Analog/Interface ICs Device Data Vol. I

What's Different

New Additions

CHAPTER 3

LM2575
MC78BC00
MC78FC00
MC78LC00
MC33154
MC33264
MC33341
MC33347
МСЗ3348
MC33363A
MC33364
MC33368
MC33463
MC33464
MC33465
MC33466
MC34065, MC33065
MC34165, MC33165
MC44604
MC44605

CHAPTER 7

MC1413
MC34156
SN75175
CHAPTER 8
MC13109
MC13110
MC13111
MC13144
MC13159

CHAPTER 9
MC13022
MC13029A
MC13081X
MC13022A
MC13280AY, MC13281A/B
MC13282A

MC13283
MC44007
MC44030/35
MC44306
MC44353
MC44354
MC44355
MC44461
MC44462
MC44463
CHAPTER 10
MC33143
MC33193
MC33197A
MC33293
MCCF33093
MCCF33094
MCCF33095

LM307	MC3372A	
LM248	MC3430	MC33344
MC1411	MC3486	MC34050
MC1412	MC3487	MC34051.
MC1472	MC13001X/07X	MC44301
MC1748C	MC13017	MC44302
MC3361C	MC13024	MC44303
MC3371A	MC33292	MCT1413
		SN75173

New Product Literature (Referenced)

AN454A AN1044 AN1544

AN829
AN921
AN932

AN1044
AN1315
AN1539

AN1544
AN1548
AN1575

Not Recommended For New Designs

AM26LS31	MC3450	MC3485
AM26LS32	MC3453	ULN2068
MC26S10	MC3467	TDA1185A
MC3373	MC3481	
MC3448A		

3 Ways To Receive Motorola Semiconductor Technical Information

Literature Distribution Centers

Printed literature can be obtained from the Literature Distribution Centers upon request. For those items that incur a cost, the U.S. Literature Distribution Center will accept Master Card and Visa.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 602-244-6609 ~}$
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8 B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.

Mfax ${ }^{\text {TM }}$ - Touch-Tone Fax

Mfax offers access to over 30,000 Motorola documents for faxing to customers worldwide. With menus and voice instruction, customers can request the documents needed, using their own touch-tone telephones from any location, 7 days a week and 24 hours a day. A number of features are offered within the Mfax system, including: product data sheets, application notes, engineering bulletins, article reprints, selector guides, Literature Order Forms, Technical Training Information, and HOT DOCS (4-digit code identifiers for currently referenced promotional or advertising material).

A fax of complete, easy-to-use instructions can be obtained by a first-time phone call into the system, entering your FAX number, and then pressing 1.

How to reach us:
Mfax: RMFAX0@email.sps.mot.com - TOUCH-TONE (602) 244-6609 or via the http://Design-NET.com home page, select the Mfax Icon.

Motorola SPS World Marketing Internet Server

Motorola SPS's Electronic Data Delivery organization has set up a World Wide Web Server to deliver Motorola SPS's technical data to the global Internet community. Technical data such as the complete Master Selection Guide along with the OEM North American price book are available on the Internet server with full search capabilities. Other data on the server includes abstracts of data books, application notes, selector guides, and textbooks. All have easy text search capability. Ordering literature from the Literature Distribution Center is available on-line. Other features of Motorola SPS's Internet server include: the availability of a searchable press release database, technical training information with on-line registration capabilities, complete on-line access to the Mfax system for ordering faxes, an on-line technical support form to send technical questions and receive answers through email, information on product groups, full search capabilities of device models, a listing of the domestic and international sales offices, and direct links to other Motorola world wide web servers. For more information on Motorola SPS's Internet server you can request BR1307/D from Mfax or LDC.

How to reach us:
After accessing the Internet, use the following URL:
http://Design-NET.com

Analog ICs
 Device Data

This publication presents technical information for the broad line of Analog and Interface Integrated Circuit products. Complete device specifications are provided in the form of Data Sheets which are categorized by product type into ten chapters for easy reference. Selector Guides by product family are provided in the beginning of each chapter to enable quick comparisons of performance characteristics. A Cross Reference chapter lists Motorola nearest replacement and functional equivalent part numbers for other industry products.

One chapter is devoted showing all of the Tape and Reel Options. All Packaging Information, including surface mount packages, is provided in another chapter.

Additionally, chapters are provided with information on Quality and Reliability Assurance program concepts, high-reliability processing, and abstracts of available Applications and Product Literature.

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (\otimes) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Series J
First Printing © Motorola, Inc. 1996
Previous Edition © 1995
Printed in U.S.A.
"All Rights Reserved"

Data Classification

Product Preview

This heading on a data sheet indicates that the device is in the formative stages or in design (under development). The disclaimer at the bottom of the first page reads: "This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice."

Advance Information

This heading on a data sheet indicates that the device is in sampling, pre-production, or first production stages. The disclaimer at the bottom of the first page reads: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

Fully Released

A fully released data sheet contains neither a classification heading nor a disclaimer at the bottom of the first page. This document contains information on a product in full production. Guaranteed limits will not be changed without written notice to your local Motorola Semiconductor Sales Office.

[^0]
Alphanumeric Index and Cross References

In Brief . . .

Motorola Analog and Interface Integrated Circuits cover a much broader range of products than the traditional op amps/ regulators/consumer-image associated with Analog suppliers. Analog circuit technology currently influences the design and architecture of equipment for all major markets. As with other integrated circuit technologies, Analog circuit design techniques and processes have been continually refined and updated to meet the needs of these diversified markets.

Operational amplifiers have utilized JFET inputs for improved performance, plus innovative design and trimming concepts have evolved for improved high performance and precision characteristics. In analog power ICs, basic voltage regulators have been refined to include higher current and voltage levels, low dropout regulators, and more precise three-terminal fixed and adjustable voltages. The power area continues to expand into switching regulators, power supply control and supervisory circuits, motor controllers, and battery charging controllers.

Analog designs also offer a wide array of line drivers, receivers and transceivers for many of the EIA, European, IEEE and IBM interface standards. Peripheral drivers for a variety of devices are also offered. In addition to these key interface functions, hard disk drive read channel circuits, 10BASE-T and Ethernet circuits are also available.

In Data Conversion, a high performance video speed flash converter is available, as well as a variety of CMOS and Sigma-Delta converters. Analog circuit technology has also provided precision low-voltage references for use in Data Conversion and other low temperature drift applications.

A host of special purpose analog devices have also been developed. These circuits find applications in telecommunications, radio, television, automotive, RF communications, and data transmission. These products have reduced the cost of RF communications, and have provided capabilities in telecommunications which make the telephone line convenient for both voice and data communications. Analog developments have also reduced the many discrete components formerly required for consumer functions to a few IC packages and have made significant contributions to the rapidly growing market for electronics in automotive applications.

The table of contents provides a perspective of the many markets served by Analog/Interface ICs and of Motorola's involvement in these areas.

Deviee	Function	Page
AM26LS30	Dual Differentia//Quad Single-Ended Line Drivers	7-13
AM26L.S31\#	Quad Line Driver with NAND Enabled Three-State Outputs	7-24
AM26LS32\#	Quad EIA-422/423 Line Receiver with Three-State Outputs	7-24
СА3059	Zero Voltage Switches	4-14
CA3146	General Purpose Transistor Array	9-28
LF347, B	JFET Input Operational Amplifiers	2-11
LF351	JFET Input Operational Amplifiers	2-11
LF353	JFET Input Operational Amplifiers	2-11
LF411C	Low Offset, Low Drift JFET Input Operational Amplifiers	2-13
LF412C	Low Offset, Low Drift JFET Input Operational Amplifiers	2-13
4F44tc	Low Power JFET Input Operational Amplifiers	$2-7$
44420	Low Power JFET Input Operational A mplifiers	2-17
LF4440	Low Power JFEI Input Operational Amplifiers	$2-17$
M11C,Cl	Precision Operational Amplliors :	$2-24$
LM201A	Oporational Amplifiers	2-30
LV21	Highly Hexble Voltage Comparator.	2-39.
L-922A	Quedl Low Power Operational Amplifers	2-45
M239, A	Ouad Single Supply Comparators	$2-52$
4M258.	Dual low Power Operational Amplifiers	2-82
LM285	Micropower Voltage Reference Diodes	5-4
LM293	Low Offset Voltage Dual Comparators	2-68
LM301A	Operational Amplifiers	2-30
LM308A	Precision Operational Amplifier	2-34
LM311	Highly Flexible Voltage Comparator	2-39
LM317	Three-Terminal Adjustable Output Positive Voltage Regulator	3-45
LM317L	Three-Terminal Adjustable Output Voltage Regulator	$3-53$
LM317M	Three-Terminal Adjustable Output Positive Voltage Regulator	3-61
LM323, A	Positive Voltage Regulators	3-69
LM324 A	Ouad Low Power Operational Anplifiers	-2-46\%
LM337.	Three-Teminal Adjustable Output Negative Voltage Regulator	$3-75$
$1 \mathrm{LB} 337 \mathrm{M}$	Three-Temina: Acjustable Output Negative Votage Regulator	$3-82$
,		$2-52$
LM340, A Serles	Triee-Teminal Positue Votage Regulators	3-89
LM348	Diftrrenilal Input Oporational Ampliter	-56
CM350	Three-Terminal Adjustable Output Positive Voltage Regulator	$3-105$
LM358	Dual Low Power Operational Amplite	-62
LMBE5. S	Micropower Voltage Reference Diodes	(5-4.
LM393, A :	Low Ofiset Voltage Dual Comparators:	2-68
LM833	Dual Low Noise, Audio Amplifier	2-73
LM2575	Easy Switcher 1.0 A Step-Down Voltage Regulator	3-113
LM2900	Quad Single Supply Operational Amplifier	2-113
LM2901, V	Quad Single Supply Comparator	2-52
LM2902, V	Quad Low Power Operational Amplifier	2-45
LM2903, V	Low Offset Voltage Dual Comparator	2-68
LM2904, V	Dual Low Power Operational Amplifier	2-62
LM2931	Low Dropout Voltage Regulator	3-136

Duvice Number		Page
LM2935	Low Dropout Dual Regulator	3-146
LM3900	Quad Single Supply Operational Amplifier	2-113
LP2950	Micropower Voltage Regulator	3-150
LP2951	Micropower Voltage Regulator	3-150
MC1350	Monolithic IF Amplifier	9-30
M	TV. Modulator Circult	944
MC1377	Color TV RGB 10 PALNTSC Encod	9-42
MC1378	Color TV Composite Video Overlay Synchronizer	9-58
MC1391	TV Horizontal Processor	9
MC1403.	Low Voltage Reference	50
M01404	Volage References Famiy	$5-13$
MC143, B	High Volage, High Cuirent Dalington	-30
MC1416,	High Voltage, High Curren Darlington Transistor Arrays	30
$\mathrm{MCl} 436 \mathrm{O}$	High Voltage Internally Compensated Operational Amplitiers	$2-79$
MC1455,	Timing Circula r,	116
MC1458, C	Internally Compensated, High Performance Dual Operational Amplifiers	2-84
MC1488	Quad Line Driver	7-33
MC14C88B	Quad Low Power Line Driver	7-44
MC14C89B, AB	Quad Low Power Line Receiver	7-50
MC1489, A	Quad Line Receivers	7-39
MC1490	RF/IF Audio Amplifier	2-92
MC1494	Linear Four-Quadrant Multiplier	11-14
MC1495	Wideband Linear Four-Quadrant Multiplier	11-28
MC1496	Balanced Modulatosr/Demodulators	8-45
MC1723C	Voltage Regulator	3-162
$\mathrm{M} 017916$	Internally Conpensated High Peromanico Operalional Amplifier	$2-90$
MO17760	Micropower Programmable Oporational Amplifier	$\left\lvert\, \begin{gathered}2-104 \\ 0\end{gathered}\right.$
02833	Low Power FM Transmite: Sysiem	\%
MOS301.	Ouad Single Supply operational Amplict	-113.
MC3302	Quad Single Supply Comparators.	2-52.
MC3303	Quad Low Power Operational Amplifar.	2-123
Mc3334	Energy lanition Circulit:	0-15
$\begin{aligned} & \text { MO3335 } \\ & \text { Mc3340 } \end{aligned}$	Low Power Dual Converslon FM Recelver Electron lo Atleruator	$\begin{aligned} & 8-62 \\ & 8-65 \end{aligned}$
MC3346	General Purpose Transistor Array One Differentially Connected Pair and Three Isolated Transistor Arrays	9-69
MC3356	Wideband FSK Receiver	8-66
MC3357	Low Power FM IF	8-72
MC3358	Dual, Low Power Operational Amplifier	2-137
MC3359	Dual, Low Power Operational Amplifier	8-76
MC3362	Low Power Dual Conversion FM Receiver	8-82
MC3363	Low Power Dual Conversion FM Receiver	8-89
MC3371	Low Power Narrowband FM IF	8-97
MC3372	Low Power Narrowband FM IF	8-97
MC3373\#	Remote Control Wideband Amplifier with Detector	9-72
MC3374	Low Voltage FM Narrowband Receiver	8-114
$\begin{aligned} & \text { MC3se2 } \\ & \text { MC3398 } \\ & \text { MC3403 } \end{aligned}$	Low Side Protecled Swith Automolve Halt-Amp High-Side Switch Quad Low Power Operational Amplifer	$\begin{aligned} & 10-19 \\ & 10-28 \\ & 2-123 \end{aligned}$

[^1]| Device Number | Function | Page |
| :---: | :---: | :---: |
| MC3405 | Dual Operational Amplifier and Dual Comparator | 2-129 |
| MC3418 | Continuously Variable Slope Delta Modulator/Demodulator | * |
| MC3419-IL | Telephone Line-Feed Circuit | |
| MC3423 | Overvoltage Crowbar Sensing Circuit | 3-168 |
| MC3425 | Power Supply Supervisory/Over and Undervoltage Protection Circuit | 3-174 |
| MC3448A\# | Bidirectional Instrumentation Bus (GPIB) Transceiver | 7-58 |
| MC3450\# | Quad MTTL Compatible Line Receivers | 7-64 |
| MC3453\# | MTTL Compatible Quad Line Driver | 7-71 |
| MC3456 | Dual Timing Circuit | 11-43 |
| MC3458 | Dual, Low Power Operational Amplifier | $2-137$ |
| MC3467\# | Triple Wideband Preamplifier with Electronic Gain Control (EGC) | 7-76 |
| MC3476 | Low Cost Programmable Operational Amplifier | 2-144 |
| MC3479 | Stepper Motor Driver | 4-19 |
| MC3481\# | Quad Single-Ended Line Driver | 7-81 |
| MC3485\# | Quad Single-Ended Line Driver | 7-81 |
| MC3488A | Dual EIA-423/EIA-232D Line Driver | 7-86 |
| MC3518 | Continuously Variable Slope Delta Modulator/Demodulator | * |
| MC4558AC, C | Dual Wide Bandwidth Operational Amplifiers | 2-149 |
| MC4741C | Differential Input Operational Amplifier | 2-156 |
| $\begin{gathered} \text { MC7800 } \\ \text { Series } \end{gathered}$ | Three-Terminal Positive Voltage Regulators | 3-182 |
| MC78LOO, A Series | Three-Terminal Low Current Positive Voltage Regulators | 3-197 |
| $\begin{gathered} \text { MC78M00 } \\ \text { Series } \end{gathered}$ | Three-Terminal Medium Current Positive Voltage Regulators | 3-204 |
| $\begin{gathered} \text { MC78T00 } \\ \text { Series } \end{gathered}$ | Three-Ampere Positive Voltage Regulators | 3-213 |
| MC78BC00 | Micropower Voltage Regulator | 3-222 |
| MC78FC00 | Micropower Vottage Regulator | 3-223 |
| MC78LC00 | Micropower Voltage Regulator | 3-224 |
| MC7900 Series | Three-Terminal Negative Voltage Regulators | 3-225 |
| MC79L00, A Series | Three-Teminal Low Currect Negative Voltage Regulators | 3-235 |
| $\begin{gathered} \text { MC79MOO } \\ \text { Series } \end{gathered}$ | Three-Terminal Negative Voltage.Regulators | 3-240 |
| MC.0319 | High Speed B-Bit Analog-to-Digital Flash Converter | 6-6 |
| MC13020 | Motorola C-QuAM AM Stereo Decoder | 9-66 |
| MC.3022 | Adyanced Medium Voltage AM Stereo Decoder | 9-81 |
| MC13022A | Advanced Medium Voltage AM Stereo Decoder | 9-86 |
| MC13025 | Electronically Tuned Radio Front End | 9-91 |
| MC13027 | AMAX Stereo Chipset | 9-94 |
| MC13028A | Advanced Wide Voltage IF and C-QUAM AM Stereo Decoder | 9-119 |
| MC13029A | Advanced Wide Voltage IF and C-QUAM AM Stereo Decoder with FM Amplifier and AMIFM Internal Switch | 9-137 |
| MC13030 | Dual Conversion AM Receiver | 9-156 |
| MC13055 | Wideband FSK Receiver | 8-121 |
| MC13060 | Mini-Watt Audio Output | 9-171 |
| MC13077 | Advanced PAL/NTSC Encoder | 9-175 |
| MC13081X | Multimode Color Monitor Horizontal, Vertical and Video Combination Processor | 9-187 |
| MC13109 | Universal Cordless Telephone Subsystem IC | 8-128 |
| MC13110 | Universal Cordless Telephone Subsystem IC with Scrambler | 8-154 |

Device Number	Function ,	Page
MC13111	Universal Cordless Telephone Subsystem IC	8-185
MC13122	AMAX Stereo Chipset	9-94
MC13135	FM Communications Receiver	8-214
MC13136	FM Communications Receiver	8-214
MC13141	Low Power DC-1.8 GHz LNA and Mixer	8-226
MC13142	Low Power DC-1.8 GHz LNA, Mixer and VCO	8-235
MC13143	Ultra Low Power DC-2.4 GHz Linear Mixer	8-245
MC13144	VHF - 2.0 GHz Low Noise Amplifier with Programmable Bias	8-252
MC13150	Narrowband FM Coilless Detector IF Subsystem	8-258
MC13155	Wideband FM ${ }^{\text {F }}$ System	8-275
MCl3956	Wideband FM FF System	8-290
MC13158	Wideband FM IF Subsystem	8-308
MC13159	Wideband FM IF Amplifier	8-330
MC13473	Infrared Integrated Transceiver System	8-336
MC13Y75	UHF FMAM Transmitter	8-353
MC13176	ULFF FMAM Transmitter	8-353
MC13280AY	$80 / 100 \mathrm{MHz}$ Video Processor	9-205
MC13281A, B	80/100 MHz Video Processor	9-205
MC13282A	100 MHz Video Processor with OSD Interface	9-215
MC13283	130 MHz Video Processor with OSD Interface	9-226
MC26S10\#	Quad Open-Collector Bus Transceiver	7-55
MC33023	High Speed Single-Ended PWM Controller	3-392
MС33025	High Speed Double-Ended PWM Controller	3-408
МС33030	DC Servo Motor Controller/Driver	4-27
МСЗ3033	Brushless DC Motor Controller	4-41
МСЗ3035	Brushless DC Motor Controller	4-64
МС33039	Closed-Loop Brushless Motor Adapter	4-87
MC33060A	Precision Switchmode Pulse Width Modulator Control Circuit	3-425
MC33063A	DC-Ho-DC Converter Control Circuit	3-437
MC33064	Undervoltage Sensing Circuit	3-446
MC33065	High Performance Dual Channel Current Mode Controller	3-451
MC33065-H, L	High Peiftormance Dual Channel Current Mode Controllers	3-465
MC33066	High Pertormance Resonant Mode Controller	3-478
MC33067	High Performance Resonant Mode Controller	3-486
MC33071, A	High Slew Rate, Widde Bandwidth, Single Supply Operational Amplifiers	3-272
MC33072, A	High Slew Rate, Wide Bandwidth, Single Supply Operationial Amplifiers	2-272
MC33074, A	High Slew Rate, Wide Bandwidth; Single Supply Operational Amplifieters	2-272
MC33076	Dual High Output Current, Low Power, Low Noise Bipolar Op Amp	2-161
МСЗ3077	Dual, Low Noise Operational Amplifier	2-169
MC33078	Dual/Quad Low Noise Operational Amplifier	2-180
MС33079	Dual/Quad Low Noise Operational Amplifier	2-180
MC33091A	Hlgh Side TMOS Driver	10-31
MC33092	Alternator Voltage Regulator	10-45
MC33095	Integral Alternator Regulator	10-134
MC33102	Sleep-Mode Two-State, Micropower Operational Amplifier	2-189
MC33110	Low Voltage Compander	*
MC33111	Low Voltage Compander with Mute and Feedthrough	*
MC33120	Subscriber Loop Interface Circuit	*
MC33121	Low Voltage Subscriber Loop Interface Circuit	*
MC33128	Power Management Controller	3-244

Alphanumeric Index (continued)

Device Number	Function	Page
MC33129	High Performance Current Mode Controller	3-499
MC33143	Dual High-Side Switch	10-45
MC33151	High Speed Dual MOSFET Driver	3-514
MC33152	High Speed Dual MOSFET Driver	3-522
MC33153	Single IGBT Gate Driver	3-251
MC33154	Single IGBT Gate Driver	3-262
MC33160	Microprocessor Voltage Regulator and Supervisory Circuit	3-530
MC33161	Universal Voltage Monitors	3-537
MC33163	Power Swithing Reguator w	3-550
MC33164	Micropower Undenvoltage Sensing Circu	3-564
MC63165	Power Switching Regulator	70
MC33166	Power Switching Regulator	84
MC33167	Power Svitching Regulator.	3.598
MC33169	GaAs Pover Amplife Support to	$3-263$ 䍂
	Low Power, Single Supply Operalonalamplifer	
MC36172	Low Power Singlo Supply Operational Anelior	014
1033174	Low Power Since Suppy Cperational Amplutic	$2-20$,
MOS3178	High Oufput Carrent Low Powem Low Nolse BipolarOpAmp	24208
MC33179	High Output Current, Low Power, Low Noise Bipolar Op Amp	2-208
MC33181	Low Power, High Siew Rate, Wide Bandwidth, JFET Input Op Amp	2-299
MC33182	Low Power, High Slew Rate, Wide Bandwidth, JFET Input Op Amp	2-299
MC33184	Low Power, High Slew Rate, Wide Bandwidth, JFET Input Op Amp	2-299
MC33192	Mi-Bus Interface Stepper Motor Controller	10-60
MC33193	Automotive Direction Indicator	10-71
MC33197A	Automotive Wash Wiper Timer	10-78
MC33199	Automotive ISO 9141 Serial Link Driver	10-83
MC33201	Rail-to-Rail Operational Amplifier	2-218
MC33202	Rail-to-Rail Operational Amplifier	2-218
MC33204	Rail-to-Rail Operational Amplifier	2-218
MC83206 MCS3207.	Ral-to-Rall Operatonal Ampliler wih Ehabie - Featurs Ral-to-Rall Oporational Amplifer with Enablo Featurs	$2-227$ $2-227$
	oree Switoned Speakerphone win: Micropiocessor interáace	
OB3210A	de Svitchad Speakerphone.	
MC33262		623
$\begin{aligned} & \text { M®33264: } \\ & \text { Mc3s267 } \end{aligned}$	Micropower Voltage Regulators with On Oift Control Low Dropout Regulator	$3-273$ 3-280
Mc3326s Serles	ow Dhopout Postive Votage Regulator	$3-285$
MC33272A	Single Supply, Kigh Siew Rate Lov Inpur Of́set Vottage, Bpolar Op Amp	$2-237$
MC33274A	Single Supply, High Slew Rate Low Input Offset Voltage, Bipolar Op Amp	2-237
MC33282	Low Input Offset, High Slew Rate, Wide Bandwidth, JFET Input Op Amp	2-246
MC33284	Low Input Offset, High Slew Rate, Wide Bandwidth, JFET Input Op Amp	2-246
MC33293A	Quad Low Side Switch	10-94
MC33298	Octal Output Driver	10-109
MC33304	Low Voltage Rail-to-Rail, Sleepmode Operational Amplifier	2-254
MC33340	Battery Fast Charge Controller	3-290

[^2]

Device Number	Function	Page
MC34083	High Slew Rate, Wide Bandwidth, JFET Input Operational Amplifier	2-288
MC34084	High Slew Rate, Wide Bandwidth, JFET Input Operational Amplifier	2-288
MC34085	High Slew Rate, Wide Bandwidth, JFET Input Operational Amplifier	2-288
MC34114	Telephone Speech Network with Dialer Interface	*
MC34115	Continuously Variable Slope Delta Modulator/Demodulator	*
MC34117	Telephone Tone Ringer	*
MC34148	Voice Switched Speakerphone Circhit	
MC3419	Low Power Audio Amplifier.	9-227
MC34129	High Performance Current Mode Controller	3-499
MC34151	High Speed Dual MOSEET Diver **	3-514
M634152	Tigh Speed Dual MOSFET Diver	3-522
MC34156	28-Chamel Inkjet Drver	7-116
MC34160	Microprocessor Voltage Regulator and Supenvisory Circuit	3-530
MC3461	Universal Voltage Montior	$3-537$
MC34163	Power Switching Regulator	$3-550$
MC34164	Micropower Undervoltage Sensing Circuit	3-564
MC34165	Power Switching Regulator	3-570
MC34166	Power Switching Regulator	3-584
MC34167	Power Switching Regulator	3-598
MC34181	Low Power, High Slew Rate, Wide Bandwidth, JFET Input Op Amp	2-299
MC34182	Low Power, High Slew Rate, Wide Bandwidth, JFET Input Op Amp	2-299
MC34184	Low Power, High Slew Rate, Wide Bandwidth, JFET Input Op Amp	2-299
MC34216A	Programmable Telephone Line Interface Circuit with Loudspeaker Amplifier	*
MC34250	5.0 V, 200 M-Bit/Sec PR-IV Hard Disk Drive Read Channel	7-118
MC34261	Power Factor Controller	3-612
MC34262	Power Factor Controler	3-623
MC34268	SCSI-2 Active Terminator Regulator. .m	0-638
MC34270	Liquid Crystal Display and Backlightintegrated Circuit	3-641
MC34271	Liquid Crystal Display and Backlightintegrated Circuit	$3-641$
MC44002	Croma 4 Mulistandard Video Processof:	9-236
MC44007	Chronat Multistandard Video Processor.	9-236
MC44011	Bus Controlled Multistandard Video Processor	9-275
MC44030.	Multistandard Video Signal Processor with. Integrated Delay Line	9-324
MC44035	Multistandard Video Signal Processor with Integrated Delay Line	9-324
MC44144	Subcarrier Phase-Locked Loop	$9-326$
MC44145	Pixel Clock Generator/Sync Separator	9-331
MC44353	PLL Tuned UHF AudioNideo Modulator ICs for PAL, SECAM and NTSC TV Systems	9-338
MC44354	PLL Tuned UHF Audio/Video Modulator ICs for PAL, SECAM and NTSC TV Systems	9-338
MC44355	PLL Tuned UHF Audio/Video Modulator ICs for PAL, SECAM and NTSC TV Systems	9-338
MC44461	Picture-in-Picture (PIP) Controller	9-341
MC44462	Y-C Picture-in-Picture (PIP) Controller	9-354
MC44463	Picture-in-Picture (PIP) Controller	9-360
MC44602	High Performance Current Mode Controller	3-651

Device Number	Function	Page
MC44603	Mixed Frequency Mode GreenLine PWM Controller	3-667
MC44604	High Safety Standby Ladder Mode GreenLine PWM Controller	3-689
MC44605	High Safety Latched Mode GreenLine PWM Controller for (Multi) Synchronized Applications	3-690
MC44817, B	PLL Tuning Circuit with 3-Wire Bus	9-367
MC44818	PLL Tuning Circuit with I2C Bus	9-374
MC44824, 25	PLL Tuning Circuit with I2C Bus	9-381
MC44826	PLL Tuning Circuit with I2C Bus	9-388
MC44827	PLL Tuning Circuit with 3-Wire Bus	9-395
MC44828	PLL Tuning Circuit with I2C Bus	9-396
MC44829	PLL Tuning Circuit with 12C Bus	9-397
M044864	PLL Tuning Circuit with 1.3 GHz Prescater and DIA Converters for Automatic Tuner Alignment	9-405
MC68160	Enhanced Ethemet Transceiver	$7-120$
MC751728	Quad ElA-485 Line Driver with Three-State Output	7-1.146
MC7E174B	Quad EIA-485 Line Driver with Three-State Output	7-146
MC79076	Electronic Ignition Control Chip	10-131
MCC3334	High Energy Ignition Circuit	10-15
MCCF3334	High Energy Ignition Circuit	10-15
MCCF33093	Ignition Control Flip-Chip	10-132
MCCF33094	Igntion Control Flip-Chip	10-133
MCCF33095	Integral Alternator Regulator	10-134
MCCF79076	electronic Ignition Control Chip	10-131
MCT1458, C	Internally Compensated, High Performance Dual Operational Amplifier	2-89
MCT4558C	Dual Wide Bandwidth Operational Amplifier	2-153
SAA1042	Stepper Motor Oriver	4-92
SG3525A	Pulse Width Modulator Control Circuit	3-691
SG3526	Pulse Width Modulator Control Circuit	3-697
SG3527A	Pulse Width Modulator Control Circuit	3-691
SN75175	Quad EIA-485 Line Receiver	7-157
TCA0372	Dual Power Operational Amplifier	2-308
TCA3385	Telephone Ring Signal Converter	*
TCA3388	Telephone Speech Network	
TCA5600	Universal Microprocessor Power Supply/Controller	3-705
TCF5600	Universal Microprocessor Power Supply/Controller	3-705
TCF6000	Peripheral Clamping Array	10-144
TDA1085C	Universal Motor Speed Controller	$4-97{ }^{\prime \prime}$
TDA1185A\#	Triac Phase Angle Controller	4-107
TL062	Low Rower JFET input Operational Amplifier	2-312,
T1064	Low Power JFET Input Operational Amplitier	2312
TL.071C, AC	Low Noise JFET Input Operational Ampliter	$2-319$
TL072C, AC	Low Noise JFET Input Operational Amplitier.	2-319
TLO74C, AC	Low Noise JFET inpuit Operational Amplilier	2-319
TL081C, AC	JFET Input Operational Amplifier	$2-325$
TL082C, AC	JFET Input Operational Amplifier	$2-225$
TL084C, AC	JFET Input Operational Amplifier	2-325
$\begin{aligned} & \text { TL431, A, B } \\ & \text { Series } \end{aligned}$	Programmable Precision References	5-18
TL494	Switchmode Pulse Width Modulation Control Circuit	3-716
TL594	Precision Switchmode Pulse Width Modulation Control Circuit	3-726

[^3]| phanumeric Index (continued) | | |
| :---: | :---: | :---: |
| Device Number | | Page |
| TL780 Series | Three-Terminal Positive Fixed Voltage Regulator | 3-736 |
| UAA1016B | Zero Voltage Controller | 4-116 |
| UAA1041b | Automotive Direction Indicator | 10-148 |
| UAA2016 | Zero Voltage Switch Power Controller | 4-122 |
| UC2842A | High Performance Current Mode Controller | 3-742 |
| UC2842B | High Performance Current Mode Controller | 3-755 |
| UC2843A | High Performance Current Mode Controllor | 3-742 |
| 0 C 2843 B | High Performance Current Mode Controller | 3-755 |
| UC2844 | High Periomance Curren Mode Controler | 3-769 |
| UC2844B | High Periformance Current Mode Controler | 3-782 |
| UC2845 | High Pertormance Current Mode Contuoller | 3-769 |
| UC2845B | High Periomance Current Mode Controller | 3-782 |
| UC3642A | Hlgh Peiformance Current Mode Controller | 3-742 |
| UC3842B | High Pertomance Current Mode Controler | 3-765 |

Device Number	function	Page
UC3843A	High Performance Current Mode Controller	3-742
UC3843B	High Performance Current Mode Controller	3-755
UC3844	High Performance Current Mode Controller	3-769
UC3844B	High Performance Current Mode Controller	3-782
UC3845	High Performance Current Mode Controller	3-769
UC3845B	High Periormance Current Mode Controller	3-782
UC3844B	High Periormance Current Mode Controller	3-78
UC3845	High Performance Current Mode Controller	3-769
UC3845B	High Performance Current Mode Controller	3-782
ULN2068\#	Quad 1.5 A Sinking High Current Switch	7-162
	Octal High Votage, High Current Daflingtorn Transistor Array	$7-166$
$\mathrm{LN} 2804$	Octa High Voltage. High cuirent Darlington Transistor Array	
MA78S40	Unversal Switching Regulator Subsystem.	3-796

* $=$ See Communications Device Data (DL136).
\# = Not recommended for new designs.

Cross References

The following table represents a cross reference guide for all Analog devices that are manufactured by Motorola. Where the Motorola part number differs from the industry part

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
75175	SN75175	
9636AT	MC3488AP	
9640PC	MC26S10P\#	
9667PC	MC1413P	
9668PC	MC1416P	
AD589J		LM385Z-1.2
AD589K		LM385Z-1.2
AD589L		LM385Z-1.2
AD589M		LM385BZ-1.2
AM201AD		LM201AN
AM201D		LM201AN
AM26LS30P	AM26LS30PC	
AM26LS31CJ	AM26LS31PC\#	
AM26LS31CN	AM26LS31PC\#	
AM26LS32ACJ	AM26LS32D\#	
AM26LS32ACN	AM26LS32PC\#	
AM26LS32PC	AM26LS32PC\#	
AM723PC	MC1723CP	
AN5150		MC34129P
CA081AE		TL081ACP
CA081E		TL081CP
CA082AE		TL082ACP
CA082E		TL082CP
CA084AE		TL084ACN
CA084E		TL084CN
CA1391E	MC1391P	
CA1458S	MC1458CP1	
CA239AE	LM239AN	
CA239E	LM239N	
CA3026		САЗ054
CA3045F		MC3346P
СА3046	MC3346P	
CA3054	CA3054	
CA3058		СА3059
CA3059	САЗ059	
CA3079	СА3079	
CA3086F		MC3346P
CA3136A		MC3346P
CA3146		MC3346P
CA339AE	LM339AN	
CA339E	LM339N	
CA723CE	MC1723CP	
CA741CS	MC1741CP1	
CS2842AD	UC2842BD1	
CS2843AD	UC2843BD1	
CS2844D	UC2844BD1	

number, the Motorola device is a "form, fit and function" replacement for the industry part number. However, some differences in characteristics and/or specifications may exist.

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
CS2845D	UC2845BD1	
CS3842AD	UC3842BD1	
CS3843AD	UC3843BD1	
CS3844D	UC3844BD1	
CS3845D	UC3845BD1	
DM8822N		MC1489AP
DS1233M		MC34064P-5
DS1488N	MC1488P	
DS1489AN	MC1489AP	
DS1489N	MC1489P	
DS26LS32N	AM26LS32P\#	
DS26S10CN	MC26S10P\#	
DS3650N	MC3450P\#	
DS8834N		MC8T26AP
DS8835N		MC8T26AP
DS9636ACN	MC3488AP1	
ICL741CLNPA		MC1741CP1
ICL741CLNTY		MC1741CP1
ICL8008CPA		LM301AN
ICL8008CTY		LM301AN
ICL8017CTW		LM301AN
ICL8017MTW		LM301AN
ICL8069CCZR		LM385BZ-1.2
ICL8069DCZR		LM385BZ-1.2
IP33063N	MC33063AP1	
IP34060AN	MC34060AP	
IP34063N	MC34063AP1	
IP3525AN	SG3525AN	
IP3526N	SG3526N	
IP3527AN	SG3527AN	
LM240LAZ-18		MC78L18ACP
LM240LAZ-24		MC78L24ACP
LM240LAZ-5.0		MC78L05ACP
LM240LAZ-6.0		MC78L05ACP
LM240LAZ-8.0		MC78L08ACP
LM249N		MC4741CP
LM2575	LM2575	
LM258D	LM258D	
LM258M	LM258D	
LM258N	LM258N	
LM285Z-1.2	LM285Z-1.2	
LM285Z-2.5	LM285Z-2.5	
LM2901D	LM2901D	
LM2901M	LM2901D	
LM2901N	LM2901N	
LM2902D	LM2902D	

\# = Not recommended for new designs.

Cross References (continued)

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
IP494ACJ.		TL594IN
IP494ACN		TL594CN
IR3M03A	;	MC34063AP1
IR3M03AN		MC34063AD
ITT3710		MC1391P
ITT656	MC1413P	
L144AP		LM324N
L203	MC1413P	-
L387		MC33267T
LF347BN	LF347BN	
LF347N	LF347N	
LF351BN	.	MC34001BP
LF351N	LF351N	
LF353AN	MC34002AP	
LF353BN	MC34002BP	
LF353D	LF353D	
LF353N	LF353N	
LF411CD	LF411CD	
LF412CD	LF412CD	.
LF441CD	LF441CD	
LF441CN	LF441CN	
LF442CD	LF442CD	,
LF442CN	LF442CN	
LF444CD	LF444CD	
LF444CN	LF444CN	
LM11CLN	LM11CLN	
LM11CN	LM11CN	
LM139N	MC1391P	
LM1489AN	MC1489AP	
LM1489N	MC1489P	
LM1496N	MC1496P	
LM1496M	MC1496D	
LM1889		MC1374P
LM1981		MC13020P
LM201AD	LM201AD	
LM201AN	LM201AN	
LM201AP		LM201AN
LM211D	LM211D	
LM211M	LM211D	
LM224D	LM224D	
LM224M	LM224D	
LM224N	LM224N	
LM239AN	LM239AN	
LM239D	LM239D	
LM239M	LM239D	
LM239N	LM239N	
LM240LAZ-12		MC78L12ACP
LM240LAZ-15		MC78L15ACP
LM2902M	LM2902D	
LM2902N	LM2902N	
LM2903D	LM2903D	
LM2903M	LM2903D	

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
LM2903N	LM2903N	
LM2903P	LM2903N	
LM2904M	LM2904D	.
LM2904N	LM2904N	
LM2905N		MC1455P1
LM2931AD-5.0	LM2931AD-5.0	
LM2931AT-5.0	LM2931AT-5.0	
LM2931AZ-5.0	LM2931AZ-5.0	
LM2931CD	LM2931CD	
LM2931CM	LM2931CD	
LM2931CT	LM2931CT	
LM2931D-5.0	LM2931D-5.0	
LM2931D	LM2931D-5.0	
LM2931T-5.0	LM2931T-5.0	
LM2931Z-5.0	LM2931Z-5.0	
LM2935T	LM2935T	
LM293D	LM293D	
LM301AD	LM301AD	
LM301AM	LM301AD	
LM301AN	LM301AN	
LM301AP		LM301AN
LM3045		MC3346P
LM3046N	MC3346P	
LM3054	CA3054	
LM308AD	LM308AD	
LM308AN	LM308AN	
LM308P		MC3356P
LM311D	LM311D	
LM311M	LM311D	
LM311N	LM311N	
LM311P	LM311N	
LM3146A		MC3346P
LM3146		MC3346P
LM317KC	LM317T	
LM317KD		LM317T
LM317LD	LM317LD	
LM317LZ	LM317LZ	
LM317MP		LM317MT
LM317P		LM317T
LM317T	LM317T	
LM3189		MC3356P
LM320LZ-12		MC79L12ACP
LM320LZ-15		MC79L15ACP
LM320LZ-5.0		MC79L05ACP
LM320MP-12		MC7912CT
LM320MP-15		MC7915CT
LM320MP-18		MC7918CT
LM320MP-24		MC7924CT
LM340LAZ-5.0		MC78L05ACP
LM340LAZ-8.0		MC78L08ACP
LM340T-12	LM340T-12	
LM340T-15	LM340T-15	

\# = Not recommended for new designs.

Cross References (continued)

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
LM320MP-5.0		MC7905CT
LM320MP-5.2		MC7905.2CT
LM320MP-6.0		MC7906CT
LM320MP-8.0		MC7908CT
LM320T-12		MC7912CT
LM320T-15		MC7915CT
LM320T-5.0		MC7905CT
LM320T-5.2		MC7905.2CT
LM322N		MC1455P1
LM323AT	L.M323AT	
LM323T	LM323T	
LM324AD	LM324AD	
LM324AN	LM324AN	
LM324D	LM324D	
LM324M	LM324D	
LM324N	LM324N	
LM337MP		LM337MT
LM337MT	LM337MT	
LM337T	LM337T	
LM339AD	LM339AD	
LM339AM	LM339AD	
LM339AN	LM339AN	
LM339D	LM339D	
LM339N	LM339N	
LM339P		LM339N
LM340AT-12	LM340AT-12	
LM340AT-15	LM340AT-15	
LM340AT-5.0	LM340AT-5.0	
LM340KC-12	LM340T-12	
LM340KC-15	LM340T-15	
LM340LAZ-12		MC78L12ACP
LM340LAZ-18		MC78L18ACP
LM340LAZ-24		MC78L24ACP
LM340T-18	LM340T-18	
LM340T-24	LM340T-24	
LM340T-5.0	LM340T-5.0	
LM340T-6.0	LM340T-6.0	
LM340T-8.0	LM340T-8.0	
LM341P-12		MC78M12CT
LM341P-15		MC78M15CT
LM341P-18		MC78M18CT
LM341P-24		MC78M24CT
LM341P-5.0		MC78M05CT
LM341P-6.0		MC78M06CT
LM341P-8.0		MC78M08CT
LM342P-12		MC78M12CT
LM342P-15		MC78M15CT
LM342P-18		MC78M18CT
LM342P-24		MC78M24CT
LM342P-5.0		MC78M05CT
LM342P-6.0		MC78M06CT
LM342P-8.0		MC78M08CT

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
LM348D	LM348D	
LM348M	LM348D	
LM349N		MC4741CP
LM350T	LM350T	
LM358AN		LM358N
LM358D	LM358D	
LM358N	LM358N	
LM363AN		MC3450P\#
LM363N		MC3450P\#
LM385BZ-1.2	LM385BZ-1.2	
LM385BZ-2.5	LM385BZ-2.5	
LM385D-1.2	LM385D-1.2	
LM385D-2.5	LM385D-2.5	
LM385M-1.2	LM385D-1.2	
LM385M-2.5	LM385D-2.5	
LM385Z-1.2	LM385Z-1.2	
LM385Z-2.5	LM385Z-2.5	
LM386N		MC34119P
LM3905N		MC1455P1
LM393AN	LM393AN	
LM393D	LM393D	
LM393.JG		LM393N
LM393M	LM393D	
LM393N	LM393N	
LM431ACZ	TL431ACLP	
LM431ACM	TL431ACD	
LM4250CN		MC1776CP1
LM555CN	MC1455P1	
LM556CN	MC3456P	
LM703LN		MC1350P
LM723CN	MC1723CP	
LM741EN		MC1741CP1
LM7805CT	MC7805CT	
LM7812CT	MC7812CT	
LM7815CT	MC7815CT	
LM78L05ACZ	MC78L05ACP	
LM78L05CZ	MC78L05CP	
LM78L08ACZ	MC78L08ACP	
LM78L08CZ	MC78L08CP	
LM78L12ACZ	MC78L12ACP	
LM78L12CZ	MC78L12CP	
LM78L15ACZ	MC78L15ACP	
LM78L15CZ	MC78L15CP	
LM78L18ACZ	MC78L18ACP	
LM78L18CZ	MC78L18CP	
LM78L24ACZ	MC78L24ACP	
LM78L24CZ	MC78L24CP	
LM78M05CP		MC78M05CT
LM78M06CP		MC78M06CT
LM78M12CP		MC78M12CT
LM78M15CP		MC78M15CT
LM7905CT	MC7905CT	

\# = Not recommended for new designs.

Cross References (continued)

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
LM7912CT	MC7912CT	
LM7915CT	MC7915CT	
LM79L05ACZ	MC79L05ACP	:
LM79L12ACZ	MC79L12ACP	
LM79L15ACZ	MC78L15ACP	
LM79M05CP		MC79M05CT
LM79M12CP		MC79M12CT
LM79M15CP		MC79M15CT
LM833D	LM833D	
LM833N	LM833N	
LM833P	LM833N	
LM837N		MC33079P
LMC6482D		MC33202D
LMC6482P		MC33202P
LMC6484D		MC33204D
LMC6484P		MC33204P
LP2950CZ-3.0	LP2950CZ-3.0	,
LP2950CZ-3.3	LP2950CZ-3.3	
LP2950CZ-5.0	LP2950CZ-5.0	
LP2950ACZ-3.0	LP2950ACZ-3.0	
LP2950ACZ-3.3	LP2950ACZ-3.3	
LP2950ACZ-5.0	LP2950ACZ-5.0	
LP2951CM	LP2951CD	
LP2951ACM	LP2951ACD	
LP2951CM-3.0	LP2951CD-3.0	
LP2951CM-3.3	LP2951CD-3.3	
LP2951ACM-3.0	LP2951ACD-3.0	
LP2951ACM-3.3	LP2951ACD-3.3	
LP2951CN	LP2951CN	
LP2951ACN	LP2951ACN	
LP2951CN-3.0	LP2951CN-3.0	
LP2951CN-3.3	LP2951CN-3.3	
LP2951ACN-3.0	LP2951ACN-3.0	
LP2951ACN-3.3	LP2951ACN-3.3	
LT1083		MC34268DT
LT1431CZ	TL431BCLP	
LTC699CN8		MC34064D-5
LTC6991N8		MC33064D-5
MAX809LCPA		MC34064P-5
MB3759	TL494CN	
N5558V	MC1458P1	
N5723A		MC1723CP
N5741A		MC1741CP1
N5741V	MC1741CP1	
N8T26AB	MC8T26AP	
N8T26AN	MC8T26AP	
N8T26B	MC8T26AP	
N8T26N	MC8T26AP	
N8T97B	MC8T97P	
N8T97N	MC8T97P	
N8T98B	MC8T98P	
N8T98N	MC8T98P	

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
NE550A		MC1723CP
NE555D	MC1455D	
NE555V	MC1455P1	
NE556D	NE556D	
NE5561N		MC34060AP
NE5234D		MC33204D
NE5234P		MC33204P
OP-01P		MC1436P1
RC1458DN	MC1458P1	
RC4136DP		MC3403P
RC4136N	:	MC3403P
RC4558DN	MC4558CP1	
RC4558P	MC4558CP1	
RC723DB	MC1723CP	
RC741DN	MC1741CP1	
RE5VL47A	MC34164P-5	
RH5RE30AA-T1	MC78LC30HT1	
RH5RE33AA-T1	MC78LC33HT1	
RH5RE40AA-T1	MC78LC40HT1	
RH5RE50AA-T1	MC78LC50HT1	
RN5RG30AA-TR	MC78BC30NTR	
RN5RG33AA-TR	MC78BC33NTR	
RN5RG40AA-TR	MC78BC40NTR	
RN5RG50AA-TR	MC78BC50NTR	
RH5RH301A-T1	MC33466H-30JT1	
RH5RH302B-T1	MC33466H-30LT1	
RH5RH331A-T1	MC33466H-33JT1	
RH5RH332B-T1	MC33466H-33LT1	
RH5RH501A-T1	MC33466H-50JT1	
RH5RH502B-T1	MC33466H-50LT	
RH5RI301B-T1	MC33463H-30KT1	
RH5RI302B-T1	MC33463H-30LT1	
RH5RI331B-T1	MC33463H-33KT1	
RH5RI332B-T1	MC33463H-33LT1	
RH5RI501B-T1	MC33463H-50KT1	,
RH5RI502B-T1	MC33463H-50LT1	*
RH5RL30AA-T1	MC78FC30HT1	
RH5RL33AA-T1	MC78FC33HT1	
RH5RL40AA-T1	MC78FC40HT1	
RH5RL50AA-T1	MC78FC50HT1	
RH5VT09AA-T1	MC33464H-09AT1	
RH5VT20AA-T1	MC33464H-20AT1	
RH5VT27AA-T1	MC33464H-27AT1	
RH5VT30AA-T1	MC33464H-30AT1	
RH5VT45AA-T1	MC33464H-45AT1	
RH5VT09CA-T1	MC33464H-09CT1	
RH5VT20CA-T1	MC33464H-20CT1	
RH5VT27CA-T1	MC33464H-27CT1	
RH5VT30CA-T1	MC33464H-30CT1	
RH5VT45CA-T1	MC33464H-45CT1	
RN5RL30AA-TR	MC78FC30NTR	
RN5RL33AA-TR	MC78FC33NTR	

[^4]Cross References (continued)

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
RN5RL.40AA-TR	MC78FC40NTR	,
RN5RL50AA-TR	MC78FC50NTR	
RN5VD09AA-TR	MC33465N-09ATR	
RN5VD20AA-TR	MC33465N-20ATR	
RN5VD27AA-TR	MC33465N-27ATR	
RN5VD30AA-TR	MC33465N-30ATR	
RN5VD45AA-TR	MC33465N-45ATR	
RN5VD09CA-TR	MC33465N-09CTR	
RN5VD20CA-TR	MC33465N-20CTR	
RN5VD27CA-TR	MC33465N-27CTR	
RN5VD30CA-TR	MC33465N-30CTR	
RN5VD45CA-TR	MC33465N-45CTR	
RN5VT09AA-TR	MC33464N-09ATR	
RN5VT20AA-TR	MC33464N-20ATR	
RN5VT27AA-T4	MC33464N-27ATR	
RN5VT30AA-TR	MC33464N-30ATR	
RN5VT45AA-TR	MC33464N-45ATR	
RN5VT09CA-TR	MC33464N-09CTR	
RN5VT20CA-TR	MC33464N-20CTR	
RN5VT27CA-TR	MC33464N-27CTR	
RN5VT30CA-TR	MC33464N-30CTR	
RN5VT45CA-TR	MC33464N-45CTR	
S-80743AN		MC34164P-3
SA555N	MC1455BP1	
SAA1042		SAA1042V
SG1458M	MC1458P1	
SG1496N	MC1496P	
SG1596J	MC1496BP	
SG201AM	LM201AN	
SG201AN		LM201AN
SG201M	LM201AN	
SG201N		LM201AN
SG224N	LM224N	
SG300N		MC1723CP
SG301AM	LM301AN	
SG301AN		LM301AN
SG308AM	LM308AN	
SG3118AM		LM308AN
SG311M	LM311N	
SG317P	LM317T	
SG317R		LM317T
SG324N	LM324N	
SG337P	LM337T	
SG337R		LM337T
SG3423M		MC3423P1
SG3525AN	SG3525AN	
SG3526N	SG3526N	
SG3527AN	SG3527AN	
SG3561	MC34261P	
SG4250CM		MC1776CP1
SG555CM	MC1455P1	
SG556CN	MC3456P	

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
SG723CN	MC1723CP	
SG741CM	MC1741CP1	
SG777CN		LM308AN
SG7805ACP	MC7805ACT	
SG7805ACR		MC7805ACT
SG7805ACT		MC7805ACT
SG7805CP	MC7805CT	
SG7806ACP	MC7806ACT	
SG7806ACR		MC7806ACT
SG7806ACT		MC7806ACT
SG7806CP	MC7806CT	
SG7806CR		MC7806CT
SG7808ACP	MC7808ACT	
SG7808ACT		MC7808ACT
SG7808CP	MC7808CT	
SG7808CR		MC7808CT
SG7812ACP	MC7812ACT	
SG7812ACR		MC7812ACT
SG7812ACT		MC7812ACT
SG7812CP	MC7812CT	
SG7812CR		MC7812CT
SG7815ACP	MC7815ACT	
SG7815ACR		MC7815ACT
SG7815ACT		MC7815ACT
SG7815CP	MC7815CT	
SG7815CR		MC7815CT
SG7815CT		MC7815CT
SG7818ACP	MC7818ACT	
SG7818ACR		MC7818ACT
SG7818ACT		MC7818ACT
SG7818CP	MC7818CT	
SG7818CR		MC7818CT
SG7824ACP	MC7824ACT	
SG7824ACR		MC7824ACT
SG7824ACT		MC7824ACT
SG7824CP	MC7824CT	
SG7824CR		MC7824CT
SG7905.2CP	MC7905.2CT	
SG7905.2CR		MC7905.2CT
SG7905.2CT		MC7905.2CT
SG7905ACP	MC7905ACT	
SG7905ACR		MC7905ACT
SG7905ACT		MC7905ACT
SG7905CP	MC7905CT	
SG7905CR		MC7905CT
SG7905CT		MC7905CT
SG7908CP	MC7908CT	
SG7908CR		MC7908CT
SG7908CT		MC7908CT
SG7912ACP	MC7912ACT	
SG7912ACR		MC7912ACT
SG7912ACT		MC7912ACT

\# = Not recommended for new designs.

Cross References (continued)

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
SG7912CP	MC7912CT	.'
SG7912CR		MC7912CT
SG7912CT.		MC7912CT
SG79015ACP	MC7915ACT	,
SG7915ACR		MC7915ACT
SG7915ACT		MC7915ACT
SG7915CP	MC7915CT	
SG7915CR	,	MC7915CT
SG7915CT		MC7915CT
SG7918CP	MC7918CT	
SN75LBC086		MC34055DW
SN75121N		MC3481/5P\#
SN75126N	-	MC3481/5P\#
SN75150N		MC1488P
SN75154N		MC1489P
SN75174N	MC75174BP	
SN75175N	SN75175N	
SN75188N	MC1488P	
SN75189AN	MC1489AP	
SN75189N	MC1489P	
SN75468N	MC1413P	
SN76591P	MC1391P.	
SN76600P	MC1350P	
SSS201AP	LM201AN	
SSS301AP	LM301AN	
TA7504P	MC1741CP1	
TA7506P	LM301AN	
TA75071P		MC34001P
TA75072P		MC34002P
TA75074F		MC34004P
TA75339F	LM339D	
TA75339P	LM339N	
TA75358CF	LM358D	
TA75358CP	LM358N	
TA75393F	LM393D	
TA75393P	LM393N	
TA75458F	MC1458D	
TA75458P	MC1458CP1	
TA75558P	MC4558CP1	
TA7555F	MC1455D	
TA7555P	MC1455P1	
TA75902F	LM324D	
TA76494P		TL494IN
TA78005AP	MC7805CT	
TA78006AP	MC7806CT	
TA78008AP	MC7808CT	
TA78012AP	MC7812CT	
TA78015AP	MC7815CT	
TA78018AP	MC7818CT	
TA78024AP	MC7824CT	
TA78L005AP		MC78L05ACP
TA78L005P		MC78L05CP

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
TA78L008AP		MC78L08ACP
TA78L008P		MC78L08CP
TA78L012AP	, $\cdot \cdot$	MC78L12ACP
TA78L012P		MC78L12CP
TA78L015AP		MC78L15ACP
TA78L015P		MC78L15CP
TA78L018AP		MC78L18ACP
TA78L018P		MC78L18CP
TA78L024AP		MC78L24ACP
TA78L024P		MC78L24CP
TA78M05P	MC78M05CT	
TA78M06P	MC78M06CT	
TA78M08P	MC78M08CT	
TA78M12P	MC78M12CT	
TA78M18P	MC78M18CT	
TA78M20P	MC78M20CT	
TA78M24P	MC78M24CT	
TA79005P	MC7905CT	
TA79006P	MC7906CT	
TA79008P	MC7908CT	
TA79012P	MC7912CT	
TA79015P	MC7915CT	
TA79018P	MC7918CT	
TA79024P	MC7924CT	
TA79L005P , \because		MC79L05CP
TA79L012P		MC79L12P
TA79L015P		MC79L15P
TA79L018P		MC79L18P
TA79L024P		MC79L24P
TB920		MC1391P
TBA920S		MC1391P
TCF5600	TCF5600	
TD62003P/AP	MC1413P	*
TD62479P	MC1374P	\therefore
TDA1085C	TDA1085C	
TDA1085		TDA1085C
TDA1185A	TDA1185A\#	
TDA4817		MC34261P
TDC1018		MC10324P
TDC1048		MC10319P
TK115	MC33264	
TL022CP		LM358N
TL044CJ		LM324N
TL062ACP	TL062ACP	
TL062CD	TL062CD	
TL062CP	TL062CP	
TL062VP	TL062VP	
TL064ACD	TL064ACD	
TL064ACN	TL064ACN	
TL064CD	TL064CD	
TL064CN	TL064CN	
TL064VN	TL064VN	

\# = Not recommended for new designs.

Cross References (continued)

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
TL071ACD	TL071ACD	
TL071ACP	TL071ACP	
TL071CD	TL071CD	
TL071CP	TL071CP	
TL072ACD	TL072ACD	
TL072ACP	TL072ACP	
TL072CD	TL072CD	
TL072CP	TL072CP	
TL074ACN	TL074ACN	
TL074CN	TL074CN	
TL081ACD	TL081ACD	
TL081ACP	TL081ACP	
TL081CD	TL081CD	
TL081CP	TL081CP	
TL082ACP	TL082ACP	
TL082CD	TL082CD	
TL082CP	TL082CP	
TL084ACN	TL084ACN	
TL084CN	TL084CN	
TL431CD	TL431CD	
TL431CLP	TL431CLP	
TL431CP	TL431CP	
TL431ILP	TL431ILP	
TL4311P	TL4311P	
TL494CN	TL494CN	
TL494IN	TL494IN	
TL497CN		MC34063AP1
TL594CN	TL594CN	
TL594IN	TL594IN	
TL780-05CKC	TL780-05CKC	
TL780-12CKC	TL780-12CKC	
TL780-15CKC	TL780-15CKC	
TL7805ACKC	MC7805ACT	
TLC2272D		MC33202D
TLC2272P		MC33202P
TLC2274D		MC33204D
TLC2274P		MC33204P
$\mu \mathrm{A} 1391 \mathrm{PC}$	MC1391P	
$\mu \mathrm{A1458CP}$	MC1458CP1	
$\mu \mathrm{A1458CTC}$	MC1458CP1	
$\mu \mathrm{A} 1458 \mathrm{P}$	MC1458P1	
$\mu \mathrm{A} 1458 \mathrm{TC}$	MC1458P1	
$\mu \mathrm{A} 2240 \mathrm{PC}$		MC1455P1
$\mu \mathrm{A} 301 \mathrm{AT}$	LM301AN	
$\mu \mathrm{A} 3026 \mathrm{HM}$		CA3054
$\mu \mathrm{A} 3045$		MC3346P
$\mu \mathrm{A3046DC}$	MC3346P	
$\mu \mathrm{A3054DC}$	CA3054	
$\mu \mathrm{A} 311 \mathrm{~T}$	LM311N	
$\mu \mathrm{A} 317 \mathrm{UC}$	LM317T	
НАЗ303P	MC3303P	
$\mu \mathrm{A} 3403 \mathrm{P}$	MC3403P	

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
$\mu \mathrm{A} 4136 \mathrm{PC}$		MC4741CP
μ A431AWC	TL431CP	
$\mu \mathrm{A} 4558 \mathrm{TC}$	MC4558CP1	
$\mu \mathrm{A} 494 \mathrm{PC}$	TL494CN	
$\mu \mathrm{A} 555 \mathrm{TC}$	MC1455P1	
MA556PC	MC3456P	
$\mu \mathrm{A} 723 \mathrm{CN}$	MC1723CP	
$\mu \mathrm{A} 723 \mathrm{PC}$	MC1723CP	
$\mu \mathrm{A} 411 \mathrm{CP}$	MC1741CP1	
μ A742DC		СА3059
μ A757DC		MC1350P
μ A757DM		MC1350P
$\mu \mathrm{A} 775 \mathrm{PC}$	LM339N	
$\mu \mathrm{A} 776 \mathrm{TC}$	MC1776CP1	
μ A7805CKC	MC7805CT	
$\mu \mathrm{A} 7805 \mathrm{UC}$	MC7805CT	
$\mu \mathrm{A} 7805 \mathrm{UV}$	MC7805BT	
μ A7806CKC	MC7806CT	
$\mu \mathrm{A} 7806 \mathrm{UC}$	MC7806CT	
$\mu \mathrm{A} 7806 \mathrm{UV}$	MC7806BT	
$\mu \mathrm{A} 7808 \mathrm{CKC}$	MC7808CT	
$\mu \mathrm{A} 7808 \mathrm{UC}$	MC7808CT	
$\mu \mathrm{A} 7808 \mathrm{UV}$	MC7808BT	
μ A7812CKC	MC7812CT	
$\mu \mathrm{A} 7812 \mathrm{UC}$	MC7812CT	
$\mu \mathrm{A} 7812 \mathrm{UV}$	MC7812BT	
$\mu \mathrm{A} 7815 \mathrm{CKC}$	MC7815CT	
$\mu \mathrm{A} 7815 \mathrm{UC}$	MC7815CT	
$\mu \mathrm{A} 7815 \mathrm{UV}$	MC7815BT	
$\mu \mathrm{A} 7818 \mathrm{CKC}$	MC7818CT	
$\mu \mathrm{A} 7818 \mathrm{UC}$	MC7818CT	
$\mu \mathrm{A} 7818 \mathrm{UV}$	MC7818BT	
μ A7824CKC	MC7824CT	
$\mu \mathrm{A} 7824 \mathrm{UC}$	MC7824CT	
$\mu \mathrm{A} 7824 \mathrm{UV}$	MC7824BT	
μ A78GU1C		LM317T
μ A78GUC		LM317T
μ A78L05ACLP	MC78L05ACP	
μ A78L05AWC		MC78L05ACP
μ A78L05CLP	MC78L05CP	
μ A78L05WC		MC78L05CP
μ A78L08ACLP	MC78L08ACP	
μ A78L08AWC		MC78L08ACP
μ A78L08CLP	MC78L08CP	
μ A78L12ACLP	MC78L12ACP	
μ A78L12AWC		MC78L12ACP
$\mu \mathrm{A} 78 \mathrm{~L} 12 \mathrm{CLP}$	MC78L12CP	
HA78L12WC		MC78L12CP
μ A78L15ACLP	MC78L15ACP	
μ A78L15AWC		MC78L15ACP
μ A78L15CLP	MC78L15CP	
μ A78L15WC		MC78L15CP

\# = Not recommended for new designs.

Cross References (continued)

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
MA78L18AWC		MC78L18ACP
μ A78L24AWC	MC78L24ACP	
μ A78M05CKC	MC78M05CT	
μ A78M05CKD		MC78M05CT
$\mu \mathrm{A} 78 \mathrm{M05UC}$	MC78M05CT	
μ A78M06CKC	MC78M06CT	
$\mu \mathrm{A} 78 \mathrm{M} 06 \mathrm{CKD}$		MC78M06CT
$\mu \mathrm{A} 78 \mathrm{M06UC}$	MC78M06CT	
μ A78M08CKC	MC78M08CT	
μ A78M08CKD		MC78M08CT
μ A78M08UC	MC78M08CT	
μ A78M12CKC	MC78M12CT	
μ A78M12CKD		MC78M12CT
$\mu \mathrm{A} 78 \mathrm{M} 12 \mathrm{UC}$	MC78M12CT	
μ A78M15CKC	MC78M15CT	
μ A78M15CKD		MC78M15CT
μ A78M15UC	MC78M15CT	
$\mu \mathrm{A} 78 \mathrm{M} 18 \mathrm{UC}$	MC78M18CT	
μ A78M20CKC	MC78M20CT	
μ A78M20CKD		MC78M20CT
$\mu \mathrm{A} 78 \mathrm{M} 20 \mathrm{UC}$	MC78M20CT	
$\mu \mathrm{A} 78 \mathrm{M} 24 \mathrm{CKC}$	MC78M24CT	
μ A78M24CKD		MC78M24CT
$\mu \mathrm{A} 78 \mathrm{M} 24 \mathrm{UC}$	MC78M24CT	
μ A78MGT2C		LM317T
$\mu \mathrm{A} 78 \mathrm{MGU1C}$		LM317T
μ A78MGUC		LM317MT
μ A78S40PC	$\mu \mathrm{A} 78 \mathrm{S40PC}$	
$\mu \mathrm{A} 78 \mathrm{S40PV}$	$\mu \mathrm{A} 78 \mathrm{S40PV}$	
μ A7905.2CKC	MC7905.2CT	
μ A7905CKC	MC7905CT	
$\mu \mathrm{A} 7905 \mathrm{C}$	MC7905CT	
μ A7906CKC	MC7906CT	
$\mu \mathrm{A} 7906 \mathrm{UC}$	MC7906CT	
$\mu \mathrm{A} 9008 \mathrm{CKC}$	MC7908CT	
μ A7912CKC	MC7912CT	
$\mu \mathrm{A} 7912 \mathrm{C}$	MC7912CT	
μ A7915CKC	MC7915CT	
$\mu \mathrm{A} 7915 \mathrm{UC}$	MC7915CT	
μ A7918CKC	MC7918CT	
$\mu \mathrm{A} 7918 \mathrm{UC}$	MC7918CT	
μ A7924CKC	MC7924CT	
$\mu \mathrm{A} 7924 \mathrm{C}$	MC7924CT	
$\mu \mathrm{A} 998 \mathrm{TC}$	MC3458P1	
μ A79L05AWC	MC79L05ACP	
μ A79L05WC	MC79L05CP	
μ A79L12AWC	MC79L12ACP	
HA79L12WC	MC79L12CP	
μ A79L15AWC	MC79L15ACP	
μ A79L15WC	MC79L15CP	
μ A79M05AUC	MC79M05CT	
μ A79M05CKC	MC79M05CT	

\# = Not recommended for new designs.

Cross References (continued)

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
UC3842AD	UC3842AD	
UC3842AN	UC3842AN	
UC3842BD	UC3842BD	
UC3842BN	UC3842BN	
UC3842D	UC3842AD	
UC3842N	UC3842AN	
UC3843AD	UC3843AD	
UC3843AN	UC3843AN	
UC3843BD	UC3843BD	
UC3843BN	UC3843BN	
UC3843D	UC3843AD	
UC3843N	UC3843AN	
UC3844BD	UC3844BD	
UC3844BN	UC3844BN	
UC3844D	UC3844D	
UC3844N	UC3844N	
UC3845BD	UC3845BD	
UC3845BN	UC3845BN	
UC3845D	UC3845D	

Industry Part Number	Motorola Nearest Replacement	Motorola Similar Replacement
UC3845N	UC3845N	
UC494ACN		TL594CN
UC494CN		TL494CN
UCN5816A	MC34142FN	
ULN2003A	MC1413	
ULN2004A	MC1416	
ULN2068BB	ULN2068B\#	
ULN2068NE	ULN2068B\#	
ULN2151H	MC1741CP1	
ULN2151M		MC1741CP1
ULN2803A	ULN2803A	
ULN2804A	ULN2804A	
ULN8126A	SG3526N	
ULS2151M		MC1741CP1
ULX8161M		MC34060AP
UPD6950C		MC10319P
UVC3101		MC10319P
XR082CP	TL082CP	
XR084CP	TL084CN	

\# = Not recommended for new designs.

Amplifiers and Comparators

In Brief . . .

For over two decades, Motorola has continually refined and updated integrated circuit technologies, analog circuit design techniques and processes in response to the needs of the marketplace. The enhanced performance of newer operational amplifiers and comparators has come through innovative application of these technologies, designs and processes. Some early designs are still available but are giving way to the new, higher performance operational amplifier and comparator circuits. Motorola has pioneered in JFET inputs, low temperature coefficient input stages, Miller loop compensation, all NPN output stages, dual-doublet frequency compensation and analog "in-the-package" trimming of resistors to produce superior high performance operational amplifiers and comparators, operating in many cases from a single supply with low input offset, low noise, low power, high output swing, high slew rate and high gain-bandwidth product at reasonable cost to the customer.

Present day operational amplifiers and comparators find applications in all market segments including motor controls, instrumentation, aerospace, automotive, telecommunications, medical, and consumer products.
Page
Operational Amplifiers 2-2
Single 2-2
Dual 2-3
Quad 2-4
High Frequency Amplifiers 2-5
AGC 2-5
Miscellaneous Amplifiers 2-6
Bipolar 2-6
CMOS 2-6
Comparators 2-7
Single 2-7
Dual 2-7
Quad 2-7
Package Overview 2-8
Device Listing and Related Literature 2-9

Operational Amplifiers

Motorola offers a broad line of bipolar operational amplifiers to meet a wide range of applications. From low-cost industry-standard types to high precision circuits, the span encompasses a large range of performance capabilities. These Analog integrated circuits are available as single, dual
and quad monolithic devices in a variety of temperature ranges and package styles. Most devices may be obtained in unencapsulated "chip" form as well. For price and delivery information on chips, please contact your Motorola Sales Representative or Distributor.

Table 1. Single Operational Amplifiers

Device	$\begin{aligned} & \mathrm{I}_{18} \\ & (\mu \mathrm{~A}) \\ & \mathrm{Max} \end{aligned}$	V_{10} (mV) Max	TCVIO ($\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$) Typ	10 (nA) Max	$\begin{gathered} \text { Avol } \\ (\mathrm{V} / \mathrm{mV}) \\ \mathrm{Min} \end{gathered}$	$\begin{gathered} B W \\ \left(A_{V}=1\right) \\ (\mathrm{MHz}) \\ \mathrm{Typ} \end{gathered}$	$\begin{gathered} \text { SR } \\ \left(A_{V}=1\right) \\ (V / \mu s) \\ \text { Typ } \end{gathered}$	Supply Voltage (V)		Description	Suffix/ Package
								Min	Max		

Noncompensated

Commercial Temperature Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

LM301A	0.25	7.5	10	50	25	1.0	0.5	± 3.0	± 18	General Purpose	N/626, D/751
LM308A	7.0	0.5	5.0	1.0	80	1.0	0.3	± 3.0	± 18	Precision	N/626, D/751

Industrial Temperature Range $\left(-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)

LM201A	0.075	2.0	10	10	50	1.0	0.5	± 3.0	± 22	General Purpose	$\mathrm{N} / 626, \mathrm{D} / 751$

Internally Compensated
Commercial Temperature Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

LF351	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	N/626, D/751
LF411C	200 pA	2.0	10	100 pA	25	8.0	25	+5.0	± 22	JFET Input, Low Offset, Low Drift	N/626, D/751
LF441C	100 pA	5.0	10	50 pA	25	2.0	6.0	± 5.0	± 18	Low Power, JFET Input	N/626, D/751
LM11C	100 pA	0.6	2.0	10 pA	250	1.0	0.3	± 3.0	± 20	Precision	N/626
LM11CL	200 pA	5.0	3.0	25 pA	50	1.0	0.3	± 3.0	± 20	Precision	N/626
MC1436, C	0.04	10	12	10	70	1.0	2.0	± 15	± 34	High Voltage	P1/626, D/751
MC1741C	0.5	6.0	15	200	20	1.0	0.5	± 3.0	± 18	General Purpose	P1/626, D/751
MC1776C	0.003	6.0	15	3.0	100	1.0	0.2	± 1.2	± 18	μ Power, Programmable	P1/626, D/751
MC3476	0.05	6.0	15	25	50	1.0	0.2	± 1.5	± 18	Low Cost, μ Power, Programmable	P1/626
MC34001	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	P/626, D/751
MC34001B	200 pA	5.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	P/626, D/751
MC34071	0.5	5.0	10	75	25	4.5	10	+3.0	+44	High Performance	P/626, D/751
MC34071A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	Single Supply	P/626, D/751
MC34080B	200 pA	1.0	10	100 pA	25	16	55	± 5.0	± 22	Decompensated	P/626, D/751
MC34081B	200 pA	1.0	10	100 pA	25	8.0	30	± 5.0	± 22	High Speed, JFET Input	P/626, D/751
MC34181	0.1 nA	2.0	10	0.05	25	4.0	10	± 2.5	± 18	Low Power, JFET Input	P/626
TL071AC	200 pA	6.0	10	50 pA	50	4.0	13	± 5.0	± 18	Low Noise, JFET Input	P/626, D/751
TL071C	200 pA	10	10	50 pA	25	4.0	13	± 5.0	± 18	Low Noise, JFET Input	P/626, D/751
TL081AC	200 pA	6.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	P/626, D/751
TL081C	400 pA	15	10	200 pA	25	4.0	13	± 5.0	± 18	JFET Input	P/626, D/751

Automotive Temperature Range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

MC33071	0.5	5.0	10	75	25	4.5	10	+3.0	+44	High Performance	P/626, D/751
MC33071A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	Single Supply	P/626, D/751
MC33171	0.1	4.5	10	20	50	1.8	2.1	+3.0	+44	Low Power, Single Supply	P/626, D/751
MC33181	0.1 nA	2.0	10	0.05	25	4.0	10	± 2.5	± 18	Low Power, JFET Input	P/626, D/751

Extended Automotive Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$

| MC33201 | 250 nA | 9.0 | 2.0 | 100 | 50 | 2.2 | 1.0 | ± 0.9 | ± 6.0 | Low V Rail-to-Rail | P/626, D/751 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}\right)$

MC33201	400 nA	9.0	2.0	200	50	2.2	1.0	± 0.9	± 6.0
Low V Rail-to-Rail	P/626, D/751								

Table 2. Dual Operational Amplifiers

Internally Compensated
Commercial Temperature Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

LF353	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	N/626, D/751
LF412C	200 pA	3.0	10	100 pA	25	4.0	13	+5.0	± 18	JFET Input, Low Offset, Low Drift	N/626, D/751
LF442C	100 pA	5.0	10	50 pA	25	2.0	6.0	± 5.0	± 18	Low Power, JFET Input	N/626
LM358	0.25	6.0	7.0	50	25	1.0	0.6	± 1.5	± 18	Single Supply,	N/626, D/751
								+3.0	+36	Low Power Consumption Low Noise, Audio	
LM833 MC/MCT1458	1.0 0.5	5.0	2.0	200	31.6 20	15	7.0	+2.5	± 18	Low Noise, Audio	N/626, D/751
MC/MCT1458	0.5	6.0	10	200	20	1.1	0.8	± 3.0	± 18	Dual MC1741	$\begin{gathered} \mathrm{P} 1 / 626, \\ \mathrm{D} / 751 \end{gathered}$
MC1458C	0.7	10	10	300	20	1.1	0.8	± 3.0	± 18	General Purpose	$\begin{gathered} \mathrm{P} 1 / 626, \\ \mathrm{D} / 751 \end{gathered}$
MC3458	0.5	10	7.0	50	20	1.0	0.6	± 1.5	± 18	Split Supplies,	P1/626,
								+3.0	+36	Single Supply, Low Crossover Distortion	D/751
MC4558AC	0.5	5.0	10	200	50	2.8	1.6	± 3.0	± 22	High Frequency	P1/626
MC/MCT4558C	0.5	6.0	10	200	20	2.8	1.6	± 3.0	± 18	High Frequency	$\begin{gathered} \mathrm{P} 1 / 626, \\ \mathrm{D} / 751 \end{gathered}$
MC34002	100 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	P/626, D/751
MC34002B	100 pA	5.0	10	70 pA	25	4.0	13	± 5.0	± 18	JFET Input	P/626, D/751
MC34072	0.5	5.0	10	75	25	4.5	10	+3.0	+44	High Performance	P/626, D/751
MC34072A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	Single Supply	P/626, D/751
MC34082	200 pA	3.0	10	100 pA	25	8.0	30	± 5.0	± 22	High Speed, JFET Input	P/626
MC34083B	200 pA	3.0	10	100 pA	25	16	55	± 5.0	± 22	Decompensated	P/626
MC34182	0.1 nA	3.0	10	0.05	25	4.0	10	± 2.5	± 18	Low Power, JFET Input	P/626, D/751
TL062AC	200 pA	6.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power, JFET Input	P/626, D/751
TL062C	200 pA	15	10	200 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power, JFET Input	P/626, D/751
TL072AC	200 pA	6.0	10	50 pA	50	4.0	13	± 5.0	± 18	Low Noise, JFET Input	P/626, D/751
TL072C	200 pA	10	10	50 pA	25	4.0	13	± 5.0	± 18	Low Noise, JFET Input	P/626, D/751
TL082AC	200 pA	6.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	P/626, D/751
TL082C	400 pA	15	10	200 pA	25	4.0	13	± 5.0	± 18	JFET Input	P/626, D/751

Industrial Temperature Range $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

LM258	0.15	5.0	10	30	50	1.0	0.6	± 1.5 +3.0	± 18 +36	Split or Single Supply Op Amp	N/626, D/751

Automotive Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

MC3358	5.0	8.0	10	75	20	1.0	0.6	$\begin{aligned} & \pm 1.5 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & +36 \end{aligned}$	Split or Single Supply	P1/626
MC33072	0.50	5.0	10	75	25	4.5	10	+3.0	+44	High Performance	P/626, D/751
MC33072A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	Single Supply	P/626, D/751
MC33076	0.5	4.0	2.0	70	25	7.4	2.6	± 2.0	± 18	High Output Current	$\begin{gathered} \mathrm{P} 1 / 626, \\ \mathrm{P} 2 / 648 \mathrm{C}, \\ \mathrm{D} / 751 \end{gathered}$
MC33077	1.0	1.0	2.0	180	150	37	11	± 2.5	± 18	Low Noise	P/626, D/751
MC33078	750 nA	2.0	2.0	150	31.6	16	7.0	± 5.0	± 18	Low Noise	N/626, D/751
MC33102 (Awake)	600 nA	3.0	1.0	60	25	4.6	1.7	± 2.5	± 18	Sleep-Mode ${ }^{\text {TM }}$	P/626, D/751
(Sleep)	60 nA	3.0	1.0	6.0	15	0.3	0.1	± 2.5	± 18	Micropower	
MC33172	0.10	4.5	10	20	50	1.8	2.1	+3.0	+44	Low Power, Single Supply	P/626, D/751
MC33178	0.5	3.0	2.0	50	50	5.0	2.0	± 2.0	± 18	High Output Current	P/626, D/751
MC33182	0.1 nA	3.0	10	0.05	25	4.0	10	± 2.5	± 18	Low Power, JFET Input	P/626, D/751
MC33272A	650 nA	1.0	0.56	25 nA	31.6	5.5	11.5	± 1.5	± 18	High Performance	P/626, D/751
MC33282	100 pA	$200 \mu \mathrm{~V}$	5.0	50 pA	50	30	12	± 2.5	± 18	Low Input, Offset JFET	P/626, D/751
TL062V	200 pA	6.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power, JFET Input	P/626, D/751

Table 2. Dual Operational Amplifiers (continued)

Device	IB ($\mu \mathrm{A}$)	V_{10} (mV)	TCVIo ($\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$)	$\begin{aligned} & 10 \\ & \text { (nA) } \end{aligned}$	Avol (V/mV)	$\begin{gathered} \mathrm{BW} \\ \left(\mathrm{~A}_{\mathrm{V}}=1\right) \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \text { SR } \\ \left(A_{V}=1\right) \\ (V / \mu s) \end{gathered}$			Desc	Suffix/ Package
	Max	Max	Typ	Max	Min	Typ	Typ			Desc	

Extended Automotive Temperature Range ($-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Extended Automotive Temperature Range ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

TCA0372	500 nA	15	20	50	30	1.1	1.4	+5.0	+36	Power Op Amp, Single Supply	DP2/648, DW/751G
LM2904V	0.25	13	7.0	50	100 typ	1.0	0.6	$\begin{aligned} & \pm 1.5 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & +26 \end{aligned}$	Split or Single Supply	N/626, D/751

Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

MC33202	400 pA	11	2.0	200 pA	50	2.2	1.0	± 0.9	± 6.0	Low V Rail-to-Rail	P/626, D/751

Table 3. Quad Operational Amplifiers

Device	IIB ($\mu \mathrm{A}$) Max	V_{10} (mV) Max	TCVIO ($\mu \mathrm{V} /{ }^{\circ} \mathbf{C}$) Typ	IIO (nA) Max	$\mathrm{A}_{\mathrm{vol}}$$(\mathrm{V} / \mathrm{mV}$) (V/mV) Min	$\begin{gathered} \mathrm{BW} \\ \left(\mathrm{~A}_{\mathrm{v}}=1\right) \\ (\mathrm{MHz}) \\ \mathrm{Typ} \end{gathered}$	$\begin{gathered} \text { SR } \\ \left(A_{V}=1\right) \\ (V / \mu s) \\ \text { Typ } \end{gathered}$	Supply Voltage (V)		Description	Suffix/ Package
								Min	Max		

Internally Compensated

Commercial Temperature Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

LF347	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	N/646
LF347B	200 pA	5.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	N/646
LF444C	100 pA	10	10	50 pA	25	2.0	6.0	± 5.0	± 18	Low Power, JFET Input	N/646, D/751A
LM324, A	0.25	6.0	7.0	50	25	1.0	0.6	± 1.5	± 16	Low Power	N/646, D/751A
								+3.0	+32	Consumption	
LM348	0.2	6.0	-	50	25	1.0	0.5	± 3.0	± 18	Quad MC1741	D/751A
LM3900								+3.0	+36		
MC3403	0.5	10	7.0	50	20	1.0	0.6	± 1.5	± 18.	No Crossover	P/646, D/751A
								+3.0	+36	Distortion	
MC4741C	0.5	6.0	15	200	20	1.0	0.5	± 3.0	± 18	Quad MC1741	P/646, D/751A
MC34004	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	P/646
MC34004B	200 pA	5.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	P/646
MC34074	0.5	5.0	10	75	25	4.5	10	+3.0	+44	High Performance	P/646, D/751A
MC34074A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	Single Supply	P/646, D/751A
MC34084	200 pA	12	10	100 pA	. 25	8.0	30	± 5.0	± 22	High Speed, JFET Input	P/646, DW/751G
MC34085B	200 pA	12	10	100 pA	25	16	55	± 5.0	± 22	Decompensated	P/646, DW/751G
MC34184	0.1 nA	10	10	0.05	25	4.0	10	± 2.5	± 18	Low Power, JFET Input	P/646, D/751A
TL064AC	200 pA	6.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power, JFET Input	N/646, D/751A
TL064C	200 pA	15	10	200 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power, JFET Input	N/646, D/751A
TL074AC	200 pA	6.0	10	50 pA	50	4.0	13	± 5.0	± 18	Low Noise, JFET Input	N/646
TL074C	200 pA	10	10	50 pA	25	4.0	13	± 5.0	± 18	Low Noise, JFET Input	N/646
TL084AC	200 pA	6.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	N/646
TL084C	400 pA	15	10	200 pA	25	4.0	13	± 5.0	± 18	JFET Input	N/646

Industrial Temperature Range $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

LM224, A	0.15	5.0	7.0	30	50	1.0	0.6	± 1.5 +3.0	± 16 +32	Split Supplies or Single Supply	N/646, D/751A

Automotive Temperature Range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Table 3. Quad Operational Amplifiers (continued)

Device	$\begin{aligned} & \mathbf{I} / \mathbf{B}^{(\mu \mathbf{A})} \\ & (\mu \mathrm{Max} \end{aligned}$	V_{10} (mV) Max	TCVIO ($\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$) Typ	${ }^{1} \mathrm{IO}$ (nA) Max	$\begin{gathered} \mathrm{A}_{\mathrm{vol}} \\ (\mathrm{~V} / \mathrm{mV}) \\ \mathrm{Min}) \end{gathered}$	$\begin{gathered} \mathrm{BW} \\ \left(\mathrm{~A}_{\mathrm{v}}=1\right) \\ (\mathrm{MHz}) \\ \text { Typ } \\ \hline \end{gathered}$	$\begin{gathered} \text { SR } \\ \left(A_{V}=1\right) \\ (V / \mu s) \\ \text { Typ } \\ \hline \end{gathered}$	Supply Voltage (V)		Description	Suffix/ Package
								Min	Max		
MC33074	0.5	4.5	10	75	25	4.5	10	+3.0	+44	High Performance, Single Supply	P/646, D/751A
MC33074A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	High Performance	P/646, D/751A
MC33079	750 nA	2.5	2.0	150	31.6	9.0	7.0	± 5.0	± 18	Low Noise	N/646, D/751A
MC33174	0.1	4.5	10	20	50	1.8	2.1	+3.0	+44	Low Power, Single Supply	P/646, D/751A
MC33179	0.5	3.0	2.0	50	50	5.0	2.0	± 2.0	± 18	High Output Current	P/646, D/751A
MC33184	0.1 nA	10	10	0.05	25	4.0	10	± 2.5	± 18	Low Power, JFET Input	P/646, D/751A
MC33274A	650 nA	1.0	0.56	25 nA	31.6	5.5	11.5	± 1.5	± 18	High Performance	P/646, D/751A
MC33284	100 pA	2.0	5.0	50 pA	50	30	12	± 2.5	± 18	Low Input, Offset JFET	P/646, D/751A
TL064V	200 pA	9.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power, JFET Input	N/646, D/751A

Extended Automotive Temperature Range ($-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

MC33204	250 nA	13	2.0	100	50	2.2	1.0	+0.9	+6.0	Low V Rail-to-Rail	P/646, D/751A
MC33207	250 nA	13	2.0	100	50	2.2 2.2	1.0	± 0.9 ± 0.9	$\pm \begin{aligned} & \pm 6.0 \\ & \pm 6.0\end{aligned}$	Rail-to-Rail with Enable	P/648, D/751B
MC33304					25	3.0		+1.8	+12	Sleepmode, Rail-to-Rail	P/646, D/751A
LM2902	0.5	10	-	50	15	1.0	0.6	± 1.5 +3.0	$\begin{aligned} & \pm 13 \\ & +26 \end{aligned}$	Differential Low Power	N/646, D/751A

Extended Automotive Temperature Range ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

LM2902V	0.5	13	-	50	15	1.0	0.6	± 1.5 +3.0	± 13 +26	Differential Low Power	N/646, D/751A

Military Temperature Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

MC33204	400 pA	13	2.0	200 pA	50	2.2	1.0	± 0.9	± 6.0	Low V Rail-to-Rail	P/646, D/751A

High Frequency Amplifiers

A variety of high frequency circuits with features ranging from low cost simplicity to multifunction versatility marks Motorola's line of integrated amplifiers. Devices described here are intended for industrial and communications applications. For devices especially dedicated to consumer products, i.e., TV and entertainment radio. (See the Consumer Electronics Circuits section.)

AGC Amplifiers

MC1490/MC1350 Family Wideband General Purpose Amplifiers

The MC1490 and MC1350 family are basic building blocks - AGC (Automatic Gain Controlled) RF/Video

Amplifiers. These parts are recommended for applications up through 70 MHz . The best high frequency performance may be obtained by using the physically smaller SOIC version (shorter leads) - MC1350D. There are currently no other RF ICs like these, because other manufacturers have dropped their copies. Applications include variable gain video and instrumentation amplifiers, IF (Intermediate Frequency) amplifiers for radio and TV receivers, and transmitter power output control. Many uses will be found in medical instrumentation, remote monitoring, video/graphics processing, and a variety of communications equipment. The family of parts using the same basic die (identical circuit with slightly different test parameters) is listed in the following table.

Table 4. High Frequency Amplifier Specifications

Operating Temperature Range		$\begin{gathered} A V \\ \text { (dB) } \end{gathered}$	Bandwidth @ MHz	$\underset{\text { (Vdc) }}{\mathrm{V}_{\mathrm{Cc}} / \mathrm{V}_{\mathrm{EE}}}$		Suffix/ Package
-40° to $+85^{\circ} \mathrm{C}$	0° to $+70^{\circ} \mathrm{C}$	Typical		Minimum	Maximum	
-	MC1350	50	45	+6.0	+18	P/626, D/751
MC1490	-	$\begin{aligned} & 50 \\ & 45 \\ & 35 \end{aligned}$	$\begin{gathered} 10 \\ 60 \\ 100 \end{gathered}$			P/626

Miscellaneous Amplifiers

Motorola provides several Bipolar and CMOS special purpose amplifiers which fill specific needs. These devices
range from low power CMOS programmable amplifiers and comparators to variable-gain bipolar power amplifiers.

MC3405

Dual Operational Amplifier and Dual Voltage Comparator

This device contains two Differential Input Operational Amplifiers and two Comparators; each set capable of single supply operation. This operational amplifier-comparator circuit will find its applications as a general purpose product for automotive circuits and as an industrial "building block."

Table 5. Bipolar

Device	I_{IB} $(\mu \mathrm{A})$ Max	$v_{10}$$(\mathrm{mV})$Max	10 $\text { (} \mathrm{nA} \mathrm{~A})$ Max	Avol (V/mV) Min	Response ($\mu \mathrm{s}$) Typ	Supply Voltage		Suffix/ Package
						Single	Dual	
MC3405	0.5	10	50	20	1.3	3.0 to 36	± 1.5 to ± 18	P/646

MC14573
Quad Programmable Operational Amplifier
MC14575
Dual Programmable Operational Amplifier and Dual Programmable Comparator
MC14576B/MC14577B
Dual Video Amplifiers
Table 6. CMOS

Function	Quantity Per Package	Single Supply Voltage Range	Dual Supply Voltage Range	Frequency Range	Device	Suffix/ Package
Operational Amplifiers	4	3.0 to 15 V	± 1.5 to $\pm 7.5 \mathrm{~V}$	DC to 1.0 MHz	MC14573	P/648, D/751B
Operational Amplifiers and Comparators	2 and 2	3.0 to 15 V	± 1.5 to $\pm 7.5 \mathrm{~V}$	DC to 1.0 MHz	MC 14575	P/648, D/751B
Video Amplifiers	2	5.0 to $12 \mathrm{~V}(1)$	± 2.5 to $\pm 6.0 \mathrm{~V}(2)$	Up to 10 MHz	MC 14576 C MC14577C	P/626, F/904

(1) 5.0 to 10 V for surface mount package.
(2) ± 2.5 to $\pm 5.0 \mathrm{~V}$ for surface mount package.

Comparators

Table 7. Single Comparators

Device	IIB ($\mu \mathrm{A}$) Max	V_{10} (mV) Max	$\begin{aligned} & 10 \\ & (\mu \mathrm{~A}) \end{aligned}$ Max	AV (V/V)	$\begin{gathered} 1 \mathrm{IO} \\ (\mathrm{~mA}) \\ \mathrm{Min} \end{gathered}$	Response Time (ns)	Supply Voltage (V)	Description	Temperature Range (${ }^{\circ} \mathrm{C}$)	Suffix/ Package
Bipolar										
LM211	$\begin{gathered} 0.1 \\ 0.25 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$	200 k	8.0	200	+15, -15	With strobe, will operate from single supply	$\begin{gathered} -25 \text { to }+85 \\ 0 \text { to }+70 \end{gathered}$	D/751 N/626, D/751
CMOS										
MC14578	1.0 pA	50	-	-	1.1	-	3.5 to 14	Requires only $10 \mu \mathrm{~A}$ from single-ended supply	-30 to +70	P/648, D/751B

Table 8. Dual Comparators

| Device | $I_{1 B}$
 $(\mu \mathrm{~A})$
 Max | V_{10}
 (mV)
 Max | I_{10}
 $(\mu \mathrm{~A})$
 Max | AV
 $(\mathrm{V} / \mathrm{V})$
 Typ | I_{10}
 $(\mathrm{~mA})$
 Min | Response
 Time
 (ns) | Supply
 VoItage
 (V) | Temperature
 Range
 $\left({ }^{\circ} \mathrm{C}\right)$ | Suffix/
 Package |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Bipolar

LM293 LM393 LM393A LM2903 LM2903V	0.25	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 2.0 \\ & 7.0 \\ & 7.0 \end{aligned}$	0.05	200 k	6.0	$\begin{aligned} & 1300 \\ & 1300 \\ & 1300 \\ & 1500 \\ & 1500 \end{aligned}$	$\begin{gathered} \pm 1.5 \text { to } \pm 18 \\ \text { or } \\ 3.0 \text { to } 36 \end{gathered}$	Designed for single or split supply operation, input common mode includes ground (negative supply)	$\begin{gathered} -25 \text { to }+85 \\ 0 \text { to }+70 \\ 0 \text { to }+70 \\ -40 \text { to }+105 \\ -40 \text { to }+125 \end{gathered}$	N/626, D/751
MC3405	0.5	10	0.05	200 k	6.0	1300	$\begin{gathered} \pm 1.5 \text { to } \pm 7.5 \\ \text { or } \\ 3.0 \text { to } 15 \end{gathered}$	This device contains 2 op amps and 2 comparators in a single package	0 to +70	P/646
CMOS										
MC14575	0.001	30	0.0001	2.0 k	3.0	1000	$\begin{gathered} \pm 1.5 \text { to } \pm 7.5 \\ \text { or } \\ 3.0 \text { to } 15 \end{gathered}$	This device contains 2 op amps and 2 comparators in a single package	-40 to +85	P/648, D/751B

Table 9. Quad Comparators

Device	IIB ($\mu \mathrm{A}$) Max	V_{10} (mV) Max	10 ($\mu \mathrm{A}$) Max	Av (V/V) Typ	$\begin{gathered} 1 \mathrm{IO} \\ (\mathrm{~mA}) \\ \mathrm{Min} \end{gathered}$	Response Time (ns)	Supply Voltage (V)	Description	Temperature Range (${ }^{\circ} \mathrm{C}$)	Suffix/ Package

Bipolar

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline LM239
LM239A
LM339
LM339A
LM2901
LM2901V
MC3302 \& 0.25

0.5 \& $$
\begin{aligned}
& 5.0 \\
& 2.0 \\
& 5.0 \\
& 2.0 \\
& 7.0 \\
& 7.0 \\
& 20
\end{aligned}
$$ \& 0.05

$$
0.5
$$ \& \[

$$
\begin{aligned}
& 200 \mathrm{k} \\
& 200 \mathrm{k} \\
& 200 \mathrm{k} \\
& 200 \mathrm{k} \\
& 100 \mathrm{k} \\
& 100 \mathrm{k} \\
& 100 \mathrm{k}
\end{aligned}
$$

\] \& 6.0 \& 1300 \& \[

$$
\begin{gathered}
\pm 1.5 \text { to } \pm 18 \\
\text { or } \\
3.0 \text { to } 36
\end{gathered}
$$

\] \& Designed for single or split supply operation, input common mode includes ground (negative supply) \& \[

$$
\begin{gathered}
-25 \text { to }+85 \\
-25 \text { to }+85 \\
0 \text { to }+70 \\
0 \text { to }+70 \\
-40 \text { to }+85 \\
-40 \text { to }+125 \\
-40 \text { to }+85
\end{gathered}
$$

\] \& | N/646, D/751A |
| :--- |
| P/646 |

\hline $$
\begin{aligned}
& \text { MC3431 } \\
& \text { MC3432 } \\
& \text { MC3433 }
\end{aligned}
$$ \& 40 \& \[

$$
\begin{aligned}
& 10 \\
& 6.0 \\
& 10
\end{aligned}
$$

\] \& 1.0 Typ \& 1.2 k \& 16 \& \[

$$
\begin{aligned}
& 33 \\
& 40 \\
& 40
\end{aligned}
$$
\] \& +5.0, -5.0 \& High speed comparator/ sense amplifier \& 0 to +70 \& P/648

\hline
\end{tabular}

CMOS

MC14574	0.001	30	0.0001	2.0 k	3.0	1000	± 1.5 to ± 7.5 or 3.0 to 15	Externally programmable power dissipation with 1 or 2 resistors	-40 to +85	P/648, D/751B

Amplifiers and Comparators Package Overview

Device Listing and Related Literature

Amplifiers

Device
LF347, B, LF351, LF353
LF411C, LF412C
LF441C, LF442C, LF444C
LM11C, CL
LM301A, LM201A
LM308A
LM324, LM324A, LM224, LM2902, V LM348
LM358, LM258, LM2904, V
LM833
MC1436, C
MC1458, C
MCT1458, C
MC1490
MC1741C
MC1776C
MC3301, LM2900, LM3900
MC3403, MC3303
MC3458, MC3358
MC3476
MC4558AC, MC4558C
MCT4558C
MC4741C
MC33076
MC33077
MC33078, MC33079
MC33102
MC33171, MC33172, MC33174
MC33178, MC33179
MC33201, MC33202, MC33204
MC33206, MC33207
MC33272A, MC33274A
MC33282, MC33284
\section*{MC33304}
MC34001, B, MC34002, B, MC34004, B
MC34071, 2, 4, A, MC33071, 2, 4, A
MC34080 thru MC34085
MC34181, 2, 4, MC33181, 2, 4

Amplifiers
Device Function Page
2
TCA0372Dual Power Operational Amplifier2-308
TL062, TL064 Low Power JFET Input Operational Amplifiers 2-312
TL071C, AC, TL072C, AC, Low Noise, JFET Input Operational Amplifiers 2-319
TL074C, AC
TL081C, AC, TL082C, AC,JFET Input Operational Amplifiers2-325
TL084C, AC
Comparators
LM311, LM211 Highly Flexible Voltage Comparators 2-39
LM339, A, LM239, A, Quad Single Supply Comparators 2-52
LM2901, V, MC3302
LM393, A, LM293, LM2903, V Low Offset Voltage Dual Comparators 2-68
MC3405 Dual Operational Amplifier and Dual Comparator 2-129
ADDENDUM
Operational Amplifier Application Information 2-331
RELATED APPLICATION NOTES
App Note Title Related Device
AN587 Analysis and Design of the Op Amp Current Source MC1741C

JFET Input
 Operational Amplifiers

These low cost JFET input operational amplifiers combine two state-of-the-art analog technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The JFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices.

- Input Offset Voltage of 5.0 mV Max (LF347B)
- Low Input Bias Current: 50 pA
- Low Input Noise Voltage: $16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Wide Gain Bandwidth: 4.0 MHz
- High Slew Rate: 13V/ $\mu \mathrm{s}$
- Low Supply Current: 1.8 mA per Amplifier
- High Input Impedance: $10^{12} \Omega$
- High Common Mode and Supply Voltage Rejection Ratios: 100 dB

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	V
Differential Input Voltage	VID	± 30	V
Input Voltage Range (Note 1)	VIDR	± 15	V
Output Short Circuit Duration (Note 2)	tsc	Continuous	
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{gathered} \hline \mathrm{PD}_{\mathrm{D}} \\ 1 / \theta \mathrm{JA} \end{gathered}$	$\begin{gathered} 900 \\ 10 \end{gathered}$	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +70	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	TJ	115	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$\begin{gathered} -65 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$

NOTES: 1. Unless otherwise specified, the absolute maximum negative input voltage is limited to the negative power supply.
2. Any amplifier output can be shorted to ground indefinitely. However, if more than one amplifier output is shorted simultaneously, maximum junction temperature rating may be exceeded.

ORDERING INFORMATION

Device	Function	Operating Temperature Range	Package
$\begin{aligned} & \text { LF351D } \\ & \text { LF351N } \end{aligned}$	Single Single	$\mathrm{T}^{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	$\begin{gathered} \text { SO-8 } \\ \text { Plastic DIP } \end{gathered}$
$\begin{aligned} & \text { LF353D } \\ & \text { LF353N } \end{aligned}$	Dual Dual		$\begin{gathered} \text { SO-8 } \\ \text { Plastic DIP } \end{gathered}$
$\begin{aligned} & \text { LF347BN } \\ & \text { LF347N } \end{aligned}$	Quad Quad		Plastic DIP Plastic DIP

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	LF347B			LF347, LF351, LF353			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}, \mathrm{~V}_{\mathrm{CM}}=0\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	V_{IO}	-	1.0	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 10 \\ & 13 \end{aligned}$	mV
Avg. Temperature Coefficient of Input Offset Voltage $R_{S} \leq 10 \mathrm{k}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Offset Current (V} \mathrm{CM}=0 \text {, Note 3) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	10	-		$\begin{aligned} & 100 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 100 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\begin{aligned} & \text { Input Bias Current }(\mathrm{V} \mathrm{CM}=0 \text {, Note 3) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	IIB	-	50	$\begin{gathered} 200 \\ 8.0 \end{gathered}$			$\begin{array}{r} 200 \\ 8.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance	r_{i}	-	10^{12}	-	-	10^{12}	-	Ω
Common Mode Input Voltage Range	VICR	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$	-	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$	-	V
$\begin{aligned} & \text { Large-Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	Avol	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100	-	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100	-	V/mV
Output Voltage Swing ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$)	V_{O}	± 12	± 14	-	± 12	± 14	-	V
Common Mode Rejection ($\mathrm{RS}_{\mathrm{S}} \leq 10 \mathrm{k}$)	CMR	80	100	-	70	100	-	dB
Supply Voltage Rejection ($\mathrm{RS}^{\text {S }} 10 \mathrm{k}$)	PSRR	80	100	-	70	100	-	dB
Supply Current LF347 LF351 LF353	ID		7.2	11	-	$\begin{aligned} & 7.2 \\ & 1.8 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 11 \\ & 3.4 \\ & 6.5 \end{aligned}$	mA
Short Circuit Current	ISC	-	25	-	-	25	-	mA
Slew Rate (AV = +1)	SR	-	13	-	-	13	-	V/ $\mu \mathrm{s}$
Gain-Bandwidth Product	BWp	-	4.0	-	-	4.0	-	MHz
Equivalent Input Noise Voltage $\left(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1000 \mathrm{~Hz}\right)$	e_{n}	-	24	-	-	24	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ($\mathrm{f}=1000 \mathrm{~Hz}$)	i_{n}	-	0.01	-	-	0.01	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
Channel Separation (LF347, LF353) $1.0 \mathrm{~Hz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$ (Input Referred)	-	-	-120	-	-	-120	-	dB

For Typical Characteristic Performance Curves, refer to MC34001, 34002, 34004 data sheet.
NOTE: 3. Input bias currents of JFET input op amps approximately double for every $10^{\circ} \mathrm{C}$ rise in junction temperature. To maintain junction temperatures as close to ambient as is possible, pulse techniques are utilized during test.

Low Offset, Low Drift JFET Input Operational Amplifiers

Through innovative design concepts and precision matching this monolithic high speed JFET input operational amplifier family offers very low input offset voltage as well as low temperature coefficient of input offset voltage. The amplifier requires less than 3.4 mA per amplifier of supply current yet exhibits greater than 2.7 MHz of gain bandwidth product and more than $8.0 \mathrm{~V} / \mu \mathrm{s}$ slew rate. Through the use of JFET inputs the amplifier has very low input bias currents and low input offset currents. The amplifier utilizes industry standard pinouts which afford the user the opportunity to directly upgrade circuit performance without the need for redesign.

The LF411C and LF412C are available in the industry standard plastic 8 -pin DIP and SO-8 surface mount packages, and specified over the commercial temperature range.

- Low Input Offset Voltage: 2.0 mV Max (Single)

$$
3.0 \text { mV Max (Dual) }
$$

- Low T.C. of Input Offset Voltage: $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Input Offset Current: 20 pA
- Low Input Bias Current: 60 pA
- Low Input Noise Voltage: $18 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low Input Noise Current: $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Low Total Harmonic Distortion: 0.05%
- Low Supply Current: 2.5 mA
- High Input Resistance: $10^{12} \Omega$
- Wide Gain Bandwidth: 8.0 MHz
- High Slew Rate: $25 \mathrm{~V} / \mu \mathrm{s}$ (Typ)
- Fast Settling Time: $1.6 \mu \mathrm{~s}$ (to within 0.01%)
- Internally Compensated

ORDERING INFORMATION

Device	Function	Operating Temperature Range	Package
LF411CD	Single		SO-8
LF411CN		$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
			SF412CD
	DF4al		Plastic DIP

LF411C LF412C

SINGLE/DUAL JFET OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA

N SUFFIX PLASTIC PACKAGE CASE 626

D SUFFIX PLASTIC PACKAGE

CASE 751
(SO-8)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltages	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	+18	V
Input Differential Voltage Range (Note 1)	$\mathrm{V}_{\text {IDR }}$	± 30	V
Input Voltage Range (Note 1)	V_{IR}	± 15	V
Output Short Circuit Duration (Note 2)	tSC	Indefinite	sec
Maximum Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	T_{A}	0 to 70	${ }^{\circ} \mathrm{C}$
Thermal Resistance \quad LF411CN/412CN	$\mathrm{R} \theta \mathrm{JA}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
(Junction-to-Ambient) \quad LF411CD/412CD		180	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	P_{D}	(Note 2)	mW

NOTES: 1. Input voltages should not exceed $V_{C C}$ or $V_{E E}$.
2. Power dissipation must be considered to ensure maximum junction temperature
(T_{J}) is not exceeded.

Representative Schematic Diagram
(Each Amplifier)

LF411C LF412C

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}$ to $70^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \text { LF411 } \\ & \text { LF412 } \end{aligned}$	$\mathrm{V}_{1 \mathrm{O}}{ }^{\text {l }}$	-	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\left(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)$	$\Delta \mathrm{V}_{1 \mathrm{O}} \Delta \mathrm{T}$	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{array}{cl} \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ \text { LF411 } & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to } 70^{\circ} \mathrm{C} \\ \text { LF412 } & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to } 70^{\circ} \mathrm{C} \end{array}$	110	-	$\begin{gathered} 20 \\ - \\ 25 \\ - \end{gathered}$	$\begin{aligned} & 100 \\ & 2.0 \\ & 100 \\ & 2.0 \end{aligned}$	pA nA pA nA
$\begin{array}{cl} \text { Input Bias } & \text { Current }\left(\mathrm{V}_{\mathrm{C}} \mathrm{M}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ \text { LF411 } & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to } 70^{\circ} \mathrm{C} \\ \text { LF412 } & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to } 70^{\circ} \mathrm{C} \end{array}$	IIB	-	$\begin{gathered} 0.6 \\ - \\ 0.5 \end{gathered}$	$\begin{gathered} 200 \\ 4.0 \\ 200 \\ 4.0 \end{gathered}$	pA nA pA nA
$\begin{array}{ll} \text { Large Signal Voltage Gain }\left(\mathrm{V} O= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ \text { LF411 } & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to } 70^{\circ} \mathrm{C} \\ \text { LF412 } & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to } 70^{\circ} \mathrm{C} \end{array}$	AVOL	$\begin{aligned} & 25 \\ & 15 \\ & 25 \\ & 15 \end{aligned}$	$\begin{gathered} 80 \\ - \\ 150 \\ - \end{gathered}$		V / mV
Output Voltage Swing ($\mathrm{V}_{\mathrm{ID}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$) LF411 LF412	$\begin{aligned} & \mathrm{V}_{\mathrm{O}^{+}} \\ & \mathrm{V}_{\mathrm{O}^{-}} \\ & \mathrm{V}_{\mathrm{O}^{+}} \\ & \mathrm{V}_{\mathrm{O}^{-}} \end{aligned}$	$\begin{gathered} +12 \\ - \\ +12 \end{gathered}$	$\begin{aligned} & +13.9 \\ & -14.7 \\ & +14.0 \\ & -14.0 \end{aligned}$	$\begin{gathered} - \\ -12 \\ - \\ -12 \end{gathered}$	V
Common Mode Input Voltage Range $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right)$ LF411 LF412	VICR	$\begin{gathered} +11 \\ - \\ +11 \end{gathered}$	$\begin{aligned} & +14 \\ & -14 \\ & +15 \\ & -12 \end{aligned}$	$\begin{gathered} -11 \\ - \\ -11 \end{gathered}$	V
$\begin{aligned} & \text { Common Mode Rejection }\left(\mathrm{V}_{\mathrm{CM}}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\right) \\ & \text { LF411 } \\ & \text { LF412 } \end{aligned}$	CMR	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{gathered} 90 \\ 100 \end{gathered}$	-	dB
Power Supply Rejection (Note 3) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}} \mathrm{~V}_{\mathrm{EE}}=+15 \mathrm{~V},-15 \mathrm{~V} \text { to }+5.0 \mathrm{~V},-5.0 \mathrm{~V}\right) \\ & \text { LF411 } \\ & \text { LF412 } \end{aligned}$	PSR	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{gathered} 86 \\ 100 \end{gathered}$	-	dB
Power Supply Current $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right)$ LF411 LF412	${ }^{\prime} \mathrm{D}$	-	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 6.8 \end{aligned}$	mA

NOTE: 3. Measured with V_{CC} and V_{EE} simultaneously varied.

AC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Slew Rate $\left(\mathrm{V}_{\text {in }}=-10 \mathrm{~V}\right.$ to $\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{AV}=+1.0\right)$ LF411 LF412	SR	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 25 \\ & 13 \end{aligned}$	-	V/us
Gain Bandwidth Product LF411 LF412	GBW	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	-	MHz
Channel Separation ($f=1.0 \mathrm{~Hz}$ to 20 kHz , LF412)	CS	-	-120	-	dB
Differential Input Resistance ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$)	$\mathrm{R}_{\text {in }}$	-	10^{12}	-	$\mathrm{k} \Omega$
```Equivalent Input Voltage Noise (RS = 100 \Omega, f=1.0 kHz) LF411 LF412```	$e_{n}$	-	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ( $f=1.0 \mathrm{kHz}$ )   LF411   LF412	$i_{n}$	-	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$

## Low Power JFET Input Operational Amplifiers

These JFET input operational amplifiers are designed for low power applications. They feature high input impedance, low input bias current and low input offset current. Advanced design techniques allow for higher slew rates, gain bandwidth products and output swing. The LF441C device provides for the external null adjustment of input offset voltage.

These devices are specified over the commercial temperature range. All are available in plastic dual in-line and SOIC packages.

- Low Supply Current: $200 \mu \mathrm{~A} /$ Amplifier
- Low Input Bias Current: 5.0 pA
- High Gain Bandwidth: 2.0 MHz
- High Slew Rate: $6.0 \mathrm{~V} / \mu \mathrm{s}$
- High Input Impedance: $10^{12} \Omega$
- Large Output Voltage Swing: $\pm 14 \mathrm{~V}$
- Output Short Circuit Protection


ORDERING INFORMATION

Device	Function	Operating Temperature Range	Package
LF441CD   LF441CN	Single	$\mathrm{T}^{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	$\begin{gathered} \text { SO-8 } \\ \text { Plastic DIP } \end{gathered}$
$\begin{aligned} & \text { LF442CD } \\ & \text { LF442CN } \end{aligned}$	Dual		SO-8   Plastic DIP
LF444CD   LF444CN	Quad		$\begin{gathered} \text { SO-14 } \\ \text { Plastic DIP } \end{gathered}$

LF441C
LF442C
LF444C

## LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA


N SUFFIX
PLASTIC PACKAGE CASE 626


D SUFFIX
PLASTIC PACKAGE CASE 751 (SO-8)

## PIN CONNECTIONS


(Dual, Top View)


N SUFFIX
PLASTIC PACKAGE
CASE 646


D SUFFIX PLASTIC PACKAGE CASE 751A (SO-14)

PIN CONNECTIONS


## LF441C LF442C LF444C

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$ )	$\mathrm{V}_{\mathrm{S}}$	+36	V
Input Differential Voltage Range (Note 1)	$\mathrm{V}_{\text {IDR }}$	$\pm 30$	V
Input Voltage Range (Notes 1 and 2)	$\mathrm{V}_{\mathrm{IR}}$	$\pm 15$	V
Output Short Circuit Duration (Note 3)	tsC	Indefinite	sec
Operating Junction Temperature (Note 3)	$\mathrm{T}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
2. The magnitude of the input voltage must never exceed the magnitude of the supply or 15 V , whichever is less.
3. Power dissipation must be considered to ensure maximum junction temperature ( $T_{J}$ ) is not exceeded (see Figure 1).

DC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}$ to $70^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \text { Single: } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\ & \text { Dual: } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\ & \text { Quad: } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{10}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 3.0 \\ - \\ 3.0 \\ - \\ 3.0 \\ - \end{gathered}$	$\begin{aligned} & 5.0 \\ & 7.5 \\ & 5.0 \\ & 7.5 \\ & 10 \\ & 12 \end{aligned}$	mV
Average Temperature Coefficient of Offset Voltage $\left(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V} C M=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	10	-		$\begin{aligned} & 50 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	IIB			$\begin{aligned} & 100 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Common Mode Input Voltage Range ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ )	VICR	$\overline{-11}$	$\begin{gathered} +14.5 \\ -12 \end{gathered}$	$+11$	V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	AVOL	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$60$	-	V/mV
Output Voltage Swing ( $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ )	$\begin{aligned} & \hline \mathrm{v}_{\mathrm{O}}+ \\ & \mathrm{v}_{\mathrm{O}}- \end{aligned}$	$+12$	$\begin{array}{r} +14 \\ -14 \end{array}$	$\overline{-12}$	v
Common Mode Rejection ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{ICR}}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ )	CMR	70	86	-	dB
Power Supply Rejection ( $\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ )	PSR	70	84	-	dB
Power Supply Current ( No Load, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ )   Single   Dual   Quad	ID		$\begin{aligned} & 200 \\ & 400 \\ & 800 \end{aligned}$	$\begin{gathered} 250 \\ 500 \\ 1000 \end{gathered}$	$\mu \mathrm{A}$

## LF441C LF442C LF444C

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Slew Rate ( $\mathrm{V}_{\text {in }}=-10 \mathrm{~V}$ to $\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{A}_{\mathrm{V}}=+1.0\right)$	SR	0.6	6.0	-	V/ $\mu \mathrm{s}$
Settling Time To within 10 mV   $\left(A_{V}=-1.0, R_{L}=10 \mathrm{k} \Omega, V_{O}=0 \mathrm{~V}\right.$ to $\left.+10 \mathrm{~V}\right)$ To within 1.0 mV	$t_{s}$	-	$\begin{aligned} & 1.6 \\ & 2.2 \end{aligned}$	-	$\mu \mathrm{s}$
Gain Bandwidth Product ( $\mathrm{f}=200 \mathrm{kHz}$ )	GBW	0.6	2.0	-	MHz
Equivalent Input Noise Voltage ( $\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$ )	$e_{n}$	-	47	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ( $\mathbf{f}=1.0 \mathrm{kHz}$ )	$i_{n}$	-	0.01	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Resistance	$\mathrm{R}_{\mathrm{i}}$	-	$10^{12}$	-	$\Omega$
Channel Separation ( $\mathrm{f}=1.0 \mathrm{~Hz}$ to 20 kHz )	CS	-	120	-	dB

Figure 1. Maximum Power Dissipation versus Temperature for Package Variations


Figure 3. Input Bias Current versus Temperature


Figure 2. Input Bias Current versus Input Common Mode Voltage


Figure 4. Supply Current versus Supply Voltage


Figure 5. Positive Input Common Mode Voltage Range versus Positive Supply Voltage


Figure 7. Output Voltage versus Output Source Current


Figure 9. Output Voltage Swing versus Supply Voltage


Figure 6. Negative Input Common Mode Voltage Range versus Negative Supply Voltage


Figure 8. Output Voltage versus Output Sink Current


Figure 10. Output Voltage Swing versus Load Resistance


Figure 11. Normalized Gain Bandwidth


Figure 13. Slew Rate versus Temperature


Figure 15. Output Voltage Swing versus Frequency


Figure 12. Open Loop Voltage Gain and Phase versus Frequency


Figure 14. Total Output Distortion versus Frequency


Figure 16. Open Loop Voltage Gain versus Frequency


Figure 17. Common Mode Rejection versus Frequency
2

Figure 19. Input Noise Voltage versus Frequency


Figure 21. Output Impedance versus Frequency


Figure 18. Power Supply Rejection versus Frequency


Figure 20. Open Loop Voltage Gain versus Supply Voltage


Figure 22. Inverter Settling Time


## LF441C LF442C LF444C

SMALL SIGNAL RESPONSE

Figure 23. Inverting

$\mathrm{t}, \mathrm{TIME}(0.5 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 24. Noninverting

$\mathrm{t}, \mathrm{TIME}(0.5 \mu \mathrm{~s} / \mathrm{DIV})$

## LARGE SIGNAL RESPONSE

Figure 25. Inverting

$\mathrm{t}, \mathrm{TIME}(2.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 26. Noninverting

$\mathrm{t}, \mathrm{TIME}(2.0 \mu \mathrm{~s} / \mathrm{DIV})$

## Precision Operational Amplifiers

The LM11C is a precision, low drift operational amplifier providing the best features of existing FET and Bipolar op amps. Implementation of super gain transistors allows reduction of input bias currents by an order of magnitude over earlier devices such as the LM308A. Offset voltage and drift have also been reduced. Although bandwidth and slew rate are not as great as FET devices, input offset voltage, drift and bias current are inherently lower, particularly over temperature. Power consumption is also much lower, eliminating warm-up stabilization time in critical applications.

Offset balancing is provided, with the range determined by an external low resistance potentiometer. Compensation is provided internally, but external compensation can be added for improved stability when driving capacitive loads.

The precision characteristics of the LM11C make this device ideal for applications such as charge integrators, analog memories, electrometers, active filters, light meters and logarithmic amplifiers.

- Low Input Offset Voltage: $100 \mu \mathrm{~V}$
- Low Input Bias Current: 17 pA
- Low Input Offset Current: 0.5 pA
- Low Input Offset Voltage Drift: $1.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Long-Term Stability: $10 \mu \mathrm{~V} /$ year
- High Common Mode Rejection: 130 dB



ORDERING INFORMATION


## LM11C, CL

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\text {CC to }} \mathrm{V}_{\mathrm{EE}}$	40	Vdc
Differential Input Current (Note 1)	I D	$\pm 10$	mA
Output Short Circuit Duration (Note 2)	$\mathrm{t}_{\mathrm{SC}}$	Indefinite	
Power Dissipation (Note 3)	$\mathrm{PD}_{\mathrm{D}}$	500	mW
Operating Junction Temperature	$\mathrm{TJ}_{J}$	85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted [ Note 4].)

Characteristic	Symbol	Min	Typ	Max	Min	Typ	Max	Unit
Input Offset Voltage $T_{\text {low }}$ to $T_{\text {high }}$	$\mathrm{V}_{10}$	-	$0.2$	$\begin{aligned} & 0.6 \\ & 0.8 \end{aligned}$	-	$0.5$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	mV
Input Offset Current Tlow to $T_{\text {high }}$	1 O	-	$1.0$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	-	$4.0$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	pA
Input Bias Current Tlow to Thigh	IIB	-	$17$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	-	$17$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	pA
Input Resistance	$\mathrm{r}_{\mathrm{i}}$	-	$10^{11}$	-	-	$10^{11}$	-	$\Omega$
Input Offset Voltage Drift Tlow to Thigh	$\Delta \mathrm{V}_{1 \mathrm{O}}{ }^{\text {/ }}{ }^{\mathrm{T}}$	-	2.0	5.0	-	3.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current Drift Tlow to Thigh	$\Delta^{1} \mathrm{IO}^{\prime} \Delta^{\top}$	-	10	-	-	50	-	$f \mathrm{~A}^{\circ} \mathrm{C}$
Input Bias Current Drift $T_{\text {low }}$ to $T_{\text {high }}$	$\Delta^{1} 1 \mathrm{IB}^{\prime} \Delta^{\top}$	-	0.8	3.0	-	1.4	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Large Signal Voltage Gain $\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {out }}= \pm 12 \mathrm{~V}, \text { l out }= \pm 2.0 \mathrm{~mA} \\ & T_{\text {low }} \text { to Thigh }(N o t e 5) \\ & \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {out }}= \pm 12 \mathrm{~V}, I_{\text {out }}= \pm 0.5 \mathrm{~mA} \\ & T_{\text {low }} \text { to Thigh } \end{aligned}$	AVOL	$\begin{gathered} 100 \\ 50 \\ 250 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ - \\ 1200 \end{gathered}$	-	$\begin{aligned} & 25 \\ & 15 \\ & 50 \\ & 30 \\ & \hline \end{aligned}$	$\begin{gathered} 300 \\ - \\ 800 \end{gathered}$		$\mathrm{V} / \mathrm{mV}$
$\begin{aligned} & \text { Common Mode Rejection } \\ & \qquad \begin{array}{l} V_{S}= \pm 15 \mathrm{~V},-13 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 14 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-12.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 14 \mathrm{~V}, \mathrm{~T}_{\text {low }} \text { to } T_{\text {high }} \end{array} \end{aligned}$	CMR	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$130$	-	$\begin{aligned} & 96 \\ & 90 \end{aligned}$	$110$	-	dB
Power Supply Rejection $\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ Tlow to $T_{\text {high }}$	PSR	$\begin{gathered} 100 \\ 96 \end{gathered}$	$118$	-	$\begin{aligned} & 84 \\ & 80 \end{aligned}$	$100$	-	dB
Power Supply Current Tlow to $T_{\text {high }}$	ID	-	$0.3$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	-	$0.3$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	mA
Output Short Circuit Current $\mathrm{T}_{J}=150^{\circ} \mathrm{C}$, Output Shorted to Ground	ISC	-	$\pm 10$	-	-	$\pm 10$	-	mA

NOTES: 1. The inputs are shunted by back-to-back diodes for over-voltage protection. Excessive current will flow if the input differential voltage is in excess of 1.0 V if no limiting resistance is used. Additionally, a $2.0 \mathrm{k} \Omega$ resistance in each input is suggested to prevent possible latch-up initiated by supply reversals.
2. The output is current limited when shorted to ground or any voltages less than the supplies. Continuous overloads will require package dissipation to be considered and heatsinking should be provided when necessary.
3. Devices must be derated based on package thermal resistance (see package outline dimensions)
4. These specifications apply for $\mathrm{V}_{\mathrm{EE}}+2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{EE}}+2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}\right.$ for $\mathrm{T}_{\text {low }}$ to $\left.\mathrm{T}_{\text {high }}\right)$ and $\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ $\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high: }}: 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}$ for LM11C and LM11C.
5. $\mathrm{V}_{\text {out }}= \pm 11.5 \mathrm{~V}$, all other conditions unchanged

Figure 1. Input Bias Current versus Case Temperature

Figure 2. Input Offset Current versus Case Temperature


Figure 4. Spectral Noise Density


Figure 6. Common Mode Rejection and Slew Limit versus Frequency


Figure 7. Open Loop Voltage Gain versus Supply Voltage


Figure 9. Power Supply Rejection Ratio versus Frequency


Figure 11. Open Loop Voltage Gain and Phase versus Frequency


Figure 8. Output Saturation versus Load Current


Figure 10. Supply Current versus Supply Voltage


Figure 12. Slew Rate versus External Compensation Capacitor


## LM11C, CL

Figure 13. Closed Loop Output Impedance versus Frequency


## APPLICATIONS INFORMATION

Due to the extremely low input bias currents of this device, it may be tempting to remove the bias current compensation resistor normally associated with a summing amplifier configuration. Direct connection of the inputs to a low impedance source or ground should be avoided when supply voltages greater than approximately 3.0 V are used. The potential problem involves reversal of one supply which can cause excessive current to flow in the second supply. Possible destruction of the IC could result if the second supply is not current limited to approximately 100 mA or if bypass capacitors greater than $1.0 \mu \mathrm{~F}$ are used in the supply bus.

Disconnecting one supply will generally cause reversal due to loading of the other supply within the IC and in external circuitry. Although the problem can usually be avoided by placing clamp diodes across the power supplies of each printed circuit board, a careful design will include sufficient resistance in the input leads to limit the current to 10 mA if the input leads are pulled to either supply by internal currents. This precaution is not limited only to the LM11C.

The LM11C is capable of resolving picoampere level signals. Leakage currents external to the IC can severely impair the performance of the device. It is important that high quality insulating materials such as teflon be employed. Proper cleaning to remove fluxes and other residues from
printed circuit boards, sockets and the device package are necessary to minimize surface leakage.

When operating in high humidity environments or temperatures near $0^{\circ} \mathrm{C}$, a surface coating is suggested to set up a moisture barrier.

Leakage effects on printed circuit boards can be reduced by encircling the inputs (both sides of pc board) with a conductive guard ring connected to a low impedance potential nearly the same as that of the inputs.

Guard ring electrical connections for common operational amplifier configurations are illustrated in Figure 14. Electrostatic shielding is suggested in high impedance circuits.

Error voltages in external circuitry can be generated by thermocouple effects. Dissimilar metals along with temperature gradients can set up an error voltage ranging in the hundreds of microvolts. Some of the best thermocouples are junctions of dissimilar metals made up of IC package pins and printed circuit boards. Problems can be avoided by keeping low level circuitry away from heat generating elements.

The LM11C is internally compensated, but external compensation can be added to improve stability, particularly when driving capacitive loads.

Figure 14. Guard Ring Electrical Connections for Common Amplifier Configurations




## LM11C, CL

Figure 15. Input Protection for
Figure 16. Input Protection for
a Voltage Follower
Figure 16. Input Protection for
a Voltage Follower


Current is limited by R1 in the event the input is connected to a low impedance source
outside the common mode range of the is connected to a low impedance source
outside the common mode range of the device. Current is controlled by R2 if one supply reverses. R1 and R2 do not affect normal operation. Summing (Inverting) Amplifier


Input current is limited by R1 when the input exceeds supply voltage, power supply is turned off, or output is shorted.

Figure 17. Cable Bootstrapping and Input Shields


An input shield bootstrapped in a voltage follower reduces input capacitance, leakage, and spurious voltages from cable flexing. A small capacitor from the input to ground will prevent any instability.


In a summing amplifier the input is at virtual ground. Therefore the shield can be grounded. A small feedback capacitor will insure stability.

Figure 18. Adjusting Input Offset Voltage with Balance Potentiometer


Minimum   Adjustment Range   $(\mathrm{mV})$	$\mathbf{R}$   $(\Omega)$
$\pm 0.4$	1.0 k
$\pm 1.0$	3.0 k
$\pm 2.0$	10 k
$\pm 5.0$	100 k

Input offset voltage adjustment range is a function of the Balance Potentiometer Resistance as indicated by the table above. The potentiometer is connected between the two "Balance" pins.

## Operational Amplifiers

A general purpose operational amplifier that allows the user to choose the compensation capacitor best suited to his needs. With proper compensation, summing amplifier slew rates to $10 \mathrm{~V} / \mu \mathrm{s}$ can be obtained.

- Low Input Offset Current: 20 nA Maximum Over Temperature Range
- External Frequency Compensation for Flexibility
- Class AB Output Provides Excellent Linearity
- Output Short Circuit Protection
- Guaranteed Drift Characteristics

Figure 1. Standard Compensation and Offset Balancing Circuit


Figure 2. Double-Ended Limit Detector

(Pins Not Shown Are Not Connected)

LM301A LM201A

## OPERATIONAL AMPLIFIERS

 SEMICONDUCTOR TECHNICAL DATA

N SUFFIX
PLASTIC PACKAGE CASE 626


D SUFFIX PLASTIC PACKAGE CASE 751 (SO-8)

Figure 3. Representative Circuit Schematic



ORDERING INFORMATION		
Device	Operating   Temperature Range	Package
LM301AD   LM301AN	$T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8   Plastic DIP
LM201AD   LM201AN	$T_{A}=-25^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8   Plastic DIP

## LM301A LM201A

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
		LM201A	LM301A	
Power Supply Voltage	$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}$	$\pm 22$	$\pm 18$	Vdc
Input Differential Voltage	$V_{\text {ID }}$	$\longleftrightarrow \pm$		V
Input Common Mode Range (Note 1)	$V \mathrm{ICR}$	$\longleftrightarrow \pm$		V
Output Short Circuit Duration	${ }^{\text {tSC }}$	$\longleftarrow$ Continuous $\longrightarrow$		
Power Dissipation (Package Limitation)   Plastic Dual-In-Line Package   (LM201A/   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   301A)	PD	625 625   5.0 5.0		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	-25 to +85	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$\longleftarrow-65 \text { to }+150 \longrightarrow$		${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.) Unless otherwise specified, these specifications apply for supply voltages from $\pm 5.0 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for the LM201A, and from $\pm 5.0 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the LM301A.

Characteristic	Symbol	LM201A			LM301A			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage ( $\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$ ת)	$\mathrm{V}_{10}$	-	0.7	2.0	-	2.0	7.5	mV
Input Offset Current	1 O	-	1.5	10	-	3.0	50	nA
Input Bias Current	IB	-	30	75	-	70	250	nA
Input Resistance	$\mathrm{r}_{\mathrm{i}}$	1.5	4.0	-	0.5	2.0	-	M $\Omega$
Supply Current $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} / V_{\mathrm{EE}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V} \end{aligned}$	${ }^{\text {I Co, IEE }}$	-				$1.8$	$\overline{-3.0}$	mA
Large Signal Voltage Gain $\left(\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}>2.0 \mathrm{k} \Omega\right)$	Av	50	160	-	25	160	-	V/mV

The following specifications apply over the operating temperature range.

Input Offset Voltage ( $\mathrm{RS}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$ )	$\mathrm{V}_{10}$	-	-	3.0	-	-	10	mV
Input Offset Current	10	-	-	20	-	-	70	nA
Avg Temperature Coefficient of Input Offset Voltage $T_{A}(\min ) \leq T_{A} \leq T_{A}(\max )$	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$	-	3.0	15	-	6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Avg Temperature Coefficient of Input Offset Current $\begin{aligned} & +25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq \mathrm{T}_{A}(\text { max }) \\ & \mathrm{T}_{A}(\text { min }) \leq \mathrm{T}_{A} \leq 25^{\circ} \mathrm{C} \end{aligned}$	$\Delta^{\prime} \mathrm{IO}^{\prime} / \Delta \mathrm{T}$	-	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \\ & \hline \end{aligned}$	$n /^{\circ} \mathrm{C}$
Input Bias Current	IIB	-	-	100	-	-	300	nA
Large Signal Voltage Gain $\left(\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}>2.0 \mathrm{k} \Omega\right)$	Avol	25	-	-	15	-	-	V/mV
Input Voltage Range $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V} \end{aligned}$	VICR	$-15$		+15	$\stackrel{-}{-12}$	-	$+$	V
Common Mode Rejection ( $\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$ )	CMR	80	96	-	70	90	-	dB
Supply Voltage Rejection ( $\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$ )	PSR	80	96	-	70	96	-	dB
Output Voltage Swing $\left(\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}= \pm 10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}>2.0 \mathrm{k} \Omega\right)$	Vo	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	V
Supply Currents ( $\left.\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}}(\max ), \mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 20 \mathrm{~V}\right)$	${ }^{\text {I CC, }}$ IEE	-	1.2	2.5	-	-	-	mA

Figure 4. Minimum Input Voltage Range


Figure 6. Minimum Voltage Gain


Figure 8. Open Loop Frequency Response


Figure 5. Minimum Output Voltage Swing


Figure 7. Typical Supply Currents


Figure 9. Large Signal Frequency Response


Figure 10. Voltage Follower Pulse Response


Figure 12. Large Signal Frequency Response


Figure 14. Single-Pole Compensation


Figure 11. Open Loop Frequency Response


Figure 13. Inverter Pulse Response


Figure 15. Feedforward Compensation


## Precision Operational Amplifier

The LM308A operational amplifier provides high input impedance, low input offset and temperature drift, and low noise. These characteristics are made possible by use of a special Super Beta processing technology. This amplifier is particularly useful for applications where high accuracy and low drift performance are essential. In addition high speed performance may be improved by employing feedforward compensation techniques to maximize slew rate without compromising other performance criteria.

The LM308A offers extremely low input offset voltage and drift specifications allowing usage in even the most critical applications without external offset nulling.

- Operation from a Wide Range of Power Supply Voltages
- Low Input Bias and Offset Currents
- Low Input Offset Voltage and Guaranteed Offset Voltage Drift

Performance

- High Input Impedance


## Frequency Compensation




## SUPER GAIN OPERATIONAL AMPLIFIER

SEMICONDUCTOR TECHNICAL DATA


N SUFFIX PLASTIC PACKAGE CASE 626


D SUFFIX
PLASTIC PACKAGE CASE 751
(SO-8)

## PIN CONNECTIONS



ORDERING INFORMATION

Device	Operating   Temperature Range	Package
LM308AN	$T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP   SO-8
LM308AD		

## LM308A

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC},} \mathrm{V}_{\mathrm{EE}}$	$\pm 18$	Vdc
Input Voltage (See Note 1)	$\mathrm{V}_{\text {I }}$	$\pm 15$	V
Input Differential Current ( See Note 2)	$\mathrm{I}_{\mathrm{ID}}$	$\pm 10$	mA
Output Short Circuit Duration	$\mathrm{t}_{\mathrm{SC}}$	Indefinite	
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$

NOTES: 1 . For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1.0 V is applied between the inputs, unless some limiting resistance is used.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted these specifications apply for supply voltages of $+5.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+15 \mathrm{~V}$ and $-5.0 \mathrm{~V} \geq \mathrm{V}_{\mathrm{EE}} \geq-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage	$\mathrm{V}_{\mathrm{IO}}$	-	0.3	0.5	mV
Input Offset Current	$\mathrm{IIO}_{\mathrm{I}}$	-	0.2	1.0	nA
Input Bias Current	IIB	-	1.5	7.0	nA
Input Resistance	$\mathrm{r}_{\mathrm{i}}$	10	40	-	$\mathrm{M} \Omega$
Power Supply Currents   $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)$	$\mathrm{ICC}, \mathrm{IEE}$	-	$\pm 0.3$	$\pm 0.8$	mA
Large Signal Voltage Gain   $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{kS} \Omega\right)$	AVOL	80	300	-	$\mathrm{V} / \mathrm{mV}$

The following specifications apply over the operating temperature range.

Input Offset Voltage	$\mathrm{V}_{10}$	-	-	0.73 .	mV
Input Offset Current	Io	-	-	1.5	nA
Average Temperature Coefficient of Input Offset Voltage $T_{A}(\min ) \leq T_{A} \leq T_{A}(\max )$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	1.0	5.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current	$\Delta^{\prime} \mathrm{IO}^{\prime} / \Delta \mathrm{T}$	-	2.0	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IIB	-	-	10	nA
Large Signal Voltage Gain $\left(\mathrm{V}_{\mathrm{CC}}+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right)$	AVOL	60	-	-	V/mV
Input Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)$	$\mathrm{V}_{\text {ICR }}$	$\pm 14$	-	-	V
Common Mode Rejection $\left(\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega\right)$	CMR	96	110	-	dB
Supply Voltage Rejection $\left(\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega\right)$	PSR	96	110	-	dB
Output Voltage Range $\left(\mathrm{V}_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega\right)$	$\mathrm{V}_{\mathrm{OR}}$	$\pm 13$	$\pm 14$	-	V

Figure 1. Input Bias and Input Offset Currents
2


Figure 3. Voltage Gain versus Supply Voltages


Figure 5. Open Loop Frequency Response


Figure 2. Maximum Equivalent Input Offset Voitage Error versus Input Resistance


Figure 4. Power Supply Currents versus Power Supply Voltages


Figure 6. Large Signal Frequency Response


## LM308A

## SUGGESTED DESIGN APPLICATIONS

## INPUT GUARDING

Special care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the LM308A amplifier. Boards must be thoroughly cleaned with alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Figure 7. Fast (1) Summing Amplifier with Low Input Current

(1) Power Bandwidth: 250 kHz Small Signal Bandwidth: 3.5 MHz

Slew Rate: $10 \mathrm{~V} / \mu \mathrm{s}$
(2) $\mathrm{C} 5=\frac{6 \times 10^{-8}}{\mathrm{R} 1}$

Even with properly cleaned and coated boards, leakage currents may cause trouble at $+125^{\circ} \mathrm{C}$, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high voltage pins are then absorbed by the guard.

Figure 8. Sample and Hold

(1) Teflon, Polyethylene or Polycarbonate Dielectric Capacitor

Figure 9. Connection of Input Guards

## Inverting Amplifier


(1) Used to compensate for large source resistances.

Follower


Noninverting Amplifier


Note: $\frac{R 1 R 2}{R 1+R 2}$ must be an impedance.

## LM308A

Representative Circuit Schematic


## Highly Flexible Voltage Comparators

The ability to operate from a single power supply of 5.0 V to 30 V or $\pm 15 \mathrm{~V}$ split supplies, as commonly used with operational amplifiers, makes the LM211/LM311 a truly versatile comparator. Moreover, the inputs of the device can be isolated from system ground while the output can drive loads referenced either to ground, the $\mathrm{V}_{\mathrm{CC}}$ or the $\mathrm{V}_{\text {EE }}$ supply. This flexibility makes it possible to drive DTL, RTL, TTL, or MOS logic. The output can also switch voltages to 50 V at currents to 50 mA . Thus the LM211/LM311 can be used to drive relays, lamps or solenoids.



ORDERING INFORMATION

Device	Operating   Temperature Range	Package
LM211D	$T_{A}=25^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO- 8
LM311D   LM311N	$T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8   Plastic DIP

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	LM211	LM311	Unit
Total Supply Voltage	$\mathrm{V}_{\mathrm{CC}}+\mathrm{V}_{\mathrm{EE}} \mid$	36	36	Vdc
Output to Negative Supply Voltage	$\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{EE}}$	50	40	Vdc
Ground to Negative Supply Voltage	$\mathrm{V}_{\mathrm{EE}}$	30	30	Vdc
Input Differential Voltage	$\mathrm{V}_{\text {ID }}$	$\pm 30$	$\pm 30$	Vdc
Input Voltage (Note 2)	$\mathrm{V}_{\text {in }}$	$\pm 15$	$\pm 15$	Vdc
Voltage at Strobe Pin	-	$\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{CC}}-5$	$\mathrm{~V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{CC}}-5$	Vdc
Power Dissipation and Thermal Characteristics   Plastic DIP   Derate Above TA				

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted [Note 1].)

Characteristic	Symbol	LM211			LM311			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Note 3) $\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   $R_{S} \leq 50 \mathrm{k} \Omega, \mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}{ }^{*}$	VIO	-	0.7 -	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	-	2.0	$\begin{aligned} & 7.5 \\ & 10 \end{aligned}$	mV
```Input Offset Current (Note 3) TA=+25 Tlow }\leq\mp@subsup{T}{A}{}\leq\mp@subsup{T}{\mathrm{ high }}{```	10	-	$1.7$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	-	1.7   -	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	nA
$\begin{aligned} & \text { Input Bias Current } T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leq T_{A} \leq T_{\text {high }}{ }^{*} \end{aligned}$	IB	-	45	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	-	45	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	nA
Voltage Gain	A_{V}	40	200	-	40	200	-	V/mV
Response Time (Note 4)		-	200	-	-	200	-	ns
Saturation Voltage $\begin{aligned} & \mathrm{V}_{I D} \leq-5.0 \mathrm{mV}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {ID }} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~T}_{\mathrm{low}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \\ & \mathrm{V}_{\text {ID }}<66.0 \mathrm{mV}, \mathrm{I}_{\text {sink }} \leq 8.0 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ID }}<\leq 10 \mathrm{mV}, \mathrm{I}_{\text {sink }} \leq 8.0 \mathrm{~mA} \end{aligned}$	VOL	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{gathered} 0.75 \\ - \\ 0.23 \end{gathered}$	$\begin{gathered} 1.5 \\ - \\ 0.4 \end{gathered}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{gathered} - \\ 0.75 \\ - \\ 0.23 \end{gathered}$	$\begin{gathered} - \\ 1.5 \\ - \\ 0.4 \end{gathered}$	V
Strobe "On" Current (Note 5)	Is	-	3.0	-	-	3.0	-	mA
$\begin{aligned} & \text { Output Leakage Current } \\ & V_{I D} \geq 5.0 \mathrm{mV}, \mathrm{~V}_{O}=35 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, I_{\text {strobe }}=3.0 \mathrm{~mA} \\ & V_{I D} \geq 10 \mathrm{mV}, V_{O}=35 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, I_{\text {strobe }}=3.0 \mathrm{~mA} \\ & V_{I D} \geq 5.0 \mathrm{mV}, V_{O}=35 \mathrm{~V}, T_{\text {low }} \leq T_{A} \leq T_{\text {high }}{ }^{*} \end{aligned}$			$\begin{gathered} 0.2 \\ - \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ - \\ 0.5 \end{gathered}$	-	$\overline{0 .}$	50	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
Input Voltage Range ($\mathrm{l}_{\text {low }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {high }}{ }^{*}$)	VICR	-14.5	$\begin{gathered} -14.7 \text { to } \\ 13.8 \end{gathered}$	+13.0	-14.5	$\begin{gathered} -14.7 \text { to } \\ 13.8 \end{gathered}$	+13.0	V
Positive Supply Current	${ }^{\text {I C C }}$	-	+2.4	+6.0	-	+2.4	+7.5	mA
Negative Supply Current	IEE	-	-1.3	-5.0	-	-1.3	-5.0	mA

| $* T_{\text {low }}$ | $=-25^{\circ} \mathrm{C}$ for LM2111 | | $T_{\text {high }}$ |
| ---: | :--- | ---: | :--- |$=+85^{\circ} \mathrm{C}$ for LM211

NOTES: 1. Offset voltage, offset current and bias current specifications apply for a supply voltage range from a single 5.0 V supply up to $\pm 15 \mathrm{~V}$ supplies.
2. This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
3. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance.
4. The response time specified is for a 100 mV input step with 5.0 mV overdrive.
5. Do not short the strobe pin to ground; it should be current driven at 3.0 mA to 5.0 mA .

LM311 LM211

Figure 1. Circuit Schematic

Figure 2. Input Bias Current versus Temperature

Figure 4. Input Bias Current versus Differential Input Voltage

Figure 3. Input Offset Current versus Temperature

Figure 5. Common Mode Limits versus Temperature

Figure 6. Response Time for Various Input Overdrives

Figure 8. Response Time for

Figure 10. Output Short Circuit Current Characteristics and Power Dissipation

Figure 11. Output Saturation Voltage versus Output Current

Figure 12. Output Leakage Current versus Temperature

Figure 13. Power Supply Current versus Supply Voltage

Figure 14. Power Supply Current versus Temperature

APPLICATIONS INFORMATION

Figure 15. Improved Method of Adding Hysteresis Without Applying Positive Feedback to the Inputs

Figure 16. Conventional Technique for Adding Hysteresis

LM311 LM211

TECHNIQUES FOR AVOIDING OSCILLATIONS IN COMPARATOR APPLICATIONS

When a high speed comparator such as the LM211 is used with high speed input signals and low source impedances, the output response will normally be fast and stable, providing the power supplies have been bypassed (with $0.1 \mu \mathrm{~F}$ disc capacitors), and that the output signal is routed well away from the inputs (Pins 2 and 3) and also away from Pins 5 and 6.

However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high ($1.0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$), the comparator may burst into oscillation near the crossing-point. This is due to the high gain and wide bandwidth of comparators like the LM211 series. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 15.

The trim pins (Pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trim-pot, they should be shorted together. If they are connected to a trim-pot, a $0.01 \mu \mathrm{~F}$ capacitor (C1) between Pins 5 and 6 will minimize the susceptibility to AC coupling. A smaller capacitor is used if Pin 5 is used for positive feedback as in Figure 15. For the fastest response time, tie both balance pins to $V_{C C}$

Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor (C2) is connected directly across the input pins. When the signal source is applied through a resistive network, R1, it is usually advantageous to choose R2 of the same value, both for DC and for dynamic (AC) considerations. Carbon, tin-oxide, and metal-film resistors have all been used with good results in comparator input circuitry, but inductive wirewound resistors should be avoided

When comparator circuits use input resistors (e.g. summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words, there should be a very short lead length or printed-circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if R1 = $10 \mathrm{k} \Omega$, as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to dampen. Twisting these input leads tightly is the best alternative to placing resistors close to the comparator.

Figure 17. Zero-Crossing Detector Driving CMOS Logic

Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM211 circuitry (e.g., one side of a double layer printed circuit board). Ground, positive supply or negative supply foil should extend between the output and the inputs to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides to guard against capacitive coupling from any fast high-level signals (such as the output). If Pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located no more than a few inches away from the LM211, and a $0.01 \mu \mathrm{~F}$ capacitor should be installed across Pins 5 and 6 . If this capacitor cannot be used, a shielding printed-circuit foil may be advisable between Pins 6 and 7. The power supply bypass capacitors should be located within a couple inches of the LM211.

A standard procedure is to add hysteresis to a comparator to prevent oscillation, and to avoid excessive noise on the output. In the circuit of Figure 16, the feedback resistor of $510 \mathrm{k} \Omega$ from the output to the positive input will cause about 3.0 mV of hysteresis. However, if R2 is larger than 100Ω, such as $50 \mathrm{k} \Omega$, it would not be practical to simply increase the value of the positive feedback resistor proportionally above $510 \mathrm{k} \Omega$ to maintain the same amount of hysteresis.

When both inputs of the LM211 are connected to active signals, or if a high-impedance signal is driving the positive input of the LM211 so that positive feedback would be disruptive, the circuit of Figure 15 is ideal. The positive feedback is applied to Pin 5 (one of the offset adjustment pins). This will be sufficient to cause 1.0 mV to 2.0 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz . The positive-feedback signal across the 82Ω resistor swings 240 mV below the positive supply. This signal is centered around the nominal voltage at Pin 5, so this feedback does not add to the offset voltage of the comparator. As much as 8.0 mV of offset voltage can be trimmed out, using the $5.0 \mathrm{k} \Omega$ pot and $3.0 \mathrm{k} \Omega$ resistor as shown.

Figure 18. Relay Driver with Strobe Capability

*Zener Diode D1 protects the comparator from inductive kickback and voltage transients on the $\mathrm{V}_{\mathrm{CC} 2}$ supply line.

Quad Low Power Operational Amplifiers

The LM324 series are low-cost, quad operational amplifiers with true differential inputs. They have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 32 V with quiescent currents about one-fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuited Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 32 V
- Low Input Bias Currents: 100 nA Maximum (LM324A)
- Four Amplifiers Per Package
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Industry Standard Pinouts
- ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Operation

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	$\begin{gathered} \text { LM224 } \\ \text { LM324, LM324A } \end{gathered}$	LM2902, LM2902V	Unit
Power Supply Voltages Single Supply Split Supplies	$\begin{gathered} \mathrm{v}_{\mathrm{CC}} \\ \mathrm{v}_{\mathrm{CC}}, \mathrm{v}_{\mathrm{EE}} \end{gathered}$	$\begin{gathered} 32 \\ \pm 16 \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ \pm 13 \\ \hline \end{gathered}$	Vdc
Input Differential Voltage Range (See Note 1)	VIDR	± 32	± 26	Vdc
Input Common Mode Voltage Range	VICR	-0.3 to 32	-0.3 to 26	Vdc
Output Short Circuit Duration	${ }^{\text {ts }}$	Continuous		
Junction Temperature	TJ	150		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150		${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	T_{A}	$\begin{gathered} -25 \text { to }+85 \\ 0 \text { to }+70 \end{gathered}$	$\begin{aligned} & -40 \text { to }+105 \\ & -40 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$

NOTE: 1. Split Power Supplies.

QUAD DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

	Operating	
Device	Temperature Range	Package
LM2902D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-14

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristics	Symbol	LM224			LM324A			LM324			LM2902			LM2902V			Unit
		Min	Typ	Max													
Input Offset Voltage	V 1 O	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	2.0 - -	$\begin{aligned} & 5.0 \\ & 7.0 \\ & 7.0 \end{aligned}$		$\begin{gathered} 2.0 \\ - \\ - \end{gathered}$			2.0--			2.0 - -	$\begin{aligned} & 7.0 \\ & 10 \\ & 10 \end{aligned}$				mV
$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & (26 \mathrm{~V} \text { for } \mathrm{LM} 2902, \\ & \mathrm{V} \text {), } \mathrm{V}_{\text {ICR }}=0 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \\ & 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \end{aligned}$																	
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							3.0	-		7.0	-			-	2.0	7.0	
$T_{A}=T_{h i g h}{ }^{(1)}$							5.0	-		9.0	-			-	-	13	
$T_{A}=T_{\text {low }}{ }^{(1)}$							5.0	-		9.0	-			-	-	10	
Average Temperature Coefficient of Input Offset Voltage $T_{A}=T_{\text {high }} \text { to } T_{\text {low }}(1)$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	7.0	-	-	7.0	30	-	7.0	-	-	7.0	-	-	7.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current $T_{A}=T_{\text {high }}$ to $T_{\text {low }}(1)$	1 IO	-	3.0 -	$\begin{gathered} 30 \\ 100 \end{gathered}$		5.0 -	30 75	-	5.0 -	$\begin{gathered} 50 \\ 150 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	5.0	$\begin{gathered} 50 \\ 200 \end{gathered}$	-	5.0 -	$\begin{gathered} 50 \\ 200 \end{gathered}$	nA
	$\Delta l_{1 O} / \Delta T$	-	10	-	-	10	300	-	10	-	-	10	-	-	10	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current $T_{A}=T_{\text {high }} \text { to } T_{\text {low }}(1)$																	
Input Bias Current	IIB	-	-90	-150	-	-45	-100	-	-90	-250	-	-90	-250	-	-90	-250	nA
$\mathrm{T}_{\mathrm{A}}=T_{\text {high }}$ to $\mathrm{Tlow}(1)$		-	-	-300	-	-	-200	-	-	-500	-	-	-500	-	-	-500	
Input Common Mode Voltage Range ${ }^{(2)}$	VICR	00	-	28.3	00	-	28.3 28	00	-	28.3$28$	0 0	$\begin{aligned} & - \\ & - \end{aligned}$	24.3 24	0 0	$\begin{aligned} & - \\ & - \end{aligned}$	24.3 24	V
$\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}(26 \mathrm{~V}$ for LM2902, V)																	
$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}(26 \mathrm{~V} \text { for } \\ & \mathrm{LM} 2902, \mathrm{~V}), \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \end{aligned}$																	
Differential Input Voltage Range	$\mathrm{V}_{\text {IDR }}$	-	-	V_{CC}	V												
Large Signal Open Loop Voltage Gain	AVOL	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{gathered} 100 \\ - \end{gathered}$	-	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{gathered} 100 \\ - \end{gathered}$	-	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\begin{gathered} 100 \\ - \end{gathered}$	-	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100	-	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100	-	V / mV
$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=$ 15 V , for Large V_{O} Swing, $T_{A}=T_{\text {high }}$ to $T_{\text {low }}{ }^{(1)}$																	
Channel Separation $10 \mathrm{kHz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$, Input Referenced	CS	-	-120	-	-	-120	-	-	-120	-	-	-120	-	-	-120	-	dB
$\begin{aligned} & \text { Common Mode } \\ & \text { Rejection, } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \end{aligned}$	CMR	70	85	-	65	70	-	65	70	-	50	70	-	50	70	-	dB
Power Supply Rejection	PSR	65	100	-	65	100	-	65	100	-	50	100	-	50	100	-	dB
Output Voltage-High $\operatorname{Limit}\left(T_{A}=T_{\text {high to }}\right.$ $\mathrm{T}_{\text {low }}{ }^{(1)}$	V_{OH}	3.3 26 27	3.5 - 28	-	3.32627	3.5 - 28		3.32627	3.5 _ 28		3.3 22 23	3.5 - 24		3.3 22 23	3.5 _ 24		V
$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}= \\ 2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$																-	
$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}(26 \mathrm{~V} \text { for } \\ & \mathrm{LM} 2902, \mathrm{~V}) \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$																-	
$\begin{aligned} & V_{C C}=30 \mathrm{~V}(26 \mathrm{~V} \text { for } \\ & \mathrm{LM} 2902, \mathrm{~V}) \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$																-	

NOTES: $1 . \mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}$ for LM224 $=0^{\circ} \mathrm{C}$ for LM324, A
$=-40^{\circ} \mathrm{C}$ for LM2902
$=-40^{\circ} \mathrm{C}$ for LM2902V
$\mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$ for LM224
$=+70^{\circ} \mathrm{C}$ for LM324, A
$=+105^{\circ} \mathrm{C}$ for LM2902
$=+125^{\circ} \mathrm{C}$ for LM2902V
2. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common mode voltage range is $\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Symbol	LM224			LM324A			LM324			LM2902			LM2902V			Unit
		Min	Typ	Max													
$\begin{aligned} & \text { Output Voltage }- \text { Low } \\ & \text { Limit, } V_{C C}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \\ & =10 \mathrm{k}, T_{\mathrm{A}}=T_{\text {high }} \text { to } \\ & T_{\text {low }}(1) \end{aligned}$	V_{OL}	-	5.0	20	-	5.0	20	-	5.0	20	-	5.0	100	-	5.0	100	mV
Output Source Current $\begin{aligned} & \left(\mathrm{V}_{I D}=+1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\right. \\ & 15 \mathrm{~V}) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(1) \end{aligned}$	${ }^{1} \mathrm{O}+$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	-	mA
Output Sink Current $\begin{aligned} & \left(\mathrm{V}_{\text {ID }}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\right. \\ & 15 \mathrm{~V}) \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(1) \\ & \left(\mathrm{V}_{\text {ID }}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\right. \\ & \left.200 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	'0-	$\begin{aligned} & 10 \\ & 5.0 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 8.0 \\ & 50 \end{aligned}$	-	$\begin{aligned} & 10 \\ & 5.0 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 8.0 \\ & 50 \end{aligned}$	-	$\begin{array}{r} 10 \\ 5.0 \\ 12 \end{array}$	$\begin{aligned} & 20 \\ & 8.0 \\ & 50 \end{aligned}$	-	$\begin{gathered} 10 \\ 5.0 \\ - \end{gathered}$	$\begin{gathered} 20 \\ 8.0 \\ - \end{gathered}$	-	$\begin{gathered} 10 \\ 5.0 \\ - \end{gathered}$	$\begin{gathered} 20 \\ 8.0 \\ - \end{gathered}$		mA $\mu \mathrm{A}$
Output Short Circuit to Ground ${ }^{(3)}$	ISC	-	40	60	-	40	60	-	40	60	-	40	60	-	40	60	mA
$\begin{gathered} \text { Power Supply Current } \\ \begin{array}{c} \left(T_{A}=T_{\text {high }} \text { to } \mathrm{T}_{\text {low }}\right)^{(1)} \\ \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}(26 \mathrm{~V} \text { for } \\ \mathrm{LM} 2902, \mathrm{~V}), \\ \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\ \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \end{array} \end{gathered}$	${ }^{\text {c C }}$	-	-	3.0 1.2	-	1.4 0.7	$\begin{aligned} & 3.0 \\ & 1.2 \end{aligned}$	-	-	3.0 1.2	-	-	3.0 1.2	-	-	3.0 1.2	mA

NOTES: $1 . T_{\text {low }}=-25^{\circ} \mathrm{C}$ for LM224
$T_{\text {high }}=+850^{\circ}$ for LM 224
$=-40^{\circ} \mathrm{C}$ for LM2902 $\quad=+105^{\circ} \mathrm{C}$ for LM2902
$=-40^{\circ} \mathrm{C}$ for LM2902V
2. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common mode voltage range is $\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$.

Representative Circuit Diagram
(One-Fourth of Circuit Shown)

CIRCUIT DESCRIPTION

The LM324 series is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

Figure 1. Input Voltage Range

Figure 3. Large-Signal Frequency Response

Figure 5. Power Supply Current versus Power Supply Voltage

Figure 2. Open Loop Frequency

Figure 4. Small-Signal Voltage Follower Pulse Response (Noninverting)

Figure 6. Input Bias Current versus Power Supply Voltage

Figure 7. Voltage Reference
2

Figure 9. High Impedance Differential Amplifier

Figure 8. Wien Bridge Oscillator

Figure 10. Comparator with Hysteresis

Figure 11. Bi-Quad Filter

Figure 12. Function Generator

$$
f=\frac{R_{1}+R_{C}}{4 C R_{f} R_{1}} \quad \text { if } \quad R_{3}=\frac{R_{2} R_{1}}{R_{2}+R_{1}}
$$

Figure 13. Multiple Feedback Bandpass Filter

Given: $f_{0}=$ center frequency

$$
A\left(f_{0}\right)=\text { gain at center frequency }
$$

Choose value f_{0}, C
Then: $\quad R 3=\frac{Q}{\pi f_{0} C}$
$R 1=\frac{R 3}{2 A\left(f_{0}\right)}$
$R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}$
For less than 10% error from operational amplifier, $\frac{Q_{0} f_{0}}{B W}<0.1$
where f_{0} and BW are expressed in Hz .
If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Quad Single Supply Comparators

These comparators are designed for use in level detection, low-level sensing and memory applications in consumer automotive and industrial electronic applications.

- Single or Split Supply Operation
- Low Input Bias Current: 25 nA (Typ)
- Low Input Offset Current: ± 5.0 nA (Typ)
- Low Input Offset Voltage: $\pm 1.0 \mathrm{mV}$ (Typ) LM139A Series
- Input Common Mode Voltage Range to Gnd
- Low Output Saturation Voltage: 130 mV (Typ) @ 4.0 mA
- TTL and CMOS Compatible
- ESD Clamps on the Inputs Increase Reliability without Affecting Device Operation

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage LM239, A/LM339A/LM2901, V MC3302	V_{CC}	$\begin{aligned} & +36 \text { or } \pm 18 \\ & +30 \text { or } \pm 15 \\ & \hline \end{aligned}$	Vdc
Input Differential Voltage Range LM239, A/LM339A/LM2901, V MC3302	VIDR	$\begin{aligned} & 36 \\ & 30 \end{aligned}$	Vdc
Input Common Mode Voltage Range	VICMR	-0.3 to V CC	Vdc
Output Short Circuit to Ground (Note 1)	ISC	Continuous	
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Plastic Package Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 1.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Junction Temperature	TJ	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range LM239, A MC3302 LM2901 LM2901V LM339, A	T_{A}	$\begin{gathered} -25 \text { to }+85 \\ -40 \text { to }+85 \\ -40 \text { to }+105 \\ -40 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: 1. The maximum output current may be as high as 20 mA , independent of the magnitude of $V_{C C}$. Output short circuits to $\mathrm{V}_{\text {CC }}$ can cause excessive heating and eventual destruction.

Figure 1. Circuit Schematic

NOTE: Diagram shown is for 1 comparator.

LM339, LM339A, LM239, LM239A, LM2901, M2901V, MC3302

ORDERING INFORMATION

Device	Operating Temperature Range	Package
LM239D,AD LM239N,AN	$\mathrm{T}_{\mathrm{A}}=25^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-14 Plastic DIP
LM339D, AD LM339N, AN	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-14 Plastic DIP
LM2901D LM2901N	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-14 Plastic DIP
LM2901VD LM2901VN	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+125^{\circ} \mathrm{C}$	SO-14 Plastic DIP
MC3302P	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Characteristic	Symbol	LM239A/339A			LM239/339			LM2901/2901V			MC3302			Unit
		Min	Typ	Max										
Input Offset Voltage (Note 4)	V_{10}	-	± 1.0	± 2.0	-	± 2.0	± 5.0	-	± 2.0	± 7.0	-	± 3.0	± 20	mVdc
Input Bias Current (Notes 4, 5) (Output in Analog Range)	IB	-	25	250	-	25	250	-	25	250	-	25	500	nA
Input Offset Current (Note 4)	10	-	± 5.0	± 50	-	± 5.0	± 50	-	± 5.0	± 50	-	± 3.0	± 100	nA
Input Common Mode Voltage Range	VICMR	0	-	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}} \\ -1.5 \end{array}$	0	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -1.5 \end{aligned}$	0	-	$\begin{array}{\|l\|} \hline \mathrm{v}_{\mathrm{CC}} \\ -1.5 \end{array}$	0	-	$\begin{array}{\|l} \mathrm{v}_{\mathrm{CC}} \\ -1.5 \end{array}$	V
$\begin{aligned} & \text { Supply Current } \\ & R_{\mathrm{L}}=\infty \text { (For All Comparators) } \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{CC}}=30 \mathrm{Vdc} \\ & \hline \end{aligned}$	${ }^{\text {I C }}$		$\begin{aligned} & 0.8 \\ & 1.0 \\ & \hline \end{aligned}$		-	$\begin{aligned} & 0.8 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	mA
$\begin{aligned} & \text { Voltage Gain } \\ & R_{L} \geq 15 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{Vdc} \end{aligned}$	Avol	50	200	-	50	200	-	25	100	-	25	100	-	V / mV
$\begin{aligned} & \text { Large Signal Response Time } \\ & V_{1}=T T L \text { Logic Swing, } \\ & V_{\text {ref }}=1.4 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{RL}}=5.0 \mathrm{Vdc}, \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \end{aligned}$	-	-	300	-	-	300	-	-	300	-	-	300	-	ns
Response Time (Note 6) $\mathrm{V}_{\mathrm{RL}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$	-	-	1.3	-	-	1.3	-	-	1.3	-	-	1.3	-	$\mu \mathrm{s}$
Output Sink Current $\begin{aligned} & V_{1}(-) \geq+1.0 \mathrm{Vdc}, V_{1}(+)=0, \\ & V_{O} \leq 1.5 \mathrm{Vdc} \end{aligned}$	ISink	'6.0	16	-	6.0	16	-	6.0	16	-	6.0	16	-	mA
$\begin{aligned} & \text { Saturation Voltage } \\ & V_{l}(-) \geq+1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{l}}(+)=0, \\ & \mathrm{I}_{\text {sink }} \leq 4.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {sat }}$	-	130	400	-	130	400	-	130	400	-	130	500	mV
$\begin{aligned} & \text { Output Leakage Current } \\ & V_{1}(+) \geq+1.0 \mathrm{Vdc}, \mathrm{~V}_{1}(-)=0, \\ & \mathrm{~V}_{\mathrm{O}}=+5.0 \mathrm{Vdc} \end{aligned}$	${ }^{\text {IOL}}$	-	0.1	-	-	0.1	-	-	0.1	-	-	0.1	-	nA

PERFORMANCE CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ [Note 3])

Characteristic	Symbol	LM239A/339A			LM239/339			LM2901/2901V			MC3302			Unit
		Min	Typ	Max										
Input Offset Voltage (Note 4)	V_{10}	-	-	± 4.0	-	-	± 9.0	-	-	± 15	-	-	± 40	mVdc
Input Bias Current (Notes 4, 5) (Output in Analog Range)	I'B	-	-	400	-	-	400	-	-	500	-	-	1000	nA
Input Offset Current (Note 4)	110	-	-	± 150	-	-	± 150	-	-	± 200	-	-	± 300	nA
Input Common Mode Voltage Range	VICMR	0	-	$\begin{array}{\|l\|} \hline \mathrm{v}_{\mathrm{CC}} \\ -2.0 \end{array}$	0	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -2.0 \end{aligned}$	0	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -2.0 \end{aligned}$	0	-	$\begin{array}{\|l\|} \hline \mathrm{v}_{\mathrm{CC}} \\ -2.0 \end{array}$	V
Saturation Voltage $\begin{aligned} & V_{l}(-) \geq+1.0 \mathrm{Vdc}, V_{1}(+)=0, \\ & I_{\text {sink }} \leq 4.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {sat }}$	-	-	700	-	-	700	-	-	700	-	-	700	mV
$\begin{aligned} & \text { Output Leakage Current } \\ & V_{1}(+) \geq+1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{I}}(-)=0, \\ & \mathrm{~V}_{\mathrm{O}}=30 \mathrm{Vdc} \end{aligned}$	IOL	-	-	1.0	-	-	1.0	-	-	1.0	-	-	1.0	$\mu \mathrm{A}$
Differential Input Voltage All $\mathrm{V}_{1} \geq 0 \mathrm{Vdc}$	VID	-	-	V_{CC}	Vdc									

NOTES: 3. (LM239/239A) Tlow $=-25^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+85^{\circ}$
(LM339/339A) $T_{\text {low }}=0^{\circ} \mathrm{C}, T_{\text {high }}=+70^{\circ} \mathrm{C}$
(MC3302) $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$
(LM2901) $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+105^{\circ}$
(LM2901V) T ${ }_{\text {low }}=-40^{\circ} \mathrm{C}$, Thigh $=+125^{\circ} \mathrm{C}$
4. At the output switch point, $\mathrm{V}_{\mathrm{O}} \approx 1.4 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega 5.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{CC}} \leq 30 \mathrm{Vdc}$, with the inputs over the full common mode range (0 Vdc to $\mathrm{V}_{\mathrm{Cc}}-1.5 \mathrm{Vdc}$).
5. The bias current flows out of the inputs due to the PNP input stage. This current is virtually constant, independent of the output state.
6. The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger signals, 300 ns is typical.

LM339, LM339A, LM239, LM239A, LM2901, M2901V, MC3302

Figure 2. Inverting Comparator with Hystersis

Figure 3. Noninverting Comparator with Hysteresis

$R 2 \approx \mathrm{R} 1 / / \mathrm{R}_{\mathrm{ref}}$
Amount of Hysteresis V_{H}
$V_{H}=\frac{R_{2}}{R_{2}+R_{3}}\left[\left(V_{O(\text { max })}-V_{O(\text { min })}\right]\right.$

Typical Characteristics
($\mathrm{V}_{\mathrm{CC}}=15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (each comparator) unless otherwise noted.)

Figure 4. Normalized Input Offset Voltage

Figure 5. Input Bias Current

Figure 6. Output Sink Current versus Output Saturation Voltage

Figure 7. Driving Logic

Figure 8. Squarewave Oscillator

APPLICATIONS INFORMATION

These quad comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions ($\mathrm{VOL}_{\mathrm{OL}}$ to VOH). To alleviate this situation input resistors $<10 \mathrm{k} \Omega$ should be used. The addition

Figure 9. Zero Crossing Detector (Single Supply)

D1 prevents input from going negative by more than 0.6 V .

$$
\begin{gathered}
\mathrm{R} 1+\mathrm{R} 2=\mathrm{R} 3 \\
\mathrm{R} 3 \leq \frac{\mathrm{R} 5}{10} \text { for small error in zero crossing }
\end{gathered}
$$

of positive feedback ($<10 \mathrm{mV}$) is also recommended. It is good design practice to ground all unused input pins.

Differential input voltages may be larger than supply voltages without damaging the comparator's inputs. Voltages more negative than -300 mV should not be used.

Figure 10. Zero Crossing Detector (Split Supplies)
$\mathrm{V}_{\mathrm{in}(\min)} \approx 0.4 \mathrm{~V}$ peak for 1% phase distortion $(\Delta \Theta)$.

Differential Input Operational Amplifier

The LM348 is a true quad MC1741. Integrated on a single monolithic chip are four independent, low power operational amplifiers which have been designed to provide operating characteristics identical to those of the industry standard MC1741, and can be applied with no change in circuit performance. In addition, the total supply current for all four amplifiers is comparable to the supply current of a single MC1741. Other features include input offset currents and input bias currents which are much less than the MC1741 industry standard.

The LM348 can be used in applications where amplifier matching or high packing density is important. Other applications include high impedance buffer amplifiers and active filter amplifiers.

- Each Amplifier is Functionally Equivalent to the MC1741
- Low Input Offset and Input Bias Currents
- Class AB Output Stage Eliminates Crossover Distortion
- Pin Compatible with MC3403 and LM324
- True Differential Inputs
- Internally Frequency Compensated
- Short Circuit Protection
- Low Power Supply Current ($0.6 \mathrm{~mA} /$ Amplifier)

LM348

DIFFERENTIAL INPUT OPERATIONAL AMPLIFIER

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
$L M 348 \mathrm{D}$	$T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-14

LM348

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC} V_{EE}	+18 -18	Vdc
Input Differential Voltage	$\mathrm{V}_{\text {ID }}$	± 36	V
Input Common Mode Voltage	$\mathrm{V}_{\mathrm{ICM}}$	± 18	V
Output Short Circuit Duration	t_{SC}	Continuous	
Operating Ambient Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage ($\mathrm{R}_{\mathbf{S}} \leq 10 \mathrm{k}$)	V_{10}	-	1.0	6.0	mV
Input Offset Current Input Bias Current	$\begin{aligned} & 1 \mathrm{IO} \\ & \mathrm{IBB} \end{aligned}$	-	$\begin{aligned} & 4.0 \\ & 30 \end{aligned}$	$\begin{gathered} 50 \\ 200 \end{gathered}$	nA
Input Resistance	ri	0.8	2.5	-	M Ω
Common Mode Input Voltage Range	VICR	± 12	-	-	V
Large Signal Voltage Gain ($\mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k}, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$)	Avol	25	160	-	V / mV
Channel Separation ($f=1.0 \mathrm{~Hz}$ to 20 kHz)	-	-	-120	-	dB
Common Mode Rejection ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$) Supply Voltage Rejection ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$)	$\begin{aligned} & \text { CMR } \\ & \text { PSR } \end{aligned}$	$\begin{aligned} & 70 \\ & 77 \end{aligned}$	$\begin{aligned} & 90 \\ & 96 \end{aligned}$	-	dB
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geq 10 \mathrm{k}\right) \\ & \left(R_{L} \geq 2.0 \mathrm{k}\right) \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$	-	V
Output Short Circuit Current	ISC	-	25	-	mA
Supply Current (All Amplifiers)	ID	-	2.4	4.5	mA
Small Signal Bandwidth ($\mathrm{V}_{\mathrm{V}}=1$)	BW	-	1.0	-	MHz
Phase Margin ($A_{V}=1$)	¢m	-	60	-	Degrees
Slew Rate ($\mathrm{AV}_{\mathrm{V}}=1$)	SR	-	0.5	-	V/us

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}={ }^{*} \mathrm{~T}_{\text {high }}\right.$ to $\mathrm{T}_{\text {low, }}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$)	V_{10}	-	-	7.5	mV
Input Offset Current Input Bias Current	$\begin{aligned} & \mathrm{I}_{10} \\ & \mathrm{I}_{\mathrm{IB}} \end{aligned}$	-		$\begin{aligned} & 100 \\ & 400 \end{aligned}$	nA
Common Mode Input Voltage Range	VICR	± 12	-	-	V
Large Signal Voltage Gain ($\mathrm{L}_{\mathrm{L}} \geq 2 \mathrm{k}, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$)	Avol	15	-	-	V/mV
Common Mode Rejection ($\mathrm{RS}_{\mathrm{S}} \leq 10 \mathrm{k}$) Supply Voltage Rejection ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$)	$\begin{aligned} & \text { CMR } \\ & \text { PSR } \end{aligned}$	$\begin{aligned} & 70 \\ & 77 \end{aligned}$	$\begin{aligned} & 90 \\ & 96 \end{aligned}$		dB
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geq 10 \mathrm{k}\right) \\ & \left(R_{L} \geq 2 \mathrm{k}\right) \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$	-	V

${ }^{*} T_{\text {high }}=70^{\circ} \mathrm{C} . \mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$.
NOTE: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted or the maximum junction temperature will be exceeded.

LM348

Figure 1. Power Bandwidth (Large Signal Swing versus Frequency)

Figure 3. Positive Output Voltage Swing versus Load Resistance

Figure 2. Open Loop Frequency Response

Figure 4. Negative Output Voltage Swing versus Load Resistance

Figure 5. Output Voltage Swing versus Load Resistance (Single Supply Operation)

Figure 6. Noninverting Pulse Response

$10 \mu \mathrm{~s} / \mathrm{DIV}$

Figure 7. Open Loop Voltage Gain versus Supply Voltage

APPLICATIONS INFORMATION

Figure 8. Voltage Reference

$$
\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

Figure 10. High Impedance Differential Amplifier

$$
e_{0}=C(1+a+b)\left(e_{2}-e_{1}\right)
$$

Figure 9. Wien Bridge Oscillator

Figure 11. Comparator with Hysteresis

Figure 12. High Impedance Instrumentation Buffer/Filter

Figure 13. Function Generator

Figure 14. Bi-Quad Filter

LM348

Figure 15. Absolute Value DVM Front End

Dual Low Power Operational Amplifiers

Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, these dual operational amplifiers feature 1) low power drain, 2) a common mode input voltage range extending to ground $/ V_{E E}, 3$) single supply or split supply operation and 4) pinouts compatible with the popular MC1558 dual operational amplifier. The LM158 series is equivalent to one-half of an LM124.

These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 V or as high as 32 V , with quiescent currents about one-fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 32 V
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Single and Split Supply Operation
- Similar Performance to the Popular MC1558
- ESD Clamps on the Inputs Increase Ruggedness of the Device without Affecting Operation

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	LM258 LM358	$\begin{aligned} & \text { LM2904 } \\ & \text { LM2904V } \end{aligned}$	Unit
Power Supply Voltages Single Supply Split Supplies	$\begin{gathered} \mathrm{v}_{\mathrm{CC}} \\ \mathrm{v}_{\mathrm{CC}}, \mathrm{v}_{\mathrm{EE}} \end{gathered}$	$\begin{gathered} 32 \\ \pm 16 \end{gathered}$	$\begin{gathered} 26 \\ \pm 13 \end{gathered}$	Vdc
Input Differential Voltage Range (Note 1)	$\mathrm{V}_{\text {IDR }}$	± 32	± 26	Vdc
Input Common Mode Voltage Range (Note 2)	VICR	-0.3 to 32	-0.3 to 26	Vdc
Output Short Circuit Duration	tsc	Continuous		
Junction Temperature	TJ	150		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125		${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	$\mathrm{T}_{\text {A }}$			${ }^{\circ} \mathrm{C}$
Range				
LM258		-25 to +85	-	
LM358		0 to +70	-	
LM2904		-	-40 to +105	
LM2904V		-	-40 to +125	

NOTES: 1. Split Power Supplies.
2. For Supply Voltages less than 32 V for the LM258/358 and 26 V for the LM2904, the absolute maximum input voltage is equal to the supply voltage.

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
LM2904D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-8
LM2904N		Plastic DIP
LM2904VD	$\mathrm{T}_{A}=-40^{\circ}$ to $+125^{\circ} \mathrm{C}$	SO-8
LM2904VN		Plastic DIP
LM258D	$\mathrm{T}_{\mathrm{A}}=-25^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
LM258N		Plastic DIP
LM358D	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8
LM358N		Plastic DIP

ELECTRICAL CHARACTERISTICS (VCC $=5.0 \mathrm{~V}, \mathrm{~V}_{E E}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	LM258			LM358			LM2904			LM2904V			Unit
		Min	Typ	Max										
Input Offset Voltage $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ to $30 \mathrm{~V}(26 \mathrm{~V}$ for LM2904, V), VIC $=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$, $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }}(\text { Note 1) } \\ & T_{A}=T_{\text {low }} \text { (Note 1) } \\ & \hline \end{aligned}$	V_{10}	-	2.0	$\begin{aligned} & 5.0 \\ & 7.0 \\ & 2.0 \end{aligned}$	$-$	2.0	$\begin{aligned} & 7.0 \\ & 9.0 \\ & 9.0 \end{aligned}$	~	$\begin{aligned} & 2.0 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 7.0 \\ & 10 \\ & 10 \end{aligned}$	-	-	$\begin{gathered} - \\ 13 \\ 10 \end{gathered}$	mV
Average Temperature Coefficient of Input Offset Voltage $T_{A}=T_{\text {high }} \text { to } T_{\text {low }} \text { (Note 1) }$	$\Delta V_{10} / \Delta T$	-	7.0	-	-	7.0	-	-	7.0	-	-	7.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
```Input Offset Current \(T_{A}=T_{\text {high to }} T_{\text {low }}\) (Note 1) Input Bias Current \(T_{A}=T_{\text {high to }} T_{\text {low ( }}\) (Note 1)```	10 $I_{B}$	-	$\begin{gathered} 3.0 \\ - \\ -45 \\ -50 \end{gathered}$	$\begin{array}{\|c\|} \hline 30 \\ 100 \\ -150 \\ -300 \\ \hline \end{array}$		$\begin{gathered} 5.0 \\ - \\ -45 \\ -50 \end{gathered}$	$\begin{array}{\|c\|} \hline 50 \\ 150 \\ -250 \\ -500 \\ \hline \end{array}$		$\begin{gathered} 5.0 \\ 45 \\ -45 \\ -50 \end{gathered}$	$\begin{gathered} 50 \\ 200 \\ -250 \\ -500 \\ \hline \end{gathered}$		$\begin{array}{r} 5.0 \\ 45 \\ .45 \\ -45 \\ -50 \end{array}$	$\begin{gathered} \hline 50 \\ 200 \\ -250 \\ -500 \\ \hline \end{gathered}$	nA
Average Temperature Coefficient of Input Offset Current   $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$ (Note 1)	$\Delta^{\prime} \mathrm{I}^{\prime} / \Delta \mathrm{T}$	-	10	-	-	10	-	-	10	-	-	10	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Common Mode Voltage Range } \\ & \text { (Note 2) } \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}(26 \mathrm{~V} \text { for LM2904, } \mathrm{V}) \\ & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}(26 \mathrm{~V} \text { for LM2904, V), } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {ICR }}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{gathered} 28.3 \\ 28 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{gathered} 28.3 \\ 28 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{gathered} 24.3 \\ 24 \end{gathered}$	0	-	$\begin{gathered} 24.3 \\ 24 \end{gathered}$	v
Differential Input Voltage Range	$V_{\text {IDR }}$	-	-	$\mathrm{v}_{\mathrm{CC}}$	V									
Large Signal Open Loop Voltage Gain $\begin{aligned} & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \text {, For Large } \mathrm{V}_{\mathrm{O}} \\ & \mathrm{~S}_{\text {wing, }} \\ & \mathrm{T}_{\mathrm{A}}=T_{\text {high to }} \mathrm{T}_{\text {low }} \text { (Note 1) } \end{aligned}$	AVOL	50 25	100	-	25 15	100	-	25 15	100	-	25 15	$100$		$\mathrm{V} / \mathrm{mv}$
Channel Separation   $1.0 \mathrm{kHz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$, Input Referenced	CS	-	-120	-	-	-120	-	-	-120	-	-	-120	-	dB
Common Mode Rejection $R_{S} \leq 10 \mathrm{k} \Omega$	CMR	70	85	-	65	70	-	50	70	-	50	70	-	dB
Power Supply Rejection	PSR	65	100	-	65	100	-	50	100	-	50	100	-	dB
$\begin{aligned} & \text { Output Voltage-High Limit }\left(T_{A}=T_{\text {high }}\right. \text { to } \\ & T_{\text {Iow }}(\text { Note } 1) \\ & V_{C C}=5.0 \mathrm{~V}, R_{L}=2.0 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=30 \mathrm{~V}(26 \mathrm{~V} \text { for LM2904, }), \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & V_{C C}=30 \mathrm{~V}(26 \mathrm{~V} \text { for LM2904, } \mathrm{V}), \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & 3.3 \\ & 26 \\ & 27 \end{aligned}$	3.5   28	-	$\begin{aligned} & 3.3 \\ & 26 \\ & 27 \end{aligned}$	3.5   28		$\begin{aligned} & 3.3 \\ & 22 \\ & 23 \end{aligned}$	$\begin{gathered} 3.5 \\ - \\ 24 \end{gathered}$		$\begin{aligned} & 3.3 \\ & 22 \\ & \\ & 23 \end{aligned}$	$\begin{gathered} 3.5 \\ - \\ 24 \end{gathered}$		v
Output Voltage-Low Limit $\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, T_{A}=T_{\text {high }} \text { to } \\ & T_{\text {low }} \text { (Note 1) } \end{aligned}$	$\mathrm{V}_{\text {OL }}$	-	5.0	20	-	5.0	20	-	5.0	20	-	5.0	20	mV
Output Source Current $V_{I D}=+1.0 \mathrm{~V}, V_{C C}=15 \mathrm{~V}$	$10+$	20	40	-	20	40	-	20	40	-	20	40	-	mA
Output Sink Current $\begin{aligned} & V_{I D}=-1.0 \mathrm{~V}, V_{C C}=15 \mathrm{~V} \\ & V_{I D}=-1.0 \mathrm{~V}, V_{O}=200 \mathrm{mV} \end{aligned}$	10-	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	-	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	-	$10$	20	-	10	20	-	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Output Short Circuit to Ground (Note 3)	Isc	-	40	60	-	40	60	-	40	60	-	40	60	mA
```Power Supply Current (TA}=\mp@subsup{T}{\mathrm{ high to Tlow)}}{ (Note 1) VCC=30 V (26 V for LM2904, V), VO=0V, RL=\infty VCC}=5\textrm{V},\mp@subsup{\textrm{V}}{\textrm{O}}{}=0\textrm{V},\mp@subsup{R}{\textrm{L}}{2}=```	Icc	-	1.5 0.7	3.0	-	1.5 0.7	3.0	-	1.5 0.7	3.0 1.2	-	1.5 0.7	3.0 1.2	mA

NOTES: $1 . T_{\text {low }}=-40^{\circ} \mathrm{C}$ for LM2904
$=-40^{\circ} \mathrm{C}$ for LM2904V
$=-25^{\circ} \mathrm{C}$ for LM258
$=0^{\circ} \mathrm{C}$ for LM358
$\mathrm{T}_{\text {high }}=+105^{\circ} \mathrm{C}$ for LM2904
$=+125^{\circ} \mathrm{C}$ for LM2904V
$=+85^{\circ} \mathrm{C}$ for LM258
$=+80^{\circ} \mathrm{C}$ for LM358
2. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common mode voltage range is $\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$.
3. Short circuits from the output to $V_{C C}$ can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Single Supply

Split Supplies

Representative Schematic Diagram

CIRCUIT DESCRIPTION

The LM258 series is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

Figure 1. Input Voltage Range

Figure 3. Large-Signal Frequency Response

Figure 5. Power Supply Current versus Power Supply Voltage

Figure 2. Large-Signal Open Loop Voltage Gain

Figure 4. Small Signal Voltage Follower Pulse Response (Noninverting)

Figure 6. Input Bias Current versus Supply Voltage

LM358, LM258, LM2904, LM2904V

Figure 7. Voltage Reference

Figure 8. Wien Bridge Oscillator

Figure 10. Comparator with Hysteresis

Figure 11. Bi-Quad Filter

Figure 12. Function Generator

$$
f=\frac{R_{1}+R_{C}}{4 C R_{f} R_{1}} \quad \text { if, } R 3=\frac{R_{2} R_{1}}{R_{2}+R_{1}}
$$

Figure 13. Multiple Feedback Bandpass Filter

$\begin{aligned} \mathrm{f}_{0} & =\text { center frequency } \\ \mathrm{A}\left(\mathrm{f}_{0}\right) & =\text { gain at center frequency }\end{aligned}$
Choose value $\mathrm{f}_{\mathrm{O}}, \mathrm{C}$
Then: $\quad R 3=\frac{Q}{\pi \mathrm{t}_{0} \mathrm{C}}$
$R 1=\frac{R 3}{2 A\left(f_{0}\right)}$

$$
R 2=\frac{R_{1} R 3}{4 Q^{2} R 1-R 3}
$$

For less than 10% error from operational amplifier. $\frac{Q_{0} f_{0}}{B W}<0.1$
Where f_{0} and BW are expressed in Hz .
If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Low Offset Voltage Dual Comparators

The LM393 series are dual independent precision voltage comparators capable of single or split supply operation. These devices are designed to permit a common mode range-to-ground level with single supply operation. Input offset voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer automotive, and industrial electronics.

- Wide Single-Supply Range: 2.0 Vdc to 36 Vdc
- Split-Supply Range: $\pm 1.0 \mathrm{Vdc}$ to $\pm 18 \mathrm{Vdc}$
- Very Low Current Drain Independent of Supply Voltage: 0.4 mA
- Low Input Bias Current: 25 nA
- Low Input Offset Current: 5.0 nA
- Low Input Offset Voltage: 2.0 mV (max) LM393A 5.0 mV (max) LM293/393
- Input Common Mode Range to Ground Level
- Differential Input Voltage Range Equal to Power Supply Voltage
- Output Voltage Compatible with DTL, ECL, TTL, MOS, and CMOS Logic Levels
- ESD Clamps on the Inputs Increase the Ruggedness of the Device without Affecting Performance

LM393, LM393A, LM293, LM2903, LM2903V

SINGLE SUPPLY, LOW POWER DUAL COMPARATORS

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
LM293D	$\mathrm{T}_{\mathrm{A}}=-25^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
LM393D	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8
LM393AN, N		Plastic DIP
LM2903D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-8
LM2903N		Plastic DIP
LM2903VD	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-8
LM2903VN		Plastic DIP

LM393, LM393A, LM293, LM2903, LM2903V

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\text {CC }}$	+36 or ± 18	Vdc
Input Differential Voltage Range	VIDR	36	Vdc
Input Common Mode Voltage Range	VICR	-0.3 to +36	Vdc
Output Short Circuit-to-Ground Output Sink Current (Note 1)	$\begin{aligned} & \text { ISC } \\ & \text { ISink } \end{aligned}$	Continuous 20	mA
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\begin{gathered} P_{D} \\ 1 / R_{\theta J A} \end{gathered}$	$\begin{aligned} & 570 \\ & 5.7 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Ambient Temperature Range LM293 LM393, 393A LM2903 LM2903V	$\mathrm{T}_{\mathbf{A}}$	$\begin{gathered} -25 \text { to }+85 \\ 0 \text { to }+70 \\ -40 \text { to }+105 \\ -40 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Maximum Operating Junction Temperature LM393, 393A, 2903, LM2903V LM293	$\mathrm{TJ}_{(\text {max }}$)	$\begin{aligned} & 125 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high, }}$, unless otherwise noted.)

Characteristic	Symbol	LM393A			Unit
		Min	Typ	Max	
Input Offset Voltage (Note 2) $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leq T_{A} \leq T_{\text {high }} \end{aligned}$	V_{IO}		± 1.0	$\begin{gathered} \pm 2.0 \\ 4.0 \end{gathered}$	mV
Input Offset Current $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leq T_{A} \leq T_{\text {high }} \end{aligned}$	10	-		$\begin{gathered} \pm 50 \\ \pm 150 \\ \hline \end{gathered}$	nA
Input Bias Current (Note 3) $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leq T_{A} \leq T_{\text {high }} \end{aligned}$	IIB		25	$\begin{aligned} & 250 \\ & 400 \\ & \hline \end{aligned}$	nA
Input Common Mode Voltage Range (Note 4) $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leq T_{A} \leq T_{\text {high }} \end{aligned}$	VICR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & v_{C C-}-1.5 \\ & v_{C C}-2.0 \end{aligned}$	V
Voltage Gain $\mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Avol	50	200	-	V / mV
Large Signal Response Time $\begin{aligned} & V_{\text {in }}=T T L \text { Logic Swing, } V_{\text {ref }}=1.4 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{RL}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	300	-	ns
Response Time (Note 5) $\mathrm{V}_{\mathrm{RL}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	${ }^{\text {tTLH }}$	-	1.3	-	$\mu \mathrm{s}$
Input Differential Voltage (Note 6) All $\mathrm{V}_{\text {in }} \geq$ Gnd or V - Supply (if used)	$V_{\text {ID }}$	-	-	v_{CC}	V
Output Sink Current $\mathrm{V}_{\text {in }} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{in}+}=0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ISink	6.0	16	-	mA
$\begin{aligned} & \text { Output Saturation Voltage } \\ & V_{\text {in }} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\text {in }+}=0 \mathrm{Vdc}, \mathrm{I}_{\text {Sink }} \leq 4.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leq T_{\mathrm{A}} \leq T_{\text {high }} \end{aligned}$	V OL	-	150	$\begin{aligned} & 400 \\ & 700 \\ & \hline \end{aligned}$	mV

${ }^{*} \mathrm{~T}_{\text {low }}=0^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for $\mathrm{LM} 393 / 393 \mathrm{~A}$
NOTES: 1. The maximum output current may be as high as 20 mA , independent of the magnitude of V_{CC}, output short circuits to V_{CC} can cause excessive heating and eventual destruction.
2. At output switch point, $\mathrm{V}_{\mathrm{O}} \approx 1.4 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V_{CC} from 5.0 Vdc to 30 Vdc , and over the full input common mode range (0 V to $\mathrm{V}_{\mathrm{CC}}=-1.5 \mathrm{~V}$)
3. Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state, there fore, no loading changes will exist on the input lines.
4. Input common mode of either input should not be permitted to go more than 0.3 V negative of ground or minus supply. The upper limit of common mode range is $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.
5. Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times are obtainable.

6 . The comparator will exhibit proper output state if one of the inputs becomes greater than V_{CC}, the other input must remain within the common mode range. The low input state must not be less than -0.3 V of ground or minus supply.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high, }}$, unless otherwise noted.)

Characteristic	Symbol	LM393A			Unit
		Min	Typ	Max	
Output Leakage Current $\begin{aligned} & V_{\text {in- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {in }+} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {in- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {in }+} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{Vdc}, T_{\text {low }} \leq T_{A} \leq T_{\text {high }} \end{aligned}$	lOL			1.0	$\mu \mathrm{A}$
Supply Current $\mathrm{R}_{\mathrm{L}}=\infty$ Both Comparators, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{R}_{\mathrm{L}}=\infty$ Both Comparators, $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$	ICC	-	0.4 1.0	1.0 2.5	mA

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}$, unless otherwise noted.)

Characteristic	Symbol	LM392, LM393			LM2903, LM2903V			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Note 2) $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leq T_{A} \leq T_{\text {high }} \end{aligned}$	V_{10}	-	± 1.0	$\begin{gathered} \pm 5.0 \\ 9.0 \end{gathered}$	-	± 2.0 9.0	$\begin{gathered} \pm 7.0 \\ 15 \\ \hline \end{gathered}$	mV
Input Offset Current $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}$	10	-	± 5.0 -	$\begin{gathered} \pm 50 \\ \pm 150 \end{gathered}$	-	$\begin{aligned} & \pm 5.0 \\ & \pm 50 \end{aligned}$	$\begin{gathered} \pm 50 \\ \pm 200 \end{gathered}$	nA
Input Bias Current (Note 3) $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leq T_{A} \leq T_{\text {high }} \end{aligned}$	${ }_{1 B}$	-	25	$\begin{array}{r} 250 \\ 400 \\ \hline \end{array}$	-	25 200	$\begin{array}{r} 250 \\ 500 \\ \hline \end{array}$	nA
Input Common Mode Voltage Range (Note 3) $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leq T_{A} \leq T_{\text {high }} \end{aligned}$	VICR		-	$\begin{aligned} & V_{C C}-1.5 \\ & v_{C C}-2.0 \\ & \hline \end{aligned}$	0	-	$\begin{aligned} & v_{C C-}-1.5 \\ & v_{C C}-2.0 \\ & \hline \end{aligned}$	V
Voltage Gain $\mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Avol	50	200	-	25	200	-	V / mV
Large Signal Response Time $V_{\text {in }}=$ TTL Logic Swing, $V_{\text {ref }}=1.4 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{RL}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	-	300	-	-	300	-	ns
Response Time (Note 5) $\mathrm{V}_{\mathrm{RL}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	${ }^{\text {t }}$ LLH	-	1.3	-	-	1.5	-	$\mu \mathrm{s}$
Input Differential Voltage (Note 6) All $\mathrm{V}_{\text {in }} \geq$ Gnd or V - Supply (if used)	VID	-	-	V_{CC}	-	-	V_{CC}	V
Output Sink Current $\mathrm{V}_{\text {in }} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{in}+}=0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{Vdc} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	'Sink	6.0	16	-	6.0	16	-	mA
Output Saturation Voltage $\begin{aligned} & V_{\text {in }} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\text {in }+}=0, \mathrm{I}_{\text {Sink }} \leq 4.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	VoL	-	150	$\begin{aligned} & 400 \\ & 700 \\ & \hline \end{aligned}$	-	200	$\begin{aligned} & 400 \\ & 700 \\ & \hline \end{aligned}$	mV
$\begin{aligned} & \text { Output Leakage Current } \\ & \mathrm{V}_{\text {in- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {in }+} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {in- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {in }} \geq 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{Vdc}, \\ & T_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	IOL	-	0.1	1000	-	0.1	1000	nA
Supply Current $R_{L}=\infty$ Both Comparators, $T_{A}=25^{\circ} \mathrm{C}$ $R_{L}=\infty$ Both Comparators, $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$	${ }^{\prime} \mathrm{Cc}$	-	0.4	$\begin{aligned} & 1.0 \\ & 2.5 \\ & \hline \end{aligned}$	-	0.4	$\begin{array}{r} 1.0 \\ 2.5 \\ \hline \end{array}$	mA

[^5]LM293/393,A
Figure 1. Input Bias Current versus Power Supply Voltage

Figure 3. Output Saturation Voltage versus Output Sink Current

Figure 5. Power Supply Current versus Power Supply Voltage

LM2903
Figure 2. Input Bias Current versus Power Supply Voltage

Figure 4. Output Saturation Voltage versus Output Sink Current

Figure 6. Power Supply Current versus Power Supply Voltage

LM393, LM393A, LM293, LM2903, LM2903V

APPLICATIONS INFORMATION

These dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V_{OL} to V_{OH}). To alleviate this situation, input resistors $<10 \mathrm{k} \Omega$ should be used.

Figure 7. Zero Crossing Detector (Single Supply)

D 1 prevents input from going negative by more than 0.6 V .

$$
R 1+R 2=R 3
$$

$$
R 3 \leq \frac{R 5}{10} \text { for small error in zero crossing. }
$$

Figure 9. Free-Running Square-Wave Oscillator

The addition of positive feedback ($<10 \mathrm{mV}$) is also recommended. It is good design practice to ground all unused pins.

Differential input voltages may be larger than supply voltage without damaging the comparator's inputs. Voltages more negative than -0.3 V should not be used.

Figure 8. Zero Crossing Detector (Split Supply)

$\mathrm{V}_{\mathrm{in}(\min)} \approx 0.4 \mathrm{~V}$ peak for 1% phase distortion $(\Delta \Theta)$.

Figure 10. Time Delay Generator

"ON" for $t \geqslant t_{0}+\Delta t$ where:

$$
\Delta t=\operatorname{RC} \ell n\left(\frac{V_{\text {ref }}}{V_{C C}}\right)
$$

Figure 11. Comparator with Hysteresis

$R_{S}=R 1 \| R 2$

$$
\begin{aligned}
& V_{\text {th1 }}=V_{\text {ref }}+\frac{\left(V_{\text {CC }}-V_{\text {ref }}\right) R 1}{R 1+R 2+R_{L}} \\
& V_{\text {th2 }}=V_{\text {ref }}-\frac{\left(V_{\text {ref }}-V_{\text {O }} \text { Low }\right) R 1}{R 1+R_{2}}
\end{aligned}
$$

Dual Low Noise, Audio Amplifier

The LM833 is a standard low-cost monolithic dual general-purpose operational amplifier employing Bipolar technology with innovative high-performance concepts for audio systems applications. With high frequency PNP transistors, the LM833 offers low voltage noise ($4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$), 15 MHz gain bandwidth product, $7.0 \mathrm{~V} / \mu \mathrm{s}$ slew rate, 0.3 mV input offset voltage with $2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ temperature coefficient of input offset voltage. The LM833 output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response.

The LM833 is specified over the automotive temperature range and is available in the plastic DIP and SO-8 packages (P and D suffixes). For an improved performance dual/quad version, see the MC33079 family.

- Low Voltage Noise: $4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- High Gain Bandwidth Product: 15 MHz
- High Slew Rate: $7.0 \mathrm{~V} / \mu \mathrm{s}$
- Low Input Offset Voltage: 0.3 mV
- Low T.C. of Input Offset Voltage: $2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Distortion: 0.002\%
- Excellent Frequency Stability
- Dual Supply Operation

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (VCC to V_{EE})	V_{S}	+36	V
Input Differential Voltage Range (Note 1)	$\mathrm{V}_{\text {IDR }}$	30	V
Input Voltage Range (Note 1)	V_{IR}	± 15	V
Output Short Circuit Duration (Note 2)	$\mathrm{tSC}_{\mathrm{S}}$	Indefinite	
Operating Ambient Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation (Notes 2 and 3)	PD	500	mW

NOTES: 1. Either or both input voltages must not exceed the magnitude of V_{CC} or V_{EE}.
2. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{J}\right)$ is not exceeded (see power dissipation performance characteristic).
3. Maximum value at $\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$.

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
LM833N	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP
LM833D		SO-8

ELECTRICAL CHARACTERISTICS ($\mathrm{V} \mathrm{CC}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$)	V_{10}	-	0.3	5.0	mV
Average Temperature Coefficient of Input Offset Voltage $R_{S}=10 \Omega, V_{O}=0 \mathrm{~V}, T_{A}=T_{\text {low }} \text { to } T_{\text {high }}$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$		2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$)	10	-	10	200	nA
Input Bias Current ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$)	IB	-	300	1000	nA
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}$	-12	$\begin{aligned} & +14 \\ & -14 \end{aligned}$	$+12$	V
Large Signal Voltage Gain ($\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	AVOL	90	110	-	dB
Output Voltage Swing: $\begin{aligned} & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{I D}=1.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{I D}=1.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{I D}=1.0 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{I D}=1.0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}+}$ V_{O} $\mathrm{V}_{\mathrm{O}+}$ $\mathrm{V}_{\mathrm{O}}-$	$\begin{aligned} & 10 \\ & - \\ & 12 \end{aligned}$	$\begin{array}{r} 13.7 \\ -14.1 \\ 13.9 \\ -14.7 \end{array}$	$\begin{gathered} - \\ -10 \\ - \\ -12 \end{gathered}$	V
Common Mode Rejection ($\mathrm{V}_{\mathrm{in}}= \pm 12 \mathrm{~V}$)	CMR	80	100	-	dB
Power Supply Rejection ($\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}$ to $5.0 \mathrm{~V},-15 \mathrm{~V}$ to -5.0 V)	PSR	80	115	-	dB
Power Supply Current ($\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, Both Amplifiers)	ID	-	4.0	8.0	mA

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Slew Rate ($\mathrm{V}_{\text {in }}=-10 \mathrm{~V}$ to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1.0$)	S_{R}	5.0	7.0	-	V/ $\mu \mathrm{s}$
Gain Bandwidth Product ($\mathrm{f}=100 \mathrm{kHz}$)	GBW	10	15	-	MHz
Unity Gain Frequency (Open Loop)	fu	-	9.0	-	MHz
Unity Gain Phase Margin (Open Loop)	θ_{m}	-	60	-	Deg
Equivalent Input Noise Voltage ($\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$)	e_{n}	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ($f=1.0 \mathrm{kHz}$)	i_{n}	-	0.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Power Bandwidth ($\mathrm{V}_{\mathrm{O}}=27 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{THD} \leq 1.0 \%$)	BWP	-	120	-	kHz
Distortion ($\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}_{\mathrm{rms}}, \mathrm{AV}^{2}=+1.0$)	THD	-	0.002	-	\%
Channel Separation ($\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz)	C_{S}	-	-120	-	dB

Figure 1. Maximum Power Dissipation versus Temperature

Figure 2. Input Bias Current versus Temperature

Figure 3. Input Bias Current versus Supply Voltage

Figure 5. DC Voltage Gain versus Temperature

Figure 7. Open Loop Voltage Gain and Phase versus Frequency

Figure 4. Supply Current versus Supply Voltage

Figure 6. DC Voltage Gain versus Supply Voltage

Figure 8. Gain Bandwidth Product versus Temperature

Figure 9. Gain Bandwidth Product versus Supply Voltage

Figure 11. Slew Rate versus Supply Voltage

Figure 13. Maximum Output Voltage versus Supply Voltage

Figure 10. Slew Rate versus Temperature

Figure 12. Output Voltage versus Frequency

Figure 14. Output Saturation Voltage versus Temperature

Figure 15. Power Supply Rejection versus Frequency

Figure 17. Total Harmonic Distortion versus Frequency

Figure 19. Input Referred Noise Current versus Frequency

Figure 16. Common Mode Rejection versus Frequency

Figure 18. Input Referred Noise Voltage versus Frequency

Figure 20. Input Referred Noise Voltage versus Source Resistance

Figure 21. Inverting Amplifier

Figure 22. Noninverting Amplifier Slew Rate

t , TIME ($2.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 23. Noninverting Amplifier Overshoot

t, TIME (200 ns/DIV)

High Voltage, Internally Compensated Operational Amplifiers

The MC1436, C was designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Output Voltage Swing:

$$
\pm 22 \mathrm{~V}_{\mathrm{pk}(\min)}\left(\mathrm{V}_{\mathrm{CC}}=+28 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-28 \mathrm{~V}\right)
$$

- Fast Slew Rate: $2.0 \mathrm{~V} / \mu \mathrm{s}$ Typ
- Internally Compensated
- Offset Voltage Null Capability
- Input Overvoltage Protection
- Avol: 500,000 Typ
- Characteristics Independent of Power Supply Voltages: ($\pm 5.0 \mathrm{Vdc}$ to $\pm 36 \mathrm{Vdc}$)

Figure 1. Differential Amplifier with $\pm 20 \mathrm{~V}$ Common Mode Input Voltage Range

Figure 2. Typical Noninverting X10 Voltage Amplifier

OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC1436CD,D	$T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8
		Plastic DIP

MC1436, C

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	MC1436	MC1436C	Unit
Power Supply Voltage	V_{CC} V_{EE}	+34 -34	+30 -30	Vdc
Input Differential Voltage Range	V IDR	Note 2	V	
Input Common Mode Voltage Range	V ICR	Note 2	V	
Output Short Circuit Duration $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}=28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=0\right)$	tSC	5.0	sec	
Power Dissipation (Package Limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	PD°	680 4.6	mW	
$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$				
Operating Ambient Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+28 \mathrm{~V}, \mathrm{~V}_{E E}=-28 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	MC1436			MC1436C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high (See Note 1) }} \end{aligned}$	IB	-	15 -	$\begin{aligned} & 40 \\ & 55 \end{aligned}$	-	25 -	90	nAdc
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=+25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\text {high }} \\ & T_{A}=\mathrm{T}_{\text {low }} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$	10		$\begin{gathered} 5.0 \\ - \\ - \end{gathered}$	$\begin{aligned} & 10 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 10 \\ & - \\ & - \end{aligned}$	$\begin{gathered} 25 \\ - \end{gathered}$	nAdc
Input Offset Voltage $\begin{aligned} \mathrm{T}_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{A} & =\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	V10		5.0	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	-		12	mVdc
Differential Input Impedance (Open loop, $\mathrm{f} \leq 5.0 \mathrm{~Hz}$) Parallel Input Resistance Parallel Input Capacitance	$\begin{aligned} & \text { rp } \\ & \mathrm{Cp} \end{aligned}$		$\begin{aligned} & 10 \\ & 2.0 \end{aligned}$	-	-	$\begin{aligned} & 10 \\ & 2.0 \end{aligned}$	-	$\begin{gathered} \mathrm{M} \Omega \\ \mathrm{pF} \end{gathered}$
Common Mode Input Impedance ($\mathrm{f} \leq 5.0 \mathrm{~Hz}$)	$z_{\text {ic }}$	-	250	-	-	250	-	M Ω
Input Common Mode Voltage Range	VICR	± 22	± 25	-	± 18	± 20	-	Vpk
Equivalent Input Noise Voltage $\left(A_{V}=100, R_{S}=10 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{BW}=1.0 \mathrm{~Hz}\right)$	e_{n}	-	50	-	-	50	-	$\mathrm{nV} /(\mathrm{Hz})^{1 / 2}$
Common Mode Rejection (DC)	CMR	70	110	-	50	90	-	dB
Large Signal DC Open Loop Voltage Gain $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right) \begin{array}{l} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\ \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \end{array} \end{aligned}$	Avol	$\begin{aligned} & 70,000 \\ & 50,000 \end{aligned}$	$\begin{gathered} 500,000 \\ - \\ 200,000 \end{gathered}$		$50,000$	$\begin{gathered} 500,000 \\ - \\ 200,000 \end{gathered}$	-	V/V
Power Bandwidth (Voltage Follower) $\left(A_{V}=1, R_{L}=5.0 \mathrm{k} \Omega, T H D \leq 5 \%, \mathrm{~V}_{\mathrm{O}}=40 \mathrm{~V}_{\mathrm{pp}}\right)$	BWp	-	23	-	-	23	-	kHz
Unity Gain Crossover Frequency (Open loop)	f_{c}	-	1.0	-	-	1.0	-	MHz
Phase Margin (Open loop, Unity Gain)	ϕ_{m}	-	50	-	-	50	-	Degrees
Gain Margin	A_{M}	-	18	-	-	18	-	dB
Slew Rate (Unity Gain)	SR	-	2.0	-	-	2.0	-	V/us
Output Impedance ($\mathrm{f} \leq 5.0 \mathrm{~Hz}$)	zO	-	1.0	-	-	1.0	-	$\mathrm{k} \Omega$
Short Circuit Output Current	ISC	-	± 17	-	-	± 19	-	mAdc

NOTES: $1 . T_{\text {low }}=0^{\circ} \mathrm{C}$ for MC1436,C $\quad T_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC1436,C
2. Either or both input voltages must not exceed the magnitude of V_{CC} or $\mathrm{V}_{\mathrm{EE}}+3.0 \mathrm{~V}$.

