathrm{IO}_{\mathrm{O}} \leq 40 \mathrm{~mA} \text { and } \\ & \mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	4.75 5.25 4.75 5.25 $\left(7 \leq V_{\text {IN }} \leq 20\right)$	11.4 12.6 11.4 12.6 $\left(14.5 \leq V_{I N} \leq 27\right)$	14.25 15.75 14.25 15.75 $\left(17.5 \leq \mathrm{V}_{\text {IN }} \leq 30\right)$	V V V
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\begin{gathered} 10 \\ \left(8 \leq V_{\text {IN }} \leq 20\right) \end{gathered}$	$20 \quad 110$ $\left(16 \leq V_{\text {IN }} \leq 27\right)$	$\begin{gathered} 25 \\ \left(20 \leq \mathrm{V}_{\text {IN }} \leq 30\right) \end{gathered}$	$\begin{array}{r} \mathrm{mV} \\ \cdot \quad \mathrm{~V} \\ \hline \end{array}$
			$\begin{gathered} 18 \\ \left(7 \leq V_{\text {IN }} \leq 20\right) \end{gathered}$	$\begin{gathered} 30 \\ \left(14.5 \leq \mathrm{V}_{\text {IN }} \leq 27\right) \end{gathered}$	$\begin{gathered} 37 \\ \left(17.5 \leq V_{\text {IN }} \leq 30\right) \end{gathered}$	$m \mathrm{~V}$
$\Delta \mathrm{V}_{0}$	Load Regulation	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq \mathrm{O} \leq 40 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq \mathrm{I} \leq 100 \mathrm{~mA} \end{aligned}$	$\begin{array}{ll} 5 & 30 \\ 20 & 60 \end{array}$	$\begin{array}{ll} 10 & 50 \\ 30 & 100 . \end{array}$	\cdot 12 75 $:$ 35 150	$\begin{aligned} & m V \\ & m V \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Long Term Stability		12	24	30	$\mathrm{mV} / 1000 \mathrm{hrs}$
10	Quiescent Current	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C} . \\ & T_{J}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{ll} 3 & 5 \\ & 4.7 \end{array}$	$3 \quad \begin{array}{ll}3 \\ & 4.7\end{array}$	$\begin{array}{ll} 3.1 & 5 \\ & 4.7 \\ \hline \end{array}$	mA
Δl_{0}	Quiescent Current	$1 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}$	0.1	0.1	0.1	mA
	Change	$\mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$	$\left(8 \leq v_{\text {IN }} \leq 20\right)$	$\left(16 \leq V_{I N} \leq 27\right)$	$\left(20 \leq V_{\text {IN }} \leq 30\right)$	$\begin{array}{r} \mathrm{mA} \\ \mathrm{~V} \end{array}$
V_{n}	Output Noise Voltage	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C},(\text { Note } 3) \\ & f=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$	40	80	90	. $\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta \mathrm{V}_{\mathrm{OUT}}}$	Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	$\begin{aligned} & 47 \quad 62 \\ & \left(8 \leq V_{\text {IN }} \leq 16\right) \end{aligned}$	$\begin{aligned} & 40 \quad 54 \\ & \left(15 \leq V_{\text {IN }} \leq 25\right) \end{aligned}$	$\left\lvert\, \begin{aligned} & 37 \\ & \left.18.5 \leq V_{\text {IN }} \leq 28.5\right) \end{aligned}\right.$	$\begin{gathered} d B \\ V \end{gathered}$
	Input Voltage Required to Maintain Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	7	14.5	17.5 .	V

Note 1: Thermal resistance of the Metal Can Package (H) without a heat sink is $15^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $140^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to a PC board.
Note 2: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of test.
Note 3: Recommended minimum load capacitance of $0.01 \mu \mathrm{~F}$ to limit high frequency noise bandwidth.
Note 4: The temperature coefficient of $\mathrm{V}_{\mathrm{OUT}}$ is typically within $\pm 0.01 \% \mathrm{~V}_{\mathrm{O}}{ }^{\circ} \mathrm{C}$.

Absolute Maximum Ratings

Input Voltage $V_{O}=5 \mathrm{~V}$	30 V
$\mathrm{~V}_{\mathrm{O}}=12 \mathrm{~V}$ and 15 V	35 V
Internal Power Dissipation (Note 1)	Internally Limited
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature Range	
Metal Can (H Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Molded TO-92	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

LM78LXXC Electrical Characteristics

(Note 2)
$\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$ (unless noted)

LM78LXXC OUTPUT VOLTAGE			5 V	12V	15V	UNITS
INPUT VOLTAGE (unless otherwise noted)			10 V	19V	23 V	
PARAMETER		CONDITIONS	MIN TYP MAX	MIN TYP MAX	MIN TYP MAX	
V_{O}	Output Voltage (Note 4)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{array}{lll}4.6 & 5 & 5.4\end{array}$	$\begin{array}{lll}11.1 & 12 & 12.9\end{array}$	$\begin{array}{lll}13.8 & 15 & 16.2\end{array}$	V
		$\begin{aligned} & 1 \mathrm{~mA} \leq 10 \leq 70 \mathrm{~mA} \text { or } \\ & 1 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA} \text { and } \Delta V_{\mathrm{IN}} \end{aligned}$	$\begin{aligned} & 4.5 \\ & \left(7 \leq V_{\text {IN }} \leq 20\right) \end{aligned}$	$\begin{array}{cr} 10.8 & 13.2 \\ \left(14.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 27\right) \end{array}$	$\begin{array}{lr} 13.5 & 16.5 \\ \left(18 \leq V_{\text {IN }} \leq 30\right) \end{array}$	V
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{gathered} 10 \\ \left(8 \leq \mathrm{v}_{\mathrm{IN}} \leq 20\right) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ \left(16 \leq V_{\text {IN }} \leq 27\right) \end{gathered}$	$\begin{array}{r} 25 \\ \left(20 \leq \mathrm{V}_{\text {IN }} \leq 30\right) \end{array}$	$\begin{array}{r} \mathrm{mV} \\ \mathrm{~V} \end{array}$
			$\begin{gathered} 18 \\ \left(7 \leq V_{\text {IN }} \leq 20\right) \end{gathered}$	$\begin{array}{cc} 30 & 250 \\ \left(14.5 \leq V_{\text {IN }} \leq 27\right) \end{array}$	$\begin{gathered} 30 \quad 300 \\ \left(18 \leq \mathrm{VIN}_{\text {IN }} \leq 30\right) \end{gathered}$	mV V
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA} \\ & \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq 1 \mathrm{O} \leq 100 \mathrm{~mA} \end{aligned}$	$\begin{array}{ll} 5 & 30 \\ 20 & 60 \end{array}$	10 50 30 100	$\begin{array}{ll} 12 & 75 \\ , & 35 \\ 150 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Long Term Stability		12	24	30	$\mathrm{mV} / 1000 \mathrm{hrs}$
IQ	Quiescent Current	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{ll} \hline 3 & 6 \\ & 5.5 \end{array}$	3 6.5 6	$\begin{array}{ll} \hline 3.1 & 6.5 \\ & 6 \end{array}$	mA
$\Delta^{\prime} \mathrm{Q}$	Quiescent Current Change	$T_{J}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}$	0.2	0.2	0.2	mA
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\left(8 \leq V_{\text {IN }} \leq 20\right)$	$\left(16 \leq V_{I N} \leq 27\right)$	$\begin{array}{r} 1.5 \\ \left(20 \leq \mathrm{V}_{\text {IN }} \leq 30\right) \end{array}$	$\begin{array}{r} \mathrm{mA} \\ \mathrm{~V} \end{array}$
\dot{v}_{n}	Output Noise Voltage	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C},(\text { Note } 3) \\ & \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$	40	80	90	$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}}$	Ripple Rejection	$f=125 \mathrm{~Hz}$	$\begin{aligned} & 40 \quad 60 \\ & \left(8 \leq V_{\text {IN }} \leq 18\right) \end{aligned}$	$\begin{aligned} & 36 \\ & \left(15 \leq V_{\text {IN }} \leq 25\right) \end{aligned}$	$\begin{aligned} & 33 \\ & \left(18.5 \leq V_{\text {IN }} \leq 28.5\right) \end{aligned}$	$\begin{array}{r} \mathrm{dB} \\ \mathrm{~V} \end{array}$
	Input Voltage Required to Maintain Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	- 7	14.5	18	V

Note 1: Thermal resistance of the Metal Can Package (H) without a heat $\sin \mathrm{k}$ is $15^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $140^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to a PC board;
Note 2: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of test.
Note 3: Recommended minimum load capacitance of $0.01 \mu \mathrm{~F}$ to limit high frequency noise bandwidth.
Note 4: The temperature coefficient of $\mathrm{V}_{\mathrm{OUT}}$ is typically within $\pm 0.01 \% \mathrm{~V}_{\mathrm{O}}{ }^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Quiescent Current

Equivalent Circuit

Typical Applications

*Required if the regulator is located far from the power supply filter.
*-See Note 3 in the electrical characteristics tuble.

$V_{\text {out }}=5 \mathrm{~V}+\left(5 \mathrm{~V} / \mathrm{R} 1+\mathrm{I}_{\mathrm{o}}\right)$ R2

$I_{\text {out }}=\left(V_{23} / R 1\right)+I_{0}$
$د I_{0}=1.5 \mathrm{~mA}$ over line and load changes
Current Regulator

5V, 500 mA Regulator with Short Circuit Protection

*Solid tantalum.
$\pm 15 \mathrm{~V}, 100 \mathrm{~mA}$ Dual Power Supply

National Semiconductor
 LM78MXX Series 3-Terminal Positive Regulators

 General Description

 General Description}

The LM78MXX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM78MXX series is available in the plastic TO-202 package. This package allows these regulators to deliver over 0.5 A if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expended to make the LM78MXX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For applications requiring other voltages, see LM117 data sheet.

Features

- Output current in excess of 0.5 A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-202 package
- Special circuitry allows start-up even if output is pulled to negative voltage (\pm supplies)

Schematic and Connection Diagrams

Plastic Package

FRONT VIEW
Order Numbers:
LM78M05CP
LM78M12CP
LM78M15CP
See NS Package P03A
For Tab Bend TO-202 Order Numbers:
LM78M05CP TB
LM78M12CP TB
LM78M15CP TB
See NS Package PO3E

Absolute Maximum Ratings

Input Voltage
($\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V)
Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

35 V
Internally Limited $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+230^{\circ} \mathrm{C}$

Electrical Characteristics.

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 1 \mathrm{O}=500 \mathrm{~mA}$, unless otherwise noted.

OUTPUT VOLTAGE			5 V	12 V	15 V	UNITS
INPUT VOLTAGE (unless otherwise noted)			10 V	19V	23 V	
PARAMETER		CONDITIONS	MIN TYP MAX	MIN TYP MAX	MIN TYP MAX	
V_{0}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	4.8 5 5.2	$\begin{array}{lll}11.5 & 12 & 12.5\end{array}$	$\begin{array}{llll}14.4 & 15 & 15.6\end{array}$	$\cdots \mathrm{V}$
		$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \leq 7.5 \mathrm{~W}, 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA} \\ & \text { and } \mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$	$\begin{array}{lr} 4.75 & 5.25 \\ \left(7.5 \leq V_{\text {IN }} \leq 20\right) \end{array}$	$\begin{array}{\|cr\|} \hline 11.4 & 12.6 \\ \left(14.8 \leq V_{\text {IN }} \leq 27\right) \\ \hline \end{array}$	$\begin{array}{lr} 14.25 & 15.75 \\ \left(18 \leq \vee_{\text {IN }} \leq 30\right) \end{array}$	V
ΔV_{O}	Line Regulation	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \end{aligned}$	50 $\left(7.2 \leq \vee_{1 N} \leq 25\right)$	$\begin{array}{\|rr\|} \hline i & 120 \\ & 240 \\ \left(14.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \\ \hline \end{array}$	150 300 $\left(17.6 \leq V_{\text {IN }} \leq 30\right)$	$\begin{gathered} m V \\ m V \\ V \end{gathered}$
ΔV_{O}	Load Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq 10 \leq 500 \mathrm{~mA}$	100	$\cdots \quad 240$	300	mV
$\Delta \mathrm{V}_{\mathrm{O}}$	Long Term Stability	. .	20	48	60	$\mathrm{mV} / 1000 \mathrm{hrs}$
${ }^{1} \mathrm{Q}$	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	4.10	$\therefore 4.10$	4.10	mA
$\Delta \mathrm{I}_{\mathrm{Q}}$	Quescent Current. Change	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA} \end{aligned}$	0.5	$\because 0.5$. ${ }^{\text {. }} 0.5$	mA
		$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$	$\begin{gathered} 1 \\ \left(7.5 \leq V_{\mathrm{IN}} \leq 25\right) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \left(14.8 \leq, V_{I N} \leq 30\right) \\ \hline \end{gathered}$	1 $\left(18 \leq \vee_{\text {IN }} \leq 30\right)$	mA V
V_{n}	Output Noise Voltage	$\mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{~Hz}-100 \mathrm{kHz}$	40	75	90	$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}}$	Ripple Rejection	$f=120 \mathrm{~Hz}$	78	71	$\checkmark 69$	dB
	Input Voltage Required to Maintain Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}^{\prime}=500 \mathrm{~mA}$. 7.2	14.5	17.6	V

Note 1: Thermal resistance without a heat sink for junction to case temperature is $12^{\circ} \mathrm{C} / \mathrm{W}$ for the $\mathrm{TO}-202$ package. Thermal resistance for case to ambient temperature is $70^{\circ} \mathrm{C} / \mathrm{W}$ for the TO-202 package.

Typical Performance Characteristics

Output Voltage (Normalized to $\mathbf{1 V}$ at $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$)

Quiescent Current

LM79XX Series 3-Terminal Negative Regulators

General Description

The LM79XX series of 3 -terminal regulators is available with fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V . These devices need only one external component-a compensation capacitor at the output. The LM79XX series is packaged in the TO-220 power package and is capable of supplying 1.5 A of output current.
These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.
Low ground pin current of the LM79XX series allows output voltage to be easily boosted above the preset value with a resistor divider. The low quiescent current
drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.
For applications requiring other voltages, see LM137 data sheet.

Featùres

- Thermal, short circuit and safe area protection
- High ripple rejection
- 1.5A output current
- 4% preset output voltage

Typical Applications

	(-15)	$(+15)$
Load Regulation at $\Delta I_{L}=1 \mathrm{~A}$	40 mV	2 mV
Output Ripple, $C_{I N}=3000 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$	$100 \mu \mathrm{Vrms}$	$100 \mu \mathrm{Vrms}$
Temperature Stability	50 mV	50 mV
Output Noise $10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	$150 \mu \mathrm{Vrms}$	$150 \mu \mathrm{Vrms}$

*Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs

* "Necessary only if raw supply filter capacitors are more than 3 " from regulators lytic may be substituted. increased without limit. input shorts.

*Improves transient response and ripple rejection. Do not increase beyond $50 \mu \mathrm{~F}$.
$V_{\text {OUT }}=V_{\text {SET }}\left(\frac{R 1+R 2}{R 2}\right)$
Select R2 as follows

LM7905CT	300Ω
LM7912CT	750Ω
LM7915CT	$1 k$

Absolute Maximum Ratings

Input Voltage

$$
\begin{array}{ll}
\left(V_{0}=5 \mathrm{~V}\right) & -35 \mathrm{~V} \\
\left(\mathrm{~V}_{\mathrm{O}}=12 \mathrm{~V} \text { and } 15 \mathrm{~V}\right) & -40 \mathrm{~V}
\end{array}
$$

Input-Output Differential
$\left(\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}\right) \quad 25 \mathrm{~V}$
($\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ and 15 V) 30 V
Power Dissipation
Operating Junction Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
\text { Internally Limited } \\
0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
230^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics Conditions unless otherwise noted: $I_{\text {OUT }}=500 \mathrm{~mA}, \mathrm{C}_{I N}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}$, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$, Power Dissipation $\leq 15 \mathrm{~W}$.

PART N	BER		LM7905C	UNITS
OUTPUT	OLTAGE		5 V	
INPUT VOLTAGE (unless otherwise specified)			-10V	
PARAMETER		CONDITIONS	MIN TYP MAX	
Vo	Output Voltage	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leq \mathrm{IOUT} \leq 1 \mathrm{~A}, \\ & \mathrm{P} \leq 15 \mathrm{~W} \end{aligned}$	$\begin{aligned} & -4.8 \quad-5.0 \quad-5.2 \\ & -4.75 \\ & \quad\left(-20 \leq V_{\text {IN }} \leq-7.25\right. \end{aligned}$	V V V
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, (Note 2)	$\begin{gathered} 8 \\ \left(-25 \leq V_{\text {IN }} \leq-7\right) \\ 2 \\ \left(-12 \leq V_{\text {IN }} \leq-8\right) \end{gathered}$	$\begin{array}{r} m V \\ \mathrm{~V} V \\ \mathrm{~V} \end{array}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},(\text { Note } 2) \\ & 5 \mathrm{~mA} \leq \mathrm{IOUT} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq \mathrm{IOUT} \leq 750 \mathrm{~mA} \end{aligned}$	15 100 5 50	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
10	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	12	mA
ΔI_{O}	Quiescent Current Change	With Line With Load, $5 \mathrm{~mA} \leq 1$ OUT $\leq 1 \mathrm{~A}$	$\left(-25 \leq V_{\text {IN }} \leq-7\right)_{0.5}^{0.5}$	$\begin{array}{r} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{array}$
V_{n}	Output Noise Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{~Hz}$	125	$\mu \mathrm{V}$
	Ripple Rejection	$f=120 \mathrm{~Hz}$	$\begin{aligned} & 54 \quad 66 \\ & \left(-18 \leq V_{I N} \leq-8\right) \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~V} \end{gathered}$
.	Dropout Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 1 \mathrm{OUT}=1 \mathrm{~A}$	1.1	V
IOMAX	Peak Output Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	2.2	A
	Average Temperature Coefficient of Output Voltage	$\begin{aligned} & { }^{1} \mathrm{OUT}=5 \mathrm{~mA}, \\ & 0 \mathrm{C} \leq \mathrm{TJ}_{\mathrm{J}} \leq 100^{\circ} \mathrm{C} \end{aligned}$	0.4	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics (Continued) Conditions unless otherwise noted: $\operatorname{IOUT}=500 \mathrm{~mA}, \mathrm{C}_{1 \mathrm{~N}}=2.2 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$, Power Dissipation $=1.5 \mathrm{~W}$.

Note 1: For calculations of junction temperature rise due to power dissipation, thermal resistance junction to ambient $\left(\theta_{\mathrm{JA}}\right)$ is $50^{\circ} \mathrm{C} / \mathrm{W}$ (no heat sink) and $5^{\circ} \mathrm{C} / \mathrm{W}$ (infinite heat sink).
Note 2: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

Typical Applications (Continued)

High Stability 1 Amp Regulator

Load and line regulation $<0.01 \%$ temperature stability $\leq 0.2 \%$
\dagger Determines Zener current
$\dagger \dagger$ Solid tantalum
*Select resistors to set output voltage. $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking suggested

R1 and D1 allow the positive regulator to "start-up" when $+V_{\text {IN }}$ is delayed relative to $-V_{I N}$ and a heavy load is drawn between the outputs. Without R1 and D1, most three-terminal regulators will not start with heavy ($0.1 \mathrm{~A}-1 \mathrm{~A}$) load current flowing to the negative regulator, even though the positive output is clamped by D2.
*R2 is optional. Ground pin current from the positive regulator flowing through R1 will increase $+V_{\text {OUT }} \approx 60 \mathrm{mV}$ if $R 2$ is omitted.

Light Controllers Using Silicon Photo Cells

*Lamp brightness increases until $\eta=i_{Q}(\approx 1 \mathrm{~mA})+5 \mathrm{~V} / \mathrm{R} 1$.

+ Necessary only if raw supply filter capacitor is more than $2^{\prime \prime}$ from LM7905CT

* Lamp brightness increases until if $=5 \mathrm{~V} / \mathrm{R} 1$ (i) can be set as low as $1 \mu \mathrm{~A}$)
\dagger Necessary only if raw supply filter capacitor is more than $\mathbf{2}^{\prime \prime}$ from LM7905CT

Connection Diagrams

Schematic Diagrams

-12 V and -15 V

National Semiconductor LM79LXXAC Series 3-Terminal Negative Regulators

General Description

The LM79LXXAC series of 3 -terminal negative voltage regulators features fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V , with output current capabilities in excess of 100 mA . These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of $0.1 \mu \mathrm{~F}$, exhibits an excellent tránsient response, a maximum line regulation of $0.07 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{V}$, and a maximum load regulation of $0.01 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{mA}$.

The LMi79LXXAC series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/

Voltage Regulators

Features

- Preset output voltage error is less than $\pm 5 \%$ over load, line and temperature
- Specified at an output current of 100 mA
- Easily compensated with a small $0.1 \mu \mathrm{~F}$ output capacitor
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than $0.07 \% \mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}$
- Maximum load regulation less than $0.01 \% \mathrm{~V}_{\mathrm{OUT}} / \mathrm{mA}$
- TO-92 package
or adjustable voltages and currents. The LM79LXXAC series is available in the 3 -lead TO-92 package.

For applications requiring other voltages, see LM137 data sheet.

Connection Diagram

Typical Applications

${ }^{*}$ Required if the regulator is located far from the power supply filter. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
** Required for stability. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.

Adjustable Output Regulator

$$
\begin{aligned}
& -V_{O}=-5 V-\left(5 V / R 1+I_{Q}\right) \cdot R 2, \\
& 5 V / R 1>3 I_{Q}
\end{aligned}
$$

TO-92 Plastic Package (Z)

Order Numbers
LM79L05ACZ
LM79L12ACZ
LM79L15ACZ
See NS Package 203A

Absolute Maximum Ratings

Input Voltage

$$
V_{0}=-5 \mathrm{~V},-12 \mathrm{~V} \text { and }-15 \mathrm{~V}
$$

Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
-35 \mathrm{~V} \\
\text { Internally Limited } \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics (Note 2) $\mathrm{T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted.

Note 1: Thermal resistance, junction to ambient, of the TO-92 (Z) package is $180^{\circ} \mathrm{C} / \mathrm{W}$ when mounted with 0.40 inch leads on a PC board, and $160^{\circ} \mathrm{C} / \mathrm{W}$ when mounted with 0.25 inch leads on a PC board.
Note 2: To ensure constant junction temperature, low duty cycle pulse testing is used.

Typical Performance Characteristics

Typical Applications (Continued)
$\pm 15 \mathrm{~V}, 100 \mathrm{~mA}$ Dual Power Supply

Schematic Diagrams

-12 V and -15 V

National Semiconductor
 LM79MXX Series 3 -Terminal Negative Regulators

General Description

The LM79MXX series of 3 -terminal regulators is available with fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V . These devices need only one external component-a compensation capacitor at the output. The LM79MXX series is packaged in the TO-202 power package and TO-5 metal can and is capable of supplying 0.5 A of output current.

These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.

Low ground pin current of the LM79MXX series allows output voltage to be easily boosted above the preset value with a resistor divider. The low quiescent current
drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.

For applications requiring other voltages, see LM137 data sheet.

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 0.5 A output current
- 4\% preset oútput voltage

Typical Applications

(-15)
(+15)
Load Regulation at 0.5 A
Output Ripple, $\mathrm{C}_{\mathrm{IN}}=3000 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=0.5 \mathrm{~A}$
Temperature Stability
Output Noise $10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$
Output Noise $10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \quad 150 \mu \mathrm{Vrms} \quad 150 \mu \mathrm{Vrms}$
*Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs
**Necessary only if raw supply filter capacitors are more than 3" from regulators

Fixed Regulator

*Required if regulator is separated from filter capacitor by more than 3 ". For value given, capacitor must be solid tantalum. $25 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
\dagger Required for stability. For value given, capacitor must be solid tantalum. $25 \mu \mathrm{~F}$ aluminum electrolytic may be substituted. Values given may be increased without limit.
For output capacitance in excess of $100 \mu \mathrm{~F}$, a high current diode from input to output (1 N4001, etc.) will protect the regulator from momentary input shorts.

Dual Trimmed Supply

Absolute Maximum Ratings

Input Voltage		
$\left(\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}\right)$		
$\left(\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}\right.$ and 15 V$)$		25 V
Input/Output Differential		-35 V
(VO $=5 \mathrm{~V}$ to 8 V$)$		
(VO $=12 \mathrm{~V}$ and 15 V$)$		25 V
Power Dissipation		30 V
Operating Junction Temperature Range	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 seconds)	$230^{\circ} \mathrm{C}$	

Electrical Characteristics Conditions unless otherwise noted: $\operatorname{loUT}=350 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F}, \mathrm{COUT}^{2}=1 \mu \mathrm{~F}$, $0^{\circ} \mathrm{C} \leqslant \mathrm{T} \leqslant+125^{\circ} \mathrm{C}$

PART NUMBER		LM79M05C	LM79M12C	LM79M15C	UNITS
OUTPUT VOLTAGE		-5V	-12V	-15V	
INPUT VOLTAGE (unless otherwise specified)		- -10 V	-19V	-23V	
PARAMETER	CONDITIONS	MIN TYP MAX	MIN TYP MAX	MIN TYP MAX	
V_{O} Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{array}{lll}-4.8 & -5.0 & -5.2\end{array}$	$\begin{array}{llll}-11.5 & -12.0 & -12.5\end{array}$	$\begin{array}{llll}-14.4 & -15.0 & -15.6\end{array}$	V
	$5 \mathrm{~mA} \leqslant$ IOUT $\leqslant 350 \mathrm{~mA}$	$\begin{aligned} & -4.75 \quad-5.25 \\ & \left(-25 \leqslant V_{I N} \leqslant-7\right) \end{aligned}$	$\begin{aligned} & -11.4 \quad-12.6 \\ & \left(-27 \leqslant V_{I N} \leqslant-14.5\right) \end{aligned}$	$\begin{aligned} & -14.25 \\ & \left(-30 \leqslant V_{I N} \leqslant-17.5\right) \end{aligned}$	V
$\Delta \mathrm{V}_{\mathrm{O}}$ Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}$, (Note 2)	$\begin{array}{cr} 8 & 50 \\ \left(-25 \leqslant V_{I N} \leqslant-7\right) \\ 2 & 30 \\ \left(-18 \leqslant V_{I N} \leqslant-8\right) \end{array}$	$\begin{array}{rr} 5 & 80 \\ \left(-30 \leqslant V_{\text {IN }} \leqslant\right. & -14.5) \\ 3 & 30 \\ \left(-25 \leqslant V_{\text {IN }} \leqslant-15\right) \\ \hline \end{array}$	$\begin{array}{rr} 5 & 80 \\ \left(-\leqslant V_{I N} \leqslant\right. & -17.5) \\ 3 & 50 \\ \left(-28 \leqslant V_{I N} \leqslant-18\right) \end{array}$	$\begin{array}{r} m V \\ \mathrm{~V} V \\ \mathrm{~V} \end{array}$
ΔV_{O} - Load Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C},(\text { Note } 2) \\ & 5 \mathrm{~mA} \leqslant \mathrm{IOUT} \leqslant 0.5 \mathrm{~A} \end{aligned}$	$30 \quad 100$	$30 \quad 240$	$30 \quad 240$	mV
IQ Quiescent Current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	12	1.5 3	1.53	mA
$\Delta I_{Q} \quad \begin{aligned} & \text { Quiescent Current } \\ & \\ & \text { Change }\end{aligned}$	With Line With Load, $5 \mathrm{~mA} \leqslant 1 \mathrm{OUT} \leqslant 350 \mathrm{~mA}$	$\begin{array}{r} 0.4 \\ \left(-25 \leqslant V_{I N} \leqslant-8\right) \\ 0.4 \end{array}$	$\begin{array}{r} 0.4 \\ \left(-30 \leqslant V_{I N} \leqslant-14.5\right) \\ 0.4 \end{array}$	$\begin{array}{r} 0.4 \\ \left(-30 \leqslant V_{I N} \leqslant-27\right) \\ 0.4 \end{array}$	$\begin{array}{r} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{array}$
V_{n}. . Output Noise Voltage	$\mathrm{TA}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{~Hz}$	750	400	400	$\mu \mathrm{V}$
Ripple Rejection '	$\mathrm{f}=120 \mathrm{~Hz}$	$\begin{aligned} & 54 \quad 66 \\ & \left(-18 \leqslant V_{I N} \leqslant-8\right) \end{aligned}$	$\begin{aligned} & 54 \quad 70 \\ & \left(-25 \leqslant V_{1 N} \leqslant-15\right) \end{aligned}$	$\left\{\begin{array}{c} 54 \quad 70 \\ \left(-30 \leqslant V_{I N} \leqslant-17.5\right) \end{array}\right.$	dB
Dropout Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}$ OUT $=0.5 \mathrm{~A}$	1.1	1.1	1.1	V
Iomax Peak Output Current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	800	800	800	A
Average Temperature Coefficient of Output Voltage	$\begin{aligned} & \text { lOUT }=5 \mathrm{~mA}, \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant 100^{\circ} \mathrm{C} \end{aligned}$	0.4	-0.8	-1.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Note 1: For calculations of junction temperature rise due to power dissipation, thermal resistance junction to ambient ($\theta \mathrm{JA}$) is $70^{\circ} \mathrm{C} / \mathrm{W}$ (no heat sink) and $12^{\circ} \mathrm{C} / \mathrm{W}$ (infinite heat sink).
Note 2: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

Connection Diagrams

bottom view

Metal Can Package TO-39 (H) Order Number:
L.M79M05CH LM79M12CH LM79M15CH
See NS Package H03A

FRONT VIEW

Power Package TO-202 (P)
Order Number:
LM79M05CP
LM79M12CP
LM79M15CP
See NS Package P03A
For Tab Bend TO-202
Order Number:
LM79M05CP TB LM79M12CP TB LM79M15CP TB See NS Package P03E

Section 2
Voltage References

Voltage References
Section Contents
Voltage Reference Guide 2-iii
Voltage Reference and Precision Reference Guides 2-iv
LH0070 Series Precision BCD Buffered Reference. 2-1
LH0071 Series Precision Binary Buffered Reference. 2-1
LM103 Reference Diode. 2-15
LM113/LM313 Reference Diode. $2-18$
LM129/LM329 Precision Reference. 2-21
LM136/LM236/LM336 2.5V Reference Diode. 2-26
LM185/LM285/LM385 Voltage Reference Diode. 2-32
LM199/LM299/LM399 Precision Reference. 2-38
LM199A/LM299A/LM399A Precision Reference. 2-44
LM3999 Precision Reference 2-47

Voltage Reference and Precision Reference Guides

-These specifications apply for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
**Refers to Special Functions Databook, 1979 edition

LH0070 Series Precision BCD Buffered Reference LH0071 Series Precision Binary Buffered Reference

General Description

The LH0070 and LH0071 are precision, three terminal, voltage references consisting of a temperature compensated zener diode driven by a current regulator and a buffer amplifier. The devices provide an accurate reference that is virtually independent of input voltage, load current, temperature and time. The LH0O7O has a 10.000 V nominal output to provide equal step sizes in BCD applications. The LH0071 has a 10.240 V nominal output to provide equal step sizes in binary applications.

The output voltage is established by trimming ultrastable, low temperature drift, thin film resistors under actual operating circuit conditions. The devices are shortcircuit proof in both the current sourcing and sinking directions.

The LH0070 and LH0071 series combine excellent long term stability, ease of application, and low cost,
making them ideal choices as reference voltages in precision D to A and A to D systems.

Features

- Accurate output voltage
- LH0070
$10 \mathrm{~V} \pm 0.01 \%$
LH0071
$10.24 \mathrm{~V} \pm 0.01 \%$
- Single supply operation
12.5 V to 40 V
- Low output impedance
0.1Ω
- Excellent line regulation
$0.1 \mathrm{mV} / \mathrm{V}$
- Low zener noise
$100 \mu \mathrm{Vp}-\mathrm{p}$
- 3-lead TO-5 (pin compatible with the LM109)
- Short circuit proof
- Low standby current

3 mA

Equivalent Schematic

Typical Applications

Statistical Voltage Standard

Connection Diagram

TO-39 Metal Can Package

bоttom view
Order Number LH0070-1H, LH0071-1H, LH0070-2H or LH0071-2H See NS Package H03A

*Note. The output of the LH0070 and LH0071 may be adjusted to a precise voltage by using the above circuit since the supply current of the devices is relatively small and constant with temperature and input voltage. For the circuit shown, supply sensitivities are degraded slightly to $0.01 \% / \mathrm{V}$ change in $\mathrm{V}_{\text {OUT }}$ for changes in $V_{I N}$ and V^{-}.

An additional temperature drift of $0.0001 \% /$ ${ }^{\circ} \mathrm{C}$ is added due to the variation of supply current with temperature of the LH0070 and LH0071. Sensitivity to the value of R1, R2 and R3 is less than $0.001 \% / \%$.
*Output Voltage Fine Adjustment

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (See Curve)
Short Circuit Duration
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

40 V
600 mW
Continuous

$$
\pm 20 \mathrm{~mA}
$$

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,		-	
LH0070			10.000		V
LH0071			10.240		V
Output Accuracy	$T_{\text {A }}=25^{\circ} \mathrm{C}$:		
-0, -1			± 0.03	± 0.1	- \%
-2			± 0.02	$\pm 0,05$	\%
Output Accuracy					
-0, -1				± 0.3	\%
-2				± 0.2	\%
Output Voltage Change With	- (Note 2)		\because		
Temperature					
-0				± 0.2	\%
-1			± 0.02	± 0.1	\%,
-2			± 0.01	± 0.04.	\%
Line Regulation	$13 \mathrm{~V} \leq \mathrm{V}_{1} \mathrm{~N} \leq 33 \mathrm{~V}, \mathrm{~T}^{\text {C }}=25^{\circ} \mathrm{C}$				
-0, -1			0.02	0.1	\%
-2			0.01	0.03	- \%
Input Voltage Range		12.5		40.	v
Load Regulation	$0 \mathrm{~mA} \leq \mathrm{lOUT} \leq 5 \mathrm{~mA}$		0.01	0.03	\%
Quiescent Current	$13 \mathrm{~V} \leq \mathrm{V}_{1 N} \leq 33 \mathrm{~V}, \mathrm{IOUT}=0 \mathrm{~mA}$	2	3	5	. mA
Change In Quiescent Current	$\Delta \mathrm{VIN}=20 \mathrm{~V}$ From 13 V To 33 V		0.75	1.5	mA
Output Noise Voltage	$B W=0.1 \mathrm{~Hz}$ To $10 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20		$\mu \vee p$-p
Ripple Rejection	$f=120 \mathrm{~Hz}$		0.01		\%/Vp-p
Output Resistance			0.2	1	Ω
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 3)				
-0, -1				± 0.2	\%/yr.
-2				± 0.05	\%/yr.

Note 1: Unless otherwise specified, these specifications apply for $V_{I N}=15.0 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$, and over the temperature range of $-55^{\circ} \mathrm{C} \leq T_{A} \leq$ $+125^{\circ} \mathrm{C}$.
Note 2: This specification is the difference in output voltage measured at $T_{A}=85^{\circ} \mathrm{C}$ and $T_{A}=25^{\circ} \mathrm{C}$ or $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{T}_{A}=-25^{\circ} \mathrm{C}$ with readings taken after test chamber and device-under-test stabilization at temperature using a suitable precision voltmeter.
Note 3: This parameter is guaranteed by design and not tested.

Typical Performance Characteristics

Output Short Circuit
Characteristics

Noise Voltage

$B W=0.1 \mathrm{~Hz}$ TO 10 Hz
Typical Applications (Continued)

Expanded Scale AC Voltmeter

Typical Applications (Continued)

Precision Process Control Interface

LH0075 Positive Precision Programmable Regulator
 General Description
 The LH0075 is a precision programmable regulator for positive voltages. Regulated output voltages from 0 to 27 V may be obtained using one external resistor. Also available without any external components are several fixed regulated voltages with accuracies to $0.1 \%(5 \mathrm{~V}$, $6 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V). The output current limit is adjustable from 0 to 200 mA using two external resistors. These features provide an inventory of precision regulated values in one package.
 Features
 - Output adjustable to OV
 - Line regulation typically $0.008 \% / \mathrm{V}$
 - Load regulation typically 0.075%
 - Remote voltage sensing
 - Ripple rejection of 80 dB
 - Adjustable precision current limit
 - Output currents to 200 mA
 - Popular voltages available without external resistors

Schematic Diagram

Connection Diagram
TO-8 Metal Can Package

Typical Applications

Precision 15V Reference Supply without Current Limit

[^2]
Absolute Maximum Ratings

Input Voltage	32 V
Output Voltage	27 V
Output Current	200 mA
Power Dissipation	See Curve
Operating Temperature Range	TMIN $^{\text {MAX }}$
\quad LHOO75	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\quad LHOO75C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics Unless otherwise specified conditions are for $T_{M I N} \leq T_{A} \leq T_{M A X}$

Note 1: Minimum load current is established by 'LIM, the current from Q4. (See schematic): ILIM goes directly to the output if the current limit feature is used.
Note 2: For $V_{I N}=15 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT }}$ obtained by using R5, R6, R7 and R12 individually.
Note 3: Total change over specified temperature range.

Typical Performance Characteristics

Load Transient Response
(Voltage Mode)

Typical Applications (Continued)

Variable Voltage Reference with Current Limit

$$
\text { RPROG }=\frac{V_{\text {OUT }} \text { Desired }}{1 \mathrm{~mA}} \quad \operatorname{IOUT}(M A X)=\left[\frac{R_{\text {LIMIT }}}{R_{\text {SENSE }}}+1\right] \times 100 \mu \mathrm{~A}
$$

$$
{ }^{\prime} \text { OUT } \leqslant 200 \mathrm{~mA}
$$

Applications Information

The LH0075 does not require capacitors for stable operation, but an input bypass is recommended if device
is far from filter capacitors. A $0.1 \mu \mathrm{~F}$ for input bypassing should be adequate for almost all applications.

Applications Information (Continued)

DESCRIPTION OF OPTIONS

Ripple Rejection Compensation. (Increases Ripple Rejection Typically to 80 dB)

The ripple rejection may be improved by connecting an external capacitor between pin 9 and ground. (The typical performance curves show the rejection with a capacitance of $2.2 \mu \mathrm{Fd}$.)

Internal Voltage Programming

The LH0075 provides various precision output voltages simply by using one or more of the internal resistors. A particular voltage may be obtained by external connections as shown in Table I.

FIGURE 1

External Voltage Programming

An external resistance can be connected between pin 9 and ground to obtain any voltage from 0 to 27 V using the following equation:
$R_{\text {EXT }}=\frac{\text { VOUT Desired }^{1 m A}}{1 \mathrm{~mA}}$

The reference current (IREF) has-a typical temperature coefficient of $-65 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Choosing a resistive material with a temperature coefficient of $65 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will compensate the negative temperature coefficient, resulting in an output voltage with minimal change over the operating temperature range. Example of a good resistive material is Nichrome, which has a typical temperature coefficient of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Since a current source is used as a reference, this makes remote voltage programming possible.

Current Limit Programming .

The maximum current output of the device may be limited by adding two external resistors as shown below. The resistor values are easily calculated with the following equation:

IOUT $($ MAX $)=\left[\frac{\text { RLIMIT }^{\text {RSENSE }}}{\text { RSE }}+1\right] \times 100 \mu \dot{\mathrm{~A}}$
where RSENSE $=1$ to 10Ω

FIGURE 2. Current Limit Programming
This programmable current limit feature can be extended to make the LH0075 a programmable constant current source. This can be done by leaving pin 9 open and setting R LIMIT and RSENSE as desired.

For applications where the current limit is used, a minimum load current of $100 \mu \mathrm{~A}$ is established at the output. This arises, from the fact that the constant current used in setting maximum output current is $100 \mu \mathrm{~A}$, and it goes directly to the output of the LH0075. If the total current drawn from the output is less than the minimum, the output will rise.

As in the remote voltage adjustment application, remote current sensing can be applied similarly. RSENSE must be placed as close to the output of the LHOO75 as possible, but R LIMIT can be a fixed resistor or potentiometer located remotely from the device.

TABLE I. Connection Scheme for Internal Available Output Voltages

OUTPUT VOLTAGE (V)	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
5			Gnd		
6				\bullet	
8		\bullet			
10		Gnd	\bullet		
12	Gnd		\bullet		
15		Gnd			
18	\bullet		\bullet		

LH0076 Negative Precision Programmable Regulator

General Description

The LH0076 is a precision programmable regulator for negative voltages. Regulated output voltages from 0 to -27 V may be, obtained by using 1 external resistor. Also available without any external components are several fixed regulated voltages with accuracies to 0.1% $(-3 \mathrm{~V},-5 \mathrm{~V},-6 \mathrm{~V},-8 \mathrm{~V},-9 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$ and $-18 \mathrm{~V})$. The output current limit is adjustable from 0 to 200 mA using 2 external resistors. These features provide an inventory of precision regulated values in 1 package.

Features

- Line regulation typically $0.005 \% / \mathrm{V}$
- Load regulation typically 0.02%
- Remote voltage sensing
- Ripple rejection-70 dB
- Output Adjustable to OV
- Adjustable precision current limit
- Output current to 200 mA

Schematic Diagram

Connection Diagram

Metal Can Package

Typical Application
Precision - 15V Reference Supply without Current Limit

[^3]
Absolute Maximum Ratings

Input Voltage	-32 V
Output Voltage	-27 V
Output Current	200 mA
Power Dissipation	See Curve
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
L.H0076	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH0076C	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	$300^{\circ} \mathrm{C}$

Electrical Characteristics Conditions are for $T_{M I N} \leq T_{A} \leq T_{M A X}$ unless otherwise specified.

PARAMETER	CONDITIONS	LH0076			LH0076C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Line Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.005	0.02		0.005	0.04	\%/V
Load Regulation	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA}<1_{\text {LOAD }}<200 \mathrm{~mA}$							
	VOUT $\geq-5 \mathrm{~V}$			7.5			15	mV
	VOUT $\leq-5 \mathrm{~V}$		0.02	0.15		0.02	0.3	\%
Reference Current (IREF)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1 \mathrm{~N}}=-15 \mathrm{~V}$	0.998	1.000	1.002	0.995	1.000	1.005	mA
Reference Current Drift ($\mathrm{DiRRF}_{\text {R }}$ λ Temp)	$V_{\text {IN }}=-15 \mathrm{~V}$		-0.0065			-0.0065	.	$\% /{ }^{\circ} \mathrm{C}$
Minimum Load Current (LIM)	(Note 1)	98	100	102	95	100	105	$\mu \mathrm{A}$
Output Voltage Range		0		-27	0		-27	v
Minımum Input Voltage		-8			-8			V
Input -Output Differential Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<200 \mathrm{~mA}$		2.7	3.2		2.7	3.5	V
Quiescent Supply Current			9	10		9	11	mA
Ripple Rejection	$V_{\text {OUT }}=-5 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}$		70			70		dB
Initial Output Voltage Tolerance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 2)		± 0.1	± 0.5		± 0.1	± 1.0	\%
Output Voltage Change with	(Note 3)		0.003			0.003		$\% /{ }^{\circ} \mathrm{C}$
Temperature								

Note 1: Minimum load current is established by ILIM, the current to Q 2 (see schematic). I LIMIT draws directly from the output if current limit feature is used
Note 2: For $\mathrm{V}_{\text {IN }}=-15 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT }}$ obtained by using $\mathrm{R} 4, \mathrm{R} 5, \mathrm{R} 6$ and R 8 individually.
Note 3: Total change over specified temperature range.

Typical Performance Characteristics

Output Voltage Change with

Load Transient Response

Quiescent Input Current

Typical Application (Continued)

Variable Voltage Reference with Current Limit

2-Amp Regulator with Current Limit

${ }^{\text {* Recommended }}$ if device is far from filter capacitors

Application Information

The LH0076 does not require external capacitors for stable operation. However, an input bypass is recommended if the device is far from filter capacitors. A $0.1 \mu \mathrm{~F}$ for input bypassing should be adequate for most applications.

DESCRIPTION OF OPTIONS

External Voltage Programming

An external resistance can be connected between pin 10 and ground to obtain any voltage from 0 to -27 V using the following equation:

$$
\mathrm{R}_{\text {EXT }}=\frac{\text { VOUT desired }^{-1 \mathrm{~mA}}}{\text { V }}
$$

The reference current (IREF) has a typical temperature coefficient of $-60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Choosing a resistive material with a temperature coefficient of $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will compensate the negative tempco of the reference current, resulting in an output voltage with minimal change over the operating temperature range. Example of a good resistive material is nichrome, which has a typical tempco of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Nichrome is the resistive material used in the LH0076, resulting in output voltage drift of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typically.

Application Information (Continued)

Because a current source is used as a reference, remote voltage programming is possible.

Internal Voltage Programming

The LH0076 provides various precision output voltages simply by using 1 or more of the internal programming resistors. These voltages may be obtained by using the connections as shown in Table I.

RTOTAL is the total resistance between pin 10 and ground

R4, R5, R6 and R8 are precision trimmed to 0.1%
FIGURE 1

Current Limit Programming

The maximum current output of the device may be limited by adding 2 external resistors as shown in Figure 2. The resistor values are calculated using the following equation:

$$
\operatorname{IOUT}(M A X)=\left[\frac{R_{\text {LIMIT }}}{R_{\text {SENSE }}}+1\right] \times 100 \mu \mathrm{~A}
$$

where RSENSE $=1$ to 10Ω
This programming current limit feature can be extended to make the LH0076 a programmable current sink. This can be done by leaving pin 10 open and setting RLIMIT and RSENSE as desired. (See Figure 3).

FIGURE 2. Current Limit Programming

For applications where the current limit is used, a minimum load current of $100 \mu \mathrm{~A}$ is established at the output. This arises from the fact that the constant current used in setting maximum output current is $100 \mu \mathrm{~A}$, and it comes directly from the output of the LH0076. If the total load current is less than this minimum current, the output will drop.

As in the remote voltage adjustment application, remote current sensing can be applied similarly. RSENSE should be placed as close to the output of the LH0076 as possible, but RLIMIT can be a resistor or potentiometer located remotely from the device.

Figure 3. Precision Current Sink

TABLE I. Connection Scheme for Internally Available Output Voltages

OUTPUT VOLTAGE (V)	PIN 1	PIN 2	PIN 7	PIN 10	PIN 11
-3					Gnd
-5					
-6		Gnd			
-8					
-9	Gnd			\bullet	
-12	Gnd				
-15		Gnd			
-18		Gnd			

Voltage References

LM103 Reference Diode*

General Description

The LM103 is a two-terminal monolithic reference diode electrically equivalent to a breakdown diode. The device makes use of the reverse punch-through of double-diffused transistors, combined with active circuitry, to produce a breakdown characteristic which is ten times sharper than single-junction zener diodes at low voltages. Breakdown voltages from 1.8 V to 5.6 V are available; and, although the design is optimized for operation between $100 \mu \mathrm{~A}$ and 1 mA , it is completely specified from $10 \mu \mathrm{~A}$ to 10 mA . Noteworthy features of the device are:

- Exceptionally sharp breakdown
- Low dynamic impedance from $10 \mu \mathrm{~A}$ to 10 mA
- Performance guaranteed over full military temperature range
- Planar, passivated junctions for stable operation
- Low capacitance.

The LM103, packaged in a hermetically sealed, modified TO-46 header is useful in a wide range of circuit applications from level shifting to simple voltage regulation. It can also be employed with operational amplifiers in producing breakpoints to generate nonlinear transfer functions. Finally, its unique characteristics recommend it as a reference element in low voltage power supplies with input voltages down to 4 V .

Schematic and Connection Diagrams

Metal Can Package

Note: Pin 2 connected to case. TOP VIEW
Order Number LM103H See NS Package H02A

Typical Applications

Saturating Servo Preamplifier

 with Rate Feedback

[^4]200 mA Positive Regulator

Absolute Maximum Ratings

Power Dissipation (note 1)
Reverse Current
Forward Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 60 sec)

> 250 mW
> 20 mA
> 100 mA
> $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
> $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> $300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Reverse Breakdown Voltage Change	$10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 100 \mu \mathrm{~A}$		60	120	$\dot{m V}$
	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$		15	50	mV
	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		50	150	mV
Reverse Dynamic Impedance (Note 3)	$\mathrm{I}_{\mathrm{R}}=3 \mathrm{~mA}$		5	25°	Ω
	$\mathrm{I}_{\mathrm{R}}=0.3 \mathrm{~mA}$	\cdots	15	60.	Ω
Reverse Leakage CurrentForward Voltage Drop	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{Z}}-0.2 \mathrm{~V}$		2	5	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	0.7	0.8	1.0	v
Peak-to-Peak Broadband Noise Voltage Reverse Breakdown Voltage Change with Current (Note 4)	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		300		$\mu \mathrm{V}$
	$10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 100 \mu \mathrm{~A}$			200	mV
	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$			60	mV
	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$			200	mV
Breakdown Voltage Temperature Coefficient (Note 4)					
	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$		-5.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case or $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient (see curve).
Note 2: These specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{Z}}<5.6 \mathrm{~V}$ unless stated otherwise. The diode should not be operated with shunt capacitances between 100 pF and $0.01 \mu \mathrm{~F}$, unless isolated by at least a 300Ω resistor, as it may oscillate at some currents.
Note 3: Measured with the peak-to peak change of reverse current equal to 10% of the DC reverse current.
Note 4: These specifications apply for $-55^{\circ} \mathrm{C}<\mathrm{T}_{A}<+125^{\circ} \mathrm{C}$.

Guaranteed Reverse Characteristics

Typical Performance Characteristics

Forward Characteristics

Response Time

Temperature Drift

Maximum Power Dissipation

BREAKDOWN VOLTAGE*	PART NUMBER
1.8	LM103H-1.8
2.0	LM103H-2.0
2.2	LM103H-2.2
2.4	LM103H-2.4
2.7	LM103H-2.7
3.0	LM103H-3.0
3.3	LM103H-3.3
3.6	LM103H-3.6
3.9	LM103H-3.9
4.3	LM103H-4.3
4.7	LM103H-4.7
5.1	LM103H-5.1
5.6	LM103H-5.6

Standard tolerance is $\pm 10 \%$.

Voltage References

LM113/LM313 Reference Diode

General Description

The LM113/LM313 are temperature compensated, low voltage reference diodes. They feature ex-tremely-tight regulation over a wide range of operating currents in addition to an unusually-low breakdown voltage and good temperature stability.

The diodes are synthesized using transistors and resistors in a monolithic integrated circuit. As such, they have the same low noise and long term stability as modern IC op amps. Further, output voltage of the reference depends only on highlypredictable properties of components in the IC; so they can be manufactured and supplied to tight tolerances. Outstanding features include:

- Low breakdown voltage: 1.220 V
- Dynamic impedance of 0.3Ω from $500 \mu \mathrm{~A}$ to 20 mA
- Temperature stability typically 1% over $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ range (LM113), $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (LM313)
- Tight tolerance: $\pm 5 \%$ standard; $\pm 2 \%$ and $\pm 1 \%$ on special order.
The characteristics of this reference recommend it for use in bias-regulation circuitry, in low-voltage power supplies or in battery powered equipment. The fact that the breakdown voltage is equal to a physical property of silicon-the energy-band-gap voltage-makes it useful for many temperaturecompensation and temperature-measurement functions.

Schematic and Connection Diagrams

Metal Can Package

Note: Pin 2 connected to case. TOP VIEW

Order Number LM113H or LM313H
See NS Package H02A

Typical Applications

Level Detector for Photodiode

Low Voltage Regulator

Absolute Maximum Ratings

			MIN		MAX	UNITS
Power Dissipation (Note .1)	100 mW	Temperature (T_{A})				
Reverse Current	50 mA	LM113	-55		+125	${ }^{\circ} \mathrm{C}$
Forward Current	50 mA	LM313	0	'	70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$					
Lead Temperature (Soldering, 10 seconds)	- $300^{\circ} \mathrm{C}$					
,			.			-

Electrical Characteristics (Note 2)

Operating Conditions

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage LM113/LM313 LM113-1 LM113-2	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	$\begin{aligned} & 1.160 \\ & 1.210 \\ & 1.195 \end{aligned}$	$\begin{aligned} & 1.220 \\ & 1.22 \\ & 1.22 \end{aligned}$	1.280 1.232 1.245	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Reverse Breakdown Voltage Change	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		6.0	15	mV
Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA} \\ & I_{R}=10 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Forward Voltage Drop	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}$		0.67	1.0	v
RMS Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \end{aligned}$		5		$\mu \mathrm{V}$
Reverse Breakdown Voltage Change with Current	$\begin{aligned} & 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$			15	mV
Breakdown Voltage Temperature Coefficient	$\begin{aligned} & 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$		0.01		\%/ ${ }^{\circ} \mathrm{C}$

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction and a thermal resistance of $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case or $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: These specifications apply for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, unless stated otherwise. At high currents, breakdown voltage should be measured with lead lengths less than $1 / 4$ inch. Kelvin contact sockets are also recommended. The diode should not be operated with shunt capacitances between 200 pF and $0.1 \mu \mathrm{~F}$, unless isolated by at least a 100Ω resistor, as it may oscillate at some currents.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Applications (Continued)

Constant Current Source

Voltage References

LM129/LM329 Precision Reference

General Description

The LM129 and LM329 family are precision multicurrent temperature compensated 6.9 V zener references with dynamic impedances a factor of 10 to 100 less than discrete diodes. Constructed in a single silicon chip, the LM129 uses active circuitry to buffer the internal zener allowing the device to operate over a 0.5 mA to 15 mA range with virtually no change in performance. The LM129 and LM329 are available with selected temperature coefficients of $0.001,0.002,0.005$ and $0.01 \% /{ }^{\circ} \mathrm{C}$. These new references also have excellent long term stability and low noise.

A new subsurface breakdown zener used in the LM129 gives lower noise and better long term stability than conventional IC zeners. Further the zener and temperature compensating transistor are made by a planar process so they are immune to problems that plague ordinary zeners. For example, there is virtually no voltage shifts in zener voltage due to temperature cycling and the device is insensitive to stress on the leads.

The LM129 can be used in place of conventional zeners with improved performance. The low dynamic impedance
simplifies biasing and the wide operating current allows the replacement of many zener types.

The LM129 is packaged in a 2-lead TO-46 package and is rated for operation over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM329 for operation over $0-70^{\circ} \mathrm{C}$ is available in both a hermetic TO-46 package and a TO-92 epoxy package.

Features

- 0.6 mA to 15 mA operating current
- 0.6Ω dynamic impedance at any current
- Available with temperature coefficients of $0.001 \% /{ }^{\circ} \mathrm{C}$
- $7 \mu \mathrm{~V}$ wideband noise
- 5% initial tolerance
- 0.002% long term stability
- Low cost
- Subsurface zener

Typical Applications

Simple Reference

Low Cost 0-25V Regulator

Absolute Maximum Ratings

Reverse Breakdown Current
30 mA
Forward Current
2 mA
Operating Temperature Range LM129
LM329
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LM129A, B, C			LM329B, C, D			UNITS
		MIN	TYP'	MAX	MIN	TYP	MAX	
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & 0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA} \end{aligned}$	6.7	6.9	7.2	6.6	6.9	7.25	V
Reverse Breakdown Change with Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0.6 \mathrm{~mA} \leq I_{R} \leq 15 \mathrm{~mA} \end{aligned}$		9	14			20	mV
Reverse Dynamic Impedance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.6	1		0.8	2	Ω
RMS Noise	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leq \mathrm{F} \leq 10 \mathrm{kHz} \end{aligned}$		7	20		7	100	$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & T_{A}=45^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \\ & I_{R}=1 \mathrm{~mA} \pm 0.3 \% \end{aligned}$		20			20		ppm
Temperature Coefficient	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$							
LM129A, LM329A			6 15	10 20		15	20	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM129C, LM329C			30	50		30	50	ppm $/{ }^{\circ} \mathrm{C}$
- LM329D						50	100	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Change In Reverse Breakdown Temperature Coefficient	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		1			1.		ppm $/{ }^{\circ} \mathrm{C}$
Reverse Breakdown Change with Current	1. $\mathrm{mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		12			12		mV
Reverse Dynamic Impedance	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		0.8			1		Ω

Note 1:These specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LM 129 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM329 unless otherwise specified. The maximum junction temperature for an LM129 is $150^{\circ} \mathrm{C}$ and LM329 is $100^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in TO-46 package must be derated based on a thermal resistance of $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. For the TO-92 package, the derating is based on $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to a PC board.

Typical Applications (Continued)

OV to 20V Power Reference

Reference

External Reference for Temperature Transducer

Typical Applications (Continued)

Connection Diagrams

Metal Can Package

bOTtOM VIEW
Order Number LM129AH, LM129BH LM129CH, LM329AH, LM329BH, LM329CH or LM329DH
See NS Package H02A

Plastic Package

Bottom View
Order Number LM329BZ, LM329CZ or LM329DZ See NS Package Z03A

Typical Performance Characteristics

Zener Noise Voltage

LM136/LM236/LM336 2.5V Reference Diode General Description

The LM136/LM236 and LM336 integrated circuits are precision 2.5 V shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient 2.5 V zener with 0.2Ω dynamic impedance. A third terminal on the LM136 allows the reference voltage and temperature coefficient to be trimmed easily.

The LM136 series is useful as a precision 2.5 V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 2.5 V make it convenient to obtain a stable reference from 5 V logic supplies. Further, since the LM136 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

The LM136 is rated for operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM236 is rated over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
temperature range. Both are packaged in a TO-46 package. The LM336 is rated for operation over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and is available in either a three lead TO-46 package or a TO-92 plastic package.

Features

- Low temperature coefficient
- Wide operating current of $300 \mu \mathrm{~A}$ to 10 mA
- 0.2Ω dynamic impedance
- $\pm 1 \%$ initial tolerance available
- Guaranteed temperature stability
- Easily trimmed for minimum temperature drift
- Fast turn-on
- Three lead transistor package
- 5.0V device also available-LM336-5.0

Schematic Diagram

Typical Applications

2.5V Reference
2.5V Reference with Minimum Temperature Coefficient

Wide Input Range Reference

Absolute Maximum Ratings

Reverse Current
Forward Current
Storage Temperature
Operating Temperature
LM136
LM236
LM336
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
15 \mathrm{~mA} \\
10 \mathrm{~mA} \\
-60^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics
(Note 1)

PARAMETER	CONDITIONS	LM136A/LM236A LM136/LM236			$\begin{aligned} & \text { LM336B } \\ & \text { LM336 } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Reverse Breakdown Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	$\begin{aligned} & 2.440 \\ & 2.465 \end{aligned}$						
	LM136/LM236/LM336		2.490	2.540	2.390	2.490	2.590	V
	LM136A/LM236A, LM336B		2.490	2.515	2.440	2.490	2.540	V
Reverse Breakdown Change With Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,		2.6	6		2.6	10	mV
	$400 \mu \mathrm{~A} \leq 1 \mathrm{R} \leq 10 \mathrm{~mA}$							
Reverse Dynamic Impedance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.2	0.6		0.2	1	Ω
Temperature Stability	V_{R} Adjusted to 2.490 V							
	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA},(\text { Figure } 2)$							
	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ (LM336)					1.8	6	$m V$
	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (LM236)		3.5	9				mV
	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (LM136)		12	18				mV
Reverse Breakdown Change	$400 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		3	10		3	12	mV
With Currènt								
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.4	1		0.4	1.4	Ω
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		20			20		ppm

Note 1: Unless otherwise specified, the LM136 is specified from $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, the LM236 from $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and the LM336 from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. The maximum junction temperature of the LM136 is $150^{\circ} \mathrm{C}, \mathrm{LM} 236$ is $125^{\circ} \mathrm{C}$ and the LM336 is $100^{\circ} \mathrm{C}$. For elevated junction temperature, devices in the TO-46 package should be derated based on a thermal resistance of $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. For the TO-92 package, the derating is based on $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to a PC board.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Application Hints

The LM136 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.

Figure 1 shòws an LM136 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to
adjust for both the initial device tolerance and inaccuracies in buffer circuitry.

If minimum temperature coefficient is desired, two diodes can be added in series with the adjustment potentiometer as shown in Figure 2. When the device is adjusted to 2.490 V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a 1 N914, 1 N4148 or a 1 N457. For proper temperature compensation the diodes should be in the same thermal environment as the LM136. It is usually sufficient to mount the diodes near the LM136 on the printed circuit board. The absolute resistance of $R 1$ is not critical and any value from $2 k$ to $20 k$ will work.

FIGURE 1. LM136 With Pot for Adjustment of Breakdown Voltage

FIGURE 2. Temperature Coefficient Adjustment

Typical Applications (Continued)

*L1 60 turns \#16 wire on Arnold Core A-254168-2
${ }^{+}$Efficiency $\approx 80 \%$

Precision Power Regulator with Low Temperature Coefficient

Trimmed 2.5V Reference with Temperature Coefficient Independent of Breakdown Voltage

[^5]Typical Applications (Continued)

Bipolar Output Reference
Op Amp with Output Clamped

2.5V Square Wave Calibrator

Typical Applications (Continued)

5V Buffered Reference

Low Noise Buffered Reference

TO-46
Metal Can Package

Order Number
LM136H, LM236H, LM336H, LM136AH,
LM236AH or LM336BH
See NS Package H03H

National Semiconductor

LM185/LM285/LM385 Voltage Reference Diode

General Description

The LM185/LM285/LM385 are micropower 2-terminal bandgap voltage regulator diodes. Operating over a $10 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185 band-gap reference uses only transistors and resistors, low noise and good long term stability result.

Careful design of the LM185 has máde the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation. Some outstanding features are:

- Operating current of $10 \mu \mathrm{~A}$ to 20 mA
- 1% and 2% initial tolerance
- 1Ω dynamic impedance
- Low temperature coefficient

■ Low voltage reference-1.235V
The extremely low power drain of the LM185 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.

The LM185 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range while the LM285 is rated $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185/LM285/ LM385 are available in a hermetic TO-46 package and the LM385 is also available in a low-cost TO-92 molded package.

Schematic Diagram

Applications

Absolute Maximum Ratings

Reverse Current	30 mA
Forward Current	10 mA
Operating Temperature Range	
LM185	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM285	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM385	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
StorageTemperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LeadTemperature(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	LM185/LM285/LM385B			LM385			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage'	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} I_{\mathrm{MIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$ LM185/LM285/LM385B LM385	1.223	1.235	1.247	$\begin{array}{r} 1.223 \\ 1.205 \end{array}$	$\begin{aligned} & 1.235 \\ & 1.235 \end{aligned}$	$\begin{aligned} & 1.247 \\ & 1.260 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Minimum Operating Current			8	10		8	15	$\mu \mathrm{A}$
Reverse Breakdown Voltage	$\mathrm{I}_{\text {MIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$		$\stackrel{ }{ }$	1			1	mV
Change with Current				1.5			1.5	mV
	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$			$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		0.2	$\begin{aligned} & 0.6 \\ & 1.5 \end{aligned}$		0.4	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Average Temperature Coefficient	$10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$ (Note 2)		20			20		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Wide Band Noise (RMS)	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$,	60			60		${ }^{1} \mathrm{~V}$
Long Term Stability	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$		20			20		ppm/kHR

Note 1: Boldface type applies over the operating temperature range. Thermal resistance of the TO-46 package is $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $80^{\circ} \mathrm{C}$ junction to case. Thermal resistance of the TO. 92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: Guaranteed maximum average temperature coefficient available as special order.
Applications (Continued)

LM385 Applications

Micropower* 5V Regulator

${ }^{*} \mathrm{Q}_{\mathrm{Q}} \cong 30 \mu \mathrm{~A}$

Micropower* 10V Reference

${ }^{*} \mathrm{Q}_{\mathrm{Q}} \cong 20 \mu \mathrm{~A}$ standby current

Precision $1 \mu \mathrm{~A}$ to 1 mA Current Sources

${ }^{*}$ IOUT $=\frac{1.23 V}{\text { R2 }}$

LM385 Applications (Continued)

METER THERMOMETERS

$0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}$ Thermometer

Calibration

1. Short LM385, adjust R3 for lout $=$ temp at $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in centigrade
\dagger_{Q} at $1.3 \mathrm{~V} \cong 500 \mu \mathrm{~A}$
I_{Q} at $1.6 \mathrm{~V} \cong 2.4 \mathrm{~mA}$

Calibration

1. Short LM385, adjust R3 for IOUT $=$ temp at $1.8 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in ${ }^{\circ} \mathrm{F}$

Lower Power Thermometer

* 2 N 3638 or 2 N 2907 select for inverse $\mathrm{H}_{\text {FE }} \cong 5$
\dagger Select for operation at 1.3 V
$\ddagger_{\mathrm{Q}} \cong 600 \mu \mathrm{~A}$ to $900 \mu \mathrm{~A}$

Micropower Thermocouple Cold Junction Compensator

Adjustment Procedure

1. Adjust TC ADJ pot until voltage across R1 equals keivin temperature multiplied by the thermocouple seebeck coefficient.
2. Adjust zero ADJ pot until voltage across R2 equals the thermocouple seebeck coefficient multiplied by 273.2.

Thermocouple Type	Seebeck Coefficient $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$	R1 ($)$	R2 ($)$	Voltage Across R1 $@ 25{ }^{\circ} \mathrm{C}$	Voltage Across R2 $(\mathbf{m V})$
				$(\mathbf{m V})$	
J	52.3	523	1.24 k	15.60	14.32
T	42.8	432	1 k	12.77	11.78
K	40.8	412	953Ω	12.17	11.17
S	6.4	63.4	150Ω	1.908	1.766

Typical Performance Characteristics

Temperature Drift

Filtered Output Noise

Forward Characteristics

Reverse Dynamic Impedance

Response Time

Connection Diagrams

TO.92
Plastic Package

BOTTOM VIEW

Order Number LM385Z or LM385BZ
See NS Package Z03D
Order Number LM185H, LM285H, LM385H or LM385BH See NS Package H02A

LM199/LM299/LM399 Precision Reference

General Description

The LM199/LM299/LM399 are precision, temperaturestabilized monolithic zeners offering temperature coefficients a factor of ten better than high quality reference-zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about 0.5Ω and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature coefficieńt. Further, a new subsurface zener structure gives low noise and excellent long term stability compared to ordinary monolithic zeners. The package is supplied with a thermal shield to minimize heater power and improve temperature regulation.

The LM199 series references are exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the L.M199 is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.

The LM199 can be used in almost any application in place of ordinary zeners with improved performance. Some ideal applications are analog to digital converters,
calibration standards, precision voltage or current sources or precision power supplies. Further in many cases the LM199 can replace references in existing equipment with a minimum of wiring changes.

The LM199 series devices are packaged in a standard hermetic TO-46 package inside a thermal shield. The LM199 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM299 is rated for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM399 is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Guaranteed $0.0001 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Low dynamic impedance - 0.5Ω
- Initial tolerance on breakdown voltage - 2%
- Sharp breakdown at $400 \mu \mathrm{~A}$
- Wide operating current $-500 \mu \mathrm{~A}$ to 10 mA
- Wide supply range for temperature stabilizer
- Guaranteed low noise
- Low power for stabilization - 300 mW at $25^{\circ} \mathrm{C}$
- Long term stability - 20 ppm

Schematic Diagrams

Connection Diagram

Metal Can Package

Order Number LM199H, LM299H or LM399H See NS Package H04D

Functional Block Diagram

Absolute Maximum Ratings

Temperature Stabilizer Voltage	40 V
Reverse Breakdown Current	20 mA
Forward Current	1 mA
Reference to Substrate Voltage $\mathrm{V}_{(\text {RS) }}$ (Note 1)	40 V
	-0.1 V
Operating Temperature Range	
LM199	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM299	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM399	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

PARAMETER	CONDITIONS	LM199/LM299			LM399			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Reverse Breakdown Voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage	$0.5 \mathrm{~mA} \leq 1 \leq 10 \mathrm{~mA}$		6	9		6	12	mV
Change With Current								
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		0.5	1.5	Ω
Reverse Breakdown Temperature Coefficient	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		0.00003	0.0001				$\% /{ }^{\circ} \mathrm{C}$
	$\left.85^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\right\} \quad \text { LM199 }$		0.0005	0.0015				$\%{ }^{\circ} \mathrm{C}$
	$\begin{array}{ll} -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} & \text { LM299 } \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} & \text { LM399 } \end{array}$		0.00003	0.0001				$\%{ }^{\circ} \mathrm{C}$
						0.00003	0.0002	$\% /{ }^{\circ} \mathrm{C}$
RMS Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		7	20		7	50	$\mu \mathrm{V}$
Long Term Stability	Stabilized, $22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C}$, 1000 Hours, $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%$		20			20		ppm
Temperature Stabilizer	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Still Air, $\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}$	9	8.5	14		8.5	15	
Supply Current	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		22	28				mA
Temperature Stabilizer	(Note 3)			40	9		40	v
Supply Voltage								
Warm-Up Time to 0.05\%	$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		Seconds
Initial Turn-on Current	$9 \leq \mathrm{V}_{\mathrm{S}} \leq 40, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 3)		140	200		140	200	mA

Note 1: The substrate is electrically connected to the negative terminal of the temperature stabilizer. The voltage that can be applied to either terminal of the reference is 40 V more positive or 0.1 V more negative than the substrate.
Note 2: These specifications apply for 30 V applied to the temperature stabilizer and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 199 ;-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for the LM299 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM399.
Note 3: This initial current can be reduced by adding an appropriate resistor and capacitor to the heater circuit. See the performance characteristic graphs to determine values.

Typical Performance Characteristics

Typical Applications

Typical Applications (Continued)

Precision Clamp*

Typical Applications (Continued)
OV to 20V Power Reference

Bipolar Output Reference

National Voltage
LM199A/LM299A/LM399A Precision Reference

General Description

The LM199A/LM299A/LM399A are precision, tempera-ture-stabilized monolithic zeners offering temperature coefficients a factor of ten better than high quality reference zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about 0.5Ω and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature coefficient. Further, a new subsurface zener structure gives low noise and excellent long term stability compared to ordinary monolithic zeners. The package is supplied with a thermal shield to minimize heater power and improve temperature regulation.
The LM199A series references are exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the LM199A is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.

The LM199A can be used in almost any application in place of ordinary zeners with improved performance. Some ideal applications are analog to digital converters, calibration standards, precisíon voltage or current sources or precision power supplies. Further in many cases the LM199A can replace references in existing equipment with a minimum of wiring changes.

The LM199A series devices are packaged in a standard hermetic TO-46 package inside a thermal shield. The LM199 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM299A is rated for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM399A is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Certified Long Term Stability Devices

All devices are tested for 1000 hours minimum at $25^{\circ} \mathrm{C}$ ambient temperature with temperature stabilizer operating. All devices shipped with long term data which certifies a maximum drift for the 1000 hours of 20 ppm or 50 ppm .

Features

- Guaranteed $0.00005 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Low dynamic impedance -0.5Ω
- Initial tolerance on breakdown voltage - 2%
- Sharp breakdown at $400 \mu \mathrm{~A}$
- Wide operating current $-500 \mu \mathrm{~A}$ to 10 mA
- Wide supply range for temperature stabilizer
- Guaranteed low noise
- Low power for stabilization - 300 mW at $25^{\circ} \mathrm{C}$
- Long term stability - 20 ppm
- Certified long term stability available

Schematic Diagrams

Connection Diagram

Metal Can Package

TOP VIEW
Order Number LM199AH, LM299AH

CERTIFIED LONG TERM STABILITY ppm MAX	ORDERING NUMBERS
20	LM199AH-20
20	LM299AH-20
50	LM399AH-50

or LM399AH

Functional Block Diagram See NS Package H04D

Absolute Maximum Ratings

Temperature Stabilizer Voltage	40 V
Reverse Breakdown Current	20 mA
Forward Current	1 mA
Reference to Substrate Voltage $\mathrm{V}_{(\mathrm{RS})}$ (Note 1)	+40 V
\vdots	-0.1 V
Operating Temperature Range	
LM199A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM299A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM399A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

PARAMETER	CONDITIONS	LM199A, LM299A			LM399A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Reverse Breakdown Voltage	$\begin{aligned} & 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \\ & 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \end{aligned}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change With Current			6	9		6	12	mV
Reverse Dynamic Impedance	$\begin{aligned} & \left.\begin{array}{l} I_{R}=1 \mathrm{~mA} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C} \end{array}\right\} \quad \text { LM199A } \\ & -25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \\ & \begin{array}{l} \text { LM299A } \\ 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{array} \quad \text { LM399A } \end{aligned}$		0.5	1		0.5	1.5	Ω
Reverse Breakdown			0.00002	0.00005				\%/ ${ }^{\circ} \mathrm{C}$
Temperature Coefficient			0.0005	0.0010				$\%{ }^{\circ} \mathrm{C}$
			0.00002	0.00005				\%/ ${ }^{\circ} \mathrm{C}$
			-			0.00003	0.0001	\%/ ${ }^{\circ} \mathrm{C}$
RMS Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		7 .	20		7	50	$\mu \mathrm{V}$
Long Term Stability	Stabilized, $22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C}$, 1000 Hours, $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%$		20			20		- ppm
Temperature Stabilizer Supply Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \text {, Still Air, } \mathrm{V}_{\mathrm{S}}=30 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 8.5 \\ & 22 \end{aligned}$	$\begin{aligned} & 14 \\ & 28 \end{aligned}$		8.5	15	mA
Temperature Stabilizer		9		40	9		40	V
Supply Voltage (Note 3)								
Warm-Up Time to 0.05\%	$\begin{aligned} & V_{S}=30 V, T_{A}=25^{\circ} \mathrm{C} \\ & 9 \leq V_{S} \leq 40, T_{A}=25^{\circ} \mathrm{C},(\text { Note } 3) \end{aligned}$		3			3		Seconds
Initial Turn-on Current			140	200		140	200	mA

Note 1: The substrate is electrically connected to the negative terminal of the temperature stabilizer. The voltage that can be applied to either terminal of the reference is 40 V more positive or 0.1 V more negative than the substrate.
Note 2: These specifications apply for 30 V applied to the temperature stabilizer and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 199 \mathrm{~A} ;-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+85^{\circ} \mathrm{C}$ for the LM299A and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM399A.
Note 3: This initial current can be reduced by adding an appropriate resistor and capacitor to the heater circuit. See the performance characteristic graphs to determine values.

Typical Applications

For typical applications, see LM199 data sheet on preceding pages.

Typical Performance Characteristics

Voltage References

LM3999 Precision Reference

General Description

The LM3999 is a precision, temperature-stabilized monolithic zener offering temperature coefficients a factor of ten better than high quality reference zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about 0.5Ω and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature coefficient. Further, a new subsurface zener structure gives low noise and excellent long term stability compared to ordinary monolithic zeners.

The LM3999 reference is exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the LM3999 is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.

The LM3999 can be used in almost any application in place of ordinary zeners with improved performance.

Some ideal applications are analog to digital converters, precision voltage or current sources or precision power supplies. Further, in many cases, the LM3999 can replace references in existing equipment with a minimum of wiring changes.

The LM3999 is packaged in a standard TO-92 package and is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Guaranteed $0.0005 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Low dynamic impedance -0.5Ω
- Initial tolerance on breakdown voltage - 5%
- Sharp breakdown at $400 \mu \mathrm{~A}$
- Wide operating current $-500 \mu \mathrm{~A}$ to 10 mA
- Wide supply range for temperature stabilizer
- Low power for stabilization -400 mW at $25^{\circ} \mathrm{C}$
- Long term stability $\mathbf{- 2 0} \mathrm{ppm}$

Schematic Diagram

Functional Block Diagram

Typical Applications

Absolute Maximum Ratings

Temperature Stabilizer Voltage	36 V
Reverse Breakdown Current	20 mA
Forward Current	0.1 mA
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage	$0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$	6.6	6.95	7.3	V
Reverse Breakdown Voltage	$0.6 \mathrm{~mA} \leq 1 \leq 10 \mathrm{~mA}$				
Change With Current			6	20	mV
Reverse Dynamic Impedance	$I_{R}=1 \mathrm{~mA}$		0.6	2.2	Ω
Reverse Breakdown Temperature Coefficient	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		0.0002	0.0005	\%/ ${ }^{\circ} \mathrm{C}$
RMS Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		7		$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & \text { Stabilized, } 22^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 28^{\circ} \mathrm{C} \\ & 1000 \text { Hours, } \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \% \end{aligned}$		20		ppm
Temperature Stabilizer	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Still Air, $\mathrm{V}_{S}=30 \mathrm{~V}$		12	18	mA
Temperature Stabilizer Supply Voltage				36	V
Warm-Up Time to 0.05\%	$V_{S}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5		Seconds
Initial Turn-on Current	$9 \leq \mathrm{V}_{S} \leq 40, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		140	200	mA

Note 1: These specifications apply for 30 V applied to the temperature stabilizer and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

* Heater must be bypassed with a $2 \mu \mathrm{~F}$ tantalum capacitor if maximum value resistors are used. Otherwise 30% to 50% smaller values must be used.If heater voltage oscillates under any condition, temperature is not at control point.

Typical Applications (Continued)

Typical Applications (Continued)

*Clamp will sink 5 mA when input goes more positive than reference.

Connection Diagram

Plastic Package

bottom view
Order Number LM3999Z
See NS Package Z03A

Section 3
Operational
Amplifiers/Buffers

Operational Amplifiers/Buffers

Section Contents

BI-FET ${ }^{\text {TM/BI-FET }}{ }^{\text {IM }}$ TM Op Amp Selection Guide 3-v
Military Op Amp Selection Guide 3-vii
Industrial Op Amp Selection Guide 3-ix
Commercial Op Amp Selection Guide. 3-x
Special Function Operational Amplifier and Special Function Buffer Amplifier Guides $3-x i i$
Definition of Terms $3-x i i i$
High Input Impedance ($\mathrm{I}_{\mathrm{B}}<25 \mathrm{nA}$)
LF155/LF255/LF355 Monolithic JFET Input Operational Amplifier 3-1
LF155AILF355A Monolithic JFET Input Operational Amplifier. 3-1
LF156/LF256/LF356 Monolithic JFET Input Operational Amplifier 3-1
LF156A/LF356A Monolithic JFET Input Operational Amplifier. 3-1
LF157/LF257/LF357 Monolithic JFET Input Operational Amplifier 3-1
LF157A/LF357A Monolithic JFET Input Operational Amplifier. 3-1
LF347 Wide Bandwidth Quad JFET Input Operational Amplifier. 3-14
LF351 Wide Bandwidth JFET Input Operational Amplifier. 3-22
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier. 3-29
LF13741 Monolithic JFET Input Operational Amplifier. 3-38
LM108/LM208/LM308 Operational Amplifiers. 3-83
LM108A/LM208A/LM308A, LM308A-1, LM308A-2 Operational Amplifiers 3-88
LM110/LM210/LM310 Voltage Follower. 3-95
LM112/LM212/LM312 Operational Amplifiers 3-102
LM121/LM221/LM321, LM121A/LM221A/LM321A Precision Preamplifiers 4-11
LM216/LM316, LM216A/LM316A Operational Amplifiers. 3-187
Low Drift ($\Delta \mathrm{V}_{\text {os }} /$ Temp $<10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$)
LF155/LF255/LM355 Monolithic JFET Input Operational Amplifier. 3-1
LF155A/LF355A Monolithic JFET Input Operational Amplifier. 3-1
LF156/LF256/LF356 Monolithic JFET Input Operational Amplifier. 3-1
LF156A/LF356A Monolithic JFET Input Operational Amplifier. 3-1
LF157/LF257/LF357 Monolithic JFET Input Operational Amplifier. 3-1
LF157A/LF357A Monolithic JFET Input Operational Amplifier. 3-1
LM108A/LM208A/LM308A, LM308A-1, LM308A-2 Operational Amplifiers 3-88
LM725/LM725A/LM725C (Instrumentation) Operational Amplifier 3-194
High Slew Rate ($\mathrm{S}_{\mathrm{R}}>10 \mathrm{~V} / \mu \mathrm{s}$)
LF156/LF256/LF356 Monolithic'JFET Input Operational Amplifier. 3-1
LF156A/LF356A Monolithic JFET Input Operational Amplifier. 3-1
LF157/LF257/LF357 Monolithic JFET Input Operational Amplifier 3-1
LF347 Wide Bandwidth Quad JFET Input Operational Amplifier. 3-14
LF351 Wide Bandwidth JFET Input Operational Amplifier 3-22
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier. $3-29$
LM102/LM202/LM302 Voltage Followers 3-74
LM110/LM210/LM310 Voltage Follower 3-95
LM118/LM218/LM318 Operational Amplifiers. 3-106
Low Power Consumption
LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference $3-49$
LM108A/LM208A/LM308A, LM308A-1, LM308A-2 Operational Amplifiè. 3-88
LM112/LM212/LM312 Operational Amplifiers. 3-102
LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers. 3-113
LM146/LM246/LM346 Programmable Quad Operational Amplifiers 3-135
LM4250/LM4250C Programmable Operational Amplifier. 3-224
Single Supply
LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference 3-49
LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers. 3-113
LM158/LM258/LM358, LM158A/LM258A/LM358A, LM2904 Low Power Dual Operational Amplifiers. 3-157
LM2900/LM3900, LM3301, LM3401 Quad Amplifiers. 3-215
High Voltage ($\mathrm{V}_{\mathrm{cc}}> \pm \mathbf{2 5 V}$)
LM143/LM343 High Voltage Operational Amplifier 3-122
LM144/LM344 High Voltage, High Slew Rate Operational Amplifier. 3-129
Buffer
LM102/LM202/LM302 Voltage Followers. 3-74
LM110/LM210/LM310 Voltage Follower. $3-95$
LM733/LM733C Differential Video Amp 3-198
Programmable
LM146/LM246/LM346 Programmable Quad Operational Amplifiers 3-135
LM4250/LM4250C Programmable Operational Amplifier. 3-224
LM13080 Programmable Power Op Amp. 3-231
High Output Current ($I_{0} \geq \mathbf{2 0 0} \mathbf{m A}$)
LM13080 Programmable Power Op Amp 3-231
General Purpose, Compensated
LF155/LF255/LM355 Monolithic JFET Input Operational Amplifier. 3-1
LF155A/LF355A Monolithic JFET Input Operational Amplifier, 3-1
LF156/LF256/LF356 Monolithic JFET Input Operational Amplifier. 3-1
LF156A/LF356A Monolithic JFET Input Operational Amplifier. 3-1
LF157/LF257/LF357 Monolithic JFET Input Operational Amplifier. 3-1
LF157A/LF357A Monolithic JFET Input Operational Amplifier. 3-1
LF347 Wide Bandwidth Quad JFET Input Operational Amplifier. 3-14
LF351 Wide Bandwidth JFET Input Operational Amplifier. 3-22
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier 3-29
LF13741 Monolithic JFET Input Operational Amplifier 3-38
LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference. 3-49
LM107/LM207/LM307 Operational Amplifiers. 3-79
LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers. 3-113
LM148, LM149 Series Quad 741 Op Amps. 3-147
LM158/LM258/LM358, LM158A/LM258A/LM358A, LM2904 Low Power Dual Operational Amplifiers. 3-157
LM159/LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers. 3-167
LM741/LM741A/LM741C/LM741E Operational Amplifier. 3-202
LM747/LM747A/LM747C/LM747E Dual Operational Amplifiers 3-205

Section Contents (Continued)

General Purpose, Compensated (Continued)LM1558/LM1458 Dual Operational Amplifier3-213
LM2900/LM3900, LM3301, LM3401 Quad Amplifier. 3-215
LM13080 Programmable Power Op Amp. 3-231
General Purpose, Uncompensated
LF157/LF257/LF357 Monolithic JFET Input Operational Amplifier. 3-1
LF157A/LF357A Monolithic JFET Input Operational Amplifier. 3-1
LM101A/LM201A/LM301A Operational Amplifiers. 3-65
LM709/LM709A/LM709C Operational Amplifier. 3-190
LM748/LM748C Operational Amplifier. 3-210
Op Amp-Comparator
LM192/LM292/LM392, LM2924 Low Power Operational Amplifier/Voltage Comparator. 3-183

Note. For additional information on operational amplifiers, see National Semiconductor's Special Functions Databook.

DC ELECTRICAL CHARACTERISTICS					AC ELECTRICAL CHARACTERISTICS	
PART NUMBER	VOS - MAX OFFSET VOLTAGE (mV) ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)	$\begin{gathered} \Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}-\mathrm{T} . \mathrm{C} . \mathrm{OF} \\ \mathrm{~V}_{\mathrm{OS}}\left(\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right) \\ \mathrm{TYP} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}} \text { - MAX BIAS } \\ & \text { CURRENT }(\mathrm{pAA}) \\ & \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	Avol LARGE SIGNAL VOLTAGE GAIN (V/mV) $\operatorname{MIN}\left(T_{A}=25^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { SR - SLEW } \\ & \text { RATE (V/ } \mu \mathrm{s}) \end{aligned}$	e_{n} - EQUIV. INPUT NOISE VOLTAGE ($\mathrm{nV} / \sqrt{ } \mathrm{Hz}$) (Note 2)
MILITARY BI-FET OP AMP (Note 1)						
LF155	5	5	100	50	5	20
LF155A	2	5 (max)	50	50	5	20
LF156	5	5	100	50	12	12
LF156A	2	5 (max)	50	50	12	12
LF157	5	5	100	50	50	12
LF157A	2	5 (max)	50	50	50	12
INDUSTRIAL BI-FET OP AMP (Note 1)						
LF255	5	5	100	50	5	20
LF256	5	5	100	50	12	12
LF257	5	5	100	50	50	12
COMMERCIAL BI-FET AND BI-FET II OP AMP (Note 3)						
LF351	10	10	200	25	13	16
LF351A	2	10	100	25	13	16
LF351B	5	10	200	25	13	16
LF355	10	5	200	25	5	25
LF355A	2	5 (max)	50	25	5	25
LF356	10	5	200	25	12	15
LF356A	2	5 (max)	50	25	12	15
LF357	10	5	200	25	50	15
LF357A	2	5 (max)	50	25	50	15
LF13741	15	10	200	25	0.5	37
BI-FET II DUAL OP AMPS (Characteristics for Each Amplifier) (Note 3)						
LF353	10	10	200	25	13	16
LF353A	2	10	100	25	- 13	16
LF353B	5	10	200	25	13	16
BI-FET II QUAD OP AMPS (Characteristics for Each Amplifier) (Note 3)						
LF347	10	10	200	25	13	16
LF347A	2	10	100	25	13	16
LF347B	5	10	200	25	13	16

BI-FET ${ }^{\text {TM }}$ BII-FET II ${ }^{\text {TM }}$ Op Amp Selection Guide

	SELECTION BY design parameter								ADDITIONAL NS PRODUCTS USING BI-FET TECHNOLOGY - LF111 Comparator - LF 198 Sample and Hold - LF11201 Series of Analog Switches - LF11331 Series of Analog Switches - LF11508 Series of Analog Multiplexers - LF152 Instrumentation Amplifier - LF13300 Integrating A/D Building Block
	Max Input Offset Voltage $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\quad \frac{\mathbf{2 m V}}{}$LF155A/LF355ALF156A/LF356ALF357ALF351ALF353ALF347A		LF351B -5 mVLF347BLF353BLF155/LF156/LF157LF255/LF256/LF257		$\begin{aligned} & \frac{10 \mathrm{mV}}{\text { LF355/LF356/LF357 }} \\ & \text { LF351 } \\ & \text { LF353 } \\ & \text { LF347 } \end{aligned}$		$\frac{15 \mathrm{mV}}{\mathrm{LF} 13741}$	
	Max Input Bias Current ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { LF155A/LF156A/LF157A } \\ & \text { LF355A/LF356A/LF357A } \end{aligned}$			$\begin{aligned} & \frac{100 \text { pA }}{\text { LF155/LF156/LF157 }} \\ & \text { LF255/LF256/LF257 } \\ & \text { LF351A } \\ & \text { LF353A } \\ & \text { LF347A } \end{aligned}$		$\quad \underline{200}$ pALF355/LF356/LF357LF351/LF351BLF347/LF347BLF353/LF353BLF13741		
	Typ Equivalent Input Noise Voltage per $\sqrt{\mathrm{Hz}}, f=1000 \mathrm{~Hz}$, $R_{S}=100 \Omega$	$\begin{aligned} & \mathbf{1 2 n V} \text { or Le } \\ & \text { LF156/LF15 } \\ & \text { LF157/LF15 } \\ & \text { LF256/LF25 } \end{aligned}$		LF356 15 LF356A LF357 LF357A	nV To 20 nV LF351 LF351A LF351B LF347 LF347A LF347B LF353 LF353A LF353B	LF155 LF155A LFT155 LF255	$\begin{aligned} & \frac{25 \mathrm{nV} \text { To } 3}{\text { LF355 }} \\ & \text { LF355A } \end{aligned}$	$\frac{\mathrm{n} V}{\mathrm{~F} 13741}$	
	Typ Slew Rate	$\frac{0.5 \mathrm{~V} / \mu \mathrm{s}}{\mathrm{LF} 13741}$	LF15 LF25s LF35	$\begin{aligned} & 5 \mathrm{~V} / \mu \mathrm{s} \\ & 55 / \mathrm{LF} 155 \mathrm{~A} \\ & 55 \\ & 55 / \mathrm{LF} 355 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \frac{12 \mathrm{~V} / \mu \mathrm{s}}{\mathrm{LF} 156} \\ & \text { LF156A } \\ & \text { LF256 } \\ & \text { LF356 } \\ & \text { LF356A } \end{aligned}$	13 V/ $\mu \mathrm{s}$ LF351 LF351A LF351B LF353 LF353A LF353B LF347 LF347A LF347B	$\begin{aligned} & \frac{50 \mathrm{~V} / \mu \mathrm{s}}{\mathrm{LF} 157} \\ & \text { LF157A } \\ & \text { LF357 } \\ & \text { LF357A } \end{aligned}$		

MILITARY TEMPERATURE RANGE: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$															
Device	Input Offset Voltage Max (mV)	Input Offset Voltage Drift Max $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$		Input Bias Current Max (nA)	Voltage Gain Min (Volts/V)	$\begin{gathered} \text { Bandwidth } \\ \text { AV }_{V}=1 \\ \text { Typ } \\ \text { (MHz) } \end{gathered}$	Slew Rate $A_{V}=1$ $T y p$ $(V / \mu \mathrm{s})$	Output Current Min @ $R_{L}=2 k$ (mA)	Supply Min (V)	Voltage Max (V)	Common Mode Range (V)	Differential Input Voltage (V)	Supply Current $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Max (mA)	Compensation Components Per Amplifier	Package Types
SINGLE OP AMPS															
LH101	6	6 typ	500	1500	25k	1	0.5	5	± 3	± 22	± 12	± 30	3	0	TO-5 F.P.
LM101A	3	15	20	100	25k	1	0.5	5	± 3	± 22	± 12	± 30	3	1	TO-5 DIP F.P.
LM101	6	6 typ	500	1500	25k	1	0.5	5	± 3	± 22	± 12	± 30	3	1	TO-5 F.P.
LM102	7.5	6 typ	*	100	0.999	10	10	$\left(R_{L} \stackrel{1}{=}=8 \mathrm{k} \Omega\right)$	± 12	± 18	± 10	*	5.5	0	TO-5
LM107	3	15	20	100	25k	1	0.5	7.5	± 3	± 22	± 12	± 30	3	0	TO-5 DIP F.P.
LM108A	1	5	0.4	3	40k	1	0.3	1	± 2	± 20	± 14	(Note 1)	0.6	1	TO-5 DIP F.P.
LM108	3	15	0.4	3	25k	1	0.3	1	± 2	± 20	± 14	(Note 1)	0.6	1	TO-5 DIP F.P.
LM110	6	12	*	10	0.999	20	30	$\left(R_{L}{ }^{1}=8 \mathrm{k} \Omega\right)$	± 5	± 18	± 10	*	5.5	0	TO-5 DIP
LM112	3	15	0.4	3	25k	1	0.2	$\begin{gathered} 1.3 \\ \left(R_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \end{gathered}$	± 2	± 20	± 14	(Note 1)	0.6	0	TO-5 DIP F.P.
LM118	4	*	50	250	20k	15	50 min	6	± 5	± 18	± 11.5	(Note 1)	8	0	TO-5 DIP F.P.
LM121A ($\mathrm{R}_{\text {SET }}=70 \mathrm{k}$)	0.65	0.2	1	30	16k	0.5	*	*	± 5	± 20	± 15	± 15	1.5	1	TO-5 DIP F.P.
LM121 ($\mathrm{R}_{\text {SET }}=70 \mathrm{k}$)	1	1	3	30	16 k	0.5	*	*	± 5	± 20	± 15	± 15	1.5	1	TO-5 DIP F.P.
LM143	6	*	7	35	50k	1	2.5	$\left(R_{L} \stackrel{4.4}{\geq} 5 k\right)$	± 4	± 40	± 38	± 40	4	0	TO-5 DIP F.P.
LM144	6	*	7	35	50k	2	$\left(A_{V}{ }^{30}>10\right)$	$\left(R_{L} \geq 5 k\right)$	± 4	± 40	± 38	± 40	4	1	TO-5 DIP F.P.
LF155A	2.5	10	25	0.05	25k	2.5	5	5	± 5	± 22	± 20	± 40	4	0	T0-5
LF155	7	20.	50	0.1	25k	2.5	5	5	± 5	± 22	± 20	± 40	4	0	T0.5
LF156A	2.5	10	25	0.05	25k	5	15	5	± 5	± 22	± 20	± 40	7	0	TO-5
LF156	7	20	50	0.1	25k	5	15	5	± 5	± 22	± 20	± 40	7	0	TO. 5
LF157A ($\mathrm{A}_{\mathrm{V}} \geq 5$)	2.5	10	25	0.05	25k	25	75	5	± 5	± 22	± 20	± 40	7	0	TO-5
LF157 ($A_{V} \geq 5$)	7	20	50	0.1	25k	25	75	5	± 5	± 22	± 20	± 40	7	0	TO-5
LM709A	3	15	250	600	25k	1	0.3	5	± 5	± 22	± 20	± 40	3.6	3	TO-5
LM709	6	6 typ	500	1500	25k	1	0.3	5	± 9	± 18	± 8	± 5	5.5	3	TO-5 DIP
LM725A	0.7	2	18	180	1000	0.5	0.005	5	± 3	± 22	± 13.5	± 5	3.5	4	TO-5 DIP
LM725	1.5	5	40	200	1000	0.5	0.005	5	± 3	± 22	± 13.5	± 5	3.5	4	TO-5 F.P.
LM741A	4	15	70	210	32k	1	0.5	7.5	± 3	± 22	± 12	± 30	4.0	0	T.O-5 DIP F.P.
LM741	6	15 typ	500	1500	25k	1	0.5	5	± 3	± 22	± 12	± 30	2.8	0	TO-5 DIP F.P.
LM748	6	*	500	1500	25k	1	0.5	5	± 3	± 22	± 12	± 30	2.8	1	TO-5
LM4250 ($\left.\mathrm{V}_{\text {S }}= \pm 15 \mathrm{~V}\right)$	4	*	3	7.5	50k	0.1	0.03	$\left(R_{L} \stackrel{0.12}{\geq 100 k}\right)$	± 1	± 18	± 12	± 15	0.011 set	0	TO-5 DIP

Note 1: Inputs have shunt-diode protection; current must be limited. *Not specified

Military Op Amp Selection Guide

Note 1: Inputs have shunt-diode protection; current must be limited.
Note 2: Supply current for all channels of amplifier in the package.
*Not specified

Commercial Op Amp Selection Guide

COMMERCIAL TEMPERATURE RANGE: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$															
Device	Inpụt Offset Voltage Max (mV)	Input Offset Voltage Drift Max $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$	Input Offset Current Max (nA)	Input Bias Current Max (nA)	Voltage Gain Min (Volts/V)	Bandwidth $A V=1$ Typ (MHz)	Slew Rate $A V=1$ Typ (V/ $/ \mathrm{s}$)	$\begin{aligned} & \text { Output } \\ & \text { Voltage } \\ & \text { Swing } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { (V) } \end{aligned}$		pply Itage Max (V)	Common Mode Rejection Ratio (dB) Min	Differential Input Voltage (V)	$\begin{gathered} \text { Supply } \\ \text { Current } \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \text { Max } \\ \text { (mA) } \\ \text { (Note 2) } \end{gathered}$	Compensation Components	Package Types
SINGLE OP AMPS															
LM201	10	10 typ	750	200	15k	1	0.5	5	± 3	± 22	± 12	± 30	3	1	TO-5 F. P.
LM301A	10	30	70	300	15 k	1	0.5	5	± 3	± 18	± 12	± 30	3	1	TO-5 DIP
LM302	20	20 typ	*	30	0.9985	10	10	1	± 12	± 18	± 10	*	5.5	0	TO-5
LM307	10	30	50	250	15k	1	0.5	5	± 3	± 18	± 12	± 30	3	0	TO-5 DIP F.P.
LM308A	0.73	5	1.5	10	60k	1	0.3	1	± 2	± 20	± 14	(Note 1)	0.8	1	TO-5 DIP F.P.
LM308	10	30	1.5	10	15k	1	0.3	1	± 2	± 18	± 14	(Note 1)	0.8	1	TO-5 DIP F.P.
LM310	10	10 typ	*	10	0.999	20	30	1	± 5	± 18	± 10	*.	5.5	0	TO-5 DIP F.P.
LM312	10	30	1.5	10	15k	1	0.3	1	± 2	± 18	± 14	(Note 1)	0.8	0	TO-5 DIP F.P.
LM316A	6	*	0.03	0.1	30k	1	0.3	1	± 5	± 20	± 13	(Note 1)	0.6	0	TO-5 DIP F.P.
LM316	15	*	0.1	0.25	15k	1	0.3	1	± 5	± 20	± 13	(Note 1)	0.8	0	TO-5 DIP F.P.
LM318	15	*	300	750	20k	15	50	5	± 5	± 18	± 11.5	(Note 1)	10	0	TO-5 DIP
LM321A	0.65	0.2	1	25	12k	0.5	*	*	± 5	± 20	± 15	± 15	2.2	1	TO-5 DIP F.P...
(RSET = 70k)															
LM321	2.5	1	4	28	12k	0.5	*	*	± 5	± 20	± 15	± 15	2.2	1	TO-5 DIP F.P.
($\mathrm{RSET}^{\text {a }}$ = 70k)															
LM343	10	*	14	55	50k	1	2.5	4	± 4	± 34	± 34	± 34	5.0	0	TO-5 DIP F.P.
($R_{L} \geq 5 \mathrm{k}$)															
LM344	10	*	14	55	50k	2	30	4	± 4	± 34	± 34	± 34	5.0	1	TO-5 DIP F.P.
($\mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{k}$)															
LF351	10	10 typ	0.1	0.2	25k	4	13	± 12	-18	18	70	± 30	3.4	0	H, N
LF351A	2	10 typ	0.05	0.2	50k	4	13	± 12	-18	18	80	± 30	2.8	0	H, N
LF351B	5	10 typ	0.1	0.1	50k	4	13	± 12	-18	18	80	± 30	2.8	0	H, N
LF355A	2.3	5	1	5	25k	2.5	5	5	± 5	± 22	± 20	± 40	4	0	TO-5, Mini-DIP
LF355	13	5 typ	2	8	15k	2.5	5	5	± 5	± 18	± 16	± 30	4	0	TO.5, Mini DIP
LF356A	2.3	5	1	5	25k	5	15	5	± 5	± 22	± 20	± 40	10	0	TO-5, Mini-DIP
LF356	13	5 typ	2	8	15k	5	15	5	± 5	± 18	± 16	± 30	10	0	TO-5, Mini-DIP
LF357A	2.3	5	1	5	25k	25	75	5	± 5	± 22	± 20	± 40	10	0	TO-5, Mini-DIP
($A V \geq 5$)															
LF357	13	5 typ	2	8	15k	25	75	5	± 5	± 18	± 16	± 30	10	0	TO-5, Mini DIP
($A v \geq 5$)															
LF13741	20	10 typ	2	8	15k	1	0.5	5	± 4	± 18	± 16	± 30	4	0	TO-5, Mini-DIP
Note 1: Inputs have shunt-diode protection; current must must be limited.							*Not specified								

COMMERCIAL TEMPERATURE RANGE $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Device	Input Offset Voltage Max (mV)	Input Offset Voltage Drift Max $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$	Input Offset Current Max (nA)	Input Bias Current Max (nA)	$\begin{aligned} & \text { Voltage } \\ & \text { Gain } \\ & \text { Min } \\ & \text { (Volts/V) } \end{aligned}$	$\begin{aligned} & \text { Bandwidth } \\ & \text { AV }=1 \\ & \text { Typ } \\ & \text { (MHz) } \end{aligned}$	Slew Rate $A V=1$ Typ (V/ $/ \mathrm{s}$)	Output Voltage Swing $R_{L}=10 \mathrm{k} \Omega$ (V)	Sup Vol Min (V)	pply Itage Max (V)	Common Mode Rejection Ratio (dB) Min	Differential Input Voltage (V)	Supply Current $\mathrm{T}_{\mathrm{A}} \mathrm{A}=25^{\circ} \mathrm{C}$ Max (mA) (Note 2)	Compensation Components	Package Types
SINGLE OP AMPS (Continued)															
LM709C	10	12 typ	500	1500	15k	1	0.3	5	± 9	± 18	± 8	± 5	6.6	3	TO-5 DIP
LM725C	3.5	2 typ	50	250	125k	0.5	0.005	5	± 3	± 22	± 13.5	± 5	5	4	TO-5 DIP
LM741C	7.5	15 typ	300	800	15k	1	0.5	5	± 3	± 18	± 12	± 30	2.8	0	TO-5 DIP F.P.
LM741E	4	15	70	210	32k	1	0.5	7.5	± 3	± 18	± 12	± 30	3.75	0	TO-5 DIP F.P.
LM748C	6	6	0.5	1.5	25k	1	0.5	5	± 3	± 18	± 12	± 30	2.8	1	TO-5 DIP
LM4250C	6	*	8	10	50k	0.1	0.03	0.12	± 1	± 18	± 12	± 15	0.011	0	TO-5 DIP
							($\mathrm{A}_{\mathrm{V}}>10$)	($R_{L} \geq 100 \mathrm{k}$)					(Set)		
DUAL OP AMPS															
LF353	10	10 typ	0.1	0.2	25k	4	13	± 12	-18	18	70	± 30	3.4	0	N, H
LF353A	2	10 typ	0.05	0.2	50k	4	13	± 12	-18	18	80	± 30	2.8	0	N, H
LF353B	5	10 typ	0.1	0.1	50k	4	13	± 12	-18	18	80	± 30	2.8	0	N H
LM358	7.5	7 typ	150	500	15k	1	*	8	± 1.5	± 15	$\mathrm{V}^{+}-1.5$	v^{+}	1.2	0	TO-5 DIP
LM1458	6	*	300	800	15k	1	0.2	5	± 3	± 18	± 15	± 30	5.6	0	TO.5 DIP
LM747C	6	*	300	800	15k	1	0.5	5	± 3	± 18	± 12	± 30	5.6	0	DIP
LM747E	4	- 15	70	210	32k	1	0.5	7.5	± 3	± 18	± 12	± 30	5.6	0	DIP
QUAD OP AMPS															
LF347	10	10 typ	0.01	0.2	25k	4	13	± 12	-18	18	70	± 30	3.4	0	N, J
LF347A	2	10 typ	0.05	0.2	50k	4	13	± 12	-18	18	80	± 30	2.8	0	N, J
LF347B	5	10 typ	0.1	0.1	50k	4	13	± 12	-18	18	80	± 30	2.8	0	N, J
LM324	9	7 typ	150	500	15k	1	*	10-source	3	32	$\mathrm{V}^{+}-1.5$	32	2	0	DIP F. P.
								5-sink	$(\pm 1.5)(\pm 16)$			-			
LM346	5	10 typ	100	250	100k	0.8	0.4	± 12	-18	18	70	± 30	0.62	0	N, J
LM348.	7.5	15 typ	100	400	15k	1	*	5	± 5	± 18	± 18	± 36	4.5	0	DIP F.P.
LM349	7.5	15 typ	100	400	15k	4	3	5	± 5	± 18	± 18	± 36	4.5	0	DIP F. P.
($\mathrm{V}_{\mathrm{V}} \geq 5$)															
LM3900	*	*	*	200	2.8 k	2.5	20	10	4	36	*	*	10	0	DIP
									($\pm 2)$.		

Note 2: Supply current for all channels of amplifier in the package

SPECIAL FUNCTION OPERATIONAL AMPLIFIERS

Features	Input Ofiset Voltage Max (mV)	Input Voltage Drift $\underset{\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)}{\mathrm{Ty}}$	Input Offset Current Max (nA)	Input Bias Current Max (nA)		$\begin{gathered} \text { Bandwidth } \\ A_{y}=1 \\ T_{\mathrm{YP}} \\ \text { (MHz) } \end{gathered}$	Slew Rate $A_{y}=1$ Typ ($\mathrm{V} / \mathrm{\mu} \mathrm{~s}$)	Output Current (mA)	Supply Voltage		Temperature Range			Page Number
									Min (V)	Max (V)	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & 70^{\circ} \mathrm{C} \end{aligned}$	
Micropower Low Drift	1	4	20	100	25	1	0.25	± 5	± 5	± 20	LH0001			1-4
	2.5	3	20	100	25	1	0.25	± 5	± 5	± 20	LH0001A			1.7
	5	3	60	200	25	1	0.25	± 5	± 5	± 20		LH0001AC		1.7
Wideband	3	4	200	2000	15	30	30	± 100	± 5	± 20	LH0003	LH0003C		$1 \cdot 10$
High Voltage	1	4	20	100	30	1	0.25	± 15	± 5	± 45	LH0004			$1 \cdot 12$
	1.5	4	45	120		1	0.25	± 15	± 5	± 45		LH0004C		$1 \cdot 12$
Wideband	3	10	5	25	4	30 (1)	20 (1)	± 50	± 9	± 20	$\begin{aligned} & \text { LH0005A } \\ & \text { LH0005 } \end{aligned}$	LH0005C		$1-15$
	$\therefore 10$	20	20	50	2	30 (1)	20 (1)	± 50	± 9	± 20				1.15
	10	25	25.	100	2	30 (1)	20 (1).	± 50	± 9	± 20				$1 \cdot 18$
High Gain Medium Power	2.5	10	50	250	100	1	0.25	± 40	± 5	± 22	LH0020	LH0020C		1.20
	6	10	200	500	50	1	0.25	± 40	± 5	± 22				1.20
High Power	3	3	100	300	100	1	3	± 1000	± 5	± 18	LH0021	- LH0021C		$1-22$
	6	5	200	500	100	1	3	± 1000	± 5	± 18				$1-22$
	3	3	100	300	100	1	3	± 200	± 5	± 18	LH0041	LH0021C		$1-22$
	6	5	200	500	100	1	3	± 200	± 5	± 18		LH0041C LH0061C		1-22
	4	5	100	300	50	15	70	± 500	± 5	± 18	LH0061			$1-61$
	10	5	200	500	25	15	70	± 500	± 5	± 18				1.61
General Purpose FET Input	4	5	0002	0.01	100	1	3	± 10	± 5	± 22	LH0022	LH0022C		$1-29$
	6	5	0.005	0.025	75	1	3	± 10	± 5	± 22	LH0042			$1-29$
	20	5	0.005	0.025	50	1	3	± 10	± 5	± 22		LH0022C		$1-29$
	20	10	0.01	0.05	25	1	3	± 10	± 5	± 22		LH0042C		$1-29$
	0.5	2	0.0005	0.0025	100	1	3	± 10	± 5	± 22	LH0052			1.29
	1	5	0.001	0.005	75	1	3	± 10	± 5	± 22		LH0052C		1-29
Wıdeband High Slew Rate	4	20	5.000	30,000	4	50	500	± 10	± 9	± 18	LH0024	LH0024C		$1-36$
	8	25	15,000	40.000	3	50	400	± 10	± 9	± 18				1-36
Wideband FET Input	5	25	0.025	0.1	1	70	500	± 10	± 5	± 18	LH0032	LH0032C		1-39
	15	25	$0.05 \geqslant$	0.2	1	70	500	± 10	± 5	± 18				$1-39$
Precision FET Input	0.05	0.2	5	30	500	0.4	0.06	± 1.3	± 3	± 20		$\begin{aligned} & \text { LH0044C } \\ & \text { LH0044AC } \\ & \text { LH0044B } \\ & \hline \end{aligned}$		1.44
	0.1	0.2	5	30	500	0.4	0.06	± 1.3	± 3	± 20				1.44
	0.025	0.1	2.5	15	1.000	0.4	0.06	± 1.3	± 3	± 20				1.44
	0.025	0.1	2.5	15	1,000	0.4	0.06	± 1.3	± 3	± 20				1.44
	0.05	0.2	5	30	500	0.4	0.06	± 1.3	± 3	± 20				1.44
Medium Speed. FET Input	5	5	0.002	0.01	50	15	70	± 6	± 5	± 20	LH0062	LH0062C		1.64
	15	10	0.005	0.065	25	15	70	± 6	± 5	± 20				1.64
Dual Precision	2	15	10	75	50	1	0.5	± 5	± 3	± 22	LH2101A	LH2201A	LH2301A	1.72
	2	15	10	75	50	1	0.5	± 5	± 3	± 22				1.72
	7.5	30	50	250	25	1	0.5	± 5	± 3	± 22				1.72
	0.5	5	0.2	2	80	1	0.3	± 1	± 2	± 20	LH2108A			1.74
	0.5	5	0.2	2	80	1	0.3	± 1	± 2	± 20		LH2208A		1.74
	0.5	5	1.0	7	80	1	0.3	± 1	± 2	± 20	LH2108	LH2208	LH2308A	1.74
	2	15	0.2	2	50	1	0.3	± 1	± 2	± 20				1.74
	2	15	0.2	2	50	1	0.3	± 1	± 2	± 20				1.74
	7.5	30	1.0	7	50	1	0.3	± 1	± 2	± 20			LH2308	1.74
Dual Low Power	3	-	5	15	100	0.25	0.16	± 0.75	± 1	± 18	LH24250	LH24250C	-	1.76
	6	-	10	30	75	0.25	0.16	± 0.75	± 1	± 18				1.76

Note: For information on monolithic operational amplifiers, consult the Linear Databook.
Note 1: Specified for $A_{v}=-10$.
*Refers to Special Functions Databook, 1979 edition

SPECIAL FUNCTION BUFFER AMPLIFIERS

Features	Voltage Gain (min)	Output Current	Slew Rate	Input Impedance	Part Number		
					$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$	$-25^{\circ} \mathrm{C} \text { to }$	
Bipolar Input, medium speed	0.95	$\pm 100 \mathrm{~mA}$	$200 \mathrm{~V} / \mu \mathrm{s}$	$180 \mathrm{~K} \Omega$	LH0002H	LH0002CH LH0002CN	$\begin{aligned} & 2-4 \\ & 2-4 \end{aligned}$
FET Input, high speed	0.97	$\pm 100 \mathrm{~mA}$	$1000 \mathrm{~V} / \mathrm{ms}$	$10^{10} \Omega$	LH0033G	$\begin{aligned} & \text { LH0033CG } \\ & \text { LH0033CJ } \end{aligned}$	2.7 2.7
FET Input, very high speed	0.95	$\pm 250 \mathrm{~mA}$	$2000 \mathrm{~V} / \mathrm{s} \mathrm{s}$	$10^{10} \Omega$	LH0063K	LH0063CK	2.7

*Refers to Special Functions Databook, 1979 edition

Operational Amplifiers/Buffers

Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.

Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.

Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. \% harmonic distortion $=$

$$
\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2} \cdot(100 \%)}{V 1}
$$

where V 1 is the rms amplitude of the fundamental and V2, V3, V4, . . . are the rms amplitudes of the individual harmonics.

Input Bias Current: The average of the two input currents.

Input Common-Mode Voltage Range: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.

Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance $\left(R_{S}\right)$ and load resistance (R_{L}).

Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.

Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.

Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

Output Resistance: The small signal resistance seen at the output with the output voltage near zero.

Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.

Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.

Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.

Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies..

Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.

Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.

Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers

LF155, LF155A, LF255, LF355, LF355A, LF355B low supply current
LF156, LF156A, LF256, LF356, LF356A, LF356B wide band
LF157, LF157A, LF257, LF357, LF357A, LF357B wide band decompensated ($A V_{M I N}=5$)

General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FET Technology). These amplifiers feature low input bias and offset currents, low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low $1 / \mathrm{f}$ noise corner.

Advantages

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance-very low $1 / \mathrm{f}$ corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads $(10,000 \mathrm{pF})$ without stability problems
- Internal compensation and large differential input voltage capability

Applications

- Precision high speed integrators
- Fast D / A and A / D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers
- Logarithmic amplifiers
- Photocell amplifiers
- Sample and Hold circuits

Common Features

(LF155A, LF156A, LF157A)

- Low input bias current 30 pA
- Low Input Offset Current 3 pA
- High input impedance $10^{12} \Omega$
- Low input offset voltage 1 mV
- Low input offset voltage temperature $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift
- Low input noise current
$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High common-mode rejection ratio : 100 dB
- Large dc voltage gain 106 dB

Uncommon Features

LF155A LF156A | LF157A |
| :--- |
| $(A V=5)^{*}$ | UNITS

■ Extremely $\begin{array}{lllll}4 & 1.5 & 1.5 & \mu \mathrm{~s}\end{array}$ fast settling time to 0.01\%

- Fast slew $\begin{array}{lllll}\text { rate } & 5 & 12 & 50 & \mathrm{~V} / \mu \mathrm{s}\end{array}$
- Wide gain bandwidth
- Low input 20

12
20 MHz noise voltage

Simplified Schematic

Absolute Maximum Ratings	LF155A/6A/7A	LF155/6/7	LF355B/6B/7B LF255/6/7 LF355B/6B/7B	LF355A/6A/7A LF355/6/7
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (P_{d} at $25^{\circ} \mathrm{C}$) and Thermal Resistance $\left(\theta_{j} A\right)$ (Note 1)				
$\mathrm{T}_{\mathrm{jMAX}}$				
(H and J Package)	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
(N Package)			$100^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
(H Package) P_{d}	670 mW	670 mW	570 mW	570 mW
$\theta_{\mathrm{j}} \mathrm{A}$	$150^{\circ} \mathrm{C} / \mathrm{W}$	$150^{\circ} \mathrm{C} / \mathrm{N}$	$150^{\circ} \mathrm{C} / \mathrm{W}$	$150^{\circ} \mathrm{C} / \mathrm{W}$
(J Package) P_{d}	670 mW	670 mW	570 mW	570 mW
$\theta_{\text {j }}$	$140^{\circ} \mathrm{C} / \mathrm{W}$			
(N Package) $\quad \mathrm{P}_{\mathrm{d}}$			500 mW	500 mw
$\theta_{\text {j }} \mathrm{A}$			$155^{\circ} \mathrm{C} / \mathrm{W}$	$155^{\circ} \mathrm{C} / \mathrm{W}$
Differential Input Voltage	$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 16 \mathrm{~V}$
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
Storage Temperature Range	- $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	- $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	- $300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 3)

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS	LF155A/355A			LF156A/356A			LF157A/357A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
SR	Slew Rate	LF155A/6A; AV $=1$, LF157A; AV = 5	3	5		10	12		40	50		$\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	(Note 7)		2.5		4	4.5		15	20		MHz
t_{5}	Settling Time to 0.01\%			4	-		1.5			1.5		$\mu \mathrm{s}$
e_{n}	Equivalent Input Noise	$\begin{aligned} & \mathrm{RS}=100 \Omega \\ & \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$								15		
	Voltage			25 25			15 12			15 12		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & f=1000 \mathrm{~Hz} \end{aligned}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Noise Current			. 0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
CIN	Input Capacitance			' 3			3			3		pF

DC Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS	LF155/6/7			$\begin{gathered} \text { LF255/6/7 } \\ \text { LF355B/6B/7B } \end{gathered}$			LF355/6/7			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Vos	Input Offset Voltage	$R_{S}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ Over Temperature		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		3	$\begin{gathered} 5 \\ 6.5 \end{gathered}$		3	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
$\Delta V_{\text {OS }} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		5			5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta T C / \Delta V_{\text {OS }}$	Change in Average TC with VOS Adjust	$\mathrm{R}_{S}=50 \Omega$, (Note 4)		0.5			0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV
Ios	Input Offset Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3,5! \\ & T_{j} \leq T_{\text {HIGH }} \end{aligned}$		3	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		3	$\begin{aligned} & 20 \\ & 1 \end{aligned}$		3	$\begin{aligned} & 50 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
${ }_{1} \mathrm{~B}$	Input Bias Current	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & T_{J} \leq T_{\text {HIGH }} \end{aligned}$		30	$\begin{aligned} & 100 \\ & 50 \end{aligned}$		30°	$\begin{aligned} & 100 \\ & 5 \end{aligned}$		30	$\begin{aligned} & 200 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
RIN	Input Resistance	$T_{J}=25^{\circ} \mathrm{C}$		10^{12}			10^{12}			10^{12}		Ω
$\mathrm{AV}_{\mathrm{OL}}$	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	50	200		50	200		25	200		V / mV
			25			25			15			V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	± 12	± 13		± 12	± 13		± 12	± 13		V
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	± 10	± 12		± 10	± 12		± 10	± 12		V
$V_{C M}$	Input Common-Mode Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15.1 \\ & -12 \end{aligned}$		± 11	$\begin{aligned} & +15.1 \\ & -12 \end{aligned}$		± 10	$\begin{aligned} & +15.1 \\ & -12 \end{aligned}$		V
CMRR	Common-Mode Rejection Ratio		85	100		85	100		80	100		dB
PSRR	Supply Voltage RejecRatio	(Note 6)	85	100		85	100		80	100		dB

DC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

PARAMETER	$\begin{gathered} \text { LF155A/155, } \\ \text { LF255, } \\ \text { LF355A/355B } \end{gathered}$		LF355		LF156A/156, LF256/356B		LF356A/356		LF157A/157 LF257/357B		LF357A/357		UNITS
	TYP	MAX											
Supply Current	2	4	2	4	5	7	5	10	5	7	5	10	mA

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VS}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS	$\begin{gathered} \text { LF155/255/ } \\ 355 / 355 B \\ \hline \end{gathered}$	LF156/256, LF356B	$\begin{gathered} \text { LF156/256/ } \\ 356 / 356 B \end{gathered}$	$\begin{gathered} \text { LF157/257, } \\ \text { LF357B } \\ \hline \end{gathered}$	$\begin{gathered} \text { LF } 157 / 257 / \\ 357 / 357 B \\ \hline \end{gathered}$	UNITS
			TYP	MIN	TYP	MIN	TYP	
SRGBWtrt_{5}	Slew Rate	LF155/6: $A V=1$, LF157: $A V=5$	5	7.5	12	30	50	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
	Gain Bandwidth Product		2.5		5		20	MHz
	Settling Time to 0.01\%	(Note 7)	4		1.5		1.5	$\mu \mathrm{s}$
	Equivalent Input Noise	$\mathrm{R}_{\mathrm{S}}=100 \Omega$						-
	Voltage	$f=100 \mathrm{~Hz}$	25		15		15	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1000 \mathrm{~Hz}$	20		12		12	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input	$f=100 \mathrm{~Hz}$	0.01		0.01		0.01	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Current Noise	$\mathrm{f}=1000 \mathrm{~Hz}$	0.01		0.01		0.01	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{CIN}_{\text {I }}$	Input Capacitance		3		3		3	pF

Notes for Electrical Characteristics

Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{j A}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $\mathrm{P}_{\mathrm{d}}=\left(\mathrm{T}_{\mathrm{j} M A X}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{jA}}$ or the $25^{\circ} \mathrm{C} \mathrm{P}_{\mathrm{dM}} / \mathrm{AX}$, whichever is less.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: Unless otherwise stated, these test conditions apply:

	$\begin{gathered} \text { LF155A/6A/7A } \\ \text { LF155/6/7 } \end{gathered}$	LF255/6/7	LF355A/6A/7A	LF355B/6B/7B	LF355/6/7
Supply Voltage, V_{S}	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \pm 20 \mathrm{~V}$	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$
$\mathrm{T}_{\text {A }}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
THIGH	$+125^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

and $V_{O S}, I_{\mathrm{B}}$ and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The Temperature Coefficient of the adjusted input offset voltage changes only a small amount ($0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd}_{\mathrm{d}} \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\Theta_{\mathrm{jA}} \mathrm{Pd}$ where Θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
Note 7: Settling time is defined here, for a unity gain inverter connection using $2 \mathrm{k} \Omega$ resistors for the LF155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10 V step input is applied to the inverter. For the LF157, $A_{V}=-5$, the feedback resistor from output to input is $2 \mathrm{k} \Omega$ and the output step is 10 V (See Settling Time Test Circuit, page 3-9).

Typical DC Performance Characteristics

Curves are for LF155, LF156 and LF157 unless otherwise specified.

Typical DC Performance Characteristics

Typical AC Performance Characteristics

LF 155 Small Signal Pulse Response, $A_{V}=+1$

TIME ($0.5 \mu \mathrm{~s} / \mathrm{DIV}$)

LF 155 Large Signal Pulse Response, $A_{V}=+1$

Gain Bandwidth

LF 156 Small Signal Pulse Response, $A_{V}=+1$

TIME ($0.5 \mu \mathrm{~s} / \mathrm{DIV}$)

LF 156 Large Signal Pulse Response, $A_{V}=+1$

Output Voltage Swing

LF157 Small Signal Pulse Response, $A_{V}=+5$

tIME ($0.1 \mu \mathrm{~h} / \mathrm{DIV}$)

LF 157 Large Signal Pulse Response, $A_{V}=+5$

Typical AC Performance Characteristics（Continued）

(Sヨコч930) ヨS甘Hd

Bode Plot

Power Supply Rejection Ratio

Open Loop Frequency Response

Power Supply Rejection
Ratio

Equivalent Input Noise Voltage（Expanded Scale）

Typical AC Performance Characteristics (Continued)

Detailed Schematic

Connection Diagrams (Top Views)

Note 4: Pin 4 connected to case.

Dual-In-Line Package (N or J)

Order Number LF355N, LF356N

Application Hints

The LF155/6/7 series are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accomodated without, a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-mode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed
in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole: is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Circuit Connections

- $V_{\text {OS }}$ is adjusted with a $25 k$ potentiometer
- The potentiometer wiper is connected to V^{+}
- For potentiometers with temperature coefficient of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less the additional drift with adjust is $\approx 0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} / \mathrm{mV}$ of adjustment
- Typical overall drift: $5 \mu \mathrm{~V} /$ ${ }^{\circ} \mathrm{C} \pm 10.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} / \mathrm{mV}$ of adj.)

LF157. A Large Power BW Amplifier

For distortion $\leq 1 \%$ and a 20 Vp-p VOUT swing, power bandwidth is: 500 kHz .

Due to a unique output stage design, these ampli-
fiers have the ability to drive large capacitive loads . and still maintain stability. $C_{L}(M A X) \cong 0.01 \mu \mathrm{~F}$.
Overshoot $\leq 20 \%$
Settling time $\left(\mathrm{t}_{\mathrm{s}}\right) \cong 5 \mu \mathrm{~s}$

Typical Applications

Settling Time Test Circuit

- Settling time is tested with the LF155/6 connected as unity gain inverter and LF157 connected for $A_{V}=-5$
- FET used to isolate the probe capacitance
- Output $=10 \mathrm{~V}$ step
- $A V=-5$ for LF157

Large Signal Inverter Output, VOUT (from Settling Time Circuit)

Low Drift Adjustable Voltage Reference

- $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{T}= \pm 0.002 \% /{ }^{\circ} \mathrm{C}$
- All resistors and potentiometers should be wire-wound
- P1: drift adjust
- P2: VOUT adjust
- Use LF155 for

4 Low I_{B}

- Low drift
- Low supply current

Typical Applications (Continued)

$\left|V_{O U T}\right|=\left[1+\frac{R 2}{R_{T}}\right] \frac{k T}{q} \ln V_{i}\left[\frac{R_{r}}{V_{R E F} R_{i}}\right]=\log V_{i} \frac{1}{R_{i} I_{r}} \quad R 2=15.7 k, R_{T}=1 k, 0.3 \%{ }^{\circ} C$ (for temperature compensation)

Precision Current Monitor

8-Bit D/A Converter with Symmetrical Offset Binary Operation

- R1, R2 should be matched within $\pm 0.05 \%$
- Full-scale response time: $3 \mu \mathrm{~s}$

$\mathbf{E}_{\mathbf{O}}$	B1	B2	B3	B4	B5	B6	B7	B8	COMMENTS
+9.920	1	1	1	1	1	1	1	1	Positive Full-Scale
+0.040	1	0	0	0	0	0	0	0	$(+)$ Zero-Scale
-0.040	0	1	1	1	1	1	1	1	$(-)$ Zero-Scale
-9.920	0	0	0	0	0	0	0	0	Negative Full-Scale

- $V_{\mathrm{OUT}}=\frac{\mathrm{R} 3}{\mathrm{R}}\left[\frac{2 \mathrm{R} 2}{\mathrm{R} 1}+1\right] \Delta \mathrm{V}, \mathrm{V}^{-}+2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }}$ common-mode $\leq \mathrm{V}^{+}$
- System VOS adjusted via A2 VOS adjust
- Trim R3 to boost up ${ }^{\text {C CMRR }}$ to 120 dB . Instrumentation amplifier Resistor array RA201 (National Semiconductor) recommended

- Both amplifiers (A1;A2) have feedback loops individually closed with stable responses (overshoot negligible)
- Acquisition time T_{A}, estimated by:
$T_{A} \cong\left[\frac{2 R_{O N}, V_{I N}, C_{h}}{S_{r}}\right] \quad 1 / 2{ }_{\text {provided that: }}$
$V_{\text {IN }}<2 \pi S_{r} R_{\text {ON }} C_{h}$ and $T_{A}>\frac{V_{I N} C_{h}}{\text { IOUT(MAX) }}$, RON is of SW1
If inequality not satisfied: $T_{A} \cong \frac{V_{1 N} C_{h}}{20 \mathrm{~mA}}$
- LF156 developes full S_{r} output capability for $V_{I N} \geq 1 V$
- Addition of SW2 improves accuracy by putting the voltage drop across SW1 inside the feedback loop
- Overall accuracy of system determined by the accuracy of both amplifiers, A1 and A2

Typical Applications (Continued)

High Accuracy Sample and Hold

- By closing the loop through A2, the VOUT accuracy will be determined uniquely by A1. No $V_{O S}$ adjust required for $A 2$.
- TA can be estimated by same considerations as previously but, because of the added propagation delay in the feedback loop (A2) the overshoot is not negligible.
- Overall system slower than fast sample and hold
- $\mathrm{R} 1, \mathrm{C}_{\mathrm{C}}$: additional compensation
- Use LF156 for

A Fast settling time
4 Low V_{OS}

High Q Band Pass Filter

- By adding positive feedback (R2) Q increases to 40
- $f_{B P}=100 \mathrm{kHz}$

$$
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=10 \sqrt{\bar{\sigma}}
$$

- Clean layout recommended
- Response to a $1 \mathrm{Vp}-\mathrm{p}$ tone burst: $300 \mu \mathrm{~s}$

- $2 R 1=R=10 \mathrm{M} \Omega$ $2 \mathrm{C}=\mathrm{C} 1=300 \mathrm{pF}$
- Capacitors should be matched to obtain high Q
- $\mathrm{f}_{\mathrm{NOTCH}}=120 \mathrm{~Hz}$, notch $=-55 \mathrm{~dB}, \mathrm{Q}>100$
- Use LF155 for
- Low IB
- Low supply current

Operational Amplifiers/Buffers

7 National Semiconductor LF347 Wide Bandwidth Quad JFET Input Operational Amplifier

General Description

The LF347 is a low cost, high speed quad JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF347 is pin compatible with the standard LM348. This feature allows designers to immediately upgrade the overall performance of existing LM348 and LM324 designs.

The LF347 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift.

Features

- Internally trimmed offset voltage 2 mV
- Low input bias current 50 pA
m. Low input noise voltage $\quad 16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$

■ Wide gain bandwidth 4 MHz

- High slew rate $13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current 7.2 mA
- High input impedance $10^{12 \Omega}$
- Low total harmonic distortion $A V=10, \quad<0.02 \%$
$R_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$
- Low 1/f noise corner $\quad 50 \mathrm{~Hz}$
- Fast settling time to $0.01 \% \quad 2 \mu \mathrm{~s}$

Simplified Schematic

1/4 Quad

Connection Diagram

Dual-In-Line Package

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Range
$\mathrm{T}_{\mathrm{j}}(\mathrm{MAX})$
Differential Input Voltage
Input Voltage Range (Note 2)
Output Short Circuit Duration (Note 3)
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$\pm 18 \mathrm{~V}$
500 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$115^{\circ} \mathrm{C}$
$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
Continuous
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 4)

AC Electrical Characteristics (Note 4)

SYMBOL	PARAMETER	CONDITIONS	LF347A			LF347B			LF347			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
	Amplifier to Amplifier Coupling	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & f=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$,	-120	,		-120			-120	.	dB
SR	Slew Rate	$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$		13	-		13			13		$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4			4			4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		16		,	16			16		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$i_{\text {n }}$	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01	.		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of $125^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $95^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: P_{D} max rating cannot be exceeded.
Note 4: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} . V_{O S}, I_{B}$ and $I_{O S}$ are measured at $V_{C M}=0$.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\Theta_{j A} P_{D}$ where $\Theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

Typical Performance Characteristics

Typical Performance Characteristics（Continued）

Pulse Response

Application Hints

The LF347 is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET $1 I^{\top M}$). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be
allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a

Application Hints (Continued)

high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.

Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

The LF347 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed
backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to $A C$ ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

- Accuracy of better than 0.4% with standard 1% value resistors
- No offset adjustment necessary
- Expandable to any number of stages
- Very high input impedance

Long Time Integrator with Reset, Hold and Starting Threshold Adjustment

Typical Applications（Continued）

National Semiconductor LF351 Wide Bandwidth JFET Input Operational Amplifier

Operational Amplifiers/Buffers

General Description

The LF351 is a low cost high speed JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF351 is pin compatible with the standard LM741 and uses the same offset voltage adjustment circuitry. This feature allows designers to immediately upgrade the overall performance of existing LM741 designs.

The LF351 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift, but for applica-
tions where these requirements are critical, the LF356 is recommended. If maximum supply current is important, however, the LF351 is the better choice.

Features

- Internally trimmed offset voltage	2 mV
- Low input bias current	50 pA
- Low input noise voltage	$16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth	4 MHz
- High slew rate	$13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current	1.8 mA
- High input impedance	1012Ω
- Low total harmonic distortion $\mathrm{AV}=10$,	$<0.02 \%$
\quad RL $=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp} \mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$	
- Low $1 / \mathrm{f}$ noise corner	50 Hz
- Fast settling time to 0.01%	$2 \mu \mathrm{~s}$

Typical Connection

Simplified Schematic

Connection Diagrams (Top Views)

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Range
T_{j} (MAX)
Differential Input Voltage
Input Voltage Range (Note 2)
Output Short Circuit Duration
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$\pm 18 \mathrm{~V}$
500 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$115^{\circ} \mathrm{C}$
$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
Continuous
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS	LF351A			LF351B			LF351			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Vos	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		1	$\begin{aligned} & 2 \\ & 4 \end{aligned}$		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\begin{aligned} & \mathrm{RS}=10 \mathrm{k} \Omega \\ & \mathrm{LF} 351 \mathrm{~A}-1, \mathrm{LF} 351 \mathrm{~B}-1 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	20		10 10	30		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IOS	Input Offset Current	$\begin{aligned} & T_{i}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		25	100 2		25	100 4		25	100 4	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
IB	Input Bias Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		50	$\begin{aligned} & 200 \\ & 4 \end{aligned}$		50	$\begin{aligned} & 200 \\ & 8 \end{aligned}$		50	200 8	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1012			1012	.		10^{12}		Ω
AVOL	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	50 25	100		50 25,	100		25 15	100		V / mV V / mV
Vo	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		± 12	± 13.5		± 12	± 13.5		v
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		V
- CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		80	100		70.	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 5)	80	100		80	100		70	100		dB
IS	Supply Current			1.8	2.8		1.8	2.8		1.8	3.4	mA

AC Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS	LF351A			LF351B			LF351			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
SR	Slew Rate	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}{ }^{\prime}$	10	13			13			13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$	3	4			4			4		MHz
en_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		16			16			16		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
$\mathrm{in}^{\text {n }}$	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\Theta_{j A} P_{D}$ where $\Theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 5: Supply voltage rejection ratio is measured for, both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

Typical Performance Characteristics

Positive Common-Mode Input Voltage Limit

Gain Bandwidth

Negative Common-Mode Input Voltage Limit

Voltage Swing

Bode Plot

Supply Current

Slew Rate

Typical Performance Characteristics (Continued)

Common-Mode Rejection

Open Loop Voltage Gain (V/V)

Undistorted Output Voltage Swing

Power Supply Rejection

Output Impedance

Equivalent Input Noise Voltage

Pulse Response

Current Limit $\left(R_{L}=100 \Omega\right)$

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

Application Hints

The LF351 is an op amp with an internally trimmed input offset vol tage and JFET input devices (BI-FET $1 I^{\top M}$). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large ir.crease in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be
allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a

Application Hints (Continued)

high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.

The LF351 is biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

The LF351 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed
backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in.a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to $A C$ ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

Typical Applications

Supply Current Indicator/Limiter

- $V_{\text {OUT }}$ switches high when $R_{S} l_{S}>V_{D}$

Hi-ZIN Inverting Amplifier

Parasitic input capacitance $\mathbf{C 1} \cong(3 \mathrm{pF}$. for LF351 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate, add C2 such that: $\mathrm{R} 2 \mathrm{C} 2 \cong \mathrm{R} 1 \mathrm{C} 1$.

Ultra-Low (or High) Duty Cycle Pulse Generator
Long Time Integrator

- TOUTPUT HIGH \approx R1C $\ln \frac{4.8-2 V_{S}}{4.8-V_{S}}$
- toutPut Low \approx R2C $\ln \frac{2 \mathrm{~V}_{\mathrm{S}}-7.8}{\mathrm{~V}_{\mathrm{S}}-7.8}$
where $\mathrm{V}_{\mathrm{S}}=\mathrm{V}^{+}+\left|\mathrm{V}^{-}\right|$
${ }^{*}$ Iow leakage capacitor

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

Features

- Internally trimmed offset voltage 2 mV
- Low input bias current , 50 pA
- Low input noise voltage $16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current $0.01 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$
- Wide gain bandwidth 4 MHz
- High slew rate $13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current 3.6 mA
- High input impedance . $10^{12} \Omega$
- Low total harmonic distortion $A V=10, \quad<0.02 \%$ $R_{L}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$
- Low 1/f noise corner

50 Hz

- Fast settling time to 0.01%

General Description

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET $I^{T M}$ technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF353 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and LM358 designs.

These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

Simplified Schematic

Typical Connection

LF353H Metal Can Package (Top View)

Order Number LF353AH or LF353BH
See NS Package H08C

Connection Diagrams

Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{j}(\mathrm{MAX}$)	$115^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 3)	Continuous
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, $\mathbf{1 0}$ seconds)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics
(Note 4)

SYMBOL	PARAMETER	CONDITIONS	LF353A			LF353B			LF353			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
VOS	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		1	$\begin{aligned} & 2 \\ & 4 \end{aligned}$		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$,		10	20		10	30		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IOS	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		25	100 2		25	100 4		25	100 4	pA nA
IB	Input Bias Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		50			50	$\begin{aligned} & 200 \\ & 8 \end{aligned}$		50	200 8	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1012			1012			10^{12}	,	Ω
AVOL	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	50 25	100		50 25	100		25 15	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.	± 12	± 13.5		± 12	± 13.5		± 12	± 13.5		V
$V_{\text {CM }}$	Input Common-Mode Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	80	100		80	100		70	100		dB
Is	Supply Current			3.6	5.6		3.6	5.6		3.6	6.5	mA

AC Electrical Characteristics (Note 4)

SYMBOL	PARAMETER	CONDITIONS	LF353A			LF353B			LF353			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
	Amplifier to Amplifier Coupling	$T_{A}=25^{\circ} \mathrm{C}, f=1 \mathrm{~Hz}-$ 20 kHz (Input Referred)		-120		-	-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	13			13			13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product .	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	3	4			4		.	4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		16			16			16	.	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01	-		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for the N package, and $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for the H package.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: The power dissipation limit, however, cannot be exceeded.
Note 4: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\Theta_{j A} P_{D}$ where $\Theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

Typical Performance Characteristics

Positive Common-Mode Input Voltage Limit

Gain Bandwidth

Negative Common-Mode Input Voltage Limit

Supply Current

Undistorted Output Voltage

Swing

Pulse Response

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

Application Hints

These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reversse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be
allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a

Application Hints (Continúed)

high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.

Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed
backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up". and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to $A C$ ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

Typical Applications

Note 1: All controls flat.
Note 2: Bass and treble boost, mid flat.
Note 3: Bass and treble cut, mid flat.
Note 4: Mid boost, bass and treble flat.
Note 5: Mid cut, bass and treble flat.

- All potentiometers are linear taper
- Use the LF347 Quad for stereo applications

Typical Applications (Continued)

- Very high input impedance
- Super high CMRR

- Corner frequency $\left(f_{c}\right)=\sqrt{\frac{1}{R 1 R 2 C C 1}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{R 1^{\prime} R 2^{\prime} C C 1}} \cdot \frac{1}{2 \pi}$
- Passband gain (H_{O}) $=(1+\mathrm{R} 4 / \mathrm{R} 3)\left(1+\mathrm{R} 4^{\prime} / \mathrm{R} 3^{\prime}\right)$
- First stage $\mathrm{Q}=-1.31$
- Second stage $Q=0.541$
- Circuit shown uses nearest 5% tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100
- Offset nulling necessary for accurate DC performance

Typical Applications (Continued)

Fourth Order High Pass Butterworth Filter

- Corner frequency $\left(f_{c}\right)=\sqrt{\frac{1}{{\mathrm{R} 1 \mathrm{R} 2 \mathrm{C}^{2}}^{2}}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{\mathrm{R}^{\prime} \mathrm{R}^{\prime} \mathrm{C}^{2}}} \cdot \frac{1}{2 \pi}$
- Passband gain (H_{O}) $=(1+\mathrm{R} 4 / \mathrm{R} 3)\left(1+\mathrm{R} 4^{\prime} / \mathrm{R}^{\prime}\right)$
- First stage $Q=1.31$
- Second stage $Q=0.541$
- Circuit shown uses closest 5% tolerance resistor values for a filter with a corner frequency of $1 \mathbf{k H z}$ and a passband gain of 10

$$
V_{O}=\frac{1 V}{R_{\text {LADDER }}} \times R_{X}
$$

Where RLADDER is the resistance from switch S1 pole to pin 10 of the LF354.

7 National Semiconductor

Operational Amplifiers/Buffers

LF13741 Monolithic JFET Input Operational Amplifier

General Description

The LF13741 is a 741 with BI-FET input followers on the same die. Familiar operating characteristics - those of a 741 - with the added advantage of low input bias current make the LF13741 easy to use. Monolithic fabrication makes this "drop-in-replacement" operational amplifier very economical.

Applications in which the LF13741 excels are those which require low bias current, moderate speed and low cost. A few examples include high impedance transducer amplifiers, photocell amplifiers, buffers for high impedance, slow to moderate speed sources and buffers in sample-and-hold type systems where leakage from the hold capacitor node must be kept to a minimum.

Systems designers can take full advantage of their knowledge of the 741 when designing with the LF13741 to achieve extremely rapid "design times." The LF13741 can also be used in existing sockets to make the "error budget" for input bias and/or offset currents negligible and in many cases eliminate trimming. For higher speed and lower noise use the LF155, LF156, LF157 series of BI-FET operational amplifiers.

Features

- Low input bias current

50 pA

- Input common-mode range to positive supply voltage
- Low input noise current
$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High input impedance $5 \times 10^{11} \Omega$
- Familiar operating characteristics

Advantages

- FET inputs - 741 operating characteristics
- Low cost
- Ease of use
- Standard supplies
- Standard pin outs
- Non-rectifying input for RF environment
- Rapid "design time"

Applications

- Smoke detectors
- I to V converters
- High impedance buffers
- Low drift sample and hold circuits
- High input impedance, slow comparators
- Long time timers
- Low drift peak detectors
- Supply current monitors
- Low error budget systems

Simplified Schematic

Typical Applications

Inexpensive Microprocessor D/A

Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation（Note 1）	500 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}(\mathrm{MAX}}$	$100^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$

DC Electrical Characteristics（Note 3）

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VOS	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	mV mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		10	$\begin{aligned} & 50 \\ & 2 \end{aligned}$	pA nA
${ }^{\prime} \mathrm{B}$	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \end{aligned}$	，	$\begin{aligned} & 50 \\ & 1.6 \end{aligned}$	200 8	pA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5×10^{11}	．	Ω
AVOL	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	25 15	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13		v
VCM	Input Common－Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15.1 \\ & -12 \end{aligned}$		v
CMRR	Common－Mode Rejection Ratio	$\mathrm{RS}_{S} \leq 10 \mathrm{k} \Omega$	70	90		dB
PSRR	Supply Voltage Rejection Ratio	（Note 5），	77	96		dB
Is	Supply Current			2	4	mÁ

AC Electrical Characteristics（Note 3）

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain－Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0		MHz
e_{n}	Equivalent Input Noise Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega$				
		$f=100 \mathrm{~Hz}$		50		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
，		$\mathrm{f}=1000 \mathrm{~Hz}$		37		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$				
	．	$f=100 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1：For operating at elevated temperature，the device must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case．

Note 2：Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage．
Note 3：These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{OS}}, I_{\mathrm{B}}$ ，and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$ ．
Note 4：The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature， T_{j} ．Due to limited production test time，the input bias currents measured are correlated to junction temperature．In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation，$P_{D} . T_{j}=T_{A}+\Theta_{j A} P_{D}$ where $\Theta_{j A}$ is the thermal resis－ tance from junction to ambient．Use of a heat sink is recommended if input bias current is to be kept to a minimum．

Note 5：Supply Voltage Rejection．Ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice．

Typical Performance Characteristics

Negative Current Limit

Positive Current Limit

Open Loop Voltage Gain (V/V)

Gain Bandwidth

I Supply Current

Positive Common Mode Input Voltage Limit

Typical Performance Characteristics (Continued)

TIME $10 \mu \mathrm{~s} / \mathrm{DIV}$

Application Hints

GENERAL CHARACTERISTICS

The LF13741 makes the job of converting from a bipolar to a FET input op amp easy. As a systems designer you are probably very familiar with the operating characteristics of a 741 op amp. In fact, many of you have used 741s with FET input followers-that's just what the LF13741 is, but it's all on a single die.

When you need a low cost, reliable, well known op amp with low input currents and moderate speed, use an LF13741.

DIFFERENTIAL INPUTS

You don't have to use clamps across the inputs for differential input voltages of less than 40 V . The input JFET's of the LF13741, in addition to being well matched, have large reverse breakdown voltages from gate to source and drain.

POSITIVE INPUT COAANON-NODE VOLTAGE LiNivit

With the LF13741 (unlike the normal 741) you can take both inputs above the positive supply voltage by more than 0.1 V before the amplifier ceases to function. This feature enables you to use the LF13741 to monitor and/or limit the current from the same supply used to power it (see typical applications).

If you exceed the positive common-mode voltage limit on only one input the output phase will remain correct. When you exceed the limit on both inputs, the output phase is unpredictable.

NEGATIVE INPUT COMMON-MODE VOLTAGE LIMIT

There are two negative input voltage ranges of interest:

1. The range between the negative common-mode voltage limit and the negative supply voltage.
2. Voltages which are more negative than the negative supply voltage.

If you take only one of the inputs of the LF13741 into the first range, the output phase will remain correct. When you take both inputs into this range the output will go toward the positive supply voltage.

If you force either or both of the inputs into the second range, an internal diode will be turned "ON." Unless you externally limit the diode current to about 1 mA , the device will be destroyed. In either case, limited or unlimited input current, you cannot predict the output.

HANDLING

You do not have to take any special precautions in handling the LF13741. It has JFET, as opposed to fragile MOSFET, inputs.

APPLYING POWER

You should never: reverse the power supplies to the LF 13741; plug a part in backwards in a powered socket
or board; make the negative supply voltage more positive than an input voltage.

Any one of these supply conditions will forward bias an internal diode. If you have not externally limited the resulting current, the device will be destroyed.

LAYOUT

To ensure stability of response you should take care with lead dress, component placement and power supply decoupling. For example, the body of feedback resistors (from output to input pins) should be placed close to the inverting input pin. Noise "pickup" and capacitance to ground from the input pin will be minimized-effects which are usually desirable.

Because of the very low input bias currents of the LF13741, special care should be taken in printed circuit board layouts to prevent unnecessary leakage from the input nodes, (see typical applications).

FEEDBACK POLE

You create a feedback pole when you place resistive feedback around an amplifier. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency, (a distinct possibility when using FET op amps) you should place a lead capacitor from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant (Figure 1).

[^6]FIGURE 1

Typical Applications (Continued)

Circuits Using Guard Rings to Prevent

 Leakage Currents Between Inputs and V^{-}Guarded Inverting Amplifier

Typical Applications (Continued)

Automatic $\mathbf{V}_{\text {ios }}$ Adjust $\left(\mathbf{R}_{\mathbf{S}} / \mathbf{R}_{\mathbf{G}} \geq \mathbf{1 0 0}\right)$ For Instrumentation Amplifier

Typical Applications (Continued)

Typical Applications（Continued）

Comparator with Offset Adjust for Hi－Z Inputs

Low Current Ammeter
－By adding D1 and $\mathrm{R}_{\mathrm{f}}, \mathrm{V}_{\mathrm{D1}}=0$ during hold mode．Leakage of D 2 provided by feedback path through R_{f} ．
－Leakage of circuit is I_{B} plus leakage of C_{h} ．
－D3 clamps $V_{\text {OUT }} A 1$ to $V_{I N}-V_{D 3}$ to improve speed and to limit the reverse bias of D2．
－Maximum input frequency should be $\ll 1 / 2 \pi R_{f} C_{D 2}$ ，where $\mathrm{C}_{\mathrm{D} 2}$ is the shunt capacitance of D2．
＊Low leakage capacitor

Typical Applications (Continued)

. Photo Cell Amplifier (I to V Converter)

Connection Diagrams (Top Views)

National Semiconductor

Operational Amplifiers/Buffers

LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference

General Description

The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high quality op amp.

The unit can operate from a total supply voltage as low as 1.1 V or as high as 40 V , drawing only $270 \mu \mathrm{~A}$. A complementary output stage swings within 15 mV of the supply terminals or will deliver $\pm 20 \mathrm{~mA}$ output current with $\pm 0.4 \mathrm{~V}$ saturation. Reference output can be as low as 200 mV . Some other characteristics of the LM10 are

- input-offset voltage
- input-offset current
- input-bias current
- reference regulation
- offset-voltage drift
- reference drift
2.0 mV (max) 0.7 nA (max) 20 nA (max) 0.1% (max) $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $0.002 \% /{ }^{\circ} \mathrm{C}$

The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications.

The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and currentregulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs.

This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix "L") is available in the limited temperature ranges at a cost savings.

Connection and Functional Diagrams

Metal Can Package (H)

Order Number LM10H, LM10BH, LM10CH, LM10BLH or LM10CLH See NS Package H08A

Absolute Maximum Ratings

LM10/LM10B/LM10C
LM10BL/LM10CL .

Total supply voltage
Differential input voltage (note 1)
Power dissipation (note 2)
Output short-circuit duration (note 3)
Storage-temperature range
Lead temperature (soldering, 10 s)

$\begin{gathered} 45 \mathrm{~V} \\ \pm 40 \mathrm{~V} \end{gathered}$	
	internally limited indefinite
	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ 300^{\circ} \mathrm{C} \end{gathered}$

Electrical Characteristics $\left(T_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}\right.$ note 4)
(Boldface type refers to limits over temperature range.)

Electrical Characteristics ($T_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX, note 4) }}$
(Boldface type refers to limits over temperature range.)

PARAMETER	CONDITIONS	LM10BL			LM10CL			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input offset voltage			0.3	2.0		0.5	4.0	mV
				3.0			5.0	$m \mathrm{~V}$
Input offset current (note 5)	.		0.1	0.7		0.2	2.0	nA
				1.5			3.0	$n \mathrm{~A}$
Input bias current			10	20		12	30	nA
				30			40	nA
Input resistance		250	500		150	400		$k \Omega$
		150			115			$k \Omega$
Large signal voltage gain	$V_{\text {S }}= \pm 3.25 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0$	60	300		40	300		V / mV
	$V_{\text {OUT }}= \pm 3.2 \mathrm{~V}$	40			25			V / mV
	$\mathrm{V}_{\mathrm{S}}= \pm 3.25 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$	10	25		5	25°		V / mV
	$\mathrm{V}_{\text {OUT }}= \pm 2.75 \mathrm{~V}$	4			3			V / mV
	$\mathrm{V}_{S}= \pm 0.6 \mathrm{~V}(0.65 \mathrm{~V}), \mathrm{I}_{\text {OUT }}= \pm 2 \mathrm{~mA}$	1.5	3.0		1.0	3.0		V / mV
	$\mathrm{V}_{\text {OUT }}= \pm 0.4 \mathrm{~V}(\pm 0.3 \mathrm{~V}), \mathrm{V}_{\text {CM }}=-0.4 \mathrm{~V}$	0.5			0.75			V / mV
Shunt gain (note 6)	$1.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 6.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	8	30		6	30		V / mV
	$0.1 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA}$	4			4			V / mV
Common-mode rejection	$-3.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.4 \mathrm{~V}$ (2.25V)	89	102		80	102		dB
	$\mathrm{V}_{\mathrm{S}}= \pm 3.25 \mathrm{~V}$	83						dB
Supply-voltage rejection	$-0.2 \mathrm{~V} \geq \mathrm{V}^{-} \geq-5.4 \mathrm{~V}$	86	96		80	96		dB
	$\mathrm{V}^{+}=1.0 \mathrm{~V}(1.2 \mathrm{~V})$	80						dB
	$1.0 \mathrm{~V}(1.1 \mathrm{~V}) \leq \mathrm{V}^{+} \leq 6.3 \mathrm{~V}$	94	106	,	80	106		dB
	$\mathrm{V}^{-}=0.2 \mathrm{~V}$	88						dB
Offset voltage drift			2.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset current drift	-		2.0			5.0		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Bias current drift			60			90		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Line regulation	$1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{S} \leq 6.5 \mathrm{~V}$		0.001	0.01		0.001	0.02	\%/V
	$0 \leq I_{\text {REF }} \leq 0.5 \mathrm{~mA}, \mathrm{~V}_{\text {REF }}=200 \mathrm{mV}$			0.02	.		0.03	\%/V
Load regulation	$0 \leq I_{\text {REF }} \leq 0.5 \mathrm{~mA}$		0.01	0.1		0.01	0.15	\%
	$\mathrm{V}^{+}-\mathrm{V}_{\text {REF }} \geq 1.0 \mathrm{~V}(1.1 \mathrm{~V})$			0.15			0.2	\%
Amplifier gain	$0.2 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 5.5 \mathrm{~V}$	30	70		20	70		V / mV
		20			15			V / mV
Feedback sense voltage		195	200	205	190	200	210	$m V$
		194		206	189		211	mV
Feedback current			20	50		22	75	nA
	1			65			90	nA
Reference drift			0.002			0.003		\%/ ${ }^{\circ} \mathrm{C}$
Supply current			260	400		280	500	$\mu \mathrm{A}$
				500			570	$\mu \mathrm{A}$

Note 1: The input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential input voltage and excess dissipation is accounted for when $V_{\text {IN }}<\mathrm{V}^{-}$.
Note 2: The maximum, operating-junction temperature is $150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10,100^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{~B}(\mathrm{~L})$ and $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{C}(\mathrm{L})$. At elevated temperatures, devices must be derated based on package thermal resistance.
Note 3: Internal thermal limiting prevents excessive heating that could result in sudden failure, but the IC can be subjected to accelerated stress with a shorted output and worst-case conditions.
Note 4: These specifications apply for $\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{+}-0.85 \mathrm{~V}(1.0 \mathrm{~V}), 1.2 \mathrm{~V}(1.3 \mathrm{~V})<\mathrm{V}_{\mathrm{S}} \leq \mathrm{V}_{\mathrm{MAX}}, \mathrm{V}_{\text {REF }}=0.2 \mathrm{~V}$ and $0 \leq \mathrm{I}_{\mathrm{REF}} \leq 1.0 \mathrm{~mA}$. unless otherwise specified: $\mathrm{V}_{\mathrm{MAX}}=40 \mathrm{~V}$ for the standard part and 6.5 V for the low voltage part. Normal typeface indicates $25^{\circ} \mathrm{C}$ limits. Boldface type indicates limits and altered test conditions for full-temperature-range operation; this is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10,-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{~B}(\mathrm{~L})$ and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the LM10C(L). The specifications do not include the effects of thermal gradients ($\left.\tau_{1} \cong 20 \mathrm{~ms}\right)$, die heating ($\tau_{2} \cong 0.2 \mathrm{~s}$) or package heating. Gradient effects are small and tend to offset the electrical error (see curves).
Note 5: For $T_{J}>90^{\circ} \mathrm{C}$, I_{OS} may exceed 1.5 nA for $V_{C M}=V^{-}$. With $T_{J}=125^{\circ} \mathrm{C}$ and $V^{-} \leq V_{C M} \leq V^{-}+0.1 V$, $I_{O S} \leq 5 n A$.
Note 6: This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the \mathbf{V}^{+}terminal of the IC and input common mode is referred to V^{-}(see typical applications). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.

Typical Performance Characteristics (Op Amp)

Typical Performance Characteristics (Op Amp)

Typical Performance Characteristics (Op Amp)

Typical Performance Characteristics (Reference)

Typical Applications ${ }^{\dagger \dagger}$

op amp offset adjustment
standard

limited range

positive regulators ${ }^{\dagger}$
low voltage

best regulation

limited range with boosted reference

Typical Applications ${ }^{\text {t† }}$

laboratory power supply

${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211.

Typical Applications ${ }^{\dagger \dagger}$

flame detector

remote amplifier

${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211.

Typical Applications ${ }^{\dagger \dagger}$

resistance thermometer transmitter

[^7]

Typical Applications ${ }^{\dagger \dagger}$
thermocouple transmitter

battery-level indicator

single-cell voltage monitor

logarithmic light sensor

battery-threshold indicator

double-ended voltage monitor

[^8]
Typical Applications ${ }^{\dagger \dagger}$

${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211.

Typical Applications ${ }^{\dagger \dagger}$

${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211

Application Hints

With heavy amplifier loading to \mathbf{V}^{-}, resistance drops in the \mathbf{V}^{-}lead can adversely affect reference regulation. Lead resistance can approach 1Ω. Therefore, the common to the reference circuitry should be connected as close as possible to the package.
Operational Amplifier Schematic

Reference and Internal Regulator

(7) 30 LWา/(7)90ㄴN/0ㄴㄴา

Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.

Input offset current: The difference in the currents at the input terminals when the output is unloaded in the linear region.

Input bias current: The absolute value of the average of the two input-currents.

Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Large signal voltage gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it.

Shunt gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it with the output tied to the V^{+}terminal of the IC. The load and power source are connected between the V^{+}and V^{-}terminals, and input commonmode is referred to the V^{-}terminal.

Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.

Supply-voltage rejection: The ratio of the specified supply-voltage change to the change in offset voltage between the extremes.

Line regulation: The average change in reference output voltage over the specified supply voltage range.

Load regulation: The change in reference output voltage from no load to that load specified.

Feedback sense voltage: The voltage, referred to V^{-}, on the reference feedback terminal while operating in regulation.

Reference amplifier gain: The ratio of the specified reference output change to the change in feedback sense voltage required to produce it.

Feedback current: The absolute value of the current at the feedback terminal when operating in regulation.

Supply current: The current required from the power source to operate the amplifier and reference with their outputs unloaded and operating in the linear range.

LM101A/LM201A/LM301A Operational Amplifiers

General Description

The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature (LM101A/LM201A)
- Input current 100 nA maximum over temperature (LM101A/LM201A)
- Offset current 20 nA maximum over temperature (LM101A/LM201A)
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ as a summing amplifier

This amplifier offers many features which make its application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, freedom from oscillations and compensation with a single 30 pF
capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.

In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at a lower cost.

The LM101A is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM201A from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM301A from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Schematic ** and Connection Diagrams (Top Views)

Note: Pin 4 connected to case. Order Number LM101AH, LM201AH or LM301AH See NS Package H08C

Dual-In-Line Package

Order Number
LM301AJ
See NS Package J08A
Order Number LM301AN See NS Package N08A

[^9]
Absolute Maximum Ratings

	LM101A/LM201A	LM301A
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 3)	Indefinite	Indefinite
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(\mathrm{LM} 101 \mathrm{~A})$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(\mathrm{LM} 201 \mathrm{~A})$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

Note 1: The maximum junction temperature of the LM101A is $150^{\circ} \mathrm{C}$, and that of the $\mathrm{LM} 201 \mathrm{~A} / \mathrm{LM} 301 \mathrm{~A}$ is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $187^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $75^{\circ} \mathrm{C}$ for LM101A/LM201A, and $70^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$ respectively for LM301A.
Note 4: Unless otherwise specified, these specifications apply for $\mathrm{C} 1=30 \mathrm{pF}, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (LM101A), $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}(\mathrm{LM} 201 \mathrm{~A}), \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM301A).

Guaranteed Performance Characteristics LM101A/LM201A

Guaranteed Performance Characteristics Lm301A

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Performance Characteristics for Various Compensation Circuits**

Single Pole Compensation

$\mathrm{C}_{1} \geq \frac{\mathrm{RI} \mathrm{C}_{\mathrm{f}}}{\mathrm{FIT}+\mathrm{Bz}}$
$\mathrm{C}_{5}=30 \mathrm{pF}$
**Pin connections shown are for metal can.

Two Pole Compensation

Open Loop Frequency Response

3

C2 $=\frac{1}{2 \pi T_{6} \text { A2 }}$
to 03 MHz

Large Signal Frequency Response

Voltage Follower Pulse Response

Typical Applications **

Variable Capacitance Multiplier
Simulated Inductor

Fast Inverting Amplifier With High Input Impedance

Inverting Amplifier with Balancing Circuit

Sine Wave Oscillator

Integrator with Bias Current Compensation

Application Hints **

Protecting Against Gross
Fault Conditions

+Protects output-nat needed when R4 is used.

Compensating For Stray Input Capacitances Or Large Feedback Resistor

Isolating Large Capacitive Loads

Although the LM101A is designed for trouble free operation, experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnormal operating conditions. It might be pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices.
When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 mA . This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than $0.1 \mu \mathrm{~F}$) should be treated as a low source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed.
The output circuitry is protected against damage from shorts to ground. However, when the amplifier output is connected to a test point, it should be isolated by a limiting, resistor, as test points frequently get shorted to bad places. Further, when the amplifier drives a load external to the equipment, it is also advisable to use some sort of !imiting resistance to preclude mishaps.

Precautions should be taken to insure that the power supplies for the integrated circuit never become reversed-even under transient conditions. With reverse voltages greater than 1 V , the IC will conduct excessive current, fuzing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage between \mathbf{V}^{+}and \mathbf{V}^{-}will always cause a problem, although reversals with respect to ground may also give difficulties in many circuits.

The minimum values given for the frequency compensation capacitor are stable only for source resistances less than $10 \mathrm{k} \Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF . If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.

Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on every circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.

[^10]Typical Applications** (Continued)

Standard Compensation and Offset Balancing Circuit

Fast Summing Amplifier

Bilateral Current Source

Instrumentation Amplifier

Low Frequency Square Wave Generator

Voltage Comparator for Driving DTL or TTL Integrated Circuits

[^11]
general description

The LH2101A series of dual operational amplifiers are two LM101A type op amps in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost, and smaller size than two singles. For additional information, see the LM101A data sheet and National's Linear Application Handbook.
The LH2101A is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2201A is specified for operation over the
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH2301A is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

features

- Low offset voltage
- Low offset current
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ as a summing amplifier
connection diagram

Order Number LH2101AD or LH2201AD or LH2301AD See Package D16C

auxiliary circuits

Inverting Amplifier with Balancing Circuit

TMay be ieto or equal to parallet combination
of R1 and R2 for minimum oflset

Alternate Balancing Circuit

Single Pole Compensation

C1 $\frac{\mathrm{Al}_{\mathrm{C}} \mathrm{C}_{5}}{\mathrm{R1}+\mathrm{R}_{2}}$
$\mathrm{C}_{\mathrm{s}}=30 \mathrm{pf}$

Two Pole Compensation

Feedforward Compensation

C2 $=\frac{1}{2 \pi I_{0} R 2}$
$\mathrm{t}_{0}=3 \mathrm{MHz}$

absolute maximum ratings

Supply Voltage
$\pm 22 \mathrm{~V}$
500 mW
$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
Continuous

Operating Temperature Range	LH2101A
	LH2201A
	LH2301A

Lead Temperature (Soldering, 10 sec)
-55 C to $125^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ 0 C to $70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Output Short Circuit Duration
Cont
electrical characteristics each side (Note 3)

PARAMETER	CONDITIONS	LIMITS			UNITS
		LH2101A	LH2201A	LH2301A	
Input Offset Voltage	$T_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega 2$	20	20	7.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	10	50	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	75	75	250	nA Max
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	1.5	0.5	MS2 Min
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	3.0	33	30	mA Max
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{L} \geq 2 \mathrm{kS} \end{aligned}$	50	50	25	V / mV Min
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega 2$	3.0	3.0	10	$m \vee$ Max
Average Temperature Coefficient of Input Offset Voltage		15	15	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		20	20	10	nA Max
Average Temperature	$25^{\circ} \mathrm{C}<\mathrm{T}_{\text {A }}<125^{\circ} \mathrm{C}$	01	01	0.3	$n A /{ }^{\circ} \mathrm{C}$ Max
Coefficient of Input Offset Current	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	0.2	02	0.6	$n A V^{\circ} \mathrm{C} \text { Max }$
Input Bias Current		100	100	300	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	2.5	2.5		mA Max
Large Signal Voltage Gaın	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 2 \mathrm{kS} \end{aligned}$	25	25	15	V / mV Min
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~kJ}$	± 12	± 12	± 12	\checkmark Min
Output Voitage Swing	. $\mathbf{R}_{\mathrm{L}}=2 \mathrm{ks}$	± 10	± 10	± 10	$V \mathrm{Min}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	± 15	± 15	± 12	\checkmark Min
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{ks} 2$	80	80	70	dB Min
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}}<50 \mathrm{kS} 2$	80	80	70	dB Min

Note 1: The maximum junction temperature of the LH2101A is $150^{\circ} \mathrm{C}$, while that of the LH2201A is $100^{\circ} \mathrm{C}$. For operating temperatures of devices in the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages lens than $: 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leqslant V_{S} \leqslant \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LH2201A, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant 85^{\circ} \mathrm{C}$. For the LH2301A these specifications apply for $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathbf{A}} \leqslant$ $70^{\circ} \mathrm{C}$, and $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 15 \mathrm{~V}$. Supply current and input voltage range are specified as $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LH2301A. $\mathrm{C}_{1}=30 \mathrm{pF}$ unless otherwise specified.

Operational Amplifiers/Buffers
 National Semiconductor

LM102/LM202/LM302 Voltage Followers

General Description

The LM102 series are high-gain operational amplifiers designed specifically for unity-gain voltage follower applications. Built on a single silicon chip, the devices incorporate advanced processing techniques to obtain very low input current and high input impedance. Further, the input transistors are operated at zero collectorbase voltage to virtually eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized component oven to get extremely low input currents and low offset voltage drift. Other outstanding characteristics of the device include:

- Fast slewing - $10 \mathrm{~V} / \mu \mathrm{s}$
- Low input current - 10 nA (max)
- High input resistance - $10,000 \mathrm{M} \Omega$
- No external frequency compensation required
- Simple offset balancing with optional 1 K potentiometer
- Plug-in replacement for both the LM101 and LM709 in voltage follower applications.

The LM102, which is designed to operate with supply voltages between $\pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$, also features low input capacitance as well as excellent small signal and large signal frequency response - all of which minimize high frequency gain error. Because of the low wiring capacitances inherent in monolithic construction, this fast operation can be realized without increasing power consumption.

Schematic** and Connection Diagrams

Typical Applications**
Low Pass Active Filter

High Pass Active Filter

[^12]

Note: Pin 4 connected to case.
Order Number LM102H, LM202H or LM302H See NS Package H08C

Sample and Hold With Offset Adjustment

High Input Impedance
AC Amplifier

Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$	
Power Dissipation (Note 1)	500 mW	
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	
Output Short Circuit Duration (Note 3)	Indefinite	
Operating Temperature Range	LM102	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	LM202	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
SM302	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Storage Temperature Range	$300^{\circ} \mathrm{C}$	

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	LM102			LM202			LM302			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		3	10		5	15	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	10		7	15		10	30	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10^{10}	10^{12}		10^{10}	10^{12}		10^{9}	. 10^{12}		Ω
Input Capacitance				3.0		3.0			3.0		pF
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V}, \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{L}=8 \mathrm{k} \Omega \end{aligned}$	0.999	0.9996		0.999	0.9995	1.0	0.9985	0.9995	1.0	v/v
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.5		0.8	2.5		0.8	2.5	Ω
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.5	5.5		3.5	5.5		3.5	5.5	mA
Input Offset Voltage				7.5			15			20	mV
Offset Voltage			6			15			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Temperature Drift											
Input Bias Current	$T_{A}=T_{A} M A X$		3	10		1.5	5.0		3.0	15	nA
	$T_{A}=T_{A} M I N$		30	100		30	50		20	50	nA.
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{O U T}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0.999									
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega,$ (Note 5)	± 10			± 10			± 10			v
Supply Current	$\mathrm{T}_{\text {A }}=125^{\circ} \mathrm{C}$		2.6	4.0							mA
Supply Voltage Rejection Ratio	$\pm 12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	60			60			60			dB

Note 1: The maximum junction temperature of the LM102 is $150^{\circ} \mathrm{C}$, while that of the LM202 is $100^{\circ} \mathrm{C}$ and that of the LM302 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$ inch thick epoxy glass board with ten, 0.03 inch wide, 2 ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit for the LM102 and LM 202 is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C}$. For the LM302, continuous short circuit is allowed for $70^{\circ} \mathrm{C}$ case or $55^{\circ} \mathrm{C}$ ambient temperature. It is necessary to insert a resistor greater than $2 \mathrm{k} \Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.
Note 4: These specifications apply for $\pm 12 \mathrm{~V} \leq V_{S} \leq \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$ for the LM102, $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C}$ for the LM 202 , and $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ for the LM302 unless otherwise specified.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals. See curve.

Guaranteed Performance Characteristics LM102

Output Swing

Supply Current

Typical Performance Characteristics LM102

Guaranteed Performance Characteristics LM202

Typical Performance Characteristics LM202

Guaranteed Performance Characteristics LM302

Supply Current

Typical Performance Characteristics Lm302

Positive Output Swing

LM107/LM207/LM307 Operational Amplifiers

General Description

The LM107 series are complete, general purpose operational amplifiers, with the necessary frequency compensation built into the chip. Advanced processing techniques make the input currents a factor of ten lower than industry standards like the 709. Yet, they are a direct, plug-in replacement for the 709, LM101, LM101A and 741.

- Offset voltage 3 mV maximum over temperature
- Input current 100 nA maximum over temperature
- Offset current 20 nA maximum over temperature
- Guaranteed drift characteristics

The LM107 series offers the features of the LM101, which makes its application nearly foolproof. In 'addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at a lower cost.

The LM107 is guaranteed over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range, the LM207 from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM307 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic**and Connection Diagrams

Order Number LM107H, LM207H
or LM307H
See NS Package H08C

Note: Pin 4 connected to bottom of package. top view

Order Number LM107J, LM207J or LM307J See NS Package J08A Order Number LM307N See NS Package N08A

Dual-In-Line Package

Order Number LM107J-14, LM207J-14 or LM307J-14 See NS Package J14A

Absolute Maximum Ratings

	LM107/LM207	LM307			
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$		TMIN	TMAX
Power Dissipation (Note 1)	500 mW	500 mW			
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	LM107	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	LM207	$-25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
Output Short-Circuit Duration	Indefinite	Indefinite	LM207	-25 C	+85 C
Operating Temperature Range			\therefore LM307	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
(LM107) (LM207)	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$			

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	LM107/LM207			LM307			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RS} \leq 50 \mathrm{k} \Omega$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	10		3.0	50	$n A^{\prime}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	75		70	250	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	4.0		0.5	2.0		$\mathrm{M} \Omega$.
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
	$\mathrm{V}_{S}= \pm 20 \mathrm{~V}$		1.8	3.0				mA
	$V_{S}= \pm 15 \mathrm{~V}$					1.8	3.0	mA
Large Signal Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$							
Gain	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	50	160		25	160		V / mV
Input Offset Voltage	$\mathrm{R}_{S} \leq 50 \mathrm{k} \Omega$			3.0			10	mV
Average Temperature			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage								
Input Offset Current				20			70	nA
Average Temperature	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$		0.01	0.1		0.01	0.3	$n A /{ }^{\circ} \mathrm{C}$
Coefficient of Input	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq 25^{\circ} \mathrm{C}$		0.02	0.2		0.02	0.6	$n A /{ }^{\circ} \mathrm{C}$
Offset Current								
Input Bias Current				100			300	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$		1.2	2.5				mA
Large Signal Voltage	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$							
Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	25			15			V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$							
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13	;	± 10	± 13		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	± 15						V
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.			± 12			V
Common Mode	$\mathrm{R}_{S} \leq 50 \mathrm{k} \Omega$	80	96		70	90		dB
Rejection Ratio								
Supply Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	80	96		70	96		dB
Rejection Ratio								

Note 1: The maximum junction temperature of the LM107 is $150^{\circ} \mathrm{C}$, and the LM207/LM307 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than -15 V , the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LM 107 or $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for the LM207, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ and $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ for the LM 307 unless otherwise specified.
Guaranteed Performance Characteristics LM107/LM207

Guaranteed Performance Characteristics Lм307

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Applications**

Inverting Amplifier

\[\begin{aligned} \& V_{OUT}=-\frac{R 2}{R 1} V_{I N}
\& R_{I N}=R 1 \end{aligned} \]

Non-Inverting AC Amplifier

Non-Inverting Amplifier

$$
V_{\text {OUT }}=\frac{R 1+R 2}{R 1} V_{I N}
$$

Tunable Notch Filter

Differential Input Instrumentation Amplifier

LM108/LM208/LM308 Operational Amplifiers

General Description

The LM108 series are precision operational amplifiers having specifications a factor of ten better than FET amplifiers over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Selected units are available with offset voltages less than 1.0 mV and drifts less than $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, again over the military temperature range. This makes it possible to eliminate offset adjustments, in most cases, and obtain performance approaching chopper stabilized amplifiers.

The devices operate with supply voltages from $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary. Outstanding characteristics include:

- Maximum input bias current of 3.0 nA over temperature
- Offset current less than 400 pA over temperature
- Supply current of only $300 \mu \mathrm{~A}$, even in saturation
- Guaranteed drift characteristics

The low current error of the LM108 series makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from $10 \mathrm{M} \Omega$ source resistances, introducing less error than devices like the 709 with $10 \mathrm{k} \Omega$ sources. Integrators with drifts less than $500 \mu \mathrm{~V} / \mathrm{sec}$ and analog time delays in excess of one hour can be made using capacitors no larger than $1 \mu \mathrm{~F}$.

The LM108 is guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM208 from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM308 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Compensation Circuits

Standard Compensation Circuit

** Bandwidth and slew rate are proportional to $1 / \mathrm{C}_{\mathrm{C}} \mathrm{Ca} 1 / \mathrm{C}_{\text {s }}$ Alternate* Frequency Compensation

* *Bandwadth and slow iste ste proportional to $1 / C_{\mid}$or $1 / C_{1}$

Feedforward Compensation

Typical Applications

Sample and Hold

High Speed Amplifier with Low Drift and Low Input Current

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range (LM108)
(LM208)
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LM108/LM208	LM308
$\pm 20 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
500 mW	500 mW
$\pm 10 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Indefinite	Indefinite
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

LM308

500 mW
$\pm 15 \mathrm{~V}$
Indefinite
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics
 (Note 4)

Note 1: The maximum junction temperature of the LM 108 is $150^{\circ} \mathrm{C}$, for the $\mathrm{LM} 208,100^{\circ} \mathrm{C}$ and for the $\mathrm{LM} 308,85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM208, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$, and for the $\mathrm{L} M 308$ they are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$.

Typical Performance Characteristics LM108/LM208

Voltage Gain

Open Loop
Frequency Response

Offset Error

Power Supply Rejection

Output Swing

Large Signal
Frequency Response

Drift Error

Closed Loop Output Impedance

Supply Current

Voltage Follower Pulse Response

Typical Performance Characteristics Lм308

Voltage Gain

Open Loop
Frequency Response

Offset Error

Power Supply Rejection

Output Swing

Supply Current

Frequency Response

Large Signal

Voltage Follower Pulse Response

Schematic Diagram and Compensation Circuits

Typical Applications (Continued)

Sample and Hold

Fast ${ }^{\dagger}$ Summing Amplifier

Connection Diagrams

Order Number LM108H LM208H or LM308H See NS Package H08C

Pin connections shown on schematic diagram are for $\mathbb{T} \cdot 5$ package. **Unused pin (no internal connection) to allow for input ant-leakage guard ring on printed circuit board layout.

Order Number LM108J, LM208J or LM308J See NS Package J14A

Dual-In-Line Package

Order Number LM108J-8,
LM208J-8 or LM308J-8 See NS Package J08A
Order Number LM308N
See NS Package N08B

2 National LM108A/LM208A/LM308A, LM308A-1, LM308A-2 Operational Amplifiers

The LM108/LM108A series are precision operational amplifiers having specifications about a factor of ten better than FET amplifiers over their operating temperature range. In addition to low input currents, these devices have extremely low offset voltage, making it possible to eliminate offset adjustments, in most cases, and obtain performance approaching chopper stabilized amplifiers.

The devices operate with supply voltages from $\pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary. Outstanding characteristics include:

- Offset voltage guaranteed less than 0.5 mV
- Maximum input bias current of 3.0 nA over temperature
- Offset current less than 400 pA over temperature
- Supply current of only $300 \mu \mathrm{~A}$, even in saturation
- Guaranteed $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift.
- Guaranteed $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for LM308A-1

The low current error of the LM108A series makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from $10 \mathrm{M} \Omega$ source resistances, introducing less error than devices like the 709 with $10 \mathrm{k} \Omega$ sources. Integrators with drifts less than $500 \mu \mathrm{~V} / \mathrm{sec}$ and analog time delays in excess of one hour can be made using capacitors no larger than $1 \mu \mathrm{~F}$.

The LM208A is identical to the LM108A, except that the LM208A has its performance guaranteed over a $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LM308A devices have slightly-relaxed specifications and performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Compensation Circuits

Standard Compensation Circuit

** Aandwidth and slew rate ere proportional to $1 / \mathrm{C}_{1}$ or $1 / \mathrm{C}_{3}$

Alternate* Frequency Compensation

Feedforward Compensation

Typical Applications
High Speed Amplifier with Low Drift and Low Input Current

Note 1: The maximum junction temperature of the LM108A is $150^{\circ} \mathrm{C}$, while that of the LM208A is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$. junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications, apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM208A, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$.

LM308A, LM308A-1, LM308A-2

Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$		0.3	0.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.2	1	nA
Input Bias Current	- $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	7	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	40		$\mathrm{M} \Omega$
Supply Current	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		0.3	0.8	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	80	300		V / mV
Input Offset Voltage	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \Omega$				
LM308A				0.73	mV
LM308A-1	,			0.54	mV
LM308A-2				0.59	mV
Average Temperature Coefficient of Input Offset Voltage	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \Omega$				
LM308A \quad.			2.0	5.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
LM308A-1			0.6	1.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
LM308A-2			1.3	2.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				1.5	nA
Average Temperature Coefficient of Input Offset Current			2.0	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				10	nA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	60			V / mV
Output Voltage Swing	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 14		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 14			V
Common-Mode Rejection Ratio		96	110		dB
Supply Voltage Rejection Ratio		96	110		dB

Note 1: The maximum junction temperature of the LM308A, LM308-1 and LM308-2 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified.

Application Hints

A very low drift amplifier poses some uncommon application and testing problems. Many sources of error can cause the apparent circuit drift to be much higher than would be predicted.

Thermocouple effects caused by temperature gradient across dissimilar metals are perhaps the worst offenders. Only a few degrees gradient can cause hundreds of microvolts of error. The two places this shows up, generally, are the package-to printed circuit board interface and temperature gradients across resistors. Keeping package leads short and the two input leads close together help greatly.
Resistor choice as well as physical placement is important for minimizing thermocouple effects. Carbon, oxide film and some metal film resistors can cause large thermocouple errors. Wirewound resistors of evenohm or manganin are best since they only generate about $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referenced to copper. Of course, keeping the resistor ends at the same temperature is important. Generally, shielding a low drift stage electrically and thermally will yield good results.

Resistors can cause other errors besides gradient generated voltages. If the gain setting resistors do not track with temperature a gain error will result. For example a gain of 1000 amplifier with a con-
stant 10 mV input will have a 10 V output. If the resistors mistrack by 0.5% over the operating temperature range, the error at the output is 50 mV . Referred to input, this is a $50 \mu \mathrm{~V}$ error. All of the gain fixing resistor should be the same material.

Offset balancing the LM308A-1 can be a problem since there is no easy offset adjustment incorporated into the circuit. These devices are selected for low drift with no offset adjustment to the internal circuitry, so any change of the internal currents will change the drift - probably for the worse. Offset adjustment must be done at the input. The three most commonly needed circuits are shown here.

Testing low drift amplifiers is also difficult. Standard drift testing technique such as heating the device in an oven and having the leads available through a connector, thermoprobe, or the soldering iron method - do not work: Thermal gradients cause much greater errors than the amplifier drift. Coupling microvolt signal through connectors is especially bad since the temperature difference across the connector can be $50^{\circ} \mathrm{C}$ or more. The device under test along with the gain setting resistor should be isothermal. The following circuit will yield good results if well constructed.

Offset Adjustment for Inverting Amplifiers

Offset Adjustment for Differential Amplifiers

Offset Adjustment for Non-Inverting Amplifiers

Drift Measurement Circuit

Schematic Diagram*

*Pin connections shown on schematic diagram refer to TO-5 package.

Connection Diagrams

Note: Pin 4 connected to case.
**Unused pin (no internal connection) to allow for input anti-leakage guard ring on printed circuit board layout.

Order Number LM108AJ, LM208AJ, or LM308AJ See NS Package J14A

The LH2108A/LH2208A/LH2308A and LH2108/ LH2208/LH2308 series of dual operational amplifiers are two LM108A or LM108 type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal tracking, lower weight, reduced insertion cost, and smaller size than two single devices. For additional information see the LM108A or LM108 data sheet and National's Linear Application Handbook.

The LH2108A/LH2108 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2208A/LH2208 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature
range. The LH2308A/LH2308 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
features

- Low offset current		
-	50 pA	
- Low offset voltage		0.7 mV
- Low offset voltage	LH2108A	0.3 mV
	LH2 108	0.7 mV
-		
- Wide input voltage range	$\pm 15 \mathrm{~V}$	
- Wide operating supply range	$\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	

connection diagram

Order Number LH2 108AD, LH2208AD, LH2308AD, LH2108D, LH2208D, or LH2308D
See Package D16C

auxiliary circuits

Standard Compensation Circuit

Alternate* Frequency Compensation

Feedforward Compensation

absolute maximum ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Continuous
electrical characteristics each side (Note 4)	

PARAMETER	CONDITIONS	LIMITS			UNITS
		LH2108	LH2208	LH2308	
Inpur Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	2.0	7.5	mV Max
Input Offset Current	$T_{A}=25^{\prime} \mathrm{C}$	0.2	0.2	1.0	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	2.0	7.0	nA Max
Input Resistance	$T_{A}=25^{\circ} \mathrm{C}$	30	30	10	$M \Omega$ Min
Supply Current	$T_{A}=25^{\circ} \mathrm{C}$	0.6	0.6	0.8	mA Max
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25 \mathrm{CV} V_{S}=+15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{L}>10 \mathrm{kS} \end{aligned}$	50	50	25	V / mV Min
Input Offset Voltage		3.0	3.0	10	$m V$ Max
Average Temperature Coefficient of Input Offset Voltage		15	15	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		0.4	0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current		2.5	2.5	10	$\underline{P A} /{ }^{\circ} \mathrm{C}$ Max .
Input Bias Current		3.0	3.0	10	nA Max
Supply Current	$\mathrm{T}_{4}=+125^{\circ} \mathrm{C}$	0.4	0.4	-	mA Max
Large Signal Voltage Gain	$\begin{aligned} & V_{S}=+15 \mathrm{~V}, V_{\text {OUT }}=+10 \mathrm{~V} \\ & R_{\mathrm{L}}>10 \mathrm{kS} \end{aligned}$	25	25	15	V / mV Min
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{kS} 2$.	+13	± 13	± 13	$V \mathrm{Min}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	+13.5	± 13.5	± 14	$V \mathrm{Min}$
Common Mode Rejection Ratio	.	85	85	80	dB Min
Supply Votage Rejection Ratio		80	80	80	dB Min ${ }^{\text {a }}$

electrical characteristics each side (Note 4)

PARAMETER	CONDITIONS	LIMITS			UNITS
		LH2108A	LH2208A	LH2308A	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5 .	0.5	0.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25 \mathrm{C}$	0.2	02	1.0	n n Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	20	20	7.0	nA Max
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\prime} \mathrm{C}$	30	30	10	$M S$ Mın
Supply Current	$\mathrm{T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}$	06	0.6	0.8	mA Max
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25 \mathrm{CV} V_{S}=+15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V} . R_{L}>10 \mathrm{kSZ} \end{aligned}$	80	80	80	V / mV Mın
Input Offset Voltage		1.0	1.0	0.73	mV Max
Average Temperature Coefficient of Input Offset Voltage		5	5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		0.4	04	1.5	nA Max
Average Temperature Coefficient of Input Offset Current		2.5	25	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ Max
Input Bias Current	${ }^{\text {- }}$	3.0	3.0	10	nA Max
Supply Current	$T_{A}=+125^{\circ} \mathrm{C}$	04	0.4	-	mA Max
Large Sıgnal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}=+10 \mathrm{~V} \\ & R_{L}>10 \mathrm{kS} 2 \end{aligned}$	40	40	60	V/mV Min
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{kS}$	± 13	± 13	± 13	$V \mathrm{Min}$
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	+13.5	± 13.5	± 14	$V \mathrm{Min}$
Common Mode Rejection Ratio		- 96	96	96	dB Min
Supply Voltage Rejection Ratio		96	96	96	dB Min

Note 1: The maximum junction temperature of the LH2108A/LH2108 is $150^{\circ} \mathrm{C}$, while that of the LH2208A/LH2208 is $100^{\circ} \mathrm{C}$ and that of the $\mathrm{LH} 2308 \mathrm{~A} / \mathrm{LH} 2308$ is $85^{\circ} \mathrm{C}$. For operating devices in the flat package at elevated temperatures, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LH2208A/LH2208, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 85^{\circ} \mathrm{C}$ and with the LH2308A/LH2308 for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$.

National Semiconductor

LM110/LM210/LM310 Voltage Follower

General Description

The LM110 series are monolithic operational amplifiers internally connected as unity-gain non-inverting amplifiers. They use super-gain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 101, 741 and 709 in voltage follower applications, these devices have internal frequency compensation and provision for offset balancing. Outstanding characteristics include:

- Input current: 10 nA max. over temperature
- Small signal bandwidth: 20 MHz
- Slew rate: $30 \mathrm{~V} / \mu \mathrm{s}$
- Supply voltage range: $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

The LM110 series are useful in fast sample and hold circuits, active filters, or as general-purpose buffers. Further, the frequency response is enough better than standard IC amplifiers that the followers can be included in the feedback loop without introducing instability. They are plug-in replacements for the LM102 series voltage followers, offering lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.

The LM110 is specified over a temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, the LM210 from $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and the LM310 from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.

Schematic Diagram

Auxiliary Circuits

Offset Balancing Circuit
Increasing Negative Swing Under Load

Typical Applications

Differential Input Instrumentation Amplifier

Fast Integrator with Low Input Current

Fast Inverting Amplifier with High Input Impedance

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Operating Temperature Range LM110
LM210
LM310
Storage Temperature Range
Lead Temperature (Soldering, 10 sec).
$\pm 18 \mathrm{~V}$
500 mW
$\pm 15 \mathrm{~V}$
Indefinite
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$\pm 18 \mathrm{~V}$ 500 mW

Indefinite
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	LM110			LM210			LM310			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	4.0		1.5	4.0		2.5	7.5	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	3.0		1.0	3.0		2.0	7.0	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}} \dot{=} 25^{\circ} \mathrm{C}$	10^{10}	10^{12}		10^{10}	10^{12}		10^{10}	10^{12}		Ω
Input Capacitance	'		1.5			1.5			1.5		pF
Large Signal Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	0.999	0.9999		0.999	0.9999		0.999	0.9999		V/V
Gain	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega$.		
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	2.5		0.75	2.5		0.75	2.5	Ω
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.9	5.5		3.9	5.5		3.9	5.5	mA
Input Offset Voltage				6.0			6.0			10	mV
Offset Voltage	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		6			6					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Temperature Drift	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		12			12					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$:		.			10		$\cdots \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current				10	,		10			10	nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0.999			0.999			0.999			V/V
Output Voltage Swing (Note 5)	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 10			± 10			± 10			V
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		2.0	4.0		2.0	4.0				mA
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$	70	80		70	80		70	80		dB

Note 1: The maximum junction temperature of the LM110 is $150^{\circ} \mathrm{C}$, of the LM210 is $100^{\circ} \mathrm{C}$, and of the LM310 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit for the LM1 10 and LM210 is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C}$, and for the LM310, $70^{\circ} \mathrm{C}$ case temperature or $55^{\circ} \mathrm{C}$ ambient temperature. It is necessary to insert a resistor greater than $2 \mathrm{k} \Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 110,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ for the LM 210 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LM310 unless otherwise specified.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals. See curve.

Typical Applications (Continued)

Tunable Notch Filter

High \mathbf{Q} Notch Filter

Adjustable \mathbf{Q} Notch Filter

Sample and Hold

Low Drift Sample and Hold*

Low Pass Active Filter

High Pass Active Filter

Simulated Inductor

Bandpass Filter

Buffered Reference Source

Variable Capacitance Multiplier

Typical Performance Characteristics (LM110/LM210)

Typical Performance Characteristics (Lм310)

Connection Diagrams

NOTE: Pin 6 connected to bottom of package.
TOP VIEW

Order Number LM110J, LM210J or LM310J
See NS Package J14A

Dual-In-Line Package

Order Number LM310N See NS Package N08B

Order Number LM310J-8 See NS Páckage J08A

Operational Amplifiers/Buffers
 National Semiconductor
 LM112/LM212/LM312 Operational Amplifiers

General Description

The LM112 series are micropower operational amplifiers with very low offset-voltage and inputcurrent errors-at least a factor of ten better than FET amplifiers over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Similar to the LM108 series, that also use supergain transistors, they differ in that they include internal frequency compensation and have provisions for offset adjustment with a single potentiometer.

These amplifiers will operate on supply voltages of $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$, drawing a quiescent current of only $300 \mu \mathrm{~A}$. Performance is not appreciably affected over this range of voltages, so operation from unregulated power sources is easily accomplished. They can also be run from a single supply like the 5 V used for digital circuits. Some noteworthy features are:

- Maximum input bias current of 3 nA over temperature
- Offset current less than 400 pA over temperature
- Low noise
- Guaranteed drift specifications

The LM112 series are the first IC amplifiers to improve reliability by including overvoltage protection for the MOS compensation capacitor. Without this feature, IC's have been known to suffer catastrophic failure caused by shortduration overvoltage spikes on the supplies. Unlike other internally-compensated IC amplifiers, it is possible to overcompensate with an external capacitor to increase stability margin.
The LM212 is identical to the LM112, except that the LM212 has its performance guaranteed over a $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range instead of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LM312 is guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

[^13]
Connection Diagram

$$
\text { Note: Pin } 4 \text { connected to case. }
$$

TOP VIEW
Order Number LM112H, LM212H, or LM312H
See NS Package H08C

Absolute Maximum Ratings

Supply Voltage

Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range
LM112
LM212
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LM112/LM212	LM312
$\pm 20 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
500 mW	500 mW
$\pm 10 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Indefinite	Indefinite
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	LM112/LM212			LM312			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.05	0.2		0.2	1	- nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,		0.8	2.0		1.5	7	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	70		10	40		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	0.6		0.3	0.8	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	50	300		25	300		V / mV
Input Offset Voltage				3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				0.4			1.5	nA
Average Temperature Coefficient of Input								
Offset Current			0.5	2.5		2.0	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				3.0			10	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		0.15	0.4				mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 10 \mathrm{k} \Omega \end{aligned}$	25			15			V / mV
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$	± 13	± 14		± 13	± 14		\checkmark
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 1.3 .5$			± 14			V
Common-Mode Rejection Ratio		85	100		80	100		dB
Supply Voltage Rejection Ratio		80	96		80	96		dB

[^14]Typical Performance Characteristics LM112/LM212

Open Loop Frequency Response

Voltage Follower Pulse Response

Typical Performance Characteristics LM312

Voltage Gain

Open Loop Frequency
Response

frequency (Hz)

National

LM118/LM218/LM318 Operational Amplifiers

General Description

The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

Features

- 15 MHz small signal bandwidth
- Guaranteed $50 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Maximum bias current of 250 nA
- Operates from supplies of $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

The LM118 series has internal unity gain frequency compensation. This considerably simplifies its appli: cation since no external components are necessary for operation. However, unlike most internally
compensated amplifiers, external frequency com pensation may be added for optimum performance For inverting applications, feedforward compen sation will boost the slew rate to over $150 \mathrm{~V} / \mu \mathrm{s}$ and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under $1 \mu \mathrm{~s}$.

The high speed and fast settling time of these op amps make them useful in A/D converters; oscillators, active filters, sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the L.M709.

The LM218 is identical to the LM118 except that the LM218 has its performance specified over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM318 is specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

Order Number LM118J, LM218J or LM318J See NS Package J14A

*Pin connections shown on schematic diagram and typical applications are for TO-5 package.

Order Number LM118H, LM218H or LM318H See NS Package H08C

Dual-In-Line Package

Order Number LM118J-8,

 LM218J-8 or LM318J-8 See:NS Package J08AOrder Number LM318N See NS Package N08B

Absolute Maximum Ratings

Supply Voltage
$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range
LM118
LM218
LM318
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

500 mW $\pm 10 \mathrm{~mA}$ $\pm 15 \mathrm{~V}$ Indefinite
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	LM118/LM218			LM318			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	4		4	10	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6	50		30	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		120	250		150	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	3		0.5	3		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	8		5	10	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{S}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	200		25	200		V / mV
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~A}_{V}=1$	50	70			70		$\mathrm{V} / \mu \mathrm{s}$
Small Signal Bandwidth	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		15			15		MHz
Input Offset Voltage				6			15	mV
Input Offset Current				100			300	nA
Input Bias Current				500			750	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		4.5	7				
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{O U T}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			20			V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 12	± 13		± 12	± 13		V
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 11.5			± 11.5			V
Common-Mode Rejection Ratio		80	100			100		dB
Supply Voltage Rejection Ratio		70	80			80		dB

Note 1: The maximum junction temperature of the LM118 is $150^{\circ} \mathrm{C}$, the LM218 is $110^{\circ} \mathrm{C}$, and the LM318 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs uniess some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, (LM118), $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (LM218), and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}$ $\leq+70^{\circ} \mathrm{C}$ (LM318). Also, power supplies must be bypassed with $0.1 \mu \mathrm{~F}$ disc capacitors.

Typical Performance Characteristics LM118, LM218

Typical Performance Characteristics LM118, LM218 (Continued)

Typical Performance Characteristics Lm318

Typical Performance Characteristics LM318 (Continued)

 DIFFERENTIAL INPUT (V)

Auxiliary Circuits

Feedforward Compensation for Greater Inverting Slew Rate ${ }^{\dagger}$

Compensation for Minimum Settling ${ }^{\dagger}$ Time

Offset Balancing

Isolating Large Capacitive Loads

Overcompensation

Typical Applications

Fast Voltage Follower *

Fast Summing Amplifier

Differential Amplifier

Typical Applications (Continued)

Fast Sample and Hold

D/A Converter Ușing Binary Weighted Network

Wein Bridge Sine Wave Oscillator

D/A Converter Using Ladder Network

Fast Summing Amplifier with Low Input Current

Operational Amplifiers/Buffers

LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers

General Description

The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard $+5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}_{\mathrm{DC}}$ power supplies.

Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.

Advantages

- Eliminates need for dual supplies
- Four internally compensated op amps in a single package
- Allows directly sensing near GND and $\mathrm{V}_{\text {OUt }}$ also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Internally frequency compensated for unity gain
- Large dc voltage gain

100 dB

- Wide bandwidth (unity gain) $\quad 1 \mathrm{MHz}$ (temperature compensated)
- Wide power supply range:

> Single supply or dual supplies
$3 V_{D C}$ to $30 V_{D C}$

$$
\pm 1.5 \mathrm{~V} D C \text { to } \pm 15 \mathrm{~V} D C
$$

- Very low supply current drain ($800 \mu \mathrm{~A}$) - essentially independent of supply voltage ($1 \mathrm{~mW} / \mathrm{op}$ amp at $\left.+5 V_{D C}\right)$
- Low input biasing current
$45 n A_{D C}$ (temperature compensated)
- Low input offset voltage $2 m V_{D C}$ and offset current $5 \mathrm{nA}_{\mathrm{DC}}$
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage $\quad 0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$ swing

Connection Diagram

Dual-In-Line and Flat Package

Schematic Diagram (Each Amplifier)

LIM124/LM224/LM324,
 LIM124ALM224ALM324A, LM2902

Absolute Maximum Ratings

LM124/LM224/LM324

Supply Voltage, V^{+}
Differential Input Voltag
Input Voltage
Power Dissipation (Note 1)
Molded DIP
Cavity DIP
Flat Pack
Output Short-Circuit to GND (One Amplifier) (Note 2)
$\mathrm{V}^{+} \leq 15 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$32 V_{D C}$ or $\pm 16 V_{D C}$	$26 V_{D C}$ or $\pm 13 V_{D C}$
$32 V_{D C}$	$26 V_{D C}$
$-0.3 V_{D C}$ to $+26 V_{D C}$	$-0.3 V_{D C}$ to $+26 V_{D C}$
570 mW	570 mW
900 mW	
800 mW	
Continuous	Continuous

Input Current ($\mathrm{V}_{\text {IN }}<-0.3 \mathrm{~V}_{\mathrm{DC}}$) (Note 3)
Operating Temperature Range
LM324/LM324A
LM224/LM224A
LM124/LM124A
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LM124/LM224/LM324 LM2902
50 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

50 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{v}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}\right.$, Note 4)

PARAMETER	CONDITIONS	LM124A			LM224A			LM324A			LM124/LM224			LM324			LM2902			UNITS
		MIN	TYP	MAX																
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		1	2	.	1	3		2	3		± 2	± 5		± 2	± 7		± 2	± 7	$m V_{\text {DC }}$
Input Bias Current (Note 6)	$\operatorname{IIN(+)}$ or IIN(-), $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$		20	50		40	80		45	100		45	150		45	250	\cdot	45	250	$n A D C$
Input Offset Current		.	2	10		2	15		5	30		± 3	± 30		± 5	± 50		± 5	± 50	${ }^{n A D C}$
Input Common-Mode Voltage Range (Note 7)	$\mathrm{V}^{+}=30 \mathrm{VDC}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$	0		$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	0	.	$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	$V_{D C}$
Supply Current	$\begin{aligned} & R_{L}=\infty, V_{C C}=30 \mathrm{~V},\left(\mathrm{LM} 2902 \mathrm{~V}_{C C}=26 \mathrm{~V}\right) \\ & R_{\mathrm{L}}=\infty \text { On All Op Amps } \end{aligned}$ Over Full Temperature Range		1.5 0.7	3 1.2		1.5 0.7	3 1.2		1.5 0.7	3 1.2		1.5 0.7	3 1.2		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 3 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 3 \\ & 1.2 \end{aligned}$	mADC $m A D C$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{VDC} \text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	100		50	100		25	100		50	100		25	100			100		V / mV
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left(\mathrm{LM} 2902 \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right.$)	0		$\mathrm{v}^{+}-1.5$	0	—	$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	VDC									
Common-Mode Rejection Ratio	$\mathrm{DC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	70	85		70	85		- 65	85		70	85		65	70		50	70		dB
Power Supply Rejection Ratio	DC, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	65	100		65.	100			100		65	100		65	100		50	100		dB
Amplifier-to-Amplifier Coupling (Note 8)	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred) } \end{aligned}$		-120			-120	.		-120			-120			-120			-120		dB
Output Current Source	$\begin{aligned} & V_{I N^{+}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{I N^{-}}^{-}=0 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		40		20	40		20	40			40			40			40	-	mADC
Sink	$\begin{aligned} & V_{I N^{-}}=1 \mathrm{~V}_{D C}, V_{I N}{ }^{+}=0 \mathrm{~V}_{D C} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{1 N^{-}}=1 \mathrm{~V}_{D C}, V_{I N}{ }^{+}=0 \mathrm{~V}_{D C} \\ & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}_{D C} \\ & \hline \end{aligned}$	10 12	20 50		10 12	20 50		10 12	20 50		10 12	20 50°		10 12	20 50					$\begin{aligned} & m A D C \\ & \mu A D C \end{aligned}$
Short Circuit to Ground	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 2)		40	60		40	60		40	60		40	60		40	60		40	60	$m A_{D C}$

Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	LM124A			LM224A			LM324A			LM124/LM224			LM324			LM2902			UNITS
		MIN	. TYP	MAX	MIN	TYP	MAX													
Input Offset Voltage	(Note 5)	.		4			4			5	.		± 7			± 9			± 10	$m V_{\text {DC }}$
Input Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		7	20		7	20			30		7			7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\operatorname{lin}(+)-\operatorname{lin}(-)$			30			30			75			± 100			± 150		45	± 200	$n{ }^{\text {A DC }}$
Input Offset Current Drift			10	200		10	200		10	300		10			10			10		$\mathrm{pA} D /^{\circ} \mathrm{C}$
Input Bias Current	$\operatorname{IIN}(+)$ or IIN(-)		40	100		40	100		40	200		40	300		40	500		40	500	$n A D C$
Input Common-Mode Voltage Range (Note 7)	$\mathrm{V}^{+}=30 \mathrm{VDC}$	0		$\mathrm{v}^{+}-2$	$V_{D C}$															
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}} \text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			25			15			25			15			15			V/mV
Output Voltage Swing v_{OH} V_{OL}	$\begin{aligned} & \mathrm{V}^{+}=+30 \mathrm{~V}_{\mathrm{DC}}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{~V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, R_{\mathrm{L}} \leq 10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	28 5	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	28 5	20	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & 5 \end{aligned}$	100	$V_{D C}$ $V_{D C}$ $m V_{D C}$
Output Current Source \quad Sink	$\begin{aligned} & V_{I N}^{+}=+1 V_{D C}, V_{I N}-=0 V_{D C}, V^{+}=15 V_{D C} \\ & V_{I N}=+1 V_{D C}, V_{I N}=0 V_{D C}, V^{+}=15 V_{D C} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$			$\begin{aligned} & 20 \\ & 8 \\ & \hline \end{aligned}$	$\stackrel{1}{2}$		$\begin{aligned} & 20 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$			$\begin{aligned} & 20 \\ & 8 \end{aligned}$		mADC mADC
Differential Input Voltage	(Note 7)			v^{+}			v^{+}			v^{+}			v^{+}.			v^{+}			v^{+}	$V_{\text {DC }}$

 four amplifiers-use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
 voltage in excess of $+15 \mathrm{~V}_{\mathrm{DC}}$, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

 again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}$.
 LM324A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq \mp 70^{\circ} \mathrm{C}$, and the LM 2902 specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note 5: $V_{O} \cong 1.4 \mathrm{~V}_{D C}, R_{S}=0 \Omega$ with V^{+}from $5 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$; and over the full input common-mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{D C}$).

 inputs can go to $+32 \mathrm{~V}_{\mathrm{DC}}$ without damage ($+26 \mathrm{~V}_{\mathrm{DC}}$ for LM2902).
 higher frequencies.

Open Loop Frequency Response

Voltage Follower Pulse
Response (Small Signal)

Supply Current

Common Mode Rejection Ratio

f-FREQUENCY (Hz)

Typical Performance Characteristics (LM2902 only)

- V^{+}- SUPPLY VOLTAGE $\left(\mathrm{V}_{\mathrm{DC}}\right)$

Application Hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0 \quad \mathrm{~V}_{\mathrm{DC}}$. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ amplifier operation is possible down to a minimum supply voltage of 2.3 V DC

The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7,8 , and 14).

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should

be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case noninverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $3 \mathrm{~V}_{\mathrm{DC}}$ to 30 VC.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of $\mathrm{V}^{+} / 2$) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Non-Inverting DC Gain (OV Input = OV Output)

DC Summing Amplifier $\left(V_{I N} \mathbf{S} \geq 0 V_{D C}\right.$ AND $\left.V_{O} \geq 0 V_{D C}\right)$

Where: $V_{0}=V_{1}+V_{2}-V_{3} V_{4}$
$\left(V_{1}+V_{2}\right) \geq\left(V_{3}+V_{4}\right)$ to keep $V_{0}>0 V_{D C}$

Power Amplifier

LED Driver

Lamp Driver

Cùrrent Monitor

Typical Single－Supply Applications（Continued）$\left(\mathrm{V}^{+}=5.0 \mathrm{~V}\right.$ oc $)$

Ground Referencing A Differential Input Signal

LM124A/LM224A/LM324A, LM2902

Typical Single-Supply Applications (Continued) $\left(V^{+}=5.0 \mathrm{~V}_{\mathrm{Dc}}\right)$

AC Coupled Inverting Amplifier
AC Coupled Non-Inverting Amplifier

DC Coupled Low-Pass RC Active Filter

High Input Z, DC Differential Amplifier

Typical Single-Supply Applications (Continued) $\left(V^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

If $\mathrm{R} 1=\mathrm{R} 5 \& \mathrm{R} 3=\mathrm{R} 4=\mathrm{R6}=\mathrm{R} 7$ (CMRR depends on match)
$\mathrm{V}_{\mathrm{O}}=1+\frac{2 \mathrm{R} 1}{\mathrm{R} 2}\left(\mathrm{~V}_{2} \mathrm{~V}_{1}\right)$
As shown $V_{0}=101\left(\begin{array}{ll}V_{2} & V_{1}\end{array}\right)$

Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

Bridge Current Amplifier

Bandpass Active Filter

LM143/LM343 High Voltage Operational Amplifier

General Description

The LM143 is a general purpose high voltage operational amplifier featuring operation to $\pm 40 \mathrm{~V}$, complete input overvoltage protection up to $\pm 40 \mathrm{~V}$ and input currents comparable to those of other super $-\beta$ op amps. Increased slew rate, together with higher common-mode and supply rejection, insure improved performance at high supply voltages. Operating characteristics, in particular supply current, slew rate and gain, are virtually independent of supply voltage and temperature. Furthermore, gain is unaffected by output loading at high supply voltages due to thermal symmetry on the die. The LM143 is pin compatible with general purpose op amps and has offset null capability.

Application areas include those of general purpose op amps, but can be extended to higher voltages and higher output power when externally boosted. For example, when used in audio power applications, the LM143 provides a power bandwidth that covers the entire audio spectrum. In addition, the LM143 can be reliably operated in environments with large overvoltage spikes on the power supplies, where other internally-compensated op amps would suffer catastrophic failure.

The LM343 is similar to the LM143 for applications in less severe supply voltage and temperature environments.