MC1436, C

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+28 \mathrm{~V}, \mathrm{~V}_{E E}=-28 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	MC1436			MC1436C			Unit
		Min	Typ	Max	Min	Typ	Max	
Output Voltage Range ($\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega$) $\mathrm{V}_{\mathrm{CC}}=+28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-28 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{CC}}=+36 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-36 \mathrm{Vdc}$	V_{O}	± 20	± 22	-	± 20	± 22	-	$V_{\text {pk }}$
$\begin{aligned} & \text { Power Supply Rejection } \\ & \mathrm{V}_{\mathrm{EE}}=\text { Constant, } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Constant, } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \end{aligned}$	PSR + PSR -	-	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	-	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current (See Note 2)	$\begin{aligned} & \text { ICC } \\ & \text { IEE } \end{aligned}$	-	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	mAdc
DC Quiescent Power Consumption ($\mathrm{V}_{\mathrm{O}}=0$)	P_{C}	-	146	280	-	146	280	mW

NOTES: 2. $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{Vdc}$ to 30 Vdc for MC1436
$V_{C C}=V_{E E}=5.0 \mathrm{Vdc}$ to 28 Vdc for MC1436C

Figure 3. Low-Drift Sample and Hold

Figure 5. Peak Output Voltage Swing versus Power Supply Voltage

Figure 4. Power Bandwidth

Figure 6. Open Loop Frequency Response

Figure 7. Output Short Circuit Current

2
versus Temperature

Figure 9. Inverting Feedback Model

Figure 8. Input Bias Current versus Temperature

Figure 10. Noninverting Feedback Model

Figure 11. Audio Amplifier

Figure 12. Voltage Controlied Current Source or Transconductance Amplifier with 0 V to 40 V Compliance

Figure 13. Representative Schematic Diagram

Figure 14. Equivalent Circuit

Internally Compensated, High Performance Dual Operational Amplifiers

The MC1458, C was designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short Circuit Protection
- Wide Common Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch-Up

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+18	Vdc
	V_{EE}	-18	
Input Differential Voltage	V_{ID}	± 30	V
Input Common Mode Voltage (Note 1)	$\mathrm{V}_{\mathrm{ICM}}$	± 15	$\mathrm{~V}^{\mathrm{V}}$
Output Short Circuit Duration (Note 2)	$\mathrm{tsC}_{\mathrm{SC}}$	Continuous	
Operating Ambient Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$

NOTES: 1 . For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
2. Supply voltage equal to or less than 15 V .

DUAL
OPERATIONAL AMPLIFIERS
(DUAL MC1741)
SEMICONDUCTOR
TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC1458CD, D	${ }^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8

MC1458, C

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted. (Note 3))

Characteristic	Symbol	MC1458			MC1458C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage ($\mathrm{R}_{S} \leq 10 \mathrm{k}$)	V 10	-	2.0	6.0	-	2.0	1.0	mV
Input Offset Current	110	-	20	200	-	20	300	nA
Input Bias Current	IIB	-	80	500	-	80	700	nA
Input Resistance	r_{i}	0.3	2.0	-	-	2.0	-	$\mathrm{M} \Omega$
Input Capacitance	C_{i}	-	1.4	-	-	1.4	-	pF
Offset Voltage Adjustment Range	VIOR	-	± 15	-	-	± 15	-	mV
Common Mode Input Voltage Range	VICR	± 12	± 13	-	± 11	± 13	-	V
Large Signal Voltage Gain $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right) \end{aligned}$	AVOL	20	200	-	$\overline{20}$	$\frac{-}{200}$	$\begin{aligned} & - \\ & - \end{aligned}$	V / mV
Output Resistance	r_{0}	-	75	-	-	75	-	Ω
Common Mode Rejection ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$)	CMR	70	90	-	60	90	-	dB
Supply Voltage Rejection ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$)	PSR	-	30	150	-	30	-	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Output Voltage Swing } \\ & \left(R_{S} \leq 10 \mathrm{k}\right) \\ & \left(R_{S} \leq 2.0 \mathrm{k}\right) \\ & \hline \end{aligned}$	V	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$\begin{gathered} \pm 11 \\ \pm 9.0 \end{gathered}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	V
Output Short Circuit Current	ISC	-	20	-	-	20	-	mA
Supply Currents (Both Amplifiers)	ID	-	2.3	5.6	-	2.3	8.0	mA
Power Consumption	PC	-	70	170	-	70	240	mW
Transient Response (Unity Gain) $\left(\mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}\right.$) Rise Time $\left(\mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}\right.$) Overshoot $\left(\mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}\right)$ Slew Rate	$\begin{gathered} \text { tTLH } \\ \text { os } \\ \text { SR } \end{gathered}$	-	$\begin{gathered} 0.3 \\ 15 \\ 0.5 \end{gathered}$	-	-	$\begin{array}{r} 0.3 \\ 15 \\ 0.5 \end{array}$	-	$\mu \mathrm{s}$ \% $\mathrm{V} / \mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}\right.$ to $\mathrm{T}_{\text {low }}$, unless otherwise noted. (Note 3))*

Characteristic	Symbol	MC1458			MC1458C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$)	V_{10}	-	-	7.5	-	-	12	mV
Input Offset Current ($\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$)	10	-	-	300	-	-	400	nA
Input Bias Current ($\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$)	IIB	-	-	800	-	-	1000	nA
Output Voltage Swing $\begin{aligned} & \left(R_{S} \leq 10 k\right) \\ & \left(R_{S} \leq 2 k\right) \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\stackrel{-}{ \pm 9.0}$	± 13	-	V
Large Signal Voltage Gain $\begin{aligned} & \left(V_{O}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right) \end{aligned}$	Avol	15	-	-	$\overline{15}$	-	-	V / mV

${ }^{*} T_{\text {low }}=0^{\circ} \mathrm{C}$ for MC1458, C $\quad T_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC1458, C
NOTE: 3. Input pins of an unused amplifier must be grounded for split supply operation or biased at least 3.0 V above V_{EE} for single supply operation.

Figure 1. Burst Noise versus Source Resistance

Figure 2. RMS Noise versus Source Resistance

Figure 4. Spectral Noise Density

Figure 5. Burst Noise Test Circuit

Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 sec and the $20 \mu \mathrm{~V}$ peak limit refers to the operational amplifier input thus eliminating errors in the closed loop gain factor of the operational amplifier.

MC1458, C

Figure 6. Power Bandwidth (Large Signal Swing versus Frequency)

Figure 8. Positive Output Voltage Swing versus Load Resistance

Figure 10. Output Voltage Swing versus Load Resistance (Single Supply Operation)

Figure 12. Noninverting Pulse Response

$10 \mu \mathrm{~s} / \mathrm{DIV}$

Figure 13. Transient Response Test Circuit

Figure 14. Unused OpAmp

Figure 15. Open Loop Voltage Gain versus Supply Voltage

Internally Compensated, High Performance Dual Operational Amplifier

The MCT1458, C was designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short Circuit Protection
- Wide Common Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch-Up

This MCT-prefixed device is intended to be a possible replacement for the similar device with the MC-prefix. Because the MCT device originates from different source material, there may be subtle differences in typical parameter values or characteristic curves. Due to the diversity of potential applications, Motorola can not assure identical performance in all circuits. Motorola recommends that the customer qualify the MCT-prefixed device in each potential application.

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}		
V_{EE}	+18 -18	Vdc	
Input Differential Voltage	$\mathrm{V}_{\text {ID }}$	± 30	V
Input Common Mode Voltage (Note 1)	$\mathrm{V}_{\text {ICM }}$	± 15	V
Output Short Circuit Duration (Note 2)	tsC	Continuous	
Operating Ambient Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$

NOTES: 1 . For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
2. Supply voltage equal to or less than 15 V .

CAUTION: These devices do not have internal ESD protection circuitry and are rated as CLASS 1 devices per the ESD test method in Mil-Std-833D. They should be handled using standard ESD prevention methods to avoid damage to the device.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	MCT1458			MCT1458C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$)	V_{10}	-	2.0	6.0	-	2.0	10	mV
Input Offset Current	10	-	20	200	-	20	300	nA
Input Bias Current	IB	-	80	500	-	80	700	nA
Input Resistance	r_{i}	0.3	2.0	-	-	2.0	-	$\mathrm{M} \Omega$
Input Capacitance	C_{i}	-	6.0	-	-	6.0	-	pF
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}$	± 12	± 13	-	± 11	± 13	-	V
$\begin{gathered} \text { Large Signal Voltage Gain } \\ \left(V_{O}= \pm 10 \mathrm{~V}, R_{L}=2.0 \mathrm{k}\right) \\ \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, R_{L}=10 \mathrm{k}\right) \end{gathered}$	Avol	20	200	-	$\overline{20}$	200		V / mV
Output Resistance	r_{0}	-	75	-	-	75	-	Ω
Common Mode Rejection ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$)	CMR	70	90	-	60	90	-	dB
Supply Voltage Rejection ($\mathrm{RS}_{\mathrm{S}} \leq 10 \mathrm{k}$)	PSR	-	30	150	-	30	-	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Output Voltage Swing } \\ & \text { (RS } \leq 10 \mathrm{k} \text {) } \\ & \text { (} \mathrm{R}_{S} \leq 2.0 \mathrm{k} \text {) } \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{gathered} \pm 11 \\ \pm 9.0 \end{gathered}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		V
Output Short Circuit Current	Isc	-	20	-	-	20	-	mA
Supply Currents (Both Amplifiers)	ID	-	2.3	5.6	-	2.3	8.0	mA
Power Consumption	PC	-	70	170	-	70	240	mW
Transient Response (Unity Gain) ($\mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$) Rise Time ($\mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, R_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$) Overshoot ($V_{I}=10 \mathrm{~V}, R_{L} \geq 2.0 \mathrm{k} \Omega, C_{L} \leq 100 \mathrm{pF}$) Slew Rate	$\begin{aligned} & \text { tTLH } \\ & \text { os } \\ & \text { SR } \end{aligned}$	-	0.9 15 0.8	-	-	$\begin{aligned} & 0.9 \\ & 15 \\ & 0.8 \end{aligned}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=T_{\text {high }}$ to $T_{\text {low }}$, unless otherwise noted.)

Characteristic	Symbol	MCT1458			MCT1458C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$)	V_{10}	-	-	7.5	-	-	12	mV
Input Offset Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}\right)$	10	-	-	300	-	-	400	nA
Input Bias Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}\right)$	I'B	-	-	800	-	-	1000	nA
$\begin{aligned} & \text { Output Voltage Swing } \\ & \left(R_{S} \leq 10 \mathrm{k}\right) \\ & \left(R_{S} \leq 2 \mathrm{k}\right) \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		± 9.0	± 13		V
Large Signal Voltage Gain $\begin{aligned} & \left(V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right) \end{aligned}$	Avol	15	-	-	$\overline{15}$	-	-	V/mV

Figure 1. Power Bandwidth (Large Signal Swing versus Frequency)

Figure 3. Input Offset Current versus Temperature

Figure 5. Open Loop Voltage Gain versus Supply Voltage

Figure 2. Maximum Output Voltage Swing versus Load Resistance

Figure 4. Input Offset Current versus Supply Voltage

Figure 6. Voltage Gain and Phase versus Frequency

RF/IF/Audio Amplifier

The MC1490 is an integrated circuit featuring wide-range AGC for use in RF/IF amplifiers and audio amplifiers over the temperature range, -40° to $+85^{\circ} \mathrm{C}$.

- High Power Gain: 50 dB Typ at 10 MHz 45 dB Typ at 60 MHz 35 dB Typ at 100 MHz
- Wide Range AGC: 60 dB Min, DC to 60 MHz
- 6.0 V to 15 V Operation, Single Polarity Supply
- See MC1350D for Surface Mount

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+18	Vdc
AGC Supply	$\mathrm{V}_{\text {AGC }}$	V_{CC}	Vdc
Input Differential Voltage	$\mathrm{V}_{\text {ID }}$	5.0	Vdc
Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC1490P	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic

WIDEBAND AMPLIFIER WITH AGC

SEMICONDUCTOR TECHNICAL DATA

SCATTERING PARAMETERS $\left(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{O}}=50 \Omega\right)$				
Parameter	Symbol	$\underset{\substack{\mathrm{Typ} \\ \text { TyHz }}}{ }$		Unit
		30	60	
Input Reflection Coefficient		$\begin{gathered} 0.95 \\ -7.3 \end{gathered}$	0.93 -16	- $\overline{\text { deg }}$
Output Reflection Coefficient		$\begin{gathered} 0.99 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.98 \\ & -5.5 \end{aligned}$	- deg^{-}
Forward Transmission Coefficient	$\underset{\theta 21}{\left\|S_{21}\right\|}$	$\begin{aligned} & 16.8 \\ & 128 \end{aligned}$	$\begin{aligned} & 14.7 \\ & 64.3 \end{aligned}$	$\overline{\operatorname{deg}}$
Reverse Transmission Coefficient	$\begin{aligned} & s_{12} \end{aligned}$	$\begin{gathered} 0.00048 \\ 84.9 \end{gathered}$	$\begin{gathered} 0.00092 \\ 79.2 \end{gathered}$	$\overline{\operatorname{deg}}$

MC1490

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{f}=60 \mathrm{MHz}, \mathrm{BW}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Power Supply Current Drain	-	$I_{C C}$	-	-	17	mA
AGC Range (AGC) 5.0 V Min to 7.0 V Max	19	$M_{A G C}$	-60	-	-	dB
Output Stage Current (Sum of Pins 1 and 8)	-	IO_{O}	4.0	-	7.5	mA
Single-Ended Power Gain R $=\mathrm{R}_{\mathrm{L}}=50 \Omega$	19	GP	40	-	-	dB
Noise Figure RS $=50$ Ohms	19	NF	-	6.0	-	dB
Power Dissipation	-	P_{D}	-	168	204	mW

Figure 1. Unneutralized Power Gain versus Frequency (Tuned Amplifier, See Figure 19)

Figure 3. Dynamic Range: Output Voltage versus Input Voltage (Video Amplifier, See Figure 20)

Figure 2. Voltage Gain versus Frequency
(Video Amplifier, See Figure 20)

Figure 4. Voltage Gain versus Frequency (Video Amplifier, See Figure 20)

Figure 5. Voltage Gain and Supply Current versus Supply Voltage (Video Amplifier, See Figure 20)

Figure 7. Typical Gain Reduction versus AGC Current

Figure 9. Power Gain versus Supply Voltage (See Test Circuit, Figure 19)

Figure 6. Typical Gain Reduction versus AGC Voltage

Figure 8. Fixed Tuned Power Gain Reduction versus Temperature (See Test Circuit, Figure 19)

Figure 10. Noise Figure versus Frequency

Figure 11. Noise Figure versus
Source Resistance

Figure 12. Noise Figure versus AGC Gain Reduction

Figure 13. Harmonic Distortion versus AGC Gain Reduction for AM Carrier (For Test Circuit, See Figure 14)

Figure 14. 10.7 MHz Amplifier Gain $\simeq \mathbf{5 5} \mathbf{~ d B}, B W=100 \mathbf{k H z}$

L1 = 24 turns, \#22 AWG wire on a T12-44 micro metal Toroid core (-124 pF)
$\mathrm{L} 2=20$ turns, \#22 AWG wire on a T12-44 micro metal Toroid core (-100 pF)

Figure 15. S_{11} and $\mathrm{S}_{\mathbf{2 2}}$, Input and Output Reflection Coefficient

Figure 16. S_{11} and S_{22}, Input and Output Reflection Coefficient

Figure 18. S_{12}, Reverse Transmission Coefficient (Feedback)

Figure 19. 60 MHz Power Gain Test Circuit

$\mathrm{L} 1=7$ turns, \#20 AWG wire, 5/16" Dia.,5/8" long $\mathrm{L} 2=6$ turns, \#14 AWG wire, $9 / 16^{\prime \prime}$ Dia., $3 / 4^{\prime \prime}$ long $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3=(1-30) \mathrm{pF}$ $\mathrm{C} 4=(1-10) \mathrm{pF}$

L. $=12$ turns, \#22 AWG wire on a Toroid core,
(T37-6 micro metal or equiv).
T1: Primary = 17 turns, \#20 AWG wire on a Toroid core, (T44-6). Secondary = 2 turns, \#20 AWG wire.

Figure 20. Video Amplifier

Figure 22. 100 MHz Mixer

L1 = 5 turns, \#16 AWG wire, $1 / 4^{\prime \prime}$, ID Dia., $5 / 8^{\prime \prime}$ long
L2 = 16 turns, \#20 AWG wire on a Toroid core, (T44-6).

Figure 23. Two-Stage 60 MHz IF Amplifier (Power Gain $\approx \mathbf{8 0} \mathrm{dB}, \mathrm{BW} \approx 1.5 \mathrm{MHz}$)

T1: Primary Winding = 15 turns, \#22 AWG wire, 1/4" ID Air Core Secondary Winding = 4 turns, \#22 AWG wire, Coefficient of Coupling ≈ 1.0

T2: Primary Winding $=10$ turns, \#22 AWG wire, $1 / 4^{\prime \prime}$ ID Air Core Secondary Winding = 2 turns, \#22 AWG wire,
Coefficient of Coupling ≈ 1.0

DESCRIPTION OF SPEECH COMPRESSOR

The amplifier drives the base of a PNP transistor operating common-emitter with a voltage gain of approximately 20. The control R1 varies the quiescent Q point of this transistor so that varying amounts of signal exceed the level V_{r}. Diode D1 rectifies the positive peaks of Q1's output only when these peaks are greater than $\mathrm{V}_{\mathrm{r}} \simeq 7.0 \mathrm{~V}$. The resulting output is filtered by $\mathrm{C}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}$.
R_{X} controls the charging time constant or attack time. C_{X} is involved in both charge and discharge. R2 (the $150 \mathrm{k} \Omega$ and input resistance of the emitter-follower Q2) controls the decay time. Making the decay long and attack short is accomplished by making R_{X} small and $R 2$ large. (A Darlington emitter-follower may be needed if extremely slow decay times are required.)

The emitter-follower Q2 drives the AGC Pin 5 of the MC1490P and reduces the gain. R3 controls the slope of signal compression.

Table 1. Distortion versus Frequency

Frequency	Distortion		Distortion	
	$10 \mathrm{mV} \mathrm{e}_{\mathrm{i}}$	$100 \mathrm{mV} \mathrm{e}_{\mathrm{i}}$	$10 \mathrm{mV} \mathrm{e}_{\mathrm{i}}$	$100 \mathrm{mV} \mathrm{ei}_{\mathrm{i}}$
100 Hz	3.5\%	12\%	15\%	27\%
300 Hz	2\%	10\%	6\%	20\%
1.0 kHz	1.5\%	8\%	3\%	9\%
10 kHz	1.5\%	8\%	1\%	3\%
100 kHz	1.5\%	8\%	1\%	3\%
	Notes 1 and 2		Notes 3 and 4	

Notes: (1) Decay $\begin{aligned} & =300 \mathrm{~ms} \\ \text { Attack } & =20 \mathrm{~ms}\end{aligned}$
(3) Decay $=20 \mathrm{~ms}$ Attack $=3.0 \mathrm{~ms}$
(2) $\begin{aligned} \mathrm{C}_{\mathrm{X}} & =7.5 \mu \mathrm{~F} \\ \mathrm{R}_{\mathrm{X}} & =0 \text { (Short) }\end{aligned}$
(2) $\begin{aligned} C_{X} & =7.5 \mu F \\ R_{X} & =0 \text { (Short) }\end{aligned}$
(4) $C_{X}=0.68 \mu \mathrm{~F}$

Figure 24. Speech Compressor

Internally Compensated, High Performance Operational Amplifier

The MC1741C was designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short Circuit Protection
- Offset Voltage Null Capability
- Wide Common Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch Up

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	± 18	Vdc
Input Differential Voltage	$\mathrm{V}_{\text {ID }}$	± 30	V
Input Common Mode Voltage (Note 1)	$\mathrm{V}_{\text {ICM }}$	± 15	V
Output Short Circuit Duration (Note 2)	t_{SC}	Continuous	
Operating Ambient Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTES: 1 . For supply voltages less than +15 V , the absolute maximum input voltage is equal to the supply voltage.
2. Supply voltage equal to or less than 15 V .

OPERATIONAL

 AMPLIFIERSEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Alternate	Operating Temperature Range	Package
MC1741CD	-	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8
MC1741CP1	$\begin{aligned} & \text { LM741CN } \\ & \mu \mathrm{A} 741 \mathrm{TC} \end{aligned}$		Plastic DIP

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$)	V_{10}	-	2.0	6.0	mV
Input Offset Current	10	-	20	200	nA
Input Bias Current	IB	-	80	500	nA
Input Resistance	ri	0.3	2.0	-	$\mathrm{M} \Omega$
Input Capacitance	C_{i}	-	1.4	-	pF
Offset Voltage Adjustment Range	$\mathrm{V}_{\text {IOR }}$	-	± 15	-	mV
Common Mode Input Voltage Range	VICR	± 12	± 13	-	V
Large Signal Voltage Gain ($\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k}$)	Avol	20	200	-	V/mV
Output Resistance	r_{0}	-	75	-	Ω
Common Mode Rejection ($\mathrm{RS}_{\mathbf{S}} \leq 10 \mathrm{k}$)	CMR	70	90	-	dB
Supply Voltage Rejection ($\mathrm{R}_{S} \leq 10 \mathrm{k}$)	PSR	75	-	-	dB
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geq 10 \mathrm{k}\right) \\ & \left(R_{L} \geq 2.0 \mathrm{k}\right) \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		V
Output Short Circuit Current	ISC	-	20	-	mA
Supply Current	ID	-	1.7	2.8	mA
Power Consumption	PC	-	50	85	mW
Transient Response (Unity Gain, Noninverting) $\begin{aligned} & \left(V_{I}=20 \mathrm{mV}, R_{L} \geq 2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}\right) \text { Rise Time } \\ & \left(\mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, R_{\mathrm{L}} \geq 2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}\right) \text { Overshoot } \\ & \left(\mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, R_{\mathrm{L}} \geq 2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}\right) \text { Slew Rate } \end{aligned}$	$\begin{aligned} & \text { tTLH } \\ & \text { os } \\ & \text { SR } \end{aligned}$	-	0.3 15 0.5	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.$ to $T_{\text {high, }}$, unless otherwise noted.) ${ }^{\star}$

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage $\left(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\right)$	V_{IO}	-	-	7.5	mV
Input Offset Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$	IO	-	-	300	nA
Input Bias Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$	I B	-	-	800	nA
Supply Voltage Rejection $\left(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}\right)$	PSR	75	-	-	dB
Output Voltage Swing $\left(\mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k}\right)$	V_{O}	± 10	± 13	-	V
Large Signal Voltage Gain $\left(\mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k}, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right)$	$\mathrm{A}_{\mathrm{VOL}}$	15	-	-	V / mV

${ }^{*} T_{\text {low }}=0^{\circ} \mathrm{C} \quad T_{\text {high }}=70^{\circ} \mathrm{C}$

Figure 1. Burst Noise versus Source Resistance

Figure 3. Output Noise versus Source Resistance

Figure 2. RMS Noise versus Source Resistance

Figure 4. Spectral Noise Density

Figure 5. Burst Noise Test Circuit

[^6]The test time employed is 10 sec and the 20 mV peak limit refers to the operational amplifier input thus eliminating errors in the closed loop gain factor of the operational amplifier.

Figure 6. Power Bandwidth (Large Signal Swing versus Frequency)

Figure 8. Positive Output Voltage Swing versus Load Resistance

Figure 10. Output Voltage Swing versus Load Resistance (Single Supply Operation)

Figure 7. Open Loop Frequency Response

Figure 9. Negative Output Voltage Swing versus Load Resistance

Figure 11. Single Supply Inverting Amplifier

Figure 12. Noninverting Pulse Response

$10 \mu \mathrm{~s} / \mathrm{DIV}$

Figure 13. Transient Response Test Circuit

Figure 14. Open Loop Voltage Gain versus Supply Voltage

2

Micropower Programmable Operational Amplifier

This extremely versatile operational amplifier features low power consumption and high input impedance. In addition, the quiescent currents within the device may be programmed by the choice of an external resistor value or current source applied to the $I_{\text {set }}$ input. This allows the amplifier's characteristics to be optimized for input current and power consumption despite wide variations in operating power supply voltages.

- $\pm 1.2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Operation
- Wide Programming Range
- Offset Null Capability
- No Frequency Compensation Required
- Low Input Bias Currents
- Short Circuit Protection

Resistive Programming

(See Figure 1)
$R_{\text {set }}$ to Ground

Typical $\mathbf{R}_{\text {set }}$ Values		
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	$\mathrm{I}_{\text {set }}=1.5 \mu \mathrm{~A}$	$\mathrm{I}_{\text {set }}=15 \mu \mathrm{~A}$
$\pm 6.0 \mathrm{~V}$	$3.6 \mathrm{M} \Omega$	$360 \mathrm{k} \Omega$
$\pm 10 \mathrm{~V}$	$6.2 \mathrm{M} \Omega$	$620 \mathrm{k} \Omega$
$\pm 12 \mathrm{~V}$	$7.5 \mathrm{M} \Omega$	$750 \mathrm{k} \Omega$
$\pm 15 \mathrm{~V}$	$10 \mathrm{M} \Omega$	$1.0 \mathrm{M} \Omega$

Typical $R_{\text {set }}$ Values		
$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}$	$I_{\text {set }}=1.5 \mu \mathrm{~A}$	$\mathrm{I}_{\text {set }}=15 \mu \mathrm{~A}$
$\pm 1.5 \mathrm{~V}$	$1.6 \mathrm{M} \Omega$	$160 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$3.6 \mathrm{M} \Omega$	$360 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$7.5 \mathrm{M} \Omega$	$750 \mathrm{k} \Omega$
$\pm 15 \mathrm{~V}$	$20 \mathrm{M} \Omega$	$2.0 \mathrm{M} \Omega$

Active Programming

FET Current Source
Bipolar Current Source

Pins not shown are not connected.

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {EE }}$	± 18	Vdc
Differential Input Voltage	$V_{\text {ID }}$	± 30	Vdc
Common Mode Input Voltage $V_{C C}$ and $\mathrm{V}_{\mathrm{EE}} \mid<15 \mathrm{~V}$ $V_{C C}$ and $\mathrm{V}_{\mathrm{EE}} \geq 15 \mathrm{~V}$	VICM	$\begin{gathered} \mathrm{V}_{\mathrm{CC},}, \mathrm{~V}_{\mathrm{EE}} \\ \pm 15 \end{gathered}$	Vdc
Offset Null to $V_{\text {EE }}$ Voltage	$\mathrm{V}_{\text {Off }} \mathrm{V}_{\text {EE }}$	± 0.5	Vdc
Programming Current	$\mathrm{I}_{\text {set }}$	500	$\mu \mathrm{A}$
Programming Voltage (Voltage from $I_{\text {set }}$ Terminal to Ground)	$\mathrm{V}_{\text {set }}$	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\right) \\ \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	Vdc
Output Short Circuit Duration (Note 1)	${ }^{\text {tSC }}$	Indefinite	sec
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$

NOTE 1. May be to ground or either supply voltage. Rating applies up to a case temperature of $+125^{\circ} \mathrm{C}$ or ambient temperature of $+70^{\circ} \mathrm{C}$ and $\mathrm{I}_{\text {set }} \leq 30 \mu \mathrm{~A}$.

Representative Schematic Diagram

Voltage Offset Null Circuit

Transient Response Test Circuit

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$, $\mathrm{I}_{\text {set }}=1.5 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. ${ }^{*}$)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }}{ }^{*} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }^{*}} \end{aligned}$	V_{10}	-		$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Offset Voltage Adjustment Range	VIOR	-	9.0	-	mV
Input Offset Current $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\text {high }} \\ & \mathrm{T}_{A}=\mathrm{T}_{\text {low }} \end{aligned}$	Io		0.7	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 10 \end{aligned}$	nA
Input Bias Current $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \end{aligned}$	IIB		2.0	$\begin{aligned} & 10 \\ & 10 \\ & 20 \end{aligned}$	nA
Input Resistance	r_{i}	-	50	-	M Ω
Input Capacitance	c_{i}	-	2.0	-	pF
Input Voltage Range $T_{\text {low }} \leq T_{A} \leq T_{\text {high }}$	$V_{\text {ID }}$	+1.0	-	-	V
Large Signal Voltage Gain $\begin{aligned} & R_{\mathrm{L}} \geq 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}} \geq 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	Avol	$\begin{aligned} & 25 k \\ & 25 k \end{aligned}$	$200 \text { k }$	-	V/V
Output Voltage Swing $R_{L} \geq 75 \mathrm{k} \Omega, T_{\text {low }} \leq T_{A} \leq T_{\text {high }}$	V_{O}	± 2.0	± 2.4	-	V
Output Resistance	ro	-	5.0	-	$\mathrm{k} \Omega$
Output Short Circuit Current	ISC	-	3.0	-	mA
Common Mode Rejection $R_{S} \leq 10 \mathrm{k} \Omega, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}$	CMR	70	86	-	dB
Supply Voltage Rejection Ratio $R_{S} \leq 10 \mathrm{k} \Omega, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}$	PSRR	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
Supply Current $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	ICC, IEE	-	13	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	PD	-	78	$\begin{aligned} & 120 \\ & 150 \\ & \hline \end{aligned}$	$\mu \mathrm{W}$
Transient Response (Unity Gain) $\begin{aligned} & \mathrm{V}_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { Rise Time } \\ & \text { Overshoot } \end{aligned}$	$\begin{aligned} & \text { tTLH } \\ & \text { os } \end{aligned}$	-	$\begin{gathered} 3.0 \\ 0 \end{gathered}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega$)	S_{R}	-	0.03	-	$\mathrm{V} / \mathrm{\mu s}$

${ }^{*} T_{\text {low }}=0^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (VCC $=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{~V}, \mathrm{I}_{\text {set }}=15 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. ${ }^{*}$)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(R_{S} \leq 10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }}{ }^{*} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}{ }^{*} \end{aligned}$	V_{10}		2.0 -	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Offset Voltage Adjustment Range	VIOR	-	18	-	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	Io		2.0	$\begin{aligned} & 25 \\ & 25 \\ & 40 \end{aligned}$	nA
Input Bias Current $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \\ & \hline \end{aligned}$	I'B	-	$\begin{gathered} 15 \\ - \\ - \end{gathered}$	$\begin{gathered} 50 \\ 50 \\ 100 \end{gathered}$	nA
Input Resistance	ri	-	5.0	-	M Ω
Input Capacitance	c_{i}	-	2.0	-	pF
Input Voltage Range $\mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}$	$V_{\text {ID }}$	± 1.0	-	-	V
Large Signal Voltage Gain $\begin{aligned} & R_{L} \geq 5.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	Avol	$\begin{aligned} & 25 \mathrm{k} \\ & 25 \mathrm{k} \end{aligned}$	$200 \text { k }$	-	V/N
Output Voltage Swing $R_{L} \geq 5.0 \mathrm{k} \Omega, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}$	Vo	± 2.0	± 2.1	-	V
Output Resistance	ro	-	1.0	-	$\mathrm{k} \Omega$
Output Short Circuit Current	ISC	-	5.0	-	mA
$\begin{aligned} & \text { Common Mode Rejection } \\ & R_{S} \leq 10 \mathrm{k} \Omega \text {, } \mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	CMR	70	86	-	dB
Supply Voltage Rejection Ratio $R_{S} \leq 10 \mathrm{k} \Omega, \mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}$	PSRR	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
Supply Current $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	${ }^{\text {ICC, }}$ IEE	-	130	$\begin{aligned} & 170 \\ & 180 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	PD	-	780	$\begin{aligned} & 1020 \\ & 1080 \\ & \hline \end{aligned}$	$\mu \mathrm{W}$
Transient Response (Unity Gain) $\begin{aligned} & \mathrm{V}_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { Rise Time } \\ & \text { Overshoot } \end{aligned}$	$\begin{aligned} & \text { tTLH } \\ & \text { os } \end{aligned}$	-	$\begin{aligned} & 0.6 \\ & 5.0 \end{aligned}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega$)	$S_{\text {R }}$	-	0.35	-	$\mathrm{V} / \mathrm{\mu s}$

${ }^{*} T_{\text {low }}=0^{\circ} \mathrm{C} \quad T_{\text {high }}=+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (VCC $=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$, $\mathrm{I}_{\text {Set }}=1.5 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. ${ }^{*}$)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }}{ }^{*} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}{ }^{*} \end{aligned}$	V O		2.0	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	mV
Offset Voltage Adjustment Range	VIOR	-	9.0	-	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	Io		0.7	$\begin{gathered} 6.0 \\ 6.0 \\ 10 \end{gathered}$	nA
Input Bias Current $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\text {high }} \\ & \mathrm{T}_{A}=\mathrm{T}_{\text {low }} \end{aligned}$	IB		2.0	$\begin{aligned} & 10 \\ & 10 \\ & 20 \end{aligned}$	nA
Input Resistance	r_{i}	-	50	-	M Ω
Input Capacitance	c_{i}	-	2.0	-	pF
Input Voltage Range $T_{\text {low }} \leq T_{A} \leq T_{\text {high }}$	VID	± 10	-	-	V
Large Signal Voltage Gain $\begin{aligned} & R_{\mathrm{L}} \geq 75 \mathrm{k} \Omega, \mathrm{~V}_{O}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}} \geq 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	AVOL	$\begin{array}{r} 50 \mathrm{k} \\ 50 \mathrm{k} \end{array}$	400 k		V/V
Output Voltage Swing $\begin{aligned} & R_{L} \geq 75 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{L} \geq 75 \mathrm{k} \Omega, T_{\text {low }} \leq T_{A} \leq T_{\text {high }} \\ & \hline \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	± 14		V
Output Resistance	ro	-	5.0	-	$\mathrm{k} \Omega$
Output Short Circuit Current	Isc	-	3.0	-	mA
Common Mode Rejection $R_{S} \leq 10 \mathrm{k} \Omega, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}$	CMR	70	90	-	dB
Supply Voltage Rejection Ratio $R_{S} \leq 10 \mathrm{k} \Omega, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}$	PSRR	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
Supply Current $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	ICC, IEE	-	20	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	PD	-	780	$\begin{gathered} 0.9 \\ 1.05 \end{gathered}$	mW
Transient Response (Unity Gain) $\begin{aligned} & \mathrm{V}_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { Rise Time } \\ & \text { Overshoot } \end{aligned}$	$\begin{aligned} & \text { tTLH } \\ & \text { os } \end{aligned}$	-	$\begin{gathered} 1.6 \\ 0 \end{gathered}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$
Slew Rate ($\mathrm{RL}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega$)	S_{R}	-	0.1	-	V/us

${ }^{*} \mathrm{~T}_{\text {low }}=0^{\circ} \mathrm{C} \quad T_{\text {high }}=+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$, $\mathrm{I}_{\text {set }}=15 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. ${ }^{*}$)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage (RS } \leq 10 \mathrm{k} \Omega \text {) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }}{ }^{*} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}{ }^{*} \end{aligned}$	V_{10}			$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Offset Voltage Adjustment Range	VIOR	-	18	-	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \\ & \hline \end{aligned}$	10		2.0	$\begin{aligned} & 25 \\ & 25 \\ & 40 \end{aligned}$	nA
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	IB		15	$\begin{gathered} 50 \\ 50 \\ 100 \end{gathered}$	nA
Input Resistance	r_{i}	-	5.0	-	$\mathrm{M} \Omega$
Input Capacitance	ci_{i}	-	2.0	-	pF
Input Voltage Range $T_{\text {low }} \leq T_{A} \leq T_{\text {high }}$	$V_{\text {ID }}$	± 10	-	-	V
Large Signal Voltage Gain $\begin{aligned} & R_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}} \geq 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	Avol	$\begin{array}{r} 50 \mathrm{k} \\ 50 \mathrm{k} \\ \hline \end{array}$			V/N
Output Voltage Swing $\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}} \geq 75 \mathrm{k} \Omega, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	V_{O}	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	± 13		V
Output Resistance	ro	-	1.0	-	k Ω
Output Short Circuit Current	ISC	-	12	-	mA
$\begin{aligned} & \text { Common Mode Rejection } \\ & R_{S} \leq 10 \mathrm{k} \Omega \text {, } \mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }} \end{aligned}$	CMR	70	90	-	dB
Supply Voltage Rejection Ratio $R_{S} \leq 10 \mathrm{k} \Omega, \mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {high }}$	PSRR	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Supply Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {high }} \end{aligned}$	ICC, IEE			$\begin{aligned} & 190 \\ & 200 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Power Dissipation } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {high }} \end{aligned}$	PD			$\begin{aligned} & 5.7 \\ & 6.0 \\ & \hline \end{aligned}$	$\mu \mathrm{W}$
Transient Response (Unity Gain) $\begin{aligned} & \mathrm{V}_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { Rise Time } \\ & \text { Overshoot } \end{aligned}$	$\begin{gathered} \text { tTLH } \\ \text { os } \end{gathered}$		$\begin{gathered} 0.35 \\ 10 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega$)	S_{R}	-	0.8	-	V/ $/ \mathrm{s}$

${ }^{*} \mathrm{~T}_{\text {low }}=0^{\circ} \mathrm{C} \quad T_{\text {high }}=+70^{\circ} \mathrm{C}$

Figure 1. Set Current versus Set Resistor

Figure 3. Open Loop Gain versus Set Current

Figure 5. Input Bias Current versus Ambient Temperature

Figure 2. Positive Standby Supply Current versus Set Current

Figure 4. Input Bias Current versus Set Current

Figure 6. Gain Bandwidth Product versus Set Current

Figure 7. Output Voltage Swing versus Load Resistance

Figure 9. Output Voltage Swing versus Supply Voltage

Figure 11. Input Noise Voltage versus Set Current

Figure 8. Supply Current versus Ambient Temperature

Figure 10. Slew Rate versus Set Current

Figure 12. Optimum Source Resistance for Minimum Noise versus Set Current

Figure 13. Wien Bridge Oscillator

Figure 14. Multiple Feedback Bandpass Filter

To obtain less than 10% error from the operational amplifier:

$$
\frac{Q_{O} f_{0}}{G B W} \leq 0.1
$$

where f_{0} and GBW are expressed in Hz . GBW is available from Figure 6 as a function of Set Current, Iset-

Figure 15. Multiple Feedback Bandpass Filter (1.0 kHz)

Figure 16. Gated Amplifier

Figure 17. High Input Impedance Amplifier

Quad Single Supply Operational Amplifiers

These internally compensated Norton operational amplifiers are designed specifically for single positive power supply applications found in industrial control systems and automotive electronics. Each device contains four independent amplifiers - making it ideal for applications such as active filters, multi-channel amplifiers, tachometers, oscillators and other similar usage.

- Single Supply Operation
- Internally Compensated
- Wide Unity Gain Bandwidth: 4.0 MHz Typical
- Low Input Bias Current: 50 nA Typical
- High Open Loop Gain: 1000 V/V Minimum
- Large Output Voltage Swing: $\left(\mathrm{V}_{\mathrm{CC}}-1\right) \mathrm{V}_{\mathrm{pp}}$

MAXIMUM RATINGS

Rating	Symbol	LM2900/ LM3900	MC3301	Unit
Supply Voltage	V_{CC}	+32	+28	V
Input Current $\left(l_{\text {in+ }} \text { or } l_{\text {in- }}\right)$	l_{in}	5.0		mA
Output Current	10	50		mA
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$) Derate above $T_{A}=+25^{\circ} \mathrm{C}$	PD $1 / R_{\text {ӨJA }}$	$\begin{aligned} & 625 \\ & 5.0 \end{aligned}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Ambient Temperature Range LM2900 LM3900	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -40 \text { to }+85 \\ 0 \text { to }+70 \end{gathered}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 t	+150	${ }^{\circ} \mathrm{C}$

QUAD
 OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
LM3900D	$T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO- 14
LM3900N		
LM2900N MC3301P	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ [each amplifier], unless otherwise noted.)

Characteristic	Symbol	LM2900			LM3900			MC3301			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Open Loop Voltage Gain $\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high (Notes 1, }} \text {) } \end{aligned}$	Avol	1.2	2.0	-	1.2	2.0 -	-	1.2 -	2.0	-	V / mV
Input Resistance (Inverting Input)	r_{i}	-	1.0	-	-	1.0	-	-	1.0	-	M Ω
Output Resistance	r_{0}	-	8.0	-	-	8.0	-	-	8.0	-	$\mathrm{k} \Omega$
Input Bias Current (Inverting Input) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ (Note 1)	IB	$\begin{aligned} & - \\ & - \end{aligned}$	50	200 -	-		200 -	-		300	nA
Slew Rate ($C_{L}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$) Positive Output Swing Negative Output Swing	SR	-	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	-	-	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	-	-	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	-	$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth	BW	-	4.0	-	-	4.0	-	-	4.0	-	MHz
Output Voltage Swing (Note 7) $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \\ & \mathrm{~V}_{\text {out }} \operatorname{High}\left(\mathrm{l}_{\text {in }}^{-}=0, \mathrm{l}_{\text {in }}^{+}=0\right) \\ & \mathrm{V}_{\text {out }} \text { Low }\left(\mathrm{l}_{\text {in }}-=10 \mu \mathrm{~A}, \mathrm{I}_{\text {in }}+=0\right) \end{aligned}$ $\mathrm{V}_{\mathrm{CC}}=$ Maximum Rating, $\mathrm{R}_{\mathrm{L}}=\infty$ $V_{\text {out }}$ High ($\mathrm{l}_{\text {in }}{ }^{-}=0, \mathrm{l}_{\text {in }}+=0$)	$\begin{aligned} & \mathrm{v}_{\mathrm{OH}} \\ & \mathrm{v}_{\mathrm{OL}} \\ & \mathrm{v}_{\mathrm{OH}} \end{aligned}$	13.5	$\begin{aligned} & 14.2 \\ & 0.03 \\ & \\ & 29.5 \end{aligned}$	$\stackrel{-}{-}$	13.5	$\begin{aligned} & 14.2 \\ & 0.03 \\ & \\ & 29.5 \end{aligned}$	$\begin{gathered} - \\ 0.2 \end{gathered}$	13.5	$\begin{array}{r} 14.2 \\ 0.03 \\ \\ 25.5 \end{array}$	$\begin{gathered} - \\ 0.2 \end{gathered}$	V
Output Current Source Sink (Note 3) Low Level Output Current $\mathrm{l}_{\text {in }}{ }^{-}=5.0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	ISource ISink OL	$\begin{gathered} 6.0 \\ 0.5 \\ - \end{gathered}$	$\begin{gathered} 10 \\ 0.87 \\ 5.0 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 6.0 \\ 0.5 \\ - \end{gathered}$	$\begin{gathered} 10 \\ 0.87 \\ 5.0 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 5.0 \\ 0.5 \\ - \end{gathered}$	$\begin{gathered} 10 \\ 0.87 \\ 5.0 \end{gathered}$	$\begin{gathered} 5.0 \\ 0.5 \\ - \end{gathered}$	mA
Supply Current (All Four Amplifiers) Noninverting Inputs Open Noninverting Inputs Grounded	$\begin{aligned} & \mathrm{I} \mathrm{DO} \\ & \text { I } \mathrm{DG} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 6.9 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	-	$\begin{aligned} & 6.9 \\ & 7.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 6.9 \\ & 7.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	mA
Power Supply Rejection ($\mathrm{f}=100 \mathrm{~Hz}$)	PSR	-	55	-	-	55	-	- -	55	-	dB
$\begin{aligned} & \text { Mirror Gain (} \left.T_{A}=T_{\text {low }} \text { to } T_{\text {high }} ; \text { Notes } 1,4\right) \\ & \mathrm{l}_{\text {in }}+=20 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {in }}+=200 \mu \mathrm{~A} \end{aligned}$	A_{i}	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & \Delta \text { Mirror Gain }\left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }} ; \text { Notes } 1,4\right) \\ & 20 \mu \mathrm{~A} \leq \mathrm{I}_{\text {in }}+\leq 200 \mu \mathrm{~A} \end{aligned}$	$\Delta \mathrm{A}_{\mathrm{i}}$	-	2.0	5.0	-	2.0	5.0	-	2.0	5.0	\%
Mirror Current ($\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$; Notes 1,5)		-	10	500	-	10	500	-	10	500	$\mu \mathrm{A}$
Negative Input Current (Note 6)		-	1.0	-	-	1.0	-	-	1.0	-	mA

NOTES: 1. $\begin{aligned} \text { low } & =-40^{\circ} \mathrm{C} \text { for LM2900, MC3301 } & & =0^{\circ} \mathrm{C} \text { for LM3900 }\end{aligned}$ $=0^{\circ} \mathrm{C}$ for LM3900
2. Open loop voltage gain is defined as voltage gain from the inverting input to the output.
3. Sink current is specified for analog operation. When the device is used as a comparator (non-analog operation) where the inverting input is overdriven, the sink current (low level output current) capability is typically 5.0 mA .
4. This specification indicates the current gain of the current mirror which is used as the noninverting input.
5. Input V_{BE} match between the noninverting and inverting inputs occurs for a mirror current (noninverting input current) of approximately $10 \mu \mathrm{~A}$.
6. Clamp transistors are included to prevent the input voltages from swinging below ground more than approximately -0.3 V . The negative input currents that may result from large signal overdrive with capacitive input coupling must be limited externally to values of approximately 1.0 mA . If more than one of the input terminals are simultaneously driven negative, maximum currents are reduced. Common mode biasing can be used to prevent negative input voltages.
7. When used as a noninverting amplifier, the minimum output voltage is the $V_{B E}$ of the inverting input transistor.

Figure 1. Open Loop Voltage Gain versus Frequency

Figure 3. Output Resistance versus Frequency

Figure 5. Analog Source Current versus Supply Voltage

Figure 2. Open Loop Voltage Gain versus Supply Voltage

Figure 4. Supply Current versus Supply Voltage

Figure 6. Analog Sink Current versus Supply Voltage

MC3301, LM2900, LM3900

OPERATION AND APPLICATIONS

Basic Amplifier

The basic amplifier is the common emitter stage shown in Figures 7 and 8 . The active load I_{1} is buffered from the input transistor by a PNP transistor, Q4, and from the output by an NPN transistor, Q2. Q2 is biased Class A by the current source I_{2}. The magnitude of I_{2} (specified $\mathrm{I}_{\text {sink }}$) is a limiting factor in capacitively coupled analog operation at the output.

The sink of the device can be forced to exceed the specified level by keeping the output DC voltage above $\approx 1.0 \mathrm{~V}$ resulting in an increase in the distortion appearing at the output. Closed loop stability is maintained by an on-the-chip $3-\mathrm{pF}$ capacitor shown in Figure 10 on the following page. No external compensation is required.

Figure 7. Block Diagram

A noninverting input obtained by adding a current mirror as shown in Figure 9. Essentially all current which enters the noninverting input, lin ${ }^{+}$, flows through the diode CR1. The voltage drop across CR1 corresponds to this input current magnitude and this same voltage is applied to a matched device, Q3. Thus Q3 is biased to conduct an emitter current equal to $\mathrm{l}_{\mathrm{in}}{ }^{+}$. Since the alpha current gain of $\mathrm{Q} 3 \approx 1$, its
collector current is approximately equal to $\mathrm{l}_{\text {in }}{ }^{+}$also. In operation this current flows through an external feedback resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the DC quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedure" section.

Figure 8. A Basic Gain Stage

Figure 9. Obtaining A Noninverting Input

Biasing Circuitry

The circuitry common to all four amplifiers is shown in Figure 11. The purpose of this circuitry is to provide biasing voltage for the PNP and NPN current sources used in the amplifiers.

The voltage drops across diodes CR2, CR3 and CR4 are used as references. The voltage across resistor R1 is the sum of the drops across CR4 and CR3 minus the V_{BE} of Q8. The PNP current sources (Q5, etc.) are set to the magnitude $\mathrm{V}_{\mathrm{BE}} /$ R1 by transistor Q 6 . Transistor Q 7 reduces base current

Figure 10. A Basic Operational Amplifier

loading. The voltage across resistor R_{2} is the sum of the voltage drops across CR2, CR3 and CR4, minus the VBE drops of transistor Q9 and diode CR5; thus the current set is established by CR5 in all the NPN current sources (Q10, etc.). This technique results in current source magnitudes which are relatively independent of the supply voltage. Q11 (Figure 7) provides circuit protection from signals that are negative with respect to ground.

NORMAL DESIGN PROCEDURE

1. Output Q-Point Biasing
A. A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing, as shown in Figures 12 and 13. The high impedance of the collector of the noninverting "current mirror" transistor helps to achieve the maximum loop gain for any particular configuration. It is desirable that the noninverting input current be in the $10 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ range.
B. $V_{C C}$ Reference Voltage (see Figures 12 and 13)

The noninverting input is normally returned to the $V_{C C}$ voltage (which should be well filtered) through a resistor $\left(\mathrm{R}_{\mathrm{r}}\right)$ allowing the input current, ($\mathrm{l}_{\mathrm{in}}{ }^{+}$) to be within the range of $10 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$.

Choosing the feedback resistor (R_{f}) to be equal to $1 / 2 R_{r}$ will now bias the amplifier output DC level to approximately $\mathrm{V}_{\mathrm{CC}} / 2$. This allows the maximum dynamic range of the output voltage.
C. Reference Voltage other than V_{CC} (see Figure 14) The biasing resistor (R_{r}) may be returned to a voltage $\left(V_{r}\right)$ other than $V_{C C}$. By setting $R_{f}=R_{r}$, (still keeping lin +between $10 \mu \mathrm{~A}$ and $200 \mu \mathrm{~A}$) the output DC level will be equal to V_{r}. The expression for determining $V_{\text {Odc }}$ is:

$$
V_{O d c}=\frac{\left(A_{i}\right)\left(V_{r}\right)\left(R_{f}\right)}{R_{r}}+\left(1-\frac{R_{f}}{R_{r}} A_{i}\right) \phi
$$

where ϕ is the $V_{B E}$ drop of the input transistors (approximately 0.6 Vdc @ $+25^{\circ} \mathrm{C}$ and assumed equal). A_{i} is the current mirror gain.

Figure 12. Inverting Amplifier

2. Gain Determination
A. Inverting Amplifier

The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the DC bias and the output is normally capacitively coupled to eliminate the DC voltage across the load. Note that when the output is capacitively coupled to the load, the value of I Isink becomes a limitation with respect to the load driving capabilities of the device if it is direct coupled. In this configuration, the $A C$ gain is determined by the ratio of R_{f} to R_{i}, in the same manner as for a conventional operational amplifier:

$$
A_{V}=\frac{R_{f}}{R_{i}}
$$

Figure 13. Noninverting Amplifier

The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 400 kHz with 20 dB of closed loop gain or 40 kHz with 40 dB of closed loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed loop gain intercepts the open loop response curve. The inverting input capacity is typically 3.0 pF .

Figure 15. Inverting Amplifier with

$$
A V=100 \text { and } V_{r}=V_{C C}
$$

B. Noninverting Amplifier

These devices may be used in the noninverting mode (see Figure 13). The amplifier gain in this configuration is subject to the current mirror gain. In addition, the resistance of the input diode must be included in the value of the input resistor. This resistance is approximately $\frac{26}{l_{\text {in }+}} \Omega$, where $l_{\text {in }}+$ is input current in milliamperes. The noninverting AC gain expression is given by:

$$
A_{v}=\frac{\left(R_{f}\right)\left(A_{i}\right)}{R_{i}+\frac{26}{l_{i n}+(m A)}}
$$

The bandwidth of the noninverting configuration for a given R_{f} value is essentially independent of the gain chosen. For $R_{f}=510 \mathrm{k} \Omega$ the bandwidth will be in excess of 200 kHz for noninverting of 1,10 , or 100 . This is a result of the loop gain remaining constant for these gains since the the input resistor is effectively isolated from the feedback loop.

Figure 16. Tachometer Circuit

Figure 17. Voltage Regulator

$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Z} 1}+0.6\left(1+\frac{\mathrm{R} 2}{\mathrm{R1}}\right)-\mathrm{V}_{\mathrm{BE}} \mathrm{Q}_{1}$
Note: For positive TC zeners R2 and R1 can be selected to give T_{C} output.

Figure 19. Logic "NAND" Gate (Large Fan-In)

Figure 21. R-S Flip-Flop

Figure 23. Positive-Edge Differentiator

Output Rise Time $\approx 0.22 \mathrm{~ms}$ Input Change Time Constant $\approx 1.0 \mathrm{~ms}$

Figure 20. Logic "NOR" Gate

Figure 22. Astable Multivibrator

Figure 24. Negative-Edge Differentiator

MC3301, LM2900, LM3900

Figure 25. Amplifier and Driver for a 50Ω Line

Figure 26. Basic Bandpass and Notch Filter

Figure 27. Bandpass and Notch Filter

MC3301, LM2900, LM3900

Figure 28. Voltage Regulator

$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Z}}+0.6 \mathrm{Vdc}$
NOTES: 1. R is used to bias the zener.
2. If the zener TC is positive, and equal in magnitude to the negative TC of the input to the operational amplifier ($\approx 2.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$), the output is zero-TC. A 7.0 V zener will give approximately zero-TC.

Figure 29. Zero Crossing Detector

Quad Low Power Operational Amplifiers

The MC3403 is a low cost, quad operational amplifier with true differential inputs. The device has electrical characteristics similar to the popular MC1741C. However, the MC3403 has several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 36 V with quiescent currents about one third of those associated with the MC1741C (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuit Protected Outputs
- Class AB Output Stage for Minimal Crossover Distortion
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 36 V
- Split Supply Operation: $\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low Input Bias Currents: 500 nA Max
- Four Amplifiers Per Package
- Internally Compensated
- Similar Performance to Popular MC1741C
- Industry Standard Pinouts
- ESD Diodes Added for Increased Ruggedness

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltages Single Supply Split Supplies	$\begin{gathered} v_{\mathrm{CC}} \\ \mathrm{v}_{\mathrm{CC}}, \mathrm{v}_{\mathrm{EE}} \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \pm 18 \end{gathered}$	Vdc
Input Differential Voltage Range (Note 1)	VIDR	± 36	Vdc
Input Common Mode Voltage Range (Notes 1, 2)	VICR	± 18	Vdc
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range МСЗзОЗ МС3403	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -40 \text { to }+85 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Junction Temperature	TJ	150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Split power supplies.
2. For supply voltages less than $\pm 18 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

QUAD DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC3303D	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-14 Plastic DIP
MC3303P	SO-14	
MC3403D	$T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
$M C 3403 P$		

MC3403 MC3303

ELECTRICAL CHARACTERISTICS ($\mathrm{V} C \mathrm{C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ for $\mathrm{MC} 3403 ; \mathrm{V}_{\mathrm{CC}}=+14 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Gnd for MC3303
$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	MC3403			MC3303			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$ (Note 1)	V_{10}	-	2.0	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	-	2.0 -	$\begin{aligned} & 8.0 \\ & 10 \end{aligned}$	mV
Input Offset Current $T_{A}=T_{\text {high }} \text { to } T_{\text {low }}$	10	-	30	$\begin{gathered} 50 \\ 200 \end{gathered}$	-	30	$\begin{gathered} 75 \\ 250 \end{gathered}$	nA
Large Signal Open Loop Voltage Gain $\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, R_{L}=2.0 \mathrm{k} \Omega \\ & T_{A}=T_{\text {high }} \text { to } T_{\text {low }} \end{aligned}$	AVOL	$\begin{array}{r} 20 \\ 15 \\ \hline \end{array}$	200	-	$\begin{array}{r} 20 \\ 15 \\ \hline \end{array}$	200	-	V / mV
Input Bias Current $T_{A}=T_{\text {high }} \text { to } T_{\text {low }}$	IIB	-	$\begin{gathered} -200 \\ - \end{gathered}$	$\begin{aligned} & -500 \\ & -800 \end{aligned}$	-	-200	$\begin{gathered} -500 \\ -1000 \end{gathered}$	nA
Output Impedance f=20 Hz	z_{0}	-	75	-	-	75	-	Ω
Input Impedance f=20 Hz	z_{i}	0.3	1.0	-	0.3	1.0	-	$\mathrm{M} \Omega$
$\begin{aligned} & \text { Output Voltage Range } \\ & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega, T_{A}=T_{\text {high }} \text { to } T_{\text {low }} \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 13.5 \\ \pm 13 \end{gathered}$	-	$\begin{aligned} & 12 \\ & 10 \\ & 10 \end{aligned}$	$\begin{gathered} 12.5 \\ 12 \\ - \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	V
Input Common Mode Voltage Range	VICR	$\begin{aligned} & +13 V \\ & -V_{E E} \end{aligned}$	$\begin{aligned} & +13 V \\ & -V_{E E} \end{aligned}$	-	$\begin{aligned} & +12 \mathrm{~V} \\ & -V_{E E} \end{aligned}$	$\begin{aligned} & +12.5 \mathrm{~V} \\ & -\mathrm{V}_{\mathrm{EE}} \end{aligned}$	-	V
Common Mode Rejection $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	CMR	70	90	-	70	90	-	dB
Power Supply Current ($\left.\mathrm{V}_{\mathrm{O}}=0\right) \mathrm{R}_{\mathrm{L}}=\infty$	ICC, IEE	-	2.8	7.0	-	2.8	7.0	mA
Individual Output Short-Circuit Current (Note 2)	ISC	± 10	± 20	± 45	± 10	± 30	± 45	mA
Positive Power Supply Rejection Ratio	PSRR+	-	30	150	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Negative Power Supply Rejection Ratio	PSRR-	-	30	150	-	30	150	$\mu \mathrm{V} / \mathrm{N}$
```Average Temperature Coefficient of Input Offset Current \(T_{A}=T_{\text {high }}\) to \(T_{\text {low }}\)```	$\Delta^{1} \mathrm{l}^{\prime} / \Delta \mathrm{T}$	-	50	-	-	50	-	$\mathrm{pA}^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Voltage   $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Power Bandwidth $A V=1, R_{L}=10 \mathrm{k} \Omega, V_{O}=20 \mathrm{~V}(p-p), T H D=5 \%$	BWp	-	9.0	-	-	9.0	-	kHz
Small-Signal Bandwidth $A_{V}=1, R_{L}=10 \mathrm{k} \Omega, V_{O}=50 \mathrm{mV}$	BW	-	1.0	-	-	1.0	-	MHz
Slew Rate $\mathrm{AV}^{2}=1, \mathrm{~V}_{\mathrm{i}}=-10 \mathrm{~V}$ to +10 V	SR	-	0.6	-	-	0.6	-	V/ $/ \mathrm{s}$
Rise Time $A_{V}=1, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=50 \mathrm{mV}$	trlu	-	0.35	-	-	0.35	-	$\mu \mathrm{s}$
Fall Time $A_{V}=1, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=50 \mathrm{mV}$	${ }^{\text {T TL }}$ H	-	0.35	-	-	0.35	-	$\mu \mathrm{s}$
Overshoot $A_{V}=1, R_{L}=10 \mathrm{k} \Omega, V_{O}=50 \mathrm{mV}$	os	-	20	-	-	20	-	\%
Phase Margin $\mathrm{A}_{\mathrm{V}}=1, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=200 \mathrm{pF}$	¢m	-	60	-	-	60	-	Degrees
$\begin{aligned} & \text { Crossover Distortion } \\ & \quad\left(\mathrm{V}_{\text {in }}=30 \mathrm{mVpp}, \mathrm{~V}_{\text {out }}=2.0 \mathrm{Vpp}, \mathrm{f}=10 \mathrm{kHz}\right) \end{aligned}$	-	-	1.0	-	-	1.0	-	\%

NOTES: 1. $\mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC3403, $+85^{\circ} \mathrm{C}$ for MC3303
$\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC3403, $-40^{\circ} \mathrm{C}$ for MC3303
2. Not to exceed maximum package power dissipation.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	MC3403			MC3303			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{V}_{10}$	-	2.0	10	-	-	10	mV
Input Offset Current	Io	-	30	50	-	-	75	nA
Input Bias Current	IB	-	-200	-500	-	-	-500	nA
Large Signal Open Loop Voltage Gain $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$	Avol	10	200	-	10	200	-	$\mathrm{V} / \mathrm{mV}$
Power Supply Rejection Ratio	PSRR	-	-	150	-	-	150	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Range (Note 3) $\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, 5.0 \leq \mathrm{V}_{\mathrm{CC}} \leq 30 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {OR }}$	$\begin{gathered} 3.3 \\ v_{C C}-2.0 \end{gathered}$	$\begin{gathered} 3.5 \\ v_{C C}-1.7 \end{gathered}$		$\begin{gathered} 3.3 \\ v_{\mathrm{CC}}{ }^{-2.0} \end{gathered}$	$\begin{gathered} 3.5 \\ \mathrm{v}_{\mathrm{C}} \mathrm{C}^{-1.7} \end{gathered}$	-	Vpp
Power Supply Current	ICC	-	2.5	7.0	-	2.5	7.0	mA
Channel Separation $\mathrm{f}=1.0 \mathrm{kHz}$ to 20 kHz (Input Referenced)	CS	-	-120	-	-	-120	-	dB

NOTES: 3 . Output will swing to ground with a $10 \mathrm{k} \Omega$ pull down resistor.

Representative Schematic Diagram
( $1 / 4$ of Circuit Shown)


Inverter Pulse Response


The MC3403/3303 is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input device Q24 and Q22 with input buffer transistors Q25 and Q21 and the differential to single ended converter Q3 and Q4. The first
stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF ) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q24 and Q22. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation. This is possible because Class $A B$ operation is utilized.

Each amplifier is biased from an internal voltage regulator which has a low temperature coefficient, thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

Figure 1. Sine Wave Response


Figure 2. Open Loop Frequency Response


Figure 3. Power Bandwidth


Figure 5. Input Bias Current versus Temperature


Figure 7. Voltage Reference


Figure 4. Output Swing versus Supply Voltage


Figure 6. Input Bias Current versus Supply Voltage


Figure 8. Wien Bridge Oscillator


Figure 9. High Impedance Differential Amplifier

Figure 10. Comparator with Hysteresis


Figure 11. Bi-Quad Filter


Figure 12. Function Generator


$$
f=\frac{R 1+R_{C}}{4 C R_{f} R 1} \text { if } R 3=\frac{R 2 R 1}{R 2+R 1}
$$

Figure 13. Multiple Feedback Bandpass Filter


Given: $\quad f_{0}=$ center frequency
$A\left(f_{0}\right)=$ gain at center frequency
Choose value $f_{0}, C$

$$
\text { Then: } \quad R 3=\frac{Q}{\pi f_{0} C} \quad R 1=\frac{R 3}{2 A\left(f_{0}\right)} \quad R 2=\frac{R 1 R 5}{4 Q^{2} R 1-R 5}
$$

For less than $10 \%$ error from operational amplifier $\frac{\mathrm{O}_{0} f_{0}}{B W}<0.1$ where $\mathrm{f}_{0}$ and BW are expressed in Hz .

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

## Dual Operational Amplifier and Dual Comparator

The MC3405 contains two differential-input operational amplifiers and two comparators, each set capable of single supply operation. This operational amplifier-comparator circuit fulfills its applications as a general purpose product for automotive and consumer circuits as well as an industrial building block.

The MC3405 is specified over the commercial operating temperature range of $0^{\circ}$ to $+70^{\circ} \mathrm{C}$.

- Operational Amplifier Equivalent in Performance to MC3403
- Comparator Similar in Performance to LM339
- Single Supply Operation: 3.0 V to 36 V
- Split Supply Operation: $\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low Supply Current Drain
- Operational Amplifier is Internally Frequency Compensated
- Comparator TTL and CMOS Compatible


## DUAL OPERATIONAL AMPLIFIER / DUAL VOLTAGE COMPARATOR

## SEMICONDUCTOR

 TECHNICAL DATA

ORDERING INFORMATION

Device	Operating   Temperature Range	Package
MC3405P	$T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP

## MC3405

OPERATIONAL AMPLIFIER SECTION
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage - Single Supply			
Split Supplies	$\mathrm{V}_{\mathrm{CC}}$   $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	36   $\pm 18$	Vdc
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	$\pm 36$	Vdc
Input Common Mode Voltage Range	$\mathrm{V}_{\text {ICR }}$	$\pm 18$	Vdc
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}$	150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage	$\mathrm{V}_{1 \mathrm{O}}$	-	2.0	10	mV
Input Offset Current	10	-	30	50	nA
Input Bias Current	IB	-	-200	-500	nA
Large-Signal, Open Loop Voltage Gain ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ )	AVOL	20	200	-	$\mathrm{V} / \mathrm{mV}$
Power Supply Rejection	PSR	-	-	150	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Range (Note 1) $\begin{aligned} & \left(R_{L}=10 \mathrm{k} \Omega, V_{C C}=5.0 \mathrm{~V}\right) \\ & \left(R_{L}=10 \mathrm{k} \Omega, 5.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 30 \mathrm{~V}\right) \end{aligned}$	$\mathrm{V}_{\text {OR }}$	$\begin{gathered} 3.3 \\ v_{\mathrm{CC}}-2.0 \end{gathered}$	$\begin{gathered} 3.5 \\ v_{C C}-1.7 \end{gathered}$	-	$\mathrm{V}_{\mathrm{pp}}$
Power Supply Current (Notes 2 and 3)	${ }^{\text {ICC }}$	-	2.5	7.0	mA
Channel Separation, $\mathrm{f}=1.0 \mathrm{kHz}$ to 20 kHz (Input Referenced)	-	-	-120	-	dB

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage $\left(T_{A}=T_{\text {low }}+T_{\text {high }}\right)(\text { Note } 4)$	$\mathrm{V}_{1 \mathrm{O}}$	-	$2.0$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	15	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current ( $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ (Note 4)	10	-	-	$\begin{gathered} 50 \\ 200 \end{gathered}$	nA
Input Bias Current $\left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right)(\text { Note 4) }$	IIB	-	$-200$	$\begin{aligned} & -500 \\ & -800 \end{aligned}$	nA
Input Common Mode Voltage Range	$\mathrm{V}_{\text {ICR }}$	$+13-V_{\text {EE }}$	-	-	Vdc
Large Signal, Open Loop Voltage Gain $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right)(\text { Note } 4) \end{aligned}$	Avol	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	-	$\mathrm{V} / \mathrm{mV}$
Common Mode Rejection	CMR	70	90	-	dB
Power Supply Rejection Ratio	PSRR	-	30	150	$\mu \mathrm{V} / \mathrm{N}$
$\begin{aligned} & \text { Output Voltage } \\ & \begin{array}{l} \left(R_{L}=10 \mathrm{k} \Omega\right) \\ \left(R_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ \left(R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right)(\text { Note 4) } \end{array} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 13.5 \\ \pm 13 \\ - \end{gathered}$	-	Vdc
Output Short Circuit Current	ISC	$\pm 10$	$\pm 20$	$\pm 45$	mA
Power Supply Current (Notes 2 and 3)	$\mathrm{I}_{\text {CC, }} \mathrm{I} \mathrm{EE}$	-	2.8	7.0	mA
Phase Margin	¢m	-	60	-	Degrees
Small-Signal Bandwidth ( $A V=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=50 \mathrm{mV}$ )	BW	-	1.0	-	MHz

[^7]
## MC3405

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Power Bandwidth $\left(A V=1, R_{L}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{THD}=5 \%\right)$	BWp	-	9.0	-	kHz
Rise Time/Fall Time	$\mathrm{t} \mathrm{TLH}^{\prime}, \mathrm{t} T H \mathrm{~L}$	-	0.35	-	$\mu \mathrm{s}$
Overshoot $\left(\mathrm{AV}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=50 \mathrm{mV}\right)$	os	-	20	-	$\%$
Slew Rate	SR	-	0.6	-	$\mathrm{V} / \mu \mathrm{s}$

## COMPARATOR SECTION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply VoltageSingle Supply   Split Supplies	$\mathrm{V}_{\mathrm{CC}}$   $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	36   $\pm 18$	Vdc
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	$\pm 36$	Vdc
Input Common Mode Voltage Range	$\mathrm{V}_{\text {ICR }}$	-0.3 to +36	Vdc
Sink Current	$\mathrm{I}_{\text {Sink }}$	20	mA
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T J	150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage   ( $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ ( Notes 1 and 2)	$\mathrm{V}_{10}$	-	$2.0$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$	-	15	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current ( $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ (Note 1)	Io	-	$50$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	nA
Input Bias Current ( $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ (Note 1)	IIB	-	$-125$	$\begin{aligned} & -500 \\ & -800 \end{aligned}$	nA
Input Common Mode Voltage Range ( $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ (Note 1)	VICR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.5 \\ & \mathrm{~V}_{\mathrm{CC}}-1.7 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.7 \\ & \mathrm{v}_{\mathrm{CC}}-2.0 \end{aligned}$	Vpp
Input Differential Voltage $\text { (All } \mathrm{V}_{\text {in }} \geq 0 \mathrm{Vdc} \text { ) }$	VID	-	-	36	V
Large-Signal, Open Loop Voltage Gain ( $\mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega$ )	Avol	-	200	-	$\mathrm{V} / \mathrm{mV}$
Output Sink Current ( $-\mathrm{V}_{\text {in }} \geq 1.0 \mathrm{Vdc},+\mathrm{V}_{\text {in }}=0, \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$ )	ISink	6.0	16	-	mA
Low Level Output Voltage $\begin{aligned} & \left(+V_{\text {in }}=0 \mathrm{~V},-\mathrm{V}_{\text {in }}=1.0 \mathrm{~V}, I_{\text {Sink }}=4.0 \mathrm{~mA}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}(\text { Note } 1)\right. \end{aligned}$	VOL	-	350	$\begin{aligned} & 500 \\ & 700 \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Output Leakage Current } \\ & \left(+V_{\text {in }} \geq 1.0 \mathrm{Vdc},-\mathrm{V}_{\text {in }}=0, \mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right)(\text { (Note } 1) \end{aligned}$	${ }^{\text {IOL}}$	-	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
Large-Signal Response	-	-	300	-	ns
Response Time (Note 3) ( $\mathrm{V}_{\mathrm{RL}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$ )	-	-	1.3	-	$\mu \mathrm{s}$

NOTES: 1. $T_{\text {low }}=0^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$
2. $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}_{\mathrm{CC}}$ from 5.0 Vdc to 30 Vdc , and over the input common mode range 0 to $\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$.
3. The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger signals 300 ns is typical.

Representative Schematic Diagram
(1/2 of Circuit Shown)


Figure 1. Sine Wave Response

$50 \mu \mathrm{~s} /$ DIV

Figure 3. Power Bandwidth


Figure 5. Input Bias Current versus Temperature


Figure 2. Open Loop Frequency Response


Figure 4. Output Swing versus Supply Voltage


Figure 6. Input Bias Current versus Supply Voltage


Figure 7. Normalized Input Offset Voltage


Figure 9. Normalized Input Offset Current


Figure 8. Input Bias Current


Figure 10. Output Sink Current versus Output Voltage


Figure 11. Pulse Width Modulator Schematic and Waveforms


Figure 12. Window Comparator


Figure 13. Squelch Circuit for AM or FM


Figure 14. High/Low Limit Alarm


Figure 15. Zero Crossing Detector with Temperature Sensor


Figure 16. LSTTL to CMOS Interface with Hysteresis


* The same configuration may be used with an op amp if the 3.0 k resistor is removed.

Figure 17. NOR Gate


* The same configuration may be used with an op amp if the 3.0 k resistor is removed.


## Dual, Low Power Operational Amplifiers

Utilizing the circuit designs perfected for the quad operational amplifiers, these dual operational amplifiers feature: 1) low power drain, 2) a common mode input voltage range extending to ground $/ \mathrm{V}_{\mathrm{EE}}$, and 3) Single Supply or Split Supply operation.

These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 V or as high as 36 V with quiescent currents about one-fifth of those associated with the MC1741C (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 36 V
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Class AB Output Stage for Minimum Crossover Distortion
- Single and Split Supply Operations Available
- Similar Performance to the Popular MC1458

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA


P1 SUFFIX
PLASTIC PACKAGE CASE 626


D SUFFIX
PLASTIC PACKAGE CASE 751 (SO-8)

PIN CONNECTIONS


ORDERING INFORMATION

Device	Operating   Temperature Range	Package
MC3358P1	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP
MC3458D	$\mathrm{T}_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8
MC 3458 P 1		Plastic DIP

ELECTRICAL CHARACTERISTICS (For MC3458, $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)
(For MC3358, $\mathrm{V}_{\mathrm{CC}}=+14 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	MC3458			MC3358			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$ (Note 1)	$\mathrm{V}_{10}$	-	2.0 -	10 12	-	2.0   -	$\begin{aligned} & 8.0 \\ & 10 \end{aligned}$	mV
Input Offset Current $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$	10	-	$30$	$\begin{gathered} 50 \\ 200 \end{gathered}$	-	30 -	$\begin{gathered} 75 \\ 250 \end{gathered}$	nA
Large Signal Open Loop. Voltage Gain $\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \end{aligned}$	Avol	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	200	-	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	200 -	-	$\mathrm{V} / \mathrm{mV}$
Input Bias Current $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$	IIB		$-200$	$\begin{aligned} & -500 \\ & -800 \end{aligned}$	-	-200 -	$\begin{gathered} -500 \\ -1000 \end{gathered}$	nA
Output Impedance, $\mathrm{f}=20 \mathrm{~Hz}$	zo	-	75	-	-	75	-	$\Omega$
Input Impedance, f=20 Hz	z	0.3	1.0	-	0.3	1.0	-	M $\Omega$
$\begin{aligned} & \text { Output Voltage Range } \\ & \qquad \begin{aligned} R_{L} & =10 \mathrm{k} \Omega \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega \\ R_{\mathrm{L}} & =2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=T_{\text {high }} \text { to } T_{\text {low }} \end{aligned} \end{aligned}$	$\mathrm{V}_{\text {OR }}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 13.5 \\ \pm 13 \end{gathered}$		$\begin{aligned} & 12 \\ & 10 \\ & 10 \end{aligned}$	$\begin{gathered} 12.5 \\ 12 \\ - \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	V
Input Common Mode Voltage Range	VICR	$\begin{gathered} +13 \\ -V_{\mathrm{EE}} \end{gathered}$	$\begin{aligned} & +13.5 \\ & -V_{E E} \end{aligned}$	-	$\begin{gathered} +13 \\ -V_{\mathrm{EE}} \end{gathered}$	$\begin{aligned} & +13.5 \\ & -V_{E E} \end{aligned}$	-	V
Common Mode Rejection Ratio, $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	CMR	70	90	-	70	90	-	dB
Power Supply Current ( $\mathrm{V}_{\mathrm{O}}=0$ ) $\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{I}_{\text {CC, }} \mathrm{I} \mathrm{EE}$	-	1.6	3.7	-	1.6	3.7	mA
Individual Output Short Circuit Current (Note 2)	ISC	$\pm 10$	$\pm 20$	$\pm 45$	$\pm 10$	$\pm 30$	$\pm 45$	mA
Positive Power Supply Rejection Ratio	PSRR+	-	30	150	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Negative Power Supply Rejection Ratio	PSRR-	-	30	150	-	-	-	$\mu \mathrm{V} / \mathrm{V}$
Average Temperature Coefficient of Input Offset Current, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$	$\Delta^{\prime} \mathrm{IO}^{\prime} / \Delta \mathrm{T}$	-	50	-	-	50	-	$\mathrm{pA}^{\circ}{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$	$\Delta \mathrm{V}_{1 \mathrm{I}^{\prime} / \Delta \mathrm{T}}$	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Power Bandwidth $A_{V}=1, R_{L}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V} p \mathrm{p}, \mathrm{THD}=5 \%$	BWp	-	9.0	-	-	9.0	-	kHz
Small Signal Bandwidth $A V=1, R_{L}=10 \mathrm{k} \Omega, V_{O}=50 \mathrm{mV}$	BW	-	1.0	-	-	1.0	-	MHz
Slew Rate $A_{V}=1, V_{I}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}$	SR	-	0.6	-	-	0.6	-	V/ $/ \mathrm{s}$
$\begin{aligned} & \text { Rise Time } \\ & \qquad A_{V}=1, R_{L}=10 \mathrm{k} \Omega, V_{O}=50 \mathrm{mV} \end{aligned}$	${ }^{\text {tTLH }}$	-	0.35	-	-	0.35	-	$\mu \mathrm{s}$
Fall Time $A V=1, R_{L}=10 \mathrm{k} \Omega, V_{O}=50 \mathrm{mV}$	${ }^{\text {t }}$ HL	-	0.35	-	-	0.35	-	$\mu \mathrm{s}$
$\begin{aligned} & \text { Overshoot } \\ & \qquad A_{V}=1, R_{L}=10 \mathrm{k} \Omega, V_{O}=50 \mathrm{mV} \end{aligned}$	os	-	20	-	-	20	-	\%
Phase Margin $A_{V}=1, R_{L}=2.0 \mathrm{k} \Omega, C_{L}=200 \mathrm{pF}$	¢m	-	60	-	-	60	-	Degrees
Crossover Distortion $\left(\mathrm{V}_{\mathrm{in}}=30 \mathrm{mV} \mathrm{Vpp}, \mathrm{~V}_{\text {out }}=2.0 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=10 \mathrm{kHz}\right)$	-	-	1.0	-	-	1.0	-	\%

NOTES: 1. Thigh $=70^{\circ} \mathrm{C}$ for MC3458, $85^{\circ} \mathrm{C}$ for MC3358
$T_{\text {low }}=0^{\circ} \mathrm{C}$ for MC3458, $-40^{\circ} \mathrm{C}$ for MC3358
2. Not to exceed maximum package power dissipation.

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	MC3458			MC3358			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{V}_{1 \mathrm{O}}$	-	2.0	5.0	-	2.0	10	mV
Input Offset Current	10	-	30	50	-	-	75	nA
Input Bias Current	IIB	-	-200	-500	-	-	-500	nA
Large Signal Open Loop Voltage Gain $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega,$	Avol	20	200	-	20	200	-	$\mathrm{V} / \mathrm{mV}$
Power Supply Rejection Ratio	PSRR	-	-	150	-	-	150	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Range (Note 3) $\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, 5.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 30 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {OR }}$	$3.3$	$\begin{gathered} 3.5 \\ v_{C C} \\ -1.7 \end{gathered}$			$\begin{gathered} 3.5 \\ \mathrm{~V}_{\mathrm{CC}} \\ -1.7 \end{gathered}$	-	$V_{p p}$
Power Supply Current	Icc	-	2.5	7.0	-	2.5	4.0	mA
Channel Separation $\mathrm{f}=1.0 \mathrm{kHz}$ to 20 kHz (Input Referenced)	CS	-	-120	-	-	-120	-	dB

NOTE: 3 . Output will swing to ground with a $10 \mathrm{k} \Omega$ pull down resistor.

## Representative Schematic Diagram

( $1 / 2$ of Circuit Shown)


Inverter Pulse Response

$20 \mu \mathrm{~s} / \mathrm{DIV}$

## CIRCUIT DESCRIPTION

The MC3458/3358 is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q24 and Q22 with input buffer transistors Q25 and Q21 and the
differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF ) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q24 and Q22. Another feature of this input stage is that the input Common Mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation. This is possible because Class $A B$ operation is utilized.

Each amplifier is biased from an internal voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

Figure 1. Sine Wave Response


Figure 3. Power Bandwidth


Figure 5. Input Bias Current versus Temperature


Figure 2. Open Loop Frequency Response



Figure 6. Input Bias Current versus Supply Voltage


Figure 7. Voltage Reference

Figure 8. Wien Bridge Oscillator


Figure 9. High Impedance Differential Amplifier

$e_{0}=C(1+a+b)\left(e_{2}-e_{1}\right)$

Figure 10. Comparator with


Figure 11. Bi-Quad Filter


## MC3458 MC3358

Figure 12. Function Generator


Figure 13. Multiple Feedback Bandpass Filter


Given: $\quad f_{0}=$ center frequency
$A\left(f_{0}\right)=$ gain at center frequency
Choose value $f_{0}, C$.
Then: $\quad R 3=\frac{Q}{\pi f_{0} C} \quad R 1=\frac{R 3}{2 A\left(f_{0}\right)} \quad R 2=\frac{R 1 R 5}{4 Q^{2} R 1-R 3}$
For less than $10 \%$ error from operational amplifier $\frac{Q_{0} f_{0}}{B W}<0.1$
where, $\mathrm{f}_{0}$ and BW are expressed in Hz .
If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

## Low Cost Programmable Operational Amplifier

The MC3476 is a low cost selection of the popular industry standard MC1776 programmable operational amplifier. This extremely versatile operational amplifier features low power consumption and high input impedance. In addition, the quiescent currents within the device may be programmed by the choice of an external resistor value or current source applied to the $I_{\text {set }}$ input. This allows the amplifier's characteristics to be optimized for input current and power consumption despite wide variations in operating power supply voltages.

- $\pm 6.0 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Operation
- Wide Programming Range
- Offset Null Capability
- No Frequency Compensation Required
- Low Input Bias Currents
- Short Circuit Protection

Ret $_{\text {set }}$ to Ground


Typical $\mathbf{R}_{\text {set }}$ Values		
$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}$	$\mathrm{I}_{\text {set }}=1.5 \mu \mathrm{~A}$	$\mathrm{I}_{\text {set }}=15 \mu \mathrm{~A}$
$\pm 6.0 \mathrm{~V}$	$3.6 \mathrm{M} \Omega$	$360 \mathrm{k} \Omega$
$\pm 10 \mathrm{~V}$	$6.2 \mathrm{M} \Omega$	$620 \mathrm{k} \Omega$
$\pm 12 \mathrm{~V}$	$7.5 \mathrm{M} \Omega$	$750 \mathrm{k} \Omega$
$\pm 15 \mathrm{~V}$	$10 \mathrm{M} \Omega$	$1.0 \mathrm{M} \Omega$


Typical $R_{\text {set }}$ Values		
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	$\mathrm{I}_{\text {set }}=1.5 \mu \mathrm{~A}$	$\mathrm{I}_{\text {set }}=15 \mu \mathrm{~A}$
+1.5 V	$1.6 \mathrm{M} \Omega$	$160 \mathrm{k} \Omega$
+3.0 V	$3.6 \mathrm{M} \Omega$	$360 \mathrm{k} \Omega$
+6.0 V	$7.5 \mathrm{M} \Omega$	$750 \mathrm{k} \Omega$
+15 V	$20 \mathrm{M} \Omega$	$2.0 \mathrm{M} \Omega$

Active Programming
FET Current Source
Bipolar Current Source


Pins not shown are not connected.


$V_{E E}$

## LOW COST PROGRAMMABLE OPERATIONAL AMPLIFIER

## SEMICONDUCTOR TECHNICAL DATA



P1 SUFFIX PLASTIC PACKAGE CASE 626

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	$V_{C C}, V_{E E}$	$\pm 18$	Vdc
Input Differential Voltage Range	VIDR	$\pm 30$	Vdc
Input Common Mode Voltage Range	VICR	$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}$	Vdc
Offset Null to VEE Voltage	$\mathrm{V}_{\text {off }}-\mathrm{V}_{\text {EE }}$	$\pm 0.5$	Vdc
Programming Current	Iset	200	$\mu \mathrm{A}$
Programming Voltage (Voltage from $\mathrm{I}_{\text {set }}$ Terminal to Ground)	$\mathrm{V}_{\text {set }}$	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}\right) \\ \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	Vdc
Output Short Circuit Duration (Note 1)	tsc	Indefinite	sec
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 ot +125	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{J}$	150	${ }^{\circ} \mathrm{C}$

NOTES: 1 . Short circuit to ground with $\mathrm{I}_{\text {set }} \leq 15 \mu \mathrm{~A}$. Rating applies up to ambient temperature of $+70^{\circ} \mathrm{C}$.

Representative Schematic Diagram


Voltage Offset Null Circuit


Transient Response Test Circuit


Pins not shown are not connected.

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{I}_{\text {Set }}=15 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted).

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset voltage ( } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \text { ) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{10}$	-		$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Offset Voltage Adjustment Range	VIOR	-	18	-	mV
Input Offset Current $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	10	-	$20$	$\begin{aligned} & 25 \\ & 25 \\ & 40 \end{aligned}$	nA
Input Bias Current $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	IB		$15$	$\begin{gathered} 50 \\ 50 \\ 100 \end{gathered}$	$n A$
Input Resistance	ri	-	5.0	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\mathrm{i}}$	-	2.0	-	pF
Input Common Mode Voltage Gain $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	VICR	$\pm 10$	-	-	V
Large Signal Voltage Gain $\begin{aligned} & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	Avol	$\begin{aligned} & 50 \mathrm{k} \\ & 25 \mathrm{k} \end{aligned}$	$400 \mathrm{k}$	-	VN
Output Voltage Range $\begin{aligned} & R_{L} \geq 10 \mathrm{k} \Omega, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & R_{L} \geq 10 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {OR }}$	$\begin{aligned} & \pm 12 \\ & \pm 12 \end{aligned}$	$\pm 13$	-	v
Output Resistance	$r_{0}$	-	1.0	-	k $\Omega$
Output Short Circuit Current	ISC	-	12	-	mA
Common Mode Rejection $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	CMR	70	90	-	dB
Supply Voltage Rejection Ratio $R_{S} \leq 10 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	PSRR	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
Supply Current $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	${ }^{\text {ICC, }}$ IEE	-	160 -	$\begin{aligned} & 200 \\ & 225 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	PD	-	$4.8$	$\begin{gathered} 6.0 \\ 6.75 \end{gathered}$	mW
Transient Response (Unity Gain) $V_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$   Rise Time   Overshoot	$\begin{aligned} & \text { tTLH } \\ & \text { os } \end{aligned}$	-	$\begin{gathered} 0.35 \\ 10 \end{gathered}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$
Slew Rate ( $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ )	SR	-	0.8	-	V/ $/ \mathrm{s}$

Figure 1. Set Current versus Set Resistor


Figure 3. Open Loop versus Set Current


Figure 5. Slew Rate versus Set Current


Figure 2. Positive Standby Supply Current versus Set Current


Figure 4. Input Bias Current versus Set Current


Figure 6. Gain Bandwidth Product versus Set Current


Figure 7. Output Voltage Swing versus Load Resistance

2

Figure 8. Output Voltage Swing versus Supply Voltage


## Dual Wide Bandwidth Operational Amplifiers

The MC4558AC, C combine all the outstanding features of the MC1458 and, in addition offer three times the unity gain bandwidth of the industry standard.

- 2.5 MHz Unity Gain Bandwidth Guaranteed (MC4558AC)
- 2.0 MHz Unity Gain Bandwidth Guaranteed (MC4558C)
- Internally Compensated
- Short Circuit Protection
- Gain and Phase Match between Amplifiers
- Low Power Consumption

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	MC4558AC	MC4558C	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$   $\mathrm{V}_{\mathrm{EE}}$	+22   -22	+18   -18	Vdc
Input Differential Voltage	$\mathrm{V}_{\mathrm{ID}}$	$\pm 30$	V	
Input Common Mode Voltage   (Note 1)	$\mathrm{V}_{\mathrm{ICM}}$	$\pm 15$	V	
Output Short Circuit Duration   (Note 2)	$\mathrm{t}_{\mathrm{SC}}$	Continuous		
Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	150	${ }^{\circ} \mathrm{C}$	

NOTES: 1 . For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
2. Short circuit may be to ground or either supply.



DUAL WIDE BANDWIDTH OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA



ORDERING INFORMATION

Device	Operating   Temperature Range	Package
MC4558CD	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8
MC4558ACP1,CP1		Plastic DIP

FREQUENCY CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

Characteristic	Symbol	MC4558AC			MC4558C			Unit
		Min	Typ	Max	Min	Typ	Max	
Unity Gain Bandwidth	BW	2.5	2.8	-	2.0	2.8	-	MHz

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Input Offset Voltage ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$ )	$\mathrm{V}_{10}$	-	1.0	5.0	-	2.0	6.0	mV
Input Offset Current	10	-	20	200	-	20	200	nA
Input Bias Current (Note 1)	IB	-	80	500	-	80	500	nA
Input Resistance	$r_{i}$	0.3	2.0	-	0.3	2.0	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\mathrm{i}}$	-	1.4	-	-	1.4	-	pF
Common Mode Input Voltage Range	VICR	$\pm 12$	$\pm 13$	-	$\pm 12$	$\pm 13$	-	V
Large Signal Voltage Gain ( $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ )	Avol	50	200	-	20	200	-	V/mV
Output Resistance	ro	-	75	-	-	75	-	$\Omega$
Common Mode Rejection ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$ )	CMR	70	90	-	70	90	-	dB
Supply Voltage Rejection Ratio ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$ )	PSRR	-	30	150	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Output Voltage Swing } \\ & \left(R_{L} \geq 10 \mathrm{k} \Omega\right) \\ & \left(R_{L} \geq 2.0 \mathrm{k} \Omega\right) \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	V
Output Short Circuit Current	ISC	10	20	40	10	20	40	mA
Supply Currents (Both Amplifiers)	ID	-	2.3	5.0	-	2.3	5.6	mA
Power Consumption (Both Amplifiers)	PC	-	70	150	-	70	170	mW
Transient Response (Unity Gain) ( $\mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$ ) Rise Time ( $\mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$ ) Overshoot $\left(V_{I}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}\right.$ ) Slew Rate	$\begin{aligned} & \text { tTLH } \\ & \text { os } \\ & \text { SR } \\ & \hline \end{aligned}$	- - 1.5	$\begin{gathered} 0.3 \\ 15 \\ 1.6 \end{gathered}$	-	- - 1.0	0.3 15 1.6	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low, }}$, unless otherwise noted. See Note 2.)

Input Offset Voltage ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$ )	$\mathrm{V}_{1 \mathrm{O}}$	-	1.0	6.0	-	-	7.5	mV
$\begin{aligned} & \text { Input Offset Current } \\ & \left.\qquad T_{A}=T_{\text {high }}\right) \\ & \left(T_{A}=T_{\text {low }}\right) \\ & \left(T_{A}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}\right) \end{aligned}$	10		$\begin{aligned} & 7.0 \\ & 85 \\ & - \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ - \end{gathered}$		$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} - \\ - \\ 300 \end{gathered}$	nA
	IIB	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 30 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 500 \\ 1500 \\ \hline \end{gathered}$			$\begin{gathered} - \\ - \\ 800 \end{gathered}$	nA
Common Mode Input Voltage Range	VICR	$\pm 12$	$\pm 13$	-	-	-	-	V
Large Signal Voltage Gain ( $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$ )	Avol	25	-	-	15	-	-	V/mV
Common Mode Rejection ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$ )	CMR	70	90	-	-	-	-	dB
Supply Voltage Rejection Ratio ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$ )	PSRR	-	30	150	-	-	-	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Output Voltage Swing } \\ & \left(R_{L} \geq 10 \mathrm{k} \Omega\right) \\ & \left(R_{L} \geq 2.0 \mathrm{k} \Omega\right) \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		V
$\begin{aligned} & \text { Supply Currents (Both Amplifiers) } \\ & \left(T_{A}=T_{\text {high }}\right) \\ & \left(T_{A}=T_{\text {low }}\right) \\ & \hline \end{aligned}$	ID	-	-	$\begin{aligned} & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 5.0 \\ & 6.7 \end{aligned}$	mA
$\begin{aligned} & \text { Power Consumption (Both Amplifiers) } \\ & \left(T_{A}=T_{\text {high }}\right) \\ & \left(T_{A}=T_{\text {low }}\right) \end{aligned}$	PC	-	-	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	-	-	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	mW

NOTES: $1 . I_{I B}$ is out of the amplifier due to PNP input transistors.
2. $T_{\text {high }}=+70^{\circ} \mathrm{C}, \mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$.

Figure 1. Burst Noise versus Source Resistance


Figure 3. Output Noise versus Source Resistance


Figure 2. RMS Noise versus Source Resistance


Figure 4. Spectral Noise Density


Figure 5. Burst Noise Test Circuit


Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 sec and the $20 \mu \mathrm{~V}$ peak limit refers to the operational amplifier input thus eliminating errors in the closed loop gain factor of the operational amplifier.

Figure 6. Open Loop Frequency Response


Figure 8. Positive Output Voltage Swing versus Load Resistance


Figure 10. Power Bandwidth (Large Signal Swing versus Frequency)


Figure 7. Phase Margin versus Frequency


Figure 9. Negative Output Voltage Swing versus Load Resistance


Figure 11. Transient Response Test Circuit


## Dual Wide Bandwidth Operational Amplifier

The MCT4558C combines all of the outstanding features of the MC1458 and, in addition, offers three times the unity gain bandwidth of the industry standard.

- 2.0 MHz Unity Gain Bandwidth Guaranteed
- Internally Compensated
- Short Circuit Protection
- Gain and Phase Match Between Amplifiers
- Low Power Consumption

This MCT-prefixed device is intended to be a possible replacement for the similar device with the MC-prefix. Because the MCT device originates from different source material, there may be subtle differences in typical parameter values or characteristic curves. Due to the diversity of potential applications, Motorola can not assure identical performance in all circuits. Motorola recommends that the customer qualify the MCT-prefixed device in each potential application.

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	$\mathrm{V}_{\mathrm{CC}}$	+18	Vdc
	$\mathrm{V}_{\text {EE }}$	-18	$\pm 30$
Input Differential Voltage	$\mathrm{V}_{\text {ID }}$	V	
Input Common Mode Voltage (Note 1)	$\mathrm{V}_{\text {ICM }}$	$\pm 15$	V
Output Short Circuit Duration (Note 2)	$\mathrm{t}_{\mathrm{SC}}$	Continuous	
Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{TJ}_{\mathrm{J}}$	150	${ }^{\circ} \mathrm{C}$

NOTES: 1 . For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
2. Short circuit may be to ground or either supply.


This device contains 29 active transistors.
CAUTION: These devices do not have internal ESD protection circuitry and are rated as CLASS 1 devices per the ESD test method in Mil-Std-833D. They should be handled using standard ESD prevention methods to avoid damage to the device.

DUAL WIDE BANDWIDTH OPERATIONAL AMPLIFIER

SEMICONDUCTOR TECHNICAL DATA


ORDERING INFORMATION

Device	Operating   Temperature Range	Package
MCT4558CD	$T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8

## MCT4558C

FREQUENCY CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

| Characteristic | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Unity Gain Bandwidth | BW | 2.0 | 2.8 | - | MHz |

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Input Offset Voltage $\left(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\right)$	$\mathrm{V}_{10}$	-	2.0	6.0	mV
Input Offset Current	110	-	20	200	nA
Input Bias Current (Note 1)	IIB	-	80	500	nA
Common Mode Input Voltage Range	VICR	$\pm 12$	$\pm 13$	-	V
Large Signal Voltage Gain $\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)$	Avol	20	200	-	V/mV
Common Mode Rejection ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$ )	CMR	70	90	-	dB
Supply Voltage Rejection Ratio ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$ )	PSRR	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geq 10 \mathrm{k} \Omega\right) \\ & \left(R_{L} \geq 2.0 \mathrm{k} \Omega\right) \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	V
Output Short Circuit Current	ISC	10	20	75	mA
Supply Currents (Both Amplifiers)	ID	-	4.0	5.6	mA
Power Consumption (Both Amplifiers)	$\mathrm{PC}_{\text {c }}$	-	70	170	mW
$\begin{aligned} & \text { Transient Response (Unity Gain) } \\ & \begin{array}{l} \left(V_{I}=20 \mathrm{mV}, R_{L} \geq 2.0 \mathrm{k} \Omega, C_{L} \leq 100 \mathrm{pF}\right) \text { Rise Time } \\ \left(V_{I}=20 \mathrm{mV}, R_{L} \geq 2.0 \mathrm{k} \Omega, C_{L} \leq 100 \mathrm{pF}\right) \text { Overshoot } \\ \left(V_{I}=10 \mathrm{~V}, R_{L} \geq 2.0 \mathrm{k} \Omega, C_{L} \leq 100 \mathrm{pF}\right) \text { Slew Rate } \end{array} \end{aligned}$	$\begin{aligned} & \text { tTLH } \\ & \text { os } \\ & \text { SR } \end{aligned}$	-	$\begin{aligned} & 0.3 \\ & 15 \\ & 1.8 \end{aligned}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low, }}$, [Note 2] unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage $\left(R_{S} \leq 10 \mathrm{k} \Omega\right)$	$\mathrm{V}_{10}$	-	-	7.5	mV
Input Offset Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}\right)$	10	-	-	300	nA
Input Bias Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}\right)$	IIB	-	-	800	nA
Large Signal Voltage Gain $\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)$	AVOL	15	-	-	V/mV
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geq 10 \mathrm{k} \Omega\right) \\ & \left(R_{L} \geq 2.0 \mathrm{k} \Omega\right) \\ & \hline \end{aligned}$	$\mathrm{v}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		V
Supply Currents (Both Amplifiers) $\begin{aligned} & \left(T_{\mathrm{A}}=\mathrm{T}_{\text {high }}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right) \\ & \hline \end{aligned}$	ID	-	-	$\begin{aligned} & 5.0 \\ & 6.7 \end{aligned}$	mA
Power Consumption (Both Amplifiers) $\begin{aligned} & \left(T_{A}=T_{\text {high }}\right) \\ & \left(T_{A}=T_{\text {low }}\right) \end{aligned}$	$\mathrm{PC}_{C}$	-	-	$\begin{aligned} & 150 \\ & 200 \\ & \hline \end{aligned}$	mW

NOTES: $1 . I_{I B}$ is out of the amplifier due to PNP input transistors.
2. $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$

Figure 1. Power Bandwidth (Large Signal Swing versus Frequency)


Figure 3. Equivalent Input Noise Voltage versus Frequency


Figure 5. Voltage Gain and Phase versus Frequency


Figure 2. Maximum Output Voltage Swing versus Load Resistance


Figure 4. Input Bias Current versus Ambient Temperature


Figure 6. Transient Response Test Circuit


## Differential Input Operational Amplifier

The MC4741C is a true quad MC1741. Integrated on a single monolithic chip are four independent, low power operational amplifiers which have been designed to provide operating characteristics identical to those of the industry standard MC1741, and can be applied with no change in circuit performance.

The MC4741C can be used in applications where amplifier matching or high packing density is important. Other applications include high impedance buffer amplifiers and active filter amplifiers.

- Each Amplifier is Functionally Equivalent to the MC1741
- Class AB Output Stage Eliminates Crossover Distortion
- True Differential Inputs
- Internally Frequency Compensated
- Short Circuit Protection
- Low Power Supply Current ( $0.6 \mathrm{~mA} /$ Amplifier)


DIFFERENTIAL INPUT OPERATIONAL AMPLIFIER
(QUAD MC1741)
SEMICONDUCTOR TECHNICAL DATA


PIN CONNECTIONS


ORDERING INFORMATION

Device	Operating   Temperature Range	Package
MC4741CD	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-14
MC4741CP		

## MC4741C

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+18	Vdc
	$\mathrm{V}_{\mathrm{EE}}$	-18	
Input Differential Voltage	$\mathrm{V}_{\text {ID }}$	$\pm 36$	V
Input Common Mode Voltage	$\mathrm{V}_{\text {ICM }}$	$\pm 18$	V
Output Short Circuit Duration	$\mathrm{tSC}_{\mathrm{SC}}$	Continuous	
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	150	${ }^{\circ} \mathrm{C}$

High Impedance Instrumentation Buffer/Filter


ELECTRICAL CHARACTERISTICS (VCC $=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage ( $\mathrm{RS}_{\text {S }} \leq 10 \mathrm{k}$ )	$\mathrm{V}_{10}$	-	2.0	6.0	mV
Input Offset Current	10	-	20	200	nA
Input Bias Current	IB	-	80	500	nA
Input Resistance	$\mathrm{r}_{\mathrm{i}}$	0.3	2.0	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\mathrm{i}}$	-	1.4	-	pF
Offset Voltage Adjustment Range	$\mathrm{V}_{\text {IOR }}$	-	$\pm 15$	-	mV
Common Mode Input Voltage Range	$\mathrm{V}_{\mathrm{ICR}}$	$\pm 12$	$\pm 13$	-	V
Large Signal Voltage Gain ( $\left.\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k}\right)$	$\mathrm{A}_{\mathrm{V}}$	20	200	-	V/mV
Output Resistance	$r_{0}$	-	75	-	$\Omega$
Common Mode Rejection ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$ )	CMR	70	90	-	dB
Supply Voltage Rejection Ratio ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$ )	PSRR	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geq 10 k\right) \\ & \left(R_{L} \geq 2 k\right) \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	V
Output Short Circuit Current	ISC	-	20	-	mA
Supply Current - (All Amplifiers)	ID	-	3.5	7.0	mA
Power Consumption (All Amplifiers)	$\mathrm{PC}_{C}$	-	105	210	mW
$\begin{aligned} & \text { Transient Response (Unity Gain - Non-Inverting) } \\ & \left(V_{I}=20 \mathrm{mV}, R_{L} \geq 2 \mathrm{k} \Omega, C_{L} \leq 100 \mathrm{pF}\right. \text { ) Rise Time } \\ & \left(\mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, C_{L} \leq 100 \mathrm{pF}\right. \text { ) Overshoot } \\ & \left(\mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, C_{L} \leq 100 \mathrm{pF}\right. \text { ) Slew Rate } \end{aligned}$	$\begin{aligned} & \text { tTLH } \\ & \text { os } \\ & \text { SR } \\ & \hline \end{aligned}$		$\begin{aligned} & 0.3 \\ & 15 \\ & 0.5 \end{aligned}$		$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}={ }^{*} T_{\text {high }}$ to $T_{\text {low }}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Offset Voltage $\left(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\right)$	$\mathrm{V}_{\mathrm{IO}}$	-	-	7.5	mV
Input Offset Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\mathrm{O}}$	-	-	300	nA
Input Bias Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\mathrm{B}}$	-	-	800	nA
Large Signal Voltage Gain $\left(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k}, \mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}\right)$	$\mathrm{A}_{\mathrm{V}}$	15	-	-	$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing $\left(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k}\right)$	$\mathrm{V}_{\mathrm{O}}$	$\pm 10$	$\pm 13$	-	V

${ }^{*} T_{\text {high }}=70^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {low }}=-0^{\circ} \mathrm{C}$

Figure 1. Power Bandwidth (Large Signal Swing versus Frequency)


Figure 3. Positive Output Voltage Swing versus Load Resistance


Figure 5. Output Voltage Swing versus Load Resistance (Single Supply Operation)


Figure 2. Open Loop Frequency Response


Figure 4. Negative Output Voltage Swing versus Load Resistance


Figure 6. Noninverting Pulse Response


## MC4741C

Figure 7. Bi-Quad Filter


Figure 8. Open Loop Voltage Gain versus Supply Voltage


Figure 9. Transient Response Test Circuit


Figure 10. Absolute Value DVM Front End


## Dual High Output Current, Low Power, Low Noise Bipolar Operational Amplifier

The MC33076 operational amplifier employs bipolar technology with innovative high performance concepts for audio and industrial applications. This device uses high frequency PNP input transistors to improve frequency response. In addition, the amplifier provides high output current drive capability while minimizing the drain current. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance.

The MC33076 is tested over the automotive temperature range and is available in an 8 -pin SOIC package ( D suffix) and in both the standard 8 pin DIP and 16-pin DIP packages for high power applications.

- $100 \Omega$ Output Drive Capability
- Large Output Voltage Swing
- Low Total Harmonic Distortion
- High Gain Bandwidth: 7.4 MHz
- High Slew Rate: 2.6 V/ $\mu \mathrm{s}$
- Dual Supply Operation: $\pm 2.0 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- High Output Current: ISC $=250 \mathrm{~mA}$ typ
- Similar Performance to MC33178




## DUAL HIGH OUTPUT CURRENT OPERATIONAL AMPLIFIER

## SEMICONDUCTOR TECHNICAL DATA



PIN CONNECTIONS

(8 Pin Pkg, Top View)


P2 SUFFIX
PLASTIC PACKAGE
CASE 648C
DIP (12+2+2)

PIN CONNECTIONS


ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC33076D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC33076P1		Plastic DIP
MC33076P2		Power Plas

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage (Note 2)	$\mathrm{V}_{\mathrm{CC}}$ to   $\mathrm{V}_{\mathrm{EE}}$	+36	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	V
Input Voltage Range	$\mathrm{V}_{\mathrm{IR}}$	(Note 1)	V
Output Short Circuit Duration (Note 2)	tSC	5.0	sec
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	(Note 2)	mW

NOTES: 1. Either or both input voltages should not exceed $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{EE}}$.
2. Power dissipation must be considered to ensure maximum junction temperature ( $\mathrm{T}_{\mathbf{J}}$ ) is not exceeded (see power dissipation performance characteristic, Figure 1). See applications section for further information.

DC ELECTRICAL CHARACTERICISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V} \mathrm{CM}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	2	IV101		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	mV
Input Offset Voltage Temperature Coefficient $\begin{aligned} & \left(R_{S}=50 \Omega, V_{C M}=0 \mathrm{~V}\right) \\ & T_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	3, 4	IB			$\begin{aligned} & 500 \\ & 600 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		${ }^{11} \mathrm{O}$			$\begin{gathered} 70 \\ 100 \end{gathered}$	nA
Common Mode Input Voltage Range	5	VICR	-13	$\begin{aligned} & -14 \\ & +14 \end{aligned}$	13	V
Large Signal Voltage Gain $\left(\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}\right.$ to $\left.+10 \mathrm{~V}\right)$ $\begin{aligned} \left(\mathrm{T}_{A}\right. & \left.=+25^{\circ} \mathrm{C}\right) \\ \mathrm{R}_{\mathrm{L}} & =100 \Omega \\ \mathrm{R}_{\mathrm{L}} & =600 \Omega \\ \left(\mathrm{~T}_{A}\right. & \left.=-40^{\circ} \text { to }+85^{\circ} \mathrm{C}\right) \\ \mathrm{R}_{\mathrm{L}} & =600 \Omega \end{aligned}$	6	Avol	$\begin{aligned} & 25 \\ & 50 \\ & 25 \end{aligned}$	$\overline{200}$	-	kV/V
$\begin{gathered} \text { Output Voltage Swing }\left(\mathrm{V}_{I D}= \pm 1.0 \mathrm{~V}\right) \\ \left.\begin{array}{c} \mathrm{V}_{\mathrm{CC}} \\ R_{\mathrm{L}} \end{array}=+15 \mathrm{~V}, \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right) \\ R_{\mathrm{L}}=100 \Omega \\ R_{\mathrm{L}}=600 \Omega \\ R_{\mathrm{L}}=600 \Omega \\ \left(\mathrm{~V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}\right) \\ R_{\mathrm{L}}=100 \Omega \\ R_{\mathrm{L}}=100 \Omega \end{gathered}$	7, 8, 9	$\mathrm{V}_{\mathrm{O}+}$ $\mathrm{V}_{\mathrm{O}}$ $\mathrm{V}_{\mathrm{O}+}$ $\mathrm{V}_{\mathrm{O}}$   $\mathrm{V}_{\mathrm{O}+}$ $\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \frac{10}{13} \\ & \frac{1.2}{} \end{aligned}$	$\begin{aligned} & +11.7 \\ & -11.7 \\ & +13.8 \\ & -13.8 \\ & +1.66 \\ & -1.74 \end{aligned}$	$\begin{gathered} - \\ -10 \\ -13 \\ -1.2 \end{gathered}$	V
Common Mode Rejection ( $\mathrm{V}_{\text {in }}= \pm 13 \mathrm{~V}$ )	10	CMR	80	116	-	dB
```Power Supply Rejection (VCC/VEE =+15 V/-15 V, +5.0 V/-15 V, +15 V/-5.0 V)```	11	PSR	80	120	-	dB

MC33076

DC ELECTRICAL CHARACTERICISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
Output Short Circuit Current ($\mathrm{V}_{\text {ID }}= \pm 1.0 \mathrm{~V}$ Output to Gnd) $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)$ Source Sink $\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}\right)$ Source Sink	12, 13	Isc	190 - 63	$\begin{array}{r} +250 \\ -280 \\ +94 \\ +80 \end{array}$	$\begin{gathered} -215 \\ - \\ -46 \end{gathered}$	mA
$\begin{aligned} & \text { Power Supply Current per Amplifier }\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{S}= \pm 2.5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}\right) \\ & T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & T_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	14	ID		2.2	$\begin{aligned} & 2.8 \\ & 3.3 \end{aligned}$	mA

AC ELECTRICAL CHARACTERICISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
Slew Rate ($\mathrm{V}_{\text {in }}=-10 \mathrm{~V}$ to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{AV}^{2}=+1$)	15	SR	1.2	2.6	-	V/ $/ \mathrm{s}$
Gain Bandwidth Product ($f=20 \mathrm{kHz}$)	16	GBW	4.0	7.4	-	MHz
Unity Gain Frequency (Open Loop) ($\mathrm{R}_{\mathrm{L}}=600 \Omega, C_{L}=0 \mathrm{pF}$)	-	fu	-	3.5	-	MHz
Gain Margin ($\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$)	19, 20	A_{m}	-	15	-	dB
Phase Margin ($\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$)	19, 20	\varnothing_{m}	-	52	-	Deg
Channel Separation ($f=100 \mathrm{~Hz}$ to 20 kHz)	21	CS	-	-120	-	dB
Power Bandwidth ($\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=600 \Omega$, THD $\leq 1 \%$)	-	BW_{p}	-	32	-	kHz
$\begin{aligned} & \text { Total Harmonic Distortion }\left(R_{L}=600 \Omega, V_{O}=2.0 \mathrm{~V}_{\mathrm{pp}}, A V=+1\right) \\ & f=1.0 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \\ & f=20 \mathrm{kHz} \end{aligned}$	22	THD	-	$\begin{gathered} 0.0027 \\ 0.011 \\ 0.022 \end{gathered}$	-	\%
Open Loop Output Impedance ($\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=2.5 \mathrm{MHz}, \mathrm{A}_{\mathrm{V}}=10$)	23	$1 \mathrm{ZO}_{\mathrm{O}} \mid$	-	75	-	Ω
Differential Input Resistance ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$)	-	$\mathrm{R}_{\text {in }}$	-	200	-	$\mathrm{k} \Omega$
Differential Input Capacitance ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$)	-	$\mathrm{C}_{\text {in }}$	-	10	-	pF
$\begin{aligned} & \text { Equivalent Input Noise Voltage }\left(\mathrm{RS}_{\mathrm{S}}=100 \Omega\right) \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=1.0 \mathrm{kHz} \end{aligned}$	24	e_{n}	-	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=1.0 \mathrm{kHz} \end{aligned}$	-	i_{n}	-	$\begin{aligned} & 0.33 \\ & 0.15 \end{aligned}$	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Figure 1. Maximum Power Dissipation versus Temperature

Figure 3. Input Bias Current versus Common Mode Voltage

Figure 5. Input Common Mode Voltage Range versus Temperature

Figure 2. Distribution of Input Offset Voltage

Figure 4. Input Bias Current versus Temperature

Figure 6. Open Loop Voltage Gain versus Temperature

Figure 7. Output Voltage Swing versus Supply Voltage

Figure 9. Output Voltage versus Frequency

Figure 11. Power Supply Rejection versus Frequency Over Temperature

Figure 8. Maximum Peak-to-Peak Output Voltage Swing versus Load Resistance

Figure 10. Common Mode Rejection versus Frequency Over Temperature

Figure 12. Output Short Circuit Current versus Output Voltage

Figure 13. Output Short Circuit Current versus Temperature

Figure 15. Slew Rate versus Temperature

Figure 17. Voltage Gain and Phase versus Frequency

Figure 14. Supply Current versus Supply Voltage with No Load

Figure 16. Gain Bandwidth Product versus Temperature

Figure 18. Voltage Gain and Phase versus Frequency

Figure 19. Phase Margin and Gain Margin versus Differential Source Resistance

Figure 21. Channel Separation versus Frequency

Figure 23. Output Impedance versus Frequency

Figure 20. Open Loop Gain Margin and Phase Margin versus Output Load Capacitance

Figure 22. Total Harmonic Distortion versus Frequency

Figure 24. Input Referred Noise Voltage versus Frequency

Figure 25. Percent Overshoot versus Load Capacitance
2

Figure 26. PC Board Heatsink Example

APPLICATIONS INFORMATION

The MC33076 dual operational amplifier is available in the standard 8-pin plastic dual-in-line (DIP) and surface mount packages, and also in a 16-pin batwing power package. To enhance the power dissipation capability of the power package, Pins 4, 5, 12, and 13 are tied together on the leadframe, giving it an ambient thermal resistance of $52^{\circ} \mathrm{C} / \mathrm{W}$
typically, in still air. The junction-to-ambient thermal resistance ($R_{\theta J A}$) can be decreased further by using a copper padb on the printed circuit board (as shown in Figure 26) to draw the heat away from the package. Care must be taken not to exceed the maximum junction temperature or damage to the device may occur.

Dual, Low Noise Operational Amplifier

The MC33077 is a precision high quality, high frequency, low noise monolithic dual operational amplifier employing innovative bipolar design techniques. Precision matching coupled with a unique analog resistor trim technique is used to obtain low input offset voltages. Dual-doublet frequency compensation techniques are used to enhance the gain bandwidth product of the amplifier. In addition, the MC33077 offers low input noise voltage, low temperature coefficient of input offset voltage, high slew rate, high AC and DC open loop voltage gain and low supply current drain. The all NPN transistor output stage exhibits no deadband cross-over distortion, large output voltage swing, excellent phase and gain margins, low open loop output impedance and symmetrical source and sink AC frequency performance.

The MC33077 is tested over the automotive temperature range and is available in plastic DIP and SO-8 packages (P and D suffixes).

- Low Voltage Noise: $4.4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 1.0 kHz
- Low Input Offset Voltage: 0.2 mV
- Low TC of Input Offset Voltage: $2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- High Gain Bandwidth Product: 37 MHz @ 100 kHz
- High AC Voltage Gain: 370 @ 100 kHz 1850 @ 20 kHz
- Unity Gain Stable: with Capacitance Loads to 500 pF
- High Slew Rate: $11 \mathrm{~V} / \mathrm{s}$
- Low Total Harmonic Distortion: 0.007\%
- Large Output Voltage Swing: +14 V to -14.7 V
- High DC Open Loop Voltage Gain: 400 k (112 dB)
- High Common Mode Rejection: 107 dB
- Low Power Supply Drain Current: 3.5 mA
- Dual Supply Operation: $\pm 2.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

DUAL, LOW NOISE OPERATIONAL AMPLIFIER

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC33077D	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO- 8
MC33077P		Plastic DIP

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (VCC to V_{EE})	V_{S}	+36	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	V
Input Voltage Range	V_{IR}	(Note 1)	V
Output Short Circuit Duration (Note 2)	tSC	Indefinite	sec
Maximum Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	P_{D}	(Note 2)	mW

NOTES: 1. Either or both input voltages should not exceed V_{CC} or V_{EE} (See Applications Information). 2. Power dissipation must be considered to ensure maximum junction temperature (T_{J}) is not exceeded (See power dissipation performance characteristic, Figure 1).

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage (} \mathrm{R} \mathrm{~S}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text {) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	IV101		0.13	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	IB		280	$\begin{aligned} & 1000 \\ & 1200 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	10	-		$\begin{aligned} & 180 \\ & 240 \end{aligned}$	nA
Common Mode Input Voltage Range ($\Delta \mathrm{V}_{1 \mathrm{O}},=5.0 \mathrm{mV}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$)	VICR	± 13.5	± 14	-	V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Avol	$\begin{aligned} & 150 \mathrm{k} \\ & 125 \mathrm{k} \end{aligned}$	400 k	-	V / V
$\begin{aligned} & \text { Output Voltage Swing }\left(V_{I D}= \pm 1.0 \mathrm{~V}\right) \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{O}+}$ V_{O} $\mathrm{V}_{\mathrm{O}+}$ $\mathrm{V}_{\mathrm{O}}-$	$\begin{gathered} +13.0 \\ +13.4 \end{gathered}$	$\begin{aligned} & +13.6 \\ & -14.1 \\ & +14.0 \\ & -14.7 \end{aligned}$	$\begin{gathered} - \\ -13.5 \\ -14.3 \end{gathered}$	V
Common Mode Rejection ($\mathrm{V}_{\text {in }}= \pm 13 \mathrm{~V}$)	CMR	85	107	-	dB
Power Supply Rejection (Note 3) $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=+15 \mathrm{~V} /-15 \mathrm{~V} \text { to }+5.0 \mathrm{~V} /-5.0 \mathrm{~V}$	PSR	80	90	-	dB
Output Short Circuit Current ($\mathrm{V}_{\mathrm{ID}}= \pm 1.0 \mathrm{~V}$, Output to Ground) Source Sink	ISC	$\begin{aligned} & +10 \\ & -20 \end{aligned}$	$\begin{aligned} & +26 \\ & -33 \end{aligned}$	$\begin{aligned} & +60 \\ & +60 \end{aligned}$	mA
$\begin{aligned} & \text { Power Supply Current (VO=0 V, All Amplifiers) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	ID	-	3.5	$\begin{aligned} & 4.5 \\ & 4.8 \end{aligned}$	mA

NOTE: 3. Measured with V_{CC} and V_{EE} simultaneously varied.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
Slew Rate ($\mathrm{V}_{\text {in }}=-10 \mathrm{~V}$ to $\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}^{2}=+1.0\right)$	SR	8.0	11	-	V/us
Gain Bandwidth Product ($\mathrm{f}=100 \mathrm{kHz}$)	GBW	25	37	-	MHz
$\begin{aligned} & \text { AC Voltage Gain }\left(R_{L}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \begin{array}{l} f=100 \mathrm{kHz} \\ \mathrm{f} \end{array}=20 \mathrm{kHz} \end{aligned}$	Avo	-	$\begin{gathered} 370 \\ 1850 \end{gathered}$	-	V/V
Unity Gain Frequency (Open Loop)	fu	-	7.5	-	MHz
Gain Margin ($\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$)	A_{m}	-	10	-	dB
Phase Margin ($\mathrm{L}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$)	\varnothing_{m}	-	55	-	Degrees
Channel Separation ($\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=10 \mathrm{Vpp}$)	CS	-	-120	-	dB
Power Bandwidth ($\mathrm{V}_{\mathrm{O}}=27_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$, THD $\leq 1 \%$)	BW_{p}	-	200	-	kHz
$\begin{aligned} & \text { Distortion }\left(R_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & A \mathrm{~V}=+1.0, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{O}}=3.0 \mathrm{~V}_{\mathrm{rms}} \\ & \mathrm{~A}=2000, \mathrm{f}=20 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{~V}_{\mathrm{O}}=10 \mathrm{Vpp} \\ & \mathrm{~A} \mathrm{~V}_{\mathrm{pp}}=4000, \mathrm{f}=1.00 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{~V}_{\mathrm{O}}=10 \mathrm{Vpp} \end{aligned}$	THD	- - - -	$\begin{aligned} & 0.007 \\ & \\ & 0.215 \\ & 0.242 \\ & 0.3 .19 \\ & 0.316 \end{aligned}$	—	\%
Open Loop Output Impedance ($\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=\mathrm{fu}$)	$\mathrm{Z}_{\mathrm{O}} \mathrm{l}$	-	36	-	Ω
Differential Input Resistance ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$)	$\mathrm{R}_{\text {in }}$	-	270	-	$\mathrm{k} \Omega$
Differential Input Capacitance ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$)	$\mathrm{C}_{\text {in }}$	-	15	-	pF
$\begin{aligned} & \text { Equivalent input Noise Voltage }\left(R_{S}=100 \Omega\right) \\ & \begin{array}{l} f=10 \mathrm{~Hz} \\ f=1.0 \mathrm{kHz} \end{array} \end{aligned}$	e_{n}	-	$\begin{aligned} & 6.7 \\ & 4.4 \end{aligned}$	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\begin{aligned} & \text { Equivalent Input Noise Current }(f=1.0 \mathrm{kHz}) \\ & \begin{aligned} f & =10 \mathrm{~Hz} \\ f & =1.0 \mathrm{kHz} \end{aligned} \end{aligned}$	i_{n}	-	$\begin{aligned} & 1.3 \\ & 0.6 \end{aligned}$	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Figure 1. Maximum Power Dissipation versus Temperature

Figure 2. Input Bias Current versus Supply Voltage

Figure 3. Input Bias Current
versus Temperature

Figure 4. Input Offset Voltage versus Temperature

Figure 5. Input Bias Current versus Common Mode Voltage

Figure 6. Input Common Mode Voltage Range Σ versus Temperature

Figure 7. Output Saturation Voltage versus Load Resistance to Ground

Figure 8. Output Short Circuit Current versus Temperature

Figure 9. Supply Current versus Temperature

Figure 11. Power Supply Rejection versus Frequency

Figure 13. Gain Bandwidth Product versus Temperature

Figure 10. Common Mode Rejection versus Frequency

Figure 12. Gain Bandwidth Product versus Supply Voltage

Figure 14. Maximum Output Voltage versus Supply Voltage

Figure 15. Output Voltage versus Frequency

Figure 17. Open Loop Voltage Gain versus Temperature

Figure 19. Channel Separation versus Frequency

Figure 16. Open Loop Voltage Gain versus Supply Voltage

Figure 18. Output Impedance versus Frequency

Figure 20. Total Harmonic Distortion versus Frequency

Figure 21. Total Harmonic Distortion versus Frequency

Figure 23. Slew Rate versus Supply Voltage

Figure 25. Voltage Gain and Phase versus Frequency

Figure 22. Total Harmonic Distortion versus Output Voltage

Figure 24. Slew Rate versus Temperature

Figure 26. Open Loop Gain Margin and Phase Margin versus Output Load Capacitance

Figure 27. Phase Margin versus Output Voltage

Figure 28. Overshoot versus Output Load Capacitance

Figure 30. Total Input Referred Noise Voltage

Figure 31. Phase Margin and Gain Margin versus Differential Source Resistance

Figure 32. Inverting Amplifer Slew Rate

t , TIME ($2.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 33. Noninverting Amplifier Slew Rate

t , TIME $(2.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 34. Noninverting Amplifier Overshoot

t , TIME ($200 \mathrm{~ns} / \mathrm{DIV}$)

Figure 35. Low Frequency Noise Voltage versus Time

t , TIME ($1.0 \mathrm{sec} / \mathrm{DIV}$)

APPLICATIONS INFORMATION

The MC33077 is designed primarily for its low noise, low offset voltage, high gain bandwidth product and large output swing characteristics. Its outstanding high frequency gain/phase performance make it a very attractive amplifier for high quality preamps, instrumentation amps, active filters and other applications requiring precision quality characteristics.

The MC33077 utilizes high frequency lateral PNP input transistors in a low noise bipolar differential stage driving a compensated Miller integration amplifier. Dual-doublet frequency compensation techniques are used to enhance the gain bandwidth product. The output stage uses an all NPN transistor design which provides greater output voltage swing and improved frequency performance over more conventional stages by using both PNP and NPN transistors (Class AB). This combination produces an amplifier with superior characteristics.

Through precision component matching and innovative current mirror design, a lower than normal temperature coefficient of input offset voltage $\left(2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ as opposed to 10 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$), as well as low input offset voltage, is accomplished.

The minimum common mode input range is from 1.5 V below the positive rail $\left(\mathrm{V}_{\mathrm{C}}\right)$ to 1.5 V above the negative rail (VEE). The inputs will typically common mode to within 1.0 V of both negative and positive rails though degradation in offset voltage and gain will be experienced as the common mode voltage nears either supply rail. In practice, though not recommended, the input voltage may exceed VCC by approximately 30 V and decrease below the VEE by approximately 0.6 V without causing permanent damage to the device. If the input voltage on either or both inputs is less than approximately 0.6 V , excessive current may flow, if not limited, causing permanent damage to the device.

The amplifier will not latch with input source currents up to 20 mA , though in practice, source currents should be limited to 5.0 mA to avoid any parametric damage to the device. If both inputs exceed $V_{C C}$, the output will be in the high state and phase reversal may occur. No phase reversal will occur if the voltage on one input is within the common mode range and the voltage on the other input exceeds VCC. Phase reversal may occur if the input voltage on either or both inputs is less than 1.0 V above the negative rail. Phase reversal will be experienced if the voltage on either or both inputs is less than $V_{\text {EE }}$.

Through the use of dual-doublet frequency compensation techniques, the gain bandwidth product has been greatly enhanced over other amplifiers using the conventional single pole compensation. The phase and gain error of the amplifier remains low to higher frequencies for fixed amplifier gain configurations.

With the all NPN output stage, there is minimal swing loss to the supply rails, producing superior output swing, no crossover distortion and improved output phase symmetry with output voltage excursions (output phase symmetry being the amplifiers ability to maintain a constant phase relation independent of its output voltage swing). Output phase symmetry degradation in the more conventional PNP and NPN transistor output stage was primarily due to the inherent cut-off frequency mismatch of the PNP and NPN transistors used (typically 10 MHz and 300 MHz , respectively), causing considerable phase change to occur as the output voltage changes. By eliminating the PNP in the output, such phase change has been avoided and a very significant improvement in output phase symmetry as well as output swing has been accomplished.

The output swing improvement is most noticeable when operation is with lower supply voltages (typically 30% with $\pm 5.0 \mathrm{~V}$ supplies). With a 10 k load, the output of the amplifier can typically swing to within 1.0 V of the positive rail (V_{CC}), and to within 0.3 V of the negative rail (V_{EE}), producing a 28.7 V_{pp} signal from $\pm 15 \mathrm{~V}$ supplies. Output voltage swing can be further improved by using an output pull-up resistor referenced to the VCC. Where output signals are referenced to the positive supply rail, the pull-up resistor will pull the output to $V_{C C}$ during the positive swing, and during the negative swing, the NPN output transistor collector will pull the output very near $V_{E E}$. This configuration will produce the maximum attainable output signal from given supply voltages. The value of load resistance used should be much less than any feedback resistance to avoid excess loading and allow easy pull-up of the output.

Output impedance of the amplifier is typically less than 50Ω at frequencies less than the unity gain crossover frequency (see Figure 18). The amplifier is unity gain stable with output capacitance loads up to 500 pF at full output swing over the -55° to $+125^{\circ} \mathrm{C}$ temperature range. Output phase symmetry is excellent with typically $4^{\circ} \mathrm{C}$ total phase change over a 20 V output excursion at $25^{\circ} \mathrm{C}$ with a $2.0 \mathrm{k} \Omega$ and 100 pF load. With a $2.0 \mathrm{k} \Omega$ resistive load and no capacitance loading, the total phase change is approximately one degree for the same 20 V output excursion. With a $2.0 \mathrm{k} \Omega$ and 500 pF load at $125^{\circ} \mathrm{C}$, the total phase change is typically only $10^{\circ} \mathrm{C}$ for a 20 V output excursion (see Figure 27).

As with all amplifiers, care should be exercised to insure that one does not create a pole at the input of the amplifier which is near the closed loop corner frequency. This becomes a greater concern when using high frequency amplifiers since it is very easy to create such a pole with relatively small values of resistance on the inputs. If this does
occur, the amplifier's phase will degrade severely causing the amplifier to become unstable. Effective source resistances, acting in conjunction with the input capacitance of the amplifier, should be kept to a minimum to avoid creating such a pole at the input (see Figure 31). There is minimal effect on stability where the created input pole is much greater than the closed loop corner frequency. Where amplifier stability is affected as a result of a negative feedback resistor in conjunction with the amplifier's input capacitance, creating a pole near the closed loop corner frequency, lead capacitor compensation techniques (lead capacitor in parallel with the feedback resistor) can be employed to improve stability. The feedback resistor and lead capacitor RC time constant should be larger than that of the uncompensated input pole frequency. Having a high resistance connected to the noninverting input of the amplifier can create a like instability problem. Compensation for this condition can be accomplished by adding a lead capacitor in parallel with the noninverting input resistor of such a value as to make the RC time constant larger than the RC time constant of the uncompensated input resistor acting in conjunction with the amplifiers input capacitance.

For optimum frequency performance and stability, careful component placement and printed circuit board layout should be exercised. For example, long unshielded input or output leads may result in unwanted input output coupling. In order to reduce the input capacitance, the body of resistors connected to the input pins should be physically close to the input pins. This not only minimizes the input pole creation for optimum frequency response, but also minimizes extraneous signal "pickup" at this node. Power supplies should be
decoupled with adequate capacitance as close as possible to the device supply pin.

In addition to amplifier stability considerations, input source resistance values should be low to take full advantage of the low noise characteristics of the amplifier. Thermal noise (Johnson Noise) of a resistor is generated by thermally-charged carriers randomly moving within the resistor creating a voltage. The rms thermal noise voltage in a resistor can be calculated from:

$$
\mathrm{E}_{\mathrm{nr}}=1 \overline{4 \mathrm{k} \mathrm{TR} \times \mathrm{BW}}
$$

where:
k = Boltzmann's Constant (1.38×10^{-23} joules $/ k$)
$\mathrm{T}=$ Kelvin temperature
$\mathrm{R}=$ Resistance in ohms
BW = Upper and lower frequency limit in Hertz.
By way of reference, a $1.0 \mathrm{k} \Omega$ resistor at $25^{\circ} \mathrm{C}$ will produce a $4.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of rms noise voltage. If this resistor is connected to the input of the amplifier, the noise voltage will be gained-up in accordance to the amplifier's gain configuration. For this reason, the selection of input source resistance for low noise circuit applications warrants serious consideration. The total noise of the amplifier, as referred to its inputs, is typically only $4.4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1.0 kHz .

The output of any one amplifier is current limited and thus protected from a direct short to ground, However, under such conditions, it is important not to allow the amplifier to exceed the maximum junction temperature rating. Typically for $\pm 15 \mathrm{~V}$ supplies, any one output can be shorted continuously to ground without exceeding the temperature rating.

Figure 36. Voltage Noise Test Circuit

(0.1 Hz to 10 Hz p-p)

[^8]
Dual/Quad Low Noise Operational Amplifiers

The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink $A C$ frequency performance.

The MC33078/9 family offers both dual and quad amplifier versions, tested over the automotive temperature range and available in the plastic DIP and SOIC packages (P and D suffixes).

- Dual Supply Operation: $\pm 5.0 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low Voltage Noise: $4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low Input Offset Voltage: 0.15 mV
- Low T.C. of Input Offset Voltage: $2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Total Harmonic Distortion: 0.002\%
- High Gain Bandwidth Product: 16 MHz
- High Slew Rate: $7.0 \mathrm{~V} / \mu \mathrm{s}$
- High Open Loop AC Gain: 800 @ 20 kHz
- Excellent Frequency Stability
- Large Output Voltage Swing: +14.1 V/-14.6 V
- ESD Diodes Provided on the Inputs

MC33078 MC33079

DUAL/QUAD LOW NOISE OPERATIONAL AMPLIFIERS

PIN CONNECTIONS

QUAD

P SUFFIX
PLASTIC PACKAGE CASE 646

D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO-14)

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
$\begin{aligned} & \text { MC33078D } \\ & \text { MC33078P } \end{aligned}$	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\begin{gathered} \text { SO-8 } \\ \text { Plastic DIP } \end{gathered}$
$\begin{aligned} & \text { MC33079D } \\ & \text { MC33079P } \end{aligned}$		SO-14 Plastic DIP

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (VCC to $\mathrm{V}_{\text {EE }}$	V_{S}	+36	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	V
Input Voltage Range	$\mathrm{V}_{\text {IR }}$	(Note 1)	V
Output Short Circuit Duration (Note 2)	t_{SC}	Indefinite	sec
Maximum Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	PD_{D}	(Note 2)	mW

NOTES: 1. Either or both input voltages must not exceed the magnitude of $V_{C C}$ or $V_{E E}$
2. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{j}\right)$ is not exceeded (see Figure 1).

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \text { (MC33078) } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & T_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \text { (MC33079) } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{IV}_{10}{ }^{\text {l }}$	-	$\begin{aligned} & 0.15 \\ & - \\ & 0.15 \\ & - \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 2.5 \\ & 3.5 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$	-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	IB		300	$\begin{aligned} & 750 \\ & 800 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	10	-	25	$\begin{aligned} & 150 \\ & 175 \end{aligned}$	nA
Common Mode Input Voltage Range ($\Delta \mathrm{V}_{1 \mathrm{O}}=5.0 \mathrm{mV}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$)	VICR	± 13	± 14	-	V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Avol	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	110		dB
$\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{V}_{\mathrm{ID}}= \pm 1.0 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{O}}+$ $\mathrm{V}_{\mathrm{O}^{-}}$ $\mathrm{V}_{\mathrm{O}}+$ $\mathrm{V}_{\mathrm{O}}{ }^{-}$ $\mathrm{V}_{\mathrm{O}}+$ $\mathrm{V}_{\mathrm{O}^{-}}$	$\begin{gathered} \overline{-} \\ +13.2 \\ - \\ +13.5 \end{gathered}$	$\begin{aligned} & +10.7 \\ & -11.9 \\ & +13.8 \\ & -13.7 \\ & +14.1 \\ & -14.6 \end{aligned}$	$\begin{gathered} - \\ - \\ -13.2 \\ -14 \end{gathered}$	V
Common Mode Rejection ($\mathrm{V}_{\text {in }}= \pm 13 \mathrm{~V}$)	CMR	80	100	-	dB
Power Supply Rejection (Note 3) $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=+15 \mathrm{~V} /-15 \mathrm{~V} \text { to }+5.0 \mathrm{~V} /-5.0 \mathrm{~V}$	PSR	80	105	-	dB
Output Short Circuit Current ($\mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}$, Output to Ground) Source Sink	ISC	$\begin{aligned} & +15 \\ & -20 \end{aligned}$	$\begin{aligned} & +29 \\ & -37 \end{aligned}$	-	mA
$\begin{aligned} & \text { Power Supply Current (VO }=0 \mathrm{~V} \text {, All Amplifiers) } \\ & \text { (MC33078) } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \text { (MC33079) } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	ID	-	$\frac{4.1}{8.4}$	$\begin{gathered} 5.0 \\ 5.5 \\ 10 \\ 11 \end{gathered}$	mA

NOTE: 3. Measured with V_{CC} and V_{EE} differentially varied simultaneously.

MC33078 MC33079

AC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
Slew Rate ($\mathrm{V}_{\text {in }}=-10 \mathrm{~V}$ to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \mathrm{A}_{\mathrm{V}}=+1.0$)	SR	5.0	7.0	-	V/us
Gain Bandwidth Product ($\mathrm{f}=100 \mathrm{kHz}$)	GBW	10	16	-	MHz
Unity Gain Frequency (Open Loop)	fu	-	9.0	-	MHz
$\begin{array}{ll}\left.\text { Gain Margin (} \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \\ C_{L}=100 \mathrm{pF}\end{array}$	A_{m}	-	$\begin{gathered} -11 \\ -6.0 \end{gathered}$	-	dB
$\begin{array}{ll}\left.\text { Phase Margin (} \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \\ C_{L}=100 \mathrm{pF}\end{array}$	¢m	-	$\begin{aligned} & 55 \\ & 40 \end{aligned}$	-	Degree s
Channel Separation ($\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz)	CS	-	-120	-	dB
Power Bandwidth ($\mathrm{V}_{\mathrm{O}}=27 \mathrm{Vpp}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$, THD $\leq 1.0 \%$)	BW_{p}	-	120	-	kHz
Distortion ($\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V} \mathrm{rms}, \mathrm{A}_{\mathrm{V}}=+1.0$)	THD	-	0.002	-	\%
Open Loop Output Impedance ($\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=9.0 \mathrm{MHz}$)	IZOI	-	37	-	Ω
Differential Input Resistance ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$)	RIN	-	175	-	$\mathrm{k} \Omega$
Differential Input Capacitance ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$)	$\mathrm{CIN}_{\text {In }}$	-	12	-	pF
Equivalent Input Noise Voltage ($\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$)	e_{n}	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ($f=1.0 \mathrm{kHz}$)	in_{n}	-	0.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Figure 1. Maximum Power Dissipation versus Temperature

Figure 3. Input Bias Current versus Temperature

Figure 2. Input Bias Current versus Supply Voltage

Figure 4. Input Offset Voltage versus Temperature

Figure 5. Input Bias Current versus Common Mode Voltage

Figure 7. Output Saturation Voltage versus Load Resistance to Ground

Figure 9. Supply Current versus Temperature

Figure 6. Input Common Mode Voltage Range versus Temperature

Figure 8. Output Short Circuit Current versus Temperature

Figure 10. Common Mode Rejection versus Frequency

Figure 11. Power Supply Rejection versus Frequency

Figure 13. Gain Bandwidth Product versus Temperature

Figure 15. Output Voltage versus Frequency

Figure 12. Gain Bandwidth Product versus Supply Voltage

Figure 14. Maximum Output Voltage versus Supply Voltage

Figure 16. Open Loop Voltage Gain versus Supply Voltage

Figure 17. Open Loop Voltage Gain versus Temperature

Figure 19. Channel Separation versus Frequency

Figure 21. Total Harmonic Distortion versus Output Voltage

Figure 18. Output Impedance versus Frequency

Figure 20. Total Harmonic Distortion versus Frequency

Figure 22. Slew Rate yersus Supply Voltage

Figure 23. Slew Rate versus Temperature

Figure 24. Voltage Gain and Phase versus Frequency

Figure 26. Overshoot versus Output Load Capacitance

Figure 28. Total Input Referred Noise Voltage versus Source Resistance

MC33078 MC33079

Figure 29. Phase Margin and Gain Margin versus Differential Source Resistance

Figure 30. Inverting Amplifier Slew Rate

t , TIME ($2.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 32. Noninverting Amplifier Overshoot

$\mathrm{t}, \mathrm{TIME}(200 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 31. Noninverting Amplifier Slew Rate

t , TIME ($2.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 33. Low Frequency Noise Voltage versus Time

t, TIME ($1.0 \mathrm{sec} / \mathrm{DIV}$)

MC33078 MC33079

Figure 34. Voltage Noise Test Circuit (0.1 Hz to 10 Hz p-p)

Note: All capacitors are non-polarized.

Sleep-Mode ${ }^{\text {TM }}$ Two-State, Micropower Operational Amplifier

The MC33102 dual operational amplifier is an innovative design concept employing Sleep-Mode technology. Sleep-Mode amplifiers have two separate states, a sleepmode and an awakemode. In sleepmode, the amplifier is active and waiting for an input signal. When a signal is applied causing the amplifier to source or sink $160 \mu \mathrm{~A}$ (typically) to the load, it will automatically switch to the awakemode which offers higher slew rate, gain bandwidth, and drive capability.

- Two States: "Sleepmode" (Micropower) and "Awakemode" (High Performance)
- Switches from Sleepmode to Awakemode in 4.0μ s when Output Current Exceeds the Threshold Current ($\mathrm{R}_{\mathrm{L}}=600 \Omega$)
- Independent Sleepmode Function for Each Op Amp
- Standard Pinouts - No Additional Pins or Components Required
- Sleepmode State - Can Be Used in the Low Current Idle State as a Fully Functional Micropower Amplifier
- Automatic Return to Sleepmode when Output Current Drops Below Threshold
- No Deadband/Crossover Distortion; as Low as 1.0 Hz in the Awakemode
- Drop-in Replacement for Many Other Dual Op Amps
- ESD Clamps on Inputs Increase Reliability without Affecting Device Operation

TYPICAL SLEEPMODE/AWAKEMODE PERFORMANCE

Characteristic	Sleepmode (Typical)	Awakemode (Typical)	Unit
Low Current Drain	45	750	$\mu \mathrm{~A}$
Low Input Offset Voltage	0.15	0.15	mV
High Output Current Capability	0.15	50	mA
Low T.C. of Input Offset Voltage	1.0	1.0	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
High Gain Bandwidth (@ 20 kHz)	0.33	4.6	MHz
High Slew Rate	0.16	1.7	$\mathrm{~V} / \mu \mathrm{s}$
Low Noise (@ 1.0 kHz)	28	9.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

MAXIMUM RATINGS

Ratings	Symbol	Value	Unit
Supply Voltage ($\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$)	V_{S}	+36	V
Input Differential Voltage Range Input Voltage Range	VIDR VIR	(Note 1)	V
Output Short Circuit Duration (Note 2)	tsc	(Note 2)	sec
Maximum Junction Temperature Storage Temperature	$\begin{gathered} T_{J} \\ T_{\mathrm{stg}} \end{gathered}$	$\begin{gathered} +150 \\ -65 \text { to }+150 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	PD	(Note 2)	mW

NOTES: 1. Either or both input voltages should not exceed V_{CC} or V_{EE}.
2. Power dissipation must be considered to ensure maximum junction temperature (T_{J}) is not exceeded (refer to Figure 1).

DUAL SLEEP-MODE OPERATIONAL AMPLIFIER

SEMICONDUCTOR

 TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC33102D	$\mathrm{TA}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC33102P		Plastic DIP

Simplified Block Diagram

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \text { Sleepmode } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \text { Awakemode } \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	2	$\left\|\mathrm{V}_{10}\right\|$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0.15 \\ - \\ 0.15 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 2.0 \\ & 3.0 \end{aligned}$	mV
Input Offset Voltage Temperature Coefficient $\begin{aligned} & \left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \text { (Sleepmode and Awakemode) } \end{aligned}$	3	$\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{T}$	-	1.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V} \mathrm{CM}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \text { Sleepmode } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \text { Awakemode } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	4, 6	IB	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 8.0 \\ - \\ 100 \end{gathered}$	$\begin{gathered} 50 \\ 60 \\ 500 \\ 600 \end{gathered}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \text { Sleepmode } \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \text { Awakemode } \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-	$\mid{ }_{10}{ }^{\prime}$	- - -	0.5 - 5.0	$\begin{aligned} & 5.0 \\ & 6.0 \\ & 50 \\ & 60 \end{aligned}$	nA

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
Common Mode Input Voltage Range $\left(\Delta \mathrm{V}_{\mathrm{IO}}=5.0 \mathrm{mV}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right.$) Sleepmode and Awakemode	5	VICR	$\begin{aligned} & -13 \\ & \hline \end{aligned}$	$\begin{aligned} & -14.8 \\ & +14.2 \end{aligned}$	$+13$	V
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & \text { Sleepmode (RL }=1.0 \mathrm{M} \Omega) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \text { Awakemode }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega\right) \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	7	Avol	$\begin{aligned} & 25 \\ & 15 \\ & \\ & 50 \\ & 25 \end{aligned}$	$\begin{gathered} 200 \\ - \\ 700 \\ - \end{gathered}$	$-$	kV/V
```Output Voltage Swing ( \(\mathrm{V}_{\mathrm{ID}}= \pm 1.0 \mathrm{~V}\) ) Sleepmode \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)\) \(\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{M} \Omega\) \(\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{M} \Omega\) Awakemode ( \(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\) ) \(\mathrm{R}_{\mathrm{L}}=600 \Omega\) \(\mathrm{R}_{\mathrm{L}}=600 \Omega\) \(\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) \(R_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) Awakemode ( \(\left.\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}\right)\) \(\mathrm{R}_{\mathrm{L}}=600 \Omega\) \(R_{\mathrm{L}}=600 \Omega\)```	8, 9, 10	$\mathrm{V}_{\mathrm{O}+}$   $\mathrm{V}_{\mathrm{O}}$   $\mathrm{V}_{\mathrm{O}+}$   $\mathrm{V}_{\mathrm{O}}$   $\mathrm{V}_{\mathrm{O}+}$   $\mathrm{V}_{\mathrm{O}}$   $\mathrm{V}_{\mathrm{O}}+$   $\mathrm{V}_{\mathrm{O}}$	$\begin{gathered} +13.5 \\ - \\ +12.5 \\ +13.3 \\ - \\ +1.1 \end{gathered}$	$\begin{gathered} +14.2 \\ -14.2 \\ \\ +13.6 \\ -13.6 \\ +14 \\ -14 \\ \\ +1.6 \\ -1.6 \end{gathered}$	$\begin{gathered} - \\ -13.5 \\ - \\ -12.5 \\ -\overline{3} .3 \\ - \\ -1.1 \end{gathered}$	V v
Common Mode Rejection ( $\mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}$ )   Sleepmode and Awakemode	11	CMR	80	90	-	dB
$\begin{aligned} & \text { Power Supply Rejection }\left(\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=+15 \mathrm{~V} /-15 \mathrm{~V}\right. \text {, } \\ & 5.0 \mathrm{~V} /-15 \mathrm{~V},+15 \mathrm{~V} /-5.0 \mathrm{~V}) \\ & \text { Sleepmode and Awakemode } \end{aligned}$	12	PSR	80	100	-	dB
Output Transition Current   Sleepmode to Awakemode (Source/Sink) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}\right) \end{aligned}$   Awakemode to Sleepmode (Source/Sink) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}\right) \end{aligned}$	13, 14	$\begin{aligned} & \left\|\mathrm{ITH}_{\mathrm{TH}}\right\| \\ & \left\|\mathrm{I}_{\mathrm{TH} 2}\right\| \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 160 \\ & 200 \\ & \\ & 142 \\ & 180 \end{aligned}$	$\begin{gathered} - \\ 90 \\ 90 \\ 140 \end{gathered}$	$\mu \mathrm{A}$
Output Short Circuit Current (Awakemode)   ( $\mathrm{V}_{\mathrm{ID}}= \pm 1.0 \mathrm{~V}$, Output to Ground)   Source   Sink	15, 16	$\|\mathrm{ISC}\|$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	-	mA
$\begin{aligned} & \text { Power Supply Current (per Amplifier) (ACL } \left.=1, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \text { Sleepmode }(\mathrm{V} \text { S }= \pm 15 \mathrm{~V}) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \text { Sleepmode }(\mathrm{V} \mathrm{~V}= \pm 2.5 \mathrm{~V}) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \text { Awakemode }(\mathrm{V}= \pm 15 \mathrm{~V}) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	17	ID		45   48   38   42   750   800	65 70   65   -   800   900	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS（VCC $=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
Slew Rate $\left(\mathrm{V}_{\mathrm{in}}=-5.0 \mathrm{~V}\right.$ to $+5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{AV}_{\mathrm{V}}=1.0$ ）   Sleepmode（ $R_{L}=1.0 \mathrm{M} \Omega$ ）   Awakemode（ $\mathrm{R}_{\mathrm{L}}=600 \Omega$ ）	18	SR	$\begin{gathered} 0.10 \\ 1.0 \end{gathered}$	$\begin{gathered} 0.16 \\ 1.7 \end{gathered}$	二	V／us
Gain Bandwidth Product Sleepmode（ $\mathrm{f}=10 \mathrm{kHz}$ ） Awakemode（ $\mathrm{f}=20 \mathrm{kHz}$ ）	19	GBW	$\begin{gathered} 0.25 \\ 3.5 \end{gathered}$	$\begin{gathered} 0.33 \\ 4.6 \end{gathered}$		MHz
Sleepmode to Awakemode Transition Time $\begin{aligned} \left(A_{C L}\right. & \left.=0.1, V_{\text {in }}=0 \mathrm{~V} \text { to }+5.0 \mathrm{~V}\right) \\ R_{L} & =600 \Omega \\ R_{L} & =10 \mathrm{k} \Omega \end{aligned}$	20， 21	tr1		$\begin{aligned} & 4.0 \\ & 15 \end{aligned}$		$\mu \mathrm{s}$
Awakemode to Sleepmode Transition Time	22	tr2	－	1.5	－	sec
Unity Gain Frequency（Open Loop） Sleepmode（ $R_{L}=100 \mathrm{k} \Omega, C_{L}=0 \mathrm{pF}$ ） Awakemode（ $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ ）		fu		$\begin{gathered} 200 \\ 2500 \end{gathered}$	－	kHz
$\begin{aligned} & \text { Gain Margin } \\ & \text { Sleepmode }\left(R_{L}=100 \mathrm{k} \Omega, C_{L}=0 \mathrm{pF}\right) \\ & \text { Awakemode }\left(R_{L}=600 \Omega, C_{L}=0 \mathrm{pF}\right) \end{aligned}$	23， 25	$A_{M}$		$\begin{aligned} & 13 \\ & 12 \\ & \hline \end{aligned}$		dB
Phase Margin Sleepmode（ $R_{L}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ ） Awakemode（ $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ ）	24， 26	$\varnothing_{M}$		$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$		Degrees
Channel Separation（ $\mathrm{f}=100 \mathrm{~Hz}$ to 20 kHz ） Sleepmode and Awakemode	29	CS	－	120	－	dB
Power Bandwidth（Awakemode） $\left(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{THD} \leq 1 \%\right)$		$\mathrm{BW}_{\mathrm{P}}$	－	20	－	kHz
$\begin{aligned} & \text { Total Harmonic Distortion }\left(\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{pp}}, A \mathrm{~V}=1.0\right) \\ & \text { Awakemode }\left(\mathrm{R}_{\mathrm{L}}=600 \Omega\right) \\ & \mathrm{f}=1.0 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{f}=20 \mathrm{kHz} \end{aligned}$	30	THD	－	$\begin{aligned} & 0.005 \\ & 0.016 \\ & 0.031 \end{aligned}$	二	\％
DC Output Impedance $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=10, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\right)$   Sleepmode   Awakemode	31	Ro	－	$\begin{gathered} 1.0 \mathrm{k} \\ 96 \end{gathered}$		$\Omega$
Differential Input Resistance（ $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ ）   Sleepmode   Awakemode		$\mathrm{R}_{\text {in }}$	－	$\begin{gathered} 1.3 \\ 0.17 \end{gathered}$		M $\Omega$
Differential Input Capacitance（ $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ ） Sleepmode Awakemode		$\mathrm{C}_{\text {in }}$	二	$\begin{aligned} & 0.4 \\ & 4.0 \end{aligned}$	二	pF
Equivalent Input Noise Voltage（ $\mathrm{f}=1.0 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=100 \Omega$ ） Sleepmode Awakemode	32	$e_{n}$	－	$\begin{aligned} & 28 \\ & 9.0 \end{aligned}$	－	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current（ $\mathbf{f}=1.0 \mathrm{kHz}$ ）   Sleepmode   Awakemode	33	$\mathrm{in}_{n}$	－	$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$	二	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Figure 1. Maximum Power Dissipation


Figure 3. Input Offset Voltage Temperature Coefficient Distribution (MC33102D Package)


Figure 2. Distribution of Input Offset Voltage (MC33102D Package)


Figure 4. Input Bias Current versus Common Mode Input Voltage


Figure 5. Input Common Mode Voltage Range versus Temperature


Figure 6. Input Bias Current versus Temperature


Figure 7. Open Loop Voltage Gain versus Temperature

Figure 8. Output Voltage Swing versus Supply Voltage


Figure 10. Maximum Peak-to-Peak Output Voltage Swing versus Load Resistance


Figure 12. Power Supply Rejection versus Frequency


Figure 13. Sleepmode to Awakemode Current Threshold versus Supply Voltage


Figure 15. Output Short Circuit Current


Figure 17. Power Supply Current Per Amplifier versus Temperature


Figure 14. Awakemode to Sleepmode Current Threshold versus Supply Voltage



Figure 18. Slew Rate versus Temperature


Figure 19. Gain Bandwidth Product versus Temperature


Figure 21. Sleepmode to Awakemode Transition Time

$\mathrm{t}, \mathrm{TIME}(2.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 23. Gain Margin versus Differential Source Resistance


Figure 20. Sleepmode to Awakemode Transition Time


Figure 22. Awakemode to Sleepmode Transition Time versus Supply Voltage


Figure 24. Phase Margin versus Differential Source Resistance

$R_{T}$, DIFFERENTIAL SOURCE RESISTANCE ( $\Omega$ )

Figure 25. Open Loop Gain Margin versus Output Load Capacitance


Figure 27. Sleepmode Voltage Gain and Phase versus Frequency


Figure 29. Channel Separation versus Frequency


Figure 26. Phase Margin versus Output Load Capacitance
 Phase versus Frequency


Figure 30. Total Harmonic Distortion versus Frequency


Figure 31. Awakemode Output Impedance versus Frequency


Figure 33. Current Noise versus Frequency


Figure 35. Sleepmode Large Signal Transient Response

t , TIME ( $50 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 32. Input Referred Noise Voltage versus Frequency


Figure 34. Percent Overshoot versus Load Capacitance


Figure 36. Awakemode Large Signal Transient Response

t , TIME ( $5.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 37. Sleepmode Small Signal Transient Response


Figure 38. Awakemode Small Signal Transient Response


## CIRCUIT INFORMATION

The MC33102 was designed primarily for applications where high performance (which requires higher current drain) is required only part of the time. The two-state feature of this op amp enables it to conserve power during idle times, yet be powered up and ready for an input signal. Possible applications include laptop computers, automotive, cordless phones, baby monitors, and battery operated test equipment. Although most applications will require low power consumption, this device can be used in any application where better efficiency and higher performance is needed.

The Sleep-Mode ${ }^{\text {TM }}$ amplifier has two states; a sleepmode and an awakemode. In the sleepmode state, the amplifier is active and functions as a typical micropower op amp. When a signal is applied to the amplifier causing it to source or sink sufficient current (see Figure 13), the amplifier will automatically switch to the awakemode. See Figures 20 and 21 for transition times with $600 \Omega$ and $10 \mathrm{k} \Omega$ loads.

The awakemode uses higher drain current to provide a high slew rate, gain bandwidth, and output current capability. In the awakemode, this amplifier can drive 27 Vpp into a $600 \Omega$ load with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.

An internal delay circuit is used to prevent the amplifier from returning to the sleepmode at every zero crossing. This delay circuit also eliminates the crossover distortion commonly found in micropower amplifiers. This amplifier can process frequencies as low as 1.0 Hz without the amplifier returning to sleepmode, depending on the load.

The first stage PNP differential amplifier provides low noise performance in both the sleep and awake modes, and an all NPN output stage provides symmetrical source and sink AC frequency response.

## APPLICATIONS INFORMATION

The MC33102 will begin to function at power supply voltages as low as $\mathrm{V}_{\mathrm{S}}= \pm 1.0 \mathrm{~V}$ at room temperature. (At this voltage, the output voltage swing will be limited to a few hundred millivolts.) The input voltages must range between $V_{C C}$ and $V_{E E}$ supply voltages as shown in the maximum rating table. Specifically, allowing the input to go more negative than 0.3 V below $\mathrm{V}_{\mathrm{EE}}$ may cause product damage. Also, exceeding the input common mode voltage range on either input may cause phase reversal, even if the inputs are between $V_{C C}$ and $V_{E E}$.

When power is initially applied, the part may start to operate in the awakemode. This is because of the currents generated due to charging of internal capacitors. When this occurs and the sleepmode state is desired, the user will have to wait approximately 1.5 seconds before the device will switch back to the sleepmode. To prevent this from occurring, ramp the power supplies from 1.0 V to full supply. Notice that the device is more prone to switch into the awakemode when $\mathrm{V}_{\mathrm{EE}}$ is adjusted than with a similar change in VCC.

The amplifier is designed to switch from sleepmode to awakemode whenever the output current exceeds a preset
current threshold (ITH) of approximately $160 \mu \mathrm{~A}$. As a result, the output switching threshold voltage (VST) is controlled by the output loading resistance ( $\mathrm{R}_{\mathrm{L}}$ ). This loading can be a load resistor, feedback resistors, or both. Then:

$$
V_{S T}=(160 \mu \mathrm{~A}) \times \mathrm{R}_{\mathrm{L}}
$$

Large valued load resistors require a large output voltage to switch, but reduce unwanted transitions to the awakemode. For instance, in cases where the amplifier is connected with a large closed loop gain ( $\mathrm{A}_{\mathrm{CL}}$ ), the input offset voltage $\left(\mathrm{V}_{\mathrm{IO}}\right)$ is multiplied by the gain at the output and could produce an output voltage exceeding $\mathrm{V}_{\mathrm{ST}}$ with no input signal applied.

Small values of $R_{L}$ allow rapid transition to the awakemode because most of the transition time is consumed slewing in the sleepmode until $\mathrm{V}_{\mathrm{ST}}$ is reached (see Figures 20, 21). The output switching threshold voltage $\mathrm{V}_{\mathrm{ST}}$ is higher for larger values of $R_{L}$, requiring the amplifier to slew longer in the slower sleepmode state before switching to the awakemode.

## MC33102

The transition time $\left(t_{t r 1}\right)$ required to switch from sleep to awake mode is:
$\mathrm{t}_{\mathrm{tr} 1}=\mathrm{t}_{\mathrm{D}}=\mathrm{I}_{\mathrm{TH}}\left(\mathrm{R}_{\mathrm{L}} / \mathrm{SR}_{\text {sleepmode }}\right)$

Where: $t_{D}=$ Amplifier delay ( $<1.0 \mu \mathrm{~s}$ )
ITH = Output threshold current for more transition ( $160 \mu \mathrm{~A}$ )
$R_{L}=$ Load resistance
$\mathrm{SR}_{\text {sleepmode }}=$ Sleepmode slew rate $(0.16 \mathrm{~V} / \mu \mathrm{s})$
Although typically $160 \mu \mathrm{~A}$, ITH varies with supply voltage and temperature. In general, any current loading on the output which causes a current greater than ITH to flow will switch the amplifier into the awakemode. This includes transition currents such as those generated by charging load capacitances. In fact, the maximum capacitance that can be driven while attempting to remain in the sleepmode is approximately 1000 pF .

$$
\begin{aligned}
\mathrm{C}_{\mathrm{L}(\text { max })} & =\mathrm{I}_{\mathrm{TH}} / \mathrm{SR}_{\text {sleepmode }} \\
& =160 \mu \mathrm{~A} /(0.16 \mathrm{~V} / \mu \mathrm{s}) \\
& =1000 \mathrm{pF}
\end{aligned}
$$

Any electrical noise seen at the output of the MC33102 may also cause the device to transition to the awakemode. To
minimize this problem, a resistor may be added in series with the output of the device (inserted as close to the device as possible) to isolate the op amp from both parasitic and load capacitance.

The awakemode to sleepmode transition time is controlled by an internal delay circuit, which is necessary to prevent the amplifier from going to sleep during every zero crossing. This time is a function of supply voltage and temperature as shown in Figure 22.

Gain bandwidth product (GBW) in both modes is an important system design consideration when using a sleepmode amplifier. The amplifier has been designed to obtain the maximum GBW in both modes. "Smooth" AC transitions between modes with no noticeable change in the amplitude of the output voltage waveform will occur as long as the closed loop gains ( $A_{C L}$ ) in both modes are substantially equal at the frequency of operation. For smooth AC transitions:

$$
\begin{gathered}
\text { (ACLsleepmode) }(\text { BW })<\mathrm{GBW}_{\text {sleepmode }} \\
\text { Where: } \text { ACLsleepmode }=\text { Closed loop gain in }_{\text {the sleepmode }} \\
\text { BW }=\text { The required system bandwidth } \\
\text { or operating frequency }
\end{gathered}
$$

## TESTING INFORMATION

To determine if the MC33102 is in the awakemode or the sleepmode, the power supply currents ( $\mathrm{I}^{\mathrm{D}}+$ and $\mathrm{I}_{\mathrm{D}}-$ ) must be measured. When the magnitude of either power supply current exceeds $400 \mu \mathrm{~A}$, the device is in the awakemode. When the magnitudes of both supply currents are less than $400 \mu \mathrm{~A}$, the device is in the sleepmode. Since the total supply current is typically ten times higher in the awakemode than the sleepmode, the two states are easily distinguishable.

The measured value of $I_{D}+$ equals the $I_{D}$ of both devices (for a dual op amp) plus the output source current of device $A$ and the output source current of device B. Similarly, the measured value of $I_{D}$ - is equal to the $I_{D}$ - of both devices plus the output sink current of each device. lout is the sum
of the currents caused by both the feedback loop and load resistance. The total lout needs to be subtracted from the measured $I_{D}$ to obtain the correct $I_{D}$ of the dual op amp.

An accurate way to measure the awakemode lout current on automatic test equipment is to remove the $I_{\text {out }}$ current on both Channel $A$ and $B$. Then measure the ID values before the device goes back to the sleepmode state. The transition will take typically 1.5 seconds with $\pm 15 \mathrm{~V}$ power supplies.

The large signal sleepmode testing in the characterization was accomplished with a $1.0 \mathrm{M} \Omega$ load resistor which ensured the device would remain in sleepmode despite large voltage swings.

## Low Power, Single Supply Operational Amplifiers

Quality bipolar fabrication with innovative design concepts are employed for the MC33171/72/74 series of monolithic operational amplifiers. These devices operate at $180 \mu \mathrm{~A}$ per amplifier and offer 1.8 MHz of gain bandwidth product and $2.1 \mathrm{~V} / \mu \mathrm{s}$ slew rate without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage includes ground potential ( $\mathrm{V}_{\mathrm{EE}}$ ). With a Darlington input stage, these devices exhibit high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response.

The MC33171/72/74 are specified over the industrial/ automotive temperature ranges. The complete series of single, dual and quad operational amplifiers are available in plastic as well as the surface mount packages.

- Low Supply Current: $180 \mu \mathrm{~A}$ (Per Amplifier)
- Wide Supply Operating Range: 3.0 V to 44 V or $\pm 1.5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Wide Input Common Mode Range, Including Ground (VEE)
- Wide Bandwidth: 1.8 MHz
- High Slew Rate: $2.1 \mathrm{~V} / \mu \mathrm{s}$
- Low Input Offset Voltage: 2.0 mV
- Large Output Voltage Swing: -14.2 V to +14.2 V (with $\pm 15 \mathrm{~V}$ Supplies)
- Large Capacitance Drive Capability: 0 pF to 500 pF
- Low Total Harmonic Distortion: 0.03\%
- Excellent Phase Margin: $60^{\circ} \mathrm{C}$
- Excellent Gain Margin: 15 dB
- Output Short Circuit Protection
- ESD Diodes Provide Input Protection for Dual and Quad

ORDERING INFORMATION

Op Amp   Function	Device	Operating   Temperature Range	Package
Single	MC33171D		
MC33171P	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8	
Dual	MC33172D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP
MC33172P	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8	
Quad	MC33174D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP $+85^{\circ} \mathrm{C}$
	MC33174P	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-14



PIN CONNECTIONS

(Top View)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}$	$\pm 22$	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	V
Input Voltage Range	$\mathrm{V}_{\mathrm{IR}}$	(Note 1)	V
Output Short Circuit Duration (Note 2)	t		
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Either or both input voltages must not exceed the magnitude of $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{EE}}$. 2. Power dissipation must be considered to ensure maximum junction temperature ( $T_{J}$ ) is not exceeded.

Representative Schematic Diagram
(Each Amplifier)


DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ connected to ground, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $T_{\text {high }}$ [Note 3], unless otherwise noted.)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics \& Symbol \& Min \& Typ \& Max \& Unit <br>
\hline $$
\begin{aligned}
& \text { Input Offset Voltage }\left(V_{C M}=0 \mathrm{~V}\right) \\
& V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C} \\
& V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\
& V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, T_{A}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
$$ \& $\mathrm{V}_{10}$ \& 士 \& $$
\begin{aligned}
& 2.0 \\
& 2.5 \\
& -
\end{aligned}
$$ \& $$
\begin{aligned}
& 4.5 \\
& 5.0 \\
& 6.5
\end{aligned}
$$ \& mV <br>
\hline Average Temperature Coefficient of Offset Voltage \& $\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{T}$ \& - \& 10 \& - \& $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ <br>
\hline $$
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
$$ \& IIB \& - \& 20 \& $$
\begin{aligned}
& 100 \\
& 200
\end{aligned}
$$ \& nA <br>
\hline $$
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
$$ \& 10 \& - \& 5.0 \& $$
\begin{aligned}
& 20 \\
& 40
\end{aligned}
$$ \& nA <br>
\hline Large Signal Voltage Gain ( $\left.\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}<\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right)$
$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
$$ \& Avol \& $$
\begin{aligned}
& 50 \\
& 25
\end{aligned}
$$ \& 500 \& - \& V/mV <br>
\hline  \& $\mathrm{V}_{\mathrm{OH}}$

$\mathrm{V}_{\mathrm{OL}}$ \& \[
$$
\begin{gathered}
3.5 \\
13.6 \\
13.3 \\
\hline- \\
-
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
4.3 \\
14.2 \\
- \\
\hline 0.05 \\
-14.2 \\
-
\end{gathered}
$$
\] \& -

- 

0.15
-13.6
-13.3 \& V <br>

\hline Output Short Circuit ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ) Input Overdrive $=1.0 \mathrm{~V}$, Output to Ground Source Sink \& ISC \& \[
$$
\begin{aligned}
& 3.0 \\
& 15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.0 \\
& 27
\end{aligned}
$$
\] \& - \& mA <br>

\hline Input Common Mode Voltage Range

\[
$$
\begin{aligned}
& \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
$$

\] \& VICR \& \multicolumn{3}{|r|}{| $V_{E E}$ to $\left(V_{C C}-1.8\right)$ |
| :--- |
| $\mathrm{V}_{\mathrm{EE}}$ to ( $\mathrm{V}_{\mathrm{CC}}-2.2$ ) |} \& V <br>

\hline Common Mode Rejection Ratio ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$ ) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ \& CMRR \& 80 \& 90 \& - \& dB <br>
\hline Power Supply Rejection Ratio ( $\mathrm{RS}_{\mathrm{S}}=100 \Omega$ ) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ \& PSRR \& 80 \& 100 \& - \& dB <br>

\hline $$
\begin{aligned}
& \text { Power Supply Current (Per Amplifier) } \\
& V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
$$ \& ID \& — \& \[

$$
\begin{aligned}
& 180 \\
& 220
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 250 \\
& 250 \\
& 300
\end{aligned}
$$
\] \& $\mu \mathrm{A}$ <br>

\hline
\end{tabular}

NOTE: 3. $T_{\text {low }}=-40^{\circ} \mathrm{C} \quad T_{\text {high }}=+85^{\circ} \mathrm{C}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ connected to ground, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Slew Rate }\left(V_{\text {in }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, C_{L}=100 \mathrm{pF}\right) \\ & A_{\mathrm{A}} \mathrm{~V}+1 \\ & \mathrm{~A}_{\mathrm{V}}-1 \end{aligned}$	SR	$1.6$	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	-	V/us
Gain Bandwidth Product ( $\mathrm{f}=100 \mathrm{kHz}$ )	GBW	1.4	1.8	-	MHz
Power Bandwidth $A_{V}=+1.0 R_{L}=10 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{THD}=5 \%$	BWp	-	35	-	kHz
$\begin{aligned} & \text { Phase Margin } \\ & R_{L}=10 \mathrm{k} \\ & R_{L}=10 \mathrm{k}, C_{L}=100 \mathrm{pF} \end{aligned}$	$\phi_{m}$	-	$\begin{aligned} & 60 \\ & 45 \end{aligned}$	-	Degree   $s$
Gain Margin $\begin{aligned} & R_{L}=10 \mathrm{k} \\ & R_{L}=10 \mathrm{k}, C_{L}=100 \mathrm{pF} \end{aligned}$	$A_{m}$	-	$\begin{aligned} & 15 \\ & 5.0 \end{aligned}$	-	dB
Equivalent Input Noise Voltage $\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$	$e_{n}$	-	32	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ( $\mathrm{f}=1.0 \mathrm{kHz}$ )	In	-	0.2	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
Differential Input Resistance $\mathrm{V}_{\mathrm{cm}}=0 \mathrm{~V}$	$\mathrm{R}_{\text {in }}$	-	300	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\mathrm{i}}$	-	0.8	-	pF
Total Harmonic Distortion $A_{V}=+10, R_{L}=10 \mathrm{k}, 2.0 \mathrm{~V}_{\mathrm{pp}} \leq \mathrm{V}_{\mathrm{O}} \leq 20 \mathrm{~V}_{\mathrm{pp}}, f=10 \mathrm{kHz}$	THD	-	0.03	-	\%
Channel Separation ( $\mathrm{f}=10 \mathrm{kHz}$ )	CS	-	120	-	dB
Open Loop Output Impedance ( $\mathrm{f}=1.0 \mathrm{MHz}$ )	$z_{0}$	-	100	-	$\Omega$

Figure 1. Input Common Mode Voltage Range versus Temperature


Figure 2. Split Supply Output Saturation versus Load Current


Figure 3. Open Loop Voltage Gain and Phase versus Frequency


Figure 5. Normalized Gain Bandwidth Product and Slew Rate versus Temperature


Figure 7. Output Impedance and Frequency


Figure 4. Phase Margin and Percent Overshoot versus Load Capacitance


Figure 6. Small and Large Signal Transient Response


Figure 8. Supply Current versus Supply Voltage


## APPLICATIONS INFORMATION - CIRCUIT DESCRIPTION/PERFORMANCE FEATURES

Although the bandwidth, slew rate, and settling time of the MC33171/72/74 amplifier family is similar to low power op amp products utilizing JFET input devices, these amplifiers offer additional advantages as a result of the PNP transistor differential inputs and an all NPN transistor output stage.

Because the input common mode voltage range of this input stage includes the VEE potential, single supply operation is feasible to as low as 3.0 V with the common mode input voltage at ground potential.

The input stage also allows differential input voltages up to $\pm 44 \mathrm{~V}$, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between $V_{C C}$ and $V_{E E}$ supply voltages as shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the $\mathrm{V}_{\mathrm{CC}}$ voltage by approximately 3.0 V and decrease below the $\mathrm{V}_{\mathrm{EE}}$ voltage by 0.3 V without causing product damage, although output phase reversal may occur. It is also possible to source up to 5.0 mA of current from VEE through either inputs' clamping diode without damage or latching, but phase reversal may again occur. If at least one input is within the common mode input voltage range and the other input is within the maximum input voltage range, no phase reversal will occur. If both inputs exceed the upper common mode input voltage limit, the output will be forced to its lowest voltage state.

Since the input capacitance associated with the small geometry input device is substantially lower ( 0.8 pF ) than that of a typical JFET ( 3.0 pF ), the frequency response for a given input source resistance is greatly enhanced. This becomes evident in D-to-A current to voltage conversion applications where the feedback resistance can form a pole with the input capacitance of the op amp. This input pole creates a $2 n d$ Order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher values of feedback resistances (lower current DACs). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For $10 \mathrm{k} \Omega$ of feedback resistance, the MC33171/72/74 family can typically settle to within 1/2 LSB of 8 bits in $4.2 \mu \mathrm{~s}$, and within $1 / 2$ LSB of 12 bits in $4.8 \mu \mathrm{~s}$ for a 10 V step. In a standard inverting unity gain fast settling configuration, the symmetrical slew rate is typically $\pm 2.1 \mathrm{~V} / \mu \mathrm{s}$. In the classic noninverting unity gain configuration the typical output positive slew rate is also $2.1 \mathrm{~V} / \mu \mathrm{s}$, and the corresponding negative slew rate will usually exceed the positive slew rate as a function of the fall time of the input waveform.

The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. A $10 \mathrm{k} \Omega$ load resistance can typically swing within 0.8 V of the positive rail ( $\mathrm{V}_{\mathrm{CC}}$ ) and negative rail ( $\mathrm{V}_{\mathrm{EE}}$ ), providing a 28.4 Vpp swing from $\pm 15 \mathrm{~V}$ supplies. This large output swing becomes most noticeable at lower supply voltages.

The positive swing is limited by the saturation voltage of the current source transistor Q7, the VBE of the NPN pull-up transistor Q17, and the voltage drop associated with the short circuit resistance, R5. For sink currents less than 0.4 mA , the negative swing is limited by the saturation voltage of the pull-down transistor Q15, and the voltage drop across R4 and R5. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing
voltage to approach within millivolts of $\mathrm{V}_{\mathrm{EE}}$. For sink currents ( $>0.4 \mathrm{~mA}$ ), diode D3 clamps the voltage across R4. Thus the negative swing is limited by the saturation voltage of Q15, plus the forward diode drop of $\mathrm{D} 3(\approx \mathrm{VEE}+1.0 \mathrm{~V})$. Therefore an unprecedented peak-to-peak output voltage swing is possible for a given supply voltage as indicated by the output swing specifications.

If the load resistance is referenced to $V_{C C}$ instead of ground for single supply applications, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to $V_{C C}$ during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull-up capability.

Because the PNP output emitter-follower transistor has been eliminated, the MC33171/72/74 family offers a 15 mA minimum current sink capability, typically to an output voltage of ( $V_{E E}+1.8 \mathrm{~V}$ ). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for current switching applications.

In addition, the all NPN transistor output stage is inherently faster than PNP types, contributing to the bipolar amplifier's improved gain bandwidth product. The associated high frequency low output impedance ( $200 \Omega$ typ @ 1.0 MHz ) allows capacitive drive capability from 0 pF to 400 pF without oscillation in the noninverting unity gain configuration. The $60^{\circ} \mathrm{C}$ phase margin and 15 dB gain margin, as well as the general gain and phase characteristics, are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The AC characteristics of the MC33171/72/74 family also allow excellent active filter capability, especially for low voltage single supply applications.

Although the single supply specification is defined at 5.0 V , these amplifiers are functional to at least $3.0 \mathrm{~V} @ 25^{\circ} \mathrm{C}$. However slight changes in parametrics such as bandwidth, slew rate, and DC gain may occur.

If power to this integrated circuit is applied in reverse polarity, or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction.

As usual with most high frequency amplifiers, proper lead dress, component placement and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input/output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature.

The output of any one amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for $\pm 15 \mathrm{~V}$ supplies, any one output can be shorted continuously to ground without exceeding the maximum temperature rating.

Figure 9. AC Coupled Noninverting Amplifier with Single +5.0 V Supply


Figure 11. DC Coupled Inverting Amplifier Maximum Output Swing with Single +5.0 V Supply


Figure 13. Active High-Q Notch Filter


Figure 10. AC Coupled Inverting Amplifier with Single +5.0 V Supply


Figure 12. Offset Nulling Circuit


Offset Nulling range is approximately $\pm 80 \mathrm{mV}$ with a 10 k potentiometer, MC33171 only.

Figure 14. Active Bandpass Filter


Given $f_{0}=$ center frequency
$A_{0}=$ Gain at center frequency
$R 3=\frac{Q}{\pi f_{0} C} \quad \frac{Q_{0} f_{0}}{G B W}<0.1$
Choose Value $f_{0}, Q, A_{0}, C$
For less than $10 \%$ error for operational amplifier, where $f_{0}$ and GBW are expressed in Hz .

## High Output Current Low Power, Low Noise Bipolar Operational Amplifiers

The MC33178/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This device family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input offset voltage, noise and distortion. In addition, the amplifier provides high output current drive capability while consuming only $420 \mu \mathrm{~A}$ of drain current per amplifier. The NPN output stage used, exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open-loop high frequency output impedance, symmetrical source and sink AC frequency performance.

The MC33178/9 family offers both dual and quad amplifier versions, tested over the vehicular temperature range, and are available in DIP and SOIC packages.

- $600 \Omega$ Output Drive Capability
- Large Output Voltage Swing
- Low Offset Voltage: 0.15 mV (Mean)
- Low T.C. of Input Offset Voltage: $2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Total Harmonic Distortion: 0.0024\% (@ 1.0 kHz w/600 $\Omega$ Load)
- High Gain Bandwidth: 5.0 MHz
- High Slew Rate: $2.0 \mathrm{~V} / \mu \mathrm{s}$
- Dual Supply Operation: $\pm 2.0 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Performance



## HIGH OUTPUT CURRENT LOW POWER, LOW NOISE OPERATIONAL AMPLIFIERS




PIN CONNECTIONS

(Top View)

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (VCC to $\mathrm{V}_{\text {EE }}$	$\mathrm{V}_{\mathrm{S}}$	+36	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	$($ Note 1)	V
Input Voltage Range	$\mathrm{V}_{\text {IR }}$	(Note 1)	V
Output Short Circuit Duration (Note 2)	tSC	Indefinite	sec
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	(Note 2)	mW

NOTES: 1. Either or both input voltages should not exceed $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{EE}}$
2. Power dissipation must be considered to ensure maximum junction temperature ( $T_{\mathrm{J}}$ ) is not exceeded. (See power dissipation performance characteristic, Figure 1.)

DC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage ( } \left.\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	2	$\mid \mathrm{V}_{10} \mathrm{l}$	-	$0.15$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\begin{aligned} & \left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	2	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$	-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	3, 4	IB	-		$\begin{aligned} & 500 \\ & 600 \\ & \hline \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		11 OO	-	5.0	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	nA
Common Mode Input Voltage Range $\left(\Delta \mathrm{V}_{\mathrm{IO}}=5.0 \mathrm{mV}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)$	5	VICR	$-13$	$\begin{aligned} & -14 \\ & +14 \end{aligned}$	$\overline{+13}$	V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	6, 7	AVOL	$\begin{array}{r} 50 \mathrm{k} \\ 25 \mathrm{k} \end{array}$	200 k		V/v
$\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{V}_{I D}= \pm 1.0 \mathrm{~V}\right) \\ &\left(\mathrm{V}_{\mathrm{CC}}\right.\left.=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right) \\ & R_{\mathrm{L}}=300 \Omega \\ & R_{\mathrm{L}}=300 \Omega \\ & R_{\mathrm{L}}=600 \Omega \\ & R_{\mathrm{L}}=600 \Omega \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ &\left(\mathrm{~V}_{\mathrm{CC}}\right.\left.=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}\right) \\ & R_{\mathrm{L}}=600 \Omega \\ & R_{\mathrm{L}}=600 \Omega \end{aligned}$	8, 9, 10	$\mathrm{V}_{\mathrm{O}^{+}}$   $\mathrm{V}_{\mathrm{O}^{-}}$   $\mathrm{V}^{+}+$   $\mathrm{V}_{\mathrm{O}^{-}}$   $\mathrm{V}_{\mathrm{O}^{+}}$   $\mathrm{V}_{\mathrm{O}^{-}}$   $\mathrm{V}_{\mathrm{O}^{+}}$   $\mathrm{V}_{\mathrm{O}^{-}}$	$\begin{gathered} - \\ +12 \\ -13 \\ + \\ 1.1 \end{gathered}$	$\begin{gathered} +12 \\ -12 \\ +13.6 \\ -13 \\ +14 \\ -13.8 \\ 1.6 \\ 1.6 \\ -1.6 \end{gathered}$	$\begin{gathered} - \\ -12 \\ -13 \\ - \\ -1.1 \end{gathered}$	V
Common Mode Rejection ( $\mathrm{V}_{\text {in }}= \pm 13 \mathrm{~V}$ )	11	CMR	80	110	-	dB
Power Supply Rejection $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=+15 \mathrm{~V} /-15 \mathrm{~V},+5.0 \mathrm{~V} /-15 \mathrm{~V},+15 \mathrm{~V} /-5.0 \mathrm{~V}$	12	PSR	80	110	-	dB
Output Short Circuit Current ( $\mathrm{V}_{\mathrm{ID}}= \pm 1.0 \mathrm{~V}$, Output to Ground) Source ( $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ to 15 V )   Sink ( $\mathrm{V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$ to -15 V )	13, 14	ISC	$\begin{aligned} & +50 \\ & -50 \end{aligned}$	$\begin{gathered} +80 \\ -100 \end{gathered}$	-	mA
$\begin{aligned} & \text { Power Supply Current }\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right) \\ & \mathrm{MC} 33178 \text { (Dual) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{MC} 33179(\mathrm{Quad})_{\mathrm{T}_{\mathrm{A}}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	15	ID	-	$1.7$	$\begin{aligned} & 1.4 \\ & 1.6 \\ & \\ & 2.4 \\ & 2.6 \end{aligned}$	mA

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
Slew Rate $\left(\mathrm{V}_{\mathrm{in}}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{AV}_{\mathrm{V}}=+1.0 \mathrm{~V}\right)$	16, 31	SR	1.2	2.0	-	V/us
Gain Bandwidth Product ( $\mathrm{f}=100 \mathrm{kHz}$ )	17	GBW	2.5	5.0	-	MHz
AC Voltage Gain ( $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=20 \mathrm{kHz}$ )	18, 19	Avo	-	50	-	dB
Unity Gain Frequency (Open-Loop) ( $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )		fu	-	3.0	-	MHz
Gain Margin ( $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )	20, 22, 23	$A_{m}$	-	15	-	dB
Phase Margin ( $\left.\mathrm{R}_{\mathrm{L}}=600 \Omega, C_{L}=0 \mathrm{pF}\right)$	21, 22, 23	$\phi_{m}$	-	60	-	Degree s
Channel Separation ( $\mathrm{f}=100 \mathrm{~Hz}$ to 20 kHz )	24	CS	-	-120	-	dB
Power Bandwidth ( $\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=600 \Omega$, THD $\leq 1.0 \%$ )		BW ${ }_{\text {p }}$	-	32	-	kHz
$\begin{aligned} & \text { Distortion }\left(R_{\mathrm{L}}=600 \Omega,, \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{pp}}, A_{\mathrm{V}}=+1.0 \mathrm{~V}\right) \\ & (\mathrm{f}=1.0 \mathrm{kHz}) \\ & (\mathrm{f}=10 \mathrm{kHz}) \\ & (\mathrm{f}=20 \mathrm{kHz}) \end{aligned}$	25	THD	I	$\begin{gathered} 0.0024 \\ 0.014 \\ 0.024 \end{gathered}$	-	\%
Open Loop Output Impedance $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=3.0 \mathrm{MHz}, \mathrm{AV}^{2}=10 \mathrm{~V}\right)$	26	IZOI	-	150	-	$\Omega$
Differential Input Resistance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )		$\mathrm{R}_{\text {in }}$	-	200	-	$\mathrm{k} \Omega$
Differential Input Capacitance ( $\left.\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right)$		$\mathrm{Cin}_{\text {in }}$	-	10	-	pF
$\begin{aligned} & \text { Equivalent Input Noise Voltage }\left(\mathrm{R}_{\mathrm{S}}=100 \Omega\right. \text {, } \\ & \begin{array}{l} \mathrm{f}=10 \mathrm{~Hz} \\ \mathrm{f}=1.0 \mathrm{kHz} \end{array} \end{aligned}$	27	$e_{n}$	-	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current $\begin{aligned} & f=10 \mathrm{~Hz} \\ & \mathfrak{f}=1.0 \mathrm{kHz} \end{aligned}$	28	$i_{n}$	-	$\begin{aligned} & 0.33 \\ & 0.15 \end{aligned}$	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$

Figure 1. Maximum Power Dissipation


Figure 2. Input Offset Voltage versus Temperature for 3 Typical Units


Figure 3. Input Bias Current versus Common Mode Voltage


Figure 5. Input Common Mode Voltage Range versus Temperature


Figure 7. Voltage Gain and Phase versus Frequency


Figure 4. Input Bias Current versus Temperature


Figure 6. Open Loop Voltage Gain versus Temperature


Figure 8. Output Voltage Swing versus Supply Voltage


Figure 9. Output Saturation Voltage versus Load Current

Figure 11. Common Mode Rejection versus Frequency Over Temperature


Figure 13. Output Short Circuit Current versus Output Voltage


Figure 10. Output Voltage versus Frequency


Figure 12. Power Supply Rejection versus Frequency Over Temperature


Figure 14. Output Short Circuit Current versus Temperature


Figure 15. Supply Current versus Supply Voltage with No Load


Figure 17. Gain Bandwidth Product versus Temperature


Figure 19. Voltage Gain and Phase versus Frequency


Figure 16. Normalized Slew Rate versus Temperature


Figure 18. Voltage Gain and Phase versus Frequency


Figure 20. Open Loop Gain Margin versus Temperature


Figure 21. Phase Margin versus Temperature


Figure 23. Open Loop Gain Margin and Phase Margin versus Output Load Capacitance


Figure 25. Total Harmonic Distortion versus Frequency


Figure 22. Phase Margin and Gain Margin versus Differential Source Resistance


Figure 24. Channel Separation versus Frequency


Figure 26. Output Impedance versus Frequency


Figure 27. Input Referred Noise Voltage versus Frequency


Figure 29. Percent Overshoot versus Load Capacitance


Figure 31. Small Signal Transient Response

t , TIME $(2.0 \mathrm{~ns} / \mathrm{DIV})$

Figure 28. Input Referred Noise Current versus Frequency


$\mathrm{t}, \mathrm{TIME}(2.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 32. Large Signal Transient Response

t , TIME ( $5.0 \mu \mathrm{~s} / \mathrm{DIV})$

## MC33178 MC33179

Figure 33. Telephone Line Interface Circuit


## APPLICATION INFORMATION

This unique device uses a boosted output stage to combine a high output current with a drain current lower than similar bipolar input op amps. Its $60^{\circ}$ phase margin and 15 dB gain margin ensure stability with up to 1000 pF of load capacitance (see Figure 23). The ability to drive a minimum $600 \Omega$ load makes it particularly suitable for telecom applications. Note that in the sample circuit in Figure 33 both A2 and A3 are driving equivalent loads of approximately $600 \Omega$.

The low input offset voltage and moderately high slew rate and gain bandwidth product make it attractive for a variety of other applications. For example, although it is not single supply (the common mode input range does not include ground), it is specified at +5.0 V with a typical common mode rejection of 110 dB . This makes it an excellent choice for use with digital circuits. The high common mode rejection, which is stable over temperature, coupled with a low noise figure and low distortion, is an ideal op amp for audio circuits.

The output stage of the op amp is current limited and therefore has a certain amount of protection in the event of a short circuit. However, because of its high current output, it is especially important not to allow the device to exceed the maximum junction temperature, particularly with the MC33179 (quad op amp). Shorting more than one amplifier
could easily exceed the junction temperature to the extent of causing permanent damage.

## Stability

As usual with most high frequency amplifiers, proper lead dress, component placement, and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input/output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole frequency for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supplying decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature.

Additional stability problems can be caused by high load capacitances and/or a high source resistance. Simple compensation schemes can be used to alleviate these effects.

## MC33178 MC33179

If a high source of resistance is used (R1 > $1.0 \mathrm{k} \Omega$ ), a compensation capacitor equal to or greater than the input capacitance of the op amp ( 10 pF ) placed across the feedback resistor (see Figure 34) can be used to neutralize that pole and prevent outer loop oscillation. Since the closed loop transient response will be a function of that capacitance, it is important to choose the optimum value for that capacitor. This can be determined by the following Equation:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{C}}=(1+[\mathrm{R} 1 / \mathrm{R} 2])^{2} \times \mathrm{C}_{\mathrm{L}}\left(\mathrm{Z}_{\mathrm{O}} / \mathrm{R}_{2}\right) \tag{1}
\end{equation*}
$$

where: $Z_{\mathrm{O}}$ is the output impedance of the op amp.

Figure 34. Compensation for High Source Impedance


For moderately high capacitive loads ( $500 \mathrm{pF}<\mathrm{CL}_{\mathrm{L}}$ $<1500 \mathrm{pF}$ ) the addition of a compensation resistor on the order of $20 \Omega$ between the output and the feedback loop will help to decrease miller loop oscillation (see Figure 35). For high capacitive loads ( $C_{L}>1500 \mathrm{pF}$ ), a combined compensation scheme should be used (see Figure 36). Both the compensation resistor and the compensation capacitor affect the transient response and can be calculated for optimum performance. The value of $\mathrm{C}_{\mathrm{C}}$ can be calculated using Equation (1). The Equation to calculate $R_{C}$ is as follows:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{C}}=\mathrm{Z}_{\mathrm{O}} \times \mathrm{R} 1 / \mathrm{R} 2 \tag{2}
\end{equation*}
$$

Figure 35. Compensation Circuit for Moderate Capacitive Loads


Figure 36. Compensation Circuit for High Capacitive Loads


## Rail-to-Rail Operational Amplifiers

The MC33201/2/4 family of operational amplifiers provide rail-to-rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail-to-rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages ( $\pm 0.9 \mathrm{~V}$ ) yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications.

- Low Voltage, Single Supply Operation
(+1.8 V and Ground to +12 V and Ground)
- Input Voltage Range Includes both Supply Rails
- Output Voltage Swings within 50 mV of both Rails
- No Phase Reversal on the Output for Over-driven Input Signals
- High Output Current (ISC = 80 mA , Typ)
- Low Supply Current (ID = 0.9 mA , Typ)
- $600 \Omega$ Output Drive Capability
- Extended Operating Temperature Ranges
$\left(-40^{\circ}\right.$ to $+105^{\circ} \mathrm{C}$ and $-55^{\circ}$ to $\left.+125^{\circ} \mathrm{C}\right)$
- Typical Gain Bandwidth Product $=2.2 \mathrm{MHz}$
- Offered in New TSSOP Package Including Standard SOIC and DIP Packages

ORDERING INFORMATION

Operational Amplifier Function	Device	Operating Temperature Range	Package
Single	MC33201D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-8
	MC33201P		Plastic DIP
	MC33201VD	$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =-55^{\circ} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	SO-8
	MC33201VP		Plastic DIP
Dual	MC33202D	$T_{A}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-8
	MC33202P		Plastic DIP
	MC33202VD	$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =-55^{\circ} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	SO-8
	MC33202VP		Plastic DIP
Quad	MC33204D	$T_{A}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-14
	MC33204DTB		TSSOP-14
	MC33204P		Plastic DIP
	MC33204VD	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \text { to } \\ \\ +125^{\circ} \mathrm{C} \end{gathered}$	SO-14
	MC33204VDTB		TSSOP-14
	MC33204VP		Plastic DIP

## LOW VOLTAGE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS




P SUFFIX PLASTIC PACKAGE CASE 646


D SUFFIX PLASTIC PACKAGE CASE 751A (SO-14)


DTB SUFFIX
PLASTIC PACKAGE CASE 948G
(TSSOP-14)


DC ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

Characteristic	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	Unit
Input Offset Voltage				mV
VIO (max)				
MC33201	$\pm 8.0$	$\pm 8.0$	$\pm 6.0$	
MC33202	$\pm 10$	$\pm 10$	$\pm 8.0$	
MC33204	$\pm 12$	$\pm 12$	$\pm 10$	
Output Voltage Swing				
$\mathrm{V}_{\mathrm{OH}}\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right)$	1.9	3.15	4.85	$V_{\text {min }}$
$\mathrm{V}_{\mathrm{OL}}\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right)$	0.10	0.15	0.15	$V_{\text {max }}$
Power Supply Current per Amplifier (ID)	1.125	1.125	1.125	mA

Specifications at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ are guaranteed by the 2.0 V and 5.0 V tests. $\mathrm{V}_{\mathrm{EE}}=\mathrm{Gnd}$.
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$ )	$\mathrm{V}_{\mathrm{S}}$	+13	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	V
Common Mode Input Voltage Range (Note 2)	$\mathrm{V}_{\mathrm{CM}}$	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ to   $\mathrm{V}_{\mathrm{EE}}-0.5 \mathrm{~V}$	V
Output Short Circuit Duration	$\mathrm{t}_{\mathrm{s}}$	(Note 3)	sec
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	$\mathrm{PD}_{\mathrm{D}}$	(Note 3)	mW

NOTES: 1. The differential input voltage of each amplifier is limited by two internal parallel back-to-back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins.
2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV .
3. Power dissipation must be considered to ensure maximum junction temperature ( $T_{J}$ ) is not exceeded. (See Figure 2)

DC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
	3	$\left\|\mathrm{V}_{\mathrm{IO}}\right\|$		-	$\begin{aligned} & 6.0 \\ & 9.0 \\ & 13 \\ & 8.0 \\ & 11 \\ & 14 \\ & 10 \\ & 13 \\ & 17 \end{aligned}$	mV
Input Offset Voltage Temperature Coefficient ( $\mathrm{R}_{\mathrm{S}}=50 \Omega$ ) $\begin{aligned} & \mathrm{T}_{A}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	4	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 0.5 \mathrm{~V}, \mathrm{~V} \mathrm{CM}=1.0 \mathrm{~V} \text { to } 5.0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	5,6	$\left\|I_{1 B}\right\|$	-	$\begin{gathered} 80 \\ 100 \end{gathered}$	$\begin{aligned} & 200 \\ & 250 \\ & 500 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V} C M=0 \mathrm{~V} \text { to } 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V} \text { to } 5.0 \mathrm{~V}\right) \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	-	$\|110\|$	-	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 200 \end{gathered}$	nA
Common Mode Input Voltage Range	-	VICR	$\mathrm{V}_{\mathrm{EE}}$	-	V CC	V

## MC33201 MC33202 MC33204

DC ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Ground}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	7	Avol	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 300 \\ & 250 \end{aligned}$	-	kV/V
$\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{V}_{\mathrm{ID}}= \pm 0.2 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	8, 9, 10	$\mathrm{V}_{\mathrm{OH}}$   $\mathrm{V}_{\mathrm{OL}}$   $\mathrm{V}_{\mathrm{OH}}$   VOL	$\begin{gathered} 4.85 \\ - \\ 4.75 \end{gathered}$	$\begin{aligned} & 4.95 \\ & 0.05 \\ & 4.85 \\ & 0.15 \end{aligned}$	$\begin{gathered} - \\ 0.15 \\ - \\ 0.25 \end{gathered}$	V
Common Mode Rejection ( $\mathrm{V}_{\text {in }}=0 \mathrm{~V}$ to 5.0 V )	11	CMR	60	90	-	dB
Power Supply Rejection Ratio $V_{C C} / V_{E E}=5.0 \mathrm{~V} /$ Gnd to $3.0 \mathrm{~V} /$ Gnd	12	PSRR	500	25	-	$\mu \mathrm{V} / \mathrm{V}$
Output Short Circuit Current (Source and Sink)	13, 14	ISC	50	80	-	mA
$\begin{aligned} & \text { Power Supply Current per Amplifier }\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	15	ID	-	$\begin{aligned} & 0.9 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.125 \\ & 1.125 \end{aligned}$	mA

AC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Slew Rate $\left(\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2.0 \mathrm{~V} \text { to }+2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{V}}=+1.0\right)$	16, 26	SR	0.5	1.0	-	V/ $/ \mathrm{s}$
Gain Bandwidth Product ( $\mathrm{f}=100 \mathrm{kHz}$ )	17	GBW	-	2.2	-	MHz
Gain Margin ( $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )	20, 21, 22	$A_{M}$	-	12	-	dB
Phase Margin ( $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )	20,21, 22	$\emptyset_{M}$	-	65	-	Deg
Channel Separation ( $\mathrm{f}=1.0 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{AV}^{2}=100$ )	23	CS	-	90	-	dB
Power Bandwidth ( $\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=600 \Omega$, THD $\leq 1 \%$ )		BWP	-	28	-	kHz
$\begin{aligned} & \text { Total Harmonic Distortion }\left(R_{L}=600 \Omega, V_{O}=1.0 \mathrm{~V}_{p p}, A V=1.0\right) \\ & \quad f=1.0 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \end{aligned}$	24	THD	-	$\begin{aligned} & 0.002 \\ & 0.008 \end{aligned}$	-	\%
Open Loop Output Impedance $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=2.0 \mathrm{MHz}, \mathrm{AV}^{2}=10\right)$		$\left\|z_{0}\right\|$	-	100	-	$\Omega$
Differential Input Resistance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )		$\mathrm{R}_{\text {in }}$	-	200	-	k $\Omega$
Differential Input Capacitance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )		$\mathrm{C}_{\text {in }}$	-	8.0	-	pF
$\begin{aligned} & \text { Equivalent Input Noise Voltage }\left(\mathrm{R}_{\mathrm{S}}=100 \Omega\right) \\ & \begin{array}{l} \mathrm{f}=10 \mathrm{~Hz} \\ \mathrm{f}=1.0 \mathrm{kHz} \end{array} \end{aligned}$	25	$e_{n}$	-	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	-	$\sqrt[n V /]{\sqrt{H z}}$
Equivalent Input Noise Current $\begin{aligned} & f=10 \mathrm{~Hz} \\ & \mathrm{f}=1.0 \mathrm{kHz} \end{aligned}$	25	$i_{n}$	-	$\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$	-	$\frac{\mathrm{pA} /}{\sqrt{\mathrm{Hz}}}$

Figure 1. Circuit Schematic (Each Amplifier)


Figure 2. Maximum Power Dissipation
versus Temperature


Figure 4. Input Offset Voltage Temperature Coefficient Distribution

${ }^{T} \mathrm{~V}_{10}$, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$

Figure 6. Input Bias Current versus Common Mode Voltage


Figure 3. Input Offset Voltage Distribution


Figure 5. Input Bias Current versus Temperature


Figure 7. Open Loop Voltage Gain versus Temperature


Figure 8. Output Voltage Swing versus Supply Voltage


Figure 10. Output Voltage versus Frequency


Figure 12. Power Supply Rejection versus Frequency


Figure 9. Output Saturation Voltage versus Load Current


Figure 11. Common Mode Rejection versus Frequency


Figure 13. Output Short Circuit Current versus Output Voltage


Figure 14. Output Short Circuit Current versus Temperature


Figure 16. Slew Rate versus Temperature


Figure 18. Voltage Gain and Phase versus Frequency


Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load


Figure 17. Gain Bandwidth Product versus Temperature


Figure 19. Voltage Gain and Phase versus Frequency


Figure 20. Gain and Phase Margin versus Temperature


Figure 22. Gain and Phase Margin versus Capacitive Load


Figure 24. Total Harmonic Distortion versus Frequency


Figure 21. Gain and Phase Margin versus Differential Source Resistance


Figure 23. Channel Separation versus Frequency


Figure 25. Equivalent Input Noise Voltage


## General Information

The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail-to-rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of $2.0 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5.0 V and ground.

Since the common mode input voltage range extends from $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings.

Figure 26. Noninverting Amplifier Slew Rate


## Circuit Information

Rail-to-rail performance is achieved at the input of the amplifiers by using parallel NPN-PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than VEE, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum.

In addition to its rail-to-rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive $600 \Omega$ loads. Because of this high output current capability, care should be taken not to exceed the $150^{\circ} \mathrm{C}$ maximum junction temperature.

Figure 27. Small Signal Transient Response


Figure 28. Large Signal Transient Response


## Advance Information Rail-To-Rail Operational Amplifiers with Enable Feature

The MC33206/7 family of operational amplifiers provide rail-to-rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs and the output can swing within 50 mV of each rail. This rail-to-rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages ( $\pm 0.9 \mathrm{~V}$ ) yet can operate with a single supply of up to 12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum.

The MC33206/7 has an enable mode that can be controlled externally. The typical supply current in the standby mode is $<1.0 \mu \mathrm{~A}$ (VEnable $=$ Gnd). The addition of an enable function makes this amplifier an ideal choice for power sensitive applications, battery powered equipment (instrumentation and monitoring), portable telecommunication, and sample-and-hold applications.

- Standby Mode ( $\mathrm{ID}_{\mathrm{D}} \leq 1.0 \mu \mathrm{~A}$, Typ)
- Low Voltage, Single Supply Operation
(1.8 V and Ground to 12 V and Ground)
- Rail-to-Rail Input Common Mode Voltage Range
- Output Voltage Swings within 50 mV of both Rails
- No Phase Reversal on the Output for Over-Driven Input Signals
- High Output Current (ISC = 80 mA , Typ)
- Low Supply Current (ID $=0.9 \mathrm{~mA}$, Typ)
- $600 \Omega$ Output Drive Capability
- Typical Gain Bandwidth Product $=2.2 \mathrm{MHz}$

ORDERING INFORMATION

Operational   Amplifier Function	Device	Operating   Temperature Range	Package
Dual	MC33206D		SO-14
	MC33206P	$T_{A}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	Plastic DIP
	Quad		
	MC33207P		SO-16

## LOW VOLTAGE <br> RAIL-TO-RAIL OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (VCC to $\mathrm{V}_{\mathrm{EE}}$ )	$\mathrm{V}_{\mathrm{S}}$	13	V
ESD Protection Voltage at any Pin   Human Body Model	$\mathrm{V}_{\mathrm{ESD}}$	2,000	V
Voltage at any Device Pin	$\mathrm{V}_{\mathrm{DP}}$	$\mathrm{V}_{\mathrm{S}} \pm 0.5$	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	$($ Note 1)	V
Common Mode Input Voltage Range (Note 2)	$\mathrm{V}_{\mathrm{CM}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$ to   $\mathrm{V}_{\mathrm{EE}}-0.5$	V
Output Short Circuit Duration (Note 3)	$\mathrm{t}_{\mathrm{S}}$	$($ Note 3)	sec
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{Stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	$($ Note 3)	mW

NOTES: 1 . The differential input voltage of each amplifier is limited by two internal parallel back-to-back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins.
2. The common-mode input voltage range of each amplifier is limited by diodes connected from the inputs to both power supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV .
3. Power dissipation must be considered to ensure maximum junction temperature ( $T_{J}$ ) is not exceeded.
4. ESD data available upon request.

DC ELECTRICAL CHARACTERISTICS ( $\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~V}_{\text {Enable }}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{V}_{\mathrm{CM}} 0 \text { to } 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}} 1.0 \text { to } 5.0 \mathrm{~V}\right) \\ & \text { MC33206: } \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \text { MC33207: } T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \end{aligned}$	-	V 1 O	- - -	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 11 \\ & 10 \\ & 13 \end{aligned}$	mV
Input Offset Voltage Temperature Coefficient ( $\mathrm{R}_{\mathrm{S}}=50 \Omega$ ) $T_{A}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C}$	-	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \text { to } 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \text { to } 5.0 \mathrm{~V}\right) \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \end{aligned}$	-	$\left\|I_{1 B}\right\|$	-	$\begin{gathered} 80 \\ 100 \end{gathered}$	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V} \mathrm{CM}=0 \text { to } 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \text { to } 5.0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \end{aligned}$	-	$\left\|\mathrm{IIO}^{\prime}\right\|$	-	$\begin{gathered} 5.0 \\ 10 \end{gathered}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	nA
Common Mode Input Voltage Range	-	VICR	$\overline{v_{E E}}$	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}+0.2 \\ & \mathrm{v}_{\mathrm{EE}}-0.2 \end{aligned}$	$\mathrm{v}_{\mathrm{CC}}$	V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right) \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{L}=600 \Omega \end{aligned}$	-	Avol	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 300 \\ & 250 \end{aligned}$	-	kV/V
$\begin{aligned} & \text { Output Voltage Swing ( } \mathrm{V}_{I D}= \pm 0.2 \mathrm{~V} \text { ) } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=600 \Omega \\ & R_{\mathrm{L}}=600 \Omega \end{aligned}$	-	$\mathrm{V}_{\mathrm{OH}}$   $\mathrm{V}_{\mathrm{OL}}$   $\mathrm{V}_{\mathrm{OH}}$   $\mathrm{V}_{\mathrm{OL}}$	$\begin{gathered} 4.85 \\ - \\ 4.75 \end{gathered}$	$\begin{aligned} & 4.95 \\ & 0.05 \\ & 4.85 \\ & 0.15 \end{aligned}$	$\begin{gathered} - \\ 0.15 \\ - \\ 0.25 \end{gathered}$	V
Common Mode Rejection ( $\mathrm{V}_{\text {in }}=0$ to 5.0 V )	-	CMR	60	90	-	dB
Power Supply Rejection Ratio $V_{C C} / V_{E E}=5.0 \mathrm{~V} /$ Gnd to $3.0 \mathrm{~V} /$ Gnd	-	PSRR PSR	$66$	$\begin{aligned} & 25 \\ & 92 \end{aligned}$	$500$	$\begin{gathered} \mu \mathrm{V} / \mathrm{V} \\ \mathrm{~dB} \end{gathered}$
Output Short Circuit Current (Source and Sink)	-	ISC	50	80	-	mA

## MC33206 MC33207

DC ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\text {Enable }}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
```Power Supply Current (VO=2.5 V, TA = -40 to +105 C per Amplifier) MC33206: VEnable }=5.0 Vd V Enable = Gnd (Standby) MC33207: }\mp@subsup{V}{\mathrm{ Enable }}{}=5.0\textrm{Vdc V Enable = Gnd (Standby)```	-	ID	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.5 \\ & 1.5 \\ & 0.5 \end{aligned}$	$\begin{gathered} 1.125 \\ 6.0 \\ 2.25 \\ 6.0 \end{gathered}$	mA   $\mu \mathrm{A}$   mA   $\mu \mathrm{A}$
Enable Input Voltage (per Amplifier) Enabled-Amplifier "On" Disabled - Amplifier "Off" (Standby)	-	$V_{\text {Enable }}$	-	$\begin{aligned} & V_{E E}+1.8 \\ & V_{E E}+0.3 \end{aligned}$	-	\checkmark
```Enable Input Current (Note 5) (per Amplifier) V Vnable }=12\textrm{V V Vnable}=5.0\textrm{V V Enable = 1.8 V V```	-	IEnable	-	$\begin{gathered} 2.5 \\ 2.2 \\ 0.8 \\ 0 \end{gathered}$	-	$\mu \mathrm{A}$

NOTE: 5. External control circuitry must provide for an initial turn-off transient of $<10 \mu \mathrm{~A}$.

AC ELECTRICAL CHARACTERISTICS (VCC $=5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~V}_{\text {Enable }}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Slew Rate $\left(\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2.0\right.$ to +2.0 V , $R_{L}=2.0 \mathrm{k} \Omega, A_{V}=1.0$ )	-	SR	0.5	1.0	-	$\mathrm{V} / \mu \mathrm{s}$
Gain Bandwidth Product ( $\mathrm{f}=100 \mathrm{kHz}$ )	-	GBW	-	2.2	-	MHz
Phase Margin ( $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )	-	$\emptyset_{M}$	-	65	-	Deg
Gain Margin ( $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )	-	$\mathrm{A}_{\mathrm{M}}$	-	12	-	dB
Channel Separation ( $\mathrm{f}=1.0 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{AV}^{\text {V }}=100$ )	-	CS	-	90	-	dB
Power Bandwidth ( $\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{Vpp}, \mathrm{R}_{\mathrm{L}}=600 \Omega$, THD $\leq 1 \%$ )	-	$\mathrm{BW}_{\mathrm{P}}$	-	28	-	kHz
$\begin{aligned} & \text { Total Harmonic Distortion }\left(R_{L}=600 \Omega, V_{O}=1.0 \mathrm{Vpp}, A \mathrm{~V}=1.0\right) \\ & f=1.0 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \end{aligned}$	-	THD	-	$\begin{aligned} & 0.002 \\ & 0.008 \end{aligned}$	-	\%
Open Loop Output Impedance $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=2.0 \mathrm{MHz}, \mathrm{AV}^{2}=10\right)$	-	$\left\|Z_{O}\right\|$	-	100	-	$\Omega$
Differential Input Resistance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )	-	$\mathrm{R}_{\text {in }}$	-	200	-	$k \Omega$
Differential Input Capacitance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )	-	$\mathrm{C}_{\mathrm{in}}$	-	8.0	-	pF
$\begin{aligned} & \text { Equivalent Input Noise Voltage }\left(R_{S}=100 \Omega\right) \\ & f=10 \mathrm{~Hz} \\ & f=1.0 \mathrm{kHz} \end{aligned}$	-	$e_{n}$	-	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
Equivalent Input Noise Current $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=1.0 \mathrm{kHz} \end{aligned}$	-	in	-	$\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$	-	$\sqrt{\mathrm{pA}}$ /
Time Delay for Device to Turn On	-	$\mathrm{t}_{\text {on }}$	-	10	-	$\mu \mathrm{s}$
Time Delay for Device to Turn Off	-	$\mathrm{t}_{\text {off }}$	-	2.0	-	$\mu \mathrm{s}$

Figure 1. Circuit Schematic (Each Amplifier)


This device contains 96 active transistors (each amplifier).

Figure 2. Maximum Power Dissipation versus Temperature


Figure 3. Input Offset Voltage Distribution


Figure 4. Input Offset Voltage Temperature Coefficient Distribution

$\mathrm{TC}_{10}$, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT ( $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ )

Figure 6. Input Bias Current versus Common Mode Voltage


Figure 8. Output Voltage Swing versus Supply Voltage


Figure 5. Input Bias Current versus Temperature


Figure 7. Open Loop Voltage Gain versus Temperature


Figure 9. Output Saturation Voltage versus Load Current


Figure 10. Output Voltage versus Frequency


Figure 12. Power Supply Rejection versus Frequency


Figure 14. Output Short Circuit Current


Figure 11. Common Mode Rejection versus Frequency


Figure 13. Output Short Circuit Current versus Output Voltage


Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load


Figure 16. Slew Rate versus Temperature


Figure 18. Voltage Gain and Phase versus Frequency


Figure 20. Gain and Phase Margin versus Temperature


Figure 17. Gain Bandwidth Product versus Temperature


Figure 19. Voltage Gain and Phase versus Frequency


Figure 21. Gain and Phase Margin versus Differential Source Resistance

$\mathrm{R}_{\mathrm{T}}$, DIFFERENTIAL SOURCE RESISTANCE ( $\Omega$ )

Figure 22. Gain and Phase Margin versus Capacitive Load


Figure 24. Channel Separation versus Frequency


Figure 23. Output Voltage versus Load Resistance


Figure 25. Total Harmonic Distortion versus Frequency


Figure 26. Equivalent Input Noise Voltage


## GENERAL INFORMATION

The MC33206/7 family of operational amplifiers are unique in their ability to swing rail-to-rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of $2.0 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5.0 V and ground.

Since the common mode input voltage range extends from $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$, it can be operated with either single or split voltage supplies. The MC33206/7 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings.

## CIRCUIT INFORMATION

Rail-to-rail performance is achieved at the input of the amplifiers by using parallel NPN-PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than $\mathrm{V}_{\mathrm{EE}}$, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum.

In addition to its rail-to-rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive $600 \Omega$ loads. Because of this high output current capability, care should be taken not to exceed the $150^{\circ} \mathrm{C}$ maximum junction temperature.

## Enable Function

The MC33206/07 enable pins allow the user to externally control the device. (Refer to the Pin Diagram on the first page of this data sheet for enable pin connections.) If the enable pins are pulled low (Gnd) each amplifier (MC33206) and amplifier pair (MC33207) will be disabled. When the enable pins are at a logic high ( $\mathrm{V}_{\text {Enable }} \geq \mathrm{V}_{\mathrm{EE}}=1.8 \mathrm{~V}$ ) the amplifiers will turn "on". Refer to the data sheet characteristics for the required levels needed to change logical state.

The time to change states (from device "on" to "off" and "off" to "on") is defined as the time delay. The Circuit in Figure 27 is used to measure $t_{\text {on }}$ and $t_{\text {off }}$. Typical $t_{\text {on }}$ and $t_{\text {off }}$ measurements are shown in Figures 28 and 29. When the device is turned off ( $\left.\mathrm{V}_{\text {Enable }}=\mathrm{Gnd}\right)$ an internal regulator is shut off disabling the amplifier.

Figure 27. Test Circuit for $t_{o n}$ and $t_{\text {off }}$


Figure 28. ton Response


Figure 29. toff Response

$\mathrm{t}_{\text {off }}$, TIME $(2.0 \mu \mathrm{~s} / \mathrm{DIV})$

## Low Voltage Operation

The MC33206/07 will operate at supply voltages down to 1.8 V and ground. Since this device is a rail-to-rail on both the input and output, one can be assured of continued operation in battery applications when battery voltages drop to low voltage levels. This is called End of Discharge (see Figure 30). Now, the user can select a minimum quantity of batteries best suited for the particular design depending on the type of battery chosen. This will minimize part count in many designs.

Figure 30. Typical Battery Characteristics

Type	Operating Voltage	End of Discharge
Alkaline	1.5 V	0.9 V
NiCd	1.2 V	1.0 V
NiMh	1.2 V	1.0 V
Silver Oxide	1.6 V	1.3 V
Lithium Ion	3.6 V	2.5 V

## Compensating for Output Capacitance

The combination of device output impedance and increasing capacitive loading will cause phase delay (reducing the phase margin) in any amplifier (Figure 22). If the loading is excessive, the resulting response can be circuit oscillation. In other words, an amplifier can become unstable when the phase becomes greater than 180 degrees before the open loop gain drops to unity gain. Figures 18 and 19 show this situation as frequency increases for a given load. The MC33206/7 can typically drive up to 300 pF loads at unity gain without oscillating.

Figure 31. Capacitive Loads Compensation


There are several ways to compensate for this phenomena. Adding series resistance to the output is one way, but not an ideal solution. A dc voltage error will occur at the output. A better design solution to compensate for higher capacitive loads would be to use the circuit in Figure 31. This design helps to counteract the loss of phase margin by taking the high frequency output signal and feeding it back into the amplifier inverting input. This technique helps to overcome oscillation due to a highly capacitive load. Keep in mind that compensation will have the affect of lowering the Gain Bandwidth Product (GPW). The values of $\mathrm{C}_{\mathrm{X}}$ and R0, are determined experimentally. Typical $C_{X}$ and $C_{L}$ will be the same value.

## SPICE Model

If a SPICE Macromodel is desired for the MC33206/07, the user can define the characteristics from the following information. Obtain the SPICE Macromodel for the MC33204 Rail-to-Rail Operational Amplifier (device is the same as the MC33207). For the Enable feature of the MC33207, simulate it as a bipolar switch. The Macromodel does not include an input capacitance between the inverting and noninverting inputs. This capacitor is called $\mathrm{C}_{\mathrm{in}}$. Add 3.0 to 5.0 pF if stability analysis is required.

Figure 32. Noninverting Amplifier Slew Rate

$\mathrm{t}, \mathrm{TIME}(5.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 33. Small Signal Transient Response

t , TIME ( $10 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 34. Large Signal Transient Response

t, TIME $(10 \mu \mathrm{~s} / \mathrm{DIV})$

## Single Supply, High Slew Rate Low Input Offset Voltage, Bipolar Operational Amplifiers

The MC33272/74 series of monolithic operational amplifiers are quality fabricated with innovative Bipolar design concepts. This dual and quad operational amplifier series incorporates Bipolar inputs along with a patented Zip-R-Trim element for input offset voltage reduction. The MC33272/74 series of operational amplifiers exhibits low input offset voltage and high gain bandwidth product. Dual-doublet frequency compensation is used to increase the slew rate while maintaining low input noise characteristics. Its all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, and an excellent phase and gain margin. It also provides a low open loop high frequency output impedance with symmetrical source and sink AC frequency performance.

The MC33272/74 series is specified over $-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ and are available in plastic DIP and SOIC surface mount packages.

- Input Offset Voltage Trimmed to $100 \mu \mathrm{~V}$ (Typ)
- Low Input Bias Current: 300 nA
- Low Input Offset Current: 3.0 nA
- High Input Resistance: $16 \mathrm{M} \Omega$
- Low Noise: $18 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 1.0 kHz
- High Gain Bandwidth Product: $24 \mathrm{MHz} @ 100 \mathrm{kHz}$
- High Slew Rate: $10 \mathrm{~V} / \mathrm{s}$
- Power Bandwidth: 160 kHz
- Excellent Frequency Stability
- Unity Gain Stable: w/Capacitance Loads to 500 pF
- Large Output Voltage Swing: +14.1 V/-14.6 V
- Low Total Harmonic Distortion: 0.003\%
- Power Supply Drain Current: 2.15 mA per Amplifier
- Single or Split Supply Operation: +3.0 V to +36 V or $\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- ESD Diodes Provide Added Protection to the Inputs

ORDERING INFORMATION

Op Amp   Function	Device	Operating   Temperature Range	Package
Dual	MC33272AD		SO-8
	MC33272AP	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP
Quad	MC33274AD		Plastic DIP
	MC33274AP		



## DUAL



D SUFFIX
PLASTIC PACKAGE CASE 751
(SO-8)

PIN CONNECTIONS


PIN CONNECTIONS


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$	+36	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	V
Input Voltage Range	$\mathrm{V}_{\text {IR }}$	(Note 1)	V
Output Short Circuit Duration (Note 2)	tsC	Indefinite	sec
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	(Note 2)	mW

NOTES: 1. Either or both input voltages should not exceed $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{EE}}$.
2. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{J}\right)$ is not exceeded (see Figure 2).

DC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ & \left(\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	3	IV101	-	$\begin{aligned} & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.8 \\ & 2.0 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $R_{S}=10 \Omega, V_{C M}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	3	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	4, 5	IB	-		$\begin{aligned} & 650 \\ & 800 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		1 IO	-		$\begin{aligned} & 65 \\ & 80 \end{aligned}$	nA
Common Mode Input Voltage Range ( $\Delta \mathrm{V}_{\mathrm{IO}}=5.0 \mathrm{mV}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ ) $T_{A}=+25^{\circ} \mathrm{C}$	6	VICR	$\mathrm{V}_{\mathrm{EE}}$ to ( $\left.\mathrm{V}_{\mathrm{CC}}-1.8\right)$			V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	7	AVOL	$\begin{aligned} & 90 \\ & 86 \end{aligned}$		-	dB
$\begin{aligned} & \text { Output Voltage Swing }\left(V_{I D}= \pm 1.0 \mathrm{~V}\right) \\ &\left(\mathrm{V}_{\mathrm{CC}}\right.\left.=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right) \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ &\left(\mathrm{~V}_{\mathrm{CC}}\right.\left.=5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}\right) \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$	$8,9,12$   10, 11	$\mathrm{V}_{\mathrm{O}^{+}}$   $\mathrm{V}_{\mathrm{O}^{-}}$   $\mathrm{V}_{\mathrm{O}^{+}}$   $\mathrm{V}_{\mathrm{O}^{-}}$   $\mathrm{V}_{\mathrm{OL}}$   $\mathrm{V}_{\mathrm{OH}}$	$\begin{gathered} 13.4 \\ - \\ 13.4 \\ - \\ - \\ 3.7 \end{gathered}$	$\begin{gathered} 13.9 \\ -13.9 \\ 14 \\ -14.7 \end{gathered}$	$\begin{gathered} - \\ -13.5 \\ -14.1 \\ 0.2 \\ 5.0 \end{gathered}$	V
Common Mode Rejection ( $\mathrm{V}_{\text {in }}=+13.2 \mathrm{~V}$ to -15 V )	13	CMR	80	100	-	dB
Power Supply Rejection $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=+15 \mathrm{~V} /-15 \mathrm{~V},+5.0 \mathrm{~V} /-15 \mathrm{~V},+15 \mathrm{~V} /-5.0 \mathrm{~V}$	14, 15	PSR	80	105	-	dB
Output Short Circuit Current (VID $=1.0 \mathrm{~V}$, Output to Ground) Source   Sink	16	ISC	$\begin{aligned} & +25 \\ & -25 \end{aligned}$	$\begin{aligned} & +37 \\ & -37 \end{aligned}$	-	mA
$\begin{aligned} & \text { Power Supply Current Per Amplifier }\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ &\left(\mathrm{V}_{\mathrm{CC}}\right.\left.=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right) \\ & T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\ &\left(\mathrm{~V}_{\mathrm{CC}}\right.\left.=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	17	${ }^{\text {ICC }}$	-	$2.15$	$\begin{gathered} 2.75 \\ 3.0 \\ 2.75 \end{gathered}$	mA

AC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Figure	Symbol	Min	Typ	Max	Unit
Slew Rate $\left(\mathrm{V}_{\text {in }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{AV}^{\mathrm{V}}=+1.0 \mathrm{~V}\right)$	18,33	SR	8.0	10	-	$\mathrm{V} / \mu \mathrm{s}$
Gain Bandwidth Product ( $f=100 \mathrm{kHz}$ )	19	GBW	17	24	-	MHz
AC Voltage Gain ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=20 \mathrm{kHz}$ )	20,21, 22	Avo	-	65	-	dB
Unity Gain Frequency (Open Loop)		fu	-	5.5	-	MHz
Gain Margin ( $\left.\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}\right)$	23, 24, 26	$A_{m}$	-	12	-	dB
Phase Margin ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )	23, 25, 26	¢m	-	55	-	Degrees
Channel Separation ( $f=20 \mathrm{~Hz}$ to 20 kHz )	27	CS	-	-120	-	dB
Power Bandwidth ( $\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{THD} \leq 1.0 \%$ )		$\mathrm{BW}_{P}$	-	160	-	kHz
Total Harmonic Distortion $\left(\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{O}}=3.0 \mathrm{~V}_{\mathrm{rms}}, \quad \mathrm{AV}=+1.0\right)$	28	THD	-	0.003	-	\%
Open Loop Output Impedance ( $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=6.0 \mathrm{MHz}$ )	29	$\mathrm{ZO}^{\prime}$	-	35	-	$\Omega$
Differential Input Resistance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )		RIN	-	16	-	$\mathrm{M} \Omega$
Differential Input Capacitance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )		$\mathrm{CIN}^{\text {I }}$	-	3.0	-	pF
Equivalent Input Noise Voltage ( $\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$ )	30	$e_{n}$	-	18	-	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ( $\mathrm{f}=1.0 \mathrm{kHz}$ )	31	$i_{n}$	-	0.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Figure 1. Equivalent Circuit Schematic (Each Amplifier)


Figure 2. Maximum Power Dissipation versus Temperature


Figure 4. Input Bias Current versus Common Mode Voltage


Figure 6. Input Common Mode Voltage Range versus Temperature


$\mathrm{T}_{\mathrm{A}}$, AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

Figure 3. Input Offset Voltage versus Temperature for Typical Units


Figure 5. Input Bias Current versus Temperature


Figure 7. Open Loop Voltage Gain versus Temperature


Figure 8. Split Supply Output Voltage Swing versus Supply Voltage

Figure 9. Split Supply Output Saturation Voltage versus Load Current


Figure 10. Single Supply Output Saturation Voltage versus Load Resistance to Ground

$R_{L}$, LOAD RESISTANCE TO GROUND ( $k \Omega$ )

Figure 12. Output Voltage versus Frequency


Figure 13. Common Mode Rejection versus Frequency


Figure 14. Positive Power Supply Rejection versus Frequency

Figure 16. Output Short Circuit Current versus Temperature


Figure 18. Normalized Slew Rate versus Temperature


Figure 15. Negative Power Supply Rejection versus Frequency


Figure 17. Supply Current versus Supply Voltage


Figure 19. Gain Bandwidth Product versus Temperature


Figure 20. Voltage Gain and Phase versus Frequency


Figure 22. Open Loop Voltage Gain and Phase versus Frequency


Figure 24. Open Loop Gain Margin versus Temperature


Figure 21. Gain and Phase versus Frequency


Figure 23. Open Loop Gain Margin and Phase Margin versus Output Load Capacitance


Figure 25. Phase Margin versus Temperature


Figure 26. Phase Margin and Gain Margin versus Differential Source Resistance


Figure 28. Total Harmonic Distortion versus Frequency


Figure 30. Input Referred Noise Voltage versus Frequency


Figure 27. Channel Separation versus Frequency


Figure 29. Output Impedance versus Frequency


Figure 31. Input Referred Noise Current versus Frequency


Figure 32. Percent Overshoot versus
Load Capacitance


Figure 33. Noninverting Amplifier Slew Rate for the MC33274

$\mathrm{t}, \mathrm{TIME}(2.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 35. Small Signal Transient Response for MC33274

t , TIME $(2.0 \mu \mathrm{~s} / \mathrm{DIV})$

Figure 34. Noninverting Amplifier Overshoot for the MC33274


Figure 36. Large Signal Transient Response for MC33274

t , TIME ( $1.0 \mu \mathrm{~s} / \mathrm{DIV})$

## Low Input Offset, High Slew Rate, Wide Bandwidth, JFET Input Operational Amplifiers

The MC33282/284 series of high performance operational amplifiers are quality fabricated with innovative bipolar and JFET design concepts. This dual and quad amplifier series incorporates JFET inputs along with a patented Zip-R-Trim ${ }^{\circledR}$ element for input offset voltage reduction. These devices exhibit low input offset voltage, low input bias current, high gain bandwidth and high slew rate. Dual-doublet frequency compensation is incorporated to produce high quality phase/gain performance. In addition, the MC33282/284 series exhibit low input noise characteristics for JFET input amplifiers. Its all NPN output stage exhibits no deadband crossover distortion and a large output voltage swing. They also provide a low open loop high frequency output impedance with symmetrical source and sink AC frequency performance.

The MC33282/284 series are specified over $-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ and are available in plastic DIP and SOIC surface mount packages.

- Low Input Offset Voltage: Trimmed to $200 \mu \mathrm{~V}$
- Low Input Bias Current: 30 pA
- Low Input Offset Current: 6.0 pA
- High Input Resistance: $10^{12} \Omega$
- Low Noise: $18 \mathrm{nV} \sqrt{\mathrm{Hz}}$ @ 1.0 kHz
- High Gain Bandwidth Products: 35 MHz @ 100 kHz
- High Slew Rate: $15 \mathrm{~V} / \mu \mathrm{s}$
- Power Bandwidth: 175 kHz
- Unity Gain Stable: w/Capacitance Loads to 300 pF
- Large Output Voltage Swing: +14.1 V/-14.6 V
- Low Total Harmonic Distortion: 0.003\%
- Power Supply Drain Current: 2.15 mA per Amplifier
- Dual Supply Operation: $\pm 2.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ (Max)


## ORDERING INFORMATION

Op Amp   Function	Device	Operating   Temperature Range	Package
Dual	MC33282D		SOP-8
	MC33282P	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP
Quad	MC33284D		SO-14
	MC33284P		Plastic DIP

Zip-R-Trim is a registered trademark of Motorola Inc.

## HIGH PERFORMANCE OPERATIONAL AMPLIFIERS

## SEMICONDUCTOR TECHNICAL DATA



MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (VCC to $\mathrm{V}_{\text {EE }}$ )	$\mathrm{V}_{\mathrm{S}}$	+36	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	V
Input Voltage Range	$\mathrm{V}_{\text {IR }}$	(Note 1)	V
Output Short Circuit Duration (Note 2)	$\mathrm{t}_{\mathrm{SC}}$	Indefinite	sec
Maximum Junction Temperature	$\mathrm{TJ}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {Stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	$\mathrm{PD}_{\mathrm{D}}$	(Note 2)	mW

NOTES: 1. Either or both input voltages should not exceed $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{EE}}$.
2. Power dissipation must be considered to ensure maximum junction temperature ( $T_{J}$ ) is not exceeded (see Figure 2)

DC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Symbol	Figure	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage (RS } \left.=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \qquad \begin{array}{l} \mathrm{T} \end{array}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{IO}} \mathrm{l}$	3	-	0.2	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$	$\left\|\Delta V^{\prime \prime}\right\|^{\prime / \Delta T}$	3	-	15	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	IB	4, 5	$\begin{aligned} & -200 \\ & -2.0 \end{aligned}$		$\begin{gathered} 200 \\ 2.0 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	10		$\begin{aligned} & -100 \\ & -1.0 \end{aligned}$		$\begin{aligned} & 100 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Common Mode Input Voltage Range $\left(\Delta \mathrm{V}_{1 \mathrm{O}}=5.0 \mathrm{mV}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)$	VICR	6	-11	$\begin{aligned} & -12 \\ & +14 \end{aligned}$	$+11$	V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Avol	7	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200	-	V/mV
$\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{V}_{I D}= \pm 1.0 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{O}}+$   $\mathrm{V}_{\mathrm{O}}-$   $\mathrm{V}_{\mathrm{O}}+$   $\mathrm{V}_{\mathrm{O}}-$	8, 9, 10	$\frac{13.2}{-}$	$\begin{aligned} & +13.7 \\ & -13.9 \\ & +14.1 \\ & -14.6 \end{aligned}$	$\begin{gathered} -\overline{13.2} \\ -\overline{14.3} \end{gathered}$	V
Common Mode Rejection ( $\mathrm{V}_{\text {in }}= \pm 11 \mathrm{~V}$ )	CMR	11	70	90	-	dB
Power Supply Rejection $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=+15 \mathrm{~V} /-15 \mathrm{~V},+5.0 \mathrm{~V} /-15 \mathrm{~V},+15 \mathrm{~V} /-5.0 \mathrm{~V}$	PSR	12	75	100	-	dB
Output Short Circuit Current ( $\mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}$, output to ground) Source   Sink	ISC	13, 14	15	$\begin{aligned} & +21 \\ & -27 \end{aligned}$	$-15$	mA
$\begin{aligned} & \text { Power Supply Current (VO }=0 \mathrm{~V} \text {, per amplifier) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	ID	15	-	2.15	$\begin{gathered} 2.75 \\ 3.0 \end{gathered}$	mA

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristics	Symbol	Figure	Min	Typ	Unit
Slew Rate ( $\mathrm{V}_{\text {in }}=-10 \mathrm{~V}$ to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}_{\mathrm{V}}=+1.0$ )	SR	16, 28, 29	8.0	15	V/ $\mu \mathrm{s}$
Gain Bandwidth Product ( $\mathrm{f}=100 \mathrm{kHz}$ )	GBW	17	20	35	MHz
AC Voltage Gain ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=20 \mathrm{kHz}$ )	Avo	18, 21	-	1750	V/V
Unity Gain Frequency (Open Loop)	fu		-	5.5	MHz
Gain Margin ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )	$A_{m}$	19, 20	-	15	dB
Phase Margin ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )	$\phi_{m}$	19, 20	-	40	Degrees
Channel Separation ( $\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz )	CS	22	-	-120	dB
Power Bandwidth ( $\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$, $\mathrm{THD} \leq 1.0 \%$ )	BWP		-	175	kHz
Distortion ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}_{\mathrm{rms}}, \mathrm{AV}^{2}=+1.0$ )	THD	23	-	0.003	\%
Open Loop Output Impedance ( $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=9.0 \mathrm{MHz}$ )	IZOI	24	-	37	$\Omega$
Differential Input Resistance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )	$\mathrm{R}_{\text {in }}$		-	$10^{12}$	$\Omega$
Differential Input Capacitance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )	$\mathrm{C}_{\text {in }}$		-	5.0	pF
Equivalent Input Noise Voltage ( $\mathrm{RS}_{S}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$ )	$e_{n}$	25	-	18	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ( $\mathrm{f}=1.0 \mathrm{kHz}$ )	in		-	0.01	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Figure 1. Equivalent Circuit Schematic
(Each Amplifier)


Figure 2. Maximum Power Dissipation


Figure 4. Input Bias Current versus Temperature


Figure 6. Input Common Mode Voltage Range versus Temperature


Figure 3. Input Offset Voltage versus Temperature for Typical Units


Common Mode Voltage


Figure 7. Open Loop Voltage Gain versus Temperature


Figure 8. Output Voltage Swing versus Supply Voltage


Figure 10. Output Saturation Voltage versus Load Current


Figure 12. Positive Power Supply
Rejection versus Frequency


Figure 9. Output Voltage versus Frequency


Figure 11. Common Mode Rejection versus Frequency


Figure 13. Output Short Circuit Source Current versus Temperature


Figure 14. Output Short Circuit Sink


Figure 16. Slew Rate
versus Temperature


Figure 18. Gain and Phase versus Frequency


Figure 15. Power Supply Current versus Supply Voltage


Figure 17. Gain Bandwidth Product versus Temperature


Figure 19. Phase Margin and Gain Margin versus Differential Source Resistance


Figure 20. Open Loop Gain and Phase Margin versus Output Load Capacitance

Figure 22. Channel Separation versus Frequency


Figure 24. Output Impedance versus Frequency


Figure 21. Gain and Phase versus Frequency


Figure 23. Total Harmonic Distortion versus Frequency


Figure 25. Input Referred Noise Voltage


Figure 26. Percent Overshoot versus Load Capacitance


Figure 28. Noninverting
Amplifier Slew Rate

t, TIME ( $1.0 \mu \mathrm{~S} / \mathrm{DIV}$ )

Figure 27. Noninverting Amplifier Overshoot

t , TIME $(1.0 \mu \mathrm{~S} / \mathrm{DIV})$

Figure 29. Inverting Amplifier Slew Rate

t, TIME ( $1.0 \mu \mathrm{~S} / \mathrm{DIV})$

## Low Voltage Rail-To-Rail Sleep-Mode ${ }^{\text {TM }}$ Operational Amplifier

The MC33304 is a monolithic bipolar operational amplifier. This low voltage rail-to-rail amplifier has both a rail-to-rail input and output stage, with high output current capability. This amplifier also employs Sleep-Mode technology. In sleepmode, the micropower amplifier is active and waiting for an input signal. When a signal is applied, causing the amplifier to source or sink $\geq 200 \mu \mathrm{~A}$ (typically) to the load, it will automatically switch to the awakemode (supplying up to 70 mA to the load). When the output current drops below $90 \mu \mathrm{~A}$, the amplifier automatically returns to the sleepmode.

Excellent performance can be achieved as an audio amplifier. This is due to the amplifier's low noise and low distortion. A delay circuit is incorporated to prevent crossover distortion.

- Ideal for Battery Applications
- Full Output Signal (No Distortion) for Battery Applications Down to $\pm 0.9$ VDC.
- Single Supply Operation (+1.8 to +12 V)
- Rail-To-Rail Performance on Both the Input and Output
- Output Voltages Swings Typically within 100 mV of Both Rails ( $R_{L}=1.0 \mathrm{~m} \Omega$ )
- Two States: "Sleepmode" (Micropower, ID = $110 \mu \mathrm{~A} / \mathrm{Amp}$ ) and "Awakemode" (High Performance, ID = $1200 \mu \mathrm{~A} / \mathrm{Amp}$ )
- Automatic Return to Sleepmode when Output Current Drops Below Threshold, Allowing a Fully Functional Micropower Amplifier
- Independent Sleepmode Function for Each Amplifier
- No Phase Reversal on the Output for Overdriven Input Signals
- High Output Current ( 70 mA typically)
- $600 \Omega$ Drive Capability
- Standard Pinouts; No Additional Pins or Components Required
- Drop-In Replacement for Many Other Quad Operational Amplifiers
- Similar to MC33201, MC33202 and MC33204 Family
- The MC33304 Amplifier is Offered in the Plastic DIP or SOIC Package (P and D Suffixes)

TYPICAL DC ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

Characteristic	$\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 0} \mathbf{V}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{3 . 3} \mathbf{V}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	Unit
Input Offset Voltage   $\mathrm{V}_{\mathrm{IO}(\mathrm{max})}$   MC 33304				mV
Output Voltage Swing	$\pm 10$	$\pm 10$	$\pm 10$	
$\mathrm{~V}_{\mathrm{OH}}\left(\mathrm{R}_{\mathrm{L}}=600 \Omega\right)$	1.85	3.10	4.75	$\mathrm{~V}_{\min }$
$\mathrm{V}_{\mathrm{OL}}\left(\mathrm{R}_{\mathrm{L}}=600 \Omega\right)$	0.15	0.15	0.15	$\mathrm{~V}_{\max }$
Power Supply Current				
per Amplifier (ID)	1.625	1.625	1.625	mA
Awakemode	140	140	140	$\mu \mathrm{~A}$

Specifications are for reference only and not necessarily guaranteed. $\mathrm{V}_{\mathrm{EE}}=\mathrm{Gnd}$.

## RAIL-TO-RAIL SLEEP-MODE OPERATIONAL AMPLIFIER

SEMICONDUCTOR TECHNICAL DATA


PIN CONNECTIONS

(Quad, Top View)

ORDERING INFORMATION

Device	Operating   Temperature Range	Package
MC33304D	$T_{A}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-14

## MC33304

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (VCC to $\mathrm{V}_{\mathrm{EE}}$ )	$\mathrm{V}_{\mathrm{S}}$	+16	V
ESD Protection Voltage at Any Pin   Human Body Model	$\mathrm{V}_{\mathrm{ESD}}$	2000	V
Voltage at Any Device Pin (Note 2)	$\mathrm{V}_{\mathrm{DP}}$	$\mathrm{V}_{\mathrm{S}} \pm 0.5$	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Notes 1\&2)	V
Output Short Circuit Duration	$\mathrm{t}_{\mathrm{s}}$	Indefinite   (Note 3)	sec
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	$($ Note 5)	mW

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{S}}$				V
Single Supply		1.8      Split Supplies	-	12	
Input Voltage Range, Sleepmode and Awakemode	$\mathrm{V}_{\mathrm{ICR}}$	$\mathrm{V}_{\mathrm{EE}}$	-	$\mathrm{V}_{\mathrm{CC}}$	V
Ambient Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-40	-	+105	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{V} C M=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)(\text { Note 4) } \\ & \text { Sleepmode and Awakemode } \\ & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{10}$	$\begin{aligned} & -10 \\ & -13 \end{aligned}$		$\begin{aligned} & +10 \\ & +13 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\begin{aligned} & \left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \text {, Sleepmode and Awakemode } \end{aligned}$	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$	-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
```Input Bias Current ( \(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\) ) (Note 4) Awakemode \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\)```	$\mid 1 / B 1$		90	$\begin{aligned} & +200 \\ & +500 \end{aligned}$	nA
```Input Offset Current \(\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)(\) Note 4) Awakemode \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\)```	11 OO	-		$\begin{gathered} +50 \\ +100 \end{gathered}$	nA
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V} C \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right) \\ & \text { Awakemode, } \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \end{aligned}$	Avol	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	116	-	dB
Power Supply Rejection Ratio, Awakemode	PSRR	65	90	-	dB
Output Short Circuit Current (Awakemode) $\left(\mathrm{V}_{I D}= \pm 0.2 \mathrm{~V}\right)$   Source   Sink	ISC	$\begin{aligned} & -200 \\ & +50 \end{aligned}$	$\begin{aligned} & -89 \\ & +89 \end{aligned}$	$\begin{gathered} -50 \\ +200 \end{gathered}$	mA
Output Transition Current, Source/Sink Sleepmode to Awakemode, $\mathrm{V}_{\mathrm{CC}}=+1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-1.0 \mathrm{~V}$ Awakemode to Sleepmode, $\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}-5.0 \mathrm{~V}$	$\begin{aligned} & { }^{\text {IITH1 }} \\ & \text { IITH2। } \end{aligned}$	$\overline{90}$	-	200	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{V}_{\mathrm{ID}}= \pm 0.2 \mathrm{~V}\right) \\ & \text { Sleepmode } \\ & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, R_{\mathrm{L}}=1.0 \mathrm{M} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, R_{\mathrm{L}}=1.0 \mathrm{M} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, R_{\mathrm{L}}=1.0 \mathrm{M} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.0 \mathrm{~V}, R_{\mathrm{L}}=1.0 \mathrm{M} \Omega \\ & \text { Awakemode } \\ & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{C}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.0 \mathrm{~V}, R_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{C}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	VOH   VOL   $\mathrm{VOH}_{\mathrm{OH}}$   VOL   $\mathrm{V}_{\mathrm{OH}}$   VOL   VOH   $\mathrm{V}_{\mathrm{OL}}$   $\mathrm{V}_{\mathrm{OH}}$   VOL	$\begin{gathered} 4.90 \\ - \\ 1.90 \\ - \\ 4.75 \\ - \\ 1.85 \end{gathered}$	4.97 -4.96 1.98 -1.97 4.86 -4.85 1.91 -1.90 2.41 -2.40	$-4.90$   $-1.90$   $-4.75$   $-1.85$   -	V
Common Mode Rejection Ratio	CMRR	60	90	-	dB
$\begin{array}{ll} \begin{array}{l} \text { Power Supply Current (per Amplifier) } \\ \text { Sleepmode } \end{array} & \\ \mathrm{V}_{\mathrm{CC}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \text { Awakemode } & \mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \end{array}$	ID	-	$\begin{gathered} 85 \\ 110 \\ - \\ 125 \\ 1200 \end{gathered}$	$\begin{gathered} - \\ 140 \\ 150 \\ - \\ 1625 \\ 1750 \end{gathered}$	$\mu \mathrm{A}$
Thermal Resistance SOIC Plastic DIP	$\theta_{\text {JA }}$	-	$\begin{aligned} & 145 \\ & 75 \end{aligned}$	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

AC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Slew Rate $\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1.0\right)($ Note 6$)$ Awakemode	SR	0.5	0.89	-	V/ $/ \mathrm{s}$
Gain Bandwidth Product ( $\mathrm{f}=100 \mathrm{kHz}$ ) Awakemode	GBW	-	2.2	-	MHz
$\begin{aligned} & \text { Gain Margin }\left(C_{L}=0 \mathrm{pF}\right) \\ & \text { Awakemode } \\ & \text { Sleepmode }\left(R_{L}=1.0 \mathrm{k} \Omega\right) \end{aligned}$	$A_{m}$	-	$\begin{aligned} & 6.0 \\ & 9.0 \end{aligned}$	-	dB
Phase Margin ( $\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ ) Awakemode Sleepmode	$\phi_{m}$	-	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	-	Deg
Sleepmode to Awakemode Transition Time $\begin{aligned} & R_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$	tr1	-	$\begin{gathered} 4.0 \\ 12 \end{gathered}$	-	$\mu \mathrm{sec}$
Awakemode to Sleepmode Transition Time	tr2	-	1.5	-	sec
Channel Separation ( $\mathrm{f}=1.0 \mathrm{kHz}$ ) Awakemode	CS	-	100	-	dB

NOTES: 1. The differential input voltage of each amplifier is limited by two internal diodes. The diodes are connected across the inputs in parallel and opposite to each other. For more differential input voltage range, use current limiting resistors in series with the input pins.
2. The common-mode input voltage range of each amplifier is limited by diodes connected from the inputs to both power supply rails. Therefore, the voltage on either input must not exceed supply rail by more than $\pm 500 \mathrm{mV}$.
3. Simultaneous short circuits of two or more amplifiers to the positive or negative rail can exceed the power dissipation ratings and cause eventual failure of the device.
4. Rail-to-rail performance is achieved at the input of the amplifier by using parallei NPN-PNP differential stages. When the inputs are near the negative rail ( $V_{E E}<V_{C M}<800 \mathrm{mV}$ ), the PNP stage is on. When the inputs are above 800 mV (i.e. $800 \mathrm{mV}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$ ), the NPN stage is on. This switching of the input pairs will cause a reversal of input bias current. Slight changes in the input offset voltage will be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum.
5. Power dissipation must be considered to ensure maximum junction ( $T_{J}$ ) is not exceeded. (See Figure 2)
6. When connected as a voltage follower and used in transient conditions, a current limiting resistor may be needed between the output and the inverting input. This is because of the back to back diodes clamped across the inputs. The value of this resistor should be between $1.0 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$. If the amplifier does not become slew rate limited and is processing low frequency waveforms, then no resistor would be necessary. (The output could be tied directly to the negative input.)

AC ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{V}_{C C}=+6.0 \mathrm{~V}, \mathrm{~V}_{E E}=-6.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Power Bandwidth $\left(\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{THD} \leq 1.0 \%\right)$ Awakemode	BW ${ }_{\text {p }}$	-	28	-	kHz
$\begin{aligned} & \text { Distortion }\left(V_{O}=2.0 \mathrm{~V}_{\mathrm{pp}}, A_{V}=+1.0\right) \\ & \text { Awakemode }(f=10 \mathrm{kHz}) \\ & \text { Sleepmode }\left(f=1.0 \mathrm{kHz}, R_{\mathrm{L}}=\text { Infinite }\right) \end{aligned}$	THD		$\begin{aligned} & 0.009 \\ & 0.007 \end{aligned}$		\%
Open Loop Output Impedance $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=2.0 \mathrm{MHz}, \mathrm{AV}=+10, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\right) \\ & \text { Awakemode } \\ & \text { Sleepmode } \end{aligned}$	IZO\|	-	$\begin{gathered} 100 \\ 1000 \end{gathered}$	-	$\Omega$
Differential Input Impedance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )   Awakemode   Sleepmode	RIN		$\begin{gathered} 200 \\ 1300 \end{gathered}$		k $\Omega$
Differential Input Capacitance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ ) Awakemode Sleepmode	$\mathrm{CIN}_{\text {I }}$	-	$\begin{aligned} & 8.0 \\ & 0.4 \end{aligned}$	-	pF
Equivalent Input Noise Voltage ( $\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$ ) Awakemode Sleepmode	$e_{n}$	-	$\begin{aligned} & 15 \\ & 60 \end{aligned}$	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ( $\mathrm{f}=1.0 \mathrm{kHz}$ )   Awakemode   Sleepmode	$i_{n}$	-	$\begin{aligned} & 0.22 \\ & 0.20 \end{aligned}$	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

NOTES: 1. The differential input voltage of each amplifier is limited by two internal diodes. The diodes are connected across the inputs in parallel and opposite to each other. For more differential input voltage range, use current limiting resistors in series with the input pins.
2. The common-mode input voltage range of each amplifier is limited by diodes connected from the inputs to both power supply rails. Therefore, the voltage on either input must not exceed supply rail by more than $\pm 500 \mathrm{mV}$.
3. Simultaneous short circuits of two or more amplifiers to the positive or negative rail can exceed the power dissipation ratings and cause eventual failure of the device.
4. Rail-to-rail performance is achieved at the input of the amplifier by using parallel NPN-PNP differential stages. When the inputs are near the negative rail ( $V_{E E}<V_{C M}<800 \mathrm{mV}$ ), the PNP stage is on. When the inputs are above 800 mV (i.e. $800 \mathrm{mV}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$ ), the NPN stage is on. This switching of the input pairs will cause a reversal of input bias current. Slight changes in the input offset voltage will be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum.
5. Power dissipation must be considered to ensure maximum junction ( $T_{J}$ ) is not exceeded. (See Figure 2)
6. When connected as a voltage follower and used in transient conditions, a current limiting resistor may be needed between the output and the inverting input. This is because of the back to back diodes clamped across the inputs. The value of this resistor should be between $1.0 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$. If the amplifier does not become slew rate limited and is processing low frequency waveforms, then no resistor would be necessary. (The output could be tied directly to the negative input.)

Figure 1. Equivalent Circuit Block Diagram (Each Amplifier)


There are 515 active components for the entire quad device.

The MC33304 will begin to function at power supply voltages as low as $\mathrm{V}_{\mathrm{S}}= \pm 0.8 \mathrm{~V}$. The device has the ability to swing rail-to-rail on both the input and the output. Since the common mode input voltage range extends from $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$, it can be operated with either single or split voltage supplies. The MC33304 is guaranteed not to latch up or phase reverse over the entire common mode range. However, the output could go into phase reversal state if input voltage is set higher than $+\mathrm{V}_{\mathrm{CC}}$ or $-\mathrm{V}_{\mathrm{EE}}$.

When power is initially applied, the part may start to operate in the awakemode. This occurs because of bias currents being generated from the charging of the internal capacitors. When this occurs, the user will have to wait approximately 1.5 seconds before the device will switch back to the sleepmode.

The amplifier is designed to switch from sleepmode to awakemode whenever the output current exceeds a preset current threshold (ITH) of approximately $200 \mu \mathrm{~A}$. As a result, the output switching threshold voltage $\left(\mathrm{V}_{\mathrm{ST}}\right)$ is controlled by the output loading resistance ( $\mathrm{R}_{\mathrm{L}}$ ). Large valued load resistors require a large output voltage to switch, but reduce unwanted transitions to the awakemode.

Most of the transition time is consumed slewing in the sleepmode until $V_{S T}$ is reached, therefore, small values of $R_{L}$ allow rapid transition to the awakemode. The output switching threshold voltage ( $\mathrm{V}_{\mathrm{ST}}$ ) is higher for the larger values of $R_{L}$, requiring the amplifier to slew longer in the slower sleepmode state before switching to the awakemode.

Although typically $200 \mu \mathrm{~A}$, ITH varies with supply voltage, temperature and the load resistance. Generally, any current loading on the ouput which causes a current greater than ITH
to flow will switch the amplifier into the awakemode. This includes transition currents like those generated by charging load capacitances. In fact, the maximum capacitance that can be driven while attempting to remain in the sleepmode is approximately 300 pF .

The awakemode to sleepmode transition time is controlled by an internal delay circuit, which is necessary to prevent the amplifier from going to sleep during every zero crossing of the output waveform. This delay circuit also eliminates the crossover distortion commonly found in micropower amplifiers.

The MC33304 rail-to-rail sleepmode operational amplifier is unique in its ability to swing rail-to-rail on both the input and output using a bipolar design. This offers a low noise and wide common mode input voltage range. Since the common mode input voltage range extends from $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$, it can be operated with either single or split voltage supplies.

Rail-to-rail performance is achieved at the input of the amplifiers by using parallel NPN-PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV above VEE, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents. Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum.

In addition to the rail-to-rail performance, the output stage is current boosted to provide enough output current to drive $600 \Omega$ loads. Because of this high current capability, care should be taken not to exceed the $150^{\circ} \mathrm{C}$ maximum junction temperature specification.

Figure 2. Maximum Power Dissipation versus Temperature


Figure 4. Input Bias Current versus Common Mode Input Voltage


Figure 6. Output Voltage Swing versus Supply Voltage


Figure 3. Input Bias Current versus Temperature


Figure 5. Open Loop Voltage Gain versus Temperature


Figure 7. Output Voltage versus Frequency


Figure 8. Maximum Peak-to-Peak Output Voltage Swing versus Load Resistance


RL, LOAD RESISTANCE TO GROUND ( $\Omega$ )

Figure 10. Power Supply Rejection versus Frequency


Figure 12. Sleepmode to Awakemode Current Threshold versus Supply Voltage


Figure 9. Common Mode Rejection versus Frequency


Figure 11. Awakemode to Sleepmode Current Threshold versus Supply Voltage


Figure 13. Output Short Circuit Current versus Output Voltage


Figure 14. Output Short Circuit Current versus Temperature


Figure 16. Supply Current versus Supply Voltage


Figure 18. Gain Bandwidth Product versus Temperature


Figure 15. Supply Current versus Supply Voltage with Load


Figure 17. Slew Rate versus Temperature


Figure 19. Gain Margin versus Differential Source Resistance


Figure 20. Phase Margin versus Differential Source Resistance


Figure 22. Phase Margin versus
Output Load Capacitance


Figure 24. Total Harmonic Distortion versus Frequency


Figure 21. Gain Margin versus Output Load Capacitance


Figure 23. Channel Separation versus Frequency


Figure 25. Input Referred Noise Voltage versus Frequency


Figure 26. Current Noise versus Frequency
2

Figure 27. Percent Overshoot versus Load Capacitance


## JFET Input Operational Amplifiers

These low cost JFET input operational amplifiers combine two state-of-the-art analog technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

The Motorola BIFET family offers single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices. The MC34001/ $34002 / 34004$ series are specified from $0^{\circ}$ to $+70^{\circ} \mathrm{C}$.

- Input Offset Voltage Options of 5.0 mV and 10 mV Maximum
- Low Input Bias Current: 40 pA
- Low Input Offset Current: 10 pA
- Wide Gain Bandwidth: 4.0 MHz
- High Slew Rate: $13 \mathrm{~V} / \mu \mathrm{s}$
- Low Supply Current: 1.4 mA per Amplifier
- High Input Impedance: $10^{12} \Omega$
- High Common Mode and Supply Voltage Rejection Ratios: 100 dB
- Industry Standard Pinouts


## ORDERING INFORMATION

Op Amp   Function	Device	Operating   Temperature Range	Package
Single	MC34001BD, D		$\mathrm{SO}-8$
	$\mathrm{MC} 34001 \mathrm{BP}, \mathrm{P}$		Plastic DIP
Dual	MC34002BD, D	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8
	$\mathrm{MC} 34002 \mathrm{BP}, \mathrm{P}$		Plastic DIP
Quad	$\mathrm{MC} 34004 \mathrm{BP}, \mathrm{P}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP

## JFET INPUT <br> OPERATIONAL AMPLIFIERS




## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	$\pm 18$	V
Differential Input Voltage (Note 1)	$\mathrm{V}_{\text {ID }}$	$\pm 30$	V
Input Voltage Range	$\mathrm{V}_{\text {IDR }}$	$\pm 16$	V
Open Short Circuit Duration	t	tS	Continuous
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES: 1 . Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply.

ELECTRICAL CHARACTERISTICS ( $\mathrm{V} C \mathrm{C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage ( } \mathrm{RS}_{S} \leq 10 \mathrm{k} \text { ) } \\ & \text { MC3400XB } \\ & \text { MC3400X } \end{aligned}$	$\mathrm{V}_{10}$		$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $R_{S} \leq 10 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high ( }}$ (Note 2)	$\Delta \mathrm{V}_{1 \mathrm{O}^{\prime} / \Delta \mathrm{T}}$	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 3) \\ & \text { MC3400XB } \\ & \text { MC3400X } \end{aligned}$	10		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	pA
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 3) \\ & \text { MC3400XB } \\ & \text { MC3400X } \end{aligned}$	IB	-	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	pA
Input Resistance	$\mathrm{r}_{\mathrm{i}}$	-	$10^{12}$	-	$\Omega$
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}$	$\pm 11$	$\begin{aligned} & +15 \\ & -12 \end{aligned}$	-	V
```Large Signal Voltage Gain (VO=\pm10 V, R MC3400XB MC3400X```	Avol	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	-	V/mV
$\begin{aligned} & \text { Output Voltage Swing } \\ & \left(R_{L} \geq 10 \mathrm{k}\right) \\ & \left(R_{L} \geq 2.0 \mathrm{k}\right) \\ & \hline \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	v
$\begin{aligned} & \text { Common Mode Rejection Ratio (} \mathrm{RS}_{\mathrm{S}} \leq 10 \mathrm{k} \text {) } \\ & \text { MC3400XB } \\ & \text { MC3400X } \end{aligned}$	CMRR	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	-	dB
Supply Voltage Rejection Ratio ($\mathrm{RS}_{\mathrm{S}} \leq 10 \mathrm{k}$) (Note 4) MC3400XB MC3400X	PSRR	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	-	dB
```Supply Current (Each Amplifier) MC3400XB MC3400X```	${ }^{\prime}$	-	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$	mA
Slew Rate ( $\mathrm{A} V=1.0$ )	SR	-	13	-	V/ $\mu \mathrm{s}$
Gain-Bandwidth Product	GBW	-	4.0	-	MHz
Equivalent Input Noise Voltage $\left(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1000 \mathrm{~Hz}\right)$	$\mathrm{en}_{n}$	-	25	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ( $f=1000 \mathrm{~Hz}$ )	in	-	0.01	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

NOTES: 2. T ${ }_{\text {low }}=0^{\circ} \mathrm{C}$ for MC34001/34001B
$T_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC34001/34001B
MC34002
MC34002
MC34004/34004B
3. The input bias currents approximately double for every $10^{\circ} \mathrm{C}$ rise in junction temperature, $\mathrm{T}_{\mathrm{J}}$. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heatsink is recommended if input bias current is to be kept to a minimum.
4. Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

MC34001, B MC34002, B MC34004, B

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.$ to $T_{\text {high }}$ [Note 2].)

Characteristics	Symbol	Min	Typ	Max	Unit
```Input Offset Voltage (RS S 10 k) MC3400XB MC3400X```	VIO		-	$\begin{aligned} & 7.0 \\ & 13 \end{aligned}$	mV
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 3) \\ & \text { MC3400XB } \\ & \text { MC3400X } \end{aligned}$	10	-		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	nA
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 3) \\ & \text { MC3400XB } \\ & \text { MC3400X } \end{aligned}$	I'B	-		$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	nA
Common Mode Input Voltage Range	$V_{\text {ICR }}$	± 11	-	-	V
$\begin{aligned} & \text { Large Signal }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}\right) \\ & \text { MC3400XB } \\ & \text { MC3400X } \end{aligned}$	Avol	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	-	-	V/mV
$\begin{aligned} & \text { Output Voltage Swing } \\ & (R \geq 10 \mathrm{k}) \\ & (R \geq 2.0 \mathrm{k}) \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	-	-	V
```Common Mode Rejection Ratio (RS < 10 k) MC3400XB MC3400X```	CMRR	$\begin{aligned} & 80 \\ & 70 \end{aligned}$		-	dB
Supply Voltage Rejection Ratio ( $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$ ) (Note 4) MC3400XB   MC3400X	PSRR	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	-	-	dB
```Supply Current (Each Amplifier) MC3400XB MC3400X```	${ }^{\text {I }}$	-	-	$\begin{aligned} & 2.8 \\ & 3.0 \end{aligned}$	mA

NOTES: 2. Tlow $=0^{\circ} \mathrm{C}$ for MC34001/34001B
$T_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC34001/34001B
MC34002
MC34002
MC34004/34004B
3. The input bias currents approximately double for every $10^{\circ} \mathrm{C}$ rise in junction temperature, T_{J}. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heatsink is recommended if input bias current is to be kept to a minimum.
4. Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

Figure 1. Input Bias Current versus Temperature

Figure 3. Output Voltage Swing versus Load Resistance

Figure 5. Output Voltage Swing versus Temperature

Figure 2. Output Voltage Swing versus Frequency

Figure 4. Output Voltage Swing versus Supply Voltage

Figure 6. Supply Current per Amplifier versus Temperature

MC34001, B MC34002, B MC34004, B

Figure 7. Large-Signal Voltage Gain and Phase Shift versus Frequency

Figure 9. Normalized Slew Rate versus Temperature

Figure 8. Large-Signal Voltage Gain versus Temperature

Figure 10. Equivalent Input Noise Voltage versus Frequency

Figure 11. Total Harmonic Distortion versus Frequency

MC34001, B MC34002, B MC34004, B

Representative Circuit Schematic
(Each Amplifier)
2

Figure 12. Output Current to Voltage Transformation for a D-to-A Converter

Settling time to within $1 / 2$ LSB is approximately $4.0 \mu \mathrm{~s}$ from the time all bits are switched ($\mathrm{C}=68 \mathrm{pF}$).

The value of C may be selected to minimize overshoot and ringing.

Theoretical V_{0}
$V_{O}=\frac{V_{\text {ref }}}{R_{1}}\left(R_{O}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right]$

Figure 13. Positive Peak Detector

Figure 14. Long Interval RC Timer

Time $(t)=R 4 \mathrm{Cn}\left(\mathrm{V}_{\mathrm{R}} / \mathrm{V}_{\mathrm{R}}-\mathrm{V}_{1}\right), \mathrm{R}_{3}=\mathrm{R}_{4}, \mathrm{R}_{5}=0.1 \mathrm{R}_{6}$ If $R 1=R 2: t=0.693 R 4 C$

Figure 15. Isolating Large Capacitive Loads

Design Example: 100 Second Timer

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} & \mathrm{C}=1.0 \mu \mathrm{~F} & \mathrm{R} 3=\mathrm{R} 4=144 \mathrm{M} \\
\mathrm{R} 6=20 \mathrm{k} & \mathrm{R} 5=2.0 \mathrm{k} & \mathrm{R} 1=\mathrm{R} 2=1.0 \mathrm{k}
\end{array}
$$

Overshoot < 10\%
$\mathrm{t}_{\mathrm{S}}=10 \mu \mathrm{~s}$
When driving large C_{L}, the V_{O} slew rate is determined by C_{L} and $\mathrm{I}_{\mathrm{O}(\max)}$:

\qquad

$$
\frac{\Delta \mathrm{V}_{\mathrm{O}}}{\Delta t}=\frac{\mathrm{l}_{\mathrm{O}}}{\mathrm{C}_{\mathrm{L}}}=\frac{0.02}{0.5} \mathrm{~V} / \mu \mathrm{s}=0.04 \mathrm{~V} / \mu \mathrm{s} \text { (with } \mathrm{C}_{\mathrm{L}} \text { shown) }
$$

16. Wide BW, Low Noise, Low Drift Amplifier

Power BW: $f_{\max }=\frac{\mathrm{S}_{\mathrm{r}}}{2 \pi \mathrm{Vp}} \cong 240 \mathrm{kHz}$
Parasitic input capacitance ($\mathrm{C} 1 \cong 3.0 \mathrm{pF}$ plus any additional layout capacitance) interacts with feedback elements and creates undesirable high-frequency pole. To compensate add C 2 such that: $\mathrm{R} 2 \mathrm{C} 2 \cong \mathrm{R} 1 \mathrm{C} 1$.

High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers

Quality bipolar fabrication with innovative design concepts are employed for the MC33071/72/74, MC34071/72/74 series of monolithic operational amplifiers. This series of operational amplifiers offer 4.5 MHz of gain bandwidth product, $13 \mathrm{~V} / \mu \mathrm{s}$ slew rate and fast setting time without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage range includes ground potential (VEE). With A Darlington input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response.

The MC33071/72/74, MC34071/72/73 series of devices are available in standard or prime performance (A Suffix) grades and are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in plastic DIP and SOIC surface mount packages.

- Wide Bandwidth: 4.5 MHz
- High Slew Rate: $13 \mathrm{~V} / \mu \mathrm{s}$
- Fast Settling Time: $1.1 \mu \mathrm{~s}$ to 0.1%
- Wide Single Supply Operation: 3.0 V to 44 V
- Wide Input Common Mode Voltage Range: Includes Ground (VEE)
- Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)
- Large Output Voltage Swing: -14.7 V to +14 V (with $\pm 15 \mathrm{~V}$ Supplies)
- Large Capacitance Drive Capability: 0 pF to 10,000 pF
- Low Total Harmonic Distortion: 0.02\%
- Excellent Phase Margin: 60°
- Excellent Gain Margin: 12 dB
- Output Short Circuit Protection
- ESD Diodes/Clamps Provide Input Protection for Dual and Quad

ORDERING INFORMATION

Op Amp Function	Device	Operating Temperature Range	Package
Single	MC34071P, AP MC34071D, AD	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	$\begin{gathered} \text { Plastic DIP } \\ \text { SO-8 } \end{gathered}$
	MC33071P, AP MC33071D, AD	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\begin{gathered} \hline \text { Plastic DIP } \\ \text { SO-8 } \end{gathered}$
Dual	MC34072P, AP MC34072D, AD	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	$\begin{gathered} \text { Plastic DIP } \\ \text { SO-8 } \end{gathered}$
	MC33072P, AP MC33072D, AD	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Plastic DIP } \\ & \text { SO-8 } \end{aligned}$
Quad	MC34074P, AP MC34074D, AD	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Plastic DIP } \\ & \text { SO-14 } \end{aligned}$
	MC33074P, AP MC33074D, AD	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Plastic DIP } \\ & \text { SO-14 } \end{aligned}$

HIGH BANDWIDTH SINGLE SUPPLY OPERATIONAL AMPLIFIERS

PIN CONNECTIONS

(Dual, Top View)

P SUFFIX
PLASTIC PACKAGE CASE 646

D SUFFIX
PLASTIC PACKAGE CASE 751A (SO-14)

PIN CONNECTIONS

MC34071,2,4,A MC33071,2,4,A

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from $\mathrm{V}_{\text {EE }}$ to V_{CC})	$\mathrm{V}_{\text {S }}$	+44	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	Note 1	V
Input Voltage Range	$\mathrm{V}_{\text {IR }}$	Note 1	V
Output Short Circuit Duration (Note 2)	tSC	Indefinite	sec
Operating Junction Temperature	TJ_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Either or both input voltages should not exceed the magnitude of $V_{C C}$ or $V_{E E}$
2. Power dissipation must be considered to ensure maximum junction temperature (T_{J}) is not exceeded (see Figure 1).

Representative Schematic Diagram
(Each Amplifier)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\right.$ connected to ground, unless otherwise noted. See Note 3 for $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$)

Characteristics		A Suffix			Non-Suffix			Unit
	Symbol	Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage }\left(R_{S}=100 \Omega, V_{C M}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{V}_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	V_{10}	-	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	二	$\begin{aligned} & 1.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 7.0 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\begin{aligned} & \mathrm{R}_{S}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	IIB	-	100	$\begin{aligned} & 500 \\ & 700 \end{aligned}$		100	$\begin{aligned} & 500 \\ & 700 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	10	-	6.0	$\begin{gathered} 50 \\ 300 \end{gathered}$	-	6.0	$\begin{gathered} 75 \\ 300 \end{gathered}$	nA
Input Common Mode Voltage Range $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	VICR	$V_{E E}$ to $\left(V_{C C}-1.8\right)$ $V_{E E}$ to ($V_{C C}-2.2$)			$V_{E E}$ to ($\mathrm{V}_{\mathrm{CC}}-1.8$) $V_{E E}$ to ($V_{C C}-2.2$)			V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	Avol	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100	-	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	100	-	V/mV
$\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{V}_{I D}= \pm 1.0 \mathrm{~V}\right) \\ & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k}, T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	V_{OH}	$\begin{gathered} 3.7 \\ 13.6 \\ 13.4 \end{gathered}$	$\begin{gathered} 4.0 \\ 14 \\ \hline \end{gathered}$	-	$\begin{gathered} 3.7 \\ 13.6 \\ 13.4 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 14 \\ & \hline \end{aligned}$	-	V
$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \\ \mathrm{~T}_{\mathrm{A}} & =\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	V OL	-	$\begin{gathered} 0.1 \\ -14.7 \end{gathered}$	$\begin{gathered} \hline 0.3 \\ -14.3 \\ -13.5 \end{gathered}$	-	$\begin{gathered} 0.1 \\ -14.7 \end{gathered}$	$\begin{gathered} 0.3 \\ -14.3 \\ -13.5 \end{gathered}$	V
Output Short Circuit Current ($\mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) Source Sink	ISC	10 20	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	-	10 20	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	-	mA
Common Mode Rejection $R_{S} \leq 10 \mathrm{k} \Omega, V_{C M}=V_{I C R}, T_{A}=25^{\circ} \mathrm{C}$	CMR	80	97	-	70	97	-	dB
$\begin{aligned} & \text { Power Supply Rejection }\left(\mathrm{R}_{\mathrm{S}}=100 \Omega\right) \\ & \mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=+16.5 \mathrm{~V} /-16.5 \mathrm{~V} \text { to }+13.5 \mathrm{~V} /-13.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	PSR	80	97	-	70	97	-	dB
$\begin{aligned} & \text { Power Supply Current (Per Amplifier, No Load) } \\ & V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~V}_{O}=+2.5 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~V}_{O}=0 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	${ }^{\prime} \mathrm{D}$	-	$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 2.8 \end{aligned}$	-	$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 2.8 \end{aligned}$	mA

[^9]$\begin{aligned} T_{\text {high }} & =+85^{\circ} \mathrm{C} \text { for MC33071, 2, 4, /A } \\ & =+70^{\circ} \mathrm{C} \text { for MC34071, 2, 4, /A }\end{aligned}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\right.$ connected to ground. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics		A Suffix			Non-Suffix			Unit
	Symbol	Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Slew Rate }\left(\mathrm{V}_{\text {in }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\right) \\ & \mathrm{A}_{\mathrm{V}}=+1.0 \\ & \mathrm{~A}_{\mathrm{V}}=-1.0 \end{aligned}$	SR	8.0	$\begin{aligned} & 10 \\ & 13 \end{aligned}$		8.0	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	-	V/4s
$\begin{aligned} & \text { Setting Time (10 } \mathrm{V} \text { Step, } \mathrm{AV}=-1.0) \\ & \text { To } 0.1 \%(+1 / 2 \mathrm{LSB} \text { of } 9 \text {-Bits) } \\ & \text { To } 0.01 \%(+1 / 2 \mathrm{LSB} \text { of } 12-\text { Bits }) \end{aligned}$	t_{s}	-	$\begin{aligned} & 1.1 \\ & 2.2 \end{aligned}$		-	$\begin{aligned} & 1.1 \\ & 2.2 \end{aligned}$		$\mu \mathrm{s}$
Gain Bandwidth Product ($\mathrm{f}=100 \mathrm{kHz}$)	GBW	3.5	4.5	-	3.5	4.5	-	MHz
Power Bandwidth $\mathrm{AV}_{\mathrm{V}}=+1.0, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{THD}=5.0 \%$	BW	-	160	-	-	160	-	kHz
$\begin{aligned} & \text { Phase margin } \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega, C_{L}=300 \mathrm{pF} \end{aligned}$	f_{m}	-	$\begin{aligned} & 60 \\ & 40 \end{aligned}$		-	$\begin{aligned} & 60 \\ & 40 \end{aligned}$		Deg
$\begin{aligned} & \text { Gain Margin } \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega, C_{L}=300 \mathrm{pF} \end{aligned}$	A_{m}	-	$\begin{aligned} & 12 \\ & 4.0 \end{aligned}$	-	-	$\begin{aligned} & 12 \\ & 4.0 \end{aligned}$	-	dB
Equivalent Input Noise Voltage $\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$	e_{n}	-	32	-	-	32	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current $\mathrm{f}=1.0 \mathrm{kHz}$	in_{n}	-	0.22	-	-	0.22	-	$\mathrm{pA} \sqrt{ } \sqrt{\mathrm{Hz}}$
Differential Input Resistance $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	R_{in}	-	150	-	-	150	-	M Ω
Differential Input Capacitance $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$\mathrm{C}_{\text {in }}$	-	2.5	-	-	2.5	-	pF
Total Harmonic Distortion $A_{V}=+10, R_{L}=2.0 \mathrm{k} \Omega, 2.0 \mathrm{~V}_{\mathrm{pp}} \leq \mathrm{V}_{\mathrm{O}} \leq 20 \mathrm{~V}_{\mathrm{pp}}, f=10 \mathrm{kHz}$	THD	-	0.02	-	-	0.02	-	\%
Channel Separation ($f=10 \mathrm{kHz}$)	-	-	120	-	-	120	-	dB
Open Loop Output Impedance ($f=1.0 \mathrm{MHz}$)	$\mathrm{Z}_{\mathrm{O}} \mathrm{l}$	-	30	-	-	30	-	W

Figure 1. Power Supply Configurations

Figure 2. Offset Null Circuit

Offset nulling range is approximately $\pm 80 \mathrm{mV}$ with a 10 k potentiometer (MC33071, MC34071 only).

Figure 3. Maximum Power Dissipation versus Temperature for Package Types

Figure 4. Input Offset Voltage versus Temperature for Representative Units

Figure 5. Input Common Mode Voltage Range versus Temperature

Figure 7. Normalized Input Bias Current versus Input Common Mode Voltage

Figure 6. Normalized Input Bias Current versus Temperature

Figure 8. Split Supply Output Voltage Swing versus Supply Voltage

Figure 9. Single Supply Output Saturation versus Load Resistance to VCC

Figure 11. Single Supply Output Saturation versus Load Resistance to Ground

Figure 13. Output Impedance versus Frequency

Figure 10. Split Supply Output Saturation versus Load Current

Figure 12. Output Short Circuit Current versus Temperature

Figure 14. Output Voltage Swing versus Frequency

Figure 15. Total Harmonic Distortion versus Frequency

Figure 17. Open Loop Voltage Gain versus Temperature

Figure 19. Open Loop Voltage Gain and Phase versus Frequency

Figure 16. Total Harmonic Distortion versus Output Voltage Swing

Figure 18. Open Loop Voltage Gain and Phase versus Frequency

Figure 20. Normalized Gain Bandwidth Product versus Temperature

Figure 21. Percent Overshoot versus Load Capacitance

Figure 23. Gain Margin versus Load Capacitance

Figure 25. Gain Margin versus Temperature

Figure 22. Phase Margin versus Load Capacitance

Figure 24. Phase Margin versus Temperature

Figure 26. Phase Margin and Gain Margin versus Differential Source Resistance

Figure 27. Normalized Slew Rate versus Temperature

Figure 29. Small Signal Transient Response

$2.0 \mu \mathrm{~s} / \mathrm{DIV}$

Figure 31. Common Mode Rejection versus Frequency

Figure 28. Output Settling Time

Figure 30. Large Signal Transient Reponse

$1.0 \mu \mathrm{~s} / \mathrm{DIV}$

Figure 32. Power Supply Rejection versus Frequency

Figure 33. Supply Current versus Supply Voltage

Figure 35. Channel Separation versus Frequency

Figure 34. Power Supply Rejection versus Temperature

APPLICATIONS INFORMATION

CIRCUIT DESCRIPTION/PERFORMANCE FEATURES

Although the bandwidth, slew rate, and settling time of the MC34071 amplifier series are similar to op amp products utilizing JFET input devices, these amplifiers offer other additional distinct advantages as a result of the PNP transistor differential input stage and an all NPN transistor output stage.

Since the input common mode voltage range of this input stage includes the V_{EE} potential, single supply operation is feasible to as low as 3.0 V with the common mode input voltage at ground potential.

The input stage also allows differential input voltages up to $\pm 44 \mathrm{~V}$, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range
between $V_{E E}$ and $V_{C C}$ supply voltages as shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the $V_{C C}$ voltage by approximately 3.0 V and decrease below the V_{EE} voltage by 0.3 V without causing product damage, although output phase reversal may occur. It is also possible to source up to approximately 5.0 mA of current from V_{EE} through either inputs clamping diode without damage or latching, although phase reversal may again occur.

If one or both inputs exceed the upper common mode voltage limit, the amplifier output is readily predictable and may be in a low or high state depending on the existing input bias conditions.

Since the input capacitance associated with the small geometry input device is substantially lower (2.5 pF) than the typical JFET input gate capacitance (5.0 pF), better frequency response for a given input source resistance can be achieved using the MC34071 series of amplifiers. This performance feature becomes evident, for example, in fast settling D-to-A current to voltage conversion applications where the feedback resistance can form an input pole with the input capacitance of the op amp. This input pole creates a 2nd order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher values of feedback resistances (lower current DACs). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For $2.0 \mathrm{k} \Omega$ of feedback resistance, the MC34071 series can settle to within 1/2 LSB of 8 bits in 1.0 $\mu \mathrm{s}$, and within $1 / 2 \mathrm{LSB}$ of 12 -bits in $2.2 \mu \mathrm{~s}$ for a 10 V step. In a inverting unity gain fast settling configuration, the symmetrical slew rate is $\pm 13 \mathrm{~V} / \mu \mathrm{s}$. In the classic noninverting unity gain configuration, the output positive slew rate is +10 $\mathrm{V} / \mu \mathrm{s}$, and the corresponding negative slew rate will exceed the positive slew rate as a function of the fall time of the input waveform.

Since the bipolar input device matching characteristics are superior to that of JFETs, a low untrimmed maximum offset voltage of 3.0 mV prime and 5.0 mV downgrade can be economically offered with high frequency performance characteristics. This combination is ideal for low cost precision, high speed quad op amp applications.

The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. $\mathrm{A} 10 \mathrm{k} \Omega$ load resistance can swing within 1.0 V of the positive rail (V_{CC}), and within 0.3 V of the negative rail ($\mathrm{VEE}_{\mathrm{EE}}$), providing a $28.7 \mathrm{~V}_{\mathrm{pp}}$ swing from $\pm 15 \mathrm{~V}$ supplies. This large output swing becomes most noticeable at lower supply voltages.

The positive swing is limited by the saturation voltage of the current source transistor Q $_{7}$, and V VE $_{\text {BE }}$ of the NPN pull up transistor Q_{17}, and the voltage drop associated with the short circuit resistance, R_{7}. The negative swing is limited by the saturation voltage of the pull-down transistor Q_{16}, the voltage drop $l_{L} R_{6}$, and the voltage drop associated with resistance R_{7}, where I_{L} is the sink load current. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts of VEE. For large valued sink currents ($>5.0 \mathrm{~mA}$), diode D3 clamps the voltage across R_{6}, thus limiting the negative swing to the saturation voltage of Q_{16}, plus the forward diode drop of $\mathrm{D} 3\left(\approx \mathrm{~V}_{\mathrm{EE}}+1.0 \mathrm{~V}\right)$. Thus for a given supply voltage, unprecedented peak-to-peak output voltage swing is possible as indicated by the output swing specifications.

If the load resistance is referenced to $V_{C C}$ instead of ground for single supply applications, the maximum possible output swing can be achieved for a given supply voltage. For
light load currents, the load resistance will pull the output to $V_{C C}$ during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull up capability.

Because the PNP output emitter-follower transistor has been eliminated, the MC34071 series offers a 20 mA minimum current sink capability, typically to an output voltage of ($\mathrm{V}_{\mathrm{EE}}+1.8 \mathrm{~V}$). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for fast high current switching applications.

In addition, the all NPN transistor output stage is inherently fast, contributing to the bipolar amplifier's high gain bandwidth product and fast settling capability. The associated high frequency low output impedance (30Ω typ @ 1.0 MHz) allows capacitive drive capability from 0 pF to $10,000 \mathrm{pF}$ without oscillation in the unity closed loop gain configuration. The 60° phase margin and 12 dB gain margin as well as the general gain and phase characteristics are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The high frequency characteristics of the MC34071 series also allow excellent high frequency active filter capability, especially for low voltage single supply applications.

Although the single supply specifications is defined at 5.0 V , these amplifiers are functional to 3.0 V @ $25^{\circ} \mathrm{C}$ although slight changes in parametrics such as bandwidth, slew rate, and DC gain may occur.

If power to this integrated circuit is applied in reverse polarity or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction.

Special static precautions are not necessary for these bipolar amplifiers since there are no MOS transistors on the die.

As with most high frequency amplifiers, proper lead dress, component placement, and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input-output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature.

The output of any one amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for $\pm 15 \mathrm{~V}$ supplies, any one output can be shorted continuously to ground without exceeding the maximum temperature rating.

(Typical Single Supply Applications $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Figure 37. AC Coupled Noninverting Amplifer

Figure 39. DC Coupled Inverting Amplifer Maximum Output Swing

Figure 41. Active High-Q Notch Filter

Figure 38. AC Coupled Inverting Amplifier

Figure 40. Unity Gain Buffer TTL Driver

Figure 42. Active Bandpass Filter

Given $f_{0}=$ Center Frequency
$\mathrm{A}_{\mathrm{O}}=$ Gain at Center Frequency
Choose Value f_{0}, Q, A_{0}, C
Then:

$$
R 3=\frac{Q}{\pi f_{0} C} \quad R 1=\frac{R 3}{2 H_{0}} \quad R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}
$$

For less than 10% error from operational amplifier $\frac{Q_{0} f_{0}}{G B W}<0.1$
where f_{0} and GBW are expressed in Hz .
GBW $=4.5 \mathrm{MHz}$ Typ.

Figure 43. Low Voltage Fast D/A Converter

Figure 45. LED Driver

Figure 47. AC/DC Ground Current Monitor

Figure 44. High Speed Low Voltage Comparator

Figure 46. Transistor Driver

(B) NPN
(A) PNP

Figure 48. Photovoltaic Cell Amplifier

Figure 49. Low Input Voltage Comparator with Hysteresis

Figure 51. High Input Impedance Differential Amplifier

+V2
$\frac{\mathrm{R} 2}{\mathrm{R} 1}=\frac{\mathrm{R} 4}{\mathrm{R} 3}$ (Critical to CMRR)
$\mathrm{V}_{\mathrm{O}}=1\left(+\frac{\mathrm{R} 4}{\mathrm{R} 3}\right)\left(\mathrm{V} 2-\mathrm{V} 1 \frac{\mathrm{R} 4}{\mathrm{R} 3}\right)$
For $(\mathrm{V} 2 \geq \mathrm{V} 1), \mathrm{V}>0$

Figure 53. Low Voltage Peak Detector

Figure 50. High Compliance Voltage to Sink Current Converter

Figure 52. Bridge Current Amplifier

Figure 54. High Frequency Pulse Width Modulation

Figure 55. Second Order Low-Pass Active Filter

$R 2=\frac{\sqrt{2}}{4 \pi f_{0} C 2}$
$R 3=\frac{R_{2}}{H_{0}+1}$
$R 1=\frac{\mathrm{R}_{2}}{\mathrm{H}_{0}}$

Figure 57. Fast Settling Inverter

Figure 59. Basic Noninverting Amplifier

Figure 56. Second Order High-Pass Active Filter

Figure 58. Basic Inverting Amplifier

Figure 60. Unity Gain Buffer ($\mathrm{AV}=\boldsymbol{+ 1 . 0}$)

BW
$\mathrm{V}=200 \mathrm{kHz}$
$\mathrm{V}=20 \mathrm{Vpp}$
$\mathrm{SR}=10 \mathrm{~V} / \mu \mathrm{s}$

MC34071,2,4,A MC33071,2,4,A

Figure 61. High Impedance Differential Amplifier

Figure 62. Dual Voltage Doubler

2 High Slew Rate, Wide Bandwidth, JFET Input Operational Amplifiers

These devices are a new generation of high speed JFET input monolithic operational amplifiers. Innovative design concepts along with JFET technology provide wide gain bandwidth product and high slew rate. Well-matched JFET input devices and advanced trim techniques ensure low input offset errors and bias currents. The all NPN output stage features large output voltage swing, no deadband crossover distortion, high capacitive drive capability, excellent phase and gain margins, low open loop output impedance, and symmetrical source/sink AC frequency response.

This series of devices is available in fully compensated or decompensated (AVCL ≤ 2) and is specified over a commercial temperature range. They are pin compatible with existing Industry standard operational amplifiers, and allow the designer to easily upgrade the performance of existing designs.

- Wide Gain Bandwidth: 8.0 MHz for Fully Compensated Devices 16 MHz for Decompensated Devices
- High Slew Rate: $25 \mathrm{~V} / \mu \mathrm{s}$ for Fully Compensated Devices
$50 \mathrm{~V} / \mu \mathrm{s}$ for Decompensated Devices
- High Input Impedance: $10^{12} \Omega$
- Input Offset Voltage: 0.5 mV Maximum (Single Amplifier)
- Large Output Voltage Swing: -14.7 V to +14 V for

$$
\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V}
$$

- Low Open Loop Output Impedance: 30Ω @ 1.0 MHz
- Low THD Distortion: 0.01\%
- Excellent Phase/Gain Margins: $55^{\circ} / 7.6 \mathrm{~dB}$ for Fully Compensated Devices

ORDERING INFORMATION

Op Amp Function	Fully Compensated	AvCl ≥ 2 Compensated	Operating Temperature Range	Package
Single	MC34081BD	MC34080BD	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8
	MC34081BP	MC34080BP		Plastic DIP
Dual	MC34082P	MC34083BP		Plastic DIP
Quad	MC34084DW	MC34085BDW	$\mathrm{T}^{\text {A }}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-16L
	MC34084P	MC34085BP		Plastic DIP

PIN CONNECTIONS

HIGH PERFORMANCE JFET INPUT OPERATIONAL AMPLIFIERS

PIN CONNECTIONS

(Dual, Top View)

DW SUFFIX
PLASTIC PACKAGE CASE 751G (SO-16L)

MC34080 thru MC34085

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from V_{CC} to V_{EE})	V_{S}	+44	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	V
Input Voltage Range	$\mathrm{V}_{\text {IR }}$	(Note 1)	V
Output Short Circuit Duration (Note 2)	t_{SC}	Indefinite	sec
Operating Ambient Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-65 to +165	${ }^{\circ} \mathrm{C}$

NOTES: 1. Either or both input voltages must not exceed the magnitude of $V_{C C}$ or $V_{E E}$.
2. Power dissipation must be considered to ensure maximum junction temperature
(T_{J}) is not exceeded.

Representative Schematic Diagram
(Each Amplifier)

*Pins 1 \& $5(\mathrm{MC} 34080,081)$ should not be directly grounded or connected to V_{CC}.

DC ELECTRICAL CHARACTERISTICS (VCC $=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ [Note 3], unless otherwise noted.)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics \& Symbol \& Min \& Typ \& Max \& Unit

\hline ```
Input Offset Voltage (Note 4)
Single
TA=+25 ' C
TA}=\mp@subsup{0}{}{\circ}\mathrm{ to +70}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ (MC34080B, MC34081B)
Dual
TA=+25
T
Quad
TA=+25
TA}=\mp@subsup{0}{}{\circ}\mathrm{ to +70}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ (MC34084, MC34085)

``` & VIO & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 1.0 \\
& - \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 4.0 \\
& 3.0 \\
& 5.0 \\
& 12 \\
& 14
\end{aligned}
\] & mV \\
\hline Average Temperature Coefficient of Offset Voltage & \(\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}\) & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right. \text { Note 5) } \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & IB & - & \(\stackrel{0.06}{-}\) & \[
\begin{aligned}
& 0.2 \\
& 4.0
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \text { Note } 5\right) \\
& \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & 10 & & 0.02 & \[
\begin{aligned}
& 0.1 \\
& 2.0
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
& \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & AVOL & \[
\begin{aligned}
& 25 \\
& 15
\end{aligned}
\] & & & V/mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing } \\
& R_{L}=2.0 \mathrm{k}, T_{A}=+25^{\circ} \mathrm{C} \\
& R_{L}=10 \mathrm{k}, T_{A}=+25^{\circ} \mathrm{C} \\
& R_{L}=10 \mathrm{k}, T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \\
& R_{L}=2.0 \mathrm{k}, T_{A}=+25^{\circ} \mathrm{C} \\
& R_{L}=10 \mathrm{k}, T_{A}=+25^{\circ} \mathrm{C} \\
& R_{L}=10 \mathrm{k}, T_{A}=T_{\text {low to }} T_{\text {high }}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\)

\(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{aligned}
& 13.2 \\
& 13.4 \\
& 13.4
\end{aligned}
\] & \[
\begin{gathered}
13.7 \\
13.9 \\
- \\
\hline-14.1 \\
-14.7
\end{gathered}
\] & \[
\begin{array}{|c}
- \\
- \\
\hline-13.5 \\
-14.1 \\
-14.0
\end{array}
\] & v \\
\hline Output Short Circuit Current ( \(T_{A}=+25^{\circ} \mathrm{C}\) ) Input Overdrive = 1.0 V , Output to Ground Source Sink & Isc & 20 & \[
\begin{aligned}
& 31 \\
& 28
\end{aligned}
\] & & mA \\
\hline Input Common Mode Voltage Range
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] & VICR & & \[
\begin{aligned}
& E+4.0 \\
& C C-2 .
\end{aligned}
\] & & V \\
\hline Common Mode Rejection Ratio ( \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) & CMRR & 70 & 90 & - & dB \\
\hline Power Supply Rejection Ratio ( \(\mathrm{R}_{S}=100 \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) ) & PSRR & 70 & 86 & - & dB \\
\hline \begin{tabular}{l}
Power Supply Current Single
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) \\
Dual
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) Quad
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\]
\end{tabular} & ID & - & \[
\begin{aligned}
& 2.5 \\
& - \\
& 4.9 \\
& - \\
& 9.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.4 \\
& 4.2 \\
& \\
& 6.0 \\
& 7.5 \\
& \\
& 11 \\
& 13
\end{aligned}
\] & mA \\
\hline
\end{tabular}

NOTES: (continued)

4. See application information for typical changes in input offset voltage due to solderability and temperature cycling. 5. Limits at \(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}\) are guaranteed by high temperature ( \(\mathrm{T}_{\text {high }}\) ) testing.

\section*{MC34080 thru MC34085}

AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline  & SR & \(\frac{20}{35}\) & 25
30
50
50 & 二 & V/us \\
\hline \[
\begin{aligned}
& \text { Settling Time ( } 10 \mathrm{~V} \text { Step, } \mathrm{AV}=-1.0) \\
& \text { To } 0.10 \%( \pm 1 / 2 \text { LSB of } 9 \text {-Bits }) \\
& \text { To } 0.01 \%( \pm 1 / 2 \text { LSB of } 12 \text {-Bits })
\end{aligned}
\] & \(t_{s}\) & & \[
\begin{gathered}
0.72 \\
1.6
\end{gathered}
\] & 二 & \(\mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
Gain Bandwidth Product ( \(\mathrm{f}=200 \mathrm{kHz}\) ) \\
Compensated \\
Decompensated
\end{tabular} & GBW & 6.0
12 & 8.0
16 & & MHz \\
\hline \[
\begin{aligned}
& \text { Power Bandwidth }\left(R_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{THD}=5.0 \%\right) \\
& \text { Compensated } \mathrm{AV}_{\mathrm{V}}=+1.0 \\
& \text { Decompensated } \mathrm{AV}_{\mathrm{V}}=-1.0
\end{aligned}
\] & BWp & & \[
\begin{aligned}
& 400 \\
& 800
\end{aligned}
\] & & kHz \\
\hline \[
\begin{aligned}
& \text { Phase Margin (Compensated) } \\
& R_{\mathrm{L}}=2.0 \mathrm{k} \\
& R_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\end{aligned}
\] & \(\phi_{m}\) & & \[
\begin{aligned}
& 55 \\
& 39
\end{aligned}
\] & - & Degrees \\
\hline \[
\begin{aligned}
& \text { Gain Margin (Compensated) } \\
& R_{L}=2.0 \mathrm{k} \\
& R_{L}=2.0 \mathrm{k}, C_{L}=100 \mathrm{pF}
\end{aligned}
\] & \(A_{m}\) & - & \[
\begin{aligned}
& 7.6 \\
& 4.5
\end{aligned}
\] & & dB \\
\hline Equivalent Input Noise Voltage
\[
\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}
\] & \(e_{n}\) & - & 30 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Equivalent Input Noise Current ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & In & - & 0.01 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Capacitance & \(\mathrm{C}_{\mathrm{i}}\) & - & 5.0 & - & pF \\
\hline Input Resistance & ri & - & \(10^{12}\) & - & \(\Omega\) \\
\hline Total Harmonic Distortion
\[
A_{V}=+10, R_{L}=2.0 \mathrm{k}, 2.0 \leq \mathrm{V}_{\mathrm{O}} \leq 20 \mathrm{~V}_{\mathrm{pp}}, f=10 \mathrm{kHz}
\] & THD & - & 0.05 & - & \% \\
\hline Channel Separation ( \(f=10 \mathrm{kHz}\) ) & - & - & 120 & - & dB \\
\hline Open Loop Output Impedance ( \(f=1.0 \mathrm{MHz}\) ) & \(\mathrm{z}_{0}\) & - & 35 & - & \(\Omega\) \\
\hline
\end{tabular}

Figure 1. Input Common Mode Voltage Range versus Temperature


Figure 2. Input Bias Current versus Temperature


Figure 3. Input Bias Current versus Input Common Mode Voltage


Figure 5. Output Saturation versus Load Current


Figure 7. Output Saturation versus Load Resistance to VCC


Figure 4. Output Voltage Swing versus Supply Voltage


Figure 6. Output Saturation vesus Load Resistance to Ground


Figure 8. Output Short Circuit Current versus Temperature


Figure 9. Output Impedance versus Frequency


Figure 11. Output Voltage Swing versus Frequency


Figure 10. Output Impedance versus Frequency


Figure 12. Output Distortion versus Frequency


Figure 13. Open Loop Voltage Gain versus Temperature


Figure 14. Open Loop Voltage Gain and Phase versus Frequency


Figure 16. Open Loop Voltage Gain and Phase versus Frequency


Figure 18. Percent Overshoot versus Load Capacitance


CL, LOAD CAPACITANCE (pF)

Figure 15. Open Loop Voltage Gain and Phase versus Frequency


Figure 17. Normalized Gain Bandwidth Product versus Temperature


Figure 19. Phase Margin versus Load Capacitance


\section*{MC34080 thru MC34085}

Figure 20. Gain Margin versus Load Capacitance


Figure 22. Gain Margin versus Temperature


Figure 21. Phase Margin versus Temperature


Figure 23. Normalized Slew Rate versus Temperature


> MC34084 Transient Response
> \(\mathrm{AV}=+1.0, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)

Figure 24. Small Signal

\(0.2 \mu \mathrm{~s} /\) Div

Figure 25. Large Signal

\(0.5 \mu \mathrm{~s} /\) Div

MC34085 Transient Response
\(\mathrm{AV}=+2.0, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)

Figure 26. Small Signal

\(0.2 \mu \mathrm{~s} / \mathrm{Div}\)

Figure 27. Large Signal

\(0.5 \mu \mathrm{~s} / \mathrm{Div}\)

Figure 28. Common Mode Rejection Ratio versus Frequency


Figure 30. Power Supply Rejection Ratio


Figure 32. Channel Separation versus Frequency


Figure 29. Power Supply Rejection Ratio versus Frequency


Figure 31. Normalized Supply Current versus Supply Voltage


Figure 33. Spectral Noise Density


\section*{MC34080 thru MC34085}

\section*{APPLICATIONS INFORMATION}

The bandwidth and slew rate of the MC34080 series is nearly double that of currently available general purpose JFET op-amps. This improvement in AC performance is due to the P -channel JFET differential input stage driving a compensated miller integration amplifier in conjunction with an all NPN output stage.

The all NPN output stage offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. With a 10 k load resistance, the op amp can typically swing within 1.0 V of the positive rail ( \(\mathrm{V}_{\mathrm{CC}}\) ), and within 0.3 V of the negative rail ( \(V_{E E}\) ), providing a \(28.7 \mathrm{p}-\mathrm{p}\) swing from \(\pm 15 \mathrm{~V}\) supplies. This large output swing becomes most noticeable at lower supply voltages. If the load resistance is referenced to \(\mathrm{V}_{\mathrm{C}}\) instead of ground, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to \(\mathrm{V}_{\mathrm{CC}}\) during the positive swing and the NPN output transistor will pull the output very near \(V_{E E}\) during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull-up capability.

The all NPN transistor output stage is also inherently fast, contributing to the operation amplifier's high gain-bandwidth product and fast settling time. The associated high frequency output impedance is \(50 \Omega\) (typical) at 8.0 MHz . This allows driving capacitive loads from 0 pF to 300 pF without oscillations over the military temperature range, and over the full range of output swing. The \(55^{\circ} \mathrm{C}\) phase margin and 7.6 dB gain margin as well as the general gain and phase characteristics are virtually independent of the sink/source output swing conditions. The high frequency characteristics of the MC34080 series is especially useful for active filter applications.

The common mode input range is from 2.0 V below the positive rail ( \(\mathrm{V}_{\mathrm{CC}}\) ) to 4.0 V above the negative rail ( \(\mathrm{V}_{\mathrm{EE}}\) ). The amplifier remains active if the inputs are biased at the positive rail. This may be useful for some applications in that single supply operation is possible with a single negative supply. However, a degradation of offset voltage and voltage gain may result.

Phase reversal does not occur if either the inverting or noninverting input (or both) exceeds the positive common mode limit. If either input (or both) exceeds the negative common mode limit, the output will be in the high state. The
input stage also allows a differential up to \(\pm 44 \mathrm{~V}\), provided the maximum input voltage range is not exceeded. The supply voltage operating range is from \(\pm 5.0 \mathrm{~V}\) to \(\pm 22 \mathrm{~V}\).

For optimum frequency performance and stability, careful component placement and printed circuit board layout should be exercised. For example, long unshielded input or output leads may result in unwanted input-output coupling. In order to reduce the input capacitance, resistors connected to the input pins should be physically close to these pins. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pickup" at this node.

Supply decoupling with adequate capacitance close to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit large impedance changes over temperature.

Primarily due to the JFET inputs of the op amp, the input offset voltage may change due to temperature cycling and board soldering. After 20 temperature cycles ( \(-55^{\circ}\) to \(165^{\circ} \mathrm{C}\) ), the typical standard deviation for input offset voltage is \(559 \mu \mathrm{~V}\) in the plastic packages. With respect to board soldering ( \(260^{\circ} \mathrm{C}, 10\) seconds), the typical standard deviation for input offset voltage is \(525 \mu \mathrm{~V}\) in the plastic package. Socketed devices should be used over a minimal temperature range for optimum input offset voltage performance.

Figure 34. Offset Nulling Circuit


\section*{Low Power, High Slew Rate, Wide Bandwidth, JFET Input Operational Amplifiers}

Quality bipolar fabrication with innovative design concepts are employed for the MC33181/2/4, MC34181/2/4 series of monolithic operational amplifiers. This JFET input series of operational amplifiers operates at \(210 \mu \mathrm{~A}\) per amplifier and offers 4.0 MHz of gain bandwidth product and \(10 \mathrm{~V} / \mu \mathrm{s}\) slew rate. Precision matching and an innovative trim technique of the single and dual versions provide low input offset voltages. With a JFET input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response.

The MC33181/2/4, MC34181/2/4 series of devices are specified over the commercial or industrial/vehicular temperature ranges. The complete series of single, dual and quad operational amplifiers are available in the plastic DIP as well as the SOIC surface mount packages.
- Low Supply Current: \(210 \mu \mathrm{~A}\) (Per Amplifier)
- Wide Supply Operating Range: \(\pm 1.5 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\)
- Wide Bandwidth: 4.0 MHz
- High Slew Rate: \(10 \mathrm{~V} / \mu \mathrm{s}\)
- Low Input Offset Voltage: 2.0 mV
- Large Output Voltage Swing: -14 V to +14 V (with \(\pm 15 \mathrm{~V}\) Supplies)
- Large Capacitance Drive Capability: 0 pF to 500 pF
- Low Total Harmonic Distortion: 0.04\%
- Excellent Phase Margin: \(67^{\circ}\)
- Excellent Gain Margin: 6.7 dB
- Output Short Circuit Protection
- Offered in New TSSOP Package Including the Standard SOIC and DIP Packages

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Op Amp Function & Device & Operating Temperature Range & Package \\
\hline \multirow[t]{2}{*}{Single} & \begin{tabular}{l}
MC34181P \\
MC34181D
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { Plastic DIP } \\
& \text { SO-8 }
\end{aligned}
\] \\
\hline & MC33181P MC33181D & \(\mathrm{T}^{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \hline \text { Plastic DIP } \\
& \text { SO-8 }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Dual} & \begin{tabular}{l}
MC34182P \\
MC34182D
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { Plastic DIP } \\
& \text { SO-8 }
\end{aligned}
\] \\
\hline & MC33182P MC33182D & \(\mathrm{T}^{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { Plastic DIP } \\
& \text { SO-8 }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Quad} & \[
\begin{gathered}
\text { MC34184P } \\
\text { MC34184D } \\
\text { MC34184DTB }
\end{gathered}
\] & \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { Plastic DIP } \\
& \text { SO-14 } \\
& \text { TSSOP-14 }
\end{aligned}
\] \\
\hline & \[
\begin{gathered}
\text { MC33184P } \\
\text { MC33184D } \\
\text { MC33184DTB }
\end{gathered}
\] & \(\mathrm{T}^{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { Plastic DIP } \\
& \text { SO-14 } \\
& \text { TSSOP-14 }
\end{aligned}
\] \\
\hline
\end{tabular}


MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage (from \(\mathrm{V}_{\text {CC }}\) to \(\mathrm{V}_{\mathrm{EE}}\) ) & \(\mathrm{V}_{\mathrm{S}}\) & +36 & V \\
\hline Input Differential Voltage Range & \(\mathrm{V}_{\text {IDR }}\) & Note 1 & V \\
\hline Input Voltage Range & \(\mathrm{V}_{\text {IR }}\) & Note 1 & V \\
\hline Output Short Circuit Duration (Note 2) & t SC & Indefinite & sec \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {Stg }}\) & -60 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Either or both input voltages should not exceed the magnitude of \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{EE}}\).
2. Power dissipation must be considered to ensure maximum junction temperature ( \(T_{J}\) ) is not exceeded (see Figure 1).

Representative Schematic Diagram
(Each Amplifier)


MC3X181 Input Offset
Voltage Null Clrcuit

DC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \text { Single } \\
& T_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}(\mathrm{MC} 34181) \\
& \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C}(\mathrm{MC} 33181) \\
& \text { Dual } \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}(\mathrm{MC} 34182) \\
& \mathrm{T}_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C}(\mathrm{MC} 33182) \\
& \text { Quad } \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}(\mathrm{MC} 34184) \\
& \mathrm{T}_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C}(\mathrm{MC} 33184)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{IO}}\) & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& - \\
& - \\
& 1.0 \\
& - \\
& 4.0 \\
& -
\end{aligned}
\] & \[
\begin{gathered}
2.0 \\
3.0 \\
3.5 \\
\\
3.0 \\
4.0 \\
4.5 \\
\\
10 \\
11 \\
11.5
\end{gathered}
\] & mV \\
\hline Average Temperature Coefficient of \(\mathrm{V}_{\mathrm{IO}}\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)\) & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{T}\) & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V} \mathrm{CM}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & Io & - & \[
0.001
\] & \[
\begin{gathered}
0.05 \\
1.0 \\
2.0
\end{gathered}
\] & nA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & I'B & - & \[
0.003
\] & \[
\begin{aligned}
& 0.1 \\
& 2.0 \\
& 4.0
\end{aligned}
\] & nA \\
\hline Input Common Mode Voltage Range & VICR & \multicolumn{3}{|l|}{\(\left(\mathrm{V}_{\mathrm{EE}}+4.0 \mathrm{~V}\right)\) to \(\left(\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\right)\)} & V \\
\hline \[
\begin{aligned}
& \text { Large Signal Voltage Gain }\left(R_{L}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & Avol & \[
\begin{aligned}
& 25 \\
& 15
\end{aligned}
\] & 60 & & V/mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing }\left(\mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{O}^{+}} \\
& \mathrm{v}_{\mathrm{O}^{-}}
\end{aligned}
\] & \[
+13.5
\] & \[
\begin{array}{r}
+14 \\
-14
\end{array}
\] & \[
-\overline{-13.5}
\] & V \\
\hline Common Mode Rejection ( \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{ICR}}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) ) & CMR & 70 & 86 & - & dB \\
\hline Power Supply Rejection ( \(\mathrm{RS}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\) ) & PSR & 70 & 84 & - & dB \\
\hline Output Short Circuit Current (VID \(=1.0 \mathrm{~V}\), Output to Ground) Source Sink & ISC & \[
\begin{aligned}
& 3.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 11
\end{aligned}
\] & - & mA \\
\hline ```
Power Supply Current (No Load, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) )
    Single
        \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
        \(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
    Dual
            \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
            \(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\)
    Quad
            \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
            \(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\)
``` & ID &  & \[
\begin{gathered}
210 \\
- \\
420 \\
- \\
840
\end{gathered}
\] & \[
\begin{aligned}
& 250 \\
& 250 \\
& \\
& 500 \\
& 500 \\
& \\
& 1000 \\
& 1000
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

AC ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Slew Rate }\left(\mathrm{V}_{\text {in }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right) \\
& \mathrm{A}_{\mathrm{V}}=+1.0 \\
& \mathrm{AV}_{\mathrm{V}}=-1.0
\end{aligned}
\] & SR & & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & - & V/us \\
\hline \begin{tabular}{l}
Settling Time (\(A_{V}=-1.0, R_{L}=10 \mathrm{k} \Omega, V_{O}=0 \mathrm{~V}\) to +10 V Step \()\) \\
To Within \(0.10 \%\) \\
To Within 0.01\%
\end{tabular} & \(\mathrm{t}_{\mathrm{s}}\) & - & \[
\begin{aligned}
& 1.1 \\
& 1.5
\end{aligned}
\] & - & \(\mu \mathrm{s}\) \\
\hline Gain Bandwidth Product (\(\mathrm{f}=100 \mathrm{kHz}\)) & GBW & 3.0 & 4.0 & - & MHz \\
\hline Power Bandwidth (\(\mathrm{AV}=+1.0, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=20 \mathrm{~V} \mathrm{pp}\), THD \(=5.0 \%\)) & \(\mathrm{BW}_{\mathrm{p}}\) & - & 120 & - & kHz \\
\hline \[
\begin{aligned}
& \text { Phase Margin }\left(-10 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<+10 \mathrm{~V}\right) \\
& R_{\mathrm{L}}=10 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, C_{\mathrm{L}}=100 \mathrm{pF}
\end{aligned}
\] & \(\mathrm{f}_{\mathrm{m}}\) & - & \[
\begin{aligned}
& 67 \\
& 34
\end{aligned}
\] & & Degrees \\
\hline \[
\begin{aligned}
& \text { Gain Margin }\left(-10 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<+10 \mathrm{~V}\right) \\
& R_{\mathrm{L}}=10 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\end{aligned}
\] & \(A_{m}\) & - & \[
\begin{aligned}
& 6.7 \\
& 3.4
\end{aligned}
\] & & dB \\
\hline Equivalent Input Noise Voltage
\[
\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}
\] & \(e_{n}\) & - & 38 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Equivalent Input Noise Current
\[
\mathrm{f}=1.0 \mathrm{kHz}
\] & \(i_{n}\) & - & 0.01 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Differential Input Capacitance & \(\mathrm{C}_{i}\) & - & 3.0 & - & pF \\
\hline Differential Input Resistance & \(\mathrm{R}_{\mathrm{i}}\) & - & \(10^{12}\) & - & W \\
\hline Total Harmonic Distortion
\[
A_{V}=10, R_{L}=10 \mathrm{k} \Omega, 2.0 \mathrm{~V}_{\mathrm{pp}}<\mathrm{V}_{\mathrm{O}}<20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=1.0 \mathrm{kHz}
\] & THD & - & 0.04 & - & \% \\
\hline Channel Separation (\(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega,-10 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<+10 \mathrm{~V}, 0 \mathrm{~Hz}<\mathrm{f}<10 \mathrm{kHz}\)) & - & - & 120 & - & dB \\
\hline Open Loop Output Impedance
\[
(\mathrm{f}=1.0 \mathrm{MHz})
\] & \(\left|Z_{0}\right|\) & - & 200 & - & \(\Omega\) \\
\hline
\end{tabular}

Figure 1. Maximum Power Dissipation versus Temperature for Package Variations

Figure 2. Input Common Mode Voltage Range versus Temperature

Figure 3. Input Bias Current versus Temperature

Figure 5. Output Voltage Swing versus Supply Voltage

Figure 7. Output Saturation Voltage versus Load Resistance to Ground

RL, LOAD RESISTANCE TO GROUND (\(\Omega\))

Figure 4. Input Bias Current versus Input Common Mode Voltage

versus Load Current

Figure 8. Output Saturation Voltage versus Load Resistance to VCC

RL, LOAD RESISTANCE \((\Omega)\)

Figure 9. Output Short Circuit Current versus Temperature

Figure 11. Output Voltage Swing versus Frequency

Figure 13. Open Loop Voltage Gain versus Temperature

Figure 10. Output Impedance versus Frequency

Figure 12. Output Distortion versus Frequency

Figure 14. Open Loop Voltage Gain and Phase versus Frequency

Figure 15. Normalized Gain Bandwidth Product versus Temperature

Figure 17. Phase Margin versus Load Capacitance

Figure 19. Phase Margin versus Temperature

Figure 16. Output Voltage Overshoot versus Load Capacitance

Figure 18. Gain Margin versus Load Capacitance

\(C_{L}\), LOAD CAPACITANCE (pF)

Figure 20. Gain Margin versus Temperature

Figure 21. Normalized Slew Rate versus Temperature

Figure 23. Input Noise Voltage versus Frequency

Figure 25. Power Supply Rejection versus Frequency

Figure 22. Common Mode Rejection versus Frequency

Figure 24. Power Supply Rejection versus Temperature

Figure 26. Normalized Supply Current versus Supply Voltage

Figure 27. Channel Separation versus Frequency

Figure 28. Transient Response

Figure 29. Small Signal Transient Reponse

\(\mathrm{t}, \mathrm{TIME}(0.5 \mu \mathrm{~s} / \mathrm{DIV})\)

\section*{Advance Information Dual Power Operational Amplifier}

The TCA0372 is a monolithic circuit intended for use as a power operational amplifier in a wide range of applications, including servo amplifiers and power supplies. No deadband crossover distortion provides better performance for driving coils.
- Output Current to 1.0 A
- Slew Rate of \(1.3 \mathrm{~V} / \mu \mathrm{s}\)
- Wide Bandwidth of 1.1 MHz
- Internal Thermal Shutdown
- Single or Split Supply Operation
- Excellent Gain and Phase Margins
- Common Mode Input Includes Ground
- Zero Deadband Crossover Distortion

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline TCA0372DW & & SOP \((12+2+2) \mathrm{L}\) \\
\cline { 1 - 1 } TCA0372DP1 & \multirow{3}{*}{\(\mathrm{T}_{\mathrm{J}}=-40^{\circ}\) to \(+150^{\circ} \mathrm{C}\)} & Plastic DIP \\
\cline { 1 - 1 } \cline { 3 - 3 } TCA0372DP2 & & Plastic DIP \\
\hline
\end{tabular}

\section*{TCA0372}

TCA0372

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage (from \(\mathrm{V}_{\mathrm{CC}}\) to \(\mathrm{V}_{\mathrm{EE}}\)) & \(\mathrm{V}_{\mathrm{S}}\) & 40 & V \\
\hline Input Differential Voltage Range & \(\mathrm{V}_{\text {IDR }}\) & \((\) Note 1) & V \\
\hline Input Voltage Range & \(\mathrm{V}_{\text {IR }}\) & \((\) Note 1) & V \\
\hline Junction Temperature (Note 2) & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline DC Output Current & \(\mathrm{I}_{\mathrm{O}}\) & 1.0 & A \\
\hline Peak Output Current (Nonrepetitive) & \(\mathrm{I}(\max)\) & 1.5 & A \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\) connected to ground, \(\mathrm{T}_{\mathrm{J}}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Input Offset Voltage (\(\mathrm{V}_{\mathrm{CM}}=0\))
\[
\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] \\
\(\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
\end{tabular} & \(\mathrm{V}_{10}\) & & \[
1.0
\] & \[
\begin{aligned}
& 15 \\
& 20
\end{aligned}
\] & mV \\
\hline Average Temperature Coefficient of Offset Voltage & \(\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{T}\) & - & 20 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current (\(\mathrm{V}_{\mathrm{CM}}=0\)) & IB & - & 100 & 500 & nA \\
\hline Input Offset Current (\(\mathrm{V}_{\mathrm{CM}}=0\)) & 1 O & - & 10 & 50 & nA \\
\hline Large Signal Voltage Gain
\[
V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}
\] & AVOL & 30 & 100 & - & V/mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing }\left(\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\right) \\
& \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{J}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\
& \mathrm{T}_{J}+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{J}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
\[
\mathrm{v}_{\mathrm{OH}}
\] \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & \[
\begin{gathered}
14.0 \\
13.9 \\
-
\end{gathered}
\] & \[
\begin{gathered}
14.2 \\
-14.2
\end{gathered}
\] & \[
\begin{gathered}
- \\
-14.0 \\
-13.9 \\
\hline
\end{gathered}
\] & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing }\left(\mathrm{I}_{\mathrm{L}}=1.0 \mathrm{~A}\right) \\
& \mathrm{V}_{\mathrm{CC}}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+24 \mathrm{~V}, \mathrm{VEE}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\
& \mathrm{V}_{\mathrm{CC}}=+24 \mathrm{~V}, \mathrm{VEE}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{TJ}_{\mathrm{J}}+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+24 \mathrm{~V}, \mathrm{VEE}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=\mathrm{l}_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{VOH} \\
& \mathrm{v}_{\mathrm{OL}}
\end{aligned}
\] & \[
\begin{aligned}
& 22.5 \\
& 22.5
\end{aligned}
\] & \[
\frac{22.7}{1.3}
\] & \[
\begin{aligned}
& - \\
& - \\
& 1.5 \\
& 1.5 \\
& \hline
\end{aligned}
\] & V \\
\hline Input Common Mode Voltage Range
\[
\begin{aligned}
& \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & VICR & \multicolumn{3}{|r|}{\begin{tabular}{l}
\(V_{E E}\) to (\(V_{C C}-1.0\)) \\
\(\mathrm{V}_{\mathrm{EE}}\) to (\(\mathrm{V}_{\mathrm{CC}}{ }^{-1.3}\))
\end{tabular}} & V \\
\hline Common Mode Rejection Ratio (\(\mathrm{RS}_{\mathrm{S}}=10 \mathrm{k}\)) & CMRR & 70 & 90 & - & dB \\
\hline Power Supply Rejection Ratio (\(\mathrm{RS}_{\mathrm{S}}=100 \Omega\)) & PSRR & 70 & 90 & - & dB \\
\hline Power Supply Current
\[
\begin{aligned}
& T_{J}=+25^{\circ} \mathrm{C} \\
& T_{J}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & ID & - & 5.0 & \[
\begin{aligned}
& 10 \\
& 14
\end{aligned}
\] & mA \\
\hline
\end{tabular}

NOTES: 1. Either or both input voltages should not exceed the magnitude of \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{EE}}\).
2. Power dissipation must be considered to ensure maximum junction temperature (\(T_{J}\)) is not exceeded.

AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.\) connected to ground, \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Slew Rate }\left(\mathrm{V}_{\text {in }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right) \\
& \mathrm{AV}_{\mathrm{V}}=-1.0, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & SR & 1.0 & 1.4 & - & V/us \\
\hline \[
\begin{aligned}
& \text { Gain Bandwidth Product (} \mathrm{f}=100 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \text {) } \\
& \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & GBW & \[
\begin{aligned}
& 0.9 \\
& 0.7
\end{aligned}
\] & 1.4 & & MHz \\
\hline \[
\begin{aligned}
& \text { Phase Margin } T_{J}=T_{\text {low }} \text { to } T_{\text {high }} \\
& R_{L}=2.0 \mathrm{k}, C_{L}=100 \mathrm{pF}
\end{aligned}
\] & \(\phi_{m}\) & - & 65 & - & Degrees \\
\hline Gain Margin
\[
\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\] & \(A_{m}\) & - & 15 & - & dB \\
\hline Equivalent Input Noise Voltage
\[
R_{S}=100 \Omega, f=1.0 \text { to } 100 \mathrm{kHz}
\] & \(e_{n}\) & - & 22 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Total Harmonic Distortion
\[
A_{V}=-1.0, R_{L}=50 \Omega, V_{O}=0.5 \mathrm{VRMS}, \mathrm{f}=1.0 \mathrm{kHz}
\] & THD & - & 0.02 & - & \% \\
\hline
\end{tabular}

NOTE: In case \(\mathrm{V}_{\mathrm{EE}}\) is disconnected before \(\mathrm{V}_{\mathrm{CC}}\), a diode between \(\mathrm{V}_{\mathrm{EE}}\) and Ground is recommended to avoid damaging the device.

Figure 1. Supply Current versus Suppy Voltage with No Load

Figure 3. Voltage Gain and Phase versus Frequency

Figure 5. Small Signal Transient Response

t, TIME \((1.0 \mu \mathrm{~s} / \mathrm{DIV})\)

Figure 2. Output Saturation Voltage versus Load Current

L, LOAD CURRENT (A)

Figure 4. Phase Margin versus Output Load Capacitance

Figure 6. Large Signal Transient Response

t, TIME (\(10 \mu \mathrm{~s} / \mathrm{DIV}\))

Figure 7. Sine Wave Reponse

Figure 8. Bidirectional DC Motor Control with Microprocessor-Compatible Inputs

Figure 9. Bidirectional Speed Control of DC Motors

For circuit stability, ensure that \(R_{X}>\frac{2 R 3 \cdot R_{1}}{R_{M}}\) where, \(R_{M}=\) internal resistance of motor.
The voltage available at the terminals of the motor is: \(V_{M}=2\left(V_{1}-\frac{V_{S}}{2}\right)+\left|R_{0}\right| \cdot I_{M}\)
where, \(\left|R_{0}\right|=\frac{2 R 3 \cdot R 1}{R_{X}}\) and \(I_{M}\) is the motor current.

\section*{THERMAL INFORMATION}

The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature can be found from the equation:
\[
P_{D(T A)}=\frac{T_{J(\max)}-T_{A}}{R_{\theta J A}(t y p)}
\]
where, \(\mathrm{P}_{\mathrm{D}}(\mathrm{TA})=\) power dissipation allowable at a given operating ambient temperature.

This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.
\(\mathrm{T}_{\mathrm{J}(\max)}=\) Maximum operating junction temperature as listed in the maximum ratings section.
\(\mathrm{T}_{\mathrm{A}} \quad=\) Maximum desired operating ambient temperature.
\(R_{\theta J A(t y p)}=\) Typical thermal resistance junction-toambient.

\section*{Low Power JFET Input Operational Amplifiers}

These JFET input operational amplifiers are designed for low power applications. They feature high input impedance, low input bias current and low input offset current. Advanced design techniques allow for higher slew rates, gain bandwidth products and output swing.

The commercial and vehicular devices are available in Plastic dual in-line and SOIC packages.
- Low Supply Current: \(200 \mu \mathrm{~A} /\) Amplifier
- Low Input Bias Current: 5.0 pA
- High Gain Bandwidth: 2.0 MHz
- High Slew Rate: \(6.0 \mathrm{~V} / \mu \mathrm{s}\)
- High Input Impedance: \(10^{12} \Omega\)
- Large Output Voltage Swing: \(\pm 14 \mathrm{~V}\)
- Output Short Circuit Protection

\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{4}{|c|}{ ORDERING INFORMATION } \\
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{ Op Amp } \\
Function
\end{tabular} & \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline \multirow{4}{*}{ Quad } & \begin{tabular}{l}
TLO62CD, ACD \\
TLO62CP, ACP
\end{tabular} & \(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & \begin{tabular}{c}
SO-8 \\
Plastic DIP
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
TLO62VD \\
TLO62VP
\end{tabular} & \(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & \begin{tabular}{c}
SO-8 \\
Plastic DIP
\end{tabular} \\
\hline & \begin{tabular}{l}
TLO64CD, ACD \\
TLO64CN, ACN
\end{tabular} & \(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & \begin{tabular}{c}
SO-14 \\
Plastic DIP
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
TLO64VD \\
TLO64VN
\end{tabular} & \(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & \begin{tabular}{c}
SO-14 \\
Plastic DIP
\end{tabular} \\
\hline
\end{tabular}

\section*{LOW POWER JFET INPUT} OPERATIONAL AMPLIFIERS

SEMICONDUCTOR TECHNICAL DATA

\section*{DUAL}

P SUFFIX PLASTIC PACKAGE CASE 626

D SUFFIX PLASTIC PACKAGE CASE 751
(SO-8)

\section*{PIN CONNECTIONS}

\section*{PIN CONNECTIONS}

TL062 TL064

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage (from \(\mathrm{V}_{\text {CC }}\) to \(\mathrm{V}_{\text {EE }}\) & \(\mathrm{V}_{\text {S }}\) & +36 & V \\
\hline Input Differential Voltage Range (Note 1) & \(\mathrm{V}_{\text {IDR }}\) & \(\pm 30\) & V \\
\hline Input Voltage Range (Notes 1 and 2) & \(\mathrm{V}_{\text {IR }}\) & \(\pm 15\) & V \\
\hline Output Short Circuit Duration (Note 3) & tSC & Indefinite & sec \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {Stg }}\) & -60 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
2. The magnitude of the input voltage must never exceed the magnitude of the supply or 15 V , whichever is less.
3. Power dissipation must be considered to ensure maximum junction temperature \(\left(T_{J}\right)\) is not exceeded. (See Figure 1.)

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}\right.\) to \(+70^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL062AC TL064AC} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { TL062C } \\
& \text { TL064C }
\end{aligned}
\]} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Input Offset Voltage (} \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text {) } \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& T_{A}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{10}\) & - & 3.0 & \[
\begin{aligned}
& 6.0 \\
& 7.5
\end{aligned}
\] & & 3.0 & \[
\begin{aligned}
& 15 \\
& 20
\end{aligned}
\] & mV \\
\hline Average Temperature Coefficient for Offset Voltage
\[
\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)
\] & \(\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & 1 O & - & 0.5 & \[
\begin{aligned}
& 100 \\
& 2.0
\end{aligned}
\] & - & 0.5 & \[
\begin{gathered}
200 \\
2.0
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{pA} \\
& \mathrm{nA}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & IB & - & 3.0 & \[
\begin{aligned}
& 200 \\
& 2.0
\end{aligned}
\] & & 3.0 & \[
\begin{gathered}
200 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{pA} \\
& \mathrm{nA}
\end{aligned}
\] \\
\hline Input Common Mode Voltage Range
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] & VICR & \[
-\overline{-11.5}
\] & \[
\begin{aligned}
& +14.5 \\
& -12.0
\end{aligned}
\] & +11.5 & \[
\overline{-11}
\] & \[
\begin{array}{r}
+14.5 \\
-12.0
\end{array}
\] & \(+\) & V \\
\hline \[
\begin{aligned}
& \text { Large Signal Voltage Gain }\left(R_{L}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & AVOL & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & 58 & - & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing (\(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}\)) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{O}^{+}} \\
& \mathrm{v}_{\mathrm{O}^{-}}
\end{aligned}
\] & \[
+10
\] & \[
\begin{aligned}
& +14 \\
& -14
\end{aligned}
\] & \[
\overline{-10}
\] & & \[
\begin{aligned}
& +14 \\
& -14
\end{aligned}
\] & \[
\overline{-10}
\] & V \\
\hline \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{O}^{+}} \\
& \mathrm{v}_{\mathrm{O}^{-}}
\end{aligned}
\] & \[
+10
\] & - & \(\overline{-10}\) & +10
- & - & \(\overline{-10}\) & \\
\hline Common Mode Rejection
\[
\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {ICR }} \min , \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & CMR & 80 & 84 & - & 70 & 84 & - & dB \\
\hline Power Supply Rejection
\[
\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & PSR & 80 & 86 & - & 70 & 86 & - & dB \\
\hline Power Supply Current (each amplifier) (No Load, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & ID & - & 200 & 250 & - & 200 & 250 & \(\mu \mathrm{A}\) \\
\hline Total Power Dissipation (each amplifier) (No Load, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & PD & - & 6.0 & 7.5 & - & 6.0 & 7.5 & mW \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\) [Note 4], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL062V} & \multicolumn{3}{|c|}{TL064V} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Input Offset Voltage }\left(R_{S}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & VIO & - & 3.0 & \[
\begin{aligned}
& 6.0 \\
& 9.0
\end{aligned}
\] & - & 3.0 & \[
\begin{aligned}
& 9.0 \\
& 15
\end{aligned}
\] & mV \\
\hline Average Temperature Coefficient for Offset Voltage
\[
\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)
\] & \(\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & 10 & & 5.0 & \[
\begin{aligned}
& 100 \\
& 20
\end{aligned}
\] & - & 5.0 & \[
\begin{aligned}
& 100 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{pA} \\
& \mathrm{nA}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & IB & - & 30 & \[
\begin{gathered}
200 \\
50
\end{gathered}
\] & - & 30 & \[
\begin{gathered}
200 \\
50
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{pA} \\
& \mathrm{nA}
\end{aligned}
\] \\
\hline Input Common Mode Voltage Range (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & VICR & \[
-\overline{-11.5}
\] & \[
\begin{aligned}
& +14.5 \\
& -12.0
\end{aligned}
\] & +11.5 & \[
\overline{-11.5}
\] & \[
\begin{aligned}
& +14.5 \\
& -12.0
\end{aligned}
\] & +11.5 & V \\
\hline \[
\begin{aligned}
& \text { Large Signal Voltage Gain }\left(R_{L}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & Avol & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & 58 & - & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & 58 & - & V/mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing }\left(R_{L}=10 \mathrm{k} \Omega, \mathrm{~V}_{I D}=1.0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{O}^{+}}\) \\
\(\mathrm{V}_{\mathrm{O}^{-}}\) \\
\(\mathrm{V}_{\mathrm{O}^{+}}\) \\
\(\mathrm{V}_{\mathrm{O}}{ }^{-}\)
\end{tabular} & \[
\begin{gathered}
+10 \\
+10
\end{gathered}
\] & \[
\begin{aligned}
& +14 \\
& -14
\end{aligned}
\] & \[
\begin{gathered}
\overline{-10} \\
-10
\end{gathered}
\] & \[
\frac{+10}{+10}
\] & +14
-14
- & -
-10
-10 & V \\
\hline Common Mode Rejection
\[
\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{ICR}} \min , \mathrm{~V}_{\mathrm{O}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & CMR & 80 & 84 & - & 80 & 84 & - & dB \\
\hline Power Supply Rejection
\[
\left(R_{S}=50 \Omega, V_{C M}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & PSR & 80 & 86 & - & 80 & 86 & - & dB \\
\hline Power Supply Current (each amplifier) (No Load, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & ID & - & 200 & 250 & - & 200 & 250 & \(\mu \mathrm{A}\) \\
\hline Total Power Dissipation (each amplifier) (No Load, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & PD & - & 6.0 & 7.5 & - & 6.0 & 7.5 & mW \\
\hline
\end{tabular}

NOTE: 4. \(\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}\) for TL062,4V
AC ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{C}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Slew Rate (\(\mathrm{V}_{\text {in }}=-10 \mathrm{~V}\) to \(\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}_{\mathrm{V}}=+1.0\right)\) & SR & 2.0 & 6.0 & - & V/ \(\mu \mathrm{s}\) \\
\hline Rise Time (\(\left.\mathrm{V}_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{kS}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}_{\mathrm{V}}=+1.0\right)\) & \(t_{r}\) & - & 0.1 & - & \(\mu \mathrm{s}\) \\
\hline Overshoot (\(\left.\mathrm{V}_{\text {in }}=20 \mathrm{mV}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{AV}^{\text {a }}=+1.0\right)\) & OS & - & 10 & - & \% \\
\hline Settling Time
\[
\begin{array}{ll}
\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, A \mathrm{~V}=-1.0,\right. & \text { To within } 10 \mathrm{mV} \\
\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { step) } & \text { To within } 1.0 \mathrm{mV}
\end{array}
\] & ts & - & \[
\begin{aligned}
& 1.6 \\
& 2.2
\end{aligned}
\] & - & \(\mu \mathrm{s}\) \\
\hline Gain Bandwidth Product (\(\mathrm{f}=200 \mathrm{kHz}\)) & GBW & - & 2.0 & - & MHz \\
\hline Equivalent Input Noise (\(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}\)) & \(e_{n}\) & - & 47 & - & \(n \mathrm{~V} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Resistance & \(\mathrm{R}_{\mathrm{i}}\) & - & \(10^{12}\) & - & W \\
\hline Channel Separation (\(\mathrm{f}=10 \mathrm{kHz}\)) & CS & - & 120 & - & dB \\
\hline
\end{tabular}

Figure 1. Maximum Power Dissipation versus Temperature for Package Variations

Figure 3. Output Voltage Swing versus Temperature

Figure 5. Output Voltage Swing versus Frequency

Figure 2. Output Voltage Swing versus Supply Voltage

Figure 4. Output Voltage Swing versus Load Resistance

Figure 6. Large Signal Voltage Gain versus Temperature

Figure 7. Open Loop Voltage Gain and Phase versus Frequency

Figure 9. Supply Current per Amplifier versus Temperature

Figure 11. Common Mode Rejection versus Temperature

Figure 8. Supply Current per Amplifier versus Supply Voltage

Figure 10. Total Power Dissipation versus Temperature

Figure 12. Common Mode Rejection versus Frequency

\section*{TL062 TL064}

Figure 13. Power Supply Rejection versus Frequency

Figure 15. Input Bias Current versus Temperature

Figure 17. Small Signal Response

t , TIME \((0.5 \mu \mathrm{~s} / \mathrm{DIV})\)

Figure 14. Normalized Gain Bandwidth Product, Slew Rate and Phase Margin versus Temperature

Figure 16. Input Noise Voltage versus Frequency

Figure 18. Large Signal Response

t , TIME (\(2.0 \mu \mathrm{~s} / \mathrm{DIV})\)

Figure 19. AC Amplifier

Figure 20. High-Q Notch Filter

Figure 21. Instrumentation Amplifier

Figure 22. 0.5 Hz Square-Wave Oscillator
Figure 23. Audio Distribution Amplifier

\section*{Low Noise, JFET Input Operational Amplifiers}

These low noise JFET input operational amplifiers combine two state-of-the-art analog technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input device for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents. Moreover, the devices exhibit low noise and low harmonic distortion, making them ideal for use in high fidelity audio amplifier applications.

These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar products.
- Low Input Noise Voltage: \(18 \mathrm{nV} / \sqrt{\mathrm{Hz}}\) Typ
- Low Harmonic Distortion: 0.01\% Typ
- Low Input Bias and Offset Currents
- High Input Impedance: \(10^{12} \Omega\) Typ
- High Slew Rate: \(13 \mathrm{~V} / \mu \mathrm{s}\) Typ
- Wide Gain Bandwidth: 4.0 MHz Typ
- Low Supply Current: 1.4 mA per Amp

\section*{LOW NOISE, JFET INPUT} OPERATIONAL AMPLIFIERS

SEMICONDUCTOR

\section*{TECHNICAL DATA}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Op Amp Function & Device & Operating Temperature Range & Package \\
\hline \multirow{2}{*}{Single} & TL071ACD, CD & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\hline & TL071ACP, CP & & Plastic DIP \\
\hline \multirow{2}{*}{Dual} & TL072ACD, CD & \multirow[b]{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\hline & TLO72ACP, CP & & Plastic DIP \\
\hline Quad & TLO74ACN, CN & \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

TL071C,AC TL072C,AC TL074C,AC

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +18 & V \\
& \(\mathrm{~V}_{\mathrm{EE}}\) & -18 & \\
\hline Differential Input Voltage & \(\mathrm{V}_{\mathrm{ID}}\) & \(\pm 30\) & V \\
\hline Input Voltage Range (Note 1) & \(\mathrm{V}_{\text {IDR }}\) & \(\pm 15\) & V \\
\hline Output Short Circuit Duration (Note 2) & t & & Continuous \\
\hline \begin{tabular}{l}
Power Dissipation \\
Plastic Package (N, P) \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+47^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{P}_{\mathrm{D}}\) & 680 & mW \\
\hline Operating Ambient Temperature Range & \(1 / \theta_{\mathrm{JA}}\) & 10 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. The magnitude of the input voltage must not exceed the magnitude of the supply voltage or 15 V , whichever is less.
2. The output may be shorted to ground or either supply. Temperature and/or supply voltages must be limited to ensure that power dissipation ratings are not exceeded.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}\right.\) to \(\mathrm{T}_{\text {low }}\) [Note 3])
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline ```
Input Offset Voltage (\(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=0\))
 TL071C, TL072C
 TL074C
 TL07_AC
``` & V10 & - & - & \[
\begin{aligned}
& 13 \\
& 13 \\
& 7.5
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 4) \\
& \text { TLO7_C } \\
& \text { TLO7_AC }
\end{aligned}
\] & 10 & - & - & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 4) \\
& \text { TLO7_C } \\
& \text { TL07_AC }
\end{aligned}
\] & IB & & & \[
\begin{aligned}
& 7.0 \\
& 7.0
\end{aligned}
\] & nA \\
\hline ```
Large-Signal Voltage Gain (VO=\pm10 V, RL \geq2.0 k)
    TLO7_C
    TL07_AC
``` & AVOL & \[
\begin{aligned}
& 15 \\
& 25
\end{aligned}
\] & - & - & V/mV \\
\hline Output Voltage Swing (Peak-to-Peak)
\[
\begin{aligned}
& \left(R_{L} \geq 10 \mathrm{k}\right) \\
& \left(R_{L} \geq 2.0 \mathrm{k}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 24 \\
& 20
\end{aligned}
\] & - & - & V \\
\hline
\end{tabular}

NOTES: \(3 . T_{\text {low }}=0^{\circ} \mathrm{C}\) for TL071C,AC \(\quad T_{\text {high }}=+70^{\circ} \mathrm{C}\) for TL071C,AC
TL072C,AC TL072C,AC
4. Input Bias currents of JFET input op amps approximately double for every \(10^{\circ} \mathrm{C}\) rise in junction temperature as shown in Figure 3. To maintain junction temperature as close to ambient temperature as possible, pulse techniques must be used during testing.

Figure 1. Unity Gain Voltage Follower

Figure 2. Inverting Gain of 10 Amplifier

\section*{TL071C,AC TL072C,AC TL074C,AC}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline ```
Input Offset Voltage (\(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=0\))
 TL071C, TL072C
 TL074C
 TL07_AC
``` & \(\mathrm{V}_{10}\) & - & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& 6.0
\end{aligned}
\] & mV \\
\hline Average Temperature Coefficient of Input Offset Voltage \(R_{S}=50 \Omega, T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) (Note 3) & \(\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}\) & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 4) \\
& \text { TL07_C } \\
& \text { TL07_AC }
\end{aligned}
\] & 1 O & & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & pA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 4) \\
& \text { TL07_C } \\
& \text { TL07_AC }
\end{aligned}
\] & IIB & - & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & pA \\
\hline Input Resistance & \(\mathrm{r}_{\mathrm{i}}\) & - & \(10^{12}\) & - & \(\Omega\) \\
\hline Common Mode Input Voltage Range
\[
\begin{aligned}
& \text { TL07_C } \\
& \text { TLO7_AC }
\end{aligned}
\] & VICR & \[
\begin{aligned}
& \pm 10 \\
& \pm 11
\end{aligned}
\] & \[
\begin{aligned}
& +15,-12 \\
& +15,-12
\end{aligned}
\] & & V \\
\hline ```
Large-Signal Voltage Gain ( \(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k}\) )
    TL07_C
    TL07_AC
``` & Avol & \[
\begin{aligned}
& 25 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 150
\end{aligned}
\] & - & V/mV \\
\hline Output Voltage Swing (Peak-to-Peak)
\[
\left(R_{L}=10 \mathrm{k}\right)
\] & \(\mathrm{V}_{\mathrm{O}}\) & 24 & 28 & - & v \\
\hline \[
\begin{aligned}
& \text { Common Mode Rejection Ratio (} \mathrm{RS}_{\mathrm{S}} \leq 10 \mathrm{k} \text {) } \\
& \text { TL07_C } \\
& \text { TL07_AC }
\end{aligned}
\] & CMRR & \[
\begin{aligned}
& 70 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & - & dB \\
\hline Supply Voltage Rejection Ratio (\(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}\)) TL07_C TL07_AC & PSRR & \[
\begin{aligned}
& 70 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & - & dB \\
\hline Supply Current (Each Amplifier) & ID & - & 1.4 & 2.5 & mA \\
\hline Unity Gain Bandwidth & BW & - & 4.0 & - & MHz \\
\hline Slew Rate (See Figure 1)
\[
\mathrm{V}_{\mathrm{in}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\] & SR & - & 13 & - & v/ \(\mu \mathrm{s}\) \\
\hline Rise Time (See Figure 1) & \(\mathrm{tr}_{r}\) & - & 0.1 & - & \(\mu \mathrm{s}\) \\
\hline Overshoot (\(\mathrm{V}_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\)) & OS & - & 10 & - & \% \\
\hline Equivalent Input Noise Voltage
\[
R_{S}=100 \Omega, f=1000 \mathrm{~Hz}
\] & \(\mathrm{e}_{\mathrm{n}}\) & - & 18 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Equivalent Input Noise Current
\[
R_{S}=100 \Omega, f=1000 \mathrm{~Hz}
\] & \(\mathrm{in}_{n}\) & - & 0.01 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Total Harmonic Distortion
\[
\mathrm{V}_{\mathrm{O}}(\mathrm{RMS})=10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 1.0 \mathrm{k}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k}, \mathrm{f}=1000 \mathrm{~Hz}
\] & THD & - & 0.01 & - & \% \\
\hline Channel Separation
\[
A V=100
\] & CS & - & 120 & - & dB \\
\hline
\end{tabular}

\footnotetext{
\(\begin{array}{rr}\text { NOTES: } 3 . \mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C} \text { for TL071C,AC } & \text { Thigh }=+70^{\circ} \mathrm{C} \text { for TL071C,AC } \\ \text { TL072C,AC } & \text { TL072C,AC } \\ \text { TL074C,AC } & \text { TL074C,AC }\end{array}\)
4. Input Bias currents of JFET input op amps approximately double for every \(10^{\circ} \mathrm{C}\) rise in junction temperature as shown in Figure 3. To maintain junction temperature as close to ambient temperature as possible, pulse techniques must be used during testing.
}

\section*{TL071C,AC TL072C,AC TL074C,AC}

Figure 3. Input Bias Current versus Temperature

Figure 5. Output Voltage Swing versus Load Resistance

Figure 7. Output Voltage Swing versus Temperature

Figure 4. Output Voltage Swing versus Frequency

Figure 6. Output Voltage Swing versus Supply Voltage

Figure 8. Supply Current per Amplifier versus Temperature

Figure 9. Large Signal Voltage Gain and Phase Shift versus Frequency

Figure 11. Normalized Slew Rate versus Temperature

Figure 10. Large Signal Voltage Gain versus Temperature

versus Frequency

Figure 13. Total Harmonic Distortion versus Frequency

\section*{TL071C,AC TL072C,AC TL074C,AC}

Figure 14. Audio Tone Control Amplifier

Figure 15. High Q Notch Filter

\section*{JFET Input Operational Amplifiers}

These low-cost JFET input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar products.
- Input Offset Voltage Options of 6.0 mV and 15 mV Max
- Low Input Bias Current: 30 pA
- Low Input Offset Current: 5.0 pA
- Wide Gain Bandwidth: 4.0 MHz
- High Slew Rate: \(13 \mathrm{~V} / \mu \mathrm{s}\)
- Low Supply Current: 1.4 mA per Amplifier
- High Input Impedance: \(10^{12} \Omega\)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Op Amp \\
Function
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular}} & Package \\
\hline \multirow{2}{*}{ Single } & TLO81ACD, CD & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 2 - 2 } & TL081ACP, CP & & Plastic DIP \\
\hline \multirow{2}{*}{ Dual } & TL082ACD, CD & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO- 8 \\
\cline { 2 - 3 } & TL082ACP, CP & & Plastic DIP \\
\hline Quad & TLO84ACN, CN & \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

\section*{TL081C,AC TL082C,AC TL084C,AC}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}} \\
& \mathrm{~V}_{\mathrm{EE}}
\end{aligned}
\] & \[
\begin{aligned}
& +18 \\
& -18
\end{aligned}
\] & V \\
\hline Differential Input Voltage & VID & \(\pm 30\) & V \\
\hline Input Voltage Range (Note 1) & VIDR & \(\pm 15\) & V \\
\hline Output Short Circuit Duration (Note 2) & tsc & Continuous & \\
\hline \begin{tabular}{l}
Power Dissipation \\
Plastic Package (N, P) \\
Derate above \(T_{A}=+47^{\circ} \mathrm{C}\)
\end{tabular} & \[
\begin{gathered}
\mathrm{PD} \\
1 / \theta_{\mathrm{JA}}
\end{gathered}
\] & \[
\begin{gathered}
680 \\
10
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. The magnitude of the input voltage must not exceed the magnitude of the supply voltage or 15 V , whichever is less.
2. The output may be shorted to ground or either supply. Temperature and/or supply voltages must be limited to ensure that power dissipation ratings are not exceeded.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 3]. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline ```
Input Offset Voltage (\(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=0\))
 TL081C, TL082C
 TL084C
 TL08_AC
``` & V10 & - & - & \[
\begin{aligned}
& 20 \\
& 20 \\
& 7.5
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 4) \\
& \text { TLO8_C } \\
& \text { TL08_AC }
\end{aligned}
\] & 10 & & - & \[
\begin{aligned}
& 5.0 \\
& 3.0
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 4) \\
& \text { TL08_C } \\
& \text { TLO8_AC }
\end{aligned}
\] & IB & & & \[
\begin{aligned}
& 10 \\
& 7.0
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
& \text { Large-Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k}\right) \\
& \text { TL08_C } \\
& \text { TL08_AC }
\end{aligned}
\] & Avol & \[
\begin{aligned}
& 15 \\
& 25
\end{aligned}
\] & - & - & V/mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing (Peak-to-Peak) } \\
& \left(R_{L} \geq 10 \mathrm{k}\right) \\
& \left(R_{L} \geq 2.0 \mathrm{k}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 24 \\
& 20
\end{aligned}
\] & - & - & V \\
\hline
\end{tabular}

NOTES: \(3 . \mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for TL081AC,C
\(T_{\text {high }}=+70^{\circ} \mathrm{C}\) for TL081AC
\(\begin{array}{ll}\text { TL082AC,C } & \text { TL082AC,C } \\ \text { TL084AC,C } & \text { TL084AC,C }\end{array}\)
4. Input Bias currents of JFET input op amps approximately double for every \(10^{\circ} \mathrm{C}\) rise in Junction Temperature as shown in Figure 3. To maintain junction temperature as close to ambient temperature as possible, pulse techniques must be used during testing.

Figure 1. Unity Gain Voltage Follower


Figure 2. Inverting Gain of 10 Amplifier


\section*{TL081C,AC TL082C,AC TL084C,AC}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline ```
Input Offset Voltage ( \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=0\) )
    TL081C, TL082C
    TL084C
    TL08_AC
``` & \(\mathrm{V}_{10}\) & - & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 6.0
\end{aligned}
\] & mV \\
\hline Average Temperature Coefficient of Input Offset Voltage \(R_{S}=50 \Omega, T_{A}=T_{\text {low }}\) to \(T_{\text {high }}(\) Note 3) & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{T}\) & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline ```
Input Offset Current (VCM=0)(Note 4)
 TL08_C
 TL08_AC
``` & Io & & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & pA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 4) \\
& \text { TL08_C } \\
& \text { TL08_AC }
\end{aligned}
\] & I'B & & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 200
\end{aligned}
\] & pA \\
\hline Input Resistance & \(\mathrm{r}_{\mathrm{i}}\) & - & \(10^{12}\) & - & \(\Omega\) \\
\hline Common Mode Input Voltage Range
\[
\begin{aligned}
& \text { TL08_C } \\
& \text { TL08_AC }
\end{aligned}
\] & VICR & \[
\begin{aligned}
& \pm 10 \\
& \pm 11
\end{aligned}
\] & \[
\begin{aligned}
& +15,-12 \\
& +15,-12
\end{aligned}
\] & - & V \\
\hline ```
Large Signal Voltage Gain(VO=\pm10 V, RL}\geq2.0 k
    TL08_C
    TL08_AC
``` & AVOL & \[
\begin{aligned}
& 25 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 150
\end{aligned}
\] & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing (Peak-to-Peak)
\[
\left(R_{L}=10 \mathrm{k}\right)
\] & \(\mathrm{V}_{\mathrm{O}}\) & 24 & 28 & - & V \\
\hline \[
\begin{aligned}
& \text { Common Mode Rejection Ratio (RS } \leq 10 \mathrm{k}) \\
& \text { TL08_C } \\
& \text { TL08_AC }
\end{aligned}
\] & CMRR & \[
\begin{aligned}
& 70 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& \hline
\end{aligned}
\] & - & dB \\
\hline Supply Voltage Rejection Ratio (\(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}\)) TL08_C TL08_AC & PSRR & \[
\begin{aligned}
& 70 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & - & dB \\
\hline Supply Current (Each Amplifier) & ID & - & 1.4 & 2.8 & mA \\
\hline Unity Gain Bandwidth & BW & - & 4.0 & - & MHz \\
\hline Slew Rate (See Figure 1)
\[
\mathrm{V}_{\mathrm{in}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\] & SR & - & 13 & - & V/us \\
\hline Rise Time (See Figure 1) & \(\mathrm{tr}_{r}\) & - & 0.1 & - & \(\mu \mathrm{s}\) \\
\hline Overshoot (\(\mathrm{V}_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\)) & OS & - & 10 & - & \% \\
\hline Equivalent Input Noise Voltage
\[
\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1000 \mathrm{~Hz}
\] & \(e_{n}\) & - & 25 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Channel Separation
\[
A_{V}=100
\] & CS & - & 120 & - & dB \\
\hline
\end{tabular}
\(\begin{array}{rr}\text { NOTES: } 3 . \mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C} \text { for TL081AC,C } & \text { Thigh }=+70^{\circ} \mathrm{C} \text { for TL081AC } \\ \text { TL082AC,C } & \\ \text { TL084AC,C } & \text { TL082AC,C } \\ \text { TL084AC,C }\end{array}\)
4. Input Bias currents of JFET input op amps approximately double for every \(10^{\circ} \mathrm{C}\) rise in Junction Temperature as shown in Figure 3. To maintain junction temperature as close to ambient temperature as possible, pulse techniques must be used during testing.

\section*{TL081C,AC TL082C,AC TL084C,AC}

Figure 3. Input Bias Current versus Temperature

Figure 5. Output Voltage Swing versus Load Resistance

Figure 7. Output Voltage Swing versus Temperature

Figure 8. Supply Current per Amplifier versus Temperature

Figure 9. Large Signal Voltage Gain and Phase Shift versus Frequency

Figure 11. Normalized Slew Rate versus Temperature

Figure 10. Large Signal Voltage Gain versus Temperature

Figure 12. Equivalent Input Noise Voltage versus Frequency

Figure 13. Total Harmonic Distortion versus Frequency

\section*{TL081C,AC TL082C,AC TL084C,AC}

Figure 14. Positive Peak Detector

2

Figure 16. Long Interval RC Timer

Time \((t)=R 4 C \ell n\left(V_{R} / V_{R}-V_{l}\right), R_{3}=R_{4}, R_{5}=0.1 R_{6}\) If R1 \(=\) R2: \(t=0.693\) R4C

Figure 15. Voltage Controlled Current Source

Figure 17. Isolating Large Capacitive Loads

- Overshoot < \(10 \%\)
- \(\mathrm{t}_{\mathrm{S}}=10 \mu \mathrm{~s}\)
- When driving large \(C_{L}\), the \(V_{O}\) slew rate is determined by \(C_{L}\) and \(\mathrm{I}_{\mathrm{O}(\max)}\) :
\(\frac{\Delta \mathrm{V}_{\mathrm{O}}}{\Delta \mathrm{t}}=\frac{\mathrm{l}_{\mathrm{O}}}{\mathrm{C}_{\mathrm{L}}} \cong \frac{0.02}{0.5} \mathrm{~V} / \mu \mathrm{s}=0.04 \mathrm{~V} / \mu \mathrm{s}\) (with \(\mathrm{C}_{\mathrm{L}}\) shown)

Design Example: 100 Second Timer
\(\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} \quad \mathrm{C}=1.0 \mathrm{mF} \quad \mathrm{R} 3=\mathrm{R} 4=144 \mathrm{M}\)
\(\mathrm{R} 6=20 \mathrm{k} \quad \mathrm{R} 5=2.0 \mathrm{k} \quad \mathrm{R} 1=\mathrm{R} 2=1.0 \mathrm{k}\)

\section*{Addendum}

Operational Amplifier
Application Information

\title{
OPERATIONAL AMPLIFIER APPLICATION INFORMATION
}

\section*{The Ideal Operational Amplifier}

An ideal op amp has infinite input impedance, infinite gain, and zero output impedance. Its output is proportional to the differential voltage between the inputs. In reality, slight

\section*{Ideal Op Amp}

\[
\begin{aligned}
& \mathrm{a} \rightarrow \infty \\
& \mathrm{Z}_{\mathrm{in}} \rightarrow \infty \\
& \mathrm{Z}_{0}=0
\end{aligned}
\]
mismatches between the inputs create an error voltage and current, the input impedance is finite, requiring a small bias current, and gain and operating frequency are limited.

\section*{Equivalent Circuit for Actual Op Amp}

An alternate scheme uses a CEO transistor clamp with the collector connected to the input and the emitter and base connected to VEE. This ESD protection method is totally transparent to the user. Although it is not recommended that the inputs be allowed to exceed \(V_{C C}\), the CEO clamp will not affect device operation. The inputs should never exceed \(V_{E E}\), with or without ESD protection. Single supply op amps are particularly sensitive to damage in a reverse bias condition.

If ESD protection is used on an amplifier, the ESD scheme used will be identified in the data sheet.

\section*{JFET Inputs versus Bipolar Inputs}

Although JFET input op amps are generally associated with high speed, there are now bipolar input op amps with comparable slew rates. JFETS do offer higher input impedance and lower input bias current than a typical bipolar input. But for the lowest noise and offset voltage, a bipolar

\section*{Phase Reversal}

Most op amp data sheets describe both a maximum input voltage and a minimum common mode input voltage range for the device. The input voltage limit given in the Maximum Ratings Table is considered to be the highest voltage that can be applied without damaging the device. It does not guarantee the device will function normally or within the given electrical specifications. The input common mode voltage range \(\left(V_{I C R}\right)\), on the other hand, provides the maximum input voltage (for the conditions listed) for normal operation. Exceeding the input common mode range may cause the device to exceed the electrical specifications, latch or go into phase reversal. (As shown in figure at right.)

In a latch condition, the op amp output goes to one of the supply rails, and will remain in that state until the power is removed and reapplied with the error condition corrected. In phase reversal, a normal output low would be seen as an output high, but phase reversal will self correct once the input drops below a certain level. The input voltage required for phase reversal to occur varies, but it is usually seen if the input voltage approaches or exceeds the supply voltage. As you can see in the figure the output is clipping on the negative
input op amp is a better choice. A bipolar input is also required for true single supply operation. Any op amp can be operated with one supply. But the common mode input voltage range of a single supply op amp includes ground.

peaks, and phase reversing on the positive peaks. But as the input drops on the negative going part of the waveform, the output returns the the correct state without powering down the device.
hundred milliamps to an amp in a short circuit condition, extra care is needed to ensure that the maximum junction temperature of the part is not exceeded.

\section*{Thermal Considerations}

Thermal resistance (\(\theta_{\mathrm{JA}}\)) information is given on most packages in the back of the data book. Low power op amps can handle a short circuit current condition indefinitely. Since some of the higher current drive op amps can deliver a
\[
\begin{aligned}
& T_{J}=T_{A}+P_{D} Q_{J A} \\
& T_{J}=\text { Junction Temperature (Should not exceed } 150^{\circ} \mathrm{C} \text {) } \\
& T_{A}=\text { Ambient Temperature } \\
& P_{D}=\text { Power Dissipation } \\
& Q_{A}=\text { Package Thermal Impedance }
\end{aligned}
\]

\section*{Stability and Compensation}

Most op amps are internally compensated, enabling them to be used in a unity gain configuration. Uncompensated or decompensated amplifiers have a higher slew rate if no external compensation capacitor is used, but must either be used in a gain of 2 or more or with positive feedback to ensure stable operation. When externally compensating an amplifier, use a capacitor equal or greater than the value recommended in the data sheet. Since the external loop affects the stability of the op amp, the amplifier needs to be evaluated in the circuit and over temperature to determine the minimum amount of compensation required.

Insufficient compensation will cause a high frequency oscillation - higher than the unity gain frequency of the device. This high frequency oscillation is indicative of an instability in the Miller loop, internal to the device. Lower frequency oscillation (below the unity gain frequency of the amplifier) is generally caused by an instability in the outer loop.

The two primary causes of low frequency oscillation are capacitive loading on the output and high differential source resistance. Capacitive loading, which can be either
distributed capacitance or an actual load capacitor, can be a problem with as little as 100 pF . Sensitivity to load capacitance varies from op amp to op amp and is not always given in the data sheets. To compensate for capacitive loading, add a small resistor in series with the output. Depending on the load and the external loop, \(10 \Omega\) to \(100 \Omega\) is generally sufficient (see Figure A). For high capacitive loading, (\(C_{L}>1500 \mathrm{pF}\)) a capacitor in the feedback loop may also be necessary (see Figure B).

Keeping the differential source resistance low not only limits the noise generated in the circuit, but avoids stability problems as well. Most op amps are stable with a source resistance of up to \(2 \mathrm{k} \Omega\), but will vary from op amp to op amp. The differential source resistance (which includes any feedback resistance) combines with the input capacitance of the op amp to create a low frequency pole. The higher the resistance, the more likely you are to have an oscillation problem. Adding a small capacitor in parallel with the feedback resistor may solve the problem (see Figure C). The capacitor should be greater than the input capacitance of the op amp which is typically about 10 pF .

Figure A. Compensation Circuit for Moderate Capacitive Loads

Figure B. Compensation Circuit for High Capacitive Loads

Figure C. Compensation for High Source Impedance

\section*{Layout Considerations}

Higher frequency op amps may require special attention to layout. Since most layout problems are not reflected in computer simulations, it is worth it to follow proper layout rules consistently. Some suggestions:
- Always bypass the supply pins with at least \(0.01 \mu \mathrm{~F}\) to ground, whether or not it is a high frequency application. Some amplifiers have a much lower power supply rejection with respect to the negative supply than to the positive supply due to the internal compensation. A larger bypass capacitor from \(\mathrm{V}_{\mathrm{EE}}\) to ground may be used to prevent high frequency transients from appearing on the output. Generally \(10 \mu \mathrm{~F}\) to 20 \(\mu \mathrm{F}\) is sufficient.
- Make sure you have a good ground plane.
- Keep AC and DC grounds separate.
- Don't use proto boards or wire wrap for high frequency circuits.
- Use appropriate external components - avoid electrolytics in high frequency paths.
- Keep high frequency paths short (including the leads on discrete components).
- Ground the inputs of unused op amps.

\section*{Test Information}

The following circuit can be used to test \(\mathrm{V}_{\mathrm{IO}}, \mathrm{I}_{\mathrm{O}}\), and IIB. Op Amp A is the device under test, and Op Amp B is a buffer amplifier which reduces CMRR errors and improves the accuracy of the measurement. The 30 nF capacitors across the \(10 \mathrm{k} \Omega\) source resistors are for stability and may not be needed.

\section*{A) Without Buffer Amplifier}

B) With Buffer Amplifier

\(\mathrm{V}_{10}\) can be measured directly with SW1 and SW2 closed.

To determine \(\mathrm{I}_{\mathrm{IB}-}\) :
- Measure \(\mathrm{V}_{1 \mathrm{O}}\) with both switches close,
- Open SW1 only; Measure VIO1

To determine \({ }^{1} \mathrm{IB}_{+}\):
- Close SW1 and open SW2; Measure \(\mathrm{V}_{\mathrm{IO} 2}\) \(I_{I O}\) equals the difference between \(I_{\mathrm{I}}+\) and \(\mathrm{I}_{\mathrm{I}}\) -

\section*{GLOSSARY}

Input Offset Voltage (\(\mathrm{V}_{\mathrm{IO}}\)) - The voltage which must be applied between the inputs of an op amp to obtain a zero output voltage. For an ideal op amp, \(\mathrm{V}_{\mathrm{IO}}\) would be zero. Some vendors abbreviate it \(\mathrm{V}_{\mathrm{OS}}\).

Input Bias Current (\(I_{\mathrm{IB}}\)) - The current flowing in or out of both inputs of an op amp. JFET input op amps provide the lowest input bias current; typically in the picoamp range. A bipolar input op amp is typically in nanoamps. IIB is highly sensitive to slight process variations and can vary an order of magnitude.

Input Offset Current (l|O) - Ideally, the bias currents on the two inputs are equal. The input offset current is the difference between the two currents when the output is at zero volts. Sometimes abbreviated lOS. This should not be confused with the output short circuit current (ISC).

Input Common Mode Voltage Range (VICR) - The maximum input voltage range for normal operation within given specifications. Exceeding the input common mode range generally will not damage the inputs if the maximum ratings are not exceeded. However, \(\mathrm{V}_{10}\) may not meet the specification given in the data sheet, and phase reversal may occur as the input voltage approaches \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{EE}}\). Sometimes abbreviated \(\mathrm{V}_{\mathrm{CM}}\).

Common Mode Rejection Ratio (CMR or CMRR) - CMRR is defined as the ratio of the common mode gain to the differential mode gain. It is also equal to the ratio of the input common mode voltage to the peak-to-peak change in \(\mathrm{V}_{1 \mathrm{O}}\). Measures the ability of an op amp to reject a signal present at both inputs simultaneously. May be given in dB or volts per volt.

Power Supply Rejection Ratio (PSR or PSRR) - The ratio of the change in \(V_{I O}\) to the change in power supply voltage. Measures the immunity of the amplifier to changes in power supply voltage.

Output Short Circuit Current (ISC) - The maximum current an amplifier can deliver into a short circuit. Care must be exercised to ensure the maximum junction temperature of the device is not exceeded to prevent damage to the device.

Supply Current (ID or ICC) - The operating current required with no load and with the output at zero volts.

Slew Rate (SR) - The rate of change of the output voltage in response to a large amplitude pulse applied to the input. The slew rate determines the power bandwidth of the device.

Gain Bandwidth Product (GBW) - The product of the closed-loop gain times the frequency response at a given frequency. For an op amp with a single pole roll-off, the gain bandwidth product is equal to the unity gain frequency.

Phase Margin (\(\phi \mathrm{M})-180^{\circ}\) minus the phase shift at the unity gain frequency of the device. The phase margin must be positive for unconditionally stable operation. Phase margin (and stability) are affected by the external circuit, particularly the capacitive loading on the output and the differential source resistance on the input.

Channel Separation (CS) - A measurement of the immunity of one op amp to a signal present on another amplifier in a dual or quad.

Power Bandwidth (BWP) - The frequency at which the output starts to clip or distort at maximum peak-to-peak input voltage.

\section*{Power Supply Circuits}

\section*{In Brief . . .}

In most electronic systems, some form of voltage regulation is required. In the past, the task of voltage regulator design was tediously accomplished with discrete devices, and the results were quite often complex and costly. Today, with bipolar monolithic regulators, this task has been significantly simplified. The designer now has a wide choice of fixed, low \(V_{\text {Diff }}\) and adjustable type voltage regulators. These devices incorporate many built-in protection features, making them virtually immune to the catastrophic failures encountered in older discrete designs.

The switching power supply continues to increase in popularity and is one of the fastest growing markets in the world of power conversion. They offer the designer several important advantages over linear series-pass regulators. These advantages include significant advancements in the areas of size and weight reduction, improved efficiency, and the ability to perform voltage step-up, step-down, and voltage-inverting functions. Motorola offers a diverse portfolio of full featured switching regulator control circuits which meet the needs of today's modern compact electronic equipment.

Power supplies, MPU/MCU-based systems, industrial controls, computer systems and many other product applications are requiring power supervisory functions which monitor voltages to ensure proper system operation. Motorola offers a wide range of power supervisory circuits that fulfill these needs in a cost effective and efficient manner. MOSFET drivers are also provided to enhance the drive capabilities of first generation switching regulators or systems designed with CMOS/TTL logic devices. These drivers can also be used in dc-to-dc converters, motor controllers or virtually any other application requiring high speed operation of power MOSFETs.

\section*{Linear Voltage Regulators}

\section*{Fixed Output}

These low cost monolithic circuits provide positive and/or negative regulation at currents from 100 mA to 3.0 A . They are ideal for on-card regulation employing current limiting and thermal shutdown. Low \(V_{\text {Diff }}\) devices are offered for battery powered systems.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Table 1. Linear Voltage Regulators
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Device & \(V_{\text {out }}\) & \[
\begin{gathered}
25^{\circ} \mathrm{C} \\
\text { Tol. } \\
\pm \%
\end{gathered}
\] & \[
V_{\text {in }}
\]
Max & \[
V_{\text {in }}-V_{\text {out }}
\] Diff. Typ. & Regline Max (\% Vout) & Regload Max (\% Vout) & Typ. Temp. Coefficient \(\frac{\mathrm{mV} \text { (Vout) }}{{ }^{\circ} \mathrm{C}}\) & Suffix/ Package \\
\hline
\end{tabular}

Fixed Voltage, 3-Terminal Regulators, 0.1 Amperes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline LM2931*/A-5.0* & 5.0 & 5.0/3.8 & 40 & 0.16 & 0.6 & 1.0 & 0.2 & \[
\begin{gathered}
\text { D/751, } \\
\text { D2T/936, } \\
\text { DT, DT-1, } \\
\text { T/221A, Z }
\end{gathered}
\] \\
\hline \multirow[t]{3}{*}{LP2950C*/AC*} & 3.0 & \multirow[t]{3}{*}{0.5} & \multirow[t]{3}{*}{30} & \multirow[t]{3}{*}{0.38} & \multirow[t]{3}{*}{0.2/0.1} & \multirow[t]{3}{*}{0.2/0.1} & \multirow[t]{3}{*}{0.04} & \[
\begin{gathered}
\text { DT-3.0, } \\
\text { Z-3.0 }
\end{gathered}
\] \\
\hline & 3.3 & & & & & & & \[
\begin{gathered}
\text { DT-3.3 } \\
\text { Z-3.3 }
\end{gathered}
\] \\
\hline & 5.0 & & & & & & & \[
\begin{gathered}
\text { DT-5.0, } \\
\text { Z-5.0 }
\end{gathered}
\] \\
\hline MC78LXXC/AC/AB* & 5.0, 8.0, 9.0 & 8.0/4.0 & 30 & 1.7 & 4.0/3.0 & 1.2 & 0.2 & D/751, P/29 \\
\hline MC78LXXC/AC/AB* & 12, 15, 18 & 8.0/4.0 & 35 & 1.7 & 2.0 & 1.0 & 0.2 & D/751, P/29 \\
\hline MC78L24C/AC/AB* & 24 & 8.0/4.0 & 40 & 1.7 & 2.0 & 1.0 & 0.2 & D/751, P/29 \\
\hline MC79L05C/AC/AB* & -5.0 & 8.0/4.0 & 30 & 1.7 & 4.0/3.0 & 1.2 & 0.2 & D/751, P/29 \\
\hline MC79LXXC/AC/AB* & -(12, 15, 18) & 8.0/4.0 & 35 & 1.7 & 2.0 & 1.0 & 0.2 & D/751, P/29 \\
\hline MC79L24C/AC/AB* & -24 & 8.0/4.0 & 40 & 1.7 & 2.0 & 1.0 & 0.2 & D/751, P/29 \\
\hline MC33160** & 5.0 & 5.0 & 40 & 2.0 & 0.8 & 1.0 & - & P/626 \\
\hline
\end{tabular}

Fixed Voltage, 3-Terminal Regulators, 0.5 Amperes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline MC78MXXB*/C & 5.0, 6.0, 8.0, 12 & 4.0 & 35 & 2.0 & 1.0 & 2.0 & \(\pm 0.04\) & \[
\begin{gathered}
\text { DT, DT-1, } \\
\text { T/221A }
\end{gathered}
\] \\
\hline MC78MXXB*/C & 15,18 & 4.0 & 35 & 2.0 & 1.0 & 2.0 & \(\pm 0.04\) & \[
\begin{aligned}
& \text { DT, DT-1, } \\
& \text { T/221A }
\end{aligned}
\] \\
\hline MC78MXXB*/C & 20, 24 & 4.0 & 40 & 2.0 & 0.25 & 2.0 & \(\pm 0.04\) & \[
\begin{gathered}
\mathrm{DT}, \mathrm{DT}-1, \\
\mathrm{~T} / 221 \mathrm{~A}
\end{gathered}
\] \\
\hline MC79MXXB*/C & -(5.0, 8.0, 12, 15) & 4.0 & 35 & 1.1 & 1.0 & 2.0 & \[
\begin{gathered}
-0.07 \text { to } \\
\pm 0.04
\end{gathered}
\] & \[
\begin{gathered}
\text { DT, DT-1, } \\
\text { T/221A }
\end{gathered}
\] \\
\hline MC33267* & 5.05 & 2.0 & 40 & 0.58 & 1.0 & 1.0 & - & \[
\begin{aligned}
& \text { D2T/936A, } \\
& \text { T/314D, TV }
\end{aligned}
\] \\
\hline
\end{tabular}

Fixed Voltage, 3-Terminal Medium Dropout Regulators, 0.8 Amperes
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline MC33269-XX* & \(3.3,5.0,12\) & 1.0 & 20 & 1.0 & 0.3 & 1.0 & - \\
\hline MC34268 & 2.85 & 1.0 & 15 & 0.95 & 0.3 & 1.0 & - & \(D / 751, D T\) \\
\hline
\end{tabular}

Unless otherwise noted, \(\mathrm{T}_{\mathrm{J}}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
* \(T_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
** \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)

Table 1. Linear Voltage Regulators (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Device & \(V_{\text {out }}\) & \[
\begin{gathered}
25^{\circ} \mathrm{C} \\
\text { Tol. } \\
\pm \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V}_{\text {in }} \\
\mathrm{Max}
\end{gathered}
\] & \(V_{\text {in }}-V_{\text {out }}\) Diff. Typ. & Regline Max (\% \(\mathrm{V}_{\text {out }}\)) & \[
\begin{aligned}
& \text { Regload } \\
& \text { Max } \\
& \left(\% V_{\text {out }}\right)
\end{aligned}
\] & Typ. Temp. Coefficient \(\frac{\mathrm{mV}\left(\mathrm{V}_{\text {out }}\right)}{{ }^{\circ} \mathrm{C}}\) & \begin{tabular}{l}
Suffix/ \\
Package
\end{tabular} \\
\hline
\end{tabular}

Fixed Voltage, 3-Terminal Regulators, 1.0 Amperes
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline MC78XXB*/C/AC & \begin{tabular}{c}
\(5.0,6.0,8.0,12\), \\
18
\end{tabular} & \(4.0 / 2.0\) & 35 & 2.0 & \(2.0 / 1.0\) & 2.0 & \begin{tabular}{c}
-0.06 to \\
-0.22
\end{tabular} & \begin{tabular}{c}
D2T/936, \\
\(\mathrm{T} / 221 \mathrm{~A}\)
\end{tabular} \\
\hline MC7824B \(^{*} / \mathrm{C} / \mathrm{AC}\) & 24 & \(4.0 / 2.0\) & 40 & 2.0 & \(2.0 / 1.0\) & \(2.0 / 0.4\) & 0.125 & \begin{tabular}{c}
\(\mathrm{D} 2 \mathrm{~T} / 936\), \\
\(\mathrm{T} / 221 \mathrm{~A}\)
\end{tabular} \\
\hline MC79XXC/AC & \(-(5.0,5.2,6.0)\) & \(4.0 / 2.0\) & 35 & 2.0 & \(2.0 / 1.0\) & 2.0 & -0.2 & \begin{tabular}{c}
\(\mathrm{D} 2 \mathrm{~T} / 936\), \\
\(\mathrm{T} / 221 \mathrm{~A}\)
\end{tabular} \\
\hline MC79XXC/AC & \(-(8.0,12,15,18)\) & \(4.0 / 2.0\) & 35 & 2.0 & \(2.0 / 1.0\) & \(2.0 / 1.25\) & \begin{tabular}{c}
-0.12 to \\
-0.06 \\
\hline
\end{tabular} & \begin{tabular}{c}
\(\mathrm{D} 2 \mathrm{~T} / 936\), \\
\(\mathrm{T} / 221 \mathrm{~A}\)
\end{tabular} \\
\hline MC7924C & -24 & 4.0 & 40 & 2.0 & 1.0 & 2.0 & -0.04 & \begin{tabular}{c}
\(\mathrm{D} 2 \mathrm{~T} / 936\), \\
\(\mathrm{T} / 221 \mathrm{~A}\)
\end{tabular} \\
\hline LM340/A-XX & \(5.0,6.0,12,15,18\) & \(4.0 / 2.0\) & 35 & 1.7 & \(1.0 / 0.2\) & \(1.0 / 0.5\) & \(\pm 0.12\) & \(\mathrm{~T} / 221 \mathrm{~A}\) \\
\hline LM340-24 & 24 & 4.0 & 40 & 1.7 & 1.0 & 1.0 & \(\pm 0.12\) & \(\mathrm{~T} / 221 \mathrm{~S}\) \\
\hline TL780-XXC & \(5.0,12,15\) & 1.0 & 35 & 2.0 & 0.10 & 0.5 & 0.012 & KC \\
\hline
\end{tabular}

Fixed Voltage, 3-Terminal Regulators, 3.0 Amperes
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline MC78TXXC/AC & \(5.0,8.0,12\) & \(4.0 / 2.0\) & 35 & 2.5 & 0.5 & 0.6 & 0.04 & T/221A \\
\hline MC78T15C/AC & 15 & \(4.0 / 2.0\) & 40 & 2.5 & 0.5 & 0.6 & 0.04 & T/221A \\
\hline LM323/A & 5.0 & \(4.0 / 2.0\) & 20 & 2.3 & \(0.5 / 0.3\) & \(2.0 / 1.0\) & \(\pm 0.2\) & T/221A \\
\hline
\end{tabular}

Unless otherwise noted, \(\mathrm{T}_{\mathrm{J}}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
* \(T_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
** \(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)
Table 2. Fixed Voltage Medium and Low Dropout Regulators
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Device & \(V_{\text {out }}\) & \[
\begin{gathered}
25^{\circ} \mathrm{C} \\
\text { Tol. } \\
\pm \%
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{lo} \\
(\mathrm{~mA}) \\
\operatorname{Max}
\end{gathered}
\] & \[
\begin{gathered}
V_{\text {in }} \\
\text { Max }
\end{gathered}
\] & \(v_{\text {in }}-V_{\text {out }}\) Diff. Typ. & Regline Max (\% Vout) & Regioad
Max (\% \(\mathrm{V}_{\text {out }}\)) & Typ. Temp. Coefficient \(\frac{\mathrm{mV}\left(\mathrm{V}_{\text {out }}\right)}{{ }^{\circ} \mathrm{C}}\) & \begin{tabular}{l}
Suffix/ \\
Package
\end{tabular} \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

Fixed Voltage, Medium Dropout Regulators
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline MC33267* \(^{*}\) & 5.05 & 2.0 & 500 & 40 & 0.58 & 1.0 & 1.0 & \begin{tabular}{c}
- \\
\begin{tabular}{c}
D2T/936A, \\
T/314D, \\
TV
\end{tabular} \\
\hline MC34268
\end{tabular} &
\end{tabular}

Fixed Voltage, Low Dropout Regulators
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline LM2931*/A* & 5.0 & 5.0/3.8 & 100 & 37 & 0.16 & 1.12 & 1.0 & \(\pm 2.5\) & D/751, D2T/936A, DT, DT-1, T/221A, Z \\
\hline \multirow[t]{3}{*}{LP2950C*/AC*} & 3.0 & \multirow[t]{3}{*}{1.0/0.5} & \multirow[t]{3}{*}{100} & \multirow[t]{3}{*}{30} & \multirow[t]{3}{*}{0.38} & \multirow[t]{3}{*}{0.2/0.1} & \multirow[t]{3}{*}{0.2/0.1} & \multirow[t]{3}{*}{0.2} & \[
\begin{gathered}
\hline \text { DT-3.0, } \\
\text { Z-3.0 }
\end{gathered}
\] \\
\hline & 3.3 & & & & & & & & \[
\begin{gathered}
\mathrm{DT}-3.3, \\
\mathrm{Z}-3.3
\end{gathered}
\] \\
\hline & 5.0 & & & & & & & & \[
\begin{gathered}
\hline \text { DT-5.0, } \\
\text { Z-5.0 }
\end{gathered}
\] \\
\hline
\end{tabular}

\footnotetext{
Unless otherwise noted, \(\mathrm{T}_{J}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
}
* \(\mathrm{T}_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)

Table 2. Fixed Voltage Medium and Low Dropout Regulators (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Device & ut & \[
\begin{gathered}
25^{\circ} \mathrm{C} \\
\text { Tol. } \\
\pm \%
\end{gathered}
\] & \[
\begin{gathered}
\text { Io } \\
(\mathrm{mA}) \\
\operatorname{Max}
\end{gathered}
\] & \[
\begin{aligned}
& V_{\text {in }} \\
& \text { Max }
\end{aligned}
\] & \[
\begin{gathered}
\mathbf{V}_{\text {in }}-\mathbf{V}_{\text {out }}^{\text {Diff. }} \\
\text { Typ. }
\end{gathered}
\] & & & \[
\begin{gathered}
\text { Typ. } \\
\text { Temp. } \\
\text { Coefficient } \\
\frac{\mathrm{mV}\left(\mathrm{~V}_{\text {out }}\right)}{{ }^{\circ} \mathrm{C}}
\end{gathered}
\] & \begin{tabular}{l}
Suffix/ \\
Package
\end{tabular} \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

Fixed Voltage, Low Dropout Regulators
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{LP2951C*/AC*} & 3.0 & \multirow[t]{3}{*}{1.0/0.5} & \multirow[t]{3}{*}{100} & \multirow[t]{3}{*}{28.75} & \multirow[t]{3}{*}{0.38} & \multirow[t]{3}{*}{0.04/0.02} & \multirow[t]{3}{*}{0.04/0.02} & \multirow[t]{3}{*}{\(\pm 1.0\)} & \[
\begin{array}{|c}
\hline \mathrm{D}-3.0 / 751, \\
\text { DM-3.0/ } \\
846 \mathrm{~A}, \\
\mathrm{~N}-3.0 / 626
\end{array}
\] \\
\hline & 3.3 & & & & & & & & \[
\begin{array}{|c}
\hline \mathrm{D}-3.3 / 751, \\
\mathrm{DM}-3.3 / \\
846 \mathrm{~A}, \\
\mathrm{~N}-3.3 / 626
\end{array}
\] \\
\hline & 5.0 & & & & & & & & D/751, DM/846A, N/626 \\
\hline LM2935* & 5.0/5.0 & 5.0/5.0 & 500/10 & 60 & 0.45/0.55 & 1.0 & 1.0 & - & \[
\begin{array}{|l}
\hline \text { D2T/936A, } \\
\text { T/314D, } \\
\text { TH, TV }
\end{array}
\] \\
\hline
\end{tabular}

Unless otherwise noted, \(\mathrm{T}_{\mathrm{J}}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
* \(\mathrm{T}_{\mathrm{J}}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)

\section*{Adjustable Output}

Motorola offers a broad line of adjustable output voltage regulators with a variety of output current capabilities. Adjustable voltage regulators provide users the capability of stocking a single integrated circuit offering a wide range of
output voltages for industrial and communications applications. The three-terminal devices require only two external resistors to set the output voltage.

Table 3. Adjustable Output Regulators
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Device & \(V_{\text {out }}\) & \[
\begin{gathered}
\mathrm{lo} \\
(\mathrm{~mA}) \\
\mathrm{Max}
\end{gathered}
\] & \[
\begin{aligned}
& v_{\text {in }} \\
& \operatorname{Max}
\end{aligned}
\] & \(\mathrm{V}_{\text {in }} \mathbf{V}_{\text {out }}\) Diff. Typ. & \[
\begin{gathered}
\text { Regline } \\
\operatorname{Max}^{\text {Max }} \\
\left(\% \mathrm{~V}_{\text {out }}\right)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Regload } \\
& \operatorname{Max}^{2} \\
& \left(\% \mathrm{~V}_{\text {out }}\right)
\end{aligned}
\] & Typ. Temp. Coefficient \(\frac{\mathrm{mV}\left(\mathrm{V}_{\text {out }}\right)}{{ }^{\circ} \mathrm{C}}\) & \begin{tabular}{l}
Suffix/ \\
Package
\end{tabular} \\
\hline
\end{tabular}

Adjustable Regulators
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline LM317L/B* \(^{*}\) & \(2.0-37\) & 100 & 40 & 1.9 & 0.07 & 1.5 & \(\pm 0.35\) & D/751, Z \\
\hline LM2931C \(^{*}\) & \(3.0-24\) & 100 & 37 & 0.16 & 1.12 & 1.0 & \begin{tabular}{c}
\(\pm 2.5\) \\
D/751, \\
D2T/936A, \\
T/314D, \\
TH, TV
\end{tabular} \\
\hline LP2951C*/AC* & & & & & & & & \\
& & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Unless otherwise noted, \(\mathrm{TJ}_{\mathrm{J}}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
* \(T_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
\# \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)
}

Table 3. Adjustable Output Regulators (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Device & Vout & \[
\begin{gathered}
\text { lo } \\
(\mathrm{mA}) \\
\mathrm{Max}
\end{gathered}
\] & \[
\underset{\operatorname{Max}}{\mathrm{V}_{\text {in }}}
\] & \(\mathrm{V}_{\text {in }}\) - \(\mathrm{V}_{\text {out }}\) Diff. Typ. & \[
\begin{aligned}
& \text { Regline } \\
& \left.\operatorname{Max}^{(\%} \mathrm{V}_{\text {out }}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Regload } \\
& \quad \text { Max } \\
& \left(\% V_{\text {out }}\right)
\end{aligned}
\] & Typ. Temp. Coefficient \(\frac{\mathrm{mV}\left(\mathrm{V}_{\text {out }}\right)}{{ }^{\circ} \mathrm{C}}\) & Suffix/ Package \\
\hline
\end{tabular}

Adjustable Regulators
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline LM317M/B* & \(1.2-37\) & 500 & 40 & 2.1 & 0.04 & 0.5 & \begin{tabular}{c}
\(\pm 0.35\) \\
DT, DT-1, \\
T/221A
\end{tabular} \\
\hline LM337M/B* & \(-(1.2-37)\) & 500 & 40 & 1.9 & 0.07 & 1.5 & \(\pm 0.3\) & \(\mathrm{~T} / 221 \mathrm{~A}\) \\
\hline MC33269* & \(1.25-19\) & 800 & 18.75 & 1.0 & 0.3 & 0.5 & \(\pm 0.4\) & \(\mathrm{D} / 751, \mathrm{DT}\), \\
\(\mathrm{T} / 221 \mathrm{~A}\)
\end{tabular} m

Unless otherwise noted, \(\mathrm{T}_{J}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
* \(T_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
\# \(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)

\section*{Micropower Voltage Regulators for Portable Applications 80 mA Micropower Voltage Regulator}

MC78LCOOH, N
\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\), Case 1213,1212
The MC78LC00 series voltage regulators are specifically designed for use as a power source for video instruments, handheld communication equipment, and battery powered equipment.

The MC78LC00 series features an ultra-low quiescent of \(1.1 \mu \mathrm{~A}\) and a high accuracy output voltage. Each device contains a voltage reference, an error amplifier, a driver transistor and resistors for setting the output voltage. These devices are available in either SOT-89, 3 pin, or SOT-23, 5 pin, surface mount packages.

\section*{MC78LC00 Series Features:}
- Low Quiescent Current of \(1.1 \mu \mathrm{~A}\) Typical
- Low Dropout Voltage (30 mV Typical)
- Excellent Line Regulation (0.1\%)
- High Accuracy Output Voltage (\(\pm 2.5 \%\))
- Wide Output Voltage Range (2.0 V to 6.0 V)
- Output Current for Low Power (80 mA Typical)
- Two Surface Mount Packages (SOT-89, 3 Pin, or SOT-23, 5 Pin)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & \begin{tabular}{c}
Output \\
Voltage
\end{tabular} & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC78LC30HT1 & 3.0 & & \\
MC78LC33HT1 & 3.3 & & SOT-89 \\
MC78LC40HT1 & 4.0 & & \\
MC78LC50HT1 & 5.0 & & \\
\hline MC78LC30NTR & 3.0 & & \\
MC78LC33NTR & \(30^{\circ}\) to \(+80^{\circ} \mathrm{C}\) & \\
MC78LC40NTR & 3.3 & & SOT-23 \\
MC78LC50NTR & 5.0 & & \\
\hline
\end{tabular}

Other voltages from 2.0 to 6.0 V , in 0.1 V increments, are available upon request. Consult your local Motorola sales office for information.

\title{
Micropower Voltage Regulators for Portable Applications (continued) 120 mA Micropower Voltage Regulator
}

\section*{MC78FC00H}
\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\), Case 1213
The MC78FC00 series voltage regulators are specifically designed for use as a power source for video instruments, handheld communication equipment, and battery powered equipment.

The MC78FC00 series voltage regulator ICs feature a high accuracy output voltage and ultra-low quiescent current. Each device contains a voltage reference unit, an error amplifier, a driver transistor, and resistors for setting output voltage, and a current limit circuit. These devices are available in SOT-89 surface mount packages, and allow construction of an efficient, constant voltage power supply circuit.

\section*{MC78FC00 Series Features:}
- Ultra-Low Quiescent Current of \(1.1 \mu \mathrm{~A}\) Typical
- Ultra-Low Dropout Voltage (0.5 V Typical)
- Large Output Current (120 mA Typical)
- Excellent Line Regulation (0.1\%)
- Wide Operating Voltage Range (2.0 V to 10 V)
- High Accuracy Output Voltage (\(\pm 2.5 \%\))
- Wide Output Voltage Range (2.0 V to 6.0 V)
- Surface Mount Package (SOT-89)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & \begin{tabular}{c}
Output \\
Voltage
\end{tabular} & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC78FC30HT1 & 3.0 & & \\
MC78FC33HT1 & 3.3 & \(T_{A}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\) & SOT-89 \\
MC78FC40HT1 & 4.0 & & \\
MC78FC50HT1 & 5.0 & & \\
\hline
\end{tabular}

Other voltages from 2.0 to 6.0 V , in 0.1 V increments, are available upon request. Consult your local Motorola sales office for information.

\section*{Micropower Voltage Regulator for External Power Transistor}

\section*{MC78BC00N}
\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\), Case 1212
The MC78BC00 voltage regulators are specifically designed to be used with an external power transistor to deliver high current with high voltage accuracy and low quiescent current.

The MC78BC00 series are devices suitable for constructing regulators with ultra-low dropout voltage and output current in the range of several tens of mA to hundreds of mA . These devices have a chip enable function, which minimizes the standby mode current drain. Each of these devices contains a voltage reference unit, an error amplifier, a driver transistor and resistors. These devices are available in the SOT-23, 5 pin surface mount packages.

These devices are ideally suited for battery powered equipment, and power sources for hand-held audio instruments, communication equipment and domestic appliances.

\section*{MC78BC00 Series Features:}
- Ultra-Low Supply Current (\(50 \mu \mathrm{~A}\))
- Standby Mode (\(0.2 \mu \mathrm{~A}\))
- Ultra-Low Dropout Voltage (0.1 V with External Transistor and \(\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\))
- Excellent Line Regulation (Typically 0.1\%/V)
- High Accuracy Output Voltage (\(\pm 2.5 \%\))

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & \begin{tabular}{c}
Output \\
Voltage
\end{tabular} & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC78BC30NTR & 3.0 & & \\
MC78BC33NTR & 3.3 & \(\mathrm{~T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\) & SOT-23 \\
MC78BC40NTR & 4.0 & & \\
MC78BC50NTR & 5.0 & & \\
\hline
\end{tabular}

Other voltages from 2.0 to 6.0 V , in 0.1 V increments, are available upon request. Consult your local Motorola sales office for information.

\section*{Micropower Voltage Regulators for Portable Applications (continued) Micropower Voltage Regulators with On/Off Control}

MC33264D, DM
\(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 751, 846A

The MC33264 series are micropower low dropout voltage regulators available in SO-8 and Micro-8 surface mount packages and a wide range of output voltages. These devices feature a very low quiescent current (\(100 \mu \mathrm{~A}\) in the ON mode; \(0.1 \mu \mathrm{~A}\) in the OFF mode), and are capable of supplying output currents up to 100 mA . Internal current and thermal limiting protection is provided.

Additionally, the MC33264 has either active HIGH or active LOW control (Pins 2 and 3) that allows a logic level signal to turn-off or turn-on the regulator output.

Due to the low input-to-output voltage differential and bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable.

MC33264 Features:
- Low Quiescent Current (\(0.3 \mu \mathrm{~A}\) in OFF Mode; \(95 \mu \mathrm{~A}\) in ON Mode)
- Low Input-to-Output Voltage Differential of 47 mV at 10 mA , and 131 mV at 50 mA
- Multiple Output Voltages Available
- Extremely Tight Line and Load Regulation
- Stable with Output Capacitance of Only \(0.33 \mu \mathrm{~F}\) for \(5.0 \mathrm{~V}, 6.0 \mathrm{~V}\) and 4.75 V Output Voltages \(0.22 \mu \mathrm{~F}\) for \(2.8 \mathrm{~V}, 3.0 \mathrm{~V}\) and 3.3 V Output Voltages
- Internal Current and Thermal Limiting
- Logic Level ON/OFF Control

ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33264D-2.8 & & \\
MC33264D-3.0 & & \\
MC33264D-3.3 & & SO-8 \\
MC33264D-3.8 & & \\
MC33264D-4.0 & & \\
MC33264D-4.75 & & \\
MC33264D-5.0 & & Micro-8 \\
\hline MC33264DM-2.8 & & \\
MC33264DM-3.0 & & \\
MC33264DM-3.3 & & \\
MC33264DM-3.8 & & \\
MC33264DM-4.0 & & \\
MC33264DM-4.75 & & \\
MC33264DM-5.0 & & \\
\hline
\end{tabular}

\section*{Special Regulators}

\section*{Voltage Regulator/Supervisory}

Table 4. Voltage Regulator/Supervisory
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Device} & \multicolumn{2}{|c|}{\begin{tabular}{l}
\(v_{\text {out }}\) \\
(V)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\operatorname{lo} \\
(\mathrm{mA}) \\
\operatorname{Max}
\end{gathered}
\]} & \multicolumn{2}{|c|}{\[
\begin{aligned}
& \mathrm{V}_{\text {in }} \\
& \text { (V) }
\end{aligned}
\]} & \multirow[b]{2}{*}{Regline (mV) Max} & \multirow[b]{2}{*}{Regload (mV) Max} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}} \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
Suffix/ \\
Package
\end{tabular}} \\
\hline & Min & Max & & Min & Max & & & & \\
\hline \multirow[t]{4}{*}{MC33128*} & 2.9 & 3.1 & 35 & \multirow[t]{4}{*}{3.2} & \multirow[t]{4}{*}{7.0} & \multirow[t]{4}{*}{n/a} & 30 & \multirow[t]{4}{*}{-30 to +60} & \multirow[t]{4}{*}{D/751B} \\
\hline & 2.9 & 3.1 & 60 & & & & 40 & & \\
\hline & 2.9 & 3.1 & 20 & & & & 25 & & \\
\hline & -2.65 & -2.35 & 1.0 & & & & 20 & & \\
\hline MC34160 & \multirow[t]{2}{*}{4.75} & \multirow[t]{2}{*}{5.25} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{7.0} & \multirow[t]{2}{*}{40} & \multirow[t]{2}{*}{40} & \multirow[t]{2}{*}{50} & 0 to +70 & \multirow[t]{2}{*}{P/648C, DW/751G} \\
\hline MC33160 & & & & & & & & -40 to +85 & \\
\hline MC33267 & 4.9 & 5.2 & 500 & 6.0 & 26 & 50 & 50 & -40 to +105 & T/314D,
TH, TV \\
\hline \multirow[t]{3}{*}{MC33169*} & 4.7 & 6.4 & \multirow[t]{3}{*}{-} & \multirow[t]{3}{*}{2.7} & \multirow[t]{3}{*}{9.5} & \multirow[t]{3}{*}{-} & \multirow[t]{3}{*}{-} & \multirow[t]{3}{*}{-40 to +85} & \multirow[t]{3}{*}{DTB/948G} \\
\hline & 6.4 & 7.0 & & & & & & & \\
\hline & -2.35 & -2.65 & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
* These ICs are intended for powering cellular phone GaAs power amplifiers and can be used for other portable applications as well.
}

\section*{Voltage Regulator/Supervisory (continued) \\ Microprocessor Voltage Regulator and Supervisory Circuit}

MC34160P, DW
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case \(648 \mathrm{C}, 751 \mathrm{G}\)

MC33160P, DW
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case \(648 \mathrm{C}, 751 \mathrm{G}\)
The MC34160 series is a voltage regulator and supervisory circuit containing many of the necessary monitoring functions required in microprocessor based systems. It is specifically designed for appliance and industrial applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature a \(5.0 \mathrm{~V}, 100 \mathrm{~mA}\) regulator with short circuit current limiting, pinned out 2.6 V bandgap reference, low voltage reset comparator, power warning comparator with programmable hysteresis, and an uncommitted comparator ideally suited for microprocessor line synchronization.

Additional features include a chip disable input for low standby current, and internal thermal shutdown for over temperature protection.

These devices are contained in a 16 pin dual-in-line heat tab plastic package for improved thermal conduction.

\section*{Low Dropout Regulator}

\section*{MC33267T, TV}
\(\mathrm{TJ}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\), Case 314D, 314B
The MC33267 is a positive fixed 5.0 V regulator that is specifically designed to maintain proper voltage regulation with an extremely low input-to-output voltage differential. This device is capable of supplying output currents in excess of 500 mA and contains internal current limiting and thermal shutdown protection. Also featured is an on-chip power-up reset circuit that is ideally suited for use in microprocessor based systems. Whenever the regulator output voltage is below nominal, the reset output is held low. A programmable time delay is initiated after the regulator has reached its nominal level and upon timeout, the reset output is released.

Due to the low dropout voltage specifications, the MC33267 is ideally suited for use in battery powered industrial and consumer equipment where an extension of useful battery life is desirable. This device is contained in an economical five lead TO-220 type package.

Voltage Regulator/Supervisory (continued) Power Management Controller MC33128D
\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+60^{\circ} \mathrm{C}\), Case 751 B
The MC33128 is a power management controller specifically designed for use in battery powered cellular telephone and pager applications. This device contains all of the active functions required to interface the user to the system electronics via a microprocessor. This integrated circuit consists of a low dropout voltage regulator with power-up reset for MPU power, two low dropout voltage regulators for independant powering of analog and digital circuitry, and a negative charge pump voltage regulator for full depletion of gallium arsenide MESFETs.

Also included are protective system shutdown features consisting of a battery latch that is activated upon battery insertion, low battery voltage shutdown, and a thermal over temperature detector. This device is available in a 16-pin narrow body surface mount plastic package.

\section*{GaAs Power Amplifier Support IC}

\section*{MC33169DTB}
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 948 G
The MC33169 is a support IC for GaAs Power Amplifier Enhanced FETs used in hand portable telephones such as GSM, PCN and DECT. This device provides negative voltages for full depletion of Enhanced MESFETs as well as a priority management system of drain switching, ensuring that the negative voltage is always present before turning "on" the Power Amplifier. Additional features include an idle mode input and a direct drive of the N -Channel drain switch transistor.

This product is available in two versions, -2.5 and -4.0 V . The -4.0 V version is intended for supplying RF modules for GSM and DCS1800 applications, whereas the -2.5 V version is dedicated for DECT and PHS systems.
- Negative Regulated Output for Full Depletion of GaAs MESFETs
- Drain Switch Priority Management Circuit
- CMOS Compatible Inputs
- Idle Mode Input (Standby Mode) for Very Low Current Consumption
- Output Signal Directly Drives N -Channel FET
- Low Startup and Operating Current

\section*{SCSI Regulator}

Table 5. SCSI Regulator
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Device} & \multicolumn{2}{|c|}{\begin{tabular}{l}
\(v_{\text {out }}\) \\
(V)
\end{tabular}} & \multirow[b]{2}{*}{Isink (mA)} & \multicolumn{2}{|c|}{\[
\begin{aligned}
& V_{\text {in }} \\
& \text { (V) }
\end{aligned}
\]} & \multirow[b]{2}{*}{Regline (\%)} & \multirow[b]{2}{*}{Regioad (\%)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{J}} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\]} & \multirow[b]{2}{*}{Suffix/ Package} \\
\hline & Min & Max & & Min & Max & & & & \\
\hline MC34268 & 2.81 & 2.89 & 800 & 3.9 & 20 & 0.3 & 0.5 & 150 & D/751, DT \\
\hline
\end{tabular}

\section*{SCSI-2 Active Terminator Regulator}

\section*{MC34268D, DT}
\(\mathrm{T}_{\mathrm{J}}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case 751, 369A

The MC34268 is a medium current, low dropout positive voltage regulator specifically designed for use in SCSI-2 active termination circuits. This device offers the circuit designer an economical solution for precision voltage regulation, while keeping power losses to a minimum. The regulator consists of a 1.0 V dropout composite PNP/NPN pass transistor, current limiting, and thermal limiting. These devices are packaged in the 8-pin SOP-8 and 3-pin DPAK surface mount power packages.

Applications include active SCSI-2 terminators and post regulation of switching power supplies.
- 2.85 V Output Voltage for SCSI-2 Active Termination
- 1.0 V Dropout
- Output Current in Excess of 800 mA
- Thermal Protection
- Short Circuit Protection
- Output Trimmed to \(1.4 \%\) Tolerance
- No Minimum Load Required
- Space Saving DPAK and SOP-8 Surface Mount Power Packages

\section*{Switching Regulator Control Circuits}

These devices contain the primary building blocks which are required to implement a variety of switching power supplies. The product offerings fall into three major categories consisting of single-ended and double-ended controllers, plus single-ended ICs with on-chip power switch transistors. These circuits operate in voltage, current or resonant modes
and are designed to drive many of the standard switching topologies. The single-ended configurations include buck, boost, flyback and forward converters. The double-ended devices control push-pull, half bridge and full bridge configurations.