- Wide supply voltage range $\pm 4.0 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$
- Large output voltage swing . $\pm 37 \mathrm{~V}$
- Wide input common-mode range . $\pm 38 \mathrm{~V}$
- Input overvoltage protection Full $\pm 40 \mathrm{~V}$
- Supply current is virtually independent of supply voltage and temperature

Unique Characteristics

Connection Diagrams

Absolute Maximum Ratings (Note 1)

	LM143	LM343
Supply Voltage	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Power Dissipation (Note 1)	680 mW	680 mW
Differential Input Voltage (Note 2)	80 V	68 V
Input Voltage (Note 2)	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Output Short Circuit Duration	5 seconds	5 seconds
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	LM143			LM343			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	8.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.	1.0	3.0		1.0	10	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8.0	20		8.0	40	nA
Supply Voltage Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	100		10	200	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{k} \Omega$	22	25	:	20	25		V
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}} \geq 100 \mathrm{k} \Omega \end{aligned}$	100k	180k		70k	180k		V/V
Common-Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	90		70	90		- dB
Input Voltage Range	$T_{A}=25^{\circ} \mathrm{C}$	24	26		22	26		V
Supply Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0		2.0	5.0	mA
Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20			20		mA
Slew Rate	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{A}_{V}=1$		2.5			2.5		$\mathrm{V} / \mathrm{\mu}$
Power Bandwidth	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=40 \mathrm{~V}_{\text {P.P }}, \\ & R_{L}=5 \mathrm{k} \Omega, T H D \leq 1 \% \end{aligned}$		20k			20k		Hz
Unity Gain Frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0 M			1.0 M		Hz
Input Offset Voltage	$\begin{aligned} & T_{A}=\operatorname{Max} \\ & T_{A}=\operatorname{Min} \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Offset Current	$\begin{aligned} & T_{A}=\operatorname{Max} \\ & T_{A}=\operatorname{Min} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.0 \end{aligned}$		0.8 1.8	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$\begin{aligned} & T_{A}=\text { Max } \\ & T_{A}=\operatorname{Min} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 16 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 16 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Large Signal Voltage	$\mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\operatorname{Max}$	50k	150k		50k	150k		V/V
Gain	$\mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{Min}$	50k	220k		50k	220k		V/V
Output Voltage Swing	$\begin{aligned} & R_{L} \geq 5.0 \mathrm{k} \Omega, T_{A}=\operatorname{Max} \\ & R_{L} \geq 5.0 \mathrm{k} \Omega, T_{A}=\operatorname{Min} \end{aligned}$	22	$\begin{aligned} & 26 \\ & 25 \end{aligned}$		20 20	26 25		v

Note 1: Absolute maximum ratings are not necessarily concurrent, and care must be taken not to exceed the maximum junction temperature of the LM143 $\left(150^{\circ} \mathrm{C}\right)$ or the LM343 $\left(100^{\circ} \mathrm{C}\right)$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltage less than $\pm 40 \mathrm{~V}$ for the LM143 and less than $\pm 34 \mathrm{~V}$ for the LM343, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 28 \mathrm{~V}$. For $L M 143, T_{A}=\max =125^{\circ} \mathrm{C}$ and $\mathrm{T}_{A}=\min =-55^{\circ} \mathrm{C}$. For $L M 343, T_{A}=\max =70^{\circ} \mathrm{C}$ and $T_{A}=\min =0^{\circ} \mathrm{C}$.

Schematic Diagram

Typical Performance Characteristics

Supply Current

Typical Performance Characteristics (Continued)

Common-Mode Rejection

Power Supply Rejection

Voltage Follower Pulse Response

Large Signal Frequency Response

Application Hints (See AN-127)

The LM143 is designed for trouble free operation at any supply voltage up to and including the guaranteed maximum of $\pm 40 \mathrm{~V}$. Input overvoltage protection, both common-mode and differential; is 100% tested and guaranteed at the maximum supply voltage. Furthermore, all possible high voltage destructive modes during supply voltage turn-on have been eliminated by design. As with most IC op amps, however, certain precautions should be observed to insure that the LM143 remains virtually blow-out proof.

Although output short circuits to ground or either supply can be sustained indefinitely at lower supply voltages, these short circuits should be of limited duration when operating at higher supply voltages. Units can be destroyed by any combination of high ambient temperature, high supply voltages, and high power dissipation which results in excessive die temperature. This is also true when driving low impedance or reactive loads or loads that can revert to low impedance; for example, the LM143 can drive most general purpose op amps outside of the maximum input voltage range, causing heavy current to flow and possibly destroying both devices.

Precautions should be taken to insure that the power supplies never become reversed in polarity-even under transient conditions. With reverse voltage, the IC will conduct excessive current, fusing the internal aluminum interconnects. Voltage reversal between the power supplies will almost always result in a destroyed unit.

bottom view

FIGURE 1. Printed Circuit Layout for Input Guarding with TO-5 Package

FIGURE 3. Guarded Non-Inverting Amplifier

In high voltage applications which are sensitive to very low input currents, special precautions should be exercised. For example, with high source resistances, care should be taken to prevent the magnitude of the PC board leakage currents, although quite small, from approaching those of the op amp input currents. These leakage currents become larger at $125^{\circ} \mathrm{C}$ and are made worse by high supply voltages. To prevent this, PC boards should be properly cleaned and coated to prevent contamination and to provide protection from condensed water vapor when operating below $0^{\circ} \mathrm{C}$. A guard ring is also recommended to significantly reduce leakage currents from the op amp input pins to the adjacent high voltage pins in the standard op amp pin connection as shown in Figure 1. Figures 2, 3 and 4 show how the guard ring is connected for the three most common op amp configurations.

Finally, caution should be exercised in high voltage applications as electrical shock hazards are present. Since the negative supply is connected to the case, users may inadvertantly contact voltages equal to those across the power supplies.

The LM143 can be used as a plug-in replacement in most general purpose op amp applications. The circuits presented in the following section emphasize those applications which take advantage of the unique high voltage capabilities of the LM143.

FIGURE 2. Guarded Voltage Follower

FIGURE 4. Guarded Inverting Amplifier

Typical Applications \ddagger (For more detail see AN-127)

130 VP-P Drive Across a Floating Load

*R2 may be adjustable to trim the gain.
**R7 may be adjusted to compensate for the resistance tolerance of R4-R7 for best CMR.
$\pm 34 \mathrm{~V}$ Common-Mode Instrumentation Amplifier

Tracking $\pm 65 \mathrm{~V}, 1$ Amp Power Supply with Short Circuit Protection

[^15]Typical Applications (Continued) (For more detail see AN-127)

90W Audio Power Amplifier with Safe Area Protection

1 Amp Power Amplifier with Short Circuit Protection
\ddagger The 38 V supplies allow for a 5% voltage tolerance. All resistors are $1 / 2$ watt, except as noted.

National

LM144／LM344 High Voltage，High Slew Rate Operational Amplifier

General Description

The LM144 is a general purpose high voltage，uncom－ pensated operational amplifier featuring operation to $\pm 36 \mathrm{~V}$ ，complete input overvoltage protection up to the supply voltages and input currents comparable to those of other super $-\beta$ op amps．Increased slew rate，together with high common－mode and supply rejection，insure excellent performance at high supply voltages．Operating characteristics，in particular supply current，slew rate and gain，are virtually independent of supply voltage and temperature．Furthermore，due to thermal symmetry on the die，gain is unaffected by output loading at high supply voltages．

With the unique advantages of low input current，high gain，and high slew rate，the LM144 can increase accu－ racy and useful frequency range in many existing applica－ tions．For example，the LM144 is a plug－in replacement for the LM101A，as well as other general purpose op amps．

The LM144 can be compensated with a single capacitor， thus giving the user the ability to optimize ac parameters to suit the application．For example，in applications such as audio power amplifiers，the LM144 with a gain of 10 can provide a $\pm 30 \mathrm{~V}$ output swing，a slew rate of approximately $30 \mathrm{~V} / \mu \mathrm{s}$ ，and a 120 kHz full power
bandwidth．In applications where capacitive loads or cables must be driven，the LM144 can be overcompen－ sated for increased stability．

The LM344 is similar to the LM144 for applications in less severe supply voltage and temperature environments．

Features

－External compensation provides large power bandwidth（ $\mathrm{A}_{\mathrm{V}} \geq 10$ ）

120 kHz
－Wide operating voltage range $\pm 4.0 \mathrm{~V}$ to $\pm 36 \mathrm{~V}$
－Large output voltage swing $\pm 30 \mathrm{~V}$
－Wide input common－mode range
－Input overvoltage protection
－Electrical characteristics independent of supply voltage and temperature

Únique Characteristics

$\begin{array}{lr}\text {－Low input bias current } & 8.0 \mathrm{nA} \\ \text {－Low input offset current } & 1.0 \mathrm{nA} \\ \text {－High slew rate }\left(\mathrm{A}_{\mathrm{V}} \geq 10\right) & 30 \mathrm{~V} / \mu \mathrm{s} \\ \text {－High voltage gain } & 100 \mathrm{k} \mathrm{min} \\ \text {－Offset voltage null capability } & \end{array}$

Typical Application

Large Power Bandwidth，Current Boosted Audio Line Driver

Absolute Maximum Ratings (These ratings are not concurrent)

	LM144	LM344
Supply Voltage	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Power Dissipation (Note 1)	680 mW	680 mW
Differential Input Voltage (Note 2)	80 V	68 V
Input Voltage (Note 2)	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Output Short Circuit Duration	5 seconds	5 seconds
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	LM144			LM344			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	8.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		- 1.0	3.0		1.0	10	$n \mathrm{~A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8:0	20	.	8.0	40	nA
Supply Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	100		10	200	$\mu \mathrm{V} / \mathrm{V}$
Rejection Ratio								
Output Voltage Swing	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{k} \Omega$	22	25		20	25		v
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 100 \mathrm{k} \Omega \end{aligned}$	100k	180k		70k	180k		V/V
Common-Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	90		70	90		dB
Input Voltage Range	$T_{A}=25^{\circ} \mathrm{C}$	24	26		22	26		v
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0		$2.0{ }^{\circ}$	5.0	mA
Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20			20		mA
Slew Rate	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{A}_{V}=1$		2.5			2.5		$\mathrm{V} / \mu \mathrm{s}$
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{A}_{\mathrm{V}}=10, \mathrm{C} 1=3 \mathrm{pF}$		30			30		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=40 \mathrm{~V}_{p \cdot p} \\ & R_{L}=5 \mathrm{k} \Omega, T H D \leq 1 \%, A_{V}=1 \end{aligned}$		20k			20k		Hz
Unity Gain Frequency	$T_{A}=25^{\circ} \mathrm{C}$		1.0M			1.0M		Hz
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=$ Max			6.0			10	mV
	$\mathrm{T}_{\mathrm{A}}=\mathrm{Min}$			6.0			10	$m V$
Input Offset Current	$T_{A}=$ Max		0.8	4.5		0.8	14	$n \mathrm{~A}$
	$\mathrm{T}_{\mathrm{A}}=\mathrm{Min}$		1.8	7.0		1.8	14	$n \mathrm{~A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=$ Max		5.0	35		5.0	55	$n A$
	$T_{\text {A }}=\operatorname{Min}$		16	35		16	55	$n A$
Large Signal Voltage Gain	$R_{L} \geq 100 \mathrm{k} \Omega, T_{A}=\operatorname{Max}$	50k			50k	150k		v / V
	$\mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{Min}$	50k	220k		50k	220k	-	V / V
Output Voltage Swing	$R_{L} \geq 5.0 \mathrm{k} \Omega, T_{A}=M a x$.	22	26		20	26		V
	$\mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{Min}$	22	25		20	25		v

Note 1: The maximum junction temperature of the LM144 is $150^{\circ} \mathrm{C}$, while that of the LM344 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltage less than $\pm 40 \mathrm{~V}$ for the LM144 and less than $\pm 34 \mathrm{~V}$ for the LM344, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 28 \mathrm{~V}$. For the $\mathrm{LM} 144, \mathrm{~T}_{A}=\max =125^{\circ} \mathrm{C}$ and $\mathrm{T}_{A}=\min =-55^{\circ} \mathrm{C}$. For the $\mathrm{LM} 344, \mathrm{~T}_{A}=\max =70^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=\min =0^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Supply Current

SUPPLY VOLTAGE（ $\pm \mathbf{V}$ ）

Typical Performance Characteristics (Continued)

Application Hints（See Also AN－127）

The LM144 is designed for trouble－free operation at any supply voltage up to a maximum of $\pm 40 \mathrm{~V}$ ．Input over－ voltage protection，both common－mode and differen－ tial，is 100% tested and guaranteed at the maximum supply voltage．Furthermore，all possible high voltage destructive modes during supply voltage turn－on have been eliminated by design．As with most IC op amps， however，certain precautions should be observed to insure that the LM144 remains virtually blow－out proof．

Although output short circuits to ground or either supply can be sustained indefinitely for supply voltages， below $\pm 18 \mathrm{~V}$ ，these short circuits should be of limited duration when operating at higher supply voltages． Units can be destroyed by any combination of high ambient temperature，high supply voltages，and high power dissipation which results in excessive die tempera－ ture．This is also true when driving low impedance or reactive loads or loads that can revert to low impedance； for example，the LM144 can drive most general purpose op amps outside of their maximum input voltage range， causing heavy current to flow and possibly destroying both devices．

Precautions should be taken to insure that the power supplies never become reversed in polarity－even under transient conditions．With reverse voltage，the IC will conduct excessive current，fusing the internal aluminum interconnects．Voltage reversal between the power supplies will almost always result in a destroyed unit．

In high voltage applications which are sensitive to very low input currents，special precautions should be exer－
cised．For example，with high source resistances，care should be taken to prevent the magnitude of the PC board leakage currents，although quite small，from approaching those of the op amp input currents．These leakage currents become larger at $125^{\circ} \mathrm{C}$ and are made worse by high supply voltages．To prevent this，PC boards should be properly cleaned and coated to prevent contamination and to provide protection from con－ densed water vapor when operation below $0^{\circ} \mathrm{C}$ ．A guard ring is also recommended to significantly reduce leakage currents from the op amp input pins to the adjacent high voltage pins in the standard op amp pin connection as shown in Figure 1．Figures 2， 3 and 4 show how the guard ring is connected for the three most common op amp configurations．

The minimum values given for the frequency compensa－ tion capacitor are stable only for source resistances less than $10 \mathrm{k} \Omega$ ，stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF ． If any of these conditions are not met，it becomes necessary to overcompensate the amplifier with a larger compensation capacitor．Alternately，lead capaci－ tors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads．See Figures 5， 6 and 7.

Finally，caution should be exercised in high voltage applications as electrical shock hazards are present．Since the negative supply is connected to the case，users may inadvertantly contact voltages equal to those across the power supplies．

bottom View
FIGURE 1．Printed Circuit Layout for Input Guarding with TO－5 Package

FIGURE 3．Guarded Non－Inverting Amplifier

FIGURE 2．Guarded Voltage Follower

FIGURE 4．Guarded Inverting Amplifier

Application Hints (Continued)

FIGURE 5. Single Pole Compensation

FIGURE 6. Isolating Large Capacitive Loads

FIGURE 7. Compensating For Stray Input Capacitances or Large Feedback Resistor

FIGURE 8. Protecting Against Gross Fault Conditions

Connection Diagrams

FIGURE 9. Balancing Circuit

> Order Number LM144H or LM344H See NS Package H08C

2
 National Semiconductor LM146／LM246／LM346 Programmable Quad Operational Amplifiers
 General Description
 The LM146 series of quad op amps consists of four independent，high gain，internally compensated，low power，programmable amplifiers．Two external resistors （RSET）allow the user to program the gain bandwidth product，slew rate，supply current，input bias current， input offset current and input noise．For example，the user can trade－off supply current for bandwidth or optimize noise figure for a given source resistance．In a similar way，other amplifier characteristics can be tailored to the application．Except for the two program－ ming pins at the end of the package，the LM146 pin－out is the same as the LM124 and LM148．

Connection Diagrams（Dual－In－Line Packages，Top Views）

PROGRAMMING EQUATIONS

Total Supply Current $=1.4 \mathrm{~mA}\left(I_{S E T} / 10 \mu \mathrm{~A}\right)$
Gain Bandwidth Product $=1 \mathrm{MHz}\left(I_{S E T} / 10 \mu \mathrm{~A}\right)$
Slew Rate $=0.4 \mathrm{~V} / \mu \mathrm{s}\left(I_{\text {SET }} / 10 \mu \mathrm{~A}\right)$
Input Bias Current $=50 \mathrm{nA}\left(I_{S E T} / 10 \mu \mathrm{~A}\right)$
ISET $=$ Current into pin $8, \operatorname{pin} 9$（see schematic－ diagram）

$$
I_{S E T}=\frac{v^{+}-v^{-}-0.6 V}{R_{S E T}}
$$

Schematic Diagram

Absolute Maximum Ratings

(Note 1)
Supply Voltage
Differential Input Voltage (Note 1)
CM Input Voltage (Note 1)
Power Dissipation (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
Thermal Resistance ($\theta_{\mathrm{j} A}$), (Note 2)

LM146	LM246	LM346
$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
900 mW	500 mW	500 mW
Indefinite	Indefinite	Indefinite
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Cavity DIP (D) (J)	P_{d}	900 mW	900 mW	900 mW
	$\theta_{\mathrm{j}} \mathrm{A}$.	$90^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$
Molded DIP (N)	P_{d}			500 mW
	$\theta_{\mathrm{j}} \mathrm{A}$			$140^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics $\left(\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.$, ISET $=10 \mu \mathrm{~A}$, Note 4$)$

- parameter	CONDITITIONS	LM146			LM246/LM346			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$V_{C M}=0 V, R \dot{S} \leq 50 \Omega, T_{A}=25^{\circ} \mathrm{C}$		0.5	5	\cdots	0.5	6	mV
Input Offset Current	$V_{C M}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	20		2	100	nA
Input Bias Current	$V_{C M}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		50	100		50	250	nA
Supply Current (4 Op Amps)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.4	2.0		1.4	2.5	mA
Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega, \Delta \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	100	1000		50	1000		V / mV
Input CM Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 13.5	± 14		± 13.5	± 14		v
CM Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		70	100		dB
Power Supply Rejection	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		74	100		dB
Ratio								
Output Voltage Swing	$R_{L} \geq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 12	± 14		± 12	± 14		v
Short-Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5	20	30	5	20	30	mA
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1.2		0.5	1.2		MHz
Phase Margin	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60			60		Deg
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.4			0.4		$\mathrm{V} / \mu \mathrm{s}$
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		28			28		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Channel Separation	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, \Delta V_{O U T}=0 \mathrm{~V} \text { to } \\ & \pm 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		120			120		dB
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0			1.0		$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0			2.0		pF
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega$		0.5	6	,	0.5	7.5	mV
Input Offset Current	$V_{C M}=0 \mathrm{~V}$		2	25		2	100	nA
Input Bias Current	$V_{C M}=0 \mathrm{~V}$		50	100		50	250	nA
Supply Current (4 Op Amps)			1.5	2.0		1.5	2.5	mA
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \Delta \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50	1000		25	1000		V / mV
Input CM Range		± 13.5	± 14		± 13.5	± 14		V
CM Rejection Ratio	$\mathrm{R}_{S} \leq 50 \Omega$	70	100		70	100		dB.
Power Supply Rejection	$\mathrm{R}_{S} \leq 50 \Omega$	76	100		74	100		dB
Ratio								
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V

DC Electrical Characteristics $\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.$, ISET $\left.=1 \mu \mathrm{~A}\right)$

PARAMETER	CONDITIONS	LM146			LM246/LM346			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	5		0.5	7	mV
Input Bias Current	$V_{C M}=0 V, T_{A}=25^{\circ} \mathrm{C}$		7.5	20		7.5	100	nA
Supply Current (40p Amps)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		140	250		140	300	$\mu \mathrm{A}$
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		50	100		kHz

DC. Electrical Characteristics $\left(\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}, \mathrm{ISET}=10 \mu \mathrm{~A}\right)$

PARAMETER	CONDITIONS	LM146			LM246/LM346			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\begin{aligned} & V_{C M}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	5		0.5	7	mV
Input CM Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.7			± 0.7			V
CM Rejection Ratio	$\mathrm{R}_{S} \leq 50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80			80		dB
Output Voltage Swing	$R_{L} \geq 10 \mathrm{k} \Omega, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$	± 0.6			± 0.6			V

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{\mathrm{j}} A$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$, whichever is less.
Note 3: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 4: These specifications apply over the absolute maximum operating temperature range unless otherwise noted.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Input Offset Voltage vs ISET

Input Bias Current vs
Temperature

Common-Mode Rejection Ratio vs ISET

Input Voltage Range vs Supply Voltage

Input Offset Current vs Temperature

Power Supply Rejection Ratio vs ISET

Input Bias Current vs
Input Common-Mode
Voltage

Supply Current vs Temperature

Typical Performance Characteristics (Continued)

Input Noise Voltage vs Frequency

Gain Bandwidth Product
vs Temperature

Input Noise Current vs Frequency

Slew Rate vs Temperature

Power Supply Rejection Ratio vs Frequency

Transient Response Test Circuit

Application Hints

Avoid reversing the power supply polarity, the device will fail.

Common-Mode Input Voltage: The negative commonmode voltage limit is one diode drop above the negative supply voltage. Exceeding this limit on either input will result in an output phase reversal. The positive commonmode limit is typically 1 V below the positive supply voltage. No output phase reversal will occur if this limit is exceeded by either input.

Output Voltage Swing vs ISET: For a desired output voltage swing the value of the minimum load depends on the positive and negative output curent capability of the op amp. The maximum available positive output current, (ICL+), of the device increases with ISET whereas the negative output current ($I_{C L-}$) is independent of ISET. Figure 1 illustrates the above.

FIGURE 1. Output Current Limit vs ISET

Input Capacitance: The input capacitance, C_{IN}, of the LM146 is approximately 2 pF ; any stray capacitance, C_{S}, (due to external circuit circuit layout) will add to CIN. When resistive or active feedback is applied, an additional pole is added to the open loop frequency response of the device. For instance with resistive feedback (Figure 2), this pole occurs at $1 / 2 \pi$ ($R 1 \| R 2$) ($\mathrm{C}_{\text {IN }}+\mathrm{C}_{\mathrm{S}}$). Make sure that this pole occurs at least 2 octaves beyond the expected -3 dB frequency corner of the closed loop gain of the amplifier; if not, place a lead capacitor in the feedback such that the time constant of this capacitor and the resistance it parallels is equal to the $R_{l}\left(C_{S}+C_{I N}\right)$, where R_{l} is the input resistance of the circuit.

FIGURE 2
Temperature Effect on the GBW: The GBW Igain bandwidth product), of the LM146 is directly proportional to ISET and inversely proportional to the absolute temperature. When using resistors to set the bias current, ISET, of the device, the GBW product will decrease with increasing temperature. Compensation can be provided by creating an ISET current directly proportional to temperature (see typical applications).

Isolation Between Amplifiers: The LM146 die is isothermally layed out such that crosstalk between all 4 amplifiers is in excess of -105 dB (DC). Optimum isolation (better than -110 dB) occurs between amplifiers A and D, B and C; that is, if amplifier A dissipates power on its output stage, amplifier D is the one which will be affected the least, and vice versa. Same argument holds for amplifiers B and C.

LM146 Typical Performance Summary: The LM146 typical behavior is shown in Figure 3. The device is fully predictable. As the set current, ISET, increases, the speed, the bias current, and the supply current increase while the noise power decreases proportionally and the $\mathrm{V}_{\text {Os }}$ remains constant. The usable GBW range of the op amp is 10 kHz to $3.5-4 \mathrm{MHz}$.

FIGURE 3. LM146 Typical Characteristics
Low Power Supply Operation: The quad op amp operates down to $\pm 1.3 \mathrm{~V}$ supply. Also, since the internal circuitry is biased through programmable current sources, no degradation of the device speed will occur.

Speed vs Power Consumption: LM146 vs LM4250 (single programmable). Through Figure 4, we observe that the LM146's power consumption has been optimized for GBW products above 200 kHz , whereas the LM4250 will reach a GBW of no more than 300 kHz , for GBW products below 200 kHz , the LM4250 will consume less.

FIGURE 4. LM146 vs LM4250

Dual Supply or Negative Supply Biasing

$$
\mathrm{I}_{\mathrm{SET}} \simeq \frac{\left|\mathrm{~V}^{-}\right|-0.6 \mathrm{~V}}{\mathrm{R}_{\mathrm{SET}}}
$$

Current Source Biasing with Temperature Compensation

$$
\mathrm{I}_{\mathrm{SET}}=\frac{67.7 \mathrm{mV}}{\mathrm{R}_{\mathrm{SET}}}
$$

- The LM334 provides an ISET directly proportional to absolute temperature. This cancels the slight GBW product temperature coefficient of the LM346.

Single (Positive) Supply Biasing

$$
I_{S E T} \simeq \frac{\mathrm{~V}^{+}-0.6 \mathrm{~V}}{R_{\mathrm{SET}}}
$$

Biasing all 4 Amplifiers with Single Current Source

$$
\frac{I_{S E T} 1}{I_{S E T}}=\frac{R 2}{R 1} \cdot I_{S E T} 1+I_{S E T} 2=\frac{67.7 \mathrm{mV}}{\mathrm{R}_{\mathrm{SET}}}
$$

- For ISET1 \simeq ISET2 resistors R1 and R2 are not required if a slight error between the 2 set currents can be tolerated. If not, then use R1 = R2 to create a 100 mV drop across these resistors.

Active Filters Applications

Basic (Non-Inverting "State Variable") Active Filter Building Block

- The LM146 quad programmable op amp is especially suited for active filters because of their adequate GBW product and low power consumption.
Circuit synthesis equations (for circuit analysis equations, consult with the AF100 and LM148 data sheet).
Need to know desired: $\quad f_{0}=$ center frequency measured at the BP output
$\mathrm{O}_{\mathrm{O}}=$ quality factor measured at the BP output
$H_{0}=$ gain at the output of interest (BP or HP or LP or all of them)
\wedge Relation between different gains: $H_{0}(B P)=0.316 \times \mathrm{O}_{0} \times \mathrm{H}_{0}(L P) ; \mathrm{H}_{0}(L P)=10 \times \mathrm{H}_{0}(H P)$
$\triangle R \times C=\frac{5.033 \times 10^{-2}}{f_{0}}(\mathrm{sec})$
Δ For BP output: $R_{Q}=\left(\frac{3.478 Q_{0}-H_{O}(B P)}{10^{5}}-\frac{H_{0}(B P)}{10^{5} \times 3.478 \times Q_{0}}\right)^{-1} ; R_{1 N}=\frac{\left(\frac{3.478 Q_{0}}{H_{O}(B P)}-1\right)}{\frac{1}{R Q}+10^{-5}}$
\therefore For HP output: $R_{Q}=\frac{1.1 \times 10^{5}}{3.478 \mathrm{O}_{\mathrm{O}}\left(1.1-H_{O}(H P)\right)-H_{O}(H P)} ; R_{I N}=\frac{\frac{1.1}{H_{O}(H P)}-1}{\frac{1}{R Q}+10^{-5}}$
Note. All resistor values are given in ohms.
- For LP output: $R_{Q}=\frac{11 \times 10^{5}}{3.478 \mathrm{Q}_{\mathrm{O}}\left(11-H_{O}(L P)\right)-H_{O}(L P)} ; R_{I N}=\frac{\frac{11}{H_{O}(L P)}-1}{\frac{1}{R Q}+10^{-5}}$
4.For BR (notch) output: Use the 4th amplifier of the LM146 to sum the LP and HP outputs of the basic filter.

$$
\sqrt{\frac{R_{H}}{R_{L}}}=0.316 \frac{f_{\text {notch }}}{f_{o}}
$$

Determine R_{F} according to the desired gains: $\left.H_{o}(B R)\right|_{f \ll f_{\text {notch }}}=\frac{R_{F}}{R_{L}} H_{O}(L P),\left.H_{o(B R)}\right|_{f \gg} f_{\text {notch }}=\frac{R_{F}}{R_{H}} H_{O}(H P)$

- Where to use amplifier C: Examine the above gain relations and determine the dynamics of the filter. Do not allow slew rate limiting in any output ($V_{H P}, V_{B P}, V_{L P}$), that is:

$$
V_{\text {IN(peak) }}<63.66 \times 10^{3} \times \frac{\text { ISET }}{10 \mu A} \times \frac{1}{f_{0} \times H_{0}} \text { (Volts) }
$$

If necessary, use amplifier C, biased at higher ISET, where you get the largest output swing.
Deviation from Theoretical Predictions: Due to the finite GBW products of the op amps the f_{0}, Q_{0} will be slightly different from the theoretical predictions.
$f_{\text {real }} \simeq \frac{f_{o}}{1+\frac{2 f_{0}}{G B W}}, Q_{\text {real }} \simeq \frac{Q_{o}}{1-\frac{3.2 f_{o} \times Q_{0}}{G B W}}$

Active Filters Applications (Continued)

A Simple-to-Design BP, LP Filter Building Block

- If resistive biasing is used to set the LM346 performance, the Q_{0} of this filter building block is nearly insensitive to the op amp's GBW product temperature drift; it has also better noise performance than the state variable filter.

Circuit Synthesis Equations
$H_{O}(B P)=Q_{O} H_{O(L P)} ; R \times C=\frac{0.159}{f_{O}} ; R_{Q}=Q_{O} \times R ; R_{I N}=\frac{R_{Q}}{H_{O}(B P)}=\frac{R}{H_{O}(L P)}$

- For the eventual use of amplifier C , see comments on the previous page.

A 3-Amplifier Notch Filter (or Elliptic Filter Building Block)

Circuit Synthesis Equations

$R \times C=\frac{0.159}{f_{0}} ; R_{Q}=Q_{0} \times R ; R_{I N}=\frac{0.159 \times f_{0}}{C^{\prime} \times f^{2} \text { notch }}$
$\left.H_{o(B R)}\right|_{f \ll f_{\text {notch }}}=\left.\frac{R}{R_{I N}} H_{o(B R)}\right|_{f \gg f_{\text {notch }}}=\frac{C^{\prime}}{C}$

- For nothing but a notch output: $\mathrm{R}_{1 \mathrm{~N}}=\mathrm{R}, \mathrm{C}^{\prime}=\mathrm{C}$.

Active Filters Applications (Continued)

- This is a BP, LP, BR filter. The filter characteristics are created by using the tunable frequency response of the LM346.
- Limitations: $\mathrm{O}_{0}<10, \mathrm{f}_{\mathrm{O}} \times \mathrm{O}_{0}<1.5 \mathrm{MHz}$, output voltage should not exceed Vpeak(out) $\leq \frac{63.66 \times 10^{3}}{f_{0}} \times \frac{\operatorname{lSET}(\mu \mathrm{A})}{10 \mu \mathrm{~A}}$ (V).
- Design equations: $a=\frac{R 6+R 5}{R 6}, b=\frac{R 2}{R 1+R 2}, c=\frac{R 3}{R 3+R 4}, d=\frac{R 7}{R 8+R 7}, e=\frac{R 10}{R 9+R 10}, f_{o}(B P)=f_{u} \sqrt{\frac{b}{a}}, H_{o}(B P)=a \times c$,
$H_{o(L P)}=\frac{c}{b}, Q_{0}=\sqrt{a \times b}$
$f_{O}(B R)=f_{o}(B P)\left(1-\frac{c}{b}\right) \simeq f_{o}(B P)(c \ll 1)$ provided that $d=H_{o}(B P) \times e, H_{o}(B R)=\frac{R 10}{R 9}$.
- Advantage: f_{0}, Q_{0}, H_{O} can be independently adjusted; that is, the filter is extremely easy to tune.
- Tuning procedure (ex. BP tuning)

1. Pick up a convenient value for b; $(b<1)$
2. Adjust O_{O} through R5
3. Adjust $H_{o(B P)}$ through R4
4. Adjust f_{o} through R $_{\text {SET }}$

$E x: f_{c}=20 \mathrm{kHz}, \mathrm{H}_{\mathrm{O}}$ (gain of the filter) $=1, \mathrm{Q}_{\mathrm{O} 1}=0.541, \mathrm{Q}_{\mathrm{O} 2}=1.306$.

- Since for this filter the GBW product of all 4 amplifiers has been designed to be the same ($\sim 1 \mathrm{MHz}$) only one current source can be used to bias the circuit. Fine tuning can be further accomplished through R_{b}.

Miscellaneous Applications

A Unity Gain Follower with Bias Current Reduction

For better performance，use a matched NPN pair．

Circuit Shutdown

ON

Voice Activated Switch and Amplifier

Miscellaneous Applications. (Continued)

Operational Amplifiers/Buffers

LM148, LM149 Series Quad 741 Op Amps

LM148/LM248/LM348 quad 741 op amps LM149/LM249/LM349 wide band decompensated $\left.\left(\mathrm{A}_{\mathrm{V} \text { (MIN }}\right)=5\right)$

General Description

The LM148 series is a true quad 741 . It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. The LM149 series has the same features as the LM148 plus a gain bandwidth product of 4 MHz at a gain of 5 or greater.

The LM148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required.

Features

- 741 op amp operating characteristics
- Low supply current drain $0.6 \mathrm{~mA} /$ Amplifier
- Class $A B$ output stage-no crossover distortion
- Pin compatible with the LM124
- Low input offset voltage 1 mV
- Low input offset current $4 n A$
- Low input bias current

30 nA

- Gain bandwidth product

LM148 (unity gain)
1.0 MHz

LM149 ($\mathrm{A}_{\mathrm{V}} \geq 5$)
4 MHz

- High degree of isolation between

120 dB amplifiers

- Overload protection for inputs and outputs

Schematic and Connection Diagrams

Dual-In-Line Package

Order Number LM148J, LM248J, LM348J, LM149J, LM249J or LM349J See NS Package J14A
Order Number LM348N or LM349N See NS Package N14A

Absolute Maximum Ratings

	LM148/LM149	LM248/LM249	LM348/LM349
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 44 \mathrm{~V}$	$\pm 36 \mathrm{~V}$	$\pm 36 \mathrm{~V}$
Input Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Output Short Circuit Duration (Note 1)	Continuous	Continuous	Continuous
Power Dissipation (P_{d} at $25^{\circ} \mathrm{C}$) and	.		
Thermal Resistance (θ_{jA}), (Note 2)			
Molded DIP (N) $\begin{aligned} & \mathrm{P}_{\mathrm{d}} \\ & \theta_{\mathrm{j} \mathrm{A}}\end{aligned}$	-	\cdots	$\begin{aligned} & 500 \mathrm{~mW} \\ & 150^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\begin{array}{ll}\text { Cavity DIP (J) } & \mathrm{P}_{\mathrm{d}} \\ & \theta_{\mathrm{jA}}\end{array}$	$\begin{aligned} & 900 \mathrm{~mW} \\ & 100^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 900 \mathrm{~mW} \\ & 100^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 900 \mathrm{~mW} \\ & 100^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{jMAX}}$)	$150^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note3)

[^16]
LM148, LM149 Series

Typical Performance Characteristics (Continued)

Gain Bandwidth

Slew Rate

Cross Talk Test Circuits

$V_{S}= \pm 15 \mathrm{~V}$

Application Hints

The LM148 series are quad low power 741 op amps. In the proliferation of quad op amps, these are the first to offer the convenience of familiar, easy to use operating characteristics of the 741 op amp . In those applications where 741 op amps have been employed, the LM148 series op amps can be employed directly with no change in circuit performance.

The LM149 series has the same characteristics as the LM148 except it has been decompensated to provide a wider bandwidth. As a result the part requires a minimum gain of 5 .

The package pin-outs are such that the inverting input of each amplifier is adjacent to its output. In addition, the amplifier outputs are located in the corners of the package which simplifies PC board layout and minimizes package related capacitive coupling between amplifiers.

The input characteristics of these amplifiers allow differential input voltages which can exceed the supply voltages. In addition, if either of the input voltages is within the operating common-mode range, the phase of the output remains correct. If the negative limit of the operating common-mode range is exceeded at both inputs, the output voltage will be positive. For input voltages which greatly exceed the maximum supply voltages, either differentially or common-mode, resistors should be placed in series with the inputs to limit the current.

Like the LM741, these amplifiers can easily drive a 100 pF capacitive load throughout the entire dynamic output voltage and current range. However, if very large capacitive loads must be driven by a non-inverting unity gain amplifier, a resistor should be placed between
the output (and feedback connection) and the capacitance to reduce the phase shift resulting from the capacitive loading.

The output current of each amplifier in the package is limited. Short circuits from an output to either ground or the power supplies will not destroy the unit. However, if multiple output shorts occur simultaneously, the time duration should be short to prevent the unit from being destroyed as a result of excessive power dissipation in the IC chip.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole which capacitance from the input to ground creates.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Applications - LM148

$v_{\text {OUT }}=2\left(\frac{2 R}{R 1}+1\right), v_{S}^{-}-3 V \leq v_{\text {IN CM }} \leq v_{S}^{+}-3 V$,
$V_{S}= \pm 15 \mathrm{~V}$
R $=$ R2, trim R2 to boost CMRR
$\mathrm{f}_{\mathrm{MAX}}=5 \mathrm{kHz}$, THD $\leq 0.03 \%$
$\mathrm{R} 1=100 \mathrm{k}$ pot., $\mathrm{C} 1=0.0047 \mu \mathrm{~F}, \mathrm{C} 2=0.01 \mu \mathrm{~F}, \mathrm{C} 3=0.1 \mu \mathrm{~F}, \mathrm{R} 2=\mathrm{R} 6=\mathrm{R} 7=1 \mathrm{M}$,
$R 3=5.1 \mathrm{k}, \mathrm{R} 4=12 \Omega, R 5=240 \Omega, \mathrm{Q}=\mathrm{NS} 5102, \mathrm{D} 1=1 \mathrm{~N} 914, \mathrm{D} 2=3.6 \mathrm{~V}$ avalanche diode (ex. LM103), $V_{S}= \pm 15 \mathrm{~V}$
A simpler version with some distortion degradation at high frequencies can be made by using A1 as a simple inverting amplifier, and by putting back to back zeners in the feedback loop of A3.

Typical Applications - LM148 (Continued)

Low Drift Peak Detector with Bias Current Compensation

Universal State-Space Filter

Tune Q through R0,
For predictable results: ${ }^{f} \mathrm{O} Q \leq 4 \times 10^{4}$
Use Band Pass output to tune for α
$\frac{V(s)}{V_{I N(s)}}=\frac{N(s)}{D(s)}, D(s)=s^{2}+\frac{S \omega_{0}}{Q}+\omega_{0}^{2}$
$N_{H P(s)}=s^{2} H_{O H P}, N_{B P}(s)=\frac{-S \omega_{O} H_{O B P}}{Q} \quad N_{L P}=\omega_{0}{ }^{2} H_{O L P}$
$f_{o}=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 5}} \sqrt{\frac{1}{t 1 t 2}}, t_{i}=R_{i} C_{i}, Q=\left(\frac{1+R 4 \operatorname{R} 3+R 4 \operatorname{Ro} 0}{1+R 6 \ln 5}\right) \quad\left(\frac{R 6}{R 5} \frac{t_{1}}{t_{2}}\right)^{1 / 2}$
$f_{\text {NOTCH }}=\frac{1}{2 \pi}\left(\frac{R_{H}}{R_{L} t_{1} t_{2}}\right)^{1 / 2}, H_{O H P}=\frac{1+R 6 \mid R 5}{1+R 3 I R 0+R 3 I R 4}, H_{O B P}=\frac{1+R 4|R 3+R 4| R 0}{1+R 3 I R 0+R 3 I R 4}$
$H_{\text {OLP }}=\frac{1+R 5 \text { IR6 }}{1+R 3 I R 0+R 3 I R 4}$

A 3 Amplifier Bi-Quad Notch Filter

$Q=\sqrt{\frac{R 8}{R 7}} \times \frac{R 1 C 1}{\sqrt{R 3 C 2 R 2 C 1}}, f_{o}=\frac{1}{2 \pi} \sqrt{\frac{R 8}{R 7}} \times \frac{1}{\sqrt{R 2 R 3 C 1 C 2}}, f_{N O T C H}=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 3 R 5 R 7 C 1 C 2}}$
Necessary condition for notch: $\frac{1}{R 6}=\frac{R 1}{R 4 R 7}$
$E x: f_{N O T C H}=3 \mathrm{kHz}, \mathrm{Q}=5, \mathrm{R} 1=270 \mathrm{k}, \mathrm{R} 2=\mathrm{R} 3=20 \mathrm{k}, \mathrm{R} 4=27 \mathrm{k}, \mathrm{R} 5=20 \mathrm{k}, \mathrm{R} 6=\mathrm{R} 8=10 \mathrm{k}, \mathrm{R} 7=100 \mathrm{k}, \mathrm{C} 1=\mathrm{C} 2=0.001 \mu \mathrm{~F}$ Better noise performance than the state-space approach

Typical Applications - LM148 (Continued)

$f_{C}=1 \mathrm{kHz}, \mathrm{f}_{\mathrm{S}}=2 \mathrm{kHz}, \mathrm{f}_{\mathrm{P}}=0.543, \mathrm{f}_{\mathrm{Z}}=2.14, \mathrm{Q}=0.841, \mathrm{f}^{\prime} \mathrm{P}=0.987, \mathrm{f}^{\prime} \mathrm{Z}=4.92, \mathrm{Q}^{\prime}=4.403$, normalized to ripple BW
$f_{P}=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 5}} \times \frac{1}{t}, f_{Z}=\frac{1}{2 \pi} \sqrt{\frac{R_{H}}{R_{L}}} \times \frac{1}{t}, Q=\left(\frac{1+R 4 I R 3+R 4 I R 0}{1+R 6 I R 5}\right) \times \sqrt{\frac{R 6}{R 5}}, Q^{\prime}=\sqrt{\frac{R^{\prime} 6}{R^{\prime} 5} \frac{1+R^{\prime} 4 I R^{\prime} 0}{1+R^{\prime} 6 I R^{\prime} 5+R^{\prime} 6 \mid R_{P}}}$
$R_{P}=\frac{R_{H} R_{L}}{R_{H}+R_{L}}$
Use the $B P$ outputs to tune Q, Q^{\prime}, tune the 2 sections separately
$R 1=R 2=92.6 k, R 3=R 4=R 5=100 k, R 6=10 k, R 0=107.8 k, R_{L}=100 \mathrm{k}, R_{H}=155.1 \mathrm{k}$,
$R^{\prime} 1=R^{\prime} 2=50.9 k, R^{\prime} 4=R^{\prime} 5=100 k, R^{\prime} 6=10 k, R^{\prime} 0=5.78 k, R^{\prime} L=100 k, R^{\prime} H=248.12 k, R^{\prime} f=100 k$. All capacitors are $0.001 \mu \mathrm{~F}$.

Typical Applications - LM149

Minimum Gain to Insure LM149 Stability

$$
A_{C L(S)}=\frac{V_{O U T}}{V_{I N}}=\frac{-4}{\left(1+\frac{5}{A_{O L(s)}}\right)} \cong-4
$$

$\left.V_{O}\right|_{V_{I N}=0} \cong \pm 5 V_{O S}$
Power $\mathrm{BW}=40 \mathrm{kHz}$
Small Signal BW $=$ G BW/5

The LM149 as a Unity Gain Inverter

$$
A_{C L(s)}=\frac{V_{O U T}}{V_{I N}}=\left(\frac{-1}{1+\frac{6}{A_{O L(s)}}}\right) \cong-1
$$

$$
\left.v_{O}\right|_{v_{I N}=0} \cong \pm 5 v_{O S}
$$

Small signal BW $=G B W / 5$

Typical Simulation
LM148, LM149, LM741 Macromodel for Computer Simulation

$$
\begin{array}{ll}
\beta_{01}=112 & \text { IS }=8 \cdot 10^{-16} \\
\beta_{02}=144 & \text { *C2 }=6 \mathrm{pF} \text { for LM149 }
\end{array}
$$

-For more details, see IEEE Journal of Solid-State Circuits, Vol. SC-9, No. 6, December 1974

N
 National Semiconductor

LM158/LM258/LM358, LM158A/LM258A/LM358A, LM2904 Low Power Dual Operational Amplifiers

General Description

The LM158 series consists of two independent, high gain, internally frèquency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard $+5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}_{D C}$ power supplies.

Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only. a single power supply voltage.
- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.

Advantages

- Eliminates need for dual supplies
- Two internally compensated op amps in a single package
- Allows directly sensing near GND and VOUT also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation
- Pin-out same as LM1558/LM1458 dual operational amplifier

Features

- Internally frequency compensated for unity gain
- Large dc voltage gain

100 dB

- Wide bandwidth (unity gain) . 1 MHz (temperature compensated)
- Wide power supply range:

> Single supply
$3 V_{D C}$ to $30 V_{D C}$ or dual supplies $\pm 1.5 V_{D C}$ to $\pm 15 V_{D C}$

- Very low supply current drain $(500 \mu \mathrm{~A})$ - essentially independent of supply voltage ($1 \mathrm{~mW} / \mathrm{op}$ amp at $\left.+5 V_{D C}\right)$
- Low input biasing current

45 nA $A C$ (temperature compensated)

- Low input offset voltage

2 mV DC and offset current $5 \mathrm{nA}_{\mathrm{DC}}$

- Input common-mode voltage range incluides ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage $\quad 0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$ swing

Connection Diagrams (Top Views) Schematic Diagram (Each Amplifier)

Order Number LM158AH, LM158H, LM258AH, LM258H, LM358AH or LM358H See NS Package H08C

Order Number LM358AN
LM358N or LM2904N
See NS Package N08B

Absolute Maximum Ratings

Supply Voltage, V^{+}
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Molded DIP (LM358N)
Metal Can (LM158H/LM258H/LM358H)
Output Short-Circuit to GND (One Amplifier) (Note 2)
$\mathrm{V}^{+} \leq 15 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Current ($\mathrm{V}_{1 \mathrm{~N}}<-0.3 \mathrm{~V}_{\mathrm{DC}}$) (Note 3)
Operating Temperature Range
LM358
LM258
LM158
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LM158/LM258/LM358 LM158A/LM258A/LM358A
$32 V_{D C}$ or $\pm 16 V_{D C}$ $32 V_{D C}$
$-0.3 V_{D C}$ to $+32 V_{D C}$

570 mW

830 mW
Continuous

$$
50 \mathrm{~mA}
$$

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

LM2904
$26 V_{D C}$ or $\pm 13 V_{D C}$
26 VDC
$-0.3 V_{D C}$ to $+26 V_{D C}$
570 mW
Continuous
50 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{v}^{+}=+5.0 \mathrm{~V}\right.$ DC, Note 4)

PARAMETER	CONDITIONS	LM158A			LM258A			LM358A			LM158/LM258			LM358			LM2904			UNITS
		MIN	TYP	MAX																
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		1	2		1	3		2	3		± 2	± 5		± 2	± 7		± 2	± 7	mVDC
Input Bias Current	$\operatorname{IIN(+)}$ or I $\mathrm{IN}(-), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 6)		20	50		40	80		45	100		45	150		45	250		45	250	nADC
Input Offset Current	I N $(+)-\operatorname{I} / N(-) . T_{A}=25^{\circ} \mathrm{C}$		2	10		2	15		5	30		± 3	± 30		± 5	± 50		± 5	± 50	nADC
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7)		-	$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	0	.	$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	$V_{D C}$
Supply Current	$\begin{aligned} & R_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}\left(\mathrm{LM} 2904 \mathrm{~V}_{\mathrm{CC}}=26 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}}=\infty \text { On All Op Amps } \end{aligned}$ Over Full Temperature Range		1 0.7	$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$		1 0.7	$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \cdot \\ & 1.2 \end{aligned}$	mADC $m A D C$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega ; T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	50	100		50	100		25	100		50	100		25	100			100		V / mV
Output Voltage Swing	$R_{L}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}\left(\mathrm{LM} 2904 \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right)$	0		$\mathrm{V}^{+}-1.5$	$V_{D C}$															
Common-Mode Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$	70	85		70	85		65	85		70	85		65	70		50	70		dB
Power Supply Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$	65	100		65	100		65	100			100		65	100		50	100		dB
Amplifier-to-Amplifier Coupling	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred), (Note 8) } \end{aligned}$	-120			-120			-120			-120			-120			-120			dB
Output Current Source	$\begin{aligned} & V_{I N}^{+}=1 V_{D C}, V_{I N}^{-}=0 V_{D C} \\ & V^{+}=15 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	20	40			40		20	40			40		20	40		20	40		mADC

Electrical Characteristics (Continued) $\mathrm{V}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}$, Note 4)

PARAMETER	CONDITIONS ${ }^{\text {* }}$	LM158A			LM258A			LM358A			LM158/LM258			LM358			LM2904			UNITS
		MIN	TYP	MAX																
Sink	$\begin{aligned} & V_{I N^{-}}=1 V_{D C}, V_{I N^{+}}=0 V_{D C} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	20		10	20		10	20		10	20			20		10	20		mADC
	$\begin{aligned} & V_{I N^{-}}=1 V_{D C}, V_{I N}+=0 V_{D C} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O}=200 \mathrm{mV} V_{D C} \end{aligned}$		50			50		12	50		12	50		12	50					$\mu \mathrm{ADC}$
Short Circuit to Ground	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 2)		40	60		40	60		40	60		40	60		40	60		40	60	mADC
Input Offset Voltage	(Note 5)			4			4			5			± 7			± 9			± 10	$m V_{\text {DC }}$
Input Offset Voltage Drift	$\mathrm{R}_{S}=0 \Omega$		7	15		7	15		7	20		7			7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\operatorname{lin}(+)-\ln (-)$			30			30			75			± 100			± 150		45	± 200	nADC
Input Offset Current Drift			10	200		10	200		10	300		10			10			10		PADC $/{ }^{\circ} \mathrm{C}$
Input Bas Current	$\operatorname{lin}(+)$ or IIN(-)		40	100		40	100		40	200		40	300		40	500		40	500	nADC
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}_{\text {DC }}$, (Note 7)	0		$\mathrm{v}^{+}-2$	$V_{\text {DC }}$															
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}} \text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			25			15			25			15			15			V / mV
Output Voltage Swing V_{OH} v_{OL}	$\begin{aligned} & \mathrm{V}^{+}=+30 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{~V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}} \leq 10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{array}{ll} 28 & \\ 5 & 20 \end{array}$		$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{array}{ll} 28 & \\ 5 & 20 \end{array}$			$\begin{array}{ll} 28 & \\ 5 & 20 \end{array}$		$\begin{aligned} & 2 \dot{6} \\ & 27 \end{aligned}$	$\begin{array}{ll} 28 & \\ 5 & 20 \end{array}$		$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{array}{ll} 28 & \\ 5 & 20 \end{array}$		$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{array}{ll} 24 & \\ 5 & 100 \end{array}$		$\begin{array}{r} V_{D C} \\ V_{D C} \\ m V_{D C} \\ \hline \end{array}$
Output Current Source Sink	$\begin{aligned} & V_{I N}^{+}=+1 V_{D C}, V_{I N}^{-}=0 V_{D C}, V^{+}=.15 V_{D C} \\ & V_{I N}=+1 V_{D C}, V_{I N^{+}}=0 V_{D C}, V^{+}=15 V_{D C} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \\ & \hline \end{aligned}$			20 8			$\begin{aligned} & 20 \\ & 8 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 8 \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \\ & \hline \end{aligned}$		$\begin{aligned} & m A D C \\ & m A D C \end{aligned}$
Differential Input Voltage	(Note 7)			v^{+}	$V_{D C}$															

 four amplifiers-use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
 voltage in excess of $+15 \mathrm{~V}_{\mathrm{DC}}$, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

 again returns to a value greater than $-0.3 V_{D C}$
 LM358A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, and the LM 2904 specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note 5: $V_{O} \cong 1.4 V_{D C}, R_{S}=0 \Omega$ with V^{+}from $5 V_{D C}$ to $30 V_{D C}$; and over the full input common-mode range ($0 V_{D C}$ to $V^{+}-1.5 V_{D C}$).

 inputs can go to $+32 \mathrm{~V}_{\mathrm{DC}}$ without damage ($+26 \mathrm{~V}_{\mathrm{DC}}$ for LM2904).
 higher frequencies.

Typical Performance Characteristics

Open Loop Frequency Response

Voltage Follower Pulse
Response (Small Signal)

Output Characteristics Current Sinking

Supply Current

Common Mode Rejection Ratio

Typical Performance Characteristics (Continued) (LM2902 only)

Application Hints

The LM158 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0 \mathrm{~V}_{\mathrm{DC}}$. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ amplifier operation is possible down to a minimum supply voltage of 2.3 V DC

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover
distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case noninverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM158 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $3 \mathrm{~V}_{D C}$ to 30 V D.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of $\mathrm{V}^{+} / 2$) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{v} \mathrm{DC}\right)$

Non-Inverting DC Gain (OV Input $=0 \mathrm{~V}$ Output)

DC Summing Amplifier
(VIN'S ≥ 0 VODC AIND VO ≥ 0 VOD

Where: $V_{0}=V_{1}+V_{2}-V_{3}-V_{4}$
$\left(V_{1}+V_{2}\right) \geq\left(V_{3}+V_{4}\right)$ to keep $V_{O}>0 V_{D C}$

Power Amplifier

"BI-QUAD" RC Active Bandpass Filter

Fixed Current Sources

Typical Single-Supply Applications (Continued) ($\left.\mathrm{V}^{+}=5.0 \mathrm{VDC}\right)$

Squarewave Oscillator

Puise Generator

Typical Single-Supply Applications (Continued) ($\mathrm{V}^{+}=5.0 \mathrm{~V}$ Dc $)$

Voltage Controlled Oscillator (VCO)

*WIDE CONTROL VOLTAGE RANGE: $0 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{\mathrm{C}} \leq \mathbf{2}\left(\mathrm{V}^{+}-\mathbf{1 . 5} \mathrm{V}_{\mathrm{DC}}\right)$

AC Coupled Inverting Amplifier
Ground Referencing A Differential Input Signal

Typical Single-Supply Applications (Continued) ($\mathrm{v}^{+}=5.0 \mathrm{VDC}$)

AC Coupled Non-Inverting Amplifier

DC Coupled Low-Pass RC Active Filter

Bandpass Active Filter

High Input Z, DC Differential Amplifier

Photo Voltaic-Cell Amplifier

Typical Single-Supply Applications (Continued) $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Bridge Current Amplifier

National Semiconductor

LM159/LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers

General Description

The LM159/LM359 consists of two current differencing (Norton) input amplifiers. Design emphasis has been placed on obtaining high frequency performance and providing user programmable amplifier operating characteristics. Each amplifier is broadbanded to provide a high gain bandwidth product, fast slew rate and stable operation for an inverting closed loop gain of 10 or greater. Pins for additional external frequency compensation are provided. The amplifiers are designed to operate from a single supply and can accommodate input common-mode voltages greater than the supply.

Applications

- General purpose video amplifiers
- High frequency, high Q active filters
- Photo-diode amplifiers
- Wide frequency range waveform generation circuits
- All LM3900 AC applications work to much higher frequencies

Features

■ User programmable gain bandwidth product, slew rate, input bias current, output stage biasing current and total device power dissipation

- High gain bandwidth product ($\mathrm{I}_{\mathrm{SET}}=0.5 \mathrm{~mA}$) 400 MHz for $A_{V}=10$ to 100 30 MHz for $A_{V}=1$
- High slew rate ($\mathrm{I}_{\mathrm{SET}}=0.5 \mathrm{~mA}$)
$60 \mathrm{~V} / \mu \mathrm{s}$ for $A_{V}=10$ to 100 $30 \mathrm{~V} / \mu \mathrm{s}$ for $\mathrm{A}_{\mathrm{V}}=1$
- Current differencing inputs allow high common-mode input voltages
- Operates from a single 5 V to 22 V supply

■ Large inverting amplifier output swing, 2 mV to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$
. Low spot noise, $6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, for $\mathrm{f}>1 \mathrm{kHz}$

Typical Application

- $A \mathrm{~V}=20 \mathrm{~dB}$
- -3 dB bandwidth $=2.5 \mathrm{~Hz}$ to 25 MHz
- Differential phase error $<1^{\circ}$ at 3.58 MHz
- Differential gain error $<0.5 \%$ at 3.58 MHz

Connection Diagram

[^17]
Absolute Maximum Ratings

Supply Voltage	$\begin{array}{r} 22 \mathrm{~V}_{\mathrm{DC}} \\ \pm 11 \mathrm{~V}_{\mathrm{DC}} \end{array}$	input Currents, $I_{I N}(+)$ or $\operatorname{IIN(-)}$ Set Currents, ISET(IN) or ISET(OUT)	10 mADC 2 mADC
Power Dissipation (Note 1)		Operating Temperature Range	
J Package	1W		
N Package	750 mW	LM159	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{array}$
Maximum T_{j} J Package	$150^{\circ} \mathrm{C}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
N Package	$125^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
$\theta_{j} \mathrm{~A}$			
J Package	$100^{\circ} \mathrm{C} / \mathrm{W}$		
N Package	$160^{\circ} \mathrm{C} / \mathrm{W}$		

Electrical Characteristics $\mathrm{I}_{\text {SET }}{ }^{(N)}=I_{\text {SETIOUT }}=0.5 \mathrm{~mA}, \mathrm{~V}_{\text {supply }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Conditions	LM159			LM359			Units
		Min	Typ	Max	Min	Typ	Max	
Open Loop Voltage Gain	$\begin{aligned} & V_{\text {supply }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{f}=100 \mathrm{~Hz} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 66 \\ & 62 \end{aligned}$	$\begin{aligned} & 72 \\ & 68 \end{aligned}$		62	$\begin{aligned} & 72 \\ & 68 \end{aligned}$		$\begin{aligned} & d B \\ & d B \end{aligned}$
Bandwidth Unity Gain	$\mathrm{R}_{\mathrm{IN}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{comp}}=10 \mathrm{pF}$	20	30		15	30		MHz
Gain Bandwidth Product Gain of 10 to 100	$\mathrm{R}_{\text {IN }}=50 \Omega$ to 200	300	400		200	400		MHz
Slew Rate Unity Gain Gain of 10 to 100	$\begin{aligned} & R_{I N}=1 \mathrm{k} \Omega, C_{\text {comp }}=10 \mathrm{pF} \\ & R_{I N}<200 \Omega \end{aligned}$		$\begin{aligned} & 30 \\ & 60 \end{aligned}$			$\begin{aligned} & 30 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
Amplifier to Amplifier Coupling	$f=100 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		-80			-80		dB
Mirror Gain (Note 2)	@ $2 \mathrm{~mA} \mathrm{I}_{\mathrm{IN}}(+), \mathrm{I}_{\text {SET }}=5 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.95	1.0	1.05	0.9	1.0	1.1	$\mu \mathrm{A} / \mu \mathrm{A}$
	$\begin{aligned} & @ 0.2 \mathrm{~mA} \mathrm{I}_{\mathrm{N}}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A} \\ & \text { Over Temp } \end{aligned}$	0.95	1.0	1.05	0.9	1.0	1.1	$\mu \mathrm{A} / \mu \mathrm{A}$
	$\begin{aligned} & @ 20 \mu \mathrm{~A} \mathrm{I}_{\text {IN }}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A} \\ & \text { Over Temp } \end{aligned}$	0.95	1.0	1.05	0.9	1.0	1.1	$\mu \mathrm{A} / \mu \mathrm{A}$
Δ Mirror Gain (Note 2)	$\begin{aligned} & @ 20 \mu \mathrm{~A} \text { to } 0.2 \mathrm{~mA} \mathrm{I}_{\mathrm{IN}}(+) \\ & \text { Over Temp, } \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A} \\ & \hline \end{aligned}$		1	5		3	5	\%
Input Bias Current	Inverting Input, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temp			$\begin{aligned} & 15 \\ & 30 \end{aligned}$		8	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Resistance ($\beta \mathrm{re}$)	Inverting Input		2.5			2.5		$k \Omega$
Output Resistance	$\mathrm{l}_{\text {OUT }}=15 \mathrm{~mA} \mathrm{rms}, \mathrm{f}=1 \mathrm{MHz}$		3.5			3.5		Ω
Output Voltage Swing $V_{\text {OUt }}$ High Vout Low	$\begin{aligned} & R_{L}=600 \Omega \\ & I_{\mathbb{N}}(-) \& I_{\mathbb{N}}(+) \text { Grounded } \\ & I_{\mathbb{N}}(-)=100 \mu \mathrm{~A}, \mathrm{I}_{\mathbb{N}}(+)=0 \end{aligned}$	9.5	$\begin{gathered} 10.3 \\ 2 \end{gathered}$	50	9.5	$\begin{gathered} 10.3 \\ 2 \end{gathered}$	50	$\begin{gathered} \mathrm{V} \\ \mathrm{mV} \end{gathered}$
Output Currents Source	$I_{I N}(-) \& I_{I N}(+)$ Grounded, $R_{L}=100 \Omega$	20	40		16	40		mA
Sink (Linear Region)	$\mathrm{V}_{\text {comp }}-0.5 \mathrm{~V}=\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}(+)=0$		4.7			4.7		mA
Sink (Överdriven)	$\begin{aligned} & \operatorname{liN}_{\mathrm{N}}(-)=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{IN}}(+)=0, \\ & \mathrm{~V}_{\text {OUT Force }}=1 \mathrm{~V} \end{aligned}$	2	3		1.5	3		mA
Supply Current	Non-Inverting Input Grounded, $\mathrm{R}_{\mathrm{L}}=\infty$		18.5	20		18.5	22	mA
Power Supply Rejection (Note 3)	$f=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{IN}}(+)$ Grounded	40	50		40	50		dB

[^18]

Typical Performance Characteristics

Gain Bandwidth Product

Mirror Gain

Note: Shaded area refers to LM359J/LM359N

Note: Shaded area refers to LM359J/LM359N

Inverting Input Bias Current

Note: Shaded area refers to LM359J/LM359N

Gain and Phase
Feedback Gain $=\mathbf{- 1 0 0}$

Mirror Gain

Typical Performance Characteristics (Continued)

Application Hints

Note: Shaded area refers to LM359J/LM359N

The LM159/LM359 consists of two wide bandwidth, decompensated current differencing (Norton) amplifiers. Although similar in operation to the original LM3900, design emphasis for these amplifiers has been placed on obtaining much higher frequency performance as illustrated in Figure 1.

FIGURE 1

This significant improvement in frequency response is the result of using a common-emitter/common-base (cascode) gain stage which is typical in many discrete and integrated video and RF circuit designs. Another versatile aspect of these amplifiers is the ability to externally program many internal amplifier parameters to suit the requirements of a wide variety of applications in which this type of amplifier can be used.

DC BIASING

The LM359 is intended for single supply voltage operation which requires DC biasing of the output. The current mirror circuitry which provides the non-inverting input for the amplifier also facilitates DC biasing the output. The basic operation of this current mirror is that the current (both $A C$ and DC) flowing into the non-inverting input will force an equal amount of current to flow into the inverting input. The mirror gain $\left(A_{1}\right)$ specification is the measure of how closely these two currents match. For more details see National Application Note AN-72.

Application Hints (Continued)

DC biasing of the output is accomplished by establishing a reference DC current into the (+) input, $\mathrm{I}_{\mathrm{N}}(+)$, and requiring the output to provide the $(-)$ input current. This forces the output DC level to be whatever value necessary (within the output voltage swing of the amplifier) to provide this DC reference current, Figure 2.

$\mathrm{I}_{\mathrm{b}}(-)$ is the inverting input bias current FIGURE 2

The DC input voltage at each input is a transistor $V_{B E}$ ($\cong 0.6 \mathrm{~V}_{D C}$) and must be considered for DC biasing. For most applications, the supply voltage, V^{+}, is suitable and convenient for establishing $\mathrm{I}_{\mathbb{N}}(+)$. The inverting input bias current, $t_{d}(-)$, is a direct function of the programmable input stage current (see current programmability section) and to obtain predictable output DC biasing set $\mathrm{I}_{\mathbb{N}}(+) \geq 10 \mathrm{I}_{\mathrm{b}}(-)$.
The following figures illustrate typical biasing schemes for AC amplifiers using the LM359:

$$
\begin{aligned}
& A_{V(A C)}=-\frac{R_{f}}{R_{S}} \\
& V_{O(D C)}=V_{B E}(-)+R_{f}\left[\frac{V^{+}-V_{B E(+)}}{R_{b}}+I_{b}(-)\right]
\end{aligned}
$$

FIGURE 3. Biasing an Inverting AC Amplifier

FIGURE 4. Biasing a Non-Inverting AC Amplifier

FIGURE 5. $\boldsymbol{n V}$ be Biasing
The $n V_{B E}$ biasing configuration is most useful for low noise applications where a reduced input impedance can be accommodated (see typical applications section).

OPERATING CURRENT PROGRAMMABILITY (ISET)

The input bias current, slew rate, gain bandwidth product, output drive capability and total device power consumption of both amplifiers can be simultaneously controlled and optimized via the two programming pins $I_{\text {SET(OUT) }}$ and $I_{\text {SETIIN })}$.

$I_{\text {setout }}$

The output set current ($\mathrm{I}_{\mathrm{SET}(\mathrm{OUT})}$) is equal to the amount of current sourced from pin 1 and establishes the class A biasing current for the Darlington emitter follower output stage. Using a single resistor from pin 1 to ground, as shown in Figure 6, this current is equal to:

FIGURE 6. Establishing the Output Set Current
The output set current can be adjusted to optimize the amount of current the output of the amplifier can sink to drive load capacitance and for loads connected to V^{+}. The maximum output sinking current is approximately 10 times $I_{\text {SETIOUT). }}$. This set current is best used to reduce the total device supply current if the amplifiers are not required to drive small load impedances.

$\mathbf{I}_{\text {SETIN }}$

The input set current $I_{\text {SET(IN }}$ is equal to the current flowing into pin 8 . A resistor from pin 8 to V^{+}sets this current to be:

$\operatorname{ISET}(I N)=\frac{v^{+}-v_{B E}}{R_{S E T}(I N)+500 \Omega}$

FIGURE 7. Establishing the Input Set Current

Application Hints (Continued)

$\mathrm{I}_{\mathrm{SET}(\mathrm{IN})}$ is most significant in controlling the AC characteristics of the LM359 as it directly sets the total input stage current of the amplifiers which determines the maximum slew rate, the frequency of the open loop dominant pole, the input resistance of the (-) input and the biasing current $\mathrm{I}_{\mathrm{b}}(-)$. All of these parameters are significant in wide band amplifier design. The input stage current is approximately 3 times $\mathrm{I}_{\mathrm{SET}(\mathrm{IN})}$ and by using this relationship the following first order approximations for these AC parameters are:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{r}(\mathrm{MAX})}=\text { max slew rate } \cong \frac{31_{\mathrm{SET}(\mathrm{IN})}\left(10^{-6}\right)}{\mathrm{C}_{\mathrm{comp}}}(\mathrm{~V} / \mu \mathrm{S}) \\
& \begin{array}{l}
\text { frequency of } \\
\text { dominant pole } \\
=\frac{3 I_{\mathrm{SET}(\mathrm{IN})}}{2 \pi \mathrm{C}_{\mathrm{comp}} A_{\mathrm{VOL}}(0.026 \mathrm{~V})}(\mathrm{Hz}) \\
\text { input resistance }=\beta \mathrm{re} \cong \frac{150(0.026 \mathrm{~V})}{3 I_{\mathrm{SET}(\mathrm{~N})}}(\Omega)
\end{array}
\end{aligned}
$$

where $\mathrm{C}_{\text {comp }}$ is the total capacitance from the compensation pin (pin 3 or pin 13) to ground, $A_{\text {vol }}$ is the low frequency open loop voltage gain in V / V and an ambient temperature of $25^{\circ} \mathrm{C}$ is assumed ($\mathrm{KT} / \mathrm{q}=26 \mathrm{mV}$ and $\beta_{\text {typ }}=150$). $I_{\text {SET(IN) }}$ also controls the DC input bias current by the expression:

$$
I_{b}(-)=\frac{3 I_{S E T}}{\beta} \cong \frac{I_{S E T}}{50} \text { for } N P N ~ \beta=150
$$

which is important for DC biasing considerations.
The total device supply current (for both amplifiers) is also a direct function of the set currents and can be approximated by:

$$
\mathrm{I}_{\text {supply }} \cong 27 \times \mathrm{I}_{\mathrm{SET}(\mathrm{OUT})}+11 \times \mathrm{I}_{\mathrm{SET}(\mathrm{IN})}
$$

with each set current programmed by individual resistors.

PROGRAMMING WITH A SINGLE, RESISTOR

Operating current programming may also be accomplished using only one resistor by letting $I_{\text {SET(IN) }}$ equal $I_{\text {SET(OUT). The programming current is now referred }}$ to as $I_{\text {SET }}$ and it is created by connecting a resistor from pin 1 to pin 8 (Figure 8).

$$
\operatorname{ISET}(I N)=I_{S E T}(O U T)=I_{S E T}
$$

FIGURE 8. Single Resistor Programming of $\mathrm{I}_{\text {SET }}$

This configuration does not affect any of the internal set current dependent parameters differently than previously discussed except the total supply current which is now equal to:

$$
I_{\text {supply }} \cong 37 \times I_{\text {SET }}
$$

Care must be taken when using resistors to program the set current to prevent significantly increasing the supply voltage above the value used to determine the set current. This would cause an increase in total supply current due to the resulting increase in set current and the maximum device power dissipation could be exceeded. The set resistor value(s) should be adjusted for the new supply voltage.

One method to avoid this is to use an adjustable current source which has voltage compliance to generate the set current as shown in Figure 9.

FIGURE 9. Current Source Programming of $I_{\text {SET }}$
This circuit allows $I_{\text {SET }}$ to remain constant over the entire supply voltage range of the LM359 which also improves power supply ripple rejection as illustrated in the Typical Performance Characteristics. It should be noted, however, that the current through the LM334 as shown will change linearly with temperature but this can be compensated for (see LM334 data sheet).

Pin 1 must never be shorted to ground or pin 8 never shorted to V^{+}without limiting the current to 2 mA or less to prevent catastrophic device failure.

CONSIDERATIONS FOR HIGH FREQUENCY OPERATION

The LM359 is intended for use in relatively high frequency applications and many factors external to the amplifier itself must be considered. Minimization of stray capacitances and their effect on circuit operation are the primary requirements. The following list contains some general guidelines to help accomplish this end:

1. Keep the leads of all external components as short as possible.
2. Place components conducting signal current from the output of an amplifier away from that amplifier's non-inverting input.
3. Use reasonably low value resistances for gain setting and biasing.
4. Use of a ground plane is helpful in providing a shielding effect between the inputs and from input to output. Avoid using vector boards.
5. Use a single-point ground and single-point supply distribution to minimize crosstalk. Always connect the two grounds (one from each amplifier) together.

Application Hints (Continued)

6. Avoid use of long wires ($>2^{\prime \prime}$) but if necessary, use shielded wire.
7. Bypass the supply close to the device with a low inductance, low value capacitor (typically a $.01 \mu \mathrm{~F}$ ceramic) to create a good high frequency ground. If long supply leads are unavoidable, a small resistor ($\sim 10 \Omega$) in series with the bypass capacitor may be needed and using shielded wire for the supply leads is also recommended.

COMPENSATION

The LM359 is internally compensated for stability with closed loop inverting gains of 10 or more. For an inverting gain of less than 10 and all non-inverting amplifiers (the amplifier always has 100% negative current feedback regardless of the gain in the non-inverting configuration) some external frequency compensation is required because the stray capacitance to ground from the (-) input and the feedback resistor add additional lagging phase within the feedback loop. The value of the input capacitance will typically be in the range of 6 pF to 10 pF for a reasonably constructed circuit board. When using a feedback resistance of $30 \mathrm{k} \Omega$ or less, the best method of compensation, without sacrificing slew rate, is to add a lead capacitor in parallel with the feedback resistor with a value on the order of 1 pF to 5 pF as shown in Figure 10.

FIGURE 10. Best Method of Compensation
Another method of compensation is to increase the effective value of the internal compensation capacitor by adding capacitance from the COMP pin of an amplifier to ground. An external 20 pF capacitor will generally compensate for all gain settings but will also reduce the gain bandwidth product and the slew rate. These same results can also be obtained by reducing $I_{\text {SET(IN) }}$ if the full capabilities of the amplifier are not required. This method is termed over-compensation.

Another area of concern from a stability standpoint is that of capacitive loading. The amplifier will generally drive capacitive loads up to 100 pF without oscillation problems. Any larger C loads can be isolated from the output as shown in Figure 11. Over-compensation of the amplifier can also be used if the corresponding reduction of the GBW product can be afforded.

FIGURE 11. Isolating Large Capacitive Loads

In most applications using the LM359, the input signal will be AC coupled so as not to affect the DC biasing of the amplifier. This gives rise to another subtlety of high frequency circuits which is the effective series inductance (ESL) of the coupling capacitor which creates an increase in the impedance of the capacitor at high frequencies and can cause an unexpected gain reduction. Low ESL capacitors like solid tantalum for large values of C and ceramic for smaller values are recommended. A parallel combination of the two types is even better for gain accuracy over a wide frequency range.

AMPLIFIER DESIGN EXAMPLES

The ability of the LM359 to provide gain at frequencies higher than most monolithic amplifiers can provide makes it most useful as a basic broadband amplification stage. The design of standard inverting and noninverting amplifiers, though different than standard op amp design due to the current differencing inputs, also entail subtle design differences between the two types of amplifiers. These differences will be best illustrated by design examples. For these examples a practical video amplifier with a passband of 8 Hz to 10 MHz and a gain of 20 dB will be used. It will be assumed that the input will come from a 75Ω source and proper signal termination will be considered. The supply voltage is 12 V_{DC} and single resistor programming of the operating current, $I_{\text {SET }}$, will be used for simplicity.

AN INVERTING VIDEO AMPLIFIER

1. Basic circuit configuration:

2. Determine the required $\mathrm{I}_{\text {SET }}$ from the characteristic curves for gain bandwidth product.

$$
\mathrm{GBW}_{\mathrm{MIN}}=10 \times 10 \mathrm{MHz}=100 \mathrm{MHz}
$$

For a flat response to 10 MHz a closed loop response to two octaves above $10 \mathrm{MHz}(40 \mathrm{MHz})$ will be sufficient.

Application Hints (Continued)

Actual GBW $=10 \times 40 \mathrm{MHz}=400 \mathrm{MHz}$
$I_{\text {SET }}$ required $=0.5 \mathrm{~mA}$

$$
\mathrm{R}_{\mathrm{SET}}=\frac{\mathrm{V}^{+}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{SET}}}-1 \mathrm{k} \Omega=\frac{10.8 \mathrm{~V}}{0.5 \mathrm{~mA}}-1 \mathrm{k} \Omega=20.6 \mathrm{k} \Omega
$$

3. Determine maximum value for R_{f} to provide stable DC biasing

$$
\mathrm{I}_{\mathrm{f}(\mathrm{MIN})} \geqslant 10 \times \frac{31_{\mathrm{SET}}}{\beta}=\begin{aligned}
& 100 \mu \mathrm{~A} \text { minimum } \mathrm{fC} \\
& \text { feedback current }
\end{aligned}
$$

Optimum output DC level for maximum symmetrical swing without clipping is:

$$
\begin{aligned}
V_{\mathrm{ODC}(\mathrm{OPt})} & =\frac{\mathrm{V}_{\mathrm{O}(\mathrm{MAX})}-\mathrm{V}_{\mathrm{o}(\mathrm{MIN})}}{2}+\mathrm{V}_{\mathrm{o}(\mathrm{MIN})} \\
& \approx \frac{\left(\mathrm{V}+-3 \mathrm{~V}_{\mathrm{BE}}\right)-2 \mathrm{mV}}{2} \\
V_{\mathrm{ODC}(\mathrm{OPt})} \cong & =\frac{12-1.8 \mathrm{~V}}{2}=\frac{10.2 \mathrm{~V}}{2}=5.1 \mathrm{~V}_{\mathrm{DC}}
\end{aligned}
$$

$R_{f(M A X)}$ can now be found:

$$
R_{f(M A X)}=\frac{V_{O D C(o p t)}-V_{B E}^{(-)}}{I_{f(M I N)}}=\frac{5.1 \mathrm{~V}-0.6}{100 \mu \mathrm{~A}}=45 \mathrm{k} \Omega
$$

This value should not be exceeded for predictable DC biasing.
4. Select R_{s} to be large enough so as not to appreciably load the input termination resistance:

$$
\mathrm{R}_{\mathrm{s}} \geqslant 750 \Omega \text { Let } \mathrm{R}_{\mathrm{s}}=750 \Omega
$$

5. Select R_{f} for appropriate gain:

$$
A_{V}=-\frac{R_{f}}{R_{s}} \text { so; } R_{f}=10 R_{s}=7.5 \mathrm{k} \Omega
$$

$7.5 \mathrm{k} \Omega$ is less than the calculated $\mathrm{R}_{\mathrm{f}(\mathrm{MAX})}$ so DC predictability is insured.
6. Since $R_{f}=7.5 \mathrm{k}$, for the output to be biased to $5.1 \mathrm{~V}_{\mathrm{DC}}$, the reference current $\mathrm{I}_{\mathbb{N}}(+)$ must be:

$$
\mathrm{I}_{\mathrm{IN}}(+)=\frac{5.1 \mathrm{~V}-\mathrm{V}_{\mathrm{BE}}(-)}{\mathrm{R}_{\mathrm{f}}}=\frac{5.1 \mathrm{~V}-.6 \mathrm{~V}}{7.5 \mathrm{k} \Omega}=600 \mu \mathrm{~A}
$$

Now R_{b} can be found by:

$$
R_{b}=\frac{V^{+}-V_{B E}(+)}{I_{I N}(+)}=\frac{12-0.6}{600 \mu \mathrm{~A}}=19 \mathrm{k} \Omega
$$

7. Select C_{i} to provide the proper gain for the 8 Hz minimum input frequency:

$$
C_{i} \geqslant \frac{1}{2 \pi R_{s}\left(f_{\text {low }}\right)}=\frac{1}{2 \pi(750 \Omega)(8 \mathrm{~Hz})}=26 \mu \mathrm{~F}
$$

A larger value of C_{i} will allow a flat frequency response down to 8 Hz and a $0.01 \mu \mathrm{~F}$ ceramic capacitor in parallel with C_{i} will maintain high frequency gain accuracy.
8. Test for peaking of the frequency response and add a feedback "lead" capacitor to compensate if necessary.

Final Circuit Using Standard 5\% Tolerance Resistor Values:

$V_{0(D C)}=5.1 \mathrm{~V}$
Differential phase error< 1° for $3.58 \mathrm{MHz} \mathrm{f}_{\mathrm{IN}}$ Differential gain error $<0.5 \%$ for $3.58 \mathrm{MHz} \mathrm{f}_{\mathrm{IN}}$ $\mathrm{f}-3 \mathrm{~dB}$ low $=2.5 \mathrm{~Hz}$

A NON-INVERTING VIDEO AMPLIFIER

For this case several design considerations must be dealt with.

- The output voltage ($A C$ and $D C$) is strictly a function of the size of the feedback resistor and the sum of AC and DC "mirror current" flowing into the (+) input.
- The amplifier always has 100% current feedback so external compensation is required. Add a small (1 pF-5 pF) feedback capacitance to leave the amplifier's open loop response and slew rate unaffected.
- To prevent saturating the mirror stage the total AC and DC current flowing into the amplifier's (+) input should be less than 2 mA .
- The output's maximum negative swing is one diode above ground due to the V_{BE} diode clamp at the (-) input.

Application Hints (Continued)

DESIGN EXAMPLE:

$\mathrm{e}_{\mathbb{I}}=50 \mathrm{mV}(\mathrm{MAX}), \mathrm{f}_{\mathbb{N}}=10 \mathrm{MHz}(\mathrm{MAX})$, desired circuit $B W=20 \mathrm{MHz}, A_{V}=20 \mathrm{~dB}$, driving source impedance $=75 \Omega, \mathrm{~V}^{+}=12 \mathrm{~V}$.

1. Basic circuit configuration:

2. Select $I_{\text {SET }}$ to provide adequate amplifier bandwidth so that the closed loop bandwidth will be determined by R_{f} and C_{f}. To do this, the set current should program an amplifier open loop gain of at least 20 dB at the desired closed loop bandwidth of the circuit. For this example, an $I_{\text {SET }}$ of 0.5 mA will provide 26 dB of open loop gain at 20 MHz which will be sufficient. Using single resistor programming for $\mathrm{I}_{\mathrm{SET}}$:

$$
\mathrm{R}_{\mathrm{SET}}=\frac{\mathrm{V}^{+}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{SET}}}-1 \mathrm{k} \Omega=20.6 \mathrm{k} \Omega
$$

3. Since the closed loop bandwidth will be determined by R_{f} and $C_{f}\left(f_{-3 \mathrm{~dB}}=\frac{1}{2 \pi R_{f} C_{f}}\right)$ to obtain a 20 MHz bandwidth, both R_{f} and C_{f} should be kept small. It can be assumed that C_{f} can be in the range of 1 pF to 5 pF for carefully constructed circuit boards to insure stability and allow a flat frequency response. This will limit the value of R_{f} to be within the range of:

or $1.6 \mathrm{k} \Omega \leqslant R_{f} \leqslant 7.96 \mathrm{k} \Omega$
Also, for a closed loop gain of $+10, R_{f}$ must be 10 times $R_{s}+r_{e}$ where r_{e} is the mirror diode resistance.
4. So as not to appreciably load the 75Ω input termination resistance the value of ($R_{s}+r_{e}$) is set to 750Ω.
5. For $A_{v}=10 ; R_{f}$ is set to $7.5 \mathrm{k} \Omega$.
6. The optimum output DC level for symmetrical AC swing is:

$$
\begin{aligned}
V_{O D C(O P t)} & =\frac{V_{O(M A X)}-V_{O(M I N)}}{2}+V_{O(M I N)} \\
& =\frac{(12-1.8) \mathrm{V}-0.6 \mathrm{~V}}{2}+0.6 \mathrm{~V}=5.4 \mathrm{~V}_{\mathrm{DC}}
\end{aligned}
$$

7. The DC feedback current must be:

DC biasing predictability will be insured because $640 \mu \mathrm{~A}$ is greater than the minimum of $\mathrm{I}_{\mathrm{SET}} / 5$ or $100 \mu \mathrm{~A}$.
For gain accuracy the total AC and DC mirror current should be less than 2 mA . For this example the maximum AC mirror current will be;

$$
\frac{ \pm \mathrm{e}_{\text {in peak }}}{R_{\mathrm{s}}+\mathrm{r}_{\mathrm{e}}}=\frac{ \pm 50 \mathrm{mV}}{750 \Omega}= \pm 66 \mu \mathrm{~A}
$$

therefore the total mirror current range will be 574 $\mu \mathrm{A}$ to $706 \mu \mathrm{~A}$ which will insure gain accuracy.
8. R_{b} can now be found:

$$
\therefore R_{b}=\frac{V+-V_{B E}(+)}{I_{\mathbb{N}}(+)}=\frac{12-0.6}{640 \mu A}=17.8 \mathrm{k} \Omega
$$

9. Since $R_{s}+r_{e}$ will be 750Ω and r_{e} is fixed by the DC mirror current to be:

$$
r_{e}=\frac{K T}{q I_{I N(+)}}=\frac{26 \mathrm{mV}}{640 \mu \mathrm{~A}} \cong 40 \Omega \text { at } 25^{\circ} \mathrm{C}
$$

R_{s} must be $750 \Omega-40 \Omega$ or 710Ω which can be a 680Ω resistor in series with a 30Ω resistor which are standard 5\% tolerance resistor values.
10. As a final design step, C_{i} must be selected to pass the lower passband frequency corner of 8 Hz for this example.

$$
C_{i}=\frac{1}{2 \pi\left(R_{s}+r_{e}\right) f_{\text {low }}}=\frac{1}{2 \pi(750 \Omega)(8 \mathrm{~Hz})}=26.5 \mu \mathrm{~F}
$$

A larger value may be used and a $0.01 \mu \mathrm{~F}$ ceramic capacitor in parallel with C_{i} will maintain high frequency gain accuracy.

Final Circuit Using Standard 5\% Tolerance Resistor Values:

Circuit Performance:

$V_{O(D C)}=5.4 \mathrm{~V}$
Differential phase error $<0.5^{\circ}$ Differential gain error $<2 \%$
$f-3 \mathrm{~dB}$ low $=2.5 \mathrm{~Hz}$

GENERAL PRECAUTIONS

The LM359 is designed primarily for single supply operation but split supplies may be used if the negative supply voltage is well regulated as the amplifiers have no negative supply rejection.
The total device power dissipation must always be kept in mind when selecting an operating supply voltage, the programming current, $I_{\text {SET }}$, and the load resistance, particularly, when DC coupling the output to a succeeding stage. To prevent damaging the current mirror input diode, the mirror current should always be limited to 10
mA , or less, which is important if the input is susceptible to high voltage transients. The voltage at any of the inputs must not be forced more negative than -0.7 V without limiting the current to 10 mA .

The supply voltage must never be reversed to the device; however, plugging the device into a socket backwards would then connect the positive supply voltage to the pin that has no internal connection (pin 5) which may prevent inadvertent device failure!

Typical Applications

DC Coupled Inputs

Inverting

$V_{O(D C)}=\left[\frac{V_{+-}-V_{B E}(+)}{R_{b}}-\frac{V_{I N(D C)}-V_{B E}(-)}{R_{S}}\right] R_{f}+V_{B E(-)}$
$A_{V}(A C)=-\frac{R_{f}}{R_{S}}$

$V_{O(D C)}=V_{B E}(-)+\frac{\left(V_{I N(D C)}-V_{B E}(+)\right) R_{f}}{R_{S}}$

$$
A_{V}(A C)=+\frac{R_{f}}{R_{s}+r_{e}(+)}
$$

- Eliminates the need for an input coupling capacitor
- input DC level must be stable and can exceed the supply voltage of the LM359 provided that maximum input currents are not exceeded.

Application Hints (Continued)

Noise Reduction using $\mathbf{n V}$ BE Biasing

$\mathrm{nV}_{\mathrm{BE}}$ Biasing with a Negative Supply

- R1 and C2 provide additional filtering of the negative biasing supply

Typical Input Referred Noise Performance

Adding a JFET Input Stage

- FET input voltage mode op amp
- For $\mathrm{A}_{\mathrm{V}}=+1 ; \mathrm{BW}=40 \mathrm{MHz}, \mathrm{S}_{\mathrm{r}}=60 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=51 \mathrm{pF}$
- For $A_{V}=+11 ; B W=24 \mathrm{MHz}, S_{r}=130 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}$
- For $A_{V}=+100 ; B W=4.5 \mathrm{MHz}, \mathrm{S}_{\mathrm{r}}=150 \mathrm{~V} / \mu \mathrm{S} ; \mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}$
- $V_{O S}$ is typically<25 mV; 100』 potentiometer allows a $V_{\text {OS }}$ adjust range of $\approx \pm 200 \mathrm{mV}$
- Inputs must be DC biased for single supply operation

Photo Diode Amplifier

- Frequency response of greater than 10 MHz
- If slow rise and fall times can be tolerated the gate on the output can be removed. In this case the rise and the fall time of the LM359 is 40 ns .
- $T_{P D L}=45 \mathrm{~ns}, T_{P D H}=50 \mathrm{~ns}-T^{2} \mathrm{~L}$ output

For $V_{0} 1=V_{0^{2}}=\frac{v^{+}}{2}, \frac{R 3}{R 2}=\frac{v^{+}-2 \phi}{2\left(V^{+}-\phi\right)}$, $\frac{R 6}{R 5}=\frac{v^{+}-2 \phi}{\phi}$ where $\phi \approx 0.6 V$
$A_{V}=\frac{R 3}{R 1}\left(\frac{R 6}{R 4}+1\right)$

- $1 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth with gain of 10 and 0 dbm into 600Ω
- 0.3% distortion at full bandwidth; reduced to 0.05% with bandwidth of 10 kHz
- Will drive $\mathrm{C}_{\mathrm{L}}=1500 \mathrm{pF}$ with no additional compensation, $\pm 0.01 \mu \mathrm{~F}$ with $\mathrm{C}_{\text {comp }}=180 \mathrm{pF}$
- 70 dB signal to noise ratio at 0 dbm into $600 \Omega, 10 \mathrm{kHz}$ bandwidth

Phase Locked Loop

Squarewave Generator

$f=1 \mathrm{MHz}$
Output is TTL compatible
Frequency is adjusted by $R 1 \& C(R 1 \ll R 2)$

Typical Applications

High Performance 2 Amplifier Biquad Filter(s)

- The high speed of the LM359 allows the center frequency Q_{o} product of the filter to be : $f_{0} \times Q_{0} \leqslant 5 \mathrm{MHz}$
- The above filter(s) maintains performance over wide temperature range
- One half of LM359 acts as a true non-inverting integrator so only 2 amplifiers (instead of 3 or 4) are needed for the biquad filter structure

DC BIASING EQUATIONS FOR $V_{01(D C)} \cong V_{O 2(D C)} \cong V^{+} / 2$

Type I	$\frac{2 V_{I N(D C)}}{V^{+}\left(R_{i 2}\right)}+\frac{1}{R}+\frac{1}{R_{Q}}=\frac{2}{R_{b}} \quad ; \quad R 1=2 R$
Type II	$\frac{1}{R}+\frac{1}{R_{Q}}=\frac{2}{R_{b}} ; \quad R 1=2 R$
Type III	$\frac{1}{R}+\frac{1}{R_{Q}}=\frac{2}{R_{b}} ; \quad \frac{1}{R 1}=\frac{V_{I N(D C)}}{V^{+}\left(R_{i 1}\right)}+\frac{1}{2 R}$

ANALYSIS AND DESIGN EQUATIONS

Type	V_{01}	V_{02}	c_{i}	$\mathrm{R}_{\mathrm{i} 2}$	R_{i1}	f_{0}	Q_{0}	f_{z} (notch)	$\mathrm{H}_{0}($ LP)	$\mathrm{H}_{\text {O(BP) }}$	$\mathrm{H}_{0}(\mathrm{HP)}$	$\mathrm{H}_{\text {O(BR) }}$
1	BP	LP	0	$\mathrm{R}_{\mathrm{i} 2}$	∞	1/2mRC	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}$	-	$\mathrm{R} / \mathrm{R}_{\mathrm{i} 2}$	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}_{\mathrm{i} 2}$	-	-
11	HP	BP	C_{i}	∞	∞	$1 / 2 \pi R C$	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}$	-	-	$\mathrm{R}_{\mathrm{Q}} \mathrm{Ci} / \mathrm{RC}$	$\mathrm{C}_{\mathrm{i}} / \mathrm{C}$	-
III	Notch BR	-	C_{i}	∞	$\mathrm{R}_{\mathrm{i} 1}$	$1 / 2 \pi \mathrm{RC}$	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}$	$1 / 2 \pi \sqrt{R_{i} C C_{i}}$	-	-	-	$\left\|\mathrm{H}_{0}\right\|_{\mathrm{f} \rightarrow \infty}=\mathrm{C}_{\mathrm{i}} / \mathrm{C}$
												$\left.H_{0}\right\|_{f \rightarrow 0}=R / R_{i}$

Typical Applications (Continued)

Crystal Controlled Sinewave Oscillator

National Semiconductor

LM192/LM292/LM392, LM2924 Low Power Operational Amplifier/Voltage Comparator

General Description

The LM192 series consists of 2 independent building block circuits. One is a high gain, internally frequency compensated operational amplifier, and the other is a precision voltage comparator. Both the operational amplifier and the voltage comparator have been specifically designed to operate from a single power supply over a wide range of voltages. Both circuits have input stages which will common-mode input down to ground when operating from a single power supply. Operation from split power supplies is also possible and the low power supply current is independent of the magnitude of the supply voltage.

Application areas include transducer amplifier with pulse shaper, DC gain block with level detector, VCO, as well as all conventional operational amplifier or voltage comparator circuits. Both circuits can be operated directly from the standard $5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage used in digital systems, and the output of the comparator will interface directly with either TTL or CMOS logic. In addition, the low power drain makes the LM192 extremely useful in the design of portable equipment.

Advantages

- Eliminates need for dual power supplies
- An internally compensated op amp and a precision comparator in the same package
- Allows sensing at or near ground
- Power drain suitable for battery operation
- Pin-out is the same as both the LM158 dual op amp and the LM193 dual comparator

Features

- Wide power supply voltage range Single supply

3 V to 32 V Dual supply $\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$

- Low supply current drain-essentially independent of supply voltage $600 \mu \mathrm{~A}$
- Low input biasing current 50 nA
- Low input offset voltage . 2 mV
- Low input offset current 5 nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage

ADDITIONAL OP AMP FEATURES

- Internally frequency compensated for unity gain
- Large DC voltage gain

100 dB

- Wide bandwidth (unity gain) 1 MHz
- Large output voltage swing

0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$

ADDITIONAL COMPARATOR FEATURES

- Low output saturation voltage 250 mV at 4 mA
- Output voltage compatible with all types of logic systems

Connection Diagrams (Top Views)

Absolute Maximum Ratings

Supply Voltage, V^{+}
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Molded DIP (LM392N, LM2924N)
Metal Can (LM192H/LM292H/LM392H)
Output Short-Circuit to Ground (Note 2)
Input Current (VIN <-0.3 VDC) (Note 3).
Operating Temperature Range
LM392
LM292
LM192
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LM192/LM292/LM392

32 V or $\pm 16 \mathrm{~V}$	26 V or $\pm 13 \mathrm{~V}$
32 V	26 V
-0.3 V to +32 V	\therefore
	-0.3 V to +26 V
570 mW	
830 mW	570 mW
Continuous	
50 mA	Continuous
\vdots	50 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{V}^{+}=5^{\mathrm{V}} \mathrm{V}_{\mathrm{DC}}\right.$; specifications apply to both amplifiers unless otherwise stated) (Note 4)

PARAMETER	CONDITIONS	LM192			LM292/LM392			LM2924			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP.	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		± 2	± 5		± 2	± 5		± 2	± 7	$m V$
Input Bias Current	$\operatorname{IN}(+) \text { or } \operatorname{IN}(-) . T_{A}=25^{\circ} \mathrm{C} \text {. }$ (Note 6)		50	150		50	250		50	250	$n A$
Input Offset Current	$\cdots \mathrm{N}(+)-\mathrm{IN}(-), T_{A}{ }^{\circ}=25^{\circ} \mathrm{C}$		± 3	± 25		± 5	± 50		$\pm 5^{\prime}$	± 50.	nA
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$ (Note 7)	0		$\mathrm{V}^{+}-1.5$	0		$\dot{v}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	V
Supply Current	$\begin{aligned} & R_{L}=\infty, V_{C C}=30 \mathrm{~V}, \\ & \left(L M 2924, V_{C C}=26 \mathrm{~V}\right) \end{aligned}$	\because	1 :	2.		1	2		1	2	mA
Supply Current	$\mathrm{R}_{\mathrm{L}}{ }^{\prime}=\infty, \mathrm{V}_{C C}=5 \mathrm{~V}$		0.5 '	1		0.5	1		0.5	1	mA
Amplifier-to-Amplifier Coupling	$f=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz},$ $\mathrm{T}_{\mathrm{A}}^{*}=25^{\circ} \mathrm{C}$, Input Referred, (Note 8),		-100		-	- -100	-		-100		dB
Input Offset Voltage	(Note 5) .			± 7			± 7			± 10	mV
Input Bias Current	IN(+) or IN(-)			300			400		,	500	nA
Input Offset Current	$1 \mathrm{~N}(+)-\operatorname{IN}(-)$			100			150			200	nA
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}$ ((Note 7)	0		$\mathrm{v}^{+}-2$	0	.	$\mathrm{v}^{+}-2$	0		$\mathrm{v}^{+}-2$	V
Differential Input Voltage	Keep All $\mathrm{V}_{\text {IN }}$'s $\geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if Used), (Note 9)			v^{+}		-.	, ${ }^{+}$			v^{+}	V
OP AMP ONLY											
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \text { (For Large } \\ & \mathrm{V}_{\mathrm{O}} \text { Swing), } \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	100		25	100			100		V/mV
Output Voltage Swing	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}, \\ & \left(L M 2924, R_{L} \geq 10 \mathrm{k} \Omega\right) \end{aligned}$	0		$\mathrm{V}^{+}-1.5$			$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	V
Common-Mode Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$.	70	85		65	70		50	70		dB
Power Supply Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$	65	100		65	100		50	100		dB
Output Current Source	$\begin{aligned} & V_{I N(+)}=1 V_{D C}, \\ & V_{I N(-)}=0 V_{D C} . \\ & V^{+}=15 V_{D C}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	20	40		20	40	,	20	40		mA
Output Current Sink .	$\begin{aligned} & V_{I N(-)}=1 V_{D C}, \\ & V_{I N(+)}=0 V_{D C}, \\ & V^{+}=15 V_{D C} \\ & V_{O} \geq 1 V_{D C}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	20			20			20	,	mA
-	$\begin{aligned} & V_{I N(-)}=1 V_{D C}, \\ & V_{I N(+)}=0 V_{D C}, \\ & V^{+}=15 V_{D C}, V_{O}=200 \mathrm{mV} . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	12	50	.	12	50		12	50		$\mu \mathrm{A}$

Electrical Characteristics (Continued)

Note 1: For operating at temperatures above $25^{\circ} \mathrm{C}$, the LM392N and the LM2924N must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air ambient. The LM192H/LM292H/LM392H must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$. The dissipation is the total of both amplifiers-use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current is approximately 40 mA for the op amp and 30 mA for the comparator independent of the magnitude of V^{+}. At values of supply voltage in excess of 15 V , continuous short circuits can exceed the power dissipation ratings and cause eventual destruction.
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V .
Note 4: These specifications apply for $V^{+}=5 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated. For the LM292, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, the LM392 temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ and the LM2924 temperature specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note 5: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$). Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
Note 7: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to 32 V without damage (26 V for LM2924).
Note 8: Due to proximity of external components, insure that coupling is not originating via the stray capacitance between these external parts. This typically can be detected as this type of capacitive increases at higher frequencies.
Note 9: Positive excursions of input voltage may exceed the power supply level. As long as the other input voltage remains within the commonmode range, the comparator will provide a proper output state. The input voltage to the op amp should not exceed the power supply level. The input voltage state must not be less than -0.3 V (or 0.3 V below the magnitude of the negative power supply, if used) on either amplifier.
Note 10: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained.
Note 11: For input signals that exceed $V_{C C}$, only the overdrive amplifier is affected. With a 5 V supply, $\mathrm{V}_{\text {IN }}$ should be limited to 25 V max, and a limiting resistor should be used on all inputs that might exceed the positive supply.

Schematic Diagram

Application Hints

Please refer to the application hints section of the LM193 and the LM158 data sheets.

National Semiconductor

LM216/LM316, LM216A/LM316A Operational Amplifiers General Description

These devices are precision, high input impedance operational amplifiers designed for applications requiring extremely low input-current errors. They use supergain transistors in a Darlington input stage to get input bias currents that are equal to high-quality FET amplifiers-even in limited temperature range operation. The low input current is, however, obtained with some sacrifice to offset voltage, offset voltage drift and noise when compared to the non-Darlington LM112 series. Noteworthy specifications include:

- Guaranteed bias currents as low as 50 pA
- Maximum offset currents down to 15 pA
- Operates from supplies of $\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Supply current only $300 \mu \mathrm{~A}$ at $\pm 20 \mathrm{~V}$

These operational amplifiers are internally frequency compensated and have provisions for offset balancing with a single external potentiometer.

Further, unlike most other internally compensated amplifiers, the MOS compensation capacitor is protected to prevent catastrophic failure from overvoltage spikes on the supplies.

The low current error of these amplifiers make possible many designs that were previously, impractical with monolithic amplifiers. They will operate from $100 \mathrm{M} \Omega$ source resistances, introducing less error than general purpose amplifiers with $10 \mathrm{k} \Omega$ sources. Integrators with worst case drifts less than $10 \mu \mathrm{~V} / \mathrm{sec}$ and analog time delays in excess of one day can also be made using capacitors no larger than $1 \mu \mathrm{~F}$.

The LM216A and LM316A are high performance versions of the LM216 and LM316. The LM216 and LM216A are specified for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, while the LM316 and LM316A are specified from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

Schematic Diagram**

Auxiliary Circuits*

Overcompensation for Greater Stability Margin

Offset Balancing

Connection Diagrams

Note: Pin 4 connected to case top view
Order Number LM216H or
LM216AH or LM316H or LM316AH
See NS Package HO8C

Note: Pin 7 connected to bottom of package.
rop viem
Order Number LM216D
or LM216AD or LM316D
or LM316AD
See NS Package D14E

Absolute Maximum Ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range LM216/LM216A	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LM316/LM316A	
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	LM216A	LM216	LM316A	LM316	UNITS
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Max}$	3	10	3	10	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Max}$	15	50	15	50	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Max}$	50	150	50	150	pA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Min}$	5	1	5	1	$\mathrm{G} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Max}$	0.6	0.8	0.6	0.8	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {Out }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \text { Min }^{2} \end{aligned}$	40	20	40	20	V / mV
Input Offset Voltage	- Max	6	15	6	15	mV
Input Offset Current	Max	30	100	30	100	pA
Input Bias Current	Max	100	250	100	250	pA
Supply Current	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MAX }}, \mathrm{Max}$.	0.5		0.5	.	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega, \mathrm{Min} \end{aligned}$	20	10	30	15	V / mV
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{Min} \end{aligned}$	± 13	± 13	± 13	± 13	V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{Min}$	± 13	± 13	± 13	± 13	v
Common-Mode Rejection Ratio	Min	80	80	80	80	dB
Supply Voltage Rejection Ratio	Min	80	80	80	80	dB

Note 1: The maximum junction temperature of the LM216 and LM216A is $100^{\circ} \mathrm{C}$, while that of the LM316 and LM316A is $70^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten, 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, unless otherwise specified. With the LM316 and LM316A however, all temperature specifications are limited to $0^{\circ} \mathrm{C} \leq$ $\mathrm{T}_{\mathrm{A}} \leq 55^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Input Currents

Input Noise Voltage

Open Loop
Frequency Response

Large Signal
Frequency Response

LM709/LM709A/LM709C Operational Amplifier

General Description

The LM709 series are a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design, in addition to providing high gain, minimizes both offset voltage and bias currents. Further, the class-B output stage gives a large output capability with minimum power drain.

External components are used to frequency compensate the amplifier. Although the unity-gain compensation network specified will make the amplifier unconditionally, stable in all feedback
configurations, compensation can be tailored to optimize high-frequency performance for any gain setting.
The fact that the amplifier is built on a single silicon chip provides low offset and temperature drift at minimum cost. It also ensures negligible drift due to temperature gradients in the vicinity of the amplifier.

The LM709C is commercial-industrial version of the LM709. It is identical to the LM709/LM709A except that it is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic Diagram**

**Pin connections shown are for metal can package.

Typical Applications**

FET Operational Amplifier

Connection Diagrams

Order Number LM709H or LM709CH See NS Package H08C

Dual-In-Line Package

Order Number LM709CN See NS Package N14A

Dual-In-Line Package

Order Number LM709CN-8 See NS Package N08A

Absolute Maximum Ratings

	LM709/LM709A	LM709C
Supply Voltage	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	300 mW	250 mW
Differential Input Voltage	$\pm 5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$
Input Voltage	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
Output Short-Circuit Duration ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	5 seconds	5 seconds
	TMIN TMAX	TMIN TMAX
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics
(Note 2)

PARAMETER	CONDITIONS	LM709A			LM709			LM709C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		0.6	2.0		1.0	5.0		2.0	7.5	mV
Input Bias Current	$T_{A}=25^{\circ} \mathrm{C}$		100	200		200	500		300	1500	nA
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	50		50	200		100	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	350	700		150	400		50	250		$\mathrm{k} \Omega$
Output Resistance	$T_{A}=25^{\circ} \mathrm{C}$		150			150			150		Ω
Supply Current	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		2.5	3.6		2.6	5.5		2.6	6.6	mA
Transient Response Risetime Overshoot	$\begin{aligned} & V_{I N}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$,		$\begin{aligned} & 1.5 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.3 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.3 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 30 \\ & \hline \end{aligned}$	$\mu \mathrm{s}$ $\%$
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.25	.		0.25			0.25		$\mathrm{V} / \mu \mathrm{s}$
Input Offset Voltage	RS $\leq 10 \mathrm{k} \Omega$			3.0			6.0			10	mV
Average Temperature Coefficient of Input Offset Voltage	$R_{S}=50 \Omega$ $T_{A}=25^{\circ} \mathrm{C}$ to $T_{M A X}$ $T_{A}=25^{\circ} \mathrm{C}$ to $T_{M I N}$ $R_{S}=10 \mathrm{k} \Omega$ $T_{A}=25^{\circ} \mathrm{C}$ to $T_{M A X}$ $T_{A}=25^{\circ} \mathrm{C}$ to $T_{M I N}$		$\begin{aligned} & 1.8 \\ & 1.8 \\ & 2.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 15 \\ & 25 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 12 \end{aligned}$		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V} \end{aligned}$	25		70	25	45	70	15	45		V / mV
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{array}{r} \pm 12 \\ \pm 10 \end{array}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		V
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 8.0			± 8.0	± 10.0		± 8.0	± 10.		V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	110		70	90		65	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		40	100		25	150		25	200	$\mu \mathrm{V} / \mathrm{V}$
Input Offset Current	$\begin{aligned} & T_{A}=T_{M A X} \\ & T_{A}=T_{M I N} \end{aligned}$		$\begin{aligned} & 3.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 250 \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 100 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$.	$\begin{aligned} & 75 \\ & 125 \end{aligned}$	$\begin{aligned} & 400 \\ & 750 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$T_{A}=T_{\text {MIN }}$		0.3	0.6		0.5	1.5		0.36	2.0	$\mu \mathrm{A}$
Input Resistance	$T_{A}=T_{\text {MIN }}$	85	170		40	100		50	250		$k \Omega$

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature for LM709/LM709A and $100^{\circ} \mathrm{C}$ maximum for LM709C and a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case for the metal can package. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick, epoxy glass board with ten, 0.03 -inch-thick, 2-ounce copper conductors (see curve).

Note 2: These specifications apply for $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for LM709/LM709A and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ for LM709C with the following conditions: $\pm 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}, \mathrm{C} 1=5000 \mathrm{pF}, \mathrm{R} 1=1.5 \mathrm{k}, \mathrm{C} 2=200 \mathrm{pF}$ and $\mathrm{R} 2=51 \Omega$.

Typical Applications (Continued)

Guaranteed Performance Characteristics

Supply Current

Typical Performance Characteristics

Input Bias Current as a
Function of Supply
Voltage

LM725/LM725A/LM725C (Instrumentation) Operational Amplifier

General Description

The LM725/LM725A/LM725C are operational amplifiers featuring superior performance in applications where low noise, low drift, and accurate closed-loop gain are required. With high common mode rejection and offset null capability, it is especially suited for low level instrumentation applications over a wide supply voltage range.
The LM725A has tightened electrical performance with higher input accuracy and like the LM725, is guaranteed over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM725C has slightly relaxed specifications and has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Features

- High open loop gain	$3,000,000$
- Low input voltage drift	$0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- High common mode rejection	120 dB
- Low input noise current	$0.15 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Low input offset current	2 nA
- High input voltage range	$\pm 14 \mathrm{~V}$
- Wide power supply range	$\pm 3 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Offset null capability	
- Output short circuit protection	

Schematic and Connection Diagrams

Auxiliary Circuits

Voltage Offset Null Circuit

Compensation Component Values

AvCL	R1 $(S 2)$	$\mathbf{C 1}$ $(\mu \mathbf{F})$	$\mathbf{R 2}$ $(\Omega 2)$	$\mathbf{C 2}$ $(\mu \mathbf{F})$
10,000	10 K	50 pFF	-	-
1.000	470	001	-	-
100	47	01	-	-
10	27	05	270	0015
1	10	05	39	02

Order Number LM725CN See NS Package N08B

Absolute Maximum Ratings

| Supply Voltage | $\pm 22 \mathrm{~V}$ |
| :--- | ---: | ---: |
| Internal Power Dissipation (Note 1) | 500 mV |
| Differential Input Voltage | $\pm 5 \mathrm{~V}$ |
| Input Voltage (Note 2) | $\pm 22 \mathrm{~V}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 10 sec) | $300^{\circ} \mathrm{C}$ |

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	LM725A			LM725			LM725C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage (Without External Trim)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} S \leq 10 \mathrm{k} \Omega$			0.5		. 0.5	1.0		0.5	2.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	20		2.0	35	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		42	80		42	100		42	125	nA
Input Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & n V / \sqrt{\mathrm{Hz}} \\ & n V / \sqrt{\mathrm{Hz}} \\ & n V / \sqrt{\mathrm{Hz}} \end{aligned}$
Input Noise Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & f_{0}=10 \mathrm{~Hz} \\ & f_{0}=100 \mathrm{~Hz} \\ & f_{0}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.3 \\ & 0.15 \end{aligned}$,		$\begin{aligned} & 1.0 \\ & 0.3 \\ & 0.15 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 0.3 \\ & 0.15 \end{aligned}$		$\begin{aligned} & \mathrm{pA} / \sqrt{H z} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5			1.5			1.5		$\mathrm{M} \Omega$
Input Voltage Range	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	± 13.5	± 14		± 13.5	± 14		± 13.5	± 14		V
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V} \end{aligned}$	1000	3000		1000	3000		250	3000		V / mV
Common-Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	120			110	120		94	120		dB
Power Supply Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		2.0	5.0		2.0	10 .		2.0	35	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & R_{L} \geq 10 \mathrm{k} \Omega \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 12.0 \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		V
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	105		80	105		80	150	mW
Input Offset Voltage (Without Externa! Trim)	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			0.7			1.5			3.5	mV
Average Input Offset Voltage Drift (Without External Trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$			2.0		2.0	5.0		2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Input Offset Voitage Drift (With External Trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		0.6	1.0		0.6			0.6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & T_{A}=T_{\text {MAX }} \\ & T_{A}=T_{\text {MIN }} \end{aligned}$		$\begin{aligned} & 1.2 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 18.0 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Average Input Offset Current Drift			35	90		35	150		10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & T_{A}=T_{\text {MAX }} \\ & T_{A}=T_{M I N} \end{aligned}$		$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 180 \end{aligned}$		$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$			$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
-Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega \\ & T_{A}=T_{M A X} \\ & R_{L} \geq 2 \mathrm{k} \Omega \\ & T_{A}=T_{M I N} \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & 500,000 \end{aligned}$			$1,000,000$ 250,000			125,000 125,000			v/V V/V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	110			100				115		dB
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			8.0			20	'	20	,	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$R_{L} \geq 2 \mathrm{k} \Omega$	± 12			± 10			± 10			V

Note 1: Derate at $150^{\circ} \mathrm{C} / \mathrm{W}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$.
Note 2: For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified.

Typical Performance Characteristics

Input Noise Voltage vs Frequency

Output Voltage Swing vs Frequency for Recommended Compensation Networks

Input Noise Current vs Frequency

Open Loop Voltage Gain vs
Frequency Using Recommended
Compensation Networks

Unnulled Input Offset
Voltage vs Temperature

Common Mode Input Voltage vs Supply Voltage

Values for Suggested
Compensation Networks for Various Closed Loop Voltage Gains

Frequency Response for Various Closed-Loop Gains Using Recommended Compensation Networks

Typical Performance Characteristics (Continued)

Power Consumption
vs Temperature

Absolute Maximum Power
Dissipation vs Ambient Temperature

Transient Response

Stabilization Time of Input Offset Voltage from Power Turn-On

Transient Response Test Circuit

General Description

The LM733/LM733C is a two-stage, differential input, differential output, wide-band video amplifier. The use of internal series-shunt feedback gives wide bandwidth with low phase distortion and high gain stability. Emitter-follower outputs provide a high current drive, low impedance capability. It's 120 MHz bandwidth and selectable gains of 10 , 100 , and 400 , without need for frequency compensation, make it a very useful circuit for memory element drivers, pulse amplifiers, and wide band linear gain stages.

The LM733 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM733C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- 120 MHz bandwidth
- $250 \mathrm{k} \Omega$ input resistance
- Selectable gains of $10,100,400$
- No frequency compensation
- High common mode rejection ratio at high frequencies.

Applications

- Magnetic tape systems
- Disk file memories
- Thin and thick film memories
= Woven and plated wire memories
- Wide band video amplifiers.

Schematic and Connection Diagrams

Test Circuits

Order Number LM733CN See NS Package N14A

Note: Pin 5 connected to case.
top view
Order Number LM733H or LM733CH See NS Package H10D

Voltage Gain Adjust Circuit

Absolute Maximum Ratings

Differential Input Voltage	$\pm 5 \mathrm{~V}$
Common Mode Input Voltage	$\pm 6 \mathrm{~V}$
V cc (Sutput Current	$\pm 8 \mathrm{~V}$
Out	10 mA
Power Dissipation (Note 1)	500 mW
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range LM733	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified, see test circuits, $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$)

. CHARACTERISTICS	TEST CIRCUIT	TEST CONDITIONS	LM733			LM733C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Differential Voltage Gain									
Gain 1 (Note 2)			300	400	500	250	400	600	
Gain 2 (Note 3)	1	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\mathrm{pp}}$	90	100	110	80	100	120	
Gain 3 (Note 4)			9.0	10	11	8.0	10	12	
Bandwidth									
Gain 1				40			40		MHz
Gain 2	2			90			90		MHz
Gain 3				120			120		MHz
Rise Time		, ;							
Gain 1		$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {Pp }}$		10.5			10.5		ns
Gain 2	2			4.5	10		4.5	12	ns
Gain 3				2.5			2.5		ns
Propagation Delay		$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {Pp }}$							
Gain 1 Gain 2	2			7.5 6.0	10		7.5	10	ns
Gain 3				3.6		.	3.6		ns
Input Resistance									
Gain 1 .				4.0			4.0		k Ω
Gain 2			20	30		10	30		$k \Omega$
Gain 3				250			250		$\mathrm{k} \Omega$
Input Capacitance		Gain 2		- 2.0			2.0		pF
Input Offset Current				0.4	3.0		0.4	5.0	μA^{\prime}
Input Bias Current				9.0	20.		9.0	30	$\mu \mathrm{A}$
Input Noise Voltage		$\mathrm{BW}=1 \mathrm{kHz}$ to 10 MHz		12 .			12		$\mu \mathrm{Vrms}$
Input Voltage Range	1		± 1.0			± 1.0			V
Common Mode Rejection Ratio Gain 2	1		60			60			
Gain 2		$\mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}=5 \mathrm{MHz}$		60			60		dB
Supply Voltage Rejection Ratio Gain 2	1	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	70		50	70.		dB
Output Offset Voltage							06		
, Gain 1	1	$\mathrm{R}_{\mathrm{L}}=\infty$		0.6	1.5		0.6	1.5	v
Gain 2 and 3				0.35	1.0		0.35	1.5	V
Output Common Mode Voltage	1	$\mathrm{R}_{\mathrm{L}}=\infty$	2.4	2.9	3.4	2.4	2.9	3.4	V
Output Voltage Swing	1	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	3.0	4.0		3.0	4.0		
Output Sink Current			2.5	3.6		2.5	3.6		mA
Output Resistance				20			20	.	Ω
Power Supply Current	1	$\mathrm{R}_{\mathrm{L}}=\infty$		18	24		18	24	mA

Electrical Characteristics (Continued)
(The following specifications apply for $-55^{\circ} \mathrm{C}<T_{A}<125^{\circ} \mathrm{C}$ for the LM 733 and $0^{\circ} \mathrm{C}<T_{A}<70^{\circ} \mathrm{C}$ for the $L M 733 \mathrm{C}, \mathrm{V}_{S}= \pm 6.0 \mathrm{~V}$)

CHARACTERISTICS	TESTCIRCUIT	TEST CONDITIONS	LM733			LM733C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Differential Voltage Gain Gain 1 Gain 2 Gain 3 Input Resistance Gain 2 Input Offset Current Input Bias Current Input Voltage Range Common Mode Rejection Ratio Gain 2									
			200		600	250	.	600	
	1	$R_{L}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {p-p }}$	80		120	80		120	
			8.0		12.0	8.0	.	12.0	
		,	8			8			$k \Omega$
		-			5			6	$\mu \mathrm{A}$
		.			40			40	$\mu \mathrm{A}$
	1		± 1			± 1			V
	- 1	$\mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{f} \leq 100 \mathrm{kHz}$.	50	,		50			dB
Supply Voltage Rejection Ratio Gain 2	1	$\Delta V_{S}= \pm 0.5 \mathrm{~V}$	50			50			dB
Output Offset Voltage									
Gain 1	1	$\mathrm{R}_{\mathrm{L}}=\infty$			1.5			1.5	v
Gain 2 and 3					1.2			1.5	V
Output Voltage Swing	1	$\mathrm{R}_{\mathrm{L}}{ }^{\prime}=2 \mathrm{k}$	2.5	,		. 2.8			$V_{\text {PP }}$
Output Sink Current			2.2			2.5			mA
Power Supply Current	1	$\mathrm{R}_{\mathrm{L}}=\infty$			27	.		27	mA

Note 1: The maximum junction temperature of the LM733 is $150^{\circ} \mathrm{C}$, while that of the LM733C is $100^{\circ} \mathrm{C}$. For operation at elevated temperatures devices in the TO-100 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. Thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Pins G1A and G1B connected together.
Note 3: Pins G2A and G2B connected together.
Note 4: Gain select pins open.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Supply Current, Output Voltage and Current Swing vs Supply
Voltage

Gain vs Frequency vs Supply Voltage

Operational Amplifiers/Buffers

LM741/LM741A/LM741C/LM741E Operational Amplifier General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload pro-
tection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/ LM741E have their performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams (Top Views)

Order Number LM741H, LM741AH, LM741CH or LM741EH
See NS Package H08C

Order Number LM741CN or LM741EN See NS Package N08B Order Number LM741CJ See NS Package J08A

Order Number LM741CN-14
See NS Package N14A
Order Number LM741J-14, LM741AJ-14 or LM741CJ-14
See NS Package J14A

Absolute Maximum Ratings

	LM741A	LM741E	LM741	LM741C
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW	500 mW	500 mW	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Indefinite	Indefinite	Indefinite	Indefinite
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Lead Temperature	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
\quad (Soldering, 10 seconds)				

Electrical Characteristics (Note 3)

Electrical Characteristics
 (Continued)

Note 1: The maximum junction temperature of the LM741/LM741A is $150^{\circ} \mathrm{C}$, while that of the LM741C/LM741E is $100^{\circ} \mathrm{C}$. For operation at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Unless otherwise specified, these specifications apply for $V_{S}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (LM741/LM741A). For the LM741C/ LM741E, these specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
Note 4: Calculated value from: BW (MHz) $=0.35 /$ Rise Time $(\mu \mathrm{s})$.

LM747/LM747ALM747C/LM747E Dual Operational Amplifiers

General Description

The LM747 series are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption
- No latch-up
- Balanced offset null

Additional features of the LM747 and LM747C are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility.

The LM747C/LM747E is identical to the LM747/ LM747A except that the LM747C/LM747E has its specifications guaranteed over the temperature range from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Schematic Diagram (each amplifier)

Note: Numbers in parentheses are pin numbers for amplifier B. DIP only.

Absolute Maximum Ratings

Supply Voltage LM747/LM747A	$\pm 22 \mathrm{~V}$
LM747C/LM747E	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	800 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	
LM747/LM747A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM747C/LM747E	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, $\mathbf{1 0}$ seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

PARȦMETER	CONDITIONS	IM747A/LM747E			LA1747			Lin747C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offsẹt Voltage	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{S} \leq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{S} \leq 50 \Omega \\ & \mathrm{~T}_{A M I N} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \end{aligned}$			*							
						1.0	5.0		2.0	6.0	mV
			0.8	3.0							$m V$
				4.0							$m V$
							6.0			7.5	mV
Average Input Offset Voltage Drift		'		15							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	± 10				± 15			± 15		mV
Adjustment Range .		.		.							
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	30		20	200		20	200	$n \mathrm{~A}$
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\text {A }} \leq$ TAMAX			70		85	500			300	$n \mathrm{~A}$
Average Input Offset Current Drift				0.5							$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	80		80	500		80	500	$n A$
	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$			0.210		,	1.5			0.8	$\mu \mathrm{A}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	1.0	6.0		0.3	2.0	:	0.3	2.0	:	$M \Omega$
	$T_{A M I N} \leq T_{A} \leq T_{A M A X},$	0.5					-				$\mathrm{M} \Omega$
	$V_{S}= \pm 20 \mathrm{~V}$.								
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							± 12	± 13		v
	$T_{\text {AMIN }} \leq T_{A} \leq T_{\text {AMAX }}$				± 12	± 13					v
Large Signal Voltage Gain	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{L} \geq 2 \mathrm{k} \Omega$.	.								
	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}$	50									V / mV
	, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$		-		50	200		20	200		V / mV
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {AMAX }}$,	*			-	,					
	$R_{L} \geq 2 \mathrm{k} \Omega$,										
	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}$	32									V / mV
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$				25			15			V / mV
	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 2 \mathrm{~V}$.	10					,				V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$										
	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \dot{\Omega}$	± 16		.			-				v
	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 15									v
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.								
	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$				± 12	± 14		± 12	± 14		v
	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$				± 10	± 13		± 10	± 13		v
Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	25	35		25			25		mA
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {AMAX }}$	10		40							mA
Common-Mode Rejection Ratio	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$										
	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$				70	90		70	90		dB
	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$	80	95								dB

Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	LM747A/LM747E			LM747			LM747C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage Rejection Ratio	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {AMAX }}$,										
	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$ to $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$										
	RS $\leq 50 \Omega$	86	96								dB
	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$				77	96		77	96		dB
Transient Response Rise Time Overshoot	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unity Gain						.				
			0.25	0.8		0.3			0.3		$\mu \mathrm{s}$
			6.0	20		5			5		\%
Bandwidth (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.437	1.5								MHz .
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unity Gain	0.3	0.7			0.5			0.5		$\mathrm{V} / \mathrm{\mu} \mathrm{~s}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					1.7	2.8		1.7	2.8	mA
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$										
	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		80	150							mW
	$\mathrm{V}_{\mathrm{S}}= \pm \pm 15 \mathrm{~V}$					50	85		. 50	85	mW
LM747A	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$										
	$T_{A}=T_{A M I N}$			165							mW
	$T_{A}=T_{A M A X}$			135		-					mW
LM747E	$V_{S}= \pm 20 \mathrm{~V}$			150							mW
	$T_{A}=T_{A M I N}$	-		150							mW
	$T_{A}=T_{A M A X}$			150							mW
LM747	$V_{S}= \pm 15 \mathrm{~V}$.										
	$T_{A}=T_{A M I N}$					60	100				mW
	$T_{A}=T_{A M A X}$						75				mW

Note 1: The maximum junction temperature of the LM747/LM747A is $150^{\circ} \mathrm{C}$, while that of the LM747C/LM747E is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the LM747A and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LM747E unless otherwise specified. The LM741 and LM741 C are specified for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, respectively, unless otherwise specified.
Note 4: Calculated value from: $0.35 /$ Rise Time ($\mu \mathrm{s}$).

Typical Performance Characteristics

Output Voltage Swing vs Frequency

Frequency Characteristics vs Supply Voltage

DC Parameters vs Supply Voltage

Output Voltage Swing vs Load Resistance

Transient Response

Output Resistance vs
Frequency

Common Mode Rejection Ratio vs Frequency

Output Swing and Input Range vs Supply Voltage

Frequency Characteristics vs Ambient Temperature

Open Loop Transfer
Characteristics vs Frequency

Typical Performance Characteristics (Continued)

Connection Diagrams

Order Number LM747AH, LM747H, LM747EH or LM747CH See NS Package H10C

Dual-In-Line Package

Order Number LM747AJ, LM747J, LM747EJ or LM747CJ See NS Package J14A
Order Number LM747EN or LM747CN
See NS Package N14A

[^19]
National Semiconductor

LM748/LM748C Operational Amplifier

General Description

The LM748/LM748C is a general purpose operational amplifier built on a single silicon chip. The resulting close match and tight thermal coupling gives low offsets and temperature drift as well as fast recovery from thermal transients. In addition, the device features:

- Frequency compensation with a single 30 pF capacitor
- Operation from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Low current drain: 1.8 mA at $\pm 20 \mathrm{~V}$.
- Continuous short-circuit protection
- Operation as a comparator with differential inputs as high as $\pm 30 \mathrm{~V}$
- No latch-up when common mode range is exceeded.
- Same pin configuration as the LM101.

The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. However, it is possible to optimize compensation for best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits.
The LM748 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The $L M 748 \mathrm{C}$ is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Connection Diagrams

Order Number LM748H or LM748CH See NS Package H08C

Typical Applications

Low Drift Sample and Hold

Dual-In-Line Package

Order Number LM748CN See NS Package N08B
Order Number LM748J or LM748CJ See NS Package J08A

Voltage Comparator for Driving DTL or TTL Integrated Circuits

Voltage Comparator for Driving RTL Logic or High Current Driver

Absolute Maximum Ratings

Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range:LM748	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		40	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		120	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	300	800		$k \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		1.8	2.8	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	160		V / mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			6.0	$m \mathrm{~m}$
Average Temperature	$\mathrm{R}_{\mathrm{S}} \leq 50 \Omega$		3.0		$\mu \vee /{ }^{\circ} \mathrm{C}$
Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		6.0		$\mu \vee /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 300 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Supply Current	$\begin{aligned} & T_{A}=+125^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{~K} \Omega \end{aligned}$	25			V / mV
Output Voltage Swing	$\begin{aligned} V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}} & =10 \Omega \\ R_{\mathrm{L}} & =2 \mathrm{k} \Omega \end{aligned}$	± 12 ± 10	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12			V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	77	90		dB

Note 1: For operating at elevated temperatures the devices must be derated based on a maximum junction to case thermal resistance of $45^{\circ} \mathrm{C}$ per watt, or $150^{\circ} \mathrm{C}$ per watt junction to ambient. (See Curves).

Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $+125^{\circ} \mathrm{C}$ and ambient temperatures to $+70^{\circ} \mathrm{C}$.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq+15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM748C, however, all temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$.

Guaranteed Performance Characteristics (Note 4)

Typical Performance Characteristics

LM1558/LM1458 Dual Operational Amplifier

General Description

The LM1558 and the LM1458 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent. Features include:

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption
- 8-lead TO-5 and 8-lead mini DIP
- No latch up when input common mode range is exceeded

The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

Note: Numbers in parentheses are pin numbers for amplifier B.

TOP VIEW
Order Number LM1558H or LM1458H See NS Package H08C

10r view
Order Number LM1558J
Order Number LM1458N See NS Package N08B

Absolute Maximum Ratings

Supply Voltage LM1558	$\pm 22 \mathrm{~V}$
LM1458	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1) LM1558H/LM1458H	500 mW
	LM1458N
Differential Input Voltage	400 mW
Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$
	$\pm 15 \mathrm{~V}$

Output Short-Circuit Duration	Indefinite
Operating Temperature Range LM1558	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LM1458	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

Note 1: The maximum junction temperature of the LM1558 is $150^{\circ} \mathrm{C}$, while that of the LM1458 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the DIP the device must be derated based on a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM 1458 however, all specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$.

General Description

The LM2900 series consists of four independent, dual input, internally compensated amplifiers which were designed specifically to operate off of a single power supply voltage and to provide a large output voltage swing. These amplifiers make use of a current mirror to achieve the non-inverting input function. Application areas include: ac amplifiers, RC active filters, low frequency triangle, squarewave and pulse waveform generation circuits, tachometers and low speed, high voltage digital logic gates.

Features

single supply voltage or dual supplies	$\pm 2 V_{\mathrm{DC}} \text { to } \pm 18$
Supply current drain independent of supply voltage	
w input biasing current	0
gh open-loop gain	70 dB
de bandwidth	5 MHz (Unity Gain)
utput voltage	-1)
ternally frequency compensated for unity gain	
utput short-c	

- Supply current drain independent of supply voltage
- Low input biasing current 30 nA
- High open-loop gain
- Large output voltage swing ($\mathrm{V}^{+}-1$) Vp-p
ted for unity gain
- Output short-circuit protection

Schematic and Connection Diagrams

Typical Applications ($\left.\mathrm{V}^{+}=15 \mathrm{~V} \mathrm{DC}\right)$

Order Number LM2900J See NS Package J14A Order Number LM2900N, LM3900N, LM3301N or LM3401N See NS Package N14A

Low VIN - V OUT Voltage Regulator
Non-Inverting Amplifier

Absolute Maximum Ratings

	LM2900/LM3900	LM3301	LM3401
Supply Voltage	$32 V_{\text {DC }}$	28 V DC	$18 V_{D C}$
	$\pm 16 V_{\text {DC }}$	$\pm 14 V_{\text {DC }}$	$\pm 9 \mathrm{VDC}$
Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)($ Note 1)			
Cavity DIP	900 mW		
Flat Pack	800 mW		
Molded DIP	570 mw	570 mW	570 mW
Input Currents, $1 \mathrm{IN}^{+}$or INN^{-}	20 mADC	20 mADC	20 mADC
Output Short-Circuit Duration - One Amplifier $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Application Hints)	Continuous	Continuous	Continuous
Operating Temperature Range		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
LM2900	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
LM3900	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 6)

Electrical Characteristics (Continued) (Note 6)

PARAMETER	CONDITIONS	LM2900			LM3900			LM3301			LM3401			UNITS
PARAMETER		MIN	TYP	MAX										
Power Supply Rejection	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=100 \mathrm{~Hz}$	70			70			70			70			dB
Mirror Gain	@ $20 \mu \mathrm{~A}$ (Note 3)	0.90	1.0	1.1	0.90	1.0	1.1	0.90	1	1.10	0.90	1	1.10	$\mu \mathrm{A} / \mu \mathrm{A}$
	@ 200 ${ }^{\text {A }}$ (Note 3)	0.90	1.0	1.1	0.90	1.0	1.1	0.90	1	1.10	0.90	1	1.10	$\mu \mathrm{A} / \mu \mathrm{A}$
Δ Mirror Gain	@ $20 \mu \mathrm{~A}$ To $200 \mu \mathrm{~A}$ (Note 3)		2	5		2	5		2	5		2	5	\%
Mirror Current	(Note 4)		10	500		10	500		10	500		10	500	$\mu \mathrm{ADC}$
Negative Input Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)		1.0			1.0			1.0			1.0		mADC
Voltage Gain	$\mathrm{f}=100 \mathrm{~Hz}$;							.			V / mV
Input Bias Current	Inverting Input													nA

 circuit board, operating in a still air ambient
Note 2: The output current sink capability can be increased for large signal conditions by overdriving the inverting input. This is shown in the section on Typical Characteristics.
Note 3: This spec indicates the current gain of the current mirror which is used as the non-inverting input.
 the application circuits.

 be used to prevent negative input voltages; see for example, the "Differentiator Circuit" in the applications section.
Note 6: These specs apply for $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated.

Typical Performance Characteristics

Supply Rejection

Large Signal Frequency Response

Maximum Mirror Current

Application Hints

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak input current. Currents as large as 20 mA will not damage the device, but the current mirror on the non-inverting input will saturate and cause a loss of mirror gain at mA current levelsespecially at high operating temperatures.

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fuzing of the internal conductors and result in a destroyed unit.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fuzing, but rather due to the large increase in lC chip dissipation which will cause eventual failure due to excessive junction, temperatures. For example, when operating from a well-regulated $+5 \mathrm{~V}_{\mathrm{DC}}$ power supply at $T_{A}=25^{\circ} \mathrm{C}$ with a $100 \mathrm{k} \Omega$ shuntfeedback resistor (from the output to the inverting input) a short directly to the power supply will not cause catastrophic failure but the current magnitude will be 'approximately 50 mA and the junction temperature will be above T_{J} max. Larger feedback resistors will reduce the current, $11 \mathrm{M} \Omega$ provides approximately 30 mA , an open circuit provides 1.3 mA , and a direct connection from the output to the non-inverting input will result in catastrophic failure when the output is shorted to V^{+} as this then places the base-emitter junction of the input transistor directly across the power supply. Short-circuits to ground will have magnitudes of approximately 30 mA and will not cause catastrophic failure at $T_{A}=25^{\circ} \mathrm{C}$.

Unintentional signal coupling from the output to the non-inverting input can cause oscillations. This is likely only in breadboard hook-ups with long component leads and can be prevented by a more careful lead dress or by locating the non-inverting input biasing resistor close to the IC. A quick check of this condition is to bypass the non-inverting input to ground with a capacitor. High impedance biasing resistors used in the non-inverting input circuit make this input lead highly susceptible to unintentional ac signal pickup.

Operation of this amplifier can be best understood by noticing that input currents are differenced at the inverting-input terminal and this difference current then flows through the external feedback resistor to produce the output voltage. Common-mode current biasing is generally useful to allow operating with signal levels near ground or even negative as this maintains the inputs biased at $+V_{B E}$. Internal clamp transistors (see note. 5) catch negative input voltages at approximately -0.3 V DC but the magnitude of current flow has to be limited by the external input network. For operation at high temperature, this limit should be approximately $100 \mu \mathrm{~A}$.

This new "Norton" current-differencing amplifier can be used in most of the applications of a standard IC op amp. Performance as a dc amplifier using only a single supply is not as precise as a standard IC op amp operating with split supplies but is adequate in many less critical applications. New functions are made possible with this amplifier which are useful in single power supply systems. For example, biasing can be designed separately from the ac gain as was shown in the "inverting amplifier," the "difference integrator" allows controlling the charging and the discharging of the integrating capacitor both with positive voltages, and the "frequency doubling tachometer" provides a simple circuit which reduces the ripple voltage on a tachometer output dc voltage.

Typical Applications (Continued)

Low-Drift Ramp and Hold Circuit

Bi-Quad Active Filter (2nd Degree State-Variable Network)

Typical Applications (Continued)

Power Comparator

Comparator

Schmitt-Trigger

Square-Wave Oscillator

Pulse Generator

Typical Applications (Continued)

Frequency Differencing Tachometer

Frequency Averaging Tachometer

Squaring Amplifier (W/Hysteresis)

Bi-Stable Multivibrator

Differentiator (Common-Mode Biasing Keeps Input at $+\mathrm{V}_{\mathrm{BE}}$)

Low Pass Active Filter

Staircase Generator

$V_{B E}$ Biasing

Bandpass Active Filter

Low-Frequency Mixer

Typical Applications (Continued)

One-Shot Multivibrator

Channel Selection by DC Control (or Audio Mixer)

One-Shot with DC Input Comparator

Typical Applications (Continued)

High Pass Active Filter

Sawtooth Generator

Sample-Hold and Compare with New $+\mathrm{V}_{\mathrm{IN}}$

Boosting to $\mathbf{3 0 0}$ mA Loads

Split-Supply Applications $\left.\quad \mathrm{v}^{+}=+15 \mathrm{~V}_{\mathrm{DC}} \& \mathrm{v}^{-}=-15 \mathrm{~V} \mathrm{VC}\right)$

Non-Inverting DC Gain

AC Amplifier

Operational Amplifiers/Buffers Semiconductor

LM4250/LM4250C Programmable Operational Amplifier General Description

The LM4250 and LM4250C are extremely versatile programmable monolithic operational amplifiers. A single external master bias current setting. resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product. The device is a truly general purpose operational amplifier.

Features

- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply operation
- 3 nA input offset current
- Standby power consumption as low as 500 nW
- No frequency compensation required
- Programmable electrical characteristics
- Offset Voltage nulling capability
- Can be powered by two flashlight batteries
- Short circuit protection

The LM4250C is identical to the LM4250 except that the LM4250C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range instead of the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range of the LM4250.

Schematic Diagrams

Connection Diagrams

Order Number LM4250H or LM4250CH See NS Package H08C

Typical Applications

X5 Difference Amplifier

500 Nano-Watt $\times 10$ Amplifier

Order Number LM4250CN
See NS Package N08B
Order Number LM4250J or LM4250CJ See NS Package J08A

Absolute Maximum Ratings

Supply Voltage		$\pm 18 \mathrm{~V}$.	Output Short-Circuit Duration		Indefinite
Power Dissipation (Note 1)		500 mW	Operating Temperature Range	LM4250	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$
Differential Input Voltage		$\pm 30 \mathrm{~V}$		LM4250C	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
Input Voltage (Note 2)		$\pm 15 \mathrm{~V}$	Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$I_{\text {SET }}$ Current		$150 \mu \mathrm{~A}$	Lead Temperature (Soldering. 1	sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics
LM4250 ($-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ unless otherwise specified)

Note 1: The maximum junction temperature of the LM4250 is $150^{\circ} \mathrm{C}$, while that of the LM4250C is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. The thermal resistance of the dual-in-line package is $125^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

Electrical Characteristics
LM4250C $\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Resistor Biasing
Set Current Setting Resistor to \mathbf{V}^{-}

ISET $^{\|c\|}$					
$\mathbf{V}_{\mathbf{S}}$	$0.1 \mu \mathrm{~A}$	$0.5 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
$\pm 1.5 \mathrm{~V}$	$25.6 \mathrm{M} \Omega$	$5.04 \mathrm{M} \Omega$	$2.5 \mathrm{M} \Omega$	$492 \mathrm{k} \Omega$	$244 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$55.6 \mathrm{M} \Omega$	$11.0 \mathrm{M} \Omega$	$5.5 \mathrm{M} \Omega$	$1.09 \mathrm{M} \Omega$	$544 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$116 \mathrm{M} \Omega$	$23.0 \mathrm{M} \Omega$	$11.5 \mathrm{M} \Omega$	$2.29 \mathrm{M} \Omega$	$1.14 \mathrm{M} \Omega$
$\pm 9.0 \mathrm{~V}$	$176 \mathrm{M} \Omega$	$35.0 \mathrm{M} \Omega$	$17.5 \mathrm{M} \Omega$	$3.49 \mathrm{M} \Omega$	$1.74 \mathrm{M} \Omega$
$\pm 12.0 \mathrm{~V}$	$236 \mathrm{M} \Omega$	$47.0 \mathrm{M} \Omega$	$23.5 \mathrm{M} \Omega$	$4.69 \mathrm{M} \Omega$	$2.34 \mathrm{M} \Omega$
$\pm 15.0 \mathrm{~V}$	$296 \mathrm{M} \Omega$	$59.0 \mathrm{M} \Omega$	$29.5 \mathrm{M} \Omega$	$5.89 \mathrm{M} \Omega$	$2.94 \mathrm{M} \Omega$

Typical Performance Characteristics

Unnulled Input Offset Voltage Change vs ISET

$I_{\text {SET }}(\mu \mathrm{A})$

Quiescent Current (${ }_{q}$) vs

Input Bias Current vs
Temperature

Unnulled Input Offset Voltage
Change vs Temperature

Temperature

Gain Bandwidth Product vs ISET

Input Offset Current vs Temperature

Peak to Peak Output Voltage Swing vs Load Resistance
(1$)^{\circ d} O_{n}$

Typical Performance Characteristics (Continued)

Typical Applications (Continued)

Floating Input Meter Amplifier
100 Nano-Ampere Full Scale

RSET Connected to \mathbf{V}^{-}

Transistor Current Source Biasing
*R1 limits ISET maximum

X 100 Instrumentation Amplifier $10 \mu \mathrm{~W}$

RSET Connected to Ground

FET Current Source Biasing

Iser equations:
$I_{\text {SET }}=\frac{\mathbf{V}^{+}+1 \mathbf{V}^{-} 1-05}{R_{\text {SET }}}$ where $R_{\text {SET }}$ is connected to \mathbf{V}^{-}.
$I_{S E T} \approx \frac{\mathbf{V}^{*}-0.5}{R_{\text {SET }}} \quad$ where $R_{\text {SET }}$ is connected to ground.

Offset Null Circuit

National

LH24250/LH24250C Dual Programmable Micropower Op Amp

general description

The LH24250/LH24250C series of dual programmable micropower operational amplifiers are two LM4250 type op amps in a single hermetic package. Featuring all the same performance characteristics of the LM4250, the LH24250/LH24250C duals also offer closer thermal tracking, lower weight, reduced insertion cost and smaller size than two single devices. For additional information, see the LM4250 data sheet and National's Linear Application Handbook.

features

- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply operation
- Standby power consumption as low as $20 \mu \mathrm{~W}$
- Offset current programmable from less than 0.5 nA to 30 nA
- Programmable slew rate
- May be shut-down using standard open collector TTL
- Internally compensated and short circuit proof

connection diagram and auxiliary circuit

Offset Null Circuit

typical quiescent current setting resistor

(Pin 8 to V-)

V_{S}	$10 \mu \mathrm{~A}$	$30 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$300 \mu \mathrm{~A}$
± 1.5	$1.5 \mathrm{M} \Omega$	$470 \mathrm{k} \Omega$	$150 \mathrm{k} \Omega$	
± 3	$3.3 \mathrm{M} \Omega$	$1.1 \mathrm{M} \Omega$	$330 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$
± 6	$7.5 \mathrm{M} \Omega$	$2.7 \mathrm{M} \Omega$	$750 \mathrm{k} \Omega$	$220 \mathrm{k} \Omega$
± 9	$13 \mathrm{M} \Omega$	$4 \mathrm{M} \Omega$	$1.3 \mathrm{M} \Omega$	$350 \mathrm{k} \Omega$
± 12	$18 \mathrm{M} \Omega$	$5.6 \mathrm{M} \Omega$	$1.5 \mathrm{M} \Omega$	$510 \mathrm{k} \Omega$
± 15	$22 \mathrm{M} \Omega$	$7.5 \mathrm{M} \Omega$	$2.2 \mathrm{M} \Omega$	$620 \mathrm{k} \Omega$

absolute maximum ratings

Supply Voltage

Power Dissipation (Note 1)
Differential Input Voltage (Note 2)
Input Voltage (Note 3)
Output Short Circuit Duration
+18 V
500 mW
+15 V
+15 V
Continuous

Operatıng Temperature Range	${ }^{\text {LH2 }}$
LH24250	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH24250	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Léad Temperature (Solderıng, 10 sec)	$300^{\circ} \mathrm{C}$

electrical characteristics - each side (Note 4)

PARAMETER	CONDITIONS	LIMITS		UNITS
		LH24250	LH24250C	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}<100 \mathrm{kS}$	3.0	6.0	$m \vee \mathrm{Max}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5	10	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	15	30	$n \mathrm{n}$ Max
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	3	MS2 Min
Power Consumption	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{O}}=0, \mathrm{R}_{\text {SET }}=2.7 \mathrm{M} \Omega$	480	600	$\mu \mathrm{W}$ Max
Large Signal Voltage Gaın	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega$	100	75 ..	V / mV Min
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}>10 \mathrm{k} \Omega$	4.0	7.5	$m V$ Max
Input Offset Current		5	15	nA Max
Input Bias Current		15	50	nA Max
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega$	50	50	V/mV Mın
Output Voltage Swing	$R_{i}>10 \mathrm{k} \Omega . \mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}$	$+10$	+10	$\checkmark M_{10}$
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}} \cdot .15 \mathrm{~V}$	+12.	+12	$\bigcirc M_{1} \mathrm{n}$
Common Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25 \mathrm{C}, \mathrm{R}_{\mathrm{S}}<10 \mathrm{kS}$,	70	70	dB Min
Supply Voltage Rejection Ratio	$T_{A}=25 \mathrm{C}, \mathrm{R}_{\mathrm{S}}<10 \mathrm{kS}$	76	76	dB Min

Note 1: Derate linearly $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ case temperature above $25^{\circ} \mathrm{C}$.
Note 2: This rating applies to maximum voltage differential between input terminals. The maximum input voltage on either input terminal is limited to ${ }^{*} \mathrm{~V}_{\mathrm{S}}$ up to +15 V .
Note 3: This rating limited to $:$ supply voltage to a maximum of $\pm 15 \mathrm{~V}$.
Note 4: These specifications apply for $V_{S}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{q}}=30 \mu \mathrm{~A}$, and $-55^{\circ} \mathrm{C}<\mathrm{T}_{A}<+125^{\circ} \mathrm{C}$ unless otherwise specified. With the LH2.4250C, however, all temperature specifications are limited to $0 \mathrm{C}<\mathrm{T}_{A}<70^{\circ} \mathrm{C}$.

LM13080 Programmable Power Op Amp

General Description

The LM13080 is an internally compensated medium power operational amplifier designed for use in those applications requiring load currents of several hundred milliamperes. This amplifier has the added advantage of having an input stage programmed with an external resistor. The user is able to optimize the amplifier performance for each individual application with this feature. Applications include servo amplifiers and drivers, high input impedance audio amplifiers, DC to-DC converters, precision power comparators which can either sink or source current and motor speed controls.

The LM13080 may be powered from either single or dual power supplies, and will operate from as little as 3 V .

As a power operational amplifier, the LM13080 is capable of delivering 0.25 A to a load. This feature allows the system designer to fulfill his medium power circuit requirements without having to add external
current boost transistors to the output of a standard operational amplifier.

By selecting the proper input stage bias resistor it is possible to tailor the performance of the input stage to meet the needs of any particular system. Trade-offs between input offset voltage, input bias current and gain bandwidth are easily made.

An unusual feature of the LM13080 is an electronic shut-down capability.

Features

- High output current-250 mA
- Externally programmable input stage
- Low power supply operation-3V
- Electronic shut-down capability
- Internally compensated for unity gain
- Low input bias current

Schematic and Connection Diagrams

Numbers in parentheses show LM13080P connections

*Pin 6 can be connected to pin 10, if not, pin 6 must be left with no connection.

Order Number LM13080P
See NS Package P11A

Absolute Maximum Ratings

Supply Voltage Operation Range
3 V to 15 V or
$\pm 1.5 \mathrm{~V}$ to $\pm 7.5 \mathrm{~V}$
Power Dissipation, (Note 1)
Molded Dual-In-Line Package (LM13080N) 1000 mW
Differential Input Voltage, (Note 2) 15V

Input Voltage Range, (Note 3) Input Current (VIN $\leq-0.3 \mathrm{~V}$), (Note 4) $\quad \therefore 20 \mathrm{~mA}$
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range , $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) : $300^{\circ} \mathrm{C}$

Electrical Characteristics ($\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=680 \mathrm{k}$, unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage :	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		± 3	± 7.	mV
Input Bias Current	$\operatorname{IIN}(+)$ or IIN(-), $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		$\therefore 100$	400	nA
Input Offset Current			± 30	± 75	nA
Supply Cürrent	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 6)		3	6	$\cdots \mathrm{mA}$
Output Voltage Swing	$\mathrm{V}_{S}= \pm 6 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C},($ Note 1)				
V_{OH}	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	4.5	5		V
	$R_{L}=8 \Omega$	2		-	V
$\mathrm{V}_{\text {OL }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-5	-4.5	
	$\mathrm{R}_{\mathrm{L}}=8 \Omega$			-2	v
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{~Hz}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	3	10	.	V / mV
Input Common-Mode Voltage	$\mathrm{V}_{\mathrm{S}} \leq 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 3)	1		$\mathrm{V}^{-1.5}$	v
Range					
Input Offset Voltage	(Note 5)			± 10	mV
Input Offset Voltage Drift			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\operatorname{IIN}(+)$ or IIN(-)			600	nA
Input Offset Current	$\operatorname{IIN}(+)-\operatorname{IIN}(-)$			± 150	nA
Input Offset Current Drift		.	50		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$, (Note 6)			8	mA
Output Voltage Swing	$V_{S}= \pm 6 \mathrm{~V}$, (Note 1)	.			
- VOH	$\mathrm{R}_{\mathrm{L}}=50 \Omega$			4	v
	$R_{L}=8 \Omega$			1.6	V
V_{OL}	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	-4	-		v
\because	$R_{L}=8 \Omega$	-1.6			V
Large Signal Voltage Gain	$V_{S}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, f=100 \mathrm{~Hz}$.	1		,	V / mV
Input Common-Mode Voltage	$\mathrm{V}_{S} \leq 15 \mathrm{~V}$, (Note 3)	1.25		$v_{S}-1.75$	V
Range					
Common-Mode Rejection Ratio		63	85		$d \mathrm{~B}$
Total Harmonic Distortion	$\begin{aligned} & R_{L}=8 \Omega, V_{O}=2 \mathrm{Vrms}, \\ & f=1 \mathrm{kHz} \end{aligned}$		0.5	5	\%

Note 1: For operation at high temperatures the LM13080 must be derated based on a maximum junction temperature of $150^{\circ} \mathrm{C}$ and a thermal resistance of $120^{\circ} \mathrm{C} / \mathrm{W}$. The thermal resistance value is for a package soldered into a printed circuit board and operating in a still air ambient.
Note 2: Differential input voltages up to the magnitude of the power supply voltage will not damage the input circuitry. However, input voltages outside the input common-mode voltage range will not be able to properly control the output of the amplifier.
Note 3: The input voltage applied to either input should not be allowed to go more than 0.3 V below the potential applied to pin 4 ; however, either input can be taken as high as 15 V without causing damage to the circuit. Input voltages below the minimum common-mode voltage range may cause a phase reversal in the output.
Note 4: This input current will exist only when the voltage at either input lead is driven negative. It is due to the base-isolation junction of the PNP transistor tub becoming forward biased and thereby acting as an input diode clamp. In addition to this diode action, there is also lateral NPN parasitic action on the IC chip. This transistor action can cause the output to take an undefined state for the time duration that an input is driven negative.
Note 5: $\mathrm{V}_{\mathrm{O}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$, and over the full inpút common-mode voltage range.
Note 6: Supply current is measured with the amplifier connected in a unity gain follower configuration and the positive input set to one-half of the supply voltage.

Typical Performance Characteristics

Voltage Gain as a Function of RSET

Open Loop Frequency Response

Voltage Follower Pulse Response (Small Signal)

Input Bias Current

RSET - SET RESISTANCE (Ω)

Large Signal Frequency
Response

Voltage Follower Pulse Response (Large Signal)

Output Current Sinking

Minimum Stable Closed Loop Gain

Common-Mode Rejection Ratio

Typical Performance Characteristics (Continued)

Supply Current

Supply Current

Application Hints

The LM13080 is a power op amp capable of sourcing or sinking more than 250 mA which does not include internal current limit or thermal shut-down. Therefore, the user must make sure that his application will not exceed the power dissipation ratings of the package. The LM13080 is rated at a maximum power dissipation of 1000 mW , but this rating is for an ambient temperature of $25^{\circ} \mathrm{C}$. For operation at temperatures above $25^{\circ} \mathrm{C}$, the maximum dissipation must be derated using the equation:

$$
\begin{equation*}
P_{D}=\frac{T_{J}-T_{A}}{\Theta_{J A}} \tag{1}
\end{equation*}
$$

where P_{D} is the maximum allowable power dissipation, T_{J} is the maximum junction temperature $\left(150^{\circ} \mathrm{C}\right), T_{A}$ is the ambient temperature and $\Theta_{J A}$ is the thermal resistance of the package operated in a still air environment $\left(120^{\circ} \mathrm{C} / \mathrm{W}\right)$. If the LM13080 is to be used in a $70^{\circ} \mathrm{C}$ ambient then the maximum power that can be dissipated is:

$$
P_{D}=\frac{150^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{120^{\circ} \mathrm{C} / \mathrm{W}}=665 \mathrm{~mW}
$$

The LM13080 derives its ability to sink current through the use of a composite NPN/PNP output configuration. This local loop must be compensated by the series connection of a $0.05 \mu \mathrm{~F}$ capacitor and a 10Ω resistor between the output of the op amp (pin 5) and the negative power supply (pin 4). The RC does not just filter out the oscillation from the output waveform but actually stabilizes the loop.

If the inputs of the LM13080 are driven below the input common-mode voltage range, it is possible that the output will experience a phase reversal. This is particularly true for the non-inverting input ($V_{\mid N(t) \text {). }}$ If either input is driven to a voltage level 0.3 V below the substrate (pin 4) a parasitic NPN transistor will be turned ON. The emitter of this parasitic transistor is the normal input transistor epi (N -type, base) region, the base is the substrate (P -type) and the collector is every other epi region on the die. Circuit operation in this mode is unpredictable. If an input is forced below the substrate, the current flowing out of that input should be limited to 20 mA to insure that the amplifier will not be destroyed.

Programming the LM13080 is accomplished by selecting the value of RSET, the input stage bias resistor, to optimize the amplifier for each particular application. An example would be an application with low source resistance which requires a low offset voltage to make a precise DC measurement. By selecting an RSET of $100 \mathrm{k} \Omega$, the normal offset voltage would be reduced to approximately one-fourth the value, it would be if a 680 k resistor was used. By studying the curves, it can be seen that the bias current will increase but an increase here has very little effect due to the small source impedance. It should also be noted that with a 100 k input set resistor the gain bandwidth product will also increase, and in fact, the amplifier must be operated with a closed loop voltage gain of 6 to assure stability.

The effect of RSET on the total quiescent supply current will be very small ($\Delta I_{\mathrm{S}}<5 \%$ IS) as long as RSET is 100 k or greater.

To employ electronic shut-down the output bias pin, pin 2, and the negative end of the input bias resistor, RSET, are connected to the negative power supply (or ground in a single power system) through a saturated NPN transistor (or other electronic switch). When the transistor is turned OFF, all of the bias currents inside the op amp are turned OFF and all input and output terminals will float. When first turned ON, the output will take about $5 \mu \mathrm{~s}$ to reach the correct level. To insure that the LM13080 is OFF, leakage in the control device must be below the level that will allow pins 2 and 7 to rise to within 0.4 V of V^{+}.

Power supply rejection is a function of the change in voltage across the input bias resistor, RSET. To improve the PSRR of the LM13080, the user must be careful to bypass pin 7 to pin 6 or to establish a floating voltage referenced to the positive power supply to serve as a connection point for RSET. In applications where PSRR is important, it is imperative that a supply bypass capacitor(s) be used.

Because the LM13080 is a power op amp, some amount of die heating should be expected. The curve of open loop frequency response shows the effect of thermal feedback on low frequency signals as the output load is increased.

Typical Applications

LINE DRIVER

The line driver circuit in Figure 1 is able to accept an unbalanced, high impedance input and convert it to a balanced output suitable for driving a low impedance line. This is particularly useful in an environment where magnetically induced hum or noise pickup is a problem. The outputs of the 2 LM13080's are of opposite polarity; therefore, terminating the line with a balanced load (i.e., a differential amplifier or a transformer) will cause common-mode interference pickup to be cancelled.

This circuit will drive a 20 Vp -p signal into a 50Ω load for frequencies up to 10 kHz . Above 10 kHz the output signal is slew rate limited, but the line driver will still supply a $13 \mathrm{Vp}-\mathrm{p}$ signal at 20 kHz . The voltage gain of the network is 2 , and the low frequency roll-off is determined by:

$$
f_{L}=\frac{1}{2 \pi R C}
$$

It can be seen that if the load is connected directly between the outputs of the amplifiers, the line driver
becomes a simple bridge amplifier capable of delivering $2 W$ into a 16Ω load.

PIEZOELECTRIC ALARM

The piezoelectric alarm shown in Figure 2 uses a 3 terminal transducer (Gulton 101FB or equivalent) to produce an 80 dB SPL alarm.

The transducer has a feedback terminal which is connected to the non-inverting input of the LM13080, causing oscillation at the resonant frequency of the piezoelectric crystal. The alarm can be controlled through the use of the electronic shut-down feature of the amplifier. The 100 k resistor and $0.1 \mu \mathrm{~F}$ capacitor are used to provide a reference voltage at the inverting input and to keep the duty cycle of the crystal oscillation close to 50%. The RC time constant of this feedback network should be much greater than the time constant of the transducer.

FIGURE 2. Piezoelectric Alarm

Typical Applications (Continued).

SIRENS

Two separate circuits for sirens are shown. The first, Figure 3, is a 2 -state or ON-OFF type siren where the LM13080 oscillates at an audio frequency and drives an 8Ω speaker and the LM339 acts as a switch which controls the audio burst rate. The second siren, Figure 4, provides a constant audio output but alternates between 2 separate tones. The LM13080 is set to oscillate at one basic frequency and this frequency is changed by adding a $200 \mathrm{k} \Omega$ charging resistor in parallel with the feedback resistor, R2.

LAMP FLASHER - RELAY DRIVER

The LM13080 is easily adaptable to such applications as low frequency warning devices. The output of the oscillator is a squarewave that is used to drive lamps or small relays. As shown in Figure 5, the circuit alternately flashes 2 incandescent lamps.

FIGURE 3. 2-State Siren

FIGURE 4. 2-Tone Siren

FIGURE 5. Low Frequency Lamp Flasher/Relay Driver

Typical Applications (Continued)

MOTOR SPEED CONTROL

The LM13080 can be used to construct a very simple speed control for small motors requiring less than 0.5 A start current. This circuit operates by impressing the multiple of a reference voltage across the motor, and then varying the reference by means of quasi-positive feedback to change the voltage across the motor any time the load on the motor changes.

To understand the circuit operation, it is easiest to let the voltage at the cathode of diode D1, Figure 6, be the input voltage, $\mathrm{V}_{\text {IN }}$, to the system. Diode D1 is actually a level shift diode to bring V_{IN} into the common-mode range of the amplifier. A reference voltage is established by the combined voltage drop through the 10Ω potentiometer, R3 and the reference diode, D2 and is applied to the non-inverting input of the LM13080. Resistor R4 is a bias resistor used to keep D2 active. The 10k speed adjust potentiometer is 2 resistors in 1 , where section R1 is the input resistance and section R2 is the negative feedback resistance. It can be seen that the voltage impressed across the motor is equal to:

The positive feedback is developed as a change in the voltage across R3 due to the change in the motor current caused by a variation in the motor's load. Resistor R3 is shown as a potentiometer so that the amount of positive feedback can be adjusted for smooth operation of the motor. Capacitor C1 and resistor R5 serve as a filter for the reference voltage at the non-inverting input of the amplifier.

VOLTAGE REGULATORS

In normal, positive or negative regulator application such as those shown in Figure 7 and Figure 8, the LM13080 has 2 major advantages over standard operational amplifiers. The LM13080 has its own on-chip pass device and in addition can either sink or source 250 mA of load current.
$V_{\text {MOTOR }}=\frac{\left(V_{B E 2}+I_{3} R 3\right) R 2}{R 1}+V_{B E}$

FIGURE 6. Motor Speed Cọntrol

FIGURE 7. Positive Variable Voltage Regulator

FIGURE 8. Negative Variable Voltage Regulator

Operational Amplifiers/Buffers

LH0002/LH0002C Current Amplifier

general description

The LH0002/LH0002C is a general purpose thick film hybrid current amplifier that is built on a single substrate. The çircuit features:

- High Input Impedance

400 kS2

- Low Output Impedance
- High Power Efficiency
- Low Harmonic Distortion
- DC to 30 MHz Bandwidth
- Output Voltage Swing that Approaches Supply Voltage
- 400 mA Pulsed Output Current
- Slew rate is typically $200 \mathrm{~V} / \mathrm{\mu s}$
- Operation from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

These features make it ideal to integrate with an operational amplifier inside a closed loop configuration to increase current output. The symmetrical
output portion of the circuit also provides a low output impedance for both the positive and negative slopes of output pulses.

The LHOOO2 is available in an 8 -lead low-profile TO-5 header; the LHOOO2C is also available in an 8 -lead TO-5, and a 10 -pin molded dual-in-line package.
The LH0002 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0002C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

applications

- Line driver
- 30 MHz buffer
- High speed D/A conversion
- Instrumentation buffer
- Precision current source

schematic and connection diagrams

Pin numbers in parentheses denote pin connections for dual-in-line package.

Order Number LH0002CN
See Package N10B

Metal Can Package

typical applications

High Current Operational Amplifier

Line Driver

Note 1: Specification applies for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with +12 V on Pins 1 and $2 ;-12 \mathrm{~V}$ on Pins 6 and 7 for the metal can package and +12 V on Pins 1 and $2 ;-12 \mathrm{~V}$ on Pins 4 and 5 for the dual-in-line package unless otherwise specified. The parameter guarantees for LH0002C apply over the temperature range of $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, while parameters for the LHOOO2 are guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

typical performance

Negative Pulse

LH0021/LH0021C 1.0 Amp Power Operational Amplifier LH0041/LH0041C 0.2 Amp Power Operational Amplifier

general description

The LH0021/LH0021C and LH0041/LH0041C are general purpose operational amplifiers capable of delivering large output currents not usually associated with conventional IC Op Amps. The LH0021 will provide output currents in excess of one ampere at voltage levels of $\pm 12 \mathrm{~V}$; the LH0041 delivers currents of 200 mA at voltage levels closely approaching the available power supplies. In addition, both the inputs and outputs are protected against overload. The devices are compensated with a single external capacitor and are free of any unusual oscillation or latch-up problems.

features

Output current	1.0 Amp (LH0021) 0.2 Amp (LH0041)
Output voltage swing $\pm 12 \mathrm{~V}$ $\pm 14 \mathrm{~V}$	into 10Ω (LH0021) into 100Ω (LH0041)
Wide full power bandwidth	15 kHz
Low standby power	100 mW at $\pm 15 \mathrm{~V}$
Low input offset voltage and current	1 mV and 20 nA

- High slew rate $3.0 \mathrm{~V} / \mu \mathrm{s}$
- High open loop gain

100 dB

The excellent input characteristics and high output capability of the LH0021 make it an ideal choice for power applications such as DC servos, capstan drivers, deflection yoke drivers, and programmable power supplies.
The LH0041 is particularly suited for applications such as torque driver for inertial guidance systems, diddle yoke driver for alpha-numeric CRT displays, cable drivers, and programmable power supplies for automatic test equipment.
The LH0021 is supplied in a 8 pin TO-3 package rated at 20 watts with suitable heatsink. The LH0041 is supplied in both 12 pin TO.8 (2.5 watts with clip on heatsink) and a power 8 pin ceramic DIP (2 watts with suitable heatsink). The LH0021 and LH0041 are guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LH0021C and LH0041C are guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

schematic and connection diagrams

Order Number ${ }^{\text { }}$ LH0021K or LH0021CK See Package K08A

LH004iG or LH0041CG See Package H12B

Order Number
LH0041CJ
See Package HY08A

absolute maximum ratings

Supply Voltage
Power Dissipation
Differential Input Voltage
Input Voltage (Note 1)
Peak Output Current (Note 2)
$\pm 18 \mathrm{~V}$ See curves $\pm 30 \mathrm{~V}$ $\pm 15 \mathrm{~V}$ 2.0 Amps 0.5 Amps

Continuous $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
dc electrical characteristics for LH0021/LH0021C (Note 4),

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0021			LH0021C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Incut Offset Voltage	$\begin{aligned} & R_{\mathrm{S}}<100 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}}<100 \Omega \end{aligned}$		1.0	3.0 5.0		30	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Voltage Drift with Temperature	$R_{5}<100 \Omega$		3	25		5	30	$\mu \mathrm{V} /{ }^{\prime} \mathrm{C}$
Offset Voltage Drift with Time.			5			5		$\mu \mathrm{V} /$ week
Offset Voltage Change with Output Power			5	15		5	20	$\mu \mathrm{V} /$ watt
Input Offset Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		30	100		50	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	nA
Offset Current Drift with Temperature			01	300 .1 .0		0.2	500 1.0	$n A /{ }^{\circ} \mathrm{C}$
Offset Current Drift with Time			2			2		$n A /$ week
Input Bias Current	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		100	$\begin{gathered} 300 \\ 1.0 \end{gathered}$.	200	500 1.0	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
Input Resistance	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	0.3	1.0		0.3	1.0		MS2
Input Capacitance			3			3		pF
Common Mode Rejection Rato	$R_{S}<100 \Omega, \Delta V_{C M}=10 \mathrm{~V}$	70	90		70	90		dB
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}=: 15 \mathrm{~V}$	± 12			± 12			v
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}}<100 \Omega, \Delta \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$	80	96		70	90		dB
Voltage Gain.	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{O}= \pm 10 \mathrm{~V} \\ & R_{L}=1 \mathrm{kS}, T_{\mathrm{C}}=25^{\circ} \mathrm{C}, \\ & V_{S}= \pm 15 \mathrm{~V}, V_{O}= \pm 10 \mathrm{~V} \end{aligned}$	100	200		100	200		V / mV
	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~S}$, ,	25			20			V / mV
Output Voltage Swing:	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{L}=100 \Omega \\ & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=10 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 110 \end{aligned}$	$\begin{array}{r} 14 \\ +12 \end{array}$		$\begin{aligned} & \pm 13 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 12 \end{aligned}$		v
Output Short Circuit Current	$V_{\text {S }}= \pm 15 \mathrm{~V} . \mathrm{T}_{\mathrm{C}}=25{ }^{\circ} \mathrm{C}, R_{\text {Sc }}=0.5 \Omega$	0.8	1.2	1.6	0.8	1.2	1.6	Amps
Power Supply Current	$V_{\text {S }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		2.5	3.5	-	3.0	4.0	mA
Power Consumption :	$V_{\text {S }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		75	105		90	120	mW

ac electrical characteristics for $L H 0021 / L H 0021 \mathrm{C}\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}\right)$

Slew Rate	$A_{V}=+1, R_{L}=100 \Omega$	0.8	3.0		1.0	3.0		V/us
Power Bandwidth	$R_{L}=100 \Omega 2$		20			20		kHz
Small Signal Transient Response			0.3	1.0		0.3	1.5	$\mu \mathrm{s}$
Small Sıgnal Overshoot ${ }^{\text {d }}$			5	20		10	30	\%
Setting Time (0.1\%)	$\Delta V_{\text {IN }}=10 \mathrm{~V}, A_{V}=+1$		4			4		$\mu \mathrm{s}$
Overload Recovery Time			3			3		μs
Harmonic Distortion	$f=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.2			0.2		\%
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \mathrm{~S}$, B. W . $=10 \mathrm{~Hz}$ to 10 kHz		5			5		$\mu \mathrm{V}$ \%ms
Input Noise Current	B. W. $=10 \mathrm{~Hz}$ to 10 kHz		0.05			0.05		$n A$ rms

dc electrical characteristics for LH0041/LH0041C (Note 4)

ac electrical characteristics for LH0041/LH0041C $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}\right)$

Slew Rate	$A_{V}=+1, R_{L}=100 \Omega 2$	1.5	3.0		1.0	30		$\mathrm{V} / \mathrm{L} \mathrm{s}$
Power Bandwidth	$R_{L}=100 \Omega$		20			20		kHz
Small Signal Transient Response			0.3	1.0		0.3	1.5	$\mu \mathrm{s}$
Small Signal Overshoot			5	20		10	30	\%
Setting Time (0.1\%)	$\Delta V_{\text {iN }}=10 \mathrm{~V}, A_{V}=+1$		4			4		μs
Overload Recovery Time			3			3		$\mu \mathrm{s}$
Harmonic Distortion	$f=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		02			0.2		- \%
Input Noise Voltage	$\mathbf{R}_{\mathbf{S}}=50 \Omega, B . W .=10 \mathrm{~Hz}$ to 10 kHz	,	5			5		$\mu \mathrm{V} / \mathrm{rms}$
Input Noise Current	B.W. $=10 \mathrm{~Hz}$ to 10 kHz		0.05			005		nA/rms

Note 1: Rating applies for supply voltages above $\pm 15 \mathrm{~V}$. For supplies less than $\pm 15 \mathrm{~V}$, rating is equal to supply voltage.
Note 2: Rating applies for LH0041G and LH0021K with R $\mathrm{SC}=0 \Omega$.
Note 3: Rating applies as long as package power rating is not exceeded.
Note 4: Specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \pm 18 \mathrm{~V}$, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\mathrm{C}}=\leq 125^{\circ} \mathrm{C}$ for LH0021K and LH0041G, and $-25^{\circ} \mathrm{C} \leq$
$\mathrm{T}^{\mathrm{C}} \leq+85^{\circ} \mathrm{C}$ for LH0021CK, LH0041CG and LH0041CJ unless otherwise specified. Typical values are for $25^{\circ} \mathrm{C}$ only.
Note 5: TO-8 "G" packages only.
Note 6: Rating applies for " J " DIP package and for $T 0-8$ " G " package with $R_{S C}=3.3$ ohms.

typical performance characteristics

typical performance characteristics (con't)

typical applications

typical applications (con't)

Dual Tracking One Amp Power Supply

Two Way Intercom

Power Comparator

DC Servo Amplifier

auxiliary circuits

LH0021 Unity Gain Circuit with Short Circuit Limiting

LH0041/LH0021 Offset Voltage Null Circuit (LH0041CJ Pin Connections Shown)*

LH0041G Unity Gain with Short Circuit Limiting

LH0041G Offset Voltage Null Circuit
negative

Operation from Single Supplies

Operation from Non-Symmetrical Supplies
*For additional offset null circuit techniques see National Linear Applications Handbook. LH0042LLH0042C Low Cost FET Op Amp LH0052/LH0052C Precision FET Op Amp

general description

The LHOO22/LHO042/LHOO52 are a family of FET input operational amplifiers with very closely matched input characteristics, very high input impedance, and ultra-low input currents with no compromise in noise, common mode rejection ratio, open loop gain, or slew rate. The internally laser nulled LH0052 offers 500 microvolts maximum offset and $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset drift. Input offset current is less than 500 femtoamps at room temperature and 100 pA maximum at $125^{\circ} \mathrm{C}$. The LH0022 and LH0042 are not internally nulled but offer comparable matching characteristics. All devices in the family are internally compensated and are free of latch-up and unusual oscillation problems. The devices may be offset nulled with a single 10k trimpot with neglible effect in CMRR.

The LH0022, LH0042 and LH0052 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LHOO22C, LH0042C and LH0052C are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

features

- Low input offset current-500 femtoamps max. (LH0052)
- Low input offset drift- $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max (LH0052)
- Low input offset voltage - 100 microvolts-typ.
- High open loop gain - 100 dB typ.
- Excellent slew rate $-3.0 \mathrm{~V} / \mu \mathrm{s}$ typ.
- Internal 6 dB /octave frequency compensation
- Pin compatible with standard IC op amps (TO-5 package)

The LH0022/LH0042/LH0052 family of IC op amps are intended to fulfill a wide variety of applications for process control, medical instrumentation, and other systems requiring very low input currents and tightly matched input offsets. The LH0052 is particularly suited for long term high accuracy integrators and high accuracy sample and hold buffer amplifiers. The LHOO22 and LH0042 provide low cost high performance for such applications as electrometer and photocell amplification, pico-ammeters, and high input impedance buffers.

Special electrical parameter selection and custom built circuits are available on special request.
For additional application information and information on other National operational amplifiers, see Available Linear Applications Literature.

LH0022/LH002C, LH0042/LH0042C, LH0052/LH0052C
dc electrical characteristics for LH0042/LH0042C (Note 3)
($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified)

dc electrical characteristics For LH0052/LH0052C (Note.3)

ac electrical characteristics for all amplifiers ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}\right)$										
PARAMETER	CONDITIONS	LIMITS						UNITS		
		LH0022/42/52			LH0022C/42C/52C					
		MIN	TYP	MAX	MIN	TYP	MAX			
Slew Rate	Voltage Follower	1.5	3.0		1.0	3.0		$\mathrm{V} / \mathrm{\mu s}$		
Large Signal Bandwidth.	Voltage Follower		40			40		kHz		
Small Signal Bandwidth			1.0			1.0		MHz		
Rise Time			0.3	1.5		0.3	15	$\mu \mathrm{s}$		
Overshoot			10	30		15	40	\%		
Settling Time (0.1%)	$\Delta V_{1 N}=10 \mathrm{~V}$		45			4.5		$\mu \mathrm{s}$		
Overload Recovery			40			4.0		- $\mu \mathrm{s}$		
Input Noise Voltage	$R_{\text {S }}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{~Hz}$		150			150		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$		
Input Noise Voltage	$R_{S}=10 \mathrm{k} \Omega, f_{0}=100 \mathrm{~Hz}$		55			55		$n V / \sqrt{H_{z}}$		
Input Noise Voltage	$R_{S}=10 \mathrm{k} \Omega, f_{0}=1 \mathrm{kHz}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$		
Input Noise Voltage	$R_{S}=10 \mathrm{k} \Omega, f_{0}=10 \mathrm{kHz}$		30			30		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$		
Input Noise Voltage	$B W=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=10 \mathrm{kS}$		12°			12		$\mu \mathrm{Vrms}$		
Input Noise Current	$B W=10 \mathrm{~Hz}$ to 10 kHz		$<.1$			<1		pArms		
Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage. Note 2: Rating applies for minimum source resistance of $10 \mathrm{k} \Omega$, for source resistances less than $10 \mathrm{k} \Omega$, maximum differential input voltage is $\pm 5 \mathrm{~V}$. Note 3: Unless otherwise specified, these specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant \pm 125^{\circ} \mathrm{C}$ for the LH0022 and LH0052 and $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$ for the LH0022 and LHOO52C Typical values are given for $T_{A}=25^{\circ} \mathrm{C}$. Note 4: Input currents are a strong function of temperature. Due to high speed testing'they are specified a junction temperature $\mathrm{T}_{;}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$, self heatıng will cause an increase in current in manual tests.										

auxiliary circuits (shown for TO-5 pin out)

Protecting Inputs From $\pm 150 \mathrm{~V}$ Transients

Boosting Output Drive to $\pm \mathbf{1 0 0} \mathbf{m A}$
typical applications

Precision Voltage Comparator
typical applications (con't)

Picoamp Amplifier for pH Meters and Radiation Detectors

Sensitive Low Cost "VTVM"

True Instrumentation Amplifier

Precision Sample and Hold

Precision Subtractor for Automatic Test Gear

Ultra Low Level Current Source

Precision Integrator

Re-Zeroing Amplifier
typical performance characteristics

Offset Error (Without

- ${ }_{\text {OS }}$ Null)

Common Mode Input Voltage

Input Offset Voltage vs Temperature

Total Input Noise Voltage*
vs Source Resistance

Stabilization Time of Input
Offset Voltage from Power
Turn-On

Input Bias Current vs
Temperature

Offset Error (Without Vos Nuil)

Total Input Noise Voltage* vs Frequency

Change in Input Offset Voltage Due to Thermal Shock vs Time

typical performance characteristics (con't)

Output Voltage Świng
vs Load Resistancé

Voltage Follower Large Signal Response

Transient Response

Frequency Characteristics vs Supply Voltage

general description

The LH0024／LH0024C is a very wide bandwidth， high slew rate operational amplifier intended to fulfill a wide variety of high speed applications such as buffers to A to D and D to A converters and high speed comparators．The device exhibits useful gain in excess of 50 MHz making it possible to use in video applications requiring higher gain accuracy than is usually associated with such amplifiers．

features

－Very high slew rate $-500 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{Av}=+1$
－Wide small signal bandwidth -70 MHz
－Wide large signal bandwidth -15 MHz
－High output swing $- \pm 12 \mathrm{~V}$ into 1 K
－Offset null with single pot
－Low input offset -2 mV
－Pin compatible with standard IC op amps

The LH0024／LH0024C＇s combination of wide bandwidth and high slew rate make it an ideal choice for a variety of high speed applications including active filters，oscillators，and＂compara－ tors as well as many high speed general purpose applications．

The LH0024 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ，whereas the LH0024C is guaranteed $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．

typical applications

TTL Compatible Comparator

Offset Null

Video Amplifier

absolute maximum ratings

Supply Voltage Input Voltage
Differential Input Voltage
Power Dissipation
Operating Temperature Range LH0024
LHOO24C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
$\pm 18 \mathrm{~V}$
Equal to Supply
$\pm \pm \mathrm{V}$
600 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
dc electrical characteristics (Note 1)

PARAMETER	CONDITIONS	LH0024			LH0024C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\begin{aligned} & R_{S}=50 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S}=50 \Omega \end{aligned}$		2.0	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		5.0	8.0 10.0	$\begin{aligned} & m V \\ & m V \end{aligned}$
Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$		-20			-25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	$\begin{array}{r} 5.0 \\ 10.0 \end{array}$		4.0	15.0 20.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	30		18	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\underset{\mu \mathrm{A}}{\mu \mathrm{~A}}$
Supply Current			12.5	15		12.5	15	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	4 3	5		3 2.5	4		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Input Voltage Range	$V_{\text {S }}= \pm 15 \mathrm{~V}$	± 12	± 13		± 12	± 13		V
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{S}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	± 12 ± 10	± 13		$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	± 13		v
Slew Rate	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k}, \\ & C_{1}=C_{2}=30 \mathrm{pF} \\ & A_{V}=+1, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	400	500		250	400	\cdots	$\mathrm{V} / \mathrm{\mu} \mathrm{~s}$
Common Mode Rejection Ratio	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \Delta V_{I N}= \pm 10 \mathrm{~V} \\ & R_{S}=50 \Omega \end{aligned}$							dB
Power Supply Rejection Ratio	$\begin{aligned} & \pm 5 V \leq V_{S} \leq \pm 18 \mathrm{~V} \\ & R_{S}=50 \Omega \end{aligned}$					60		dB

Note 1: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH 0024 and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LH0024C.

frequency compensation

TABLE I

CLOSED LOOP GAIN	$\mathbf{C}_{\boldsymbol{y}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{3}}$
100	0	0	0
20	0	0	0
10	0	20 pF	1 pF
1	30 pF	30 pF	3 pF

Frequency Compensation Circuit

typical performance characteristics

SUPPLY VOLTAGE (\pm V)

applications information

1. Layout Considerations

The LH0024/LH0024C, like most high speed circuitry, is sensitive to layout and stray capacitance. Power supplies should be by-passed as near the device as is practicable with at least $.01 \mu \mathrm{~F}$ disc type capacitors. Compensating capacitors should also be placed as close to device as possible.

2. Compensation Recommendations

Compensation schemes recommended in Table 1 work well under typical conditions. However, poor layout and long lead lengths can degrade the performance of the LH0024 or cause the device to oscillate. Slight adjustments in the values for C1, C2, and C3 may be necessary for a given layout. In particular, when operating at a gain of
-1, C3 may require adjustment in order to perfectly cancel the input capacitance of the device.
When operating the LH0024/LH0024C at a gain of +1 , the value of $R 1$ should be at least 1 K ohm.
The case of the LHOO24 is electrically isolated from the circuit; hence, it may be advantageous to drive the case in order to minimize stray capacitances.

3. Heat Sinking

The LH0024/LH0024C is specified for operation without the use of an explicit heat sink. However, internal power dissipation does cause a significant temperature rise. Improved offset voltage drift can be obtained by limiting the temperature rise with a clip-on heat sink such as the Thermalloy 2228 B or equivalent.

Operational Amplifiers/Buffers

LH0032/LH0032C Ultra Fast FET Operational Amplifier

general description

The LH0032/LH0032C is a high slew rate, high input impedance differential operational amplifier suitable for diverse application in fast signal handling. The high allowable differential input voltage, ease of output clamping, and high output drive capability particularly suit it for comparator applications. It may be used in applications normally reserved for video amplifiers allowing the use of operational gain setting and frequency response shaping into the megahertz region.

features

- High slew rate
$500 \mathrm{~V} / \mu \mathrm{s}$
- High bandwidth 70 MHz
- High input impedance
$10^{12} \Omega$
- Low input bias current 20 pA max
- Offset null with single pot
- Low input offset voltage $\quad 2 \mathrm{mV}$ max
- No compensation for gains above 50

The LHOO32's wide bandwidth, high input impedance and high output capacity make it an ideal choice for applications such as summing amplifiers in high speed D to A's, buffers in data acquisition systems, and sample and hold circuits. Additional applications include high speed integrators and video amplifiers. The LH0032 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the LH0032C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
schematic and connection diagrams

Metal Can Package

Mota: For ment sink use tharmasloy
2240 serves or Wakefioid $215-\mathrm{XX}$ suries.
Order Number LH0036G or LH0036CG See NS Package H12B

absolute maximum ratings

Supply Voltage	$\pm 18 \mathrm{~V}$
Input Voltage	$\pm \mathrm{V}_{\mathrm{S}}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Power Dissipation	See curve
Operating Temperature RangeLH0032	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	LH0032C
Storage Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

dc electrical characteristics (Note 1)

PARAMETER	CONDITIONS	LH0032			LH0032C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ (Note 3)		2	5		5	15	mV
				10	,		20	mV
Average Offset Voltage Drift	.		25			25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Note 3)		10	100		25	200	pA
				50			15.0	nA
Input Offset Current	$\mathrm{T}_{3}=25^{\circ} \mathrm{C}$ (Note 3)		5	25		10	50	pA
-				25			5	nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {Out }}= \pm 10 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	60	70		60	70		dB
	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	57			57			dB
Input Voltage Range		± 10	± 12	,	± 10	± 12		v
Output Voltage Swing.	$R_{L}=1 \mathrm{k} \Omega$	± 10	± 13.5		± 10	± 13		v
Power Supply Rejection Ratio	$\Delta V_{S}= \pm 10 \mathrm{~V}$	50	60		50	60		dB
Common Mode Rejection Ratio	$\Delta V_{\text {IN }}=10 \mathrm{~V}$	50	60		50	60		dB
Supply Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		18	20		20	22	mA

ac electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Slew Rate	$A_{V}=+1, \Delta V_{I N}=20 \mathrm{~V}$	350	500		$\mathrm{~V} / \mu \mathrm{s}$
Settling Time to 1% of Final Value	$A_{V}=-1, \Delta V_{I N}=20 \mathrm{~V}$		100		ns
Settling Time to 0.1% of Final Value	$A_{V}=-1, \Delta V_{I N}=20 \mathrm{~V}$		300		ns
Small Signal Rise Time	$A_{V}=+1, \Delta V_{I N}=1 V$		8	20	ns
Small Signal Delay Time	$A_{V}=+1, \Delta V_{I N}=1 V$		10	25	ns

Note 1: These specifications apply at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0032 and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the
LH0032C, unless otherwise specified.
Note 2: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega$ and $T_{J}=25^{\circ} \mathrm{C}$
Note 3: Due to high speed automatic testing, these parameters are correlated to junction temperature.

typical performance characteristics (con't)

Common Mode Rejection
Ratio vs. Frequency

[^20]
auxiliary circuits

Output Short Circuit Protection

typical applications (con't)

Non-Compensated Unity Gain Inverter

typical applications (con't)

High Speed Sample and Hold

Current Mode Mu!tiplexer

applications information

Power Supply Decoupling

The LH0032/LH0032C like most high speed circuits is sensitive to layout and stray capacitance. Power supplies should be by-passed as near to Pins 10 and 12 as practicable with low inductance capacitors such as $0.01 \mu \mathrm{~F}$ disc ceramics. Compensation components should also be located close to the appropriate pins to minimize stray reactances.

Input Capacitance

The input capacitance to the LH0032/LH0032C is typically 5 pF and thus may form a significant time constant with high value resistors. For optimum performance, the input capacitance to the inverting input should be compensated by a small capacitor across the feedback resistor. The value is strongly dependent on layout and closed loop gain, but will typically be in the neighborhood of several picofarads.

In the non-inverting configuration, it may be advantageous to bootstrap the case and/or a guard conductor to the inverting input. This serves both to divert leakage currents away from the noninverting input and to reduce the effective input capacitance. A unity gain follower so treated will have an input capacitance under a picofarad.

Heat Sinking

While the LH0032/LH0032C is specified for operation without any explicit head sink, internal power dissipation does cause a significant temperature rise. Improved bias current performance can thus be obtained by limiting this temperature rise with a small head sink such as the Thermalloy No. 2241 or equivalent. The case of the device has no internal connection, so it may be electrically connected to the sink if this is advantageous. Be aware, however, that this will affect the stray capacitances to all pins and may thus require adjustment of circuit compensation values.

LH0033/LH0033C, LH0063/LH0063C Fast and Damn Fast Buffer Amplifiers

general description

The LH0033/LH0033C and LH0063/LH0063C are high speed, FET input, voltage follower/buffers designed to provide high current drive at frequencies from DC to over 100 MHz . The LH0033/ LH0033C will provide $\pm 10 \mathrm{~mA}$ into $1 \mathrm{k} \Omega$ loads ($\pm 100 \mathrm{~mA}$ peak) at slew rates of $1500 \mathrm{~V} / \mu \mathrm{s}$. The LH0063/LH0063C will provide $\pm 250 \mathrm{~mA}$ into 50Ω loads ($\pm 500 \mathrm{~mA}$ peak) at slew rates of up to $6000 \mathrm{~V} / \mu \mathrm{s}$. In addition, both exhibit excellent phase linearity up to 20 MHz .
Both are intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance transformation, nuclear instrumentation amplifiers, op amp isolation buffer for driving reactive loads and high impedance input buffers for high speed A to D's and comparators. In addition, the LH0063/LH0063C can continuously drive 50Ω coaxial cables or be used as a diddle yoke driver for high resolution CRT displays. For additional applications information, see AN-48.

advantages

- Only +10 V supply needed for $5 \mathrm{~V}_{\mathrm{p} . \mathrm{p}}$ video out
- Speed does not degrade system performance
- Wide data rate range for phase encoded systems
- Output drive adequate for most loads
- Single pre-calibrated package

features

- Damn fast (LHOO63)
$6000 \mathrm{~V} / \mu \mathrm{s}$
- Wide range single or dual supply operation
- Wide power bandwidth DC to 100 MHz
- High output drive $\pm 10 \mathrm{~V}$ with 50Ω load
- Low phase non-linearity 2 degrees
- Fast rise times 2 ns
- High current gain 120 dB
- High input resistance $10^{10} \Omega$

These devices are constructed using specially selected junction FET's and active laser trimming to achieve guaranteed performance specifications. The LH0033 and LH0063 are specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas, the LH0033C and LH0063C are specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The LH0033/LH0033C is available in a 1.5 W metal TO-8 package and a special $1 / 2 \times 1$ inch 8 pin ceramic dual-in-line package while the LH0063/. LH0063C is available in a 5 W 8 -pin TO- 3 package.

connection diagrams

Metal Can Package

Order Number LH0033G or LH0033CG See Package H12B

Dual-In-Line Package

Order Number LH0033J or LH0033CJ See Package HY08A

Metal Can Package

case is electrically ISOLATED

Order Number LH0063K or LH0063CK See Package K08A
absolute maximum ratings

Supply Voltage (V' V^{-}I	40 V
Maximum Power Dissipation (See Curves)	
LHOO63/LH0063C	5 W
LH0033/LH0033C	1.5 W
Maximum Junction Temperature	$175^{\circ} \mathrm{C}$
Input Voltage	Equal to Supplies
Continuous Output Current	
LHO063/LH0063C	$\pm 250 \mathrm{~mA}$
LH0033/LH0033C	$\pm 100 \mathrm{~mA}$

Peak Output Current	
LH0063/LH0063C	$\pm 500 \mathrm{~mA}$
LH0033/LH0O33C	$\pm 250 \mathrm{~mA}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0033 and LH0063	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LHOO33C and LH0063C	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

dc electrical characteristics LH0033/LH0033C: (Note 1)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0033			LH0033C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Offset Voltage	$\begin{aligned} & R_{S}=100 \mathrm{k} \Omega . \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & R_{\mathrm{S}}=100 \mathrm{k} \Omega \end{aligned}$		5	$\begin{aligned} & 10 \\ & 15 \end{aligned}$		12	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{gathered} m V \\ m V \end{gathered}$
Average Temperature Coefficient of Offset Voltage	$\begin{aligned} & R_{S}=100 \mathrm{k} \Omega \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq 125^{\circ} \mathrm{C} \end{aligned}$		50	.		50		$j v /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$. 05	$10^{.1}$. 05	$5^{.15}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Voltage Gain	$\begin{aligned} & V_{1 N}=1 \mathrm{Vrms}, f=1 \mathrm{kHz} \\ & R_{L}=1 \mathrm{k} \Omega, R_{S}=100 \mathrm{kS} 2 \end{aligned}$. 97	. 98	1	. 96	. 98	1	V/V
Input Impedance	$R_{L}=1 \mathrm{k} \Omega$	10^{10}	10^{11}		10^{10}	10^{11}		Ω
Output Impedance	$\begin{aligned} & \ddot{V}_{\text {IN }}=1 \mathrm{Vrms}, f=1 \mathrm{kHz}, \\ & R_{S}=100 \mathrm{kS}, R_{L}=1 \mathrm{k} \Omega \end{aligned}$		6	10		6	10	Ω
	$R_{L}=1 \mathrm{k} \Omega$.	± 12	± 13		± 12	± 13		v
Output Voltage Swing	$\begin{aligned} & R_{L}=100 \Omega, T_{C}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 5 \mathrm{~V}, R_{L}=1 \mathrm{kS} 2 \end{aligned}$	± 9	6		± 9	6		V $V P p$
Supply Current	$\begin{aligned} & V_{\text {IN }}=0 \mathrm{~V}, V_{S}= \pm 15 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 20 \\ & 18 \end{aligned}$	22		$\begin{aligned} & 21 \\ & 18 \end{aligned}$	24	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power Consumption	$\begin{aligned} & V_{\text {IN }}=0 \mathrm{~V}, V_{S}= \pm 15 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 600 \\ & 180 \end{aligned}$	660		$\begin{aligned} & 630 \\ & 180 \end{aligned}$	720	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

ac electrical characteristics

LH0033/LH0033C ($T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0033			LH0033C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Slew Rate	$V_{\text {IN }}= \pm 10 \mathrm{~V}$	1000	1500		1000	1400		$\mathrm{V} / \mathrm{\mu s}$
Bandwidth	$\mathrm{V}_{\text {iN }}=1 \mathrm{Vrms}$		100			100		MHz
Phase Non-Linearity	$\mathrm{BW}=1$ to 20 MHz		2			2		degrees
Rise Time	$\Delta V_{\text {IN }}=0.5 \mathrm{~V}$		2.9			3.2		ns
Propagation Delay	$\Delta \mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}$		1.2		-	1.5		ns
Harmonic Distortion	$\mathrm{f}>1 \mathrm{kHz}$		<0.1			<0.1		\%

 10, and pin 6 shorted to pin 7 for the LH0033/LH0033C. For the LH0063/LH0063C, specifications apply for +.15 V applied to pins 1 and $2,-15 \mathrm{~V}$ applied to pins 7 and 8 , and pin 5 shorted to pin 6 . Unless otherwise noted, specifications apply over a temperature range of $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ for the LHOO33 and LHOO63; and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+85^{\circ} \mathrm{C}$ for the LHOO33C and
temperature range of $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ for ${ }^{\text {then }}$. CH 0063 C . Typical values shown are for $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.
dc electrical characteristics LH0063/LH0063C (Note 1)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0063			LH0063C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Offset Voltage	$\begin{aligned} & R_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega \end{aligned}$		10	$\begin{array}{r} 25 \\ 100 \end{array}$		10	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Avẹrage Temperature Coefficient of Output Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		300			300		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. 1	10^{-5}		. 1	5^{-5}	$\begin{aligned} & n A \\ & n A \end{aligned}$
Voltage Gain	$\begin{aligned} & V_{I N}= \pm 10 \mathrm{~V} . R_{S} \leq 100 \mathrm{k} \Omega . \\ & R_{L}=1 \mathrm{k} \Omega \end{aligned}$. 94	. 96	1	. 94	. 96	1	V/V
Voltage Gain	$\begin{aligned} & V_{\text {IN }}= \pm 10 \mathrm{~V}, R_{S} \leq 100 \mathrm{k} \Omega, \\ & R_{L}=50 \mathrm{~s} 2, T_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$. 92	. 93	. 98	. 91	. 93	. 98	V/V
Input Resistance		10^{10}	10^{11}		10^{10}	$10^{11^{1}}$		Ω
Input Capacitance	Case Shorted to Output		8			8		pF
Output Impedance	$\begin{aligned} & V_{\text {OUT }}=!10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \mathrm{k} \Omega \\ & \mathbf{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		1	4	;	1.	4	Ω
Output Current Swing	$V_{\text {IN }}=+10 \mathrm{~V}, \mathrm{R}_{\text {S }} \leq 1000 \mathrm{k} \Omega$. 2	. 25		. 2	. 25		Amps
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{~S} 2$	± 10	± 13		± 10	± 13		V
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$	5	7		5	7.		$V_{\text {P }, ~}^{P}$
Supply Current	$\begin{aligned} & T_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty, \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		35	65		35	65	mA
Supply Current	$V_{S}= \pm 5 \mathrm{~V}$		50			50		mA
Power Consumption	$\begin{aligned} & T_{C}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty, \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		1.05	1.95		1.05	1.95	W
Power Consumption	$V_{S}= \pm 5 \mathrm{~V}$		500			500		mW

ac electrical characteristics

LH0063/LH0063C: ($T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0063			LH0063C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Slew Rate	$R_{L}=1 \mathrm{k} \Omega, \mathrm{V}_{1 N}= \pm 10 \mathrm{~V}$		6000			6000		$V / \mu \mathrm{s}$
Slew Rate	$\begin{aligned} & R_{L}=50 \Omega, V_{I N}= \pm 10 \mathrm{~V} \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	2000	2400		2000	2400		$\mathrm{V} / \mu \mathrm{s}$
Bandwidth	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vrms}$		200			200		MHz
Phase Non-Linearity	$B W=1$ to 20 MHz		2			2		degrees
Rise Time	$\Delta V_{\text {IN }}=.5 \mathrm{~V}$		1.6			1.9		ns
Propagation Delay	$\Delta V_{1 N}=.5 \mathrm{~V}$		1.9			2.1		ns
Harmonic Distortion			<0.1			<0.1		\%

Note 1: Unless otherwise specified, these specifications apply for +15 V apphed to pins 1 and $12,-15 \mathrm{~V}$ applied to pins 9 and
10 , and pin 6 shorted to pin 7 for the LH0033/LH0033C For the LH0063/LHOO63C, specifications apply for +15 V . applied
10, and pin 6 shorted to pin 7 for the LH0033/LH0033C For the LH0063/LH0063C, specifications apply for +15 V . applied
to pins 1 and $2,-15 \mathrm{~V}$ applied to pins 7 and 8 , and pin 5 shorted to pin 6 . Unless otherwise noted, specifications apply over a
temperature range of $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ for the LH0033 and LH0063; and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+85^{\circ} \mathrm{C}$ for the LH0033C and
LH0063C. Typical values shown are for $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.

typical performance characteristics

typical performance characteristics (con't)

application hints

Recommended Layout Precautions: RF/video printed circuit board layout rules should be followed when using the LH0033 and LH0063 since they will provide power gain to frequencies over 100 MHz . Ground planes are recommended and power supplies should be decoupled at each device with low inductance capacitors. In addition, ground plane shielding may be extended to the metal case of the device since it is electrically isolated from internal circuitry. Alternatively the case should be connected to the output to minimize input capacitance.

Offset Voltage Adjustment: Both the LH0033's and LH0063's offset voltages have been actively trimmed by laser to meet guaranteed specifications when the offset preset pin is shorted to the offset adjust pin. This pre-calibration allows the devices to be used in most DC or AC applications without individually offset nulling each device. If offset null is desirable, it is simply obtained by leaving the offset preset pin open and connecting a trim pot of 100Ω for the LH0033 or $1 \mathrm{k} \Omega$ for the LH0063 between the offset adjust pin and V^{-} as illustrated in Figures 1 and 2.

FIGURE 1. Offset Zero Adjust for LH0033 (Pin nos. shown for TO-8)

FIGURE 2. Offset Zero Adjust for LH0063

application hints (con't)

Operation from Single or Asymmetrical Power Supplies: Both device types may be readily used in applications where symmetrical supplies are unavailable or not desirable. A typical application might be an interface to a MOS shift register where $V^{+}=+5 V$ and $V^{-}=-12 V$. In this case, an apparent output offset occurs due to the device's voltage gain of less than unity. This additional output offset error may be predicted by:

$$
\Delta \mathrm{V}_{\mathrm{O}} \cong\left(1-\mathrm{A}_{\mathrm{V}}\right) \frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)}{2}=.005\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)
$$

where:
$A_{V}=$ No load voltage gain, typically .99
$\mathrm{V}^{+}=$Positive supply voltage
$\mathrm{V}^{-}=$Negative supply voltage

For the above example, ΔV_{O} would be -35 mV . This may be adjusted to zero as described in Section 2. For AC coupled applications, no additional offset occurs if the DC input is properly biased as illustrated in the "typical applications" section.
Short Circuit Protection: In order to optimize transient response and output swing, output current limit has been omitted from the LH0033 and LH0063. Short circuit protection may be added by inserting appropriate value resistors between V^{+}and $\mathrm{V}_{\mathrm{C}}{ }^{+}$pins and V^{-}and $\mathrm{V}_{\mathrm{C}}{ }^{-}$pins

FIGURE 3. LH0033 Using Resistor Current Limiting
as illustrated in Figures 3 and 4. Resistor values may be predicted by:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{LIM}} \cong \frac{\mathrm{~V}^{+}}{\mathrm{I}_{\mathrm{SC}}}=\frac{\mathrm{V}^{-}}{\mathrm{I}_{\mathrm{SC}}} \\
& \text { where: } \quad I_{\text {SC }} \leq 100 \mathrm{~mA} \text { for LH0033 } \\
& \mathrm{I}_{\mathrm{sc}} \leq 250 \mathrm{~mA} \text { for LH0063 }
\end{aligned}
$$

The inclusion of limiting resistors in the collectors of the output transistors reduces output voltage swing. Decoupling $\mathrm{V}_{\mathrm{C}}{ }^{+}$and $\mathrm{V}_{\mathrm{C}}{ }^{-}$pins with capacitors to ground will retain full output swing for transient pulses. Alternate active current limit techniques that retain full DC output swing are shown in Figures 5, 6 and 7. In Figures 5 and 6, the current sources are saturated during normal operation thus apply full supply voltage to the V_{c}, pins. Under fault conditions, the voltage decreases as required by the overload. For Figure 5:

$$
\mathrm{R}_{\mathrm{LIM}}=\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{SC}}}=\frac{.6 \mathrm{~V}}{60 \mathrm{~mA}}=10 \Omega
$$

In Figure 6, quad transistor arrays are used to minimize can count and:

$$
R_{\text {LiM }}=\frac{V_{B E}}{1 / 3\left(I_{S C}\right)}=\frac{.6 \mathrm{~V}}{1 / 3(200 \mathrm{~mA})}=8.2 \Omega
$$

FIGURE 4. LH0063 Using Resistor Current Limiting

application hints (con't)

FIGURE 5. LH0033 Current Limiting Using Current
Sources

Capacitive Loading: Both the LH0033 and LH0063 are designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from ($C \times d_{V} / d_{t}$) should be limited below absolute maximum peak current ratings for the devices.
Thus for the LH0033:

$$
\left(\frac{\Delta V_{\mathrm{IN}}}{\Delta \mathrm{t}}\right) \times \mathrm{C}_{\mathrm{L}} \leq \mathrm{I}_{\text {OUT }} \leq \pm 250 \mathrm{~mA}
$$

and for the LH0063:

$$
\left(\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{t}}\right) \times \mathrm{C}_{\mathrm{L}} \leq \mathrm{I}_{\text {OUT }} \leq \pm 500 \mathrm{~mA}
$$

application hints (con't)

In addition, power dissipation resulting from driving capacitative loads plus standby power should be kept below total package power rating:

$$
\begin{aligned}
& P_{\text {diss }} \geq P_{D C}+P_{A C} \\
& P_{\text {disg }} \geq\left(V^{+}-V^{-}\right) \times I_{S}+P_{A C} \\
& \text { pkg }
\end{aligned}, \begin{aligned}
& \left.P_{\mathrm{P} . \mathrm{P}}\right)^{2} \times+\times C_{\mathrm{L}}
\end{aligned}
$$

where $\quad V_{P . P}=$ Peak-to-peak output voltage swing $f=$ frequency
$C_{L}=$ Load Capacitance
Operation Within an Op Amp Loop: Both devices may be used as a curient booster or isolation buffer within a closed loop with op amps such as LH0032, LH0062, or LM118. An isolation
resistor of 47Ω should be used between the op amp output and the input of LH0033. The wide bandwidths and high slew rates of the LH0033 and LH0063 assure that the loop has the characteristics of the op amp and that additional rolloff is not required.
Hardware: In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation. The cases of both are isolated from the circuit and may be connected to system chassis.

ACHTUNG!

Power supply bypassing is necessary to prevent oscillation with both the LH0O33 and LH0063 in all circuits. Low inductance ceramic disc capacitors with the shortest practical lead lengths must be connected from each supply lead (within $<1 / 4$ to $1 / 2^{\prime \prime}$ of the device package) to a ground plane. Capacitors should be one or two $0.1 \mu \mathrm{~F}$ in parallel for the LH0033; adding a $4.7 \mu \mathrm{~F}$ solid tantalum capacitor will help in troublesome instances. For the LH0063, two $0.1 \mu \mathrm{~F}$ ceramic and one $4.7 \mu \mathrm{~F}$ solid tantalum capacitors in parallel will be necessary on each supply lead.

schematic diagrams

LH0033/LH0033C

PIN numbers shown for to.e ("G") Package.

LH0063/LH0063C

typical applications

Gamma Ray Pulse Integrator

typical applications (con't)

Nuclear Particle Detector

Isolation Buffer

High Input Impedance AC Coupled Amplifier

Coaxial Cable Driver

Coaxial Cable Driver

1W CW Final Amplifier

typical applications (con't)

High Input Impedance Comparator
With Offset Adjust
Instrumentation Shield/Line Driver

Single Supply AC Amplifier

4.5 MHz Notch Filter

High Speed Sample \& Hold

Operational Amplifiers/Buffers

LH0044 Series Precision Low Noise Operational Amplifiers

General Description

The LH0044 Series is a low noise, ultra-stable, high gain, precision operational amplifier family intended to replace either chopper-stabilized monolithic or modular amplifiers. The devices are particularly suited for differential mode, inverting, and non-inverting mode applications requiring very low initial offset, low offset drift, very high gain, high CMRR, and high PSRR. In addition, the LH0044 Series' low initial offset and offset drift eliminate costly and time consuming null adjustments at the systems level. The superior performance afforded by the LHOO44 Series is made possible by advanced processing and testing techniques, as well as active laser trim of critical metal film resistors to minimize offset voltage and drift. Unique construction eliminates thermal feedback effects.

The LHOO44 Series is an excellent choice for a wide range of precision applications including strain gauge bridges, thermocouple amplifiers, and ultrastable reference amplifiers. The LH0O44 and LHOO44A are
guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and the LH0044AC, LH0044B, and LH0044C are guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The device is available in standard TO-5 op amp pin out and is compatible with LM108A, LM725, and LM741 type amplifiers.

Features

- Low input offset voltage	$25 \mu \mathrm{~V}$ max
- Excellent long-term stability	$\pm 1 \mu \mathrm{~V} / \mathrm{month} \max$
- Low offset drift	$0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- Very low noise $0.7 \mu \mathrm{Vp}$-p max 0.1 Hz to 10 Hz	
- High CMRR and PSRR	120 dB min
- High open loop gain	120 dB min
- Wide common-mode range	$\pm 13 \mathrm{~V}$ min
- Wide supply voltage range	$\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

$25 \mu \mathrm{~V}$ max

- Excellent long-term stability
$\pm 1 \mu \mathrm{~V} /$ month max
- Low offset drift
$0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- Very low noise

120 dB min

- High open loop gain
$\pm 13 \mathrm{~V}$ min
- Wide supply voltage range
$\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

Equivalent Circuit and Connection Diagram

Metal Can Package

TOP VIEW

Case is electrically isolated

Nate: Compensation is not normally required. However, for maximum. Wate: Compensation is not normally required. However, for maximum. device is used below closed loop gauns of 10 .

Order Number LH0044H
LH0044AH, LH0044CH, LH0044ACH, LH0044BH
See Package H08B

Absolute Maximum Ratings

Supply Voltage
Power Dissipation
Differential Input Voltage (Note 4)
Input Voltage (Note 5)
Output Short-Circuit Duration

Continuous

Operating Temperature Range
LH0044, LH0044A
LH0044AC, LH0044B, LH0044C
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

 $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$
DC Electrical Characteristics (Note 1)

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

PARAMETER	CONDITIONS	TYP	UNITS
Input Noise Voltage	$\begin{aligned} & R_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & R_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 11 \\ & 9 \end{aligned}$	$\begin{aligned} & n V / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
Slew Rate	$A_{V}=+1, \quad R_{L}=10 \mathrm{k} \Omega, V_{\text {IN }}= \pm 10 \mathrm{~V}$	0.06	$\mathrm{V} / \mu \mathrm{s}$
Large Signal Bandwidth	$A_{V}=+1, \quad R_{L}=10 \mathrm{k} \Omega, V_{I N}= \pm 10 \mathrm{~V}$	1	kHz
Overload Recovery Time	$A_{V}=+100, V_{\text {IN }}=-100 \mathrm{mV}, \Delta V_{\text {IN }}=200 \mathrm{mV}$	5	$\mu \mathrm{s}$
- Small Signal Bandwidth	$A_{V}=+1, \quad R_{L}=10 \mathrm{k} \Omega$	400	kHz
Small Signal Rise Time	$A_{V}=+1, \quad R_{L}=10 \mathrm{k} \Omega, V_{1 N}=10 \mathrm{mV}$	2.5	$\mu \mathrm{s}$
Overshoot	$A_{V}=+1, \quad R_{L}=10 \mathrm{k} \Omega, V_{I N}=10 \mathrm{mV}, C_{L}=100 \mathrm{pF}$	10	\%

[^21]Note 5: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

Typical Performance Characteristics

Applications Information

LOW DRIFT CONSIDERATIONS

Achieving ultra-low drift in practical applications requires strict attention to board layout, thermocouple effects, and input guarding. For specific recommendations refer to AN-63 and AN-79.