\section*{Table 6. Single-Ended Controllers}

These single-ended voltage and current mode controllers are designed for use in buck, boost, flyback, and forward converters. They are cost effective in applications that range from 0.1 to 200 W power output.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { lo } \\
(\mathrm{mA}) \\
\text { Max }
\end{gathered}
\] & Minimum Operating Voltage Range (V) & Operating Mode & Reference (V) & Maximum Useful Oscillator Frequency (kHz) & Device & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}} \\
\left({ }^{\mathrm{C}}\right)
\end{gathered}
\] & \begin{tabular}{l}
Suffix/ \\
Package
\end{tabular} \\
\hline \multirow[t]{4}{*}{500
(Uncommitted
Drive Output)} & \multirow[t]{4}{*}{7.0 to 40} & \multirow[t]{4}{*}{Voltage} & \multirow[t]{4}{*}{\(5.0 \pm 1.5 \%\)} & \multirow[t]{4}{*}{200} & \multirow[t]{2}{*}{MC34060A} & \multirow[t]{2}{*}{0 to +70} & D/751A \\
\hline & & & & & & & P/646 \\
\hline & & & & & \multirow[t]{2}{*}{MC33060A} & \multirow[t]{2}{*}{-40 to +85} & D/751A \\
\hline & & & & & & & P/646 \\
\hline \multirow[t]{26}{*}{1000
(Totem Pole MOSFET
Drive Output)} & \multirow[t]{4}{*}{4.2 to 12} & \multirow[t]{26}{*}{Current} & \multirow[t]{4}{*}{\(1.25 \pm 2.0 \%\)} & \multirow[t]{4}{*}{300} & \multirow[t]{2}{*}{MC34129} & \multirow[t]{2}{*}{0 to +70} & D/751A \\
\hline & & & & & & & P/646 \\
\hline & & & & & \multirow[t]{2}{*}{MC33129} & \multirow[t]{2}{*}{-40 to +85} & D/751A \\
\hline & & & & & & & P/646 \\
\hline & \multirow[t]{2}{*}{11.5 to 30} & & \multirow[t]{2}{*}{\(5.0 \pm 2.0 \%\)} & \multirow[t]{8}{*}{500} & \multirow[t]{2}{*}{UC3842A} & \multirow[t]{2}{*}{0 to +70} & D/751A \\
\hline & & & & & & & N/626 \\
\hline & \multirow[t]{2}{*}{11 to 30} & & \multirow[t]{2}{*}{\(5.0 \pm 1.0 \%\)} & & \multirow[t]{2}{*}{UC2842A} & \multirow[t]{2}{*}{-25 to +85} & D/751A \\
\hline & & & & & & & N/626 \\
\hline & \multirow[t]{4}{*}{8.2 to 30} & & \multirow[t]{2}{*}{\(5.0 \pm 2.0 \%\)} & & \multirow[t]{2}{*}{UC3843A} & \multirow[t]{2}{*}{0 to +70} & D/751A \\
\hline & & & & & & & N/626 \\
\hline & & & \multirow[t]{2}{*}{\(5.0 \pm 1.0 \%\)} & & \multirow[t]{2}{*}{UC2843A} & \multirow[t]{2}{*}{-25 to +85} & D/751A \\
\hline & & & & & & & N/626 \\
\hline & \multirow[t]{2}{*}{11.5 to 30} & & \multirow[t]{2}{*}{\(5.0 \pm 2.0 \%\)} & \multirow[t]{8}{*}{\[
\begin{gathered}
500 \\
\text { (50\% Duty } \\
\text { Cycle Limit) }
\end{gathered}
\]} & \multirow[t]{2}{*}{UC3844} & \multirow[t]{2}{*}{0 to +70} & D/751A \\
\hline & & & & & & & N/626 \\
\hline & \multirow[t]{2}{*}{11 to 30} & & \multirow[t]{2}{*}{\(5.0 \pm 1.0 \%\)} & & \multirow[t]{2}{*}{UC2844} & \multirow[t]{2}{*}{-25 to +85} & D/751A \\
\hline & & & & & & & N/626 \\
\hline & \multirow[t]{4}{*}{8.2 to 30} & & \multirow[t]{2}{*}{\(5.0 \pm 2.0 \%\)} & & \multirow[t]{2}{*}{UC3845} & \multirow[t]{2}{*}{0 to +70} & D/751A \\
\hline & & & & & & & N/626 \\
\hline & & & \multirow[t]{2}{*}{\(5.0 \pm 1.0 \%\)} & & \multirow[t]{2}{*}{UC2845} & \multirow[t]{2}{*}{-25 to +85} & D/751A \\
\hline & & & & & & & N/626 \\
\hline & \multirow[t]{6}{*}{11.5 to 30} & & \multirow[t]{6}{*}{\(5.0 \pm 2.0 \%\)} & \multirow[t]{6}{*}{\begin{tabular}{l}
500 \\
(Improved Oscillator Specifications with Frequency Guaranteed at 250 kHz)
\end{tabular}} & \multirow[t]{3}{*}{UC3842B} & \multirow[t]{3}{*}{0 to +70} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline & & & & & \multirow[t]{3}{*}{UC3842BV} & \multirow[t]{3}{*}{-40 to +105} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline
\end{tabular}

Table 6. Single-Ended Controllers (continued)
These single-ended voltage and current mode controllers are designed for use in buck, boost, flyback, and forward converters. They are cost effective in applications that range from 0.1 to 200 W power output.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\mathbf{l o} \\
(\mathrm{mA}) \\
\operatorname{Max}
\end{gathered}
\] & Minimum Operating Voltage Range (V) & Operating Mode & Reference (V) & Maximum Useful Oscillator Frequency (kHz) & Device & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}} \\
\left({ }^{\mathrm{C}}\right)
\end{gathered}
\] & \begin{tabular}{l}
Suffix/ \\
Package
\end{tabular} \\
\hline \multirow[t]{30}{*}{1000
(Totem Pole MOSFET
Drive Output)} & \multirow[t]{3}{*}{11 to 30} & \multirow[t]{31}{*}{Current} & \multirow[t]{3}{*}{\(5.0 \pm 1.0 \%\)} & \multirow[t]{12}{*}{500
(Improved
Oscillator
Specifications
with
Frequency
Guaranteed
at 250 kHz)} & \multirow[t]{3}{*}{UC2842B} & \multirow[t]{3}{*}{-25 to +85} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline & \multirow[t]{9}{*}{8.2 to 30} & & \multirow[t]{6}{*}{\(5.0 \pm 2.0 \%\)} & & \multirow[t]{3}{*}{UC3843B} & \multirow[t]{3}{*}{0 to +70} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline & & & & & \multirow[t]{3}{*}{UC3843BV} & \multirow[t]{3}{*}{-40 to +105} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline & & & \multirow[t]{3}{*}{\(5.0 \pm 1.0 \%\)} & & \multirow[t]{3}{*}{UC2843B} & \multirow[t]{3}{*}{-25 to +85} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline & \multirow[t]{6}{*}{11.5 to 30} & & \multirow[t]{6}{*}{\(5.0 \pm 2.0 \%\)} & \multirow[t]{19}{*}{\[
\begin{gathered}
\hline 500 \\
\text { (50\% Duty } \\
\text { Cycle Limit) }
\end{gathered}
\]} & \multirow[t]{3}{*}{UC3844B} & \multirow[t]{3}{*}{0 to +70} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline & & & & & \multirow[t]{3}{*}{UC3844BV} & \multirow[t]{3}{*}{-40 to +105} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline & \multirow[t]{3}{*}{11 to 30} & & \multirow[t]{3}{*}{\(5.0 \pm 1.0 \%\)} & & \multirow[t]{3}{*}{UC2844B} & \multirow[t]{3}{*}{-25 to +85} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline & \multirow[t]{9}{*}{8.2 to 30} & & \multirow[t]{6}{*}{\(5.0 \pm 2.0 \%\)} & & \multirow[t]{3}{*}{UC3845B} & \multirow[t]{3}{*}{0 to +70} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline & & & & & \multirow[t]{3}{*}{UC3845BV} & \multirow[t]{3}{*}{-40 to +105} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline & & & \multirow[t]{3}{*}{\(5.0 \pm 1.0 \%\)} & & \multirow[t]{3}{*}{UC2845B} & \multirow[t]{4}{*}{-25 to +85} & D/751A \\
\hline & & & & & & & D1/751 \\
\hline & & & & & & & N/626 \\
\hline 1000 Source
1500 Sink
(Split Totem Pole
Bipolar Drive Output) & 11 to 18 & & \(5.0 \pm 6.0 \%\) & & MC44602 & & P2/648C \\
\hline \multirow[t]{6}{*}{2000
(Totem Pole MOSFET
Drive Output)} & \multirow[t]{6}{*}{9.2 to 30} & \multirow[t]{6}{*}{\[
\begin{aligned}
& \hline \text { Current } \\
& \text { or } \\
& \text { Voltage }
\end{aligned}
\]} & \multirow[t]{6}{*}{\(5.1 \pm 1.0 \%\)} & \multirow[t]{6}{*}{1000} & \multirow[t]{3}{*}{MC34023} & \multirow[t]{3}{*}{0 to +70} & DW/751G \\
\hline & & & & & & & FN/775 \\
\hline & & & & & & & P/648 \\
\hline & & & & & \multirow[t]{3}{*}{MC33023} & \multirow[t]{3}{*}{-40 to +105} & DW/751G \\
\hline & & & & & & & FN/775 \\
\hline & & & & & & & P/648 \\
\hline
\end{tabular}

\section*{Table 7. Single-Ended Controllers with On-Chip Power Switch}

These monolithic power switching regulators contain all the active functions required to implement standard dc-to-dc converter configurations with a minimum number of external components.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\mathrm{IO}_{0} \\
(\mathrm{~mA}) \\
\operatorname{Max}
\end{gathered}
\] & Minimum Operating Voltage Range (V) & Operating Mode & \begin{tabular}{l}
Reference \\
(V)
\end{tabular} & \begin{tabular}{l}
Maximum \\
Useful Oscillator Frequency (kHz)
\end{tabular} & Device & \[
\begin{gathered}
\mathbf{T}_{\mathbf{A}} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Suffix/ Package \\
\hline \multirow[t]{7}{*}{\[
\begin{gathered}
1500 \\
\text { (Uncommitted } \\
\text { Power Switch) }
\end{gathered}
\]} & \multirow[t]{7}{*}{2.5 to 40} & \multirow[t]{7}{*}{Voltage} & \multirow[t]{2}{*}{\(1.25 \pm 5.2 \%(1)\)} & \multirow[t]{7}{*}{100} & \multirow[t]{2}{*}{\(\mu \mathrm{A} 78 \mathrm{~S} 40\)} & 0 to +70 & PC/648 \\
\hline & & & & & & -40 to +85 & PV/648 \\
\hline & & & \multirow[t]{5}{*}{\(1.25 \pm 2.0 \%\)} & & \multirow[t]{2}{*}{MC34063A} & \multirow[t]{2}{*}{0 to +70} & D/751 \\
\hline & & & & & & & P1/626 \\
\hline & & & & & \multirow[t]{3}{*}{MC33063A} & \multirow[t]{2}{*}{-40 to +85} & D/751 \\
\hline & & & & & & & P1/626 \\
\hline & & & & & & -40 to +125 & D/751 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\[
1500
\] \\
(Uncommitted Power Switch)
\end{tabular}} & \multirow[t]{2}{*}{3.0 to 65} & \multirow[t]{8}{*}{Voltage} & \multirow[t]{4}{*}{\[
\begin{gathered}
1.25 \pm 2.0 \% \\
\text { and } \\
5.05 \pm 3.0 \%
\end{gathered}
\]} & \multirow[t]{4}{*}{100} & MC34165 & 0 to +70 & \multirow[t]{4}{*}{P/648C, DW/751G} \\
\hline & & & & & MC33165 & -40 to +85 & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
3400 \\
(Uncommitted Power Switch)
\end{tabular}} & \multirow[t]{2}{*}{2.5 to 40} & & & & MC34163 & 0 to +70 & \\
\hline & & & & & MC33163 & -40 to +85 & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
3400(2) \\
\text { (Dedicated Emitter } \\
\text { Power Switch) }
\end{gathered}
\]} & \multirow[t]{4}{*}{7.5 to 40} & & \multirow[t]{4}{*}{\(5.05 \pm 2.0 \%\)} & \multirow[t]{4}{*}{\begin{tabular}{l}
\[
72 \pm 12 \%
\] \\
Internally Fixed
\end{tabular}} & MC34166 & 0 to +70 & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { D2T/936A, } \\
\text { TH, TV, } \\
\text { T/314D }
\end{gathered}
\]} \\
\hline & & & & & MC33166 & -40 to +85 & \\
\hline \multirow[t]{2}{*}{```
 5500(3)
(Dedicated Emitter
 Power Switch)
```} & & & & & MC34167 & 0 to +70 & \\
\hline & & & & & MC33167 & -40 to +85 & \\
\hline
\end{tabular}
(1) Tolerance applies over the specified operating temperature range.
(2) Guaranteed minimum, typically 4300 mA .
(3) Guaranteed minimum, typically 6500 mA .

Table 8. Easy Switcher \({ }^{T M}\) Single-Ended Controllers with On-Chip Power Switch
The Easy Switcher \({ }^{T M}\) series is ideally suited for easy, convenient design of a step-down switching regulator (buck converter), with a minimum number of external components.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\mathrm{IO} \\
(\mathrm{~mA}) \\
\mathrm{Max}
\end{gathered}
\] & Minimum Operating Voltage Range (V) & Operating Mode & Oscillator Frequency (kHz) & Output Voltage (V) & Device & \[
\begin{gathered}
\mathrm{T}_{\mathrm{J}} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Suffix/ Package \\
\hline \multirow[t]{3}{*}{1000} & \[
\begin{gathered}
4.75 \text { to } 40 \\
8.0 \text { to } 40 \\
15 \text { to } 40 \\
18 \text { to } 40 \\
8.0 \text { to } 40
\end{gathered}
\] & \multirow[t]{3}{*}{Voltage} & \multirow[t]{3}{*}{52 Fixed Internal} & \[
\begin{gathered}
\hline 3.3 \\
5.0 \\
12 \\
15 \\
1.23 \text { to } 37
\end{gathered}
\] & \begin{tabular}{l}
LM2575T-3.3 \\
LM2575T-5 \\
LM2575T-12 \\
LM2575T-15 \\
LM2575T-Adj
\end{tabular} & \multirow[t]{3}{*}{-40 to +125} & T/314D \\
\hline & \[
\begin{aligned}
& 4.75 \text { to } 40 \\
& 8.0 \text { to } 40 \\
& 15 \text { to } 40 \\
& 18 \text { to } 40 \\
& 8.0 \text { to } 40
\end{aligned}
\] & & & \[
\begin{gathered}
3.3 \\
5.0 \\
12 \\
15 \\
1.23 \text { to } 37
\end{gathered}
\] & \begin{tabular}{l}
LM2575TV-3.3 \\
LM2575TV-5 \\
LM2575TV-12 \\
LM2575TV-15 \\
LM2575TV-Adj
\end{tabular} & & TV/314B \\
\hline & \[
\begin{aligned}
& 4.75 \text { to } 40 \\
& 8.0 \text { to } 40 \\
& 15 \text { to } 40 \\
& 18 \text { to } 40 \\
& 8.0 \text { to } 40
\end{aligned}
\] & & & \[
\begin{gathered}
3.3 \\
5.0 \\
12 \\
15 \\
1.23 \text { to } 37
\end{gathered}
\] & \begin{tabular}{l}
LM2575D2T-3.3 \\
LM2575D2T-5 \\
LM2575D2T-12 \\
LM2575D2T-15 \\
LM2575D2T-Adj
\end{tabular} & & D2T/936A \\
\hline
\end{tabular}

\section*{Table 9. Very High Voltage Single-Ended Controller with On-Chip Power Switch}

This monolithic high voltage switching regulator is specifically designed to operate from a rectified ac line voltage source. Included are an on-chip high voltage power switch, active off-line startup circuitry and a full featured PWM controller with fault protection.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Power Switch Maximum Rating} & \multirow[b]{2}{*}{Startup Input Max (V)} & \multirow[b]{2}{*}{Operating Mode} & \multirow[b]{2}{*}{Feedback Threshold (V)} & \multirow[t]{2}{*}{Maximum Useful Oscillator Frequency (kHz)} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{J}} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
Suffix/ \\
Package
\end{tabular}} \\
\hline VDS (V) & IDS (mA) & & & & & & & \\
\hline 500 & 2000 & 250 & \multirow[t]{3}{*}{Voltage} & \multirow[t]{3}{*}{\(2.6 \pm 3.1 \%\)} & \multirow[t]{3}{*}{1000} & MC33362 & \multirow[t]{3}{*}{-25 to +125} & \multirow[t]{3}{*}{DW/751N, P/648E} \\
\hline 700 & 1000 & 450 & & & & MC33363 & & \\
\hline 700 & 1000 & 450 & & & & MC33363A & & \\
\hline
\end{tabular}

\section*{Table 10. Double-Ended Controllers}

These double-ended voltage, current and resonant mode controllers are designed for use in push-pull, half-bridge, and full-bridge converters. They are cost effective in applications that range from 100 to 2000 watts power output.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\mathrm{lo} \\
(\mathrm{~mA}) \\
\mathrm{Max}
\end{gathered}
\] & \begin{tabular}{l}
Minimum \\
Operating Voltage Range (V)
\end{tabular} & Operating Mode & Reference (V) & Maximum Useful Oscillator Frequency (kHz) & Device & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}} \\
\left({ }^{\mathrm{C}}\right)
\end{gathered}
\] & \begin{tabular}{l}
Suffix/ \\
Package
\end{tabular} \\
\hline \multirow[t]{4}{*}{500
(Uncommitted
Drive Outputs)} & \multirow[t]{4}{*}{7.0 to 40} & \multirow[t]{7}{*}{Voltage} & \multirow[t]{2}{*}{\(5.0 \pm 5.0 \%\) (1)} & \multirow[t]{2}{*}{200} & \multirow[t]{2}{*}{TL494} & 0 to +70 & CN/648 \\
\hline & & & & & & -25 to +85 & IN/648 \\
\hline & & & \multirow[t]{2}{*}{\(5.0 \pm 1.5 \%\)} & \multirow[t]{2}{*}{300} & \multirow[t]{2}{*}{TL594} & 0 to +70 & CN/648 \\
\hline & & & & & & -25 to +85 & IN/648 \\
\hline \multirow[t]{2}{*}{\(\pm 500\)
(Totem Pole MOSFET
Drive Outputs)} & \multirow[t]{3}{*}{8.0 to 40} & & \multirow[t]{2}{*}{\(5.1 \pm 2.0 \%\)} & \multirow[t]{3}{*}{400} & SG3525A & \multirow[t]{2}{*}{0 to +70} & N/648 \\
\hline & & & & & SG3527A & & N/648 \\
\hline \(\pm 200\)
(Totem Pole MOSFET
Drive Outputs) & & & \(5.0 \pm 2.0 \%\) & & SG3526 & 0 to +125(2) & N/707 \\
\hline \multirow[t]{8}{*}{\(\pm 1500\)
(Totem Pole MOSFET
Drive Outputs)} & \multirow[t]{8}{*}{9.6 to 20} & \multirow[t]{4}{*}{Resonant (Zero Current)} & \multirow[t]{8}{*}{\(5.1 \pm 2.0 \%\)} & \multirow[t]{4}{*}{1000} & \multirow[t]{2}{*}{MC34066} & \multirow[t]{2}{*}{0 to +70} & DW/751G \\
\hline & & & & & & & P/648 \\
\hline & & & & & \multirow[t]{2}{*}{MC33066} & \multirow[t]{2}{*}{-40 to +85} & DW/751G \\
\hline & & & & & & & P/648 \\
\hline & & \multirow[t]{4}{*}{Resonant (Zero Voltage)} & & \multirow[t]{4}{*}{2000} & \multirow[t]{2}{*}{MC34067} & \multirow[t]{2}{*}{0 to +70} & DW/751G \\
\hline & & & & & & & P/648 \\
\hline & & & & & \multirow[t]{2}{*}{MC33067} & \multirow[t]{2}{*}{-40 to +85} & DW/751G \\
\hline & & & & & & & P/648 \\
\hline \multirow[t]{6}{*}{\[
\begin{gathered}
2000 \\
\text { (Totem Pole MOSFET }
\end{gathered}
\]
Drive Outputs)} & \multirow[t]{6}{*}{9.2 to 30} & \multirow[t]{6}{*}{Current or Voltage} & \multirow[t]{6}{*}{\(5.1 \pm 1.0 \%\)} & \multirow[t]{6}{*}{1000} & \multirow[t]{3}{*}{MC34025} & \multirow[t]{3}{*}{0 to +70} & DW/751G \\
\hline & & & & & & & FN/775 \\
\hline & & & & & & & P/648 \\
\hline & & & & & \multirow[t]{3}{*}{MC33025} & \multirow[t]{3}{*}{-40 to +105} & DW/751G \\
\hline & & & & & & & FN/775 \\
\hline & & & & & & & P/648 \\
\hline
\end{tabular}

\footnotetext{
(1) Tolerance applies over the specified operating temperature range.
(2) Junction Temperature Range.
}

\section*{Switching Regulator Control Circuits (continued)}

\section*{CMOS Micropower DC-to-DC Converters}

\section*{Variable Frequency Micropower DC-to-DC Converter}

\section*{MC33463H}
\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\), Case 1213
The MC33463 series are micropower switching voltage regulators, specifically designed for handheld and laptop applications, to provide regulated output voltages using a minimum of external parts. A wide choice of output voltages are available. These devices feature a very low quiescent bias current of \(4.0 \mu \mathrm{~A}\) typical.

The MC33463H-XXLT1 series features a highly accurate voltage reference, an oscillator, a variable frequency modulation (VFM) controller, a driver transistor (Lx), an error amplifier and feedback resistive divider.

The MC33463H-XXLT1 is identical to the MC33463H-XXKT1, except that a drive pin (EXT) for an external transistor is provided.

Due to the low bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable.
MC33463 Series Features:
- Low Quiescent Bias Current of \(4.0 \mu \mathrm{~A}\)
- High Output Voltage Accuracy of \(\pm 2.5 \%\)
- Low Startup Voltage of 0.9 V at 1.0 mA
- Surface Mount Package

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline Device & \begin{tabular}{c} 
Output \\
Voltage
\end{tabular} & Type & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & \begin{tabular}{c} 
Package \\
(Tape/Reel)
\end{tabular} \\
\hline MC33463H-30KT1 & 3.0 & Int. & & \begin{tabular}{c} 
SOT-89 \\
(Tape)
\end{tabular} \\
MC33463H-33KT1 & 3.3 & Switch & & \\
MC33463H-50KT1 & 5.0 & & \multirow{3}{*}{\(\mathrm{TA}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\)} & \begin{tabular}{c} 
SOT-89 \\
(Tape)
\end{tabular} \\
\hline MC33463H-30LT1 & 3.0 & Ext. & & \\
MC33463H-33LT1 & 3.3 & Switch & & \\
MC33463H-50LT1 & 5.0 & Drive & & \\
\hline
\end{tabular}

Other voltages from 2.5 V to 7.5 V , in 0.1 V increments are available upon request. Consult your local Motorola sales office for information.


\section*{CMOS Micropower DC-to-DC Converters (continued)}

\section*{Fixed Frequency PWM Micropower DC-to-DC Converter}

MC33466H
\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\), Case 1213

The MC33466 series are micropower switching voltage regulators, specifically designed for handheld and laptop applications, to provide regulated output voltages using a minimum of external parts. A wide choice of output voltages are available. These devices feature a very low quiescent bias current of \(15 \mu \mathrm{~A}\) typical.

The MC33466H-XXJT1 series features a highly accurate voltage reference, an oscillator, a pulse width modulation (PWM) controller, a driver transistor (Lx), an error amplifier and feedback resistive divider.

The MC33466H-XXLT1 is identical to the MC33466H-XXJT1, except that a drive pin (EXT) for an external transistor is provided.

Due to the low bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable.

\section*{MC33466 Series Features.}
- Low Quiescent Bias Current of \(15 \mu \mathrm{~A}\)
- High Output Voltage Accuracy of \(\pm 2.5 \%\)
- Low Startup Voltage of 0.9 V at 1.0 mA
- Soft-Start \(=500 \mu \mathrm{~s}\)
- Surface Mount Package

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline Device & \begin{tabular}{l}
Output \\
Voltage
\end{tabular} & Type & Operating Temperature Range & Package (Tape/Reel) \\
\hline MC33466H-30JT1 & 3.0 & Int. & \multirow{6}{*}{\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\)} & SOT-89 \\
\hline MC33466H-33JT1 & 3.3 & Switch & & (Tape) \\
\hline MC33466H-50JT1 & 5.0 & & & \\
\hline MC33466H-30LT1 & 3.0 & Ext. & & SOT-89 \\
\hline MC33466H-33LT1 & 3.3 & Switch & & (Tape) \\
\hline MC33466H-50LT1 & 5.0 & Drive & & \\
\hline
\end{tabular}

Other voltages from 2.5 V to 7.5 V , in 0.1 V increments are available upon request. Consult your local Motorola sales office for information.


\section*{Switching Regulator Control Circuits (continued)}

\author{
Single-Ended GreenLine \({ }^{\text {TM }}\) Controllers \\ Mixed Frequency Mode GreenLine \({ }^{\text {TM }}\) PWM Controller: \\ Fixed Frequency, Variable Frequency, Standby Mode
}

MC44603P, DW
\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case \(648,751 \mathrm{G}\)

The MC44603 is an enhanced high performance controller that is specifically designed for off-line and dc-to-dc converter applications. This device has the unique ability of automatically changing operating modes if the converter output is overloaded, unloaded, or shorted, offering the designer additional protection for increased system reliability. The MC44603 has several distinguishing features when compared to conventional SMPS controllers. These features consist of a foldback facility for overload protection, a standby mode when the converter output is slightly loaded, a demagnetization detection for reduced switching stresses on transistor and diodes, and a high current totem pole output ideally suited for driving a power MOSFET. It can also be used for driving a bipolar transistor in low power converters (<150 W). It is optimized to operate in discontinuous mode but can also operate in continuous mode. Its advanced design allows use in current mode or voltage mode control applications.

\section*{Current or Voltage Mode Controller}
- Operation up to 250 kHz Output Switching Frequency
- Inherent Feed Forward Compensation
- Latching PWM for Cycle-by-Cycle Current Limiting
- Oscillator with Precise Frequency Control

\section*{High Flexibility}
- Externally Programmable Reference Current
- Secondary or Primary Sensing
- Synchronization Facility
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis

\section*{Safety/Protection Features}
- Overvoltage Protection Against Open Current and Open Voltage Loop
- Protection Against Short Circuit on Oscillator Pin
- Fully Programmable Foldback
- Soft-Start Feature
- Accurate Maximum Duty Cycle Setting
- Demagnetization (Zero Current Detection) Protection
- Internally Trimmed Reference

\section*{GreenLine Controller: Low Power Consumption in Standby Mode}
- Low Startup and Operating Current
- Fully Programmable Standby Mode
- Controlled Frequency Reduction in Standby Mode
- Low dV/dT for Low EMI Radiations

\section*{High Safety Standby Ladder Mode GreenLine \({ }^{\text {TM }}\) PWM Controller}

\section*{MC44604P}
\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 648

The MC44604 is an enhanced high performance controller that is specifically designed for off-line and dc-to-dc converter applications.

The MC44604 is a modification of the MC44603. The MC44604 offers enhanced safety and reliable power management in its protection features (foldback, overvoltage detection, soft-start, accurate demagnetization detection). Its high current totem pole output is also ideally suited for driving a power MOSFET but can also be used for driving a bipolar transistor in low power converters (<150 W).

In addition, the MC44604 offers a new efficient way to reduce the standby operating power by means of a patented standby ladder mode operation of the converter significantly reducing the converter consumption in standby mode.

\section*{Current or Voltage Mode Controller}
- Operation Up to 250 kHz Output Switching Frequency
- Inherent Feed Forward Compensation
- Latching PWM for Cycle-by-Cycle Current Limiting
- Oscillator with Precise Frequency Control

\section*{High Flexibility}
- Externally Programmable Reference Current
- Secondary or Primary Sensing
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis

\section*{Safety/Protection Features}
- Overvoltage Protection Facility Against Open Loop
- Protection Against Short Circuit on Oscillator Pin
- Fully Programmable Foldback
- Soft-Start Feature
- Accurate Maximum Duty Cycle Setting
- Demagnetization (Zero Current Detection) Protection
- Internally Trimmed Reference

\section*{GreenLine \({ }^{T M}\) Controller:}
- Low Startup and Operating Current
- Patented Standby Ladder Mode for Low Standby Losses
- Low dV/dT for Low EMI

\section*{Single-Ended GreenLine \({ }^{\text {TM }}\) Controllers (continued)}

\section*{High Safety Latched Mode GreenLine \({ }^{\text {TM }}\) PWM Controller for (Multi)Synchronized Applications}

MC44605P
\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 648

The MC44605 is a high performance current mode controller that is specifically designed for off-line converters. The MC44605 has several distinguishing features that make it particularly suitable for multisynchronized monitor applications.

The MC44605 synchronization arrangement enables operation from 16 kHz up to 130 kHz . This product was optimized to operate with universal ac mains voltage from 80 V to 280 V , and its high current totem pole output makes it ideally suited for driving a power MOSFET.

The MC44605 protections provide well controlled, safe power management. Safety enhancements detect four different fault conditions and provide protection through a disabling latch.

\section*{Current or Voltage Mode Controller}
- Current Mode Operation Up to 250 kHz Output Switching Frequency
- Inherent Feed Forward Compensation
- Latching PWM for Cycle-by-Cycle Current Limiting
- Oscillator with Precise Frequency Control
- Externally Programmable Reference Current
- Secondary or Primary Sensing (Availability of Error Amplifier Output)
- Synchronization Facility
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis
- Low Output dV/dT for Low EMI
- Low Startup and Operating Current

\section*{Safety/Protection Features}
- Soft-Start Feature
- Demagnetization (Zero Current Detection) Protection
- Overvoltage Protection Facility Against Open Loop
- EHT Overvoltage Protection (E.H.T.OVP): Protection

Against Excessive Amplitude Synchronization Pulses
- Winding Short Circuit Detection (W.S.C.D.)
- Limitation of the Maximum Input Power (M.P.L.): Calculation of Input Power for Overload Protection
- Over Heating Detection (O.H.D.): to Prevent the Power Switch from Excessive Heating

\section*{Latched Disabling Mode}
- When one of the following faults is detected: EHT overvoltage, Winding Short Circuit (WSCD), excessive input power (M.P.L.), power switch over heating (O.H.D.), a counter is activated
- If the counter is activated for a time that is long enough, the circuit gets definitively disabled. The latch can only be reset by removing and then re-applying power

\title{
Switching Regulator Control Circuits (continued) \\ Very High Voltage Switching Regulator
}

MC33362DW, \(P\)
\(\mathrm{T}_{\mathrm{J}}=-25^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case \(751 \mathrm{~N}, 658 \mathrm{E}\)

The MC33362 is a monolithic high voltage switching regulator that is specifically designed to operate from a rectified 120 VAC line source. This integrated circuit features an on-chip \(500 \mathrm{~V} / 2.0\) A SenseFET power switch, 250 V active off-line startup FET, duty cycle controlled oscillator, current limiting comparator with a programmable threshold and leading edge blanking, latching pulse width modulator for double pulse suppression, high gain error amplifier, and a trimmed internal bandgap reference. Protective features include cycle-by-cycle current limiting, input undervoltage lockout with hysteresis, output overvoltage protection, and
thermal shutdown. This device is available in a 16-lead dual-in-line and wide body surface mount packages.
- On-Chip 500 V, 2.0 A SenseFET Power Switch
- Rectified 120 VAC Line Source Operation
- On-Chip 250 V Active Off-Line Startup FET
- Latching PWM for Double Pulse Suppression
- Cycle-By-Cycle Current Limiting
- Input Undervoltage Lockout with Hysteresis
- Output Overvoltage Protection Comparator
- Trimmed Internal Bandgap Reference
- Internal Thermal Shutdown

\section*{20 W Off-Line Converter}


\title{
Switching Regulator Control Circuits (continued) \\ Very High Voltage Switching Regulator
}

MC33363DW, P, MC33363ADW, P
\(\mathrm{T} J=-25^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case \(751 \mathrm{~N}, 648 \mathrm{E}\)

The MC33363 is a monolithic high voltage switching regulator that is specifically designed to operate from a rectified 240 Vac line source. This integrated circuit features an on-chip \(700 \mathrm{~V} / 1.0 \mathrm{~A}\) (1.5 A in MC33363A) SenseFET power switch, 450 V active off-line startup FET, duty cycle controlled oscillator, current limiting comparator with a programmable threshold and leading edge blanking, latching pulse width modulator for double pulse suppression, high gain error amplifier, and a trimmed internal bandgap reference. Protective features include cycle-by-cycle current limiting, input undervoltage lockout with hysteresis, output overvoltage protection, and thermal shutdown. This device is available in a 16-lead wide body surface mount package.
- On-Chip 700 V, 1.0 A SenseFET Power Switch
- On-Chip 700 V, 1.5 A SenseFET Power Switch in MC33363A
- Rectified 240 Vac Line Source Operation
- On-Chip 450 V Active Off-Line Startup FET
- Latching PWM for Double Pulse Suppression
- Cycle-By-Cycle Current Limiting
- Input Undervoltage Lockout with Hysteresis
- Output Overvoltage Protection Comparator
- Trimmed Internal Bandgap Reference
- Internal Thermal Shutdown


\section*{Switching Regulator Control Circuits (continued)}

\section*{Critical Conduction SMPS Controller}

MC33364D, D1, D2
\(\mathrm{T}_{\mathrm{J}}=-25^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case \(751,751 \mathrm{~B}\)

The MC33364 series are variable frequency SMPS controllers that operate in the critical conduction mode. They are optimized for low power, high density power supplies requiring minimum board area, reduced component count, and low power dissipation. Each narrow body SOIC package provides a small footprint. Integration of the high voltage startup saves approximately 0.7 W of power compared to resistor bootstrapped circuits.

Each MC33364 features an on-board reference, UVLO function, a watchdog timer to initiate output switching, a zero current detector to ensure critical conduction operation, a current sensing comparator, leading edge blanking, and a CMOS driver. Protection features include the ability to shut down switching, and cycle-by-cycle current limiting.

The MC33364D1 is available in a surface mount SO-8 package. It has an internal 144 kHz frequency clamp. For loads which have a low power operating condition, the
frequency clamp limits the maximum operating frequency, preventing excessive switching losses and EMI radiation.

The MC33364D2 is available in the SO-8 package without an internal frequency clamp.

The MC33364D is available in the SO-16 package. It has an internal 144 kHz frequency clamp which is pinned out, so that the designer can adjust the clamp frequency by connecting appropriate values of resistance and capacitance.
- Lossless Off-Line Startup
- Leading Edge Blanking for Noise Immunity
- Watchdog Timer to Initiate Switching
- Minimum Number of Support Components
- Shutdown Capability
- Over Temperature Protection
- Optional Frequency Clamp


\section*{Special Switching Regulator Controllers}

These high performance dual channel controllers are optimized for off-line, ac-to-dc power supplies and dc-to-dc converters in the flyback topology. They also have undervoltage lockout voltages which are optimized for off-line
and lower voltage dc-to-dc converters, respectively. Applications include desktop computers, peripherals, televisions, games, and various consumer appliances.

Table 11. Dual Channel Controllers
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\mathrm{IO} \\
(\mathrm{~mA}) \\
\mathrm{Max}
\end{gathered}
\] & Minimum Operating Voltage Range (V) & Operating Mode & Reference (V) & Maximum Useful Oscillator Frequency (kHz) & Device & \[
\begin{gathered}
\mathrm{T}_{A} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Suffixl Package \\
\hline \multirow[t]{2}{*}{500} & \multirow[t]{2}{*}{4.0} & \multirow[t]{2}{*}{Voltage} & \multirow[t]{2}{*}{\(1.25 \pm 2.0 \%\)} & \multirow[t]{2}{*}{700} & MC34270 & \multirow[t]{2}{*}{0 to +70} & \multirow[t]{2}{*}{FB/873A} \\
\hline & & & & & MC34271 & & \\
\hline \multirow[t]{12}{*}{\(\pm 1000\)
(Totem Pole MOSFET
Drive Outputs)} & \multirow[t]{4}{*}{11 to 15.5} & \multirow[t]{12}{*}{Current} & \multirow[t]{12}{*}{\(5.0 \pm 2.6 \%\)} & \multirow[t]{12}{*}{500} & \multirow[t]{2}{*}{MC34065} & \multirow[t]{2}{*}{0 to +70} & DW/751G \\
\hline & & & & & & & P/648 \\
\hline & & & & & \multirow[t]{2}{*}{MC33065} & \multirow[t]{2}{*}{-40 to +85} & DW/751G \\
\hline & & & & & & & P/648 \\
\hline & \multirow[t]{4}{*}{11 to 20} & & & & \multirow[t]{2}{*}{MC34065} & \multirow[t]{2}{*}{0 to +70} & DW-H/751G \\
\hline & & & & & & & P-H/648 \\
\hline & & & & & \multirow[t]{2}{*}{MC33065} & \multirow[t]{2}{*}{-40 to +85} & DW-H/751G \\
\hline & & & & & & & P-H/648 \\
\hline & \multirow[t]{4}{*}{8.4 to 20} & & & & \multirow[t]{2}{*}{MC34065} & \multirow[t]{2}{*}{0 to +70} & DW-L/751G \\
\hline & & & & & & & P-L/648 \\
\hline & & & & & \multirow[t]{2}{*}{MC33065} & \multirow[t]{2}{*}{-40 to +85} & DW-L/751G \\
\hline & & & & & & & P-L/648 \\
\hline
\end{tabular}

\section*{Table 12. Universal Microprocessor Power Supply Controllers}

A versatile power supply control circuit for microprocessor-based systems, this device is mainly intended for automotive applications and battery powered instruments. The circuit provides a power-on reset delay and a Watchdog feature for orderly microprocessor operation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Regulated Outputs} & \multirow[b]{2}{*}{Output Current (mA)} & \multicolumn{2}{|c|}{\begin{tabular}{l}
\(V_{C C}\) \\
(V)
\end{tabular}} & \multirow[b]{2}{*}{Reference (V)} & \multirow[t]{2}{*}{Key Supervisory Features} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{T}_{\mathbf{A}} \\
\left({ }^{\mathrm{C}}\right)
\end{gathered}
\]} & \multirow[b]{2}{*}{Package} \\
\hline & & Min & Max & & & & & \\
\hline \begin{tabular}{l}
E2PROM Programmable Output: \\
24 V (Write Mode) \\
5.0 V (Read Mode)
\end{tabular} & 150 peak & 6.0 & 35 & \(2.5 \pm 3.2 \%\) & MPU Reset and Watchdog Circuit & TCF5600
TCA5600 & -40 to +85 & 707 \\
\hline
\end{tabular}

Table 13. Power Factor Controllers
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\mathrm{Io} \\
(\mathrm{~mA}) \\
\operatorname{Max}
\end{gathered}
\] & Minimum Operating Voltage Range (V) & Maximum Startup Voltage (V) & Reference (V) & Features & Device & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}} \\
\left({ }^{\mathrm{C}}\right)
\end{gathered}
\] & Suffix/ Package \\
\hline \multirow[t]{8}{*}{\(\pm 500\)
(Totem Pole MOSFET
Drive Outputs) Drive Outputs)} & \multirow[t]{8}{*}{9.0 to 30} & \multirow[t]{8}{*}{30} & \multirow[t]{8}{*}{\(2.5 \pm 1.4 \%\)} & \multirow[t]{4}{*}{Undervoltage Lockout, Internal Startup Timer} & \multirow[t]{2}{*}{MC34261} & \multirow[t]{2}{*}{0 to +70} & D/751 \\
\hline & & & & & & & P/626 \\
\hline & & & & & \multirow[t]{2}{*}{MC33261} & \multirow[t]{2}{*}{-40 to +85} & D/751 \\
\hline & & & & & & & P/626 \\
\hline & & & & \multirow[t]{4}{*}{Overvoltage Comparator, Undervoltage Lockout, Internal Startup Timer} & \multirow[t]{2}{*}{MC34262} & \multirow[t]{2}{*}{0 to +85} & D/751 \\
\hline & & & & & & & P/626 \\
\hline & & & & & \multirow[t]{2}{*}{MC33262} & \multirow[t]{2}{*}{-40 to +105} & D/751 \\
\hline & & & & & & & P/626 \\
\hline \begin{tabular}{l}
1500 \\
(CMOS Totem Pole MOSFET Drive Outputs)
\end{tabular} & 9.0 to 16 & 500 & \(5.0 \pm 1.5 \%\) & Off-Line High Voltage Startup Overvoltage Comparator, Undervoltage Lockout, Timer, Low Load Detect & MC33368 & -25 to +125 & D/751K \\
\hline
\end{tabular}

\section*{Power Factor Controllers}

MC34262D, \(P\)
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 751,626
MC33262D, \(P\)
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\), Case 751,626

The MC34262, MC33262 series are active power factor controllers specifically designed for use as a preconverter in electronic ballast and in off-line power converter applications. These integrated circuits feature an internal startup timer for stand alone applications, a one quadrant multiplier for near unity power factor, zero current detector to ensure critical conduction operation, transconductance error amplifier, quickstart circuit for enhanced startup, trimmed internal bandgap reference, current sensing comparator, and a totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of an overvoltage comparator to eliminate runaway output voltage due to load removal, input undervoltage lockout with hysteresis, cycle-by-cycle current limiting, multiplier output clamp that limits maximum peak switch current, an RS latch for single pulse metering, and a drive output high state clamp for MOSFET gate protection. These devices are available in dual-in-line and surface mount plastic packages.


\section*{Power Factor Controllers (continued) MC33368D}
\(T J=-25^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case 751 K
The MC33368 is an active power factor controller that functions as a boost preconverter in off-line power supply applications. MC33368 is optimized for low power, high density power supplies requiring minimum board area, reduced component count, and low power dissipation. The narrow body SOIC package provides a small footprint. Integration of the high voltage startup saves approximately 0.7 W of power compared to resistor bootstrapped circuits.

The MC33368 features a watchdog timer to initiate output switching, a one quadrant multiplier to force the line current to follow the instantaneous line voltage, a zero current detector to ensure critical conduction operation, a transconductance error amplifier, a current sensing comparator, a 5.0 V
reference, an undervoltage lockout (UVLO) circuit which monitors the \(\mathrm{V}_{\mathrm{CC}}\) supply voltage, and a CMOS driver for driving MOSFETs. The MC33368 also includes a programmable output switching frequency clamp. Protection features include an output overvoltage comparator to minimize overshoot, a restart delay timer, and cycle-bycycle current limiting.
- Lossless Off-Line Startup
- Output Overvoltage Comparator
- Leading Edge Blanking (LEB) for Noise Immunity
- Watchdog Timer to Initiate Switching
- Restart Delay Timer


\section*{Supervisory Circuits}

A variety of Power Supervisory Circuits are offered. Overvoltage sensing circuits which drive "Crowbar" SCRs are provided in several configurations from a low cost three-terminal version to 8 -pin devices which provide
pin-programmable trip voltages or additional features, such as an indicator output drive and remote activation capability. An over/undervoltage protection circuit is also offered.

\section*{Overvoltage Crowbar Sensing Circuit}

MC3423P1, D
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 626, 751
This device can protect sensitive circuitry from power supply transients or regulator failure when used with an external "Crowbar" SCR. The device senses voltage and compares it to an internal 2.6 V reference. Overvoltage trip is adjustable by means of an external resistive voltage divider. A minimum duration before trip is programmable with an external capacitor. Other features include a 300 mA high current output for driving the gate of a "Crowbar" SCR, an open-collector indicator output and remote activation capability.


\section*{Over/Undervoltage Protection Circuit}

\section*{MC3425P1}
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 626
The MC3425 is a power supply supervisory circuit containing all the necessary functions required to monitor over and undervoltage fault conditions. This device features dedicated over and undervoltage sensing channels with independently programmable time delays. The overvoltage channel has a high current drive output for use in conjunction with an external SCR "Crowbar" for shutdown. The undervoltage channel input comparator has hysteresis which is externally programmable, and an open-collector output for fault indication.


\section*{Supervisory Circuits (continued) \\ CMOS Micropower Undervoltage Sensing Circuits}

MC33464H, N
\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\), Case 1213, 1212

The MC33464 series are micropower undervoltage sensing circuits that are specifically designed for use with battery powered microprocessor based systems, where extended battery life is required. A choice of several threshold voltages from 0.9 V to 4.5 V are available. These devices feature a very low quiescent bias current of \(0.8 \mu \mathrm{~A}\) typical.

The MC33464 series features a highly accurate voltage reference, a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation, a choice of output configurations between open drain or complementary MOS, and guaranteed operation below 1.0 V with extremely low standby current. These devices are available in either SOT-89 3-pin or SOT-23 5-pin surface mount packages.

Applications include direct monitoring of the MPU/logic power supply used in portable, appliance, automotive and industrial equipment.

\section*{MC33464 Features:}
- Extremely Low Standby Current of \(0.8 \mu \mathrm{~A}\) at \(\mathrm{V}_{\text {in }}=1.5 \mathrm{~V}\)
- Wide Input Voltage Range ( 0.7 V to 10 V )
- Monitors Power Supply Voltages from 1.1 V to 5.0 V
- High Accuracy Detector Threshold ( \(\pm 2.5 \%\) )
- Two Reset Output Types (Open Drain or Complementary Drive)
- Two Surface Mount Packages (SOT-89 or SOT-23 5-Pin)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline Device & Threshold Voltage & Type & Operating Temperature Range & Package (Qty/Reel) \\
\hline MC33464H-09AT1 & 0.9 & \multirow{5}{*}{\begin{tabular}{l}
Open \\
Drain \\
Reset
\end{tabular}} & \multirow{20}{*}{\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\)} & \multirow{10}{*}{\[
\begin{gathered}
\text { SOT-89 } \\
(1000)
\end{gathered}
\]} \\
\hline MC33464H-20AT1 & 2.0 & & & \\
\hline MC33464H-27AT1 & 2.7 & & & \\
\hline MC33464H-30AT1 & 3.0 & & & \\
\hline MC33464H-45AT1 & 4.5 & & & \\
\hline MC33464H-09CT1 & 0.9 & & & \\
\hline MC33464H-20CT1 & 2.0 & Compl. & & \\
\hline MC33464H-27CT1 & 2.7 & MOS & & \\
\hline MC33464H-30CT1 & 3.0 & \(\overline{\text { Reset }}\) & & \\
\hline MC33464H-45CT1 & 4.5 & & & \\
\hline MC33464N-09ATR & 0.9 & & & \\
\hline MC33464N-20ATR & 2.0 & Open & & \\
\hline MC33464N-27ATR & 2.7 & Drain & & \\
\hline MC33464N-30ATR & 3.0 & \(\overline{\text { Reset }}\) & & \\
\hline MC33464N-45ATR & 4.5 & & & SOT-23 \\
\hline MC33464N-09CTR & 0.9 & & & (3000) \\
\hline MC33464N-20CTR & 2.0 & Compl. & & \\
\hline MC33464N-27CTR & 2.7 & MOS & & \\
\hline MC33464N-30CTR & 3.0 & \(\overline{\text { Reset }}\) & & \\
\hline MC33464N-45CTR & 4.5 & & & \\
\hline
\end{tabular}

Other voltages from 0.9 to 6.0 V , in 0.1 V increments, are available upon request. Consult your local Motorola sales office for information.

MC33464X-YYATZ
Open Drain Configuration


MC33464X-YYCTZ
Complementary Drive Configuration


\section*{Supervisory Circuits (continued) \\ CMOS Micropower Undervoltage Sensing Circuits with Output Delay}

\section*{MC33465N}
\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\), Case 1212

The MC33465 series are micropower undervoltage sensing circuits that are specifically designed for use with battery powered microprocessor based systems, where extended battery life is required. A choice of several threshold voltages from 0.9 V to 4.5 V are available. This device features a very low quiescent bias current of \(1.0 \mu \mathrm{~A}\) typical.

The MC33465 series features a highly accurate voltage reference, a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation, a choice of output configurations between open drain or complementary MOS, a time delayed output, which can be programmed by the system designer, and guaranteed operation below 1.0 V with extremely low standby current. This device is available in a SOT-23 5-pin surface mount packages.

Applications include direct monitoring of the MPU/logic power supply used in portable, appliance, automotive and industrial equipment.

\section*{MC33465 Features:}
- Extremely Low Standby Current of \(1.0 \mu \mathrm{~A}\) at \(\mathrm{V}_{\text {in }}=3.5 \mathrm{~V}\)
- Wide Input Voltage Range ( 0.7 V to 10 V )
- Monitors Power Supply Voltages from 1.1 V to 5.0 V
- High Accuracy Detector Threshold ( \(\pm 2.5 \%\) )
- Two Reset Output Types (Open Drain or Complementary Drive)
- Programmable Output Delay by External Capacitor (100 ms typ. with \(0.15 \mu \mathrm{~F}\) )
- Surface Mount Package (SOT-23 5-Pin)
- Convenient Tape and Reel (3000 per Reel)

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Threshold \\
Voltage
\end{tabular} & Type & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33465N-09ATR & 0.9 & & & \\
MC33465N-20ATR & 2.0 & Open & & \\
MC33465N-27ATR & 2.7 & Drain & & \\
MC33465N-30ATR & 3.0 & \(\overline{\text { Reset }}\) & & \\
MC33465N-45ATR & 4.5 & & \multirow{3}{*}{\(T_{A}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\)} & SOT-23 \\
\hline MC33465N-09CTR & 0.9 & & & \\
MC33465N-20CTR & 2.0 & Compl. & & \\
MC33465N-27CTR & 2.7 & MOS & & \\
MC33465N-30CTR & 3.0 & \(\frac{\text { Reset }}{}\) & & \\
MC33465N-45CTR & 4.5 & & & \\
\hline
\end{tabular}

Other voltages from 0.9 to 6.0 V , in 0.1 V increments, are available upon request. Consult your local Motorola sales office for information.


\section*{Supervisory Circuits (continued)}

\section*{Undervoltage Sensing Circuit}

MC34064P-5, D-5, DM-5
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case \(29,751,846 \mathrm{~A}\)
MC33064P-5, D-5, DM-5
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case \(29,751,846 \mathrm{~A}\)
MC34164P-3, P-5, D-3, D-5, DM-3, DM-5
\(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case \(29,751,846 \mathrm{~A}\)
MC33164P-3, P-5, D-3, D-5, DM-3, DM-5
\(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case \(29,751,846 \mathrm{~A}\)
The MC34064 and MC34164 are two families of undervoltage sensing circuits specifically designed for use as reset controllers in microprocessor-based systems. They offer the designer an economical solution for low voltage detection with a single external resistor. Both parts feature a trimmed bandgap reference, and a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation.

The two families of undervoltage sensing circuits taken together, cover the needs of the most commonly specified power supplies used in MCU/MPU systems. Key parameter specifications of the MC34164 family were chosen to complement the MC34064 series. The table summarizes critical parameters of both families. The MC34064 fulfills the needs of a \(5.0 \mathrm{~V} \pm 5 \%\) system and features a tighter hysteresis specification. The MC34164 series covers \(5.0 \mathrm{~V} \pm 10 \%\) and

\(3.0 \mathrm{~V} \pm 5 \%\) power supplies with significantly lower power consumption, making them ideal for applications where extended battery life is required such as consumer products or hand held equipment.

Applications include direct monitoring of the 5.0 V MPU/ logic power supply used in appliance, automotive, consumer, and industrial equipment.

The MC34164 is specifically designed for battery powered applications where low bias current ( \(1 / 25\) th of the MC34064's) is an important characteristic.

Table 14. Undervoltage Sense/Reset Controller Features
MC34X64 devices are specified to operate from \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), and MC33X64 devices operate from \(-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Device & \begin{tabular}{l}
Standard \\
Power \\
Supply \\
Supported
\end{tabular} & Typical Threshold Voltage (V) & Typical Hysteresis Voltage (V) & \[
\begin{aligned}
& \text { Minimum } \\
& \text { Output } \\
& \text { Sink } \\
& \text { Current (mA) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Power \\
Supply Input Voltage Range (V)
\end{tabular} & Maximum Quiescent Input Current & \begin{tabular}{l}
Suffix/ \\
Package
\end{tabular} \\
\hline \multirow[t]{3}{*}{MC34064/MC33064} & \multirow[t]{3}{*}{\(5.0 \mathrm{~V} \pm 5 \%\)} & \multirow[t]{3}{*}{4.6} & \multirow[t]{3}{*}{0.02} & \multirow[t]{3}{*}{10} & \multirow[t]{3}{*}{1.0 to 10} & \multirow[t]{3}{*}{\[
\begin{gathered}
500 \mu \mathrm{~A} \\
\mathrm{~V}_{\mathrm{in}}=5.0 \mathrm{~V}
\end{gathered}
\]} & P-5/29 \\
\hline & & & & & & & D-5/751 \\
\hline & & & & & & & DM-5/846A \\
\hline \multirow[t]{3}{*}{MC34164/MC33164} & \multirow[t]{3}{*}{\(5.0 \mathrm{~V} \pm 10 \%\)} & \multirow[t]{3}{*}{4.3} & \multirow[t]{3}{*}{0.09} & \multirow[t]{3}{*}{7.0} & \multirow[t]{3}{*}{1.0 to 12} & \multirow[t]{3}{*}{\[
\begin{gathered}
20 \mu \mathrm{~A} \\
\begin{array}{c}
@ \\
\mathrm{~V} \text { in }=5.0 \mathrm{~V}
\end{array}
\end{gathered}
\]} & P-5/29 \\
\hline & & & & & & & D-5/751 \\
\hline & & & & & & & DM-5/846A \\
\hline \multirow[t]{3}{*}{MC34164/MC33164} & \multirow[t]{3}{*}{\(3.0 \mathrm{~V} \pm 5 \%\)} & \multirow[t]{3}{*}{2.7} & \multirow[t]{3}{*}{0.06} & \multirow[t]{3}{*}{6.0} & \multirow[t]{3}{*}{1.0 to 12} & \multirow[t]{3}{*}{\[
\begin{gathered}
15 \mu \mathrm{~A} \\
@ \\
\mathrm{~V}_{\mathrm{in}}=3.0 \mathrm{~V}
\end{gathered}
\]} & P-3/29 \\
\hline & & & & & & & D-3/751 \\
\hline & & & & & & & DM-3/846A \\
\hline
\end{tabular}

\section*{Supervisory Circuits (continued)}

\section*{Universal Voltage Monitor}

MC34161P, D
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 626, 751
The MC34161, MC33161 series are universal voltage monitors intended for use in a wide variety of voltage sensing applications. These devices offer the circuit designer an economical solution for positive and negative voltage detection. The circuit consists of two comparator channels each with hysteresis, a unique Mode Select Input for channel programming, a pinned out 2.54 V reference, and two open collector outputs capable of sinking in excess of 10 mA . Each comparator channel can be configured as either inverting or noninverting by the Mode Select Input. This allows over, under, and window detection of positive and negative voltages. The minimum supply voltage needed for these devices to be fully functional is 2.0 V for positive voltage sensing and 4.0 V for negative voltage sensing.

Applications include direct monitoring of positive and negative voltages used in appliance, automotive, consumer, and industrial equipment.
- Unique Mode Select Input Allows Channel Programming
- Over, Under, and Window Voltage Detection
- Positive and Negative Voltage Detection
- Fully Functional at 2.0 V for Positive Voltage Sensing and 4.0 V for Negative Voltage Sensing
- Pinned Out 2.54 V Reference with Current Limit Protection
- Low Standby Current
- Open Collector Outputs for Enhanced Device Flexibility

MC33161P, D
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626,751

\begin{tabular}{|c|c|c|c|c|l|}
\hline \begin{tabular}{c} 
Mode Select \\
Pin 7
\end{tabular} & \begin{tabular}{c} 
Input 1 \\
Pin 2
\end{tabular} & \begin{tabular}{c} 
Output 1 \\
Pin 6
\end{tabular} & \begin{tabular}{c} 
Input 2 \\
Pin 3
\end{tabular} & \begin{tabular}{c} 
Output 2 \\
Pin 5
\end{tabular} & \multicolumn{1}{c|}{ Comments } \\
\hline GND & 0 & 0 & 0 & 0 & Channels 1 \& 2: Noninverting \\
& 1 & 1 & 1 & 1 & \\
\hline\(V_{\text {ref }}\) & 0 & 0 & 0 & 1 & Channel 1: Noninverting \\
& 1 & 1 & 1 & 0 & Channel 2: Inverting \\
\hline\(V_{\text {CC }}(>2.0 \mathrm{~V})\) & 0 & 1 & 0 & 1 & Channels 1 \& 2: Inverting \\
& 1 & 0 & 1 & 0 & \\
\hline
\end{tabular}

POSITIVE AND NEGATIVE OVERVOLTAGE DETECTOR


\section*{Battery Management Circuits}

\section*{Battery Charger ICs}

\section*{Battery Fast Charge Controller}

MC33340P, D
\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626,751

The MC33340 is a monolithic control IC that is specifically designed as a fast charge controller for Nickel Cadmium (NiCd) and Nickel Metal Hydride (NiMH) batteries. This device features negative slope voltage detection as the primary means for fast charge termination. Accurate detection is ensured by an output that momentarily interrupts the charge current for precise voltage sampling. An additional secondary backup termination method can be selected that consists of either a programmable time or temperature limit. Protective features include battery over and undervoltage detection, latched over temperature detection, and power supply input undervoltage lockout with hysteresis. Provisions for entering
a rapid test mode are available for enhanced end product testing. This device is available in an economical 8-lead surface mount package.
- Negative Slope Voltage Detection
- Accurate Zero Current Battery Voltage Sensing
- Programmable 1 to 4 Hour Fast Charge Time Limit
- Programmable Over/Under Temperature Detection
- Battery Over and Undervoltage Fast Charge Protection
- Rapid System Test Mode
- Power Supply Input Undervoltage Lockout with Hysteresis
- Operating Voltage Range of 3.0 V to 18 V


\section*{Battery Charger ICs (continued)}

Power Supply

\section*{Battery Charger}

\section*{Regulation Control Circuit}

MC33341P, D
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626,751

The MC33341 is a monolithic regulation control circuit that is specifically designed to close the voltage and current feedback loops in power supply and battery charger applications. This device features the unique ability to perform source high-side, load high-side, source low-side, and load low-side current sensing, each with either an internally fixed or externally adjustable threshold. The various current sensing modes are accomplished by a means of selectively using the internal differential amplifier, inverting amplifier, or a direct input path. Positive voltage sensing is performed by an internal voltage amplifier. The voltage amplifier threshold is internally fixed and can be externally adjusted in all low-side current sensing applications. An active high drive output is provided to directly interface with economical optoisolators for isolated output power systems. This device is available in 8-lead dual-in-line and surface mount packages.
- Differential Amplifier for High-Side Source and Load Current Sensing
- Inverting Amplifier for Source Return Low-Side Current Sensing
- Noninverting Input Path for Load Low-Side Current Sensing
- Fixed or Adjustable Current Threshold in all Current Sensing Modes
- Positive Voltage Sensing in all Current Sensing Modes
- Fixed Voltage Threshold in all Current Sensing Modes
- Adjustable Voltage Threshold in all Low-Side Current Sensing Modes
- Output Driver Directly Interfaces with Economical Optoisolators
- Operating Voltage Range of 2.3 V to 18 V


\section*{Battery Pack ICs}

\section*{Lithium Battery Protection Circuit for One to Four Cell Battery Packs}

MC33345DW, DTB
\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 751D, 948E

The MC33345 is a monolithic lithium battery protection circuit that is designed to enhance the useful operating life of one to four cell rechargeable battery packs. Cell protection features consist of independently programmable charge and discharge limits for both voltage and current with a delayed current shutdown, cell voltage balancing with on-chip balancing resistors, and a virtually zero current sleepmode state when the cells are discharged. Additional features include an on-chip charge pump for reduced MOSFET losses while charging or discharging a low cell voltage battery pack, and the programmability for a one to four cell battery pack. This protection circuit requires a minimum number of external components and is targeted for inclusion within the battery pack. The MC33345 is available in standard and low profile 20 lead surface mount packages.
- Independently Programmable Charge and Discharge Limits for Both Voltage and Current
- Charge and Discharge Current Limit Detection with Delayed Shutdown
- Cell Voltage Balancing
- On-Chip Balancing Resistors
- Virtually Zero Current Sleepmode State when Cells are Discharged
- Charge Pump for Reduced Losses with a Low Cell Voltage Battery Pack
- Programmable for One, Two, Three or Four Cell Applications
- Minimum External Components for Inclusion within the Battery Pack
- Available in Low Profile Surface Mount Packages

Typical Four Cell Smart Battery Pack


\section*{Battery Pack ICs (continued)}

\section*{Lithium Battery Protection Circuit for Three or Four Cell Battery Packs}

\section*{MC33346DW, DTB}
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case \(751 \mathrm{E}, 948 \mathrm{H}\)

The MC33346 is a monolithic lithium battery protection circuit that is designed to enhance the useful operating life of three or four cell rechargeable battery packs. Cell protection features consist of independently programmable charge and discharge limits for both voltage and current with a delayed current shutdown, cell voltage balancing with on-chip balancing resistors, and virtually zero current sleepmode state when the cells are discharged. Additional features consists of a six wire microcontroller interface bus that can selectively provide a pulse output that represents the internal reference voltage, cell voltage, cell current and temperature as well as control the states of four internal balancing and two external MOSFET switches. A microcontroller time reference output is available for gas gauge implementation. This protection circuit requires a minimum number of externa components and is targeted for inclusion within the battery pack. The MC33346 is available in standard and low profile 24 lead surface mount packages.
- Independently Programmable Charge and Discharge Limits for Both Voltage and Current
- Delayed Current Shutdown
- Cell Voltage Balancing with On-Chip Resistors
- Six Wire Microcontroller Interface Bus
- Data Output for Reference, Voltage, Current, and Temperature
- Microcontroller Time Reference Output for Gas Gauging
- Virtually Zero Current Sleepmode State when Cells are Discharged
- Programmable for Three or Four Cell Applications
- Minimum External Components for Inclusion within the Battery Pack
- Available in Low Profile Surface Mount Packages

Typical Four Cell Smart Battery Pack


\section*{Battery Pack ICs (continued)}

\section*{Lithium Battery Protection Circuit for One or Two Cell Battery Packs}

MC33347D, DTB
\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case \(751 \mathrm{~B}, 948 \mathrm{~F}\)

The MC33347 is a monolithic lithium battery protection circuit that is designed to enhance the useful operating life of one or two cell rechargeable battery packs. Cell protection features consist of independently programmable charge and discharge limits for both voltage and current with a delayed current shutdown, continuous cell voltage balancing with the choice of on-chip or external balancing resistors, and a virtually zero current sleepmode state when the cells are discharged. Additional features include an on-chip charge pump for reduced MOSFET losses while charging or discharging a low cell voltage battery pack, and the programmability for one or two cell battery pack. This protection circuit requires a minimum number of external components and is targeted for inclusion within the battery pack. This MC33347 is avaialble in standard and low profile 16 lead surface mount packages.
- Independently Programmable Charge and Discharge Limits for Both Voltage and Current
- Charge and Discharge Current Limit Detection with Delayed Shutdown
- Continuous Cell Voltage Balancing
- On-Chip or External Balancing Resistors
- Virtually Zero Current Sleepmode State when Cells are Discharged
- Charge Pump for Reduced Losses with a Low Cell Voltage Battery Pack
- Programmable for One or Two Cell Applications
- Minimum External Components for Inclusion within the Battery Pack
- Available in Low Profile Surface Mount Packages

Typical Two Cell Smart Battery Pack


\section*{Battery Pack ICs (continued)}

\section*{Lithium Battery Protection Circuit for One Cell Battery Packs}

MC33348D, DM
\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 751, 846A
The MC33348 is a monolithic lithium battery protection circuit that is designed to enhance the useful operating life of one cell rechargeable battery pack. Cell protection features consist of internally trimmed charge and discharge voltage limits, discharge current limit detection with a delayed shutdown, and a virtually zero current sleepmode state when the cell is discharged. An additional feature includes an on-chip charge pump for reduced MOSFET losses while charging or discharging a low cell voltage battery pack. This protection circuit requires a minimum number of external components and is targeted for inclusion within the battery pack. This MC33348 is available in standard and micro 8 lead surface mount packages.
- Internally Trimmed Charge and Discharge Voltage Limits
- Discharge Current Limit Detection with Delayed Shutdown
- Virtually Zero Current Sleepmode State when Cells are Discharged
- Charge Pump for Reduced Losses with a Low Cell Voltage Battery Pack

Typical One Cell Smart Battery Pack

- Dedicated for One Cell Applications
- Minimum Components for Inclusion within the Battery Pack
- Available in Low Profile Surface Mount Packages

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Device & Charge Overvoltage Threshold (V) & Charge Overvoltage Hysteresis (mV) & Discharge Undervoltage Threshold (V) & Discharge Current Limit Threshold (mV) & Operating Temperature Range & Package \\
\hline MC33348D-1 & \multirow[t]{2}{*}{4.20} & \multirow[t]{12}{*}{300} & \multirow[t]{2}{*}{2.25} & 400 & \multirow[t]{12}{*}{\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & \multirow[t]{6}{*}{SO-8} \\
\hline MC33348D-2 & & & & 200 & & \\
\hline MC33348D-3 & \multirow[t]{2}{*}{4.25} & & \multirow[t]{2}{*}{2.28} & 400 & & \\
\hline MC33348D-4 & & & & 200 & & \\
\hline MC33348D-5 & \multirow[t]{2}{*}{4.35} & & \multirow[t]{2}{*}{2.30} & 400 & & \\
\hline MC33348D-6 & & & & 200 & & \\
\hline MC33348DM-1 & \multirow[t]{2}{*}{4.20} & & \multirow[t]{2}{*}{2.25} & 400 & & \multirow[t]{6}{*}{Micro-8} \\
\hline MC33348DM-2 & & & & 200 & & \\
\hline MC33348DM-3 & \multirow[t]{2}{*}{4.25} & & \multirow[t]{2}{*}{2.28} & 400 & & \\
\hline MC33348DM-4 & & & & 200 & & \\
\hline MC33348DM-5 & \multirow[t]{2}{*}{4.35} & & \multirow[t]{2}{*}{2.30} & 400 & & \\
\hline MC33348DM-6 & & & & 200 & & \\
\hline
\end{tabular}

\footnotetext{
NOTE: Additional threshold limit options can be made available. Consult your local Motorola sales office for information.
}

\section*{MOSFET/IGBT Drivers}

\section*{High Speed Dual Drivers}
(Inverting)
MC34151P, D
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 626, 751
MC33151P, D
\(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626,751

These two series of high speed dual MOSFET driver ICs are specifically designed for applications requiring low current digital circuitry to drive large capacitive loads at high slew rates. Both series feature a unique undervoltage lockout function which puts the outputs in a defined low state in an undervoltage condition. In addition, the low "on" state resistance of these bipolar drivers allows significantly higher output currents at lower supply voltages than with competing drivers using CMOS technology.

The MC34151 series is pin-compatible with the MMH0026 and DS0026 dual MOS clock drivers, and can be used as drop-in replacements to upgrade system performance. The MC34152 noninverting series is a mirror image of the inverting MC34151 series.

These devices can enhance the drive capabilities of first generation switching regulators or systems designed with CMOS/TTL logic devices. They can be used in dc-to-dc converters, motor controllers, capacitor charge pump converters, or virtually any other application requiring high speed operation of power MOSFETs.

\section*{Single IGBT Driver}

MC33153P, D
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\), Case 626, 751
The MC33153 is specifically designed to drive the gate of an IGBT used for ac induction motors. It can be used with discrete IGBTs and IBGT modules up to 100 A.

Typical applications are ac induction motor control, brushless dc motor control, and uninterruptable power supplies.

These devices are available in dual-in-line and surface mount packages and include the following features:
- High Current Output Stage : 1.0 A Source-2.0 A Sink
- Protection Circuits for Both Conventional and SenselGBTs
- Current Source for Blanking Timing
- Protection Against Overcurrent and Short Circuit
- Undervoltage Lockout Optimized for IGBT's
- Negative Gate Drive Capability
(Noninverting)
MC34152P, D
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 626, 751
MC33152P, D
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626,751


\section*{MOSFET/IGBT Drivers (continued)}

\section*{Single IGBT Gate Driver}

MC33154D, \(P\)
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626,751

The MC33154 is specifically designed as an IGBT driver for high power applications including ac induction motor control, brushless dc motor control and uninterruptible power supplies.

The MC33154 is similar to the MC33153, except that the output drive is in-phase with the logic input, the output source current drive is four times higher and the supply voltage rating is higher.

Although designed for driving discrete and module IGBTs, this device offers a cost effective solution for driving power MOSFETs and Bipolar Transistors.

These devices are available in dual-in-line and surface mount packages and include the following features:
- High Current Output Stage: 4.0 A Source/2.0 A Sink
- Protection Circuits for Both Conventional and Sense IGBTs
- Programmable Fault Blanking Time
- Protection against Overcurrent and Short Circuit
- Undervoltage Lockout Optimzed for IGBTs
- Negative Gate Drive Capability
- Cost Effectively Drives Power MOSFETs and Bipolar Transistors


\section*{Power Supply Circuits Package Overview}
\begin{tabular}{|c|c|c|c|}
\hline CASE 29 P, Z SUFFIX & CASE 221A T, KC SUFFIX & CASE 314A TH SUFFIX & CASE 314B TV SUFFIX \\
\hline CASE 314D T SUFFIX & CASE 369 DT-1 SUFFIX & CASE 369A DT SUFFIX & CASE 626 N, P, P1 SUFFIX \\
\hline \begin{tabular}{l}
Mavivi \\
CASE 646 \\
P SUFFIX
\end{tabular} & \begin{tabular}{l}
(fivifiti \\
CASES 648, 648C N, P, P2 SUFFIX
\end{tabular} & CASE 648E P SUFFIX & \begin{tabular}{l}
 \\
CASE 707 N SUFFIX
\end{tabular} \\
\hline \begin{tabular}{l}
CASE 751 \\
D, D1, D2 SUFFIX
\end{tabular} & CASE 751A D SUFFIX & CASE 751B D SUFFIX & CASE 751D DW SUFFIX \\
\hline CASE 751E DW SUFFIX & CASE 751G DW SUFFIX & CASE 751K D SUFFIX & CASE 751N DW SUFFIX \\
\hline
\end{tabular}

Power Supply Circuits Package Overview (continued)


\section*{Device Listing and Related Literature}

\section*{Linear Voltage Regulators}
Function Page
Three-Terminal Adjustable Output Positive Voltage Regulator ..... 3-45
DeviceLM317LM317LLM317MLM323, ALM337LM337MLM340, A SeriesLM350LM2931 Series
LM2935
LP2950, 2951
MC1723C
MC7800 Series
MC78L00, A Series
MC78M00 Series
MC78T00 Series
MC78BC00 Series
MC78FC00 Series
MC78LC00 SeriesMC7900 SeriesMC79L00, A SeriesMC79M00 Series
MC33264
MC33267
MC33269
MC34268
Three-Terminal Adjustable Output Voltage Regulator ..... 3-53
Three-Terminal Adjustable Output Positive Voltage Regulator ..... 3-61
Positive Voltage Regulators ..... 3-69
Three-Terminal Adjustable Output Negative Voltage Regulator ..... 3-75
Three-Terminal Adjustable Output Negative Voltage Regulator ..... 3-82
Three-Terminal Positive Fixed Voltage Regulators ..... 3-89
Three-Terminal Adjustable Output Positive Voltage Regulator ..... 3-105
Low Dropout Voltage Regulators ..... 3-136
Low Dropout Dual Voltage Regulator ..... 3-146
Micropower Voltage Regulators ..... 3-150
Voltage Regulator ..... 3-162
Three-Terminal Positive Voltage Regulators ..... 3-182
Three-Terminal Low Current Positive Voltage Regulators ..... 3-197
Three-Terminal Medium Current Positive Voltage Regulators ..... 3-204
Three-Ampere Positive Voltage Regulators ..... 3-213
Micropower Voltage Regulator ..... 3-222
Micropower Voltage Regulator ..... 3-223
Micropower Voltage Regulator ..... 3-224
Three-Terminal Negative Voltage Regulators ..... 3-225
Three-Terminal Low Current Negative Voltage Regulators ..... 3-235
Three-Terminal Negative Voltage Regulators ..... 3-240
Micropower Voltage Regulators with On/Off Control ..... 3-273
Low Dropout Regulator ..... 3-280
Low Dropout Positive Fixed and Adjustable Voltage Regulators ..... 3-285
SCSI-2 Active Terminator Regulator ..... 3-638
Three-Terminal Positive Fixed Voltage Regulators ..... 3-736
Switching Regulator ControlEasy Switcher 1.0 A Step-Down Voltage Regulator3-113
MC33362 High Voltage Switching Regulator ..... 3-348MC33363
High Voltage Switching Regulator ..... 3-359
High Voltage Switching Regulator ..... 3-370
MC33363A
Critical Conduction SMPS Controller ..... 3-371
Variable Frequency Micropower DC-to-DC Converter ..... 3-384
Fixed Frequency PWM Micropower DC-to-DC Converter ..... 3-390
High Speed Single-Ended PWM Controller ..... 3-392
High Speed Double-Ended PWM Controller ..... 3-408
Precision Switchmode Pulse Width Modulator Control Circuit ..... 3-425
DC-to-DC Converter Control Circuits ..... 3-437
High Performance Dual Channel Current Mode Controller ..... 3-451
High Performance Dual Channel Current Mode Controllers ..... 3-465
High Performance Resonant Mode Controller ..... 3-478
High Performance Resonant Mode Controllers ..... 3-486
High Performance Current Mode Controllers ..... 3-499
Power Switching Regulators ..... 3-550
Power Switching Regulators ..... 3-570
Power Switching Regulators ..... 3-584
Power Switching Regulators ..... 3-598
Pulse Width Modulator Control Circuits ..... 3-691
Pulse Width Modulation Control Circuit ..... 3-697
Switching Regulator Control (continued)
Device Function Page
TL494 Switchmode Pulse Width Modulation Control Circuit ..... 3-716
TL594 Precision Switchmode Pulse Width Modulation Control Circuit ..... 3-726
UC3842A, 43A, High Performance Current Mode Controllers ..... 3-742UC2842A, 43A
UC3842B, 43B,UC2842B, 43B
UC3844, 45, UC2844, 45
UC3844B, 45B,
UC2844B, 45B\(\mu \mathrm{A} 78 \mathrm{~S} 40\)
High Performance Current Mode Controllers ..... 3-755
High Performance Current Mode Controllers ..... 3-769
High Performance Current Mode Controllers ..... 3-782
Universal Switching Regulator Subsystem ..... 3-796
Special Switching Regulator Controllers
MC34270, 34271 Liquid Crystal Display and Backlight Integrated Controller ..... 3-641
MC44602 High Performance Current Mode Controller ..... 3-651
MC44603 Mixed Frequency Mode GreenLine PWM Controller ..... 3-667
MC44604 High Safety Standby Ladder Mode GreenLine PWM Controller ..... 3-689
MC44605
High Safety Latched Mode GreenLine PWM Controller for (Multi) Synchronized Applications ..... 3-690
TCA5600, TCF5600 Universal Microprocessor Power Supply/Controllers ..... 3-705
Power Factor Correction Controllers
MC34261, 33261 Power Factor Controllers ..... 3-612
MC34262, 33262 Power Factor Controllers ..... 3-623
MC33368
High Voltage GreenLine Power Factor Controller ..... 3-372
Power Drivers
MC33153
MC33154
MC34151, 33151MC34152, 33152
Power Supervisory
MC3423
Overvoltage Crowbar Sensing Circuit ..... 3-168
MC3425 Power Supply Supervisory/Over and Undervoltage Protection Circuit ..... 3-174
MC33128
Power Management Controller ..... 3-244
MC33169 GaAs Power Amplifier Support IC ..... 3-263
MC33340 Battery Fast Charge Controller ..... 3-290
MC33341 Power Supply/Battery Charger Regulation Control Circuit ..... 3-301
MC33345
Lithium Battery Protection Circuit for One to Four Cell Battery Packs ..... 3-316
MC33346Lithium Battery Protection Circuit forThree or Four Cell Battery Packs3-328
MC33347 Lithium Battery Protection Circuit for One or Two Cell Battery Packs ..... 3-329
MC33348 Lithium Battery Protection Circuit for One Cell Battery Packs ..... 3-339
MC33464 Micropower Undervoltage Sensing Circuits ..... 3-386
MC33465 Micropower Undervoltage Sensing Circuits with Output Delay ..... 3-388MC34064, 33064
Undervoltage Sensing Circuits ..... 3-446
MC34160, 33160 Microprocessor Voltage Regulator and Supervisory Circuit ..... 3-530MC34161, 33161
Universal Voltage Monitors ..... 3-537
MC34164, 33164 Micropower Undervoltage Sensing Circuits ..... 3-564

\section*{ADDENDUM}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Linear \& Switching Voltage Regulator Applications Information} & \[
\begin{aligned}
& \text { Page } \\
& 3-802
\end{aligned}
\] \\
\hline \multicolumn{3}{|c|}{RELATED APPLICATION NOTES} \\
\hline App Note & Title & Related Device \\
\hline AN703 & Designing Digitally-Controlled Power Supplies & MC1723C \\
\hline AN719 & A New Approach to Switching Regulators & General \\
\hline AN1040 & Mounting Techniques for Power Semiconductors & LM317, LM337, MC7800, MC78M00, MC7900, MC79M00 \\
\hline AN1065 & Use of the MC68HC68T1 Real-Time Clock with Multiple Time Bases & MC34164, MC33164 \\
\hline AN1315 & An Evaluation System Interfacing the MPX2000 Series Pressure Sensors to a Microprocessor ............. & MC34064, MC33064 \\
\hline AN920 & Theory and Applications of the MC34063 and \(\mu \mathrm{A} 78 \mathrm{~S} 40\) Switching Regulator Control Clrcuits . . . . . . . . . . . . . . . & \(\mu \mathrm{A} 88 \mathrm{~S} 40\) \\
\hline AN976 & A New High Performance Current-Mode Controller Teams Up with Current Sensing Power MOSFETs & MC34129 \\
\hline AN983 & A Simplified Power Supply Design Using the TL494 Control Circuit & TL494 \\
\hline ANE424 & 50 W Current Mode Controlled Offline Switchmode Power Supply & UC3842A, UC2842A UC3843A, UC2843A \\
\hline
\end{tabular}


\section*{Three-Terminal Adjustable Output Positive Voltage Regulator}

The LM317 is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 1.5 A over an output voltage range of 1.2 V to 37 V . This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof.

The LM317 serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317 can be used as a precision current regulator.
- Output Current in Excess of 1.5 A
- Output Adjustable between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting Constant with Temperature
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Available in Surface Mount D2PAK, and Standard 3-Lead Transistor Package
- Eliminates Stocking many Fixed Voltages

\({ }^{*} \mathrm{C}_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter. \({ }^{* *} \mathrm{C}_{\mathrm{O}}\) is not needed for stability, however, it does improve transient response.
\[
v_{\text {out }}=1.25 \mathrm{~V}\left(1+\frac{R_{2}}{R_{1}}\right)+\mathrm{I}_{\text {Adj }} R_{2}
\]

Since \({ }_{\text {Adj }}\) is controlled to less than \(100 \mu \mathrm{~A}\), the error associated with this term is negligible in most applications.



ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline LM317BD2T & \multirow[b]{2}{*}{\(\mathrm{T}_{\mathrm{J}}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & Surface Mount \\
\hline LM317BT & & Insertion Mount \\
\hline LM317D2T & \multirow[b]{2}{*}{\(\mathrm{T}_{\mathrm{J}}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & Surface Mount \\
\hline LM317T & & Insertion Mount \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & 40 & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation \\
Case 221A
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 936 (D2PAK)
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case
\end{tabular} & \begin{tabular}{l}
PD \\
\(\theta\) JA \\
JJC \\
PD \\
\(\theta J A\) \\
\(\theta\) JC
\end{tabular} & \begin{tabular}{l}
Internally Limited \\
65 \\
5.0 \\
Internally Limited \\
70 \\
5.0
\end{tabular} & \begin{tabular}{l}
W \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
W \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature Range & TJ & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{1}-V_{O}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0.5\right.\) A for D2T and \(T\) packages; \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}[\) Note 1\(]\); \(I_{\text {max }}\) and \(P_{\max }\) [Note 2]; unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Figure & Symbol & Min & Typ & Max & Unit \\
\hline Line Regulation (Note 3), \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}\) & 1 & Regline & - & 0.01 & 0.04 & \%/V \\
\hline Load Regulation (Note 3), \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max }\)
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & - & \[
\begin{aligned}
& 5.0 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 0.5
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\% \mathrm{~V}_{\mathrm{O}}
\end{gathered}
\] \\
\hline Thermal Regulation, \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ( Note 6), 20 ms Pulse & & Regtherm & - & 0.03 & 0.07 & \% Vo/W \\
\hline Adjustment Pin Current & 3 & \(1_{\text {Adj }}\) & - & 50 & 100 & \(\mu \mathrm{A}\) \\
\hline Adjustment Pin Current Change, \(2.5 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}\), \(10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq \mathrm{I}_{\text {max }}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\text {max }}\) & 1,2 & \(\Delta^{\text {I Adj }}\) & - & 0.2 & 5.0 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Reference Voltage, } 3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, \\
& 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max }, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }
\end{aligned}
\] & 3 & \(\mathrm{V}_{\text {ref }}\) & 1.2 & 1.25 & 1.3 & V \\
\hline Line Regulation (Note 3), \(3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}\) & 1 & Regline & - & 0.02 & 0.07 & \% V \\
\hline Load Regulation (Note 3), \(10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max }\)
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & & \[
\begin{aligned}
& 20 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.5
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\% \mathrm{~V}_{\mathrm{O}}
\end{gathered}
\] \\
\hline Temperature Stability ( \(T_{\text {low }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {high }}\) ) & 3 & Ts & - & 0.7 & - & \% Vo \\
\hline Minimum Load Current to Maintain Regulation ( \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}\) ) & 3 & ILmin & - & 3.5 & 10 & mA \\
\hline \begin{tabular}{l}
Maximum Output Current \\
\(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{O}} \leq 15 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\text {max }}\), T Package \\
\(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\text {max }}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), \(T\) Package
\end{tabular} & 3 & \(I_{\text {max }}\) & \[
\begin{gathered}
1.5 \\
0.15
\end{gathered}
\] & \[
\begin{aligned}
& 2.2 \\
& 0.4
\end{aligned}
\] & - & A \\
\hline RMS Noise, \% of \(\mathrm{V}_{\mathrm{O}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}\) & & N & - & 0.003 & - & \% V \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection, } \mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \text { (Note 4) } \\
& \text { Without } \mathrm{C}_{\text {Adj }} \\
& \mathrm{C}_{\text {Adj }}=10 \mu \mathrm{~F}
\end{aligned}
\] & 4 & RR & \[
\overline{66}
\] & \[
\begin{aligned}
& 65 \\
& 80
\end{aligned}
\] & - & dB \\
\hline Long-Term Stability, \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}\) (Note 5), \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & \[
\% / 1.0 \mathrm{k}
\] Hrs. \\
\hline Thermal Resistance Junction to Case, T Package & & \(\mathrm{R}_{\text {өJC }}\) & - & 5.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

NOTES: 1. T \({ }_{\text {low }}\) to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\), for LM317T, D2T. \(T_{\text {low }}\) to \(T_{\text {high }}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\), for LM317BT, BD2T.
2. \(I_{\max }=1.5 \mathrm{~A}, P_{\max }=20 \mathrm{~W}\)
3. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
4. \(\mathrm{C}_{\mathrm{Adj}}\), when used, is connected between the adjustment pin and ground
5. Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
6. Power dissipation within an IC voltage regulator produces a temperature gradient on the die, affecting individual IC components on the die. These effects can be minimized by proper integrated circuit design and layout techniques. Thermal Regulation is the effect of these temperature gradients on the output voltage and is expressed in percentage of output change per watt of power change in a specified time.

Representative Schematic Diagram


Figure 1. Line Regulation and \(\Delta^{\prime} \mathbf{A d j} /\) Line Test Circuit


\section*{LM317}

Figure 2. Load Regulation and \(\boldsymbol{\Delta l}_{\mathbf{A d j}} /\) Load Test Circuit


Figure 3. Standard Test Circuit


Figure 4. Ripple Rejection Test Circuit


Figure 5. Load Regulation


Figure 7. Adjustment Pin Current


Figure 9. Temperature Stability


Figure 6. Current Limit


Figure 8. Dropout Voltage


Figure 10. Minimum Operating Current


Figure 11. Ripple Rejection versus Output Voltage


Figure 13. Ripple Rejection versus Frequency


Figure 15. Line Transient Response


Figure 12. Ripple Rejection versus Output Current


Figure 14. Output Impedance


Figure 16. Load Transient Response


\section*{LM317}

\section*{APPLICATIONS INFORMATION}

\section*{Basic Circuit Operation}

The LM317 is a 3-terminal floating regulator. In operation, the LM317 develops and maintains a nominal 1.25 V reference ( \(\mathrm{V}_{\text {ref }}\) ) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 17), and this constant current flows through \(\mathrm{R}_{2}\) to ground.

The regulated output voltage is given by:
\[
v_{\text {out }}=V_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
\]

Since the current from the adjustment terminal ( \(I_{\text {Adj }}\) ) represents an error term in the equation, the LM317 was designed to control \(I_{\text {Adj }}\) to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM317 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

Figure 17. Basic Circuit Configuration


\section*{Load Regulation}

The LM317 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor ( \(\mathrm{R}_{1}\) ) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of \(R_{2}\) can be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{External Capacitors}

A \(0.1 \mu \mathrm{~F}\) disc or \(1.0 \mu \mathrm{~F}\) tantalum input bypass capacitor ( \(\mathrm{C}_{\mathrm{in}}\) ) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor ( \(\mathrm{C}_{\mathrm{Adj}}\) ) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.

Although the LM317 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance ( \(\mathrm{C}_{\mathrm{O}}\) ) in the form of a \(1.0 \mu \mathrm{~F}\) tantalum or \(25 \mu \mathrm{~F}\) aluminum electrolytic capacitor on the output swamps this effect and insures stability.

\section*{Protection Diodes}

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM317 with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ( \(\mathrm{C}_{\mathrm{O}}>25 \mu \mathrm{~F}, \mathrm{C}_{\text {Adj }}>10 \mu \mathrm{~F}\) ). Diode \(\mathrm{D}_{1}\) prevents \(\mathrm{C}_{\mathrm{O}}\) from discharging thru the IC during an input short circuit. Diode \(\mathrm{D}_{2}\) protects against capacitor CAdj discharging through the IC during an output short circuit. The combination of diodes \(D_{1}\) and \(D_{2}\) prevents \(C_{\text {Adj }}\) from discharging through the IC during an input short circuit.

Figure 18. Voltage Regulator with Protection Diodes


Figure 19. D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


\section*{LM317}

Figure 20. "Laboratory" Power Supply with Adjustable Current Limit and Output Voltage


Figure 21. Adjustable Current Limiter


1 Lmin - IDSS \(<10<1.5 \mathrm{~A}\).
As shown \(0<10<1.0 \mathrm{~A}\).

Figure 22. 5.0 V Electronic Shutdown Regulator

* \(D_{1}\) protects the device during an input short circuit.

Figure 23. Slow Turn-On Regulator


Figure 24. Current Regulator


\section*{Three-Terminal Adjustable Output Positive Voltage Regulator}

The LM317L is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 100 mA over an output voltage range of 1.2 V to 37 V . This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM317L serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317L can be used as a precision current regulator.
- Output Current in Excess of 100 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Package
- Eliminates Stocking Many Fixed Voltages


MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & 40 & Vdc \\
\hline Power Dissipation & \(\mathrm{PD}_{\mathrm{D}}\) & Internally Limited & W \\
\hline Operating Junction Temperature Range & \(\mathrm{T}_{\mathrm{J}}\) & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA} ; \mathrm{T}_{J}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1]; \(I_{\text {max }}\) and \(\mathrm{P}_{\text {max }}\) [Note 2];
unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Figure} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM317L, LB} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min & Typ & Max & \\
\hline Line Regulation (Note 3)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}
\] & 1 & Regline & - & 0.01 & 0.04 & \%/V \\
\hline \[
\begin{gathered}
\text { Load Regulation (Note 3), } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
10 \mathrm{~mA} \leq 10 \leq I_{\max }-\mathrm{LM} 317 \mathrm{~L} \\
\mathrm{~V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V}
\end{gathered}
\] & 2 & Regload & - & \[
\begin{aligned}
& 5.0 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 0.5
\end{aligned}
\] & \[
\stackrel{m v}{\% v_{O}}
\] \\
\hline Adjustment Pin Current & 3 & \(I_{\text {Adj }}\) & - & 50 & 100 & \(\mu \mathrm{A}\) \\
\hline Adjustment Pin Current Change
\[
\begin{aligned}
& 2.5 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, \mathrm{PD}_{\mathrm{D}} \leq \mathrm{P}_{\max } \\
& 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max }-\mathrm{LM} 317 \mathrm{~L}
\end{aligned}
\] & 1,2 & \(\Delta^{\text {Addj }}\) & - & 0.2 & 5.0 & \(\mu \mathrm{A}\) \\
\hline Reference Voltage
\[
\begin{gathered}
3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, \mathrm{PD} \leq \mathrm{P}_{\max } \\
10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max }-\mathrm{LM} 317 \mathrm{~L}
\end{gathered}
\] & 3 & \(\mathrm{V}_{\text {ref }}\) & 1.20 & 1.25 & 1.30 & V \\
\hline Line Regulation (Note 3)
\[
3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}
\] & 1 & Regline & - & 0.02 & 0.07 & \%/V \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 3) } \\
& 10 \mathrm{~mA} \leq 10 \leq 1 \\
& \mathrm{~V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & - & \[
\begin{aligned}
& 20 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.5
\end{aligned}
\] & \[
\stackrel{\mathrm{mV}}{\% \mathrm{~V}_{\mathrm{O}}}
\] \\
\hline Temperature Stability ( \(\mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {high }}\) ) & 3 & Ts & - & 0.7 & - & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline Minimum Load Current to Maintain Regulation ( \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}\) ) & 3 & \(I_{\text {Lmin }}\) & - & 3.5 & 10 & mA \\
\hline Maximum Output Current \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 6.25 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\text {max }}, Z\) Package \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}\) Package & 3 & \(I_{\text {max }}\) & \[
100
\] & \[
\begin{gathered}
200 \\
20
\end{gathered}
\] & - & mA \\
\hline \[
\begin{aligned}
& \text { RMS Noise, \% of } V_{O} \\
& T_{A}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz}
\end{aligned}
\] & & N & - & 0.003 & - & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection (Note 4) } \\
& V_{O}=1.2 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \\
& \mathrm{C}_{\text {Adj }}=10 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{O}}=10.0 \mathrm{~V}
\end{aligned}
\] & 4 & RR & 60 & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & - & dB \\
\hline Long Term Stability, \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}\) (Note 5) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & \%/1.0 k Hrs. \\
\hline Thermal Resistance, Junction-to-Case Z Package & & \(\mathrm{R}_{\text {өJC }}\) & - & 83 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance, Junction-to-Air Z Package & & \(\mathrm{R}_{\theta \mathrm{JJA}}\) & - & 160 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

NOTES: 1. Tlow to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\) for LM317L \(\quad-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\) for LM317LB
2. \(I_{\max }=100 \mathrm{~mA} \quad P_{\max }=625 \mathrm{~mW}\)
3. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
4. \(\mathrm{C}_{\text {Adj }}\), when used, is connected between the adjustment pin and ground.
5. Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

\section*{LM317L}

Representative Schematic Diagram


Figure 1. Line Regulation and \(\Delta^{\mathbf{I}} \mathbf{A d j} /\) Line Test Circuit


\section*{LM317L}

Figure 2. Load Regulation and \(\boldsymbol{\Delta l}^{\mathbf{I d j}}\) /Load Test Circuit


Figure 3. Standard Test Circuit


Figure 4. Ripple Rejection Test Circuit


Figure 5. Load Regulation


Figure 7. Current Limit


Figure 9. Minimum Operating Current


Figure 6. Ripple Rejection


Figure 8. Dropout Voltage


Figure 10. Ripple Rejection versus Frequency


Figure 11. Temperature Stability


Figure 13. Line Regulation


Figure 15. Line Transient Response


Figure 12. Adjustment Pin Current


Figure 14. Output Noise



\section*{APPLICATIONS INFORMATION}

\section*{Basic Circuit Operation}

The LM317L is a 3-terminal floating regulator. In operation, the LM317L develops and maintains a nominal 1.25 V reference ( \(\mathrm{V}_{\text {ref }}\) ) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by \(\mathrm{R}_{1}\) (see Figure 13), and this constant current flows through \(\mathrm{R}_{2}\) to ground. The regulated output voltage is given by:
\[
V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
\]

Since the current from the adjustment terminal ( \(\mathrm{IAdj}^{\mathrm{Adj}}\) represents an error term in the equation, the LM317L was designed to control IAdj to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM317L is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

Figure 17. Basic Circuit Configuration


\section*{Load Regulation}

The LM317L is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{External Capacitors}

A \(0.1 \mu \mathrm{~F}\) disc or \(1.0 \mu \mathrm{~F}\) tantalum input bypass capacitor ( \(\mathrm{C}_{\mathrm{in}}\) ) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor ( \(\mathrm{C}_{\text {Adj }}\) ) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.

Although the LM317L is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance ( \(\mathrm{C}_{\mathrm{O}}\) ) in the form of a \(1.0 \mu \mathrm{~F}\) tantalum or \(25 \mu \mathrm{~F}\) aluminum electrolytic capacitor on the output swamps this effect and insures stability.

\section*{Protection Diodes}

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 14 shows the LM317L with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ( \(\mathrm{C}_{\mathrm{O}}>10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{Adj}}>5.0 \mu \mathrm{~F}\) ). Diode \(\mathrm{D}_{1}\) prevents \(\mathrm{C}_{\mathrm{O}}\) from discharging thru the IC during an input short circuit. Diode \(\mathrm{D}_{2}\) protects against capacitor \(\mathrm{C}_{\mathrm{Adj}}\) discharging through the IC during an output short circuit. The combination of diodes \(D_{1}\) and \(D_{2}\) prevents \(C_{\text {Adj }}\) from discharging through the IC during an input short circuit.

Figure 18. Voltage Regulator with Protection Diodes


Figure 19. Adjustable Current Limiter


Figure 21. Slow Turn-On Regulator


Figure 20. 5 V Electronic Shutdown Regulator

\(D_{1}\) protects the device during an input short circuit.

Figure 22. Current Regulator

\[
\begin{aligned}
I_{\text {outmax }} & =\left(\frac{V_{\text {ref }}}{R_{1}}\right)+I_{\text {Adj }} \cong \frac{1.25 \mathrm{~V}}{R_{1}} \\
I_{\text {outmax }} & =\left(\frac{V_{\text {ref }}}{R_{1}+R_{2}}\right)+I_{\text {Adj }} \cong \frac{1.25 \mathrm{~V}}{R_{1}+R_{2}} \\
& 5.0 \mathrm{~mA}<I_{\text {out }}<100 \mathrm{~mA}
\end{aligned}
\]

\section*{Three-Terminal Adjustable Output Positive Voltage Regulator}

The LM317M is an adjustable three-terminal positive voltage regulator capable of supplying in excess of 500 mA over an output voltage range of 1.2 V to 37 V . This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof.

The LM317M serves a wide variety of applications including local, on-card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317M can be used as a precision current regulator.
- Output Current in Excess of 500 mA
- Output Adjustable between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Eliminates Stocking Many Fixed Voltages

\section*{Simplified Application}

* \(=C_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter.
\({ }^{* *}=C_{0}\) is not needed for stability, however, it does improve transient response.
\[
V_{\text {out }}=1.25 \mathrm{~V}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
\]

Since \(I_{\text {Adj }}\) is controlled to less than \(100 \mu \mathrm{~A}\), the error associated with this term is negligible in most applications.

MEDIUM CURRENT
THREE-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR SEMICONDUCTOR TECHNICAL DATA

\section*{TSUFFIX} PLASTIC PACKAGE CASE 221A

Heatsink surface connected to Pin 2

(All 3 Packages)
Pin 1. Adjust
2. \(V_{\text {out }}\)
3. \(V_{\text {in }}\)


DT-1 SUFFIX PLASTIC PACKAGE CASE 369 (DPAK)


DT SUFFIX
PLASTIC PACKAGE CASE 369A (DPAK)

Heatsink Surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline LM317MT & \(\mathrm{T}_{J}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline LM317MBT\# & \(\mathrm{T}_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline \begin{tabular}{l} 
LM317MDT \\
LM317MDT-1
\end{tabular} & \(\mathrm{T}_{J}=0^{\circ}\) to \(125^{\circ} \mathrm{C}\) & DPAK \\
\hline
\end{tabular}
\# Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information.

\section*{LM317M}

MAXIMUM RATINGS ( \(T_{A}=25^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & 40 & Vdc \\
\hline Power Dissipation (Package Limitation) (Note 1) & & & \\
Plastic Package, T Suffix & & & \\
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & \(\mathrm{PD}_{\mathrm{D}}\) & Internally Limited & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Thermal Resistance, Junction-to-Air & \(\theta_{\mathrm{JA}}\) & 70 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Thermal Resistance, Junction-to-Case & \(\theta_{\mathrm{JC}}\) & 5.0 & \\
Plastic Package, DT Suffix & \(\mathrm{P}_{\mathrm{D}}\) & Internally Limited & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & \(\theta_{\mathrm{JA}}\) & 92 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Thermal Resistance, Junction-to-Air & \(\theta_{\mathrm{JC}}\) & 5.0 & \({ }^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Case & \(\mathrm{TJ}_{\mathrm{J}}\) & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \\
\hline Storage Temperature Range & & \\
\hline
\end{tabular}

NOTE: 1. Figure 23 provides thermal resistance versus pc board pad size.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V} ; \mathrm{IO}_{\mathrm{O}}=0.1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Figure & Symbol & Min & Typ & Max & Unit \\
\hline Line Regulation (Note 2)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}
\] & 1 & Regline & - & 0.01 & 0.04 & \%/V \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 0.5 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & - & \[
\begin{aligned}
& 5.0 \\
& 0.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 0.5
\end{aligned}
\] & \[
\stackrel{m V}{\% V_{O}}
\] \\
\hline Adjustment Pin Current & 3 & \({ }^{\text {adj }}\) & - & 50 & 100 & \(\mu \mathrm{A}\) \\
\hline Adjustment Pin Current Change
\[
2.5 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 0.5 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }
\] & 1,2 & \(\Delta^{\text {Ada }}\) d & - & 0.2 & 5.0 & \(\mu \mathrm{A}\) \\
\hline Reference Voltage
\[
3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 0.5 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }
\] & 3 & \(V_{\text {ref }}\) & 1.20 & 1.25 & 1.30 & V \\
\hline Line Regulation (Note 2)
\[
3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}
\] & 1 & Regline & - & 0.02 & 0.07 & \%/V \\
\hline \[
\begin{gathered}
\text { Load Regulation (Note 2) } \\
10 \mathrm{~mA} \leq 10 \leq 0.5 \mathrm{~A} \\
\mathrm{~V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V}
\end{gathered}
\] & 2 & Regload & & \[
\begin{aligned}
& 20 \\
& 0.3
\end{aligned}
\] & \[
\begin{array}{r}
70 \\
1.5
\end{array}
\] & \[
\underset{\% \mathrm{~V}_{\mathrm{O}}}{\mathrm{mV}}
\] \\
\hline Temperature Stability ( \(\mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {high }}\) ) & 3 & Ts & - & 0.7 & - & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline Minimum Load Current to Maintain Regulation
\[
\left(V_{1}-V_{O}=40 \mathrm{~V}\right)
\] & 3 & ILmin & - & 3.5 & 10 & mA \\
\hline \[
\begin{aligned}
& \text { Maximum Output Current } \\
& V_{1}-V_{O} \leq 15 \mathrm{~V}, P_{D} \leq P_{\max } \\
& V_{1}-V_{O}=40 \mathrm{~V}, P_{D} \leq P_{\max }, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 3 & \(I_{\text {max }}\) & \[
\begin{gathered}
0.5 \\
0.15
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
0.25
\end{gathered}
\] & - & A \\
\hline \[
\begin{aligned}
& \text { RMS Noise, } \% \text { of } V_{O} \\
& T_{A}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz}
\end{aligned}
\] & - & N & - & 0.003 & - & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline Ripple Rejection, \(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) (Note 3) Without \(\mathrm{C}_{\text {Adj }}\)
\[
C_{\text {Adj }}=10 \mu \mathrm{~F}
\] & 4 & RR & \(\overline{-6}\) & \[
\begin{aligned}
& 65 \\
& 80
\end{aligned}
\] & - & dB \\
\hline Long-Term Stability, \(\mathrm{T}_{J}=\mathrm{T}_{\text {high }}\) (Note 4) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & \(\% / 1.0 \mathrm{k}\) Hrs. \\
\hline
\end{tabular}

NOTES: 1. \(T_{\text {low }}\) to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C} ; \mathrm{P}_{\max }=7.5 \mathrm{~W}\) for LM317M \(\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C} ; \mathrm{P}_{\max }=7.5 \mathrm{~W}\) for LM317MB
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
3. CAdj, when used, is connected between the adjustment pin and ground.
4. Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

\section*{Representative Schematic Diagram}


Figure 1. Line Regulation and \(\Delta^{\prime} \mathbf{A d j} /\) Line Test Circuit


\section*{LM317M}

Figure 2. Load Regulation and \(\Delta^{\prime} \mathbf{A d j}^{\prime} /\) Load Test Circuit


Figure 3. Standard Test Circuit


Figure 4. Ripple Rejection Test Circuit


Figure 5. Load Regulation


Figure 7. Current Limit


Figure 9. Minimum Operating Current


Figure 6. Ripple Rejection


Figure 8. Dropout Voltage


Figure 10. Ripple Rejection versus Frequency


Figure 11. Temperature Stability


Figure 13. Line Regulation


Figure 15. Line Transient Response


Figure 12. Adjustment Pin Current


Figure 14. Output Noise


Figure 16. Load Transient Response


\section*{APPLICATIONS INFORMATION}

\section*{Basic Circuit Operation}

The LM317M is a three-terminal floating regulator. In operation, the LM317M develops and maintains a nominal 1.25 V reference ( \(\mathrm{V}_{\mathrm{ref}}\) ) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by \(\mathrm{R}_{1}\) (see Figure 17), and this constant current flows through \(\mathrm{R}_{2}\) to ground. The regulated output voltage is given by:
\[
v_{\text {out }}=V_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
\]

Since the current from the terminal ( \(I_{\mathrm{Adj}}\) ) represents an error term in the equation, the LM317M was designed to control I Adj to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM317M is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

Figure 17. Basic Circuit Configuration


\section*{Load Regulation}

The LM317M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor \(\left(\mathrm{R}_{1}\right)\) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of \(\mathrm{R}_{2}\) can be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{External Capacitors}

A \(0.1 \mu \mathrm{~F}\) disc or \(1.0 \mu \mathrm{~F}\) tantalum input bypass capacitor \(\left(\mathrm{C}_{\mathrm{in}}\right)\) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor ( \(\mathrm{C}_{\mathrm{Adj}}\) ) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.

Although the LM317M is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance ( \(\mathrm{C}_{\mathrm{O}}\) ) in the form of a \(1.0 \mu \mathrm{~F}\) tantalum or \(25 \mu \mathrm{~F}\) aluminum electrolytic capacitor on the output swamps this effect and insures stability.

\section*{Protection Diodes}

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM317M with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ( \(\mathrm{CO}_{\mathrm{O}}>25 \mu \mathrm{~F}, \mathrm{C}_{\text {Adj }}>5.0 \mu \mathrm{~F}\) ). Diode \(\mathrm{D}_{1}\) prevents \(\mathrm{C}_{\mathrm{O}}\) from discharging thru the IC during an input short circuit. Diode \(\mathrm{D}_{2}\) protects against capacitor \(\mathrm{C}_{\text {Adj }}\) discharging through the IC during an output short circuit. The combination of diodes \(D_{1}\) and \(D_{2}\) prevents \(C_{A d j}\) from discharging through the IC during an input short circuit.

Figure 18. Voltage Regulator with Protection Diodes


Figure 19. Adjustable Current Limiter


Figure 20. 5 V Electronic Shutdown Regulator

\(D_{1}\) protects the device during an input short circuit.

Figure 21. Slow Turn-On Regulator


Figure 22. Current Regulator

\[
\begin{aligned}
I_{\text {outmax }} & =\left(\frac{V_{\text {ref }}}{R_{1}}\right)+I_{\text {Adj }} \cong \frac{1.25 V}{R_{1}} \\
I_{\text {outmax }} & =\left(\frac{V_{\text {ref }}}{R_{1}+R_{2}}\right)+I_{\text {Adj }} \cong \frac{1.25 V}{R_{1}+R_{2}} \\
& 5.0 \mathrm{~mA}<I_{\text {out }}<100 \mathrm{~mA}
\end{aligned}
\]

Figure 23. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


MOTOROLA

\section*{Positive Voltage Regulators}

The LM323,A are monolithic integrated circuits which supply a fixed positive 5.0 V output with a load driving capability in excess of 3.0 A. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. The A-suffix is an improved device with superior electrical characteristics and a \(2 \%\) output voltage tolerance. These regulators are offered with a \(0^{\circ}\) to \(+125^{\circ} \mathrm{C}\) temperature range in a low cost plastic power package.

Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. These devices can be used with a series pass transistor to supply up to 15 A at 5.0 V .
- Output Current in Excess of 3.0 A
- Available with 2\% Output Voltage Tolerance
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Thermal Regulation and Ripple Rejection Have Specified Limits


T SUFFIX PLASTIC PACKAGE

CASE 221A

Pin 1. Input
2. Ground
3. Output


Heatsink surface is connected to Pin 2.

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|}
\hline Device & \begin{tabular}{c} 
Output \\
Voltage \\
Tolerance
\end{tabular} & \begin{tabular}{c} 
Operating \\
Temperature \\
Range
\end{tabular} & Package \\
\hline LM323T & \(4 \%\) & \(T J=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & \begin{tabular}{c} 
Plastic \\
Power
\end{tabular} \\
\hline LM323AT & \(2 \%\) & & \\
\hline
\end{tabular}

> LM323, A

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input Voltage & \(\mathrm{V}_{\text {in }}\) & 20 & Vdc \\
\hline Power Dissipation & \(\mathrm{PD}_{\mathrm{D}}\) & Internally Limited & W \\
\hline Operating Junction Temperature Range & \(\mathrm{TJ}_{J}\) & 0 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 10 s ) & \(\mathrm{T}_{\text {solder }}\) & 300 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{J}=T_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM323A} & \multicolumn{3}{|c|}{LM323} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage
\[
\left(\mathrm{V}_{\text {in }}=7.5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {out }} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\mathrm{O}}\) & 4.9 & 5.0 & 5.1 & 4.8 & 5.0 & 5.2 & V \\
\hline Output Voltage
\[
\begin{aligned}
& \left(7.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 15 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {out }} \leq 3.0 \mathrm{~A},\right. \\
& \left.\mathrm{P} \leq \mathrm{P}_{\max }\right) \text { (Note 2) }
\end{aligned}
\] & Vo & 4.8 & 5.0 & 5.2 & 4.75 & 5.0 & 5.25 & V \\
\hline Line Regulation
\[
\left(7.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)(\text { Note } 3)
\] & Regline & - & 1.0 & 15 & - & 1.0 & 25 & mV \\
\hline \begin{tabular}{l}
Load Regulation
\[
\left(\mathrm{V}_{\text {in }}=7.5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {out }} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)
\] \\
(Note 3)
\end{tabular} & Regload & - & 10 & 50 & - & 10 & 100 & mV \\
\hline Thermal Regulation
\[
\text { (Pulse }=10 \mathrm{~ms}, \mathrm{P}=20 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { ) }
\] & Regtherm & - & 0.001 & 0.01 & - & 0.002 & 0.03 & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline Quiescent Current
\[
\left(7.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 15 \mathrm{~V}, 0 \leq \mathrm{l}_{\text {out }} \leq 3.0 \mathrm{~A}\right)
\] & IB & - & 3.5 & 10 & - & 3.5 & 20 & mA \\
\hline Output Noise Voltage
\[
\left(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\mathrm{N}}\) & - & 40 & - & - & 40 & - & \(\mu \mathrm{V}_{\mathrm{rms}}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& \left(8.0 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 18 \mathrm{~V} \text {, I out }=2.0 \mathrm{~A},\right. \\
& \left.\mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 66 & 75 & - & 62 & 75 & - & dB \\
\hline Short Circuit Current Limit
\[
\begin{aligned}
& \left(\mathrm{V}_{\text {in }}=15 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{V}_{\text {in }}=7.5 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & ISC & - & \[
\begin{aligned}
& 4.5 \\
& 5.5
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 4.5 \\
& 5.5
\end{aligned}
\] & - & A \\
\hline Long Term Stability & S & - & - & 35 & - & - & 35 & mV \\
\hline Thermal Resistance, Junction-to-Case (Note 4) & R \({ }_{\text {©JC }}\) & - & 2.0 & - & - & 2.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

NOTES: 1. Tlow to \(\mathrm{T}_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
2. Although power dissipation is internally limited, specifications apply only for \(P \leq P_{\max }=25 \mathrm{~W}\).
3. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width \(\leq 1.0 \mathrm{~ms}\) and a duty cycle \(\leq 5 \%\).
4. Without a heatsink, the thermal resistance ( \(R_{\theta J A}\) is \(\left.65^{\circ} \mathrm{C} / \mathrm{W}\right)\). With a heatsink, the effective thermal resistance can approach the specified values of \(2.0^{\circ} \mathrm{C} / \mathrm{W}\), depending on the efficiency of the heatsink.

Representative Schematic Diagram


\section*{VOLTAGE REGULATOR PERFORMANCE}

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration ( \(<100 \mu \mathrm{~s}\) ) and are strictly a function of electrical gain. However, pulse widths of longer duration ( \(>1.0 \mathrm{~ms}\) ) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.

Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The change in dissipated power can
be caused by a change in either input voltage or the load current. Thermal regulation is a function of IC layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms , additional changes in the output voltage are due to the temperature coefficient of the device.

Figure 1 shows the line and thermal regulation response of a typical LM323A to a 20 W input pulse. The variation of the output voltage due to line regulation is labeled \(\grave{A}\) and the thermal regulation component is labeled Á. Figure 2 shows the load and thermal regulation response of a typical LM323A to a 20 W load pulse. The output voltage variation due to load regulation is labeled \(\grave{A}\) and the thermal regulation component is labeled Á.

Figure 1. Line and Thermal Regulation


t, TIME \((2.0 \mathrm{~ms} / \mathrm{DIV})\)
\(V_{\text {out }}=5.0 \mathrm{~V}\)
\(V_{\text {in }}=15 \mathrm{~V}\)
\(\begin{array}{llll}V_{\text {in }}=15 \mathrm{~V} & 2.0 \mathrm{~A} & 0 \mathrm{~A} & \text { (2) }=\text { Regtherm }=0.0015 \% \\ \mathrm{~V}_{\mathrm{O}} / \mathrm{W}\end{array}\)

Figure 3. Temperature Stability


Figure 5. Ripple Rejection versus Frequency


Figure 7. Quiescent Current versus Input Voltage


Figure 4. Output Impedance


Figure 6. Ripple Rejection versus Output Current


Figure 8. Quiescent Current versus Output Current


Figure 9. Dropout Voltage


Figure 11. Line Transient Response


Figure 10. Short Circuit Current



\section*{APPLICATIONS INFORMATION}

\section*{Design Considerations}

The LM323,A series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the
regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Figure 13. Current Regulator


The LM323,A regulator can also be used as a current source when connected as above. Resistor R determines the current as follows:
\[
I_{0}=\frac{5.0 V}{R}+I_{B}
\]
\(\Delta l_{\mathrm{B}} \cong 0.7 \mathrm{~mA}\) over line, load and temperature changes \(\mathrm{B} \cong 3.5 \mathrm{~mA}\)

For example, a 2.0 A current source would require R to be a \(2.5 \Omega\), 15 W resistor and the output voltage compliance would be the input voltage less 7.5 V .

Figure 15. Current Boost Regulator


The LM323, A series can be current boosted with a PNP transistor. The 2N4398 provides currentto 15A. Resistor Rin conjuction with the VBE of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input-output differential voltage minimum is increased by the \(V_{B E}\) of the pass transistor.

Figure 14. Adjustable Output Regulator


The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3.0 V greater than the regulator voltage.

Figure 16. Current Boost with Short Circuit Protection


The circuit of Figure 16 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three-terminal regulator. Therefore, an 8.0 A power transistor is specified.

\section*{Three-Terminal Adjustable Output Negative Voltage Regulator}

The LM337 is an adjustable 3-terminal negative voltage regulator capable of supplying in excess of 1.5 A over an output voltage range of -1.2 V to -37 V . This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof.

The LM337 serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM337 can be used as a precision current regulator.
- Output Current in Excess of 1.5 A
- Output Adjustable between -1.2 V and -37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting Constant with Temperature
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Eliminates Stocking many Fixed Voltages
- Available in Surface Mount D2PAK and Standard 3-Lead Transistor Package


SEMICONDUCTOR TECHNICAL DATA


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline LM337BD2T & \multirow[b]{2}{*}{\(T J=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & Surface Mount \\
\hline LM337BT & & Insertion Mount \\
\hline LM337D2T & \multirow[b]{2}{*}{\(\mathrm{T}_{\mathrm{J}}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & Surface Mount \\
\hline LM337T & & Insertion Mount \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & 40 & Vdc \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Power Dissipation Case 221A}} \\
\hline & & & \\
\hline \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & \(P_{D}\) & Internally Limited & W \\
\hline Thermal Resistance, Junction-to-Ambient & \(\theta_{\text {JA }}\) & 65 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance, Junction-to-Case & \(\theta_{\text {JC }}\) & 5.0 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Case 936 (D2PAK) & & & \\
\hline \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & PD & Internally Limited & W \\
\hline Thermal Resistance, Junction-to-Ambient & \(\theta_{J A}\) & 70 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance, Junction-to-Case & \(\theta_{J C}\) & 5.0 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature Range & TJ & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{IV}_{\mathrm{I}} \mathrm{V}_{\mathrm{O}} \mathrm{I}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}\right.\) for T package; \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) [Note 1]; \(\mathrm{I}_{\max }\) and \(\mathrm{P}_{\max }\) [Note 2].)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Figure & Symbol & Min & Typ & Max & Unit \\
\hline Line Regulation (Note 3), \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq 1 \mathrm{~V}_{1}-\mathrm{V} \mathrm{O} \leq 40 \mathrm{~V}\) & 1 & Regline & - & 0.01 & 0.04 & \%/V \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 3), } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\max } \\
& \mathrm{IVOl}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\
& \mathrm{IV}_{\mathrm{O}} \mid \geq 5.0 \mathrm{~V} \\
& \hline
\end{aligned}
\] & 2 & Regioad & - & \[
\begin{array}{r}
15 \\
0.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 50 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\% \mathrm{v}_{\mathrm{O}}
\end{gathered}
\] \\
\hline Thermal Regulation, \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) (Note 6), 10 ms Pulse & & Regtherm & - & 0.003 & 0.04 & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline Adjustment Pin Current & 3 & \(I_{\text {adj }}\) & - & 65 & 100 & \(\mu \mathrm{A}\) \\
\hline ```
Adjustment Pin Current Change, 2.5 V \leq IVI-V V | < 40 V,
    10 mA\leqIL 
``` & 1, 2 & \(\Delta^{\prime}\) Adj & - & 2.0 & 5.0 & \(\mu \mathrm{A}\) \\
\hline Reference Voltage, \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq\left|\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}\right| \leq 40 \mathrm{~V}\), \(10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\text {max }}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\text {max }}, \mathrm{T}_{J}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\) & 3 & \(V_{\text {ref }}\) & \[
\begin{gathered}
-1.213 \\
-1.20
\end{gathered}
\] & \[
\begin{aligned}
& -1.250 \\
& -1.25
\end{aligned}
\] & \[
\begin{gathered}
-1.287 \\
-1.30
\end{gathered}
\] & V \\
\hline Line Regulation (Note 3), 3.0 \(\mathrm{V} \leq \mathrm{IV} 1-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}\) & 1 & Regline & - & 0.02 & 0.07 & \%/V \\
\hline Load Regulation (Note 3), \(10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq \mathrm{I}_{\text {max }}\)
\[
\begin{aligned}
& |\mathrm{VO}| \leq 5.0 \mathrm{~V} \\
& \mid \mathrm{VO}_{\mathrm{O}} \geq 5.0 \mathrm{~V} \\
& \hline
\end{aligned}
\] & 2 & Regload & - & \[
\begin{aligned}
& 20 \\
& 0.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\% \mathrm{v}_{\mathrm{O}}
\end{gathered}
\] \\
\hline Temperature Stability (\(\mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {high }}\)) & 3 & Ts & - & 0.6 & - & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline Minimum Load Current to Maintain Regulation
\[
\begin{aligned}
& \left(\mid \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O} \mid} \leq 10 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}\right)
\end{aligned}
\] & 3 & ILmin & - & \[
\begin{array}{r}
1.5 \\
2.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 6.0 \\
& 10
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Maximum Output Current \\
\(\left|\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\right| \leq 15 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }\), T Package \\
\(\left|\mathrm{V}_{\mathrm{l}}-\mathrm{V}_{\mathrm{O}}\right| \leq 40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{T}\) Package
\end{tabular} & 3 & \(I_{\text {max }}\) & - & \[
\begin{array}{r}
1.5 \\
0.15 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.2 \\
& 0.4 \\
& \hline
\end{aligned}
\] & A \\
\hline RMS Noise, \% of \(\mathrm{V}_{\mathrm{O}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}\) & & N & - & 0.003 & - & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline ```
Ripple Rejection, \(\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) (Note 4)
 Without \(\mathrm{C}_{\text {Adj }}\)
 \(C_{\text {Adj }}=10 \mu \mathrm{~F}\)
``` & 4 & RR & \[
66
\] & \[
\begin{aligned}
& 60 \\
& 77 \\
& \hline
\end{aligned}
\] & - & dB \\
\hline Long-Term Stability, \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}\) (Note 5), \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & \[
\% / 1.0 \mathrm{k}
\] Hrs. \\
\hline Thermal Resistance Junction-to-Case, T Package & & \(\mathrm{R}_{\text {OJC }}\) & - & 4.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

NOTES: 1. Tlow to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\), for LM337T, D2T. \(\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\), for LM337BT, BD2T.
2. \(I_{\max }=1.5 \mathrm{~A}, P_{\max }=20 \mathrm{~W}\)
3. Load and line regulation are specified at constant junction temperature. Change in \(\mathrm{V}_{\mathrm{O}}\) because of heating effects is covered under the Thermal Regulation specification. Pulse testing with a low duty cycle is used.
4. CAdj, when used, is connected between the adjustment pin and ground.
5. Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
6. Power dissipation within an IC voltage regulator produces a temperature gradient on the die, affecting individual IC components on the die. These effects can be minimized by proper integrated circuit design and layout techniques. Thermal Regulation is the effect of these temperature gradients on the output voltage and is expressed in percentage of output change per watt of power change in a specified time.

\section*{Representative Schematic Diagram}


This device contains 39 active transistors.

Figure 1. Line Regulation and \(\Delta^{\prime} \mathbf{A d j} /\) Line Test Circuit


\section*{LM337}

Figure 2. Load Regulation and \(\Delta^{\prime} \mathbf{A d j}^{\prime} /\) Load Test Circuit


Figure 3. Standard Test Circuit


To Calculate \(\mathrm{R}_{2}: \quad \mathrm{R}_{2}=\left(\frac{\mathrm{V}_{\mathrm{O}}}{V_{\text {ref }}}-1\right) \mathrm{R}_{1}\)
* Pulse testing required.

This assumes \(I_{\text {Adj }}\) is negligible.
\(1 \%\) Duty Cycle is suggested.

Figure 4. Ripple Rejection Test Circuit


* \(D_{1}\) Discharges \(C_{\text {Adj }}\) if output is shorted to Ground.

Figure 5. Load Regulation


Figure 7. Adjustment Pin Current


Figure 9. Temperature Stability


Figure 6. Current Limit


Figure 8. Dropout Voltage


Figure 10. Minimum Operating Current


Figure 11. Ripple Rejection versus Output Voltage


Figure 12. Ripple Rejection versus Output Current


Figure 13. Ripple Rejection versus Frequency


Figure 14. Output Impedance


Figure 15. Line Transient Response


Figure 16. Load Transient Reponse


\section*{LM337}

\section*{APPLICATIONS INFORMATION}

\section*{Basic Circuit Operation}

The LM337 is a 3-terminal floating regulator. In operation, the LM337 develops and maintains a nominal -1.25 V reference ( \(\mathrm{V}_{\text {reff }}\) ) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 17), and this constant current flows through \(\mathrm{R}_{2}\) from ground.

The regulated output voltage is given by:
\[
v_{\text {out }}=v_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
\]

Since the current into the adjustment terminal ( \(I_{\text {Adj }}\) ) represents an error term in the equation, the LM337 was designed to control IAdj to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM337 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

Figure 17. Basic Circuit Configuration

\[
V_{\text {ref }}=-1.25 \mathrm{~V} \text { Typical }
\]

\section*{Load Regulation}

The LM337 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor \(\left(\mathrm{R}_{1}\right)\) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby
degrading regulation. The ground end of \(\mathrm{R}_{2}\) can be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{External Capacitors}

A \(1.0 \mu \mathrm{~F}\) tantalum input bypass capacitor \(\left(\mathrm{C}_{\mathrm{in}}\right)\) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor ( \(C_{\text {Adj }}\) ) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.

An output capacitance ( \(\mathrm{C}_{\mathrm{O}}\) ) in the form of a \(1.0 \mu \mathrm{~F}\) tantalum or \(10 \mu \mathrm{~F}\) aluminum electrolytic capacitor is required for stability.

\section*{Protection Diodes}

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM337 with the recommended protection diodes for output voltages in excess of -25 V or high capacitance values ( \(C_{O}>25 \mu \mathrm{~F}, \mathrm{C}_{\text {Adj }}>10 \mu \mathrm{~F}\) ). Diode \(\mathrm{D}_{1}\) prevents \(\mathrm{C}_{\mathrm{O}}\) from discharging thru the IC during an input short circuit. Diode \(D_{2}\) protects against capacitor CAdj discharging through the IC during an output short circuit. The combination of diodes \(D_{1}\) and \(D_{2}\) prevents \(C_{A d j}\) from the discharging through the IC during an input short circuit.
Figure 18. Voltage Regulator with Protection Diodes


Figure 19. D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


\section*{Three-Terminal Adjustable Output Negative Voltage Regulator}

The LM337M is an adjustable three-terminal negative voltage regulator capable of supplying in excess of 500 mA over an output voltage range of -1.2 V to -37 V . This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof.

The LM337M serves a wide variety of applications including local, on-card regulation. This device can also be used to make a programmable output regulator or by connecting a fixed resistor between the adjustment and output. The LM337M can be used as a precision current regulator.
- Output Current in Excess of 500 mA
- Output Adjustable Between -1.2 V and -37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

\section*{MEDIUM CURRENT}

THREE-TERMINAL ADJUSTABLE NEGATIVE VOLTAGE REGULATOR

SEMICONDUCTOR TECHNICAL DATA

T SUFFIX

\section*{PLASTIC PACKAGE}

CASE 221A

Pin 1. Adjust
2. \(V_{\text {in }}\)
3. \(V_{\text {out }}\)

* \(\mathrm{C}_{\mathrm{in}}\) is required if regulator is located more than 4 " from power supply filter. A \(1.0 \mu \mathrm{~F}\) solid tantalum or \(10 \mu \mathrm{~F}\) aluminum electrolytic is recommended.
\({ }^{* *} \mathrm{C}_{0}\) is necessary for stability. A \(1.0 \mu \mathrm{~F}\) solid tantalum or \(10 \mu \mathrm{~F}\) aluminum electrolytic is recommeded.
\[
V_{\text {out }}=-1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
\]


\section*{LM337M}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & 40 & Vdc \\
\hline Power Dissipation & \(\mathrm{PD}_{\mathrm{D}}\) & Internally Limited & W \\
\hline Operating Junction Temperature Range & \(\mathrm{T}_{J}\) & 0 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{IV}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \mathrm{I}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.1 ; \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], \(\mathrm{P}_{\text {max }}\) per Note 2, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Figure & Symbol & Min & Typ & Max & Unit \\
\hline Line Regulation (Note 3)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq\left|\mathrm{V}_{\mathrm{l}}-\mathrm{V}_{\mathrm{O}}\right| \leq 40 \mathrm{~V}
\] & 1 & Regline & - & 0.01 & 0.04 & \%/V \\
\hline Load Regulation (Note 3)
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{IO}_{\mathrm{O}} \leq 0.5 \mathrm{~A} \\
& \mathrm{IVO} \leq 5.0 \mathrm{~V} \\
& \mathrm{VVO}_{\mathrm{O}} \geq 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & - & \[
\begin{aligned}
& 15 \\
& 0.3
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
1.0
\end{array}
\] & \[
\underset{\% \mathrm{v}_{\mathrm{O}}}{\mathrm{mV}}
\] \\
\hline Thermal Regulation 10 ms Pulse, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & - & Regtherm & - & 0.03 & 0.04 & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline Adjustment Pin Current & 3 & \(I_{\text {Adj }}\) & - & 65 & 100 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Adjustment Pin Current Change } \\
& 2.5 \mathrm{~V} \leq \mathrm{IV}_{1}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}, 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 0.5 \mathrm{~A}, \\
& \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 1,2 & \(\Delta^{\prime}\) Adj & - & 2.0 & 5.0 & \(\mu \mathrm{A}\) \\
\hline ```
Reference Voltage
    3.0V \leq IV I- - V I }\leq40\textrm{V},10\textrm{mA}\leq\mp@subsup{\textrm{l}}{\textrm{O}}{}\leq0.5\textrm{A}
    PD
        Tlow to Thigh
``` & 3 & \(\mathrm{V}_{\text {ref }}\) & \[
\begin{gathered}
-1.213 \\
-1.20
\end{gathered}
\] & \[
\begin{gathered}
-1.250 \\
-1.25
\end{gathered}
\] & \[
\begin{gathered}
-1.287 \\
-1.30
\end{gathered}
\] & V \\
\hline Line Regulation (Note 3)
\[
3.0 \mathrm{~V} \leq\left|\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\right| \leq 40 \mathrm{~V}
\] & 1 & Regline & - & 0.02 & 0.07 & \%/V \\
\hline \[
\begin{gathered}
\text { Load Regulation (Note 3) } \\
10 \mathrm{~mA} \leq \mathrm{IO} \leq 0.5 \mathrm{~A} \\
\mathrm{VO} \leq 5.0 \mathrm{~V} \\
\mathrm{~V} \mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V} \\
\hline
\end{gathered}
\] & 2 & Regload & - & \[
\begin{aligned}
& 20 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.5
\end{aligned}
\] & \[
\stackrel{m V}{\% V_{O}}
\] \\
\hline Temperature Stability (\(\mathrm{T}_{\text {low }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {high }}\)) & 3 & Ts & - & 0.6 & - & \% \(N_{\text {O }}\) \\
\hline Minimum Load Current to Maintain Regulation
\[
\begin{aligned}
& \left(\left|\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\right| \leq 10 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \leq 40 \mathrm{~V}\right)
\end{aligned}
\] & 3 & ILmin & - & \[
\begin{aligned}
& 1.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 10
\end{aligned}
\] & mA \\
\hline Maximum Output Current \(\left|\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\right| \leq 15 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\text {max }}\) \(\mathrm{IV}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \mathrm{I} \leq 40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) & 3 & \(I_{\text {max }}\) & \[
\begin{aligned}
& 0.5 \\
& 0.1
\end{aligned}
\] & \[
\begin{gathered}
0.9 \\
0.25
\end{gathered}
\] & - & A \\
\hline RMS Noise, \% of \(\mathrm{V}_{\mathrm{O}}\)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\] & - & N & - & 0.003 & - & \% \(\mathrm{N}_{\mathrm{O}}\) \\
\hline ```
Ripple Rejection, \(\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) (Note 4)
 Without \(\mathrm{C}_{\text {Adj }}\)
 \(\mathrm{C}_{\text {Adj }}=10 \mu \mathrm{~F}\)
``` & 4 & RR & \[
66
\] & \[
\begin{aligned}
& 60 \\
& 77 \\
& \hline
\end{aligned}
\] & - & dB \\
\hline Long Term Stability, \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}\) (Note 5) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & \[
\begin{gathered}
\% / 1.0 \mathrm{k} \\
\mathrm{Hrs}
\end{gathered}
\] \\
\hline Thermal Resistance, Junction-to-Case & - & \(\mathrm{R}_{\text {®JC }}\) & - & 7.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

NOTES: \(1 . \mathrm{T}_{\text {low }}\) to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
2. \(\mathrm{P}_{\max }=7.5 \mathrm{~W}\)

3 Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
4. \(\mathrm{C}_{\text {Adj, }}\), when used, is connected between the adjustment pin and ground.
5. Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

LM337M


Figure 1. Line Regulation and \(\Delta^{\prime} \mathbf{I d j}\) /Line Test Circuit


\section*{LM337M}

Figure 2. Load Regulation and \({ }^{\Delta^{\prime}} \mathbf{A d j} /\) Load Test Circuit


Figure 3. Standard Test Circuit

\(R 2=\left(\frac{V_{0}}{V_{\text {ref }}}-1\right) R_{1}\)
This assumes \({ }_{\text {Adj }}\) is negligible.
Pulse Testing Required: 1\% Duty Cycle is suggested.

Figure 4. Ripple Rejection Test Circuit


\({ }^{*} \mathrm{D}_{1}\) Discharges \(\mathrm{C}_{\text {Adj }}\) if Output is shorted to Ground.

Figure 5. Load Regulation


Figure 6. Current Limit


Figure 7. Adjustment Pin Current


Figure 9. Temperature Stability


Figure 8. Dropout Voltage


Figure 10. Minimum Operating Current


Figure 11. Ripple Rejection versus Output Voltage


Figure 13. Ripple Rejection versus Frequency


Figure 15. Line Transient Response


Figure 12. Ripple Rejection versus Output Current


Figure 14. Output Impedance


Figure 16. Load Transient Reponse


\section*{LM337M}

\section*{APPLICATIONS INFORMATION}

\section*{Basic Circuit Operation}

The LM337M is a three-terminal floating regulator. In operation, the LM337M develops and maintains a nominal -1.25 V reference ( \(\mathrm{V}_{\text {ref }}\) ) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by \(\mathrm{R}_{1}\) (see Figure 17), and this constant current flows through \(\mathrm{R}_{2}\) to ground. The regulated output voltage is given by:
\[
V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
\]

Since the current into the adjustment terminal ( \({ }^{\mathrm{Adj}}\) ) represents an error term in the equation, the LM337M was designed to control \(\mathrm{I}_{\text {Adj }}\) to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM337M is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

Figure 17. Basic Circuit Configuration


\section*{Load Regulation}

The LM337M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor ( \(\mathrm{R}_{1}\) ) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby
degrading regulation. The ground end of \(\mathrm{R}_{2}\) can be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{External Capacitors}

A \(1.0 \mu \mathrm{~F}\) tantalum input bypass capacitor \(\left(\mathrm{C}_{\mathrm{in}}\right)\) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor ( \(\mathrm{C}_{\mathrm{Adj}}\) ) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.

An output capacitance ( \(\mathrm{CO}_{\mathrm{O}}\) ) in the form of a \(1.0 \mu \mathrm{~F}\) tantalum or \(10 \mu \mathrm{~F}\) aluminum electrolytic capacitor is required for stability.

\section*{Protection Diodes}

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM337M with the recommended protection diodes for output voltages in excess of -25 V or high capacitance values ( \(\mathrm{C}_{\mathrm{O}}>25 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{Adj}}>10 \mu \mathrm{~F}\) ). Diode \(\mathrm{D}_{1}\) prevents \(\mathrm{C}_{\mathrm{O}}\) from discharging thru the IC during an input short circuit. Diode \(D_{2}\) protects against capacitor \(C_{\text {Adj }}\) discharging through the IC during an output short circuit. The combination of diodes \(D_{1}\) and \(D_{2}\) prevents \(C_{\text {Adj }}\) from discharging through the IC during an input short circuit.

Figure 18. Voltage Regulator with Protection Diodes


\section*{Three-Terminal Positive Fixed Voltage Regulators}

This family of fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 1.0 A. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. Devices are available with improved specifications, including a \(2 \%\) output voltage tolerance, on A-suffix \(5.0,12\) and 15 V device types.

Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series-pass transistor to boost output current capability at the nominal output voltage.
- Output Current in Excess of 1.0 A
- No External Components Required
- Output Voltage Offered in \(2 \%\) and \(4 \%\) Tolerance*
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation

\section*{THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS}

SEMICONDUCTOR TECHNICAL DATA

T SUFFIX
PLASTIC PACKAGE
CASE 221A

Pin 1. Input
2. Ground
3. Output


Heatsink surface is connected to Pin 2.

\section*{Simplified Application}


A common ground is required between the input and the output voltages. The input voltage must remain typically 1.7 V above the output voltage even during the low point on the input ripple voltage.

XX these two digits of the type number indicate voltage.
* \(\mathrm{C}_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter.
** \(\mathrm{C}_{\mathrm{O}}\) is not needed for stability; however, it does improve transient response. If needed, use a \(0.1 \mu \mathrm{~F}\) ceramic disc.

LM340, A Series
MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline  & \(\mathrm{V}_{\text {in }}\) & \[
\begin{aligned}
& 35 \\
& 40
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics Plastic Package
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air
\[
\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{C}}=+75^{\circ} \mathrm{C}\) (See Figure 1) \\
Thermal Resistance, Junction-to-Case
\end{tabular} & \begin{tabular}{l}
PD \\
1/日JA \\
\({ }^{\theta}\) JA \\
\(P_{D}\) \\
1/日JA \\
\(\theta_{\mathrm{Jc}}\)
\end{tabular} & \begin{tabular}{l}
Internally Limited 15.4 \\
65 \\
Internally Limited 200 5.0
\end{tabular} & \begin{tabular}{l}
\(\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{W}}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
W \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature Range & TJ & 0 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Representative Schematic Diagram


\section*{LM340, A Series}

LM340-5.0
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I} \mathrm{O}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 4.8 & 5.0 & 5.2 & Vdc \\
\hline ```
Line Regulation (Note 2)
    8.0 Vdc to 20 Vdc
    7.0 Vdc to \(25 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
    8.0 Vdc to \(12 \mathrm{Vdc}, \mathrm{I}=1.0 \mathrm{~A}\)
    7.3 Vdc to \(20 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
``` & Regline & - &  & \[
\begin{aligned}
& 50 \\
& 50 \\
& 25 \\
& 50
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regioad & - & - & \[
\begin{aligned}
& 50 \\
& 50 \\
& 25
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
7.0 \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD}_{\mathrm{D}} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 4.75 & - & 5.25 & Vdc \\
\hline Quiescent Current
\[
\begin{aligned}
& \mathrm{l}=1.0 \mathrm{~A} \\
& \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & IB & - & \[
\overline{4.0}
\] & \[
\begin{aligned}
& 8.5 \\
& 8.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 7.0 \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=10 \mathrm{~V} \\
& 7.5 \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5 \\
& 1.0
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\mathrm{I}^{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & RR & 62 & 80 & - & dB \\
\hline Dropout Voltage & \(\mathrm{v}_{1}-\mathrm{v}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & ISC & - & 2.0 & - & A \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{A}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 0.6\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation \(\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right.\))
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}
\] & & 7.3 & - & - & Vdc \\
\hline
\end{tabular}

NOTES: 1. T low to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{DEFINITIONS}

Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.
Quiescent Current - That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

\section*{LM340, A Series}

LM340A-5.0
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I}^{\mathrm{O}}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 4.9 & 5.0 & 5.1 & Vdc \\
\hline \begin{tabular}{l}
Line Regulation \\
7.5 Vdc to \(20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) \\
7.3 Vdc to \(25 \mathrm{Vdc}\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) \\
8.0 Vdc to 12 Vdc \\
8.0 Vdc to \(12 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & Regline & - & \[
\overline{-0}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& 12 \\
& 4.0
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& 5.0 \mathrm{~mA} \leq \mathrm{O} \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq \mathrm{O} \leq 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & - & \[
\begin{aligned}
& 25 \\
& 25 \\
& 15
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
7.5 \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 4.8 & - & 5.2 & Vdc \\
\hline Quiescent Current
\[
T_{J}=+25^{\circ} \mathrm{C}
\] & IB & - & \[
3.5
\] & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=10 \mathrm{~V} \\
& 8.0 \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 7.5 \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.5 \\
& 0.8 \\
& 0.8
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& 8.0 \leq \mathrm{V}_{\text {in }} \leq 18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz} \\
& \mathrm{IO}=500 \mathrm{~mA} \\
& \mathrm{IO}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 68 \\
& 68
\end{aligned}
\] & \[
\overline{80}
\] & - & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & Isc & - & 2.0 & - & A \\
\hline Output Noise Voltage (\(\left.T_{A}=+25^{\circ} \mathrm{C}\right)\) \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(V_{n}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}
\] & TCVO & - & \(\pm 0.6\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\))
\[
\mathrm{I} \mathrm{O}=1.0 \mathrm{~A}
\] & & 7.3 & - & - & Vdc \\
\hline
\end{tabular}

NOTE: 1. \(T_{\text {low }}\) to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)

LM340-6.0
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 5.75 & 6.0 & 6.25 & Vdc \\
\hline \begin{tabular}{l}
Line Regulation \\
9.0 Vdc to 21 Vdc \\
8.0 Vdc to \(25 \mathrm{Vdc}\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right)\) \\
9.0 Vdc to \(13 \mathrm{Vdc}, \mathrm{I}=1.0 \mathrm{~A}\) \\
8.3 Vdc to \(21 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~A}\left(\mathrm{~T} \mathrm{~J}=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & Regline & -
-
- & \[
\begin{aligned}
& \text { - } \\
& \text { - }
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 60 \\
& 30 \\
& 60 \\
& \hline
\end{aligned}
\] & mV \\
\hline ```
Load Regulation
 5.0 mA\leqIO}\leq1.0
 5.0 mA \leq IO }\leq1.5\textrm{A}(\mp@subsup{\textrm{T}}{\textrm{J}}{}=+2\mp@subsup{5}{}{\circ}\textrm{C}
 250mA\leqIO}\leq750\textrm{mA}(\mp@subsup{\textrm{T}}{\textrm{J}}{= +25}\mp@subsup{}{}{\circ}\textrm{C}
``` & Regload & - & - & \[
\begin{aligned}
& 60 \\
& 60 \\
& 30
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
8.0 \leq \mathrm{V}_{\mathrm{in}} \leq 21 \mathrm{Vdc}, 6.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 5.7 & - & 6.3 & Vdc \\
\hline \[
\begin{aligned}
& \text { Quiescent Current } \\
& \begin{array}{l}
\mathrm{l} O=1.0 \mathrm{~A} \\
\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}
\end{array}
\end{aligned}
\] & 'B & - & \[
\overline{4.0}
\] & \[
\begin{aligned}
& 8.5 \\
& 8.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 8.0 \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=11 \mathrm{~V} \\
& 8.6 \leq \mathrm{V}_{\text {in }} \leq 21 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5 \\
& 1.0
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & RR & 59 & 78 & - & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & Isc & - & 1.9 & - & A \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 45 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage \(10=5.0 \mathrm{~mA}\) & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 0.7\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & Io & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}
\] & & 8.3 & - & - & Vdc \\
\hline
\end{tabular}

NOTE: 1. \(T_{\text {low }}\) to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)

\section*{LM340, A Series}

LM340-8.0
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I} O=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & VO & 7.7 & 8.0 & 8.3 & Vdc \\
\hline \begin{tabular}{l}
Line Regulation \\
11 Vdc to 23 Vdc \\
10.5 Vdc to \(25 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) \\
11 Vdc to \(17 \mathrm{Vdc}, \mathrm{IO}=1.0 \mathrm{~A}\) \\
10.5 Vdc to \(23 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T} J=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & Regline & - & - & \[
\begin{aligned}
& 80 \\
& 80 \\
& 40 \\
& 80
\end{aligned}
\] & mV \\
\hline ```
Load Regulation
    5.0 mA\leq }\textrm{I
    5.0 mA \leq I O < 1.5 A ( }\mp@subsup{\textrm{T}}{\textrm{J}}{=+25}\mp@subsup{}{}{\circ}\textrm{C}
    250mA\leq IO < 750 mA (TJ=+25'C)
``` & Regload & - & - & \[
\begin{aligned}
& 80 \\
& 80 \\
& 40
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
10.5 \leq \mathrm{V}_{\text {in }} \leq 23 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 7.6 & - & 8.4 & Vdc \\
\hline Quiescent Current
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} \\
& \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \({ }^{\prime} \mathrm{B}\) & - & \[
\overline{4.0}
\] & \[
\begin{aligned}
& 8.5 \\
& 8.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 10.5 \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=14 \mathrm{~V} \\
& 10.6 \leq \mathrm{V}_{\text {in }} \leq 23 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5 \\
& 1.0
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\mathrm{I}^{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & RR & 56 & 76 & - & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & Isc & - & 1.5 & - & A \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{A}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 52 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}
\] & TCVO & - & \(\pm 1.0\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\))
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}
\] & & 10.5 & - & - & Vdc \\
\hline
\end{tabular}

NOTE: 1. \(\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)

\section*{LM340, A Series}

LM340-12
ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\text {in }}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I}^{\circ}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 11.5 & 12 & 12.5 & Vdc \\
\hline ```
Line Regulation (Note 2)
 15 Vdc to 27 Vdc
 14.6 Vdc to \(30 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
 16 Vdc to \(22 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~A}\)
 14.6 Vdc to \(27 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
``` & Regline & -
-
- & -
-
- & \[
\begin{gathered}
120 \\
120 \\
60 \\
120
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & - & \[
\begin{gathered}
120 \\
120 \\
60
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
14.5 \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 11.4 & - & 12.6 & Vdc \\
\hline \[
\begin{gathered}
\text { Quiescent Current } \\
\mathrm{IO}_{\mathrm{O}}=1.0 \mathrm{~A} \\
\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{gathered}
\] & IB & - & \[
4.0
\] & \[
\begin{aligned}
& 8.5 \\
& 8.0
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Quiescent Current Change } \\
14.5 \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{I}=500 \mathrm{~mA} \\
5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=19 \mathrm{~V} \\
14.8 \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=1.0 \mathrm{~A}
\end{gathered}
\] & \(\Delta^{\prime \prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5 \\
& 1.0
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\mathrm{I}^{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & RR & 55 & 72 & - & dB \\
\hline Dropout Voltage & \(\mathrm{v}_{1}-\mathrm{v}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & ISC & - & 1.1 & - & A \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage \(\mathrm{IO}=5.0 \mathrm{~mA}\) & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 1.5\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation \(\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\[
\mathrm{I}=1.0 \mathrm{~A}
\] & & 14.6 & - & - & Vdc \\
\hline
\end{tabular}

NOTES: 1. \(T_{\text {low }}\) to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM340A-12
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=19 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I}^{\mathrm{O}}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 11.75 & 12 & 12.25 & Vdc \\
\hline \begin{tabular}{l}
Line Regulation \\
14.8 Vdc to \(27 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) \\
14.5 Vdc to \(30 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) \\
16 Vdc to 22 Vdc \\
16 Vdc to \(22 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & Regline & - & -
4.0
-
- & \[
\begin{aligned}
& 18 \\
& 18 \\
& 30 \\
& 9.0
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leq 1 \mathrm{O} \leq 750 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & - & \[
\begin{aligned}
& 60 \\
& 32 \\
& 19
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
14.8 \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 11.5 & - & 12.5 & Vdc \\
\hline Quiescent Current
\[
\mathrm{T}_{J}=+25^{\circ} \mathrm{C}
\] & \({ }^{\prime} \mathrm{B}\) & - & \[
3.5
\] & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 5.0 \mathrm{~mA} \leq \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=19 \mathrm{~V} \\
& 15 \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{IO}=500 \mathrm{~mA} \\
& 14.8 \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \({ }^{\Delta I} \mathrm{I}_{\mathrm{B}}\) & - & - & \[
\begin{aligned}
& 0.5 \\
& 0.8 \\
& 0.8
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& 15 \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz} \\
& \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
61
\] & \[
72
\] & - & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & ISC & - & 1.1 & - & A \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{0}\) & - & \(\pm 1.5\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation ( \(\mathrm{TJ}^{\text {a }}+25^{\circ} \mathrm{C}\) ) & & 14.5 & - & - & Vdc \\
\hline
\end{tabular}

NOTE: 1. \(T_{\text {low }}\) to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)

LM340-15
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I}^{\circ}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 14.4 & 15 & 15.6 & Vdc \\
\hline ```
Line Regulation (Note 2)
    18.5 Vdc to 30 Vdc
    17.5 Vdc to \(30 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
    20 Vdc to \(26 \mathrm{Vdc}, \mathrm{l}=1.0 \mathrm{~A}\)
    17.7 Vdc to \(30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
``` & Regline & - & - & \[
\begin{gathered}
150 \\
150 \\
75 \\
150
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{O} \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I} \leq 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & - & \[
\begin{gathered}
150 \\
150 \\
75
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
17.5 \leq \mathrm{V}_{\mathrm{in}} \leq 30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}
\] & \(\mathrm{v}_{\mathrm{O}}\) & 14.25 & - & 15.75 & Vdc \\
\hline \[
\begin{gathered}
\text { Quiescent Current } \\
I_{0}=1.0 \mathrm{~A} \\
T_{J}=+25^{\circ} \mathrm{C}
\end{gathered}
\] & \({ }^{\prime} \mathrm{B}\) & - & \[
\overline{4.0}
\] & \[
\begin{aligned}
& 8.5 \\
& 8.0
\end{aligned}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& 17.5 \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{l}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=23 \mathrm{~V} \\
& 17.9 \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{l}=1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta l}{ }^{\prime}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5 \\
& 1.0
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & RR & 54 & 70 & - & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & ISC & - & 800 & - & A \\
\hline \begin{tabular}{l}
Output Noise Voltage \(\left(T_{A}=+25^{\circ} \mathrm{C}\right)\) \\
\(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)
\end{tabular} & \(\mathrm{v}_{\mathrm{n}}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{IO}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 1.8\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation \(\left(T_{J}=+25^{\circ} \mathrm{C}\right)\)
\[
\mathrm{IO}=1.0 \mathrm{~A}
\] & & 17.7 & - & - & Vdc \\
\hline
\end{tabular}
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{LM340, A Series}

\section*{LM340A-15}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{~T}_{J}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{gathered}
\text { Output Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{gathered}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 14.7 & 15 & 15.3 & Vdc \\
\hline \begin{tabular}{l}
Line Regulation \\
17.9 Vdc to \(30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) \\
17.5 Vdc to \(30 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) \\
20 Vdc to \(26 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~A}\) \\
20 Vdc to \(26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & Regline & -
-
- & -
4.0
-
- & \[
\begin{aligned}
& 22 \\
& 22 \\
& 30 \\
& 10
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & \[
\overline{12}
\] & \[
\begin{aligned}
& 75 \\
& 35 \\
& 21
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
17.9 \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 14.4 & - & 15.6 & Vdc \\
\hline Quiescent Current
\[
\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & 'B & - & \[
3.5
\] & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=23 \mathrm{~V} \\
& 17.9 \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 17.9 \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \(\Delta^{\prime}{ }_{B}\) & - & - & \[
\begin{aligned}
& 0.5 \\
& 0.8 \\
& 0.8
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& 18.5 \leq \mathrm{V}_{\mathrm{in}} \leq 28.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz} \\
& \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 60 \\
& 60
\end{aligned}
\] & \[
\overline{70}
\] & - & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{1}-\mathrm{v}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & ISC & - & 800 & - & A \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{A}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 1.8\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & & 17.5 & - & - & Vdc \\
\hline
\end{tabular}

NOTE: 1. \(\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)

LM340-18
ELECTRICAL CHARACTERISTICS \(\left(V_{i n}=27 \mathrm{~V}, 10=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I}^{\mathrm{O}}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & Vo & 17.3 & 18 & 18.7 & Vdc \\
\hline \begin{tabular}{l}
Line Regulation \\
21.5 Vdc to 33 Vdc \\
21 Vdc to \(33 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) \\
24 Vdc to \(30 \mathrm{Vdc}, \mathrm{I}=1.0 \mathrm{~A}\) \\
21 Vdc to \(33 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & Regline & - & -
-
- & \[
\begin{gathered}
180 \\
180 \\
90 \\
180
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& 5.0 \mathrm{~mA} \leq 10 \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq 10 \leq 1.5 \mathrm{~A}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leq 1 \mathrm{I} \leq 750 \mathrm{~mA}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & - & \[
\begin{aligned}
& 180 \\
& 180 \\
& 90
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
21 \leq \mathrm{V}_{\mathrm{in}} \leq 33 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{l} 0 \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}
\] & Vo & 17.1 & - & 18.9 & Vdc \\
\hline Quiescent Current
\[
\begin{aligned}
\mathrm{I}_{0} & =1.0 \mathrm{~A} \\
\mathrm{~T}_{J} & =+25^{\circ} \mathrm{C}
\end{aligned}
\] & IB & - & \[
4.0
\] & \[
\begin{aligned}
& 8.5 \\
& 8.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 21 \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq 10 \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=27 \mathrm{~V} \\
& 21 \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc}, \mathrm{IO}=1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta I} I_{B}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5 \\
& 1.0
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\mathrm{O}=1.0 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & RR & 53 & 69 & - & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(T_{J}=+25^{\circ} \mathrm{C}\)) & IsC & - & 500 & - & A \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)) \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 110 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}
\] & TCVO & - & \(\pm 2.3\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation \(\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\[
\mathrm{I}=1.0 \mathrm{~A}
\] & & 21 & - & - & Vdc \\
\hline
\end{tabular}

NOTE: 1. \(\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)

\section*{LM340, A Series}

LM340-24
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{J}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 23 & 24 & 25 & Vdc \\
\hline ```
Line Regulation
 28 Vdc to 38 Vdc
 27 Vdc to \(38 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
 30 Vdc to \(36 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~A}\)
 27.1 Vdc to \(38 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
``` & Regline & -
-
- & -
-
- & \[
\begin{aligned}
& 240 \\
& 240 \\
& 120 \\
& 240
\end{aligned}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leq 1 \mathrm{O} \leq 750 \mathrm{~mA}\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - &  & \[
\begin{aligned}
& 240 \\
& 240 \\
& 120
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
27 \leq \mathrm{V}_{\mathrm{in}} \leq 38 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 22.8 & - & 25.2 & Vdc \\
\hline Quiescent Current
\[
\begin{aligned}
& \mathrm{IO}=1.0 \mathrm{~A} \\
& \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & IB & - & \[
4.0
\] & \[
\begin{aligned}
& 8.5 \\
& 8.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 27 \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{IO}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=33 \mathrm{~V} \\
& 27.3 \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\text {I }} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5 \\
& 1.0
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\mathrm{O}=1.0 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & RR & 50 & 66 & - & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & Isc & - & 200 & - & A \\
\hline ```
Output Noise Voltage (TA}=+2\mp@subsup{5}{}{\circ}\textrm{C}
    10 Hz\leqf\leq 100 kHz
``` & \(\mathrm{V}_{\mathrm{n}}\) & - & 170 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 3.0\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation \(\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\[
\mathrm{IO}=1.0 \mathrm{~A}
\] & & 27.1 & - & - & Vdc \\
\hline
\end{tabular}

NOTE: 1. \(T_{\text {low }}\) to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)

\section*{VOLTAGE REGULATOR PERFORMANCE}

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration (\(<100 \mu \mathrm{~s}\)) and are strictly a function of electrical gain. However, pulse widths of longer duration (\(>1.0 \mathrm{~ms}\)) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.

Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The change in dissipated power can
be caused by a change in either input voltage or the load current. Thermal regulation is a function of IC layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms , additional changes in the output voltage are due to the temperature coefficient of the device.

Figure 1 shows the line and thermal regulation response of a typical LM340AT-5.0 to a 10 W input pulse. The variation of the output voltage due to line regulation is labeled \(\grave{A}\) and the thermal regulation component is labeled Á. Figure 2 shows the load and thermal regulation response of a typical LM340AT-5.0 to a 15 W load pulse. The output voltage variation due to load regulation is labeled \(\grave{\AA}\) and the thermal regulation component is labeled Á.

Figure 1. Line and Thermal Regulation

\(\mathrm{t}, \mathrm{TIME}(2.0 \mathrm{~ms} / \mathrm{DIV})\)
LM340AT-5.0
\(\begin{array}{lll}V_{\text {out }}=5.0 \mathrm{~V} & & \text { (1) }=\text { Regline }=4.4 \mathrm{mV} \\ V_{\text {in }}=15 \mathrm{~V} & & \\ \mathrm{I}_{\text {out }}=0 \mathrm{~A} & 1.5 \mathrm{~A} & 0 \mathrm{~A} \\ \text { (2) }=\text { Regtherm }=0.0020 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{W}\end{array}\)

Figure 3. Temperature Stability

Figure 4. Output Impedance

Figure 5. Ripple Rejection versus Frequency

Figure 7. Quiescent Current versus Input Voltage

Figure 9. Dropout Voltage

Figure 6. Ripple Rejection versus Output Current

Figure 8. Quiescent Current versus Output Current

Figure 10. Peak Output Current

Figure 11. Line Transient Response

Figure 12. Load Transient Response

Figure 13. Worst Case Power Dissipation versus Ambient Temperature (Case 221A)

\section*{LM340, A Series}

\section*{APPLICATIONS INFORMATION}

\section*{Design Considerations}

The LM340, A series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the
regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Figure 14. Current Regulator

These regulators can also be used as a current source when connected as above. In order to minimize dissipation the LM340-5.0 is chosen in this application. Resistor R determines the current as follows:
\[
I_{O}=\frac{5.0 V}{R}+I_{Q}
\]
\(\mathrm{I}_{\mathrm{Q}} \cong 1.5 \mathrm{~mA}\) over line and load changes
For example, a 1 A current source would require R to be a \(5 \Omega\), 10 W resistor and the output voltage compliance would be the input voltage less 7.0 V .

Figure 16. Current Boost Regulator

The LM340, A series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 A. Resistor \(R\) in conjuction with the \(V_{B E}\) of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input-output differential voltage minimum is increased by \(V_{B E}\) of the pass transistor.

Figure 15. Adjustable Output Regulator

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 V greater than the regulator voltage.

Figure 17. Short Circuit Protection

The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three-terminal regulator. Therefore, 4.0 A plastic power transistor is specified.

\section*{Three-Terminal Adjustable Output Positive Voltage Regulator}

The LM350 is an adjustable three-terminal positive voltage regulator capable of supplying in excess of 3.0 A over an output voltage range of 1.2 V to 33 V . This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof.

The LM350 serves a wide variety of applications including local, on card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM350 can be used as a precision current regulator.
- Guaranteed 3.0 A Output Current
- Output Adjustable between 1.2 V and 33 V
- Load Regulation Typically 0.1\%
- Line Regulation Typically \(0.005 \% / \mathrm{V}\)
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting Constant with Temperature
- Output Transistor Safe Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-lead Transistor Package
- Eliminates Stocking Many Fixed Voltages

\section*{THREE-TERMINAL} ADJUSTABLE POSITIVE VOLTAGE REGULATOR

SEMICONDUCTOR TECHNICAL DATA

\section*{T SUFFIX}

PLASTIC PACKAGE
CASE 221A

\footnotetext{
Heatsink surface is connected to Pin 2.
}

Since \(I_{\text {Adj }}\) is controlled to less than \(100 \mu \mathrm{~A}\), the error associated with this term is negligible in most applications.

ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline LM350T & \(T_{J}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline LM350BT\# & \(T_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline
\end{tabular}
\# Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information.

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}\) & 35 & Vdc \\
\hline Power Dissipation & \(\mathrm{PD}_{\mathrm{D}}\) & Internally Limited & W \\
\hline Operating Junction Temperature Range & \(\mathrm{T}_{\mathrm{J}}\) & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Soldering Lead Temperature (10 seconds) & \(\mathrm{T}_{\text {solder }}\) & 300 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V} ; \mathrm{L}_{\mathrm{L}}=1.5 \mathrm{~A} ; \mathrm{T}_{J}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }} ; \mathrm{P}_{\max }\) [\(N\) ote 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Figure & Symbol & Min & Typ & Max & Unit \\
\hline Line Regulation (Note 2)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 35 \mathrm{~V}
\] & 1 & Regline & - & 0.0005 & 0.03 & \%/V \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{I}} \leq 3.0 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{O}} \leq 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \geq 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & - & \[
\begin{aligned}
& 5.0 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 0.5
\end{aligned}
\] & \[
\stackrel{m V}{\% V_{O}}
\] \\
\hline Thermal Regulation, Pulse \(=20 \mathrm{~ms}\),
\[
\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)
\] & & Regtherm & - & 0.002 & - & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline Adjustment Pin Current & 3 & \(I_{\text {Adj }}\) & - & 50 & 100 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Adjustment Pin Current Change } \\
& 3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 35 \mathrm{~V} \\
& 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 3.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }
\end{aligned}
\] & 1,2 & \(\Delta^{\text {I }}\) Adj & - & 0.2 & 5.0 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Reference Voltage } \\
& 3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 35 \mathrm{~V} \\
& 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }
\end{aligned}
\] & 3 & \(\mathrm{V}_{\text {ref }}\) & 1.20 & 1.25 & 1.30 & V \\
\hline Line Regulation (Note 2)
\[
3.0 \mathrm{~V} \leq \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 35 \mathrm{~V}
\] & 1 & Regline & - & 0.02 & 0.07 & \%/V \\
\hline ```
Load Regulation (Note 2)
 10mA\leqIL \leq 3.0 A
 VO}\leq5.0\textrm{V
 V
``` & 2 & Regioad & - & \[
\begin{aligned}
& 20 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.5
\end{aligned}
\] & \[
\stackrel{m V}{\% v_{O}}
\] \\
\hline Temperature Stability ( \(\mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {high }}\) ) & 3 & Ts & - & 1.0 & - & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline Minimum Loed Current to Maintain Regulation \(\left(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}=35 \mathrm{~V}\right)\) & 3 & \({ }^{\text {Lmin }}\) & - & 3.5 & 10 & mA \\
\hline \[
\begin{aligned}
& \text { Maximum Output Current } \\
& \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leq 10 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max } \\
& \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=30 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leq \mathrm{P}_{\max }, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 3 & \(I_{\text {max }}\) & \[
\begin{gathered}
3.0 \\
0.25
\end{gathered}
\] & \[
\begin{aligned}
& 4.5 \\
& 1.0
\end{aligned}
\] & - & A \\
\hline \[
\begin{aligned}
& \text { RMS Noise, \% of } \mathrm{V}_{\mathrm{O}} \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}
\end{aligned}
\] & & N & - & 0.003 & - & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline ```
Ripple Rejection, \(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) (Note 3)
    Without \(\mathrm{C}_{\text {Adj }}\)
    \(C_{\text {Adj }}=10 \mu \mathrm{~F}\)
``` & 4 & RR & \[
66
\] & \[
\begin{aligned}
& 65 \\
& 80
\end{aligned}
\] & - & dB \\
\hline Long Term Stability, \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}\) (Note 4) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & \%/1.0 k Hrs. \\
\hline \begin{tabular}{l}
Thermal Resistance, Junction-to-Case \\
Peak (Note 5) \\
Average (Note 6)
\end{tabular} & & \(\mathrm{R}_{\text {өJC }}\) & - & 2.3 & \[
\frac{-}{1.5}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

NOTES: 1. \(T_{\text {low }}\) to \(T_{\text {high }}=0^{\circ}\) to \(+125^{\circ} \mathrm{C} ; \mathrm{P}_{\max }=25 \mathrm{~W}\) for LM350T; \(\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C} ; \mathrm{P}_{\max }=25 \mathrm{~W}\) for LM350BT
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
3. \(\mathrm{C}_{\text {Adj }}\), when used, is connected between the adjustment pin and ground.
4. Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
5. Thermal Resistance evaluated measuring the hottest temperature on the die using an infrared scanner. This method of evaluation yields very accurate thermal resistance values which are conservative when compared to the other measurement techniques.
6 . The average die temperature is used to derive the value of thermal resistance junction to case (average).

\section*{LM350}

Representative Schematic Diagram

Figure 1. Line Regulation and \(\Delta^{\prime} \mathbf{A d j}^{\prime} /\) Line Test Circuit

\section*{LM350}

Figure 2. Load Regulation and \(\Delta^{I} \mathbf{A d j} /\) Load Test Circuit

Figure 3. Standard Test Circuit

Figure 4. Ripple Rejection Test Circuit

Figure 5. Load Regulation

Figure 7. Adjustment Pin Current

Figure 9. Temperature Stability

Figure 6. Current Limit

Figure 8. Dropout Voltage

Figure 10. Minimum Operating Current

Figure 11. Ripple Rejection versus Output Voltage

Figure 13. Ripple Rejection versus Frequency

Figure 15. Line Transient Response

Figure 12. Ripple Rejection versus Output Current

Figure 14. Output Impedance

Figure 16. Load Transient Response

\section*{APPLICATIONS INFORMATION}

\section*{Basic Circuit Operation}

The LM350 is a three-terminal floating regulator. In operation, the LM350 develops and maintains a nominal 1.25 V reference (\(\mathrm{V}_{\text {reff }}\)) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 17), and this constant current flows through \(\mathrm{R}_{2}\) to ground. The regulated output voltage is given by:
\[
V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
\]

Since the current from the terminal (\(l_{\text {Adj }}\)) represents an error term in the equation, the LM350 was designed to control \({ }^{\text {IAdj }}\) to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM350 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

Figure 17. Basic Circuit Configuration

\section*{Load Regulation}

The LM350 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor \(\left(R_{1}\right)\) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of \(R_{2}\) can be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{External Capacitors}
\(\mathrm{A} 0.1 \mu \mathrm{~F}\) disc or \(1 \mu \mathrm{~F}\) tantalum input bypass capacitor (\(\mathrm{C}_{\mathrm{in}}\)) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (\(\mathrm{C}_{\text {Adj }}\)) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.

Although the LM350 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (CO) in the form of a \(1 \mu \mathrm{~F}\) tantalum or \(25 \mu \mathrm{~F}\) aluminum electrolytic capacitor on the output swamps this effect and insures stability.

\section*{Protection Diodes}

When external capacitors are used with any IC regulator, it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM350 with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values (\(\mathrm{C}_{\mathrm{O}}>25 \mu \mathrm{~F}, \mathrm{C}_{\text {Adj }}>10 \mu \mathrm{~F}\)). Diode \(\mathrm{D}_{1}\) prevents \(\mathrm{C}_{\mathrm{O}}\) from discharging thru the IC during an input short circuit. Diode \(D_{2}\) protects against capacitor \(C_{\text {Adj }}\) discharging through the IC during an output short circuit. The combination of diodes \(D_{1}\) and \(D_{2}\) prevents \(C_{\text {Adj }}\) from discharging through the IC during an input short circuit.

Figure 18. Voltage Regulator with Protection Diodes

\section*{LM350}

Figure 19. "Laboratory" Power Supply with Adjustable Current Limit and Output Voltage

Figure 20. Adjustable Current Limiter

\(V_{O}<V_{(B R) D S S}+1.25 \mathrm{~V}+V_{S S}\)
\(1 \mathrm{Lmin}-\mathrm{I}\) DS \(<10<3.0 \mathrm{~A}\)
As shown \(0<10<1.0 \mathrm{~A}\)

Figure 22. Slow Turn-On Regulator

Figure 21. 5.0 V Electronic Shutdown Regulator

\(D_{1}\) protects the device during an input short circuit.

Figure 23. Current Regulator

\section*{Advance Information Easy Switcher \({ }^{\text {TM }} 1.0\) A Step-Down Voltage Regulator}

The LM2575 series of regulators are monolithic integrated circuits ideally suited for easy and convenient design of a step-down switching regulator (buck converter). All circuits of this series are capable of driving a 1.0 A load with excellent line and load regulation. These devices are available in fixed output voltages of \(3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}\), and an adjustable output version.

These regulators were designed to minimize the number of external components to simplify the power supply design. Standard series of inductors optimised for use with the LM2575 are offered by several different inductor manufacturers.

Since the LM2575 converter is a switch-mode power supply, its efficiency is significantly higher in comparison with popular three-terminal linear regulators, especially with higher input voltages. In many cases, the power dissipated by the LM2575 regulator is so low, that no heatsink is required or its size could be reduced dramatically.

The LM2575 features include a guaranteed \(\pm 4 \%\) tolerance on output voltage within specified input voltages and output load conditions, and \(\pm 10 \%\) on the oscillator frequency (\(\pm 2 \%\) over \(0^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)). External shutdown is included, featuring \(80 \mu \mathrm{~A}\) typical standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

\section*{Features}
- 3.3 V, 5.0 V, \(12 \mathrm{~V}, 15 \mathrm{~V}\), and Adjustable Output Versions
- Adjustable Version Output Voltage Range of 1.23 V to \(37 \mathrm{~V} \pm 4 \%\) Maximum Over Line and Load Conditions
- Guaranteed 1.0 A Output Current
- Wide Input Voltage Range: 4.75 V to 40 V
- Requires Only 4 External Components
- 52 kHz Fixed Frequency Internal Oscillator
- TTL Shutdown Capability, Low Power Standby Mode
- High Efficiency
- Uses Readily Available Standard Inductors
- Thermal Shutdown and Current Limit Protection

\section*{Applications}
- Simple and High-Efficiency Step-Down (Buck) Regulators
- Efficient Pre-Regulator for Linear Regulators
- On-Card Switching Regulators
- Positive to Negative Converters (Buck-Boost)
- Negative Step-Up Converters
- Power Supply for Battery Chargers

\section*{EASY SWITCHER \({ }^{\text {™ }}\) \\ 1.0 A STEP-DOWN VOLTAGE REGULATOR}

SEMICONDUCTOR TECHNICAL DATA

T SUFFIX PLASTIC PACKAGE

CASE 314D

Pin 1. \(V_{\text {in }}\)
2. Output
3. Ground
4. Feedback
5. \(\overline{\mathrm{ON}} / \mathrm{OFF}\)

TV SUFFIX
PLASTIC PACKAGE
CASE 314B

Heatsink surface
connected to Pin 3.

D2T SUFFIX
PLASTIC PACKAGE CASE 936A (D2PAK)

Heatsink surface (shown as terminal 6 in case outline drawing) is connected to Pin 3.

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE
\begin{tabular}{|l|c|}
\hline LM2575-3.3 & 3.3 V \\
LM2575-5 & 5.0 V \\
LM2575-12 & 12 V \\
LM2575-15 & 15 V \\
LM2575-Adj & 1.23 V to 37 V \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline LM2575T-** & \multirow{3}{*}{\(\mathrm{T}_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & Straight Lead \\
\hline LM2575TV-** & & Vertical Mount \\
\hline LM2575D2T-** & & Surface Mount \\
\hline
\end{tabular}

\footnotetext{
\({ }^{* *}=\) Voltage Option, ie. 3.3, 5.0, 12, 15 V and
Adjustable Output.
}

\section*{LM2575}

Figure 1. Block Diagram and Typical Application

\section*{Typical Application (Fixed Output Voltage Versions)}

Representative Block Diagram and Typical Application

This device contains 162 active transistors.

ABSOLUTE MAXIMUM RATINGS (Absolute Maximum Ratings indicate limits beyond
which damage to the device may occur.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Maximum Supply Voltage & \(\mathrm{V}_{\text {in }}\) & 45 & V \\
\hline \(\overline{\text { ON/OFF Pin Input Voltage }}\) & - & \(-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}_{\text {in }}\) & V \\
\hline Output Voltage to Ground (Steady-State) & - & -1.0 & V \\
\hline \begin{tabular}{l}
Power Dissipation \\
Case 314B and 314D (TO-220, 5-Lead) \\
Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case \\
Case 936A (D2PAK) \\
Thermal Resistance, Junction-to-Ambient \\
(Figure 34) \\
Thermal Resistance, Junction-to-Case
\end{tabular} & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(R_{\text {OJC }}\) \\
\(P_{D}\) \\
\(\mathrm{R}_{\text {ӨJA }}\) \\
\(\mathrm{R}_{\text {өJC }}\)
\end{tabular} & Internally Limited
65
5.0
Internally Limited
70
5.0 & \[
\begin{gathered}
\mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Minimum ESD Rating (Human Body Model: C \(=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega\)) & - & 3.0 & kV \\
\hline Lead Temperature (Soldering, 10 s) & - & 260 & \({ }^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature & TJ & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

OPERATING RATINGS (Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Operating Junction Temperature Range & \(\mathrm{T}_{\mathrm{J}}\) & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Supply Voltage & \(\mathrm{V}_{\text {in }}\) & 40 & V \\
\hline
\end{tabular}

\section*{SYSTEM PARAMETERS ([Note 1] Test Circuit Figure 14)}

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}\) for the \(3.3 \mathrm{~V}, 5.0 \mathrm{~V}\), and Adjustable version, \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}\) for the 12 V version, and \(\mathrm{V}_{\text {in }}=30 \mathrm{~V}\) for the 15 V version. I Load \(=200 \mathrm{~mA}\). For typical values \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{J}\) is the operating junction temperature range that applies [Note 2], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

LM2575-3.3 ([Note 1] Test Circuit Figure 14)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage \(\left(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\text {Load }}=0.2 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\text {out }}\) & 3.234 & 3.3 & 3.366 & V \\
\hline Output Voltage \(\left(4.75 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {Load }} \leq 1.0 \mathrm{~A}\right)\) & \(\mathrm{V}_{\text {out }}\) & & & & V \\
\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) & & 3.168 & 3.3 & 3.432 & \\
\(\mathrm{~T}_{\mathrm{J}}=-40\) to \(+125^{\circ} \mathrm{C}\) & & 3.135 & - & 3.465 & \\
\hline Efficiency \(\left(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\text {Load }}=1.0 \mathrm{~A}\right)\) & \(\eta\) & - & 75 & - & \(\%\) \\
\hline
\end{tabular}

LM2575-5 ([Note 1] Test Circuit Figure 14)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage \(\left(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\text {Load }}=0.2 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\text {out }}\) & 4.9 & 5.0 & 5.1 & V \\
\hline Output Voltage \(\left(8.0 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {Load }} \leq 1.0 \mathrm{~A}\right)\) & \(\mathrm{V}_{\text {out }}\) & & & & V \\
\(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) & & 4.8 & 5.0 & 5.2 & \\
\(\mathrm{~T}_{\mathrm{J}}=-40\) to \(+125^{\circ} \mathrm{C}\) & & 4.75 & - & 5.25 & \\
\hline Efficiency \(\left(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\text {Load }}=1.0 \mathrm{~A}\right)\) & \(\eta\) & - & 77 & - & \(\%\) \\
\hline
\end{tabular}

LM2575-12 ([Note 1] Test Circuit Figure 14)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage \(\left(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\text {Load }}=0.2 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\text {out }}\) & 11.76 & 12 & 12.24 & V \\
\hline Output Voltage \(\left(15 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {Load }} \leq 1.0 \mathrm{~A}\right)\) & \(\mathrm{V}_{\text {out }}\) & & & & V \\
\(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) & & 11.52 & 12 & 12.48 & \\
\(\mathrm{~T}_{J}=-40\) to \(+125^{\circ} \mathrm{C}\) & & 11.4 & - & 12.6 & \\
\hline Efficiency \(\left(\mathrm{V}_{\text {in }}=15 \mathrm{~V}, \mathrm{I}_{\text {Load }}=1.0 \mathrm{~A}\right)\) & \(\eta\) & - & 88 & - & \(\%\) \\
\hline
\end{tabular}

LM2575-15 ([Note 1] Test Circuit Figure 14)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage \(\left(\mathrm{V}_{\text {in }}=30 \mathrm{~V}, \mathrm{I}_{\text {Load }}=0.2 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\text {out }}\) & 14.7 & 15 & 15.3 & V \\
\hline Output Voltage \(\left(18 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{L}_{\text {Load }} \leq 1.0 \mathrm{~A}\right)\) & \(\mathrm{V}_{\text {out }}\) & & & & V \\
\(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) & & 14.4 & 15 & 15.6 & \\
\(\mathrm{~T}_{J}=-40\) to \(+125^{\circ} \mathrm{C}\) & & 14.25 & - & 15.75 & \\
\hline Efficiency \(\left(\mathrm{V}_{\text {in }}=18 \mathrm{~V}, \mathrm{I}_{\text {Load }}=1.0 \mathrm{~A}\right)\) & \(\eta\) & - & 88 & - & \(\%\) \\
\hline
\end{tabular}

LM2575 ADJUSTABLE VERSION ([Note 1] Test Circuit Figure 14)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Feedback Voltage \(\left(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\text {Load }}=0.2 \mathrm{~A}, \mathrm{~V}_{\text {out }}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\mathrm{FB}}\) & 1.217 & 1.23 & 1.243 & V \\
\hline Feedback Voltage \(\left(8.0 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {Load }} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {out }}=5.0 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{FB}}\) & & & & V \\
\(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) & & 1.193 & 1.23 & 1.267 & \\
\(\mathrm{~T}_{\mathrm{J}}=-40\) to \(+125^{\circ} \mathrm{C}\) & & 1.18 & - & 1.28 & \\
\hline Efficiency \(\left(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\text {Load }}=1.0 \mathrm{~A}, \mathrm{~V}_{\text {out }}=5.0 \mathrm{~V}\right)\) & \(\eta\) & - & 77 & - & \(\%\) \\
\hline
\end{tabular}

NOTES: 1. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2575 is used as shown in the Figure 14 test circuit, system performance will be as shown in system parameters section.
2. Tested junction temperature range for the \(L M 2575\) : \(\quad T_{\text {low }}=-40^{\circ} \mathrm{C} \quad T_{\text {high }}=+125^{\circ} \mathrm{C}\)

\section*{LM2575}

\section*{DEVICE PARAMETERS}

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}\) for the \(3.3 \mathrm{~V}, 5.0 \mathrm{~V}\), and Adjustable version, \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}\) for the 12 V version, and \(\mathrm{V}_{\text {in }}=30 \mathrm{~V}\) for the 15 V version. I Load \(=200 \mathrm{~mA}\). For typical values \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{J}\) is the operating junction temperature range that applies [Note 2], unless otherwise noted.)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

\section*{ALL OUTPUT VOLTAGE VERSIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Feedback Bias Current } \left.\left(V_{\text {out }}=5.0 \mathrm{~V} \text { [Adjustable Version Only }\right]\right) \\
& \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{J}=-40 \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & lb & & 25 & \[
\begin{aligned}
& 100 \\
& 200
\end{aligned}
\] & nA \\
\hline Oscillator Frequency [Note 3]
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=0 \text { to }+125^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & \(\mathrm{f}_{\text {osc }}\) & \[
\begin{aligned}
& 47 \\
& 42
\end{aligned}
\] & 52 & \[
\begin{aligned}
& 58 \\
& 63
\end{aligned}
\] & kHz \\
\hline \[
\begin{aligned}
& \text { Saturation Voltage (lout }=1.0 \mathrm{~A}[\text { Note 4] }) \\
& T_{J}=25^{\circ} \mathrm{C} \\
& T_{J}=-40 \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\text {sat }}\) & - & 1.0 & \[
\begin{aligned}
& 1.2 \\
& 1.3
\end{aligned}
\] & V \\
\hline Max Duty Cycle ("on") [Note 5] & DC & 94 & 98 & - & \% \\
\hline Current Limit (Peak Current [Notes 4 and 3])
\[
\begin{aligned}
& T_{J}=25^{\circ} \mathrm{C} \\
& T_{J}=-40 \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & \({ }^{\text {I CL }}\) & 1.7
1.4 & 2.3 & \[
\begin{aligned}
& 3.0 \\
& 3.2
\end{aligned}
\] & A \\
\hline \begin{tabular}{l}
Output Leakage Current [Notes 6 and 7], \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)
\[
\text { Output }=0 \mathrm{~V}
\] \\
Output \(=-1.0 \mathrm{~V}\)
\end{tabular} & L & - & 0.8
6.0 & 2.0
20 & mA \\
\hline Quiescent Current [Note 6]
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & \({ }^{1} \mathrm{Q}\) & - & 5.0 & \[
\begin{gathered}
9.0 \\
11
\end{gathered}
\] & mA \\
\hline Standby Quiescent Current (\(\overline{\mathrm{ON}} / \mathrm{OFF}\) Pin \(=5.0 \mathrm{~V}\) ("off"))
\[
\begin{aligned}
& T_{J}=25^{\circ} \mathrm{C} \\
& T_{J}=-40 \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & \(I_{\text {stby }}\) & - & 80 & 200
400 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \hline \text { ON/OFF Pin Logic Input Level (Test Circuit Figure 14) } \\
& V_{\text {out }}=0 \mathrm{~V} \\
& \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{J}=-40 \text { to }+125^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\text {out }}=\text { Nominal Output Voltage } \\
& \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{J}=-40 \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\] & 2.2
2.4 & 1.4
-
1.2 & \[
\begin{aligned}
& 1.0 \\
& 0.8
\end{aligned}
\] & V \\
\hline \(\overline{\mathrm{ON}} / \mathrm{OFF}\) Pin Input Current (Test Circuit Figure 14) \(\overline{\mathrm{ON}} / \mathrm{OFF}\) Pin \(=5.0 \mathrm{~V}\) ("off"), \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) \(\overline{\mathrm{ON}} / \mathrm{OFF}\) Pin \(=0 \mathrm{~V}\) ("on"), \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& I_{H} \\
& I_{I L}
\end{aligned}
\] & - & 15
0 & 30
50 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 3. The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately \(40 \%\) from the nominal output voltage. This self protection feature lowers the average dissipation of the IC by lowering the minimum duty cycle from \(5 \%\) down to approximately \(2 \%\).
4. Output (Pin 2) sourcing current. No diode, inductor or capacitor connected to output pin.
5. Feedback (Pin 4) removed from output and connected to 0 V .
6. Feedback (Pin 4) removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5.0 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor "off".
7. \(\mathrm{V}_{\mathrm{in}}=40 \mathrm{~V}\).

\section*{LM2575}

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 14)

Figure 2. Normalized Output Voltage

Figure 4. Switch Saturation Voltage

Figure 6. Dropout Voltage

Figure 3. Line Regulation

Figure 5. Current Limit

Figure 7. Quiescent Current

Figure 8. Standby Quiescent Current

Figure 10. Oscillator Frequency

Figure 12. Switching Waveforms

\(5.0 \mu \mathrm{~s} /\) DIV

Figure 9. Standby Quiescent Current

Figure 11. Feedback Pin Current

Figure 13. Load Transient Response

Figure 14. Typical Test Circuit

\subsection*{5.0 Output Voltage Versions}

Adjustable Output Voltage Versions

\section*{PCB LAYOUT GUIDELINES}

As in any switching regulator, the layout of the printed circuit board is very important. Rapidly switching currents associated with wiring inductance, stray capacitance and parasitic inductance of the printed circuit board traces can generate voltage transients which can generate electromagnetic interferences (EMI) and affect the desired operation. As indicated in the Figure 14, to minimize inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible. For best results, single-point grounding (as indicated) or ground plane construction should be used.

On the other hand, the PCB area connected to the Pin 2 (emitter of the internal switch) of the LM2575 should be kept to a minimum in order to minimize coupling to sensitive circuitry.

Another sensitive part of the circuit is the feedback. It is important to keep the sensitive feedback wiring short. To assure this, physically locate the programming resistors near to the regulator, when using the adjustable version of the LM2575 regulator.

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Symbol & Description (Refer to Figure 1) \\
\hline 1 & \(V_{\text {in }}\) & This pin is the positive input supply for the LM2575 step-down switching regulator. In order to minimize voltage transients and to supply the switching currents needed by the regulator, a suitable input bypass capacitor must be present (\(\mathrm{C}_{\mathrm{in}}\) in Figure 1). \\
\hline 2 & Output & This is the emitter of the internal switch. The saturation voltage \(\mathrm{V}_{\text {sat }}\) of this output switch is typically 1.0 V . It should be kept in mind that the PCB area connected to this pin should be kept to a minimum in order to minimize coupling to sensitive circuitry. \\
\hline 3 & Gnd & Circuit ground pin. See the information about the printed circuit board layout. \\
\hline 4 & Feedback & This pin senses regulated output voltage to complete the feedback loop. The signal is divided by the internal resistor divider network R2, R1 and applied to the non-inverting input of the internal error amplifier. In the Adjustable version of the LM2575 switching regulator this pin is the direct input of the error amplifier and the resistor network R2, R1 is connected externally to allow programming of the output voltage. \\
\hline 5 & \(\overline{\text { ON/OFF }}\) & It allows the switching regulator circuit to be shut down using logic level signals, thus dropping the total input supply current to approximately \(80 \mu \mathrm{~A}\). The input threshold voltage is typically 1.4 V . Applying a voltage above this value (up to \(+\mathrm{V}_{\text {in }}\)) shuts the regulator off. If the voltage applied to this pin is lower than 1.4 V or if this pin is connected to ground, the regulator will be in the "on" condition. \\
\hline
\end{tabular}

DESIGN PROCEDURE

\section*{Buck Converter Basics}

The LM2575 is a "Buck" or Step-Down Converter which is the most elementary forward-mode converter. Its basic schematic can be seen in Figure 15.
The operation of this regulator topology has two distinct time periods. The first one occurs when the series switch is on, the input voltage is connected to the input of the inductor.

The output of the inductor is the output voltage, and the rectifier (or catch diode) is reverse biased. During this period, since there is a constant voltage source connected across the inductor, the inductor current begins to linearly ramp upwards, as described by the following equation:
\[
\mathrm{I}_{\mathrm{L}(\mathrm{on})}=\frac{\left(\mathrm{v}_{\text {in }}-\mathrm{V}_{\text {out }}\right) \mathrm{t}_{\mathrm{on}}}{\mathrm{~L}}
\]

During this "on" period, energy is stored within the core material in the form of magnetic flux. If the inductor is properly designed, there is sufficient energy stored to carry the requirements of the load during the "off" period.

Figure 15. Basic Buck Converter

The next period is the "off" period of the power switch. When the power switch turns off, the voltage across the inductor reverses its polarity and is clamped at one diode voltage drop below ground by catch dioded. Current now flows through the catch diode thus maintaining the load current loop. This removes the stored energy from the inductor. The inductor current during this time is:
\[
I_{L(\text { off })}=\frac{\left(v_{\text {out }}-v_{D}\right) t_{\text {off }}}{L}
\]

This period ends when the power switch is once again turned on. Regulation of the converter is accomplished by varying the duty cycle of the power switch. It is possible to describe the duty cycle as follows:
\(d=\frac{t_{o n}}{T}\), where \(T\) is the period of switching.
For the buck converter with ideal components, the duty cycle can also be described as:
\[
d=\frac{V_{\text {out }}}{V_{\text {in }}}
\]

Figure 16 shows the buck converter idealized waveforms of the catch diode voltage and the inductor current.

Figure 16. Buck Converter Idealized Waveforms

\section*{LM2575}

Procedure (Fixed Output Voltage Version) In order to simplify the switching regulator design, a step-by-step design procedure and example is provided.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Procedure } & \\
\hline Given Parameters: & Example \\
\(V_{\text {out }}=\) Regulated Output Voltage \((3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}\) or 15 V\()\) & Given Parameters: \\
\(\mathrm{V}_{\text {in }(\max)}=\) Maximum DC Input Voltage & \(\mathrm{V}_{\text {out }}=5.0 \mathrm{~V}\) \\
ILoad \((\max)=\) Maximum Load Current & \(\mathrm{V}_{\text {in }(\max)}=20 \mathrm{~V}\). \\
\hline Load \((\max)=0.8 \mathrm{~A}\) \\
\hline
\end{tabular}
1. Controller IC Selection

According to the required input voltage, output voltage and current, select the appropriate type of the controller IC output voltage version.

\section*{2. Input Capacitor Selection (\(\mathbf{C}_{\text {in }}\))}

To prevent large voltage transients from appearing at the input and for stable operation of the converter, an aluminium or tantalum electrolytic bypass capacitor is needed between the input pin \(+\mathrm{V}_{\text {in }}\) and ground pin Gnd. This capacitor should be located close to the IC using short leads. This capacitor should have a low ESR (Equivalent Series Resistance) value.
3. Catch Diode Selection (D1)
A. Since the diode maximum peak current exceeds the regulator maximum load current the catch diode current rating must be at least 1.2 times greater than the maximum load current. For a robust design the diode should have a current rating equal to the maximum current limit of the LM2575 to be able to withstand a continuous output short
B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.
4. Inductor Selection (L1)
A. According to the required working conditions, select the correct inductor value using the selection guide from Figures 17 to 21.
B. From the appropriate inductor selection guide, identify the inductance region intersected by the Maximum Input Voltage line and the Maximum Load Current line. Each region is identified by an inductance value and an inductor code.
C. Select an appropriate inductor from the several different manufacturers part numbers listed in Table 1 or Table 2. When using Table 2 for selecting the right inductor the designer must realize that the inductor current rating must be higher than the maximum peak current flowing through the inductor. This maximum peak current can be calculated as follows:
\[
I_{p(\max)}=I_{\operatorname{Load}(\max)}+\frac{\left(v_{\text {in }}-V_{\text {out }}\right) t_{\text {on }}}{2 L}
\]
where \(t_{o n}\) is the "on" time of the power switch and
\[
t_{\text {on }}=\frac{V_{\text {out }}}{V_{\text {in }}} \times \frac{1}{f_{\text {osc }}}
\]

For additional information about the inductor, see the inductor section in the "External Components" section of this data sheet.
1. Controller IC Selection

According to the required input voltage, output voltage, current polarity and current value, use the LM2575-5 controller IC

\section*{2. Input Capacitor Selection (\(\mathrm{C}_{\mathrm{in}}\))}

A \(47 \mu \mathrm{~F}, 25 \mathrm{~V}\) aluminium electrolytic capacitor located near to the input and ground pins provides sufficient bypassing.
3. Catch Diode Selection (D1)
A. For this example the current rating of the diode is 1.0 A .
B. Use a 30 V 1 N 5818 Schottky diode, or any of the suggested fast recovery diodes shown in the Table 4.
4. Inductor Selection (L1)
A. Use the inductor selection guide shown in Figures 17 to 21.
B. From the selection guide, the inductance area intersected by the 20 V line and 0.8 A line is L330.
C. Inductor value required is \(330 \mu \mathrm{H}\). From the Table 1 or Table 2, choose an inductor from any of the listed manufacturers.

Procedure (Fixed Output Voltage Version) (continued)In order to simplify the switching regulator design, a step-by-step design procedure and example is provided.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Procedure } & \multicolumn{1}{c|}{ Example } \\
\hline 5. Output Capacitor Selection (Cout) \\
A. Since the LM2575 is a forward-mode switching regulator \\
with voltage mode control, its open loop 2-pole-2-zero \\
frequency characteristic has the dominant pole-pair \\
determined by the output capacitor and inductor values. For & 5. Output Capacitor Selection (Cout) \\
stable operation and an acceptable ripple voltage, \(\mathrm{C}_{\text {out }}=100 \mu \mathrm{~F}\) to \(470 \mu \mathrm{~F}\) standard aluminium electrolytic. \\
(approximately \(1 \%\) of the output voltage) a value between & \\
\(100 \mu \mathrm{~F}\) and \(470 \mu \mathrm{~F}\) is recommended. \\
B. Due to the fact that the higher voltage electrolytic capacitors \\
generally have lower ESR (Equivalent Series Resistance) \\
numbers, the output capacitor's voltage rating should be at \\
least 1.5 times greater than the output voltage. For a 5.0 V \\
regulator, a rating at least 8 V is appropriate, and a 10 V or \\
16 V rating is recommended. & B. Capacitor voltage rating \(=16 \mathrm{~V}\). \\
\hline
\end{tabular}

\section*{Procedure (Adjustable Output Version: LM2575-Adj)}
\begin{tabular}{|c|c|}
\hline Procedure & Example \\
\hline Given Parameters: & Given Parameters: \\
\hline \(V_{\text {out }}=\) Regulated Output Voltage & \(\mathrm{V}_{\text {out }}=8.0 \mathrm{~V}\) \\
\hline \(\mathrm{V}_{\text {in }(\max)}=\) Maximum DC Input Voltage & \(\mathrm{V}_{\text {in }}(\mathrm{max})=12 \mathrm{~V}\) \\
\hline LLoad(max) \(=\) Maximum Load Current & \(l_{\text {Load(max }}=1.0 \mathrm{~A}\) \\
\hline
\end{tabular}
1. Programming Output Voltage

To select the right programming resistor R1 and R2 value (see Figure 14) use the following formula:
\[
V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R 2}{R 1}\right) \text { where } V_{\text {ref }}=1.23 V
\]

Resistor R1 can be between 1.0 k and \(5.0 \mathrm{k} \Omega\). (For best temperature coefficient and stability with time, use \(1 \%\) metal film resistors).
\[
\mathrm{R} 2=\mathrm{R} 1\left(\frac{V_{\text {out }}}{V_{\text {ref }}}-1\right)
\]

\section*{2. Input Capacitor Selection (\(C_{i n}\))}

To prevent large voltage transients from appearing at the input and for stable operation of the converter, an aluminium or tantalum electrolytic bypass capacitor is needed between the input pin \(+\mathrm{V}_{\text {in }}\) and ground pin Gnd This capacitor should be located close to the IC using short leads. This capacitor should have a low ESR (Equivalent Series Resistance) value.
For additional information see input capacitor section in the "External Components" section of this data sheet.
3. Catch Diode Selection (D1)
A. Since the diode maximum peak current exceeds the regulator maximum load current the catch diode current rating must be at least 1.2 times greater than the maximum load current. For a robust design, the diode should have a current rating equal to the maximum current limit of the LM2575 to be able to withstand a continuous output short.
B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.
1. Programming Output Voltage (selecting R1 and R2) Select R1 and R2:
\[
\begin{aligned}
& V_{\text {out }}=1.23\left(1+\frac{R 2}{R 1}\right) \text { Select } \mathrm{R} 1=1.8 \mathrm{k} \Omega \\
& \mathrm{R} 2=\mathrm{R} 1\left(\frac{\mathrm{~V}_{\text {out }}}{\mathrm{V}_{\text {ref }}}-1\right)=1.8 \mathrm{k}\left(\frac{8.0 \mathrm{~V}}{1.23 \mathrm{~V}}-1\right)
\end{aligned}
\]
\(\mathrm{R} 2=9.91 \mathrm{k} \Omega\), choose a 9.88 k metal film resistor.

\section*{2. Input Capacitor Selection (\(\mathrm{C}_{\text {in }}\))}

A \(100 \mu \mathrm{~F}\) aluminium electrolytic capacitor located near the input and ground pin provides sufficient bypassing.

\section*{3. Catch Diode Selection (D1)}
A. For this example, a 3.0 A current rating is adequate.
B. Use a 20 V 1N5820 or MBR320 Schottky diode or any suggested fast recovery diode in the Table 4.

Procedure (Adjustable Output Version: LM2575-Adj) (continued)
\begin{tabular}{|c|c|}
\hline Procedure & Example \\
\hline \begin{tabular}{l}
4. Inductor Selection (L1) \\
A. Use the following formula to calculate the inductor Volt \(x\) microsecond [\(\mathrm{V} \mathrm{x} \mu \mathrm{s}\)] constant:
\[
E \times T=\left(V_{\text {in }}-v_{\text {out }}\right) \frac{V_{\text {out }}}{V_{\text {on }}} \times \frac{10^{6}}{F[H z]}[V \times \mu \mathrm{s}]
\]
\end{tabular} & \begin{tabular}{l}
4. Inductor Selection (L1) \\
A. Calculate ExT[V \(\mathrm{X} \mu \mathrm{s}]\) constant:
\[
E \times T=(12-8.0) \times \frac{8.0}{12} \times \frac{1000}{52}=51[V \times \mu s]
\]
\end{tabular} \\
\hline
\end{tabular}
B. Match the calculated \(\mathrm{E} \times \mathrm{T}\) value with the corresponding number on the vertical axis of the Inductor Value Selection Guide shown in Figure 21. This ExT constant is a measure of the energy handling capability of an inductor and is dependent upon the type of core, the core area, the number of turns, and the duty cycle.
C. Next step is to identify the inductance region intersected by the ExT value and the maximum load current value on the horizontal axis shown in Figure 21.
D. From the inductor code, identify the inductor value. Then select an appropriate inductor from the Table 1 or Table 2. The inductor chosen must be rated for a switching frequency of 52 kHz and for a current rating of 1.15 x load. The inductor current rating can also be determined by calculating the inductor peak current:
\[
I_{p(\max)}=I_{\text {Load }(\max)}+\frac{\left(v_{\text {in }}-v_{\text {out }}\right) t_{\text {on }}}{2 L}
\]
where \(t_{o n}\) is the "on" time of the power switch and
\[
t_{\text {on }}=\frac{v_{\text {out }}}{v_{\text {in }}} \times \frac{1}{f_{\text {osc }}}
\]

For additional information about the inductor, see the inductor section in the "External Components" section of this data sheet.
5. Output Capacitor Selection (Cout)
A. Since the LM2575 is a forward-mode switching regulator with voltage mode control, its open loop 2-pole-2-zero frequency characteristic has the dominant pole-pair determined by the output capacitor and inductor values.
For stable operation, the capacitor must satisfy the following requirement:
\[
C_{\text {out }} \geq 7.785 \frac{V_{\text {in(max }}}{V_{\text {out }} \times L[\mu H]}[\mu \mathrm{F}]
\]
B. Capacitor values between \(10 \mu \mathrm{~F}\) and \(2000 \mu \mathrm{~F}\) will satisfy the loop requirements for stable operation. To achieve an acceptable output ripple voltage and transient response, the output capacitor may need to be several times larger than the above formula yields.
C. Due to the fact that the higher voltage electrolytic capacitors generally have lower ESR (Equivalent Series Resistance) numbers, the output capacitor's voltage rating should be at least 1.5 times greater than the output voltage. For a 5.0 V regulator, a rating of at least 8 V is appropriate, and a 10 V or 16 V rating is recommended.

\section*{5. Output Capacitor Selection (Cout)}
A.
\[
C_{\text {out }} \geq 7.785 \frac{12}{8.220}=53 \mu \mathrm{~F}
\]

To achieve an acceptable ripple voltage, select \(C_{\text {out }}=100 \mu \mathrm{~F}\) electrolytic capacitor.

\section*{LM2575}

\section*{INDUCTOR VALUE SELECTION GUIDE}

Figure 17. LM2575-3.3

Figure 19. LM2575-12

Figure 18. LM2575-5.0

Figure 20. LM2575-15

Figure 21. LM2575-Adj

NOTE: This Inductor Value Selection Guide is applicable for continuous mode only.

\section*{LM2575}

Table 1. Inductor Selection Guide
\begin{tabular}{|c|c|c|c|c|c|}
\hline Inductor Code & Inductor Value & Pulse Eng & Renco & AIE & Tech 39 \\
\hline L100 & \(100 \mu \mathrm{H}\) & PE-92108 & RL2444 & 415-0930 & 77308 BV \\
\hline L150 & \(150 \mu \mathrm{H}\) & PE-53113 & RL1954 & 415-0953 & 77358 BV \\
\hline L220 & \(220 \mu \mathrm{H}\) & PE-52626 & RL1953 & 415-0922 & 77408 BV \\
\hline L330 & \(330 \mu \mathrm{H}\) & PE-52627 & RL1952 & 415-0926 & 77458 BV \\
\hline L470 & \(470 \mu \mathrm{H}\) & PE-53114 & RL1951 & 415-0927 & - \\
\hline L680 & \(680 \mu \mathrm{H}\) & PE-52629 & RL1950 & 415-0928 & 77508 BV \\
\hline H150 & \(150 \mu \mathrm{H}\) & PE-53115 & RL2445 & 415-0936 & 77368 BV \\
\hline H220 & \(220 \mu \mathrm{H}\) & PE-53116 & RL2446 & 430-0636 & 77410 BV \\
\hline H330 & \(330 \mu \mathrm{H}\) & PE-53117 & RL2447 & 430-0635 & 77460 BV \\
\hline H470 & \(470 \mu \mathrm{H}\) & PE-53118 & RL1961 & 430-0634 & - \\
\hline H680 & \(680 \mu \mathrm{H}\) & PE-53119 & RL1960 & 415-0935 & 77510 BV \\
\hline H1000 & \(1000 \mu \mathrm{H}\) & PE-53120 & RL1959 & 415-0934 & 77558 BV \\
\hline H1500 & \(1500 \mu \mathrm{H}\) & PE-53121 & RL1958 & 415-0933 & - \\
\hline H2200 & \(2200 \mu \mathrm{H}\) & PE-53122 & RL2448 & 415-0945 & 77610 BV \\
\hline
\end{tabular}

Table 2. Inductor Selection Guide
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Inductance } \\
\hline(\mu \mathbf{H}) \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Current \\
(A)
\end{tabular}} & \multicolumn{2}{|c|}{Schott} & \multicolumn{2}{|l|}{Renco} & \multicolumn{2}{|l|}{Pulse Engineering} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Coilcraft } \\
\hline \text { SMT }
\end{array}
\]} \\
\hline & & THT & SMT & THT & SMT & THT & SMT & \\
\hline \multirow{4}{*}{68} & 0.32 & 67143940 & 67144310 & RL-1284-68-43 & RL1500-68 & PE-53804 & PE-53804-S & DO1608-68 \\
\hline & 0.58 & 67143990 & 67144360 & RL-5470-6 & RL1500-68 & PE-53812 & PE-53812-S & DO3308-683 \\
\hline & 0.99 & 67144070 & 67144450 & RL-5471-5 & RL1500-68 & PE-53821 & PE-53821-S & DO3316-683 \\
\hline & 1.78 & 67144140 & 67144520 & RL-5471-5 & - & PE-53830 & PE-53830-S & DO5022P-683 \\
\hline \multirow{3}{*}{100} & 0.48 & 67143980 & 67144350 & RL-5470-5 & RL1500-100 & PE-53811 & PE-53811-S & DO3308-104 \\
\hline & 0.82 & 67144060 & 67144440 & RL-5471-4 & RL1500-100 & PE-53820 & PE-53820-S & DO3316-104 \\
\hline & 1.47 & 67144130 & 67144510 & RL-5471-4 & - & PE-53829 & PE-53829-S & DO5022P-104 \\
\hline \multirow{3}{*}{150} & 0.39 & - & 67144340 & RL-5470-4 & RL1500-150 & PE-53810 & PE-53810-S & DO3308-154 \\
\hline & 0.66 & 67144050 & 67144430 & RL-5471-3 & RL1500-150 & PE-53819 & PE-53819-S & DO3316-154 \\
\hline & 1.20 & 67144120 & 67144500 & RL-5471-3 & - & PE-53828 & PE-53828-S & DO5022P-154 \\
\hline \multirow{3}{*}{220} & 0.32 & 67143960 & 67144330 & RL-5470-3 & RL1500-220 & PE-53809 & PE-53809-S & DO3308-224 \\
\hline & 0.55 & 67144040 & 67144420 & RL-5471-2 & RL1500-220 & PE-53818 & PE-53818-S & DO3316-224 \\
\hline & 1.00 & 67144110 & 67144490 & RL-5471-2 & - & PE-53827 & PE-53827-S & DO5022P-224 \\
\hline \multirow[t]{2}{*}{330} & 0.42 & 67144030 & 67144410 & RL-5471-1 & RL1500-330 & PE-53817 & PE-53817-S & DO3316-334 \\
\hline & 0.80 & 67144100 & 67144480 & RL-5471-1 & - & PE-53826 & PE-53826-S & DO5022P-334 \\
\hline
\end{tabular}

NOTE: Table 1 and Table 2 of this Indicator Selection Guide shows some examples of different manufacturer products suitable for design with the LM2575.