A point worth stressing with regard to low drift specifications is testing' of the LHOO44. Simply stated-it is virtually impossible to test the device using a thermoprobe or other form of local heating. A one degree centigrade temperature gradient can account for tens of microvolts of virtual offset (or drift). The test circuit of Figure 1 is recommended for use in a stabilized oven or continuously stirred oil bath with the entire circuit inside the oven or bath. Isothermal layout of the resistors is advised in order to minimize thermocouple induced EMF's.

FIGURE 1. LHÓ044 Temperature Test Circuit

OVER COMPENSATION

The LH0044 may be overcompensated in order to minimize noise bandwidth by paralleling the internal 100 pF capacitor with an external capacitor connected between pins 1 and 6. Unity gain frequency may be predicted by:

$$
f=\frac{4 \times 10^{-5}}{100 \mathrm{pF}+\mathrm{C}_{e \times t} p F}(\mathrm{~Hz})
$$

Typical Applications

Buffered Output for Heavy Loads

COMPENSATION

For closed loop gains in excess of 10, no external components are required for frequency stability. However, for gains of 10 or less, a $0.01 \mu \mathrm{~F}$ disc capacitor is recommended between pin $7\left(\mathrm{~V}^{+}\right)$and pin 8 (Comp). An improvement in ac PSRR will also be realized by use of the $0.01 \mu \mathrm{~F}$ capacitor.

OFFSET NULL

In general, further nulling of LHOO44 is neither necessary nor recommended. For most applications the specified initial offset is sufficient.

However, for those applications requiring additional null, an obvious temptation might be to place a pot between pins 1 and 8 with the wiper returned to V^{+}. This technique will usually result in reduced gain and increased offset drift due to mismatch in the TCR of the pot and R1 and R2. The technique is, therefore, not generally recommended.

The recommended technique for offset nuiling the LHOO44 is shown in Figure 2. Null is accomplished in A_{2} and all errors are divided by the closed loop gain of the LHOO44. Additional offset and drift incurred due to use of A_{2} is less than $1 \mu \mathrm{~V} / \mathrm{V}$ for V^{+}and V^{-}changes and $0.01 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift for the values shown in Figure 2.

FIGURE 2. LH0044 Null Technique

X1000 Instrumentation Amp

Typical Applications (Continued)

10V Reference Supply

overall GAIN	INPUT STAGE GAIN	OUTPUT STAGE GAIN	JUMPER PINS ON RA201
$\times 1$	x 1	X 1	-
X2	X 1	X2	5 to 7, 12 to 10
X5	$\times 1$	$\times 5$	6 to 7.11 to 10
$\times 10$	$\times 10$	$\times 1$	2 to 15
$\times 20$	$\times 10$	X2	2 to 15,5 to 7.12 to 10
$\times 50$	$\times 10$	X5	2 to 15,6 to 7,11 to 10
$\times 100$	$\times 100$	$\times 1$	1 to 16
X200	$\times 100$	$\times 2$	1 to 16,5 to 7,12 to 10
$\times 500$	$\times 100$	X5	1 to 16,6 to 7,11 to 10
X995	$\times 199$	X5	1 to 14.6 to 7,11 to 10

Precision Instrumentation Amplifier

Noise Test Circuit

0.i hi high pass filter

VERT: $200 \mathrm{nV} / \mathrm{DIV}$ HORIZ. 5 SEC/DIV

LH0045/LH0045C Two Wire Transmitter

general description

The LH0045/LH0045C Two Wire Transmitters are linear integrated circuits designed to convert the voltage from a sensor to a current, and send it through to a receiver, utilizing the same simple twisted pair as the supply voltage.

The LHOO45 and LHOO45C contain an internal reference designed to power the sensor bridge, a sensitive input amplifier, and an output current source. The output current scale can be adjusted to match the industry standards of 4.0 mA to 20 mA or 10 mA to 50 mA .

Designed for use with various sensors, the LH0045/ LHOO45C will interface with thermocouples, strain gauges, or thermistors. The use of the power supply leads as the signal output eliminates two or three extra wires in remote signal applications. Also, current output minimizes susceptibility to voltage noise spikes and eliminates line drop problems.

features

- High sensitivity $>10 \mu \mathrm{~A} / \mu \mathrm{V}$
- Low input offset voltage 1.0 mV
- Low input bias current 2.0 nA
- Single supply operation 10 V to 50 V
- Programmable bridge reference 5.0 V to 30 V (LH0045G)
- Non-interactive span and null adjust
- Over compensation capability
- Supply reversal protection

The LH0045/LH0045C is intended to fulfill a wide variety of process control, instrumentation, and data acquisition applications. The LH0045 is guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas the LH0045C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

equivalent schematic and connection diagrams

top view '
Order Number LH0045K or LH0045CK See Package K08A

absolute maximum ratings

Supply Voltage (L1 to common)	+50 V
Input Current	$\pm 20 \mathrm{~mA}$
Input Voltage (Either Input to Common)	0 V to $\mathrm{V}_{\text {REF }}$
Differential Input Voltage	$\pm 20 \mathrm{~V}$
Output Current (Either L1 or L2)	50 mA
Reference Output Current	5.0 mA
Power Dissipation	
\quad LH0045G	1.5 W
\quad LH0045K	3.0 W
Operating Temperature Range	
\quad LH0045	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\quad LH0045C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 1)

Note 1: Unless otherwise specified, these specifications apply for $+10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+50 \mathrm{~V}$, pin 5 shorted to pin 6 on the LH0045G, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0045 and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LHOO45C.
typical performance characteristics

typical applications*

Thermocouple Input Transmitter

Resistance Bridge Input Transmitter

"Pin numbers refer to ' G ' package. All voltages indicated by () are measured with respect to common, pin 3.
typical applications* (con't)

*Pin numbers refer to ' G ' package. All voltages indicated by () are measured with respect to common, pin 3.
Instrumentation Amplifier Transmitter

applications information

CIRCUIT DESCRIPTION AND OPERATION

A simplified schematic of the LH0045/LH0045C is shown in Figure 1. Differential amplifier, A_{2} converts very low level signals to an output current via transistor Q1. Reference voltage diode D1 is used to supply voltage for operation of A_{2} and to bias an external bridge. Current source I_{1} minimizes fluctuation in the bridge reference voltage due to changes in V_{S}.

In normal operation, the LH0045/LH0045C is used in conjunction with an external bridge comprised of $R_{B 1}$ through $R_{B 4}$. The bridge resistors in conjunction with bridge return resistor, R5, bias A_{2} in its linear region and sense the input signal; e.g. $R_{B 4}$ might be a strain sensitive resistor in a strain gauge bridge. R_{T} is adjusted to purposely unbalance the bridge for 4.0 mA output (null) for zero signal input. This is accomplished by forcing $2.5 \mu \mathrm{~A}$ more through $\mathrm{R}_{\mathrm{B} 3}$ than $\mathrm{R}_{\mathrm{B} 4}$.

The $2.5 \mu \mathrm{~A}$ imbalance causes a voltage rise of $(2.5 \mu \mathrm{~A}) \times(100 \Omega)$ or $250 \mu \mathrm{~V}$ at the top of $\mathrm{R}_{\mathrm{B} 3}$. Terminal L2 may be viewed as the output of an op amp whose closed loop gain is approximately $R_{F} / R_{B 3}=1600$.

The $250 \mu \mathrm{~V}$ rise at the top of $\mathrm{R}_{\mathrm{B} 3}$ causes a voltage drop of (1600) $\times(250 \mu \mathrm{~V})$ or -0.4 V across R9. An output current, Is, equal to $0.4 \mathrm{~V} / \mathrm{R} 9$ or 4.0 mA is thus established in Q 1 . If $\mathrm{R}_{\mathrm{B} 4}$ is now decreased by 1.0Ω (due to application of a strain force), a -1.0 mV change in input voltage will result. This causes L 2 to drop to -2.0 V . The output current would then be $2.0 \mathrm{~V} / 100 \Omega$ or 20 mA (Full Scale). If $R_{B 3}$ is a resistor of the same material as $R_{B 4}$ but not subjected to the strain, temperature drift effects will be equal in the two legs and will cancel.

In actual practice the loading effects of $\mathbf{R}_{\mathbf{B} 2}$ on the gain (span) and R_{F} on output current must be taken into account.

FIGURE 1. LH0045 Simplified Schematic

applications information (con't)

THERMAL CONSIDERATIONS

The power output transistor of the LH0045 is thermally isolated from the signal amplifier, A_{2}. Nevertheless, a change in the power dissipation will cause a change in the temperature of the package and thus may cause amplifier drift. These temperature excursions may be minimized by careful heat sinking to hold the case temperature equal to the ambient. With the TO-8 (G) package this is best accomplished by a clip-on heat sink such as the Thermalloy \#2240A or the Wakefield \#215-CB. The 8 lead TO-3 is particularly convenient for heat sinking, in that it may be bolted directly to many commercial aluminum heat sink extrusions, or to the chassis. In both packages the case is electrically isolated from the circuit.

In addition, the power change can be minimized by operating the device from relatively high supply voltages in series with a relatively high load resistance. When the signal forces the supply current higher, the voltage across the device will be reduced and the internal power dissipation kept nearly equal to the low current, high voltage condition.

For example, take the case of a 4.0 mA to 20 mA transmitter with a 24 V supply and a 100Ω load resistance. The power at 4.0 mA is $(23.6 \mathrm{~V}) \times(4.0$ $\mathrm{mA})=94.4 \mathrm{~mW}$ while at full scale the power is $(22 \mathrm{~V}) \times(20 \mathrm{~mA})=440 \mathrm{~mW}$. The net change in power is 345 mW . This change in power will cause a change in temperature and thus a change in offset voltage of $\mathbf{A}_{\mathbf{2}}$.

If the optimum load resistance of 800Ω (from Figure 2) is used, the power at null is [24 V $(4.0 \mathrm{~mA}) \times(800 \Omega)](4.0 \mathrm{~mA})=83 \mathrm{~mW}$. The power at full scale is [$24 \mathrm{~V}-(20 \mathrm{~mA}) \times(800 \Omega)$] $(20 \mathrm{~mA})=160 \mathrm{~mW}$. The net change is 77 mW . This change is significantly less than without the resistor.

If the supply voltage is increased to 48 V and the load resistance chosen to be the optimum value from Figure $2(1.95 \mathrm{k})$, then the power at null is $[48 \mathrm{~V}-(4.0 \mathrm{~mA}) \times(1.95 \mathrm{k})](4.0 \mathrm{~mA})=160.8$

FIGURE 2. Optimum Load Resistance vs Supply Voltage
mW and the power at full scale is [48-(20) x $(1.95 \mathrm{k})](20 \mathrm{~mA})=180 \mathrm{~mW}$ for a net change of 19.2 mW .

Note that the optimized load resistance is actually the sum of the line resistance, receiver resistances and added external load resistance. However, in many applications the line resistance and receiver resistances are negligible compared to the added external load resistance and thus may be omitted in calculations.

AUXILIARY PINS

The LH0045 has several auxiliary pins designed to provide the user with enhanced flexibility and performance. The following is a discussion of possible uses for these pins.

Programmable VREF - Pins 5 and 6 (LH0045G Only)

The LH0045G provides pins 5 and 6 to allow the user to program the value of the reference voltage. The factory trimmed 10 V value is obtained by leaving 5 and 6 open. A short between 5 and 6 will program the reference to a nominal 5.1 V (equivalent to the fixed value used in the LH0045K).

A resistor or pot may be placed between pin 5 and common (pin 3) to obtain reference voltages between 10 V and 30 V or between pin 5 and pin 7 for reference voltages below 10V. Increased reference voltage might be useful to extend the positive common mode range or to accommodate transducers requiring higher supply voltage. A plot of resistance between pin 5 and pin 3 versus $\mathrm{V}_{\text {REF }}$ is given in the typical electrical characteristics section. $V_{\text {REF }}$ may be adjusted about its nominal value by arranging a pot from $\mathrm{V}_{\text {REF }}$ to common and feeding a resistor from the wiper into pin 5 so that it may either inject or extract current. Lastly, pin 5 may be used as a nominal 1.7 V reference point, if care is taken not to unduly load it with either dc current or capacitance. Obviously, higher supply voltages must be used to obtain the higher reference values. The minimum supply voltage to reference voltage differential is about 4.0V.

Bridge Return

An applications resistor is provided in the LH0O45 with a nominal value of $1.0 \mathrm{k} \Omega$. The primary application for the resistor is to maintain the minimum common mode input voltage (1.0 V) required by the signal amplifier, $\mathbf{A}_{\mathbf{2}}$. A typical input application might utilize a strain gauge or thermistor bridge where the resistance of the sensor is 100Ω. Since only 1.0 mA may be drawn from $\mathrm{V}_{\mathrm{REF}}$, the $1.0 \mathrm{k} \Omega$ bridge return resistor is used to bias A_{2} in its linear region as shown in Figure 3.
applications information (con't)

FIGURE 3. Use of Bridge Return
Over Compensation - Pin 8 (LH0045G), Pin 6 (LH0045K)

Over compensation of the signal amplifier, $\mathrm{A}_{\mathbf{2}}$ may be desirable in dc applications where the noisebandwidth must be minimized. A capacitor should be placed between pin 8 (pin 6 on the LH0045K) and pin 3, common.

Typically,

$$
f_{3 d b}=\frac{1}{2 \pi R\left(C_{1}+C_{E X T}\right)}
$$

where:

$$
\begin{aligned}
\mathrm{R} & =400 \mathrm{M} \Omega \\
\mathrm{C} 1 & =\text { Internal Compensation Capacitor }=100 \mathrm{pF} \\
\mathrm{C}_{\mathrm{EXT}} & =\text { External (over-compensation) } \\
& \text { Capacitor }
\end{aligned}
$$

Input Guard - Pins 9 and 12 (LH0045G)

Pins 9 and 12 have no internal connection whatever and thus need not be used. In some critical low current applications there may be an advantage to running a guard conductor between the inputs and the adjacent pins to intercept stray leakage currents. Pins 9 and 12 may be connected to this guard to simplify the PC board layout and allow the guard to continue under the device. (See AN-63 for further discussion of guarding techniques.)

NULL AND SPAN ADJUSTMENTS

Most applications of the LH0045 will require potentiometers to trim the initial tolerances of the senscr, the external resistors and the LH0045 itself. The preferred adjustment procedure is to stimulate the sensor, alternating between two known values, such as zero and full scale. The span and null are adjusted by monitoring the output current on a chart recorder, meter, or oscilloscope. A full scale stimulus is applied to the sensor and the span potentiometer adjusted for the desired full scale. Then, to adjust the null, apply a zero percent signal to the sensor and adjust the null potentiometer for the desired zero percent current indication.

If it is impractical to cycle the sensor during the calibration procedure, the signal may be simulated electrically with two cautions: 1) the calibration
signal must be floating and 2) the calibration thus achieved does not account for sensor inaccuracies and/or errors in the signal generator.

SENSOR SELECTION

Generally it is easiest to use an insulated sensor. If it is necessary to use a grounded sensor, the power supply must be isolated from chassis ground to avoid extraneous circulating currents.

DESIGN EXAMPLE

There are numerous circuit configurations that may be utilized with the LH0045. The following is intended as a general design example which may be extended to specific cases.

Circuit Requirements

Output Characteristics
a. $0 \%=4.0 \mathrm{~mA}$ (NULL)
b. $100 \%=20 \mathrm{~mA}($ SPAN $=16 \mathrm{~mA})$
c. Supply Voltage $=24 \mathrm{~V}$

Input (Sensor) Characteristics
a. $V_{I N}=100 \mathrm{mV}$ (Full Scale)
b. $V_{\mathrm{IN}}=0 \mathrm{mV}$ (Zero Scale)
c. Source Impedance $\leq 1.0 \Omega$

General Characteristics
a. $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
b. Overall Accuracy $\leq 0.5 \%$

FIGURE 4. Design Example Circuit

Selection of $\mathbf{R}_{\mathbf{F}}$

Input bias current to the LHOO45C is guaranteed less than 10 nA . Furthermore, the change in I_{B} over the temperature range of interest is typically under 1.0 nA . If I_{2} SPAN is selected to be $1.0 \mu \mathrm{~A}$ ($1000 \Delta \mathrm{I}_{\mathrm{B}}$) errors due to $\Delta \mathrm{I}_{\mathrm{B}} / \Delta \mathrm{T}$ will be less than 0.1%. For $\operatorname{SPAN}=16 \mathrm{~mA}$.

$$
V_{S P A N}=\Delta V_{1}=-(16 \mathrm{~mA})(R 9)=-1.6 \mathrm{~V}
$$

applications information (con't)

where R9 = Internal Current Set Resistor $=100 \Omega$ For $I_{2 \text { SPAN }}=1.0 \mu \mathrm{~A}$,

$$
\begin{aligned}
& R_{F}=\frac{V_{\text {SPAN }}}{l_{2 \text { SPAN }}}=\frac{-1.6 \mathrm{~V}}{1.0 \mu \mathrm{~A}}=1.6 \mathrm{M} \\
& R_{F}=1.6 \mathrm{M} \Omega
\end{aligned}
$$

Selection of $\mathbf{R}_{\mathbf{B} 1}$ and $\mathbf{R}_{\mathbf{B} 2}$

The minimum input common mode voltage, $\mathrm{V}_{\text {MIN }}$ required at the pin 10 input of A_{2} is 1.0 V . Furthermore, the maximum open loop supply current (${ }_{\text {SOL }}$) drawn by the LH0045 is 3.0 mA . That leaves $I_{\text {MIN }}=4.0 \mathrm{~mA}-3.0 \mathrm{~mA}=1.0 \mathrm{~mA}$ left to bias the bridge at null. Hence:

$$
R_{B 2} \geqq \frac{V_{\text {MIN }}}{I_{\text {MIN }}}=\frac{1.0 \mathrm{~V}}{1.0 \mathrm{~mA}}=1.0 \mathrm{k} \Omega
$$

And,

$$
\begin{aligned}
& \frac{V_{R E F} \cdot R_{B 2}}{R_{B 1}+R_{B 2}}=1.0 \mathrm{~V} \\
& R_{B 1}=R_{B 2} \frac{V_{R E F}-1.0 \mathrm{~V}}{1.0 \mathrm{~V}} \\
&=1.0 \mathrm{k}(5.1-1.0) \\
& R_{B 1} \cong 4.0 \mathrm{k} \Omega
\end{aligned}
$$

Alternatively, an LM113, 1.22V reference diode, or an op amp such as the LM108 may be used to bias the signal amplifier, A_{2} as shown in Figure 5. These techniques have the advantage of lowering the impedance seen at pin 10.

Selection of $\mathbf{R}_{\mathbf{O S}}$

R_{OS} is selected to provide the null current of $4.0 \mathrm{~mA}, V_{1}$ NULL $=4.0 \mathrm{~mA} \times 100 \Omega=0.4 \mathrm{~V}$. From, previous calculations we know that $\mathrm{V}_{\text {MIN }}=$ 1.0 V . The voltage pin $11, \mathrm{~V}_{2}$ is:

$$
V_{2}=V_{M I N}+V_{O S} \cong V_{M I N}
$$

for $V_{I N}=0 V$

Hence, the current required to generate the null voltage, $I_{2 \text { NULL }}$ is:

$$
\begin{aligned}
& I_{2 \text { NULL }}=\frac{V_{M I N}-V_{1 \text { NULL }}}{R_{F}} \\
& =\frac{1.0 \mathrm{~V}-(-0.4 \mathrm{~V})}{1.6 \mathrm{M} \Omega}=0.875 \mu \mathrm{~A}
\end{aligned}
$$

This current must be provided by $R_{\text {Os }}$ from $V_{\text {REF }}$; hence:

$$
R_{\mathrm{OS}}=\frac{V_{\text {REF }}-V_{\text {MIN }}}{I_{2 N U L L}}
$$

The nominal value for $\mathrm{V}_{\mathrm{REF}}$ is 5.1 V , therefore the nominal value for R_{OS} is:

$$
\frac{5.1 \mathrm{~V}-1.0 \mathrm{~V}}{0.875 \mu \mathrm{~A}} \text { or }
$$

$$
\mathrm{R}_{\mathrm{OS}}=4.6 \mathrm{M} \Omega
$$

It should be noted however, that the variation of $\mathrm{V}_{\text {REF }}$ may be as high as 5.9 V or as low as 4.3 V . Furthermore, the tolerances of R9 (100 2$), \mathrm{R}_{\mathrm{B} 1}$. $R_{B 2}$, and the input $V_{O s}$ of A_{2} would predict values for R_{Os} as low as 3.98 M and as high as 5.43 M . The implication is that in the specific case, R_{Os} should be implemented with a pot, of appropriate value, in order to accommodate the tolerances of $\mathrm{V}_{\mathrm{REF}}$, R9, $V_{o s}, R_{B 1}, R_{B 2}$, etc.

Selection of R

SPAN is required to be 16 mA . From feedback theory and the gain equation we know:

$$
I_{S P A N}=V_{I N} \frac{R_{F}}{R} \times \frac{1}{R 9}
$$

where:
$R=$ total impedance in signal path between pin 10 and pin 11

R9 $=$ Current setting resistor $=100 \Omega$
$V_{\text {IN }}=$ Full scale input voltage $=100 \mathrm{mV}$

FIGURE 5. Alternate Biasing Techniques

applications information (con't)

$$
\begin{aligned}
\therefore R & =\frac{\left(V_{I N}\right)\left(R_{F}\right)}{\left(I_{\text {SPAN }}\right)(R 9)} \\
R & =\frac{(100 \mathrm{mV})(1.6 \mathrm{M} \Omega)}{(16 \mathrm{~mA})(100 \Omega)} \\
R & =100 \mathrm{k} \Omega
\end{aligned}
$$

As before, uncertainties in device parameters might dictate that R_{F} be made a pot of appropriate value.

Summary of the Steps to Determine

External Resistor Values

1. Select $I_{\text {FULL }}$ sCALE $=I_{\text {NULL }}+I_{\text {SPAN }}$ for the desired application. (INULL is frequently 4.0 mA and $\mathrm{I}_{\text {full }}$ scale is frequently 20 mA .)
2. Select I_{2} SPAN so that it is large compared to $\Delta I_{B} .1000 \Delta I_{B}$ is a good value.
3. Determine $\mathrm{V}_{\text {SPAN }}=\Delta \mathrm{V}_{2}=\left(I_{\text {SPAN }}\right)(\mathrm{R9})$.
4. Determine $R_{F}=\left(V_{\text {SPAN }} / I_{2}\right.$ SPAN $)$
5. Select

$$
\begin{aligned}
& R_{B 2} \geq \frac{V_{M I N}}{I_{\text {MIN }}} \\
& R_{B 2} \geq \frac{1 \text { VOLT }}{I_{\text {NULL }}-I_{S O L}}
\end{aligned}
$$

Where:
$V_{\text {MIN }}=$ minimum common mode input voltage
$I_{\text {MIN }}=$ minimum available bridge current
$I_{\text {SOL }}=$ maximum open loop supply current
6. Determine

$$
R_{B 1}=R_{B 2} \frac{V_{\mathrm{REF}}-V_{\mathrm{MIN}}}{V_{\mathrm{MIN}}}
$$

7. Determine $\mathrm{V}_{\mathbf{2}}$ NULL $=I_{\text {NULL }}$ R9
8. Determine

$$
I_{2 \text { NULL }}=\frac{V_{\text {MIN }}-V_{2 \text { NULL }}}{R_{F}}
$$

9. Determine

$$
R_{\text {OS }}=\frac{V_{\text {REF }}-V_{\text {MIN }}}{l_{\text {2NULL }}}
$$

10. Determine

$$
R=\frac{\left(V_{I N}\right)\left(R_{F}\right)}{\left(I_{\text {SPAN }}\right)(R 9)}
$$

Where:
$V_{\text {IN }}=$ Sensor full scale output voltage

ERROR BUDGET ANALYSIS

Errors Due to Change in $\mathbf{V}_{\text {REF }}\left(\Delta \mathbf{V}_{\mathrm{REF}}\right)$

There are several factors which could cause a change in $\mathrm{V}_{\text {REF }}$. First, as the ambient temperature changes, a $\mathrm{V}_{\text {REF }}$ drift of $\pm 0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ might be expected. Secondly, supply voltage variations could cause a $0.5 \mathrm{mV} / \mathrm{V}$ change in $\mathrm{V}_{\mathrm{REF}}$. Lastly, self-heating due to power dissipation variations can cause drift of the reference.

An overall expression for change in $\mathrm{V}_{\text {REF }}$ is:

$$
\begin{aligned}
\Delta V_{\text {REF }}= & \underbrace{\left[(0)\left(\Delta P_{\text {DIss }}\right)+\Delta T_{A}\right] \frac{\Delta V_{\text {REF }}}{\Delta T}}_{\text {Thermal Effects }} \\
& +\underbrace{\frac{\Delta V_{\text {REF }}}{\Delta V_{S}}\left(\Delta V_{S}\right)}_{\text {Supply Voltage Effects }}
\end{aligned}
$$

Where:

$$
\begin{aligned}
& \theta=\begin{array}{l}
\text { Thermal resistance, either } \\
\\
\\
\\
\text { junction-to-ambient to junction }
\end{array} \\
& \Delta P_{\text {DISS }}= \text { Change in avg. power dissipation } \\
& \Delta T_{A}= \text { Change in ambient temperature } \\
& \frac{\Delta V_{\text {REF }}}{\Delta T}=\begin{array}{l}
\text { Reference voltage drift } \\
\text { (in } \left.\mathrm{mV} /^{\circ} \mathrm{C}\right)
\end{array} \\
& \frac{\Delta V_{\text {REF }}}{\Delta V_{S}}=\text { Line regulation of } \mathrm{V}_{\text {REF }}
\end{aligned}
$$

Several steps may be taken to minimize the bracketed terms in the equation above. For example, operating the LHOO45G with a heat-sink reduces the thermal resistance from $\theta_{J A}=83^{\circ} \mathrm{C} / \mathrm{W}$ to $\theta_{\mathrm{Jc}}=60^{\circ} \mathrm{C} / \mathrm{W}$. For the LH0045K (TO-3) $\theta_{\mathrm{JA}}=40^{\circ} \mathrm{C} / \mathrm{W}$ may be reduced to $\theta_{\mathrm{Jc}}=25^{\circ} \mathrm{C} / \mathrm{W}$ by using a heat sink. The $\Delta P_{\text {Diss }}$ term may be significantly reduced using the power minimization technique described under "Thermal Considerations." For the design example, $\Delta \mathrm{P}_{\text {Diss }}$ is reduced from 384 mW to 77 mW ($\mathrm{R}_{\mathrm{L}}=800 \Omega$.) Evaluating the LHOO45G with a heat-sink and $R_{L}=800 \Omega$ yields.

$$
\begin{aligned}
\Delta V_{\text {REF }}= & \left(\frac{60^{\circ} \mathrm{C}}{\mathrm{~W}}(0.077 \mathrm{~W})+75^{\circ} \mathrm{C}\right)\left(\frac{0.2 \mathrm{mV}}{{ }^{\circ} \mathrm{C}}\right) \\
& +\frac{0.5 \mathrm{mV}}{\mathrm{~V}}(16 \mathrm{~V}) \\
\Delta V_{\text {REF }} & =24 \mathrm{mV}
\end{aligned}
$$

The LH0045K (TO-3) under the same operating conditions would exhibit a $\Delta \mathrm{V}_{\text {REF }} \cong 23 \mathrm{mV}$.

applications information (con't)

An expression for error in the output current due to $\Delta V_{\text {REF }}$ is:
$\frac{\Delta I_{S}}{I_{\text {SPAN }}}(\%)=100 \frac{(K)\left(R_{\text {OS }}\right)\left(\Delta V_{\text {REF }}\right)-(1-K)\left(\Delta V_{\text {REF }}\right)\left(R_{F}\right)}{(R 9)\left(R_{\text {OS }}\right)\left(I_{\text {SPAN }}\right)}$
Where:

$$
\begin{aligned}
\Delta V_{R E F} & =\text { Total change in } V_{\text {REF }} \\
K & =\frac{R_{B 2}}{R_{B 1}+R_{B 2}} \\
R 9 & =\text { Current set resistor } \\
I_{\text {SPAN }} & =\begin{array}{l}
\text { Change in output current from } \\
0 \% \text { to } 100 \%
\end{array}
\end{aligned}
$$

For example, $\Delta V_{\text {REF }}=24 \mathrm{mV}, \mathrm{K}=0.2, \mathrm{R} 9=$ $100 \Omega, I_{\text {SPAN }}=16 \mathrm{~mA}$. Hence, a 0.12% worst case error might be expected in output currents due to $\Delta V_{\text {REF }}$ effects.

Error Due to $\mathrm{V}_{\text {Os }}$ Drift

One of the primary causes of error in I_{S} is caused by $\mathrm{V}_{\text {OS }}$ drift. Drift may be induced either by self heating of the device or ambient temperature changes. The input offset voltage drift, $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$, is nominally $3.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per millivolt of initial offset. An expression for the total temperature dependent drift is:

$$
\Delta V_{\text {OS }}=\left[(\theta)\left(\Delta P_{\text {DISS }}^{\prime}\right)+\Delta T_{A}\right] \frac{\Delta V_{\text {OS }}}{\Delta T}
$$

Where:

$$
\begin{aligned}
\theta= & \begin{array}{l}
\text { Thermal resistance either junction- } \\
\text { to-ambient or junction-to-case }
\end{array} \\
\Delta \mathrm{P}_{\text {DISS }}= & \text { Change in average power dissipation } \\
\Delta T_{A}= & \text { Change in ambient temperature }
\end{aligned}
$$

The bracketed term may be minimized by heat sinking and using the power minimization technique described under "Thermal Considerations." For the LHOO45G design example, $\Delta \mathrm{V}_{\text {Os }}=0.352 \mathrm{mV}$ under ambient conditions and 0.263 mV using a heat-sink and $R_{L}=800 \Omega$. Comparable $V_{\text {Os }}$ for the LH0045K would be 0.254 mV .

The error in output current due to $\Delta V_{O S}$ is:

$$
\begin{aligned}
& \frac{\Delta I_{S}}{I_{\text {SPAN }}}(\text { in } \%)=100 \times \frac{\Delta V_{\text {OS }}}{V_{\text {IN (FULL SCALE }}} \\
& =100 \times \frac{R_{F}}{(R)(R 9)\left(I_{\text {SPAN }}\right)}
\end{aligned}
$$

For the design example, $\Delta \mathrm{V}_{\text {os }}=0.263 \mathrm{mV}, \mathrm{V}_{\text {in }}$ (Full Scale) $=100 \mathrm{mV}$. Hence, $0.26 \mathrm{mV} \div 100 \mathrm{mV}$ or 0.26% worst case error could be expected in output current effects.

Errors Due to Changes in R9

The temperature coefficient of R9 (TCR) will produce errors in the output current. Changes in R9 may be caused by self-heating of the device or by ambient temperature changes.

$$
\frac{\Delta I_{S}}{I_{\text {SPAN }}}(\text { in } \%)=100 \frac{\Delta R 9}{\Delta T}\left(\theta \mathrm{P}_{\text {DISS }}+\Delta T_{A}\right)
$$

Where:

$$
\left.\begin{array}{rl}
\theta= & \begin{array}{l}
\text { Thermal resistance either from } \\
\text { junction-to-ambient or' junction-to- }
\end{array} \\
& \text { case }
\end{array}\right\}
$$

Using the LH0045G design example, $\Delta \mathrm{R} 9 / \Delta \mathrm{T}=$ $0.03 \% /{ }^{\circ} \mathrm{C}$, hence a 3.2% worst case error in output current might be expected for operation without a heat sink over the temperature range.

Heat sinking the device and using $R_{L}=800 \Omega$, reduces $\Delta I_{\mathrm{S}} / I_{\text {SPAN }}$ to 2.3%. Comparable error for the LH0045K would also be about 2.3%.

The error analysis indicates that the internal current set resistor, R9 is inadequate to satisfy high accuracy design criterion. In these instances, an external 100Ω resistor should be substituted for R9.

Obviously, the TCR of the resistor should be low. Metal film or wire-wound resistors are the best choice offering TCR's less than $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ versus $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical drift for R9.

External Causes of Error

The components external to the LH0045 are also critical in determining errors. Specifically, the composition of resistors $R_{B 1}, R_{O S}, R_{F}, R$, etc. in the design example will influence both drift and long term stability.

In particular, resistors and potentiometers of wire wound construction are recommended. Also, metalfilm resistors with low $\operatorname{TCR}\left(\leq 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right.$) may be used for fixed resistor applications.

Error Analysis Summary

The overall errors attributable to the LH0045 may be minimized using heat sinking, and utilization of an external load resistor. Although $\mathbf{R}_{\mathbf{L}}$ reduces the compliance of the circuit, its use is generally advisable in precision applications. External components should be selected for low TCR and long-term stability.

The design example errors, using an external 100Ω wire wound resistor for R9 equal:
$\frac{\Delta l_{\mathbf{S}}}{l_{\text {SPAN }}}=\underbrace{0.12 \%}_{\Delta V_{\text {REF }}}+\underbrace{0.26 \%}_{\Delta V_{\text {OS }}}+\underbrace{0.08 \%}_{\Delta R 9}=0.46 \%$

definition of terms

Input Offset Voltage, $V_{O S}$: The voltage which must be applied between the input terminals through equal resistances to obtain 4.0 mA of supply (output) current.

Input Bias Current, I_{B} : The average of the two input currents.

Input Offset Current, los: The difference in the current into the two input terminals when the supply (output) current is $\mathbf{4 . 0} \mathrm{mA}$.

Input Resistance, $\mathbf{R}_{\mathbf{I N}}$: The ratio of the change in input voltage to the change in input current at either input with the other input connected to 1.0 Vdc .

Open Loop Transconductance, gmol $_{\text {M }}$ The ratio of the supply (output) current SPAN to the input voltage required to produce that SPAN.

Open Loop Output Resistance, Rout: The ratio of a specified supply (output) voltage change to the resulting change in supply (output) current at the specified current level.

SOCKETS AND HEAT SINKS

Mounting sockets, test sockets, and heat sinks are available for the G package and K package.

The following or their equivalents are recommended:

Sockets:

G - 12 lead TO-8: Barnes Corp. \#MGX-12 Textool \#212-100-323
K - 8 lead TO-3: Keystone Elec. (N.Y.) \#4626 or \#4627

Heat Sinks

G - 12 lead TO-8: Thermalloy \#2240A
Wakefield \#215-CB
K - 8 lead TO-3: IERC \#LAIC 3B4V

Common Mode Rejection Ratio, CMRR: The ratio of the change in input offset voltage to the peak-to-peak input voltage range.

Power Supply Rejection Ratio, PSRR: The ratio of the change in input offset voltage to the change in supply (output) voltage producing it.

Input Voltage Range, V_{IN} : The range of voltages on the input terminals for which the device operates within specifications.

Open Loop Supply Current, $\mathbf{I}_{\mathbf{S}}$: The supply current required with the signal amplifier A_{2} biased off (inverting input positive, non-inverting input negative) and no load on the $V_{R E F}$ terminal.

This represents a measure of the minimum low end signal current.

Reference Voltage Line Regulation, $\Delta \dot{\mathbf{V}}_{\mathbf{R E F}} / \Delta \mathbf{V}_{\mathbf{S}}$: The ratio of the change in $V_{\text {REF }}$ to the peak-topeak change in supply (output) voltage producing it.

Reference Voltage Load Regulation, $\Delta \mathrm{V}_{\mathrm{REF}} /$ $\Delta \mathbf{I}_{\text {REF }}$: The change in $V_{\text {REF }}$ for a stipulated change in $I_{\text {REF }}$.

行
 National Semiconductor
 LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier

general description

The LH0061/LH0061C is a wide band, high speed, operational amplifier capable of supplying currents in excess of 0.5 ampere at voltage levels of $\pm 12 \mathrm{~V}$. Output short circuit protection is set by external resistors, and compensation is accomplished with a single external capacitor. With a suitable heat sink the device is rated at 20 Watts.

The wide bandwidth and high output power capabilities of the LH0061/LH0061C make it ideal for such applications as AC servos, deflection yoke drivers, capstan drivers, and audio amplifiers. The

LH0061 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas, the LH0061C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

features

- Output current	0.5 Amp
- Wide large signal bandwidth	1 MHz
- High slew rate	$70 \mathrm{~V} / \mu \mathrm{s}$
- Low standby power	240 mW
- Low input current	300 nA Max

schematic and connection diagrams

Order Numbers:

absolute maximum ratings

Supply Voltage
$\pm 18 \mathrm{~V}$
Power Dissipation
Differential Input Current (Note 2)
Input Voltage (Note 3)
Peak Output Current
Output Short Circuit Duration (Note 4)
Operating Temperature Range LH0061
LH0061C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
$\pm 18 \mathrm{~V}$
See Curve
$\pm 10 \mathrm{~mA}$
$\pm 15 \mathrm{~V}$
2 A
Continuous
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
dc electrical characteristics (Note 1)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0061			LH0061C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 10 \mathrm{k} \Omega, T_{\mathrm{c}}=25^{\circ} \mathrm{C}, V_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & R_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, V_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		1.0	4.0 6.0		3.0	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Voltage Drift with Temperature	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		5			5.		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Change with Output Power			5			5		$\mu \mathrm{V} /$ watt
Input Offset Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		30	100		50	200	nA
				300			500	nA
Offset Current Drift with Temperature			1			1		$n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		100	300		200	500	nA
				1.0			1.0	$\mu \mathrm{A}$
Input Resistance	$T_{C}=25^{\prime \prime} \mathrm{C}$	0.3	1.0		0.3	1.0		M Ω
Input Capacitance			3			3		pF
Common Mode Rejection Ratio -	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{kS}, \Delta \mathrm{V}_{\mathrm{cM}}= \pm 10 \mathrm{~V}$	70	90		60	80		dB
Input Voltage Range	$v_{\text {S }}= \pm 15 \mathrm{~V}$	± 11			± 11			V
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{kS2}, \Delta \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$	70	80		50	70		dB
Voltage Gain	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$							
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{kS2} . \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	50	100		25	50		V / mV
	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{O}= \pm 10 \mathrm{~V} \\ & R_{L}=20 \mathrm{~S} 2 \end{aligned}$	5			2.5			V / mV
-								
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{~S} 2$	± 10.	± 12		± 10	± 12		v
Output Short Circuit Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\prime \prime} \mathrm{C}, \mathrm{R}_{\text {SC }}=1.052$		600			600		mA
Power Supply Current	$\mathrm{V}_{\text {S }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		7	10		10	15	mA
Power Consumption	$\mathrm{V}_{\text {S }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		210	300		300	450	mW

ac electrical characteristics $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=\mathbf{3 0 0 0} \mathrm{pF}\right.$)

Slew Rate	$A_{V}=+1, R_{L}=10052$		25	70		25	70		V/ $/ \mathrm{s}$
Power Bandwidth	$R_{L}=100 \Omega 2$			1			1		MHz
Small Signal Transient Response				30			30		ns
Small Signal Overshoot				5	20		10	30	\%
Settling Time (0.1\%)	$\Delta V_{\text {IN }}=10 \mathrm{~V}, A_{V}=+1$			0.8			0.8		$\mu \mathrm{s}$
Overload Recovery Time				1		.	1		$\mu \mathrm{s}$
Harmonic Distortion	$f=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$			0.2			0.2		\%

Note 1: Specifications apply for $\pm 5 \mathrm{~V} \leq V_{S} \leq \pm 18 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}$, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ for the LH0061K and
$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+85^{\circ} \mathrm{C}$ for the LH0061CK. Typical values are for $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Excessive current will flow if a differential voltage in excess of 1 V is applied between the inputs without limiting resistors.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: Rating applies as long as package power rating is not exceeded.

typical performance characteristics

typical applications

Unity Gain Driver
 Operational Amplifiers/Buffers

LH0062/LH0062C High Speed FET Operational Amplifier

general description

The LH0062/LH0062C is a precision, high speed FET input operational amplifier with more than an order of magnitude improvement in slew rate and bandwidih over conventional FET IC op amps. In addition it features very closely matched input characteristics, very high input impedance, and ultra low input currents with no compromise in noise, common mode rejection ratio or open loop gain. The device has internal unity gain frequency compensation, thus assuring stability in all normal applications. This considerably simplifies its application,. since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over $120 \mathrm{~V} / \mu \mathrm{s}$ and almost double the bandwidth. (See LB-2, LB-14, and LB-17 for discussions of the application of feed-forward techniques). Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under $1 \mu \mathrm{~s}$. In addition it is free of latch-up and may be simply offset nulled with negligible effect on offset drift or CMRR.

The LH0062 is designed for applications requiring wide bandwidth, high slew rate and fast settling time while at the same time demanding the high input impedance and low input currents characteristic of FET inputs. Thus it is particularly suited for such applications as video amplifiers, sample/ hold circuits, high speed integrators, and buffers for A/D conversion and multiplex system. The LH0062 is specified for the full military temperature range of -55° to $+125^{\circ} \mathrm{C}$ while the LH0062 C is specified to operate over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

features

schematic and connection diagrams*

[^22]

Order Number LH0062H or LH0062CH See Package H08A

Dual-In-Line Package

Order Number LH0062D or LH0062CD See Package D14E
absolute maximum ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (see graph)	500 mW
Input Voltage (Note 1)	$\pm 5 \mathrm{~V}$
Differential Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$
Short Circuit Duration	Contınuous

Operating Temperature LH0062. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ LH0062C. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Storage Temperature Range Lead Temperature (Soldering, 10 sec)
dc electrical characteristics (Note 3)

Parameter	CONDITIONS	LIMITS						UNITS
		LH0062			LH0062C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		10	15	mV
	$R_{S} \leq 100 \mathrm{k} \Omega$			7			20	mV
Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		5	25		10	35	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time			4			5		$\mu \mathrm{V} /$ week
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2	2		1	5	pA
				2			0.2	nA
Temperature Coefficient of Input Offset Current		Doubles every $10^{\circ} \mathrm{C}$			Doubles every $10^{\circ} \mathrm{C}$			
Offset Current Drift with Time			0.1			0.1		pA/week
laput Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	10		10	65	pA
				10			2	nA
Temperature Coefficient of Input Bias Current		Doubles every $10^{\circ} \mathrm{C}$			Doubles every $10^{\circ} \mathrm{C}$			
Differential Input Resistance			10^{12}			10^{12}		Ω
Common Mode Input Resistance			10^{12}			10^{12}		Ω
- Input Capacitance			4			4		pF
- Input Voltage Range	$\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$	± 10	± 12		± 10	± 12		v
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	80	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	80	90		70	90		dB
Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{k} \Omega, V_{\text {OUT }}= \pm 10 \mathrm{~V} . \\ & T_{A}=25^{\circ} \mathrm{C}, V_{\mathrm{S}}= \pm 15 \mathrm{~V} . \end{aligned}$	50	200		25	160		V/mV
	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega, V_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	25			25		.	V / mv
Output Voltage Swing	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} . \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	± 12	± 13		± 12	± 13		$\checkmark \mathrm{v}$
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 10.			± 10			v
Output Current Swing	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$	± 10	± 15		± 10	± 15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current .	$T_{\text {A }}=25^{\circ} \mathrm{C}$		25			25		mA
Supply Current	$V_{\text {S }}= \pm 15 \mathrm{~V}$.		5	8		7	12	mA
Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			240			360	mW

ac electrical characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0062			LH0062C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Slew Rate	Voltage Follower	50	70		50	70		V/ $/ \mathrm{s}$
Large Signal Bandwidth	Voltage Follower		2			2		MHz
Small Signal Bandwidth			15			15		MHz
-Rise Time			25		.	25		ns
Overshoot			10			15		\%
Setting Time (0.1\%)	$\Delta V_{\text {IN }}=10 \mathrm{~V}$		1			1		$\mu \mathrm{s}$
Overload Recovery			09 -			0.9		$\mu \mathrm{s}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{~Hz}$		150			150		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=100 \mathrm{~Hz}$		55			55.		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega . \mathrm{f}_{0}=1 \mathrm{kHz}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{kHz}$		30			30		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$\mathrm{BW}=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{R}_{\mathbf{S}}=10 \mathrm{k} \Omega$		12			12		$\mu \mathrm{V}$ rms
Input Noise Current	$\mathrm{BW}=10 \mathrm{~Hz}$ to 10 kHz		$<.1$			$<.1$		pArms

[^23]typical performance characteristics

Voltage Follower
Pulse Response

Large Signal Frequency
Response

Inverter Pulse Response

Input Bias
Current vs Temperature

Open Loop Frequency Response

Open Loop Frequency
Response

Unity Gain Bandwidth

Voltage Follower Slew Rate

typical performance characteristics (con't)

auxiliary circuits

auxiliary circuits (con't)

Isolating Large Capacitive Loads

Overcompensation

typical applications*

Fast Voltage Follower

High Speed Subtractor

$e_{\text {OUT }}=10 \times\left(e_{\text {IN1 }}-e_{I N 2}\right)$

Fast Precision Voltage Comparator

Video DC Restoring Amplifier

Boosting Output Drive to $\mathbf{+ 1 0 0} \mathbf{m A}$

Wide Range AC Voltmeter

High Speed Positive Peak Detector

*Pin numbers shown for TO-5 package

typical applications* (con't)

Precision Wide Range Current to Period Converter

National Semiconductor

LH2110/LH2210/LH2310 Dual Voltage Follower

general description

The LH2110 series of dual voltage followers are two LM110 type followers in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost and smaller size than two singles. For additional information, see the LM110 data sheet and National's Linear Application Notebook.

The LH2110 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2210 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH 2310 is speci-
fied for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

features

- Low input current	1 nA
- High input resistance	$10^{10} \mathrm{ohms}$
- High slew rate	$30 \mathrm{~V} / \mu \mathrm{s}$
- Wide bandwidth	20 MHz
- Wide operating supply range	$\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Output short circuit proof	

connection diagram

Order Number LH2110D or LH2210D or LH2310D See Package D16C

auxiliary circuits

Increasing Negative Swing Under Load

Offset Balancing Circuit

absolute maximum ratings electrical characteristics Each side (Note 4)		Operating Temperature Range LH2110 LH2210 LH2310 Storage Temperature Range Lead Temperature (Soldering, 10 sec)			$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$
PARAMETER	CONDITIONS	LIMITS			UNITS
		LH2110	LH2210	LH2310	
Input Offset Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	4.0	4.0	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	
Input Bias Current		3.0	3.0		nA Max
Input Resistance		10^{10}	10^{10}		Ω Min
Input Capacitance		1.5	1.5	1.5	pF Typ
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{L}=8 \mathrm{k} \Omega \end{aligned}$. 999	. 999	. 999	V/V Min
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.5	2.5	2.5	Ω Max
Supply Current (Each Amplifier)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.5	5.5	5.5	mA Max
Input Offset Voltage		6.0	6.0	10	$m \vee$ Max
Offset Voltage	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} 6 \\ 12 \end{array}$	612	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Typ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Tур
Temperature Drift				-	
Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	10	10	10	$n A$ Max
Large Signal Voltage Gain		. 999	. 999	. 999	V/V Min
Output Voltage Swing (Note 5)	$V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$	± 10	± 10	± 10	\checkmark Min mA Max dB Min
Supply Current (Each Amplifier)	$T_{A}=125^{\circ} \mathrm{C}$	4.0	4.0	-	
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$	70	70	70	

Note 1: The maximum junction temperature of the LH2110 is $150^{\circ} \mathrm{C}$, while that of the LH2210 is $100^{\circ} \mathrm{C}$ and that of the LH2310 is $85^{\circ} \mathrm{C}$. For operating devices in the flat package at elevated temperatures, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $\mathbf{7 0 ^ { \circ }} \mathrm{C}$. It is necessary to insert a resistor greater than $2 \mathrm{k} \Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted. Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant \pm 18 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM210, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 85^{\circ} \mathrm{C}$, and for the LH 2310 , all temperature specifications are limited to $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$. Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals.

Section 4 Instrumentation Amplifiers

Instrumentation Amplifiers

Section Contents

Special Function Instrumentation Amplifier Guide. 4-iii
Definition of Terms. 4-iv
LF152/LF352 FET Input Instrumentation Amplifier. 4-1
LM121/LM221/LM321, LM121A/LM221A/LM321A Precision Preamplifiers. 4-11

Note. For additional information on instrumentation amplifiers, see National Semiconductor's Special Functions Databook.

All of the amplifiers in this guide are true differential input instrumentation amplifiers with very high common mode rejection and adjustable gain.

Features	I_{B} Max	$v_{0 S i n}$Max	Characteristics		Gain Tempco	Gain Error	Part Number		Page Number
			$\frac{\Delta V_{O S}}{\Delta T}$	Gain Lin.			$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	
$90 \mu \mathrm{~W}$ dissipation, wide supply range, one external gain set resistor	$\begin{aligned} & 125 \mathrm{nA} \\ & 100 \mathrm{nA} \end{aligned}$	$\begin{aligned} & 2 \mathrm{mV} \\ & 1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { 0.03\% } \\ & 0.03 \% \end{aligned}$	*	$\begin{aligned} & 3 \% \max \\ & 1 \% \max \end{aligned}$	LH0036C	LH0036	3.4
Low cost, one external gain set resistor	500 nA	$\begin{aligned} & 2 \mathrm{mV} \\ & 1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 10 \mu \mathrm{~V} /^{\circ} \mathrm{C} \\ & 10 \mu \mathrm{~V})^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & 0.03 \% \end{aligned}$	*	$\begin{gathered} 1 \% \\ 0.3 \% \end{gathered}$	LH0037C	LH0037	$3-12$
Ultra low drift, all gain set resistors internal, very low noise, very linear, guard drive amplifier included	100 nA	$\begin{aligned} & 150 \mu \mathrm{~V} \\ & 100 \mu \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \\ 0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \max \end{gathered}$	1 ppm 1 ppm	$\begin{aligned} & 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.1 \% \end{aligned}$	LH0038C	LH0038	$3-15$

*Dependent upon external resistors.
**Refers to Special Functions Databook, 1979 edition

Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.

Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak-change in input offset voltage over this range.

Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. $\%$ harmonic distortion $=$

$$
\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2}(100 \%)}{V 1}
$$

where V 1 is the rms amplitude of the fundamental and V2, V3, V4, . . . are the rms amplitudes of the individual harmonics.

Input Bias Current: The average of the two input currents.

Input Common-Mode Voltage Range: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.

Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance(R_{S}) and load resistance (R_{L}).

Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.

Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.

Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

Output Resistance: The small signal resistance seen at the output with the output voltage near zero.

Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.

Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.

Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.

Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.

Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.

Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.

Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

Instrumentation Amplifiers

LF152LLF352 FET Input Instrumentation Amplifier

General Description

The LF152 series is the first monolithic JFET input instrumentation amplifier. The well-matched high voltage JFET input devices provide very high input impedance and extremely low bias currents, making the LF152 ideal in applications where high source impedances are encountered.

The LF152 very accurately amplifies a differential input signal and rejects common-mode signal and noise. It is not an op amp, but operates with an internal closed loop gain connection which allows good linearity with no external feedback. The LF152 eliminates the need for extremely precise resistor matching to obtain high common-mode rejection (CMR) and provides high input impedance as compared to the use of conventional op amps connected as a difference amplifier.

The LF152 utilizes internal differential current feedback eliminating the need for precision external feedback components. The amplifier gain can be easily adjusted from 1 to 1000 by changing the value of a single resis: tor. The transfer function for the LF152 is highly
accurate because it has a very low initial gain error and non-linearity. The bandwidth and slew rate are externally controlled and the sense input and device output are pinned out separately for added versatility.

Features

- JFET inputs
- High input impedance
$2 \times 10^{12} \Omega$
- Low bias currents 3 pA
- Low noise currents 0.01 pA rms
- Low gain nonlinearity 0.02\%
- High common-mode rejection ratio

110 dB min ($\mathrm{G}=100$)

- Single resistor gain adjust
- External compensation for extended gain and frequency ranges
- Both input and output offset adjust capability to allow a change of gain without rezeroing
- Low supply current

Connection Diagram

Order Number LF152D or LF352D See NS Package D16C

Simplified Schematic

FIGURE 1

Typical Circuit

Absolute Maximum Ratings

	LF152	LF352
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 44 \mathrm{~V}$	$\pm 36 \mathrm{~V}$
Input Voltage Range	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Output Short Circuit Duration	Continuous	Continuous
Power Dissipation and Thermal Resistance (Note 1)		
Cavity DIP (D) $\mathrm{PD}_{\text {D }}\left(25^{\circ} \mathrm{C}\right)$	900 mW	900 mW
$\theta_{j}{ }^{\text {a }}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$	$+100^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	LF152			LF352			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
G_{R}	Gain Range	$\mathrm{R}_{\mathrm{C}}=160 \Omega, \mathrm{C}_{\mathrm{C}}=0.002 \mu \mathrm{~F}$	1.		1000	1		1000	
G	Gain Equation	$\mathrm{G}=\mathrm{R}_{\mathbf{S}} / \mathrm{R}_{\mathbf{G}}$.							
GE	Error From Gain Equation	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{G}=1^{\prime}-100, R_{L}=10 \mathrm{k}$		0.05	0.1		0.05	0.2	\%
$\mathrm{G}_{\text {NL }}$	Gain Nonlinearity	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{G}=1-100, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		0.02	0.05		0.02	0.1	\%
$\Delta \mathrm{G} / \Delta \mathrm{T}$	Gaın Temperature Coefficient			3			3		ppm $/{ }^{\circ} \mathrm{C}$
V_{0}	Output Voltage Range	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	± 9			± 9			V
R ${ }_{0}$	Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=1$		1.2			1.5		Ω
VIN	Input Voltage Range		± 10	± 12		± 10	± 12		\checkmark
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	20		3	40	pA
				3	20		0.2	3	nA
110	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.	0.5	10		0.5	20	pA
				0.3	2.0		0.05	0.6	nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
	Differential			2×10^{12}			2×10^{12}		Ω
	Common-Mode			2×10^{12}			2×10^{12}		Ω
CIN	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.				
	Differential			2.5			2.5		pF
	Common-Mode			5.0			5.0		pF
CMRR	Common-Mode Rejection (RTI) (Note 4)	$G=1$	75	85		65	80		dB
		$G=10$	95	105		85	100		dB
		$\mathrm{G}=100$	110	125		100	120		dB
		$\mathrm{G}=1000$	115	125		105	120		dB
	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8	15		15	30	mV
$\Delta V_{\text {IOS }} / \Delta T$	- Temperature Coefficient						10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {IOS }} / \Delta \mathrm{V}_{\text {S }}$	Supply Sensitivity			. 100			200		$\mu \mathrm{V} / \mathrm{V}$
VOOS	Output Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			200			400	mV
$\Delta V_{\text {OOS }} / \Delta T$	" Temperature Coefficient			600			600		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta V_{\text {OOS }} / \Delta V_{S}$	Supply Sensitivity .			400			800		$\mu \mathrm{V} / \mathrm{V}$
IREF	Reference Current			15			20		$\mu \mathrm{A}$
RREF	Reference Input Resistance			500			250		$\mathrm{M} \Omega$
Is	Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.7	2.2		1.2	2.2	mA

AC Electrical Characteristics (Notes 2 and 3)

Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j} M A X, \theta_{j} A$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{D}=\left(T_{J} M A X-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{D} M A X$, whichever is less.
Note 2: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range ($T_{L} \leq T_{A} \leq T_{H}$) unless otherwise noted. Parameters are specified for $R_{C}=160 \Omega, C_{C}=0.002 \mu \mathrm{~F}$, and a proper layout such as the PC board in F igure 7 , which is laid out for Figure 2 and Figure 4.
Note 3: If $V_{O O S}$ adjust is not used, pins 1, 2 and 16 MUST be shorted to $V_{C C}$.
Note 4: Referred to input ($R T I$). May be referred to output by subtracting gain in dB.
Note 5: Referred to input (RTI). May be referred to output by multiplying by gain G.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Frequency Response

Small Signal Pulse Response ($\mathbf{G}=1$)

TIME (5 $\mathrm{Hs} / \mathrm{DIV}$)

Small Signal Pulse Response ($G=1000$)

TIME (100 $/ \mathbf{s} / \mathrm{DIV})$

Positive Power Supply Rejection Ratio (RTI)

Small Signal Pulse Response ($\mathrm{G}=10$)

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

Large Signal Pulse Response ($G=1$)

TIME ($20 \mu \mathrm{~s} / \mathrm{DIV}$)

Negative Power Supply Rejection Ratio (RTI)

Small Signal Pulse Response ($\mathrm{G}=100$)

TIME (20 $2 \mathrm{~s} / \mathrm{DIV}$)

Large Signal Pulse Response ($\mathrm{G}=10$)

OUTPUT VOLTAGE SWING (5V/DIV)
ov

TIME (20 $\mu \mathrm{S} / \mathrm{DIV}$)

Typical Performance Characteristics (Continued)

Application Hints

BASIC OPERATION

The LF152 is a monolithic JFET input differential current feedback instrumentation amplifier. The BIFET process used to fabricate the LF152 makes it possible to take advantage of JFETs throughout the design. In the simplified schematic of Figure 1, the differential input voltage is impressed across resistor R_{G} via the input JFETs, while the difference between the sense and reference voltages is impressed across the resistor R. The gain of the amplifier is determined by the ratio of resistor R_{S} to resistor $\mathrm{R}_{\mathrm{G}}\left(\mathrm{G}=\mathrm{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{G}}\right)$. (For clarity let's follow a signal through the amplifier:).

In Figure 1, let $\mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega$, the $(-)$ input be grounded, and the (+) input be 1 V ; the output should be 1 V . The 1 V signal applied developes $1 \mu \mathrm{~A}$ through R_{G} from right to left and unbalances the current drive to the second stage amplifier. The additional current driven into the $(+)$ input of the second stage amplifier causes the output to increase. As V_{O} increases, the sense input voltage increases and the left side of RS also increases. When the sense input has risen $1 \mathrm{~V}, 1 \mu \mathrm{~A}$ will flow throuigh RS from left to right and, thus, subtract $1 \mu \mathrm{~A}$ from I_{1}. An opposite action simultaneously occurs in 12 which brings the currents into the second stage and thus the system back into balance.

The LF152 series is designed to optimize key parameters in instrumentation amplifiers. The device has very high
common-mode rejection, low gain non-linearity, extremely low bias currents and very high. input impedance.

INPUTS

The P-channel JFET input devices of the LF152 series provide very low bias currents and very high input impedances.

The maximum differential input voltage is independent of the supply voltages, however, neither of the input voltages should be allowed to exceed the negative supply, as this will cause large currents to flow, which can result in a destroyed unit.

Exceeding the negative voltage range on either input will cause a reversal of phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative input voltage range on both inputs will force the amplifier output to a high state. Exceeding the positive input voltage range on a single input will not change the phase of the output; however, gain linearity will degrade. If both inputs exceed the positive input voltage range, the output of the amplifier will be forced to a high state.

The common-mode slew rate of the inputs should be limited to $5 \mathrm{~V} / \mu \mathrm{s}$ to insure low input bias currents.

Application Hints (Continued)

USING THE SENSE, REFERENCE, AND OUTPUT PINS

The sense input and the output of the device are pinned out separately to allow increased flexibility in system designs (see applications). The reference input allows biasing of the output voltage, from +10 V to -10 V . The ac input resistance of both the sense and reference inputs is unusually high because their input currents are forced to be constant with voltage (typically $20 \mu \mathrm{~A}$).

The maximum linear output swing is determined by the magnitude of resistor R_{S} :
$\left|V_{\text {OMAX }}\right|=10 \mu \mathrm{~A}$ (RS)
If the output of the amplifier is to be abruptly changed more than 6V, a PNP transistor should be connected, as shown in Figure 3, to prevent the slew rate of the output from exceeding the slew rate of the sense stage. If this precaution is not taken, the base-emitter junction of the input transistor in the sense stage will transiently break down and its β will degrade, resulting in a permanent negative shift in output offset voltage.

FIGURE 3. Large Signal Transient Suppression

OFFSET VOLTAGE

Because of the two stage design of the instrumentation amplifier, there are two independent contributors to offset voltage (VOS). The output offset (VOOS) is
independent of gain while the input offset ($\mathrm{V}_{\mathrm{IOS}}$) is multiplied by the gain of the amplifier to the output.
$V_{\mathrm{OS}}=\mathrm{V}_{\mathrm{OSS}}(\mathrm{G})+\mathrm{V}_{\mathrm{OOS}}$
The output offset of the LF152 can be adjusted as shown in Figure 2. In addition, the LF152 features input offset adjust which is not common to monolithic instrumentation amplifiers and is normally available only on expensive modules. The simple adjust scheme shown in Figure 5 has only a slight increase in non-linearity compared to that of Figure 4 and is recommended for most applications. Nulling both input and output offset makes the overall offset zero, independent of gain.

The output offset is affected by adjustment of the input offset. For every mV of input offset adjust, the output offset will change by approximately 32 mV . Adjustment of the output offset has no effect on the input offset, so it should always be done last.

Offset adjustment changes the temperature coefficient of the VOS drift. The typical input offset drift of the unadjusted device is $-10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. If the input offset is adjusted, the VIOS drift increases by approximately
$V_{\text {IOS }}$ drift $\approx-10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}+2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} /(\mathrm{mV}$ of adjustment)
The VOOS drift will be improved by output offset adjust because the magnitudes of the current sources adjusted become less sensitive to V_{BE} variations. If $V_{\text {OOS }}$ adjust is not used, pins 1,2 and 16 must be shorted to the positive supply for circuit operation.

OFFSET VOLTAGE ADJUSTMENT PROCEDURE

For gains less than 100, only output offset adjustment is needed. For gains greater than 100, input offset adjust is usually necessary since the input offset voltage amplified to the output may be out of the range of the output offset adjust. Input offset adjust is also needed if zero overall offset is desired while varying the amplifier gain.

FIGURE 4. Input Offset Adjust

Application Hints (Continued)

To adjust the input offset, the following procedure should be used:

The effective input offset voltage appears directly across R_{G} when both inputs are connected to ground, and can be measured by a voltmeter referenced to ground. This offset error across R_{G} can be zeroed by the input offset adjustment circuit shown in Figure 4 or 5. The remaining error at the output is strictly due to the output offset voltage which can then be nulled out with the circuit shown in Figure 2. The amplifier is now offset nulled independent of gain.

COMPENSATION

The variable bandwidth and slew rate of the LF152 are controlled by an RC network between the compensation pins of the amplifier as shown in Figure 2. RC and C_{C} may be varied for optimum operating characteristics in a particular application.

Layout of accompanying circuitry may influence the value of this RC network. The lead lengths to resistors
R_{S} and R_{G} should be minimized and the capacitance from these nodes should also be minimized for optimum frequency response. If $\mathrm{R}_{\mathrm{C}}=160 \Omega$ and $\mathrm{C}_{\mathrm{C}}=0.002 \mu \mathrm{~F}$ in the printed circuit board of Figure 7, the amplifier will be compensated for all gains from 1 to 1000. Gains from 0.1 to 10,000 may be obtained with different compensation.

GAIN ERROR AND NONLINEARITY

Gain error of the LF152 is the error between the average slope of the transfer function compared to the slope of $\mathrm{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{G}}$. In the LF152, the small gain error is essentially constant with gain and may be nulled out by trimming Rs.

Of the existing monolithic instrumentation amplifiers, the LF152 is among the lowest in gain nonlinearity error. Gain nonlinearity is the curvature of the transfer function from the theoretically perfect function as shown in Figure 6.

FIGURE 6. Gain Error and Nonlinearity

FIGURE 7. PC Layout (Bottom View)

Detailed Schematic

Typical Applications

Temperature Control Circuit

Under balanced conditions, $V_{\text {SENSE }}-V_{\text {REF }}$ appears across $R_{S}, V_{a}-V_{b}$ appears across R_{G} and $I_{R G}=I_{R S}$.
$\frac{V_{a}-V_{b}}{R_{G}}=\frac{V_{S E N S E}}{R_{S}}$ or $V_{a}-v_{b}=V_{\text {SENSE }} \frac{R_{G}}{R_{S}}$
$V_{\text {SENSE }}$ is fixed by the temperature control resistor and R_{G} / R_{S} is constant. The LF152 is used as a comparator with a feedback loop closed through the heater and the temperature dependent resistor. If $\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}>$ $V_{S E N S E} R_{G} / R_{S}$. The output goes high turning "ON" the heater. If $V_{a}-V_{b}<V_{\text {SENSE }} R_{G} / R_{S}$. The output goes low turning "OFF" the heater.'

Alternate Input Offset ($V_{\text {IOS }}$) Adjust Scheme

Definition of Terms

G Closed loop gain. $G=R_{S} / R_{G}$
G_{E} Gain error. A rotational error of the transfer function about the origin.

GNL Gain nonlinearity. Curvature of the transfer function.
VOS Offset voltage. Voltage offset of the transfer function at the origin $\mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{IOS}}(\mathrm{G})+\mathrm{V}_{\mathrm{OOS}}$

LM121/LM221/LM321,
 LM121A/LM221A/LM321A Precision Preamplifiers

General Description

The LM121 series are precision preamplifiers designed to operate with general purpose operational amplifiers to drastically decrease dc errors. Drift, bias current, common mode and supply rejection are more than a factor of 50 better than standard op amps alone. Further, the added dc gain of the LM121 decreases the closed loop gain error.

The LM121 series operates with supply voltages from $\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and has sufficient supply rejection to operate from unregulated supplies. The operating current is programmable from $5 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ so bias current, offset current, gain and noise can be optimized for the particular application while still realizing very low drift. Super-gain transistors are used for the input stage so input error currents are lower than conventional amplifiers at the same operating current. Further, the initial offset voltage is easily nulled to zero.

Features

- Guaranteed drift of LM121A series - $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Guaranteed drift of LM 121 series $-1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Offset voltage less than 0.4 mV
- Bias current less than 10 nA at $10 \mu \mathrm{~A}$ operating current
- CMRR 126 dB minimum
- 120 dB supply rejection
- Easily nulled offset voltage

The extremely low drift of the LM121 will improve accuracy on almost any precision dc circuit. For example, instrumentation amplifier, strain gauge amplifiers and thermocouple amplifiers now using chopper amplifiers can be made with the LM121. The full differential input and high common-mode rejection are another advantage over choppers. For applications where low bias current is more important than drift, the operating current can be reduced to low values. High operating currents can be used for low voltage noise with low source resistance. The programmable operating current of the LM121 allows tailoring the input characteristics to match those of specialized op amps.

The LM121 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range, the LM 221 over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range and the LM321 over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Typical Applications

Thermocouple Amplifier with Cold Junction Compensation

Absolute Maximum Ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage (Notes 2 and 3)	$\pm 15 \mathrm{~V}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM121	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM221	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM321	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4) LM121, LM221, LM321

Note 1: The maximum junction temperature of the LM121 is $150^{\circ} \mathrm{C}$, while that of the LM221 is $100^{\circ} \mathrm{C}$. The maximum junction temperature of the LM321 is $85^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 6$ inch thick epoxy glass board with ten, 0.03 inch wide, 2 ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes in series with a 500Ω resistor for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \leq V_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM221, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, and for the LM321 the specifications apply over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Note 5: External precision resistor - 0.1% - can be placed from pins 1 and 8 to 7 to increase positive common-mode range.

Note 1：The maximum junction temperature of the LM121A is $150^{\circ} \mathrm{C}$ ，while that of the LM221A is $100^{\circ} \mathrm{C}$ ．The maximum junction temperature of the LM321A is $85^{\circ} \mathrm{C}$ ．For operating at elevated temperature，devices in the TO－5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ ，junction to ambient，or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case．For the flat package，the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 6$ inch thick epoxy glass board with ten， 0.03 inch wide， 2 ounce copper conductors．The thermal resistance of the dual－in－line package is $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient．
Note 2：The inputs are shunted with back－to－back diodes in series with a 500Ω resistor for overvoltage protection．Therefore，excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs．
Note 3：For supply voltages less than $\pm 15 \mathrm{~V}$ ，the absolute maximum input voltage is equal to the supply voltage．
Note 4：These specifications apply for $\pm 5 \leq V_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ ，unless otherwise specified．With the LM221A，however，all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ ，and for the LM321A the specifications apply over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range．
Note 5：External precision resistor－ 0.1%－can be placed from pins 1 and 8 to 7 to increase positive common－mode range．

Frequency Compensation

UNIVERSAL COMPENSATION

The additional gain of the LM121 preamplifier when used with an operational amplifier usually necessitates additional frequency compensation. When the closed loop gain of the op amp with the LM121 is less than the gain of the LM121 alone, more compensation is needed. The worst case situation is when there is 100% feedback-such as a voltage follower or integrator-and the gain of the LM121 is high. When high closed loop gains are used-for example $A_{V}=1000$-and only an addition gain of 200 is inserted by the LM121, the frequency compensation of the op amp will usually suffice.

The frequency compensation shown here is designed to operate with any unity-gain stable op amp. Figure 1 shows the basic configuration of frequency stabilizing network. In operation the output of the LM121 is rendered single ended by a $0.01 \mu \mathrm{~F}$ bypass capacitor to ground. Overall frequency compensation then is achieved by an integrating capacitor around the op amp.

$$
\begin{aligned}
& \text { Bandwidth at unity-gain } \cong \frac{12}{2 \pi R_{\mathrm{SET}} \mathrm{C}} \\
& \text { for } 0.5 \mathrm{MHz} \text { bandwidth } \mathrm{C}=\frac{4}{10^{6} \mathrm{R}_{\mathrm{SET}}}
\end{aligned}
$$

For use with higher frequency op amps such as the LM118 the bandwidth may be increased to about 2 MHz .

If the closed loop gain is greater than unity, " C " may be decreased to:

$$
C=\frac{4}{10^{6} A_{C L} R_{S E T}}
$$

Typical Applications

FIGURE 1. Low Drift Op Amp Using the LM121A as a Preamp

ALTERNATE COMPENSATION

The two compensation capacitors can be made equal for improved power supply rejection. In this case the formula for the compensation capacitor is:

$$
C=\frac{8}{10^{6} A_{C L} R_{S E T}}
$$

Table I shows typical values for the two compensating capacitors for various gains and operating currents.

CLOSED LOOP GAIN	CURRENT SET RESISTOR					
	$120 \mathrm{k} \Omega$	$\mathbf{6 0} \mathbf{k} \Omega$	$30 \mathrm{k} \Omega$	$12 \mathrm{k} \Omega$	$6 \mathbf{k} \Omega$	
$A_{V}=1$	68	130	270	680	1300	
$A_{V}=5$	15	27	56	130	270	
$A_{V}=10$	10	15	27	68	130	
$A_{V}=50$	1	3	5	15	27	
A $_{V}=100$	-	1	3	5	10	
$A_{V}=500$	-	-	1	1	3	
$A_{V}=1000$	-	-	-	-	-	

This table applies for the LM108, LM101A, LM741, LM118. Capacitance is in pF .

DESIGN EQUATIONS FOR THE LM121.SERIES

Null Pot Value should be 10% of $\mathrm{R}_{\text {SET }}$
Operating Current $\approx \frac{2 \times 0.65 \mathrm{~V}}{\mathrm{R}_{\mathrm{SET}}}$
$\begin{aligned} & \text { Positive Common- } \\ & \text { Mode Limit }\end{aligned} \mathrm{V}^{+}-\left[0.6-\frac{0.65 \mathrm{~V} \times 50 \mathrm{k}}{\mathrm{R}_{\mathrm{SET}}}\right]$

Gain of $\mathbf{1 0 0 0}$ Instrumentation Amplifier ${ }^{\ddagger}$

Typical Applications (Continued)

High Speed* Inverting Amplifier with Low Drift

Medium Speed* General Purpose Amplifier

Increased Common-Mode Range at High Operating Currents

Connection Diagrams

Schematic Diagram*

Typical Performance Characteristics

Distribution of Offset
Voltage Drift (Nulled)

Distribution of Offset Voltage Drift (Nulled)

Typical Performance Characteristics (Continued)

National Semiconductor
 LH0036/LH0036C Instrumentation Amplifier

general description

The LH0036/LH0036C is a true micro power instrumentation amplifier designed for precision differential signal processing. Extremely high accuracy can be obtained due to the $300 \mathrm{M} \Omega$ input impedance and excellent 100 dB common mode rejection ratio. It is packaged in a hermetic TO-8 package. Gain is programmable with one external resistor from 1 to 1000. Power supply operating range is between $\pm 1 \mathrm{~V}$ and $\pm 18 \mathrm{~V}$. Input bias current and output bandwidth are both externally adjustable or can be set by internally set values. The LH0036 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and the

equivalent circuit and connection diagrams

Order Number LH0036G or LH0036CG See NS Package H12B
absolute maximum ratings

Supply Voltage	$\pm 18 \mathrm{~V}$	Short Circuit Duration	Continuous
Differential Input Voltage	$\pm 30 \mathrm{~V}$	Operating Temperature Range	
Input Voltage Range	$\pm V_{S}$	LH0036	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Shield Drive Voltage	$\pm V_{S}$	LH0036C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CMRR Preset Voltage	$- \pm V_{S}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
CMRR Trim Voltage	$\pm V_{S}$	Lead Temperature, Soldering 10 seconds	$300^{\circ} \mathrm{C}$
Power Dissipation (Note 3)	1.5 W		

electrical characteristics (Notes 1 and 2)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0036			LH0036C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage ($\mathrm{V}_{\mathrm{ros}}$)	$\begin{aligned} & R_{S}=1.0 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S}=1.0 \mathrm{k} \Omega \Omega \end{aligned}$	0.5 2.0		1.0 2.0	-	1.0	2.0 3.0	$\begin{aligned} & m V \\ & m V \end{aligned}$
Output Offset Voltage (Voos)	$\mathrm{R}_{\mathrm{S}}=1.0 \mathrm{kS} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			5.0		5.0	10	mV
	$\mathrm{R}_{\mathrm{S}}=1.0 \mathrm{kS}$			6.0			12	mV
Input Offset Voltage Tempco ($\Delta \mathrm{V}_{\text {1os }} / \Delta \mathrm{T}$)	$\mathrm{R}_{\mathrm{S}} \leq 1.0 \mathrm{k} \Omega$		10			10		$\mu \vee /{ }^{\circ} \mathrm{C}$
Output Offset Voltage Tempco ($\Delta V_{\text {oos }} / \Delta T$)			15			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Overall Offset Referred to Input (V_{OS})	$A_{V}=1.0$		2.5			6.0		mV
	$A_{V}=10$		0.7			1.5		$m V$
	$A_{V}=100$		0.52			1.05		$m V$.
	$A_{V}=1000$		0.502			1.005		mV
Input Bias Current(18)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		40	100		50	125	nA
				150			200	$n \mathrm{~A}$
Input Offset Current (Ios)	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		10	$\begin{aligned} & 40 \\ & 80 \end{aligned}$		20	$\begin{aligned} & 50 \\ & 100 \end{aligned}$	$\begin{aligned} & n A \\ & n A \end{aligned}$
Small Signal Bandwidth.	$A_{V}=1.0, R_{L}=10 \mathrm{k} \Omega 2$		350			350		kHz_{2}
	$A_{V}=10, R_{L}=10 \mathrm{kS} 2$		35			35		kHz
	$A_{V}=100, R_{L}=10 \mathrm{kS} 2$		3.5			3.5		kHz
	$A_{V}=1000, R_{L}=10 \mathrm{k} \Omega 2$		350		,	350	.	Hz^{2}
Full Power Bandwidth	$\begin{aligned} & V_{\text {IN }}= \pm .10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \\ & A_{V}=1 \end{aligned}$		5.0			5.0		kHz^{2}
Input Voltage Range	Differential	± 10	± 12		± 10	± 12		v
	Common Mode	± 10	± 12		± 10	± 12		v
Gain Nonlinearity			0.03			0.03		$\%$
Deviation From Gain Equation Formula	$A_{V}=1$ to 1000		± 0.3	± 1.0		± 1.0	± 3.0	$\%$
PSRR	$\begin{aligned} & \pm 5.0 \mathrm{~V} \leq V_{S} \leq \pm 15 \mathrm{~V}, \\ & A_{V}=1.0 \end{aligned}$		1.0	2.5		1.0	5.0	mv / V
	$\begin{aligned} & \pm 5.0 \mathrm{~V} \leq V_{S} \leq \pm 15 \mathrm{~V}, \\ & A_{V}=100 \end{aligned}$		0.05	0.25		0.10	0.50	mv / V
CMRR	$A_{V}=1.0 \quad D C$ to		1.0	2.5		2.5	5.0	mV / V
	$A_{V}=10 \quad 100 \mathrm{~Hz}$		0.1	0.25		0.25	0.50	$m V / V$
	$A_{V}=100 \quad \Delta \mathrm{R}_{\text {S }}=1.0 \mathrm{k}$		50	100		50	100	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=10 \mathrm{kS} 2$,	± 10	± 13.5		± 10	± 13.5		v
	$V_{S}= \pm 1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{kS}$	± 0.6	± 0.8		± 0.6	± 0.8		v
Output Resistance			0.5			0.5		$\Omega 2$
Supply Current			300	400		400	600	$\mu \mathrm{A}$
Equivalent Input Noise Voltage	$\begin{aligned} & 0.1 \mathrm{~Hz}<\mathrm{f}<10 \mathrm{kHz}, \\ & R_{\mathrm{S}}<50 \Omega \end{aligned}$		20			20		$\mu \mathrm{V} / \mathrm{p} \cdot \mathrm{p}$
Slew Rate	$\begin{aligned} & \Delta V_{I N}= \pm 10 \mathrm{~V} \\ & R_{L}=10 \mathrm{kS} 2, A_{V}=1.0 \end{aligned}$		0.3		,	0.3		$\mathrm{V} / \mathrm{\mu} \mathrm{~s}$
Setting Time	$\begin{aligned} & \text { To } \pm 10 \mathrm{mV} . R_{L}=10 \mathrm{k} \Omega 2 . \\ & 3 V_{\text {OUT }}=1.0 \mathrm{~V} \end{aligned}$							
	$A_{V}=1.0$		3.3	.		3.8		$\mu \mathrm{s}$
	$A_{v}=100$		180			180		$\mu \mathrm{s}$

Note 1: Unless otherwise specified, all specifications apply for $V_{S}= \pm 15 \mathrm{~V}$. Pins 1,3 , and 9 grounded, $-25^{\circ} \mathrm{C}$ to $+85^{\prime \prime} \mathrm{C}$ for the LH0036C and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0036.
Note 2: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: The maximum junction temperature is $150^{\circ} \mathrm{C}$. For operation at elevated temperature derate the G package on a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$, above $25^{\circ} \mathrm{C}$.

typical performance characteristics

Common Mode Voltage vs Supply Voltage

CMRR vs Frequency

Output Voltage Swing vs Frequency

Instrumentation Amplifier with Logic Controlled Shut-Down

Pre MUX Signal Conditioning

Isolation Amplifier for Medical Telemetry

Thermocouple Amplifier with Cold Junction Compensation

applications information

THEORY OF OPERATION

The LH0036 is a 2 stage amplifier with a high input impedance gain stage comprised of A_{1} and A_{2} and a differential to single-ended unity gain stage, A_{3}. Operational amplifier, A_{1}, receives differential input signal, e_{1}, and amplifies it by a factor equal to $\left(R_{1}+R_{G}\right) / R_{G}$.
A_{1} also receives input e_{2} via A_{2} and $R 2$. e_{2} is seen as an inverting signal with a gain of $\mathrm{R} 1 / \mathrm{R}_{\mathrm{G}} . \mathrm{A}_{1}$ also receives the common mode signal e_{CM} and processes it with a gain of +1 .
Hence:
$V_{1}=\frac{R 1+R_{G}}{R_{G}} e_{1}-\frac{R 1}{R_{G}} e_{2}+e_{C M}$
By similar analysis V_{2} is seen to be:
$V_{2}=\frac{R 2+R_{G}}{R_{G}} e_{2}-\frac{R 2}{R_{G}} e_{1}+e_{C M}$
For $\mathrm{R} 1=\mathrm{R} 2$:
$V_{2}-V_{1}=\left[\left(\frac{2 R 1}{R_{G}}\right)+1\right]\left(e_{2}-e_{1}\right)$
Also, for $R 3=R 5=R 4=R 6$, the gain of $A_{3}=1$, and:
$e_{0}=(1)\left(V_{2}-V_{1}\right)=\left(e_{2}-e_{1}\right)\left[1+\left(\frac{2 R 1}{R_{G}}\right)\right]$
As can be seen for identically matched resistors, ${ }^{\mathrm{e}} \mathrm{CM}$ is cancelled out, and the differential gain is dictated by equation (4).

For the LH0036, equation (4) reduces to:
$A_{V C L}=\frac{e_{0}}{e_{2}-e_{1}}=1+\frac{50 k}{R_{G}}$
The closed loop gain may be set to any value from $1\left(R_{G}=\infty\right)$ to $1000\left(R_{G} \cong 50 \Omega\right)$. Equation (5a) re-arranged in more convenient form may be used to select R_{G} for a desired gain:
$\mathbf{R}_{\mathrm{G}}=\frac{50 \mathrm{k}}{\mathrm{A}_{\mathrm{VCL}}-1}$

USE OF BANDWIDTH CONTROL (pin 1)

In the standard configuration, pin 1 of the LH0036 is simply grounded. The amplifier's slew rate in this configuration is typically $0.3 \mathrm{~V} / \mu \mathrm{s}$ and small
signal bandwidth 350 kHz for $\mathrm{A}_{\mathrm{VCL}}=1$. In some applications, particularly at low frequency, it may. be desirable to limit bandwidth in order to minimize the overall noise bandwidth of the device. A resistor $R_{B W}$ may be placed between pin 1 and ground to accomplish this purpose. Figure 2 shows typical small signal bandwidth versus R_{Bw}.

FIGURE 2. Bandwidth vs RBW
It also should be noted that large signal bandwidth and slew rate may be adjusted down by use of $R_{B W}$. Figure 3 is plot of slew rate versus $R_{B W}$.

FIGURE 3. Output Slew Rate vs R BW

CMRR CONSIDERATIONS

Use of Pin 9, CMRR Preset

Pin 9 should be grounded for nominal operation. An internal factory trimmed resistor, R6, will yield a CMRR in excess of 80 dB (for $A_{V C L}=100$). Should a higher CMRR be desired, pin 9 should be left open and the procedure, in this section followed.

DC Off-set Voltage and Common Mode Rejection Adjustments
Off-set may be nulled using the circuit shown in Figure 4.

FIGURE 4. VoS Adjustment Circuit
Pin 8 is also used to improve the common mode rejection ratio as shown in Figure 5. Null is

applications information (con't)

achieved by alternately applying $\pm 10 \mathrm{~V}$ (for V^{+}\& $\mathrm{V}^{-}=15 \mathrm{~V}$) to the inputs and adjusting R 1 for minimum change at the output.

FIGURE 5. CMRR Adjustment Circuit
The circuits of Figure 4 and 5 may be combined as shown in Figure 6 to accomplish both V_{O} and CMRR null. However, the $\mathrm{V}_{O s}$ and CMRR adjustment are interactive and several iterations are required. The procedure for null should start with the inputs grounded.

FIGURE 6. Combined CMRR, VOS Adjustment Circuit
R2 is adjusted for V_{O} null. An input of +10 V is then applied and R1 is adjusted for CMRR null. The procedure is then repeated until the optimum is achieved.

A circuit which overcomes adjustment interaction is shown in Figure 7. In this case, R2 is adjusted first for output null of the LH0036. R1 is then adjusted for output null with +10 V input. It is always a good idea to check CMRR null with a -10 V input. The optimum null achievable will yield the highest CMRR over the amplifiers common mode range.

FIGURE 7. Improved VOS, CMRR Nulling Circuit

AC CMRR Considerations

The ac CMRR may be improved using the circuit of Figure 8.

FIGURE 8. Improved AC CMRR Circuit
After adjusting R1 for best dc CMRR as before, R2 should be adjusted for minimum peak-to-peak voltage at the output while applying an ac common mode signal of the maximum amplitude and frequency of interest.

INPUT BIAS CURRENT CONTROL

Under nominal operating conditions (pin 3 grounded), the LH0036 requires input currents of 40 nA . The input current may be reduced by inserting a resistor (R_{B}) between 3 and ground or, alternatively, between 3 and V^{-}. For R_{B} returned to ground, the input bias current may be predicted by:
$I_{B I A S} \cong \frac{\mathrm{~V}^{+}-0.5}{4 \times 10^{8}+800 \mathrm{R}_{\mathrm{B}}}$
or
$R_{B}=\frac{\mathrm{V}^{+}-05-\left(4 \times 10^{8}\right)\left(I_{\text {BIAS }}\right)}{800 I_{\text {BIAS }}}$
Where:

$$
\begin{aligned}
& I_{B I A S}= \text { Input Bias Current (nA) } \\
& R_{B}= \text { External Resistor connected between } \\
& \text { pin } 3 \text { and ground (Ohms) } \\
& \mathrm{V}^{+}=\text {Positive Supply Voltage (Volts) }
\end{aligned}
$$

Figure 9 is a plot of input bias current versus R_{B}.

FIGURE 9. Input Bias Current as a Function of R_{B}
As indicated above, R_{B} may be returned to the negative supply voltage. Input bias current may then be predicted by:
$I_{B A S} \cong \frac{\left(V^{+}-V^{-}\right)-0.5}{4 \times 10^{8}+800 R_{B}}$

applications information (con't)

or
$R_{B} \cong \frac{\left(V^{+}-V^{-}\right)-0.5-\left(4 \times 10^{8}\right)\left(I_{B I A S}\right)}{800 I_{B I A S}}$
Where:

$$
\begin{aligned}
& I_{B I A S}=\text { Input Bias Current (nA) } \\
& R_{B}=\text { External resistor connected between } \\
& \quad \text { pin } 3 \text { and } V^{-} \text {(Ohms) } \\
& V^{+}=\text {Positive Supply Voltage (Volts) } \\
& V^{-}=\text {Negative Supply Voltage (Volts) }
\end{aligned}
$$

FIGURE 10. Input Bias Current as a Function of R_{B}
Figure 10 is a plot of input bias current versus R_{B} returned to V^{-}it should be noted that bandwidth is affected by changes in R_{B}. Figure 11 is a plot of bandwidth versus R_{B}.

FIGURE 11. Unity Gain Bandwidth as a Function of R_{B}

BIAS CURRENT RETURN PATH CONSIDERATIONS

The LH0036 exhibits input bias currents typically in the 40 nA region in each input. This current must flow through $\mathrm{R}_{\text {tso }}$ as shown in Figure 12.

FIGURE 12. Bias Current Return Path

In a typical application, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{B} 1} \cong \mathrm{I}_{\mathrm{B} 2} \cong$ 40 nA , the total current, I_{T}, would flow through $R_{\text {Iso }}$ causing a voltage rise at point A. For values of $R_{\text {Iso }} \geq 150 \mathrm{M} \Omega$, the voltage at point A exceeds the +12 V common range of the device. Clearly, for $R_{\text {ISO }}=\infty$, the LH0036 would be driven to positive saturation.

The implication is that a finite impedance must be supplied between the input and power supply ground. The value of the resistor is dictated by the maximum input bias current, and the common mode voltage. Under worst case conditions:
$R_{\text {ISO }} \leq \frac{V_{C M R}-V_{C M}}{I_{T}}$
Where:

$$
\begin{aligned}
& V_{C M R}=\text { Common Mode Range (10V for } \\
& \text { the LH0036) } \\
& V_{C M}=\text { Common Mode Voltage } \\
& I_{T}=I_{B 1}+I_{B 2}
\end{aligned}
$$

In applications in which the signal source is floating, such as a thermocouple, one end of the source may be grounded directly or through a resistor.

GUARD OUTPUT

Pin 2 of the LHOO36 is provided as a guard drive pin in those stringent applications which require very low leakage and minimum input capacitance. Pin 2 will always be biased at the input common mode voltage. The source impedance looking into pin 2 is approximately $15 \mathrm{k} \Omega$. Proper use of the guard/shield pin is shown in Figure 13.

FIGURE 13. Use of Guard
For applications requiring a lower source impedance than $15 \mathrm{k} \Omega$, a unity gain buffer, such as the LHOOO2 may be inserted between pin 2 and the input shields as shown in Figure 14.

FIGURE 14. Guard Pin With Buffer

definition of terms

Bandwidth: The frequency at which the voltage gain is reduced to 0.707 of the low frequency (dc) value.

Closed Loop Gain, Avcl: The ratio of the output voltage swing to the input voltage swing determined by $A_{V C L}=1+\left(50 k / R_{G}\right)$. Where: $R_{G}=$ Gain Set Resistor.

Common Mode Rejection Ratio: The ratio of input voltage range to the peak-to-peak change in offset voltage over this range.

Gain Equation Accuracy: The deviation of the actual closed loop gain from the predicted closed loop gain, $A_{V C L}=1+\left(50 k / R_{G}\right)$ for the specified closed loop gain.

Input Bias Current: The current flowing at pin 5 and 6 under the specified operating conditions.

Input Offset Current: The difference between the input bias current at pins 5 and 6 ; i.e. $\mathrm{l}_{\mathrm{OS}}=$ $I_{5}-I_{6}$.

Input Stage Offset Voltage, V_{105} : The voltage which must be applied to the input pins to force the output to zero volts for $A_{\mathrm{VCL}}=100$.

Output Stage Offset Voltage, $\mathbf{V}_{\text {OOS }}$: The voltage which must be applied to the input of the output stage to produce zero output voltage. It can be measured by measuring the overall offset at unity gain and subtracting $V_{\text {IOs }}$.
$V_{\text {OOS }}=\left[\left.V_{\mathrm{OS}}\right|_{A_{V C L}=1}\right]-\left[\left.V_{\mathrm{OS}}\right|_{A_{\mathrm{VCL}}}=1000\right]$

Overall Offset Voltage:
$V_{\text {OS }}=V_{\text {IOS }}+\frac{V_{\text {OOS }}}{A_{\text {VCL }}}$

Power Supply Rejection Ratio: The ratio of the change in offset voltage, $V_{O S}$, to the change in supply voltage producing it.

Resistor, $\mathbf{R}_{\mathbf{B}}$: An optional resistor placed between pin 3 of the LH0036 and ground (or V^{-}) to reduce the input bias current.

Resistor, $\mathbf{R}_{\mathbf{B W}}$: An optional resistor placed between pin 1 of the LH0036 and ground (or V^{-}) to reduce the bandwidth of the output stage.

Resistor, $\mathbf{R}_{\mathbf{G}}$: A gain setting resistor connected between pins 4 and 7 of the LH0036 in order to program the gain from 1 to 1000 .

Settling Time: The time between the initiation of an input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

National

LH0038/LH0038C True Instrumentation Amplifier

General Description

The LH0038/LH0038C is a precision true instrumentation amplifier (TIA) capable of amplifying very low level signals, such as thermocouple and low impedance strain guage outputs. Precision thin film gain setting resistors are included in the package to allow the user to set the closed-loop gain from 100 to 2000 . Since the resistors are of a homogeneous single chip construction, they track almost perfectly so that temperature variations of closed loop gain are virtually eliminated.

LH0038 exhibits excellent CMRR, PSRR, gain linearity, as well as extremely low input offset voltage, offset voltage drift and input noise voltage.

The devices are provided in a hermetically sealed 16 -lead DIP. The LH0038 is guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas the LH0038C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Ultralow offset voltage
$25 \mu \mathrm{~V}$ typ., $100 \mu \mathrm{~V}$ max
- Ultralow offset drift $0.25 \mu \mathrm{~V} / \mathrm{C}$ max
- Ultralow input noise $0.2 \mu \mathrm{Vp}-\mathrm{p}$
- Pin strap gain options $100,200,400,500,1 \mathrm{k}, 2 \mathrm{k}$
- Excellent PSRR and CMRR

120 dB

Simplified Schematic Diagram

Connection Diagram

Absolute Maximum Ratings

Supply Voltage

Differential Input Voltage (Note 1)
Input Voltage
Power Dissipation (See Curve)
Short Circuit Duration
Operating Temperature Range
LH0038
LH0038C
Storage Temperature
Lead Temperature (Soldering, 20 seconds)
$\pm 18 \mathrm{~V}$ $\pm 1 \mathrm{~V}$ $\pm \mathrm{V}_{\mathrm{S}}$
500 mW Continuous
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 2)

DC Electrical Characteristics (Note 2) (Continued)

PARAMETER		CONDITIONS		LH0038			LH0038C			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX					
CMRR	Common-Mode			$V_{\text {IN }}= \pm 10 \mathrm{~V}$	$A_{V C L}=100$	94	110		86	110		, dB
	Rejection Ratio		$A_{\text {VCL }}=1000$	114	120		106	110				
PSRR	Power Supply	$\pm 5 \mathrm{~V} \leq \Delta \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$	$A_{V C L}=100$	94	110		94	110				
	Rejection Ratio		AVCL $=1000$	110	120		100	110				
IOSC	Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 2	± 5	± 10	± 2	± 5	± 10	mA		
IS	Supply Current	$\mathrm{T}^{\prime}=25^{\prime \prime} \mathrm{C}$			1.6	. 2.0		1.6	3.0			
RIN DIFF	Input Resistance	$A_{V C L}=1000, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$			5			5		$\mathrm{M} \Omega$		
RIN CM	Common-Mode Input Resistance				1			1		$\mathrm{G} \Omega$		
Rout	Output Resistance				1	.		1		$\mathrm{m} \Omega$		

AC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		COMMENT	CONDITIONS		TYP	UNITS
e_{n}	Equivalent Input Noise Voltage	Figure 1	$\mathrm{R}_{\mathrm{S}}=0, f=0.1$ to 10 Hz		0.2	$\mu \vee \mathrm{p}$-p
$\overline{e_{n}}$	Equivalent Input Spot Noise Voltage	Figure 1	$R_{S}=10052$	$f=10 \mathrm{~Hz}$	6.5	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
				$f=100 \mathrm{~Hz}$	6.0	
				$\mathrm{f}=1 \mathrm{kHz}$	6.0	
				$f=10 \mathrm{kHz}$	6.0	
BW	Large Signal Bandwidth		$V_{\text {OUT }}= \pm 10 \mathrm{~V}$		1.6	kHz
S_{r}	Slew Rate	,	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$		0.3	$\mathrm{V} / \mu \mathrm{s}$
t_{5}	Settling Time to 0.01\%	Figure 13		20 V Step	120	$\mu \mathrm{s}$
				-10V Step	80	
				+10V Step	60	
tr_{r}	Rise Time		$\Delta V_{\text {OUT }}=100 \mathrm{mV}$	$A_{\text {VCL }}=100$	6	$\mu \mathrm{s}$
				$A_{V C L}=1000$	13	
	Equivalent Input Spot Noise Current		$R_{S}=100 \mathrm{MS} 2$	$f=10 \mathrm{~Hz}$	0.1	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: The inputs are protected by diodes for overvoltage protection. Excessive currents will flow for differential voltages in excess of $\pm 1 \mathrm{~V}$. Input current should be limited to less than 10 mA .
Note 2: Unless otherwise noted these specifications apply for $V_{S}= \pm 15.0 \mathrm{~V}$, pin 15 connected to pin 1 , pin 16 connected to ground, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\prime \prime} \mathrm{C}$ for the LH0038 and $\mathbf{2 5} 5^{\prime \prime} \mathrm{C}$ to $+85^{\prime \prime} \mathrm{C}$ for LH0038C.

Typical Performance Characteristics

Closed Loop: Frequency
Response

Input Noise Voltage
(Includes Source Impedance)

Wide Band Noise

$V_{S}= \pm 15 \mathrm{~V}, R_{S}=1 \mathrm{k} \Omega, A_{V}=10 \mathrm{k}, \mathrm{DUT}=1 \mathrm{k}$ Vertical sensitivity: $0.1 \mu \mathrm{~V} / \mathrm{CM}$
Horizontal sensitivity: $5 \mathrm{sec} / \mathrm{CM}$
Bandwidth: 0.1 Hz to 10 Hz

Input Bias Current

Common-Mode Rejection

Output Swing

Pulse Response

$V_{S}= \pm 15 \mathrm{~V}$
$R_{L} \geq 10 \mathrm{k} \Omega$
$A V C L=1 k$

Noise Test Circuit

FIGURE 1.

Typical Application

FIGURE 2. X1000 Bridge Amplifier

Applications Information

THEORY OF OPERATION

The LH0038 is a 3 -stage, true instrumentation amplifier composed of a well matched transistor differential pair, Q1 and Q2, a common-mode loop amplifier, A2 and A3, and a differential to single ended amplifier, A4. A simplified schematic is shown in Figure 3.

Current source, IA, establishes a voltage across R14 of approximately 2 V , which results in a 2 V drop across R8 and R12. This constant voltage forces the first stage
current to be $20 \mu \mathrm{~A}$ per side. The action of A 2 and A 3 is such that $20 \mu \mathrm{~A}$ is maintained constant despite the presence of common-mode signals. The differential outputs of A2 and A3 are applied to differential amplifier, A4, which converts the signal to a single-ended output and provides a gain of 5 . The total gain of the amplifier is, therefore, the fixed gain of 5 multiplied by the gain of the composite input stage.

Applicatiòns Information (Continued)

FIGURE 3. LH0038 Simplified Schematic

The closed loop gain of the composite amplifier may be better understood by referring to Figure 3. The Q1-A2 loop may be viewed as differential amplifier with the inverting input at the base and non-inverting input at the emitter. Combining small signal $A C$ and large signal DC analysis =

$$
\begin{align*}
v 1= & e 1\left(\frac{R 17+R_{E}}{R_{E}}\right)-e 2\left(\frac{R 17}{R_{E}}\right) \tag{1}\\
& +E_{C M}-V_{B E 1}-1, R 17
\end{align*}
$$

By similar analysis:

$$
\begin{equation*}
\mathrm{v} 2=\mathrm{e} 2\left(\frac{R_{16}+R_{E}}{R_{E}}\right)-\mathrm{e} 1\left(\frac{R_{16}}{R_{E}}\right) \tag{2}
\end{equation*}
$$

$$
+E_{C M} \cdot V_{B E 2}-1_{2} R 16
$$

Applications Information (Continued)

The differential input voltage ($\mathrm{v} 2-\mathrm{v} 1$) is amplified by the closed loop gain of A4:

$$
\begin{equation*}
\text { eOUT }=(A V C L 4)(e 2-e 1) \tag{5}
\end{equation*}
$$

where:

$$
\begin{align*}
A V C L 4 & =\frac{R 20}{R 8} \\
& =5.00 \\
A V C L & =5\left(\frac{2 R 16}{R E}+1\right) \tag{6}
\end{align*}
$$

As an example, with all gain pins open, $\mathrm{R}_{\mathrm{E}}=10.526 \mathrm{k} \Omega$, and:

$$
\begin{equation*}
A V C L=5\left(\frac{(2)(100 k)}{10.526 k}+1\right) \tag{7}
\end{equation*}
$$

$$
=100.0
$$

All other closed loop gain configurations place a precision resistor in parallel with $R_{E}(R 9+R 10)$. For example, for a gain of 200, pin 6 is connected to pin 10 and the gain is predicted by:

$$
\begin{align*}
A V C L & =5.00\left[\frac{(2)(100 k)}{(10.526 k) \|(10.000 k)}+1\right] \tag{8}\\
& =(5.00)(40)=200
\end{align*}
$$

CLOSED LOOP GAIN CONSIDERATIONS USING INTERNAL RESISTORS

Table I summarizes the primary gain configurations available with the LH0038. Obviously, other gains are possible. Using the internally supplied resistors has the advantage that R16, R17, and RE all track thermally, minimizing the device's gain error as a function of temperature.

Gain adjustment by paralleling or series padding internally supplied resistors is generally discouraged since external resistors will generally not thermally track. It is recommended that the gain adjustment be done in a subsequent stage as shown in Figure 4.

TABLE I. L.H0038 INTERNAL GAIN CONFIGURATIONS

OVERALL GAIN	FIRST STAGE GAIN	PIN CONNECTIONS	EFFECTIVE RE
100	20	All Gain Pins Open	$10.5260 \mathrm{kS} \Omega$
200	40	Pin 6 to Pin 10	$5.1281 \mathrm{k} \Omega$
400	80	Pin 6 to $\operatorname{Pin} 9, \operatorname{Pin} 10$ to Pin 5	$2.5316 \mathrm{k} \Omega$
500	100	Pin 6 to $\operatorname{Pin} 10, \operatorname{Pin} 9$ to Pin 5	$2.0202 \mathrm{k} \Omega$
1000	200	Pin 7 to Pin 10	1.0050 kS
2000	400	Pin 8 to Pin 10	$0.5013 \mathrm{~kJ} \Omega$

Applications Information

(Continued)

GUARD DRIVE

The LHOO38 is provided with a guard drive output, which will always be at the input common-mode voltage. The guard drive amplifier is short-circuit proof and is capable of driving several thousand pF without danger of latch-up or oscillation.

The guard drive tied to a shielded input cable will greatly reduce noise pick-up, and also improve AC CMRR by maintaining the shield at the common-mode voltage. Figure 5 illustrates the proper use of the guard drive.

The guard drive output is also connected to the case to provide electrostatic shielding to the system.

REMOTE OUTPUT SENSE

The feedback network of the LH0038 may be closed directly at the load in order to eliminate errors due to lead resistance. Also, a unity gain buffer; e.g. LH0002, may be included within the feedback loop to increase output current capability as shown in Figure 7.

FIGURE 6. Remote Sense Connection

FIGURE 7. Output Buffer Connection

Applications Information (Continued)

OFFSET NULL

Offset of the LH0038 is trimmed by the factory to a very low value. The offset may be further trimmed using a $10 \mathrm{k} \Omega, 10$ turn, $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ potentiometer as shown in Figure 8. However, a drift increase of $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ will be caused for each $100 \mu \mathrm{~V}$ of offset adjusted. The recommended offset null is shown in Figure 4 and is accomplished in the following stage.

BIAS CURRENT CONSIDERATIONS

The LH0038 exhibits bias current of approximately 50 nA per side, and requires a path to ground or supply. The practical limitation to the maximum resistance between the inputs and ground is dictated by negative common-mode range as shown in Figure 9. For example, for $V_{C M}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{CM}} \leq 20 \mathrm{M} \Omega$.

The LH0038 input stage bias was optimized for minimum voltage noise so the input bias currents are higher than might otherwise be expected. Note, however, that the input currents are very well matched, resulting in an offset current value much lower than one might infer from the bias current. In order to take advantage of this low offset current, the source impedances at both inputs should be matched to minimize DC drift. Further, bias current is relatively constant with temperature (as opposed to an FET stage), so one can consider bias current compensation schemes such as shown in Figure 10. The danger with such techniques is that the offset current and noise contributed by the bias current compensator will dominate the system noise.

FIGURE 8. Offset Adjust Circuit (See also Figure 4)

FIGURE 9. Bias Current Return

FIGURE 10. Bias Current Compensation

Applications Information (Continued)

SETTLING TIME

The LHOO38 has been purposely over-compensated, and is therefore remarkably free from any undesirable transient response. Small signal settling time is governed by gain-bandwidth product; large, signal settling time is dominated by slew rate.

Figure 11 shows an input voltage step of +10 V to -10 V applied, through a 1000 to 1 voltage divider, to the device configured for an inverting gain of 1000. The output of the device will therefore be equal to the negative of the input after the device is completely settled. By resistively subtracting the input before the divider from the device output, a pseudo summing node is generated. The voltage at this pseudo summing junction goes "off screen" on the photos, since in the first small time increment the input goes instantaneously to -10 mV and the output is still at +10 V . About $130 \mu \mathrm{~s}$ after the input has gone negative, the output slews back in range and begins an exponential approach to the final value. Figure 12 is the same set-up for a -10 V to +10 V input pulse. Note that there is no overshoot in either case. The test circuit is shown in Figure 13.

HIGH FREQUENCY CMRR

The LH0038 resistor ratios are carefully trimmed for optimum CMRR at DC through 60 Hz . Inevitably, this rejection will degrade at higher frequencies due to 2 separate effects: stray capacitance mismatch and slew rate limiting in the input stage. In most discrete instru-
mentation amplifier realizations, the stray capacjtance mismatch dominates simply because the stray capacitances are relatively large (this can be trimmed out in a discrete amplifier). In a hybrid circuit sych as the LH0038, stray capacitance is minimized, so the effects of mismatch are also minimized.

The response to a pulse or noise spike applied as a common-mode signal may be dominated by the slew characteristics of the input stage. Whenever the commonmode input slew rate exceeds $0.2 \mathrm{~V} / \mu \mathrm{s}$, the 2 input amplifiers will apply identical ramp signals to the final stage and cause its output to go to near OV. Note that the amplifier is not really active under these conditions as normal mode signal variations will not be coupled to the output. Some time may be required for the amplifier to settle after a transient of this kind before the output can be considered representative of the input. Slew rate limiting will not normally be the limiting factor for sine wave common-mode signals as $0.2 \mathrm{~V} / \mu \mathrm{s}$ corresponds to about 2 kHz ($20 \mathrm{Vp}-\mathrm{p}$).

POWER SUPPLY DECOUPLING

Although the LH0038 exhibits in excess of 120 dB PSRR at DC, the figure degrades to 100 dB at 120 Hz . It is recommended that both V^{+}and V^{-}. leads be bypassed with $1 \mu \mathrm{~F}$ electrolytic in shunt with $0.01 \mu \mathrm{~F}$ ceramic disc no further than 1 inch from the device.

$t_{s}, A_{V}=100, V_{I N}=20 \mathrm{~V}$
FIGURE 11. Settling Time

$t_{s}, A_{V}=100, V_{I N}=20 \mathrm{~V}$
FIGURE 12. Settling Time

FIGURE 13. Settling Time Test Circuit

FIGURE 14. Settling Time

Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to 3 dB below the low frequency value.

Common-Mode Rejection Ratio, CMRR: The ratio of the input common-mode voltage range to the peak-topeak change in input offset voltage over this range.

Input Offset Voltage, $V_{\text {IOS }}$: The voltage which must be applied to the inputs to force the outputs of the input stage to 0 V . VIOS can be calculated by measuring $V_{O S}$ at closed loop gains of 100 and 2000 and using the following equation:

$$
V_{\text {IOS }}=\frac{\left(V_{\text {OS }}\right) 2 k-\left(V_{\text {OS }}\right) 100}{1900}
$$

Where:

$$
\begin{aligned}
& \left(V_{O S}\right) 2 k=\text { overall offset voltage for } A V C L=2 k \\
& \left(V_{O S}\right) 100=\text { overall offset voltage for } A V C L=100
\end{aligned}
$$

Gain Non-Linearity: The deviation of the gain from a straight line drawn through the end points expressed as a percent of full-scale (10V for operations on $\pm 15 \mathrm{~V}$ supply). Note that this is a more stringent specification than deviation from the best straight line and is double the number that would be specified if the percentage were based on a $20 \mathrm{~V}(\pm 10 \mathrm{~V})$ range.

Guard Voltage Error: The voltage difference between the guard drive output and the average of the 2 input voltages.

Input Bias Current, I_{B} : The average of the 2 input currents.

Input Common-Mode Voltage Range, VINCM: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.

Input Offset Current, IOS: The difference in the currents into the 2 input terminals when the output is at zero.

Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Overall Offset Voltage, VOS: The output voltage when both inputs are connected to $O \mathrm{~V}$. VOS is composed of input amplifier offset voltage effects, $V_{1 O S}$, and output amplifier effects, $\mathrm{V}_{\text {OOS }}$. It is given by:

$$
V_{O S}=\left(A_{V C L}\right)\left(V_{1 O S}\right)-V_{O O S}
$$

Where:

AVCL $=$ closed loop gain $=100$ to 2 k
$V_{\text {IOS }}=$ input stage offset voltage
$\mathrm{V}_{\mathrm{OOS}}=$ output stage offset voltage

Output Offset Voltage, VOOS: The output voltage when the outputs of the input stage are forced to OV. VOOS may be calculated by measuring VOS at closed loop gains of 100 and 2000 and using the following equation:

$$
\frac{V_{O O S}=(20)\left(V_{\text {OS }}\right) 100-\left(V_{\text {OS }}\right) 2 k}{19}
$$

Where:

$$
\begin{aligned}
& \left(V_{\text {OS }}\right) 100=\text { overall offset voltage for } A V C L=100 \\
& \left(\mathrm{~V}_{\text {OS }}\right) 2 k=\text { overall offset voltage for } A V C L
\end{aligned}
$$

Output Voltage, V_{O} : The peak output voltage swing, referred to zero.

Offset Voltage Temperature Drift, $\Delta V_{I O S} / \Delta T$: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.

Power Supply Rejection Ratio, PSRR: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Settling Times, t_{s} : The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

Slew Rate, $\mathrm{S}_{\mathbf{r}}$: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.

Supply Current, $\pm I_{s}$: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.

Supply Voltage Range: The range of voltages on the supply terminals for which the device is operational. Note that the specifications are not guaranteed over the full supply voltage range unless specifically stated.

Transient Response, $\mathbf{t}_{\mathbf{r}}$: The closed-loop step-function response of the amplifier under small-signal conditions.

Unity Gain Bandwidth: The frequency range from DC to the frequency where the amplifier open loop gain rolls off to 1 .

Closed Loop Gain, AVCL: The ratio of output voltage to input voltage under the stated conditions of source resistance (R_{S}) and load resistance (R_{L}).

Voltage Gain Error: The deviation in percent between the ideal voltage gain and the value obtained when the device is configured for that gain.

LH0084/LH0084C Digitally Programmable Gain Instrumentation Amplifier

General Description

The LH0084/LH0084C is a self-contained, high pseed, high accuracy, digitally programmable gain instrumentation amplifier. It consists of a FET input, variable gain voltage follower input stage followed by a differential output stage. The input stage is programmable to accurate gain steps of $1,2,5$, or 10 controlled by the logic levels of a 2 -bit TTL-compatible digital input word. For additional flexibility, the output stage is pinstrappable to fixed gains of 1,4 , or 10 for an overall gain range of 1 to 100.
Applications include increased dynamic range A-to-D converters, test systems, and post multiplexer amplifier for data acquisition systems where its short settling time speeds channel sampling.

The device exhibits high input impedance, low offset voltage, high CMRR and PSRR, high speed, and excellent gain accuracy and gain non-linearily.

The LH0084 is guaranteed for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, whereas the LH0084C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Both devices are provided in a hermetically sealed 16 -lead dual-in-line metal package.

Features

- Excellent gain accuracy and gain non-linearity
0.002\% typ
- Extremely low gain drift
$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- High input impedance
10Ω typ
- High CMRR and PSRR 76 dB min
- TTL-compatible digital inputs
- High speed, settling to 0.1%
$5 \mu \mathrm{~s}$ max

Section 5
Voltage Comparators

5

Section Contents

Voltage Comparator Guide 5-iii
Definition of Terms. 5-iv
LF111/LF211/LF311 Voltage Comparators. 5-1
LM106/LM206/LM306 Voltage Comparators 5-9
LM111/LM211 Voltage Comparator. 5-12
LM119/LM219/LM319 High Speed Dual Comparator. 5-18
LM139/LM239/LM339, LM139A/LM239A/LM339A, LM2901, LM3302 Low Power Low Offset Voltage Quad Comparators 5-23
LM160/LM260/LM360 High Speed Differential Comparator. 5-31
LM161/LM261/LM361 High Speed Differential Comparators 5-34
LM193/LM293/LM393, LM193A/LM293A/LM393A, LM2903 Low Power Low Offset Voltage Dual Comparators 5-37
LM311 Voltage Comparator. 5-44
LM710/LM710C Voltage Comparator. 5-52
LM711/LM711C Dual Comparator. 5-55
LM1514/LM1414 Dual Differential Voltage Comparator. 5-58

Device	Temperature Range*	DTL/TTL	$\begin{aligned} & \text { Supply } \\ & \text { Voltage } \\ & \text { Typ } \\ & \text { (V) } \end{aligned}$	Input Bias Current $\left(25^{\circ} \mathrm{C}\right)$ Max ($\mu \mathrm{A})$	$\begin{aligned} & \text { Input Offset } \\ & \text { Current } \\ & \left(25^{\circ} \mathrm{C}\right) \\ & \text { Max } \\ & (\mu \mathrm{A}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Input Offset } \\ & \text { Voltage } \\ & \left(25^{\circ} \mathrm{C}\right) \\ & \text { Max } \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Response } \\ \text { Timet } \\ \text { Typ } \\ \text { (ns) } \end{gathered}$	$\begin{gathered} \text { Voltage } \\ \text { Gase } \\ \text { Typ } \end{gathered}$	Package Type	Comments	
LM106	Military	10	$\mathrm{v}^{+}=12$	20	3	2	40 max	40k	T0.5 F.P.	Single comparator with strobe, high speed and sensitivity, large fanout	
LM206	Industrial	10	$\checkmark-3$	20	3	2	40 max	40k	T0.5 F.P.		
LM306	Commercial	10	To - 12	25	5	5	40 max	40k	T0.5 F.P.		
LFF111	Mulitary	2	36	0.05	0.000025	4	200	200k	TO-5 DIP F.P.	FET front-end inputs	
LF211	Industrial	2	36	0.05	0.000025	4	200	200k	TO-5 DIP FP.		
LF311	Commercial	2	36	0.15	0.000075	10	200	200k	TO. 5 DIP FP.		
LM111	Military	5	± 15	0.1	0.04	0.7	200	200 k	TO. 5 DIP F.P.	Single, with strobe. will work from single supply, fow bias current	
LH2111 Dual (Note 1)	Milltary	5	± 15	01	0.04	0.7	200	200 k	TO. 5 DIP F.P.		
tM211	Industrial	5	To 5	01	0.04	0.7	200	200k	To- 5 DIP F.P.		
LH2211 Dual (Note 1)	Industriat	5	To 5	0.1	0.04	0.7	200	200k	TO-5 Dip F.P.		
LM311	Commercial	5	And GND	0.25	0.06	2	200	200 k	TO-5 DIP F.P.		
LH2311 Dual (Note 1)	Commercial	5	And GND	0.25	0.06	2	200	200 k	TO-5 DIP F.P.		
LM119	Miltary	2 (Each Side)	± 15	0.5	0.075	4	80	40k	TO-5 DIP F.P.	High speed dual comparator	
LM219	Industrial	2 (Each Side)	To 5	0.5	0.075	4	80	40k	TO. 5 DIP F.P.		
LM319	Commercial	2 (Each Sida)	And GND	1	0.2	8	80	40k'	TO. 5 DIP		
LM139 Ouad	Military	1	\pm	0.1	0.025	5	${ }^{1.3 \mu \mathrm{~s}}$	200 k	DIPFP.	Quad comparator designed for single supply operation, input common mode range includes ground	
LM239 Quad	Industrial	1	To ± 18	0.25	0.050	5	$1.3 \mu \mathrm{~s}$	200k	DIP		-
Lm339 Quad	Commercial	1	Or from	025	0.050	5	1.3 us	200 k	DIP		
LM139A Quad	Military	1	2	0.1	0.025	2	${ }^{1.3 \mu \mathrm{~s}}$	200 k	DIP FP.	Low of set voltage Quad comparator with DTL/TTL logic levels	
Lm239A Ouad	Industrial	1	To 36	0.25	0.050	2	${ }^{1.3 \mu}$	200 k	DIP		
Lm339A Quad	Commercial	1	And GND	0.25	0.050	2	$1.3 \mu \mathrm{~s}$	200 k	DIP		
LM160	Mintary	2	± 4.5	10	2	2	16	${ }^{3 k}$	TO. 5 DIP FP.	Very high speed, outputs compathble with DTL/TTL logic levels	
LM260	Industriat	2	To	10	2	2	16	3 k	T0.5 DIP		
LM360	Commercial	2	± 6.5	15	4	4	16	3 k	T0.5 Dip		
LM161 (LM529)	Mulitary	2	± 5	10	2	2	12	3 k	TO. 5 DIP F.P.	Very high speed, with individual strobes. DTL/TTL compatble	
LM261	Industrial	2	To ± 15	10	2	2	12	3k	TO-5 DIP		
LM361 (LM529C)	Commercial	2	And 5	15	4	4	12	3 k	TO-5 DIP		
LM193	Military	1	± 1	0.1	0.025	5	${ }^{1.3 \mu \mathrm{~s}}$	200 k	T0.5	Dual comparator designed for single supply operation; input common-mode range includes ground	
LM293	Industrial	1	To ± 18	0.25	0050	5	${ }^{1.3 \mu \mathrm{~s}}$	200 k	T0.5		
LM393	Commercial	1	Or From	0.25	0.050	5	$1.3 \mu \mathrm{~s}$	200k	TO.5. DIP		
LM193A	Military	1	2	0.1	0.025	2	${ }^{1.3 \mu \mathrm{~s}}$	200 k	T0. 5	Low offset voltage dual comparator with DTL/TTL logic levels	
LM293A	Industrial	1	To 36	0.25	0.050	2	$1.3 \mu \mathrm{~s}$	200 k	T0.5		
LM393A	Commercial	1	And Gnd	0.25	0.050	2	$1.3 \mu \mathrm{~s}$	200k	TO-5, DIP		
LM710	Military	1	$\mathrm{V}^{+}=12$	20	3	2	40	1750	T0. 5	Single, differential in, single output	
LM710C	Commercial	$\cdot 1$	$V=-6$	25	5	5	40	1500	T0.5 dip		
LM711 Dual	Miiitary	1	$\mathrm{v}^{+}=12$	75	10	3.5	40	1500	T0.5	Dual differential, common output, individual strobes	
LM711C Dual	Commercial	1	$V=-6$	100	15	5	40	1500	T0.5 DIP		
LM1514 Dual	Military	1	$\mathrm{v}^{+}=14$	20	3	3	30	1250	Dip	Dual LM710 with separate strobes, individual outputs	.
LM1414 Dual	Commercial	1	$\checkmark=-7$	25	5	4	30	1000	DIP		
LM2901 Quad	Industrial	1	$\begin{gathered} \pm 1(2 \mathrm{~V}) \text { to } \\ \pm 18(36) \end{gathered}$	0.25	0.05	7	1.3	200 k	DIP	Quad comparator designed for single supply operation, input common-mode range includes ground	\therefore
LM2903	Automotive	1	$\begin{aligned} & \pm 1(2 \mathrm{~V}) \text { to } \\ & \pm 18(36) \end{aligned}$	0.25	0.050	7	1.3 $/ \mathrm{s}$	200k	DIP	Duat comparator designed for single supply operation: input common-mode range includes ground	

Note 1: Dual version of device. $\quad{ }^{\dagger}$ Response time is specified for 100 mV step input with 5 mV overdrive.
*Military: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; Industrial: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Commercial: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Automotive: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Voltage Comparators

Definition of Terms

Input Bias Current: The average of the two input currents.

Input Offset Current: The absolute value of the difference between the two input currents for which the output will be driven higher than or lower than specified voltages.

Input Offset Voltage: The absolute value of the voltage between the input terminals required to make the output voltage greater than or less than specified voltages.

Input Voltage Range: The range of voltage on the input terminals (common-mode) over which the offset specifications apply.

Logic Threshold Voltage: The voltage at the output of the comparator at which the loading logic circuitry changes its digital state.

Negative Output Level: The negative dc output voltage with the comparator saturated by a differential input equal to or greater than a specified voltage.

Output Leakage Current: The current into the output terminal with the output voltage within a given range and the input drive equal to or greater than a given value.

Output Resistance: The resistance seen looking into the output terminal with the dc output level at the logic threshold voltage.

Output Sink Current: The maximum negative current that can be delivered by the comparator.

Positive Output Level: The high output voltage level with a given load and the input drive equal to or greater than a specified value.

Power Consumption: The power required to operate the comparator with no output load. The power will vary with signal level, but is specified as a maximum for the entire range of input signal conditions.

Response Time: The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive.

Saturation Voltage: The low-output voltage level with the input drive equal to or greater than a specified value.

Strobe Current: The current out of the strobe terminal when it is at the zero logic level.

Strobed Output Level: The dc output voltage, independent of input conditions, with the voltage on the strobe terminal equal to or less than the specified low state.

Strobe "ON" Voltage: The maximum voltage on either strobe terminal required to force the output to the specified high state independent of the input voltage.

Strobe "OFF" Voltage: The minimum voltage on the strobe terminal that will guarantee that it does not interfere with the operation of the comparator.

Strobe Release Time: The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from zero to the one logic level.

Supply Current: The current required from the positive or negative supply to operate the comparator with no output load. The power will vary with input voltage, but is specified as a maximum for the entire range of input voltage conditions.

Voltage Gain: The ratio of the change in output voltage to the change in voltage between the input terminals producing it.

LF111/LF211/LF311 Voltage Comparators General Description

The LF111, LF211 and LF311 are FET input voltage comparators that virtually eliminate input current errors. Designed to operate over a 5.0 V to $\pm 15 \mathrm{~V}$ range the LF111 can be used in the most critical applications.

The extremely low input currents of the LF111 allows the use of a simple comparator in applications usually requiring input current buffering. Leakage testing, long time delay circuits, charge measurements, and high source impedance voltage comparisons are easily done.

Further, the LF111 can be used in place of the LM111 eliminating errors due to input currents. See the "application hints" of the LM311 for application help.

Advantages

- Eliminates input current errors
- Interchangeable with LM111
- No need for input current buffering

Connection Diagram*

Schematic Diagram and Auxiliary Circuits

Offset Balancing

Strobing

Increasing Input
Stage Current*

Absolute Maximum Ratings

Total Supply Voltage（ V_{84} ）
Output to Negative Supply Voltage（ V_{74} ）
Ground to Negative Supply Voltage（ V_{14} ）
Differential Input Voltage
Input Voltage（Note 1）
Power Dissipation（Note 2）
Output Short Circuit Duration
Operating Temperature Range
LF111
LF211
LF311
Storage Temperature Range
Lead Temperature（Soldering， 10 seconds）

LF111／LF211

36 V	36 V
50 V	40 V
30 V	30 V
$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
500 mW	500 mW
10 seconds	10 seconds
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
\\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics（LF111／LF211）（Note 3）

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage（Note 4）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{S}$		0.7	4.0	mV
Input Offset Current（Note 4）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C M}=0$（Note 6）		5.0	25	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$（Note 6）		20	50	pA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time（Note 5）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$V_{\text {IN }} \leq-5.0 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	1.5	V
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$V_{\text {IN }} \geq 5.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.2	10	nA
Input Offset Voltage（Note 4）				6.0	mV
Input Offset Current（Note 4）	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0$（Note 6）		2.0	3.0	nA
Input Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$（Note 6）		5.0	7.0	nA
Input Voltage Range		－13．5	± 14	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-6.0 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 8.0 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1：This rating applies for $\pm 15 \mathrm{~V}$ supplies．The positive input voltage limit is 30 V above the negative supply．The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply，whichever is less．
Note 2：The maximum junction temperature of the LF111 is $+150^{\circ} \mathrm{C}$ ，the LF211 is $+110^{\circ} \mathrm{C}$ and the LF311 is $+85^{\circ} \mathrm{C}$ ．For operating at elevated temperatures，devices in the TO－5 package must be derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$ ，junction to ambient，or $+45^{\circ} \mathrm{C} / \mathrm{W}$ ，junction to case．
Note 3：These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ ，and the Ground pin at ground，and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LF111，unless otherwise stated．With the LF211，however，all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and for the LF311 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ ．The offset voltage，offset current and bias current specifications apply for any supply voltage from a single 5.0 V supply up to $\pm 15 \mathrm{~V}$ supplies．
Note 4：The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load．Thus，these parameters define an error band and take into account the worst case effects of voltage gain and input impedance．

Note 5：The response time specified（see definitions）is for a 100 mV input step with 5.0 mV overdrive．
Note 6：For input voltages greater than 15 V above the negative supply the bias and offset currents will increase－see typical performance curves．
Note 7：Do not short the strobe pin to ground；it should be current driven at 3 to 5 mA ．

Electrical Characteristics (LF311) (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		2.0	10	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$ (Note 6)		5.0	75	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$ (Note 6)		25	150	pA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$V_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	1.5	V
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$V_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.2	10	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			15	$m \mathrm{~V}$
Input Offset Current (Note 4)	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note.6)		1.0		$n \mathrm{~A}$
Input Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		3.0		$n \mathrm{~A}$.
Input Voltage Range			$\begin{aligned} & +14 \\ & -13.5 \end{aligned}$		v
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {SINK }} \leq 8.0 \mathrm{~mA} \end{aligned}$		0.23	0.4	\checkmark
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LF111 is $+150^{\circ} \mathrm{C}$, the LF211 is $+110^{\circ} \mathrm{C}$ and the LF311 is $+85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $+45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LF111, unless otherwise stated. With the LF211, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and for the LF311 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5.0 mV supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specifieg (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
Note 6: For input voltages greater than 15 V above the negative supply the bias and offset currents will increase-see typical performance curves.
Note 7: Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Typical Applications

Typical Performance

Input Bias Current vs Temperature

Frequency Doubler

Zero Crossing Detector Driving MOS Switch

Driving Ground-Referred Load

Comparator and Solenoid Driver

Typical Applications (Continued)

Switching Power Amplifier

Relay Driver with Strobe

Switching Power Amplifier

Negative Peak Detector

Using Clamp Diodes to Improve Response

National
Voltage Comparators Semiconductor

LH2111/LH2211/LH2311 Dual Voltage Comparator

general description

The LH2111 series of dual voltage comparators are two LM111 type comparators in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost and smaller size than two singles. For additional information see the LM111 data sheet and National's Linear Application Handbook.

The LH2111 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2211 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH 2311 is speci-
fied for operation over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

features

- Wide operating supply range	$\pm 15 \mathrm{~V}$ to a single +5 V
- Low input currents	6 nA
- High sensitivity	$10 \mu \mathrm{~V}$
- Wide differential input range	$\pm 30 \mathrm{~V}$
- High output drive	$50 \mathrm{~mA}, 50 \mathrm{~V}$

connection diagram

Order Number LH2111D or or LH2211D or LH2311D See Package D16C

auxiliary circuits

Offset Balancing

Strobing

Increasing Input Stage Current*

Driving Ground-Referred Load

Using Clamp Diodes to Improve Responses

Comparator and Solenaid Driver

Strobing off Both Input* and Output Stages

TTL Interface with High Level Logic
absolute maximum ratings

Total Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	36 V	Output Short Curcuit Duration		10 sec
Output to Negative Supply Voltage ($\mathrm{V}_{\text {Out }}-\mathrm{V}^{-}$)	50 V	Operating Temperature Range	LH2111	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Ground to Negative Supply Voltage (GND - V^{-})	30 V		LH2211	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$		LH2311	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$	Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Note 2)	500 mW	Lead Temperature (Soldering,	$10 \mathrm{sec})$	$300^{\circ} \mathrm{C}$

electrical characteristics - each side (Note 3)

PARAMETER	CONDITIONS	LIMITS			UNITS
		LH2111	LH2211	L.H2311	
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {S }} \leq 50 \mathrm{k}$	3.0	. 3.0	7.5	mV Max
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	- 10	50	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	100	100	250	$n A$ Max
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	- 200	200	200	V / mV Typ
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	200	200	200	ns Typ
Saturation Voltage	$\begin{aligned} & V_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.5	1.5	1.5	V Max
Strobe On Curient	$T_{A}=25^{\circ} \mathrm{C}$	3.0	3.0	3.0	mA Typ
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	10	50	nA Max
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$	4.0	4.0	10	mV Max
Input Offset Current (Note 4)		20	20	70	$n A$ Max
Input Bias Current		150	150	300	nA Max
Input Voltage Range		± 14	± 14	± 14	\checkmark Typ
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\operatorname{Sin} K}<8 \mathrm{~mA} \end{aligned}$	0.4	0.4	0.4	\checkmark Max
Positive Supply Current	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	6.0	6.0	7.5	mA Max
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.0	5.0	5.0	mA Max

Note 1: This ratıng applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature is $150^{\prime \prime} \mathrm{C}$. For operating at elevated temperatures, devices in the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with 0.03 -inchwide, 2 ounce copper conductor. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$. junction to ambient.
Note 3: These specifications apply for $V_{S}=: 15 \mathrm{~V}$ and $-55^{\prime \prime} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C}$ for the LH2111, $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C}$ for the LH2211, and $0^{\circ} \mathrm{C}<\mathrm{T}_{A}<70^{\circ} \mathrm{C}$ for the LH2311, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. For the $\mathrm{LH} 2311, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV}$.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

National Semiconductor
 LM106/LM206/LM306 Voltage Comparator
 General Description

The LM106 series are high-speed voltage comparators designed to accurately detect low-level analog signals and drive a digital load. They are equivalent to an LM710, combined with a two input NAND gate and an output buffer. The circuits can drive RTL, DTL or TTL integrated circuits directly. Furthermore, their outputs can switch voltages up to 24 V at currents as high as 100 mA .

Features

- Improved accuracy
- Fan-out of 10 with DTL or TTL
- Added logic or strobe capability
- Useful as a relay or lamp driver
- Plug-in replacement for the LM710
- 40 ns maximum response time

Schematic and Connection Diagrams**

Typical Applications

Level Detector and Lamp Driver

Relay Driver

The devices have short-circuit protection which limits the inrush current when it is used to drive incandescent lamps, in addition to preventing damage from accidental shorts to the positive supply. The speed is equivalent to that of an LM710. However, they are even faster where buffers and additional logic circuitry can be eliminated by the increased flexibility of the LM106 series. They can also be operated from any negative supply voltage between -3 V and -12 V with little effect on performance.
The LM106 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM206 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM306 is specified for operation over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Fast Response Peak Detector

Adjustable Threshold Line Receiver

Absolute Maximum Ratings

Positive Supply Voltage	15 V
Negative Supply Voltage	-15 V
Output Voltage	24 V
Output to Negative Supply Voltage	30 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage	$\pm 7 \mathrm{~V}$

Power Dissipation (Note 1) Output Short Circuit Duration Operating Temperature Range LM106
LM206 LM306
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)

600 mW 10 seconds
TMIN $_{\text {MIN }}$ TMAX $^{\text {M }}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics

(Note 2)

PARAMETER	CONDITIONS	LM106/LM206			LM306			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	(Note 3)		0.5	2.0		1.6	5.0	mV
Input Offset Current	(Note 3)		0.7	3.0		1.8	5.0	$\mu \mathrm{A}$
Input Bias Current			10	20		16	25	$\mu \mathrm{A}$
Response Time	$\begin{aligned} & R_{L}=390 \Omega \text { to } 5 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF},(\text { Note } 4) \end{aligned}$		28	40		28	40	ns
Saturation Voltage	$\begin{aligned} & V_{\text {IN }} \leq-5 \mathrm{mV}, \text { IOUT }=100 \mathrm{~mA} \\ & V_{I N} \leq-7 \mathrm{mV}, \text { IOUT }=100 \mathrm{~mA} \end{aligned}$			1.5		0.8	2.0	V
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \geq 5 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq 7 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V} \end{aligned}$		0.02	. 1.0		0.02	2.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$

The following specifications apply for TMIN $\leq T_{A} \leq T_{M A X}$ (Note 5)

Input Offset Voltage	(Note 3)			3.0			6.5	mV
Average Temperature Coefficient of			3.0	10		5	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage								
Input Offset Current	$\mathrm{T}_{\mathrm{L}} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$, (Note 3)		1.8	7.0		2.4	7.5	$\mu \mathrm{A}$
	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{H}$		0.25	3.0			5.0	$\mu \mathrm{A}$
Average Temperature Coefficient of	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq T_{H}$		5.0	25		15	50	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{T}_{\mathrm{L}} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$		15	75		24	100	$n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$T_{L} \leq T_{A} \leq 25^{\circ} \mathrm{C}$			45		25	40	$\mu \mathrm{A}$
	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{H}$			20			25	$\mu \mathrm{A}$
Input Voltage Range	$-7 \mathrm{~V} \geq \mathrm{V}^{-} \geq-12 \mathrm{~V}$	± 5.0			± 5.0			v
Differential Input Voltage Range		± 5.0			± 5.0			v
Saturation Voltage	$\begin{aligned} & V_{I N} \leq-5 \mathrm{mV}, \text { IOUT }=50 \mathrm{~mA} \\ & V_{I N} \leq-8 \mathrm{mV} \text { For LM306 } \end{aligned}$			1.0			1.0	v
Saturation Voltage	$\begin{aligned} & V_{I N} \leq-5 \mathrm{mV}, \text { IOUT }=16 \mathrm{~mA} \\ & V_{I N} \leq-8 \mathrm{mV} \text { For } L M 306 \end{aligned}$			0.4			0.4	v
Positive Output Level	$\begin{aligned} & V_{I N} \geq 5 \mathrm{mV}, \text { IOUT }=-400 \mu \mathrm{~A} \\ & V_{I N} \geq 8 \mathrm{mV} \text { For LM306 } \end{aligned}$	2.5		5.5	2.5		5.5	v
Output Leakage Current	$\begin{aligned} & V_{I N} \geq 5 \mathrm{mV}, 8 \mathrm{~V} \leq V_{O U T} \leq 24 \mathrm{~V} \\ & V_{I N} \geq 8 \mathrm{mV} \text { For } \mathrm{LM} 306 \\ & T_{L} \leq T_{A} \leq 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C}<T_{A} \leq T_{H} \end{aligned}$			1.0	,		2.0	$\mu \mathrm{A}$
				100			100	$\mu \mathrm{A}$
Strobe Current	$V_{\text {STROBE }}=0.4 \mathrm{~V}$		-1.7	-3.2		-1.7	-3.2	mA
Strobe "ON" Voltage		0.9	1.4		0.9	1.4		v
Strobe "OFF" Voltage	ISINK $\leq 16 \mathrm{~mA}$		1.4	2.2		1.4	2.2	v
Positive Supply Current	$V_{1 N}=-5 \mathrm{mV}$		5.5	10		5.5	10	mA
	$V_{\text {IN }}=-8 \mathrm{mV}$ For LM306							
Negative Supply Current	.		-1.5	-3.6		-1.5	-3.6	mA

Note 1: The maximum junction temperature of LM106 is $150^{\circ} \mathrm{C}$, LM206 is $110^{\circ} \mathrm{C}$, LM306 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten, 0.03 -inchwide, 2-ounce copper conductors.
Note 2: These specifications apply for $-3 V \geq V^{-} \geq-12 \mathrm{~V}, V^{+}=12 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. All currents into device pins are considered positive.
Note 3: The offset voltages and offset currents given are the maximum values required to drive the output down to 0.5 V or up to 4.4 V (0.5 V or up to 4.8 V for the LM306). Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain, specified supply voltage variations, and common mode voltage variations.
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 5: All currents into device pins are considered positive.

Typical Performance Characteristics

朩National Semiconductor LM111/LM211 Voltage Comparator ${ }^{\dagger}$

General Description

The LM111 and LM211 are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages: from standard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up 'to 50 V at currents as high as 50 mA . Outstanding characteristics include:

- Operates from single 5V supply
- Input current: 150 nA max. over temperature
- Offset current: 20 nA max. over temperature
- Differential input voltage range: $\pm 30 \mathrm{~V}$
- Power consumption: 135 mW at $\pm 15 \mathrm{~V}$

Both the inputs and the outputs of the LM111 or the LM211 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM106 and LM710 (200 ns response time vs 40 ns) the devices are also much less prone to spurious oscillations. The LM111 has the same pin configuration as the LM106 and LM710.
The LM211 is identical to the LM111, except that its performance is specified over a $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range instead of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

${ }^{\dagger}$ See application hints LM311

Auxiliary Circuits**

Offset Balancing
Typical Applications

Relay Driver with Strobe*

Strobing off Both Input* and Output Stages

Absolute Maximum Ratings

Total Supply Voltage $\left(V_{84}\right)$	36 V
Output to Negative Supply Voltage $\left(\mathrm{V}_{74}\right)$	50 V
Ground to Negative Supply Voltage $\left(\mathrm{V}_{14}\right)$	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range LM111	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LM211	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Voltage at Strobe Pin	$\mathrm{V}^{+}-5 \mathrm{~V}$

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		0.7	3.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.0	10	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60	100	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\mathrm{OUT}}=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe ON Current (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {STROBE }}=3 \mathrm{~mA} . \end{aligned}$		0.2	10	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			4.0	mV
Input Offset Current (Note 4)				20	$n A$
Input Bias Current				150	$n A$
Input Voltage Range	$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \operatorname{Pin} 7$ Pull-Up May Go To 5V	-14.5	13.8,-14.7	13.0	v
Saturation Voltage	$\begin{aligned} & V^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & V_{I N} \leq-6 \mathrm{mV}, I_{\operatorname{SINK}} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Output Leakage Current	$V_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LM111 is $150^{\circ} \mathrm{C}$, while that of the LM211 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermar resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and Ground pin at ground, and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated. With the LM211, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 6: Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Applications (Continued)

Zero Crossing Detector Driving MOS Switch

10 Hz to 10 kHz Voltage Controlled Oscillator

TTL Interface with High Level Logic

Crystal Oscillator

Comparator and Solenoid Driver
LM111/LM211

Schematic Diagram

Connection Diagrams *

\cdots National Semiconductor

LM119/LM219/LM319 High Speed Dual Comparator General Description

The :LM119 series are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages down to a single 5 V logic supply and ground. Further, they have higher gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA . Outstanding features include:

Features

- Two independent comparators
- Operates from a single 5V supply
- Typically 80 ns response time at $\pm 15 \mathrm{~V}$
- Minimum fan-out of 2 each side
- Maximum input current of $1 \mu \mathrm{~A}$ over temperature
- Inputs and outputs can be isolated from system ground
- High common mode slew rate

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 series are fully specified for power supplies up to $\pm 15 \mathrm{~V}$. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices like the LM711.
The LM119 is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM219 is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; and the LM319 is specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

Order Number LM319N See NS Package N14A

Order Number LM119J, LM219J or LM319J
See NS Package J14A

Metal Can Package

Order Number LM119H, LM219H or LM319H See NS Package H10C

Total Supply Voltage
Output to Negative Supply Voltage
Ground to Negative Supply Voltage
Ground to Positive Supply Voltage
Differential input Voltage
Input Voltage (Note 1)
Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		0.7	4.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	75	nA
Input Bias Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		150	500	nA
Voltage Gain	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	10	40		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		80		, ns
Saturation Voltage	$\begin{aligned} & V_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=25 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	2	$\mu \mathrm{A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			7	mV
Input Offset Current (Note 4)				100	nA
Input Bias Current -				1000	nA
Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	1	± 13	3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-6 \mathrm{mV}, \mathrm{I}_{\text {SINK }} \leq 3.2 \mathrm{~mA} \\ & T_{\mathrm{A}} \geq 0^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}} \leq 0^{\circ} \mathrm{C} \end{aligned}$		0.23	0.4 0.6	$\begin{aligned} & v \\ & v \end{aligned}$
Output Leakage Current	$V_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		1	10	$\mu \mathrm{A}$
Differential Input Voltage				± 5	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3		mA
Positive Supply Current	$T_{A}=25^{\circ} \mathrm{C} \quad V_{S}= \pm 15 \mathrm{~V}$		8	11.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		3	4.5	mA

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM119 is $150^{\circ} \mathrm{C}$, while that of the LM219 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, and the Ground pin at ground, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated. With the LM219, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an, error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

Absolute Maximum Ratings LM319

Total Supply Voltage
Output to Negative Supply Voltage
Ground to Negative Supply Voltage
Ground to Positive Supply Voltage
Differential Input Voltage
Input Voltage (Note 1)

36 V	Power Dissipation (Note 2)	500 mW
36 V	Output Short Circuit Duration	10 sec
25 V	Operating Temperature Range LM319	$0^{\prime} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
18 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$\pm 5 \mathrm{~V}$	Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		2.0	8.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	200	$n A$
Input Bias Current	$T_{A}=25^{\circ} \mathrm{C}$		250	1000	$n \mathrm{~A}$
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	40		V / mV
Response Time (Note 5)	$T_{A}=25^{\circ} \mathrm{C} \quad V_{S}= \pm 15 \mathrm{~V}$		80		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & V_{I N} \geq 10 \mathrm{mV}, V_{O U T}=35 \mathrm{~V} \\ & V^{-}=V_{G N D}=0 V, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-	0.2	10	μA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			10	mV
Input Offset Current (Note 4)				300	$n \mathrm{~A}$
Input Bias Current		-		1200	$n \mathrm{~A}$
Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	1	± 13	3	$\begin{aligned} & v \\ & v \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 3.2 \mathrm{~mA} \end{aligned}$		0.3	0.4	V
Differential Input Voltage				± 5	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3		mA
Positive Supply Current	$T_{A}=25^{\circ} \mathrm{C} \quad V_{S}= \pm 15 \mathrm{~V}$		8	12.5	mA
Negative Supply Current	$T_{A}=2{ }^{\circ} \mathrm{C} \quad V_{S}= \pm 15 \mathrm{~V}$		3	5	mA

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM319 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply.voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

Typical Performance Characteristics LM119/LM219

Typical Performance Characteristics LM319

National Semiconductor LM139/239/339, LM139A/239A/339A, LM2901,LM3302 Low Power Low Offset Voltage Quad Comparators General Description

The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic- where the low power drain of the LM339 is a distinct advantage over standard comparators.

Advantages

- High precision comparators
- Reduced $V_{\text {as }}$ drift over temperature
- Eliminates need for dual supplies
- Allows sensing near gnd
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide single supply voltage range or dual supplies
$\begin{array}{ll}\text { LM139 series, } & 2 V_{D C} \text { to } 36 V_{D C} \text { or } \\ \text { LM139A series, LM2901 } & \pm 1 V_{D C} \text { to } \pm 18 V_{D C}\end{array}$
LM3302 $2 V_{D C}$ to 28 VDC
or $\pm 1 V_{D C}$ to $\pm 14 V_{D C}$
- Very low supply current drain (0.8 mA) independent of supply voltage ($2 \mathrm{~mW} /$ comparator at $+5 \mathrm{~V}_{\mathrm{DC}}$)
- Low input biasing current 25 nA
- Low input offset current $\pm 5 \mathrm{nA}$ and offset voltage $\pm 3 \mathrm{mV}$
- Input common-mode voltage range includes gnd
- Differential input voltage range equal to the power supply voltage
- Low output - 250 mV at 4 mA saturation voltage
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Schematic and Connection Diagrams

Typical Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{v}_{\mathrm{DC}}\right)$

Driving CMOS

Driving TTL

Absolute Maximum Ratings

Supply Voltage; V^{+}
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Molded DIP
Cavity DIP
Flat Pack
Output Short-Circuit to GND, (Note 2)
Input Current (VIN $<-0.3 \mathrm{~V}_{\text {DC }}$). (Note 3)
Operating Temperature Range
LM339A
LM239A
LM2901
LM139A
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
LM139/L.M239/LM339
LM139A/LM239A/LM339A LM2901

$36 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 18 \mathrm{~V}_{\mathrm{DC}}$

 36 VDC$-0.3 V_{D C}$ to $+36 V_{D C}$;

570 mW
 900 mW
 800 mW

Continuous
50 mA

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

LM3302

$$
28 V_{D C} \text { or } \pm 14 V_{D C}
$$

$$
28 . V_{D C}
$$

$$
-0.3 V_{D C} \text { to }+28 V_{D C}
$$

.570 mW

Continuous
50 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{V}^{+}=5 \mathrm{~V} \mathrm{DC}\right.$, Note 4)

PARAMETER	CONDITIONS	LM139A			LM239A, LM339A			LM139			LM239, LM339			LM2901			LM3302			UNITS
		MIN	TYP	MAX																
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 9)		± 1.0	± 2.0		± 1.0	± 2.0		± 2.0	± 5.0		± 2.0	± 5.0		± 2.0	± 7.0		± 3	± 20	$m V_{D C}$
Input Bias Current	$\operatorname{IIN(+)}$ or IIN(-) with Output in Linear Range, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, (Note 5)		25	100		25	250		25	100		25	250		25	. 250		25	500	$n A D C$
Input Offset Current			± 3.0	± 25		± 5.0	± 50		± 3.0	± 25		± 5.0	± 50		± 5	± 50		± 3 。	± 100	nADC
Input Common-Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 6)	0		$\mathrm{v}^{+}-1.5$	0	\because	$\mathrm{v}^{+}-1.5$	VDC												
Supply Current	$\begin{aligned} & R_{\mathrm{L}}=\infty \text { on all Comparators, } T_{A}=25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.8	2.0		0.8	2.0		0.8	2.0		0.8	2.0		0.8 1	2.0 2.5		0.8	2	mADC mADC
Voltage Gain	$\begin{aligned} & R_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \text { (} \mathrm{To} \\ & \text { Support Large } \mathrm{V}_{\mathrm{O}} \text { Swing), } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	200			200			200			200		25	100		2	30	- .	V/mV
Large Signal Response Time	$\begin{aligned} & V_{I N}=T T L \text { Logic Swing, } V_{R E F}= \\ & 1.4 V_{D C}, V_{R L}=5 V_{D C}, R_{L}=5.1 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-	300			300			300.			300		:	300			300	.	ns
Response Time	$\begin{aligned} & \mathrm{V}_{R L}=5 \mathrm{~V}_{\mathrm{DC}}, R_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Note } 7) \end{aligned}$		1.3			1.3			1.3			1.3			1.3	.		1.3		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & V_{I N(-)} \geq 1 V_{D C}, V_{I N(+)}=0, \\ & V_{O} \leq 1.5 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	6.0	16			16	\therefore	6.0:	16		6.0	16		6.0	16		6.0	16.		-mADC
Saturation Voltage	$\begin{aligned} & V_{I N(-)} \geq 1 V_{D C}, V_{I N(+)}=0, \\ & \operatorname{IS} \text { INK } \leq 4 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} . \end{aligned}$		250	400		250	400		250	400		250	400			400		250	500	$m V_{\text {DC }}$
Output Leakage Current	$\begin{aligned} & V_{I N(+)} \geq 1 V_{D C}, V_{I N(-)}=0 \\ & V_{O}=5 V_{D C}, T_{A}=25^{\circ} C \end{aligned}$		0.1			0.1			0.1			0.1			0.1			0.1		nADC

Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	LM139A			LM239A, LM339A			LM139			LM239, LM339			LM2901			LM3302			UNITS
		MIN	TYP	MAX																
Input Offset Voltage	(Note 9)			4.0			4.0			9.0			9.0		9	15			40	$\mathrm{mV}_{\mathrm{DC}}$
Input Offset Current	IIN(t)- - InN(-)			± 100			± 150			± 100			± 150		50	200			300	nADC
Input Bias Current	$\operatorname{IIN(+)}$ or IIN(-) with Output in Linear Range			300			400			300			400		200	500			1000	nADC
Input Common-Mode Voltage		0		$\mathrm{v}^{+}-2.0$	0		$\mathrm{v}^{+}-2.0$	0		$\mathrm{v}^{+}-2.0$	0		$v^{+}-2.0$	0		$\mathrm{v}^{+}-2.0$	0		$\mathrm{v}^{+}-2.0$	$v_{D C}$
Saturation Voltage	$\begin{aligned} & V_{I N(-) \geq 1} \geq 1 \mathrm{~V}_{D C} . V_{I N(+)}=0, \\ & I_{S I N K} \leq 4 \mathrm{~mA} \end{aligned}$			700			700			700			700		400	700			700	$\mathrm{mV}_{\mathrm{DC}}$
Output Leakage Current	$\begin{aligned} & v_{I N(t)} \geq 1 V_{D C} . V_{I N(-)}=0, \\ & v_{O}=30 V_{D C} \end{aligned}$			1.0			1.0			1.0			1.0			1.0			1.0	$\mu \mathrm{ADC}$
Differential Input Voltage	$\begin{aligned} & \text { Keep all } V_{I N}{ }^{\prime} s \geq 0 V_{D C} \text { (or } V^{-} \text {, } \\ & \text { if used), (Note 8) } \end{aligned}$			v^{+}			v^{+}			36			36	0		v^{+}			$v_{\text {cc }}$	$V_{D C}$

 FF" characteristic of the outputs keeps the chip dissipation very small ($P_{D}<100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V^{+}

 tive, again returns to a value greater than $-0.3 V_{D C}$ -
 LM339/LM339A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, and the LM 2901 , LM3302 temperature range is $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
 input lines.
 inputs can go to $+30 V_{D C}$ without damage.
Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signais 300 ns can be obtained, see typical performance characteristics section.
 input voltage state must not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or $0.3 \mathrm{~V}_{\mathrm{DC}}$ below the magnitude of the negative power supply, if used).
Note 9: At output switch point, $V_{O} \cong 1.4 V_{D C}, R_{S}=0 \Omega$ with V^{+}from $5 V_{D C}$; and over the full input common-mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$).
 exceed the positive supply.
LM139/LM239/LM339,

Typical Performance Characteristics LM139/LM239/LM339, LM139A/LM239A/LM339A, LM3302

Typical Performance Characteristics LM2901

Application Hints

The LM139 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.

The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.

It is usually unnecessary to use a bypass capacitor across the power supply line.

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{Voc}\right)$

One-Shot Multivibrator

The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.

The output of the LM139 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+}terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega r_{\text {sat }}$ of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level
for small load currents.

Bi-Stable Multivibrator

Typical Applications (Continued) ($\left.\mathrm{V}^{+}=15 \mathrm{~V} \mathrm{DC}\right)$

One-Shot Multivibrator with Input Lock Out

Squarewave Oscillator

Pulse Generator

Typical Applications (Continued) $\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\text {DC }}\right)$

Non-Inverting Comparator with Hysteresis

Comparing Input Voltages of Opposite Polarity

Inverting Comparator with Hysteresis

Basic Comparator

Output Strobing

Two-Decade High-Frequency VCO

Typical Applications (Continued) $v^{+}=5 \mathrm{v}_{\mathrm{oc}}$)

Low Frequency Op Amp

Low Frequency Op Amp $\left(V_{0}=O V\right.$ for $\left.V_{1 N}=O V\right)$

Transducer Amplifier

Low Frequency Op Amp with Offset Adjust

Zero Crossing Detector (Single Power Supply)

Split-Supply Applications ($\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}}$ and $\left.\mathrm{V}^{-}=-15 \mathrm{~V} \mathrm{VC}\right)$

MOS Clock Driver

Zero Crossing Detector

Comparator With a Negative Reference

Semiconductor LM160/LM260/LM360 High Speed Differential Comparator

Voltage Comparators

General Description

The LM160/LM260/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the $\mu \mathrm{A} 760 / \mu \mathrm{A} 760 \mathrm{C}$, for which it is a pin-forpin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 500 mV .

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disc file systems.

Features

- Guaranteed high speed 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

Schematic and Connection Diagrams

Metal Can Package

Order Number LM160H, LM260H or LM360H See NS Package H08C

Dual-In-Line Package

Order Number LM360N See NS Package N08B

Dual-In-Line Package

Order Number LM360N-14 See NS Package N14A
Order Number LM160J-14, LM260J-14 See NS Package J14A
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage

$+8 \mathrm{~V}$	Operating Temperature Range
-8V	LM160
20 mA	LM260
$\pm 5 \mathrm{~V}$	LM360
$V^{+} \geq V_{\text {IN }} \geq V^{-}$	Storage Temperature Range
	Lead Temperature (Soldering, 10 sec)

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

$\begin{array}{lr}\text { Storage Temperature Range } & -65 \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Lead Temperature (Soldering, } 10 \mathrm{sec} \text {) } & 300^{\circ} \mathrm{C}\end{array}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Conditions	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega$				
Supply Voltage $\mathrm{V}_{\mathrm{cc}}{ }^{+}$		4.5	5	6.5	V
Supply Voltage $\mathrm{V}_{\mathrm{cc}}{ }^{-}$		-4.5	-5	-6.5	V
Input Offset Voltage			2	5	mV
Input Offset Current			. 5	3	$\mu \mathrm{A}$
Input Bias Current			5	20	$\mu \mathrm{A}$
Output Resistance (Either Output)			100	.	Ω
Response Time	$\left.T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 5 \mathrm{~V} \text { (Note } 1\right)$		13	25	ns
	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 5 \mathrm{~V} \text { (Note 2) } \\ & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 5 \mathrm{~V} \text { (Note 3) } \end{aligned}$		12	20	ns
			14		ns
Response Time Difference Between Outputs					
$\left(t_{p d}\right.$ of $\left.+V_{i N 1}\right)-\left(t_{p d}\right.$ of $\left.-V_{i N 2}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 1)		2		ns
$\left(t_{p d}\right.$ of $\left.+\mathrm{V}_{\mathrm{IN} 2}\right)-\left(t_{\text {pd }}\right.$ of $\left.-\mathrm{V}_{\text {IN } 1}\right)$	$T_{A}=25^{\circ} \mathrm{C}$, (Note 1)		2		ns
($t_{\text {pd }}$ of $\left.+\mathrm{V}_{\text {IN } 1}\right)-\left(t_{\text {pd }}\right.$ of $\left.+\mathrm{V}_{\text {IN2 }}\right)$	$T_{A}=25^{\circ} \mathrm{C},(\text { Note } 1)$		2		ns
(t_{pd} of $\left.-\mathrm{V}_{\text {IN } 1}\right)-\left(\mathrm{t}_{\mathrm{pd}}\right.$ of $\left.-\mathrm{V}_{\mathrm{IN} 2}\right)$	$\left.T_{A}=25^{\circ} \mathrm{C}, \text { (Note } 1\right)$		2		ns
Input Resistance	$f=1 \mathrm{MHz}$		'17		$\mathrm{k} \Omega$
Input Capacitance	$f=1 \mathrm{MHz}$		3		pF
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current			7		$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Common Mode Input Voltage Range	$V_{\text {S }}= \pm 6.5 \mathrm{~V}$	± 4	± 4.5		v
Differential Input Voltage Range		± 5			v
Output High Voltage (Either Output)	$\mathrm{I}_{\text {OUT }}=-320 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$	2.4	3		v
Output Low Voltage (Either Output)	$\mathrm{I}_{\text {SINK }}=6.4 \mathrm{~mA}$. 25	. 4	v
Positive Supply Current	$V_{S}= \pm 6.5 \mathrm{~V}$		18	32	mA
Negative Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$		-9	-16	mA

Note 1: Response time measured from the 50% point of a 30 mV p-p 10 MHz sinusoidal input to the 50% point of the output. Note 2: Response time measured from the 50% point of a $2 \mathrm{Vp}-\mathrm{p} 10 \mathrm{MHz}$ sinusoidal input to the 50% point of the output. Note 3: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.

Typical Performance Characteristics

Input Currents vs Ambient
Temperature

Propagation Delay vs Ambient Temperature

Delay of Output 1 With Respect to Output 2 vs Ambient Temperature

AC Test Circuit

T National

General Description

The LM161/LM261/LM361 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the SE529/NE529 for which it is a pin-for-pin replacement. The device has been optimized for greater speed performance and lower input offset voltage. Typically delay varies only 3 ns for over-drive variations of 5 mV to 500 mV . It may be operated from op amp supplies ($\pm 15 \mathrm{~V}$).

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disc file systems.

Features

- Independent strobes
- Guaranteed high speed 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- Operates from op amp supplies
- Low speed variation with overdrive variation
- Low input offset voltage
- Versatile supply voltage range

Schematic and Connection Diagrams

Logic Diagram

Dual-In-Line Package

Order Number LM161J, LM261J
or LM361J
See NS Package J14A
Order Number LM361N See NS Package N14A

Metal Can Package

Order Number LM161H, LM261H or LM361H See NS Package H10C

Typical Performance Characteristics

AC Test Circuit

LM193／LM293／LM393，LM193A／LM293ALLM393A，LM2903 Low Power Low Offset Voltage Dual Comparators

General Description

The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages．Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage．These comparators also have a unique characteristic in that the input common－ mode voltage range includes ground，even though operated from a single power supply voltage．

Application areas include limit comparators，simple analog to digital converters；pulse，squarewave and time delay generators；wide range VCO；MOS clock timers； multivibrators and high voltage digital logic gates．The LM193 series was designed to directly interface with TTL and CMOS．When operated from both plus and minus power supplies，the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators．

Advantages

－High precision comparators
－Reduced $\mathrm{V}_{\text {Os }}$ drift over temperature
－Eliminates need for dual supplies
－Allows sensing near ground
－Compatible with all forms of logic
－Power drain suitable for battery operation

Features

－Wide single supply Voltage range $2.0 \mathrm{~V}_{D C}$ to $36 \mathrm{~V}_{D C}$ or dual supplies

$$
\pm 1.0 \mathrm{~V}_{\mathrm{DC}} \text { to } \pm 18 \mathrm{~V}_{\mathrm{DC}}
$$

－Very low supply current drain（ 0.8 mA ）－indepen－ dent of supply voltage（ $1.0 \mathrm{~mW} /$ comparator at $5.0 \mathrm{~V}_{\mathrm{DC}}$ ）
－Low input biasing current 25 nA
－Low input offset current $\pm 5 \mathrm{nA}$ and maximum offset voltage $\pm 3 \mathrm{mV}$
－Input common－mode voltage range includes ground
－Differential input voltage range equal to the power supply voltage
－Low output
250 mV at 4 mA saturation voltage
－Output voltage compatible with TTL，DTL，ECL， MOS and CMOS logic systems

Schematic and Connection Diagrams

LM293AH，LM393H or LM393AH See NS Packaga H08C

Dual－In－Line Package
 or LM2903N See NS Package N08B

Typical Applications（ $\mathrm{v}^{+}=5.0 \mathrm{v}_{\mathrm{DC}}$ ）

Basic Comparator

Driving CMOS

Driving TTL

Absolute Maximum Ratings

Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics $\left(\mathrm{v}^{+}=5 \mathrm{~V} \mathrm{DC}\right)($ Note 4)

PARAMETER	- CONDITIONS	LM193A			LM293A, LM393A			LM193			LM293, LM393			LM2903			UNITS			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN :	TYP	MAX	MIN	TYP	MAX				
						± 1.0	± 2.0		± 1.0	± 5.0		± 1.0	± 5.0		± 2.0	± 7.0	$\mathrm{mV}_{\text {DC }}$			
									25	250		25	100		25.	250		- 25	- 250	$n A D C$
									± 5.0	± 50		± 3.0	± 25.		± 5.0	± 50		± 5.0	± 50	nADC
								0		$\mathrm{v}^{+}-1.5$	$V_{D C}$									
									0.4	1		0.4	1		0.4	\bigcirc		0.4	1.0	mADC
,	$\mathrm{R}_{\mathrm{L}}=\infty$ on All Amps, $\mathrm{V}^{+}=30 \mathrm{~V} C$		1	2.5		1	2.5			2.5			. 2.5		1.	2.5	mADC			
Voltage Gain $\quad \because$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \\ & \text { (To Support, Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \end{aligned}$	50	200		50	200		50	200		50	200		25	100		$\mathrm{V} / \mu \mathrm{V}$			
Large Signal Response Time	$\begin{aligned} & V_{I N}=T T L \text { Logic Swing, } V_{R E F}=1.4 \mathrm{~V} D C \\ & V_{R L}=5 V_{D C}, R_{L}=5.1 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		300			300			300			300			300		ns			
Response Time	$V_{R L}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, }$ (Note 7)		1.3			1.3			1.3			1.3			1.5		$\mu \mathrm{s}$			
Output Sink Current	$\begin{aligned} & V_{I N-} \geq 1 \mathrm{~V}_{D C}, V_{I N+}=0, V_{O} \leq 1.5 \mathrm{~V}_{\mathrm{DC}}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	6.0	16		6.0	16	.	6.0	16		6.0	16	-	6	16		mADC			
Saturation Voltage	$\begin{aligned} & V_{I N-} \geq 1 V_{D C}, V_{I N+}=0, I \operatorname{SINK} \leq 4 \mathrm{~mA}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		250	400		250	400		250	400		250	400		.	400	$m V_{\text {DC }}$			
Output Leakage Current	$\begin{aligned} & V_{I N-}=0, V_{I N+} \geq 1 \mathrm{~V}_{\mathrm{DC}}, V_{O}=5 \mathrm{~V} D C \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.1			0.1			0.1			0.1			0.1		nADC			

Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	LM193A			LM293A, LM393A			LM193			LM293, L̇M393			LM2903			UNITS
		MIN	TYP:	MAX	MIN	TYP	MAX										
Input Offset Voltage	(Note 9)			4.0			4.0			9			9		9	15	$m V_{D C}$
Input Offst t Current	IIN+ - I/ N^{-}			± 100			± 150.			± 100		.	± 150		50	- 200	nADC.
Input Bias Current	IIN+ or IIN-with Output in Linear Range			300		-	400			300			400		200	500	nADC
Input Common-Mode Voltage Range		0		$\mathrm{v}^{+}-2.0$	0		$\mathrm{v}^{+}-2.0$	0		$\mathrm{v}^{+}-2.0$	0		$v^{+}-2.0$	0		$v^{+}-20$	VDC
Saturation Voltage	$V_{I N-} \geq 1 V_{D C,} V_{\text {IN }+}=0$, ISINK $\leq 4 \mathrm{~mA}$,			700			700			700			700		400	- 700	$m V_{D C}$
Output Leakage Current	$V_{1 N-}=0, V_{I N+} \geq 1 V_{D C}, V_{O}=30 \mathrm{VDC}$			1.0			1.0	,		- 1.0			1.0			1.0	$\mu \mathrm{ADC}$
Differential Input Voltage	Keep All $V_{I N}{ }^{\prime} s \geq 0 V_{D C}$ (or V^{-}, if Used). (Note 8)									v^{+}			v^{+}			v^{+}	$V_{D C}$.

 the "ON-OFF" characteristic of the outputs keeps the chip.dissipation very small ($\mathrm{P}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V^{+}

 again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}$.
 LM393/LM393A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$. The LM 2903 is limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$.
 input lines.
 inputs can go to $30 V_{D C}$ without damage.
Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
 input voltage state must not be less than $\cdots 0.3 \mathrm{~V}_{\mathrm{DC}}$ (or $0.3 \mathrm{~V}_{\mathrm{DC}}$ below the magnitude of the negative power supply, if used).
Note 9: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from $5 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$; and over, the full input common-mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$)
 the positive supply.
LM193A/LM293A/LM393A, LM2903

Typical Performance Characteristics LM193/LM293/LM393, LM193A/LM293A/LM393A

Typical Performance Characteristics Li2903

Application Hints

The LM193 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.
The bias network of the LM193 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2.0 \mathrm{~V}_{\mathrm{DC}}$ to 30 VDC .

It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than V^{+} without damaging the device (see Note 8). Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.

The output of the LM193 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which, is applied to the V^{+}terminal of the LM193 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega \mathrm{r}_{\text {SAT }}$ of the output transistor. The low offset voltage of the output transistor (1.0 mV) allows the output to clamp essentially to ground level for small load currents.

Typical Applications (Continued) $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{Dc}}\right)$

$\cdot=+30 V_{D C}$
$+250 \mathrm{mV} \mathrm{V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{G}}<+50 \mathrm{~V}_{\mathrm{DC}}$
$700 \mathrm{~Hz} \cdot 10<100 \mathrm{kHz}$

Two-Decade High-Frequency VCO

Typical Applications (Continued) $\left(\mathrm{v}^{+}=15 \mathrm{v}_{\mathrm{Dc}}\right)$

Basic Comparator

Non-Inverting Comparator with Hysteresis

Inverting Comparator with Hysteresis

OR Logic gate
mTHOUT pulit

Output Strobing

AND Gate

OR Gate

Large Fan-in AND Gate

Limit Comparator

Comparing Input Voltages of Opposite Polarity

ORing the Outputs

Improved Op Amp

Low Frequency Op Amp

θ
Low Frequency Op Amp with Offset Adjust

Typical Applications (Continued) • $\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}$)

Split-Supply Applications $\left(\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}}\right.$ and $\left.\mathrm{V}^{-}=-15 \mathrm{~V}_{\mathrm{DC}}\right)$

MOS Clock Driver

Zero Crossing Detector

7 National Semiconductor

Voltage Comparators

LM311 Voltage Comparator General Description

The LM311 is a voltage comparator that has input currents more than a hundred times lower than devices like the LM306 or LM710C. It is also designed to operate over a wider range of supply voltages: from standard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC logic. Its output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, it can drive lamps or relays, switching voltages up to 40 V at currents as high as 50 mA .

Features

- Operates from single 5 V supply
- Maximum input current: 250 nA
- Maximum offset current:- 50 nA
- Differential input voltage range: $\pm 30 \mathrm{~V}$
- Power consumption: 135 mW at $\pm 15 \mathrm{~V}$

Both the input and the output of the LM311 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM306 and LM710C (200 ns response time vs 40 ns) the device is also much less prone to spurious oscillations. The LM311 has the same pin configuration as the LM306 and LM710C. See the "application hints" of the LM311 for application help.

Auxiliary Circuits

Strobing
** Note: Pin connections shown on schematic diagram and typical applications are for TO-5 package.

Increasing Input Stage Current*

Typical Applications**

Detector for Magnetic Transducer

Digital Transmission Isolator

Strobing off Both Input* and Ourput Stages

Absolute Maximum Ratings

Total Supply Voltage $\left(V_{84}\right)$	36 V
Output to Negative Supply Voltage $\left(\mathrm{V}_{74}\right)$	40 V
Ground to Negative Supply Voltage $\left(\mathrm{V}_{14}\right)$	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1).	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Voltage at Strobe Pin	$\mathrm{V}^{+}-5 \mathrm{~V}$

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		2.0	7.5	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	250	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe ON Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 10 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, I_{\text {STROBE }}=3 \mathrm{~mA} \end{aligned}$		0.2	50	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			10	mV
Input Offset Current (Note 4)				70	nA
Input Bias Current				300	nA
Input Voltage Range	-	-14.5	13.8,-14.7	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Negative Supply Current	T $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LM311 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and the Ground pin at ground, and $0^{\circ} \mathrm{C}<\mathrm{T}_{. A}<+70^{\circ} \mathrm{C}$, unless otherwise specified. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 6: Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Typical Performance Characteristics

DIFFERENTIAL INPUT VOLTAGE (V).

Typical Performance Characteristics (Continued)

Typical Applications

10 Hz to 10 kHz Voltage Controlled Oscillator

TTL Interface with High Level Logic

Crystal Oscillator
*Input polarity is reversed when using pin 1 as output.

Driving Ground-Referred Load

Using Clamp Diodes to Improve Response

Comparator and Solenoid Driver

Schematic Diagram

Connection Diagrams *

Order Number LM311N See NS Package N08B Order Number LM311J-8 See NS Package J08A

TOP VIEW

Dual-In-Line Package

Order Number LM311N-14
See NS Package N14A
Order Number LM311J See NS Package J14A

Application Hints

CIRCUIT TECHNIQUES FOR AVOIDING

OSCILLATIONS IN COMPARATOR APPLICATIONS

When a high-speed comparator such as the LM111 is used with fast input signals and low source impedances, the output response will normally be fast and stable, assuming that the power supplies have been bypassed (with $0.1 \mu \mathrm{~F}$ disc capacitors), and that the output signal is routed well away from the inputs (pins 2 and 3) and also away from pins 5 and 6.

However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high ($1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$), the comparator may burst into oscillation near the crossing-point. This is due to the high gain and wide bandwidth of comparators like the LM111. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 1 below.

1. The trim pins (pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trimpot, they should be shorted together. If they are connected to a trim-pot, a $0.01 \mu \mathrm{~A}$ capacitor C 1 between pins 5 and 6 will minimize the susceptibility to $A C$ coupling. A smaller capacitor is used if pin 5 is used for positive feedback as in Figure 1.
2. Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor C 2 is connected directly across the input pins.
3. When the signal source is applied through a resistive network, R_{s}, it is usually advantageous to choose an $R_{\mathrm{s}}{ }^{\prime}$ of substantially the same value, both for DC and for dynamic (AC) considerations. Carbon, tin-oxide, and metal-film resistors have all been used successfully in comparator input circuitry. Inductive wirewound resistors are not suitable.
4. When comparator circuits use input resistors (eg. summing resistors), their value and placement are particularly important. In all cases the body of the resistor should. be close to the device or socket. In other words there should be very little lead length or printed-circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if $R_{S}=10 \mathrm{k} \Omega$, as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to damp. Twisting these input leads tightly is the only (second best) alternative to placing resistors close to the comparator.
5. Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM111 circuitry, for example, one side of a double-layer circuit card. Ground foil (or, positive supply or negative supply foil) should extend between the output and the inputs, to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides, to guard against capacitive coupling from any high-level signals (such as the output). If pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot
6 should be located, at most, a few inches away from the LM111, and the $0.01 \mu \mathrm{~F}$ capacitor should be installed. If this capacitor cannot be used, a shielding printedcircuit foil may be advisable between pins 6 and 7 . The power supply bypass capacitors should be located within a couple inches of the LM111. (Some other comparators require the power-supply bypass to be located immediately adjacent to the comparator.)

Pin connections shown are for LM111H in 8-lead TO-5 hermetic package

FIGURE 1. Improved Positive Feedback

Application Hints (Continued)

6. It is a standard procedure to use hysteresis (positive feedback) around a comparator, to prevent oscillation, and to avoid excessive noise on the output because the comparator is a good amplifier for its own noise. In the circuit of Figure 2, the feedback from the output to the positive input will cause about 3 mV of hysteresis. However, if R_{S} is larger than 100Ω, such as $50 \mathrm{k} \Omega$, it would not be reasonable to simply increase the value of the positive feedback resistor above $510 \mathrm{k} \Omega$. The circuit of Figure 3 could be used, but it is rather awkward. See the notes in paragraph 7 below.
7. When both inputs of the LM111 are connected to active signals, or if a high-impedance signal is driving the positive input of the LM111 so that positive feedback would be disruptive, the circuit of Figure 1 is
ideal. The positive feedback is to pin 5 (one of the offset adjustment pins). It is sufficient to cause 1 to 2 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz . The positive-feedback signal across the 82Ω resistor swings 240 mV below the positive supply. This signal is centered around the nominal voltage at pin 5 , so this feedback does not add to the $\mathrm{V}_{\text {os }}$ of the comparator. As much as 8 mV of V_{os} can be trimmed out, using the $5 \mathrm{k} \Omega$ pot and $3 \mathrm{k} \Omega$ resistor as shown.
8. These application notes apply specifically to the LM111, LM211, LM311, and LF111 families of comparators, and are applicable to all high-speed comparators in general, (with the exception that not all comparators have trim pins).

Pin connections shown are for LM111H in 8-lead TO-5 hermetic package

FIGURE 2. Conventional Positive Feedback

FIGURE 3. Positive Feedback With High Source Resistance

LM710/LM710C Voltage Comparator

General Description

The LM710 series are a high-speed voltage comparators intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic.

The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in saturating comparator applications. In fact, the low
stray and wiring capacitances that can be realized with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.

The LM710 series are useful as pulse height discriminators, voltage comparators in high-speed A/D converters or go, no-go detectors in automatic test equipment. They also have applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the units suggests it for applications replacing relatively simple discrete component circuitry.

Schematic* and Connection Diagrams

Note: Pin 4 connected to case.

Order Number LM710H
or LM710CH
See NS Package H08C

Dual-In-Line Package

$$
\begin{aligned}
& \text { Order Number LM710N } \\
& \text { or LM710CN } \\
& \text { See NS Package N14A } \\
& \text { (20P } \mathrm{VIEW}
\end{aligned}
$$

Typical Applications *
Schmitt Trigger

Pulse Width Modulator

*Pin connections shown are for'metal can.

Line Receive With Increased
Output Sink Current

Level Detector With Lamp Driver

Absolute Maximum Ratings

Positive Supply Voltage	$+\mathbf{1 4 V}$
Negative Supply Voltage	-7 V
Peak Output Current	10 mA
Output Short Circuit Duration	10 seconds
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage	$\pm 7 \mathrm{~V}$
Power Dissipation	
\quad TO-99, (Note 1)	
Flat Package, (Note 2)	

Electrical Characteristics (Note.3)

Note 1: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$ for LM 710 and to $70^{\circ} \mathrm{C}$ for LM710C; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $105^{\circ} \mathrm{C}$.
Note 2: Derate linearly at $4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$.
Note 3: These specifications apply for $\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for LM 710 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}^{\prime}$ for LM 710 C unless otherwise specified. The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8 V at $-55^{\circ} \mathrm{C}$, 1.4 V at $25^{\circ} \mathrm{C}$, and 1 V at $125^{\circ} \mathrm{C}$ for LM7 10 and 1.5 V at $0^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ and 1.2 V at $70^{\circ} \mathrm{C}$ for LM710C.

Note 4: The response time specified (see definitions) is a 100 mV input step with 5 mV overdrive (LM710) or a 10 mV overdrive (LM710C).

Typical Performance Characteristics

Voltage Comparators

LM711/LM711C Dual Comparator

General Description

The LM711 series contains two voltage comparators with separate differential inputs, a common output and provision for strobing each side independently. Similar to the LM710, the device features low offset and thermal drift, a large input voltage range, low power consumption, fast recovery from large overloads and compatibility with most integrated logic circuits.

With the addition of an external resistor network, the LM711 series can be used as a sense amplifier for core memories. The input thresholding, combined with the high gain of the comparator, eliminates many of the inaccuracies encountered
with conventional sense amplifier designs. Further, it has the speed and accuracy needed for reliably detecting the outputs of cores as small as 20 mils.

The LM711 series are also useful in other applications where a dual comparator with OR'ed outputs is required, such as a double-ended limit detector. By using common circuitry for both halves, the device can provide high speed with lower power dissipation than two single comparators. The LM711C is the commercial/industrial version of the LM711. With operation specified over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Schematic ** and Connection Diagrams

Sense Amplifier With Supply Strobing for Reduced Power Consumption*

Order Number LM711H or LM711CH See NS Package H10C

Dual-In-Line Package

Order Number LM711CN See NS Package N14A

Double-Ended Limit Detector With Lamp Driver

Absolute Maximum Ratings
Positive Supply Voltage

$+14$
Operating Temperature Range
LM711
$25 \mathrm{~mA} \quad$ LM711C
Storage Temperature Range
TMIN TMAX
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Peak Output Current
Differential Input Voltage
$\pm 5 \mathrm{~V}$
Teare (Soldering
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\pm 7 \mathrm{~V}$
0 to +6 V
300 mW

Electrical Characteristics (These specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}$)

PARAMETER	CONDITIONS (Note 2)	LM711			LM711C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0$		1.0	3.5		1.0	5.0	mV
	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega,-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+5 \mathrm{~V}$		1.0	5.0		1.0	7.5	$m V$
Input Offset Current			0.5	10.0		0.5	15	$\mu \mathrm{A}$
Input Bias Current			25	75		25	100	$\mu \mathrm{A}$
Voltage Gain		750	1500		700	1500		
Response Time (Note 3)			40			40		ns
Strobe Release Time			12			12		ns
Input Voltage Range	$V^{-}=7 \mathrm{~V}$	± 5.0			± 5.0			v
Differential Input Voltage		± 5.0			± 5.0			v
Range		,						
Output Resistance			200			200		Ω
Positive Output Level	$V_{\text {IN }} \geq 10 \mathrm{mV}$		4.5	5.0		4.5	5.0	v
Loaded Positive Output Level	$\mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}$, IOUT $=-5 \mathrm{~mA}$	2.5	3.5		2.5	3.5		v
Negative Output Level	$V_{\text {IN }} \leq-10 \mathrm{mV}$	-1.0		0	-1.0	-0.5	0	v
Strobed Output Level.	$\mathrm{V}_{\text {STROBE }} \leq 0.3 \mathrm{~V}$.	-1.0		0	-1.0		0	\checkmark
Output Sink Current	$\mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{V}_{\text {OUT }} \geq 0$	0.5	0.8		0.5	0.8		mA
Strobe Current	$V_{\text {STROBE }}=100 \mathrm{mV}$		1.2	2.5		1.2	2.5	mA
Positive Supply Current	$V_{\text {IN }} \leq-10 \mathrm{mV}$		8.6			8.6		mA
Negative Supply Current			3.9			3.9		mA
Power Consumption			130	200		130	230	mW
The following specifications apply for $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$:								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\text {CM }}=0$			4.5			6.0	mV
	RS $\leq 200 \Omega$			6.0			10	mV
Input Offset Current			.	20			25	$\mu \mathrm{A}$
Input Bias Current				150			150	$\mu \mathrm{A}$
Average Temperature								
Coefficient of Input								
Offset Voltage	.		5.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Voltage Gain		500			500			

Note 1: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $105^{\circ} \mathrm{C}$.
Note 2: The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8 V at $-55^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, and 1 V at $125^{\circ} \mathrm{C}$.
Note 3: The response time specified is for a 100 mV input step with 5 mV overdrive (see definitions).

Typical Performance Characteristics

Response Time for Various Input Overdrives

Common Mode Pulse
Response

Voltage Gain

Strobe Release Time for Various Input Overdrives

Input Bias Current

Output Pulse Stretching With Capacitive Loading

Output Voltage Level

Maximum Power Dissipation

National Semiconductor

LM1514/LM1414 Dual Differential Voltage Comparator

General Description

The LM1514/LM1414 is a dual differential voltage comparator intended for applications requiring high accuracy and fast response times. The device is constructed on a single monolithic silicon chip.

The LM1514/LM1414 is useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A-D converters, a memory sense amplifier or a high noise immunity line receiver. The output of the comparator is compatible with all integrated logic forms. The LM1514/LM1414 meet or exceed the specifications for the MC1514/MC1414 and are pin-for-pin replacements. The LM1514 is available in the ceramic dual-in-line package. The LM1414 is available in either the ceramic or molded dual-in-line package.

The LM1514 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM1414 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Two totally separate comparators per package
- Independent strobe capability
- High speed 30 ns typ
- Low input offset voltage and current
- High output sink current over temperature
- Output compatible with TTL/DTL logic
- Molded or ceramic dual-in-line package

Schematic and Connection Diagrams

Dual-In-Line Package

Order Number LM1414J or LM1514J See NS Package J14A
Order Number LM1414N
See NS Package N14A

Absolute Maximum Ratings (Note 1)

Positive Supply Voltage	+14.0 V	
Negative Supply Voltage	-7.0 V	
Peak Output Current	10 mA	
Differential Input Voltage	$\pm 5.0 \mathrm{~V}$	
Input Voltage	$\pm 7.0 \mathrm{~V}$	
Power Dissipation (Note 2)	600 mW	
Operating Temperature Range	LM1514	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	

Electrical Characteristics for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}$, unless otherwise specified

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
Note 2: LM1514 ceramic package: The maximum junction temperature is $+150^{\circ} \mathrm{C}$, for operating at elevated temperatures, devices must be derated linearly at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. LM1414 ceramic package: The maximum junction temperature is $+95^{\circ} \mathrm{C}$ for operating at elevated temperatures, devices must be derated linearly at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. LM1414 molded package: The maximum junction temperature is $+115^{\circ} \mathrm{C}$, for operating at elevated temperatures, devices must be derated linearly at $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 3: The response time specified (see definitions) for a 100 mV input step with 5 mV overdrive.
Note 4: For LM1514, $T_{L}=-55^{\circ} \mathrm{C}, \mathrm{T}_{H}=+125^{\circ} \mathrm{C}$. For $\mathrm{LM} 1414, \mathrm{~T}_{\mathrm{L}}=0^{\circ} \mathrm{C}, \mathrm{T}_{H}=+70^{\circ} \mathrm{C}$.

Section 6

Analog Switches

Analog Switches

Section Contents

Analog Switches/Multiplexers Selection Guide 6-iii
Hybrid Analog Switch Selection Guide. 6-iv
Definition of Terms. 6-iv
LF11331/LF13331 4 Normally Open Switches With Disable 6-1
LF11332/LF13332 4 Normally Closed Switches With Disable. 6-1
LF11333/LF13333 2 Normally Closed Switches and 2 NormallyOpen Switches With Disable.6-1
LF11201/LF13201 4 Normally Closed Switches 6-1
LF11202/LF13202 4 Normally Open Switches. 6-1
LF11508/LF13508 8-Channel Analog Multiplexer. 6-11
LF11509/LF13509 4-Channel Differential Analog Multiplexer 6-11

Note. For additional information on analog switches, see National Semiconductor's Special Functions Databook and FET Databook.

Notes:

$R_{\text {ON }} \max @ T_{A}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{A}} / \mathrm{I}=$ maximum voltage or current to be safely switched
Part number = basic number/alternate number (i.e., AM181/DG181). May be ordered by either number,
*Preferred devices

HYBRID ANALOG SWITCHES

*Refers to Special Functions Databook, 1979 edition

Definition of Terms

Driver Leakage Current: The sum of the currents into the source and drain switch terminals, with both held at the same specified voltage.

Logic "1" Input Voltage: The voltage level which is guaranteed to be interpreted by the device as a logical "true" signal.

Logic "0" Input Voltage: The voltage level which is guaranteed to be interpreted by the device as a logical "false" signal.

Logic Input Slew Rate: The voltage difference between the logic " 1 " and logic " 0 " states divided by the transition time.

Switch Leakage Current: The current seen when a specified voltage is applied between drain and source of a channel that is logically turned off.

Switch "ON" Resistance: The equivalent resistance from source to drain, tested by forcing a specified current and measuring the resultant voltage drop.

Switch Turn "OFF" Time: The interval between the time that the logic input passes through the threshold voltage and the time that the output goes to a specified voltage level in the test circuit.

Switch Turn "ON" Time: The interval between the time that the logic input passes through the threshold voltage and the time that the output goes to 90% of its final value in the specified test circuit.

7 National Semiconductor

Quad SPST JFET Analog Switches

LF11331/LF13331 4 Normally Open Switches with Disable LF11332/LF13332 4 Normally Closed Switches with Disable LF11333/LF13333 2 Normally Closed Switches and 2 Normally Open Switches with Disable LF11201/LF13201 4 Normally Closed Switches LF11202/LF13202 4 Normally Open Switches

General Description

These devices are monolithic combination of bipolar and JFET technology producing the industry's first one chip quad JFET switch. A unique circuit technique is employed to maintain a constant resistance over the analog voltage range of $\pm 10 \mathrm{~V}$. The input is designed to operate from minimum TTL levels, and switch operation also ensures a break-before-make action.

Features

- Analog signals are not loaded
- Constant "ON" resistance for signals up to $\pm 10 \mathrm{~V}$ and 100 kHz
- Pin compatible with CMOS switches with the advantage of blow out free handling
- Small signal analog signals to 50 MHz
- Break-before-make action $\mathrm{t}_{\mathrm{OFF}}<\mathrm{t}_{\mathrm{ON}}$
- High open switch isolation at $1: 0 \mathrm{MHz}$. $\quad-50 \mathrm{~dB}$
- Low leakage in "OFF" state $<1.0 \mathrm{nA}$
- TTL, DTL, RTL compatibility
- Single disable pin opens all switches in package on LF11331, LF11332, LF11333
- LF11201 is pin compatible with DG201

These devices operate from $\pm 15 \mathrm{~V}$ supplies and swing à $\pm 10 \mathrm{~V}$ analog signal. The JFET switches are designed for applications where a dc to medium frequency analog signal needs to be controlled.

Connection Diagrams (Dual-In-Line Packages) (All Switches Shown are For Logical "0")

LF11201/LF13201

LF11332/LF13332

Order Number LFi1201D, LF13201D, LF11202D, LF13202D, LF11331D, LF13331D, LF11332D, LF13332D, LF11333D, or LF13333D See NS Package D16C

Order Number LF13201N, LF13202N, LF13331N, LF13332N, or LF13333N
See NS Package N16A

LF11333/LF13333

LF11202/LF13202

top view

Test Circuit and Schematic Diagram

FIGURE 2. Schematic Diagram (Normally Open)

Absolute Maximum Ratings

Positive Supply - Negative Supply ($\mathrm{V}_{\mathrm{Cc}}-\mathrm{V}_{\mathrm{EE}}$)
Reference Voltage
Logic Input Voltage
Analog Voltage
Analog Current
Power Dissipation (Note 1)
Molded DIP (N Suffix)
Cavity DIP (D Suffix)

36 V
$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{R}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{V}_{\mathrm{R}}-4.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{R}}+6.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V} ; \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}$ $\|_{A} K<20 \mathrm{~mA}$

500 mW
900 mW

Operating Temperature Range
LF11201, 2 and LF11331, 2, 3
LF13201, 2 and LF13331, 2, 3
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics
(Notes 2, 7)

Note 1: For operating at high temperature the molded DIP products must be derated based on a $+100^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, devices in the cavity DIP are based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and are derated at $+100^{\circ} \mathrm{C} / \mathrm{W}$. Note 2: Unless otherwise specified, $V_{C C}=+15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, V_{R}=0 \mathrm{~V}$, and limits apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LF11331, 2, 3 and the LF11202, $2,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for the LF13331, 2,3 and the LF13201, 2.
Note 3: These parameters are limited by the pin to pin capacitance of the package.
Note 4: This is the analog signal slew rate above which the signal is distorted as a result of finite internal slew rates.
Note 5: All switches in the device are turned "OFF" by saturating a transistor at the disable node as shown in Figure 5. The delay times will be approximately equal to the tON or tOFF plus the delay introduced by the external transistor.
Note 6: This graph indicates the analog current at which 1% of the analog current is lost when the drain is positive with respect to the source.

Test Circuit and Typical Performance Curves
Delay Time, Rise Time, Settling Time, and Switching Transients

Additional Test Circuits

FIGURE 3. ton, toff Test Circuit and Waveforms for a Normally Open Switch

Typical Performance Characteristics

V_{A} (VOLTS)

Crosstalk and "OFF" Isolation vs Frequency Using Test Circuit of Figure 5

FREQUENCY (Hz)

Slew Rate of Analog Voltage Above Which Signal Loading Occurs

Small Signal Response

Maximum Accurate Analog Current vs Temperature

Logical "1" Input Bias Current

Application Hints

GENERAL INFORMATION

These devices are monolithic quad JFET analog switches with "ON" resistances which are essentially independent of analog voltage or analog current. The leakage currents are typically less than 1 nA at $25^{\circ} \mathrm{C}$ in both the "OFF" and "ON" switch states and introduce negligible errors in most applications. Each switch is controlled by minimum TTL logic levels at its input and is designed to turn "OFF" faster than it will turn "ON." This prevents two analog sources from being transiently connected together during switching. The switches were designed for applications which require break-before-make action, no analog current loss, medium speed switching times and moderate analog currents.

Because these analog switches are JFET rather than CMOS , they do not require special handling.

LOGIC INPUTS

The logic input (IN), of each switch, is referenced to two forward diode drops (1.4 V at $25^{\circ} \mathrm{C}$) from the reference supply (V_{R}) which makes it compatible with DTL, RTL, and TTL logic families. For normal operation, the logic " 0 " voltage can range from 0.8 V to -4.0 V with respect to V_{R} and the logic " 1 " voltage can range from 2.0 V to 6.0V with respect to V_{R}, provided $V_{I N}$ is not greater than ($\mathrm{V}_{\mathrm{cc}}-2.5 \mathrm{~V}$). If the input voltage is greater than ($\mathrm{V}_{\mathrm{cc}}-2.5 \mathrm{~V}$), the input current will increase. If. the input voltage exceeds 6.0 V or -4.0 V with respect. to V_{R}, a resistor in series with the input should be used to limit the input current to less than $100 \mu \mathrm{~A}$.

ANALOG VOLTAGE AND CURRENT

Analog Voltage

Each switch has a constant "ON" resistance (R_{ON}) for analog voltages from ($\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}$) to ($\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V}$). For analog voltages greater than ($\mathrm{V}_{\mathrm{cc}}-5 \mathrm{~V}$), the switch will remain ON independent of the logic input voltage. For analog voltages less than ($\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}$), the ON resistance of the switch will increase. Although the switch will not operate normally when the analog voltage is out of the previously mentioned range, the source voltage can go to either $\left(V_{E E}+36 \mathrm{~V}\right)$ or $\left(\mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V}\right)$, whichever is more positive, and can go as negative as $V_{E E}$ without destruction. The drain (D) voltage can also. go to either $\left(\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}\right)$ or $\left(\mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V}\right)$, whichever is more positive, and can go as negative as ($\mathrm{V}_{\mathrm{cc}}-36 \mathrm{~V}$) without destruction.

Analog Current

With the source (S) positive with respect to the drain (D), the R_{ON} is constant for low analog currents, but will increase at higher currents ($>5 \mathrm{~mA}$) when the FET enters the saturation region. However, if the drain is positive with respect to the source and a small analog current loss at high analog currents (Note 6) is tolerable, a low R_{ON} can be maintained for analog currents greater than 5 mA at $25^{\circ} \mathrm{C}$.

LEAKAGE CURRENTS

The drain and source leakage currents, in both the ON and the OFF states of each switch, are typically less than 1 nA at $25^{\circ} \mathrm{C}$ and less than 100 nA at $125^{\circ} \mathrm{C}$. As shown in the typical curves, these leakage currents are dependent on power supply voltages, analog voltage, analog current and the source to drain voltage.

DELAY TIMES

The delay time OFF (toff) is essentially independent of both the analog voltage and temperature. The delay time $\mathrm{ON}\left(\mathrm{t}_{\mathrm{ON}}\right)$ will decrease as either $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{A}}\right)$ decreases or the temperature decreases.

POWER SUPPLIES

The voltage between the positive supply (V_{cc}) and either the negative supply ($V_{E E}$) or the reference supply $\left(\mathrm{V}_{\mathrm{R}}\right)$ can be as much as 36 V . To accommodate variations in input logic reference voltages, V_{R} can range from V_{EE} to ($\mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}$). Care should be taken to ensure that the power supply leads for the device never become reversed in polarity or that the device is never inadvertantly installed backwards in a test socket. If one of these conditions occurs, the supplies would zener an interal diode to an unlimited current; and result in a destroyed device.

SWITCHING TRANSIENTS

When a switch is turned OFF or ON, transients will appear at the load due to the internal transient voltage at the gate of the switch JFET being coupled to the drain and source by the junction capacitances of the JFET. The magnitude of these transients is dependent on the load. A lower value R_{L} produces a lower transient voltage. A negative transient occurs during the delay time ON, while a positive transient occurs during the delay time OFF. These transients are relatively small when compared to faster switch families.

DISABLE NODE

This node can be used, as shown in Figure 5, to turn all the switches in the unit off independent of logic inputs. Normally, the node floats freely at an internal diode drop ($\approx 0.7 \mathrm{~V}$) above V_{R}. When the external transistor in Figure 5 is saturated, the node is pulled very close to V_{R} and the unit is disabled. Typically, the current from the node will be less than 1 mA . This feature is not available on the LF11201 or LF11202 series.

FIGURE 5. Disable Function

Programmable Inverting Non-Inverting Operational Amplifier

Typical Applications (Continued)

8-Channel Analog Commutator with 6-Channel Select Logic

Typical Applications (Continued)

Self-Zeroing Operational Amplifier

$$
\checkmark
$$

National

LF11508/LF13508 8-Channel Analog Multiplexer LF11509/LF13509 4-Channel Differential Analog Multiplexer

General Description

The LF11508/LF13508 is an 8-channel analog multiplexer which connects the output to 1 of the 8 analog inputs depending on the state of a 3-bit binary address. An enable control allows disconnecting the output; thereby providing a package select function.

This device is fabricated with National's BI-FET technology which provides ion-implanted JFETs for the analog switch on the same chip as the bipolar decode and switch drive circuitry. This technology makes possible low constant "ON" resistance with analog input voltage variations. This device does not suffer from latch-up problems or static charge blow-out problems associated with similar CMOS parts. The digital inputs are designed to operate from both TTL and CMOS levels while always providing a definite break-before-make action.

The LF11509/LF13509 is a 4-channel differential analog multiplexer. A 2 -bit binary address will connect a pair
of independent analog inputs to one of any 4 pairs of independent analog outputs. The device has all the features of the LF11508 series and should be used whenever differential analog inputs are required.

Features

- JFET switches rather than CMOS
- No static discharge blow-out problem
- No SCR latch-up problems
- Analog signal range $11 \mathrm{~V},-15 \mathrm{~V}$
- Constant "ON" resistance for analog signals between -11 V and 11 V
- "ON" resistance 380Ω typ
- Digital inputs compatible with TTL and CMOS
- Output enable control
- Break-before-make action: tOFF $=0.2 \mu \mathrm{~s}$; tON $=$ 2μ styp
- Lower leakage devices available

Functional Diagrams and Truth Tables

EN	A2	A1	AO	SWITCH ON
H	L	L	L	S1
H	L	L	H	S2
H	L	H	L	S3
H	L	H	H	S4
H	H	L	L	S5
H	H	L	H	S6
H	H	H	L	S7
H	H	H	H	S8
L	X	X	X	NONE

Absolute Maximum Ratings

Electrical Characteristics (Note 3)

SYMBOL	PARAMETER :	CONDITIONS		LF11508, LF11509			LF13508, LF13509			UNITS
				MIN	TYP	MAX	MIN	TYP:	MAX	
Ron	"ON" Resistance	VOUT $=0 \mathrm{~V}, \mathrm{IS}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\dot{ }$	380	500		380	650	Ω
					600	750		500	850	Ω
$\Delta \mathrm{R}_{\text {ON }}$	$\Delta R_{\text {ON }}$ with Analog Voltage Swing	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+10 \mathrm{~V}, \mathrm{IS}=100 \mu \mathrm{~A}$	$T \cdot A=25^{\circ} \mathrm{C}$	\because	0.01	1	\because	0.01	: 1	\%
Ron Match	RON Match Between Switches	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{IS}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	100		20	150	Ω
IS(OFF)	Source Current in "OFF". Condition	Switch "OFF", $\mathrm{V}_{\mathrm{S}}=11, \mathrm{~V}_{\mathrm{D}}=-11$, (Note 4)	$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$			1			5	nA
					10	50		0.09	50	nA
ID(OFF)	Drain Current in."OFF" Condition	Switch "OFF", $\mathrm{V}_{\mathrm{S}}=11, \mathrm{~V}_{\mathrm{D}}=-11$, (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		+	10			20	nA
					25	500		0.6	500	nA
${ }^{\text {I }} \mathrm{D}(\mathrm{ON})$.	Leakage Current in "ON" Condition	'Switch "ON" VD $=111 \mathrm{~V}$, (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10		.	20	nA
					35	500		1	500	nA
$V_{\text {INH }}$	Digital "1" Input Voltage		. .	2.0	:		2.0			V
VINL	Digital "0" Input Voltage	- •	. . .			0.7			0.7	V
IINL	Digital "0" Input Current	$V_{1 N}=0.7 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.	1.5	20		1.5	30.	$\mu \mathrm{A}$
						40			40	$\mu \mathrm{A}$.
IINL(EN)	Digital "0" Enable Current	$\mathrm{V}_{\mathrm{EN}}=0.7 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.2	20		1.2	30	$\mu \mathrm{A}$
						40	.		40	$\mu \mathrm{A}$
tTRAN	Switching Time of Multiplexer	(Figure 1), (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	3		1.8		$\mu \mathrm{s}$
topen	Break-Before-Make	(Figure 3)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.6			1.6		$\mu \mathrm{s}$
TON(EN)	Enable Delay "ON"	(Figure 2)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.6		-	1.6		$\mu \mathrm{s}$
toff(EN)	Enable Delay "OFF"	(Figure 2)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2		,	0.2	.	$\mu \mathrm{s}$
ISO(OFF)	"OFF" Isolation	(Note 6)	$T_{A}=25^{\circ} \mathrm{C}$	- $\cdot \cdot$	-66			-66		dB
CT	Crosstalk . .	LF11509 Series, (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	-66			-66		dB
$\mathrm{CS}_{\text {S }} \mathrm{OFF}$)	Source Capacitance ('OFF')	Switch "OFF", VOUT $=0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		2.2			2.2		pF
CD(OFF)	Drain Capacitance ("OFF")	Switch "OFF", $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, $V_{S}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		11.4			11.4		pF
${ }^{\prime} \mathrm{CC}$	Positive Supply 'Current	All Digital Inputs Grounded	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.4	10		7.4	12	mA
					9.2	13		7.9	15	mA
IEE	Negative Supply Current	All Digital Inputs Grounded	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\therefore \cdot$	2.7	4.5		2.7	5	mA
					2.9	5.5		2.8	6	mA

Notes

Note 1: If the analog input voltage exceeds this limit, the input current should be limited to less than 10 mA .
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{\mathrm{jA}}$, and the
 ever is less.
Note 3: These specificiations apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range ($T_{L} \leq T_{A} \leq T_{H}$) unless otherwise noted.

Note 4: Conditions applied to leakage tests insure worse case leakages. Exceeding 11 V on the analog input may cause an "OFF" channel to turn "ON".

Note 5: Lots are sample tested to this parameter. The measurement conditions of Figure 1 insure worse case transition time.
Note 6: "OFF" isolation is measured with all switches "OFF" and driving a source. Crosstalk is measured with a pair of switches "ON", driving channel A and measuring channel $B . R_{L}=200, C_{L}=7 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{Vrms}, f=500 \mathrm{kHz}$.

Connection Diagrams

LF11508/LF13508
Dual-In-Line Package

Order Number LF 11508D or LF13508D
See NS Package D16C
Order Number LF 13508N See NS Package N16A

LF11509/LF13509
Dual-In-Line Package

Order Number LF 11509D or LF 13509D
See NS Package D16C
Order Number LF13509N
See NS Package N16A

AC Test Circuits and Switching Time Waveforms

$v_{S 1}$

FIGURE 1. Transition Time

AC Test Circuit and Switching Time Waveforms (Continued)

ENABLE

Vout

FIGURE 3. Break-Before-Make

Transition Times and Transients

$1 \mu \mathrm{~S} / \mathrm{DIV}$

$1 \mu \mathrm{~S} / \mathrm{DIV}$

$1 \mu \mathrm{~S} / \mathrm{DIV}$

1μ S/DIV

$1 \mu \mathrm{~S} / \mathrm{DIV}$

Test Circuit

Typical Performance Characteristics

Switch Leakage
Currents

Switching Times
(Figures 1 and 3)

Bias Currents

Enable Delay Times (Figure 2)

Supply Currents

Switch Leakage Currents

"OFF" Isolation and Crosstalk

Application Hints

The LF11508 series is an 8-channel analog multiplexer which allows the connection of a single load to 1 of 8 different analog inputs. These multiplexers incorporate JFETs in a switch configuration which insures a constant "ON" resistance over the analog voltage range of the device. Four TTL compatible inputs are provided; a 3-bit binary decode to select a particular channel and an enable input used as a package select. The switches operate with a break-befóre-make action preventing the temporary connection of 2 analog inputs during switching. Because these multiplexers are fabricated with the BI-FET process rather than CMOS, they do not require special handling.

The LF11509 series is a 4-channel differential multiplexer which allows two loads to be connected to 1 of 4 different pairs of analog inputs. The LF11509 series also has all the features of the LF11508.

ANALOG VOLTAGE AND CURRENT

The "ON" resistance, RON; of the analog switches is constant over a wide input range from positive (V_{CC}) supply to negative ($-\mathrm{V}_{\mathrm{EE}}$) supply.

The analog input should not exceed either positive or negative supply without limiting the current to less than 10 mA ; otherwise the multiplexer may get damaged. For proper operation, however, the positive analog voltage should be kept equal to or less than $\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}$ as this will increase the switch leakage in both "ON" and "OFF" state and it may also cause a false turn "ON" of a normally "OFF" switch. This limit applies over the full temperature range.

The maximum allowable switch "ON" voltage (the drop across the switch in the " ON " condition) is $\pm 0.4 \mathrm{~V}$ over temperature. If this number is to exceed the input current should be limited to 10 mA .

The "ON". resistance of the multiplexing switches varies slightly with analog current because they are JFETs running at $O V$ gate to source. The JFET characteristics shown in Figure 4 indicates how RON tends to vary with current. A lower RON is possible when the source voltage is negative with respect to the drain voltage because the JFET becomes enhanced. Caution should be used when operating in this mode as this may forward-bias an internal transistor and cause high currents to flow in the switches. Thus, the drain voltage should never be greater than 0.4 V positive with respect
to the source voltage without limiting the drain current to less than 10 mA .

LEAKAGE CURRENTS

Leakage currents will remain within the specified value as long as the drain and source remain within the specified analog voltage range. As the switch terminals exceed the positive analog voltage range "ON" and "OFF" leakage currents increase. The "ON" leakage increases due to an internal clamp required by the switch structure. The "OFF" leakage increases because the gate to source reverse bias has been decreased to the point where the switch becomes active. Leakage currents vary slightly with analog voltage and will approximately double for every $10^{\circ} \mathrm{C}$ rise in temperature.

SWITCHING TIMES AND TRANSIENTS

These multiplexers operate with a break-before-make switch action. The turn off time is much faster than the turn on time to guarantee this feature over the full range of analog input voltage and temperature. Switching transients are introduced when a switch is turned "OFF". The amplitude of these transients may be reduced by increasing the load capacitance or decreasing the load resistance. The actual charge transfer in the transient may be reduced by operating on reduced power supplies. Examples of switching times and transients are shown in the typical characteristic curves. The enable function switching times are specified separately from switch-to-switch transition times and may be thought of as package-to-package transition times.

LOGIC INPUTS AND ENABLE INPUT

Switch selection in the LF11508 series is accomplished by using a 3 -bit binary decode while the LF1 1509 series uses a 2 -bit decode. These binary logic inputs are compatible with both TTL and CMOS logic voltage levels. The maximum positive voltage applied to these inputs may exceed $V_{C C}$ but should not exceed $-V_{E E}+36 \mathrm{~V}$. The maximum negative voltage should not be less than 4 V below ground as this will cause an internal device to zener and all the switches will turn "ON".

As shown in the schematic diagram, the logic low bias current will flow until the PNP input is raised above the 3 diode reference $(\approx 2.1 \mathrm{~V}$). Above this voltage the input device becomes reverse biased and the input current drops to the leakage of the reverse biased junction $(<0.1 \mu \mathrm{~A})$.

Typical Applications

A SIMPLIFIED SYSTEM DISCUSSION

Analog multiplexers (MUX) are usually used for multichannel Data Acquisition Units (DAU). Figure 5 shows a system in which 8 different analog inputs are sampled and converted into digital words for further processing. The sample and hold circuit is optional, depending on input speed requirements and on A/D converter speed.

Parameters characterizing the system are:
System Channels: The number of multiplexer channels. Accuracy: The conversion accuracy of each individual sample with the system operating at the throughput rate.
Speed or Throughput Rate: Number of samples/second/ channel the system can handle.

For a discussion on system structure, addressing mode and processor interfacing, see application note AN-159.

A. ACCURACY CONSIDERATIONS

1. Multiplexer's Influence on System Accuracy (Figure 6).
a. The error, (E), caused by the finite " ON " resistance, RON, of the multiplexing switches is given by:
$E(\%)=\frac{100}{1+R_{\text {IN }} /\left(R_{O N}+R_{S}+\Delta R_{O N}\right)}$ where:
$R_{I N}=$ following stage input impedance
$\triangle R_{O N}=$ "ON" resistance modulation which is negligible for JFET switches like the LF11508

Example: Let $\mathrm{RON}=450 \Omega, \Delta \mathrm{R}_{\mathrm{ON}}=0, \mathrm{RS}_{\mathrm{S}}=0$, $T_{A}=25^{\circ} \mathrm{C}$ and allowable $E=0.01 \%$ which is equivalent to $1 / 2$ LSB in a 12 -bit system:

$$
\left.R_{I N}\right|_{\min }=\frac{R_{O N}(100-E)}{E}=4.5 \mathrm{M} \Omega
$$

Note that if temperature effects are included, some gain (or full scale) drift will occur; but effects on linearity are small.
b. Multiplexer settling time (t_{s}):
$\mathrm{t}_{\mathrm{s}}(\mathrm{ON})$: is the time required for the MUX output to settle within a predetermined accuracy, as shown in Table I.
CS (Figure 6): MUX output capacitance + following stage input capaciṭance + any stray capacitance at this node.

ERROR \%	BITS	$\mathbf{t}_{\mathbf{s}}$ (ON) TO $1 / 2$ LSB
0.2	8	6.2 t
0.05	10	7.6 t
0.01	12	9 t
0.0008	16	11.8 t

$$
t=C_{S}\left(R_{O N}+R_{S}\right) \| R_{I N}
$$

$\mathrm{t}_{\mathrm{s}}(\mathrm{OFF})$: is the time it takes to discharge CS_{S} within a tolerable error. The "OFF" settling time should be taken into account for bipolar inputs where its effects will appear as a worse case doubling of the $\mathrm{t}_{\mathrm{s}}(\mathrm{ON})$.
2. Sample and Hold Influence on System Accuracy

The sample and hold, if used, also introduces errors into the system accuracy due to:

- Offset voltage of sample and hold
- Droop rate in the Hold mode
- T_{A} : Aperture time or time delay between the time of a digital Hold command and the actual Hold occurance
- Taq: Acquisition time or time it takes to acquire an analog input and settle within a predetermined error band
- Hold step: Error created during the Sample to Hold mode caused by an undesirable charge injected into the Hold capacitor C_{h}.

For more details on sample and hold errors, see the LF198/LF298/LF398 data sheet.
3. A/D Converter Influence on System Accuracy The "accuracy" of the A/D converter is the best possible system accuracy. In most data acquisition systems, the A / D converter is the most expensive single component, so its error will often dominate system error. Care should be taken that MUX, S/H and input source errors do not exceed system error requirements when added to A/D errors. For instance, if an 8 -bit accuracy system is desired and an 8 -bit A/D converter is used, the accuracy of the MUX and S / H should be far better than 8 bits.

For details on A / D converter specifications, see AN-156.

Typical Applications (Continued)

B. SPEED CONSIDERATIONS

In the system of Figure 5 with the S / H omitted, if n -bit accuracy is desired, the change of the analog input voltage should be less than $\pm 1 / 2$ LSB over the A/D conversion time T_{C}. In other words, the analog input slew rate, (rate of change of input voltage), will cause a slewinduced error and its magnitude, with respect to the total system error, will depend on the particular application.

$$
\left.\frac{\Delta V_{\text {IN }}}{\Delta t}\right|_{\max }<\frac{ \pm 1 / 2 \mathrm{LSB}}{T_{\mathrm{C}}}=\frac{\mathrm{V}_{\mathrm{FS}}}{2^{n} \times T_{\mathrm{C}}}
$$

where VFS is the full scale voltage of the A/D. Note that slew induced errors are not affected by the MUX switch time since we can let the unit settle before starting conversion.

Example: Let $\mathrm{T}_{\mathrm{C}}=40 \mu \mathrm{~s}(\mathrm{MM} 4357), \mathrm{V}_{\mathrm{FS}}=10 \mathrm{~V}$ and $\mathrm{n}=8$.

$$
\left.\frac{\Delta V_{I N}}{\Delta t}\right|_{\max }<\frac{1 \mathrm{mV}}{\mu \mathrm{~s}}
$$

which is a very small number. A 10 Vp -p sine wave of a frequency greater than 32 Hz will have higher slew rate than this. The maximum throughput rate of the above 8 -channel system would be calculated using both the A / D conversion time and the sum of MUX switch "ON" time and settling time, i.e.:

$$
\begin{aligned}
& \text { Th. }\left.R\right|_{\max }=\frac{1}{8\left(T_{C}+T_{M U X}\right)}=3 \mathrm{k} \text { samples } / \mathrm{sec} / \\
& T_{M U X}=T_{O N}+T_{S}(O N)
\end{aligned}
$$

Also notice that Nyquist sampling criteria would allow each channel to have a signal bandwidth of 1.5 kHz max, while the slew limit dictates a maxi'mum frequency of 32 Hz . If the input signal has a peak-to-peak voltage less than 10 V , the allowable maximum input frequency can be calculated by:

$$
\mathrm{f}_{\mathrm{MAX}}=\frac{(\text { Slew Rate })_{\max }}{\pi V \mathrm{p}-\mathrm{p}}
$$

On the other hand, if the input voltage is not bandlimited a low pass filter with an attenuation of 30 dB or better at 1.5 kHz , should be connected in front of the MUX.

1. Improving System Speed with a Sample and Hold

The system speed can be improved by using the S/H shown in Figure 5. This allows a much greater rate of change of $\mathrm{V}_{\text {IN }}$.

$$
\left.\frac{\Delta V_{\text {IN }}}{\Delta t}\right|_{\max }<\frac{V_{F S}}{2^{n} \times T_{A}}
$$

where T_{A} is the aperture time of the S / H. This represents an input slew rate improvement by a factor: T_{C} / T_{A}. Here again, the slew rate error is not affected by the acquisition time of the Sample and Hold since conversion will start after the S/H has settled. An important thing to notice is that the sample and hold errors will add to the total system error budget; therefore, the inequality of the $\Delta V_{I N} / \Delta t$ expression should become more stringent.

Example: $T_{C}=40 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{A}}=0.5 \mu \mathrm{~s}, \mathrm{n}=8: \mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{A}}=80$

So the use of a S/H allows a speed improvement by nearly two orders of magnitude.

The maximum throughput rate can be calculated by:

$$
\text { Th. }\left.R\right|_{\text {max }}=\frac{1}{8\left(T_{A}+T_{a q}+T_{C}\right)}
$$

Notice that $T_{M U X}$ does not affect the $\Delta V_{\text {IN }} / \Delta t$ expression nor the throughput rate of the system since it may be switched and settled while the Sample and Hold is in the Hold mode. This is true, provided that: $\mathrm{T}_{\text {MUX }}<\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{C}}$.

C. SYSTEM EXAMPLE (Figure 7)

The LF398 S/H with a 1000 pF hold capacitor, has an acquisition time of $4 \mu \mathrm{~s}$ to 0.1% ($1 / 4$ LSB error for 8 bits) and an aperture time of less than $200 \mu \mathrm{~s}$. On the other hand, after the hold command, the output will settle to $\pm 0.05 \mathrm{mV}$ in $1 \mu \mathrm{~s}$. This, together with the acquisition time, introduces approximately a $\pm 1 / 4$ LSB error. Allowing another $1 / 4$ LSB error for hold step and gain non-linearity, the maximum slew error ($\Delta \mathrm{V}_{\text {IN }}$ / Δt) should not exceed $1 / 4$ LSB or:

$$
\frac{\Delta V_{I N}}{\Delta t} \leq \frac{1}{4} \times \frac{1}{256} \times \frac{1}{T_{A}} \approx 5 \mathrm{mV} / \mu \mathrm{s}
$$

(which is the maximum slew rate of a 5 V peak sine wave. Also notice that, due to the above input slew restrictions, the analog delay caused by the finite BW of the S / H and the digital delay caused by the response time of the controller will be negligible. The maximum throughput rate of the system is:

Th. $\left.R\right|_{\text {max }}=\frac{1}{8(5+40) 10^{-6}}=\underset{\text { ch. }}{2800 \text { samples } / \mathrm{sec} /}$

If the system speed requirements are relaxed, but the A/D converter is still too slow, then an inexpensive S / H can be built by using just a capacitor and a low cost FET input op amp as shown in Figure 8.

Typical Applications (Continued)

FIGURE 7a. Sequentially Multiplexed DAU with Sample and Hold
חתחתחתחתחתחתחתחתחתחתחתחתחתחת

FIGURE 7b. Timing Diagram

Typical Applications (Continued)

D. DOUBLING THE SYSTEM CHANNEL CAPABILITY

This is dane in two different ways. First, we can use second level multiplexing with speed benefits, as shown in Figure 9. A fast 2-channel multiplexer, made by the dual analog switch AM182, accepts the outputs of each 8 -channel MUX, LF13508, and then feeds them sequentially into an 8 -bit successive approximation A / D converter. With this technique, the throughput rate of the system can again be made independent of the the LF13508 speed. Looking at the timing diagram, when the A / D converter converts the analog value of an upper multiplexer channel, we switch channels in the lower multiplexer for the next conversion. This can be done provided that:

$$
T_{M U X} \leq T_{C}+1 C P .
$$

The LF356 connected as unity gain buffers are used because of the low input impedance of the A/D; they are connected between multiplexers for speed optimization. With a maximum clock frequency of 4.5 MHz :

Th. $R=\frac{10^{6}}{16 \times 2}=31.25 \mathrm{k}$ samples $/ \mathrm{sec} / \mathrm{ch}$ annel
An alternate way to increase the system channel is shown in Figure 10, where the enable pins are used to disable one MUX while the other is sampling. With this method, many 8 -channel multiplexers can be connected, but the parasitic capacitance at the common output node will keep increasing and will eventually degrade the settling time, $\mathrm{t}_{\mathrm{s}}(\mathrm{ON})$. Also, the MUX speed will now affect the system throughput. If, for instance, this method was used instead of second level multiplexing, the system of Figure 9 will. lose half of its speed. If, however, speed is not the prime system requirement, the approach of Figure 10 is more cost effective.

E. DIFFERENTIAL INPUT SYSTEMS

Systems operating in industrial environments may require an instrumentation amplifier to separate the desired analog signal from any common-mode signal present. The LF11509 was designed to provide 4 pairs of differential input signals to the input of an instrumentation amplifier for further process. A 4-channel preconditioning circuit is shown in Figure 11 and a complete system is shown in Figure 12.
and

$$
\left.\frac{\Delta V_{\mathrm{IN}}}{\Delta \mathrm{t}}\right|_{\max } ^{<} \frac{10}{256} \times \frac{1}{2 \mu \mathrm{~s}}=19.5 \mathrm{mV} / \mu \mathrm{s} \text { for } 10 \mathrm{~V}_{\mathrm{FS}}
$$

- The acquisition time, T_{A}, of the Sample and Hold depends upon: RON, IDSS of switches, $Z_{\text {OUT }}$ of switches
- $I_{D S S} \cong 1.5 \mathrm{~mA}, \mathrm{Z}_{\text {OUT }}=40 \mathrm{k} \Omega$
- $V_{I N}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=20 \mu \mathrm{~s}$ to 0.1%
- Error created by charge injection during Hold mode: $\Delta \mathrm{V}_{\mathrm{E}} \simeq 10 \mathrm{pF}\left(14.5 \mathrm{~V}-\mathrm{V}_{\mathrm{IN}}\right) / \mathrm{C}_{\mathrm{h}}$

Typical Applications (Continued)

FIGURE 9a. A Fast 16-Channel DAU with Second Level Multiplexing

FIGURE 9b. Timing Diagram

Typical Applications (Continued)

FIGURE 10. A 16-Channel Multiplexer with Sequential Maltiplexing

Typical Applications (Continued)

- fCLOCK $\max =200 \mathrm{kHz}$
- The LF352 instrumentation amplifier is auto zeroed during offset correction cycle of the LF13300 A/D
- The system accuracy will mostly depend on the instrumentation amplifier gain linearity

FIGURE 12a. 4-Channel Differential Multiplexer with Auto Zeroed Instrumentation Amplifier and 12-Bit A/D Converter

PD: Polarity Detection
OC: Offset Correction
RR: Ramp Reference
For more details, see LF13300 data sheet

FIGURE 12b. System Timing Diagram for Differential MUX

Schematic Diagrams (Continued)

Section 7
Sample and Hold

Sample and Hold

Section Contents

Sample and Hold Amplifier Guide.7-iiiDefinition of Terms. 7-iv
LF198/LF298/LF398, LF198A/LF398A Monolithic Sample and Hold Circuits. 7-1

Note. For additional information on sample and hold, see National Semiconductor's Special Functions Databook.

Each of these	its includ	ut and outp	ffer amplifi	analog	for a com	sample and	unction.
					Par	ber	*
Features	Accuracy (Max)	Drift Rate $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Acquisition Time	Aperture Time	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	Page Number
Monolithic	$\pm 0.02 \%$	$30 \mathrm{mV} / \mathrm{s}$ (Note 1)	$4 \mu \mathrm{~S}$ (Note 1) $20 \mu \mathrm{~S}$ (Note 2)	25 ns	LF198	LF298	7-1
Low Drift	$\begin{aligned} & \pm 0.01 \% \\ & \pm 0.02 \% \end{aligned}$	$\begin{gathered} 2 \mathrm{mV} / \mathrm{s} \\ \text { (Note 2) } \end{gathered}$	$\begin{gathered} 50 \mu \mathrm{~s} \\ \text { (Note 2) } \end{gathered}$	150 ns	LH0023G	LH0023CG	4.4
Medium Speed	$\begin{aligned} & \pm 0.1 \% \\ & \pm 0.3 \% \end{aligned}$	$\begin{aligned} & 25 \mathrm{mV} / \mathrm{s} \\ & \text { (Note 1) } \end{aligned}$	$10 \mu \mathrm{~s}$ (Note 1)	20 ns	LH0043G	LH0043CG	4.4
High Speed	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.3 \% \end{aligned}$	$30 \mathrm{mV} / \mathrm{s}$ (Note 1)	$\begin{gathered} 5 \mu \mathrm{~s} \\ (\text { Note 1) } \end{gathered}$	25 ns	LH0053G	LH0053CG	4-12

Note 1: $\mathrm{C}_{\mathrm{S}}=1000 \mathrm{pF}$.
Note 2: $C_{S}=0.01 \mu \mathrm{~F}$.
*Refers to Special Functions Databook, 1979 edition

Sample and Hold

Definition of Terms

Acquisition Time: The time required to acquire a new analog input voltage with an output step of 10 V . Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.

Aperture Time: The delay required between "Hold" command and an input analog transition, so that the transition does not affect the held output.

Dynamic Sampling Error: The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.

Gain Error: The ratio of output voltage swing to input voltage swing in the sample mode expressed as a percent difference.

Hold Settling Time: The time required for the output to settle within 1 mV of final value after the "hold" logic command.

Hold Step: The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (dc) analog input voltage. Logic swing is 5 V .

General Description

The LF198/LF298/LF398 are monolithic sample and hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as 6μ s to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of $10^{10} \Omega$ allows high source impedances to be used without degrading accuracy.

P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as $5 \mathrm{mV} / \mathrm{min}$ with a $1 \mu \mathrm{~F}$ hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feedthrough from input to output in the hold mode even for input signals equal to the supply voltages.

Features

- Operates from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies
- Less than $10 \mu \mathrm{~s}$ acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5 mV typical hold step at $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$
- Low input offset
- 0.002% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth

Logic inputs on the LF198 are fully differential with low input current, allowing direct connection to TTL, PMOS, and CMOS. Differential threshold is 1.4 V . The LF198 will operate from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies. It is available in an 8 -lead TO- 5 package.

An " A " version is available with tightened electrical specifications.

Functional Diagram

Typical Applications

Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Package Limitation) (Note 1)	500 mW
Operating Ambient Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LF198/LF198A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LF298	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LF398/LF398A	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Input Voltage	Equal to Supply Voltage
Logic To Logic Reference Differential Voltage	$+7 \mathrm{~V},-30 \mathrm{~V}$
(Note 2)	
Output Short Circuit Duration	Indefinite
Hold Capacitor Short Circuit Duration	10 sec
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics
(Note 3)

Electrical Characteristics (Continued) (Note 3)

Note 1: The maximum junction temperature of the LF198/LF198A is $150^{\circ} \mathrm{C}$, for the LF298, $115^{\circ} \mathrm{C}$, and for the LF398/LF398A, $100^{\circ} \mathrm{C}$. When operating at elevated ambient temperature, the power dissipation must be derated based on a thermal resistance ($\Theta_{j A}$) of $150^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Although the differential voltage may not exceed the limits given, the common-mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least 2 V below the positive supply and 3 V above the negative supply.
Note 3: Unless otherwise specified, the following conditions apply. Unit is in "sample" mode, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C},-11.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+11.5 \mathrm{~V}$, $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$. Logic reference voltage $=0 \mathrm{~V}$ and logic voltage $=2.5 \mathrm{~V}$.
Note 4: Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF , for instance, will create an additional 0.5 mV step with a 5 V logic swing and a $0.01 \mu \mathrm{~F}$ hold capacitor. Magnitude of the hold step is inversely proportional to hold capacitor value.
Note 5: Leakage current is measured at a junction temperature of $25^{\circ} \mathrm{C}$. The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the $25^{\circ} \mathrm{C}$ value for each $11^{\circ} \mathrm{C}$ increase in chip temperature. Leakage is guaranteed over full input signal range.
Note 6: These parameters guaranteed over a supply voltage range of ± 5 to $\pm 18 \mathrm{~V}$.

Typical Performance Characteristics

Dynamic Sampling Error

Typical Performance Characteristics (Continued)

Feedthrough Rejection Ratio (Hold Mode)

Application Hints

Hold Capacitor

Hold step, acquisition time, and droop rate are the major trade-offs in the selection of a hold capacitor value. Size and cost may also become important for larger values. Use of the curves included with this data sheet should be helpful in selecting a reasonable value of capacitance. Keep in mind that for fast repetition rates or tracking fast signals, the capacitor drive currents may cause a significant temperature rise in the LF198.

A significant source of error in an accurate sample and hold circuit is dielectric absorption in the hold capacitor. A mylar cap, for instance, may "sag back" up to 0.2\% after a quick change in voltage. A long "soak" time is required before the circuit can be put back into the hold mode with this type of capacitor. Dielectrics with very low hysteresis are polystyrene, polypropylene, and Teflon. Other types such as mica and polycarbonate are not nearly as good. Ceramic is unusable with $>1 \%$ hysteresis. The advantage of polypropylene over polystyrene is that it extends the maximum ambient temperature from $85^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. "NPO" or "COG" capacitors are now available for $125^{\circ} \mathrm{C}$ operation and also have low dielectric absorption. For more exact data, see the curve labeled dielectric absorption error vs sample time. The hysteresis numbers on the curve are final values, taken after full relaxation. The hysteresis error can be significantly reduced if the output of the LF198 is digitized quickly after the hold mode is initiated. The hysteresis relaxation time constant in polypropylene, for instance, is $10-50 \mathrm{~ms}$. If A-to-D conversion can be made within 1 ms , hysteresis error will be reduced by a factor of ten.

DC and AC Zeroing

DC zeroing is accomplished by connecting the offset adjust pin to the wiper of a $1 \mathrm{k} \Omega$ potentiometer which has one end tied to V^{+}and the other end tied through a resistor to ground. The resistor should be selected to give $\approx 0.6 \mathrm{~mA}$ through the 1 k potentiometer.

AC zeroing (hold step zeroing) can be obtained by adding an inverter with the adjustment pot tied input to output. A 10 pF capacitor from the wiper to the hold capacitor will give $\pm 4 \mathrm{mV}$ hold step adjustment with a $0.01 \mu \mathrm{~F}$ hold capacitor and 5 V logic supply. For larger logic swings, a smaller capacitor ($<10 \mathrm{pF}$) may be used.

Logic Rise Time

For proper operation, logic signals into the LF 198 must have a minimum $\mathrm{dV} / \mathrm{dt}$ of $1.0 \mathrm{~V} / \mu \mathrm{s}$. Slower signals will cause excessive hold step. If a R/C network is used in front of the logic input for signal delay, calculate the slope of the waveform at the threshold point to ensure that it is at least $1.0 \mathrm{~V} / \mu \mathrm{s}$.

Sampling Dynamic Signals

Sample error due to moving input signals probably causes more confusion among sample-and-hold users than any other parameter. The primary reason for this is that many users make the assumption that the sample and hold amplifier is truly locked on to the input signal while in the sample mode. In actuality, there are finite
phase delays through the circuit creating an input-output differential for fast moving signals. In addition, although the output may have settled, the hold capacitor has an additional lag due to the 300Ω series resistor on the chip. This means that at the moment the "hold" command arrives, the hold capacitor voltage may be somewhat different than the actual analog input. The effect of these delays is opposite to the effect created by delays in the logic which switches the circuit from sample to hold. For example, consider an analog input of $20 \mathrm{Vp-p}$ at 10 kHz . Maximum $\mathrm{dV} / \mathrm{dt}$ is $0.6 \mathrm{~V} / \mu \mathrm{s}$. With no analog phase delay and 100 ns logic delay, one could expect up to $(0.1 \mu \mathrm{~s})(0.6 \mathrm{~V} / \mu \mathrm{s})=60 \mathrm{mV}$ error if the "hold" signal arrived near maximum $d V / d t$ of the input. A positive-going input would give a +60 mV error. Now assume a $1 \mathrm{MHz}(3 \mathrm{~dB})$ bandwidth for the overall analog loop. This generates a phase delay of 160 ns . If the hold capacitor sees this exact delay, then error due to analog delay will be $(0.16 \mu \mathrm{~s})(0.6 \mathrm{~V} / \mu \mathrm{s})=-96 \mathrm{mV}$. Total output error is +60 mV (digital) -96 mV (analog) for a total of -36 mV . To add to the confusion, analog delay is proportional to hold capacitor value while digital delay remains constant. A family of curves (dynamic sampling error) is included to help estimate errors.

A curve labeled Aperture Time has been included for sampling conditions where the input is steady during the sampling period, but may experience a sudden change nearly coincident with the "hold" command. This curve is based on a 1 mV error fed into the output.

A second curve, Hold Settling Time indicates the time required for the output to settle to 1 mV after the "hold" command.

Digital Feedthrough

Fast rise time logic signals can cause hold errors by feeding externally into the analog input at the same time the amplifier is put into the hold mode. To minimize this problem, board layout should keep logic lines as far as possible from the analog input. Grounded guarding traces may also be used around the input line, especially if it is driven from a high impedance source. Reducing high amplitude logic signals to 2.5 V will also help.

Use 10-pin layout. Guard around C_{h} is tied to output.

Logic Input Configurations

TTL \& CMOS
$\mathbf{3 V} \leq \mathrm{V}_{\mathrm{L}}\left(\mathrm{Hi}_{\text {State }}\right) \leq 7 V$

Threshold $=1.4 \mathrm{~V}$

CMOS
$\mathbf{7 V} \leq \mathrm{V}_{\mathrm{L}}(\mathrm{Hi}$ State $) \leq \mathbf{1 5 V}$

Op Amp Drive

Typical Applications (Continued)

Sample and Difference Circuit (Output Follows Input in Hold Mode)

*For lower gains, the LM108 must be frequency compensated
Use $\approx \frac{100}{A_{V}} \mathrm{pF}$ from comp 2 to ground

Typical Applications (Continued)
Ramp Generator with Variable Reset Level

Integrator with Programmable Reset Level

$V_{\text {OUT }}($ Hold Mode $)=\left[\frac{1}{(R 1)\left(C_{h}\right)} \int_{0}^{t} V_{\text {IN }} t\right]+\left[V_{R}\right] \begin{gathered}R 4 \\ 200 \mathrm{k} \\ 1 \%\end{gathered}$

Fast Acquisition, Low Droop Sample \& Hold

Typical Applications (Continued)

DC \& AC Zeroing

*Select for step height
$50 \mathrm{k} \rightarrow \simeq 1 \mathrm{~V}$ Step

Typical Applications (Continued)
Capacitor Hysteresis Compensation

*Select for time constant C1 $=\frac{\tau}{100 k}$
**Adjust for amplitude

Definition of Terms

Hold Step: The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (dc) analog input voltage. Logic swing is 5 V .

Acquisition Time: The time required to acquire a new analog input voltage with an output step of 10 V . Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.

Gain Error: The ratio, of output voltage swing to input voltage swing in the sample mode expressed as a per cent difference.

Hold Settling Time: The time required for the output to settle within 1 mV of final value after the "hold" logic command.

Dynamic Sampling Error: The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.

Aperture Time: The delay required between "Hold" command and an input analog transition, so that the transition does not affect the held output.

Connection Diagrams

Dual-In-Line Package

Order Number LF398N or LF398AN See NS Package N08A

Metal Can Package

- TOP VIEW

Order Number LF198H, LF298H, LF398H,
LF198AH or LF398AH
See NS Package H08C

Section 8

A to D, D to A

Section Contents

A/D Converter/DVM Selection Guide 8-iii
D/A Converter Selection Guide. 8-iv
General Data Acquisition System Block Diagram/Part Numbering System 8-v
Definition of Terms 8 -vi
DIA Converters
AD7520/AD7530/AD7533 10-Bit Binary Multiplying D/A Converter. 8-1
AD7521/AD7531 12-Bit Binary Multiplying D/A Converter 8-1
DAC0800 (LMDAC08) 8-Bit Digital-to-Analog Converter 8-77
DAC0808, DAC0807, DAC0806 8-Bit D/A Converters $8-85$
DAC1000 thru DAC1008 10-Bit, μ P Compatible, Double-Buffered D to A Converters 8-92
DAC1020 10-Bit Binary Multiplying D/A Converter. 8-114
DAC1200/DAC1201 12-Bit (Binary) Digital-to-Analog Converters 8-124
DAC1202/DAC1203 3-Digit (BCD) Digital-to-Analog Converters. 8-124
DAC1220 12-Bit Binary Multiplying D/A Converter. 8-114
DAC1280, DAC1285 12-Bit (Binary) Digital-to-Analog Converters 8-131
DAC1286, DAC1287 3-Digit (BCD) Digital-to-Analog Converters 8-131
LM1508/LM1408 8-Bit D/A Converter. 8-173
AID Converters
ADC0800 (MM4357B/MM5357B) 8-Bit A/D Converter 8-10
ADC0801, ADC0802, ADC0803, ADC0804 8-Bit μ P Compatible AID Converters 8-21
ADC0808, ADC0809 8-Bit μ P Compatible AID Converters with 8-Channel Multiplexer $8-45$
ADC0816, ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer. 8-56
ADC1210, ADC1211 12-Bit CMOS A/D Converters 8-67
Building Blocks
ADB1200 (MM5863) 12-Bit Binary A/D Building Block 8-3
DM2502, DM2503, DM2504 Successive Approximation Registers 8-139
LF13300 Integrating A/D Analog Building Block 8-144
LM131A/LM131, LM231A/LM231, LM331A/LM331
Precision Voltage-to-Frequency Converters. 8-162
MM54C905/MM74C905 12-Bit Successive Approximation Register. 8-175
TP3000 CODEC System (TP3001 μ-Law, TP3002 A-Law). 8-180
†For additional information, see National Semiconductor's Data Acquisition Handbook.

Part No.	Resolution (Bits)	Absolute Accuracy (Max.)	Conversion Time (Typ.)	Input Voltage Range		Supplies (V)	Te	l	c	Package	Comments
A/D Converter											
ADC0800	8	± 2 LSB	$35 \mu \mathrm{~s}$	10 V	TTL, Tri-State ${ }^{\text {s }}$	$+5,-12$	-		\bullet	18-Pin DIP	
ADC0801	8	$\pm 1 / 4$ LSB	$100 \mu \mathrm{~s}$	5 V	TTL, Tri-State	+5	-	\bullet	-	20-Pin DIP	Differential Input
ADC0802	8	$\pm 1 / 2$ LSB	$100 \mu \mathrm{~s}$	5V	TTL, Tri-State	+5	\bullet	\bullet	-	20-Pin DIP	Differential Input
ADC0803	8	$\pm 1 / 2$ LSB	$100 \mu \mathrm{~s}$	5V	TTL, Tri-State	+5	\bullet	-	-	20-Pin DIP	Differential Input
ADC0804	8	$\pm 1 \mathrm{LSB}$	$100 \mu \mathrm{~s}$	5V	TTL, Tri-State	+5	-	\bullet	\bullet	20-Pin DIP	Differential Input
ADC0808	8	$\pm 1 / 2$ LSB	$100 \mu \mathrm{~s}$	5V	TTL, Tri-State	+5	-	-	-	28-Pin DIP	Includes 8-Channel MUX
ADC0809	8	± 1 LSB	$100 \mu \mathrm{~s}$	5 V	TTL, Tri-State	+5		-	\bullet	28-Pin DIP	Includes 8-Channel MUX
ADC0816	8	$\pm 1 / 2$ LSB	$100 \mu \mathrm{~s}$	5 V	TTL, Tri-State	+5	-	\bullet	\bullet	40-Pin DIP	Includes 16-Channel MUX
ADC0817	8	± 1 LSB	$100 \mu \mathrm{~s}$	5V	TTL, Tri-State	+5		-	\bullet	40-Pin DIP	Includes 16-Channel MUX
ADB1200 LF13300	12	$\pm 1 / 2 \mathrm{LSB}$	36 ms	$\pm 11 \mathrm{~V}$	TTL, Tri-State	$\begin{aligned} & +5,-15 \\ & \pm 15 \end{aligned}$			-	28-Pin DIP 18-Pin DIP	Dual Slope
ADC1210	12	$\pm 1 / 2 \mathrm{LSB}$	$100 \mu \mathrm{~s}$	10.2V	CMOS	+5 to ± 15	\bullet	-		24-Pin DIP	10-Bit Conversion in $30 \mu \mathrm{~s}$
ADC1211	12 (10)	$\pm 1 \mathrm{LSB}$	$100 \mu \mathrm{~s}$	10.2V	CMOS	+5 to ± 15	\bullet	-		24-Pin DIP	
ADC3511	3112 Digit	.05\%	200 ms	2 V	TTL, Tri-State	+5			-	24-Pin DIP	Integrating $\mu \mathrm{P}$ Compatible
ADC3711	33/4 Digit	.05\%	400 ms	2V	TTL, Tri-State	+5			-	24-Pin DIP	Integrating $\mu \mathrm{P}$ Compatible
LM131	V-F	.01\%	N/A	$\mathrm{V}_{C C}-2 \mathrm{~V}$	N/A	+5 to +40	\bullet	-	-	8-Pin DIP or TO-99 Can	Voltage-to- Frequency Converter 100kHz Max
Digital Voltmeter											
ADD3501	31/2 Digit	.05\%	$\cdot 200 \mathrm{~ms}$	$\mathrm{VCC}^{-2 V}$	7-Segment LED Drive	+5			-	28-Pin DIP	$\begin{aligned} & 31 / 2 \text { Digit LED } \\ & \text { DPM } \end{aligned}$
ADD3701	33/4 Digit	.05\%	400 ms	$V_{C C}-2 V$	7-Segment LED Drive	+5			-	28-Pin DIP	333/4 Digit LED DPM

Note 1: Temperature ranges are: " M " is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ambient; " 1 " is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; " C " is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Note 1: Ambient temperature range for " M " is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, "I" is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, " C " is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

General Data Acquisition System Block Diagram

Converter Products Part Numbering System

Definition of Terms

Full-Scale Error: Full-scale error is a measure of the output error between an ideal D/A and the actual device output. Ideally for the DAC1200 full-scale is $V_{\text {REF }}{ }^{-}$ 1 LSB. For $V_{\text {REF }}=10.240 \mathrm{~V}$ and unipolar operation, $\mathrm{V}_{\text {FULLSCALE }}=10.240 \mathrm{~V}-2.5 \mathrm{mV}=10.2375 \mathrm{~V}$. Departures from this value include internal gain, scaling, and reference errors. Full-scale error is adjustable as discussed in the Applications section.

Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the D/A transfer characteristic. It is measured after calibrating for zero and full-scale. The linearity error of the DAC1200 series is guaranteed to be less than $\pm 1 / 2$ LSB or 0.0122% of F.S. for the DAC1200/DAC1200C and $\pm 0.0488 \%$ of $. F . S$. for the DAC1201/DAC1201C. Linearity error is a design parameter intrinsic to the device and cannot be externally adjusted.

Monotonicity: Monotonicity is a characteristic of the D/A which requires a non-negative output step for an increasing input digital code. Monotonicity, therefore, demands no back steps or sign changes of the D/A transfer characteristic slope.

Offset Voltage: Offset voltage is an output voltage other than zero volts for unipolar operation (and other than minus full-scale for bipolar operation) with all bits turned "OFF". In the DAC1200 series this error resides primarily in the output amplifier, A3. Offset voltage is adjustable to zero as discussed in the applications section.

Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the D/A full-scale output.

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the D/A output (as designed). It is directly related to the number of switches or bits within the D/A. For example, the DAC1200 has 2^{12} or 4096 steps. Resolution may therefore be expressed variously as 12 bits, as 1 part in 2^{12}, as 1 part in 4096, or as a percentage $(1 / 4096 \times 100=0.0244 \%)$. The DAC1202 has 1000 steps and 3 BCD digits. Resolution may be expressed as 0.1% or 3 BCD digits.

Settling Time: Two settling time parameters are specified for the DAC1200 series. Full-scale settling time requires a zero to full-scale or full-scale to zero output change. One LSB settling time requires one LSB output change. In both instances, settling time is the time required from a code transition until the D/A output reaches within $\pm 1 / 2$ LSB of final output value.

National
AD7520／AD7530／AD7533 10－Bit ，AD7521／AD7531 12－Bit Binary Multiplying D／A Converters

General Description

The AD7520 and the AD7521 are，respectively， 10 and 12－bit binary multiplying digital－to－analog converters． A deposited thin film R－2R resistor ladder divides the reference current and provides the circuit with ex－ cellent temperature tracking characteristics（typically $0.0002 \% /{ }^{\circ}$ C linearity error temperature coefficient）．The circuit uses CMOS current switches and drive circuitry to achieve low power consumption（ 30 mW max）and low leakages（ 200 nA max）．The digital inputs are com－ patible with DTL／TTL logic levels as well as full CMOS logic level swings．This part，combined with an external amplifier and voltage reference，can be used as a standard D／A converter；however，it is also very attractive for multiplying applications（such as digitally controlled gain blocks）since its linearity error is essentially inde－ pendent of the voltage reference．

This part is available with 10 －bit（ 0.05% ）， 9 －bit（ 0.10% ）， and 8 －bit（ 0.20% ）non－linearity．The AD7520L， AD7520K，and AD7520J are direct replacements for
the 10 －bit resolution AD7520 and AD7530 family，and equivalent to AD7533 family．The AD7521K，AD7521J and AD7521L are direct replacements for the 12 －bit resolution AD7521 and AD7531 family．For more information，see DAC1020 data sheet．

Features

－Linearity specified with zero and full－scale adjust only
－Integrated thin film on CMOS structure
－10－bit or 12－bit resolution
－Low power dissipation 10 mW ＠15V typ
－Accepts variablé or fixed reference $-25 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq$ $+25 \mathrm{~V}$
－4－quadrant multiplying capability
－Interfaces directly with DTL，TTL and CMOS
－Fast settling time－600 ns typ
－Low feedthrough error－1／2 LSB＠ 100 kHz typ

Connection Diagrams

AD7521／AD7531
Dual－In－Line Package

Equivalent Circuit

Ordering Information＊

temperature range		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ACCURACY	0．05\％	AD7520LN	AD7530LN	AD7520LD	AD7530LD	AD7520UD
	0．10\％	AD7520KN	AD7530KN	AD7520KD	AD7530KD	AD7520TD
	0．20\％	AD7520JN	AD7530JN	AD7520JD	AD7530JD	AD7520SD
PACKAGE OUTLINE		N16A		D16C		D16C

12－BIT D／A CONVERTERS

TEMPERATURE RANGE		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ACCURACY	0.05%	AD7521LN	AD7531LN	AD7521LD	AD7531LD	AD7521UD
	0.10%	AD7521KN	AD7531KN	AD7521KD	AD7531KD	AD7521TD
	0.20%	AD7521JN	AD7531JN	AD7521JD	AD7531JD	AD7521SD
PACKAGE OUTLINE		N18A		D18A		D18A

＊Note：Devices ordered using these P／N＇s will be marked with AD7520 series and DAC102X series numbers．

Absolute Maximum Rati	
V^{+}to Gnd	v
$V_{\text {REF }}$ to Gnd	
Digital Input Voltage Range	V^{+}to ${ }^{\text {nd }}$
DC Voltage at Pin 1 or Pin 2 (Note 3)	-100 mV to V^{+}
Storase Temperature Range	${ }^{\text {a }}$
Lead Temperature (Soldering, 10 seconds)	300 ${ }^{\circ} \mathrm{C}$

Operating Temperature Range

		MIN	MAX
AD7520LN, AD7520KN, AD7520JN		0	+70
AD7521LN, AD7521KN, AD7521JN		0	${ }^{\circ} \mathrm{C}$
AD7530LN, AD7530KN, AD7530JN		0	+70
${ }^{\circ} \mathrm{C}$			
AD7531LN, AD7531KN, AD7531JN		0	+70
AD7520LD, AD7520KD, AD7520JD		${ }^{\circ} \mathrm{C}$	
AD7521LD, AD7521KD, AD7521JD		-40	+85
AD7530LD, AD7530KD, AD7530JD		-40	+85
${ }^{\circ} \mathrm{C}$			
AD7531LD, AD7531KD, AD7531JD		-40	+85
AD7520UD, AD7520TD, AD7520SD		${ }^{\circ} \mathrm{C}$	
AD7521UD, AD7521TD, AD7521SD		-55	+85
${ }^{\circ} \mathrm{C}$			
	-55	+125	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$			

Electrical Characteristics $\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { unless otherwise specified }\right)^{\circ}$

Note 1: $\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$ and $\mathrm{V}_{\text {REF }}= \pm 1 \mathrm{~V}$.
Note 2: Using internal feedback resistor.
Note 3: Both IOUT1 and IOUT2 must go to ground or the virtual ground of an operational amplifier. For every millivolt offset between IOUT1 or IOUT2, 0.005% linearity error will be introduced.
Note 4: To achieve this low feedthrough in D package, the user must ground the metal lid.

ADB1200 (MM5863) 12-Bit Binary A/D Building Block

General Description

The ADB1200 is the digital controller for the LF13300D* analog building block. Together they form an integrating 12 -bit A/D converter. The ADB1200 provides all the necessary control functions, plus features like auto zeroing, polarity and overrange indication, as well as continuous conversion. The 12 -bit plus sign parallel and serial outputs are TRI-STATE ${ }^{\circledR}$ TTL level compatible. The device also includes output latches to simplify data bus interfacing,
*See LF13300D data sheet for more information

Features

- 12-bit binary output
- Parallel or serial output
- TRI-STATE output
- Polarity indication
- Overrange indication
- Continuous convers.ion capability
- 100% overrange capability
- $5 \mathrm{~V},-15 \mathrm{~V}$ power requirements
- TTL compatible
- Clock frequency to 1 MHz

Circuit Diagram/Typical Applications

12-Bit A/D Converter

Absolute Maximum Ratings

Supply Voltage (VSS)	5.25 V
Supply Voltage (VGG)	-16.5 V
Voltage at Any Input	5.25 V
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, $\mathbf{1 0}$ seconds).	$300^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-15 \mathrm{~V}, 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Voltage (VSS)		4.75	5.00	5.25	V
Power Supply Voltage (VGG)		-13.5	-15.00	-16.5	v
Power Supply Current (ISS)				28	mA
Power Supply Current (IGG)				34	mA
Logic "1" Input Voltage		3.4			V
Logic "0" Input Voltage				'0.8	V
Logic "1" Output Voltage	$\mathrm{V}_{\text {SS }}=4.75 \mathrm{~V}, \mathrm{IOH}=100 \mu \mathrm{~A}$	3.8			V
Logic " 0 " Output Voltage	$\mathrm{V}_{\mathrm{SS}}=5.25 \mathrm{~V}, \mathrm{IOL}=-1.6 \mathrm{~mA}$			0.4	V
Width of EOC	Auto Cycle	5/f			sec
Prop. Delay COMP to EOC		4/f		5/f+1 $\mu \mathrm{s}$	sec
Output Enable Time	$\overline{\mathrm{OE}}$ to Any Data Output, $S C=1, \bar{P} / S=0$			1.0	$\mu \mathrm{s}$
Output Disable Time	$\overline{\mathrm{OE}}$ to Any Data Output, $S C=1, \bar{P} / S=0$			2.4	$\mu \mathrm{s}$
Output Enable Time	$\overline{\mathrm{P}} / \mathrm{S}$ to Any Data Output Except Polarity, $\mathrm{SC}=1$, $\overline{O E}=0$			0.9	$\mu \mathrm{s}$
Output Disable Time	$\overline{\mathrm{P}} / \mathrm{S}$ to Any Data Output Except Polarity, $\mathrm{SC}=1$, $\overline{O E}=0$			2.2	$\mu \mathrm{s}$
Output Enable Time	SC to Any Data Output, $\overline{\mathrm{OE}}=0, \overline{\mathrm{P}} / \mathrm{S}=0$			1.0	$\mu \mathrm{s}$
Output Disable Time	SC to Any Data Output, $\overline{\mathrm{OE}}=0, \overline{\mathrm{P}} / \mathrm{S}=0$			2.4	$\mu \mathrm{s}$
Prop. Delay ${ }^{\text {Serial Clock }}$	SCLK to POL/SDO			0.6	$\mu \mathrm{s}$
Conversion Time	Full Scale			8966/f	sec
Conversion Time	100\% Overrange			13062/f	sec
Maximum Clock Frequency	CLK, Pin 27	500	1000		kHz
Maximum Serial Clock Frequency	SCLK, Pin 1	500	1000		kHz

Block Diagram

Digital Control Integrated Circuit

Functional Description

OPERATION

The ADB1200 is designed for use with the LF13300 analog front end. Four control signals are supplied to the LF13300 and 1 control signal is required from the LF13300. The conversion cycle is composed of 5 distinct phases. They are: Phase I - Offset Correct; Phase II - Polarity Detect; Phase III - Initialization; Phase IV - Ramṕ Unknown; Phase V - Ramp Reference.

Phase I - Offset Correct (256 Clock Periods)

This phase is initiated by taking the Start Conversion $(S C)$ and the Output Enable (OE) lines to a logic " 1 ". At this time, Offset Correct (OC) will be a logic " 1 ". The LF13300 requires this phase to correct any intrinsic offset voltage errors prior to the polarity detect phase.

Phase II - Polarity Detect (256 Clock Periods)

This phase is used to determine polarity of the analog input. At the midpoint of this phase, COMP from the LF13300 is examined for polarity. If COMP = logic " 1 ", then the input voltage is positive. If COMP"= logic " 0 ", then the input is negative. The Polarity Detect signal (PD/RU+) will be at a logic " 1 " during this entire phase. The above operation is also necessary to determine which integrator input (positive or negative) of the LF13300 should be used for proper A/D conversion (see LF13300 data sheet).

Phase III - Initialization ($\mathbf{2 5 6}$ Clock Periods)

This phase is identical to Phase I and is used by the LF13300 to eliminate any offsets induced as a result of the Polarity Detect Phase. Offset Correct (OC) will be at a logic " 1 ".

Phase IV - Ramp Unknown (4096 Clock Periods)

The unknown input voltage is integrated for a fixed time, 4096 clock periods, during this phase. The result of the Phase II Polarity Detect Cycle determines whether PD/RU+ or RU- will be at logic " 1 ". If Phase II indicates a positive input, the PD/RU+ signal will be a logic " 1 ". If phase II indicates a negative input, Ramp Negative
(RU-) will be a logic " 1 ". These 2 signals will never be at logic " 1 " simultaneously.

Phase V - Ramp Reference

This phase is a variable length phase depending on the magnitude of the analog input voltage. During this time, Ramp Reference ($R R$) will be in the logic " 1 " state. When COMP goes to a logic " 0 " state, or when the internal counter reaches 100% of full scale (8192 clock periods), the Ramp Reference (RR) signal goes to the logic " 0 " state, the counter output is loaded into the output register, and the End of Conversion (EOC) signal goes to a logic " 1 ". The Polarity Bit will reflect whatever value was determined during Phase II. The output register will hold the data until a new conversion is completed and new data is loaded into the register. The $\overline{O E}$ line must be low in the logic " 0 " state and SC must be high in the logic " 1 " state to enable the outputs.

DATA OUTPUTS

Both serial and parallel outputs are available. In either case, $\overline{O E}$ must be low and SC must be high to enable the-outputs. For parallel output, the P / S line must be low in the logic " 0 " state. For serial outputs, the \bar{P} / S line must be high. In the serial mode, the data is shifted out of the Polarity/Serial Output (POL/SDO) line and all other data outputs are in the high impedance state. Each Serial Clock (SCLK) will right shift the output register one bit. Thus, 13 clock pulses are required to fully shift out the data. The data will be shifted out in the following order: Polarity, Overrange, MSB, 2SB, 3SB, . . . , LSB. If $\overline{O E}$ and \bar{P} / S are in the logic " 0 " state and SC in the logic " 1 " state, all outputs will momentarily go to the logic " 1 " state for 1 clock period immediately preceding EOC.

CONTINUOUS CONVERT MODE

In this mode, the End of Conversion (EOC) output is connected to the OE input. As long as SC is in the logic " 1 " state, then each EOC will initiate a new conversion. The data outputs will be disabled for the first 5 clock cycles after EOC goes high.

Truth Table

Timing Diagrams

Output Enable/Disable Time

FIGURE 1. Parallel Data

Serial Output

FIGURE 2. Serial Data

Timing Diagrams (Continued)

FIGURE 3. Continuous Conversion Mode

FIGURE 4. $\mathbf{j}^{\text {th }}$ A/D Converter Data Retrieval Sequence

Typical Applications (Continued)

Multi A/D Converter System on Common Bus

${ }^{\text {th }}$ A/D Converter

[^24]National

ADC0800 (MM4357B/MM5357B) 8-Bit A/D Converter

General Description

The ADC0800 is an 8 -bit monolithic A/D converter using P-channel ion-implanted MOS technology. It contains a high input impedance comparator, 256 series resistors and analog switches, control logic and output latches. Conversion is performed using a successive approximation technique where the unknown analog voltage is compared to the resistor tie points using analog switches. When the appropriate tie point voltage matches the unknown voltage, conversion is complete and the digital outputs contain an 8 -bit complementary binary word corresponding to the unknown. The binary output is TRI-STATE ${ }^{\circledR}$ to permit bussing on common data lines.

The ADC0800PD is specified over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the $A D C 0800 P C D$ is specified over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Features

- Low cost
- $\pm 5 \mathrm{~V}, 10 \mathrm{~V}$ input ranges
- No missing codes
- Ratiometric conversion
- TRI-STATE outputs
- Fast
$\mathrm{T}_{\mathrm{C}}=50 \mu \mathrm{~s}$
- Contains output latches
- TTL compatible
- Supply voltages $\quad 5 \mathrm{~V}_{\mathrm{DC}}$ and $-12 \mathrm{~V}_{\mathrm{DC}}$
- Resolution 8 bits
- Linearity ± 1 LSB
- Conversion speed 40 clock periods
- Clock range 50 to 800 kHz

Block Diagram

($00000000=+$ full-scale $)$

Absolute Maximum Ratings

Supply Voltage (VDD)
Supply Voltage (V_{GG})
Voltage at Any Input
Storage Temperature
Operating Temperature ADC0800PD
ADC0800PCD
Lead Temperature (Soldering, 10 seconds)

VSS-22V
$\mathrm{V}_{\mathrm{SS}}-22 \mathrm{~V}$
$\mathrm{V}_{\mathrm{SS}}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}-22 \mathrm{~V}$
$150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics

These specifications apply for $V_{S S}=5.0 V_{D C}, V_{G G}=-12.0 V_{D C}, V_{D D}=0 V_{D C}$, a reference voltage of $10.000 V_{D C}$ across the on-chip R-network ($V_{\text {R-NETWORK }}$ TOP $=5.000 V_{D C}$ and $V_{\text {R-NETWORK }}$ BOTTOM $=-5.000 V_{D C}$), and a clock frequency of 800 kHz . For all tests, a 475Ω resistor is used from pin 5 to ground. Unless otherwise noted,-these specifications apply over an ambient temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the ADC0800PD and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the ADC0800PCD.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Non-Linearity	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 1)			± 1	LSB
	Over Temperature, (Note 1)			± 2	LSB
Differential Non-Linearity				$\pm 1 / 2$	LSB
Zero Error				± 2	LSB
Zero Érror Temperature Coefficient	(Note 2)			0.01	\%/ ${ }^{\text {C }}$
Full-Scale Error				± 2	LSB
Full-Scale Error Temperature Coefficient	(Note 2)			0.01	$\% /{ }^{\circ} \mathrm{C}$
Input Leakage				1	$\mu \mathrm{A}$
Logical " 1 " Input Voltage	All Inputs	$\mathrm{V}_{\text {SS }}$-1.0		VSS	V
Logical "0" Input Voltage	All Inputs	$V_{\text {GG }}$		$\mathrm{V}_{\text {SS }}$-4.2	V
Logical Input Leakage	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \text { All Inputs, } \mathrm{V}_{\text {IL }}= \\ & \mathrm{V}_{\mathrm{SS}}-10 \mathrm{~V} \end{aligned}$			1	$\mu \mathrm{A}$
Logical "1" Output Voltage	All Outputs, $\mathrm{IOH}=100 \mu \mathrm{~A}$	2.4			V
Logical "0" Output Voltage	All Outputs, $\mathrm{IOL}=1.6 \mathrm{~mA}$			0.4	v
Disabled Output Leakage	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \text {, All Outputs, } \mathrm{V}_{\mathrm{OL}}= \\ & \mathrm{V}_{\mathrm{SS}} @ 10 \mathrm{~V} \end{aligned}$			2	$\mu \mathrm{A}$
Clock Frequency	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	50		800	kHz
	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	100		500	kHz
Clock Pulse Duty Cycle		40		60	\%
TRI-STATE Enable/Disable Time				1	$\mu \mathrm{s}$
Start Conversion Pulse	(Note 3)	1		$31 / 2$	Clock
					Periods
Power Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	mA

Note 1: Non-linearity specifications are based on best straight line.
Note 2: Guaranteed by design only.
Note 3: Start conversion pulse duration greater than $31 / 2$ clock periods will cause conversion errors.

Timing Diagram

Data is complementary binary (full scale is all " 0 ' s " output).

Application Hints

OPERATION

The ADC0800 contains a network with $256-300 \Omega$ resistors in series. Analog switch taps are made at the junction of each resistor and at each end of the network. In operation, a reference (10.00 V) is applied across this network of 256 resistors. An analog input ($\mathrm{V}_{\text {IN }}$) is first compared to the center point of the ladder via the appropriate switch. If $\mathrm{V}_{\text {IN }}$ is larger than $\mathrm{V}_{\text {REF }} / 2$, the internal logic changes the switch points and now compares $V_{I N}$ and $3 / 4$ VREF. This process, known as successive approximation, continues until the best match of $V_{I N}$ and $V_{\text {REF }} / N$ is made. N now defines a specific tap on the resistor network. When the conversion is complete, the logic loads a binary word corresponding to this tap into the output latch and an end of conversion (EOC) logic level appears. The output latches hold this data valid until a new conversion is completed and new data is loaded into the latches. The data transfer occurs in about 200 ns so that valid data is present virtually all the time. Conversion requires 40 clock periods. The device may be operated in the free running mode by connecting the Start Conversion line to the End of Conversion line. However, to ensure start-up under all possible conditions, an external Start Conversion pulse is required during power up conditions.

REFERENCE

The reference applied across the 256 resistor network determines the analog input range. $\mathrm{V}_{\text {REF }}=10.00 \mathrm{~V}$ with the top of the R-network connected to 5 V and the bottom connected to -5 V gives a $\pm 5 \mathrm{~V}$ range. The reference can be level shifted between V_{SS} and V_{GG}. However, the voltage, which is applied to the top of the R-network (pin 15), must not exceed VSS to prevent forward biasing the on-chip parasitic silicon diode which exists between the P-diffused resistors (pin 15) and the N -type body ($\mathrm{pin} 10, \mathrm{~V}_{\mathrm{SS}}$). Use of a standard logic power supply for V_{SS} can cause problems, both due to initial voltage tolerance and changes over temperature. A solution is to power the V_{SS} line (15 mA max drain) from the output of the op amp which is used to bias the top of the R-network (pin 15). The analog input voltage and the voltage which is applied to the bottom of the R-network (pin 5) must be at
least 7V above the $-V_{D D}$ supply voltage to insure adequate voltage drive to the analog switches.

Other reference voltages may be used (such as 10.24 V). If a 5 V reference is used, the analog range will be 5 V and accuracy will be reduced by a factor of 2 . Thus, for maximum accuracy, it is desirable to operate with at least a 10 V reference. For TTL logic levels, this requires. 5 V and -5 V for the R-network. CMOS can operate at the $10 V_{D C} V_{S S}$ level and a single $10 V_{D C}$ reference can be used. All digital voltage levels for both inputs and outputs will be from ground to $V_{\text {SS }}$.

ANALOG INPUT AND SOURCE RESISTANCE CONSIDERATIONS

The lead to the analog input (pin 12) should be kept as short as possible. Both noise and digital clock coupling to this input can cause conversion errors. To minimize any input errors, the following source resistance considerations should be noted:

For $\mathrm{R}_{\mathrm{s}} \leq 5 \mathrm{k} \quad$ No analog input bypass capacitor required, although a $0.1 \mu \mathrm{~F}$ input bypass capacitor will prevent pickup due to unavoidable series lead inductance.
For $5 k<R_{S} \leq 20 k \quad A 0.1 \mu \mathrm{~F}$ capacitor from the input (pin 12) to ground should be used.
For $R_{S}>20 k \quad$ Input buffering is necessary.
If the overall converter system requires lowpass filtering of the analog input signal, use a $20 \mathrm{k} \Omega$ or less series resistor for a passive RC section or add an op amp RC active lowpass filter (with its inherent low output resistance) to insure accurate conversions.

CLOCK COUPLING

The clock lead should be kept away from the analog input line to reduce coupling.

LOGIC INPUTS

The logical " 1 " input voltage swing for the Clock, Start Conversion and Output Enable should be ($\mathrm{V}_{\mathrm{SS}}-1.0 \mathrm{~V}$).

Application Hints (Continued)

CMOS will satisfy this requirement but a pull-up resistor should be used for TTL logic inputs.

RESTART AND DATA VALID AFTER EOC

The EOC line (pin 9) will be in the low state for a maximum of 40 clock periods to indicate "busy". A START pulse which occurs while the A / D is BUSY will reset the SAR and start a new conversion with the EOC signal remaining in the low state until the end of this new conversion. When the conversion is complete, the EOC line will go to the high voltage state. An additional 4 clock periods must be allowed to elapse after EOC goes high, before a new conversion cycle is requested. Start Conversion pulses which occur during this last 4 clock period interval may be ignored (see Figures 1 and 2 for high speed operation). This is only a problem for high conversion rates and keeping the number of conversions per second less than $(1 / 44) \times$ fCLOCK automatically guarantees proper operation. For example, for an 800 kHz clock, 18,000 conversions per second are allowed. The transfer of the new digital data to the output is initiated when EOC goes to the high voltage state.

POWER SUPPLIES

Standard supplies are $\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V}$ and $V_{D D}=0 \mathrm{~V}$. Device accuracy is dependent on stability of the reference voltage and has slight sensitivity to $V_{S S}-V_{G G}$. VDD has no effect on accuracy. Noise spikes on the V_{SS} and V_{GG} supplies can cause improper conversion; therefore, filtering each supply with a $4.7 \mu \mathrm{~F}$ tantalum capacitor is recommended.

CONTINUOUS CONVERSIONS AND LOGIC CONTROL

Simply tying the EOC output to the Start Conversion input will allow continuous conversions, but an oscillation on this line will exist during the first 4 clock periods after EOC goes high. Adding a D flip-flop between EOC (D input) to Start Conversion (Q output) will prevent the oscillation and will allow a stop/continuous control via the "clear" input.

To prevent missing a start pulse which may occur after EOC goes high and prior to the required 4 clock period time interval, the circuit of Figure 1 can be used. The RS latch can be set at any time and the 4 -stage shift register delays the application of the start pulse to the A / D by 4 clock periods. The RS latch is reset 1 clock period after the A/D EOC signal goes to the low voltage state. This circuit also provides a Start Conversion pulse to the A / D which is 1 clock period wide.

A second control logic application circuit is shown in Figure 2. This allows an asynchronous start pulse of arbitrary length less than TC, continuously converts for a fixed high level and provides a single clock period start pulse to the A / D. The binary counter is loaded with a count of 11 when the start pulse to the A / D appears. Counting is inhibited until the EOC signal from the A / D goes high. A carry pulse is then generated 4 clock periods after EOC goes high and is used to reset the input RS latch. This carry pulse can be used to indicate that the conversion is complete, the data has transferred to the output buffers and the system is ready for a new conversion cycle.

FIGURE 2. A/D Control Logic

Application Hints (Continued)

ZERO AND FULL-SCALE ADJUSTMENT

Zero Adjustment: This is the offset voltage required at the bottom of the R-network (pin 5) to make the 11111111 to 11111110 transition when the input voltage is $1 / 2$ LSB (20 mV for a 10.24 V scale). In most cases, this can be accomplished by having a $1 \mathrm{k} \Omega$ pot on pin 5. A.resistor of 475Ω can be used as a non-adjustable best approximation from pin 5 to ground.

Full-Scale Adjustment: This is the offset voltage required at the top of the R-network (pin 15) to make the 00000001 to 00000000 transition when the input voltage is $11 / 2$ LSB from full-scale (60 mV less than full-scale for a 10.24 V scale). This voltage is guaranteed to be within 2 LSB for the ADC0800. In most cases, this can be accomplished by having a $1 \mathrm{k} \Omega$ pot on pin 15.

Ratiometric Input Signal with Tracking Reference

0 V to $10 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ range 0 V to 10 V output levels

Level Shifted Zero and Full-Scale for Transducers

Level Shifted Input Signal Range

Typical Applications (Continued)

Input Level Shifting

- Permits TTL compatible outputs with 0 V to 10 V input range (0 V to -10 V input range achieved by reversing polarity of zener diodes and returning the 6.8 k resistor to V^{-}).

MICROPROCESSOR INTERFACE

Figure 3 and the following sample program are included to illustrate both hardware and software requirements to allow output data from the ADC0800 to be loaded into the memory of a microprocessor system. For this example, National's INS8060, SC/MP II, microprocessor has been used.

The sample program, as shown, will start the converter, load the converter's output data into the accumulator, keep track of the number of data bytes entered, complement the data and store this data into sequential memory locations. After 256 bytes have been entered, the control jumps to the user's program where proces-

Typical Applications (Continued)

sing of the data entered will be implemented. A more practical program whereby each data byte entered will be processed before another entry is made can easily be done by jumping back to the user's program at the end of the interrupt routine (where the data is loaded into the accumulator and stored in memory). The end of the user's program should provide a jump back to the INITIALIZE statement to start a new conversion and generate a new data entry.

The following arbitrarily chosen addresses and pointer assignments are used in this example:

Pointer 1 - WORD COUNT (ADDR:0100)
Also used to point to the A/D converter at address 0500 for this example when data is to be entered.

Pointer 2 - ENTERED DATA (ADDR's: 0200 \rightarrow 02FF) Data is stored in 2's complement binary form, i.e, $01111111 \rightarrow$ +full-scale and $10000000 \rightarrow$ - full-scale.

Pointer 3 - LOAD DATA SUBROUTINE (starts at ADDR:0300)
Executed when an EOC signal generates an interrupt request via sense A after an IEN (interrupt enable) instruction.

The address for the converter (0500) is unique for this particular sample program but may not be in a user's system so a different converter address must be used. Note that in Figure 3 ADX and ADY for the address decode circuitry would be address bits ADB10 and ADB8 (pins 35 and 33 on the SC/MP II package) for converter address 0500.

SAMPLE PROGRAM TO LOAD DATA INTO MEMORY' WITH SC/MP II.

0001	08	START:	NOP	
0002	C4 01		LDIX'01	
0004	35		XPAH 1	
0005	C4 00		LDIX'00	
0007	31	:	XPAL 1	; P1 = 0100 \%
0008	C4 02		LDIX'02	
000A	36		XPAH 2	
000B	C4 00		LDIX'00	
0000.	C9 00		ST(P1)	; Zero word count (P1)
000F	32		XPAL 2	; P2 = 0200
0010	C4 03		LDIX'03	
0012	37		XPAH 3	
0013	08	INITIALIZE:	NOP	
0014	C4 00	.	LDIX'00	
0016	33		XPAL 3	; P3 = 0300
0017	C4 01	-	LDIX'01	
0019	07		CAS	; Starts converter via flag 0
001A	C1 00		LD (P1)	
001C	F4 FF		XRIX'FF	
001E	9805		JZ DTA IN	; Test to see if word count is FF. if so, jump to DTA IN
0020	05		IEN	; Enables INTERRUPT
0021	08	LOOP:	NOP	
0022	90 FE		JMP LOOP	; Loop until EOC
0024	08	DTA IN:	NOP	

; User program to process data

:DATA ENTRY SUBROUTINE				
0300	08	DATA INSR:	NOP	
0301	A9 00		ILD (P1)	; Increment word count
0303	C4 05		LDIX'05	
0305	35		XPAH 1	; P1 will point to converter \cdot
0306	C1 00		LD (P1)	; Converter data loaded into accumulator
0308	F4 7F		XRIX'7F	; Put data in 2's complement form
030A	CE 01		ST @ 1(P2)	; Store data
030C	C4 00		LDIX'00	
O30E	07.		CAS	; Resets flag 0
030F	C4 01		LDIX'01	
. 0311	35		XPAH 1	; Resets P1 to point at word count
0312	C4 13		LDIX'13	
0314	33		XPAL 3	
0315	3F		XPPC 3	; Return to INITIALIZE to start a new conversion

Typical Applications

- Setting flag 0 ($F L G O=1$) with software, starts conversion (FLGO must be cleared before another conversion can be initiated)
- With interrupt enabled an EOC will force an interrupt. Interrupt subroutine should load converter data into the accumulator.
- Output data is in complementary offset binary form
- Numbers in parentheses denote pin numbers of SC/MP chip
* ADX and ADY can be any of the address lines but they must be high only at the time the converter output data is to be put on the data bus (i.e., the converter must have its own unique address)

FIGURE 3. Interfacing to the SC/MP II Microprocessor

Typical Applications (Continued)

TESTING THE A/D CONVERTER

There are many degrees of complexity associated with testing an A/D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LED's to display the resulting digital output code as shown in Figure 4. Note that the LED drivers invert the digital output of the A/D converter to provide a binary display. A lab DVM can be used if a precision voltage source is not available. After adjusting the zero and full-scale, any number of points can be checked, as desired.

For ease of testing, a 10.24 VDC reference is recommended for the A/D converter. This provides an LSB of $40 \mathrm{mV}(10.240 / 256)$. To adjust the zero of the A/D, an analog input voltage of $1 / 2 \mathrm{LSB}$ or 20 mV should be
applied and the zero adjust potentiometer should be set to provide a flicker on the LSB LED readout with all the other display LEDs OFF.

To adjust the full-scale adjust potentiometer, an analog input which is $11 / 2$ LSB less than the reference (10.2400.060 or $10.180 \mathrm{~V}_{\mathrm{DC}}$) should be applied to the analog input and the full-scale adjusted for a flicker on the LSB LED, but this time with all the other LEDs ON.

A complete circuit for a simple A/D tester is shown in Figure 5. Note that the clock input voltage swing and the digital output voltage swings are from OV to 10.24 V . The MM74C901 provides a voltage translation to 5 V operation and also the logic inversion so the readout LEDs are in binary.

FIGURE 4. Basic A/D Tester

FIGURE 5. Complete Basic Tester Circuit

Typical Applications (Continued)

The digital output LED display can be decoded by dividing the 8 bits into the 4 most significant bits and 4 least significant bits. Table 1 shows the fractional binary equivalent of these two 8 -bit groups. By adding the decoded voltages which are obtained from the column: "Input Voltage Value with a $10.240 \mathrm{~V}_{\mathrm{REF}}$ " of both the MS and LS groups, the value of the digital display can be determined. For example, for an output LED display of "1011 0110 " or "B6" (in hex) the voltage values from the table are $7.04+0.24$ or
$7.280 V_{D C}$. These voltage values represent the center values of a perfect A / D converter. The input voltage has to change by $\pm 1 / 2 \mathrm{LSB}(\pm 20 \mathrm{mV})$, the "quantization uncertainty" of an A/D, to obtain an output digital code change. The effects of this quantization error have to be accounted for in the interpretation of the test results. A plot of this natural error source is shown in Figure 6 where, for clarity, both the analog input voltage and the error voltage are normalized to LSBs.

TABLE I. DECODING THE DIGITAL OUTPUT LEDs

HEX	BINARY	FRACTIONAL BINARY VALUE FOR		INPUT VOLTAGE VALUE WITH $10.24 V_{\text {REF }}$	
		MS GROUP	LS GROUP	MS GROUP	LS GROUP
F	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	15/16	15/256	9.600	0.600
E	1110	7/8	7/128	8.960	0.560
D	$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	13/16	13/256	8.320	0.520
C	1100	3/4	3/64	7.680	0.480
B	$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	11/16	11/256	7.040	0.440
A	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	5/8	5/128	6.400	0.400
9	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	9/16	9/256	5.760	0.360
8	1000	$1 / 2$	1/32	5.120	0.320
7	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	7/16	7/256	4.480	0.280
6	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	3/8	3/128	3.840	0.240
5	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	5/16	5/256	3.200	0.200
4	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	1/4	1/64	2.560	0.160
3	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	3/16	3/256	1.920	0.120
2	$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	1/8	1/128	1.280	0.080
1	000000	1/16	1/256	0.640	0.040
0	0 0 000			0	0

FIGURE 6. Error Plot of a Perfect A/D Showing Effects of Quantization Error

Typical Applications

A low speed ramp generator can also be used to sweep the analog input voltage and the LED outputs will provide a binary counting sequence from zero to fullscale.

The techniques described so far are suitable for an engineering evaluation or a quick check on performance. For a higher speed test system, or to obtain plotted data, a digital-to-analog converter is needed for the test set-up. An accurate 10 -bit DAC can serve as the precision voltage source for the A / D. Errors of the A / D under test can be provided as either analog voltages or differences in two digital words.

A basic A/D tester which uses a DAC and provides the error as an analog output voltage is shown in Figure 7. The 2 op amps can be eliminated if a lab DVM with a numerical subtraction feature is available to directly readout the difference voltage, " $\mathrm{A}-\mathrm{C}$ ". The analog
input voltage can be supplied by a low frequency ramp generator and an $X-Y$ plotter can be used to provide analog error (Y axis) versus analog input (X axis). The construction details of a tester of this type are provided in the NSC application note AN-179, "Analog-toDigital Converter Testing".

For operation with a microprocessor or a computerbased test system, it is more convenient to present the errors digitally. This can be done with the circuit of Figure 8 where the output code transitions can be detected as the 10 -bit DAC is incremented. This provides $1 / 4$ LSB steps for the 8 -bit A/D under test. If the results of this test are automatically plotted with the analog input on the X axis and the error (in LSB's) as the Y axis, a useful transfer function of the A / D under test results. For acceptance testing, the plot is not necessary and the testing speed can be increased by establishing internal limits on the allowed error for each code.

FIGURE 7. A/D Tester with Analog Error Output

FIGURE 8. Basic "Digital" A/D Tester

Connection Diagram

Order Number ADC0800PD $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
or ADC0800PCD ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)
See NS Package D18A
1

ADC0801, ADC0802, ADC0803, ADC0804 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters

General Description

The ADC0801, ADC0802, ADC0803, ADC0804 are CMOS 8 -bit, successive approximation A / D converters which use a modified potentiometric ladder-similar to the 256 products. They are designed to meet the NSC MICROBUS ${ }^{\text {TM }}$ standard to allow operation with the 8080A control bus, and TRI-STATE ${ }^{\oplus}$ output latches directly drive the data bus. These A/Ds appear like memory locations or I/O ports to the microprocessor and no interfacing logic is needed.

A new differential analog voltage input allows increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

Features

- MICROBUS (8080A) compatible-no interfacing logic needed
- Easy interface to all microprocessors, or operates "stand alone"
- Differential analog voltage inputs
- Logic inputs and outputs meet $T^{2} \mathrm{~L}$ voltage level specifications
- Works with 2.5 V (LM336) voltage reference
- On-chip clock generator
- 0 V to 5 V analog input voltage range with single 5 V supply
- No zero adjust required
- $0.3^{\prime \prime}$ standard width 20 -pin DIP package

Key Specifications

- Resolution 8 bits
- Total error $\pm 1 / 4$ LSB, $\pm 1 / 2$ LSB and ± 1 LSB
- Conversion time $100 \mu \mathrm{~s}$
- Access time 135 ns
- Single supply $5 \mathrm{~V}_{\mathrm{DC}}$
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$, or analog span adjusted voltage reference

Typical Application

Connection Diagram

ADC 080X
Dual-In-Line Package

Absolute Maximum Ratings (Notes 1 and 2)

Supply Voltage (VCC) (Note 3)	6.5 V
Voltage at Any Input	-0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	875 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Operating Ratings (Notes 1 and 2)

Electrical Characteristics

Converter Specifications:

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ADC0801:					
Total Adjusted Error (Note 8)	With Full-Scale Adj.			$\pm 1 / 4$	LSB
ADC0802:					
Total Unadjusted Error (Note 8)	Completely Unadjusted			$\pm 1 / 2$	LSB
ADC0803:					
Total Adjusted Error (Note 8)	With Full-Scale Adj.			$\pm 1 / 2$	LSB
ADC0804:					
Total Unadjusted Error (Note 8)	Completely Unadjusted			± 1	LSB
$V_{\text {REF } / 2 ~ I n p u t ~ R e s i s t a n c e ~}^{\text {a }}$	Input Resistance at Pin 9	1.0	1.3		$k \Omega$
Analog Input Voltage Range	(Note 4) V(t) or V(-)	Gnd-0.05		$V_{C C}+0.05$	$V_{D C}$
DC Common-Mode Rejection	Over Analog Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	$V_{C C}=5 V_{\text {DC }} \pm 10 \%$ Over		$\pm 1 / 16$	$\pm 1 / 8$	LSB
	Allowed $\mathrm{V}_{\text {IN }}{ }^{(+)}$and $\mathrm{V}_{\text {IN }}(-)$ Voltage Range (Note 4)				

Electrical Characteristics

Timing Specifications: $V_{C C}=5 V_{D C}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{\text {f CLK }}$	Clock Frequency	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, (Note 5)	100	640	1280	kHz
		$V_{C C}=5 \mathrm{~V}$	100	640	800	kHz
T_{C}	Conversion Time	(Note 6)	66		73	1/fCLK
CR	Conversion Rate In Free-Running Mode	$\overline{\text { INTR }}$ tied to $\overline{W R}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}$ DC, $\mathrm{f}_{\mathrm{CL}}=640 \mathrm{kHz}$			8770	conv/s
${ }^{\text {t }}$ ($(\overline{W R}) \mathrm{L}$	Width of $\overline{W R}$ Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{~V}$ DC $($ Note 7)	100			ns
${ }^{\mathrm{t}} \mathrm{ACC}$	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$C_{L}=100 \mathrm{pF}$ (Use Bus Driver IC for Larger C_{L})		135	200	ns
$\mathrm{t}_{1} \mathrm{H}, \mathrm{t}_{0} \mathrm{H}$	TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State)	$C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (See TRI-STATE Test Circuits)		125	250	ns
twi	Delay from Falling Edge of $\overline{W R}$ to Reset of $\overline{\text { INTR }}$.		300	450	ns
CIN	Input Capacitance of Logic Control Inputs			5	7.5	pF
COUT	TRI-STATE Output Capacitance (Data Buffers)			5	7.5	pF

Electrical Characteristics

Digital Levels and DC Specifications:
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

CONTROL INPUTS [Note: CLK IN (pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]

VIN (1)	Logical " 1 " Input Voltage (Except Pin 4 CLK IN)	$V_{C C}=5.25 V_{D C}$	2.0		15	VDC
VIN (0)	Logical "0" Input Voltage (Except Pin 4 CLK IN)	$V_{C C}=4.75 V_{D C}$			0.8	$V_{D C}$
$\mathrm{V}^{+}{ }^{+}$	CLK IN (Pin 4) Positive Going Threshold Voltage		2.7	3.1	3.5	$V_{\text {DC }}$
$\mathrm{V}^{-}{ }^{-}$	CLK IN (Pin 4) Negative Going Threshold Voltage		1.5	1.8	2.1	$V_{D C}$
V_{H}	CLK IN (Pin 4) Hysteresis $\left(V_{T^{+}}\right)-\left(V_{T^{-}}\right)$		0.6	1.3	2.0	$V_{D C}$
IIN (1).	Logical " 1 " Input Current (All Inputs)	$V_{\text {IN }}=5 V_{\text {DC }}$		0.005	1	$\mu \mathrm{ADC}$
IIN (0)	Logical "0" Input Current (All Inputs)	$V_{\text {IN }}=0 V_{\text {DC }}$	-1	-0.005		$\mu \mathrm{ADC}$
${ }^{\text {I CC }}$	Supply Current (Includes Ladder Current)	$\begin{aligned} & { }^{\mathrm{f}} \mathrm{CLK}=640 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } \overline{\mathrm{CS}}=" 1 " \end{aligned}$		1.3	2.5	mA
DATA OUTPUTS AND INTR						
VOUT (0) Logical '0" Output Voltage		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA} \\ & \mathrm{~V}_{C C}=4.75 \mathrm{~V} D \end{aligned}$			0.4	VDC
VOUT (1) Logical "1" Output Voltage		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	2.4			VDC
IOUT	TRI-STATE Disabled Output	$V_{\text {OUT }}=0 V_{D C}$	-3			$\mu \mathrm{ADC}$
	Leakage (All Data Buffers)	VOUT $=5 \mathrm{VDC}$			3	$\mu \mathrm{ADC}$
	Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				
Isource		VOUT Short to Gnd	4.5	6		mADC
'SINK		VOUT Short to VCC	9.0	16		mADC

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: All voltages are measured with respect to Gnd, unless otherwise specified. The separate A Gnd point should always be wired to the D Gnd.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G n d$ and has a typical breakdown voltage of $7 V_{D C}$.
Note 4: For $V_{I N}(-) \geq V_{I N}{ }^{(+)}$the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see block diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $V_{\text {CC }}$ supply. Be careful, during testing at low $V_{C C}$ levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $V_{I N}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: With $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, the digital logic interfaces are no longer TTL compatible.
Note 6: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process.
Note 7: The $\overline{C S}$ input is assumed to bracket the $\overline{W R}$ strobe input and therefore timing is dependent on the $\overline{W R}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see timing diagrams).
Note 8: None of these A/Ds requires a zero adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.0 V full-scale) the $\mathrm{V}_{1 \mathrm{~N}}(-)$ input can be adjusted to achieve this. See section 2.5 and Figure 19.

Typical Performance Characteristics
Logic Input Threshold Voltage
vs. Supply Voltage

$V_{C C}$ - SUPPLY VOLTAGE ($V_{D C}$)
CLK IN Schmitt Trip Levels
vs. Supply Voltage

Full-Scale Error vs fCLK

Delay From Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid vs. Load Capacitance

CLOCK CAPACITOR (pF)
Effect of Unadjusted Offset Error vs. $\mathrm{V}_{\text {REF }} / 2$ Voltage

Power Supply Current
vs. Temperature

TRI-STATE ${ }^{\oplus}$ Test Circuits and Waveforms

Timing Diagrams

$t_{r}=20 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{OH}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

$t_{r}=20 \mathrm{~ns}$

Output Enable and Reset $\overline{\text { INTR }}$

Note: All timing is measured from the 50\% voltage points.

1.0 UNDERSTANDING A/D ERROR SPECS

A perfect A / D transfer characteristic (staircase waveform) is shown in Figure 1a. The horizontal scale is analog input voltage and the particular points labeled are in steps of 1 LSB (19.53 mV with 2.5 V tied to the $\left.\mathrm{V}_{\mathrm{REF}} / 2 \mathrm{pin}\right)$. The digital output codes which correspond to these inputs are shown as $\mathrm{D}-1, \mathrm{D}$, and $\mathrm{D}+1$. For the perfect A / D, not only will center-value $(A-1, A$, $A+1$, . .) analog inputs produce the correct output
digital codes, but also each riser (the transitions between adjacent output codes) will be located $\pm 1 / 2$ LSB away from each center-value. As shown, the risers are ideal and have no width. Correct digital output codes will be provided for a range of analog input voltages which extend $\pm 1 / 2$ LSB from the ideal center-values. Each tread (the range of analog input voltage which provides the same digital output code) is therefore 1 LSS wide.

Figure 1b shows worst case error plot for ADC0801. All center-valued inputs are guaranteed to produce the correct output codes and the adjacent risers are guaranteed to be no closer to the center-value points than $\pm 1 / 4$ LSB. In other words, if we apply an analog input equal to the center-value $\pm 1 / 4$ LSB, we guarantee that the A/D will produce the correct digital code. The maximum range of the position of the code transition is indicated by the horizontal arrow and it is guaranteed to be no more than $1 / 2$ LSB.

The error curve of Figure $1 c$ shows worst case error plot for ADC0802. Here we guarantee that if we apply an analog input equal to the LSB analog voltage center-value the A / D will produce the correct digital code.

Next to each transfer function is shown the corresponding error plot. Many people may be more familiar with error plots than transfer functions. The analog input voltage to the A/D is provided by either a linear ramp or by the discrete output steps of a high resolution DAC. Notice that the error is continuously displayed and includes the quantization uncertainty of the A/D. For example the error at point 1 of Figure $1 a$ is $+1 / 2$ LSB because the digital code appeared $1 / 2$ LSB in advance of the center-value of the tread. The error plots always have a constant negative slope and the abrupt upside steps are always 1 LSB in magnitude.

FIGURE 1. Clarifying the Error Specs of an A/D Converter

2.0 FUNCTIONAL DESCRIPTION

The ADC0801 series contains a circuit equivalent of the 256R network. Analog switches are sequenced by successive approximation logic to match the analog difference input voltage $\left[\mathrm{V}_{1 \mathrm{~N}}(+)-\mathrm{V}_{1}(-)(-)\right]$ to a corresponding tap on the R network. The most significant bit is tested first and after 8 comparisons (64 clock cycles) a-digital 8-bit binary code (1111 $1111=$ fullscale) is transferred to an output latch and then an interrupt is asserted (INTR makes a high-to-low transition). The device may be operated in the free-running mode by connecting $\overline{\mathrm{INTR}}$ to the $\overline{\mathrm{WR}}$ input with $\overline{\mathrm{CS}}=$ 0 . To insure start-up under all possible conditions, an external $\overline{W R}$ pulse is required during the first powerup cycle. A conversion in process can be interrupted by issuing a second start command.

On the high-to-low transition of the $\overline{W R}$ input the internal SAR latches and the shift register stages are reset. As long as the $\overline{\mathrm{CS}}$ input and $\overline{W R}$ input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition.

A functional diagram of the A/D converter is shown in Figure 2. All of the package pinouts are shown and the major logic control paths are drawn in heavier weight lines.

The converter is started by having $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flop, F/F1, which is at the input end of the 8 -bit shift register. Internal clock signals then transfer this " 1 " to the Q output of F/F1. The AND gate, G1, combines this " 1 " output with a clock signal to provide a reset signal to the start F / F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 ") the start F / F is reset and the 8 -bit shift register then can have the " 1 " clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would momentarily be at a " 1 " level) and the 8 -bit shift register would continue to be held in the reset mode. This logic therefore allows for wide $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals and the converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start F/F.

Note 1: $\overline{C S}$ shown twice for clarity.
Note 2: SAR = Successive Approximation Register.
FIGURE 2. Block Diagram

After the "1" is clocked through the 8-bit shift register (which completes the SAR search) it appears as the input to the D flop, F/F 2. As soon as this " 1 " is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the TRI-STATE output latches. When F/F 2 is subsequently clocked, the $\overline{\mathbf{Q}}$ output makes a high-to-low transition which causes the INTR F/F to set. An. inverting buffer then supplies the INTR output signal.

When data is to be read, the combination of both $\overline{C S}$ and $\overline{R D}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled to provide the 8-bit digital outputs.

2.1 Digital Control Inputs

The digital control inputs ($\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$) meet standard $\mathrm{T}^{2} \mathrm{~L}$ logic voltage levels. These signals have been renamed when compared to the standard A/D Start and Output Enable labels. In addition, these inputs are active low to allow an easy interface to microprocessor control busses. For non-microprocessor based applications, the $\overline{\mathrm{CS}}$ input (pin 1) can be grounded and the standard A/D Start function is obtained by an active low pulse applied at the $\overline{W R}$ input ($\operatorname{pin} 3$) and the Output Enable function is caused by an active low pulse at the $\overline{R D}$ input (pin 2).

2.2 Analog Differential Voltage Inputs and Common-Mode Rejection

This A/D has additional applications flexibility due to the analog differential voltage input. The $V_{I N}(-)$ input (pin 7) can be used to automatically subtract a fixed voltage value from the input reading (tare correction). This is also useful in $4 \mathrm{~mA}-20 \mathrm{~mA}$ current loop conversion. In addition, common-mode noise can be reduced by use of the differential input.

The time interval between sampling $\mathrm{V}_{1 \mathrm{~N}^{(+)}}{ }^{(+)}$and $\mathrm{V}_{1 \mathrm{~N}}(-)$ is $4-1 / 2$ clock periods. The maximum error voltage due to this slight time difference between the input voltage samples is given by:

$$
\Delta V_{e}(M A X)=(V p)\left(2 \pi f_{\mathrm{cm}}\right)\left(\frac{4.5}{f_{C L K}}\right)
$$

where:

$$
\Delta \mathrm{V}_{\mathrm{e}} \text { is the error voltage due to sampling delay }
$$

V_{p} is the peak value of the common-mode voltage

f_{cm} is the common-mode frequency

As an example, to keep this error to $1 / 4$ LSB $(\sim 5 \mathrm{mV})$ when operating with a 60 Hz common-mode frequency, f_{cm}, and using a 640 kHz A/D clock, fCLK, would allow a peak value of the common-mode voltage, V_{P}, which is given by:

$$
V_{P}=\frac{\left[\Delta V_{\mathrm{e}}(\mathrm{MAX})(\mathrm{f} C L K)\right]}{\left(2 \pi \mathrm{f}_{\mathrm{cm}}\right)(4.5)}
$$

or

$$
V_{p}=\frac{\left(5 \times 10^{-3}\right)\left(640 \times 10^{3}\right)}{(6.28)(60)(4.5)}
$$

which gives
$V p \cong 1.9 \mathrm{~V}$.
The allowed range of analog input voltages usually places more severe restrictions on input common-mode noise levels.

An analog input voltage with a reduced span and a relatively large zero offset can be easily handled by. making use of the differential input (see section 2.4 Reference Voltage Flexibility).

2.3 Analog Inputs

2.3.1 Input Current

Due to the internal switching action; displacement currents will flow at the analog inputs. This is due to onchip stray capacitance to ground. The voltage on this capacitance is switched and will result in currents entering the $V_{\mid N(+)}$ input and leaving the $V_{I N}(-)$ input which will depend on the analog differential input voltage levels. These current transients occur at the leading edge of the internal clocks. They rapidly decay and do not cause errors as the on-chip comparator is strobed at the end of the clock period.

2.3.2 Input Bypass Capacitors

Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources. This charge pumping action is worse for continuous conversions with the $\mathrm{V} / \mathrm{N}(+)$ input voltage at full-scale. For continuous conversions with a 640 kHz clock frequency with the $V_{I N}(+)$ input at 5 V , this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$. Therefore, bypass capacitors should not be used at the analog inputs or the $V_{R E F} / 2$ pin for high resistance sources ($>1 \mathrm{k} \Omega$). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the detrimental effects of the voltage drop across this input resistance, which is due to the average value of the input current, can be eliminated with a full-scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a precise linear function of the differential input voltage.

2.3.3 Input Source Resistance

Large values of source resistance where an input bypass capacitor is not used, will not cause errors as the input currents settle out prior to the comparison time. If a low pass filter is required in the system, use a low valued series resistor ($\leq 1 . \mathrm{k} \Omega$) for a passive RC section or add an op amp RC active low pass filter. For low source resistance applications, ($\leq 1 \mathrm{k} \Omega$), a $0.1 \mu \mathrm{~F}$ bypass capacitor at the inputs will prevent pickup due to series lead inductance of a long wire. A 100Ω series resistor can be used to isolate this capacitor-both the R and C are placed outside the feedback loop-from the output of an op amp, if used.

2.3.4 Noise

The leads to the analog inputs (pins 6 and 7) should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below $5 \mathrm{k} \Omega$. Larger values of source resistance can cause undesired system noise pickup. Input bypass capacitors, placed from the analog inputs to ground, will eliminate system noise pickup but can create analog scale errors as these capacitors will average the transient input switching currents of the A / D (see section 2.3.3). This scale error depends on both a large source resistance and the use of an input bypass capacitor. This error can be eliminated by doing a full-scale adjustment of the A/D (adjust $\mathrm{V}_{\mathrm{REF}} / 2$ for a proper full-scale reading-see section 2.5.2 on Full-Scale Adjustment) with the source resistance and input bypass capacitor in place.

2.4 Reference Voltage

2.4.1 Span Adjust

For maximum applications flexibility, these A / D s have been designed to accommodate a $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$ or an adjusted voltage reference. This has been achieved in the design of the IC as shown in Figure 3.

Notice that the reference voltage for the IC is either $1 / 2$ of the voltage which is applied to the $V_{C C}$ supply pin, or is equal to the voltage which is externally forced at the $\mathrm{V}_{\mathrm{REF}} / 2$ pin. This allows for a ratiometric voltage reference using the $V_{C C}$ supply, a $5 V_{D C}$ reference voltage can be used for the V_{CC} supply or a voltage less than $2.5 \mathrm{~V}_{\mathrm{DC}}$ can be applied to the $\mathrm{V}_{\mathrm{REF}} / 2$ input for increased application flexibility. The internal gain to the $\mathrm{V}_{\mathrm{REF}} / 2$ input is 2 to allow this factor of 2 reduction in the $V_{\text {REF } / 2}$ voltage.

An example of the use of an adjusted reference voltage is to accommodate a reduced span-or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from $0.5 \mathrm{~V}_{\mathrm{DC}}$ to $3.5 \mathrm{~V}_{\mathrm{DC}}$, instead of 0 V to $5 \mathrm{~V}_{\mathrm{DC}}$, the span would be 3 V . With $0.5 \mathrm{~V} D \mathrm{C}$ applied to the VIN $(-)$ pin to absorb the offset, the reference voltage can be made equal to $1 / 2$ of the 3 V span or $1.5 \mathrm{~V}_{\mathrm{DC}}$. The A/D now will encode the $\mathrm{V}_{\mathrm{IN}}\left({ }^{(+)}\right.$ signal from 0.5 V to 3.5 V with the 0.5 V input corresponding to zero and the $3.5 \mathrm{~V}_{\mathrm{DC}}$ input corresponding to full-scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range.

2.4.2 Reference Accuracy Requirements

The converter can be operated in a ratiometric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the A/D converter and therefore cancels out in the final digital output code. In absolute conversion applications, both the initial value and the temperature stability of the reference voltage are important accuracy factors in the operation of the A / D converter. For $\mathrm{V}_{\mathrm{REF}} / 2$ voltages of 2.5 $V_{D C}$ nominal value, initial errors of $\pm 10 \mathrm{~m} V_{D C}$ will cause conversion errors of ± 1 LSB due to the gain of 2 of the $\mathrm{V}_{\mathrm{REF}} / 2$ input. In reduced span applications, the initial value and the stability of the $\mathrm{V}_{\mathrm{REF}} / 2$ input

FIGURE 3. The VREFERENCE Design on the IC
voltage become even more important. For example, if the span is reduced to 2.5 V , the analog input LSB voltage value is correspondingly reduced from 20 mV (5 V span) to 10 mV and 1 LSB at the $\mathrm{V}_{\text {REF }} / 2$ input becomes 5 mV . As can be seen, this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temperature variations. Note that spans smaller than 2.5 V place even tighter requirements on the initial accuracy and stability of the reference source.

In general, the magnitude of the reference voltage will require an initial adjustment. Errors due to an improper value of reference voltage appear as full-scale errors in the A / D transfer function. IC voltage regulators may be used for references if the ambient temperature changes are not excessive. The LM336B 2.5V IC reference diode (from National Semiconductor) is available which operates with a 5 V input voltage and has a temperature stability of 1.8 mV typ (6 mV max) over $0^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq$ $+70^{\circ} \mathrm{C}$. Other temperature range parts are also available.

2.5 Errors

2.5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\text {IN }}$ (MIN), is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $A / D V_{I N}(-)$ input at this VIN(MIN) value (see Applications section). This utilizes the differential mode operation of the A/D.

The zero error of the A / D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $V(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}(+)$
input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 0000 0001 and the ideal $1 / 2$ LSB value $(1 / 2$ LSB $=9.8 \mathrm{mV}$ for $\left.\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}\right)$.

2.5.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $1-1 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }} / 2$ input (pin 9) for a digital output code which is just changing from 11111110 to 1111 1111. When offsetting the zero and using a span adjusted $V_{\text {REF }} / 2$ voltage, the full-scale adjustment is made by inputting $\mathrm{V}_{\text {MIN }}$ to the $\mathrm{V}_{\text {IN }}(-)$ input of the A / D and applying a voltage to the $V_{I N}(+)$ input which is given by:

$$
\mathrm{V}_{\text {IN }}(+) \mathrm{fs} \text { adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where:
$V_{M A X}=$ The high end of the analog input range
and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)

2.6 Clocking Option

The clock for the A/D can be derived from the CPU clock or an external RC can be added to provide selfclocking. The CLK IN (pin 4) makes use of a Schmitt trigger as shown in Figure 4.

FIGURE 4. Self-Clocking the A/D

Heavy capacitive or DC loading of the clock R pin should be avoided as this will disturb normal converter operation. Loads less than 50 pF , such as driving up to 7 A/D converter clock inputs from a single clock R pin of 1 converter, are allowed. For larger clock line loading, a CMOS or low power T ${ }^{2}$ L buffer or PNP input logic should be used to minimize the loading on the clock R pin (do not use a standard $T^{2} L$ buffer).

2.7 Restart During a Conversion

If the A / D is restarted ($\overline{C S}$ and $\overline{W R}$ go low and return high) during a conversion, the converter is reset and a new conversion is started. The output data latch is not
updated if the conversion in process is not allowed to be completed, therefore the data of the previous conversion remains in this latch.

2.8 Continuous Conversions

For operation in the free-running mode an initializing pulse should be used, following power-up, to insure circuit operation. In this application, the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{W R}$ input is tied to the $\overline{\text { INTR output. }}$ This $\overline{W R}$ and $\overline{\text { INTR }}$ node should be momentarily forced to logic low following a power-up cycle to guarantee operation.

2.9 Driving the Data Bus

This MOS A/D, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circuitry, which is tied to the data bus, will add to the total capacitive loading, even in TRI-STATE (high impedance mode). Backplane bussing also greatly adds to the stray capacitance of the data bus.

There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see typical characteristics curves).

At higher CPU clock frequencies time can be extended for 1/O reads (and/or writes) by inserting wait states (8080) or using clock extending circuits (6800).

Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be TRISTATE buffers (low power Schottky is recommended such as the DM74LS240 series) or special higher drive current products which are designed as bus drivers. High current bipolar bus drivers with PNP inputs are recommended.

2.10 Power Supplies

Noise spikes on the $V_{C C}$ supply line can cause conversion errors as the comparator will respond to this noise. A low inductance tantalum filter capacitor should be used close to the converter V_{CC} pin and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate LM340LAZ-5.0, TO-92, 5 V voltage regulator for the converter (and other analog circuitry) will greatly reduce digital noise on the V_{CC} supply.

2.11 Wiring and Hook-Up Precautions

Standard digital wire wrap sockets are not satisfactory for breadboarding this A/D converter. Sockets on PC boards can be used and all logic signal wires and leads should be grouped and kept as far away as possible from the analog signal leads. Exposed leads to the analog inputs can cause undesired digital noise and hum pickup, therefore shielded leads may be necessary in many applications.

A single point analog ground should be used which is separate from the logic ground points. The power supply bypass capacitor and the self-clocking capacitor (if used) should both be returned to digital ground. Any $V_{\text {REF }} / 2$ bypass capacitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the A/D converter. Zero errors in excess of 1/4 LSB can usually be traced to improper board layout and wiring (see section 2.5.1 for measuring the zero error).

3.0 TESTING THE A/D CONVERTER

There are many degrees of complexity associated with testing an A / D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 5.
For ease of testing, the $\mathrm{V}_{\mathrm{REF}} / 2$ (pin 9) should be supplied with $2.560 V_{D C}$ and a $V_{C C}$ supply voltage of 5.12 $V_{D C}$ should be used. This provides an LSB value of 20 mV .

If a full-scale adjustment is to be made, an analog input voltage of $5.090 V_{D C}(5.120-11 / 2 \mathrm{LSB})$ should be applied to the $\mathrm{V}_{1 \mathrm{~N}}(+)$ pin with the $\mathrm{V}_{1 \mathrm{~N}}\left(^{(-)}\right.$pin grounded. The value of the $V_{R E F} / 2$ input voltage should then be adjusted until the digital output code is just changingfrom 11111110 to 1111 1111. This value of $V_{R E F} / 2$ should then be used for all the tests.
The digital output LED display can be decoded by dividing the 8 bits into 2 hex characters, the 4 most significant (MS) and the 4 least significant (LS). Table I shows the fractional binary equivalent of these two 4 -bit groups. By adding the decoded voltages which are obtained from the column: Input voltage value for a 2.560 $\mathrm{V}_{\mathrm{REF}} / 2$ of both the MS and the LS groups, the value of
the digital display can be determined. For example, for an output LED display of 10110110 or 86 (in hex), the voltage values from the table are $3.520+0.120$ or 3.640 VDC . These voltage values represent the centervalues of a perfect A / D converter. The effects of quantization error have to be accounted for in the interpretation of the test results.

For a higher speed test syștem, or to obtain plotted data, a digital-to-analog converter is needed for the test set-up. An accurate 10-bit DAC can serve as the precision voltage source for the A / D. Errors of the A / D under test can be provided as either analog voltages or differences in 2 digital words.

A basic A/D tester which uses a DAC and provides the error as an analog output voltage is shown in Figure 6. The 2 op amps can be eliminated if a lab DVM with a numerical subtraction feature is available to directly readout the difference voltage, " $\mathrm{A}-\mathrm{C}$ ". The analog input voltage can be supplied by a low frequency ramp generator and an $\mathrm{X}-\mathrm{Y}$ plotter can be used to provide analog error (Y axis) versus analog input (X axis). The construction details of a tester of this type are provided in the NSC application note AN-179, "Analog-to-Digital Converter Testing".

For operation with a microprocessor or a computerbased test system, it is more convenient to present the errors digitally. This can be done with the circuit of Figure 7, where the output code transitions can be detected as the 10 -bit DAC is incremented. This provides $1 / 4$ LSB steps for the 8 -bit A/D under test. If the results of this test are automatically plotted with the analog input on the X axis and the error (in LSB's) as the Y axis, a useful transfer function of the A / D under test results. For acceptance testing, the plot is not necessary and the testing speed can be increased by establishing internal limits on the allowed error for each code.

FIGURE 6. A/D Tester with Analog Error Output

FIGURE 5. Basic A/D Tester
FIGURE 7. Basic "Digital" A/D Tester

HEX	BINARY				FRACTIONAL BINARY VALUE FOR						OUTPUT VOLTAGE CENTER VALUES WITH$V_{\text {REF }} / 2=2.560 V_{D C}$				
					MS GROUP		LS GROUP				VMS GROUP*	VLS GROUP*			
F	1	1	1	1	$15 / 16$ $7 / 8$ $13 / 16$ $3 / 4$		 $3 / 64$			15/256	4.800	0.300			
E	1	1	1	0				4.480	0.280						
D.	1	1	0	1			13/256	4.160	0.260						
C	1	1	0	0				3.840	0.240						
B	1	0	1	1	 $5 / 8$ $1 / 2$					-5/128			11/256	3.520	0.220
A	1	0	1	0				3.200	0.200						
9	1	0	0	1			9/256	2.880	0.180						
8	1	0	0	0				2.560	0.160						
7	0	1	1	1	$3 / 8{ }^{7 / 16}$					$3^{7 / 128}{ }^{7 / 256}$				2.240	0.140
6	0	1	1	0			1.920	0.120							
5	0	1	0	1	1/4 5/16					1/64			5/256	- 1.600	0.100
4	0	1	0	0				1.280	0.080						
3	0	0	1	1	$\begin{array}{ll} & 3 / 16 \\ 1 / 8 & \\ & 1 / 16\end{array}$		$\begin{array}{ll}1 / 128 & 3 / 256 \\ & 1 / 256\end{array}$				0.960	0.060			
2	0	0	1	0			0.640	0.040							
1	0	0	0	1			0.320	0.020							
0	0	0	0	0			0	0							

*V Display Output $=$ VMS Group + VLS Group

4.0 MICROPROCESSOR INTERFACING

To discuss the interface with 8080A, 6800 and SC/MP-II microprocessors, a common sample subroutine structure is used. The microprocessor starts the A / D, reads and stores the results of 16 successive conversions, then returns to the user's program. The 16 data bytes are stored at location 0200 to 020F. All Data and Addresses will be given in hexadecimal form. Software and hardware details are provided separately for each type of microprocessor.

4.1 Interfacing $\mathbf{8 0 8 0}$ Microprocessor Derivatives $(8048,8085)$

This converter has been designed to directly interface with an 8080A-2 microprocessor (MICROBUS class 2). The A / D can be mapped into memory space (using standard memory address decoding for $\overline{C S}$ and the $\overline{M E M R}$ and $\overline{M E M W}$ strobes) or it can be controlled as an I / O device by using the $\overline{\mathrm{I} / \mathrm{O} \mathrm{R}}$ and $\overline{\mathrm{I} / \mathrm{OW}}$ strobes and decoding the address bits $A 0 \rightarrow$ A7 (or address bits A8 \rightarrow A15 as they will contain the same 8 -bit address information) to obtain the $\overline{\mathrm{CS}}$ input. Using the I/O space provides 256 additional addresses and may allow a simpler 8 -bit address decoder but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the A/D should be mapped into memory space. An example of an A/D in I/O space in shown in Figure 8.

The standard control bus signals of the 8080 ($\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ and $\overline{W R)}$ can be directly wired to the digital control inputs of the A / D and the bus timing requirements are met to allow both starting the converter and outputting the data onto the data bus. A bus driver should be used for larger microprocessor systems where the data bus leaves the PC board and/or must drive capacitive loads larger than 100 pF .

4.1.1 Sample 8080A CPU Interfacing Circuitry and Program

The following sample program and associated hardware may be used to input data from the converter to the INS8080A CPU chip set (comprised of the INS8080A microprocessor, the INS8228 system controller and the INS8224 clock generator). For simplicity, the A/D is controlled as an I/O device, specifically an 8 -bit bidirectional port located at an arbitrarily chosen port address, EO. The TRI-STATE output capability of the A/D eliminates the need for a peripheral interface device, however address decoding is still required to generate the appropriate $\overline{\mathrm{CS}}$ for the converter.

It is important to note that in systems where the A / D converter is 1 -of- 8 or less I/O mapped devices, no address decoding circuitry is necessary. Each of the 8 address bits (A0 to A7) can be directly used as $\overline{\mathrm{CS}}$ inputs-one for each I/O device.

Note 1: *Pin numbers for the INS8228 system controller, others are INS8080A.
Note 2: Pin 23 of the INS8228 must be tied to +12 V through a $1 \mathrm{k} \Omega$ resistor to generate the RST 7 instruction when an interrupt is acknowledged as required by the accompanying sample program.

FIGURE 8. ADC0801-INS8080A CPU Interface

SAMPLE PROGRAM FOR FIGURE 8 ADC0801-INS8080A CPU INTERFACE

0038	C3 0003	RST 7:	JMP LD DATA	
.	-	-		
0100	210002	START:	LXI, H 0200H	; HL pair will point to ; data storage locations
0103	$31^{\prime} 0004$	RETURN:	LXI SP 0400H	; Initialize stack pointer (Note 1)
0106	7D		MOV A, L	; Test \# of bytes entered
0107	FE OF		CPI OF H	; If \# = 16. JMP to
0109	CA 1301		JZ CONT	; user program
010C	D3 E0		OUT EO H	; Start A/D
010E	FB		EI	; Enable interrupt
010F	00	LOOP:	NOP	; Loop until end of
0110	C3 OF 01		JMP LOOP	; conversion
0113	.	CONT:	.	
.	-	-	-	
.	.	(User program to	.	
.	.	process data)	.	
-	-	-	-	
0300	DB E0	LD DATA:	IN EO H	Load data into accumulator
0302	77		MOV M, A	; Store data
0303	23		INX H	; Increment storage pointer
0304	C3 0301		JMP RETURN	

Note 1: The stack pointer must be dimensioned because a RST 7 instruction pushes the PC onto the stack.
Note 2: All addresses used were arbitrarily chosen.

4.2 Interfacing the Z-80

The Z-80 control bus is slightly different from that of the 8080. General $\overline{R D}$ and $\overline{W R}$ strobes are provided and separate memory request, $\overline{M R E Q}$, and I/O request, $\overline{\text { IORQ, signals are used which have to be combined with }}$ the generalized strobes to provide the equivalent 8080 signals. An advantage of operating the A / D in I/O space with the Z-80 is that the CPU will automatically insert one wait state (the $\overline{R D}$ and $\overline{W R}$ strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the A/D in I/O space is shown in Figure 9.

FIGURE 9. Mapping the A / D as an I/O device for use with the Z-80 CPU

Additional 1/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A15) during I/O input instructions. For example, MUX channel selection for the A/D can be accomplished with this operating mode.

4.3 Interfacing 6800 Microprocessor Derivatives (6502, etc.)

The control bus for the 6800 microprocessor derivatives does not use the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobe signals. Instead it employs a single R / \bar{W} line and additional timing, if needed, can be derived from the $\phi 2$ clock. All I/O devices are memory mapped in the 6800 system, and a special signal, VMA, indicates that the current address is valid. Figure 10 shows an interface schematic where the A / D is memory mapped in the 6800 system. For simplicity, the $\overline{C S}$ decoding is shown using $1 / 2$ DM8092. Note that in many 6800 systems, an already decoded $\overline{4 / 5}$ line is brought out to the common bus at pin 21. This can be tied directly to the $\overline{C S}$ pin of the A/D, provided that no other devices are addressed at HEX ADDR: $4 \times X X$ or $5 X X X$.

The following subroutine essentially performs the same function as in the case of the 8080A interface and it can be called from anywhere in the user's program.

In Figure 11 the ADC0801 series is interfaced to the M6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter, (PIA). Here the $\overline{\mathrm{CS}}$ pin of the A / D is grounded since the PIA is already memory mapped in the M6800 system and no $\overline{\mathrm{CS}}$ decoding is necessary. Also notice that the A/D output data lines are connected to the microprocessor bus under program control through the PIA and therefore the A/D $\overline{\mathrm{RD}}$ pin can be grounded.

SAMPLE PROGRAM FOR FIGURE 10 ADC0801-MC6800 CPU INTERFACE

0010	DF 36	DATAIN	STX	TEMP2	; Save contents of X
0012	CE 002 C		LDX	\#\$002C	; Upon $\overline{\text { RQ }}$ low CPU
0015	FF FF F8		STX	\$FFF8	; jumps to 002C
0018	B7 5000		STAA	\$5000	; Starts ADC0801
0018	OE		CLI		
001C	3E	CONVRT	WAI		; Wait for interrupt
001D	DE 34		LDX	TEMP1	
001F	8C 02 OF		CPX	\#\$020F	; Is final data stored?
0022	2714		BEQ	ENDP	
0024	B7 5000		STAA	\$5000	; Restarts ADC0801
0027	08		INX		
0028	DF 34		STX	TEMP1	
002A	20 FO		BRA	CONVRT	
002C	DE 34	INTRPT	LDX	TEMP1	
002E	B6 5000		LDAA	\$5000	; Read data
0031	A7 00		STAA	X	; Store it at X
0033	3B		RTI		
0034	0200	TEMP1	FDB	\$0200	; Starting address for ; data storage
0036	0000	TEMP2	FDB	\$0000	
0038	CE 0200.	ENDP	LDX	\#\$0200	; Reinitialize TEMP1
003B	DF 34		STX	TEMP1	
003D	DE 36		LDX	TEMP2	
003F	. 39		RTS		; Return from subroutine ; To user's program

Note 1: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user's program.

Note 1: Numbers in parentheses refer to MC6800 CPU pin out.
Note 2: Numbers or letters in brackets refer to standard M6800 system common bus code.
FIGURE 10. ADC0801 - MC6800 CPU Interface

FIGURE 11. ADC0801-MC6820 PIA Interface

A sample interface program equivalent to the previous one, is shown below. The PIA Data and Control Registers of Port B are located at HEX addresses 8006 and 8007, respectively.

4.4 Interfacing the INS8060-SC/MP-II

The SC/MP-II interface technique with the ADC0801 series Figure 12, is similar to the 8080A CPU interface.

SAMPLE PROGRAM FOR FIGURE 11 ADC0801-MC6820 PIA INTERFACE

0010	CE 0038	DATAIN	LDX	\#\$0038	; Upon IRQ low CPU
0013	FF FF F8		STX	\$FFF8	; jumps to 0038
0016	B6 8006	.	LDAA	PIAORB	; Clear possible $\overline{\mathrm{IRO}}$ flags
0019	4F		CLRA		
001A	B7 8007		STAA	PIACRB	
001D	B7 8006		STAA	PIAORB	; Set Port B as input
0020	OE		CL'ı		
0021	C6 34		LDAB	\#\$34	
0023	86 3D	.	LDAA	\#\$3D	
0025	F7 8007	CONVRT	STAB	PIACRB	; Starts ADC0801
0028	B7 8007		STAA	PIACRB	
002B	3E		WAI		; Wait for interrupt
002C	DE 40		LDX	TEMP1	-
002E	8C 020 F		CPX	\#S020F	; Is final data stored?
0031	27 OF		BEO	ENDP	
0033	08		INX		. ${ }^{-1}$
0034	DF 40		STX	TEMP1	
0036	20 ED		BRA	CONVRT	,
0038	DE 40	INTRPT	LDX	TEMP1	
003A	B6 8006		LDAA	PIAORB	; Read data in
003D	A7 00		STAA	X	; Store it at X
003F	3B	.	RTI		
0040	0200	TEMP1	FDB	\$0200	; Starting address for ; data storage
0042	CE 0200	ENDP	LDX	\#\$0200	; Reinitialize TEMP1
0045	DF 40		STX	TEMP1	
0047	39		RTS		; Return from subroutine
		PIAORB	EQU	\$8006	; To user's program
		PIACRB	EQU	\$8007	

${ }^{*}$ Pin numbers in parentheses are for the SC/MP CPU.
FIGURE 12. ADC0801 - SC/MP-II Microprocessor Interface

The A / D is treated as a peripheral and it is mapped into the memory space of the SC/MP-II system. An address, ODOO, is assigned to the A/D and the $\overline{C S}$ signal is shown to be decoded by a bus comparator, DM8131. The $\overline{R D}$ and $\overline{W R}$ pins of the A / D are tied directly to the Write Data Strobe, NWRS, and Read Data Strobe, NRDS, pins of the SC/MP-II CPU. Notice that the INTR signal should be inverted before being tied to the SENSE A pin of the SC/MP-II. A sample interface program is shown below.

5.0 GENERAL APPLICATIONS

The following applications show some interesting uses for the A/D. The fact that one particular microprocessor is used is not meant to be restrictive. Each of these appli-
cation circuits would have its counterpart using any microprocessor which is desired.

5.1 Multiple ADC0801 Series to MC6800 CPU Interface

To transfer analog data from several channels to a single microprocessor system, a multiple converter scheme presents several advantages over the conventional multiplexer single-converter approach. With the ADC0801 series, the differential inputs allow individual span adjustment for each channel. Furthermore, all analog input channels are sensed simultaneously, which essentially divides the microprocessor's total system servicing time by the number of channels, since all conversions occur simultaneously. This scheme is shown in Figure 13.

0300		00	DATA IN:	LD(P2)	; Load A/D data into accumulator
0302	CD	01		ST@1(P1)	; Store A / D data and increment byte ; address
0304	A9	11		. $1 \mathrm{LD}(\mathrm{P} 1+11)$; Increment byte count
0306	C4	OF		LDIOF	
0308		03		SCL	
0309	F9	11		CAD(P1+11)	; $0 \mathrm{~F}-\langle\mathrm{P} 1+11\rangle$: Is byte count $=16$?
030B	98	03		JZ(USER)	; If byte count = 16 jump to user's ; program
030D	C4	13		LDI13	
030F		33		XPAL(P3)	; P3=0113
0310		3F		XPPC(P3)	; Go to START and do another conversion

The following schematic and sample subroutine (DATA IN) may be used to interface (up to) 8 ADC0801's directly to the MC6800 CPU. This scheme can easily be extended to allow the interface of more converters. In this configuration the converters are (arbitrarily) located at HEX address 5000 in the MC6800 memory space. To save components, the clock signal is derived from just one-RC pair on the first converter. This output drives the other A/Ds.

All the converters are started simultaneously with a STORE instruction at HEX address 5000 . Note that any other. HEX address of the form 5 XXX will be decoded by: the circuit, pulling all the $\overline{\mathrm{CS}}$ inputs low. This can easily be avoided by using a more definitive address decoding scheme. All the interrupts are ORed-together to insure that all $A / D s$ have completed their conversion before the microprocessor is interrupted.

The subroutine, DATA IN, may be called from anywhere in the user's program. Once called, this routine initializes
the CPU, starts all the converters simultaneously and waits for the interrupt signal. Upon receiving the interrupt, it reads the converters (from HEX addresses 5000 through 5007) and stores the data successively at (arbitrarily chosen) HEX addresses 0200 to 0207, before returning to the user's program. All CPU registers then recover the original data they had before servicing DATA IN.

5.2 Auto-Zeroed Differential Transducer Amplifier and A/D Converter

The differential inputs of the ADC0801 series eliminate the need to perform a differential to single ended conversion for a differential transducer. Thus, one op amp can be eliminated since the differential to single ended conversion is provided by the differential input of the ADC0801 series. In general, a transducer preamp is required to take advantage of the full A / D converter input dynamic range.

Note 1: Numbers in parentheses refer to MC6800 CPU pin out.
Note 2: Numbers or letters in brackets refer to standard M6800 system common bus code.
FIGURE 13. Interfacing Multiple A/Ds in a MC6800 System

ADDRESS	HEX CODE	MNEMONICS			COMMENTS
0010	DF 44	DATAIN	STX	TEMP	; Save Contents of X
0012	CE 002 A		LDX	\#\$002A	; Upon $\overline{\text { RQ }}$ LOW CPU
0015	FF FF F8		STX	\$FFF8	; Jumps to 002A
0018	B7 5000		STAA	\$5000	; Starts all A/D's
001B	OE		CLI		
001C	3E		WAI		; Wait for interrupt
001D	CE 5000		LDX.	\#\$5000	
0020	DF 40		STX	INDEX1	; Reset both INDEX
0022	CE 0200		LDX	\#\$0200	;1 and 2 to starting
0025	DF 42		STX	INDEX2	; addresses
0027	DE 44		LDX	TEMP	
0029	39		RTS		; Return from subroutine
002A	DE 40	INTRPT	LDX	INDEX1	; INDEX1 \rightarrow X
002C	A6 00		LDAA	X	; Read data in from A/D at X
002E	08		INX		; Increment X by onè
002F	DF 40		STX	INDEX1	; $\mathrm{X} \rightarrow$ INDEX1
0031	DE 42		LDX	INDEX2	; INDEX2 \rightarrow X
0033	A7 00		STAA	X	;Store data at X
0035	8C 0207		CPX	\#\$0207	;Have all A/D's been read?
0038	2705		BEO	RETURN	;Yes: branch to RETURN
003A	08		INX		;No: increment X by one
003B	DF 42		STX	INDEX2	; $\mathrm{X} \rightarrow$ INDEX2
003D	20 EB		BRA	INTRPF	;Branch to 002A
003F	3B	RETURN	RTI		
0040	5000	INDEX1	FDB	\$5000	;Starting address for A/D
0042	0200	INDEX2	FDB	\$0200	;Starting address for data storage
0044	0000	TEMP	FDB	\$0000	

Note 1: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user's program.

For amplification of DC input signals, a major system error is the input offset voltage of the amplifiers used for the preamp. Figure 14 is a gain of 100 differential preamp whose offset voltage errors will be cancelled by a zeroing subroutine which is performed by the INS8080A microprocessor system. The total allowable input offset voltage error for this preamp is only $50 \mu \mathrm{~V}$ for $1 / 4$ LSB error. This would obviously require very precise amplifiers. The expression for the differential output voltage of the preamp is:

$$
\begin{aligned}
& V_{0}=\underbrace{\left[V_{I N}(+)-V_{I N}(-)\right]}_{\text {SIGNAL }} \underbrace{\left[1+\frac{2 R 2}{R 1}\right]}_{\text {GAIN }}+ \\
& \underbrace{\left(V_{O S 2}-V_{O S 1}-V_{O S 3} \pm I_{x} R_{x}\right)}_{\text {DC ERROR TERM }} \underbrace{\left(1+\frac{2 R 2}{R 1}\right)}_{\text {GAIN }}
\end{aligned}
$$

where $\mathbf{I}_{\mathbf{X}}$ is the current through resistor $\mathbf{R}_{\mathbf{X}}$. All of the offset error terms can be cancelled by making $\pm \mathrm{I}_{\mathrm{x}} \mathrm{R}_{\mathrm{X}}=$ $V_{o s 1}+V_{o s 3}-V_{o s 2}$. This is the principle of this auto-zeroing scheme.

The INS8080A uses the 3 I/O ports of an INS8255 Programmable Peripheral Interface (PPI) to control the auto zeroing and input data from the ADC0801 as shown in Figure 15. The PPI is programmed for basic I/O operation (mode 0) with Port A being an input port and Ports B and C being output ports. Two bits of Port C are used to alternately open or close the 2 switches at the input
of the preamp. Switch SW1 is closed to force the preamp's differential input to be zero during the zeroing subroutine and then opened and SW2 is then closed for conversion of the actual differential input signal. Using 2 switches in this manner eliminates concern for the ON resistance of the switches as they must conduct only the input bias current of the input amplifiers.

Output Port B is used as a successive approximation register by the 8080 and the binary scaled resistors in series with each output bit create a D/A converter. During the zeroing subroutine, the voltage at V_{x} increases or decreases as required to make the differential output voltage equal to zero. This is accomplished by insuring that the voltage at the output of A1 is approximately 2.5 V so that a logic " 1 " $(5 \mathrm{~V}$) on any output of Port B will source current into node V_{x} thus raising the voltage at V_{X} and making the output differential more negative. Conversely, a logic " 0 " (0 V) will pull current out of node V_{X} and decrease the voltage, causing the differential output to become more positive. For the resistor values shown, V_{X} can move $\pm 12 \mathrm{mV}$ with a resolution of $50 \mu \mathrm{~V}$ which will null the offset error term to $1 / 4$ LSB of full-scale for the ADC0801. It is important that the voltage levels which drive the autozero resistors be constant. Also, for symmetry, a logic swing of 0 V to 5 V is convenient. To achieve this, a CMOS buffer is used for the logic output signals of Port B and this CMOS package is powered with a stable 5 V source. Buffer amplifier A1 is necessary so that it can source or sink the D/A output current.

Note 1: R2 $=49.5$ R1
Note 2: Switches are CD4066BC CMOS analog switches.
Note 3: The 9 resistors used in the auto-zero section can be $\pm 5 \%$ tolerance.
FIGURE 14. Gain of 100 Differential Transducer Preamp

FIGURE 15. Microprocessor Interface Circuitry for Differential Preamp

A flow chart for the zeroing subroutine is shown in Figure 16. It must be noted that the ADC0801 series will output an all zero code when it converts a negative input $\left[V_{I N}(-) \geq V_{I N}(+)\right]$. Also, a logic inversion exists as all of the I/O ports are buffered with inverting gates.

Basically, if the data read is zero, the differential output voltage is negative, so a bit in Port B is cleared to pull V_{x} more negative which will make the output more positive for the next conversion. If the data read is not zero, the output voltage is positive so a bit in Port B is set to make V_{X} more positive and the output more negative. This continues for 8 approximations and the differential output eventually converges to within 5 mV of zero.

The actual program is given in Figure 17. All addresses used are compatible with the BLC 80/10 microcomputer system. In particular:

Port A and the ADC0801 are at port address E4
Port B is at port address E 5
Port C is at port address E6
PPI control word port is at port address E7
Program Counter automatically goes to ADDR:3C3D upon acknowledgement of an interrupt from the ADC0801

5-3 Multiple A/D Converters in a Z-80 Interrupt Driven Mode

In data acquisition systems where more than one A/D converter (or other peripheral device) will be interrupting - program execution of a microprocessor, there is obviously a need for the CPU to determine which device requires servicing. Figure 18 and the accompanying software is a method of determining which of 7 ADC0801 converters has completed a conversion (INTR asserted) and is requesting an interrupt. This circuit allows starting the A / D converters in any sequence, but will input and store valid data from the converters with a priority sequence of $A / D 1$ being read first, A/D 2 second, etc., through A/D 7 which would have the lowest priority for data being read. Only the converters whose INT is asserted will be read.

The key to decoding circuitry is the MM74LS373, 8 -bit D type flip-flop. When the Z-80 acknowledges the interrupt, the program is vectored to a data input Z-80 subroutine. This subroutine will read a peripheral status word from the MM74LS373 which contains the logic state of the INTR outputs of all the converters. Each converter which initiates an interrupt will place a logic " 0 " in a unique bit position in the status word and the subroutine will determine the identity of the converter and execute a data read. An identifier word (which indicates which A/D the data came from) is stored in the next sequential memory location above the location of the data so the program can keep track of the identity of the data entered.

FIGURE 16. Flow Chart for Auto-Zero Routine

3D00	3E90	MVI 90	
3D02	D3E7	Out Control Port	Auto-Zero Subroutine

Note: All numerical values are hexadecimal representations.
FIGURE 17. Software for Auto-Zeroed Differential A/D
5-3 Multiple A/D Converters in a Z-80 Interrupt Driven Mode (Continued)

The following notes apply:

1) It is assumed that the CPU automatically performs a RST 7 instruction when a valid interrupt is acknowledged (CPU is in interrupt mode 1). Hence, the subroutine starting address of X0038.
2) The address bus from the $Z-80$ and the data bus to the Z-80 are assumed to be inverted by bus drivers.
3) A/D data and identifying words will be stored in sequential memorylocations starting at the arbitrarily chosen address X 3E00.
4) The stack pointer must be dimensioned in the main program as the RST 7 instruction automatically pushes the PC onto the stack and the subroutine uses an additional 6 stack addresses.
5) The peripherals of concern are mapped into $1 / 0$ space with the following port assignments:

HEX PORT ADDRESS

00	MM74C374 8-bit flip-flop
01	A/D 1
02	A/D 2
03	A/D 3
04	A/D 4
05	A/D 5
06	A/D 6
07	A/D 7

This port address also serves as the A/D identifying word in the program.

FIGURE 18. Multiple A/D's with Z-80 Type Microprocessor

INTERRUPT SERVICING SUBROUTINE				
			SOURCE	
LOC	OBJ CODE		STATEMENT	COMMENT
0038	E5		PUSH HL	; Save contents of all registers affected by
0039	C5		PUSH BC	; this subroutine.
003A	F5		PUSH AF	; Assumed INT mode 1 earlier set.
003B	21003 E		LD (HL), X3E00	; Initialize memory pointer where data will be stored.
003E	OE 01		LD C, X01	; C register will be port ADDR of A/D converters.
0040	D300		OUT X00,A	; Load peripheral status word into 8-bit latch.
0042	DB00		IN A, X00	; Load status word into accumulator.
0044	47		LD B,A	; Save the status word.
0045	79	TEST	LD A,C	; Test to see if the status of all A/D's have
0046	FE 08		CP, X08	; been checked. If so, exit subroutine.
0048	CA 6000		JPZ, DONE	
004B	78		LD A,B	; Test a single bit in status word by looking for
004C	1 F		RRA	; a " 1 " to be rotated into the CARRY (an INT
004D	47		LD B,A	; is loaded as a " 1 "). If CARRY is set then load
004E	DA 5500		JPC, LOAD	; contents of A / D at port ADDR in C register.
0051	OC	NEXT	INC C	; If CARRY is not set, increment C register to point
0052	C3 4500		JP,TEST	; to next A/D, then test next bit in status word.
0055	ED 78	LOAD	IN A, (C)	; Read data from interrupting A / D and invert
0057	EE FF		XOR FF	, the data.
0059	77		LD (HL), A	; Store the data.
005A	2 C		INC L	
005B	71		LD (HL), C	; Store A/D identifier (A/D port ADDR).
005C	2 C		INC L	
005D	C3 5100		JP,NEXT	; Test next bit in status word.
0060	F1	DONE	POP AF	; Re-establish all registers as they were
0061	C1		POP BC	; before the interrupt.
0062	E1		POP HL	-
0063	C9		RET	; Return to original program.

Typical Applications (Continued)

FIGURE 19. Offsetting the Zero of the ADC0801 and Performing an Input Range (Span) Adjustment

FIGURE 21. Handling $\pm 10 \mathrm{~V}$ Analog Input Range

FIGURE 20. Handling $\pm 5 \mathrm{~V}$ Analog Input Range

FIGURE 22. Free Running Connection

Ordering Information

TEMPERATURE RANGE		- $0^{\circ} \mathrm{C} \mathbf{T O}+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
ERROR	$\pm 1 / 4$ Bit Adjusted	ADC0801LCN	ADC0801LCD	ADC0801LD
	$\pm 1 / 2$ Bit Unadjusted	ADC0802LCN	ADC0802LCD	ADC0802LD
	$\pm 1 / 2$ Bit Adjusted	ADC0803LCN	ADC0803LCD	ADC0803LD
	± 1 Bit Unadjusted	ADC0804LCN	ADC0804LCD	
PACKAGE OUTLINE		N20A-MOLDED DIP	D20A-CAVITY DIP	D20A-CAVITY DIP

ADC0808，ADC0809 8－Bit μ P Compatible A／D Converters With 8－Channel Multiplexer

General Description

The ADC0808，ADC0809 data acquisition component is a monolithic CMOS device with an 8 －bit analog－to－digital converter，8－channel multiplexer and microprocessor compatible control logic．The 8－bit A／D converter uses suc－ cessive approximation as the conversion technique．The converter features a high impedance chopper stabilized comparator，a 256R voltage divider with analog switch tree and a successive approximation register．The 8 －channel multiplexer can directly access any of 8 －single－ended ana－ \log signals．

The device eliminates the need for external zero and full－ scale adjustments．Easy interfacing to microprocessors is provided by the latched and decoded multiplexer ad－ dress inputs and latched TTL TRI－STATE® outputs．
The design of the ADC0808，ADC0809 has been optimized by incorporating the most desirable aspects of several A／D conversion techniques．The ADC0808，ADC0809 of－ fers high speed，high accuracy，minimal temperature dependence，excellent long－term accuracy and repeatabi－ lity，and consumes minimal power．These features make this device ideally suited to applications from process and machine control to consumer and automotive applica－ tions．For 16 －channel multiplexer with common output （sample／hold port）see ADC0816 data sheet．

Features

－Resolution－8－bits
－Total unadjusted error $- \pm 1 / 2$ LSB and ± 1 LSB
－No missing codes
■ Conversion time－ $100 \mu \mathrm{~s}$
－Single supply－ $5 \mathrm{~V}_{\mathrm{DC}}$
－Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ or analog span adjusted voltage reference
－8－channel multiplexer with latched control logic
－Easy interface to all microprocessors，or operates ＂stand alone＂
－Outputs meet $T^{2} L$ voltage level specifications
－ 0 V to 5 V analog input voltage range with single 5 V supply
－No zero or full－scale adjust required
－Standard hermetic or molded 28 －pin DIP package
－Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
－Low power consumption－ 15 mW
－Latched TRI－STATE ${ }^{\oplus}$ output

Block Diagram

Absolute Maximum Ratings (Notes 1 and 2)	
Supply Voltage $\left(V_{C C}\right)($ Note 3$)$	6.5 V
Voltage at Any Pin	-0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Except Control Inputs	
Voltage at Control Inputs	-0.3 V to +15 V
(START, OE, CLOCK, ALE, ADD A, ADD B, ADD C)	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}$	875 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Operating Ratings (Notes 1and 2)

Temperature Range (Note 1) ADC0808CJ
ADC0808CCJ, ADC0808CCN, ADC0809CCN
Range of V_{CC} (Note 1)
$T_{M I N} \leq T_{A} \leq T_{M A X}$ $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
$4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$

Electrical Characteristics

Converter Specifications: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{REF}(+)}, \mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated.

	Parameter	Conditions	Min	Typ	Max	Units
	ADC0808					
	Total Unadjusted Error	$25^{\circ} \mathrm{C}$			$\pm 1 / 2$	LSB
	(Note 5)	$\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$			$\pm 3 / 4$	LSB
	ADC0809					
	Total Unadjusted Error	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			± 1	LSB
	(Note 5)	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			$\pm 11 / 4$	LSB
	Input Resistance	From Ref(+) to Ref(-)	1.0	2.5		$\mathrm{k} \Omega$
	Analog Input Voltage Range	(Note 4) V(+) or $\mathrm{V}(-)$	GND-0.10		$\mathrm{V}_{\mathrm{CC}}+0.10$	$V_{D C}$
$\mathrm{V}_{\text {REF }(+)}$	Voltage, Top of Ladder	Measured at Ref(+)		V_{cc}	$v_{c c}+0.1$	V
$\frac{V_{\text {REF }(+)}+V_{\text {REF }(-)}}{2}$	Voltage, Center of Ladder		$\mathrm{V}_{\mathrm{cc}} / 2-0.1$	$\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{cc}} / 2+0.1$	V
$V_{\text {REF(}-)}$	Voltage, Bottom of Ladder	Measured at Ref()	-0.1	0		v
	Comparator Input Current	$\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$, (Note 6)	-2	± 0.5	2	${ }_{\mu} \mathrm{A}$

Electrical Characteristics

Digital Levels and DC Specifications: ADC0808CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted ADC0808CCJ, ADC0808CCN, and ADC0809CCN $4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted

Parameter	Conditions	Min	Typ	Max	Units
ANALOG MULTIPLEXER					
$\mathrm{I}_{\text {OFF }(+)}$. OFF Channel Leakage Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{I N}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$		10	200 1.0	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
Ioff(-) OFF Channel Leakage Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{I N}=0, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	$\begin{gathered} -200 \\ -1.0 \end{gathered}$	-10		nA $\mu \mathrm{A}$
CONTROL INPUTS					
$\mathrm{V}_{\operatorname{IN}(1)} \quad$ Logical "1" Input Voltage		$\mathrm{V}_{\mathrm{CC}}{ }^{-1.5}$			V
$\mathrm{V}_{\mathrm{IN}(0)} \quad$ Logical "0" Input Voltage				1.5	V
$I_{\operatorname{IN}(1)} \quad$ Logical "1" Input Current	$V_{\text {IN }}=15 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\begin{array}{ll}I_{\mathrm{IN}(0)} & \begin{array}{l}\text { Logical " } 0 \text { " Input Current } \\ \text { (The Control Inputs) }\end{array}\end{array}$	$V_{1 N}=0$	-1.0			$\mu \mathrm{A}$
Icc Supply Current	$\dot{f}_{\text {CLK }}=640 \mathrm{kHz}$		0.3	3.0	mA

Electrical Characteristics (Continued)

Digital Lévels and DC Specifications: ADC0808CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted ADC0808CCJ, ADC0808CCN, and ADC0809CCN $4.75 \leq V_{C C} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted

	Parameter	Conditions	Min	Typ	Max	Units
DATA OUTPUTS AND EOC (INTERRUPT)						
$V_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\mathrm{I}_{0}=-360 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V
$V_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$			0.45	V
$V_{\text {OUT(0) }}$	Logical "0" Output Voltage EOC	$\mathrm{I}_{\mathrm{O}}=1.2 \mathrm{~mA}$			0.45	\checkmark
lout	TRI-STATE Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0 . \end{aligned}$	-3		3	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Electrical Characteristics
 Electical Characteristics

Timing Specifications: $V_{C C}=V_{R E F(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {ws }}$	Minimum Start Pulse Width	(Figure 5)		100	200	ns
${ }^{\text {t WALE }}$	Minimum ALE Pulse Width	(Figure 5)		100	200	ns
$\mathrm{t}_{\text {s }}$	Minimum Address Set-Up Time	(Figure 5)		25	50	ns
t_{H}	Minimum Address Hold Time	(Figure 5)		25	50	ns
t_{0}	Analog MUX Delay Time From ALE	$\mathrm{R}_{\mathrm{S}}=0 \Omega$ (Figure 5)		1	2.5	$\mu \mathrm{S}$
$t_{\text {H1 }}, \mathrm{t}_{\mathrm{HO}}$	OE Control to Q Logic State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
$t_{1 H}, t_{0 H}$	OE Control to $\mathrm{Hi}-\mathrm{Z}$	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
t_{c}	Conversion Time	$\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$, (Figure 5) (Note 7)	90	100	116	$\mu \mathrm{S}$
f_{c}	Clock Frequency		10	640	1280	kHz
$\mathrm{t}_{\text {EOC }}$	EOC Delay Time	(Figure 5)	0		$8+2 \mu \mathrm{~s}$	Clock Periods
$\mathrm{C}_{\text {IN }}$	Input Capacitance	At Control Inputs		10	15	pF
$\mathrm{Cout}^{\text {O }}$	TRI-STATE® Output Capacitance	At TRI-STATE® Outputs, (Note 12)		10	15	pF

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: A zener diode exists, internally, from V_{CC} to GND and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.900 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors. See Figure 3. None of these A/Ds requires azero or full-scale adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.5 V full-scale) the reference voltages can be adjusted to achieve this. See Figure 13.
Note 6: Comparator input current is a bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has little temperature dependence (Figure 6). See paragraph 4.0.
Note 7: The outputs of the data register are updated one clock cycle before the rising edge of EOC.

Functional Description

Multiplexer: The device contains an 8 -channel singleended analog signal multiplexer. A particular input channel is selected by using the address decoder. Table I shows the input states for the address lines to select any channel. The address is latched into the decoder on the low-to-high transition of the address latch enable signal.

TABLEI

SELECTED	ADDRESS LINE		
ANALOG CHANNEL	C	B	A
IN0	L	L	L
IN1	L	L	H
IN2	L	H	L
IN3	L	H	H
IN4	H	L	L
IN5	H	L	H
IN6	H	H	L
IN7	H	H	H

CONVERTER CHARACTERISTICS

The Converter

The heart of this single chip data acquisition system is its 8 -bit analog-to-digital converter. The converter is designed
to give fast, accurate, and repeatable conversions over a wide range of temperatures. The converter is partitioned into 3 major sections: the 256R ladder network, the successive approximation register, and the comparator. The converter's digital outputs are positive true.
The 256R ladder network approach (Figure 1) was chosen over the conventional R/2R ladder because of its inherent monotonicity, which guarantees no missing digital codes. Monotonicity is particularly important in closed loop feedback control systems. A non-monotonic relationship can cause oscillations that will be catastrophic for the system. Additionally, the 256R network does not cause load variations on the reference voltage.
The bottom resistor and the top resistor of the ladder network in Figure 1 are not the same value as the remainder of the network. The difference in these resistors causes the output characteristic to be symmetrical with the zero and full-scale points of the transfer curve. The first output transition occurs when the analog signal has reached $+1 / 2$ LSB and succeeding output transitions occur every 1 LSB later up to full-scale.
The successive approximation register (SAR) performs 8 iterations to approximate the input voltage. For any SAR type converter, n-iterations are required for an n-bit converter. Figure 2 shows a typical example of a 3 -bit converter. In the ADC0808, ADC0809, the approximation technique is extended to 8 bits using the 256R network.

FIGURE 1. Resistor Ladder and Switch Tree

Functional Description (Continued)

The A/D converter's successive approximation register (SAR) is reset on the positive edge of the start conversion (SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A conversion in process will be interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by tying the end-of-conversion (EOC) output to the SC input. If used in this mode, an external start conversion pulse should be applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising edge of start conversion.

The most important section of the A/D converter is the comparator. It is this section which is responsible for the ultimate accuracy of the entire converter. It is also the

FIGURE 2. 3-Bit A/D Transfer Curve
comparator drift which has the greatest influence on the repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all the converter requirements.

The chopper-stabilized comparator converts the DC input signal into an AC signal. This signal is then fed through a high gain AC amplifier and has the DC level restored. This technique limits the drift component of the amplifier since the drift is a DC component which is not passed by the AC amplifier. This makes the entire A/D converter extremely insensitive to temperature, long term drift and input offset errors.

Figure 4 shows a typical error curve for the ADC0808 as measured using the procedures outlined in AN-179.

FIGURE 4. Typical Error Curve

Connection Diagram

Dual-In-Line Package

Timing Diagram

outputs TRI-STATE

Typical Performance Characteristics

FIGURE 6. Comparator $I_{I N}$ vs $V_{I N}$ $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}\right)$

FIGURE 7. Multiplexer $\mathrm{R}_{\mathrm{ON}} \mathrm{VS} \mathrm{V}_{\mathrm{IN}}$ $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}\right)$

TRI-STATE ${ }^{\circledR}$ Test Circuits and Timing Diagrams

Applications Information

OPERATION

1.0 Ratiometric Conversion

The ADC0808, ADC0809 is designed as a complete Data Acquisition System (DAS) for ratiometric conversion systems. In ratiometric systems, the physical variable being measured is expressed as a percentage of full-scale which is not necessarily related to an absolute standard. The voltage input to the ADC0808 is expressed by the equation

$$
\begin{equation*}
\frac{v_{I N}}{v_{\mathrm{ts}}-V_{Z}}=\frac{D_{X}}{D_{\text {MAX }}-D_{\text {MIN }}} \tag{1}
\end{equation*}
$$

$\mathrm{V}_{\mathrm{IN}^{\prime}}=$ Input voltage into the ADC0808
$V_{\mathrm{fs}}=$ Full-scale voltage
$\mathrm{V}_{\mathrm{Z}}=$ Zero voltage
$\mathrm{D}_{\mathrm{X}}=$ Data point being measured
$\mathrm{D}_{\text {MAX }}=$ Maximum data limit
$D_{\text {MIN }}=$ Minimum data limit
A good example of a ratiometric transducer is a potentiometer used as a position sensor. The position of the wiper is directly proportional to the output voltage which is a ratio of the full-scale voltage across it. Since the data is represented as a proportion of full-scale, reference requirements are greatly reduced, eliminating a large source of error and cost for many applications. A major advantage of the ADC0808, ADC0809 is that the input voltage range is equal to the supply range so the transducers can be connected directly across the supply and their outputs connected directly into the multiplexer inputs, (Figure 9).

Ratiometric transducers such as potentiometers, strain gauges, thermistor bridges, pressure transducers, etc., are suitable for measuring proportional relationships; however, many types of measurements must be referred to an absolute standard such as voltage or current. This means a system reference must be used which relates the full-scale voltage to the standard volt. For example, if $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5.12 \mathrm{~V}$, then the full-scale range is divided into 256 standard steps. The smallest standard step is 1 LSB which is then 20 mV .

2.0 Resistor Ladder Limitations

The voltages from the resistor ladder are compared to the selected input 8 times in a conversion. These voltages are coupled to the comparator via an analog switch tree which is referenced to the supply. The voltages at the top, center and bottom of the ladder must be controlled to maintain proper operation.

The top of the ladder, $\operatorname{Ref}(+$), should not be more positive than the supply, and the bottom of the ladder, Ref(-), should not be more negative than ground. The center of the ladder voltage must also be near the center of the supply because the analog switch tree changes from N -channel switches to P -channel switches. These limitations are automatically satisfied in ratiometric systems and can be easily met in ground referenced systems.

Figure 10 shows a ground referenced system with a separate supply and reference. In this system, the supply must be trimmed to match the reference voltage. For instance, if a 5.12 V is used, the supply should be adjusted to the same voltage within 0.1 V .

FIGURE 9. Ratiometric Conversion System

Applications Information (Continued)

The ADC0808 needs less than a milliamp of supply current so developing the supply from the reference is readily accomplished. In Figure 11 a ground referenced system is shown which generates the supply from the reference. The buffer shown can be an op amp of sufficient drive to supply the milliamp of supply current and the desired bus drive, or if a capacitive bus is driven by the outputs a large capacitor will supply the transient supply current as seen in Figure 12. The LM301 is overcompensated to insure stability when loaded by the $10 \mu \mathrm{~F}$ output capacitor.

The top and bottom ladder voltages cannot exceed V_{CC} and ground, respectively, but they can be symmetrically less than V_{CC} and greater than ground. The center of the ladder voltage should always be near the center of the supply. The sensitivity of the converter can be increased, (i.e., size of the LSB steps decreased) by using a symmetrical reference system. In Figure 13, a 2.5 V reference is symmetrically centered about V_{Cd} 2 since the same current flows in identical resistors. This system with a 2.5 V reference allows the LSB bit to be half the size of a 5 V reference system.

FIGURE 10. Ground Referenced Conversion System Using Trimmed Supply

FIGURE 11. Ground Referenced Conversion System with Reference Generating $\mathbf{V}_{\mathbf{C C}}$ Supply

Applications Information (Continued) $10-15 \mathrm{voc}$

FIGURE 12. Typical Reference and Supply Circuit

FIGURE 13. Symmetrically Centered Reference

3.0 Converter Equations

The transition between adjacent codes N and $\mathrm{N}+1$ is given by:

$$
\begin{equation*}
V_{I N}=\left\{\left(V_{\operatorname{REF}(+)}-V_{\operatorname{REF}(-)}\left[\frac{N}{256}+\frac{1}{512}\right] \pm V_{\operatorname{TUE}}\right\}+\mathrm{V}_{\mathrm{REF}(-)}\right. \tag{2}
\end{equation*}
$$

The center of an output code N is given by:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN}}=\left\{\left(\mathrm{V}_{\mathrm{REF}(+)}-\mathrm{V}_{\mathrm{REF}(-)}\right)\left[\frac{\mathrm{N}}{256}\right] \pm \mathrm{V}_{\mathrm{TUE}}\right\}+\mathrm{V}_{\mathrm{REF}(-)} \tag{3}
\end{equation*}
$$

The output code N for an arbitrary input are the integers within the range:

$$
\begin{equation*}
N=\frac{V_{\text {IN }}-V_{\operatorname{REF}(-)}}{V_{\mathrm{REF}(+)}-\mathrm{V}_{\mathrm{REF}(-)}} \times 256 \pm \text { Absolute Accuracy } \tag{4}
\end{equation*}
$$

where: $\mathrm{V}_{\mathrm{IN}}=$ Voltage at comparator input
$\mathrm{V}_{\text {REF(+) }}=$ Voltage at Ref(+)
$\mathrm{V}_{\text {REF(-) }}=$ Voltage at $\operatorname{Ref}(-)$
$\mathrm{V}_{\text {TUE }}=$ Total unadjusted error voltage (typically $\mathrm{V}_{\mathrm{REF}(+)} \div 512$)

4.0 Analog Comparator Inputs

The dynamic comparator input current is caused by the periodic switching of on-chip stray capacitances. These are connected alternately to the output of the resistor ladder/switch tree network and to the comparator input as part of the operation of the chopper stabilized comparator.

The average value of the comparator input current varies directly with clock frequency and with $\mathrm{V}_{\mathbb{I N}}$ as shown in Figure 6.

If no filter capacitors are used at the analog inputs and the signal source impedances are low, the comparator input current should not introduce converter errors, as the transient created by the capacitance discharge will die out before the comparator output is strobed.

If input filter capacitors are desired for noise reduction and signal conditioning they will tend to average out the dynamic comparator input current. It will then take on the characteristics of a DC bias current whose effect can be predicted conventionally.

Typical Application

* Address latches needed for 8085 and SC/MP interfacing the ADC0808 to a microprocessor

MICROPROCESSOR INTERFACE TABLE

PROCESSOR	$\overline{\text { AEAD }}$	WRITE	INTERRUPT (COMMENT)
8080	$\overline{\text { MEMR }}$	MEMW	INTR (Thru RST Circuit)
8085	$\overline{\mathrm{RD}}$	$\overline{W R}$	INTR (Thru RST Circuit)
2-80	$\overline{\mathrm{RD}}$	$\overline{W R}$	$\overline{\text { INT (Thru RST Circuit, Mode 0) }}$
SC/MP	NRDS	NWDS	SA (Thru Sense A)
6800	VMA $\cdot \mathrm{D} \cdot \mathrm{R} / \mathrm{W}$	VMA $\cdot \mathbf{\phi} \cdot \overline{\mathrm{R} / \mathrm{W}}$	$\overline{\mathrm{RQA}}$ or $\overline{\mathrm{TRQB}}$ (Thru PIA $)$

Ordering Information

TEMPERATURE RANGE		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Error	$\pm 1 / 2$ Bit Unadjusted	ADC0808CCN	ADC0808CCJ	ADC0808CJ
	± 1 Bit Unadjusted,	ADC0809CCN		
Package Outline			N28A Molded DIP	J28A Hermetic DIP

ADC0816, ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer

General Description

The ADC0816, ADC0817 data acquisition component is a monolithic CMOS device with an 8 -bit analog-to-digital converter, 16 -channel multiplexer and microprocessor compatible control logic. The 8-bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 16 -channel multiplexer can directly access any one of 16 -singleended analog signals, and provides the logic for additional channel expansion. Signal conditioning of any analog input signal is eased by direct access to the multiplexer output, and to the input of the 8 -bit A/D converter.

The device eliminates the need for external zero and fullscale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE ${ }^{\oplus}$ outputs.
The design of the ADC0816, ADC0817 has been optimized by incorporating the most desirable aspects of several A/D conversion techniques. The ADC0816, ADC0817 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For similar performance in an 8-channel, 28 -pin,

8-bit A/D converter, see the ADC0808, ADC0809 data sheet.

Features

- Resolution - 8-bits
- Total unadjusted error $- \pm 1 / 2$ LSB and ± 1 LSB
- No missing codes
E. Conversion time - $100 \mu \mathrm{~s}$
- Single supply - $5 \mathrm{~V}_{\mathrm{DC}}$
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ or analog span adjusted voltage reference
- 16-channel multiplexer with latched control logic

■ Easy interface to all microprocessors, or operates "stand alone"

- Outputs meet T^{2} L voltage level specifications
- 0 V to 5 V analog input voltage range with single 5 V supply
- No zero or full-scale adjust required
- Standard hermetic or molded 40-pin DIP package
- Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Low power consumption - 15 mW
- Latched TRI-STATE ${ }^{\text {© }}$ output
- Direct access to "comparator in" and "multiplexer out" for signal conditioning

Block Diagram

Absolute Maximum Ratings (Notes 1 and 2)
Supply Voltage (V_{CC})(Note3)
Voltage at Any Pin
Except Control Inputs Voltage at Control Inputs
(START, OE, CLOCK, ALE, EXPANSION CONTROL, ADD A, ADD B, ADD C, ADD D)
Storage Temperature Range
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
6.5 V
-0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
-0.3 V to 15 V

875 mW $300^{\circ} \mathrm{C}$

Operating Ratings (Notes 1 and 2)

Converter Specifications: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\text {REF }(+)}, \mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {COMPARATORIN }}, T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ and $f_{C L K}=640 \mathrm{kHz}$ unless otherwise stated.

Electrical Characteristics

Digital Levels and DC Specifications: ADC0816CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted. ADC0816CCJ, ADC0816CCN, ADC0817CCN $4.75 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter		Conditions	Min	Typ	Max	Units
ANALOG MULTIPLEXER						
$\mathrm{R}_{\text {ON }}$	Analog Multiplexer ON Resistance	(Any Selected Channel) $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \\ & T_{A}=85^{\circ} \mathrm{C} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$		1.5	$\begin{aligned} & 3 \\ & 6 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
$\Delta \mathrm{R}_{\text {ON }}$	\triangle ON Resistance Between Any 2 Channels	(Any Selected Channel) $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		75		Ω
$\mathrm{IOFF}(+)$	OFF Channel Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{I N}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$		10	$\begin{gathered} 200 \\ 1.0 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
Ioff(-)	OFF Channel Leakage Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{I N}=0, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{array}{r} -200 \\ -1.0 \\ \hline \end{array}$			$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
CONTROL INPUTS						
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage		$\mathrm{V}_{\mathrm{cc}}{ }^{-1.5}$			v
$\mathrm{V}_{\text {IN(0) }}$	Logical " 0 " Input Voltage				1.5	\checkmark
$\mathrm{I}_{\text {IN(1) }}$	Logical " 1 " Input Current (The Control Inputs)	$V_{\text {IN }}=15 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IN(0) }}$	Logical "0" Input Current (The Control Inputs)	$V_{\text {IN }}=0$	-1.0			$\mu \mathrm{A}$
$I_{\text {cc }}$	Supply Current	${ }^{\text {f CLK }}=640 \mathrm{kHz}$		0.3	3.0	mA

Electrical Characteristics (Continued)

Digital Levels and DC Specifications: ADC0816CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted. ADC0816CCJ, ADC0816CCN, ADC0817CCN $4.75 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted.

	Parameter	Conditions	Min	Typ	Max	Units
DATA OUTPUTS AND EOC (INTERRUPT)						
$V_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage EOC	$\mathrm{I}_{\mathrm{O}}=1.2 \mathrm{~mA}$			0.45	V
I OUT	TRI-STATE Output Current	$\begin{aligned} & V_{O}=V_{c c} \\ & V_{O}=0 \end{aligned}$	-3		3	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Electrical Characteristics

Timing Specifications: $V_{C C}=V_{R E F(+)}=5 V, V_{R E F(-)}=G N D, t_{t}=t_{f}=20$ ns and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {ws }}$	Minimum Start Pulse Width	(Figure 5)		100	200	ns,
$t_{\text {Wale }}$	Minimum ALE Pulse Width	(Figure 5)		100	200	ns
t_{s}	Minimum Address Set-Up Time	(Figure 5)		25	50	ns
t_{H}	Minimum Address Hold Time	(Figure 5)		25	50	ns
t_{D}	Analog MUX Delay Time From ALE	$\mathrm{R}_{\mathrm{S}}=0 \Omega$ (Figure 5)		1	2.5	$\mu \mathrm{S}$
$t_{\text {H1 }}, \mathrm{t}_{\mathrm{HO}}$	OE Control to Q Logic State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{0 \mathrm{H}}$	OE Control to Hi-Z	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
t_{c}.	Conversion Time	$\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$, (Figure 5) (((${ }^{\text {ate 7) }}$	90	100	116	$\mu \mathrm{S}$
f_{c}	Clock Frequency		10	640	1280	kHz
$\mathrm{t}_{\mathrm{EOC}}$	EOC Delay Time	(Figure 5)	0		$8+2 \mu \mathrm{~s}$	Clock Periods
$\mathrm{C}_{\text {IN }}$	Input Capacitance	At Control Inputs		10	15	pF
$\mathrm{C}_{\text {OUt }}$	TRI-STATE Outpút Capacitance	At TRI-STATE Outputs, (Note 7)		10	15	pF

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G N D$ and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $V_{C C}$ supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.900 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Total unadjusted error includes offset, full-scale, and linearity errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.5 V full-scale) the reference voltages can be adjusted to achieve this. See Figure 13.
Note 6: Comparator input current is a bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has little temperature dependence (Figure 6). See paragraph 4.0.
Note 7: The outputs of the data register are updated one clock cycle before the rising edge of EOC.

Functional Description

Multiplexer: The device contains a 16 -channel singleended analog signal multiplexer. A particular input channel is selected by using the address decoder. Table I shows the input states for the address line and the expansion control line to select any channel. The address is latched into the decoder on the low-to-high transition of the address latch enable signal.
table 1

SELECTED ANALOG CHANNEL	ADDRESS LINE			EXPANSION	
	D	C	B	A	CONTROL
INO	L	L	L	L	H
IN1	L	L	L	H	H
IN2	L	L	H	L	H
IN3	L	L	H	H	H
IN4	L	H	L	L	H
IN5	L	H	L	H	H
IN6	L	H	H	L	H
IN7	L	H	H	H	H
IN8	H	L	L	L	H
IN9	H	L	L	H	H
IN10	H	L	H	L	H
IN11	H	L	H	H	H
IN12	H	H	L	L	H
IN13	H	H	L	H	H
IN14	H	H	H	L	H
IN15	H	H	H	H	H
AlI Channels OFF	X	X	X	X	L

$X=$ don't care

Additional single-ended analog signals can be multiplexed to the A/D converter by disabling all the multiplexer inputs using the expansion control. The additional external signals are connected to the comparator input and the device ground. Additional signal conditioning (i.e., prescaling, sample and hold, instrumentation amplification, etc.) may also be added between the analog input signal and the comparator input.

CONVERTER CHARACTERISTICS

The Converter

The heart of this single chip data acquisition system is its 8 -bit analog-to-digital converter. The converter is designed to give fast, accurate, and repeatable conversions over a wide range of temperatures. The converter is partitioned into 3 major sections: the 256R ladder network, the successive approximation register, and the comparator. The converter's digital outputs are positive true.

The 256R ladder network approach (Figure 1) was chosen over the conventional R/2R ladder because of its inherent monotonicity, which guarantees no missing digital codes. Monotonicity is particularly important in closed loop feedback control systems. A non-monotonic relationship can cause oscillations that will be catastrophic for the system. Additionally, the 256R network does not cause load variations on the reference voltage.

The bottom resistor and the top resistor of the ladder network in Figure 1 are not the same value as the remainder of the network. The difference in these resistors causes the output characteristic to be symmetrical with the zero and full-scale points of the transfer curve. The first output transition occurs when the analog signal has reached $+1 / 2$ LSB and succeeding output transitions occur every 1 LSB later up to full-scale.

FIGURE 1. Resistor Ladder and Switch Tree

Functional Description (Continued)

The successive approximation register (SAR) performs 8 iterations to approximate the input voltage. For any SAR type converter, n-iterations are required for an n-bit converter. Figure 2 shows a typical example of a 3 -bit converter. In the ADC0816, ADC0817, the approximation technique is extended to 8 bits using the 256R network.

The A/D converter's successive approximation register (SAR) is reset on the positive edge of the start conversion (SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A conversion in process will be interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by tying the end-of-conversion (EOC) output to the SC input. If used in this mode, an external start conversion pulse should be applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising edge of start conversion.

The most important section of the A/D converter is the comparator. It is this section which is responsible for the ultimate accuracy of the entire converter: It is also the comparator drift which has the greatest influence on the repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all the converter requirements.
The chopper-stabilized comparator converts the DC input signal into an AC signal. This signal is then fed through a high gain AC amplifier and has the DC level restored. This technique limits the drift component of the amplifier since the drift is a DC component which is not passed by the AC amplifier. This makes the entire A/D converter extremely insensitive to temperature, long term drift and input offset errors.
Figure 4 shows a typical error curve for the ADC0816 as measured using the procedures outlined in AN-179.

FIGURE 2. 3-Bit AID Transfer Curve

FIGURE 3. 3-Bit AID Absolute Accuracy Curve

FIGURE 4. Typical Error Curve

Connection Diagram

Dual-In-Line Package

Timing Diagram

FIGURE 6. Comparator $I_{\text {IN }}$ vs $V_{I N}$ $\left(V_{\text {CC }}=V_{\text {REF }}=5 \mathrm{~V}\right.$)

FIGURE 7. Multiplexer R_{ON} vs V_{IN} $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}\right.$)

TRI-STATE ${ }^{\circledR}$ Test Circuits and Timing Diagrams

FIGURE 8

Applications Information

OPERATION

1.0 Ratiometric Conversion

The ADC0816, ADC0817 is designed as a complete Data Acquisition System (DAS) for ratiometric conversion systems. In ratiometric systems, the physical variable being measured is expressed as a percentage of full-scale which is not necessarily related to an absolute standard. The voltage input to the ADC0816 is expressed by the equation

$$
\begin{equation*}
\frac{V_{I N}}{V_{f s}-V_{Z}}=\frac{D_{X}}{D_{M A X}-D_{M I N}} \tag{1}
\end{equation*}
$$

$\mathrm{V}_{\text {IN }}=$ Input voltage into the ADC0816
$\mathrm{V}_{\mathrm{fs}}=$ Full-scale voltage
$\mathrm{V}_{\mathrm{Z}}=$ Zero voltage
$D_{X}=$ Data point being measured
$\mathrm{D}_{\text {MAX }}=$ Maximum data limit
$D_{\text {MIN }}=$ Minimum data limit
A good example of a ratiometric transducer is a potentiometer used as a position sensor. The position of the wiper is directly proportional to the output voltage which is a ratio of the full-scale voltage across it. Since the data is represented as a proportion of full-scale, reference requirements are greatly reduced, eliminating a large source of error and cost for many applications. A major advantage of the ADC0816, ADC0817 is that the input voltage range is equal to the supply range so the transducers can be connected directly across the supply and their outputs connected directly into the multiplexer inputs, (Figure 9).

Ratiometric transducers such as potentiometers, strain gauges, thermistor bridges, pressure transducers, etc., are suitable for measuring proportional relationships; however, many types of measurements must be referred to an absolute standard such as voltage or current. This means a system reference muṣt be used which relates the full-scale voltage to the standard volt. For example, if $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5.12 \mathrm{~V}$, then the full-scale range is divided into 256 standard steps. The smallest standard step is 1 LSB which is then 20 mV .

2.0 Resistor Ladder Limitations

The voltages from the resistor ladder are compared to the selected input 8 times in a conversion. These voltages are coupled to the comparator via an analog switch tree which is referenced to the supply. The voltages at the top, center and bottom of the ladder must be controlled to maintain proper operation.

The top of the ladder, Ref(+), should not be more positive than the supply, and the bottom of the ladder, Ref(-), should not be more negative than ground. The center of the ladder voltage must also be near the center of the supply because the analog switch tree changes from N -channel switches to P -channel switches. These limitations are automatically satisfied in ratiometric systems and can be easily met in ground referenced systems.

Figure 10 shows a ground referenced system with a separate supply and reference. In this system, the supply must be trimmed to match the reference voltage. For instance, if a 5.12 V reference is used, the supply should be adjusted to the same voltage within 0.1 V .

FIGURE 9. Ratiometric Conversion System

Applications Information (Continued)

The ADC0816 needs less than a milliamp of supply current so developing the supply from the reference is readily accomplished. In Figure 11 a ground referenced system is shown which generates the supply from the reference. The buffer shown can be an op amp of sufficient drive to supply the milliamp of supply current and the desired bus drive, or if a capacitive bus is driven by the outputs a large capacitor will supply the transient supply current as seen in Figure 12. The LM301 is overcompensated to insure stability when loaded by the $10 \mu \mathrm{~F}$ output capacitor.

The top and bottom ladder voltages cannot exceed V_{CC} and ground, respectively, but they can be symmetrically less than V_{Cc} and greater than ground. The center of the ladder voltage should always be near the center of the supply. The sensitivity of the converter can be increased, (i.e., size of the LSB steps decreased) by using a symmetrical reference system. In Figure 13, a 2.5V reference is symmetrically centered about $\mathrm{V}_{\mathrm{CC}} / 2$ since the same current flows in identical resistors. This system with a 2.5 V reference allows the LSB to be half the size of the LSB in a 5 V reference system.

FIGURE 10. Ground Referenced Conversion System Using Trimmed Supply

FIGURE 11. Ground Referenced Conversion System with Reference Generating $\mathbf{V}_{\mathbf{C C}}$ Supply

Applications Information (Continued)

FIGURE 12. Typical Reference and Supply Circuit

FIGURE 13. Symmetrically Centered Reference

3.0 Converter Equations

The transition between adjacent codes N and $N+1$ is given by:

$$
\begin{equation*}
V_{I N}=\left\{\left(V_{R E F(+)}-V_{R E F(-)}\right)\left[\frac{N}{256}+\frac{1}{512}\right] \pm V_{\operatorname{TUE}}\right\}+V_{\operatorname{REF}(-)} \tag{2}
\end{equation*}
$$

The center of an output code N is given by:

$$
\begin{equation*}
V_{I N}=\left\{\left(V_{R E F(+)}-V_{\operatorname{REF}(-)}\right)\left[\frac{N}{256}\right] \pm V_{\operatorname{TUE}}\right\}+V_{\operatorname{REF}(-)} \tag{3}
\end{equation*}
$$

The output code N for an arbitrary input are the integers within the range:

$$
\begin{equation*}
N=\frac{V_{I N}-V_{\operatorname{REF}(-)}}{V_{R E F(+)}-V_{R E F(-)}} \times 256 \pm \text { Absolute Accuracy } \tag{4}
\end{equation*}
$$

where: $\mathrm{V}_{\text {IN }}=$ Voltage at comparator input
$\mathrm{V}_{\mathrm{REF}(+)}=$ Voltage at $\operatorname{Ref}(+)$
$\mathrm{V}_{\mathrm{REF}(-)}=$ Voltage at $\operatorname{Ref}(-)$
$V_{\text {TUE }}=$ Total unadjusted error voltage (typically $\mathrm{V}_{\mathrm{REF}(+)} \div 512$)

Applications Information (Continued)

4.0 Analog Comparator Inputs

The dynamic comparator input current is caused by the periodic switching of on-chip stray capacitances. These are connected alternately to the output of the resistor ladder/switch tree network and to the comparator input as part of the operation of the chopper stabilized comparator.

The average value of the comparator input current varies directly with clock frequency and with $\mathrm{V}_{\mathbb{I N}}$ as shown in Figure 6.

If no filter capacitors are used at the analog or comparator inputs and the signal source impedances are low, the comparator input current should not introduce converter errors, as the transient created by the capacitance discharge will die out before the comparator output is strobed.

If input filter capacitors are desired for noise reduction and signal conditioning they will tend to average out the dynamic comparator input current. It will then take on the characteristics of a DC bias current whose effect can be predicted conventionally.

Typical Application

* Address latches needed for 8085 and SC/MP interfacing the ADC0816, 17 to a microprocessor

Microprocessor Interface Table

PROCESSOR	$\overline{\text { READ }}$	WRITE	INTERRUPT (COMMENT)
8080	$\overline{\text { MEMR }}$	$\overline{\text { MEMW }}$	INTR (Thru RST Circuit)
8085	$\overline{\mathrm{RD}}$	$\overline{W R}$	INTR (Thru RST Circuit)
Z-80	$\overline{R D}$	$\overline{W R}$	INT (Thru RST Circuit, Mode 0)
SC/MP	NRDS	NWDS	SA (Thru Sense A)
6800	VMA. $\%$ 2.RW	VMA ${ }^{+}{ }^{2} \cdot \overline{\mathrm{RWW}}$	$\overline{\text { IRQA }}$ or IRQB (Thru PIA)

Ordering Information

TEMPERATURE RANGE		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Error	$\pm 1 / 2$ Bit Unadjusted	ADC0816CCN	ADC0816CCJ	ADC0816CJ
	± 1 Bit Unadjusted	ADC0817CCN		
Package Outline		N40A Molded DIP	J40A Hermetic DIP	J40A Hermetic DIP

A to D, D to A

ADC1210, ADC1211 12-Bit CMOS A/D Converters

General Description

The ADC1210, ADC1211 are low power, medium speed, 12-bit successive approximation, analog-to-digital converters. The devices are complete converters requiring only the application of a reference voltage and a clock for operation. Included within the device are the successive approximation logic, CMOS analog switches, precision laser trimmed thin film R-2R ladder network and FET input comparator.

The ADC1210 offers 12 -bit resolution and 12 -bit accuracy, and the ADC1211 offers 12 -bit resolution with 10 -bit accuracy. The inverted binary outputs are directly compatible with CMOS logic. The ADC1210, ADC1211 will operate over a wide supply range, convert both bipolar and unipolar analog inputs, and operate in either a continuous conversion mode or logic-controlled

START-STOP conversion mode. The devices are capable of making a 12 -bit conversion in $100 \mu \mathrm{~s}$ typ, and can be connected to convert 10 bits in $30 \mu \mathrm{~s}$.

Both devices are available in military and industrial temperature ranges.

Features

- 12-bit resolution
- $\pm 1 / 2$ LSB linearity
- Single +5 V to $\pm 15 \mathrm{~V}$ supply range
- $100 \mu \mathrm{~s} 12$-bit, $30 \mu \mathrm{~s} 10$-bit conversion rate
- CMOS compatible outputs
- Bipolar or unipolar analog inputs
- $200 \mathrm{k} \Omega$ analog input impedance
- Low cost

Block Diagram

Connection Diagram

Absolute Maximum Ratings

Maximum Reference Supply Voltage $\left(\mathrm{V}^{+}\right)$
Maximum Negative Supply Voltage $\left(\mathrm{V}^{-}\right)$
16 V
-20 V
$\mathrm{~V}^{+}+0.3 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
$\pm 10 \mathrm{~mA}$
50 mA
5 Seconds

Power Dissipation - Operating Temperature Range ADC1210HD, ADC1211HD ADC1210HCD, ADC1211HCD
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)

See Curves
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Notes 1 and 2)

PARAMETER	CONDITIONS	ADC1210			ADC1211			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Resolution		12			12			Bits
Linearity Error	(Note 3)							
	$\mathrm{f}_{\text {CLK }}=65 \mathrm{kHz}, \mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$			± 0.0122			± 0.0488	\% FS
	$\mathrm{f}_{\text {CLK }}=65 \mathrm{kHz}$.			± 0.0244	-			\% FS
Full Scale Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unadjusted			0.1			0.25	\% FS
Zero Scale Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unadjusted			0.1			0.25	\% FS
Quantization Error				$\pm 1 / 2$			$\pm 1 / 2$	LSB
Input Resistor Values	R27, R28		20			20		$k \Omega$
Input Resistor Values	R25, R26		200			200		$k \Omega$
Input Resistor Ratios	R25/R26, R27/R28			0.1			0.1	\%
Logic "1" Input Voltage		8			8			V
Logic " 0 " Input Voltage				2			2	V
Logic "1" Inpuit Current .	$V_{\text {IN }}=10.24 \mathrm{~V}$			1			1	$\mu \mathrm{A}$
Logic " 0 ' Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			-1			-1	$\mu \mathrm{A}$
Logic "1" Output Voltage	IOUT $\leq-1 \mu \mathrm{~A}$	9.2			9.2			V
Logic "0" Output Voltage	IOUT $\leq 1 \mu \mathrm{~A}$			0.5			0.5	V
Positive Supply Current	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{f} C L K=65 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		5	8		5	8	mA
Negative Supply Current	$\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	6		4	6	mA

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Notes 1 and 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Time			100	200	$\mu \mathrm{s}$
Maximum Clock Frequency			130	65	kHz
Maximum Clock Pulse Width		100	50		ns
Propagation Delay From Clock to Data Output (Q0 to Q11)	$\mathrm{t}_{\mathrm{r}} \leq \mathrm{tf}_{\mathrm{f}} \leq 10 \mathrm{~ns}$		60	150	ns
Propagation Delay From Clock to Conversion	$\mathrm{tr} \leq \mathrm{tf}_{\mathrm{f}} \leq 10 \mathrm{~ns}$		60	150	ns
Complete					
Clock Rise and Fall Time				5	$\mu \mathrm{s}$
Input Capacitance			10		pF
Start Conversion Set-Up Time		30			ns

Note 1: Unless otherwise noted, these specifications apply for $\mathrm{V}^{+}=10.240 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the ADC1210HD, ADC1211HD, and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the $\mathrm{ADC} 1210 \mathrm{HCD}, \mathrm{ADC1211} \mathrm{HCD}$.
Note 2: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: Unless otherwise noted, this specification applies over the temperature range $-\mathbf{2 5}{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Provision is made to adjust zero scale error to 0 V and full-scale to 10.2375 V during testing. Standard linearity test circuit is shown in Figure 5 a.

Schematic Diagram

Note: 3 bits shown for clarity

Applications Information

THEORY OF OPERATION

The ADC1210, ADC1211 are successive approximation analog-to-digital converters, i.e., the conversion takes place 1 bit at a time by comparing the output of the internal D/A to the (unknown) input voltage. The START input (pin 13), when taken low, causes the register to reset synchronously on the next CLOCK low-to-high transition. The MSB, Q11 is set to the low state, and the remaining bits, 00 through 010 , will be set to the high state. The register will remain in this state until the $\overline{\mathrm{SC}}$ input is taken high. When START goes high, the conversion will begin on the low-to-high transition of the CLOCK pulse. Q11 will then assume the state of pin 23 . If pin 23 is high, Q11 will be high; if pin 23 is low, Q11 will remain low. At the same time, the next bit, Q 10 is set low. All remaining bits, $\mathrm{Q} 0-\mathrm{Q} 9$
will remain unchanged (high). This process will continue until the LSB (QO) is found. When the conversion process is completed, it is indicated by CONVERSION COMPLETE ($\overline{\mathrm{CC}}$) (pin 14) going low. The logic levels at the data output pins (pins 1-12) are the complementedbinary representation of the converted analog signal with 011 being the MSB and 00 being the LSB. The register will remain in the above state until the $\overline{S C}$ is again taken low.

An application example is shown in Figure 1. In this case, a 0 to -10.2375 V input is being converted using the ADC1210 with $\mathrm{V}^{+}=10.240 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$. Figure $1 b$ is the timing diagram for full scale input. Figure $1 c$ is the timing diagram for zero scale input, Figure $1 d$ is the timing diagram for -3.4125 V input $010101010101=$ output).

Applications Information (Continued)

FIGURE 1à. ADC1210 Connected for OV to -10.2375V (Natural Binary Output)

FIGURE 1b. Timing Diagram for $\mathbf{V}_{\text {IN }}=$ Full Scale Input

Applications Information (Continued)

FIGURE 1c. Timing Diagram for $\mathrm{V}_{\text {IN }}=$ Zero Scale

FIGURE 1d. Timing Diagram for $V_{\text {IN }}=\mathbf{- 3 . 4 1 2 5 V}$ (010101010101)

Applications Information (Continued)

TABLE I. Pin Assignments and Explanations

PIN NUMBER	MNEMONIC	FUNCTION
$1-12$	Q11-Q0	Digital (data) output pins. This information is a parallel 12-bit complemented binary representation of the converted analog signal. All data is valid when "Conversion Com- plete" goes low. Logic levels are ground and V^{+}.
14		
Start Conversion is a logic input which causes synchronous reset of the successive approx-		
imation register and initiates conversion. Logic levels are ground and V^{+}.		
"Conversion Complete" is a digital output signal which indicates the status of the con-		
verter. When $\overline{C C}$ is high, conversion is taking place, when low conversion is completed.		
Logic levels are ground and V^{+}.		

POWER SUPPITY CONSIDERATIONS AND DECOUPLING

Pin 22 is both the positive supply and voltage reference input to the $A D C 1210, A D C 1211$. The magnitude of V^{+} determines the input logic " 1 " threshold and the output voltage from the CMOS SAR. The device will operate over a range of V^{+}from 5 V to 15 V . However, in order to preserve 12 -bit accuracy, V^{+}should be well regulated (0.01%) and isolated from external switching transients. It is therefore recommended that pin 22 be decoupled with a $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor.

The V^{-}supply ($\operatorname{pin} 20$) provides negative bias for the FET comparator. Although pin 20 may be grounded in some applications, it must be at least 2 V more negative than the most negative analog input signal. When a negative supply is used, pin 20 should also be bypassed with $4.7 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$.

Grounding and circuit layout are extremely important in preserving 12 -bit accuracy. The user is advised to employ separate digital and analog returns, and to make these PC board traces as "heavy" as practical.

SHORT CYCLE FOR IMPROVED CONVERSION TIME (FIGURE 2)

The ADC1210, ADC1211 counting sequence may be truncated to decrease conversion time. For example, when using the ADC1211, 2 clock intervals may be
"saved" if 10 -bit conversion accuracy is taking place. The Q2 output should be "OR'd" with CONVERSION COMPLETE ($\overline{\mathrm{CC}}$) in order to ensure that the register does not lock-up upon power turn-on.

FIGURE 2. Short Cycling the ADC1211 to Improve 10-Bit Conversion Time (Continuous Conversion)

LOGIC COMPATIBILITY

The ADC1210, ADC1211 is intended to interface with CMOS logic levels: i.e., the logic inputs and outputs are directly compatible with series 54C/74C and CD4000 family of logic components. The outputs of the ADC1210, ADC1211 will not drive LPTTL, TTL or PMOS logic directly without degrading accuracy. Various recommended interface techniques are shown in Figures 3 and 4.

OPERATING CONFIGURATIONS

Several recommended operating configurations are shown in Figure 5.

Applications Information (Continued)

FIGURE 3. Interfacing an ADC1210, ADC1211 Running on $V^{+}>V_{C C}$. Example: $V^{+}=10.24 V$, System $V_{C C}=5 \mathrm{~V}$

FIGURE 4. Interfacing an ADC1210, ADC1211 Running on $\mathrm{V}^{+}<\mathrm{V}_{\text {CC }}$. Example: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$

OFFSET AND FULL SCALE ADJUST

A variety of techniques may be employed to adjust Offset and Full Scale on the ADC1210, ADC1211. A straight-forward Full Scale Adjust is to incrementally vary $\mathrm{V}^{+}(\mathrm{V} R E F)$ to match the analog input voltage. A recommended technique is shown in Figure 6. An LM199 and low drift op amp (e.g., the LHOO44) are used to provide the precision reference. The ADC1210, ADC1211 is put in the continuous convert mode by shorting pins 13 and 14. An analog voltage equal to VREF minus $11 / 2$ LSB (10.23625 V) is applied to pins 18 and 19, and R1 is adjusted until the LSB flickers equally between logic " 1 " and logic " 0 " (all other out-
puts must be stable logic " 0 "). Offset Null is accomplished by then applying an analog input voltage equal to $1 / 2$ LSB at pins 18 and 19 . R2 is adjusted until the LSB output flickers equally between logic " 1 " and logic " 0 " (all other bits are stable). In the circuit of Figure 6, the ADC1210, ADC1211 is configured for Complementary Binary logic and the values shown are for $\mathrm{V}^{+}=10.240 \mathrm{~V}, \mathrm{~V}_{\mathrm{FS}}=10.2375 \mathrm{~V}, \mathrm{LSB}=2.5 \mathrm{mV}$.

An alternate technique is shown in Figure 7. In this instance, an LHOO71 is used to provide the reference voltage. An analog input voltage equal to $V_{\text {REF }}$ minus $11 / 2$ LSB (10.23625 V) is applied to pins 18 and 19.
ADC1210, ADC1211

Applications Information (Continued)

Applications Information (Continued)

FIGURE 6. Offset and Full Scale Adjustment for Complementary Binary

R1 is adjusted until the LSB output flickers equally between logic " 1 " and logic " 0 " fall other outputs must be a stable logic " 0 "). For Offset Null, an analog voltage equal to $1 / 2 \operatorname{LSB}(1.25 \mathrm{mV})$ is then applied to pins 18 and 19, and R2, is adjusted until the LSB output flickers equally between logic " 1 " and " 0 ".

FIGURE 7. Offset and Full-Scale Adjustment Technique Using LH0071

In both techniques shown, adjusting the Full-Scale first and then Offset minimizes adjustment interaction. At least one iteration is recommended as a self-check.

Definition of Terms

Resolution: The Resolution of an A / D is an expression of the smallest change in input which will increment (or decrement) the output from one code to the next adjacent code. It is defined in number of bits, or 1 part in 2^{n}. The ADC1210 and ADC1211 have a resolution of 12 bits or 1 part in 4,096 (0.0244%).

Quantization Uncertainty: Quantization Uncertainty is a direct consequence of the resolution of the converter. All analog voltages within a given range are represented by a single digital output code. There is, therefore, an inherent conversion error even for a perfect A / D. As an example, the transfer characteristic of a perfect 3 -bit A/D is shown in Figure 8.

As can be seen, all input voltages between 0 V and 1 V are represented by an output code of 000 . All input voltages between 1 V and 2 V are represented by an output code of 001 , etc. If the midpoint of the range is assumed to be the nominal value (e.g., 0.5 V), there is an Uncertainty of $\pm 1 / 2$ LSB. It is common practice to

FIGURE 8. Quantization Uncertainty of a Perfect 3-Bit A/D
offset the converter $1 / 2$ LSB in order to reduce the Uncertainty to $\pm 1 / 2$ LSB as shown in Figure 9. Rather than $+1,-0$ bit shown in Figure 8. Quantization Uncertainty can only be reduced by increasing Resolution. It is expressed as $\pm 1 / 2$ LSB or as an error percentage of full scale ($\pm 0.0122 \%$ FS for the ADC1210).

FIGURE 9. Transfer Characteristic Offset 1/2 LSB to Minimize Quantizing Uncertainty
Linearity Error: Linearity Error is the maximum deviation from a straight line passing through the end points of the A/D transfer characteristic. It is measured after calibrating Zero and Full Scale Error. The Linearity Error of the ADC1210 is guaranteed to be less than $\pm 1 / 2$ LSB or $\pm 0.0122 \%$ of FS and $\pm 0.0488 \%$ of FS for the AD1211. Linearity is a performance characteristic intrinsic to the device and cannot be externally adjusted.

Zero Scale Error (or Offset): Zero Scale Error is a measure of the difference between the output of an ideal and the actual A/D for zero input voltage. As shown in Figure 10, the effect of Zero Scale Error is to shift the transfer characteristic to the right or left along the abscissa. Any voltage more negative than the LSB transition gives an output code of 000 . In practice, therefore, the voltage at which the 000 to 001 transition

Applications Information (Continued)

takes place is ascertained, this input voltage's departure from the ideal value is defined as the Zero Scale Error (Offset) and is expressed as a percentage of FS. In the example of Figure 10, the offset is 2 LSB's or 0.286% of FS.

The Zero Scale Error of the ADC1210, ADC1211 is caused primarily by offset voltage in the comparator. Because it is common practice to offset the A/D 1/2 LSB to minimize Quantization Error, the offsetting techniques described in the Applications Section may be used to null Zero Scale Error and accomplish the $1 / 2$ LSB offset at the same time.

Full Scale Error (or Gain Error): Full Scale Error is a measure of the difference between the output of an ideal A / D converter and the actual A / D for an input voltage equal to full scale. As shown in Figure 11, the Full Scale Error effect is to rotate the transfer characteristic angularly about the origin. Any voltage more positive than the Full Scale transition gives an output code of 111. In practice, therefore, the voltage at which the transition from 111 to 110 occurs is ascertained. The input voltage's departure from the ideal value is defined as Full Scale Error and is expressed as a percentage of FS. In the example of Figure 11, Full Scale Error is $11 / 2$ LSB's, or 0.214% of FS.

Full Scale Error of the ADC1210, ADC1211 is due primarily to mismatch in the R-2R ladder equivalent

. FIGURE 10. A/D Transfer Characteristic with Offset
output impedance and input resistors R25, R26, R27, and R28. The "gain error may be adjusted to zero as outlined in the Applications section.
Monotonicity and Missing Codes: Monotonicity is a property of a D/A which requires an increasing or constant output voltage for an increasing digital input code. Monotonicity of a D/A converter does not, in itself, guarantee that an A/D built with that D/A will not have missing codes. However, the ADC1210 and ADC1211 are guaranteed to have no missing codes.

Conversion Time: The ADC1210, ADC1211 are successive approximation A / D converters requiring 13 clock intervals for a conversion to specified accuracy for the ADC1210 and 11 clocks for the ADC1211. There is a trade-off between accuracy and clock frequency due to settling time of the ladder and propagation delay through the comparator. By modifying the hysteresis network around the comparator, conversions with 10 bit accuracy can be made in $30 \mu \mathrm{~s}$. Replace $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$ and C_{A} in Figure 5 with a $10 \mathrm{M} \Omega$ resistor between pin 23 (Comparator Output) and pin 17 (+ IN), and increase the clock rate to 366 kHz .

In order to prevent errors during conversion, the analog input voltage should not be allowed to change by more than $\pm 1 / 2$ LSB. This places a maximum slew rate of $12.5 \mu \mathrm{~V} / \mu \mathrm{s}$ on the analog input voltage. The usual solution to this restriction is to place a Sample and Hold in front of the A/D. See AN-154 for additional information.

FIGURE 11. Full Scale (Gain Error)

Ordering Information

PART NUMBER	OPERATING TEMPERATURE RANGE	$25^{\circ} \mathrm{C}$ LINEARITY
ADC1210HD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.01%
ADC 1210 HCD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.01%
ADC 1211 HD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.05%
ADC 1211 HCD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.05%

[^25]National Semiconductor

DAC0800 (LMDAC08) 8-Bit Digital-to-Analog Converter

General Description

The DAC08 is a monolithic 8 -bit high-speed currentoutput digital-to-analog converter (DAC) featuring typical settling times of 100 ns . When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC08 also features high compliance complementary current outputs to allow differential output voltages of 20 Vp -p with simple resistor loads as shown in Figure 1. The reference-to-full-scale current matching of better than ± 1 LSB eliminates the need for full scale trims in most applications while the nonlinearities of better than $\pm 0.1 \%$ over temperature minimizes system error accumulations.

The noise immune inputs of the DAC08 will accept TTL levels with the logic threshold pin, V LC, pin 1 grounded. Simple adjustments of the VLC potential allow direct interface to all logic families. The performance and characteristics of the device are essentially unchanged over the full $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply range; power dissipation is only 33 mW with $\pm 5 \mathrm{~V}$ supplies and is independent of the logic input states.

The DAC0800L, DAC0802L, DAC0800LC, DAC0801LC and DAC0802LC are a direct replacement for the DAC08, DAC08A, DAC08C, DAC08E and DAC08H, respectively.

Features

- Fast settling output current 100 ns
- Full scale error ± 1 LSB
- Nonlinearity over temperature $\pm 0.1 \%$
- Full scale current drift $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- High output compliance , -10 V to +18 V
- Complementary current outputs
- Interface directly with TTL, CMOS,. PMOS and others
- 2 quadrant wide range multiplying capability
- Wide power supply range
$\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low power consumption

33 mW at $\pm 5 \mathrm{~V}$

- Low cost

Typical Applications

FIGURE 1. $\pm \mathbf{2 0}$ Vp-p Output Digital-to-Analog Converter

Connection Diagram

Ordering Information

NON LINEARITY	TEMPERATURE RANGE	ORDER NUMBERS*					
		D PACKAGE (D16C)		J PACKAGE (J16A)		N PACKAGE (N16A)	
$\pm 0.1 \% \mathrm{FS}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	DAC0802LD	LMDAC08AD				
$\pm 0.1 \%$ FS	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$			DA, ${ }^{\text {C0802LCJ }}$	LMDAC08HJ	DAC0802LCN	LMDAC08HN
$\pm 0.19 \%$ FS	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	DAC0800LD	LMDAC08D				
$\pm 0.19 \%$ FS	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$			DAC0800LCJ	LMDAC08EJ	DAC0800LCN	LMDAC08EN
$\pm 0.39 \%$ FS	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq+70^{\circ} \mathrm{C}$			DAC0801LCJ	LMDAC08CJ	DAC0801LCN	LMDAC08CN

[^26]Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$ or 36 V
Power Dissipation (Note 1)	500 mW
Reference Input Differential Voltage (V14 to V15)	V^{-}to V^{+}
Reference Input Common-Mode Range (V14, V15)	V^{-}to V^{+}
Reference Input Current	5 mA

V^{-}to V^{-}plus 36 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Analog Current Outputs
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Operating Conditions

	MIN	MAX	UNITS
Temperature (TA)			
DAC0802LA, LMDAC08A	-55	+125	${ }^{\circ} \mathrm{C}$
DAC0800L, LMDAC08	-55	+125	${ }^{\circ} \mathrm{C}$
DAC0800LC, LMDAC08E,	0	+70	${ }^{\circ} \mathrm{C}$
DAC0801LC, LMDAC08C,	0	+70	${ }^{\circ} \mathrm{C}$
DAC0802LC, LMDAC08H	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(V_{S}= \pm 15 \mathrm{~V}, I_{R E F}=2 \mathrm{~mA}, T_{M I N} \leq T_{A} \leq T_{M A X}\right.$ unless otherwise specified.
Output characteristics refer to both IOUT and IOUT.)

Note 1: The maximum junction temperature of the DAC0800, DAC0801 and DAC0802 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the dual-in-line J or D package must be derated based on a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, $175^{\circ} \mathrm{C} / \mathrm{W}$ for the molded dual-in-line N package.

Block Diagram

Equivalent Circuit

FIGURE 2

Typical Performance Characteristics

Note. Positive common-mode range is always ($\mathrm{V}+$) -1.5 V .

FIGURE 6

Output Current vs Output
Voltage (Output Voltage
Compliance)

v_{0} - OUTPut voltage (v)
FIGURE 9

FIGURE 4

Logic Input Current vs Input Voltage

FIGURE 7
vs Temperature

FIGURE 10

Reference Input
Frequency Response

Curve 1: $\mathrm{C}_{\mathrm{C}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=2 \mathrm{Vp}-\mathrm{p}$ centered at 1 V .
Curve 2: $C_{C}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mVp}-\mathrm{p}$ centered at 200 mV .
Curve 3: $C_{C}=0 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mVp} \mathrm{p}$ at $O V$ and applied through 50Ω connected to pin 14.2V applied to R14.

FIGURE 5

FIGURE 8

Note. B1-B8 have identical transfer characteristics. Bits are fully, switched with less than $1 / 2$ LSB error, at less than $\pm 100 \mathrm{mV}$ from actual threshold. These switching points are guaranteed to lie between 0.8 and 2 V over the operating temperature range ($\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}$).

Typical Performance Characteristics (Continued)

FIGURE 12

FIGURE 13

FIGURE 14

Typical Applications (Continued)

$I_{F S} \approx \frac{+V_{\text {REF }}}{R_{\text {REF }}} \times \frac{255}{256}$
$10+\overline{10}=I_{F S}$ for all
logic states

For fixed reference, TTL operation,
typical values are:
$V_{\text {REF }}=10.000 \mathrm{~V}$
$\mathrm{R}_{\text {REF }}=5.000 \mathrm{k}$
R15 \approx RREF
$C_{C}=0.01 \mu \mathrm{~F}$
$V_{\text {LC }}=0 V$ (Ground)
FIGURE 15. Basic Positive Reference Operation

FIGURE 16. Recommended Full Scale Adjustment Circuit

$I_{F S} \approx \frac{-V_{\text {REF }}}{R_{\text {REF }}} \times \frac{255}{256}$
Note. RREF sets IFS; R15 is for bias current cancellation

FIGURE 17. Basic Negative Reference Operation

	B1	B2	B3	B4	B5	B6	B7	B8	IO mA	$\overline{\mathrm{IO}} \mathrm{mA}$	$E_{\mathbf{O}}$	$\overline{E_{\mathbf{O}}}$
Full Scale	1	1	1	1	1	1	1	1	1.992	0.000	-9.960	0.000
Full Scale-LSB	1	1	1	1	1	1	1	0	1.984	0.008	-9.920	-0.040
Half Scale+LSB	1	0	0	0	0	0	0	1	1.008	0.984	-5.040	-4.920
Half Scale	1	0	0	0	0	0	0	0	1.000	0.992	-5.000	-4.960
Half Scale-LSB	0	1	1	1	1	1	1	1	0.992	1.000	-4.960	-5.000
Zero Scale+LSB	0	0	0	0	0	0	0	1	0.008	1.984	-0.040	-9.920
Zero Scale	0	0	0	0	0	0	0	0	0.000	1.992	0.000	-9.960

FIGURE 18. Basic Unipolar Negative Operation

Typical Applications (Continued)

	B1	B2	B3	B4	B5	B6	B7	B8	EO $_{\mathbf{O}}$	$\overline{E_{0}}$
Pos. Full Scale	1	1	1	1	1	1	1	1	-9.920	+10.000
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	-9.840	+9.920
\quad Zero Scale+LSB	1	0	0	0	0	0	0	1	-0.080	+0.160
Zero Scale	1	0	0	0	0	0	0	0	0.000	+0.080
Zero Scale-LSB	0	1	1	1	1	1	1	1	+0.080	0.000
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	+9.920	-9.840
Neg. Full Scale	0	0	0	0	0	0	0	0	+10.000	-9.920

FIGURE 19. Basic Bipolar Output Operation

If $R_{L}=\overline{R_{L}}$ within $\pm 0.05 \%$, output is symmetrical about ground

.	B1	B2	B3	B4	B5	B6	B7	B8	EO
Pos. Full Scale	1	1	1	1	1	1	1	1	+9.920
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	+9.840
1+) Zero Scale	1	0	0	0	0	0	0	0	+0.040
(-) Zero Scale	0	1	1	1	1	1	1	1	-0.040
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	-9.840
Neg. Full Scale	0	0	0	0	0	0	0	0	-9.920

FIGURE 20. Symmetrical Offset Binary Operation

For complementary output (operation as negative logic DAC), connect inverting input of op amp to \bar{I}_{O} (pin 2), connect $\mathrm{I}_{\mathrm{O}}(\mathrm{pin} 4)$ to ground.

FIGURE 21. Positive Low Impedance Output Operation

For complementary output (operation as a negative logic DAC) connect non-inverting input of op amp to T_{0} (pin 2); connect I_{0} (pin 4) to ground.

FIGURE 22. Negative Low Impedance Output Operation

Typical Applications (Continued)

Note. Do not exceed negative logic input range of DAC.

FIGURE 23. Interfacing with Various Logic Families

(a) IREF \geq peak negative swing of IIN

FIGURE 24. Pulsed Reference Operation

(b) $+\mathrm{V}_{\text {REF }}$ must be above peak positive swing of $\mathrm{V}_{\text {IN }}$

FIGURE 25. Accommodating Bipolar References

FIGURE 26. Settling Time Measurement

Typical Applications (Continued)
 accuracy, an LM361 comparator replaces the LM319 and the reference current is doubled by reducing R1, R2 and R3 to $2.5 \mathrm{k} \Omega$ and R 4 to $2 \mathrm{M} \Omega$.
FIGURE 27. A Complete 2μ s Conversion Time, 8-Bit A/D Converter

DAC0808, DAC0807, DAC0806 8-Bit D/A Converters

General Description

The DAC0808 series is an 8 -bit monolithic digital-toanalog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with $\pm 5 \mathrm{~V}$ supplies. No reterence current (IREF) trimming is required for most applications since the full scale output current is typically ± 1 LSB of 255 IREF/ 256. Relative accuracies of better than $\pm 0.19 \%$ assure 8 -bit monotonicity and linearity while zero level output current of less than $4 \mu \mathrm{~A}$ provides 8 -bit zero accuracy for $I_{\text {REF }} \geq 2 \mathrm{~mA}$. The power supply currents of the DAC0808 series are independent of bit codes, and exhibits essentially constant device characteristics over the entire supply voltage range.

Features

- Relative accuracy: $\pm 0.19 \%$ error maximum (DAC0808)
- Full scale current match: ± 1 LSB typ
- 7 and 6 -bit accuracy available (DAC0807, DAC0806)
- Fast settling time: 150 ns typ
- Noninverting digital inputs are TTL and CMOS compatible
- High speed multiplying input slew rate: $8 \mathrm{~mA} / \mu \mathrm{s}$
- Power supply voltage range: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low power consumption: $33 \mathrm{~mW} @ \pm 5 \mathrm{~V}$

The DAC0808 will interface directly with popular TTL, DTL or CMOS logic levels, and is a direct replacement for the MC1508/MC1408. For higher speed applications, see DAC0800 data sheet.

Block and Connection Diagrams

Typical Application

FIGURE 1. $\pm 10 \mathrm{~V}$ Output Digital to Analog Converter

Ordering Information

ACCURACY	OPERATING TEMPERATURE RANGE	ORDER NUMBERS*					
		D PACKAGE (D16C)		JPACKAGE (J16A)		N PACKAGE (N16A)	
8 -bit	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	DAC0808LD	LM1508D-8				
8 -bit	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq+75^{\circ} \mathrm{C}$			DAC0808LCJ	LM1408J.8	DAC0808LCN	LM1408N-8
7-bit	$0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$			DAC0807LCJ	LM1408J-7	DAC0807LCN	LM1408N-7
6-bit	$0^{\circ} \mathrm{C} \leq T_{\text {A }} \leq+75^{\circ} \mathrm{C}$			DAC0806LCJ	LM1408J-6	DAC0806LCN	LM1408N-6

[^27]Absolute Maximum Ratings $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Power Supply Voltage	$+18 \mathrm{~V}_{\mathrm{DC}}$
V_{CC}	$-18 \mathrm{~V}_{\mathrm{DC}}$
V_{EE}	$-10 \mathrm{~V}_{\mathrm{DC}}$ to $+18 \mathrm{~V}_{\mathrm{DC}}$
Digital Input Voltage, V5-V12	$-11 \mathrm{~V}_{\mathrm{DC}}$ to $+18 \mathrm{~V}_{\mathrm{DC}}$
Applied Output Voltage, V_{O}	5 mA
Reference Current, I 14	$\mathrm{~V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$

Power Dissipation (Package Limitation)		
Cavity Package	\therefore	1000 mW
Derate above $T_{A}=25^{\circ} \mathrm{C}$		$6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range		
DAC0808L	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	
DAC0808LC Series	$0 \leq T_{A} \leq+75^{\circ} \mathrm{C}$	
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V} \mathrm{DC}, \mathrm{V}_{\text {REF }} / R 14=2 \mathrm{~mA}, \mathrm{DAC} 0808 \mathrm{~L}: \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{DAC} 0808 \mathrm{LC}, \mathrm{DAC0807LC}$, DAC0806LC, $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, and all digital inputs at high logic level unless otherwise noted.)

[^28]
Typical Performance Characteristics

$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Test Circuits

V_{I} and I_{1} apply to inputs $A 1-A 8$.
The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.

FIGURE 4. Relative Accuracy Test Circuit

FIGURE 5. Transient Response and Settling Time

Test Circuits (Continued)

FIGURE 9. Programmable Gain Amplifier or Digital Attenuator Circuit

Application Hints

REFERENCE AMPLIFIER DRIVE AND COMPEN-

 SATIONThe reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, I 14, must always flow into pin 14, regardless of the set-up method or reference voltage polarity.

Connections for a positive voltage are shown in Figure 7. The reference voltage source supplies the full current
114. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of $1,2.5$ and $5 \mathrm{k} \Omega$, minimum capacitor values are 15,37 and 75 pF . The capacitor may be tied to either $V_{E E}$ or ground, but using $V_{E E}$ increases negative supply rejection.

Application Hints (Continued)

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to $V_{E E}$ on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 4 V above the $V_{E E}$ supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a DC reference voltage is used, capacitive bypass to ground is recommended. The 5 V logic supply is not recommended as a reference voltage. If a well regulated 5 V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to 5 V through another resistor and bypassing the junction of the 2 resistors with $0.1 \mu \mathrm{~F}$ to ground. For reference voltages greater than 5 V , a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

OUTPUT VOLTAGE RANGE

The voltage on pin 4 is restricted to a range of -0.6 to 0.5 V when $V_{E E}=-5 \mathrm{~V}$ due to the current switching methods employed in the DAC0808.

The negative output voltage compliance of the DAC0808 is extended to -5 V where the negative supply voltage is more negative than -10 V . Using a full-scale current of 1.992 mA and load resistor of $2.5 \mathrm{k} \Omega$ between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 V . Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_{L} up to 500Ω do not significantly affect performance, but a $2.5 \mathrm{k} \Omega$ load increases worst-case settling time to $1.2 \mu \mathrm{~s}$ (when all bits are switched ON). Refer to the subsequent text section on Settling Time for more details on output loading.

OUTPUT CURRENT RANGE

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than -7 V , due to the increased voltage drop across the resistors in the reference current amplifier.

ACCURACY

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full-scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full-scale current. The relative accuracy of the DAC0808 is essentially constant with temperature due to the excellent temperature tracking
of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the DAC0808 has a very low full-scale current drift with temperature.

The DAC0808 series is guaranteed accurate to within $\pm 1 / 2$ LSB at a full-scale output current of 1.992 mA . This corresponds to a reference amplifier output current drive to the ladder network of 2 mA , with the loss of 1 LSB $(8 \mu \mathrm{~A})$ which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA , allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full-scale output current of 1.992 mA . This is an optional step since the DAC0808 accuracy is essentially the same between 1.5 and 2.5 mA . Then the DAC0808 circuits' full-scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accuracy D-to-A converter. 16-bit accuracy implies a total error of $\pm 1 / 2$ of one part in 65,536 , or $\pm 0.00076 \%$, which is much more accurate than the $\pm 0.019 \%$ specification provided by the DAC0808.

MULTIPLYING ACCURACY

The DAC0808 may be used in the multiplying mode with 8-bit accuracy when the reference current is varied over a range of $256: 1$. If the reference current in the multiplying mode ranges from $16 \mu \mathrm{~A}$ to 4 mA , the additional error contributions are less than $1.6 \mu \mathrm{~A}$. This is well within 8-bit accuracy when referred to full-scale.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the DAC0808 is monotonic for all values of reference current above 0.5 mA . The recommended range for operation with a DC reference current is 0.5 to 4 mA .

SETTLING TIME

The worst-case switching condition occurs when all bits are switched ON, which corresponds to a low-to-high transition for all bits. This time is typically 150 ns for settling to within $\pm 1 / 2$ LSB, for 8 -bit accuracy, and 100 ns to $1 / 2$ LSB for 7 and 6-bit accuracy. The turn OFF is typically under 100 ns . These times apply when $R_{L} \leq 500 \Omega$ and $C_{O} \leq 25 \mathrm{pF}$.

Extra care must be taken in board layout since this is usually the dominant factor in satisfactoy test results when measuring settling time. Short leads, $100 \mu \mathrm{~F}$ supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

MICRO-DAC: ${ }^{\text {T" }}$
 DAC1000 through DAC1008 10-Bit, μ P Compatible, Double-Buffered D to A Converters

General Description

The DAC1000 through DAC1008 are advanced CMOS/ $\mathrm{Si}-\mathrm{Cr} 10-$, 9 - and 8 -bit accurate multiplying DACs which are designed to interface directly with the 8080, 8048, 8085, Z-80 and other popular microprocessors. These DACs appear as a memory location or an $1 / \mathrm{O}$ port to the $\mu \mathrm{P}$ and no interfacing logic is needed.

These devices, combined with an external amplifier and voltage reference, can be used as standard D/A converters; and they are very attractive for multiplying applications (such as digitally controlled gain blocks) since their linearity error is essentially independant of the voltage reference. They become equally attractive in audio signal processing equipment as audio gain controls or as programmable attenuators which marry high quality audio signal processing to digitally based systems under microprocessor control.

All of these DACs are double buffered. They can load all 10 bits or two 8 -bit bytes and the data format can be either right justified or left justified. The analog section of these DACs is essentially the same as that of the DAC1020.

Part \#	Accuracy (bits)	Pin	Description
DAC1000	10	24	Has all logic features
DAC1001	9		20
DAC1002	8	For right- justified data	
DAC1003	10	20	For left- justified data
DAC1004	9		10
DAC1005	8		
DAC1006	10		
DAC1007	9		
DAC1008	8		

Available on special order

Features

- Uses easy to adjust END POINT specs, NOT BEST STRAIGHT LINE FIT
- Low power consumption
- Direct interface to all popular microprocessors.
- Integrated thin film on CMOS structure
- Double-buffered, single-buffered or flow through digital data inputs.
- Loads two 8 -bit bytes or a single 10 -bit word.
- Logic inputs which meet T^{2} L voltage level specs (1.4V logic threshold).
- Works with $\pm 10 \mathrm{~V}$ reference - full 4-quadrant multiplication.
- Operates STAND ALONE (without $\mu \mathrm{P}$) if desired,
- Available in $0.3^{\prime \prime}$ standard 20 -pin and $0.6^{\prime \prime} 24$-pin package.

Key Specifications

- Output Current Settling	me . 500 ns
- Resolution	10 bits
- Linearity	10, 9, and 8 bits (guaranteed over temp.)
- Gain Tempco	-0.0003\% of FS/ ${ }^{\circ} \mathrm{C}$
- Low Power Dissipation (including ladder)	20 mW
- Single Power Supply	5 to $15 \mathrm{~V}_{\text {DC }}$

Typical Application

Absolute Maximum Ratings (Notes 1 \& 2)	
Supply Voltage (V_{CC})	$17 V_{D C}$
Voltage at Any Digital Input	V_{CC} to GND
Voltage at $\mathrm{V}_{\text {REF }}$ Input	$\pm 25 \mathrm{~V}$
Storage Temperature Range . $\quad-6$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)	te 3) 875 mW
DC Voltage Applied to $\mathrm{I}_{\mathrm{OUT}}^{1}$ or louta (Note 4)	-100 mV to V_{C}
Lead Temperature (soldering, 10 seconds)	nds) $\quad 300^{\circ} \mathrm{C}$

Operating Conditions (Note 2)

Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	(part numbers with "LCD" suffix)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
(part numbers with "LD" suffix)	
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
(part number with LCN suffix)	
Range of V_{CC}	5 V to $16 \mathrm{~V}_{\mathrm{DC}}$
Voltage at Any Digital Input	V_{CC} to GND

Converter Characteristics $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated

Parameter	Conditions	Min	Typ	Max	Units
Resolution				10	bits
Linearity Error	END POINT ADJUST ONLY (Note 5)				
DAC1000, 1003 and 1006	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$ (Note 7)			0.05	\% of FSR
DAC1001, 1004 and 1007	$-10 \mathrm{~V} \leqslant \mathrm{~V}_{\text {REF }} \leqslant+10 \mathrm{~V}$ (Note 6)			0.1	\% of FSR
DAC1002, 1005 and 1008	(For definition of FSR see Note 8.)			0.2	\% of FSR
Monotonicity DAC1000, 1003 and 1006	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$ (Note 8)	10			Bit
DAC1001, 1004 and 1007		9			Bit
DAC1002, 1005 and 1008		8			Bit
Gain Error	$\left.-10 \mathrm{~V} \leqslant \mathrm{~V}_{\text {REF }} \leqslant+10 \mathrm{~V} \text { (Note } 6\right)$ Using internal $R_{F B}$ resistor		± 0.3		\% of FS
Gain Error Tempco	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$ (Note 7) Using internal $R_{F B}$ resistor		-0.0003		\% FSI ${ }^{\circ} \mathrm{C}$
Power Supply Rejection	Digital Input $=1111111111$, $V_{C C}=14 \mathrm{~V}$ to 16 V		0.003		\% FSR/V
Reference Input Resistance (R of R-2R ladder)		10	15	20	k Ω
Output Feedthrough Error	$V_{\text {REF }}=20 V_{\text {P.P }}, 100 \mathrm{kHz}$, all digital inputs low				
	D Package N Package		$\begin{gathered} 130 \\ 90 \end{gathered}$		$\begin{aligned} & m V_{P-P} \\ & m V_{P-P} \end{aligned}$

DC Electrical Characteristics $\mathrm{V}_{C C}=+15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {REF }}=10.000 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$ (Note 7) unless otherwise stated

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{I}_{\text {Out }}$ Settling Time	$t_{\text {S }} \quad \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \quad \mathrm{~V}_{1 H}=5 \mathrm{~V}$		500		ns
Write and XFER Pulse Width	$t_{W} \quad V_{I L}=0 \mathrm{~V} \quad \mathrm{~V}_{1 H}=5 \mathrm{~V}$	150	30		ns
Data Setup Time	$t_{\text {DS }} \quad \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \quad \mathrm{~V}_{1 \mathrm{H}}=5 \mathrm{~V}$	0			ns
Data Hold Time	$t_{\text {DH }} \quad \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	90		.	ns
Control Setup Time	$t_{\text {cs }} \quad V_{\text {IL }}=0 \mathrm{~V} \quad \mathrm{~V}_{1 \mathrm{H}}=5 \mathrm{~V}$	0			ns
Control Hold Time	$t_{\text {CH }} \quad \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	10	0		ns
Output Capacitance					
Cout1	All data inputs high		250		pF
$\mathrm{C}_{\text {Out } 2}$			60		pF
$\mathrm{Cout1}^{\text {Cout }}$	All data inputs low		60		pF
Cout_{2}			250		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. These specifications are not meant to imply that the devices should be operated at these absolute maximum limits.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 875 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking and maximum junction temperature - even at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$.
Note 4: For current switching applications, both IOUT1 and loUT2 must go to ground or the "Virtual Ground" of an operational amplifier. For every millivolt offset voltage on IOUT1 or lout $2,0.01 \%$ linearity error will be introduced.
Note 5: This guarantees that after performing a zero and a full scale adjustment (see Application Hints), the plots of all of the 1024 analog voltage outputs will each be within 0.05% ($1 / 2 \mathrm{LSB}$) of a straight line which passes through the endpoints (zero and full scale) of this output voltage data plot. No adjustment iterations are needed by the user to search for the Best Straight Line fit for each DAC. This reduces adjustment costs as compared with Best Straight Line specified DACs.
Note 6: Tested at $V_{R E F}= \pm 10 V_{D C}$ and $V_{R E F}= \pm 1 V_{D C}$ with the offset voltage of the external op amp nulled.
Note 7: $T_{M I N}=-40^{\circ} \mathrm{C}$ and $T_{M A X}=85^{\circ} \mathrm{C}$ for "LCD" suffix parts. $T_{\text {MIN }}=-55^{\circ} \mathrm{C}$ and $T_{M A X}=+125^{\circ} \mathrm{C}$ for parts with "LD" suffix designation. $\mathrm{T}_{\text {MIN }}=0^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{MAX}}=+70^{\circ} \mathrm{C}$ for LCN suffix designation.
Note 8: The unit "FSR" stands for "full scale range." "Linearity Error" and "Power Supply Rejection" specs are based on this unit to eliminate dependence on a particular $V_{\text {REF }}$ value and to indicate the true performance of the part.

Switching Waveforms

$\overline{\mathrm{CS}}$, Byte $1 / \overline{\text { Byte } 2}$
$\overline{W h}$

DATA BITS

IOUT, ${ }^{\text {, IOUT }}$,

Typical Performance Characteristics

Digital Input Threshold vs Supply Voltage

Errors vs Temperature

Digital Input Threshold vs Temperature

Block and Connection Diagrams

DAC1000/100-1/1002 (24-Pin Parts)

DAC1000-1002
(24-Pin Parts)

Block and Connection Diagrams (cont'd)

DAC1000/1001/1002 - Simple Hookup for a "Quick Look"

Notes:

1. For $V_{\text {REF }}=-10.240 V_{D C}$ the output voltage steps are approximately 10 mV each.
2. Operation is set up for flow through - no latching of digital input data.
3. Single point ground is strongly recommended.

DAC1003-1008 - Simple Hookup for a "Quick Look"

Notes:

1. For $V_{R E F}=-10.240 V_{D C}$ the output voltage steps are approximately 10 mV each.
2. SW1 is a normally closed switch. While SW1 is closed, the DAC register is latched and new data can be loaded into the input latch via the 10 SW2 switches. When SW1 is momentarily opened the new data is transferred from the input latch to the DAC register and is latched when SW1 again closes.

1．0 Definition of Package Pinouts

1．1 Control Signals（All control signals are level actuated．）

$\overline{\text { CS：}}$ Chip Select－active low，it will enable $\overline{W R}$ （DAC1003－1008）or $\overline{W R}_{1}$（DAC1000－1002）．
$\overline{W R}$ or $\overline{W R_{1}}$ ：Write－The active low $\overline{W R}$（or $\overline{W R_{1}}$－ DAC1000－1002）is used to load the digital data bits（DI） into the input latch．The data in the input latch is latched when WR（or $\overline{W R_{1}}$ ）is high．The 10 －bit input latch is split into two latches；one holds 8 bits and the other holds 2 bits．The Byte1／Byte2 control pin is used to select both inpút latches when Byte1／Byte2 $=1$ or to overwrite the 2 －bit input latch when in the low state．
$\overline{W R_{2}}$ ：Extra Write（DAC1000－1002）－The active low WR_{2} is used to load the data from the input latch to the DAC register while XFER is low．The data in the DAC register is latched when WR_{2} is high．
Byte1／Byte2：Byte Sequence Control－When this control is high，all ten locations of the input latch are enabled．When low，only two locations of the input latch are enabled and these two locations are overwritten on the second byte write．

XFER：Transfer Control Signal，active low－This signal， in combination with others，is used to transfer the 10 －bit data which is available in the input latch to the DAC register－see timing diagrams．

LJ／（I）：Left Justify／Right Justify（DAC1000－1002）－ When LJ／RJ is high the part is set up for left justified （fractional）data format．（DAC1006－1008 have this done internally．）When LJ／त्RJ is low，the part is set up for right justified（integer）data．（DAC1003－1005 have this done internally．）

1．2 Other Pin Functions

$D I_{i}(i=0$ to 9$):$ Digital Inputs $-D I_{0}$ is the least significant bit（LSB）and Dl_{9} is the most significant bit （MSB）．
$I_{\text {OUT：}}$ ：DAC．Current Output 1 － $\mathrm{I}_{\text {OUT }}$ is a maximum for a digital input code of all 1s and is zero for a digital input code of all 0 s ．
$\mathrm{I}_{\text {OUT2 }}$ ：DAC Current Output $2-\mathrm{I}_{\mathrm{OUT}_{2}}$ is a constant minus $\mathrm{l}_{\text {OUT } 1}$ ，or

$$
\mathrm{I}_{\mathrm{OUT}_{1}}+\mathrm{I}_{\mathrm{OUT}_{2}}=\frac{1023 \mathrm{~V}_{\mathrm{REF}}}{1024 \mathrm{R}}
$$

$\mathbf{R}_{\text {FB }}$ ：Feedback Resistor－This is provided on the IC chip for use as the shunt feedback resistor when an external op amp is used to provide an output voltage for the DAC．This on－chip resistor should always be used （not an external resistor）because it matches the resistors used in the on－chip R－2R ladder and tracks these resistors over temperature．
$\mathrm{V}_{\text {REF：}}$ ：Reference Voltage Input－This is the connection for the external precision voltage source which drives the $\mathrm{R}-2 \mathrm{R}$ ladder． $\mathrm{V}_{\mathrm{REF}}$ can range from -10 to +10 volts． This is also the analog voltage input for a 4 －quadrant multiplying DAC application．
$\mathbf{V}_{\mathbf{C c}}$ ：Digital Supply Voltage－This is the power supply pin for the part．$V_{C C}$ can be from +5 to $+15 V_{D C}$ ． Operation is optimum for +15 V ．The input threshold voltages are nearly independent of V_{CC} ．（See Typical Performance Characteristics and Description in Section 3．0， $\mathrm{T}^{2} \mathrm{~L}$ compatible logic inputs．）

GND：Ground－the ground pin for the part．

1．3 Definition of Terms

Resolution：Resolution is directly related to the number of switches or bits within the DAC．For example，the DAC1000 has 2^{10} or 1024 steps and therefore has 10 －bit resolution．

Linearity Error：Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic．It is measured after adjusting for zero and full－scale．Linearity error is a parameter intrinsic to the device and cannot be externally adjusted．

National＇s linearity test（a）and the＇＂best straight line＂ test（c）used by other suppliers are illustrated below． The＂best straight line＂（b）requires a special zero and FS adjustment for each part，which is almost impossible for the user to determine．The＂end point test＂uses a standard zero and FS adjustment procedure and is a much more stringent test for DAC linearity．

Power Supply Sensitivity：Power supply sensitivity is a measure of the effect of power supply changes on the DAC full－scale output（which is the worst case）．

a．End Point Test After Zero and FS Adj．

b．Best Straight Line

c．Shifting FS Adj．to Pass Best Straight Line Test

Settling Time: Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value. Full-scale settling time requires a zero to full-scale or full-scale to zero oútput change.
Full-Scale Error: Full scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC1000 series, full-scale is $V_{\text {REF }}-1$ LSB. For $V_{\text {REF }}=-10 \mathrm{~V}$ and unipolar operation, $\quad V_{\text {FULL-SCALE }}=10.0000 \mathrm{~V}-9.8 \mathrm{mV}=9.9902 \mathrm{~V}$. Full-scale error is adjustable to zero.