\section*{LM2575}

Table 3. Example of Several Inductor Manufacturers Phone/Fax Numbers
\begin{tabular}{|l|l|l|}
\hline Pulse Engineering Inc. & \begin{tabular}{l}
Phone \\
Fax
\end{tabular} & \begin{tabular}{l}
\(+1-619-674-8100\) \\
\(+1-619-674-8262\)
\end{tabular} \\
\hline Pulse Engineering Inc. Europe & \begin{tabular}{l}
Phone \\
Fax
\end{tabular} & \begin{tabular}{l}
+3539324107 \\
+3539324459
\end{tabular} \\
\hline Renco Electronics Inc. & \begin{tabular}{l}
Phone \\
Fax
\end{tabular} & \begin{tabular}{l}
\(+1-516-645-5828\) \\
\(+1-516-586-5562\)
\end{tabular} \\
\hline AIE Magnetics & \begin{tabular}{l}
Phone \\
Fax
\end{tabular} & \(+1-813-347-2181\) \\
\hline Coilcraft Inc. & \begin{tabular}{l}
Phone \\
Fax
\end{tabular} & \begin{tabular}{l}
\(+1-708-322-2645\) \\
\(+1-708-639-1469\)
\end{tabular} \\
\hline Coilcraft Inc., Europe & \begin{tabular}{l}
Phone \\
Fax
\end{tabular} & \begin{tabular}{l}
+441236730595 \\
\(+441236 ~ 730627\)
\end{tabular} \\
\hline Tech 39 & \begin{tabular}{l}
Phone \\
Fax
\end{tabular} & \begin{tabular}{l}
+3384252626 \\
+3384252610
\end{tabular} \\
\hline Schott Corp. & \begin{tabular}{l}
Phone \\
Fax
\end{tabular} & \begin{tabular}{l}
\(+1-612-475-1173\) \\
\(+1-612-475-1786\)
\end{tabular} \\
\hline
\end{tabular}

Table 4. Diode Selection Guide gives an overview about both surface-mount and through-hole diodes for an effective design. Device listed in bold are available from Motorola.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\(\mathbf{V}_{\mathbf{R}}\)} & \multicolumn{4}{|c|}{Schottky} & \multicolumn{4}{|c|}{Ultra-Fast Recovery} \\
\hline & \multicolumn{2}{|l|}{1.0 A} & \multicolumn{2}{|l|}{3.0 A} & \multicolumn{2}{|l|}{1.0 A} & \multicolumn{2}{|l|}{3.0 A} \\
\hline & SMT & THT & SMT & THT & SMT & THT & SMT & THT \\
\hline 20 V & SK12 & \[
\begin{aligned}
& \hline \text { 1N5817 } \\
& \text { SR102 }
\end{aligned}
\] & \[
\begin{gathered}
\text { SK32 } \\
\text { MBRD320 }
\end{gathered}
\] & 1N5820 MBR320 SR302 & \multirow[b]{2}{*}{MURS120T3} & \multirow{4}{*}{\[
\begin{gathered}
\text { MUR120 } \\
\text { 11DF1 } \\
\text { HER102 }
\end{gathered}
\]} & \multirow[b]{2}{*}{MURS320T3} & \multirow{4}{*}{\begin{tabular}{l}
MUR320 \\
30WF10 \\
MUR420
\end{tabular}} \\
\hline 30 V & \[
\begin{gathered}
\hline \text { MBRS130LT3 } \\
\text { SK13 }
\end{gathered}
\] & 1N5818 SR103 11DQ03 & \[
\begin{gathered}
\text { SK33 } \\
\text { MBRD330 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 1N5821 } \\
\text { MBR330 } \\
\text { SR303 } \\
\text { 31DQ03 }
\end{gathered}
\] & & & & \\
\hline 40 V & \[
\begin{gathered}
\hline \text { MBRS140T3 } \\
\text { SK14 } \\
\text { 10BQ040 } \\
\text { 10MQ040 }
\end{gathered}
\] & 1N5819 SR104 11DQ04 & ```
MBRS340T3
 MBRD340
 30WQ04
 SK34
``` & \[
\begin{gathered}
\text { 1N5822 } \\
\text { MBR340 } \\
\text { SR304 } \\
\text { 31DQ04 }
\end{gathered}
\] & \multirow[t]{2}{*}{10BF10} & & MURD320 & \\
\hline 50 V & \[
\begin{gathered}
\text { MBRS150 } \\
\text { 10BQ050 }
\end{gathered}
\] & MBR150 SR105 11DQ05 & \[
\begin{gathered}
\text { MBRD350 } \\
\text { SK35 } \\
\text { 30WQ05 }
\end{gathered}
\] & \[
\begin{gathered}
\text { MBR350 } \\
\text { SR305 } \\
\text { 11DQ05 }
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { 31DF1 } \\
& \text { HER302 }
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{EXTERNAL COMPONENTS}

\section*{Input Capacitor ( \(\mathrm{C}_{\mathrm{in}}\) )}

\section*{The Input Capacitor Should Have a Low ESR}

For stable operation of the switch mode converter a low ESR (Equivalent Series Resistance) aluminium or solid tantalum bypass capacitor is needed between the input pin and the ground pin to prevent large voltage transients from appearing at the input. It must be located near the regulator and use short leads. With most electrolytic capacitors, the capacitance value decreases and the ESR increases with lower temperatures. For reliable operation in temperatures below \(-25^{\circ} \mathrm{C}\) larger values of the input capacitor may be needed. Also paralleling a ceramic or solid tantalum capacitor will increase the regulator stability at cold temperatures.

\section*{RMS Current Rating of \(C_{\text {in }}\)}

The important parameter of the input capacitor is the RMS current rating. Capacitors that are physically large and have large surface area will typically have higher RMS current ratings. For a given capacitor value, a higher voltage electrolytic capacitor will be physically larger than a lower voltage capacitor, and thus be able to dissipate more heat to the surrounding air, and therefore will have a higher RMS current rating. The consequence of operating an electrolytic capacitor above the RMS current rating is a shortened operating life. In order to assure maximum capacitor operating lifetime, the capacitor's RMS ripple current rating should be:
\[
I_{\text {rms }}>1.2 \times \mathrm{dx} I_{\text {Load }}
\]
where \(d\) is the duty cycle, for a buck regulator
\[
\mathrm{d}=\frac{\mathrm{t}_{\mathrm{on}}}{\mathrm{~T}}=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}_{\mathrm{in}}}
\]
and \(d=\frac{t_{\text {on }}}{T}=\frac{\left|V_{\text {out }}\right|^{\prime}}{\left|V_{\text {out }}\right|+V_{\text {in }}}\) for a buck-boost regulator.

\section*{Output Capacitor (Cout)}

For low output ripple voltage and good stability, low ESR output capacitors are recommended. An output capacitor has two main functions: it filters the output and provides regulator loop stability. The ESR of the output capacitor and the peak-to-peak value of the inductor ripple current are the main factors contributing to the output ripple voltage value. Standard aluminium electrolytics could be adequate for some applications but for quality design low ESR types are recommended.

An aluminium electrolytic capacitor's ESR value is related to many factors such as the capacitance value, the voltage rating, the physical size and the type of construction. In most cases, the higher voltage electrolytic capacitors have lower ESR value. Often capacitors with much higher voltage ratings may be needed to provide low ESR values that are required for low output ripple voltage.

\section*{The Output Capacitor Requires an ESR Value That Has an Upper and Lower Limit}

As mentioned above, a low ESR value is needed for low output ripple voltage, typically \(1 \%\) to \(2 \%\) of the output voltage. But if the selected capacitor's ESR is extremely low (below \(0.05 \Omega\) ), there is a possibility of an unstable feedback loop, resulting in oscillation at the output. This situation can occur when a tantalum capacitor, that can have a very low ESR, is used as the only output capacitor.

\section*{At Low Temperatures, Put in Parallel Aluminium Electrolytic Capacitors with Tantalum Capacitors}

Electrolytic capacitors are not recommended for temperatures below \(-25^{\circ} \mathrm{C}\). The ESR rises dramatically at cold temperatures and typically rises 3 times at \(-25^{\circ} \mathrm{C}\) and as much as 10 times at \(-40^{\circ} \mathrm{C}\). Solid tantalum capacitors have much better ESR spec at cold temperatures and are recommended for temperatures below \(-25^{\circ} \mathrm{C}\). They can be also used in parallel with aluminium electrolytics. The value of the tantalum capacitor should be about \(10 \%\) or \(20 \%\) of the total capacitance. The output capacitor should have at least \(50 \%\) higher RMS ripple current rating at 52 kHz than the peak-to-peak inductor ripple current.

\section*{Catch Diode}

\section*{Locate the Catch Diode Close to the LM2575}

The LM2575 is a step-down buck converter; it requires a fast diode to provide a return path for the inductor current when the switch turns off. This diode must be located close to the LM2575 using short leads and short printed circuit traces to avoid EMI problems.

\section*{Use a Schottky or a Soft Switching Ultra-Fast Recovery Diode}

Since the rectifier diodes are very significant source of losses within switching power supplies, choosing the rectifier that best fits into the converter design is an important process. Schottky diodes provide the best performance because of their fast switching speed and low forward voltage drop.

They provide the best efficiency especially in low output voltage applications ( 5.0 V and lower). Another choice could be Fast-Recovery, or Ultra-Fast Recovery diodes. It has to be noted, that some types of these diodes with an abrupt turnoff characteristic may cause instability or EMI troubles.

A fast-recovery diode with soft recovery characteristics can better fulfill a quality, low noise design requirements. Table 4 provides a list of suitable diodes for the LM2575 regulator. Standard \(50 / 60 \mathrm{~Hz}\) rectifier diodes such as the 1N4001 series or 1N5400 series are NOT suitable.

\section*{Inductor}

The magnetic components are the cornerstone of all switching power supply designs. The style of the core and the winding technique used in the magnetic component's design has a great influence on the reliability of the overall power supply.

Using an improper or poorly designed inductor can cause high voltage spikes generated by the rate of transitions in current within the switching power supply, and the possibility of core saturation can arise during an abnormal operational mode. Voltage spikes can cause the semiconductors to enter avalanche breakdown and the part can instantly fail if enough energy is applied. It can also cause significant RFI (Radio Frequency Interference) and EMI (Electro-Magnetic Interference) problems.

\section*{Continuous and Discontinuous Mode of Operation}

The LM2575 step-down converter can operate in both the continuous and the discontinuous modes of operation. The regulator works in the continuous mode when loads are relatively heavy, the current flows through the inductor continuously and never falls to zero. Under light load
conditions, the circuit will be forced to the discontinuous mode when inductor current falls to zero for certain period of time (see Figure 22 and Figure 23). Each mode has distinctively different operating characteristics, which can affect the regulator performance and requirements. In many cases the preferred mode of operation is the continuous mode. It offers greater output power, lower peak currents in the switch, inductor and diode, and can have a lower output ripple voltage. On the other hand it does require larger inductor values to keep the inductor current flowing continuously, especially at low output load currents and/or high input voltages.

To simplify the inductor selection process, an inductor selection guide for the LM2575 regulator was added to this data sheet (Figures 17 through 21). This guide assumes that the regulator is operating in the continuous mode, and selects an inductor that will allow a peak-to-peak inductor ripple current to be a certain percentage of the maximum design load current. This percentage is allowed to change as different design load currents are selected. For light loads (less than approximately 200 mA ) it may be desirable to operate the regulator in the discontinuous mode, because the inductor value and size can be kept relatively low. Consequently, the percentage of inductor peak-to-peak current increases. This discontinuous mode of operation is perfectly acceptable for this type of switching converter. Any buck regulator will be forced to enter discontinuous mode if the load current is light enough.

Figure 22. Continuous Mode Switching Current Waveforms


HORTIZONTAL TIME BASE: \(5.0 \mu \mathrm{~s} / \mathrm{DIV}\)

\section*{Selecting the Right Inductor Style}

Some important considerations when selecting a core type are core material, cost, the output power of the power supply, the physical volume the inductor must fit within, and the amount of EMI (Electro-Magnetic Interference) shielding that the core must provide. The inductor selection guide covers different styles of inductors, such as pot core, E-core,
toroid and bobbin core, as well as different core materials such as ferrites and powdered iron from different manufacturers.

For high quality design regulators the toroid core seems to be the best choice. Since the magnetic flux is completely contained within the core, it generates less EMI, reducing noise problems in sensitive circuits. The least expensive is the bobbin core type, which consists of wire wound on a ferrite rod core. This type of inductor generates more EMI due to the fact that its core is open, and the magnetic flux is not completely contained within the core.

When multiple switching regulators are located on the same printed circuit board, open core magnetics can cause interference between two or more of the regulator circuits, especially at high currents due to mutual coupling. A toroid, pot core or E-core (closed magnetic structure) should be used in such applications.

\section*{Do Not Operate an Inductor Beyond its Maximum Rated Current}

Exceeding an inductor's maximum current rating may cause the inductor to overheat because of the copper wire losses, or the core may saturate. Core saturation occurs when the flux density is too high and consequently the cross sectional area of the core can no longer support additional lines of magnetic flux.

This causes the permeability of the core to drop, the inductance value decreases rapidly and the inductor begins to look mainly resistive. It has only the dc resistance of the winding. This can cause the switch current to rise very rapidly and force the LM2575 internal switch into cycle-by-cycle current limit, thus reducing the dc output load current. This can also result in overheating of the inductor and/or the LM2575. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor.

Figure 23. Discontinuous Mode Switching Current Waveforms


HORTIZONTAL TIME BASE: \(5.0 \mu \mathrm{~s} / \mathrm{DIV}\)

\section*{GENERAL RECOMMENDATIONS}

\section*{Output Voltage Ripple and Transients Source of the Output Ripple}

Since the LM2575 is a switch mode power supply regulator, its output voltage, if left unfiltered, will contain a sawtooth ripple voltage at the switching frequency. The output ripple voltage value ranges from \(0.5 \%\) to \(3 \%\) of the output voltage. It is caused mainly by the inductor sawtooth ripple current multiplied by the ESR of the output capacitor.

\section*{Short Voltage Spikes and How to Reduce Them}

The regulator output voltage may also contain short voltage spikes at the peaks of the sawtooth waveform (see Figure 24). These voltage spikes are present because of the fast switching action of the output switch, and the parasitic inductance of the output filter capacitor. There are some other important factors such as wiring inductance, stray capacitance, as well as the scope probe used to evaluate these transients, all these contribute to the amplitude of these spikes. To minimise these voltage spikes, low inductance capacitors should be used, and their lead lengths must be kept short. The importance of quality printed circuit board layout design should also be highlighted.

Figure 24. Output Ripple Voltage Waveforms


HORTIZONTAL TIME BASE: \(10 \mu \mathrm{~s} / \mathrm{DIV}\)

\section*{Minimizing the Output Ripple}

In order to minimise the output ripple voltage it is possible to enlarge the inductance value of the inductor L1 and/or to use a larger value output capacitor. There is also another way to smooth the output by means of an additional LC filter \((20 \mu \mathrm{H}, 100 \mu \mathrm{~F})\), that can be added to the output (see Figure 33) to further reduce the amount of output ripple and transients. With such a filter it is possible to reduce the output ripple voltage transients 10 times or more. Figure 24 shows the difference between filtered and unfiltered output waveforms of the regulator shown in Figure 33.

The upper waveform is from the normal unfiltered output of the converter, while the lower waveform shows the output ripple voltage filtered by an additional LC filter.

\section*{Heatsinking and Thermal Considerations}

The Through-Hole Package TO-220
The LM2575 is available in two packages, a 5 -pin TO-220(T, TV) and a 5-pin surface mount D2PAK(D2T). There are many applications that require no heatsink to keep the LM2575 junction temperature within the allowed operating range. The TO-220 package can be used without
a heatsink for ambient temperatures up to approximately \(50^{\circ} \mathrm{C}\) (depending on the output voltage and load current). Higher ambient temperatures require some heatsinking, either to the printed circuit (PC) board or an external heatsink.

\section*{The Surface Mount Package D2PAK and its Heatsinking}

The other type of package, the surface mount D2PAK, is designed to be soldered to the copper on the PC board. The copper and the board are the heatsink for this package and the other heat producing components, such as the catch diode and inductor. The PC board copper area that the package is soldered to should be at least 0.4 in \(^{2}\) (or \(100 \mathrm{~mm}^{2}\) ) and ideally should have 2 or more square inches ( \(1300 \mathrm{~mm}^{2}\) ) of 0.0028 inch copper. Additional increasing of copper area beyond approximately \(3.0 \mathrm{in}^{2}\left(2000 \mathrm{~mm}^{2}\right)\) will not improve heat dissipation significantly. If further thermal improvements are needed, double sided or multilayer PC boards with large copper areas should be considered.

\section*{Thermal Analysis and Design}

The following procedure must be performed to determine whether or not a heatsink will be required. First determine:
1. \(\mathrm{PD}_{\mathrm{D}}(\max )\) maximum regulator power dissipation in the application.
2. \(T_{A(\max )}\) maximum ambient temperature in the application.
3. \(T_{J(\max )}\) maximum allowed junction temperature \(\left(125^{\circ} \mathrm{C}\right.\) for the LM2575). For a conservative design, the maximum junction temperature should not exceed \(110^{\circ} \mathrm{C}\) to assure safe operation. For every additional \(10^{\circ} \mathrm{C}\) temperature rise that the junction must withstand, the estimated operating lifetime of the component is halved.
4. \(\mathrm{R}_{\theta \mathrm{JJ}}\) package thermal resistance junction-case. 5. R QJA package thermal resistance junction-ambient. (Refer to Absolute Maximum Ratings in this data sheet or \(R_{\theta J C}\) and \(R_{\theta J A}\) values).

The following formula is to calculate the total power dissipated by the LM2575:
\[
P D=\left(V_{\text {in }} \times I_{Q}\right)+d \times I_{\text {Load }} \times V_{\text {sat }}
\]
where \(d\) is the duty cycle and for buck converter
\[
\mathrm{d}=\frac{\mathrm{t}_{\mathrm{on}}}{\mathrm{~T}}=\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{in}}}
\]

Q (quiescent current) and \(\mathrm{V}_{\text {sat }}\) can be found in the LM2575 data sheet,
\(V_{\text {in }}\) is minimum input voltage applied,
\(\mathrm{V}_{\mathrm{O}}\) is the regulator output voltage,
LLoad is the load current.
The dynamic switching losses during turn-on and turn-off can be neglected if proper type catch diode is used.

\section*{Packages Not on a Heatsink (Free-Standing)}

For a free-standing application when no heatsink is used, the junction temperature can be determined by the following expression:
\[
T_{J}=\left(R_{\theta J A}\right)\left(P_{D}\right)+T_{A}
\]
where \(\left(R_{\theta J A}\right)\left(P_{D}\right)\) represents the junction temperature rise caused by the dissipated power and \(T_{A}\) is the maximum ambient temperature.

\section*{Packages on a Heatsink}

If the actual operating junction temperature is greater than the selected safe operating junction temperature determined in step 3, than a heatsink is required. The junction temperature will be calculated as follows:
\[
T_{J}=P_{D}\left(R_{\theta J A}+R_{\theta C S}+R_{\theta S A}\right)+T_{A}
\]
where \(R_{\theta J C}\) is the thermal resistance junction-case, \(\mathrm{R}_{\theta \mathrm{CS}}\) is the thermal resistance case-heatsink, \(\mathrm{R}_{\theta \mathrm{SA}}\) is the thermal resistance heatsink-ambient.
If the actual operating temperature is greater than the selected safe operating junction temperature, then a larger heatsink is required.

\section*{Some Aspects That can Influence Thermal Design}

It should be noted that the package thermal resistance and the junction temperature rise numbers are all approximate, and there are many factors that will affect these numbers, such as PC board size, shape, thickness, physical position, location, board temperature, as well as whether the surrounding air is moving or still.

Other factors are trace width, total printed circuit copper area, copper thickness, single- or double-sided, multilayer board, the amount of solder on the board or even colour of the traces.

The size, quantity and spacing of other components on the board can also influence its effectiveness to dissipate the heat.

Figure 25. Inverting Buck-Boost Regulator Using the LM2575-12 Develops -12 V @ 0.35 A


\section*{ADDITIONAL APPLICATIONS}

\section*{Inverting Regulator}

An inverting buck-boost regulator using the LM2575-12 is shown in Figure 25. This circuit converts a positive input voltage to a negative output voltage with a common ground by bootstrapping the regulators ground to the negative output voltage. By grounding the feedback pin, the regulator senses the inverted output voltage and regulates it.

In this example the LM2575-12 is used to generate a -12 V output. The maximum input voltage in this case
cannot exceed +28 V because the maximum voltage appearing across the regulator is the absolute sum of the input and output voltages and this must be limited to a maximum of 40 V .

This circuit configuration is able to deliver approximately 0.35 A to the output when the input voltage is 12 V or higher. At lighter loads the minimum input voltage required drops to approximately 4.7 V , because the buck-boost regulator topology can produce an output voltage that, in its absolute value, is either greater or less than the input voltage.

Since the switch currents in this buck-boost configuration are higher than in the standard buck converter topology, the available output current is lower.

This type of buck-boost inverting regulator can also require a larger amount of startup input current, even for light loads. This may overload an input power source with a current limit less than 1.5 A.

Such an amount of input startup current is needed for at least 2.0 ms or more. The actual time depends on the output voltage and size of the output capacitor.

Because of the relatively high startup currents required by this inverting regulator topology, the use of a delayed startup or an undervoltage lockout circuit is recommended.

Using a delayed startup arrangement, the input capacitor can charge up to a higher voltage before the switch-mode regulator begins to operate.

The high input current needed for startup is now partially supplied by the input capacitor \(\mathrm{C}_{\mathrm{in}}\).

\section*{Design Recommendations:}

The inverting regulator operates in a different manner than the buck converter and so a different design procedure has to be used to select the inductor L1 or the output capacitor \(\mathrm{C}_{\text {out }}\).

The output capacitor values must be larger than is normally required for buck converter designs. Low input voltages or high output currents require a large value output capacitor (in the range of thousands of \(\mu \mathrm{F}\) ).

The recommended range of inductor values for the inverting converter design is between \(68 \mu \mathrm{H}\) and \(220 \mu \mathrm{H}\). To select an inductor with an appropriate current rating, the inductor peak current has to be calculated.

The following formula is used to obtain the peak inductor current:
\[
I_{\text {peak }} \approx \frac{I_{\text {Load }}\left(V_{\text {in }}+I_{O} \mid\right)}{V_{\text {in }}}+\frac{V_{\text {in }} \times t_{\text {on }}}{2 L_{1}}
\]
where \(t_{o n}=\frac{\left|V_{O}\right|}{V_{\text {in }}+\left|V_{O}\right|} \times \frac{1}{f_{\text {osc }}}\), and \(f_{o s c}=52 \mathrm{kHz}\).
Under normal continuous inductor current operating conditions, the worst case occurs when \(\mathrm{V}_{\text {in }}\) is minimal.

Note that the voltage appearing across the regulator is the absolute sum of the input and output voltage, and must not exceed 40 V .

Figure 26. Inverting Buck-Boost Regulator with Delayed Startup


It has been already mentioned above, that in some situations, the delayed startup or the undervoltage lockout features could be very useful. A delayed startup circuit applied to a buck-boost converter is shown in Figure 26. Figure 31 in the "Undervoltage Lockout" section describes an undervoltage lockout feature for the same converter topology.

Figure 27. Inverting Buck-Boost Regulator Shut Down Circuit Using an Optocoupler


NOTE: This picture does not show the complete circuit.
With the inverting configuration, the use of the \(\overline{O N} /\) OFF pin requires some level shifting techniques. This is caused by the fact, that the ground pin of the converter IC is no longer at ground. Now, the \(\overline{O N} / O F F\) pin threshold voltage ( 1.4 V approximately) has to be related to the negative output voltage level. There are many different possible shut down methods, two of them are shown in Figures 27 and 28.

Figure 28. Inverting Buck-Boost Regulator Shut Down Circult Using a PNP Transistor


\section*{Negative Boost Regulator}

This example is a variation of the buck-boost topology and is called a negative boost regulator. This regulator experiences relatively high switch current, especially at low input voltages. The internal switch current limiting results in lower output load current capability.

The circuit in Figure 29 shows the negative boost configuration. The input voltage in this application ranges from -5.0 V to -12 V and provides a regulated -12 V output. If the input voltage is greater than -12 V , the output will rise above -12 V accordingly, but will not damage the regulator.

Figure 29. Negative Boost Regulator


\section*{Design Recommendations:}

The same design rules as for the previous inverting buck-boost converter can be applied. The output capacitor Cout must be chosen larger than would be required for a standard buck converter. Low input voltages or high output currents require a large value output capacitor (in the range of thousands of \(\mu \mathrm{F}\) ). The recommended range of inductor values for the negative boost regulator is the same as for inverting converter design

Another important point is that these negative boost converters cannot provide current limiting load protection in the event of a short in the output so some other means, such as a fuse, may be necessary to provide the load protection.

\section*{Delayed Startup}

There are some applications, like the inverting regulator already mentioned above, which require a higher amount of startup current. In such cases, if the input power source is limited, this delayed startup feature becomes very useful.

To provide a time delay between the time the input voltage is applied and the time when the output voltage comes up, the circuit in Figure 30 can be used. As the input voltage is applied, the capacitor C1 charges up, and the voltage across the resistor R2 falls down. When the voltage on the ON/OFF pin falls below the threshold value 1.4 V , the regulator starts up. Resistor R1 is included to limit the maximum voltage applied to the \(\overline{O N} / O F F\) pin, reduces the power supply noise sensitivity, and also limits the capacitor C1 discharge current but its use is not mandatory.

When a high 50 Hz or \(60 \mathrm{~Hz}(100 \mathrm{~Hz}\) or 120 Hz respectively) ripple voltage exists, a long delay time can cause some problems by coupling the ripple into the \(\overline{O N} / O F F\) pin, the regulator could be switched periodically on and off with the line (or double) frequency.

Figure 30. Delayed Startup Circuitry


NOTE: This picture does not show the complete circuit.

\section*{Undervoltage Lockout}

Some applications require the regulator to remain off until the input voltage reaches a certain threshold level. Figure 31 shows an undervoltage lockout circuit applied to a buck regulator. A version of this circuit for buck-boost converter is
shown in Figure 32. Resistor R3 pulls the \(\overline{O N} / O F F\) pin high and keeps the regulator off until the input voltage reaches a predetermined threshold level, which is determined by the following expression:
\[
V_{\mathrm{th}} \approx \mathrm{~V}_{\mathrm{Z} 1}+\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right) \mathrm{V}_{\mathrm{BE}}(\mathrm{Q} 1)
\]

Figure 31. Undervoltage Lockout Circult for Buck Converter


NOTE: This picture does not show the complete circuit.
Figure 32. Undervoltage Lockout Circuit for Buck-Boost Converter


NOTE: This picture does not show the complete circuit.

\section*{Adjustable Output, Low-Ripple Power Supply}

A 1.0 A output current capability power supply that features an adjustable output voltage is shown in Figure 33.

This regulator delivers 1.0 A into 1.2 V to 35 V output. The input voltage ranges from roughly 8.0 V to 40 V . In order to achieve a 10 or more times reduction of output ripple, an additional L-C filter is included in this circuit.

Figure 33. Adjustable Power Supply with Low Ripple Voltage


Figure 34. D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


\section*{LM2575}

THE LM2575-5.0 STEP-DOWN VOLTAGE REGULATOR WITH 5.0 V © 1.0 A OUTPUT POWER CAPABILITY. TYPICAL APPLICATION WITH THROUGH-HOLE PC BOARD LAYOUT

Figure 35. Schematic Diagram of the LM2575-5.0 Step-Down Converter


Figure 36. Printed Circuit Board Component Side


NOTE: Not to scale

Figure 37. Printed Circuit Board Copper Side


NOTE: Not to scale.

THE LM2575-ADJ STEP-DOWN VOLTAGE REGULATOR WITH 8.0 V @ 1.0 A OUTPUT POWER CAPABILITY. TYPICAL APPLICATION WITH THROUGH-HOLE PC BOARD LAYOUT

Figure 38. Schematic Diagram of the 8.0 V @ 1.0 V Step-Down Converter Using the LM2575-Adj
(An additional LC filter is included to achieve low output ripple voltage)


Figure 39. PC Board Component Side


NOTE: Not to scale.

Figure 40. PC Board Copper Side


NOTE: Not to scale.

\section*{References}
- National Semiconductor LM2575 Data Sheet and Application Note
- National Semiconductor LM2595 Data Sheet and Application Note
- Marty Brown "Pratical Switching Power Supply Design", Academic Press, Inc., San Diego 1990
- Ray Ridley "High Frequency Magnetics Design", Ridley Engineering, Inc. 1995

\section*{Low Dropout}

The LM2931 series consists of positive fixed and adjustable output voltage regulators that are specifically designed to maintain proper regulation with an extremely low input-to-output voltage differential. These devices are capable of supplying output currents in excess of 100 mA and feature a low bias current of 0.4 mA at 10 mA output.

Designed primarily to survive in the harsh automotive environment, these devices will protect all external load circuitry from input fault conditions caused by reverse battery connection, two battery jump starts, and excessive line transients during load dump. This series also includes internal current limiting, thermal shutdown, and additionally, is able to withstand temporary power-up with mirror-image insertion.

Due to the low dropout voltage and bias current specifications, the LM2931 series is ideally suited for battery powered industrial and consumer equipment where an extension of useful battery life is desirable. The ' C ' suffix adjustable output regulators feature an output inhibit pin which is extremely useful in microprocessor-based systems.
- Input-to-Output Voltage Differential of < 0.6 V @ 100 mA
- Output Current in Excess of 100 mA
- Low Bias Current
- 60 V Load Dump Protection
- - 50 V Reverse Transient Protection
- Internal Current Limiting with Thermal Shutdown
- Temporary Mirror-Image Protection
- Ideally Suited for Battery Powered Equipment
- Economical 5-Lead TO-220 Package with Two Optional Leadforms
- Available in Surface Mount SOP-8, D2PAK and DPAK Packages
voltage regulators


T SUFFIX PLASTIC PACKAGE CASE 221A

Heatsink surface connected to Pin 2.


DT SUFFIX
PLASTIC PACKAGE
CASE 369A (DPAK)

D2T SUFFIX PLASTIC PACKAGE CASE 936 ( \(\mathrm{D}^{2}\) PAK)


DT-1 SUFFIX
PLASTIC PACKAGE CASE 369 (DPAK)


Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.


ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Device} & \multicolumn{2}{|c|}{Output} & \multirow[b]{2}{*}{Case} & \multirow[b]{2}{*}{Package} \\
\hline & Voltage & Tolerance & & \\
\hline LM2931AD－5．0 & \multirow{12}{*}{5.0 V} & \multirow{6}{*}{\(\pm 3.8 \%\)} & 751 & SOP－8 Surface Mount \\
\hline LM2931ADT－5．0 & & & 369A & Surface Mount DPAK \\
\hline LM2931ADT－1－5．0 & & & 369 & DPAK \\
\hline LM2931AD2T－5．0 & & & 936 & Surface Mount D2PAK \\
\hline LM2931AT－5．0 & & & 221A & TO－220 Type \\
\hline LM2931AZ－5．0 & & & 29 & TO－92 Type \\
\hline LM2931D－5．0 & & \multirow{11}{*}{\(\pm 5.0 \%\)} & 751 & SOP－8 Surface Mount \\
\hline LM2931D2T－5．0 & & & 936 & Surface Mount D2PAK \\
\hline LM2931DT－5．0 & & & 369A & Surface Mount DPAK \\
\hline LM2931DT－1－5．0 & & & 369 & DPAK \\
\hline LM2931T－5．0 & & & 221A & TO－220 Type \\
\hline LM2931Z－5．0 & & & 29 & TO－92 Type \\
\hline LM2931CD & \multirow{5}{*}{Adjustable} & & 751 & SOP－8 Surface Mount \\
\hline LM2931CD2T & & & 936A & Surface Mount \(\mathrm{D}^{2}\) PAK \\
\hline LM2931CT & & & 314D & 5－Pin TO－220 Type \\
\hline LM2931CTH & & & 314A & 5－Pin Horizontal Leadform \\
\hline LM2931CTV & & & 314B & 5－Pin Vertical Leadform \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage Continuous & \(V_{1}\) & 40 & Vdc \\
\hline Transient Input Voltage（ \(\tau \leq 100 \mathrm{~ms}\) ） & \(V_{1}(\tau)\) & 60 & Vpk \\
\hline Transient Reverse Polarity Input Voltage \(1.0 \%\) Duty Cycle，\(\tau \leq 100 \mathrm{~ms}\) & \(-\mathrm{V}_{1}(\tau)\) & －50 & Vpk \\
\hline \begin{tabular}{l}
Power Dissipation \\
Case 29 （TO－92 Type）
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance，Junction－to－Ambient \\
Thermal Resistance，Junction－to－Case \\
Case 221A，314A，314B and 314D（TO－220 Type）
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance，Junction－to－Ambient \\
Thermal Resistance，Junction－to－Case \\
Case 369 and 369A（DPAK）［Note 1］
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance，Junction－to－Ambient \\
Thermal Resistance，Junction－to－Case \\
Case 751 （SOP－8）［Note 2］
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance，Junction－to－Ambient \\
Thermal Resistance，Junction－to－Case Case 936 and 936A（D2PAK）［Note 3］
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance，Junction－to－Ambient Thermal Resistance，Junction－to－Case
\end{tabular} & \begin{tabular}{l}
PD \\
\(R_{\theta J A}\) \\
\(R_{\text {日JC }}\) \\
\(P_{D}\) \\
\(R_{\text {日JA }}\) \\
\(R_{\text {日JC }}\) \\
\(P_{D}\) \\
\(R_{\text {日JA }}\) \\
\(R_{\theta J C}\) \\
PD \\
\(R_{\theta J A}\) \\
\(R_{\theta J C}\) \\
\(P_{D}\) \\
\(R_{\theta J A}\) \\
\(R_{\theta J C}\)
\end{tabular} & \begin{tabular}{l}
Internally Limited \\
178 \\
83 \\
Internally Limited \\
65 \\
5.0 \\
Internally Limited \\
92 \\
6.0 \\
Internally Limited \\
160 \\
25 \\
Internally Limited \\
70 \\
5.0
\end{tabular} & \[
\begin{gathered}
\mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
\mathrm{~W} \\
\hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Tested Operating Junction Temperature Range & \(\mathrm{T}_{\mathrm{J}}\) & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES：1．DPAK Junction－to－Ambient Thermal Resistance is for vertical mounting．Refer to Figure 23 for board mounted Thermal Resistance．
2．SOP－8 Junction－to－Ambient Thermal Resistance is for minimum recommended pad size．Refer to Figure 23 for Thermal Resistance variation versus pad size．
3．D²PAK Junction－to－Ambient Thermal Resistance is for vertical mounting．Refer to Figure 25 for board mounted Thermal Resistance．

\section*{LM2931 Series}

Representative Schematic Diagram


This device contains 26 active transistors.

ELECTRICAL CHARACTERISTICS \(\left(V_{i n}=14 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=100 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}(\mathrm{ESR})=0.3 \Omega, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}[\right.\) Note 4]. \()\)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ Characteristic } & \multirow{2}{*}{} & \multicolumn{3}{|c|}{ LM2931-5.0 } & \multicolumn{3}{|c|}{ LM2931A-5.0 } & \\
\cline { 3 - 9 } & Symbol & Min & Typ & Max & Min & Typ & Max & Unit \\
\hline
\end{tabular}

FIXED OUTPUT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Output Voltage
\[
\begin{aligned}
& V_{\text {in }}=14 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\text {in }}=6.0 \mathrm{~V} \text { to } 26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}} \leq 100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 4.75 \\
& 4.50
\end{aligned}
\] & 5.0 & \[
\begin{array}{r}
5.25 \\
5.50 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4.81 \\
& 4.75
\end{aligned}
\] & 5.0 & \[
\begin{aligned}
& 5.19 \\
& 5.25
\end{aligned}
\] & V \\
\hline Line Regulation
\[
\begin{aligned}
& \mathrm{V}_{\text {in }}=9.0 \mathrm{~V} \text { to } 16 \mathrm{~V} \\
& \mathrm{~V}_{\text {in }}=6.0 \mathrm{~V} \text { to } 26 \mathrm{~V}
\end{aligned}
\] & Regline & & \[
\begin{aligned}
& 2.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 30
\end{aligned}
\] & & \[
\begin{aligned}
& 2.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 30
\end{aligned}
\] & mV \\
\hline Load Regulation ( \(\mathrm{I}=5.0 \mathrm{~mA}\) to 100 mA ) & Regload & - & 14 & 50 & - & 14 & 50 & mV \\
\hline Output Impedance
\[
\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \Delta \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}
\] & \(\mathrm{Z}_{\mathrm{O}}\) & - & 200 & - & - & 200 & - & \(\mathrm{m} \Omega\) \\
\hline Bias Current
\[
\begin{aligned}
& V_{\text {in }}=14 \mathrm{~V}, \mathrm{IO}_{\mathrm{o}}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\text {in }}=6.0 \mathrm{~V} \text { to } 26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{J}=-40^{\circ} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & 'B & - & \[
\begin{aligned}
& 5.8 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 1.0
\end{aligned}
\] & & \[
\begin{aligned}
& 5.8 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 1.0
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{f}=10 \mathrm{~Hz}\) to 100 kHz ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 700 & - & - & 700 & - & \(\mu \mathrm{Vrms}\) \\
\hline Long Term Stability & S & - & 20 & - & - & 20 & - & mV/kHR \\
\hline Ripple Rejection ( \(\mathrm{f}=120 \mathrm{~Hz}\) ) & RR & 60 & 90 & - & 60 & 90 & - & dB \\
\hline \[
\begin{gathered}
\text { Dropout Voltage } \\
\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}
\end{gathered}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & & \[
\begin{gathered}
0.015 \\
0.16
\end{gathered}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.6
\end{aligned}
\] & - & \[
\begin{gathered}
0.015 \\
0.16
\end{gathered}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.6
\end{aligned}
\] & V \\
\hline Over-Voltage Shutdown Threshold & \(\mathrm{V}_{\mathrm{th}(\mathrm{OV})}\) & 26 & 29.5 & 40 & 26 & 29.5 & 40 & V \\
\hline Output Voltage with Reverse Polarity Input ( \(\mathrm{V}_{\text {in }}=-15 \mathrm{~V}\) ) & - \(\mathrm{V}_{\mathrm{O}}\) & -0.3 & 0 & - & -0.3 & 0 & - & V \\
\hline
\end{tabular}

NOTE: 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{R}_{1}=27 \mathrm{k}, \mathrm{C}_{\mathrm{O}}=100 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}(\mathrm{ESR})=0.3 \Omega, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\) [Note 4].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ Characteristic } & \multirow{3}{|c|}{ LM2931C } & \multicolumn{3}{c|}{} \\
\cline { 3 - 5 } & Symbol & Min & Typ & Max & \\
\hline
\end{tabular}

ADJUSTABLE OUTPUT
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Voltage (Note 5, Figure 18)
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \mathrm{I} \leq 100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & \(V_{\text {ref }}\) & \[
\begin{aligned}
& 1.14 \\
& 1.08
\end{aligned}
\] & & \[
\begin{aligned}
& 1.26 \\
& 1.32
\end{aligned}
\] & V \\
\hline Output Voltage Range & \(\mathrm{V}_{\text {O }}\) range & 3.0 to 24 & 2.7 to 29.5 & - & V \\
\hline Line Regulation ( \(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O}}+0.6 \mathrm{~V}\) to 26 V ) & Regline & - & 0.2 & 1.5 & \(\mathrm{mV} / \mathrm{V}\) \\
\hline Load Regulation ( l O \(=5.0 \mathrm{~mA}\) to 100 mA ) & Regload & - & 0.3 & 1.0 & \%/V \\
\hline Output Impedance
\[
\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \Delta \mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{f}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}
\] & \(\mathrm{Z}_{\mathrm{O}}\) & - & 40 & - & \(\mathrm{m} \Omega / \mathrm{V}\) \\
\hline Bias Current
\[
\begin{aligned}
& \mathrm{I}=100 \mathrm{~mA} \\
& \mathrm{I}=10 \mathrm{~mA}
\end{aligned}
\]
\[
\text { Output Inhibited }\left(\mathrm{V}_{\mathrm{th}}(\mathrm{OI})=2.5 \mathrm{~V}\right)
\] & IB &  & \[
\begin{aligned}
& 6.0 \\
& 0.4 \\
& 0.2
\end{aligned}
\] & \[
\begin{gathered}
- \\
1.0 \\
1.0
\end{gathered}
\] & mA \\
\hline Adjustment Pin Current & \(I_{\text {Adj }}\) & - & 0.2 & - & \(\mu \mathrm{A}\) \\
\hline Output Noise Voltage ( \(\mathrm{f}=10 \mathrm{~Hz}\) to 100 kHz ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 140 & - & \(\mu \mathrm{Vrms} / \mathrm{V}\) \\
\hline Long-Term Stability & S & - & 0.4 & - & \%/kHR \\
\hline Ripple Rejection ( \(\mathrm{f}=120 \mathrm{~Hz}\) ) & RR & 0.10 & 0.003 & - & \%/V \\
\hline Dropout Voltage
\[
\begin{aligned}
& \mathrm{O}=10 \mathrm{~mA} \\
& \mathrm{O}=100 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & & \[
\begin{gathered}
0.015 \\
0.16
\end{gathered}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.6
\end{aligned}
\] & V \\
\hline Over-Voltage Shutdown Threshold & \(\left.\mathrm{V}_{\text {th( }} \mathrm{OV}\right)\) & 26 & 29.5 & 40 & V \\
\hline Output Voltage with Reverse Polarity Input ( \(\mathrm{V}_{\text {in }}=-15 \mathrm{~V}\) ) & \(-\mathrm{V}_{\mathrm{O}}\) & -0.3 & 0 & - & V \\
\hline \[
\begin{array}{ll}
\text { Output Inhibit Threshold Voltages } \\
\text { Output "On": } & T_{J}=25^{\circ} \mathrm{C} \\
& T_{J}=-40^{\circ} \text { to }+125^{\circ} \mathrm{C} \\
\text { Output "Off": } & T_{J}=25^{\circ} \mathrm{C} \\
& T_{J}=-40^{\circ} \text { to }+125^{\circ} \mathrm{C}
\end{array}
\] & \(\mathrm{V}_{\text {th(OI) }}\) & \[
\begin{aligned}
& - \\
& 2.50 \\
& 3.25
\end{aligned}
\] & \[
\begin{gathered}
2.15 \\
- \\
2.26
\end{gathered}
\] & 1.90
1.20
-
- & V \\
\hline  & l th(OI) & - & 30 & 50 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
5. The reference voltage on the adjustable device is measured from the output to the adjust pin across \(\mathrm{R}_{1}\).

Figure 1. Dropout Voltage versus Output Current


Figure 3. Peak Output Current versus Input Voltage


Figure 5. Output Voltage versus Input Voltage


Figure 2. Dropout Voltage versus Junction Temperature


Figure 4. Output Voltage versus Input Voltage


Figure 6. Load Dump Characteristics


Figure 7. Bias Current versus Input Voltage


Figure 9. Bias Current versus Junction Temperature


Figure 11. Ripple Rejection versus Frequency


Figure 8. Bias Current versus Output Current


Figure 10. Output Impedance versus Frequency


Figure 12. Ripple Rejection versus Output Current



Figure 15. Reference Voltage versus Output Voltage


Figure 14. Load Regulation


Figure 16. Output Inhibit-Thresholds versus Output Voltage


\section*{APPLICATIONS INFORMATION}

The LM2931 series regulators are designed with many protection features making them essentially blow-out proof. These features include internal current limiting, thermal shutdown, overvoltage and reverse polarity input protection, and the capability to withstand temporary power-up with mirror-image insertion. Typical application circuits for the fixed and adjustable output device are shown in Figures 17 and 18.

The input bypass capacitor \(C_{i n}\) is recommended if the regulator is located an appreciable distance ( \(\geq 4^{\prime \prime}\) ) from the supply input filter. This will reduce the circuit's sensitivity to the input line impedance at high frequencies.

This regulator series is not internally compensated and thus requires an external output capacitor for stability. The capacitance value required is dependent upon the load current, output voltage for the adjustable regulator, and the type of capacitor selected. The least stable condition is encountered at maximum load current and minimum output voltage. Figure 22 shows that for operation in the "Stable" region, under the conditions specified, the magnitude of the output capacitor impedance \(\left|Z_{O}\right|\) must not exceed \(0.4 \Omega\). This limit must be observed over the entire operating temperature range of the regulator circuit.

With economical electrolytic capacitors, cold temperature operation can pose a serious stability problem. As the electrolyte freezes, around \(-30^{\circ} \mathrm{C}\), the capacitance will decrease and the equivalent series resistance (ESR) will increase drastically, causing the circuit to oscillate. Quality electrolytic capacitors with extended temperature ranges of \(-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\) and \(-55^{\circ}\) to \(+105^{\circ} \mathrm{C}\) are readily available. Solid tantalum capacitors may be a better choice if small size is a requirement, however, the maximum \(\left|\mathrm{ZO}_{\mathrm{O}}\right|\) limit over temperature must be observed.

Note that in the stable region, the output noise voltage is linearly proportional to \(\left|Z_{0}\right|\). In effect, \(\mathrm{C}_{\mathrm{O}}\) dictates the high frequency roll-off point of the circuit. Operation in the area titled "Marginally Stable" will cause the output of the regulator to exhibit random bursts of oscillation that decay in an under-damped fashion. Continuous oscillation occurs when operating in the area titled "Unstable". It is suggested that oven testing of the entire circuit be performed with maximum load, minimum input voltage, and minimum ambient temperature.

Figure 17. Fixed Output Regulator


Figure 19. (5.0 A) Low Differential Voltage Regulator


The LM2931 series can be current boosted with a PNP transistor. The D45VH7, on a heatsink, will provide an output current of 5.0 A with an input to output voltage differential of approximately 1.0 V . Resistor R in conjunction with the \(\mathrm{V}_{\mathrm{BE}}\) of the PNP determines when the pass transistor begins conducting. This circuit is not short circuit proof.

Figure 21. Constant Intensity Lamp Flasher


Figure 18. Adjustable Output Regulator


Switch Position \(1=\) Output "On", 2 = Output "Off"
\[
V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2} \quad 22.5 \mathrm{k} \geq \frac{R_{1} R_{2}}{R_{1}+R_{2}}
\]

Figure 20. Current Boost Regulator with Short Circuit Projection


The circuit of Figure 19 can be modified to provide supply protection against shortcircuits by adding the current sense resistor RSC and an additional PNP transistor. The current sensing PNP must be capable of handling the short circuit current of the LM2931. Safe operating area of both transistors must be considered under worst case conditions.

Figure 22. Output Noise Voltage versus Output Capacitor Impedance


\section*{LM2931 Series}

Figure 23. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


Figure 24. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


Figure 25. 3-Pin and 5-Pin D2PAK
Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


\section*{LM2931 Series}

\section*{DEFINITIONS}

Dropout Voltage - The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output decreases 100 mV from nominal value at 14 V input, dropout voltage is affected by junction temperature and load current.

Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Bias Current - That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long-Term Stablity - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices electrical characteristics and maximum power dissipation.

\section*{Low Dropout \\ Dual Voltage Regulator}

The LM2935 is a dual positive 5.0 V low dropout voltage regulator, designed for standby power systems. The main output is capable of supplying 750 mA for microprocessor power, and can be turned "on" and "off" by the switch/reset input. The other output is dedicated for standby operation of volatile memory, and is capable of supplying up to 10 mA loads. The total device features a low quiescent current of 3.0 mA or less when supplying 10 mA from the standby output.

This part was designed for harsh automotive environments and is therefore immune to many input supply voltage problems such as reverse battery ( -12 V ), double battery (+24 V), and load dump transients (+60 V).
- Two Regulated 5.0 V Outputs
- Main Output Current in Excess of 750 mA
- On/Off Control of Main Output
- Standby Output Current in Excess of 10 mA
- Low Input/Output Differential of Less than 0.6 V at 500 mA
- Short Circuit Current Limiting
- Internal Thermal Shutdown
- Low Voltage Indicator Output
- Designed for Automotive Environment Including
- Reverse Battery Protection
- Double Battery Protection
- Load Dump Protection
- Reverse Transient Protection
- Economical 5-Lead TO-220 Package with Two Optional Leadforms
- Also Available in Surface Mount D2PAK Package

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline LM2935D2T & \multirow{4}{*}{\(\mathrm{T}_{\mathrm{J}}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & Surface Mount \\
\hline LM2935T & & Plastic Power \\
\hline LM2935TH & & Horizontal Mount \\
\hline LM2935TV & & Vertical Mount \\
\hline
\end{tabular}

\section*{LM2935}

\section*{LOW DROPOUT DUAL VOLTAGE REGULATOR}

\section*{SEMICONDUCTOR} TECHNICAL DATA

TH SUFFIX
PLASTIC PACKAGE
CASE 314A


TV SUFFIX
PLASTIC PACKAGE CASE 314B

Heatsink surface connected to \(\operatorname{Pin} 3\).

T SUFFIX
PLASTIC PACKAGE CASE 314D


Pin 1. Input Voltage/VCC
2. Main Output
3. Ground
4. Switch/Reset
5. Standby/Output


D2T SUFFIX
PLASTIC PACKAGE CASE 936A (D2PAK)

\section*{LM2935}

\section*{Typical Application Circuit}


An input bypass capacitor is recommended if the regulator is located more than \(4^{\prime \prime}\) from the supply input filter. The LM2935 is not internally compensated and thus requires an external output capacitor for stability. A minimum capacitance of \(10 \mu \mathrm{~F}\) is recommended. The actual capacitance value is dependent upon load current, temperature, and the capacitor's equivalent series resistance (ESR). The least stable condition is encountered at maximum load current and minimum ambient temperature.

This device contains 29 active transistors.

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage Continuous & \(V_{1}\) & 60 & Vdc \\
\hline Transient Reverse Polarity Input Voltage \(1.0 \%\) Duty Cycle, \(\tau \leq 100 \mathrm{~ms}\) & \(-V_{1}(\tau)\) & -50 & Vpk \\
\hline Switch/Reset Input Current & lin & 5.0 & mA \\
\hline \begin{tabular}{l}
Power Dissipation \\
Case 314A, 314B and 314D (TO-220 Type)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 936A ( \(D^{2}\) PAK)
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case
\end{tabular} & \begin{tabular}{l}
PD \\
\(R_{\theta J A}\) \\
\(R_{\theta J C}\) \\
\(P_{D}\) \\
\(R_{\theta J A}\) \\
\(R_{\theta J C}\)
\end{tabular} &  & \begin{tabular}{l}
W \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
W \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature Range & TJ & -40 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{I}_{\text {stby }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{stby}}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\) [Note 1]. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

MAIN OUTPUT
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Voltage ( \(\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}\) to \(26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\) to \(500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=-40\) to \(+125^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 4.75 & 5.0 & 5.25 & V \\
\hline Line Regulation
\[
\begin{aligned}
& \mathrm{V}_{\text {in }}=9.0 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{in}}=6.0 \mathrm{~V} \text { to } 26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}
\end{aligned}
\] & Regline & - & \[
\begin{gathered}
4.0 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& 25 \\
& 50
\end{aligned}
\] & mV \\
\hline Load Regulation ( \(\mathrm{l} \mathrm{O}=5.0 \mathrm{~mA}\) to 500 mA ) & Regload & - & 10 & 50 & mV \\
\hline Output Impedance \(\mathrm{IO}=500 \mathrm{mAdc}\) and \(10 \mathrm{mArms}, \mathrm{f}=100 \mathrm{~Hz}\) to 10 kHz & \(\mathrm{Z}_{\mathrm{O}}\) & - & 200 & - & \(\mathrm{m} \Omega\) \\
\hline Output Noise Voltage ( \(\mathrm{f}=10 \mathrm{~Hz}\) to 100 kHz ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 100 & - & \(\mu \mathrm{Vrms}\) \\
\hline Long Term Stability & S & - & 20 & - & mV/kHR \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{I}_{\text {stby }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {stby }}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\) [Note 1].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

MAIN OUTPUT (continued)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ripple Rejection \((\mathrm{f}=120 \mathrm{~Hz})\) & RR & - & 66 & - & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & & & & V \\
\(\mathrm{IO}=500 \mathrm{~mA}\) \\
\(\mathrm{IO}=750 \mathrm{~mA}\) & & - & 0.45 & 0.6 & \\
\hline Short Circuit Current Limit & & - & 0.82 & - & \\
\hline Over-Voltage Shutdown Threshold & ISC & 0.75 & 1.2 & - & A \\
\hline
\end{tabular}

SWITCH/RESET
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Sink Current \(\left(\mathrm{V}_{\mathrm{OL}}=1.2 \mathrm{~V}\right)\) & \(\mathrm{I}_{\text {Sink }}\) & - & 5.0 & - & mA \\
\hline Output Voltage \(\left(\mathrm{R}_{\mathrm{On} / \mathrm{off}}=20 \mathrm{k} \Omega\right.\) ) & & & & & V \\
Low State, \(\mathrm{V}_{\text {in }}=4.0 \mathrm{~V}\) & \(\mathrm{~V}_{\mathrm{OL}}\) & - & 0.9 & 1.2 & \\
High State, \(\mathrm{V}_{\text {in }}=14 \mathrm{~V}\) & \(\mathrm{~V}_{\mathrm{OH}}\) & 4.5 & 5.0 & 6.0 & \\
\hline Output Pull-Up Resistor, "On"/"Off" (Note 2) & \(\mathrm{R}_{\mathrm{on} / \mathrm{off}}\) & - & 20 & 30 & \(\mathrm{k} \Omega\) \\
\hline Output Voltage with Reverse Polarity Input \(\left(\mathrm{V}_{\text {in }}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)\) & \(-\mathrm{V}_{\mathrm{O}}\) & -0.6 & 0 & - & V \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{I}_{\text {stby }}=10 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {stby }}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\) [Note 1].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{STANDBY OUTPUT} \\
\hline Output Voltage ( \(\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}\) to \(26 \mathrm{~V}, \mathrm{I}_{\text {stby }}=1.0 \mathrm{~mA}\) to \(10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=-40\) to \(+125^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) (stby) & 4.75 & 5.0 & 5.25 & V \\
\hline Tracking Voltage & \(\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{O}}\) (stby) & -200 & 0 & 200 & mV \\
\hline Line Regulation ( \(\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}\) to 26 V ) & Regline & - & 4.0 & 50 & mV \\
\hline Load Regulation ( \(\mathrm{I}_{\text {stby }}=1.0 \mathrm{~mA}\) to 10 mA ) & Regload & - & 10 & 50 & mV \\
\hline Output Impedance
\[
I_{\text {(stby) }}=10 \mathrm{mAdc} \text { and } 1.0 \mathrm{mArms}, f=100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}
\] & \(\mathrm{Z}_{\mathrm{O}}\) (stby) & - & 1.0 & - & \(\Omega\) \\
\hline Output Noise Voltage ( \(\mathrm{f}=10 \mathrm{~Hz}\) to 100 kHz ) & \(\mathrm{v}_{\mathrm{n}}\) & - & 300 & - & \(\mu \mathrm{Vrms}\) \\
\hline Long Term Stability & S & - & 20 & - & mV/kHR \\
\hline Ripple Rejection ( \(f=120 \mathrm{~Hz}\) ) & RR & - & 66 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{l}_{\text {stby }}=10 \mathrm{~mA}\) ) & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) (stby) & - & 0.55 & 0.7 & V \\
\hline Short Circuit Current Limit & ISC & 25 & 70 & - & mA \\
\hline Output Voltage with Reverse Polarity Input
\[
\mathrm{V}_{\text {in }}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=510 \Omega
\] & \(\mathrm{V}_{\mathrm{O}}\) & -0.3 & 0 & - & V \\
\hline Output Voltage with Maximum Positive Input
\[
V_{\text {in }}=60 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=510 \Omega
\] & \(\mathrm{V}_{\mathrm{O} \text { (max) }}\) & - & 5.0 & 6.0 & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bias Current & \multirow[t]{5}{*}{'B} & & & & \multirow[t]{5}{*}{mA} \\
\hline \(\mathrm{I}=10 \mathrm{~mA}, \mathrm{I}_{\text {stby }}=0 \mathrm{~mA}\) & & - & 3.0 & - & \\
\hline \(1 \mathrm{O}=500 \mathrm{~mA}, \mathrm{I}_{\text {stby }}=0 \mathrm{~mA}\) & & - & 40 & 100 & \\
\hline \(1 \mathrm{l}=750 \mathrm{~mA}\), \(\mathrm{I}_{\text {stby }}=0 \mathrm{~mA}\) & & - & 90 & - & \\
\hline Main Output "Off", \(I_{\text {stby }}=10 \mathrm{~mA}\) & & - & 2.0 & 3.0 & \\
\hline
\end{tabular}

NOTES: 1. Low duty cycle puise techniques are used during test to maintain junction temperature as close to ambient as possible.
2. The maximum switch/reset current must not exceed 5.0 mA .

\section*{LM2935}

TYPICAL CIRCUIT WAVEFORMS


Figure 1. D2PAK Thermal Resistance and Maximum
Power Dissipation versus P.C.B. Copper Length


\section*{Micropower Voltage Regulators}

The LP2950 and LP2951 are micropower voltage regulators that are specifically designed to maintain proper regulation with an extremely low input-to-output voltage differential. These devices feature a very low quiescent bias current of \(75 \mu \mathrm{~A}\) and are capable of supplying output currents in excess of 100 mA . Internal current and thermal limiting protection is provided.

The LP2951 has three additional features. The first is the Error Output that can be used to signal external circuitry of an out of regulation condition, or as a microprocessor power-on reset. The second feature allows the output voltage to be preset to \(5.0 \mathrm{~V}, 3.3 \mathrm{~V}\) or 3.0 V output (depending on the version) or programmed from 1.25 V to 29 V . It consists of a pinned out resistor divider along with direct access to the Error Amplifier feedback input. The third feature is a Shutdown input that allows a logic level signal to turn-off or turn-on the regulator output.

Due to the low input-to-output voltage differential and bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable. The LP2950 is available in the three pin case 29 and DPAK packages, and the LP2951 is available in the eight pin dual-in-line, SO-8 and Micro-8 surface mount packages. The ' \(A\) ' suffix devices feature an initial output voltage tolerance \(\pm 0.5 \%\).

\section*{LP2950 and LP2951 Features:}
- Low Quiescent Bias Current of \(75 \mu \mathrm{~A}\)
- Low Input-to-Output Voltage Differential of 50 mV at \(100 \mu \mathrm{~A}\) and 380 mV at 100 mA
- \(5.0 \mathrm{~V}, 3.3 \mathrm{~V}\) or \(3.0 \mathrm{~V} \pm 0.5 \%\) Allows Use as a Regulator or Reference
- Extremely Tight Line and Load Regulation
- Requires Only a \(1.0 \mu \mathrm{~F}\) Output Capacitor for Stability
- Internal Current and Thermal Limiting

\section*{LP2951 Additional Features:}
- Error Output Signals an Out of Regulation Condition
- Output Programmable from 1.25 V to 29 V
- Logic Level Shutdown Input

\section*{MICROPOWER LOW DROPOUT VOLTAGE REGULATORS}

Z SUFFIX
PLASTIC PACKAGE CASE 29
(TO-226AA/TO-92)


\section*{DT SUFFIX}

PLASTIC PACKAGE
CASE 369A
(DPAK)


Pin: 1. Input
2. Ground
3. Output
(Top View)

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

\section*{D SUFFIX}

PLASTIC PACKAGE
CASE 751
(SO-8)

N SUFFIX
PLASTIC PACKAGE
CASE 626


DM SUFFIX
PLASTIC PACKAGE CASE 846A

(Micro-8)

(Top View)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & Type & Operating Temperature Range & Package \\
\hline \[
\begin{aligned}
& \text { LP2950CZ-** } \\
& \text { LP2950ACZ-** }
\end{aligned}
\] & \multirow[b]{2}{*}{Fixed Voltage (3.0, 3.3 or 5.0 V )} & \multirow{8}{*}{TJ \(=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & TO-92/TO-226AA \\
\hline \begin{tabular}{l}
LP2950CDT-** \\
LP2950ACDT-**
\end{tabular} & & & DPAK \\
\hline \[
\begin{aligned}
& \text { LP2951CD } \\
& \text { LP2951ACD }
\end{aligned}
\] & Adjustable or 5.0 V Fixed & & \\
\hline \[
\begin{aligned}
& \text { LP2951CD-** } \\
& \text { LP2951ACD-** }
\end{aligned}
\] & Adjustable or Fixed
\[
(3.0,3.3 \mathrm{~V})
\] & & SO-8 \\
\hline \begin{tabular}{l}
LP2951CN \\
LP2951ACN
\end{tabular} & Adjustable or 5.0 V Fixed & & \\
\hline \begin{tabular}{l}
LP2951CN-** \\
LP2951ACN-**
\end{tabular} & Adjustable or Fixed
\[
(3.0,3.3 \mathrm{~V})
\] & & Plastic \\
\hline \begin{tabular}{l}
LP2951CDM \\
LP2951ACDM
\end{tabular} & Adjustable or 5.0 V Fixed & & \\
\hline \begin{tabular}{l}
LP2951CDM-** \\
LP2951ACDM-**
\end{tabular} & Adjustable or Fixed
\[
(3.0,3.3 \mathrm{~V})
\] & & cro \\
\hline
\end{tabular}
\({ }^{* *}=\) Voltage option of \(3.0,3.3\) or 5.0 V .
DEVICE TYPE/NOMINAL OUTPUT VOLTAGE
\begin{tabular}{|c|c|c|}
\hline Device No. \(\mathbf{\pm 1 \%})\) & Device No. \(( \pm \mathbf{0 . 5 \%})\) & Nominal Voltage \\
\hline LP2950CX-5.0 & LP2950ACX-5.0 & 5.0 \\
LP2950CX-3.3 & LP2950ACX-3.3 & 3.3 \\
LP2950CX-3.0 & LP2950ACX-3.0 & 3.0 \\
LP2951CX & LP2951ACX & Adjustable or 5.0 \\
LP2950CX-3.3 & LP2951ACX-3.3 & Adjustable or 3.3 \\
LP2951CX-3.0 & LP2951ACX-3.0 & Adjustable or 3.0 \\
\hline
\end{tabular}
\(X=\) Package suffix.
Representative Block Diagrams


MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 30 & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics Maximum Power Dissipation Case 751(SO-8) D Suffix \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 369A (DPAK) DT Suffix [Note 1] \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 29 (TO-226AA/TO-92) Z Suffix \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 626 N Suffix \\
Thermal Resistance, Junction-to-Ambient \\
Case 846A (Micro-8) DM Suffix \\
Thermal Resistance, Junction-to-Ambient
\end{tabular} & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(\mathrm{R}_{\theta \mathrm{JC}}\) \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(R_{\text {日JC }}\) \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(\mathrm{R}_{\text {日JC }}\) \\
\(R_{\theta J A}\) \\
\(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \begin{tabular}{l}
Internally Limited \\
180
45 \\
92 \\
6.0 \\
160 \\
83 \\
105 \\
240
\end{tabular} & \[
\begin{gathered}
\mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Feedback Input Voltage & \(V_{\text {fb }}\) & -1.5 to +30 & Vdc \\
\hline Shutdown Input Voltage & \(\mathrm{V}_{\text {Sd }}\) & -0.3 to +30 & Vdc \\
\hline Error Comparator Output Voltage & Verr & -0.3 to +30 & Vdc \\
\hline Operating Junction Temperature & TJ & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. The Junction-to-Ambient Thermal Resistance is determined by PC board copper area per Figure 26
2. ESD data available upon request.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O}}+1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}, \mathrm{C}_{\mathrm{O}}=1.0 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline ```
Output Voltage, 5.0 V Versions
    \(\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)
        LP2950C-5.0/LP2951C
        LP2950AC-5.0/LP2951AC
    \(\mathrm{T}_{\mathrm{J}}=-40\) to \(+125^{\circ} \mathrm{C}\)
        LP2950C-5.0/LP2951C
        LP2950AC-5.0/LP2951AC
    \(\mathrm{V}_{\text {in }}=6.0\) to \(30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}\) to \(100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=-40\) to \(+125^{\circ} \mathrm{C}\)
        LP2950C-5.0/LP2951C
        LP2950AC-5.0/LP2951AC
``` & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 4.950 \\
& 4.975 \\
& 4.900 \\
& 4.940 \\
& 4.880 \\
& 4.925
\end{aligned}
\] & \[
\begin{aligned}
& 5.000 \\
& 5.000
\end{aligned}
\] & \[
\begin{aligned}
& 5.050 \\
& 5.025 \\
& 5.100 \\
& 5.060 \\
& 5.120 \\
& 5.075
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
Output Voltage, 3.3 V Versions
\[
\begin{gathered}
\mathrm{V}_{\text {in }}=4.3 \mathrm{~V}, \mathrm{I}=100 \mu \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\
\mathrm{LP} 2950 \mathrm{C}-3.3 / \mathrm{LP} 2951 \mathrm{C}-3.3 \\
\mathrm{LP} 2950 \mathrm{AC}-3.3 / \mathrm{LP} 2951 \mathrm{AC}-3.3 \\
\mathrm{~T}_{J}=-40 \text { to }+125^{\circ} \mathrm{C} \\
\text { LP2950C }-3.3 / \mathrm{LP} 2951 \mathrm{C}-3.3 \\
\text { LP2950AC-3.3/LP2951AC-3.3 }
\end{gathered}
\] \\
\(\mathrm{V}_{\text {in }}=4.3\) to \(30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}\) to \(100 \mathrm{~mA}, \mathrm{TJ}=-40\) to \(+125^{\circ} \mathrm{C}\) LP2950C-3.3/LP2951C-3.3 \\
LP2950AC-3.3/LP2951AC-3.3
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 3.267 \\
& 3.284 \\
& \\
& 3.234 \\
& 3.260 \\
& \\
& 3.221 \\
& 3.254
\end{aligned}
\] & 3.300
3.300 & \[
\begin{aligned}
& 3.333 \\
& 3.317 \\
& \\
& 3.366 \\
& 3.340 \\
& \\
& 3.379 \\
& 3.346
\end{aligned}
\] & V \\
\hline Output Voltage, 3.0 V Versions
\[
\begin{aligned}
& \mathrm{V}_{\text {in }}=4.0 \mathrm{~V}, \mathrm{IO}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \text { LP2950C-3.0/LP2951C-3.0 } \\
& \text { LP2950AC-3.0/LP2951AC-3.0 } \\
& \mathrm{T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \\
& \text { LP2950C-3.0/LP2951C-3.0 } \\
& \text { LP2950AC-3.0/LP2951AC-3.0 } \\
& \mathrm{V}_{\text {in }}=4.0 \text { to } 30 \mathrm{~V}, \text { IO }=100 \mu \mathrm{~A} \text { to } 100 \mathrm{~mA}, \mathrm{~T}_{J}=-40 \text { to }+125^{\circ} \mathrm{C} \\
& \text { LP2950C-3.0/LP2951C-3.0 } \\
& \text { LP2950AC-3.0/LP2951AC-3.0 }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 2.970 \\
& 2.985 \\
& \\
& 2.940 \\
& 2.964 \\
& \\
& 2.928 \\
& 2.958
\end{aligned}
\] & 3.000
3.000 & \[
\begin{aligned}
& 3.030 \\
& 3.015 \\
& \\
& 3.060 \\
& 3.036 \\
& \\
& 3.072 \\
& 3.042
\end{aligned}
\] & V \\
\hline
\end{tabular}

\section*{LP2950 LP2951}

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{O}}+1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}, \mathrm{C}_{\mathrm{O}}=1.0 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Line Regulation (\(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O}}(\) nom \()+1.0 \mathrm{~V}\) to 30 V) [Note 2] LP2950C-XX/LP2951C/LP2951C-XX LP2950AC-XX/LP2951AC/LP2951AC-XX & Regline & & \[
\begin{aligned}
& 0.08 \\
& 0.04
\end{aligned}
\] & \[
\begin{aligned}
& 0.20 \\
& 0.10
\end{aligned}
\] & \% \\
\hline Load Regulation (\(\mathrm{I}=100 \mu \mathrm{~A}\) to 100 mA) LP2950C-XX/LP2951C/LP2951C-XX LP2950AC-XX/LP2951AC/LP2951AC-XX & Regload & & \[
\begin{array}{r}
0.13 \\
0.05 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.20 \\
& 0.10 \\
& \hline
\end{aligned}
\] & \% \\
\hline \[
\begin{gathered}
\text { Dropout Voltage } \\
10=100 \mu \mathrm{~A} \\
10=100 \mathrm{~mA}
\end{gathered}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & & \[
\begin{gathered}
30 \\
350
\end{gathered}
\] & \[
\begin{gathered}
80 \\
450
\end{gathered}
\] & mV \\
\hline Supply Bias Current
\[
\begin{aligned}
& \mathrm{I}=100 \mu \mathrm{~A} \\
& \mathrm{IO}=100 \mathrm{~mA}
\end{aligned}
\] & ICC & & \[
\begin{aligned}
& 93 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
120 \\
12 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA} \\
& \hline
\end{aligned}
\] \\
\hline Dropout Supply Bias Current \(\left(\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{O}}(\right.\) nom \()-0.5 \mathrm{~V}\), \(\mathrm{I}=100 \mu \mathrm{~A}\)) [Note 2] & ICCdropout & - & 110 & 170 & \(\mu \mathrm{A}\) \\
\hline Current Limit (\(\mathrm{V}_{\mathrm{O}}\) Shorted to Ground) & LLimit & - & 220 & 300 & mA \\
\hline Thermal Regulation & Regthermal & - & 0.05 & 0.20 & \%/W \\
\hline Output Noise Voltage (10 Hz to 100 kHz) [Note 3]
\[
\begin{aligned}
& C_{L}=1.0 \mu \mathrm{~F} \\
& C_{L}=100 \mu \mathrm{~F}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & & & \(\mu \mathrm{Vrms}\) \\
\hline
\end{tabular}

LP2951A/LP2951AC ONLY
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Reference Voltage }\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right) \\
& \text { LP2951C/LP2951C-XX } \\
& \text { LP2951AC/LP2951AC-XX } \\
& \hline
\end{aligned}
\] & \(V_{\text {ref }}\) & \[
\begin{aligned}
& 1.210 \\
& 1.220
\end{aligned}
\] & \[
\begin{aligned}
& 1.235 \\
& 1.235
\end{aligned}
\] & \[
\begin{aligned}
& 1.260 \\
& 1.250
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
Reference Voltage (\(\mathrm{T}_{\mathrm{J}}=-40\) to \(+125^{\circ} \mathrm{C}\)) LP2951C/LP2951C-XX \\
LP2951AC/LP2951AC-XX
\end{tabular} & \(V_{\text {ref }}\) & \[
\begin{aligned}
& 1.200 \\
& 1.200
\end{aligned}
\] & & \[
\begin{aligned}
& 1.270 \\
& 1.260
\end{aligned}
\] & V \\
\hline ```
Reference Voltage (}\mp@subsup{T}{J}{}=-40\mathrm{ to }+12\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{)
 IO}=100\mu\textrm{A}\mathrm{ to }100\textrm{mA},\mp@subsup{V}{\mathrm{ in }}{=23 to 30 V
 LP2951C/LP2951C-XX
 LP2951AC/LP2951AC-XX
``` & \(\mathrm{V}_{\text {ref }}\) & \[
\begin{aligned}
& 1.185 \\
& 1.190
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.285 \\
& 1.270
\end{aligned}
\] & V \\
\hline Feedback Pin Bias Current & 'FB & - & 15 & 40 & nA \\
\hline
\end{tabular}

ERROR COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Leakage Current \(\left(\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}\right)\) & \(\mathrm{I}_{\mathrm{kg}}\) & - & 0.01 & 1.0 & \(\mu \mathrm{~A}\) \\
\hline Output Low Voltage \(\left(\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}, \mathrm{I} \mathrm{IL}=400 \mu \mathrm{~A}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 150 & 250 & mV \\
\hline Upper Threshold Voltage \(\left(\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}\right)\) & \(\mathrm{V}_{\text {thu }}\) & 40 & 45 & - & mV \\
\hline Lower Threshold Voltage \(\left(\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}\right)\) & \(\mathrm{V}_{\text {thl }}\) & - & 60 & 95 & mV \\
\hline Hysteresis \(\left(\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}\right)\) & \(\mathrm{V}_{\text {hy }}\) & - & 15 & - & mV \\
\hline
\end{tabular}

\section*{SHUTDOWN INPUT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Input Logic Voltage } \\
& \text { Logic "0" (Regulator "On") } \\
& \text { Logic "1" (Regulator "Off") }
\end{aligned}
\] & \(V_{\text {shtdn }}\) & \[
\begin{gathered}
0 \\
2.0
\end{gathered}
\] & & \[
\begin{aligned}
& 0.7 \\
& 30
\end{aligned}
\] & V \\
\hline Shutdown Pin Input Current
\[
\begin{aligned}
& V_{\text {shtdn }}=2.4 \mathrm{~V} \\
& V_{\text {shtdn }}=30 \mathrm{~V}
\end{aligned}
\] & \(I_{\text {shta }}\) & & \[
\begin{gathered}
35 \\
450 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
50 \\
600 \\
\hline
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Regulator Output Current in Shutdown Mode \(\left(\mathrm{V}_{\text {in }}=30 \mathrm{~V}, \mathrm{~V}_{\text {shtdn }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0\right.\), Pin 6 Connected to Pin 7) & loff & - & 3.0 & 10 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\footnotetext{
NOTES: 1. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
}
2. \(\mathrm{V}_{\mathrm{O}(\mathrm{nom})}\) is the part number voltage option.
3. Noise tests on the LP2951 are made with a \(0.01 \mu \mathrm{~F}\) capacitor connected across Pins 7 and 1 .

\section*{DEFINITIONS}

Dropout Voltage - The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 100 mV below its nominal value (which is measured at 1.0 V differential), dropout voltage is affected by junction temperature, load current and minimum input supply requirements.

Line Regulation - The change in output voltage for a change in input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Bias Current - Current which is used to operate the regulator chip and is not delivered to the load.

Figure 1. Quiescent Current


Figure 3. Input Current


Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Leakage Current - Current drawn through a bipolar transistor collector-base junction, under a specified collector voltage, when the transistor is "off".

Upper Threshold Voltage - Voltage applied to the comparator input terminal, below the reference voltage which is applied to the other comparator input terminal, which causes the comparator output to change state from a logic " 0 " to " 1 ".

Lower Threshold Voltage - Voltage applied to the comparator input terminal, below the reference voltage which is applied to the other comparator input terminal, which causes the comparator output to change state from a logic " 1 " to " 0 ".

Hysteresis - The difference between Lower Threshold voltage and Upper Threshold voltage.

Figure 2. Dropout Characteristics


Figure 4. Output Voltage versus Temperature


Figure 5. Dropout Voltage versus Output Current


Figure 7. Error Comparator Output


Figure 9. LP2951 Enable Transient


Figure 6. Dropout Voltage versus Temperature


Figure 8. Line Transient Response


Figure 10. Load Transient Response


Figure 11. Ripple Rejection


Figure 13. Shutdown Threshold Voltage versus Temperature


Figure 12. Output Noise


Figure 14. Maximum Rated Output Current


\section*{APPLICATIONS INFORMATION}

\section*{Introduction}

The LP2950/LP2951 regulators are designed with internal current limiting and thermal shutdown making them user-friendly. Typical application circuits for the LP2950 and LP2951 are shown in Figures 17 through 25.

These regulators are not internally compensated and thus require a \(1.0 \mu \mathrm{~F}\) (or greater) capacitance between the LP2950/LP2951 output terminal and ground for stability. Most types of aluminum, tantalum or multilayer ceramic will perform adequately. Solid tantalums or appropriate multilayer ceramic capacitors are recommended for operation below \(25^{\circ} \mathrm{C}\).

At lower values of output current, less output capacitance is required for output stability. The capacitor can be reduced to \(0.33 \mu \mathrm{~F}\) for currents less than 10 mA , or \(0.1 \mu \mathrm{~F}\) for currents below 1.0 mA . Using the \(8-\) pin versions at voltages less than 5.0 V operates the error amplifier at lower values of gain, so that more output capacitance is needed for stability. For the worst case operating condition of a 100 mA load at 1.23 V output (Output Pin 1 connected to the feedback Pin 7) a minimum capacitance of \(3.3 \mu \mathrm{~F}\) is recommended.

The LP2950 will remain stable and in regulation when operated with no output load. When setting the output voltage of the LP2951 with external resistors, the resistance values should be chosen to draw a minimum of \(1.0 \mu \mathrm{~A}\).

A bypass capacitor is recommended across the LP2950/LP2951 input to ground if more than 4 inches of wire connects the input to either a battery or power supply filter capacitor.

Input capacitance at the LP2951 Feedback Pin 7 can create a pole, causing instability if high value external resistors are used to set the output voltage. Adding a 100 pF capacitor between the Output Pin 1 and the Feedback Pin 7 and increasing the output filter capacitor to at least \(3.3 \mu \mathrm{~F}\) will stabilize the feedback loop.

\section*{Error Detection Comparator}

The comparator switches to a positive logic low whenever the LP2951 output voltage falls more than approximately \(5.0 \%\) out of regulation. This value is the comparator's designed-in offset voltage of 60 mV divided by the 1.235 V internal reference. As shown in the representative block diagram. This trip level remains \(5.0 \%\) below normal regardless of the value of regulated output voltage. For example, the error flag trip level is 4.75 V for a normal 5.0 V regulated output, or 9.50 V for a 10 V output voltage.

Figure 1 is a timing diagram which shows the ERROR signal and the regulated output voltage as the input voltage to the LP2951 is ramped up and down. The ERROR signal becomes valid (low) at about 1.3 V input. It goes high when the input reaches about 5.0 V ( \(\mathrm{V}_{\text {out }}\) exceeds about 4.75 V ). Since the LP2951's dropout voltage is dependent upon the load current (refer to the curve in the Typical Performance Characteristics), the input voltage trip point will vary with load current. The output voltage trip point does not vary with load.

The error comparator output is an open collector which requires an external pull-up resistor. This resistor may be returned to the output or some other voltage within the system. The resistance value should be chosen to be consistent with the \(400 \mu \mathrm{~A}\) sink capability of the error comparator. A value between 100 k and \(1.0 \mathrm{M} \Omega\) is suggested. No pull-up resistance is required if this output is unused.

When operated in the shutdown mode, the error comparator output will go high if it has been pulled up to an external supply. To avoid this invalid response, the error comparator output should be pulled up to \(\mathrm{V}_{\text {out }}\) (see Figure 15).

Figure 15. ERROR Output Timing


\section*{Programming the Output Voltage (LP2951)}

The LP2951CX may be pin-strapped for 5.0 V using its internal voltage divider by tying Pin 1 (output) to Pin 2 (sense) and Pin 7 (feedback) to Pin 6 ( 5.0 V tap). Alternatively, it may be programmed for any output voltage between its 1.235 reference voltage and its 30 V maximum rating. An external pair of resistors is required, as shown in Figure 16.

Figure 16. Adjustable Regulator


The complete equation for the output voltage is:
\[
V_{\text {out }}=V_{\text {ref }}(1+R 1 / R 2)+I_{F B} R 1
\]
where \(\mathrm{V}_{\text {ref }}\) is the nominal 1.235 V reference voltage and \(\mathrm{I}_{F B}\) is the feedback pin bias current, nominally - 20 nA . The minimum recommended load current of \(1.0 \mu \mathrm{~A}\) forces an upper limit of \(1.2 \mathrm{M} \Omega\) on the value of R 2 , if the regulator must work with no load. IFB will produce a \(2 \%\) typical error in \(V_{\text {out }}\) which may be eliminated at room temperature by adjusting R1. For better accuracy, choosing R2 \(=100 \mathrm{k}\) reduces this
error to \(0.17 \%\) while increasing the resistor program current to \(12 \mu \mathrm{~A}\). Since the LP2951 typically draws \(75 \mu \mathrm{~A}\) at no load with Pin 2 open circuited, the extra \(12 \mu \mathrm{~A}\) of current drawn is often a worthwhile tradeoff for eliminating the need to set output voltage in test.

\section*{Output Noise}

In many applications it is desirable to reduce the noise present at the output. Reducing the regulator bandwidth by increasing the size of the output capacitor is the only method for reducing noise on the 3 lead LP2950. However, increasing the capacitor from \(1.0 \mu \mathrm{~F}\) to \(220 \mu \mathrm{~F}\) only decreases the noise from \(430 \mu \mathrm{~V}\) to \(160 \mu \mathrm{Vrms}\) for a 100 kHz bandwidth at the 5.0 V output.

Noise can be reduced fourfold by a bypass capacitor across R1, since it reduces the high frequency gain from 4 to unity. Pick
\[
C_{\text {Bypass }} \approx \frac{1}{2 \pi R 1 \times 200 \mathrm{~Hz}}
\]
or about \(0.01 \mu \mathrm{~F}\). When doing this, the output capacitor must be increased to \(3.3 \mu \mathrm{~F}\) to maintain stability. These changes reduce the output noise from \(430 \mu \mathrm{~V}\) to \(126 \mu \mathrm{Vrms}\) for a 100 kHz bandwidth at 5.0 V output. With bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages.

Figure 17. 1.0 A Regulator with 1.2 V Dropout


\section*{LP2950 LP2951}

\section*{TYPICAL APPLICATIONS}

Figure 18. Lithium Ion Battery Cell Charger


Figure 20. Latch Off When Error Flag Occurs


Error flag occurs when \(V_{\text {in }}\) is too low to maintain \(V_{\text {out }}\), or if \(V_{\text {out }}\) is reduced by excessive load current.

Figure 19. Low Drift Current Sink


Figure 21. 5.0 V Regulator with 2.5 V Sleep Function


\section*{LP2950 LP2951}

Figure 22. Regulator with Early Warning and Auxiliary Output


All diodes are 1 N 4148 .
Early Warning flag on low input voltage.
Main output latches off at lower input voltages.

Battery backup on auxiliary output.
Operation: Regulator \#1's \(V_{\text {out }}\) is programmed one diode drop above 5.0 V . Its error flag becomes active when \(\mathrm{V}_{\text {in }} \leq 5.7\) V . When \(\mathrm{V}_{\text {in }}\) drops below 5.3 V , the error flag of regulator \#2 becomes active and via Q1 latches the main output "off". When \(\mathrm{V}_{\text {in }}\) again exceeds 5.7 V , regulator \#1 is back in regulation and the early warning signal rises, unlatching regulator \#2 via D3.

Figure 23. 2.0 A Low Dropout Regulator

\(V_{\text {out }}=1.25 \mathrm{~V}(1.0+\mathrm{R} 1 / \mathrm{R} 2)\)
For 5.0 V output, use internal resistors. Wire Pin 6 to 7 , and wire Pin 2 to \(+V_{\text {out }}\) Bus.

\section*{LP2950 LP2951}

Figure 24. Open Circuit Detector for 4.0 to 20 mA Current Loop


Figure 25. Low Battery Disconnect


Figure 26. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


\section*{Voltage Regulator}

The MC1723C is a positive or negative voltage regulator designed to deliver load current to 150 mAdc . Output current capability can be increased to several amperes through use of one or more external pass transistors. MC1723C is specified for operation over the commercial temperature range ( \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) ).
- Output Voltage Adjustable from 2.0 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- \(0.01 \%\) Line and \(0.03 \%\) Load Regulation
- Adjustable Short Circuit Protection

Figure 1. Representative Schematic Diagram


Figure 2. Typical Circuit Connection

For best results \(10 \mathrm{k}<\mathrm{R} 2<100 \mathrm{k}\)
For minimum drift R3 \(=\) R1 \(\|\) R2


\section*{VOLTAGE REGULATOR}

\section*{SEMICONDUCTOR TECHNICAL DATA}


ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & Alternate & \begin{tabular}{c} 
Operating \\
Temperature \\
Range
\end{tabular} & Package \\
\hline MC1723CD & - & & SO-14 \\
\hline MC1723CP & \begin{tabular}{l} 
LM723CN \\
\\
\\
\end{tabular} \(\mathrm{T}_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

\section*{MC1723C}

MAXIMUM RATINGS \(\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Pulse Voltage from \(\mathrm{V}_{\mathrm{CC}}\) to \(\mathrm{V}_{\mathrm{EE}}\) ( 50 ms ) & \(V_{1(p)}\) & 50 & \(\mathrm{V}_{\mathrm{pk}}\) \\
\hline Continuous Voltage from \(\mathrm{V}_{\text {CC }}\) to \(\mathrm{V}_{\mathrm{EE}}\) & \(V_{1}\) & 40 & Vdc \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & 40 & Vdc \\
\hline Maximum Output Current & L & 150 & mAdc \\
\hline Current from \(\mathrm{V}_{\text {ref }}\) & Iref & 15 & mAdc \\
\hline Current from \(\mathrm{V}_{\mathrm{Z}}\) & \(\mathrm{I}_{\mathrm{z}}\) & 25 & mA \\
\hline Voltage Between Noninverting Input and \(\mathrm{V}_{\text {EE }}\) & \(V_{\text {ie }}\) & 8.0 & Vdc \\
\hline Differential Input Voltage & \(\mathrm{V}_{\text {id }}\) & \(\pm 5.0\) & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air
\end{tabular} & \[
\begin{gathered}
\mathrm{PD} \\
1 / \theta_{J A} \\
\theta J A
\end{gathered}
\] & \[
\begin{gathered}
1.25 \\
10 \\
100
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{W} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating and Storage Junction Temperature Range & \(\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}\) & -65 to +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {in }} 12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{SC}}=0, \mathrm{C} 1=100 \mathrm{pF}, \mathrm{C}_{\mathrm{ref}}=0\right.\) and divider impedance as seen by the error amplifier \(\leq 10 \mathrm{k} \Omega\) connected as shown in Figure 2, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Input Voltage Range & \(V_{1}\) & 9.5 & - & 40 & Vdc \\
\hline Output Voltage Range & \(\mathrm{V}_{\mathrm{O}}\) & 2.0 & - & 37 & Vdc \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{v}_{\mathrm{O}}\) & 3.0 & - & 38 & Vdc \\
\hline Reference Voltage & \(\mathrm{V}_{\text {ref }}\) & 6.80 & 7.15 & 7.50 & Vdc \\
\hline Standby Current Drain ( \(\mathrm{L}=0, \mathrm{~V}_{\text {in }}=30 \mathrm{~V}\) ) & IB & - & 2.3 & 4.0 & mAdc \\
\hline ```
Output Noise Voltage (f=100 Hz to 10 kHz)
Cref =0
C
``` & \(\mathrm{V}_{\mathrm{n}}\) & - & \[
\begin{aligned}
& 20 \\
& 2.5
\end{aligned}
\] & - & \(\mu \mathrm{V}\) (RMS) \\
\hline Average Temperature Coefficient of Output Voltage (\(T_{\text {low }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {high }}\)) & \(\mathrm{TCV}_{\mathrm{O}}\) & - & 0.003 & 0.015 & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Line Regulation
\[
\begin{gathered}
\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\left\{\begin{array}{l}
12 \mathrm{~V}<\mathrm{V}_{\text {in }}<15 \mathrm{~V} \\
12 \mathrm{~V}<\mathrm{V}_{\text {in }}<40 \mathrm{~V}
\end{array}\right. \\
\left(\mathrm{T}_{\text {low }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {high }}\right) \\
12 \mathrm{~V}<\mathrm{V}_{\text {in }}<15 \mathrm{~V}
\end{gathered}
\] & Regline & & \[
\begin{gathered}
0.01 \\
0.1
\end{gathered}
\] & \[
\begin{aligned}
& 0.1 \\
& 0.5 \\
& 0.3
\end{aligned}
\] & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline Load Regulation (\(1.0 \mathrm{~mA}<\mathrm{I}_{\mathrm{L}}<50 \mathrm{~mA}\))
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\text {low }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {high }}
\end{aligned}
\] & Regload & - & \[
0.03
\] & \[
\begin{aligned}
& 0.2 \\
& 0.6
\end{aligned}
\] & \% V \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection }(\mathrm{f}=50 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}) \\
& \mathrm{C}_{\text {ref }}=0 \\
& \mathrm{C}_{\text {ref }}=5.0 \mu \mathrm{~F}
\end{aligned}
\] & RR & - & \[
\begin{aligned}
& 74 \\
& 86
\end{aligned}
\] & - & dB \\
\hline Short Circuit Current Limit (RSC \(=10 \Omega, \mathrm{~V}_{\mathrm{O}}=0\)) & ISC & - & 65 & - & mAdc \\
\hline Long Term Stability & \({ }^{\wedge} \mathrm{V}_{\mathrm{O}} / \wedge \mathrm{t}\) & - & 0.1 & - & \(\% / 1000 \mathrm{Hr}\). \\
\hline
\end{tabular}

NOTE: \(T_{\text {low }}\) to \(T_{\text {high }}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)

Figure 4. Maximum Load Current as a Function of Input-Output Voltage Differential

Figure 6. Load Regulation Characteristics With Current Limiting

Figure 8. Current Limiting Characteristics

Figure 5. Load Regulation Characteristics Without Current Limiting

Figure 7. Load Regulation Characteristics With Current Limiting

Figure 9. Current Limiting Characteristics as a Function of Junction Temperature

Figure 10. Line Regulation as a Function of Input-Output Voltage Differential

Figure 12. Standby Current Drain as a Function of Input Voltage

Figure 14. Load Transient Response

Figure 11. Load Regulation as a Function of Input-Output Voltage Differential

Figure 15. Output Impedance as Function of Frequency

Figure 16. Typical Connection for \(2<\mathrm{V}_{\mathrm{O}}<7\)

\(V_{O} \cong 7\left[\frac{R 2}{R 1+R_{2}}\right] \quad \mathrm{ISC}=\frac{V_{\text {sense }}}{R_{S C}} \cong \frac{0.66}{R S C}\) at \(T_{J}=+25^{\circ} \mathrm{C}\)
For best results \(10 k<R 1+R 2<100 k\)
For minimum drift R3 \(=\) R1 R2

Figure 17. Foldback Connection

Figure 18. +5.0 V, 1.0 A Switching Regulator

Figure 20. +15 V, 1.0 A Regulator with Remote Sense

Figure 19. +5.0 V, 1.0 A High Efficiency Regulator

Figure 21. -15 V Negative Regulator

Figure 22. +12V, 1.0 A Regulator (Using PNP Current Boost)

\section*{Overvoltage Crowbar Sensing Circuit}

This overvoltage protection circuit (OVP) protects sensitive electronic circuitry from overvoltage transients or regulator failures when used in conjunction with an external "crowbar" SCR. The device senses the overvoltage condition and quickly "crowbars" or short circuits the supply, forcing the supply into current limiting or opening the fuse or circuit breaker.

The protection voltage threshold is adjustable and the MC3423 can be programmed for minimum duration of overvoltage condition before tripping, thus supplying noise immunity.

The MC3423 is essentially a "two terminal" system, therefore it can be used with either positive or negative supplies.

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Differential Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\) & 40 & Vdc \\
\hline Sense Voltage (1) & \(\mathrm{V}_{\text {Sense1 }}\) & 6.5 & Vdc \\
\hline Sense Voltage (2) & \(\mathrm{V}_{\text {Sense2 }}\) & 6.5 & Vdc \\
\hline Remote Activation Input Voltage & \(\mathrm{V}_{\mathrm{act}}\) & 7.0 & Vdc \\
\hline Output Current & IO & 300 & mA \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{OVERVOLTAGE SENSING CIRCUIT}

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC3423D & \multirow{2}{*}{\(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 1 } & & Plastic DIP \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(5.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \leq 36 \mathrm{~V}, \mathrm{~T}_{\text {low }}<\mathrm{T}_{\mathrm{A}}\right.\), \(T_{\text {high, }}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Supply Voltage Range & \(\mathrm{V}_{\mathrm{CC}} \mathrm{V}_{\text {EE }}\) & 4.5 & - & 40 & Vdc \\
\hline Output Voltage
\[
(1 \mathrm{O}=100 \mathrm{~mA})
\] & Vo & \(\mathrm{V}_{\mathrm{CC}}-2.2\) & \(\mathrm{V}_{\mathrm{CC}}-1.8\) & - & Vdc \\
\hline Indicator Output Voltage
\[
(\mathrm{l}(\mathrm{lnd})=1.6 \mathrm{~mA})
\] & \(\mathrm{V}_{\text {OL }}(\mathrm{Ind})\) & - & 0.1 & 0.4 & Vdc \\
\hline Sense Trip Voltage
\[
\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \begin{tabular}{l}
\(V_{\text {Sense1 }}\), \\
\(V_{\text {Sense2 }}\)
\end{tabular} & 2.45 & 2.6 & 2.75 & Vdc \\
\hline Temperature Coefficient of \(\mathrm{V}_{\text {Sense1 }}\) (Figure 2) & \(\mathrm{TCV}^{\text {S1 }}\) & - & 0.06 & - & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Remote Activation Input Current } \\
& \left(\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{H}} \\
& \mathrm{I}_{\mathrm{L}}
\end{aligned}
\] & - & \[
\begin{gathered}
5.0 \\
-120
\end{gathered}
\] & \[
\begin{gathered}
40 \\
-180
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Source Current & ISource & 0.1 & 0.2 & 0.3 & mA \\
\hline Output Current Risetime
\[
\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{tr}_{r}\) & - & 400 & - & \(\mathrm{mA} / \mu \mathrm{s}\) \\
\hline Propagation Delay Time
\[
\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \({ }^{\text {tpd }}\) & - & 0.5 & - & \(\mu \mathrm{s}\) \\
\hline Supply Current & ID & - & 6.0 & 10 & mA \\
\hline
\end{tabular}

NOTES: \(\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)

Figure 1. Representative Block Diagram

Figure 2. Sense Voltage Test Circuit

Figure 3. Basic Circuit Configuration

\(V_{\text {trip }}=V_{\text {ref }}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \approx 2.6 \mathrm{~V}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)\)
\(\mathrm{R} 2 \leq 10 \mathrm{k} \Omega\) for minimum drift

For minimum value of \(\mathrm{R}_{\mathrm{G}}\), see Figure 9 .
*See text for explanation.

Figure 4. Circuit Configuration for Supply Voltage Above 36 V

Figure 5. Basic Configuration for Programmable Duration of Overvoltage Condition Before Trip

\section*{APPLICATION INFORMATION}

\section*{Basic Circuit Configuration}

The basic circuit configuration of the MC3423 OVP is shown in Figure 3 for supply voltages from 4.5 V to 36 V , and in Figure 4 for trip voltages above 36 V . The threshold or trip voltage at which the MC3423 will trigger and supply gate drive to the crowbar SCR, Q1, is determined by the selection of R1 and R2. Their values can be determined by the equation given in Figures 3 and 4, or by the graph shown in Figure 8. The minimum value of the gate current limiting resistor, \(R_{G}\), is given in Figure 9. Using this value of \(R_{G}\), the SCR, Q1, will receive the greatest gate current possible without damaging the MC3423. If lower output currents are required, \(\mathrm{R}_{\mathrm{G}}\) can be increased in value. The switch, S1, shown in Figure 3 may be used to reset the crowbar. Otherwise, the power supply, across which the SCR is connected, must be shut down to reset the crowbar. If a non current-limited supply is used, a fuse or circuit breaker, F1, should be used to protect the SCR and/or the load.

The circuit configurations shown in Figures 3 and 4 will have a typical propogation delay of \(1.0 \mu \mathrm{~s}\). If faster operation is desired, Pin 3 may be connected to Pin 2 with Pin 4 left floating. This will result in decreasing the propogation delay to approximately \(0.5 \mu \mathrm{~s}\) at the expense of a slightly increased TC for the trip voltage value.

\section*{Configuration for Programmable Minimum Duration of Overvoltage Condition Before Tripping}

In many instances, the MC3423 OVP will be used in a noise environment. To prevent false tripping of the OVP circuit by noise which would not normally harm the load, MC3423 has a programmable delay feature. To implement this feature, the circuit configuration of Figure 5 is used. In this configuration, a capacitor is connected from Pin 3 to \(\mathrm{V}_{\mathrm{EE}}\). The value of this capacitor determines the minimum duration of the overvoltage condition which is necessary to trip the OVP. The value of \(C\) can be found from Figure 10. The circuit operates in the following manner: When VCC rises above the trip point set by R1 and R2, an internal current source (Pin 4) begins charging the capacitor, C, connected to Pin 3. If the overvoltage condition disappears before this occurs, the capacitor is discharged at a rate \(\cong 10\) times faster than the charging rate, resetting the timing feature until the next overvoltage condition occurs.

Occasionally, it is desired that immediate crowbarring of the supply occur when a high overvoltage condition occurs, while retaining the false tripping immunity of Figure 5. In this case, the circuit of Figure 6 can be used. The circuit will operate as previously described for small overvoltages, but will immediately trip if the power supply voltage exceeds \(\mathrm{V}_{\mathrm{Z} 1}+1.4 \mathrm{~V}\).

Figure 6. Configuration for Programmable
Duration of Overvoltage Condition Before Trip/With Immediate Trip at High Overvoltages

\section*{Additional Features}

\section*{1. Activation Indication Output}

An additional output for use as an indicator of OVP activation is provided by the MC3423. This output is an open collector transistor which saturates when the OVP is activated. In addition, it can be used to clock an edge triggered flip-flop whose output inhibits or shuts down the power supply when the OVP trips. This reduces or eliminates the heatsinking requirements for the crowbar SCR.

\section*{2. Remote Activation Input}

Another feature of the MC3423 is its remote activation input, Pin 5. If the voltage on this CMOS/TTL compatible input is held below 0.8 V , the MC3423 operates normally. However, if it is raised to a voltage above 2.0 V , the OVP output is activated independent of whether or not an overvoltage condition is present. It should be noted that Pin 5 has an internal pull-up current source. This feature can be used to accomplish an orderly and sequenced shutdown of system power supplies during a system fault condition. In addition, the activation indication output of one MC3423 can be used to activate another MC3423 if a single transistor inverter is used to interface the former's indication output to the latter's remote activation input, as shown in Figure 7. In this circuit, the indication output (Pin 6) of the MC3423 on power supply 1 is used to activate the MC3423 associated with power supply 2. Q1 is any small PNP with adequate voltage rating.

Figure 7. Circuit Configuration for Activating One MC3423 from Another

Note that both supplies have their negative output leads tied together (i.e., both are positive supplies). If their positive leads are common (two negative supplies) the emitter of Q1 would be moved to the positive lead of supply 1 and R1 would therefore have to be resized to deliver the appropriate drive to Q1.

\section*{Crowbar SCR Considerations}

Referring to Figure 11, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, \(\mathrm{C}_{\text {out }}\). This capacitance consists of the power supply output caps, the load's decoupling caps, and in the case of Figure 11A, the supply's input filter caps. This surge current is illustrated in Figure 12, and can cause SCR failure or degradation by any one of three mechanisms: \(\mathrm{di} / \mathrm{dt}\), absolute peak surge, or 12 t . The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

\section*{di/dt}

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities - depending on the severity of the occasion.

Figure 8. R1 versus Trip Voltage

Figure 9. Minimum R \(\mathbf{R}_{\mathbf{G}}\) versus Supply Voltage

Figure 10. Capacitance versus Minimum Overvoltage Duration

Figure 11. Typical Crowbar OVP Circuit Configurations

Figure 12. Crowbar SCR Surge Current Waveform

Figure 13. Circuit Elements Affecting SCR Surge and di/dt

R \& LEMPIRICALLY DETERMINEDI
The usual design compromise then is to use a garden variety fuse (\(3 A G\) or \(3 A B\) style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this
will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 11B.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times IGT) the SCR gate with a fast \(<1.0 \mu \mathrm{~s}\) rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 A(RMS) rating might be \(200 \mathrm{~A} / \mu \mathrm{s}\), assuming a gate current of five times IGT and \(<1.0 \mu\) s rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 13. Of course, this reduces the circuit's ability to rapidly reduce the DC bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt.

\section*{Surge Current}

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance - see Figure 13) to a safe level which is consistent with the systems requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the DC power supply.

\section*{A WORD ABOUT FUSING}

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 11A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!

In order to protect the SCR, the fuse would have to possess an \(1^{2} t\) rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

\section*{CROWBAR SCR SELECTION GUIDE}

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & IRMS & IFSM & Package \\
\hline 2N6400 Series & 16 A & 160 A & TO-220 Plastic \\
2N6504 Series & 25 A & 160 A & TO-220 Plastic \\
2N1842 Series & 16 A & 125 A & Metal Stud \\
2N2573 Series & 25 A & 260 A & Metal TO-3 Type \\
2N681 Series & 25 A & 200 A & Metal Stud \\
MCR3935-1 Series & 35 A & 350 A & Metal Stud \\
MCR81-5 Series & 80 A & 1000 A & Metal Stud \\
\hline
\end{tabular}

Power Supply Supervisory/ Over and Undervoltage Protection Circuit

The MC3425 is a power supply supervisory circuit containing all the necessary functions required to monitor over and undervoltage fault conditions. These integrated circuits contain dedicated over and undervoltage sensing channels with independently programmable time delays. The overvoltage channel has a high current Drive Output for use in conjunction with an external SCR Crowbar for shutdown. The undervoltage channel input comparator has hysteresis which is externally programmable, and an open-collector output for fault indication.
- Dedicated Over and Undervoltage Sensing
- Programmable Hysteresis of Undervoltage Comparator
- Internal 2.5 V Reference
- 300 mA Overvoltage Drive Output
- 30 mA Undervoltage Indicator Output
- Programmable Time Delays
- 4.5 V to 40 V Operation

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(V_{C C}\) & 40 & Vdc \\
\hline Comparator Input Voltage Range (Note 1) & VIR & -0.3 to +40 & Vdc \\
\hline Drive Output Short Circuit Current & IOS(DRV) & Internally Limited & mA \\
\hline Indicator Output Voltage & VIND & 0 to 40 & Vdc \\
\hline Indicator Output Sink Current & IIND & 30 & mA \\
\hline Power Dissipation and Thermal Characteristics Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air & \begin{tabular}{l}
PD \\
\(R_{\theta J A}\)
\end{tabular} & \[
\begin{gathered}
1000 \\
80
\end{gathered}
\] & \begin{tabular}{l}
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\text {A }}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. The input signal voltage should not be allowed to go negative by more than 300 mV or positive by more than 40 V , independent of \(\mathrm{V}_{\mathrm{CC}}\), without device destruction.

\section*{POWER SUPPLY SUPERVISORY/ OVER AND UNDERVOLTAGE PROTECTION CIRCUIT SEMICONDUCTOR TECHNICAL DATA}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC3425P1 & \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (4.5 \(\mathrm{V} \leq \mathrm{V}_{\mathrm{CC}} \leq 40 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\) [Note 2], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline \begin{tabular}{l}
Sense Trip Voltage (Referenced Voltage)
\[
\begin{array}{r}
V_{C C}=15 \mathrm{~V} \\
T_{A}=25^{\circ} \mathrm{C}
\end{array}
\] \\
\(\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) (Note 2)
\end{tabular} & \(\mathrm{V}_{\text {Sense }}\) & \[
\begin{gathered}
2.4 \\
2.33
\end{gathered}
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{gathered}
2.6 \\
2.63
\end{gathered}
\] & Vdc \\
\hline Line Regulation of \(\mathrm{V}_{\text {Sense }}\)
\[
4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 40 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}
\] & Regline & - & 7.0 & 15 & mV \\
\hline Power Supply Voltage Operating Range & \(\mathrm{V}_{\mathrm{CC}}\) & 4.5 & - & 40 & Vdc \\
\hline ```
Power Supply Current
 VCC}=40\textrm{V};\mp@subsup{\textrm{T}}{A}{}=2\mp@subsup{5}{}{\circ}\textrm{C};\mathrm{ ; No Output Loads
 O.V. Sense (Pin 3) =0 V;
 U.V. Sense (Pin 4) = VCC
``` & ICC(off) & - & 8.5 & 10 & mA \\
\hline \begin{tabular}{l}
O.V. Sense \((\) Pin 3\()=V_{C C}\); \\
U.V. Sense \((\operatorname{Pin} 4)=0 \mathrm{~V}\)
\end{tabular} & ICC(on) & - & 16.5 & 19 & mA \\
\hline
\end{tabular}

\section*{INPUT SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current, O.V. and U.V. Sense & IB & - & 1.0 & 2.0 & \(\mu \mathrm{A}\) \\
\hline Hysteresis Activation Voltage, U.V. Sense
\[
\begin{aligned}
\mathrm{V}_{\mathrm{CC}} & =15 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \\
I_{H} & =10 \% \\
I_{H} & =90 \%
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{H} \text { (act) }}\) & - & \[
\begin{aligned}
& 0.6 \\
& 0.8
\end{aligned}
\] & - & V \\
\hline Hysteresis Current, U.V. Sense
\[
V_{C C}=15 \mathrm{~V} ; \mathrm{T}_{A}=25^{\circ} \mathrm{C} ; \text { U.V. Sense }(\operatorname{Pin} 4)=2.5 \mathrm{~V}
\] & \({ }^{1} \mathrm{H}\) & 9.0 & 12.5 & 16 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Delay Pin Voltage (IDLY = } 0 \mathrm{~mA} \text { ) } \\
& \text { Low State } \\
& \text { High State }
\end{aligned}
\] & \begin{tabular}{l}
\(V_{O L}\) (DLY) \\
VOH (DLY)
\end{tabular} & \[
v_{\mathrm{CC}}^{-0.5}
\] & \[
\begin{gathered}
0.2 \\
\mathrm{v}_{\mathrm{CC}}-0.15
\end{gathered}
\] & 0.5 & V \\
\hline Delay Pin Source Current
\[
V_{C C}=15 \mathrm{~V} ; \mathrm{V}_{D L Y}=0 \mathrm{~V}
\] & IDLY(source) & 140 & 200 & 260 & \(\mu \mathrm{A}\) \\
\hline Delay Pin Sink Current \(V_{C C}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{DLY}}=2.5 \mathrm{~V}\) & IDLY(sink) & 1.8 & 3.0 & - & mA \\
\hline
\end{tabular}

OUTPUT SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Drive Output Peak Current ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & IDRV(peak) & 200 & 300 & - & mA \\
\hline Drive Output Voltage
\[
\text { IDRV }=100 \mathrm{~mA} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{\mathrm{OH}}(\mathrm{DRV})\) & \(V_{C C}-2.5\) & \(\mathrm{v}_{\mathrm{Cc}}-2.0\) & - & V \\
\hline Drive Output Leakage Current
\[
V_{D R V}=0 \mathrm{~V}
\] & IDRV(leak) & - & 15 & 200 & nA \\
\hline Drive Output Current Slew Rate ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & di/dt & - & 2.0 & - & \(\mathrm{A} / \mathrm{\mu s}\) \\
\hline Drive Output \(V_{C C}\) Transient Rejection \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) to 15 V at \(\mathrm{dV} / \mathrm{dt}=200 \mathrm{~V} \mu \mathrm{~s}\); O.V. Sense (Pin 3) \(=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & IDRV(trans) & - & 1.0 & - & \[
\begin{gathered}
\mathrm{mA} \\
\text { (Peak) }
\end{gathered}
\] \\
\hline Indicator Output Saturation Voltage
\[
\operatorname{IND}=30 \mathrm{~mA} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] & V IND (sat) & - & 560 & 800 & mV \\
\hline Indicator Output Leakage Current
\[
\mathrm{V}_{\mathrm{OH}(\mathrm{IND})}=40 \mathrm{~V}
\] & IIND(leak) & - & 25 & 200 & nA \\
\hline Output Comparator Threshold Voltage (Note 3) & \(\mathrm{V}_{\mathrm{th}(\mathrm{OC})}\) & 2.33 & 2.5 & 2.63 & V \\
\hline \begin{tabular}{l}
Propagation Delay Time
\[
\left(V_{C C}=15 \mathrm{~V} ; T_{A}=25^{\circ} \mathrm{C}\right)
\] \\
Input to Drive Output or Indicator Output 100 mV Overdrive, \(\mathrm{C}_{\mathrm{DLY}}=0 \mu \mathrm{~F}\)
\end{tabular} & tPLH(IN/OUT) & - & 1.7 & - & \(\mu \mathrm{s}\) \\
\hline Input to Delay 2.5 V Overdrive ( 0 V to 5.0 V Step) & tPLH(IN//DLY) & - & 700 & - & ns \\
\hline
\end{tabular}

NOTES: 2. Tow to \(T_{\text {high }}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)
3. \(\mathrm{Th} \mathrm{V}_{\mathrm{th}}(\mathrm{OC})\) limits are approximately the \(\mathrm{V}_{\text {Sense }}\) limits over the applicable temperature range.

Figure 1. Hysteresis Current versus Hysteresis Activation Voltage


Figure 3. Hysteresis Current versus Temperature


Figure 5. Output Delay Time versus Delay Capacitance


Figure 2. Hysteresis Activation Voltage versus Temperature


Figure 4. Sense Trip Voltage Change versus Temperature


Figure 6. Delay Pin Source Current versus Temperature


Figure 7. Drive Output Saturation Voltage


Figure 9. Drive Output Saturation Voltage


Figure 8. Indicator Output Saturation Voltage versus Output Sink Current


Figure 10. Power Supply Current versus Voltage


\section*{APPLICATIONS INFORMATION}

Figure 11. Overvoltage Protection and Undervoltage Fault Indication with Programmable Delay

3

U.V. Hysteresis \(=I_{H}\left(\frac{R 1 B R 2 B}{R 1 B+R 2 B}\right), V_{O(\text { trip })}-2.5 V\left(1+\frac{R 1 A}{R 2 A}\right)\)
\(t_{D L Y}=12500 C_{D L Y}\)

Figure 13. Overvoltage Audio Alarm Circuit


Figure 12. Overvoltage Protection of 5.0 V Supply with Line Loss Detector


Figure 14. Programmable Frequency Switch


\section*{MC3425}

\section*{CIRCUIT DESCRIPTION}

The MC3425 is a power supply supervisory circuit containing all the necessary functions required to monitor over and undervoltage fault conditions. The block diagram is shown below in Figure 15. The Overvoltage (O.V.) and Undervoltage (U.V.) Input Comparators are both referenced to an internal 2.5 V regulator. The U.V. Input Comparator has a feedback activated \(12.5 \mu \mathrm{~A}\) current sink \(\left(\mathrm{IH}_{\mathrm{H}}\right)\) which is used for programming the input hysteresis voltage \(\left(\mathrm{V}_{\mathrm{H}}\right)\). The source resistance feeding this input \(\left(\mathrm{R}_{\mathrm{H}}\right)\) determines the amount of hysteresis voltage by \(\mathrm{V}_{\mathrm{H}}=\mathrm{I}_{\mathrm{H}} \mathrm{R}_{\mathrm{H}}\) \(=12.5 \times 10^{-6} R_{H}\).

Separate Delay pins (O.V. DLY, U.V. DLY.) are provided for each channel to independently delay the Drive and Indicator outputs, thus providing greater input noise immunity. The two Delay pins are essentially the outputs of the respective input comparators, and provide a constant current source, IDLY(source), of typically \(200 \mu \mathrm{~A}\) when the noninverting input voltage is greater than the inverting input level. A capacitor connected from these Delay pins to ground, will establish a predictable delay time (tDLY) for the Drive and Indicator outputs. The Delay pins are internally connected to the noninverting inputs of the O.V. and U.V. Output Comparators, which are referenced to the internal 2.5 V regulator. Therefore, delay time (tDLY) is based on the constant current
source, IDLY(source), charging the external delay capacitor (CDLY) to 2.5 V .
\[
t_{D L Y}=\frac{V_{\text {ref }} C_{D L Y}}{I_{D L Y(\text { source })}}=\frac{2.5 C_{D L Y}}{200 \mu \mathrm{~A}}=12500 \mathrm{C}_{\mathrm{DLY}}
\]

Figure 5 provides CDLY values for a wide range of time delays. The Delay pins are pulled low when the respective input comparator's noninverting input is less than the inverting input. The sink current, IDLY(sink), capability of the Delay pins is \(\geq 1.8 \mathrm{~mA}\) and is much greater than the typical \(200 \mu \mathrm{~A}\) source current, thus enabling a relatively fast delay capacitor discharge time.

The Overvoltage Drive Output is a current-limited emitter-follower capable of sourcing 300 mA at a turn-on slew rate at \(2.0 \mathrm{~A} / \mu \mathrm{s}\), ideal for driving "Crowbar" SCR's. The Undervoltage Indicator Output is an open-collector, NPN transistor, capable of sinking 30 mA to provide sufficient drive for LED's, small relays or shut-down circuitry. These current capabilities apply to both channels operating simultaneously, providing device power dissipation limits are not exceeded.

The MC3425 has an internal 2.5 V bandgap reference regulator with an accuracy of \(\pm 4.0 \%\) for the basic device.

Figure 15. Representative Block Diagram


\section*{CROWBAR SCR CONSIDERATIONS}

Referring to Figure 16, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, \(\mathrm{C}_{\text {out }}\). This capacitance consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 16A, the supply's input filter capacitors. This surge current is illustrated in Figure 17, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or \(\mathrm{I}^{2 \mathrm{t}}\). The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

\section*{1. di/dt}

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode
current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities - depending on the severity of the occasion.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving ( 3 to 5 times \(\mathrm{I}_{\mathrm{GT}}\) ) the SCR gate with a fast < 1.0 \(\mu\) s rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 \(\mathrm{A}(\mathrm{RMS})\) rating might be \(200 \mathrm{~A} / \mu \mathrm{s}\), assuming a gate current of five times IGT and \(<1.0 \mu \mathrm{~s}\) rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 18. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt.

Figure 16. Typical Crowbar Circuit Configurations
(A) SCR Across Input of Regulator

(B) SCR Across Output of Regulator


Figure 17. Crowbar SCR Surge Current Waveform


\section*{2. Surge Current}

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance - see Figure 18) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the DC power supply.

Figure 18. Circuit Elements Affecting SCR Surge \& di/dt


\section*{UNDERVOLTAGE SENSING}

An undervoltage sense circuit with hysteresis may be designed, as shown in Figure 11, using the following equations:
\[
\begin{aligned}
R 1 & =\frac{V_{C C U}-V_{C C 1}}{12.5 \mu \mathrm{~A}} \\
R 2 & =\frac{2.5 R 1}{V_{C C 1}-2.5}
\end{aligned}
\]
where: \(V_{C C U}\) is the designed upper trip point (output indicator goes off)
\(\mathrm{V}_{\mathrm{CC}} 1\) is the lower trip point (output indicator goes on)

\section*{A WORD ABOUT FUSING}

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 16A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!

In order to protect the SCR, the fuse would have to possess an \(1^{2} t\) rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 16B.

\section*{CROWBAR SCR SELECTION GUIDE}

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & IRMS & ITSM \\
\hline MCR310 Series & 10 A & 100 A \\
MCR16 Series & 16 A & 150 A \\
MCR25 Series & 25 A & 300 A \\
2N6501 Series & 25 A & 300 A \\
MCR69 Series & 25 A & 750 A \\
MCR264 Series & 40 A & 400 A \\
MCR265 Series & 55 A & 550 A \\
\hline
\end{tabular}

\section*{MC7800 Series}

\section*{Three-Terminal Positive Voltage Regulators}

These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 A. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.
- Output Current in Excess of 1.0 A
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Voltage Offered in \(2 \%\) and \(4 \%\) Tolerance
- Available in Surface Mount D²PAK and Standard 3-Lead Transistor Packages

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE
\begin{tabular}{|c|c|c|c|}
\hline MC7805 & 5.0 V & MC7812 & 12 V \\
MC7806 & 6.0 V & MC7815 & 15 V \\
MC7808 & 8.0 V & MC7818 & 18 V \\
MC7809 & 9.0 V & MC7824 & 24 V \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & Output Voltage Tolerance & Operating Temperature Range & Package \\
\hline MC78XXACT & \multirow{2}{*}{2\%} & \multirow{4}{*}{\(\mathrm{T}_{J}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & Insertion Mount \\
\hline MC78XXACD2T & & & Surface Mount \\
\hline MC78XXCT & \multirow{4}{*}{4\%} & & Insertion Mount \\
\hline MC78XXCD2T & & & Surface Mount \\
\hline MC78XXBT & & \multirow[b]{2}{*}{\(T J=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & Insertion Mount \\
\hline MC78XXBD2T & & & Surface Mount \\
\hline
\end{tabular}
\(X X\) indicates nominal voltage.

\section*{THREE-TERMINAL \\ POSITIVE FIXED VOLTAGE REGULATORS}

SEMICONDUCTOR TECHNICAL DATA

T SUFFIX PLASTIC PACKAGE
CASE 221A

CASE 221A

Heatsink surface
\[
\text { connected to Pin } 2 .
\] connected to Pin 2.

D2T SUFFIX PLASTIC PACKAGE CASE 936 (D2PAK)


Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.


\section*{STANDARD APPLICATION}


A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

XX, These two digits of the type number indicate nominal voltage.
\({ }^{*} \mathrm{C}_{\mathrm{in}}\) is required if regulator is located an appreciable distance from power supply filter.
** \(\mathrm{C}_{\mathrm{O}}\) is not needed for stability; however, it does improve transient response. Values of less than \(0.1 \mu \mathrm{~F}\) could cause instability.

MC7800 Series
MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \[
\begin{aligned}
\text { Input Voltage } & (5.0-18 \mathrm{~V}) \\
& (24 \mathrm{~V})
\end{aligned}
\] & \(V_{1}\) & \[
\begin{aligned}
& 35 \\
& 40
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation \\
Case 221A
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 936 (D2PAK)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \\
\(R_{\theta J A}\) \\
\(R_{\theta J C}\) \\
\(P_{D}\) \\
\(R_{\theta J A}\) \\
\(R_{\theta J A}\)
\end{tabular} & \begin{tabular}{l}
Internally Limited \\
65 \\
5.0 \\
Internally Limited \\
See Figure 13 5.0
\end{tabular} & \[
\begin{gathered}
W \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Storage Junction Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Representative Schematic Diagram


This device contains 22 active transistors.

\section*{MC7800 Series}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7805B} & \multicolumn{3}{|c|}{MC7805C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 4.8 & 5.0 & 5.2 & 4.8 & 5.0 & 5.2 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& (5.0 \mathrm{~mA} \leq \mathrm{l} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}) \\
& 7.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc} \\
& 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}
\end{aligned}
\] & Vo & \[
4.75
\] & \[
5.0
\] & \[
5.25
\] & 4.75
- & 5.0
- & 5.25
- & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 7.0 \mathrm{Vdc} \leq \mathrm{Vin}^{\leq 25} \mathrm{Vdc} \\
& 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 12 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 5.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50
\end{gathered}
\] & - & \[
\begin{aligned}
& 5.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{gathered}
1.3 \\
0.15
\end{gathered}
\] & \[
\begin{gathered}
100 \\
50
\end{gathered}
\] & & \[
\begin{gathered}
1.3 \\
0.15
\end{gathered}
\] & \[
\begin{aligned}
& 100 \\
& 50
\end{aligned}
\] & mV \\
\hline Quiescent Current ( \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) ) & IB & - & 3.2 & 8.0 & - & 3.2 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 7.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\
& 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leq 10 \leq 1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & - & - & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & - & - & \[
\begin{gathered}
1.3 \\
- \\
0.5
\end{gathered}
\] & mA \\
\hline Ripple Rejection
\[
8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & - & 68 & - & - & 68 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{l}^{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) )
\(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 0.9 & - & - & 0.9 & - & \(\mathrm{m} \Omega\) \\
\hline \[
\begin{aligned}
& \text { Short Circuit Current Limit }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\end{aligned}
\] & Isc & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCVO & - & -0.3 & - & - & -0.3 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1 ], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7805AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 4.9 & 5.0 & 5.1 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{PD}_{\mathrm{D}} \leq 15 \mathrm{~W}\right) \\
& 7.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 20 \mathrm{Vdc}
\end{aligned}
\] & Vo & 4.8 & 5.0 & 5.2 & Vdc \\
\hline ```
Line Regulation (Note 2)
    \(7.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 25 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=500 \mathrm{~mA}\)
    \(8.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 12 \mathrm{Vdc}\)
    \(8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)
    \(7.3 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)
``` & Regline &  & \[
\begin{aligned}
& 5.0 \\
& 1.3 \\
& 1.3 \\
& 4.5
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& 25 \\
& 50 \\
& \hline
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note } 2 \text {) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{O} \leq 1.5 \mathrm{~A}, \mathrm{TJ}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{O} \leq 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{gathered}
1.3 \\
0.8 \\
0.15
\end{gathered}
\] & \[
\begin{gathered}
100 \\
100 \\
50
\end{gathered}
\] & mV \\
\hline Quiescent Current
\[
\left(T_{J}=25^{\circ} \mathrm{C}\right)
\] & \({ }^{\prime} \mathrm{B}\) & - & \[
3.2
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{O}=500 \mathrm{~mA} \\
& 7.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline
\end{tabular}

NOTES: 1. Tlow \(=0^{\circ} \mathrm{C}\) for MC78XXAC, \(\mathrm{C} \quad T_{\text {high }}=+125^{\circ} \mathrm{C}\) for MC78XXAC \(, \mathrm{C}, \mathrm{B}\) \(=-40^{\circ} \mathrm{C}\) for MC78XXB
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7805AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Ripple Rejection
\[
8.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{lO}=500 \mathrm{~mA}
\] & RR & - & 68 & - & dB \\
\hline Dropout Voltage (\(\mathrm{IO}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)
\[
10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & ro & - & 0.9 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \(\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}\) & Isc & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCVO & - & -0.3 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7806B} & \multicolumn{3}{|c|}{MC7806C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 5.75 & 6.0 & 6.25 & 5.75 & 6.0 & 6.25 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \quad\left(5.0 \mathrm{~mA} \leq \mathrm{IO}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}\right) \\
& 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 21 \mathrm{Vdc} \\
& 9.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 21 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
5.7
\] & \[
6 .
\] & - 6.3 & 5.7
- & 6.0
- & & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& \text { 8.0 } \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\
& 9.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 13 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 5.5 \\
& 1.4
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 60
\end{aligned}
\] & - & \[
\begin{aligned}
& 5.5 \\
& 1.4
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 60
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 1.3 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 60
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.3 \\
& 0.2
\end{aligned}
\] & \[
\begin{gathered}
120 \\
60
\end{gathered}
\] & mV \\
\hline Quiescent Current (\(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\)) & IB & - & 3.3 & 8.0 & - & 3.3 & 8.0 & mA \\
\hline \[
\begin{gathered}
\text { Quiescent Current Change } \\
8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\
9.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 1.0 \mathrm{~A}
\end{gathered}
\] & \({ }^{\Delta} \|_{B}\) & - & - & \[
\begin{gathered}
- \\
1.3 \\
0.5
\end{gathered}
\] & - & - & \[
\begin{gathered}
1.3 \\
- \\
0.5
\end{gathered}
\] & mA \\
\hline Ripple Rejection
\[
9.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 19 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & - & 65 & - & - & 65 & - & dB \\
\hline Dropout Voltage (\(\mathrm{l}^{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{A}=25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 0.9 & - & - & 0.9 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & Isc & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{J}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCVO & - & -0.3 & - & - & -0.3 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. \(T_{\text {low }}=0^{\circ} \mathrm{C}\) for MC78XXAC, C \(\quad T_{\text {high }}=+125^{\circ} \mathrm{C}\) for MC78XXAC, C, B
\(=-40^{\circ} \mathrm{C}\) for MC78XXB
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC7800 Series}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7806AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 5.88 & 6.0 & 6.12 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}\right) \\
& 8.6 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 21 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 5.76 & 6.0 & 6.24 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note 2) } \\
& 8.6 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{IO}=500 \mathrm{~mA} \\
& 9.0 \mathrm{Vdc} \leq \mathrm{Vin}_{\mathrm{in}} \leq 13 \mathrm{Vdc} \\
& 9.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 13 \mathrm{Vdc}, \mathrm{TJ}^{2}=25^{\circ} \mathrm{C} \\
& 8.3 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 21 \mathrm{Vdc}, \mathrm{TJ}=25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 5.0 \\
& 1.4 \\
& 1.4 \\
& 4.5
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 60 \\
& 30 \\
& 60 \\
& \hline
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note } 2 \text {) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}, \mathrm{TJ}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 1.3 \\
& 0.9 \\
& 0.2
\end{aligned}
\] & \[
\begin{gathered}
100 \\
100 \\
50
\end{gathered}
\] & mV \\
\hline Quiescent Current
\[
\mathrm{T}_{J}=25^{\circ} \mathrm{C}
\] & \({ }^{\prime} \mathrm{B}\) & - & \[
3.3
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 9.0 \mathrm{Vdc} \leq \mathrm{V} \text { in } \leq 25 \mathrm{Vdc}, \mathrm{I}=500 \mathrm{~mA} \\
& 8.6 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 21 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta}{ }_{B}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
9.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 19 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{IO}=500 \mathrm{~mA}
\] & RR & - & 65 & - & dB \\
\hline Dropout Voltage (\(\mathrm{lO}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & ro & - & 0.9 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \(\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}\) & ISC & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCVO & - & -0.3 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7808B} & \multicolumn{3}{|c|}{MC7808C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 7.7 & 8.0 & 8.3 & 7.7 & 8.0 & 8.3 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \qquad\left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}\right) \\
& 10.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 23 \mathrm{Vdc} \\
& 11.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 23 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
7.6
\] & 8.0 & & & & 8.4
- & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text {, (Note 2) } \\
& 10.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\
& 11 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 17 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 6.0 \\
& 1.7
\end{aligned}
\] & \[
\begin{aligned}
& 160 \\
& 80
\end{aligned}
\] & & \[
\begin{aligned}
& 6.0 \\
& 1.7
\end{aligned}
\] & \[
\begin{gathered}
160 \\
80
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{IO}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 1.4 \\
& .22
\end{aligned}
\] & \[
\begin{aligned}
& 160 \\
& 80
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.4 \\
& .22
\end{aligned}
\] & \[
\begin{gathered}
160 \\
80
\end{gathered}
\] & mV \\
\hline Quiescent Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & IB & - & 3.3 & 8.0 & - & 3.3 & 8.0 & mA \\
\hline
\end{tabular}

NOTES: 1. \(T_{\text {low }}=0^{\circ} \mathrm{C}\) for MC78XXAC, C \(\quad T_{\text {high }}=+125^{\circ} \mathrm{C}\) for MC78XXAC, C, B
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC7800 Series}

ELECTRICAL CHARACTERISTICS (continued) \(\left(V_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{J}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7808B} & \multicolumn{3}{|c|}{MC7808C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{gathered}
\text { Quiescent Current Change } \\
10.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\
11.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A}
\end{gathered}
\] & \({ }^{\Delta l_{B}}\) & - & - & \[
\begin{gathered}
-\overline{1.0} \\
0.5
\end{gathered}
\] & - & - & \[
\begin{gathered}
1.0 \\
- \\
0.5
\end{gathered}
\] & mA \\
\hline Ripple Rejection
\[
11.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & - & 62 & - & - & 62 & - & dB \\
\hline Dropout Voltage (\(\mathrm{l} \mathrm{O}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage (} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {) } \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 0.9 & - & - & 0.9 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) \(\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}\) & Isc & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{\mathrm{O}}\) & - & -0.4 & - & - & -0.4 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7808AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 7.84 & 8.0 & 8.16 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \qquad\left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}\right) \\
& 10.6 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 23 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 7.7 & 8.0 & 8.3 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note } 2 \text {) } \\
& 10.6 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 11 \mathrm{Vdc} \leq \mathrm{Vin} \leq 17 \mathrm{Vdc} \\
& 11 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 17 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 10.4 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 23 \mathrm{Vdc}, \mathrm{TJ}^{2}=25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 6.0 \\
& 1.7 \\
& 1.7 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80 \\
& 40 \\
& 80
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I} \leq 1.5 \mathrm{~A}, \mathrm{~T} \\
& 5.05^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I} \leq 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & & \[
\begin{aligned}
& 1.4 \\
& 1.0 \\
& .22
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& 50
\end{aligned}
\] & mV \\
\hline Quiescent Current
\[
\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}
\] & \({ }^{\prime} \mathrm{B}\) & - & \[
3.3
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 11 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 10.6 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{I}_{\mathrm{B}}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
11.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 21.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{lO}=500 \mathrm{~mA}
\] & RR & - & 62 & - & dB \\
\hline Dropout Voltage (\(\left.\mathrm{I}^{(}\right)=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{1}-\mathrm{v}_{0}\) & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \qquad 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance f \(=1.0 \mathrm{kHz}\) & ro & - & 0.9 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\] & IsC & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCV \({ }_{\text {O }}\) & - & -0.4 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. \(\begin{aligned} & T_{\text {low }}=0^{\circ} \mathrm{C} \text { for MC78XXAC, } \mathrm{C} \quad \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C} \text { for MC78XXAC, C, B } \\ &=-40^{\circ} \mathrm{C} \text { for MC78XXB }\end{aligned}\)
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=15 \mathrm{~V}, 10=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7809CT} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & Vo & 8.65 & 9.0 & 9.35 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& (5.0 \mathrm{~mA} \leq \mathrm{I} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}) \\
& 11.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 24 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 8.55 & 9.0 & 9.45 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } \mathrm{T}_{J}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 11.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 26 \mathrm{Vdc} \\
& 11.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 17 \mathrm{Vdc}
\end{aligned}
\] & Regline & & \[
\begin{aligned}
& 6.2 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 25
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 1.5 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 25
\end{aligned}
\] & mV \\
\hline Quiescent Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & IB & - & 3.4 & 8.0 & mA \\
\hline Quiescent Current Change \(11.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 26 \mathrm{Vdc}\) \(5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}\) & \({ }^{\Delta}{ }^{\prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
\(11.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 21.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}\)
\end{tabular} & RR & - & 61 & - & dB \\
\hline Dropout Voltage (\(\mathrm{I}^{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{1}-\mathrm{v}_{0}\) & - & 2.0 & - & Vdc \\
\hline \[
\text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\]
\[
10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 1.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & Isc & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCVO & - & -0.5 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{J}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7812B} & \multicolumn{3}{|c|}{MC7812C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 11.5 & 12 & 12.5 & 11.5 & 12 & 12.5 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}\right) \\
& 14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc} \\
& 15.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\stackrel{-}{11.4}
\] & \[
\overline{12}
\] & \[
\stackrel{-}{12.6}
\] & 11.4
- & & & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\
& 16 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 22 \mathrm{Vdc}
\end{aligned}
\] & Regline & & \[
\begin{aligned}
& 7.5 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & & \[
\begin{aligned}
& 7.5 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq 1 \mathrm{O} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 1.6 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.6 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & mV \\
\hline Quiescent Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{I}_{\mathrm{B}}\) & - & 3.4 & 8.0 & - & 3.4 & 8.0 & mA \\
\hline \[
\begin{gathered}
\text { Quiescent Current Change } \\
14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\
15 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 1.0 \mathrm{~A}
\end{gathered}
\] & \({ }^{\Delta} I_{B}\) & - & - & \[
\begin{gathered}
- \\
1.0 \\
0.5
\end{gathered}
\] & - & - & \[
\begin{gathered}
1.0 \\
- \\
0.5
\end{gathered}
\] & mA \\
\hline Ripple Rejection
\[
15 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & - & 60 & - & - & 60 & - & dB \\
\hline Dropout Voltage (\(\mathrm{lO}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{1}-\mathrm{v}_{0}\) & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline
\end{tabular}

NOTES: 1. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC78XXAC, C \(\quad T_{\text {high }}=+125^{\circ} \mathrm{C}\) for MC78XXAC, C, B
\(=-40^{\circ} \mathrm{C}\) for MC78XXB
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC7800 Series}

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\text {in }}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7812B} & \multicolumn{3}{|c|}{MC7812C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 1.1 & - & - & 1.1 & - & \(\mathrm{m} \Omega\) \\
\hline \[
\begin{aligned}
& \text { Short Circuit Current Limit }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\end{aligned}
\] & Isc & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{\mathrm{O}}\) & - & -0.8 & - & - & -0.8 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7812AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 11.75 & 12 & 12.25 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}\right) \\
& 14.8 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 11.5 & 12 & 12.5 & Vdc \\
\hline \begin{tabular}{l}
Line Regulation (Note 2) \\
\(14.8 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{I}=500 \mathrm{~mA}\) \\
\(16 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 22 \mathrm{Vdc}\) \\
\(16 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 22 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) \\
\(14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)
\end{tabular} & Regline & - & \[
\begin{aligned}
& 7.5 \\
& 2.2 \\
& 2.2 \\
& 6.0
\end{aligned}
\] & \[
\begin{gathered}
120 \\
120 \\
60 \\
120
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 1.6 \\
& 1.2 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& 50
\end{aligned}
\] & mV \\
\hline Quiescent Current
\[
\mathrm{T}_{J}=25^{\circ} \mathrm{C}
\] & IB & - & \[
3.4
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 15 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 14.8 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\prime \prime}{ }^{\prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
15 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{l}=500 \mathrm{~mA}
\] & RR & - & 60 & - & dB \\
\hline Dropout Voltage (\(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(V_{1}-V_{0}\) & - & 2.0 & - & Vdc \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & ro & - & 1.1 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \(\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}\) & ISC & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCVO & - & -0.8 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. \(T_{\text {low }}=0^{\circ} \mathrm{C}\) for MC78XXAC, C \(\quad T_{\text {high }}=+125^{\circ} \mathrm{C}\) for MC78XXAC, C, B
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC7800 Series}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7815B} & \multicolumn{3}{|c|}{MC7815C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 14.4 & 15 & 15.6 & 14.4 & 15 & 15.6 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \quad\left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}\right) \\
& 17.5 \mathrm{Vdc} \mathrm{~V}_{\text {in }} \leq 30 \mathrm{Vdc} \\
& 18.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 30 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\overline{-}
\] & \[
\overline{15}
\] & \[
\stackrel{-}{15.75}
\] & 14.25
- & 15
- & 15.75
- & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 17.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\
& 20 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 26 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 8.5 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & - & \[
\begin{aligned}
& 8.5 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 1.8 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.8 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & mV \\
\hline Quiescent Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & IB & - & 3.5 & 8.0 & - & 3.5 & 8.0 & mA \\
\hline \[
\begin{gathered}
\text { Quiescent Current Change } \\
17.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\
18.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}
\end{gathered}
\] & \({ }^{\Delta}{ }^{\prime} \mathrm{B}\) & - & - & \[
\begin{gathered}
- \\
1.0 \\
0.5
\end{gathered}
\] & - & - & \[
\begin{gathered}
1.0 \\
- \\
0.5
\end{gathered}
\] & mA \\
\hline Ripple Rejection
\[
18.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 28.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & - & 58 & - & - & 58 & - & dB \\
\hline Dropout Voltage (\(\mathrm{l} \mathrm{O}=1.0 \mathrm{~A}, \mathrm{TJ}^{2}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage (} T_{A}=25^{\circ} \mathrm{C} \text {) } \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} N_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 1.2 & - & - & 1.2 & - & \(\mathrm{m} \Omega\) \\
\hline \[
\begin{aligned}
& \text { Short Circuit Current Limit }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\end{aligned}
\] & Isc & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{\mathrm{O}}\) & - & -1.0 & - & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7815AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 14.7 & 15 & 15.3 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD}_{\mathrm{D}} \leq 15 \mathrm{~W}\right) \\
& 17.9 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 30 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 14.4 & 15 & 15.6 & Vdc \\
\hline \begin{tabular}{l}
Line Regulation (Note 2) \\
\(17.9 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) \\
\(20 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 26 \mathrm{Vdc}\) \\
\(20 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 26 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) \\
\(17.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)
\end{tabular} & Regline & \[
\begin{aligned}
& \text { - } \\
& \text { - }
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 3.0 \\
& 3.0 \\
& 7.0
\end{aligned}
\] & \[
\begin{gathered}
150 \\
150 \\
75 \\
150
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 1.8 \\
& 1.5 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& 50
\end{aligned}
\] & mV \\
\hline Quiescent Current
\[
\mathrm{T}_{J}=25^{\circ} \mathrm{C}
\] & IB & - & \[
3.5
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 17.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 17.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}
\end{aligned}
\] & \(\Delta^{\prime \prime} \mathrm{B}\) & - & - & 0.8
0.8
0.5 & mA \\
\hline
\end{tabular}

NOTES: 1. \(T_{\text {low }}=0^{\circ} \mathrm{C}\) for MC78XXAC, C \(\quad T_{\text {high }}=+125^{\circ} \mathrm{C}\) for MC78XXAC, C, B
\(=-40^{\circ} \mathrm{C}\) for MC 78 XXB
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\text {in }}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7815AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline \begin{tabular}{l}
Ripple Rejection \\
\(18.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 28.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA}\)
\end{tabular} & RR & - & 58 & - & dB \\
\hline Dropout Voltage (\(\mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{1}-\mathrm{v}_{0}\) & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 1.2 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \(V_{\text {in }}=35 \mathrm{Vdc}\) & Isc & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{J}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{\mathrm{O}}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{J}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7818B} & \multicolumn{3}{|c|}{MC7818C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 17.3 & 18 & 18.7 & 17.3 & 18 & 18.7 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}\right) \\
& 21 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc} \\
& 22 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
17.1
\] & \[
18
\] & \[
\overline{-}
\] & 17.1
- & & 18.9
- & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 21 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc} \\
& 24 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 9.5 \\
& 3.2
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180
\end{aligned}
\] & - & \[
\begin{aligned}
& 9.5 \\
& 3.2
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 2.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.0 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180
\end{aligned}
\] & mV \\
\hline Quiescent Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \({ }^{\prime} \mathrm{B}\) & - & 3.5 & 8.0 & - & 3.5 & 8.0 & mA \\
\hline \[
\begin{gathered}
\hline \text { Quiescent Current Change } \\
21 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc} \\
22 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leq \mathrm{I} \leq 1.0 \mathrm{~A}
\end{gathered}
\] & \({ }^{\Delta}{ }^{\prime} \mathrm{B}\) & - & - & \[
\begin{gathered}
-\overline{1.0} \\
0.5
\end{gathered}
\] & - & - & \[
\begin{gathered}
1.0 \\
- \\
0.5
\end{gathered}
\] & mA \\
\hline Ripple Rejection
\[
22 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & - & 57 & - & - & 57 & - & dB \\
\hline Dropout Voltage (\(\mathrm{l} \mathrm{O}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\text {il }}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{A}=25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 1.3 & - & - & 1.3 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\] & Isc & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{\mathrm{O}}\) & - & -1.5 & - & - & -1.5 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. \(\begin{aligned} \text { low } & =0^{\circ} \mathrm{C} \text { for MC78XXAC, C } \quad T_{\text {high }}=+125^{\circ} \mathrm{C} \text { for MC78XXAC, C, B } \\ & =-40^{\circ} \mathrm{C} \text { for MC78XXB }\end{aligned}\)

\footnotetext{
\(=-40^{\circ} \mathrm{C}\) for MC78XXB
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
}

\section*{MC7800 Series}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7818AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 17.64 & 18 & 18.36 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}\right) \\
& 21 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & 17.3 & 18 & 18.7 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note 2) } \\
& 21 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 24 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \\
& 24 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 20.6 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc}, \mathrm{TJ}^{2}=25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & -
-
- & \[
\begin{aligned}
& 9.5 \\
& 3.2 \\
& 3.2 \\
& 8.0
\end{aligned}
\] & \[
\begin{gathered}
180 \\
180 \\
90 \\
180
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 1.8 \\
& 1.5
\end{aligned}
\] & \[
\begin{gathered}
100 \\
100 \\
50
\end{gathered}
\] & mV \\
\hline Quiescent Current
\[
\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}
\] & \(\mathrm{I}_{\mathrm{B}}\) & - & \[
3.5
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 21 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc}, \mathrm{IO}=500 \mathrm{~mA} \\
& 21 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 33 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{IO}_{\mathrm{O}} \leq 1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
\(22 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 32 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{IO}=500 \mathrm{~mA}\)
\end{tabular} & RR & - & 57 & - & dB \\
\hline Dropout Voltage (\(\mathrm{l} \mathrm{O}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 1.3 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\] & ISC & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{\mathrm{O}}\) & - & -1.5 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7824B} & \multicolumn{3}{|c|}{MC7824C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 23 & 24 & 25 & 23 & 24 & 25 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& (5.0 \mathrm{~mA} \leq \mathrm{l} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}) \\
& 27 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 38 \mathrm{Vdc} \\
& 28 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
22.8
\] & 24 & \[
25.2
\] & 22.8 & & & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 27 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 36 \mathrm{Vdc}
\end{aligned}
\] & Regline & & \[
\begin{gathered}
11.5 \\
3.8
\end{gathered}
\] & \[
\begin{aligned}
& 480 \\
& 240
\end{aligned}
\] & - & \[
\begin{aligned}
& 11.5 \\
& 3.8
\end{aligned}
\] & \[
\begin{aligned}
& 480 \\
& 240
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 2.1 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& 480 \\
& 240
\end{aligned}
\] & & \[
\begin{aligned}
& 2.1 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& 480 \\
& 240
\end{aligned}
\] & mV \\
\hline Quiescent Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & IB & - & 3.6 & 8.0 & - & 3.6 & 8.0 & mA \\
\hline
\end{tabular}

NOTES: \(1 . T_{\text {low }}=0^{\circ} \mathrm{C}\) for MC78XXAC, \(\mathrm{C} \quad \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}\) for MC78XXAC, \(\mathrm{C}, \mathrm{B}\)
\(=-40^{\circ} \mathrm{C}\) for MC78XXB
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\text {in }}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{J}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7824B} & \multicolumn{3}{|c|}{MC7824C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{gathered}
\text { Quiescent Current Change } \\
27 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc} \\
28 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leq 10 \leq 1.0 \mathrm{~A}
\end{gathered}
\] & \({ }^{\Delta I_{B}}\) & - & - & \[
\begin{gathered}
- \\
1.0 \\
0.5
\end{gathered}
\] & - & - & \[
\begin{gathered}
1.0 \\
- \\
0.5
\end{gathered}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
\(28 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}\)
\end{tabular} & RR & - & 54 & - & - & 54 & - & dB \\
\hline Dropout Voltage (\(\mathrm{IO}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(V_{1}-V_{0}\) & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 1.4 & - & - & 1.4 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & ISC & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCVO & - & -2.0 & - & - & -2.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7824AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{\mathrm{O}}\) & 23.5 & 24 & 24.5 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \quad\left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{PD} \leq 15 \mathrm{~W}\right) \\
& 27.3 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 23 & 24 & 25 & Vdc \\
\hline ```
Line Regulation (Note 2)
 \(27 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 38 \mathrm{Vdc}, \mathrm{IO}=500 \mathrm{~mA}\)
 \(30 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 36 \mathrm{Vdc}\)
 \(30 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 36 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)
 \(26.7 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)
``` & Regline & - & \[
\begin{gathered}
11.5 \\
3.8 \\
3.8 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& 240 \\
& 240 \\
& 120 \\
& 240
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I} \leq 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 2.1 \\
& 2.0 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& 50
\end{aligned}
\] & mV \\
\hline Quiescent Current
\[
\mathrm{T}_{J}=25^{\circ} \mathrm{C}
\] & IB & - & \[
3.6
\] & \[
\begin{aligned}
& \hline 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 27.3 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 27.3 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\prime}{ }^{\prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
\(28 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{l}=500 \mathrm{~mA}\)
\end{tabular} & RR & - & 54 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{l} \mathrm{O}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{v}_{\mathrm{I}}-\mathrm{v}_{0}\) & - & 2.0 & - & Vdc \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & ro & - & 1.4 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) )
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & ISC & - & 0.2 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCVO & - & -2.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. T \({ }_{\text {low }}=0^{\circ} \mathrm{C}\) for MC78XXAC, C \(\quad T_{\text {high }}=+125^{\circ} \mathrm{C}\) for MC78XXAC, C, B
\(=-40^{\circ} \mathrm{C}\) for MC78XXB
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Figure 1. Peak Output Current as a Function of Input/Output Differential Voltage (MC78XXC, AC, B)


Figure 3. Ripple Rejection as a Function of Frequency (MC78XXC, AC)


Figure 5. Output Impedance as a Function of Output Voltage (MC78XXC, AC)


Figure 2. Ripple Rejection as a Function of Output Voltages (MC78XXC, AC)


Figure 4. Output Voltage as a Function of Junction Temperature (MC7805C, AC, B)


Figure 6. Quiescent Current as a Function of Temperature (MC78XXC, AC, B)


\section*{MC7800 Series}

\section*{APPLICATIONS INFORMATION}

\section*{Design Considerations}

The MC7800 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long

Figure 7. Current Regulator


The MC7800 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows:
\[
10=\frac{5.0 V}{R}+I_{B}
\]
\(\mathrm{I}_{\mathrm{B}} \cong 3.2 \mathrm{~mA}\) over line and load changes.

For example, a 1.0 A current source would require \(R\) to be a \(5.0 \Omega\), 10 W resistor and the output voltage compliance would be the input voltage less 7.0 V .

Figure 9. Current Boost Regulator

\[
X X=2 \text { digits of type number indicating voltage. }
\]

The MC7800 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 A. Resistor R in conjunction with the VBE of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input/output differential voltage minimum is increased by \(V_{B E}\) of the pass transistor.
wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Figure 8. Adjustable Output Regulator


The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 V greater than the regulator voltage.

Figure 10. Short Circuit Protection

\(X X=2\) digits of type number indicating voltage.

The circuit of Figure 9 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor, \(\mathrm{R}_{\mathrm{SC}}\), and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified.

Figure 11. Worst Case Power Dissipation versus Ambient Temperature (Case 221A)


Figure 12. Input Output Differential as a Function of Junction Temperature (MC78XXC, AC, B)


Figure 13. D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


\section*{DEFINITIONS}

Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Quiescent Current - That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

\section*{Three-Terminal Low Current Positive Voltage Regulators}

The MC78L00, A Series of positive voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100 mA . Like their higher powered MC7800 and MC78M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the MC78L00 devices in many applications.

These devices offer a substantial performance advantage over the traditional zener diode-resistor combination, as output impedance and quiescent current are substantially reduced.
- Wide Range of Available, Fixed Output Voltages
- Low Cost
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- No External Components Required
- Complementary Negative Regulators Offered (MC79L00 Series)
- Available in either \(\pm 5 \%\) (AC) or \(\pm 10 \%\) (C) Selections


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC78LXXACD* & \multirow{3}{*}{\(\mathrm{T}_{\mathrm{J}}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & SOP-8 \\
\hline MC78LXXACP & & Plastic Power \\
\hline MC78LXXCP & & Plastic Power \\
\hline MC78LXXABD* & \multirow{2}{*}{\(T J=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & SOP-8 \\
\hline MC78LXXABP* & & Plastic Power \\
\hline
\end{tabular}
\(X X\) indicates nominal voltage
*Available in 5, 8, 9, 12 and 15 V devices.
P SUFFIX
CASE 29 \(\quad\)\begin{tabular}{l} 
Pin 1. Output \\
2. GND \\
3. Input
\end{tabular}
*SOP-8 is an internally modified SO-8 package. Pins 2, 3, 6, and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOP-8 conforms to all external dimensions of the standard SO-8 package.


A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
\({ }^{*} \mathrm{C}_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter.
\({ }^{* *} \mathrm{C}_{\mathrm{O}}\) is not needed for stability; however, it does improve transient response.

DEVICE TYPE/NOMINAL VOLTAGE
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{1 0 \%}\) & \(\mathbf{5 \%}\) & Voltage \\
\hline MC78LO5C & MC78LO5AC & 5.0 \\
MC78LO8C & MC78LO8AC & 8.0 \\
MC78LO9C & MC78LO9AC & 9.0 \\
MC78L2C & MC78L2AC & 12 \\
MC78L15C & MC78L15AC & 15 \\
MC78L18C & MC78L18AC & 18 \\
MC78L24C & MC78L24AC & 24 \\
\hline
\end{tabular}

MC78L00, A Series
MAXIMUM RATINGS \(\left(T_{A}=+125^{\circ} \mathrm{C}\right.\), unless otherwis \(\theta\) noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage (2.6 V-8.0 V) & \(\mathrm{V}_{\mathbf{I}}\) & 30 & \(\mathrm{Vdc}^{(12 \mathrm{~V}-18 \mathrm{~V})}\) \\
\((24 \mathrm{~V})\) & & 35 & \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature Range & \(\mathrm{T}_{J}\) & 0 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\boldsymbol{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) (for MC78LXXAB), \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) (for MC78LXXAC), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L05AC, AB} & \multicolumn{3}{|c|}{MC78L05C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & Vo & 4.8 & 5.0 & 5.2 & 4.6 & 5.0 & 5.4 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation } \\
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}=40 \mathrm{~mA}\right) \\
& 7.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 20 \mathrm{Vdc} \\
& 8.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 20 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & & \[
\begin{aligned}
& 55 \\
& 45
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 100
\end{aligned}
\] & & \[
\begin{aligned}
& 55 \\
& 45
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 150
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \left.\qquad \mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & & \[
\begin{gathered}
11 \\
5.0
\end{gathered}
\] & \[
\begin{aligned}
& 60 \\
& 30 \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{r}
11 \\
5.0
\end{array}
\] & \[
\begin{aligned}
& 60 \\
& 30 \\
& \hline
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(7.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 20 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{1}=10 \mathrm{~V}, 1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 70 \mathrm{~mA}\right)
\end{aligned}
\] & Vo & \[
\begin{array}{r}
4.75 \\
4.75 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
5.25 \\
5.25 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4.5 \\
& 4.5 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 5.5 \\
& 5.5 \\
& \hline
\end{aligned}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Bias Current } \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{J}=+125^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & IIB & - & 3.8 & \[
\begin{array}{r}
6.0 \\
5.5 \\
\hline
\end{array}
\] & & 3.8 & \[
\begin{aligned}
& 6.0 \\
& 5.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
\left(8.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 20 \mathrm{Vdc}\right) \\
(1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}) \\
\hline
\end{gathered}
\] & \(\Delta^{\prime}{ }^{\prime} \mathrm{B}\) & - & & \[
\begin{aligned}
& 1.5 \\
& 0.1 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.5 \\
& 0.2 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & - & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{IO}=40 \mathrm{~mA}\), \(\left.\mathrm{f}=120 \mathrm{~Hz}, 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{I}} \leq 18 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) & RR & 41 & 49 & - & 40 & 49 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) (for MC78LXXAB), \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) (for MC78LXXAC), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L08AC, AB} & \multicolumn{3}{|c|}{MC78L08C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 7.7 & 8.0 & 8.3 & 7.36 & 8.0 & 8.64 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, \mathrm{IO}=40 \mathrm{~mA}\right) \\
& 10.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 23 \mathrm{Vdc} \\
& 11 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 23 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & - & \[
\begin{array}{r}
20 \\
12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
175 \\
125 \\
\hline
\end{array}
\] & - & 20
12 & \[
\begin{aligned}
& 200 \\
& 150 \\
& \hline
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \left.\qquad \mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 15 \\
& 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 40
\end{aligned}
\] & - & \[
\begin{array}{r}
15 \\
6.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 80 \\
& 40 \\
& \hline
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(10.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 23 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 40 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\mathrm{I}}=14 \mathrm{~V}, 1.0 \mathrm{~mA} \leq 1 \mathrm{I} \leq 70 \mathrm{~mA}\right)
\end{aligned}
\] & Vo & \[
\begin{aligned}
& 7.6 \\
& 7.6
\end{aligned}
\] & & \[
\begin{aligned}
& 8.4 \\
& 8.4
\end{aligned}
\] & \[
\begin{aligned}
& 7.2 \\
& 7.2
\end{aligned}
\] & - & \[
\begin{aligned}
& 8.8 \\
& 8.8
\end{aligned}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Bias Current } \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{J}=+125^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & IIB & - & 3.0 & \[
\begin{array}{r}
6.0 \\
5.5 \\
\hline
\end{array}
\] & & 3.0 & \[
\begin{array}{r}
6.0 \\
5.5 \\
\hline
\end{array}
\] & mA \\
\hline Input Bias Current Change ( \(11 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 23 \mathrm{Vdc}\) ) \(\left(1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA}\right)\) & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1 \\
& \hline
\end{aligned}
\] & & - & \[
\begin{aligned}
& 1.5 \\
& 0.2 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\right)
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 60 & - & - & 52 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection ( } \mathrm{IO}_{\mathrm{O}}=40 \mathrm{~mA}, \\
& \left.\mathrm{f}=120 \mathrm{~Hz}, 12 \mathrm{~V} \leq \mathrm{V}_{1} \leq 23 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 37 & 57 & - & 36 & 55 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(V_{1}-v_{0}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

\section*{MC78L00, A Series}

ELECTRICAL CHARACTERISTICS \(\left(V_{l}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) (for MC78LXXAB), \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) (for MC78LXXAC), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L09AC, AB} & \multicolumn{3}{|c|}{MC78L09C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 8.6 & 9.0 & 9.4 & 8.3 & 9.0 & 9.7 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, I O=40 \mathrm{~mA}\right) \\
& 11.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 24 \mathrm{Vdc} \\
& 12 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 24 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 20 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 175 \\
& 125
\end{aligned}
\] & - & \[
\begin{aligned}
& 20 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 150
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \qquad\left(T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 15 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& 90 \\
& 40
\end{aligned}
\] & - & \[
\begin{aligned}
& 15 \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& 90 \\
& 40
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(11.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 24 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{1}=15 \mathrm{~V}, 1.0 \mathrm{~mA} \leq 10 \leq 70 \mathrm{~mA}\right)
\end{aligned}
\] & Vo & \[
\begin{aligned}
& 8.5 \\
& 8.5
\end{aligned}
\] & & \[
\begin{aligned}
& 9.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 8.1 \\
& 8.1
\end{aligned}
\] & & \[
\begin{aligned}
& 9.9 \\
& 9.9
\end{aligned}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IIB & - & 3.0
- & \[
\begin{aligned}
& 6.0 \\
& 5.5
\end{aligned}
\] & - & 3.0 & \[
\begin{aligned}
& 6.0 \\
& 5.5
\end{aligned}
\] & mA \\
\hline Input Bias Current Change ( \(11 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 23 \mathrm{Vdc}\) ) ( \(1.0 \mathrm{~mA} \leq \mathrm{I} \mathrm{O} \leq 40 \mathrm{~mA}\) ) & \(\Delta^{\prime}{ }_{\text {IB }}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 60 & - & - & 52 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection }\left(I_{0}=40 \mathrm{~mA},\right. \\
& \left.f=120 \mathrm{~Hz}, 13 \mathrm{~V} \leq \mathrm{V}_{1} \leq 24 \mathrm{~V}, T_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 37 & 57 & - & 36 & 55 & - & dB \\
\hline Dropout Voltage
\[
\left(T_{J}=+25^{\circ} \mathrm{C}\right)
\] & \(V_{1}-V_{0}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{I}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{l}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) (for MC78LXXAB), \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) (for MC78LXXAC), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L12AC, AB} & \multicolumn{3}{|c|}{MC78L12C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 11.5 & 12 & 12.5 & 11.1 & 12 & 12.9 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, I O=40 \mathrm{~mA}\right) \\
& 14.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 27 \mathrm{Vdc} \\
& 16 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 27 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 120 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 250 \\
& 200
\end{aligned}
\] & & \[
\begin{aligned}
& 120 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 250 \\
& 200
\end{aligned}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 20 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50
\end{gathered}
\] & - & \[
\begin{aligned}
& 20 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 50
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(14.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 27 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{1}=19 \mathrm{~V}, 1.0 \mathrm{~mA} \leq 10 \leq 70 \mathrm{~mA}\right)
\end{aligned}
\] & Vo & \[
\begin{aligned}
& 11.4 \\
& 11.4
\end{aligned}
\] & - & \[
\begin{aligned}
& 12.6 \\
& 12.6
\end{aligned}
\] & \[
\begin{aligned}
& 10.8 \\
& 10.8
\end{aligned}
\] & - & \[
\begin{aligned}
& 13.2 \\
& 13.2
\end{aligned}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{J}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IIB & - & 4.2 & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & - & 4.2 & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline Input Bias Current Change ( \(16 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 27 \mathrm{Vdc}\) ) \((1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 40 \mathrm{~mA})\) & \(\Delta^{\prime} \mathrm{IB}\) &  & - & \[
\begin{aligned}
& 1.5 \\
& 0.1
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\right)
\] & \(v_{n}\) & - & 80 & - & - & 80 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection (lO }=40 \mathrm{~mA}, \\
& \left.f=120 \mathrm{~Hz}, 15 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 37 & 42 & - & 36 & 42 & - & dB \\
\hline Dropout Voltage
\[
\left(T_{J}=+25^{\circ} \mathrm{C}\right)
\] & \(v_{1}-v_{0}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

\section*{MC78L00, A Series}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) (for MC78LXXAB), \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) (for MC78LXXAC), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L15AC, AB} & \multicolumn{3}{|c|}{MC78L15C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 14.4 & 15 & 15.6 & 13.8 & 15 & 16.2 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, \mathrm{IO}=40 \mathrm{~mA}\right) \\
& 17.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 30 \mathrm{Vdc} \\
& 20 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 30 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 130 \\
& 110
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 250 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 130 \\
& 110 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 250
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \left.\qquad \mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 25 \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
150 \\
75
\end{gathered}
\] & - & \[
\begin{aligned}
& 25 \\
& 12 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
150 \\
75
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(17.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 30 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I} \mathrm{I} \leq 40 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{1}=23 \mathrm{~V}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 70 \mathrm{~mA}\right)
\end{aligned}
\] & Vo & \[
\begin{aligned}
& 14.25 \\
& 14.25
\end{aligned}
\] & & \[
\begin{aligned}
& 15.75 \\
& 15.75
\end{aligned}
\] & \[
\begin{array}{r}
13.5 \\
13.5 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
16.5 \\
16.5 \\
\hline
\end{array}
\] & Vdc \\
\hline Input Bias Current
\[
\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right)
\]
\[
\left(T_{J}=+125^{\circ} \mathrm{C}\right)
\] & IIB & - & 4.4 & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & - & 4.4 & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline Input Bias Current Change ( \(20 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 30 \mathrm{Vdc}\) ) \(\left(1.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 40 \mathrm{~mA}\right)\) & \(\Delta^{\prime} \mathrm{I}_{\mathrm{B}}\) & - & & \[
\begin{aligned}
& 1.5 \\
& 0.1 \\
& \hline
\end{aligned}
\] & - & & \[
\begin{array}{r}
1.5 \\
0.2 \\
\hline
\end{array}
\] & mA \\
\hline Output Noise Voltage
\[
\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 90 & - & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection (IO }=40 \mathrm{~mA}, \\
& \mathrm{f}=120 \mathrm{~Hz}, 18.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}} \leq 28.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \text { ) }
\end{aligned}
\] & RR & 34 & 39 & - & 33 & 39 & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{I}=27 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L18AC} & \multicolumn{3}{|c|}{MC78L18C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & Vo & 17.3 & 18 & 18.7 & 16.6 & 18 & 19.4 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}=40 \mathrm{~mA}\right) \\
& 21.4 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc} \\
& 20.7 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc} \\
& 22 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc} \\
& 21 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 45 \\
& 35
\end{aligned}
\] & \[
\begin{aligned}
& 325 \\
& 275
\end{aligned}
\] &  & 32
\[
27
\] & \[
\begin{aligned}
& 325 \\
& 275
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \qquad\left(T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & & \[
\begin{aligned}
& 30 \\
& 15
\end{aligned}
\] & \[
\begin{gathered}
170 \\
85
\end{gathered}
\] & & \[
\begin{array}{r}
30 \\
15 \\
\hline
\end{array}
\] & \[
\begin{gathered}
170 \\
85
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(21.4 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I} \leq 40 \mathrm{~mA}\right) \\
& \left(20.7 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I} \leq 40 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{1}=27 \mathrm{~V}, 1.0 \mathrm{~mA} \leq 1 \mathrm{I} \leq 70 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{1}=27 \mathrm{~V}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 70 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 17.1 \\
& 17.1
\end{aligned}
\] &  & \[
\begin{aligned}
& 18.9 \\
& 18.9
\end{aligned}
\] & \[
\begin{aligned}
& 16.2 \\
& 16.2
\end{aligned}
\] & - & \[
\begin{aligned}
& 19.8 \\
& 19.8
\end{aligned}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Bias Current } \\
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{J}=+125^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & IB & - & 3.1 & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & & 3.1 & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
\left(22 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc}\right) \\
\left(21 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc}\right) \\
(1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA})
\end{gathered}
\] & \(\Delta^{\text {I }}\) IB & & & \[
\begin{aligned}
& 1.5 \\
& 0.1
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 150 & - & - & 150 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection }(\text { IO }=40 \mathrm{~mA}, \\
& \left.\mathrm{f}=120 \mathrm{~Hz}, 23 \mathrm{~V} \leq \mathrm{V}_{1} \leq 33 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 33 & 48 & - & 32 & 46 & - & dB \\
\hline Dropout Voltage
\[
\left(T_{J}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

\section*{MC78L00, A Series}

ELECTRICAL CHARACTERISTICS \(\left(V_{I}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L24AC} & \multicolumn{3}{|c|}{MC78L24C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 23 & 24 & 25 & 22.1 & 24 & 25.9 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}\right) \\
& 27.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 38 \mathrm{Vdc} \\
& 28 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 80 \mathrm{Vdc} \\
& 27 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 38 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& \overline{50} \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 350
\end{aligned}
\] & - & \[
\begin{aligned}
& 35 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 350 \\
& 300
\end{aligned}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 40 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & - & \[
\begin{aligned}
& 40 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
\(\left(28 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 38 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA}\right)\) \\
\(\left(27 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 38 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA}\right)\) \\
\(\left(28 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{I}}=33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 70 \mathrm{~mA}\right)\) \\
\(\left(27 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 70 \mathrm{~mA}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 22.8 \\
& 22.8
\end{aligned}
\] &  & \[
\begin{aligned}
& 25.2 \\
& 25.2
\end{aligned}
\] & \[
\begin{aligned}
& 21.6 \\
& 21.6
\end{aligned}
\] &  & \[
\begin{aligned}
& 26.4 \\
& 26.4
\end{aligned}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IIB & - & & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & & & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline Input Bias Current Change ( \(28 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 38 \mathrm{Vdc}\) ) \(\left(1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA}\right)\) & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 200 & - & - & 200 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection ( } \mathrm{IO}=40 \mathrm{~mA}, \\
& \mathrm{f}=120 \mathrm{~Hz}, 29 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}} \leq 35 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \text { ) }
\end{aligned}
\] & RR & 31 & 45 & - & 30 & 43 & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

Figure 1. Dropout Characteristics


Figure 3. Input Bias Current versus Ambient Temperature


Figure 5. Maximum Average Power Dissipation versus Ambient Temperature - TO-92 Type Package


Figure 2. Dropout Voltage versus Junction Temperature


Figure 4. Input Bias Current versus Input Voltage


Figure 6. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


\section*{MC78L00, A Series}

\section*{APPLICATIONS INFORMATION}

\section*{Design Considerations}

The MC78L00 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit Protection limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. The input
bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

Figure 7. Current Regulator


The MC78L00 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78L05C is chosen in this application. Resistor R determines the current as follows:
\[
\mathrm{I}_{\mathrm{O}}=\frac{5.0 \mathrm{~V}}{\mathrm{R}}+\mathrm{I}_{\mathrm{B}}
\]
\(I_{\mathrm{I}}=3.8 \mathrm{~mA}\) over line and load changes

For example, a 100 mA current source would require \(R\) to be a \(50 \Omega, 1 / 2 \mathrm{~W}\) resistor and the output voltage compliance would be the input voltage less 7 V .

Figure 8. \(\pm 15\) V Tracking Voltage Regulator


Figure 9. Positive and Negative Regulator


\section*{Three-Terminal}

The MC78M00 Series positive voltage regulators are identical to the popular MC7800 Series devices, except that they are specified for only half the output current. Like the MC7800 devices, the MC78M00 three-terminal regulators are intended for local, on-card voltage regulation.

Internal current limiting, thermal shutdown circuitry and safe-area compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions. Maximum output current, with adequate heatsinking is 500 mA .
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation


DEVICE TYPE/NOMINAL OUTPUT VOLTAGE
\begin{tabular}{|l|l|l|c|c|c|}
\hline MC78M05B,C & 5.0 V & MC78M09B,C & 9.0 V & MC78M18B,C & 18 V \\
MC78M06B,C & 6.0 V & MC78M12B,C & 12 V & MC78M20B,C & 20 V \\
MC78M08B,C & 8.0 V & MC78M15B,C & 15 V & MC78M24B,C & 24 V \\
\hline
\end{tabular}

\section*{THREE-TERMINAL MEDIUM} CURRENT POSITIVE FIXED VOLTAGE REGULATORS

SEMICONDUCTOR TECHNICAL DATA

T SUFFIX PLASTIC PACKAGE CASE 221A (TO-220)

Heatsink surface connected to Pin 2.

Pin 1. Input
2. Ground
3. Output


DT SUFFIX
PLASTIC PACKAGE CASE 369A (DPAK)


DT-1 SUFFIX PLASTIC PACKAGE CASE 369 (DPAK)

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC78MXXCDT* MC78MXXCDT-1* & \multirow[t]{2}{*}{\(\mathrm{T}_{\mathrm{J}}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & DPAK \\
\hline MC78MXXCT & & \multirow[b]{2}{*}{TO-220} \\
\hline MC78MXXBT\# & \multirow[b]{2}{*}{\(\mathrm{T}_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & \\
\hline MC78MXXBDT\# & & DPAK \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
XX Indicates nominal voltage. \\
* Available in \(5,8,12\) and 15 V devices. \\
\# Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information.
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{MC78M00 Series}

MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \[
\begin{aligned}
\text { Input Voltage } & (5.0 \mathrm{~V}-18 \mathrm{~V}) \\
& (20 \mathrm{~V}-24 \mathrm{~V})
\end{aligned}
\] & \(\mathrm{V}_{1}\) & \[
\begin{aligned}
& 35 \\
& 40
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation (Package Limitation) \\
Plastic Package, T Suffix
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case \\
Plastic Package, DT Suffix
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case
\end{tabular} & \[
\begin{aligned}
& \mathrm{PD}^{\theta_{\mathrm{JA}}} \\
& \theta_{\mathrm{JC}} \\
& \\
& \mathrm{PD}_{\mathrm{D}} \\
& \theta_{\mathrm{JA}} \\
& \theta_{\mathrm{JCC}}
\end{aligned}
\] & Internally Limited
70
5.0
Internally Limited
92
5.0 & \begin{tabular}{l}
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature Range & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC78M05B,C ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leq 5.0 \mathrm{~W}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 4.8 & 5.0 & 5.2 & Vdc \\
\hline Line Regulation
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 7.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{I}} \leq 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 3.0 & 50 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \left.\qquad \mathrm{T}_{\mathrm{J}}=25^{\circ}{ }^{\circ}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 20 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 50
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
( \(7.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 200 \mathrm{~mA}\) ) \\
( \(7.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 350 \mathrm{~mA}\) )
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & 4.75 & - & 5.25 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) ) & IB & - & 3.2 & 6.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \left(8.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 25 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=200 \mathrm{~mA}\right) \\
& (5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 350 \mathrm{~mA})
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& \quad\left(\mathrm{lO}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 18 \mathrm{~V}\right) \\
& \left(\mathrm{l} \mathrm{O}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 8.0 \leq \mathrm{V}_{\mathrm{I}} \leq 18 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 62 \\
& 62
\end{aligned}
\] & \[
\overline{80}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}\) ) & los & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(\mathrm{I}=5.0 \mathrm{~mA})
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.2\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M06B,C ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=11 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leq 5.0 \mathrm{~W}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 5.75 & 6.0 & 6.25 & Vdc \\
\hline Line Regulation
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{I}} \leq 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 5.0 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(T_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 20 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
120 \\
60
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \qquad\left(8.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{IO}_{\mathrm{O}} \leq 200 \mathrm{~mA}\right) \\
& \left(8.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 21 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 5.7 & - & 6.3 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & IIB & - & 3.2 & 6.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \left(9.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 25 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=200 \mathrm{~mA}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 45 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\begin{aligned}
& \left(\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 9.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}} \leq 19 \mathrm{~V}\right) \\
& \left(\mathrm{IO}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 9.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}} \leq 19 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 59 \\
& 59
\end{aligned}
\] & \[
\overline{80}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit ( \(\mathrm{J}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}\) ) & lOS & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(\mathrm{IO}=5.0 \mathrm{~mA})
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.2\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M08B,C ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leq 5.0 \mathrm{~W}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 7.7 & 8.0 & 8.3 & Vdc \\
\hline Line Regulation
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 10.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 6.0 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
160 \\
80
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \qquad\left(10.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{I}} \leq 25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 200 \mathrm{~mA}\right) \\
& \left(10.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{I}} \leq 23 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 7.6 & - & 8.4 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & IIB & - & 3.2 & 6.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \left(10.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\Delta^{\prime}{ }^{\prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 52 & - & \(\mu \mathrm{V}\) \\
\hline ```
Ripple Rejection
( }\textrm{O}=100\textrm{mA},\textrm{f}=120\textrm{Hz},11.5\textrm{V}\leq\mp@subsup{\textrm{V}}{\textrm{I}}{\prime}\leq21.5\textrm{V}
(IO = 300 mA, f=120 Hz, 11.5 V \leqVI }\leq21.5 V, TJ=25*'C
``` & RR & \[
\begin{aligned}
& 56 \\
& 56
\end{aligned}
\] & \[
\overline{-}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(T_{J}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit (\(\mathrm{J}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}\)) & IOS & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(\mathrm{l} \mathrm{O}=5.0 \mathrm{~mA})
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.2\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T} J=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M09B,C ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{I}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leq 5.0 \mathrm{~W}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & Vo & 8.64 & 9.0 & 9.45 & Vdc \\
\hline Line Regulation
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 11.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 6.0 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 10 \leq 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{I} \leq 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
180 \\
90
\end{gathered}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
(\(11.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq 10 \leq 200 \mathrm{~mA}\)) \\
(\(11.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 23 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq 10 \leq 350 \mathrm{~mA}\))
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & 8.55 & - & 9.45 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\)) & IIB & - & 3.2 & 6.0 & mA \\
\hline Quiescent Current Change (\(11.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\)) (\(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}\)) & \(\Delta^{\prime} / \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 52 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\begin{aligned}
& \left(\mathrm{l}_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 12.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 22.5 \mathrm{~V}\right) \\
& \left(\mathrm{l}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 12.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}} \leq 22.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 56 \\
& 56
\end{aligned}
\] & \[
80
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{l}}=35 \mathrm{~V}\)) & los & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(\mathrm{I}=5.0 \mathrm{~mA})
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.2\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M12B,C ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{PD}_{\mathrm{D}} \leq 5.0 \mathrm{~W}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 11.5 & 12 & 12.5 & Vdc \\
\hline Line Regulation
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 14.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{I}} \leq 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 8.0 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & \[
-
\] & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
(\(14.5 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{I}} \leq 27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 350 \mathrm{~mA}\))
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & 11.4 & - & 12.6 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & IIB & - & 3.2 & 6.0 & mA \\
\hline \begin{tabular}{l}
Quiescent Current Change \\
(\(14.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 30 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=200 \mathrm{~mA}\)) \\
(\(5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 350 \mathrm{~mA}\))
\end{tabular} & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\begin{aligned}
& \left(l_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 15 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}\right) \\
& \left(\mathrm{l}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 15 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 55 \\
& 55
\end{aligned}
\] & \[
\overline{80}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}\)) & Ios & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(\mathrm{IO}=5.0 \mathrm{~mA})
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.3\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

\section*{MC78M00 Series}

MC78M15B,C ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}, \mathrm{PD}_{\mathrm{D}} \leq 5.0 \mathrm{~W}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & Vo & 14.4 & 15 & 15.6 & Vdc \\
\hline Input Regulation
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 17.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 10 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{l} \leq 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{l} \leq 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
(\(17.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq 10 \leq 350 \mathrm{~mA}\))
\end{tabular} & Vo & 14.25 & - & 15.75 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & IIB & - & 3.2 & 6.0 & mA \\
\hline Quiescent Current Change (\(17.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 30 \mathrm{Vdc}, \mathrm{I} O=200 \mathrm{~mA}\)) (\(5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 350 \mathrm{~mA}\)) & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\begin{aligned}
& \left(\mathrm{lO}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 18.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 28.5 \mathrm{~V}\right) \\
& \left(\mathrm{lO}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 18.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 28.5 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 54 \\
& 54
\end{aligned}
\] & \[
\overline{70}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}\)) & los & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(\mathrm{IO}=5.0 \mathrm{~mA})
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.3\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(T_{J}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M18B,C ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leq 5.0 \mathrm{~W}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & Vo & 17.3 & 18 & 18.7 & Vdc \\
\hline Line Regulation
\[
\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 21 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 10 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 30 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
(\(21 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}\))
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & 17.1 & - & 18.9 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & IIB & - & 3.2 & 6.5 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \left(21 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc}, \mathrm{IO}=200 \mathrm{~mA}\right) \\
& (5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 350 \mathrm{~mA})
\end{aligned}
\] & \(\Delta^{\prime}{ }^{\prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 100 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\begin{aligned}
& \left(I_{0}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 22 \mathrm{~V} \leq \mathrm{V}_{1} \leq 32 \mathrm{~V}\right) \\
& \left(\mathrm{IO}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 22 \mathrm{~V} \leq \mathrm{V}_{1} \leq 32 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 53 \\
& 53
\end{aligned}
\] & \[
\overline{70}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}\)) & Ios & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(\mathrm{IO}=5.0 \mathrm{~mA})
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.3\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(T_{J}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M20B,C ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{I}}=29 \mathrm{~V}, 10=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leq 5.0 \mathrm{~W}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & Vo & 19.2 & 20 & 20.8 & Vdc \\
\hline Line Regulation
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 23 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 35 \mathrm{Vdc}, \mathrm{l} \mathrm{O}=200 \mathrm{~mA}\right)
\] & Regline & - & 10 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(T_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 10 \leq 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 30 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 200
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
\left(23 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 35 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 350 \mathrm{~mA}\right)
\] & Vo & 19 & - & 21 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & IB & - & 3.2 & 6.5 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \left(23 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 35 \mathrm{Vdc}, \mathrm{IO}=200 \mathrm{~mA}\right) \\
& (5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 350 \mathrm{~mA})
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(V_{n}\) & - & 110 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\begin{aligned}
& \left(l_{0}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 24 \mathrm{~V} \leq \mathrm{V}_{1} \leq 34 \mathrm{~V}\right) \\
& \left(\mathrm{lO}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 24 \mathrm{~V} \leq \mathrm{V}_{1} \leq 34 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 52 \\
& 52
\end{aligned}
\] & \[
\overline{70}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}\)) & Ios & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(10=5.0 \mathrm{~mA})
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.5\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(T_{J}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M24B,C ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{I}}=33 \mathrm{~V}, 1 \mathrm{IO}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leq 5.0 \mathrm{~W}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & VO & 23 & 24 & 25 & Vdc \\
\hline Line Regulation
\[
\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 27 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{I}} \leq 38 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 10 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 30 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 480 \\
& 240
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
(\(27 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 38 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}\))
\end{tabular} & Vo & 22.8 & - & 25.2 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\)) & IB & - & 3.2 & 7.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \left(27 \mathrm{Vdc} \leq \mathrm{V}_{1} \leq 38 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=200 \mathrm{~mA}\right) \\
& (5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 350 \mathrm{~mA})
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 170 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\begin{aligned}
& \left(l_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 28 \mathrm{~V} \leq \mathrm{V}_{1} \leq 38 \mathrm{~V}\right) \\
& \left(\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 28 \mathrm{~V} \leq \mathrm{V}_{1} \leq 38 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & \[
\overline{70}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline & Ios & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(\mathrm{IO}=5.0 \mathrm{~mA})
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.5\) & - & \(\mathrm{mV}^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(T_{J}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

\section*{MC78M00 Series}

\section*{DEFINITIONS}

Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Input Bias Current - That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

Figure 1. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 2. Worst Case Power Dissipation versus Ambient Temperature (TO-220)

Figure 3. Peak Output Current versus Dropout Voltage

Figure 5. Ripple Rejection versus Frequency

Figure 7. Bias Current versus Input Voltage

Figure 4. Dropout Voltage versus Junction Temperature

Figure 6. Ripple Rejection versus Output Current

Figure 8. Bias Current versus Output Current

\section*{MC78M00 Series}

\section*{APPLICATIONS INFORMATION}

\section*{Design Considerations}

The MC78M00 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the

Figure 9. Current Regulator

The MC78M00 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78M05C is chosen in this application. Resistor R determines the current as follows:
\[
I_{0}=\frac{5.0 V}{R}+I_{1 B}
\]
\(I_{B}=1.5 \mathrm{~mA}\) over line and load changes.
For example, a 500 mA current source would require \(R\) to be a \(5.0 \Omega, 10 \mathrm{~W}\) resistor and the output voltage compliance would be the input voltage less 7 V .

Figure 11. Current Boost Regulator

\(\mathrm{XX}=2\) digits of type number indicating voltage.

The MC78M00 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 A. Resistor R in conjunction with the \(\mathrm{V}_{\mathrm{BE}}\) of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input-output differential voltage minimum is increased by \(V_{B E}\) of the pass transistor.
regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Figure 10. Adjustable Output Regulator

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 V greater than the regulator voitage.

Figure 12. Current Boost with Short Circuit Protection

\(\mathrm{XX}=2\) digits of type number indicating voltage.

\footnotetext{
The circuit of Figure 10 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor, \(\mathrm{R}_{S \mathrm{C}}\), and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three-terminal regulator. Therefore, a 4 A plastic power transistor is specified.
}

\section*{Three-Ampere Positive Voltage Regulators}

This family of fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 3.0 A. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. Devices are available with improved specifications, including a \(2 \%\) output voltage tolerance, on AC-suffix \(5.0,12\) and 15 V device types.

Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series-pass transistor to supply up to 15 A at the nominal output voltage.
- Output Current in Excess of 3.0 A
- Power Dissipation: 25 W
- No External Components Required
- Output Voltage Offered in \(2 \%\) and \(4 \%\) Tolerance*
- Thermal Regulation is Specified
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation

MAXIMUM RATINGS (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \[
\begin{gathered}
\text { Input Voltage }(5.0 \mathrm{~V}-12 \mathrm{~V}) \\
(15 \mathrm{~V})
\end{gathered}
\] & \(V_{1}\) & \[
\begin{aligned}
& 35 \\
& 40
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics Plastic Package (Note 1)
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Air
\[
\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Case
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \\
\(R_{\theta J A}\) \\
\(P_{D}\) \\
\(R_{\theta J C}\)
\end{tabular} & Internally Limited 65 Internally Limited 2.5 & \begin{tabular}{l}
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Storage Junction Temperature & \(\mathrm{T}_{\text {stg }}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature Range
(MC78T00C, AC) & TJ & 0 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Although power dissipation is internally limited, specifications apply only for \(\mathrm{P}_{\mathrm{O}} \leq \mathrm{P}_{\max }, \mathrm{P}_{\max }=25 \mathrm{~W}\).

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.2 V above the output voltage even during the low point on the input ripple voltage. XX these two digits of the type number indicate voltage.
\({ }^{*} \mathrm{C}_{\mathrm{in}}\) is required if regulator is located an appreciable distance from power supply filter. (See Applications Information for details.)
** \(C_{O}\) is not needed for stability; however, it does improve transient response.

\title{
THREE-AMPERE POSITIVE FIXED VOLTAGE REGULATORS
} SEMICONDUCTOR TECHNICAL DATA

T SUFFIX
PLASTIC PACKAGE
CASE 221A

Pin 1. Input
2. Ground
3. Output

Heatsink surface is connected to Pin 2.

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE
\begin{tabular}{|l|l|l|l|}
\hline MC78T05 & 5.0 V & MC78T12 & 12 V \\
MC78T08 & 8.0 V & MC78T15 & 15 V \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Vo \\
Tol.
\end{tabular} & \begin{tabular}{c}
Operating \\
Temperature \\
Range
\end{tabular} & Package \\
\hline MC78TXXCT & \(4 \%\) & \(\mathrm{~T}_{J}=0^{\circ}\) to \\
MC78TXXACT & \(2 \%^{*}\) & \begin{tabular}{c}
Plastic \\
\(+125^{\circ} \mathrm{C}\)
\end{tabular} & Power \\
\hline MC78TXXBT\# & \begin{tabular}{c}
\(4 \%\) \\
MC78TXXABT\# \\
\(2 \%^{*}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{T}_{J}=-40^{\circ}\) to \\
\(+125^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{c}
Plastic \\
Power
\end{tabular} \\
\hline
\end{tabular}

XX Indicates nominal voltage.
* \(2 \%\) regulators available in 5,12 and 15 V devices.
\# Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information.

\section*{MC78T00 Series}

ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{O}} \leq \mathrm{P}_{\max }\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78T05AC} & \multicolumn{3}{|c|}{MC78T05C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A} ;\right. \\
& \left.5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 2.0 \mathrm{~A}, 7.3 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 4.9 \\
& 4.8
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.1 \\
& 5.2
\end{aligned}
\] & \[
\begin{gathered}
4.8 \\
4.75
\end{gathered}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{gathered}
5.2 \\
5.25
\end{gathered}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note 2) } \\
& \quad \text { (7.2 Vdc } \leq \mathrm{V}_{\text {in }} \leq 35 \mathrm{Vdc}, \mathrm{IO}=5.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} ; \\
& 7.2 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 35 \mathrm{Vdc}, \mathrm{IO}=1.0 \mathrm{~A}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C} ; \\
& 8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 12 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ; \\
& 7.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}, \mathrm{IO}=1.0 \mathrm{~A} \text {) }
\end{aligned}
\] & Regline & - & 3.0 & 25 & - & 3.0 & 25 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& \left(5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & mV \\
\hline Thermal Regulation
\[
\left(\text { Pulse }=10 \mathrm{~ms}, \mathrm{P}=20 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{Reg}_{\text {therm }}\) & - & 0.001 & 0.01 & - & 0.002 & 0.03 & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline \[
\begin{aligned}
& \text { Quiescent Current } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}\right)
\end{aligned}
\] & IB & - & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & - & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline ```
Quiescent Current Change
 (7.2 \(\mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\);
 \(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\);
 \(7.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}, \mathrm{IO}=1.0 \mathrm{~A}\))
``` & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & - & 0.3 & 1.0 & - & 0.3 & 1.0 & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& \quad\left(8.0 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz},\right. \\
& \left.\mathrm{I}_{\mathrm{O}}=2.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 62 & 75 & - & 62 & 75 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{l} \mathrm{O}=3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{v}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & 2.2 & 2.5 & - & 2.2 & 2.5 & Vdc \\
\hline Output Noise Voltage
\[
\left(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & Ro & - & 2.0 & - & - & 20 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit
\[
\left(\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & Isc & - & 1.5 & - & - & 1.5 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & - & 5.0 & - & - & 5.0 & - & A \\
\hline Average Temperature Coefficient of Output Voltage
\[
(\mathrm{l} \mathrm{O}=5.0 \mathrm{~mA})
\] & TCVO & - & 0.2 & - & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Although power dissipation is internally limited, specifications apply only for \(\mathrm{P}_{\mathrm{O}} \leq \mathrm{P}_{\max }, \mathrm{P}_{\max }=25 \mathrm{~W}\).
2. Line and load regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC78T00 Series}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=13 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{O}} \leq \mathrm{P}_{\max }\right.\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78T08C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right. \text { ) } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A} ;\right. \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 2.0 \mathrm{~A}, 10.4 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 23 \mathrm{Vdc} \text { ) }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 7.7 \\
& 7.6
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.3 \\
& 8.4
\end{aligned}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note 2) } \\
& \text { (10.3 Vdc } \leq \mathrm{V}_{\text {in }} \leq 35 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 10.3 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 11 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 17 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 10.7 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 23 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} \text { ) }
\end{aligned}
\] & Regline & - & 4.0 & 35 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& \left(5.0 \mathrm{~mA} \leq 1_{0} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq 1_{0} \leq 3.0 \mathrm{~A}\right)
\end{aligned}
\] & Regioad & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & mV \\
\hline Thermal Regulation
\[
\left(\text { Pulse }=10 \mathrm{~ms}, \mathrm{P}=20 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)
\] & Regtherm & - & 0.002 & 0.03 & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline \[
\begin{aligned}
& \text { Quiescent Current } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}\right)
\end{aligned}
\] & 'B & & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \quad \text { (10.3 Vdc } \leq \mathrm{V}_{\text {in }} \leq 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \text {; } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I} \leq 3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ; \\
& 10.7 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 23 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} \text { ) }
\end{aligned}
\] & \({ }^{\Delta I} \mathrm{~B}\) & - & 0.3 & 1.0 & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
\(\left(11 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 21 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=2.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\) )
\end{tabular} & RR & 60 & 71 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{l} \mathrm{O}=3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & 2.2 & 2.5 & Vdc \\
\hline \begin{tabular}{l}
Output Noise Voltage \\
\(\left(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & RO & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit \(\left(\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) & ISC & - & 1.5 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & - & 5.0 & - & A \\
\hline Average Temperature Coefficient of Output Voltage ( \(\mathrm{l} \mathrm{O}=5.0 \mathrm{~mA}\) ) & TCVO & - & 0.3 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Although power dissipation is internally limited, specifications apply only for \(P_{\mathrm{O}} \leq P_{\max }, P_{\max }=25 \mathrm{~W}\).
2. Line and load regulation are specified at constant junction temperature. Changes in \(V_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC78T00 Series}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=17 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{O}} \leq \mathrm{P}_{\max }\right.\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78T12AC} & \multicolumn{3}{|c|}{MC78T12C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A},\right. \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 2.0 \mathrm{~A}, 14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc} \text { ) }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{gathered}
11.75 \\
11.5
\end{gathered}
\] & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
12.25 \\
12.5
\end{gathered}
\] & \[
\begin{aligned}
& 11.5 \\
& 11.4
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 12.5 \\
& 12.6
\end{aligned}
\] & Vdc \\
\hline Line Pegulation (Note 2)
\[
\begin{aligned}
& \left(14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} ;\right. \\
& 14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 35 \mathrm{Vdc}, \mathrm{O}=1.0 \mathrm{~A}, \mathrm{~T} \mathrm{~J}=+25^{\circ} \mathrm{C} ; \\
& 16 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 22 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C} ; \\
& 14.9 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}, \mathrm{IO}=1.0 \mathrm{~A} \text { ) }
\end{aligned}
\] & Regline & - & 6.0 & 45 & - & 6.0 & 45 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & mV \\
\hline Thermal Regulation
\[
\text { (Pulse } \left.=10 \mathrm{~ms}, \mathrm{P}=20 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)
\] & Regtherm & - & 0.001 & 0.01 & - & 0.002 & 0.03 & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline \[
\begin{aligned}
& \text { Quiescent Current } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}\right)
\end{aligned}
\] & 'B & - & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & - & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \left(14.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right. \text {; } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ; \\
& 14.9 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} \text { ) }
\end{aligned}
\] & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & - & 0.3 & 1.0 & - & 0.3 & 1.0 & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& \text { (15 Vdc } \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \\
& \mathrm{I}_{\mathrm{O}}=2.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { ) }
\end{aligned}
\] & RR & 57 & 67 & - & 57 & 67 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{I} \mathrm{O}=3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & 2.2 & 2.5 & - & 2.2 & 2.5 & Vdc \\
\hline Output Noise Voltage
\[
\left(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & Ro & - & 2.0 & - & - & 20 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit
\[
\left(\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & ISC & - & 1.5 & - & - & 1.5 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & - & 5.0 & - & - & 5.0 & - & A \\
\hline Average Temperature Coefficient of Output Voltage ( \(1 \mathrm{O}=5.0 \mathrm{~mA}\) ) & \(\mathrm{TCV}_{\mathrm{O}}\) & - & 0.5 & - & - & 0.5 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Although power dissipation is internally limited, specifications apply only for \(\mathrm{P}_{\mathrm{O}} \leq \mathrm{P}_{\max }, \mathrm{P}_{\max }=25 \mathrm{~W}\).
2. Line and load regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC78T00 Series}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=20 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=3.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}, \mathrm{PO}_{\mathrm{O}} \leq \mathrm{P}_{\max }\right.\) [Note 1], unless otherwise noteci.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78T15AC} & \multicolumn{3}{|c|}{MC78T15C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A} ;\right. \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 2.0 \mathrm{~A}, 17.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc} \text { ) }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 14.7 \\
& 14.4
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 15.3 \\
& 15.6
\end{aligned}
\] & \[
\begin{gathered}
14.4 \\
14.25
\end{gathered}
\] & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & \[
\begin{gathered}
15.6 \\
15.75
\end{gathered}
\] & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& \left(17.6 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 40 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} ;\right. \\
& 17.6 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 40 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} ; \\
& 20 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ; \\
& \left.18 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\right)
\end{aligned}
\] & Regline & - & 7.5 & 55 & - & 7.5 & 55 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& \left(5.0 \mathrm{~mA} \leq 1_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq 1_{\mathrm{O}} \leq 3.0 \mathrm{~A}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & mV \\
\hline Thermal Regulation
\[
\text { (Pulse }=10 \mathrm{~ms}, \mathrm{P}=20 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { ) }
\] & Regtherm & - & 0.001 & 0.01 & - & 0.002 & 0.03 & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline \[
\begin{aligned}
& \text { Quiescent Current } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}\right)
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{B}}\) & - & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & - & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline ```
Quiescent Current Change
    (17.6 Vdc \(\leq \mathrm{V}_{\text {in }} \leq 40 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\);
    \(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\);
    \(18 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{l}=1.0 \mathrm{~A}\) )
``` & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & - & 0.3 & 1.0 & - & 0.3 & 1.0 & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& \quad\left(18.5 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 28.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz},\right. \\
& \left.\mathrm{IO}=2.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 55 & 65 & - & 55 & 65 & - & dB \\
\hline Dropout Voltage (\(\mathrm{I} \mathrm{O}=3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & 2.2 & 2.5 & - & 2.2 & 2.5 & Vdc \\
\hline \begin{tabular}{l}
Output Noise Voltage \\
\(\left(10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right.\))
\end{tabular} & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & \(\mathrm{R}_{\mathrm{O}}\) & - & 2.0 & - & - & 20 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit \(\left(\mathrm{V}_{\mathrm{in}}=40 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) & ISC & - & 1.0 & - & - & 1.0 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 5.0 & - & - & 5.0 & - & A \\
\hline Average Temperature Coefficient of Output Voltage
\[
(\mathrm{IO}=5.0 \mathrm{~mA})
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & 0.6 & - & - & 0.6 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1 . Although power dissipation is internally limited, specifications apply only for \(\mathrm{P}_{\mathrm{O}} \leq \mathrm{P}_{\max }, \mathrm{P}_{\max }=25 \mathrm{~W}\).
2. Line and load regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC78T00 Series}

\section*{VOLTAGE REGULATOR PERFORMANCE}

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration (<100 \(\mu \mathrm{s}\)) and are strictly a function of electrical gain. However, pulse widths of longer duration (> 1.0 ms) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.

Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The change in dissipated power
can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of IC layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms , additional changes in the output voltage are due to the temperature coefficient of the device.

Figure 1 shows the line and thermal regulation response of a typical MC78T05AC to a 20 W input pulse. The variation of the output voltage due to line regulation is labeled and the thermal regulation component is labeled . Figure 2 shows the load and thermal regulation response of a typical MC78T05AC to a 20 W load pulse. The output voltage variation due to load regulation is labeled and the thermal regulation component is labeled

Figure 1. MC78T05AC Line and Thermal Regulation

Figure 2. MC78T05AC Load and Thermal Regulation

\(V_{\text {out }}=5.0 \mathrm{~V}\)
\(V_{\text {in }}=15\)
\(l_{\text {out }}=0 \mathrm{~A} \quad 2.0 \mathrm{~A}\)
(1) \(=\) Regline \(=4.4 \mathrm{mV}\)

0 A (2) \(=\) Regtherm \(=0.0015 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{W}\)

Representative Schematic Diagram

Figure 3. Temperature Stability

Figure 5. Ripple Rejection versus Frequency

Figure 7. Quiescent Current versus Input Voltage

Figure 4. Output Impedance

Figure 6. Ripple Rejection versus Output Current

Figure 8. Quiescent Current versus Output Current

Figure 9. Dropout Voltage

Figure 11. Line Transient Response

Figure 10. Peak Output Current

Figure 12. Load Transient Response

Figure 13. Maximum Average Power

\section*{MC78T00 Series}

\section*{APPLICATIONS INFORMATION}

\section*{Design Considerations}

The MC78T00 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the
regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead

Figure 14. Current Regulator

The MC78T05 regulator can also be used as a current source when connected as above. In order to minimize dissipation the MC78T05 is chosen in this application. Resistor R determines the current as follows:
\[
I_{O}=\frac{5.0 V}{R}+I_{B}
\]
\(\Delta_{\mathrm{B}} \cong 0.7 \mathrm{~mA}\) over line, load and Temperature changes
\[
\mathrm{I}_{\mathrm{B}} \cong 3.5 \mathrm{~mA}
\]

For example, a 2.0 A current source would require \(R\) to be a \(2.5 \Omega\), 10 W resistor and the output voltage compliance would be the input voltage less 7.0 V .

Figure 16. Current Boost Regulator

\(X X=2\) digits of type number indicating voltage
The MC78T00 series can be current boosted with a PNP transistor. The 2N4398 provides current to 15A. Resistor \(R\) in conjuction with the \(V_{B E}\) of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input-output differential voltage minimum is increased by the \(V_{B E}\) of the pass transistor.

Figure 15. Adjustable Output Regulator

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3.0 V greater than the regulator voltage.

Figure 17. Current Boost With Short Circuit Protection

\(X X=2\) digits of type number indicating voltage.
The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three-terminal regulator. Therefore, an eight-ampere power transistor is specified.

\section*{Product Preview \\ Micropower Voltage Regulator}

The MC78BC00 voltage regulators are specifically designed to be used with an external power transistor to deliver high current with high voltage accuracy and low quiescent current.

The MC78BC00 series are devices suitable for constructing regulators with ultra-low dropout voltage and output current in the range of several tens of mA to hundreds of mA . These devices have a chip enable function, which minimizes the standby mode current drain. Each of these devices contains a voltage reference unit, an error amplifier, a driver transistor and resistors. These devices are available in the SOT-23, 5 pin surface mount packages.

These devices are ideally suited for battery powered equipment, and power sources for hand-held audio instruments, communication equipment and domestic appliances.

MC78BC00 Series Features:
- Ultra-Low Supply Current \((50 \mu \mathrm{~A})\)
- Standby Mode (\(0.2 \mu \mathrm{~A}\))
- Ultra-Low Dropout Voltage (0.1 V with External Transistor and \(10=100 \mathrm{~mA}\))
- Excellent Line Regulation (Typically \(0.1 \% / \mathrm{V}\))
- High Accuracy Output Voltage (\(\pm 2.5 \%\))

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & \begin{tabular}{c}
Output \\
Voltage
\end{tabular} & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC78BC30NTR & 3.0 & & \\
MC78BC33NTR & 3.3 & & \\
MC78BC40NTR & 4.0 & \(T_{A}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\) & SOT-23 \\
MC78BC50NTR & 5.0 & & \\
\hline
\end{tabular}

Other voltages from 2.0 to 6.0 V , in 0.1 V increments, are available upon request. Consult your local Motorola sales office for information.

VOLTAGE REGULATOR WITH EXTERNAL POWER TRANSISTOR

SEMICONDUCTOR TECHNICAL DATA

\section*{Product Preview Micropower Voltage Regulator}

The MC78FC00 series voltage regulators are specifically designed for use as a power source for video instruments, handheld communication equipment, and battery powered equipment.

The MC78FC00 series voltage regulator ICs feature a high accuracy output voltage and ultra-low quiescent current. Each device contains a voltage reference unit, an error amplifier, a driver transistor, and resistors for setting output voltage, and a current limit circuit. These devices are available in SOT-89 surface mount packages, and allow construction of an efficient, constant voltage power supply circuit.
MC78FC00 Series Features:
- Ultra-Low Quiescent Current of \(1.1 \mu \mathrm{~A}\) Typical
- Ultra-Low Dropout Voltage (0.5 V Typical)
- Large Output Current (120 mA Typical)
- Excellent Line Regulation (0.1\%)
- Wide Operating Voltage Range (2.0 V to 10 V)
- High Accuracy Output Voltage (\(\pm 2.5 \%\))
- Wide Output Voltage Range (2.0 V to 6.0 V)
- Surface Mount Package (SOT-89)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & \begin{tabular}{c}
Output \\
Voltage
\end{tabular} & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC78FC30HT1 & 3.0 & & \\
MC78FC33HT1 & 3.3 & & \\
MC78FC40HT1 & 4.0 & \(\mathrm{TA}_{A}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\) & SOT-89 \\
MC78FC50HT1 & 5.0 & & \\
\hline
\end{tabular}

Other voltages from 2.0 to 6.0 V , in 0.1 V increments, are available upon request. Consult your local Motorola sales office for information.

\section*{PIN CONNECTIONS}

Standard Application

\section*{Product Preview Micropower Voltage Regulator}

The MC78LC00 series voltage regulators are specifically designed for use as a power source for video instruments, handheld communication equipment, and battery powered equipment.

The MC78LC00 series features an ultra-low quiescent of \(1.1 \mu \mathrm{~A}\) and a high accuracy output voltage. Each device contains a voltage reference, an error amplifier, a driver transistor and resistors for setting the output voltage. These devices are available in either SOT-89, 3 pin, or SOT-23, 5 pin, surface mount packages.
MC78LC00 Series Features:
- Low Quiescent Current of \(1.1 \mu \mathrm{~A}\) Typical
- Low Dropout Voltage (30 mV Typical)
- Excellent Line Regulation (0.1\%)
- High Accuracy Output Voltage (\(\pm 2.5 \%\))
- Wide Output Voltage Range (2.0 V to 6.0 V)
- Output Current for Low Power (80 mA Typical)
- Two Surface Mount Packages (SOT-89, 3 Pin, or SOT-23, 5 Pin)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & \begin{tabular}{c}
Output \\
Voltage
\end{tabular} & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC78LC30HT1 & 3.0 & & \\
MC78LC33HT1 & 3.3 & & SOT-89 \\
MC78LC40HT1 & 4.0 & & \\
MC78LC50HT1 & 5.0 & \multirow{3}{*}{\(\mathrm{~T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\)} & \\
\hline MC78LC30NTR & 3.0 & & SOT-23 \\
MC78LC33NTR & 3.3 & & \\
MC78LC40NTR & 4.0 & & \\
MC78LC50NTR & 5.0 & & \\
\hline
\end{tabular}

Other voltages from 2.0 to 6.0 V , in 0.1 V increments, are available upon request. Consult your local Motorola sales office for information.

\section*{Three-Terminal Negative Voltage Regulators}

The MC7900 series of fixed output negative voltage regulators are intended as complements to the popular MC7800 series devices. These negative regulators are available in the same seven-voltage options as the MC7800 devices. In addition, one extra voltage option commonly employed in MECL systems is also available in the negative MC7900 series.

Available in fixed output voltage options from -5.0 V to -24 V , these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of 1.0 A.
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Available in \(2 \%\) Voltage Tolerance (See Ordering Information)

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Output Voltage \\
Tolerance
\end{tabular} & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC79XXACD2T & \(2 \%\) & & Surface Mount \\
\hline MC79XXCD2T & \(4 \%\) & \multirow{3}{*}{\(T_{J}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & \\
\cline { 1 - 1 } MC79XXACT & \(2 \%\) & & Insertion Mount \\
\cline { 1 - 1 } MC79XXCT & \(4 \%\) & & \\
\hline MC79XXBD2T & \(4 \%\) & \multirow{2}{*}{\(T_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & Surface Mount \\
\cline { 1 - 1 } MC79XXBT & & & Insertion Mount \\
\hline
\end{tabular}

XX indicates nominal voltage.

\section*{THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS}

T SUFFIX
PLASTIC PACKAGE CASE 221A

Heatsink surface connected to Pin 2.

D2T SUFFIX
PLASTIC PACKAGE CASE 936 (D2PAK)

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above more negative even during the high point of the input ripple voltage.

XX, These two digits of the type number indicate nominal voltage.
* \(\mathrm{C}_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter.
** \(\mathrm{C}_{\mathrm{O}}\) improve stability and transient response.