2.0 Double Buffering

These DACs are double-buffered, microprocessor compatible versions of the DAC1020 10-bit multiplying DAC. The addition of the buffers for the digital input data not only allows for storage of this data, but also provides a way to assemble the 10 -bit input data word from two write cycles when using an 8 -bit data bus. Thus, the next data update for the DAC output can be made with the complete new set of 10-bit data. Further, the double buffering allows many DACs in a system to store current data and also the next data. The updating of the new data for each DAC is also not time critical. When all DACs are updated, a common strobe signal can then be used to cause all DACs to switch to their new analog output levels.

3.0 T²L Compatible Logic Inputs

To guarantee $T^{2} \mathrm{~L}$ voltage compatibility of the logic inputs, a novel bipolar (NPN) regulator circuit is used. This makes the input logic thresholds equal to the forward drop of two diodes (and also matches the temperature variation) as occurs naturally in $T^{2} L$. The basic circuit is shown in Figure 1. A curve of digital input threshold as a function of power supply voltage is shown in the Typical Performance Characteristics section.

4.0 Application Hints

The DC stability of the $V_{\text {REF }}$ source is the most important factor to maintain accuracy of the DAC over time and temperature changes. A good single point ground for the analog signals is next in importance.
These MICRO-DAC ${ }^{\top M}$ converters are CMOS products and reasonable care should be exercised in handling them prior to final mounting on a PC board. The digital inputs are protected, but permanent damage may occur if the part is subjected to high electrostatic fields. Store unused parts in conductive foam or anti-static rails.

4.1 Power Supply Sequencing \& Decoupling

Some IC amplifiers draw excessive current from the Analog inputs to V - when the supplies are first turned on. To prevent damage to the DAC - an external Schottky diode connected from I IOUT1 or I IouT2 to ground may be required to prevent destructive currents in Iout1 or Iout2. If an LM741 or LF356 is used - these diodes are not required.

The standard power supply decoupling capacitors which are used for the op amp are adequate for the DAC.

4.2 Op Amp Bias Current \& Input Leads

The op amp bias current (I_{B}) CAN CAUSE DC ERRORS. BI-FET ${ }^{\text {M }}$ op amps have very low bias current, and therefore the error introduced is negligible. BI-FET ${ }^{T M}$ op amps are strongly recommended for these DACs.
The distance from the louti pin of the DAC to the inverting input of the op amp should be kept as short as possible to prevent inadvertent noise pickup.

5.0 Analog Applications

The analog section of these DACs uses an R-2R ladder which can be operated both in the current switching mode and in the voltage switching mode.

The major product changes (compared with the DAC1020) have been made in the digital functioning of

Figure 1. Basic Logic Threshold Loop
the DAC. The analog functioning is reviewed here for completeness. For additional analog applications, such as multipliers, attenuators, digitally controlled amplifiers and low frequency sine wave oscillators, refer to the DAC1020 data sheet. Some basic circuit ideas are presented in this section in addition to complete applications circuits.

5.1 Operation in Current Switching Mode

The analog circuitry, Figure 2, consists of a siliconchromium ($\mathrm{Si}-\mathrm{Cr} \mathrm{)} \mathrm{thin} \mathrm{film} \mathrm{R-2R} \mathrm{ladder} \mathrm{which} \mathrm{is} \mathrm{{ }}^{\text {a }}$, deposited on the surface oxide of the monolithic chip. As a result, there is no parasitic diode connected to the $V_{\text {REF }}$ pin as would exist if diffused resistors were used. The reference voltage input ($V_{\text {REF }}$) can therefore range from -10 V to +10 V .

The digital input code to the DAC simply controls the position of the SPDT current switches, SW0 to SW9. A logical 1 digital input causes the current switch to steer the available ladder current to the lout output pin. These MOS switches operate in the current mode with a small voltage drop across them and can therefore switch currents of either polarity. This is the basis for the 4-quadrant multiplying feature of this DAC.

5.1.1 Providing a Unipolar Output Voltage with the DAC in the Current Switching Mode

A voltage output is provided by making use of an external op amp as a current-to-voltage converter. The idea is to use the internal feedback resistor, R_{FB}, from the output of the op amp to the inverting (-) input. Now, when current is entered at this inverting input, the feedback action of the op amp keeps that input at ground potential. This causes the applied input current to be diverted to the feedback resistor. The output voltage of the op amp is forced to a voltage given by:

$$
V_{\text {OUT }}=-\left(I_{O U T_{1}} \times R_{F B}\right)
$$

Notice that the sign of the output voltage depends on the direction of current flow through the feedback resistor.

In current switching mode applications, both current output pins ($l_{\text {OUT }}^{1}$ and lout $_{2}$) should be operated at $O V_{D C}$. This is accomplished as shown in Figure 3. The capacitor, C_{C}, is used to compensate for the output capacitance of the DAC and the input capacitance of the op amp. The required feedback resistor, $R_{F B}$, is available on the chip (one end is internally tied to lout ${ }_{1}$)

Figure 2. Current Mode Switching

Figure 3. Converting Iout to $\mathrm{V}_{\text {OUT }}$
and must be used since an external resistor will not provide the needed matching and temperature tracking. This circuit can therefore be simplified as shown in Figure 4, where the sign of the reference voltage has been changed to provide a positive output voltage. Note that the output current, louty , now flows through the $\mathrm{R}_{\mathrm{FB}} \mathrm{pin}$.

5.1.2 Providing a Bipolar Output Voltage with the DAC in the Current Switching Mode

A bipolar output voltage ($\pm \mathrm{V}_{\text {OUT }}$) is produced by the output op amp when a bipolar input current is provided. This is accomplished by making use of the second output current, I OUT2. It is a characteristic of the R-2R ladder that the sum of both currents will remain constant (for a fixed reference voltage input). This $\mathrm{I}_{\mathrm{OUT}}^{2}$ output current is used to supply the $-V_{\text {OUT }}$ range as shown in Figure 5.

The main idea is that an additional op amp (OA2) causes $\mathrm{l}_{\mathrm{OUT} 2}$ to be entered at the summing junction [the (-) input] of the first op amp. This current direction causes a negative output voltage. The current, lout ${ }_{1}$, extracted from this same summing junction causes a positive output voltage.

When operating in the bipolar mode, if a negative $\mathrm{V}_{\text {REF }}$ is used the digital input to the DAC should be offset binary code [all zeros $=-V_{\text {REF }}$ and all ones $=$ $\left.+\mathrm{V}_{\text {REF }}(511 / 512)\right]$. A 2's complement $\mu \mathrm{P}$ code can be changed to offset binary by complementing the MSB (with hardware or software). If a positive reference is used the digital input code should be complementary offset binary [all zeros $=+V_{\text {REF }}$ and all ones $=$ - $\left.V_{\text {REF }}(511 / 512)\right]$.

To provide a $0 V_{D C}$ output voltage in bipolar operation requires that an external resistor be added to raise the
magnitude of $\mathrm{I}_{\mathrm{OUT}_{2}}$. The zero code is half scale for the DAC and at half scale:

$$
\mathrm{I}_{\mathrm{OUT} \cdot}=\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}}\left(\frac{512}{1024}\right)
$$

and

$$
\mathrm{I}_{\mathrm{OUT} 2}=\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}}\left(\frac{511}{1024}\right)
$$

To make these currents equal (to provide a $0 \mathrm{~V}_{\mathrm{DC}}$ output voltage) requires an external resistor, $R_{E X T}$, connected from the $\mathrm{V}_{\text {REF }}$ terminal to the $\mathrm{I}_{\mathrm{OUT}}$ pin, which will add 1 bit weight of current or:

$$
I_{E X T}=\frac{V_{\text {REF }}}{R_{E X T}}=\frac{V_{\text {REF }}}{R}\left(\frac{1}{1024}\right)
$$

or

$$
R_{E X T}=R \times 1024
$$

where $R=15 k$ (of the $R-2 R$ ladder)

$$
\text { so } R_{E X T}=15 \mathrm{M} \Omega
$$

A low temperature coefficient resistor should be used to improve temperature stability as compared to the performance using a 5% composition resistor. This resistor also skews the output voltage swing from $-V_{\text {REF }}$ to $(511 / 512) V_{\text {REF }}$ for a negative $V_{\text {REF }}$ or $-(511 / 512) V_{\text {REF }}$ to $+V_{\text {REF }}$ for a positive $V_{R E F}$. If $R_{E X T}$ is not used, the output voltage will range from $-(1023 / 1024) \mathrm{V}_{\text {REF }}$ to $+(1023 / 1024) \mathrm{V}_{\text {REF }}$ (for either polarity. of $\mathrm{V}_{\text {REF }}$) and will be symmetrical about (but never equal to) 0 V .

Figure 4. Providing a Unipolar Output Voltage

Figure 5. Providing a Bipolar Output Voltage with the DAC in the Current Switching Mode

5.2 Analog Operation in the Voltage Switching Mode

Some useful application circuits result if the R-2R ladder is operated in the voltage switching mode. There are two very important things to remember when using the DAC in the voltage mode. The reference voltage (+V) must always be positive since there are parasitic diodes to ground on the $\mathrm{l}_{\text {OUT }}$ pin which would turn on if the reference voltage went negative. To maintain a degradation of linearity less than $\pm 0.005 \%$, keep $+V \leqslant$ $3 V_{D C}$ and $V_{C C}$ at least 10 V more positive than $+V$. Figures 6 and 7 show these errors for the voltage switching mode. This operation appears unusual, since a reference voltage $(+\mathrm{V})$ is applied to the lout l_{1} pin and the voltage output is the $\mathrm{V}_{\text {REF }}$ pin. This basic idea is shown in Figure 8.
This $V_{\text {OUT }}$ range can be scaled by use of a non-inverting gain stage as shown in Figure 9.

Notice that this is unipolar operation since all voltages are positive. A bipolar output voltage can be obtained by using a single op amp as shown in Figure 10. For a digital input code of all zeros, the output voltage from the $\mathrm{V}_{\text {REF }}$ pin is zero volts. The external op amp now has a single input of $+V$ and is operating with a gain of -1 to this input. The output of the op amp therefore will be at $-V$ for a digital input of all zeros. As the digital code increases, the output voltage at the $\mathrm{V}_{\text {REF }}$ pin increases.

Notice that the gain of the op amp to voltages which are applied to the $(+)$ input is +2 and the gain to voltages which are applied to the input resistor, R, is -1 . The output voltage of the op amp depends on both of these inputs and is given by:

$$
V_{\text {OUT }}=(+V)(-1)+V_{\text {REF }}(+2)
$$

The output voltage swing can be expanded by adding 2 resistors to Figure 10 as shown in Figure 11. These

Figure 6.

Figure 7.

Figure 8. Voltage Mode Switching

Figure 9. Amplifying the Voltage Mode Output

Figure 10. Providing a Bipolar Output Voltage with a Single Op Amp

Figure 11. Increasing the Output Voltage Swing
added resistors are used to attenuate the $+V$ voltage. The overall gain, $A_{V}(-)$, from the $+V$ terminal to the output of the op amp determines the most negative output voltage, $-4(+\mathrm{V})$ (when the $\mathrm{V}_{\text {REF }}$ voltage at the + input of the op amp is zero) with the component values shown. The complete dynamic range of $\mathrm{V}_{\text {OUT }}$ is provided by the gain from the $(+)$ input of the op amp. As the voltage at the $V_{\text {REF }}$ pin ranges from $O V$ to $+V(1023 / 1024)$ the output of the op amp will range from $-10 V_{D C}$ to $+10 V(1023 / 1024)$ when using a $+V$ voltage of +2.500 V DC . The $2.5 \mathrm{~V}_{\mathrm{DC}}$ reference voltage can be easily developed by using the LM336 zener which can be biased through the $R_{F B}$ internal resistor, connected to $V_{c c}$.

5.3 Op Amp Vos Adjust (Zero Adjust) for Current Switching Mode

Proper operation of the ladder requires that all of the $2 R$ legs always go to exactly $0 V_{D C}$ (ground). Therefore offset voltage, V_{OS}, of the external op amp cannot be tolerated as every millivolt of $\mathrm{V}_{\text {OS }}$ will introduce 0.01% of added linearity error. At first this seems unusually sensitive, until it becomes clear the 1 mV is 0.01% of the 10 V reference! High resolution converters of high accuracy require attention to every detail in an application to achieve the avallable performance which is inherent in the part. To prevent this source of error, the V_{OS} of the op amp has to be initially zeroed. This is the "zero adjust" of the DAC calibration sequence and should be done first.

If the V_{OS} is to be adjusted there are a few points to consider. Note that no "dc balancing" resistance should be used in the grounded positive input lead of the op amp. This resistance and the input current of the op amp can also create errors. The low input biasing current of the BI-FET ${ }^{\text {M }}$ op amps makes them ideal for use in DAC current to voltage applications. The V_{OS} of the op amp should be adjusted with a digital input of all zeros to force lout $=0 \mathrm{~mA}$. A $1 \mathrm{~K} \Omega$ resistor can be temporarily connected from the inverting input to. ground to provide a dc gain of approximately 15 to the $V_{O S}$ of the op amp and make the zeroing easier to sense.

5.4 Full-Scale Adjust

The full-scale adjust procedure depends on the application circuit and whether the DAC is operated in the current switching mode or in the voltage switching mode. Techniques are given below for all of the possible application circuits.

5.4.1 Current Switching with Unipolar Output Voltage

After doing a "zero adjust," set all of the digital input levels HIGH and adjust the magnitude of $V_{\text {REF }}$ for

$$
V_{\text {OUT }}=-\left(\text { ideal } V_{\text {REF }}\right) \frac{1023}{1024}
$$

This completes the DAC calibration.

5.4.2 Current Switching with Bipolar Output Voltage

The circuit of Figure 12 shows the 4 adjustments which are needed. The first step is to set all of the digital inputs HIGH (to force $\mathrm{l}_{\mathrm{OUT}_{2}}=0$) and then trim "zero adj. 2 " for an output voltage at $\mathrm{V}_{\mathrm{O} 2}$ (of OA2) of zero $\pm 1 \mathrm{mV}$. Then reset all of the bits to a LOW state. Now trim "zero adj. 1" for an output voltage at $\mathrm{V}_{\text {OUT }}$ (of OA1) of zero $\pm 1 \mathrm{mV}$.

The details of the FS trim depend upon the polarity of the $\mathrm{V}_{\text {REF }}$ input voltage. For a negative reference voltage an offset binary decoding results. Set the digital inputs all HIGH (I ${ }_{\text {OUT }}^{1}=\max$) and trim " + FS Adj." for a $\mathrm{V}_{\mathrm{OUT}}=+\mid\left(\right.$ ideal $\left.\mathrm{V}_{\mathrm{REF}}\right) \mid(511 / 512)$. Then set all the digital inputs LOW and trim " - FS Adj." for a $V_{\text {OUT }}=-$ |(ideal $\left.\mathrm{V}_{\mathrm{REF}}\right)$). For a positive reference voltage a complementary offset binary decoding results. To adjust, set all digital inputs high and adjust "-FS Adj." for an output voltage of $-\mathrm{V}_{\text {REF }}(511 / 512)$. Then set all the digital inputs LOW and adjust " + FS Adj." for an output voltage of +(ideal $\mathrm{V}_{\text {REF }}$).

5.4.3 Voltage Switching with a Unipolar Output Voltage

Refer to the circuit of Figure 13 and set all digital inputs LOW. Trim the "zero adj." for $V_{O U T}=0 V_{D C} \pm 1 \mathrm{mV}$. Then set all digital inputs HIGH and trim the "FS Adj." for:

$$
V_{\text {OUT }}=(+V)\left(1+\frac{R_{1}}{R_{2}}\right) \frac{1023}{1024}
$$

5.4.4 Voltage Switching with a Bipolar Output Voltage

Refer to Figure 14 and set all digital inputs LOW. Trim the "-FS Adj." for $V_{O U T}=-2.5 \mathrm{~V}_{\mathrm{DC}}$. Then set all digital inputs HIGH and trim the "+FS Adj." for $\mathrm{V}_{\text {OUT }}=+2.5(511 / 512) \mathrm{V}_{\text {DC }}$. Test the zero by setting the MS digital input HIGH and all the rest LOW. Adjust $V_{O S}$ of amp \#3, if necessary, and recheck the full-scale values.

Figure 12. Fuli Scale Adjust - Current Switching with Bipolar Output Voltage

Figure 13. Fuli Scale Adjust - Unipolar Output Voltage

Figure 14. Voltage Switching with a Bipolar Output Voltage

6.0 Digital Control Description

The DAC1000 series of products can be used in a wide variety of operating modes. Most of the options are shown in Table I. Also shown in this table are the section numbers of this data sheet where each of the operating modes is discussed. For example, if your main interest is interfacing to a $\mu \mathrm{P}$ with an 8 -bit data bus you will be directed to Section 6.1.0.

The first consideration is "will the DAC be interfaced to a $\mu \mathrm{P}$ with an 8 -bit or a 16 -bit data bus or used in the stand-alone mode?" For the 8 -bit data bus, a second selection is made on how the 2nd digital data buffer (the DAC Latch) is updated by a transfer from the 1st digital data buffer (the Input Latch). Three options are provided: 1) an automatic transfer when the 2nd data byte is written to the DAC, 2) a transfer which is under the control of the $\mu \mathrm{P}$ and can include more than one DAC in a simultaneous transfer, or 3) a transfer which is under the control of external logic. Further, the data format can be either left justified or right justified.

When interfacing to a $\mu \mathrm{P}$ with a 16 -bit data bus only two selections are available: 1) operating the DAC with a single digital data buffer (the transfer of one DAC does not have to be synchronized with any other DACs in the system), or 2) operating with a double digital data buffer
for simultaneous transfer, or updating, of more than one DAC.

For operating without a $\mu \mathrm{P}$ in the stand alone mode, three options are provided: 1) using onily a single digital data buffer, 2) using both digital data buffers - "double buffered," or 3) allowing the input digital data to "flow through" to provide the analog output without the use of any data latches.
To reduce the required reading, only the applicable sections of 6.1 through 6.4 need be considered.

6.1 Interfacing to an 8-Bit Data Bus

Transferring 10 bits of data over an 8 -bit bus requires two write cycles and provides four possible combinations which depend upon two basic data format and protocol decisions:

1. Is the data to be left justified (considered as fractional binary data with the binary point to the left) or right justified (considered as binary weighted data with the binary point to the right)?
2. Which byte will be transferred first, the most significant byte (MS byte) or the least significant byte (LS byte)?

Table 1..

Operating Mode \rightarrow	Automatic Transfer		$\mu \mathrm{P}$ Control Transfer		External Transfer	
	Section	$\begin{gathered} \text { Figure No. } \\ \text { (24-Pin) } \quad(20-\mathrm{Pin}) \end{gathered}$	Section	Figure No. (24-Pin) (20.Pin)	Section	$\begin{gathered} \text { Figure No. } \\ (24-\text { Pin }) \quad(20-\mathrm{Pin}) \end{gathered}$
8-Bit Data Bus (6.1.0)						
Right Justified (6.1.2)	6.2.1	16. 18	6.2.2	$16 \quad 18$	6.2.3	$16 \quad 18$
Left Justified (6.1.3)	6.2.1	$17 \quad 19$	6.2.2	$17 \quad 19$	6.2.3	$17 \quad 19$
16-Bit Data Bus (6.3.0)	Single Buffered		Double Buffered		Flow Through	
	6.3.1	20.21	6.3.2	$20 \quad 21$		Applicable
Stand Alone (6.4.0)	Single Buffered		Double Buffered		Flow Through	
	6.4.1	2021	6.4.2	2021	6.4.3	20 NA

These data possibilities are shown in Figure 15. Note that the justification of data depends on how the 10 -bit data word is located within the 16 -bit data source (CPU) register. In either case, there is a surplus of 6 bits and these are shown as "don't care" terms (" X ") in this figure.

All of these DACs load 10 bits on the 1st write cycle. A particular set of 2 bits is then overwritten on the 2nd write cycle, depending on the justification of the data. This requires the 1st write cycle to contain the LS or LO Byte data group for all right justified data options. For all left justified data options, the 1st write cycle must contain the MS or Hi Byte data group.

6.1.1 Providing for Optional Data Format

The DAC1000/1/2 (24-pin parts) can be used for either data formatting by tying the LJ/ $\overline{R J}$ pin either high or low, respectively. A simplified logic diagram which shows the external connections to the data bus and the internal functions of both of the data buffer registers (Input Latch and DAC Register) is shown in Figure 16 for the right justified data operation. Figure 17 is for left justified data.

6.1.2 For Right Justified Data

For applications which require right justified data, DAC1003-1005 (20-pin parts) can be used. A simplified logic diagram which shows the external connections to
the data bus and the internal functions of both of the data buffer registers (Input Latch and DAC Register) is shown in Figure 18. These parts require the LS or LO Byte data group to be transferred on the 1st write cycle.

6.1.3 For Left Justified Data

For applications which require left justified data, DAC1006-1008 (20-pin parts) can be used. A simplified logic diagram which shows the external connections to the data bus and the internal functions of both of the data buffer registers (input Latch and DAC Register) is shown in Figure 19. These parts require the MS or Hi Byte data group to be transferred on the 1st write cycle.

6.2 Controlling Data Transfer for an 8-Bit Data Bus

Three operating modes are possible for controlling the transfer of data from the Input Latch to the DAC Register, where it will update the analog output voltage. The simplest is the automatic transfer mode, which causes the data transfer to occur at the time of the 2nd write cycle. This is recommended when the exact timing of the changes of the DAC analog output are not critical. This typically happens where each DAC is operating individually in a system and the analog updating of one DAC is not required to be synchronized to any other DAC. For synchronized DAC updating, two options are provided: $\mu \mathrm{P}$ control via a common XFER strobe or external update timing control via an external strobe. The details of these options are now shown.

Figure 15. Fitting a $\mathbf{1 0}$-Bit Data Word into 16 Available Bit Locations

Figure 16. Input Connections and Controls for DAC1000-1002 Right Justified Data Option

Figure 17: Input Connections and Controls for DAC1000-1002 Left Justified Data Option

DAC1003/1004/1005 (20-PIN PART FOR RIGHT JUSTIFIED DATA)

Figure 18. Input Connections and Controls for DAC1003-1005 Right Justified Data Option

Figure 19. Input Connections and Controls for DAC1006-1008 Left Justified Data Option

6.2.1 Automatic Transfer

This makes use of a double byte (double precision) write. The first byte (8 bits) is strobed into the input latch and the second byte causes a simultaneous strobe of the two remaining bits into the input latch and also the transfer of the complete 10 -bit word from the input latch to the DAC register. This is shown in the following timing diagrams; the point in time where the analog output is updated is also indicated on these diagrams.

6.2.2 Transfer Using $\mu \mathrm{P}$ Write Strobe

The input latch is loaded with the first two write strobes. The XFER signal is provided by external logic, as shown below, to cause the transfer to be accomplished on a third write strobe. This is shown in the following diagrams:

DAC1003-1008 (20-Pin)

WHERE THE XFER CONTROL CAN BE GENERATED BY USING A SECOND CHIP SELECT AS

and the byte control can be derived from the address bus signals.

6.2.3 Transfer Using an External Strobe

This is similar to the previous operation except the $\overline{\mathrm{XFER}}$ signal is not provided by the $\mu \mathrm{P}$. The timing diagram for this is:

6.3 Interfacing to a 16-Bit Data Bus

The interface to a 16 -bit data bus is easily handled by connecting to 10 of the available bus lines. This allows a wiring selected right justified or left justified data format. This is shown in the connection diagrams of Figures 20 and 21, where the use of DB6 to DB15 gives left justified data operation and DB0 to DB9 provides for right justified data. Note that any part number can be used and the Byte1/Byte2 control should be wired Hi .

DAC1000/1001/1002 (24-PIN PARTS)

Figure 20. Input Connections and Logic for DAC1000-1002 with 16-Bit Data Bus

DAC1003-1008 (20-PIN PARTS)

Figure 21. Input Connections and Logic for DAC1003-1008 with 16-Bit Data Bus

Three operating modes are possible: flow through, single buffered, or double buffered. The timing diagrams for these are shown below:

6.3.1 Single Buffered

6.3.2 Double Buffered

6.4 Stand Alone Operation

For applications for a DAC which are not under $\mu \mathrm{P}$ control (stand alone) there are two basic operating modes, single buffered and double buffered. The timing diagrams for these are shown below:

6.4.1 Single Buffered

DAC1000/1001/1002 (24-Pin)

$\overline{\mathrm{CS}}=\overline{\mathrm{X} F E \mathrm{ER}}=0$
Byte $1 / \overline{\text { yyte } 2}=1$

6.4.2 Double Buffered

*For a connection diagram of this operating mode use Figure 18 for the Logic and Figure 21 for the Data Input connections

6.4.3 Flow Through

This operating mode causes the 10-bit input word to directly create the DAC output without any latching involved.

DAC1000/1001/1002 (24-Pin)
$\overline{\mathrm{WR1}}=\overline{\mathrm{WR2}}=\overline{\mathrm{CS}}=\overline{\mathrm{XFER}}=0$ Byte $1 / \overline{\text { Byte } 2}=1$

7.0 Microprocessor Interface

The logic functions of the DAC1000 family have been oriented towards an ease of interface with all popular μ Ps. The following sections discuss in detail a few useful interface schemes.

7.1 DAC1000/1/2 to INS8080A Interface

Figure 22 illustrates the simplicity of interfacing the DAC1000 to an INS8080A based microprocessor
system. The circuit will perform an automatic transfer of the 10 bits of output data from the CPU to the DAC register as outlined in Section 6.2.1, "Controlling Data Transfer for an 8-Bit Data Bus."

Since a double byte write is necessary to control the DAC with the INS8080A, a possible instruction to achieve this is a PUSH of a register pair onto a "stack" in memory. The 16 -bit register pair word will contain the 10 bits of the eventual DAC input data in the proper

NOTE: DOUBLE BYTE STORES CAN BE USED.
e.g. THE INSTRUCTION SHLD FФФ1 STORES THE L

REG INTO B1 AND THE H REG INTO B2 AND
TRANSFERS THE RESULT TO THE DAC REGISTER. THE OPERAND OF THE SHLD INSTRUCTION MUST BE AN ODD ADDRESS FOR PROPER TRANSFER.

Figure 22. Interfacing the DAC1000 to the INS8080A CPU Group
sequence to conform to both the requirements of the DAC (with regard to right or left justified data) and the implementation of the PUSH instruction which will output the higher order byte of the register pair (i.e., register B of the $B C$ pair) first. The DAC will actually appear as a two-byte "stack" in memory to the CPU. The auto-decrementing of the stack pointer during a PUSH allows using address bit 0 of the stack pointer as the Byte1/ $\overline{\text { Byte2 } 2}$ and $\overline{\mathrm{XFER}}$ strobes if bit 0 of the stack pointer address -1 , (SP-1), is a " 1 " as presented to the DAC. Additional address decoding by the DM8131 will generate a unique DAC chip select (CS) and synchronize this CS to the two memory write strobes of the PUSH instruction.

To reset the stack pointer so new data may be output to the same DAC, a POP instruction followed by instructions to insure that proper data is in the DAC data register pair before it is "PUSHED" to the DAC should be executed, as the POP instruction will arbitrarily alter the contents of a register pair.

Another double byte write instruction is Store H and L Direct (SHLD), where the HL register pair would temporarily contain the DAC data and the two sequential addresses for the DAC are specified by the instruction op code. The auto incrementing of the DAC address by the SHLD instruction permits the same
simple scheme of using address bit 0 to generate the byte number and transfer strobes.

7.2 DAC1000 to M6800 Direct Interface

As in the INS8080A case, it is very simple to directly interface the DAC1000 to an M6800 system. Figure 23 illustrates such an interface assuming a right justified data structure. Except for address decoding, no external logic is necessary. The DAC1000 appears as two memory locations in the 6800 memory space. By using just an 8-input NAND gate and two inverters we have (arbitrarily) chosen these HEX addresses to be 5 C 00 and 5C01. Note, however, that any HEX address of the form 5 CXX will also be decoded. This can easily be avoided by designing a more definitive address decoding scheme. Control lines 02 and VMA are included to insure stability of address and data lines before the DAC inputs are enabled.

In a normal operating mode the MPU would "store" two 8 -bit bytes of right justified data into the DAC input latches: LOW byte first at location 5 C01 and HIGH byte next at location 5 C 00 . Upon storing the second byte, the 10-bit word is automatically transferred to the DAC register, therefore obtaining the desired analog output. This output will be maintained until the next two bytes of data are loaded into the DAC under MPU control.

NOTE: TWO SINGLE BYTE STORES (e.g. STA A STA B) MUST BE USED SINCE A DOUBLE BYTE STORE (e.g. STX) WOULD TRANSFER AN INCOMPLETE WORD

Figure 23. DAC1000 to MC6800 MPU Interface

7.3 DAC1000 to MC6820/1 PIA Interface

In Figure 24 the DAC1000 is interfaced to an M6800 system through an MC6820/1 Peripheral Interface Adapter (PIA). In this case the $\overline{C S}$ pin of the DAC is grounded since the PIA is already mapped in the 6800 system memory space and no decoding is necessary. Furthermore, by using both Ports A and B of the PIA the 10-bit data transfer, assumed right justified again in two 8 -bit bytes, is greatly simplified. The HIGH byte is loaded into Output Register A (ORA) of the PIA, and the LOW byte is loaded into ORB. The 10-bit data transfer to the DAC and the corresponding analog output change occur simultaneously upon CB2 going LOW under program control. The 10 -bit data word in the DAC
register will be latched (and hence $V_{\text {OUt }}$ will be fixed) when CB2 is brought back HIGH.
If both output ports of the PIA are not available, it is possible to interface the DAC1000 through a single port without much effort. However, additional logic at the CB2 (or CA2) lines or access to some of the 6800 system control lines will be required.

7.4 Digitally Controlled Amplifier/Attenuator

An unusual application of the DAC, Figure 25, applies the input voltage via the on-chip feedback resistor. The lower op amp automatically adjusts the $V_{\text {REF IN }}$ voltage such that $\mathrm{I}_{\mathrm{OUT} 1}$ is equal to the input current $\left(\mathrm{V}_{\mathrm{IN}} / \mathrm{Rf}_{\mathrm{B}}\right)$.

Figure 24. DAC1000 to MC6820/1 PIA Interface

Figure 25. Digitally Controlled Amplifier/Attenuator

The magnitude of this $V_{\text {REF IN }}$ voltage depends on the digital word which is in the DAC register. IOUT2 then depends upon both the magnitude of $\mathrm{V}_{I N}$ and the digital word. The second op amp converts IOUT2 to a voltage, $V_{\text {Out }}$, which is given by
$V_{\text {OUT }}=V_{\text {IN }}\left(\frac{1023-N}{, N}\right)$, where $0<N \leqslant 1023$.
Note that $\mathrm{N}=0$ (or a digital code of all zeros) is not allowed or this will cause the output amplifier to saturate at either $\pm \mathrm{V}_{\mathrm{MAX}}$, depending on the sign of $\mathrm{V}_{\text {IN }}$.

To provide a digitally controlled divider, the output op amp can be eliminated. Ground the lout2 pin of the DAC and $V_{\text {OUT }}$ is now taken from the lower op amp (which also drives the $\mathrm{V}_{\text {REF }}$ input of the DAC). The expression for $V_{\text {OUT }}$ is now given by
$V_{\text {OUT }}=-\frac{V_{\text {IN }}}{M}$
where $M=$ Digital input (expressed as a fractional binary number). $0<M<1$.

Figure 26. Digital to Synchro Converter

Ordering Information

1. All Logic Features - 24-pin package.

Temperature Range

Accuracy	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0° to $+70^{\circ} \mathrm{C}$
0.05% (10-bit)	DAC1000LCD	DAC1000LD	DAC 1000LCN
0.10% (9-bit)	DAC1001LCD	DAC1001LD	DAC1001LCN
0.20% (8-bit)	DAC1002LCD	DAC1002LD	DAC1002LCN
Package Outline	D24C	D24C	N24

2. For Right Justified Data - 20-pin package.

Temperature Range

Accuracy	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0° to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$
0.05% (10-bit)	*DAC1003LCD	*DAC1003LD	*DAC1003LCN
0.10% (9-bit)	*DAC1004LCD	*DAC1004LD	*DAC1004LCN
0.20% (8-bit)	*DAC1005LCD	*DAC1005LD	*DAC1005LCN
Package Outline	D20	D20	N20

3. For Left Justified Data - 20-pin package. (See package outline D20.)

Temperature Range

Accuracy	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0° to $+70^{\circ} \mathrm{C}$
0.05% (10-bit)	DAC1006LCD	DAC1006LD	DAC1006LCN
0.10% (9-bit)	DAC1007LCD	DAC1007LD	DAC1007LCN
0.20% (8-bit)	DAC1008LCD	DAC1008LD	DAC1008LCN
Package Outline	D20	D20	N20

[^29]National

General Description

The DAC1020 and the DAC1220 are, respectively, 10 and 12 -bit binary multiplying digital-to-analog converters. A deposited thin film R-2R resistor ladder divides the reference current and provides the circuit with excellent temperature tracking characteristics (0.0002% / ${ }^{\circ} \mathrm{C}$ linearity error temperature coefficient maximum). The circuit uses CMOS current switches and drive circuitry to achieve low power consumption (30 mW max) and low output leakages (200 nA max). The digital inputs are compatible with DTL/TTL logic levels as well as full CMOS logic level swings. This part, combined with an external amplifier and voltage reference, can be used as a standard D/A converter; however, it is also very attractive for multiplying applications (such as digitally controlled gain blocks) since its linearity error is essentially independent of the voltage reference. All inputs are protected from damage due to static discharge by diode clamps to V^{+}and ground.

This part is available with 10 -bit (0.05%), 9 -bit (0.10%), and 8 -bit (0.20%) non-linearity guarenteed over temperature (note 1 of electrical characteristics). The

DAC1020, DAC1021 and DAC1022 are direct replacements for the 10 -bit resolution AD7520 and AD7530 and equivalent to the AD7533 family. The DAC1220, DAC1221 and DAC1222 are direct replacements for the 12-bit resolution AD7521 and AD7531 family.

Features

- Linearity specified with zero and full-scale adjust only
- Non-linearity guaranteed over temperature
- Integrated thin film on CMOS structure
- 10-bit or 12 -bit resolution
- Low power dissipation 10 mW @ 15V typ
- Accepts variable or fixed reference $-25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq$ $+25 \mathrm{~V}$
- 4-quadrant multiplying capability
- Interfaces directly with DTL, TTL and CMOS
- Fast settling time-500 ns typ
- Low feedthrough error-1/2 LSB @ 100 kHz typ

Ordering Information

10-BIT D/A CONVERTERS

TEMPERATURE RANGE		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
ACCURACY	0.05\%	DAC1020LCN	$\begin{array}{\|l\|} \hline \text { AD7520LN } \\ \text { AD7530LN } \\ \hline \end{array}$	DAC1020LCD	$\begin{array}{\|l\|} \hline \text { AD7520LD } \\ \text { AD7530LD } \\ \hline \end{array}$	DAC1020LD	AD7520UD
	0.10\%	DAC1021LCN	$\begin{aligned} & \text { AD7520KN } \\ & \text { AD7530KN } \end{aligned}$	DAC1021LCD	$\begin{array}{\|l\|} \hline \text { AD } 7520 \mathrm{KD} \\ \text { AD } 7530 \mathrm{KD} \\ \hline \end{array}$	DAC1021LD	AD7520TD
	0.20\%	DAC1022LCN	$\begin{aligned} & \text { AD7520JN } \\ & \text { AD7530JN } \end{aligned}$	DAC1022LCD	$\begin{aligned} & \text { AD7520JD } \\ & \text { AD7530JD } \end{aligned}$	DAC1022LD	ȦD7520SD
PACKAGE OUTLINE		N16A		D16C		D16C	

12-BIT D/A CONVERTERS

TEMPERATURE	ANGE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
ACCURACY	0.05\%	DAC1220LCN	$\begin{aligned} & \text { AD7521LN } \\ & \text { AD7531LN } \end{aligned}$	DAC1220LCD	$\begin{array}{\|l\|} \hline \text { AD7521LD } \\ \text { AD7531LD } \\ \hline \end{array}$	DAC1220LD	AD7521UD
	0.10\%	DAC1221LCN	$\begin{aligned} & A D 7521 \mathrm{KN} \\ & A D 7531 \mathrm{KN} \end{aligned}$	DAC1221LCD	$\begin{aligned} & \text { AD7521KD } \\ & \text { AD7531KD } \end{aligned}$	DAC1221LD	AD7521TD
	0.20\%	DAC1222LCN	$\begin{aligned} & \text { AD7521 } \mathrm{JN} \\ & \text { AD7531 } \end{aligned}$	DAC1222LCD	$\begin{aligned} & \text { AD7521JD } \\ & \text { AD7531JD } \\ & \hline \end{aligned}$	DAC1222LD	AD7521SD
PACKAGE OUTLINE		N18A		D18A		D18A	

[^30]
Absolute Maximum Ratings

		，	MIN	MAX	UNITS
V^{+}to Gnd	17 V	Temperature（ T_{A} ）			
$V_{\text {REF }}$ to Gnd	$\pm 25 \mathrm{~V}$	DAC1020LD，DAC1021LD，	－55	＋125	${ }^{\circ} \mathrm{C}$
Digital Input Voltage Range	V^{+}to Gnd	DAC1022LD，DAC1220LD，	－55	＋125	${ }^{\circ} \mathrm{C}$
DC Voltage at Pin 1 or Pin 2 （Note 3）	-100 mV to V^{+}．	DAC1221LD，DAC1222LD	－55	＋125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DAC1020LCD，DAC1021LCD，	－40	＋85	${ }^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 seconds）	$300^{\circ} \mathrm{C}$	DAC1022LCD，DAC1220LCD，	－40	＋85	${ }^{\circ} \mathrm{C}$
		DAC1221LCD，DAC1222LCD	－40	＋85	${ }^{\circ} \mathrm{C}$
		DAC1020LCN，DAC1021LCN	0	＋70	${ }^{\circ} \mathrm{C}$
		DAC1022LCN，DAC1220LCN	0	＋70	${ }^{\circ} \mathrm{C}$
		DAC1221LCN，DAC1222LCN	0	＋70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
$\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified）

Electrical Characteristics (Continued)
($\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	CONDITIONS	$\begin{gathered} \text { DAC1020, DAC1021 } \\ \text { DAC1022 } \end{gathered}$			$\begin{gathered} \text { DAC1220, DAC1221 } \\ \text { DAC1222 } \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Digital Input Current	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ Digital Input High Digital Input Low		1 -50	100 -200		1 -50	$\begin{array}{r} 100 \\ -200 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Supply Current	All Digital Inputs High All Digital Inputs Low		$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2 \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Operating Power Supply Range		5		15	5		15	V

Note 1: $V_{\text {REF }}= \pm 10 \mathrm{~V}$ and $V_{\text {REF }}= \pm 1 \mathrm{~V}$. A linearity error temperature coefficient of $0.0002 \% \mathrm{FS}$ for a $45^{\circ} \mathrm{C}$ rise only guarantees 0.009% maximum change in linearity error. For instance, if the linearity error at $25^{\circ} \mathrm{C}$ is 0.045% FS it could increase to 0.054% at $70^{\circ} \mathrm{C}$ and the DAC will be no longer a 10 -bit part. Note, however, that the linearity error is specified over the device full temperature range which is a more stringent specification since it includes the linearity error temperature coefficient.
Note 2: Using internal feedback resistor as shown in Figure 3.
Note 3: Both IOUT 1 and IOUT 2 must go to ground or the virtual ground of an operational amplifier. If $V_{\text {REF }}=10 \mathrm{~V}$, every millivolt offset between IOUT 1 or IOUT $2,0.005 \%$ linearity error will be introduced.
Note 4: To achieve this low feedthrough in the D package, the user must ground the metal lid.

Typical Performance Characteristics

FIGURE 1. Digital Input Threshold vs Ambient Temperature

FIGURE 2. Gain Error Variation vs \mathbf{V}^{+}

Typical Applications

The following applications are also valid for 12 －bit systems using the DAC1220 and 2 additional digital inputs．

Operational Amplifier Bias Current（Figure 3）

The op amp bias current，I_{b} ，flows through the $15 k$ internal feedback resistor．BI－FET op amps have low I_{b} and，therefore，the $15 k \times I_{b}$ error they introduce is negligible；they are strongly recommended for the DAC1020 applications．

Vos Considerations

The output impedance，ROUT，of the DAC is modu－ lated by the digital input code which causes a modulation of the operational amplifier output offset．It is therefore recommended to adjust the op amp VOS．ROUT is $\sim 15 \mathrm{k}$ if more than 4 digital inputs are high；ROUT
is $\sim 45 \mathrm{k}$ if a single digital input is high，and ROUT approaches infinity if all inputs are low．

Operational Amplifier Vos Adjust（Figure 3）

Connect all digital inputs，A1－A10，to ground and adjust the potentiometer to bring the op amp VOUT pin to within $\pm 1 \mathrm{mV}$ from ground potential．If $V_{R E F}$ is less than 10 V ，a finer V_{OS} adjustment is required．It is helpful to increase the resolution of the $V_{O S}$ adjust procedure by connecting a $1 \mathrm{k} \Omega$ resistor between the inverting input of the op amp to ground．After V_{OS} has been adjusted，remove the $1 \mathrm{k} \Omega$ ．

Full－Scale Adjust（Figure 4）

Switch high all the digital inputs，A1－A10，and measure the op amp output voltage．Use a 500Ω potentiometer， as shown；to bring $\left\|V_{\text {OUT }}\right\|$ to a voltage equal to $\mathrm{V}_{\text {REF }} \mathrm{x}$ 1023／1024．

FIGURE 3．Basic Connection：Unipolar or 2－Quadrant Multiplying Configuration（Digital Attenuator）

Typical Applications (Continued)

FIGURE 4: Full-Scale Adjust

FIGURE 5. Alternate Full-Scale Adjust: (Allows Increasing or Decreasing the Gain)

FIGURE 6. Precision Analog-to-Digital Multiplier

COMPLEMENTARY OFFSET BINARY
(BIPOLAR) OPERATION

DIGITAL INPUT								VOUT		
0	0	0	0	0	0	0	0	0	0	$+V_{\text {REF }}$
0	0	0	0	0	0	0	0	0	1	$V_{\text {REF }} \times 1022 / 1024$
0	1	1	1	1	1	1	1	1	1	$V_{\text {REF }} \times 2 / 1024$
1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	$-V_{\text {REF }} \times 2 / 1024$
1	1	1	1	1	1	1	1	1	1	$-V_{\text {REF }}(1022 / 1024)$

Note that:

- IOUT $1+$ IOUT $2=\frac{V_{\text {REF }}}{\text { R LADDER }} \times\left(\frac{1023}{1024}\right)$
- By doubling the output range we get half the resolution
- The 10 M resistor, adds a 1 LSB "thump", to allow full offset binary operation where the output reaches zero for the half-scale code. If symmetrical output excursions are required, omit the 10 M resistor.

FIGURE 7. Bipolar 4-Quadrant Multiplying Configuration

Operational Amplifiers VoS Adjust (Figure 7)

a) Switch all the digital inputs high; adjust the VOS potentiometer of op amp B to bring its output to a value equal to -($\mathrm{V}_{\mathrm{REF}} / 1024$) (V).
b) Switch the MSB high and the remaining digital inputs low. Adjust the VOS potentiometer of op amp A, to bring its output value to within a 1 mV from ground potential. For $V_{\text {REF }}<10 \mathrm{~V}$, a finer adjust is necessary, as already mentioned in the previous application.

TRUE OFFSET BINARY OPERATION

DIGITAL INPUT								VOUT		
1	1	1	1	1	1	1	1	1	1	$V_{\text {REF }} \times 1022 / 1024$
1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	$-V_{\text {REF }}$

$\mathrm{t}_{\mathrm{s}}=1.8 \mu \mathrm{~s}$
use LM336 for a voltage reference

FIGURE 8. Bipolar Configuration with a Single Op Amp

Gain Adjust (Full-Scale Adjust)

Assuming that the external 10 k resistors are matched to better than 0.1%, the gain adjust of the circuit is the same with the one previously discussed.

- $R 4=\left(2 A V^{-}-1\right) R, \frac{R 2}{R 1}=\frac{A V^{-}}{A_{V}^{-}-1}$,
$R 3+R 1 \| R 2=R ; A^{-}=\frac{V_{\text {OUT }}(P E A K)}{V_{R E F}}, R=20 \mathrm{k}$
- Example: $\mathrm{V}_{\text {REF }}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}$ (swing) $\simeq \pm 10 \mathrm{~V}: \mathrm{AV}^{-}=5 \mathrm{~V}$ Then R4 $=9 R, R 1=0.8 R 2$. If $R 1=0.2 R$ then $R 2=0.25 R$, $R 3=0.64 \mathrm{R}$

FIGURE 9. Bipolar Configuration with Increased Output Swing

Typical Applications (Continued)

$V_{\text {OUT }}=\frac{-V_{\text {REF }}}{\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\ldots \frac{A 10}{1024}\right)}$
where: $V_{\text {REF }}$ can be an $A C$ signal

- By connecting the DAC in the feedback loop of an operational amplifier a linear digitally control gain block can be realized
- Note that with all digital inputs low, the gain of the amplifier is infinity, that is, the op amp will saturate. In other words, we cannot divide the VREF by zerol
FIGURE 10. Analog-to-Digital Divider (or Digitally Gain Controlled Amplifier)

FIGURE 11. Digitally Controlled Amplifier-Attenuator

Typical Applications (Continued)

- Output frequency $=\frac{f^{f} \text { CLK }}{512} ; f_{M A X} \cong 2 \mathrm{kHz}$
- Output voltage range $=0 \mathrm{~V}-10 \mathrm{~V}$ peak
- THD $<0.2 \%$
- Excellent amplitude and frequency stability with temperature
- Low pass filter shown has a 1 kHz corner (for output frequencies below 10 Hz , filter corner should be reduced)
- Any periodic function can be implemented by modifying the contents of the look up table ROM
- No start up problems

FIGURE 12. Precision Low Frequency Sine Wave Oscillator Using Sine Look-Up ROM

FIGURE 13. A Useful Digital Input Code Generator for DAC Attenuator or Amplifier Circuits

Definition of Terms

Resolution：Resolution is defined as the reciprocal of the number of discrete steps in the D／A output．It is directly related to the number of switches or bits within the D／A．For example，the DAC1020 has 2^{10} or 1024 steps while the DAC1220 has 2^{12} or 4096 steps．There－ fore，the DAC1020 has 10 －bit resolution，while the DAC1220 has 12 －bit resolution．

Linearity Error：Linearity error is the maximum devia－ tion from a straight line passing through the endpoints of the D / A transfer characteristic．It is measured after calibrating for zero（see VOS adjust in typical applica－ tions）and full－scale．Linearity error is a design parameter intrinsic to the device and cannot be externally adjusted．

Power Supply Sensitivity：Power supply sensitivity is a measure of the effect of power supply changes on the D／A full－scale output．

Settling Time：Full－scale settling time requires a zero to full－scale or full－scale to zero output change．Settling time is the time required from a code transition until the D／A output reaches within $\pm 1 / 2$ LSB of final output value．

Full－Scale Error：Full－scale error is a measure of the output error between an ideal D／A and the actual device output．Ideally，for the DAC1020 full－scale is VREF－ 1 LSB．For $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ and unipolar operation， $V_{\text {FULL－SCALE }}=10.0000 \mathrm{~V}-9.8 \mathrm{mV}=9.9902 \mathrm{~V}$ ． Full－scale error is adjustable to zero as shown in Figure 5.

（a）End point test after zero and full－scale adjust． The DAC has 1 LSB linearity error
（b）By shifting the full－scale calibration on of the DAC of Figure（b1）we could pass the＂best straight line＂，（b2）test and meet the $\pm 1 / 2$ LSB linearity error specification

Note．（a），（b1）and（b2）above illustrate the difference between＂end point＂National＇s linearity test（a）and＂best straight line＂test． Note that both devices in（a）and（b2）meet the $\pm 1 / 2$ LSB linearity error specification but the end point test is a more＂real life＂way of characterizing the DAC．

Connection Diagrams

DAC122X
Dual－In－Line Package

A to D, D to A

DAC1200/DAC1201 12-Bit (Binary) Digital-to-Analog Converters DAC1202/DAC1203 3-Digit (BCD) Digital-to-Analog Converters

General Description

The DAC1200 series of D/A converters is a family of precision low-cost converter building blocks intended to fulfill a wide range of industrial and military D/A applications. These devices are complete functional blocks requiring only application of power for operation. The design combines a precision 12 -bit weighted current source (12 current switches and 12 -bit thin-film resistor network), a rapid-settling operational amplifier, and 10.24 V (for binary series) or 10.00 V (for BCD series) buffered reference.
Input coding options include complementary binary and complementary BCD formats. In all instances, a logic "low" ($\leqslant 0.8 \mathrm{~V}$) turns a given bit ON, and a logic "high" ($\geqslant 2.0 \mathrm{~V}$) turns the bit OFF. Output format may be programmed for bipolar ($\pm 10 \mathrm{~V}$) or unipolar (0 to 10 V) operation using internally supplied thin-film resistor pin strap options. Current mode operation is also available from 0 to 2 mA (for binary) or 0 to 1.25 mA (for BCD).

The entire series is available in hermetically sealed 24 lead DIP.

Features

- Circuit completely self-contained
- Both current and voltage-mode outputs
- Standard power supplies: $\pm 15 \mathrm{~V}$ and +5 V
- Internal buffered reference: 10.24 V for binary 10.00V for BCD
- 0 to $2 \mathrm{~mA}, \pm 10 \mathrm{~V}$ or 0 to 10 V output by strapping internal resistors; other scales by external resistors
- $\pm 1 / 2$ LSB (binary) or $\pm 1 / 10$ LSD (BCD) linearity
- Fast settling time: $1.5 \mu \mathrm{~s}$ in current mode
$2.5 \mu \mathrm{~s}$ in voltage mode
- High slew rate: $15 \mathrm{~V} / \mu \mathrm{s}$
- TTL and CMOS compatible complementary binary or BCD input logic format
- 12 bit linearity
- Standard dual-width DIP package

Block and Connection Diagrams

Absolute Maximum Ratings

Supply Voltage ($\mathrm{V}^{+} \& \mathrm{~V}^{-}$)

$$
\begin{array}{r}
\pm 18 \mathrm{~V} \\
+10 \mathrm{~V} \\
-0.7 \mathrm{~V} \text { to }+18 \mathrm{~V} \\
-0 \mathrm{~V},+18 \mathrm{~V} \\
\text { (see graphs) } \\
\text { Continuous }
\end{array}
$$

Logic Supply Voltage (V_{CC})
Logic Input Voltage
Reference Input Voltage
Power Dissipation
Short Circuit Duration (pins 18, 19 \& 21)
Operating Temperature Range

DAC1200HD, DAC1201HD, DAC1202HD, DAC1203HD
DAC1200HCD, DAC1201HCD, DAC1202HCD, DAC1203HCD
Storage Temperature Range
Lead Temperature (soldering, 10 sec .)

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
300^{\circ} \mathrm{C}
$$

DC Electrical Characteristics DAC1200/1201 Binary D/A (Notes 1, 2)

PARAMETER	CONDITIONS		DAC1200/1200C			DAC1201/1201C			UNITS	
			MIN	TYP	MAX	MIN	TYP	MAX		
Resolution Linearity Error (Note 3) Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		12			12			Bits	
				± 0.0122			± 0.0488	\% FS		
				± 0.0244			± 0.0976	\% FS		
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1	5		1	10	mV	
				10			15	- mV		
Voltage Mode Full-Scale Error (Note 3) Voltage Mode Full-Scale Error	$V_{\text {REF }}^{\prime}=10.240 \mathrm{~V}$			0.01	0.1		0.02	0.2	\% FS	
	Pin 21 connected to Pin $14, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.1	0.6		0.1	0.7	\% FS	
Monotonicity (Notes 3, 4)			Guaranteed over the temperature range							
Voltage Mode Power Supply Sensitivity	$\begin{array}{ll} \Delta \mathrm{V}^{+}= \pm 2 \mathrm{~V} & \\ \Delta \mathrm{~V}^{-}= \pm 2 \mathrm{~V} & T_{A}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{~V} C \mathrm{C}= \pm 1 \mathrm{~V} & \mathrm{~V}_{\text {REF }}=10.240 \mathrm{~V} \end{array}$			± 10.5	0.002	0.02		0.002	0.02	\% FS/V
			0.002		0.02		0.002	0.02	\% FS/V	
			0.002		0.02		0.002	0.02	\% FS/V	
Output Voltage Range Voltage Mode Output Short Circuit Current Limit	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k}$				± 12		± 10.5	± 12		V
	$T_{A}=25^{\circ} \mathrm{C}$				20	50		20	50	mA
Current Mode Voltage Compliance Current Mode Output Impedance	(Note 6)		± 2.5			± 2.5			V	
				15			15		kS	
Reference Voltage	$0 \mathrm{~mA} \leqslant I_{\text {REF }} \leqslant 2 \mathrm{~mA}, T_{\text {A }}=25^{\circ} \mathrm{C}$		10.190	10.240	10.290	10.190	10.240	10.290	V	
Logic "1" Input Voltage (Bit OFF)			2.0			2.0			V	
Logic "0' Input Voltage (Bit ON)					0.8			0.8	V	
Logic " 1 " Input Current (Bit OFF)	$V_{\text {IN }}=2.5 \mathrm{~V}$			1	10		1	10	$\mu \mathrm{A}$	
Logic '0" Input Current (Bit ON)	$V_{\text {IN }}=0 \mathrm{~V}$			-10	-100		-10	-100	$\mu \mathrm{A}$	
1^{+}	$\mathrm{V}^{+}=15.0 \mathrm{~V}$			10	15		10	15	mA	
Power Supply Current 1^{-}	$V^{-}=-15.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25	30		25	30	mA	
ICC	$V_{C C}=5.0 \mathrm{~V}$			20	25		20	25	mA	

DC Electrical Characteristics DAC1202/1203 3-Digit BCD D/A (Notes 1, 2)

PARAMETER	CONDITIONS	DAC1202/1202C			DAC1203/1203C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Resolution		3			3			Digits
Linearity Error (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.01			0.05	\% FS
				0.02			0.1	\% FS
Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	5		1	10	mV
Ofset Voltage				10			15	mV
Voltage Mode Full-Scale Error (Note 5)	$V_{\text {REF }}=10.000 \mathrm{~V}$		0.01	0.1		0.02	0.2	\% FS
Voltage Mode Full-Scale Error	Pin 21 connected to Pin $14, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.		0.5	0.6			0.7	\% FS
Monotonicity (Notes 4, 5)		Guaranteed over the temperature range						
	$\Delta \mathrm{V}^{+}= \pm 2 \mathrm{~V} \quad \mathrm{TA}^{+}=25^{\circ} \mathrm{C}$		0.002	0.02		0.002	0.02	\% FS/V
Voltage Mode Power Supply Sensitivity	$\begin{array}{ll}\Delta V^{-}= \pm 2 \mathrm{~V} & \mathrm{TA}_{\text {A }}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{REF}=10.000 \mathrm{~V}\end{array}$		0.002	0.02		0.002	0.02	\% FS/V
	$\Delta V_{C C}= \pm 1 \mathrm{~V} \quad V_{\text {REF }}=10.000 \mathrm{~V}$		0.002	0.02		0.002	0.02	\% FS/V
Voltage Mode Output Voltage Range	$R_{L}=5 k$	± 10.5	± 12		± 10.5	± 12		V
Voltage Mode Output Short Circuit Limit	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	50		20	50	mA
Current Mode Compliance	(Note 6)	± 2.5			± 2.5		,	\checkmark,
Current Mode Output Impedance			10	-		10		$k \Omega$
Reference Voltage	$0 \leqslant 1$ REF $\leqslant 2 \mathrm{~mA}, \mathrm{TA}=25^{\circ} \mathrm{C}$	9.950	10.000	10.050	9.950	10.000	10.050	V
Logic " 1 " Input Voltage (Bit OFF)		2.0			2.0			V
Logic "0" Input Voltage (Bit ON).			.	0.8			0.8	V
Logic " 1 " Input Current (Bit OFF)	$V_{\text {IN }}=2.5 \mathrm{~V}$		1	10		1	10	$\mu \mathrm{A}$
Logic " 0 ' Input Current (Bit ON)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$,	-10	-100		-10	-100	$\mu \mathrm{A}$
1^{+}	$\mathrm{V}^{+}=15.0 \mathrm{~V}$		10	15		10	15	mA
Power Supply Current 1^{-}	$\mathrm{V}^{-}=-15.0 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25	30		25	30	$m A$
ICC	$V_{C C}=5.0 \mathrm{~V}$		20	25		20	25	mA

AC Electrical Characteristics DAC1200/1201/1202/1203

PARAMETER	CONDITIONS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
Voltage Mode	DAC1200/1202, $\mathrm{V}_{\epsilon} \leqslant 1.25 \mathrm{mV}$		1.5	3.0	$\mu \mathrm{s}$
± 1 LSB Settling Time (Note 6)	DAC1201/1203, $\mathrm{V}_{\epsilon} \leqslant 5.0 \mathrm{mV}$		1	3.0	$\mu \mathrm{s}$
Voltage Mode Full-Scale	DAC1200/1202, $\mathrm{V}_{\epsilon} \leqslant 1.25 \mathrm{mV}$		2.5	5.0	$\mu \mathrm{s}$
Chànge Settling Time (Note 6)	DAC1201/1203, $\mathrm{V}_{\epsilon} \leqslant 5.0 \mathrm{mV}$		2.0	5.0	$\mu \mathrm{s}$
Current Mode Full-Scale Settling Time	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, C_{L} \leqslant 20 \mathrm{pF} \\ & 0 \leqslant \Delta I_{O U T} \leqslant 2 \mathrm{~mA} \end{aligned}$		1.5		$\mu \mathrm{s}$
Voltage Mode Slew Rate	$-10 \mathrm{~V} \leqslant \Delta \mathrm{~V}_{\text {OUT }} \leqslant+10 \mathrm{~V}$		15		$\mathrm{V} / \mu \mathrm{s}$

Note 1: Unless otherwise noted, these specifications apply for $\mathrm{V}^{+}=15.0 \mathrm{~V}, \mathrm{~V}^{-}=-15.0 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DAC1200HD/1201/1202/1203 and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the DAC1200HCD/1201/1202/1203.
Note 2: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: Unless otherwise noted, this specification applies for $V_{R E F}=10.24 \mathrm{~V}$, and over the temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. $\mathrm{Testing}^{\prime}$ conditions include adjustment of offset to 0 V and full-scale to 10.2375 V .
Note 4: The DAC1200, DAC1202 and DAC1203 are tested for monotonicity by stimulating all bits; the DAC1201 is tested for monotonicity by stimulating only the 10 MSBs and holding the 2 LSBs at 2.0 V (i.e., 2 LSBs are OFF).
Note 5: Unless otherwise noted, this specification applies for $V_{\text {REF }}=10.000 \mathrm{~V}$, and over the temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. $\mathrm{Testing}^{2}$ conditions include adjustment of offset to 0 V and full-scale to 9.990 V .
Note 6: Not tested - guaranteed by design.
Note 7: $\left(\Delta V_{\text {OUT }}=10 \mathrm{~V}\right)$

Typical Performance Characteristics

Applications Information

1．Introduction

The DAC1200 series D／A converters are designed to minimize adjustments and user－supplied external com－ ponents．For example，included in the package are a buffered reference，offset nulled output amplifier，and application resistors as well as the basic 12 －bit current mode D／A．

However，the DAC1200 series is a sophisticated building block．Its principles of operation and the following applications information should be read before applying power to the device．

The user is referred to National Semiconductor Applica－ tion Notes AN－156 and AN－157 for additional informa－ tion．

2．Power Supply Selection \＆Decoupling

Selection of power supplies is important in applications requiring 0.01% accuracy．The $\pm 15 \mathrm{~V}$ supplies should be well regulated（ $\pm 15 \mathrm{~V} \pm 0.1 \%$ ）with less than 0.5 mVrms of output noise and hum．
To realize the full speed capability of the device，all three power supply leads should be bypassed with $1 \mu \mathrm{~F}$ tantalum electrolytic capacitors in shunt with $0.01 \mu \mathrm{~F}$ ceramic disc capacitors no farther than $1 / 2$ inch from the device package．

3．Unipolar and Bipolar Operation

The DAC1200 series D／A＇s may be configured for either unipolar or bipolar operation using resistors provided with the device．Figures 1A and 1B illustrate the proper connection for binary and BCD unipolar operation． Bipolar operation is accomplished by offsetting the output amplifier A 3 as shown in figures 2 A and 2 B ．

$$
\begin{aligned}
* V_{\text {OUT }} & =(I Z E R O \text { to IFULLSCALE })\left(\frac{R 21 \cdot R 22}{R 21+R 22}\right) \\
& =(0 \mathrm{~mA} \text { to } 2.0475 \mathrm{~mA})(5 \mathrm{kS} 2) \\
& =0 \mathrm{~V} \text { to }+10.2375 \mathrm{~V}
\end{aligned}
$$

＊Values shown are for $V_{\text {REF }}=10.240 \mathrm{~V}$ ．
1 LSB Voltage Step $=\frac{10.240 \mathrm{~V}}{4096}=2.5 \mathrm{mV}$ ．
1 LSB Current Step $=\frac{2.5 \mathrm{mV}}{5.0 \mathrm{k} \Omega}=0.5 \mu \mathrm{~A}$
FIGURE 1A．DAC1200／DAC1201 Unipolar Operation

＊VOUT $=(I$ ZERO to \mid FULLSCALE $)\left(\frac{R 21 \cdot R 22}{R 21+R 22}\right)$
$=(0$ to 1.24875 mA$)(8 \mathrm{ks} 2)$
$=0 \mathrm{~V}$ to 9.990 V
＊Values shown are for $V_{\text {REF }}=10.000 \mathrm{~V}$ ．
1 LSD Voltage Step $=\frac{10.000}{1000}=10 \mathrm{mV}$
1 LSD Current Step $=\frac{10 \mathrm{mV}}{8 \mathrm{k} \Omega}=1.25 \mu \mathrm{~A}$
FIGURE 1B．DAC1202／DAC1203 Unipolar Operation

$$
\begin{aligned}
{ }^{*} V_{\text {OUT }}= & (0 \text { to } 2.0475 \mathrm{~mA}) R 22-\frac{V_{\text {REF }}}{R 22} R 21 \\
= & (0 \text { to } 2.0475 \mathrm{~mA}) R 22-V_{\text {REF }}, R 21 \equiv R 22 \\
= & -10.240 \text { to }+10.235 \mathrm{~V} \\
& * \text { Values shown are for } V_{\text {REF }}=10.240 \mathrm{~V} \\
& 1 \mathrm{LSB}=5 \mathrm{mV} .
\end{aligned}
$$

FIGURE 2A. DAC1200/DAC1201 Bipolar Operation

${ }^{*} V_{\text {OUT }}=(0 \mathrm{~mA}$ to 1.24875 mA$)(\mathrm{R} 22)-\frac{\mathrm{R} 22}{\mathrm{R} 21} \mathrm{~V}_{\text {REF }}$
$=-10.000 \mathrm{~V}$ to +9.80 V
*Values shown are for $V_{R E F}=10.000 \mathrm{~V}$.
1 LSD Voltage Step $=20 \mathrm{mV}$.
FIGURE 2B. DAC1202/DAC1203 Bipolar Operation
External resistors may be used to achieve alternate zero and full-scale voltages. It is advantageous to utilize R21 and R22 even in these applications since they are closely matched in TCR and temperature to the internal array. Figure 3 illustrates the recommended circuit for zero to 5 V operation. REXT should be of metal film or wirewound construction with a TCR of less than $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

$R_{T O T A L}=(R 21)\|(R 22)\|\left(R_{E X T}\right)=\frac{V_{\text {FULLSCALE }}}{2.0475 \mathrm{~mA}}=2.5 \mathrm{k} \Omega$.
FIGURE 3. DAC1200 0 to 5.120V Operation

4. Offset and Full-Scale Adjust

If higher precision is required in the zero and full-scale, external adjustments may be made. The circuit of figure 4 illustrates the recommended circuit to adjust offset and full-scale of the DAC1200 series. The circuit will work equally well for unipolar or bipolar operation.
In bipolar operation, the offset is adjusted at minus fullscale; in the unipolar case at zero scale.

FIGURE 4. Offset \& Full-Scale Adjust

For the values shown in figure $4, \mathrm{R} 1$ will allow a $\pm 7 \mathrm{mV}$ offset adjustment for the unipolar case and $\pm 15 \mathrm{mV}$ for the bipolar case. R2 will allow a $\pm 50 \mathrm{mV}$ adjustment of full scale.

5. Current Mode Operation

Access to the summing junction of A3 affords current mode operation either with a resistive load or to drive a fast-settling external operational amplifier. The loop around A3 should not be closed in current mode operation. There is a $\pm 2.5 \mathrm{~V}$ maximum compliance voltage at A2's output (pin 18) which restricts the maximum size of the load resistor; i.e., $R_{L} \times I_{\text {FULLSCALE }} \leqslant 2.5 \mathrm{~V}$.

Note: IFULLSCALE $\approx 2 \mathrm{~mA}$ for DAC1200/DAC1201 and $\approx 1.25 \mathrm{~mA}$ for DAC1202/DAC1203.

6. Settling Time \& Glitch Minimization

The settling time of the DAC1200 series and the glitch which occurs between major input code changes may be improved by placing a 10 to 30 pF capacitor between pins 18 (current-mode output) and 19 (voltage mode output). The capacitor is used to cancel output capacitance of the current mode D/A and stray capacitance at pin 18.

7. Current Output Boosting

The DAC1200 series may be operated as a "power D/A" by including a current buffer such as the LHOOO2 or LH0063 in the loop with A3 as shown in figure 5.

FIGURE 5. Current Boosted Output

8. Logic Input Coding

The sense of the logic inputs to the DAC1200 series is complementary; i.e., a given bit is turned ON by an active "low" input. Table I summarizes input status for the unipolar and bipolar complementary binary and BCD codes.
Other input codes may also be used. For example, the twos complement code, which is used extensively in computer and microprocessor applications, may be converted to the DAC1200 complementary bipolar format by inverting all bits except the MSB. The inversion may be accomplished in the microprocessor by software control, or by hardware using standard hex-inverters.

9. Reference Voltage

External reference voltages may be used with the DAC1200 series. Voltages other than 10.240 or 10.000 V in the range of +5.0 V to 11 V will work satisfactorily for voltage mode operation. Full-scale voltage is always $V_{\text {REF }}-1$ LSB where 1 LSB $=V_{\text {REF }} / 4096$ (binary) or $V_{\text {REF }} / 1000$ (BCD). Full-scale current (for binary) may be predicted by:
$I_{\text {FULLSCALE }}=\left(V_{\text {REF }}\right)(0.19995117) \mathrm{mA}$

CODE TYPE	(Note 8) INPUT CODE			OUTPUT STATE	OUTPUT VOLTAGE (Note 9)	OU'TPUT CURRENT
Unipolar Complementary Binary	0000	0000	0000	Full-Scale	+10.2375V	2.0475 mA
	1111	1111	1110	1 LSB ON	$+2.500 \mathrm{mV}$	$0.500 \mu \mathrm{~A}$
	1111	1111	1111	Zero Scale	Zero	- Zero
Bipolar Complementary Binary	0000	0000	0000	Full-Scale	$+10.235 \mathrm{~V}$	$+1.0235 \mathrm{~mA}$
	0111	1111	1111	Half Full-Scale	-0.000V	0.000 mA
	1111	1111	1110	1 LSB ON	$-10.235 \mathrm{~V}$	$-1.0235 \mathrm{~mA}$
	1111	1111	1111	Zero Scale	-10.240V	$-1.0240 \mathrm{~mA}$
Unipolar Complementary BCD	0110	0110	0110	Full-Scale	+9.990V	1.24875 mA
	1111	1111	1110	1 LSB ON	10.000 mV	$1.250 \mu \mathrm{~A}$
	1111	1111		Zero Scale	Zero	Zero
Bipolar Complementary BCD	0110	0110	0110	Full-Scale	9.980 V	+0.62375 mA
	1010	1111	1111	Half Full-Scale	0.000 V	Zero
	1111	1111	1110	1 LSB ON	-9.980V	-0.62375mA
	1111	1111	1111	Zero Scale	-10.00V	-0.625 mA

Note 8: Logic input sense is such that an active low ($V_{1 N} \leqslant 0.8 \mathrm{~V}$) turns a given bit ON and is represented as a logic " 0 " in the table.
Note 9: $\quad V_{\text {REF }}=10.240 \mathrm{~V}$ for the DAC1200/1201 and 10.000V for the DAC1202/1203.

Definition of Terms

Resolution

Resolution is defined as the reciprocal of the number of discrete steps in the D/A output (as designed). It is directly related to the number of switches or bits within the D/A. For example, the DAC1200 has 2^{12} or 4096 steps. Resolution may therefore be expressed variously as 12 bits, as 1 part in 212 , as 1 part in 4096, or as a percentage ($1 / 4096 \times 100=0.0244 \%$). The DAC1 202 has 1000 steps and 3 BCD digits. Resolution may be expressed as 0.1% or $3 B C D$ digits.

Linearity Error

Linearity error is the maximum deviation from a straight line passing through the endpoints of the D/A transfer characteristic. It is measured after calibrating for zero and full-scale. The linearity error of the DAC1200 series is guaranteed to be less than $\pm 1 / 2$ LSB or 0.0122% of F.S. for the DAC1200/1200C and $\pm 0.0488 \%$ of F.S. for the DAC1201/DAC1201C. Linearity error is a design parameter intrinsic to the device and cannot be externally adjusted.

Offset Voltage

Offset voltage is an output voltage other than zero volts for unipolar operation (and other than minus full-scale for bipolar operation) with all bits turned OFF. In the DAC1200 series this error resides primarily in the output amplifier, A3. Offset voltage is adjustable to zero as discussed in the applications section.

Power Supply Sensitivity

Power supply sensitivity is a measure of the effect of power supply changes on the D/A full-scale output.

Settling Time

Two settling time parameters are specified for the DAC1200 series. Full-scale settling time requires a zero to full-scale or full-scale to zero output change. One LSB settling time requires one LSB output change. In both instances, settling time is the time required from a code transition until the D/A output reaches within $\pm 1 / 2$ LSB of final output value.

Monotonicity

Monotonicity is a characteristic of the D/A which requires a non-negative output step for an increasing input digital code. Monotonicity, therefore, demands no back steps or changes in sign of the slope of the D/A transfer characteristic.

Full-Scale Error

Full-scale error is a measure of the output error between an ideal D/A and the actual device output. Ideally, for the DAC1200 full-scale is $V_{\text {REF }}-1$ LSB. For $V_{\text {REF }}=$ 10.240 V and unipolar operàtion, VFULLSCALE $=$ $10.240 \mathrm{~V}-2.5 \mathrm{mV}=10.2375 \mathrm{~V}$. Departures from this value include internal gain, scaling, and reference errors. Full-scale error is adjustable to zero as discussed in the Applications section.

Typical Application

DC Test Circuit

*LH0070 for DAC1202/1203
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=4.7 \mu \mathrm{~F}$ (solid tantalum) in parallel with a $0.01 \mu \mathrm{~F}$ ceramic disc

Ordering Information

PART NUMBER		PACKAGE	$25^{\circ} \mathrm{C}$ LINEARITY ERROR	OPERATING TEMPERATURE RANGE
BINARY	BCD		0.01%	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DAC1200HD	DAC1202HD	Ceramic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
DAC1201HD	DAC1203HD	Ceramic DIP	0.05%	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1200HCD	DAC1202HCD	Ceramic DIP	0.01%	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1201HCD	DAC1203HCD	Ceramic DIP	0.05%	

A to D, D to A

DAC1280, DAC1285 12-Bit (Binary),
 DAC1286, DAC1287 3-Digit (BCD) Digital-to-Analog Converters

General Description

The DAC1280 series is a family of precision, low cost, fully self-contained digital-to-analog converters. The devices include 12 precision current switches, a 12 -bit thin film resistor network, output amplifier, buffered internal reference, and several precision resistors, which allow the user to tailor his system needs to accommodate a variety of bipolar and unipolar output voltage and current ranges. Logic inputs are TTL, DTL and CMOS compatible, and are available in complementary binary (CBI) and complementary BCD (CCD) coding formats. In all instances, a logic low ($\leq 0.8 \mathrm{~V}$) turns a given bit $O N$, and a logic high $(\geq 2 V)$ turns a given bit OFF. Internally supplied resistor options provide low drift bipolar output voltage ranges of $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$, and unipolar ranges of 0 to 5 V or 0 to 10 V . Current mode output is also available 0 to 2 mA (binary models) and 1.25 mA (BCD models).

The entire series is available in a rugged side-brazed ceramic 24 -lead DIP.

Features

- Completely self-contained with no external components required
- $\pm 1 / 2$ LSB linearity
- Standard power supplies: $\pm 15 \mathrm{~V}, 5 \mathrm{~V}$
- TTL, DTL, CMOS compatible binary or BCD
- $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 10 V voltage outputs
- 0 to $2 \mathrm{~mA}, 0$ to 1.25 mA current output
- Internal reference
- Fast settling time: 300 ns current mode, $2.5 \mu \mathrm{~s}$ voltage mode
- Pin compatible with DAC80 and DAC85 series
- Full military temperature range operation

Block Diagram

Absolute Maximum Ratings

Supply Voltage ($\mathrm{V}+$ and $\mathrm{V}-$)
Logic Supply Voltage (V_{CC})
Logic Input Voltage
Reference Input Voltage (VREF)
Power Dissipation
Short-Circuit Duration (Pins 15, 20 and 24)
Operating Temperature Range
DAC1285HD, DAC1286HD
DAC1285HCD, DAC1286HCD.)
DAC1280HCD, DAC1287HCD
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
\pm 18 \mathrm{~V} \\
10 \mathrm{~V} \\
-0.7 \mathrm{~V}, 18 \mathrm{~V} \\
0 \mathrm{~V}, 18 \mathrm{~V} \\
\text { (See graph) } \\
\text { Continuous } \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

PARAMETER	CONDITIONS	DAC1285HD			DAC1285HCD			DAC1280HCD			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Resolution		12			12			12		-	Bits
Linearity Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.		$\pm 1 / 2$			$\pm 1 / 2$			± 1	LSB
	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$, (Note 3)			$\pm 1 / 2$			$\pm 1 / 2$			± 2	LSB
Differential Non-Linearity			$\pm 1 / 2$			$\pm 1 / 2$			$\pm 1 / 2$		LSB
Zero-Scale Error (Offset)	(Notes 4 and 5)		± 0.05			± 0.05			± 0.05	.	\% FSR
Zero-Scale Drift (Offset Drift)	Unipolar. $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ Bipolar, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$.	$\begin{aligned} & \pm 1 \\ & \pm 3 \end{aligned}$	± 10		± 1 ± 3	± 15	.	$\begin{gathered} \pm 1 \\ \pm 10 \end{gathered}$		ppm of FSR/ ${ }^{\circ} \mathrm{C}$ ppm of FSR $/{ }^{\circ} \mathrm{C}$
Full-Scale Error (Gain Error)	(Note 5)		± 0.1			± 0.1			± 0.1		\% of FSR
Full-Scale Drift (Gain Drift)	$T_{\text {MIN }} \leq T_{\text {A }} \leq T_{\text {MAX }}$			± 20			± 30		± 10		ppm $/{ }^{\circ} \mathrm{C}$
Output Voltage Range	Using Internally Supplied Resistors				± 5.0	10, 0 to	, 0 to				V
Output Voltage Swing	$R_{L} \geq 5 \mathrm{k} \Omega$, Pin 15	± 10	± 12		± 10	± 12		± 10	± 12		V
Output Short-Circuit Current	Pin 15		± 20			± 20			± 20		mA
Output Impedance	Pin 15, Closed Loop		0.05			0.05			0.05		Ω
Current Mode Output Range	Unipolar, Pin 20	0 to -2 mA									mA
	Bipolar, Pin 20	± 1.0									
Current Mode Compliance		. ± 2.5			± 2.5			± 2.5			V
Current Mode Output	Unipolar		15			15			15		$\mathrm{k} \Omega$
Impedance	Bipolar		4.4			4.4	.		4.4		$\mathrm{k} \Omega$
Reference Voltage	$-2 \mathrm{~mA} \leq \mathrm{I}_{\text {REF }} \leq 2 \mathrm{~mA}$	6.0	6.3	6.6	6.0	6.3	6.6		6.3		V
Logic "'1" Input Voltage (Bit OFF)		2.0			2.0			2.0	.		V
Logic "0" Input Voltage (Bit ON)	.		\therefore	0.8			0.8			0.8	V
Logic "1" Input Current	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		1	10		1	10		1	10	$\mu \mathrm{A}$
Logic " 0 " Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		-10	-100		-10	-100		-10	-100	$\mu \mathrm{A}$
Power Supply Current	$1+$		10			10			10		mA
	1-		125			25			25		mA
	ICC		20			20			20		mA
Power Supply Sensitivity			0.002			0.002			0.002		$\begin{gathered} \% \text { of } \\ \text { FSR/\%V } \end{gathered}$

DC Electrical Characteristics : DAC1286H, DAC1286HC, DAC1287HC BCD D/A (Notes 1 and 2)

PARAMETER	CONDITIONS	DAC1286HD			DAC1286HCD			DAC1287HCD			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Resolution		3			3			3			Digits
Linearity Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\pm 1 / 2$			$\pm 1 / 2$			± 1	LSB
	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$ (Note 3)			$\pm 1 / 2$			$\pm 1 / 2$			± 1	LSB
Differential Non-Linearity			$\pm 1 / 2$			$\pm 1 / 2$			$\pm 1 / 2$		LSB
Zero-Scale Error (Offset Error)	(Notes 4 and 5)		± 0.05			± 0.05	,		± 0.05		\% FSR
Zero-Scale Drift (Offset Drift)	Unipolar, $\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$		± 1			± 1			± 1		ppm of FSR $/{ }^{\circ} \mathrm{C}$
Full-Scale Error (Gain Error)	(Note 5)		± 0.1			± 0.1			± 0.1		\% of FSR
Full-Scale Drift (Gain Drift)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$			± 20		.	± 30		± 10		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Output Voltage Range	Using Internally Supplied Resistors	0 to +10									V
Output Voltage Swing	$R_{L} \geq 5 \mathrm{k} \Omega$	± 10	± 12		± 10	± 12		± 10	± 12		V
Output Short-Cirçuit Current			± 20			± 20			± 20		mA
Output Impedance	Pin 15, Closed Loop		0.05			0.05			0.05		Ω
Currènt Mode Output Range	Unipolar, Pin 20	0 to -1.25									mA
Current Mode Compliance		± 2.5			± 2.5			± 2.5	.		V
Current Mode Output Impedance	. .		15			15			15		$k \Omega$
Reference Voltage	$-2 \mathrm{~mA} \leq 1 \mathrm{REF} \leq 2 \mathrm{~mA}$	6.0	6.3	6.6	6.0	6.3	6.6		6.3		V
Logic "1" Input Voltage (Bit OFF)	.	2.0			2.0			2.0			V
Logic " 0 " Input Voltage (Bit ON)				0.8			$0.8{ }^{\circ}$			0.8	V
Logic " 1 " Input Current	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		1	10		1	10		1	10	$\mu \mathrm{A}$
Logic '0' Input Current	$V_{\text {IN }}=0 \mathrm{~V}$		-10	-100		-10	-100		-10	-100	$\mu \mathrm{A}$
Power Supply Current	$1+$		10			10			10		mA
	1-		25			25			25		mA
	ICC		20			20			20		mA
Power Supply Sensitivity			0.002			0.002			0.002		\% of FSR/\%V

Note 1: Unless otherwise specified, these specifications apply for $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ over the entire temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for DAC1285HD and DAC1286HD, and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for DAC1285HCD, DAC1280HCD, DAC1286HCD and DAC1287HCD. For specified operation, the internal reference (pin 24) must be connected to the reference input (pin 16). The specifications are guaranteed after 30 seconds of warm-up after power turn-on.
Note 2: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: These specifications apply to the limited temperature range $T_{M I N}=-25^{\circ} \mathrm{C}$ to $T_{M A X}=+85^{\circ} \mathrm{C}$ for DAC1285HD and DAC1286HD, and $T_{M I N}=0^{\circ} \mathrm{C}$ to $T_{M A X}=+70^{\circ} \mathrm{C}$ for DAC1285HCD, DAC1280HCD, DAC1286HCD and DAC1287HCD. For the entire temperature range, double the above specifications.
Note 4: FSR means "full-scale range" and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$, etc.
Note 5: Externally adjustable to zero.

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 6)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Voltage Mode ± 1 LSB Settling Time DAC1285, DAC1286	$V_{E} \leq 1 \mathrm{mV}$,	1.5	3.0	$\mu \mathrm{s}$
DAC1280C	$\mathrm{V}_{\mathrm{E}} \leq 5 \mathrm{mV}$		1.5	3.0	$\mu \mathrm{s}$
Voltage Mode Full-Scale Settling Time	$V_{E} \leq 1 \mathrm{mV}$		2.5	5.0	$\mu \mathrm{s}$
Current Mode Full-Scale Settling Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		300		ns
Voltage Mode Slew Rate	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+10 \mathrm{~V}$		20		$\mathrm{V} / \mu \mathrm{s}$

Note 6: Not tested, guaranteed by design.

Typical Performance Characteristics

Functional Description

The DAC1280 series is a sophisticated D/A building block. The user is encouraged to read the following applications information before applying power to the device. Refer to National Semiconductor Application Notes AN-156 and AN-159 for additional applications information.

Selection of power supplies is important in applications requiring 0.01% accuracy. The $\pm 15 \mathrm{~V}$ supplies should be well regulated ($\pm 15 \mathrm{~V} \pm 0.1 \%$ with less than 0.5 mVrms of output noise and ripple.

To realize full speed capability of the device, all 3 power supply leads should be bypassed no further than $1 / 2$ inch
from the device, with $1 \mu \mathrm{~F}$ tantalum electrolytic capacitors in parallel with $0.01 \mu \mathrm{~F}$ ceramic disc capacitors.

VOLTAGE MODE OPERATION

The DAC1280, DAC1285 binary and DAC1286, DAC1287 BCD D/A's provide internal scaling resistors which permit a wide range of bipolar and unipolar output configurations. Bipolar output formats of $\pm 2.5 \mathrm{~V}$, $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ and unipolar formats of 0 to 5 V and 0 to 10 V are possible using resistor strap options included within the device. Table I and Figures 1-4 summarize the proper pin connections required for these formats.

Functional Description (Continued)
TABLE I. Output Voltage/Current Ranges for DAC1280 Series

OUTPUT VOLTAGE RANGE	DIGITAL INPUT CODE	CONNECT PIN 15 TO	CONNECT PIN 16 TO	CONNECT PIN 17 TO	CONNECT PIN 19 TO
$\pm 10 \mathrm{~V}$	Complementary Offset Binary	19	24	20	15
$\pm 5 \mathrm{~V}$	Complementary Offset Binary	18	24	20	NC
$\pm 2.5 \mathrm{~V}$	Complementary Offset Binary	18	24	20	20
+10 V	Complementary Binary	18	24	21^{*}	NC
+5 V	Complementary Binary	18	24	21^{*}	20
$\pm 1 \mathrm{~mA}$	Complementary Offset Binary	NC	24	20	NC
-2 mA	Complementary Binary	NC	24	21^{*}	NC
+10 V	Complementary BCD	19	24	NC	15
-1.25 mA	Complementary BCD	NC	24	NC	NC

*Optional, no connection necessary

$$
\begin{aligned}
\mathrm{V}_{\text {OUT }}= & (0 \text { to } 1.9995 \mathrm{~mA})(\mathrm{R} 20+\mathrm{R} 21)-(6.3 \mathrm{~V} / \mathrm{R} 23)(\mathrm{R} 21+\mathrm{R} 22) \\
= & (0 \text { to } 1.9995 \mathrm{~mA})(10 \mathrm{k})-(1 \mathrm{~mA})(10 \mathrm{k}) \\
= & -10 \mathrm{~V} \text { to }+9.995 \mathrm{~V} \\
1 \mathrm{LSB}= & 20 \mathrm{~V} / 4096=4.88 \mathrm{mV} \\
& \text { FIGURE } 1 . \pm 10 \mathrm{~V} \text { Bipolar Operation }
\end{aligned}
$$

$\mathrm{V}_{\text {OUT }}=(0$ to 1.9995 mA$)(\mathrm{R} 20)-(\mathrm{R} 20 / \mathrm{R} 23)(6.3 \mathrm{~V})$,
$=(0$ to 1.9995 mA$)(5 \mathrm{k})-(5 \mathrm{k} / 6.3 \mathrm{k})(6.3 \mathrm{~V})$
$=-5 \mathrm{~V}$ to 4.9975 V
$1 \mathrm{LSB}=10 \mathrm{~V} / 4096=2.44 \mathrm{mV}$
FIGURE 2. $\pm 5 \mathrm{~V}$ Bipolar Operation

Functional Description (Continued)

CURRENT MODE OPERATION

Current mode applications which make use of an external op amp, comparator, or a resistive load are'possible with the DAC1280 series using pin 20. When an external op amp is used, the internal scaling resistors should be utilized to minimize full-scale drift. Configurations shown in Table I apply directly. Figure 5 shows one application using an external fast operational amplifier.

Current mode operation into a resistive load should also utilize the internally supplied resistors. A compliance restriction of $\pm 2.5 \mathrm{~V}$ at pin 20 is required for operation in the current output mode.

OFFSET AND FULL-SCALE ADJUST

The DAC1280 series may be offset and full-scale adjusted using the circuit shown in Figure 6. Offset voltage should be adjusted first. A logic " 1 " $(\geq 2 \mathrm{~V})$ should be
applied to all logic inputs. In bipolar mode, the offset is adjusted to equal minus full-scale. In unipolar mode, the offset is adjusted to read $O V$ at the output. Fullscale is then adjusted by applying a logic " 0 " $(\leq 0.8 \mathrm{~V})$ to all inputs for binary operation. For BCD, apply 011001100110 input coding. The range of R1 and R2. shown in Figure 6 is approximately $\pm 0.2 \%$ of full-scale for the values shown.

A 30 second "warm-up" period should be allowed (after power turn-on) before making the above adjustments.

LOGIC INPUT CODING

The logic inputs to the DAC1280 series are complementary; i.e., a given bit is turned $O N$ by an active low input. Table II summarizes input status for unipolar and bipolar codes.

Functional Description (Continued)

REFERENCE SUPPLY

The DAC1280 series is supplied with an internal 6.3 V reference supply voltage (pin 24). In order to obtain the specified performance, pin 24 should be connected to the Reference Voltage Input (pin 16). Since the reference is buffered by an op amp, the reference may be used externally at currents up to 5 mA . The reference output is short-circuit limited to a nominal 20 mA . An external reference voltage may be used with the DAC1280 series. Voltage values between 5 V and 11 V will work satisfactorily. Full-scale current may be predicted by:

LOGIC INPUT COMPATIBILITY

The design of the current mode switches in the DAC1280 series give the device true TTL compatibility. It is TTL compatible over the entire operating temperațure range and is independent of the reference voltage and $V_{C C}$. Furthermore, since the input breakdown ratings are in excess of 18 V , the DAC1280 series may be driven directly from high (or low) voitage CMOS.

TABLE II

CODE TYPE	INPUT CODE (Note 7)												OUTPUT STATE	UNIPOLAR OUTPUT RANGES		
	MSB				LSB									0 to 10V	0 to 5V	$\begin{gathered} 0-2 \mathrm{~mA} \\ 0-1.25 \mathrm{~mA} \end{gathered}$
Unipolar	0	0	0	0	0	0	0	0	0	0	0	0	Full-Scale	9.9976 V	4.9988V	-1.9995 mA
Complementary	1	1	1	1	1	1	1	1	1	1	1	0	1 LSB ON	0.0024 V	0.0012 V	0.0005 mA
Binary	1	1	1	1	1	1	1	1	1	1	1	1	Zero-Scale	0.0000 V	0.0000 V	0.0000 mA
Unipolar	0	1	1	0	0	1	1	0	0	1	1	0	Full-Scale	9.990 V		1.2488 mA
Complementary	1	1	1	1	1	1	1	1	1	1	1	0	1 LSB ON	0.010 V		0.00125 mA
BCD	1	1	1	1	1	1	1	1	1	1	1	1	Zero-Scale	0.000 V		0.0000 mA

CODE TYPE	INPUT CODE (Note 7)												OUTPUT STATE	BIPOLAR OUTPUT VOLTAGE RANGES			
	MSB											LSB		$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	$\pm 1 \mathrm{~mA}$
Bipolar	0	0	0	0	0	0	0	0	0	0	0	0	Full-Scale	9.9951 V	4.9976 V	2.4988 V	$-0.9995 \mathrm{~mA}$
Complementary	0	1	1	1		1	1	1	1	1	1	1	Half-Scale	0.0000 V	0.0000 V	0.0000 V	0.0000 mA
Binary	1	1	1	1	1	1	1	1	1	1	1	0	1 LSB ON	-9.9951V	-4.9976V	-2.4988V	0.9995 mA
	1	1	1	1	1	1	1	1	1	1	1	1	Zero-Scale	-10.0000V	$-5.0000 \mathrm{~V}$	-2.5000V	1.0000 mA

Note 7: Logic input sense is such that an active low ($\mathrm{V}_{\mathrm{IN}} \leq 0.8 \mathrm{~V}$) turns a given bit ON and is represented as a logic " 0 " in the table.

Functional Description (Continued)

FIGURE 6. Full-Scale and Adjustment Circuits

Ordering Information

PART NUMBER		25 BINARY LINEARITY	PACKAGE	TEMPERATURE RANGE
DAC1285HD	DAC1286HD	0.01%	DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DAC1285HCD	DAC1286HCD	0.01%	DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1280HCD	DAC1287HCD	0.025%	DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

*See NS Package D24A

General Description

The DM2502, DM2503 and DM2504 are 8-bit and 12 -bit TTL registers designed for use in successive approximation A/D converters. These devices contain all the logic and control circuits necessary in combination with a D/A converter to perform successive approximation analog-to-digital conversions.

The DM2502 has 8 bits with serial capability and is not expandable.

The DM2503 has 8 bits and is expandable without serial capability.

The DM2504 has 12 bits with serial capability and expandability.

All three devices are available in ceramic DIP, ceramic flatpak, and molded Epoxy-B DIPs. The DM2502,

DM2503 and DM2504 operate over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the DM2502C, DM2503C and DM2504C operate over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Complete logic for successive approximation A/D converters
- 8 -bit and 12 -bit registers
- Capable of short cycle or expanded operation
- Continuous or start-stop operation
- Compatible with D/A converters using any logic code
- Active low or active high logic outputs
- Use as general purpose serial-to-parallel converter or ring counter

Logic Diagram

Connection Diagrams (Dual-In-Line and Flat Packages)

Order Number DM2502J, DM2502CJ, DM2503J or DM2503CJ See NS Package J16A Order Number DM2502CN or DM2503CN See NS Package N16A
Order Number DM2502W, DM2502CW, DM2503W,

top view
Order Number DM2504F or DM2504CF
See NS Package F24A
Order Number DM2504J or DM2504CJ See NS Package J24A

Order Number DM2504CN
See NS Package N24A

Absolute Maximum Ratings (Note 1)

Operating Conditions

		,	MIN	MAX	UNITS
Supply Voltage	7V	Supply Voltage, $\mathrm{V}_{\text {CC }}$			
Input Voltage	5.5 V	DM2502C, DM2503C,	4.75	5.25	V
Output Voltage	5.5 V	DM2504C			
Storage Temperature Range -	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DM2502, DM2503,	4.5	5.5	V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	DM2504	4.5	5.5	\checkmark
		Temperature, T_{A}			
'		DM2502C, DM2503C,	0	+70	${ }^{\circ} \mathrm{C}$
- . .		DM2504C			
	, '	DM2502, DM2503, DM2504 .	-55	+125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
(Notes 2 and 3) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, unless otherwise specified.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM2502, DM2503 and DM2504, and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DM2502C, DM2503C and DM2504C. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.

Application Information OPERATION

The registers consist of a set of master latches that act as the control elements in the device and change state on the input clock high-to-low transition and a set of slave latches that hold the register data and change on the input clock low-to-high transition. Externally the device acts as a special purpose serial-to-parallel converter that accepts data at the D input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the DM2502 and DM2504 when the clock goes from low-to-high. There are no restrictions on the data input; it can change state at any time except during a short interval centered about the clock low-to-high transition. At the same time that data enters the register bit the next less significant bit register is set to a low ready for the next iteration.

The register is reset by holding the $\overline{\mathrm{S}}$ (Start) signal low during the clock low-to-high transition. The register synchronously resets to the state $Q 7$ (11) low, and all the remaining register outputs high. The Q_{Cc} (Conversion Complete) signal is also set high at this time. The $\overline{\mathrm{S}}$ signal should not be brought back high until after the clock low-to-high transition in order to guarantee correct resetting. After the clock has gone high resetting the register, the $\overline{\mathrm{S}}$ signal must be removed. On the next clock low-to-high transition the data on the D input is set into the Q 7 (11) register bit and the Q 6 (10) register bit is set to a low ready for the next clock cycle. On the next clock low-to-high transition data enters the Q6 (10) register bit and Q5 (9) is set to a low. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into QO , the Q_{CC} signal goes low, and the register is inhibited from further change until reset by a Start signal.

The DM2502, DM2503 and DM2504 have a specially tailored two-phase clock generator to provide nonoverlapping two-phase clock pulses (i.e., the clock waveforms intersect below the thresholds of the gates
they drive). Thus, even at very slow $\mathrm{dV} / \mathrm{dt}$ rates at the clock input (such as from relatively weak comparator outputs), improper logic operation will not result.

LOGIC CODES

All three registers can be operated with various logic codes. Two's complement code is used by offsetting the comparator $1 / 2$ full range $+1 / 2$ LSB and using the complement of the MSB ($\overline{\mathrm{Q}} 7$ or $\overline{\mathrm{Q}} 11$) with a binary D / A converter. Offset binary is used in the same manner but with the MSB (Q7 or Q11). BCD D/A converters can be used with the addition of illegal code suppression logic.

ACTIVE HIGH OR ACTIVE LOW LOGIC

The register can be used with either D / A converters that require a low voltage level to turn on, or D/A converters that require a high voltage level to turn the switch on. If D/A converters are used which turn on with a low logic level, the resulting digital output from the register is active low. That is, a logic " 1 " is represented as a low voltage level. If D/A converters are used that turn on with a high logic level then the digital output is active high; a logic " 1 " is represented as a high voltage level.

EXPANDED OPERATION

An active low enable input, \bar{E}, on the DM2503 and DM2504 allows registers to be connected together to form a longer register by connecting the clock, D, and \bar{S} inputs in parallel and connecting the Q_{CC} output of one register to the \bar{E} input of the next less significant register. When the start signal resets the register, the $\overline{\mathrm{E}}$ signal goes high, forcing the Q7 (11) bit high and inhibiting the register from accepting data until the previous register is full and its Q_{CC} goes low. If only one register is used the \bar{E} input should be held at a low logic level.

Timing Diagram

DM2502, DM2503

Application Information (Continued)

SHORT CYCLE

' If all bits are not required, the register may be truncated and conversion time saved by using a register output going low rather than the Q_{CC} signal to indicate the end of conversion. If the register is truncated and operated in the continuous conversion mode, a lock-up condition may occur on power turn-on. This condition can be avoided by making the start input the OR function of Q_{Cc} and the appropriate register output.

COMPARATOR BIAS

To minimize the digital error below $\pm 1 / 2$ LSB, the comparator must be biased. If a D/A converter is used which requires a low voltage level to turn on, the comparator should be biased $+1 / 2$ LSB. If the D/A converter requires a high logic level to turn on, the comparator must be biased $-1 / 2$ LSB.

Definition of Terms

CP: The clock input of the register.
D: The serial data input of the register.
DO: The serial data out. (The D input delayed one bit).
$\overline{\mathrm{E}}$: The register enable. This input is used to expand the length of the register and when high forces the $\mathbf{Q 7}$ (11) register output high and inhibits conversion. When not used for expansion the enable is held at a low logic level (ground).
$\mathbf{Q}_{\mathbf{i}} \mathbf{i}=\mathbf{7}$ (11) to $\mathbf{0}$: The outputs of the register.
$\mathbf{a}_{\mathbf{C C}}$: The conversion complete output. This output remains high during a conversion and goes low when a conversion is complete.
07 (11): The true output of the MSB of the register.
$\overline{\mathbf{Q}} 7$ (11): The complement output of the MSB of the register.
$\overline{\mathbf{S}}$: The start input. If the start input is held low for at least a clock period the register will be reset to 07 (11) low and all the remaining outputs high. A start pulse that is low for a shorter period of time can be used if it meets the set-up time requirements of the $\overline{\mathrm{S}}$ input.

Truth Table

DM2502, DM2503

TIME	INPUTS			OUTPUTS ${ }^{1}$									
t_{n}	D	$\overline{\mathbf{S}}$	\bar{E}^{2}	D0 ${ }^{3}$	Q7	Q6	05	04	03	Q2	01	00	a_{cc}
0	x	L	L.	x	X	X	X	X	X	X	x	X	X
1	D7	H	L	x	L	H	H	H	H	H	H	H	H
2	D6	H	L	D7	D7	L	H	H	H	H	H	H	H
3	D5	H	L	D6	D7	D6	L	H	H	H	H	H.	H
4	D4	H	L	D5	D7	D6	D5	L	H	H	H	H	H
5	D3	H	L	D4	D7	D6	D5	D4	L	H	H	H	H
6	D2	H	L	D3	D7	D6	D5	D4	D3	L	H	H	H
7	D1	H	L	D2	D7	D6	D5	D4	D3	D2	L	H	H
8	D0	H	L	D1.	D7	D6	D5	D4	D3	D2	D1	L	H
9	- x	H	L	D0	D7	D6	D5	D4	D3	D2	D1	DO	L
10	X	X	L	X	D7	D6	D5	D4	D3	D2	D1	D0	L
	X	X	H	X	H	NC							

Note 1: Truth table for DM2504 is extended to include 12 outputs.
Note 2: Truth table for DM2502 does not include \bar{E} column or last line in truth table shown.

$$
H=\text { High Voltage Level }
$$

Note 3: Truth table for DM2503 does not include D.0 column.
$\mathrm{L}=$ Low Voltage Level
$X=$ Don't Care
$N C=$ No Change

Typical Applications

Active High

Active Low

Typical Applications (Continued)

High Speed 12-Bit A/D Converter

Switching Time Waveforms

LF13300 Integrating ADD Analog Building Block

General Description

The LF13300 is the analog section of a precision integrating analog-to-digital (A/D) system. JFET and bipolar transistors (BI-FET) are combined on the same chip to provide a high input impedance unity gain buffer, comparator and integrator, along with 9 JFET analog switches. The LF13300 has sufficient resolution to construct up to a $41 / 2$-digit Digital Panel Meter (DPM) or a 12 -bit (plus sign) Data Acquisition System and is specifically designed for use with either the ADB4510 BCD digital building block or the ADB1200 (MM5863)* 12-bit binary building block.
*See ADB1200 (MM5863) data sheet for more information.

Features

- Rugged JFETs allow blow-out free handling
- High input impedance $10,000 \mathrm{M} \Omega$ typ
- Automatic offset correction
- Analog circuitry can be physically and electrically isolated from high noise digital circuits
- Analog input range of $\pm 11 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies
- Wide power supply voltage range $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- TTL and CMOS compatible logic
- Can interface directly with microprocessors
- Versatile: can be used as a 12 -bit plus sign binary A/D, 4 1/2-digit, 3 3/4-digit and 3 1/2-digit Digital Panel Meter (DPM)
- Low cost

Block and Connection Diagrams

Order Number LF13300D See NS Package D18A

Absolute Maximum Ratings

Supply Voltage
$\pm 18 \mathrm{~V}$
Power Dissipation, (Note 1)
Junction Temperature
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 seconds)

570 mW
$110^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Note 1: For operating at elevated temperatures, the LF13300 in the dual-in-line package must be derated based on the thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Typical Performance Characteristics

Functional Description

The LF13300 goes through the following 5 states during normal cycle: 1) Offset Correction; 2) Polarity Determination; 3) Initialization; 4) Ramp Unknown; 5) Ramp Reference

Offset Correction Description (Figure 1)

The Offset Correction scheme will drive the input of the comparator to its switching threshold when the analog input is zero and the timing components, RC, are bypassed.

The Offset Correction input (OC) is driven high, closing switches S4-S9.

Integration Time Constant (RC) vs fCLK for Different Reference Voltages, $\mathbf{V}_{\mathbf{R}}$

Logic Input Current vs Temperature

Comparator Saturation Voltage vs Temperature

Analog Input Bias Current, IIN,
$\mathbf{V}_{\mathbf{X}}=\mathbf{O V}$, vs Temperature

Reference Input Bias Current, I_{R}, vs Temperature

Power Supply Current vs Temperature

The offset voltages are assigned as follows: VOS1 - the input offset voltage of the buffer; VOS2 - the input offset voltage of A1; VOS3 - the input offset voltage of A2; VOS4 - the input offset voltage of the comparator.

S5 grounds the input of the buffer so that its output voltage is simply $\mathrm{V}_{\mathrm{OS} 1}$. S6 bypasses R to keep the integration time constant, RC, from affecting the circuit operation. S4 makes the total equivalent input voltage to A1 be - VOS1 - VOS2. S7 puts the op amp in a unity gain configuration with respect to the input of A2. S8 keeps the output voltage of the op amp at $-\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{OS} 4}=-\mathrm{V}_{\mathrm{B}^{\prime}}$ (the Offset Correction potential) since the comparator is placed inside the loop. C3 samples the output of the $-V_{B}$ generator. The voltage at the non-inverting input of $A 2$ is $-V_{B}-V_{O S 1}-$

Functional Description (Continued)

$V_{\text {OS2 }}-V_{\text {OS3 }}+V_{\text {OS } 4}=V_{1}$. Thus, the sum of the offsets is stored on C 1 , and the differential voltage across the comparator is zero.

Polarity Determination (Figure 2)

The simplified diagram of the LF13300 in the Polarity Determination state is shown in Figure 2. S5 and S3 are closed during this period. S 5 grounds the buffer input and V_{X} (the unknown voltage) is applied through S 3 to the non-inverting input of A1. The equation that describes the op amp output voltage is given in Figure 2. When V_{X} is applied to $A 1$ at t_{1}, the output of the op amp slews to V_{X} and is integrated until t_{2}, when $S 3$ opens and S4 closes. At t_{2}, VOUT slews down by $-\mathrm{V}_{\mathrm{X}}$
leaving $\frac{1}{R C} \int_{t_{2}}^{t_{2}} V_{X d t}-V_{B^{\prime}}$ at the op amp output.
Just before t_{2}, the comparator senses the op amp output with respect to $-V_{B}$; the comparator output goes high if $\mathrm{V}_{\mathrm{X}}>0$ and remains low if $\mathrm{V}_{\mathrm{X}} \leq 0$.

Initialization (Figure 1)
During initialization, the configuration is the same way as it is in the Offset Correction state and the op amp output is brought back to the Offset Correction potential $-V_{B}{ }^{\prime}$.
Ramp Unknown (Figures 2 and 3)
In the Ramp Unknown state, if $\mathrm{V}_{\mathrm{X}} \geq 0, \mathrm{~S} 3$ and S 5 are closed, as shown in Figure 2, and V_{X} is applied to the

+ input of the integrator. If $\mathrm{V}_{\mathrm{X}}<0$, the device is connected as in Figure 3 with S2 and S4 closed. V_{X} is now applied through the buffer to the - input of the integrator. In either Ramp Unknown case, the op amp output ramps in the positive direction and V_{X} is applied to a high impedance JFET input.

Ramp Reference (Figure 4)

In this state, the LF13300 is configured with switches S 1 and S 4 closed. The reference voltage, V_{R}, a positive voltage, is applied to the buffer input and the op amp output ramps down until $\mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\mathrm{B}}$ where the comparator will trip.

If V_{X} and V_{R} are assumed to be constant over their respective integration periods, the integrals of Figure 4 are reduced to,

$$
\frac{V_{X}\left(t_{4}-t_{3}\right)}{R C}=\frac{V_{R}\left(t_{5}-t_{4}\right)}{R C} .
$$

or

$$
\frac{V_{X}}{V_{R}}=\frac{t_{5}-t_{4}}{t_{4}-t_{3}}
$$

Since $t_{4}-t_{3}=4096$ clock periods and $t_{5}-t_{4}$ can be measured in clock periods, $V_{X} / Y_{R}=X / 212$, where X is a digital binary output representing an analog input V_{X} with respect to V_{R}.

FIGURE 1. Offset Correction Circuit

Functional Description (Continued)

FIGURE 2. Polarity Determination Circuit or Ramp Unknown Circuit for $\mathbf{V}_{\mathbf{X}} \geq \mathbf{0}$

FIGURE 3. Ramp Unknown for $\mathbf{V}_{\mathbf{X}}<0$

Functional Description (Continued) $\quad v_{\text {out }}{ }^{*}=-\mathrm{v}_{\mathrm{B}^{\prime}}+\frac{1}{\mathrm{RC}}\left(\int_{\mathrm{t}_{3}}^{\mathrm{t}_{4}} \mathrm{v}_{\mathrm{X}} \mathrm{dt}-\int_{\mathrm{t}_{4}}^{\mathrm{t}_{5}} \mathrm{v}_{\mathrm{R}} \mathrm{dt}\right)$

${ }^{*}$ More accurately

$$
v_{\text {OUT }}=-v_{B^{\prime}}+\frac{1}{\mathrm{RC}}\left(\int_{\mathrm{t}_{4}}^{\mathrm{t}_{5+\Delta}} \mathrm{V}_{\mathrm{R} d \mathrm{t}}+\int_{\mathrm{t}_{3}}^{\mathrm{t}_{4}} v_{\mathrm{X}} \mathrm{dt}\right)+\delta
$$

Where δ is the incremental voltage overdrive needed to fully switch the comparator and Δ is the sum of the additional time required to develop δ and the comparator propagation delay.

FIGURE 4. Ramp Reference Circuit

12-Bit A/D Converter Electrical Characteristics

12-bit plus sign. (LF13300 with ADB1200 (MM5863)). ($\mathrm{V}_{\mathrm{R}}=10.000 \mathrm{~V}, \mathrm{~F}_{\mathrm{C}}=250 \mathrm{kHz}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Resolution (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=5.000 \mathrm{~V},-10 \mathrm{~V} \leq \mathrm{V} \leq \leq+10 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{C}}=125 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$.		Bits Bits
Non-Linearity			$\pm 1 / 8$	$\pm 1 / 2$	LSB
Ratiometric Gain Error (Def.)	$\mathrm{V}_{\mathrm{X}}= \pm 10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 2)		$\pm 1 / 2$	± 2	LSB
Gain Error Drift	$V_{X}=10.000 \mathrm{~V}$		± 1		ppm/ ${ }^{\circ} \mathrm{C}$
Zero Reading Drift	$V_{X}=0 V$		± 0.5		ppm/ $/{ }^{\text {C }}$
Analog Input Voltage Range		± 11	± 12		\checkmark
Analog Input Leakage Current	$V_{X}=0 . V_{\text {, }} T_{A}=25^{\circ} \mathrm{C}$		80	500	pA
Analog Input Resistance	$V_{X}=0 V, T_{A}=25^{\circ} \mathrm{C}$	100	1000		$\mathrm{M} \Omega$
Reference Input Voltage Range	V_{R} Varied, $T_{A}=25^{\circ} \mathrm{C}$	4		12	V
Reference Input Leakage Current	$\mathrm{V}_{R}=10.000 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		1	100	nA
Reference Input Resistance	$V_{R}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	100	1000		$\mathrm{M} \Omega$
Start Conversion Pulse Width	$\mathrm{V}_{\mathrm{SC}}=2.4 \mathrm{~V}$	2.4			$\mu \mathrm{s}$
Conversion Time	$\begin{aligned} & \mathrm{V}_{1 N}=10.000 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{C}}=8960 / \mathrm{F}_{\mathrm{C}} \end{aligned}$			36	ms
15V Supply Currents	LF13300, V^{+}Current			11	mA
-15V Supply Currents	LF13300, V- Current, ADB1200 (MM5863), VGG Current		27	45	mA
5V Supply Currents	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{ADB} 1200$ (MM5863), $V_{\text {SS }}$ Current		23	39	mA

Note 2: The A/D converter system must have been operational for a minimum of 30 seconds before this measurement is made. This is to relax the dielectric absorption effects of the integration capacitor, C.
Note 3: Polarity and Overrange outputs are considered as additional output bits.

12-Bit A/D Converter Circuit and Timing Diagrams

*Note. All TTL signal level.

FIGURE 5.

Application Hints

Increasing the Input Impedance of the LF13300, MM5863 12-Bit A/D Converter
The input impedance of the LF13300, ADB1200 (MM5863) A/D converter can be increased 1 to 2 orders of magnitude over the typical $1000 \mathrm{M} \Omega$ cited in the 12 -bit A / D specifications by insuring that the signals that switch the LF13300 do not overlap. A circuit that eliminates switching overlap by introducing a Delay $\left(\mathrm{t}_{\mathrm{d}}\right) \approx 3.3 \mathrm{k} \times 100 \mathrm{pF} \approx 300 \mathrm{~ns}$ to the rising edge of the signals from the ADB1200 (MM5863) is shown in Figure 6. Figure 7 shows the operation of this circuit. The total delay time $t_{r}{ }^{\prime}$ of the output will be equal to the inherent gate rise time, t_{r}, plus the RC delay, t_{d}. The fall time, t_{f} will be the basic gate delay.

Nulling the Residual Offset

The residual offset is $\langle 200 \mu \mathrm{~V}$ which is negligible for most applications. This can be reduced to $<40 \mu \mathrm{~V}$ by lowering the clock frequency from 250 kHz to about 75 kHz . If a lower residual offset is required, we may trim out the remainder as shown in Figure 8. This circuit applies a negative step to the offset correction capacitor, COC2, by means of a variable capacitor which is adjusted until charge injection imbalance of the offset correction switches are cancelled.

FIGURE 6. Overlap Elimination Circuit
 FIGURE 8. Residual Offset Nulling Circuit

Eliminating Errors Due to Power Supply Noise

For many applications, power supply noise ($f \geq 10 \mathrm{~Hz}$) causes errors which reduces the accuracy of the system. In most applications, noise can be adequately eliminated by putting a series resistor (100Ω) in the power supply line with a $10 \mu \mathrm{~F}$ tantalum capacitor connected at the power supply pins (Figure 9). The $10 \mu \mathrm{~F}$ capacitor is, in addition to the normal $0.1 \mu \mathrm{~F}$ ceramic disc capacitors, used as supply bypass capacitors.

Errors caused by noise on the negative supply, $-V_{S}$, can be further reduced by replacing, C_{OC} with a $10 \mu \mathrm{~F}$ low leakage tantalum capacitor. Since $-\mathrm{V}_{\mathrm{B}}$ is $3 V$ above $-V_{S}$, any noise appearing at $-V_{S}$ appears at $-V_{B}$; the $10 \mu \mathrm{~F}$ capacitor eliminates this noise.

Continuous Conversion Mode

For using the MM5863 in the continuous conversion mode, connect the end of conversion output, EOC (pin 23), to the output enable input, OE (pin 3), and connect the start conversion input, SC (pin 2) to 5 V .

Miscellaneous

Since none of the output pins employ short-circuit protection, extreme care should be taken when breadboarding or troubleshooting with the power ON.

FIGURE 7. Rise Time Delay Circuit

FIGURE 9. Power Supply Noise Reduction Circuit

Typical Applications

FIGURE 10. Continuous Conversion 12-Bit Plus Sign Serial Output A/D Using the LF13300 and the MM5863

Typical Applications (Continued)

* Note. Prior to the first conversion cycle, the data outputs will all be in a " 1 " state when the outputs are enabled (OE in " O " state).

FIGURE 11. 12-Bit Plus Sign A/D in Command Conversion Mode

4-Channel Differential Multiplexer with Autozeroed Instrumentation Amplifier and 12-Bit A/D Converter

Figure 12 shows a low speed, high accuracy, data acquisition unit where the analog input signal is acquired differentially and preconditioned through an LF352 monolithic instrumentation amplifier. To eliminate amplifier offset errors, autozeroing circuitry is added around the LF352 and is timed through the ADB1200 and flip-flop C. Flip-flops A and B form a 2-bit up counter for channel select.

The instrumentation amplifier is zeroed at power-up and after each conversion as shown in the timing diagram;
during autozero the multiplexer is disabled. When the system does polarity detection and A/D conversion, the LF352 is active and the multiplexer is enabled. The zeroing cycle for the LF13300 and the LF352 lasts for 256 clock periods, so the maximum clock frequency will depend upon the required accuracy and the minimum zeroing time of the instrumentation amplifier. Notice here that the system accuracy will be less than 12 bits since it will be affected by the gain linearity of the instrumentation amplifier.

For more details concerning data acquisition, see AN-156 and LF11508/LF11509 data sheet. For details on the instrumentation amplifier, see the LF352 data sheet.

Typical Applications (Continued)

FIGURE 12. 4-Channel Differential Multiplexer with Autozeroed Instrumentation Amplifier and 12-Bit A/D Converter

FIGURE 13. Timing Diagram for Figure 12

Typical Applications (Continued)

Note 3: Circuit drawn for 8 V full scale operation input scaling not shown.
Note 4: Inductive components U4X003 or Microtran PC6714.

Typical Applications (Continued)

3 3/4 Plus Digit (± 8191 Counts)/3 1/2-Digit (± 1999 Counts) DPM

In this circuit of Figure 19, the LF13300 and ADB1200 interact as previously described. The CMOS counter (MM74C926, MM74C928) is connected to count clock pulses during the ramp reference cycle. The counts are latched into the display when the comparator output trips, (goes low), as shown in the timing diagram Figure 20.

The RC network consisting of R1 and C1 is a low pass filter that prohibits the fast transients that occur on the comparator output during Offset Correction from loading any erroneous counts into the counter.

The DPM is able to operate from a single 15 V power supply with the aid of a dc-dc converter. The LM555 generates the negative voltages required in the circuit and also doubles as the clock. The combination of Q1, R2; R3 and R4 forms a level shift to convert the output swing of the LM555 to a $0 \mathrm{~V}-5 \mathrm{~V}$ swing that is compatible with the logic. The LM340-5 drops the incoming 15 V to 5 V for use by the logic circuits and the LED display.

This circuit can be a $3 \cdot 3 / 4$ plus digit DPM if the MM74C926 is used or a $31 / 2$-digit DPM if the MM74C928 is used. These counters are pin compatible and physically interchangeable.

FIGURE 20. Timing Diagram for 3 3/4-Digit DVM

3 3/4-Digit DPM Electrical Characteristics

3 3/4 plus digits plus sign (± 8191 counts) DPM system characteristics.
(Circuit as in Figure 18, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=4.096 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted).

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Resolution	$-8.2 \mathrm{~V} \leq \mathrm{V} \times \leq+8.2 \mathrm{~V}$	16,382			Counts
Nonlinearity	$\mathrm{V}_{\text {IN }}=4.000 \mathrm{~V} \ldots$		$\pm 1 / 8$	$\pm 1 / 2$	Counts
Ratiometric Gain Error	$\mathrm{V}_{\text {IN }}=4.000 \mathrm{~V}$		$\pm 1 / 2$	± 2	Counts
Gain Error Drift :	$V_{\text {IN }}=4.000 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq 5+70^{\circ} \mathrm{C}$		± 1		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Zero Reading 'Drift	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		± 1		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Analog Input Voltage Range				± 11	V
Reference Input Voltage Range	Reference Varied	0		+12	V
Analog Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		80	500	pA
Reference Input Leakage Current			1	100	nA
Analog Input Resistance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		1000	,	$\mathrm{M} \Omega$
Conversion Time	$\mathrm{V}_{\text {IN }}=4.000 \mathrm{~V}, \mathrm{fC}=125 \mathrm{kHz}$			74	ms

Typical Applications (Continued)

FIGURE 21. PC Board for 3 3/4 Plus (± 8191 Counts) and 3 1/2-Digit DPM

FIGURE 22. Stuffing Diagram for 3 3/4 Plus (± 8191 Counts) and 3 1/2-Digit DPM

AC Test Circuits

Test Circuit 3
Reference Input Characteristic Test with RR High

Test Circuit 5
Offset Correction Input Current, IOC Test

Test Circuit 2
Analog Input Characteristics Test with PD/RU+ High

Test Circuit 4
-VB Voltage Measurement Test

Test Circuit 6
Op Amp Slew Rate Test

AC Test Circuits (Continued)

Test Circuit 8 Open Loop Gain Test

Test Circuit 9
Buffer Slew Rate Test

AC Test Circuits (Continued)

Test Circuit 10 Buffer Voltage Gain Test

Test Circuit 11
Comparator Response Time Test

Typical Applications (Continued)

LM131A/LM131, LM231A/LM231, LM331ALM331 Precision Voltage-to-Frequency Converters

General Description

The LM131/LM231/LM331 family of voltage-tofrequency converters are ideally suited for use in simple low-cost circuits for analog-to-digital conversion, precision frequency-to-voltage conversion, long-term integration, linear frequency modulation or demodulation, and many other functions. The output when used as a voltage-to-frequency converter is a pulse train at a frequency precisely proportional to the applied input voltage. Thus, it provides all the inherent advantages of the voltage-to-frequency conversion techniques, and is easy to apply in all standard voltage-to-frequency converter applications. Further, the LM131A/LM231A/ LM331A attains a new high level of accuracy versus temperature which could only be attained with expensive voltage-to-frequency modules. Additionally the LM131 is ideally suited for use in digital systems at low power supply voltages and can provide low-cost analog-to-digital conversion in microprocessor-controlled systems. And, the frequency from a battery powered voltage-to-frequency converter can be easily channeled through a simple photoisolator to provide isolation against high common mode levels.

The LM131/LM231/LM331 utilizes a new temperaturecompensated band-gap reference circuit, to provide excellent accuracy over the full operating temperature range, at power supplies as low as 4.0 V . The precision timer circuit has low bias currents without degrading
the quick response necessary for 100 kHz voltage-tofrequency conversion. And the output is capable of driving 3 TTL loads, or a high voltage output up to 40 V , yet is short-circuit-proof against $\mathrm{V}_{\text {CC }}$.

Features

- Guaranteed linearity 0.01% max
- Improved performance in existing voltage-to-frequency conversion applications
- Split or single supply operation
- Operates on single 5V supply
- Pulse output compatible with all logic forms
- Excellent temperature stability, $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max
- Low power dissipation, 15 mW typical at 5 V
- Wide dynamic range, 100 dB min at 10 kHz full scale frequency
- Wide range of full scale frequency, 1 Hz to 100 kHz
- Low cost

Typical Applications

FIGURE 1. Simple Stand-Alone Voltage-to-Frequency Converter with $\pm \mathbf{0 . 0 3 \%}$ Typical Linearity ($\mathbf{f}=\mathbf{1 0 ~ H z}$ to 11 kHz)

Absolute Maximum Ratings

	LM131A/LM131	LM231A/LM231	LM331A/LM331
Supply Voltage	40V	40V	40 V
Output Short Circuit to Ground	Continuous	Continuous	Continuous
Output Short Circuit to VCC	Continuous	Continuous	Continuous
Input Voltage	-0.2 V to $+\mathrm{V}_{S}$	-0.2 V to $+\mathrm{V}_{\mathrm{S}}$	-0.2 V to $+\mathrm{V}_{S}$
	TMIN TMAX	$\mathrm{T}_{\text {MIN }} \mathrm{T}_{\text {MAX }}$	Tmin Tmax
Operating Ambient Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Dissipation (PD_{D} at $25^{\circ} \mathrm{C}$) and Thermal Resistance (θ_{jA})			
$\begin{array}{ll} \text { (H Package) } & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{j} A} \end{array}$	$\begin{aligned} & 670 \mathrm{~mW} \\ & 150^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 570 \mathrm{~mW} \\ & 150^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 570 \mathrm{~mW} \\ & 150^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
(N Package) $\begin{array}{ll} & \mathrm{PD}_{\mathrm{D}} \\ & \theta_{\mathrm{j} A}\end{array}$		$\begin{aligned} & 500 \mathrm{~mW} \\ & 155^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~mW} \\ & 155^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VFC Non-Linearity (Note 2)	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 20 \mathrm{~V}$		± 0.003	± 0.01	\% Full-
					Scale
	$\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$		± 0.006	± 0.02	\% Full-
					Scale
In Circuit of Figure 1	$V_{S}=15 \mathrm{~V}, \mathrm{f}=10 \mathrm{~Hz}$ to 11 kHz		± 0.024	± 0.14	\% Full-
					Scale
Conversion Accuracy Scale Factor	$V_{1 N}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=14 \mathrm{k} \Omega$				
(Gain)					
LM131, LM131A, LM231, LM231A		0.95	1.00	1.05	$\mathrm{kHz} / \mathrm{V}$
LM331, LM331A		0.90	1.00	1.10	kHz/V
Temperature Stability of Gain LM131/LM231/LM331	$T_{\text {MIN }} \leq T_{\text {A }} \leq T_{\text {MAX }}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\text {S }} \leq 20 \mathrm{~V}$				
LM131/LM231/LM331		\checkmark	± 30	± 150	ppm/ ${ }^{\circ} \mathrm{C}$
LM131A/LM231A/LM331A			± 20	± 50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Change of Gain with V_{S}	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 10 \mathrm{~V}$,	0.01	0.1	\%/V
	$10 \mathrm{~V} \leq \mathrm{V}_{S} \leq 40 \mathrm{~V}$		0.006	0.06	\%/V
Rated Full-Scale Frequency	$V_{\text {IN }}=-10 \mathrm{~V}$	10.0			kHz
Overrange (Beyond Full-Scale)	$\mathrm{V}_{\text {IN }}=-11 \mathrm{~V}$	10			\%
Frequency					
INPUT COMPARATOR					
Offset Voltage			± 3	± 10	mV
LM131/LM231/LM331	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$		± 4	± 14	mV
LM131A/LM231A/LM331A	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$		± 3	± 10	mV
Bias Current			-80	-300	nA
Offset Current			± 8	± 100	nA
Common-Mode Range	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	-0.2		$\mathrm{V}_{\mathrm{CC}}-2.0$	V
TIMER					
Timer Threshold Voltage, Pin 5		0.63	0.667	0.70	$\times \mathrm{V}_{S}$
Input Bias Current, Pin 5	$V_{S}=15 \mathrm{~V}$				
All Devices	$0 \mathrm{~V} \leq \mathrm{VPIN}_{5} \leq 9.9 \mathrm{~V}$		± 10	± 100	$n \mathrm{~A}$
LM131/LM231/LM331	$V_{\text {PIN } 5}=10 \mathrm{~V}$		200	1000	nA
LM131A/LM231A/LM331A	VPIN $5=10 \mathrm{~V}$		200	500	nA
VSAT PIN 5 (Reset)	$1=5 \mathrm{~mA}$		0.22	0.5	V

Electrical Characteristics (Continued) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 1)

Note 1: All specifications apply in the circuit of Figure 3, with $4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 40 \mathrm{~V}$, unless otherwise noted.
Note 2: Nonlinearity is defined as the deviation of fOUT from $V_{I N} \times\left(10 \mathrm{kHz} /-10 \mathrm{~V}_{\mathrm{DC}}\right)$ when the circuit has been trimmed for zero error at 10 Hz and at 10 kHz , over the frequency range 1 Hz to 11 kHz . For the timing capacitor, C_{T}, use NPO ceramic, Teflon*, or polystyrene.

Functional Block Diagrams

*Registered trademark of DuPont
FIGURE 1a

Typical Performance Characteristics

(All electrical characteristics apply for the circuit of Figure 3, unless otherwise noted.)

VREF vs Temperature, LM131A

Nonlinearity Error, LM131
(Figure 1)

Output Saturation Voltage vs IOUT (Pin 3)

Nonlinearity Error, Precision
F-to-V Converter (Figure 6)

Typical Applications (Continued)

PRINCIPLES OF OPERATION OF A SIMPLIFIED VOLTAGE-TO-FREQUENCY CONVERTER

The LM131 is a monolithic circuit designed for accuracy and versatile operation when applied as a voltage-tofrequency (V-to- F) converter or as a frequency-tovoltage (F-to-V) converter. A simplified block diagram of the LM131 is shown in Figure 2 and consists of a switched current source, input comparator, and 1 -shot timer.

The operation of these blocks is best understood by going through the operating cycle of the basic V-to-F converter, Figure 2, which consists of the simplified block diagram of the LM131 and the várious resistors and capacitors connected to it.

The voltage comparator compares a positive input voltage, V 1 , at pin 7 to the voltage, V_{x}, at pin 6 . If V 1 is greater, the comparator will trigger the 1 -shot timer. The output of the timer will turn ON both the frequency output transistor and the switched current source for a period $t=1.1 R_{t} C_{t}$. During this period, the current i will flow out of the switched current source and provide a fixed amount of charge, $\mathrm{Q}=\mathrm{i} \times \mathrm{t}$, into the capacitor, C_{L}. This will normally charge V_{X} up to a higher level than V1. At the end of the timing period, the current i will turn OFF, and the tımer will reset itself.

Now there is no current flowing from pin 1, and the capacitor C_{L} will be gradually discharged by R_{L} until V_{x} falls to the level of V 1 . Then the comparator will trigger the timer and start another cycle.

The current flowing into C_{L} is exactly $I_{\text {AVE }}=i x$ ($1.1 \times R_{t} C_{t}$) $\times f$, and the current flowing out of C_{L} is exactly $V_{X} / R_{L} \cong V_{I N} / R_{L}$. If $V_{I N}$ is doubled, the frequency will double to maintain this balance. Even a simple V-to-F converter can provide a frequency precisely proportional to its input voltage over a wide range of frequencies.

FIGURE 2. Simplified Block Diagram of Stand-Alone Voltage-to-Frequency Converter Showing LM131 and External Components

DETAIL OF OPERATION, FUNCTIONAL BLOCK DIAGRAM (FIGURE 1a)

The block diagram shows a band gap reference which provides a stable $1.9 \mathrm{~V} D C$ output. This $1.9 \mathrm{~V} D C$ is well regulated over a V_{S} range of 3.9 V to 40 V . It also has a flat, low temperature coefficient, and typically changes less than $1 / 2 \%$ over a $100^{\circ} \mathrm{C}$ temperature change.

The current pump circuit forces the voltage at pin 2 to be at 1.9 V , and causes a current $\mathrm{i}=1.90 \mathrm{~V} / \mathrm{R}_{\mathrm{S}}$ to flow. For $R_{S}=14 k, i=135 \mu \mathrm{~A}$. The precision current reflector. provides a current equal to i to the current switch. The current switch switches the current to pin 1 or to ground depending on the state of the R_{S} flip-flop.

The timing function consists of an RS flip-flop, and a timer comparator connected to the external $\mathrm{R}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}}$ network. When the input comparator detects a voltage at pin 7 higher than pin 6, it sets the R_{S} flip-flop which turns ON the current switch and the output driver transistor. When the voltage at pin 5 rises to $2 / 3 V_{C C}$, the timer comparator causes the RS flip-flop to reset. The reset transistor is then turned ON and the current switch is turned OFF.

However, if the input comparator still detects pin 7 higher than pin 6 when pin 5 crosses $2 / 3 V_{C C}$, the flip-flop will not be reset, and the current at pin 1 will continue to flow, in its attempt to make the voltage at pin 6 higher than pin 7. This condition will usually apply under start-up conditions or in the case of an overload voltage at signal input. It should be noted that during this sort of overload, the output frequency will be 0 ; as soon as the signal is restored to the working range, the output frequency will be resumed.

The output driver transistor acts to saturate pin 3 with an ON resistance of about 50Ω. In case of overvoltage, the output current is actively limited to less than 50 mA .

The voltage at pin 2 is regulated at $1.90 \mathrm{~V}_{\mathrm{DC}}$ for all values of i between $10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$. It can be used as a voltage reference for other components, but care must be taken to ensure that current is not taken from it which could reduce the accuracy of the converter.

PRINCIPLES OF OPERATION OF BASIC VOLTAGE-TO-FREQUENCY CONVERTER (FIGURE 1)

The simple stand-alone V-to-F converter shown in Figure 1 includes all the basic circuitry of Figure 2 plus a few components for improved performance.

A resistor, $R_{I N}=100 \mathrm{k} \Omega \pm 10 \%$, has been added in the path to pin 7, so that the bias current at pin $7(-80 \mathrm{nA}$ typical) will cancel the effect of the bias current at pin 6 and help provide minimum frequency offset.

The resistance R_{S} at pin 2 is made up of a $12 \mathrm{k} \Omega$ fixed resistor plus a $5 \mathrm{k} \Omega$ (cermet, preferably) gain adjust rheostat. The function of this adjustment is to trim out the gain tolerance of the LM131, and the tolerance of R_{t}, R_{L} and C_{t}. For best results, all the components

Typical Applications (Continued)

should be stable low-temperature-coefficient components, such as metal-film resistors. The capacitor should have low dielectric absorption; depending on the temperature characteristics desired, NPO ceramic, polystyrene, Teflon* or polypropylene are best suited.

A capacitor is added from pin 7 to ground to act as a filter for $\mathrm{V}_{\text {IN }}$. A value of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ will be adequate in most cases; however, in cases where better filtering is required, a $1 \mu \mathrm{~F}$ capacitor can be used. When the RC time constants are matched at pin 6 and pin 7, a voltage step at $V_{I N}$ will cause a step change in fOUT. If $C_{I N}$ is much less than C_{L}, a step at $V_{I N}$ may cause fOUT to stop momentarily.

A 47Ω resistor, in series with the $1 \mu \mathrm{~F} \mathrm{C}_{\mathrm{L}}$, is added to give hysteresis effect which helps the input comparator provide the excellent linearity (0.03% typical).

DETAIL OF OPERATION OF PRECISION V-TO-F CONVERTER (FIGURE 3)

In this circuit, integration is performed by using a conventional operational amplifier and feedback capacitor, C_{F}. When the integrator's output crosses the nominal threshold level at pin 6 of the LM131, the timing cycle is

* Registered trademark of DuPont
initiated. The average current fed into the op amp's summing point (p in 2) is $i \times\left(1.1 R_{t} C_{t}\right) \times f$ which is perfectly balanced with $-V_{I N} / R_{I N}$. In this circuit, the voltage offset of the LM131 input comparator does not affect the offset or accuracy of the V-to-F converter as it does in the stand-alone V-to-F converter; nor does the LM131 bias current or offset current. Instead, the offset voltage and offset current of the operational amplifier are the only limits on how small the signal can be accurately converted. Since op amps with voltage offset well below 1 mV and offset currents well below 2 nA are available at low cost, this circuit is recommended for best accuracy for small signals. This circuit also responds immediately to any change of input signal (which a stand-alone circuit does not) so that the output frequency will be an accurate representation of $V_{I N}$, as quickly as 2 output pulses' spacing can be measured.

In the precision mode, excellent linearity is obtained because the current source (pin 1) is always at ground potential and that voltage does not vary with $V_{I N}$ or fOUT. (In the stand-alone V-to-F converter, a major cause of non-linearity is the output impedance at pin 1 which causes i to change as a function of $V_{I N}$).

The circuit of Figure 4 operates in the same way as Figure 3, but with the necessary changes for high speed operation

[^31]
Typical Applications (Continued)

DETAILS OF OPERATION, FREQUENCY-TOVOLTAGE CONVERTERS (FIGURES 5 AND 6)

In these applications, a pulse input at f / N is differentiated by a C-R network and the negative-going edge at pin 6 causes the input comparator to trigger the timer circuit. Just as with a V-to-F converter, the average current flowing out of pin 1 is IAVERAGE $=i x$ $\left(1.1 R_{t} C_{t}\right) \times f$.

In the simple circuit of Figure 5, this current is filtered in the network $R_{\mathrm{L}}=100 \mathrm{k} \Omega$ and $1 \mu \mathrm{~F}$. The ripple will be less than 10 mV peak, but the response will be slow,
with a 0.1 second time constant, and settling of 0.7 sec ond to 0.1% accuracy.

In the precision circuit, an operational amplifier provides a buffered output and also acts as a 2 -pole filter. The ripple will be less than 5 mV peak for, all frequencies above 1 kHz , and the response time will be much quicker than in Figure 5. However, for input frequencies below 200 Hz , this circuit will have worse ripple than Figure 5. The engineering of the filter time-constants to get adequate response and small enough ripple simply requires a study of the compromises to be made. Inherently, V-to-F converter response can be fast, but F-to-V response can not.

FIGURE 4. Precision Voltage-to-Frequency Converter, 100 kHz Full-Scale, $\pm 0.03 \%$ Non-Linearity

$V_{\text {OUT }}=f_{I N} \times 2.09 V \times \frac{R_{L}}{R_{S}} \times\left(R_{t} C_{t}\right)$
*Use stable components with low temperature coefficients.
FIGURE 5. Simple Frequency-to-Voltage Converter, 10 kHz Full-Scale, $\pm 0.06 \%$ Non-Linearity

SELECT $\mathrm{Ax}=\frac{\left(\mathrm{V}_{\mathrm{S}}-2 \mathrm{~V}\right)}{0.2 \mathrm{~mA}}$
*Use stable components with low temperature coefficients.
FIGURE 6. Precision Frequency-to-Voltage Converter, 10 kHz Full-Scale with 2-Pole Filter, $\pm 0.01 \%$
Non-Linearity Maximum

Typical Applications (Continued)

Light Intensity to Frequency Converter

Temperature to Frequency Converter

Long-Term Digital Integrator Using VFC

Basic Analog-to-Digital Converter Using Voltage-to-Frequency Converter

Typical Applications (Continued)

Analog-to-Digital Converter with Microprocessor

Remote Voltage-to-Frequency Converter with 2-Wire Transmitter and Receiver

Voltage-to-Frequency Converter with Square-Wave Output Using $\div \mathbf{2}$ Flip-Flop

Voltage-to-Frequency Converter with Isolators

Typical Applications (Continued)

Voltage-to-Frequency Converter with Isolators

Voltage-to-Frequency Converter with Isolators

Connection Diagrams

Order Number LM131AH, LM131H, LM231AH, LM231H, LM331AH or LM331H See NS Package H08C

Order Number LM231AN, LM231N, LM331AN, or LM331N
See NS Package N08B

LM131A/LM131, LM231A/LM231, LM331A/LM331

National
 Semiconductor
 LM1508/LM1408 8-Bit DIA Converter

 A to D, D to A
General Description

The LM1508/LM1408 is an 8 -bit monolithic digital-toanalog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with $\pm 5 \mathrm{~V}$ supplies. No reference current (IREF) trimming is required for most applications since the full scale output current is typically ± 1 LSB of 255 IREF/ $^{\prime}$ 256. Relative accuracies of better than $\pm 0.19 \%$ assure 8 -bit monotonicity and linearity while zero level output current of less than $4 \mu \mathrm{~A}$ provides 8 -bit zero accuracy for $I_{\text {REF }} \geq 2 \mathrm{~mA}$. The power supply currents of the LM1508/LM1408 are independent of bit codes, and exhibits essentially constant device characteristics over the entire supply voltage range.

The LM1508/LM1408 will interface directly with popular TTL, DTL or CMOS logic levels, and is a direct replacement for the MC1508/MC1408. For higher speed
applications, see DAC0800 data sheet. For more information, see DAC0808 data sheet.

Features

- Relative accuracy: $\pm 0.19 \%$ error maximum LM1508-8 and LM1408-8
- Full scale current match: ± 1 LSB typ
- 7 and 6 -bit accuracy available
- Fast settling time: 150 ns typ
- Noninverting digital inputs are TTL and CMOS compatible
- High speed multiplying input slew rate: $8 \mathrm{~mA} / \mu \mathrm{s}$
- Power supply voltage range: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low power consumption: $33 \mathrm{~mW} @ \pm 5 \mathrm{~V}$

Block and Connection Diagrams

Typical Application

FIGURE 1. $\pm 10 \mathrm{~V}$ Output Digital to Analog Converter

Ordering Information

ACCURACY	OPERATING TEMPERATURE RANGE	ORDER NUMBERS*		
		HERMETIC	PLASTIC	
	PACKAGE (J16A)	PACKAGE (N16A)		
8 -Bit	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	LM1508D-8	LM1508J-8	
8 -Bit	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$		LM1408J-8	LM1408N-8
7 -Bit	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$		LM1408J-7	LM1408N-7
6-Bit	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$		LM1408J-6	LM1408N-6

[^32]
Absolute Maximum Ratings

Power Supply Voltage

$V_{C C}$	$5.5 V_{D C}$
$V_{E E}$	$-16.5 V_{D C}$
igital Input Voltage, V5-V12	$-10 V_{D C}$ to $+18 V_{D C}$
pplied Output Voltage, V_{O}	$-11 \mathrm{~V}_{\mathrm{DC}}$ to $+18 \mathrm{~V}_{\mathrm{DC}}$
eference Current, l_{14}	5 mA
eference Amplifier Inputs, V14, V15	$V_{C C}, V_{E E}$

Reference Amplifier Inputs, V14, V15
$5.5 V_{D C}$
$-16.5 V_{D C}$
$-10 V_{D C}$ to $+18 V_{D C}$
$-11 V_{D C}$ to $+18 V_{D C}$
5 mA
$V_{C C}, V_{E E}$

Power Dissipation (Package Limitation)

> Cavity Package
> Derate above $T_{A}=25^{\circ} \mathrm{C}$

Operating Temperature Range
LM1508-8
LM1408-8 Series
Storage Temperature Range

1000 mW $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ $0 \leq T_{A} \leq+75^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics

(VCC $=5 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {REF }} / R 14=2 \mathrm{~mA}, \mathrm{LM} 1508-8: \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ;$ LM1408-8, LM1408-7, LM1408-6, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, and all digital inputs at high logic level unless otherwise noted.)

Note 1: All current switches are tested to guarantee at least 50% of rated current.
Note 2: All bits switched.
Note 3: Range control is not required. Semiconductor
MM54C905/MM74C905 12-Bit Successive Approximation Register

General Description

The MM54C905/MM74C905 CMOS 12-bit successive approximation register contains all the digit control and storage necessary for successive approximation analog-to-digital conversion. Because of the unique capability of CMOS to switch to each supply rail without any offset voltage, it can also be used in digital systems as the control and storage element in repetitive routines.

Features

- Wide supply voltage range
3.0 V to 15 V
- Guaranteed noise margin
- High noise immunity
- Low power TTL compatibility
- Provision for register extension or truncation
- Operates in START/STOP or continuous conversion mode
- Drive ladder switches directly. For 10 bits or less with 50k/100k R/2R ladder network

Connection Diagram

Order Number MM54C905D or MM74C905D
See NS Package D24A
Order Number MM74C905N
See NS Package N18A
Truth Table

TIME	INPUTS			OUTPUTS													
t_{n}	D	$\overline{\mathrm{S}}$	\bar{E}	D0	011	Q10	09	Q8	07	Q6	Q5	Q4	Q3	Q2	Q1	Q0	$\overline{\mathrm{CC}}$
0	\times	L	L	x	X	X	X.	X	X	X	X	X	X	\times	X	X	X
1	D11	H	L	X	L	H	H	H	H	H	H	H	H	H	H	H	H
2	D10	H	L	D11	D11	L	H	H	H	H	H	H	H	H	H	H	H
3	D9	H	L	D10	D11	D10	L	H	H	H	H	H	H	H	H	H	H
4	D8	H	L	D9	D11	D10	D9	L	H	H	H	H	H	H	H	H	H
5	D7	H	L	D8	D11	D10	D9	D8	L	H	H	H	H	H	H	H	H
6	D6	H	L	D7	D11	D10	D9	D8	D7	L	H	H	H	H	H	H	H
7	D5	H	L	D6	D11	D10	D9	D8	D7	D6	L	H	H	H	H	H	H
8	D4	- H	L	D5	D11	D10	D9	D8	D7	D6	D5	L	H	H	H	H	H
9	D3	H	L	D4	D11	D10	D9	D8	D7	D6	D5	D4	L	H	H	H	H
10°	D2	H	L	D3	D11	D10	D9	D8	D7	D6	D5	D4	D3	L	H	H	H
11	D1	H	L	D2	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	Li	H	H
12	D0	H	L	D1	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	L	H
13	x	H	$!$	D0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	L
14	x	X	L	x	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	L
	X	X	H	X	H	NC											

[^33]Absolute Maximum Ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range
MM54C905
MM74C905
Storage Temperature Range
Package Dissipation
Operating V_{Cc} Range
Absolute Maximum V_{cc}
Lead Temperature (Soldering, 10 seconds)
-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
3.0 V to 15 V 16 V
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics Min/max limits apply across temperature range, unless otherwise noted.

OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheêt)

Output Source Current (ISOURCE) (P-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	-3.3		mA
Output Source Current (ISOURCE) (P-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-8.0	-15		mA
Output Sink Current (I $I_{\text {SINK }}$) (N -Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
Output Sink Current (${ }_{\text {SINK }}$) (N -Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	16		mA
Q11-O0 Outputs $\mathrm{R}_{\text {SOURCE }}$	$\begin{aligned} & V_{C C}=10 \mathrm{~V} \pm 5 \% \\ & V_{\text {OUT }}=V_{c C}-0.3 \mathrm{~V} . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	150		350	Ω
$\mathrm{R}_{\text {SINK }}$	$\begin{aligned} & V_{c C}=10 \mathrm{~V} \pm 5 \% \\ & V_{\text {OUT }}=0.3 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	80		230	Ω

AC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time From Clock	$V_{\text {cc }}=5.0 \mathrm{~V}$		200	350	ns
Input To Outputs ($\mathrm{Q} 0-\mathrm{Q} 11$) ($\mathrm{t}_{\text {pd(a) }}$)	$V_{C C}=10 \mathrm{~V}$		80	150	ns
Propagation Delay Time From Clock	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		180	325	ns
Input To $\mathrm{D}_{\mathrm{O}}\left(\mathrm{t}_{\mathrm{pd}\left(\mathrm{D}_{\mathrm{O}}\right)}\right)$	$V_{C C}=10 \mathrm{~V}$		70	125	ns
Propagation Delay Time From Register	$\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$		190	350	ns
Enable ($\overline{\mathrm{E}})$ To Output (Q11) ($\mathrm{t}_{\mathrm{pd}(\overline{\mathrm{E}})}$)	$V_{C C}=10 \mathrm{~V}$.		75	150	ns
Propagation Delay Time From Clock	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		190	350	ns
To $\overline{\mathrm{CC}}\left(\mathrm{t}_{\mathrm{pd}(\overline{\mathrm{CC}})}\right)$	$\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$		75	0.50	ns
Data Input Set-Up Time ($\mathrm{t}_{\text {DS }}$)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$. 80			ns
	$V_{C C}=10 \mathrm{~V}$	30			ns
Start Input Set-Up Time ($\mathrm{t}_{\text {ss }}$)	$V_{c c}=5.0 \mathrm{~V}$	80		.	ns
	$V_{c c}=10 \mathrm{~V}$	30			ns
Minimum Clock Pulse Width ($\mathrm{t}_{\text {PWL }}, \mathrm{t}_{\text {PWH }}$)	$V_{\text {cc }}=5.0 \mathrm{~V}$	250	125		ns
	$V_{c c}=10 \mathrm{~V}$	100	50		ns
Maximum Clock Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		-	15	$\mu \mathrm{s}$
	$V_{C C}=10 \mathrm{~V}$			5	$\mu \mathrm{s}$
Maximum Clock Frequency ($\mathrm{f}_{\text {MAX }}$)	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	2	4		MHz
	$V_{C C}=10 \mathrm{~V}$	5	10		MHz
Clock Input Capacitance ($\mathrm{C}_{\text {CLK }}$)	Clock Input (Note 2)		10		pF
Input Capacitance ($\mathrm{C}_{1 \mathrm{~N}}$)	Any Other Input (Note 2)		5		pF
Power Dissipation Capacitance ($\mathrm{C}_{\text {PD }}$)	(Note 3)		100		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

Typical Performance Characteristics

Timing Diagram

Switching Time Waveforms

USER NOTES FOR A/D CONVERSION

The register can be used with either current switches that require a low voltage level to turn the switch ON or current switches that require a high voltage level to turn the switch ON. If current switches are used which turn ON with a low logic level, the resulting digit output from the register is active low. That is, a logic " 1 " is represented as a low voltage level. If current switches are used which turn ON with a high logic level, the resulting digit output is active high. A logic " 1 " is represented as a high voltage level.

For a maximum error of $\pm 1 / 2$ LSB, the comparator must be biased. If current switches that require a high voltage level to turn ON are used, the comparator should be biased $+1 / 2$ LSB and if the current switches require a low logic level to turn ON, then the comparator must be biased $-1 / 2$ LSB.

The register can be used to perform 2's complement conversion by offsetting the comparator one half full
range $+1 / 2$ LSB and using the complement of the MSB Q11 'as the sign bit.

If the register is truncated and operated in the continuous conversion mode, a lock-up condition may occur on power-ON. This situation can be overcome by making the START input the "OR" function of $\overline{C C}$ and the appropriate register output.

The register, by suitable selection of register ladder network, can be used to perform either binary or BCD conversion.

The register outputs can drive the 10 bits or less with $50 \mathrm{k} / 100 \mathrm{k} R / 2 \mathrm{R}$ ladder network directly for $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$ or higher. In order to drive the 12 -bit $50 \mathrm{k} / 100 \mathrm{k}$ ladder network and have the $\pm 1 / 2$ LSB resolution, the MM54C902/MM74C902 or MM54C904/MM74C904 is used as buffers, three buffers for MSB (Q11), two buffers for Q10, and one buffer for Q9.

Typical Applications

12-Bit Successive Approximation A-to-D Converter, Operating in Continuous Mode, Drives the 50k/100k Ladder Network Directly

12-Bit Successive Approximation A-to-D Converter Operating in Continuous 8-Bit Truncated Mode

Definition of Terms

CP: Register clock input.
$\overline{\mathbf{C C}}$: Conversion complete-this output remains at $\mathrm{V}_{\text {OUT(1) }}$ during a conversion and goes to $\mathrm{V}_{\text {OUT(0) }}$ when conversion is complete.
D: Serial data input-connected to comparator output in A-to-D applications.
$\overline{\mathrm{E}}$: Register enable-this input is used to expand the length of the register. When \bar{E} is at $V_{I N(1)} Q 11$ is forced to $\mathrm{V}_{\mathrm{OUT}(12}$ and inhibits conversion. When not used for expansion E must be connected to $V_{I N(0)}$ (GND).
Q11: True register MSB output.
$\overline{\mathbf{Q}} 11$: Complement of register MSB output.
Qi ($\mathbf{i}=\mathbf{0}$ to 11): Register outputs.
$\overline{\mathrm{S}}$: Start input-holding start input at $\mathrm{V}_{\text {IN }}(0)$ for at least one clock period will initiate a conversion by setting MSB (Q11) at $\mathrm{V}_{\text {OUt(0) }}$ and all other output (Q10-Q0) at $\mathrm{V}_{\text {OUT(1) }}$. If set-up time requirements are met, a conversion may be initiated by holding start input at $\mathrm{V}_{\text {IN }}(0)$ for less than one clock period.

DO: Serial data output-D input delayed by one clock period.

National

General Description

The TP3001 and TP3002 are Pulse Code Modulation (PCM) systems for the digital coding and decoding of analog signals in the voice frequency band. The TP3001 system utilizes μ-law coding of the analog signals while the TP3002 is an A-law system. Each system consists of 2 IC packages. The TP3001 system uses linear part LF3700 and CMOS part MM58100. The TP3002 system uses the same linear part and a different CMOS part (MM58150). Each system samples a filtered ($300 \mathrm{~Hz} \leq$ $\mathrm{f} \leq 3.4 \mathrm{kHz}$) analog signal at an 8 kHz rate, converts this sampled voltage to an 8 -bit companded digital code (μ-law or A-law) and loads this code into a high speed serial output buffer. This output buffer will operate at any speed between 64 and 2100 kilobits per second. Either system will also accept an incoming 8-bit PCM word (again, at any speed between 64 and 2100 kilobits per second) and will automatically interrupt the encode cycle to decode the PCM word and update the CODEC output sample and hold. After decoding, the systems will automatically return to the encoding cycle. This interrupt capability allows either CODEC system to send and receive PCM data asynchronously. These systems were specifically designed for low cost "per line" or per channel CODEC applications.

These IC's contain all the necessary elements required for a complete CODEC system-both the input and output sample and hold, comparator, stable voltage reference, non-linear D/A converter, successive approximation - logic, control logic and digital input and output PCM buffers. The user must provide an input aliasing filter ($300 \mathrm{~Hz} \leq \mathrm{f} \leq 3.4 \mathrm{kHz}$) such as the AF133 or similar filter. The AF134, or similar filter, is available for use as the output filter ($300 \mathrm{~Hz} \leq \mathrm{f} \leq 3.4 \mathrm{kHz}$) which is needed to reject sidebands around 8 kHz and provide correction for the $\sin x / x$ frequency distortion introduced by the output sample and hold.

A special auto-zero circuit insures an extremely low idle channel noise and low crosstalk enhancement. During the decode cycle, the non-linear D/A converter is shifted $1 / 2$ LSB, thereby achieving a typical signal to total distortion performance of at least 3 dB better than the D3 channel bank specifications.

The TP3001 system also includes 4 pins for the insertion and extraction of the signaling bits required for D3 channel bank operation.

Features

- TP3001 uses the standard μ - 255 code
- TP3002 uses the standard A-law code
- Each 2-chip system includes:
- Non-linear D/A converter
- Voltage reference with excellent long term stability
- Comparator
- Successive approximation logic
- Input digital buffer
- Output digital buffer
- Input sample and hold
- Output sample and hold
- Auto-zero circuit
- Control logic
- TP3001 system meets or exceeds all relevant D3 channel bank specifications
- Both systems meet or exceed all relevant CCITT specifications
- Analog input range of $\pm 5 \mathrm{~V}$
- Analog output range of $\pm 5 \mathrm{~V}$
- Input and output PEM words can be clocked at 64 to 2100 kilobits per'second
- Incoming PCM word may be asynchronous.
- Provision for the insertion and extraction of signaling bits in the TP3001 system
- Open drain PCM out for TRI-STATE ${ }^{\circledR}$ capability

Applications

- Use with digital switching systems in telephone central office or private branch exchange
- Replace 24 or 32 -channel shared CODEC in telephone channel bank
- Use to digitize voice and similar analog signals for low noise transmission and reception

Simplified Block Diagram

Absolute Maximum Ratings

V^{+}to Gnd
15 V
V^{-}to Gnd
$-15 \mathrm{~V}$
Voltage at Any Pin Except Digital Inputs or Digital Outputs
Voltage at Any Digital Input or Output
Operating Temperature Range
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics

$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}, \mathrm{VEE}^{2}=-12 \mathrm{~V}$ (Note 4) over operating temperature range, unless otherwise specified.

Electrical Characteristics (Continued)

$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$ (Note 4) over operating temperature range, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Interchannel Crosstalk (TP3001 Only)	Level at Decoder Output When a $-80 \mathrm{dBm0}$ Signal is Applied to Encoder Input (Figure 11)		-83	.	dBm0
Analog Output Frequency Response	$300 \leq \mathrm{f} \leq 3.4 \mathrm{kHz}$		± 0.05		dB Deviation From Theoretical $\sin x / x$ Response (Figure 3)
Logical "1" Input Voltage	(Note 5)	4.0	\because		V.
Logical "1" Input Current	Digital $V_{\text {IN }}=5 \mathrm{~V}$			1	$\mu \mathrm{A}$
Logical " 0 ' Input Voltage				0.8	V
Logical " 0 " Input Current .	Digital $V^{\prime} \mathrm{N}=0 \mathrm{~V}$			-1	$\mu \mathrm{A}$
Master Clock Frequency, F_{C}	For Proper Operation: Duty Cycle $=50 \% \pm 10 \%$		128	-	kHz
Input and Output PCM Buffer Clocks ($F_{b o}$ and $F_{b i}$)	F_{0} and $F_{i}=8 \mathrm{kHz}$ $\mathrm{F}_{\text {bo }}, \mathrm{F}_{\text {bi }}$ Duty Cycle $=40-60 \%$	64		2100	kHz
Propagation Delay Fbo to Valid PCM Out		50	150	250	ns
PCM Out Pin Capacitance			4		pF
PCM Out Fall Time	$1 \mathrm{k} \Omega$ Resistor to VDD 100 pF Capacitor to VSS		50	150	ns
System Power Dissipation	$F_{\text {bo }}, F_{\text {bi }}=1.544 \mathrm{MHz}$		250	300	mW
Shutdown Mode (LF3701 Only)	Pin 3 at Logic High		10	20	mW

Note 1: The relationship between the digital coding and the relative audio signal level is fixed as follows: a sine wave of 1 kHz and a nominal level of 0 dBmO should be present at the audio output of the decoder when the appropriate character sequence shown below is applied to the decoder input.

TP3001 SYSTEM							
μ-LAW							
MSB	2	3	4	5	6	7	LSB
0	0	0	1	1	1	1	0
0	0	0	0	1	0	1	1
0	0	0	0	1	0	1	1
0	0	0	1	1	1	1	0
1	0	0	1	1	1	1	0
1	0	0	0	1	0	1	1
1	0	0	0	1	0	1	1
1	0	0	1	1	1	1	0

| TP3002 SYSTEM | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A-LAW | | | | | | | |
| MSB | 2 | 3 | 4 | 5 | 6 | 7 | LSB |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |

The resulting theoretical load capacity (TMAX) is 3.17 dBmO for the TP3001 system (μ-law) and $3.14 \mathrm{dBm0}$ for the TP3002 system (A-law). Note 2: The PCM transmit filter must be AC coupled to the CODEC and a resistor of $\mathbf{2 4} \mathbf{k} \Omega$ or lower must be tied between analog in and analog ground. CODEC input impedance will then appear as $24 \mathrm{k} \Omega$.
Note 3: PCM OUT and S_{i} are open drain outputs and will require external pull-up resistors to +6 V maximum. $1 \mathrm{k} \Omega$ for PCM OUT and $10 \mathrm{k} \Omega$ for S_{i} are recommended when $F_{b o}=F_{b i}=2.1 \mathrm{MHz}$.
Note 4: Special care must be taken to assure that the substrate to ground pn junction is never forward biased. In cases where the negative power must be open circuited, it is recommended that a high current diode (1 amp Schottky) be placed between V^{-}and ground. It is further recommended that the power supply turn-on sequence be as follows: V^{-}or ground first, followed by V^{+}. Power supply turn-off should reverse the procedure.
Note 5: For TTL or LS compatibility, external pull-up resistors are required between the digital inputs and the TTL or LS logic power supply.

System Description (Refer to block diagrams)

The master clock for the system is F_{c} and must be run at 128 kHz which divides the $125 \mu \mathrm{~s}(1 / 8 \mathrm{kHz})$ time-frame into 16 time slots. The rising edge of the Output Sync (F_{o}) initiates the encoding cycle. The Input Sample and Hold Control (IN S/H CNTL) will go high for $19 \mu \mathrm{~s}$ thereby causing the input sample and hold to acquire a new input analog voltage. This acquired analog voltage is presented to a UNITY GAIN BUFFER located on the CMOS chip and then forwarded to the positive comparator input on the linear chip. The successive approximation will then begin. The SUCCESSIVE APPROXIMATION REGISTER will first load a zero code into the NON-LINEAR D/A CONVERTER. The output of the D/A converter goes to a second unity gain buffer and then to the negative input of the comparator on the linear chip. The comparator will then decide if the sampled analog voltage is positive or negative. If the analog input voltage is positive, the CONTROL LOGIC will pull the polarity control line high, which in turn will cause the voltage reference on the linear chip to deliver a positive reference voltage to the NON-LINEAR D/A CONVERTER. Conversely, if the analog input voltage is negative, a negative reference voltage will be applied to the NON-LINEAR D/A. The successive approximation will turn ON the second bit to the NON-LINEAR D/A CONVERTER and a decision is made to either leave that bit ON, or turn it OFF. The logic will then turn ON the third bit and make a decision to leave that bit ON or turn it OFF. In this way, the analog input voltage can be converted into the standard 8 -bit μ-law or A-law code in 8 clock cycles.

At the end of the encode cycle the 8 -bit code is loaded into the OUTPUT PCM BUFFER. The word is read out serially (MSB first) on PCM OUT by the Output Clock ($F_{b o}$) and the Output Sync (F_{0}).

The incoming PCM word is read in serially (MSB first) on the PCM IN line by the Input Clock (F_{bi}) and the Input Sync (F_{i}). When the input word has been read in and F_{i} goes low, the system will immediately switch over to the decode mode. The current status of the successive approximation is temporarily stored while the decode word is delivered to the NON-LINEAR D/A CONVERTER. During decode, the ladder is shifted the required $1 / 2$ LSB to minimize distortion. The CONTROL LOGIC will then raise the Output S/H Control line so that the Output Sample and Hold will acquire this new output voltage. After 4 clock cycles the circuit will return to the encode mode. The analog output of the system will therefore be a staircase type output with the associated $\sin x / x$ frequency distortion, (Figure 3).

The system incorporates an AUTO-ZERO circuit to ensure a low DC offset for the encoding process, and very low idle channel noise. The encoded MSB (the sign bit) is latched on the MSB OUT pin. This signal then is fed to a simple external low pass RC filter (with a time constant of about 100 ms to 1 sec) and then to the AUTO-ZERO pin on the LF3700. The DC voltage on this pin will adjust the offset of the input sample and hold to correct for any offset voltage in the encoding path. This will also correct for up to $\pm \mathbf{2 0} \mathrm{mV}$ DC offset voltage present in the analog input signal. This scheme simply forces equal numbers of positive and negative voltages over the long term.

There are 4 pins available in the TP3001 system for the insertion and extraction of signaling bits. The operation of these pins is covered in the timing diagrams.

System Block Diagrams

TP3001 System

Note. Pin 3 of the LF3700 should be connected to analog ground. Pin 3 of the LF3701 is a power down control; logic high (5V) is the power down standby mode for the TP3000 systems.

System Block Diagrams (Continued)

TP3002 System

Note. Pin 3 of the LF3700 should be connected to analog ground. Pin 3 of the LF3701 is a power down control; logic high (5V) is the power down standby mode for the TP3000 systems.

Ordering Information

SYSTEM	ORDER LINEAR PART: D20A	AND CMOS PART: D24A
TP3001 (μ-law)	LF3700D	MM58100D
TP3002 (A-law)	LF3700D	MM58150D

Description of Pin Functions

CMOS PIN FUNCTIONS:

MM58100 MM58150
PIN
NO.

RIN

CMOS PIN FUNCTIONS: (Continued)

MM58100 MM58150
PIN
NO.

5

Description of Pin Functions (Continued)

CMOS PIN FUNCTIONS: (Continued)

MM58100 MM58150
PIN
NO.

13

LINEAR PIN FUNCTIONS:

LF3700 PIN

 PINNO.
HOLD CONTROL)
D GND
(DIGITAL
GROUND)
AUTO Z
(AUTO ZERO)
A IN
(ANALOG IN)
v^{+}
IN S/H OUT.
PUT IOUTPUT
OF INPUT
SAMPLE AND
HOLD)
IN S/H CAP
I INPUT SAM-
PLE AND HOLD
CAPACITOR)
VDD
$20 \mathrm{~V}^{-}$

Typical Performance Characteristics

FIGURE 1. Typical Signal/ Total Distortion Ratio as a Function of Input Level with a White Noise Source

FIGURE 2. Maximum Gain Tracking Error (Δ Gain) as a Function of Input Level with a White Noise Source

FIGURE 3. Output $\sin x / x$ Frequency Response

The Marconi TF2807A's noise output has a probability distribution of amplitude approximating a Gaussian distribution which is band limited to conform with the latest CCITT recommendations.
Switch position A - Perfect encode; decode TP3000
Switch position B - Encode TP3000; perfect decode
FIGURE 4. Test Set-Up for Signal-to-Distortion and Gain Tracking Using a Noise Source

Switch position A - Perfect encode; decode TP3000
Switch position B - Encode TP3000; perfect decode
FIGURE 5. Test Set-Up for Signal-to-Distortion Using a 1020 Hz Signal

[^34]
Test Set-Up Diagrams* (Continued)

Switch position A - Perfect encode; decode TP3000
Switch position B - Encode TP3000; perfect decode
FIGURE 6. Test Set-Up for Gain Tracking Using 1020 Hz Signal

Determine the 0 dBmO level on the HP3555B and then measure the idie channel noise with the HP3555B in the C-MSG-mode. The noise in dBrnc0 is $90 \mathrm{dBmO}-\mathrm{A}$, where A is the idle channel noise measurement down from the 0 level (in dB).

FIGURE 7. Test Set-Up for Idle Channel Noise
*Perfect encode or decode is μ-law when testing TP3001 and A-law when testing TP3002

Test Set-Up Diagrams* (Continued)

The output at any frequency (except 1020 Hz) should be at least 40 dB down. The two frequencies of interest are the second and third harmonics (2040 Hz and 3060 Hz).
Switch position A - Perfect encode; decode TP3000
Switch position B - Encode TP3000; perfect decode
FIGURE 8. Test Set-Up for Single Frequency Distortion

FIGURE 9. Test Set-Up for Go-to-Return Crosstalk

[^35]Test Set-Up Diagrams* (Continued)

FIGURE 10. Test Set-Up for Return-to-Go Crosstalk

Switch position A - Perfect encode; decode TP3000
Switch position B - Encode TP3000; perfect decode
FIGURE 11. Test Set-Up for Interchannel Crosstalk

[^36]
Timing Diagrams

SYSTEM TIMING
$\mathrm{F}_{\mathrm{O}}, \mathrm{F}_{\text {bo }}$ and PCM OUT Relationships

$F_{i}, F_{b i}$ and PCM IN Relationships

Timing Diagrams (Continued)
SIGNALING
(TP3001 Only)
$F_{\text {so }}, S_{0}, F_{0}$ Timing Relationships

$\mathbf{F}_{\mathbf{s i}}, \mathbf{S}_{\mathbf{i}}, \mathrm{F}_{\mathbf{i}}$ Timing Relationships

PCM IN

Timing Generator Outputs

A to D, D to A

LH0091 True RMS to DC Converter

general description

The LH0091, rms to dc converter, generates a dc output equal to the rms value of any input per the transfer function:

$$
E_{O U T}(D C)=\sqrt{\frac{1}{T} \int_{0}^{T} E_{1 N^{2}(t) d t}}
$$

The device provides rms conversion to an accuracy of 0.1% of reading. using the external trim procedure. It is possible to trim for maximum accuracy $(0.5 \mathrm{mV}$ $\pm 0.05 \%$ typ) for decade ranges i.e., $10 \mathrm{mV} \rightarrow 100 \mathrm{mV}$, $0.7 \mathrm{~V} \rightarrow 7 \mathrm{~V}$, etc.

features

- Low cost
- True rms conversion
- 0.5% of reading accuracy untrimmed
- 0.05% of reading accuracy with external trim
- Minimum component count
- Input voltage to $\pm 15 \mathrm{~V}$ peak for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
- Uncommitted amplifier for filtering, gain, or high crest factor configuration
- Military or commercial temperature range.
block and connection diagrams
Dual-In-Line Package

simplified schematic

Note: Dotted lines denote external connections.

absolute maximum ratings

Supply Voltage		$\pm 22 \mathrm{~V}$
Input Voltage	$\pm 15 \mathrm{~V}$ peak	
Output Short Circuit Duration	Continuous	
Operating Temperature Range	TMIN	TMAX
LH0091	$-55^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
LH0091C	$-25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
Storage Temperature Range	-	
LH0091	$-65^{\circ} \mathrm{C}$	$+150^{\circ} \mathrm{C}$
LH0091C	-25	0 $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)		$300^{\circ} \mathrm{C}$

electrical characteristics $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Transfer Function $=E_{O(D C)}=\sqrt{\frac{1}{T} \int_{0}^{T} E_{1 N^{2}}(t) d t}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ACCURACY (See Definition of Terms)					
Total Unadjusted Error Total Adjusted Error Total Unadjusted Error vs Temperature Total Unadjusted Error vs Supply Voltage	$\begin{aligned} & 50 \mathrm{mVrms} \leq \mathrm{V}_{\mathrm{IN}} \leq 7 \mathrm{Vrms}_{\text {(Figure } 1) ~} \\ & 50 \mathrm{mVrms} \leq \mathrm{V}_{\mathrm{IN}} \leq 7 \mathrm{Vrms} \text { (Figure 3) } \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 20, \pm 0.5 \\ 0.5, \pm 0.05 \\ 0.25, \pm 0.02 \% \end{gathered}$ 1	$\begin{gathered} 40, \pm 1.0 \\ 1, \pm 0.2 \end{gathered}$	$\begin{array}{r} \mathrm{mV}, \% \\ \mathrm{mV}, \% \\ \mathrm{mV}, \% /^{\circ} \mathrm{C} \\ \mathrm{mV} / \mathrm{V} \end{array}$
AC PERFORMANCE					
Frequency for Specified Adjusted Error Frequency for 1\% Additional Error Bandwidth (3 dB) Crest Factor	Input $={ }^{\circ} 7$ V́rms, Sinewave (Figure 3) Input $=0.7 \mathrm{Vrms}$, Sinewave (Figure 3) Input $=0.1 \mathrm{Vrms}$, Sinewave (Figure 3) Input $=7 \mathrm{~V}$ rms, Sinewave (Figure 3) Input $=0.7 \mathrm{Vrms}$, Sinewave (Figure 3) Input $=0.1 \mathrm{Vrms}$, Sinewave (Figure 3) Input $=7 \mathrm{~V}$ rms, Sinewave (Figure 3) Input $=0.7 \mathrm{Vrms}$, Sinewave (Figure 3) Input $=0.1 \mathrm{Vrms}$, Sinewave (Figure 3) Rated Adjusted Accuracy Using the High Crest Factor Circuit (Figure 5)	30 100 5	$\begin{aligned} & 70 \\ & 40 \\ & 20 \\ & 200 \\ & 75 \\ & 50 \\ & 2 \\ & 1.5 \\ & 0.8 \\ & 10 \end{aligned}$,	kHz kHz kHz kHz kHz kHz MHz MHz MHz
INPUT CHARACTERISTICS					
Input Voltage Range Input Impedance	For Rated Performance	$\begin{gathered} \pm 0.05 \\ 4.5 \end{gathered}$	5	± 11	Vpeak $k \Omega$
OUTPUT CHARACTERISTICS					
Rated Output Voltage Output Short Circuit Current Output Impedance	$\mathrm{R}_{\mathrm{L}} \geq 2.5 \mathrm{k} \Omega$	10	$\begin{aligned} & 22 \\ & 1 \end{aligned}$		V $m A$ Ω
POWER SUPPLY REQUIREMENTS					
Operating Range Quiescent Current	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 5	14	$\begin{array}{r} \pm 20 \\ 18 \end{array}$	V $m A$

op amp electrical characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VOS	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	10	mV
Ios	Input Offset Current			4.0	200	nA
${ }^{\prime} \mathrm{B}$	Input Bias Current			30	500	$n \mathrm{~A}$
RIN	Input Resistance			2.5		$\mathrm{M} \Omega$
AOL	8. Large Signal Voltage Gain	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	15	160		V / mV
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 10	± 13		V
V_{1}	Input Voltage Range	,	± 10			V
CMRR	Common-Mode Rejection Ratio	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$		90		dB
PSRR	Supply Voltage Rejection Ratio	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$		96		dB
ISC	Output Short-Circuit Current			25		mA
Sr_{r}	Slew Rate (Unity Gain)			0.5		$\mathrm{V} / \mu \mathrm{s}$
BW	Small Signal Bandwidth			1.0		MHz

typical performance characteristics

typical applications (All applications require power supply by-pass capacitors.)

$C_{E X T} \geq 1 \mu \mathrm{~F} ;$ frequency $\geq 1 \mathrm{kHz}$
FIGURE 1. LH0091 Basic Connection (No Trim)

typical applications (con'd)

Note. The easy trim procedure is used for ac coupled input signals. It involves two trims and can achieve accuracies of $\mathbf{2 ~ m V}$ offset $\pm 0.1 \%$ reading.

Procedure:

1. Apply 100 mV rms (sine wave) to input, adjust R3 until the output reads 100 mV DC.
2. Apply. $5 \mathrm{~V}_{\mathrm{rms}}$ (sine wave) to input, adjust R 4 until the output reads 5 VDC
3. Repeat steps 1 and 2 until the desired initial accuracy is achieved.

FIGURE 2. LH0091 "Easy Trim" (For ac Inputs Only)

Note.,This procedure will give accuracies of 0.5 mV offset $\pm 0.05 \%$ reading for inputs from 0.05 V peak to 10 V peak.

Procedure:

1. Apply $50 \mathrm{mV}_{\mathrm{DC}}$ to the input. Read and record the output.
2. Apply $-50 \mathrm{~m} V_{D C}$ to the input. Use $R 2$ to adjust for an output of the same magnitude as in step 1.
3. Apply 50 mV to the input. Use R3 to adjust the output for 50 mV .
4. Apply -50 mV to input. Use R2 to adjust the output for 50 mV .
5. Apply $\ddagger 10 \mathrm{~V}$ alternately to the input. Adjust R1 until the output readings for both polarities are equal (not necessary that they be exactly 10V).
6. Apply 10 V to the input. Use R4 to adjust for 10 V at the output.
7. Repeat this procedure to obtain the desired accuracy. low pass filter as shown in Figure 4.

FIGURE 4. Output Filter Connection Using the Internal Op Amp

typical applications (cońd)

Note. When converting signals with a crest factor >2, the LH0091 should be connected as shown. Note that this circuit utilizes a 20 k resistor to drop the input current by a factor of five. The frequency response will correspond to a voltage which is $1 / 5$ eIN.

Note that the extra op amp in the LH0091 may be used to build a gain of 5 amplifier to restore the output voltage.

Note. Response time of the dc output voltage is dominated by the RC time constant consisting of the total resistance between pins 9 and 10 and the external capacitor, CEX.

FIGURE 5. High Crest Factor Circuit

definition of terms

True rms to dc Converter: A device which converts any signal ($\mathrm{ac}, \mathrm{dc}, \mathrm{ac}+\mathrm{dc}$) to the dc equivalent of the rms value.

Error: is the amount by which the actual output differs from the theoretical value. Error is defined as a sum of a fixed term and a percent of reading term. The fixed term remains constant, regardless of input while the percent of reading term varies with the input.

Total Unadjusted Error: The total error of the device without any external adjustments.

Bandwidth: The frequency at which the output dc voltage drops to 0.707 of the dc value at low frequency.

Frequency for Specified Error: The error at low frequency is governed by the size of the external averaging capacitor. At high frequencies, error is dependent on the frequency response of the internal circuitry. The frequency for specified error is the maximum input frequency for which the output will be within the specified error band (i.e., frequency for 1% error means the input frequency must be less than 200 kHz to maintain an output with an error of less than 1% of the initial reading.

Crest Factor: is the peak value of a waveform divided by the rms value of the same waveform. For high crest factor signals, the performance of the LH0091 can be improved by using the high crest factor connection.

LH0094 Multifunction Converter

General Description

The LH0094 multifunction converter generates an output voltage per the transfer function:

$$
E_{\mathrm{O}}=V_{Y}\left(\frac{V_{\mathrm{Z}}}{V_{\mathrm{X}}}\right)^{m}, 0.1 \leq m \leq 10, \underset{\text { adjustable }}{\mathrm{m}} \text { continuously }
$$

m is set by 2 resistors.

Features

- Low cost
- Versatile
- High accuracy-0.05\%
- Wide supply range $- \pm 5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Minimum component count
- Internal matched resistor pair for setting $m=2$ and $\mathrm{m}=0.5$

Applications

- Precision divider, multiplier
- Square root
- Square
- Trigonometric function generator
- Companding
- Linearization
- Control systems
- Log amp

Block and Connection Diagrams

Dual-In-Line Package

Simplified Schematic

Absolute Maximum Ratings

Supply Voltage	$\pm 22 \mathrm{~V}$
Input Voltage	$\pm 22 \mathrm{~V}$
Output Short-Circuit Duration	Continuous
Operating Temperature Range	
\quad LH0094CD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad LH0094D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature Range	
LH0094D $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ LH0094CD $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 seconds). $300^{\circ} \mathrm{C}$	

Electrical Characteristics

$v_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. Transfer function: $E_{o}=v_{y}\left(\frac{V_{z}}{V_{x}}\right)^{m} ; 0.1 \leq m \leq 10 ; 0 V^{m} V_{x}, v_{y}, v_{z} \leq 10 V$

PARAMETER	CONDITIONS	LH0094			LH0094C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
ACCURACY								
Multiply Untrimmed External Trim	$E_{o}=\frac{V_{z} V_{V}}{10}\left(0.03 \leq V_{Y} \leq 10 V ; 0.01 \leq V_{z} \leq 10 V\right)$ (Figure 2) (Figure 3) vs Temperature		0.25 0.10 0.2	0.45		$\begin{aligned} & 0.45 \\ & 0.1 \\ & 0.2 \end{aligned}$	0.9	\% F.S. (10V) \% F.S. $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Divide	$E_{0}=10 \mathrm{~V}_{z} / \mathrm{V}_{\mathrm{x}}$							
Untrimmed	(Figure 4), (0.5 $\left.\leq \mathrm{V}_{\mathrm{x}} \leq 10 ; 0.01 \leq \mathrm{V}_{\mathrm{z}} \leq 10\right)$		0.25	0.45		0.45	0.9	\% F.S.
External Trim	(Figure 5), (0.1 $\left.\leq \mathrm{V}_{\mathrm{x}} \leq 10 ; 0.01 \leq \mathrm{V}_{\mathrm{z}} \leq 10\right)$		0.10			0.1		\% F.S.
	vs Temperature		0.2			0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Sq. Root	$E_{0}=10 \sqrt{V_{2} / 10}$							
Untrimmed	(Figure 8), $\left(0.03 \leq \mathrm{V}_{2} \leq 10\right)$		0.25	0.45		0.45	0.9	\% F.S.
External Trim	(Figure 9), (0.01 $\leq \mathrm{V}_{\mathrm{z}} \leq 10$)		0.15			0.15		\% F.S.
Square	$E_{0}=10\left(V_{2} / 10\right)^{2}\left(0.1 \leq V_{2} \leq 10\right)$							
Untrimmed	(Figure 6)		0.5	1.0		1.0	2.0	\% F.S.
External Trim.	(Figure 7)		0.15			0.15		\% F.S.
Low Level Sq. Root	$E_{o}=\sqrt{10 V_{2}} ; 5 m V \leq V_{2} \leq 10 V$ (Figure 10)		0.05			0.05		\% F.S.
Exponential	$m=0.2 E_{0}=10\left(V_{2} / 10\right)^{2}$		0.05			0.08		\% F.S.
Circuits	$\begin{aligned} & \text { (Figure } 11),\left(0.1 \leq V_{z} \leq 10\right) \\ & m=5 \mathrm{E}_{0}=10\left(\mathrm{~V}_{z} / 10\right)^{5} \\ & \text { (Figure 11), }\left(1 \leq \mathrm{V}_{2} \leq 10\right) \end{aligned}$		0.05		.	0.08		\% F.S.
OUTPUT OFFSET								
,	$\mathrm{V}_{\mathrm{X}}=10.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{Z}}=0.0$		2	5		5	10	mV
AC CHARACTERISTICS								
3 dB BANDWIDTH	$m=1.0$							
.	$V_{x}=V_{z}=10.0 \mathrm{~V}$		10			10		kHz
	$V_{y}=0.1 \mathrm{Vrms}$							
NOISE	10 Hz to 1 kHz							
	$m=1, V_{y}=V_{z}=0.0 \mathrm{~V}$							
	$v_{x}=10 \mathrm{~V}$		100			100		$\mu \mathrm{Vrms}$
	$\mathrm{V}_{\mathrm{x}}=0.1 \mathrm{~V}$.	300			300		μ Vrms
EXPONENTS								
m		0.2 to	0.1 to		0.2 to	0 . to		
	.	5	10		5	10		
INPUT CHARACTERISTICS								
Input Voltage	(For Rated Performance)	0		10	0		10	V
Input Impedance	(All Inputs) ..	98	100		98	100		
OUTPUT CHARACTERISTICS								
Output Swing	$\left(R_{L} \geq 10 k\right)$	10	12		10	12	.	V
Output Impedance			1			1		Ω
Supply Current	$\left(V_{S}= \pm 15 \mathrm{~V}\right)$, Note 1			5			5	mA

Applications Information

GENERAL INFORMATION

Power supply bypass capacitors ($0.1 \mu \mathrm{~F}$) are recom. mended for all applications.

The LH0094 series is designed for positive input signals only. However, negative input up to the supply voltage will not damage the device.

A clamp diode (Figure 1) is recommended for those applications in which the inputs may be subjected to open circuit or negative input signals.

For basic applications (multiply, divide, square, square root) it is possible to use the device without any external adjustments or components. Two matched resistors are provided internally to set m for square or square root.

When using external resistors to set m; such resistors should be as close to the device as possible.

SELECTION OF RESISTORS TO SET m

Internal Matched Resistors

R_{A} and R_{B} are matched internal resistors. They are $100 \Omega \pm 10 \%$, but matched to 0.1% :
(a) $m=2^{*}$

(b) $m=0.5^{*}$

* No external resistors required, strap as indicated

External Resistors

The exponent is set by 2 external resistors or it may be continuously varied by a single trim pot. (R1 + $R 2 \leq 500 \Omega$.
(a) $m=1$

(b) $m<1$

$$
m=\frac{R 2}{R 1+R 2} \quad R 1+R 2 \approx 200 s 2
$$

(c) $m>1$

$m=\frac{R 1+R 2}{R 2}$

ACCURACY (ERROR)

The accuracy of the LH0094 is specified for both externally adjusted and unadjusted cases.

Although it is'customary to specify the errors in percent of full-scale (10V), it is seen from the typical performance curves that the actual errors are in percent of reading. Thus, the specified errors are overly conservative for small input, voltages. An example of this is the LH0094 used in the multiplication mode. The specified typical error is 0.25% of full-scale (25 mV). As seen from the curve, the unadjusted error is $\approx 25 \mathrm{mV}$ at 10 V input, but the error is less than 10 mV for inputs up to 1 V . Note also that if either the multiplicand or the multiplier is at less than 10 V , (5 V for example) the unadjusted error is less. Thus, the errors specified are at full-scale-the worst case.

The LH0094 is designed such that the user is able to externally adjust the gain and offset of the devicethus trim out all of the errors of conversion. In most applications, the gain adjustment is the only external trim needed for super accuracy-except in division mode, where a denominator offset adjust is needed for small denominator voltages.

EXPONENTS

The LH0094 is capable of performing roots to 0.1 and powers up to 10 . However, care should be taken when applying these exponents-otherwise, results may be misinterpreted. For example, consider the $1 / 10$ th power of a number: i.e., 0.001 raised to 0.1 power is $0.5011 ; 0.1$ raised to the 0.1 power is 0.7943 ; and 10 raised to the 0.1 power is 1.2589 . Thus, it is seen that while the input has changed 4 decades, the output has only changed a little more than a factor of 2 . It is also seen that with as little as 1 mV of offset, the output will also be greater than zero with zero input.

Applications Information (Continued)

1. CLAMP DIODE CONNECTION

$E_{o}=V_{y}\left(\frac{V_{z}}{V_{x}}\right)^{m}$
$0.1 \leq m \leq 10$.
Note. This clamp diode connection is recommended for those applications in which the inputs may be subject to open circuit or negative signals.

FIGURE 1. Clamp Diode Connection
2. MULTIPLY

FIGURE 2a. LH0094 Used to Multiply (No External Adjustment)

FIGURE 2b. Typical Performance of LH0094 in Multiply Mode Without External Adjustment

FIGURE 3. Precision Multiplier (0.02\% Typ) with 1 External Adjustment

Applications Information (Continued)

FIGURE 4a. LH0094 Used to Divide (No External Adjustment)

FIGURE 4b. Typical Performance, Divide Mode, Without External Adjustments

Trim Procedures
Apply 10 V to $\mathrm{V}_{\mathrm{y}}, 0.1 \mathrm{~V}$ to V_{x} and V_{z}.
Adjust R3 until $E_{0}=10.000 \mathrm{~V}$.
Apply 10.000 V to all inputs. Adjust R2 until $E_{0}=10.000 \mathrm{~V}$
Repeat procedure.

FIGURE 5. Precision Divider (0.05\% Typ)

4. SQUARE

FIGURE 6a. Basic Connection of LH0094 ($\mathrm{m}=2$) without External Adjustment Using Internal Resistors to Set m

FIGURE 6b. Squaring Mode without External Adjustment

Applications Information (Continued)

4. SQUARE (Continued)

FIGURE 7. Precision Squaring Circuit (0.15\% Typ)
5. SQUARE ROOT

FIGURE 8a. Basic Connection of LH0094 ($m=0.5$) without External Adjustment Using Internal Resistors to Set m

FIGURE 8b. Typical Performance Curve Square Root, No External Adjustment

Apply 10 V to all inputs. Adjust R2 until $\mathrm{E}_{\mathrm{o}}=10.000 \mathrm{~V}$
FIGURE 9. Precision Square Rooter (0.15\% Typ)

Applications Information (Continued)

6. LOW LEVEL SQUARE ROOT

FIGURE 10. 3-Decade Precision Square Root Circuit Using the LH0094 with $\mathbf{m}=1$

Typical Applications

For $\mathrm{m}=0.2$

$m=\frac{R 2}{R 1+R 2} ;$ Choose R1 $=200 \Omega$

For $m=5$

$m=\frac{R 1+R 2}{\because R 2} ; \quad$ Choose R2 $=50 \Omega 2$

FIGURE 11. Precision Exponentiator ($m=0.2$ to 5)

Typical Applications (Continued)

Note. The LH0094 may be used to generate a voltage equivalent to:

$$
\begin{aligned}
& \mathrm{V} 0=\sqrt{\mathrm{V}^{2}+\mathrm{V}^{2}} \\
& \mathrm{v} 0=\mathrm{V} 2+\frac{\mathrm{V} 12}{\mathrm{~V} 0+\mathrm{V} 2} \\
& \mathrm{v}^{2}+\mathrm{vov} 2=\mathrm{v} 2 \mathrm{v}_{0}+\mathrm{v}^{2}+\mathrm{v}_{1}{ }^{2} \\
& \mathrm{~V} 0^{2}=\mathrm{V} 1^{2}+\mathrm{V} 2^{2} \\
& \therefore \mathrm{~V} 0=\sqrt{\mathrm{V}^{2}+\mathrm{V}^{2}} \quad \mathrm{~V} 1, \mathrm{~V} 20 \rightarrow 10 \mathrm{~V} \\
& R \approx 10 \mathrm{k} \\
& \text { National Semiconductor resistor array RA08-10k is recommended }
\end{aligned}
$$

FIGURE 12. Vector Magnitude Function

Note. The LH0094 may be used in direct measurement of gas flow.
Flow $=k \sqrt{\frac{P \Delta P}{T}}$
$E_{0}=10 \frac{V_{p}}{V_{T}} \times \frac{V_{\Delta P}}{E_{0}}$
$E_{0}^{2}=10 \frac{V_{P} V_{\Delta P}}{V_{T}}$
$E_{0}=\sqrt{10 \frac{V P V_{\Delta P}}{V_{T}}}$
$P=$ Absolute pressure
$T=$ Absolute temperature
$\Delta P=$ Pressure drop
FIGURE 13. Mass Gas Flow Circuit

Typical Applications (Continued)

Note. The LH0094 may also be used to generate the Log of a ratio of 2 voltages. The output is taken from pin 14 of the LH0094 for the Log application.

$$
\begin{aligned}
& E_{L O G}=K 1 \frac{K T}{q} \ln \frac{V_{z}}{V_{x}} \\
& \text { where } K 1=\frac{R 1+R 2}{R 2} \\
& \text { If } K 1=\frac{1}{K T / q \ln 10} \\
& \text { then } E_{L O G}=\log _{10} \frac{V_{z}}{V_{x}} \\
& R 1=15.9 R 2 \\
& R 2 \approx 400 \Omega
\end{aligned}
$$

R2 must be a thermistor with a tempco of $\approx 0.33 \% /{ }^{\circ} \mathrm{C}$ to be compensated over temperature.

Section 9

Industrial/Automotive/ Functional Blocks/
Telecommunications

Industrial/Automotive/Functional Blocks/ Telecommunications

Section Contents

Definition of Terms 9-iv
Audio
LM567/LM567C Tone Decoder. 9-46
LM2877 Dual 4-Watt Power Audio Amplifier. 9-78
LM3080/LM3080A Operational Transconductance Amplifier. 9-92
LM3914 Dot/Bar Display Driver. 9-107
LM3915 Dot/Bar Display Driver 9-120
LM13600/LM13600A/LM11600A Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers. 9-136
Radio
LM565/LM565C Phase Locked Loop. 9-38
LM3914 Dot/Bar Display Driver. 9-107
LM3915 Dot/Bar Display Driver. 9-120
Blocks
LM131A/LM131, LM231A/LM231, LM331A/LM331
Precision Voltage-to-Frequency Converters. 8-162
LM134/LM234/LM334 3-Terminal Adjustable Current Sources. 9-13
LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors. 9-21
LM555/LM555C Timer. 9-29
LM556/LM556C Dual Timer. 9-35
LM565/LM565C Phase Locked Loop. 9-38
LM566/LM566C Voltage Controlled Oscillator. 9-43
LM567ILM567C Tone Decoder. 9-46
LM1014/LM1014A Motor Speed Regulator. 9-50
LM1391 Phase-Locked Loop Block. 10-81
LM1801 Smoke Detector. 9-54
LM1812 Ultrasonic Transceiver. 9-58
LM3080/LM3080A Operational Transconductance Amplifier. 9-92
LM3909 LED Flasher/Oscillator. 9-96
LM3911 Temperature Controller. 9-100
LM13600/LM13600A/LM11600A Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers. 9-136
Appliance
LM383/LM383A 8 Watt Audio Power Amplifier. 10-24
LM1815 Adaptive Sense Amplifier. 9-64
LM1830 Fluid Detector. 9-67
LM3914 Dot/Bar Display Driver. 9-107
Automotive
LM383/LM383A 8 Watt Audio Power Amplifier. 10-24
LM1830 Fluid Detector. 9-67
LM2900 Quad Amplifier. 3-215
LM2901 Low Power Low Offset Voltage Quad Comparator. 5-23
LM2902 Low Power Quad Operational Amplifier. 3-113
LM2903 Low Power Low Offset Voltage Dual Comparator. 5-37
LM2904 Low Power Dual Operational Amplifier. 3-157
LM2907, LM2917 Frequency to Voltage Converter. 9-79
LM3914 Dot/Bar Display Driver. 9-107
Telecommunications
TP3000 CODEC System (TP3001 μ-Law, TP3002 A-Law). 8-180

Section Contents (Continued)

Industrial Control Circuits
LM122/LM222/LM322, LM2905/LM3905 Precision Timers. 9-1
LM131A/LM131, LM231A/LM231, LM331A/LM331
Precision Voltage-to-Frequency Converters. 8-162
LM134/LM234/LM334 3-Terminal Adjustable Current Sources. 9-13
LM3911 Temperature Controller. 9-100

Definition of Terms

Capacitor Saturation Voltage: The offset voltage remaining on the timing capacitor after capacitor discharge current has dropped to zero.

Collector Saturation Voltage: The collector to emitter voltage on the output transistor when it is in the "ON" state with specified sink current flowing into the collector terminal.

Common-Mode Rejection Ratio: The ratio of the change in input offset voltage to the peak-to-peak input voltage range.

Comparator Input Current: The average current flowing from the R/C pin during the timing cycle.
$\mathbf{C t}_{\mathbf{t}}$: Timing capacitor connected between the R/C terminal and the ground terminal.

Emitter Saturation Voltage: The voltage across the output transistor when the collector is tied to V^{+}, the transistor is in the "ON" state, and the specified output current is flowing from the emitter terminal.

Input Bias Current: The average of the two input currents.

Input Offset Current: The difference in the current into the two input terminals when the supply (output) current is 4.0 mA .

Input Offset Voltage: The voltage which must be applied between the input terminals through equal resistances to obtain 4.0 mA of supply (output) current.

Input Resistance: The ratio of the change in input voltage to the change in input current at either input with the other input connected to 1.0 Vdc .

Input Voltage Range: The range of voltages on the input terminals for which the device operates within specifications.

Linearity: The deviation in output voltage from a straight line output over a specified temperature excursion.

Long Term Stability: The change of a particular parameter when operated at maximum temperature for 1000 hours.

Maximum Power Dissipation: The maximum total device dissipation for which the timer will operate within specifications.

Open Loop Output Resistance: The ratio of a specified supply (output) voltage change to the resulting change in supply (output) current at the specified current level.

Open Loop Transconductance: The ratio of the supply (output) current SPAN to the input voltage required to produce that SPAN.

Open Loop Supply Current: The supply current required with the signal amplifier A2 biased off (inverting input positive, non-inverting input negative) and no load on the VREF terminal.

This represents a measure of the minimum low end signal current.

Output Leakage Current: The maximum current flowing into the collector of the output transistor when the transistor is in the "OFF" state.

Output Sink Current: The current available to flow into a load from a positive supply over a specified output voltage range.

Output Source Current: The current available to flow into a load from the output to V^{-}, over a specified output voltage range.

Output Voltage: The voltage referred to the V^{+}terminal from the output terminal with the input and output connected. (This voltage is the temperature output of the LM3911 and so includes errors in the sensor section and op amp section.)

Power Supply Rejection Ratio: The ratio of the change in input offset voltage to the change in supply (output) voltage producing it.

Reference Voltage Line Regulation: The ratio of the change in VREF to the peak-to-peak change in supply (output) voltage producing it.

Reference Voltage Load Regulation: The change in $V_{\text {REF }}$ for a stipulated change in IREF.

Reset Resistor: The equivalent resistor which may be used to calculate the discharge time of the timing capacitor, tDISCHARGE $=(5)\left(C_{t}\right)($ RRESET $)$.

Reverse Breakdown Voltage: The voltage appearing between the V^{+}and V^{-}terminals at a specified current.
\mathbf{R}_{t} : Timing resistor connected between $\mathrm{V}_{\text {REF }}$ and the R/C terminal.

Temperature Stability: The percentage in output voltage for a thermal variation from room temperature to either temperature extreme.

Timing Ratio: The ratio of the firing voltage at the R / C pin to the reference voltage.

Trigger Current: The current flowing into or out of the trigger terminal at the specified trigger voltage.

Trigger Voltage: The voltage required at the trigger terminal to initiate a timing cycle, referenced to the ground pin.

National Industrial/Automotive/Functional Semiconductor Blocks/Telecommunications LM122/LM222/LM322, LM2905/LM3905 Precision Timers

 General DescriptionThe LM122 series are precision timers that offer great versatility with high accuracy. They operate with unregulated supplies from 4.5 V to 40 V while maintaining constant timing periods from microseconds to hours. Internal logic and regulator circuits complement the basic timing function enabling the LM122 series to operate in many different applications with a minimum of external components.

The output of the timer is a floating transistor with built in current limiting. It can drive either ground referred or supply referred loads up to 40 V and 50 mA . The floating nature of this output makes it ideal for interfacing, lamp or relay driving, and signal conditioning where an open collector or emitter is required. A "logic reverse" circuit can be programmed by the user to make the output transistor either "on" or "off" during the timing period.

The trigger input to the LM122 series has a threshold of 1.6 V independent of supply voltage, but it is fully protected against inputs as high as $\pm 40 \mathrm{~V}$ even when using a 5 V supply. The circuitry reacts only to the rising edge of the trigger signal, and is immune to any trigger voltage during the timing periods.

An internal 3.15 V regulator is included in the timer to reject supply voltage changes and to provide the user with a convenient reference for applications other than a basic timer. External loads up to 5 mA can be driven by the regulator. An internal $2 V$ divider between the reference and ground sets the timing period to 1 RC. The timing period can be voltage controlled by driving this divider
with an external source through the $\mathrm{V}_{\text {ADJ }}$ pin. Timing ratios of $50: 1$ can be easily achieved.

The comparator used in the LM122 utilizes high gain PNP input transistors to achieve 300 pA typical input bias current over a common mode range of 0 V to 3 V . A boost terminal allows the user to increase comparator operating current for timing periods less than 1 ms . This lets the timer operate over a 3μ s to multi-hour timing range with excellent repeatability.

The LM122 operates over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. An electrically identical LM222 is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM322 is specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The LM2905/ LM3905 are identical to the LM122 series except that the boost and $\mathrm{V}_{\text {ADJ }}$ pin options are not available, limiting minimum timing period to 1 ms .

Features

- Immune to changes in trigger voltage during timing interval
- Timing periods from microseconds to hours
- Internal logic reversal
- Immune to power supply ripple during the timing interval
- Operates from 4.5 V to 40 V supplies
- Input protected to $\pm 40 \mathrm{~V}$
- Floating transistor output with internal current limiting
- Internal regulated reference
- Timing period can be voltage controlled
- TTL compatible input and output

Typical Applications

Basic Timer-Collector Output and Timing Chart

One Hour Timer with Reset and Manual Cycle End

Absolute Maximum Ratings

Electrical Characteristics
(Note 2)

PARAMETER	CONDITIONS	LM122/LM222			LM322			LM2905/LM3905			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Timing Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V}$	0.626	0.632	0.638	0.620	0.632	0.644	0.620	0.632	0.644	
	Boost Tied to V^{+}, (Note 3)	0.620	0.632	0.644	0.620	0.632	0.644				
Comparator Input Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V}$		0.3	1.0	,	0.3	1.5		0.5	1.5	$n A$
	Boost Tied to V^{+}		30	100		30	100				$n \mathrm{~A}$
Trigger Voltage .	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V}$	1.2	1.6	2	1.2	1.6	2	1.2	1.6	2	V
Trigger Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {TRIG }}=2 \mathrm{~V}$		25			25			25		$\mu \mathrm{A}$
Supply Current	$\mathrm{T}_{\mathrm{A}} \geq 25^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V}$		2.5	4		2.5	4.5		2.5	4.5	mA
Timing Ratio	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V}^{\prime}$	0.62		0.644	0.61		0.654	0.61		0.654	
	Boost Tied to V^{+}	0.62		0.644	0.61		0.654		.		
Comparator Input Current	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V}$	-5		5	-2		2	-2.5		2.5	$n \mathrm{~A}$
	Boost Tied to V^{+}, (Note 4)			100			150				$n \mathrm{~A}$
Trigger Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V}$	0.8		2.5	0.8		2.5	0.8		2.5	v
Trigger Current	$\mathrm{V}_{\text {TRIG }}=2.5 \mathrm{~V}$			200			200			200	$\mu \mathrm{A}$
Output Leakage Current	$V_{C E}=40 \mathrm{~V}$.	1			5			5	$\mu \mathrm{A}$
Capacitor Saturation Voltage	$\mathrm{R}_{\mathrm{t}} \geq 1 \mathrm{~m} \Omega$		2.5			2.5			2.5		mV
	$\mathrm{R}_{\mathrm{t}}=10 \mathrm{k} \Omega$		25			25		-	25		mV
Reset Resistance	i		150			150			150		Ω
Reference Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	3.15	3.3	3	3.15	3.3	3	3.15	3.3	v
Reference Regulation	$0 \leq 1 \mathrm{OUT} \leq 3 \mathrm{~mA}$		20	50	. .	20	50		20	50	$m \mathrm{~V}$
	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V}$		6	25	.	6	25		6	25	mV
Collector Saturation Voltage	$\mathrm{I}_{\mathrm{L}}=8 \mathrm{~mA}$		0.25	0.4		0.25	0.4		0.25	0.4	v
	$\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$		0.7	1.4 ,		0.7	1.4		0.7	1.4	v
Emitter Saturation Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=3 \mathrm{~mA}$. 1.8	2.2		1.8	2.2		1.8	2.2	V
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$		2.1	3		2.1	3		2.1	3	V
Average Temperature Coefficient of Timing Ratio			0.003			0.003			0.003		\%/ ${ }^{\circ} \mathrm{C}$
Minimum Trigger Width	$V_{\text {TRIG }}=3 \mathrm{~V}$		0.25			0.25			0.25		$\mu \mathrm{s}$

Note 1: Continuous output shorts are not allowed. Short circuit duration at ambient temperatures up to $40^{\circ} \mathrm{C}$ may be calculated from $t=120 /$ $\mathrm{V}_{C E}$ seconds, where $\mathrm{V}_{C E}$ is the collector to emitter voltage across the output transistor during the short.
Note 2: These specifications apply for $T_{A M I N} \leq T_{A} \leq T_{A M A X}$ unless otherwise noted.
Note 3: Output pulse width can be calculated from the following equation: $t=\left(R_{t}\right)\left(C_{t}\right)\left[1-2(0.632-r)-V_{C} / V_{R E F}\right)$ where r is timing ratio and V_{C} is capacitor saturation voltage. This reduces to $t=\left(R_{t}\right)\left(C_{t}\right)$ for all but the most critical applications.
Note 4: Sign reversal may occur at high temperatures ($>100^{\circ} \mathrm{C}$) where comparator input current is predominately leakage. See typical curves.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Connection Diagrams

Dual-In-Line Package

Order Number LM2905N or LM3905N See NS Package N08B

Functional Diagram

Timing Diagram

Pin Function Description

One of the main features of the LM122 is its great versatility. Since this device is unique, a description of the functions and limitations of each pin is in order. This will make it much easier to follow the discussion of the various applications presented in this note.
\mathbf{V}^{+}is the positive supply terminal of the LM122. When using a single supply, this terminal may be driven by any voltage between 4.5 V and 40 V . The effect of supply variations on timing period is less than $0.005 \% / \mathrm{V}$, so supplies with high ripple content may be used without causing pulse width changes. Supply bypassing on V^{+}is not generally needed but may be necessary when driving highly reactive loads. Quiescent current drawn from the \mathbf{V}^{+}terminal is typically 2.5 mA , independent of the supply voltage. Of course, additional current will be drawn if the reference is externally loaded.

The $\mathbf{V}_{\text {REF }}$ pin is the output of a 3.15 V series regulator referenced to the ground pin. Up to 5.0 mA can be drawn from this pin for driving external networks. In most applications the timing resistor is tied to $\mathrm{V}_{\text {REF, }}$, but it need not be in situations where a more linear charging current is
required. The regulated voltage is very useful in applications where the LM122 is not used as a timer; such as switching regulators, variable reference comparators, and temperature controllers. Typical temperature drift of the reference is less than $0.01 \% /{ }^{\circ} \mathrm{C}$.

The trigger terminal is used to start a timing cycle (see functional diagram). Initially, Q1 is saturated, C_{t} is discharged and the latching buffer output (V1) is latched high. A trigger pulse unlatches the buffer, V1 goes low and turns Q1 off. The timing capacitor C_{t} connected from R / C to GND will begin to charge. When the voltage at the R/C terminal reaches the 2.0 V threshold of the comparator, the comparator toggles, latching the buffer output (V1) in the high state. This turns on Q1, discharges the capacitor C_{t} and the cycle is ready to begin again.

If the trigger is held high as the timing period ends, the comparator will toggle and V1 will go high exactly as before. However, V1 will not be latched and the capacitor will not discharge until the trigger again goes low. When the trigger goes low, V1 remains high but is now latched.

Pin Function Description (Continued)

Trigger threshold is typically 1.6 V at $25^{\circ} \mathrm{C}$ and has a temperature dependence of $-5.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Current drawn from the trigger source is typically $20 \mu \mathrm{~A}$ at threshold, rising to $600 \mu \mathrm{~A}$ at 30 V , then leveling off due to FET action of the series resistor, R5. For negative input trigger voltages; the only current drawn is leakage in the nA region. The trigger can be driven from supplies as high as $\pm 40 \mathrm{~V}$, even when device supply voltage is only 5 V .

The \mathbf{R} / \mathbf{C} pin is tied to the non-inverting side of the comparator and to the collector of Q1. Timing ends when the voltage on this pin reaches 2.0 V (1 RC time constant referenced to the 3.15 V regulator). Q1 turns on only if the trigger voltage has dropped below threshold. In comparator or regulator applications of the timer, the trigger is held permanently high and the R/C pin acts just like the input to an ordinary comparator. The maximum voltages which can be applied to this pin are +5.5 V and -0.7 V . Current from the R/C pin is typically 300 pA when the voltage is negative with respect to the $\mathrm{V}_{\text {ADJ }}$ terminal. For higher voltages, the current drops to leakage levels: In the boosted mode, input current is typically 30 nA . Gain of the comparator is very high, 200,000 or more, depending on the state of the logic reverse pin and the connection of the output transistor.

The ground pin of the LM122 need not necessarily be tied to system ground. It can be connected to any positive or negative voltage as long as the supply is negative with respect to the V^{+}terminal. Level shifting may be necessary for the input trigger if the trigger voltage is referred to system ground. This can be done by capacitive coupling or by actual resistive or active level shifting. One point must be kept in mind; the emitter output must not be held above the ground terminal with a low source impedance. This could occur, for instance, if the emitter were grounded when the ground pin of the LM122 was tied to a negative supply.

The terminal labeled $\mathrm{V}_{\text {ADJ }}$ is. tied to one side of the comparator and to a voltage divider between $\mathrm{V}_{\text {REF }}$ and ground. The divider voltage is set at 63.2% of $V_{\text {REF }}$ with respect to ground-exactly one RC time constant. The impedance of the divider is increased to about 30 k with a series resistor to present a minimum load on external signals tied to $\mathrm{V}_{\text {ADJ }}$. This resistor is a pinched type with a typical variation in nominal value of $-50 \%,+100 \%$. and a TC of $0.7 \% /{ }^{\circ} \mathrm{C}$. For this reason, external signals (typically a pot between $\mathbf{V}_{\text {REF }}$ and ground) connected to $\mathrm{V}_{\text {ADJ }}$ should have a source resistance as low as possible. For small changes in $\mathrm{V}_{\mathrm{ADJ}}$, up to several $\mathrm{k} \Omega$ is all right, but for large variations, 250Ω or less should be maintained. This can be accomplished with a 1 k pot, since the maximum impedance from the wiper is 250Ω. If a voltage is forced on $\mathrm{V}_{\mathrm{ADJ}}$ from a hard source, voltage should be limited to -0.5 , and +5.0 V , or current limited to $\pm 1.0 \mathrm{~mA}$. This
includes capacitively coupled signals because even small values of capacitors, contain enough energy to degrade the input stage if the capacitor is driven with a large, fast slewing signal. The $\mathrm{V}_{\text {ADJ }}$ pin may be used to abort the timing cycle. Grounding this pin during the timing period causes the timer to react just as if the capacitor voltage had reached its normal RC trigger point; the capacitor discharges and the output charges state. An exception to this occurs if the trigger pin is held high when the $\mathbf{V}_{\text {ADJ }}$ pin is grounded. In this case, the output changes state, but the capacitor does not discharge.