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE
\begin{tabular}{|l|l|l|l|}
\hline MC7905 & 5.0 V & MC7912 & 12 V \\
MC7905.2 & 5.2 V & MC7915 & 15 V \\
MC7906 & 6.0 V & MC7918 & 28 V \\
MC7908 & 8.0 V & MC7924 & 24 V \\
\hline
\end{tabular}

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input Voltage (\(-5.0 \mathrm{~V} \geq \mathrm{V}_{\mathrm{O}} \geq-18 \mathrm{~V}\)) & \(\mathrm{V}_{\mathrm{I}}\) & -35 & Vdc \\
\((24 \mathrm{~V})\)
\end{tabular}

\section*{THERMAL CHARACTERISTICS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & Max & Unit \\
\hline Thermal Resistance, Junction-to-Ambient & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 65 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance, Junction-to-Case & \(\mathrm{R}_{\theta \mathrm{JC}}\) & 5.0 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

\section*{MC7905C}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & -4.8 & -5.0 & -5.2 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
&\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}\right.=100 \mathrm{~mA}) \\
&-7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
&-8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-12 \mathrm{Vdc} \\
&\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}\right.=500 \mathrm{~mA}) \\
&-7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
&-8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-12 \mathrm{Vdc}
\end{aligned}
\] & Regline & -
-
-
- & \[
\begin{aligned}
& 7.0 \\
& 2.0 \\
& \\
& 35 \\
& 8.0
\end{aligned}
\] & \[
\begin{gathered}
50 \\
25 \\
\\
100 \\
50
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 11 \\
& 4.0
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I} \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -4.75 & - & -5.25 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IB & - & 4.3 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A}
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{I}^{\text {B }}\) & - & & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{l} \mathrm{O}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 70 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{IO}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq T_{J} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC7905AC}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & -4.9 & -5.0 & -5.1 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note 1) } \\
& -8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-12 \mathrm{Vdc} ; \mathrm{I}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& -8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-12 \mathrm{Vdc} ; \mathrm{I}=1.0 \mathrm{~A} \\
& -7.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} ; \mathrm{I}=500 \mathrm{~mA} \\
& -7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-20 \mathrm{Vdc} ; \mathrm{I}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 2.0 \\
& 7.0 \\
& 7.0 \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 50 \\
& 50 \\
& 50
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 1) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 11 \\
& 4.0 \\
& 9.0
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50 \\
100
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-7.5 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I} \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -4.80 & - & -5.20 & Vdc \\
\hline Input Bias Current & IIB & - & 4.4 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -7.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 1.3 \\
& 0.5 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{IO}=\mathrm{mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 70 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{IO}=1.0 \mathrm{~A} . \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{IO}=5.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC7905.2C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-10 \cdot \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & -5.0 & -5.2 & -5.4 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{array}{r}
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}=100 \mathrm{~mA}\right) \\
-7.2 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
-8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-12 \mathrm{Vdc} \\
\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}=500 \mathrm{~mA}\right) \\
-7.2 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
-8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-12 \mathrm{Vdc}
\end{array}
\] & Regline & - & \[
\begin{aligned}
& 8.0 \\
& 2.2 \\
& 37 \\
& 8.5
\end{aligned}
\] & \[
\begin{gathered}
52 \\
27 \\
\\
105 \\
52
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & & \[
\begin{aligned}
& 12 \\
& 4.5
\end{aligned}
\] & \[
\begin{gathered}
105 \\
52
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-7.2 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -4.95 & - & -5.45 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IIB & - & 4.3 & 8.0 & mA \\
\hline Input Bias Current Change \(-7.2 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{l}} \geq-25 \mathrm{Vdc}\) \(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}\) & \(\Delta^{\prime}{ }^{\prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 42 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{IO}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 68 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}^{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7906C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & Vo & -5.75 & -6.0 & -6.25 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{array}{r}
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
-8.0 \mathrm{Vdc} \geq \mathrm{V}_{I} \geq-25 \mathrm{Vdc} \\
-9.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-13 \mathrm{Vdc} \\
\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\
-8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
-9.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-13 \mathrm{Vdc}
\end{array}
\] & Regline & - & \[
\begin{aligned}
& 9.0 \\
& 3.0 \\
& \\
& 43 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
60 \\
30 \\
\\
120 \\
60
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 13 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 60
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
-8.0 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-21 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -5.7 & - & -6.3 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IIB & - & 4.3 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}\) & & & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 45 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{I} \mathrm{O}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 65 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{MC7908C}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & Vo & -7.7 & -8.0 & -8.3 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{gathered}
\left(\mathrm{T} J_{J}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
-10.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
-11 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-17 \mathrm{Vdc} \\
\left(\mathrm{~T} J_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\
-10.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
-11 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-17 \mathrm{Vdc}
\end{gathered}
\] & Regline & & \[
\begin{aligned}
& 12 \\
& 5.0 \\
& 50 \\
& 22
\end{aligned}
\] & \[
\begin{gathered}
80 \\
40 \\
\\
160 \\
80
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & & \[
\begin{aligned}
& 26 \\
& 9.0
\end{aligned}
\] & \[
\begin{gathered}
160 \\
80
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-10.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-23 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -7.6 & - & -8.4 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IB & - & 4.3 & 8.0 & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
-10.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
\hline
\end{gathered}
\] & \(\Delta^{\prime}{ }^{\prime} \mathrm{B}\) & & & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(V_{n}\) & - & 52 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{l} \mathrm{O}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 62 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}^{\circ}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{IO}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7912C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & -11.5 & -12 & -12.5 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{gathered}
\left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
-14.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
-16 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-22 \mathrm{Vdc} \\
\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\
-14.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
-16 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-22 \mathrm{Vdc}
\end{gathered}
\] & Regline & & \[
\begin{aligned}
& 13 \\
& 6.0 \\
& 55 \\
& 24
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 60 \\
& \\
& 240 \\
& 120
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & & \[
\begin{aligned}
& 46 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
-14.5 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -11.4 & - & -12.6 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IIB & - & 4.4 & 8.0 & mA \\
\hline Input Bias Current Change \(-14.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc}\) \(5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A}\) & \(\Delta^{\prime}{ }^{\prime} \mathrm{B}\) & - & & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(V_{n}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{l}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 61 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}^{\circ}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}^{\circ}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC7912AC
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), uniess otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & -11.75 & -12 & -12.25 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note 1) } \\
& -16 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-22 \mathrm{Vdc} ; \mathrm{I}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& -16 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-22 \mathrm{Vdc} ; \mathrm{I}=1.0 \mathrm{~A} \\
& -14.8 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-30 \mathrm{Vdc} ; \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA} \\
& -14.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-27 \mathrm{Vdc} ; \mathrm{I}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& \text { - } \\
& \text { - }
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 24 \\
& 24 \\
& 13
\end{aligned}
\] & \[
\begin{gathered}
60 \\
120 \\
120 \\
120
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 1) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}
\end{aligned}
\] & Regload & & \[
\begin{aligned}
& 46 \\
& 17 \\
& 35
\end{aligned}
\] & \[
\begin{gathered}
150 \\
75 \\
150
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-14.8 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & Vo & -11.5 & - & -12.5 & Vdc \\
\hline Input Bias Current & IIB & - & 4.4 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -15 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(V_{n}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{l} \mathrm{O}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 61 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{IO}=5.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7915C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & -14.4 & -15 & -15.6 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{gathered}
\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
-17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
-20 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-26 \mathrm{Vdc} \\
\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\
-17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
-20 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-26 \mathrm{Vdc}
\end{gathered}
\] & Regline & -
-
- & \[
\begin{aligned}
& 14 \\
& 6.0 \\
& 57 \\
& 27
\end{aligned}
\] & \[
\begin{gathered}
150 \\
75 \\
\\
300 \\
150
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & & \[
\begin{aligned}
& 68 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
-17.5 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -14.25 & - & -15.75 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 1 B & - & 4.4 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 1.5 \mathrm{~A}
\end{aligned}
\] & \(\Delta^{\prime}{ }_{1 B}\) & - & & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (l O \(=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 60 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{O}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{l}=5.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC7915AC
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-23 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), uniess otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & Vo & -14.7 & -15 & -15.3 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& -20 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& -20 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \\
& -17.9 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& -17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & -
-
- & \[
\begin{aligned}
& 27 \\
& 57 \\
& 57 \\
& 57
\end{aligned}
\] & \[
\begin{gathered}
75 \\
150 \\
150 \\
150
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 1) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leq 1 \mathrm{O} \leq 750 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}
\end{aligned}
\] & Regload & & \[
\begin{aligned}
& 68 \\
& 25 \\
& 40
\end{aligned}
\] & \[
\begin{gathered}
150 \\
75 \\
150
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-17.9 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I} \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -14.4 & - & -15.6 & Vdc \\
\hline Input Bias Current & IIB & - & 4.4 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leq 10 \leq 1.5 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{l} \mathrm{O}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 60 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}^{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV}^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7918C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & -17.3 & -18 & -18.7 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{gathered}
\left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
-21 \mathrm{Vdc} \geq \mathrm{V}_{I} \geq-33 \mathrm{Vdc} \\
-24 \mathrm{Vdc} \geq \mathrm{V}_{I} \geq-30 \mathrm{Vdc} \\
\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\
-21 \mathrm{Vdc} \geq \mathrm{V}_{I} \geq-33 \mathrm{Vdc} \\
-24 \mathrm{Vdc} \geq \mathrm{V}_{I} \geq-30 \mathrm{Vdc}
\end{gathered}
\] & Regline & - & \[
\begin{aligned}
& 25 \\
& 10 \\
& 90 \\
& 50
\end{aligned}
\] & \[
\begin{gathered}
180 \\
90 \\
\\
360 \\
180
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq 1_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 110 \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
-21 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-33 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I} \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -17.1 & - & -18.9 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IIB & - & 4.5 & 8.0 & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
-21 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-33 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 1.5 \mathrm{~A}
\end{gathered}
\] & \(\Delta^{\prime} \mathrm{IB}\) & & & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\)) & \(V_{n}\) & - & 110 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{I} \mathrm{O}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 59 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{MC7924C}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & -23 & -24 & -25 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{array}{r}
\left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
-27 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-38 \mathrm{Vdc} \\
-30 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-36 \mathrm{Vdc} \\
\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\
-27 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-38 \mathrm{Vdc} \\
-30 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-36 \mathrm{Vdc}
\end{array}
\] & Regline & - & \[
\begin{gathered}
31 \\
14 \\
\\
118 \\
70
\end{gathered}
\] & \[
\begin{aligned}
& 240 \\
& 120 \\
& 470 \\
& 240
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}(\text { Note } 1) \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{gathered}
150 \\
85
\end{gathered}
\] & \[
\begin{aligned}
& 480 \\
& 240
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
-27 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-38 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I} \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -22.8 & - & -25.2 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IIB & - & 4.6 & 8.0 & mA \\
\hline ```
Input Bias Current Change
 -27 Vdc \geq V \ \geq-38 Vdc
 5.0 mA\leq IO \leq 1.5 A
``` & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 170 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{I}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\) ) & RR & - & 56 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}^{\circ}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Figure 1. Worst Case Power Dissipation as a Function of Ambient Temperature


Figure 3. Ripple Rejection as a Function of Frequency


Figure 5. Output Voltage as a Function of Junction Temperature


Figure 2. Peak Output Current as a Function of Input-Output Differential Voltage


Figure 4. Ripple Rejection as a Function of Output Voltage


Figure 6. Quiescent Current as a Function of Temperature


\section*{Design Considerations}

The MC7900 Series of fixed voltage regulators are designed with Thermal overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The capacitor chosen should have an equivalent series resistance of less than \(0.7 \Omega\). The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

Figure 8. Current Boost Regulator (-5.0 V @ 4.0 A, with 5.0 A Current Limiting)

*Mounted on heatsink.

When a boost transistor is used, short circuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to \(0.6 \mathrm{~V} / \mathrm{R}_{\mathrm{SC}}\). Operation beyond this point to the peak current capability of the MC7905C is possible if the regulator is mounted on a heatsink; otherwise thermal shutdown will occur when the additional load current is picked up by the regulator.

Figure 7. Current Regulator


The MC7905, -5.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows.
\[
I_{O}=\frac{5.0 V}{R}+I_{B}
\]

The quiescent current for this regulator is typically 4.3 mA . The 5.0 V regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage.

Figure 9. Operational Amplifier Supply
( \(\pm 15\) @ 1.0 A )


The MC7815 and MC7915 positive and negative regulators may be connected as shown to obtain a dual power supply for operational amplifiers. A clamp diode should be used at the output of the MC7815 to prevent potential latch-up problems wheneverthe output of the positive regulator (MC7815) is drawn below ground with an output current greater than 200 mA .

\section*{MC7900}

Figure 10. D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


\section*{DEFINITIONS}

Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Input Bias Current - That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

\section*{Three-Terminal Low Current Negative Voltage Regulators}

The MC79L00, A Series negative voltage regulators are inexpensive, easy-to-use devices suitable for numerous applications requiring up to100 mA . Like the higher powered MC7900 Series negative regulators, this series features thermal shutdown and current limiting, making them remarkably rugged. In most applications, no external components are required for operation.

The MC79L00 devices are useful for on-card regulation or any other application where a regulated negative voltage at a modest current level is needed. These regulators offer substantial advantage over the common resistor/zener diode approach.
- No External Components Required
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- Low Cost
- Complementary Positive Regulators Offered (MC78L00 Series)
- Available in Either \(\pm 5 \%\) (AC) or \(\pm 10 \%\) (C) Selections


\footnotetext{
* Automotive temperature range selections are available with special test conditions and additional tests in 5,12 and 15 V devices. Contact your local Motorola sales office for information.
}

MC79L00, A Series

\section*{THREE-TERMINAL LOW CURRENT NEGATIVE FIXED VOLTAGE REGULATORS}

SEmiconductor TECHNICAL DATA


CASE 29

Pin 1. Ground
2. Input
3. Output


\section*{D SUFFIX}

PLASTIC PACKAGE CASE 751 (SOP-8)*

Pin 1. Vout
5. GND
2. \(V_{\text {in }}\)
6. \(V_{\text {in }}\)
3. V in
7. \(V_{\text {in }}\)
4. NC 8. NC
*SOP-8 is an internally modified SO-8 package. Pins 2, 3, 6, and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOP-8 conforms to all external dimensions of the standard SO-8 package.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Device No. \\
\(\pm \mathbf{1 0 \%}\)
\end{tabular} & \begin{tabular}{c} 
Device No. \\
\(5 \%\)
\end{tabular} & \begin{tabular}{c} 
Nominal \\
Voltage
\end{tabular} \\
\hline MC79L05C & MC79L05AC & -5.0 \\
MC79L12C & MC79L12AC & -12 \\
MC79L15C & MC79L15AC & -15 \\
MC79L18C & MC79L18AC & -18 \\
MC79L24C & MC79L24AC & -24 \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC79LXXACD* & \multirow{3}{*}{\(\mathrm{T}_{J}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & SOP-8 \\
\hline MC79LXXACP & & Plastic Power \\
\hline MC79LXXCP & & Plastic Power \\
\hline MC79LXXABD* & \multirow[b]{2}{*}{\(\mathrm{T}_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & SOP-8 \\
\hline MC79LXXABP* & & Plastic Power \\
\hline
\end{tabular}
\(X X\) indicates nominal voltage

\section*{MC79L00, A Series}

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input Voltage (-5 V) & \(\mathrm{V}_{\mathrm{I}}\) & -30 & Vdc \\
\((-12,-15,-18 \mathrm{~V})\) & & -35 & \\
\((-24 \mathrm{~V})\) & -40 & \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}+125^{\circ} \mathrm{C}\) (for MC79LXXAB), \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) (for MC79LXXAC)).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC79L05C, AB} & \multicolumn{3}{|c|}{MC79L05AC, AB} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & -4.6 & -5.0 & -5.4 & -4.8 & -5.0 & -5.2 & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Regulation } \\
& \qquad \mathrm{T}_{J}=+25^{\circ} \mathrm{C} \text { ) } \\
& -7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-20 \mathrm{Vdc} \\
& -8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-20 \mathrm{Vdc}
\end{aligned}
\] & Regline & & - & \[
\begin{aligned}
& 200 \\
& 150
\end{aligned}
\] & & & \[
\begin{aligned}
& 150 \\
& 100
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq \mathrm{IO} \leq 100 \mathrm{~mA} \\
& 1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 40 \mathrm{~mA}
\end{aligned}
\] & Regload & - & - & \[
\begin{aligned}
& 60 \\
& 30
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 60 \\
& 30 \\
& \hline
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& -7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-20 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{I}}=-10 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 10 \leq 70 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{array}{r}
-4.5 \\
-4.5 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& -5.5 \\
& -5.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -4.75 \\
& -4.75 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& -5.25 \\
& -5.25 \\
& \hline
\end{aligned}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & \({ }^{\prime \prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 6.0 \\
& 5.5 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 6.0 \\
& 5.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
-8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-20 \mathrm{Vdc} \\
1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 40 \mathrm{~mA} \\
\hline
\end{gathered}
\] & I'B & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\right)
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 40 & - & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\left(-8.0 \geq V_{I} \geq-18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & RR & 40 & 49 & - & 41 & 49 & - & dB \\
\hline Dropout Voltage ( \(1 \mathrm{O}=40 \mathrm{~mA}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \mathrm{l}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}+125^{\circ} \mathrm{C}\right.\) (for MC79LXXAC),
\(0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}\) (for MC79LXXAB)).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC79L12C, AB} & \multicolumn{3}{|c|}{MC79L12AC, AB} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & -11.1 & -12 & -12.9 & -11.5 & -12 & -12.5 & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Regulation } \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& -14.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-27 \mathrm{Vdc} \\
& -16 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-27 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & - & - & \[
\begin{aligned}
& 250 \\
& 200
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 250 \\
& 200
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq \mathrm{I} \leq 100 \mathrm{~mA} \\
& 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA}
\end{aligned}
\] & Regload & - & - & \[
\begin{aligned}
& 100 \\
& 50 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 100 \\
& 50 \\
& \hline
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& -14.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-27 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA} \\
& \mathrm{~V}_{1}=-19 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{l} 0 \leq 70 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{array}{r}
-10.8 \\
-10.8 \\
\hline
\end{array}
\] & - & \[
\begin{array}{r}
-13.2 \\
-13.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-11.4 \\
-11.4 \\
\hline
\end{array}
\] & - & \[
\begin{array}{r}
-12.6 \\
-12.6 \\
\hline
\end{array}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Bias Current } \\
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & IIB & - & - & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & - & & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
-16 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-27 \mathrm{Vdc} \\
1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 40 \mathrm{~mA} \\
\hline
\end{gathered}
\] & \({ }^{\prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2 \\
& \hline
\end{aligned}
\] & - & & \[
\begin{array}{r}
1.5 \\
0.2 \\
\hline
\end{array}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage } \\
& \quad\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 80 & - & - & 80 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\left(-15 \leq \mathrm{V}_{1} \leq-25 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & RR & 36 & 42 & - & 37 & 42 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{l} \mathrm{O}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \mathrm{l}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}+125^{\circ} \mathrm{C}\right.\) (for MC79LXXAB), \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) (for MC79LXXAC)).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC79L15C} & \multicolumn{3}{|c|}{MC79L15AC, AB} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & -13.8 & -15 & -16.2 & -14.4 & -15 & -15.6 & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Regulation } \\
& \qquad \begin{array}{l}
\left.\mathrm{T} J=+25^{\circ} \mathrm{C}\right) \\
-17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
-20 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc}
\end{array}
\end{aligned}
\] & Regline & - & & \[
\begin{aligned}
& 300 \\
& 250
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 300 \\
& 250
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 100 \mathrm{~mA} \\
& 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}
\end{aligned}
\] & Regload & - & - & \[
\begin{aligned}
& 150 \\
& 75 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 150 \\
& 75
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& -17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-\mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA} \\
& \mathrm{~V}_{1}=-23 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 10 \leq 70 \mathrm{~mA}
\end{aligned}
\] & Vo & \[
\begin{aligned}
& -13.5 \\
& -13.5
\end{aligned}
\] & & \[
\begin{aligned}
& -16.5 \\
& -16.5
\end{aligned}
\] & \[
\begin{aligned}
& -14.25 \\
& -14.25 \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{r}
-15.75 \\
-15.75 \\
\hline
\end{array}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{TJ}^{2}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IIB & - & - & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
-20 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 40 \mathrm{~mA}
\end{gathered}
\] & \(\Delta^{\prime} / \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\right)
\] & \(\mathrm{V}_{\mathrm{N}}\) & - & 90 & - & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\left(-18.5 \leq \mathrm{V}_{\mathrm{I}} \leq-28.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}\right)
\] & RR & 33 & 39 & - & 34 & 39 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\left|\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\right|\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}, 0^{\circ} \mathrm{C}<\mathrm{T}_{J}\right\rangle+125^{\circ} \mathrm{C}\), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC79L18C} & \multicolumn{3}{|c|}{MC79L18AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & -16.6 & -18 & -19.4 & -17.3 & -18 & -18.7 & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Regulation } \\
& \text { ( } T_{J}=+25^{\circ} \mathrm{C} \text { ) } \\
& -20.7 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-33 \mathrm{Vdc} \\
& -21.4 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-33 \mathrm{Vdc} \\
& -22 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-33 \mathrm{Vdc} \\
& -21 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-33 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & - & \[
\begin{aligned}
& 325 \\
& 275
\end{aligned}
\] & - & \[
\begin{aligned}
& \text { - } \\
& \text { - }
\end{aligned}
\] & \[
\begin{gathered}
325 \\
- \\
- \\
275
\end{gathered}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 100 \mathrm{~mA} \\
& 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}
\end{aligned}
\] & Regload & - & - & \[
\begin{gathered}
170 \\
85
\end{gathered}
\] & - & - & \[
\begin{gathered}
170 \\
85 \\
\hline
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& -20.7 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA} \\
& -21.4 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 1 \mathrm{I} \leq 40 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{I}}=-27 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 70 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& -16.2 \\
& -16.2
\end{aligned}
\] & - & \[
\begin{array}{r}
- \\
-19.8 \\
-19.8 \\
\hline
\end{array}
\] & \[
\begin{gathered}
-17.1 \\
-17.1
\end{gathered}
\] & - & \[
\begin{gathered}
-18.9 \\
- \\
-18.9
\end{gathered}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(T_{J}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IIB & - & - & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
-21 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-33 \mathrm{Vdc} \\
-27 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-33 \mathrm{Vdc} \\
1.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 40 \mathrm{~mA}
\end{gathered}
\] & IIB &  &  & \[
\begin{gathered}
- \\
1.5 \\
0.2
\end{gathered}
\] &  &  & \[
\begin{gathered}
1.5 \\
- \\
0.1
\end{gathered}
\] & mA \\
\hline Output Noise Voltage
\[
\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\right)
\] & \(v_{n}\) & - & 150 & - & - & 150 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\left(-23 \leq \mathrm{V}_{1} \leq-33 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & RR & 32 & 46 & - & 33 & 48 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}=40 \mathrm{~mA}, \mathrm{~T} J=+25^{\circ} \mathrm{C}
\] & \(\mathrm{IV}_{1}-\mathrm{V}_{\mathrm{O}} \mathrm{I}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{1}=-33 \mathrm{~V}, \mathrm{I}_{0}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC79L24C} & \multicolumn{3}{|c|}{MC79L24AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & Vo & -22.1 & -24 & -25.9 & -23 & -24 & -25 & Vdc \\
\hline Input Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& -27 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-38 \mathrm{Vdc} \\
& -27.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-38 \mathrm{Vdc} \\
& -28 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-38 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & - & \[
\begin{aligned}
& \overline{-} \\
& 350 \\
& 300
\end{aligned}
\] & - & - & \[
\begin{gathered}
350 \\
- \\
300
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq 10 \leq 100 \mathrm{~mA} \\
& 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}
\end{aligned}
\] & Regload & - & - & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& -27 \mathrm{Vdc} \geq V_{1} \geq-38 \mathrm{~V}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA} \\
& -28 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-38 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA} \\
& \mathrm{~V}_{1}=-33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq 10 \leq 70 \mathrm{~mA}
\end{aligned}
\] & Vo & \[
\begin{array}{r}
- \\
-21.4 \\
-21.4
\end{array}
\] & - & \[
\begin{aligned}
& - \\
& -26.4 \\
& -26.4
\end{aligned}
\] & \[
\begin{gathered}
-22.8 \\
-22.8
\end{gathered}
\] & - & \[
\begin{gathered}
-25.2 \\
-25.2
\end{gathered}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IIB & - & - & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & - & & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -28 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-38 \mathrm{Vdc} \\
& 1.0 \mathrm{~mA} \leq 10 \leq 40 \mathrm{~mA}
\end{aligned}
\] & \(\Delta^{\prime} / \mathrm{B}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & - & & \[
\begin{aligned}
& 1.5 \\
& 0.1
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}\right)
\] & \(v_{n}\) & - & 200 & - & - & 200 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\left(-29 \leq \mathrm{V}_{\mathrm{l}} \leq-35 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & RR & 30 & 43 & - & 31 & 47 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\left|\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\right|\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

\section*{Design Considerations}

The MC79L00, A Series of fixed voltage regulators are designed with Thermal Overload Protections that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire length, or if the output load capacitance is large. An input
bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

Figure 2. Standard Application


A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the ripple voltage.
\({ }^{*} \mathrm{C}_{1}\) is required if regulator is located an appreciable distance from the power supply filter
\({ }^{* *} \mathrm{C}_{0}\) improves stability and transient response.

\section*{MC79L00, A Series}

TYPICAL CHARACTERISTICS
( \(T_{A}=+25^{\circ} \mathrm{C}\), unless otherwise noted.)

Figure 3. Dropout Characteristics


Figure 5. Input Bias Current versus Ambient Temperature


Figure 7. Maximum Average Power Dissipation versus Ambient Temperature (TO-92)


Figure 4. Dropout Voltage versus Junction Temperature


Figure 6. Input Bias Current versus Input Voltage


Figure 8. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


\section*{Three-Terminal Negative Voltage Regulators}

The MC79M00 series of fixed output negative voltage regulators are intended as complements to the popular MC78M00 series devices.

Available in fixed output voltage options of \(-5.0,-8.0,-12\) and -15 V , these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of 0.5 A.
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Also Available in Surface Mount DPAK (DT) Package

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE
\begin{tabular}{|l|l|l|l|}
\hline MC79M05 & -5.0 V & MC79M12 & -12 V \\
MC79M08 & -8.0 V & MC79M15 & -15 V \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & Output Voltage Tolerance & Operating Temperature Range & Package \\
\hline MC79MXXBDT, BDT-1 & \multirow{4}{*}{4.0\%} & \multirow[b]{2}{*}{TJ \(=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & DPAK \\
\hline MC79MXXBT & & & Plastic Power \\
\hline MC79MXXCDT, CDT-1 & & \multirow[b]{2}{*}{\(\mathrm{T}_{\mathrm{J}}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & DPAK \\
\hline MC79MXXCT & & & Plastic Power \\
\hline
\end{tabular}
\(X X\) indicates nominal voltage.


MC79M00 Series

\section*{THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS}

T SUFFIX
PLASTIC PACKAGE CASE 221A

Heatsink surface connected to Pin 2.

Pin 1. Ground

2. Input
3. Output


DT SUFFIX
PLASTIC PACKAGE
CASE 369A
(DPAK)


DT-1 SUFFIX PLASTIC PACKAGE CASE 369
(DPAK)
Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

\section*{STANDARD APPLICATION}


A common ground is required between the input and the output voltages. The input voltage must remain typically 1.1 V more negative even during the high point of the input ripple voltage.

XX , These two digits of the type number indicate nominal voltage
* \(\mathrm{C}_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter.
** \(\mathrm{C}_{\mathrm{O}}\) improve stability and transient response.

\section*{MC79M00}

MAXIMUM RATINGS ( \(T_{A}=25^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage & \(V_{1}\) & -35 & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation \\
Case 221A
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 369 and 369A (DPAK)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case
\end{tabular} & \[
\begin{aligned}
& \mathrm{PD}_{\mathrm{D}} \\
& \theta_{\mathrm{JA}} \\
& \theta_{\mathrm{JC}} \\
& \\
& \mathrm{PD}_{\mathrm{D}} \\
& \theta_{\mathrm{JA}} \\
& \theta_{\mathrm{JC}} \\
& \hline
\end{aligned}
\] & Internally Limited
65
5.0
Internally Limited
92
6.0 & \[
\begin{gathered}
\mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\hline
\end{gathered}
\] \\
\hline Storage Junction Temperature & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & TJ & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

THERMAL CHARACTERISTICS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Value & Unit \\
\hline Thermal Resistance, Junction-to-Ambient & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 65 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance, Junction-to-Case & \(\mathrm{R}_{\theta \mathrm{JC}}\) & 5.0 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

MC79M05B, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 2], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & -4.8 & -5.0 & -5.2 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 1) } \\
& -7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
& -8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-18 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 7.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=25^{\circ} \mathrm{C}(\text { Note } 1) \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA}
\end{aligned}
\] & Regload & - & 30 & 100 & mV \\
\hline Output Voltage
\[
-7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -4.75 & - & -5.25 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & IIB & - & 4.3 & 8.0 & mA \\
\hline Input Bias Current Change \(-8.0 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-25 \mathrm{Vdc}, \mathrm{IO}=350 \mathrm{~mA}\) \(5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 350 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=-10 \mathrm{~V}\) & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & - & - & \[
\begin{aligned}
& 0.4 \\
& 0.4
\end{aligned}
\] & mA \\
\hline Output Noise Voltage, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{f}=120 \mathrm{~Hz}\) ) & RR & 54 & 66 & - & dB \\
\hline Dropout Voltage
\[
1 \mathrm{O}=500 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.1 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{O}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1 . Load and line regulation are specified at constant temperature. Change in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
2. \(B=T_{\text {low }}\) to \(T_{\text {high }},-40^{\circ} \mathrm{C}<T_{J}<125^{\circ} \mathrm{C}\)
\(C=T_{\text {low }}\) to \(T_{\text {high }}, 0^{\circ} \mathrm{C}<T_{J}<125^{\circ} \mathrm{C}\)

MC79M08B, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{1}=-10 \mathrm{~V}, \mathrm{IO}=350 \mathrm{~mA}, \mathrm{~T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 2], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & Vo & -7.7 & -8.0 & -8.3 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } T_{J}=25^{\circ} \mathrm{C} \text { (Note 1) } \\
& -7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\
& -8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-18 \mathrm{Vdc}
\end{aligned}
\] & Regline & & \[
\begin{aligned}
& 5.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 50
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } T_{J}=25^{\circ} \mathrm{C} \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leq 10 \leq 500 \mathrm{~mA}
\end{aligned}
\] & Regload & - & 30 & 100 & mV \\
\hline Output Voltage
\[
-7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 350 \mathrm{~mA}
\] & Vo & -7.6 & -8.0 & -8.4 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & IB & - & - & 8.0 & mA \\
\hline Input Bias Current Change \(-8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc}, \mathrm{IO}=350 \mathrm{~mA}\) \(5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 350 \mathrm{~mA}, \mathrm{~V}_{1}=-10 \mathrm{~V}\) & \(\Delta^{\prime} l_{\text {I }}\) & - & - & \[
\begin{aligned}
& 0.4 \\
& 0.4
\end{aligned}
\] & mA \\
\hline Output Noise Voltage, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 60 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(f=120 \mathrm{~Hz}\) ) & RR & 54 & 63 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{IO}=500 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.1 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{IO}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & 0.4 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC79M12B, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [ \(N o t e 2\) ], unless otherwise noted. )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & -11.5 & -12 & -12.5 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } T_{J}=25^{\circ} \mathrm{C} \text { (Note 1) } \\
& -14.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
& -15 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 5.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 50
\end{aligned}
\] & mV \\
\hline Load Regulation, \(T_{J}=25^{\circ} \mathrm{C}\) (Note 1)
\(5.0 \mathrm{~mA} \leq 10 \leq 500 \mathrm{~mA}\)
\[
5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 500 \mathrm{~mA}
\] & Regload & - & 30 & 240 & mV \\
\hline Output Voltage
\[
-14.5 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I} \mathrm{O} \leq 350 \mathrm{~mA}
\] & Vo & -11.4 & - & -12.6 & Vdc \\
\hline Input Bias Current ( \(\mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & IIB & - & 4.4 & 8.0 & mA \\
\hline Input Bias Current Change \(-14.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc}, \mathrm{IO}=350 \mathrm{~mA}\) \(5.0 \mathrm{~mA} \leq 10 \leq 350 \mathrm{~mA}, \mathrm{~V}_{1}=-19 \mathrm{~V}\) & \(\Delta^{\prime}{ }^{\prime} \mathrm{B}\) & - & - & \[
\begin{aligned}
& 0.4 \\
& 0.4
\end{aligned}
\] & mA \\
\hline Output Noise Voltage, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(f=120 \mathrm{~Hz}\) ) & RR & 54 & 60 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{IO}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 1.1 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{IO}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -0.8 & - & \(\mathrm{mV}^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Load and line regulation are specified at constant temperature. Change in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
2. \(B=T_{\text {low }}\) to \(T_{\text {high }},-40^{\circ} \mathrm{C} \leq T_{J} \leq 125^{\circ} \mathrm{C}\)
\(\mathrm{C}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high, }} 0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}\)

\section*{MC79M00}

MC79M15B, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [ \(N o t e 2\) 2], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & -14.4 & -15 & -15.6 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}(\text { Note } 1) \\
& -17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc} \\
& -18 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-28 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 5.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 50
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation, } \mathrm{T}_{J}=25^{\circ} \mathrm{C}(\text { Note } 1) \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA}
\end{aligned}
\] & Regload & - & 30 & 240 & mV \\
\hline Output Voltage
\[
-17.5 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -14.25 & - & -15.75 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & IIB & - & 4.4 & 8.0 & mA \\
\hline Input Bias Current Change \(-17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}\) \(5.0 \mathrm{~mA} \leq 1 \mathrm{l} \leq 350 \mathrm{~mA}, \mathrm{~V}_{1}=-23 \mathrm{~V}\) & \(\Delta^{\prime}{ }_{l B}\) & - & - & \[
\begin{aligned}
& 0.4 \\
& 0.4
\end{aligned}
\] & mA \\
\hline Output Noise Voltage, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq f \leq 100 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathbf{f}=120 \mathrm{~Hz}\) ) & RR & 54 & 60 & - & dB \\
\hline \[
\begin{aligned}
& \text { Dropout Voltage } \\
& \qquad \mathrm{I}=500 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.1 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
I^{\prime}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq T_{J} \leq 125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Load and line regulation are specified at constant temperature. Change in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
2. \(B=T_{\text {low }}\) to \(T_{\text {high }},-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}\)
\(\mathrm{C}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}\)

Figure 1. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


\section*{Power Management Controller}

The MC33128 is a power management controller specifically designed for use in battery powered cellular telephone and pager applications. This device contains all of the active functions required to interface the user to the system electronics via a microprocessor. This integrated circuit consists of a low dropout voltage regulator with power-up reset for MPU power, two low dropout voltage regulators for independant powering of analog and digital circuitry, and a negative charge pump voltage regulator for full depletion of gallium arsenide MESFETs.

Also included are protective system shutdown features consisting of a battery latch that is activated upon battery insertion, low battery voltage shutdown, and a thermal over temperature detector. This device is available in a \(16-\) pin narrow body surface mount plastic package.
- Three Positive Regulated Outputs Featuring Low Dropout Voltage
- Negative Regulated Output for Full Depletion of GaAs MESFETs
- MPU Power Up Reset
- Battery Latch
- Low Battery Shutdown
- Pinned-Out Reference for MPU A/D Converter
- Low Start-Up and Operating Current
- Thermal Protection


MC33128

\section*{POWER MANAGEMENT CONTROLLER}

SEMICONDUCTOR TECHNICAL DATA



ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline\(M C 33128 \mathrm{D}\) & \(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+60^{\circ} \mathrm{C}\) & \(\mathrm{SO}-16\) \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Input Voltage (Pin 16) & \(\mathrm{V}_{\mathrm{CC}}\) & +7.0 & V \\
\hline Input Voltage Range Power Up, Power Down, and Battery Saver Inputs (Pins 11, 10, 9) & \(\mathrm{V}_{\text {in }}\) & \[
\begin{gathered}
-1.0 \text { to } \\
v_{C C}+1.0
\end{gathered}
\] & V \\
\hline Charge Pump Capacitor Drive Outputs, Source or Sink Current (Pins 3, 8) & \({ }^{1} \mathrm{O}(\max )\) & 30 & mA \\
\hline Schottky Diode Forward Current (Pins 16 to 2,2 to 4 , and 7 to 6 ) & \(\mathrm{I}^{\mathrm{F}}\) (max) & 30 & mA \\
\hline Output Source Current (Note 1) Regulator Output 1 (Pin 15) Regulator Output 2 (Pin 1) Regulator Output 3 (Pin 14) Regulator Output 4 (Pin 5) Reference (Pin 12) & ISource & \[
\begin{gathered}
150 \\
250, ~ \\
50 \\
10 \\
40
\end{gathered}
\] & mA \\
\hline Reset Sink Current (Pin 13) & ISink & 5.0 & mA \\
\hline Power Dissipation and Thermal Characteristic D Suffix, Plastic Package Case 751B Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air & PD RøJA & \[
\begin{aligned}
& 560 \\
& 180 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature (Note 1) & \(\mathrm{T}_{\mathrm{A}}\) & -30 to +60 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -60 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{in}}=33 \mu \mathrm{~F}\right.\) with \(\mathrm{ESR} \leq 1.6 \Omega, \mathrm{C}_{\mathrm{O}}=4.7 \mu \mathrm{~F}\) with \(\mathrm{ESR} \leq 4.5 \Omega\), \(\mathrm{I}_{\mathrm{O} 1}=30 \mathrm{~mA}\), \(\mathrm{I}_{\mathrm{O} 2}=60 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 3}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 4}=1.0 \mathrm{~mA}, \mathrm{I}_{\text {Oref }}=10 \mathrm{~mA}\) [Note 2], \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{POWER UP INPUT (Pin 11)} \\
\hline Low State Input Threshold Voltage & \(\mathrm{V}_{\text {th(toggle) }}\) & \(\mathrm{V}_{\mathrm{CC}}-1.5\) & \(\mathrm{V}_{\mathrm{CC}}-1.2\) & \(\mathrm{V}_{C C}-0.8\) & V \\
\hline Input Current ( \(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {O3 }}\) ) & lin(toggle) & - & - & 120 & \(\mu \mathrm{A}\) \\
\hline Internal Pull Up Resistance & RPU(ON/OFF) & 10 & 20 & 30 & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}

POWER DOWN INPUT (Pin 10)
\begin{tabular}{|l|c|c|c|c|c|}
\hline High State Input Threshold Voltage (Places IC in Standby Mode) & \(\mathrm{V}_{\text {th }}(\mathrm{PDI})\) & 1.3 & 1.5 & 1.8 & V \\
\hline Input Current \(\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O} 3}\right)\) & \(\mathrm{I}_{\text {in }}(\mathrm{PDI})\) & - & - & 120 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

BATTERY SAVER INPUT (Pin 9)
\begin{tabular}{|l|c|c|c|c|c|}
\hline High State Input Threshold Voltage \(\left(\mathrm{V}_{\mathrm{BB}}, \mathrm{V}_{\mathrm{O} 1}, \mathrm{~V}_{\mathrm{O} 2}, \mathrm{~V}_{\mathrm{O} 4}\right.\) Activated \()\) & \(\mathrm{V}_{\mathrm{th}}(\mathrm{BSI})\) & 1.2 & 1.4 & 1.7 & V \\
\hline Input Current \(\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O} 3}\right)\) & \(\mathrm{I}_{\text {in }}(\mathrm{BSI})\) & - & - & 120 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}
\(V_{B B}\) GENERATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Oscillator Frequency & fosc & 85 & 95 & 105 & kHz \\
\hline Oscillator Duty Cycle & DC & 35 & 50 & 65 & \% \\
\hline \begin{tabular}{l}
Charge Pump Capacitor Drive Output Voltage Swing (Pin 3) \\
High State (ISource \(=3.0 \mathrm{~mA}\) ) \\
Low State ( \({ }^{\text {S }}\) Sink \(=3.0 \mathrm{~mA}\) )
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & & \[
\begin{gathered}
\mathrm{v}_{\mathrm{CC}}-0.9 \\
0.15
\end{gathered}
\] & & V \\
\hline \[
\begin{aligned}
& \text { Schottky Diode (Pins 2, 4) } \\
& \text { Forward Voltage Drop }(\mathrm{IF}=3.0 \mathrm{~mA}) \\
& \text { Reverse Leakage Current }\left(\mathrm{V}_{\mathrm{BB}}=7.0 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& V_{F} \\
& I_{L}
\end{aligned}
\] & - & \[
\begin{gathered}
0.5 \\
0.01 \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
\mathrm{V} \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline \[
\begin{gathered}
\text { Output Voltage }(\operatorname{Pin} 4) \\
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{CC}}=2.9 \mathrm{~V}
\end{gathered}
\] & \(\mathrm{V}_{\mathrm{O}}(\mathrm{VBB})\) & - & \[
\begin{aligned}
& 7.9 \\
& 4.4
\end{aligned}
\] & - & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{C}_{\text {in }}=33 \mu \mathrm{~F}\right.\) with \(\mathrm{ESR} \leq 1.6 \Omega, \mathrm{C}_{\mathrm{O}}=4.7 \mu \mathrm{~F}\) with \(\mathrm{ESR} \leq 4.5 \Omega, \mathrm{I}_{\mathrm{O} 1}=30 \mathrm{~mA}\), \(\mathrm{I}_{\mathrm{O} 2}=60 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 4}=1.0 \mathrm{~mA}, \mathrm{I}_{\text {Oref }}=10 \mathrm{~mA}\) [Note 2], \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REGULATOR OUTPUT 1 (Pin 15)} \\
\hline Output Voltage ( \(\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}\) to \(4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 1}=30 \mathrm{~mA}\) ) & Regline 1 & 2.9 & 3.0 & 3.1 & V \\
\hline Load Regulation ( \(\mathrm{I}_{\mathrm{O} 1}=0 \mathrm{~mA}\) to 35 mA ) & Regload1 & - & 5.0 & 30 & mV \\
\hline Dropout Voltage ( \(\mathrm{V}_{\mathrm{CC}}=2.9 \mathrm{~V}, \mathrm{IO}^{\text {O }}=30 \mathrm{~mA}\) ) & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {O1 }}\) & - & - & 0.1 & V \\
\hline Power Supply Rejection Ratio
\[
\begin{aligned}
& f=120 \mathrm{~Hz} \\
& \mathrm{f}=100 \mathrm{kHz}
\end{aligned}
\] & PSRR 1 & - & \[
\begin{aligned}
& 70 \\
& 40
\end{aligned}
\] & - & dB \\
\hline Turn ON Delay Time (Battery Saver Input to \(90 \% \mathrm{~V}_{\mathrm{O} 1}\) Output) & tDLY1 & - & 0.2 & 2.0 & ms \\
\hline
\end{tabular}

\section*{REGULATOR OUTPUT 2 (Pin 1)}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}\right.\) to \(\left.4.5 \mathrm{~V}, \mathrm{IO2}=60 \mathrm{~mA}\right)\) & Reg & 2.9 & 3.0 & 3.1 & V \\
\hline Load Regulation \((\mathrm{IO2}=0 \mathrm{~mA}\) to 60 mA\()\) & Regload 2 & - & 5.0 & 40 & mV \\
\hline Dropout Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=2.9 \mathrm{~V}, \mathrm{I} 2=60 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{O} 2}\) & - & - & 0.11 & V \\
\hline \begin{tabular}{l} 
Power Supply Rejection Ratio \\
\(\mathrm{f}=120 \mathrm{~Hz}\) \\
\(\mathrm{f}=100 \mathrm{kHz}\)
\end{tabular} & PSRR 2 & & & & dB \\
\hline Turn ON Delay Time (Battery Saver Input to \(90 \% \mathrm{~V}_{\mathrm{O} 2}\) Output) & & - & 70 & - & \\
\hline
\end{tabular}

REGULATOR OUTPUT 3 (Pin 14)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Voltage ( \(\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}\) to \(\left.4.5 \mathrm{~V}, \mathrm{l} \mathrm{O} 3=20 \mathrm{~mA}\right)\) & Regline3 & 2.9 & 3.0 & 3.1 & V \\
\hline Load Regulation ( \(\mathrm{l}^{(03}=0 \mathrm{~mA}\) to 20 mA ) & Regload3 & - & 5.0 & 25 & mV \\
\hline Dropout Voltage ( \(\left.\mathrm{V}_{\mathrm{CC}}=2.9 \mathrm{~V}, \mathrm{l}_{\mathrm{O} 3}=20 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {O3 }}\) & - & - & 0.1 & V \\
\hline Power Supply Rejection Ratio
\[
\begin{aligned}
& f=120 \mathrm{~Hz} \\
& f=100 \mathrm{kHz}
\end{aligned}
\] & PSRR 3 &  & \[
\begin{aligned}
& 70 \\
& 40
\end{aligned}
\] & - & dB \\
\hline Turn ON Delay Time (ON/OFF Toggle Input to \(90 \% \mathrm{~V}_{\text {O3 }}\) Output) & tDLY3 & - & 0.5 & 3.0 & ms \\
\hline
\end{tabular}

REGULATOR OUTPUT 4 (Pin 5)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Voltage ( \(\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}\) to \(4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}} 4=1.0 \mathrm{~mA}\) ) & Regline4 & -2.35 & -2.5 & -2.65 & V \\
\hline Load Regulation ( \(1 \mathrm{O} 4=0 \mathrm{~mA}\) to 1.0 mA ) & Regload4 & - & 5.0 & 20 & mV \\
\hline Power Supply Rejection Ratio
\[
\begin{aligned}
& f=120 \mathrm{~Hz} \\
& f=100 \mathrm{kHz}
\end{aligned}
\] & PSRR 4 & - & \[
\begin{aligned}
& 70 \\
& 40
\end{aligned}
\] & & dB \\
\hline Schottky Diode Forward Voltage Drop (Pins 7, 6, \(\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{F}}\) & - & 0.5 & - & V \\
\hline ```
Charge Pump Capacitor Drive Output Voltage Swing (Pin 8)
    High State (ISource \(=1.0 \mathrm{~mA}\) )
    Low State (ISink = 1.0 mA )
``` & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
VOL
\end{tabular} & & \[
\begin{gathered}
\mathrm{V}_{\mathrm{BB}}-0.25 \\
0.15
\end{gathered}
\] & & V \\
\hline Turn ON Delay Time (Battery Saver Input to 90\% V \({ }_{\text {O4 }}\) Output) & tDLY4 & - & 4.0 & 10 & ms \\
\hline
\end{tabular}

REFERENCE OUTPUT (Pin 12)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Output Voltage (l \(\mathrm{O}=0 \mathrm{~mA}\) to 10 mA) & Regload & 1.46 & 1.5 & 1.54 & V \\
\hline
\end{tabular}

MPU POWER UP RESET COMPARATOR (Pin 13)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l}
Threshold Voltage \\
Low State Output (VO3 Decreasing) \\
Hysteresis (\(\mathrm{V}_{\mathrm{O3}}\) Increasing)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{V}_{\text {th(low) }}\) \\
\(\mathrm{V}_{\mathrm{H}}\)
\end{tabular} & \begin{tabular}{c}
2.5 \\
40
\end{tabular} & \begin{tabular}{c}
2.6 \\
60
\end{tabular} & \begin{tabular}{c}
2.7 \\
100
\end{tabular} & \begin{tabular}{c}
V \\
mV
\end{tabular} \\
\hline Output Sink Saturation (I ISink \(=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{O} 3}=2.5 \mathrm{~V}\) to 1.0 V\()\) & \(\mathrm{V}_{\mathrm{CE}}(\) sat \()\) & - & 130 & 300 & mV \\
\hline Internal Pull-up Resistance & RPU & 10 & 26 & 40 & \(\mathrm{k} \Omega\) \\
\hline High State Output Voltage \(\left(\mathrm{V}_{\mathrm{O} 3}=2.8 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{OH}}\) & \(0.95 \mathrm{~V}_{\mathrm{O} 3}\) & \(\mathrm{~V}_{\mathrm{O} 3}\) & - & V \\
\hline
\end{tabular}

NOTE: 2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{C}_{\text {in }}=33 \mu \mathrm{~F}\right.\) with \(\mathrm{ESR} \leq 1.6 \Omega, \mathrm{C}_{\mathrm{O}}=4.7 \mu \mathrm{~F}\) with \(\mathrm{ESR} \leq 4.5 \Omega\), \(\mathrm{I}_{\mathrm{O} 1}=30 \mathrm{~mA}\), \(\mathrm{I}_{\mathrm{O} 2}=60 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 3}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 4}=1.0 \mathrm{~mA}, \mathrm{I}_{\text {Oref }}=10 \mathrm{~mA}\) [Note 2], \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{LOW BATTERY SHUTDOWN COMPARATOR (Pin 16)} \\
\hline Shutdown Threshold Voltage (VCC Decreasing, Pin \(10=\) Gnd) & \(\mathrm{V}_{\text {th(}}\) LBSC) & 2.25 & 2.4 & 2.55 & V \\
\hline \multicolumn{6}{|l|}{TOTAL DEVICE (Pin 16)} \\
\hline \begin{tabular}{l}
Power Supply Current (No Load On All Outputs) Operating \\
Battery Saver Input High (Pin 9=2.0 V) Battery Saver Input Low (Pin \(9 \leq 0.8 \mathrm{~V}\)) Standby (After Power Down Input Strobe)
\end{tabular} & Icc & - & 2.6
270
8.0 & 4.0
330
12 & \[
\begin{aligned}
& \mathrm{mA} \\
& \mu \mathrm{~A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTE: 2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.

Figure 1. Dropout Voltage
versus Source Current

Figure 3. Reference Output Voltage Change versus Source Current

Figure 2. Output 4 Voltage versus Source Current

Figure 4. \(V_{B B}\) Output Voltage Change versus Source Current

NOTE: All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.

\section*{OPERATING DESCRIPTION}

The MC33128 is a complete power management controller that is designed to interface the user to the system electronics via a microprocessor.

\section*{Outputs}

Three low dropout voltage regulators are provided at outputs 1,2 and 3 . Outputs 1 and 2 were contemplated for independent powering of the systems analog and digital circuitry. This significantly reduces the possibility of digitally generated noise and spurious signals from coupling into the RF and analog circuits. The low dropout characteristic of Outputs 1 and 2 is achieved by applying a boosted battery voltage, \(\mathrm{V}_{\mathrm{BB}}\), to their respective driver transistors. This allows the output pass transistors to be driven into saturation when the battery voltage approaches 3.0 V . The VBB Output appears at Pin 4 and can be used to provide gate bias for enhancing external N channel MOSFET switches. Excessive loading of the \(\mathrm{V}_{\mathrm{BB}}\) output will result in an increase in dropout voltage.

Output 4 is derived from a voltage inverting charge pump circuit and is intended to provide the negative gate bias required for full depletion of RF gallium arsenide MESFETs. In personal communication system applications such as cellular telephone, negative gate bias is usually required by the antenna switch and power amplifier circuit blocks with a typical combined current of less than 1.0 mA . Output 4 can supply in excess of 2.0 mA , but there will be an increase in dropout voltage of Outputs 1, 2 and 3.

Outputs 1, 2, 4, VBB Generator and Thermal Protection are all enabled and disabled in unison by the Battery Saver Input, Pin 9. The microprocessor can be programmed to significantly extend the system battery operating time by periodically enabling the receiver circuitry.

Output 3 provides power to the microprocessor, flash EPROM and the system display. These blocks are enabled by the Power Up Input, Pin 11, and disabled by the Power Down Input, Pin 10. By having separate power up and power down inputs, the microprocessor can store any pending information before turning the system and then itself OFF. This allows a controlled or graceful shutdown. Note that the power down request is initiated by pressing the toggle switch while the system is "ON". This action generates a microprocessor non-maskable interrupt that initiates the graceful shutdown.

\section*{Battery Voltage Detection}

Reverse biasing and eventual failure of the lowest capacity cell in the battery pack can occur if the system is
accidentally left on for an extended time period. To prevent this condition the following circuit blocks were incorporated.

A means for low battery detection is accomplished by using the Reference Output, Pin 12, in conjunction with the microprocessor's analog to digital converter input. A microprocessor output (LBO) can be designated to flash a display enunciator when a low battery condition exists. The Reference Output is \(1.5 \mathrm{~V} \pm 2.7 \%\) and is capable of sourcing in excess of 10 mA .

The Power Up Reset Output, Pin 13, is designed to hold the microprocessor reset input low until the voltage at Output 3 rises above 2.66 V . This feature prevents the microprocessor from hanging or writing invalid information into its memory during power up. Notice that the output of the MPU Power Up Reset comparator also drives the base of transistor QPD. If Output 3 should fall below 2.6 V , due to an overload or a low battery condition, the comparator will drive QPD "ON", causing its collector to pull high on the Power Down Input, immediately forcing the system into standby mode. Externally pulling down on Pin 13, base of QPD, will also force the system into standby mode.

A redundant Low Battery Shutdown circuit is included. This circuit directly monitors the battery voltage and also forces the system into standby mode when the battery voltage falls below 2.4 V . To test the functionality of this circuit, the high state signal generated by transistor QPD must be clamped low, to prevent resetting the ON/OFF Latch. An external short or a pull-down, capable of sinking 2.0 mA at less than 0.8 V , must be connected to Pin 10.

A Battery Latch circuit is designed into the IC to prevent the system from turning on when the batteries are inserted into the finished product. This feature is useful for the end customer as well as the equipment manufacturer. Upon initial application of battery voltage, the lower comparator (0.7 V threshold) forces the Battery Latch into a reset state with its "Q" output low. This in turn triggers a reset of the ON/OFF Latch via the OR gate and also locks out the set signal present at the upper input of the AND gate. As the voltage at Pin 11 rises above (\(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\)), the set signal disappears, leaving the state of the ON/OFF Latch unchanged (reset). When the voltage at Pin 11 rises above (\(\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}\)), the upper comparator forces the Battery Latch into a set state causing its "Q" output to go high. This allows the AND gate and the ON/OFF Latch to receive a set signal from Pin 11. The initial Battery Latch lockout time is controlled by the internal \(20 \mathrm{k} \Omega\) resistor and the external \(0.1 \mu \mathrm{~F}\) capacitor.

\section*{MC33128}

Figure 5. MC33128 Block Diagram

Figure 6. Voltage Tripler and Switch Driver

Tripler Output Voltage
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Load Current \\
\((\mathbf{m A})\)
\end{tabular} & \(\mathbf{v}_{\mathbf{C C}}=\mathbf{3 . 1 5} \mathbf{~ V}\) & \(\mathbf{v}_{\mathbf{C C}}=\mathbf{4 . 5} \mathbf{~ V}\) \\
\hline 0 & 7.96 & 12.01 \\
0.5 & 7.48 & 11.54 \\
1.0 & 7.24 & 11.29 \\
1.5 & 6.99 & 11.04 \\
2.0 & 6.62 & 10.69 \\
\hline
\end{tabular}

Load Turn ON/OFF Time

\section*{External Switch}

A low threshold N-channel MOSFET can be used to switch the transmitting power amplifier (\(\mathrm{R}_{\mathrm{L}}\)) ON and OFF. To ensure that all of the available battery voltage appears across the load, the MOSFET must be fully enhanced over the system's required operating voltage range. With the addition of two Schottky diodes and two capacitors, the VBB Generator can be made to function as a voltage tripler. The table in Figure 6 shows the output voltage characteristics of the tripler circuit.

In order to minimize adjacent channel splatter, the RF power amplifier must be turned ON and OFF in a controlled (soft) manner. The applied voltage rise and fall time, as well as the rate of change in rise and fall time, must be tailored to the amplifiers characteristics. The circuit consisting of resistors \(R, R_{F B}\), and capacitors \(C_{1}\) and \(C_{2}\) is a simple solution allowing the system designer a means to control the ON and OFF time as well as the waveshape. Feedback resistor RFB controls the waveshape. Capacitors \(C_{1}\) and \(C_{2}\) are usually of equal value.

The MC33153 is specifcally designed as an IGBT driver for high power applications that include ac induction motor control, brushless dc motor control and uninterruptable power supplies. Although designed for driving discrete and module IGBTs, this device offers a cost effective solution for driving power MOSFETs and Bipolar Transistors. Device protection features include the choice of desaturation or overcurrent sensing and undervoltage detection. These devices are available in dual-in-line and surface mount packages and include the following features:
- High Current Output Stage: 1.0 A Source/2.0 A Sink
- Protection Circuits for Both Conventional and Sense IGBT's
- Programmable Fault Blanking Time
- Protection against Overcurrent and Short Circuit
- Undervoltage Lockout Optimzed for IGBT's
- Negative Gate Drive Capability
- Cost Effectively Drives Power MOSFETs and Bipolar Transistors

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33153D & \multirow{2}{*}{\({ }^{2}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\)} & SO-8 \\
\hline MC33153P & DIP-8 \\
\hline
\end{tabular}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage \(V_{C C}\) to \(V_{E E}\) Kelvin Ground to \(\mathrm{V}_{\mathrm{EE}}\) (Note 1) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\
& \text { KGnd }-\mathrm{V}_{\mathrm{EE}}
\end{aligned}
\] & \[
\begin{array}{r}
23 \\
23 \\
\hline
\end{array}
\] & V \\
\hline Logic Input & \(\mathrm{V}_{\text {in }}\) & \(\mathrm{V}_{\mathrm{EE}}-0.3\) to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Current Sense Input & \(V_{S}\) & -0.3 to VCC & V \\
\hline Blanking/Desaturation Input & \(\mathrm{V}_{\text {BD }}\) & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Gate Drive Output Source Current Sink Current Diode Clamp Current & Io & \[
\begin{aligned}
& 1.0 \\
& 2.0 \\
& 1.0
\end{aligned}
\] & A \\
\hline Fault Output Source Current Sink Curent & IFO & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & mA \\
\hline Power Dissipation and Thermal Characteristics D Suffix SO-8 Package, Case 751 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air P Suffix DIP-8 Package, Case 626 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\text {日JA }}\) \\
PD \\
\(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 0.56 \\
& 180 \\
& \\
& 1.0 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +105 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (VCC \(=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}\), Kelvin Gnd connected to \(\mathrm{V}_{\mathrm{EE}}\). For typical values
\(T_{A}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies (Note 2), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{LOGIC INPUT} \\
\hline Input Threshold Voltage High State (Logic 1) Low State (Logic 0) & \[
\begin{aligned}
& V_{I H} \\
& V_{I L}
\end{aligned}
\] & - 1.2 & 2.70
2.30 & 3.2
- & V \\
\hline \[
\begin{aligned}
& \text { Input Current } \\
& \text { High State }\left(\mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V}\right) \\
& \text { Low State }\left(\mathrm{V}_{\mathrm{IL}}=1.2 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I} \mathrm{H} \\
& \mathrm{IIL}_{2}
\end{aligned}
\] & - & \[
\begin{gathered}
130 \\
50
\end{gathered}
\] & \[
\begin{aligned}
& 500 \\
& 100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

DRIVE OUTPUT
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l}
Output Voltage \\
Low State (ISink \(=1.0 \mathrm{~A})\) \\
High State (ISource \(=500 \mathrm{~mA})\)
\end{tabular} & \(\mathrm{V}_{\mathrm{OL}}\) & - & 2.0 & 2.5 & V \\
\hline Output Pull-Down Resistor & \(\mathrm{V}_{\mathrm{OH}}\) & 12 & 13.9 & - & \\
\hline
\end{tabular}

FAULT OUTPUT
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output voltage & & & & & V \\
Low State \(\left(I_{\text {Sink }}=5.0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{FL}}\) & - & 0.2 & 1.0 & \\
High State \((1\) Source \(=20 \mathrm{~mA})\) & \(\mathrm{V}_{\mathrm{FH}}\) & 12 & 13.3 & - & \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Propagation Delay (\(50 \%\) Input to \(50 \%\) Output \(C_{L}=1.0 \mathrm{nF}\)) Logic Input to Drive Output Rise Logic Input to Drive Output Fall & tPLH(in/out) tpHL (in/out) & - & \[
\begin{gathered}
80 \\
120
\end{gathered}
\] & \[
\begin{aligned}
& 300 \\
& 300
\end{aligned}
\] & ns \\
\hline Drive Output Rise Time (\(10 \%\) to \(90 \%\)) \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) & \(t_{r}\) & - & 17 & 55 & ns \\
\hline Drive Output Fall Time (90\% to \(10 \%\)) \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) & \(t_{f}\) & - & 17 & 55 & ns \\
\hline \begin{tabular}{l}
Propagation Delay \\
Current Sense Input to Drive Output \\
Fault Blanking/Desaturation Input to Drive Output
\end{tabular} & \[
\begin{aligned}
& \mathrm{tP}(\mathrm{OC}) \\
& \mathrm{t} P(\mathrm{FLT}) \\
& \hline
\end{aligned}
\] & - & & & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

NOTE: 1. Kelvin Ground must always be between \(V_{E E}\) and \(V_{C C}\).
2. Low duty cycle pulse techniques are used during test to maintain the junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}\) for MC33153 \(\quad \mathrm{T}_{\text {high }}=+105^{\circ} \mathrm{C}\) for MC33153

\section*{MC33153}

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}\right.\), Kelvin Gnd connected to \(\mathrm{V}_{\mathrm{EE}}\). For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies (Note 2), unless otherwise noted.)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline UVLO & & \\
\hline Startup Voltage & \(V_{\text {CC }}\) start & 11.3 & 12 & 12.6 & V \\
\hline Disable Voltage & \(V_{\text {CC }}\) dis & 10.4 & 11 & 11.7 & V \\
\hline
\end{tabular}

COMPARATORS
\begin{tabular}{|l|c|c|c|c|c|}
\hline Overcurrent Threshold Voltage \(\left(V_{\text {Pin8 }}>7.0 \mathrm{~V}\right)\) & \(\mathrm{V}_{\text {SOC }}\) & 50 & 65 & 80 & mV \\
\hline Short Circuit Threshold Voltage \(\left(V_{\text {Pin8 }}>7.0 \mathrm{~V}\right)\) & \(\mathrm{V}_{\text {SSC }}\) & 100 & 130 & 160 & mV \\
\hline Fault Blanking/Desaturation Threshold \(\left(\mathrm{V}_{\text {Pin1 }}>100 \mathrm{mV}\right)\) & \(\mathrm{V}_{\text {th }}(\mathrm{FLT})\) & 6.0 & 6.5 & 7.0 & V \\
\hline Current Sense Input Current \(\left(\mathrm{V}_{\text {SI }}=0 \mathrm{~V}\right)\) & ISI & - & -1.4 & -10 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

FAULT BLANKING/DESATURATION INPUT
\begin{tabular}{|l|c|c|c|c|c|}
\hline Current Source \(\left(V_{\text {Pin8 }}=0 \mathrm{~V}, \mathrm{~V}_{\text {Pin4 }}=0 \mathrm{~V}\right)\) & \(\mathrm{I}_{\text {chg }}\) & -200 & -270 & -300 & \(\mu \mathrm{~A}\) \\
\hline Discharge Current \(\left(\mathrm{V}_{\text {Pin8 }}=15 \mathrm{~V}, \mathrm{~V}_{\text {Pin4 }}=5.0 \mathrm{~V}\right)\) & \(\mathrm{I}_{\mathrm{dsch}}\) & 1.0 & 2.5 & - & mA \\
\hline
\end{tabular}

TOTAL DEVICE
Power Supply Current
Standby (\(\mathrm{V}_{\text {Pin }} 4=\mathrm{V}_{\mathrm{CC}}\), Output Open)
Operating (\(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{f}=20 \mathrm{kHz}\))
\begin{tabular}{|l|l|l|l|l|}
\hline ICC & - & 7.2 & 14 & mA \\
& - & 7.9 & 20 & \\
\hline
\end{tabular}

NOTE: 1. Kelvin Ground must always be between \(\mathrm{V}_{\mathrm{EE}}\) and \(\mathrm{V}_{\mathrm{CC}}\).
2. Low duty cycle pulse techniques are used during test to maintain the junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}\) for MC33153 \(\quad \mathrm{T}_{\text {high }}=+105^{\circ} \mathrm{C}\) for MC33153

Figure 1. Input Current versus Input Voltage

Figure 2. Output Voltage versus Input Voltage

Figure 3. Input Threshold Voltage versus Temperature

Figure 5. Drive Output Low State Voltage versus Temperature

Figure 7. Drive Output High State Voltage

Figure 4. Input Threshold Voltage versus Supply Voltage

Figure 6. Drive Output Low State Voltage versus Sink Current

Figure 8. Drive Output High State Voltage versus Source Current

Figure 9. Drive Output Voltage versus Current Sense Input Voltage

Figure 11. Overcurrent Protection Threshold

Figure 13. Short Circuit Comparator Threshold

Figure 10. Fault Output Voltage versus Current Sense Input Voltage

Figure 12. Overcurrent Protection Threshold

Figure 14. Short Circuit Comparator Threshold

Figure 15. Current Sense Input Current

Figure 17. Fault Blanking/Desaturation Comparator Threshold Voltage versus Temperature

Figure 19. Fault Blanking/Desaturation Current Source versus Temperature

Figure 16. Drive Output Voltage versus Fault Blanking/Desaturation Input Voltage

Figure 18. Fault Blanking/Desaturation Comparator Threshold Voltage versus Supply Voltage

Figure 20. Fault Blanking/Desaturation Current Source versus Supply Voltage

Figure 21. Fault Blanking/Desaturation Current Source versus Input Voltage

Figure 23. Fault Output Low State Voltage versus Sink Current

Figure 25. Drive Output Voltage versus Supply Voltage

Figure 22. Fault Blanking/Desaturation Discharge Current versus Input Voltage

Figure 24. Fault Output High State Voltage versus Source Current

Figure 26. UVLO Thresholds versus Temperature

Figure 27. Supply Current versus Supply Voltage

Figure 28. Supply Current versus Temperature

Figure 29. Supply Current versus Input Frequency

\section*{GATE DRIVE}

\section*{Controlling Switching Times}

The most important design aspect of an IGBT gate drive is optimization of the switching characteristics. The switching characteristics are especially important in motor control applications in which PWM transistors are used in a bridge configuration. In these applications, the gate drive circuit components should be selected to optimize turn-on, turn-off and off-state impedance. A single resistor may be used to control both turn-on and turn-off as shown in Figure 30. However, the resistor value selected must be a compromise in turn-on abruptness and turn-off losses. Using a single resistor is normally suitable only for very low frequency PWM. An optimized gate drive output stage is shown in Figure 31. This circuit allows turn-on and turn-off to be optimized separately. The turn-on resistor, \(R_{\text {on }}\), provides control over the IGBT turn-on speed. In motor control circuits, the resistor sets the turn-on di/dt that controls how fast the free-wheel diode is cleared. The interaction of the IGBT and free-wheeling diode determines the turn-on dv/dt. Excessive turn-on dv/dt is a common problem in half-bridge
circuits. The turn-off resistor, \(\mathrm{R}_{\text {off, }}\), controls the turn-off speed and ensures that the IGBT remains off under commutation stresses. Turn-off is critical to obtain low switching losses. While IGBTs exhibit a fixed minimum loss due to minority carrier recombination, a slow gate drive will dominate the turn-off losses. This is particularly true for fast IGBTs. It is also possible to turn-off an IGBT too fast. Excessive turn-off speed will result in large overshoot voltages. Normally, the turn-off resistor is a small fraction of the turn-on resistor.

The MC33153 contains a bipolar totem pole output stage that is capable of sourcing 1.0 amp and sinking 2.0 amps peak. This output also contains a pull down resistor to ensure that the IGBT is off whenever there is insufficient \(V_{C C}\) to the MC33153.

In a PWM inverter, IGBTs are used in a half-bridge configuration. Thus, at least one device is always off. While the IGBT is in the off-state, it will be subjected to changes in voltage caused by the other devices. This is particularly a problem when the opposite transistor turns on.

When the lower device is turned on, clearing the upper diode, the turn-on dv/dt of the lower device appears across the collector emitter of the upper device. To eliminate shoot-through currents, it is necessary to provide a low sink impedance to the device that is in the off-state. In most applications the turn-off resistor can be made small enough to hold off the device that is under commutation without causing excessively fast turn-off speeds.

Figure 30. Using a Single Gate Resistor

Figure 31. Using Separate Resistors for Turn-On and Turn-Off

A negative bias voltage can be used to drive the IGBT into the off-state. This is a practice carried over from bipolar Darlington drives and is generally not required for IGBTs. However, a negative bias will reduce the possibility of shoot-through. The MC33153 has separate pins for VEE and Kelvin Ground. This permits operation using a \(+15 /-5.0 \mathrm{~V}\) supply.

\section*{INTERFACING WITH OPTOISOLATORS}

\section*{Isolated Input}

The MC33153 may be used with an optically isolated input. The optoisolator can be used to provide level shifting,
and if desired, isolation from ac line voltages. An optoisolator with a very high dv/dt capability should be used, such as the Hewlett Packard HCPL4053. The IGBT gate turn-on resistor should be set large enough to ensure that the opto's dv/dt capability is not exceeded. Like most optoisolators, the HCPL4053 has an active low open-collector output. Thus, when the LED is on, the output will be low. The MC33153 has an inverting input pin to interface directly with an optoisolator using a pull up resistor. The input may also be interfaced directly to 5.0 V CMOS logic or a microcontroller.

\section*{Optoisolator Output Fault}

The MC33153 has an active high fault output. The fault output may be easily interfaced to an optoisolator. While it is important that all faults are properly reported, it is equally important that no false signals are propagated. Again, a high \(\mathrm{dv} / \mathrm{dt}\) optoisolator should be used.

The LED drive provides a resistor programmable current of 10 to 20 mA when on, and provides a low impedance path when off. An active high output, resistor, and small signal diode provide an excellent LED driver. This circuit is shown in Figure 32.

Figure 32. Output Fault Optoisolator

\section*{UNDERVOLTAGE LOCKOUT}

It is desirable to protect an IGBT from insufficient gate voltage. IGBTs require 15 V on the gate to achieve the rated on-voltage. At gate voltages below 13 V , the on-voltage increases dramatically, especially at higher currents. At very low gate voltages, below 10 V , the IGBT may operate in the linear region and quickly overheat. Many PWM motor drives use a bootstrap supply for the upper gate drive. The UVLO provides protection for the IGBT in case the bootstrap capacitor discharges.

The MC33153 will typically start up at about 12 V . The UVLO circuit has about 1.0 V of hysteresis and will disable the output if the supply voltage falls below about 11 V .

\section*{PROTECTION CIRCUITRY}

\section*{Desaturation Protection}

Bipolar Power circuits have commonly used what is known as "Desaturation Detection". This involves monitoring the collector voltage and turning off the device if this voltage rises above a certain limit. A bipolar transistor will only conduct a certain amount of current for a given base drive. When the base is overdriven, the device is in saturation. When the collector current rises above the knee, the device pulls out of saturation. The maximum current the device will conduct in the linear region is a function of the base current and the dc current gain (hFE) of the transistor.

The output characteristics of an IGBT are similar to a Bipolar device. However, the output current is a function of gate voltage instead of current. The maximum current depends on the gate voltage and the device type. IGBTs tend to have a very high transconductance and a much higher current density under a short circuit than a bipolar device. Motor control IGBTs are designed for a lower current density under shorted conditions and a longer short circuit survival time.

The best method for detecting desaturation is the use of a high voltage clamp diode and a comparator. The MC33153 has a Fault Blanking/Desaturation Comparator which senses the collector voltage and provides an output indicating when the device is not fully saturated. Diode D1 is an external high voltage diode with a rated voltage comparable to the power device. When the IGBT is "on" and saturated, D1 will pull down the voltage on the Fault Blanking/Desaturation Input. When the IGBT pulls out of saturation or is "off", the current source will pull up the input and trip the comparator. The comparator threshold is 6.5 V , allowing a maximum on-voltage of about 5.8 V .

A fault exists when the gate input is high and \(V_{C E}\) is greater than the maximum allowable \(\mathrm{V}_{\mathrm{CE}}\) (sat). The output of the Desaturation Comparator is ANDed with the gate input signal and fed into the Short Circuit and Overcurrent Latches. The Overcurrent Latch will turn-off the IGBT for the remainder of the cycle when a fault is detected. When input goes high, both latches are reset. The reference voltage is tied to the Kelvin Ground instead of the VEE to make the threshold independent of negative gate bias. Note that for proper operation of the Desaturation Comparator and the Fault Output, the Current Sense Input must be biased above the Overcurrent and Short Circuit Comparator thresholds. This can be accomplished by connecting Pin 1 to \(\mathrm{V}_{\mathrm{CC}}\).

Figure 33. Desaturation Detection

The MC33153 also features a programmable fault blanking time. During turn-on, the IGBT must clear the opposing free-wheeling diode. The collector voltage will remain high until the diode is cleared. Once the diode has been cleared, the voltage will come down quickly to the \(\mathrm{V}_{\mathrm{CE}}(\) sat \()\) of the device. Following turn-on, there is normally considerable ringing on the collector due to the COSS capacitance of the IGBTs and the parasitic wiring inductance. The fault signal from the Desaturation Comparator must be blanked sufficiently to allow the diode to be cleared and the ringing to settle out.

The blanking function uses an NPN transistor to clamp the comparator input when the gate input is low. When the input is switched high, the clamp transistor will turn "off", allowing the internal current source to charge the blanking capacitor. The time required for the blanking capacitor to charge up from the on-voltage of the internal NPN transistor to the trip voltage of the comparator is the blanking time.

If a short circuit occurs after the IGBT is turned on and saturated, the delay time will be the time required for the current source to charge up the blanking capacitor from the \(V_{C E}(\) sat) level of the IGBT to the trip voltage of the comparator. Fault blanking can be disabled by leaving Pin 8 unconnected.

\section*{Sense IGBT Protection}

Another approach to protecting the IGBTs is to sense the emitter current using a current shunt or Sense IGBTs. This method has the advantage of being able to use high gain IGBTs which do not have any inherent short circuit capability. Current sense IGBTs work as well as current sense MOSFETs in most circumstances. However, the basic problem of working with very low sense voltages still exists. Sense IGBTs sense current through the channel and are therefore linear with respect to the collector current. Because IGBTs have a very low incremental on-resistance, sense IGBTs behave much like low-on resistance current sense MOSFETs. The output voltage of a properly terminated sense IGBT is very low, normally less than 100 mV .

The sense IGBT approach requires fault blanking to prevent false tripping during turn-on. The sense IGBT also requires that the sense signal is ignored while the gate is low. This is because the mirror output normally produces large transient voltages during both turn-on and turn-off due to the collector to mirror capacitance. With non-sensing types of IGBTs, a low resistance current shunt (5.0 to \(50 \mathrm{~m} \Omega\)) can be used to sense the emitter current. When the output is an actual short circuit, the inductance will be very low. Since the blanking circuit provides a fixed minimum on-time, the peak current under a short circuit can be very high. A short circuit discern function is implemented by the second comparator which has a higher trip voltage. The short circuit signal is latched and appears at the Fault Output. When a short circuit is detected, the IGBT should be turned-off for several milliseconds allowing it to cool down before it is turned back on. The sense circuit is very similar to the desaturation circuit. It is possible to build a combination circuit that provides protection for both Short Circuit capable IGBTs and Sense IGBTs.

\section*{APPLICATION INFORMATION}

Figure 34 shows a basic IGBT driver application. When driven from an optoisolator, an input pull up resistor is required. This resistor value should be set to bias the output transistor at the desired current. A decoupling capacitor should be placed close to the IC to minimize switching noise.

A bootstrap diode may be used for a floating supply. If the protection features are not required, then both the Fault Blanking/Desaturation and Current Sense Inputs should both be connected to the Kelvin Ground (Pin 2). When used with a single supply, the Kelvin Ground and VEE pins should be connected together. Separate gate resistors are recommended to optimize the turn-on and turn-off drive.

Figure 34. Basic Application

Figure 35. Dual Supply Application

When used in a dual supply application as in Figure 35, the Kelvin Ground should be connected to the emitter of the IGBT. If the protection features are not used, then both the Fault Blanking/Desaturation and the Current Sense Inputs should be connected to Ground. The input optoisolator should always be referenced to \(\mathrm{V}_{\mathrm{EE}}\).

If desaturation protection is desired, a high voltage diode is connected to the Fault Blanking/Desaturation pin. The blanking capacitor should be connected from the Desaturation pin to the \(\mathrm{V}_{\mathrm{EE}}\) pin. If a dual supply is used, the blanking capacitor should be connected to the Kelvin Ground. The Current Sense Input should be tied high because the two comparator outputs are ANDed together. Although the reverse voltage on collector of the IGBT is clamped to the emitter by the free-wheeling diode, there is normally considerable inductance within the package itself. A small resistor in series with the diode can be used to protect the IC from reverse voltage transients.

Figure 36. Desaturation Application

When using sense IGBTs or a sense resistor, the sense voltage is applied to the Current Sense Input. The sense trip voltages are referenced to the Kelvin Ground pin. The sense voltage is very small, typically about 65 mV , and sensitive to noise. Therefore, the sense and ground return conductors should be routed as a differential pair. An RC filter is useful in filtering any high frequency noise. A blanking capacitor is connected from the blanking pin to VEE. The stray capacitance on the blanking pin provides a very small level of blanking if left open. The blanking pin should not be grounded when using current sensing, that would disable the sense. The blanking pin should never be tied high, that would short out the clamp transistor.

Figure 37. Sense IGBT Application

\section*{Product Preview Single IGBT Gate Driver}

The MC33154 is specifically designed as an IGBT driver for high power applications including ac induction motor control, brushless dc motor control and uninterruptible power supplies.

The MC33154 is similar to the MC33153, except that the output drive is in-phase with the logic input, the output source current drive is four times higher and the supply voltage rating is higher.

Although designed for driving discrete and module IGBTs, this device offers a cost effective solution for driving power MOSFETs and Bipolar Transistors.

These devices are available in dual-in-line and surface mount packages and include the following features:
- High Current Output Stage: 4.0 A Source/2.0 A Sink
- Protection Circuits for Both Conventional and Sense IGBTs
- Programmable Fault Blanking Time
- Protection against Overcurrent and Short Circuit
- Undervoltage Lockout Optimzed for IGBTs
- Negative Gate Drive Capability
- Cost Effectively Drives Power MOSFETs and Bipolar Transistors

This device contains 133 active transistors.

\section*{SINGLE IGBT} GATE DRIVER

\section*{SEMICONDUCTOR} TECHNICAL DATA

P SUFFIX
PLASTIC PACKAGE CASE 626

D SUFFIX
PLASTIC PACKAGE CASE 751 (SO-8)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33154D & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & \(\mathrm{SO}-8\) \\
\cline { 1 - 2 } \(\mathrm{MC33154P}\) & \(\mathrm{DIP}-8\) \\
\hline
\end{tabular}

GaAs POWER AMPLIFIER SUPPORT IC SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33169DTB-4.0 & TA \(=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & TSSOP-14 \\
\cline { 1 - 1 } MC33169DTB-2.5 & \\
\hline
\end{tabular}

\section*{MC33169}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Pin & Symbol & Value & Unit \\
\hline Power Supply Voltage & 14 & \(\mathrm{~V}_{\mathrm{CC}}\) & 9.5 & V \\
\hline \(\mathrm{~T}_{\mathrm{X}}\) Power Control Input & 9 & \(\mathrm{VT}_{\mathrm{X}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Idle Mode Input & 13 & \(\mathrm{~V}_{\mathrm{i}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Sense Input & 10 & \(\mathrm{~V}_{\text {Sense }}\) & -5.0 to 0 & V \\
\hline Negative Generator Output Source Current & 4 & \(\mathrm{I}_{\mathrm{SS}}\) & 20 & mA \\
\hline Charge Pump Capacitor Current & - & \(\mathrm{I}_{\max }\) & 60 & mA \\
\hline Diode Forward Current & - & \(\mathrm{I}_{\mathrm{Fmax}}\) & 60 & mA \\
\hline Gate Drive Output Current & 8 & \(\mathrm{I}_{\mathrm{GO}}\) & 5.0 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\)
\end{tabular} & - & & \(\mathrm{P}_{\mathrm{D}}\) & 417 \\
\begin{tabular}{l}
Thermal Resistance, Junction-to-Air
\end{tabular} & & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 240 & mW \\
Operating Junction Temperature
\end{tabular}\({ }^{\circ} \mathrm{C} / \mathrm{W}\).

NOTE: ESD data available upon request.
MC33169-4.0
ELECTRICAL CHARACTERISTICS (\(V_{C C}=4.8 \mathrm{~V}\). For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for min \(/\) max values \(T_{A}\) is the operating ambient temperature range that applies, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Pin & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{\(\mathrm{V}_{\text {BB }}\) GENERATOR (VOLTAGE TRIPLER)} \\
\hline Oscillator Frequency & - & \(f_{\text {osc }}\) & 90 & 100 & 110 & kHz \\
\hline Oscillator Duty Cycle & - & DC & 35 & 50 & 65 & \% \\
\hline \begin{tabular}{l}
Output Voltage (\(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, 1 \mathrm{O}=3.0 \mathrm{~mA}\)) \\
Double Voltage \\
Triple Voltage \\
Triple Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=7.2 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=3.0 \mathrm{~mA}\right)\)
\end{tabular} & \[
\begin{aligned}
& 12 \\
& 11 \\
& 11
\end{aligned}
\] & \begin{tabular}{l}
VBBD \\
VBBT \\
VBBT
\end{tabular} & 4.6
6.1 & \[
\begin{gathered}
5.0 \\
7.0 \\
11.2
\end{gathered}
\] & - & V \\
\hline
\end{tabular}

NEGATIVE GENERATOR OUTPUT
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Output Voltage (\(\mathrm{l} \mathrm{O}=3.0 \mathrm{~mA}\)) & 4 & \(\mathrm{~V}_{\mathrm{O}}\) & -3.75 & -4.0 & -4.25 & V \\
\hline \begin{tabular}{c}
Output Voltage Ripple with Filter \(\left(\mathrm{R}_{\mathrm{f}}=33 \Omega, \mathrm{C}_{\mathrm{f}}=4.7 \mu \mathrm{~F}\right)\) \\
\((\mathrm{lO}=0\) to 5.0 mA\()\)
\end{tabular} & 4 & \(\mathrm{~V}_{\mathrm{r}}\) & & & & mVpp \\
\hline
\end{tabular}

PRIORITY MANAGEMENT SECTION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Idle Mode Input \\
Input Voltage High State (Logic 1) \\
Input Voltage Low State (Logic 0) \\
Input Current High State (Logic 1) \\
Input Current Low State (Logic 0), i.e. Standby Mode
\end{tabular} & 13 & \[
\begin{aligned}
& V_{I H} \\
& V_{I L} \\
& I_{I H} \\
& I_{\mathrm{IL}}
\end{aligned}
\] & \[
\begin{gathered}
2.0 \\
0 \\
10
\end{gathered}
\] & & \[
\begin{aligned}
& 2.7 \\
& 0.5 \\
& 80 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mu \mathrm{~A} \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
TX Power Control Input \\
Input Voltage Range \\
Input Voltage "Off" State (Zero RF Output Level) \\
Input Voltage "On" State (Maximum RF Output Level) \\
Input Resistance \\
Bandwidth (-3.0 dB)
\end{tabular} & 9 & \[
\begin{gathered}
V T_{x} \\
V T_{X(\text { off })} \\
V T_{x(o n)} \\
R_{\text {in }} \\
B
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 2.7 \\
& 90 \\
& 1.0
\end{aligned}
\] & \[
3.1
\] & \[
\begin{gathered}
V \\
V \\
V \\
k \Omega \\
M H z
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Gate Drive Output \\
Peak Current (Source and Sink) (VT \(\mathrm{X}_{\mathrm{X}}=3.0 \mathrm{~V}\))
\end{tabular} & 8 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{GO}} \\
& \mathrm{I}_{\mathrm{GO}}
\end{aligned}
\] & \[
v_{C C}+2.7
\] & \[
\overline{3.0}
\] & 0.5 & \begin{tabular}{l}
V \\
mA
\end{tabular} \\
\hline Undervoltage Lockout Voltage on Sense Input (Magnitude) & 10 & \(\mathrm{V}_{\text {sense }}\) & -3.0 & -3.2 & - & V \\
\hline
\end{tabular}

\section*{MC33169-4.0}

ELECTRICAL CHARACTERISTICS (continued) \(\left({ }^{V} C C=4.8 \mathrm{~V}\right.\). For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Pin & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{TOTAL DEVICE POWER CONSUMPTION} \\
\hline \(\mathrm{I} C \mathrm{C}\) Operating (\(\mathrm{VT}_{\mathrm{X}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~mA}\)) & - & ICC & - & 10 & 15 & mA \\
\hline ICC Operating
\[
\begin{aligned}
& \left(V T_{\mathrm{x}}=0 \mathrm{~V}, \mathrm{I}=3.0 \mathrm{~mA}\right) \\
& \left(\mathrm{VT}_{\mathrm{x}}=0 \mathrm{~V}, \mathrm{I}=0 \mathrm{~mA}\right)
\end{aligned}
\] & - & ICC & & \[
\begin{aligned}
& 12 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 5.0
\end{aligned}
\] & mA \\
\hline Standby Mode (Idle Mode Input = 0 V) & - & ICC & - & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{MC33169-4.0}

ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\). For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/\) max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Pin & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{\(\mathrm{V}_{\text {BB }}\) GENERATOR (VOLTAGE TRIPLER)} \\
\hline Oscillator Frequency & - & \(\mathrm{f}_{\text {osc }}\) & 90 & 100 & 110 & kHz \\
\hline Oscillator Duty Cycle & - & DC & 35 & 50 & 65 & \% \\
\hline ```
Output Voltage (\(\left.\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=3.0 \mathrm{~mA}\right)\)
 Double Voltage
 Triple Voltage
 Triple Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=7.2 \mathrm{~V}, \mathrm{IO}=3.0 \mathrm{~mA}\right)\)
``` & \[
\begin{aligned}
& 12 \\
& 11 \\
& 11
\end{aligned}
\] & \begin{tabular}{l}
\(V_{B B D}\) \\
\(V_{B B T}\) \\
VBBT
\end{tabular} & \[
\begin{aligned}
& 4.6 \\
& 6.1 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
5.0 \\
7.0 \\
11.2
\end{gathered}
\] & - & V \\
\hline
\end{tabular}

NEGATIVE GENERATOR OUTPUT
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Output Voltage ( \(\mathrm{I}=1.0 \mathrm{~mA}\) ) & 4 & \(\mathrm{~V}_{\mathrm{O}}\) & -3.75 & -4.0 & -4.25 & V \\
\hline \begin{tabular}{c} 
Output Voltage Ripple with Filter \(\left(\mathrm{R}_{\mathrm{f}}=33 \Omega, \mathrm{C}_{\mathrm{f}}=4.7 \mu \mathrm{~F}\right)\) \\
\((\mathrm{IO}=0\) to 5.0 mA\()\)
\end{tabular} & 4 & \(\mathrm{~V}_{\mathrm{r}}\) & & & & mVpp \\
\hline
\end{tabular}

PRIORITY MANAGEMENT SECTION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Idle Mode Input \\
Input Voltage High State (Logic 1) \\
input Voltage Low State (Logic 0) \\
Input Current High State (Logic 1) \\
Input Current Low State (Logic 0), i.e. Standby Mode
\end{tabular} & 13 & \[
\begin{aligned}
& V_{I H} \\
& V_{I L} \\
& I_{I H} \\
& I_{\mathrm{IL}}
\end{aligned}
\] & \[
\begin{gathered}
2.0 \\
0 \\
10
\end{gathered}
\] &  & \[
\begin{aligned}
& 2.7 \\
& 0.5 \\
& 80 \\
& 1.0
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mu \mathrm{~A} \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
\(T_{X}\) Power Control Input \\
Input Voltage Range \\
Input Voltage "Off" State (Zero RF Output Level) Input Voltage "On" State (Maximum RF Output Level) Input Resistance Bandwidth ( -3.0 dB )
\end{tabular} & 9 & \[
\begin{gathered}
V T_{X} \\
V T_{X(\text { off })} \\
V T_{X(\text { on })} \\
R_{\text {in }} \\
B
\end{gathered}
\] & \[
0
\] & \[
\begin{aligned}
& 0.7 \\
& 2.7 \\
& 90 \\
& 1.0
\end{aligned}
\] & 3.0 & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mathrm{~V} \\
\mathrm{k} \Omega \\
\mathrm{MHz}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Gate Drive Output
\[
\begin{aligned}
& \text { Voltage e } \\
&\left(\mathrm{V} \mathrm{~T}_{\mathrm{x}}\right.=0 \mathrm{~V}) \\
&\left(\mathrm{V} T_{\mathrm{x}}\right.=3.0 \mathrm{~V})
\end{aligned}
\] \\
Peak Current (Source and Sink) (VT \(=3.0 \mathrm{~V}\) )
\end{tabular} & 8 & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{GO}} \\
& \mathrm{I}_{\mathrm{GO}}
\end{aligned}
\] & \[
\mathrm{V}_{\mathrm{CC}}+2.7
\] & \[
3.0
\] & 0.5 & mA \\
\hline Undervoltage Lockout Voltage on Sense Input (Magnitude) & 10 & \(V_{\text {sense }}\) & -3.0 & -3.2 & - & V \\
\hline
\end{tabular}

TOTAL DEVICE POWER CONSUMPTION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \mathrm{ICC} \text { Operating }\left(\mathrm{VT}_{\mathrm{x}}=3.0 \mathrm{~V}\right) \\
& (\mathrm{IO}=3.0 \mathrm{~mA}) \\
& (\mathrm{IO}=1.0 \mathrm{~mA})
\end{aligned}
\] & 14 & ICC & - & & \[
\begin{aligned}
& 15 \\
& 9.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \mathrm{I} \mathrm{ICC} \text { Operating }\left(\mathrm{VT} \mathrm{~T}_{\mathrm{x}}=0 \mathrm{~V}\right) \\
& (\mathrm{I} \mathrm{O}=3.0 \mathrm{~mA}) \\
& (\mathrm{IO}=1.0 \mathrm{~mA}) \\
& (\mathrm{IO}=0 \mathrm{~mA})
\end{aligned}
\] & 14 & ICC & - & \[
4.5
\] & \[
\begin{aligned}
& 13 \\
& 9.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline Standby Mode (Idle Mode Input \(=0 \mathrm{~V}\) ) & 14 & ICC & - & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{MC33169}

MC33169-2.5
ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{C C}=4.8 \mathrm{~V}\). For typical values \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Pin & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{\(\mathrm{V}_{\text {BB }}\) GENERATOR (VOLTAGE TRIPLER)} \\
\hline Oscillator Frequency & - & \(\mathrm{f}_{\text {osc }}\) & 90 & 100 & 110 & kHz \\
\hline Oscillator Duty Cycle & - & DC & 35 & 50 & 65 & \% \\
\hline ```
Output Voltage ( \(\mathrm{VCC}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~mA}\) )
    Double Voltage
    Triple Voltage
    Triple Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=7.2 \mathrm{~V}, \mathrm{IO}=3.0 \mathrm{~mA}\right)\)
``` & \[
\begin{aligned}
& 12 \\
& 11 \\
& 11
\end{aligned}
\] & \begin{tabular}{l}
\(V_{B B D}\) \\
VBBT \\
VBBT
\end{tabular} & 4.6
6.1 & \[
\begin{gathered}
5.0 \\
7.0 \\
11.2
\end{gathered}
\] & - & V \\
\hline
\end{tabular}

NEGATIVE GENERATOR OUTPUT
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Output Voltage \\
\((\mathrm{IO}=3.0 \mathrm{~mA})\) \\
\(\left(\mathrm{IO}=5.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}\right)\)
\end{tabular} & 4 & \(\mathrm{~V}_{\mathrm{O}}\) & -2.35 & -2.5 & -2.65 & V \\
\hline \begin{tabular}{c}
Output Voltage Ripple with Filter \(\left(\mathrm{R}_{\mathrm{f}}=33 \Omega, \mathrm{C}_{\mathrm{f}}=4.7 \mu \mathrm{~F}\right)\) \\
\((\mathrm{lO}=0\) to 5.0 mA\()\)
\end{tabular} & 4 & \(\mathrm{~V}_{\mathrm{r}}\) & -2.5 & - & \\
\hline
\end{tabular}

\section*{PRIORITY MANAGEMENT SECTION}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Idle Mode Input \\
Input Voltage High State (Logic 1) \\
Input Voltage Low State (Logic 0) \\
Input Current High State (Logic 1) \\
Input Current Low State (Logic 0), i.e. Standby Mode
\end{tabular} & 13 & \[
\begin{aligned}
& V_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}} \\
& I_{\mathrm{IH}} \\
& \mathrm{I}^{2}
\end{aligned}
\] & \[
\begin{gathered}
2.0 \\
0 \\
10
\end{gathered}
\] & & \[
\begin{aligned}
& 2.7 \\
& 0.5 \\
& 80 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mu \mathrm{~A} \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
\(\mathrm{T}_{\mathrm{X}}\) Power Control Input \\
Input Voltage Range \\
Input Voltage "Off" State (Zero RF Output Level) Input Voltage "On" State (Maximum RF Output Level) Input Resistance Bandwidth (-3.0 dB)
\end{tabular} & 9 & \[
\begin{gathered}
V T_{x} \\
V T_{x(\text { off })} \\
V T_{x(\text { on })} \\
R_{\text {in }} \\
B
\end{gathered}
\] & & \[
\begin{aligned}
& 0.7 \\
& 2.7 \\
& 90 \\
& 1.0
\end{aligned}
\] & 3.0 & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mathrm{~V} \\
\mathrm{k} \Omega \\
\mathrm{MHz}
\end{gathered}
\] \\
\hline Gate Drive Output
\[
\begin{gathered}
\text { Voltage }\left(\mathrm{V} T_{X}=0 \mathrm{~V}\right) \\
\left(\mathrm{V} T_{X}=3.0 \mathrm{~V}\right) \\
\text { Peak Current }\left(\mathrm{V} T_{X}=3.0 \mathrm{~V}\right)
\end{gathered}
\] & 8 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{GO}} \\
& \mathrm{I}_{\mathrm{GO}}
\end{aligned}
\] & \[
V_{C C}+2.7
\] & \[
\overline{3.0}
\] & 0.5 & \\
\hline Undervoltage Lockout Voltage on Sense Input (Magnitude) & 10 & \(V_{\text {sense }}\) & -2.0 & -2.3 & - & V \\
\hline
\end{tabular}

TOTAL DEVICE POWER CONSUMPTION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline l cc Operating (\(\mathrm{VT}_{\mathrm{X}}=3.0 \mathrm{~V}, \mathrm{IO}=3.0 \mathrm{~mA}\)) & 14 & Icc & - & 14 & 17 & mA \\
\hline ICC Operating
\[
\begin{aligned}
& \left(\mathrm{VT}_{\mathrm{X}}=0 \mathrm{~V}, \mathrm{IO}=3.0 \mathrm{~mA}\right) \\
& \left(\mathrm{VT}_{\mathrm{X}}=0 \mathrm{~V}, \mathrm{IO}=0 \mathrm{~mA}\right)
\end{aligned}
\] & 14 & ICC & - & \[
\begin{gathered}
13.5 \\
4.5
\end{gathered}
\] & \[
\begin{aligned}
& 16 \\
& 6.0
\end{aligned}
\] & mA \\
\hline Standby Mode (Idle Mode Input \(=0 \mathrm{~V}\)) & 14 & ICC & - & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

PRIORITY MANAGEMENT TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Control Inputs } & \multicolumn{2}{c|}{ Outputs } \\
\hline Idle Mode & \(T_{X}\) Power Control & \(V_{O}\) & Gate Drive \\
\hline 0 & 0 & Off & \(0.5 \mathrm{~V} \max\) \\
1 & 0 & -2.5 or -4.0 V & \(0.5 \mathrm{~V} \max\) \\
0 & 1 & \(0 f f\) \\
1 & 1 & -2.5 or -4.0 V & \(0.5 \mathrm{~V} \max\) \\
\hline
\end{tabular}

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Name & Description \\
\hline 1 & C2 Input & This is the positive pin for the charge pump capacitor in the voltage doubler. \\
\hline 2 & C1/C2 & This is the negative pin for the charge pump capacitors. \\
\hline 3 & C1 Input & This is the positive pin for the charge pump capacitor in the voltage tripler. \\
\hline 4 & \(\mathrm{V}_{\mathrm{O}}\) Output & It delivers a regulated negative voltage of -4.0 V or -2.5 V depending on the product version. It can source an output current in excess of 5.0 mA . \\
\hline 5 & \(\mathrm{V}_{\mathrm{O}}\) Charge Pump Capacitor + & This is the positive pin for the capacitor in the inverting charge pump. \\
\hline 6 & Gnd & This pin is Ground for both signal and power circuitry. \\
\hline 7 & \(\mathrm{V}_{\mathrm{O}}\) Charge Pump Capacitor - & This is the negative pin for the capacitor in the inverting charge pump. \\
\hline 8 & Gate Drive Output & This is the output of the gate amplifier which directly drives the gate of an N-Channel MOSFET. It can sink and source peak currents up to 3.0 mA . \\
\hline 9 & Tx Power Control Input & The input signal applied on this pin controls the N-Channel switching MOSFET in follower mode and therefore, linearly controls the RF output voltage. \\
\hline 10 & Sense Input Pin & It senses the negative voltage directly on the Power Amplifier. It is also the input pin of an internal Undervoltage Lockout circuit which blocks the switching of the N -Channel MOSFET if the sensed voltage is more positive than \(-3.0 \mathrm{~V}(-4.0 \mathrm{~V}\) version) or \(-2.0 \mathrm{~V}(-2.5 \mathrm{~V}\) version \()\). \\
\hline 11 & VBB Triple & This is the positive pin of the output filter capacitor in the voltage tripler. The triple voltage at that pin is used internally to supply the inverting charge pump and the gate amplifier. \\
\hline 12 & \(V_{\text {BB }}\) Double & This is the positive pin of the output filter capacitor in the voltage doubler. \\
\hline 13 & Idle Mode Input & This pin is used to set the circuit in Low Power Consumption Standby mode. It is CMOS compatible, i.e. a voltage lower than 0.5 V applied on this pin makes the device go into Standby mode in which the current consumption is lower than \(1.0 \mu \mathrm{~A}\). The MC33169 is then awakened by a voltage higher than 2.0 V applied on that pin. \\
\hline 14 & \(\mathrm{V}_{\mathrm{CC}}\) & This is the supply input pin for the MC33169, \(\mathrm{V}_{\text {CC }}\) voltage ranges from 2.7 V to 7.2 V . \\
\hline
\end{tabular}

Figure 1. MC33169 Representative Block Diagram

Figure 2. Operating Current versus Temperature

Figure 4. Operating Current versus Temperature

Figure 6. Output Voltage versus Temperature

Figure 3. Operating Current versus Temperature

Figure 5. Operating Current versus Temperature

Figure 7. Output Voltage versus Temperature

Figure 8. Output Voltage versus Load Current

Figure 9. VTX Control Voltage versus Gate Drive Output Voltage

\section*{OPERATING DESCRIPTION}

The MC33169 is a power amplifier support IC that is designed to properly switch "on" or "off" a MESFET Power Amplifier either manually or by microprocessor. Controlling the power drain of the RF Amplifier extends operating battery life in many portable systems.

\section*{Outputs}

The IC is designed to provide a -4.0 V or -2.5 V bias to the gate of the RF Ampllifier MESFET devices prior to application of a positive battery voltage to the drain. The negative output voltage can provide up to 5.0 mA of current. The positive voltage control requires an external N -Channel logic level MOSFET, connected as a source follower. The Gate Drive Output, Pin 8, can source or sink 3.0 mA to the external MOSFET. The low drive current slows the MOSFET switching speed, thereby minimizing voltage
glitches on the \(V_{C C}\) line which could cause disturbances to other circuitry.

Inputs
A Sense Input, Pin 10, protects the Power Amplifier load by monitoring the level of the negative output voltage. If the negative voltage magnitude falls below a preset level, 3.2 V typical for the -4.0 V version or 2.3 V for the -2.5 V version, an undervoltage lockout circuit disables the external MOSFET gate drive.

The \(\mathrm{T}_{\mathrm{X}}\) Power Control Input controls the N -Channel external switching MOSFET in source follower mode, which allows linear control of the RF Output voltage level.

The Idle mode input is CMOS compatible, allowing the RF Amplifier to be placed in a standby mode, drawing less than \(1.0 \mu \mathrm{~A}\) from the power source.

\section*{MC33169}

Figure 10. Class 4 GSM with a Two-Stage Integrated Power Amplifier (I.P.A.)

Figure 11. Transfer Characteristic for Gate Drive Output

\(V_{\text {Batt }}=4.8 \mathrm{~V}\)
\(\mathrm{P}_{\text {in }}=10 \mathrm{dBm}\)
\(V_{\text {Idle }}=3.0 \mathrm{~V}\)

Vramp: 40 Hz sinusoidal voltage set for \(95 \%\) AM depth on RF

Peak output power: 34.6 dBm

\section*{CURVES RELATED TO APPLICATION GSM CLASS 4}

Figure 12. RF Output Voltage (\(40 \mathrm{~Hz} / 95 \%\) AM) and VTX Driving Voltage

Figure 13. Idle, PA Drain, RF Output and Vo Voltages During a Burst Period

Figure 15. RF Output Voltage, PA Drain Voltage and \(\mathbf{V T}_{\mathbf{x}}\) Driving Voltage, During Rise Time

\section*{MC33169}

Figure 16. AMPS version with MRFIC0913, Integrated Power Amplifier (I.P.A.)

Figure 17. MC33169 with GaAs RF Power Amplifier

\section*{Advance Information Micropower Voltage Regulators with On/Off Control}

The MC33264 series are micropower low dropout voltage regulators available in SO-8 and Micro-8 surface mount packages and a wide range of output voltages. These devices feature a very low quiescent current (\(100 \mu \mathrm{~A}\) in the ON mode; \(0.1 \mu \mathrm{~A}\) in the OFF mode), and are capable of supplying output currents up to 100 mA . Internal current and thermal limiting protection is provided.

Additionally, the MC33264 has either active HIGH or active LOW control (Pins 2 and 3) that allows a logic level signal to turn-off or turn-on the regulator output.

Due to the low input-to-output voltage differential and bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable.

\section*{MC33264 Features:}
- Low Quiescent Current (\(0.3 \mu \mathrm{~A}\) in OFF Mode; \(95 \mu \mathrm{~A}\) in ON Mode)
- Low Input-to-Output Voltage Differential of 47 mV at 10 mA , and 131 mV at 50 mA
- Multiple Output Voltages Available
- Extremely Tight Line and Load Regulation
- Stable with Output Capacitance of Only \(0.33 \mu \mathrm{~F}\) for \(5.0 \mathrm{~V}, 6.0 \mathrm{~V}\) and 4.75 V Output Voltages \(0.22 \mu \mathrm{~F}\) for \(2.8 \mathrm{~V}, 3.0 \mathrm{~V}\) and 3.3 V Output Voltages
- Internal Current and Thermal Limiting
- Logic Level ON/OFF Control
- Functionally Equivalent to TK115XXMC and LP2980

\section*{PIN CONNECTIONS}

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33264D-2.8 & & \\
MC33264D-3.0 & & \\
MC33264D-3.3 & & SO-8 \\
MC33264D-3.8 & & \\
MC33264D-4.0 & & \\
MC33264D-4.75 & & \\
MC33264D-5.0 & & \\
\hline MC33264DM-2.8 & & \\
MC33264DM-3.0 & & \\
MC33264DM-3.3 & & \\
MC33264DM-3.8 & & \\
MC33264DM-4.0 & & \\
MC33264DM-4.75 & & \\
MC33264DM-5.0 & & \\
\hline
\end{tabular}

MAXIMUM RATINGS \(\left(T_{C}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 13 & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
Maximum Power Dissipation \\
Case 751 (SO-8) D Suffix
\end{tabular} & \(\mathrm{P}_{\mathrm{D}}\) & Internally Limited & W \\
\begin{tabular}{l}
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 846A (Micro-8) DM Suffix \\
Thermal Resistance, Junction-to-Ambient
\end{tabular} & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 180 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Rutput Current & \(\mathrm{R}_{\theta \mathrm{OJA}}\) & 45 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Maximum Adjustable Output Voltage & IO & 240 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & \(\mathrm{V}_{\mathrm{O}}\) & \(1.15 \times \mathrm{V}_{\text {nom }}\) & Vdc \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=1.0 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\) (Note 1), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline ```
Output Voltage (\(\mathrm{I} \mathrm{O}=0 \mathrm{~mA}\))
 2.8 Suffix (\(\mathrm{V}_{\mathrm{CC}}=3.8 \mathrm{~V}\))
 3.0 Suffix (\(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}\))
 3.3 Suffix (\(\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}\))
 3.8 Suffix (VCC \(=4.8 \mathrm{~V}\))
 4.0 Suffix (\(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\))
 4.75 Suffix (\(\mathrm{V}_{\mathrm{CC}}=5.75 \mathrm{~V}\))
 5.0 Suffix (\(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}\))
\(\mathrm{V}_{\text {in }}=\left(\mathrm{V}_{\mathrm{O}}+1.0\right) \mathrm{V}\) to \(12 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}<60 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)
 2.8 Suffix
 3.0 Suffix
 3.3 Suffix
 3.8 Suffix
 4.0 Suffix
 4.75 Suffix
5.0 Suffix
``` & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{gathered}
2.74 \\
2.96 \\
3.23 \\
3.72 \\
3.92 \\
4.66 \\
4.9 \\
\\
2.7 \\
2.9 \\
3.18 \\
3.67 \\
3.86 \\
4.58 \\
4.83
\end{gathered}
\] & \[
\begin{gathered}
2.8 \\
3.0 \\
3.3 \\
3.8 \\
4.0 \\
4.75 \\
5.0
\end{gathered}
\] & \[
\begin{aligned}
& 2.86 \\
& 3.04 \\
& 3.37 \\
& 3.88 \\
& 4.08 \\
& 4.85 \\
& 5.1 \\
& \\
& 2.9 \\
& 3.1 \\
& 3.42 \\
& 3.93 \\
& 4.14 \\
& 4.92 \\
& 5.17
\end{aligned}
\] & V \\
\hline Line Regulation \(\left(\mathrm{V}_{\mathrm{in}}=\left[\mathrm{V}_{\mathrm{O}}+1.0\right] \mathrm{V}\right.\) to \(\left.12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=60 \mathrm{~mA}\right)\) All Suffixes & Regline & - & 2.0 & 10 & mV \\
\hline Load Regulation \(\left(\mathrm{V}_{\mathrm{in}}=\left[\mathrm{V}_{\mathrm{O}}+1.0\right], \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\right.\) to 60 mA\()\) All Suffixes & Regload & - & 16 & 25 & mV \\
\hline Dropout Voltage
\[
\begin{aligned}
& \mathrm{I}=10 \mathrm{~mA} \\
& \mathrm{I}=50 \mathrm{~mA} \\
& \mathrm{I}=60 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) &  & \[
\begin{gathered}
47 \\
131 \\
147
\end{gathered}
\] & \[
\begin{gathered}
90 \\
200 \\
230
\end{gathered}
\] & mV \\
\hline \begin{tabular}{l}
Quiescent Current \\
ON Mode ( \(\left.\mathrm{V}_{\mathrm{in}}=\left[\mathrm{V}_{\mathrm{O}}+1.0\right] \mathrm{V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\right)\) \\
OFF Mode \\
ON Mode \(\left(\mathrm{V}_{\text {in }}=\left[\mathrm{V}_{\mathrm{O}}-0.5\right] \mathrm{V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\right)\) [Note2]
\end{tabular} & \({ }^{1} \mathrm{Q}\) &  & \[
\begin{aligned}
& 95 \\
& 0.3 \\
& 540
\end{aligned}
\] & \[
\begin{array}{r}
150 \\
2.0 \\
900 \\
\hline
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline  \(V\) at \(f=1.0 \mathrm{kHz}\) ) & - & 55 & 65 & - & dB \\
\hline Output Voltage Temperature Coefficient & TC & - & \(\pm 120\) & - & ppm/ \(/{ }^{\circ} \mathrm{C}\) \\
\hline Current Limit ( \(\mathrm{V}_{\text {in }}=\left[\mathrm{V}_{\mathrm{O}}+1.0\right], \mathrm{V}_{\mathrm{O}}\) Shorted \()\) & \(M_{\text {Limit }}\) & 100 & 150 & - & mA \\
\hline Output Noise Voltage ( 10 Hz to 100 kHz ) (Note 3)
\[
\begin{aligned}
& C_{L}=1.0 \mu \mathrm{~F} \\
& C_{L}=100 \mu \mathrm{~F}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & \[
\begin{gathered}
110 \\
46
\end{gathered}
\] & & \(\mu \mathrm{Vrms}\) \\
\hline
\end{tabular}

NOTES: 1. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
2. Quiescent current is measured where the PNP pass transistor is in saturation. \(\mathrm{V}_{\mathrm{CE}}=-0.5 \mathrm{~V}\) guarantees this condition.
3. Noise tests on the MC33264 are made with a \(0.01 \mu \mathrm{~F}\) capacitor connected across Pins 8 and 5 .

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=1.0 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\) (Note 1), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ON/OFF INPUTS} \\
\hline ```
On/Off Input (Pin 3 Tied to Ground)
    Logic "1" (Regulator ON)
    Logic "0" (Regulator OFF)
On/Off Input (Pin 2 Tied to Vin)
    Logic "0" (Regulator ON)
    Logic "1" (Regulator OFF)
``` & \(\mathrm{V}_{\text {On/Off }}\) & \[
\begin{gathered}
2.4 \\
0 \\
0 \\
0 \\
\mathrm{v}_{\mathrm{in}}-0.2
\end{gathered}
\] & - & \[
\begin{gathered}
v_{\text {in }} \\
0.5 \\
\\
\mathrm{v}_{\text {in }}-2.4 \\
\mathrm{v}_{\text {in }}
\end{gathered}
\] & V \\
\hline \begin{tabular}{l}
On/Off Pin Input Current (Pin 3 Tied to Ground)
\[
\mathrm{V}_{\text {On/Off }}=2.4 \mathrm{~V}
\] \\
On/Off Pin Input Current (Pin 2 Tied to \(\mathrm{V}_{\text {in }}\))
\[
\mathrm{V}_{\text {On/Off }}=\mathrm{V}_{\text {in }}-2.4 \mathrm{~V}
\]
\end{tabular} & IOn/Off & - & \[
\begin{aligned}
& 1.9 \\
& 12
\end{aligned}
\] & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 1. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
2. Quiescent current is measured where the PNP pass transistor is in saturation. \(\mathrm{V}_{\mathrm{CE}}=-0.5 \mathrm{~V}\) guarantees this condition.
3. Noise tests on the MC33264 are made with a \(0.01 \mu \mathrm{~F}\) capacitor connected across Pins 8 and 5 .

\section*{DEFINITIONS}

Dropout Voltage - The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 100 mV below its nominal value (which is measured at 1.0 V differential), dropout voltage is affected by junction temperature, load current and minimum input supply requirements.

Line Regulation - The change in output voltage for a change in input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Quiescent Current - Current which is used to operate the regulator chip and is not delivered to the load.

Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Figure 1. Quiescent Current versus Load Current

Figure 2. Dropout Voltage versus Input Voltage

Figure 3. Input Current versus Input Voltage

Figure 5. Dropout Voltage versus Output Current

Figure 4. Output Voltage versus Temperature

\section*{APPLICATION INFORMATION}

\section*{Introduction}

The MC33264 regulators are designed with internal current limiting and thermal shutdown making them user-friendly. These regulators require only \(0.33 \mu \mathrm{~F}\) (or greater) capacitance between the output terminal and ground for stability for \(2.8 \mathrm{~V}, 3.0 \mathrm{~V}\), and 3.3 V output voltage options. Output voltage options of \(5.0 \mathrm{~V}, 6.0 \mathrm{~V}\) and 4.75 V require only \(0.22 \mu \mathrm{~F}\) for stability. The output capacitor must be mounted as close to the MC33264 as possible. If the output capacitor must be mounted further than two centimeters away from the MC33264, then a larger value of output capacitor may be required for stability. A value of \(0.68 \mu \mathrm{~F}\) or larger is recommended. Most types of aluminum, tantalum or multilayer ceramic will perform adequately. Solid tantalums or appropriate multilayer ceramic capacitors are recommended for operation below \(25^{\circ} \mathrm{C}\).

A bypass capacitor is recommended across the MC33264 input to ground if more than 4.0 inches of wire connects the input to either a battery or power supply filter capacitor.

\section*{On/Off Control}

On/Off control of the regulator may be accomplished in either of two ways. Pin 3 may be tied to circuit ground and a positive logic control applied to Pin 2 . The regulator will be turned on by a positive (>2.4 V) level, typically 5.0 V with respect to ground, sourcing a typical current of \(6.0 \mu \mathrm{~A}\). The regulator will turn off if the control input is a logic " 0 " (\(<0.5 \mathrm{~V}\)). Alternatively, Pin 2 may be tied to the regulator input voltage and a negative logic control applied to Pin 3. The regulator will be turned on when the control voltage is less than \(\mathrm{V}_{\text {in }}-2.4 \mathrm{~V}\), sinking a typical current of \(18 \mu \mathrm{~A}\) when \(\mathrm{V}_{\mathrm{in}}=6.0 \mathrm{~V}\). The regulator is off when the control input is open or greater than \(\mathrm{V}_{\text {in }}-0.2 \mathrm{~V}\).

\section*{Programming The Output Voltage}

The MC33264 output voltage is automatically set using its internal voltage divider. Alternatively, it may be programmed within a typical \(\pm 15 \%\) range of its preset output voltage. An external pair of resistors is required, as shown in Figure 7.

Figure 7. Regulator Output Voltage Trim

The complete equation for the output voltage is:
\[
v_{\text {out }}=V_{\text {ref }}\left(1+\frac{R 1}{R 2}\right)+I_{F B} R 1
\]
where \(\mathrm{V}_{\text {ref }}\) is the nominal 1.235 V reference voltage and \(\mathrm{I}_{\mathrm{FB}}\) is the feedback pin bias current, nominally -20 nA . The minimum recommended load current of \(1.0 \mu \mathrm{~A}\) forces an upper limit of \(1.2 \mathrm{M} \Omega\) on the value of R 2 , if the regulator must work with no load. IFB will produce a \(2 \%\) typical error in \(V_{\text {out }}\) which may be eliminated at room temperature by adjusting R1. For better accuracy, choosing R2 \(=100 \mathrm{~K}\) reduces this error to \(0.17 \%\) while increasing the resistor program current to \(12 \mu \mathrm{~A}\).

\section*{Output Noise}

In many applications it is desirable to reduce the noise present at the output. Reducing the regulator bandwidth by
increasing the size of the output capacitor is the only method for reducing noise.

Noise can be reduced fourfold by a bypass capacitor across R1, since it reduces the high frequency gain from 4 to unity for the MC33264D-5.0. Pick
\[
\mathrm{C}_{\text {BYPASS }}=\frac{1}{2 \pi \mathrm{R} 1 \times 200 \mathrm{~Hz}}
\]
or about \(0.01 \mu \mathrm{~F}\). When doing this, the output capacitor must be increased to \(3.3 \mu \mathrm{~F}\) to maintain stability. These changes reduce the output noise from \(430 \mu \mathrm{~V}\) to 100 Vrms for a 100 kHz bandwidth for the 5.0 V output device. With the bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages.

\section*{TYPICAL APPLICATIONS}

Figure 8. Lithium Ion Battery Cell Charger

Figure 9. Low Drift Current Source

Figure 10. 2.0 Ampere Low Dropout Regulator

\section*{MC33264}

Figure 11. Low Battery Disconnect

Figure 12. RF Amplifier Supply

\section*{Low Dropout Regulator}

The MC33267 is a positive fixed 5.0 V regulator that is specifically designed to maintain proper voltage regulation with an extremely low input-to-output voltage differential. This device is capable of supplying output currents in excess of 500 mA and contains internal current limiting and thermal shutdown protection. Also featured is an on-chip power-up reset circuit that is ideally suited for use in microprocessor based systems. Whenever the regulator output voltage is below nominal, the reset output is held low. A programmable time delay is initiated after the regulator has reached its nominal level and upon timeout, the reset output is released.

Due to the low dropout voltage specifications, the MC33267 is ideally suited for use in battery powered industrial and consumer equipment where an extension of useful battery life is desirable. This device is contained in an economical five lead TO-220 type package.
- Low Input-to-Output Voltage Differential
- Output Current in Excess of 500 mA
- On-Chip Power-Up Reset Circuit with Programmable Delay
- Internal Current Limiting with Thermal Shutdown
- Economical Five Lead TO-220 Type Packages

ORDERING INFORMATION
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Tested Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33267T & \multirow{2}{|c|}{\(\mathrm{T}_{\mathrm{J}}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & Plastic Power \\
MC33267TV & & Plastic Power \\
\hline MC33267D2T & \(\mathrm{T}_{J}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\) & Surface Mount \\
\hline
\end{tabular}

\section*{LOW DROPOUT REGULATOR with POWER-UP RESET}

\section*{SEMICONDUCTOR TECHNICAL DATA}

> Pin 1. \(V_{\text {CC }}\) Input
> 2. Reset
> 3. Ground
> 4. Delay
> 5. Output

T SUFFIX
PLASTIC PACKAGE CASE 314D

TV SUFFIX
PLASTIC PACKAGE CASE 314B

Heatsink surface connected to Pin 3.

D2T SUFFIX PLASTIC PACKAGE CASE 936A (D2PAK)

Heatsink surface (shown as terminal 6 in case outline drawing) is connected to Pin 3.

MC33267

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage Range & \(V_{\text {in }}\) & -20 to +40 & Vdc \\
\hline Delay Voltage Range & V \({ }_{\text {DLYR }}\) & -0.3 to \(\mathrm{V}_{\mathrm{O}}\) & V \\
\hline Delay Sink Current & IDLY(sink) & 25 & mA \\
\hline Reset Voltage Range & \(\mathrm{V}_{\mathrm{RR}}\) & -0.3 to +15 & V \\
\hline Reset Sink Current & IR(sink) & 50 & mA \\
\hline \begin{tabular}{l}
Power Dissipation \\
Case 314B and 314D (TO-220 Type)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 936A (D2PAK) [Note 1]
\[
\mathrm{T}_{A}=90^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case
\end{tabular} & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(\mathrm{R}_{\text {日JC }}\) \\
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(\mathrm{R}_{\text {өJC }}\)
\end{tabular} & Internally Limited
62.5
4.0
Internally Limited
70
5.0 & \[
\begin{gathered}
W \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{w} \\
\\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature Range & TJ & -40 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. \(\mathrm{D}^{2}\) PAK Junction-to-Ambient Thermal Resistance is for vertical mounting. Refer to Figure 7 for board mounted thermal resistance.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=14.4 \mathrm{~V}, \mathrm{I} \mathrm{O}=5.0 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=100 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}(\mathrm{ESR})} \leq 0.3 \Omega, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\) (Note 2), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage (} \mathrm{I}=5.0 \mathrm{~mA} \text { to } 500 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=6.0 \mathrm{~V} \text { to } 28 \mathrm{~V} \text {) } \\
& \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{gathered}
4.95 \\
4.9
\end{gathered}
\] & & \[
\begin{gathered}
5.15 \\
5.2
\end{gathered}
\] & V \\
\hline Line Regulation (\(\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}\) to 26 V) & Regline & - & 3.0 & 50 & mV \\
\hline Load Regulation (\(\mathrm{l}=5.0 \mathrm{~mA}\) to 500 mA) & Regload & - & 1.0 & 50 & mV \\
\hline Bias Current
\[
\begin{aligned}
& \mathrm{l} O=0 \mathrm{~mA} \\
& \mathrm{I}=150 \mathrm{~mA} \\
& \mathrm{l}=500 \mathrm{~mA} \\
& \mathrm{I}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{in}}=6.2 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{B}}\) & \[
\begin{aligned}
& - \\
& \text { - } \\
& \text { - }
\end{aligned}
\] & \[
\begin{gathered}
12 \\
22 \\
100 \\
120
\end{gathered}
\] & \[
\begin{gathered}
20 \\
40 \\
200 \\
300
\end{gathered}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection }\left(\mathrm{f}=120 \mathrm{~Hz}, \mathrm{~V}_{\text {in }}=7.0 \mathrm{~V} \text { to } 17 \mathrm{~V},\right. \\
& \left.\mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=100 \mu \mathrm{~F}\right)
\end{aligned}
\] & RR & 60 & 80 & - & dB \\
\hline Dropout Voltage (\(\mathrm{l} \mathrm{O}=500 \mathrm{~mA}\)) & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & 0.58 & 0.8 & V \\
\hline Delay Comparator Threshold (\(\mathrm{V}_{\mathrm{O}}\) Decreasing) & \(\mathrm{V}_{\text {th(}}\) (DLY) & 4.8 & \(\mathrm{V}_{\mathrm{O}}-0.15\) & \(\mathrm{v}_{\mathrm{O}}-0.08\) & V \\
\hline Delay Pin Source Current & \({ }^{\text {I DLY (source) }}\) & 12 & 20 & 28 & \(\mu \mathrm{A}\) \\
\hline Reset Comparator Threshold & \(\mathrm{V}_{\mathrm{th}(\mathrm{R})}\) & 3.6 & 3.8 & 4.0 & V \\
\hline Reset Sink Saturation (\(\mathrm{I}_{\text {sink }}=10 \mathrm{~mA}\)) & \(\mathrm{V}_{\text {CE }}\) (sat) & - & 0.2 & 0.8 & V \\
\hline Reset Off-State Leakage (\(\mathrm{V}_{\text {CE }}=5.0 \mathrm{~V}\)) & \({ }^{\text {R }}\) (leak) & - & 0.3 & 10 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTE: 2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

Figure 1. Typical Application Circuit

\section*{APPLICATION CIRCUIT INFORMATION}

The MC33267 is a low dropout, positive fixed 5.0 V , 500 mA regulator. Protection features include output current limiting and thermal shutdown. System protection consists of an on-chip power-up microprocessor reset circuit.

A typical applications circuit is shown in Figure 1. The input bypass capacitor (\(\mathrm{C}_{\mathrm{in}}\)) is recommended if the regulator is located an appreciable distance (\(\geq 4^{\prime \prime}\)) from the supply input filter. This will reduce the circuit's sensitivity to the input line impedance at high frequencies.

These regulators are not internally compensated and thus require an external output capacitor (\(\mathrm{CO}_{\mathrm{O}}\)) for stability. The recommended capacitance is \(100 \mu \mathrm{~F}\) with an equivalent series resistance (ESR) of less than \(0.3 \Omega\). A minimum capacitance of \(33 \mu \mathrm{~F}\) with a maximum ESR of \(3.0 \Omega\) can be used in applications where space is a premium, however, these limits must be observed over the entire operating temperature range of the regulator circuit.

With economical electrolytic capacitors, cold temperature operation can pose a serious stability problem. As the electrolyte freezes, around \(-30^{\circ} \mathrm{C}\), the capacitance will
decrease and the ESR will increase drastically, causing the circuit to oscillate. Quality electrolytic capacitors with extended temperature ranges of \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) and \(-55^{\circ} \mathrm{C}\) to \(+105^{\circ} \mathrm{C}\) are readily available. It is suggested that oven testing of the entire circuit be performed with maximum load, minimum input voltage, and minimum ambient temperature.

Figure 2 shows the reset circuit timing relationship. Note that whenever the regulator's output is less than 4.9 V , the delay capacitor (CDLY) is immediately discharged, and the reset output is held in a low state. As the regulator's output voltage increases beyond 4.97 V , the delay comparator will allow the \(20 \mu \mathrm{~A}\) current source to charge CDLY. The reset output will go to a high state when CDLY crosses the 3.8 V threshold of the reset comparator. The reset delay time is controlled by the value selected for CDLY. The required system reset time is governed by the microprocessor and usually a reset signal which lasts several machine cycles is sufficient.

\section*{MC33267}

Figure 2. Timing Waveforms

Figure 3. Reset Output versus Input Voltage

Figure 4. Output Voltage versus Input Voltage

Figure 5. Reset Output versus Input Voltage

Figure 6. Output Voltage versus Input Voltage

Figure 7. D2PAK Thermal Resistance and Maximum
Power Dissipation versus P.C.B. Copper Length

\section*{Advance Information}

\section*{Low Dropout Positive Fixed and Adjustable Voltage Regulators}

The MC33269 series are low dropout, medium current, fixed and adjustable, positive voltage regulators specifically designed for use in low input voltage applications. These devices offer the circuit designer an economical solution for precision voltage regulation, while keeping power losses to a minimum.

The regulator consists of a 1.0 V dropout composite PNP-NPN pass transistor, current limiting, and thermal shutdown.
- \(3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 12 \mathrm{~V}\) and Adjustable Versions
- Space Saving DPAK and SOP-8 Power Package
- 1.0 V Dropout
- Output Current in Excess of 800 mA
- Thermal Protection
- Short Circuit Protection
- Output Trimmed to \(1.0 \%\) Tolerance
- No Minimum Load Requirement for Fixed Voltage Output Devices

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC33269D & \multirow{12}{*}{\(\mathrm{T} J=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & SOP-8 \\
\hline MC33269DT & & DPAK \\
\hline MC33269T & & Insertion Mount \\
\hline MC33269D-3.3 & & SOP-8 \\
\hline MC33269DT-3.3 & & DPAK \\
\hline MC33269T-3.3 & & Insertion Mount \\
\hline MC33269D-5.0 & & SOP-8 \\
\hline MC33269DT-5.0 & & DPAK \\
\hline MC33269T-5.0 & & Insertion Mount \\
\hline MC33269D-12 & & SOP-8 \\
\hline MC33269DT-12 & & DPAK \\
\hline MC33269T-12 & & Insertion Mount \\
\hline
\end{tabular}

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE
\begin{tabular}{|l|l|l|l|}
\hline MC33269D & Adj & MC33269D-5.0 & 5.0 V \\
MC33269DT & Adj & MC33269DT-5.0 & 5.0 V \\
MC33269T & Adj & MC33269T-5.0 & 5.0 V \\
MC33269D-3.3 & 3.3 V & MC33269D-12 & 12 V \\
MC33269DT-3.3 & 3.3 V & MC33269DT-12 & 12 V \\
MC33269T-3.3 & 3.3 V & MC33269T-12 & 12 V \\
\hline
\end{tabular}

\section*{MC33269}

\section*{800 mA LOW DROPOUT THREE-TERMINAL VOLTAGE REGULATORS}

\section*{MC33269}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Input Voltage & \(\mathrm{V}_{\text {in }}\) & 20 & V \\
\hline \begin{tabular}{l}
Power Dissipation \\
Case 369A (DPAK)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 751 (SOP-8)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case \\
Case 221A
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case
\end{tabular} & \[
\begin{aligned}
& \mathrm{PD}^{\theta_{\mathrm{JA}}} \\
& \theta_{\mathrm{JC}} \\
& \mathrm{PD} \\
& \theta_{\mathrm{JA}} \\
& \theta_{\mathrm{JC}} \\
& \mathrm{PD} \\
& \theta_{\mathrm{JA}} \\
& \theta_{\mathrm{JC}}
\end{aligned}
\] & \begin{tabular}{c}
Internally Limited \\
92 \\
6.0 \\
\\
Internally Limited \\
160 \\
25 \\
\\
Internally Limited \\
65 \\
5.0 \\
\hline
\end{tabular} & \[
\begin{gathered}
\mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~W} \\
\mathrm{~W} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature Range & TJ & -40 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), for min/max values \(\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{array}{cl}
\text { Output Voltage }\left(I_{\text {out }}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right) \\
3.3 \text { Suffix } & (\mathrm{VCC}=5.3 \mathrm{~V}) \\
5.0 \text { Suffix } & (\mathrm{V} C \mathrm{CC}=7.0 \mathrm{~V}) \\
12 \text { Suffix } & (\mathrm{V} C \mathrm{CC}=14 \mathrm{~V})
\end{array}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 3.27 \\
& 4.95 \\
& 11.88
\end{aligned}
\] & \[
\begin{aligned}
& 3.3 \\
& 5.0 \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
3.33 \\
5.05 \\
12.12
\end{gathered}
\] & V \\
\hline ```
Output Voltage (Line, Load and Temperature) (Note 1)
 \(\left(1.25 \mathrm{~V} \leq \mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }} \leq 15 \mathrm{~V}, \mathrm{l}_{\text {out }}=500 \mathrm{~mA}\right)\)
 \(\left(1.35 \mathrm{~V} \leq \mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }} \leq 10 \mathrm{~V}, \mathrm{I}_{\text {out }}=800 \mathrm{~mA}\right)\)
 3.3 Suffix
 5.0 Suffix
 12 Suffix
``` & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{gathered}
3.23 \\
4.9 \\
11.76
\end{gathered}
\] & \[
\begin{aligned}
& 3.3 \\
& 5.0 \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
3.37 \\
5.1 \\
12.24
\end{gathered}
\] & V \\
\hline Reference Voltage ( \(l_{\text {out }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {in }}-\mathrm{V}_{\text {out }}=2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) )
Adjustable & \(\mathrm{V}_{\text {ref }}\) & 1.235 & 1.25 & 1.265 & V \\
\hline \[
\begin{aligned}
& \text { Reference Voltage (Line, Load and Temperature) (Note 1) } \\
& \left(1.25 \mathrm{~V} \leq \mathrm{V}_{\text {in }}-V_{\text {out }} \leq 15 \mathrm{~V} \text {, I Iout }=500 \mathrm{~mA}\right) \\
& \left(1.35 \mathrm{~V} \leq \mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }} \leq 10 \mathrm{~V} \text {, I I out }=800 \mathrm{~mA}\right) \\
& \text { Adjustable }
\end{aligned}
\] & \(\mathrm{V}_{\text {ref }}\) & 1.225 & 1.25 & 1.275 & V \\
\hline Line Regulation
\[
\left(\mathrm{l}_{\text {out }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=\left[\mathrm{V}_{\text {out }}+1.5 \mathrm{~V}\right] \text { to } \mathrm{V}_{\text {in }}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & Regline & - & - & 0.3 & \% \\
\hline Load Regulation ( \(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}+3.0 \mathrm{~V}, \mathrm{I}_{\text {out }}=10 \mathrm{~mA}\) to \(800 \mathrm{~mA}, \mathrm{TJ}^{\text {a }}=25^{\circ} \mathrm{C}\) ) & Regload & - & - & 0.5 & \% \\
\hline \[
\begin{gathered}
\text { Dropout Voltage } \\
(\text { lout }=500 \mathrm{~mA}) \\
\left(\text { lout }^{2}=800 \mathrm{~mA}\right)
\end{gathered}
\] & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}\) & - & \[
\begin{aligned}
& 1.0 \\
& 1.1
\end{aligned}
\] & \[
\begin{aligned}
& 1.25 \\
& 1.35
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
Ripple Rejection \\
(10 Vpp, 120 Hz Sinewave; \(\mathrm{I}_{\text {out }}=500 \mathrm{~mA}\) )
\end{tabular} & RR & 55 & - & - & dB \\
\hline Current Limit ( \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}=10 \mathrm{~V}\) ) & LLimit & 800 & - & - & mA \\
\hline Quiescent Current (Fixed Output) & \(\mathrm{I}_{\mathrm{Q}}\) & - & 5.5 & 8.0 & mA \\
\hline Minimum Required Load Current Fixed Output Adjustable & ILoad & \[
\overline{8.0}
\] & - & 0 & mA \\
\hline Adjustment Pin Current & \({ }^{\text {adj }}\) & - & - & 120 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTE 1: The MC33269-12, \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}\) is limited to 8.0 V maximum, because of the 20 V maximum rating applied to \(\mathrm{V}_{\text {in }}\).

\section*{MC33269}


This device contains 38 active transistors.
\(R_{\text {OJA }}\), THERMAL RESISTANCE, JUNCTION-TO-AIR ( \({ }^{\circ} \mathrm{CN}\) )
Figure 1. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


Figure 2. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


Figure 3. Dropout Voltage versus Output Load Current


Figure 5. Dropout Voltage versus Temperature


Figure 7. MC33269 Ripple Rejection versus Frequency


Figure 4. Transient Load Regulation


Figure 6. MC33269-XX Output DC Current versus Input-Output Differential Voltage


Figure 8. MC33269-ADJ Ripple Rejection versus Frequency


\section*{MC33269}

\section*{APPLICATIONS INFORMATION .}

Figures 9 through 13 are typical application circuits. The output current capability of the regulator is in excess of 800 mA , with a typical dropout voltage of less than 1.0 V . Internal protective features include current and thermal limiting.

The MC33269 is not internally compensated and thus requires an external output capacitor for stability. The capacitor should be at least \(10 \mu \mathrm{~F}\) with an equivalent series resistance (ESR) of less than \(10 \Omega\) over the anticipated operating temperature range. With economical electrolytic capacitors, cold temperature operation can pose a problem. As temperature decreases, the capacitance also decreases and the ESR increases, which could cause the circuit to oscillate. Solid tantalum capacitors may be a better choice if small size is a requirement. Also capacitance and ESR of a solid tantalum capacitor is more stable over temperature. An input bypass capacitor is recommended to improve transient response or if the regulator is connected to the supply input

Figure 9. Typical Fixed Output Application


An input capacitor is not necessary for stability, however it will improve the overall performance.

Figure 11. Current Regulator


Figure 12. Battery Backed-Up Power Supply


The Schottky diode in series with the ground leg of the upper regulator shifts its output voltage higher by the forward voltage drop of the diode. This will cause the lower device to remain off until the input voltage is removed
filter with long wire lengths. This will reduce the circuit's sensitivity to the input line impedance at high frequencies. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, ceramic, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with shortest possible lead or track length directly across the regulator's input terminals. Applications should be tested over all operating conditions to insure stability.

Internal thermal limiting circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically at \(170^{\circ} \mathrm{C}\), the output is disabled. There is no hysteresis built into the thermal limiting circuit. As a result, if the device is overheating, the output will appear to be oscillating. This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a substitute for proper heatsinking.

Figure 10. Typical Adjustable Output Application

\({ }^{*} C_{\text {Adj }}\) is optional, however it will improve the ripple rejection.
The MC34269 develops a 1.25 V reference voltage between the output and the adjust terminal. Resistor R1, operates with constant current to flow through it and resistor R2. This current should be set such that the Adjust Pin current causes negligible drop across resistor R2. The total current with minimum load should be greater than 8.0 mA .

Figure 13. Digitally Controlled Voltage Regulator

\(\mathrm{R}_{2}\) sets the maximum output voltage. Each transistor reduces the output voltage when turned on.

\section*{Product Preview Battery Fast Charge Controller}

The MC33340 is a monolithic control IC that is specifically designed as a fast charge controller for Nickel Cadmium (NiCd) and Nickel Metal Hydride (NiMH) batteries. This device features negative slope voltage detection as the primary means for fast charge termination. Accurate detection is ensured by an output that momentarily interrupts the charge current for precise voltage sampling. An additional secondary backup termination method can be selected that consists of either a programmable time or temperature limit. Protective features include battery over and undervoltage detection, latched over temperature detection, and power supply input undervoltage lockout with hysteresis. Provisions for entering a rapid test mode are available to enhance end product testing. This device is available in an economical 8-lead surface mount package.
- Negative Slope Voltage Detection
- Accurate Zero Current Battery Voltage Sensing
- Programmable 1 to 4 Hour Fast Charge Time Limit
- Programmable Over/Under Temperature Detection
- Battery Over and Undervoltage Fast Charge Protection
- Rapid System Test Mode
- Power Supply Input Undervoltage Lockout with Hysteresis
- Operating Voltage Range of 3.0 V to 18 V



BATTERY FAST CHARGE CONTROLLER

SEMICONDUCTOR TECHNICAL DATA


PIN CONNECTIONS

(Top View)
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33340D & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 1 } MC33340P & Plastic DIP \\
\hline
\end{tabular}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage (Pin 8) & \(\mathrm{V}_{\mathrm{CC}}\) & 18 & V \\
\hline \(\begin{array}{c}\text { Input Voltage Range } \\
\text { Time/Temperature Select (Pins 5, 6, 7) } \\
\text { Battery Sense, Note 1 (Pin 1) }\end{array}\) & \(\begin{array}{c}\mathrm{V}_{\mathrm{IR}(\mathrm{t} / \mathrm{T})} \\
\mathrm{V}_{\mathrm{IR}(\mathrm{sen})}\end{array}\) & \(\begin{array}{c}-1.0 \text { to } \mathrm{V}_{\mathrm{CC}} \\
-1.0 \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { or } \\
-0.6\end{array}\) & V \\
& & -1.0 to 10
\end{tabular}\(]\)

NOTE: ESD data available upon request.
ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{C}}=6.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies (Note 2), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristlc & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}
bATTERY SENSE INPUT (Pin 1)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Overvoltage Threshold \\
\(T_{A}=25^{\circ} \mathrm{C}\) \\
\(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\)
\end{tabular} & \(V_{\text {th }}(\mathrm{OV})\) & - & 2.0 & - & V \\
\hline Undervoltage Threshold & & - & 1.94 to 2.06 & - & \\
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
\(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\) & \(\mathrm{V}_{\text {th }}(\mathrm{UV})\) & & & \\
\hline Input Bias Current & & - & 1.0 & - & V \\
\hline Input Resistance & \(\mathrm{I}_{\mathrm{IB}}\) & - & 1.97 to 1.03 & - & \\
\hline
\end{tabular}

TIME/TEMPERATURE INPUTS (Pins 5, 6, 7)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Programming Inputs ( \(\mathrm{V}_{\text {in }}=1.5 \mathrm{~V}\) ) Input Current Input Current Matching & \[
\begin{gathered}
\operatorname{lin}_{\text {in }} \\
\Delta l_{\text {in }}
\end{gathered}
\] & - & \[
\begin{gathered}
-30 \\
0.5
\end{gathered}
\] & - & \[
\begin{gathered}
\mu \mathrm{A} \\
\%
\end{gathered}
\] \\
\hline Input Offset Voltage, Over and Under Temperature Comparators & \(\mathrm{V}_{10}\) & - & 5.0 & - & mV \\
\hline Under Temperature Comparator Hysteresis (Pin 5) & \(\mathrm{V}_{\mathrm{H}(\mathrm{T})}\) & - & 44 & - & mV \\
\hline Temperature Select Threshold & \(\mathrm{V}_{\mathrm{th}(\mathrm{t} / \mathrm{T})}\) & - & \(\mathrm{V}_{\text {cc }}-0.7\) & - & mV \\
\hline
\end{tabular}

INTERNAL TIMING
\begin{tabular}{|c|c|c|c|c|c|}
\hline Internal Clock Oscillator Frequency
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 18 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\
& \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 18 \mathrm{~V}
\end{aligned}
\] & fosc & - & \[
\begin{gathered}
840 \\
693 \text { to } 987 \\
680 \text { to } 1000 \\
670 \text { to } 1010
\end{gathered}
\] & - & kHz \\
\hline \(\mathrm{V}_{\text {sen }}\) Gate Output (Pin 2) Gate Time Gate Repetition Rate & \(\mathrm{t}_{\text {gate }}\) & - & \[
\begin{gathered}
30 \\
1.25
\end{gathered}
\] & - & \[
\begin{gathered}
\mathrm{ms} \\
\mathrm{~s}
\end{gathered}
\] \\
\hline Trickle Mode Holdoff Time from - \(\Delta \mathrm{V}\) Detection & thold & - & 160 & - & s \\
\hline
\end{tabular}

NOTES: 1 . Whichever voltage is lower.
2. Tested ambient temperature range for the MC33340: \(\quad T_{\text {low }}=-25^{\circ} \mathrm{C} \quad T_{\text {high }}=+85^{\circ} \mathrm{C}\)
Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{C C}=6.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies (Note 2), unless otherwise noted.)
\begin{tabular}{l} 
Characteristic \\
\hline \begin{tabular}{|l|c|c|c|c|c|c|}
\hline & Symbol & Min & Typ & Max & Unit \\
\hline \\
\hline Off-State Leakage Current \(\left(\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}\right.\) ) & \(\mathrm{I}_{\text {off }}\) & - & 0.1 & - & \(\mu \mathrm{A}\) \\
\hline Low State Saturation Voltage \(\left(\mathrm{I}_{\text {sink }}=10 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 1.2 & - & V \\
\hline
\end{tabular}
\end{tabular}

FAST/TRICKLE OUTPUT (Pin 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Off-State Leakage Current ( \(\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}\) ) & loff & - & 0.1 & - & \(\mu \mathrm{A}\) \\
\hline Low State Saturation Voltage ( \(\mathrm{l}_{\text {sink }}=10 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 1.0 & - & V \\
\hline \multicolumn{6}{|l|}{UNDERVOLTAGE LOCKOUT (Pin 8)} \\
\hline Startup Threshold (VCC Increasing) & \(\mathrm{V}_{\text {th(on) }}\) & - & 3.0 & - & V \\
\hline Hysteresis (VCC Decreasing) & \(\mathrm{V}_{\mathrm{H}}\) & - & 100 & - & mV \\
\hline
\end{tabular}

TOTAL DEVICE (Pin 8)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Power Supply Current (Pins 5, 6, 7 Open) & ICC & & & \\
Startup (VCC \(=2.9 \mathrm{~V})\) & & - & 0.65 & - & \\
Operating \(\left(V_{C C}=6.0 \mathrm{~V}\right)\) & - & 0.61 & - & \\
\hline
\end{tabular}

NOTES: 1 . Whichever voltage is lower.
2. Tested ambient temperature range for the MC33340: \(\quad T_{\text {low }}=-25^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}\)

Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

Figure 1. Battery Sense Input Thresholds


Figure 2. Oscillator Frequency



Figure 5. Undervoltage Lockout Thresholds versus Temperature


Figure 4. Saturation Voltage versus Sink Current \(V_{\text {sen }}\) Gate and Fast/Trickle Outputs


Figure 6. Supply Current versus Supply Voltage


\section*{INTRODUCTION}

Nickel Cadmium and Nickel Metal Hydride batteries require precise charge termination control to maximize cell capacity and operating time while preventing overcharging. Overcharging can result in a reduction of battery life as well as physical harm to the end user. Since most portable applications require the batteries to be charged rapidly, a primary and usually a secondary or redundant charge sensing technique is employed into the charging system. It is also desirable to disable rapid charging if the battery voltage or temperature is either too high or too low. In order to address these issues, an economical and flexible fast charge controller was developed.

The MC33340 contains many of the building blocks and protection features that are employed in modern high performance battery charger controllers that are specifically designed for Nickel Cadmium and Nickel Metal Hydride batteries. The device is designed to interface with either primary or secondary side regulators for easy implementation of a complete charging system. A representative block diagram in a typical charging application is shown in Figure 7.

The battery voltage is monitored by the \(\mathrm{V}_{\text {sen }}\) input that internally connects to a voltage to frequency converter and
counter for detection of a negative slope in battery voltage. A timer with three programming inputs is available to provide backup charge termination. Alternatively, these inputs can be used to monitor the battery pack temperature and to set the over and under temperature limits also for backup charge termination.

Two active low open collector outputs are provided to interface this controller with the external charging circuit. The first output furnishes a gating pulse that momentarily interrupts the charge current. This allows an accurate method of sampling the battery voltage by eliminating voltage drops that are associated with high charge currents and wiring resistances. Also, any noise voltages generated by the charging circuitry are eliminated. The second output is designed to switch the charging source between fast and trickle modes based upon the results of voltage, time, or temperature. These outputs normally connect directly to a linear or switching regulator control circuit in non-isolated primary or secondary side applications. Both outputs can be used to drive optoisolators in primary side applications that require galvanic isolation. Figure 8 shows the typical charge characteristics for NiCd and NiMh batteries.

Figure 7. Typical Battery Charging Application


Figure 8. Typical Charge Characteristics for NiCd and NiMh Batteries


\section*{OPERATING DESCRIPTION}

The MC33340 starts up in the fast charge mode when power is applied to VCC. A change to the trickle mode can occur as a result of three possible conditions. The first is if the \(\mathrm{V}_{\text {sen }}\) input voltage is above 2.0 V or below 1.0 V . Above 2.0 V indicates that the battery pack is open or disconnected, while below 1.0 V indicates the possibility of a shorted or defective cell. The second condition is if a negative slope in battery voltage is detected after a minimum of 160 seconds of fast charging. This indicates that the battery pack is fully charged. The third condition is either due to the battery pack being out of a programmed temperature range, or that the preset timer period has been exceeded.

There are three conditions that will cause the controller to return from trickle to fast charge mode. The first is if the \(\mathrm{V}_{\text {sen }}\) input voltage moved to within the 1.0 to 2.0 V range from initially being either too high or too low. The second is if the battery pack temperature moved to within the programmed temperature range, but only from initially being too cold. Third is by cycling \(V_{\mathrm{CC}}\) off and then back on causing the internal logic to reset. A concise description of the major circuit blocks is given below.

\section*{Negative Slope Voltage Detection}

A representative block diagram of the negative slope voltage detector is shown in Figure 9. It includes a Synchronous Voltage to Frequency Converter, a Sample Timer, and a Ratchet Counter. The \(\mathrm{V}_{\text {sen }}\) pin is the input for the Voltage to Frequency Converter (VFC), and it connects to the rechargeable battery pack terminals through a resistive voltage divider. The input has an impedance of approximately \(3.0 \mathrm{M} \Omega\) and a maximum voltage range of -1.0 V to \(\mathrm{V} \mathrm{CC}+0.6 \mathrm{~V}\) or 0 V to 10 V , whichever is lower. The 10 V upper limit is set by an internal zener clamp that provides protection in the event of an electrostatic discharge. The VFC is a charge-balanced synchronous type which generates output pulses at a rate of \(\mathrm{FV}=\mathrm{V}_{\text {sen }}(26 \mathrm{kHz})\).

The Sample Timer circuit provides a 105 kHz system clock signal (SCK) to the VFC. This signal synchronizes the FV output to the other Sample Timer outputs used within the detector. At 1.25 second intervals the \(\mathrm{V}_{\text {sen }}\) Gate output goes low for a 30 ms period. This output is used to momentarily interrupt the external charging power source so that a precise voltage measurement can be taken. As the \(V_{\text {sen }}\) Gate goes low, the internal Preset control line is driven high for 10 ms . During this time, the battery voltage at the \(\mathrm{V}_{\text {sen }}\) input is allowed to stabilize and the previous FV count is preloaded. At the Preset high-to-low transition, the Convert line goes high for 20 ms . This gates the FV pulses into the ratchet counter for a comparison to the preloaded count. Since the Convert time is derived from the same clock that controls the VFC, the number of FV pulses is independent of the clock frequency. If the new sample has more counts than were preloaded, it becomes the new peak count and the cycle is repeated 1.25 seconds later. If the new sample has two fewer counts, a less than peak voltage event has occurred, and a register is initialized. If two successive less than peak voltage events occur, the \(-\Delta \mathrm{V}\) 'AND' gate output goes high and the Fast/Trickle output is latched in a low state, signifying that the battery pack has reached full charge status. Negative slope voltage detection can only occur after 160 seconds have elapsed in the fast charge mode. The trickle mode holdoff time is implemented to ignore any initial drop in voltage that may occur when charging batteries that have been stored for an extended time period. The negative slope voltage detector has a maximum resolution of 2.0 V divided by 1023 , or 1.955 mV per count with an uncertainty of \(\pm 1.0\) count. In order to obtain maximum sensing accuracy, the R2/R1 voltage divider must be adjusted so that the \(\mathrm{V}_{\text {sen }}\) input voltage is slightly less than 2.0 V when the battery pack is fully charged. Voltage variations due to temperature and cell manufacturing must be considered.


\section*{Fast Charge Timer}

A programmable backup charge timer is available for fast charge termination. The timer is activated by the Time/Temp Select comparator, and is programmed from the \(11 / T_{\text {ref }}\) High, \(\mathrm{t} 2 / \mathrm{T}_{\text {sen }}\), and \(\mathrm{t} 3 / \mathrm{T}_{\text {ref }}\) Low inputs. If one or more of these inputs is allowed to go above \(\mathrm{V}_{\mathrm{C}}-0.7 \mathrm{~V}\) or is left open, the comparator output will switch high, indicating that the timer feature is desired. The three inputs allow one of seven possible fast charge time limits to be selected. The programmable time limits, rounded to the nearest whole minute, are shown in Figure 10.

\section*{Over/Under Temperature Detection}

A backup over/under temperature detector is available and can be used in place of the timer for fast charge termination. The timer is disabled by the Time/Temp Select comparator when each of the three programming inputs are held below \(\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}\).

Temperature sensing is accomplished by placing a negative temperature coefficient (NTC) thermistor in thermal contact with the battery pack. The thermistor connects to the \(\mathrm{t} 2 / \mathrm{T}_{\text {sen }}\) input which has a \(30 \mu \mathrm{~A}\) current source pull-up for developing a temperature dependent voltage. The temperature limits are set by a resistor that connects from the \(t 1 / T_{\text {ref }}\) High and the \(\mathbf{3} / T_{\text {ref }}\) Low inputs to ground. Since all three inputs contain matched \(30 \mu \mathrm{~A}\) current source pull-ups, the required programming resistor values are identical to that of the thermistor at the desired over and under trip temperature. The temperature window detector is composed of two comparators with a common input that connects to the \(\mathrm{t} 2 / \mathrm{T}_{\text {sen }}\) input.

The lower comparator senses the presence of an under temperature condition. When the lower temperature limit is exceeded, the charger is switched to the trickle mode. The comparator has 44 mV of hysteresis to prevent erratic switching between the fast and trickle modes as the lower temperature limit is crossed. The amount of temperature rise to overcome the hysteresis is determined by the thermistor's rate of resistance change or sensitivity at the under temperature trip point. The required resistance change is:

The resistance change approximates a thermal hysteresis of \(2^{\circ} \mathrm{C}\) with a \(10 \mathrm{k} \Omega\) thermistor operating at \(0^{\circ} \mathrm{C}\). The under temperature fast charge inhibit feature can be disabled by biasing the \(t 3 / T_{\text {ref }}\) Low input to a voltage that is greater than that present at \(\mathrm{t} 2 / \mathrm{T}_{\text {sen }}\), and less than \(\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}\). Under extremely cold conditions, it is possible that the thermistor resistance can become too high, allowing the \(\mathrm{t} 2 / \mathrm{T}_{\text {sen }}\) input to go above \(\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}\), and activate the timer. This condition can be prevented by placing a resistor in parallel with the thermistor. Note that the time/temperature threshold of \(\mathrm{V}_{\mathrm{CC}}\) -0.7 V is a typical value at room temperature. Refer to the Electrical Characteristics table and to Figure 3 for additional information.

The upper comparator senses the presence of an over temperature condition. When the upper temperature limit is exceeded, the comparator output sets the Over Temperature Latch and the charger is switched to trickle mode. Once the latch is set, the charger cannot be returned to fast charge, even after the temperature falls below the limit. This feature prevents the battery pack from being continuously temperature cycled and overcharged. The latch can be reset by removing and reconnecting the battery pack or by cycling the power supply voltage.

If the charger does not require either the time or temperature backup features, they can both be easily disabled. This is accomplished by biasing the \(\mathrm{t} 3 / \mathrm{T}_{\text {ref }}\) Low input to a voltage greater than \(\mathrm{t} 2 / \mathrm{T}_{\text {sen }}\), and by grounding the \(\mathrm{t} 1 / \mathrm{T}_{\text {ref }}\) High input. Under these conditions, the Time/Temp Select comparator output is low, indicating that the temperature mode is selected, and that the \(t 2 / T_{\text {sen }}\) input is biased within the limits of an artificial temperature window.

\section*{Operating Logic}

The order of events in the charging process is controlled by the logic circuitry. Each event is dependent upon the input conditions and the chosen method of charge termination. A table summary containing all of the possible operating modes is shown in Figure 11.

Figure 10. Fast Charge Backup Termination Time/Temperature Limit
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Backup \\
Termination \\
Mode
\end{tabular}} & \begin{tabular}{c} 
t3/Tref Low \\
(Pin 5)
\end{tabular} & \begin{tabular}{c} 
t2/T \\
(Pin 6)
\end{tabular} & \begin{tabular}{c} 
t1/Tref High \\
(Pin 7)
\end{tabular} & \begin{tabular}{c} 
Time Limit \\
Fast Charge \\
(Minutes)
\end{tabular} \\
\hline Time & Open & Open & Open & 256 \\
\hline Time & Open & Open & Gnd & 224 \\
\hline Time & Open & Gnd & Open & 192 \\
\hline Time & Open & Gnd & Gnd & 160 \\
\hline Time & Gnd & Open & Open & 128 \\
\hline Time & Gnd & Open & Gnd & 96 \\
\hline Time & Gnd & Gnd & Open & 64 \\
\hline Temperature & 0 V to \(\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}\) & 0 V to \(\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}\) & 0 V to \(\mathrm{VCC}_{\mathrm{CC}}-0.7 \mathrm{~V}\) & Timer Disabled \\
\hline
\end{tabular}

Figure 11. Controller Operating Mode Table
\begin{tabular}{|c|c|}
\hline Input Condition & Controller Operation \\
\hline \begin{tabular}{l}
\(\mathrm{V}_{\text {sen }}\) Input Voltage: \\
\(>1.0 \mathrm{~V}\) and \(<2.0 \mathrm{~V}\)
\end{tabular} & The divided down battery pack voltage is within the fast charge voltage range. The charger switches from trickle to fast charge mode as \(\mathrm{V}_{\text {sen }}\) enters this voltage range, and the reset signal that was applied to the timer and the over temperature latch is now released. \\
\hline \(>1.0 \mathrm{~V}\) and \(<2.0 \mathrm{~V}\) with two consecutive \(-\Delta \mathrm{V}\) events detected after 160 s & The battery pack has reached full charge and the charger switches from fast to a latched trickle mode. A reset signal must be applied and then released for the charger to switch back to the fast mode. The reset signal is applied when either \(\mathrm{V}_{\text {sen }}<1.0 \mathrm{~V}\) or \(>2.0 \mathrm{~V}\), or \(\mathrm{V}_{\mathrm{CC}}<2.8 \mathrm{~V}\). A signal is released when both \(\mathrm{V}_{\text {sen }}>1.0 \mathrm{~V}\) and \(<2.0 \mathrm{~V}\), and \(\mathrm{V}_{\mathrm{CC}}>3.0 \mathrm{~V}\). \\
\hline \(<1.0 \mathrm{~V}\) or \(>2.0 \mathrm{~V}\) & The divided down battery pack voltage is outside of the fast charge voltage range. The charger switches from fast to trickle mode, and a reset signal is applied to the timer and over temperature latch. \\
\hline Timer Backup: Within time limit & The timer has not exceeded the programmed limit. The charger will be in fast charge mode if \(\mathrm{V}_{\text {sen }}\) and \(\mathrm{V}_{\mathrm{CC}}\) are within their respective operating limits. \\
\hline Beyond time limit & The timer has exceeded the programmed limit. The charger switches from fast to a latched trickle mode. \\
\hline Temperature Backup: Within limits & The battery pack temperature is within the programmed limits. The charger will be in fast charge mode if \(V_{\text {sen }}\) and \(V_{C C}\) are within their respective operating limits. \\
\hline Below lower limit & The battery pack temperature is below the programmed lower limit. The charger will stay in trickle mode until the lower temperature limit is exceeded. When exceeded, the charger will switch from trickle to fast charge mode. \\
\hline Above upper limit & The battery pack temperature has exceeded the programmed upper limit. The charger switches from fast to a latched trickle mode. A reset signal must be applied and then released for the charger to switch back to the fast charge mode. A reset signal is applied when either \(\mathrm{V}_{\text {sen }}<1.0 \mathrm{~V}\) or \(>2.0 \mathrm{~V}\), or \(\mathrm{V}_{\mathrm{CC}}<2.8 \mathrm{~V}\), and is released when both \(\mathrm{V}_{\text {sen }}>1.0 \mathrm{~V}\) and \(<2.0 \mathrm{~V}\), and \(\mathrm{V}_{\mathrm{CC}}>3.0 \mathrm{~V}\). \\
\hline Power Supply Voltage: \(\mathrm{V}_{\mathrm{CC}}>3.0 \mathrm{~V}\) and \(<18 \mathrm{~V}\) & This is the nominal power supply operating voltage range. The charger will be in fast charge mode if \(\mathrm{V}_{\text {sen }}\), and temperature backup or timer backup are within their respective operating limits. \\
\hline \(\mathrm{V}_{\mathrm{CC}}>0.6 \mathrm{~V}\) and \(<2.8 \mathrm{~V}\) & The undervoltage lockout comparator will be activated and the charger will be in trickle mode. A reset signal is applied to the timer and over temperature latch. \\
\hline
\end{tabular}

\section*{Testing}

Under normal operating conditions, it would take 256 minutes to verify the operation of the 34 stage ripple counter used in the timer. In order to significantly reduce the test time, three digital switches were added to the circuitry and are used to bypass selected divider stages. Entering each of the test modes without requiring additional package pins or affecting normal device operation proved to be challenging. Refer to the timer functional block diagram in Figure 12.

Switch 1 bypasses 19 divider stages to provide a 524,288 times speedup of the clock. This switch is enabled when the \(\mathrm{V}_{\text {sen }}\) input falls below 1.0 V . Verification of the programmed fast charge time limit is accomplished by measuring the propagation delay from when the \(\mathrm{V}_{\text {sen }}\) input falls below 1.0 V , to when the F/T output changes from a high-to-low state. The 64, 96, 128, 160, 192, 224 and 256 minute timeouts will now correspond to \(7.3,11,14.6,18.3,22,25.6\) and 29.3 ms delays. It is possible to enter this test mode during operation if the equivalent battery pack voltage was to fall below 1.0 V . This will not present a problem since the device would normally switch from fast to trickle mode under these conditions, and the relatively short variable time delay would be transparent to the user.

Switch 2 bypasses 11 divider stages to provide a 2048 times speedup of the clock. This switch is necessary for testing the 19 stages that were bypassed when switch 1 was enabled. Switch 2 is enabled when the \(V_{\text {sen }}\) input falls below 1.0 V and the \(\mathrm{t} 1 / \mathrm{T}_{\text {ref }}\) Low input is biased at -100 mV . Verification of the 19 stages is accomplished by measuring a nominal propagation delay of 308 ms from when the \(\mathrm{V}_{\text {sen }}\) input falls below 1.0 V , to when the F/T output changes from a high-to-low state.

Switch 3 is a dual switch consisting of sections " \(A\) " and " \(B\) ". Section "A" bypasses 5 divider stages to provide a 32 times speedup of the \(\mathrm{V}_{\text {sen }}\) gate signal that is used in sampling the battery voltage. This speedup allows faster test verification of two successive \(-\Delta V\) events. Section "B" bypasses 11 divider stages to provide a 2048 speedup of the trickle mode holdoff timer. Switches \(3 A\) and \(3 B\) are both activated when the \(t 1 / T_{\text {ref }}\) Low input is biased at -100 mV with respect to Pin 4. Activation results in a reduction of the \(\mathrm{V}_{\text {sen }}\) gate sample rate from 1.25 s to 39 ms , and a trickle mode holdoff time of 160 s to 68 ms .

\section*{MC33340}

Figure 12. Timer Functional Block Diagram


Figure 13. Line Isolated Linear Regulator Charger


This application combines the MC33340 with an adjustable three terminal regulator to form an isolated secondary side battery charger. Regulator IC2 operates as a constant current source with R7 setting the fast charge level. The trickle charge level is set by R5. The R2/R1 divider should be adjusted so that the \(\mathrm{V}_{\text {sen }}\) input is less than 2.0 V when the batteries are fully charged. The printed circuit board shown below will accept the several TO-220 style heatsinks for IC2 and are all manufactured by AAVID Engineering Inc.
\begin{tabular}{|c|c|}
\hline AAVID \# & \(\theta_{\text {SA }^{\circ} \mathrm{C} / \mathrm{W}}\) \\
\hline 592502 B 03400 & 24.0 \\
\hline 593002 B 03400 & 14.0 \\
\hline 590302 B 03600 & 9.2 \\
\hline
\end{tabular}

Figure 14. Printed Circuit Board and Component Layout (Circuit of Figure 13)

(Top View)

(Bottom View)

Figure 15. Line Isolated Switch Mode Charger


The MC33340 can be combined with any of the devices in the UC3842 family of current mode controllers to form a switch mode battery charger. In this example, optocouplers OC1 and OC2 are used to provide isolated control signals to the UC3842. During battery voltage sensing, OC2 momentarily grounds the Output/Compensation pin, effectively turning off the charger. When fast charge termination is reached, OC1 turns on, and grounds the lower side of R3. This reduces the peak switch current threshold of the Current Sense Comparator to a programmed trickle current level. For additional converter design information, refer to the UC3842 and UC3844 device family data sheets.

\section*{MC33340}

Figure 16. Switch Mode Fast Charger


The MC33340 can be used to control the MC34166 or MC34167 power switching regulators to produce an economical and efficient fast charger. These devices are capable of operating continuously in current limit with an input voltage range of 7.5 to 40 V . The typical charging current for the MC34166 and MC34167 is 4.3 A and 6.5 A respectively. Resistors R2 and R1 are used to set the battery pack fast charge float voltage. If precise float voltage control is not required, components R1, R2, R3 and C1 can be deleted, and Pin 1 must be grounded. The trickle current level is set by resistor R4. It is recommended that a redundant charge termination method be employed for end user protection. This is especially true for fast charger systems. For additional converter design information, refer to the MC34166 and MC34167 data sheets.

\section*{Product Preview Power Supply Battery Charger Regulation Control Circuit}

The MC33341 is a monolithic regulation control circuit that is specifically designed to close the voltage and current feedback loops in power supply and battery charger applications. This device features the unique ability to perform source high-side, load high-side, source low-side and load low-side current sensing, each with either an internally fixed or externally adjustable threshold. The various current sensing modes are accomplished by a means of selectively using the internal differential amplifier, inverting amplifier, or a direct input path. Positive voltage sensing is performed by an internal voltage amplifier. The voltage amplifier threshold is internally fixed and can be externally adjusted in all low-side current sensing applications. An active high drive output is provided to directly interface with economical optoisolators for isolated output power systems. This device is available in 8-lead dual-in-line and surface mount packages.
- Differential Amplifier for High-Side Source and Load Current Sensing
- Inverting Amplifier for Source Return Low-Side Current Sensing
- Non-Inverting Input Path for Load Low-Side Current Sensing
- Fixed or Adjustable Current Threshold in All Current Sensing Modes
- Positive Voltage Sensing in All Current Sensing Modes
- Fixed Voltage Threshold in All Current Sensing Modes
- Adjustable Voltage Threshold in All Low-Side Current Sensing Modes
- Output Driver Directly Interfaces with Economical Optoisolators
- Operating Voltage Range of 2.3 V to 18 V


MC33341

POWER SUPPLY BATTERY CHARGER REGULATION CONTROL CIRCUIT

SEMICONDUCTOR TECHNICAL DATA


P SUFFIX
PLASTIC PACKAGE
CASE 626


D SUFFIX PLASTIC PACKAGE CASE 751
(SO-8)


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33341D & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C} \mathrm{CO}-8\)} \\
\cline { 1 - 2 } MC33341P & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage (Pin 7) & \(\mathrm{V}_{\mathrm{CC}}\) & 18 & V \\
\hline \begin{tabular}{l} 
Voltage Range \\
Current Sense Input A (Pin 1) \\
Current Threshold Adjust (Pin 2) \\
Compensation (Pin 3) \\
Voltage Sense Input (Pin 5) \\
Current Sense Input B/Voltage Threshold Adjust (Pin 6) \\
Drive Output (Pin 8)
\end{tabular} & \(\mathrm{V}_{\text {IR }}\) & -1.0 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Drive Output Source Current (Pin 8) & & & \\
\hline \begin{tabular}{l} 
Thermal Resistance, Junction-to-Air \\
P Suffix, DIP Plastic Package, Case 626 \\
D Suffix, SO-8 Plastic Package, Case 751
\end{tabular} & \(\mathrm{R}_{\theta \mathrm{JA}}\) & Source & 50 \\
\hline Operating Junction Temperature (Note 1) & mA \\
\hline Storage Temperature & \(\mathrm{T}_{\mathrm{J}}\) & -25 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating junction
temperature range that applies (Note 1), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{CURRENT SENSING (Pins 1, 2, 6)} \\
\hline \begin{tabular}{l}
Source High-Side and Load High-Side Sensing Pin 1 to Pin 6 (Pin 1 >1.6 V) Internally Fixed Threshold Voltage ( \(\mathrm{Pin} 2=\mathrm{V}_{\mathrm{CC}}\) )
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] \\
Externally Adjusted Threshold Voltage (Pin \(2=0 \mathrm{~V}\) ) \\
Externally Adjusted Threshold Voltage (Pin \(2=200 \mathrm{mV}\) )
\end{tabular} & \(\left.\mathrm{V}_{\text {th( }} \mathrm{IHS}\right)\) & -
-
- & \[
\begin{gathered}
200 \\
196 \text { to } 204 \\
10 \\
180
\end{gathered}
\] &  & mV \\
\hline ```
Load Low-Side Sensing Pin 1 to Pin 4 (Pin \(1=0 \mathrm{~V}\) to 0.8 V )
    Internally Fixed Threshold Voltage (Pin \(2=\mathrm{V}_{\mathrm{CC}}\) )
        \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
        \(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
    Externally Adjusted Threshold Voltage (Pin \(2=0\) V)
    Externally Adjusted Threshold Voltage (Pin \(2=200 \mathrm{mV}\) )
``` & \(\mathrm{V}_{\mathrm{th}(\mathrm{ILS}}\) ) &  & \[
\begin{gathered}
200 \\
196 \text { to } 204 \\
10 \\
180
\end{gathered}
\] & & mV \\
\hline ```
Source Return Low-Side Sensing Pin 1 to Pin 4 (Pin \(1=0\) V to -0.2 V)
 Internally Fixed Threshold Voltage (Pin \(2=\mathrm{V}_{\mathrm{CC}}\))
 \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
 \(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
 Externally Adjusted Threshold Voltage (Pin \(2=0 \mathrm{~V}\))
 Externally Adjusted Threshold Voltage (Pin \(2=200 \mathrm{mV}\))
``` & \(\mathrm{V}_{\text {th(I LS-) }}\) &  & \[
\begin{gathered}
-200 \\
-196 \text { to }-204 \\
-10 \\
-180
\end{gathered}
\] &  & mV \\
\hline \begin{tabular}{l}
Current Sense Input A (Pin 1) \\
Input Bias Current, High-Side Source and Load Sensing \\
(Pin \(2=0 \mathrm{~V}\) to \(\mathrm{V}_{\text {Pin } 6} \mathrm{~V}\) ) \\
Input Bias Current, Low-Side Load Sensing \\
(Pin \(2=0 \mathrm{~V}\) to 0.8 V ) \\
Input Resistance, Low-Side Source Return Sensing (Pin \(2=-0.6 \mathrm{~V}\) to 0 V )
\end{tabular} & \[
\begin{gathered}
\left.\mathrm{IIB}_{\mathrm{B}}^{\mathrm{A}} \mathrm{HS}\right) \\
\mathrm{I}_{\mathrm{I}(\mathrm{~A} L S+)} \\
\mathrm{R}_{\text {in }(\mathrm{A} L S-)}
\end{gathered}
\] & - & \[
\begin{aligned}
& 40 \\
& 10 \\
& 10
\end{aligned}
\] & - & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
nA k \(\Omega\)
\end{tabular} \\
\hline \begin{tabular}{l}
Current Sense Input B/Voltage Threshold Adjust (Pin 6) Input Bias Current \\
High-Side Source and Load Current Sensing (Pin \(6>2.0\) V) Voltage Threshold Adjust (Pin \(6<1.2 \mathrm{~V}\) )
\end{tabular} & IIB(B) & - & \[
\begin{gathered}
20 \\
100
\end{gathered}
\] & & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{nA}
\end{aligned}
\] \\
\hline Current Sense Threshold Adjust (Pin 2) Input Bias Current & IIB(1 th) & - & 10 & - & nA \\
\hline Transconductance, Current Sensing Inputs to Drive Output ( \(1 \mathrm{O}-0.7 \mathrm{~mA}\) ) & \(\mathrm{gm}(1)\) & - & 6.0 & - & mhos \\
\hline
\end{tabular}

NOTE: 1. Tested ambient temperature range for the MC33341: \(\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}\).

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{C C}=6.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating junction temperature range that applies (Note 1), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{DIFFERENTIAL AMPLIFIER DISABLE LOGIC (Pins 1, 6)} \\
\hline Logic Threshold Voltage Pin 1 (Pin \(6=0 \mathrm{~V}\) ) & & & & & V \\
\hline Enabled, High-Side Source and Load Current Sensing & \(\mathrm{V}_{\mathrm{th}(1 \mathrm{HS})}\) & - & 1.2 & - & \\
\hline Disabled, Low-Side Load and Source Return Current Sensing & \(V_{\text {th( }}\) ( LS) & - & 1.2 & - & \\
\hline
\end{tabular}

VOLTAGE SENSING (Pins 5, 6)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Positive Sensing Pin 5 to Pin 4 Internally Fixed Threshoid Voltage
\[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] \\
Externally Adjusted Threshold Voltage (Pin \(6=0 \mathrm{~V}\) ) \\
Externally Adjusted Threshold Voltage (Pin \(6=1.2 \mathrm{~V}\) )
\end{tabular} & \(\mathrm{V}_{\text {th( }} \mathrm{V}\) ) & -
-
- & \[
\begin{gathered}
1.200 \\
1.176 \text { to } 1.224 \\
40 \\
1.175
\end{gathered}
\] & -
-
- & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{mV} \\
\mathrm{~V}
\end{gathered}
\] \\
\hline Voltage Sense, Input Bias Current (Pin 5) & \(1 \mathrm{lB}(\mathrm{V})\) & - & 10 & - & nA \\
\hline Transconductance, Voltage Sensing Inputs to Drive Output ( \(\mathrm{O}=0.7 \mathrm{~mA}\) ) & \(9 \mathrm{~m}(\mathrm{~V})\) & - & 7.0 & - & mhos \\
\hline
\end{tabular}

DRIVE OUTPUT (Pin 8)
\begin{tabular}{|l|l|l|l|l|l|}
\hline High State Source Voltage \(\left(I_{\text {Source }}=8.0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OH}}\) & - & \(\mathrm{V}_{\mathrm{CC}}-0.8\) & - & V \\
\hline
\end{tabular}

TOTAL DEVICE (Pin 7)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Operating Voltage Range & \(\mathrm{V}_{\mathrm{CC}}\) & - & 2.3 to 18 & - & V \\
\hline Power Supply Current \(\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}\right)\) & \(\mathrm{I} C \mathrm{C}\) & - & 300 & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTE: 1. Tested ambient temperature range for the MC33341: \(\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}\).

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Name & Description \\
\hline 1 & Current Sense Input A & This multi-mode current sensing input can be used for either source high-side, load high-side, source-return low-side, or load low-side sensing. It is common to a Differential Amplifier, Inverting Amplifier, and a Noninverting input path. Each of these sensing paths indirectly connect to the current sense input of the Transconductance Amplifier. This input is connected to the high potential side of a current sense resistor when used in source high-side, load high-side, or load low-side current sensing modes. In source return low-side current sensing mode, this pin connects to the low potential side of a current sense resistor. \\
\hline 2 & Current Threshold Adjust & The current sense threshold can be externally adjusted over a range of 0 V to 200 mV with respect to Pin 4 , or internally fixed at 200 mV by connecting Pin 2 to \(\mathrm{V}_{\mathrm{CC}}\). \\
\hline 3 & Compensation & This pin is connected to a high impedance node within the transconductance amplifier and is made available for loop compensation. It can also be used as an input to directly control the Drive Output. An active low at this pin will force the Drive Output into a high state. \\
\hline 4 & Ground & This pin is the regulation control IC ground. The control threshold voltages are with respect to this pin. \\
\hline 5 & Voltage Sense Input & This is the voltage sensing input of the Transconductance Amplifier. It is normally connected to the power supply/battery charger output through a resistor divider. The input threshold is controlled by Pin 6. \\
\hline 6 & Current Sense Input B/ Voltage Threshold Adjust & This is a dual function input that is used for either high-side current sensing, or as a voltage threshold adjustment for Pin 5 . This input is connected to the low potential side of a current sense resistor when used in source high-side or load high-side current sensing modes. In all low-side current sensing modes, Pin 6 is available as a voltage threshold adjustment for Pin 5 . The threshold can be externally adjusted over a range of 0 V to 1.2 V with respect to Pin 4 , or internally fixed at 1.2 V by connecting Pin 6 to \(V_{C C}\). \\
\hline 7 & \(V_{C C}\) & This is the positive supply voltage for the regulation control IC. The typical operating voltage range is 2.3 V to 18 V with respect to \(\operatorname{Pin} 4\). \\
\hline 8 & Drive Output & This is a source-only output that normally connects to a linear or switching regulator control circuit. This output is capable of 15 mA , allowing it to directly drive an optoisolator in primary side control applications where galvanic isolation is required. \\
\hline
\end{tabular}


Figure 3. Closed-Loop Voltage Sensing Input versus Voltage Threshold Adjust


Figure 5. Closed-Loop Current Sensing Input A versus Current Threshold Adjust


Figure 2. Current Sensing Threshold Change versus Temperature


Figure 4. Closed-Loop Current Sense Input B versus Current Threshold Adjust


Figure 6. Closed-Loop Current Sensing Input A versus Current Threshold Adjust


Figure 7. Bode Plot


Figure 9. Transconductance


Figure 11. Drive Output High State


Figure 8. Bode Plot
Current Sensing Inputs to Drive Output


Figure 10. Transconductance


\section*{INTRODUCTION}

Power supplies and battery chargers require precise control of output voltage and current in order to prevent catastrophic damage to the system load. Many present day power sources contain a wide assortment of building blocks and glue devices to perform the required sensing for proper regulation. Typical feedback loop circuits may consist of a voltage and current amplifier, level shifting circuitry, summing circuitry and a reference. The MC33341 contains all of these basic functions in a manner that is easily adaptable to many of the various power source-load configurations.

\section*{OPERATING DESCRIPTION}

The MC33341 is an analog regulation control circuit that is specifically designed to simultaneously close the voltage and current feedback loops in power supply and battery charger applications. This device can control the feedback loop in either constant-voltage or constant-current mode with automatic crossover. A concise description of the integrated circuit blocks is given below. Refer to the block diagram in Figure 13.

\section*{Transconductance Amplifier}

A quad input transconductance amplifier is used to control the feedback loop. This amplifier has separate voltage and current channels, each with a sense and a threshold input. Within a given channel, if the sense input level exceeds that of the threshold input, the amplifier output is driven high. The channel with the largest difference between the sense and threshold inputs will set the output source current of the amplifier and thus dominate control of the feedback loop. The amplifier output appears at Pin 8 and is a source-only type that is capable of 15 mA .

A high impedance node within the transconductance amplifier is made available at Pin 3 for loop compensation. This pin can sink and source up to \(10 \mu \mathrm{~A}\) of current. System stability is achieved by connecting a capacitor from Pin 3 to ground. The Compensation Pin signal is out of phase with respect to the Drive Output. By actively clamping Pin 3 low, the Drive Output is forced into a high state. This, in effect, will shutdown the power supply or battery charger, by forcing the output voltage and current regulation threshold down towards zero.

\section*{Voltage Sensing}

The voltage that appears across the load is monitored by the noninverting \(\mathrm{V}_{\text {sen }}\) input of the transconductance amplifier. This voltage is resistively scaled down and connected to Pin 5. The threshold at which voltage regulation occurs is set by the level present at the inverting \(\mathrm{V}_{\text {th }}\) input of the transconductance amplifier. This level is controlled by Pin 6. In source high-side and load high-side current sensing modes, Pin 6 must be connected to the low potential side of current sense resistor RS. Under these conditions, the voltage regulation threshold is internally fixed at 1.2 V . In source return low-side and load low-side current sensing modes, Pin 6 is available, and can be used to lower the regulation threshold of Pin 5 . This threshold can be externally adjusted over a range of 0 V to 1.2 V with respect to the IC ground at Pin 4.

\section*{Current Sensing}

Current sensing is accomplished by monitoring the voltage that appears across sense resistor RS, level shifting it with respect to Pin 4 if required, and applying it to the
noninverting \(I_{\text {sen }}\) input of the transconductance amplifier. In order to allow for maximum circuit flexibility, there are three methods of current sensing, each with different internal paths.

In source high-side (Figures 13 and 14) and load high-side (Figures 17 and 18) current sensing, the Differential Amplifier is active with a gain of 1.0. Pin 1 connects to the high potential side of current sense resistor RS while Pin 6 connects to the low side. Logic circuitry is provided to disable the Differential Amplifier output whenever low-side current sensing is required. This circuit clamps the Differential Amplifier output high which disconnects it from the Isen input of the Transconductance Amplifier. This happens if Pin 1 is less than 1.2 V or if Pin 1 is less than Pin 6.

With source return low-side current sensing (Figures 15 and 16), the Inverting Amplifier is active with a gain of -1.0. Pin 1 connects to the low potential side of current sense resistor RS while Pin 4 connects to the high side. Note that a negative voltage appears across RS with respect to Pin 4.

In load low-side current sensing (Figures 19 and 20) a Noninverting input path is active with a gain of 1.0. Pin 1 connects to the high potential side of current sense resistor Rs while Pin 4 connects to the low side. The Noninverting input path lies from Pin 1, through the Inverting Amplifier input and feedback resistors R, to the cathode of the output diode. With load low-side current sensing, Pin 1 will be more positive than Pin 4, forcing the Inverting Amplifier output low. This causes the diode to be reverse biased, thus preventing the output stage of the amplifier from loading the input signal that is flowing through the feedback resistors.

The regulation threshold in all of the current sensing modes is internally fixed at 200 mV with Pin 2 connected to \(V_{C C}\). Pin 2 can be used to externally adjust the threshold over a range of 0 to 200 mV with respect to the IC ground at Pin 4.

\section*{Reference}

An internal band gap reference is used to set the 1.2 V voltage threshold and 200 mV current threshold. The reference is initially trimmed to a \(\pm 1.0 \%\) tolerance at \(T_{A}=\) \(25^{\circ} \mathrm{C}\) and is guaranteed to be within \(\pm 2.0 \%\) over an ambient operating temperature range of \(-25^{\circ}\) to \(85^{\circ} \mathrm{C}\).

\section*{Applications}

Each of the application circuits illustrate the flexibility of this device. The circuits shown in Figures 13 through 20 contain an optoisolator connected from the Drive Output at Pin 8 to ground. This configuration is shown for ease of understanding and would normally be used to provide an isolated control signal to a primary side switching regulator controller. In non-isolated, primary or secondary side applications, a load resistor can be placed from Pin 8 to ground. This resistor will convert the Drive Output current to a voltage for direct control of a regulator.

In applications where excessively high peak currents are possible from the source or load, the load induced voltage drop across RS could exceed 1.6 V. Depending upon the current sensing configuration used, this will result in forward biasing of either the internal VCC clamp diode, Pin 6, or the device substrate, Pin 1. Under these conditions, input series resistor R3 is required. The peak input current should be limited to 20 mA . Excessively large values for R3 will degrade the current sensing accuracy. Figure 21 shows a method of bounding the voltage drop across RS without sacrificing current sensing accuracy.

\section*{MC33341}

Figure 13. Source High-Side Current Sensing with Internally Fixed Voltage and Current Thresholds


The above figure shows the MC33341 configured for source high-side current sensing allowing a common ground path between Load - and Source Return -. The Differential Amplifier inputs, Pins 1 and 6, are used to sense the load induced voltage drop that appears across resistor RS. The internal voltage and current regulation thresholds are selected by the respective external connections of Pins 2 and 6 . Resistor R3 is required in applications where a high peak level of reverse current is possible if the source inputs are shorted. The resistor value should be chosen to limit the input current of the internal \(V_{C C}\) clamp diode to less than 20 mA . Excessively large values for R 3 will degrade the current sensing accuracy.
\[
\begin{aligned}
V_{\text {reg }} & =V_{\mathrm{th}(\mathrm{~V})}\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right) & I_{\text {reg }} & =\frac{V_{\mathrm{th}((\mid \mathrm{HS})}}{R_{\mathrm{S}}} \\
& =1.2\left(\frac{\mathrm{R} 2}{\mathrm{R}_{1}}+1\right) & & =\frac{0.2}{R_{S}}
\end{aligned}
\]
\[
\mathrm{R}_{3}=\frac{\left(\mathrm{I}_{\mathrm{pk}} R_{\mathrm{S}}\right)-0.6}{0.02}
\]

Figure 14. Source High-Side Current Sensing with Externally Adjustable Current and Internally Fixed Voltage Thresholds


The above figure shows the MC33341 configured for source high-side current sensing with an externally adjustable current threshold. Operation of this circuit is similar to that of Figure 13. The current regulation threshold can be adjusted over a range of 0 V to 200 mV with respect to Pin 4.
\[
\begin{array}{rlr}
V_{\text {reg }} & =V_{\text {th }(V)}\left(\frac{R 2}{R 1}+1\right) \quad I_{\text {reg }}=\frac{V_{\text {th }(\text { Pin } 2)}}{R_{S}} \\
& =1.2\left(\frac{R 2}{R 1}+1\right) & R 3=\frac{\left(I_{\text {pk }} R_{S}\right)-0.6}{0.02}
\end{array}
\]

Figure 15. Source Return Low-Side Current Sensing with Internally Fixed Current and Voltage Thresholds


The above figure shows the MC33341 configured for source return low-side current sensing allowing a common power path between Source + and Load +. This configuration is especially suited for negative output applications where a common ground path, Source + to Load +, is desired. The Inverting Amplifier inputs, Pins 1 and 4, are used to sense the load induced voltage drop that appears across resistor RS. The internal voltage and current regulation thresholds are selected by the respective external connections of Pins 2 and 6. Resistor R3 is required in applications where high peak levels of inrush current are possible. The resistor value should be chosen to limit the negative substrate current to less than 20 mA . Excessively large values for R3 will degrade the current sensing accuracy.
\[
\begin{aligned}
v_{\mathrm{reg}} & =\mathrm{V}_{\mathrm{th}(\mathrm{~V})}\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right) \\
& =1.2\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right)
\end{aligned}
\]
\[
\begin{aligned}
I_{\text {reg }} & =\frac{V_{\text {th(ILS-) }}}{R_{S}} \\
& =\frac{-0.2}{R_{S}}
\end{aligned}
\]
\[
\mathrm{R} 3=\frac{\left(\mathrm{I}_{\mathrm{pk}} \mathrm{R}_{\mathrm{S}}\right)-0.6}{0.02}
\]

\section*{MC33341}

Figure 16. Source Return Low-Side Current Sensing with Externally Adjustable Current and Voltage Thresholds


The above figure shows the MC33341 configured for source return low-side current sensing with externally adjustable voltage and current thresholds. Operation of this circuit is similar to that of Figure 15. The respective voltage and current regulation threshold can be adjusted over a range of 0 to 1.6 V and 0 V to 200 mV with respect to Pin 4.
\[
V_{\text {reg }}=V_{\text {th(Pin } 6)}\left(\frac{R 2}{R 1}+1\right) \quad I_{\text {reg }}=-\frac{V_{\text {th(Pin 2) }}}{R_{S}} \quad \mathrm{R} 3=\frac{\left(I_{\text {pk }} R_{S}\right)-0.6}{0.02}
\]

\section*{MC33341}

Figure 17. Load High-Side Current Sensing with Internally Fixed Current and Voltage Thresholds


The above figure shows the MC33341 configured for load high-side current sensing allowing common paths for both power and ground, between the source and load. The Differential Amplifier inputs, Pins 1 and 6, are used to sense the load induced voltage drop that appears across resistor RS. The internal voltage and current regulation thresholds are selected by the respective external connections of Pins 2 and 6. Resistor R3 is required in applications where high peak levels of load current are possible from the battery or load bypass capacitor. The resistor value should be chosen to limit the input current of the internal \(V_{C C}\) clamp diode to less than 20 mA . Excessively large values for R3 ill degrade the current sensing accuracy.
\[
\begin{aligned}
V_{\text {reg }} & =V_{\operatorname{th}(V)}\left(\frac{R 2}{R_{1}}+1\right) \\
& =1.2\left(\frac{R 2}{R_{1}}+1\right)
\end{aligned}
\]
\[
\begin{aligned}
I_{\mathrm{reg}} & =\frac{V_{\mathrm{th}(1 \mathrm{HS})}}{R_{\mathrm{S}}} \\
& =\frac{0.2}{R_{\mathrm{S}}}
\end{aligned}
\]
\[
\mathrm{R} 3=\frac{\left(\mathrm{I}_{\mathrm{pk}} \mathrm{R}_{\mathrm{S}}\right)-0.6}{0.02}
\]

Figure 18. Load High-Side Current Sensing with

\section*{Externally Adjustable Current and Internally Fixed Voltage Thresholds}


The above figure shows the MC33341 configured for load high-side current sensing with an externally adjustable current threshold. Operation of this circuit is similar to that of Figure 17. The current regulation threshold can be adjusted over a range of 0 V to 200 mV with respect to Pin 4.
\[
\begin{aligned}
V_{\text {reg }} & =V_{\text {th }(V)}\left(\frac{R 2}{R_{1}}+1\right) \quad I_{\text {reg }}=\frac{V_{\text {th }}(\text { Pin } 2)}{R_{S}} \\
& =1.2\left(\frac{R 2}{R_{1}}+1\right)
\end{aligned} \quad R 3=\frac{\left(I_{\mathrm{pk}} R_{S}\right)-0.6}{0.02}
\]

Figure 19. Load Low-Side Current Sensing with Internally Fixed Current and Voltage Thresholds


The above figure shows the MC33341 configured for load low-side current sensing allowing common paths for both power and ground, between the source and load. The Noninverting input paths, Pins 1 and 4, are used to sense the load induced voltage drop that appears across resistor R. The internal voltage and current regulation thresholds are selected by the respective external connections of Pins 2 and 6. Resistor R3 is required in applications where high peak levels of load current are possible from the battery or load bypass capacitor. The resistor value should be chosen to limit the negative substratecurrent to less than 20 mA . Excessively large values for R3 will degrade the current sensing accuracy.
\[
\begin{aligned}
v_{\text {reg }} & =v_{\text {th }(\mathrm{V})}\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right) \\
& =1.2\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right)
\end{aligned}
\]
\[
\begin{aligned}
I_{\text {reg }} & =\frac{V_{\text {th( }(L S S+)}}{R_{S}} \\
& =\frac{0.2}{R_{S}}
\end{aligned}
\]
\[
\mathrm{R} 3=\frac{\left(\mathrm{I}_{\mathrm{pk}} \mathrm{R}_{\mathrm{S}}\right)-0.6}{0.02}
\]

Figure 20. Load Low-Side Current Sensing with Externally Adjustable Current and Voltage Thresholds


The above figure shows the MC33341 configured for load low-side current sensing with an externally adjustable voltage and current threshold. Operation of this circuit is similar to that of Figure 19. The respective voltage and current regulation threshold can be adjusted over a range of 0 to 1.2 V and 0 V to 200 mV , with respect to \(P\) in 4 .
\[
V_{\text {reg }}=V_{\text {th(Pin } 6)}\left(\frac{R 2}{R 1}+1\right) \quad I_{\text {reg }}=\frac{V_{\text {th(Pin 2) }}}{R_{S}} \quad R 3=\frac{\left(I_{\mathrm{pk}} R_{S}\right)-0.6}{0.02}
\]

Figure 21. Current Sense Resistor Bounding


NOTE: An excessive load induced voltage across \(R_{S}\) can occur if either the source input or load output is shorted. This voltage can easily be bounded with the addition of the diodes shown without degrading the current sensing accuracy. This bounding technique can be used in any of the MC33341 applications where high peak currents are anticipated.

Figure 22. Multiple Output Current and Voltage Regulation


NOTE: Multiple outputs can be controlled by summing the error signal into a common optoisolator. The converter output with the largest
voltage or current error will dominate control of the feedback loop.

\section*{Lithium Battery Protection Circuit for One to Four Cell}

\section*{Battery Packs}

The MC33345 is a monolithic lithium battery protection circuit that is designed to enhance the useful operating life of one to four cell rechargeable battery packs. Cell protection features consist of independently programmable charge and discharge limits for both voltage and current with a delayed current shutdown, cell voltage balancing with on-chip balancing resistors, and a virtually zero current sleepmode state when the cells are discharged. Additional features include an on-chip charge pump for reduced MOSFET losses while charging or discharging a low cell voltage battery pack, and the programmability for a one to four cell battery pack. This protection circuit requires a minimum number of external components and is targeted for inclusion within the battery pack. The MC33345 is available in standard and low profile 20 lead surface mount packages.
- Independently Programmable Charge and Discharge Limits for Both Voltage and Current
- Charge and Discharge Current Limit Detection with Delayed Shutdown
- Cell Voltage Balancing
- On-Chip Balancing Resistors
- Virtually Zero Current Sleepmode State when Cells are Discharged
- Charge Pump for Reduced Losses with a Low Cell Voltage Battery Pack
- Programmable for One, Two, Three or Four Cell Applications
- Minimum External Components for Inclusion within the Battery Pack
- Available in Low Profile Surface Mount Packages


\section*{LITHIUM BATTERY PROTECTION CIRCUIT FOR ONE TO FOUR CELL SMART BATTERY PACKS}

SEMICONDUCTOR TECHNICAL DATA


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33345DW & \multirow{2}{*}{\(T_{A}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-20L \\
\cline { 3 - 3 } MC33345DTB & TSSOP-20 \\
\hline
\end{tabular}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Ratings & Symbol & Value & Unit \\
\hline \begin{tabular}{l}
Input Voltage (Measured with Respect to Ground, Pin 16) \\
Cell Voltage Divider (Pins 1, 3, 4 and 5) \\
Cell \(1 / N_{\text {C }}\) (Pin 18) \\
Cell 2 (Pin 19) \\
Cell 3 (Pin 20) \\
Cell \(4 / V_{C C}\) /Discharge Current Limit (Pin 2) \\
Current Sense Common (Pin 6) \\
Charge Current Limit (Pin 7) \\
Charge Gate Drive Common (Pin 8) \\
Charge Gate Drive Output (Pin 9) \\
Program 1 (Pin 11) \\
Program 2 (Pin 10) \\
Discharge Gate Drive Output (Pin 13) \\
Charge Pump Output (Pin 14) \\
Test (Pin 15) \\
Fault Output (Pin 17)
\end{tabular} & \(V_{\text {IR }}\) & 18
7.5
10
18
20
30
30
\(\pm 20\)
18 to -20
7.5
7.5
18
12
7.5
20 & V \\
\hline Cell Voltage Divider Current Source Current (Pin 4 to 6) Sink Current (Pin 5 to 16) & Idiv & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Fault Output Sink Current (Pin 17) & 1 flt & 10 & mA \\
\hline Thermal Resistance, Junction to Air DTB Suffix, TSSOP-20 Plastic Package, Case 948E DW Suffix, SO-20 Plastic Package, Case 751D & \(\mathrm{R}_{\theta \mathrm{JA}}\) & \[
\begin{aligned}
& 135 \\
& 105
\end{aligned}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature (Notes 1, 2 and 3) & TJ & -40 to +150 & C \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC}}\) (Pin 2) \(=8.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}(\operatorname{Pin} 18)=4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating junction temperature range that applies (Notes 2 and 3 ), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{VOLTAGE SENSING} \\
\hline \begin{tabular}{l}
Charge or Discharge Voltage Inputs (Pin 4 or 5 to Pin 1) \\
Threshold Voltage \\
Input Bias Current
\end{tabular} & \[
\begin{aligned}
& V_{\text {th }} \\
& \mathrm{I}_{\mathrm{IB}} \\
& \hline
\end{aligned}
\] & - & \[
\begin{gathered}
1.23 \\
20 \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{nA}
\end{gathered}
\] \\
\hline Input Hysteresis Source Current (Pin 5) & \(\mathrm{I}_{\mathrm{H}}\) & - & 2.0 & - & \(\mu \mathrm{A}\) \\
\hline Cell Charge or Discharge Programmable Input Voltage Range (Pin 4 or 5) & \(\mathrm{V}_{\mathrm{IR} \text { (pgm) }}\) & - & \(\mathrm{V}_{\text {th }}\) to 7.5 & - & V \\
\hline \begin{tabular}{l}
Cell Selector Series Resistance \\
Cell Positive to Top of Divider (Pin 2, 20, 19, or 18 to Pin 3) Cell Negative to Bottom of Divider (Pin 20, 19, 18 or 16 to Pin 1)
\end{tabular} & \[
\begin{aligned}
& \mathrm{RS}_{+} \\
& \mathrm{R}_{\mathrm{S}} \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 100 \\
& 100 \\
& \hline
\end{aligned}
\] & - & \(\Omega\) \\
\hline Cell Voltage Sampling Rate & \({ }^{\text {t }}\) (smpl) & - & 1.0 & - & s \\
\hline Test Input Threshold Voltage (Pin 15) & \(\mathrm{V}_{\text {th }}\) & - & \(\mathrm{V}_{\text {Cell 1/2.0 }}\) & - & V \\
\hline
\end{tabular}

CELL VOLTAGE BALANCING
\begin{tabular}{|c|c|c|c|c|c|}
\hline Internal Balancing Resistance (Pins 2, 20, 19 and 18) & R bal & - & 140 & - & \(\Omega\) \\
\hline \multicolumn{6}{|l|}{CURRENT SENSING} \\
\hline \begin{tabular}{l}
Charge Current Limit (Pin 7 to Pin 6) \\
Threshold Voltage Input Bias Current Delay
\end{tabular} & \begin{tabular}{l}
\(V_{\text {th }}\) (chg) \\
IIB(chg) \\
Idly(chg)
\end{tabular} & - & 18
200
1.0 & - & mV
nA
s \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain the junction temperature as close to ambient as possible.
3. Tested ambient temperature range for the MC33345:
\(\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}\)

\section*{MC33345}

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{C C}(\operatorname{Pin} 2)=8.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}(\operatorname{Pin} 18)=4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating junction temperature range that applies (Notes 2 and 3 ), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{CURRENT SENSING} \\
\hline Discharge Current Limit (Pin 2 to Pin 6) & & & & & \\
\hline Threshold Voltage & \(V_{\text {th }}\) (dschg) & - & 50 & - & mV \\
\hline Input Bias Current & IIB(dschg) & - & 200 & - & nA \\
\hline Delay & Idly(dschg) & - & 3.0 & - & ms \\
\hline
\end{tabular}

CHARGE PUMP
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage (Pin 14, \(\mathrm{R}_{\mathrm{L}} \geq 10^{10} \Omega\) ) & \(\mathrm{V}_{\mathrm{O}}\) & - & 10.2 & - & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Average Cell Current Operating ( \(\mathrm{V}_{\mathrm{CC}}=8.0 \mathrm{~V}\) ) Sleepmode ( \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) ) & Icc & - & 15
5.0 & - & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{nA}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Minimum Operating Cell Voltage for Logic and Gate Drivers Programmed for One Cell Operation \\
Cell 1 Voltage \\
Programmed for Two, Three, or Four Cell Operation Cell 1 Voltage \\
Cell 2, Cell 3, or Cell 4 Voltage, Sum Voltage of Cells
\end{tabular} & \(V_{C C}\) & - & 2.2
1.5
0.7 & - & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain the junction temperature as close to ambient as possible.
3. Tested ambient temperature range for the MC33345:
\(\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}\)
\(\mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}\)

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Symbol & Description \\
\hline 1 & Cell Voltage Return & The bottom side of a three resistor divider string connects to this pin. The Cell Selector internally switches this point to the negative terminal of the cell that is to be monitored. \\
\hline 2 & \begin{tabular}{l}
Cell \(4 / \mathrm{N}_{\mathrm{CC}}\) / \\
Discharge Current Limit
\end{tabular} & This is a multifunction pin that connects to a high impedance node of the Cell Selector where it is used to monitor the positive terminal of Cell 4 and to provide positive supply voltage for the protection IC. This pin is also used to monitor the voltage drop across the discharge current limit resistor and it provides a discharge path for the internal balancing of Cell 4. \\
\hline 3 & Cell Voltage & The top side of a three resistor divider string connects to this pin. The Cell Selector internally switches this point to the positive terminal of the cell that is to be monitored. \\
\hline 4 & Discharge Voltage Threshold & The upper tap of a three resistor divider string connects to this pin. The Cell Voltage Detector compares the divided down cell voltage to an internal reference. If the comparator detects that the cell voltage has fallen below the programmed level, discharge switch Q2 is disabled, and the protection circuit enters into a low current sleepmode state. This prevents further discharging of the battery pack. \\
\hline 5 & Charge Voltage Threshold & The lower tap of a three resistor divider string connects to this pin. The Cell Voltage Detector compares the divided down cell voltage to an internal reference. If the comparator detects that the cell voltage has risen above the programmed level, charge switch Q1 is disabled, preventing further charging of the battery pack. A \(2.0 \mu \mathrm{~A}\) current source pull-up is internally applied to this pin creating input hysteresis. \\
\hline 6 & Current Sense Common & This pin is a common point that is used to monitor the voltage drop across the charge and discharge current limit resistors. \\
\hline 7 & Charge Current Limit & This pin is used to monitor the voltage drop across the charge current limit resistor. \\
\hline 8 & Charge Gate Drive Common & This pin provides a gate turn-off path for charge switch Q1. The charge switch source and the battery pack negative terminal connect to this point. \\
\hline 9 & Charge Gate Drive Output & This output connects to the gate of charge switch Q1 allowing it to enable or disable battery pack charging. \\
\hline 10 & Program 2 & This pin is used in conjunction with Pin 11 to program the number of cells. \\
\hline 11 & Program 1 & This pin is used in conjunction with Pin 10 to program the number of cells. \\
\hline 12 & No Connection & This pin is not internally connected. \\
\hline 13 & Discharge Gate Drive Output & This output connects to the gate of discharge switch Q2 allowing it to enable or disable battery pack discharging. \\
\hline 14 & Charge Pump Output & This is the charge pump output. A reservoir capacitor is connected from this pin to ground. \\
\hline 15 & Test Input & This input is used to facilitate circuit testing and is normally not connected. It has an internal 2.0 k pull-up resistor. \\
\hline 16 & Ground & This is the protection IC ground and all voltage ratings are with respect to this pin. \\
\hline 17 & Fault Output & This is on open drain output that is active low when a charging fault limit has been exceeded. The limits sensed are both charge voltage and current. \\
\hline 18 & Cell \(1 / N_{C}\) & This is a multifunction pin that connects to a high impedance node of the Cell Selector where it is used to monitor the positive terminal of Cell 1 and the negative terminal of Cell 2. This pin also provides logic biasing and a discharge path for the internal balancing of Cell 1. \\
\hline 19 & Cell 2 & This pin connects to a high impedance node of the Cell Selector where it is used to monitor the positive terminal of Cell 2 and the negative terminal of Cell 3 . This pin also provides a discharge path for the internal balancing of Cell 2. \\
\hline 20 & Cell 3 & This pin connects to a high impedance node of the Cell Selector where it is used to monitor the positive terminal of Cell 3 and the negative terminal of Cell 4. This pin also provides a discharge path for the internal balancing of Cell 3. \\
\hline
\end{tabular}

\section*{INTRODUCTION}

The insatiable demand for smaller lightweight portable electronic equipment has dramatically increased the requirements of battery performance. Batteries are expected to have higher energy densities, superior cycle life, be safe in operation and environmentally friendly. To address these high expectations, battery manufacturers have invested heavily in developing rechargeable lithium-based cells. Today's most attractive chemistries include lithium-polymer, lithium-ion, and lithium-metal. Each of these chemistries require electronic protection in order to constrain cell operation to within the manufacturers limits.

Rechargeable lithium-based cells require precise charge and discharge termination limits for both voltage and current in order to maximize cell capacity, cycle life, and to protect the end user from a catastrophic event. The termination limits are not as well defined as with older non-lithium chemistries. These limits are dependent upon a manufacturer's particular lithium chemistry, construction technique, and intended application. Battery pack assemblers may also choose to enhance cell capacity at the expense of cycle life. In order to address these requirements the MC33345 was developed. This device features programmable voltage and current limits, cell voltage balancing, low operating current, a virtually zero current sleepmode state, and requires few external components to implement a complete one to four cell smart battery pack.

\section*{OPERATING DESCRIPTION}

The MC33345 is specifically designed to be placed in the battery pack where it is continuously powered from either one, two, three, or four lithium cells. In order to maintain cell operation within specified limits, the protection circuit senses both cell voltage and current, and correspondingly controls the state of two N -channel MOSFET switches. These switches, Q1 and Q2, are placed in series with the negative terminal of Cell 1 and the negative terminal of the battery pack.
Figure 1. Simplified Four Cell Smart Battery Pack


This configuration allows the protection circuit to interrupt the appropriate charge or discharge path FET in the event that a programmed voltage or current limit for any cell has been exceeded.

A functional description of the protection circuit blocks follows. Refer to the detailed block diagram shown in Figure 6.

\section*{Voltage Sensing}

Individual cell voltage sensing is accomplished by the use of the Cell Selector in conjunction with the Floating Over/Under Voltage Detector and Reference block. The Cell Selector applies the voltage of each cell across an external resistor divider string that connects from Pins 3 to 1 . The voltage at each of the tap points is sequentially polled and compared to an internal reference. If a limit has been exceeded, the result is stored in the Over/Under Data Latch and Control Logic block. The Cell Selector is gated on for an 8.0 ms period at a one second repetition rate. This low duty cycle sampling technique reduces the average load current that the divider presents across each cell, thus extending the useful battery pack capacity. The cells are sensed in the following sequence:

Figure 2. Cell Sensing Sequence
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Polling \\
Sequence
\end{tabular} & \begin{tabular}{c} 
Time \\
\((\mathbf{m s})\)
\end{tabular} & \begin{tabular}{c} 
Cell \\
Sensed
\end{tabular} & \begin{tabular}{c} 
Tested \\
Limit
\end{tabular} \\
\hline 1 & 1.0 & Cell 4 & Overvoltage \\
\hline 2 & 1.0 & Cell 3 & Overvoltage \\
\hline 3 & 1.0 & Cell 2 & Overvoltage \\
\hline 4 & 1.0 & Cell 1 & Overvoltage \\
\hline 5 & 1.0 & Cell 4 & Undervoltage \\
\hline 6 & 1.0 & Cell 3 & Undervoltage \\
\hline 7 & 1.0 & Cell 2 & Undervoltage \\
\hline 8 & 1.0 & Cell 1 & Undervoltage \\
\hline
\end{tabular}

By incorporating this polling technique with a single floating comparator and voltage divider, a significant reduction of circuitry and trim elements is achieved. This results in a smaller die size, lower cost, and reduced operating current.

Figure 3. Cell Voltage Limit Programming


The cell charge and discharge voltage limits are controlled by the values selected for the resistor divider string and the 1.23 V input threshold of Pins 4 and 5. As the battery pack reaches full charge, the Cell Voltage Detector will sense an overvoltage fault condition on the first cell that exceeds the programmed overvoltage limit. The fault information is stored
in a data latch and charge MOSFET Q1 is turned off, disconnecting the battery pack from the charging source. An internal \(2.0 \mu \mathrm{~A}\) current source pull-up is then applied to Pin 5 creating an input hysteresis voltage. As a result of an overvoltage fault, the battery pack is available for discharging only.

The overvoltage fault is reset by applying a load to the battery pack. As the voltage across each cell falls below the input hysteresis level, charge MOSFET Q1 will turn on. The battery pack will now be available for charging or discharging. The over voltage limit and hysteresis voltage are given by:
\[
\begin{gathered}
V_{O V}=V_{\text {th }(\operatorname{Pin} 5)}\left(\frac{R 1+R 2+R 3}{R 3}\right) \\
V_{H}=I_{H(\operatorname{Pin} 5)}(R 1+R 2)
\end{gathered}
\]

As the load eventually depletes the battery pack charge, the Cell Voltage Detector will sense an undervoltage fault condition on the first cell that falls below the programmed undervoltage limit. After an undervoltage cell is detected, discharge MOSFET Q2 is turned off, disconnecting the battery pack from the load. The protection circuit will now enter a low current sleepmode state drawing just 5.0 nA typically, thus preventing any further cell discharging. As a result of the undervoltage fault, the battery pack is available for charging only. The undervoltage limit is given by:
\[
V_{U V}=V_{\text {th (Pin 4) }}\left(\frac{R 1+R 2+R 3}{R 2+R 3}\right)
\]

The undervoltage fault is reset by applying charge current to the battery pack. When the voltage on Pin 16 exceeds Pin 8 by 0.6 V , discharge MOSFET Q2 will turned on. The battery pack will now be available for charging or discharging.

Since the thresholds of Pins 4 and 5 are equal, the above equations can be rewritten to directly solve for specific resistor values as shown in the example below.
Let the desired limits be:
\[
\mathrm{V}_{\mathrm{OV}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=0.4 \mathrm{~V} \text {, and } \mathrm{V}_{\mathrm{UV}}=2.5 \mathrm{~V}
\]

With nominal values for:
\[
\mathrm{V}_{\mathrm{th}}=1.23 \mathrm{~V} \text {, and } \mathrm{I}_{\mathrm{H}}=2.0 \mu \mathrm{~A}
\]
\[
R 3=\frac{\left(\frac{V_{H}}{I_{H}}\right)}{\left(\frac{V_{\mathrm{OV}}}{V_{\mathrm{th}}}-1\right)}=\frac{\left(\frac{0.4}{2.0 \times 10^{-6}}\right)}{\left(\frac{4.2}{1.23}-1\right)}=82,828 \Omega
\]
\[
R 2=R 3\left(\frac{V_{O V}}{V_{U V}}-1\right)=82,828\left(\frac{4.2}{2.5}-1\right)=56,323 \Omega
\]
\[
R 1=\left(\frac{V_{H}}{I_{H}}\right)-R 2=\left(\frac{0.4}{2.0 \times 10^{-6}}\right)-56,323=143,677 \Omega
\]

Note that the Cell Selector has a typical total series resistance of \(200 \Omega\). This will have a minimal effect on the programmed limits if the total divider resistance is in excess of \(100 \mathrm{k} \Omega\).

\section*{Cell Voltage Balancing}

With series connected cells, successive charge and discharge cycles can result in a significant difference in cell voltage with a corresponding degradation of battery pack
capacity. Figure 4 illustrates the operation of an unbalanced two cell pack. As the cells become unbalanced, the full battery pack capacity is not realized. This is due to the requirement that charging must terminate when Cell 2 reaches the overvoltage limit, and discharging must terminate when Cell 1 reaches the undervoltage limit. By employing a method of keeping the cell voltages equal, both cells can be charged and discharged to their specified limits, thus attaining the maximum possible capacity .

Figure 4. Unbalanced Battery Pack Operation


The MC33345 contains a Cell Voltage Balancing Logic circuit that controls four N-channel MOSFETs. The circuit samples the voltage of each cell during the polling period. If all of the cells are below the programmed overvoltage fault limit, no cell balancing takes place. If one or more cells reach the overvoltage fault limit, a specific latch is set for each cell. At the end of the polling period, charge MOSFET Q1 is turned off and the latches are interrogated. If all of the latches were set, no cell balancing takes place. If one, two, or three latches were set, the required cell balancing MOSFETs are then activated. The overvoltage cells are discharged to the programmed level of \(\mathrm{V}_{\mathrm{OV}}-\mathrm{V}_{\mathrm{H}}\). As each cell attains this level, the discharge MOSFETs successively turn off. Upon completion of cell balancing, charge MOSFET Q1 is turned on. Cell voltage balancing is active during charge and discharge, but disabled during the low current sleepmode state.

\section*{Cell Programming and Test}

The protection circuit can be programmed for operation with either one, two, three, or four cell battery packs. Programming inputs 1 and 2 are used to set up the internal logic for the number of cells to be monitored. If less than four cells are required, the input for each empty cell position must be connected to VCC. This process starts with Cell 4 decending down to Cell 2 if required. Refer to the Cell Programming table shown below and the specific application figure.

Figure 5. Cell Sensing Sequence
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Number of \\
Cells
\end{tabular} & \begin{tabular}{c} 
Program 1 \\
(Pin 11)
\end{tabular} & \begin{tabular}{c} 
Program 2 \\
(Pin 10)
\end{tabular} & \begin{tabular}{c} 
Application \\
Figure
\end{tabular} \\
\hline 1 & Ground & Cell 1/V \(\mathrm{C}_{\mathrm{C}}\) & 16 \\
\hline 2 & Cell 1/ \(\mathrm{V}_{\mathrm{C}}\) & Ground & 15 \\
\hline 3 & Cell 1/ \(\mathrm{V}_{\mathrm{C}}\) & Cell 1/ \(\mathrm{V}_{\mathrm{C}}\) & 14 \\
\hline 4 & Ground & Ground & 13 \\
\hline
\end{tabular}

A test option is provided to speed up device and battery pack testing. By connecting Pin 15 to ground, the internal logic is held in a reset state and both MOSFET switches are turned on. Upon release, the Control Logic becomes active and the cells are polled within 8.0 ms .

\section*{Current Sensing}

Charge and discharge current limit protection can be selectively added to the battery pack with the addition of a sense resistor. The resistors are placed in series with the positive terminal of the battery pack and the cells. Refer to Figure 1.

As the battery pack charges, Pins 6 and 7 sense the voltage drop across R Lim(chg). A charge current limit fault is detected if the voltage at Pin 7 exceeds Pin 6 by 18 mV for the entire delay period of 1.0 second. The fault information is stored in a data latch and charge MOSFET Q1 is turned off, disconnecting the battery pack from the charging source. As a result of the charge current fault, the battery pack is available for discharging only. The charge current limit is given by:
\[
\mathrm{I}_{\mathrm{Lim}(\mathrm{chg})}=\frac{\mathrm{V}_{\mathrm{th}(\mathrm{chg})}}{R_{\mathrm{Lim}(\mathrm{chg})}}=\frac{18 \mathrm{mV}}{R_{\mathrm{Lim}(\mathrm{chg})}}
\]

The charge current fault is reset by either disconnecting the battery pack from the charger, or by connecting a load to the battery pack. When the voltage on Pin 16 no longer exceeds Pin 8 by approximately 2.0 V , the Sense Enable circuit will turn on charge MOSFET Q1. Charge current sensing can be disabled by connecting Pin 7 to Pin 6.

The discharge current limiting operates in a similar manner. As the battery pack discharges, Pins 2 and 6 sense the voltage drop across R Lim(dschg). A discharge current limit fault is detected if the voltage at Pin 2 is less than Pin 6 by 50 mV for more than 3.0 ms . The fault information is stored in a data latch and discharge MOSFET Q2 is turned off, disconnecting the battery pack from the load. As a result of the discharge current fault, the battery pack is available for charging only. The discharge current limit is given by:
\[
\mathrm{I}_{\mathrm{Lim}(\mathrm{dschg})}=\frac{\mathrm{V}_{\mathrm{th}(\mathrm{dschg})}}{R_{\mathrm{Lim}(\mathrm{dschg})}}=\frac{50 \mathrm{mV}}{R_{\mathrm{Lim}(\mathrm{dschg})}}
\]

The discharge current fault is reset by either disconnecting the load from the battery pack, or by connecting the battery pack to the charger. When the voltage on Pin 8 no longer exceeds Pin 16 by approximately 2.0 V , the Sense Enable circuit will turn on discharge MOSFET Q2. Discharge current sensing can be disabled by connecting Pin 2 to Pin 6.

The charge and discharge current protection circuits contain a built in response delay of 1.0 s and 3.0 ms respectively. This helps to prevent fault activation when the battery pack is subjected to pulsed currents during charging or discharging.

\section*{Charge Pump and MOSFET Switches}

The MC33345 contains an on chip Charge Pump to ensure that the MOSFET switches are fully enhanced for reduced power losses. An external reservoir capacitor normally connects from the Charge Pump output to ground, Pins 14 and 16. The capacitor value is not critical and is usually within the range of 10 nF to 100 nF . The Charge Pump output is regulated at 10.2 V allowing the use of economical logic level MOSFETs in one and two cell applications. The main requirement in selecting a particular type of MOSFET switch is to consider the desired on-resistance at the lowest anticipated operating voltage of the battery pack. A table of small outline surface mount devices is given in Figure 6. When using extremely low threshold MOSFETs, it may be desirable to disable the Charge Pump so that the maximum gate to source voltage is not exceeded. This is accomplished by connecting Pin 14 to Pin 19 with two, three, or four cell battery packs.

\section*{Battery Pack Application}

Upon assembly of the battery pack, it is imperative that Cell 1 be connected first so that \(\mathrm{V}_{\mathrm{C}}\) is properly biased. The remaining cells can then be connected in any order. This assembly method prevents forward biasing the protection IC substrate which can result in overheating and non-functionality.

Each of the application figures show a capacitor labeled CESD. This capacitor provides a path around the MOSFET switches in the event of an electrostatic discharge.

Figure 6. Small Outline Surface Mount MOSFET Switches
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Device \\
Type
\end{tabular}} & \multicolumn{7}{|c|}{ On-Resistance ( \(\Omega\) ) versus Gate to Source Voltage (V) } \\
\cline { 2 - 8 } & 2.5 V & \(\mathbf{3 . 0 V}\) & 4.0 V & 5.0 V & 6.0 V & \(\mathbf{7 . 5} \mathrm{~V}\) & 9.0 V \\
\hline MMFT3055VL & - & - & - & \(0.120 \Omega\) & \(0.115 \Omega\) & \(0.108 \Omega\) & \(0.100 \Omega\) \\
\hline MMDF3N03HD & - & \(0.525 \Omega\) & \(0.080 \Omega\) & \(0.065 \Omega\) & \(0.063 \Omega\) & \(0.062 \Omega\) & \(0.060 \Omega\) \\
\hline MMDF4N01HD & \(0.047 \Omega\) & \(0.042 \Omega\) & \(0.037 \Omega\) & \(0.035 \Omega\) & \(0.034 \Omega\) & \(0.033 \Omega\) & See Note \\
\hline MMSF5N02HD & - & \(0.065 \Omega\) & \(0.023 \Omega\) & \(0.021 \Omega\) & \(0.020 \Omega\) & \(0.018 \Omega\) & \(0.018 \Omega\) \\
\hline MMDF6N02HD & \(0.043 \Omega\) & \(0.035 \Omega\) & \(0.029 \Omega\) & \(0.028 \Omega\) & \(0.026 \Omega\) & \(0.025 \Omega\) & \(0.023 \Omega\) \\
\hline
\end{tabular}

NOTE: Exceeds maximum \(V_{G S}\) voltage rating.

PROTECTION CIRCUIT OPERATING MODE TABLE
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{ Outputs } \\
\hline \begin{tabular}{c} 
Input Conditions \\
Cell Status
\end{tabular} & \begin{tabular}{c} 
Circuit Operation \\
Battery Pack Status
\end{tabular} & \begin{tabular}{cc} 
MOSFET Switches \\
\hline
\end{tabular} & \multicolumn{2}{|c|}{ Function } \\
\hline
\end{tabular}

\section*{CELL CHARGING/DISCHARGING}
\begin{tabular}{|c|l|c|c|c|}
\hline \begin{tabular}{c} 
Storage or Nominal Operation: \\
No current or voltage faults
\end{tabular} & \begin{tabular}{l} 
Both Charge MOSFET Q1 and Discharge MOSFET \\
Q2 are on. The battery pack is available for charging \\
or discharging.
\end{tabular} & On & On & Active \\
\hline
\end{tabular}

CELL CHARGING FAULT/RESET
\begin{tabular}{|c|c|c|c|c|c|}
\hline Charge Current Limit Fault: \(V_{\text {Pin } 7} \geq\left(V_{\text {Pin } 6}+18 \mathrm{mV}\right)\) for 1.0 s & Charge MOSFET Q1 is latched off and the cells are disconnected from the charging source. Q1 will remain in the off state as long as \(V_{\text {Pin }} 16\) exceeds \(V_{\text {Pin }} 11\) by \(\approx 2.0 \mathrm{~V}\). The battery pack is available for discharging. & On to Off & On & Active & Active \\
\hline Charge Current Limit Reset: \(V_{\text {Pin } 16}-V_{\text {Pin }}<2.0 \mathrm{~V}\) & The Sense Enable circuit will reset and turn on charge MOSFET Q1 when \(V_{\text {Pin }} 16\) no longer exceeds \(V_{\text {Pin }} 11\) by \(\approx 2.0 \mathrm{~V}\). This can be accomplished by either disconnecting the charger from the battery pack, or by connecting a load to the battery pack. & Off to On & On & Active & Active \\
\hline Charge Voltage Limit Fault: \(V_{\text {Pin } 5} \geq 1.23 \mathrm{~V}\) for 1.0 s & Charge MOSFET Q1 is latched off and the cells are disconnected from the charging source. An internal current source pull-up of \(2.0 \mu \mathrm{~A}\) is applied to Pin 8 creating an input hysteresis voltage of \(\mathrm{V}_{\mathrm{H}}\) with divider resistors R1 and R2. The battery pack is available for discharging. & On to Off & On & Active & Active \\
\hline Charge Voltage Limit Reset: \(V_{\text {Pin } 5}<1.23 \mathrm{~V}\) for 1.0 s . & Charge MOSFET Q1 will turn on when the voltage across each cell falls sufficiently to overcome the input hysteresis voltage. This can be accomplished by applying a load to the battery pack. & Off to On & On & Active & Active \\
\hline
\end{tabular}

CELL DISCHARGING FAULT/RESET
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Discharge Current Limit Fault: \\
\(V_{\text {Pin } 6} \leq\left(V_{\text {Pin 2 }}-50 \mathrm{mV}\right)\) \\
for 3.0 ms
\end{tabular} & Discharge MOSFET Q2 is latched off and the cells are disconnected from the load. Q2 will remain in the off state as long as \(\mathrm{V}_{\text {Pin } 11}\) exceeds \(\mathrm{V}_{\text {Pin }} 16 \mathrm{by} \approx 2.0 \mathrm{~V}\). The battery pack is available for charging. & On & On to Off & Active & Active \\
\hline Discharge Current Limit Reset: \(V_{\text {Pin } 8}-V_{\text {Pin } 16}<2.0 \mathrm{~V}\) & The Sense Enable circuit will reset and turn on discharge MOSFET Q2 when \(V_{\text {Pin }} 11\) no longer exceeds \(V_{\text {Pin }} 16\) by \(\approx 2.0 \mathrm{~V}\). This can be accomplished by either disconnecting the load from the battery pack, or by connecting the battery pack to the charger. & On & Off to On & Active & Active \\
\hline \begin{tabular}{l}
Discharge Voltage Limit Fault: \\
\(V_{\text {Pin } 4} \leq 1.23 \mathrm{~V}\) for 1.0 s
\end{tabular} & Discharge MOSFET Q2 is latched off, the cells are disconnected from the load, and the protection circuit enters a low current sleepmode state. The battery pack is available for charging. & On & On to Off & Disabled & Disabled \\
\hline Discharge Voltage Limit Reset: \(V_{\text {Pin } 16}>\left(V_{\text {Pin } 8}+0.6 \mathrm{~V}\right)\) & The Sense Enable circuit will reset and turn on discharge MOSFET Q2 when \(V_{\text {Pin }} 16\) exceeds \(V_{\text {Pin }} 8\) by 0.6 V . This can be accomplished by connecting the battery pack to the charger. & On & Off to On & Active & Active \\
\hline
\end{tabular}

FAULTY CELL

Simultaneous Charge and Discharge Voltage Limit Faults: \(V_{\text {Pin } 5} \geq 1.23 \mathrm{~V}\) for 1.0 s and \(V_{\text {Pin } 4} \leq 1.23 \mathrm{~V}\) for 1.0 s
\begin{tabular}{|c|c|c|c|c|}
\hline This condition can happen if there is a defective cell in the battery pack. The protection circuit will remain in the sleepmode state until the battery pack is connected to a charger. If Cell 2,3 , or 4 is faulty and a charger is connected, the protection circuit will cycle in and out of sleepmode. If Cell 1 is faulty ( \(<1.5 \mathrm{~V}\) ), the protection circuit logic will not function and the battery pack cannot be charged. & \begin{tabular}{l}
Cycles Cell 1 \\
Good \\
Disabled Cell 1 Faulty
\end{tabular} & \begin{tabular}{l}
Cycles Cell 1 \\
Good \\
Disabled Cell 1 Faulty
\end{tabular} & Cycles Cell 1 Good Disabled Cell 1 Faulty & \begin{tabular}{l}
Cycles Cell 1 Good \\
Disabled Cell 1 Faulty
\end{tabular} \\
\hline
\end{tabular}
the battery pack. The protection circuit will remain in the sleepmode state until the battery pack is connected to a charger. If Cell 2,3 , or 4 is faulty and a onarger is cocted, he 1 is fir \((1.5 \mathrm{~V})\) the protection circuit logic will not function and the battery pack cannot be charged.

NOTE: Cell balancing is not active when programmed for one cell operation.

Figure 7. Four Cell Smart Battery Pack


Figure 8. Three Cell Smart Battery Pack


Figure 9. Two Cell Smart Battery Pack


\section*{MC33345}

Figure 10. One Cell Smart Battery Pack


\section*{Product Preview}

\section*{Lithium Battery Protection Circuit for Three or Four Cell Battery Packs}

The MC33346 is a monolithic lithium battery protection circuit that is designed to enhance the useful operating life of three or four cell rechargeable battery packs. Cell protection features consist of independently programmable charge and discharge limits for both voltage and current with a delayed current shutdown, cell voltage balancing with on-chip balancing resistors, and virtually zero current sleepmode state when the cells are discharged. Additional features consists of a six wire microcontroller interface bus that can selectively provide a pulse output that represents the internal reference voltage, cell voltage, cell current and temperature, as well as control the states of four internal balancing and two external MOSFET switches. A microcontroller time reference output is available for gas gauge implementation. This protection circuit requires a minimum number of external components and is targeted for inclusion within the battery pack. The MC33346 is available in standard and low profile 24 lead surface mount packages.
- Independently Programmable Charge and Discharge Limits for Both Voltage and Current
- Delayed Current Shutdown
- Cell Voltage Balancing with On-Chip Resistors
- Six Wire Microcontroller Interface Bus
- Data Output for Reference, Voltage, Current, and Temperature
- Microcontroller Time Reference Output for
- Virtually Zero Current Sleepmode State when Cells are Discharged
- Programmable for Three or Four Cell Applications
- Minimum External Components for Inclusion within the Battery Pack
- Available in Low Profile Surface Mount Packages

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33346DW & \multirow{2}{*}{\(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-24L \\
\cline { 1 - 1 } MC33346DTB & & TSSOP-24 \\
\hline
\end{tabular}

\section*{Gas Gauging}

TSSOP-24

\section*{LITHIUM BATTERY PROTECTION CIRCUIT FOR THREE OR FOUR CELL SMART BATTERY PACKS}


DW SUFFIX
PLASTIC PACKAGE
CASE 751E
(SO-24L)


DTB SUFFIX
PLASTIC PACKAGE
CASE 948H
(TSSOP-24)


\section*{Product Preview}

\section*{Lithium Battery Protection Circuit for One or Two Cell Battery Packs}

The MC33347 is a monolithic lithium battery protection circuit that is designed to enhance the useful operating life of one or two cell rechargeable battery packs. Cell protection features consist of independently programmable charge and discharge limits for both voltage and current with a delayed current shutdown, continuous cell voltage balancing with the choice of on-chip or external balancing resistors, and a virtually zero current sleepmode state when the cells are discharged. Additional features include an on-chip charge pump for reduced MOSFET losses while charging or discharging a low cell voltage battery pack, and the programmability for one or two cell battery pack. This protection circuit requires a minimum number of external components and is targeted for inclusion within the battery pack. This MC33347 is avaialble in standard and low profile 16 lead surface mount packages.
- Independently Programmable Charge and Discharge Limits for Both Voltage and Current
- Charge and Discharge Current Limit Detection with Delayed Shutdown
- Continuous Cell Voltage Balancing
- On-Chip or External Balancing Resistors
- Virtually Zero Current Sleepmode State when Cells are Discharged
- Charge Pump for Reduced Losses with a Low Cell Voltage Battery Pack
- Programmable for One or Two Cell Applications
- Minimum External Components for Inclusion within the Battery Pack
- Available in Low Profile Surface Mount Packages




ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33347D & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-16 \\
\cline { 3 - 3 } MC33347DTB & TSSOP-16 \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Ratings & Symbol & Value & Unit \\
\hline \begin{tabular}{l}
Input Voltage (Measured with Respect to Ground, Pin 16) \\
Balance 1, 2 (Pin 1, 2) \\
Cell \(1 / V_{C}\) (Pin 3) \\
Cell \(2 / \mathrm{V}_{\mathrm{CC}} /\) Discharge Current Limit (Pin 4) \\
Cell Voltage Divider (Pins 5, 6, 7 and 8) \\
Current Sense Common (Pin 9) \\
Charge Current Limit (Pin 10) \\
Charge Gate Drive Common (Pin 11) \\
Charge Gate Drive Output (Pin 12) \\
Cell Program/Test (Pin 13) \\
Discharge Gate Drive Output (Pin 14) \\
Charge Pump Output (Pin 15)
\end{tabular} & \(\mathrm{V}_{\mathrm{IR}}\) & 15
7.5
18
18
30
30
\(\pm 20\)
18 to -20
7.5
18
18 & V \\
\hline External Cell Balancing Current (Pin 1, 2, Note 1) & Ibal & 1.0 & A \\
\hline Cell Voltage Divider Current Source Current (Pin 4 to 6) Sink Current (Pin 5 to 16) & Idiv & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Thermal Resistance, Junction-to-Air DTB Suffix, TSSOP-16 Plastic Package, Case 948F D Suffix, SO-16 Plastic Package, Case 751B & \(\mathrm{R}_{\text {OJA }}\) & \[
\begin{aligned}
& 176 \\
& 145
\end{aligned}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature (Notes 1, 2 and 3) & \(\mathrm{T}_{J}\) & -40 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}(\operatorname{Pin} 4)=8.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}(\operatorname{Pin} 3)=4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating junction temperature range that applies (Notes 2 and 3 ), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

VOLTAGE SENSING
\begin{tabular}{|c|c|c|c|c|c|}
\hline Charge or Discharge Voltage Inputs (Pin 7 or 8 to Pin 5) Threshold Voltage Input Bias Current & \[
\begin{aligned}
& V_{\text {th }} \\
& I_{\mathrm{IB}}
\end{aligned}
\] & - & \[
\begin{gathered}
1.230 \\
20
\end{gathered}
\] & - & \[
\begin{gathered}
V \\
n A
\end{gathered}
\] \\
\hline Input Hysteresis Source Current (Pin 8) & \(\mathrm{I}_{\mathrm{H}}\) & - & 2.0 & - & \(\mu \mathrm{A}\) \\
\hline Cell Charge or Discharge Programmable Input Voltage Range (Pin 7 or 8) & \(\mathrm{V}_{\mathrm{IR}}(\mathrm{pgm})\) & - & \(\mathrm{V}_{\text {th }}\) to 7.5 & - & V \\
\hline \begin{tabular}{l}
Cell Selector Series Resistance \\
Cell Positive to Top of Divider (Pin 3 or 4 to Pin 6) Cell Negative to Bottom of Divider (Pin 3 or 16 to Pin 5)
\end{tabular} & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{S}+} \\
& \mathrm{R}_{\mathrm{S}-} \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & - & \(\Omega\) \\
\hline Cell Voltage Sampling Rate & \({ }^{\text {t }}\) (smpl) & - & 1.0 & - & s \\
\hline Cell Program/ Test Input Threshold Voltage (Pin 13) & \(\mathrm{V}_{\text {th }}\) & - & \(\mathrm{V}_{\text {Cell 1 }} 12.0\) & - & V \\
\hline
\end{tabular}

CELL VOLTAGE BALANCING
\begin{tabular}{|l|c|c|c|c|c|}
\hline Cell Voltage Balancing Accuracy (Note 4) & \(\Delta V\) & - & 1.0 & - & \(\%\) \\
\hline Internal Balancing Resistance (Pin 3, 4) & \(\mathrm{R}_{\mathrm{bal}}\) & - & 80 & - & \(\Omega\) \\
\hline Balancing MOSFET On Resistance (Pin 1, 2) & \(\mathrm{R}_{\mathrm{DS}(\mathrm{on})}\) & - & 1.0 & - & \(\Omega\) \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain the junction temperature as close to ambient as possible.
3. Tested ambient temperature range for the MC33347:
\(\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}\)
4. Cell voltage balancing accuracy is defined as: \(\left|\frac{\Delta V}{v_{\text {avg }}}\right| \times 100=\left|\frac{v_{\text {Cell 1 }}-v_{\text {Cell 2 }}}{\left(\frac{v_{\text {Cell 1 }}+v_{\text {Cell 2 }}}{2}\right)}\right| \times 100\)

\section*{MC33347}

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\mathrm{CC}}(\operatorname{Pin} 4)=8.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}(\operatorname{Pin} 3)=4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating junction temperature range that applies (Notes 2 and 3 ), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{CURRENT SENSING} \\
\hline \begin{tabular}{l}
Charge Current Limit (Pin 10 to Pin 9) \\
Threshold Voltage Input Bias Current Delay
\end{tabular} & \begin{tabular}{l}
\(V_{\text {th }}\) (chg) \\
IIB(chg) \\
Idly(chg)
\end{tabular} & - & \[
\begin{array}{r}
18 \\
200 \\
3.0 \\
\hline
\end{array}
\] & - & mV nA ms \\
\hline \begin{tabular}{l}
Discharge Current Limit (Pin 4 to Pin 9) \\
Threshold Voltage Input Bias Current Delay
\end{tabular} & \(\mathrm{V}_{\text {th }}\) (dschg) IIB(dschg) Idly(dschg) & - & \(\begin{array}{r}50 \\ 200 \\ 3.0 \\ \hline\end{array}\) & - & mV nA ms \\
\hline
\end{tabular}

\section*{CHARGE PUMP}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage (Pin \(15, R_{L} \geq 10^{10} \Omega\) ) & \(V_{O}\) & - & 10.2 & - & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Average Cell Current & ICC & & & & \\
\begin{tabular}{l} 
Operating (VCC \(=8.0 \mathrm{~V}\) ) \\
Sleepmode (VCC \(=5.0 \mathrm{~V}\) )
\end{tabular} & & - & 12.5 & - & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l} 
Minimum Operating Cell Voltage for Logic and Gate Drivers \\
Programmed for Two Cell Operation \\
Cell 1 Voltage \\
Cell 2 Voltage \\
Programmed for One Cell Operation \\
Cell 1 Voltage
\end{tabular} & \(\mathrm{V} C \mathrm{C}\) & & & & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain the junction temperature as close to ambient as possible.
3. Tested ambient temperature range for the MC33347:
4. Cell voltage balancing accuracy is defined as: \(\left|\frac{\Delta V}{V_{\text {avg }}}\right| \times 100=\left|\frac{V_{\text {Cell 1 }}-V_{\text {Cell 2 }}}{\left(\frac{V_{\text {Cell 1 }}+V_{\text {Cell 2 }}}{2}\right)}\right| \times 100\)

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Symbol & Description \\
\hline 1 & Balance 1 & This is the drain connection to an internal MOSFET. An external resistor is placed from this pin to the positive terminal of Cell 1 for increased cell balancing capability. This allows most of the additional power to be dissipated off-chip. \\
\hline 2 & Balance 2 & This is the drain connection to an internal MOSFET. An external resistor is placed from this pin to the positive terminal of Cell 2 for increased cell balancing capability. This allows most of the additional power to be dissipated off-chip. \\
\hline 3 & Cell 1/ \({ }_{\text {C }}\) & This is a multifunction pin that connects to a high impedance node of the Cell Selector where it is used to monitor the positive terminal of Cell 1 and the negative terminal of Cell 2. This pin also provides logic biasing and a discharge path for the internal balancing of Cell 1. \\
\hline 4 & \begin{tabular}{l}
Cell \(2 / \mathrm{N}_{\mathrm{CC}} /\) \\
Discharge Current Limit
\end{tabular} & This is a multifunction pin that connects to a high impedance node of the Cell Selector where it is used to monitor the positive terminal of Cell 2 and to provide positive supply voltage for the protection IC. This pin is also used to monitor the voltage drop across the discharge current limit resistor and it provides a discharge path for the internal balancing of Cell 2. \\
\hline 5 & Cell Voltage Return & The bottom side of a three resistor divider string connects to this pin. The Cell Selector internally switches this point to the negative terminal of the cell that is to be monitored. \\
\hline 6 & Cell Voltage & The top side of a three resistor divider string connects to this pin. The Cell Selector internally switches this point to the positive terminal of the cell that is to be monitored. \\
\hline 7 & Discharge Voltage Threshold & The upper tap of a three resistor divider string connects to this pin. The Cell Voltage Detector compares the divided down cell voltage to an internal reference. If the comparator detects that the cell voltage has fallen below the programmed level for three consecutive samples, discharge switch Q2 is disabled, and the protection circuit enters into a low current sleepmode state. This prevents further discharging of the battery pack. \\
\hline 8 & Charge Voltage Threshold & The lower tap of a three resistor divider string connects to this pin. The Cell Voltage Detector compares the divided down cell voltage to an internal reference. If the comparator detects that the cell voltage has risen above the programmed level, charge switch Q1 is disabled, preventing further charging of the battery pack. A \(2.0 \mu \mathrm{~A}\) current source pull-up is internally applied to this pin creating input hysteresis. \\
\hline 9 & Current Sense Common & This pin is a common point that is used to monitor the voltage drop across the charge and discharge current limit resistors. \\
\hline 10 & Charge Current Limit & This pin is used to monitor the voltage drop across the charge current limit resistor. \\
\hline 11 & Charge Gate Drive Common & This pin provides a gate turn-off path for charge switch Q1. The charge switch source and the battery pack negative terminal connect to this point. \\
\hline 12 & Charge Gate Drive Output & This output connects to the gate of charge switch Q1 allowing it to enable or disable battery pack charging. \\
\hline 13 & Cell Program/Test & This is a multifunction input that is used to program the number of cells and to facilitate circuit testing. This input is connected to Pin 3 for two cell operation, and to Pin 16 for one cell operation. \\
\hline 14 & Discharge Gate Drive Output & This output connects to the gate of discharge switch Q2 allowing it to enable or disable battery pack discharging. \\
\hline 15 & Charge Pump Output & This is the charge pump output. A reservoir capacitor is connected from this pin to ground. \\
\hline 16 & Ground & This is the protection IC ground and all voltage ratings are with respect to this pin. \\
\hline
\end{tabular}

\section*{INTRODUCTION}

The insatiable demand for smaller lightweight portable electronic equipment has dramatically increased the requirements of battery performance. Batteries are expected to have higher energy densities, superior cycle life, be safe in operation and environmentally friendly. To address these high expectations, battery manufacturers have invested heavily in developing rechargeable lithium-based cells. Today's most attractive chemistries include lithium-polymer, lithium-ion, and lithium-metal. Each of these chemistries require electronic protection in order to constrain cell operation to within the manufacturers limits.

Rechargeable lithium-based cells require precise charge and discharge termination limits for both voltage and current in order to maximize cell capacity, cycle life, and to protect the end user from a catastrophic event. The termination limits are not as well defined as with older non-lithium chemistries. These limits are dependent upon a manufacturer's particular lithium chemistry, construction technique, and intended application. Battery pack assemblers may also choose to enhance cell capacity at the expense of cycle life. In order to address these requirements the MC33347 was developed. This device features programmable voltage and current limits, cell voltage balancing, low operating current, a virtually zero current sleepmode state, and requires few external components to implement a complete one or two cell smart battery pack.

\section*{OPERATING DESCRIPTION}

The MC33347 is specifically designed to be placed in the battery pack where it is continuously powered from either one or two lithium cells. In order to maintain cell operation within specified limits, the protection circuit senses both cell voltage and current, and correspondingly controls the state of two N-channel MOSFET switches. These switches, Q1 and Q2, are placed in series with the negative terminal of Cell 1 and the negative terminal of the battery pack. This configuration allows the protection circuit to interrupt the appropriate charge or discharge path FET in the event that a programmed voltage or current limit for either cell has been exceeded.

Figure 1. Simplified Two Cell Smart Battery Pack


A functional description of the protection circuit blocks follows. Refer to the detailed block diagram shown in Figures 7 and 8.

\section*{Voltage Sensing}

Individual cell voltage sensing is accomplished by the use of the Cell Selector in conjunction with the Floating Over/Under Voltage Detector and Reference block. The Cell Selector applies the voltage of each cell across an external resistor divider string that connects from Pins 6 to 5 . The voltage at each of the tap points is sequentially polled and compared to an internal reference. If a limit has been exceeded, the result is stored in the Over/Under Data Latch and Control Logic block. The Cell Selector is gated on for a 1.0 ms period at a one second repetition rate. This low duty cycle sampling technique reduces the average load current that the divider presents across each cell, thus extending the useful battery pack capacity. The cells are sensed in the following sequence:

Figure 2. Cell Sensing Sequence
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Polling \\
Sequence
\end{tabular} & \begin{tabular}{c} 
Time \\
(ms)
\end{tabular} & \begin{tabular}{c} 
Cell \\
Sensed
\end{tabular} & \begin{tabular}{c} 
Tested \\
Limit
\end{tabular} \\
\hline 1 & 0.25 & Cell 2 & Overvoltage \\
\hline 2 & 0.25 & Cell 1 & Overvoltage \\
\hline 3 & 0.25 & Cell 2 & Undervoltage \\
\hline 4 & 0.25 & Cell 1 & Undervoltage \\
\hline
\end{tabular}

By incorporating this polling technique with a single floating comparator and voltage divider, a significant reduction of circuitry and trim elements is achieved. This results in a smaller die size, lower cost, and reduced operating current.

Figure 3. Cell Voltage Limit Programming


The cell charge and discharge voltage limits are controlled by the values selected for the resistor divider string and the 1.23 V input threshold of Pins 7 and 8 . As the battery pack reaches full charge, the Cell Voltage Detector will sense an overvoltage fault condition on the first cell that exceeds the programmed overvoltage limit. The fault information is stored in a data latch and charge MOSFET Q1 is turned off, disconnecting the battery pack from the charging source. An internal \(2.0 \mu \mathrm{~A}\) current source pull-up is then applied to Pin 8 creating an input hysteresis voltage. As a result of an overvoltage fault, the battery pack is available for discharging only.

The overvoltage fault is reset by applying a load to the battery pack. As the voltage across each cell falls below the input hysteresis level, charge MOSFET Q1 will turn on. The battery pack will now be available for charging or discharging. The over voltage limit and hysteresis voltage are given by:
\[
\begin{gathered}
v_{O V}=V_{\text {th }(\operatorname{Pin} 8)}\left(\frac{R 1+R 2+R 3}{R 3}\right) \\
V_{H}=I_{H(\operatorname{Pin} 8)}(R 1+R 2)
\end{gathered}
\]

As the load eventually depletes the battery pack charge, the Cell Voltage Detector will sense an undervoltage fault condition on the first cell that falls below the programmed undervoltage limit. After three consecutive faults are detected, discharge MOSFET Q2 is turned off, disconnecting the battery pack from the load. The protection circuit will now enter a low current sleepmode state drawing just 15 nA , thus preventing any further cell discharging. As a result of the undervoltage fault, the battery pack is available for charging only. The undervoltage limit is given by:
\[
V_{U V}=V_{\operatorname{th}(\operatorname{Pin} 7)}\left(\frac{R 1+R 2+R 3}{R 2+R 3}\right)
\]

The undervoltage logic is designed to automatically reset if less than three consecutive faults appear. This helps to prevent a premature disconnection of the load during high current pulses when the battery pack charge is close to being depleted.

The undervoltage fault is reset by applying charge current to the battery pack. When the voltage on Pin 16 exceeds Pin 11 by 0.6 V , discharge MOSFET Q2 will turned on. The battery pack will now be available for charging or discharging.

Since the thresholds of Pin 7 and 8 are equal, the above equations can be rewritten to directly solve for specific resistor values as shown in the example below.
Let the desired limits be:
\(\mathrm{V}_{\mathrm{OV}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=0.4 \mathrm{~V}\), and \(\mathrm{VUV}=2.5 \mathrm{~V}\)
With nominal values for:
\(\mathrm{V}_{\text {th }}=1.23 \mathrm{~V}\), and \(\mathrm{I}_{\mathrm{H}}=2.0 \mu \mathrm{~A}\)
R3 \(=\frac{\left(\frac{V_{H}}{I_{H}}\right)}{\left(\frac{V_{\mathrm{OV}}}{V_{\text {th }}}-1\right)}=\frac{\left(\frac{0.4}{2.0 \times 10^{-6}}\right)}{\left(\frac{4.2}{1.23}-1\right)}=82,828 \Omega\)
\(R 2=R 3\left(\frac{V_{O V}}{V_{U V}}-1\right)=82,828\left(\frac{4.2}{2.5}-1\right)=56,323 \Omega\)
\(R 1=\left(\frac{V_{H}}{I_{H}}\right)-R 2=\left(\frac{0.4}{2.0 \times 10^{-6}}\right)-56,323=143,677 \Omega\)
Note that the Cell Selector has a maximum total series resistance of \(200 \Omega\). This will have a minimal effect on the programmed limits if the total divider resistance is in excess of \(100 \mathrm{k} \Omega\).

\section*{Cell Voltage Balancing}

With series connected cells, successive charge and discharge cycles can result in a significant difference in cell voltage with a corresponding degradation of battery pack capacity. Figure 4 illustrates the operation of an unbalanced
pack. As the cells become unbalanced, the full battery pack capacity is not realized. This is due to the requirement that charging must terminate when Cell 2 reaches the overvoltage limit, and discharging must terminate when Cell 1 reaches the undervoltage limit. By employing a method of keeping the cell voltages equal, both cells can be charged and discharged to their specified limits, thus attaining the maximum possible capacity.

Figure 4. Unbalanced Battery Pack Operation


The MC33347 contains a Cell Voltage Balancing Amplifier that controls four N-channel MOSFETs. The amplifier samples the cell voltages during the polling period. If the detected cell voltage difference exceeds \(1.0 \%\), the MOSFET that connects across the higher voltage cell is turned on. The excess charge will eventually be bled off through the internal \(80 \Omega\) resistor with a typical balancing current that ranges from 40 mA to 80 mA . If higher balancing currents are desired, Pins 1 and 2 provide a means for paralleling a lower value external resistor for in excess of 500 mA . The use of an external resistor allows a reduction of on-chip power dissipation. Cell voltage balancing is active during charge and discharge, but disabled during the low current sleepmode state.

\section*{Cell Programming and Test}

The protection circuit can be programmed for operation with either one or two cell battery packs. The Cell Programming/Test input, Pin 13, is used to control the Cell Selector and to enable or disable the Cell Voltage Balancing Amplifier. For one cell operation, Pin 13 is connected to Pin 16, and Pin 4 is connected to Pin 3 and the positive terminal of Cell 1, refer to Figure 8. For two cell operation, Pin 13, is connected to Pin 3 and the positive terminal of Cell 1, and Pin 4 is connected to the positive terminal of Cell 2, refer to Figure 7.

A test option is provided to speed up device and battery pack testing. By biasing Pin 13 above Pin 3 by 2.0 V , the internal logic is held in a reset state and both MOSFET switches are turned on. Upon release, the logic becomes active and the cells are polled within 2.0 ms .

\section*{Current Sensing}

Charge and discharge current limit protection can be selectively added to the battery pack with the addition of a sense resistor. The resistors are placed in series with the positive terminal of the battery pack and the cells. Refer to Figure 1.

As the battery pack charges, Pins 9 and 10 sense the voltage drop across R Lim(chg). A charge current limit fault is
detected if the voltage at Pin 10 exceeds Pin 9 by 18 mV . The fault information is stored in a data latch and charge MOSFET Q1 is turned off, disconnecting the battery pack from the charging source. As a result of the charge current fault, the battery pack is available for discharging only. The charge current limit is given by:
\[
\mathrm{I}_{\operatorname{Lim}(\mathrm{chg})}=\frac{\mathrm{V}_{\mathrm{th}(\mathrm{chg})}}{\mathrm{R}_{\mathrm{Lim}(\mathrm{chg})}}=\frac{18 \mathrm{mV}}{R_{\mathrm{Lim}(\mathrm{chg})}}
\]

The charge current fault is reset by either disconnecting the battery pack from the charger, or by connecting a load to the battery pack. When the voltage on Pin 16 no longer exceeds Pin 11 by approximately 2.0 V , the Sense Enable circuit will turn on charge MOSFET Q1. Charge current sensing can be disabled by connecting Pin 10 to Pin 9.

The discharge current limiting operates in a similar manner. As the battery pack discharges, Pins 4 and 9 sense the voltage drop across \(\mathrm{R}_{\text {Lim }}\) (dschg). A discharge current limit fault is detected if the voltage at Pin 4 is less than Pin 9 by 50 mV . The fault information is stored in a data latch and discharge MOSFET Q2 is turned off, disconnecting the battery pack from the load. As a result of the discharge current fault, the battery pack is available for charging only. The discharge current limit is given by:
\[
I_{\operatorname{Lim}(d s c h g)}=\frac{V_{\text {th(dschg })}}{R_{\operatorname{Lim}(d s c h g)}}=\frac{50 \mathrm{mV}}{R_{\mathrm{Lim}(\mathrm{dschg})}}
\]

The discharge current fault is reset by either disconnecting the load from the battery pack, or by connecting the battery pack to the charger. When the voltage on Pin 11 no longer
exceeds Pin 16 by approximately 2.0 V , the Sense Enable circuit will turn on discharge MOSFET Q2. Discharge current sensing can be disabled by connecting Pin 4 to Pin 9.

The charge and discharge current protection circuits contain a built in response delay of 3.0 ms . This helps to prevent fault activation when the battery pack is subjected to pulsed currents during charging or discharging. An additional current sense delay can selectively be added as shown in Figure 5.

\section*{Charge Pump and MOSFET Switches}

The MC33347 contains an on chip Charge Pump to ensure that the MOSFET switches are fully enhanced for reduced power losses. An external reservoir capacitor normally connects from the Charge Pump output to ground, Pins 15 and 16. The capacitor value is not critical and is usually within the range of 10 nF to 100 nF . The Charge Pump output is regulated at 10.2 V allowing the use of economical logic level MOSFETs in one and two cell applications. The main requirement in selecting a particular type of MOSFET switch is to consider the desired on-resistance at the lowest anticipated operating voltage of the battery pack. A table of small outline surface mount devices is given in Figure 6. When using extremely low threshold MOSFETs, it may be desirable to disable the Charge Pump so that the maximum gate to source voltage is not exceeded. This is accomplished by connecting Pin 15 to Pin 4. Application Figures 7 and 8 show a capacitor labeled CESD. This capacitor provides a path around the MOSFET switches in the event of an electrostatic discharge.

Figure 5. Additional Current Limit Delay


Figure 6. Small Outline Surface Mount MOSFET Switches
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Device \\
Type
\end{tabular}} & \multicolumn{6}{|c|}{ On-Resistance ( \(\Omega\) ) versus Gate to Source Voltage (V) } \\
\cline { 2 - 8 } & 2.5 V & \(\mathbf{3 . 0} \mathrm{~V}\) & \(\mathbf{4 . 0 \mathrm { V }}\) & 5.0 V & 6.0 V & \(\mathbf{7 . 5} \mathrm{~V}\) & \(\mathbf{9 . 0 ~ V}\) \\
\hline MMFT3055VL & - & - & - & \(0.120 \Omega\) & \(0.115 \Omega\) & \(0.108 \Omega\) & \(0.100 \Omega\) \\
\hline MMDF3N03HD & - & \(0.525 \Omega\) & \(0.080 \Omega\) & \(0.065 \Omega\) & \(0.063 \Omega\) & \(0.062 \Omega\) & \(0.060 \Omega\) \\
\hline MMDF4N01HD & \(0.047 \Omega\) & \(0.042 \Omega\) & \(0.037 \Omega\) & \(0.035 \Omega\) & \(0.034 \Omega\) & \(0.033 \Omega\) & See Note \\
\hline MMSF5N02HD & - & \(0.065 \Omega\) & \(0.023 \Omega\) & \(0.021 \Omega\) & \(0.020 \Omega\) & \(0.018 \Omega\) & \(0.018 \Omega\) \\
\hline MMDF6N02HD & \(0.043 \Omega\) & \(0.035 \Omega\) & \(0.029 \Omega\) & \(0.028 \Omega\) & \(0.026 \Omega\) & \(0.025 \Omega\) & \(0.023 \Omega\) \\
\hline
\end{tabular}

NOTE: Exceeds maximum \(V_{G S}\) voltage rating.

PROTECTION CIRCUIT OPERATING MODE TABLE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Input Conditions Cell Status} & \multirow[b]{3}{*}{Circuit Operation Battery Pack Status} & \multicolumn{4}{|c|}{Outputs} \\
\hline & & \multicolumn{2}{|l|}{MOSFET Switches} & \multicolumn{2}{|r|}{Function} \\
\hline & & Charge Q1 & Discharge Q2 & Charge Pump & Cell Balancing (See Note) \\
\hline
\end{tabular}

\section*{CELL CHARGING/DISCHARGING}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{c} 
Storage or Nominal Operation: \\
No current or voltage faults
\end{tabular} & \begin{tabular}{l} 
Both Charge MOSFET Q1 and Discharge MOSFET \\
Q2 are on. The battery pack is available for \\
charging or discharging.
\end{tabular} & On & On & Active & Active \\
\hline
\end{tabular}

\section*{CELL CHARGING FAULT/RESET}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Charge Current Limit Fault: \(V_{\text {Pin } 10} \geq\left(V_{\text {Pin } 9}+18 \mathrm{mV}\right)\) for 3.0 ms & Charge MOSFET Q1 is latched off and the cells are disconnected from the charging source. Q1 will remain in the off state as long as \(V_{\text {Pin }} 16\) exceeds \(V_{\text {Pin }} 11\) by \(\approx 2.0 \mathrm{~V}\). The battery pack is available for discharging. & On to Off & On & Active & Active \\
\hline Charge Current Limit Reset: \(V_{\text {Pin } 16}-V_{\text {Pin } 11}<2.0 \mathrm{~V}\) & The Sense Enable circuit will reset and turn on charge MOSFET Q1 when \(V_{\text {Pin }} 16\) no longer exceeds \(\mathrm{V}_{\text {Pin } 11}\) by \(\approx 2.0 \mathrm{~V}\). This can be accomplished by either disconnecting the charger from the battery pack, or by connecting a load to the battery pack. & Off to On & On & Active & Active \\
\hline Charge Voltage Limit Fault: \(V_{\text {Pin } 8} \geq 1.23 \mathrm{~V}\) for 1.0 s & Charge MOSFET Q1 is latched off and the cells are disconnected from the charging source. An internal current source pull-up of \(2.0 \mu \mathrm{~A}\) is applied to Pin 8 creating an input hysteresis voltage of \(\mathrm{V}_{\mathrm{H}}\) with divider resistors R1 and R2. The battery pack is available for discharging. & On to Off & On & Active & Active \\
\hline Charge Voltage Limit Reset: \(V_{\text {Pin }} 8<1.23 \mathrm{~V}\) for 1.0 s & Charge MOSFET Q1 will turn on when the voltage across each cell falls sufficiently to overcome the input hysteresis voltage. This can be accomplished by applying a load to the battery pack. & Off to On & On & Active & Active \\
\hline
\end{tabular}

CELL DISCHARGING FAULT/RESET
\begin{tabular}{|c|c|c|c|c|c|}
\hline Discharge Current Limit Fault: \(V_{\text {Pin } 4} \leq\left(V_{\text {Pin } 9}-50 \mathrm{mV}\right)\) for 3.0 ms & Discharge MOSFET Q2 is latched off and the cells are disconnected from the load. Q2 will remain in the off state as long as \(V_{\text {Pin }} 11\) exceeds \(V_{\text {Pin }} 16\) by \(\approx\) 2.0 V . The battery pack is available for charging. & On & On to Off & Active & Active \\
\hline Discharge Current Limit Reset: \(V_{\text {Pin } 11}-V_{\text {Pin } 16}<2.0 \mathrm{~V}\) & The Sense Enable circuit will reset and turn on discharge MOSFET Q2 when \(V_{\text {Pin }} 11\) no longer exceeds \(V_{\text {Pin }} 16\) by \(\approx 2.0 \mathrm{~V}\). This can be accomplished by either disconnecting the load from the battery pack, or by connecting the battery pack to the charger. & On & Off to On & Active & Active \\
\hline Discharge Voltage Limit Fault: \(V_{\text {Pin }} 7 \leq 1.23 \mathrm{~V}\) for three consecutive 1.0 s samples & Discharge MOSFET Q2 is latched off, the cells are disconnected from the load, and the protection circuit enters a low current sleepmode state. The battery pack is available for charging. & On & On to Off & Disabled & Disabled \\
\hline Discharge Voltage Limit Reset: \(V_{\text {Pin } 16}>\left(V_{\text {Pin } 11}+0.6 \mathrm{~V}\right)\) & The Sense Enable circuit will reset and turn on discharge MOSFET Q2 when VPin 16 exceeds \(V_{\text {Pin } 11}\) by 0.6 V . This can be accomplished by connecting the battery pack to the charger. & On & Off to On & Active & Active \\
\hline
\end{tabular}

\section*{FAULTY CELL}

Simultaneous Charge and Discharge Voltage Limit Faults:
\(V_{\text {Pin } 8} \geq 1.23 \mathrm{~V}\) for 1.0 s and
\(V_{\text {Pin }} 7 \leq 1.23 \mathrm{~V}\) for three consecutive 1.0 s samples

This condition can happen if there is a defective cell in the battery pack. The protection circuit will remain in the sleepmode state until the battery pack is connected to a charger. If Cell 2 is faulty and a charger is connected, the protection circuit will cycle in and out of sleepmode. If Cell 1 is faulty ( \(<1.5 \mathrm{~V}\) ), the protection circuit logic will not function and the battery pack cannot be charged.
\begin{tabular}{|c|c|c|c|} 
Cycles & Cycles & Cycles & Cycles \\
Cell 1 \\
Good & Cell 1 \\
Good & Cell 1 \\
Good & Cell 1 \\
Good \\
Disabled & Disabled & Disabled & \begin{tabular}{c} 
Disabled \\
Cell 1 \\
Faulty
\end{tabular} \\
& Cell 1 \\
Faulty & \begin{tabular}{c} 
Cell 1 \\
Faulty
\end{tabular} & \begin{tabular}{c} 
Cell 1 \\
Faulty
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
NOTE: Cell balancing is not active when programmed for one cell operation.
}

Figure 7. Two Cell Smart Battery Pack


Figure 8. One Cell Smart Battery Pack


\section*{Product Preview Lithium Battery Protection Circuit for One Cell Battery Packs}

The MC33348 is a monolithic lithium battery protection circuit that is designed to enhance the useful operating life of one cell rechargeable battery pack. Cell protection features consist of internally trimmed charge and discharge voltage limits, discharge current limit detection with a delayed shutdown, and a virtually zero current sleepmode state when the cell is discharged. An additional feature includes an on-chip charge pump for reduced MOSFET losses while charging or discharging a low cell voltage battery pack. This protection circuit requires a minimum number of external components and is targeted for inclusion within the battery pack. This MC33348 is available in standard and micro 8 lead surface mount packages.
- Internally Trimmed Charge and Discharge Voltage Limits
- Discharge Current Limit Detection with Delayed Shutdown
- Virtually Zero Current Sleepmode State when Cells are Discharged
- Charge Pump for Reduced Losses with a Low Cell Voltage Battery Pack
- Dedicated for One Cell Applications
- Minimum Components for Inclusion within the Battery Pack
- Available in Low Profile Surface Mount Packages

Ordering Information shown on following page.


\section*{LITHIUM BATTERY PROTECTION CIRCUIT FOR ONE CELL SMART BATTERY PACKS}

SEMICONDUCTOR TECHNICAL DATA


\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Device & Charge Overvoltage Threshold (V) & Charge Overvoltage Hysteresis (mV) & Discharge Undervoltage Threshold (V) & Discharge Current Limit Threshold (mV) & Operating Temperature Range & Package \\
\hline MC33348D-1 & \multirow[t]{2}{*}{4.20} & \multirow[t]{12}{*}{300} & \multirow[t]{2}{*}{2.25} & 400 & \multirow[t]{12}{*}{\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & \multirow[t]{6}{*}{SO-8} \\
\hline MC33348D-2 & & & & 200 & & \\
\hline MC33348D-3 & \multirow[t]{2}{*}{4.25} & & \multirow[t]{2}{*}{2.28} & 400 & & \\
\hline MC33348D-4 & & & & 200 & & \\
\hline MC33348D-5 & \multirow[t]{2}{*}{4.35} & & \multirow[t]{2}{*}{2.30} & 400 & & \\
\hline MC33348D-6 & & & & 200 & & \\
\hline MC33348DM-1 & \multirow[t]{2}{*}{4.20} & & \multirow[t]{2}{*}{2.25} & 400 & & \multirow[t]{6}{*}{Micro-8} \\
\hline MC33348DM-2 & & & & 200 & & \\
\hline MC33348DM-3 & \multirow[t]{2}{*}{4.25} & & \multirow[t]{2}{*}{2.28} & 400 & & \\
\hline MC33348DM-4 & & & & 200 & & \\
\hline MC33348DM-5 & \multirow[t]{2}{*}{4.35} & & \multirow[t]{2}{*}{2.30} & 400 & & \\
\hline MC33348DM-6 & & & & 200 & & \\
\hline
\end{tabular}

NOTE: Additional threshold limit options can be made available. Consult your local Motorola sales office for information.

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Ratings & Symbol & Value & Unit \\
\hline \begin{tabular}{l}
Input Voltage (Measured with Respect to Ground, Pin 3) \\
Cell Voltage (Pin 1) \\
Test (Pin 2) \\
Discharge Gate Drive Output (Pin 4) \\
Charge Gate Drive Common/Discharge Current Limit (Pin 5) \\
Charge Gate Drive Output (Pin 6) \\
\(V_{C C}\) (Pin 7) \\
Charge Pump Output (Pin 8)
\end{tabular} & \(V_{\text {IR }}\) & \[
\begin{gathered}
7.5 \\
7.5 \\
18 \\
\pm 20 \\
18 \text { to }-20 \\
7.5 \\
18
\end{gathered}
\] & V \\
\hline Thermal Resistance, Junction-to-Air DM Suffix, Micro-8 Plastic Package, Case 846A D Suffix, SO-8 Plastic Package, Case 751 & \(\mathrm{R}_{\theta \mathrm{JA}}\) & \[
\begin{aligned}
& 240 \\
& 178
\end{aligned}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature (Note 1) & TJ & -40 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Tested ambient temperature range for the MC33348:
\(T_{\text {low }}=-25^{\circ} \mathrm{C}\)
\(T_{\text {high }}=+85^{\circ} \mathrm{C}\)
2. ESD data available upon request.

\section*{MC33348}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C}=4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating junction temperature range that applies (Note 1), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

\section*{VOLTAGE SENSING}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
Cell Charging Cutoff (Pin 1 to Pin 3)
    Overvoltage Threshold, \(\mathrm{V}_{\text {Cell }}\) Increasing
        -1 Suffix
        -2 Suffix
        -3 Suffix
        -4 Suffix
        -5 Suffix
        -6 Suffix
    Overvoltage Hysteresis \(\mathrm{V}_{\text {Cell }}\) Decreasing
        -1 Suffix
        -2 Suffix
        -3 Suffix
        -4 Suffix
        -5 Suffix
        -6 Suffix
``` & \(\mathrm{V}_{\mathrm{th}(\mathrm{OV})}\) & -
-
-
-
-
-
-
-
-
-
-
- & \[
\begin{aligned}
& 4.20 \\
& 4.20 \\
& 4.25 \\
& 4.25 \\
& 4.35 \\
& 4.35 \\
& 300 \\
& 300 \\
& 300 \\
& 300 \\
& 300 \\
& 300
\end{aligned}
\] & -
-
-
-
-
-
-
-
-
-
-
- & \begin{tabular}{l}
V \\
mV
\end{tabular} \\
\hline ```
Cell Discharging Cutoff (Pin 1 to Pin 3, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
 Undervoltage Threshold, \(\mathrm{V}_{\text {Cell }}\) Decreasing
 -1 Suffix
 -2 Suffix
 -3 Suffix
 -4 Suffix
 -5 Suffix
 -6 Suffix
``` & \(V_{\text {th( }}(\mathrm{UV})\) & - & \[
\begin{aligned}
& 2.25 \\
& 2.25 \\
& 2.28 \\
& 2.28 \\
& 2.30 \\
& 2.30
\end{aligned}
\] & - & V \\
\hline Input Bias Current During Cell Voltage Sample (Pin 1) & IIIB & - & 28 & - & \(\mu \mathrm{A}\) \\
\hline Cell Voltage Sampling Rate & \({ }^{\text {t }}\) (smpl) & - & 1.0 & - & s \\
\hline
\end{tabular}

\section*{CURRENT SENSING}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Discharge Current Limit (Pin 5 to Pin 3) & & & & & \\
Threshold Voltage & \(V_{\text {th(dschg) }}\) & & & \\
-1 Suffix & & - & 400 & - & mV \\
-2 Suffix & & - & 200 & - & \\
-3 Suffix & & - & 400 & - & \\
-4 Suffix & & - & 200 & - & \\
-5 Suffix & & - & 400 & - & \\
-6 Suffix & & - & 200 & - & \\
Delay & & & \\
dlly(dschg) & - & 3.0 & - & ms \\
\hline
\end{tabular}

CHARGE PUMP
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage (Pin \(8, \mathrm{R}_{\mathrm{L}} \geq 10^{10} \Omega\) ) & \(\mathrm{V}_{\mathrm{O}}\) & - & 10.2 & - & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Average Cell Current & ICC & & 20 & - & \(\mu \mathrm{A}\) \\
Operating \(\left(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}\right)\) & & - & 20 \\
Sleepmode \(\left(\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}\right)\) & & - & 1.4 & - & \(n \mathrm{~A}\) \\
\hline Minimum Operating Cell Voltage for Logic and Gate Drivers & \(\mathrm{V}_{\mathrm{CC}}\) & - & 1.5 & - & V \\
\hline
\end{tabular}

NOTE: 1. Tested ambient temperature range for the MC33348:
\[
T_{\text {low }}=-25^{\circ} \mathrm{C} \quad T_{\text {high }}=+85^{\circ} \mathrm{C}
\]

Figure 1. Charge and Discharge


Figure 3. Gate Drive Output Voltage versus Load Current


Figure 5. Charge Pump Output Voltage versus Temperature


Figure 2. Discharge Current Limit Threshold Voltage Change versus Temperature


Figure 4. Gate Drive Output Voltage versus Supply Voltage


Figure 6. Supply Current versus Supply Voltage


\section*{MC33348}

PROTECTION CIRCUIT OPERATING MODE TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{ Outputs } \\
\cline { 3 - 5 } \begin{tabular}{c} 
Input Conditions \\
Cell Status
\end{tabular} & \begin{tabular}{c} 
Circuit Operation \\
Battery Pack Status
\end{tabular} & \begin{tabular}{c} 
MOSFET Switches
\end{tabular} & Function \\
\cline { 3 - 5 } & & \begin{tabular}{c} 
Charge \\
Q1
\end{tabular} & \begin{tabular}{c} 
Discharge \\
Q2
\end{tabular} & \begin{tabular}{c} 
Charge \\
Pump
\end{tabular} \\
\hline
\end{tabular}

\section*{CELL CHARGING/DISCHARGING}
\begin{tabular}{|c|l|l|l|l|}
\hline \begin{tabular}{c} 
Storage or Nominal Operation: \\
No current or voltage faults
\end{tabular} & \begin{tabular}{l} 
Both Charge MOSFET Q1 and Discharge MOSFET Q2 are on. \\
The battery pack is available for charging or discharging.
\end{tabular} & On & On & Active \\
\hline
\end{tabular}

\section*{CELL CHARGING FAULT/RESET}
\begin{tabular}{|c|c|c|c|c|}
\hline Charge Voltage Limit Fault: \(\mathrm{V}_{\text {Pin } 1} \geq \mathrm{V}_{\mathrm{th}(\mathrm{OV})}\) for 1.0 s & Charge MOSFET Q1 is latched off and the cell is disconnected from the charging source. An internal current source pull-up is applied to divider resistors R1 and R2 creating a hysteresis voltage of \(\mathrm{V}_{\mathrm{H}}\). The battery pack is available for discharging. Discharge current limit protection is disabled. & On to Off & On & Active \\
\hline \begin{tabular}{l}
Charge Voltage Limit Reset: \\
\(\mathrm{V}_{\text {Pin } 1}<\left(\mathrm{V}_{\mathrm{th}}(\mathrm{OV})-\mathrm{V}_{\mathrm{H}}\right)\) \\
for 1.0 s
\end{tabular} & Charge MOSFET Q1 will turn on when the voltage across the cell falls sufficiently to overcome hysteresis voltage \(\mathrm{V}_{\mathrm{H}}\). This can be accomplished by applying a load to the battery pack. Discharge current limit protection is enabled. & Off to On & On & Active \\
\hline
\end{tabular}

\section*{CELL DISCHARGING FAULT/RESET}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Discharge Current Limit Fault: \\
\(V_{\text {Pin } 5} \geq\left(V_{\text {Pin } 1}+400 \mathrm{mV}\right)\) \\
for 3.0 ms and \\
\(V_{\text {Pin } 1}<\left(\mathrm{V}_{\text {th }}(\mathrm{OV})-\mathrm{V}_{\mathrm{H}}\right)\) \\
for 1.0 ms
\end{tabular} & Discharge MOSFET Q2 is latched off and the cell is disconnected from the load. Q2 will remain in the off state as long as \(V_{\text {Pin } 5}\) exceeds \(V_{\text {Pin }} 3\) by \(\approx 2.0 \mathrm{~V}\). The battery pack is available for charging. & On & On to Off & Active \\
\hline Discharge Current Limit Reset:
\[
\mathrm{V}_{\text {Pin } 5}-\mathrm{V}_{\text {Pin } 3}<2.0 \mathrm{~V}
\] & The Sense Enable circuit will reset and turn on discharge MOSFET Q2 when \(\mathrm{V}_{\text {Pin }} 3\) no longer exceeds \(\mathrm{V}_{\text {Pin }} 5\) by \(\approx 2.0 \mathrm{~V}\). This can be accomplished by either disconnecting the load from the battery pack, or by connecting the battery pack to the charger. & On & Off to On & Active \\
\hline Discharge Voltage Limit Fault: \(\mathrm{V}_{\text {Pin } 1} \leq \mathrm{V}_{\text {th }}\) (UV) for three consecutive 1.0 s samples & Discharge MOSFET Q2 is latched off, the cells are disconnected from the load, and the protection circuit enters a low current sleepmode state. The battery pack is available for charging. & On & On to Off & Disabled \\
\hline Discharge Voltage Limit Reset:
\[
V_{\text {Pin } 3}>\left(V_{\text {Pin } 5}+0.6 \mathrm{~V}\right)
\] & The Sense Enable circuit will reset and turn on discharge MOSFET Q2 when \(\mathrm{V}_{\text {Pin }} 3\) exceeds \(\mathrm{V}_{\text {Pin } 5}\) by 0.6 V . This can be accomplished by connecting the battery pack to the charger. & On & Off to On & Active \\
\hline
\end{tabular}

FAULTY CELL
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Discharge Voltage Limit Fault: \\
\(V_{\text {Pin } 1} \leq 1.5 \mathrm{~V}\)
\end{tabular} & \begin{tabular}{l} 
This condition can happen if the cell is a defective \((<1.5 \mathrm{~V})\). The \\
protection circuit logic will not function and the battery pack \\
cannot be charged.
\end{tabular} & Disabled & Disabled & Disabled \\
\hline
\end{tabular}

\section*{MC33348}

Figure 7. One Cell Smart Battery Pack


PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|l|l|}
\hline Pin & \multicolumn{1}{|c|}{ Symbol } & \\
\hline 1 & Cell Voltage & \begin{tabular}{l} 
This input is connected to the positive terminal of the cell for voltage monitoring. Internally, the Cell \\
Voltage Sample Switch applies this voltage to a resistor divider where it is compared by the Cell Voltage \\
Detector to an internal reference.
\end{tabular} \\
\hline 2 & Test & \begin{tabular}{l} 
This pin is normally not connected and is used in testing the protection IC. An active low at this input \\
resets the internal logic and turns on both MOSFET switches. Upon release, the logic becomes active and \\
the cell voltage is sampled within 1.0 ms.
\end{tabular} \\
\hline 3 & Ground & This is the protection IC ground and all voltage ratings are with respect to this pin. \\
\hline 4 & \begin{tabular}{l} 
Discharge Gate Drive \\
Output
\end{tabular} & \begin{tabular}{l} 
This output connects to the gate of discharge switch Q2 allowing it to enable or disable battery pack \\
discharging.
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Charge Gate Drive \\
Common/Discharge \\
Current Limit
\end{tabular} & \begin{tabular}{l} 
This is a multifunction pin that is used to monitor cell discharge current and to provide a gate turn-off \\
path for charge switch Q1. A discharge current limit fault is set when the battery pack load causes the \\
combined voltage drop of charge switch Q1 and discharge switch Q2 to exceed the discharge current limit \\
threshold voltage, V V (dschg), with respect to Pin 3.
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
Charge Gate Drive \\
Output
\end{tabular} & \begin{tabular}{l} 
This output connects to the gate of charge switch Q1 allowing it to enable or disable battery pack \\
charging.
\end{tabular} \\
\hline 7 & VCC & This pin is the positive supply voltage for the protection IC. \\
\hline 8 & Charge Pump Output & This is the charge pump output. A reservoir capacitor is connected from this pin to ground. \\
\hline
\end{tabular}

\section*{INTRODUCTION}

The insatiable demand for smaller lightweight portable electronic equipment has dramatically increased the requirements of battery performance. Batteries are expected to have higher energy densities, superior cycle life, be safe in operation and environmentally friendly. To address these high expectations, battery manufacturers have invested heavily in developing rechargeable lithium-based cells. Today's most attractive chemistries include lithium-polymer, lithium-ion, and lithium-metal. Each of these chemistries require electronic protection in order to constrain cell operation to within the manufacturers limits.

Rechargeable lithium-based cells require precise charge and discharge termination limits for both voltage and current in order to maximize cell capacity, cycle life, and to protect the end user from a catastrophic event. The termination limits are not as well defined as with older non-lithium chemistries. These limits are dependent upon a manufacturer's particular lithium chemistry, construction technique, and intended application. Battery pack assemblers may also choose to enhance cell capacity at the expense of cycle life. In order to address these requirements, six versions of the MC33348 protection circuit were developed. These devices feature charge overvoltage protection, discharge current limit protection with delayed shutdown, low operating current, a virtually zero current sleepmode state, and requires few external components to implement a complete one cell smart battery pack.

\section*{Operating Description}

The MC33348 is specifically designed to be placed in the battery pack where it is continuously powered from a single lithium cell. In order to maintain cell operation within specified limits, the protection circuit senses both cell voltage and discharge current, and correspondingly controls the state of two N-channel MOSFET switches. These switches, Q1 and Q2, are placed in series with the negative terminal of the Cell and the negative terminal of the battery pack. This configuration allows the protection circuit to interrupt the appropriate charge or discharge path FET in the event that either a voltage threshold or the discharge current limit for the cell has been exceeded.

Figure 8. Simplified One Cell Smart Battery Pack


A functional description of the protection circuit blocks follows. Refer to the detailed block diagram shown in Figure 7.

\section*{Voltage Sensing}

Voltage sensing is accomplished by the use of the Cell Voltage Sample Switch in conjunction with the Over/Under Voltage Detector and Reference block. The Sample Switch applies the cell voltage to the top resistor of an internal divider string. The voltage at each of the tap points is sequentially polled and compared to an internal reference. If a limit has been exceeded, the result is stored in the Over/Under Data Latch and Control Logic block. The Cell Voltage Sample Switch is gated on for a 1.0 ms period at a one second repetition rate. This low duty cycle sampling technique reduces the average load current that the divider presents across the cell, thus extending the useful battery pack capacity. The cell voltage limits are tested in the following sequence:

Figure 9. Cell Sensing Sequence
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Polling \\
Sequence
\end{tabular} & \begin{tabular}{c} 
Time \\
\((\mathrm{ms})\)
\end{tabular} & \begin{tabular}{c} 
Tested \\
Limit
\end{tabular} \\
\hline 1 & 0.5 & Overvoltage \\
\hline 2 & 0.5 & Undervoltage \\
\hline
\end{tabular}

By incorporating this polling technique with a single comparator and voltage divider, a significant reduction of circuitry and trim elements is achieved. This results in a smaller die size, lower cost, and reduced operating current.

Figure 10. Cell Voltage Limit Sampling


The cell charge and discharge voltage limits are controlled by the values selected for the internal resistor divider string and the comparator input threshold. As the battery pack reaches full charge, the Cell Voltage Detector will sense an overvoltage fault condition when the cell exceeds the designed overvoltage limit. The fault information is stored in a data latch and charge MOSFET Q1 is turned off, disconnecting the battery pack from the charging source. An internal current source pull-up is then applied to lower tap of the divider, creating a hysteresis voltage. As a result of an overvoltage fault, the battery pack is available for discharging only.

The overvoltage fault is reset by applying a load to the battery pack. As the voltage across the cell falls below the hysteresis level, charge MOSFET Q1 will turn on. The battery pack will now be available for charging or discharging.

As the load eventually depletes the battery pack charge, the Cell Voltage Detector will sense an undervoltage fault
condition when the cell falls below the designed undervoltage limit. After three consecutive faults are detected, discharge MOSFET Q2 is turned off, disconnecting the battery pack from the load. The protection circuit will now enter a low current sleepmode state drawing less than 10 nA , thus preventing any further cell discharging. As a result of the undervoltage fault, the battery pack is available for charging only. The typical cutoff thresholds and hysteresis voltage are shown in Figure 11.

Figure 11. Cutoff and Hysteresis Limits
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Device \\
Suffix
\end{tabular} & \begin{tabular}{c} 
Charging \\
Cutoff \\
(V)
\end{tabular} & \begin{tabular}{c} 
Hysteresis \\
(mV)
\end{tabular} & \begin{tabular}{c} 
Disharging \\
Cutoff \\
(V)
\end{tabular} \\
\hline\(-1,-2\) & 4.20 & 300 & 2.25 \\
\hline\(-3,-4\) & 4.25 & 300 & 2.28 \\
\hline\(-5,-6\) & 4.35 & 300 & 2.30 \\
\hline
\end{tabular}

The undervoltage logic is designed to automatically reset if less than three consecutive faults appear. This helps to prevent a premature disconnection of the load during high current pulses when the battery pack charge is close to being depleted.

Figure 12. Additional Current Limit Delay


The undervoltage fault is reset by applying charge current to the battery pack. When the voltage on Pin 3 exceeds Pin 5 by 0.6 V , discharge MOSFET Q2 will turned on. The battery pack will now be available for charging or discharging.

\section*{Current Sensing}

Discharge current limit protection is internally provided by the MC33348. As the battery pack discharges, Pins 8 and 5 sense the voltage drop across MOSFETs Q1 and Q2. A discharge current limit fault is detected if the voltage at Pin 5 is greater than Pin 3 by 400 mV for \(-1,-3\) and -5 suffix devices, or 200 mV for \(-2,-4\) and -6 suffix devices. The fault information is stored in a data latch and discharge MOSFET Q2 is turned off, disconnecting the battery pack from the load. As a result of the discharge current fault, the battery pack is available for charging only. The discharge current limit is given by:
\(\mathrm{I}_{\text {Lim(dschg) }}=\frac{\mathrm{V}_{\text {th(dschg) }}}{R_{\text {Lim(dschg) }}}=\frac{V_{\text {th(dschg) }}}{R_{\text {DS(on)Q1 }}+R_{\text {DS(on)Q2 }}}\)
The discharge current fault is reset by either disconnecting the load from the battery pack, or by connecting the battery pack to the charger. When the voltage on Pin 5 no longer exceeds Pin 3 by approximately 2.0 V , the Sense Enable circuit will turn on discharge MOSFET Q2.

Figure 13. VCC Decoupling


As previously stated in the voltage sensing operating description, charge MOSFET Q1 is held off during an overvoltage fault condition. When this condition is present, the discharge current limit protection function is internally disabled. This is required, since the voltage across Q1, in the off state, would exceed the current sense threshold. This would cause Q2 to turn off as well, preventing both charging and discharging of the cell. Discharge current limit protection is enabled whenever an overvoltage fault is not present.

The discharge current protection circuit contain a built in response delay of 3.0 ms . This helps to prevent fault activation when the battery pack is subjected to pulsed currents during discharging. An additional current sense delay can be added as shown in Figure 12. If the battery pack is subjected to extremely high discharge current pulses or is shorted, the \(\mathrm{V}_{\mathrm{CC}}\) pin must be decoupled from the cell. This is required so that the protection circuit will have sufficient operating voltage during the load transient, to ensure turn off of discharge MOSFET Q2. Figure 13 shows the placement of decoupling components.

\section*{Charge Pump and MOSFET Switches}

The MC33348 contains an on chip Charge Pump to ensure that the MOSFET switches are fully enhanced for
reduced power losses. An external reservoir capacitor normally connects from the Charge Pump output to ground, Pins 8 and 3 . The capacitor value is not critical and is usually within the range of 10 nF to 100 nF . The Charge Pump output is regulated at 10.2 V allowing the use of economical logic level MOSFETs. The main requirement in selecting a particular type of MOSFET switch is to consider the desired on-resistance at the lowest anticipated operating voltage of the battery pack. A table of small outline surface mount devices is given in Figure 14. When using extremely low threshold MOSFETs, it may be desirable to disable the Charge Pump so that the maximum gate to source voltage is not exceeded. This is accomplished by connecting Pin 8 to Pin 7. Application Figure 7 show a capacitor labeled CESD. This capacitor provides a path around the MOSFET switches in the event of an electrostatic discharge.

\section*{Testing}

A test pin is provided in order to speed up device and battery pack testing. By grounding Pin 2, the internal logic is held in a reset state and both MOSFET switches are turned on. Upon release, the logic becomes active and the cell voltage is polled within 1.0 ms .

Figure 14. Small Outline Surface Mount MOSFET Switches
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Device \\
Type
\end{tabular}} & \multicolumn{7}{|c|}{ On-Resistance ( \(\Omega\) ) versus Gate to Source Voltage (V) } \\
\cline { 2 - 8 } & 2.5 V & \(\mathbf{3 . 0} \mathrm{~V}\) & \(\mathbf{4 . 0 ~ V}\) & 5.0 V & \(\mathbf{6 . 0 ~ V}\) & \(\mathbf{7 . 5} \mathrm{~V}\) & \(\mathbf{9 . 0 ~ V}\) \\
\hline MMFT3055VL & - & - & - & \(0.120 \Omega\) & \(0.115 \Omega\) & \(0.108 \Omega\) & \(0.100 \Omega\) \\
\hline MMDF3N03HD & - & \(0.525 \Omega\) & \(0.080 \Omega\) & \(0.065 \Omega\) & \(0.063 \Omega\) & \(0.062 \Omega\) & \(0.060 \Omega\) \\
\hline MMDF4N01HD & \(0.047 \Omega\) & \(0.042 \Omega\) & \(0.037 \Omega\) & \(0.035 \Omega\) & \(0.034 \Omega\) & \(0.033 \Omega\) & See Note \\
\hline MMSF5N02HD & - & \(0.065 \Omega\) & \(0.023 \Omega\) & \(0.021 \Omega\) & \(0.020 \Omega\) & \(0.018 \Omega\) & \(0.018 \Omega\) \\
\hline MMDF6N02HD & \(0.043 \Omega\) & \(0.035 \Omega\) & \(0.029 \Omega\) & \(0.028 \Omega\) & \(0.026 \Omega\) & \(0.025 \Omega\) & \(0.023 \Omega\) \\
\hline
\end{tabular}

NOTE: Exceeds maximum \(V_{G S}\) voltage rating.

\section*{Advance Information} High Voltage Switching Regulator

The MC33362 is a monolithic high voltage switching regulator that is specifically designed to operate from a rectified 120 VAC line source. This integrated circuit features an on-chip \(500 \mathrm{~V} / 2.0\) A SenseFET power switch, 250 V active off-line startup FET, duty cycle controlled oscillator, current limiting comparator with a programmable threshold and leading edge blanking, latching pulse width modulator for double pulse suppression, high gain error amplifier, and a trimmed internal bandgap reference. Protective features include cycle-by-cycle current limiting, input undervoltage lockout with hysteresis, output overvoltage protection, and thermal shutdown. This device is available in a 16-lead dual-in-line and wide body surface mount packages.
- On-Chip 500 V, 2.0 A SenseFET Power Switch
- Rectified 120 VAC Line Source Operation
- On-Chip 250 V Active Off-Line Startup FET
- Latching PWM for Double Pulse Suppression
- Cycle-By-Cycle Current Limiting
- Input Undervoltage Lockout with Hysteresis
- Output Overvoltage Protection Comparator
- Trimmed Internal Bandgap Reference
- Internal Thermal Shutdown


\section*{HIGH VOLTAGE OFF-LINE SWITCHING REGULATOR} SEMICONDUCTOR TECHNICAL DATA



ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33362DW & \multirow{2}{*}{\(T_{J}=-25^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & SOP-16L \\
\cline { 1 - 1 } MC33362P & DIP-16 \\
\hline
\end{tabular}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \begin{tabular}{l}
Power Switch (Pin 16) \\
Drain Voltage \\
Drain Current
\end{tabular} & \[
\begin{aligned}
& \text { VDS } \\
& \text { IDS }
\end{aligned}
\] & \[
\begin{gathered}
500 \\
2.0
\end{gathered}
\] & \[
\begin{aligned}
& \text { V } \\
& \text { A }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Startup Input Voltage (Pin 1, Note 1) \\
Pin \(3=\) Gnd \\
\(\operatorname{Pin} 3 \leq 1000 \mu \mathrm{~F}\) to ground
\end{tabular} & \(V_{\text {in }}\) & \[
\begin{aligned}
& 250 \\
& 400
\end{aligned}
\] & V \\
\hline Power Supply Voltage (Pin 3) & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & V \\
\hline \begin{tabular}{l}
Input Voltage Range \\
Voltage Feedback Input (Pin 10) \\
Compensation (Pin 9) \\
Overvoltage Protection Input (Pin 11) \\
\(\mathrm{R}_{\mathrm{T}}\) (Pin 6) \\
\(\mathrm{C}_{\mathrm{T}}\) (Pin 7)
\end{tabular} & \(V_{\text {IR }}\) & -1.0 to Vreg & V \\
\hline \begin{tabular}{l}
Thermal Characteristics \\
P Suffix, Dual-In-Line Case 648E \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case \\
(Pins 4, 5, 12, 13) \\
DW Suffix, Surface Mount Case 751N \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case \\
(Pins 4, 5, 12, 13) \\
Refer to Figures 15 and 16 for additional thermal information.
\end{tabular} & \begin{tabular}{l}
\(R_{\theta J A}\) \\
\(R_{\theta J C}\) \\
\(R_{\theta J A}\) \\
\(R_{\theta J C}\)
\end{tabular} & \begin{tabular}{l}
80 \\
15 \\
95 \\
15
\end{tabular} & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & TJ & -25 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{C}_{\text {Pin }} 8=1.0 \mu \mathrm{~F}\right.\), for typical values \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{\mathrm{J}}\) is the operating junction temperature range that applies (Note 2), unless otherwise noted.)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage \(\left(\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\text {reg }}\) & 5.5 & 6.5 & 7.5 & V \\
\hline Line Regulation \(\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\right.\) to 40 V\()\) & Regline & - & 30 & 500 & mV \\
\hline Load Regulation ( \(\mathrm{I}=0 \mathrm{~mA}\) to 10 mA ) & Regload & - & 44 & 200 & mV \\
\hline Total Output Variation over Line, Load, and Temperature & \(\mathrm{V}_{\text {reg }}\) & 5.3 & - & 8.0 & V \\
\hline
\end{tabular}

OSCILLATOR (Pin 7)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& \mathrm{CT}_{\mathrm{T}}=390 \mathrm{pF} \\
& \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\left(\mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}\right) \\
& \mathrm{T}_{J}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V} \text { to } 40 \mathrm{~V}\right) \\
& \mathrm{C}_{\mathrm{T}}=2.0 \mathrm{nF} \\
& \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\left(\mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}\right) \\
& \mathrm{T}_{J}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}(\mathrm{V} \mathrm{VC}=20 \mathrm{~V} \text { to } 40 \mathrm{~V})
\end{aligned}
\] & fosc & 260
255

60
59 & \[
285
\]
\[
67.5
\] & \[
\begin{aligned}
& 310 \\
& 315 \\
& \\
& 75 \\
& 76
\end{aligned}
\] & kHz \\
\hline Frequency Change with Voltage ( \(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\) to 40 V ) & \(\Delta \mathrm{fosc} / \Delta \mathrm{V}\) & - & 0.1 & 2.0 & kHz \\
\hline
\end{tabular}

ERROR AMPLIFIER (Pins 9, 10)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Voltage Feedback Input Threshold & \(\mathrm{V}_{\mathrm{FB}}\) & 2.52 & 2.6 & 2.68 & V \\
\hline Line Regulation \(\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\right.\) to \(\left.40 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & Regline & - & 0.6 & 5.0 & mV \\
\hline Input Bias Current \(\left(\mathrm{V}_{\mathrm{FB}}=2.6 \mathrm{~V}\right)\) & \(\mathrm{I}_{\mathrm{IB}}\) & - & 20 & 500 & nA \\
\hline Open Loop Voltage Gain \(\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & A VOL & - & 82 & - & dB \\
\hline Gain Bandwidth Product \(\left(\mathrm{f}=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & GBW & - & 1.0 & - & MHz \\
\hline
\end{tabular}

NOTES: 1. Maximum power dissipation limits must be observed.
2. Tested junction temperature range for the MC33362:
\(\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}\)

ELECTRICAL CHARACTERISTICS (continued) ( \(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}\), \(\mathrm{C}_{\text {Pin }} 8=1.0 \mu \mathrm{~F}\), for typical values \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{J}\) is the operating junction temperature range that applies (Note 2), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

\section*{ERROR AMPLIFIER (Pins 9, 10)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State ( \({ }^{\text {Source }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{FB}}<2.0 \mathrm{~V}\) ) \\
Low State (ISink \(=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{FB}}>3.0 \mathrm{~V}\) )
\end{tabular} & V \(\mathrm{V}_{\mathrm{OL}}\) & 4.0 & \[
\begin{aligned}
& 5.3 \\
& 0.2
\end{aligned}
\] & \[
\overline{0.35}
\] & V \\
\hline \multicolumn{6}{|l|}{OVERVOLTAGE DETECTION (Pin 11)} \\
\hline Input Threshold Voltage & \(\mathrm{V}_{\text {th }}\) & 2.47 & 2.6 & 2.73 & V \\
\hline Input Bias Current ( \(\mathrm{V}_{\text {in }}=2.6 \mathrm{~V}\) ) & IIB & - & 100 & 500 & nA \\
\hline
\end{tabular}

PWM COMPARATOR (Pins 7, 9)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Duty Cycle \\
Maximum \(\left(V_{F B}=0 \mathrm{~V}\right)\) \\
Minimum \(\left(V_{F B}=2.7 \mathrm{~V}\right)\) & \(\mathrm{DC}_{(\max )}\) & 48 & 50 & 52 & \(\%\) \\
\hline
\end{tabular}

POWER SWITCH (Pin 16)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Drain-Source On-State Resistance ( \((\mathrm{D}=200 \mathrm{~mA})\) \\
\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) \\
\(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
\end{tabular} & \(\mathrm{R}_{\mathrm{DS}(\mathrm{on})}\) & - & 4.4 & 6.0 & \(\Omega\) \\
\hline Drain-Source Off-State Leakage Current \(\left(\mathrm{V}_{\mathrm{DS}}=500 \mathrm{~V}\right)\) & & - & - & 12 & \\
\hline Rise Time & \(\mathrm{I}_{\mathrm{D}(\mathrm{off})}\) & - & 0.2 & 50 & \(\mu \mathrm{~A}\) \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{r}}\) & - & 50 & - & ns \\
\hline
\end{tabular}

OVERCURRENT COMPARATOR (Pin 16)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Current Limit Threshold ( \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}\) ) & 1 lim & 0.7 & 0.9 & 1.1 & A \\
\hline \multicolumn{6}{|l|}{STARTUP CONTROL (Pin 1)} \\
\hline \[
\begin{aligned}
& \text { Peak Startup Current }\left(\mathrm{V}_{\text {in }}=200 \mathrm{~V}\right) \\
& \mathrm{V}_{C C}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=\left(\mathrm{V}_{\text {th }}(\mathrm{on})-0.2 \mathrm{~V}\right)
\end{aligned}
\] & \(\mathrm{I}_{\text {start }}\) & - & \[
\begin{aligned}
& 55 \\
& 26
\end{aligned}
\] & - & mA \\
\hline Off-State Leakage Current ( \(\mathrm{V}_{\text {in }}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}\) ) & \({ }^{\prime}\) ( (fff) & - & 40 & 200 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT (Pin 3)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Startup Threshold ( \(\mathrm{V}_{\mathrm{CC}}\) Increasing) & \(\mathrm{V}_{\text {th }}(\mathrm{on})\) & 11 & 14.5 & 18 & V \\
\hline Minimum Operating Voltage After Turn-On & \(\mathrm{V}_{\mathrm{CC}(\min )}\) & 7.5 & 9.5 & 11.5 & V \\
\hline
\end{tabular}

TOTAL DEVICE (Pin 3)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Power Supply Current & ICC & & & & mA \\
Startup (VCC \(=10 \mathrm{~V}\), Pin 1 Open) & & - & 0.3 & 0.5 & \\
Operating & & - & 3.6 & 5.0 & \\
\hline
\end{tabular}

Figure 1. Oscillator Frequency versus Timing Resistor


Figure 2. Power Switch Peak Drain Current versus Timing Resistor


Figure 3. Oscillator Charge/Discharge Current versus Timing Resistor


Figure 5. Error Amp Open Loop Gain and Phase versus Frequency


Figure 7. Error Amplifier Small Signal Transient Response

\(1.0 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 4. Maximum Output Duty Cycle versus Timing Resistor Ratio


Figure 6. Error Amp Output Saturation Voltage versus Load Current


Figure 8. Error Amplifier Large Signal Transient Response

\(1.0 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 9. Regulator Output Voltage Change versus Source Current


Figure 11. Power Switch Drain-Source


Figure 13. Supply Current versus Supply Voltage


Figure 10. Peak Startup Current versus Power Supply Voltage


Figure 12. Power Switch Drain-Source Capacitance versus Voltage


Figure 14. DW and P Suffix Transient Thermal Resistance


Figure 15. DW Suffix (SOP-16L) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


Figure 16. P Suffix (DIP-16) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Function & Description \\
\hline 1 & Startup Input & This pin connects directly to the rectified ac line voltage source. Internally Pin 1 is tied to the drain of a high voltage startup MOSFET. During startup, the MOSFET supplies internal bias, and charges an external capacitor that connects from the \(\mathrm{V}_{\mathrm{CC}}\) pin to ground. \\
\hline 2 & - & This pin has been omitted for increased spacing between the rectified AC line voltage on Pin 1 and the \(\mathrm{V}_{\mathrm{CC}}\) potential on Pin 3. \\
\hline 3 & \(\mathrm{V}_{\mathrm{CC}}\) & This is the positive supply voltage input. During startup, power is supplied to this input from Pin 1. When \(V_{\text {CC }}\) reaches the UVLO upper threshold, the startup MOSFET turns off and power is supplied from an auxiliary transformer winding. \\
\hline \(4,5,12,13\) & Ground & These pins are the control circuit grounds. They are part of the IC lead frame and provide a thermal path from the die to the printed circuit board. \\
\hline 6 & \(\mathrm{R}_{\mathrm{T}}\) & Resistor RT connects from this pin to ground. The value selected will program the Current Limit Comparator threshold and affect the Oscillator frequency. \\
\hline 7 & \(\mathrm{C}_{\text {T }}\) & Capacitor \(\mathrm{C}_{\mathrm{T}}\) connects from this pin to ground. The value selected, in conjunction with resistor \(\mathrm{R}_{\mathrm{T}}\), programs the Oscillator frequency. \\
\hline 8 & Regulator Output & This 6.5 V output is available for biasing external circuitry. It requires an external bypass capacitor of at least \(1.0 \mu \mathrm{~F}\) for stability. \\
\hline 9 & Compensation & This pin is the Error Amplifier output and is made available for loop compensation. It can be used as an input to directly control the PWM Comparator. \\
\hline 10 & Voltage Feedback Input & This is the inverting input of the Error Amplifier. It has a 2.6 V threshold and normally connects through a resistor divider to the converter output, or to a voltage that represents the converter output. \\
\hline 11 & Overvoltage Protection Input & This input provides runaway output voltage protection due to an external component or connection failure in the control loop feedback signal path. It has a 2.6 V threshold and normally connects through a resistor divider to the converter output, or to a voltage that represents the converter output. \\
\hline 14, 15 & - & These pins have been omitted for increased spacing between the high voltages present on the Power Switch Drain, and the ground potential on Pins 12 and 13. \\
\hline 16 & Power Switch Drain & This pin is designed to directly drive the converter transformer and is capable of switching a maximum of 500 V and 2.0 A . \\
\hline
\end{tabular}

MC33362
Figure 17. Representative Block Diagram


Figure 18. Timing Diagram


\section*{OPERATING DESCRIPTION}

\section*{Introduction}

The MC33362 represents a new higher level of integration by providing all the active high voltage power, control, and protection circuitry required for implementation of a flyback or forward converter on a single monolithic chip. This device is designed for direct operation from a rectified 120 VAC line source and requires a minimum number of external components to implement a complete converter. A description of each of the functional blocks is given below, and the representative block and timing diagrams are shown in Figures 17 and 18.

\section*{Oscillator and Current Mirror}

The oscillator frequency is controlled by the values selected for the timing components \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). Resistor \(\mathrm{R}_{\mathrm{T}}\) programs the oscillator charge/discharge current via the Current Mirror 4 I output, Figure 3. Capacitor \(\mathrm{C}_{\mathrm{T}}\) is charged and discharged by an equal magnitude internal current source and sink. This generates a symmetrical 50 percent duty cycle waveform at Pin 7, with a peak and valley threshold of 2.6 V and 0.6 V respectively. During the discharge of \(\mathrm{C}_{\boldsymbol{T}}\), the oscillator generates an internal blanking pulse that holds the inverting input of the AND gate Driver high. This causes the Power Switch gate drive to be held in a low state, thus producing a well controlled amount of output deadtime. The amount of deadtime is relatively constant with respect to the oscillator frequency when operating below 1.0 MHz . The maximum Power Switch duty cycle at Pin 16 can be modified from the internal \(50 \%\) limit by providing an additional charge or discharge current path to \(\mathrm{C}_{\mathrm{T}}\), Figure 19. In order to increase the maximum duty cycle, a discharge current resistor \(R_{D}\) is connected from Pin 7 to ground. To decrease the maximum duty cycle, a charge current resistor \(R_{C}\) is connected from Pin 7 to the Regulator Output. Figure 4 shows an obtainable range of maximum output duty cycle versus the ratio of either \(R_{C}\) or \(R_{D}\) with respect to \(R_{T}\).

Figure 19. Maximum Duty Cycle Modification


The formula for the charge/discharge current along with the oscillator frequency are given below. The frequency formula is a first order approximation and is accurate for \(\mathrm{C}_{\boldsymbol{T}}\) values greater than 500 pF . For smaller values of \(\mathrm{C}_{\mathrm{T}}\), refer to Figure 1. Note that resistor \(\mathrm{R}_{\mathrm{T}}\) also programs the Current Limit Comparator threshold.
\[
\mathrm{I}_{\mathrm{chg} / \mathrm{dscg}}=\frac{5.4}{\mathrm{R}_{\mathrm{T}}} \quad \mathrm{f} \approx \frac{\mathrm{I}_{\mathrm{chg} / \mathrm{dscg}}}{4 \mathrm{C}_{\mathrm{T}}}
\]

\section*{PWM Comparator and Latch}

The pulse width modulator consists of a comparator with the oscillator ramp voltage applied to the non-inverting input, while the error amplifier output is applied into the inverting input. The Oscillator applies a set pulse to the PWM Latch while \(\mathrm{C}_{\mathrm{T}}\) is discharging, and upon reaching the valley voltage, Power Switch conduction is initiated. When \(\mathrm{C}_{\mathrm{T}}\) charges to a voltage that exceeds the error amplifier output, the PWM Latch is reset, thus terminating Power Switch conduction for the duration of the oscillator ramp-up period. This PWM Comparator/Latch combination prevents multiple output pulses during a given oscillator clock cycle. The timing diagram shown in Figure 18 illustrates the Power Switch duty cycle behavior versus the Compensation voltage.

\section*{Current Limit Comparator and Power Switch}

The MC33362 uses cycle-by-cycle current limiting as a means of protecting the output switch transistor from overstress. Each on-cycle is treated as a separate situation. Current limiting is implemented by monitoring the output switch current buildup during conduction, and upon sensing an overcurrent condition, immediately turning off the switch for the duration of the oscillator ramp-up period.

The Power Switch is constructed as a SenseFET allowing a virtually lossless method of monitoring the drain current. It consists of a total of 3770 cells, of which 50 are connected to a \(9.0 \Omega\) ground-referenced sense resistor. The Current Sense Comparator detects if the voltage across the sense resistor exceeds the reference level that is present at the inverting input. If exceeded, the comparator quickly resets the PWM Latch, thus protecting the Power Switch. The current limit reference level is generated by the 2.25 I output of the Current Mirror. This current causes a reference voltage to appear across the \(450 \Omega\) resistor. This voltage level, as well as the Oscillator charge/discharge current are both set by resistor \(R_{T}\). Therefore when selecting the values for \(R_{T}\) and \(C_{T}, R_{T}\) must be chosen first to set the Power Switch peak drain current, while \(\mathrm{C}_{\boldsymbol{T}}\) is chosen second to set the desired Oscillator frequency. A graph of the Power Switch peak drain current versus \(R_{T}\) is shown in Figure 2 with the related formula below.
\[
\mathrm{I}_{\mathrm{pk}}=12.3\left(\frac{\mathrm{R}_{\mathrm{T}}}{1000}\right)-1.115
\]

The Power Switch is designed to directly drive the converter transformer and is capable of switching a maximum of 500 V and 2.0 A . Proper device voltage snubbing and heatsinking are required for reliable operation.

A Leading Edge Blanking circuit was placed in the current sensing signal path. This circuit prevents a premature reset of the PWM Latch. The premature reset is generated each time the Power Switch is driven into conduction. It appears as a narrow voltage spike across the current sense resistor, and is due to the MOSFET gate to source capacitance, transformer interwinding capacitance, and output rectifier recovery time. The Leading Edge Blanking circuit has a dynamic behavior in that it masks the current signal until the Power Switch turn-on transition is completed. The current limit propagation delay time is typically 233 ns . This time is measured from when an overcurrent appears at the Power Switch drain, to the beginning of turn-off.

\section*{Error Amplifier}

An fully compensated Error Amplifier with access to the inverting input and output is provided for primary side voltage sensing, Figure 17. It features a typical dc voltage gain of 82 dB , and a unity gain bandwidth of 1.0 MHz with 78 degrees of phase margin, Figure 5. The noninverting input is internally biased at \(2.6 \mathrm{~V} \pm 3.1 \%\) and is not pinned out. The Error Amplifier output is pinned out for external loop compensation and as a means for directly driving the PWM Comparator. The output was designed with a limited sink current capability of \(270 \mu \mathrm{~A}\), allowing it to be easily overridden with a pull-up resistor. This is desirable in applications that require secondary side voltage sensing, Figure 20. In this application, the Voltage Feedback Input is connected to the Regulator Output. This disables the Error Amplifier by placing its output into the sink state, allowing the optocoupler transistor to directly control the PWM Comparator.

\section*{Overvoltage Protection}

An Overvoltage Protection Comparator is included to eliminate the possibility of runaway output voltage. This condition can occur if the control loop feedback signal path is broken due to an external component or connection failure. The comparator is normally used to monitor the primary side \(\mathrm{V}_{\text {CC }}\) voltage. When the 2.6 V threshold is exceeded, it will immediately turn off the Power Switch, and protect the load from a severe overvoltage condition. This input can also be driven from external circuitry to inhibit converter operation.

\section*{Undervoltage Lockout}

An Undervoltage Lockout comparator has been incorporated to guarantee that the integrated circuit has sufficient voltage to be fully functional before the output stage is enabled. The UVLO comparator monitors the \(\mathrm{V}_{\mathrm{CC}}\) voltage at Pin 3 and when it exceeds 14.5 V , the reset signal is removed from the PWM Latch allowing operation of the Power Switch. To prevent erratic switching as the threshold is crossed, 5.0 V of hysteresis is provided.

\section*{Startup Control}

An internal Startup Control circuit with a high voltage enhancement mode MOSFET is included within the MC33362. This circuitry allows for increased converter efficiency by eliminating the external startup resistor, and its associated power dissipation, commonly used in most off-line converters that utilize a UC3842 type of controller. Rectified ac line voltage is applied to the Startup Input, Pin 1. This causes the MOSFET to enhance and supply internal bias as well as charge current to the \(\mathrm{V}_{\mathrm{CC}}\) bypass capacitor that connects from Pin 3 to ground. When \(V_{C C}\) reaches the UVLO upper threshold of 14.5 V , the IC commences operation and the startup MOSFET is turned off. Operating bias is now derived from the auxiliary transformer winding, and all of the device power is efficiently converted down from the rectified ac line.

The startup MOSFET will provide an initial peak current of 55 mA , Figure 10, which decreases rapidly as \(\mathrm{V}_{\mathrm{CC}}\) and the die temperature rise. The steady state current will self limit in the range of 12 mA with \(\mathrm{V}_{\mathrm{CC}}\) shorted to ground. The startup MOSFET is rated at a maximum of 250 V with \(\mathrm{V}_{\mathrm{CC}}\) shorted to ground, and 400 V when charging a \(\mathrm{V}_{\mathrm{CC}}\) capacitor of \(1000 \mu \mathrm{~F}\) or less.

\section*{Regulator}

A low current 6.5 V regulated output is available for biasing the Error Amplifier and any additional control system circuitry. It is capable of up to 10 mA and has short-circuit protection. This output requires an external bypass capacitor of at least \(1.0 \mu \mathrm{~F}\) for stability.

\section*{Thermal Shutdown and Package}

Internal thermal circuitry is provided to protect the Power Switch in the event that the maximum junction temperature is exceeded. When activated, typically at \(155^{\circ} \mathrm{C}\), the Latch is forced into a 'reset' state, disabling the Power Switch. The Latch is allowed to 'set' when the Power Switch temperature falls below \(145^{\circ} \mathrm{C}\). This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a substitute for proper heatsinking.

The MC33362 is contained in a heatsinkable plastic dual-in-line package in which the die is mounted on a special heat tab copper alloy lead frame. This tab consists of the four center ground pins that are specifically designed to improve thermal conduction from the die to the circuit board. Figures 15 and 16 show a simple and effective method of utilizing the printed circuit board medium as a heat dissipater by soldering these pins to an adequate area of copper foil. This permits the use of standard layout and mounting practices while having the ability to halve the junction to air thermal resistance. The examples are for a symmetrical layout on a single-sided board with two ounce per square foot of copper. Figure 22 shows a practical example of a printed circuit board layout that utilizes the copper foil as a heat dissipater. Note that a jumper was added to the layout from Pins 8 to 10 in order to enhance the copper area near the device for improved thermal conductivity. The application circuit requires two ounce copper foil in order to obtain 20 watts of continuous output power at room temperature.

Figure 20. 20 W Off-Line Converter


Figure 21. Converter Test Data
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=92 \mathrm{Vac}\) to \(138 \mathrm{Vac}, \mathrm{IO} 4.0 \mathrm{~A}\) & \(\Delta=1.0 \mathrm{mV}\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{IO}=1.0 \mathrm{~A}\) to 4.0 A & \(\Delta=9.0 \mathrm{mV}\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{IO}=4.0 \mathrm{~A}\) & \begin{tabular}{l} 
Triangular \(=10 \mathrm{mVpp}\) \\
Spike \(=60 \mathrm{mVpp}\)
\end{tabular} \\
\hline Efficiency & \(\mathrm{V}_{\mathrm{in}}=115 \mathrm{Vac}, \mathrm{IO}=4.0 \mathrm{~A}\) & \(78.4 \%\) \\
\hline
\end{tabular}

This data was taken with the components listed below mounted on the printed circuit board shown in Figure 22.
For high efficiency and small circuit board size, the Sanyo Os-Con capacitors are recommended for C8, C9, C10 and C11.
C8, C9, C10 = Sanyo Os-Con \#6SA330M, \(330 \mu \mathrm{~F} 6.3 \mathrm{~V}\).
C11 = Sanyo Os-Con \#10SA220M, \(220 \mu \mathrm{~F} 10 \mathrm{~V}\).
D7 = MBR2515L mounted on Aavid \#592502B03400 heatsink.
L1 = Coilcraft S5088-A, \(5.0 \mu \mathrm{H}, 0.11 \Omega\).
T1 = Coilcraft S5069-A
Primary: 58 turns of \# 26 AWG, Pin \(1=\) start, Pin \(8=\) finish.
Two layers \(0.002^{\prime \prime}\) Mylar tape.
Secondary: 4 turns of \# 18 AWG, 2 strands bifiliar wound, Pin \(5=\) start, Pin \(4=\) finish.
Two layers \(0.002^{\prime \prime}\) Mylar tape.
Auxiliary: 10 turns of \# 26 AWG wound in center of bobbin, Pin \(2=\) start, \(\operatorname{Pin} 7=\) finish.
Two layers \(0.002^{\prime \prime}\) Mylar tape.
Gap: \(0.014^{\prime \prime}\) total for a primary inductance (Lp) of \(330 \mu \mathrm{H}\).
Core and Bobbin: Coilcraft PT1950, E187, 3F3 material.

Figure 22. Printed Circuit Board and Component Layout
(Circuit of Figure 20)


\section*{Advance Information High Voltage Switching Regulator}

The MC33363 is a monolithic high voltage switching regulator that is specifically designed to operate from a rectified 240 Vac line source. This integrated circuit features an on-chip \(700 \mathrm{~V} / 1.0 \mathrm{~A}\) SenseFET power switch, 450 V active off-line startup FET, duty cycle controlled oscillator, current limiting comparator with a programmable threshold and leading edge blanking, latching pulse width modulator for double pulse suppression, high gain error amplifier, and a trimmed internal bandgap reference. Protective features include cycle-by-cycle current limiting, input undervoltage lockout with hysteresis, output overvoltage protection, and thermal shutdown. This device is available in a 16-lead dual-in-line and wide body surface mount packages.
- On-Chip 700 V, 1.0 A SenseFET Power Switch
- Rectified 240 Vac Line Source Operation
- On-Chip 450 V Active Off-Line Startup FET
- Latching PWM for Double Pulse Suppression
- Cycle-By-Cycle Current Limiting
- Input Undervoltage Lockout with Hysteresis
- Output Overvoltage Protection Comparator
- Trimmed Internal Bandgap Reference
- Internal Thermal Shutdown




P SUFFIX PLASTIC PACKAGE CASE 648E (DIP-16)


\section*{MC33363}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline \(\begin{array}{l}\text { Power Switch (Pin 16) } \\
\text { Drain Voltage } \\
\text { Drain Current }\end{array}\) & \(V_{\text {DS }}\) & 700 & V \\
\hline \(\begin{array}{l}\text { Startup Input Voltage (Pin 1, Note 1) } \\
\text { Pin 3 }=\text { Gnd } \\
\text { Pin 3 } \leq 1000 ~\end{array} \mathrm{~F}\) to ground
\end{tabular}\()\)

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{C}_{\text {Pin }} 8=1.0 \mu \mathrm{~F}\right.\), for typical values \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), for min/max values \(T_{J}\) is the operating junction temperature range that applies (Note 2), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REGULATOR (Pin 8)} \\
\hline Output Voltage ( \(10=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {reg }}\) & 5.5 & 6.5 & 7.5 & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\) to 40 V ) & Regline & - & 30 & 500 & mV \\
\hline Load Regulation ( \(10=0 \mathrm{~mA}\) to 10 mA ) & Regload & - & 44 & 200 & mV \\
\hline Total Output Variation over Line, Load, and Temperature & \(\mathrm{V}_{\text {reg }}\) & 5.3 & - & 8.0 & V \\
\hline \multicolumn{6}{|l|}{OSCILLATOR (Pin 7)} \\
\hline  & fosc & \[
\begin{aligned}
& 260 \\
& 255 \\
& 60 \\
& 59
\end{aligned}
\] & 285
-
67.5 & \[
\begin{aligned}
& 310 \\
& 315 \\
& \\
& 75 \\
& 76
\end{aligned}
\] & kHz \\
\hline Frequency Change with Voltage ( \(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\) to 40 V ) & \(\Delta \mathrm{fosc} / \Delta \mathrm{V}\) & - & 0.1 & 2.0 & kHz \\
\hline
\end{tabular}

ERROR AMPLIFIER (Pins 9, 10)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Voltage Feedback Input Threshold & \(V_{\text {FB }}\) & 2.52 & 2.6 & 2.68 & V \\
\hline Line Regulation ( \(\mathrm{VCC}=20 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\) ) & Regline & - & 0.6 & 5.0 & mV \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=2.6 \mathrm{~V}\) ) & IIB & - & 20 & 500 & nA \\
\hline Open Loop Voltage Gain ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & AVOL & - & 82 & - & dB \\
\hline Gain Bandwidth Product ( \(\mathrm{f}=100 \mathrm{kHz}, \mathrm{TJ}=25^{\circ} \mathrm{C}\) ) & GBW & - & 1.0 & - & MHz \\
\hline
\end{tabular}

NOTES: 1. Maximum power dissipation limits must be observed.
2. Tested Junction temperature range for the МСЗ3363:
\(\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}\)
\(T_{\text {high }}=+125^{\circ} \mathrm{C}\)

\section*{MC33363}

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{C}_{\mathrm{Pin}} 8=1.0 \mu \mathrm{~F}\right.\), for typical values \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{J}\) is the operating junction temperature range that applies (Note 2), unless otherwise noted.)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline ERROR AMPLIFIER (Pins 9, 10) & & \\
\hline Output Voltage Swing & & & & & \\
High State (ISource \(=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{FB}}<2.0 \mathrm{~V}\) ) & \(\mathrm{V}_{\mathrm{OH}}\) & 4.0 & 5.3 & - & V \\
Low State (ISink \(=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{FB}}>3.0 \mathrm{~V}\) ) & - & 0.2 & 0.35 & \\
\hline
\end{tabular}

OVERVOLTAGE DETECTION (Pin 11)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Threshold Voltage & \(V_{\text {th }}\) & 2.47 & 2.6 & 2.73 & \(V\) \\
\hline Input Bias Current \(\left(V_{\text {in }}=2.6 \mathrm{~V}\right)\) & \(I_{\mathrm{B}}\) & - & 100 & 500 & nA \\
\hline
\end{tabular}

PWM COMPARATOR (Pins 7, 9)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Duty Cycle Maximum ( \(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\) ) Minimum ( \(\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) ) & \[
\begin{aligned}
& \mathrm{DC}_{(\text {max })} \\
& \mathrm{DC}_{(\text {min })}
\end{aligned}
\] & 48
- & \[
\begin{gathered}
50 \\
0
\end{gathered}
\] & \[
\begin{gathered}
52 \\
0
\end{gathered}
\] & \% \\
\hline \multicolumn{6}{|l|}{POWER SWITCH (Pin 16)} \\
\hline \[
\begin{aligned}
& \text { Drain-Source On-State Resistance }(\mathrm{ID}=200 \mathrm{~mA}) \\
& T_{J}=25^{\circ} \mathrm{C} \\
& T_{J}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & \(\mathrm{R}_{\mathrm{DS} \text { (on) }}\) & - & & \[
\begin{aligned}
& 17 \\
& 32
\end{aligned}
\] & \(\Omega\) \\
\hline Drain-Source Off-State Leakage Current (VDS \(=700 \mathrm{~V}\) ) & \({ }^{\prime}\) (off) & - & 0.2 & 50 & \(\mu \mathrm{A}\) \\
\hline Rise Time & \(\mathrm{tr}_{r}\) & - & 50 & - & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{f}}\) & - & 50 & - & ns \\
\hline \multicolumn{6}{|l|}{OVERCURRENT COMPARATOR (Pin 16)} \\
\hline Current Limit Threshold ( \(\mathrm{RT}_{\mathrm{T}}=10 \mathrm{k}\) ) & 1 lim & 0.5 & 0.72 & 0.9 & A \\
\hline \multicolumn{6}{|l|}{STARTUP CONTROL (Pin 1)} \\
\hline \[
\begin{aligned}
& \text { Peak Startup Current }\left(\mathrm{V}_{\text {in }}=400 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=\left(\mathrm{V}_{\text {th }}(\mathrm{on})-0.2 \mathrm{~V}\right)
\end{aligned}
\] & Istart & - & \[
\begin{aligned}
& 20 \\
& 6.0
\end{aligned}
\] & - & mA \\
\hline Off-State Leakage Current ( \(\mathrm{V}_{\text {in }}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}\) ) & \({ }^{\prime}\) (off) & - & 40 & 200 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{6}{|l|}{UNDERVOLTAGE LOCKOUT (Pin 3)} \\
\hline Startup Threshold (VCC Increasing) & \(\mathrm{V}_{\text {th(on) }}\) & 11 & 15.2 & 18 & V \\
\hline Minimum Operating Voltage After Turn-On & \(\mathrm{V}_{\mathrm{CC}(\text { min })}\) & 7.5 & 9.5 & 11.5 & V \\
\hline \multicolumn{6}{|l|}{TOTAL DEVICE (Pin 3)} \\
\hline \begin{tabular}{l}
Power Supply Current \\
Startup (VCC \(=10 \mathrm{~V}\), Pin 1 Open) Operating
\end{tabular} & Icc & - & 0.25
3.2 & \[
\begin{aligned}
& 0.5 \\
& 5.0
\end{aligned}
\] & mA \\
\hline
\end{tabular}

Figure 1. Oscillator Frequency versus Timing Resistor


Figure 2. Power Switch Peak Drain Current


Figure 3. Oscillator Charge/Discharge
Current versus Timing Resistor


Figure 5. Error Amp Open Loop Gain and Phase versus Frequency


Figure 7. Error Amplifier Small Signal Transient Response

\(1.0 \mu \mathrm{~s} / \mathrm{DV}\)

Figure 4. Maximum Output Duty Cycle versus Timing Resistor Ratio


Figure 6. Error Amp Output Saturation Voltage versus Load Current


Figure 8. Error Amplifier Large Signal Translent Response

\(1.0 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 9. Regulator Output Voltage Change versus Source Current


Figure 11. Power Switch Drain-Source


Figure 13. Supply Current versus Supply Voltage


Figure 10. Peak Startup Current versus Power Supply Voltage


Figure 12. Power Switch Drain-Source Capacitance versus Voltage


Figure 14. DW and \(P\) Suffix Transient Thermal Resistance


Figure 15. DW Suffix (SOP-16L) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


Figure 16. P Suffix (DIP-16) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Function & Description \\
\hline 1 & Startup Input & This pin connects directly to the rectified ac line voltage source. Internally Pin 1 is tied to the drain of a high voltage startup MOSFET. During startup, the MOSFET supplies internal bias, and charges an external capacitor that connects from the \(\mathrm{V}_{\mathrm{CC}}\) pin to ground. \\
\hline 2 & - & This pin has been omitted for increased spacing between the rectified ac line voltage on Pin 1 and the \(\mathrm{V}_{\mathrm{CC}}\) potential on Pin 3. \\
\hline 3 & \(V_{\text {CC }}\) & This is the positive supply voltage input. During startup, power is supplied to this input from Pin 1. When \(V_{C C}\) reaches the UVLO upper threshold, the startup MOSFET turns off and power is supplied from an auxiliary transformer winding. \\
\hline 4, 5, 12, 13 & Ground & These pins are the control circuit grounds. They are part of the IC lead frame and provide a thermal path from the die to the printed circuit board. \\
\hline 6 & \(\mathrm{R}_{\mathrm{T}}\) & Resistor RT connects from this pin to ground. The value selected will program the Current Limit Comparator threshold and affect the Oscillator frequency. \\
\hline 7 & \(\mathrm{C}_{T}\) & Capacitor \(\mathrm{C}_{\mathrm{T}}\) connects from this pin to ground. The value selected, in conjunction with resistor \(\mathrm{R}_{\mathrm{T}}\), programs the Oscillator frequency. \\
\hline 8 & Regulator Output & This 6.5 V output is available for biasing external circuitry. It requires an external bypass capacitor of at least \(1.0 \mu \mathrm{~F}\) for stability. \\
\hline 9 & Compensation & This pin is the Error Amplifier output and is made available for loop compensation. It can be used as an input to directly control the PWM Comparator. \\
\hline 10 & Voltage Feedback Input & This is the inverting input of the Error Amplifier. It has a 2.6 V threshold and normally connects through a resistor divider to the converter output, or to a voltage that represents the converter output. \\
\hline 11 & \begin{tabular}{l}
Overvoltage \\
Protection Input
\end{tabular} & This input provides runaway output voltage protection due to an external component or connection failure in the control loop feedback signal path. It has a 2.6 V threshold and normally connects through a resistor divider to the converter output, or to a voltage that represents the converter output. \\
\hline 14, 15 & - & These pins have been omitted for increased spacing between the high voltages present on the Power Switch Drain, and the ground potential on Pins 12 and 13. \\
\hline 16 & Power Switch Drain & This pin is designed to directly drive the converter transformer and is capable of switching a maximum of 700 V and 1.0 A . \\
\hline
\end{tabular}

MC33363
Figure 17. Representative Block Diagram


Figure 18. Timing Diagram


\section*{OPERATING DESCRIPTION}

\section*{Introduction}

The MC33363 represents a new higher level of integration by providing all the active high voltage power, control, and protection circuitry required for implementation of a flyback or forward converter on a single monolithic chip. This device is designed for direct operation from a rectified 240 Vac line source and requires a minimum number of external components to implement a complete converter. A description of each of the functional blocks is given below, and the representative block and timing diagrams are shown in Figures 17 and 18.

\section*{Oscillator and Current Mirror}

The oscillator frequency is controlled by the values selected for the timing components \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). Resistor \(\mathrm{R}_{\mathrm{T}}\) programs the oscillator charge/discharge current via the Current Mirror 4 I output, Figure 3. Capacitor \(\mathrm{C}_{\boldsymbol{T}}\) is charged and discharged by an equal magnitude internal current source and sink. This generates a symmetrical 50 percent duty cycle waveform at Pin 7, with a peak and valley threshold of 2.6 V and 0.6 V respectively. During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates an internal blanking pulse that holds the inverting input of the AND gate Driver high. This causes the Power Switch gate drive to be held in a low state, thus producing a well controlled amount of output deadtime. The amount of deadtime is relatively constant with respect to the oscillator frequency when operating below 1.0 MHz . The maximum Power Switch duty cycle at Pin 16 can be modified from the internal \(50 \%\) limit by providing an additional charge or discharge current path to \(\mathrm{CT}_{\mathrm{T}}\), Figure 19. In order to increase the maximum duty cycle, a discharge current resistor \(\mathrm{R}_{\mathrm{D}}\) is connected from Pin 7 to ground. To decrease the maximum duty cycle, a charge current resistor \(\mathrm{R}_{\mathrm{C}}\) is connected from Pin 7 to the Regulator Output. Figure 4 shows an obtainable range of maximum output duty cycle versus the ratio of either \(R_{C}\) or \(R_{D}\) with respect to \(R_{T}\).

Figure 19. Maximum Duty Cycle Modification


The formula for the charge/discharge current along with the oscillator frequency are given below. The frequency formula is a first order approximation and is accurate for \(\mathrm{C}_{\mathrm{T}}\) values greater than 500 pF . For smaller values of \(\mathrm{C}_{\mathrm{T}}\), refer to Figure 1. Note that resistor \(\mathrm{R}_{\mathrm{T}}\) also programs the Current Limit Comparator threshold.
\[
\mathrm{I}_{\mathrm{chg} / \mathrm{dscg}}=\frac{5.4}{\mathrm{R}_{\mathrm{T}}} \quad \mathrm{f} \approx \frac{\mathrm{I}_{\mathrm{chg} / \mathrm{dscg}}}{4 \mathrm{C}_{\mathrm{T}}}
\]

\section*{PWM Comparator and Latch}

The pulse width modulator consists of a comparator with the oscillator ramp voltage applied to the non-inverting input, while the error amplifier output is applied into the inverting input. The Oscillator applies a set pulse to the PWM Latch while \(\mathrm{C}_{\mathrm{T}}\) is discharging, and upon reaching the valley voltage, Power Switch conduction is initiated. When CT charges to a voltage that exceeds the error amplifier output, the PWM Latch is reset, thus terminating Power Switch conduction for the duration of the oscillator ramp-up period. This PWM Comparator/Latch combination prevents multiple output pulses during a given oscillator clock cycle. The timing diagram shown in Figure 18 illustrates the Power Switch duty cycle behavior versus the Compensation voltage.

\section*{Current Limit Comparator and Power Switch}

The MC33363 uses cycle-by-cycle current limiting as a means of protecting the output switch transistor from overstress. Each on-cycle is treated as a separate situation. Current limiting is implemented by monitoring the output switch current buildup during conduction, and upon sensing an overcurrent condition, immediately turning off the switch for the duration of the oscillator ramp-up period.

The Power Switch is constructed as a SenseFET allowing a virtually lossless method of monitoring the drain current. It consists of a total of 1780 cells, of which 46 are connected to a \(9.0 \Omega\) ground-referenced sense resistor. The Current Sense Comparator detects if the voltage across the sense resistor exceeds the reference level that is present at the inverting input. If exceeded, the comparator quickly resets the PWM Latch, thus protecting the Power Switch. The current limit reference level is generated by the 2.25 I output of the Current Mirror. This current causes a reference voltage to appear across the \(450 \Omega\) resistor. This voltage level, as well as the Oscillator charge/discharge current are both set by resistor \(\mathrm{R}_{\mathrm{T}}\). Therefore when selecting the values for \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}, \mathrm{R}_{\boldsymbol{T}}\) must be chosen first to set the Power Switch peak drain current, while \(\mathrm{CT}_{\mathrm{T}}\) is chosen second to set the desired Oscillator frequency. A graph of the Power Switch peak drain current versus \(\mathrm{R}_{\mathrm{T}}\) is shown in Figure 2 with the related formula below.
\[
I_{p k}=8.8\left(\frac{R_{T}}{1000}\right)-1.077
\]

The Power Switch is designed to directly drive the converter transformer and is capable of switching a maximum of 700 V and 1.0 A. Proper device voltage snubbing and heatsinking are required for reliable operation.

A Leading Edge Blanking circuit was placed in the current sensing signal path. This circuit prevents a premature reset of the PWM Latch. The premature reset is generated each time the Power Switch is driven into conduction. It appears as a narrow voltage spike across the current sense resistor, and is due to the MOSFET gate to source capacitance, transformer interwinding capacitance, and output rectifier recovery time. The Leading Edge Blanking circuit has a dynamic behavior in that it masks the current signal until the Power Switch turn-on transition is completed. The current limit propagation delay time is typically 233 ns. This time is measured from when an overcurrent appears at the Power Switch drain, to the beginning of turn-off.

\section*{Error Amplifier}

An fully compensated Error Amplifier with access to the inverting input and output is provided for primary side voltage sensing, Figure 17. It features a typical dc voltage gain of 82 dB , and a unity gain bandwidth of 1.0 MHz with 78 degrees of phase margin, Figure 5. The noninverting input is internally biased at \(2.6 \mathrm{~V} \pm 3.1 \%\) and is not pinned out. The Error Amplifier output is pinned out for external loop compensation and as a means for directly driving the PWM Comparator The output was designed with a limited sink current capability of \(270 \mu \mathrm{~A}\), allowing it to be easily overridden with a pull-up resistor. This is desirable in applications that require secondary side voltage sensing, Figure 20. In this application, the Voltage Feedback Input is connected to the Regulator Output. This disables the Error Amplifier by placing its output into the sink state, allowing the optocoupler transistor to directly control the PWM Comparator.

\section*{Overvoltage Protection}

An Overvoltage Protection Comparator is included to eliminate the possibility of runaway output voltage. This condition can occur if the control loop feedback signal path is broken due to an external component or connection failure. The comparator is normally used to monitor the primary side VCC voltage. When the 2.6 V threshold is exceeded, it will immediately turn off the Power Switch, and protect the load from a severe overvoltage condition. This input can also be driven from external circuitry to inhibit converter operation.

\section*{Undervoltage Lockout}

An Undervoltage Lockout comparator has been incorporated to guarantee that the integrated circuit has sufficient voltage to be fully functional before the output stage is enabled. The UVLO comparator monitors the VCC voltage at Pin 3 and when it exceeds 14.5 V , the reset signal is removed from the PWM Latch allowing operation of the Power Switch. To prevent erratic switching as the threshold is crossed, 5.0 V of hysteresis is provided.

\section*{Startup Control}

An internal Startup Control circuit with a high voltage enhancement mode MOSFET is included within the MC33363. This circuitry allows for increased converter efficiency by eliminating the external startup resistor, and its associated power dissipation, commonly used in most off-line converters that utilize a UC3842 type of controller. Rectified ac line voltage is applied to the Startup Input, Pin 1. This causes the MOSFET to enhance and supply internal bias as well as charge current to the \(V_{C C}\) bypass capacitor that connects from Pin 3 to ground. When \(V_{C C}\) reaches the UVLO upper threshold of 15.2 V , the IC commences operation and the startup MOSFET is turned off. Operating bias is now derived from the auxiliary transformer winding, and all of the device power is efficiently converted down from the rectified ac line.

The startup MOSFET will provide an initial peak current of 20 mA , Figure 10, which decreases rapidly as \(\mathrm{V}_{\mathrm{CC}}\) and the die temperature rise. The steady state current will self limit in the range of 8.0 mA with \(\mathrm{V}_{\mathrm{CC}}\) shorted to ground. The startup MOSFET is rated at a maximum of 400 V with \(\mathrm{V}_{\mathrm{CC}}\) shorted to ground, and 500 V when charging a \(\mathrm{V}_{\mathrm{CC}}\) capacitor of \(1000 \mu \mathrm{~F}\) or less.

\section*{Regulator}

A low current 6.5 V regulated output is available for biasing the Error Amplifier and any additional control system circuitry. It is capable of up to 10 mA and has short-circuit protection. This output requires an external bypass capacitor of at least \(1.0 \mu \mathrm{~F}\) for stability.

\section*{Thermal Shutdown and Package}

Internal thermal circuitry is provided to protect the Power Switch in the event that the maximum junction temperature is exceeded. When activated, typically at \(155^{\circ} \mathrm{C}\), the Latch is forced into a 'reset' state, disabling the Power Switch. The Latch is allowed to 'set' when the Power Switch temperature falls below \(145^{\circ} \mathrm{C}\). This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a substitute for proper heatsinking.

The MC33363 is contained in a heatsinkable plastic dual-in-line package in which the die is mounted on a special heat tab copper alloy lead frame. This tab consists of the four center ground pins that are specifically designed to improve thermal conduction from the die to the circuit board. Figures 15 and 16 show a simple and effective method of utilizing the printed circuit board medium as a heat dissipater by soldering these pins to an adequate area of copper foil. This permits the use of standard layout and mounting practices while having the ability to halve the junction to air thermal resistance. The examples are for a symmetrical layout on a single-sided board with two ounce per square foot of copper. Figure 22 shows a practical example of a printed circuit board layout that utilizes the copper foil as a heat dissipater. Note that a jumper was added to the layout from Pins 8 to 10 in order to enhance the copper area near the device for improved thermal conductivity. The application circuit requires two ounce copper foil in order to obtain 8.0 watts of continuous output power at room temperature.

\section*{MC33363}

Figure 20. 8.0 W Off-Line Converter


Figure 21. Converter Test Data
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=92 \mathrm{Vac}\) to \(276 \mathrm{Vac}, \mathrm{IO} 1.6 \mathrm{~A}\) & \(\Delta=1.0 \mathrm{mV}\) \\
\hline \multirow{2}{*}{ Load Regulation } & \(\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{I} \mathrm{O}=0.4 \mathrm{~A}\) to 1.6 A & \(\Delta=4.0 \mathrm{mV}\) \\
\cline { 2 - 3 } & \(\mathrm{V}_{\text {in }}=230 \mathrm{Vac}, \mathrm{IO}=0.4 \mathrm{~A}\) to 1.6 A & \(\Delta=4.0 \mathrm{mV}\) \\
\hline \multirow{2}{*}{ Output Ripple } & \(\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{I} \mathrm{O}=1.6 \mathrm{~A}\) & Triangular \(=2.0 \mathrm{mVpp}\), Spike \(=12 \mathrm{mVpp}\) \\
\cline { 2 - 3 } & \(\mathrm{V}_{\text {in }}=230 \mathrm{Vac}, \mathrm{I} \mathrm{O}=1.6 \mathrm{~A}\) & Triangular \(=2.0 \mathrm{mVpp}\), Spike \(=12 \mathrm{mVpp}\) \\
\hline \multirow{2}{*}{ Efficiency } & \(\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{I} \mathrm{O}=1.6 \mathrm{~A}\) & \(78.6 \% *\) \\
\cline { 2 - 3 } & \(\mathrm{~V}_{\text {in }}=230 \mathrm{Vac}, \mathrm{IO}=1.6 \mathrm{~A}\) & \(75.6 \%\) \\
\hline
\end{tabular}

This data was taken with the components listed below mounted on the printed circuit board shown in Figure 22.
* With MBR2535CTL, 79.8\% efficiency. PCB layout modification is required to use this rectifier.

For high efficiency and small circuit board size, the Sanyo Os-Con capacitors are recommended for C8, C9, C10 and C11.
C8, C9, C10 = Sanyo Os-Con \#6SA330M, \(330 \mu \mathrm{~F} 6.3 \mathrm{~V}\).
C11 = Sanyo Os-Con \#10SA220M, \(220 \mu \mathrm{~F} 10 \mathrm{~V}\).
L1 = Coilcraft S5088-A, \(5.0 \mu \mathrm{H}, 0.11 \Omega\).
T1 = Coilcraft S5502-A
Primary: 77 turns of \# 28 AWG, Pin \(1=\) start, Pin \(8=\) finish.
Two layers \(0.002^{\prime \prime}\) Mylar tape.
Secondary: 5 turns of \# 22 AWG, 2 strands bifiliar wound, Pin \(5=\) start, Pin \(4=\) finish.
Two layers \(0.002^{\prime \prime}\) Mylar tape.
Auxiliary: 13 turns of \# 28 AWG wound in center of bobbin, Pin \(2=\) start, \(\operatorname{Pin} 7=\) finish.
Two layers 0.002" Mylar tape.
Gap: \(0.006^{\prime \prime}\) total for a primary inductance (Lp) of 1.0 mH .
Core and Bobbin: Coilcraft PT1950, E187, 3F3 material.

Figure 22. Printed Circuit Board and Component Layout (Circuit of Figure 20)

(Bottom View)

\section*{Product Preview High Voltage Switching Regulator}

The MC33363A is a monolithic high voltage switching regulator that is specifically designed to operate from a rectified 240 Vac line source. This integrated circuit features an on-chip \(700 \mathrm{~V} / 1.5\) A SenseFET power switch, 450 V active off-line startup FET, duty cycle controlled oscillator, current limiting comparator with a programmable threshold and leading edge blanking, latching pulse width modulator for double pulse suppression, high gain error amplifier, and a trimmed internal bandgap reference. Protective features include cycle-by-cycle current limiting, input undervoltage lockout with hysteresis, output overvoltage protection, and thermal shutdown. This device is available in a 16-lead dual-in-line and wide body surface mount packages.
- Enhanced Power Capability Over MC33363
- On-Chip 700 V, 1.5 A SenseFET Power Switch
- Rectified 240 Vac Line Source Operation
- On-Chip 450 V Active Off-Line Startup FET
- Latching PWM for Double Pulse Suppression
- Cycle-By-Cycle Current Limiting
- Input Undervoltage Lockout with Hysteresis
- Output Overvoltage Protection Comparator
- Trimmed Internal Bandgap Reference
- Internal Thermal Shutdown


\section*{HIGH VOLTAGE OFF-LINE SWITCHING REGULATOR}

SEMICONDUCTOR TECHNICAL DATA


DW SUFFIX PLASTIC PACKAGE CASE 751N (SOP-16L)


P SUFFIX PLASTIC PACKAGE CASE 648E (DIP-16)


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33363ADW & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{J}}=-25^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & SOP-16L \\
\cline { 1 - 2 } MC33363AP & DIP-16 \\
\hline
\end{tabular}


Product Preview Critical Conduction SMPS Controller

The MC33364 series are variable frequency SMPS controllers that operate in the critical conduction mode. They are optimized for low power, high density power supplies requiring minimum board area, reduced component count, and low power dissipation. Each narrow body SOIC package provides a small footprint. Integration of the high voltage startup saves approximately 0.7 W of power compared to resistor bootstrapped circuits.

Each MC33364 features an on-board reference, UVLO function, a watchdog timer to initiate output switching, a zero current detector to ensure critical conduction operation, a current sensing comparator, leading edge blanking, and a CMOS driver. Protection features include the ability to shut down switching, and cycle-by-cycle current limiting.

The MC33364D1 is available in a surface mount SO-8 package. It has an internal 144 kHz frequency clamp. For loads which have a low power operating condition, the frequency clamp limits the maximum operating frequency, preventing excessive switching losses and EMI radiation.

The MC33364D2 is available in the SO-8 package without an internal frequency clamp.

The MC33364D is available in the SO-16 package. It has an internal 144 kHz frequency clamp which is pinned out, so that the designer can adjust the clamp frequency by connecting appropriate values of resistance and capacitance.
- Lossless Off-Line Startup
- Leading Edge Blanking for Noise Immunity
- Watchdog Timer to Initiate Switching
- Minimum Number of Support Components
- Shutdown Capability
- Over Temperature Protection
- Optional Frequency Clamp

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC33364D1 & \multirow{3}{*}{\(\mathrm{T}_{\mathrm{J}}=-25^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & SO-8 \\
\hline MC33364D2 & & SO-8 \\
\hline MC33364D & & SO-16 \\
\hline
\end{tabular}


\section*{CRITICAL CONDUCTION SMPS CONTROLLER}

\section*{SEMICONDUCTOR} TECHNICAL DATA


\section*{PIN CONNECTIONS}

(Top View)

MC33364D

(Top View)

\section*{Advance Information}

The MC33368 is an active power factor controller that functions as a boost preconverter in off-line power supply applications. MC33368 is optimized for low power, high density power supplies requiring a minimum board area, reduced component count and low power dissipation. The narrow body SOIC package provides a small footprint. Integration of the high voltage startup saves approximately 0.7 W of power compared to resistor bootstrapped circuits.

The MC33368 features a watchdog timer to initiate output switching, a one quadrant multiplier to force the line current to follow the instantaneous line voltage a zero current detector to ensure critical conduction operation, a transconductance error amplifier, a current sensing comparator, a 5.0 V reference, an undervoltage lockout (UVLO) circuit which monitors the VCC supply voltage and a CMOS driver for driving MOSFETs. The MC33368 also includes a programmable output switching frequency clamp. Protection features include an output overvoltage comparator to minimize overshoot, a restart delay timer and cycle-by-cycle current limiting.
- Lossless Off-Line Startup
- Output Overvoltage Comparator
- Leading Edge Blanking (LEB) for Noise Immunity
- Watchdog Timer to Initiate Switching
- Restart Delay Timer

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33368D & \(\mathrm{TJ}_{\mathrm{J}}=-25^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & \(\mathrm{SO}-16\) \\
\hline
\end{tabular}

\section*{HIGH VOLTAGE GREENLINETM POWER FACTOR CONTROLLER} SEMICONDUCTOR TECHNICAL DATA


\section*{PIN CONNECTIONS}

(Top View)


\section*{MC33368}

MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage (Transient) & \(\mathrm{V}_{\mathrm{CC}}\) & 20 & V \\
\hline Power Supply Voltage (Operating) & \(\mathrm{V}_{\mathrm{CC}}\) & 16 & V \\
\hline Line Voltage & \(V_{\text {Line }}\) & 500 & V \\
\hline Current Sense, Multiplier, Compensation, Voltage Feedback, Restart Delay and Zero Current Input Voltage & \(V_{\text {in1 }}\) & -1.0 to +10 & V \\
\hline LEB Input, Frequency Clamp Input & \(V_{\text {in2 }}\) & -1.0 to +20 & V \\
\hline Zero Current Detect Input & lin & \(\pm 5.0\) & mA \\
\hline Restart Diode Current & lin & 5.0 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
D Suffix, Plastic Package Case 626 \\
Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \\
\(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 450 \\
& 178
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(T_{J}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -25 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.
ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=14.5 \mathrm{~V}\right.\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{\mathrm{J}}=-25\) to \(+125^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ERROR AMPLIFIER} \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=5.0 \mathrm{~V}\) ) & IIB & - & 0 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage ( \(\mathrm{V}_{\text {comp }}=3.0 \mathrm{~V}\) ) & \(\mathrm{V}_{10}\) & - & 2.0 & 50 & mV \\
\hline Transconductance ( \(\mathrm{V}_{\text {Comp }}=3.0 \mathrm{~V}\) ) & 9m & 30 & 51 & 80 & \(\mu \mathrm{mho}\) \\
\hline \begin{tabular}{l}
Output Source ( \(\mathrm{V}_{\mathrm{FB}}=4.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{Comp}}=3.0 \mathrm{~V}\) ) \\
Output Sink ( \(\mathrm{V}_{\mathrm{FB}}=5.4 \mathrm{~V}, \mathrm{~V}_{\text {Comp }}=3.0 \mathrm{~V}\) )
\end{tabular} & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 9.0
\end{aligned}
\] & \[
\begin{aligned}
& 17.5 \\
& 17.5
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

OVERVOLTAGE COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline Voltage Feedback Input Threshold & \(\mathrm{V}_{\mathrm{FB}}(\mathrm{OV})\) & \(1.07 \mathrm{~V}_{\mathrm{FB}}\) & \(1.084 \mathrm{~V}_{\mathrm{FB}}\) & \(1.1 \mathrm{~V}_{\mathrm{FB}}\) & V \\
\hline Propagation Time to Output & \(\mathrm{T}_{\mathrm{P}}\) & - & 705 & - & ns \\
\hline
\end{tabular}

\section*{MULTIPLIER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current, \(\mathrm{V}_{\text {Mult }}\left(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\right.\) ) & IIB & - & -0.2 & -1.0 & \(\mu \mathrm{A}\) \\
\hline Input Threshold, \(\mathrm{V}_{\text {comp }}\) & \(\mathrm{V}_{\mathrm{th}(\mathrm{M})}\) & 1.8 & 2.1 & 2.4 & V \\
\hline Dynamic Input Voltage Range Multiplier Input Compensation & \begin{tabular}{l}
\(\mathrm{V}_{\text {Mult }}\) \\
\(V_{\text {Comp }}\)
\end{tabular} & \[
\begin{gathered}
0 \text { to } 2.5 \\
V_{\text {th }(M)} \text { to } \\
\left(\mathrm{V}_{\mathrm{th}(\mathrm{M})}+1.0\right) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to } 3.5 \\
\mathrm{~V}_{\text {th }(M)} \text { to } \\
\left(\mathrm{V}_{\mathrm{th}(\mathrm{M})}+2.0\right) \\
\hline
\end{gathered}
\] & - & v \\
\hline \[
\begin{aligned}
& \text { Multiplier Gain }\left(\mathrm{V}_{\text {Mult }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {Comp }}=\mathrm{V}_{\mathrm{th}(\mathrm{M})}+1.0 \mathrm{~V}\right) \\
& \left\{\begin{array}{l}
\mathrm{V}=\frac{\mathrm{V}_{\mathrm{CS}} \text { Threshold }}{\mathrm{v}_{\text {Mult }}\left(\mathrm{v}_{\text {Comp }}-\mathrm{v}_{\mathrm{th}(\mathrm{M})}\right)}
\end{array}\right)
\end{aligned}
\] & K & 0.25 & 0.51 & 0.75 & 1/V \\
\hline
\end{tabular}

\section*{VOLTAGE REFERENCE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Voltage Reference ( \(\mathrm{IO}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {ref }}\) & 4.95 & 5.0 & 5.05 & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 16 V ) & Regline & - & 5.0 & 100 & mV \\
\hline Load Regulation ( \(\mathrm{I}=0-5.0 \mathrm{~mA}\) ) & Regload & - & 5.0 & 100 & mV \\
\hline Total Output Variation Over Line, Load and Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.8 & - & 5.2 & V \\
\hline Maximum Output Current & 10 & 5.0 & 10 & - & mA \\
\hline Reference Undervoltage Lockout Threshold & \(\mathrm{V}_{\text {th }}\) & - & 4.5 & - & V \\
\hline \multicolumn{6}{|c|}{-} \\
\hline MOTOROLA ANALOG IC DEVICE DATA & & & & & 3-37 \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{C C}=14.5 \mathrm{~V}\right.\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} /\) max values \(\mathrm{T}_{\mathrm{J}}=-25\) to \(+125^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ZERO CURRENT DETECTOR} \\
\hline Input Threshold Voltage ( \(\mathrm{V}_{\text {in }}\) Increasing) & \(\mathrm{V}_{\text {th }}\) & 1.0 & 1.2 & 1.4 & V \\
\hline Hysteresis ( \(\mathrm{V}_{\text {in }}\) Decreasing) & \(\mathrm{V}_{\mathrm{H}}\) & 100 & 200 & 300 & mV \\
\hline Delay to Output & \(\mathrm{T}_{\mathrm{pd}}\) & - & 127 & - & ns \\
\hline
\end{tabular}

CURRENT SENSE COMPARATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{CS}}=0\) to 2.0 V ) & IIB & - & 0.2 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage ( \(\mathrm{V}_{\text {Mult }}=-0.2 \mathrm{~V}\) ) & \(\mathrm{V}_{1 \mathrm{O}}\) & - & 4.0 & 50 & mV \\
\hline \[
\begin{aligned}
& \text { Maximum Current Sense Input Threshold }\left(\mathrm{V}_{\text {Comp }}=5.0 \mathrm{~V}\right. \text {, } \\
& \left.\mathrm{V}_{\text {Mult }}=5.0 \mathrm{~V}\right)
\end{aligned}
\] & \(\mathrm{V}_{\text {th (max }}\) & 1.3 & 1.5 & 1.8 & V \\
\hline \[
\begin{gathered}
\text { Delay to Output }\left(\mathrm{V}_{\mathrm{LEB}}=12 \mathrm{~V}, \mathrm{~V}_{\text {Comp }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {Mult }}=5.0 \mathrm{~V}\right) \\
\left(\mathrm{V}_{\mathrm{CS}}=0 \text { to } 5.0 \mathrm{~V} \text { Step, } \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\right)
\end{gathered}
\] & tPHL(in/out) & 50 & 270 & 425 & ns \\
\hline
\end{tabular}

\section*{FREQUENCY CLAMP}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Frequency Clamp Input Threshold & \(\mathrm{V}_{\mathrm{th}}(\mathrm{FC})\) & 1.9 & 2.0 & 2.1 & V \\
\hline Frequency Clamp Capacitor Reset Current \(\left(\mathrm{V}_{\text {FC }}=0.5 \mathrm{~V}\right)\) & \(\mathrm{I}_{\text {reset }}\) & 0.5 & 1.7 & 4.0 & mA \\
\hline Frequency Clamp Disable Voltage & \(\mathrm{V}_{\mathrm{DFC}}\) & - & 7.3 & 8.0 & V \\
\hline
\end{tabular}

DRIVE OUTPUT
\begin{tabular}{|l|c|c|c|c|c|}
\hline Source Resistance (Drive \(\left.=0 \mathrm{~V}, \mathrm{~V}_{\text {Gate }}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}\right)\) & \(\mathrm{R}_{\mathrm{OH}}\) & 4.0 & 8.6 & 20 & \(\Omega\) \\
Sink Resistance \(\left(\right.\) Drive \(\left.=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{Gate}}=1.0 \mathrm{~V}\right)\) & \(\mathrm{R}_{\mathrm{OL}}\) & 4.0 & 7.2 & 20 & \\
\hline Output Voltage Rise Time \((25 \%-75 \%)\left(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\right)\) & \(\mathrm{t}_{\mathrm{r}}\) & - & 55 & 200 & ns \\
\hline Output Voltage Fall Time \((75 \%-25 \%)\left(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\right)\) & \(\mathrm{t}_{\mathrm{f}}\) & - & 70 & 200 & ns \\
\hline Output Voltage in Undervoltage \(\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}, \mathrm{I}_{\text {Sink }}=1.0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{O}(\mathrm{UV})}\) & - & 0.01 & 0.25 & V \\
\hline
\end{tabular}

LEADING EDGE BLANKING
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Bias Current & lbias & - & 0.1 & 0.5 & \(\mu \mathrm{~A}\) \\
\hline Threshold (as Offset from \(\mathrm{V}_{\mathrm{CC}}\) ) (V \(\mathrm{V}_{\text {LEB }}\) Increasing) & \(\mathrm{V}_{\text {LEB }}\) & 1.0 & 2.25 & 2.75 & V \\
\hline Hysteresis ( \(\mathrm{V}_{\text {LEB }}\) Decreasing) & \(\mathrm{V}_{\mathrm{H}}\) & 100 & 270 & 500 & mV \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT
\begin{tabular}{|l|c|c|c|c|c|}
\hline Startup Threshold ( \(\mathrm{V}_{\mathrm{CC}}\) Increasing) & \(\mathrm{V}_{\text {th }}(\mathrm{on})\) & 11.5 & 13 & 14.5 & V \\
\hline Minimum Operating Voltage After Turn-On \(\left(\mathrm{V}_{\mathrm{CC}}\right.\) Decreasing) & \(\mathrm{V}_{\text {Shutdown }}\) & 7.0 & 8.5 & 10 & V \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & - & 4.5 & - & V \\
\hline
\end{tabular}

TIMER
\begin{tabular}{|l|c|c|c|c|c|}
\hline Watchdog Timer & t \(^{\prime}\) (IY & 180 & 385 & 800 & \(\mu \mathrm{~s}\) \\
\hline Restart Timer Threshold & \(\mathrm{V}_{\text {th }}\) restart \()\) & 1.5 & 2.3 & 3.0 & V \\
\hline Restart Pin Output Current \(\left(\mathrm{V}_{\text {restart }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=5.0 \mathrm{~V}\right)\) & \(\mathrm{I}_{\text {restart }}\) & 3.1 & 5.2 & 7.1 & mA \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Line Startup Current \(\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {Line }}=50 \mathrm{~V}\right)\) & ISU & 5.0 & 16 & 25 & mA \\
\hline Line Operating Current \(\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{th}(\mathrm{on})}, \mathrm{V}_{\text {Line }}=50 \mathrm{~V}\right)\) & IOP & 3.0 & 12.9 & 20 & mA \\
\hline \(\mathrm{~V}_{\mathrm{CC}}\) Dynamic Operating Current \(\left(50 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\right)\) & I CC & - & 5.3 & 8.5 & mA \\
\(\mathrm{~V}_{\mathrm{CC}}\) Static Operating Current \((\mathrm{IO}=0)\) & & - & 3.0 & - & \\
\hline Line Pin Leakage \(\left(\mathrm{V}_{\text {Line }}=500 \mathrm{~V}\right)\) & ILine & - & 30 & 80 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

Figure 1. Current Sense Input Threshold versus Multiplier Input


Figure 3. Reference Voltage versus Temperature


Figure 5. Error Amplifier Transconductance and Phase versus Frequency


Figure 2. Current Sense Input Threshold versus Multiplier Input, Expanded View


Figure 4. Overvoltage Comparator Input Threshold versus Temperature


Figure 6. Error Amplifier Transient Response


Figure 7. Quickstart Charge Current versus Temperature


Figure 9. Drive Output Waveform


Figure 11. Transient Thermal Resistance


Figure 8. Watchdog Timer Delay versus Temperature


Figure 10. Supply Current versus Supply Voltage


Figure 12. Low Load Detection Response Waveform


\section*{FUNCTIONAL DESCRIPTION}

\section*{INTRODUCTION}

With the goal of exceeding the requirements of legislation on line current harmonic content, there is an ever increasing demand for an economical method of obtaining a unity power factor. This data sheet describes a monolithic control IC that was specifically designed for power factor control with minimal external components. It offers the designer a simple cost effective solution to obtain the benefits of active power factor correction.

Most electronic ballasts and switching power supplies use a bridge rectifier and a bulk storage capacitor to derive raw dc voltage from the utility ac line, Figure 13.

Figure 13. Uncorrected Power Factor Circuit


This simple rectifying circuit draws power from the line when the instantaneous ac voltage exceeds the capacitor voltage. This occurs near the line voltage peak and results in a high charge current spike, Figure 14 . Since power is only taken near the line voltage peaks, the resulting spikes of current are extremely nonsinusoidal with a high content of harmonics. This results in a poor power factor condition where the apparent input power is much higher than the real power. Power factor ratios of 0.5 to 0.7 are common.

Figure 14. Uncorrected Power Factor Input Waveforms


Power factor correction can be achieved with the use of either a passive or active input circuit. Passive circuits usually contain a combination of large capacitors, inductors, and rectifiers that operate at the ac line frequency. Active circuits incorporate some form of a high frequency switching converter for the power processing with the boost converter being the most popular topology. Since active input circuits operate at a frequency much higher than that of the ac line, they are smaller, lighter in weight, and more efficient than a passive circuit that yields similar results. With proper control of the preconverter, almost any complex load can be made to
appear resistive to the ac line, thus significantly reducing the harmonic current content.

\section*{Operating Description}

The MC33368 contains many of the building blocks and protection features that are employed in modern high performance current mode power supply controllers. Referring to the block diagram in Figure 15, note that a multiplier has been added to the current sense loop and that this device does not contain an oscillator. A description of each of the functional blocks is given below.

\section*{Error Amplifier}

An Error Amplifier with access to the inverting input and output is provided. The amplifier is a transconductance type, meaning that it has high output impedance with controlled voltage-to-current gain ( \(\mathrm{gm}_{\mathrm{m}} \approx 50 \mu \mathrm{mhos}\) ). The noninverting input is internally biased at \(5.0 \mathrm{~V} \pm 2.0 \%\). The output voltage of the power factor converter is typically divided down and monitored by the inverting input. The maximum input bias current is \(-1.0 \mu \mathrm{~A}\) which can cause an output voltage error that is equal to the product of the input bias current and the value of the upper divider resistor R2. The Error Amplifier output is internally connected to the Multiplier and is pinned out (Pin 4) for external loop compensation. Typically, the bandwidth is set below 20 Hz so that the amplifier's output voltage is relatively constant over a given ac line cycle. In effect, the error amplifier monitors the average output voltage of the converter over several line cycles resulting in a fixed Drive Output on-time. The amplifier output stage can sink and source \(11.5 \mu \mathrm{~A}\) of current and is capable of swinging from 1.7 to 5.0 V , assuring that the Multiplier can be driven over its entire dynamic range.

Note that by using a transconductance type amplifier, the input is allowed to move independently with respect to the output, since the compensation capacitor is connected to ground. This allows dual usage of the Voltage Feedback pin by the Error Amplifier and Overvoltage Comparator.

\section*{Overvoltage Comparator}

An Overvoltage Comparator is incorporated to eliminate the possibility of runaway output voltage. This condition can occur during initial startup, sudden load removal, or during output arcing and is the result of the low bandwidth that must be used in the Error Amplifier control loop. The Overvoltage Comparator monitors the peak output voltage of the converter, and when exceeded, immediately terminates MOSFET switching. The comparator threshold is internally set to \(1.08 \mathrm{~V}_{\text {ref. }}\). In order to prevent false tripping during normal operation, the value of the output filter capacitor C3 must be large enough to keep the peak-to-peak ripple less than \(16 \%\) of the average dc output.

\section*{Multiplier}

A single quadrant, two input multiplier is the critical element that enables this device to control power factor. The ac haversines are monitored at Pin 5 with respect to ground while the Error Amplifier output at Pin 4 is monitored with respect to the Voltage Feedback Input threshold. A graph of the Multiplier transfer curve is shown in Figure 1. Note that both inputs are extremely linear over a wide dynamic range, 0 to 3.2 V for Pin 5 and 2.5 to 4.0 V for Pin 4. The Multiplier output controls the Current Sense Comparator threshold as
the ac voltage traverses sinusoidally from zero to peak line. This has the effect of forcing the MOSFET on-time to track the input line voltage, thus making the preconverter load appear to be resistive.
\[
\text { Pin } 6 \text { Threshold } \approx 0.55\left(V_{\operatorname{Pin~4}}-V_{\operatorname{Pin} 3}\right) V_{\operatorname{Pin} 5}
\]

\section*{Zero Current Detector}

The MC33368 operates as a critical conduction current mode controller, whereby output switch conduction is initiated by the Zero Current Detector and terminated when the peak inductor current reaches the threshold level established by the Multiplier output. The Zero Current Detector initiates the next on-time by setting the RS Latch at the instant the inductor current reaches zero. This critical conduction mode of operation has two significant benefits. First, since the MOSFET cannot turn-on until the inductor current reaches zero, the output rectifier's reverse recovery time becomes less critical allowing the use of an inexpensive rectifier. Second, since there are no deadtime gaps between cycles, the ac line current is continuous thus limiting the peak switch to twice the average input current

The Zero Current Detector indirectly senses the inductor current by monitoring when the auxiliary winding voltage falls below 1.2 V . To prevent false tripping, 200 mV of hysteresis is provided. The Zero Current Detector input is internally protected by two clamps. The upper 10 V clamp prevents input overvoltage breakdown while the lower -0.7 V clamp prevents substrate injection. An external resistor must be used in series with the auxiliary winding to limit the current through the clamps to 5.0 mA or less.

\section*{Current Sense Comparator and RS Latch}

The Current Sense Comparator RS Latch configuration used ensures that only a single pulse appears at the Drive Output during a given cycle. The inductor current is converted to a voltage by inserting a ground-referenced sense resistor R7 in series with the source of output switch. This voltage is monitored by the Current Sense Input and compared to a level derived from the Multiplier output. The peak inductor current under normal operating conditions is controlled by the threshold voltage of Pin 6 where:
\[
I_{\mathrm{pk}}=\frac{\text { Pin } 6 \text { Threshold }}{\text { R7 }}
\]

Abnormal operating conditions occur when the preconverter is running at extremely low line or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 1.5 V . Therefore, the maximum peak switch current is:
\[
I_{\mathrm{pk}(\max )}=\frac{1.5 \mathrm{~V}}{\mathrm{R} 7}
\]

With the component values shown in Figure 15, the Current Sense Comparator threshold, at the peak of the haversine, varies from 110 mV at 90 Vac to 100 mV at 268 Vac. The Current Sense Input to Drive Output propagation delay is typically 200 ns .

\section*{Timer}

A watchdog timer function was added to the IC to eliminate the need for an external oscillator when used in stand alone applications. The Timer provides a means to automatically start or restart the preconverter if the Drive Output has been off for more than \(385 \mu \mathrm{~s}\) after the inductor current reaches zero.

\section*{Undervoltage Lockout and Quickstart}

The MC33368 has a 5.0 V internal reference brought out to Pin 1 and capable of sourcing 10 mA typically. It also contains an Undervoltage Lockout (UVLO) circuit which suppresses the Gate output at Pin 11 if the \(\mathrm{V}_{\mathrm{CC}}\) supply voltage drops below 8.5 V typical.

A Quickstart circuit has been incorporated to optimize converter startup. During initial startup, compensation capacitor C1 will be discharged, holding the Error Amplifier output below the Multiplier's threshold. This will prevent Drive Output switching and delay bootstraping of capacitor C4 by diode D6. If Pin 4 does not reach the multiplier threshold before C4 discharges below the lower SMPS UVLO threshold, the converter will hiccup and experience a significant startup delay. The Quickstart circuit is designed to precharge C1 to 1.7 V . This level is slightly below the Pin 4 Multiplier threshold, allowing immediate Drive Output switching.

\section*{Restart Delay}

A restart delay pin is provided to allow hiccup mode fault protection in case of a short circuit condition and to prevent the SMPS from repeatedly trying to restart after the input line voltage has been removed. When power is first applied, there is no startup delay, but subsequent cycling of the \(\mathrm{V}_{\mathrm{CC}}\) voltage will result in delay times that are programmed by an external resistor and capacitor. The Restart Delay, Pin 2, is a high impedance, so that an external capacitor can provide delay times as long as several seconds.

If the SMPS output is short circuited, the transformer winding, which provides the \(\mathrm{V}_{\mathrm{CC}}\) voltage to the control IC and the MC33368, will be unable to sustain \(\mathrm{V}_{\mathrm{CC}}\) to the control circuits. The restart delay capacitor at Pin 2 of the MC33368 prevents the high voltage startup transistor within the IC from maintaining the voltage on C 4 . After \(\mathrm{V}_{\mathrm{CC}}\) drops below the UVLO threshold in the SMPS, the SMPS switching transistors are held off for the time programmed by the values of the restart capacitor (C9) and resistor (R8). In this manner, the SMPS switching transistors are operated at very low duty cyles, preventing their destruction. If the short circuit fault is removed, the power supply system will turn on by itself in a normal startup mode after the restart delay has timed out.

\section*{Output Switching Frequency Clamp}

In normal operation, the MC33368 operates the boost inductor in the critical mode. That is, the inductor current ramps to a peak value, ramps down to zero, then immediately begins ramping positive again. The peak current is programmed by the multiplier output within the IC. As the input voltage haversine declines to near zero, the output switch on-time becomes constant, rather than going to zero because of the small integrated dc voltage at Pin 5 caused by C2, R3 and R5. Because of this, the average line current does not exactly follow the line voltage near the zero crossings. The Output Switching Frequency Clamp remedies this situation to improve power factor and minimize EMI generated in this operating region. The values of R10 and C7 program a minimum off-time in the frequency clamp which overrides the zero current detect signal, forcing a minimum off-time. This allows discontinuous conduction operation of the boost inductor in the zero crossing region, and the average line current more nearly follows the voltage. The Output Switching Frequency Clamp function can be disabled by connecting the FC input, Pin 13, to the \(\mathrm{V}_{\mathrm{CC}}\) supply Pin 12.

Output
The IC contains a CMOS output driver that was specifically designed for direct drive of power MOSFETs. The Drive Output is capable of up to \(\pm 1500 \mathrm{~mA}\) peak current with a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the Drive

Output in a sinking mode whenever the Undervoltage Lockout is active. This characteristic eliminates the need for an external gate pull-down resistor. The totem-pole output has been optimized to minimize cross-conduction current during high speed operation.

Table 1. Design Equations
\begin{tabular}{|c|c|c|}
\hline Calculation & Formula & Notes \\
\hline Converter Output Power & \(\mathrm{P}_{\mathrm{O}}=\mathrm{V}_{\mathrm{O}}{ }^{\prime} \mathrm{O}\) & Calculate the maximum required output power. \\
\hline Peak Indicator Current & \[
\mathrm{I}_{\mathrm{L}(\mathrm{pk})}=\frac{2 \sqrt{2} \mathrm{P}_{\mathrm{O}}}{\eta \mathrm{Vac}_{(\mathrm{LL})}}
\] & Calculated at the minimum required ac line voltage for output regulation. Let the efficiency \(\eta=0.92\) for low line operation. \\
\hline Inductance & \[
\mathrm{L}_{\mathrm{P}}=\frac{\mathrm{t}\left(\frac{\mathrm{~V}_{\mathrm{O}}}{\sqrt{2}}-\mathrm{Vac}_{(\mathrm{LL})}\right) \eta \operatorname{Vac}_{(L L)}{ }^{2}}{\sqrt{2} \mathrm{~V}_{\mathrm{O}} \mathrm{P}_{\mathrm{O}}}
\] & Let the switching cycle \(\mathrm{t}=40 \mu\) s for universal input ( 85 to 265 Vac ) operation and \(20 \mu\) s for fixed input (92 to 138 Vac , or 184 to 276 Vac ) operation. \\
\hline Switch On-Time & \[
t_{(o n)}=\frac{2 P_{O} L_{P}}{\eta V^{2}{ }^{2}}
\] & In theory, the on-time \(t_{(o n)}\) is constant. In practice, \(t_{(o n)}\) tends to increase at the ac line zero crossings due to the charge on capacitor C 5 . Let \(\mathrm{Vac}=\mathrm{Vac}_{(\mathrm{LL})}\) for initial \(\mathrm{t}_{(\mathrm{on})}\) and (off) \(^{\text {chalculations. }}\) \\
\hline Switch Off-Time & \[
{ }^{t}(\text { off })=\frac{t^{\prime}(\text { on })}{\frac{\mathrm{V}_{\mathrm{O}}}{\sqrt{2} \operatorname{Vac}|\operatorname{Sin} \theta|}-1}
\] & The off-time \({ }_{\text {(off) }}\) is greatest at the peak of the ac line voltage and approaches zero at the ac line zero crossings. Theta (0) represents the angle of the ac line voltage. \\
\hline Minimum Switch Off-Time & \[
t_{(\text {off })_{\min }}=\frac{L_{P} L_{(p k)}}{V_{O}}
\] & The off-time is at a minimum at ac line crossings. This equation is used to calculate \(t_{\text {(off) }}\) as Theta approaches zero. \\
\hline Delay Time & \(t_{d}=-R 10 \mathrm{C7} \ln \left(\frac{\mathrm{v}_{\mathrm{CC}}-2}{\mathrm{~V}_{\mathrm{CC}}}\right)\) & The delay time is used to override the minimum off-time at the ac line zero crossings by programming the Frequency Clamp with C7 and R10. \\
\hline Switching Frequency & \[
f=\frac{1}{t_{(o n)}+t_{(o f f)}}
\] & The minimum switching frequency occurs at the peak of the ac line voltage. As the ac line voltage traverses from peak to zero, t (off) approaches zero producing an increase in switching frequency. \\
\hline Peak Switch Current & \(\mathrm{R7}=\frac{\mathrm{V}_{\text {CS }}}{\mathrm{l}_{\mathrm{L}(\mathrm{pk})}}\) & Set the current sense threshold \(\mathrm{V}_{\mathrm{CS}}\) to 1.0 V for universal input ( 85 to 265 Vac ) operation and to 0.5 V for fixed input ( 92 to 138 Vac , or 184 to 276 Vac ) operation. Note that \(\mathrm{V}_{\mathrm{CS}}\) must be less than 1.4 V . \\
\hline Multiplier Input Voltage & \[
V_{M}=\frac{\operatorname{Vac} \sqrt{2}}{\left(\frac{R 5}{R 3}+1\right)}
\] & Set the mulltiplier input voltage \(\mathrm{V}_{\mathrm{M}}\) to 3.0 V at high line. Empirically adjust \(\mathrm{V}_{\mathrm{M}}\) for the lowest distortion over the ac line voltage range while guaranteeing startup at minimum line. \\
\hline Converter Output Voltage & \(v_{O}=v_{\text {ref }}\left(\frac{R 2}{R 1}+1\right)-I_{I B} R 1\) & The IIB R1 error term can be minimized with a divider current in excess of \(100 \mu \mathrm{~A}\). \\
\hline \begin{tabular}{l}
Converter Output \\
Peak-to-Peak \\
Ripple Voltage
\end{tabular} & \[
\Delta V_{O(p p)}=I_{L(p k)} \sqrt{\left(\frac{1}{2 \pi f_{a c} C 3}\right)^{2}+E S R^{2}}
\] & The calculated peak-to-peak ripple must be less than \(16 \%\) of the average dc output voltage to prevent false tripping of the Overvoltage Comparator. Refer to the Overvoltage Comparator Text. ESR is the equivalent series resistance of C3. \\
\hline Error Amplifier Bandwidth & \(B W=\frac{g_{m}}{2 \pi C 1}\) & The bandwidth is typically set to 20 Hz . When operating at high ac line, the value of C1 may need to be increased. \\
\hline
\end{tabular}

NOTE: The following converter characteristics must be chosen:

\footnotetext{
\(\mathrm{V}_{\mathrm{O}}=\) Desired output voltage.
\(\mathrm{Vac}_{(\mathrm{LL})}=\mathrm{AC}\) RMS minimum required operating line voltage for output regulation.
\(I_{0}=\) Desired output current.
\(\Delta \mathrm{V}_{\mathrm{O}}=\) Converter output peak-to-peak ripple voltage.
}

\section*{MC33368}

Figure 15. 80 W Power Factor Controller


Power Factor Controller Test Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{AC Line Input} & \multicolumn{5}{|c|}{DC Output} \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {rms }}\)} & \multirow[b]{2}{*}{Pin} & \multirow[b]{2}{*}{PF} & \multirow[b]{2}{*}{Ifund} & \multicolumn{5}{|l|}{Current Harmonic Distortion (\% Ifund)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{O}(\mathrm{pp})}\)} & \multirow[b]{2}{*}{Vo} & \multirow[b]{2}{*}{10} & \multirow[b]{2}{*}{PO} & \multirow[b]{2}{*}{n (\%)} \\
\hline & & & & THD & 2 & 3 & 5 & 7 & & & & & \\
\hline 90 & 79.7 & 0.999 & 0.89 & 0.5 & 0.15 & 0.09 & 0.06 & 0.09 & 3.0 & 244.4 & 0.31 & 76.01 & 95.4 \\
\hline 100 & 79.3 & 0.998 & 0.79 & 0.5 & 0.14 & 0.09 & 0.08 & 0.10 & 3.0 & 242.9 & 0.31 & 75.54 & 95.3 \\
\hline 110 & 78.9 & 0.997 & 0.72 & 0.5 & 0.16 & 0.13 & 0.08 & 0.10 & 3.0 & 242.9 & 0.31 & 75.30 & 95.4 \\
\hline 120 & 78.5 & 0.996 & 0.66 & 0.5 & 0.15 & 0.12 & 0.08 & 0.13 & 3.0 & 243.0 & 0.31 & 75.57 & 96.3 \\
\hline 130 & 78.1 & 0.994 & 0.60 & 0.5 & 0.14 & 0.12 & 0.07 & 0.14 & 3.0 & 243.0 & 0.31 & 75.57 & 96.7 \\
\hline 138 & 77.8 & 0.991 & 0.57 & 0.5 & 0.15 & 0.14 & 0.08 & 0.14 & 3.0 & 243.0 & 0.31 & 75.57 & 97.1 \\
\hline
\end{tabular}

Heatsink = AAVID Engineering Inc., 590302B03600, or 593002B03400

\section*{MC33368}

Figure 16. 175 W Universal Input Power Factor Controller

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{硣} & \multicolumn{5}{|c|}{DC Output} \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {rms }}\)} & \multirow[b]{2}{*}{Pin} & \multirow[b]{2}{*}{PF} & \multirow[b]{2}{*}{Ifund} & \multicolumn{5}{|l|}{Current Harmonic Distortion (\% Ifund)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{O}}(\mathrm{pp})\)} & \multirow[b]{2}{*}{\(\mathrm{V}_{0}\)} & \multirow[b]{2}{*}{10} & \multirow[b]{2}{*}{Po} & \multirow[b]{2}{*}{\(n(\%)\)} \\
\hline & & & & THD & 2 & 3 & 5 & 7 & & & & & \\
\hline 90 & 190.4 & 0.995 & 2.11 & 5.8 & 0.16 & 0.32 & 0.24 & 0.80 & 3.6 & 398.0 & 0.44 & 175.9 & 92.4 \\
\hline 120 & 192.1 & 0.997 & 1.60 & 3.2 & 0.08 & 0.17 & 0.07 & 0.30 & 3.6 & 398.9 & 0.44 & 177.1 & 92.2 \\
\hline 138 & 192.7 & 0.997 & 1.40 & 0.9 & 0.08 & 0.24 & 0.03 & 0.15 & 3.6 & 402.3 & 0.45 & 179.0 & 92.9 \\
\hline 180 & 194.3 & 0.995 & 1.08 & 0.9 & 0.04 & 0.18 & 0.04 & 0.08 & 3.6 & 409.1 & 0.45 & 182.9 & 94.1 \\
\hline 240 & 189.3 & 0.983 & 0.80 & 0.7 & 0.08 & 0.21 & 0.08 & 0.06 & 3.6 & 407.0 & 0.45 & 181.1 & 95.7 \\
\hline 268 & 186.3 & 0.972 & 0.71 & 0.6 & 0.11 & 0.32 & 0.10 & 0.10 & 3.6 & 406.2 & 0.44 & 180.4 & 96.8 \\
\hline
\end{tabular}

Heatsink = AAVID Engineering Inc., 590302B03600

Figure 17. Power Factor Test Setup


Figure 18. On/Off Control


Figure 19. Printed Circuit Board and Component Layout (Circuits of Figures 15 and 16)



\section*{Product Preview}

\section*{Variable Frequency Micropower DC-to-DC Converter}

The MC33463 series are micropower switching voltage regulators, specifically designed for handheld and laptop applications, to provide regulated output voltages using a minimum of external parts. A wide choice of output voltages are available. These devices feature a very low quiescent bias current of \(4.0 \mu \mathrm{~A}\) typical.

The MC33463H-XXLT1 series features a highly accurate voltage reference, an oscillator, a variable frequency modulation (VFM) controller, a driver transistor (Lx), an error amplifier and feedback resistive divider.

The MC33463H-XXLT1 is identical to the MC33463H-XXKT1, except that a drive pin (EXT) for an external transistor is provided.

Due to the low bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable.

MC33463 Series Features:
- Low Quiescent Bias Current of \(4.0 \mu \mathrm{~A}\)
- High Output Voltage Accuracy of \(\pm 2.5 \%\)
- Low Startup Voltage of 0.9 V at 1.0 mA
- Surface Mount Package

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline Device & \begin{tabular}{c} 
Output \\
Voltage
\end{tabular} & Type & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & \begin{tabular}{c} 
Package \\
(Tape/Reel)
\end{tabular} \\
\hline MC33463H-30KT1 & 3.0 & Int. & & \begin{tabular}{c} 
SOT-89 \\
(Tape)
\end{tabular} \\
MC33463H-33KT1 & 3.3 & Switch & & \\
MC33463H-50KT1 & 5.0 & & \multirow{3}{*}{\({ }_{\text {A }}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\)} & \\
MC33463H-30LT1 & 3.0 & Ext. & & \begin{tabular}{c} 
SOT-89 \\
(Tape)
\end{tabular} \\
MC33463H-33LT1 & 3.3 & Switch & & \\
MC33463H-50LT1 & 5.0 & Drive & & \\
\hline
\end{tabular}

Other voltages from 2.5 V to 7.5 V , in 0.1 V increments are available upon request. Consult your local Motorola sales office for information.

\section*{VARIABLE FREQUENCY MICROPOWER DC-to-DC CONVERTER}

SEMICONDUCTOR TECHNICAL DATA


\section*{PIN CONNECTIONS}

MC33463H-XXKT1


MC33463H-XXLT1


\section*{MC33463}

Representative Block Diagram


This device contains 100 active transistors.

\section*{Product Preview}

Sensing Circuits

The MC33464 series are micropower undervoltage sensing circuits that are specifically designed for use with battery powered microprocessor based systems, where extended battery life is required. A choice of several threshold voltages from 0.9 V to 4.5 V are available. These devices feature a very low quiescent bias current of \(0.8 \mu \mathrm{~A}\) typical.

The MC33464 series features a highly accurate voltage reference, a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation, a choice of output configurations between open drain or complementary MOS, and guaranteed operation below 1.0 V with extremely low standby current. These devices are available in either SOT-89 3-pin or SOT-23 5-pin surface mount packages.

Applications include direct monitoring of the MPU/logic power supply used in portable, appliance, automotive and industrial equipment.

\section*{MC33464 Features:}
- Extremely Low Standby Current of \(0.8 \mu \mathrm{~A}\) at \(\mathrm{V}_{\text {in }}=1.5 \mathrm{~V}\)
- Wide Input Voltage Range ( 0.7 V to 10 V )
- Monitors Power Supply Voltages from 1.1 V to 5.0 V
- High Accuracy Detector Threshold ( \(\pm 2.5 \%\) )
- Two \(\overline{R e s e t}\) Output Types (Open Drain or Complementary Drive)
- Two Surface Mount Packages (SOT-89 or SOT-23 5-Pin)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline Device & Threshold Voltage & Type & Operating Temperature Range & Package (Qty/Reel) \\
\hline MC33464H-09AT1 & 0.9 & \multirow{5}{*}{\begin{tabular}{l}
Open \\
Drain \\
Reset
\end{tabular}} & \multirow{20}{*}{\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\)} & \multirow{10}{*}{\[
\begin{gathered}
\text { SOT-89 } \\
(1000)
\end{gathered}
\]} \\
\hline MC33464H-20AT1 & 2.0 & & & \\
\hline MC33464H-27AT1 & 2.7 & & & \\
\hline MC33464H-30AT1 & 3.0 & & & \\
\hline MC33464H-45AT1 & 4.5 & & & \\
\hline MC33464H-09CT1 & 0.9 & & & \\
\hline MC33464H-20CT1 & 2.0 & Compl. & & \\
\hline MC33464H-27CT1 & 2.7 & MOS & & \\
\hline MC33464H-30CT1 & 3.0 & \(\overline{\text { Reset }}\) & & \\
\hline MC33464H-45CT1 & 4.5 & & & \\
\hline MC33464N-09ATR & 0.9 & & & \\
\hline MC33464N-20ATR & 2.0 & Open & & \\
\hline MC33464N-27ATR & 2.7 & Drain & & \\
\hline MC33464N-30ATR & 3.0 & \(\overline{\text { Reset }}\) & & \\
\hline MC33464N-45ATR & 4.5 & & & SOT-23 \\
\hline MC33464N-09CTR & 0.9 & & & (3000) \\
\hline MC33464N-20CTR & 2.0 & Compl. & & \\
\hline MC33464N-27CTR & 2.7 & MOS & & \\
\hline MC33464N-30CTR & 3.0 & \(\overline{\text { Reset }}\) & & \\
\hline MC33464N-45CTR & 4.5 & & & \\
\hline
\end{tabular}

Other voltages from 0.9 to 6.0 V , in 0.1 V increments, are available upon request. Consult your local Motorola sales office for information.

\section*{MICROPOWER UNDERVOLTAGE SENSING CIRCUITS}

\section*{SEMICONDUCTOR} TECHNICAL DATA


N SUFFIX
PLASTIC PACKAGE CASE 1212 (SOT-23)


\section*{Representative Block Diagrams}

MC33464X-YYATZ
Open Drain Configuration


MC33464X-YYCTZ Complementary Drive Configuration

\(X\) Denotes Package Type
YY Denotes Threshold Voltage
TZ Denotes Taping Type

This device contains 25 active transistors.

\section*{Product Preview Micropower Undervoltage Sensing Circuits with Output Delay}

The MC33465 series are micropower undervoltage sensing circuits that are specifically designed for use with battery powered microprocessor based systems, where extended battery life is required. A choice of several threshold voltages from 0.9 V to 4.5 V are available. This device features a very low quiescent bias current of \(1.0 \mu \mathrm{~A}\) typical.

The MC33465 series features a highly accurate voltage reference, a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation, a choice of output configurations between open drain or complementary MOS, a time delayed output, which can be programmed by the system designer, and guaranteed operation below 1.0 V with extremely low standby current. This device is available in a SOT-23 5-pin surface mount packages.

Applications include direct monitoring of the MPU/logic power supply used in portable, appliance, automotive and industrial equipment.

\section*{MC33465 Features:}
- Extremely Low Standby Current of \(1.0 \mu \mathrm{~A}\) at \(\mathrm{V}_{\text {in }}=3.5 \mathrm{~V}\)
- Wide Input Voltage Range ( 0.7 V to 10 V )
- Monitors Power Supply Voltages from 1.1 V to 5.0 V
- High Accuracy Detector Threshold ( \(\pm 2.5 \%\) )
- Two Reset Output Types (Open Drain or Complementary Drive)
- Programmable Output Delay by External Capacitor (100 ms typ. with \(0.15 \mu \mathrm{~F}\) )
- Surface Mount Package (SOT-23 5-Pin)
- Convenient Tape and Reel (3000 per Reel)

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Threshold \\
Voltage
\end{tabular} & Type & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33465N-09ATR & 0.9 & & & \\
MC33465N-20ATR & 2.0 & Open & & \\
MC33465N-27ATR & 2.7 & Drain & & \\
MC33465N-30ATR & 3.0 & Reset & & \\
MC33465N-45ATR & 4.5 & & \multirow{2}{*}{ TA \(=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\)} & SOT-23 \\
\hline MC33465N-09CTR & 0.9 & & & \\
MC33465N-20CTR & 2.0 & Compl. & & \\
MC33465N-27CTR & 2.7 & MOS & & \\
MC33465N-30CTR & 3.0 & Reset & & \\
MC33465N-45CTR & 4.5 & & & \\
\hline
\end{tabular}

Other voltages from 0.9 to 6.0 V , in 0.1 V increments, are available upon request. Consult your local Motorola sales office for information.


MICROPOWER UNDERVOLTAGE SENSING CIRCUITS WITH OUTPUT DELAY

\section*{SEMICONDUCTOR TECHNICAL DATA}


PIN CONNECTIONS


\section*{MC33465}

\section*{Representative Block Diagrams}


This device contains 28 active transistors.

\section*{Product Preview}

\section*{Fixed Frequency PWM Micropower DC-to-DC Converter}

The MC33466 series are micropower switching voltage regulators, specifically designed for handheld and laptop applications, to provide regulated output voltages using a minimum of external parts. A wide choice of output voltages are available. These devices feature a very low quiescent bias current of \(15 \mu \mathrm{~A}\) typical.

The MC33466H-XXJT1 series features a highly accurate voltage reference, an oscillator, a pulse width modulation (PWM) controller, a driver transistor (Lx), an error amplifier and feedback resistive divider.

The MC33466H-XXLT1 is identical to the MC33466H-XXJT1, except that a drive pin (EXT) for an external transistor is provided.

Due to the low bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable.

MC33466 Series Features:
- Low Quiescent Bias Current of \(15 \mu \mathrm{~A}\)
- High Output Voltage Accuracy of \(\pm 2.5 \%\)
- Low Startup Voltage of 0.9 V at 1.0 mA
- Soft-Start \(=500 \mu \mathrm{~s}\)
- Surface Mount Package

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline Device & \begin{tabular}{c} 
Output \\
Voltage
\end{tabular} & Type & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & \begin{tabular}{c} 
Package \\
(Tape/Reel)
\end{tabular} \\
\hline MC33466H-30JT1 & 3.0 & Int. & & \begin{tabular}{c} 
SOT-89 \\
(Tape)
\end{tabular} \\
MC33466H-33JT1 & 3.3 & Switch & & \\
MC33466H-50JT1 & 5.0 & & \multirow{2}{*}{ T \(_{A}=-30^{\circ}\) to \(+80^{\circ} \mathrm{C}\)} & SOT-89 \\
\cline { 5 - 5 } MC33466H-30LT1 & 3.0 & Ext. & & (Tape) \\
MC33466H-33LT1 & 3.3 & Switch & & \\
MC33466H-50LT1 & 5.0 & Drive & & \\
\hline
\end{tabular}

Other voltages from 2.5 V to 7.5 V , in 0.1 V increments are available upon request. Consult your local Motorola sales office for information.

FIXED FREQUENCY PWM MICROPOWER DC-to-DC CONVERTER

SEMICONDUCTOR TECHNICAL DATA


\section*{PIN CONNECTIONS}

MC33466H-XXJT1

(Top View)

MC33466H-XXLT1


\section*{MC33466}

\section*{Representative Block Diagram}

MC33466H-XXJT1



This device contains 100 active transistors.

\section*{High Speed Single-Ended PWM Controller}

The MC34023 series are high speed, fixed frequency, single-ended pulse width modulator controllers optimized for high frequency operation. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost-effective solution with minimal external components. These integrated circuits feature an oscillator, a temperature compensated reference, a wide bandwidth error amplifier, a high speed current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, and a latch for single pulse metering.

The flexibility of this series allows it to be easily configured for either current mode or voltage mode control.
- 50 ns Propagation Delay to Output
- High Current Totem Pole Output
- Wide Bandwidth Error Amplifier
- Fully-Latched Logic with Double Pulse Suppression
- Latching PWM for Cycle-By-Cycle Current Limiting
- Soft-Start Control with Latched Overcurrent Reset
- Input Undervoltage Lockout with Hysteresis
- Low Start-Up Current ( \(500 \mu \mathrm{~A}\) Typ)
- Internally Trimmed Reference with Undervoltage Lockout
- 90\% Maximum Duty Cycle (Externally Adjustable)
- Precision Trimmed Oscillator
- Voltage or Current Mode Operation to 1.0 MHz
- Functionally Similar to the UC3823


This device contains 176 active transistors.

MC34023 MC33023



ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33023P & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\)} & Plastic DIP \\
MC33023DW & SO-16L \\
\hline MC34023P & \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 30 & V \\
\hline Output Driver Supply Voltage & \(\mathrm{V}_{\mathrm{C}}\) & 20 & V \\
\hline ```
Output Current, Source or Sink (Note 1)
    DC
    Pulsed (0.5 \mus)
``` & lo & \[
\begin{aligned}
& 0.5 \\
& 2.0
\end{aligned}
\] & A \\
\hline Current Sense, Soft-Start, Ramp, and Error Amp Inputs & \(V_{\text {in }}\) & -0.3 to +7.0 & V \\
\hline Error Amp Output and Soft-Start Sink Current & 1 O & 10 & mA \\
\hline Clock and \(\mathrm{R}_{\mathrm{T}}\) Output Current & ICO & 5.0 & mA \\
\hline Power Dissipation and Thermal Characteristics SO-16L Package (Case 751G) Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air DIP Package (Case 648) Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air & \begin{tabular}{l}
\(P_{D}\) \\
\(R_{\theta J A}\) \\
PD \\
\(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& \\
& 1.25 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature (Note 2)
MC34023
MC33023 & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+105
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=3.65 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\right.\), for typical values \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), for min \(/\) max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 2], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline Reference Output Voltage (\(1 \mathrm{O}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(V_{\text {ref }}\) & 5.05 & 5.1 & 5.15 & V \\
\hline Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 30 V) & Regline & - & 2.0 & 15 & mV \\
\hline Load Regulation (\(\mathrm{l} \mathrm{O}=1.0 \mathrm{~mA}\) to 10 mA) & Regload & - & 2.0 & 15 & mV \\
\hline Temperature Stability & Ts & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Total Output Variation over Line, Load, and Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.95 & - & 5.25 & V \\
\hline Output Noise Voltage (\(\mathrm{f}=10 \mathrm{~Hz}\) to \(10 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 50 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability (\(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) for 1000 Hours) & S & - & 5.0 & - & mV \\
\hline Output Short Circuit Current & ISC & -30 & -65 & -100 & mA \\
\hline
\end{tabular}

\section*{OSCILLATOR SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& T_{J}=+25^{\circ} \mathrm{C} \\
& \text { Line }\left(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \text { to } 30 \mathrm{~V}\right) \text { and Temperature }\left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right)
\end{aligned}
\] & \(\mathrm{f}_{\text {osc }}\) & \[
\begin{aligned}
& 380 \\
& 370 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 420 \\
& 430
\end{aligned}
\] & kHz \\
\hline Frequency Change with Voltage (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 30 V) & \(\Delta \mathrm{f}_{\text {osc }} / \Delta \mathrm{V}\) & - & 0.2 & 1.0 & \% \\
\hline Frequency Change with Temperature (\(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)) & \(\Delta \mathrm{f}_{\mathrm{os}}{ }^{\prime} \Delta \mathrm{T}\) & - & 2.0 & - & \% \\
\hline Sawtooth Peak Voltage & \(\mathrm{V}_{\text {OSC }}(\mathrm{P})\) & 2.6 & 2.8 & 3.0 & V \\
\hline Sawtooth Valley Voltage & \(\mathrm{V}_{\text {OSC }}(\mathrm{V})\) & 0.7 & 1.0 & 1.25 & V \\
\hline Clock Output Voltage High State Low State & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(V_{\mathrm{OL}}\)
\end{tabular} & 3.9 & \begin{tabular}{l}
4.5 \\
2.3 \\
\hline
\end{tabular} & - 2.9 & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34023 \(\quad T_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34023
\(=-40^{\circ} \mathrm{C}\) for MC33023 \(=+105^{\circ} \mathrm{C}\) for MC33023

\section*{MC34023 MC33023}

ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=3.65 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 2], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ERROR AMPLIFIER SECTION} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & - & 15 & mV \\
\hline Input Bias Current & IB & - & 0.6 & 3.0 & \(\mu \mathrm{A}\) \\
\hline Input Offset Current & 1 O & - & 0.1 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Open-Loop Voltage Gain (\(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}\) to 4.0 V) & Avol & 60 & 95 & - & dB \\
\hline Gain Bandwidth Product (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & GBW & 4.0 & 8.3 & - & MHz \\
\hline Common Mode Rejection Ratio (\(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}\) to 5.5 V) & CMRR & 75 & 95 & - & dB \\
\hline Power Supply Rejection Ratio (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 30 V) & PSRR & 85 & 110 & - & dB \\
\hline \begin{tabular}{l}
Output Current, Source (\(\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}\)) \\
Sink \(\left(V_{O}=1.0 \mathrm{~V}\right)\)
\end{tabular} & ISource ISink & \[
\begin{aligned}
& 0.5 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.6
\end{aligned}
\] & - & mA \\
\hline Output Voltage Swing, High State (\(\mathrm{IO}=-0.5 \mathrm{~mA}\)) Low State (\(\mathrm{I}=1 \mathrm{~mA}\)) & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(V_{\mathrm{OL}}\)
\end{tabular} & \[
\begin{gathered}
4.5 \\
0
\end{gathered}
\] & \[
\begin{gathered}
\hline 4.75 \\
0.4
\end{gathered}
\] & \[
\begin{aligned}
& 5.0 \\
& 1.0
\end{aligned}
\] & V \\
\hline Slew Rate & SR & 6.0 & 12 & - & V/us \\
\hline
\end{tabular}

PWM COMPARATOR SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ramp Input Bias Current & \(\mathrm{I}_{\mathrm{IB}}\) & - & -0.5 & -5.0 & \(\mu \mathrm{~A}\) \\
\hline Duty Cycle, Maximum \\
Minimum
\end{tabular}

SOFT-START SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Charge Current \(\left(V_{\text {Soft-Start }}=0.5 \mathrm{~V}\right)\) & \(I_{\text {chg }}\) & 3.0 & 9.0 & 20 & \(\mu \mathrm{~A}\) \\
\hline Discharge Current \(\left(\mathrm{V}_{\text {Soft-Start }}=1.5 \mathrm{~V}\right)\) & \(I_{\text {dischg }}\) & 1.0 & 4.0 & - & mA \\
\hline
\end{tabular}

\section*{CURRENT SENSE SECTION}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Bias Current (Pin 9(12) \(=0\) V to 4.0 V) & \(\mathrm{I}_{\mathrm{IB}}\) & - & - & 15 & \(\mu \mathrm{~A}\) \\
\hline Current Limit Comparator Input Offset Voltage (Pin 11(14) \(=1.1 \mathrm{~V})\) & \(\mathrm{V}_{\mathrm{IO}}\) & - & - & 45 & mV \\
\hline Current Limit Reference Input Common Mode Range (Pin 11(14)) & \(\mathrm{V}_{\mathrm{CMR}}\) & 1.0 & - & 1.25 & V \\
\hline Shutdown Comparator Threshold & \(\mathrm{V}_{\text {th }}\) & 1.25 & 1.40 & 1.55 & V \\
\hline Propagation Delay (Current Limit/Shutdown to Output, \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & tPLH(in/out) & - & 50 & 80 & ns \\
\hline
\end{tabular}

\section*{OUTPUT SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Voltage & & & & & \multirow[t]{5}{*}{V} \\
\hline Low State (\({ }_{\text {S }}\) ink \(=20 \mathrm{~mA}\)) & \(\mathrm{V}_{\text {OL }}\) & - & 0.25 & 0.4 & \\
\hline (\({ }_{\text {Sink }}=200 \mathrm{~mA}\)) & & - & 1.2 & 2.2 & \\
\hline \begin{tabular}{l}
High State (ISource \(=20 \mathrm{~mA}\)) \\
(Source \(=200 \mathrm{~mA}\))
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & 13
12 & 13.5
13 & - & \\
\hline & & & & & \\
\hline Output Voltage with UVLO Activated (\(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}\), \(\left.\mathrm{I}_{\text {Sink }}=0.5 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\text {OL (UVLO) }}\) & - & 0.25 & 1.0 & V \\
\hline Output Leakage Current (\(\left.\mathrm{V}_{\mathrm{C}}=20 \mathrm{~V}\right)\) & L & - & 100 & 500 & \(\mu \mathrm{A}\) \\
\hline Output Voltage Rise Time (\(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{tr}_{r}\) & - & 30 & 60 & ns \\
\hline Output Voltage Fall Time (\(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(t_{f}\) & - & 30 & 60 & ns \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Start-Up Threshold (VCC Increasing) & \(\mathrm{V}_{\mathrm{th}}(\mathrm{on})\) & 8.8 & 9.2 & 9.6 & V \\
\hline UVLO Hysteresis Voltage (\(\mathrm{V}_{\mathrm{CC}}\) Decreasing After Turn-On) & \(\mathrm{V}_{\mathrm{H}}\) & 0.4 & 0.8 & 1.2 & V \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|l|l|l|l|l|}
\hline Power Supply Current & ICC & & & mA \\
Start-Up (VCC =8.0 V) & & - & 0.5 & 1.2 \\
Operating & & - & 20 & 30 \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.

\footnotetext{
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34023 \(\quad T_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34023
\(=-40^{\circ} \mathrm{C}\) for MC 33023
}
\(=+105^{\circ} \mathrm{C}\) for MC 33023

Figure 1. Timing Resistor versus

Oscillator Frequency

Figure 3. Error Amp Open Loop Gain and Phase versus Frequency

Figure 5. Error Amp Small Signal Transient Response

\(0.1 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 2. Oscillator Frequency versus Temperature

Figure 4. PWM Comparator Zero Duty Cycle Threshold Voltage versus Temperature

Figure 6. Error Amp Large Signal Transient Response

\(0.1 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 7. Reference Voltage Change versus Source Current

Figure 9. Reference Line Regulation

\(V_{\text {ref }}\) LINE REGULATION 10 V to 24 V (\(2.0 \mathrm{~ms} / \mathrm{DIV}\))

Figure 11. Current Limit Comparator Input

Figure 8. Reference Short Circuit Current versus Temperature

Figure 10. Reference Load Regulation

\(V_{\text {ref }}\) LOAD REGULATION 1.0 mA to 10 mA (\(2.0 \mathrm{~ms} / \mathrm{DVV}\))

Figure 12. Shutdown Comparator Threshold Voltage versus Temperature

Figure 13. Soft-Start Charge Current versus Temperature

Figure 15. Drive Output Rise and Fall Time

OUTPUT RISE \& FALL TIME 1.0 nF LOAD
\(50 \mathrm{~ns} /\) DIV

Figure 14. Output Saturation Voltage versus Load Current

Figure 17. Supply Voltage versus Supply Current

\section*{MC34023 MC33023}

Figure 18. Representative Block Diagram

Figure 19. Current Limit Operating Waveforms

\section*{OPERATING DESCRIPTION}

The MC33023 and MC34023 series are high speed, fixed frequency, single-ended pulse width modulator controllers optimized for high frequency operation. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. A representative block diagram is shown in Figure 18.

\section*{Oscillator}

The oscillator frequency is programmed by the values selected for the timing components \(R_{T}\) and \(C_{T}\). The \(R_{T}\) pin is set to a temperature compensated 3.0 V . By selecting the value of \(\mathrm{RT}_{\mathrm{T}}\), the charge current is set through a current mirror for the timing capacitor \(\mathrm{C}_{\mathrm{T}}\). This charge current runs continuously through \(\mathrm{C}_{\mathrm{T}}\). The discharge current is ratioed to be 10 times the charge current, which yields the maximum duty cycle of \(90 \%\). \(\mathrm{C}_{\mathrm{T}}\) is charged to 2.8 V and discharged to 1.0 V . During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates an internal blanking pulse that resets the PWM Latch and, inhibits the outputs. The threshold voltage on the oscillator comparator is trimmed to guarantee an oscillator accuracy of \(5.0 \%\) at \(25^{\circ} \mathrm{C}\).

Additional dead time can be added by externally increasing the charge current to \(\mathrm{C}_{T}\) as shown in Figure 23. This changes the charge to discharge ratio of \(C_{T}\) which is set internally to Icharge \(/ 10\) I charge. The new charge to discharge ratio will be:
\[
\% \text { Deadtime }=\frac{I_{\text {additional }}+I_{\text {charge }}}{10\left(I_{\text {charge }}\right)}
\]

A bidirectional clock pin is provided for synchronization or for master/slave operation. As a master, the clock pin provides a positive output pulse during the discharge of \(\mathrm{C}_{\mathrm{T}}\). As a slave, the clock pin is an input that resets the PWM latch and blanks the drive output, but does not discharge \(\mathrm{C}_{\mathrm{T}}\). Therefore, the oscillator is not synchronized by driving the clock pin alone. Figures 27, 28 and 29 provide suggested synchronization.

\section*{Error Amplifier}

A fully compensated Error Amplifier is provided. It features a typical DC voltage gain of 95 dB and a gain bandwidth product of 8.3 MHz with 75 degrees of phase margin (Figure 3). Typical application circuits will have the noninverting input tied to the reference. The inverting input will typically be connected to a feedback voltage generated from the output of the switching power supply. Both inputs have a common mode voltage (\(\mathrm{V}_{\mathrm{CM}}\)) input range of 1.5 V to 5.5 V . The Error Amplifier Output is provided for external loop compensation.

\section*{Soft-Start Latch}

Soft-Start is accomplished in conjunction with an external capacitor. The Soft-Start capacitor is charged by an internal \(9.0 \mu \mathrm{~A}\) current source. This capacitor clamps the output of the error amplifier to less than its normal output voltage, thus
limiting the duty cycle. The time it takes for a capacitor to reach full charge is given by:
\[
t \approx\left(4.5 \cdot 10^{5}\right) C_{\text {Soft-Start }}
\]

A Soft-Start latch is incorporated to prevent erratic operation of this circuitry. Two conditions can cause the Soft-Start circuit to latch so that the Soft-Start capacitor stays discharged. The first condition is activation of an undervoltage lockout of either \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\text {ref }}\). The second condition is when current sense input exceeds 1.4 V . Since this latch is "set dominant", it cannot be reset until either of these signals is removed and, the voltage at \(\mathrm{C}_{\text {Soft-Start is less }}\) than 0.5 V .

\section*{PWM Comparator and Latch}

A PWM circuit typically compares an error voltage with a ramp signal. The outcome of this comparison determines the state of the output. In voltage mode operation the ramp signal is the voltage ramp of the timing capacitor. In current mode operation the ramp signal is the voltage ramp induced in a current sensing element. The ramp input of the PWM comparator is pinned out so that the user can decide which mode of operation best suits the application requirements. The ramp input has a 1.25 V offset such that whenever the voltage at this pin exceeds the error amplifier output voltage minus 1.25 V , the PWM comparator will cause the PWM latch to set, disabling the outputs. Once the PWM latch is set, only a blanking pulse by the oscillator can reset it, thus initiating the next cycle.

\section*{Current Limiting and Shutdown}

A pin is provided to perform current limiting and shutdown operations. Two comparators are connected to the input of this pin. The reference voltage for the current limit comparator is not set internally. A pin is provided so the user can set the voltage. When the voltage at the current limit input pin exceeds the externally set voltage, the PWM latch is set, disabling the output. In this way cycle-by-cycle current limiting is accomplished. If a current limit resistor is used in series with the power devices, the value of the resistor is found by:
\[
R_{\text {Sense }}=\frac{I_{\text {Limit Reference Voltage }}}{I_{\mathrm{pk}} \text { (switch) }}
\]

If the voltage at this pin exceeds 1.4 V , the second comparator is activated. This comparator sets a latch which, in turn, causes the soft start capacitor to be discharged. In this way a "hiccup" mode of recovery is possible in the case of output short circuits. If a current limit resistor is used in series with the output devices, the peak current at which the controller will enter a "hiccup" mode is given by:
\[
I_{\text {shutdown }}=\frac{1.4 \mathrm{~V}}{R_{\text {Sense }}}
\]

\section*{Undervoltage Lockout}

There are two undervoltage lockout circuits within the IC. The first senses \(V_{C C}\) and the second \(V_{\text {ref. }}\). During power-up, \(V_{C C}\) must exceed 9.2 V and \(\mathrm{V}_{\text {ref }}\) must exceed 4.2 V before the outputs can be enabled and the Soft-Start latch released. If \(\mathrm{V}_{\mathrm{CC}}\) falls below 8.4 V or \(\mathrm{V}_{\text {ref }}\) falls below 3.6 V , the outputs are disabled and the Soft-Start latch is activated. When the UVLO is active, the part is in a low current standby mode allowing the IC to have an off-line bootstrap start-up circuit. Typical start-up current is \(500 \mu \mathrm{~A}\).

\section*{Output}

The MC34023 has a high current totem pole output specifically designed for direct drive of power MOSFETs. It is capable of up to \(\pm 2.0\) A peak drive current with a typical rise and fall time of 30 ns driving a 1.0 nF load.

Separate pins for \(\mathrm{V}_{\mathrm{C}}\) and Power Ground are provided. With proper implementation, a significant reduction of switching transient noise imposed on the control circuitry is possible. The separate \(\mathrm{V}_{\mathrm{C}}\) supply input also allows the designer added flexibility in tailoring the drive voltage independent of \(\mathrm{V}_{\mathrm{CC}}\).

\section*{Reference}

A 5.1 V bandgap reference is pinned out and is trimmed to an initial accuracy of \(\pm 1.0 \%\) at \(25^{\circ} \mathrm{C}\). This reference has short circuit protection and can source in excess of 10 mA for powering additional control system circuitry.

\section*{Design Considerations}

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. With high frequency, high power, switching power supplies it is imperative to have separate current loops for the signal paths and for the power paths. The printed circuit layout should contain a ground plane with low current signal and high current switch and output grounds returning on separate paths back to the input filter capacitor. Shown in Figure 35 is a printed circuit layout of the application circuit. Note how the power and ground traces are run. All bypass capacitors and snubbers should be connected as close as possible to the specific part in question. The PC board lead lengths must be less than 0.5 inches for effective bypassing for snubbing.

\section*{Instabilities}

In current mode control, an instability can be encountered at any given duty cycle. The instability is caused by the
current feedback loop. It has been shown that the instability is caused by a double pole at half the switching frequency. If an external ramp \(\left(\mathrm{S}_{\mathrm{e}}\right)\) is added to the on-time ramp \(\left(\mathrm{S}_{\mathrm{n}}\right)\) of the current-sense waveform, stability can be achieved.

One must be careful not to add too much ramp compensation. If too much is added the system will start to perform like a voltage mode regulator. All benefits of current mode control will be lost. Figure 25 is an example of one way in which external ramp compensation can be implemented.

Figure 20. Ramp Compensation

A simple equation can be used to calculate the amount of external ramp slope necessary to add that will achieve stability in the current loop. For the following equations, the calculated values for the application circuit in Figure 34 are also shown.
\[
S_{e}=\frac{V_{O}}{L}\left(\frac{N_{S}}{N_{P}}\right)\left(R_{S}\right) A_{i}
\]
\[
\text { where: } \begin{aligned}
\mathrm{V}_{\mathrm{O}}= & \mathrm{DC} \text { output voltage } \\
\mathrm{N}_{\mathrm{P}}, \mathrm{~N}_{\mathrm{S}}= & \text { number of power transformer primary } \\
& \text { or secondary turns } \\
\mathrm{A}_{\mathrm{i}}= & \text { gain of the current sense network } \\
& \text { (see Figures } 23 \text { and } 24 \text {) } \\
\mathrm{L}= & \text { output inductor } \\
\mathrm{R}_{\mathrm{S}} & =\text { current sense resistance }
\end{aligned}
\]
\[
\text { For the application circuit: } \begin{aligned}
\mathrm{S}_{e} & =\frac{5}{1.8 \mu}\left(\frac{2}{8}\right)(0.3)(0.55) \\
& =0.115 \mathrm{~V} / \mathrm{ms}
\end{aligned}
\]

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & & \multirow[b]{2}{*}{Description} \\
\hline DIP/SOIC & Function & \\
\hline 1 & Error Amp Inverting Input & This pin is usually used for feedback from the output of the power supply. \\
\hline 2 & Error Amp Noninverting Input & This pin is used to provide a reference in which an error signal can be produced on the output of the error amp. Usually this is connected to \(\mathrm{V}_{\text {ref }}\), however an external reference can also be used. \\
\hline 3 & Error Amp Output & This pin is provided for compensating the error amp for poles and zeros encountered in the power supply system, mostly the output LC filter. \\
\hline 4 & Clock & This is a bidirectional pin used for synchronization. \\
\hline 5 & \(\mathrm{R}_{\mathrm{T}}\) & The value of \(\mathrm{R}_{\mathrm{T}}\) sets the charge current through timing Capacitor, \(\mathrm{C}_{\mathrm{T}}\). \\
\hline 6 & \(\mathrm{C}_{\mathrm{T}}\) & In conjunction with \(\mathrm{R}_{\mathrm{T}}\), the timing Capacitor sets the switching frequency. \\
\hline 7 & Ramp Input & For voltage mode operation this pin is connected to \(\mathrm{C}_{\boldsymbol{T}}\). For current mode operation this pin is connected through a filter to the current sensing element. \\
\hline 8 & Soft-Start & A capacitor at this pin sets the Soft-Start time. \\
\hline 9 & Current Limit/ Shutdown & This pin has two functions. First, it provides cycle-by-cycle current limiting. Second, if the current is excessive, this pin will reinitiate a Soft-Start cycle. \\
\hline 10 & Ground & This pin is the ground for the control circuitry. \\
\hline 11 & Current Limit Reference Input & This pin voltage sets the threshold for cycle-by-cycle current limiting. \\
\hline 12 & Power Ground & This is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline 13 & \(\mathrm{V}_{\mathrm{C}}\) & This is a separate power source connection for the outputs that is connected back to the power source input. With a separate power source connection, it can reduce the effects of switching transient noise on the control circuitry. \\
\hline 14 & Output & This is a high current totem pole output. \\
\hline 15 & \(V_{\text {CC }}\) & This pin is the positive supply of the control IC. \\
\hline 16 & \(V_{\text {ref }}\) & This is a 5.1 V reference. It is usually connected to the noninverting input of the error amplifier. \\
\hline
\end{tabular}

Figure 21. Voltage Mode Operation

In voltage mode operation, the control range on the output of the Error Amplifier from \(0 \%\) to \(90 \%\) duty cycle is from 2.25 V to 4.05 V .

Figure 22. Current Mode Operation

In current mode control, an RC filter should be placed at the ramp input to filter the leading edge spike caused by turn-on of a power MOSFET.

Figure 23. Resistive Current Sensing

The addition of an RC filter will eliminate instability caused by the leading edge spike on the current waveform. This sense signal can also be used at the ramp input pin for current mode control. For ramp compensation it is necessary to know the gain of the current feedback loop. If a transformer is used, the gain can be calculated by:

Figure 24. Primary Side Current Sensing

The addition of an RC filter will eliminate instability caused by the leading edge spike on the current waveform. This sense signal can also be used at the ramp input pin for current mode control. For ramp compensation it is necessary to know the gain of the current feedback loop. The gain can be calculated by:
\[
A_{i}=\frac{R_{\text {Sense }}}{\text { turns ratio }}
\]
\[
A_{i}=\frac{R_{w}}{\text { turns ratio }}
\]

Figure 25A. Slope Compensation (Noise Sensitive)

This method of slope compensation is easy to implement, however, it is noise sensitive. Capacitor \(C_{1}\) provides AC coupling. The oscillator signal is added to the current signal by a voltage divider consisting of resistors \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\)

Figure 25B. Slope Compensation (Noise Immune)

\footnotetext{
When only one output is used, this method of slope compensation can be used and it is relatively noise immune. Resistor \(R_{M}\) and capacitor \(C_{M}\) provide the added slope necessary. By choosing \(R_{M}\) and \(C_{M}\) with a larger time constant than the switching frequency, you can assume that its charge is linear. First choose \(\mathrm{C}_{\mathrm{M}}\), then \(R_{M}\) can be adjusted to achieve the required slope. The diode provides a reset pulse at the ramp input at the end of every cycle. The charge current \(/ \mathrm{M}\) can be calculated by \(\mathrm{I}_{\mathrm{M}}=\mathrm{C}_{\mathrm{M}} \mathrm{S}_{\mathrm{e}}\). Then \(\mathrm{R}_{\mathrm{M}}\) can be calculated by \(\mathrm{R}_{\mathrm{M}}=\mathrm{V}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{M}}\).
}

Figure 26. Dead Time Addition

Additional dead time can be added by the addition of a dead time resistor from \(V_{\text {ref }}\) to \(\mathrm{C}_{\mathrm{T}}\). See text on Oscillator section for more information.

Figure 27. External Clock Synchronization

The sync pulse fed into the clock pin must be at least 3.9 V . \(\mathrm{R}_{T}\) and \(\mathrm{C}_{T}\) need to be set \(10 \%\) slower than the sync frequency. This circuit is also used in Voltage Mode operation for master/slave operation. The clock signal would be coming from the master which is set at the desired operating frequency, while the slave is set \(10 \%\) slower.

Figure 28. Current Mode Master/Slave Operation Over Short Distances

Figure 29. Synchronization Over Long Distances

Figure 30. Buffered Maximum Clamp Level

In voltage mode operation, the maximum duty cycle can be clamped. By the addition of a PNP transistor to buffer the clamp voltage, the Soft-Start current is not affected by \(\mathrm{R}_{1}\).

The new equation for Soft-Start is \(t \approx \frac{V_{\text {clamp }}+0.6}{9.0 \mu \mathrm{~A}}\left(\mathrm{C}_{\mathrm{SS}}\right)\)
In current mode operation, this circuit will limit the maximum voltage allowed at the ramp input to end a cycle.

Figure 32. MOSFET Parasitic Oscillations

A series gate resistor may be needed to dampen high frequency parasitic oscillation caused by the MOSFET's input capacitance and any series wiring inductance in the gate-source circuit. The series resistor will also decrease the MOSFET switching speed. A Schottky diode can reduce the driver's power dissipation due to excessive ringing, by preventing the output pin from being driven below ground. The Schottky diode also prevents substrate injection when the output pin is driven below ground.

Figure 31. Bipolar Transistor Drive

The totem pole output can furnish negative base current for enhanced transistor turn-off, with the addition of the capacitor in series with the base.

Figure 33. Isolated MOSFET Drive

The totem pole output can easily drive pulse transformers. A Schottky diode is recommended when driving inductive loads at high frequencies. The diode can reduce the driver's power dissipation due to excessive ringing, by preventing the output pin from being driven below ground.

Figure 34. Application Circuit

\(T_{1}\) - Primary: 8 turns \#48 AWG (1300 strands litz wire)
Secondary: 2 turns \(0.003^{\prime \prime}\) (2 layers) copper foil
Bootstrap: 1 turn added to secondary \#36 AWG
Core: Philips 3F3, part \#4312 0204124
Bobbin: Philips part \#4322 0213525 Coilcraft P3269-A
\(L_{1}-2\) turns \#48 AWG (1300 strands litz wire) Core: Philips 3F3, part \#EP10-3F3 Bobbin: Philips part \#EP10PCB1\(\mathrm{L}=1.8 \mu \mathrm{H}\)
Coilcraft P3270-A
Heatsinks - Power FET: AAVID Heatsink \#533902B02552 with clip Output Rectifiers: AAVID Heatsink \#533402B02552 with clip
insulators - All power devices are insulated with Berquist Sil-Pad 150
(1) \(-10(1.0 \mu \mathrm{~F})\) ceramic capacitors in parallel
(2) \(-5(1.5 \Omega)\) resistors in parallel
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Condition } & \multicolumn{1}{c|}{ Result } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=40 \mathrm{~V}\) to \(56 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=7.5 \mathrm{~A}\) & \(14 \mathrm{mV}= \pm 0.275 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I} \mathrm{O}=4.0 \mathrm{~A}\) to 7.5 A & \(54 \mathrm{mV}= \pm 1.0 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I}=7.5 \mathrm{~A}\) & \(10 \mathrm{mVp}-\mathrm{p}\) \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I}=7.5 \mathrm{~A}\) & \(69.8 \%\) \\
\hline
\end{tabular}

Figure 35. PC Board With Components

Figure 36. PC Board Without Components

(Top View)

MOTOROLA

\section*{High Speed Double-Ended PWM Controller}

The MC34025 series are high speed, fixed frequency, double-ended pulse width modulator controllers optimized for high frequency operation. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature an oscillator, a temperature compensated reference, a wide bandwidth error amplifier, a high speed current sensing comparator, steering flip-flop, and dual high current totem pole outputs ideally suited for driving power MOSFETs.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, and a latch for single pulse metering.

The flexibility of this series allows it to be easily configured for either current mode or voltage mode control.
- 50 ns Propagation Delay to Outputs
- Dual High Current Totem Pole Outputs
- Wide Bandwidth Error Amplifier
- Fully-Latched Logic with Double Pulse Suppression
- Latching PWM for Cycle-By-Cycle Current Limiting
- Soft-Start Control with Latched Overcurrent Reset
- Input Undervoltage Lockout with Hysteresis
- Low Start-Up Current (500 \(\mu \mathrm{A}\) Typ)
- Internally Trimmed Reference with Undervoltage Lockout
- 90\% Maximum Duty Cycle (Externally Adjustable)
- Precision Trimmed Oscillator
- Voltage or Current Mode Operation to 1.0 MHz
- Functionally Similar to the UC3825

This device contains 227 active transistors.

MC34025 MC33025

PIN CONNECTIONS

ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33025DW & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\)} & SO-16L \\
\cline { 1 - 2 } MC33025P & & Plastic DIP \\
\hline MC34025DW & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-16L \\
\cline { 1 - 2 } MC34025P & & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 30 & V \\
\hline Output Driver Supply Voltage & \(\mathrm{V}_{\mathrm{C}}\) & 20 & V \\
\hline Output Current, Source or Sink (Note 1) DC Pulsed (\(0.5 \mu \mathrm{~s}\)) & 10 & \[
\begin{aligned}
& 0.5 \\
& 2.0
\end{aligned}
\] & A \\
\hline Current Sense, Soft-Start, Ramp, and Error Amp Inputs & \(\mathrm{V}_{\text {in }}\) & -0.3 to +7.0 & V \\
\hline Error Amp Output and Soft-Start Sink Current & 10 & 10 & mA \\
\hline Clock and \(\mathrm{R}_{\mathrm{T}}\) Output Current & ICO & 5.0 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics SO-16 Package (Case 751G) \\
Maximum Power Dissipation @ \(T_{A}=+25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air DIP Package (Case 648) Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& \\
& 1.25 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature (Note 2) MC34025 \\
MC33025
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+105
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=3.65 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 2], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline Reference Output Voltage (\(\mathrm{l} \mathrm{O}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\text {ref }}\) & 5.05 & 5.1 & 5.15 & V \\
\hline Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 30 V) & Regline & - & 2.0 & 15 & mV \\
\hline Load Regulation (\(\mathrm{O}=1.0 \mathrm{~mA}\) to 10 mA) & Regload & - & 2.0 & 15 & mV \\
\hline Temperature Stability & Ts & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Total Output Variation over Line, Load, and Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.95 & - & 5.25 & V \\
\hline Output Noise Voltage (\(\mathrm{f}=10 \mathrm{~Hz}\) to \(10 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 50 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability (\(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) for 1000 Hours) & S & - & 5.0 & - & mV \\
\hline Output Short Circuit Current & ISC & -30 & -65 & -100 & mA \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Frequency
\[
\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] \\
Line (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 30 V) and Temperature (\(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\))
\end{tabular} & \(\mathrm{f}_{\text {osc }}\) & \[
\begin{aligned}
& 380 \\
& 370
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 420 \\
& 430
\end{aligned}
\] & kHz \\
\hline Frequency Change with Voltage (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 30 V) & \(\Delta \mathrm{f}_{\text {Osc }} / \Delta \mathrm{V}\) & - & 0.2 & 1.0 & \% \\
\hline Frequency Change with Temperature (\(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)) & \(\Delta \mathrm{f}_{\text {Osc }} / \Delta \mathrm{T}\) & - & 2.0 & - & \% \\
\hline Sawtooth Peak Voltage & \(\mathrm{V}_{\mathrm{P}}\) & 2.6 & 2.8 & 3.0 & V \\
\hline Sawtooth Valley Voltage & \(\mathrm{V}_{V}\) & 0.7 & 1.0 & 1.25 & V \\
\hline Clock Output Voltage High State Low State & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & 3.9 & \[
\begin{aligned}
& 4.5 \\
& 2.3
\end{aligned}
\] & \[
\overline{2.9}
\] & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\begin{aligned} \mathrm{T}_{\text {low }} & =0^{\circ} \mathrm{C} \text { for MC34025 } & \mathrm{T}_{\text {high }} & =+70^{\circ} \mathrm{C} \text { for MC34025 } \\ & =-40^{\circ} \mathrm{C} \text { for MC33025 } & & =+105^{\circ} \mathrm{C} \text { for MC33025 }\end{aligned}\)

\section*{MC34025 MC33025}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=3.65 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\right.\), for typical values \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), for min/max values \(T_{A}\) is the operating ambient temperature range that applies [Note 2], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ERROR AMPLIFIER SECTION} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & - & 15 & mV \\
\hline Input Bias Current & IB & - & 0.6 & 3.0 & \(\mu \mathrm{A}\) \\
\hline Input Offset Current & 1 O & - & 0.1 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Open-Loop Voltage Gain (\(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}\) to 4.0 V) & Avol & 60 & 95 & - & dB \\
\hline Gain Bandwidth Product (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & GBW & 4.0 & 8.3 & - & MHz \\
\hline Common Mode Rejection Ratio (\(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}\) to 5.5 V) & CMRR & 75 & 95 & - & dB \\
\hline Power Supply Rejection Ratio (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 30 V) & PSRR & 85 & 110 & - & dB \\
\hline \begin{tabular}{l}
Output Current, Source (\(\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}\)) \\
Sink (\(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}\))
\end{tabular} & ISource \({ }^{1}\) Sink & \[
\begin{aligned}
& 0.5 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.6
\end{aligned}
\] & - & mA \\
\hline Output Voltage Swing, High State (\(\mathrm{I}=-0.5 \mathrm{~mA}\)) Low State (\(\mathrm{I}=1.0 \mathrm{~mA}\)) & \begin{tabular}{l}
VOH \\
\(V_{O L}\)
\end{tabular} & \[
\begin{gathered}
4.5 \\
0
\end{gathered}
\] & \[
\begin{gathered}
4.75 \\
0.4
\end{gathered}
\] & \[
\begin{aligned}
& 5.0 \\
& 1.0
\end{aligned}
\] & V \\
\hline Slew Rate & SR & 6.0 & 12 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline
\end{tabular}

PWM COMPARATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ramp Input Bias Current & IIB & - & -0.5 & -5.0 & \(\mu \mathrm{A}\) \\
\hline Duty Cycle, Maximum Minimum & \[
\begin{aligned}
& \mathrm{DC}_{(\max)} \\
& \mathrm{DC}_{(\text {min })}
\end{aligned}
\] & 80 & & - & \% \\
\hline Zero Duty Cycle Threshold Voltage Pin 3(4) (Pin 7(9) = 0 V) & \(\mathrm{V}_{\text {th }}\) & 1.1 & 1.25 & 1.4 & V \\
\hline Propagation Delay (Ramp Input to Output, \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & tPLH(in/out) & - & 60 & 100 & ns \\
\hline
\end{tabular}

SIFT-START SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Charge Current \(\left(V_{\text {Soft-Start }}=0.5 \mathrm{~V}\right)\) & \(\mathrm{I}_{\text {chg }}\) & 3.0 & 9.0 & 20 & \(\mu \mathrm{~A}\) \\
\hline Discharge Current \(\left(\mathrm{V}_{\text {Soft-Start }}=1.5 \mathrm{~V}\right)\) & \(\mathrm{I}_{\text {dischg }}\) & 1.0 & 4.0 & - & mA \\
\hline
\end{tabular}

\section*{CURRENT SENSE SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current (Pin 9(12) = 0 V to 4.0 V) & IIB & - & - & 15 & \(\mu \mathrm{A}\) \\
\hline Current Limit Comparator Threshold & \(V_{\text {th }}\) & 0.9 & 1.0 & 1.10 & V \\
\hline Shutdown Comparator Threshold & \(\mathrm{V}_{\text {th }}\) & 1.25 & 1.40 & 1.55 & \\
\hline Propagation Delay (Current Limit/Shutdown to Output, \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & tPLH(in/out) & - & 50 & 80 & ns \\
\hline
\end{tabular}

\section*{OUTPUT SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OL}}\) \\
\(\mathrm{V}_{\mathrm{OH}}\)
\end{tabular} & \[
\begin{aligned}
& 13 \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
0.25 \\
1.2 \\
13.5 \\
13
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
2.2 \\
- \\
-
\end{gathered}
\] & V \\
\hline Output Voltage with UVLO Activated (VCC \(=6.0 \mathrm{~V}\), \(\mathrm{I}_{\text {Sink }}=0.5 \mathrm{~mA}\)) & \(\mathrm{V}_{\text {OL(UVLO) }}\) & - & 0.25 & 1.0 & V \\
\hline Output Leakage Current (\(\mathrm{V}_{\mathrm{C}}=20 \mathrm{~V}\)) & IL & - & 100 & 500 & \(\mu \mathrm{A}\) \\
\hline Output Voltage Rise Time (\(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{tr}_{r}\) & - & 30 & 60 & ns \\
\hline Output Voltage Fall Time (\(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(t_{f}\) & - & 30 & 60 & ns \\
\hline \multicolumn{6}{|l|}{UNDERVOLTAGE LOCKOUT SECTION} \\
\hline Start-Up Threshold (VCC Increasing) & \(\mathrm{V}_{\text {th(on) }}\) & 8.8 & 9.2 & 9.6 & V \\
\hline UVLO Hysteresis Voltage (VCC Decreasing After Turn-On) & \(\mathrm{V}_{\mathrm{H}}\) & 0.4 & 0.8 & 1.2 & V \\
\hline \multicolumn{6}{|l|}{TOTAL DEVICE} \\
\hline Power Supply Current Start-Up (VCC \(=8.0 \mathrm{~V}\)) Operating & \({ }^{\text {ICC }}\) & - & \[
\begin{aligned}
& 0.5 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 \\
& 35
\end{aligned}
\] & mA \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\begin{aligned} \mathrm{T}_{\text {low }} & =0^{\circ} \mathrm{C} \text { for MC34025 } & T_{\text {high }} & =+70^{\circ} \mathrm{C} \text { for MC34025 } \\ & =-40^{\circ} \mathrm{C} \text { for MC33025 } & & =+105^{\circ} \mathrm{C} \text { for MC33025 }\end{aligned}\)
\[
=-40^{\circ} \mathrm{C} \text { for MC33025 } \quad=+105^{\circ} \mathrm{C} \text { for MC33025 }
\]

Figure 1. Timing Resistor versus Oscillator Frequency

Figure 3. Error Amp Open Loop Gain and Phase versus Frequency

Figure 5. Error Amp Small Signal Transient Response

\(0.1 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 2. Oscillator Frequency versus Temperature

Figure 4. PWM Comparator Zero Duty Cycle Threshold Voltage versus Temperature

Figure 6. Error Amp Large Signal Transient Response

\(0.1 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 7. Reference Voltage Change versus Source Current

Figure 9. Reference Line Regulation

\(V_{\text {ref }}\) LINE REGULATION \(10 \mathrm{~V}-24 \mathrm{~V}\)
\[
2.0 \mathrm{~ms} / \mathrm{DIV}
\]

Figure 11. Current Limit Comparator Threshold Change versus Temperature

Figure 8. Reference Short Circuit Current versus Temperature

Figure 10. Reference Load Regulation

\(V_{\text {ref }}\) LINE REGULATION \(1.0 \mathrm{~mA}-10 \mathrm{~mA}\) \(2.0 \mathrm{~ms} / \mathrm{DIV}\)

Figure 12. Shutdown Comparator Threshold Voltage versus Temperature

Figure 13. Soft-Start Charge Current versus Temperature

Figure 15. Drive Output Rise and Fall Time

OUTPUT RISE \& FALL TIME 1.0 nF LOAD \(50 \mathrm{~ns} /\) DIV

Figure 14. Output Saturation Voltage versus Load Current

OUTPUT RISE \& FALL TIME 10.0 nF LOAD \(50 \mathrm{~ns} /\) DIV

Figure 17. Supply Voltage versus Supply Current

Figure 18. Representative Block Diagram

Figure 19. Current Limit Operating Waveforms

\section*{MC34025 MC33025}

\section*{OPERATING DESCRIPTION}

The MC33025 and MC34025 series are high speed, fixed frequency, double-ended pulse width modulator controllers optimized for high frequency operation. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. A representative block diagram is shown in Figure 18.