If the trigger drops while $\mathrm{V}_{\text {ADJ }}$ is being held low, discharge will occur immediately and the cycle will be over. If the trigger is still high when $\mathrm{V}_{\text {ADJ }}$ is released, the output may or may not change state, depending the voltage across the timing capacitor. For voltages below 2.0 V across the timing capacitor, the output will change state immediately, then once more as the voltage rises past 2.0 V . For voltages above 2.0 V , no change will occur in the output. This pin is not available on the LM2905/LM3905.

In noisy environments or in comparator-type applications, a bypass capacitor on the $\mathrm{V}_{\text {ADJ }}$ terminal may be needed to eliminate spurious outputs because it is high impedance point. The size of the cap will depend on the frequency and energy content of the noise. A $0.1 \mu \mathrm{~F}$ will generally suffice for spike suppression, but several $\mu \mathrm{F}$ may be used if the timer is subjected to high level 60 Hz EMI.

The emitter and the collector outputs of the timer can be, treated just as if they were an ordinary transistor with 40 V minimum collectoremitter breakdown voltage. Normally, the emitter is tied to the ground pin and the signal is taken from the collector, or the collector is tied to V^{+} and the signal is taken from the emitter. Variations on these basic connections are possible. The collector can be tied to any positive voltage up to 40 V when the signal is taken from the emitter. However, the emitter will not be pulled higher than the supply voltage on the V^{+}pin. Connecting the collector to a voltage less than the \mathbf{V}^{+}voltage is allowed The emitter should not be connected to a low impedance load other than that to which the ground pin is tied. The transistor has built-in current limiting with a typical knee current of 120 mA . Temporary short circuits are allowed; even with collector-emitter voltages up to 40 V . The power \times time product, however; must not exceed 15 watt-seconds for power levels above the maximum rating of the package. A short to 30 V , for instance, can not be held for more than 4 seconds. These levels are based on $40^{\circ} \mathrm{C}$ maximum initial chip temperature: When driving inductive loads, always use a clamp diode to protect the transistor from inductive kick-back.

A boost pin is provided on the LM122 to increase the speed of the internal comparator. The comparator is normally operated at low current levels for lowest possible input current.

Pin Function Description (Continued)

For timing periods less than 1 ms , where low input current is not needed, comparator operating current can be increased several orders of magnitude. Shorting the boost terminal to V^{+}increases the emitter current of the vertical PNP drivers in the differential stage from 25 nA to $5 \mu \mathrm{~A}$. This pin is not available on the LM2905/LM3905.

With the timer in the unboosted state, timing periods are accurate down to about 1 ms . In the boosted mode, loss of accuracy due to comparator speed is only about 800 ns , so timing periods of several microseconds can be used. The 800 ns error is relatively insensitive to temperature, so temperature coefficient of pulse width is still good.

The Logic pin is used to reverse the signal appearing at the output transistor. An open or "high" condition on the logic pin programs the output transistor to be "off" during the timing period and "on" all other times. Grounding the logic pin reverses the sequence to make the transistor "on" during the timing period. Threshold for the logic pin is typically 100 mV with $150 \mu \mathrm{~A}$ flowing out of the terminal. If an active drive to the logic pin is desired, a saturated transistor drive is recommended, either with a discrete transistor or the open collector output of integrated logic. A maximum $V_{S A T}$ of 25 mV at $200 \mu \mathrm{~A}$ is required. Minimum and maximum voltages that may appear on the logic pin are 0 and +5.0 , respectively.

Typical Applications (Continued)

Basic Timers

Figure 1 is a basic timer using the collector output. R_{t} and C_{t} set the time interval with R_{L} as the load. During the timing interval the output may be

FIGURE 1. Basic Timer-Collector Output and Timing Chart
either high or low depending on the connection of the logic pin. Timing waveforms are shown in the sketch along side Figure 1. Note that the trigger pulse may be either shorter or longer than the output pulse width.

Figure 2 is again a basic timer, but with the output taken from the emitter of the output transistor. As with the collector output, either a high or low condition may be obtained during the timing period.

FIGURE 2. Basic Timer-Emitter Output and Timing Chart

Simulating a Thermal Delay Relay

Figure 3 is an application where the LM122 is used to simulate a thermal delay relay which

FIGURE 3. Time Out on Power Up (Relay Energized $\mathrm{R}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}}$ Seconds After V_{CC} is Applied)
prevents power from being applied to other circuitry until the supply has been on for some time. The relay remains de-energized for $R_{t} C_{t}$ seconds after $V_{c c}$ is applied, then closes and stays energized until $V_{c c}$ is turned off. Figure 4 is a similar circuit except that the relay is energized

FIGURE 4. Time Out on Power Up (Relay Energized Until $\mathbf{R}_{\mathbf{t}} \mathbf{C}_{\mathbf{t}}$ Seconds After $\mathbf{V}_{\mathbf{C C}}$ is Applied)
as soon as $V_{c c}$ is applied. $R_{t} C_{t}$ seconds later, the relay is de-energized and stays off until the V_{cc} supply is recycled.

Typical Applications (Continued)

+5V Supply Driving 28V Relay

Figure 5 shows the timer interfacing 5 V logic to a high voltage relay. Although the V^{+}terminal could be tied to the +28 V supply, this may be

FIGURE 5. 5V Logic Supply Driving 28V Relay
an unnecessary waste of power in the IC or require extra wiring if the LM122 is on a logic card. In either case, the threshold for the trigger is 1.6 V .

30V Supply Interfacing with 5V Logic

Figure 6 indicates the ability of the timer to interface to digital logic when operating off a high supply voltage. VOUT swings between +5 V and ground with a minimum fanout of 5 for medium speed TTL. If the logic is sensitive to rise/fall time of the trailing edge of the output pulse, the trigger pin should be low at that time.

FIGURE 6. 30V Supply Interfacing with 5V Logic

Astable Operation

The LM122 can be made into a self-starting oscillator by feeding the output back to the trigger input through a capacitor as shown in Figure 7. Operating frequency is $1 /\left(R_{t}+R_{1}\right)\left(C_{t}\right)$. The output is a narrow negative pulse whose width is approximately $2 R_{2} C_{f}$. For optimum frequency stability, C_{f} should be as small as possible. The minimum value is determined by the time required to discharge C_{t} through the internal discharge transistor. A conservative value for C_{f} can be chosen from the graph included with Figure 20. For frequencies below 1 kHz , the frequency error
introduced by C_{f} is a few tenths of one percent or less for $R_{t} \geq 500 k$.

FIGURE 7. Oscillator

One Hour Timer with Reset and Manual Cycle End

Figure 8 shows the LM122 connected as a one hour timer with manual controls for start, reset, and cycle end. S1 starts timing, but has no effect after timing has started. S2 is a center off switch which can either end the cycle prematurely with the appropriate change in output state and discharging of C_{t}, or cause C_{t} to be reset to OV without a change in output. In the latter case, a new timing period starts as soon as S 2 is released.

FIGURE 8. One Hour Timer with Reset and Manual Cycle End

The average charging current through $\mathbf{R}_{\mathbf{t}}$ is about 30 nA , so some attention must be paid to parts layout to prevent stray leakage paths. The suggested timing capacitor has a typical self time constant of 300 hours and a guaranteed minimum of 25 hours at $+25^{\circ} \mathrm{C}$. Other capacitor types may be used if sufficient data is available on their leakage characteristics.

Typical Applications (Continued)

Two Terminal Time Delay Switch

The LM122 can be used as a two terminal time delay switch if an "on" voltage drop of 2 V to 3 V can be tolerated. In Figure 9, the timer is used to drive a relay "on" $R_{t} \cdot C_{t}$ seconds after application of power. "off" current of the switch is 4 mA maximum, and "on" current can be as high as 50 mA .

FIGURE 9. 2-Terminal Time Delay Switch

Zero Power Dissipation Between Timing Intervals

In some applications it is desirable to reduce supply current drain to zero between timing cycles. In Figure 10 This is accomplished by using an external PNP as a latch to drive the V^{+}pin of the timer.

FIGURE 10. Zero Power Dissipation Between Timing Intervals
Between timing periods Q1 is off and no supply current is drawn. When a trigger pulse of 5 V minimum amplitude is received, the LM 122 output transistor and Q1 latch for the duration of the timing period. D1 prevents the step on the V^{+}pin from coupling back into the trigger pin. If the trigger input is a short pulse, C1 and R2 may be eliminated. R_{L} must have a minimum value of $\left(\mathrm{V}_{\mathrm{Cc}}\right) /(2.5 \mathrm{~mA})$.

Frequency to Voltage Converter

An accurate frequency to voltage converter can be made with the LM122 by averaging output pulses with a simple one pole filter as shown in Figure 11. Pulse width is adjusted with R2 to provide initial calibration at 10 kHz . The collector of the output transistor is tied to $\mathrm{V}_{\text {REF }}$, giving constant amplitude pulses equal to $\mathrm{V}_{\text {REF }}$ at the emitter output. R4 and C1 filter the pulses to
give a dc output equal to, $\left(R_{t}\right)\left(C_{t}\right)\left(V_{\text {REF }}\right)(f)$. Linearity is about 0.2% for a 0 V to 1 V output. If better linearity is desired R5 can be tied to the summing node of an op amp which has the filter in the feedback path. If a low output impedance is desired, a unity gain buffer such as the LM110 can be tied to the output. An analog meter can be driven directly by placing it in series with R5 to ground. A series RC network across the meter to provide damping will improve response at very low frequencies.

FIGURE 11. Frequency to Voltage Converter. (Tachometer) Output Independent of Supply Voltage

Pulse Width Detector

By driving the logic terminal of the LM122 simultaneous to the trigger input, a simple, accurate pulse width detector can be made (Figure 12).

FIGURE 12. Pulse Width Detector
In this application the logic terminal is normally held high by R3. When a trigger pulse is received, Q1 is turned on, driving the logic terminal to ground. The result of triggering the timer and reversing the logic at the same time is that the output does not change from its initial low condition. The only time the output will change states is when the trigger input stays high longer than one time period set by R_{t} and C_{t}. The output pulse width is equal to the input trigger width minus $R_{t} \cdot C_{t}$. $C 2$ insures no output pulse for short ($<R C$) trigger pulses by prematurely resetting the timing capacitor when the trigger pulse drops. C_{L} filters the narrow spikes which would occur at the output due to propagation delays during switching.

Typical Applications (Continued)

5V Switching Regulator

Figure 13 is an application where the LM122 does not use its timing function. A switching regulator is made using the internal reference and comparator to drive a PNP transistor switch. Features of this circuit include a 5.5 V minimum input voltage at 1 A output current, low part count, and good efficiency (> 75\%) for input voltages to 10 V . Line and load regulation are less than 0.5% and output ripple at the switching frequency is only 30 mV . 01 is an inexpensive plastic device which does not need a heatsink for ambient temperature up to $50^{\circ} \mathrm{C}$. D1 should be a fast switching diode. Output voltage can be adjusted between 1 V and 30 V by choosing proper values for R2, R3, R4, and R5. For outputs less than 2 V , a divider with 250Ω Thevinin resistance must be connected between $V_{\text {REF }}$ and ground with its tap point tied to $\mathrm{V}_{\text {ADJ }}$.

FIGURE 13. 5V Switching Regulator with 1 Amp Output and 5.5V Minimum Input

Application Hints

Aborting a Timing Cycle

The LM122 does not have an input specifically allocated to a stop-timing function. If such a function is desired, it may be accomplished several ways:

- Ground $V_{\text {ADJ }}$
- Raise R / C more positive than $\mathrm{V}_{\text {ADJ }}$
- Wire "OR" the output

Grounding $\mathrm{V}_{\text {ADJ }}$ will end the timing cycle just as if the timing capacitor had reached its normal discharge point. A new timing cycle can be started by the trigger terminal as soon as the ground is released. A switching transistor is best for driving $V_{\text {ADJ }}$ to as near ground as possible. Worst case sink current is about $300 \mu \mathrm{~A}$.

A timing cycle may also be ended by a positive pulse to a resistor ($R \leq R_{t} / 100$) in series with the timing capacitor. The pulse amplitude must be at least equal to $\mathrm{V}_{\text {ADJ }}(2.0 \mathrm{~V}$), but should not exceed 5.0 V . When the timing capacitor discharges,
a negative spike of up to 2.0 V will occur across the resistor, so some caution must be used if the drive pulse is used for other circuitry.

FIGURE 14. Cycle Interrupt

The output of the timer can be wire ORed with a discrete transistor or an open collector logic gate output. This allows overriding of the timer output, but does not cause the timer to be reset until its normal cycle time has elapsed.

Using the LM122 as a Comparator

A built-in reference and zero volt common mode limit make the LM122 very useful as a comparator. Threshold may be adjusted from zero to three volts by driving the $V_{\text {ADJ }}$ terminal with a divider tied to $\mathrm{V}_{\text {REF }}$. Stability of the reference voltage is typically $\pm 1 \%$ over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Offset voltage drift in the comparator is typically $25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ in the boosted mode and $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ unboosted. A resistor can be inserted in series with the input to allow overdrives up to $\pm 50 \mathrm{~V}$ as shown in Figure 15. There is actually no limit on input voltage as long as current is limited to $\pm 1 \mathrm{~mA}$. The resistor shown contributes

FIGURE 15. Comparator with $O V$ to $3 V$ Threshold
a worst case of 5 mV to initial offset. In the unboosted mode, the error drops to 0.25 mV maximum. The capability of operating off a single 5 V supply with internal reference should make this comparator very useful.

Application Hints (Continued)

Eliminating Timing Cycle Upon Initial Application of Power

The LM122 will normally start a timing cycle (with no trigger input) when V^{+}is first turned on. If this characteristic is undesirable, it can be defeated by tying the timing capacitor to $\mathrm{V}_{\text {REF }}$ instead of ground as shown in. Figure 16. This connection does not affect operation of the timer in any other way. If an electrolytic timing capacitor is used, be sure the negative end is tied to the R / C pin and the positive end to $\mathrm{V}_{\mathrm{REF}}$. $\mathrm{A} 1.0 \mathrm{k} \Omega$ resistor should be included in series with the timing capacitor to limit the surge current load on $\mathrm{V}_{\text {REF }}$ when the capacitor is discharged.

FIGURE 16. Eliminating Initial Timing Cycle

Using Dual Supplies

The LM122 can be operated off dual supplies as shown in Figure 17. The only limitation is that the emitter terminal cannot be tied to ground, it must either drive a load referred to V^{-}or be actually tied to V as shown. Although capacitive coupling is shown for the trigger input (to allow 5 V triggering), a resistor can be substituted for C1. R2 must be chosen to give proper level shifting between the trigger signal and the trigger pin of the timer. Worst case "Io" on the trigger pin (with respect to V^{-}) is 0.8 V , and worst case "high" is 2.5 V . R2 may be calculated from the divider equation with R1 to give these levels.

Linearizing the Charging Sweep

In some applications (such as a linear pulse width modulator) it may be desirable to have the timing capacitor charge from a constant current source. A simple way to accomplish this is shown in Figure 18.

FIGURE 18. Temperature Compensated Linear Charging Sweep
Q1 converts the current through R1 to a current source independent of the voltage across C_{t}. R2, R3, D1, and D2'are added to make the current through R1 independent of supply variations and temperature changes. (D2 is a low TC type) D 2 and R 3 can be omitted if the V^{+}supply is stable and D1 and R2 can be omitted also if temperature stability if not critical. With D1, D2, R2 and R3 omitted, the current through R1 will change about $0.015 \% /{ }^{\circ} \mathrm{C}$ with a 15 V supply and $0.1 \% /{ }^{\circ} \mathrm{C}$ with a 5.0 V supply.

Triggering with Negative Edge

Although the LM122 is triggered by a positive going trigger signal, a differentiator tied to a normally "high" trigger will result in negative edge triggering. In Figure 19, R1 serves the dual purpose of holding the trigger pin normally high and differentiating the input trigger pulse coupled through C1. The timing diagram included with Figure 21, shows that triggering actually occurs a short time after the negative going trigger, while positive going triggers have no effect. The delay time between a negative trigger signal and'actual

FIGURE 19. Timer Triggered by Negative Edge of Input Pulse
starts of timing is approximately (0.5 to 1.5) (R1 - C1) depending on the trigger amplitude, or about 2.5 to $7.5 \mu \mathrm{~s}$ with the values shown. This time will have to be increased for C_{t} larger than $0.01 \mu \mathrm{~F}$ because C_{t} is charged to $\mathrm{V}_{\text {REF }}$ whenever the trigger pin is kept high and must reset itself during the short time that the trigger pin voltage is low. A conservative value for C1 is:

Chain of Timers

The LM122 can be connected as a chain of timers quite easily with no interface required. In Figure 20A and 208, two possible connections are shown. In both cases, the output of the timer is low during the timing period so that the positive going signal at the end of timing period can trigger the next timer. There is no limitation on the timing period of one timer with respect to any other timer before or after it, because the trigger

(A)

(B)

FIGURE 20. Chain of Timers

7 National Semiconductor

Industrial/Automotive/Functional Blocks/Telecommunications

LM134/LM234/LM334

3-Terminal Adjustable Current Sources

General Description

The LM134/LM234/LM334 are 3-terminal adjustable current sources featuring 10,000:1 range in operating current, excellent current regulation and a wide dynamic voltage range of 1 V to 40 V . Current is established with one external resistor and no other parts are required. Initial current accuracy is $\pm 3 \%$. The LM134/LM234/ LM334 are true floating current sources with no separate power supply connections. In addition, reverse applied voltages of up to 20 V will draw only a few microamperes of current, allowing the devices to act as both a rectifier and current source in AC applications.

The sense voltage used to establish operating current in the LM134 is 64 mV at $25^{\circ} \mathrm{C}$ and is directly proportional to absolute temperature (${ }^{\circ} \mathrm{K}$). The simplest one external resistor connection, then, generates a current with $\approx+0.33 \% /{ }^{\circ} \mathrm{C}$ temperature dependence. Zero drift operation can be obtained by adding one extra resistor and a diode.
Applications for the new current sources include bias networks, surge protection, low power reference, ramp generation, LED driver, and temperature sensing. The

LM134-3/LM234-3 and LM134-6/LM234-6 are specified as true temperature sensors with guaranteed initial accuracy of $\pm 3^{\circ} \mathrm{C}$ and $\pm 6^{\circ} \mathrm{C}$, respectively. These devices are ideal in remote sense applications because series resistance in long wire runs does not affect accuracy. In addition, only 2 wires are required.

The LM134 is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM 234 from $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and the LM334 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. These devices are available in TO- 46 hermetic and TO-92 plastic packages.

Features

- Operates from 1 V to 40 V
- $0.02 \% / \mathrm{V}$ current regulation
- Programmable from $1 \mu \mathrm{~A}$ to 10 mA
- True 2-terminal operation
- Available as fully specified temperature sensor
- $\pm 3 \%$ initial accuracy

Typical Applications

Zero Temperature Coefficient Current Source

*Select ratio of R1 to R RET to obtain zero drift. $1^{+} \approx 2$ ISET

Terminating Remote Sensor for Voltage Output

Ground Referred Fahrenheit Thermometer

[^37]
Absolute Maximum Ratings

```
V+}\mathrm{ to V Forward Voltage
    LM134/LM234 40V
    LM334/LM134-3/LM134-6/LM234-3/LM234-6 30V
V+}\mathrm{ to V-Reverse Voltage . 20V
R Pin to V-
Set Current }10\textrm{mA
Power Dissipation
200 mW
Operating Temperature Range
    LM134/LM134-3/LM134-6
-55 % C to +125 %
    LM234/LM234-3/LM234-6
    LM334
Lead Temperature (Soldering, 10 seconds)
-25}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to +100 年
    0. C to +70 %
        300}\mp@subsup{}{}{\circ}\textrm{C
```

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS ${ }^{\prime}$	LM134/LM234			LM334			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Set Current Error, $\mathrm{V}^{+}=2.5 \mathrm{~V}$, (Note 2)	$\begin{aligned} & 10 \mu \mathrm{~A} \leq \mathrm{ISET} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\mathrm{ISET} \leq 5 \mathrm{~mA} \\ & 2 \mu \mathrm{~A} \leq \mathrm{ISET}<10 \mu \mathrm{~A} \end{aligned}$			3 5 5			6 8 8	\% \% \%
Ratio of Set Current to V^{-}Current	$10 \mu \mathrm{~A} \leq 1 \mathrm{SET} \leq 1 \mathrm{~mA}$	14	18	23	14	18	26	
	$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{ISET} \leq 5 \mathrm{~mA} \\ & 2 \mu \mathrm{~A} \leq \mathrm{ISET} \leq 10 \mu \mathrm{~A} \end{aligned}$	14	14 18	23	14	14 18	26	
Minimum Operating Voltage	$\begin{aligned} & 2 \mu \mathrm{~A} \leq \mathrm{I} \text { SET } \leq 100 \mu \mathrm{~A} \\ & 100 \mu \mathrm{~A}<\text { ISET } \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\text { ISET } \leq 5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$		V V V
Average Change in Set Current with Input Voltage	$\begin{aligned} & 1.5 \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & 2 \mu \mathrm{~A} \leq \mathrm{I} \mathrm{SET} \leq 1 \mathrm{~mA} \end{aligned}$		0.02	0.05		0.02	0.1	\%/V
	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V}$		0.01	0.03		0.01	0.05	\%/V
	$\begin{aligned} & 1.5 \mathrm{~V} \leq \mathrm{V} \leq 5 \mathrm{~V} \\ & 1 \mathrm{~mA}<\mathrm{ISET} \leq 5 \mathrm{~mA} \end{aligned}$		0.03		,	0.03		\%/V
	$5 \mathrm{~V} \leq \mathrm{V} \leq 40 \mathrm{~V}$		0.02			0.02		\%/V
Temperature Dependence of Set Current (Note 3) Effective Shunt Capacitance	$25 \mu \mathrm{~A} \leq 1 \mathrm{SET} \leq 1 \mathrm{~mA}$	0.96 T	T	1.04 T	0.96 T	T	1.04 T	
			15			15		pF

Note 1: Unless otherwise specified, tests are performed at $T_{j}=25^{\circ} \mathrm{C}$ with pulse testing so that junction temperature does not change during test.
Note 2: Set current is the current flowing into the V^{+}pin. It is determined by the following formula: $I_{S E T}=67.7 \mathrm{mV} / \mathrm{R}_{\mathrm{SET}}\left(@ 25^{\circ} \mathrm{C}\right.$). Set current error is expressed as a percent deviation from this amount. ISET increases at $0.336 \% /{ }^{\circ} \mathrm{C} @ \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
Note 3: ISET is directly proportional to absolute temperature (${ }^{\circ} \mathrm{K}$). ISET at any temperature can be calculated from: $\mathrm{I}_{\mathrm{SET}}=\mathrm{I}_{0}\left(\mathrm{~T} / \mathrm{T}_{0}\right)$ where I_{0} is ISET measured at $\mathrm{T}_{0}\left({ }^{\circ} \mathrm{K}\right)$.

Electrical Characteristics（Continued）（Note 1）

PARAMETER	CONDITIONS	LM134－3，LM234－3			LM134－6，LM234－6			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Set Current Error， $\mathrm{V}^{+}=2.5 \mathrm{~V}$ ， （Note 2）	$\begin{aligned} & 100 \mu \mathrm{~A} \leq \mathrm{ISET} \leq 1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$			± 1		－	± 2	\％
Equivalent Temperature Error				± 3			± 6	${ }^{\circ} \mathrm{C}$
Ratio of Set Current to V^{-} Current	$100 \mu \mathrm{~A} \leq 1 \mathrm{SET} \leq 1 \mathrm{~mA}$	14	18	26	14	18	26	
Minimum Operating Voltage	$100 \mu \mathrm{~A}$ ISET $\leq 1 \mathrm{~mA}$		0.9			0.9		V
Average Change in Set Current with Input Voltage	$\begin{aligned} & 1.5 \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \end{aligned}$	，	0.02	0.05		0.02	0.1	\％／V
	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}$		0.01	0.03		0.01	0.05	\％／V
Temperature Dependence of Set Current（Note 3）and	$100 \mu \mathrm{~A} \leq 1 \mathrm{SET} \leq 1 \mathrm{~mA}$	0.98 T	T	1.02 T	0.97 T	T	1.03 T	
Equivalent Slope Error							± 3	\％
Effective Shunt Capacitance			15			15		pF

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Application Hints

The LM134 has been designed for ease of application, but a general discussion of design features is presented here to familiarize the designer with device characteristics which may not be immediately obvious. These include the effects of slewing, power dissipation, capacitance, noise, and contact resistance.

SLEW RATE

At slew rates above a given threshold (see curve), the LM134 may exhibit non-linear current shifts. The slewing rate at which this occurs is directly proportional to ISET. At ISET $=10 \mu \mathrm{~A}$, maximum $\mathrm{dV} / \mathrm{dt}$ is $0.01 \mathrm{~V} / \mu \mathrm{s}$; at ISET $=1 \mathrm{~mA}$, the limit is $1 \mathrm{~V} / \mu \mathrm{s}$. Slew rates above the limit do not harm the LM134, or cause large currents to flow.

THERMAL EFFECTS

Internal heating can have a significant effect on current regulation for ISET greater than $100 \mu \mathrm{~A}$. For example, each 1 V increase across the LM134 at ISET $=1 \mathrm{~mA}$ will increase junction temperature by $\approx 0.4^{\circ} \mathrm{C}$ in still air. Output current (ISET) has a temperature coefficient of $\approx 0.33 \% /{ }^{\circ} \mathrm{C}$, so the change in current due to temperature rise will be $(0.4)(0.33)=0.132 \%$. This is a $10: 1$ degradation in regulation compared to true electrical effects. Thermal effects, therefore, must be taken into account when DC regulation is critical and ISET exceeds $100 \mu \mathrm{~A}$. Heat sinking of the TO-46 package or the TO-92 leads can reduce this effect by more than 3:1.

SHUNT CAPACITANCE

In certain applications, the 15 pF shunt capacitance of the LM134 may have to be reduced, either because of loading problems or because it limits the AC output impedance of the current source. This can be easily accomplished by buffering the LM134 with an FET as shown in the applications. This can reduce capacitance to less than 3 pF and improve regulation by at least an order of magnitude. DC characteristics (with the exception of minimum input voltage), are not affected.

NOISE

Current noise generated by the LM134 is approximately 4 times the shot noise of a transistor. If the LM134 is used as an active load for a transistor amplifier, input

referred noise will be increased by about 12 dB . In many cases, this is acceptable and a single stage amplifier can be built with a voltage gain exceeding 2000.

LEAD RESISTANCE

The sense voltage which determines operating current of the LM134 is less than 100 mV . At this level, thermocouple or lead resistance effects should be minimized by locating the current setting resistor physically close to the device. Sockets should be avoided if possible. It takes only 0.7Ω contact resistance to reduce output current by 1% at the 1 mA level.

SENSING TEMPERATURE

The LM134 makes an ideal remote temperature sensor because its current mode operation does not lose accuracy over long wire runs. Output current is directly proportional to absolute temperature in degrees Kelvin, according to the following formula:

$$
\text { ISET }=\frac{\left(227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}\right)(\mathrm{T})}{\mathrm{R}_{\mathrm{SET}}}
$$

Calibration of the LM134 is greatly simplified because of the fact that most of the initial inaccuracy is due to a gain term (slope error) and not an offset. This means that a calibration consisting of a gain adjustment only will trim both slope and zero at the same time. In addition, gain adjustment is a one point trim because the output of the LM134 extrapolates to zero at $0^{\circ} \mathrm{K}$, independent of RSET or any initial inaccuracy.

This property of the LM134 is illustrated in the accompanying graph. Line abc is the sensor current before

Application Hints (Continued)

trimming. Line $a^{\prime} b^{\prime} c^{\prime}$ is the desired output. A gain trim done at T2 will move the output from b to b^{\prime} and will simultaneously correct the slope so that the output at T1 and T3 will be correct. This gain trim can be done on RSET or on the load resistor used to terminate the LM134. Slope error after trim will normally be less than $\pm 1 \%$. To maintain this accuracy, however, a low temperature coefficient resistor must be used for RSET.

A $33 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift of RSET will give a 1% slope error because the resistor will normally see about the same temperature variations as the LM134. Separating RSET from the LM134 requires 3 wires and has lead resistance problems, so is not normally recommended. Metal film resistors with less than $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift are readily available. Wire wound resistors may also be used where best stability is required.

Typical Applications (Continued)

*Select ratio of R1 to R2 to obtain zero temperature drift

*Select ratio of R1 to R2 for zero temperature drift

Typical Applications (Continued)

Generating Negative Output Impedance

${ }^{*} Z_{\text {OUT }} \approx-16 \cdot R 1\left(R 1 / V_{I N}\right.$ must not exceed ISET)

In-Line Current Limiter

*Use minimum value required to ensure stability of protected device. This minimizes inrush current to a direct short.

Schematic and Connection Diagrams

Pin 3 is electrically connected to case
Order Number LM134H, LM134H-3, LM134H-6, LM234H, LM234H-3, LM234H-6 or LM334H See NS Package H03H

TO-92
Plastic Package

BOTTOM VIEW

Order Number LM334Z, LM234Z-3
or LM234Z-6
See NS Package Z03A

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

General Description

The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal zener, the LM135 has a breakdown voltage directly proportional to absolute temperature at $+10 \mathrm{mV} /$ ${ }^{\circ} \mathrm{K}$. With less than 1Ω dynamic impedance the device operates over a current range of $400 \mu \mathrm{~A}$ to 5 mA with virtually no change in performance. When calibrated at $25^{\circ} \mathrm{C}$ the LM135 has typically less than $1^{\circ} \mathrm{C}$ error over a $100^{\circ} \mathrm{C}$ temperature range. Unlike other sensors the LM135 has a linear output.
Applications for the LM135 include almost any type of temperature sensing over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range. The low impedance and linear output make interfacing to readout or control circuitry especially easy.
The LM135 operates over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range while the LM235 operates over a $-40^{\circ} \mathrm{C}$
to $+125^{\circ} \mathrm{C}$ temperature range. The LM335 operates from $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The LM135/LM235/LM335 are available packaged in hermetic TO-46 transistor packages while the LM235 and LM335 are also available in plastic TO-92 packages.

Features

- Directly calibrated in ${ }^{\circ}$ Kelvin
- $1^{\circ} \mathrm{C}$ initial accuracy available
- Operates from $400 \mu \mathrm{~A}$ to 5 mA
- Less than 1Ω dynamic impedance
- Easily calibrated
- Wide operating temperature range
- $200^{\circ} \mathrm{C}$ overrange
- Low cost

Schematic Diagram

Typical Applications

Basic Temperature Sensor
Calibrated Sensor
Wide Operating Supply

Absolute Maximum Ratings

Reverse Current
Forward Current
Storage Temperature
TO-46 Package
TO-92 Package
Specified Operating Temperature Range
Continuous
LM135, LM135A
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM235, LM235A $\quad-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM335, LM335A $\quad-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)

> 10 mA
> 10 mA
> $-60^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$
> $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Temperature Accuracy LM135/LM235, LM135A/LM235A (Note 1)

PARAMETER	CONDITIONS	LM135A/LM235A			LM135/LM235			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Output Voltage	$\mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	2.97	2.98	2.99	2.95	2.98	3.01	V
Uncalibrated Temperature Error	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		1	3	${ }^{\circ} \mathrm{C}$
Uncalibrated Temperature Error	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{C}}<\mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		1.3	2.7		2	5	${ }^{\circ} \mathrm{C}$
Temperature Error with $25^{\circ} \mathrm{C}$ Calibration	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{C}}<\mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	1		0.5	1.5	${ }^{\circ} \mathrm{C}$
Calibrated Error at Extended Temperatures	$\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\text {MAX }}$ (Intermittent)		2			2		${ }^{\circ} \mathrm{C}$
Non-Linearity	$I_{R}=1 \mathrm{~mA}$		0.3	0.5		0.3	1	${ }^{\circ} \mathrm{C}$

Temperature Accuracy Lm335, LM335A (Note 1)

PARAMETER	CONDITIONS	LM335A			LM335			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Output Voltage	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, I_{\text {R }}=1 \mathrm{~mA}$	2.95	2.98	3.01	2.92	2.98	3.04	V
Uncalibrated Temperature Error	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, I_{\mathrm{R}}=1 \mathrm{~mA}$		1	3		2	6	${ }^{\circ} \mathrm{C}$
- Uncalibrated Temperature Error	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{C}}<\mathrm{T}_{\text {MAX }}, I_{R}=1 \mathrm{~mA}$		2	5		4	9	${ }^{\circ} \mathrm{C}$
Temperature Error with $25^{\circ} \mathrm{C}$ Calibration	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{C}}<\mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		1	2	${ }^{\circ} \mathrm{C}$
Calibrated Error at Extended	$\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\text {MAX }}$ (Intermittent)		2			2		${ }^{\circ} \mathrm{C}$
Temperatures								
Non-Linearity	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	1.5		0.3	1.5	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LM135/LM235 LM135A/LM235A			$\begin{aligned} & \text { LM335 } \\ & \text { LM335A } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Output Voltage Change with Current	$400 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{R}}<5 \mathrm{~mA}$ At Constant Temperature $I_{R}=1 \mathrm{~mA}$	-	2.5	10		$\begin{gathered} 3 \\ 0.6 \\ +10 \\ 80 \\ 10 \\ 10 \\ 1 \\ 0.2 \\ \hline \end{gathered}$	14	mV$\Omega$$\mathrm{mV} /{ }^{\circ} \mathrm{C}$secsecsec${ }^{\circ} \mathrm{C} / \mathrm{khr}$
Dynamic Impedance			0.5					
Output Voltage Temperature Drift			+10					
Time Constant	Still Air		80					
	$100 \mathrm{ft} / \mathrm{Min}$ Air		10					
	Stirred Oil		1					
Time Stability	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.2					

Note 1: Accuracy measurements are made in a well-stirred oil bath. For other conditions, self heating must be considered.

Typical Performance Characteristics

Thermat Resistance
Junction to Air

Calibrated Error

Thermal Time Constant

Reverse Characteristics

Thermal Response in Still Air

Thermal Response in Stirred Oil Bath

Forward Characteristics

FORWARD CURRENT (mA)

Application Hints

CALIBRATING THE LM135

Included on the LM135 chip is an easy method of calibrating the device for higher accuracies. A pot connected across the LM135 with the arm tied to the adjustment terminal allows a 1 -point calibration of the sensor that corrects for inaccuracy over the full temperature range.

This single point calibration works because the output of the LM135 is proportional to absolute temperature with the extrapolated output of sensor going to OV output at $0^{\circ} \mathrm{K} \cdot\left(-273.15^{\circ} \mathrm{C}\right)$, Errors in output voltage versus temperature are only slope (or scale factor) so a slope calibration at one temperature corrects at all temperatures.

The output of the device (calibrated or uncalibrated) can be expressed as:

$$
\text { VOUTT }=\text { VOUT }_{T_{0}} \times \frac{T}{T_{0}}
$$

where T is the unknown temperature and T_{0} is a reference temperature, both expressed in degrees Kelvin. By calibrating the output to read correctly at one temperature the output at all temperatures is correct. Nominally the output is calibrated at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$.

To insure good sensing accuracy several precautions must be taken. Like any temperature sensing device, self heating can reduce accuracy. The LM135 should be operated at the lowest current suitable for the application. Sufficient current, of course, must be available to drive both the sensor and the calibration pot at the maximum operating temperature.

If the sensor is used in an ambient where the thermal resistance is constant, self heating errors can be calibrated out. This is possible if the device is run with a temperature stable current. Heating will then be proportional to zener voltage and therefore temperature. This makes the self heating error proportional to absolute temperature the same as scale factor errors.

Typical Applications (Continued)

Remote Temperature Sensing
Average Temperature Sensing

Wire length for $1^{\circ} \mathrm{C}$ error due to wire drop

	$\mathbf{I}_{\mathbf{R}}=1 \mathbf{~ m A}$		
FEET		\quad	$\mathbf{I}_{\mathbf{R}}=\mathbf{0 . 5 \mathrm { mA }}$
:---:			
FEET			
14			
16			

Isolated Temperature Sensor

Typical Applications (Continued)

* Adjust R2 for 2.554 V across LM336. Adjust R.1 for correct output.

Fahrenheit Thermometer

* To calibrate adjust R2 for $\mathbf{2 . 5 5 4 V}$ across LM336. Adjust R1 for correct output.

Typical Applications (Continued)
THERMOCOUPLE COLD JUNCTION COMPENSATION
Compensation for Grounded Thermocouple

*Select R3 for proper thermocouple type

THERMO-

J	377Ω
T	308Ω
K	293Ω

S. $45.8 \Omega \quad 6.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Adjustments: Compensates for both sensor and resistor tolerances

1. Short LM329B
2. Adjust R1 for Seebeck Coefficient times ambient temperature (in degrees K) across R3
3. Short LM335 and adjust R2 for voltage across R3 corresponding to thermocouple type

j	14.32 mV	K	11.17 mV
T	11.79 mV	S	1.768 mV

Single Power Supply Cold Junction Compensation

* Select R3 and R4	for thermocouple type		
THERMO.	R3	R4	SEEBECK
COEFFICIENT			

Adjustments:

1. Adjust R1 for the voltage across R3 equal to the Seebeck Coefficient times ambient temperature in degrees Kelvin.
2. Adjust R2 for voltage across R4 corresponding to thermocouple

J	14.32 mV		
T	11.79 mV	\quad	K
:---:			

Centigrade Calibrated Thermocouple Thermometer

Terminate thermocouple reference junction in close proximity to LM335.
Adjustments:

1. Apply signal in place of thermocouple and adjust R3 for a gain of 245.7.
2. Short non-inverting input of LM308A and output of LM329B to ground.
3. Adjust R 1 so that $\mathrm{V}_{\text {OUT }}=2.982 \mathrm{~V} @ 25^{\circ} \mathrm{C}$.
4. Remove short across LM329B and adjust R 2 so that $\mathrm{V}_{\text {OUT }}=$ 246 mV @ $25^{\circ} \mathrm{C}$.
5. Remove short across thermocouple.

Typical Applications (Continued)

Fast Charger for Nickel-Cadmium Batteries

Differential Temperature Sensor

Variable Offset Thermometer ${ }^{\ddagger}$

${ }^{*}$ at $100^{\circ} \mathrm{C}$ of 10 T pot

Definition of Terms

Operating Output Voltage: The voltage appearing across the positive and negative terminals of the device at specified conditions of operating temperature and current.

Uncalibrated Temperature Error: The error between the operating output voltage at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ and case temperature at specified conditions of current and case temperature.

Connection Diagrams

TO-92
Plastic Package

Order Number LM235Z, LM335Z or LM335AZ
See NS Package Z03A

Calibrated Temperature Error: The error between operating output voltage and case temperature at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ over a temperature range at a specified operating current with the $25^{\circ} \mathrm{C}$ error adjusted to zero.

行
 National Semiconductor
 LM555/LM555C Timer

General Description

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to $\mathbf{2 0 0} \mathbf{~ m A}$ or drive TTL circuits.

Features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
\pm Temperature stability better than 0.005% per ${ }^{\circ} \mathrm{C}$
- Normally on and normally off output

Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator

Schematic Diagram

Connection Diagrams

Order Number LM555H, LM555CH
See NS Package H08C

Order Number LM555CN See NS Package N08B
Order Number LM555J or LM555CJ See NS Package J08A

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Ranges
LM555C
LM555
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$+18 \mathrm{~V}$
600 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}$ to +15 V , unless otherwise specified)

Note 1: For operating at elevated temperatures the device must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case for $\mathrm{TO}-5$ and $+150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for both packages.
Note 2: Supply current when output high typically 1 mA less at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: Tested at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.
Note 4: This will determine the maximum value of $R_{A}+R_{B}$ for 15 V operation. The maximum total $\left(R_{A}+R_{B}\right)$ is $20 M \Omega$.
Note 5: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be'exceeded.

Typical Performance Characteristics

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE ($X V_{c c}$)

SUPPLY VOLTAGE (V)

Output Propagation Delay vs Voltage Level of Trigger Pulse

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE ($X \mathrm{~V}_{\mathrm{cc}}$)

Low Output Voltage vs Output Sink Current

$I_{\text {SINK }}(\mathrm{mA})$

Applications Information

MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot (Figure 1). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than $1 / 3 \mathrm{~V}$ CC to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high.

FIGURE 1. Monostable
The voltage across the capacitor then increases exponentially for a period of $t=1.1 R_{A} C$, at the end of which time the voltage equals $2 / 3 \mathrm{~V}_{\mathrm{C}}$. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. Figure 2 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing internal is independent of supply.

FIGURE 2. Monostable Waveforms
During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied.

When the reset function is not in use, it is recommended that it be connected to $V_{C C}$ to avoid any possibility of false triggering.
Figure 3 is a nomograph for easy determination of R, C values for various time delays.
NOTE: In monostable operation, the trigger should be driven high before the end of timing cycle.

ASTABLE OPERATION

If the circuit is connected as shown in Figure 4 (pins 2 and 6 connected) it will trigger itself and free run as a

FIGURE 3. Time Delay
multivibrator. The external capacitor charges through $R_{A}+R_{B}$ and discharges through R_{B}. Thus the duty cycle may be precisely set by the ratio of these two resistors.

FIGURE 4. Astable
In this mode of operation, the capacitor charges and discharges between $1 / 3 \mathrm{~V}_{\mathrm{cc}}$ and $2 / 3 \mathrm{~V}_{\mathrm{cc}}$. As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.

Figure 5 shows the waveforms generated in this mode of operation.

FIGURE 5. Astable Waveforms
The charge time (output high) is given by:

$$
t_{1}=0.693\left(R_{A}+R_{B}\right) C
$$

And the discharge time (output low) by:

$$
\mathrm{t}_{2}=0.693\left(\mathrm{R}_{\mathrm{B}}\right) \mathrm{C}
$$

Thus the total period is:
$T=t_{1}+t_{2}=0.693\left(R_{A}+2 R_{B}\right) C$

Applications Information

 (Continued)The frequency of oscillation is:

$$
f=\frac{1}{T}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
$$

Figure 6 may be used for quick determination of these RC values.

The duty cycle is: $\quad D=\frac{R_{B}}{R_{A}+2 R_{B}}$

FIGURE 6. Free Running Frequency

FREOUENCY DIVIDER

The monostable circuit of Figure 1 can be used as a frequency divider by adjusting the length of the timing cycle. Figure 7 shows the waveforms generated in a divide by three circuit.

PULSE WIDTH MODULATOR

When the timer is connected in the monostable mode and triggered with a continuous pulse train, the output pulse width can be modulated by a signal applied to pin 5. Figure 8 shows the circuit, and in Figure 9 are some waveform examples.

FIGURE 8. Pulse Width Modulator

FIGURE 9. Pulse Width Modulator

PULSE POSITION MODULATOR

This application uses the timer connected for astable operation, as in Figure 10, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. Figure 11 shows the waveforms generated for a triangle wave modulation signal.

FIGURE 10. Pulse Position Modulator

FIGURE 11. Pulse Position Modulator

LINEAR RAMP

When the pullup resistor, R_{A}, in the monostable circuit is replaced by a constant current source, a linear ramp is

Applications Information
(Continued)
generated. Figure 12 shows a circuit configuration that will perform this function.

Figure 13 shows waveforms generated by the linear ramp.
The time interval is given by:

$$
\begin{aligned}
& T=\frac{2 / 3 V_{C C} R_{E}\left(R_{1}+R_{2}\right) C}{R_{1} V_{C C}-V_{B E}\left(R_{1}+R_{2}\right)} \\
& V_{B E} \simeq 0.6 V
\end{aligned}
$$

figure 13. Linear Ramp

50\% DUTY CYCLE OSCILLATOR

For a 50% duty cycle, the resistors \mathbf{R}_{A} and \mathbf{R}_{B} may be connected as in Figure 14. The time period for the out-
put high is the same as previous, $t_{1}=0.693 R_{A} C$. For the output low it is $\mathrm{t}_{2}=$
$\left[\left(R_{A} R_{B}\right) /\left(R_{A}+R_{B}\right)\right] \operatorname{CLn}\left[\frac{R_{B}-2 R_{A}}{2 R_{B}-R_{A}}\right]$
Thus the frequency of oscillation is $f=\frac{1}{t_{1}+t_{2}}$

FIGURE 14. 50\% Duty Cycle Oscillator
Note that this circuit will not oscillate if R_{B} is greater than $1 / 2 R_{A}$ because the junction of R_{A} and R_{B} cannot bring pin 2 down to $1 / 3 \mathrm{~V}_{\mathrm{Cc}}$ and trigger the lower comparator.

ADDITIONAL INFORMATION

Adequate power supply bypassing is necessary to protect associated circuitry. Minimum recommended is $0.1 \mu \mathrm{~F}$ in parallel with $1 \mu \mathrm{~F}$ electrolytic.

Lower comparator storage time can be as long as $10 \mu \mathrm{~s}$ when pin 2 is driven fully to ground for triggering. This limits the monostable pulse width to $10 \mu \mathrm{~s}$ minimum.

Delay time reset to output is $0.47 \mu \mathrm{~s}$ typical. Minimum reset pulse width must be $0.3 \mu \mathrm{~s}$, typical.

Pin 7 current switches within 30 ns of the output (pin 3) voltage.

π
 National Semiconductor

Industrial/Automotive/Functional Blocks/Telecommunications

LM556/LM556C Dual Timer

General Description

The LM556 Dual timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. The 556 is a dual 555 . Timing is provided by an external resistor and capacitor for each timing function. The two timers operate independently of each other sharing only V_{Cc} and ground. The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200 mA .

Features

- Direct replacement for SE556/NE556
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Replaces two 555 timers
- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than 0.005% per ${ }^{\circ} \mathrm{C}$
- Normally on and normally off output

Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator

Schematic Diagram

Connection Diagram

Order Number LM556CN See NS Package N14A

Order Number LM556J or LM556CJ See NS Package J14A

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Ranges

LM556C

LM556
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$+18 \mathrm{~V}$
600 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}$ to +15 V , unless otherwise specified)

PARAMETER	CONDITIONS	LM556			LM556C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage		4.5		18	4.5		16	V
Supply Current	$\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \quad$,		3	5		3	6	mA
(Each Timer Section)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\ & \text { (Low State) (Note 2) } \end{aligned}$		10	11		10	14	$m A$
Timing Error, Monostable Initial Accuracy Drift With Temperature Accuracy Over Temperature Drift with Supply								
			0.5	1.5		0.75	5.0	\%
	$R_{A}, R_{B}=1 \mathrm{k} \text { to } 100 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F}$ (Note 3)		30			50		ppm/ ${ }^{\circ} \mathrm{C}$
			1.5	5		1.5		\%
			0.05	0.2		0.1	0.4	\%/V
Timing Error, Astable								
Initial Accuracy			1.5			2.25	7	$\%$
Drift With Temperature			90			150		ppm/ ${ }^{\circ} \mathrm{C}$
Accuracy Over Temperature			2.5			3.0		$\%$
Drift With Supply			0.15	0.2		0.30		\%/V
Trigger Voltage	$V_{C C}=15 \mathrm{~V}$	4.8	5	5.2	4.5	5	0.5	v
	$V_{c c}=5 \mathrm{~V}$	1.45	1.67	1.9	1.25	1.67	2.0	v
Trigger Current			0.1	0.5		0.2	1.0	$\mu \mathrm{A}$
Reset Voltage	(Note 4)	0.4	0.5	1	0.4	0.5	1	V
Reset Current			0.1	0.4		0.1	0.6	$m A$
Threshold Current	(Note 5)		0.03	0.1		0.03	0.1	$\mu \mathrm{A}$
Control Voltage Level And Threshold Voltage	$\mathrm{V}_{C C}=15 \mathrm{~V}$	9.6	10	10.4	9	10	11	V
	$V_{C C}=5 \mathrm{~V}$	2.9	3.33	3.8	2.6	3.33	4	V
Pin 1, 13 Leakage Output High			. 1	100		1	100	$n \mathrm{~A}$
Pin 1, 13 Sat	(Note 6)							
Output Low	$V_{C C}=15 \mathrm{~V}, \mathrm{I}=15 \mathrm{~mA}$		150	240		180	300	$m V$
Output Low	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}=4.5 \mathrm{~mA}$		70	100		80	200	$m V$
Output Voltage Drop (Low)	$V_{C C}=15 \mathrm{~V}$							
	$\mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$		0.1	0.15		0.1	0.25	V
	$\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}$		0.4	0.5		0.4	0.75	V
	$\mathrm{I}_{\text {SINK }}=100 \mathrm{~mA}$		2	2.25		2	2.75	v
	$\mathrm{I}_{\text {SINK }}=200 \mathrm{~mA}$		2.5			2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$				-			
	$\mathrm{I}_{\text {SINK }}=8 \mathrm{~mA}$		0.1	0.25				- V
	$\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$.			0.25	0.35	V
Output Voltage Drop (High)	$I_{\text {SOURCE }}=200 \mathrm{~mA}, V_{\text {cC }}=15 \mathrm{~V}$		12.5			12.5		V
	$\mathrm{I}_{\text {SOURCE }}=100 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=15 \mathrm{~V}$	13	13.3		12.75	13.3		V
	$\mathrm{V}_{\text {cc }}=5 \mathrm{~V}$		3.3		2.75	3.3		V
Rise Time of Output			100	\cdots		100	-	ns
Fall Time of Output			100			100		ns
Matching Characteristics	(Note 7)			.	,			
Initial Timing Accuracy		.	0.05	0.2		0.1	2.0	\%
Timing Drift With Temperature			± 10			± 10		ppm/ $/{ }^{\circ} \mathrm{C}$
Drift With Supply Voltage			0.1	0.2		0.2	0.6	, \%/V

Note 1: For operating at elevated temperatures the device must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for both packages.
Note 2: Supply current when output high typically 1 mA less at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: Tested at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.
Note 4: As reset voltage lowers, timing is inhibited and then the output goes low.
Note 5: This will determine the maximum value of $R_{A}+R_{B}$ for 15 V operation. The maximum total $\left(R_{A}+R_{B}\right)$ is $20 M \Omega$.
Note 6: No protection against excessive pin 1, 13 current is necessary providing the package dissipation rating will not be exceeded.
Note 7: Matching characteristics refer to the difference between performance characteristics of each timer section.

Typical Performance Characteristics

Output Propagation Delay vs Voltage Level of Trigger Pulse

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE ($X V_{c c}$)

Supply Current vs Supply
Voltage (Each Section)

Low Output Voltage vs
Output Sink Current

Output Propagation Delay vs Voltage Level of Trigger Pulse

lowest voltage level of trigger pulse ($\mathrm{X} \mathrm{V}_{\mathrm{cc}}$)

Low Output Voltage vs

 Output Sink Current

Discharge Transistor (Pin 1,13)
Voltage vs Sink Current

7
 National Industrial/Automotive/Functional Semiconductor Blocks/Telecommunications
 LM565/LM565C Phase Locked Loop

General Description

The LM565 and LM565C are general purpose phase locked loops containing a stable, highly linear voltage controlled oscillator for low distortion FM demodulation, and a double balanced phase detector with good carrier suppression. The VCO frequency is set with an external resistor and capacitor, and a tuning range of 10:1 can be obtained with the same capacitor. The characteristics of the closed loop system-bandwidth, response speed, capture and pull in range-may be adjusted over a wide range with an external resistor and capacitor. The loop may be broken between the VCO and the phase detector for insertion of a digital frequency divider to obtain frequency multiplication.

The LM565H is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM565CH and LM565CN are specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ frequency stability of the VCO
- Power supply range of ± 5 to ± 12 volts with 100 ppm/\% typical
- 0.2% linearity of demodulated output
- Linear triangle wave with in phase zero crossings available
- TTL and DTL compatible phase detector input and square wave output
- Adjustable hold in range from $\pm 1 \%$ to $> \pm 60 \%$.

Applications

- Data and tape synchronization
- Modems
- FSK demodulation
- FM demodulation
- Frequency synthesizer
- Tone decoding
- Frequency multiplication and division
- SCA demodulators
- Telemetry receivers
- Signal regeneration
- Coherent demodulators.

Schematic and Connection Diagrams

Absolute Maximum Ratings

Supply Voltage	$\pm 12 \mathrm{~V}$
Power Dissipation (Note 1)	300 mW
Differential Input Voltage	$\pm 1 \mathrm{~V}$
Operating Temperature Range LM565H	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	LM565CH, LM565CN
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

Electrical Characteristics (AC Test Circuit. $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}= \pm 6 \mathrm{~V}$)

PARAMETER	CONDITIONS	LM565			LM565C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Power Supply Current			8.0	12.5		8.0	12.5	mA
Input Impedance (Pins 2, 3)	$-4 \mathrm{~V}<\mathrm{V}_{2}, \mathrm{~V}_{3}<0 \mathrm{~V}$	7	10			5		$\mathrm{k} \Omega$
VCO Maximum Operating Frequency	$\mathrm{C}_{\mathrm{o}}=2.7 \mathrm{pF}$	300	500		250	500		kHz
Operating Frequency Temperature Coefficient			-100	300		-200	500	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Frequency Drift with Supply Voltage			0.01	0.1		0.05	0.2	\%/V
Triangle Wave Output Voltage		2	2.4	3	2	2.4	3	V_{p-p}
Triangle Wave Output Linearity			0.2	0.75		0.5	1	\%
Square Wave Output Level		4.7	5.4		4.7	5.4		V_{p-p}
Output Impedance (Pin 4)			5			5		$k \Omega$
Square Wave Duty Cycle		45	50	55	40	50	60	\%
Square Wave Rise Time			20	100		20		ns
Square Wave Fall Time			50	200		50		ns
Output Current Sink (Pin 4)		0.6	1		0.6	1		mA
VCO Sensitivity	$\mathrm{f}_{0}=10 \mathrm{kHz}$,	6400	6600	6800	6000	6600	7200	Hz / V
Demodulated Output Voltage (Pin 7)	$\pm 10 \%$ Frequency Deviation	250	300	350	200	300	400	$m V_{p p}$
Total Harmonic Distortion	$\pm 10 \%$ Frequency Deviation		0.2	0.75		0.2	1.5	\%
Output Impedance (Pin 7)			3.5			3.5		k Ω '
DC Level (Pin 7)		4.25	4.5	4.75	4.0	4.5	5.0	v
Output Offset Voltage $\left\|V_{7}-V_{6}\right\|$			30	100		50	200	mV
Temperature Drift of $\left\|V_{7}-\mathrm{V}_{6}\right\|$			500			500		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
AM Rejection		30	40			40		dB
Phase Detector Sensitivity K ${ }_{\text {D }}$		0.6	. 68	0.9	0.55	. 68	0.95	V/radian

Note 1: The maximum junction temperature of the LM565 is $150^{\circ} \mathrm{C}$, while that of the LM565C and LM565CN is $100^{\circ} \mathrm{C}$. For operation at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. Thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

Loop Gain vs Load Resistance

Hold in Range as a Function of $\mathbf{R}_{\mathbf{6 - 7}}$

AC. Test Circuit

Typical Applications

FSK Demodulator (2025-2225 cps)

2400 Hz Synchronous AM Demodulator

FSK Demodulator with DC Restoration.

IRIG Channel 13 Demodulator

Applications Information

In designing with phase locked loops such as the LM565, the important parameters of interest are:

FREE RUNNING FREQUENCY

$$
\mathrm{f}_{\mathrm{o}} \cong \frac{1}{3.7 \mathrm{R}_{0} \mathrm{C}_{0}}
$$

LOOP GAIN: relates the amount of phase change between the input signal and the VCO signal for a shift in input signal frequency (assuming the loop remains in lock). In servo theory, this is called the "velocity error coefficient".

$$
\begin{aligned}
\text { Loop gain } & =K_{0} K_{D}\left(\frac{1}{\text { sec }}\right) \\
K_{o} & =\text { oscillator sensitivity }\left(\frac{\text { radians } / \mathrm{sec}}{\text { volt }}\right) \\
K_{D} & =\text { phase detector sensitivity }\left(\frac{\text { volts }}{\text { radian }}\right)
\end{aligned}
$$

The loop gain of the LM565 is dependent on supply voltage, and may be found from:

$$
\begin{aligned}
K_{o} K_{D} & =\frac{33.6 f_{o}}{V_{c}}, \\
f_{0} & =V C O \text { frequency in } \mathrm{Hz} \\
V_{c} & =\text { total supply voltage to circuit. }
\end{aligned}
$$

Loop gain may be reduced by connecting a resistor between pins 6 and 7 ; this reduces the load impedance on the output amplifier and hence the loop gain.

HOLD IN RANGE: the range of frequencies that the loop will remain in lock after initially being locked.

$$
\begin{aligned}
f_{H} & = \pm \frac{8 f_{o}}{V_{c}} \\
f_{o} & =\text { free running frequency of } V C O \\
V_{c} & =\text { total supply voltage to the circuit. }
\end{aligned}
$$

THE LOOP FILTER

In almost all applications, it will be desirable to filter the signal at the output of the phase detector (pin 7) this filter may take one of two forms:

Simple Lag Filter

Lag-Lead Filter

A simple lag filter may be used for wide closed loop bandwidth applications such as modulation following where the frequency deviation of the carrier is fairly high (greater than 10\%), or where wideband modulating signals must be followed.

The natural bandwidth of the closed loop response may be found from:

$$
f_{n}=\frac{1}{2 \pi} \sqrt{\frac{K_{0} K_{D}}{R_{1} C_{1}}}
$$

Associated with this is a damping factor:

$$
\delta=\frac{1}{2} \sqrt{\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1} \mathrm{~K}_{\mathrm{o}} \mathrm{~K}_{\mathrm{D}}}}
$$

For narrow band applications where a narrow noise bandwidth is desired, such as applications involving tracking a slowly varying carrier, a lead lag filter should be used. In general, if $1 / R_{1} C_{1}<K_{o} K_{d}$, the damping factor for the loop becomes quite small resulting in large overshoot and possible instability in the transient response of the loop. In this case, the natural frequency of the loop may be found from

$$
\begin{aligned}
\mathrm{f}_{\mathrm{n}} & =\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~K}_{0} \mathrm{~K}_{\mathrm{D}}}{\tau_{1}+\tau_{2}}} \\
\tau_{1}+\tau_{2} & =\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{C}_{1}
\end{aligned}
$$

R_{2} is selected to produce a desired damping factor δ, usually between 0.5 and 1.0. The damping factor is found from the approximation:

$$
\delta \simeq \pi \tau_{2} f_{n}
$$

These two equations are plotted for convenience.

Filter Time Constant vs Natural Frequency

> Damping Time Constant vs Natural Frequency

Capacitor C_{2} should be much smaller than C_{1} since its function is to provide filtering of carrier. In general $\mathrm{C}_{2} \leq 0.1 \mathrm{C}_{1}$.

Industrial/Automotive/Functional Semiconductor Blocks/Telecommunications

The LM566/LM566C are general purpose voltage controlled oscillators which may be used to generate square and triangular waves, the frequency of which is a very linear function of a control voltage. The frequency is also a function of an external resistor and capacitor.

The LM566 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM566C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Wide supply voltage range: 10 to 24 volts
- Very linear modulation characteristics
- High temperature stability
- Excellent supply voltage rejection
- 10 to 1 frequency range with fixed capacitor
- Frequency programmable by means of current, voltage, resistor or capacitor.

Applications

- FM modulation
- Signal generation
- Function generation
- Frequency shift keying
- Tone generation

Schematic and Connection Diagrams

Order Number LM566CN See NS Package N08B

Typical Application

Applications Information

The LM566 may be operated from either a single supply as shown in this test circuit, or from a split (\pm) power supply. When operating from a split supply, the square wave output (pin 4) is TTL compatible (2 mA current sink) with the addition of a $4.7 \mathrm{k} \Omega$ resistor from pin 3 to ground.
A . $001 \mu \mathrm{~F}$ capacitor is connected between pins 5 and 6 to prevent parasitic oscillations that may occur during VCO switching.
$f_{0}=\frac{2\left(V^{+}-V_{5}\right)}{R_{1} C_{1} V^{+}}$
where
$2 \mathrm{~K}<\mathrm{R}_{1}<20 \mathrm{~K}$
and V_{5} is voltage between pin 5 and pin 1

Absolute Maximum Ratings

Power Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Range LM566
LM566C
Lead Temperature (Soldering, 10 sec)

26 V
300 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{cC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AC}$ Test Circuit

Note 1: The maximum junction temperature of the LM566 is $150^{\circ} \mathrm{C}$, while that of the LM566C is $100^{\circ} \mathrm{C}$. For operating at elevated junction temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

Frequency Stability vs Load
Resistance (Square Wave
Output)

$\mathrm{R}_{\mathrm{L},}$ PIN 3 to ground (Ω)

Triangle Wave Output Characteristics

Operating Frequency as a
Function of Timing Capacitor

Temperature Stability

Frequency Stability vs Load Impedance (Triangle Output)

RL2 PIN 4 TO GROUND (Ω)

VCO Waveforms

Square Wave Output Characteristics

R $_{L 1}$ PIN 3 TO GROUND (Ω)

AC Test Circuit

LM567/LM567C Tone Decoder

General Description

The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Q detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

Features

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability
- Bandwidth adjustable from 0 to 14%
- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz

Applications

- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ùltrasonic controls
- Carrier current remote controls
- Communications paging decoders

Schematic and Connection Diagrams

Metal Can Package

top view
Order Number LM567H or LM567CH See NS Package H08C

Dual-In-Line Package

Order Number LM567CN See NS Package N08B

Note 1: The maximum junction temperature of the LM567 is $150^{\circ} \mathrm{C}$, while that of the LM567C and LM567CN is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the DIP the device must be derated based on a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.

Typical Performance Characteristics

Typical Frequency Drift with
Temperature (Mean and S.D.)

Detection Bandwidth as a
Function of \boldsymbol{C}_{2} and \boldsymbol{C}_{3}

Typical Bandwidth Variation with Temperature

Bandwidth vs Input Signal Amplitude

Typical Supply Current vs Supply Voltage

Typical Frequency Drift with (Mean and S.D.) Temperature

Greatest Number of Cycles Before Output

Typical Applications

Touch-Tone Decoder

AC Test Circuit

$f_{1}=100 \mathrm{kHz}+5 \mathrm{~V}$
*Note: Adjust for $\mathrm{f}_{\mathrm{O}}=\mathbf{1 0 0} \mathbf{k H z}$.

Oscillator with Quadrature Output

Connect pin $\mathbf{3}$ to $\mathbf{2 . 8 V}$ to invert output.

Oscillator with Double Frequency Output

Precision Oscillator Drive $\mathbf{1 0 0}$ mA Loads

Applications Information

The center frequency of the tone decoder is equal to the free running frequency of the VCO. This is given by

$$
f_{o} \cong \frac{1}{R_{1} C_{1}}
$$

The bandwidth of the filter may be found from the approximation

$$
B W=1070 \sqrt{\frac{V_{i}}{f_{o} C_{2}}} \quad \text { in } \% \text { of } f_{o}
$$

Where:
$V_{i}=$ Input voltage (volts rms), $\mathrm{V}_{\mathrm{i}} \leq 200 \mathrm{mV}$
$\mathrm{C}_{2}=$ Capacitance at $\operatorname{Pin} 2(\mu \mathrm{~F})$

Industrial/Automotive/Functional Blocks/Telecommunications

LM1014/LM1014A Motor Speed Regulator

General Description

The LM1014 is a monolithic integrated circuit specifically designed to provide a low cost motor speed regulator for low voltage DC motors.

Features

- 5 V to 20 V operating voltage range
- Short circuit protection

Externally selectable temperature coefficient

- Remote pause control
- Saturation voltage 0.1 V

■ Motor connected to ground for ease of RF suppression

- Motor torque compensation
- Low current consumption

Functional Block Diagram and Typical Connection

Absolute Maximum Ratings

Supply Voltage	24 V
Operating Temperature Range	-20 to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Note 1: Unless otherwise specified, $5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant 20 \mathrm{~V}$ and $-15^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 55^{\circ} \mathrm{C}$.
Note 2: The remote stop is activated by grounding pin 4. The motor restarts after disconnection of the ground connection.
Note 3: The current limit is set by resistor R1, i.e., $\cong \cong 1.4 \mathrm{~V} / \mathrm{R} 1$. When the output current exceeds this limit, the drive to the output transistor is switched off by a latch circuit. The motor can only be restarted after interruption of the supply voltage.

Schematic Diagram

Typical Performance Characteristics/Application

1. The output voltage V_{M} is given by:

$$
V_{M}=V_{\text {REF }}\left(1+\frac{R 3}{R 4}\right)+I_{M} \frac{R 1 R 3}{5 R 2}
$$

2. R1 R3/5R2 must be equal to dynamic motor winding resistance R_{M} in order to keep the speed constant during load torque variations.
3. Four selectable temperature coefficients by grounding pin 2 and/or pin 3 for temperature compensation of motor characteristic.
4. Parameter of the motor used for the test results shown below:
$R_{M}=16.3 \Omega$ and back e.m.f. $=3.25 \mathrm{~V}$ @ 2000 r.p.m.; torque constant $5.9 \mathrm{~mA} / \mathrm{mNm}$; External components: $R 1=1 \Omega \mathrm{Cu}, \mathrm{R} 2=200 \Omega$ and $\mathrm{R} 3=16 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{REF}}=1.13 \mathrm{~V}$ (pin 2 grounded); $\mathrm{C}_{\mathrm{BE}}=2.2 \mu \mathrm{~F}$ and $\mathrm{C} 3=0.47 \mu \mathrm{~F}$.

Connection Diagram

> Order Number LंM1014N or LM1014AN
> See NS Package N10B

LM1801 Smoke Detector

General Description

The LM1801 is designed to provide the functions of an ionization type smoke detector as specified by UL217. Though primarily designed to operate from a 9V alkaline battery, provision is made for operation at supplies up to 14 V and for line operation.

Low battery threshold, alarm threshold, hysteresis and stand-by current drain are externally programmed by resistors. The LM1801 includes a power transistor capable of directly driving a typical 85 dB horn. The ionization chamber requires an external FET buffer.

A parallel alarm output is provided to enable up to 8 similar detectors to be connected in parallel. In this mode, a fault on the line cannot prevent local operation. The low battery alarm signal is confined to the local unit.

A 6 V regulated output is provided for the chamber and FET supply and a second output with a different temperature coefficient is available for the alarm threshold potentiometer. This allows compensation of JFET drift.

Features

- UL component recognized
- 9 V to 14 V operation
- Direct drive to horn
- Clamp diodes on chip
- Internal zener for line operation
- JFET and MOSFET compatible
- Parallel alarm capability
- Low stand-by current drain

Applications

- Domestic smoke detectors
- Line operated smoke detectors
- Gas detectors
- Intrusion alarms
- Battery operated detectors

Block and Connection Diagram

Dual-In-Line Package

Order Number LM1801N
See NS Package N14A

Absolute Maximum Ratings

Supply Voltage
Input Voltage
Input Differential Voltage
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
14 \mathrm{~V} \\
-0.3 \mathrm{~V} \text { to } 14 \mathrm{~V} \\
\pm 14 \mathrm{~V} \\
300 \mathrm{~mW} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics (Note 2)

PARAMETER	CONDITIONS.	MIN	TYP	MAX	UNITS
Comparator					
Input Offset Voltage			3	15	mV
Input Bias Current			3	10	nA
Input Offset Current			0.5	3	nA
Pin 6 Output Low	ISINK $=100 \mu \mathrm{~A}$		1.5	2.0	V
Output Stage (Pin 8)					
Leakage Current			45	500	nA
Saturation Voltage	$\mathrm{I}_{8}=200 \mathrm{~mA}$		0.9	1.3	V
Saturation Voltage	$\mathrm{I}_{8}=500 \mathrm{~mA}$		1.8		V
Common Alarm Line (Pin 10)					
Drive Capabilities	$\mathrm{V} 4>\mathrm{V} 5$				
Output Voltage High		6.0	6.5		\checkmark
Output Current	$\mathrm{V} 10=0.0 \mathrm{~V}$	4.0	6.5		mA
Driver Requirements	$\mathrm{V} 5>\mathrm{V} 4$				
Input Voltage	-		3.6		V
Input Current	$\mathrm{V} 8=1.5 \mathrm{~V}, 18=200 \mathrm{~mA}$		0.4		mA
Regulator					
Pin 2 Reference Voltage	$\mathrm{I}_{2}=1 \mu \mathrm{~A}$	5.4	5.8	6.4	\checkmark
Temperature Coefficient			5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Pin 3 Reference Voltage	$I_{2}=I_{3}=1 \mu \mathrm{~A}$	4.8	5.3	5.8	\checkmark
Temperature Coefficient			7		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Battery Check Oscillator					
Threshold Voltage (Pin 12)		5.5	6.0	6.5	V
Period	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{C} 1=10 \mu \mathrm{~F}$	28	42	50	Sec.
Beep Pulse Width	$V_{C C}=7.5 \mathrm{~V}, \mathrm{C} 1=10 \mu \mathrm{~F}$		30		. ${ }^{\text {ms }}$
Supply Current (Note 3)			7	9	$\mu \mathrm{A}$
Zener Clamp Voltage, V9	$\mathrm{Ig}=1 \mathrm{~mA}$	14	14.5	17	V

Note 1: For operating at elevated temperatures, the device must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: $R_{S E T}=10 \mathrm{M} \Omega, \mathrm{V}_{C C}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 1).

Application Hints

The LM1801 is biased by a group of current sources which are controlled externally by a fixed resistor. In normal operation the stand-by current drain is nominally 6 times the set current at pin 1. The voltage at pin 1 is 2 diode drops below the positive supply voltage. The total stand-by current drain of the smoke detector will include, in addition to the above, the current drawn by the external circuits connected at pins 2,3 and 12. These comprise the resistive dividers used to set the low battery threshold and alarm threshold plus the bias current in the ionization chamber and FET buffer.

The low battery threshold is set by R1 and R2 (Figure 1). Select these values so that the voltage at pin 12 is equal to the oscillator trip voltage when the battery voltage is
at the low limit at which the low battery alarm is to operate. The given values provide a warning at about 8.2 V .

Hysteresis can be provided by R5, giving an added degree of noise immunity in high noise environments.

Figure 2 is a suggested PC board layout for the circuit of Figure 1.

Parallel operation of 2 or more units is easily achieved with a pair of wires connecting pin 10 of each unit and ground. In this mode, every alarm will sound should any single unit detect smoke.

FIGURE 1. 9V Battery Operated Ionization Type Smoke Detector

Application Hints (Continued)

FIGURE 2. Smoke Detector PC Board Layout (Not to Scale)

FIGURE 3. Line-Operated Photo-Electric Smoke Alarm Using Light Sensitive Resistor (Includes Detection of Open-Circuited LED)

LM1812 Ultrasonic Transceiver

General Description

The LM1812 is a special monolithic IC which consists of a 12 W ultrasonic transmitter circuit, which uses novel circuitry to eliminate costly alignment adjustments, a selective receiver which uses only one external LC network, impulse noise rejection circuitry, a 10W display driver, and a keyed modulator.

The system operates from a 12 V battery, drives power into a transducer, receives an echo and drives a display lamp.

A single LC network is time shared between the receiver and the transmitter to reduce external parts, to eliminate alignment labor and to guarantee that the received signal is always of the proper frequency.

Application areas include both soṇar (distance measuring in water) and "sonic" radar (or "'Sodar"-distance measuring in air) where a liquid level must be detected without actual immersion of a sensor or the presence of an object must be detected as in collision avoidance or an intrusion or burglar alarm system. As a sonar system, the presence of partially submerged objects can be detected, such as marine life, or the depth of a body of water can be determined (as for keel clearance or depth indicators). In addition, data transmission is possible for remote control applications such as in model submarines or hydroacoustic communication links.

Unique Characteristics

- RF transmitter design prevents "mode-hopping" of transducer
- Operates with interchangeable transducers without realignment
- Only one tuned circuit is used
- No additional transistors are needed
- A zero reference output, which "appears" the same as a normal return, is generated to coincide with the Tx. pulse
- Impulse noise is rejected
- Can be used with various displays

Advantages

- Reduces assembly labor content
- Allows transducer replacement in the field without a factory return
- Allows multiple transducers to be used with the same electronics
- Provides for more consistent system performance in production

Features

- Has special access pins (7 and 16) which allow adding an audible alarm feature to indicate an echo within a presettable maximum depth (or range)
- Does not require any heat sinking of the IC package
- Uses a built-in monostable multivibrator, with the capacitor on the chip, to pulse drive the transmitter for high efficiency and to minimize transducer interaction
- Has special circuitry to limit the maximum ON time of the display driver
- Can operate with a neon, a LED display device, a digital readout or a CRT

Connection Diagram

Absolute Maximum Ratings

Supply Voltage, V^{+}
$18 \mathrm{~V}_{\mathrm{DC}}$
(Pins 12, 6 and 14)
Power Dissipation (Note 1) 700 mW
Operating Temperature Range (T_{A}) $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 seconds) $300^{\circ} \mathrm{C}$

PIN NO.	FUNCTION	REXt (MIN)	$\underset{\text { (Total Inst. Peak) }}{V_{\text {MAX }}}$	$I_{\text {max dc }}$
1	Tuning LC		30 V	
2	Input $\mathrm{R}_{\mathrm{X}}-2$ nd Stage			50 mA
3	Output $\mathrm{R}_{\mathrm{X}}-1$ st Stage		18 V DC	
4	Input $\mathrm{R}_{\mathrm{X}}-1$ st Stage			50 mA
5	Ground			
6	XMTR Output		36 V (When OFF)	1 A for $1 \mu \mathrm{~s}$
7	Modulator Output	75k	18V	
8	Modulator Pulse Input			50 mA
9	Zero Flash Width Control		7V	
10	Ground			
11	Duty Cycle Limit Control			50 mA
12	V^{+}		18 V	
13	V^{+}to XMTR (via Coil)		18 V	
14	Display Output		25 V (When OFF)	1 A for 1 ms
15	Ground			
16	Auxiliary Display Control	2 M	18 V	
17	Noise Integrator Control			50 mA
18	Pulse Train Detector Control			50 mA

PARAMETER	CONDITIONS	MIN	TYP	MAX ;	UNITS
Sensitivity	(Figure. 1) (Note 2)		200	600	$\mu \vee p$-p
Transmitter ($\mathrm{V}_{\text {SAT }}$)	(Figure 2), $\mathrm{R}_{\mathrm{L}}=10 \Omega\left(\mathrm{~V}_{\text {SAT }}\right)$ (Note 4)		1.3	3	$V_{\text {DC }}$
Transmitter Leakage	Pin $6=32 \mathrm{~V}_{\mathrm{DC}}$, Pin $8=$ Ground		0.01	1	$m A_{\text {DC }}$
Modulator Threshold	(Figure 2) (Note 3)	0.55	0.7	0.9	V_{P}
Supply Current	(Figure 3) (I_{D})	5	8.5	20	$m A_{\text {DC }}$
Display Driver ($\mathrm{V}_{\text {SAT }}$)	(Figure 4) ($\mathrm{V}_{\text {SAT }}$) (Note 4)		1.5	3	$V_{D C}$
Display Driver Leakage	Pin $14=16 \mathrm{~V}_{\text {DC }}$, Pin $17=$ Ground		0.01	1	$m A_{\text {DC }}$

Note 1: For operating at high temperatures, the LM1812 must be derated based upon a $+150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board and operating in a still air ambient. Due to the switching mode of operation, there is usually only a small power dissipation in the IC package.
Note 2: This sensitivity test uses the 500:1 attenuator to raise the input signal level for a more reliable reading and to reduce the chancesfor unintentional input-output coupling during the test.
Note 3: The "Modulator Threshold" is the voltage which must be applied to pin 8 to put the system in the transmit mode. The current input to pin 8 should be limited to $1-10 \mathrm{~mA}$.
Note 4: As a check on the performance of the transformers used for both the RF transmitter and the neon bulb driver (if a neon display is used) a current probe should be used to display the current waveform on an oscilloscope. Peak values of current should not exceed 1.5 amps. Re-design the transformer if larger peak currents are noted.

AC Test Circuits

FIGURE 1. Sensitivity Test Circuit

Note: All other pins are left open.

FIGURE 3. Current Drain Test Circuit

Application Hints

As the LM1812 contains both a transmitter and a receiver in proximity, PC layouts or breadboarding has to be done with special attention to ground loops and common coupling paths. The use of three ground pins on the IC package helps reduce grounding problems, but at the time of transmission, with the display driver also ON, there can be $1-2 \mathrm{~A}$ of peak current passed into the ground trace.

Local sources of high energy impulse noise, if not locally shielded, can cause an unwanted display "blip." This, for example, usually only occurs when using flyball governed dc display wheel drive motors and is due to the abrupt make-break action of the speed regulator contacts in combination with the large inductance of the lightly loaded motor. These "inductive kicks" can be locally filtered with a capacitor across the motor or a small valued capacitor (approximately 30 pF) can be connected across the first receive stage (between pins 3 and 4) to reduce the bandwidth and filter out these noise pulses.

For ranging applications, large transmit power levels are necessary due to the two-way path and the resulting received echo power falling as the fourth power of range (additional external receiver gain can be used to extend the range). One way communication links can use reduced power. Transmit power can be checked by measuring the voltage swing across the transducer (of known impedance) during the transmit mode. The magnitude of the transmitter power depends on the transducer impedance as presented to the transmitter power amplifier (usually a transformer is used to couple the transducer to the power amplifier). A minimum value of 10Ω causes approximately 1 A peak current pulses out of this power amplifier. The inductance of the secondary should be designed to resonate with the sum of the capacitance associated with the cable feeding the transducer and that of the transducer. The low Q resonance allows transducer replacement without tuning.

An internal one-shot multivibrator with a fixed time of $1 \mu \mathrm{~s}$ is used to drive the transmitter power amplifier into saturation for this time period once for each cycle of the transmit frequency. At a frequency of 200 kHz , this. results in a high efficiency class-C type of operation for the power amplifier. The transmit frequency is equal to the natural resonance of the external LC network which is tied to pin 1. This network is also used to establish the center frequency and the selectivity of the receiver.

Impulse noise is rejected by the combined action of the "Pulse Train Detector" and the "Integrator" circuits. The integrator requires a number of cycles of valid returns to be received before turning ON the display driver. The pulse train detector will dump the integrator if a contínuous train of pulses is not received (if 2 or 3 are missing, the integration capacitor is discharged to ground).

The collector of a grounded-emitter NPN transistor can be tied to pin 16 to allow an auxiliary control of the display driver. This transistor should normally be held OFF and should go ON for a time interval no longer than 1 ms if a neon display is used, due to the rapid current
build-up in the primary of the step-up transformer. If a LED is used as a display device with a series limiting resistor, this ON time can be made longer as it is now limited only by the increased dissipation of the IC which results from the saturation voltage at pin 14 and the ON current of the LED.

The step-up transformer for the neon display lamp has to have a relatively large magnetizing inductance to prevent large current build-up for the time duration of the flash. For this reason, iron-cored transformers are generally used and the large number of turns on the primary, which is required to achieve a high magnetizing inductance, requires an even larger number of turns, on the secondary to step up the 12 V to over 100 V to guarantee that the neon lamp fires. Rapid flashing of the neon lamp can cause a current build-up in the primary. This is the reason for the RC filter which powers the transformer. Under rapid flashing conditions, the voltage available falls and both the IC and the neon are saved from degradation due to large power dissipation. With normal operation, this network can easily supply the low power requirements of the neon display.

An IC audio amplifier can be used to amplitude modulate the carrier for an AM communication link. A high input impedance detector and audio amplifier attach to pin 1. for the receiver. One audio amplifier can be switched between the modulator and the receiver section. FM or pulse modulation techniques can also be used to reduce the modulator power requirements.

A digital depth (or range) readout can be used with the LM1812. This eliminates the requirement for the constant speed dc motor. The modulator, pin 8 , is electronically pulsed ON for approximately a 1 ms transmit time at a repetition rate which controls the updating of the displayed information. The "neon driver," pin 14, will provide a negative output pulse (from V^{+}to approximately $+1 \mathrm{~V}_{\mathrm{DC}}$) if a load resistor ($5.1 \mathrm{k} \Omega$) is used from pin 14 to V^{+}. This pulse is used to latch the output of a counter. This output is decoded and then drives a 7 -segment LED display. The repetition rate of the clock input to the counter provides a direct conversion from elapsed time (total count) to depth (or range).

Transducers are available for use either in water or air. The appropriate transducer is important for proper functioning in the intended application; for example, the high frequency attenuation in air usually requires a lower operating frequency. The modifications for a 40 kHz system are shown in the applications section.

A simplified schematic diagram, complete with typical external components for a sonar system, is shown in Figure 5. This not only shows the operation of the system, but also indicates "what's on the other side of the ICpins" to aid the user in his application. When pin 8 is externally pulsed, the system is put in the transmit mode and a controlled amplitude sinewave oscillation waveform results across the LC resonator, pin 1 . This is internally amplified and squared and each leading edge triggers the generation of a $1 \mu \mathrm{~s}$ pulse. This pulse drives the RF power amplifier (output at pin 6) into saturation. During this transmit mode, the second RF stage is gated

Application Hints (Continued)

OFF to disable the receiver. The receiver is also disabled if the display driver is ON for too long a time interval. The capacitor at pin 11 does the necessary integration for this control.

For additional information see A Single-Chip Monolithic Sonar System, T. M. Frederiksen and W. M. Howard, IEEE Journal of Solid State Circuits, Dec. 1974, Vol. SC-9, No. 6, pp. 394-403.

Note: Component numbering is the same as on the
system and connection diagram.
FIGURE 5. Simplified Schematic Diagram in Typical Application

Typical Applications

Typical Applications (Continued)

Component Changes for Operation in Air (40 kHz)

Electronics for Adding an Echo Annunciator

Industrial/Automotive/Functional Blocks/Telecommunications

LM1815 Adaptive Sense Amplifier

General Description

The LM1815 is an adaptive sense amplifier and default gating circuit for motor control applications. The sense amplifier provides a one-shot pulse output whose leading edge coincides with the negative-going zero crossing of a ground referenced input signal such as from a variable reluctance magnetic pick-up coil.

In normal operation, this timing reference signal is processed (delayed) externally and returned to the LM1815. A logic input is then able to select either the timing reference or the processed signal for transmission to the output driver stage.

The adaptive sense amplifier operates with a positivegoing threshold which is derived by peak detecting the incoming signal and dividing this down. Thus the input hysteresis varies with input signal amplitude. This enables the circuit to sense in situations where the high speed noise is greater than the low speed signal amplitude. Minimum input signal is 100 mVp -p.

Features

- Adaptive hysteresis
- Single supply operation
- Ground referenced input
- True zero crossing timing reference
- Operates from 2 V to 12 V supply voltage
- Handles inputs from 100 mV to over 120 V with external resistor
- CMOS compatible logic

Applications

- Position sensing with notched wheels
- Zero crossing switch
- Motor speed control
- Tachometer
- Engine testing

Connection Diagram

TOP VIEW

See NS Package N14A

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range Junction Temperature (Note 2)
Input Current

12 V
230 mW
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$
$\pm 30 \mathrm{~mA}$

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=10 \mathrm{~V}\right.$, unless otherwise specified, see Figure 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage		2.5	10	12	V
Supply Current	$\mathrm{f}_{\mathrm{IN}}=500 \mathrm{~Hz}, \operatorname{Pin} 9=2 \mathrm{~V}, \operatorname{Pin} 11=0.8 \mathrm{~V}$		3.6		mA
Reference Pulse Width	fiN $=1 \mathrm{~Hz}$ to 2 kHz	70	100	130	$\mu \mathrm{s}$
Input Bias Current	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$, (Pin 9 and Pin 11)			5	$\mu \mathrm{A}$
Input Bias Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{Vdc}$, (Pin 3)		200		nA
Input Impedance	$\mathrm{V}_{\text {IN }}=5 \mathrm{Vrms}$, (Note 3)	12	20	28	k Ω
Zero Crossing Threshold	$V_{\text {IN }}=100 \mathrm{mVp}-\mathrm{p},(\operatorname{Pin} 3)$			25	mV
Logic Threshold	(Pin 9 and Pin 11)	0.8	1.1	2.0	v
VOUT High	$R_{L}=1 \mathrm{k} \Omega$, (Pin 10)	7.5	8.6		v
V OUT Low	ISINK $=0.1 \mathrm{~mA},(\operatorname{Pin} 10)$		0.3	0.4	\checkmark
Input Arming Threshold	Pin 5 Open, $\mathrm{V}_{\text {IN }} \leq 135 \mathrm{mVp}$-p	45		60	mV
	Pin 5 Open, $\mathrm{V}_{1} \mathrm{~N} \geq 230 \mathrm{mVp}$-p	40	80\% of	90	\% of $\mathrm{V}_{3} \mathrm{Pk}$
	Pin 5 to V^{+}	250	$\} \mathrm{V}_{3} \mathrm{Pk}$		mV
	Pin 5 to Gnd	-25		25	mV
Output Leakage Pin 12	$\mathrm{V}_{12}=11 \mathrm{~V}$		0.01	10	$\mu \mathrm{A}$
Saturation Voltage P12	$\mathrm{l}_{12}=2 \mathrm{~mA}$		0.2	0.4	\checkmark

Note 1: Derate at $5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $85^{\circ} \mathrm{C}$. This applies when the device is soldered into a printed circuit board, operating in still air ambient.
Note 2: Temporary excursions to $150^{\circ} \mathrm{C}$ can be tolerated.
Note 3: Measured at input to external $18 \mathrm{k} \Omega$ resistor. IC contains $1 \mathrm{k} \Omega$ in series with a diode to attenuate the input signal.

FIGURE 2. LM1815 Oscillograms

FIGURE 1. LM1815 Adaptive Sense Amplifier

Schematic Diagram

Industrial/Automotive/Functional Blocks/Telecommunications

LM1830 Fluid Detector

General Description

The LM1830 is a monolithic bipolar integrated circuit designed for use in fluid detection systems. The circuit is ideal for detecting the presence, absence, or level of water, or other polar liquids. An ac signal is passed through two probes within the fluid. A detector determines the presence or absence of the fluid by comparing the resistance of the fluid between the probes with the resistance internal to the integrated circuit. An ac signal is used to overcome plating problems incurred by using a dc source. A pin is available for connecting an external resistance in cases where the fluid impedance is of a different magnitude than that of the internal resistor. When the probe resistance increases above the preset value, the oscillator signal is coupled to the base of the open-collector output transistor. In a typical application, the output could be used to drive a LED, loud speaker or a low current relay.

Features

- Low external parts count
- Wide supply operating range
- One side of probe input can be grounded
- ac coupling to probe to prevent plating
- Internally regulated supply
- ac or dc output

Applications

- Beverage dispensers	- Radiators
- Water softeners	- Washing machines
- Irrigation	- Reservoirs
- Sump pumps	- Boilers
- Aquaria	

Logic and Connection Diagrams

See NS Package H10C

Absolute Maximum Ratings

Supply Voltage

Power Dissipation (Note 1)
Output Sink Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

28 V
28 V
300 mW
20 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

300 mW
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{V}^{+}=16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current			5.5	10	mA
Oscillator Output Voltage Low High					
Internal Reference Resistor			1.1		V
Detector Threshold Voltage		8	2.2	13	25
Detector Threshold Resistance			680		V
Output Saturation Voltage	$\mathrm{IO}=10 \mathrm{~mA}$		10	15	mV
Output Leakage	$\mathrm{VPIN} 12=16 \mathrm{~V}$		0.5	2.0	$\mathrm{k} \Omega$
Oscillator Frequency	$\mathrm{C}=0.001 \mu \mathrm{~F}$			10	V

Note 1: The maximum junction temperature rating of the LM1830N is $150^{\circ} \mathrm{C}$. For operation at elevated temperatures, devices in the dual-in-line plastic package must be derated based on a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$.

Schematic Diagram

Typical Performance Characteristics

Reference Resistor vs Ambient Temperature

Threshold Resistance vs Supply Voltage

Detector Threshold Voltage vs Temperature

Output Saturation Voltage vs Output Current

Equivalent Resistance vs Concentration of Several Solutions

Probe Threshold Resistance vs Temperature

Oscillator Frequency vs
Ambient Temperature

Application Hints

The LM1830 requires only an external capacitor to complete the oscillator circuit. The frequency of oscillation is inversely proportional to the external capacitor value. Using $0.001 \mu \mathrm{~F}$ capacitor, the output frequency is approximately 6 kHz . The output from the oscillator is available at pin 5 . In normal applications, the output is taken from pin 13 so that the internal 13k resistor can be used to compare with the probe resistance. Pin 13 is coupled to the probe by a blocking capacitor so that there is no net dc on the probe.

Since the output amplitude from the oscillator is approximately $4 \mathrm{~V}_{\mathrm{BE}}$, the detector (which is an emitter base junction) will be turned "ON" when the probe resistance to ground is equal to the internal $13 \mathrm{k} \Omega$ resistor. An internal diode across the detector emitter base junction provides symmetrical limiting of the detector input signal so that the probe is excited with $\pm 2 V_{B E}$ from a $13 \mathrm{k} \Omega$ source. In cases where the $13 \mathrm{k} \Omega$ resistor is not compatible with the probe resistance range, an external resistor may be added by coupling the probe to pin 5 through the external resistor as shown in Figure 2. The collector of the detecting transistor is brought out to pin 9 enabling a filter capacitor to be connected so that the output will switch "ON" or "OFF" depending on the probe resistance. If this capacitor is omitted, the output will be switched at approximately 50% duty cycle when the probe resistance exceeds the reference resistance. This can be usefulwhen an audio output is required and the output transistor can be used to directly drive a loud speaker. In addition, LED indicators do not require dc excitation. Therefore, the cost of a capacitor for filtering can be saved.

In the case of inductive loads or incandescent lamp loads, it is recommended that a filter capacitor be employed.

In a typical application where the device is employed for sensing low water level in a tank, a simple steel probe may be inserted in the top of the tank with the tank grounded. Then when the water level drops below the tip of the probe, the resistance will rise between the probe and the tank and the alarm will be operated. This is illustrated in Figure 3. In situations where a nonconductive container is used, the probe may be designed in a number of ways. In some cases a simple phono plug can be employed. Other probe designs include conductive parallel strips on printed circuit boards.

It is possible to calculate the resistance of any aqueous solution of an electrolyte for different concentrations, provided the dimensions of the electrodes and their spacing is known.

The resistance of a simple parallel plate probe is given by:

$$
R=\frac{1000}{c \cdot p} \cdot \frac{d}{A} \Omega
$$

$$
\text { where } \quad \begin{aligned}
& A=\text { area of plates }\left(\mathrm{cm}^{2} .\right) \\
& d=\text { separation of plates }(\mathrm{cm}) \\
& \mathrm{c}=\text { concentration (gm. mol. equivalent/litre) } \\
& \mathrm{p}=\text { equivalent conductance } \\
&\left(\Omega^{-1} \mathrm{~cm}^{2} \text { equiv. }{ }^{-1}\right)
\end{aligned}
$$

(An equivalent is the number of moles of a substance that gives one mole of positive charge and one mole of negative charge. For example, one mole of NaCl gives $\mathrm{Na}^{+}+$ Cl^{-}so the equivalent is 1 . One mole of CaCl_{2} gives $\mathrm{Ca}^{++}+2 \mathrm{Cl}^{-}$so the equivalent is $1 / 2$.)

Usually the probe dimensions are not measured physically, but the ratio d/A is determined by measuring the resistance of a cell of known concentration c and equivalent conductance of 1. A graph of common solutions and their equivalent conductances is shown for reference. The data was derived from D.A. MacInnes, "The Principles of Electrochemistry," Reinhold Publishing Corp., New York., 1939.

In automotive and other applications where the power source is known to contain significant transient voltages, the internal regulator on the LM1830 allows protection to be provided by the simple means of using a series resistor in the power supply line as illustrated in Figure 4. If the output load is required to be returned directly to the power supply because of the high current required, it will be necessary to provide protection for the output transistor if the voltages are expected to exceed the data sheet limits.

Although the LM1830 is designed primarily for use in sensing conductive fluids, it can be used with any variable resistance device, such as light dependent resistor or thermistor or resistive position transducer.

The following table lists some common fluids which may and may not be detected by resistive probe techniques.

Conductive Fluids	Non-Conductive Fluids
City water	Pure water
Sea water	Gasoline
Copper sulphate solution	Oil
Weak acid	Brake fluid
Weak base	Alcohol
Household ammonia	Ethylene glycol
Water and glycol mixture	Paraffin
Wet soil	Dry soil
Coffee	Whiskey

Application Hints (Continued)

FIGURE 2. Application Using External Reference Resistor
figure 1. Test Circuit

FIGURE 3. Basic Low Level Warning Device with LED Indication

Output is activated when $R_{p} \widetilde{>} 1 / 3 R_{R E F}$ FIGURE 4. Direct Coupled Applications

Typical Applications

Low Level Warning with Audio Output

The output is suitable for driving a sump pump or opening a drain valve, etc.

High Level Warning Device

National Semiconductor
 Industrial/Automotive/Functional Blocks/Telecommunications LM2877 Dual 4-Watt Power Audio Amplifier

General Description

The LM2877 is a monolithic dual power amplifier designed to deliver $4 \mathrm{~W} /$ channel continuous into 8Ω loads. The LM2877 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders and $A M-F M$ stereo receivers, etc. Each power amplifier is biased from a common internal regulator to provide high power supply rejection and output Q point centering. The LM2877 is. internally compensated for all gains greater than 10, and comes in an 11-lead single-inline package.

Features

- 4W/channel
- -68 dB ripple rejection, output referred
- - 70 dB channel separation, output referred
- Wide supply range, 6-24V
- Very low cross-over distortion
- Low audio band noise
- Internal current limiting, short circuit protection
- Internal thermal shutdown

Applications

- Multi-channel audio systems
- Stereo phonographs
- Tape recorders and players
- AM-FM radio receivers
- Servo amplifiers
- Intercom systems
- Automotive products

Connection Diagram (Single-In-Line Package, Top View)

Equivalent Schematic Diagram

Absolute Maximum Ratings

Supply Voltage
Input Voltage
Operating Temperature
Storage Temperature
Junction Temperature
Lead Temperature (Soldering, 10 seconds)
26 V
$\pm 0.7 \mathrm{~V}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $V_{S}=20 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~A}_{\mathrm{V}}=50(34 \mathrm{~dB})$ unless otherwise specified

Note 1: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM2877 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques.

Typical Performance Characteristics

Typical Applications
Stereo Phonograph Amplifier with Bass Tone Control

Frequency Response of Bass
Tone Control

Typical Applications (Continued)

Stereo Amplifier with AV = 200

Non-Inverting Amplifier Using Split Supply

Inverting Unity Gain Amplifier

LM2907, LM2917 Frequency to Voltage Converter

General Description

The LM2907, LM2917 series are monolithic frequency to voltage converters with a high gain op amp/comparator designed to operate a relay, lamp, or other load when the input frequency reaches or exceeds a selected rate. The tachometer uses a charge pump technique and offers frequency doubling for low ripple, full input protection in two versions (LM2907-8, LM2917-8) and its output swings to ground for a zero frequency input.
(Continued on page 9-83)

Advantages

- Output swings to ground for zero frequency input
- Easy to use; $\mathrm{V}_{\text {OUt }}=\mathrm{f}_{\mathrm{IN}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{R} 1 \times \mathrm{C} 1$
- Only one RC network provides frequency doubling
- Zener regulator on chip allows accurate and stable frequency to voltage or current conversion. (LM2917)

Features

- Ground referenced tachometer input interfaces directly with variable reluctance magnetic pickups
- Op amp/comparator has floating transistor output
- 50 mA sink or source to operate relays, solenoids, meters, or LEDs
- Frequency doubling for low ripple
- Tachometer has built-in hysteresis with either differential input or ground referenced input
- Built-in zener on LM2917
- $\pm 0.3 \%$ linearity typical
- Ground referenced tachometer is fully protected from damage due to swings above V_{Cc} and below ground

Applications

- Over/under speed sensing
- Frequency to voltage conversion (tachometer)
- Speedometers
- Breaker point dwell meters
- Hand-held tachometer
- Speed governors
- Cruise control
- Automotive door lock control
- Clutch control
- Horn control
- Touch or sound switches

Block and Connection Diagrams Dual-In-Line Packages, Top Views

Absolute Maximum Ratings (Note 1)

Supply Voltage	28 V	
Supply Current (Zener Options)	25 mA	
Collector Voltage	28 V	
Differential Input Voltage		
\quadTachometer Op Amp/Comparator	28 V	
		28 V

Input Voltage Range	
\quad Tachometer LM2907-8, LM2917-8	$\pm 28 \mathrm{~V}$
LM2907, LM2917	0.0 V to +28 V
Op Amp/Comparator	0.0 V to +28 V
Power Dissipation	500 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$-300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see test circuit

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
TACHOMETER					
Input Thresholds	$V_{\text {IN }}=250 \mathrm{mVp}-\mathrm{p} @ 1 \mathrm{kHz}$ (Note 2)	± 10	± 15	± 40	mV
Hysteresis	$V_{\text {IN }}=250 \mathrm{mVp}$-p@ 1 kHz (Note 2)		30		mV
Offset Voltage	$V_{\text {IN }}=250 \mathrm{mVp}-\mathrm{p} @ 1 \mathrm{kHz}$ (Note 2)				
LM2907/LM2917			3.5	10	mV
LM2907-8/LM2917-8			5	15	mV
Input Bias Current	$V_{\text {IN }}= \pm 50 \mathrm{mV} \mathrm{DC}$		0.1	1	$` \mathrm{~A}$
V_{OH}	$V_{\text {IN }}=+125 \mathrm{mV} \mathrm{V}_{\text {DC }}$ (Note 3)		8.3		V
$\mathrm{V}_{\mathrm{OL}} \text { Pin } 2$	$V_{\text {IN }}=-125 \mathrm{mV} \mathrm{V}_{\text {DC }}$ (Note 3)		2.3		v
Output Current; $\mathrm{I}_{2}, \mathrm{I}_{3}$	$\mathrm{V} 2=\mathrm{V} 3=6.0 \mathrm{~V}$ (Note 4)	140	180	240	$\mu \mathrm{A}$
Leakage Current; I_{3}	$12=0, V 3=0$			0.1	$\mu \mathrm{A}$
Gain Constant, K	(Note 3)	0.9	1.0	. 1.1	
Linearity	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, 5 \mathrm{kHz}, 10 \mathrm{kHz}$, (Note 5)	-1.0	0.3	+1.0	\%
OP/AMP COMPARATOR					
$\mathrm{V}_{\text {OS }}$	$V_{\text {IN }}=6.0 \mathrm{~V}$		3	10	$m V$
$\mathrm{I}_{\text {BIAS }}$	$\mathrm{V}_{\text {IN }}=6.0 \mathrm{~V}$		50	- 500	$n A$
Input Common-Mode Voltage		0		$\mathrm{V}_{\mathrm{cc}}-1.5 \mathrm{~V}$	v
Voltage Gain			200		V / mV
Output Sink Current	$\mathrm{V}_{\mathrm{C}}=1.0$	40	50		mA
Output Source Current	$V_{E}=V_{C C}-2.0$		10		mA
Saturation Voltage	$\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$		0.1	0.5	V
	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$			1.0	V
.	$\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}$		1.0	1.5	V
ZENER REGULATOR					
Regulator Voltage	$\mathrm{R}_{\text {DROP }}=470 \Omega$		7.56		V
Series Resistance			10.5	15	Ω
Temperature Stability					$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
TOTAL SUPPLY CURRENT			3.8	6	mA

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for package 22 and 16 or a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for package 20.
Note 2: Hysteresis is the sum $+V_{T H}-\left(-V_{T H}\right)$, offset voltage is their difference. See test circuit.
Note 3: V_{OH} is equal to $3 / 4 \times \mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{OL}}$ is equal to $1 / 4 \times \mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}_{\mathrm{BE}}$ therefore $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{CC}} / 2$. The difference, $\mathrm{V}_{\mathrm{OH}}-$ V_{OL}, and the mirror gain, $\mathrm{I}_{2} / \mathrm{I}_{3}$, are the two factors that cause the tachometer gain constant to vary from 1.0 .
Note 4: Be sure when choosing the time constant R1 \times C1 that R1 is such that the maximum anticipated output voltage at pin 3 can be reached with $I_{3} \times R 1$. The maximum value for R1 is limited by the output resistance of pin 3 which is greater than $10 \mathrm{M} \Omega$ typically.
Note 5: Nonlinearity is defined as the deviation of $V_{\text {out }}$ (@ pin 3) for $f_{\mathrm{IN}}=5 \mathrm{kHz}$ from a straight line defined by the $V_{\text {OUT }} @ 1 \mathrm{kHz}$ and $V_{\text {OUT }}$ @ $10 \mathrm{kHz}, \mathrm{C} 1=1000 \mathrm{pF}, \mathrm{R} 1=68 \mathrm{k}$ and $\mathrm{C} 2=0.22 \mathrm{mFd}$.

Typical Performance Characteristics

Total Supply Current

Normalized Tachometer Output vs Temperature

Tachometer Currents I_{2} and I_{3} vs Supply Voltage

Zener Voltage vs Temperature

Normalized Tachometer Output vs Temperature

Tachometer Currents I_{2} and I_{3} vs Temperature

Typical Performance Characteristics (Continued)

Tachometer Linearity vs Temperature

Tachometer Linearity vs \mathbf{R}

Op Amp Output Transistor Characteristics

Tachometer Linearity vs Temperature

Tachometer Input Hysteresis vs Temperature

Op Amp Output Transistor Characteristics

General Description (Continued)

The op amp/comparator is fully compatible with the tachometer and has a floating transistor as its output. This feature allows either a ground or supply referred load of up to 50 mA . The collector may be taken above V_{CC} up to a maximum V_{CE} of 28 V .

The two basic configurations offered include an 8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input. This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications.

Test Circuit and Waveform

Applications Information

The LM2907 series of tachometer circuits is designed for minimum external part count applications and maximum versatility. In order to fully exploit its features and advantages let's examine its theory of operation. The first stage of operation is a differential amplifier driving a positive feedback flip-flop circuit. The-input threshold voltage is the amount of differential input voltage at which the output of this stage changes state. Two options (LM2907-8, LM2917-8) have one input internally grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output. This is offered specifically for magnetic variable reluctance pickups which typically provide a single-ended ac output. This single input is also fully protected against voltage swings to $\pm 28 \mathrm{~V}$, which are easily attained with these types of pickups.

The differential input options (LM2907, LM2917) give the user the option of setting his own input switching level and still have the hysteresis around that level for excellent noise rejection in any application. Of course in order to allow the inputs to attain commonmode voltages above ground, input protection is removed

The more versatile configurations provide differential tachometer input and uncommitted op amp inputs. With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachometer output.

Both of these configurations are available with an active shunt regulator connected across the power leads. The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor.

Tachometer Input Threshold Measurement

and neither input should be taken outside the limits of the supply voltage being used. It is very important that an input not go below ground without some resistance in its lead to limit the current that will then flow in the epi-substrate diode.

Following the input stage is the charge pump where the input frequency is converted to a dc voltage. To do this requires one timing capacitor, one output resistor, and an integrating or filter capacitor. When the input stage changes state (due to a suitable zero crossing or differential voltage on the input) the timing capacitor is either charged or discharged linearily between two voltages whose difference is $\mathrm{V}_{\mathrm{Cc}} / 2$. Then in one half cycle of the input frequency or a time equal to $1 / 2 f_{I N}$ the change in charge on the timing capacitor is equal to $\mathrm{V}_{\mathrm{CC}} / 2 \times \mathrm{C} 1$. The average amount of current pumped into or out of the capacitor then is:
$\frac{\Delta Q}{T}=i_{c(A \vee G)}=C 1 \times \frac{V_{C C}}{2} \times\left(2 f_{I N}\right)=V_{C C} \times f_{I N} \times C 1$
The output circuit mirrors this current very accurately into the load resistor R1, connected to ground, such that if the pulses of current are integrated with a filter

Applications Information (Continued)

capacitor, then, $\mathrm{V}_{\mathrm{o}}=\mathrm{i}_{\mathrm{c}} \times \mathrm{R} 1$, and the total conversion equation becomes:
$V_{O}=V_{C C} \times f_{I N} \times C 1 \times R 1 \times K$
Where K is the gain constant-typically 1.0 .
The size of C2 is dependent only on the amount of ripple voltage allowable and the required response time.

CHOOSING R1 AND C1

There are some limitations on the choice of B1 and C1 which should be considered for optimum performance. The timing capacitor also provides internal compensation for the charge pump and should be kept larger than 100 pF for very accurate operation. Smaller values can cause an error current on R1, especially at low temperatures. Several considerations must be met when choosing R1. The output current at pin 3 is internally fixed and therefore $V_{o} / R 1$ must be less than or equal to this value. If R1 is too large, it can become a significant fraction of the output impedance at pin 3 which degrades linearity. Also output ripple voltage must be considered and the size of C 2 is affected by R1. An expression that describes the ripple content on pin 3 for a single R1C2 combination is:
$\mathrm{V}_{\text {RIPPLE }}=\frac{\mathrm{V}_{\mathrm{CC}}}{2} \times \frac{\mathrm{C} 1}{\mathrm{C} 2} \times\left(1-\frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}} \times \mathrm{C} 1}{\mathrm{I}_{2}}\right) \mathrm{pk}-\mathrm{pk}$
It appears R1 can be chosen independent of ripple,
however response time, or the time it takes $\mathrm{V}_{\text {OUT }}$ to stabilize at a new voltage increases as the size of C2 increases so a compromise between ripple, response time, and linearity must be chosen carefully.

As a final consideration, the maximum attainable input frequency is determined by $\mathrm{V}_{\mathrm{Cc}}, \mathrm{C} 1$ and I_{2} :
$f_{\text {MAX }}=\frac{I_{2}}{C 1 \times V_{C C}}$

USING ZENER REGULATED OPTIONS (LM2917)

For those applications where an output voltage or current must be obtained independent of supply voltage variations, the LM2917 is offered. The most important consideration in choosing a dropping resistor from the unregulated supply to the device is that the tachometer and op amp circuitry alone require about 3 mA at the voltage level provided by the zener. At low supply voltages there must be some current flowing in the resistor above the 3 mA circuit current to operate the regulator. As an example, if the raw supply varies from 9 to 16 V , a resistance of 470Ω will minimize the zener voltage variation to 160 mV . If the resistance goes under 400Ω or over 600Ω the zener variation quickly rises above 200 mV for the same input variation.

Typical Applications

Minimum Component Tachometer

Typical Applications (Continued)

Current Driven Meter Indicating Engine RPM $I_{0}=10 \mathrm{~mA} @ \mathbf{3 0 0} \mathbf{~ H z}$ or $\mathbf{6 0 0 0}$ ERPM (6 Cylinder Engine)

Capacitance Meter
$V_{\text {OUT }}=1-10 \mathrm{~V}$ for $C_{x}=0.01$ to 0.1 mFd
$(R=111 \mathrm{k})$

Typical Applications (Continued)
Two-Wire Femote Speed Switch

100 Cycle Delay Switch

for each complete input cycle (2 zero crossings)
Example:
If $\mathbf{C 2}=200 \mathrm{C} 1$ after 100 consecutive input cycles.

$$
\mathrm{V} 3=1 / 2 \mathrm{~V}_{\mathrm{CC}}
$$

Variable Reluctance Magnetic Pickúp Buffer Circuits

Typical Applications (Continued)

Frequency to Voltage Converter with 2 Pole Butterworth Filter to Reduce Ripple

Overspeed Latch

Typical Applications (Continued)
Some Frequency Switch Applications May Require Hysteresis in the Comparator Function Which Can Be Implemented in Several Ways:

Typical Applications.(Continued)

Changing the Output Voltage for an Input Frequency of Zero

Changing Tachometer Gain Curve or Clamping the Minimum Output Voltage

Anti-Skid Circuit Functions

$V_{\text {OUT }}$ is proportional to the lower of the two input wheel speeds.

$V_{\text {OUT }}$ is proportional to the higher of the two input wheel speeds.

Equivalent Schematic Diagram

* Note: This connection made on LM2907-8 and LM2917-8 only.
* * Note: This connection made on LM2917 and

LM2917-8 only.

Industrial/Automotive/Functional Blocks/Telecommunications

LM3080/LM3080A
 Operational Transconductance Amplifier

General Description

The LM3080 is a programmable transconductance block intended to fulfill a wide variety of variable gain applications. The LM3080 has differential inputs and high impedance push-pull outputs. The device has high input impedance and its transconductance (gm) is directly proportional to the amplifier bias current (${ }^{\mathrm{ABC}}$).

High slew rate together with programmable gain make the LM3080 an ideal choice for variable gain applications such as sample and hold, multiplexing, filtering, and multiplying.

The LM3080AH and LM3080AJ are guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the LM3080N, LM3080H, LM3080AN and LM3080J are guaranteed from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Slew Rate (unity gain compensated): $50 \mathrm{~V} / \mu \mathrm{s}$
- Fully Adjustable Gain: 0 to $g m R_{L}$ limit
- Extended gm Linearity: 3 decades
- Flexible Supply Voltage Range: $\pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Adjustable Power Consumption

Schematic and Connection Diagrams

Absolute Maximum Ratings

Supply Voltage (Note 2)	
LM3080	$\pm 18 \mathrm{~V}$
LM3080A	$\pm 22 \mathrm{~V}$
Power Dissipation	250 mW
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Amplifier Bias Current (I	2 mBC
DC Input Voltage	2 mA
Output Short Circuit Duration	$+V_{\text {S }}$ to $-\mathrm{V}_{S}$
Indefinite	

Oper
LM3080N, LM3080H, LM3080AN
or LM3080J
LM3080AH or LM3080AJ

Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
Electrical Characteristics (Note 1)

Note 1: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$, amplifier bias current (${ }_{A B C}$) $=500 \mu \mathrm{~A}$, unless otherwise specified.
Note 2: Selections to supply voltage above $\pm 22 \mathrm{~V}$, contact the factory.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Differential Input Current Test Circuit

7 National Semiconductor

Industrial/Automotive/Functional

 Blocks/Telecommunications
LM3909 LED Flasher/Oscillator

General Description

The LM3909 is a monolithic oscillator specifically designed to flash Light Emitting Diodes. By using the timing capacitor for voltage boost, it delivers pulses of 2 or more volts to the LED while operating on a supply of 1.5 V or less. The circuit is inherently self-starting, and requires addition of only a battery and capacitor to function as a LED flasher.

Packaged in an 8-lead plastic mini-DIP, the LM3909 will operate over the extended consumer temperature range of $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. It has been optimized for low power drain and operation from weak batteries so that continuous operation life exceeds that expected from battery rating.

Application is made simple by inclusion of internal timing resistors and an internal LED current limit resistor. As shown in the first two application circuits, the timing resistors supplied are optimized for nominal flashing rates and minimum power drain at 1.5 V and 3 V .

Timing capacitors will generally be of the electrolytic type, and a small 3 V rated part will be suitable for any LED flasher using a supply up to 6 V . However, when picking flash rates, it should be remembered that some electrolytics have very broad capacitance tolerances, for example -20% to $+100 \%$.

Features

- Operation over one year from one C size flashlight cell
- Bright, high current LED pulse
- Minimum external parts
- Low cost
- Low voltage operation, from just over 1 V to 5 V
- Low current drain, averages under 0.5 mA during battery life
- Powerful; as an oscillator directly drives an 8Ω speaker
- Wide temperature range

Applications

- Finding flashlights in the dark, or locating boat mooring floats
- Sales and advertising gimmicks
- Emergency locators, for instance on fire extinguishers
- Toys and novelties
- Electronic applications such as trigger and sawtooth generators
- Siren for toy fire engine, (combined oscillator, speaker driver)
- Warning indicators powered by 1.4 to 200 V

Connection Diagram

Dual-In-Line Package

Order Number LM3909N
See NS Package N08B
Typical Application
(See applications notes on page 9-97).
Triac Trigger'

- 1.4 V FROM BATTERY OR - $1.4 V$ FROM BATTERY
SOLAR CELI WITH 5 F F MOMINALLY 5 mA.

Absolute Maximum Ratings

Power Dissipation

$$
\begin{array}{r}
500 \mathrm{~mW} \\
6.4 \mathrm{~V} \\
-25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{array}
$$

Operating Temperature Range
Electrical Characteristics

PARAMETER	CONDITIONS (Applications Note 3)	MIN	TYP	MAX	UNITS
Supply Voltage	(In Oscillation)	${ }^{-1.15}$		6.0	V
Operating Current			0.55	0.75	mA
Flash Frequency	$300 \mu \mathrm{~F}, 5 \%$ Capacitor	0.65	1.0	1.3	Hz
High Flash Frequency	$0.30 \mu \mathrm{~F}, 5 \%$ Capacitor		1.1		$\cdots \mathrm{kHz}$
Compatible LED Forward Drop	1 mA Forward Current	1.35		2.1	\checkmark
Peak LED Current	$350 \mu \mathrm{~F}$ Capacitor		45		mA
Pulse Width	$350 \mu \mathrm{~F}$ Capacitors at $1 / 2$ Amplitude		6.0		ms

Additional Typical Applications (See applications notes below.)

1.5V Flasher .

Note: Nominal flash rate: $1 . \mathrm{Hz}$.

battery voltage (V)

Typical Operating Conditions

V^{+}	NOMINAL FLASH Hz	$\mathrm{C}_{\mathbf{T}}$	$\mathbf{R}_{\mathbf{S}}$	\mathbf{R}_{FB}	$\mathrm{V}_{\text {RANGE }}^{+}$
6 V	2	$400 \mu \mathrm{~F}$	1 k	1.5 k	$5-25 \mathrm{~V}$
15 V	2	$180 \mu \mathrm{~F}$	$3: 9 \mathrm{k}$	1 k	$13-50 \mathrm{~V}$
100 V	1.7	$180 \mu \mathrm{~F}$	43 k	1 k	$85-200 \mathrm{~V}$

Estimated Battery Life (Continuous 1.5V Flasher Operation)

SIZE CELL	TYPE	
	STANDARD	ALKALINE
AA	3 months	6 months
C	7 months	15 months
D	1.3 years	2.6 years

Note: Estimates are made from our tests and manufacturers data. Conditions are fresh batteries and room temperature. Clad or "leakproof" batteries are recommended for any application of five months or more. Nickel Cadmium cells are not recommended.

APPLICATIONS NOTES

Note 1: All capacitors shown are electrolytic unless marked otherwise.
Note 2: Flash rates and frequencies assume a $\pm 5 \%$ capacitor tolerance. Electrolytics may vary -20% to $+100 \%$ of their stated value.
Note 3: Unless noted, measurements above are made with a 1.4 V supply, a $25^{\circ} \mathrm{C}$ ambient temperature, and a LED with a forward drop of 1.5 V to 1.7V at 1 mA forward currerit.

Note 4: Occasionally a flasher circuit will fail to oscillate due to a LED defect that may be missed because it only reduces light output 10% or so. Such LEDs can be identified by a large increase in conduction between 0.9 V and 1.2 V .

Typical Applications (Continued) (See applications notes on page 9-97)

Flashlight Finder

Note: LM3909, capacitor, and LED are installed in a white translucent cap on the flashlight's back end. Only one contact strip (in addition to the case connection) is needed for flasher powpr. Drawing current through the bulb simplifies wiring and causes negligible loss since bulb resistance cold is typically less than 2Ω.

4 Parallel LEDs

Note: Nominal flash rate: 1.3 Hz . Average $I_{\text {Drain }}=2 \mathbf{m A}$.

High Efficiency Parallel Circuit

Note: Nominal flash rate: 1.5 Hz . Average $\mathrm{I}_{\text {DRAIN }}=1.5 \mathrm{~mA}$.

1 kHz Square Wave Oscillator

Note: Output voltage through a 10k load to ground.

Typical Applications (Continued) (See applications notes on page 9.97)
"Buzz Box" Continuity and Coil Checker

Note: Differences between shorts, coils, and a few ohms of resistance can be heard.

Variable Flasher

Note: Flash rate: $\mathbf{0 - 2 0} \mathbf{~ H z}$.

Note: Continuous appearing light obtained by supplying short, high current, pulses (2 kHz) to LEDs with higher than battery voltage available.

Note: High efficiency, 4 mA drain.
LED Booster

Emergency Lantern/Flasher

7 National Semiconductor

Industrial/Automotive/Functional Blocks/Telecommunications

LM3911 Temperature Controller
 General Description

The LM3911 is a highly accurate temperature measurement and/or control system. for use over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. Fabricated on a single monolithic chip, 'it includes a temperature sensor, a stable voltage reference and an operational amplifier.

The output voltage of the LM3911 is directly proportional to temperature in degrees Kelvin at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. Using the internal op amp with external resistors any temperature scale factor is easily obtained. By connecting the op amp as a comparator, the output will switch as the temperature transverses the set-point making the device useful as an on-off temperature controller.

An active shunt regulator is connected across the power leads of the LM3911 to provide a stable 6.8 V voltage reference for the sensing system. This allows the use of any power supply voltage with suitable external resistors.

The input bias current is low and relatively constant with temperature, ensuring high accuracy when high source impedance is used. Further, the output collector can be returned to a voltage higher than 6.8 V allowing the LM3911 to drive lamps and relays up to a 35 V supply.

The LM3911 uses the difference in emitter-base voltage of transistors operating at different current densities as the basic temperature sensitive element. Since this out; put depends only on transistor matching the same reliability and stability as present op amps can be expected.

The LM3911 is available in three package styles-a metal can 4-lead TO-5, a metal can TO-46 and an 8-lead epoxy mini-DIP. In the epoxy package all electrical connections are made on one side of the device allowing the other 4 leads to be used for attaching the LM3911 to the temperature source. The LM3911 is rated for operation over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- Uncalibrated accuracy $\pm 10^{\circ} \mathrm{C}$
- Internal op amp with frequency compensation
- Linear output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}\left(10 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$
- Can be calibrated in degrees Kelvin, Celsius or Fahrenheit
- Output can drive loads up to 35 V
- Internal stable voltage reference
- Low cost

Block Diagram

Typical Applications

Basic Temperature Controller

temperature increase $R_{5}=\left(\mathrm{V}^{+}-6.8 \mathrm{~V}\right) \mathrm{k}!2$

Proportioning Temperature Controller

Note 2: R10 $=\frac{\left|V^{+}+|+| V^{-1-7}\right.}{0.0015}$
Note 3: Either \mathbf{V}^{-}or $\mathbf{V}^{\boldsymbol{+}}$ can be ground.

Rg PROPORTIONING k9 PROPORTIONIN
kANDWIDTH

Absolute Maximum Ratings

Supply Current (Externally Set)
Output Collector Voltage, V^{++}
Feedback Input Voltage Range
Output Short Circuit Duration

10 mA
36 V
0 V to +7.0 V Indefinite

Operating Temperature Range $\quad-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 seconds) $\quad 300^{\circ} \mathrm{C}$

Electrical Characteristics

(Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SENSOR					
Output Voltage	$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$, (Note 2)	2.36	2.48	2.60	V
Output Voltage	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$, (Note 2)	2.88	2.98	3.08	V
Output Voltage	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$, (Note 2)	3.46	3.58	3.70	V
Linearity	$\Delta T=100^{\circ} \mathrm{C}$		0.5	2	\%
Long-Term Stability			0.3		\%
Repeatability			0.3		\%
VOLTAGE REFERENCE					
Reverse Breakdown Voltage	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{z}} \leq 5 \mathrm{~mA}$	6.55	6.85	7.25	V
Reverse Breakdown Voltage	$1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{z}} \leq 5 \mathrm{~mA}$		10	35	$m V$
Change With Current					,
Temperature Stability ${ }^{\text {' }}$			20	85	mV
Dynamic Impedance	$\mathrm{I}_{2}=1 \mathrm{~mA}$		3.0		Ω
RMS Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		30		$\mu \mathrm{V}$
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		6.0		mV
OP AMP					
Input Bias Current	$T_{A}=+25^{\circ} \mathrm{C}$		35	150	nA
Input Bias Current			45	250	nA
Voltage Gain	$\mathrm{R}_{\mathrm{L}}=36 \mathrm{k}, \mathrm{V}^{++}=36 \mathrm{~V}$	2500	15000		v / V
Output Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)		0.2	2	$\mu \mathrm{A}$
Output Leakage Current	(Note 3)		1.0	8	$\mu \mathrm{A}$
Output Source Current	$\mathrm{V}_{\text {OUT }} \leq 3.70$	10			$\mu \mathrm{A}$
Output Sink Current	$1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 36 \mathrm{~V}$	2.0	,		mA

Note 1: These specifications apply for $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and $0.9 \mathrm{~mA} \leq I_{\text {SUPPLY }} \leq 1.1 \mathrm{~mA}$ unless otherwise specified; $C_{L} \leq 50 \mathrm{pF}$.
Note 2: The output voltage applies to the basic thermometer configuration with the output and input terminals shorted and a load resistance of $\geq 1.0 \mathrm{M} \Omega$. This is the feedback sense voltage and includes errors in both the sensor and op amp. This voltage is specified for the sensor in a rapidly stirred oil bath. The output is referred to V^{+}.
Note 3: The output leakage current is specified with $\geq 100 \mathrm{mV}$ overdrive. Since this voltage changes with temperature, the voltage drive for turn-off changes and is defined as $\mathrm{V}_{\text {OUT }}$ (with output and input shorted) -100 mV . This specification applies for $\mathrm{V}_{\text {OUT }}=36 \mathrm{~V}$.

Application Hints

Although the LM3911 is designed to be totally troublefree, certain precautions should be taken to insure the best possible performance.

As with any temperature sensor, internal power dissipation will raise the sensor's temperature above ambient. Nominal suggested operating current for the shunt regulator is 1.0 mA and causes 7.0 mW of power dissipation. In free, still, air this raises the package temperature by about $1.2^{\circ} \mathrm{K}$. Although the regulator will operate at higher reverse currents and the output will drive loads up to 5.0 mA , these higher currents will raise the sensor temperature to about $19^{\circ} \mathrm{K}$ above ambient-degrading accuracy. Therefore, the sensor should be operated at the lowest possible power level.

With moving air, liquid or surface temperature sensing, self-heating is not as great a problem since the measured
media will conduct the heat from the sensor. Also, there are many small heat sinks designed for transistors which will improve heat transfer to the sensor from the surrounding medium. A small finned clip-on heat sink is quite effective in free-air. It should be mentioned that the LM3911 die is on the base of the package and therefore coupling to the base is preferrable.

The internal reference regulator provides a temperature stable voltage for offsetting the output or setting a comparison point in temperature controllers. However, since this reference is at the same temperature as the sensor temperature changes will also cause reference drift. For application, where maximum accuracy is needed an external reference should be used. Of course, for fixed temperature controllers the internal reference is adequate.

Typical Performance Characteristics

Schematic Diagram

Typical Applications (Continued)

$R_{S}=\left(V^{-}-6.8 V\right) \times 10^{3} \Omega 2$

External Frequency Compensation for Greater Stability when Driving Capacitive Loads

Operating With External Zener for Lower Power Dissipation and Ambient Reference

Temperature Controller With Hysteresis

Typical Applications (Continued)
Thermometer With Meter Output

Meter Thermometer With Trimmed Output

* Selected as for meter thermometer except T_{0} should be $5^{\circ} \mathrm{K}$ more than desired and $\mathrm{I}_{\mathrm{O}}=100_{\mu} \mathrm{A}$ ${ }^{\boldsymbol{t}}$ Calibrates \mathbf{T}_{0}

Ground Referred Centigrade Thermometer

Two Terminal Temperature to Current Transducer*

$$
\begin{aligned}
& R 2(\Omega 2)=\frac{\left(V_{Z}-0.01 T_{L}\right)\left(I_{H}-\frac{0.01 T_{H}}{R 1}\right)+\left(V_{Z}-0.01 T_{H}\right)\left(\frac{0.01 T_{L}}{R 1}-I_{L}\right)^{* *}}{\frac{0.01}{R 1 R 3}\left|T_{H}\left(V_{Z}-0.01 T_{L}\right)-T_{L}\left(V_{Z}-0.01 T_{H}\right)\right|} \\
& R 3(\Omega) \geqq \frac{V_{Z}\left(\frac{T_{H}}{T_{L}}-1\right)}{I_{H}-\frac{I_{L} T_{H}}{T_{L}}} \\
& \frac{1}{R 4}=\frac{1}{\left(V_{Z}-0.01 T_{L}\right)(R 2)}\left[\frac{(R 2)\left(0.01 T_{L}\right)}{R 1}+\frac{\left(\frac{V_{Z}-0.01 T_{L}}{R 2}-I_{L}\right)}{\frac{1}{R 2}+\frac{1}{R 3}}\right]-\frac{1}{R 2}
\end{aligned}
$$

$T_{L}=$ Temperature for $I_{L}(\mathrm{~K})$
$T_{H}=$ Temperature for $I_{H}(\mathrm{~K})$
$V_{Z}=$ Zener valtage (V)
$I_{L}=$ Low temperature output current (A)
$I_{H}=H_{\text {Igh temperature output current }}(A)$
*Values shown for $I_{\text {OUT }}=1 \mathrm{~mA}$ to 10 mA for $10^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$
${ }^{\dagger}$ Set temperature
** The 0.01 in the above and following equations is in units of $V / f^{\prime} K$ or $V /{ }^{\prime} \mathrm{C}$, and is a result of the basic $0.01 \mathrm{~V} / /^{\prime} \mathrm{K}$ sensitivity of the transducer

Typical Applications (Continued)
Over Temperature Detectors With Common Output

Two-Wire Remote A.C. Electronic Thermostat (Gas or Oil Furnace Control)

Temperature Controller Driving TRIAC

Typical Applications (Continued)

** The 0.01 in the above equation is in units of V / K or V / C, and is a result of the basic $0.01 \mathrm{~V} / \mathrm{K}$ sensitivity of the transducer
Connection Diagram
Dual-In-Line Package
 Blocks/Telecommunications

General Description

The LM3914 is a monolithic integrated circuit that senses analog voltage levels and drives 10 LEDs, providing a linear analog display. A single pin changes the display from a moving dot to a bar graph. Current drive to the LEDs is regulated and programmable, eliminating the need for resistors. This feature is one that allows operation of the whole system from less than 3 V .

The circuit contains its own adjustable reference and accurate 10 -step voltage divider. The low-bias-current input buffer accepts signals down to ground, or V^{-}, yet needs no protection against inputs of 35 V above or below ground. The buffer drives 10 individual comparators referenced to the precision divider. Indication non-linearity can thus be held typically to $1 / 2 \%$, even over a wide temperature range.

Versatility was designed into the LM3914 so that controller, visual alarm, and expanded scale functions are easily added on to the display system. The circuit can drive LEDs of many colors, or low-current incandescent lamps. Many LM3914s can be "chained" to form displays of 20 to over 100 segments. Both ends of the voltage divider are externally available so that 2 drivers can be made into a zero-center meter.

The LM3914 is very easy to apply as an analog meter circuit. A 1.2 V full-scale meter requires only 1 resistor and a single 3 V to 15 V supply in addition to the 10 display LEDs. If the 1 resistor is a pot, it becomes the LED brightness control. The simplified block diagram illustrates this extremely simple external circuitry.

When in the dot mode, there is a small amount of overlap or "fade" (about 1 mV) between segments. This assures that at no time will all LEDs be "OFF", and
thus any ambiguous display is avoided. Various novel displays are possible.

Much of the display flexibility derives from the fact that all outputs are individual, DC regulated currents. Various effects can be achieved by modulating these currents. The individual outputs can drive a transistor as well as a LED at the same time, so controller functions including "staging" control can be performed. The LM3914 can also act as a programmer, or sequencer.

Features

- Drives LEDs, LCDs or vacuum fluorescents
- Bar or dot display mode externally selectàble by user
- Expandable to displays of 100 steps
- Internal voltage reference from 1.2 V to 12 V
- Operates with single supply of less than 3 V
- Inputs operate down to ground
- Output current programmable from 2 to 30 mA
- No multiplex switching or interaction between outputs
- Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
- LED driver outputs are current regulated, opencollectors
- Outputs can interface with TTL or CMOS logic
- The internal 10 -step divider is floating and can be referenced to a wide range of voltages
The LM3914 is rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The L.M3914N is available in an 18 -lead molded (N) package and the LM3914J comes in the 18 -lead ceramic DIP.

The following typical application illustrates adjusting of the reference to a desired value, and proper grounding for accurate operation, and avoiding oscillations.

Typical Applications

OV to 5V Bar Graph Meter

Absolute Maximum Ratings

Power Dissipation (Note 5)	1 W
Ceramic DIP (J)	625 mW
Molded DIP (N)	25 V
Supply Voltage	25 V

Input Signal Overvoltage (Note 3)	$\pm 35 \mathrm{~V}$
Divider Voltage	-100 mV to V^{+}
Reference Load Current	10 mA
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER \& CONDITIONS (Note 1) \& MIN \& TYP \& MAX \& \multicolumn{2}{|l|}{UNITS} \\
\hline COMPARATOR \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
Offset Voltage, Buffer and First \\
Comparator \\
Offset Voltage, Buffer and Any Other \\
Comparator \\
Gain (\(\Delta\) ILED \(/ \Delta V_{\text {IN }}\)) \\
Input Bias Current (at Pin 5) \\
Input Signal Overvoltage
\end{tabular} \& No Change in Display \& 3
\[
-35
\] \& \begin{tabular}{l}
3 \\
3 \\
8 \\
10
\end{tabular} \& \begin{tabular}{l}
10 \\
15 \\
50 \\
35
\end{tabular} \& \begin{tabular}{l}
mV \\
mV \\
\(\mathrm{mA} / \mathrm{mV}\) \\
nA \\
V
\end{tabular} \& \\
\hline VOLTAGE-DIVIDER \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
Divider Resistance \\
Accuracy
\end{tabular} \& Total, Pin 6 to 4 (Note 2) \& 6.5 \& \[
\begin{gathered}
10 \\
0.5 \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
15 \\
2
\end{tabular} \& \[
\begin{array}{r}
k \Omega \\
\% \\
\hline
\end{array}
\] \& \\
\hline VOLTAGE REFERENCE \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
Output Voltage \\
Line Regulation \\
Load Regulation \\
Output Voltage Change With \\
Temperature \\
Adjust ' Pin Current
\end{tabular} \& \[
\begin{aligned}
\& 0.1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}}(\mathrm{REF}) \leq 4 \mathrm{~mA}, \\
\& \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V} \\
\& 3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 18 \mathrm{~V} \\
\& 0.1 \mathrm{~mA} \leq 1 \mathrm{~L}(R E F) \leq 4 \mathrm{~mA}, \\
\& \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LE}}=5 \mathrm{~V} \\
\& 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=1 \mathrm{~mA}, \\
\& \mathrm{~V}^{+}=5 \mathrm{~V}
\end{aligned}
\] \& 1.2 \& \begin{tabular}{l}
1.28 \\
0.01 \\
0.4 \\
1 \\
75
\end{tabular} \& \begin{tabular}{l}
1.34 \\
0.03 \\
2 \\
120
\end{tabular} \& \begin{tabular}{l}
V \\
\%/V \\
\% \\
\% \\
\(\mu \mathrm{A}\)
\end{tabular} \& \\
\hline OUTPUT DRIVERS \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
LED Current \\
LED Current Difference (Between \\
Largest and Smallest LED Currents) \\
LED Current Regulation \\
Dropout Voltage \\
Saturation Voltage \\
Output Leakage, Each Collector \\
Output Leakage \\
Pins 10-18 \\
Pin 1
\end{tabular} \& \& 7

60 \& | 10 |
| :--- |
| 0.12 |
| 1.2 |
| 0.1 |
| 1 |
| 0.15 |
| 0.1 |
| 0.1 |
| 150 | \& \[

$$
\begin{aligned}
& 13 \\
& 0.4 \\
& 3 \\
& 0.25 \\
& 3 \\
& 1.5 \\
& \\
& 0.4 \\
& 10 \\
& 10 \\
& 450
\end{aligned}
$$

\] \& | mA |
| :--- |
| $m A$ |
| mA |
| mA |
| mA |
| V |
| V |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ | \& (

\hline SUPPLY CURRENT \& \& \& \& \& \&

\hline \& $$
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=0.2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=1.0 \mathrm{~mA}
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& 2.4 \\
& 6.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.2 \\
& 9.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
$$
\] \& .

\hline
\end{tabular}

Note 1: Unless otherwise stated, all specifications apply with the following conditions:

$$
\begin{array}{ll}
3 V_{D C} \leq V^{+} \leq 20 V_{D C} & V_{R E F}, V_{R H I}, V_{R L O} \leq\left(V^{+}-1.5 \mathrm{~V}\right) \\
3 V_{D C} \leq V_{L E D} \leq V^{+} & 0 V \leq V_{I N} \leq V^{+}-1.5 \mathrm{~V} \\
-0.015 \mathrm{~V} \leq V_{R L O} \leq 12 V_{D C} & T_{A}=+25^{\circ} C, I_{L(R E F)}=0.2 \mathrm{~mA}, V_{L E D}=3.0 \mathrm{~V}, \text { pin } 9 \text { connected to pin } 3 \text { (Bar Mode). }
\end{array}
$$

For higher power dissipations, pulse testing is used.
Note 2: Accuracy is measured referred to $+10.000 \mathrm{~V}_{\mathrm{DC}}$ at pin 6 , with $0.000 \mathrm{~V}_{\mathrm{DC}}$ at pin 4 . At lower full-scale voltages, buffer and comparator offset voltage may add significant error.
Note 3: Pin 5 input current must be limited to $\pm 3 \mathrm{~mA}$. The addition of a 39 k resistor in series with pin 5 allows $\pm 100 \mathrm{~V}$ signals without damage.
Note 4: Bar mode results when pin 9 is within 20 mV of V^{+}. Dot mode results when pin 9 is pulled at least 200 mV below V^{+}or left open circuit. LED No. 10 (pin 10 output current) is disabled if pin 9 is pulled 0.9 V or more below $V_{\text {LED }}$.
Note 5: The maximum junction temperature of the LM3914 is $100^{\circ} \mathrm{C}$. Devices must be derated for operation at elevated temperatures. Junction to ambient thermal resistance is $75^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic DIP (J package) and $120^{\circ} \mathrm{C} / \mathrm{W}$ for the molded DIP (N package).

Definition of Terms

Accuracy: The difference between the observed threshold voltage and the ideal threshold voltage for each comparator. Specified and tested with 10 V across the internal voltage divider so that resistor ratio matching error predominates over comparator offset voltage.

Adjust Pin Current: Current flowing out of the reference adjust pin when the reference amplifier is in the linear region.

Comparator Gain: The ratio of the change in output current (ILED) to the change in input voltage (VIN) required to produce it for a comparator in the linear region.

Dropout Voltage: The voltage measured at the current source outputs required to make the output current fall by 10%.

Input Bias Current: Current flowing out of the signal input when the input buffer is in the linear region.

LED Current Regulation: The change in output current over the specified range of LED supply voltage (VLED) as measured at the current source outputs. As the forward voltage of an LED does not change significantly with a small change in forward current, this is equivalent to changing the voltage at the LED anodes by the same amount.

Line Regulation: The average change in reference output voltage over the specified range of supply voltage (V^{+}).

Load Regulation: The change in reference output voltage (VREF) over the specified range of load current (IL(REF)).

Offset Voltage: The differential input voltage which must be applied to each comparator to bias the output in the linear region. Most significant error when the voltage across the internal voltage divider is small. Specified and tested with pin 6 voltage ($\mathrm{V}_{\mathrm{RHI}}$) equal to pin 4 voltage (V_{RLO}).

Typical Performance Characteristics

Reference Adjust Pin
Current vs Temperature

Input Current Beyond
Signal Range (Pin 5)

Total Divider Resistance vs Temperature

Operating Input Bias
Current vs Temperature

LED Current-Regulation Dropout

LED Current vs Reference Loading

Common-Mode Limits

Reference Voltage vs
Temperature

LED Driver Saturation Voltage

LED Driver Current Regulation

Output Characteristics

Functional Description

resistor divider can be connected between any 2 voltages, providing that they are 1.5 V below V^{+}and no less than V^{-}. If an expanded scale meter display is desired, the total divider voltage can be as little as 200 mV . Ex-panded-scale meter displays are more accurate and the segments light uniformly only if bar mode is used. At 50 mV or more per step, dot mode is usable.

Internal Voltage Reference
The reference is designed to be adjustable and develops a nominal 1.25 V between the REF OUT (pin 7) and

Functional Description

REF ADJ (pin 8) terminals. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor R2 giving an output voltage of:

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2
$$

Since the $120 \mu \mathrm{~A}$ current (max) from the adjust terminal represents an error term, the reference was designed to minimize changes of this current with V^{+}and load changes.

Current Programming

A feature not completely illustrated by the block diagram is the LED brightness control. The current drawn out of the reference voltage pin (pin 7) determines LED current. Approximately 10 times this current will be drawn through each lighted LED, and this current will be, relatively constant despite supply voltage and temperature changes. Current drawn by the internal 10 resistor divider, as well as by the external current and voltage-setting divider should be included in calculating LED drive current. The ability to modulate LED brightness with time, or in proportion to input voltage and other signals can lead to a number of novel displays or ways of indicating input overvoltages, alarms, etc.

Mode Pin Use

Pin 9, the Mode Select input controls chaining of multiple LM3914s, and controls bar or dot mode operation. The following tabulation shows the basic ways of using this input. Other more complex uses will be illustrated in the applications.

Bar Graph Display: Wire Mode Select (pin 9) directly to $\operatorname{pin} 3\left(V^{+} \mathrm{pin}\right)$.

Dot Display, Single LM3914 Driver: Leave the Mode Select pin open circuit.

Dot Display, 20 or More LEDs: Connect pin 9 of the first driver in the series (i.e., the one with the lowest input'voltage comparison points) to pin 1 of the next higher LM3914 driver. Continue connecting pin 9 of lower input drivers to pin 1 of higher input drivers for 30,40, or more LED displays. The last LM3914 driver in the chain will have pin 9 wired to pin 11. All previous drivers should have a 20 k resistor in parallel with LED No. 9 (pin 11 to VLED).

Characteristics of Mode Select Pin (Pin 9)

The connections for using this pin have already been summarized. The mode pin will cause the bar graph display to appear if within 20 mV of V^{+}voltage (pin 3). The dot LED display will occur if the mode pin is 200 mV or more below V^{+}voltage. LED No. 10 will be turned OFF if pin 9 is pulled 0.9 V below VLED. A 20k 5% resistor must be in place from pin 11 to $V_{\text {LED }}$ (i.e., in parallel with LED No. 9) for dot displays using 2 or more LM3914s. The less than $100 \mu \mathrm{~A}$ shunted away by this resistor will make a negligible difference in the brightness of almost any red LED display. For other colors of LEDs, the resistor value can increase in direct proportion to the typical LED voltage drop.

In "chaining" display drivers, some further characteristics must be considered. Bar graph displays of 20 or more segments are simple. All that is needed is to connect the mode pin of each device to pin 3 of the same device (the V^{+}pin). It should be noted that the Mode Select Amplifier looks at 3 inputs to determine whether to show a bar display, a dot display, or a dot display using multiple LM3914 devices. This last action is the "chaining" or carry function that turns OFF LED No. 10 of one LM3914 when the first LED of the next device up the chain turns ON. The 3 needed inputs to the Mode Select Amplifier are; pin 9, the devices V^{+}pin and pin 11 (the cathode of LED No. 9).

If, for instance, a 20 -segment dot mode display is desired, the mode pin of the first LM3914 is connected to pin 1 of the second device (which is actually driving LED No. 11 of the entire display). Even if this LED is OFF, if any LED numbered 12 through 20 is ON, about $100 \mu \mathrm{~A}$ will be sunk by pin 1 of this second device (minimum $60 \mu \mathrm{~A})$. This is not enough to light LED No. 11 significantly, but is sufficient to be sensed by the mode pin and turn OFF LED No. 10 of the first device for proper display.

Other Device Characteristics

The LM3914 is relatively low-powered itself, and since any number of LEDs can be powered from about 3 V , it is a very efficient display driver. Typical standby supply current (all LEDs. OFF) is 1.6 mA (2.5 mA max). However, any reference loading adds 4 times that current drain to the V^{+}(pin 3) supply input. For example, an LM3914 with a 1 mA reference pin load (1.3k), would supply almost 10 mA to every LED while drawing only 5.6 mA from its V^{+}pin supply. At full-scale, the IC is typically drawing less than 7% of the current supplied to the display.

The display driver does not have built-in hysteresis so that the display does not jump instantly from one LED to the next. Under rapidly changing signal conditions, this cuts down high frequency noise and often an annoying flicker. An "overlap" is built in so that at no time between segments are all LEDs completely OFF in the dot mode. Generally 1 LED fades in while the other fades out over a mV or more of range (Note 2). The change may be much more rapid between LED No. 10 of one device and LED No. 1 of a second device "chained" to the first.

Functional Description (Continued)

The LM3914 features individually current regulated LED driver transistors. Further internal circuitry detects when any driver transistor goes into saturation, and prevents other circuitry from drawing excess current. This results in the ability of the LM3914 to drive and regulate LEDs powered from a pulsating DC power source, i.e., largely unfiltered. (Due to possible oscillations at low voltages a
nominal bypass capacitor consisting of a $2.2 \mu \mathrm{~F}$ solid tantalum connected from the pulsating LED supply to pin 2 of the LM3914 is recommended.) This ability to operate with low or fluctuating voltages also allows the display driver to interface with logic circuitry, optocoupled solid-state relays, and low-current incandescent lamps.

Typical Applications (Continued)

Typical Applications (Continued)

"Exclamation Point" Display

Typical Applications (Continued)

Bar Display with Alarm Flasher

 lights, and at any higher input signal.

. Operating with a High Voltage Supply (Dot Mode Only)

Typical Applications (Continued)

Application Hints

Three of the most commonly needed precautions for using the LM3914 are shown in the first typical application drawing (see page $9-108$) showing a $0 V-5 \mathrm{~V}$ bar graph meter. The most difficult problem occurs when large LED currents are being drawn, especially in bar graph mode. These currents flowing out of the ground pin cause voltage drops in external wiring, and thus errors and oscillations. Bringing the return wires from signal sources, reference ground and bottom of the resistor string (as illustrated) to a single point very near pin 2 is the best solution.

Long wires from $V_{\text {LED }}$ to LED anode common can cause oscillations. Depending on the severity of the problem $0.05 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ decoupling capacitors from LED anode common to pin 2 will damp the circuit. If LED anode line wiring is inaccessible, often similar decoupling from pin 1 to pin 2 will be sufficient.

If LED turn ON seems slow (bar mode) or several LEDs light (dot mode), oscillation or excessive noise is usually the problem. In cases where proper wiring and bypassing fail to stop oscillations, V^{+}voltage at pin 3 is usually below suggested limits (see Note 2, page 9-108). Expanded scale meter applications may have one or both ends of the internal voltage divider terminated at rela-
tively high value resistors. These high-impedance ends should be bypassed to pin 2 with at least a $0.001 \mu \mathrm{~F}$ capacitor, or up to $0.1 \mu \mathrm{~F}$ in noisy environments.

Power dissipation, especially in bar mode should be given consideration. For example, with a 5 V supply and all LEDs programmed to 20 mA the driver will dissipate over 600 mW . In this case a 7.5Ω resistor in series with the LED supply will cut device heating in half. The negative end of the resistor should be bypassed with a $2.2 \mu \mathrm{~F}$ solid tantalum capacitor to pin 2 of the LM3914.

Turning OFF of most of the internal current sources is accomplished by pulling positive on the reference with a current source or resistance supplying $100 \mu \mathrm{~A}$ or so. Alternately, the input signal can be gated OFF with a transistor switch.

Other special features and applications characteristics will be illustrated in the following applications schematics. Notes have been added in many cases, attempting to cover any special procedures or unusual characteristics of these applications. A special section called "Application Tips for the LM3914 Adjustable Reference" has been included with these schematics.

Application Hints (Continued)

APPLICATION TIPS FOR THE LM3914s ADJUSTABLE REFERENCE

Greatly Expanded Scale (Bar Mode Only)

Placing the LM3914s internal resistor divider in parallel with a section $(\simeq 230 \Omega)$ of a stable, low resistance divider greatly reduces voltage changes due to IC resistor value changes with temperature. Voltage V_{1} should be trimmed to 1.1 V first by use of R 2 . Then the voltage V_{2} across the IC divider string can be adjusted to 200 mV , using R5 without affecting V_{1}. LED current will be approximately 10 mA .

Non-Interacting Adjustments for Expanded Scale Meter (4.5V to 5V, Bar or Dot Mode)

This arrangement allows independent adjustment of LED brightness regardless of meter span and zero adjustments.

First, V_{1} is adjusted to 5 V , using R . Then the span (voltage across R4) can be adjusted to exactly 0.5 V using R6 without affecting the previous adjustment.

R9 programs LED currents within a range of 2.2 mA to 20 mA after the above settings are made.

Greatly Expanded Scale (Bar Mode Only)

Adjusting Linearity of Several Stacked Dividers

Three internal voltage dividers are shown connected in series to provide a 30 -step display. If the resulting analog meter is to be accurate and linear the voltage on each divider must be adjusted, preferably without affecting any other adjustments. To do this, adjust R2 first, so that the voltage across R5 is exactly 1 V . Then the voltages across R3 and R4 can be independently adjusted by shunting each with selected resistors of $6 \mathrm{k} \Omega$ or higher resistance. This is possible because the reference of LM3914 No. 3 is acting as a constant current source.

The references associated with LM3914s No. 1 and No. 2 should have their Ref Adj pins (pin 8) wired to ground, and their Ref Outputs loaded by a 620Ω resistor to ground. This makes available similar 20 mA current outputs to all the LEDs in the system.

If an independent LED brightness control is desired (as in the previous application), a unity gain buffer, such as the LM310, should be placed between pin 7 and R1, similar to the previous application.

Non-Interacting Adjustments for Expanded Scale Meter (4.5V to 5V, Bar or Dot Mode)

Adjusting Linearity of Several Stacked Dividers

Other Applications

- "Slow" - fade bar or dot display (doubles resolution)
- 20 -step meter with single pot brightness control
- 10-step (or multiples) programmer
- Multi-step or "'staging" controller
- Combined controller and process deviation meter
- Direction and rate indicator (to add to DVMs)
- Exclamation point display for power saving
- Graduations can be added to dot displays. Dimly light every other LED using a resistor to ground
- Electronic "meter-relay"-display could be circle or semi-circle
- Moving "hole" display-indicator LED is dark, rest of bar lit
- Drives vacuum-fluorescent and LCDs using added passive parts

Connection Diagram

Order Number LM3914N

See NS Package N18A
Order Number LM3914J
See NS Package J18A Blocks/Telecommunications

LM3915 Dot/Bar Display Driver

General Description

The LM3915 is a monolithic integrated circuit that senses analog voltage levels and drives ten LEDs, LCDs or vacuum fluorescent displays, providing a logarithmic 3 $\mathrm{dB} /$ step analog display. One pin changes the display from a bar graph to a moving dot display. LED current drive is regulated and programmable, eliminating the need for current limiting resistors. The whole display system can operate from a single supply as low as 3 V or as high as 25 V .

The IC contains an adjustable voltage reference and an accurate ten-step voltage divider. The high-impedance input buffer accepts signals down to ground and up to within 1.5 V of the positive supply. Further, it needs no protection against inputs of $\pm 35 \mathrm{~V}$. The input buffer drives 10 individual comparators referenced to the precision divider. Accuracy is typically better than 1 dB .

The LM3915's $3 \mathrm{~dB} /$ step display is suited for signals with wide dynamic range, such as audio level, power, light intensity or vibration. Audio applications include average or peak level Indicators, power meters and RF signal strength meters. Replacing conventional meters with an LED bar graph results in a faster responding, more rugged display with high visibility that retains the ease of interpretation of an analog display.

The LM3915 is extremely easy to apply. A 1.2 V full-scale meter requires only one resistor in addition to the ten LEDs. One more resistor programs the full-scale anywhere from 1.2 V to 12 V independent of supply voltage. LED brightness is easily controlled with a single pot.

The LM3915 is very versatile. The outputs can drive LCDs, vacuum fluorescents and incandescent bulbs as well as LEDs of any color. Multiple devices can be cascaded for a dot or bar mode display with a range of 60 or 90 dB . LM3915s can also be cascaded with LM3914s for a linear/log display or with LM3916s for an extended-range VU meter.

Features

- $3 \mathrm{~dB} /$ step, 30 dB range
- Drives LEDs, LCDs, or vacuum fluorescents
- Bar or dot display mode externally selectable by user
- Expandable to displays of 90 dB
- Internal voltage reference from 1.2 V to 12 V
- Operates with single supply of 3 V to 25 V
- Inputs operate down to ground
- Output current programmable from 1 mA to 30 mA
- Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
- Outputs are current regulated, open collectors
- Directly drives TTL or CMOS
- The internal 10 -step divider is floating and can be referenced to a wide range of voltages

The LM3915 is rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The LM3915N is available in an 18 -lead molded DIP package and the LM3915J comes in the 18-lead ceramic DIP.

Typical Applications ov to 10 V Log Display

Absolute Maximum Ratings

Power Dissipation (Note 5)
Ceramic DIP(J)
Input Signal Overvoltage (Note 3)
$\pm 35 \mathrm{~V}$
Molded DIP(N) 625 mW

Supply Voltage
Voltage on Output Drivers

Divider Voltage
-100 mV to V^{+}
Reference Load Current 10 mA
Storage Temperature Range $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions (Note 1)	Min	Typ	Max	Units
Comparators					
Offset Voltage, Buffer and First Comparator	$\begin{aligned} & 0 V \leqslant V_{\text {RLO }}=V_{\text {RHI }} \leqslant 12 V, \\ & I_{L E D}=1 \mathrm{~mA} \end{aligned}$		3	10	mV
Offset Voltage, Buffer and Any Other Comparator	$\begin{aligned} & O V \leqslant V_{\text {RLO }}=V_{\text {RHI }} \leqslant 12 V, \\ & I_{L E D}=1 \mathrm{~mA} \end{aligned}$		3	15	$m V$
Gain ($\Delta I_{\text {LED }} / \Delta \mathrm{V}_{\text {IN }}$)	$I_{\text {L(REF })}=2 \mathrm{~mA}, \mathrm{I}_{\text {LED }}=10 \mathrm{~mA}$	3	8		$\mathrm{mA} / \mathrm{mV}$
Input Bias Current (at Pin 5)	$0 \mathrm{~V} \leqslant \mathrm{~V}_{1 N^{\prime}} \leqslant\left(\mathrm{V}^{+}-1.5 \mathrm{~V}\right)$		10	50	nA
Input Signal Overvoltage	No Change in Display	-35		35	V
Voltage-Divider					
Divider Resistance	Total, Pin 6 to 4	15	22	30	k /
Relative Accuracy (Input Change Between Any Two Threshold Points)	(Note 2)	2.0	3.0	4.0	dB
Absolute Accuracy at Each Threshold Point	(Note 2)				
	$V_{\text {IN }}=-3,-6 \mathrm{~dB}$	-0.5		+0.5	dB
	$\mathrm{V}_{\text {IN }}=-9 \mathrm{~dB}$	-0.5		+0.65	dB
	$V_{I N}=-12,-15,-18 d B$	-0.5		+ 1.0	dB
	$\mathrm{V}_{1 \mathrm{~N}}=-21,-24,-27 \mathrm{~dB}$	-0.5		+1.5	dB

Voltage Reference					
Output Voltage	$\begin{aligned} & 0.1 \mathrm{~mA} \leqslant I_{L(R E F)} \leqslant 4 \mathrm{~mA}, \\ & V^{+}=V_{L E D}=5 V \end{aligned}$	1.2	1.28	1.34	V
Line Regulation	$3 \mathrm{~V} \leqslant \mathrm{~V}^{+} \leqslant 18 \mathrm{~V}$		0.01	0.03	\%/V
Load Regulation	$\begin{aligned} & 0.1 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{LREFF}} \leqslant 4 \mathrm{~mA}, \\ & V^{+}=V_{L E D}=5 V \end{aligned}$		0.4	2	\%
Output Voltage Change with Temperature	$\begin{aligned} & 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=1 \mathrm{~mA}, \\ & \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V} \end{aligned}$		1		\%
Adjust Pin Current			75	120	$\mu \mathrm{A}$
Output Drivers					
LED Current	$\mathrm{V}^{+}=\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{L} \text { (REF) }}=1 \mathrm{~mA}$	7	10	13	mA
LED Current Difference (Between Largest and Smallest LED Currents)	$\begin{aligned} & V_{\text {LED }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{LED}}=2 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{LED}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{LED}}=20 \mathrm{~mA} \end{aligned}$		0.12 1.2	0.4 3	mA $m A$
LED Current Regulation	$\begin{array}{ll} 2 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{LED}} \leqslant 17 \mathrm{~V} & \mathrm{I}_{\mathrm{LED}}=2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{LED}}=20 \mathrm{~mA} \end{array}$		0.1 1	0.25 3	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Dropout Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{LED}(O N)}=20 \mathrm{~mA} @ \mathrm{~V}_{\text {LED }}=5 \mathrm{~V}, \\ & \Delta \mathrm{I}_{\mathrm{LED}}=2 \mathrm{~mA} \end{aligned}$			1.5	V
Saturation Voltage	$\mathrm{I}_{\text {LED }}=2.0 \mathrm{~mA}, \mathrm{I}_{\text {(REF })}=0.4 \mathrm{~mA}$		0.15	0.4	V
Output Leakage, Each Collector	Bar Mode (Note 4)		0.1	10	$\mu \mathrm{A}$
Output Leakage Pins 10-18	Dot Mode (Note 4)		0.1	10	$\mu \mathrm{A}$
Pin 1		60	150	450	$\mu \mathrm{A}$

Supply Current

$$
\begin{aligned}
& \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{I}_{\text {L(REF })}=0.2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=+20 \mathrm{~V}, \mathrm{I}_{\text {L(REF })}=1.0 \mathrm{~mA}
\end{aligned}
$$

2.4	4.2	mA
6.1	9.2	mA

Notes

Note 1: Unless otherwise stated, all specifications apply with the following conditions:

$$
\begin{array}{lll}
3 V_{D C} \leqslant V^{+} \leqslant 20 V_{D C} & -0.015 V^{2} \leqslant V_{R L O} \leqslant 12 V_{D C} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}(R E F)=0.2 \mathrm{~mA}, \text { pin } 9 \text { connected to pin } 3 \text { (bar mode). } \\
3 V_{D C} \leqslant V_{L E D} \leqslant V^{+} & V_{R E F}, V_{R H I}, V_{R L O} \leqslant\left(V^{+}-1.5 \mathrm{~V}\right) & \text { For higher power dissipations, pulse testing is used. } \\
-0.015 \mathrm{~V} \leqslant V_{R H I} \leqslant 12 V_{D C} & 0 V \leqslant V_{I N} \leqslant V^{+}-1.5 \mathrm{~V} &
\end{array}
$$

Note 2: Accuracy is measured referred to $0 \mathrm{~dB}=+10.000 \mathrm{~V} \mathrm{DC}$ at pin 5 , with $+10.000 \mathrm{~V}_{\mathrm{DC}}$ at pin 6 , and $0.000 \mathrm{~V} D \mathrm{DC}$ at pin 4 . At lower full scale voltages, buffer and comparator offset voltage may add significant error. See table for threshold voltages.
Note 3: Pin 5 input current must be limited to $\pm 3 \mathrm{~mA}$. The addition of a 39 k resistor in series with pin 5 allows $\pm 100 \mathrm{~V}$ signals without damage.
Note 4: Bar mode results when pin 9 is within 20 mV of V^{+}. Dot mode results when pin 9 is pulled at least 200 mV below V^{+}. LED \#10 (pin 10 output current) is disabled if pin 9 is pulled 0.9 V or more below $\mathrm{V}_{\text {LED }}$.
Note 5: The maximum junction temperature of the LM3915 is $100^{\circ} \mathrm{C}$. Devices must be derated for operation at elevated temperatures. Junction to ambient thermal resistance is $75^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic DIP (J package) and $120^{\circ} \mathrm{C} / \mathrm{W}$ for, the molded DIP (N package).

THRESHOLD VOLTAGE (Note 2)

Output	dB	Min	Typ	Max	Output	dB	Min	Typ	Max
1	-27	0.422	0.447	0.531	6	-12	2.372	2.512	2.819
2	-24	0.596	0.631	0.750	7	-9	3.350	3.548	3.825
3	-21	0.841	0.891	1.059	8	-6	4.732	5.012	5.309
4	-18	1.189	1.259	1.413	9	-3	6.683	7.079	7.498
5	-15	1.679	1.778	1.995	10	0	9.985	10	10.015

Typical Performance Characteristics

Typical Performance Characteristics (Continued)
Total Divider Resistance
vs Temperature

Common-Mode Limits

Output Characteristics

Block Diagram (Showing Simplest Application)

Functional Description

The simplified LM3915 block diagram is included to give the general idea of the circuit's operation. A high input impedance buffer operates with signals from ground to 12 V , and is protected against reverse and overvoltage signals. The signal is then applied to a series of 10 comparators; each of which is biased to a different comparison level by the resistor string.

In the example illustrated, the resistor string is connected to the internal 1.25 V reference voltage. In this case, for each 3 dB that the input signal increases, a comparator will switch on another indicating LED.This resistor divider can be connected between any 2 voltages, providing that they are at least 1.5 V below V^{+}and no lower than V^{-}.

Internal Voltage Reference

The reference is designed to be adjustable and develops a nominal 1.25 V between the REF OUT (pin 7) and REF ADJ (pin 8) terminals. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current l_{1} then flows through the output set resistor R2 giving an output voltage of:

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2
$$

Since the $120 \mu \mathrm{~A}$ current (max) from the adjust terminal represents an error term, the reference was designed to minimize changes of this current with V^{+}and load changes. For correct operation, reference load current should be between $80 \mu \mathrm{~A}$ and 5 mA . Load capacitance should be less than $0.05 \mu \mathrm{~F}$.

Current Programming ,

A feature not completely illustrated by the block diagram is the LED brightness control. The current drawn out of the reference voltage pin (pin 7) determines LED current. Approximately 10 times this current will be drawn through each lighted LED, and this current will be relatively constant despite supply voltage and temperature changes. Current drawn by the internal 10 -resistor divider, as well as by the external current and voltage-setting divider should be included in calculating LED drive current. The ability to modulate LED brightness with time, or in proportion to input voltage and other signals can lead to a number of novel displays or ways of indicating input overvoltages, alarms, etc.
The LM3915 outputs are current-limited NPN transistors as shown below. An internal feedback loop regulates the transistor drive. Output current is held at about 10 times the reference load current, independent of output voltage and processing variables, as long as the transistor is not saturated.

Outputs may be run in saturation with no adverse effects, making it possible to directly drive logic. The effective saturation resistance of the output transistors, equal to R_{E} plus the transistors' collector resistance, is about 50Ω. It's also possible to drive LEDs from rectified AC with no filtering. To avoid oscillations, the LED supply should be bypassed with a $2.2 \mu \mathrm{~F}$ tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic capacitor.

Mode Pin Use

Pin 9, the Mode Select input, permits chaining of multiple LM3915s, and controls bar or dot mode operation. The following tabulation shows the basic ways of using this input. Other more complex uses will be illustrated in the applications.

Bar Graph Display: Wire Mode Select (pin 9) directly to pin 3 (V^{+}pin).
Dot Display, Single LM3915 Driver: Leave the Mode Select pin open circuit.

Dot Display, 20 or More LEDs: Connect pin 9 of the first driver in the series (i.e., the one with the lowest input voltage comparison points) to pin 1 of the next higher LM3915 driver. Continue connecting pin 9 of lower input drivers to pin 1 of higher input drivers for 30 or more LED displays. The last LM3915 driver in the chain will have pin 9 left open. All previous drivers should have a 20k resistor in parallel with LED \#9 (pin 11 to $V_{\text {LED }}$).

Mode Pin Functional Description

This pin actually performs two functions. Refer to the simplified block diagram below.

Mode Pin Functional Description (Continued)

Dot or Bar Mode Selection

The voltage at pin 9 is sensed by comparator C 1 , nominally referenced to ($\mathrm{V}^{+}-100 \mathrm{mV}$). The chip is in bar mode when pin 9 is above this level; otherwise it's in dot mode. The comparator is designed so that pin 9 can be left open circuit for dot mode.

Taking into account comparator gain and variation in the 100 mV reference level, pin 9 should be no more than 20 mV below V^{+}for bar mode and more than 200 mV below V^{+}(or open circuit) for dot mode. In most applications, pin 9 is either open (dot mode) or tied to V^{+}(bar mode). In bar mode, pin 9 should be connected directly to pin 3. Large currents drawn from the power supply (LED current, for example) should not share this path so that large IR drops are avoided.

Dot Mode Carry

In order for the display to make sense when multiple LM3915s are cascaded in dot mode, special circuitry has been included to shut off LED \#10 of the first device when LED \#1 of the second device comes on. The connection for cascading in dot mode has already been described and is depicted below.
As long as the input signal voltage is below the threshold of the second LM3915, LED \#11 is off. Pin 9 of LM3915 \#1 thus sees effectively an open circuit so the chip is in dot mode. As soon as the input voltage reaches the threshold of LED \#11, pin 9 of LM3915 \#1 is pulled an LED drop (1.5V or more) below $\mathrm{V}_{\text {LED }}$. This condition is sensed by comparator C 2 , referenced 600 mV below $\mathrm{V}_{\mathrm{LED}}$. This forces the output of C2 low, which shuts off output transistor Q2, extinguishing LED \#10.
$\mathrm{V}_{\text {LED }}$ is sensed via the 20 k resistor connected to pin 11. The very small current (less than $100 \mu \mathrm{~A}$) that is diverted from LED \#9 does not noticeably affect its intensity.

An auxiliary current source at pin 1 keeps at least $100 \mu \mathrm{~A}$ flowing through LED \#11 even if the input voltage rises high enough to extinguish the LED.This ensures that pin 9 of LM3915 \#1 is held low enough to force LED \#10 off when any higher LED is illuminated. While $100 \mu \mathrm{~A}$ does not normally produce significant LED illumination, it may be noticeable when using high-efficiency LEDs in a dark environment. If this is bothersome, the simple cure is to shunt LED \#11 with a 10 k resistor. The 1V IR drop is more than the 900 mV worst case required to hold off LED \#10 yet small enough that LED \#11 does not conduct significantly.

Other Device Characteristics

The LM3915 is relatively low-powered itself, and since any number of LEDs can be powered from about 3V, it is a very efficient display driver. Typical standby supply current (all LEDs OFF) is $1.6 \mathrm{~mA}(2.5 \mathrm{~mA}$ max). However, any reference loading adds 4 times that current drain to the $\mathrm{V}+(\mathrm{pin} 3)$ supply input. For example, an LM3915 with a 1 mA reference pin load (1.3k) would supply almost 10 mA to every LED while drawing only 5.6 mA from its V^{+}pin supply. At full-scale, the IC is typically drawing less than 7% of the current supplied to the display.

The display driver does not have built-in hysteresis so that the display does not jump instantly from one LED to the next. Under rapidly changing signal conditions, this cuts down high frequency noise and often an annoying flicker. An "overlap" is built in so that at no time are all segments completely off in the dot mode. Generally 1 LED fades in while the other fades out over a mV or more of range. The change may be much more rapid between LED \#10 of one device and LED \#1 of a second device "chained" to the first.

Application Hints

The most difficult problem occurs when large LED currents are being drawn, especially in bar graph mode. These currents flowing out of the ground pin cause voltage drops in external wiring, and thus errors and oscillations. Bringing the return wires from signal sources, reference ground and bottom of the resistor string to a single point very near pin 2 is the best solution.
Long wires from $V_{\text {LED }}$ to LED anode common can cause oscillations. Depending on the severity of the problem $0.05 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ decoupling capacitors from LED anode common to pin 2 will damp the circuit. If LED anode line wiring is inaccessible, often similar decoupling from pin 1 to pin 2 will be sufficient.
If LED turn ON seems slow (bar mode) or several LEDs light (dot mode), oscillation or excessive noise is usually the problem. In cases where proper wiring and bypas̃sing fail to stop oscillations; V^{+}voltage at pin 3 is usually below suggested limits. Expanded scale meter applications may have one or both ends of the internal voltage divider terminated at relatively high value resistors. These high-impedance ends should be bypassed to pin 2 with at lease a $0.001 \mu \mathrm{~F}$ capacitor, or up to $0.1 \mu \mathrm{~F}$ in noisy environments.

Cascading LM3915s in Dot Mode

Application Hints (Continued)

Power dissipation, especially in bar mode should be given consideration. For example, with a 5 V supply and all LEDs programmed to 20 mA the driver will dissipate over 600 mW . In this case a 7.5Ω resistor in series with the LED supply will cut device heating in half. The negative end of the resistor should be bypassed with a $2.2 \mu \mathrm{~F}$ solid tantalum capacitor to pin 2.

Tips on Rectifier Circuits

The simplest way to display an AC signal using the LM3915 is to apply it right to pin 5 unrectified. Since the LED illuminated represents the instantaneous value of the AC waveform, one can readily discern both peak and average values of audio signals in this manner. The LM3915 will respond to positive half-cycles only but will not be damaged by signals up to $\pm 35 \mathrm{~V}$ (or up to $\pm 100 \mathrm{~V}$ if a 39 k resistor is in series with the input). It's recommended to use dot mode and to run the LEDs at 30 mA for high enough average intensity.

True average or peak detection requires rectification. If an LM3915 is set up with 10V full scale across its voltage divider, the turn-on point for the first LED is only 450 mV . A simple silicon diode rectifier won't work well at the low end due to the 600 mV diode threshold. The half-wave peak detector in Figure 1 uses a PNP emitter-follower in front of the diode. Now, the transistor's base-emitter voltage cancels out the diode offset, within about 100 mV . This approach is usually satisfactory when a single LM3915 is used for a 30 dB display.

FIGURE 1. Half-Wave Peak Detector

FIGURE 3. Precision Full-Wave Average Detector

Display circuits using two or more LM3915s for a dynamic range of 60 dB or greater require more accurate detection. In the precision half-wave rectifier of Figure 2 the effective diode offset is reduced by a factor equal to the open-loop gain of the op amp. Filter capacitor C 2 charges through R3 and discharges through R2 and R3, so that appropriate selection of these values results in either a peak or an average detector. The circuit has a gain equal to R2/R1.
It's best to capacitively couple the input. Audio sources frequently have a small DC offset that can cause significant error at the low end of the log display. Op amps that slew quickly, such as the LF351, LF353 or LF356, are needed to faithfully respond to sudden transients. It may be necessary to trim out the op amp DC offset voltage to accurately cover a 60 dB range. Best results are obtained if the circuit is adjusted for the correct output when a lowlevel AC signal (10 to 20 mV) is applied, rather than adjusting for zero output with zero input.

For precision full-wave averaging use the circuit in Figure 3. Using 1\% resistors for R1 through R4, gain for positive and negative signal differs by only 0.5 dB worst case. Substituting 5\% resistors increases this to 2 dB worst case. (A 2 dB gain difference means that the display may have a $\pm 1 \mathrm{~dB}$ error when the input is a nonsymmetrical transient). The averaging time constant is R5•C2. A simple modification results in the precision full-wave detector of Figure 4. Since the filter capacitor is not buffered, this circuit can drive only high impedance loads such as the input of an LM3915.

FIGURE 2. Precision Half-Wave Rectifier

FIGURE 4: Precision Full-Wave Peak Detector

Application Hints
 (Continued)

Cascading the LM3915

To display signals of 60 or 90 dB dynamic range, multiple LM3915s can be easily cascaded. Alternatively, it is possible to cascade an LM3915 with LM3914s for a log/linear display or with an LM3916 to get an extended range VU meter.

A simple, low cost approach to cascading two LM3915s is to set the reference voltages of the two chips 30 dB apart as in Figure 5. Potentiometer R1 is used to adjust the full scale voltage of LM3915 \#1 to 316 mV nominally while the second IC's reference is set at 10 V by R4. The drawback of this method is that the threshold of LED \#1 is only 14 mV and, since the LM3915 can have an offset voltage as high as 10 mV , large errors can occur. This technique is not recommended for 60 dB displays requiring good accuracy at the first few display thresholds.

A better approach shown in Figure 6 is to keep the reference at 10 V for both LM3915s and amplify the input
signal to the lower LM3915 by 30 dB . Since two 1\% resistors can set the amplifier gain within $\pm 0.2 \mathrm{~dB}$, a gain trim is unnecessary. However, an op amp offset voltage of 5 mV will shift the first LED threshold as much as 4 dB , so that an offset trim may be required. Note that a single adjustment can null out offset in both the precision rectifier and the 30 dB gain stage. Alternatively, instead of amplifying, input signals of sufficient amplitude can be fed directly to the lower LM3915 and attenuated by 30 dB to drive the second LM3915.

To extend this approach to get a 90 dB display, another 30 dB of amplification must be placed in the signal path ahead of the lowest LM3915. Extreme care is required as the lowest LM3915 displays input signals down to 0.5 mV ! Several offset nulls may be required. High currents should not. share the same path as the low level signal. Also power line wiring should be kept away from signal lines.

FIGURE 5. Low Cost Circuit for 60 dB Display

FIGURE 6. Improved Circuit for $\mathbf{6 0 ~ d B}$ Display

Application Hints (Continued)

TIPS ON REFERENCE VOLTAGE AND LED CURRENT PROGRAMMING

Single LM3915

The equations in Figure 7 illustrate how to choose resistor values to set reference voltage for the simple case where no LED intensity adjustment is required. A LED current of 10 mA to 20 mA generally produces adequate illumination. Having 10 V full-scale across the internal voltage divider gives best accuracy by keeping signal level high relative to the offset voltage of the internal comparators. However, this causes $450 \mu \mathrm{~A}$ to flow from pin 7 into the divider which means that the LED current will be at least 5 mA . R1 will typically be between $1 \mathrm{k} \Omega$ and $2 \mathrm{k} \Omega$. To trim the reference voltage, vary R2.

The circuit in Figure 8 shows how to add a LED intensity control which can vary LED current from 9 mA to 28 mA .

FIGURE 7. Design Equations for Fixed LED Intensity

FIGURE 9. Independent Adjustment of Reference Voltage and LED Intensity for Multiple LM3915s

Application Hints

(Continued)
The scheme in Figure 10 is useful when the reference and LED intensity must be adjusted independently over a wide range. The R_{HI} voltage can be adjusted from 1.2 V to 10 V with no effect on LED current. Since the internal divider here does not load down the reference, minimum LED current is much lower. At the minimum recommended reference load of $80 \mu \mathrm{~A}$, LED current is about 0.8 mA . The resistor values shown give a LED current range from 1.5 mA to 20 mA .

At the low end of the intensity adjustment, the voltage drop across the 5108 current-sharing resistors is so small that chip to chip variation in reference voltage may yield a visible variation in LED intensity. The optional approach shown of connecting the bottom end of the intensity control pot to a negative supply overcomes this problem by allowing a larger voltage drop across the (larger) currentsharing resistors.

FIGURE 10. Wide-Range Adjustment of Reference Voltage and LED Intensity for Multiple LM3915s

FIGURE 11. OV to 10V Log Display with Smooth Transitions

Typical Applications (Continued)

Extended Range VU Meter

Vibration Meter .

LED	Threshold
1	60 mV
2	80 mV
3	110 mV
4	160 mV
5	220 mV
6	320 mV
7	440 mV
8	630 mV
9	890 mV
10	1.25 V

Indicator and Alarm, Full-Scale Changes Display From Dot to Bar

Typical Applications (Continued)
60 dB Dot Mode Display

Driving Vacuum Fluorescent Display

Typical Applications (Continued)
Low Current Bar Mode Display

Driving Liquid Crystal Display

Bar Display with Alarm Flasher

Typical Applications (Continued)

Operating with a High Voltage Supply (Dot Mode Only)

The LED currents are approximately 10 mA , and the LM3915 outputs operate in saturation for minimum dissipation.
*This point is partially regulated and decreases in voltage with temperature. Voltage requirements of the LM3915 also decrease with temperature.

\square

$$
\begin{array}{r}
\mathbf{O}_{1} \\
48
\end{array}
$$

Typical Applications .(Continued)

Light Meter

* Resistor value selects exposure $1 / 2 \mathrm{f} /$ stop resolution
Ten f/stop range (1000:1) Typical supply current is 8 mA .

Audio Power Meter

See Application Hints for optional Peak or Average Detector

Connection Diagram
Dual-In-Line Package

Order Number LM3915J
See NS Package J18A
Order Number LM3915N
See NS Package N18A

Definition of Terms

Absolute Accuracy: The difference between the observed threshold voltage and the ideal threshold voltage for each comparator. Specified and tested with 10 V across the internal voltage divider so that resistor ratio matching error predominates over comparator offset voltage.

Adjust Pin Current: Current flowing out of the reference adjust pin when the reference amplifier is in the linear region.

Comparator Gain: The ratio of the change in output current ($\mathrm{I}_{\text {LED }}$) to the change in input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ required to produce it for a comparator in the linear region.

Dropout Voltage: The voltage measured at the current source outputs required to make the output current fall by 10%.

Input Bias Current: Current flowing out of the signal input when the input buffer is in the linear region.

LED Current Regulation: The change in output current over the specified range of LED supply voltage ($\mathrm{V}_{\text {LED }}$) as measured at the current source outputs. As the forward
voltage of an LED does not change significantly with a small change in forward current, this is equivalent to changing the voltage at the LED anodes by the same amount.

Line Regulation: The average change in reference output voltage ($V_{\text {REF }}$) over the specified range of supply voltage (V^{+}).

Load Regulation: The change in reference output voltage over the specified range of load current ($l_{\text {LREF }}$).
Offset Voltage: The differential input voltage which must be applied to each comparator to bias the output in the linear region. Most significant error when the voltage across the internal voltage divider is small. Specified and tested with pin 6 voltage ($\mathrm{V}_{\mathrm{RHI}}$) equal to pin 4 voltage ($\mathrm{V}_{\text {RLO }}$).

Relative Accuracy: The difference between any two adjacent threshold points. Specified and tested with 10 V across the internal voltage divider so that resistor ratio matching error predominates over comparator offset voltage.

Industrial/Automotive/Functional Blocks/Telecommunications

LM13600/LM13600A/LM11600A Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers

General Description

The LM13600 series consists of two current controlled transconductance amplifiers each with differential inputs and a push pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The results is a 10 dB signal-to-noise improvement referenced to 0.5 percent THD. Controlled impedance buffers are provided which are especially designed to complement the dynamic range of the amplifiers.

Features

- gm adjustable over 6 decades
- Excellent gm linearity
- Excellent matching between amplifiers
- Linearizing diodes
- Controlled impedence buffers
- High output signal to noise ratio
- Wide supply range $\pm 2 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$.

Applications

- Current controlled amplifiers
- Current controlled impedances
- Current controlled filters
- Current controlled oscillators
- Multiplexers
- Timers
- Sample and hold circuits

Schematic and Connection Diagrams

Order Number LM11600AJ See NS Package J16A Order Number LM13600N or LM13600AN See NS Package N16A

Absolute Maximum Ratings

Supply Voltage (Note 1)
LM13600
LM13600A , LM11600A
36 VDC or $\pm 18 \mathrm{~V}$ 44 VDC or $\pm 22 \mathrm{~V}$
Power Dissipation (Note 2) $T_{A}=25^{\circ} \mathrm{C}$
LM13600N, LM13600AN
LM13600J, LM11600AJ
570 mW
600 mW
$\pm 5 \mathrm{~V}$
2 mA
2 mA
Indefinite
20 mA

Buffer Output Current (Note 3)
Operating Temperature Range
LM13600N, LM13600AN, LM13600J
LM11600AJ
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

DC InputVoltage
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$+V_{S}$ to $\cdot V_{S}$

Lead Temperature (Soldering, 10 Seconds)
Electrical Characteristics (Note 4)

Note 1. For selections to a supply voltage above $\pm 22 \mathrm{~V}$, contact factory.
Note 2. For operating at high temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air.
Note 3. Buffer output current should be limited so as to not exceed package dissipation.
Note 4. These specifications|apply for $V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, amplifier bias current ($\mathrm{I}_{\mathrm{ABC}}$) $=500 \mu \mathrm{~A}$, pins 2 and 15 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.
Note 5. These specifications apply for $V_{S}= \pm 15 \mathrm{~V}, I_{A B C}=500 \mu \mathrm{~A}$, ROUT $=5 \mathrm{~K} \Omega$ connected from the buffer output to $-\mathrm{V}_{\mathrm{S}}$ and the input of the buffer is connected to the transconductance amplifier output.

Typical Performance Characteristics

Typical Performance Characteristics (Cont'd)

LEAKAGE CURRENT TEST CIRCUIT

DIFFERENTIAL INPUT CURRENT TEST CIRCUIT

Circuit Description

The differential transistor pair Q_{4} and Q_{5} form a transconductance stage in that the ratio of their collector currents is defined by the differential input voltage according to the transfer function:

$$
\begin{equation*}
V_{I N}=\frac{K T}{q} \ln \frac{I_{5}}{I_{4}} \tag{1}
\end{equation*}
$$

where VIN is the differential input voltage, KT/q is approximately 26 mV at $25^{\circ} \mathrm{C}$ and I_{5} and I_{4} are the collector currents of transistors Q_{5} and Q_{4} respectively. With the exception of Q_{3} and Q13, all transistors and diodes are identical in size. Transistors Q_{1} and Q_{2} with Diode D_{1} form a current mirror which forces the sum of currents I_{4} and I_{5} to equal $I_{A B C}$;

$$
\begin{equation*}
I_{4}+I_{5}=I_{A B C} \tag{2}
\end{equation*}
$$

where IABC is the amplifier bias current applied to the gain pin.

For small differential input voltages the ratio of I_{4} and $!5$ appreaches unity and the Taylor series of the In function can be approximated as:

$$
\begin{align*}
& \frac{K T}{q} \ln \frac{I_{5}}{I_{4}} \approx \frac{K T}{q} \frac{I_{5}-I_{4}}{I_{4}} \tag{3}\\
& I_{4} \approx I_{5} \approx \frac{I_{A B C}}{2} \\
& V_{I N}\left[\frac{I_{A B C} q}{2 K T}\right]=I_{5}-t_{4} \tag{4}
\end{align*}
$$

Collector currents I_{4} and I_{5} are not very useful by themselves and it is necessary to subtract one current from the other. The remaining transistors and diodes form three current mirrors that produce an output current equal to I_{5} minus 14 thus:

$$
\begin{equation*}
V_{I N}\left[\frac{I_{A B C}}{} \frac{{ }^{9}}{2 K T}\right]=I_{O U T} \tag{5}
\end{equation*}
$$

The term in brackets is then the transconductance of the amplifier and is proportional to IABC.

Linearizing Diodes

For differential voltages greater than a few millivolts, Equation 3 becomes less valid and the transconductance becomes increasingly nonlinear. Figure 1 demonstrates how the internal diodes can linearize the transfer function of the amplifier. For convenience assume the diodes are biased with current sources and the input signal is in the form of current Is. Since

Figure 1. Linearizing Diodes
the sum of I_{4} and I_{5} is $I_{A B C}$ and the difference is IOUT, currents I_{4} and I_{5} can be written as follows:

$$
I_{4}=\frac{I_{A B C}}{2}-\frac{I_{O U T}}{2}, \quad I_{5}=\frac{I_{A B C}}{2}+\frac{I_{O U T}}{2}
$$

Since the diodes and the input transistors have identical geometries and are subject to similar voltages and temperatures, the following is true:

$$
\begin{align*}
& \frac{K T}{q} \ln \frac{\frac{I_{D}}{2}+I_{S}}{\frac{I_{D}}{2}-I_{S}}=\frac{K T}{q} \ln \frac{\frac{I_{A B C}}{2}+\frac{I_{\text {out }}}{2}}{\frac{I_{A B C}}{2}-\frac{I_{\text {out }}}{2}} \\
\therefore I_{\text {out }} & =I_{S}\left(\frac{2 I_{A B C}}{I_{D}}\right) \text { for }\left|I_{S}\right|<\frac{I_{D}}{2} \tag{6}
\end{align*}
$$

Notice that in deriving Equation 6 no approximations have been made and there are no temperature dependent terms. The limitations are that the signal current not exceed ID/2 and that the diodes be biased with currents. In practice, replacing the current sources with resistors will generate insignificant errors.

Controlled Impedance Buffers

The upper limit of transconductance is defined by the maximum value of IABC (2 mA). The lowest value of IABC for which the amplifier will function therefore determines the overall dynamic range. At very low values of IABC, a buffer which has very low input bias current is desirable. A FET follower satisfies the low input current requirement, but is some what nonlinear for large voltage swing. The controlled impedance buffer is a Darlington which modifies its input bias current to suit the need. For low values of IABC, the buffer's input current is minimal. At higher levels of IABC, transistor Q_{3} biases up Q_{12} with a current proportional to $I_{A B C}$ for fast slew rate.

Applications/Voltage Controlled Amplifiers

Figure 2 shows how the linearizing diodes can be used in a voltage controlled amplifier. To understand the input biasing, it is best to consider the $13 \mathrm{~K} \Omega$ resistor as a current source and use a Therenin equivalent circuit as shown in Figure 3. This circuit is similar to Figure 1 and operates the same. The potentiometer in Figure 2 is adjusted to minimize the effects of the control signal at the output.

For optimum signal-to-noise performance, labC should be as large as possible as shown by the Output Voltage vs. Amplifier Bias Current graph. Larger amplitudes of input signal also improve the S / N ratio. The linearizing diodes
help here by allowing larger input signals for the same output distortion as shown by the Distortion vs. Differential Input Voltage graph. S/N may be optimized by adjusting the magnitude of the input signal via RIN (Figure 2)until the output distortion is below some desired level. The output voltage swing can then be set at any level by selecting R_{L}.

Although the noise contribution of the linearizing diodes is negligible relative to the contribution of the amplifier's internal transistors, ID should be as large as possible. This minimizes the dynamic junction resistance of the diodes (r_{e}) and maximizes their linearizing action when balanced against RIN. A value of 1 mA is recommended for ID unless the specific application demands otherwise.

Figure. 2 Voltage Controlled Amplifier

Figure 3. Equivalent VCA Input Circuit

Stereo Volume Control

The circuit of Figure 4 uses the excellent matching of the two LM13600 amplifiers to provide a Stereo Volume Control with a typical channel-to-channel gain tracking of 0.3 dB . Rp is provided to minimize the output offset voltage and may be replaced with two 510, resistors in AC-coupled applications. For the component values given, amplifier gain is derived from Figure 2 as being:

$$
\frac{V_{O}}{V_{I N}}=940 \times I_{A B C}
$$

If V_{C} is derived from a second signal source then the circuit becomes an amplitude modulator or two-quadrant multiplier as shown in Figure 5, where:

$$
I_{O}=\frac{-2 I_{S}}{I_{D}}\left(I_{A B C}\right)=\frac{-2 I_{S}}{I_{D}} \frac{V_{I N 2}}{R_{C}}-\frac{2 I_{S}}{I_{D}} \frac{\left(V^{-}+1.4 \mathrm{~V}\right)}{R_{C}}
$$

The constant term in the above equation may be cancelled by feeding Is x IDRC/2(V-+1.4V) into lo. The circuit of Figure 6 adds R_{M} to provide

Figure 4. Stereo Volume Control

Figure 5. Amplitude Modulator

Figure 6. Four-Quadrant Multiplier
this current, resulting in a four-quadrant multiplier where RC is trimmed such that $V_{O}=O V$ for $V_{\text {IN2 }}=O V$. RM also serves as the load resistor forlo.

Noting that the gain of the LM13600 amplifier of Figure 3 may be controlled by varying the linearizing diode current ID as well as by varying $I_{A B C}$, Figure 7 shows an AGC Amplifier using this approach. As V_{O} reaches a high enough amplitude ($3 \mathrm{~V}_{\mathrm{BE}}$) to turn on the Darlington transistors and the linearizing diodes, the increase in I_{D} reduces the amplifier gain so as to hold V_{O} at that level.

Voltage Controlled Resistors

An Operational Transconductance Amplifier (OTA) may be used to implement a Voltage Controlled Resistor as shown in Figure 8. A signal
voltage applied at RX_{X} generates a $\mathrm{V}_{I N}$ to the LM13600 which is then multiplied by the gm of the amplifier to produce an output current, thus:

$$
R_{X}=\frac{R+R_{A}}{g m R_{A}}
$$

where $\mathrm{gm}=19.21 \mathrm{ABC}$ at $25^{\circ} \mathrm{C}$. Note that the attenuation of V_{O} by R and R_{A} is necessary to maintain VIN within the linear range of the LM13600 input.

Figure 9 shows a similar VCR where the linearizing diodes are added, essentially improving the noise performance of the resistor. A floating VCR

Figure 8. Voltage Controlled Resistor, Single-Ended

Figure 9. Voltage Controlled Resistor With Linearizing Diodes
is shown in Figure 10, where each "end" of the "resistor" may be at any voltage within the output voltage range of the LM13600.

Voltage Controlled Filters

OTA's are extremely useful for implementing voltage controlled filters, with the LM13600
having the advantage that the required buffers are included on the I.C. The VC Lo-Pass Filter of Figure 11 performs as a unity-gain buffer amplifier at frequencies below cut-off, with the cut-off frequency being the point at which $\mathrm{X}_{\mathrm{C}} / \mathrm{gm}$ equals the closed-loop gain of (R/RA). At frequencies above cut-off the circuit provides a single RC rolloff (6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation,

Figure 10. Floating Voltage Controlled Resistor

Figure 11. Voltage Controlled Low-Pass Filter
where gm is again $19.2 \times \mathrm{I}_{\mathrm{ABC}}$ at room temperature. Figure 12 shows a VC High-Pass Filter which operates in much the same manner, providing a single RC roll-off below the defined cutoff frequency.

Additional amplifiers may be used to implement
higher order filters as demonstrated by the twopole Butterworth Lo-Pass Filter of Figure 13 and the state variable filter of Figure 14. Due to the excellent gm tracking of the two amplifiers and the varied bias of the buffer Darlingtons, these filters perform well over several decades of frequency.

Figure 13. Voltage Controlled 2-pole Butterworth Lo-Pass Filter

Figure 14. Voltage Controlled State Variable Filter

Voltage Controlled Oscillators

The classic Triangular/Square Wave VCO of Figure 15 is one of a variety of Voltage Controlled Oscillators which may be built utilizing the LM13600. With the component values shown, this oscillator provides signals from 200 kHz to below 2 Hz as IC is varied from 1 mA to 10 nA . The output amplitudes are set by $\mathrm{I}_{\mathrm{A}} \times \mathrm{R}_{\mathrm{A}}$. Note that the peak differential input voltage must be less than 5 volts to prevent zenering the inputs.

A few modifications to this circuit produce the ramp/pulse VCO of Figure 16. When VO_{2} is high,
I_{F} is added to I_{C} to increase amplifier A1's bias current and thus to increase the charging rate of capacitor C . When VO_{O} is low, IF goes to zero and the capacitor discharge current is set bylc.

The VC Lo-Pass Filter of Figure 11 may be used to produce a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13600 packages, with three of the amplifiers configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the loop phase-shift is 360° or 180° for the inverter and 60° per filter stage. This VCO operates from 5 Hz to 50 kHz with less than 1% THD.

Figure 15. Triangular/Square-Wave VCO

Figure 16. Ramp/Pulse VCO

Figure 17. Sinusoidal VCO

Figure 18. Single Amplifier VCO
Figure 18 shows how to build a VCO using one amplifier when the other amplifier is needed for another function.

Additional Applications

Figure 19 presents an interesting one-shot which draws no power supply current until it is triggered. A positive-going trigger pulse of at least 2 V amplitude turns on the amplifier through R_{B} and pulls the non-inverting input high. The amplifier regenerates and latches its output high until capacitor Charges to the voltage level on the non-inverting input. The output then switches low, turning off the amplifier and discharging the capacitor. The capacitor discharge rate is speeded up by shorting the diode bias pin to the inverting input so that an additional discharge current flows through D_{1} when the amplifier output switches low. A special feature of this timer is that the other amplifier, when biased from V_{O}, can perform another function and draw zero stand-by power as well.
The operation of the multiplexer of Figure 20 is very straightforward. When A1 is turned on it holds VO equal to VIN1 and when A2 is supplied with bias current then it controls V_{O}. C_{C} and R_{C} serve to stabilize the unity-gain

Figure 19. Zero Stand-by Power Timer

configuration of amplifiers A1 and A2. The maximum clock rate is limited to about 200 KHz by the LM13600 slew rate into 150 pF when the (VIN1-VIN2) differential is at its maximum allowable value of 5 volts.
The Phase-Locked Loop of Figure 21 uses the four-quadrant multiplier of Figure 6 and the VCO of Figure 18 to produce a PLL with a $\pm 5 \%$ hold-in range and an input sensitivity of about 300 mV .

Figure 21. Phase Lock Loop

The Schmitt Trigger of Figure 22 uses the amplifier output current into R to set the hysteresis of the comparator; thus $\mathrm{V}_{\mathrm{H}}=2 \times \mathrm{Rx}$

Figure 22. Schmitt Trigger

IB. Varying IB will produce a Schmitt Trigger with variable hysteresis.
Figure 23 shows a Tachometer or Frequency-toVoltage converter. Whenever A1 is toggled by a positive-going input, an amount of charge equal to $\left(V_{H}-V_{L}\right) C_{t}$ is sourced into C_{f} and R_{t}. This once per cycle charge is then balanced by the current of $\mathrm{V}_{\mathrm{O}} / \mathrm{R}_{\mathrm{t}}$. The maximum FIN is limited by the amount of time required to charge C_{t} from V_{L} to V_{H} with a current of I_{B}, where V_{L} and V_{H} represent the maximum low and maximum high output voltage swing of the LM13600. D1 is added to provide a discharge path for C_{t} when $A 1$ switches low.
The Peak Detector of Figure 24 uses A2 to turn on A1 whenever VIN becomes more positive than V_{0}. A1 then charges storage capacitor C to hold V_{O} equal to VIN PK. One precaution to observe when using this circuit: the Darlington transistor used must be on the same side of the package as A2 since the A1 Darlington will be turned on and off with A1. Pulling the output of A2 low through D1 serves to turn off A1 so that V_{O} remains constant.

Figure 23. Tachometer

Figure 24. Peak Detector and Hold Circuit

The Sample-Hold circuit of Figure 25 also requires that the Darlington buffer used be from the other (A2) half of the package and that the corresponding amplifier be biased on continuously.

Figure 25. Sample-Hold Circuit

The Ramp-and-Hold of Figure 26 sources I_{B} into capacitor C whenever the input to $A 1$ is brought high, giving a ramp-rate of about IV/ms for the component values shown.
The true RMS converter of Figure 27 is essentially an automatic gain control amplifier which adjusts its gain such that the AC power at the output of amplifier A1 is constant. The output power of amplifier A1 is monitored by squaring amplifier A2 and the average compared to a reference voltage with amplifier A3. The output of A3 provides bias current to the diodes of A1 to attenuate the input signal. Because the output power of A1 is held constant, the RMS value is constant and the attentuation is directly proportional to the RMS value of the input voltage. The attenuation is also proportional to the diode bias current. Amplifier A4 adjusts the ratio of currents through the diodes to be equal and therefore the voltage at the output of A4 is proportional to the RMS value of the input voltage. The calibration potentiometer is set such that V_{O} reads directly in RMS volts.

Figure 26. Ramp and Hold

Figure 27. True RMS Converter

The circuit of Figure 28 is a voltage reference of variable Temperature Coefficient. The $100 \mathrm{~K} \Omega$ potentiometer adjusts the output voltage which has a positive TC above 1.2 volts, zero TC at about 1.2 volts and negative TC below 1.2 volts. This is accomplished by balancing the TC of the A2 transfer function against the complementary TC of D1

The log amplifier of Figure 29 responds to the ratio of current thru buffer transistors Q3 and Q4. Zero temperature dependence for VOUT is ensured in that the TC of the A2 transfer function is equal and opposite to the TC of the log. ging transistors Q3 and Q4.

Figure 28. Delta.VBE Reference

Figure 29. Log Amplifier

The wide dynamic range of the LM13600 allows easy control of the output pulse width in the Pulse Width Modulator of Figure 30.

For generating IABC over a range of 4 to 6 decades of current, the system of Figure 31 provides a logarithmic current out for a linear voltage in.

Since the closed-loop configuration ensures that the input to A 2 is held equal to OV , the output current of $A 1$ is equal to $I_{3}=-V_{C} / R_{C}$.

The differential voltage between Q1 and Q2 is attenuated by the R1,R2 network so that A1 may be assumed to be operating within its linear range. From equation (5), the input voltage to A 1 is:

$$
V_{I N 1}=\frac{-2 \mathrm{KTI}_{3}}{q \mathrm{l}_{2}}=\frac{2 \mathrm{KTV}_{C}}{q \mathrm{l}_{2} R_{C}}
$$

Figure 30. Pulse Width Modulator

Figure 31. Logarithmic Current Source

Section 10
Audio, Radio and TV Circuits

Audio, Radio and TV Circuits

Section Contents

Audio Selection Guide 10-iv
Definition of Terms. 1-viii
Audio Radio Circults
LM377 Dual 2 Watt Audio Amplifier 10-1
LM378 Dual 4 Watt Audio Amplifier 10-6
LM379 Dual 6 Watt Audio Amplifier 10-10
LM380 Audio Power Amplifier 10-14
LM381/LM381A Low Noise Dual Preamplifier 10-18
LM382 Low Noise Dual Preamplifier. 10-21
LM383/LM383A 8 Watt Audio Power Amplifier. 10-24
LM3845 Watt Audio Power Amplifier. $10-28$
LM386 Low Voltage Audio Power Amplifier 10-32
LM387/LM387A Low Noise Dual Preamplifier. 10-36
LM388 1.5 Watt Audio Power Amplifier. 10-39
LM389 Low Voltage Audio Power Amplifier with NPN Transistor Array 10-44
LM390 1 Watt Battery Operated Audio Power Amplifier. $10-51$
LM391 Audio Power Driver $10-56$
LM565/LM565C Phase Locked Loop. 9-38
LM567/LM567C Tone Decoder $9-46$
LM733/LM733C Differential Video Amplifier. 3-198
LM1011, LM1011A Dolby B-Type Noise Reduction Processor. 10-67
LM1019N Digital Tuning Station Detector 10-74
LM1303 Stereo Preamplifier. $10-77$
LM1310 Phase Locked Loop FM Stereo Demodulator. 10-79
LM1596/LM1496 Balanced Modulator-Demodulator. $10-84$
LM1800 Phase Locked Loop FM Stereo Demodulator $10-88$
LM1818 Electronically Switched Audio Tape System $10-90$
LM1870 Stereo Demodulator with Blend 10-102
LM1877 Dual Power Audio Amplifier. 10-108
LM1896/LM2896 Dual Power Audio Amplifier. 10-134
LM2000 Low Voltage Audio Driver. 10-141
LM2001 Low Voltage Audio Driver. 10-147
LM2002/LM2002A 8 Watt Audio Power Amplifier. 10-152
LM2877 Dual 4-Watt Power Audio Amplifier $9-73$
LM3011 Wide Band Amplifier. 10-160
LM3075 FM Detector/Limiter and Audio Preamplifier. 10-164
LM3080/LM3080A Operational Transconductance Amplifier 9 -92
LM3089 FM Receiver IF System 10-166
LM3189 FM Receiver IF System 10-170
LM3820 AM Radio System 10-176
LM3914 Dot/Bar Display Driver 9-107
LM3915 Dot/Bar Display Driver 9-120
LM4500A High Fidelity FM Stereo Blend Demodulator 10-180
LM13600/LM13600A/LM11600A Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers 9-136
TBA120S IF Amplifier and Detector. 10-181
TBA120U/TBA120T IF Amplifier and Detector. 10-184

Section Contents (Continued)

TV Circuits
LM1017 4-Bit Binary 7-Segment Decoder/Driver. $10-70$
LM1019N Digital Tuning Station Detector 10-74
LM1303 Stereo Preamplifier. 10-77
LM1391 Phase-Locked Loop Block. 10-81
LM1828, LM1848 Color Television Chroma Demodulator. 10-99
LM1880 No-Holds Vertical/Horizontal 10-113
LM1886 TV Video Matrix D to A. 10-120
LM1889 TV Video Modulator. 10-125
LM2808 Monolithic TV Sound System. 10-156
LM3064 Television Automatic Fine Tuning 10-162
TBA440C Monolithic Video IF Amplifier. 10-188
TBA510 Chrominance Combination. 10-190
TBA530 RGB Matrix Preamplifier. 10-194
TBA540 Reference Combination. 10-197
TBA560C Luminance and Chrominance Control Combination 10-201
TBA920/TBA920S Line Oscillator Combination. $10-205$
TBA950-2 Television Signal Processing Circuit. 10-208
TBA970 Television Video Amplifier. 10-212
TBA990 Color Demodulator. 10-215
TDA440 Video IF Amplifier. 10-217
TDA2522 Color Demodulation Combination 10-221
TDA2530, TDA2531 R-G-B Matrix Preamplifiers with Clamps. 10-223
TDA2560 Luminance and Chrominance Control Combination. $10-226$
TDA2590 Line Oscillator Combination. $10-229$

Audio Selection Guide

TABLE I. DUAL AUDIO AMPLIFIER TYPICAL $P_{0} @ 10 \%$ THD

Supply	Device				Load Impedance	
					8Ω	16月
8	LM1877				0.5W	0.25W
12		LM377	LM378	LM379	1.2 W	0.75W
16					2.2W	1.5W
18	:				3.0W	1.8W
20				\cdots	3.8W	2.4 W
22					4.6W	2.8W
24					$5.4 \mathrm{~W}^{(1)}$	3.6 W
					$1.5 \mathrm{~W}^{(2)}$	4.2W
26					6.0W	
28		-			7.0W	5.0W
30						5.5W

Note 1: LM379.
Note 2: LM378 (thermal limit).
KEY TECHNICAL SPECIFICATIONS

NSC Device Type	Features	Applications	Order Number		R_{L}	um) Po	Supply Voltage $\left(V_{s}\right)$	Quiescent Current (10)	Channel Separation $f=1 \mathrm{kHz}$ (output ref)	Equiv Input Noise (e_{N})	Open Loop Gain	Output Voltage Swing	Slew Rate $\mathrm{V} / \mathrm{L} \mathrm{s}$
LM1877	Adjustable gain 50-250	Stereo phonograph	LM1877N-2'	14 V	8Ω	1.0W	6-20V	25 mA	70 dB	$2.5 \mu \mathrm{Vrms}$	90 dB	8 V	2
	High PSRR -68 dB	Stereo tape recorders	LM1877N-6'	16 V	8Ω	2.0W	6-26V	25 mA	70 dB	$2.5 \mu \mathrm{Vrms}$	90 dB	10 V	2
	Current limiting	Bridge output stages	LM1877N-8'	18 V	88	3.5 W	6-26V	25 mA	70 dB .-	$2.5 \mu \mathrm{Vrms}$	90 dB	12 V	2
	Thermal shutdown	Receivers	LM1877N-10'	20 V	8Ω	4.0W	$6-26 \mathrm{~V}$	25 mA	70 dB	$2.5 \mu \mathrm{Vrms}$	90 dB	14 V	2
	Low noise												
LM378	Avo typical 90 dB	AM/FM stereo receivers	LM378N	24V	8Ω	4.0W	10-35V	15 mA .	70 dB	$3.0 \mu \mathrm{Vrms}$	90 dB	16 V	14
	$3 \mathrm{M} \Omega$ input impedance	Movie projectors											
	Current limiting	Tape recorders											
	Thermal shutdown	Multi-channel audio	LM378N	30 V	16Ω	4.0W	$10-35 \mathrm{~V}$	15 mA	70 dB	$3.0 \mu \mathrm{Vrms}$	90 dB	16 V	14
		systems						,			\sim		
LM379	Self centering bias	Multi-channel audio											
	Current limiting	Tape recorders/players	LM379S	28 V	8Ω	6.0W	10-35V	15 mA	70 dB	$3.0 \mu \mathrm{Vrms}$	90 dB	16 V	14
	Thermal shutdown	AM/FM radios											
	Internal stabilization	Movie projectors											

Note 1: Refer to NSC data sheet LM1877 for additional standard selections.
Note 2: For operation at ambient temperatures greater than $25^{\circ} \mathrm{C}$ the IC must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance obtained from the device data sheet.
Note 3: Output protection included on all devices.

KEY TECHNICAL SPECIFICATIONS

TABLE II.
CLIC MONO-AUDIO AMPLIFIER

Supply	Device	Load Impedance			
		2Ω	4Ω	8Ω	16』
3 V	LM2001	400 mW	250 mW		
6 V	LM383 LM385, LM389 LM388 LM390 LM2000	$1.4 \mathrm{~W}$ $2.0 \mathrm{~W}$	800 mW 340 mW 900 mW 950 mW 1.0W	440 mW 320 mW 600 mW 650 mW	240 mW 180 mW 300 mW 325 mW
9 V	LM383 LM386, LM389 LM38B LM390 LM2000	$3.5 \mathrm{~W}$ $4.0 \mathrm{~W}$	$\begin{gathered} \hline 2.1 \mathrm{~W} \\ 380 \mathrm{~mW} \\ 1.8 \mathrm{~W} \\ 2.0 \mathrm{~W} \\ 2.2 \mathrm{~W} \end{gathered}$	$\begin{gathered} 1.2 \mathrm{~W} \\ 780 \mathrm{~mW} \\ 1.3 \mathrm{~W} \\ 1.4 \mathrm{~W} \end{gathered}$.630 mW 500 mW 650 mW 700 mW
12V	LM380 LM383 LM386A, LM389 LM388	6.4 W	$\begin{aligned} & 2.4 \mathrm{~W} \\ & 4.0 \mathrm{~W} \\ & 2.4 \mathrm{~W} \end{aligned}$	$\begin{gathered} 1.5 \mathrm{~W} \\ 2.3 \mathrm{~W} \\ 820 \mathrm{~mW} \\ 2.2 \mathrm{~W} \end{gathered}$	$\begin{array}{\|c\|} \hline 500 \mathrm{~mW} \\ 1.2 \mathrm{~W} \\ 950 \mathrm{~mW} \\ 1.3 \mathrm{~W} \end{array}$
14 V	LM380 LM383 LM386A LM388A	8.9W	$\begin{aligned} & 3.3 \mathrm{~W} \\ & 5.6 \mathrm{~W} \\ & 3.0 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2.3 \mathrm{~W} \\ & 3.7 \mathrm{~W} \\ & \\ & 3.0 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~W} \\ & 1.7 \mathrm{~W} \\ & 1.3 \mathrm{~W} \\ & 0.5 \mathrm{~W} \end{aligned}$
16V	$\begin{aligned} & \text { LM380 } \\ & \text { LM386A } \\ & \text { LM388A } \end{aligned}$		3.6 W	$\begin{aligned} & 3.0 \mathrm{~W} \\ & 3.8 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 1.6 \mathrm{~W} \\ & 1.6 \mathrm{~W} \\ & 1.9 \mathrm{~W} \end{aligned}$
18 V	$\begin{aligned} & \text { LM380 } \\ & \text { LM383 } \\ & \text { LM384 } \end{aligned}$		$\begin{aligned} & 9.6 \mathrm{~W} \\ & 4.2 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~W} \\ & 5.5 \mathrm{~W} \\ & 4.0 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 2.2 \mathrm{~W} \\ & 2.9 \mathrm{~W} \\ & 2.2 \mathrm{~W} \end{aligned}$
22V	LM384		3.5 W	5.7W	3.5 W
$\pm 22 \mathrm{~V}$	LM391 (Note 1)		30 W	20W	
$\pm 30 \mathrm{~V}$	LM391 (Note 1)		60W	40W	

Note 1: $T H D<0.25 \%$.

NSC Device Type	Features	Applications	Order Number		inimum) \% THD $V_{C C}$	R_{L}	Supply Voltage (V_{Cc})	$\begin{gathered} \text { Gain } \\ \left(A_{v}\right) V / V \end{gathered}$	Quiescent Current l_{a} (typ)
LM386	Battery operation	AM/FM radio amplifier	LM386N-1	250 mW	6 V	8Ω	4V-12V	20.200	4 mA
	Low quiescent current	Cassette amplifier	LM386N-3	500 mW	9 V	8Ω	4V-12V	20.200	4.5 mA
	Ground ref input	Phono cartridge amp	LM386N-4	700 mW	16 V	32.1	5 V -18V	20.200	7 mA
	8 pin miniDIP	Waikie-talkie							
LM389	Battery operation	Portable tape recorders	LM389N	250 mW	6 V	8Ω	4V-12V	20.200	12 mA
	Low distortion	Phono cartridge amp							
	Includes NPN (3) transistor	Intercoms							
	array	AM/FM radio	.						
	Freq (DC to 100 MHz)	Walkie-talkie							
LM388	Low voltage operation	AM/FM radio amplifiers	LM388N-1	1500 mW	12 V	8Ω	4V-12V	20.200	8 mA
	Variable voltage gain	Portable tape recorders	LM388N-2	800 mW	6 V	4Ω	$4 \mathrm{~V}-12 \mathrm{~V}$	20.200	5 mA
	Excellent supply rejection 14-pin DIP	Squelch circuits for FM scanners	LM388N-3	2500 mW	16 V	$8 \cap$	5V-18V	20.200	15 mA
LM380	Ground referenced inputs	Phono amplifiers							
	Voltage gain fixed at 50	Cassette amplifiers	LM380N	2500 mW	18 V	8 8	8V-22V	50	10 mA
	High input impedance								
	Short circuit current (1.3A)								
LM390	Ground referenced inputs	Bridge amplifiers							
	Automatic bias at $1 / 2 \mathrm{~V}_{\text {SS }}$	Intercom							
	Bias current 250 nA (typ)	Portable tape amplifiers	LM390N	800 mW	6 V	4Ω	$3.5 \mathrm{~V}-9 \mathrm{~V}$	20-200	10 mA
LM384	Ground referenced inputs	AM/FM radio	LM384N	5000 mW	22 V	8Ω	12 V -26V	50	8.5 mA
	Fixed gain ($\mathrm{A}_{V}=50$)	Sound projector systems							
	Thermal shut-down	Tape cassettes							
	High input impedance	8-track tape systems							
LM383	Short circuit protection	Automotive audio amp	LM383T	4800 mW	14.4 V	4Ω	$5 \mathrm{~V}-20 \mathrm{~V}$	50.500	45 mA
	Peak current (3.5A)	CB radio		7000 mW	14.4V	2Ω	$5 \mathrm{~V}-20 \mathrm{~V}$		
	Programmable gain	Bridge amplifiers							
	Large output swing								
	5-pin TO-220 package								
LM391	High $\mathrm{V}_{\mathrm{CC}}(60 \mathrm{~V}-80 \mathrm{~V})$	Hi -fidelity audio	LM391N-80	40W ${ }^{1}$	$\pm 31 \mathrm{~V}$	8Ω	$\pm 40 \mathrm{~V}$	20.200	-
	Low THD $\leq 0.01 \%$	amplifiers		60W'	$\pm 27 \mathrm{~V}$	4Ω	$\pm 40 \mathrm{~V}$		
	$\mathrm{P}_{\mathrm{O}}=40 \mathrm{~W}$	Hi-fidelity receivers							
LM2001	Battery operation min 1.8 V Adjustable gain/bandwidth Stable A-B bias	Battery operated audio systems	LM2001N	500 mW	6 V	8Ω	1.8 V -6V	-	-

Note 1: P_{0} rated at specified conditions except THD 0.10%.

Note (1): Specifications apply for $T_{A}=25^{\circ} \mathrm{C}$ with $\mathrm{V}_{S}=14 \mathrm{~V}$ for LM381, LM382, LM387 and $\mathrm{V}_{\mathrm{S}}= \pm 13 \mathrm{~V}$ for LM1303 unless otherwise noted.
Note (2): DC current; symmetrical ac current $=2 \mathrm{mAp}-\mathrm{p}$.
Note (3): LM381 and LM387 gain $=60 \mathrm{~dB} ;$ LM382 gain $=60 \mathrm{~dB} ; \mathrm{LM} 1303$ gain $=40 \mathrm{~dB}$.
Note (4): Single ended input biasing.
Note (5): LM381AN.
Note (6): LM387AN.
Note (7): Frequency compensation: $C=0.0047 \mu \mathrm{~F}$, pins 3 to 4.
Note (8): NAB reference level: 37 dBV gain at 1 kHz . Tape playback circuit.

FIGURE 1. P_{O} ws V_{S} For $\mathrm{R}_{\mathrm{L}}=4 \Omega$

FIGURE 2. P_{O} vs V_{S} For $\mathrm{R}_{\mathrm{L}}=8 \Omega$

FIGURE 3. Po vs V_{S} For $\mathrm{R}_{\mathrm{L}}=16 \Omega$

Audio, Radio and TV Circuits

Definition of Terms

AGC dc Output Shift: The shift of the quiescent IC output voltage of the AGC section for a given change in AGC central voltage.

AGC Figure of Merit (AGC Range): The widest possible range of input signal level required to make the output drop by a specified amount from the specified maximum output level.

AGC Input Current: The current required to bias the central voltage input of the AGC section.

AM Rejection Ratio: The ratio of the recovered audio output produced by a desired FM signal of specified level and duration to the recovered audio output produced by an unwanted AM signal of specified amplitude and modulating index.

Channel Separation: The level of output signal of an undriven amplifier with respect to the output level of an adjacent driven amplifier.

Detection Bandwidth: That frequency range about the free running frequency of the tone decoder/phase locked loop where a signal above a specified level will cause a detected signal condition at the output.

Detection Bandwidth Skew: The measure of how well the detection bandwidth is centered about the free running frequency. It is equal to the maximum detection bandwidth frequency plus the minimum detection bandwidth frequency minus twice the free running frequency.

Hold In Range: That range of frequencies about the free running frequency for which the phase locked loop will stay in lock if initially starting out in lock.

Input Bias Current: The average of the two input currents.

Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Input Sensitivity: The minimum level of input signal at a specified frequency required to produce a specified signal-to-noise ratio at the recovered audio output.

Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

Limiting Threshold: In FM the input signal level which causes the recovered audio output level to drop 3 dB from the output level with a specified large signal input.

Lock In Range: That range of frequencies about the free running frequency for which the phase locked loop will come into lock if initially starting out of lock.

Maximum Sweep Rate: The maximum rate that the VCO may be made to vary its oscillating frequency over its Sweep Range.

Output Resistance: The ratio of the change in output voltage to the change in output current with the output around zero.

Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.

Phase Detector Sensitivity: The change in the output voltage of the phase detector for a given change in phase between the two input signals to the phase detector.

Power Bandwidth: That frequency at which the voltage gain reduces to $1 / \sqrt{2}$ with respect to the flat band voltage gain specified for a given load and output power.

Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Slew Rate: The internally limited rate of change in output voltage with a large amplitude step function applied to the input.

Supply Current: The current required from the power supply to operate the amplifier with no load and the output at zero.

Sweep Range: That ratio of maximum oscillating frequency to minimum operating frequency produced by varying the central voltage of the VCO from its maximum value to its minimum value with fixed values of timing resistance and capacitance.

VCO Sensitivity: The change in operating frequency for a given change in VCO central voltage.

National
Audio, Radio and TV Circuits Semiconductor
LM377 Dual 2 Watt Audio Amplifier

General Description

The LM377 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape players, recorders, and AM-FM stereo receivers, etc.

The LM377 will deliver 2 W /channel into 8 or 16Ω loads. The amplifier is designed to operate with a minimum of external components and contains an internal bias regulator to bias each amplifier. Device overload protection consists of both internal current limit and thermal shutdown. For more information, see AN-125. The LM377 is not recommended for new designs; see the LM1877 data sheet for an improved pin-for-pin replacement to the LM377 in audio applications.

Features

- Avo typical 90 dB
- 2 W per channel
- 70 dB ripple rejection
- 75 dB channel separation
- Internal stabilization
- Self centered biasing
- $3 \mathrm{M} \Omega$ input impedance
- $10-26 \mathrm{~V}$ operation
- Internal current limiting
- Internal thermal protection

Applications

- Multi-channel audio systems
- Tape recorders and players
- Movie projectors
- Automotive systems
- Stereo phonographs
- Bridge output stages
- AM-FM radio receivers
- Intercoms
- Servo amplifiers
- Instrument systems

Absolute Maximum Ratings

Supply Voltage

Input Voltage
Operating Temperature
Storage Temperature
Junction Temperature
Lead Temperature (Soldering, 10 seconds)

26 V
OV - $V_{\text {SUPPLY }}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics

$V_{S}=20 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, R_{L}=8 \Omega, A_{V}=50(34 \mathrm{~dB})$, unless otherwise specified.

Note 1: For operation at ambient temperatures greater than $25^{\circ} \mathrm{C}$ the LM 377 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques.
Note 2: Dissipation characteristics are shown for four mounting configurations.
a. Infinite sink $-13.4^{\circ} \mathrm{C} / \mathrm{W}$
b. P.C. board $+V_{7} \operatorname{sink}-21^{\circ} \mathrm{C} / \mathrm{W}$. P.C. board is $21 / 2$ square inches. Staver $V_{7} \operatorname{sink}$ is 0.02 inch thick copper and has a radiating surface area of 10 square inches.
c. P.C. board only $-29^{\circ} \mathrm{C} / \mathrm{W}$. Device soldered to $21 / 2$ square inch P.C. board.
d. Free air $-58^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

Maximum Dissipation vs
Ambient Temperature

DC Output Level vs Temperature

Output Swing vs $\mathbf{V}_{\mathbf{S}}$

Supply Current vs Output Power

Supply Current vs Temperature

Power Dissipation vs Power Output

Typical Performance Characteristics (Continued)

Typical Applications (Continued)

4W Bridge Amplifier

National

LM378 Dual 4 Watt Audio Amplifier

General Description

The LM378 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape players, recorders, and AM-FM stereo receivers, etc.

The LM378 will deliver 4W channel into 8 or 16Ω loads. The amplifier is designed to operate with a minimum of external components and contains an internal bias regulator to bias each amplifier. Device overload protection consists of both internal current limit and thermal shutdown. For more information see AN-125.

Features

- Avo typical 90 dB
- 4 W per channel
- 70 dB ripple rejection
- 75 dB channel separation
- Internal stabilization
- Self centered biasing
- $3 \mathrm{M} \Omega$ input impedance
- Internal current limiting
- Internal thermal protection

Applications

- Multi-channel audio systems
- Tape recorders and players
- Movie projectors
- Automotive systems
- Stereo phonographs
- Bridge output stages
- AM-FM radio receivers
- Intercoms
- Servo amplifiers
- Instrument systems

Schematic Diagram

Connection Diagram

Dual-In-Line Package

Order Number LM378N See NS Package N14A

Typical Applications

Absolute Maximum Ratings

Supply Voltage
Input Voltage
Operating Temperature
Storage Temperature
Junction Temperature
Lead Temperature (Soldering, 10 seconds)

35 V
$0 V-V_{\text {SUPPLY }}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics
$V_{S}=24 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, R_{L}=8 \Omega, A_{V}=50(34 \mathrm{~dB})$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	$\begin{aligned} & P_{\text {OUT }}=0 \mathrm{~W} \\ & P_{\text {OUT }}=1.5 \mathrm{~W} / \text { Channel } \end{aligned}$		$\begin{aligned} & 15 \\ & 430 \end{aligned}$	$\begin{aligned} & 50 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
DC Output Level			12		v
Supply Voltage		10			v
Output Power	T.H.D. $=<5 \%, R_{L}=8 \Omega$,	4	5		w
	T.H.D. $=<5 \%, R_{L}=16 \Omega 2$	4	5		W*
T.H.D.	$\mathrm{P}_{\text {OUT }}=0.05 \mathrm{~W} /$ Channel, $\mathrm{f}=1 \mathrm{kHz}$		0.25		\%
	$\mathrm{P}_{\text {OUT }}=1 \mathrm{~W} /$ Channel, $\mathrm{f}=1 \mathrm{kHz}$		0.07	1	\%
	Pout 2W/Channel, $\mathrm{f}=1 \mathrm{kHz}$		0.10		- \%
Offset Voitage			15		mV
Input Bias Current			100		nA
Input Impedance		3			MS
Open Loop Gain	$\mathrm{R}_{\mathrm{S}}=0 \Omega 2$	66	90		dB
Channel Separation	$\mathrm{C}_{\mathrm{F}}=250 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}$	50	70		dB
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\mathrm{F}}=250 \mu \mathrm{~F}$	60	70		dB
Current Limit			1.5		A
Slew Rate			1.4		$\mathrm{V} / \mu \mathrm{s}$
Equivalent Input Noise Voltage	$R_{S}=600 \Omega 2,100 \mathrm{~Hz}-10 \mathrm{kHz}$		3		$\mu \mathrm{V}$ rms

Note 1: For operation at ambient temperatures greater than $25^{\circ} \mathrm{C}$ the LM378 must be derated based on a maxımum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques.
Note 2: Dissipatıon characteristics are shown for four mounting configurations.
a. Infinite sink $-13.4^{\circ} \mathrm{C} / \mathrm{W}$
b. P.C. board $+V_{7}$ sink $-21^{\circ} \mathrm{C} /$ W. P.C. board is $21 / 2$ square inches. Staver V_{7} sink is 0.02 inch thick copper and has a radiating surface area of 10 square inches.
c. P.C. board only $-29^{\circ} \mathrm{C} / \mathrm{W}$. Device soldered to $21 / 2$ square inch P.C. board.
d. Free air $-58^{\circ} \mathrm{C} / \mathrm{W}$.
*Tested at $\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}$.

Maximum Dissipation vs Ambient Temperature

Distortion vs Gain

Power Dissipation vs Power Output

Power Dissipation vs Power Output

Typical Applications (Continued)

8W Bridge Amplifier

Power Op Amp (Using Split Supplies)

Rear Speaker Ambience (4-Channel) Amplifier

Audio, Radio and TV Circuits

LM379 Dual 6 Watt Audio Amplifier

General Description

The LM379 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape players, recorders, and AM-FM stereo receivers, etc.

The LM379 will deliver 6W/channel to an 8Ω load. The amplifier is designed to operate with a minimum of external components and contains an internal bias regulator to bias each amplifier. Device overload protection consists of both internal current limit and thermal shutdown. For more information, see AN-125.

Features

- Avo typical 90 dB
- 6 W per channel
- 70 dB ripple rejection
- 75 dB channel separation
- Internal stabilization
- Self centered biasing
- $3 \mathrm{M} \Omega$ input impedance
- Internal current limiting
- Internal thermal protection

Applications

n Multi-channel audio systems

- Tape recorders and players
- Movie projectors
- Automotive systems
- Stereo phonographs
- Bridge output stages
- AM-FM radio receivers
- Intercoms
- Servo amplifiers
- Instrument systems

Connection Diagram

TOP VIEW
Order Number LM379S
See NS Package S14A

Typical Applications

Absolute Maximum Ratings

Supply Voltage
Input Voltage
Operating Temperature
Storage Temperature
Junction Temperature
Lead Temperature (Soldering, 10 seconds)

35 V
$0 V-V_{\text {SUPPLY }}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics
$V_{S}=28 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, R_{L}=8 \Omega, A_{V}=50(34 \mathrm{~dB})$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	$\begin{aligned} & \mathrm{P}_{\text {OUT }}=0 \mathrm{~W} \\ & \mathrm{P}_{\text {OUT }}=1.5 \mathrm{~W} / \text { Channel } \end{aligned}$		$\begin{aligned} & 15 \\ & 430 \end{aligned}$	65	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
DC Output Level			14		v
Supply Voltage		10			v
Output Power	T.H.D. $=5 \%$		6		w
	T.H.D. $=10 \%$	6	7		W
T.H.D.	$\mathrm{P}_{\text {OUT }}=1 \mathrm{~W} /$ Channel, $\mathrm{f}=1 \mathrm{kHz}$		0.07	1	\%
	$\mathrm{P}_{\text {Out }}=4 \mathrm{~W} /$ Channel, $\mathrm{f}=1 \mathrm{kHz}$		0.2		\%
Offset Voltage			15		mV
Input Bias Current			100		nA
Input Impedance		3			$\mathrm{M} \Omega$
Open Loop Gain	$\mathrm{R}_{\mathrm{S}}=0 \Omega$	66	90		dB
Channel Separation	$\mathrm{C}_{\mathrm{F}}=250 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}$	50	70		dB
Ripple Rejection	$f=120 \mathrm{~Hz}, \mathrm{C}_{\mathrm{F}}=250 \mu \mathrm{~F}$		70		dB
Current Limit			1.5		A
Slew Rate			1.4		$\mathrm{V} / \mu \mathrm{s}$
Equivalent Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=600 \Omega, 100 \mathrm{~Hz}-10 \mathrm{kHz}$		3		$\mu \mathrm{Vrms}$

Note 1: For operation at ambient temperatures greater than $25^{\circ} \mathrm{C}$ the LM 379 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques. In most applications it is advisable to heat sink to the chassis. See curves.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Applications (Continued)

12W Bridge Amplifier

National Semiconductor

Audio, Radio and TV Circuits

LM380 Audio Power Amplifier

General Description

The LM380 is a power audio amplifier for consumer application. In order to hold system cost to a minimum, gain is internally fixed at 34 dB . A unique input stage allows inputs to be ground referenced. The output is automatically self centering to one half the supply voltage.
The output is short circuit proof with internal thermal limiting. The package outline is standard dual-in-line. A copper lead frame is used with the center three pins on either side comprising a heat sink. This makes the device easy to use in standard p-c layout.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AMFM radio, small servo drivers, power converters, etc.

A selected part for more power on higher supply voltages is available as the LM384. For more information see AN-69.

Features

- Wide supply voltage range
- Low quiescent power drain
- Voltage gain fixed at 50
- High peak current capability
- Input referenced to GND
- High input impedance
- Low distortion
- Quiescent output voltage is at one-half of the supply voltage
- Standard dual-in-line package

Connection Diagrams (Dual-In-Line Packages, Top View)

Order Number LM380N See NS Package N14A

Order Number LM380N-8 See- NS Package N08B

Block and Schematic Diagrams

Absolute Maximum Ratings

Supply Voltage	22 V
Peak Current	1.3 A
Package Dissipation 14-Pin DIP (Notes 6 and 7)	10 W
Input Voltage	$\pm 0.5 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$+300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Note 1: $\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Note 2: Rejection ratio referred to the output with $C_{B Y P A S S}=5 \mu \mathrm{~F}$.
Note 3: With device Pins $3,4,5,10,11,12$ soldered into a $1 / 16^{\prime \prime}$ epoxy glass board with 2 ounce copper foil with a minimum surface of 6 square inches.
Note 4: If oscillation exists under some load conditions, add 2.7Ω and $0.1 \mu \mathrm{fd}$ series network from Pin 8 to Gnd.
Note 5: CBYPASS $=0.47 \mu \mathrm{fd}$ on $\operatorname{Pin} 1$.
Note 6: The maximum junction temperature of the LM380 is $150^{\circ} \mathrm{C}$.
Note 7: The package is to be derated at $12^{\circ} \mathrm{C} / \mathrm{W}$ junction to heat sink pins.

Heat Sink Dimensions

COPPER WINGS
2 REQUIRED
SOLDERED TO
PINS $3,4,5$,
10, 11, 12
THICKNESS O 04
NCHES

Typical Performance Characteristics

Typical Applications

Phono Amplifier

Bridge Amplifier

Phase Shift Oscillator

7 National Semiconductor

General Description

The LM381/LM381A is a dual preamplifier for the amplication of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with individual internal power supply decoupler: regulator, providing 120 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain (112 dB), large output voltage swing ($\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$) p-p, and wide power bandwidth ($75 \mathrm{kHz}, 20 \mathrm{~V}_{\text {P-p }}$). The LM381/LM381A operates from a single supply across the wide range of 9 to 40 V .

Either differential input or single ended input configurations may be selected. The amplifier is internally compensated with the provision for additional external compensation for narrow band
applications. For additional information see AN64, AN-104.

Features

- Low Noise - . $5 \mu \mathrm{~V}$ total input noise
- High Gain - 112 dB open loop
- Single Supply Operation
- Wide supply range $9-40 \mathrm{~V}$
- Power supply rejection 120 dB
- Large output voltage swing $\left(\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}\right)_{\mathrm{p}-\mathrm{p}}$
- Wide bandwidth 15 MHz unity gain
- Power bandwidth' $75 \mathrm{kHz}, 20 \mathrm{~V}$ p-p
- Internally compensated
- Short circuit protected

Schematic and Connection Diagrams

Typical Applications

Two-Pole Fast Turn-On NAB Tape Preamp

Dual-In-Line Package

Order Number LM381N or LM381AN See NS Package N14A

Typical Magnetic Phono Preamp

Audio Mixer

Absolute Maximum Ratings

Supply Voltage

$$
\begin{array}{r}
+40 \mathrm{~V} \\
715 \mathrm{~mW} \\
0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$, unless otherwise stated.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Voltage Gain	Open Loop (Differential Input), $\mathrm{f}=100 \mathrm{~Hz}$		160,000		V/V
	Open Loop (Single Ended), $f=100 \mathrm{~Hz}$		320,000		V/V
Supply Current	$\mathrm{V}_{\mathrm{CC}} 9$ to $40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		10		mA
Input Resistance					
(Positive Input)			100		$k \Omega$
(Negative Input)			200		$k \Omega$
Input Current					
(Negative Input)			0.5		$\mu \mathrm{A}$
Output Resistance	Open Loop		150		Ω
Output Current	Source		8		mA
	Sink		2		mA
Output Voltage Swing	Peak-to-Peak		$\mathrm{V}_{\mathrm{Cc}}-2$		V
Unity Gain Bandwidth .			15		MHz
Power Bandwidth	$20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\left(\mathrm{V}_{\mathrm{Cc}}=24 \mathrm{~V}\right)$.		75		kHz
Maximum Input Voltage	Linear Operation			300	mV rms
Supply Rejection Ratio	$f=1 \mathrm{kHz}$		120		dB
Channel Separation	$\mathrm{f}=1 \mathrm{kHz}$		60		dB
Total Harmonic Distortion	60 dB Gain, $\mathrm{f}=1 \mathrm{kHz}$		- 0.1		\%
Total Equivalent Input					
Noise	$\mathrm{R}_{\mathrm{S}}=600 \Omega, 10-10,000 \mathrm{~Hz}$ (Single Ended Input,				
LM381A	Flat Gain Circuit, $A_{V}=1000$)		0.5	0.7	$\mu \mathrm{Vrms}$
LM381			0.5	1.0	μ Vrms

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Typical Applications (Continued)

Ultra-Low Distortion Amplifier
($A_{V}=10$, THD $<0.05 \%, V_{\text {OUT }}=3 V_{\text {RMS }}$)

Typical Performance Characteristics

Audio, Radio and TV Circuits

LM382 Low Noise Dual Preamplifier

General Description

The LM382 is a dual preamplifier for the amplication of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with individual internal power supply decoupler-regulator, providing 120 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain (100 dB), and wide power bandwidth $(75 \mathrm{kHz}, 20 \mathrm{Vp}-\mathrm{p})$. The LM382 operates from a single supply across the wide range of 9 to 40 V .

A resistor matrix is provided on the chip to allow the user to select a variety of closed loop gain options and frequency response characteristics such as flat-band, NAB or RIAA equalization. The
circuit is supplied in the 14 lead dual-in-line package.

Features

- Low noise $-0.8 \mu \mathrm{~V}$ total equivalent input noise
- High gain - 100 dB open loop
- Single supply operation
- Wide supply range 9 to 40 V
- Power supply rejection - 120 dB
- Large output voltage swing
a Wide bandwidth -15 MHz unity gain
- Power bandwidth $-75 \mathrm{kHz}, 20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
- Internally compensated
- Short circuit protected.

Schematic and Connection Diagrams

Order Number LM382N
See NS Package N14A

Typical Applications

Tape Preamp (NAB Equalization)

Phono Preamp (RIAA Equalization)

Flat Response - Fixed Gain Configuration

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

$$
\begin{array}{r}
+40 \mathrm{~V} \\
715 \mathrm{~mW} \\
0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$, unless otherwise stated.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Voltage Gain	Open Loop, $\mathrm{f}=100 \mathrm{~Hz}$		100,000		V/V
Supply Current	$V_{C C} 9$ to $40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		10	16	mA
Output DC Voltage	-		6		V
Input Resistance					
(Positive Input)			100		$k \Omega$
(Negative Input)			200		$k \Omega$
Input Current					
(Negative Input)			0.5		$\mu \mathrm{A}$
Output Resistance	Open Loop		150		Ω
Output Current	Source		8		mA
	Sink		2		mA
Output Voltage Swing	Peak-to Peak, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		12		V
Unity Gain Bandwidth			15		MHz
Power Bandwidth	$20 \mathrm{Vp} \cdot \mathrm{p}\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}\right)$		75		kHz
Maximum Input Voltage	Linear Operation			300	mVrms
Supply Rejection Ratio	$\mathrm{f}=1 \mathrm{kHz}$		120		dB
Channel Separation	$f=1 \mathrm{kHz}$	40	60		dB
Total Harmonic Distortion	60 dB Gain, $\mathrm{f}=1 \mathrm{kHz}$		0.1	0.3	\%
Total Equivalent Input Noise	$\mathrm{R}_{\mathrm{S}}=600 \Omega 2,100-10,000 \mathrm{~Hz}$ (Flat Response Circuit)		0.8	1.2	$\mu \mathrm{Vrms}$

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Typical Performance Characteristics

f(Hz)
Noise Current vs Frequency

LM383/LM383A 8 Watt Audio Power Amplifier

General Description

The LM383 is a cost effective, high power amplifier suited for automotive applications. High current capability (3.5A) enables the device to drive low impedance loads with low distortion. The LM383 is current limited and thermally protected. High voltage protection is available (LM383A) which enables the amplifier to withstand 40 V transients on its supply. The LM383 comes in a 5 -pin TO. 220 package.

Features

- High peak current capability (3.5A)
- Large output voltage swing
- Externally programmable gain
- Wide supply voltage range ($5 \mathrm{~V}-20 \mathrm{~V}$)
- Few external parts required
- Low distortion
- High input impedance
- No turn-on transients
- High voltage protection available (LM383A)
- Low noise
- Short circuit protected

Equivalent Schematic

Connection Diagram

TO.220 Plastic Package

Order Number LM383T or LM383AT
See NS Package T05A

Absolute Maximum Ratings

Peak Supply Voltage (50 ms) $\begin{array}{ll}\text { LM383A(Note2) } & 40 \mathrm{~V} \\ \text { LM383 } & 25 \mathrm{~V}\end{array}$
OperatingSupply Voltage . 20 V
Output Current
Repetitive 3.5A

Non-repetitive 4.5A

Input Voltage
Power Dissipation(Note3)
$\pm 0.5 \mathrm{~V}$

Operating Temperature
15 W

Storage Temperature
Lead Temperature(Soldering, 10 seconds)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics $v_{S}=14.4 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, A_{V}=100(40 \mathrm{~dB}), R_{L}=4 \Omega$, unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
DC Output Level	Excludes Current in Feedback Resistors	6.4	7.2	8	V
Quiescent Supply Current		5	45	80	mA
Supply Voltage Range				20	V
Input Resistance			150		k Ω
Bandwidth	Gain $=40 \mathrm{~dB}$		30		kHz
Output Power	$\begin{aligned} & V_{S}=13.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ & R_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \% \end{aligned}$				
			4.7		W
	$\mathrm{R}_{\mathrm{L}}=2 \Omega, \mathrm{THD}=10 \%$		7.2		W
	$\begin{aligned} & V_{S}=13.8 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \% \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega, \mathrm{THD}=10 \% \end{aligned}$		5.1		W
			7.8		W
	$V_{S}=14.4 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$				
		4.8	5.5		w
	$\begin{aligned} & R_{L}=4 \Omega, T H D=10 \% \\ & R_{L}=2 \Omega, T H D=10 \% \end{aligned}$	7	8.6		W
	$\begin{aligned} & V_{S}=16 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \% \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega, \mathrm{THD}=10 \% \end{aligned}$				
			7		W
			10.5		W
THD	$\begin{aligned} & P_{o}=2 W, R_{L}=4 \Omega, f=1 \mathrm{kHz} \\ & P_{o}=4 W, R_{L}=2 \Omega, f=1 \mathrm{kHz} \end{aligned}$		0.2		\%
			0.2		\%
Ripple Rejection	$\begin{aligned} & R_{\mathrm{S}}=50 \Omega, \mathrm{f}=100 \mathrm{~Hz} \\ & R_{\mathrm{S}} 50 \Omega, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	30	40		dB
			44		dB
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=0,15 \mathrm{kHz}$ Bandwidth $R_{S}=100 \mathrm{k} \Omega, 15 \mathrm{kHz}$ Bandwidth		2		$\mu \mathrm{V}$
Input Noise Current			40		pA

Note 1: A $0.2 \mu \mathrm{~F}$ capacitor should be placed as close as possible to pins 3 and 4 for stability.
Note 2: The LM383 shuts down above 25 V .
Note 3: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.

Typical Performance Characteristics

Typical Applications (Continued)

Audio, Radio and TV Circuits

LM384 5 Watt Audio Power Amplifier

General Description

The LM384 is a power audio amplifier for consumer application. In order to hold system cost to a minimum, gain is internally fixed at 34 dB . A unique input stage allows inputs to be ground referenced. The output is automatically self-centering to one half the supply voltage.

The output is short-circuit proof with internal thermal limiting. The package outline is standard dual-in-line. A copper lead frame is used with the center three pins on either side comprising a heat sink. This makes the device easy to use in standard p-c layout.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio, sound projector systems, etc. See AN-69 for circuit details.

Features

- Wide supply voltage range
- Low quiescent power drain
- Voltage gain fixed at 50
- High peak current capability
- Input referenced to GND
- High input impedance
- Low distortion
- Quiescent output voltage is at one half of the supply voltage
- Standard dual-in-line package

Block and Connection Diagrams

Order Number LM384N See NS Package N14A

Absolute Maximum Ratings

Supply Voltage
28 V
Peak Current
Power Dissipation
Input Voltage
Storage Temperature
Operating Temperature
Lead Temperature (Soldering, 10 seconds)
1.3A
(See Notes 3 and 4) $\pm 0.5 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Resistance ($\mathrm{Z}_{1 N}$)			150		$k \Omega$
Bias Current ($\mathrm{I}_{\text {BIAS }}$)	Inputs Floating		100		nA
Gain (A_{V})		40	50	60	V/V
Output Power ($\mathrm{P}_{\text {Out }}$)	THD $=10 \%, \mathrm{R}_{\mathrm{L}}=8 \Omega$	5	5.5		W
Quiescent Supply Current (I_{Q})			8.5	25	mA
Quiescent Output Voltage ($\mathrm{V}_{\text {Out a }}$)			11		V
Bandwidth (BW)	$\mathrm{P}_{\text {OUT }}=2 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		450		kHz
Supply Voltage (V^{+})		12		26	V
Short Circuit Current ($\mathrm{ISC}_{\text {S }}$)			1.3		A
Power Supply Rejection Ratio (PSRR $_{\text {RTO }}$) (Note 2)			31		dB
Total Harmonic Distortion (THD)	$\mathrm{P}_{\text {OUT }}=4 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		0.25	1.0	\%

Note 1: $\mathrm{V}^{+}=22 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ operating with a Staver V 7 heat sink for 30 seconds.
Note 2: Rejection ratio referred to the output with $C_{B Y P A S S}=5 \mu \mathrm{~F}$, freq $=120 \mathrm{~Hz}$.
Note 3: The maximum junction temperature of the LM384 is $150^{\circ} \mathrm{C}$.
Note 4: The package is to be derated at $12^{\circ} \mathrm{C} / \mathrm{W}$ junction to heat sink pins.
Note 5: Output is fully protected against a shorted speaker condition at all voltages up to 22 V .

Heat Sink Dimensions

Typical Performance Characteristics

National Semiconductor

Audio, Radio and TV Circuits

LM386 Low Voltage Audio Power Amplifier

General Description

The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value up to 200.
The inputs are ground referenced while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply, making the LM386 ideal for battery operation.

Features

- Battery operation
- Minimum external parts
- Wide supply voltage range
$4 \mathrm{~V}-12 \mathrm{~V}$ or $5 \mathrm{~V}-18 \mathrm{~V}$
4 mA
- Voltage gains from 20 to 200
- Ground referenced input
- Self-centering output quiescent voltage
- Low distortion
- Eight pin dual-in-line package

Applications

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters

Equivalent Schematic and Connection Diagrams

Dual-In-Line Package

Order Number LM386N-1, LM386N-3 or LM386N-4 See NS Package N08B

Typical Applications

Amplifier with Gain $=\mathbf{2 0 0}$

Absolute Maximum Ratings

Supply Voltage (LM386N)	15 V
Supply Voltage (LM386N-4)	22 V
Package Dissipation (Note 1) (LM386N-4)	1.25 W
Package Dissipation (Note 2) (LM386)	660 mW
Input Voltage	$\pm 0.4 \mathrm{~V}$

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$+300^{\circ} \mathrm{C}$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage (V_{S}) LM386 LM386N-4		$\begin{aligned} & 4 \\ & 5 \end{aligned}$		$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Quiescent Current (I_{Q})	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{~V}_{1 N}=0$		4	8	mA
Output Power (POUT)					
LM386N-1	$V_{S}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{THD}=10 \%$	250	325		mW
LM386N-3	$\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{THD}=10 \%$	500	700		mW
LM386N-4	$V_{S}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{THD}=10 \%$	700	1000		mW
Voltage Gain (A_{V})	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$		26		dB
	$10 \mu \mathrm{~F}$ from Pin 1 to 8		46		dB
Bandwidth (BW)	$V_{S}=6 \mathrm{~V}$, Pins 1 and 8 Open		300		kHz
Total Harmonic Distortion (THD)	$\begin{aligned} & V_{S}=6 \mathrm{~V}, R_{L}=8 \Omega, P_{\text {OUT }}=125 \mathrm{~mW} \\ & f=1 \mathrm{kHz}, \text { Pins } 1 \text { and } 8 \text { Open } \end{aligned}$		0.2		\%
Power Supply Rejection Ratio (PSRR)	$V_{S}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{C}_{\mathrm{BYPASS}}=10 \mu \mathrm{~F}$ Pins 1 and 8 Open, Referred to Output		50		dB
Input Resistance ($\mathrm{R}_{1 \mathrm{~N}}$)			50		$k \Omega$
Input Bias Current (IBIAS ${ }^{\text {) }}$	$V_{S}=6 \mathrm{~V}$, Pins 2 and 3 Open		250		nA

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a , thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $187^{\circ} \mathrm{C}$ junction to ambient.

Application Hints

GAIN CONTROL

To make the LM386 a more versatile amplifier, two pins (1 and 8) are provided for gain control. With pins 1 and 8 open the $1.35 \mathrm{k} \Omega$ resistor sets the gain at $20(26 \mathrm{~dB})$. If a capacitor is put from pin 1 to 8 , bypassing the $1.35 \mathrm{k} \Omega$ resistor, the gain will go up to 200 (46 dB). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200 . Gain control can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleling the internal $15 \mathrm{k} \Omega$ resistor). For 6 dB effective bass boost: $R \cong 15 \mathrm{k} \Omega$, the lowest value for good stable operation is $R=10 \mathrm{k} \Omega$ if pin 8 is open. If pins 1 and 8 are bypassed then R as low as $2 \mathrm{k} \Omega$ can be used. This restriction is because the amplifier is only compensated for closed-loop gains greater than 9.

INPUT BIASING

The schematic shows that both inputs are biased to ground with a $50 \mathrm{k} \Omega$ resistor. The base current of the input transistors is about 250 nA , so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM386 is higher than $250 \mathrm{k} \Omega$ it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than $10 \mathrm{k} \Omega$, then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM386 with higher gains (bypassing the $1.35 \mathrm{k} \Omega$ resistor between pins 1 and 8) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a $0.1 \mu \mathrm{~F}$ capacitor or a short te ground depending on the dc source resistance on the driven input.

Power Supply Rejection Ratio (Referred to the Output) vs Frequency

Device Dissipation vs Output Power- 8Ω Load

Peak-to-Peak Output Voltage Swing vs Supply Voltage

Typical Applications (Continued)

LM387/LM387A Low Noise Dual Preamplifier

General Description

The LM387 is a dual preamplifier for the amplification of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with an internal power supply decoupler-regulator, providing 110 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain (104 dB), large output voltage swing $\left(V_{\mathrm{cc}}-2 \mathrm{~V}\right)$ p-p, and wide power bandwidth 175 kHz , $20 \mathrm{Vp}-\mathrm{p})$. The LM387A is a selected version of the LM387 that has lower noise and can operate on a larger supply voltage. The LM387 operates from a single supply across the wide range of 9 V to 30 V , the LM387A operates on a supply of 9 V to 40 V .

The amplifiers are internally compensated for gains greater than 10. The LM387, LM387A is available in an 8 -lead dual-in-line package. The LM387, LM387A is biased like the LM381. See AN-64 and AN-104.

Features

- Low noise LM387 LM387A
$0.8 \mu \mathrm{~V}$ total input noise $0.65 \mu \mathrm{~V}$ total input noise
- High gain

104 dB open loop

- Single supply operation
- Wide supply range LM387 9 to 30 V

LM387A 9 to 40 V

- Power supply rejection

110 dB

- Large output voltage swing ($\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$) p-p
- Wide bandwidth 15 MHz unity gain
- Power bandwidth $75 \mathrm{kHz}, 20 \mathrm{Vp}-\mathrm{p}$
- Internally compensated
- Short circuit protected
- Performance similar to LM381

Schematic and Connection Diagrams

Order Number LM387N or LM387AN See NS Package N08B

Typical Applications

Flat Gain Circuit ($A_{V}=1000$)

Typical Magnetic Phono Preamplifier

Absolute Maximum Ratings

Supply Voltage	
LM387	+30 V
LM387A	+40 V
Power Dissipation (Note 1)	660 mW

Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range Lead Temperature (Soldering, 10 seconds $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$, unless otherwise stated.

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Typical Applications (Continued)

Two-Pole Fast Turn-ON NAB Tape Preamplifier

Frequency Response of NAB Circuit

Typical Performance Characteristics

Typical Applications (Continued)

NAB Tape Circuit

Inverting Amplifier Uitra-Low Distortion

National

Audio, Radio and TV Circuits

Semiconductor.

LM388 1.5 Watt Audio Power Amplifier

General Description

The LM388 is an audio amplifier designed for use in medium power consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 2 and 6 will increase the gain to any value up to 200 .

The inputs are ground referenced while the output is automatically biased to one half the supply voltage.

Features

- Minimum external parts
- Wide supply voltage range
- Excellent supply rejection
- Ground referenced input
- Self-centering output quiescent voltage
- Variable voltage gain
- Low distortion
- Fourteen pin dual-in-line package
- Low voltage operation, 4V

Applications

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Lamp drivers
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters

Equivalent Schematic and Connection Diagram

Dual-In-Line Package

TOP VIEW
Order Number LM388N-1, LM388N-2 or LM388N-3 See NS Package N14A

Typical Applications

ง

FIGURE 1. Load Returned to Ground (Amplifier with Gain =20)

FIGURE 2. Load Returned to V_{S} (Amplifier with Gain =20)

Absolute Maximum Ratings

Supply Voltage	15 V
Supply Voltage (LM388N-3 Only)	22 V
Package Dissipation 14-Pin DIP (Note 1)	8.3 W
Input Voltage	$\pm 0.4 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 1)

Note 1: Pins $3,4,5,10,11,12$ at $25^{\circ} \mathrm{C}$. Derate at $15^{\circ} \mathrm{C} / \mathrm{W}$ above $25^{\circ} \mathrm{C}$ case.
Note 2: The amplifier should be in high gain for full swing on higher supplies due to input voltage limitations.
Note 3: If load and bypass capacitor are returned to V_{S} (Figure 2), rather than ground (Figure 1), PSRR is typically 30 dB .

Typical Performance Characteristics

Power Supply Rejection Ratio (Referred to the Output) vs Frequency

Typical Performance Characteristics

Application Hints

Gain Control

To make the LM388 a more versatile amplifier, two pins (2 and 6) are provided for gain control. With pins 2 and 6 open, the $1.35 \mathrm{k} \Omega$ resistor sets the gain at $20(26 \mathrm{~dB})$. If a capacitor is put from pin 2 to 6 , bypassing the $1.35 \mathrm{k} \Omega$ resistor, the gain will go up to $200(46 \mathrm{~dB})$. If a resistor is placed'in series with the capacitor, the gain can be set to any value from 20 to 200. A low frequency pole in the gain response is caused by the capacitor working against the external resistor in series with the 150Ω internal resistor. If the capacitor is eliminated and a resistor connects pin 2 to 6 then the output dc level
may shift due to the additional dc gain. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 6 to ground, as in Figure 7.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 6 to 13 (paralleling the internal $15 \mathrm{k} \Omega$ resistor). For 6 dB effective bass boost: $\mathrm{R} \cong$

Application Hints (Continued)

$15 \mathrm{k} \Omega$, the lowest value for good stable operation is $R=10 \mathrm{k} \Omega$ if pin 2 is open. If pins 2 and 6 are bypassed then R as low as $2 \mathrm{k} \Omega$ can be used. This restriction is because the amplifier is only compensated for closedloop gains greater than $9 \mathrm{~V} / \mathrm{V}$.

Input Biasing

The schematic shows that both inputs are biased to ground with a $50 \mathrm{k} \Omega$ resistor. The base current of the input transistors is about 250 nA , so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM388 is higher than $250 \mathrm{k} \Omega$ it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than $10 \mathrm{k} \Omega$, then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM388 with higher gains (bypassing the $1.35 \mathrm{k} \Omega$ resistor between pins 2 and 6) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a $0.1 \mu \mathrm{~F}$ capacitor or a short to ground depending on the dc source resistance on the driven input.

Bootstrapping

The base of the output transistor of the LM388 is brought out to pin 9 for Bootstrapping. The output stage of the amplifier during positive swing is shown in Figure 3 with its external circuitry.

R1 + R2 set the amount of base current available to the output transistor. The maximum output current divided by Beta is the value required for the current in R1 and R2:

Typical Applications (Continued)

FIGURE 3.

$$
(R 1+R 2)=\beta_{O} \frac{\left(V_{S} / 2\right)-V_{B E}}{I_{O M A X}}
$$

Good design values are $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and $\beta_{\mathrm{O}}=100$.

Example: $1_{\text {WATT }}$ into 8Ω load with $V_{S}=12 \mathrm{~V}$.

$$
\begin{aligned}
& I_{O M A X}=\sqrt{\frac{2 P_{O}}{R_{L}}}=500 \mathrm{~mA} \\
& (R 1+R 2)=100\left(\frac{(12 / 2)-0.7}{0.5}\right)=1060 \Omega
\end{aligned}
$$

To keep the current in R2 constant during positive swing capacitor C_{B} is added. As the output swings positive C_{B} lifts R1 and R2 above the supply, maintaining a constant voltage across R2. To minimize the value of $C_{B}, R 1=R 2$. The pole due to C_{B} and $R 1$ and R2 is usually set equal to the pole due to the output coupling capacitor and the load. This gives:

$$
C_{B} \simeq \frac{4 C_{c}}{\beta_{O}} \simeq \frac{C_{c}}{25}
$$

Example: for 100 Hz pole and $\mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{C}_{\mathrm{c}}=200 \mu \mathrm{~F}$ and $C_{B}=8 \mu F$, if $R 1$ is made a diode and $R 2$ increased to give the same current, C_{B} can be decreased by about a factor of 4, as in Figure 4.

For reduced component count the load can replace R1. The value of ($R 1+R 2$) is the same, so $R 2$ is increased. Now C_{B} is both the coupling and the bootstrapping capacitor (see Figure 2).

FIGURE 4. Amplifier with $\mathbf{G a i n}=\mathbf{2 0 0}$ and Minimum C_{B}

Typical Applications (Continued)

FIGURE 6a. Amplifier with Bass Boost

FIGURE 6b. Frequency Response with Bass Boost

FIGURE 8. AM Radio Power Amplifier

Note 1: Twist supply lead and supply ground very tightly.
Note 2: Twist speaker lead and ground very tightly.
Note 3: Ferrite bead is Ferroxcube K5-001-001/3B with 3 turns of wire.

Note 4: R1C1 band limits input signals.
Note 5: All components must be spaced very close to IC.

Audio, Radio and TV Circuits
 \square National Semiconductor

 LM389 Low Voltage Audio Power Amplifier With NPN

 LM389 Low Voltage Audio Power Amplifier With NPN Transistor Array

 Transistor Array}
General Description

The LM389 is an array of three NP.N transistors on the same substrate with an audio power amplifier similar to the LM386.

The amplifier inputs are ground referenced while the output is automatically biased to one half the supply voltage. The gain is internally set at 20 to minimize external parts, but the addition of an external resistor and capacitor between pins 4 and 12 will increase the gain to any value up to 200 .

The three transistors have high gain and excellent matching characteristics. They are well suited to a wide variety of applications in dc through VHF systems.

Features

Amplifier

- Battery operation
- Minimum external parts
- Wide supply voltage range.
- Low quiescent current drain
- Voltage gains from 20 to 200
- Ground referenced input
- Self-centering output quiescent voltage
- Low distortion

Transistors

- Operation from $1 \mu \mathrm{~A}$ to 25 mA
- Frequency range from dc to 100 MHz
- Excellent matching

Applications

- AM-FM radios
- Portable tape recorders
- Intercoms
- Toys and games
- Walkie-talkies
- Portable phonographs
- Power converters

Equivalent Schematic and Connection Diagrams

Dual-In-Line Package

Absolute Maximum Ratings

Supply Voltage	15 V	Collector to Emitter Voltage, $\mathrm{V}_{\text {CEO }}$	12V
Package Dissipation (Note 1)	715 mW	Collector to Base Voltage, $\mathrm{V}_{\text {CBO }}$	15V
Input Voltage	$\pm 0.4 \mathrm{~V}$	Collector to Substrate Voltage, $\mathrm{V}_{\mathrm{CIO}}$ (Note 2)	15 V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Collector Current, IC	25 mA
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Emitter Current, I_{E}	25 mA
Junction Temperature	$150^{\circ} \mathrm{C}$	Base Current, IB	5 mA
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	Power Dissipation (Each Transistor) $\mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	150 mW

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}$

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: The collector of each transistor is isolated from the substrate by an integral diode. Therefore, the collector voltage should remain positive with respect to pin 17 at all times.
Note 3: If oscillation exists under some load conditions, add 2.7Ω and $0.05 \mu \mathrm{~F}$ series network from pin 1 to ground.

Typical Amplifier Performance Characteristics

Typical Transistor Performance Characteristics

Open Circuit Output Admittance vs Collector Current

Typical Transistor Performance Characteristics (Continued)

Application Hints

Gain Control

To make the LM389 a more versatile amplifier, two pins (4 and 12) are provided for gain control. With pins 4 and 12 open, the $1.35 \mathrm{k} \Omega$ resistor sets the gain at $20(26 \mathrm{~dB})$. If a capacitor is put from pin 4 to 12, bypassing the $1.35 \mathrm{k} \Omega$ resistor, the gain will go up to $200(46 \mathrm{~dB})$. If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. A low frequency pole in the gain response is caused by the capacitor working against the external resistor in series with the 150Ω internal resistor. If the capacitor is eliminated and a resistor connects pin 4 to 12, then the output dc level may shift due to the additional dc gain. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 12 to ground.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 12 (paralleling the internal $15 \mathrm{k} \Omega$ resistor). For 6 dB effective bass boost: $R \cong 15 \mathrm{k} \Omega$, the lowest value for good stable operation is $R=10 \mathrm{k} \Omega$ if pin 4 is open. If pins 4 and 12 are bypassed then R as low as $2 \mathrm{k} \Omega$ can be used. This restriction is because the amplifier is only compensated for closedloop gains greater than 9V/V.

Input Biasing

The schematic shows that both inputs are biased to ground with a $50 \mathrm{k} \Omega$ resistor. The base current of the input transistors is about 250 nA , so the inputs are at about 12.5 mV when left open. If the dc source resis-
tance driving the LM389 is higher than $250 \mathrm{k} \Omega$ it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than $10 \mathrm{k} \Omega$, then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM389 with higher gains (bypassing the $1.35 \mathrm{k} \Omega$ resistor between pins 4 and 12) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a $0.1 \mu \mathrm{~F}$ capacitor or a short to ground depending on the dc source resistance of the driven input.

Supplies and Grounds

The LM389 has excellent supply rejection and does not require a well regulated supply. However, to eliminate possible high frequency stability problems, the supply should be decoupled to ground with a $0.1 \mu \mathrm{~F}$ capacitor. The high current ground of the output transistor, pin 18, is brought out separately from small signal ground, pin 17. If the two ground leads are returned separately to supply then the parasitic resistance in the power ground lead will not cause stability problems. The parasitic resistance in the signal ground can cause stability problems and it should be minimized. Care should also be taken to insure that the power dissipation does not

Application Hints (Continued)

exceed the maximum dissipation of the package for a given temperature. There are two ways to mute the LM389 amplifier. Shorting pin 3 to the supply voltage, or shorting pin 12 to ground will turn the amplifier off without affecting the input signal.

Transistors

* The three transistors on the LM389 are general purpose devices that can be used the same as other small signal transistors. As long as the currents and voltages are kept within the absolute maximum limitations, and the collectors are never at a negative potential with respect to pin 17 , there is no limit on the way they can be used.

For example, the emitter-base breakdown voltage of 7.1 V can be used as a zener diode at currents from $1 \mu \mathrm{~A}$ to 5 mA . These transistors make good LED driver devices, $V_{\text {SAT }}$ is only 150 mV when sinking 10 mA .

In the linear region, these transistors have been used in AM and FM radios, tape recorders, phonographs, and many other applications. Using the characteristic curves on noise voltage and noise current, the level of the collector current can be set to optimize noise performance for a given source impedance. Some of the circuits that have been built are shown in Figures 1-7. This is by no means a complete list of applications, since that is limited only by the designers imagination.

FIGURE 1. AM Radio

FIGURE 2. Tape Recorder

FIGURE 4. FM Scanner Noise Squelch Circuit

FIGURE 5. Siren

FIGURE 6. Voltage-Controlled Amplifier or Tremolo Circuit

FIGURE 7. Noise Generator Using Zener Diode

National Semiconductor

LM390 1 Watt Battery Operated Audio Power Amplifier

General Description

The LM390 Power Audio Amplifier is optimized for $6 \mathrm{~V}, 7.5 \mathrm{~V}, 9 \mathrm{~V}$ operation into low impedance loads. The gain is internally set at 20 to keep the external part count low, but the addition of an external resistor and capacitor between pins 2 and 6 will increase the gain to any value up to 200 . The inputs are ground referenced while the output is automatically biased to one half the supply voltage.

Features

- Battery operation
- 1W output power
- Minimum external parts
- Excellent supply rejection
- Ground referenced input
- Self-centering output quiescent voltage
- Variable voltage gain
- Low distortion
- Fourteen pin dual-in-line package

Applications

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Lamp drivers
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters

Equivalent Schematic and Connection Diagrams

Order Number LM390N See NS Package N14A

Typical Applications

FIGURE 1. Load Returned to Ground (Amplifier with Gain $=\mathbf{2 0}$)

FIGURE 2. Load Returned to Supply (Amplifier with Gain = 20)

Absolute Maximum Ratings (Note 1)

Supply Voltage	10 V
Package Dissipation 14-Pin DIP	8.3 W
Input Voltage	$\pm 0.4 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}$, (Figure 1)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V_{S}	Operating Supply Voltage		4		9	$\stackrel{\rightharpoonup}{V}$
${ }^{1} \mathrm{I}_{0}$	Quiescent Current	$V_{S}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$		10	20	mA
Pout	Output Power	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \%$, (Note 2)	0.8	1.0		W
A_{V}	Voltage Gain	$V_{S}=6 \mathrm{~V}, f=1 \mathrm{kHz}$ $10 \mu \mathrm{~F}$ from Pin 2 to 6	23	$\begin{aligned} & 26 \\ & 46 \end{aligned}$	30	dB dB
BW	Bandwidth	$V_{S}=6 \mathrm{~V}$, Pins 2 and 6 Open		300		kHz
THD	Total Harmonic Distortion	$\begin{aligned} & V_{S}=6 \mathrm{~V}, R_{L}=4 \Omega, P_{\text {OUT }}=500 \mathrm{~mW} \\ & f=1 \mathrm{kHz}, \text { Pins } 2 \text { and } 6 \text { Open } \end{aligned}$,	0.2	1	\%
PSRR	Power Supply Rejection Ratio	$V_{S}=6 V, f=1 \mathrm{kHz}, C_{\text {BYPASS }}=10 \mu \mathrm{~F},$ Pins 2 and 6 Open, Referred to Output (Note 3)		50		dB
$\mathrm{R}_{\text {IN }}$	Input Resistance		10	50	-	$k \Omega$
$I_{\text {BIAS }}$	Input Bias Current	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$, Pins 7 and 8 Open		250		$n A$

Note 1: Pins $3,4,5,10,11,12$ at $25^{\circ} \mathrm{C}$. Derate at $15^{\circ} \mathrm{C} / \mathrm{W}$ above $25^{\circ} \mathrm{C}$ case.
Note 2: If oscillation exists under some load conditions, add 2.7Ω and $0.05 \mu \mathrm{~F}$ series network from pin 13 to ground.
Note 3: If load and bypass capacitor are returned to V_{S} (Figure 2), rather than ground (Figure 1), PSRR is typically 30 dB .

Typical Performance Characteristics

Quiescent Supply Current vs Supply Voltage

Voltage Gain vs Frequency

Power Supply Rejection Ratio
(Referred to the Output) vs Frequency

Application Hints

Gain Control

To make the LM390 a more versatile amplifier, two pins (2 and 6) are provided for gain control. With pins 2 and 6 open, the $1.35 \mathrm{k} \Omega$ resistor sets the gain at $20(26 \mathrm{~dB})$. If a capacitor is put from pin 2 to 6 , bypassing the $1.35 \mathrm{k} \Omega$ resistor, the gain will go up to $200(46 \mathrm{~dB})$. If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. A low frequency pole in the gain response is caused by the capacitor working against the external resistor in series with the 150Ω internal resistor. If the capacitor is eliminated and a resistor connects pin 2 to 6 then the output dc level may shift due to the additional dc gain. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 6 to ground, as in Figure 7.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 6 to 13 (paralleling the internal $15 \mathrm{k} \Omega$ resistor). For 6 dB effective bass boost: $\mathrm{R} \cong$ $15 \mathrm{k} \Omega$, the lowest value for good stable operation is $R=10 \mathrm{k} \Omega$ if pin 2 is open. If pins 2 and 6 are bypassed then R as low as $2 \mathrm{k} \Omega$ can be used. This restriction is because the amplifier is only compensated for closedloop gains greater than $9 \mathrm{~V} / \mathrm{V}$.

Input Biasing

The schematic shows that both inputs are biased to ground with a $50 \mathrm{k} \Omega$ resistor. The base current of the input transistors is about 250 nA , so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM390 is higher than $250 \mathrm{k} \Omega$ it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than $10 \mathrm{k} \Omega$, then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM390 with higher gains (bypassing the $1.35 \mathrm{k} \Omega$ resistor between pins 2 and 6) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a $0.1 \mu \mathrm{~F}$ capacitor or a short to ground depending on the dc source resistance on the driven input.

Bootstrapping

The base of the output transistor of the LM390 is brought out to pin 9 for Bootstrapping. The output stage of the amplifier during positive swing is shown in Figure 3 with its external circuitry.

Typical Applications (Continued)

figure 3.

Application Hints (Continued)

R1 + R2 set the amount of base current available to the output transistor. The maximum output current divided by Beta is the value required for the current in R1 and R2:

$$
(R 1+R 2)=\beta_{\mathrm{O}} \frac{\left(\mathrm{~V}_{\mathrm{S}} / 2\right)-\mathrm{V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{O} M A X}}
$$

Good design values are $V_{B E}=0.7 \mathrm{~V}$ and $\beta_{O}=100$.
Example $0.8_{\text {WATT }}$ into 4Ω load with $V_{S}=6 \mathrm{~V}$.

$$
\begin{aligned}
& I_{O M A X}=\sqrt{\frac{2 P_{O}}{R_{L}}}=632 \mathrm{~mA} \\
& (R 1+R 2)=100\left(\frac{(6 / 2)-0.7}{0.632}\right)=364 \Omega
\end{aligned}
$$

To keep the current in R2 constant during positive swing capacitor C_{B} is added. As the outpuit swings positive C_{B} lifts $R 1$ and R2 above the supply, maintaining a constant voltage across R2. To minimize the value of $C_{B}, R 1=R 2$. The pole due to C_{B} and $R 1$ and R2 is usually set equal to the pole due to the output coupling capacitor and the load. This gives:

$$
\mathrm{C}_{\mathrm{B}} \simeq \frac{4 \mathrm{C}_{\mathrm{c}}}{\beta_{\mathrm{O}}} \simeq \frac{\mathrm{C}_{\mathrm{c}}}{25}
$$

Example: for 100 Hz pole and $\mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{C}_{\mathrm{c}}=400 \mu \mathrm{~F}$ and $C_{B}=16 \mu \mathrm{~F}$, if R 1 is made a diode and R 2 increased to give the same current, C_{B} can be decreased by about a factor of 4, as in Figure 4.

For reduced component count the load can replace R1. The value of ($\mathrm{R} 1+\mathrm{R} 2$) is the same, so R 2 is increased. Now C_{B} is both the coupling and the boatstrapping capacitor (see Figure 2).

FIGURE 4.'Amplifier with Gain $=\mathbf{2 0 0}$ and Minimum C_{B}

FIGURE 5. 2.5W Bridge Amplifier

Typical Applications (Continued)

FIGURE 6(a). Amplifier with Bass Boost

FIGURE 6(b). Frequency Response with Bass Boost

FIGURE 7. Intercom

FIGURE 8. AM Radio Power Amplifier

Note 1: Twist supply lead and supply ground very tightly.
Note 2: Twist speaker lead and ground very tightly.
Note 3: Ferrite bead is Ferroxcube K5-001-001/3B with 3 turns of wire.

Note 4: R1C1 band limits input signals.
Note 5: All components must be spaced very close to IC.

Audio, Radio and TV Circuits

LM391 Audio Power Driver

General Description

The LM391 audio power driver is designed to drive external power transistors in 10 to 100 watt power amplifier designs. High power supply voltage operation and true high fidelity performance distinguish this IC. The LM391 is internally protected for output faults and thermal overloads; circuitry providing output transistor protection is user programmable.

Features

- High Supply Voltage $\quad \pm 30, \pm 40$, or $\pm 50 \mathrm{~V}$ max
- Low Distortion 0.01\%
- Low Input Noise $3 \mu \mathrm{~V}$
- High Supply Rejection 90 dB
- Gain and Bandwidth Selectable
- Dual Slope SOA Protection
- Shutdown Pin .

Equivalent Schematic and Connection Diagram

Top View
Order Number LM391N-60, LM391N-80
LM391N-100
See NS Package N16A

Absolute Maximum Ratings

Supply Voltage

LM391N -60	$\pm 30 \mathrm{~V}$ or +60 V
LM391N -80	$\pm 40 \mathrm{~V}$ or +80 V
LM391N -100	$\pm 50 \mathrm{~V}$ or +100 V
put Voltage	Supply Voltage less 5 V

Shutdown Current (Pin 14)	1 mA
Package Dissipation (Note 1)	1.39 W
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$+300^{\circ} \mathrm{C}$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}$ (The following are for $\mathrm{V}^{+}=90 \% \mathrm{~V}_{\mathrm{M}}^{+} A X$ and $\mathrm{V}^{-}=90 \% \mathrm{~V}_{\mathrm{M} A X}$.)

Parameter	Conditions	Min	Typ	Max	Units
Quiescent Current	current in pin 15				
LM391N - 60	$V_{\text {IN }}=0$			10	mA
LM391N - 80			4	8	mA
LM391N - 100			5	6	mA
Output Swing	positive	$\mathrm{V}^{+}-7$	$\mathrm{V}^{+}-5$		V
	negative	$\mathrm{V}^{-}+7$	$\mathrm{V}^{-}+5$		v
Drive Current	source (pin 8)	5			$m A$
	sink (pin 5)	5			mA
Noise ($20-20 \mathrm{kHz}$)	input referred		3		$\mu \mathrm{V}$
Supply Rejection	input referred	70	90		dB
Total Harmonic Distortion	$f=1 \mathrm{kHz}$		0.01		\%
	$f=20 \mathrm{kHz}$		0.10	0.25	\%
Intermodulation Distortion	$60 \mathrm{~Hz}, 7 \mathrm{kHz}, 4: 1$		0.01		\%
Open Loop Gain	$\mathrm{f}=1 \mathrm{kHz}$	1000	5500		V/V
Input Bias Current			0.1	1.0	$\mu \mathrm{A}$
Input Offset Voltage			5	20	mV
Positive Current Limit VBE	pin 10-9		650		$m V$
Negative Current Limit $V_{\text {BE }}$	pin 9-13		650		mV
Positive Current Limit Bias Current	pin 10		10	100	$\mu \mathrm{A}$
Negative Current Limit Bias Current	pin 13		10	100	$\mu \mathrm{A}$

Pin 14 Current Comments
Minimum pin 14 current required for shutdown is 0.5 mA , and must not exceed 1 mA .
Maximum pin 14 current for amplifier not shut down is 0.05 mA .
The typical shutdown switch point current is 0.2 mA .
Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Typical Applications

Figure 1. LM391 with External Components - Protection Circuitry Not Shown

Typical Performance Characteristics

Pin Descriptions

Pin No.	Pin Name	Comments
1	+ Input	Audio input
2	- Input	Feedback input
3	Compensation	Sets the dominant pole
4	Ripple Filter	Improves negative supply rejection
5	Sink Output	Drives output devices and is emitter of $A B$ bias $V_{B E}$ multiplier
6	BIAS	Base of $V_{B E}$ multiplier
7	BIAS	Collector of $V_{B E}$ multiplier
8	Source Output	Drives output devices
9	Output Sense	Biases the IC and is used in protection circuits
10	+ Current Limit	Base of positive side protection circuit transistor
11	+ SOA Diode	Diode used for dual slope SOA protection
12	- SOA Diode	Diode used for dual slope SOA protection
13	- Current Limit	Base of negative side protection circuit transistor
14	Shutdown	Shuts off amplifier when current is pulled out of pin
15	V^{+}	Positive supply
16	v^{-}	Negative supply

External Components (figure 1)

Component	Typical Value	Comments	
$\mathrm{CIN}^{\text {IN }}$	$1 \mu \mathrm{~F}$	Input coupling capacitor sets a low frequency pole with RIN. $f_{L}=\frac{1}{2 \pi R_{I N} C_{I N}}$	
RIN	100k	Sets input impedance and DC bias to input.	
$\mathrm{R}_{\mathrm{f} 2}$	100k	Feedback resistor; for minimum offset voltage at the output this should be equal to RIN.	
$\mathrm{R}_{\mathrm{f} 1}$	5.1k	Feedback resistor that works with $R_{f 2}$ to set the voltage gain. $A V=1+\frac{R_{f 2}}{R_{f 1}}$	
C_{f}	$10 \mu \mathrm{~F}$	Feedback capacitor. This reduces the gain to unity at $D C$ for minimum offset voltage at the output. Also sets a low frequency pole with $R_{f 1}$. $f_{L}=\frac{1}{2 \pi R_{f_{1}} C_{f}}$	
${ }^{C}$	5 pF	Compensation capacitor. Sets gain bandwidth product and a high frequency pole. $G B W=\frac{1}{2 \pi 5000 C_{C}}, f_{h}=\frac{G B W}{A V}$ Max f_{h} for stable design $\approx 500 \mathrm{kHz}$.	
R_{A}	3.9 k	$A B$ bias resistor.	
R_{B}	10k	$A B$ bias potentiometer. Adjust to set bias current in the output stage.	
$\mathrm{C}_{\text {AB }}$	$0.1 \mu \mathrm{~F}$	Bypass capacitor for bias. This improves high frequency distortion and transient response.	
C_{R}	5 pF	Ripple capacitor. This improves negative supply rejection at midband and high frequencies. C_{R}, if used, must equal C_{C}.	
R_{eb}	100Ω	Bleed resistor. This removes stored charge in output transistors.	
Ro	2.7Ω	Output compensation resistor. This resistor and C_{O} compensate the output stage. This value will vary slightly for different output devices.	
Co^{0}	$0.1 \mu \mathrm{~F}$	Output compensation capacitor. This works with R_{O} to form a zero that cancels f_{β} of the output power transistors.	
RE	0.3Ω	Emitter degeneration resistor. This resistor gives thermal stability to the output stage quiescent current. IRC PW5 type.	
$\mathrm{R}_{\text {TH }}$	39k	Shutdown resistor. Sets the amount of current pulled out of pin 14 during shutdown.	
$\mathrm{C}_{2}, \mathrm{C}_{2}^{\prime}$	1000 pF	Compensation capacitors for protection circuitry.	
X_{L}	$10 \Omega \\| 5 \mu \mathrm{H}$	Used to isolate capacitive loads, usually 20 turns of wire wrapped around a 10Ω, 2 W resistor.	

Application Hints

GENERALIZED AUDIO POWER AMP DESIGN

Givens: Power Output
Load Impedance
Input Sensitivity
Input Impedance
Bandwidth
The power output and load impedance determine the power supply requirements. Output signal swing and current are found from:

$$
\begin{align*}
& V_{\text {Opeak }}=\sqrt{2 \mathrm{R}_{\mathrm{L}} \mathrm{PO}_{\mathrm{O}}} \tag{1}\\
& \text { IOpeak }=\sqrt{\frac{2 \mathrm{P}_{\mathrm{O}}}{R_{\mathrm{L}}}} \tag{2}
\end{align*}
$$

Add 5 volts to the peak output swing (V_{OP}) for transistor voltage to get the supplies, i.e., $\pm(\mathrm{VOP}+5 \mathrm{~V})$ at a current of I peak. The regulation of the supply determines the unloaded voltage, usually about 15% higher. Supply voltage will also rise 10% during high line conditions.
max supplies $\approx \pm\left(\mathrm{V}_{\text {Opeak }}+5\right)(1+$ regulation $)(1.1)$.
The input sensitivity and output power specs determine the required gain.

$$
\begin{equation*}
A V \geqslant \frac{\sqrt{P_{O} R_{L}}}{V_{\text {IN }}}=\frac{V_{\text {ORMS }}}{V_{\text {INRMS }}} \tag{4}
\end{equation*}
$$

Normally the gain is set between 20 and 200; for a 25 watt, 8 ohm amplifier this results in a sensitivity of 710 mV and 71 mV , respectively. The higher the gain, the higher the THD, as can be seen from the characteristics curves. Higher gain also results in more hum and noise at the output.

The desired input impedance is set by RIN. Very high values can cause board layout problems and DC offsets at the output. The bandwidth requirements determine the size of C_{f} and C_{C} as indicated in the external component listing.

The output transistors and drivers must have a breakdown voltage greater than the voltage determined by equation (3). The current gain of the driver and output device must be high enough to supply IOpeak with 5 mA of drive from the LM391. The power transistors must be able to dissipate approximately 40% of the maximum output power; the drivers must dissipate this amount divided by the current gain of the outputs. See the output transistor selection guide, table A.

To prevent thermal runaway of the $A B$ bias current the following equation must be valid:

$$
\begin{equation*}
\theta_{\mathrm{JA}} \leqslant \frac{\mathrm{R}_{\mathrm{E}}\left(\beta_{\mathrm{MIN}}+1\right)}{\mathrm{V}_{\mathrm{CEQ}} \mathrm{MAX}}(\mathrm{~K}) \tag{5}
\end{equation*}
$$

where:
θ JA is the thermal resistance of the driver transistor, junction to ambient, in ${ }^{\circ} \mathrm{C} / \mathrm{W}$.
R_{E} is the emitter degeneration resistance in ohms
$\beta_{\text {min }}$ is that of the output transistor.
$V_{C E Q M A X}$ is the highest possible value of one supply from equation (3).
K is the temperature coefficient of the driver baseemitter voltage, typically $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Often the value of RE_{E} is to be determined and equation (5) is rearranged to be

$$
\begin{equation*}
R_{E} \geqslant \frac{\theta_{J A}\left(V_{C E Q M A X}\right) K}{\beta M I N+1} \tag{6}
\end{equation*}
$$

The maximum average power dissipation in each output transistor is:

$$
\begin{equation*}
\overline{P_{D}} \text { MAX }=0.4 \mathrm{P}_{\mathrm{OMAX}} \tag{7}
\end{equation*}
$$

The power dissipation in the driver transistor is:

$$
\begin{equation*}
\overline{P_{D R I V E R}(M A X)}=\frac{\overline{P_{D M A X}}}{\beta_{M I N}} . \tag{8}
\end{equation*}
$$

Heat sink requirements are found using the following. formulas:

$$
\begin{align*}
& \theta_{\mathrm{JA}} \leqslant \frac{T_{\mathrm{JMAX}}-T_{\mathrm{AMAX}}}{\mathrm{P}_{\mathrm{D}}} \tag{9}\\
& \theta_{\mathrm{SA}} \leqslant \theta_{\mathrm{JA}}-\theta_{\mathrm{JC}}-\theta_{\mathrm{CS}} \tag{10}
\end{align*}
$$

where:
$T_{\text {jMAX }}$ is maximum transistor junction temperature.
TAMAX is maximum ambient temperature.
$\theta \mathrm{JA}$ is thermal resistance junction to ambient.
$\theta_{\text {SA }}$ is thermal resistance sink to ambient.
θ_{JC} is thermal resistance junction to case.
$\theta \mathrm{CS}$ is thermal resistance case to sink, typically $1^{\circ} \mathrm{C} / \mathrm{W}$ for most mountings.

Application Hints (Continued)
 PROTECTION CIRCUITRY

The protection circuits of the LM391 are very flexible and should be tailored to the output transistor's safe operating area. The protection V-I characteristics, circuitry, and resistor formulas are described below. The diodes from the output to each supply prevent the output voltage from exceeding the supplies and harming the output transistors. The output will do this if the protection circuitry is activated while driving an inductive load.

TURN-ON DELAY

It is often desirable to delay the turn-ON of the power amplifier so turn-ON pops in the preamplifier do not go to the speakers.

This is easily implemented by putting a resistor in series with a capacitor from pin 14 to ground. The value of
the resistor is set to limit the current to less than 1 mA (the absolute maximum). This resistor with the capacitor gives a time constant of RC. The turn-ON delay is approximately 2 time constants.

Example:

Amplifier with maximum supply of 30 V , like the $20 \mathrm{~W}, 8 \Omega$ example in the data sheet, requiring a delay of 1 second.

Time delay $=2 R C$

$$
R=\frac{M a x V^{+}}{1 \mathrm{~mA}}
$$

So:
$\mathrm{R}=30 \mathrm{k}$. Solving for C gives $16.7 \mu \mathrm{~F}$. Use $\mathrm{C}=20 \mu \mathrm{~F}$ with a 30 V rating.

Protection Circuitry with External Components

Protection Characteristics

$$
\text { Protection Circuit Resistor Formulas }\left(\mathrm{V}_{\mathrm{B}}=\mathrm{V}^{+}\right)
$$

Type of Protection	$\mathrm{R}_{\mathrm{E}}, \mathrm{R}^{\prime} \mathrm{E}$	$\mathrm{R}_{1}, \mathrm{R}_{1}$	$\mathrm{R}_{2}, \mathrm{R}_{2}$	$\mathrm{R}_{3}, \mathrm{R}_{3}$
Current Limit	$R_{E}=\frac{\phi}{I_{L}}$	Not Required	Short	Not Required
Single Slope SOA Protection	$R_{E}=\frac{\phi}{I_{L}}$	$\mathrm{R}_{1}=\mathrm{R}_{2}\left(\frac{\mathrm{~V}_{\mathrm{M}}-\phi}{\phi}\right)$	$1 \mathrm{k} \Omega$	Not Required
Dual Slope SOA Protection $\left(V_{B}=V^{+}\right)$	$\mathrm{R}_{\mathrm{E}}=\frac{\phi}{\mathrm{I}_{\mathrm{L}}}$	$\mathrm{R}_{1}=\mathrm{R}_{2}\left(\frac{V_{M}-\phi}{\phi}\right)$	$1 \mathrm{k} \Omega$	$R_{3}=R_{2}\left[\frac{V^{+}}{L R_{E}-\phi}-1\right]$

Note: ϕ is the current limit $V_{B E}$ voltage, 650 mV . Assumptions: $\mathrm{V}^{+} \gg \phi, \mathrm{V}_{\mathrm{M}} \gg \phi . \mathrm{V}^{+}$is the load supply voltage. V_{M} is the maximum rated $V_{C E}$ of the output transistors.

Application Hints (Continued)

TRANSIENT INTERMODULATION DISTORTION

There has been a lot of interest in recent years about transient intermodulation distortion. Matti Otala of University, of Oulu, Oulu, Finland has published several. papers on the subject. The results of these investigations show that the open loop pole of the power amplifier should be above 20 kHz .

To do this with the LM391 is easy. Put a $1 \mathrm{M} \Omega$ resistor from pin 3 to the output and the open loop gain is reduced to about 46 dB . Now the open loop pole is at 30 kHz . The current in this resistor causes an offset in the input stage that can be cancelled with a resistor from pin 4 to ground. The resistor from pin 4 to ground should be $910 \mathrm{k} \Omega$ rather than $1 \mathrm{M} \Omega$ to insure that the shutdown circuitry will operate correctly. The slight difference in resistors results in about 15 mV of offset. The $40 \mathrm{~W}, 8 \Omega$ amplifier schematic shows the hookup of these two resistors.

BRIDGE AMPLIFIER

A switch can be added to convert a stereo amplifier to a single bridge amplifier. The diagram below shows where the switch and one resistor are added. When operating in the bridge mode the output load is connected between the two outputs, the input is $V_{\text {IN }} \# 1$, and VIN \#2 is disconnected.

OSCILLATIONS \& GROUNDING

Most power amplifiers work the first time they are turned on. They also tend to oscillate and have excess THD. Most oscillation problems are due to inadequate supply bypassing and/or ground loops. A $10 \mu \mathrm{~F}, 50 \mathrm{~V}$ electrolytic on each power supply will stop supplyrelated oscillations. However, if the signal ground is used for these bypass caps the THD is usually excessive. The signal ground must return to the power supply alone, as must the output load ground. All other grounds bypass, output R-C, protection, etc., can tie together and then return to supply. This ground is called high frequency ground. On the 40 W amplifier schematic all the grounds are labeled.

Capacitive loads can cause instabilities, so they are isolated from the amplifier with an inductor and resistor in the output lead.

AB BIAS CURRENT

To reduce distortion in the output stage, all the transistors are biased ON slightly. This results in class $A B$ operation and reduces the crossover (notch) distortion of the class B stage to a low level, (see the curve on page 10-70). The potentiometer, R_{B}, from pins 6-7 is adjusted to give about 25 mA of current in the output stage. This current is usually monitored at the supply or by measuring the voltage across RE_{E}.

Typical Applications (Continued)

Bridge Circuit Diagram

Output Transistors Selection Guide

Table A.

Output Power	Driver Transistor		Output Transistor	
	PNP	NPN	PNP	NPN
$20 \mathrm{~W} @ 8 \Omega$ $30 \mathrm{~W} @ 4 \Omega$	BD344	BD345	BD346	BD347
$40 \mathrm{~W} @ 8 \Omega$ $60 \mathrm{~W} @ 4 \Omega$	BD348	BD349	BD350	BD351

Application Hints (Continued)

A $20 \mathrm{~W}, 8 \Omega ; 30 \mathrm{~W}, 4 \Omega$ AMPLIFIER

Givens:

Power output	20 W into 8Ω
	30 W into 4Ω
Input Sensitivity	1 V max
Input Impedance	100 k
Bandwidth	$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 0.25 \mathrm{~dB}$

Equations (1) and (2) give:

$$
\begin{array}{lll}
20 \mathrm{~W} / 8 \Omega & \mathrm{~V}_{\mathrm{OP}}=17.9 \mathrm{~V} & \mathrm{I}_{\mathrm{OP}}=2.24 \mathrm{~A} \\
30 \mathrm{~W} / 4 \Omega & \mathrm{~V}_{\mathrm{OP}}=15.5 \mathrm{~V} & \mathrm{I}_{\mathrm{OP}}=3.87 \mathrm{~A}
\end{array}
$$

Therefore the supply required is:
$\pm 23 \mathrm{~V}$ @ 2.24 A , reducing to . . .
± 21 V @ 3.87 A
With 15% regulation and high line we get $\pm 29 \mathrm{~V}$ from equation (3).

Sensitivity and equation (4) set minimum gain:

$$
A V \geqslant \frac{\sqrt{20 \times 8}}{1}=12.65
$$

We will use a gain of 20 with resulting sensitivity of 632 mV .

Letting $R_{\text {IN }}$ equal 100k gives the required input impedance. For low DC offsets at the output we let $\mathrm{R}_{\mathrm{f} 2}=$ 100k. Solving for $R_{f 1}$ gives:

$$
\begin{aligned}
& R_{f 2}=100 \mathrm{k} \\
& R_{f 1}=\frac{100 \mathrm{k}}{20-1}=5.26 \mathrm{k} ; \text { use } 5.1 \mathrm{k}
\end{aligned}
$$

The bandwidth requirement must be stated as a pole, i.e., the 3 dB frequency. Five times away from a pole gives 0.17 dB down, which is better than the required 0.25 dB . Therefore:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{L}}=\frac{20}{5}=4 \mathrm{~Hz} \\
& \mathrm{f}_{\mathrm{h}}=20 \mathrm{k} \times 5=100 \mathrm{kHz}
\end{aligned}
$$

Solving for C_{f} :

$$
C_{f} \geqslant \frac{1}{2 \pi R_{f 1} f_{L}}=7.8 \mu \mathrm{~F} ; \text { use } 10 \mu \mathrm{~F}
$$

The recommended value for C_{C} is 5 pF for gains of 20 or larger. This gives a gain-bandwidth product of 6.4 MHz and a resulting bandwidth of 320 kHz , better than required.

The breakdown voltage requirement is set by the maximum supply; we need a minimum of 58 V and will use 60 V . We must now select a 60 V power transistor with reasonable beta at IOpeak, 3.87 A. The National BD346, BD347 complementary pair are $60 \mathrm{~V}, 60 \mathrm{~W}$ transistors with a minimum beta of 30 at 4 A . The driver transistor must supply the base drive given 5 mA drive from the LM391. The National BD344, BD345 complementary driver transistors are 60 V devices with a minimum beta of 40 at 200 mA . The driver transistors should be much faster (higher $\mathrm{f} \uparrow$) than the output transistors to insure that the R-C on the output will prevent instability.
To find the heat sink required for each output transistor we use equations (7), (9), and (10):

$$
\begin{equation*}
\overline{P_{D}}=0.4(30)=12 \mathrm{~W} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{\mathrm{JA}} \leqslant \frac{150^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}}{12}=7.9^{\circ} \mathrm{C} / \mathrm{W} \text { for } \mathrm{T}_{\mathrm{AMAX}}=55^{\circ} \mathrm{C} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\theta \mathrm{SA} \leqslant 7.9-2.1-1.0=4.8^{\circ} \mathrm{C} / \mathrm{W} \tag{10}
\end{equation*}
$$

If both transistors are mounted on one heat sink the thermal resistance should be halved to $2.4^{\circ} \mathrm{C} / \mathrm{W}$.

The maximum average power dissipation in each driver is found using equation (8):

$$
\overline{\operatorname{PDRIVER}(M A X)}=\frac{12}{30}=400 \mathrm{~mW}
$$

Using equation (9):

$$
\theta_{\mathrm{JA}} \leqslant \frac{155-55}{0.4}=237^{\circ} \mathrm{C} / \mathrm{N}
$$

Application Hints (Continued)

Since the free air thermal resistance of the National BD344, BD345 is $100^{\circ} \mathrm{C} / \mathrm{W}$, no heat sink is required. Using this information and equation (6) we can find the minimum value of R_{E} required to prevent thermal runaway.

$$
\begin{equation*}
R_{E} \geqslant \frac{100(30)(0.002)}{30+1}=0.19 \Omega \tag{6}
\end{equation*}
$$

We must now use the SOA data on the National BD346, BD347 transistors to set up the protection circuit. Below is the SOA curve with the 4Ω and 8Ω load lines.
Also shown are the desired protection lines. Note the value of V_{B} is equal to the supply voltage, so we use the formulas in the table.

D.C. SOA of BD346,BD347

Transistors

Figure Y .

The data points from the curve are:

$$
V_{M}=60 \mathrm{~V}, V_{B}=23 \mathrm{~V}, I_{L}=3 \mathrm{~A}, \mathrm{I}_{\mathrm{L}}=7 \mathrm{~A}
$$

Using the dual slope protection formulas:

$$
\begin{aligned}
& R_{E}=\frac{0.65}{3}=0.22 \Omega \\
& R_{2}=1 \mathrm{k} \\
& R_{1}=1 \mathrm{k}\left(\frac{60-0.65}{0.65}\right) \approx 91 \mathrm{k} \\
& R_{3}=1 \mathrm{k}\left(\frac{23}{7(0.22)-0.65}-1\right) \approx 24 \mathrm{k}
\end{aligned}
$$

Note that an R_{E} of 0.22Ω satisfies equation (6). The final schematic of this amplifier is below. If the output is shorted the current will be 1.8 A and V_{CE} is 23 V . Since the input is $A C$, the average power is:

$$
\text { short } \overline{P_{D}}=1 / 2(1.8)(23) \approx 21 \mathrm{~W}
$$

This power is greater than was used in the heat sink calculations, so the transistors will overheat for longduration. shorts unless a larger heat sink is used.

Typical Applications (Continued)

20 W-8 $\Omega, 30 \mathrm{~W}-4 \Omega$ Amplifier with 1 Second Turn-ON Delay

Application Hints (Continued)

A $40 \mathrm{~W} / 8 \Omega, 60 \mathrm{~W} / 4 \Omega$ AMPLIFIER
Given:

Power Output	$40 \mathrm{~W} / 8 \Omega$
	$60 \mathrm{~W} / 4 \Omega$
Input Sensitivity	1 V max
Input Impedance	100 k
Bandwidth	$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 0.25 \mathrm{~dB}$

Equations (1) and (2) give:

$$
\begin{array}{lll}
40 \mathrm{~W} / 8 \Omega & V_{\text {Opeak }}=25.3 \mathrm{~V} & I_{\text {Opeak }}=3.16 \mathrm{~A} \\
60 \mathrm{~W} / 4 \Omega & V_{\text {Opeak }}=21.9 \mathrm{~V} & I_{\text {Opeak }}=5.48 \mathrm{~A}
\end{array}
$$

Therefore the supply required is:

$$
\begin{aligned}
& \pm 30.3 \mathrm{~V} @ 3.16 \mathrm{~A}, \text { reducing to . . . } \\
& \pm 26.9 \mathrm{~V} @ 5.48 \mathrm{~A}
\end{aligned}
$$

With 15% regulation and high line we get $\pm 38.3 \mathrm{~V}$ using equation (3).

The minimum gain from equation (4) is:
$A V \geqslant 18$
We select a gain of 20 ; resulting sensitivity is 900 mV .
The input impedance and bandwidth are the same as the 20 watt amplifier so the components are the same.

$$
\begin{array}{lll}
R_{f 1}=5.1 \mathrm{k} & R_{I N}=100 \mathrm{k} & C_{C}=5 \mathrm{pF} \\
R_{\mathrm{f} 2}=100 \mathrm{k} & \mathrm{C}_{\mathrm{f}}=10 \mu \mathrm{~F} &
\end{array}
$$

The maximum supplies dictate using 80 V devices. The National BD350, BD351 pair are $80 \mathrm{~V}, 160 \mathrm{~W}$ transistors with a minimum beta of 40 at 2 A and 20 at 6 A . This corresponds to a minimum beta of 22.5 at 5.5 A (IOpeak). The National BD348, BD349 driver pair are 80 V transistors with a minimum beta of 50 at 250 mA . This output combination guarantees lOpeak with 5 mA from the LM391.

Output transistor heat sink requirements are found using equations (7), (9), and (10):

$$
\begin{align*}
& \overline{P_{D}}=0.4(60)=24 \mathrm{~W} \tag{7}\\
& \theta_{J A} \leqslant \frac{200-55}{24}=6.0^{\circ} \mathrm{C} / \mathrm{W} \text { for } T_{A M A X}=55^{\circ} \mathrm{C} \tag{9}\\
& \theta_{\mathrm{SA}} \leqslant 6.0-1.1-1.0=3.9^{\circ} \mathrm{C} / \mathrm{W} \tag{10}
\end{align*}
$$

For both output transistors on one heat sink the thermal resistance should be $1.9^{\circ} \mathrm{C} / \mathrm{W}$.

Now using equation (8) we find the power dissipation in the driver:

$$
\begin{align*}
& \overline{P_{\text {DRIVER }}}=\frac{24}{20}=1.2 \mathrm{~W} \tag{8}\\
& \theta_{\mathrm{JA}} \leqslant \frac{150-55}{1.2}=79^{\circ} \mathrm{C} / \mathrm{W} \tag{9}
\end{align*}
$$

Since a heat sink is required on the driver, we should investigate the output stage thermal stability at the same time to optimize the design. If we find a value of R_{E} that is good for the protection circuitry, we can then use equation (5) to find the heat sink required for the drivers.

The SOA characteristics of the National BD350, BD351 transistors are shown in the following curve along with a desired protection line.

The desired data points are:

$$
V_{M}=80 V \quad V_{B}=47 V \quad I_{L}=3 \mathrm{~A} \quad \mathrm{I}_{\mathrm{L}}=11 \mathrm{~A}
$$

Since the break voltage is not equal to the supply, we will use two resistors to replace R_{3} and move V_{B}.

Circuit Used

$$
V_{T H}=V-\left[\frac{R_{3}^{A}}{R_{3}^{A}+R_{3}^{B}}\right]
$$

Application Hints (Continued)

The formulas for R_{E}, R_{1}, and R_{2} do not change:

$$
\begin{aligned}
& R_{E}=\frac{0.65}{3 A}=0.22 \Omega \\
& R_{2}=1 \mathrm{k} \quad R_{1}=1 \mathrm{k} \frac{80-0.65}{0.65}=120 \mathrm{k}
\end{aligned}
$$

The formula for R_{3} now gives $\mathrm{R}_{T H}$ when the V^{+}in the formula becomes V_{B}.

$$
\begin{aligned}
R_{T H} & =R_{2}\left[\frac{V_{B}}{L_{L} R_{E}-\dot{\phi}}-1\right] \\
& =1 k\left[\frac{47}{11(0.22)-0.65}-1\right]=25.55 k
\end{aligned}
$$

V_{TH} is the additional voltage added to the supply voltage to get V_{B}.

$$
V_{T H}=-\left(V_{B}-V^{+}\right)=-(47-30)=-17 V
$$

Now we must find R_{3}^{A} and R_{3}^{B} using the Thevinen formulas. Putting $V_{T H}, \mathrm{~V}^{-}$, and R_{TH} into the appropriate formulas reduces to:

$$
R_{3}^{B}=0.76 R_{3}^{A} \quad \text { and } \quad 25.55 k=R_{3}^{A} \| R_{3}^{B}
$$

The easiest way to solve these equations is to iterate with standard values. If we guess $R_{3}^{A}=62 k$, then $R_{3}^{B}=$ 47.12 k ; use 47 k . The Thevin impedance comes out 26.7 k , which is close enough to 25.55 k .

Now we will use equation (5) to determine the heat sinking requirements of the drivers to insure thermal stability:

$$
\begin{equation*}
\theta \mathrm{JA} \leqslant \frac{0.22(20+1)}{40(0.002)} \approx 57^{\circ} \mathrm{C} / \mathrm{W} \tag{5}
\end{equation*}
$$

This value is lower than we got with equation (9), so we will use it in equation (10):

$$
\begin{equation*}
\theta \text { SA } \leqslant 57-6-1=50^{\circ} \mathrm{C} / \mathrm{W} \tag{10}
\end{equation*}
$$

This is the required heat sink for each driver. For low TIM we add the $1 \mathrm{M} \Omega$ resistor from pin 3 to the output and a 910 k resistor from pin 4 to ground. The complete schematic is on page 11.
If the output is shorted, the transistor voltage is about 28 V and the current is 5 A . Therefore the average power is:

$$
\text { short } \overline{P_{D}}=1 / 2(28) 5=70 \mathrm{~W}
$$

This is much larger than the power used to calculate the heat sinks and the output transistors will overheat if the output is shorted too long.

Typical Applications (Continued)

* HIGH FREQUENCY GROUND
** INPUT GROUND
*** SPEAKER GROUND
NOTE: ALL GROUNDS SHOULD'BE TIED TOGETHER ONLY AT POWER SUPPLY GROUND.
$50^{\circ} \mathrm{C} /$ W HEAT SINK ON BD348 AND BD349 $3.9^{\circ} \mathrm{C} / \mathrm{W}$ HEAT SINK ON BD350 AND BD351
$40 \mathrm{~W}-8 \Omega, 60 \mathrm{~W}-4 \Omega$ Amplifier

Audio, Radio and TV Circuits

LM1011, LM1011A Dolby B-Type
 Noise Reduction Processor

General Description

The LM1011, LM1011A are monolithic integrated circuits specifically designed to realize the Dolby B-type noise reduction system. It is a replacement for the Signetics NE545B, but with several improved features.

Features

- Reduced distortion at high frequencies and high signal levels
- Improved transient stability with signal bursts
- Wide operating voltage range
- Low supply current

Available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, from whom licensing and application information must be obtained.
'Dolby' and the double-D symbol are trademarks of Dolby Laboratories Inc.

Connection Diagram

Test Circuit (Encode)

Absolute Maximum Ratings

Supply Voltage
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

24 V
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(V_{C C}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \mathrm{NB} 0 \mathrm{~dB}$ refers to 580 mVrms Dolby level at pin 3

PARAMETER	CONDITIONS	LM1011A			LM1011			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage Range		9	.	20	9		20	V
Supply Current	,	12	17	22	12	17	22	mA
Voltage Gain (Pins 5-3)	1 kHz Pins 6 and 2 Connected	24.5	26	27.5	24	26	28	dB
Voltage Gain (Pins 3-7)	1 kHz (Noise Reduction Out)	-0.5	0	0.5	-1	0	1	dB
Distortion	$1 \mathrm{kHz}, 0 \mathrm{~dB}$		0.05	0.1		0.05	0.1	\%
	$10 \mathrm{kHz}, 10 \mathrm{~dB}$		0.1	0.3		0.1	0.3	\%
Signal Handling	$1 \mathrm{kHz} \mathrm{0.3} \mathrm{\%} \mathrm{Distortion}$	10	14		10	14		dB
Signal/Noise Ratio	6 and 2 Connected, $\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$							
Encode	CCIR Weighted	67	70		65	70		dB
Decode		77	80		75	80		dB
Encode Characteristics	Input to Pin 5							
	$1.3 \mathrm{kHz},-20 \mathrm{~dB}$	-16.7	-15.7	-14.7	-17.2	-15.7	-14.2	dB
	$2.5 \mathrm{kHz},-20 \mathrm{~dB}$	-16.9	-15.9	-14.9	-17.4	-15.9	-14.4	dB
	$3.0 \mathrm{kHz},-30 \mathrm{~dB}$	-22.2	-21.2	-20.2	-22.7	-21.2	-19.7	dB
	$5.0 \mathrm{kHz},-30 \mathrm{~dB}$	-22.8	-21.8	-20.8	-23.3	-21.8	-20.3	dB
	$10 \mathrm{kHz}, 0 \mathrm{~dB}$	-0.5	0.5	1.5	-1.0	0.5	2.0	dB
	$10 \mathrm{kHz},-40 \mathrm{~dB}$	-30.6	-29.6	-28.6	-31.1	-29.6	-28.1.	dB
	$14 \mathrm{kHz},-30 \mathrm{~dB}$	-24.9	-23.9	-22.9	-25.4	-23.9	-22.4	dB
Back-to-Back Frequency	With Standard Dolby	-1	0	1	-1.5	0	1.5	dB
Response	B-Type Processor							
Input Resistance	Pin 5	45	65	85	45	65	85	k Ω
	Pin 2	4.3	5.6	6.9	4.3	5.6	6.9	k Ω
Output Resistance	Pin 6	1.8	2.4	3.0	1.8	2.4	3.0	$\mathrm{k} \Omega$
	Pin 3		80	120		80	120	Ω
	Pin 7		80	120		80	120	Ω

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Deviation from Standard Encode Characteristics vs Temperature

Typical Application

IC Decode Processor Without Filter
Note. Where not otherwise specified, component tolerances are $\pm 10 \%$. Dolby level:

$$
\begin{aligned}
& =580 \mathrm{mV} \text { at test point } \\
& =580 \mathrm{mV} \text { at meter and mon out } \\
& =30 \mathrm{mV} \text { approx. input }
\end{aligned}
$$

National
Semiconductor

Audio, Radio and TV Circuits

LM1017 4-Bit Binary 7-Segment Decoder/Driver

General Description

The LM1017 is a monolithic IC which decodes 4 -bit "binary plus one" coded input signals and supplies $11 / 2$-digit TV channel display information. The outputs are designed to drive a 7 -segment common cathode LED display with up to 25 mA depending on thermal dissipation requirements. Improvements in circuit design enable the device to operate from 5 V to 12 V supply. A brightness control facility is included.

Features

- A direct replacement for SN29764 but with 12 V supply capability
- TTL compatible inputs with high input voltage immunity
- Channel displays are from 1 to 16
- Current-driven output stages for LEDs protect against excess thermal dissipation
- Continuously variable brightness control
- Low stand-by quiescent current supply consumption
- Suitable for NSN583 0.5 inch LED display
- Inputs are suitable for direct drive from MOS outputs

Connection Diagram

Absolute Maximum Ratings

Supply Voltage, Pin 16	13.5 V	Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltage, Pins 2-5	30 V	Junction Temperature	$150^{\circ} \mathrm{C}$
Input Voltage, Pin 1	13.5 V	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		

Electrical Characteristics $\mathrm{V} 16=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Current per Segment Quiescent Current, Pin 16	$\operatorname{Pin} 1=2 \mathrm{~V}$		12	20	mA
	Pin $1=5 \mathrm{~V}$		4		mA .
Input Logic Voltage	Pins 2-5				
H Signal		2			V
L Signal				0.8	V
Input Current, Pins 2-5	$\mathrm{V} 2-5=2.4 \mathrm{~V}$			1	$\mu \mathrm{A}$
	$\mathrm{V} 2-5=0 \mathrm{~V}$			-5	$\mu \mathrm{A}$
Input Current, Pin 1	$17-15=-15 \mathrm{~mA}$		-350		$\mu \mathrm{A}$
Output Current, Pins 7-15	$\mathrm{V} 1=0 \mathrm{~V}$	-16	-22		mA
	$V 1=2 \mathrm{~V}$		-12		mA
				-20	$\mu \mathrm{A}$
Minimum Saturation Between Output Terminals 7-15 and 16	IOUT $=-20 \mathrm{~mA}$		1.4		v
Package Thermal Resistance, θ JA				100	${ }^{\circ} \mathrm{C} / \mathrm{w}$

Note. To limit device temperature at supply voltages $>5 \mathrm{~V}$, the following condition must be maintained: 8 ($\left.V_{\text {SUPPLY }}-V_{\text {OUT }}\right)_{\text {OUT }}<\frac{150}{} \theta_{\text {JA }}-T_{A}$. Eg. For 12 V supply and $20 \mathrm{~mA} \mathrm{I}_{\text {OUT }}$ into 2 V LED, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}: 8\left(12-\mathrm{V}_{\mathrm{O}}\right) 0.02<\frac{125}{100}$
i.e., $\mathrm{V}_{\mathrm{O}}>4.2 \mathrm{~V}$: series output resistance $=\frac{2.2 \mathrm{~V}}{20 \mathrm{~mA}}=110 \Omega$.

See application notes for use of common series resistance between LED cathodes and ground.
Truth Table

CHANNEL	INPUT					OUTPUT								
	D	C	B	A	BR	a	b	c	d	e	f	g	h	i
1	L	L	L	L	L		ON	ON						
2	L	L	L	H	L	ON	ON		ON	ON		ON		
3	L	L	H	L	L	ON	ON	ON	ON			ON		
4	L	L	H	H	L		ON	ON			ON	ON		
5	L	H	L	L	L	ON		ON	ON		ON	ON		
6	L	H	L	H	L	ON		ON	ON	ON	ON	ON		
7	L	H	H	L	L	ON	ON	ON						
8	L	H	H	H	L	ON	ON	ON	ON	ON,	ON	ON		
9	H	L	L	L	L	ON	ON	ON	ON		ON	ON		
10	H	L	L	H	L	ON	ON	ON	ON	ON	ON		ON	ON
11	H	L	H	L	L		ON	ON					ON	ON
12	H	L	H	H	L	ON	ON		ON	ON		ON	ON	ON
13	H	H	L	L	L	ON	ON	ON	ON			ON	ON	ON
14	H	H	L	H	L		ON	ON			ON	ON	ON	ON
15	H	H	H	L	L	ON		ON	ON		ON	ON	ON	ON
16	H	H	H	H	L	ON		ON						
OFF	X	X	X	X	H									

Circuit Schematic (One Circuit Shown)

Output Characteristics

Typical Applications

When operating with a 12 V supply line, it is necessary to limit the power dissipation in the IC by means of external resistance in series with the LED segments. (Max package dissipation at $70^{\circ} \mathrm{C}=800 \mathrm{~mW}$.)

A minimum voltage of 2.5 V should be allowed across the output driver pins between supply and outputs. Allowing 1.4 V for the LED segments, a simple economical solution using only 1 resistor can be proposed as follows:

SEGMENTS

Maximum no of $O N$ segments $=8$

For $20 \mathrm{~mA} /$ segment, maximum voltage allowed across R_{L} will be:

$$
\begin{aligned}
& 12-2.5-1.4 \cong 8 \mathrm{~V} \\
& \therefore R_{\mathrm{L}} \max =8 / 8 \times 0.02 \bumpeq 47 \Omega
\end{aligned}
$$

For $15 \mathrm{~mA} /$ segment $(\max), \mathrm{R}_{\mathrm{L}} \max =56 \Omega$.

Alternative methods of limiting P_{D} at 12 V supply.

With a series resistance between each output and segment, the recommended resistance per segment at 20 mA maximum will be:

$$
(12-2.5-1.4) / 0.02 \cong 390 \Omega
$$

If a zener is used, maximum zener voltage $=8 \mathrm{~V}$. (The zener can be common between LED display cathode and ground.)

7 National Semiconductor

Audio, Radio and TV Circuits

LM1019N Digital Tuning Station Detector

General Description

The LM1019N is a monolithic integrated circuit for identifying a valid picture when digitally tuned television receivers are used in the "search" mode.

Features

- Noise gated sync separator
- Coincidence detector between sync and flyback
- Comparator to set AFC voltage at which output triggers

Connection Diagram

Dual-In-Line Package

TOP VIEW
Order Number LM1019N See NS Package N16A

Absolute Maximum Ratings

V1-16
V3-16
111
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
20V
14 V
10 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
C
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V} 1-16=18 \mathrm{~V}, \mathrm{~V} 3-16=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Typical Applications

The LM1019 provides a "stop" signal to the tuning system when a picture is received but because of the delay in the system when operating in the fast ramp mode, the tuner will normally have passed the optimum tuning point. The "stop" signal therefore ceases and the tuning system reverses direction at a reduced rate. When the AFC reaches its correct level a further "stop" signal is given which ends the search routine.

Figure 1 shows the block schematic of the LM1019 with the required external components for a typical application.

Video with positive-going sync pulses is fed through a low pass filter to prevent noise being mistaken as sync pulses. It is then fed to a sync separator which gives a positive signal output at pin 7 during the sync period.

A noise gate is also provided such that when the voltage on pin 9 exceeds 0.7 V the syric separator is inhibited. This can be utilized by coupling video through a high pass filter into pin 9 . However, the system works well even without this, and if not required, pin 9 can either be grounded or left open.

The processed sync pulses are AC coupled to the coincidence detector on pin 6 because in the event of there being no video input, pin 7 rises to the high state. Flyback pulses of greater than 1 V in amplitude are applied to pin 5 and when this is coincident with the video sync pulse, a current pulse is provided by pin 10.

After a predetermined number of coincident pulses (set by the delay capacitor on pin 10), the Schmitt trigger operates, grounding pin 11. This brings down the voltage applied to the final comparator input from 12 V to the required AFC trigger level set by R1 and R2. Typically this will be in the range of $6-10 \mathrm{~V}$.

The AFC control voltage is applied to pin 13. This is always less than 12 V so that until the sync pulses and the flyback are synchronized, the main output on pin 14 is always low. However, once synchronization is achieved and pin 12 is at a lower reference level, the AFC voltage will rise above this reference and then below it as the tuner passes through the AFC detector range.

Pin 14 thus rises to 18 V and then returns to a low level. As the tuner then reverses slowly, pin 14 again goes high when the AFC voltage equals the reference on pin 12. This terminates the search routine.

Positive feedback can be provided to give a clean transition and to prevent multiple pulses being sent to the tuning circuits.

This is merely one possible configuration of the circuit. The output amplifier can be used in the inverting mode if the AFC S curve is inverted. A compensation point is also provided for application involving negative feedback where the amplifier may need stabilizing.

FIGURE 1

LM1303 Stereo Preamplifier

General Description

The LM1303 consists of two identical operational amplifiers constructed on a single silicon chip. Intended for amplification of low-level stereo signals, the LM1303 features low input noise voltage, high open-loop voltage gain, large output voltage swing and short circuit protection.

Features

- Large Output Voltage Swing 4.0 V rms min
- High Open-Loop Voltage Gain $6,000 \mathrm{~min}$
- Channel Separation. 60 dB min at 10 kHz

Schematic and Connection Diagrams

Order Number LM1303N See NS Package N14A

Typical Application and Characteristic

Magnetic Phono Playback Preamplifier/R IAA Equalized

Yoltage gain
. 34 dB at 1 KHz Input overload point 100 mVrms at 1 KHz
Output voltage swing 5.0 Vrms at 1 KHz and Output noise level
5.0 Vrms at 1 KHz and 0.1% THD

Better than 70 dB below 10 mV
phono input (input shorted)

FIGURE 1

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
$\pm 15 \mathrm{~V}$
715 mW
0 to $75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics
(Note 2)

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction . temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: These specifications apply for $V_{S}= \pm 13 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Typical Application and Characteristic (Continued)

Typical Performance Characteristics

LM1310 Phase-Locked Loop FM Stereo Demodulator
 General Description
 The LM1310 is an integrated FM stereo demodulator using phase locked loop techniques to regenerate the 38 kHz subcarrier. A second version also available is the LM1800 (see separate data sheet) which adds superb power supply rejection and buffered (emitter follower) outputs to the basic phase locked decoder circuit. The features available in these integrated circuits make possible a system delivering high fidelity sound within the cost restraints of inexpensive stereo receivers.
 Features
 - Automatic stereo/monaural switching
 - No coils, all tuning performed with single potentiometer
 - Wide supply operating voltage range
 - Excellent channel separation

Connection Diagram

Typical Application

Typical Performance Characteristics

Absolute Maximum Ratings

| Supply Voltage | 18 V | Operating Supply Voltage Range | 10 V to 18 V |
| :--- | ---: | :--- | ---: | ---: |
| Power Dissipation (Note 2) | 715 mW | Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Operating Temperature Range | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Lead Temperature (Soldering, 10 seconds) | $300^{\circ} \mathrm{C}$ |

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Lamp "OFF'		18	20	mA
Lamp Driver Saturation	100 mA Lamp Current		1.3		V
Lamp Driver Leakage			1.0		$n \mathrm{~A}$
Pilot Level for Lamp "ON"	Pin 11 Adjusted to 19.00 kHz		15		mVrms
Pilot Level for Lamp "OFF"	Pin 11 Adjusted to 19.00 kHz	3.0	7.0		mVrms
Composite Input	Maximum for THD $<0.5 \%$	2.8			Vp-p
Monaural Input	Maximum for THD $<1.0 \%$	2.8			Vp-p
Stereo Channel Separation		30	40		dB
	2.0Vp-p Composite with 10\% Pilot		45		dB
Monaural Channel Unbalance	Pilot "OFF'	.	0.3	1.5	dB
Recovered Audio			485		mVrms
Total Harmonic Distortion			0.3		\%
Total Harmonic Distortion	2.0 Vp-p Composite with 10\% Pilot		0.15		\%
Capture Range	50 mVrms of Pilot		± 3.5		\% of $\mathrm{f}_{\text {o }}$
Ultrasonic Frequency Rejection	19 kHz		35		dB
	38 kHz		45		dB
Dynamic Input Resistance		20	50		$\mathrm{k} \Omega$
SCA Rejection	$\mathrm{f}=67 \mathrm{kHz}$; Measure 9 kHz Beat Note with 1 kHz Modulation "OFF"		75		dB

Note 1: Unless otherwise noted: $V_{C C}=+12 V_{D C}$ and $T_{A}=+25^{\circ} \mathrm{C}$. The input signal is a $2.8 \mathrm{Vp}-\mathrm{p}$ standard multiplex composite signal using 10% Pilot and with L or R-channel only modulated at 1.0 kHz .
Note 2: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a themal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 3: The VCO can be defeated (sometimes desirable when using an AM-FM receiver in the AM mode) by returning pin 14 to ground through a $2.2 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics (Continued)

 Audio, Radio and TV Circuits

LM1391 Phase-Locked Loop Block

General Description

The LM1391 integrated circuit has been designed primarily for use in the horizontal section of TV receivers, but may find use in other low frequency signal processing applications. It includes a stable VCO, linear pulse phase detector, and variable duty cycle output driver.

Features

- Internal active regulator for improved supply rejection
- Uncommitted collector of output transistor
- Output transistor with low saturation and high voltage swing
- APC of the oscillator with a synchronizing signal
- DC controlled output duty cycle
- $\pm 300 \mathrm{~Hz}$ typical pull-in
- Linear balanced phase detector
- Low thermal frequency drift
- Small static phase error
- Adjustable dc loop gain

Schematic and Connection Diagrams

Absolute Maximum Ratings

Supply Current	40 mADC
Output Voltage	40 VDC
Output Current	30 mADC
Sync Input Voltage (Pin 3)	$5.0 \mathrm{Vp-p}$
Flyback Input Voltage (Pin 4)	$5.0 \mathrm{Vp}-\mathrm{p}$

Power Dissipation (Package Limitation) Plastic Package (Note 1) Operating Temperature Range (Ambient) Storage Temperature Range

1250 mW
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see test circuit, all switches in position 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Regulated Voltage (Pin 6)	$I_{6}=22 \mathrm{mADC}$	8.0	8.6	9.2	VDC
Supply Current (Pin 6)			20		$m A D C$
Collector-Emitter Saturation Voltage of Output Transistor (Pin 1)	$\mathrm{IC}_{1}=20 \mathrm{~mA}$		0.30	0.40	$V_{D C}$
Pin 4 Voltage			2.0		$V_{\text {DC }}$
Oscillator Pull-in Range	Adjust R_{H}		± 300		Hz
Oscillator Hold-in Range	Adjust R_{H}		± 900		Hz
Static Phase Error	$\Delta \mathrm{f}=300 \mathrm{~Hz}$		0.5		$\mu \mathrm{s}$
Free-running Frequency Supply Dependance	S1 in position 2		± 3.0		$\mathrm{Hz} / \mathrm{V}_{\text {DC }}$
Phase Detector Leakage (Pin 5)	All switches in_position 2			± 1.0	$\mu \mathrm{A}$
Sync Input Voltage (Pin 3)		2.0		5.0	$V \mathrm{p}$-p
Sawtooth Input Voltage (Pin 4)		1.0		3.0	Vp-p
Maximum Oscillator Frequency			500		kHz

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Typical Performance Characteristics

Frequency vs Temperature

Output Duty Cycle vs $\mathbf{V}_{\mathbf{M}}$ Voltage

Application Information

The following equations may be considered when using the LM1391 in a particular application.
$R 201=R 301=\frac{V_{C C}-8.6}{0.02} \Omega$
$f_{0} \cong \frac{1}{0.6 R_{0} C_{o}} \quad H z \quad 1.5 \mathrm{k} \leq R_{0}<51 \mathrm{k}$
$R 204 \cong 10 R_{0}$
$\mathrm{C} 203=\mathrm{C} 204 \cong \frac{1}{600 \mathrm{f}_{\mathrm{o}}(\mathrm{Hz})}$

DC Loop Gain $\mu \beta \cong 3.2 \times 10^{-5} R_{0} f_{0} \quad \mathrm{~Hz} / \mathrm{rad}$
Noise Bandwidth

$$
f_{n n} \cong \frac{1+2 \pi \frac{R X^{2}}{R Y} C_{c} \mu \beta}{4 R X C_{c}} \mathrm{~Hz}
$$

Damping Factor

$$
K \cong \frac{\pi}{2} \frac{R_{X}{ }^{2}}{R Y} C_{c} \mu \beta
$$

Test Circuit

Typical Applications

FIGURE 1. TV Horizontal Processor

FIGURE 2. General Purpose Phase-Lock Loop (See Applications Information)

FIGURE 3. Variable Duty Cycle Oscillator
(See Applications Information)

\square National Semiconductor

General Description

The LM1596/LM1496 are double balanced modu-lator-demodulators which produce an output voltage proportional to the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping.

The LM1596 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM1496 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Excellent carrier suppression

65 dB typical at 0.5 MHz 50 dB typical at 10 MHz

- Adjustable gain and signal handling
- Fully balanced inputs and outputs
- Low offset and drift
- Wide frequency response up to 100 MHz

Schematic and Connection Diagrams

Metal Can Package

Note: Pin 10 is connected electrically to the case through the device substrate.
Order Number LM1496H or LM1596H See NS Package HO8C

Order Number LM1496N See NS Package N14A

Typical Application and Test Circuit

Absolute Maximum Ratings

Internal Power Dissipation (Note 1)	500 mW
Applied Voltage (Note 2)	30 V
Differential Input Signal $\left(V_{7}-V_{8}\right)$	$\pm 5.0 \mathrm{~V}$
Differential Input Signal $\left(V_{4}-V_{1}\right)$	$\pm\left(5+I_{5} R_{4}\right) \mathrm{V}$
Input Signal $\left(V_{2}-V_{1}, V_{3}-V_{4}\right)$	5.0 V
Bias Current (I_{5})	12 mA
Operating Temperature Range LM1596	LM 1496
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

Electrical Characteristics.$\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified, see test circuit)

PARAMETER	CONDITIONS	LM1596			LM1496			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Carrier Feedthrough	$\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV} \mathrm{ms}$ sine wave ${ }^{\mathrm{f}} \mathrm{C}=1.0 \mathrm{kHz}$, offset adjusted $\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV} \mathrm{ms}$ sine wave $\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}$, offset adjusted $V_{C}=300 \mathrm{mV} \mathrm{V}_{\mathrm{p}}$ square wave ${ }^{f_{C}}=1.0 \mathrm{kHz}$, offset adjusted $V_{C}=300 \mathrm{mV} \mathrm{V}_{\mathrm{p}}$ square wave ${ }^{f_{C}}=1.0 \mathrm{kHz}$, offset not adjusted $\mathrm{f}_{\mathrm{S}}=10 \mathrm{kHz}, 300 \mathrm{mV} \mathrm{ms}$ $\mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}, 60 \mathrm{mV}$ rms sine wave offset adjusted $\begin{aligned} & \mathrm{f}_{\mathrm{S}}=10 \mathrm{kHz}, 300 \mathrm{mV} \mathrm{mms} \\ & \mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}, 60 \mathrm{mVrms} \text { sine wave } \\ & \text { offset adjusted } \end{aligned}$	50		0.2100	50	40		$\mu \mathrm{Vrms}$
						140		$\mu \mathrm{Vrms}$
			0.04			0.04	0.2	$m \mathrm{Vrms}$
			20			20	150	mVrms
Carrier Suppression			65			65		dB
			50			50		$d B$
Transadmittance Bandwidth	$R_{L}=50 \Omega$ Carrier Input Port, $\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV}$ rms sine wave $f_{S}=1.0 \mathrm{kHz}, 300 \mathrm{mV}$ rms sine wave		300			300		MHz
	Signal Input Port, $\mathrm{V}_{\mathrm{S}}=300 \mathrm{mV}$ rms sine wave $\mathrm{V}_{7}-\mathrm{V}_{8}=0.5 \mathrm{Vdc}$		80			80		MHz
Voltage Gain, Signal Channel	$\begin{aligned} & V_{S}=100 \mathrm{mVrms}, f=1.0 \mathrm{kHz} \\ & V_{7}-V_{8}=0.5 \mathrm{Vdc} \end{aligned}$	2.5	3.5		2.5	3.5		V/V
Input Resistance, Signal Port	$\begin{aligned} & f=5.0 \mathrm{MHz} \\ & V_{7}-V_{8}=0.5 \mathrm{Vdc} \end{aligned}$		200			200		$k \Omega$
Input Capacitance, Signal Port	$\begin{aligned} & f=5.0 \mathrm{MHz} \\ & V_{7}-V_{8}=0.5 \mathrm{Vdc} \end{aligned}$		2.0			2.0		pF
Single Ended Output Resistance	$\mathrm{f}=10 \mathrm{MHz}$		40			40		$k \Omega$
Single Ended Output Capacitance	$f=10 \mathrm{MHz}$		5.0			5.0		pF
Input Bias Current	$\left(I_{1}+I_{4}\right) / 2$		12	25		12	30	$\mu \mathrm{A}$
Input Bias Current	$\left(I_{7}+\left(I_{8}\right) / 2\right.$		12	25		12	30	$\mu \mathrm{A}$
Input Offset Current	$\left(I_{1}-I_{4}\right)$		0.7	5.0		0.7	5.0	$\mu \mathrm{A}$
Input Offset Current	$(17-18)$		0.7	5.0		5.0	5.0	$\mu \mathrm{A}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & \left(-55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C}\right) \\ & 10^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \end{aligned}$		2.0			2.0		$\begin{aligned} & n A 1^{\circ} \mathrm{C} \\ & \mathrm{nA} 1^{\circ} \mathrm{C} \end{aligned}$
Output Offset Current	$\left(1 l_{6}-l_{9}\right)$		14	50		14	60	$\mu \mathrm{A}$
Average Temperature Coefficient of Output Offset Current	$\begin{aligned} & \left(-55^{\circ} \mathrm{C}<\mathrm{T}_{A}<+125^{\circ} \mathrm{C}\right) \\ & \left(0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C}\right) \end{aligned}$		90			90		$\begin{aligned} & n A 0^{\circ} \mathrm{C} \\ & n \mathrm{~A} /^{\circ} \mathrm{C} \end{aligned}$
Signal Port Common Mode Input Voltage Range	$\mathrm{f}_{\mathrm{S}}=1.0 \mathrm{kHz}$		5.0			5.0		V_{p-p}
Signal Port Common Mode Rejection Ratio	$V_{7}-V_{8}=0.5 \mathrm{Vdc}$		-85			-85		dB
Common Mode Quiescent Output Voltage			8.0			8.0	,	Vdc
Differential Output Swing Capability			8.0			8.0		V_{p-p}
Positive Supply Current	$\left(I_{6}+I_{9}\right)$		2.0	3.0		2.0	3.0	$m A$
Negative Supply Current	$\left(i_{10}\right)$		3.0	4.0		3.0	4.0	mA
Power Dissipation			33			33		mW

Note 1: LM1596 rating applies to case temperatures to $+125^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperature above $75^{\circ} \mathrm{C}$. LM1496 rating applies to case temperatures to $+70^{\circ} \mathrm{C}$.
Note 2: Voltage applied between pins 6-7, 8-1, 9-7, 9-8, 7-4, 7-1, 8-4, 6-8, 2-5, 3-5.

Typical Performance Characteristics

Carrier Suppression vs
Carrier Input Level

CARRIER INPUT LEVEL (mVims)

Sideband Output vs
Carrier Levels

Sideband and Signal Port Transadmittances vs Frequency

Carrier Suppression vs
Frequency
(

Carrier Feedthrough vs Frequency

Signal-Port Frequency Response

Typical Applications (Continued)

SSB Product Detector
This figure shows the LM1596 used as a single sideband (SSB) suppressed carrier demodulator (product detector). The carrier signal is applied to the carrier input port with sufficient amplitude for switching operation. A carrier input level of 300 mVrms is optimum. The composite SSB signal is applied to the signal input port with an amplitude of 5.0 to 500 mVrms . All output signal components except the desired demodulated audio are filtered out, so that an offset adjustment is not required. This circuit may also be used as an AM detector by applying composite and carrier signals in the same manner as described for product detector operation.

Typical Applications (Continued)

Broadband Frequency Doubler

The frequency doubler circuit shown will double low-level signals with low distortion. The value of C should be chosen for low reactance at the operating frequency.
Signal level at the carrier input must be less than 25 mV peak to maintain operation in the linear region of the switching differential amplifier. Levels to 50 mV . peak may be used with some distortion of the output waveform. If a larger input signal is available a resistive divider may be used at the carrier input, with full signal applied to the signal input.

LM1800 Phase-Locked Loop FM Stereo Demodulator

General Description

The LM1800 is a second generation integrated FM stereo demodulator using phase locked loop techniques to regenerate the 38 kHz subcarrier. The numerous features integrated on the die make possible a system delivering high fidelity sound while still meeting the cost requirements of inexpensive stereo receivers. More information available in AN-81.

Features

- Automatic stereo/monaural switching
- 45 dB power supply rejection
- No coils, all tuning performed with single potentiometer
- Wide operating supply voltage range
- Excellent channel separation
- Emitter follower output buffers

Connection Diagram

TOP VIEW
Order Number LM1800N See NS Package N16A

Typical Application

Typical Performance Characteristics

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 3)
Operating Temperature Range
Operating Supply Voltage Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

18 V 715 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
+10 V to +18 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	\because CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Lamip "off"'		21	30	mA
Lamp Driver Saturation	100 mA Lamp Current		1.3	1.8	v
Lamp Driver Leakage			1.0	,	$n A$
Pilot Level for Lamp "ON"	Pin 11 Adjusted to 19.00 kHz		15	20	mVrms
Pilot Level for Lamp "OFF"	Pin 11 Adjusted to 19.00 kHz .	3.0	7.0		mVrms
Stereo Lamp Hysteresis		3.0	6.0		dB
Stereo Channel Separation	100 Hz (Note 2)		40		dB
	1000 Hz (Note 2)	30	45		dB
	10000 Hz (Note 2)		45		dB
Monaural Channel Unbalance	200 mV rms, 1000 Hz Input		0.3	1.5.	dB
Monaural Voltage ${ }^{\text {Gain }}$	$200 \mathrm{mVrms}, 400 \mathrm{~Hz}$ Input	140	200	260	mVrms
Total Harmonic Distortion	500 mV rms, 1000 Hz Input		0.4	1.0	\%
Total Harmonic Distortion	$500 \mathrm{mVrms}, 1000 \mathrm{~Hz}$ Input, 1800A Only		- 0.1	0.3	\%
Capture Range	25 mVrms of Pilot	± 2.0		± 6.0	$\%$ of f_{0}
Supply Ripple Rejection	200 mVrms of 200 Hz Ripple	35	45		dB
Dynamic Input Resistance		20	45		$k \Omega$
Dynamic Output Resistance		900	1300	2000	Ω
SCA Rejection	(Note 4)		70		dB
Ultrasonic Freq. Rejection	Combined 19 and 38 kHz , Ref. to Output		33		dB

Note 1: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}^{+}=12 \mathrm{~V}$ unless otherwise specified.
Note 2: The stereo input signal is made by summing 123 mVrms LEFT or RIGHT modulated signal with 25 mVrms of 19 kHz pilot tone, measuring all voltages with an average responding meter calibrated in rms. The resulting waveform is about 800 mVp -p. Note 3: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 4: Measured with a stereo composite signal consistency of 80% stereo, 10% pilot and 10% SCA as defined in the FCC Rules on Broadcasting.
Note 5: VCO "OFF' curve represents the distortion attainable using good 19 kHz and 38 kHz filters.

Typical Performance Characteristics

(Continued)

LM1818 Electronically Switched Audio Tape System

General Description

The LM1818 is a linear integrated circuit containing all of the active electronics necessary for building a tape recorder deck (excluding the bias oscillator). The electronic functions on the chip include: a microphone and playback preamplifier, record and playback amplifiers, a meter driving circuit, and an automatic input level control circuit. The IC features complete internal electronic switching between the record and playback modes of operation. The multipole switch used in previous systems to switch between record and playback modes is replaced by a single pole switch, thereby allowing for more flexibility and reliability in the recorder design.*
*Monaural operation, Figure 9.

Features

- Electronic record/play switching
- 85 dB power supply rejection
- Motional peak level meter circuitry.
- Low noise preamplifier circuitry
- 3.5 V to 18 V supply operation
- Provision for external low noise input transistor

Order Number LM1818N
See NS Package N20A

Typical Applications

FIGURE 1. Stereo Application Circuit (Left Channel Shown), $\mathbf{V}_{\mathbf{S}}=15 \mathrm{~V}$

Absolute Maximum Ratings

Supply Voltage
18 V
Package Dissipation, (Note 1)
715 mW
Storage Temperature
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature
Junction Temperature
Minimum Voltage on Any Pin $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$
-0.1 VDC
Maximum Voltage on Pins 2 and 5
0.1 VDC

5 mADC
Maximum Current Out of Pin 14
Lead Temperature (Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, See Test Circuits (Figures 2 and 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage Range		3.5		18	$V_{D C}$
Supply Current	Test Circuit (Figure 2)		5	12	mA
Turn-ON Time ;	Externally Programmable	50	400		ms
Playback Signal to. Noise	DIN Eq. (3180 and $120 \mu \mathrm{~s}$), $20-20 \mathrm{kHz}$, $R_{S}=0$, Unweighted, $V_{R E F}=1 \mathrm{mV}$ at 400 Hz		74		dB
Record Signal to Noise	Flat Gain, $20-20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0$, ALC OFF, $V_{\text {REF }}=.1 \mathrm{mV}$ at 1 kHz , Unweighted		69		dB
Fast Turn-ON Charging Current	Pins 16 and 17 . $\%$		200		$\mu \mathrm{A}$
Record and Playback Preamplifier Open Loop Voltage Gain	$\mathrm{f}=100 \mathrm{~Hz}$		100		dB
Preamplifiers' Input Impedance	. .-		50		$k \Omega$
Preamplifiers' Input Referred PSRR	1 kHz -Flat Gain :		85		dB
Bias Voltage on Pin 18 in Play Mode or Pin 15 in Record Mode	\vdots		0.5		V
Monitor Amplifier Input Bias	Pins 11 and 12		0.5		$\mu \mathrm{A}$
Current	! .				
Monitor Amplifier Open Loop Voltage Gain	Record or Playback, $f=100 \mathrm{~Hz}$		80		dB
Monitor Outputs Current Capability	Pins 9 and 10, Source Current Available	400	750		$\mu \mathrm{A}$
Monitor Amplifier's Output Swing	$R_{L}=10 \mathrm{k}, \mathrm{AC}$ Load	1.2	- 1.65		Vrms
THD, All Amplifiers	At $1 \mathrm{kHz}, 40 \mathrm{~dB}$ Closed Loop Gain		0.05		\%
Record-Playback Switching Time	As in Test Circuit.		50		ms
Input ALC Range	$\Delta V_{\text {IN }}$ for $\Delta V_{\text {OUT }}=8 \mathrm{~dB}$		40		dB
Input Voltage on ALC Pin for Start of ALC Action			25		mVrms
ALC Input Impedance	. . .		2		$k \Omega$
ALC Attack Time	$\mathrm{C} 13=10 \mu \mathrm{~F}$		7		ms
ALC Decay Time	$\mathrm{R} 17=. \infty$ C $13=.10 \mu \mathrm{~F}$		30		sec
Meter Output Gain	100 mV rims at 1 kHz into Pin 4		800		$m V_{D C}$
Meter Output Current Capability		2			mADC

[^38]

FIGURE 2. General Test Circuit

FIGURE 3. Noise Test Circuit

Equivalent Schematic Diagram

FIGURE 4

Typical Performance Characteristics

Automatic Level Control

(ALC) Response Characteristic

Preamp Input Noise Current

Application Hints

Preamplifiers (Figure 5)

There are 2 identical preamplifiers with 1 common output pin on the IC. One amplifies low level inputs such as a microphone in the record mode and another amplifies the signal from the playback head in the playback mode. The amplifiers use a common capacitor, C6, to set the low frequency pole of the closed loop responses. On the playback amplifier, the collector of the input device is made available so that an external low noise device can be connected in critical applications. When using an external low noise transistor, pins 17 and 18 of the IC are shorted together to ensure that the internal input transistor is turned OFF and the external transistor's collector is tied to pin 19. The input and feedback connections are now made to the external input transistor. The amplifiers are stable for all gains above 5 and have a typical open loop gain of 100 dB . R8 and R9 enable C6 to be quickly charged and set the DC gain. Internal biasing provides a DC voltage independent of temperature at pin 17 so that the preamplifier DC output will remain relatively constant with temperature. Supply decoupling is provided by an internal regulator. Additional decoupling can be added for the input stages by increasing the size of the capacitor on pin 20 of the IC. A fast charging circuit is connected to the preamplifiers' input capacitors (pins 16 and 17) to decrease the turn-ON time. Larger input capacitors decrease the noise by reducing the source impedance at lower frequencies where $1 / \mathrm{f}$ noise current produces an input noise voltage. The input resistance of the preamplifiers is typically $50 \mathrm{k} \Omega$.

Monitor and Record Amplifiers (Figure 6)

The monitor and record amplifiers share common input and feedback connections but have separate outputs. During playback, the input signal is amplified and appears only at the playback monitor output. Because
the outputs are separate, different feedback components can be used and, as a result, totally different responses can be set. The amplifiers are stable for all closed loop gains above 3 and have an open loop gain of typically 80 dB . The outputs are capable of supplying a minimum of $400 \mu \mathrm{~A}$ into a load and swing within 500 mV of either VCC or ground. If more than $400 \mu \mathrm{~A}$ is needed to drive a load, an external pull-up resistor on the output of these amplifiers can increase the load driving capability.

Automatic Level Control - ALC (Figure 7)

The automatic level control provides a constant output level for a wide range of record source input levels. The ALC works on the varying impedance characteristic of a saturated transistor. The impedance of the saturated transistor forms a voltage divider with the source impedance of a series resistor (R1 in Figure 9). The input signal is decreased as the ALC transistor is increasingly forward biased. The ALC transistor will be forward biased when the preamplifier's AC output (pin 14), coupled to the combination ALC-meter drive input (pin 4) reaches 40 mV peak (25 mVrms). The gain of the ALC loop is such that a preamp input signal increase of 10 dB will result in a 2 dB increase on the AC output of the preamplifier. If greater than 25 mVrms is desired at the output of the preamp, a series resistor can be added between the preamp output coupling capacitor and the ALC input (pin 4). The input impedance of the ALC circuit is $2 \mathrm{k} \Omega$; therefore, if a $2 \mathrm{k} \Omega$ series resistor is added, ALC action will begin at 50 mVrms .

The ALC memory capacitor connected to pin 6 has the additional function of amplifier anti-pop control; for this reason, it is necessary that a capacitor be connected to pin 6 even if ALC is not used.

Quiescent DC Output Voltage

AC Voltage Gain

FIGURE 5. Preamplifier

Application Hints (Continued)

Meter Driving-Motional Peak Level Response (Figure 7)

The meter drive output (pin 8) is capable of supplying $1-2 \mathrm{~mA}$ at a filtered DC voltage that is typically equal to 10 times the RMS value of the signal applied to the ALC-meter drive input pin (pin 4). The RC network connected to pin 7 of the IC determines the memory constant of the meter circuit. It is therefore possible to store the peak input signal by giving this RC network a long time constant, or read the instantaneous signal level by giving this RC network a very short time constant (i.e., no capacitor). This memory capacitor is discharged within the integrated circuit at a discharge rate related to the DC level on the meter output pin. When the meter output pin is between 0 VDC and 0.7 VDC there is a $50 \mu \mathrm{~A}$ discharge current; when the
pin is between 0.7 V and 1.1 V there is no internal discharge current; and when the voltage on pin 8 is greater than 1.1 V there is a discharge equivalent to a 3.3 k resistor across the memory capacitor. These different discharge rates allow the meter circuit to display fast, accurate responses on the lower portion of the meter display, slow responses in the higher portion of the meter display, and rapid discharge when the voltage is above the maximum reading the meter can display. The resistor in series with the meter can be adjusted such that the previously mentioned responses coincide with the proper points (0 VU and +3 VU) on the meter scale.

FIGURE 6. Monitor Amplifier

FIGURE 7. Auto Level-Meter Circuit

Application Hints (continued)

Anti-Pop Circuitry (Figure 8)

The capacitor on pin 3 is used in a time delay system in conjunction with C13, the ALC capacitor, to suppress pops when switching between record and playback. Figure 8 illustrates how this is done. The output amplifier, either record or playback, is shut off prior to switching and carefully rebiased after switching takes place. It is therefore required that a proper ratio is selected between the ALC capacitor and the logic input RC time constant. The ALC capacitor must be discharged to 0.7 V within the time it takes the logic input capacitor to: 1) charge from $\mathrm{V}_{\mathrm{CC}} / 2$ to $0.7 \mathrm{~V}_{\mathrm{CC}}$ when switching from record to playback, or 2) discharge from $\mathrm{V}_{\mathrm{CC}} / 2$ to $0.3 \mathrm{~V}_{\mathrm{CC}}$ when switching from playback to record. These times would normally be similar; however, the ALC capacitor can be charged to a different initial value depending upon the input to the ALC circuit. The maximum value to which the ALC memory capacitor will normally charge is 3.2 V , therefore, the maximum time allowed for discharging C 13 is given by:

$$
\begin{aligned}
\mathrm{t} 1 & =\frac{(\mathrm{C} 13 \times \Delta \mathrm{V})}{11}=\mathrm{C} 13 \frac{(3.2 \mathrm{~V}-0.7 \mathrm{~V})}{350 \mu \mathrm{~A}} \\
& =\mathrm{C} 13 \times 7.2 \times 10^{4} \\
\text { If } \mathrm{C} 13 & =10 \mu \mathrm{~F}, \mathrm{t} 1=72 \mathrm{~ms}
\end{aligned}
$$

It it now necessary to determine the minimum value for the R/P logic capacitor. This is done by computing the time between the 2 voltage switching points using the exponential equations for a single RC network.

$$
\begin{aligned}
& \mathrm{t} 2=R 13 \mathrm{C} 11 \ln \left[\frac{V_{C C}}{0.3 V_{C C}}\right]- \\
& \mathrm{R} 13 \mathrm{C} 11 \ln \left[\frac{V_{C C}}{0.5 V_{C C}}\right]=0.51 \mathrm{R} 13 \mathrm{C} 11
\end{aligned}
$$

To be sure that C 13 is completely discharged, let $\mathrm{t} 2>\mathrm{t} 1$.
$\mathrm{R} 13 \mathrm{C} 11>\frac{\mathrm{t} 1}{0.51}=\frac{(72 \mathrm{~ms})}{0.15}=141 \mathrm{~ms}$
If $\mathrm{C} 11=10 \mu \mathrm{~F}, \mathrm{R} 13=15 \mathrm{k} \Omega$

R13 should be kept to a value less than $50 \mathrm{k} \Omega$ to insure that bias current existing from pin 3 does not cause an offset voltage above 200 mV . Typically this bias current is less than $3 \mu \mathrm{~A}$.

Record Playback Switch

When the voltage on pin 3 of the IC is greater than $0: 5 \mathrm{~V}_{\mathrm{CC}}$, the internal record-playback switch switches into the playback mode. During playback the record preamplifier remains partially biased but the input signal to this preamp does not appear at the preamplifier output. In addition, during the playback mode, the record monitor output (pin 9) is disabled and the ALC circuit operates to minimize the signal into the record preamp input. The meter circuit is operational in the playback as well as the record mode. Similarly, during the record mode, the playback preamp input is ignored and the playback monitor output is disabled. In addition, a pin is available to hold one side of the record head at ground potential while sinking up to $500 \mu \mathrm{~A}$ of $A C$ bias and record current.

FIGURE 8A. Anti-Pop Circuit

FIGURE 8B. Waveform for Anti-Pop Circuit

External Components

(Refer to Figure 9, Monaural Application Circuit)

COMPONENT	EXTERNAL COMPONENT FUNCTION	NORMAL RANGE of Value
R1	Used in conjunction with varying impedance of pin 5, forming a resistor divider network to reduce input level in automatic level control circuit	$500 \Omega-20 \mathrm{k} \Omega$
C2	Forms a noise reduction system by varying bandwidth as a function of the changing impedance on pin 5 . With a small input signal, the bandwidth is reduced by R1 and C2. As the input level increases, so does the bandwidth.	$0.01 \mu \mathrm{~F}-0.5 \mu \mathrm{~F}$
C1, C3	Coupling capacitors. Because these are part of the source impedance, it is important to use the larger values to keep low frequency source impedance at a minimum.	$0.5 \mu \mathrm{~F}-10 \mu \mathrm{~F}$
C4	Radio frequency interference roll-off capacitor	$100 \mathrm{pF}-300 \mathrm{pF}$
$\begin{aligned} & \text { R2 } \\ & \text { R3 } \\ & \text { R4 } \\ & \text { C5 } \end{aligned}$	Playback response equalization. C5 and R3 form a pole in the amplifier response at 50 Hz . C5 and $\mathbf{R} 4$ form a zero in the response at 1.3 kHz for $120 \mu \mathrm{~s}$ equalization and 2.3 kHz for 70μ s equalization.	$\begin{aligned} & 50 \Omega-200 \Omega \\ & 47 \mathrm{k} \Omega-3.3 \mathrm{M} \Omega \\ & 2 \mathrm{k} \Omega-200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { R5 } \\ & \text { R6 } \end{aligned}$	Microphone preamplifier gain equalization	$\begin{aligned} & 50 \Omega-200 \Omega \\ & 5 \mathrm{k} \Omega-200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { R7 } \\ & \text { R8 } \\ & \text { R9 } \\ & \text { C6 } \\ & \text { C7 } \\ & \hline \end{aligned}$	DC feedback path. Provides a low impedance path to the negative input in order to sink the $50 \mu \mathrm{~A}$ negative input amplifier current. C6, R9, R7 and C7 provide isolation from the output so that adequate gain can be obtained at 20 Hz . This 2-pole technique also provides fast turn-ON settling time.	$\begin{aligned} & 0-2 \mathrm{k} \Omega \\ & 200 \Omega-5 \mathrm{k} \Omega \\ & 1 \mathrm{k} \Omega-30 \mathrm{k} \Omega \\ & 200 \mu \mathrm{~F}-1000 \mu \mathrm{~F} \\ & 0-100 \mu \mathrm{~F} \\ & \hline \end{aligned}$
C8	Preamplifier output to monitor amplifier input coupling	$0.05 \mu \mathrm{~F}-1 \mu \mathrm{~F}$
C9	ALC coupling capacitor. Note that ALC input impedance is $2 \mathrm{k} \Omega$	$0.1 \mu \mathrm{~F}-5 \mu \mathrm{~F}$
$\begin{aligned} & \mathrm{R} 10 \\ & \mathrm{R} 11 \\ & \text { R12 } \\ & \text { C10 } \\ & \hline \end{aligned}$	These components bias the monitor amplifier output to half supply since the amplifier is unity gain at DC. This allows for maximum output swing on a varying supply.	$\begin{aligned} & 10 \mathrm{k} \Omega-100 \mathrm{k} \Omega \\ & 10 \mathrm{k} \Omega-100 \mathrm{k} \Omega \\ & 10 \mathrm{k} \Omega-100 \mathrm{k} \Omega \\ & 1 \mu \mathrm{~F}-100 \mu \mathrm{~F} \end{aligned}$
$\begin{aligned} & \hline \text { C11 } \\ & \text { R13 } \\ & \hline \end{aligned}$	Exponentially falling or rising signal on pin 3 determines sequencing, time delay, and operational mode of the record/play anti-pop circuitry. See anti-pop diagram.	$\begin{aligned} & 0-10 \mu \mathrm{~F} \\ & 0-50 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { R14 } \\ & \text { R15 } \\ & \text { R16 } \\ & \text { C12 } \\ & \hline \end{aligned}$	R16, R14 and C12 determine monitor amplifier response in the play mode. R15, R14 and C12 determine monitor amplifier response in the record mode.	$\begin{aligned} & 1 \mathrm{k}-100 \mathrm{k} \\ & 30 \mathrm{k} \Omega-3 \mathrm{M} \Omega \\ & 30 \mathrm{k} \Omega-3 \mathrm{M} \Omega \\ & 0.1 \mu \mathrm{~F}-20 \mu \mathrm{~F} \end{aligned}$
$\begin{aligned} & \text { C13 } \\ & \text { R17 } \\ & \hline \end{aligned}$	Determines decay response on ALC characteristic and reduces amplifier pop	$\begin{aligned} & 5 \mu \mathrm{~F}-20 \mu \mathrm{~F} \\ & 100 \mathrm{k}-\infty \end{aligned}$
$\begin{aligned} & \text { C14 } \\ & \text { R18 } \\ & \hline \end{aligned}$	Determines time constant of meter driving circuitry	$\begin{aligned} & 0.1 \mu \mathrm{~F}-10 \mu \mathrm{~F} \\ & 100 \mathrm{k}-\infty \end{aligned}$
R19	Meter sensitivity adjust	$10 \mathrm{k} \Omega-100 \mathrm{k} \Omega$
C15	Record output DĆ blocking capacitor	$1 \mu \mathrm{~F}-10 \mu \mathrm{~F}$
C16	Play output DC blocking capacitor	$0.1 \mu \mathrm{~F}-10 \mu \mathrm{~F}$
$\begin{aligned} & \hline \text { C17 } \\ & \text { R21 } \\ & \text { R22 } \\ & \hline \end{aligned}$	Changes record output response to approximate a constant current output in conjunction with record head impedance resulting in proper recording equalization	$\begin{aligned} & 500 \mathrm{pF}-0.1 \mu \mathrm{~F} \\ & 5 \mathrm{k} \Omega-100 \mathrm{k} \Omega \\ & 5 \mathrm{k} \Omega-100 \mathrm{k} \Omega \end{aligned}$
C18	Preamplifier supply decoupling capacitor. Note that large value capacitor will increase turn-ON time	$0.1 \mu \mathrm{~F}-500 \mu \mathrm{~F}$
C19	Supply decoupling capacitor	$100 \mu \mathrm{~F}-1000 \mu \mathrm{~F}$
C20	Decouples bias oscillator supply	$10 \mu \mathrm{~F}-500 \mu \mathrm{~F}$
R23	Allows bias level adjustment	$0-1 \mathrm{k} \Omega$
R24	Adjusts DC erase current in DC erase machines (for AC erase, "Stereo Application Hook-up")	
$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{C} 21 \\ & \hline \end{aligned}$	Optional bias trap	$\begin{aligned} & 1 \mathrm{mH}-30 \mathrm{mH} \\ & 100 \mathrm{pF}-2000 \mathrm{pF} \end{aligned}$
C22	Bias Roll-Off	$0.001 \mu \mathrm{~F}-0.01 \mu \mathrm{~F}$
H1	Record/play head	$\begin{aligned} & 100 \Omega-500 \Omega ; 70 \mathrm{mH}- \\ & 300 \mathrm{mH} \end{aligned}$
H2	Erase head (DC type, AC optional)	$10 \Omega-300 \Omega$

Typical Applications (Continued) ,

FIGURE 9A. Monaural Application Circuit

FIGURE 9B. Level Diagram for Monaural Application Circuit

LM1828, LM1848 Color Television Chroma Demodulator

General Description

The LM1828, LM1848 are monolithic silicon integrated circuits which demodulate the chroma sub-carrier information contained in a color television video signal and provide color-difference signals at the outputs.

The low dc voltage drift of the outputs insures excellent performance in direct-coupled chrominance output circuitry.

Features

- Low output voltage drift with temperature
- Doubly balanced demodulation
- $10 \mathrm{Vp}-\mathrm{p} \mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{Y}}$ output
- Built-in ripple filter capacitors
- Standard matrix in LM1828
- Revised matrix in LM1848
- Pin compatible with LM746, CA3072

Schematic Diagram

Connection Diagram

Absolute Maximum Ratings

Power Dissipation (Note 2)
Operating Temperature Range
Storage Temperature Range
Supply Voltage .
Reference Input
Chroma Input

715 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
30 V
$5 \mathrm{Vp}-\mathrm{p}$
5 Vp-p

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k}$, Note 1

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
STATIC						
Is	Supply Current	$\begin{array}{ll}e_{c}=0 & R_{L}=1 \mathrm{M} \\ R_{L}=3.3 \mathrm{k}\end{array}$	$\begin{aligned} & 5.5 \\ & 16.5 \end{aligned}$	9.0 22	12.5 25.5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$P_{\text {D }}$	Power Dissipation	$\mathrm{e}_{\mathrm{c}}=0$		340	430	mW
V9, V11, V13	dc Output. Voltage	$e_{c}=0, R_{L}=3.3 \mathrm{k}$	13	14.5	16	V
$\left\|\Delta v_{0}\right\|$	Output Differential	$e_{c}=0, R_{L}=3.3 \mathrm{k}$		100	600	mV
	Output Tempco	$e_{c}=0$		3	:	$m V /{ }^{\circ} \mathrm{C}$
V6, V7	Reference Input dc			6.2		v
V3, V4	Chroma Input dc		,	3.4		V
DYNAMIC						
$e_{\text {c }}$	Chroma Input Sensitivity	$B \cdot Y=5 \mathrm{Vp}-\mathrm{p}$		0.4	0.7	Vp-p
V13	Max B-Y Output	$\mathrm{e}_{\mathrm{c}}=1.5 \mathrm{Vp}-\mathrm{p}$	8	10		Vp-p
	ac Unbalance	$e_{c}=0$		0.1	0.8	$V p-p$
V9, V11, V13	Residual Carrier	$\mathrm{B}-\mathrm{Y}=5 \mathrm{Vp}-\mathrm{p}$			1.5	Vp-p
	R-Y Output	$B \cdot Y=5 \mathrm{Vp} \cdot \mathrm{p}$				
	LM1828		3.5	3.8	4.2	Vp-p
	LM1848	. . .	4.2	4.75	5.25	Vp-p
	G-Y Output					
	LM1828		0.75	1.0	1.25	Vp-p
	LM1848		1.3	1.75	2.2	$V \mathrm{p}$-p

Note 1: Values measured in test circuit.
Note 2: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Typical Vector Output Diagrams

Typical Application

Test Circuit

LM1870 Stereo Demodulator with Blend

General Description

The LM1870 is a phase locked loop FM stereo demodulator with a DC control pin for reducing noise by decreasing separation during weak signal conditions.

Applications

- Automobile radios
- Hi Fi receivers and tuners
- High performance portable radios

Features

E Blend control

- Large input overload
- Low beat note distortion
- Low THD diode switching outputs
- VCO stop function

Wide supply range, 7 V to 15 V

- Mono override pin

Typical Application and Test Circuit

Pin Functions

4 Lamp Filter and VCO Stop

1 Quick Mono
2 PLL Input
$3 \mathrm{~V}^{+}$

5 Lamp Filter
Lamp Filtor

6 Loop Filter
7 Loop Filter 8 VGO Tuning

9 VCO Tuning
10 Ground

FIGURE 1

11 Lamp Driver
16 Blend Resistor and 19 kHz Test Point
12 Right Output
Blend Filter
18 Blend Filter
19 Audio Input
20 Blend Control Voltage

Absolute Maximum Ratings

Supply Voltage, Pin 3
15 V
Lamp Driver Voltage, Pin 11
Output Voltage, Pin 12, 13, Supply Off
Quick Mono Input (Pin 1)
Blend Input (Pin 20)
Operating Temperature Range
Power Dissipation (Note 1)
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=8 \mathrm{~V}$, Figure 1

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $125^{\circ} \mathrm{C} / \mathrm{W}$ junction to amblent.
Note 2: Input is 10% SCA $(74.5 \mathrm{kHz}), 9 \%$ pilot and 1 kHz left or right. Rejection is ratio of 1 kHz output to 1.5 kHz output.

External Components

Part \#	RecommendedValue	Purpose	Affect		Remarks
			Smaller	Larger	
R1	100k	Pull Up for Quick Mono	OK	Errors Due to Pin 1 Bias Current	Pin 1 Can Be Shorted to Supply if Quick Mono is Not Used
C2	$2 \mu \mathrm{~F}$	PLL Input Coupling	Loading of Source varies with Frequency		For Source of Less Than 100』, Can Use $0.1 \mu \mathrm{~F}$
C3	$0.1 \mu \mathrm{~F}$	Supply Bypass			
C4	$0.22 \mu \mathrm{~F}$	Lamp Filter	Shorter Time to Switch Mono to Stereo	Longer Time to Switch Mono to Stereo	High Dielectric Resistance
$\begin{aligned} & \mathrm{R} 6 \\ & \mathrm{C} 6 \\ & \mathrm{C} 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{k} \\ & 0.047 \mu \mathrm{~F} \\ & 0.33 \mu \mathrm{~F} \end{aligned}$	Loop Filter	High Stereo Distortion	Narrower Capture Range	
$\begin{aligned} & \mathrm{R} 8 \\ & \mathrm{C} 8 \end{aligned}$	$\begin{aligned} & 33 \mathrm{k} \\ & 0.0047 \mu \mathrm{~F} \end{aligned}$	Loop Filter	High Stereo Distortion	Loop not Lock Narrower Capture Range	-
$\begin{aligned} & \mathrm{C} 9 \\ & \mathrm{R} 9 \end{aligned}$	$\begin{aligned} & 1000 \mathrm{pF} \\ & 8.2 \mathrm{k} \end{aligned}$	Set VCO Free Running	High VCO Jitter	Narrower Capture Range	NPO 5\%
R10	5k	Frequency	VCO Not Adjustab	with C9	Metalfilm
R11	180Ω	Sets Lamp Current	Excess IC Dissipation	Dim Lamp	
$\begin{aligned} & \text { R14 } \\ & \text { R15 } \end{aligned}$	$\begin{aligned} & 7.5 k \\ & 7.5 k \end{aligned}$	Load Resistors	Low Output Voltage	Output Clip Earlier	
$\begin{aligned} & \mathrm{C} 14 \\ & \mathrm{C} 15 \end{aligned}$	$\begin{aligned} & 0.01 \mu F \\ & 0.01 \mu F \end{aligned}$	Deemphasis		:	
R16	3k	Sets Blend Characteristic ${ }_{\text {S }}$ See Curves			
$\begin{aligned} & \text { C17 } \\ & \text { C18 } \end{aligned}$	$\begin{aligned} & 0.0047 \mu \mathrm{~F} \\ & 0.0047 \mu \mathrm{~F} \end{aligned}$	Filter for Blend	Insufficient Blend	Reduced Blend Bandwidth	
C19	$2 \mu \mathrm{~F}$	Audio Input Coupling	Poor Low Frequency Response and Separation	Turn On Delay	-
. R19	15k	Allows VCO Monitoring	Excess IC Dissipation	Reduces 19 kHz Output Voltage	Only Need During Set Up

Typical Performance Characteristics Blend off unless otherwise stated

Typical Performance Characteristics Blend off unless otherwise stated

Lamp On/Off vs Temperature

Separation vs VCO Tuning

Total Harmonic Distortion vs Frequency

Lamp On/Off vs Resistance Pin 4 to 5

Capture Range vs Pilot Level

Separation vs Frequency

Typical Performance Characteristics Biend off unless otherwise stated

L-R Gain vs Blend Control

Application Hints

Blend-What \& Why?

The signal to noise of a weak FM stereo signal is worse than that of an equally weak $F M$ monosignal. Forthis reason FM mono radios often perform better than FM stereo radios, unless the latter is forced into mono.
The typical quieting curves of an FM stereo radio look like this:

If an acceptable signal to noise is 40 dB , then 20 dB more signal is required in stereo compared to mono, $30 \mu \mathrm{~V}$ vs $3 \mu \mathrm{~V}$. The degradation in noise is due to the L-R or difference channel. If the gain of the L-R is reduced, then the noise associated with it will be reduced. However, there will also be a reduction in separation.
To maintain a 40 dB signal to noise in the above example, the gain of the L-R signal should be reduced from 0 dB gain@ 030μ downward to -20 dB at $3 \mu \mathrm{~V}$. If this is done properly the dashed line will result. Below is a plot of L-R gain and resulting separation.

L-R Gain and Separation vs

 RF Input Level with Blend

The LM1870 reduces the gain of the L-R channel before it is demodulated. This is done by a voltage controlled shelving filter. The Bode plot of this filter is shown below:

Blend Filter Response

The full blend response is a two pole roll-off with each pole set by an internal 6.8 k resistor and the capacitance from pins 17 and 18 to ground. The standard value for both capacitors is 4.7 nF resulting in two 5 kHz poles. The blend input (pin 20) is derived from the meter drive output of the FM IF chip (LM3089 or LM3189 pin 13). To adjust for variations in RF gain and other IC parameters, it is recommended that an adjustment be made on each radio.

Mono-Stereo Switching

The LM1870 automatically switches from mono to stereo when the level of pilot at pin 2 is about 15 mV or more. This value can be increased by putting a resistor between pins 4 and 5, as shown graphically in the Typical Performance curves.
If it is desired to switch to mono without turning off the lamp driver, pin 1 should be taken below 4 V . This is a highimpedance input that can be electronically switched by a transistor with a pull up resistor to the IC supply.

Outputs

The LM1870 has emitter-follower outputs resulting in a low output impedance. The output wll sink or source one mA, therefore it will drive AC coupled loads greater than $2 \mathrm{k} \Omega$.

In AM-FM radios the switching can be cumbersome at best. To ease the problem the outputs of the LM1870 (pins 12 and 13) are open circuit when the supply (pin 3) is open or grounded. This reduces the numbered switch poles required since the outputs can remain connected at all times. This technique is commonly called diode switching but the method used in the LM1870 results in substantially lower distortion than obtained with discrete diodes.

Application Hints (Continued)

vCO

The stereo performance of the LM1870 is very constant for small ($<2 \%$) changes in the free running frequency of the VCO. To insure that the frequency stays within 2\%, low temperature coefficient components should be used for the tuning capacitor (1000 pF) and resistor (8.2 k). The internal oscillator has a temperature coefficient of about 50 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (see curve). With an NPO capacitor and a metalfilm resistor the total variation in the free running frequency will be less than 1% over the full temperature range. Tuning the VCO is done by adjusting the $5 \mathrm{k} \Omega$ potentiometer to get 19 $\mathrm{kHz} \pm 50 \mathrm{~Hz}$ with no input on pin 2.
The VCO frequency is monitored at pin 16 when current is supplied to the pin. During normal operation the 19 kHz square wave is not available and the resistor from pin 16 to ground programs the blend characteristics (see curves).

The VCO of the LM1870 can be stopped by taking pin 4 low. In addition to being useful for turning off the stereo indicator and forcing mono FM reception, this also allows other mono sources, such as AM, to be fed into the decoder and come out both channels. The signal will not be inadvertently decoded with the VCO off and it will have the same gain and balance characteristics as the FM. The deemphasis capacitors may need to be removed for proper frequency response. The voltage on pin 20 will also affect the frequency response.

It should be noted that a stopped VCO cannot radiate into the rest of the radio and cause interference. Pin 4 can be taken low with a mechanical switch or an NPN transistor. If a transistor is used it must have low leakage, less than 100 nA at 3 volts V_{CE}, and low saturation, less than 200 mV at $100 \mu \mathrm{~A}$ collector current.

PLL

To properly demodulate the L-R signal the decoder must generate a 38 kHz signal that is locked in phase with the 19 kHz pilot signal at the input. This is done with a phase locked loop consisting of a phase detector, a loop filter (pins 6 and 7) and a VCO (pins 8 and 9).
The loop filter is similar to other standard decoders however the VCO incorporates an additional low pass filter (4.7 nF and $33 \mathrm{k} \Omega$) to reduce beat note distortion an additional 20 dB .

Input Interface

There are two inputs to the LM1870, one for the PLL (pin 2) and the normal audio input (pin 19). The input impedance of the audio input is about $40 \mathrm{k} \Omega$. The input coupling capacitor works with this input resistance and sets the low frequency response and separation.

The PLL input (pin2) locks onto the 19 kHz pilot and rejects the rest of the composite signal. For this reason it is only necessary to use a coupling capacitor large enough to insure there is no phase shift at 19 kHz . The input resistance of the PLL is $14 \mathrm{k} \Omega$ so a capacitor between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ would be fine. However, the source driving this input must not be affected by this load. This is true only when the source is low impedance (less than 100) .
Typical FM IF circuits have detector output impedance of 5 $\mathrm{k} \Omega$ or more. This will cause very poor low frequency response and separation unless the loading is made constant over frequency. For this reason the typical input coupling capacitor is $2 \mu \mathrm{~F}$.

IF Correction

The separation in most radios is limited by the response of the IF. The input lead network below can often be used to improve radio separation.

IF Correction Lead Network

Power Supply

The LM1870 is designed to work on supplies from 7 V to 15 V . For automotive applications a regulator is recommended to protect against transients; the LM2930-8V is the ideal choice.

LM1877 Dual Power Audio Amplifier

General Description

The LM1877 is a monolithic dual power amplifier designed to deliver $2 \mathrm{~W} /$ channel continuous into 8Ω loads. The LM1877 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders and AM-FM stereo receivers, etc. Each power amplifier is biased from a common internal regulator to provide high power supply rejection, and output 0 point centering. The LM1877 is internally compensated for all gains greater than 10, and is a pin-for-pin replacement for the LM377 in audio applications.

Features

- Wide supply range, 6-24V
- Very low cross-over distortion
- Low audio band noise
- Internal current limiting, short circuit protection
- Internal thermal shutdown

Applications

- Multi-channel audio systems
- Stereo phonographs
- Tape recorders and players
- AM-FM radio receivers
- Servo amplifiers
- Intercom systems
- Automotive products

Connection Diagram

Order Number LM1877N-XX ($\mathbf{N}-1$ through $\mathbf{N - 1 0}$) See NS Package N14A

Equivalent Schematic Diagram

Absolute Maximum Ratings

Supply Voltage	
LM1877N-1 to LM $1877 \mathrm{~N}-4$	20 V
LM1877N-5 to LM $1877 \mathrm{~N}-10$	26 V
Input Voltage	$\pm 0.7 \mathrm{~V}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~A}_{\mathrm{V}}=50(34 \mathrm{~dB})$ unless otherwise specified

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	$\mathrm{PO}_{\mathrm{O}}=0 \mathrm{~W}$		25	50	mA
Output Power	THD $=10 \%$				
LM1877N-1	$V_{S}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$	2.0			w
LM1877N-2	$V_{S}=14 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	1.0			W
L.M1877N-3	$V_{S}=14 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	1.5			W
LM1877N-4	$V_{S}=14 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	2.0			w
LM1877N-5	$V_{S}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	1.5	.		W
LM1877N-6	$V_{S}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	2.0			W
LM1877N-7	$V_{S}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	2.5			W
LM1877N-8	$V_{S}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	3.5			w
LM1877N-9	$V_{S}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	2.0			W
LM1877N-10	$V_{S}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	4.0			W
Total Harmonic Distortion					
LM1877	$f=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}$		0.075		
	$\mathrm{PO}_{\mathrm{O}}=50 \mathrm{~mW} /$ Channel		0.045		\%
	$\mathrm{P}_{\mathrm{O}}=500 \mathrm{~mW} /$ Channel		0.055		\%
	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} /$ Channel		$\mathrm{V}_{S}-6$		\%
Output Swing	$\mathrm{R}_{\mathrm{L}}=8 \Omega$				Vp-p
Channel Separation	$C_{F}=50 \mu \mathrm{~F}, \mathrm{C}_{I N}=0.1 \mu \mathrm{~F}, f=1 \mathrm{kHz}$ Output Referred				
	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4 \mathrm{Vrms}$	-50	-70		dB
	$\mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{Vrms}$		-60		dB
PSRR Power Supply	$\mathrm{C}_{\mathrm{F}}=50 \mu \mathrm{~F}, \mathrm{C}_{\text {IN }}=0.1 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}$,				
Rejection Ratio	Output Referred				
	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=1 \mathrm{Vrms}$	-50	-65		dB
	$\mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=0.5 \mathrm{Vrms}$		-40		dB
Noise	Equivalent Input Noise	,			
	$\mathrm{RS}_{\mathrm{S}}=0, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$		2.5		$\mu \mathrm{V}$
	Output Noise Wideband				
	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\text {IN }}=0.1 \mu \mathrm{~F}, \mathrm{~A}_{\mathrm{V}}=200$		0.80		mV
Open Loop Gain	$R_{S}=0, f=100 \mathrm{kHz}, R_{L}=8 \Omega$		70		dB
Input Offset Voltage			15		mV
Input Bias Current	1		50		nA
Input Impedance	Open Loop	9	4	11	$\mathrm{M} \Omega$
DC Output Level	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}$		10		V
Slew Rate	1		2.0		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth			65		kHz
Current Limit			1.0		A

Note 1: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM 1877 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques.

Typical Performance Characteristics

Total Harmonic Distortion vs Frequency

Open Loop Gain vs Frequency

Power Supply Rejection Ratio (Referred to the Output) vs Frequency

Channel Separation (Referred to the Output) vs Frequency

Total Harmonic Distortion vs Frequency

Typical Applications

Typical Applications (Continued)

National Semiconductor

 Audio, Radio and TV Circuits
LM1880 No-Holds Vertical/Horizontal

General Description

The LM1880 uses compatible Linear/1 ${ }^{2} \mathrm{~L}$ technology to produce the first T.V. horizontal and vertical processing system which completely eliminates the hold controls. The heart of the system is a precision 32 times horizontal frequency VCO which is designed to use a low-cost ceramic resonator as a tuning element.

The VCO signal is divided down in the horizontal section to produce a pre-driver output which is locked to negative sync by means of an on-chip phase detector. The vertical output ramp is injection-locked by vertical sync subject to a sync window derived from the vertical countdown section. A gate pulse centered on the chroma burst is also provided.

Block Diagram

Features

- No frequency set-up required for horizontal or vertical
- Ceramic resonator frequency reference
- Accurate horizontal pre-driver duty cycle
- Vertical sync window referenced to horizontal
- Precise interlaced vertical output
- APC loop parameters completely adjustable
- Vertical retrace time adjustable
- Chroma burst gate output
- Internal voltage regulator

Test Circuit

Order Number LM1880N See NS Package N14A

Absolute Maximum Ratings

Supply Current (Pin 9)
40 mA
12V
50 mA
15 mA
10 mA
5.Vp-p

Sync. Input Voltage (Pins 10, 14)

Sawtooth Input Voltage (Pin 1)
5 Vp-p
Package Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 0.83W Above $T_{A}=25^{\circ} \mathrm{C}$, Derate Based on $T_{J}(M A X)=150^{\circ} \mathrm{C}$ and $\theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range . $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 seconds) $\quad 300^{\circ} \mathrm{C}$
(Test circuit, all SW normally pos, $1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Regulated Voltage (Pin 9)		8.2	8.7	9.2	\checkmark
Supply Current (Pin 9)	SW 7 Pos. 2	12	18	24	mA
VCO Reference Voltage (Pin 3)			5.1		V
VCO Control Current (Pin 2)	$\mathrm{V} 2=5 \mathrm{~V}$		0.25	1.0	$\mu \mathrm{A}$
Horizontal Phase Detector Sink Current (Pin 2)	SW 1, SW 4 Pos. 2, V1 = 3.9V, $\mathrm{V} 2=5 \mathrm{~V}$	0.3	0.5		mA
Horizontal Phase Detector Source Current (Pin 2)	SW 1, SW 4 Pos. 2, V1 = 1.9V, $V 2=5 \mathrm{~V}$	0.3	0.5		mA
Horizontal Output Leakage (Pin 8, OFF Condition)	Change SW 3 to Pos. 2 with Pin 8 High	,		150	$\mu \mathrm{A}$
Horizontal Output Saturation Voltage (Pin 8, ON Condition)	Change SW 3 to Pos. 2 with Pin 8 Low		0.15	0.4	V
Vertical Output Saturation Voltage (Pin 12)	SW 3, SW 5 Pos. 2		0.25	0.5	V
Burst Gate Saturation Voltage (Pin 13)	SW 1, SW 4 Pos. 2, V1 = 1.9V		0.15	0.4	V
Horizontal Oscillator Free-Running Frequency (Pin 8), (Note 1)	SW 2 Pos. 2	15,550	15,750	15,950	Hz
Horizontal Oscillator Maximum Frequency (Pin 8)	$V 2=7 \mathrm{~V}$	16,300			Hz
Horizontal Oscillator Minimum Frequency (Pin 8)	$\mathrm{V} 2=3 \mathrm{~V}$			15,150	Hz
Vertical Minimum Lock Frequency (Pin 12)	$\mathrm{fH}^{\prime}=15 ; 734 \mathrm{~Hz}$			58.1	Hz
Vertical Maximum Lock Frequency (Pin 12)	SW 6 Pos. 2, fH $=15,734 \mathrm{~Hz}$	61.7			Hz

Note 1: Assumes ceramic resonator $\mathrm{f}_{\mathrm{R}}=\mathbf{5 0 3 . 4 8} \mathbf{~ k H z}$.
Design Parameters (Application Circuit)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Horizontal Pull-In Range			± 600		Hz
Horizontal Static Phase Error (S.P.E.)	$\Delta f_{H}= \pm 600 \mathrm{~Hz}$		± 0.5		$\mu \mathrm{s}$
Horizontal Output Duty Cycle			50	-	\%
Horizontal Oscillator Supply Sensitivity			-1		Hz/V
Vertical Output Retrace Time		,	600		$\mu \mathrm{s}$
Burst Gate Width	Flyback Width $=12 \mu \mathrm{~s}$		5		$\mu \mathrm{s}$

External Components (Application Circuit)

Component	Typical Value	Comments
$\mathrm{R}_{\mathrm{g} 1}$	30k	Burst Gate series resistor.
$\mathrm{R}_{\mathrm{g} 2}$	1.5k	Burst Gate shunt resistor, works with $\mathrm{R}_{\mathrm{g} 1}$ to divide flyback pulse and set Burst Gate amplitude.
		$V_{B . G .} \mathrm{pk}=\frac{\mathrm{R}_{\mathrm{g} 2}}{R_{\mathrm{g} 1}+\mathrm{R}_{\mathrm{g} 2}} \quad \mathrm{~V}_{\mathrm{FLYBACK}}$
R_{f}	3.9k	Flyback Sawtooth integrator resistor, works with C_{f} to integrate flyback pulse to $1 \mathrm{Vp-p}$ \min sawtooth. For $\mathrm{C}_{\mathrm{f}}=$ $0.1 \mu \mathrm{~F}$,
		$V_{\text {SAW }}$ p-p $\simeq 8 \mathrm{~V}_{\text {FLYBACK }}$
		SAW p-p R_{f}
C_{f}	$0.1 \mu \mathrm{~F}$	Flyback Sawtooth integrator capacitor.
C1	$0.1 \mu \mathrm{~F}$	Sawtooth input coupling capacitor.
R_{h}	7.5k	Horizontal Sync input coupling resistor.
		$R_{h}=0.4 \times V_{\text {SYNC }} \mathrm{p}$ p $\mathrm{k} \Omega$
C_{h}	510 pF	Horizontal Sync input coupling capacitor, blocks vertical sync components.
R_{v}	16k	Vertical sync input integrator resistor.
${ }^{\circ} \mathrm{C}$	$0.05 \mu \mathrm{~F}$	Vertical sync input integrator capacitor, works with R_{V} to integrate composite sync to $-2 \mathrm{Vp}-\mathrm{p}$ min pulse. For N.T.S.C. sync, Vert. sync \simeq 1.4×10^{-4}
		$\mathrm{R}_{\mathrm{V}} \mathrm{C}_{V}$ (Comp. sync) Vp
C10	$0.1 \mu \mathrm{~F}$	Vertical sync coupling capacitor.
R_{t}	16k	Vertical Retrace timing resistor.

Component	Typical Value	Comments
C_{t}	$0.05 \mu \mathrm{~F}$	Vertical Retrace timing capacitor, works with R_{t} to determine ON time of vertical ramp switch at pin 12. ${ }^{t} \mathrm{~V} . \operatorname{RETRACE} \simeq 0.75 \mathrm{R}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}} \mathrm{sec}$.
R_{0}	2k	Oscillator phase shift resistor.
C_{0}	130 pF	Works with R_{O} to produce 45° lag required by VCO phase shifter.
R_{S}	510Ω	Defines Q of ceramic resonator tuned network, which affects VCO control curve.
C_{L}	1000 pF	Completes VCO loop with phase lag, required to sustain oscillation and suppress resonator overtones.
R_{r}	510Ω	Series resistor to device supply pin 9 . Must supply sufficient current to activate internal shunt regulator.
		$\mathrm{R}_{\mathrm{r}}=\frac{\mathrm{V}_{(\text {unreg) }}-9 \mathrm{~V}}{0.03} \Omega$
C9	$0.1 \mu \mathrm{~F}$	Device supply decoupling capacitor.
R_{d}	1.2k	Horizontal pre-driver output resistor, supplies base current to Horizontal driver transistor when pin 8 is OFF.
C2	$0.01 \mu \mathrm{~F}$	Horizontal APC loop filter high frequency roll-off. C2 also prevents signal on loop filter from saturating phase detector output.
R_{x}	3.3k	$\mathrm{R}_{\mathrm{X}}, \mathrm{R}_{\mathrm{Y}}$ and C_{c} form the
R_{y}	100k	Horizontal APC loop filter.
C_{c}	$1 \mu \mathrm{~F}$	See Applications Information to modify loop parameters.

Applications Information

I. VERTICAL COUNTER

The vertical counter in the LM1880 replaces the conventional vertical oscillator in a television reciever. The vertical lock-in range is governed by the width of the vertical sync window, which opens from count 510 to count 542 following a vertical reset. The vertical lock frequencies are referenced to twice horizontal frequency to insure interlaced vertical and horizontal outputs. For $\mathrm{fHORIZ}=15,734 \mathrm{~Hz}$, the vertical lock frequencies are calculated as follows:

$$
\begin{aligned}
& \text { fV. HIGH }=\frac{2(15,734)}{510}=61.7 \mathrm{~Hz} . \\
& \text { fV. LOW }=\frac{2(15,734)}{542}=58 \mathrm{~Hz} .
\end{aligned}
$$

In virtually all standard and non-standard sync signals the vertical sync is also derived from the horizontal, so that as long as the horizontal sync frequency is within the pull-in range of the LM1880 (approximately $\pm 600 \mathrm{~Hz}$), the vertical lock window will remain centered on the vertical sync. Thus, the effective vertical lock range is increased by the horizontal APC:

$$
\begin{aligned}
& \text { fV. HIGH }(E F F)=\frac{2(15,734+600)}{510}=64 \mathrm{~Hz} \\
& \text { fV. LOW }(E F F)=\frac{2(15,734-600)}{542}=55.8 \mathrm{~Hz}
\end{aligned}
$$

The time required for the vertical to "roll-thru" and lock is a function of the difference frequency and relative phase of fV. LOW and the vertical sync:

$$
\mathrm{t}_{\mathrm{ROLL}} \cdot \mathrm{THRU}(\mathrm{AVG})=\frac{1}{2} \frac{1}{60-58 \mathrm{~Hz}}=250 \mathrm{~ms}
$$

II. HORIZONTAL APC LOOP PARAMETERS

The following information is given to provide a basis for modifying the filter to achieve the desired loop performance. Although the VCO is actually running at 503.5 kHz , for convenience all parameters are referenced to the actual horizontal output frequency at pin 8.

DC Loop Gain

The DC loop gain is the product of the phase detector conversion gain (μ) and the VCO sensitivity (β). For the typical application circuit,

$$
\begin{aligned}
& \mu=1.6 \times 10^{-4} R_{y} \mathrm{~V} / \mathrm{Rad} \\
& \text { and } \\
& \beta=800 \mathrm{~Hz} / \mathrm{V} \\
& \mu \beta=0.13 \mathrm{Ry}_{\mathrm{y}} \mathrm{~Hz} / \mathrm{Rad} \\
& \text { for } R_{y}=100 \mathrm{k} \Omega, \mu \beta=13,000 \mathrm{~Hz} / \mathrm{Rad}
\end{aligned}
$$

In order to determine static phase error (S.P.E.), the loop gain may be expressed in $\mathrm{Hz} / \mu \mathrm{s}$:

$$
\mu \beta=\frac{13,000 \times 2 \pi}{63.5 \mu \mathrm{~s}}=1,286 \mathrm{~Hz} / \mu \mathrm{s}
$$

For comparison, this value is nearly double the loop gain of the LM1391. The increased loop gain (reduced phase error) guarantees accurate centering of the burst gate pulse on pin 13 of the LM1880.

The following equations cover $A C$ loop parameters of interest:

Noise Bandwidth

$$
f_{N N} \cong \frac{1+2 \pi\left(R_{x}^{2} / R_{y}\right) C_{c} \mu \beta}{4 R_{x} C_{c}} H z
$$

Damping Factor

$$
K \cong \frac{\pi}{2} \cdot \frac{R_{x}^{2}}{R_{y}} C_{c} \mu \beta
$$

Pull-In Range

The pull-in and hold-in range of the LM1880 horizontal APC loop are directly determined by the VCO control range. Thus the loop would be capable of pulling the VCO further than $\pm 600 \mathrm{~Hz}$, but it has well defined frequency limits which prevent it from doing so. As a result of these built-in "stops", the loop parameters may be varied over a large range without affecting pull-in performance.

The VCO control range, and hence pull-in, can be modified to some extent by varying the Q of the ceramic resonator with resistor $\mathrm{R}_{\mathbf{S}}$:

> Incr. $R_{S} \rightarrow$ Incr. Pull-in
> Reduce $R_{S} \rightarrow$ Reduce Pull-in

However, because of the non-linearity of the resonator, R_{S} has a much greater effect on the negative side pull-in than the positive side.

III. LAYOUT NOTES

Since the LM1880 uses a counter to derive the horizontal frequency, care must be taken to prevent extraneous signals from the horizontal driver and output stages from feeding back to the VCO where they could cause false counts and consequent severe phase jitter. The following guidelines will prevent this problem from occurring:
A. Keep the VCO feedback capacitor, C_{L}, as close as possible to device pins 6 and 7.
B. Limit the lead length on the horizontal output pin 8. If a long line is required to the driver base, isolate it with a small series resistor ($200-300 \Omega$) next to pin 8.

Schematic Diagram

The LM1880 uses a phase-shift type voltage-controlled oscillator (VCO). The gain for the oscillator loop is derived from differential amplifiers Q30, Q31 and Q22, Q23. The collector current in Q 23 is phase-shifted 45° at pin 5 and summed with a portion of the current in Q22, controlled by differential amplifier Q20, Q21. The resulting output phase at pin 4 coupled through the ceramic resonator to pin 6 defines the oscillation frequency. Differential amplifier Q16, Q17, controlled by the pin 2 voltage, determines the current split in Q20 and Q21 and, consequently, the pin 4 phase and oscillation frequency. The multiple-emitter degeneration in Q17 compensates the resonator phase characteristic to produce a nearly linear VCO control curve.

The 503.5 kHz output of the VCO is taken from squaring amplifier Q32, Q33 through Q34 and Q35 to the 12 L $\div 16$ pre-scaler TO-T3. The 2 fH output is then divided again in T4 to produce the desired horizontal frequency at gate G8. The horizontal pre-driver section consists of Q3, Q4 and Q5, which produce an open-collector output square-wave at pin 8.

The 2 fH pre-scaler output also drives a data flip-flop which resets the vertical counter F1-F9. The data input of the reset flip-flop is controlled by the vertical sync from pin 10 subject to gates G3 and G5. After $5102 \mathrm{ff}_{\mathrm{H}}$ cycles following reset, vertical sync from Q1 and G4 is enabled by G3. A sync pulse received after this time initiates reset on the next 2 f H cycle. If no pulse is received after 542 cycles, G5 will initiate the reset process. A reset pulse from the counter is taken via G9 to the retrace timing section. SCR O8, Q9 is normally

ON, holding a capacitor on pin 11 near ground. During this time Q11 and Q12 are OFF, allowing the vertical ramp to form on pin 12. When the reset pulse is received, Q7 turns Q8, Q9 OFF and Q11, Q12 ON, discharging the vertical ramp for the duration of the retrace time. Retrace is completed when the pin 11 capacitor charges to the Q8 threshold, and the SCR again latches.

The remaining sections of the device are the horizontal phase detector and burst gate former. The balanced phase detector consists of comparator 043, Q44 and current source Q39 gated by differential amplifier Q41, Q42. Negative horizontal sync pulses on pin 14 enable the comparator, and the flyback sawtooth on pin 1 switches the current from Q43 to Q44 based on the relative phase between the sync and sawtooth. Q44 takes a (-) current pulse from pin 2, while the pulse in Q43 is turned around in the current mirror Q45, Q46 and Q 47 to produce a (+) current pulse at pin 2 . These currents are then integrated by the external loop filter to control the VCO.

The flyback sawtooth also switches differential amplifier Q49, Q50, which activates the burst gate. During the first half of the flyback pulse Q49 will be ON, which turns 051 and Q52 ON and clamps pin 13 near ground. The sawtooth switches Q49, Q51 and Q52 OFF at the peak of the flyback, releasing pin 13. In this manner, the second half of a flyback pulse fed to pin 13 can be used as a burst gate.

Q53, Q54 and 055 form the active shunt regulator which holds the supply pin 9 at 8.7 V typ.

Audio, Radio and TV Circuits

LM1886 TV Video Matrix D to A

General Description

The LM1886 is a TV video matrix D to A converter which encodes luminance and color difference signals from 3-bit red, green and blue inputs. The luminance output is encoded from the NTSC equation $Y=0.3 R+$ $0.59 \mathrm{G}+0.11 \mathrm{~B}$ and the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ outputs are weighted to prevent over-modulation. A built-in R-Y and burst gate polarity switch allow European PAL compatible signals to be encoded. All output levels including an RF O Carrier Bias Voltage have been referenced to 5 V for direct connection to the LM1889 TV video modulator. When used in combination with the LM1889 and a suitable sync generator, 3 -bit R, G and B information may be encoded to both composite video and RF channel carrier.

Features

- Complete digital to RF encoding with LM1889
- 1-pin PAL/NTSC mode select
- True NTSC matrix
- 8 levels of grey scale
- Allows wide range of colorimetry
- Low power TTL inputs
- Wideband luminance output
- Weighted R-Y, B-Y outputs

Connection Diagram

FIGURE 1
Order Number LM1886N See NS Package N20A

Test Circuits

FIGURE 2a. 6-Color Input Connection

FIGURE 2b. 8-Level, Grey Scale Input Connection

Absolute Maximum Ratings

Supply Voltage

Pin 5	15 V
Pin 20	6 V
Input Voltage (Pins 1, 8, 9, 11-19)	$-0.5 \mathrm{~V},+12 \mathrm{~V}$
Pin 2 Voltage Relative to Pin 20	0.8 V
Output Current	5 mA
Power Dissipation, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)	1.67 W
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 2, Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
5V Supply Current (Pin 20)	$\overline{\text { BLANK }}=0.8 \mathrm{~V}$	7	11	16	mA
12V Supply Current (Pin 5)	$\overline{\text { BLANK }}=0.8 \mathrm{~V}$	9	13	17	mA
Logic " 1 " Input Current (Pins 1, 2, 8, 9, 11-19)	Input Voitage $=5.0 \mathrm{~V}$		0	10	$\mu \mathrm{A}$
Logic " 0 " Input Current (Pins 1, 2, 8, 9, 11-19)	Input Voltage $=0.3 \mathrm{~V}$		-0.01	-0.18	mA
Output Offsets	$\mathrm{R}, \mathrm{G}, \mathrm{B}=0.8 \mathrm{~V}$				
ΔV_{Y}	-		0	± 50	mV
$\Delta V_{\text {R-Y }}$			0	± 50	$m V$
$\Delta V_{B} \cdot \mathrm{Y}$			0	± 50	mV
R-Y Full Scale, $\left(\Delta V_{R-Y}\right)_{\text {FS }}$	$\mathrm{R}=2 \mathrm{~V} ; \mathrm{G}, \mathrm{B}=0.8 \mathrm{~V}$	1.0	1.23	1.4	v
B-Y Full Scale, $\left(\Delta V_{B-Y}\right)^{\prime}$ FS	$B=2 V ; R, G=0.8 V$	0.7	0.87	1.0	v
Green Full Scale	$\mathrm{G}=2 \mathrm{~V}: \mathrm{R}, \mathrm{B}=0.8 \mathrm{~V}$				
$\Delta V_{\text {R }} \mathrm{Y}$		-0.85	-1.03	-1.2	v
ΔV_{B-Y}		-0.45	-0.58	-0.7	v
Y Full Scale	$R, G, B=2 V$				
$(\Delta V Y)_{\text {FS }}$		1.6	1.75	1.9	V
$\Delta V_{\text {R }} \cdot \mathrm{Y}$			0	± 100	mV
ΔV_{B-Y}			0	± 75	mV
O Carrier Reference, $\Delta \mathrm{V}_{\mathrm{O}}$		2.0	2.2	2.5	v
Blanking Level, ΔV_{Y}	$\overline{\text { BLANK }}=0.8 \mathrm{~V}$		0	± 50	mV
Sync Level, ΔV_{Y}	$\overline{\text { BLANK }}, \overline{\text { SYNC }}=0.8 \mathrm{~V}$	-0.67	-0.77	-0.87	v
NTSC Burst, $\Delta \mathrm{V}_{\mathrm{B}-\mathrm{Y}}$	$\overline{\text { BLANK, }} \overline{\text { BURST GATE }}=0.8 \mathrm{~V}$	-0.26	-0.35	-0.46	v
PAL Burst					
ΔV_{R-Y}	SW in PAL Position;	-0.2	-0.25	-0.32	v
ΔV_{B-Y}	BLANK, BURST GATE, $\mathrm{H} / 2=0.8 \mathrm{~V}$	-0.2	-0.25	-0.32	v
PAL Inversion Ratio $\left(\Delta V_{R}-Y\right)_{P A L} /\left(\Delta V_{R-Y}\right)_{F S}$	$R=2 V ; G, B, H / 2=0.8 V$ SW to PAL Position	-0.9	-1.0	-1.1	
Y Linearity Error	Figure $2 b$ Input Connection		± 1	± 6	\%FS
Y Switching Times	15 kHz Square Wave Switching R, G, B in Parallel				
Rise Time, tr			35		ns
Fall Time, tF_{F}			30	-	ns
Settling Time ± 1 LSB			50		ns

Input Voltage (Pins 1, 8, 9, 11-19)

Output Current
Power Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
Lead Temperature (Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

Note 1: Above $T_{A}=25^{\circ} \mathrm{C}$, derate based on $T_{J(M A X)}=150^{\circ} \mathrm{C}$ and $\theta_{J A}=75^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Unless otherwise noted, $\overline{B L A N K}, \overline{S Y N C}, \overline{B U R S T} \overline{G A T E}=2 V$ and $S W$ is in NTSC position. All outputs are referenced to the +5 V supply as shown in Figure 2a.

Typical Input and Output Waveforms

Application Notes

$\overline{\text { SYNC, }} \overline{\text { BLANK, }}$, and BURST GATE may be obtained from a sync generator IC similar to MM5320 or MM5321. For PAL operation, the $H / 2$ square wave may be obtained by a $\div 2$ from horizontal sync.

All inputs are low-power TTL compatible. Because of the very low typical input currents, the color inputs may be paralleled in various combinations. For simple color requirements, the Figure 2a input connection may be used to produce the 6 primary and complementary colors listed in Table I, along with black and white. To add complex colors such as those at the bottom of Table 1, all 9 input bits may be required separately. When choosing input codes for other colors, always check the new color against both light and dark backgrounds.

All outputs are referenced to the +5 V supply for direct connection to the LM1889. The resistor on the luminance output pin 6 is used to sum the chroma subcarrier from the LM1889 and must be wired as tightly as possible to preserve the video bandwidth. For the addition of sound or a second RF channel, refer to the LM1889 data sheet.

TABLE I. INPUT CODE EXAMPLES FOR COMMON COLORS

	INPUT CODE		
	RED	GREEN	BLUE
COLOR	M L	M L	M L
Black	000	000	000
Dark Grey	010	010	010
Light Grey	101	101	101
White	111	111	111
Red	$\begin{array}{lll}1 & 1 & 1\end{array}$	000	000
E Green	000	$\begin{array}{lll}1 & 1 & 1\end{array}$	000
a (Blue	000	000	111
¢ ${ }_{\text {d }}^{\text {又 }}$ 又 (Cyan	000	111	$\begin{array}{lll}1 & 1 & 1\end{array}$
	$\begin{array}{lll}1 & 1 & 1\end{array}$	000	$\begin{array}{lll}1 & 1\end{array}$
\bigcirc ¢ Yellow	1111	111	000
Brown	$\begin{array}{lll}0 & 1 & 1\end{array}$	$\begin{array}{llll}0 & 1 & 1\end{array}$	000
Orange	$\begin{array}{lll}1 & 1 & 1\end{array}$	100	000
Flesh tone	$\begin{array}{lll}1 & 1 & 1\end{array}$	110	. 101
Pink	$\begin{array}{lll}1 & 1\end{array}$	110	11.0
Sky Blue	101	101	$1 \begin{array}{lll}1 & 1\end{array}$

Typical Application

Circuit Description (Refer to Figure 4)

The 3 -bit red, green, and blue inputs go to identical 3 -bit current-mode digital-to-analog converters (DACs). Each DAC consists of three binary-weighted current sources controlled by diff-amp current switches. The DAC output currents are arbitrarily given a weighting factor of 0.59, which is the green coefficient in the luminance equation. Portions of the red and blue currents are split off, so that the remaining currents combined with the green current form the luminance current $\mathrm{I}_{\mathrm{Y}}=0.3 \mathrm{I}_{\mathrm{R}}+0.59 \mathrm{I}_{\mathrm{G}}+0.11 \mathrm{I}_{\mathrm{B}}$. I_{Y} develops the luminance voltage V_{Y} across R_{O} in a summing amplifier referenced to the +5 V supply. A current switch operated by pin 8 adds (-) sync pulses to the Y output at pin 6.

The portions of red and blue currents previously split off flow through resistors $\mathrm{RO}_{\mathrm{O}} / 0.29$ and $\mathrm{RO}_{\mathrm{O}} / 0.48$, which are weighted to form the red and blue voltages respectively. Since the opposite ends of the 2 resistors are connected to V_{Y}, the red and blue voltages across the resistors subtract from V_{Y} to develop the color difference voltages V_{Y-R} and $V_{Y-B} V_{Y-B}$ is coupled through a X .56 gain, 5 V -referenced inverting amplifier to the B-Y output at pin 4. VY-R feeds parallel inverting and non-inverting unity gain amplifiers which allow either polarity to be coupled to the R-Y output pin 3. Switching between the 2 amplifiers is controlled by a current switch activated by the $\mathrm{H} / 2$ pin 2 . A $(-)$ burst gate pulse on pin 1 controls current switches which add the burst pulse components to the B-Y and R-Y outputs.

The requirements for PAL and NTSC encoding differ in the areas of burst gate operation and R-Y polarity, both of which are controlled via pin 2 as follows:

PAL, pin 2 fed by a half-line frequency TTL square wave-in this mode a PNP switch between pin 2 and +5 V is held off continuously, which results in equal burst pulse components on the B-Y and R-Y outputs. In addition, the $H / 2$ square wave causes the R-Y output polarity to reverse every line. (When fed to the LM1889 chroma modulator this causes the phase of the R-Y subcarrier to change 180° as required in PAL.)

NTSC, pin 2 tied through an external resistor to +12 V -this turns on the PNP switch continuously, which eliminates the burst pulse on the R-Y output and increases the amplitude of the B-Y pulse. Since pin 2 is being held high, the R-Y output is locked in the positive polarity.

Blanking is activated by a low on pin 9 , which de-biases the left side of the DAC diff-amps, so that $I_{R}=I_{G}=$ $I_{B}=0$ independent of the input states. When blanked, the $\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$ outputs all go to +5 V . An additional amplifier produces a 0 carrier reference voltage at pin 7 which is 25% above the peak white voltage on the Y output, relative to +5 V .

LM1889 TV Video Modulator

General Description

The LM1889 is designed to interface audio, color difference, and luminance signals to the antenna terminals of a TV receiver. It consists of a sound subcarrier oscillator, chroma subcarrier oscillator, quadrature chroma modulators, and RF oscillators and modulators for two low-VHF channels.

The LM1889 allows video information from VTR's, games, test equipment, or similar sQurces to be displayed on black and white or color TV receivers. When used with the MM57100 and MM53104, a complete TV game is formed.

Features

- dc channel switching
- 12 V to 18 V supply operation
- Excellent oscillator stability
- Low intermodulation products
- $5 \mathrm{Vp}-\mathrm{p}$ chroma reference signal
- May be used to encode composite video

Block Diagram

Order Number LM1889N
See NS Package N18A

DC Test Circuit

Absolute Maximum Ratings

Supply Voltage V14, V16 max
Power Dissipation Package (Note 1)
Operating Temperature Range
Storage Temperature Range
Chroma Osc Current I_{17} max
(V16-V15) max
(V14-V10) max
$19 \mathrm{~V}_{\mathrm{dc}}$
1390 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$10 \mathrm{~mA}_{\mathrm{dc}}$
(V14-V11) max
$\pm 5 \mathrm{Vdc}$
7V
Lead Temperature (Soldering, 10 seconds)
DC Electrical Characteristics (dc Test Circuit, All SW Normally Pos. 1, $\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}$)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current, IS		20	35	45	mA
Sound Oscillator, Current Change, $\Delta \mathrm{I}_{15}$	$\begin{aligned} & \text { Change } V_{A} \text { From } 12.5 \mathrm{~V} \text { to } \\ & 17.5 \mathrm{~V} \end{aligned}$	0.3	0.6	0.9	mA
Chroma Oscillator Balance, V17		9.5	11.0	12.5	V
Chroma Modulator Balançe, V13		7.0	7.4	7.8	V
R-Y Modulator Output Level, $\Delta \mathrm{V} 13$	SW 3, Pos. 2, Change SW 1 From Pos. 1 to Pos. 2	0.6	0.9	1.2	V
B-Y Modulator Output Level, 4 V 13	SW 3, Pos. 2, Change SW 2 From Pos. 1 to Pos. 2	0.6	0.9	1.2	v
Chroma Modulator Conversion Ratio, $\Delta \mathrm{V} 13 / \Delta \mathrm{V} 3$	SW 3, Pos. 2, Change SW 0 From Pos. 1 to Pos. 2. Divide $\Delta \mathrm{V} 13$ by $\Delta \mathrm{V} 3$	0.45	0.70	0.95	V/V
Ch. A Oscillator "OFF' Voltage, V8, V9	SW 4, Pos, 2	0.5	1.5	3.0	V
Ch. A Oscillator Current Level, I9	$V_{B}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=13 \mathrm{~V}$	2.5	3.5	5	mA
Ch. B Oscillator "OFF" Voltage, V6; V7		0.5 :	1.5	3.0	v
Ch. B Oscillator Current Level, I6	$\begin{aligned} & \text { SW 4, Pos. 2, } V_{B}=12 V, \\ & V_{C}=13 V \end{aligned}$	2.5	3.5	5	mA
Ch. A Modulator Conversion Ratio, $\Delta \mathrm{V} 11 /(\mathrm{V} 13-\mathrm{V} 12)$	SW 1, SW 2, SW 3, Pos. 2, $V_{B}=12 V$, Change V_{C} From 13 V to 11 V For $\Delta \mathrm{V} 11$ Divide By V13-V12	0.40	0.55	0.70	V/V
Ch. B Modulator Conversion Ratio, $\Delta V 10 /(\mathrm{V} 13-\mathrm{V} 12)$	All SW, Pos. 2, $\mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}$, Change V_{C} From 13 V to 11 V Divide as Above	0.40	0.55	0.70	V/V

AC Electrical Characteristics (ac Test Circuit, $\mathrm{V}=15 \mathrm{~V}$)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Chroma Oscillator Output Level, V17	CLOAD $\leq 20 \mathrm{pF}$	4	5		Vp-p
Sound Carrier Oscillator Level, V15					
Ch. 3 RF Oscillator Level, V8, V9	Loaded by RC Coupling Network Ch. Sw. Pos. 3, f $=61.25 \mathrm{MHz}$, Use FET Probe	200	350		
Ch. 4 RF Oscillator Level, V6,.V7	Ch. Sw. Pos. $4, \mathrm{f}=67.25 \mathrm{MHz}$, Use FET Probe	200	350	$\mathrm{mVp-p}$	

[^39] thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Design Characteristics (ac Test Circuit, $\mathrm{V}=15 \mathrm{~V}$)

AC Test Circuit

Typical Performance Characteristics

Circuit Description

 (Refer to Circuit Diagram)The sound carrier oscillator is formed by differential amplifier Q3, Q4 operated with positive feedback from the pin 15 tank to the base of Q 4 .

The chroma oscillator consists of the inverting amplifier Q16, Q17 and Darlington emitter follower Q11, Q12. An external RC and crystal network from pin 17 to pin 18 provides an additional 180 degrees phase lag back to the base of 017 to produce oscillation at the crystal resonance frequency. (See ac test circuit).

The feedback signal from the crystal is split in a lead-lag network to pins 1 and 18, respectively, to generate the subcarrier reference signals for the chroma modulators. The R-Y modulator consists of multiplier devices Q29, Q 30 and $\mathrm{Q} 21-\mathrm{Q} 24$, while the $\mathrm{B}-\mathrm{Y}$ modulator consists of Q31, Q 32 and $\mathrm{O} 25-\mathrm{O} 28$. The multiplier outputs are coupled through a balanced summing amplifier Q37, Q38 to the input of the RF modulators at pin 13. With 0 offset at the lower pairs of the multipliers, no chroma output is produced. However, when either pin 2 or pin 4 is offset relative to pin 3 a subcarrier output current of the appropriate phase is produced at pin 13.

The channel B oscillator consists of devices Q56 and Q57 cross-coupled through level-shift zener diodes Q54 and Q55. A current regulator consisting of devices Q39-Q43 is used to achieve good RF frequency stability over supply and temperature. The channel B modulator consists of multiplier devices Q58, Q59 and Q50-O53. The top quad is coupled to the channel B tank through isolating devices 048 and O49. A dc offset between pins 12 and 13 offsets the lower pair to produce an output RF carrier at pin 10. That carrier is then modulated by both the chroma signal at pin 13 and the video and sound carrier signals at pin 12. The channel A modulator shares pin 12 and 13 buffers Q45 and Q44 with channel B and operates in an identical manner.

The current flowing through channel B oscillator diodes Q54, Q55 is turned around in Q60, Q61 and Q62 to source current for the chaninel B RF modulator. In the same manner, the channel A oscillator Q71-074 uses turn around Q77, Q78 and Q79 to source the channel A modulator. One oscillator at a time may be activated by connecting its tank to supply (see ac test circuit). The corresponding modulator is then activated by its current turn-around, and the other oscillator/modulator combination remains "OFF".

Circuit Diagram

Applications Information

Subcarrier Oscillator

The oscillator is a crystal-controlled design to ensure the accuracy and stability required of the subcarrier frequency for use with television receivers. Lag-lead networks (R2C2 and C1R1) define a quadrature phase relationship between pins 1 and 18 at the subcarrier frequency of 3.579545 MHz . Other frequencies can be used and where high stability is not a requirement, the crystal can be replaced with a parallel resonant L-C tank circuit-to provide a 2 MHz clock, for example. Note that since one of the chrominance modulators is internally connected to the feedback path of the oscillator, operation of the oscillator at other than the correct subcarrier frequency precludes chrominance modulation.

When an external subcarrier source is available or preferred, this can be used instead. For proper modulator operation, a subcarrier amplitude of $500 \mathrm{mVp}-\mathrm{p}$ is required at pins 1 and 18. If the quadrature phase shift networks shown in the application circuit are retained, about $1 \mathrm{Vp}-\mathrm{p}$ subcarrier injected at the junction of C 1 and R2 is sufficient. The crystal, C4 and R3 are eliminated and pin 17 propvides a 5 Vp-p signal shifted $+125^{\circ}$ from the external reference.

Chrominance Modulation

The simplest method of chroma encoding is to define the quadrature phases provided at pins 1 and 18 as the color difference axes R-Y and B-Y. A signal at pin 2 (R-Y) will give a chrominance subcarrier output from the modulator with a relative phase of 90° compared to the subcarrier output produced by a signal at pin 4 ($B-Y$). The zero signal dc level of the R-Y and $B-Y$ inputs will determine the bias level required at pin 3. For example, a pin 2 signal that is 1 V positive with respect to pin 3 will give $0.6 \mathrm{Vp}-\mathrm{p}$ subcarrier at a relative phase of 90°. If pin 2 is 1 V negative with respect to pin 3 , the output is again $0.6 \mathrm{Vp-p}$, but with a relative phase of 270°. When a simultaneous signal exists at pin 4 , the subcarrier output level and phase will be the vector sum of the quadrature components produced by pin 2 and 4 inputs. Clearly, with the modulation axes defined as above, a negative pulse on pin 4 during the burst gate period will produce the chrominance synchronizing "burst" with a phase of 180°. Both color difference signals must be dc coupled to the modulators and the zero signal dc level of both must be the same and within the common-mode range of the modulators.

The 0.6 Vp-p/ V_{dc} conversion gain of the chrominance modulators is obtained with a $2 \mathrm{k} \Omega$ resistor connected at pin 13. Larger resistor values can be used to increase the gain, but capacitance at pin 13 will reduce the bandwidth. Notice that equi-bandwidth encoding of the color difference signals is implied as both modulator outputs are internally connected and summed into the same load resistor.

Sound Oscillator

Frequency modulation is achieved by using a 4.5 MHz tank circuit and deviating the center frequency via a capacitor or a varactor diode. Switching a 5 pF capacitor
to ground at an audio frequency rate will cause a 50 kHz deviation from 4.5 MHz . A 1 N 5447 diode biassed -4 V from pin 16 will give $\pm 20 \mathrm{kHz}$ deviation with a 1 Vp-p audio signal. The coupling network to the video modulator input and the varactor diode bias must be included when the tank circuit is tuned to center frequency.

A good level for the RF sound carrier is between 2% and 20% of the picture carrier level. For example, if the peak video signal offset of pin 12 with respect to pin 13 is 3 V , this corresponds to a 30 mVrms picture RF carrier. The source impedance at pin 12 is defined by the external $2 \mathrm{k} \Omega$ resistor and so a series network of $15 \mathrm{k} \Omega$ and 24 pF will give a sound carrier level at -32 dB to the picture carrier.

RF Modulation

Two RF channels are available, with carrier frequencies up to 100 MHz being determined by L-C tank circuits at pins $6,7,8$ and 9 . The signal inputs (pins 12,13) to both modulators are common, but removing the power supply from an RF oscillator tank circuit will also disable that modulator.

As with the chrominance modulators, it is the offset between the two signal input pins that determines the. level of RF carrier output. Since one signal input (pin 13) is also internally connected to the chrominance modulators, the $2 \mathrm{k} \Omega$ load resistor at this point should be connected to a bias source within the common-mode input range of the video modulators. However, this bias source is independent of the chrominance modulator bias and where chrominance modulation is not used, the $2 \mathrm{k} \Omega$ resistor is eliminated and the bias source connected directly to pin 13.

To preserve the dc content of the video signal, amplitude modulation of the RF carrier is done in one direction only, with increasing video (toward peak white) decreasing the carrier level. This means the active composite video signal at pin 12 must be offset with respect to pin 13 and the sync pulse should produce the largest offset (i.e., the offset voltage of pin 12 with respect to pin 13 should have the same polarity as the sync pulses).

The largest video signal (peak white) should not be able to suppress the carrier completely, particularly if sound transmission is needed. For example, a signal with 1 V sync amplitude and 2.5 V peak white ($3.5 \mathrm{Vp}-\mathrm{p}-$ negative polarity sync) and a black level at $5 \mathrm{~V}_{\mathrm{dc}}$ will require a dc bias of 8 V on pin 13 for correct modulation. A simple way of obtaining the required offset is to bias pin 13 at $4 \times$ (sync amplitude) from the sync tip level at pin 12.

Composite Video Output

When both chrominance and luminance modulation is being done, a simple technique can be used to check the chrominance to luminance ratio before modulation on the RF carrier. This is shown in Figure 1 where the tank circuit of one RF oscillator has been replaced. Pin 8 is

Applications Information (Continued)

held one diode voltage drop below pin 9, thereby offsetting the upper rank of the modulator which now behaves as a cascode stage for the composite video signal. A $1.8 \mathrm{k} \Omega$ resistor as a load at pin 11 gives a gain of about 0.5 . If pin 11 is buffered by an external amplifier, composite video at 75Ω can be made available for injection into the video stage of a TV receiver. Putting the diode D1 in series with pin 9 will reverse the video polarity.

Split Power Supplies

The LM1889 is designed to operate over a wide range of supply voltages so that much of the time it can utilize the signal source power supplies. An example of this is shown in Figure 2 where the composite video signal from a character generator is modulated onto an RF carrier for display on a conventional home TV receiver. The LM1889 is biased between the -12 V and +5 V supplies and pin 13 is put at ground. A $9.1 \mathrm{k} \Omega$ resistor from pin 12 to -12 V dc offsets the video input signal
(which has sync tips at ground) to establish the proper modulation depth $-\mathrm{R}^{\prime} / \mathrm{R} 2=\mathrm{V}_{\mathrm{IN}} / 12 \times 0.875$. This design is for monochrome transmission and features an extremely low external parts count.

Frequently, the use of split power supplies will make matching the LM1889 to available signal generator outputs a simple process. Figure 3a shows the LM1889 configured to accept the composite video patterns available from a Tektronix Type 144 generator that has black level at ground and negative polarity syncs. In this application the oscillator amplifier is used to provide a gain of two and a $10 \mathrm{k} \Omega$ pot adjusts the over-all dc level of the amplified signal. Since the generator does not conveniently provide the required supply voltages, a circuit is shown in Figure $3 b$ that will split 15 V into +5 V and -10 V . An advantage is that the supplies will track with the 15 V source. However, once the modulation depth has been set, the supply voltage should be stabilized. The power supply "split" is set by the resistor connected to pin 1 of the LM380.

FIGURE 1. Luminance and Chrominance Encoding Composite Video or RF Output

Applications Information (Continued)

FIGURE 3a. dc Coupled Modulator for NTSC Pattern Generators

FIGURE 3b. Tracking Split Power Supply

Audio, Radio and TV Circuits

LM1896/LM2896 Dual Power Audio Amplifier

General Description

The LM1896 is a high performance 6 V stereo power amplifier designed to deliver 1 watt/channel into 4Ω or 2 watts bridged monaural into 8Ω. Utilizing a unique patented compensation scheme, the LM1896 is ideal for sensitive AM radio applications. This new circuit technique exhibits lower wideband noise, lower distortion, and less AM radiation than conventional designs. The amplifier's wide supply range ($3 \mathrm{~V}-9 \mathrm{~V}$) is ideal for battery operation. For higher supplies ($\mathrm{V}_{\mathrm{S}}>9 \mathrm{~V}$) the LM2896 is available in an 11-lead single-in-line package.

Features

- Low AM radiation
- Low noise
- $3 V, 4 \Omega$, stereo $P_{0}=250 \mathrm{~mW}$
- Wide supply operation 3V-15V (LM2896)
- Low distortion
- No turn on "pop"
- Adjustable voltage gain and bandwidth
- Smooth waveform clipping
- $P_{0}=9 W$ bridged, LM2896

Applications

Compact AM-FM radios
Stereo tape recorders and players
High power portable stereos

Typical Applications

FIGURE 1. LM2896 in Bridge Configuration ($A_{V}=400$, $B W=20 \mathrm{kHz}$)

Absolute Maximum Ratings

Supply Voltage

LM1896
LM2896
Operating Temperature(Note1)
Storage Temperature
Junction Temperature
Lead Temperature(Soldering, 10 seconds)
$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$
$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{A}_{V}=200(46 \mathrm{~dB})$. For the $\mathrm{LM} 1896, \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}$ and $R_{L}=4 \Omega$. For the $L M 2896, V_{S}=12 V$ and $R_{L}=8 \Omega$. Test circuit shown in Figure 2.

Parameter	Conditions	LM1896			LM2896			Units
		Min	Typ	Max	Min	Typ	Max	
Supply Current	$\mathrm{P}_{\mathrm{o}}=0 \mathrm{~W}$, Dual Mode	3	15	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	3	25	$\begin{aligned} & 40 \\ & 15 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \end{gathered}$
Operating Supply Voltage								
Output Power	THD $=10 \%, f=1 \mathrm{kHz}$							
LM1896N-1	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$ Dual Mode	0.9	1.1					W
LM1896N-2	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$ Bridge Mode	1.8	2.1					W
	$\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$ Dual Mode		1.3					W
LM2896P-1	$\mathrm{V}_{S}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$ Dual Mode				2.0	2.5		W
LM2896P-2	$\mathrm{V}_{S}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$ Bridge Mode				7.2	9.0		W
	$\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$ Bridge Mode					7.8		W
	$\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$ Dual Mode					2.5		W
Distortion	$\begin{aligned} & f=1 \mathrm{kHz} \\ & P_{0}=50 \mathrm{~mW} \end{aligned}$		0.09			0.09		\%
	$\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.11			0.11		\%
	$\mathrm{P}_{\mathrm{o}}=1 \mathrm{~W}$					0.14		\%
Power Supply Rejection Ratio (PSRR)	$\mathrm{C}_{\mathrm{BY}}=100 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ Output Referred, $\mathrm{V}_{\text {RIPPLE }}=250 \mathrm{mV}$	-40	-54		-40	-54		dB
Channel Separation	$\mathrm{C}_{\mathrm{BY}}=100 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ Output Referred	-50	-64		-50	-64		dB
Noise	Equivalent input noise $\mathrm{R}_{\mathrm{S}}=0$, $\mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{BW}=20-20 \mathrm{kHz}$		1.4			1.4		$\mu \mathrm{V}$
	CCIRIARM .		1.4			1.4		$\mu \mathrm{V}$
	Wideband		2.0			2.0		$\mu \mathrm{V}$
DC Output Level ,		2.8	3	3.2	5.6	6	6.4	V
Input Impedance		50	100	350	50	100	350	k Ω
Input Offset Voltage			5			5		mV
Voltage Difference Between Outputs	LM1896N-2, LM2896P-2		10	20		10	20	mV
Input Bias Current			120			120		nA.

Note 1: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM1896/LM2896 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon mounting techniques.

Typical Performance Curves

LM2896 Device Dissipation vs Ambient Temperature

THD and Gain vs Frequency
$A_{V}=54 \mathrm{~dB}, \mathrm{BW}=30 \mathrm{kHz}$

THD and Gain vs Frequency $A_{V}=40 \mathrm{~dB}, B W=20 \mathrm{kHz}$

Power Supply Rejection Ratio (Referred to the Output) vs Frequency

LM1896 Maximum Device Dissipation vs Ambient Temperature

THD and Gain vs Frequency $A_{\mathbf{V}}=54 \mathrm{~dB}, \mathrm{BW}=5 \mathrm{kHz}$

THD and Gain vs Frequency $A_{V}=34 \mathrm{~dB}, \mathrm{BW}=50 \mathrm{kHz}$

Channel Separation (Referred to the Output) vs Frequency

-3 dB Bandwidth vs Voltage Gain for Stable Operation

THD and Gain vs Frequency $A_{V}=\mathbf{4 6 ~ d B}, B W=50 \mathbf{k H z}$

AM Recovered Audio and Noise vs Field Strength for Different Speaker Lead Placement

Power Output vs Supply Voltage

Typical Performance Curves (Continued)

Equivalent Schematic

6, 9 No connection on LM1896
() Indicates pin number for LM2896

Connection Diagrams

Order Number LM1896N See NS Package N14A

6,9 No connection on LM1896
() Indicates pin number for LM2896

FIGURE 2. Stereo Amplifier with $A_{V}=\mathbf{2 0 0}, B W=30 \mathbf{k H z}$

External Components (Figure 2)

Components

1. $\mathrm{R} 2, \mathrm{R} 5, \mathrm{R} 10, \mathrm{R} 13$
2. R3, R12
3. R_{0}
4. $\mathrm{C} 1, \mathrm{C} 14$
5. $\mathrm{C} 2, \mathrm{C} 13$
6. $\mathrm{C} 3, \mathrm{C} 12$
7. $\mathrm{C} 5, \mathrm{C} 10$
8. C7
9. C_{c}
10. C_{0}
11. C_{s}

Comments

Sets voltage gain, $A_{V}=1+R 5 / R 2$ for one channel and $A_{V}=1+$ R10/R13 for the other channel.
Bootstrap resistor sets drive current for output stage and allows pins 3 and 12 to go above V_{s}.
Works with C_{o} to stabilize output stage.
Input coupling capacitor. Pins 1 and 14 are at a DC potential of $\mathrm{V}_{\mathrm{S}} / 2$. Low frequency pole set by:

$$
f_{L}=\frac{1}{2 \pi R_{I N} C 1}
$$

Feedback capacitors. Ensure unity gain at DC. Also a low frequency pole at:

$$
f_{L}=\frac{1}{2 \pi R 2 C 2}
$$

Bootstrap capacitors, used to increase drive to output stage. A low frequency pole is set by:

$$
f_{L}=\frac{1}{2 \pi R 3 C 3}
$$

Compensation capacitor. These stabilize the amplifiers and adjust their bandwidth. See curve of bandwidth vs allowable gain.
Improves power supply rejection (See Typical Performance Curves). Increasing C 7 increases turn-on delay.
Output coupling capacitor. Isolates pins 5 and 10 from the load. Low frequency pole set by:

$$
f_{L}=\frac{1}{2 \pi C_{c} R_{L}}
$$

Works with R_{0} to stabilize output stage.
Provides power supply filtering.

Application Hints

AM Radios

The LM1896/LM2896 have been designed to fill a wide range of audio power applications. A common problem with IC audio power amplifiers has been poor signal-to-noise performance when used in AM radio applications. In a typical radio application, the loopstick antenna is in close proximity to the audio amplifier. Current flowing in the speaker and power supply leads can cause electromagnetic coupling to the loopstick, resulting in system oscillation. In addition, most audio power amplifiers are not optimized for lowest noise because of compensation requirements. If noise from the audio amplifier radiates into the AM section, the sensitivity and signal-to-noise ratio will be degraded.

The LM1896 exhibits extremely low wideband noise due in part to an external capacitor C 5 which is used to tailor the bandwidth. The circuit shown in Figure 2 is capable of a signal-to-noise ratio in excess of 60 dB referred to 50 mW . Capacitor C5 not only limits the closed loop bandwidth, it also provides overall loop compensation. Neglecting C 2 in Figure 2, the gain is:

$$
\begin{gathered}
A_{V}(S)=\frac{S+A_{V} \omega_{0}}{S+\omega_{0}} \\
\text { where } \quad A_{V}=\frac{R 2+R 5}{R 2}, \quad \omega_{0}=\frac{1}{R 5 C 5}
\end{gathered}
$$

A curve of $-3 \mathrm{~dB} \mathrm{BW}\left(\omega_{0}\right)$ vs A_{V} is shown in the Typical Performance Curves.

Figure 3 shows a plot of recovered audio as a function of field strength in $\mu \mathrm{V} / \mathrm{M}$. The receiver section in this example is an LM3820. The power amplifier is located about two inches from the loopstick antenna. Speaker leads run parallel to the loopstick and are $1 / 8$ inch from it. Referenced to a $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio, the improvement in noise performance over conventional designs is about 10 dB . This corresponds to an increase in usable sensitivity of about 8.5 dB .

Bridge Amplifiers

The LM1896/LM2896 can be used in the bridge mode as a monaural power amplifier. In addition to much higher power output, the bridge configuration does not require output coupling capacitors. The load is connected directly between the amplifier outputs as shown in Figure 4.

Amp 1 has a voltage gain set by $1+$ R5/R2. The output of amp 1 drives amp 2 which is configured as an inverting amplifier with unity gain. Because of this phase inversion in amp 2, there is a 6 dB increase in voltage gain referenced to V_{i}. The voltage gain in bridge is:

$$
\frac{v_{0}}{v_{i}}=2\left(1+\frac{R 5}{R 2}\right)
$$

C_{B} is used to prevent DC voltage on the output of amp 1 from causing offset in amp 2. Low frequency response is influenced by:

$$
f_{L}=\frac{1}{2 \pi R_{B} C_{B}}
$$

Several precautions should be observed when using the LM1896/LM2896 in bridge configuration. Because the amplifiers are driving the load out of phase, an 8Ω speaker will appear as a 4Ω load, and a 4Ω speaker will appear as a 2Ω load. Power dissipation is twice as severe in this situation. For example, if $\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=8 \Omega$ bridged, then the maximum dissipation is:

$$
\begin{aligned}
& P_{D}=\frac{V_{S}^{2}}{20 R_{L}} \times 2=\frac{6^{2}}{20 \times 4} \times 2 \\
& P_{D}=0.9 \text { Watts }
\end{aligned}
$$

This amount of dissipation is equivalent to driving two 4Ω loads in the stereo configuration.

When adjusting the frequency response in the bridge configuration, R5C5 and R10C10 form a 2 pole cascade and the -3 dB bandwidth is actually shifted to a lower frequency:

$$
B W=\frac{0.64}{2 \pi R C}
$$

where $R=$ feedback resistor

$$
\mathrm{C}=\text { feedback capacitor }
$$

To measure the output voltage, a floating or differential meter should be used because a prolonged output short will over dissipate the package: Figure 1 shows the complete bridge amplifier.

FIGURE 3. Improved AM Sensitivity Over Conventional Design

FIGURE 4. Bridge Amplifier Connection

Printed Circuit Layout

Printed Circuit Board Layout

Figure 5 and Figure 6 show printed circuit board layouts for the LM1896 and LM2896. The circuits are wired as stereo amplifiers. The signal source ground should return to the input ground shown on the boards. Returning the loads to power supply ground through a separate wire will keep the THD at its lowest value. The inputs should be terminated in less than $50 \mathrm{k} \Omega$ to prevent an input-output oscillation. This

FIGURE 5. Printed Circuit Board Layout for the LM1896
oscillation is dependent on the gain and the proximity of the bridge elements R_{B} and C_{B} to the (+) input. If the bridge mode is not used, do not insert R_{B}, C_{B} into the PCB.

To wire the amplifier into the bridge configuration, short the capacitor on pin 7 (pin 1 of the LM1896) to ground. Connect together the nodes labeled BRIDGE and drive the capacitor connected to pin 5 (pin 14 of the LM1896).

FIGURE 6. Printed Circuit Board Layout for the LM2896

National Semiconductor LM2000 Audio Driver

Audio, Radio and TV Circuits

Features

- Battery operation
- Wide supply operation, $2.5-15 \mathrm{~V}$
- High output power
- Stable A-B bias current
- Adjustable drive current
- Adjustable gain and bandwidth
- No turn-on or turn-off "pops"
- Self-centered biasing

Applications

- AM-FM radios
- Cassette recorders
- Motor speed controls
- Toys
- Portable tape recorders/phonographs
- Intercoms

Typical Applications

Absolute Maximum Ratings

Supply Voltage
Package Dissipation (Note 1)
Storage Temperature
Operating Temperature
Junction Temperature
18 V
1.39 W
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{AV}^{2}=100(40 \mathrm{~dB}), \mathrm{f}=1 \mathrm{kHz}, 2 \mathrm{~N} 4918$ output transistors, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	$\mathrm{PO}_{\mathrm{O}}=0 \mathrm{~W}$		25		mA
IC Supply Current	Current Measured at Pin 6	\therefore	7	14	mA
Operating Supply Voltage		2.5		15	V
Output Power (Note 2)	THD $=10 \%$				
	$\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \Omega$		4.8		W
	$\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$		2.8		W
	$V_{S}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		1.5		W
*	$V_{S}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \Omega$		8.8		W
	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$		5		w
	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		2.6		W
Drive Current	Top or Bottom Side Sinking Current, Current Set Resistors 5.1Ω and 10Ω	100	200		mA
Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \Omega, 4 \Omega, 8 \Omega$	$V_{S}-2 V_{S A T}$			Vp-p
Total Harmonic Distortion	$\mathrm{PO}=0.5 \mathrm{~W}, \mathrm{f}=1 \mathrm{kHz}$		0.25		\%
Ripple Rejection	$C_{B Y P A S S}=5 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}$; Output Referred	40	55		dB
Equivalent Input Noise	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{BW}=10 \mathrm{kHz}$		3		$\mu \mathrm{V}$
-3 dB Bandwidth	$\mathrm{C}_{\text {COMP }}=50 \mathrm{pF}($ Note 3$)$		50		kHz
Input Bias Current			1	4	$\mu \mathrm{A}$

Note 1: For operating at elevated temperature, the device must be derated based on $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: Output power is a function of the $\mathrm{V}_{\mathrm{BE}}(\mathrm{on})$ and $\mathrm{R}_{\text {SAT }}$ of the output transistors.
Note 3: $\mathrm{C}_{\text {COMP }}$ is the compensation capacitor used between pins 2 and 9.

Connection Diagram

Typical Performance Characteristics

Distortion vs Output Power

Power Supply Rejection Ratio vs Frequency

Peak-to-Peak Output
Swing vs Supply Voltage

Open Loop Gain vs Frequency

Top Side Drive Current vs Resistance (See Figure 1a)

Distortion vs Frequency

Bottom Side Drive Current vs Resistance (See Figure 1a)

Circuit Description

The LM2000 Audio Driver has been designed to deliver maximum power into a $2 \Omega, 4 \Omega$, or 8Ω load, when used on a 2.5 V to 12 V supply. This high power is accomplished by using external power transistors with very low RSAT. Figure 1a shows the output stage of the LM2000 which saturates these output devices. The output transistor completes a local feedback loop with the output stage of the driver. This output stage has voltage gain, set by R1, R2, R3 and R4 to allow the output sense to swing from V_{S} to ground without saturating any internal nodes. The output stage voltage gain is independent of the overall voltage gain AV. Output transistors with low forced beta can be used since the drive current can be adjusted to meet the base current requirements of the output devices (see curves). In addition, C_{c} acts as a negative side bootstrap and acts to pull $\mathbf{Q 2}$ into saturation.

O- DENOTES IC PIN
CONNECTIONS
For $\mathrm{V}_{\mathrm{S}} \geq 12 \mathrm{~V}$, make R1, R2, R3, R4 1 watt resistors.

FIGURE 1a. Output Stage of the LM2000 Driving PNP Output Transistors

The LM2000 can be used to drive a complementary output pair as shown in Figure 1b. In this circuit, the coupling capacitor C_{c} no longer works as a bootstrap capacitor; Q2 will still saturate because large drive current supplied by the Darlington connection. This circuit performs optimally on $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 15 V . In a $70^{\circ} \mathrm{C}$ ambient temperature, power dissipation dictates allowable resistor and supply voltage ranges. For R2, R3 of Figures 1a and 1b, allowable values are:

$\min R 2, R 3$	$\mathbf{V}_{\mathbf{S}}$
1Ω	$\leq 9 \mathrm{~V}$
2.7Ω	$\leq 12 \mathrm{~V}$
5.1Ω	$\leq 15 \mathrm{~V}$

CONNECTIONS
For $\mathrm{V}_{\mathrm{S}} \geq 12 \mathrm{~V}$, make R1, R2, R3, R4 1 watt resistors.

Typical Applications (Continued)

FIGURE 2. LM2000 Driving Complementary Pair

External Components (See Figure 2)

COMPONENTS

COMMENTS
COMPONENTS
COMMENTS

1. $\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 4$

Sets base drive current to output transistors and adjust voltage gain in output stage (See curves). For $V_{S} \geq 12 \mathrm{~V}$ make resistors 1 watt.
2. R5, R6
3. R7, C5
4. R8
6. R10, R11
7. C 1
8. CBYPASS

Sets amplifier voltage gain $A_{V}=$ $1+$ R5/R6. R5 should be less than 200k because of input bias current voltage drop.

Stabilizes output stage.

Sets input impedance and DC bias to + input. For minimum offset voltage, make R8 $=$ R5.
5. R9 Improves clipping waveform.

Sets A-B bias current in output transistors Q1 and Q2.

Provides power supply filtering.

Improves power supply rejection (See curves).
9. C 2
10. C3
11. C 4
12. C 6

Input coupling capacitor. Pin 3 is at a DC potential of $V_{C C} / 2$. Low frequency pole is set at:
$f_{L}=\frac{1}{2 \pi R 8 C 2}$
Feedback capacitor. Ensures unity gain at DC for minimum offset at output. Also sets a low frequency pole at:
$f_{L}=\frac{1}{2 \pi R 6 C 3}$
Sinks and sources drive current for output transistors Q1 and Q2.

Output coupling capacitor. Isolates output sense from load. Low frequency effected by:
$f_{L}=\frac{1}{2 \pi C 6 R_{L}}$
C7 gives overall loop stability and adjusts bandwidth (See curves).

Power transistors. Supply current to load R_{L}.

Equivalent Schematic Diagram

Audio, Radio and TV Circuits

LM2001 Low Voltage Audio Driver

General Description

The LM2001 is a low voltage audio driver, designed to drive low cost external power transistors. The driver is capable of delivering 100 mA of drive current on a 6 V supply. Optimized for driving low impedance loads, the amplifier typically delivers 2.0 W into 2Ω on a 6 V supply. The LM2001 is designed to operate on supply voltages as low as 1.8 V .

A stable $A B$ bias scheme has been designed to prevent thermal runaway in the output transistors. The $A B$ bias transistor is internal, yet the amount of $A B$ bias current in the output stage can be externally adjusted. The bias stability is accomplished by forcing base current in the power transistors instead of forcing their $V_{B E}(O N)$.

Features

- Battery operation
- Very low supply voltage operation, 1.8 V
- High output power
- Stable AB bias current
- Adjustable gain and bandwidth
- No turn-ON or turn-OFF pops
- Self-centered biasing

Applications

- AM-FM radios
- Cassette recorders
- Motor speed controls
- Toys
- Portable tape recorders/phonographs
- Intercoms

Connection Diagram

Equivalent Schematic Diagram

Absolute Maximum Ratings

Supply Voltage	7 V	Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Package Dissipation (Note 1)	1.39 W	Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

$T_{A}=25^{\circ} \mathrm{C}, V_{S}=6 \mathrm{~V}, R_{L}=2 \Omega, A V=100(400 \mathrm{~dB}), f=1 \mathrm{kHz}, 92 P E 77 A$ output transistors, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	$\mathrm{PO}=0 \mathrm{~W}$		25		mA
IC Supply Current	Current Measured at Pin 6		5	10	mA
Operating Supply Voltage		1.8		6	v.
Output Power	THD $=10 \%$				
	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \Omega$		2		w
	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$.		1.2		W
	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		600		mW
	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \Omega$		480		mW
	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$		280		mW
	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		160		mW
Drive Current	Top or Bottom Side Sinking Current, External Power Transistors $\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})=0.9 \mathrm{~V}$	100	150		mA
Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \Omega, 4 \Omega$ or 8Ω	$\mathrm{V}_{\mathrm{S}}-2 \mathrm{~V}_{\text {SAT }}$			Vp-p
Total Harmonic Distortion	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \Omega, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}, \mathrm{f}=1 \mathrm{kHz}$		0.25		\%
Ripple Rejection	$C_{\text {BYPASS NO. }} 1=5 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}$, Output Referred	40	60		dB
Equivalent Input Noise	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{BW}=10 \mathrm{kHz}$		3		$\mu \mathrm{V}$
-3 dB Bandwidth	$\mathrm{C}_{\text {COMP }}=50 \mathrm{pF}$		50		kHz
Input Bias Current			1	4	$\mu \mathrm{A}$

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

External Components (Figure 2)

Circuit Description

The LM2001 audio driver has been designed to fill a large number of low voltage applications. The requirements of adjustable gain, bandwidth, and quiescent current as well as high power output, low voltage operation, and a stable bias scheme makes this driver quite versatile.

High output power is achieved by using external PNP transistors with low RSAT. As seen in Figure 1, the
output transistors complete a local feedback loop with the output stage of the driver. This output stage has voltage gain to allow the output sense pin to swing from V_{S} to ground without saturating internal nodes of the driver. Output transistors with a forced beta as low as 10 are capable of supplying 1 A to the load because CBYPASS NO. 2 enables the drive transistors to sink 100 mA . The output coupling capacitor C_{C} acts as a negative side bootstrap. When the output signal swings negative, C_{C} acts to pull Q 2 into saturation.

FIGURE 1. Output Stage of the LM2001

Typical Applications

FIGURE 2. LM2001 Power Amplifier, $\mathbf{A v} \cong \mathbf{1 0 0}$

FIGURE 3. LM2001 Motor Speed Control

Power Supply Rejection Ratio vs Frequency

Distortion vs Output Power

Device Dissipation vs Output

 Power 4Ω Load

Power Output vs Supply

 Voltage

Distortion vs Frequency

Device Dissipation vs Output Power 2Ω Load

Peak-to-Peak Output Voltage Swing vs Supply Voltage

LM2002/LM2002A 8 Watt Audio Power Amplifier

General Description

The LM2002 is a cost effective, high power amplifier suited for automotive applications. High current capability (3.5 A) enables the device to drive low impedance loads with low distortion. The LM2002 is current limited and thermally protected. High voltage protection is available (LM2002A) which enables the amplifier to withstand 40 V transients on its supply. The LM2002 comes in a 5-pin TO-220 package.
Features

- High peak current capability (3.5A)
- Large output voltage swing
- Externally programmable gain
- Wide supply voltage range ($5 \mathrm{~V}-20 \mathrm{~V}$)
- Few external parts required
- Low distortion
- High input impedance
- No turn-on transients
- High voltage protection available (LM2002A)
- Low noise
- Short circuit protected
- Pin for pin compatible with TDA2002

Equivalent Schematic

Connection Diagram

TO.220 Plastic Package

Order Number LM2002T or LM2002AT See NS Package T05A

Typical Applications

Absolute Maximum Ratings

Peak Supply Voltage (50 ms	
LM2002A(Note2)	40 V
LM2002	25 V
OperatingSupply Voltage	20 V
Output Current	
Repetitive	3.5 A
Non-repetitive	4.5 A
Input Voltage	$\pm 0.5 \mathrm{~V}$
PowerDissipation(Note3)	15 W
Operating Temperature	$0^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}$
Storage Temperature	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $V_{S}=14.4 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, A_{V}=100(40 \mathrm{~dB}), R_{L}=4 \Omega$, unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
DC Output Level	Excludes Current in Feedback Resistors	6.4	7.2	8	V
Quiescent Supply Current			45	80	mA
Supply Voltage Range		5		20	v
Input Resistance			150		k Ω
Bandwidth	Gain $=40 \mathrm{~dB}$		100		kHz
Output Power	$\begin{aligned} & V_{S}=13.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \% \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega, \mathrm{THD}=10 \% \end{aligned}$				
			4.3		w
			6.5		W
	$\begin{aligned} & V_{S}=13.8 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \% \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega, \mathrm{THD}=10 \% \end{aligned}$				
			4.8		W
			7.4		w
	$\begin{aligned} & V_{S}=14.4 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ & R_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \% \end{aligned}$				
		4.8	5.2		w
	$\begin{aligned} & R_{L}=2 \Omega, T H D=10 \% \\ & R_{L}=1.6 \Omega, T H D=10 \% \end{aligned}$	7	8		W
			9		W
	$\begin{aligned} & V_{S}=16 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ & R_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \% \\ & R_{\mathrm{L}}=2 \Omega, \mathrm{THD}=10 \% \\ & R_{\mathrm{L}}=1.6 \Omega, \mathrm{THD}=10 \% \end{aligned}$		6.5		W
			10		w
			10.5		W
THD	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=2 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{P}_{\mathrm{o}}=4 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=2 \Omega, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.1		\%
			0.1		\%
Ripple Rejection	$\begin{aligned} & R_{S}=50 \Omega, f=100 \mathrm{~Hz} \\ & R_{S}=50 \Omega, f=1 \mathrm{kHz} \end{aligned}$	30	40		dB
			44		dB
Input Noise Voltage	$R_{S}=0,15 \mathrm{kHz}$ Bandwidth $\mathrm{R}_{\mathrm{S}}=100 \mathrm{k} \Omega, 15 \mathrm{kHz}$ Bandwidth		2		$\mu \mathrm{V}$
Input Noise Current			40		pA

Note 1: A 1.0 resistor and $0.1 \mu \mathrm{~F}$ capacitor should be placed as close as possible to pins 3 and 4 for stability.
Note 2: The LM2002 shuts down above 25V.
Note 3: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.

Typical Performance Characteristics

Typical Applications (Continued)

Component Layout

*Staver V-5

LM2808 Monolithic TV Sound System

General Description

The LM2808 2W sound IF circuit is designed for television and related applications. The circuit is comprised of 2 independent functions: a sound IF and an audio power amplifier. An improved volume control circuit is included, however, so that recovered audio is a linear function of the resistance of the control potentiometer. Audio power amplification is accomplished with circuitry similar to the popular LM380 audio power amplifier, featuring both short circuit and thermal protection.

Features

- Minimum undistorted output LM2808 - 0.5W
- Linear volume control - 75 dB range
- Fixed voltage gain in audio amplifier
- Short circuit and thermal protection
- Standard dual-in-line package

Schematic Diagrams (For power amplifier section of schematic, see next page)

IF and Detector

Absolute Maximum Ratings

Supply Voltage, VCC (Pin 2)	
\quad LM2808	20 V
Input Current, IMAX (Pin 6)	50 mA
Input Signal Voltage (Between Pins 12 and 13)	$3 \mathrm{Vp}-\mathrm{p}$

Storage Temperature Range Operating Temperature Range Maximum Junction Temperature Lead Temperature (Soldering, 10 seconds)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics (See test circuit)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{P}_{\mathrm{O}} @ 10 \% \text { THD }$					
LM2808	$V_{C C}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		2.6		w
	$V_{C C}=14 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		1.9		W
	$V_{C C}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		1.3		w
Feedthrough Signal (Pin 1)	$\mathrm{R} \operatorname{Pin} 7=0 \Omega$			15	mVrms
Current into Pin 6	$V \operatorname{Pin} 6=10 \mathrm{~V}$	7	10.8	15	mA
AM Rejection	$\begin{aligned} & V I N=10 \mathrm{mVrms} \\ & \Delta f=25 \mathrm{kHz}, A M=30 \% \end{aligned}$	40			dB
Recovered Audio (Pin 8)		350	500		mVrms
Input Limiting Voltage at 4.5 MHz			200	400	$\mu \mathrm{V}$
Audio Power Amp Voltage Gain (Pin 16 to Pin 1)		40		60	V/V
Output Noise, Input Signal Removed (Pin 1)	$R \mathrm{Pin} 7=0 \Omega$		70	150	mVrms
Distortion (Pin 8)	$\Delta \mathrm{F}=25 \mathrm{kHz}, \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz}$		1.2	2	\%
Distortion (Pin 1)					
LM2808	$\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		1.2	2	\%
Input Impedance (Pin 16)		50	200		$k \Omega$
Current into Pin 2 (Zero Audio Output at Pin 1)	$\mathrm{V} 2=24 \mathrm{~V}$	2	5	20	mA

Schematic Diagrams (Continued)

Typical Application and Test Circuit

Television Sound System

Connection Diagram

Typical Performance Characteristics

Volume Control Characteristic

Allowable Device Dissipation vs Ambient Temperature

LM3011 Wide Band Amplifier

General Description

The LM3011 is a monolithic wide band amplifier circuit that requires a minimum of external components for operation. It includes three stages of limiting.

Features

- A direct replacement for CA3011
- High amplifier gain
- Excellent limiting characteristics
- Wide frequency capability

Schematic Diagram

Block Diagram

Connection Diagram

Order Number LM3011H See NS Package H10C

Absolute Maximum Ratings

Supply Voltage	15 V
Input Signal (Pin 1)	$\pm 3 \mathrm{~V}$
Power Dissipation (Note 1)	715 mW

$\begin{array}{lr}\text { Operating Temperature Range } & -55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Lead Temperature (Soldering, } 10 \mathrm{sec} \text {) } & 300^{\circ} \mathrm{C}\end{array}$
Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
STATIC CHARACTERISTICS					
Total Device Dissipation (P_{T})	$\mathrm{V}_{\mathrm{cc}}=6 \mathrm{~V}$ (Figure 1)	60	90	133	mW
Total Device Dissipation ($\mathbf{P}_{\mathbf{T}}$)	$\mathrm{V}_{\mathrm{Cc}}=7.5 \mathrm{~V}$ (Figure 1)	95	120	187	mW
DYNAMIC CHARACTERISTICS $V_{\text {CC }}=7.5 \mathrm{~V}, \mathrm{~F}=4.5 \mathrm{MHz}$, unless otherwise noted					
Voltage Gain (A)	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Figure 2)	60	66		dB
Voltage Gain (A) .	$\mathrm{V}_{C C}=7.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Figure 2)	65	70		dB
Voltage Gain (A)	$V_{C C}=7.5 \mathrm{~V}, \mathrm{f}=10.7 \mathrm{MHz}($ Figure 2)	55	61		dB
Parallel Input Resistance ($\mathrm{R}_{1 N}$)			3		$k \Omega$
Parallel Input Capacitance ($\mathrm{C}_{1 \mathrm{~N}}$)			7		pF
Parallel Output Resistance ($\mathrm{R}_{\text {OUT }}$)			31.5		$k \Omega$
Parallel Output Capacitance ($\mathrm{C}_{\text {OUT }}$)			4.2		pF
Noise Figure (NF)			8.7		dB
Input Limiting Voltage ($\mathrm{V}_{\text {IN (L,m) }}$)	$(-3 \mathrm{~dB}) \quad$ (Figure 2)		300	400	$\mu \mathrm{V}$

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Test Circuits

LM3064 Television Automatic Fine Tuning

General Description

The LM3064 is a monolithic integrated circuit designed primarily for AFT (automatic fine tuning) applications. It includes a zener regulated power supply, IF amp, differential peak detector, and an AGC circuit.

The LM3064 is supplied in both the formed and straight lead 14 -lead dual-in-line package.

Features

- Primarily intended for AFT applications
- High gain input amp (18 mV for rated output)
- Differential output correction voltage
- Wide operating temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Formed leads available for easy PC board design

Schematic and Connection Diagrams

Order Number LM3064N See NS Package N14A

Order Number LM3064N-01 See NS Package N14C

Test Circuits

Test Circuit 2 DC Parameter Test Circuit

Audio, Radio and TV Circuits

LM3075 FM Detector/Limiter and Audio Preamplifier

General Description

The LM3075 is a monolithic integrated circuit FM detector/limiter and audio preamplifier that requires a minimum of external components for operation. It includes three stages of IF limiting and a differential-peak-detection circuit.

Features

- A direct replacement for the CA3075
- Simple detector alignment: one coil
- Sensitivity: 3 dB limiting voltage $250 \mu \mathrm{~V}$ typical at 10.7 MHz
- Low harmonic distortion
- Excellent AM rejection 55 dB typ. at 10.7 MHz
- Internal audio preamplifier

Schematic Diagram

Block Diagram

Typical Application

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Test Circuits

TEST CIRCUIT 1

TEST CIRCUIT 2

National

Audio, Radio and TV Circuits

LM3089 FM Receiver IF System

General Description

The LM3089 has been designed to provide all the major functions required for modern FM IF designs of automotive, high-fidelity and communications receivers.

Features

- Three stage IF amplifier/limiter provides $12 \mu \mathrm{~V}$ (typ) -3 dB limiting sensitivity
- Balanced product detector and audio amplifier provide 400 mV (typ) of recovered audio with distortion as low as 0.1% with proper external coil designs
- Four internal carrier level detectors provide delayed AGC signal to tuner, IF level meter drive current and interchannel mute control
- AFC amplifier provides AFC current for tuner and/or center tuning meters
- Improved operating and temperature performance, especially when using high Q quadrature coils in narrow band FM communications receivers
- No mute circuit latchup problems
- A direct replacement for CA3089E

Block and Connection Diagram

Order Number LM3089N See NS Package N16E

Absolute Maximum Ratings

Supply Voltage Between Pin 11 and Pins 4, 14
$+16 \mathrm{~V}$
DC C.urrent Out of Pin 125 mA
DC Current Out of Pin $13 \quad 5 \mathrm{~mA}$
DC Current Out of Pin $15 \quad 2 \mathrm{~mA}$
Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}\right.$, see Test Circuit)

Power Dissipation (Note 2) Operatıng Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 seconds)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS ($V_{\text {IN }}=0$, NOT MUTED)						
111	Supply Current		16	23	30	mA
V1, 2, 3	IF Input and Bias		1.2	1.9	2.4	v
V6	Audio Output		5.0	5.6	6.0	v
V7	AFC Output		5.0	5.6	6.0	V
V10	Reference Bias		5.0	5.6	6.0	v
V12	Mute Control		5.0	5.4	6.0	V
V13	IF Level			0	0.5	v
V15	Delayed AGC		4.2	4.7	5.3	V

DYNAMIC CHARACTERISTICS $f_{0}=10.7 \mathrm{MHz}, \triangle f= \pm 75 \mathrm{kHz} @ 400 \mathrm{~Hz}$

$V_{\text {IN }}($ LIM $)$	Input Limiting -3 dB			12	25	$\mu \mathrm{V}$
AMR	AM Rejection	$V_{I N}=100 \mathrm{mV}, \mathrm{AM}: 30 \%$	45	55		-dB
$V_{O}(\mathrm{AF})$	Recovered Audio	$V_{\text {IN }}=10 \mathrm{mV}$	300	400	500	mVrms
THD	Total Harmonic Distortion					
	Single Tuned (Note 1)	$V /{ }^{\prime}=100 \mathrm{mV}$		0.5	1.0	\%
	Double Tuned (Note 1)	$V_{I N}=100 \mathrm{mV}$		0.1 .	0.3	\%
S+N/N	Signal to Noise Ratio	$V_{\text {IN }}=100 \mathrm{mV}$	60	70		dB
V12	Mute Control	$V_{\text {IN }}=100 \mathrm{mV}$		0	0.5	V
V13	IF Level	$V_{\text {IN }}=100 \mathrm{mV}$	4.0	5.0	6.0	V
V13	IF Level	$V_{\text {IN }}=500 \mu \mathrm{~V}$	1.0	1.5	2.0	V
V15	Delayed AGC	$V_{\text {IN }}=100 \mathrm{mV}$		0.1	0.5	v
V15	Delayed AGC	$V /{ }_{\text {IN }}=30 \mathrm{mV}$		2.5		V
$\mathrm{V}_{\mathrm{O}}(\mathrm{AF})$	Audio Muted	$V_{\text {IN }}=100 \mathrm{mV}, \mathrm{V} 5=+2.5 \mathrm{~V}$		60		-dB

Note 1: Distortion is a function of quadrature coil used.
Note 2: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Typical Performance Characteristics

Typical AGC (Pin 15) and Meter Output (Pin 13) vs IF Input Signal

AM Rejection (30\% Mod) vs IF Input Signal

1390 mW $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

LM3089

Typical Performance Characteristics (Continued)

Mute Control Output (Pin 12) vs IF Input Signal

AC/DC Test Circuit

*For single tuned detector coil:
Lo tunes with 100 pF at 10.7 MHz
$Q_{U L}$ (unloaded) $\cong 75$
$Q_{L}($ loaded $) \cong 13$ for $\mathrm{V} 9 \cong 150 \mathrm{mVrms}$
**For double tuned detector coil:
$Q_{\text {ULPRI }}=Q_{\text {ULSEC }} \cong 75$
$k Q \cong 0.7$ for $\mathrm{V} 9 \cong 150 \mathrm{mV} \mathrm{rms}$

Note:

The recovered audio output voltage will be approximately 0.5 dB less when using the double tuned detector coil.
For proper operation of the mute circuit, the RF voltage at pin 9 should be $150 \mathrm{mVrms} \pm 30 \mathrm{mV}$.

7 National Semiconductor

LM3189 FM IF System

Audio, Radio and TV Circuits

General Description

The LM3189N is a monolithic integrated circuit that provides all the functions of a comprehensive FM IF system. The block diagram of the LM3189N includes a three stage FM IF amplifier/limiter configuration with level detectors for each stage, a doubly balanced quadrature FM detector and an audio amplifier that features the optional use of a muting (squelch) circuit.
The advanced circuit design of the IF system includes desirable deluxe features such as programmable delayed AGC for the RF tuner, an AFC drive circuit, and an output signal to drive a tuning meter and/or provide stereo switching logic. In addition, internal power supply regulators maintain a nearly constant current drain over the voltage supply range of +8.5 V to +16 V .

The LM3189N is ideal for high fidelity operation. Distortion in an LM3189N FM IF system is primarily a function of the phase linearity characteristic of the outboard detector coil.

The LM3189N has all the features of the LM3039N plus additions.

The LM3189N utilizes the 16 -lead dual-in-line plastic package and can operate over the ambient temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Exceptional limiting sensitivity: $12 \mu \mathrm{~V}$ typ at -3 dB point
- Low distortion: 0.1% typ (with double-tuned coil).
- Single-coil tuning capability
- Improved ($\mathrm{S}+\mathrm{N}$)/N ratio
- Externally programmable recovered audio level
- Provides specific signal for control of inter-channel muting (squelch)
- Provides specific signal for direct drive of a tuning meter
- On channel step for search control
- Provides programmable AGC voltage for RF amplifier
- Provides a specific circuit for flexible audio output
- Internal supply voltage regulators
- Externally programmable ON channel step width, and deviation at which muting occurs

Absolute Maximum Ratings

Supply Voltage Between Pin 11 and Pins 4, 14	16 V
DCCurrent Out of Pin 12	5 mA
DCCurrent Out of Pin 13	5 mA
DCCurrent Out of Pin 15	2 mA
Power Dissipation(Note2)	1390 mW
Operating TemperatureRange	$-40^{\circ} \mathrm{Cto}+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{Cto}+150^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{v}^{+}=12 \mathrm{~V}$

Symbol	Parameter	Conditions (see single-tuned test circuit)	Min	Typ	Max	Units

STATIC (DC) CHARACTERISTICS

l_{11}	Quiescent Circuit Current	No Signal Input, Non Muted		20	31	44	mA
	DC Voltages:						
V1	Terminal 1 (IF Input)			1.2	2.0	2.4	V
V2	Terminal 2 (AC Return to Input)			1.2	2.0	2.4	V
V3	Terminal 3 (DC Bias to Input)			1.2	2.0	2.4	V
V15	Terminal 15 (RF AGC)			7.5	9.5	11	V
V10	Terminal 10 (DC Reference)			5	5.75	6	V
DYNAMIC CHARACTERISTICS							
$V_{\text {I }}$ (lim)	Input Limiting Voltage (-3 dB Point)		$\begin{aligned} & \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz}, \\ & \mathrm{f}_{\text {mod }}=400 \mathrm{~Hz}, \\ & \text { Deviation } \pm 75 \mathrm{kHz} \end{aligned}$		12	25	$\mu \mathrm{V}$
AMR	AM Rejection (Term. 6)	$\left\{\begin{array}{l} V_{\text {IN }}=0.1 \mathrm{~V} \\ \text { AM Mod. }=30 \% \end{array}\right.$		45	55		dB
$V_{0}(A F)$	Recovered AF Voltage (Term. 6)			325	500	650	mV
THD	Total Harmonic Distortion (Note 1) Single Tuned (Term. 6) Double Tuned (Term. 6)	$\mathrm{V}_{\text {IN }}=0.1 \mathrm{~V}$			$\begin{aligned} & 0.5 \\ & 0.1 \end{aligned}$	1	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
$\mathrm{S}+\mathrm{N} / \mathrm{N}$	Signal plus Noise to Noise Ratio (Term. 6)			65	80		dB
$\mathrm{f}_{\text {DEV }}$	Deviation Mute Frequency		$\mathrm{f}_{\text {mod }}=0$		± 40		kHz
V16	RF AGC Threshold ${ }^{\text {- }}$				1.25		V
V12	On Channel Step	$\mathrm{V}_{\text {IN }}=0.1 \mathrm{~V}$	$\begin{aligned} & \mathrm{f}_{\mathrm{DEV}}< \pm 40 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{DEV}}> \pm 40 \mathrm{kHz} \\ & \hline \end{aligned}$		0 5.6		V

Note 1: THD characteristics are essentially a function of the phase characteristics of the network connected between terminals 8 , 9 , and 10.
Note 2: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Connection Diagram

Order Number LM3189N See NS Package N16A

All resistance values are in ohms

* L tunes with $100 \mathrm{pF}(\mathrm{C})$ at $10.7 \mathrm{MHz}, \mathrm{Q}_{\mathrm{O}}$ (unloaded) $\cong 75$ (Toko No. KACS K586HM or equivalent)
** $\mathrm{C}=0.01 \mu \mathrm{~F}$ for $50 \mu \mathrm{~s}$ de-emphasis (Europe) $=0.015 \mu \mathrm{~F}$ for $75 \mu \mathrm{~s}$ de-emphasis (USA)

Test Circuits (Continued)

Test Circuit for LM3189N Using a Double-Tuned Detector Coil

All resistance values are in ohms

* T:PRI-Q Q_{0} (unloaded) $\cong 75$ (tunes with $100 . \mathrm{pF}$ (C1)) 20 t of 34 e on 7/32' dia form SEC- Q_{0} (unloaded) $\cong 75$ (tunes with 100 pF (C2)) 20 t of 34 e on 7/32' dia form
$k Q($ percent of critical coupling) $\equiv 70 \%$ (adjusted for coil voltage V_{C}) $=150 \mathrm{mV}$
Above values permit proper operation of mute (squelch) circuit "E" type slugs, spacing 4mm
* * $\mathrm{C}=0.01 \mu \mathrm{~F}$ for $50 \mu \mathrm{~s}$ de-emphasis (Europe) $=0.015 \mu \mathrm{~F}$ for $75 \mu \mathrm{~s}$ de-emphasis (USA)

Complete FM IF System for High Quality Tuners

The circuit provides a complete FM IF system for a high quality receiver. Either one or two stages of amplification and bandpass filtering may be desired, depending on the
receiver requirements. See graph for Typical Limiting and Noise Characteristics for each circuit configuration which can be compared to the LM3189N alone.

Complete FM IF System for High Quality Receivers

Printed Circuit Board and Component Layout

Typical Performance Characteristics

AM Rejection (30% Mod) vs IF Input Signal

Mute Control Output (Pin 12) vs IF Input Signal

Typical Audio Attenuation (Pin 6) vs Mute Input Voltage (Pin 5)

Muting Action, Tuner AGC, and Tuning Meter Output as a Function of Input Signal Voltage

Deviation Mute Threshold as a Function of Load Resistance (Between Term 7 and Term 10)

AFC Characteristics
(Current at Term 7 as a Function of Change in Frequency)

Typical Limiting and Noise Characteristics

Audio, Radio and TV Circuits

LM3820 AM Radio System

General Description

The LM3820 is a 3-stage AM radio IC consisting of an RF amplifier, oscillator, mixer, IF amplifier, AGC detector, and zener regulator.

The device was originally designed for use in slug-tuned auto radio applications, but is also suitable for capacitortuned portable radios.

The LM3820 is an improved replacement for the LM1820.

Features

Input protection diodes

- Good control on sensitivity
- Improved S/N and tweet
- Versatile building-block approach

E Gain-controlled RF stage

- Cascode IF amplifier
- Regulated supply
- Pin compatible with LM1820

Connection Diagram

Order Number LM3820N See NS Package N14A

Circuit Schematic

Absolute Maximum Ratings

Power Dissipation (Note 1)
Supply Voltage
Current into Supply Terminal (Pin 3)

Operating Temperature Range
$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

Electrical Characteristics (Figure $1, \mathrm{~T}_{\mathrm{A}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$ unless noted).

Parameter	Conditions	Min	Typ	Max	Units
Supply Current ($\mathrm{I}_{\text {s }}$)	No RF Input	12	18	24	mA
Internal Zener Voltage (V_{z})		7.0	7.5	8.0	V
Input Sensitivity	$f=1 \mathrm{MHz}, 30 \% \operatorname{Mod} 400 \mathrm{~Hz}$ Measure RF Input Level for 10 mV Audio Output with Tuning Peaked	15	35	70	$\mu \mathrm{V}$
Signal to Noise Ratio	$\mathrm{f}=1 \mathrm{MHz}, 30 \% \operatorname{Mod} 1 \mathrm{kHz}$ ($\mathrm{S}+\mathrm{N}$)/N at Audio Output with $100 \mu \mathrm{~V}$ RF Input	22	28	-	dB
Overload Distortion	$\mathrm{f}=1 \mathrm{MHz}, 90 \%$ Mod 1 kHz THD at Audio Output with 30 mV RF Input	-	6	10	\%

Note 1: Above $T_{A}=25^{\circ} \mathrm{C}$, derate based on $T_{J(M A X)}=150^{\circ} \mathrm{C}$ and $\theta_{J A}=180^{\circ} \mathrm{C} / \mathrm{W}$

Typical Applications

Applications Information

The circuit shown in Figure 1 is recommended as a starting point for portable radio designs. Loopstick antenna L1 is used in place of L0, and the RF amplifier is used with a resistor load to drive the mixer. A double tuned circuit at the output of the mixer provides selectivity, while the remainder of the gain is provided by the IF section, which is matched to the diode through a unity turns ratio transformer. $\mathrm{R}_{\mathrm{AGC}}$ may be used in place of $\mathrm{C}_{\mathrm{AGC}}$ to bypass the internal AGC detector and provide more recovered audio.

An AM automobile radio design is shown in Figure 2. Tuning of both the input and the output of the RF amplifier and the mixer is accomplished with variable inductors. Better selectivity is obtained through the use of double tuned interstage transformers. Input circuits are inductively tuned to prevent microphonics ánd provide a linear tuning motion to facilitate push-button operation.

Coil specifications for Figure 1 are as follows:

VC	AM PVC	$L 1$	AM ANT	L0, L2	AM OSC
			$525 \mathrm{kHz} \cdot 1650 \mathrm{kHz}$		$980 \mathrm{kHz}-2105 \mathrm{kHz}$
$\begin{aligned} & C_{A}=140 \mathrm{pF} \\ & C_{B}=60 \mathrm{pF} \end{aligned}$			STM,		
T1	AM 1st IF	T2	AM 2nd IF	T3	AM 3rd IF
	455 kHz		455 kHz		455 kHz

PCB Layout for Figure 1 Circuit

Typical Applications (Continued)

LM4500A High Fidelity FM Stereo Blend Demodulator

General Description

The LM4500A provides low distortion and high FM stereo channel separation required in high fidelity stereo receivers. A phase locked loop technique is implemented in order to reject subcarrier harmonics and to remove all inductive components from the final system. The circuit can provide overall gain and prevents stereo to mono switching transients. An external voltage input is available for voltage controlled blend.

Features

- Low distortion 0.1\% typ
- High separation over the entire audio spectrum
- Adjustable gain

■ High power supply rejection 45 dB typ

- Transient-free, automatic stereo/mono switching
- Requires no inductors
- Low output impedance
- Large input dynamic range 2.5 Vp -p
- High subcarrier harmonic rejection
- Voltage controlled blend

Block Diagram

Order Number LM4500AN
See NS Package N16A

TBA120S IF Amplifier and Detector

General Description

The TBA120S is a monolithic integrated circuit specifically designed for audio detection in TV and FM radio receivers. It incorporates an 8 -stage limiting IF amplifier and balanced detector plus a dc operated volume control.

Features

- Electronic attenuator: replaces conventional ac volume control
- Volume reduction range
- Sensitivity: 3 dB limiting voltage $30 \mu \mathrm{~V}$ typ
- Excellent AM rejection 68 dB typ at 10 mV
- Audio output voltage

1V typ

- Wide supply voltage range ($6-18 \mathrm{~V}$)
- Internal zener diode regulator
- Very low external component requirement
- Simple detector alignment: one coil

The TBA120S is supplied in four groups depending on the resistance required between pin 5 and ground to attenuate the audio output by 30 dB . The group number as defined below is marked on the package.

GROUP	II	III	IV	V	
R5-Gnd	$1.9-2.2$	$2.1-2.5$	$2.4-2.9$	$2.8-3.3$	$\mathrm{k} \Omega$

Pins 3 and 4 are connected to the collector and base of a transistor which may be used as an AF-preamplifier or as a switch.

At pin 12 a zener-diode is accessible which can be used to stabilize the supply voltage of this integrated circuit or the voltage of other circuit elements in the set.

Connection Diagram

Dual-In-Line Package

> Order Number TBA120S II, TBA120S III, TBA120S IV or TBA 120S V See NS Package N14A

Order Number TBA 120SQ II, TBA120SO III, TBA120SQ IV, TBA120SQ V See NS Package N14C

Typical Application ${ }^{5.5 \mathrm{MHz} \text {) }}$

Test Circuit (5.5 MHz)

Absolute Maximum Ratings

Supply Voltage, V11
Volume Control Voltage, V5
Zener Current, I 12
Transistor Collector Current, I_{3}

Transistor Base Current, I4
Bias Resistance (Max), R13:14
Operating Temperature Range Storage Temperature Range

2 mA
$1 \mathrm{k} \Omega$
$-15^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Schematic Diagram

\checkmark National Semiconductor TBA120U, TBA120T IF Amplifier and Detector

General Description

The TBA120U, TBA120T is a monolithic integrated circuit specifically designed for audio detection in TV and FM radio receivers. It incorporates an 8 stage limiting IF amplifier and balanced detector plus a DC operated volume control. The circuit also provides connection facilities for a video tape recorder. The TBA120T is designed primarily for use with ceramic filters while the TBA120U is optimized for inductive tuning.

Audio, Radio and TV Circuits

Features

- Electronic attenuator: replaces conventional AC volume control
- Volume reduction range: 85 dB typ
- Sensitivity: 3 dB limiting voltage $30 \mu \mathrm{~V}$ typ
- Excellent AM rejection 68 dB typ $500 \mu \mathrm{~V}$
- Wide supply voltage range (6 to 18 V)
- Easy video recorder connection
- Very low external component requirement
- Simple detector alignment: one coil

Block and Connection Diagrams

Electrical Characteristics (Continued) ($\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	- UNITS
TBA120U Only (Continued)						
Vaf8	A.F. Output Voltage	$\begin{aligned} & f=5.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{MOD}}=1 \mathrm{kHz} \\ & \Delta \mathrm{f}= \pm 50 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{i}}=10 \mathrm{mV} \\ & Q_{B}=45 \end{aligned}$		1.3		,
Vaf12	A.F. Output Voltage			1.0	,	V
	Distortion	$\begin{aligned} & f=5.5 \mathrm{MHz} \\ & \Delta f= \pm 50 \mathrm{kHz} \\ & f_{M O D}=1 \mathrm{kHz} \\ & Q_{B}=45 \\ & V_{i}=10 \mathrm{mV} \end{aligned}$		1	-	\%

Typical Application (5.5 MHz)

Circuit for Direct Connection to Video Recorders

Socket 1: Switching voltage: on playback 12 V on record open circuit. Socket 2: Video recorder input/output.

Schematic Diagram tBA120U

Audio, Radio and TV Circuits

TBA440C Monolithic Video IF Amplifier

General Description

The TBA440C is a monolithic video IF amplifier for color and monochrome television receivers.

The circuit includes three IF amplifier stages, a balanced video IF detector and a gated AGC section for the IF amplifier and PNP tuner.

Features

- High gain-high stability
- Minimal noise increase, incurred by use of AGC
- Minimum RF breakthrough to video outputs
- Fast AGC action-gating largely independent of pulse shape and amplitude
- Very low intermodulation products
- Positive and negative video signals are available from low impedance outputs
- Integrated temperature compensating circuit

Connection Diagram

Test Circuit

Absolute Maximum Ratings

Supply Voltage

Current Into Pin 14
Power Dissipation
Maximum Resistance 'Between Pins 8 and 9
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

15 V
50 mA
700 mW
20Ω
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics ($T_{A}=25^{\circ} \mathrm{C}, V_{C C}=13 \mathrm{~V}, 1_{14}=40 \mathrm{~mA}$, unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
113	Current Consumption	$\mathrm{V} 13=15 \mathrm{~V}$	14.5	17.5	20.5	mA
V14	Internal Supply Voltage	$\mathrm{I}_{14}=40 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=0$	5.5	6.0	6.8	V
V11	DC Voltage at Output	$\mathrm{V}_{\text {IN }}=0$	5.5	7	8.5	V
V12	DC Voltage at Output		1.7	3	4.3	v
15	Control Current for Tuner AGC	(10 dB After Beginning of , the Tuner $A G C, V 5 \geq 2 V$)	3			mA
V4	IF Control Voltage for GMAX		0		0.5	V
V4	IF Control Voltage for GMIN		2.5			V
V7	Voltage for AGC Gating Input		-5		-2	V
R10-11	Resistance for Output .Voltage	$\mathrm{V} 11=3 \mathrm{Vp} \cdot \mathrm{p}$	3	4	10	$k \Omega$
111. ${ }^{12}$	Available Output Current to Ground				5	mA
111.112	Available Output Current to $\mathrm{V}_{\text {CC }}+$		-1			mA
Z1-16	Input Impedance at GMAX			1.8/2		$\mathrm{k} \Omega / \mathrm{pF}$
21-16	Input Impedance at GMIN			1.9/0		$\mathrm{k} \Omega / \mathrm{pF}$
VIN	Input Voltage	$\mathrm{V} 11=2 \mathrm{Vp}$-p, (Note 1)		100		$\mu \mathrm{V}$
VIN	Input Voltage	$\mathrm{V} 11=3 \mathrm{Vp}-\mathrm{p},($ Note 1$)$		150		$\mu \mathrm{V}$
BVIDEO	Video Bandwidth			9		MHz
GV	AGC Range		50	55		dB
	Sound/Chroma Intermodulation Products	(Note 2)	-40			dB

Note 1: RMS of sync tip voltage, see test circuit.
Note 2: Sound subcarrier-24 dB Color subcarrier-2 dB

Audio, Radio and TV Circuits

TBA510 Chrominance Combination

General Description

The TBA510 is an integrated chrominance amplifier circuit for color TV receivers incorporating a variable gain ACC circuit, a de control for chroma saturation
which can be ganged to the receiver contrast control, chroma blanking and burst gating functions, a burst output stage, a color killer and a PAL delay line driver.

Connection Diagram

Typical Application

Note: The A.C.C. loop gain can be defined by inserting a suitable resistor between pins 2 \& 3. (Example $22 \mathrm{k} \Omega$).

Absolute Maximum Ratings

Power Dissipation, ($\left.T_{A}=60^{\circ} \mathrm{C}\right)$
V1-16
V13-16
V14-16
V8-16
V11-16
$I_{8}=-19$
$l_{11}=-1_{12}$
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

550 mW
13.2 V
$-5 \mathrm{~V}$ $-5 \mathrm{~V}$
$+20 \mathrm{~V}$
550 mW
13.2 V
-5 V
-5 V
+20 V
+20 V
20 mA
20 mA
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics ($\left.\mathrm{V} 1-16=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

CHROMINANCE SIGNAL (FED IN VIA 1 nF)

V4-16	Input Voltage Range		15		300	$\mathrm{mVp}-\mathrm{p}$
$124-16 \mathrm{i}$	Input Impedance					

BURST SIGNAL OUTPUT

V12-16	DC Voltage			7.7		V
V12-16	Output Signal					
111	Collector Current of Output Transistor					Vp-p

CHROMINANCE SIGNAL OUTPUT (BURST BLANKED INTERNALLY)

ACC INPUT

| V2-16
 $\|Z 2-16\|$ | ACC Threshold Voltage
 Input Impedance | | 2.5 | | V |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |

CHROMA-SATURATION CONTROL

Electrical Characteristics (Continued), (VV-16=12V. $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Note 1: The phase difference between the chroma and burst outputs at nominal saturation is less than 5°.
Note 2: Phase shift of chroma output signal over saturation control range +6 to -10 dB is less than 5°.

Pin Function Description

1. Positive 12 V supply.

2. ACC control potential input. The potential required at pin 2 for maximum gain is about 2.5 V ; gain reduction occurs when this potential is reduced, $\mathrm{Z}_{1 \mathrm{~N}}>50 \mathrm{k} \Omega$.
3. ACC gain adjustment point. The internal ACC circuit consists of a long-tailed pair system. The "cold" side of the pair is internally established at a dc potential of 2.5 V and is brought out on pin 3. This enables a decoupling capacitor to be connected. A very high loop gain in the ACC system is possible but as this is not necessarily desirable, because of stability and ripple considerations, a resistor of a suitable value can be connected between pins 2 and 3 to reduce the control sensitivity to any desired level.
4. Chroma input signal. The input voltage range is 15 to $300 \mathrm{mVp}-\mathrm{p}(26 \mathrm{~dB})$ with a color bar signal.
5. Color killer switching input. The input impedance is greater than $50 \mathrm{k} \Omega$. Color "ON" 2.3 V ; color "OFF" 1.9 V . The chroma signal suppression when killed is greater than 50 dB .
6. Emitter decoupling network. The series network decouples an emitter of an amplifier stage. The value of resistance influences the gain of both the chroma channel and the burst channel.
7. Screen. This pin must be connected to pin 10 and taken via a direct path to earth. The function of this is to minimize crosstalk between burst and chroma channels.
8. Delay line driver (collector). Supplies the chroma signal drive to the delay line driver transformer, the cold end of which is connected to +12 V . The maximum permitted voltage excursion at this pin is to 20 V peak. Maximum ac signal current swing, 12 mAp -p.
9. Delay line driver (emitter). Supplies the chroma to the network which provides the non-delayed signal to the delay line output transformer. The emitter is established internally at a potential of $6.8 \pm 1 \mathrm{~V}$ and the external
network, which must incorporate a resistive dc path to earth, must not demand more than 20 mA peak current.

10. Screen. Connect to pin 7 and then to earth.

11. Color burst output (collector). If a low impedance color burst is required (from the emitter of the color burst output, pin 12) pin 11 will be connected to the +12 V supply. The maximum voltage and current excursions permitted on pin 11 are 20 V peak and 20 mA peak.
12. Color burst output (emitter). An external load resistor of $2 \mathrm{k} \Omega$ is required, connected to earth, and a dc potential of 7.7 V is established on pin 11 due to the internal circuitry. The burst output voltage is $1 \mathrm{Vp-p}$ $\pm 1 \mathrm{~dB}$ over the chroma input signal range of amplitudes.
13. Burst gate gating pulse. A pulse derived from the horizontal flyback pulse can be used as a source of gating waveform. A negative-going pulse of not greater than 5 V amplitude is necessary, the input impedance is $4 \mathrm{k} \Omega$ and the switching is about -2.2 V .
14. Chroma blanking pulse input. A negative-going horizontal flyback pulse can be used here. Its amplitude should not exceed 5 V . The input impedance at this pin is $2 \mathrm{k} \Omega$ and the switching level is about -1.0 V . This pulse is used to blank the burst output from the chroma channel.
15. Chroma saturation control. The dc control voltage range required is from $1.5-4.5 \mathrm{~V}$ (highest gain at -4.5 V). The input impedance is greater than 50 k and a control range of from +6 to -30 dB is given.

16. Negative supply or earth.

PERFORMANCE COMMENTS

(a) The phase difference between the chroma and burst outputs at nominal saturation is less than 5°.
(b) Phase shift of chroma output signal over saturation control range +6 to -10 dB is less than 5°.

Schematic Diagram

Audio, Radio and TV Circuits

TBA530 RGB Matrix Preamplifier

General Description

The TBA530 is an integrated circuit for color TV receivers incorporating a matrix preamplifier for R-G-B cathode or grid drive of the picture tube without clamping circuits.

It has been designed to be driven from the TBA990 or TBA520 synchronous demodulator circuits and exhibits excellent channel matching and stability.

Connection Diagram

Typical Application

Note 1: DC output voltages R, G and B are typically 140 V in this circuit.
Note 2: The voltage gain between pins 2, 3, 4 and collectors (BF336) is typically 100.
Note 3: The normal bias voltage on pins 1,11, 14 is 8 V .
Note 4: Pin 7 requires a 4.7 nF decoupling capacitor.
Note 5: DC bias level shift, provided by internal zeners between pins 1-16, 14-13 and 11-10, requires 10 nF bypass capacitors for H.F.

Absolute Maximum Ratings

V8-6
l_{1}, I_{11}, l_{14}
$\mathrm{I}_{10}, \mathrm{I}_{13}$, I 16
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
13.2 V

10 mA
50 mA
400 mW
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics

Measuring Conditions: Black Level: $\mathrm{V}_{\mathrm{R}-\mathrm{Y}}=\mathrm{V}_{\mathrm{G}}-\mathrm{Y}=\mathrm{V}_{\mathrm{B}-\mathrm{Y}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=1.5 \mathrm{~V}, \mathrm{~V} 8-6=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Ratio of Gain of Luminance	As Measured.in Application	0.9		1.1	
	Amplifier to Color Amplifiers	Circuit				
R2-6	Input Resistance of Color	1 kHz		60		$k \Omega$
R3-6	Difference Amplifiers			60		$k \Omega$
R4-6				60		$k \Omega$
C2-6	Input Capacitance of Color	1 MHz		3		pF
C3-6	Difference Amplifiers			3		pF
C4-6				3		pF
R5-6	Input Resistance of Luminance	1 kHz		20		k Ω
	Amplifier /					
C5-6	Input Capacitance of Luminance	1 MHz		10		pF
B	Bandwidth of all Channels	3 dB		6		MHz
18	Total Current Drain			30		mA
17	Bias Current			2.5		mA

Schematic Diagram

Pin Function Description

The function is quoted against the corresponding pin number.

1. Output load resistor, blue signal. (Also pins 11 and 14 for red and green signals respectively.) Resistors ($47 \mathrm{k} \Omega, 1 \mathrm{~W}$) connected to +200 V provide the high value loads for the internal amplifying stages. The nominal operating potential on these pins is defined by the IC and dc feedback and is approximately +8 V . The maximum current which can be allowed at each of these pins is 10 mA .
2. -(B-Y) input signal. This signal is fed via a low-pass filter from the TBA520 demodulator IC (pin 7) having a dc level of about +7.5 V . The input resistance for this pin is typically $60 \mathrm{k} \Omega$ with' an input capacitance of less than 5 pF (similarly for pins 3 and 4).
3. -(G-Y) input signal. The dc black level of this signal is about +7.5 V . (See pin 2.)
4. -($R-Y$) input signal. The dc black level of this signal is about +7.5 V . (See pin 2.)
5. Luminance signal input. The dc level on this pin for picture black is +1.6 V . The required signal amplitude is 1 V black-to-white with negative-going syncs (or blanking) for cathode drive as shown. The input resistance at this pin is $20 \mathrm{k} \Omega$ approximately with a capacitance of less than 15 pF .

6. Negative supply (earth).

7. Current feed point. A current of approximately 2.5 mA is required at this pin, fed via a $3.9 \mathrm{k} \Omega$ resistor from +12 V , to bias the internal differential amplifiers. A decoupling capacitor of 4.7 nF is necessary.
8. Positive 12 V supply. Maximum supply voltage permitted, 13.2 V . Current consumption approximately 30 mA .
9. Red channel feedback (green channel, pin 12; blue channel, pin 15). The dc working points and gains of both the output stages and the IC amplifier stages are stabilized by the feedback circuits. The black level potentials at the collectors of the output stages (tube cut-off) are adjusted by setting correctly the dc levels of the color difference signals produced by the TBA520 demodulator IC. The gains of the R-G-B output stages are adjusted to give the correct white points setting on the picture tube by adjusting the potentiometers in the feedback paths (VR1, VR2). (See notes on setting up decoder.)
10. Red signal output (green and blue signal outputs on 13 and 16). These pins are internally connected with pins 11,14 and 1 respectively via zener type junctions to give a dc level shift appropriate for driving the output transistor bases directly. To bypass the zener junctions at $\mathrm{h} . f$. three 10 nF capacitors are required.
11. Output load resistor, red channel (see pin 1).
12. Green channel feedback (see pin 9).
13. Green signal output (see pin 10).
14. Output load resistors, green channel (see pin 1).

15. Blue channel feedback (see pin 9).

16. Blue signal output (see pin 10).

Note 1: Careful attention to earth paths should be given, avoiding common impedances between the input (decoder) side and the output stages. Also, to enable matched performance to be achieved, a symmetrical board and component layout should be adopted for the three output stages. To compensate for the effect upon h.f. response of inevitable differences the compensating capacitors C1 and C2 and C3 may be appropriately selected for any given board layout.

Note 2: The signal black level at the collectors of the R-G-B output stages depends upon the +12 V supply, the dc level of the color difference signals from the TBA520 demodulator IC and the black level potential of the luminance signal applied to the TBA530 matrix IC. The dc levels of the signals produced and handled by the IC's are designed to have approximately proportional tracking with the 12 V supply potential,

$$
\text { i.e., } \frac{\Delta V_{\text {(dc level, signal) }}}{\Delta V_{12 V}} \bumpeq \frac{V_{\text {nom (dc level, signal) }}}{12}
$$

To ensure that changes in picture black level due to variations on the 12 V supply to the IC's occur in a predictable way, all the IC's should be operated from a common supply line. This is specially important for the TBA520 and TBA530. Furthermore, to limit the changes in picture black level during receiver operation, the 12 V supply should have a stability of not worse than $\pm 3 \%$ due to operational variations.

Note 3: To reduce the possibility of patterning on the picture due to radiation of the harmonics of the products of the demodulation process, the leads carrying the drive signals to the picture tube should be as short as the receiver layout will allow. Resistors (typically $1 \mathrm{k} 5 \Omega$) connected in series with the leads and mounted close to the collectors of the output transistors provide useful additional filtering of harmonics.

Audio, Radio and TV Circuits

TBA540 Reference Combination

General Description

The TBA540 is an integrated 'color reference' oscillator circuit for PAL TV receivers. The oscillator employs a quartz crystal and incorporates automatic phase and amplitude control. A synchronous demodulator is used to compare the phase and amplitude of the swinging
burst ripple with the PAL flip-flop waveform and generates appropriate ACC color killer and identification signals. A high standard of noise immunity has been obtained by using synchronous demodulation.

Connection Diagram

Dual-In-Line Package, Order Number TBA540 See NS Package N16A

Quad-In-Line Package, Order Number TBA540Q See NS Package N16C

Typical Application

Absolute Maximum Ratings

V3-16	13.2 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}\right)$	780 mW	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Operating Temperature Range $\quad-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Electrical Characteristics (V3-16 $=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ as measured in typical application circuit)

Application Notes

A dc connection between pins 4 and 6 is necessary via the bifilar coupling inductor. The function of this inductor is to produce, on pin 6, a signal of equal amplitude and opposite phase ($B-Y$) to that on pin 4. A center tap on the inductor, connected to earth via a dc blocking capacitor, is therefore necessary.

DC Control Points in Reference Control Loop

Pins 13 and 14 are connected to opposite sides of a differential amplifier circuit and are brought out for the purpose of dc balancing of the reactance stage and the connection of the bandwidth-determining filter network. Two 2% tolerance 10 k resistors with the addition of a 270Ω resistor at pin 13 are used in place of the previous
balancing network. The 270Ω resistor may be modified according to the nature of the noise that appears at pin 5.

Initial Adjustment
(a) Remove burst signal.
(b) Short-circuit pins 13-14. Adjust oscillator to correct frequency by C 1 .
(c) Set the ACC level adjustment RV1, to give +4 V on pin 9. Remove short circuit.
(d) Apply burst signal.
(e) Adjust ACC gain, RV2, to give a burst amplitude of $1.5 \mathrm{Vp}-\mathrm{p}$ on pin 5.

Pin Function Description

1. Oscillator feedback output. The crystal receives its energy from this pin. The output impedance is approximately $2 \mathrm{k} \Omega$ in parallel with 5 pF .
2. Reactance control stage feedback. This pin is .fed internally with a sinewave derived from the reference output (pin 4) and controiled in amplitude by the internal reactance control circuit. The phase of the feedback from pin 2 to the crystal via C1 is such that the value of C1 is effectively increased. Pin 2 is held internally at a very low impedance, therefore the tuning of the crystal is controlled automatically by the amplitude of the feedback waveform and its influence on the effective value of C 1 .
3. Positive 12 V supply. The maximum voltage must not exceed 13.2V.
4. Reference waveform output. This pin is driven internally by the regenerated subcarrier waveform in $\mathrm{B}-\mathrm{Y}$ phase. (The output is in $\mathrm{B}-\mathrm{Y}$ rather than $\mathrm{R}-\mathrm{Y}$ phase as the burst phase network produces a lag of 90° of the burst applied to pin 5). An output amplitude of nominally $1.4 \mathrm{Vp}-\mathrm{p}$ is produced at low impedance. No dc load to earth is required. A dc connection between pins 4 and 6 is, however, necessary via the bifilar coupling inductor. The function of this inductor is to produce, on pin 6, a signal of equal amplitude and opposite phase ($-(B-Y)$) to that on pin 4. A center tap on the inductor, connected to earth via a dc blocking capacitor, is therefore necessary.
5. Burst waveform input. A burst waveform amplitude of $1.5 \mathrm{Vp}-\mathrm{p}$ is required to be ac-coupled to this pin. The amplitude of the burst will normally be controlled by the adjustment and operation of the ACC circuit. The input impedance at this pin is approximately $1 \mathrm{k} \Omega$ and a threshold level of 0.7 V must be exceeded before the burst signal becomes effective. A dc bias of 400 mV is internally derived for pin 5.

The absolute level of the tip of the burst at pin 5 will normally reach 1.5 V ($1.5 \mathrm{Vp}-\mathrm{p}$ burst amplitude).
6. Reference waveform input. This, pin requires a reference waveform in the $-(B-Y)$ phase, derived from pin 4 via a bifilar transformer (see pin 4), to drive the internal balanced reactance control stage. A dc connection between pins 4 and 6 must be made via the transformer.
7. Color killer output. This pin is driven from the collector of an internal switching transistor and requires an external load resistor (typically $10 \mathrm{k} \Omega$) connected to +12 V . The unkilled and killed voltages on this pin are then
+12 V and $<250 \mathrm{mV}$ respectively. (The voltage range on pin 9 over which switching of the color killed output on pin 7 occurs is nominally +2.5 V .)
8. PAL flip-flop square wave input. A $2.5 \mathrm{Vp}-\mathrm{p}$ square wave derived from the PAL flip-flop (in the TBA520 or TBA990 demodulator IC) is required at this pin, accoupled via a capacitor. The input impedance is about $3.3 \mathrm{k} \Omega$.
9. ACC output. An emitter follower provides a low impedance output potential which is negative-going with a rising burst input amplitude. With zero burst input signal the dc potential produced at pin 9 is set to be +4 V (RV1). The appearance of a burst signal on pin 5 will cause the potential on pin 9 to go in a negative direction in the event that the PAL flip-flop is identified to be in the correct phase. The range of potential over which full ACC control is exercised at pin 9 is determined by the control characteristic of the ACC amplifier, i.e., for the TBA560 from 0.8 to 1 V . The potential on pin 9 will fall to a value within this range as the burst input signal is stabilized to an amplitude of $1.5 \mathrm{Vp}-\mathrm{p}$. The latter condition is achieved by correct adjustment of RV2. If, however, the PAL flip-flop phase is wrong the potential on pin 9 will move positively. The potential divider R5, R6 will then operate a PAL switch cut-off function in the TBA520 demodulator IC.
10. ACC level setting. The network connected between pins 10 and 12 balances the ACC circuit and RV1 is adjusted to give +4 V on pin 9 with no burst input signal to pin 5. C5 provides filtering.
11. ACC gain control. RV2 is adjusted to give the correct amplitude of burst signal on pin 5 ($1.5 \mathrm{Vp}-\mathrm{p}$) under ACC control.

12. See pin 10.

13. See pin 14.

14. DC control points in reference control loop. Pins 13 and 14 are connected to opposite sides of a differential amplifier circuit and are brought out for the purpose of dc balancing of the reactance stage and the connection of the bandwidth-determining filter network. Two 2% tolerance 10 k resistors with the addition of a 270Ω resistor at pin 13 are used in place of the previous balancing network. The 270Ω resistor may be modified according to the nature of the noise that appears at pin 5.

The filter network consists of R2, C2, C3 and C4. The dc potentials on these pins are nominally +6 V .

TBA540

Absolute Maximum Ratings (Note 1)

V11-16	13.2 V	IO	-10 mA
V8-16 Min.	-5 V	Continuous Total Power Dissipation	550 mW
V10-16 Min.	-5 V	Operating Free Air Temperature Range	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
V12-16	-5 V to +6 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V13-16	-3 V to +6.5 V	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
V14-16 Min.	-5 V		

Electrical Characteristics with $\mathrm{V} 11-16=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (as measured in typical application circuit)

Note 1: V2-16 and V13-16 must always be lower than V11-16.
Note 2: Typical or nominal contrast or saturation $=$ maximum value -6 dB . Thus the control is +6 to -14 dB on the nominal.
Note 3: When $\mathrm{V} 6-16$ is increased above 1.7V the black level of the output signal remains at 2.7 V .

Pin Function Description

1. Balanced chroma signal input (in conjunction with pin 15). This is derived from the chroma signal bandpass filter, designed to provide a push-pull input. An input signal amplitude of at least $4 \mathrm{mVp}-\mathrm{p}$ is required between pins 1 and 15 . Both pins require a dc potential of approximately +3.0 V . This is derived as a common mode signal from a network connected to pin 7 (burst output). In this way dc feedback is provided over the burst channel to stabilize its operation. All figures for the chrominance signal are based on a color bar signal with 75% saturation; i.e., burst-to-chroma ratio of input signal is 1:2.
2. DC contrast control. With +3.7 V on this pin, the gain in the luminance channel is such that a 0.5 mA black-towhite input signal to pin 3 gives a luminance output signal amplitude on pin 5 of 1V black-to-white. A variation of voltage on pin 2 between +5.6 V and +2 V gives a corresponding gain variation of +6 to $>-14 \mathrm{~dB}$. A similar variation in gain in the chroma channel occurs in order to provide the correct tracking between the two signals. Beam current limiting can be applied via the contrast control network as shown in the peripheral circuit, when a separate overwind is available on the line output transformer.
3. Luminance signal input. This terminal has a very low input impedance and acts as a current sink. The luminance signal from the delay line is fed via a series terminating resistor and a dc blocking capacitor and requires to be about $0.5 \mathrm{mAp}-\mathrm{p}$ amplitude. A dc bias current is required via a $12 \mathrm{k} \Omega$ resistor to the +12 V line.

4. Charge storage capacitor for black level clamp.

5. Luminance signal output. An emitter follower provides a low impedance output signal of 1 V black-to-white amplitude at nominal contrast setting having a nominal black level in the range 0 to +2.7 V . An external emitter load resistor is required, not less than $1 \mathrm{k} \Omega$. If a greater luminance output is required than 1 V , with normal control settings, the input current swing at pin 3 should be increased in proportion.
6. Brightness control. Over the range of potential +0.9 to +1.7 V the black level of the luminance output signal (pin 5) is increased from 0 to +2.7 V . The output signal black level remains at +2.7 V when the potential on pin 6 is increased above +1.7 V .
7. Burst output. A $1 \mathrm{Vp}-\mathrm{p}$ burst (controlled by the ACC system) is produced here. Also, to achieve good dc stability by negative feedback in the burst channel the dc potential at this pin is fed back to pins 1 and 15 via the chroma input transformer.
8. Flyback blanking input waveform. Negative-going horizontal and vertical blanking pulses may be applied here. If rectangular blanking pulses of not greater than -1 V negative excursion, or dc coupled pulses of similar amplitude whose negative excursion is at zero volts dc are applied, the signal level at the luminance output (pin 5) during blanking will be OV. However, if the blanking pulses applied to pin 8 have an amplitude of -2 to -3 V the signal level at the luminance output during blanking will be +1.5 V . The negative pulse amplitude should not exceed -5 V .
9. Chroma signal output. With a 1 Vp -p burst output signal (pin 7) and at nominal contrast and saturation setting (pins 2 and 13) the chroma signal output amplitude is $1 \mathrm{Vp-p}$. An external network is required which provides dc negative feedback in the chroma channel via pin 12.
10. Burst gating and clamping pulse input. A positive pulse of not less than $50 \mu \mathrm{~A}$ is required on this pin to provide gating in the burst channel and luminance channel black-level clamp circuit. The timing and width of this current pulse should be such that no appreciable encroachment occurs into the sync pulse or picture line periods during normal operation of the receiver.
11. +12 V LT supply. Correct operation occurs within the range 10.8 to 13.2 V . All signal and control levels have a linear dependency on supply voltage but, in any given receiver design this range may be restricted due to considerations of tracking between the power supply variations and picture contrast and chroma levels. The power dissipation must not exceed 550 mW at $60^{\circ} \mathrm{C}$ ambient temperature.

12. DC feedback for chroma channel (see pin 9).

13. Chroma saturation control. A control range of +6 to $>-14 \mathrm{~dB}$ is provided over a range of dc potential on pin 13 from 6.2 to 2.7 V . Color killing is also achieved at this terminal by reducing the dc potential to less than +1 V , e.g., from the TBA540 color killer output terminal. The minimum "kill factor" is 40 dB .
14. ACC input. A negative-going potential gives an ACC range of about 26 dB starting at +1.2 V . From 1 V to 800 mV the steepest part of the characteristic occurs, but a small amount of gain reduction also occurs from 800 mV to 500 mV . The input resistance is at least $50 \mathrm{k} \Omega$.
15. Chroma signal input (see pin 1).
16. Negative supply, OV (Earth).

National Audio, Radio and TV Circuits

TBA920/TBA920S Line Oscillator Combination

General Description

The TBA920 is a monolithic integrated circuit intended for TV receivers with transistor-thyristor- or valve equipped output stages.

It combines the following functions:

- Noise gated sync separator
- Phase comparison between sync pulse and oscillator
- Line oscillator
- Loop gain and time constant switching (also for video recorder applications)
- Phase comparison between line-flyback pulse and oscillator
- Output stage for driving a variety of line output stages

Connection Diagram

Typical Application

Absolute Maximum Ratings

V1-16	13.2 V	Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
I_{2} (Mean)	20 mA	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
I_{2} (Peak)	200 mA	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
$15,17,19$	10 mA	Power Dissipation ($\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$)	600 mW

Electrical Characteristics at $\mathrm{V} 1-16=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ as measured in application circuit

Electrical Characteristics (Continued)

Note 1: The oscillator frequency can be changed for other TV standards by an appropriate value of C14-16.
Note 2: Adjustable with R12-15.
Note 3: The control error is the remaining error in reference to the nominal phase position between leading edge of the sync pulse and the middle of the flyback pulse caused by a variation in delay of the line output stage.
Note 4: This phase relation assumes a luminance delay line with a delay of 500 ns between the input of the sync separator and the drive to the picture tube. If the sync separator is inserted after the luminance delay line or if there is no delay line at all (black-and-white sets), then the phase relation is achieved by C5-16 $=560 \mathrm{pF}$.
Note 5: The adjustment of the overall phase relation and consequently the leading edge of the output pulse at pin 2 occurs automatically by the control loop II or by applying a dc voltage to pin 3.

Audio, Radio and TV Circuits

7 National Semiconductor

TBA950-2 Television Signal Processing Circuit

General Description

The TBA950-2 is a monolithic integrated circuit for pulse separation and line synchronization in TV receivers with transistor output stages.

The TBA950 comprises the sync separator with noise suppression, the frame pulse integrator, the phase comparator, a switching stage for automatic changeover of
noise immunity, the line oscillator with frequency range limiter, a phase control circuit and the output stage.

It delivers prepared frame sync pulses for triggering the frame oscillator. The phase comparator may be switched for video recording operation. Due to the large scale of integration, few external components are needed.

Connection and Block Diagrams

Absolute Maximum Ratings
All voltages are referred to pin 1
I_{3}. Supply Current (Figure 6)
45 mA
I_{5}, Input Current
2 mA
V5, Input Voltage -6 V
I_{2}, Output Current
22 mA
V2, Output Voltage
12 V
I8, Switch-Over Current for Video Recording
5 mA
I 10 , Flyback Peak Pulse Current
V11, Phase Correction Voltage
T_{A}, Ambient Temperature

Recommended Operating Conditions
(For operating circuits Figures 4 and 5)
I_{5}, Input Current During Sync Pulse
$>5 \mu \mathrm{~A}$
$V_{\text {IN }}$ p-p, Composite Video Input Signal
3 (1 to 6$) \mathrm{V}$
\mathbf{I}_{10}. Input Current During Line Flyback Pulse
${ }^{1} 8$, Switch-Over Current
0.2 to 2 mA
$>2 \mathrm{~mA}$
$<20 \mu \mathrm{~s}$
$\leq 45 \mathrm{~mA}$
$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{O}}=15,625 \mathrm{~Hz}$ in the test circuit Figure 2 (Note 1)

SYMBOL	CHARACTERISTIC	CONDITIONS	MIN	TYP	MAX	UNITS
V7	Amplitude of the Frame Pulse			>8		V
t7	Frame Pulse Durations			>150		$\mu \mathrm{s}$
Rout 7	Output Resistance at Pin 7 (High State)	'	7.5	10	13	k Ω
t2	Output Pulse Duration	Typical Ranges	25		28	$\mu \mathrm{s}$
V2 Res	Residual Output Voltage	$\mathrm{I}_{2}=20 \mathrm{~mA}$		<0.55		V
f_{0}	Oscillator Frequency	$\mathrm{C} 13 / 1=10 \mathrm{nF}, \mathrm{R14/1}=10.5 \mathrm{k} \Omega$	14063	15625	17187	Hz
$\pm \Delta \mathrm{F}$	Frequency Pull-In Range		400		1000	Hz
$\pm \Delta \mathrm{f}_{\mathrm{H}}$	Frequency Holding Range	Typical Ranges	400		1000	Hz
$d f_{o} / \mathrm{dt}_{\mathrm{d}}$	Slope of Phase Comparator Control Loop			2		kHz/ $\mu \mathrm{s}$
$\mathrm{dt}_{\mathrm{d}} / \mathrm{dt}_{\mathrm{p}}$	Gain of Phase Control			20		
t_{p}	Phase Shift Between Leading Edge of Composite Video Signal and Line Flyback Pulse (Note 2) Adjustable by V11	Typical Range	0		3.5	$\mu \mathrm{s}$

Note 1: By modification of the frequency-determining network at pins 13 and 14, these ICs can also be used for other line frequencies.
Note 2: The limited flyback pulse should overlap the video signal sync pulse on both edges.

Functional Description

The sync separator separates the synchronizing pulses from the composite video signal. The noise inverter circuit, which needs no external components, in connection with an integrating and differentiating network frees the synchronizing signal from distortion and noise.

The frame sync pulse is obtained by multiple integration and limitation of the synchronizing signal, and is available at pin 7. The $R C$ network, hitherto required between sync separator and frame oscillator is no longer needed. Since the frame sync pulse duration at pin 7 is subject to production spreads, it is recommended to use the leading edge of this pulse for triggering.

The frequency of the line oscillator is determined by a 10 nF polystyrene capacitor at pin 13 which is charged and discharged periodically by 2 internal current sources. The external resistor at pin 14 defines the charging current and consequently in conjunction with the oscillator capacitor the line frequency.

The phase comparator compares the sawtooth voltage of the oscillator with the line sync pulses. Simultaneously, an AFC voltage is generated which influences the oscillator frequency. A frequency range limiter restricts the frequency holding range.

The oscillator sawtooth voltage, which is in a fixed ratio to the line sync pulses, is compared with the flyback pulse in the phase control circuit, in this way compensating all drift of delay times in driver and line output stage. The correct phase position and hence the horizontal position of the picture can be adjusted by the $10 \mathrm{k} \Omega$ potentiometer connected to pin 11. Within the adjustable range the output pulse duration (pin 2) is constant. Any larger displacements of the picture, e.g., due to non-symmetrical picture tube, should not be corrected by the phase potentiometer, since in all cases the flyback pulse must overlap the sync pulse on both edges (Figure 3).

The switching stage has an auxiliary function. When the 2 signals supplied by the sync separator and the phase control circuit, respectively, are in synchronism, a saturated transistor is in parallel with the integrated $2 \mathrm{k} \Omega$ resistor at pin 9 . Thus the time constant of the filter network at pin 4 increases and consequently reduces the pull-in range of the phase comparator circuit for the synchronized state to approximately 50 Hz . This arrangement ensures disturbance-free operation.

For video recording operation, this automatic switchover can be blocked by a positive current fed into pin 8, e.g., via a resistor connected to pin 3. It may also be useful to connect a resistor of about 680Ω or $1 \mathrm{k} \Omega$ between pin 9 and earth. The capacitor at pin 4 may be lowered, e.g., to $0.1 \mu \mathrm{~F}$. These alterations do not significantly
influence the normal operation of the IC and thus do not need to be switched.

The output stage delivers at pin 2 output pulses of duration and polarity suitable for driving the line driver stage. If the supply voltage goes down (e.g., by switching off the mains) a built-in protection circuit ensures defined line frequency pulses down to $\mathrm{V} 3=4 \mathrm{~V}$ and shuts off when V 3 falls below 4 V , thus preventing pulses of undefined duration and frequency. Conversely, if the supply voltage rises, pulses defined in duration and frequency will appear at the output pin as soon as V3 reaches 4.5 V . In the range between $\mathrm{V} 3=4.5 \mathrm{~V}$ and full supply the shape and frequency of the output pulses are practically constant.

FIGURE 3. Phase Relationships

FIGURE 4. Operating Circuit (Thyristor Output Stage)

Functional Description (Continued)

*Input circuitry must be optimized

FIGURE 5. Another Possibility for Line
Frequency Adjustment (Transistor Output Stage)

FIGURE 6. Graph for Determining the Supply Series Resistor, R_{s}

Audio, Radio and TV Circuits

TBA970 Television Video Amplifier

General Description

The TBA970 is a monolithic video amplifier for television receivers. The circuitry includes a video preamplifier, DC contrast control utilizing a linear potentiometer which can be ganged to the chroma gain control, beam current limiting via contrast. Beam current limiting could be obtained with either positive or negative control voltage. Black level control is achieved by a clamped feedback circuit combined with the brightness control. Emitter follower output could be used to directly drive the video output stage. A separate NPN transistor (Q40) is provided on the chip.

Features

- DC contrast control
- DC brightness control
- Black level clamping
- Beam current limiting
- Low impedance output

Connection Diagram

Block Diagram

Absolute Maximum Ratings

Supply Voltage	15.5 V
Internal Power Dissipation	750 mW
Collector Current O40	10 mA
Power Dissipation Q40	20 mW
VCEO Q40	13.2 V

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}$, See Test Circuit, unless otherwise specified

Note 1: No input signal and at minimum brightness.
Note 2: With negative-going synchronizing pulse.
Note 3: With constant brightness setting, due to change of picture content, contrast control setting and change in ambient temperature $\left(\Delta T_{A}=\right.$ $20^{\circ} \mathrm{C}$; black level clamping with $\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}, \mathrm{I}_{10} \geq 0.25 \mathrm{~mA}, \mathrm{~V} 11 \leq 0.3 \mathrm{~V}$.
Note 4: Beam current limiting occurs at $\mathrm{V} 8 \geq \mathrm{V} 9$.

Test Circuit

15.5 V
$-20^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

TBA970

TBA990 Color Demodulator

General Description

The TBA990 is an integrated color demodulator circuit for color television receivers incorporating two active synchronous demodulators for the R-Y and B-Y chrominance signals, a matrix (producing the G-Y color difference signal), PAL phase switch and flip-flop. It is
suitable for dc coupled drive to the picture tube when associated with the matrix integrated circuit (TBA530) and R-G-B output stages. Special attention has been given in the design to minimizing dc level drift with temperature.

Connection Diagram

Dual-In-Line Package, Order Number TBA990 See NS Package N16A

Quad-In-Line Package, Order Number TBA9900 See NS Package N16C

Typical Application

Pin Function Description

1. Identification bias. The PAL flip-flop is stopped, for identification purposes, when the voltage on pin 1 increases above 6 V . This threshold is internally generated and has a porportional behavior with the 12 V supply voltage. The threshold level of 6 V is chosen to match the output characteristic of the TBA540 and has a sufficiently high safety margin above the zero chroma signal level of 4 V to eliminate spurious identifying.
2. R-Y. subcarrier reference input. A $1 \mathrm{Vp}-\mathrm{p}$ signal is required via a dc blocking capacitor. Under no circumstances should this signal be less than $0.5 \mathrm{Vp}-\mathrm{p}$. The input resistance at this pin is typically $5 \mathrm{k} \Omega$.
3. PAL square wave output. The amplitude is $3 \mathrm{Vp}-\mathrm{p}$ from an emitter follower. No external load resistor is required.
4. R-Y signal output (G-Y at pin 5 and $B-Y$ at pin 7). These outputs require no external dc loads except that direct connection must be made via the low pass filters to the appropriate pins on the R-G-B matrix TBA530. In a complete circuit using the TBA530 and video output stages the dc levels of these outputs will be adjusted to give the correct setting of the picture tube drive black levels. The changes in dc level with supply voltage are proportional and track together.

The unwanted products of demodulation occurring in the color difference outputs are chiefly 8.86 MHz and harmonics together with a small amount of 4.43 MHz due to possible unbalance in the demodulators. To avoid possible troubles in the receiver because of radiation of these demodulation products from the R-G-B drive circuits, low-pass. filters must be employed in each of the color difference outputs. The filters shown have a -3 dB bandwidth of 1 MHz , adequate attenuation of the 8.8 MHz component, and sufficient attenuation of the 4.4 MHz component to give less than 4 Vp -p amplitude at the picture tube cathodes.

5. G-Y signal output (see pin 4).

6. Positive supply. The maximum allowable voltage on this pin is 13.2 V .
7. B-Y signal output (see pin 4).
8. B-Y subcarrier reference input. The requirements here are identical with those for pin 2.
9. DC level setting for B-Y output signal. This is a "common adjustment" which controls all three output dc levels together.
10. Chrominance $B-Y$ input signal. An input signal of approximately $360 \mathrm{mVp}-\mathrm{p}$ (color bars) is required at this pin. The input resistance is greater than 800Ω and the input capacitance is less than 10 pF . The spread in gain of the internal circuitry in the chrominance channel is $\pm 10 \%$ maximum.
11. DC level setting for G-Y output signal. This adjusts the G-Y output dc level relative to the $B-Y$ dc level.
12. DC level setting for $R-Y$ output signal. This adjusts the R-Y output dc level relative to the $B-Y$ dc level.
13. Chrominance R-Y input signal. An input signal of approximately $500 \mathrm{mVp}-\mathrm{p}$ (color bars) is required at this pin. The input impedance and spread in gain is the same as for pin 9.
14. Line pulse input (flip-flop synchronizing). A waveform derived from the line timebase can be used for synchronizing providing that its amplitude lies between 2 V and 5 Vp -p. The trigger point occurs where the negative-going edge crosses approximately +0.6 V . Prior to this sufficient current must be supplied to pin 14 to turn the input transistor fully on.
15. N.C. This pin should not be used for external connections.

16. Negative supply (earth).

National Semiconductor TDA440 Video IF Amplifier General Description

The integrated circuit has the following functions incorporated: 3 symmetrical IF (broad band) amplifier with first and second regulated stages, controlled color carrier demodulator; video post-amplifier with low pass response and output independent of supply fluctuations; gated AGC section for the IF amplifier; delayed regulated output voltage for the tuner pre-stage.

Features

- High gain - high stability
- Constant input impedance indepedent of AGC
- Poor noise increase due to AGC action
- Negative video signal hardly affected by supply voltage variations
- Minimum RF breakthrough to video outputs
- Fast AGC action - gating largely independent of pulse shape and amplitude
- Very low intermodulation products
- Minimum differential error
- Positive as well as negative video signal available from low impedance outputs
- Integrated temperature compensating circuit
- DC output component adjustable (peak white)

Applications

- Video IF amplifier for color and monochrome television receivers

Connection and Block Diagrams

Dual-In-Line Package

Dual-In-Line Package, Order Number TDA440 See NS Package N16A

Quad-In-Line Package, Order Number TDA4400 See NS Package N16C

Absolute Maximum Ratings

VS, Supply Voltage Range (Pin 13)
IS, Supply Current of Low Voltage Stabilizer (Pin 14)
V_{Q}, Open Loop Voltage (Pin 5)
Video DC Output Current
1Q, Positive (Pin 12)
IQ, Positive (Pin 12)
${ }^{1} \mathrm{Q}$. Negative (Pin 11)
${ }^{1} \mathrm{Q}$. Negative (Pin 11)
V_{W}, White Level Control (RW) (Pin 10)

VEXT, External Voltage (Pin 4)
Power Dissipation
PTOT, $\mathrm{T}_{\mathrm{A}} \leq 55^{\circ} \mathrm{C}$
T_{J}, Junction Temperature
T_{A}, Ambient Temperature Range
tSTG, Storage Temperature Range
Thermal Resistance
$R_{\text {thJA, Junction Ambient }}$
$100^{\circ} \mathrm{C} / \mathrm{W}$ Max

Electrical Characteristics
$V_{S}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Reference point pin 3 unless otherwise specified

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V_{S}	Supply Voltage	Pin 13	10	12	15	V
Is	Supply Current	Pin 13	15	19	25	mA
V_{S}	Supply Voltage	Pin 14, IS $=40 \mathrm{~mA}$	5.5	5.8	6.4	V
V_{Q}	Negative Video DC Output Voltage	Pin 11		5.5		V
V_{Q}	With White Level Adjustable	Pins 10 and 11, $\mathrm{R}_{W}=\infty$$\mathrm{R}_{W}=0$	6.5		4.8	V
						V
V_{Q}	Peak Black Clamping Level for	Pin 11	1.75	1.9	2.15	V
	Negative Video DC Output					
	Voltage					
10	Output DC Current					
	Reference Point	Pins 11 and 13		3.2		mA
V_{0}	Positive Video DC Output	Pin 12		5.6		v
	Voltage					
10	Available Tuner Control Current	Pin 5	3	4.5		mA
	Control Action (Note 1)					
v_{i}	Negative Gating Pulse	Pin 7	1.5	3	5	$\mathrm{V}_{\text {SS }}$
$-v_{q}$	Composite Video Output, Level	$\begin{aligned} & \text { Pin } 11 \\ & V_{Q}=5.5 \mathrm{~V} \\ & V_{Q}=6.4 \mathrm{~V} \end{aligned}$		3.34.2		
						$\mathrm{V}_{\text {SS }}$
						$V_{S S}$
$\triangle \mathrm{A}$ (IF)	AGC Range		50	56		dB
BVIDEO	Video Bandwidth	$\Delta \mathrm{VVIDEO}=-3 \mathrm{~dB}$	8	10		MHz
-vVIDEO	Video Frequency Response Change	$\Delta \mathrm{A}(\mathrm{IF})=50 \mathrm{~dB}, \mathrm{BVIDEO}=0-5 \mathrm{MHz}$		1.0	2.0	dB
v_{i}	Symmetrical Input Voltage	Pins $1-16,-v_{q}=3.3 V_{S S}(\operatorname{Pin} 11)$	100	150	220	$\mu \mathrm{V}$
	Maximum IF Voltage Level					
	Present at Video Outpúts Over	$f=38.9 \mathrm{MHz}$			30	mV
	the Full AGC Range	$\mathrm{f}=77.8 \mathrm{MHz}$ (2. Harm)			50	mV
	Sound IF Voltage Level Present at Video Outputs with Selective Circuit	Pin 12, $\mathrm{f}=5.5 \mathrm{MHz}, \mathrm{BT}^{2} / \mathrm{T}_{\mathrm{T}}=30 \mathrm{~dB}$	30		-	$m \mathrm{~V}$
d	Differential Gain of Negative Comp. Video Output Signal, for Full Black to White Swing		,		15	\%
alm	Suppression of Sound Carrier/ Color Subcarrier IP (1.07 MHz) with Respect to Color Subcarrier Level		40			$d B$
	Picture Carrier			0		dB
	IF Color Subcarrier Level			-6		dB
	IF Sound Carrier Level			-24		dB
	Input Impedance					
	Reference Point	Pin 16			.	
R_{i}	A(IF) Max	Pin 1Pin 1		1.4		$k \Omega$
c_{i}				2		pF
R_{i}	A(IF) Min			1.4		$k \Omega$
C_{i}				1.9		pF

Note 1: On request $\geq 7 \mathrm{~mA}$

Test Circuit

Note. Supply voltage must be disconnected before inserting the integrated circuit in the socket.

Typical Application

Improved Tank Circuit to Reduce Audio Interference and Chroma Beat

C = Parasitic capacitance at pins
8 and 9 should be kept minimum
$\mathrm{C}_{\mathrm{S}}=6-10 \mathrm{pF}$-- series capacitance
$f_{0}=38.9-(1.8-2.75) \mathrm{MHz}$-series resonance frequency
$R_{S}=1.8-3.3 \mathrm{k} \Omega$ - series resonance damping determine the tuning characteristics
i.e., $R_{S}=2.4 \mathrm{k} \Omega$ tuning range, $f=3 \mathrm{MHz}$

National Semiconductor
 TDA2522 Color Demodulation Combination

General Description

The TDA2522 is an integrated synchronous demodulator combination for color television receivers incorporating the following features.

Features

- 8.8 MHz oscillator followed by a divider giving two 4.4 MHz signals used as reference signals
- Keyed burst phase comparison for optimum noise behavior
- ACC detector and amplifier
- A color killer
- Two synchronous demodulators for the ($B-Y$) and ($\mathrm{R}-\mathrm{Y}$) signals
a Temperature compensated emitter follower outputs
- PAL switch and PAL flip-flop with internal identification
- Integrated capacitors in the symmetrical demodulators reduce unwanted carrier-signals at the outputs

Connection Diagram

Dual-In-Line Package, Order Number TDA2522 See NS Package N16A

Quad-In-Line Package, Order Number TDA2522Q See NS Package N16C

Block Diagram

Absolute Maximum Ratings

V11-4, Supply Voltage
PTOT, Total Power Dissipation (Note 3)
TSTG, Storage Temperature
T_{A}, Operating Ambient Temperature

14V
600 mW
$-20^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Electrical Characteristics $\quad \mathrm{V} 11-4=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Note 1: The demodulators are driven by a chrominance signal of equal amplitude for the ($R-Y$) and the ($B-Y$) components. The phase of the ($R-Y$) chrominance signal equals the phase of the $(R-Y)$ reference signal. The same holds for the $(B-Y$) signals.
Note 2: As under note 1, but the phase of the (R-Y) reference signal reversed.
Note 3: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Audio, Radio and TV Circuits

TDA2530, TDA2531 R-G-B Matrix Preamplifiers With Clamps

General Description

The TDA2530, TDA2531 are integrated R-G-B matrix preamplifiers for color television receivers, incorporating a matrix preamplifier for R-G-B cathode drive of the picture tube with clamping circuits. The TDA2531 has an emitter drive circuit while the TDA2530 has a base driver amplifier. Also, each channel follows an identical layout to ensure equal frequency behavior of the 3 channels.

This integrated circuit has been designed to be driven from the TDA2522 synchronous demodulator and oscillator integrated circuit.

The device is also available in a zig-zag quad-in-line package, this version being denoted by the suffix O , i.e., TDA25300.

Connection Diagram

Dual-In-Line Package

Dual-In-Line Package, Order Number TDA2530 or TDA2531
See NS Package N16A
Quad-In-Line Package, Order Number TDA25300 or TDA2531Q See NS Package N16C

Reference Data

Supply Voltage (Nominal)	12 V
Operating Ambient Temperature Range	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Gain of Luminance and Color-Difference	100
Channels (Typical)	

Absolute Maximum Ratings

Supply Voltage (V8-6 Maximum)
13.2 V
Storage Temperature, TSTG
$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Ambient Temperature, T_{A}
$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V} 8-6=12 \mathrm{~V}, \mathrm{~V} 1-16=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Gain of Color Channels (B-Y; G-Y; R-Y)	G2-16		100		
at $f=0.5 \mathrm{MHz}$ (Note 1)	G4-16		100		
	G6-16		100		
Ratio of Gain of Luminance Amplifier to		0.9		1.1	
Color Amplifiers					
Input Resistance of Color Difference	R2-6	100		$\mathrm{k} \Omega$	
Amplifiers at $f=1 \mathrm{kHz}$	R3-6	100		$\mathrm{k} \Omega$	
	R5-6	100		$\mathrm{k} \Omega$	

Note 1: G is defined as the voltage ratio between the input signals at the pins 2,4 and 6 and the output signals at the collectors of the output transistors.

Pin Function Description

1. Luminance signal input. A 1 V black to white posi-tive-going luminance input signal is required. Blanking level should be at 1.5 V and black level at 1.7 V .
2. $-(\mathrm{R}-\mathrm{Y})$ input signal. The input signal is required to be AC coupled from a low impedance source such as the TDA2522. The coupling capacitor also acts as a clamp capacitor for the TDA2530 red output. As the color difference input impedance is at least $100 \mathrm{k} \Omega$ low value coupling capacitors may be used.
3. Red drive adjustment. A gain variation of the red channel of at least $\pm 3 \mathrm{~dB}$ about the typical, is obtained as the DC potential at this pin is varied by $\pm 5 \mathrm{~V}$ about the typical of 5 V . If no connection is made to a gain controlling pin the channel concerned assumes the typical gain.
4. -(G-Y) input signal (see pin 2).
5. Green drive adjustment (see pin 3).
6. - (B-Y) input signal (see pin 2).
7. Blue drive adjustment (see pin 3).
8. Clamp pulse input. A positive-going line pulse input is required and the pulse should exceed a threshoid DC level set by the TDA2530 of 7V. An input current of about 1 mA is required.
9. Positive 12V supply.
10. Blue signal output. As far as video output stage drive is concerned, there are 2 possible drive modes from the output signal pins of the TDA2530. These are:
a. Type A, output stage base drive, (TDA2530).
b. Type B, output stage emitter drive, (TDA2531).
11. Blue signal feedback. The signal gain of both the video output stages and IC amplifier are stabilized by the feedback circuits. DC clamping is achieved by sampling of the feedback level during blanking. The black level potentials at the collectors of the video output stages may be varied independently by adjustable DC current sources applied to the feedback input pins The DC levels at these pins are such that the feedback resistor and a resistor network between the 12 V supply and earth provide a potential of 6 V during blanking.
12. Green signal output (see pin 10).
13. Green signal feedback (see pin 11).
14. Red signal output (see pin 10).
15. Red signal feedback (see pin 11).
16. Negative supply (earth).

Application Information (Peripheral Circuitry)

Note 1: Attention should be given to earth paths, avoiding common impedances betwen the input (decoder) side and the output stages.
Note 2: Printed track area connected to the feedback pins should be kept to a minimum.
Note 3: To ensure a matched performance of the video output stages, a symmetrical layout of the 3 stages should be employed.

Audio, Radio and TV Circuits

TDA2560 Luminance and Chrominance Control Combination

General Description

The TDA2560 is a monolithic integrated circuit for use in decoding systems of color television receivers. The circuit consists of a luminance and chrominance amplifier. The luminance amplifier has a low input impedance so that matching of the luminance delay line is very easy.

Features

- DC contrast control
- Brightness control
- Black level clamp
- Blanking
- Additional video output with positive-going sync

The chrominance amplifier comprises:

- Gain controlled amplifier
- Chrominance gain control tracked with contrast control
- Separate DC saturation control
- Combined chroma and burst output, burst signal. amplitude not affected by contrast and saturation control
- The delay line can directly be driven by the IC

Connection Diagram

Dual-In-Line Package

TOP VIEW

Dual-In-Line Package, Order Number TDA2560 See NS Package N16A

Quad-In-Line Package, Order Number TDA2560Q See NS Package N16C

Absolute Maximum Ratings

V8-5, Supply Voltage	14 V
TSTG, Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TA, Operating Ambient Temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Characteristics

Note 1: The gain of the luminance amplifier can be adjusted, by setting the gain of the contrast control circuit by selection of discrete resistor R_{G} (see also circuits on pages $x x$ and $x x$). This circuit configuration has been chosen to reduce the spread of the gain to a minimum (main cause of spread is now the spread of the ratio of the delay line matching resistors and the resistor $\left.\mathrm{R}_{\mathrm{G}}\right)$. At $\mathrm{R}_{\mathrm{G}}=2.7 \mathrm{k} \Omega$ the output voltage at nominal contrast (maximum -3 dB) is 3 V black to white.
Note 2: This pin (7) is used for burst gate and black level clamping. The latter function is actuated at a 6 V level. The input pulse must have such an amplitude that the clamping circuit is active only during the back porch of the blanking interval. The burst gate, which switches the gain of the chroma amplifier to maximum during the flyback time, is actuated at a 1.5 V level.
Note 3: This pin (9) is used for blanking the luminance amplifier. When the input pulse exceeds the 2 V level the output signal is blanked to a level of about 0 V . When the input exceeds a 5 V level, a fixed level of about 1.5 V is available at the output. This level can be used for clamping purposes.
Note 4: The chrominance and burst signal are both available on this pin (6). The burst signal is not affected by the contrast and saturation control and is kept constant by the ACC circuit of the TDA2522. The output signal amplitude is, therefore, determined by the losses in the delay line. At nominal contrast and saturation setting, the burst to chrominance ratio at the output is typically identical to the ratio at the input.
Note 5: Nominal contrast is specified as maximum contrast -3 dB . Nominal saturation is specified as maximum saturation -6 dB .
Note 6: A negative-going control voltage gives a decrease in gain.

Block Diagram

Application Information

TDA2590 Line Oscillator Combination

General Description

The TDA2590 is an integrated line oscillator circuit for color television receivers using thyristor or transistor line deflection output stages.

Features

- Line oscillator based on the threshold switching principle
- Phase comparison between sync pulse and oscillator voltage
- Phase comparison between line flyback pulse and oscillator voltage
- Switch for changing the filter characteristic and the gate circuit (when used for VCR)
- Coincidence detector
- Sync separator
- Noise separator
- Vertical sync separator
- Color burst keying and line flyback blanking pulse generator
- Phase shifter for the output pulse

Connection Diagram

Output pulse duration switching

- Output stage for direct drive of thyristor deflection circuits

Dual-In-Line Package

TOP VIEW

Dual-In-Line Package, Order Number TDA2590 See NS Package N16A

Quad-In-Line Package, Order Number TDA25900 See NS Package N16C

Reference Data

	PARAMETERS	MIN	TYP	MAX	UNITS
V1-16	Supply Voltage		12		v
11	Supply Current		30		mA
	Input Signals				
V9-16 (p-p)	Sync Separator Input Voltage (Peak-to-Peak Value)		3		v
V10-16 (p-p)	Noise Separator Input Voltage (Peak-to-Peak Value)		3		V
	Pulse Duration Switch Input Voltage				
V4-16	$\mathrm{t}=6 \mu \mathrm{~s}$	8.2		13.2	V
V4-16	$t=24 \mu s+t_{d} \quad$,	0		4.0	V
V11-16	Voltage for Switching on VCR	9		12	V
		0		1.5	V
	Output Signals				
V8-16 (p-p)	Vertical Sync Output Pulse (Peak-to-Peak Value)		11		V
V7-16 (p-p)	Burst Gating Output Pulse (Peak-to-Peak Value)		11		V
V3-16 (p-p)	Line Trigger Pulse (Peak-to-Peak Value)		10.5		\checkmark

Absolute Maximum Ratings

Voltages
V1-16, Supply Voltage at Pin 1 (When Supplied
13.2 V
18 V
0 to 13.2 V
-6 to +6 V
-6 to +6 V
0 to 13.2 V

14, Pin 4 Current
1 mA
$\pm 1_{6}$, Pin 6 Current
17, Pin 7 Current
${ }_{1} 11$, Pin 11 Current
V2-16, Supply Voltage at Pin 2
0 to 13.2 V
10 mA

Power Dissipation
PTOT, Total Power Dissipation (Note 6)
V4-16, Pin 4 Voltage
-6 to +6 V
V10-16, Pin 10 Voltage
0 to 13.2 V
Temperatures
TSTG, Storage Temperature
715 mW
$-20^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Currents
$I_{2 M}$, Pin 2 Current (Peak Value) $\quad 400 \mathrm{~mA}$
I 3 M , Pin 3 Current (Peak Value)
400 mA
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Electrical Characteristics
$V 1-16=12 V ; T_{A}=25^{\circ} \mathrm{C}$

	PARAMETER	MIN	TYP	MAX	UNITS
	Sync Separator				
V9-16 (p-p)	Input Voltage (Without Video; Peak-to-Peak Value)	1	3	7	V
19	Input Keying Control			100	$\mu \mathrm{A}$
	Noise Signal Keying				
V10-16 (p-p)	Input Voltage (Without Video; Peak-to-Peak Value)	1	3	7	V
110	Input Keying Current			100	$\mu \mathrm{A}$
$V_{n}(p-p)$	Superimposed Noise Voltage (Peak-to-Peak Value)		.	7	V
	Vertical Sync Pulse Separator				,
${ }^{\text {ton }}$	Delay Between Leading Edge of Input and Output Signal		12		$\mu \mathrm{s}$
toFF	Delay Between Trailing Edge of Input and Output Signal	ton			- $\mu \mathrm{s}$
V8-16 (p-p)	Output Voltage (Peak-to-Peak Value)		11		V
R8-16	Output Resistance		5		$k \Omega$
	Oscillator				
f_{0}	Frequency; Free Running ($C 14-6=4.7 \mathrm{nF}$, $R 15-16=12 \mathrm{k} \Omega$)		15.625		kHz
$\Delta \mathrm{f}_{\mathrm{O}} / \mathrm{f}_{\mathrm{O}}$	Spread of Frequency, (Note 1)		$< \pm 5$		\%
$\Delta f_{0} / \Delta l_{15}$	Frequency Control Sensitivity		31		$\mathrm{Hz} / \mu \mathrm{A}$
$\Delta f_{0} / f_{0}$	Adjustment Range of Network in Figure 1		± 10		\%
$\Delta \mathrm{f}_{\mathrm{o}} / \mathrm{f}_{\mathrm{O}}$	Influence of Supply Voltage on Frequency at			5	\%
$\Delta \mathrm{V} / \mathrm{V}_{\text {TYP }}$	$\mathrm{V} 1-16=12 \mathrm{~V}$, (Note 1)			5	\%
Δf_{0}	Change of Frequency when V1-16 Drops to 4V			10	\%
	Phase Comparison ($\phi 1$; Sync Pulse-Oscillator)				
	Controt Sensitivity	-	2		$\mathrm{kHz} / \mu \mathrm{s}$
	Spread of Control Sensitivity, (Note 1)		± 10		\%
Δf	Catching and Holding Range ($82 \mathrm{k} \Omega$)		± 780		Hz
$\Delta f / f$	Spread of Catching and Holding Range, (Note 1)		± 10		\%
	Phase Comparison ($\phi 2$; Oscillator-Line Flyback Pulse)			-	
t_{d}	Permissible Delay Between Leading Edge of Output . Pulse and Leading Edge of Flyback Pulse	15			$\mu \mathrm{s}$
$\Delta t / \Delta t_{d}$	Static Control Error	-	<0.2	,	\%
- .	Overall Phase Relation	.			
t	Phase Relation Between Middle of Sync Pulse and the Middle of the Flyback Pulse		2.6		$\mu \mathrm{s}$
$\|\Delta t\|$	Tolerance of Phase Relation			0.7	$\mu \mathrm{s}$
	Adjustment Sensitivity, Caused By: (Note 2)				-
- $\Delta V 5-16 / \Delta t$	Adjustment Voltage		0.1		$V / \mu \mathrm{s}$
$\Delta I_{5} / \Delta t$	Adjustment Current	\cdots	30		$\mu \mathrm{A} / \mu \mathrm{s}$
	Spread of Adjustment Current, (Note 1) '		<10		\%
	Burst Gating Pulse		-		
t	Phase Relation Between Middle of Sync Pulse at the Input and the Trailing Edge of the Burst Gating Pulse; V7-16 = 7V	5.8	6.75	. 7.7	$\mu \mathrm{s}$
t7	Burst Gating Pulse Duration		5		$\cdots \mathrm{s}$

Applications Information (Continued)

	PARAMETER	MIN	TYP	MAX	UNITS
	Line Trigger Pulse	4.5		7.5	
	Output Pulse Duration				
t_{p}	At V4-16>8.2V		6		$\mu \mathrm{s}$
t_{p}	At $\mathrm{V} 4-16<4 \mathrm{~V}$		$24+t_{d}$		$\mu \mathrm{s}$
V1-16	Supply Voltage for Switching Off the Output Pulse		4		V
	Internal Gating Pulse				
${ }^{t} p$	Pulse Duration		7.5		$\mu \mathrm{s}$
	Time Between Leading Edge of the Gating Pulse		>2.75		$\mu \mathrm{s}$
	and the Middle of the Sync Pulse		3.75		$\mu \mathrm{s}$
t	Time Between Trailing Edge of the Gating Pulse		>2.75		$\mu \mathrm{s}$
	and the Middle of the Sync Pulse		3.75		$\mu \mathrm{s}$

Note 1: Exclusive external components tolerances.
Note 2: The adjustment of the overall phase relation and consequently the leading edge of the output pulse occurs automatically by phase control $\phi 2$. The values beyond this point count if additional adjustment is required.

FIGURE 1

Transistor/Diode Arrays

Section Contents

Transistor/Diode Arrays Selection Guide. 11-iii
LM194/LM394 Supermatch Pair. 11-1
LM195/LM295/LM395 Ultra Reliable Power Transistors. 11-7
LM3045, LM3046, LM3086 Transistor Arrays. 11-15
LM3146 High Voltage Transistor Array 11-20

Selection Guide

LM3045
LM3046
LM3086
LM195/LM295/LM395
(Current Limit, Thermal Limit, Safe Area Protection)

LM194/LM394 Supermatch Pair

General Description

The LM194 and LM394 are junction isolated ultra well-matched monolithic NPN transistor pairs with an order of magnitude improvement in matching over conventional transistor pairs. This was accomplished by advanced linear processing and a unique new device structure.

Electrical characteristics of these devices such as drift versus initial offset voltage, noise, and the exponential relationship of base-emitter voltage to collector current closely approach those of a theoretical transistor. Extrinsic emitter and base resistances are much lower than presently available pairs, either monolithic or discrete, giving extremely low noise and theoretical operation over a wide current range. Most parameters are guaranteed over a current range of $1 \mu \mathrm{~A}$ to 1 mA and 0 V up to 40 V collector-base voltage, ensuring superior performance in nearly all applications.

To guarantee long term stability of matching parameters, internal clamp diodes have been added across the emitterbase junction of each transistor. These prevent degradation due to reverse biased emitter current-the most common cause of field failures in matched devices. The parasitic isolation junction formed by the diodes also clamps the substrate region to the most negative emitter to ensure complete isolation between devices.

The LM194 and LM394 will provide a considerable improvement in performance in most applications requiring a closely matched transistor pair. In many cases, trimming can be eliminated entirely, improving reliability and decreasing costs. Additionally, the low noise and high gain make this device attractive even where matching is not critical.

The LM194 and LM394/LM394B/LM394C are available in an isolated header 6-lead TO-5 metal can package. The LM194 is identical to the LM394 except for tighter electrical specifications and wider temperature range.

Features

- Emitter-base voltage matched to $50 \mu \mathrm{~V}$
- Offset voltage drift less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Current gain (h_{FE}) matched to 2%
- Common-mode rejection ratio greater than 120 dB
- Parameters guaranteed over $1 \mu \mathrm{~A}$ to 1 mA collector current
- Extremely low noise
- Superior logging characteristics compared to conventional pairs
- Plug-in replacement for presently available devices

Typical Applications

Low Cost Accurate Square Root Circuit
IOUT $=10^{-5} \cdot \sqrt{10 V_{\text {IN }}}$

Low Cost Accurate Squaring Circuit $I_{\text {OUT }}=10^{-6}\left(\mathrm{~V}_{\mathrm{IN}}\right)^{2}$

Absolute Maximum Ratings

Collector Current	20 mA
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{MAX}}$
Collector-Emitter Voltage	40 V
LM394C	20 V
Collector-Base Voltage	40 V
LM394C	20 V
Collector-Substrate Voltage	40 V
LM394C	20 V

Collector-Collector Voltage	40 V
\quad LM394C	20 V
Base-Emitter Current	$\pm 10 \mathrm{~mA}$
Power Dissipation	500 mW
Junction Temperature	
LM194	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM394/LM394B/LM394C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics
$\left(T_{J}=25^{\circ} \mathrm{C}\right)$

Note 1: Collector-base voltage is swept from 0 to $V_{\text {MAX }}$ at a collector current of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, and 1 mA .
Note 2: Offset voltage drift with $V_{O S}=0$ at $T_{A}=25^{\circ} \mathrm{C}$ is valid only winen the ratio of $\mathrm{I}_{\mathrm{C}}{ }^{1}$ to I_{C} is adjusted to give the initial zero offset. This ratio must be held to within 0.003% over the entire temperature range. Measurements taken at $+25^{\circ} \mathrm{C}$ and temperature extremes.
Note 3: Logging conformity is measured by computing the best fit to a true exponential and expressing the error as a base-emitter voltage deviation.
Typical Applications (Continued)
Fast, Accurate Logging Amplifier, $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$ to 0.1 mV or $\mathrm{I}_{\mathrm{IN}}=1 \mathrm{~mA}$ to 10 nA

Typical Applications (Continued)
Voltage Controlled Variable Gain Amplifier

*R8 - R10 and D2 povide a temperature independent gain control.

Distortion $<0.1 \%$
Bandwidth $\approx 1 \mathrm{MHz}$
100 dB gain range

Typical Applications (Continued)

High Accuracy One Quadrant Multiplier/Divider

*Typical linearity 0.1\%

Typical Performance Characteristics

Small Signal Output Conductance vs Collector Current

Base-Emitter On Voltage vs Collector Current

Collector-Emitter Saturation Voltage vs Collector Current

Noise Figure vs Collector Current

Unity Gain Frequency (f_{t}) vs Collector Current

Input Voltage Noise vs Frequency

Typical Performance Characteristics (Continued)

Collector to Collector Capacitance vs Collector-Substrate Voltage

Connection Diagram

TIME (SEE GRAPH)
*Unit must be in still air environment so that differential lead temperature is held to less than $0.0003^{\circ} \mathrm{C}$.

Metal Can Package

top VIEW
Order Number LM194H, LM394H
LM394BH or LM394CH
See NS Package H06C

LM195/LM295/LM395 Ultra Reliable Power Transistors

General Description

The LM195/LM295/LM395 are fast, monolithic power transistors with complete overload protection. These devices, which act as high gain power transistors, have included on the chip, current limiting, power limiting, and thermal overload protection making them virtually impossible to destroy from any type of overload. In the standard TO-3 transistor power package, the LM 195 will deliver load currents in excess of 1.0A and can switch 40 V in 500 ns .

The inclusion of thermal limiting, a feature not easily available in discrete designs, provides virtually absolute protection against overload. Excessive power dissipation or inadequate heat sinking causes the thermal limiting circuitry to turn off the device preventing excessive heating.

Features

- Internal thermal limiting
- Greater than 1.0 A output current
- $3.0 \mu \mathrm{~A}$ typical base current
- 500 ns switching time
- 2.0 V . saturation
- Base can be driven up to 40 V without damage
- Directly interfaces with CMOS or TTL
- 100% electrical burn-in

The LM195 offers a significant increase in reliability as well as simplifying power circuitry. In some applications, where protection is unusually difficult, such as switching regulators, lamp or solenoid drivers where normal power dissipation is low, the LM195 is especially advantageous.

The LM195 is easy to use and only a few precautions need be observed. Excessive collector to emitter voltage can destroy the LM195 as with any power transistor. When the device is used as an emitter follower with low source impedance, it is necessary to, insert a 5.0 k resistor in series with the base lead to prevent possible emitter follower oscillations. Although the device is usually stable as an emitter follower, the resistor eliminates the possibility of trouble without degrading performance. Finally, since it has good high frequency response, supply by passing is recommended.

The LM195/LM295/LM395 are available in standard TO-3 power packages and solid Kovar TO-5. The LM195 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM295 from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM395 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Simplified Circuit and Connection Diagrams

TO-3 Metal Can Package

bottom view
Order Number LM195K,
LM295K or LM395K
See NS Package K02A

TO-5 Metal Can Package

CASE IS EMITTER BOTTOM VIEW
Order Number LM195H, LM295H or LM395H
See NS Package H03B

TO-220 Power Package

Order Number LM395T
See NS Package T03B

TO-202 Power Package

FRONT VIEW
Order Number LM395P See NS Package P03A

Absolute Maximum Ratings

```
Collector to Emitter Voltage
    LM195, LM295 1 - 42V
```

 LM395 36V
 Collector to Base Voltage
LM195, LM295 42V
LM395 36V
Base to Emitter Voltage (Forward)
LM195, LM295 42V
LM395 36V
Base to Emitter Voltage (Reverse) 20 V
Collector Current
Internally Limited
Internally Limited
Operating Temperature Range
LM195
LM295
LM395

Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Preconditioning

100\% Burn-In In Thermal Limit
Electrical Characteristics (Note 1)

Note 1: Unless otherwise specified, these specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 195,-\mathbf{2 5}{ }^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM295 and $0^{\circ} \mathrm{C} \leq+125^{\circ} \mathrm{C}$ for the LM395.
Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about $+150^{\circ} \mathrm{C} / \mathrm{W}$, while that of the TO-3 package is $+35^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: Selected devices with higher breakdown available.

Typical Performance Characteristics

COLLECTOR-EMITTER VOLTAGE (V)

COLLECTOR-EMITTER VOLTAGE (V)

Typical Performance Characteristics (Continued)

Schematic Diagram

Typical Applications

1.0 Amp Voltage Follower

*PROTECTS AGAINST EXCESSIVE BASE DRIVE *NEEDED FOR STABILITY

Power PNP

1.0 MHz Oscillator

Time Delay

1.0 Amp Lamp Flasher

Typical Applications (Continued)

1.0 Amp Negative Regulator

1.0 Amp Positive Voltage Regulator

Fast Optically Isolated Switch

CMOS or TTL Lamp Interface

Optically Isolated Power Transistor

Two Terminal Current Limiter

*DRIVE VOLTAGE OV $T 0 \geq 1.0 V \leq 42 V$ 40V Switch

Typical Applications (Continued)

6.0V Shunt Regulator with Crowbar

- NEED FOR STABILITY

Emitter Follower

Two Terminal 100 mA Current Regulator

Power One-Shot

High Input Impedance AC Emitter Follower
 time square wave drive

Fast Follower

Typical Applications (Continued)

Power Op Amp

6.0 Amp Variable Output Switching Regulator

National

LM3045, LM3046, LM3086 Transistor Arrays

General Description

The LM3045, LM3046, and LM3086 each consist of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differ-entially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the DC through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3045 is supplied in a 14-lead cavity dual-in-line package rated for operation over the full military temperature range. The LM3046 and LM3086 are electrically identical to the LM3045 but are supplied in a 14 -lead molded dual-in-line package for applications requiring only a limited temperature range.

Features

- Two matched pairs of transistors
$V_{B E}$ matched $\pm 5 \mathrm{mV}$
Input offset current $2 \mu \mathrm{~A}$ max at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
- Five general purpose monolithic transistors
- Operation from DC to 120 MHz
- Wide operating current range
- Low noise figure $\quad 3.2 \mathrm{~dB}$ typ at 1 kHz
- Full military temperature range (LM3045) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Applications

- General use in all types of signal processing systems operating anywhere in the frequency range from DC to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers

Schematic and Connection Diagram

Dual-In-Line Package

TOP VIEW
Order Number LM3045J
See NS Package J14A

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)			-		
	LM3045		LM3046/LM3086		
	Each Transistor	Total Package	Each Transistor	Total Package	Units
Power Dissipation:					
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	300	750	300	750	mW
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$			300	750	mW
$\mathrm{T}_{\mathrm{A}}>55^{\circ} \mathrm{C}$			Derate		$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	300	750			mW
$\mathrm{T}_{\mathrm{A}}>75^{\circ} \mathrm{C}$	Derat				$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Collector to Emitter Voltage, $\mathrm{V}_{\text {CEO }}$	15		15		V
Collector to Base Voltage, $\mathrm{V}_{\text {cbo }}$	20		20		V
Collector to Substrate Voltage, $\mathrm{V}_{\text {cıo }}$ (Note 1)	20		20		V
Emitter to Base Voltage, $\mathrm{V}_{\text {Ebo }}$	5		5		V
Collector Current, Ic	50		50		mA
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to	$125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ t	$+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to	$150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ t	$+85^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 sec)	300		300		${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	CONDITIONS	LIMITS			LIMITS			UNITS
		LM3045, LM3046			LM3086			
		MIN	TYP	MAX	MIN	TYP	MAX	
Collector to Base Breakdown Voltage ($\mathrm{V}_{(\mathrm{BR}) \mathrm{Cbo}}$)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	20	60		20	60		V
Collector to Emitter Breakdown Voltage ($\mathrm{V}_{\text {(br)ceo }}$)	$I_{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	15	24		15	24		v
Collector to Substrate Breakdown Voltage ($\mathrm{V}_{\text {(BR)Cio }}$)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{Cl}}=0$	20	60		20	60		V
Emitter to Base Breakdown Voltage ($\mathrm{V}_{\text {(BR)EBO}}$)	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}_{,} \mathrm{I}_{C}=0$	5	7		5	7		V
Collector Cutoff Current (${ }_{\text {crol }}$)	$V_{C B}=10 \mathrm{~V}, I_{E}=0$. 002	40		. 002	100	$n \mathrm{~A}$
Collector Cutoff Current (${ }_{\text {ceol }}$)	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$. 5			5	$\mu \mathrm{A}$
			100			100		
Static Forward Current Transfer Ratio (Static Beta) ($\mathrm{hFE}_{\text {) }}$	$V_{C E}=3 V\left\{\begin{array}{l} I_{C}=1 \mathrm{~mA} \\ I_{C}=10 \mu \mathrm{~A} \end{array}\right.$	40	$\begin{array}{r} 100 \\ 54 \end{array}$		40	$\begin{array}{r} 100 \\ 54 \end{array}$		
Input Offset Current for Matched Pair \mathbf{Q}_{1} and $\mathbf{Q}_{\mathbf{2}}$ $\left\|I_{\mathrm{O}_{1}}-I_{\mathrm{IO}_{2}}\right\|$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$. 3	2				$\mu \mathrm{A}$
Base to Emitter Voltage ($\mathrm{V}_{\mathbf{B E}}$)	$V_{C E}=3 V\left\{\begin{array}{l} \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA} \end{array}\right.$		$\begin{aligned} & .715 \\ & .800 \end{aligned}$			$\begin{aligned} & .715 \\ & .800 \end{aligned}$		V
Magnitude of Input Offset Voltage for Differential Pair $\left\|V_{B E 1}-V_{B E 2}\right\|$	$\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$.45	5				mV
Magnitude of Input Offset Voltage for Isolated Transistors $\left\|V_{B E 3}-V_{B E 4}\right\|,\left\|V_{B E 4}-V_{B E 5}\right\|$. $\left\|V_{B E 5}-V_{B E 3}\right\|$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$. 45	5				mV
Temperature Coefficient of Base to Emitter Voltage $\left(\frac{\Delta V_{B E}}{\Delta T}\right)$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{C}=1 \mathrm{~mA}$		-1.9			-1.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Collector, to Emitter Saturation Voltage ($\mathrm{V}_{\text {CE }}(\mathrm{SAT})$).	$I_{B}=1 \mathrm{~mA}, \mathrm{I}_{C}=10 \mathrm{~mA}$. 23			. 23		V
Temperature Coefficient of Input Offset Voltage $\left(\frac{\Delta V_{10}}{\Delta T}\right)$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		1.1					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Note 1: The collector of each transistor of the LM3045, LM3046, and LM3086 is isolated from the substrate by an integral diode. The substrate (terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Low Frequency Noise Figure (NF)	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} ; \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$		3.25		dB
Low Frequency, Small Signal Equivalent Circuit C Forward Current Tiansfer Ratio (h_{fe}) Short Circuit Input Impedance ($\mathrm{h}_{1 \mathrm{e}}$) Open Circuit Output Impedance (h_{oe}) Open Circuit Reverse Voltage Transfer Ratio (h_{re})	aracteristics: $f=1 \mathrm{kHz}, V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		$\begin{gathered} 110 \text { (LM3045, LM3046) } \\ \text { (LM3086) } \\ 3.5 \\ 15.6 \\ 1.8 \times 10^{-4} \end{gathered}$		$k \Omega$ $\mu \mathrm{mho}$
Admittance Characteristics: Forward Transfer Admittance (Y_{fe}) Input Admittance (Y_{ie}) Output Admittance (Y_{oe}) Reverse Transfer Admittance (Y_{re}) Gain Bandwidth Product (f_{T}) Emitter to Base Capacitance (C_{EB}) Collector to Base Capacitance (C_{CB}) Collector to Substrate Capacitance (C_{C})	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{EB}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0 \\ & \mathrm{~V}_{\mathrm{CS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0 \end{aligned}$	300	$\begin{gathered} 31-\mathrm{j} 1.5 \\ 0.3+\mathrm{j} 0.04 \\ 0.001+\mathrm{j} 0.03 \\ \text { See curve } \\ 550 \\ .6 \\ .58 \\ 2.8 \end{gathered}$	-	pF pF pF

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Base To Emitter Voltage Characteristic for Each Transistor vs Ambient Temperature

Typical Noise Figure vs Collector Current

Typical Noise Figure vs Collector Current

Typical Output Admittance vs Frequency

Typical Performance Characteristics (Continued)

National Semiconductor

LM3146 High Voltage Transistor Array

General Description

The LM3146 consists of five high voltage general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally con-nected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the de through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3146 is supplied in a 14 -lead molded dual-inline package for applications requiring only a limited temperature range.

Features

- High voltage matched pairs of transistors, $V_{B E}$ matched $\pm 5 \mathrm{mV}$, input offset current $2 \mu \mathrm{~A}$ max at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
- Five general purpose monolithic transistors
- Operation from dc to 120 MHz
- Wide operating current range
- Low noise figure
3.2 dB typ at 1 kHz

Applications

- General use in all types of signal processing systems operating anywhere in the frequency range from dc to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers

Connection Diagram

Dual-In-Line Package

Order Number LM3146N
See NS Package N14A

Absolute Maximum Ratings

Power Dissipation: Each Transistor
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}>55^{\circ} \mathrm{C}$
Power Dissipation: Total Package
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$
LM3146
UNITS

Collector to Emitter Voltage, $\mathrm{V}_{\text {CEO }}$
Collector to Base Voltage, $\mathrm{V}_{\mathrm{CBO}}$
Collector to Substrate Voltage, $\mathrm{V}_{\mathrm{CIO}}$ (Note 1)
Emitter to Base Voltage, $\mathrm{V}_{\text {EBO }}$ (Note 2)
Collector Current, I_{C}
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

300	mW
Derate at 6.67	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
500	mW
Derate at 6.67	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
30	V
40	V
40	V
5	V
50	mA
-40 to +85	${ }^{\circ} \mathrm{C}$
-65 to +150	${ }^{\circ} \mathrm{C}$
300	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Collector to Base Breakdown Voltage ($\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	40	72		V
Collector to Emitter Breakdown Voltage ($\mathrm{V}_{\text {(BR) CEO }}$)	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	30	56		v
Collector to Substrate Breakdown Voitage ($\mathrm{V}_{(\mathrm{BR}) \mathrm{CIO}}$)	$\begin{aligned} & I_{C l}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \\ & \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$	40	72		v
Emitter to Base Breakdown Voltage ($\mathrm{V}_{\text {(BR)EBO }}$) (Note 2)	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$	5	7		v
Collector Cutoff Current ($1_{\text {CBO }}$)	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		0.002	100	nA
Collector Cutoff Current ($\mathrm{I}_{\text {ceo }}$)	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$		(Note 3)	5	$\mu \mathrm{A}$
Static Forward Current Transfer Ratio (Static Beta) (h_{FE})	$\begin{aligned} & I_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	30	$\begin{aligned} & 85 \\ & 100 \\ & 90 \end{aligned}$		
Input Offset Current for Matched Pair Q 1 and $\mathrm{O} 2 \mathrm{II}_{\mathrm{B} 1}-\mathrm{I}_{\mathrm{B} 2} \mathrm{I}$	$\begin{aligned} & I_{C_{1}}=I_{C 2}=1 \mathrm{~mA}, \\ & V_{C E}=5 \mathrm{~V} \end{aligned}$		0.3	2	$\mu \mathrm{A}$
Base to Emitter Voltage (V_{BE})	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}$	0.63	0.73	0.83	v
Magnitude of Input Offset Voltage for Differential Pair $\left\|V_{B E 1}-V_{B E 2}\right\|$	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$		0.48	5	$m \mathrm{~V}$
Temperature Coefficient of Base to Emitter Voltage ($\Delta \mathrm{V}_{\mathrm{BE}} / \Delta \mathrm{T}$)	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$		-1.9		$m V \rho C$
Collector to Emitter Saturation Voltage ($\mathrm{V}_{\text {CE(SAT) }}$)	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$		0.33		v
Temperature Coefficient of Input Offset Voltage ($\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$)	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$		1.1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Note 1: The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transitors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal should be maintained at either dc or signal (ac) ground. A suitable bypass capacitor can be used to establish a signal ground.
Note 2: If the transistors are forced into zener breakdown ($\mathrm{V}(\mathrm{BR}) \mathrm{EBO}$), degradation of forward transfer current ratio (hFE) can occur.
Note 3: See curve.

AC Electrical Characteristics

Note 1: The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transitors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal should be maintained at either dc or signal (ac) ground. A suitable bypass capacitor can be used to establish a signal ground.
Note 2: If the transistors are forced into zener breakdown ($V(B R) E B O$), degradation of forward transfer current ratio (hFE) can occur.
Note 3: See curve.

Typical Performance Characteristics

T_{A} - ambient temperature (${ }^{\circ} \mathrm{C}$)

TA-AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$
$V_{C E}(S A T)$ vs I_{C} for
Any Transistor

I_{10} vs IC (01 and Q2)

Typical Performance Characteristics (Continued)

Section 12
Appendices/
Physical Dimensions

I. RELIABILITY vs. QUALITY

The words "reliability" and "quality" are often used interchangeably, as though they connoted identical facets of a product's merit. But reliability and quality are different, and IC users must understand the essential difference between the two concepts in order to properly evaluate which of National's extended screening programs, $\mathrm{A}+$ or $\mathrm{B}+$ will offer the most cost effective product improvement for his application.

QUALITY

The concept of QUALITY gives us information about the population of faulty IC devices among good devices, and generally relates to the number of faulty devices that arrive at a user's plant. Looked at in another way, quality then relates to the number of faulty IC's that escape detection at the IC vendor's plant.
At National, it is the charter of the Quality Control (QC) Operation to continually monitor and reduce the number of faulty IC's that escape detection. QC does this by testing the outgoing parts on an Acceptance Quality Level (AQL) basis. ${ }^{1}$ The tighter the AQL testing, the more difficult it becomes for a defective part to escape detection, thus the quality of the shipped product increases.

RELIABILITY

The concept of RELIABILITY, on the other hand, refers to how well a part that is initially good will withstand its environment. Reliability cannot be tested into a device. Reliability is principally a function of device design, die size, power dissipation, assembly methods and material, etc. Still there are tests and procedures that an IC vendor can implement which will subject the IC to stress in excess of what it will endure in actual use, which will eliminate marginal, short-life parts.
On this basis, it is easily seen that it is possible that ${ }^{\prime}$ high quality IC's may, in fact, have low reliability, while low quality IC's may have high reliability. The object of extended screening programs is: (1) to enhance the quality by reducing the population of faulty devices among good devices and by so doing, eliminate the costly requirement of incoming tests by the user, and
(2) provide maximum long term reliability minimizing equipment down-time, costly repairs and maintenance.

II. QUALITY SAVES YOU MONEY

When an IC vendor specifies 100% final testing of his parts then, in theory, every shipped part should be a good part. However, in any population of massproduced items there does exist a small percentage of defective parts.
One of the best ways to reduce the number of such faulty parts is, simply, to retest the parts prior to shipment. Thus, if there is a one percent chance that a bad part will escape detection initially, retesting the parts reduces that probability to only 0.01 percent. This is exactly what tightening of the outgoing AQL level achieves.

WHAT IS AQL?

A good example of savings which can be achieved by taking advantage of tighter AQL ${ }^{(1)}$ inspection levels is illustrated as follows:

Assume a system uses 100 devices of a certain type which are procurred to a 1% AQL level, and no incoming inspection/testing is done by the user. Statistically it can be shown that the number of systems that will require rework will be 80% of all systems manufactured! If enough devices are purchased to manufacture 100 systems (10,000 devices) and the cost to trouble shoot and repair each system is $\$ 30.00$, the total cost of repair will be $\$ 2,400$ (80% of 100 systems at $\$ 30.00$ each).

Thus, the need for some preliminary component screening prior to system assembly becomes obvious.
However, if the same devices are procurred to a 0.14% AQL level, which is seven times tighter than originally assumed, it can be shown that the number of systems requiring rework is reduced by a factor of four, without the need for incoming inspection.
Thus, on a 100 system basis, 20 systems will require repair at $\$ 30.00$ per system, or a total of $\$ 600.00$. A savings of $\$ 1,800$ is realized, and the user need not invest in expensive capital equipment, procedures, and paper work.
On a "savings per device" basis, this is a savings of $18^{\text {c }}$ per device. Indeed, Quality saves you money! This is thé value added by the $\mathrm{A}+$ and $\mathrm{B}+$ Linear programs.

III. RELIABILITY SAVES YOU MONEY

With the increased population of integrated circuits in modern electronics systems has come an increased concern with IC failures. And rightly so, for at least two major reasons. First, the effect of component reliability on system reliability can be quite dramatic. For example, suppose that you, as a system manufacturer, were to choose an IC that is 99% reliable. You would find that if your system used only 70 such IC's the overall reliablility of the system's IC portion would be only 50%.
In other words, one out of every two systems in the field would fail. The result? A system that is very costly to produce, costly to maintain, and probably very difficult to sell.

Second, whether the system is large or small you cannot afford unnecessary maintenance costs. Not only have labor, repair and rework costs risen - and promise to continue to rise - but also, field replacement may be prohibitively expensive or impossible. If you ship a system that contains a marginally performing IC, and that IC later fails in the field, the cost of repair and replacement may be literally hundreds of times more than the cost of the failed IC itself.
(1) AQL testing is not to be confused with "in process" or electrical parameter testing in the normal product flow. All National products are 100% tested for electrical data sheet parameters.

IV. IMPROVING THE RELIABILITY OF SHIPPED PARTS

As was previously mentioned, reliability, in the true sense cannot be tested into a product. The most important factors that affect reliability are design, construction, materials and the assembly method. However, many of these can be examined and monitored by testing. As a matter of routine, National frequently performs 1000 hour burn-in life test and accelerated life tests to continually guarantee the quality and reliability of the linear product which is being shipped to customers. For example, the quality of the die attach for voltage regulators can be monitored by observing the thermal characteristics associated with "pulse loading" the regulator. This is a technique which National Linear pioneered over 10 years ago and still performs on a 100% basis on three terminal regulators at no additional cost to the user. Many such tests, including destructive and non-destructive wire bond pull tests are a matter of routine with National.
Further, in any test of reliability, the weaker parts' will fail first. Stress tests will accelerate, or shorten the time of failure of the weak parts. Because the stress test causes weak parts to fail prior to shipment, the population of shipped parts will in fact demonstrate a higher reliability.
One of, if not the most effective screening procedures in the Semiconductor industry, is the use of a burn-in to stress and accelerate the failure of weak parts.
Thus, burn-in screen plus the tightened AQL outgoing testing, is the key to the A+ Linear Program.

QUALITY AND RELIABILITY PROGRAMS FOR MOLDED LINEAR PRODUCTS

One concern, with regard to quality and reliability in molded plastic products, is the problem of thermal intermittents. This problem first came to light in 1970 and plagued all semiconductor manufacturers. Since that time considerable efforts have been focused on improving lead bonding and lead frames to make them stronger and more reliable as well as improvements in the package molding material itself.
To better understand the problems a brief discussion of thermal intermittents is in order.

Because wires and bonds are completely imbedded in plastic, molded integrated circuits are extremely rugged devices. They can survive mechanical shock and vibration conditions which would literally tear the bonds and wires to pieces in a cavity type package. However, the non-cavity construction does present a unique problem. Sould a bond fracture or a wire break for some reason, the broken bond will remain in contact as long as the surrounding encapsulant continues to exert a compressive force on the bond. However, as the temperature increases, the compressive forces tend to relax due to the thermal mismatches between the lead frame, die, wires and the plastic.
Ultimately, if a high enough temperature is reached, the broken bond will separate, causing an electrical discontinuity. The phenomenon is frequently
reversible, that is, as temperature decreases, electrical continuity is restored. This type of discontinuity is commonly referred to as a THERMAL INTERMITTENT OPEN. If electrical continuity does not return when the package temperature returns to ambient, then a permanent open has occurred.
If such defects occur during the manufacturing cycle of the device, and are not screened out by the manufacturer's testing sequence or by some screening test imposed by the user, they will show up as infant mortality failures in the user's equipment. If they occur during the user's equipment manufacturing cycle (due to solder heat exposure, for example) they will also show up as infant mortality failure.
The best way to screen for this phenomenon is to perform temperature cycling and "Hot Rail" testing after the device has been manufactured. The temperature cycling will stress the package mechanically to force the intermittent to occur if such a failure exists. The "Hot Rail" testing is performed to determine the functionality of the device at $100^{\circ} \mathrm{C}$ to ensure there are no open bonds at the worst case condition.

NATIONAL'S B+ LINEAR PROGRAM GETS IT ALL TOGETHER

We have stated that the B+ program improves both the quality and reliability of National's molded integrated circuits, and pointed out the difference between those two concepts. Now, how do we bring them together? The answer is in the $B+$ program processing, which is a continuum of stress and double testing. With the exception of the final QC inspection, which is a tightened sample program, all steps of the $B+$ process are performed on 100% of the parts. The following flow chart shows how we do it, step by step.

EPOXY B PROCESSING FOR ALL MOLDED PARTS -

At National, all molded semiconductors, including IC's have been built by this process for some time. All processing steps, inspections and QC monitoring are designed to provide highly reliable products. (Reliability reports are available that give, in detail, the background of Epoxy B, the reason for its selection at National and reliability data that proves its success.)

SIX HOUR, $150^{\circ} \mathrm{C}$ BAKE -

This stress places the die bond and all wire bonds into a combined tensile and shear stress mode, and helps eliminate marginal bonds and electrical connections.

FIVE TEMPERATURE CYCLES

 ($0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$)Exercising the circuits over a $100^{\circ} \mathrm{C}$ temperature range further stresses the bonds and eliminates marginal bonds missed during the bake.

ELECTRICAL TESTING

These room-temperature functional and parametric tests are the normal final tests through which all National products pass.

\longrightarrow

HIGH TEMPERATURE ($100^{\circ} \mathrm{C}$) FUNCTIONAL

 ELECTRICAL TEST -A high temperature test such as this with voltages applied places the die under the most severe stress possible. The test is actually performed at $100^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$ higher than the commercial ambient limit. All devices are thoroughly exercised at the $100^{\circ} \mathrm{C}$ ambient. (Even though Epoxy B processing has virtually eliminated thermal intermittents, we perform this test to ensure against even the remote possibility of such a problem.)
100% DC FUNCTIONAL AND PARAMETRIC TESTS -
This is the second time that room-temperature functional and parametric tests are performed to National data sheet electrical limits.

TIGHTER-THAN-NORMAL QC INSPECTION PLANS -
Most vendors sample inspect outgoing parts to a 0.65% (or in some cases a 1%) AQL. When you specify the B+ program, however, not only do we sample your parts to a 0.28% AQL for all data sheet dc parameters, but they receive a 0.14% AQL for functionality as well. (Functional failures - not parameter shifts cause most system failures.) Thus, the five to seven-times tightening of the AQL procedure gives a substantially higher quality to your $\mathrm{B}+$ parts. And you can rely on the integrity of your received IC's without incoming tests at your facility.

SHIP PARTS

Here are the QC Procedures used in our B+ test program:

TEST	TEMPERATURE	AQL
Electrical Functionality	$25^{\circ} \mathrm{C}$	0.14%
Parametric, dc	$25^{\circ} \mathrm{C}$	0.28%
Major Mechanical	$25^{\circ} \mathrm{C}$	0.25%
Minor Mechanical	$25^{\circ} \mathrm{C}$	1%

NATIONAL'S A+ LINEAR PROGRAM THE ULTIMATE IN QUALITY AND RELIABILITY

National has combined the successful $\mathrm{B}+$ program with the Military/Aerospace processing specifications and provides the A+ program as the best cost-effective approach to maximum quality and reliability on molded devices. The following flow chart shows how we do it step by step. The major difference between $B+$ and the $A+$ is the burn-in associated with the $A+$ program.

SEM -
Randomly selected wafers are taken from production regularly and subjected to SEM analysis.

EPOXY B SEAL -

At National, all molded semiconductors, including IC's have been built by this process for some time. All processing steps, inspections and QC monitoring are designed to provide highly reliable products.

SIX HOUR, $150^{\circ} \mathrm{C}$ BAKE -
This stress places the die bond and all wire bonds into a combined tensile and shear stress mode, and helps eliminate marginal bonds and electrical connections.

FIVE TEMPERATURE CYCLES $\left(0^{\circ} \mathrm{C}\right.$ to $\left.100^{\circ} \mathrm{C}\right)$ -
Exercising the circuits over $100^{\circ} \mathrm{C}$ temperature range further stresses the bonds and eliminates any marginal bonds missed during the bake.

ELECTRICAL TESTING -

These room-temperature functional and parametric tests are the normal final tests through which all National products pass.
BURN-IN TEST -
Devices are stressed at maximum operating conditions to eliminate marginal devices. Test is performed per MIL-STD-883A, Method 1015.1.

HIGH TEMPERATURE ($100^{\circ} \mathrm{C}$) FUNCTIONAL ELECTRICAL TEST -
A high temperature test with voltages applied places the die under the most severe stress possible. The test is actually performed at $100^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$ higher than the commercial. ambient limit. All devices are thoroughly exercised at the $100^{\circ} \mathrm{C}$ ambient.
100% DC FUNCTIONAL AND PARAMETRIC TESTS -
This is the second time that room-temperature functional and parametric tests are performed to National data sheet electrical limits.

TIGHTER-THAN-NORMAL QC INSPECTION PLANS -
Most vendors sample inspect outgoing parts to a 0.65% (or in some cases a 1%) AQL. When you specify the $A+$ program, however, not only do we sample your parts to a 0.28% AQL for all data sheet dc parameters, but they receive 0.14% AQL for functionality as well. (Functional failures - not parameter shifts beyond spec cause most system failures.) Thus, the five- to seven-times tightening of the sampling AQL* procedure gives a substantially higher quality to your A+ parts. And you can rely on the integrity of your received IC's without incoming tests at your facility.
SHIP PARTS
Here is the QC procedure used in our A+ test program:

TEST	TEMPERATURE	AQL
Electrical Functionality	$\cdot 25^{\circ} \mathrm{C}$	0.14%
Parametric, dc	$25^{\circ} \mathrm{C}$	0.28%
Major Mechanical	$25^{\circ} \mathrm{C}$	0.25%
Minor Mechanical	$25^{\circ} \mathrm{C}$	1%

QUALITY AND RELIABILITY PROGRAM FOR HERMETIC PACKAGED LINEAR PRODUCT

An improved quality and reliability program, similar to that which is available for molded products, is also available for commercial temperature range hermetic packages.

There is one major difference between the molded $A+$ program and the hermetic package A+ program. Since there is no material in contact with the wire bonds in a hermetic package, the need for "Hot Rail" functional testing at $100^{\circ} \mathrm{C}$ is of no benefit and therefore not included. The devices are electrically tested (100\%), then burned-in and then 100% electrically tested again. If a bond failure were to occur during burn-in, there is no material in contact with the bond (such as plastic in the case of molded products) that would tend to restore the bond when the device cooled. The result is that a weak bonding wire, once broken causing an "open" will remain open and be caught at the second 100% electrical screening.
The A+ hermetic package program flow chart is shown below.

NATIONAL'S A+ PROGRAM FLOW CHART FOR HERMETIC PACKAGES

National has extended the successful B+ and A+ molded product programs to hermetic packages. We believe this to be the best practical approach to maximum quality and reliability for commercial devices. The following flow chart explains this program step by step.

SEM -
Randomly selected wafers are taken from production regularly and subjected to SEM analysis.
ASSEMBLY AND SEAL -
All processing steps, inspections, and QC monitoring are designed to provide highly, reliable products. MIL-STD-883 is the guideline by which all linear products are manufactured.
SIX HOUR, $150^{\circ} \mathrm{C}$ BAKE -
This stress places the die bond and all wire bonds into a combined tensile and shear stress mode, and helps eliminate marginal bonds and electrical connections.

FIVE TEMPERATURE CYCLES

($0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$) -
Exercising the circuits over $100^{\circ} \mathrm{C}$ temperature range further stresses the bonds and eliminates any marginal bonds missed during the bake.

A synopsis of the $A+$ and $B+$ programs is shown on the preceding page. Also shown below is a listing of some of the most popular devices which are processed to this program and are readily available.
For more information about this, or other National Linear programs, please contact your local representative.

LF13331	LM1458	LM307	LM324	LM3900	LM723C
LF13741	LM1496	LM308	LM3301	LM393	LM725C
LF347	LM2900	LM3080	LM3302	LM4250C	LM733
LM351	LM2901	LM310	LM339	LM555C	LM741C
LF353	LM2902	LM311	LM3401	LM556	LM747C
LF3					
LF355	LM2903	LM318	LM346	LM566	LM748C
LF356	LM2904	LM319	LM348	LM567	
LF357	LM301A		LM358	LM709C	
		LM360			
		LM361			

SUMMARY

The B+ program, although offering improved Reliability attendent with additional stress testing, is primarily aimed at enhancing the quality of incoming devices and thus eliminating the need for incoming testing by the user. This program offers significant cost savings to the user and eliminates the need for the investment in expensive capital equipment to perform this testing. For all general, but relatively non-critical circuits, the B+ program is the most cost-effective.

The $A+$ program incorporates not only the quality inherent with $B+$ program, but also adds burn-in for the ultimate in Reliability testing. The A+ program is recommended as the most cost-effective program for components which the user deems to be the most critical in his system.
Both programs, $\mathrm{A}+$ and $\mathrm{B}+$, incorporate high temperature stress, double testing, and very tight out-going AQL QC proceedures.

ORDER INFORMATION

Any of the devices listed molded or hermetic package, may be ordered to the A+ program simply by adding the term $A+$ behind the device number, with a slash (/) in between.

Examples:
LM348N/A+
LF356H/A +
LM1458J/A +
Likewise, any molded (N package) product may be ordered to the $\mathrm{B}+$ program by adding the term $\mathrm{B}+$ behind the device number.

Examples:

LF351N/B +
LM741CN/B+
For devices not listed, contact your local National Semiconductor Sales office for information on availability and ordering information.

7 National Semiconductor

MIL-STD-883

Mil-Standard-883 is a Test Methods and Procedures Document for Microelectronic Circuits. It was derived from MIL-S-19500, MIL-STD-750, and MIL-STD-202C for transistors and diodes at about the time that National Semiconductor Corporation was entering the military microelectronics market. As a result, our standard quality control operations are written around MIL-STD-883. The bonding control, visual inspections, and post seal screening requirements set forth by 883 (as well as added control procedures beyond the requirements of 883) have been part of National's quality control procedures almost from the start. Our Quality Assurance Procedures Manual is available upon request.
We offer a complete line of linear/883 (Class B) products as standard, off-the-shelf items. Special Linear/883 data sheets have been prepared to reflect this capability. They show process flow, electrical parameters, end of test criteria, and test circuits. We save you the problem of specifying test and inspection procedures, and offer significant cost savings by having an off-the-shelf, "to the letter" 883 ,program. In addition, we will test any of our integrated circuits to any class of MIL-STD-883.

MIL-M-38510

MIL-M-38510 specifies the general requirements for supplying microcircuits. These are; product assurance, which includes screening and quality conformance inspection; design and construction; marking; and workmanship. The screening and quality conformance inspection are conducted in accordance with MIL-STD-883.

Screening

All microcircuits delivered in accordance with MIL-$\mathrm{M}-38510$ must have been subjected to, and passed all the screening tests detailed in Method 5004 of MIL-STD-883 for the type of microcircuit and product assurance level.
The device electrical and package requirements of MIL-M-38510 are detailed by a device specification referred to as a slash sheet. Each slash sheet defines the microcircuit electrical performance and mechanical requirements. Each device listed on a slash sheet is referred to as a slash number and the group of the microcircuits contained on a slash sheet is defined as a family of devices. The device may be Class B or C as defined by MIL-STD-883, Method 5004 and 5005. Three lead finishes are allowed by the slash sheet, pot solder dip, bright tin plate, and gold plate.
The MIL-M-38510 specs for standard linear devices require $100 \% \mathrm{DC}$ testing at $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$. AC testing is performed at $+25^{\circ} \mathrm{C}$. The electrical parameters specified are tighter than the normal data sheet guaranteed limits. Additionally, MIL-M-38510 requires device traceability, extensive documentation and closely matched maintenance.

Quality Conformance

Quality conformance inspection is conducted in accordance with the applicable requirements of Group A, (electrical test), Group B and C, (environmental test) of Method 5005, MIL-STD-883. These tests are conducted on a sample basis with GroupA performed on each sublot, Group B on each lot, and Group C as specified (usually every three months).

To supply devices to MIL-M-38510, the IC manufacturer must qualify the devices he plans to supply to the detail specifications. Qualification consists of notifying the qualifying activity of one's intent to qualify to MIL-M-38510. After passing comprehensive audits of facilities and documentation systems, the IC manufacturer will subject the device to and demonstrate that they satisfy all of the Group A, B, and C requirements of Method 5005 of MIL-STD-883 for the specified classes and types of IC. The qualification tests shall be monitored by the qualifying agency. Finally the IC manufacturer shall prepare and submit qualification test data to the qualifying agency. Groups A, B, and C inspections then shall be performed at intervals no greater than three months.

The purpose of qualification testing is to assure that the device and lot quality conform to certain standard limits. In effect, lot qualification tests tend to ensure that once a particular device type is demonstrated to be acceptable, it's production, including materials, processing, and testing will continue to be acceptable. These limits are specified in MIL-STD-883 in terms of LTPD's (Lot Tolerance Percent Defective) for the various qualification test sub-groups. Qualification testing is performed on a sample of devices which are chosen at random from a lot of devices that has satisfactorily completed the screening of Method 5004 must be performed on each device, i.e. on a 100% basis as opposed to qualification testing (Method 5005) which occurs on a random sample basis.

In summary, the entire purpose of MIL-M-38510 and MIL-STD-883 is to provide the military, through its contractors with standard devices.

We at National Semiconductor have supplied and are supplying devices to the MIL-M- 38510 specifications. To order a MIL-M-38510 microcircuit, specify the following:

For example; to specify an LM741 in a DIP processed to the requirements of MIL-M-38510, Class B, with gold plated leads, specify M-38510/ 10101BCC.

MM38510/	XXX	XX	\mathbf{X}	X	X
T				1	
Specifies the	Slash	Device	Device	Case	Lead
General Requirements of	Sheet No	Type	Class	Outine	Finish
MIL-M-38510					

Device No.	Function	National Direct Replacement	Device No.	Function	National Direct Replacement	5
FAIRCHILD			FAIRCHILD	ontinued)		
$\mu \mathrm{A} 101 \mathrm{AFM}$	General Purpose Op Amp	LM 101AF	${ }_{\mu A 748 H C}$	Op Amp	LM748CH	
$\mu \mathrm{A}$ 101AHM	General Purpose Op Amp	LM101AH	$\mu \mathrm{A} 748 \mathrm{HM}$	Op Amp	LM748H	
${ }_{\mu} \mathrm{A} 102 \mathrm{HM}$	Voltage Follower	LM102H	${ }_{\mu}$ A748TC	Op Amp	LM748CN	
${ }_{\mu}{ }^{\text {A } 104 H M}$	Negative Voltage Regulator	LM104H	${ }_{\mu}{ }^{\text {A } 760 \mathrm{HC}}$	High Speed Differential Comparator	LM760CH	()
$\mu \mathrm{A} 105 \mathrm{HM}$	Voltage Regulator	LM105H	${ }_{4}$ A796HC	3-Terminal Positive Voltage Regulator	LM1496H	∞
$\mu \mathrm{A} 107 \mathrm{HM}$	General Purpose Op Amp	LM 107H	$\mu \mathrm{A} 996 \mathrm{PC}$	3-Terminal Positive Voltage Regulator	LM1496M	
${ }_{\mu}$ A 108AHM	Super Beta Op Amp	LM108AH	${ }_{\mu}$ A 798 HM	Dual Op Amp	LM358H	
$\mu \mathrm{A} 108 \mathrm{HM}$	Super Beta Op Amp	LM108H	$\mu \mathrm{A} 1558 \mathrm{HM}$	Dual Internally Compensated Op Amp	LM 1558 H	(1)
$\mu \mathrm{A} 110 \mathrm{HM}$	Voltage Comparator	LM110H	${ }^{4} \mathrm{~A} 2901 \mathrm{PC}$	Dual Internally Compensated Op Amp	LM2901N	D
${ }_{\mu} \mathrm{A} 111 \mathrm{HM}$	Voltage Comparator	LM111H	$\mu \mathrm{A} 3046 \mathrm{DC}$	Transistor Array	LM3046N	(1)
$\mu \mathrm{A} 111 \mathrm{RM}$	Voltage Comparator	LM111J-8	$\mu \mathrm{A} 3064 \mathrm{PC}$	TV Automatic Fine-Tuning Circuit	LM3064N	©
$\mu \mathrm{A} 201 \mathrm{AHM}$	General Purpose Op Amp	LM201AH	$\mu \mathrm{A} 3075 \mathrm{PC}$	FM IF Limiter/Detector/Audıo Preamplifier	LM3075N)
μ A201AT	General Purpose Op Amp	LM201AN	$\mu \mathrm{A} 3086 \mathrm{PC}$	Transistor Array	LM3086N	
${ }_{\mu} \mathrm{A} 207 \mathrm{HM}$	General Purpose Op Amp	LM207H	$\mu \mathrm{A} 3301 \mathrm{P}$	Quad Single Supply Amplifier	LM3301N	
$\mu \mathrm{A} 208 \mathrm{AHM}$	Super Beta Op Amp	LM208AH	$\mu \mathrm{A} 3302 \mathrm{P}$	Quad Comparator	LM3302N	(1)
$\mu \mathrm{A} 208 \mathrm{HM}$	Super Beta Op Amp	LM208H	${ }_{\mu}{ }^{\text {A } 3401 P}$	Quad Single Supply Amplifier	LM3401N	
$\mu \mathrm{A} 301 \mathrm{AHC}$	General Purpose Op Amp	LM301AH	$\mu \mathrm{AF} 111 \mathrm{HM}$	Voltage Comparator	LF111H	
μ A301ATC	General Purpose Op Amp	LM301AN	$\mu \mathrm{AF} 155 \mathrm{AHM}$	Monolithic JFET Input Op Amp	LF155AH	
$\mu \mathrm{A} 302 \mathrm{HC}$	Voltage Follower	LM302H	${ }_{\mu}$ AF 155 HM	Monolithic JFET Input Op Amp	LF155H	
$\mu \mathrm{A} 304 \mathrm{HC}$	Negative Voltage Regulator	LM304H	μ AF156AHM	Wideband Mono. JFET Input Op Amp	LFI56AH	
$\mu \mathrm{A} 305 \mathrm{AHC}$	Voltage Regulator	LM305AH	$\mu \mathrm{AF} 156 \mathrm{HM}$	Wideband Mono. JFET Input Op Amp	LF156H	(1)
${ }_{\mu} \mathrm{A} 305 \mathrm{HC}$	Voltage Regulator	LM305H	$\mu \mathrm{AF} 157 \mathrm{AHM}$	Wideband Mono. JFET Input Op Amp	LF157AH	
$\mu \mathrm{A} 307 \mathrm{HC}$	General Purpose Op Amp	LM307H	$\mu \mathrm{AF} 157 \mathrm{HM}$	Wideband Mono. JFET Input Op Amp	LF157H	
μ A307TC	General Purpose Op Amp	LM307N	$\mu \mathrm{AF} 211 \mathrm{HM}$	Voltage Comparator	LF211H	
μ A308AHC	Super Beta Op Amp	LM308AH	$\mu \mathrm{AF} 311 \mathrm{HC}$	Voltage Comparator	LF311H	
$\mu \mathrm{A} 308 \mathrm{HC}$	Super Beta Op Amp	LM308H	$\mu \mathrm{AF355AHC}$	Monolithic JFET Input Op Amp	LF355AH	
μ A309KC	5 Volt Regulator	LM309KC	$\mu \mathrm{AF355HC}$	Monolithic JFET Input Op Amp	LF355H	
$\mu \mathrm{A} 310 \mathrm{HC}$	Voltage Follower	LM310H	μ AF356AHC	Wideband Mono JFET Input Op Amp	LF356AH	
$\mu \mathrm{A} 311 \mathrm{HC}{ }^{\prime}$	Voltage Comparator	LM311H	${ }_{\mu}$ AF356HC	Wideband Mono JFET Input Op Amp	LF356H	
$\mu \mathrm{A} 31 \mathrm{R}$	- Voltage Comparator	LM311J.8	$\mu \mathrm{AF357AHC}$	Wideband Mono JFET input Op Amp	LF357AH	
${ }^{\prime} \mathrm{A} 311 \mathrm{TC}$	Voltage Comparator	LM311N	$\mu \mathrm{AF357HC}$	Wideband Mono JFET Input Op Amp	LF357H	
$\mu \mathrm{A} 324 \mathrm{PC}$	Quad Op Amp	LM324N	MOTOROLA			
$\mu \mathrm{A} 339 \mathrm{APC}$	Quad Comparator	LM339AN	LF155AH	Monolithic JFET Op Amp	LF155AH	
${ }_{\mu}^{\mu \text { A339PC }}$	Quad Comparator Voltage Regulator	LM339N	LF 155 H	Monolithic JFET Op Amp	LF155H	
${ }_{\mu}{ }^{\text {A } 5555} \mathrm{HC}$	Single Timing Circuit	LM555CH	LF156AH	Monolithic JFET Op Amp	LF156AH	
$\mu \mathrm{A} 555 \mathrm{HM}$	Single Timing Circuit	LM555H	LF156H	Monolithic JFET Op Amp	LF156H	
$\mu \mathrm{A} 555 \mathrm{TC}$	Single Timing Circuit	LM555CN	LF157AH	Monolithic JFET Op Amp	LF157AH	
$\mu \mathrm{A} 556 \mathrm{PC}$	Dual Timing Circuit	LM556CN	LF157H	Monolithic JFET Op Amp	LF157H	
$\mu \mathrm{A} 709 \mathrm{AHM}$	High Performance Op Amp	LM709AH	LF355AH	Monolithic JFET Op Amp	LF355AH	
$\mu \mathrm{A} 709 \mathrm{HC}$	High Performance Op Amp	LM709CH	LF355H	Monolithic JFET Op Amp	LF355H	
$\mu \mathrm{A} 709 \mathrm{HM}$	High Performance Op Amp	LM709H	LF355N	Monolithic JFET Op Amp	LF355N	
$\mu \mathrm{A} 709 \mathrm{PC}$	High Performance Op Amp	LM709CN	LF356AH	Monolithic JFET Op Amp	LF356AH	
μ A709TC	High Performance Op Amp	LM709CN-8	LF356H	Monolithic JFET Op Amp	LF35jH	
$\mu \mathrm{A} 710 \mathrm{FM}$	High Speed Differential Comparator	LM710F	LF356N	Monolithic JFET Op Amp	LF355N	
$\mu \mathrm{A} 710 \mathrm{HC}$	High Speed Differential Comparator	LM710CH	LM117H	3-Terminal Adj. Positive Regulator	LM117H	
$\mu \mathrm{A} 710 \mathrm{HM}$	High Speed Differential Comparator	LM710H	LM117K	3-Terminal Adj. Positive Regulator	LM117K	
$\mu \mathrm{A} 710 \mathrm{PC}$	High Speed Differential Comparator	LM710CN	LM123K	Positive Voltage Regulator	LM123K	
$\mu \mathrm{A} 711 \mathrm{CC}$	Dual Comparator	LM711CH	LM317H	3-Terminal Adj. Positive Regulator	LM317H	
${ }_{\mu \text { A } 711 \mathrm{HM}}$	Dual Comparator	LM711H	LM317K	3-Terminal Adj. Positive Regulator	LM317K	
$\mu \mathrm{A}$ (11PC	Dual Comparator	LM711CN	LM317T	3-Terminal Adj. Positive Regulator	L.M317T	
$\mu \mathrm{A} 723 \mathrm{DC}$	Precision Voltage Regulator	LM723CJ	MC 1303P	Dual Stereo Preamplifier	LM1303N	
μ A723DM	Precision Voltage Regulator	LM723J	MC1310P	FM Stereo Demodulator	LM1310N	
${ }_{\mu} \mathrm{A} 723 \mathrm{HC}$	Precision Voltage Regulator	LM723CH	MC1408L6	8-Bit Multiplying D/A Converter	LM1408J-6	
$\mu \mathrm{A} 723 \mathrm{HM}$	Precision Voltage Regulator	LM723H	MC1408L7	8-Bit Multiplying D/A Converter	LM 1408J. 7	
$\mu \mathrm{A} 723 \mathrm{PC}$	Precision Voltage Regulator	LM723CN	MC1408L8	8 - Bit Multiplying D/A Converter	LM1408J. 8	
$\mu \mathrm{A} 25 \mathrm{AHM}$	Instrumentation Op Amp	LM725AH	MC1408P6	8 -Bit Multiplying D/A Converter	LM1408N-6	
$\mu \mathrm{A} 725 \mathrm{HC}$	Instrumentation Op Amp	LM725CH	MC1408P7	8 -Bit Multiplying D/A Converter	LM1408N. 7	
$\mu \mathrm{A} 725 \mathrm{HM}$	Instrumentation Op Amp	LM725H	MC1408P8	8 -Bit Multiplying D/A Converter	LM1408N-8	
$\mu \mathrm{A} 733 \mathrm{HC}$	Differential Video	LM733CH	MC1414L	Dual Differential Comparator	LM1414J	
$\mu \mathrm{A} 733 \mathrm{HM}$	Differential Video	LM733H	MC1414P	Dual Differential Comparator	LM1414N	
$\mu \mathrm{A} 741 \mathrm{AFM}$	Frequency Compensated Op Amp	LM741AF	MC1496G	Balanced Modulator-Demodulator	LM 1496H	
$\mu \mathrm{A} 441$ AHM	Frequency Compensated Op Amp	LM741AH	MC1496P	Balanced Modulator-Demodulator	LM1496N	
$\mu \mathrm{A} 741 \mathrm{DC}$	Frequency Compensated Op Amp	LM741CJ-14	MC1508L8	8 -Bit Multiplying D/A Converter	LM1508D-8	
$\mu \mathrm{A} 741 \mathrm{EHC}$	Frequency Compensated Op Amp	LM741EH	MC1514L	Dual Differential Comparator	LM1514J	
$\mu \mathrm{A} 741 \mathrm{HC}$	Frequency Compensated Op Amp	LM741CH	MC1596G	Blanced Modulator-Demodulator	LM 1596H	
${ }_{\mu A 741 H M}$	Frequency Compensated Op Armp	LM741H	MC1710AG	Differential Comparator	LM710AH	
$\mu \mathrm{A} 741 \mathrm{PC}$	Frequency Compensated Op Amp	LM741CN-14	MC1710CG	Differential Comparator	LM710CH	
$\mu \mathrm{A} 741 \mathrm{RC}$	Frequency Compensated Op Arnp	LM741CJ	MC1710CP	Differential Comparator	LM710CN	
$\mu \mathrm{A} 41$ TC	Frequency Compensated Op Amp	LM741CN	MC1710G	Differential Comparator	LM710H	
$\mu \mathrm{A} 446 \mathrm{PC}$	Chroma Demodulator	LM746N	MC1711CG	Dual Differential Comparator	LM711CH	
μ A747AHM	Dual Frequency Compensated Op Amp	LM747AH	MC1711CP	Dual Differential Comparator	LM711CN	
$\mu \mathrm{A} 747 \mathrm{EHC}$	Dual Frequency Compensated Op Amp	LM747EH	MC1711G	Dual Differential Comparator	LM711H	
$\mu \mathrm{A} 747 \mathrm{HC}$	Dual Frequency Compensated Op Amp	LM747CH	MC1723CL	Adj. Positive or Negative Volt. Regulator	LM723CJ	
$\mu \mathrm{A} 747 \mathrm{HM}$	Dual Frequency Compensated Op Amp	LM747H	MC1723CP	Adj. Positive or Negative Volt. Regulator	LM723CN	
$\mu \mathrm{A} 447 \mathrm{PC}$	Dual Frequency Compensated Op Amp	LM747CN	MC1723L	Adj. Positive or Negative Volt. Regulator	LM723J	

Device No.	Function	National Direct Replacement	Device No.	Function	National Direct Replacement
motorola (C	ontinued)		MOTOROLA	Continued)	
MC1733CG	Differential Video Amp	LM733CH	MLM304G	Adjustable Negative Voltage Regulator	LM304H
MC1733CP	Differential Video Amp	LM733CN	MLM305G	Adjustable Positive Voltage Regulator	LM305H
MC1733G	Differential Video Amp	LM733H	MLM307G	General Purpose Op Amp	LM307H
MC1741CG	General Purpose Op Amp	LM741CH	MLM307PI	General Purpose Op Amp	LM307N
MC1741CL	General Purpose Op Amp	LM74.1CJ-14	MLM307U	General Purpose Op Amp	LM307J
MC1741CP1	General Purpose Op Amp	LM741CN	MLM308AG	Precision Op Amp	LM308AH
MC1741CP2	Generia Purpose Op Amp	LM741CN-14	MLM308AL	Precision Op Amp	LM308AJ
MC1741G	General Purpose Op Amp	LM741H	MLM308API	Precision Op Amp	LM308AN
MC1741L	General Purpose Op Amp	LM741J-14	MLM308AU	Precision Op Amp	LM308AJ-8
MC1741U	General Purpose Op Amp	LM741J	MLM308G	Precision Op Amp	LM308H
MC1747CG	Dual MC1741 Op Amp	LM747CH	MLM308L	Precision Op Amp	LM308J
MC1747CL	Dual MC1741 Op Amp	LM747CJ	MLM308PI	Precision Op Amp	LM308N
MC1747CP2	Dual MC1741 Op Amp	LM747CN	MLM308U	Precision Op Amp	LM308J.8
MC1747G	Dual MC1741 Op Amp	LM747H	MLM309G	Positive Voltage Regulator	LM309H
MC1747L	Dual MC1741 Op Amp	LM747J	MLM309K	Positive Voltage Regulator	LM309K
MC1748CG	General Purpose Op Amp	LM748CH	MLM310G	Unity Gain Op Amp	LM310H
MC1748CP1	General Purpose Op Amp	LM748CN	MLM310PI	Unity Gain Op Amp	LM310N
MC1748CU	General Purpose Op Amp	LM748CJ	MLM310U	Unity Gain Op Amp	LM310J-8
MC1748G	General Purpose Op Amp	LM748H	MLM311G	Voltage Comparator	LM311H
MC1748U	General Purpose Op Amp	LM748J	MLM311L	Voltage Comparator	LM311J
MC2901P	Quad Comparator	LM2901N	MLM311PI	Voltage Comparator	LM311N
MC2902P	Quad Op Amp	LM2902N	MLM311U	Voltage Comparator	LM311J. 8
MC3301P	Quad Op Amp	LM3301N	MLM324L	Quad Op Amp	LM324J
MC3302P	Quad Comparator	LM3302N	MLM324P	Quad Op Amp	LM324N
MC3401P	Quad Op Amp	LM3401N	MLM339AL	Quad Comparator	LM339AJ
MC78XXCK	Positive Voltage Regulator	LM78XXCK	MLM339AP	Quad Comparator	LM339AN
MC78XXCT	Positive Voltage Regulator	LM78XXCT	MLM339L	Quad Comparator	LM339J
MC78LXXACG	Positive Voltage Regulator	LM78LXXACH	MLM339P	Quad Comparator	LM339N
MC78LXXACP	Positive Voltage Regulator	LM78LXXACZ	MLM358G	Dual Op Amp	LM358H
MC78LXXCG	Positive Voltage Regulator	LM78LXXCH	MLM358PI	Dual Op Amp	LM358N
MC78LXXCP	Positive Voltage Regulator	LM78LXXCZ	MLM565CP	Phase Locked Loop	LM565CN
MC79XXCK	Negative Voltage Regulator	LM79XXCK			
MC79XXCT	Negative Voltage Regulator	LM79XXCT	PMI		
MC79LXXACP	Negative Voltage Regulator	LM79LXXACZ	PM108AJ	Operational Amplifier	LM108AH
MC79LXXCP	Negative Voltage Regulator	LM79LXXCZ	PM108J	Operational Àmplifier	LM108H
MLM101AG	Gen. Purpose Adj. Op Amp	- LM101AH	PM 155AJ	JFET Input Op Amp	LF155AH
MLM101AU	Gen. Purpose Adj. Op Amp	LM101AJ	PM 155J	JFET Input Op Amp	LF155H
MLM 104G	Adjustable Negative Voit. Regulator	LM104H	PM156AJ	JFET Input Op Amp	LF156AH
MLM 105G	Adjustable Positive Volt. Regulator	LM105H	PM156J	JFET Input Op Amp	LF156H
MLM 107G	General Purpose Op Amp	LM107H	PM157AJ	JFET Input Op Amp	LF157AH
MLM107U	General Purpose Op Amp	LM107J	PM157J	JFET Input Op Amp	LF157H
MLM108AG	Precision Op Amp	LM 108AH	PM208AJ	Operational Amplifier	LM208AH
MLM 108AU	Precision Op Amp	LM108AJ	PM208J	Operational Amplifier	LM208H
MLM 109G	Positive Voltage Regulator	LM 109H	PM255J	JFET Input Op Amp	LF255H
MLM110G	Unity Gain Op Amp	LM110H	PM256J	JFET Input Op Amp	LF256H
MLM110U	Unity Gain Op Amp	LM110J.8	PM257J	JFET Input Op Amp	LF257H
MLM111G	Voltage Comparator	LM111H	PM308AJ	Operational Amplifier	LM308AH
MLM111L	Voltage Comparator	LM111J	PM308J	Operational Amplifier	LM308H
MLM111U	Voltage Comparator	LM111J. 8	PM355AJ	JFET Input Op Amp	LF355AH
MLM124L	Quad Op Amp	LM124J	PM355J	JFET Input Op Amp	LF355H
MLM124P	Quad Op Amp	LM124N	PM356AJ	JFET Input Op Amp	LF356AH
MLM 139AL	Quad Comparator	LM139AJ	PM356J	JFET Input Op Amp	LF356H
MLM 1392	Quad Comparator	LM139J	PM357AJ	JFET Input Op Amp	LF357AH
MLM158G	Dual Op Amp	LM158H	PM357J	JFET Input Op Amp	LF357H
MLM201AG	General Purpose Op Amp	LM201AH	PM725CJ	Operational Amplifier	LM725CH
MLM201API	General Purpose Op Amp	- LM201AN	PM725J	Operational Amplifier	LM725H
MLM204G	Adjustable Negative Voltage Regulator	LM204H	PM741CJ	Compensated Op Amp	LM741CH
MLM205G	Adjustable Positive Voltage Regulator	LM205H	PM741J	Compensated Op Amp	LM741H
MLM207G	General Purpose Op Amp	LM207H	PM747CJ	Dual Compensated Op Amp	LM747CH
MLM207U	General Purpose Op Amp	LM207J	PM747J	Dual Compensated Op Amp	LM747H
MLM208AG	Precision Op Amp	LM208AH	PM1558J	Dual Compensated Op Amp	LM1558H
MLM208AL	Precision Op Amp	LM208AJ			
MLM208AU	Precision Op Amp	LM208AJ.8	SIGNETICS		
MLM208G	Precision Op Amp	LM208H	μ A709AT	Operational Amplifier	LM709AH
MLM208L	Precision Op Amp	LM208J	$\mu \mathrm{A} 09 \mathrm{CN}$	Operational Amplifier	LM709CN-8
MLM208U	Precision Op Amp	LM208J-8	$\mu \mathrm{A} 709 \mathrm{CN}$-14	Operational Amplifier	LM709CN
MLM209G	Positive Voltage Regulator	LM209H	$\mu \mathrm{A} 709 \mathrm{CT}$	Operational Amplifier-	LM709CH
MLM211G	Voltage Comparator	LM211H	μ A709T	Operational Amplifier	LM709H
MLM211L	Voltage Comparator	LM211J	$\mu \mathrm{A} 710 \mathrm{CN}$-14	Differential Voltage Comparator	LM710CN
MLM211U	Voltage Comparator	LM211J.8	$\mu \mathrm{A} 710 \mathrm{CT}$	Differential Voltage Comparator	LM710CH
MLM224L	Quad Op Amp	LM224J	μ A710T	Differential Voltage Comparator	LM710H
MLM239AL	Quad Comparator	LM239AJ	$\mu \mathrm{A} 711 \mathrm{CN}$	Dual Voltage Comparator	LM711CN
ML.M239L	Quad Comparator	LM239J	$\mu \mathrm{A} 711 \mathrm{CT}$	Dual Voltage Comparator	LM711CH*
MLM258G	Dual Op Amp	LM258H	$\mu \mathrm{A} 711 \mathrm{~K}$	Dual Voltage Comparator	LM711H
MLM301AG	General Purpose Op Amp	LM301AH	$\mu \mathrm{A} 723 \mathrm{CF}$	Precision Voltage Regulator	LM723CJ
MLM301API	General Purpose Op Amp	LM301AN	$\mu \mathrm{A} 723 \mathrm{CL}$	Precision Voltage Regulator	LM723CH

Device No.	Function		Device No.	Function	National Direct Replacement
SIGNETICS (Continued)			SIGNETICS (Continued)		
$\mu \mathrm{A} 723 \mathrm{CN}$	Precision Voltage Regulator	LN723CN	LM224AN	Gen Purpose Single Supply Op Amp	LM224AN
$\mu \mathrm{A} 723 \mathrm{~F}$	Precision Voltage Regulator	LM723J	LM224F	Gen Purpose Single Supply Op Amp	LM224J
${ }_{\mu}$ A723L	Precision Voltage Regulator	LM723H	LM239AF	Quad Voltage Comparator	LM239AJ
$\mu \mathrm{A} 333 \mathrm{CN}$	Differential Video Amp	LM733CN	LM239F	Quad Voltage Comparator	LM239J
$\mu \mathrm{A} 733 \mathrm{CT}$	Differential Video Amp	LM733CH	LM258T	Gen Purpose Single Supply Op Amp	LM258H
$\mu \mathrm{A} 733 \mathrm{~F}$	Differential Video Amp	LM733H	LM293T	Low Power Dual Voltage Comparator	LM293H
$\mu \mathrm{A} 411 \mathrm{CF}$	General Purpose Op Amp	LM741CJ. 14	Lm301AF	High Performance Amplifier	LM301AJ. 14
$\mu \mathrm{A} 411 \mathrm{CN}$	General Purpose Op Amp	LM741CN	LM301AN	High Performance Amplifier	LM301AN
$\mu \mathrm{A} 741 \mathrm{CN}$-14	General Purpose Op Amp	LM741CN-14	LM301AT	High Performance Amplifier	LM301H
$\mu \mathrm{A} 741 \mathrm{CT}$	General Purpose Op Amp	LM741CH	LM307F	General Purpose Op Amp	LM307J-14
$\mu \mathrm{A} 741 \mathrm{~F}$	General Purpose Op Amp	LM741J. 14	LM307N	General Purpose Op Amp	LM307N
μ A741T	General Purpose Op Amp	LM741H	LM307T	General Purpose Op Amp	LM307H
$\mu \mathrm{A} 447 \mathrm{CN}$	Dual Op Amp	LM747CN	LM308AF	Precision Op Amp	LM308AJ
- $\mu \mathrm{A} 748 \mathrm{CF}$	General Purpose Op Amp	LM748CJ	LM308AN	Precision Op Amp	LM308AN
$\mu \mathrm{A} 748 \mathrm{CN}$	General Purpose Op Amp	LM748CN	LM308AT	Precision Op Amp	LM308AH
$\mu \mathrm{A} 748 \mathrm{CT}$	General Purpose Op Amp	LM748CH	LM308F	Precision Op Amp	LM308J
$\mu \mathrm{A} 748 \mathrm{~F}$	General Purpose Op Amp	LM748J. 14	LM308N	Precision Op Amp	LM308N
$\mu \mathrm{A} 748 \mathrm{~T}$	(General Purpose Op Amp	LM748H	LM308T	Precision Op Amp	LM308H
$78 \times X C U$	3-Terminal Positive Voltage Regulator	LM78XXCT	LM309DA	5 Volt Regulator	LM309K
78XXDA	3-Terminal Positive Voltage Regulator	LM78XXCK	LM309DB	5 Volt Regulator	LM309H
78LXXACS	3-Terminal Positive Voltage Regulator	LM78XXACZ	LM311F	Voltage Comparator	LM311J
78LXXADB	3-Terminal Positive Votlage Regulator	LM78LXXACH	LM311N	Voltage Comparator	LM311N
78LXXCDB	3-Terminal Positive Voltage Regulator	LM78LXXCH	LM311N-14	Voltage Comparator	LM311N-14
78LXXCS	3-Terminal Positive Votlage Regulator	LM78LXXCZ	LM311T	Voltage Comparator	LM311H
79xXCU	3-Terminal Negative Voltage Regulator	LM79XXCT	LM319F	Dual Voltage Comparator	LM319J
79XXDA	3-Terminal Negative Voltage Regulator	LM79XXCK	LM319K	Dual Voltage Comparator	LM319H
LF155AT	Hi Performance JFET Input Op Amp	LF155AH	LM319N	Dual Voltage Comparator	LM319N
LF155T	Hi Performance JFET Input Op Amp	LF155H	LM324AF	Gen Purpose Single Supply Op Amp	LM324AJ
LF156AT	Hi Performance JFET Input Op Amp	LF156AH	LM324AN	Gen Purpose Single Supply Op Amp	LM324AN
LF156T	Hi Performance JFET Input Op Amp	LF156H	LM324F	Gen Purpose Single Supply Op Amp	LM324J
LF157AT	Hi Performance JFET Input Op Amp	LF157AH	LM324N	Gen Purpose Single Supply Op Amp	LM324N
LF157T	Hi Performance JFET Input Op Amp	LF157H	LM339AF	Quad Voltage Comparator	LM339AJ
LF255T	Hi Performance JFET Input Op Amp	LF255H	LM339AN	Quad Voltage Comparator	LM339AN
LF256T	Hi Performance JFET Input Op Amp	LF256H	LM339F	Quad Voltage Comparator	LM339」
LF257T	Hi Performance JFET Input Op Amp	LF257H	LM339N	Quad Voltage Comparator	LM339N
LF355AT	Hi Performance JFET Input Op Amp	LF355AH	LM340XXDA	3-Terminal Positive Voltage Regulator	LM340KXX
LF355T	Hi Performance JFET Input Op Amp	LF355H	LM340XXLL	3-Terminal Positive Voltage Regulator	LM340TXX
LF356AT	Hi Performance JFET Input Op Amp	LF356AH	LM381AN	Dual Low Noise Preamplifier	LM381AN
LF356T	Hi Performance JFET Input Op Amp	LF356H	LM381N	Dual Low Noise Preamplifier	LM381N
LF357AT	Hi Performance JFET Input Op Amp	LF357AH	LM382N	Dual Low Noise Preamplifier	LM382N
LF357T	Hi Performance JFET Input Op Amp	LF357H	LM387N	Dual Low Noise Preamplifier	LM387N
LM101AF	High Performance Amplifier ..	LM101AJ. 14	LM393AN	Low Power Dual Voltage Comparator	LM393AN
LM101AT	High Performance Amplifier	LM101AH	LM393AT	Low Power Dual Voltage Comparator	LM393AH
LM107F	General Purpose Op Amp	LM107J. 14	LM393N	Low Power Dual Voltage Comparator	LM393N
LM107T	General Purpose Op Amp	LM107H	LM393T	Low Power Dual Voltage Comparator	LM393H
LM108AF	Precision Op Amp	LM108AJ	LM2901F	Quad Voltage Comparator	LM2901J
LM108AT	Precision Op Amp	LM108AH	LM2901N	Quad Voltage Comparator	LM2901N
LM108F	Precision Op Amp	LM108J	LM2903N	Low Power Dual Voltage Comparator	LM2903N
LM108T	Precision Op Amp	LM108H	MC1408.7F	8-Bit Multiplying D/A Converter	LM1407J. 7
LM109DB	5 Volt Regulator	LM109H	MC1408-8F	8 -Bit Multiplying D/A Converter	LM1408J-8
LM111F LM111T	Voltage Comparator	LM111J	MC1408-7N	8 -Bit Multiplying DIA Converter	LM1408N-7
LM111T	Voltage Comparator	LM111H	MC1408-8N	8-Bit Multiplying D/A Converter	LM1408N-8
LM119F	Dual Voltage Comparator	LM119J	MC1496K	Balanced Modulator Demodulator	LM1496H
LM119K	Dual Voltage Comparator	LM119H	MC1496N	Balanced Modulator Demodulator	LM1496N
LM124AF	Gen Purpose Single Supply Op Amp	LM124AJ	MC1596K	Balanced Modulator Demodulator	LM 1596 H
LM124F	Gen Purpose Single Supply Op Amp	LM124J	MC3302N	Quad Voltage Comparator	LM3302N
LM124N	Gen Purpose Single Supply Op Amp	LM124N	NE555T	Timer	LM555CH
LM139AF	Quad Voltage Comparator	LM139AJ	NE555N	Timer	LM555CN
LM139F	Quad Voltage Comparator	LM139J	NE556N	Dual Timer	LM556CN
LM193AT	Low Power Dual Voltage Comparator	LM193AH	NE556F	Dual Timer	LM556J
LM193T	Low Power Dual Voltage Comparator	LM193H	NE565K	Phase Locked Loop	LM565CH
LM201AF	High Performance Amplifier	LM201AJ-14	NE565N	Phase Locked Loop	LM565CN
LM201AN	High Performance Amplifier	LM201AN	NE566N	Function Generator	LM566CN
LM201AT	High Performance Amplifier	LM201H	NE567T	Tone Decoder/Phase Locked Loop	LM567CH
LM207F	General Purpose Op Amp	LM207J-14	NE567N	Tone Decoder/Phase Locked Loop	LM567CN
LM207T	General Purpose Op Amp	LM207H	SE555T	Timer	LM555H
LM208AF	General Purpose Op Amp	LM208AJ	SE565K	Phase Locked Loop	LM565H
Lm208AT	Precision Operational Amp	LM208AH	SE567T	Tone Decoder/Phase Locked Loop	LM567H
LM208F	Precision Operational Amp	LM208J	TBA120N	FM IF Amp \& Demodulator	TBA120T
LM208T	Precision Operational Amp	LM208H	TBA120S-2	8 -Stage Amp w/Balanced Demodulator	TBA120S II
LM209DB	5 Volt Regulator	LM209H	TBA120S-3	8-Stage Amp w/Balanced Demodulator	TBA120S III
LM211F	Voltage Comparator	LM211J	TBA120S-4	8 -Stage Amp w/Balanced Demodulator	TBA120S IV
LM211T	Voltage Comparator	LM211H	TBA120S-5	8-Stage Amp w/Balanced Demodulator	TBA120S V
LM219F	Dual Voltage Comparator	LM219J	TBA120SN	8 -Stage w/Balanced Demodulator	TBA120SQ
LM219K	Dual Voltage Comparator	LM219H	TBA120S 2 N	8-Stage w/Balanced Demodulator	TBA120SQ II
LM224AF	Gen Purpose Single Supply Op Amp	LM224AJ	TBA120S-3N	8-Stage w/Balanced Demodulator	TBA120SQ III

Device No.	Function	National Direct Replacement	Device No.	Function	National Direct Replacement
SIGNETICS (C	ontinued)		TEXAS INSTRUMENTS (Continued)		
TBA120S-4N	8-Stage w/Balanced Demodulator	TBA120SQ IV	LM117LA	3-Terminal Adjustable Regulator	LM117H.
TBA120S-5N	8-Stage w/Balanced Demodulator	TBA120SQ V	LM118JG	High Slew Rate Op Amp	LM118J
TBA120U	FM IF Amp \& Demodulator	TBA120U	LM118L	High Slew Rate Op Amp	LM118H
TBA120UN	FM IF Amp \& Demodulator	TBA120UQ	LM124J	Quad Op Amp	LM124J
			LM124N	Quad Op Amp	LM 1\$24N
TEXAS INSTRU	MENTS		LM139J	Quad Comparator	LM139J
$\mu \mathrm{A} 70 \mathrm{AML}$	Op Amp	LM709AH	LM158L	Dual Op Amp	CLM158H.
${ }^{4} \mathrm{~A} 709 \mathrm{CL}$	Op Amp	LM709CH	LM193L	Dual Comparator	LM193H
$\mu \mathrm{A} 709 \mathrm{CN}$	Op Amp	LM709CN	LM201AJ	Improved Op Amp	LM201AJ-14
$\mu \mathrm{A} 709 \mathrm{CP}$	Op Amp	LM709CN-8	LM201AJG	Improved Op Amp	LM201AJ
${ }^{4} \mathrm{~A} 709 \mathrm{ML}$	Op Amp	LM709H	LM201AL	Improved Op Amp	LM201AH
${ }^{\mu} \mathrm{A} 710 \mathrm{ML}$	Comparator	LM710H	LM201AN	Improved Op Amp	LM201AN
$\mu \mathrm{A} 711 \mathrm{CL}$	Dual Comparator	LM711CH	LM204L	Negative Voltage Regulator	LM204H
$\mu \mathrm{A} 711 \mathrm{CN}$	Dual Comparator	LM711CN	LM205L	Positive Voltage Regulator	LM205H
$\mu \mathrm{A} 711 \mathrm{ML}$	Dual Comparator	LM711H	LM206L	Voltage Comparator	LM206H
$\mu \mathrm{A} 723 \mathrm{CJ}$	Voltage Regulator	LM723CJ	LM207J	Compensated Op Amp	LM207J-14
$\mu \mathrm{A} 723 \mathrm{CL}$	Voltage Regulator	LM723CH	LM207JG	Compensated Op Amp	LM207J
$\mu \mathrm{A} 723 \mathrm{CN}$	Voltage Regulator	LM723CN	LM207L	Compensated. Op Amp	LM207H
$\mu \mathrm{A} 723 \mathrm{MJ}$	Voltage Regulator	LM723J	LM209LA	5 V Regulator	LM209H
$\mu \mathrm{A} 723 \mathrm{ML}$	Voltage Regulator	LM723H	LM217H	3-Terminal Adjustable Regulator	LM217LA
${ }^{\mu} \mathrm{A} 733 \mathrm{CL}$	Video Amp	LM733CH	LM217KA	3-Terminal Adjustable Regulator.	LM217K
$\mu \mathrm{A} 733 \mathrm{CN}$	Video Amp	LM733CN	LM218JG	High Slew Rate Op Amp	LM218J.8
$\mu \mathrm{A} 733 \mathrm{ML}$	Video Amp	LM733H	LM218L	High Slew Rate Op Amp	LM218H
μ A741CJ	Compensated Op Amp	LM741CJ-14	LM224J	Quad Op Amp	LM224J
$\mu \mathrm{A} 71 \mathrm{CJ}$	Compensated Op Amp	LM741CN-14	LM239J	Quad Comparator	LM239J
μ A741CJG	Compensated Op Amp.	LM741CJ	LM258L	Dual Op Amp	LM258H
$\mu \mathrm{A} 741 \mathrm{CL}$	Compensated Op Amp	LM741CH	LM293L	Dual Comparator	LM293H
$\mu \mathrm{A} 741 \mathrm{CP}$	Compensated Op Amp	LM741CN	LM301AJ	Improved Op Amp	LM301AJ-14
$\mu A 741 \mathrm{MJ}$	Compensated Op, Amp	LM741J-14	LM301AJG	Improved Op Amp	LM301AJ
μ A741MJG	Compensated Op Amp	LM741J.	LM301AL	Improved Op Amp	LM301AH
$\mu A 741$ ML	Compensated Op Amp	LM741H	LM301AN	Improved Op Amp	LM301AN
$\mu \mathrm{A} 748 \mathrm{CJG}$	Op Amp	LM748CJ	LM304L	Negative Voltage Regulator	LM304H
$\mu \mathrm{A} 748 \mathrm{CL}$	Op Amp	IM748CH	LM305AL	Positive Voltage Regulator	LM305AH
$\mu \mathrm{A} 748 \mathrm{CN}$	Op Amp	LM748CN	LM305L	Positive Voltage Regulator	LM305H
$\mu \mathrm{A} 748 \mathrm{MJ}$	Op Amp	LM748J-14	LM306L	Voltage Comparator	LM306H
$\mu \mathrm{A} 48 \mathrm{MJJG}$	Op Amp	LM748J	LM307J	Compensated Op Amp	LM307J. 14
$\mu \mathrm{A} 748 \mathrm{ML}$	Op Amp	LM748H	LM307JG	Compensated Op Amp	LM307J
$\mu \mathrm{A} 78 \times \mathrm{XCKA}$	Positive Voltage Regulator	LM78XXCK	LM307L	Compensated Op Amp	LM307H
$\mu \mathrm{A} 78 \times \mathrm{XCKC}$	Positive Voltage Regulator	LM78XXCT	LM307N	Compensated Op Amp	LM307N
$\mu \mathrm{A} 78 \mathrm{LXXACL}$	Positive Voltage Regulator	LM78LXXACZ	LM309LA	5 V Regulator	LM309H
μ A78LXXCLP	Positive Voltage Regulator	LM78LXXCZ	LM311J	Voltage Comparator	LM311J
μ A78MXXCKD	Positive Voltage Regulator	LM78MXXCP	LM311JG	Voltage Comparator.	LM311J.8
$\mu \mathrm{A} 79 \times$ XCKA	Negative Voltage Regulator	LM79XXCK	LM311L	Voltage Comparator	LM311H
${ }^{\mu} \mathrm{A} 79 \mathrm{XXCKC}$	Negative Voltage Regulator	LM79XXCT	LM311N	Voltage Comparator	LM311N-14
$\mu \mathrm{A} 9 \mathrm{M} \times \times \mathrm{CKD}$	Negative Voltage Regulator	LM79MXXCP	LM311P	Voltage Comparator	LM311N
$\mu \mathrm{A} 79 \mathrm{MXXCLA}$	Negative Voltage Regulator	LM79MXXCH	LM317KA	3-Terminal Adjustable Regulator*	LM317K
$\mu \mathrm{A} 79 \mathrm{MXXL}$ A	Negative Voltage Regulator	LM79MXXH	LM317KC	3-Terminal Adjustable Regulator	LM317T
LF155AL	JFET Input Op Amp	LF155AH	LM317LA	3-Terminal Adjustable Regulator	LM317H
LF155L	JFET Input Op Amp	LF155H	LM318JG	High Slew Rate Op Amp	LM318J. 8
LF156AL	JFET Input Op Amp	LF156AH	LM318L	High Slew Rate Op Amp	LM318H
LF156L	JFET Input Op Amp	LF156H	LM318P	High Slew Rate Op Amp	LM318N
LF157AL	JFET Input Op Amp	LF157AH	LM324J	Quad Op Amp	LM324J
LF157L	JFET Input Op Amp	LF157H	LM324N	Quad Op Amp	LM324N
LF255L	JFET Input Op Amp	LF255H	LM339J	Quad Comparator	LM339J
LF256L	JFET Input Op Amp	LF256H	LM339N	Quad Comparator	LM339N
LF257L	JFET Input Op Amp	LF257H	LM358L	Dual Op Amp	LM358H
LF355AL	JFET Input Op Amp	LF355AH	LM358P	Dual Op Amp	LM358N
LF355L	JFET Input Op Amp	LF355H	LM376P	Positive Voltage Regulator	LM376N
LF355P	JFET Input Op Amp	LF355N	LM393L	Dual Comparator	LM393H
LF356AL	JFET Input Op Amp	LF356AH	LM393P	Dual Comparator	LM393N
LF356L	JFET Input Op Amp	LF356H	LM2901N	Quad Comparator	LM2901N
LF356P	'JFET Input Op Amp	LF356N	LM2902J	Quad Op Amp	LM2902J
LM101AJ	Improved Op Amp	LM101AJ. 14	LM2902N	Quad Op Amp	LM2902N
LM101AJG	Improved Op Amp	LM101AJ	LM2903P	Dual Comparator	LM2903N
LM 101AL	Improved Op Amp	LM101AH	LM2904P	Dual Op Amp	LM2904N
LM101AU	Improved Op Amp	LM101AF	MC1558JG	Dual Compensated Op Amp	LM1558J
LM104L	Negative Voltage Regulator	LM104H	MC1558L	Dual Compensated Op Amp	LM15518H
LM105L	Positive Voltage Regulator	LM105H	NE555CJG	Timer	LM555CJ
LM 106L	Voltage Comparator	LM106H	NE555CL	Timer	LM555CH
LM107J	Compensated Op Amp	LM107J-14	SE555JG	Timer	LM555J
LM107JG	Compensated Op Amp	LM107J	SE555L	Timer	LM555H
LM107L	Compensated Op Amp	LM107H	TL081ACL	Single Low Cost Bi-Fet Op Amp	LF351AH
LM109LA	5 V Regulator	LM109H	TLOB1ACN	Single Low Cost Bi-Fet Op Amp	LF351AN
LM111J	Voltage Comparator	LM111J	TL081CL	Single Low Cost Bi-Fet Op Amp	LF351H
LM111JG	Voltage Comparator	LM111J-8	TLO81CN	Single Low Cost Bi-Fet Op Amp	LF351N
LM111L	Voltage Comparator	LM111H	TL710CL	Comparator.	LM710CH
LM117KA	3-Terminal Adjustable Regulator	LM117K	TL710CN	Comparator	LM710CN

National Semiconductor									
	ss	some	momb		"	nea	cixem	moo	Renem
	-		-			-	-	-	$\stackrel{\square}{\circ}$
$\mathrm{d}_{1 \times 1}$	-	-	F	F	:	*	-	-	\%
	\cdots	$\left.\begin{array}{\|c\|} \hline \\ k \\ k \\ 0 \\ 0 \end{array} \right\rvert\,$	"		,	\cdots	,	"	$\stackrel{\square}{\square}$
	。	F	\cdots	-	,				¢
		on		${ }_{\text {ks }}$	*		$\stackrel{*}{*}$		
any			\because		\because		$\stackrel{m}{n}$	*	,
\cdots									

Industry Package Cross Reference Guide

NS Package D14E
14-Lead Cavity DIP (D) (Side Brazed)

NS Package D16C
16-Lead Cavity DIP (D)
(Side Brazed)

NS Package K02A
2-Lead TO-3 Metal Can Package (K) (Steel)

NS Package N08A -Lead Molded Mini-DIP (N)
(

NS Package KC02A
2-Lead TO-3 Metal Can Package (KC) (Aluminum)

NS Package N08B
8-Lead Molded Mini-DIP (N)

NS Package N10B 10-Lead Molded DIP (N)

NS Package N14A 14-Lead Molded DIP (N)

NS Package N14C
14-Lead Molded DIP (N-01)
(Staggered Leads)
NS Package N16A
16-Lead Molded DIP (N)

NS Package N16C
16-Lead Molded DIP (N-01)
(Staggered Leads)

NS Package N16E
16-Lead Molded DIP (N)

NS Package P03A 3-Lead TO-202 Power Package (P),

NS Package P03E
1 Tab Formed 3-Lead TO-202 Power Package (P)

NS Package S14A
14-Lead "SGS' Type Power DIP (S)

NS Package Z03A 3-Lead TO-92 Plastic Package (Z)

NS Package Z03D 3-Lead TO-92 Plastic Package (Z)
Physical Dimensions Addendum

NS Package D16D
16-Lead Cavity DIP (D)

NS Package D24C
24-Lead Cavity DIP (D)

NS Package H12B

NS Package HY08A
8-Lead Cavity DIP (J) (Hybrid)

NS Package J28A
28-Lead Cavity Dip (J)

NS Package J40A 40-Lead Cavity DIP (J)

NS Package N40A
40-Lead Molded DIP (N)

The Data Bookshelf: Tools For The Design Engineer

National Semiconductor's Data Bookshelf is a compendium of information about a product line unmatched in its breadth in the industry. The many Data Books referenced here represent National's entire line of devices, devices that span the entire spectrum of semiconductor processes, and that range from the simplest of discrete transistors to microprocessors those most-sophisticated marvels of modern integratedcircuit technology.
Active and passive devices and circuits; hybrid and monolithic structures; discrete and integrated components... Complete electrical and mechanical specifications; charts, graphs, and tables; test circuits and waveforms; design and application information... Whatever you need you'll find in the designer's ultimate reference source - National
Semiconductor's Data Bookshelf.

Ordering Information

All orders must be prepaid. Domestic orders must be accompanied by a check or a money order made payable to National Semiconductor Corp.; orders destined for shipment outside of the U.S. must be accompanied by U.S. funds. Orders will be shipped by postage-paid Third Class mail. Please allow approximately 6-8 weeks for domestic delivery, longer for delivery outside of the U.S.

National Semiconductor

Please send me the volumes of the National Semiconductor DATA BOOKSHELF that I have selected below. I have enclosed a check or money order for the total amount of the order, made payable to National Semiconductor Corp.

Name Purchase Order \# \qquad Street Address \qquad
City \qquad State/Country Zip \qquad
\qquad copies @ \$6.00, CMOS Databook
Total \$ \qquad
\qquad copies @ \$7.00, Data Acquisition Handbook
Total \$ \qquad
\qquad copies @ \$6.00, Interface Databook
Total \$ \qquad
\qquad copies @ \$16.00, Linear Applications Handbook
Total \$ \qquad
\qquad copies @ \$9.00, Linear Databook
Total \$ \qquad
\qquad copies @ \$7.00, Voltage Regulator Handbook
Total \$ \qquad
\qquad copies @ \$6.00, Memory Databook
Total \$ \qquad
\qquad copies @ \$11.00, Memory Applications
Total \$ \qquad
\qquad copies @ \$3.00, Microprocessor Applications in Business, Science and Industry

Total \$ \qquad
\qquad copies @ \$4.00, SC/MP Microprocessor Applications

Total \$ \qquad

copies)@ \$5.00, MOS/LSI Databook
Total \$ \qquad
copíes @ $\$ 5.00$, Discrete Databook Total $\$$
copies @ $\$ 5.00$, Microcomputer Systems
Series/80 Databook
Total \$ \qquad
\qquad copies @ \$6.00, Series 8000 Microprocessor
Family Handbook
Total \$ \qquad
\qquad copies @ \$20.00, Reliability Handbook
Total \$ \qquad
\qquad copies @ \$6.00, Special Functions Databook
Total \$ \qquad
\qquad copies @ \$3.00, Pressure Transducer Handbook
Total \$ \qquad
Subtotal \$ \qquad
(California residents add 6\% Sales Tax*) \$ \qquad
Grand Total \$ \qquad

Mail to: National Semiconductor Corp.
P.O. Box 60876

Sunnyvale, CA 94088

[^0]: ${ }^{\dagger}$ For more information See National Semiconductor's Voltage Regulator Handbook.

[^1]: Note 1: This specification applies over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+150^{\circ} \mathrm{C}$ for the LM 120 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$ for the LM320.

 tions apply only up to P_{D}.
 Note 3: For -5V 3 amp regulators, see LM145 data sheet.

[^2]: *Needed if device is far from filter capacitors

[^3]: *Recommended if device is far from filter capacitors

[^4]: ${ }^{* *}$ Covered by U.S. Patent Number 3,571,630

[^5]: *Does not affect temperature coefficient

[^6]: Parasitic input capacitance $\mathbf{C 1} \cong(3 \mathrm{pF}$ for LF13741 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate, add C 2 such that: $\mathrm{R} 2 \mathrm{C} 2 \cong \mathrm{R} 1 \mathrm{C} 1$.

[^7]: ${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211.

[^8]: ${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211.

[^9]: **Pin connections shown are for metal can.

[^10]: **Pin connections shown are for metal can.

[^11]: **Pin connections shown are for metal can.

[^12]: **Pin connections shown are for metal can.

[^13]: **Pin connections shown are for metal can.

[^14]: Note 1: The maximum junction temperature of the LM112 is $150^{\circ} \mathrm{C}, \mathrm{LM} 212$ is $100^{\circ} \mathrm{C}$ and LM 312 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
 Note 2: The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
 Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
 Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (LM112), $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (LM212), $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq$ $\pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM312) unless otherwise noted.

[^15]: \ddagger The 38 V supplies allow for a 5% voltage tolerance. All resistors are $1 / 2$ watt, except as noted.

[^16]: Note 1: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
 Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{j A}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$ whichever is less.
 Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range $\left(T_{L} \leq T_{A} \leq T_{H}\right)$ unless otherwise noted.

[^17]: Order Number LM159J or LM359J See NS Package J14A
 Order Number LM359N
 See NS Package N14A

[^18]: Note 1: See Maximum Power Dissipation graph.
 Note 2: Mirror gain is the current gain of the current mirror which is used as the non-inverting input. $\left(A_{1}=\frac{I_{I N}(-)}{I_{I N}(+)}\right) \quad \Delta M i r r o r$
 Gain is the $\%$ change in A_{1} for two different mirror currents at any given temperature.
 Note 3: See Supply Rejection graphs.

[^19]: ${ }^{* *} V^{+} A$ and $V^{+} B$ are internally connected for LM747AJ, LM747CJ etc.

[^20]: * Noise voltage includes contribution from source resistance.

[^21]: Note 1: All specifications apply for all device grades, at $V_{S}= \pm 15 \mathrm{~V}$, and from $T_{\text {MIN }}$ to $T_{M A X}$ unless otherwise specified. $T_{M I N}$ is $-55^{\circ} \mathrm{C}$ and $T_{\text {MAX }}+125^{\circ} \mathrm{C}$ for the LH0044A and LH0044. TMIN is $-25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {MAX }}$ is $+85^{\circ} \mathrm{C}$ for the LH0044AC, LH0044B and LH0044C. Typicals are given for $T_{A}=25^{\circ} \mathrm{C}$.
 Note 2: This parameter is not 100% tested; however, 90% of the devices are guaranteed to meet this specification after one month of operation and after initial turn-on stabilization.
 Note 3: Noise is 100% tested on the LH0044A, LH0044AC and LH0044B only. 90% of the LH0044 and LH0044C devices are guaranteed to meet this specification.
 Note 4: The inputs are shunted by back-to-back diodes for over-voltage protection. Excessive current will flow for differential input voltages in excess of 1 V . Input current should be limited to less than 1 mA .

[^22]: *Pin Numbers Shown for TO- 5 Package

[^23]: Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage
 Note 2: Inputs are protected from excessive voltages by back-to-back diodes. Input currents should be limited to 1 mA .
 Note 3: Unless otherwise specified, these specifications apply for $55 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}^{\circ}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the
 H0062 and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$ for LH0062C. Typical values are given for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. Power supplies should be bypassed with $0.1 \mu \mathrm{~F}$ ceramic capacitors.

[^24]: *May be common or separate. Care should be taken to avoid ground currents
 ** Direct or multiplexed access to the processor
 Note. This application is related to Figure 4 of timing diagrams

[^25]: *See NS Package HY24A

[^26]: *Note. Devices may be ordered by using either order number.

[^27]: *Note. Devices may be ordered by using either order number.

[^28]: Note 1: All current switches are tested to guarantee at least 50% of rated current.
 Note 2: All bits switched.
 Note 3: Range control is not required.

[^29]: *Available on special order

[^30]: Note. Devices may be ordered by either part number.

[^31]: *Use stable components with low temperature coefficients. See Typical Applications section.
 **This resistor can be $5 \mathrm{k} \Omega$ or $10 \mathrm{k} \Omega$ for $V_{S}=8 \mathrm{~V}$ to 22 V , but must be $10 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 8 V
 ***Use low offset voltage and low offset current op amps for A1: recommended types LM108, LM308A, LF351B

[^32]: *Note. Devices may be ordered by using either order number.

[^33]: $H=$ High level
 $L=$ Low level
 $X=$ Don't care
 $N C=$ No change

[^34]: *Perfect encode or decode is μ-law when testing TP3001 and A-law when testing TP3002

[^35]: *Perfect encode or decode is μ-law when testing TP3001 and A-law when testing TP3002

[^36]: *Perfect encode or decode is μ-law when testing TP3001 and A-law when testing TP3002

[^37]: *Select $\mathrm{R} 3=\mathrm{V}_{\text {REF }} / 583 \mu \mathrm{~A} . \mathrm{V}_{\text {REF }}$ may be any stable positive voltage $\geq 2 \mathrm{~V}$ Trim R3 to calibrate

[^38]: Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

[^39]: Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a