\section*{Oscillator}

The oscillator frequency is programmed by the values selected for the timing components \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). The \(\mathrm{R}_{\mathrm{T}}\) pin is set to a temperature compensated 3.0 V . By selecting the value of \(\mathrm{R}_{\mathrm{T}}\), the charge current is set through a current mirror for the timing capacitor \(\mathrm{C}_{\mathrm{T}}\). This charge current runs continuously through \(\mathrm{C}_{\mathrm{T}}\). The discharge current is ratioed to be 10 times the charge current, which yields the maximum duty cycle of \(90 \%\). \(\mathrm{C}_{\top}\) is charged to 2.8 V and discharged to 1.0 V . During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates an internal blanking pulse that resets the PWM Latch, inhibits the outputs, and toggles the steering flip-flop. The threshold voltages on the oscillator comparator is trimmed to guarantee an oscillator accuracy of \(5.0 \%\) at \(25^{\circ} \mathrm{C}\).

Additional dead time can be added by externally increasing the charge current to \(\mathrm{C}_{\mathrm{T}}\) as shown in Figure 23. This changes the charge to discharge ratio of \(C_{T}\) which is set internally to \(I_{\text {charge }} / 10\) I charge. \(^{\text {C }}\) The new charge to discharge ratio will be:
\[
\% \text { Deadtime }=\frac{I_{\text {additional }}+I_{\text {charge }}}{10\left(I_{\text {charge }}\right)}
\]

A bidirectional clock pin is provided for synchronization or for master/slave operation. As a master, the clock pin provides a positive output pulse during the discharge of \(\mathrm{C}_{\mathrm{T}}\). As a slave, the clock pin is an input that resets the PWM latch and blanks the drive output, but does not discharge \(\mathrm{C}_{\mathrm{T}}\). Therefore, the oscillator is not synchronized by driving the clock pin alone. Figures 29 and 30 provide suggested synchronization.

\section*{Error Amplifier}

A fully compensated Error Amplifier is provided. It features a typical DC voltage gain of 95 dB and a gain bandwidth product of 8.3 MHz with 75 degrees of phase margin (Figure 3). Typical application circuits will have the noninverting input tied to the reference. The inverting input will typically be connected to a feedback voltage generated from the output of the switching power supply. Both inputs have a Common Mode Voltage (\(\mathrm{V}_{\mathrm{CM}}\)) input range of 1.5 V to 5.5 V . The Error Amplifier Output is provided for external loop compensation.

\section*{Soft-Start Latch}

Soft-Start is accomplished in conjunction with an external capacitor. The soft start capacitor is charged by an internal \(9.0 \mu \mathrm{~A}\) current source. This capacitor clamps the output of the error amplifier to less than its normal output voltage, thus limiting the duty cycle.

The time it takes for a capacitor to reach full charge is given by:
\[
t \approx\left(4.5 \cdot 10^{5}\right) C_{\text {Soft-Start }}
\]

A Soft-Start latch is incorporated to prevent erratic operation of this circuitry. Two conditions can cause the Soft-Start circuit to latch so that the Soft-Start capacitor stays discharged. The first condition is activation of an undervoltage lockout of either \(V_{C C}\) or \(V_{\text {ref. }}\). The second condition is when current sense input exceeds 1.4 V . Since this latch is "set dominant", it cannot be reset until either of these signals is removed, and the voltage at CSoft-Start is less than 0.5 V .

\section*{PWM Comparator and Latch}

A PWM circuit typically compares an error voltage with a ramp signal. The outcome of this comparison determines the state of the output. In voltage mode operation the ramp signal is the voltage ramp of the timing capacitor. In current mode operation the ramp signal is the voltage ramp induced in a current sensing element. The ramp input of the PWM comparator is pinned out so that the user can decide which mode of operation best suits the application requirements. The ramp input has a 1.25 V offset such that whenever the voltage at this pin exceeds the Error Amplifier Output voltage minus 1.25 V , the PWM comparator will cause the PWM latch to set, disabling the outputs. Once the PWM latch is set, only a blanking pulse by the oscillator can reset it, thus initiating the next cycle.

A toggle flip flop connected to the output of the PWM latch controls which output is active. The flip flop is pulsed by an OR gate that gets its inputs from the oscillator clock and the output of the PWM latch. A pulse from either one will cause the flip flop to enable the other output.

\section*{Current Limiting and Shutdown}

A pin is provided to perform current limiting and shutdown operations. Two comparators are connected to the input of this pin. When the voltage at this pin exceeds 1.0 V , one of the comparators is activated. The output of this comparator sets the PWM latch, which disables the output. In this way cycle-by-cycle current limiting is accomplished. If a current limit resistor is used in series with the power devices, the value of the resistor is found by:
\[
\mathrm{R}_{\text {Sense }}=\frac{1.0 \mathrm{~V}}{\mathrm{I}_{\mathrm{pk}}(\text { switch })}
\]

If the voltage at this pin exceeds 1.4 V , the second comparator is activated. This comparator sets a latch which, in turn, causes the Soft-Start capacitor to be discharged. In this way a "hiccup" mode of recovery is possible in the case of output short circuits. If a current limit resistor is used in series with the output devices, the peak current at which the controller will enter a "hiccup" mode is given by:
\[
I_{\text {shutdown }}=\frac{1.4 \mathrm{~V}}{R_{\text {Sense }}}
\]

\section*{MC34025 MC33025}

\section*{Undervoltage Lockout}

There are two undervoltage lockout circuits within the IC. The first senses \(V_{C C}\) and the second \(V_{\text {ref. }}\). During power-up, \(V_{C C}\) must exceed 9.2 V and \(\mathrm{V}_{\text {ref }}\) must exceed 4.2 V before the outputs can be enabled and the Soft-Start latch released. If \(\mathrm{V}_{\mathrm{CC}}\) falls below 8.4 V or \(\mathrm{V}_{\text {ref }}\) falls below 3.6 V , the outputs are disabled and the Soft-Start latch is activated. When the UVLO is active, the part is in a low current standby mode allowing the IC to have an off-line bootstrap start-up circuit. Typical start-up current is \(500 \mu \mathrm{~A}\).

\section*{Output}

The MC34025 has two high current totem pole outputs specifically designed for direct drive of power MOSFETs. They are capable of up to \(\pm 2.0\) A peak drive current with a typical rise and fall time of 30 ns driving a 1.0 nF load.

Separate pins for \(\mathrm{V}_{\mathrm{C}}\) and Power Ground are provided. With proper implementation, a significant reduction of switching transient noise imposed on the control circuitry is possible. The separate \(\mathrm{V}_{\mathrm{C}}\) supply input also allows the designer added flexibility in tailoring the drive voltage independent of \(\mathrm{V}_{\mathrm{CC}}\).

\section*{Reference}

A 5.1 V bandgap reference is pinned out and is trimmed to an initial accuracy of \(\pm 1.0 \%\) at \(25^{\circ} \mathrm{C}\). This reference has short circuit protection and can source in excess of 10 mA for powering additional control system circuitry.

\section*{Design Considerations}

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. With high frequency, high power, switching power supplies it is imperative to have separate current loops for the signal paths and for the power paths. The printed circuit layout should contain a ground plane with low current signal and high current switch and output grounds returning on separate paths back to the input filter capacitor. All bypass capacitors and snubbers should be connected as close as possible to the specific part in question. The PC board lead lengths must be less than 0.5 inches for effective bypassing or snubbing.

\section*{Instabilities}

In current mode control, an instability can be encountered at any given duty cycle. The instability is caused by the current feedback loop. It has been shown that the instability is caused by a double pole at half the switching frequency. If an external ramp \(\left(\mathrm{S}_{\mathrm{e}}\right)\) is added to the on-time ramp \(\left(\mathrm{S}_{n}\right)\) of the current-sense waveform, stability can be achieved (see Figure 20).

One must be careful not to add too much ramp compensation. If too much is added, the system will start to perform like a voltage mode regulator. All benefits of current mode control will be lost. Figures 28 A and 28 B show examples of two different ways in which external ramp compensation can be implemented.

Figure 20. Ramp Compensation

A simple equation can be used to calculate the amount of external ramp necessary to add that will achieve stability in the current loop. For the following equations, the calculated values for the application circuit in Figure 36 are also shown.
\[
S_{e}=\frac{V_{O}}{L}\left(\frac{N_{S}}{N_{P}}\right)\left(R_{S}\right) A_{i}
\]
where: \(\quad \mathrm{V}_{\mathrm{O}}=\mathrm{DC}\) output voltage
\(N_{P}, N_{S}=\) number of power transformer primary or secondary turns
\(A_{i}=\) gain of the current sense network
(see Figures 25, 26 and 27)
\(\mathrm{L}=\) output inductor
\(R_{S}=\) current sense resistance
\[
\text { For the application circuit: } \begin{aligned}
\mathrm{S}_{\mathrm{e}} & =\frac{5}{1.8 \mu}\left(\frac{4}{16}\right)(0.3)(0.55) \\
& =0.115 \mathrm{~V} / \mu \mathrm{s}
\end{aligned}
\]

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin No. & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Description} \\
\hline DIP/SOIC & & \\
\hline 1 & Error Amp Inverting Input & This pin is usually used for feedback from the output of the power supply. \\
\hline 2 & Error Amp Noninverting Input & This pin is used to provide a reference in which an error signal can be produced on the output of the error amp. Usually this is connected to \(\mathrm{V}_{\text {ref }}\), however an external reference can also be used. \\
\hline 3 & Error Amp Output & This pin is provided for compensating the error amp for poles and zeros encountered in the power supply system, mostly the output LC filter. \\
\hline 4 & Clock & This is a bidirectional pin used for synchronization. \\
\hline 5 & \(\mathrm{R}_{\mathrm{T}}\) & The value of \(\mathrm{R}_{\mathrm{T}}\) sets the charge current through timing Capacitor, \(\mathrm{C}_{\mathrm{T}}\). \\
\hline 6 & \(\mathrm{C}_{\mathrm{T}}\) & In conjunction with \(\mathrm{R}_{\mathrm{T}}\), the timing Capacitor sets the switching frequency. Because this part is a push-pull output, each output runs at one-half the frequency set at this pin. \\
\hline 7 & Ramp Input & For voltage mode operation this pin is connected to \(\mathrm{C}_{\boldsymbol{T}}\). For current mode operation this pin is connected through a filter to the current sensing element. \\
\hline 8 & Soft-Start & A capacitor at this pin sets the Soft-Start time. \\
\hline 9 & Current Limit/Shutdown & This pin has two functions. First, it provides cycle-by-cycle current limiting. Second, if the current is excessive, this pin will reinitiate a Soft-Start cycle. \\
\hline 10 & Ground & This pin is the ground for the control circuitry. \\
\hline 11 & Output A & This is a high current totem pole output. \\
\hline 12 & Power Ground & This is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline 13 & \(\mathrm{V}_{\mathrm{C}}\) & This is a separate power source connection for the outputs that is connected back to the power source input. With a separate power source connection, it can reduce the effects of switching transient noise on the control circuitry. \\
\hline 14 & Output B & This is a high current totem pole output. \\
\hline 15 & \(V_{C C}\) & This pin is the positive supply of the control IC. \\
\hline 16 & \(\mathrm{V}_{\text {ref }}\) & This is a 5.1 V reference. It is usually connected to the noninverting input of the error amplifier. \\
\hline
\end{tabular}

Figure 21. Voltage Mode Operation

In voltage mode operation, the control range on the output of the Error Amplifier from \(0 \%\) to \(90 \%\) duty cycle is from 2.25 V to 4.05 V .

Figure 22. Current Mode Operation

In current mode control, an RC filter should be placed at the ramp input to filter the leading edge spike caused by turn-on of a power MOSFET.

Figure 23. Dead Time Addition

Additional dead time can be added by the addition of a dead time resistor from \(\mathrm{V}_{\text {ref }}\) to \(\mathrm{C}_{\mathrm{T}}\). See text on oscillator section for more information.

Figure 24. External Clock Synchronization

The sync pulse fed into the clock pin must be at least \(3.9 \mathrm{~V} . R_{T}\) and \(C_{T}\) need to be set \(10 \%\) slower than the sync frequency. This circuit is also used in voltage mode operation for master/slave operation. The clock signal would be coming from the master which is set at the desired operating frequency, while the slave is set \(10 \%\) slower.

Figure 25. Resistive Current Sensing

The addition of an RC filter will eliminate instability caused by the leading edge spike on the current waveform. This sense signal can also be used at the ramp input pin for current mode control. For ramp compensation it is necessary to know the gain of the current feedback loop. If a transformer is used, the gain can be calculated by:
\[
A_{1}=\frac{R_{\text {Sense }}}{\text { turns ratio }}
\]

Figure 26. Primary Side Current Sensing
Figure 27. Primary or Secondary Side Current Sensing

The addition of an RC filter will eliminate instability caused by the leading edge spike on the current waveform. This sense signal can also be used at the ramp input pin for current mode control. For ramp compensation it is necessary to know the gain of the current feedback loop. The gain can be calculated by:
\[
A_{i}=\frac{R_{W}}{\text { turns ratio }}
\]

\section*{MC34025 MC33025}

Figure 28A. Slope Compensation (Noise Sensitive)

This method of slope compensation is easy to implement, however, it is noise sensitive. Capacitor \(C_{1}\) provides \(A C\) coupling. The oscillator signal is added to the current signal by a voltage divider consisting of resistors \(R_{1}\) and \(R_{2}\).

Figure 28B. Slope Compensation (Noise Immune)

When only one output is used, this method of slope compensation can be used and it is relatively noise immune. Resistor \(\mathrm{R}_{\mathrm{M}}\) and capacitor \(\mathrm{C}_{\mathrm{M}}\) provide the added slope necessary. By choosing \(R_{M}\) and \(C_{M}\) with a larger time constant than the switching frequency, you can assume that its charge is linear. First choose \(C_{M}\), then \(R_{M}\) can be adjusted to achieve the required slope. The diode provides a reset pulse at the ramp input at the end of every cycle. The charge current \(l_{\mathrm{M}}\) can be calculated by \(\mathrm{I}_{\mathrm{M}}=\mathrm{C}_{\mathrm{M}} \mathrm{S}_{\mathrm{e}}\). Then \(\mathrm{R}_{\mathrm{M}}\) can be calculated by \(\mathrm{R}_{\mathrm{M}}=\mathrm{V}_{\mathrm{CC}} / \mathrm{l}_{\mathrm{M}}\).

Figure 29. Current Mode Master/Slave Operation Over Short Distances

Figure 30. Synchronization Over Long Distances

Figure 31. Buffered Maximum Clamp Level

In voltage mode operation, the maximum duty cycle can be clamped. By the addition of a PNP transistor to buffer the clamp voltage, the Soft-Start current is not affected by \(\mathrm{R}_{1}\).

The new equation for Soft-Start is \(\quad t \approx \frac{v_{\text {clamp }}+0.6}{9.0 \mu \mathrm{~A}}\left(\mathrm{C}_{\mathrm{SS}}\right)\)
In current mode operation, this circuit will limit the maximum voltage allowed at the ramp input to end a cycle.

Figure 33. Isolated MOSFET Drive

Figure 32. Bipolar Transistor Drive

The totem pole output can furnish negative base current for enhanced transistor turn-off, with the addition of the capacitor in series with the base.

Figure 34. Direct Transformer Drive

The totem pole output can easily drive pulse transformers. A Schottky diode is recommended when driving inductive loads at high frequencies. The diode can reduce the driver's power dissipation due to excessive ringing, by preventing the output pin from being driven below ground.

Figure 35. MOSFET Parasitic Oscillations

A series gate resistor may be needed to damp high frequency parasitic oscillation caused by a MOSFET's input capacitance and any series wiring inductance in the gate-source circuit. The series resistor will also decrease the MOSFET's switching speed. A Schottky diode can reduce the driver's power dissipation due to excessive ringing, by preventing the output pin from being driven below ground. The Schottky diode also prevents substrate injection when the output pin is driven below ground.

Figure 37. PC Board With Components

Figure 38. PC Board Without Components

0

(Top View)

\section*{Precision SWITCHMODE \({ }^{\text {TM }}\) Pulse Width Modulator Control Circuit}

The MC34060A is a low cost fixed frequency, pulse width modulation control circuit designed primarily for single-ended SWITCHMODE power supply control.

The MC34060A is specified over the commercial operating temperature range of \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), and the MC33060A is specified over an automotive temperature range of \(-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\).
- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator with Master or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5.0 V Reference, 1.5\% Accuracy
- Adjustable Dead-Time Control
- Uncommitted Output Transistor Rated to 200 mA Source or Sink
- Undervoltage Lockout

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34060AD & \multirow{2}{*}{\(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-14 \\
\cline { 1 - 2 } & Plastic DIP \\
\hline MC34060AP & & SO-14 \\
\hline MC33060AD & \multirow{2}{*}{\(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & Plastic DIP \\
\hline
\end{tabular}

\section*{MC34060A MC33060A}

MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 42 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C}}\) & 42 & V \\
\hline Collector Output Current (Note 1) & \(\mathrm{I}_{\mathrm{C}}\) & 500 & mA \\
\hline Amplifier Input Voltage Range & \(\mathrm{V}_{\text {in }}\) & -0.3 to +42 & V \\
\hline Power Dissipation @ \(\mathrm{T}_{\mathrm{A}} \leq 45^{\circ} \mathrm{C}\) & \(\mathrm{P}_{\mathrm{D}}\) & 1000 & mW \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature Range \\
For MC34060A \\
For MC33060A
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & \begin{tabular}{c}
0 to +70 \\
-40 to +85
\end{tabular} & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Maximum thermal limits must be observed.

\section*{THERMAL CHARACTERISTICS}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & \begin{tabular}{c}
P Suffix \\
Package
\end{tabular} & \begin{tabular}{c}
D Suffix \\
Package
\end{tabular} & Unit \\
\hline Thermal Resistance, Junction-to-Ambient & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 80 & 120 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Derating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 45 & 45 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Condition/Value } & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & 15 & 40 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C}}\) & - & 30 & 40 & V \\
\hline Collector Output Current & \(\mathrm{I}_{\mathrm{C}}\) & - & - & 200 & mA \\
\hline Amplifier Input Voltage & \(\mathrm{V}_{\mathrm{in}}\) & -0.3 & - & \(\mathrm{V}_{\mathrm{CC}}-2\) & V \\
\hline Current Into Feedback Terminal & \(\mathrm{I}_{\mathrm{fb}}\) & - & - & 0.3 & mA \\
\hline Reference Output Current & \(\mathrm{I}_{\text {ref }}\) & - & - & 10 & mA \\
\hline Timing Resistor & \(\mathrm{R}_{\mathrm{T}}\) & 1.8 & 47 & 500 & \(\mathrm{k} \Omega\) \\
\hline Timing Capacitor & \(\mathrm{C}_{\mathrm{T}}\) & 0.00047 & 0.001 & 10 & \(\mu \mathrm{~F}\) \\
\hline Oscillator Frequency & \(\mathrm{f}_{\mathrm{osc}}\) & 1.0 & 25 & 200 & kHz \\
\hline PWM Input Voltage (Pins 3 and 4) & - & -0.3 & - & 5.3 & V \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\), unless otherwise noted. For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} /\) max values \(T_{A}\) is the operating ambient temperature range that applies, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline \[
\begin{gathered}
\text { Reference Voltage }\left(\mathrm{lO}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}} 25^{\circ} \mathrm{C}\right) \\
\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}-\mathrm{MC} 34060 \mathrm{~A} \\
-\mathrm{MC} 33060 \mathrm{~A}
\end{gathered}
\] & \(\mathrm{V}_{\text {ref }}\) & \[
\begin{gathered}
4.925 \\
4.9 \\
4.85
\end{gathered}
\] & \[
5.0
\] & \[
\begin{gathered}
5.075 \\
5.1 \\
5.1
\end{gathered}
\] & V \\
\hline Line Regulation
\[
\left.\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V} \text { to } 40 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}\right)\right)
\] & Regline & - & 2.0 & 25 & mV \\
\hline Load Regulation
\[
(\mathrm{I} \mathrm{O}=1.0 \mathrm{~mA} \text { to } 10 \mathrm{~mA})
\] & Regload & - & 2.0 & 15 & mV \\
\hline Short Circuit Output Current
\[
\left(\mathrm{V}_{\mathrm{ref}}=0 \mathrm{~V}\right)
\] & ISC & 15 & 35 & 75 & mA \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\), unless otherwise noted. For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(T_{A}\) is the operating ambient temperature range that applies, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OUTPUT SECTION} \\
\hline Collector Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=40 \mathrm{~V}\right)
\] & IC(off) & - & 2.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Emitter Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}\right)
\] & \({ }^{\prime} E\) (off) & - & - & -100 & \(\mu \mathrm{A}\) \\
\hline ```
Collector-Emitter Saturation Voltage (Note 2)
 Common-Emitter
 \(\left(\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}\right)\)
 Emitter-Follower
 \(\left(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-200 \mathrm{~mA}\right)\)
``` & \[
\begin{aligned}
& \mathrm{V}_{\text {sat }(\mathrm{C})} \\
& \mathrm{V}_{\text {sat }(\mathrm{E})}
\end{aligned}
\] &  & \[
1.1
\]
\[
1.5
\] & \[
1.5
\]
\[
2.5
\] & V \\
\hline Output Voltage Rise Time ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13) & \(\mathrm{tr}_{r}\) & - & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & ns \\
\hline Output Voltage Fall Time ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) Common-Emitter (See Figure 12 Emitter-Follower (See Figure 13) & \(\mathrm{tr}_{r}\) & - & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & ns \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage \(\left(\mathrm{V}_{\mathrm{O}}\right.\) Pin 3] \(\left.=2.5 \mathrm{~V}\right)\) & VIO & - & 2.0 & 10 & mV \\
\hline Input Offset Current \(\left(\mathrm{V}_{\mathrm{C}[\text { Pin } 3]}=2.5 \mathrm{~V}\right)\) & 10 & - & 5.0 & 250 & nA \\
\hline Input Bias current \(\left(\mathrm{V}_{\mathrm{O}}\right.\) Pin 3] \(\left.=2.5 \mathrm{~V}\right)\) & IB & - & -0.1 & -2.0 & \(\mu \mathrm{A}\) \\
\hline Input Common Mode Voltage Range
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\] & VICR & \[
\begin{gathered}
0 \text { to } \\
v_{C C}-2.0
\end{gathered}
\] & - & - & V \\
\hline Inverting Input Voltage Range & \(\mathrm{V}_{\mathrm{IR}}(\mathrm{INV})\) & \[
\begin{gathered}
-0.3 \text { to } \\
v_{\mathrm{CC}}-2.0
\end{gathered}
\] & - & - & V \\
\hline Open-Loop Voltage Gain
\[
\left(\Delta \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & Avol & 70 & 95 & - & dB \\
\hline Unity-Gain Crossover Frequency
\[
\left(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & \(\mathrm{f}_{\mathrm{c}}\) & - & 600 & - & kHz \\
\hline Phase Margin at Unity-Gain
\[
\left(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & ¢m & - & 65 & - & deg. \\
\hline Common Mode Rejection Ratio
\[
\left.\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0 \mathrm{~V} \text { to } 38 \mathrm{~V}\right)\right)
\] & CMRR & 65 & 90 & - & dB \\
\hline Power Supply Rejection Ratio
\[
\left(\Delta \mathrm{V}_{\mathrm{CC}}=33 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & PSRR & - & 100 & - & dB \\
\hline Output Sink Current \(\left(\mathrm{V}_{\mathrm{O}}\right.\) Pin 3] \(\left.=0.7 \mathrm{~V}\right)\) & \(10-\) & 0.3 & 0.7 & - & mA \\
\hline Output Source Current \(\left(\mathrm{V}_{\mathrm{O}}\right.\) Pin 3] \(\left.=3.5 \mathrm{~V}\right)\) & \(1{ }^{+}\) & -2.0 & -4.0 & - & mA \\
\hline
\end{tabular}

NOTES: 2. Low duty cycle techniques are used during test to maintain junction temperature as close to ambient temperatures as possible.
\(T_{\text {low }}=-40^{\circ} \mathrm{C}\) for MC33060A \(\quad T_{\text {high }}=+85^{\circ} \mathrm{C}\) for MC33060A
\(=0^{\circ} \mathrm{C}\) for MC34060A \(\quad=+70^{\circ} \mathrm{C}\) for MC34060A

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\), unless otherwise noted. For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(T_{A}\) is the operating ambient temperature range that applies, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{PWM COMPARATOR SECTION (Test circuit Figure 11)} \\
\hline Input Threshold Voltage (Zero Duty Cycle) & \(\mathrm{V}_{\text {TH }}\) & - & 3.5 & 4.5 & V \\
\hline Input Sink Current \(\left(\mathrm{V}_{\text {[Pin 3] }}=0.7 \mathrm{~V}\right)\) & 1 & 0.3 & 0.7 & - & mA \\
\hline
\end{tabular}

DEAD-TIME CONTROL SECTION (Test circuit Figure 11)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Input Bias Current (Pin 4) \\
\(\left(V_{\text {in }}=0 \mathrm{~V}\right.\) to 5.25 V\()\)
\end{tabular} & \(\mathrm{IIB}(\mathrm{DT})\) & - & -1.0 & -10 & \(\mu \mathrm{~A}\) \\
\hline \begin{tabular}{l} 
Maximum Output Duty Cycle \\
\(\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{RT}_{\mathrm{T}}=12 \mathrm{k} \Omega\right)\) \\
\(\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right)\)
\end{tabular} & DC max & & & & \\
\hline \begin{tabular}{l} 
Input Threshold Voltage (Pin 4) \\
(Zero Duty Cycle) \\
(Maximum Duty Cycle)
\end{tabular} & & - & 90 & 96 & 100 \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& \left(C_{T}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}-\mathrm{MC} 34060 \mathrm{~A} \\
& \left(\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{MC}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right)
\end{aligned}
\] & \(\mathrm{f}_{\text {osc }}\) & \[
\begin{aligned}
& 9.7 \\
& 9.5 \\
& 9.0
\end{aligned}
\] & \[
\begin{gathered}
10.5 \\
- \\
- \\
25
\end{gathered}
\] & \[
\begin{aligned}
& 11.3 \\
& 11.5 \\
& 11.5
\end{aligned}
\] & kHz \\
\hline Standard Deviation of Frequency*
\[
\left(\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right)
\] & ofosc & - & 1.5 & - & \% \\
\hline Frequency Change with Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V} \text { to } 40 \mathrm{~V}\right)
\] & \(\Delta \mathrm{f}_{\text {osc }}(\Delta \mathrm{V})\) & - & 0.5 & 2.0 & \% \\
\hline \[
\begin{aligned}
& \text { Frequency Change with Temperature } \\
& \left(\Delta T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \\
& \left(C_{T}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right)
\end{aligned}
\] & \(\Delta \mathrm{f}_{\text {Osc }}(\Delta \mathrm{T})\) & - & 4.0 & - & \% \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Turn-On Threshold ( \(\mathrm{V}_{\text {CC }}\) increasing, \(\left.\mathrm{I}_{\text {ref }}=1.0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\text {th }}\) & 4.0 & 4.7 & 5.5 & V \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & 50 & 150 & 300 & mV \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Standby Supply Current \\
\(\left(\right.\) Pin 6 at \(V_{\text {ref, }}\) all other inputs and outputs open \()\) \\
\(\left(V_{C C}=15 \mathrm{~V}\right)\) \\
\(\left(V_{\mathrm{CC}}=40 \mathrm{~V}\right)\)
\end{tabular} & ICC & & & \\
\hline \begin{tabular}{c} 
Average Supply Current \\
\(\left.\left(V_{[P i n} 4\right]=2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{RT}=47 \mathrm{k} \Omega\right)\). See Figure 11.
\end{tabular} & IS & - & mA \\
\hline
\end{tabular}
*Standard deviation is a measure of the statistical distribution about the mean as derived from the formula; \(\sigma=\sqrt{\begin{array}{l}N\left(x_{n}-x\right)^{2} \\ \frac{n-1}{N-1}\end{array}}\)

Figure 1. Block Diagram


\section*{Description}

The MC34060A is a fixed-frequency pulse widith modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply (see Figure 1). An internal-linear sawtooth oscillator is frequency-programmable by two external components, RT and \(\mathrm{CT}_{\mathrm{T}}\). The approximate oscillator frequency is determined by:
\[
\mathrm{f}_{\mathrm{Osc}} \cong \frac{1.2}{\mathrm{R}_{\mathrm{T}} \cdot \mathrm{C}_{\mathrm{T}}}
\]

For more information refer to Figure 3.
Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor \(\mathrm{C}_{\boldsymbol{\top}}\) to either of two control signals. The output is enabled only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the Timing Diagram shown in Figure 2.)

Figure 2. Timing Diagram


\section*{APPLICATIONS INFORMATION}

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feed-back input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first \(4 \%\) of the sawtooth-cycle time. This would result in a maximum duty cycle of \(96 \%\). Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 V to 3.3 V .

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin
varies from 0.5 V to 3.5 V . Both error amplifiers have a common mode input range from -0.3 V to ( \(\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\) ), and may be used to sense power supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the noninverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

The MC34060A has an internal 5.0 V reference capable of sourcing up to 10 mA of load currents for external bias circuits. The reference has an internal accuracy of \(\pm 5 \%\) with a typical thermal drift of less than 50 mV over an operating temperature range of \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\).

Figure 3. Oscillator Frequency versus Timing Resistance


Figure 5. Percent Deadtime versus Oscillator Frequency

\(\mathrm{f}_{\mathrm{osc}}\), OSCILLATOR FREQUENCY \((\mathrm{Hz})\)

Figure 7. Emitter-Follower Configuration Output Saturation Voltage versus Emitter Current


Figure 4. Open Loop Voltage Gain and Phase versus Frequency


Figure 6. Percent Duty Cycle versus Dead-Time Control Voltage


Figure 8. Common-Emitter Configuration Output Saturation Voltage versus Collector Current


Figure 9. Standby Supply Current versus Supply Voltage


Figure 11. Error Amplifier Characteristics


Figure 13. Common-Emitter Configuration and Waveform


Figure 10. Undervoltage Lockout Thresholds versus Reference Load Current


Figure 12. Deadtime and Feedback Control


Figure 14. Emitter-Follower Configuration and Waveform


\section*{MC34060A MC33060A}

Figure 15. Error Amplifier Sensing Techniques


Figure 16. Deadtime Control Circuit



Figure 17. Soft-Start Circuit


Figure 18. Slaving Two or More Control Circuits


\section*{MC34060A MC33060A}

Figure 19. Step-Down Converter with Soft-Start and Output Current Limiting

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & Results \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~A}\) & \(25 \mathrm{mV} \quad 0.5 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~mA}\) to 1.0 A & \(3.0 \mathrm{mV} \quad 0.06 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~A}\) & 75 mV p-p P.A.R.D. \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 1.6 A \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}=1.0 \mathrm{~A}\) & \(73 \%\) \\
\hline
\end{tabular}

Figure 20. Step-Up Converter

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & Results \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(26 \mathrm{~V}, \mathrm{IO}=0.5 \mathrm{~A}\) & \(40 \mathrm{mV} \quad 0.14 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~mA}\) to 0.5 A & \(5.0 \mathrm{mV} \quad 0.18 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}=0.5 \mathrm{~A}\) & 24 mV p-p P.A.R.D. \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{IO}=0.5 \mathrm{~A}\) & \(75 \%\) \\
\hline
\end{tabular}
* Optional circuit to minimize output ripple

\section*{MC34060A MC33060A}

Figure 21. Step-Up/Down Voltage Inverting Converter with Soft-Start and Current Limiting

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & Results \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}\) & 52 mV \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{to} 250 \mathrm{~mA}\) & 47 mV \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}\) & 10 mV p-p P.A.R.D. \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 330 mA \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}\) & \(86 \%\) \\
\hline
\end{tabular}
* Optional circuit to minimize output ripple


\section*{DC-to-DC Converter Control Circuits}

The MC34063A Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components. Refer to Application Notes AN920A/D and AN954/D for additional design information.
- Operation from 3.0 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5 A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2\% Reference

Representative Schematic Diagram


This device contains 51 active transistors.

DC-to-DC CONVERTER CONTROL CIRCUITS

SEMICONDUCTOR TECHNICAL DATA


P, P1 SUFFIX PLASTIC PACKAGE CASE 626


D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO-8)

\section*{PIN CONNECTIONS}

(Top View)
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC33063AD & \multirow[b]{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-8 \\
\hline MC33063AP1 & & Plastic DIP \\
\hline MC33063AVD & \multirow[b]{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & SO-8 \\
\hline MC33063AVP & & Plastic DIP \\
\hline MC34063AD & \multirow[b]{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\hline MC34063AP1 & & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & Vdc \\
\hline Comparator Input Voitage Range & \(\mathrm{V}_{\mathrm{IR}}\) & -0.3 to +40 & Vdc \\
\hline Switch Collector Voltage & \(\mathrm{V}_{\mathrm{C} \text { (switch) }}\) & 40 & Vdc \\
\hline Switch Emitter Voltage (VPin \(1=40 \mathrm{~V}\) ) & \(\mathrm{V}_{\mathrm{E}}\) (switch) & 40 & Vdc \\
\hline Switch Collector to Emitter Voltage & \(\mathrm{V}_{\text {CE }}\) (switch) & 40 & Vdc \\
\hline Driver Collector Voltage & \(\mathrm{V}_{\mathrm{C}}\) (driver) & 40 & Vdc \\
\hline Driver Collector Current (Note 1) & IC(driver) & 100 & mA \\
\hline Switch Current & Isw & 1.5 & A \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics Plastic Package, P, P1 Suffix
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance \\
SOIC Package, D Suffix
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance
\end{tabular} & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
PD \\
\(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 1.25 \\
& 100 \\
& \\
& 625 \\
& 160
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range
\[
\begin{aligned}
& \text { MC34063A } \\
& \text { MC33063AV } \\
& \text { MC33063A }
\end{aligned}
\] & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+125 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed. 2. ESD data available upon request.

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) [Note 3], unless otherwise specified.)
\begin{tabular}{|l|l|l|l|l|}
\hline Characteristics & Symbol & Min & Typ & Max \\
\hline
\end{tabular}

OSCILLATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frequency ( \(\mathrm{V}_{\text {Pin } 5}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & \(f_{\text {osc }}\) & 24 & 33 & 42 & kHz \\
\hline Charge Current ( \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & Ichg & 24 & 35 & 42 & \(\mu \mathrm{A}\) \\
\hline Discharge Current ( \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) to \(\left.40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & Idischg & 140 & 220 & 260 & \(\mu \mathrm{A}\) \\
\hline Discharge to Charge Current Ratio (Pin 7 to \(\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}\) ) & Idischg/lchg & 5.2 & 6.5 & 7.5 & - \\
\hline Current Limit Sense Voltage ( \(I_{\text {chg }}=I_{\text {dischg }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {ipk }}\) (sense) & 250 & 300 & 350 & mV \\
\hline
\end{tabular}

OUTPUT SWITCH (Note 4)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Saturation Voltage, Darlington Connection (Note 5) \\
(ISW \(=1.0 \mathrm{~A}\), Pins 1,8 connected)
\end{tabular} & \(\mathrm{V}_{\mathrm{CE}}\) (sat) & - & 1.0 & 1.3 & V \\
\hline \begin{tabular}{c} 
Saturation Voltage, Darlington Connection \\
(ISW \(=1.0 \mathrm{~A}, \mathrm{RPin}=82 \Omega\) to \(\mathrm{V}_{\mathrm{CC}}\), Forced \(\beta \approx 20\) )
\end{tabular} & \(\mathrm{V}_{\mathrm{CE}}(\) sat \()\) & - & 0.45 & 0.7 & V \\
\hline DC Current Gain (ISW \(=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{h}_{\mathrm{FE}}\) & 50 & 75 & - & - \\
\hline Collector Off-State Current \(\left(\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}\right.\) ) & I (off) & - & 0.01 & 100 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

NOTES: 3. \(T_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34063A, \(-40^{\circ} \mathrm{C}\) for MC33063A, AV \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34063A,\(+85^{\circ} \mathrm{C}\) for MC33063A, \(+125^{\circ} \mathrm{C}\) for MC33063AV 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
5. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ( \(\leq 300 \mathrm{~mA}\) ) and high driver currents ( \(\geq 30 \mathrm{~mA}\) ), it may take up to \(2.0 \mu \mathrm{~s}\) for it to come out of saturation. This condition will shorten the off time at frequencies \(\geq 30 \mathrm{kHz}\), and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:
Forced \(\beta\) of output switch : \(\frac{\mathrm{IC} \text { output }}{\mathrm{I}_{\mathrm{C}} \text { driver }-7.0 \mathrm{~mA}^{*}} \geq 10\)
*The \(100 \Omega\) resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 3], unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{COMPARATOR} \\
\hline Threshold Voltage
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & \(\mathrm{V}_{\text {th }}\) & \[
\begin{gathered}
1.225 \\
1.21
\end{gathered}
\] & & \[
\begin{gathered}
1.275 \\
1.29
\end{gathered}
\] & V \\
\hline Threshold Voltage Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\) to 40 V ) MC33063A, MC34063A MC33363AV & Regline & - & \[
\begin{aligned}
& 1.4 \\
& 1.4
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & mV \\
\hline Input Bias Current ( \(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\) ) & IB & - & -20 & -400 & nA \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Supply Current ( \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\), Pin \(7=\mathrm{V}_{\mathrm{CC}}\), \(V_{\text {Pin } 5}>V_{\text {th }}\), Pin \(2=\) Gnd, remaining pins open) & ICC & - & - & 4.0 & mA \\
\hline
\end{tabular}

NOTES: 3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34063A, \(-40^{\circ} \mathrm{C}\) for MC33063A, AV \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34063A \(+85^{\circ} \mathrm{C}\) for MC33063A, \(+125^{\circ} \mathrm{C}\) for MC33063AV 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
5. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ( \(\leq 300 \mathrm{~mA}\) ) and high driver currents ( \(\geq 30 \mathrm{~mA}\) ), it may take up to \(2.0 \mu \mathrm{~s}\) for it to come out of saturation. This condition will shorten the off time at frequencies \(\geq 30 \mathrm{kHz}\), and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:
Forced \(\beta\) of output switch: \(\frac{\text { IC output }}{\text { IC driver }-7.0 \mathrm{~mA}^{*}} \geq 10\)
*The \(100 \Omega\) resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

Figure 1. Output Switch On-Off Time versus Oscillator Timing Capacitor


Figure 2. Timing Capacitor Waveform

\(10 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 3. Emitter Follower Configuration Output Saturation Voltage versus Emitter Current


Figure 5. Current Limit Sense Voltage versus Temperature


Figure 4. Common Emitter Configuration Output Switch Saturation Voltage versus Collector Current


Figure 6. Standby Supply Current versus Supply Voltage


NOTE: 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

\section*{MC34063A MC33063A}

Figure 7. Step-Up Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & \(30 \mathrm{mV}= \pm 0.05 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=75 \mathrm{~mA}\) to 175 mA & \(10 \mathrm{mV}= \pm 0.017 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & 400 mVpp \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & \(87.7 \%\) \\
\hline Output Ripple With Optional Filter & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & 40 mVpp \\
\hline
\end{tabular}

Figure 8. External Current Boost Connections for IC Peak Greater than 1.5 A

8a. External NPN Switch


8b. External NPN Saturated Switch
(See Note 5)


NOTE: 5. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ( \(\leq 300 \mathrm{~mA}\) ) and high driver currents \((\geq 30 \mathrm{~mA}\) ), it may take up to \(2.0 \mu \mathrm{~s}\) to come out of saturation. This condition will shorten the off time at frequencies \(\geq 30 \mathrm{kHz}\), and is magnified at high temperatures. This condition does not occur with a Dariington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended.

Figure 9. Step-Down Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=15 \mathrm{~V}\) to \(25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & \(12 \mathrm{mV}= \pm 0.12 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}\) to 500 mA & \(3.0 \mathrm{mV}= \pm 0.03 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & 120 mVpp \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 1.1 A \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & \(83.7 \%\) \\
\hline Output Ripple With Optional Filter & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & 40 mVpp \\
\hline
\end{tabular}

Figure 10. External Current Boost Connections for IC Peak Greater than 1.5 A

10a. External NPN Switch


10b. External PNP Saturated Switch


\section*{MC34063A MC33063A}

Figure 11. Voltage Inverting Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}\) to \(6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\) & \(3.0 \mathrm{mV}= \pm 0.012 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}\) to 100 mA & \(0.022 \mathrm{~V}= \pm 0.09 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\) & 500 mVpp \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 910 mA \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\) & \(62.2 \%\) \\
\hline Output Ripple With Optional Filter & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\) & 70 mVpp \\
\hline
\end{tabular}

Figure 12. External Current Boost Connections for IC Peak Greater than 1.5 A

12a. External NPN Switch


12b. External PNP Saturated Switch


\section*{MC34063A MC33063A}

Figure 13. Printed Circuit Board and Component Layout
(Circuits of Figures 7, 9, 11)

(Top view, copper foil as seen through the board from the component side)


INDUCTOR DATA
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Converter } & Inductance ( \(\mu \mathrm{H})\) & Turns/Wire \\
\hline Step-Up & 170 & 38 Turns of \#22 AWG \\
\hline Step-Down & 220 & 48 Turns of \#22 AWG \\
\hline Voltage-Inverting & 88 & 28 Turns of \#22 AWG \\
\hline
\end{tabular}

All inductors are wound on Magnetics Inc. 55117 toroidal core.

\section*{MC34063A MC33063A}

Figure 14. Design Formula Table
\begin{tabular}{|c|c|c|c|}
\hline Calculation & Step-Up & Step-Down & Voltage-Inverting \\
\hline \(\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\text {off }}\) & \[
\frac{V_{\text {out }}+V_{F}-V_{\text {in(min })}}{V_{\text {in (min })}-V_{\text {sat }}}
\] & \[
\frac{v_{\text {out }}+V_{F}}{V_{\text {in }(\min )}-v_{\text {sat }}-V_{\text {out }}}
\] & \[
\frac{v_{\text {out }}+v_{F}}{v_{\text {in }}-v_{\text {sat }}}
\] \\
\hline (ton \(+t_{\text {off }}\) ) & \(\frac{1}{f}\) & \(\frac{1}{f}\) & \(\frac{1}{f}\) \\
\hline \(t_{\text {off }}\) & \[
\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}
\] & \(\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}\) & \[
\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}
\] \\
\hline \(\mathrm{t}_{\text {on }}\) & ( \(\left.\mathrm{t}_{\text {on }}+t_{\text {off }}\right)-t_{\text {off }}\) & ( \(\left.t_{\text {on }}+t_{\text {off }}\right)-t_{\text {off }}\) & ( \(\left.t_{\text {on }}+t_{\text {off }}\right)-t_{\text {off }}\) \\
\hline \(\mathrm{C}_{\mathrm{T}}\) & \(4.0 \times 10^{-5} \mathrm{t}_{\text {on }}\) & \(4.0 \times 10^{-5} \mathrm{t}_{\text {on }}\) & \(4.0 \times 10^{-5} \mathrm{t}\) on \\
\hline 1 l ( \({ }^{\text {(switch) }}\) & \(21_{\text {out(max) }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)\) & \({ }^{21}\) out(max) & \(2 \mathrm{I}_{\text {out(max }}\left(\frac{\mathrm{t}_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)\) \\
\hline \(\mathrm{R}_{\text {Sc }}\) & 0.3/lpk(switch) & 0.3/lpk(switch) & 0.3/l lk (switch) \\
\hline \(L_{(\text {min })}\) & \(\left(\frac{\left(V_{\text {in(min) }}-V_{\text {sat }}\right)}{I_{\text {pk(switch })}}\right) \mathrm{t}_{\text {on(max })}\) & \(\left(\frac{\left(v_{\text {in(min) }}-v_{\text {sat }}-v_{\text {out }}\right)}{I_{\text {pk(switch })}}\right) \mathrm{t}_{\text {on(max })}\) & \(\left(\frac{\left(v_{\text {in(min) }}-v_{\text {sat }}\right)}{I_{\text {pk(switch })}}\right) \mathrm{t}_{\text {on(max })}\) \\
\hline \(\mathrm{CO}_{\mathrm{O}}\) & \[
9 \frac{\mathrm{I}_{\text {out }} \mathrm{t}_{\text {on }}}{\mathrm{V}_{\text {ripple(pp) }}}
\] & \[
\frac{\mathrm{I}_{\mathrm{pk}(\mathrm{switch})}\left(\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\mathrm{off}}\right)}{8 \mathrm{~V}_{\text {ripple }}(\mathrm{pp})}
\] &  \\
\hline
\end{tabular}
\(V_{\text {sat }}=\) Saturation voltage of the output switch.
\(V_{F}=\) Forward voltage drop of the output rectifier.
The following power supply characteristics must be chosen:
\(\mathrm{V}_{\text {in }}\) - Nominal input voltage.
\(V_{\text {out }}\)-Desired output voltage, \(\left|V_{\text {out }}\right|=1.25\left(1+\frac{R 2}{R 1}\right)\)
Iout - Desired output current.
\(f_{\min }\) - Minimum desired output switching frequency at the selected values of \(\mathrm{V}_{\text {in }}\) and \(\mathrm{I}_{\mathrm{O}}\)
\(V_{\text {ripple(pp) }}\) - Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation
NOTE: For further information refer to Application Note AN920A/D and AN954/D.

\section*{Undervoltage Sensing Circuit}

The MC34064 is an undervoltage sensing circuit specifically designed for use as a reset controller in microprocessor-based systems. It offers the designer an economical solution for low voltage detection with a single external resistor. The MC34064 features a trimmed-in-package bandgap reference, and a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation. The open collector reset output is capable of sinking in excess of 10 mA , and operation is guaranteed down to 1.0 V input with low standby current. These devices are packaged in 3-pin TO-226AA, 8 -pin SO-8 and Micro-8 surface mount packages.

Applications include direct monitoring of the 5.0 V MPU/logic power supply used in appliance, automotive, consumer and industrial equipment.
- Trimmed-In-Package Temperature Compensated Reference
- Comparator Threshold of 4.6 V at \(25^{\circ} \mathrm{C}\)
- Precise Comparator Thresholds Guaranteed Over Temperature
- Comparator Hysteresis Prevents Erratic Reset
- Reset Output Capable of Sinking in Excess of 10 mA
- Internal Clamp Diode for Discharging Delay Capacitor
- Guaranteed Reset Operation with 1.0 V Input
- Low Standby Current
- Economical TO-226AA, SO-8 and Micro-8 Surface Mount Packages



ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC34064D-5 & \multirow{3}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\hline MC34064DM-5 & & Micro-8 \\
\hline MC34064P-5 & & TO-226AA \\
\hline MC33064D-5 & \multirow{3}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-8 \\
\hline MC33064DM-5 & & Micro-8 \\
\hline MC33064P-5 & & TO-226AA \\
\hline
\end{tabular}

MC34064 MC33064
MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Input Supply Voltage & \(\mathrm{V}_{\text {in }}\) & -1.0 to 10 & V \\
\hline \(\overline{\text { Reset Output Voltage }}\) & \(\mathrm{V}_{\mathrm{O}}\) & 10 & \(\checkmark\) \\
\hline \(\overline{\text { Reset Output Sink Current (Note 1) }}\) & ISink & Internally Limited & mA \\
\hline Clamp Diode Forward Current, Pin 1 to 2 (Note 1) & \({ }^{\prime} \mathrm{F}\) & 100 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics P Suffix, Plastic Package Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
D Suffix, Plastic Package Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air DM Suffix, Plastic Package Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \[
\begin{aligned}
& 625 \\
& 200 \\
& \\
& 625 \\
& 200 \\
& 520 \\
& 240
\end{aligned}
\] & \begin{tabular}{l}
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature MC34064 MC33064 & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS (For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Notes 2 and 3] unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{COMPARATOR} \\
\hline Threshold Voltage & & & & & V \\
\hline High State Output ( \(\mathrm{V}_{\text {in }}\) Increasing) & \(\mathrm{V}_{\mathrm{IH}}\) & 4.5 & 4.61 & 4.7 & \\
\hline Low State Output ( \(\mathrm{V}_{\text {in }}\) Decreasing) & \(V_{\text {IL }}\) & 4.5 & 4.59 & 4.7 & \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & 0.01 & 0.02 & 0.05 & \\
\hline
\end{tabular}

\section*{RESET OUTPUT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Sink Saturation
\[
\begin{aligned}
& \left(V_{\text {in }}=4.0 \mathrm{~V}, I_{\text {Sink }}=8.0 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\text {in }}=4.0 \mathrm{~V}, I_{\text {Sink }}=2.0 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\text {in }}=1.0 \mathrm{~V}, I_{\text {Sink }}=0.1 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) &  & \[
\begin{aligned}
& 0.46 \\
& 0.15
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 0.4 \\
& 0.1
\end{aligned}
\] & V \\
\hline Output Sink Current ( \(\mathrm{V}_{\text {in }}, \overline{\text { Reset }}=4.0 \mathrm{~V}\) ) & ISink & 10 & 27 & 60 & mA \\
\hline Output Off-State Leakage ( \(\mathrm{V}_{\text {in }}, \overline{\text { Reset }}=5.0 \mathrm{~V}\) ) & IOH & - & 0.02 & 0.5 & \(\mu \mathrm{A}\) \\
\hline Clamp Diode Forward Voltage, Pin 1 to 2 ( \(\mathrm{IF}=10 \mathrm{~mA}\) ) & \(V_{F}\) & 0.6 & 0.9 & 1.2 & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Operating Input Voltage Range & \(V_{\text {in }}\) & 1.0 to 6.5 & - & - & \(V\) \\
\hline Quiescent Input Current \(\left(V_{\text {in }}=5.0 \mathrm{~V}\right)\) & \(\mathrm{I}_{\text {in }}\) & - & 390 & 500 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed. 2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. \(T_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34064
\(-40^{\circ} \mathrm{C}\) for MC33064
\(T_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34064
\(+85^{\circ} \mathrm{C}\) for MC33064

Figure 1. \(\overline{\text { Reset }}\) Output Voltage versus Input Voltage


Figure 3. Comparator Threshold Voltage versus Temperature


Figure 5. Reset Output Saturation versus Sink Current


Figure 2. Reset Output Voltage versus Input Voltage


Figure 4. Input Current versus Input Voltage


Figure 6. \(\overline{\text { Reset Delay Time }}\)


\section*{MC34064 MC33064}

Figure 7. Clamp Diode Forward Current
versus Voltage


Figure 8. Low Voltage Microprocessor Reset


Figure 9. Low Voltage Microprocessor Reset with Additional Hysteresis
 4.59 V . The equations are accurate to \(\pm 10 \%\) with \(\mathrm{R}_{H}\) less than \(150 \Omega\) and \(\mathrm{R}_{\mathrm{L}}\) between \(1.5 \mathrm{k} \Omega\) and \(10 \mathrm{k} \Omega\).

Figure 10. Voltage Monitor


Figure 11. Solar Powered Battery Charger


Figure 12. Low Power Switching Regulator


Figure 13. MOSFET Low Voltage Gate Drive Protection


Overheating of the logic level power MOSFET due to insufficient gate voltage can be prevented with the above circuit. When the input signal is below the 4.6 V threshold of the MC34064, its output grounds the gate of the \(\mathrm{L}^{2}\) MOSFET.

\section*{High Performance Dual Channel Current Mode Controller}

The MC34065 is a high performance, fixed frequency, dual current mode controllers. It is specifically designed for off-line and dc-to-dc converter applications offering the designer a cost effective solution with minimal external components. This integrated circuit feature a unique oscillator for precise duty cycle limit and frequency control, a temperature compensated reference, two high gain error amplifiers, two current sensing comparators, Drive Output 2 Enable pin, and two high current totem pole outputs ideally suited for driving power MOSFETs.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, and a latch for single pulse metering of each output.

The MC34065 and MC33065 are available in dual-in-line and surface mount packages.
- Unique Oscillator for Precise Duty Cycle Limit and Frequency Control
- Current Mode Operation to 500 kHz
- Automatic Feed Forward Compensation
- Separate Latching PWMs for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- Drive Output 2 Enable Pin
- Two High Current Totem Pole Outputs
- Input Undervoltage Lockout with Hysteresis
- Low Startup and Operating Current


MC34065 MC33065

HIGH PERFORMANCE dUAL CHANNEL CURRENT MODE CONTROLLER

\section*{SEMICONDUCTOR TECHNICAL DATA}

P SUFFIX
PLASTIC PACKAGE
CASE 648


DW SUFFIX
PLASTIC PACKAGE
CASE 751G
(SO-16L)

PIN CONNECTIONS


ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Operating \\
Device \\
Temperature Range
\end{tabular}} & Package \\
\hline MC34065DW & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-16L \\
\cline { 4 - 4 } MC34065P & Plastic DIP \\
\hline MC33065DW & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-16L \\
\hline MC33065P & & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & (ICC + Iz) & 50 & mA \\
\hline Output Current, Source or Sink (Note 1) & 10 & 1.0 & A \\
\hline Output Energy (Capacitive Load per Cycle) & W & 5.0 & \(\mu \mathrm{J}\) \\
\hline Current Sense, Enable, and Voltage Feedback Inputs & \(\mathrm{V}_{\text {in }}\) & -0.3 to +5.5 & V \\
\hline \begin{tabular}{l}
Sync Input \\
High State (Voltage) \\
Low State (Reverse Current)
\end{tabular} & \[
V_{\mathrm{IH}}
\] & \[
\begin{gathered}
5.5 \\
-5.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline Error Amp Output Sink Current & 10 & 10 & mA \\
\hline Power Dissipation and Thermal Characteristics DW Suffix, Plastic Package Case 751G Maximum Power Dissipation @ \(T_{A}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air P Suffix, Plastic Package Case 648 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air & \begin{tabular}{l}
PD \(R_{\text {日JA }}\) \\
PD \(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& \\
& 1.25 \\
& 100
\end{aligned}
\] & \begin{tabular}{l}
mW \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
W \({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature
\[
\begin{aligned}
& \text { MC34065 } \\
& \text { МСЗ3065 }
\end{aligned}
\] & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & ² \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS (VCC \(=15 \mathrm{~V}\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=8.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline Reference Output Voltage ( \(\mathrm{I} \mathrm{O}=1.0 \mathrm{~mA}, \mathrm{TJ}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {ref }}\) & 4.9 & 5.0 & 5.1 & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}\) to 15 V ) & Regline & - & 2.0 & 20 & mV \\
\hline Load Regulation ( \(\mathrm{l} \mathrm{O}=1.0 \mathrm{~mA}\) to 10 mA ) & Regload & - & 3.0 & 25 & mV \\
\hline Total Output Variation over Line, Load, and Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.85 & - & 5.15 & V \\
\hline Output Short Circuit Current & ISC & 30 & 100 & - & mA \\
\hline
\end{tabular}

OSCILLATOR AND PWM SECTIONS
\begin{tabular}{|l|c|c|c|c|c|}
\hline Total Frequency Variation over Line and Temperature & \(\mathrm{f}_{\mathrm{OsC}}\) & & & & kHz \\
\(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}\) to \(15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\) \\
MC34065 & & & & & \\
MC33065
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible:
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for the MC34065 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34065
\(T_{\text {low }}=-40^{\circ} \mathrm{C}\) for the MC33065 \(\quad T_{\text {high }}=+85^{\circ} \mathrm{C}\) for MC33065
4. This parameter is measured at the latch trip point with \(V_{F B}=0 \mathrm{~V}\)
5. Comparator gain is defined as \(\mathrm{AV}=\frac{\Delta \mathrm{V} \text { Compensation }}{\Delta \mathrm{V} \text { Current Sense }}\)

\section*{MC34065 MC33065}

ELECTRICAL CHARACTERISTICS (continued) \(\left(V_{C C}=15 \mathrm{~V}\right.\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=8.2 \mathrm{k} \Omega, \mathrm{C}_{\boldsymbol{T}}=3.3 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ERROR AMPLIFIERS} \\
\hline Voltage Feedback Input ( \(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\) ) & \(\mathrm{V}_{\mathrm{FB}}\) & 2.42 & 2.5 & 2.58 & V \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=5.0 \mathrm{~V}\) ) & IIB & - & -0.1 & -1.0 & \(\mu \mathrm{A}\) \\
\hline Open Loop Voltage Gain ( \(\mathrm{V}_{\mathrm{O}}=2.0\) to 4.0 V ) & AVOL & 65 & 100 & - & dB \\
\hline Unity Gain Bandwidth ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & BW & 0.7 & 1.0 & - & MHz \\
\hline Power Supply Rejection Ratio ( \(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}\) to 15 V ) & PSRR & 60 & 90 & - & dB \\
\hline \begin{tabular}{l}
Output Current \\
Source ( \(\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) \\
Sink ( \(\mathrm{V}_{\mathrm{O}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) )
\end{tabular} & \(I_{\text {source }}\) Isink & \[
\begin{gathered}
-0.45 \\
2.0
\end{gathered}
\] & \[
\begin{gathered}
-1.0 \\
12
\end{gathered}
\] & - & mA \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State ( \(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to ground, \(\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) \\
Low State ( \(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to \(\mathrm{V}_{\text {ref }}, \mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) )
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & 5.0 & \[
\begin{aligned}
& 6.2 \\
& 0.8
\end{aligned}
\] & \[
\overline{-1.1}
\] & V \\
\hline
\end{tabular}

CURRENT SENSE SECTION
\begin{tabular}{|l|c|c|c|c|}
\hline Current Sense Input Voltage Gain (Notes 4 and 5) & AV & 2.75 & 3.0 & 3.25 \\
\hline Maximum Current Sense Input Threshold (Note 4) & \(V_{\text {th }}\) & 430 & 480 & 530 \\
\hline Input Bias Current & \(\mathrm{I}_{\mathrm{IB}}\) & - & -2.0 & -10 \\
\hline Propagation Delay (Current Sense Input to Output) & tPLN(In/Out) & - & 150 & 300 \\
\hline
\end{tabular}

DRIVE OUTPUT 2 ENABLE PIN
\begin{tabular}{|l|c|c|c|}
\hline Enable Pin Voltage & & & \\
\begin{tabular}{l} 
High State (Output 2 Enabled) \\
Low State (Output 2 Disabled)
\end{tabular} & \(\mathrm{V}_{\mathrm{IH}}\) & 3.5 & - \\
\hline Low State Input Current ( \(\left.\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{IL}}\) & \(\mathrm{V}_{\text {ref }}\) & \\
\hline
\end{tabular}

\section*{DRIVE OUTPUTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { Output Voltage } \\
& \text { Low State }\left(I_{\text {sink }}=20 \mathrm{~mA}\right) \\
& \left(I_{\text {sink }}=200 \mathrm{~mA}\right) \\
& \text { High State }\left(I_{\text {source }}=20 \mathrm{~mA}\right) \\
& \left(I_{\text {source }}=200 \mathrm{~mA}\right)
\end{aligned}
\]} & & & & & \multirow[t]{5}{*}{V} \\
\hline & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.1 & 0.4 & \\
\hline & & - & 1.6 & 2.5 & \\
\hline & \(\mathrm{V}_{\mathrm{OH}}\) & 13 & 13.5 & - & \\
\hline & & 12 & 13.4 & - & \\
\hline Output Voltage with UVLO Activated ( \(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{I}_{\text {sink }}=1.0 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{OL}(\mathrm{UVLO})}\) & - & 0.1 & 1.1 & V \\
\hline Output Voltage Rise Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) ) & \(t_{r}\) & - & 28 & 150 & ns \\
\hline Output Voltage Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) ) & \(t_{f}\) & - & 25 & 150 & ns \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Startup Threshold & \(\mathrm{V}_{\text {th }}\) & 13 & 14 & 15 & V \\
\hline Minimum Operating Voltage After Turn-On & \(\mathrm{V}_{\mathrm{CC}}(\mathrm{min})\) & 9.0 & 10 & 11 & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Power Supply Current & \(\mathrm{I} C \mathrm{C}\) & & & & mA \\
Startup (VCC=12 V) & & - & 0.6 & 1.0 & \\
Operating (Note 2) & & - & 20 & 25 & \\
\hline Power Supply Zener Voltage (ICC \(=30 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{Z}}\) & 15.5 & 17 & 19 & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible:
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for the MC34065 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34065
\(\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}\) for the MC33065 \(\quad \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}\) for MC33065
4. This parameter is measured at the latch trip point with \(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\)
5. Comparator gain is defined as \(A V=\frac{\Delta V \text { Compensation }}{\Delta V \text { Current Sense }}\)

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Function & Description \\
\hline 1 & Sync Input & A narrow rectangular waveform applied to this input will synchronize the oscillator. A dc voltage within the range of 2.4 V to 5.5 V will inhibit the oscillator. \\
\hline 2 & \(\mathrm{C}_{\mathrm{T}}\) & Timing capacitor \(\mathrm{C}_{\boldsymbol{T}}\) connects from this pin to ground setting the free-running oscillator frequency range. \\
\hline 3 & \(\mathrm{R}_{\mathrm{T}}\) & Resistor \(\mathrm{R}_{\mathrm{T}}\) connects from this pin to ground precisely setting the charge current for \(\mathrm{C}_{\mathrm{T}}\). \(\mathrm{R}_{\mathrm{T}}\) must be between 4.0 k and 16 k . \\
\hline 4 & Voltage Feedback 1 & This pin is the inverting input of Error Amplifier 1. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 5 & Compensation 1 & This pin is the output of Error Amplifier 1 and is made available for loop compensation. \\
\hline 6 & Current Sense 1 & A voltage proportional to the inductor current is connected to this input. PWM 1 uses this information to terminate conduction of output switch Q1. \\
\hline 7 & Drive Output 1 & This pin directly drives the gate of a power MOSFET Q1. Peak currents up to 1.0 A are sourced and sunk by this pin. \\
\hline 8 & Gnd & This pin is the control circuitry ground return and is connected back to the source ground. \\
\hline 9 & Drive Gnd & This pin is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline 10 & Drive Output 2 & This pin directly drives the gate of a power MOSFET Q2. Peak currents up to 1.0 A are sourced and sunk by this pin. \\
\hline 11 & Current Sense 2 & A voltage proportional to inductor current is connected to this input. PWM 2 uses this information to terminate conduction of output switch Q2. \\
\hline 12 & Compensation 2 & This pin is the output of Error Amplifier 2 and is made available for loop compensation. \\
\hline 13 & Voltage Feedback 2 & This pin is the inverting input of Error Amplifier 2. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 14 & Drive Output 2 Enable & A logic low at this input disables Drive Output 2. \\
\hline 15 & Vref & This is the 5.0 V reference output. It can provide bias for any additional system circuitry. \\
\hline 16 & \(V_{\text {CC }}\) & This pin is the positive supply of the control IC. The minimum operating voltage range after startup is 11 V to 15.5 V . \\
\hline
\end{tabular}

Figure 1. Timing Resistor versus
Oscillator Frequency


Figure 2. Maximum Output Duty Cycle versus Oscillator Frequency


Figure 3. Error Amp Small-Signal Transient Response

\(1.0 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 5. Error Amp Open Loop Gain and Phase versus Frequency


Figure 7. Reference Voltage Change versus Source Current


Figure 4. Error Amp Large-Signal Transient Response

\(1.0 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 6. Current Sense Input Threshold versus Error Amp Output Voltage


Figure 8. Reference Short Circuit Current


\(1.0 \mathrm{~ms} /\) DIV

Figure 11. Output Saturation Voltage versus Load Current


V \(_{\text {O2 }}\), OUTPUT VOLTAGE 2; VO1, OUTPUT VOLTAGE 1
Figure 13. Output Cross Conduction Current

\(100 \mathrm{~ns} /\) DIV

Figure 10. Reference Line Regulation

\(1.0 \mathrm{~ms} / \mathrm{DIV}\)

Figure 12. Output Waveform

\(50 \mathrm{~ns} /\) DIV

Figure 14. Supply Current versus Supply Voltage


\section*{OPERATING DESCRIPTION}

The MC34065 series are high performance, fixed frequency, dual channel current mode controllers specifically designed for Off-Line and dc-to-dc converter applications. These devices offer the designer a cost effective solution with minimal external components where independent regulation of two power converters is required. The Representative Block Diagram is shown in Figure 15. Each channel contains a high gain error amplifier, current sensing comparator, pulse width modulator latch, and totem pole output driver. The oscillator, reference regulator, and undervoltage lock-out circuits are common to both channels.

\section*{Oscillator}

The unique oscillator configuration employed features precise frequency and duty cycle control. The frequency is programmed by the values selected for the timing components \(R_{T}\) and \(C_{T}\). Capacitor \(C_{T}\) is charged and discharged by an equal magnitude internal current source and sink, generating a symmetrical 50 percent duty cycle waveform at Pin 2. The oscillator peak and valley thresholds are 3.5 V and 1.6 V respectively. The source/sink current magnitude is controlled by resistor RT . For proper operation over temperature it must be in the range of \(4.0 \mathrm{k} \Omega\) to \(16 \mathrm{k} \Omega\) as shown in Figure 1.

As \(\mathrm{C}_{\mathrm{T}}\) charges and discharges, an internal blanking pulse is generated that alternately drives the center inputs of the upper and lower NOR gates high. This, in conjunction with a precise amount of delay time introduced into each channel, produces well defined non-overlapping output duty cycles. Output 2 is enabled while \(\mathrm{C}_{\mathrm{T}}\) is charging, and Output 1 is enabled during the discharge. Figure 2 shows the Maximum Output Duty Cycle versus Oscillator Frequency. Note that even at 500 kHz , each output is capable of approximately \(44 \%\) on-time, making this controller suitable for high frequency power conversion applications.

In many noise sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a clock signal as shown in Figure 17. For reliable locking, the free-running oscillator frequency should be set about \(10 \%\) less than the clock frequency. Referring to the timing diagram shown in Figure 16, the rising edge of the clock signal applied to the Sync input, terminates charging of \(\mathrm{C}_{\mathrm{T}}\) and Drive Output 2 conduction. By tailoring the clock waveform symmetry, accurate duty cycle clamping of either output can be achieved. A circuit method for this, and multi-unit synchronization, is shown in Figure 18.

\section*{Error Amplifier}

Each channel contains a fully-compensated Error Amplifier with access to the inverting input and output. The amplifier features a typical dc voltage gain of 100 dB , and a unity gain bandwidth of 1.0 MHz with \(71^{\circ}\) of phase margin (Figure 5). The noninverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input through a resistor divider. The maximum input bias current is \(-1.0 \mu \mathrm{~A}\) which will cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance.

The Error Amp output (Pin 5, 12) is provided for external loop compensation. The output voltage is offset by two diode
drops ( \(\approx 1.4 \mathrm{~V}\) ) and divided by three before it connects to the inverting input of the Current Sense Comparator. This guarantees that no pulses appear at the Drive Output (Pin 7,10) when the error amplifier output is at its lowest state ( \(\mathrm{V}_{\mathrm{OL}}\) ). This occurs when the power supply is operating and the load is removed, or at the beginning of a soft-start interval (Figures 20, 21).

The minimum allowable Error Amp feedback resistance is limited by the amplifier's source current ( 0.5 mA ) and the output voltage ( V OH ) required to reach the comparator's 0.5 V clamp level with the inverting input at ground. This condition happens during initial system startup or when the sensed output is shorted:
\[
R_{f(\min )} \approx \frac{3.0(0.5 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=5800 \Omega
\]

\section*{Current Sense Comparator and PWM Latch}

The MC34065 operates as a current mode controller, whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier output. Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The Current Sense Comparator-PWM Latch configuration used ensures that only a single pulse appears at the Drive Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting a ground-referenced sense resistor \(\mathrm{R}_{\mathrm{S}}\) in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input (Pin 6, 11) and compared to a level derived from the Error Amp output. The peak inductor current under normal operating conditions is controlled by the voltage at Pin 5,12 where:
\[
I_{p k}=\frac{V_{(\operatorname{Pin} 5,12)}-1.4 \mathrm{~V}}{3 R_{S}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 0.5 V . Therefore the maximum peak switch current is:
\[
I_{\mathrm{pk}(\max )}=\frac{0.5 \mathrm{~V}}{\mathrm{R}_{\mathrm{S}}}
\]

When designing a high power switching regulator it may be desirable to reduce the internal clamp voltage in order to keep the power dissipation of RS to a reasonable level. A simple method to adjust this voltage is shown in Figure 19. The two external diodes are used to compensate the internal diodes, yielding a constant clamp voltage over temperature. Erratic operation due to noise pickup can result if there is an excessive reduction of the \(\mathrm{I}_{\mathrm{pk}}(\max )\) clamp voltage.

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Current Sense input with a time constant that approximates the spike duration will usually eliminate the instability, refer to Figure 24.


Figure 16. Timing Diagram


\section*{Undervoltage Lockout}

Two Undervoltage Lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stages are enabled. The positive power supply terminal ( \(\mathrm{V}_{\mathrm{CC}}\) ) and the reference output ( \(\mathrm{V}_{\text {ref }}\) ) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The VCC comparator upper and lower thresholds are 14 V and 10 V respectively. The hysteresis and low startup current makes these devices ideally suited to off-line converter applications where efficient bootstrap startup techniques are required (Figure 28). The \(\mathrm{V}_{\text {ref }}\) comparator disables the Drive Outputs until the internal circuitry is functional. This comparator has upper and lower thresholds of 3.6 V and 3.4 V . A 17 V zener is connected as a shunt regulator from \(\mathrm{V}_{\mathrm{CC}}\) to ground. Its purpose is to protect the IC and power MOSFET gate from excessive voltage that can occur during system startup. The guaranteed minimum operating voltage after turn-on is 11 V .

\section*{Drive Outputs and Drive Ground}

Each channel contains a single totem-pole output stage that is specifically designed for direct drive of power MOSFETs. The Drive Outputs are capable of up to \(\pm 1.0 \mathrm{~A}\) peak current with a typical rise and fall time of 28 ns with a 1.0 nF load. Internal circuitry has been added to keep the outputs in a sinking mode whenever an Undervoltage Lockout is active. This characteristic eliminates the need for an external pull-down resistor. Cross-conduction current in the totem-pole output stage has been minimized for high speed operation, as shown in Figure 13. The average added power due to cross-conduction with \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\) is only 60 mW at 500 kHz .

Although the Drive Outputs were optimized for MOSFETs, they can easily supply the negative base current required by bipolar NPN transistors for enhanced turn-off (Figure 25). The outputs do not contain internal current limiting, therefore an external series resistor may be required to prevent the peak output current from exceeding the 1.0 A maximum rating. The sink saturation \(\left(\mathrm{V}_{\mathrm{OL}}\right)\) is less than 0.4 V at 100 mA .

A separate Drive Ground pin is provided and, with proper implementation, will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomes particularly useful when reducing the \(I_{\mathrm{pk} \text { (max) }}\) clamp level. Figure 23 shows the proper ground connections required for current sensing power MOSFET applications.

\section*{Drive Output 2 Enable Pin}

This input is used to enable Drive Output 2. Drive Output 1 can be used to control circuitry that must run continuously such as volatile memory and the system clock, or a remote controlled receiver, while Drive Output 2 controls the high power circuitry that is occasionally turned off.

\section*{Reference}

The 5.0 V bandgap reference is trimmed to \(\pm 2.0 \%\) tolerance at \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\). The reference has short circuit protection and is capable of providing in excess of 30 mA for powering any additional control system circuitry.

\section*{Design Considerations}

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulse-width jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with low current signal and high current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors \((0.1 \mu \mathrm{~F})\) connected directly to \(\mathrm{V}_{\mathrm{CC}}\) and \(V_{\text {ref }}\) may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage-divider should be located close to the IC and as far as possible from the power switch and other noise generating components.

Figure 17. External Clock Synchronization


The external diode clamp is required if the negative Sync current is greater than -5.0 mA .

Figure 18. External Duty Cycle Clamp and Multi-Unit Synchronization
\(D_{\text {max }}\) Drive Output \(1=\frac{R_{B}}{R_{A}+R_{B}}\)
\(D_{\text {max }}\) Drive Output \(2=\frac{R_{A}}{R_{A}+R_{B}}\)


Figure 19. Adjustable Reduction of Clamp Level


Figure 20. Soft-Start Circuit


Figure 21. Adjustable Reduction of Clamp Level with Soft-Start


Figure 22. MOSFET Parasitic Oscillations


Series gate resistor \(\mathrm{R}_{\mathrm{g}}\) may be needed to damp high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit. \(\mathrm{R}_{\mathrm{g}}\) will decrease the MOSFET switching speed. Schottky diode D1 is required if circuit ringing drives the output pin below ground.

Figure 23. Current Sensing Power MOSFET


Virtually lossless current sensing can be achieved with the implementation of a SENSEFET power switch. For proper operation during over current conditions, a reduction of the \(\mathrm{I}_{\mathrm{pk}(\max )}\) clamp level must be implemented. Refer to Figures 19 and 21.

Figure 24. Current Waveform Spike Suppression


The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform.

Figure 25. Bipolar Transistor Drive


The totem-pole outputs can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor C1.

Figure 26. Isolated MOSFET Drive


Figure 27. Dual Charge Pump Converter


\footnotetext{
The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A . An additional series resistor may be required when using tantalum or other low ESR capacitors. The positive output can provide excellent line and load regulation by connecting the R2/R1 resistor divider as shown.
}

Figure 28. 125 Watt Off-Line Converter

\begin{tabular}{|c|c|c|}
\hline Test & Conditions & Results \\
\hline Line Regulation 100 V Output \(\pm 12 \mathrm{~V}\) Outputs 9.0 V Output & \[
\begin{aligned}
\mathrm{V}_{\mathrm{in}} & =92 \text { to } 138 \mathrm{Vac} \\
\mathrm{IO} & =1.0 \mathrm{~A} \\
\mathrm{I} & = \pm 1.0 \mathrm{~A} \\
\mathrm{I} & =0.1 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \Delta=40 \mathrm{mV} \text { or } \pm 0.02 \% \\
& \Delta=32 \mathrm{mV} \text { or } \pm 0.13 \% \\
& \Delta=55 \mathrm{mV} \text { or } \pm 0.31 \%
\end{aligned}
\] \\
\hline Load Regulation 100 V Output \(\pm 12 \mathrm{~V}\) Outputs 9.0 V Output & \[
\begin{aligned}
\mathrm{V}_{\text {in }} & =115 \mathrm{Vac} \\
\mathrm{IO} & =0.25 \mathrm{~A} \text { to } 1.0 \mathrm{~A} \\
\mathrm{I} & = \pm 0.25 \mathrm{~A} \text { to } \pm 1.0 \mathrm{~A} \\
\mathrm{IO} & =0.08 \mathrm{~A} \text { to } 0.1 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \Delta=50 \mathrm{mV} \text { or } \pm 0.025 \% \\
& \Delta=320 \mathrm{mV} \text { or } \pm 1.2 \% \\
& \Delta=234 \mathrm{mV} \text { or } \pm 1.3 \%
\end{aligned}
\] \\
\hline Output Ripple 100 V Output \(\pm 12 \mathrm{~V}\) Outputs 9.0 V Output & \[
\begin{aligned}
\mathrm{V}_{\mathrm{in}} & =115 \mathrm{Vac} \\
\mathrm{O} & =1.0 \mathrm{~A} \\
\mathrm{O} & = \pm 1.0 \mathrm{~A} \\
\mathrm{O} & =0.1 \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
40 mVpp \\
100 mVpp \\
60 mVpp
\end{tabular} \\
\hline Short Circuit Current 100 V Output \(\pm 12 \mathrm{~V}\) Outputs 9.0 V Output & \(\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & \[
\begin{gathered}
4.3 \mathrm{~A} \\
17 \mathrm{~A} \\
\text { Output Hiccups }
\end{gathered}
\] \\
\hline Efficiency & \(\mathrm{Vin}=115 \mathrm{Vac}, \mathrm{PO}=125 \mathrm{~W}\) & 86\% \\
\hline
\end{tabular}

T1 - \(468 \mu \mathrm{H}\) per section at 2.5 A , Coilcraft E3496A.
T2 - Primary: 156 Turns, \#34 AWG
Primary Feedback: 19 Turns, \#34 AWG
Secondary: 17 Turns, \#28 AWG
Core: TDK H7C1EE22-Z
Bobbin: BE22-6H
Gap: \(\approx 0.001^{\prime \prime}\) for a primary inductance of 6.8 mH
T3 - Primary: 56 Turns, \#23 AWG
(2 strands) Bifiliar Wound
Secondary: \(\pm 12 \mathrm{~V}, 4\) Turns, \#23 AWG
(4 strands) Quadfiliar Wound
Secondary 100 V: 32 Turns, \#23 AWG
(2 strands) Bifiliar Wound
Core: Ferroxcube EEC 40-3C8
Bobbin: Ferroxcube 40-1112CP
Gap: \(\approx 0.030^{\prime \prime}\) for a primary
inductance of \(212 \mu \mathrm{H}\)
L1, L3, L4-25 \(\mu \mathrm{H}\) at 1.0 A, Coilcraft Z7157.
L2 - \(10 \mu \mathrm{H}\) at 3.0 A, Coilcraft PCV-0-010-03.

Figure 29. 125 Watt Off-Line Converter


MOTOROLA

\section*{High Performance Dual Channel Current Mode Controllers}

The MC34065-H,L series are high performance, fixed frequency, dual current mode controllers. They are specifically designed for off-line and dc-to-dc converter applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature a unique oscillator for precise duty cycle limit and frequency control, a temperature compensated reference, two high gain error amplifiers, two current sensing comparators, Drive Output 2 Enable pin, and two high current totem pole outputs ideally suited for driving power MOSFETs.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, and a latch for single pulse metering of each output. These devices are available in dual-in-line and surface mount packages.

The MC34065-H has UVLO thresholds of 14 V (on) and 10 V (off), ideally suited for off-line converters. The MC34065-L is tailored for lower voltage applications having UVLO thresholds of 8.4 V (on) and 7.8 V (off).
- Unique Oscillator for Precise Duty Cycle Limit and Frequency Control
- Current Mode Operation to 500 kHz
- Automatic Feed Forward Compensation
- Separate Latching PWMs for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- Drive Output 2 Enable Pin
- Two High Current Totem Pole Outputs
- Input Undervoltage Lockout with Hysteresis
- Low Startup and Operating Current


\section*{HIGH PERFORMANCE DUAL CHANNEL CURRENT MODE CONTROLLERS}

\section*{SEMICONDUCTOR} TECHNICAL DATA


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC34065DW-H & \multirow{4}{*}{\(\mathrm{T}^{\prime}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & \multirow[t]{2}{*}{SO-16L} \\
\hline MC34065DW-L & & \\
\hline MC34065P-H & & Plastic DIP \\
\hline MC34065P-L & & \\
\hline MC33065DW-H & \multirow{4}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-16L \\
\hline MC33065DW-L & & \\
\hline MC33065P-H & & \multirow[t]{2}{*}{Plastic DIP} \\
\hline MC33065P-L & & \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 20 & V \\
\hline Output Current, Source or Sink (Note 1) & Io & 400 & mA \\
\hline Output Energy (Capacitive Load per Cycle) & W & 5.0 & \(\mu \mathrm{J}\) \\
\hline Current Sense, Enable, and Voltage Feedback Inputs & \(\mathrm{V}_{\text {in }}\) & -0.3 to +5.5 & V \\
\hline \begin{tabular}{l}
Sync Input \\
High State (Voltage) \\
Low State (Reverse Current)
\end{tabular} & \[
\begin{aligned}
& V_{\mathrm{IH}} \\
& \mathrm{I}_{\mathrm{IL}}
\end{aligned}
\] & \[
\begin{array}{r}
+5.5 \\
-5.0
\end{array}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline Error Amp Output Sink Current & 10 & 10 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics DW Suffix, Plastic Package Case 751G Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
P Suffix, Plastic Package Case 648 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \(\mathrm{R}_{\theta} \mathrm{JA}\) \\
PD \(\mathrm{R}_{\theta} \mathrm{JA}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& \\
& 1.25 \\
& 100
\end{aligned}
\] & \begin{tabular}{l}
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature (Note 3)
MC34065 \\
MC33065
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=15 \mathrm{~V}\right.\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=8.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/\) max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies to [Note 3].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline Reference Output Voltage ( \(1 \mathrm{O}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {ref }}\) & 4.85 & 5.0 & 5.13 & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}\) to 20 V ) & Regline & - & 2.0 & 20 & mV \\
\hline Load Regulation ( \(\mathrm{O}=1.0 \mathrm{~mA}\) to \(10 \mathrm{~mA}, \mathrm{~V} \mathrm{CC}=20 \mathrm{~V}\) ) & Regload & - & 3.0 & 25 & mV \\
\hline Total Output Variation over Line, Load, and Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.8 & - & 5.15 & V \\
\hline Output Short Circuit Current & ISC & 30 & 100 & - & mA \\
\hline
\end{tabular}

\section*{OSCILLATOR AND PWM SECTIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Total Frequency Variation over Line and Temperature
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \\
& \text { MC34065 } \\
& \text { MC33065 }
\end{aligned}
\] & \(\mathrm{f}_{\text {osc }}\) & \[
\begin{gathered}
46.5 \\
45
\end{gathered}
\] & \[
\begin{aligned}
& 49 \\
& 49
\end{aligned}
\] & \[
\begin{gathered}
51.5 \\
53
\end{gathered}
\] & kHz \\
\hline Frequency Change with Voltage ( \(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}\) to 20 V ) & \(\Delta \mathrm{f}_{\text {osc }} / \Delta \mathrm{V}\) & - & 0.2 & 1.0 & \% \\
\hline Duty Cycle at each Output Maximum Minimum & \(D_{\text {max }}\) \(\mathrm{DC}_{\text {min }}\) & & & \[
\begin{gathered}
52 \\
0
\end{gathered}
\] & \% \\
\hline \begin{tabular}{l}
Sync Input Current \\
High State \(\left(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\right)\) \\
Low State ( \(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\) )
\end{tabular} & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IH}} \\
& \mathrm{I}_{\mathrm{L}}
\end{aligned}
\] & - & 170
80 & & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

ERROR AMPLIFIERS
\begin{tabular}{|l|c|c|c|c|c|}
\hline Voltage Feedback Input \(\left(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{FB}}\) & 2.45 & 2.5 & 2.55 & V \\
\hline Input Bias Current \(\left(\mathrm{V}_{\mathrm{FB}}=5.0 \mathrm{~V}\right)\) & I IB & - & -0.1 & -1.0 & \(\mu \mathrm{~A}\) \\
\hline Open Loop Voltage Gain \(\left(\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}\right.\) to 4.0 V\()\) & AVOL & 65 & 100 & - & dB \\
\hline Unity Gain Bandwidth \(\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & BW & 0.7 & 1.0 & - & MHz \\
\hline Power Supply Rejection Ratio \(\left(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}\right.\) to 20 V\()\) & PSRR & 60 & 90 & - & dB \\
\hline Output Current & & & & & mA \\
Source \(\left(\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\right)\) & \(\mathrm{I}_{\text {source }}\) & 0.45 & 1.0 & - & \\
Sink \(\left(\mathrm{V}_{\mathrm{O}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\right)\) & \(\mathrm{I}_{\text {sink }}\) & 2.0 & 12 & - & \\
\hline Output Voltage Swing & & & & & V \\
High State \(\left(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\right.\) to ground, \(\left.\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{OH}}\) & 5.0 & 6.2 & - & \\
Low State \(\left(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\right.\) to \(\left.\mathrm{V}_{\text {ref },} \mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.8 & 1.1 & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right.\) [Note 2], \(\mathrm{R}_{\boldsymbol{T}}=8.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies to [Note 3].)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular} \begin{tabular}{|l|c|c|c|c|c|}
\hline
\end{tabular}

\section*{DRIVE OUTPUT 2 ENABLE PIN}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Enable Pin Voltage - High State (Output 2 Enabled) \\
- Low State (Output 2 Disabled)
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\] & \[
\begin{gathered}
3.5 \\
0
\end{gathered}
\] & - & \[
\begin{aligned}
& V_{\text {ref }} \\
& 1.5
\end{aligned}
\] & V \\
\hline Low State Input Current ( \(\mathrm{V}_{\text {IL }}=0 \mathrm{~V}\) ) & \(\mathrm{IIB}^{\text {I }}\) & 100 & 250 & 400 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

DRIVE OUTPUTS
\(\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Output Voltage }- \text { Low State }\left(I_{\text {sink }}=20 \mathrm{~mA}\right) \\ \left(I_{\text {sink }}=200 \mathrm{~mA}\right) \\ \text { - High State }\left(I_{\text {source }}=20 \mathrm{~mA}\right) \\ \left(\mathrm{I}_{\text {source }}=200 \mathrm{~mA}\right)\end{array}\right)\)

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Startup Threshold (VCC Increasing) & \(V_{\text {th }}\) & & & & V \\
-L Suffix \\
-H Suffix
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Power Supply Current & ICC & & & & mA \\
Startup & & - & 0.4 & 0.8 & \\
\(-L\) Suffix \(\left(V_{C C}=6.0 \mathrm{~V}\right)\) & & - & 0.6 & 1.0 & \\
\(-H\) Suffix \(\left(V_{C C}=12 \mathrm{~V}\right)\) & & - & 20 & 25 & \\
\hline Operating (Note 2) & & - \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible:
\(\begin{array}{ll}T_{\text {low }}=0^{\circ} \mathrm{C} \text { for the MC34065 } & T_{\text {high }}=+70^{\circ} \mathrm{C} \text { for MC34065 } \\ \mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C} \text { for the MC33065 } & \text { Thigh }^{2}+85^{\circ} \mathrm{C} \text { for MC33065 }\end{array}\)
\(T_{\text {low }}=-40^{\circ} \mathrm{C}\) for the MC33065

Figure 1. Timing Resistor versus Oscillator Frequency


Figure 2. Maximum Output Duty Cycle versus Oscillator Frequency


Figure 3. Error Amp Small-Signal Transient Response

\(1.0 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 5. Error Amp Open Loop Gain and Phase versus Frequency


Figure 7. Reference Voltage Change


Figure 4. Error Amp Large-Signal Transient Response


Figure 6. Current Sense Input Threshold versus Error Amp Output Voltage


Figure 8. Reference Short Circuit Current


Figure 9. Reference Load Regulation


Figure 11. Output Saturation Voltage versus Load Current



Figure 10. Reference Line Regulation


Figure 12. Output Waveform


Figure 14. Supply Current versus Supply Voltage


\section*{MC34065-H, L MC33065-H, L}

\section*{OPERATING DESCRIPTION}

The MC34065-H,L series are high performance, fixed frequency, dual channel current mode controllers specifically designed for Off-Line and dc-to-dc converter applications. These devices offer the designer a cost effective solution with minimal external components where independent regulation of two power converters is required. The Representative Block Diagram is shown in Figure 15. Each channel contains a high gain error amplifier, current sensing comparator, pulse width modulator latch, and totem pole output driver. The oscillator, reference regulator, and undervoltage lock-out circuits are common to both channels.

\section*{Oscillator}

The unique oscillator configuration employed features precise frequency and duty cycle control. The frequency is programmed by the values selected for the timing components \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). Capacitor \(\mathrm{C}_{\mathrm{T}}\) is charged and discharged by an equal magnitude internal current source and sink, generating a symmetrical 50 percent duty cycle waveform at Pin 2. The oscillator peak and valley thresholds are 3.5 V and 1.6 V respectively. The source/sink current magnitude is controlled by resistor RT. For proper operation over temperature it must be in the range of \(4.0 \mathrm{k} \Omega\) to \(16 \mathrm{k} \Omega\) as shown in Figure 1.

As \(\mathrm{C}_{\mathrm{T}}\) charges and discharges, an internal blanking pulse is generated that alternately drives the center inputs of the upper and lower NOR gates high. This, in conjunction with a precise amount of delay time introduced into each channel, produces well defined non-overlapping output duty cycles. Output 2 is enabled while \(C_{T}\) is charging, and Output 1 is enabled during the discharge. Figure 2 shows the Maximum Output Duty Cycle versus Oscillator Frequency. Note that even at 500 kHz , each output is capable of approximately \(44 \%\) on-time, making this controller suitable for high frequency power conversion applications.

In many noise sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a clock signal as shown in Figure 17. For reliable locking, the free-running oscillator frequency should be set about \(10 \%\) less than the clock frequency. Referring to the timing diagram shown in Figure 16, the rising edge of the clock signal applied to the Sync input, terminates charging of \(\mathrm{C}_{\top}\) and Drive Output 2 conduction. By tailoring the clock waveform symmetry, accurate duty cycle clamping of either output can be achieved. A circuit method for this, and multi-unit synchronization, is shown in Figure 18.

\section*{Error Amplifier}

Each channel contains a fully-compensated Error Amplifier with access to the inverting input and output. The amplifier features a typical dc voltage gain of 100 dB , and a unity gain bandwidth of 1.0 MHz with \(71^{\circ}\) of phase margin (Figure 5). The noninverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input through a resistor divider. The maximum input bias current is \(-1.0 \mu \mathrm{~A}\) which will cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance.

The Error Amp output (Pin 5, 12) is provided for external loop compensation. The output voltage is offset by two diode
drops ( \(\approx 1.4 \mathrm{~V}\) ) and divided by three before it connects to the inverting input of the Current Sense Comparator. This guarantees that no pulses appear at the Drive Output (Pin 7, 10 ) when the error amplifier output is at its lowest state ( \(\mathrm{V}_{\mathrm{OL}}\) ). This occurs when the power supply is operating and the load is removed, or at the beginning of a soft-start interval (Figures 20, 21).

The minimum allowable Error Amp feedback resistance is limited by the amplifier's source current ( 0.5 mA ) and the output voltage \((\mathrm{V} \mathrm{OH})\) required to reach the comparator's 1.0 V clamp level with the inverting input at ground. This condition happens during initial system startup or when the sensed output is shorted:
\[
R_{f(\min )} \approx \frac{3.0(1.0 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=8800 \Omega
\]

\section*{Current Sense Comparator and PWM Latch}

The MC34065 operates as a current mode controller, whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier output. Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The Current Sense Comparator-PWM Latch configuration used ensures that only a single pulse appears at the Drive Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting a ground-referenced sense resistor \(\mathrm{R}_{\mathrm{S}}\) in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input (Pin 6, 11) and compared to a level derived from the Error Amp output. The peak inductor current under normal operating conditions is controlled by the voltage at Pin 5,12 where:
\[
\mathrm{I}_{\mathrm{pk}}=\frac{\mathrm{V}(\operatorname{Pin} 5,12)-1.4 \mathrm{~V}}{3 \mathrm{R}_{\mathrm{S}}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 1.0 V . Therefore the maximum peak switch current is:
\[
\operatorname{Ipk}(\max )=\frac{1.0 \mathrm{~V}}{\mathrm{R}_{\mathrm{S}}}
\]

When designing a high power switching regulator it may be desirable to reduce the internal clamp voltage in order to keep the power dissipation of RS to a reasonable level. A simple method to adjust this voltage is shown in Figure 19. The two external diodes are used to compensate the internal diodes, yielding a constant clamp voltage over temperature. Erratic operation due to noise pickup can result if there is an excessive reduction of the \(\mathrm{I}_{\mathrm{pk}}(\max )\) clamp voltage.

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Current Sense input with a time constant that approximates the spike duration will usually eliminate the instability, refer to Figure 24.

\section*{Undervoltage Lockout}

Two Undervoltage Lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stages are enabled. The positive power supply terminal ( \(\mathrm{V}_{\mathrm{CC}}\) ) and the reference output ( \(\mathrm{V}_{\text {reff }}\) ) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The V CC comparator upper and lower thresholds are \(14 \mathrm{~V} / 10 \mathrm{~V}\) for -H suffix, and 8.4 V/7.6 V for -L suffix. The \(\mathrm{V}_{\text {ref }}\) comparator upper and lower thresholds are \(3.6 \mathrm{~V} / 3.4 \mathrm{~V}\) respectively. The large hysteresis and low startup current of the -H suffix version makes it ideally suited in off-line converter applications where efficient bootstrap startup techniques are required (Figure 28). The-L suffix version is intended for lower voltage dc-to-dc converter applications. The minimum operating voltage for the -H suffix is 11 V and 8.2 V for the -L suffix.

\section*{Drive Outputs and Drive Ground}

Each section contains a single totem-pole output stage that is specifically designed for direct drive of power MOSFETs. The Drive Outputs are capable of up to \(\pm 400 \mathrm{~mA}\) peak current with a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the outputs in a sinking mode whenever an Undervoltage Lockout is active. This characteristic eliminates the need for an external pull-down resistor. The totem-pole output has been optimized to minimize cross-conduction current in high speed operation. The addition of two \(10 \Omega\) resistors, one in series with the source output transistor and one in series with the sink output transistor, reduces the cross-conduction current to minimal levels, as shown in Figure 13.

Although the Drive Outputs were optimized for MOSFETs, they can easily supply the negative base current required by bipolar NPN transistors for enhanced turn-off (Figure 25).

Figure 15. Representative Block Diagram


Figure 16. Timing Diagram


The outputs do not contain internal current limiting, therefore an external series resistor may be required to prevent the peak output current from exceeding the \(\pm 400 \mathrm{~mA}\) maximum rating. The sink saturation \(\left(\mathrm{V}_{\mathrm{OL}}\right)\) is less than 0.75 V at 50 mA .

A separate Drive Ground pin is provided and, with proper implementation, will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomes particularly useful when reducing the \(l_{\mathrm{pk}(\mathrm{max})}\) clamp level. Figure 23 shows the proper ground connections required for current sensing power MOSFET applications.

\section*{Drive Output 2 Enable Pin}

This input is used to enable Drive Output 2. Drive Output 1 can be used to control circuitry that must run continuously such as volatile memory and the system clock, or a remote controlled receiver, while Drive Output 2 controls the high power circuitry that is occasionally turned off.

\section*{Reference}

The 5.0 V bandgap reference is trimmed to \(\pm 2.0 \%\) tolerance at \(T_{J}=25^{\circ} \mathrm{C}\). The reference has short circuit protection and is capable of providing in excess of 30 mA for powering any additional control system circuitry.

\section*{Design Considerations}

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulse-width jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with low current signal and high current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors ( \(0.1 \mu \mathrm{~F}\) ) connected directly to \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\text {ref }}\) may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage-divider should be located close to the IC and as far as possible from the power switch and other noise generating components.

Figure 17. External Clock Synchronization


The external diode clamp is required if the negative Sync current is greater than -5.0 mA .

Figure 18. External Duty Cycle Clamp and Multi-Unit Synchronization


PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Function & Description \\
\hline 1 & Sync Input & A narrow rectangular waveform applied to this input will synchronize the oscillator. A dc voltage within the range of 2.4 V to 5.5 V will inhibit the oscillator. \\
\hline 2 & \(\mathrm{C}_{\mathbf{T}}\) & Timing capacitor \(\mathrm{C}_{\boldsymbol{T}}\) connects from this pin to ground setting the free-running oscillator frequency range. \\
\hline 3 & \(\mathrm{R}_{\mathrm{T}}\) & Resistor \(\mathrm{R}_{\mathrm{T}}\) connects from this pin to ground precisely setting the charge current for \(\mathrm{C}_{\mathrm{T}}\). \(\mathrm{R}_{\mathrm{T}}\) must be between 4.0 k and 16 k . \\
\hline 4 & Voltage Feedback 1 & This pin is the inverting input of Error Amplifier 1. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 5 & Compensation 1 & This pin is the output of Error Amplifier 1 and is made available for loop compensation. \\
\hline 6 & Current Sense 1 & A voltage proportional to the inductor current is connected to this input. PWM 1 uses this information to terminate conduction of output switch Q1. \\
\hline 7 & Drive Output 1 & This pin directly drives the gate of a power MOSFET Q1. Peak currents up to 400 mA are sourced and sunk by this pin. \\
\hline 8 & Gnd & This pin is the control circuitry ground return and is connected back to the source ground. \\
\hline 9 & Drive Gnd & This pin is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline 10 & Drive Output 2 & This pin directly drives the gate of a power MOSFET Q2. Peak currents up to 400 mA are sourced and sunk by this pin. \\
\hline 11 & Current Sense 2 & A voltage proportional to inductor current is connected to this input. PWM 2 uses this information to terminate conduction of output switch Q2. \\
\hline 12 & Compensation 2 & This pin is the output of Error Amplifier 2 and is made available for loop compensation. \\
\hline 13 & Voltage Feedback 2 & This pin is the inverting input of Error Amplifier 2. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 14 & Drive Output 2 Enable & A logic low at this input disables Drive Output 2. \\
\hline 15 & Vref & This is the 5.0 V reference output. It can provide bias for any additional system circuitry. \\
\hline 16 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply of the control IC. The minimum operating voltage range after startup is 11 V to 15.5 V for the -H suffix, 8.2 V to 9.5 V for the -L suffix. \\
\hline
\end{tabular}

Figure 19. Adjustable Reduction of Clamp Level


Figure 21. Adjustable Reduction of Clamp Level


Figure 23. Current Sensing Power MOSFET


\footnotetext{
Virtually lossless current sensing can be achieved with the implementation of a
SENSEFET power switch. For proper operation during over current conditions, a reduction of the \(\mathrm{I}_{\mathrm{pk}(\max )}\) clamp level must be implemented. Refer to Figures 19 and 21.
}

Figure 20. Soft-Start Circuit


Figure 22. MOSFET Parasitic Oscillations


Series gate resistor \(R_{g}\) may be needed to damp high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit. \(R_{g}\) will decrease the MOSFET
switching speed. Schottky dode \(D_{1}\) is required if circuit ringing drives the output pin below ground.

Figure 24. Current Waveform Spike Suppression


The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform.

Figure 25. Bipolar Transistor Drive
Figure 26. Isolated MOSFET Drive


The totem-pole outputs can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor \(\mathrm{C}_{1}\).
\[
I_{p k}=\frac{V_{(\operatorname{Pin} 6)}-1.4}{3 R_{S}}\left(\frac{N_{p}}{N_{S}}\right)
\]


Figure 27. Dual Charge Pump Converter


The capacitor's equivalent series resistance must limit the Drive Output current to 400 mA . An additonal series resistor may be required when using tantalum or other low ESR capacitors. The positive output can provide excellent line and load regulation by connecting the \(R_{2} / R_{1}\) resistor divider as shown.

\section*{MC34065-H, L MC33065-H, L}

Figure 28. 125 Watt Off-Line Converter

\begin{tabular}{|c|c|c|}
\hline Test & Conditions & Results \\
\hline Line Regulation 100 V Output \(\pm 12\) V Outputs 9.0 V Output & \[
\begin{aligned}
\mathrm{V}_{\text {in }} & =92 \mathrm{Vac} \text { to } 138 \mathrm{Vac} \\
\mathrm{O} & =1.0 \mathrm{~A} \\
\mathrm{O} & = \pm 1.0 \mathrm{~A} \\
\mathrm{O} & =0.1 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \Delta=40 \mathrm{mV} \text { or } \pm 0.02 \% \\
& \Delta=32 \mathrm{mV} \text { or } \pm 0.13 \% \\
& \Delta=55 \mathrm{mV} \text { or } \pm 0.31 \%
\end{aligned}
\] \\
\hline Load Regulation 100 V Output \(\pm 12\) V Outputs 9.0 V Output & \[
\begin{aligned}
\mathrm{V}_{\text {in }} & =115 \mathrm{Vac} \\
\mathrm{IO} & =0.25 \mathrm{~A} \text { to } 1.0 \mathrm{~A} \\
\mathrm{O} & = \pm 0.25 \mathrm{~A} \text { to } \pm 1.0 \mathrm{~A} \\
\mathrm{IO} & =0.08 \mathrm{~A} \text { to } 0.1 \mathrm{~A}
\end{aligned}
\] & \[
\begin{gathered}
\Delta=50 \mathrm{mV} \text { or } \pm 0.025 \% \\
\Delta=320 \mathrm{mV} \text { or } \pm 1.2 \% \\
\Delta=234 \mathrm{mV} \text { or } \pm 1.3 \%
\end{gathered}
\] \\
\hline Output Ripple 100 V Output \(\pm 12\) V Outputs 9.0 V Output & \[
\begin{aligned}
\mathrm{V}_{\mathrm{in}} & =115 \mathrm{Vac} \\
\mathrm{l}_{\mathrm{O}} & =1.0 \mathrm{~A} \\
\mathrm{l}_{\mathrm{O}} & = \pm 1.0 \mathrm{~A} \\
\mathrm{l}_{\mathrm{O}} & =0.1 \mathrm{~A}
\end{aligned}
\] & 40 mVpp 100 mVpp 60 mVpp \\
\hline Short Circuit Current 100 V Output \(\pm 12\) V Outputs 9.0 V Output & \(\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 4.3 A
17 A
Output Hiccups \\
\hline Efficiency & \(\mathrm{Vin}=115 \mathrm{Vac}, \mathrm{PO}=125 \mathrm{~W}\) & 86\% \\
\hline
\end{tabular}

T1 - \(\quad 468 \mu \mathrm{H}\) per section at 2.5 A , Coilcraft E3496A.
T2 - Primary: 156 Turns, \#34 AWG Primary Feedback: 19 Turns, \#34 AWG Secondary: 17 Turns, \#28 AWG Core: TDK PC30 EE22-Z Bobbin: BE22-118CP Gap: \(\approx 0.001^{\prime \prime}\) for a primary inductance of 6.8 mH
T3 - Primary: 56 Turns, \#23 AWG
(2 strands) Bifiliar Wound
Secondary: \(\pm 12\) V, 4 Turns, \#23 AWG
(4 strands) Quadfiliar Wound
Secondary 100 V: 32 Turns, \#23 AWG (2 strands) Bifiliar Wound
Core: TDK PC30 EER40 G0.76
Bobbin: BEER40-1112CP
Gap: \(\approx 0.030^{\prime \prime}\) for a primary inductance of \(212 \mu \mathrm{H}\)
L1, L3, L4 - \(\quad 25 \mu \mathrm{H}\) at 1.0 A , Coilcraft Z7157.
L2 - \(\quad 10 \mu \mathrm{H}\) at 3.0 A , Coilcraft PCV-0-010-03.

Figure 29. PC Board Circuit Side and Component View


\section*{High Performance}

\section*{Resonant Mode Controllers}

The MC34066/MC33066 are high performance resonant mode controllers designed for off-line and dc-to-dc converter applications that utilize frequency modulated constant on-time or constant off-time control. These integrated circuits feature a variable frequency oscillator with programmable deadtime, precision retriggerable one-shot timer, temperature compensated reference, high gain wide-bandwidth error amplifier with a precision output clamp, steering flip-flop, and dual high current totem pole outputs ideally suited for driving power MOSFETs.

Also included are protective features consisting of a high speed fault comparator and latch, programmable soft-start circuitry, input undervoltage lockout with selectable thresholds, and reference undervoltage lockout.

These devices are available in dual--in-line and surface mount packages.
- Variable Frequency Oscillator with a Control Range Exceeding 1000:1
- Programmable Oscillator Deadtime Allows Constant Off-Time Operation
- Precision Retriggerable One-Shot Timer
- Internally Trimmed Bandgap Reference
- 5.0 MHz Error Amplifier with Precision Output Clamp
- Dual High Current Totem Pole Outputs
- Selectable Undervoltage Lockout Thresholds with Hysteresis
- Enable Input
- Programmable Soft-Start Circuitry
- Low Startup Current for Off-Line Operation


MC34066 MC33066

\section*{HIGH PERFORMANCE RESONANT MODE CONTROLLERS}

\section*{SEMICONDUCTOR} TECHNICAL DATA



ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34066DW & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-16L \\
& & Plastic DIP \\
\hline MC34066P & & SO-16L \\
\hline MC33066DW & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & Slastic DIP \\
\hline \cline { 1 - 1 } MC33066P & & \\
\hline
\end{tabular}

\section*{MC34066 MC33066}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Input Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 20 & V \\
\hline \begin{tabular}{l}
Drive Output Current, Source or Sink (Note 1) Continuous \\
Pulsed ( \(0.5 \mu \mathrm{~s}, 25 \%\) Duty Cycle)
\end{tabular} & '0 & \[
\begin{aligned}
& 0.3 \\
& 1.5
\end{aligned}
\] & A \\
\hline Error Amplifier, Fault, One-Shot, Oscillator, and Soft-Start Inputs & \(\mathrm{V}_{\text {in }}\) & -1.0 to +6.0 & V \\
\hline UVLO Adjust Input & \(\mathrm{V}_{\text {in( }}\) (UVLO) & -1.0 to \(\mathrm{V}_{\mathrm{CC}}\) & \(\checkmark\) \\
\hline Soft-Start Discharge Current & Idchg & 20 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics DW Suffix Package, Case 751G Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
P Suffix Package, Case 648 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
\(\mathrm{P}_{\mathrm{D}}\) \\
\(R_{\theta J A}\) \\
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& \\
& 1.25 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{w} \\
\\
\mathrm{w} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature
MC34066
МСЗ3066 & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right.\) [Note 2], \(\mathrm{R}_{\mathrm{OSC}}=95.3 \mathrm{k}, \mathrm{R}_{\mathrm{DT}}=0 \Omega, \mathrm{R}_{\mathrm{VFO}}=5.62 \mathrm{k}, \mathrm{C}_{\mathrm{OSC}}=300 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=14.3 \mathrm{k}\), \(C_{T}=300 \mathrm{pF}, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Reference Output Voltage ( \(1 \mathrm{O}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {ref }}\) & 5.0 & 5.1 & 5.2 & V \\
\hline Line Regulation \(\left(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\right.\) to 18 V\()\) & Regline & - & 1.0 & 20 & mV \\
\hline Load Regulation ( \(\mathrm{IO}=0 \mathrm{~mA}\) to 10 mA ) & Regload & - & 1.0 & 20 & mV \\
\hline Total Output Variation over Line, Load, and Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.9 & - & 5.3 & mV \\
\hline Output Short Circuit Current & IO & 25 & 100 & 190 & mA \\
\hline Reference Undervoltage Lockout Threshold & \(\mathrm{V}_{\text {th }}\) & 3.8 & 4.3 & 4.8 & V \\
\hline
\end{tabular}

\section*{ERROR AMPLIFIER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage ( \(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}\) ) & V 1 O & - & 1.0 & 10 & mV \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}\) ) & IB & - & 0.2 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Input Offset Current ( \(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}\) ) & 1 O & - & 0 & 0.5 & \(\mu \mathrm{A}\) \\
\hline Open Loop Voltage Gain ( \(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V}\) ) & Avol & 70 & 100 & - & dB \\
\hline Gain Bandwidth Product ( \(\mathrm{f}=100 \mathrm{kHz}\) ) & GBW & 2.5 & 4.2 & - & MHz \\
\hline Input Common Mode Rejection Ratio ( \(\mathrm{V} \mathrm{CM}=1.5 \mathrm{~V}\) to 5.0 V ) & CMRR & 70 & 95 & - & dB \\
\hline Power Supply Rejection Ratio ( \(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to \(18 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) ) & PSRR & 80 & 100 & - & dB \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State with Respect to Pin 3 (ISource \(=2.0 \mathrm{~mA}\) ) \\
Low State with Respect to Ground (ISink = 1.0 mA )
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & 2.3 & \[
\begin{aligned}
& 2.7 \\
& 0.4
\end{aligned}
\] & 3.1
0.6 & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 12 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34066 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34066
\(-40^{\circ} \mathrm{C}\) for MC33066 \(+85^{\circ} \mathrm{C}\) for MC33066

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}[\mathrm{Note} 2], \mathrm{ROSC}=95.3 \mathrm{k}, \mathrm{R}_{\mathrm{DT}}=0 \Omega\right.\), \(\mathrm{R} V \mathrm{FO}=5.62 \mathrm{k}, \mathrm{C}_{\mathrm{OSC}}=300 \mathrm{pF}\), \(R_{T}=14.3 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=300 \mathrm{pF}, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OSCILLATOR} \\
\hline \[
\begin{aligned}
& \text { Frequency (Error Amp Output Low) } \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { Total Variation ( } \left.\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \text { to } 18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }} \text { to } \mathrm{T}_{\text {High }}\right)
\end{aligned}
\] & fosc(low) & \[
\begin{aligned}
& 90 \\
& 85
\end{aligned}
\] & & \[
\begin{aligned}
& 110 \\
& 115
\end{aligned}
\] & kHz \\
\hline \begin{tabular}{l}
Frequency (Error Amp Output High)
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
Total Variation ( \(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to \(18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}\) to \(\mathrm{T}_{\text {High }}\) )
\end{tabular} & fosc(high) & \[
\begin{aligned}
& 900 \\
& 850
\end{aligned}
\] & & \[
\begin{aligned}
& 1100 \\
& 1150
\end{aligned}
\] & kHz \\
\hline Oscillator Controil Input Voltage, Pin 3 ( \(\mathrm{I}_{\text {Sink }}=0.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {in }}\) & 1.3 & 1.4 & 1.5 & V \\
\hline \[
\begin{aligned}
& \text { Output Deadtime (Error Amp Output High) } \\
& R_{D T}=0 \Omega \\
& R_{D T}=1.0 \mathrm{k}
\end{aligned}
\] & DT & \[
\overline{60}
\] & \[
\begin{gathered}
70 \\
700
\end{gathered}
\] & \[
\begin{aligned}
& 100 \\
& 800
\end{aligned}
\] & ns \\
\hline
\end{tabular}

\section*{ONE-SHOT}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Drive Output On-Time \(\left(\mathrm{R}_{\mathrm{DT}}=1.0 \mathrm{k}\right)\) & toS & & & \\
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
\({\text { Total Variation }\left(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \text { to } 18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }} \text { to } \mathrm{T}_{\text {High }}\right)} \quad\) & & 1.43 & 1.5 & 1.57 \\
\hline
\end{tabular}

DRIVE OUTPUTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { Low State }(\text { ISink }=20 \mathrm{~mA}) \\
& \text { (ISink }=200 \mathrm{~mA}) \\
& \text { High State } \\
& \text { (ISource }=20 \mathrm{~mA}) \\
& \text { (ISource }=200 \mathrm{~mA})
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OL}}\) \\
\(\mathrm{V}_{\mathrm{OH}}\)
\end{tabular} & \[
\begin{aligned}
& 9.5 \\
& 9.0
\end{aligned}
\] & \[
\begin{gathered}
0.8 \\
1.5 \\
10.3 \\
9.8
\end{gathered}
\] & \[
\begin{gathered}
1.2 \\
2.0 \\
-
\end{gathered}
\] & V \\
\hline Output Voltage with UVLO Activated ( \(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}\), \(\mathrm{I}_{\text {Sink }}=1.0 \mathrm{~mA}\) ) & \(\mathrm{V}_{\text {OL(UVLO) }}\) & - & 0.8 & 1.2 & V \\
\hline Output Voltage Rise Time ( \(C_{L}=1.0 \mathrm{nF}\) ) & \(\mathrm{tr}_{r}\) & - & 20 & 50 & ns \\
\hline Output Voltage Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) ) & \(\mathrm{tf}_{f}\) & - & 20 & 50 & ns \\
\hline
\end{tabular}

FAULT COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Threshold & \(V_{\text {th }}\) & 0.95 & 1.0 & 1.05 & \(V\) \\
\hline Input Bias Current \(\left(V_{\text {Pin } 10=0} \mathrm{~V}\right)\) & \(\mathrm{I}_{\mathrm{IB}}\) & - & -2.0 & -10 & \(\mu \mathrm{~A}\) \\
\hline Propagation Delay to Drive Outputs (100 mV Overdrive) & tPLH \((\mathrm{In} /\) Out \()\) & - & 60 & 100 & ns \\
\hline
\end{tabular}

\section*{SOFT-START}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Capacitor Charge Current \(\left(V_{\text {Pin } 11}=2.5 \mathrm{~V}\right)\) & \(I_{\text {chg }}\) & 4.5 & 8.1 & 14 & \(\mu \mathrm{~A}\) \\
\hline Capacitor Discharge Current \(\left(V_{\text {Pin }} 11=2.5 \mathrm{~V}\right)\) & \(I_{\text {Idchg }}\) & 1.0 & 8.0 & - & mA \\
\hline
\end{tabular}

\section*{UNDERVOLTAGE LOCKOUT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Startup Threshold, \(\mathrm{V}_{\mathrm{CC}}\) Increasing Enable/UVLO Adjust Pin Open Enable/UVLO Adjust Pin Connected to VCC & \(\mathrm{V}_{\text {th(UVLO) }}\) & \[
\begin{gathered}
14.8 \\
8.0
\end{gathered}
\] & \[
\begin{aligned}
& 16 \\
& 9.0
\end{aligned}
\] & \[
\begin{gathered}
17.2 \\
10
\end{gathered}
\] & V \\
\hline Minimum Operating Voltage after Turn-On Enable/UVLO Adjust Pin Open Enable/UVLO Adjust Pin Connected to \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}(\mathrm{min})\) & \[
\begin{aligned}
& 8.0 \\
& 7.6
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 8.6
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 9.6
\end{aligned}
\] & V \\
\hline Enable/UVLO Adjust Shutdown Threshold Voltage & \(\mathrm{V}_{\text {th }}\) (Enable) & 6.0 & 7.0 & - & V \\
\hline Enable/UVLO Adjust Input Current (Pin 9 = OV) & l in(Enable) & - & -0.2 & -1.0 & mA \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}

Power Supply Current (Enable/UVLO Adjust Pin Open)
Startup (VCC \(=13.5 \mathrm{~V}\) )
Operating (fosc \(=100 \mathrm{kHz})(\) Note 2)
\begin{tabular}{|c|c|c|}
\hline- & 0.45 & 0.6 \\
- & 21 & 30 \\
\hline
\end{tabular}

NOTES: 2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 12 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34066 \(-40^{\circ} \mathrm{C}\) for MC33066 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34066

Figure 1. MC34066 Representative Block Diagram


\section*{Introduction}

As power supply designers have strived to increase power conversion efficiency and reduce passive component size, high frequency resonant mode power converters have emerged as attractive alternatives to conventional square-wave control. When compared to square-wave converters, resonant mode control offers several benefits including lower switching losses, higher efficiency, lower EMI emission, and smaller size. This integrated circuit has been developed to support new trends in power supply design. The MC34066 Resonant Mode Controller is a high performance bipolar IC dedicated to variable frequency power control at frequencies exceeding 1.0 MHz . This integrated circuit provides the features, performance and flexibility for a wide variety of resonant mode power supply applications.

The primary purpose of the control chip is to supply precise pulses to the gates of external power MOSFETs at a repetition rate regulated by a feedback control loop. The MC34066 can be operated in any of three modes as follows: 1) fixed on-time, variable frequency; 2) fixed off-time, variable frequency; and 3) combinations of 1 and 2 that change from fixed on-time to fixed off-time as the frequency increases. Additional features of the IC ensure that system startup and fault conditions are administered in a safe, controlled manner.

A simplified block diagram of the IC is shown on the first page of this data sheet, which identifies the main functional blocks and the block-to-block interconnects. Figure 1 is a detailed functional diagram which accurately represents the internal circuitry. The various functions can be divided into two sections. The first section includes the primary control path which produces precise output pulses at the desired frequency Oscillator, a One-Shot, a pulse Steering Flip-Flop, a pair of power MOSFET Drivers, and a wide bandwidth Error Amplifier. The second section provides several peripheral support functions including a voltage reference, undervoltage lockout, Soft-Start circuit, and a fault detector.

\section*{Primary Control Path}

The output pulse width and repetition rate are regulated through the interaction of the variable frequency Oscillator, One-Shot timer and Error Amplifier. The Oscillator triggers the One-Shot which generates a pulse that is alternately steered to a pair of totem-pole output drivers by a toggle Flip-Flop. The Error Amplifier monitors the output of the regulator and modulates the frequency of the Oscillator. High-speed Schottky logic is used throughout the primary control channel to minimize delays and enhance high frequency characteristics.

\section*{Oscillator}

The characteristics of the variable frequency Oscillator are crucial for precise controller performance at high operating frequencies. In addition to triggering the One-Shot timer and initiating the output pulse, the Oscillator also determines the initial voltage for the One-Shot capacitor and defines the minimum deadtime between output pulses. The Oscillator is designed to operate at frequencies exceeding 1.0 MHz . The Error Amplifier can control the oscillator frequency over a 1000:1 frequency range, and both the minimum and maximum frequencies are easily and accurately programmed by the proper selection of external components. The Oscillator also includes an adjustable deadtime feature for applications requiring additional time between output pulses.

The functional diagram of the Oscillator and One-Shot timer is shown in Figure 2. The oscillator capacitor COSC is initially charged by transistor Q1 through the optional deadtime resistor RDT. When COSC exceeds the 4.9 V upper threshold of the oscillator comparator, the base of Q1 is pulled low allowing COSC to discharge through the external resistors and the internal Current Mirror. When the voltage on COSC falls below the comparator's 3.6 V lower threshold, Q1 turns on and again charges COSC.

Figure 2. Oscillator and One-Shot Timer


If \(R_{D T}\) is \(0 \Omega, \mathrm{C}_{\text {OSC }}\) charges from 3.6 V to 5.1 V in less than 50 ns . The high slew rate of COSC and the propagation delay of the comparator make it difficult to control the peak voltage. This accuracy issue is overcome by clamping the base of Q1 through diode Q2 to a voltage reference. The peak voltage of the oscillator waveform is thereby precisely set at 5.1 V .

The frequency of the Oscillator is modulated by varying the current IOSC flowing through RVFO into the Osc Control Current pin. The control current drives a unity gain Current Mirror which pulls an identical current from the COSC capacitor. As IOSC increases, COSC discharges faster thus decreasing the Oscillator period and increasing the frequency. The maximum frequericy occurs when the Error Amplifier output is at the upper clamp level, nominally 2.5 V above the voltage at the Osc Control Current pin. The minimum discharge time for COSC, which corresponds to the maximum oscillator frequency, is given by Equation 1.
\[
\mathrm{t}_{\mathrm{dchg}}(\min )=\left(\mathrm{RDT}_{\mathrm{DT}}+\mathrm{ROSC}_{\mathrm{O}}\right) \operatorname{COSC}_{\mathrm{In}}\left[\begin{array}{l}
\frac{2.5 \mathrm{ROSC}}{\mathrm{RVFO}}+5.1  \tag{1}\\
\frac{2.5 R O S C}{\mathrm{RVFO}}+3.6
\end{array}\right]
\]

The minimum oscillator frequency will result when the IOSC current is zero, and COSC is discharged through the external resistors ROSC and RDT. This occurs when the Error Amplifier output voltage is less than the two diode drops required to bias the input of the Current Mirror. The maximum oscillator discharge time is given by Equation 2.
\[
\begin{equation*}
t_{\mathrm{dchg}}(\max )=\left(\mathrm{R}_{\mathrm{DT}}+\mathrm{ROSC}_{\mathrm{OSC}}\right) \mathrm{COSC}_{\mathrm{OS}}\left(\frac{5.1}{3.6}\right) \tag{2}
\end{equation*}
\]

The outputs of the control IC are off whenever the oscillator capacitor COSC is being charged by transistor Q1. The minimum time between output pulses (deadtime) can be programmed by controlling the charge time of COSC. Resistor RDT reduces the current delivered by Q1 to COSC, thus increasing the charge time and output deadtime. Varying RDT from \(0 \Omega\) to \(1000 \Omega\) will increase the output deadtime from 80 ns to 680 ns with COSC equal to 300 pF . The general expression for the oscillator charge time is give by Equation 3.
\[
\begin{equation*}
t_{\text {chg }}(\max )=\operatorname{RDT}_{\mathrm{D}} \operatorname{COSC}^{\ln }\left(\frac{5.1-3.6}{5.1-4.9}\right)+80 \mathrm{~ns} \tag{3}
\end{equation*}
\]

The minimum and maximum oscillator frequencies are programmed by the proper selection of resistor ROSC and RVFO. After selecting RDT for the desired deadtime, the minimum frequency is programmed by ROSC using Equations 2 and 3 in Equation 4:
\[
\begin{equation*}
\frac{1}{\mathrm{fOSC}(\min )}=t_{d \operatorname{chg}}(\max )+t_{\operatorname{chg}} \tag{4}
\end{equation*}
\]

The maximum oscillator frequency is set by resistor RVFO in a similar fashion using Equations 1 and 3 in Equation 5:
\[
\begin{equation*}
\frac{1}{\mathrm{fOSC}_{(\max )}}=\mathrm{t}_{\mathrm{dchg}}(\min )+\mathrm{t}_{\mathrm{chg}} \tag{5}
\end{equation*}
\]

The value chosen for resistor RDT will affect the peak voltage of the oscillator waveform. As RDT is increased from zero, the time required to charge COSC becomes large with respect to the propagation delay through the oscillator comparator. Consequently, the overshoot of the upper threshold is reduced and the peak voltage on the oscillator waveform drops from 5.1 V to 4.9 V . The best frequency accuracy is achieved when RDT is zero ohms.

\section*{One-Shot Timer}

The One-Shot capacitor \(\mathrm{C}^{\boldsymbol{T}}\) is charged concurrently with the oscillator capacitor by transistor Q1, as shown in Figure 2. The One-Shot period begins when the oscillator comparator turns off Q1, allowing \(\mathrm{C}_{\mathrm{T}}\) to discharge. The period ends when resistor \(R_{T}\) discharges \(C_{T}\) to the threshold of the One-Shot comparator. Discharging \(\mathrm{C}_{\top}\) from an initial voltage of 5.1 V to a threshold voltage of 3.6 V results in the One-Shot period given by Equation 6.
\[
\begin{equation*}
\operatorname{tOS}=\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}} \ln \left(\frac{5.1}{3.6}\right)=0.348 \mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}} \tag{6}
\end{equation*}
\]

\section*{MC34066 MC33066}

Figure 3. Timing Waveforms

\(R_{D T}=1.0 \mathrm{k}\)


\section*{MC34066 MC33066}

Errors in the threshold voltage and propagation delays through the output drivers will affect the One-Shot period. To guarantee accuracy, the output pulse of the control ship is trimmed to within \(5 \%\) of \(1.5 \mu\) s with nominal values of RT and CT.

The outputs of the Oscillator and One-Shot comparators are OR'd together to produce the pulse \(t_{\text {on }}\), which drives the Flip-Flop and output drivers. The output pulse \(t_{o n}\) is initiated by the Oscillator, but either the oscillator comparator or the One-Shot comparator can terminate the pulse. When the oscillator discharge time exceeds the one-shot period, the complete one-shot period is delivered to the output section. If the oscillator discharge time is less than the one-shot period, then the oscillator comparator terminates the pulse prematurely and retriggers the One-Shot. The waveforms on the left side of Figure 3 correspond to nonretriggered operation with constant on-time and variable off-times. The right side of Figure 3 represents retriggered operation with variable on-time and constant off-time.

\section*{Error Amplifier}

A fully accessible high performance Error Amplifier is provided for feedback control of the power supply system. The Error Amplifier is internally compensated and features dc open loop gain greater than 70 dB , input offset voltage less than 10 mV and guaranteed minimum gain-bandwidth product of 2.5 MHz . The input common mode range extends from 1.5 V to 5.1 V , which includes the reference voltage. For common mode voltages below 1.5 V , the Error Amplifier output is forced low providing minimum oscillator frequency.

The Oscillator Control Current pin is biased by the Error Amplifier output voltage through RVFO as illustrated in Figure 4. The output swing of the Error Amplifier is restricted by a clamp circuit to limit the maximum oscillator frequency. The clamp circuit limits the voltage across RVFO to 2.5 V , thus limiting IOSC to \(2.5 \mathrm{~V} / \mathrm{RVFO}\). Oscillator accuracy is improved by trimming the clamp voltage to obtain the fOSC(high) specification of 1.0 MHz with nominal value external components.

Figure 4. Error Amplifier and Clamp


\section*{Output Section}

The pulse, \(\mathrm{t}_{\mathrm{on}}\), generated by the Oscillator and One-Shot timer is gated to dual totem pole output drives by the Steering Flip-Flop shown in Figure 5. Positive transitions of ton toggle the Flip-Flop, which causes the pulses to alternate between Output A and Output B. The flip-flop is reset by the undervoltage lockout circuit during startup to guarantee that the first pulse appears at Output A.

The totem-pole output drives are ideally suited for driving power MOSFETs and are capable of sourcing and sinking 1.5 A. Rise and fall times are typically 20 ns when driving a 1.0 nF load. High source/sink capability in a totem-pole driver normally increases the risk of high cross conduction current during output transitions. The MC34066 utilizes a unique design that virtually eliminates cross conduction, thus controlling the chip power dissipation at high frequencies. A separate ground terminal is provided for the output drivers to isolate the sensitive analog circuitry from large transient currents.

Figure 5. Steering Flip-Flop and Output Drivers


\section*{PERIPHERAL SUPPORT FUNCTIONS}

The MC34066 Resonant Controller provides a number of support and protection functions including a precision voltage reference, undervoltage lockout comparators, soft-start circuitry, and a fault detector. These peripheral circuits ensure that the power supply can be turned on and off in a safe, controlled manner and that the system will be quickly disabled when a fault condition occurs.

\section*{Undervoltage Lockout and Voltage Reference}

Separate undervoltage lockout comparators sense the input \(V_{C C}\) voltage and the regulated reference voltage as illustrated in Figure 6. When \(V_{C C}\) increases to the upper threshold voltage, the \(\mathrm{V}_{\mathrm{CC}}\) UVLO comparator enables the Reference Regulator. After the \(\mathrm{V}_{\text {ref }}\) output of the Reference Regulator rises to 4.2 V , the \(\mathrm{V}_{\text {ref }}\) UVLO comparator switches the UVLO signal to a logic zero state enabling the primary control path. Reducing \(\mathrm{V}_{\mathrm{CC}}\) to the lower threshold voltage causes the VCC UVLO comparator to disable the Reference Regulator. The Vref UVLO comparator then switches the UVLO output to a logic one state disabling the controller.

Figure 6. Undervoltage Lockout and Reference


The Enable/UVLO Adjust terminal allows the power supply designer to select the VCC UVLO threshold voltages. When this pin is open, the comparator switches the controller on at 16 V and off at 9.0 V . If this pin is connected to the \(\mathrm{V}_{\mathrm{CC}}\) terminal, the upper and lower thresholds are reduced to 9.0 V and 8.6 V , respectively. Forcing the Enable/UVLO Adjust pin low will pull the VCC UVLO comparator input low (through an internal diode) turning off the controller.

The Reference Regulator provides a precise 5.1 V reference to internal circuitry and can deliver up to 10 mA to external loads. The reference is trimmed to better than \(2 \%\) initial accuracy and includes active short circuit protection.

\section*{Fault Detector}

The high-speed Fault Comparator and Latch illustrated in Figure 7 can protect a power supply from destruction under fault conditions. The Fault Input pin connects to the input of the Fault Comparator. If this input exceeds the 1.0 V threshold of the comparator, the Fault Latch is set and two logic signals simultaneously disable the primary control path. The signal labeled Fault at the output of the Fault Comparator is connected directly to the output drivers. This direct path reduces the propagation delay from the Fault Input to the A and B outputs to typically 70 ns . The Fault Latch output is OR'd with UVLO output from the Vref UVLO comparator to produce the logic output labeled UVLO + Fault. This signal disables the Oscillator and One-Shot by forcing both the COSC and \(\mathrm{C}_{\mathrm{T}}\) capacitors to be continually charged.

Figure 7. Fault Detector and Soft-Start


The Fault Latch is reset during startup by a logic one at the UVLO output of the \(\mathrm{V}_{\text {ref }}\) UVLO comparator. The latch can also
be reset after startup by pulling the Enable/UVLO Adjust pin momentarily low to disable the Reference Regulator.

\section*{Soft-Start Circuit}

The Soft-Start circuit shown in Figure 7 forces the variable frequency Oscillator to start at the minimum frequency and ramp upward until regulated by the feedback control loop. The external capacitor at the CSoft-Start terminal is initially discharged by the UVLO + Fault signal. The low voltage on the capacitor pass through the Soft-Start Buffer to hold the Error Amplifier output low. After UVLO + Fault switches to a logic zero, the soft-start capacitor is charged by a \(9.0 \mu \mathrm{~A}\) current source. The buffer allows the Error Amplifier output to follow the soft-start capacitor until it is regulated by the Error Amplifier inputs (or reaches the 2.5 V clamp). The soft-start function is generally applicable to controllers operating below resonance and can be disabled by simply opening the C Soft-Start terminal.

\section*{APPLICATIONS}

The MC34066 can be used for the control of series, parallel or higher order half/full bridge resonant converters. The IC is designed to provide control in discontinuous conduction mode (DCM) or continuous conduction mode (CCM) or a combination of the two. For example, in a parallel resonant converter (PRC) operating in the DCM, the IC is programmed to operate in fixed on-time, variable frequency mode of operation. For a PRC operating in the CCM, the IC can be programmed to operate in the variable frequency mode with a fixed off-time.

When operating with a wide input voltage range, such as a universal input power supply, a PRC can operate in the DCM for high input voltage and in the CCM for low input voltage. In this particular case, on-time is programmed corresponding to DCM. The deadtime of the chip is programmed to provide the desired off-time in the CCM. The frequency range is chosen to cover the complete frequency range from the DCM to the CCM. When programmed as such, the controller will operate in the fixed on-time, variable frequency mode at low frequencies. At the frequency which causes the Oscillator to retrigger the One-Shot, the control law changes to variable frequency with fixed off-time. At higher frequencies the supply will operate in the CCM with this control law.

Although the IC is designed and optimized for double ended push-pull type converters, it can also be used for single ended applications, such as forward and flyback resonant converters.

\section*{High Performance Resonant Mode Controllers}

The MC34067/MC33067 are high performance zero voltage switch resonant mode controllers designed for off-line and dc-to-dc converter applications that utilize frequency modulated constant off-time or constant deadtime control. These integrated circuits feature a variable frequency oscillator, a precise retriggerable one-shot timer, temperature compensated reference, high gain wide bandwidth error amplifier, steering flip-flop, and dual high current totem pole outputs ideally suited for driving power MOSFETs.

Also included are protective features consisting of a high speed fault comparator and latch, programmable soft-start circuitry, input undervoltage lockout with selectable thresholds, and reference undervoltage lockout.

These devices are available in dual-in-line and surface mount packages.
- Zero Voltage Switch Resonant Mode Operation
- Variable Frequency Oscillator with a Control Range Exceeding 1000:1
- Precision One-Shot Timer for Controlled Off-Time
- Internally Trimmed Bandgap Reference
- 4.0 MHz Error Amplifier
- Dual High Current Totem Pole Outputs
- Selectable Undervoltage Lockout Thresholds with Hysteresis
- Enable Input
- Programmable Soft-Start Circuitry
- Low Startup Current for Off-Line Operation


\section*{HIGH PERFORMANCE} ZERO VOLTAGE SWITCH RESONANT MODE CONTROLLERS

\section*{SEMICONDUCTOR} TECHNICAL DATA

P SUFFIX
PLASTIC PACKAGE CASE 648


DW SUFFIX
PLASTIC PACKAGE
CASE 751G
(SO-16L)


ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34067DW & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}\)} & SO-16L \\
\hline MC34067P & & Plastic DIP \\
\hline MC33067DW & \multirow{2}{*}{\(\mathrm{T}_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-16L \\
\hline MC33067P & & Plastic DIP \\
\hline
\end{tabular}

MC34067 MC33067

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & VCC & 20 & V \\
\hline Drive Output Current, Source or Sink (Note 1) Continuous Pulsed ( \(0.5 \mu \mathrm{~s}, 25 \%\) Duty Cycle & 10 & \[
\begin{aligned}
& 0.3 \\
& 1.5
\end{aligned}
\] & A \\
\hline Error Amplifier, Fault, One-Shot, Oscillator and Soft-Start Inputs & \(\mathrm{V}_{\text {in }}\) & -1.0 to +6.0 & V \\
\hline UVLO Adjust Input & \(\mathrm{V}_{\text {in }}\) (UVLO) & -1.0 to \(V_{C C}\) & V \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics DW Suffix, Plastic Package, Case 751G
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Air \\
P Suffix, Plastic Package, Case 648
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
PD \(R_{\theta J A}\) \\
PD \(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& 1.25 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{w} \\
\\
\mathrm{w} \\
{ }^{\circ} \mathrm{C} / \mathrm{w}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(T_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature MC34067 МСЗ3067 & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right.\) [Note 2], \(\mathrm{R}_{\mathrm{OSC}}=18.2 \mathrm{k}, \mathrm{RVFO}=2940, \mathrm{C}_{\mathrm{OSC}}=300 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=2370 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=300 \mathrm{pF}\), \(C_{L}=1.0 \mathrm{nF}\). For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [ Note 3 ], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline Reference Output Voltage ( \(\mathrm{l} \mathrm{O}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {ref }}\) & 5.0 & 5.1 & 5.2 & V \\
\hline Line Regulation ( \(\mathrm{V}_{C C}=10 \mathrm{TO} 18 \mathrm{~V}\) ) & Regline & - & 1.0 & 20 & mV \\
\hline Load Regulation ( \(\mathrm{I} \mathrm{O}=0 \mathrm{~mA}\) to 10 mA ) & Regload & - & 1.0 & 20 & mV \\
\hline Total Output Variation Over Line, Load, and Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.9 & - & 5.3 & V \\
\hline Output Short Circuit Current & Io & 25 & 100 & 190 & mA \\
\hline Reference Undervoltage Lockout Threshold & \(\mathrm{V}_{\text {th }}\) & 3.8 & 4.3 & 4.8 & V \\
\hline
\end{tabular}

\section*{ERROR AMPLIFIER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage ( \(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}\) ) & \(\mathrm{V}_{10}\) & - & 1.0 & 10 & mV \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}\) ) & IB & - & 0.2 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Input Offset Current (VCM \(=1.5 \mathrm{~V}\) ) & 1 O & - & 0 & 0.5 & \(\mu \mathrm{A}\) \\
\hline Open Loop Voltage Gain ( \(\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V}\) ) & AVOL & 70 & 100 & - & dB \\
\hline Gain Bandwidth Product ( \(\mathrm{f}=100 \mathrm{kHz}\) ) & GBW & 3.0 & 5.0 & - & MHz \\
\hline Input Common Mode Rejection Ratio ( \(\mathrm{V}_{\mathrm{CM}}=1.5\) to 5.0 V ) & CMR & 70 & 95 & - & dB \\
\hline Power Supply Rejection Ratio ( \(\mathrm{V}_{\mathrm{CC}}=10\) to \(18 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) ) & PSR & 80 & 100 & - & dB \\
\hline Output Voltage Swing High State Low State & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & 2.8 & 3.2
0.6 & & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 12 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for the MC34067 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34067
\(=-40^{\circ} \mathrm{C}\) for the MC33067 \(=+85^{\circ} \mathrm{C}\) for MC33067

\section*{MC34067 MC33067}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=12 \mathrm{~V}\right.\) [Note 2], ROSC \(=18.2 \mathrm{k}, \mathrm{R}_{\mathrm{VFO}}=2940, \mathrm{C}_{\mathrm{OSC}}=300 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=2370 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=300 \mathrm{pF}\), \(C_{L}=1.0 \mathrm{nF}\). For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [ Note 3 ], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OSCILLATOR} \\
\hline \[
\begin{aligned}
& \text { Frequency (Error Amp Output Low) } \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { Total Variation }\left(\mathrm{V}_{\mathrm{CC}}=10 \text { to } 18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }} \text { to } \mathrm{T}_{\text {High }}\right.
\end{aligned}
\] & fosc(low) & \[
\begin{aligned}
& 500 \\
& 490
\end{aligned}
\] & & \[
\begin{aligned}
& 540 \\
& 550
\end{aligned}
\] & kHz \\
\hline \begin{tabular}{l}
Frequency (Error Amp Output High)
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
Total Variation \(\left(\mathrm{V}_{\mathrm{CC}}=10\right.\) to \(18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}\) to \(\mathrm{T}_{\text {High }}\)
\end{tabular} & fosc(high) & \[
\begin{aligned}
& 1900 \\
& 1850
\end{aligned}
\] & 2050 & \[
\begin{aligned}
& 2150 \\
& 2200
\end{aligned}
\] & kHz \\
\hline Oscillator Control Input Voltage, Pin 3 @ \(25^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\text {in }}\) & - & 2.5 & - & V \\
\hline
\end{tabular}

\section*{ONE-SHOT}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Drive Output Off-Time & & & & \\
\(T_{A}=25^{\circ} \mathrm{C}\) \\
Total Variation \(\left(\mathrm{V}_{\mathrm{CC}}=10\right.\) to \(18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {Low }}\) to \(T_{\text {High }}\) & tBlank & 235 & 250 & 270 \\
225 & - & 280
\end{tabular}

\section*{DRIVE OUTPUTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Voltage & & & & & V \\
\hline Low State ( \({ }_{\text {S }}^{\text {ink }}\) = 20 mA ) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.8 & 1.2 & \\
\hline ( S Sink \(=200 \mathrm{~mA}\) ) & & - & 1.5 & 2.0 & \\
\hline \begin{tabular}{l}
High State \((\) ISource \(=20 \mathrm{~mA})\) \\
(ISource \(=200 \mathrm{~mA})\)
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & 9.5
9.0 & \[
\begin{gathered}
10.3 \\
9.7
\end{gathered}
\] & - & \\
\hline Output Voltage with UVLO Activated ( \(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}\), ISink \(=1.0 \mathrm{~mA}\) ) & \(\mathrm{V}_{\text {OL }}\) (UVLO) & - & 0.8 & 1.2 & V \\
\hline Output Voltage Rise Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) ) & \(t_{r}\) & - & 20 & 50 & ns \\
\hline Output Voltage Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) ) & , & - & 15 & 50 & ns \\
\hline
\end{tabular}

\section*{FAULT COMPARATOR}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Threshold & \(\mathrm{V}_{\text {th }}\) & 0.93 & 1.0 & 1.07 & V \\
\hline Input Bias Current \(\left(\mathrm{V}_{\text {Pin }} 10=0 \mathrm{~V}\right)\) & \(\mathrm{IIB}_{\mathrm{B}}\) & - & -2.0 & -10 & \(\mu \mathrm{~A}\) \\
\hline Propagation Delay to Drive Outputs (100 mV Overdrive) & tPLH \(^{(\mathrm{In} / \mathrm{Out})}\) ) & - & 60 & 100 & ns \\
\hline
\end{tabular}

SOFT-START
\begin{tabular}{|l|c|c|c|c|c|}
\hline Capacitor Charge Current \(\left(V_{\text {Pin } 11}=2.5 \mathrm{~V}\right)\) & \(I_{\text {chg }}\) & 4.5 & 9.0 & 14 & \(\mu \mathrm{~A}\) \\
\hline Capacitor Discharge Current \(\left(V_{\text {Pin } 11}=2.5 \mathrm{~V}\right)\) & \(I_{\text {dischg }}\) & 3.0 & 8.0 & - & mA \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT
\begin{tabular}{|c|c|c|c|c|c|}
\hline Startup Threshold, \(\mathrm{V}_{\mathrm{CC}}\) Increasing Enable/UVLO Adjust Pin Open Enable/UVLO Adjust Pin Connected to \(\mathrm{V}_{\mathrm{CC}}\) & \(V_{\text {th(UVLO }}\) & \[
\begin{gathered}
14.8 \\
8.0
\end{gathered}
\] & \[
\begin{aligned}
& 16 \\
& 9.0
\end{aligned}
\] & \[
\begin{gathered}
17.2 \\
10
\end{gathered}
\] & V \\
\hline Minimum Operating Voltage After Turn-On Enable/UVLO Adjust Pin Open Enable/UVLO Adjust Pin Connected to \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}(\mathrm{min})\) & \[
\begin{aligned}
& 8.0 \\
& 7.6
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 8.6
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 9.6
\end{aligned}
\] & V \\
\hline Enable/UVLO Adjust Shutdown Threshold Voltage & \(\mathrm{V}_{\text {th(Enable) }}\) & 6.0 & 7.0 & - & V \\
\hline Enable/UVLO Adjust Input Current (Pin 9 = 0 V) & lin(Enable) & - & -0.2 & -1.0 & mA \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Power Supply Current (Enable/UVLO Adjust Pin Open) & & & & & mA \\
Startup (VCC \(=13.5 \mathrm{~V})\) & - & 0.5 & 0.8 & \\
Operating (foSC \(=500 \mathrm{kHz})(\) Note 2) & & - & 27 & 35 & \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 12 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for the MC34067 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34067
\(=-40^{\circ} \mathrm{C}\) for the MC33067 \(=+85^{\circ} \mathrm{C}\) for MC33067

Figure 1. Oscillator Timing Resistor versus Discharge Time


Figure 3. Error Amp Output Saturation Voltage versus Oscillator Control Current


Figure 5. Open Loop Voltage Gain and Phase versus Frequency


Figure 2. Oscillator Frequency versus Oscillator Control Current


Figure 4. One-Shot Timing Resistor versus Period


Figure 6. Reference Output Voltage Change


Figure 7. Reference Voltage Change versus Source Current


Figure 9. Drive Output Waveform

\(20 \mathrm{~ns} / \mathrm{DIV}\)

Figure 11. Operating Frequency versus Supply Current


Figure 8. Drive Output Saturation Voltage versus Load Current


Figure 10. Soft-Start Saturation Voltage versus Capacitor Discharge Current


Figure 12. Supply Current versus Supply Voltage


Figure 13. MC34067 Representative Block Diagram


Timing Diagram


\section*{MC34067 MC33067}

\section*{OPERATING DESCRIPTION}

\section*{Introduction}

As power supply designers have strived to increase power conversion efficiency and reduce passive component size, high frequency resonant mode power converters have emerged as attractive alternatives to conventional pulse-width modulated control. When compared to pulse-width modulated converters, resonant mode control offers several benefits including lower switching losses, higher efficiency, lower EMI emission, and smaller size. A new integrated circuit has been developed to support this trend in power supply design. The MC34067 Resonant Mode Controller is a high performance bipolar IC dedicated to variable frequency power control at frequencies exceeding 1.0 MHz . This integrated circuit provides the features and performance specifically for zero voltage switching resonant mode power supply applications.

The primary purpose of the control chip is to provide a fixed off-time to the gates of external power MOSFETs at a repetition rate regulated by a feedback control loop. Additional features of the IC ensure that system startup and fault conditions are administered in a safe, controlled manner.

A simplified block diagram of the IC is shown on the front page, which identifies the main functional blocks and the block-to-block interconnects. Figure 13 is a detailed functional diagram which accurately represents the internal circuitry. The various functions can be divided into two sections. The first section includes the primary control path which produces precise output pulses at the desired frequency. Included in this section are a variable frequency Oscillator, a One-Shot, a pulse Steering Flip-Flop, a pair of power MOSFET Drivers, and a wide bandwidth Error Amplifier. The second section provides several peripheral support functions including a voltage reference, undervoltage lockout, Soft-Start circuit, and a fault detector.

\section*{Primary Control Path}

The output pulse width and repetition rate are regulated through the interaction of the variable frequency Oscillator, One-Shot timer and Error Amplifier. The Oscillator triggers the One-Shot which generates a pulse that is alternately steered to a pair of totem pole output drivers by a toggle Flip-Flop. The Error Amplifier monitors the output of the regulator and modulates the frequency of the Oscillator. High speed Schottky logic is used throughout the primary control channel to minimize delays and enhance high frequency characteristics.

\section*{Oscillator}

The characteristics of the variable frequency Oscillator are crucial for precise controller performance at high operating frequencies. In addition to triggering the One-Shot timer and initiating the output deadtime, the oscillator also determines the initial voltage for the one-shot capacitor. The Oscillator is designed to operate at frequencies exceeding 1.0 MHz . The Error Amplifier can control the oscillator frequency over a 1000:1 frequency range, and both the minimum and maximum frequencies are easily and accurately programmed by the proper selection of external components.

The functional diagram of the Oscillator and One-Shot timer is shown in Figure 14. The oscillator capacitor (COSC) is initially charged by transistor Q1. When COSC exceeds the 4.9 V upper threshold of the oscillator comparator, the base of Q1 is pulled low allowing COSC to discharge through the external resistor, (ROSC), and the oscillator control current, (IOSC). When the voltage on COSC falls below the comparator's 3.6 V lower threshold, Q1 turns on and again charges COSC.

COSC charges from 3.6 V to 5.1 V in less than 50 ns . The high slew rate of COSC and the propagation delay of the comparator make it difficult to control the peak voltage. This accuracy issue is overcome by clamping the base of Q1 through a diode to a voltage reference. The peak voltage of the oscillator waveform is thereby precisely set at 5.1 V .

Figure 14. Oscillator and One-Shot Timer


The frequency of the Oscillator is modulated by varying the current flowing out of the Oscillator Control Current (IOSC) pin. The IOSC pin is the output of a voltage regulator. The input of the voltage regulator is tied to the variable frequency oscillator. The discharge current of the Oscillator increases by increasing the current out of the IOSC pin. Resistor RVFO is used in conjunction with the Error Amp output to change the IOSC current. Maximum frequency occurs when the Error Amplifier output is at its low state with a saturation voltage of 0.1 V at 1.0 mA .

The minimum oscillator frequency will result when the IOSC current is zero, and COSC is discharged through the external resistor (ROSC). This occurs when the Error Amplifier output is at its high state of 2.5 V . The minimum and maximum oscillator frequencies are programmed by the proper selection of resistor ROSC and RVFO. The minimum frequency is programmed by ROSC using Equation 1:
\[
\begin{equation*}
\mathrm{R}_{\mathrm{OSC}}=\frac{\frac{1}{f_{(\min )}}-\mathrm{t}_{\mathrm{PD}}}{\operatorname{COSC} \ln \left(\frac{5.1}{3.6}\right)}=\frac{\mathrm{t}_{(\max )}-70 \mathrm{~ns}}{0.348 \mathrm{C}_{\mathrm{OSC}}} \tag{1}
\end{equation*}
\]
where tPD is the internal propagation delay.

The maximum oscillator frequency is set by the current through resistor RVFO. The current required to discharge COSC at the maximum oscillator frequency can be calculated by Equation 2 :
\[
\begin{equation*}
I_{(\max )}=\operatorname{C}_{\mathrm{OSC}} \frac{5.1-3.6}{\frac{1}{f(\max )}}=1.5 \mathrm{C}_{\mathrm{OSC}} f_{(\max )} \tag{2}
\end{equation*}
\]

The discharge current through ROSC must also be known and can be calculated by Equation 3:
\[
\begin{align*}
\mathrm{I}_{\mathrm{OSC}}= & \frac{5.1-3.6}{\mathrm{R}_{\mathrm{OSC}}} \varepsilon  \tag{3}\\
& \left.=\frac{1.5}{\left(-\frac{1}{\mathrm{f}_{(\mathrm{min})}}\right.} \varepsilon_{\mathrm{OSC}} \varepsilon^{\left(-\frac{1}{\mathrm{R}_{\mathrm{OSC}}}\right.}\right)
\end{align*}
\]

Resistor RVFO can now be calculated by Equation 4:
\[
\begin{equation*}
R_{\text {VFO }}=\frac{2.5-V_{\text {EAsat }}}{I_{(\max )}-I_{R_{\text {OSC }}}} \tag{4}
\end{equation*}
\]

\section*{One-Shot Timer}

The One-Shot is designed to disable both outputs simultaneously providing a deadtime before either output is enabled. The One-Shot capacitor ( \(\mathrm{C}_{\mathrm{T}}\) ) is charged concurrently with the oscillator capacitor by transistor Q1, as shown in Figure 14. The one-shot period begins when the oscillator comparator turns off Q1, allowing \(\mathrm{C}_{\top}\) to discharge. The period ends when resistor \(\mathrm{R}_{\mathrm{T}}\) discharges \(\mathrm{C}_{\mathrm{T}}\) to the threshold of the One-Shot comparator. The lower threshold of the One-Shot is 3.6 V . By choosing \(\mathrm{CT}_{\mathrm{T}}\), RT can by solved by Equation 5 :
\[
\begin{equation*}
\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{t}_{O S}}{\mathrm{C}_{\mathrm{T}} \ln \left(\frac{5.1}{3.6}\right)}=\frac{t_{O S}}{0.348 \mathrm{C}_{\mathrm{T}}} \tag{5}
\end{equation*}
\]

Errors in the threshold voltage and propagation delays through the output drivers will affect the One-Shot period. To guarantee accuracy, the output pulse of the control chip is trimmed to within \(5 \%\) of 250 ns with nominal values of \(R_{T}\) and Ст.

The outputs of the Oscillator and One-Shot comparators are OR'd together to produce the pulse tos, which drives the Flip-Flop and output drivers. The output pulse (tos) is initiated by the Oscillator and terminated by the One-Shot comparator. With zero-voltage resonant mode converters, the oscillator discharge time should never be set less than the one-shot period.

\section*{Error Amplifier}

A fully accessible high performance Error Amplifier is provided for feedback control of the power supply system. The Error Amplifier is internally compensated and features dc open loop gain greater than 70 dB , input offset voltage of less than 10 mV and a guaranteed minimum gain-bandwidth product of 2.5 MHz . The input common mode range extends from 1.5 V to 5.1 V , which includes the reference voltage.

Figure 15. Error Amplifier and Clamp


When the Error Amplifier output is coupled to the IOSC pin by RVFO, as illustrated in Figure 15, it provides the Oscillator Control Current, IOSC. The output swing of the Error Amplifier is restricted by a clamp circuit to improve its transient recovery time.

\section*{Output Section}

The pulse(tos), generated by the Oscillator and One-Shot timer is gated to dual totem-pole output drives by the Steering Flip-Flop shown in Figure 16. Positive transitions of tos toggle the Flip-Flop, which causes the pulses to alternate between Output A and Output B. The flip-flop is reset by the undervoltage lockout circuit during startup to guarantee that the first pulse appears at Output A.

Figure 16. Steering Flip-Flop and Output Drivers


The totem-pole output drivers are ideally suited for driving power MOSFETs and are capable of sourcing and sinking 1.5 A. Rise and fall times are typically 20 ns when driving a 1.0 nF load. High source/sink capability in a totem-pole driver normally increases the risk of high cross conduction current during output transitions. The MC34067 utilizes a unique design that virtually eliminates cross conduction, thus controlling the chip power dissipation at high frequencies. A separate power ground pin is provided to isolate the sensitive analog circuitry from large transient currents.

Figure 17. Undervoltage Lockout and Reference


PERIPHERAL SUPPORT FUNCTIONS

The MC34067 Resonant Controller provides a number of support and protection functions including a precision voltage reference, undervoltage lockout comparators, soft-start circuitry, and a fault detector. These peripheral circuits ensure that the power supply can be turned on and off in a controlled manner and that the system will be quickly disabled when a fault condition occurs.

\section*{Undervoltage Lockout and Voltage Reference}

Separate undervoltage lockout comparators sense the input \(\mathrm{V}_{\mathrm{CC}}\) voltage and the regulated reference voltage as illustrated in Figure 17. When \(V_{C C}\) increases to the upper threshold voltage, the VCC UVLO comparator enables the Reference Regulator. After the \(V_{\text {ref }}\) output of the Reference Regulator rises to 4.2 V , the \(\mathrm{V}_{\text {ref }}\) UVLO comparator switches the UVLO signal to a logic zero state enabling the primary control path. Reducing \(\mathrm{V}_{\mathrm{CC}}\) to the lower threshold voltage causes the \(\mathrm{V}_{\mathrm{CC}}\) UVLO comparator to disable the Reference Regulator. The Vref UVLO comparator then switches the UVLO output to a logic one state disabling the controller.

The Enable/UVLO Adjust pin allows the power supply designer to select the \(\mathrm{V}_{\mathrm{CC}}\) UVLO threshold voltages. When this pin is open, the comparator switches the controller on at 16 V and off at 9.0 V . If this pin is connected to the \(\mathrm{V}_{\mathrm{C}}\) terminal, the upper and lower thresholds are reduced to 9.0 V and 8.6 V , respectively. Forcing the Enable/UVLO Adjust pin low will pull the VCC UVLO comparator input low (through an internal diode) turning off the controller.

The Reference Regulator provides a precise 5.1 V reference to internal circuitry and can deliver up to 10 mA to external loads. The reference is trimmed to better than \(2 \%\) initial accuracy and includes active short circuit protection.

\section*{Fault Detector}

The high speed Fault Comparator and Latch illustrated in Figure 18 can protect a power supply from destruction under fault conditions. The Fault Input pin connects to the input of the Fault Comparator. If this input exceeds the 1.0 V threshold of the comparator, the Fault Latch is set and two logic signals simultaneously disable the primary control path. The signal labeled "Fault" at the output of the Fault Comparator is connected directly to the output drivers. This direct path reduces the propagation delay from the Fault Input to the A and B outputs to typically 70 ns . The Fault

Latch output is OR'd with the UVLO output from the \(\mathrm{V}_{\text {ref }}\) UVLO comparator to produce the logic output labeled "UVLO+Fault". This signal disables the Oscillator and One-Shot by forcing both the COSC and \(\mathrm{C}_{\boldsymbol{T}}\) capacitors to be continually charged.

Figure 18. Fault Detector and Soft-Start


The Fault Latch is reset during startup by a logic " 1 " at the UVLO output of the V ref UVLO comparator. The latch can also be reset after startup by pulling the Enable/UVLO Adjust pin momentarily low to disable the Reference Regulator.

\section*{Soft-Start Circuit}

The Soft-Start circuit shown in Figure 18 forces the variable frequency Oscillator to start at the maximum frequency and ramp downward until regulated by the feedback control loop. The external capacitor at the CSoft-Start terminal is initiaily discharged by the UVLO+Fault signal. The low voltage on the capacitor passes through the Soft-Start Buffer to hold the Error Amplifier output low. After UVLO+Fault switches to a logic zero, the soft-start capacitor is charged by a \(9.0 \mu \mathrm{~A}\) current source. The buffer allows the Error Amplifier output to follow the soft-start capacitor until it is regulated by the Error Amplifier inputs. The soft-start function is generally applicable to controllers operating below resonance and can be disabled by simply opening the CSoft-Start terminal.

\section*{MC34067 MC33067}

\section*{APPLICATIONS INFORMATION}

The MC34067 is specifically designed for zero voltage switching (ZVS) quasi-resonant converter (QRC) applications. The IC is optimized for double-ended push-pull or bridge type converters operating in continuous conduction mode. Operation of this type of ZVS with resonant properties is similar to standard push-pull or bridge circuits in that the energy is transferred during the transistor on-time. The difference is that a series resonant tank is usually introduced to shape the voltage across the power transistor prior to turn-on. The resonant tank in this topology is not used to deliver energy to the output as is the case with zero current switch topologies. When the power transistor is enabled the voltage across it should already be zero, yielding minimal switching loss. Figure 19 shows a timing diagram for a half-bridge ZVS QRC. An application circuit is shown in Figure 20. The circuit built is a dc to dc half-bridge converter delivering 75 W to the output from a 48 V source.

When building a zero voltage switch (ZVS) circuit, the objective is to waveshape the power transistor's voltage waveform so that the voltage across the transistor is zero when the device is turned on. The purpose of the control IC is to allow a resonant tank to waveshape the voltage across the power transistor while still maintaining regulation. This is accomplished by maintaining a fixed deadtime and by varying the frequency; thus the effective duty cycle is changed.

Primary side resonance can be used with ZVS circuits. In the application circuit, the elements that make the resonant tank are the primary leakage inductance of the transformer (LL) and the average output capacitance (COSS) of a power MOSFET ( \(C_{R}\) ). The desired resonant frequency for the application circuit is calculated by Equation 6:
\[
\begin{equation*}
f_{r}=\frac{1}{2 \pi \sqrt{L_{L} 2 C_{R}}} \tag{6}
\end{equation*}
\]

In the application circuit, the operating voltage is low and the value of COSS versus Drain Voltage is known. Because the COSS of a MOSFET changes with drain voltage, the value of the \(\mathrm{C}_{\mathrm{R}}\) is approximated as the average COSS of the MOSFET. For the application circuit the average COSS can be calculated by Equation 7:
\[
\begin{equation*}
C_{R}=\sqrt{2} * C_{\text {OSS }} \text { measured at } \frac{1}{2} V_{\text {in }} \tag{7}
\end{equation*}
\]

The MOSFET chosen fixes \(C_{R}\) and that \(L_{L}\) is adjusted to achieve the desired resonant frequency.

However, the desired resonant frequency is less critical than the leakage inductance. Figure 19 shows the primary current ramping toward its peak value during the resonant transition. During this time, there is circulating current flowing through the secondary inductance, which effectively makes the primary inductance appear shorted. Therefore, the current through the primary will ramp to its peak value at a rate controlled by the leakage inductance and the applied voltage. Energy is not transferred to the secondary during this stage, because the primary current has not overcome the circulating current in the secondary. The larger the leakage inductance, the longer it takes for the primary current to slew. The practical effect of this is to lower the duty cycle, thus reducing the operating range.

The maximum duty cycle is controlled by the leakage inductance, not by the MC34067. The One-Shot in the MC34067 only assures that the power switch is turned on under a zero voltage condition. Adjust the one-shot period so that the output switch is activated while the primary current is slewing but before the current changes polarity. The resonant stage should then be designed to be as long as the time for the primary current to go to zero amps.

\section*{MC34067 MC33067}

Figure 19. Application Timing Diagram


Figure 20. Application Circuit
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=40 \mathrm{~V}\) to \(56 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=15 \mathrm{~A}\) & \(20 \mathrm{mV}= \pm 0.198 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~A}\) to 15 A & \(4.0 \mathrm{mV}= \pm 0.039 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=15 \mathrm{~A}, \mathrm{f}_{\text {switch }}=1.0 \mathrm{MHz}\) & \(25 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}\) \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~A}, \mathrm{f}_{\text {switch }}=1.7 \mathrm{MHz}\) & \(83.5 \%\) \\
& \(\mathrm{~V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=15 \mathrm{~A}, \mathrm{f}_{\text {switch }}=1.0 \mathrm{MHz}\) & \(84.2 \%\) \\
\hline
\end{tabular}
Primary: 12 turns \#48 AWG (1300 strands litz wire)
Secondary: 6 tums center tapped \#48 AWG (1300 strands litz wire) Core: Philips 3F3 43120204124
Primary Leakage Inductance \(=1.0 \mu \mathrm{H}\)
T2 = All windings: 8 turns \#36 AWG Core: Philips 3F3 EP7-3F3 Bobbin: Philips EP7PCB1-6
T3 = Coilcraft D1870 (100 tums)
L1 \(=2\) turns \#48 AWG ( 1300 strands litz wire) Core: Philips 3F3 EP10-3F3 Bobbin: Philips EP10PCB1-8 Inductance \(=1.8 \mu \mathrm{H}\)
L2 \(=5\) turns \#48 AWG ( 1300 strands litz wire) Core: \(0 . \mathbf{5}^{\prime \prime}\) diameter air code
Inductance \(=100 \mathrm{nH}\)
Heatsinks = AAVID Engineering inc. 533402B02552 with clip MC34067-5803
Insulators \(=\) Berquist \(\mathrm{Si}-\mathrm{Pad} 1500\)

Figure 21. Printed Circuit Board and Component Layout

(Top View)

\section*{High Performance Current Mode Controllers}

The MC34129/MC33129 are high performance current mode switching regulators specifically designed for use in low power digital telephone applications. These integrated circuits feature a unique internal fault timer that provides automatic restart for overload recovery. For enhanced system efficiency, a start/run comparator is included to implement bootstrapped operation of \(\mathrm{V}_{\mathrm{C}}\). Other functions contained are a temperature compensated reference, reference amplifier, fully accessible error amplifier, sawtooth oscillator with sync input, pulse width modulator comparator, and a high current totem pole driver ideally suited for driving a power MOSFET.

Also included are protective features consisting of soft-start, undervoltage lockout, cycle-by-cycle current limiting, adjustable deadtime, and a latch for single pulse metering.

Although these devices are primarily intended for use in digital telephone systems, they can be used cost effectively in many other applications.
- Current Mode Operation to 300 kHz
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-by-Cycle Current Limiting
- Continuous Retry after Fault Timeout
- Soft-Start with Maximum Peak Switch Current Clamp
- Internally Trimmed 2\% Bandgap Reference
- High Current Totem Pole Driver
- Input Undervoltage Lockout
- Low Startup and Operating Current
- Direct Interface with Motorola SENSEFET Products


HIGH PERFORMANCE CURRENT MODE CONTROLLERS

SEMICONDUCTOR TECHNICAL DATA


PIN CONNECTIONS


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34129D & \multirow{2}{*}{\(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-14 \\
\hline \cline { 1 - 2 } MC34129P & & Plastic DIP \\
\hline MC33129D & \multirow{2}{*}{\(\mathrm{T}_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-14 \\
\hline & & Plastic DIP \\
\hline
\end{tabular}

\section*{MC34129 MC33129}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline V CC Zener Current & Iz(VCC) & 50 & mA \\
\hline Start/Run Output Zener Current & IZ(Start/Run) & 50 & mA \\
\hline Analog Inputs (Pins 3, 5, 9, 10, 11, 12) & - & -0.3 to 5.5 & V \\
\hline Sync Input Voltage & \(V_{\text {sync }}\) & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Drive Output Current, Source or Sink & IDRV & 1.0 & A \\
\hline Current, Reference Outputs (Pins 6, 8) & Iref & 20 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics D Suffix, Plastic Package Case 751A Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
P Suffix, Plastic Package Case 646 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
PD \(R_{\theta J A}\) \\
PD \(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 552 \\
& 145 \\
& \\
& 800 \\
& 100 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature MC34129 \\
МСЗ3129
\end{tabular} & TA & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTIONS} \\
\hline \[
\begin{aligned}
& \text { Reference Output Voltage } T_{A}=25^{\circ} \mathrm{C} \\
& 1.25 \vee \text { Ref., } I_{L}=0 \mathrm{~mA} \\
& 2.50 \mathrm{~V} \text { Ref., } \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\text {ref }}\) & \[
\begin{aligned}
& 1.225 \\
& 2.375
\end{aligned}
\] & \[
\begin{aligned}
& 1.250 \\
& 2.500
\end{aligned}
\] & \[
\begin{array}{r}
1.275 \\
2.625
\end{array}
\] & V \\
\hline ```
Reference Output Voltage, \(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
    1.25 V Ref., \(\mathrm{IL}=0 \mathrm{~mA}\)
    2.50 V Ref., \(\mathrm{I}=1.0 \mathrm{~mA}\)
``` & \(V_{\text {ref }}\) & \[
\begin{aligned}
& 1.200 \\
& 2.250
\end{aligned}
\] & & \[
\begin{aligned}
& 1.300 \\
& 2.750
\end{aligned}
\] & V \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V} \text { to } 12 \mathrm{~V}\right) \\
& 1.25 \mathrm{~V} \text { Ref., } \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA} \\
& 2.50 \mathrm{~V} \text { Ref., } \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regline & & \[
\begin{aligned}
& 2.0 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 50
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Load Regulation \\
1.25 V Ref., \(\mathrm{L}=-10 \mu \mathrm{~A}\) to \(+500 \mu \mathrm{~A}\) \\
2.50 V Ref., \(\mathrm{IL}=-0.1 \mathrm{~mA}\) to +1.0 mA
\end{tabular} & Regload & & \[
\begin{aligned}
& 1.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 25
\end{aligned}
\] & mV \\
\hline
\end{tabular}

ERROR AMPLIFIER
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Input Offset Voltage }\left(\mathrm{V}_{\text {in }}=1.25 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & V 10 & - & \[
1.5
\] & \[
\overline{10}
\] & mV \\
\hline Input Offset Current (\(\mathrm{V}_{\text {in }}=1.25 \mathrm{~V}\)) & 10 & - & 10 & - & nA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\text {in }}=1.25 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & IB & - & & \[
200
\] & nA \\
\hline Input Common Mode Voltage Range & VICR & - & 0.5 to 5.5 & - & V \\
\hline Open Loop Voltage Gain (\(\mathrm{V}_{\mathrm{O}}=1.25 \mathrm{~V}\)) & AVOL & 65 & 87 & - & dB \\
\hline Gain Bandwidth Product (\(\mathrm{V}_{\mathrm{O}}=1.25 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}\)) & GBW & 500 & 750 & - & kHz \\
\hline Power Supply Rejection Ratio (\(\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}\) to 10 V) & PSRR & 65 & 85 & - & dB \\
\hline Output Source Current (\(\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}\)) & ISource & 40 & 80 & - & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State (ISource \(=0 \mu \mathrm{~A}\)) \\
Low State (\({ }^{\text {S Sink }}=500 \mu \mathrm{~A}\))
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & 1.75 & \[
\begin{gathered}
1.96 \\
0.1 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
2.25 \\
0.15 \\
\hline
\end{array}
\] & V \\
\hline
\end{tabular}

NOTE: 1. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34129
\(\begin{aligned} T_{\text {high }}= & +70^{\circ} \mathrm{C} \text { for MC34129 } \\ & +85^{\circ} \mathrm{C} \text { for MC33129 }\end{aligned}\)

ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{PWM COMPARATOR} \\
\hline Input Offset Voltage (\(\mathrm{V}_{\text {in }}=1.25 \mathrm{~V}\)) & \(\mathrm{V}_{10}\) & 150 & 275 & 400 & mV \\
\hline Input Bias Current & \({ }_{\text {IB }}\) & - & -120 & -250 & \(\mu \mathrm{A}\) \\
\hline Propagation Delay, Ramp Input to Drive Output & tPLH(IN/DRV) & - & 250 & - & ns \\
\hline
\end{tabular}

\section*{SOFT-START}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Capacitor Charge Current (Pin \(12=0 \mathrm{~V}\)) & \(\mathrm{I}_{\text {chg }}\) & 0.75 & 1.2 & 1.50 & \(\mu \mathrm{~A}\) \\
\hline Buffer Input Offset Voltage \(\left(\mathrm{V}_{\text {in }}=1.25 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{IO}}\) & - & 15 & 40 & mV \\
\hline Buffer Output Voltage \(\left(I_{\text {Sink }}=100 \mu \mathrm{~A}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.15 & 0.225 & V \\
\hline
\end{tabular}

\section*{FAULT TIMER}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Restart Delay Time & tDLY & 200 & 400 & 600 & \(\mu \mathrm{~s}\) \\
\hline
\end{tabular}

\section*{START/RUN COMPARATOR}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Threshold Voltage (Pin 12) & \(\mathrm{V}_{\text {th }}\) & - & 2.0 & - & V \\
\hline Threshold Hysteresis Voltage (Pin 12) & \(\mathrm{V}_{\mathrm{H}}\) & - & 350 & - & mV \\
\hline Output Voltage (\({ }^{\text {S Sink }}=500 \mu \mathrm{~A}\)) & \(\mathrm{V}_{\mathrm{OL}}\) & 9.0 & 10 & 10.3 & v \\
\hline Output Off-State Leakage Current (\(\mathrm{V} \mathrm{OH}=15 \mathrm{~V}\)) & IS/R(leak) & - & 0.4 & 2.0 & \(\mu \mathrm{A}\) \\
\hline Output Zener Voltage (\(\mathrm{I}=10 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{Z}}\) & - & \(\left(\mathrm{V}_{\mathrm{CC}}+7.6\right)\) & - & V \\
\hline
\end{tabular}

OSCILLATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frequency (\(\mathrm{R}_{\mathrm{T}}=25.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}\)) & fosc & 80 & 100 & 120 & kHz \\
\hline Capacitor \(\mathrm{C}_{\top}\) Discharge Current (Pin \(5=1.2 \mathrm{~V}\)) & \(I_{\text {dischg }}\) & 240 & 350 & 460 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Sync Input Current \\
High State \(\left(\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}\right)\) \\
Low State (\(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\))
\end{tabular} & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IH}} \\
& \mathrm{I}^{2}
\end{aligned}
\] & & \[
\begin{aligned}
& 40 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 125 \\
& 35
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Sync Input Resistance & \(\mathrm{R}_{\text {in }}\) & 12.5 & 32 & 50 & k \(\Omega\) \\
\hline
\end{tabular}

DRIVE OUTPUT
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l}
Output Voltage \\
High State (ISource \(=200 \mathrm{~mA})\) \\
Low State (ISource \(=200 \mathrm{~mA})\)
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & 8.3 & 8.9 & - & V \\
\hline Low State Holding Current & \(\mathrm{V}_{\mathrm{OL}}\) & - & 1.4 & 1.8 & \\
\hline Output Voltage Rise Time \(\left(\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\right)\) & \(\mathrm{I}_{\mathrm{H}}\) & - & 225 & - & \(\mu \mathrm{A}\) \\
\hline Output Voltage Fall Time \(\left(\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\right)\) & \(\mathrm{t}_{\mathrm{r}}\) & - & 390 & - & ns \\
\hline Output Pull-Down Resistance & \(\mathrm{t}_{\mathrm{f}}\) & - & 30 & - & ns \\
\hline
\end{tabular}

\section*{UNDERVOLTAGE LOCKOUT}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Startup Threshold & \(\mathrm{V}_{\text {th }}\) & 3.0 & 3.6 & 4.2 & V \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & 5.0 & 10 & 15 & \(\%\) \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{c}
Power Supply Current \\
\(\mathrm{R}_{\mathrm{T}}=25.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\)
\end{tabular} & ICC & 1.0 & 2.5 & 4.0 & mA \\
\hline Power Supply Zener Voltage \((\mathrm{I}=10 \mathrm{~mA})\) & \(\mathrm{V}_{\mathrm{Z}}\) & 12 & 14.3 & - & V \\
\hline
\end{tabular}

NOTE: \(\quad 1 . T_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34129

\footnotetext{
\(\begin{aligned} \mathrm{T}_{\text {high }}= & +70^{\circ} \mathrm{C} \text { for MC34129 } \\ & +85^{\circ} \mathrm{C} \text { for MC33129 }\end{aligned}\)
\(+85^{\circ} \mathrm{C}\) for MC33129
}
\(-40^{\circ} \mathrm{C}\) for MC33129

Figure 1. Timing Resistor versus Oscillator Frequency

Figure 3. Oscillator Frequency Change versus Temperature

Figure 5. Error Amp Small-Signal Transient Response

\(0.5 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 2. Output Deadtime versus Oscillator Frequency

Figure 4. Error Amp Open Loop Gain and Phase versus Frequency

Figure 6. Error Amp Large-Signal Transient Response

\(1.0 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 7. Error Amp Open Loop DC Gain versus Load Resistance

Figure 9. Soft-Start Buffer Output Saturation versus Sink Current

Figure 11. 1.25 V Reference Output Voltage Change versus Source Current

Figure 8. Error Amp Output Saturation versus Sink Current

Figure 10. Reference Output Voltage versus Supply Voltage

Figure 12. 2.5 V Reference Output Voltage Change versus Source Current

Figure 13.1.25 V Reference Output Voltage versus Temperature

Figure 15. Drive Output Saturation versus Load Current

Figure 14. 2.5 V Reference Output Voltage versus Temperature

Figure 16. Drive Output Waveform

Figure 17. Supply Current versus Supply Voltage

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Function & Description \\
\hline 1 & Drive Output & This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sinked by this pin. \\
\hline 2 & Drive Ground & This pin is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline 3 & Ramp Input & A voltage proportional to the inductor current is connected to this input. The PWM uses this information to terminate output switch conduction. \\
\hline 4 & Sync/Inhibit Input & A rectangular waveform applied to this input will synchronize the Oscillator and limit the maximum Drive Output duty cycle. A dc voltage within the range of 2.0 V to \(\mathrm{V}_{\mathrm{CC}}\) will inhibit the controller. \\
\hline 5 & \(\mathrm{R}_{\mathrm{T}} / \mathrm{C}_{T}\) & The free-running Oscillator frequency and maximum Drive Output duty cycle are programmed by connecting resistor \(\mathrm{R}_{\mathrm{T}}\) to \(\mathrm{V}_{\text {ref }} 2.5 \mathrm{~V}\) and capacitor \(\mathrm{C}_{\mathrm{T}}\) to Ground. Operation to 300 kHz is possible. \\
\hline 6 & Vref 2.50 V & This output is derived from \(\mathrm{V}_{\text {ref }} 1.25 \mathrm{~V}\). It provides charging current for capacitor \(\mathrm{C}_{\boldsymbol{\top}}\) through resistor RT. \\
\hline 7 & Ground & This pin is the control circuitry ground return and is connected back to the source ground. \\
\hline 8 & \(\mathrm{V}_{\text {ref }} 1.25 \mathrm{~V}\) & This output furnishes a voltage reference for the Error Amplifier noninverting input. \\
\hline 9 & Error Amp Noninverting Input & This is the noninverting input of the Error Amplifier. It is normally connected to the 1.25 V reference. \\
\hline 10 & Error Amp Inverting Input & This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 11 & Feedback/PWM Input & This pin is available for loop compensation. It is connected to the Error Amplifier and Soft-Start Buffer outputs, and the Pulse Width Modulator input. \\
\hline 12 & \(\mathrm{C}_{\text {Soft-Start }}\) & A capacitor \(\mathrm{C}_{\text {Soft-Start }}\) is connected from this pin to Ground for a controlled ramp-up of peak inductor current during startup. \\
\hline 13 & Start/Run Output & This output controls the state of an external bootstrap transistor. During the start mode, operating bias is supplied by the transistor from \(\mathrm{V}_{\mathrm{in}}\). In the run mode, the transistor is switched off and bias is supplied by an auxiliary power transformer winding. \\
\hline 14 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply of the control IC. The controller is functional over a minimum \(\mathrm{V}_{\mathrm{CC}}\) range of 4.2 V to 12 V . \\
\hline
\end{tabular}

The MC34129 series are high performance current mode switching regulator controllers specifically designed for use in low power telecommunication applications. Implementation will allow remote digital telephones and terminals to shed their power cords and derive operating power directly from the twisted pair used for data transmission. Although these devices are primarily intended for use in digital telephone systems, they can be used cost effectively in a wide range of converter applications. A representative block diagram is shown in Figure 18.

\section*{Oscillator}

The oscillator frequency is programmed by the values selected for the timing components \(R_{T}\) and \(C_{T}\). Capacitor \(C_{T}\) is charged from the 2.5 V reference through resistor \(\mathrm{RT}_{\mathrm{T}}\) to approximately 1.25 V and discharged by an internal current sink to ground. During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates an internal blanking pulse that holds the lower input of the NOR gate high. This causes the Drive Output to be in a low state, thus producing a controlled amount of output deadtime. Figure 1 shows Oscillator Frequency versus RT and Figure 2 Output Deadtime versus Frequency, both for given values of \(\mathrm{C}_{\mathrm{T}}\). Note that many values of \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\) will give the same oscillator frequency but only one combination will yield a specific output deadtime at a give frequency. In many noise sensitive applications it may be desirable to frequency-lock one or more switching regulators to an external system clock. This can be accomplished by applying the clock signal to the Synch/Inhibit Input. For reliable locking, the free-running oscillator frequency should be about \(10 \%\) less than the clock frequency. Referring to the timing diagram shown Figure 19, the rising edge of the clock signal applied to the Sync/Inhibit Input, terminates charging of \(C_{T}\) and Drive Output conduction. By tailoring the clock waveform, accurate duty cycle clamping of the Drive Output can be achieved. A circuit method is shown in Figure 20. The Sync/Inhibit Input may also be used as a means for system shutdown by applying a dc voltage that is within the range of 2.0 V to \(\mathrm{V}_{\mathrm{CC}}\).

\section*{PWM Comparator and Latch}

The MC34129 operates as a current mode controller whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches a threshold level established by the output of the Error Amp or Soft-Start Buffer (Pin 11). Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The PWM Comparator-Latch configuration used, ensures that only a single pulse appears at the Drive Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting the ground-referenced resistor \(\mathrm{R}_{S}\) in series with the source of output switch \(Q_{1}\). The Ramp Input adds an offset of 275 mV to this voltage to guarantee that no pulses appear at the Drive Output when Pin 11 is at its lowest state. This occurs at the beginning of the soft-start interval or when the power supply is operating and the load is removed. The
peak inductor current under normal operating conditions is controlled by the voltage at Pin 11 where:
\[
I_{p k}=\frac{V_{(\operatorname{Pin} 11)}-0.275 V}{R_{S}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the voltage at Pin 11 will be internally clamped to 1.95 V by the output of the Soft-Start Buffer. Therefore the maximum peak switch current is:
\[
\operatorname{Ipk}(\max)=\frac{1.95 \mathrm{~V}-0.275}{R_{S}}=\frac{1.675 \mathrm{~V}}{R_{\mathrm{S}}}
\]

When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of \(\mathrm{R}_{\mathrm{S}}\) to a reasonable level. A simple method which adjusts this voltage in discrete increments is shown in Figure 22. This method is possible because the Ramp Input bias current is always negative (typically \(-120 \mu \mathrm{~A}\)). A positive temperature coefficient equal to that of the diode string will be exhibited by \(\mathrm{I}_{\mathrm{pk}(\max)}\). An adjustable method that is more precise and temperature stable is shown in Figure 23. Erratic operation due to noise pickup can result if there is an excessive reduction of the clamp voltage. In this situation, high frequency circuit layout techniques are imperative.

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Ramp Input with a time constant that approximates the spike duration will usually eliminate the instability; refer to Figure 25.

\section*{Error Amp and Soft-Start Buffer}

A fully-compensated Error Amplifier with access to both inputs and output is provided for maximum design flexibility. The Error Amplifier output is common with that of the Soft-Start Buffer. These outputs are open-collector (sink only) and are ORed together at the inverting input of the PWM Comparator. With this configuration, the amplifier that demands lower peak inductor current dominates control of the loop. Soft-Start is mandatory for stable startup when power is provided through a high source impedance such as the long twisted pair used in telecommunications. It effectively removes the load from the output of the switching power supply upon initial startup. The Soft-Start Buffer is configured as a unity gain follower with the noninverting input connected to Pin 12. An internal \(1.0 \mu \mathrm{~A}\) current source charges the soft-start capacitor (CSoft-Start) to an internally clamped level of 1.95 V . The rate of change of peak inductor current, during startup, is programmed by the capacitor value selected. Either the Fault Timer or the Undervoltage Lockout can discharge the soft-start capacitor.

\section*{MC34129 MC33129}

Figure 18. Representative Block Diagram

\section*{Fault Timer}

This unique circuit prevents sustained operating in a lockout condition. This can occur with conventional switching control ICs when operating from a power source with a high series impedance. If the power required by the load is greater than that available from the source, the input voltage will collapse, causing the lockout condition. The Fault Timer provides automatic recovery when this condition is detected. Under normal operating conditions, the output of the PWM Comparator will reset the Latch and discharge the internal Fault Timer capacitor on a cycle-by-cycle basis. Under operating conditions where the required power into the load is greater than that available from the source (\(\mathrm{V}_{\mathrm{in}}\)), the Ramp Input voltage (plus offset) will not reach the comparator threshold level (Pin 11), and the output of the PWM Comparator will remain low. If this condition persists for more that \(600 \mu \mathrm{~s}\), the Fault Timer will active, discharging C Soft-Start and initiating a soft-start cycle. The power supply will operate in a skip cycle or hiccup mode until either the load power or source impedance is reduced. The minimum fault timeout is \(200 \mu \mathrm{~s}\), which limits the useful switching frequency to a minimum of 5.0 kHz .

\section*{Start/Run Comparator}

A bootstrap startup circuit is included to improve system efficiency when operating from a high input voltage. The output of the Start/Run Comparator controls the state of an external transistor. A typical application is shown in Figure 21. While CSoft-Start is charging, startup bias is supplied to \(V_{C C}\) (Pin 14) from \(V_{\text {in }}\) through transistor Q2. When CSoft-Start reaches the 1.95 V clamp level, the Start-Run output switches low (\(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{mV}\)), turning off Q2. Operating bias is now derived from the auxiliary bootstrap winding of the transformer, and all drive power is efficiently converted down from \(V_{\text {in }}\). The start time must be long enough for the power supply output to reach regulation. This will ensure that there is sufficient bias voltage at the auxiliary bootstrap winding for sustained operation.
\[
\mathrm{t}_{\text {Start }}=\frac{1.95 \mathrm{VC} \text { Soft-Start }}{1.0 \mu \mathrm{~A}}=1.95 \mathrm{C}_{\text {Soft-Start }} \mu \mathrm{F}
\]

The Start/Run Comparator has 350 mV of hysteresis. The output off-state is clamped to \(\mathrm{V}_{\mathrm{CC}}+7.6 \mathrm{~V}\) by the internal zener and PNP transistor base-emitter junction.

\section*{Drive Output and Drive Ground}

The MC34129 contains a single totem-pole output stage that was specifically designed for direct drive of power MOSFETs. It is capable of up to \(\pm 1.0\) A peak drive current and has a typical fall time of 30 ns with a 500 pF load. The totem-pole stage consists of an NPN transistor for turn-on drive and a high speed SCR for turn-off. The SCR design requires less average supply current (ICC) when compared to conventional switching control ICs that use an all NPN totem-pole. The SCR accomplishes this during turn-off of the MOSFET, by utilizing the gate charge as regenerative on-bias, whereas the conventional all transistor design requires continuous base current. Conversion efficiency in low power applications is greatly enhanced with this reduction of ICC. The SCR's low-state holding current \(\left(\mathrm{I}_{\mathrm{H}}\right)\) is typically \(225 \mu \mathrm{~A}\). An internal \(225 \mathrm{k} \Omega\) pull-down resistor is included to shunt the Drive Output off-state leakage to ground when the Undervoltage Lockout is active. A separate Drive Ground is provided to reduce the effects of switching transient noise imposed on the Ramp Input. This feature becomes particularly useful when the \(\mathrm{I}_{\mathrm{pk}}(\max)\) clamp level is reduced. Figure 24 shows the proper implementation of the MC34129 with a current sensing power MOSFET.

\section*{Undervoltage Lockout}

The Undervoltage Lockout comparator holds the Drive Output and CSoft-Start pins in the low state when \(\mathrm{V}_{\mathrm{CC}}\) is less than 3.6 V. This ensures that the MC34129 is fully functional before the output stage is enabled and a soft-start cycle begins. A built-in hysteresis of 350 mV prevents erratic output behavior as \(\mathrm{V}_{\mathrm{CC}}\) crosses the comparator threshold voltage. A 14.3 V zener is connected as a shunt regulator from \(V_{C C}\) to ground. Its purpose is to protect the MOSFET gate from excessive drove voltage during system startup. An external 9.1 V zener is required when driving low threshold MOSFETs. Refer to Figure 21. The minimum operating voltage range of the IC is 4.2 V to 12 V .

\section*{References}

The 1.25 V bandgap reference is trimmed to \(\pm 2.0 \%\) tolerance at \(T_{A}=25^{\circ} \mathrm{C}\). It is intended to be used in conjunction with the Error Amp. The 2.50 V reference is derived from the 1.25 V reference by an internal op amp with a fixed gain of 2.0. It has an output tolerance of \(\pm 5.0 \%\) at \(T_{A}=\) \(25^{\circ} \mathrm{C}\) and its primary purpose is to supply charging current to the oscillator timing capacitor.

For further information, please refer to AN976.

Figure 20. External Duty Cycle Clamp and Multi-Unit Synchronization

Figure 22. Discrete Step Reduction of Clamp Level

Figure 21. Bootstrap Startup

Figure 23. Adjustable Reduction of Clamp Level

Figure 24. Current Sensing Power MOSFET

Virtually lossless current sensing can be achieved with the implementation of a SENSEFET power switch.

Figure 26. MOSFET Parasitic Oscillations

Series gate resistor \(R_{g}\) will damp any high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit.

Figure 25. Current Waveform Spike Suppression

The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform.

Figure 27. Bipolar Transistor Drive

The totem-pole output can furnish negative base current for enhanced transistor turn-oft, with the addition of capacitor C1.

Figure 28. Non-Isolated 725 mW Flyback Regulator

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & Results \\
\hline Line Regulation 5.0 V & \(\mathrm{~V}_{\text {in }}=20 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{I}_{\text {out }} 5.0 \mathrm{~V}=125 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5.0 \mathrm{~V}=20 \mathrm{~mA}\) & \(\Delta=1.0 \mathrm{mV}\) \\
\hline Load Regulation 5.0 V & \(\mathrm{~V}_{\text {in }}=30 \mathrm{~V}, \mathrm{I}_{\text {out }} 5.0 \mathrm{~V}=0 \mathrm{~mA}\) to \(150 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5.0 \mathrm{~V}=20 \mathrm{~mA}\) & \(\Delta=2.0 \mathrm{mV}\) \\
\hline Output Ripple 5.0 V & \(\mathrm{~V}_{\text {in }}=30 \mathrm{~V}, \mathrm{I}_{\text {out }} 5.0 \mathrm{~V}=125 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5.0 \mathrm{~V}=20 \mathrm{~mA}\) & 150 mVpp \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=30 \mathrm{~V}, \mathrm{I}_{\text {out }} 5.0 \mathrm{~V}=125 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5.0 \mathrm{~V}=20 \mathrm{~mA}\) & \(77 \%\) \\
\hline
\end{tabular}
\[
V_{\text {out }}=1.25\left(\frac{R 2}{R 1}+1\right)
\]

Figure 29. Isolated 2.0 W Flyback Regulator

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & Results \\
\hline Line Regulation 5.0 V & \(\mathrm{~V}_{\text {in }}=20 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{I}_{\text {out }} 5.0 \mathrm{~V}=380 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5.0 \mathrm{~V}=20 \mathrm{~mA}\) & \(\Delta=1.0 \mathrm{mV}\) \\
\hline Load Regulation 5.0 V & \(\mathrm{~V}_{\text {in }}=30 \mathrm{~V}, \mathrm{I}_{\text {out }} 5.0 \mathrm{~V}=100 \mathrm{~mA}\) to \(380 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5.0 \mathrm{~V}=20 \mathrm{~mA}\) & \(\Delta=15 \mathrm{mV}\) \\
\hline Output Ripple 5.0 V & \(\mathrm{~V}_{\text {in }}=30 \mathrm{~V}, \mathrm{I}_{\text {out }} 5.0 \mathrm{~V}=380 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5.0 \mathrm{~V}=20 \mathrm{~mA}\) & 150 mVpp \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=30 \mathrm{~V}, \mathrm{I}_{\text {out }} 5.0 \mathrm{~V}=380 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5.0 \mathrm{~V}=20 \mathrm{~mA}\) & \(73 \%\) \\
\hline
\end{tabular}

Figure 30. Isolated 3.0 W Flyback Regulator with Secondary Side Sensing

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & Results \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(12 \mathrm{~V}, \mathrm{I}_{\text {out }} 600 \mathrm{~mA}\) & \(\Delta=1.0 \mathrm{mV}\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\text {out }}=100 \mathrm{~mA}\) to 600 mA & \(\Delta=8.0 \mathrm{mV}\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\text {out }}=600 \mathrm{~mA}\) & 20 mVpp \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\text {out }}=600 \mathrm{~mA}\) & \(81 \%\) \\
\hline
\end{tabular}

An economical method of achieving secondary sensing is to combine the TL431A with a 4N26 optocoupler.

\section*{High Speed Dual MOSFET Drivers}

The MC34151/MC33151 are dual inverting high speed drivers specifically designed for applications that require low current digital circuitry to drive large capacitive loads with high slew rates. These devices feature low input current making them CMOS and LSTTL logic compatible, input hysteresis for fast output switching that is independent of input transition time, and two high current totem pole outputs ideally suited for driving power MOSFETs. Also included is an undervoltage lockout with hysteresis to prevent erratic system operation at low supply voltages.

Typical applications include switching power supplies, dc to dc converters, capacitor charge pump voltage doublers/inverters, and motor controllers.

These devices are available in dual-in-line and surface mount packages.
- Two Independent Channels with 1.5 A Totem Pole Output
- Output Rise and Fall Times of 15 ns with 1000 pF Load
- CMOS/LSTTL Compatible Inputs with Hysteresis
- Undervoltage Lockout with Hysteresis
- Low Standby Current
- Efficient High Frequency Operation
- Enhanced System Performance with Common Switching Regulator Control ICs
- Pin Out Equivalent to DS0026 and MMH0026

\section*{HIGH SPEED DUAL MOSFET DRIVERS}

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 20 & V \\
\hline Logic Inputs (Note 1) & \(\mathrm{V}_{\text {in }}\) & -0.3 to \(V_{C C}\) & \(\checkmark\) \\
\hline \begin{tabular}{l}
Drive Outputs (Note 2) \\
Totem Pole Sink or Source Current Diode Clamp Current (Drive Output to VCC)
\end{tabular} & \[
\begin{gathered}
\text { Io } \\
\text { IO(clamp) }
\end{gathered}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.0
\end{aligned}
\] & A \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics D Suffix SO-8 Package Case 751 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
P Suffix 8-Pin Package Case 626 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & PD \(R_{\text {日JA }}\) PD \(\mathrm{R}_{\theta \mathrm{JA}}\) & \[
\begin{aligned}
& 0.56 \\
& 180 \\
& \\
& 1.0 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
W \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
W \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature MC34151 MC33151 & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(V_{C C}=12 \mathrm{~V}\), for typical values \(T_{A}=25^{\circ} \mathrm{C}\), for min/max values \(T_{A}\) is the only operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

LOGIC INPUTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Input Threshold Voltage - High State Logic 1 \\
- Low State Logic 0
\end{tabular} & \[
\begin{aligned}
& V_{I H} \\
& V_{I L}
\end{aligned}
\] & 2.6 & \[
\begin{aligned}
& 1.75 \\
& 1.58
\end{aligned}
\] & \[
\overline{0.8}
\] & V \\
\hline \[
\begin{aligned}
& \hline \text { Input Current - High State }\left(\mathrm{V}_{\mathrm{IH}}\right.=2.6 \mathrm{~V}) \\
& \text { - Low State }\left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IIH}_{2} \\
& \mathrm{I}_{\mathrm{IL}}
\end{aligned}
\] & - & \[
\begin{gathered}
200 \\
20
\end{gathered}
\] & \[
\begin{aligned}
& 500 \\
& 100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

DRIVE OUTPUT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { Output Voltage - Low State }(\text { ISink }=10 \mathrm{~mA}) \\
& \text { (} \text { Sink }=50 \mathrm{~mA} \text {) } \\
& \text { (ISink }=400 \mathrm{~mA} \text {) } \\
& \text { - High State } \text { (ISource }=10 \mathrm{~mA} \text {) } \\
& \text { (ISource }=50 \mathrm{~mA} \text {) } \\
& \text { (ISource }=400 \mathrm{~mA} \text {) }
\end{aligned}
\] & VOL
\[
\mathrm{V}_{\mathrm{OH}}
\] & \[
\begin{gathered}
- \\
- \\
- \\
10.5 \\
10.4 \\
9.5
\end{gathered}
\] & \[
\begin{gathered}
\hline 0.8 \\
1.1 \\
1.7 \\
11.2 \\
11.1 \\
10.9
\end{gathered}
\] & 1.2
1.5
2.5
-
- & V \\
\hline Output Pull-Down Resistor & RPD & - & 100 & - & k \(\Omega\) \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Propagation Delay (\(10 \%\) Input to \(10 \%\) Output, \(C_{L}=1.0 \mathrm{nF}\)) Logic Input to Drive Output Rise Logic Input to Drive Output Fall & tPLH(in/out) tPHL(in/out) & - & 35
36 & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & ns \\
\hline Drive Output Rise Time (\(10 \%\) to \(90 \%\)) \(C_{L}=1.0 \mathrm{nF}\) \(C_{L}=2.5 \mathrm{nF}\) & \(\mathrm{tr}_{r}\) & - & 14
31 & 30 & ns \\
\hline Drive Output Fall Time (90\% to 10\%) \(\begin{aligned} C_{L}=1.0 \mathrm{nF} \\ C_{L}=2.5 \mathrm{nF}\end{aligned}\) & \(t_{f}\) & - & 16
32 & 30 & ns \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l}
Power Supply Current \\
Standby (Logic Inputs Grounded) \\
Operating (CL \(=1.0 \mathrm{nF}\) Drive Outputs 1 and \(2, \mathrm{f}=100 \mathrm{kHz}\))
\end{tabular} & ICC & & & & mA \\
\hline Operating Voltage & & - & 6.0 & 10 & \\
\hline
\end{tabular}

NOTES: 1. For optimum switching speed, the maximum input voltage should be limited to 10 V or \(\mathrm{V}_{\mathrm{CC}}\), whichever is less.
2. Maximum package power dissipation limits must be observed.
3. \(\mathrm{T}_{\text {low }}=\begin{aligned} & 0^{\circ} \mathrm{C} \text { for MC34151 } \\ &-40^{\circ} \mathrm{C} \text { for MC33151 }\end{aligned} \quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34151

Figure 1. Switching Characteristics Test Circult

Figure 2. Switching Waveform Definitions

Figure 5. Drive Output Low-to-High Propagation Delay versus Logic Overdrive Voltage

Figure 4. Logic Input Threshold Voltage versus Temperature

Figure 7. Propagation Delay

\(50 \mathrm{~ns} / \mathrm{DIV}\)

Figure 9. Drive Output Saturation Voltage versus Load Current

Figure 11. Drive Output Rise Time

Figure 8. Drive Output Clamp Voltage versus Clamp Current

Figure 10. Drive Output Saturation Voltage versus Temperature

Figure 12. Drive Output Fall Time

\(10 \mathrm{~ns} / \mathrm{DIV}\)

Figure 13. Drive Output Rise and Fall Time versus Load Capacitance

Figure 15. Supply Current versus Input Frequency

Figure 14. Supply Current versus Drive Output Load Capacitance

Figure 16. Supply Current versus Supply Voltage

\section*{APPLICATIONS INFORMATION}

\section*{Description}

The MC34151 is a dual inverting high speed driver specifically designed to interface low current digital circuitry with power MOSFETs. This device is constructed with Schottky clamped Bipolar Analog technology which offers a high degree of performance and ruggedness in hostile industrial environments.

\section*{Input Stage}

The Logic Inputs have 170 mV of hysteresis with the input threshold centered at 1.67 V . The input thresholds are insensitive to \(\mathrm{V}_{\mathrm{CC}}\) making this device directly compatible with CMOS and LSTTL logic families over its entire operating voltage range. Input hysteresis provides fast output switching that is independent of the input signal transition time, preventing output oscillations as the input thresholds are crossed. The inputs are designed to accept a signal amplitude ranging from ground to \(\mathrm{V}_{\mathrm{CC}}\). This allows the output of one channel to directly drive the input of a second channel for master-slave operation. Each input has a \(30 \mathrm{k} \Omega\) pull-down resistor so that an unconnected open input will cause the associated Drive Output to be in a known high state.

\section*{Output Stage}

Each totem pole Drive Output is capable of sourcing and sinking up to 1.5 A with a typical 'on' resistance of \(2.4 \Omega\) at
1.0 A. The low 'on' resistance allows high output currents to be attained at a lower VCC than with comparative CMOS drivers. Each output has a \(100 \mathrm{k} \Omega\) pull-down resistor to keep the MOSFET gate low when \(\mathrm{V}_{\mathrm{CC}}\) is less than 1.4 V . No over current or thermal protection has been designed into the device, so output shorting to \(V_{C C}\) or ground must be avoided.

Parasitic inductance in series with the load will cause the driver outputs to ring above \(\mathrm{V}_{\mathrm{CC}}\) during the turn-on transition, and below ground during the turn-off transition. With CMOS drivers, this mode of operation can cause a destructive output latch-up condition. The MC34151 is immune to output latch-up. The Drive Outputs contain an internal diode to \(V_{C C}\) for clamping positive voltage transients. When operating with \(\mathrm{V}_{\mathrm{CC}}\) at 18 V , proper power supply bypassing must be observed to prevent the output ringing from exceeding the maximum 20 V device rating. Negative output transients are clamped by the internal NPN pull-up transistor. Since full supply voltage is applied across the NPN pull-up during the negative output transient, power dissipation at high frequencies can become excessive. Figures 19, 20, and 21 show a method of using external Schottky diode clamps to reduce driver power dissipation.

\section*{Undervoltage Lockout}

An undervoltage lockout with hysteresis prevents erratic system operation at low supply voltages. The UVLO forces the Drive Outputs into a low state as \(\mathrm{V}_{\mathrm{CC}}\) rises from 1.4 V to
the 5.8 V upper threshold. The lower UVLO threshold is 5.3 V , yielding about 500 mV of hysteresis.

\section*{Power Dissipation}

Circuit performance and long term reliability are enhanced with reduced die temperature. Die temperature increase is directly related to the power that the integrated circuit must dissipate and the total thermal resistance from the junction to ambient. The formula for calculating the junction temperature with the package in free air is:
\[
\text { where: } \quad \begin{aligned}
\mathrm{T}_{J} & =\mathrm{T}_{A}+\mathrm{P}_{\mathrm{D}}\left(\mathrm{R}_{\theta J \mathrm{JA}}\right) \\
\mathrm{T}_{J} & =\text { Junction Temperature } \\
\mathrm{T}_{\mathrm{A}} & =\text { Ambient Temperature } \\
\mathrm{PD}_{\mathrm{D}} & =\text { Power Dissipation } \\
\mathrm{R}_{\theta \mathrm{JA}} & =\text { Thermal Resistance Junction to Ambient }
\end{aligned}
\]

There are three basic components that make up total power to be dissipated when driving a capacitive load with respect to ground. They are:
where: \(\quad \mathrm{P}_{\mathrm{Q}}=\) Quiescent Power Dissipation
\(P_{C}=\) Capacitive Load Power Dissipation
\(\mathrm{P}_{\mathrm{T}}=\) Transition Power Dissipation
The quiescent power supply current depends on the supply voltage and duty cycle as shown in Figure 16. The device's quiescent power dissipation is:
\[
\mathrm{P}_{\mathrm{Q}}=\mathrm{V}_{\mathrm{CC}}(\operatorname{ICCL}(1-\mathrm{D})+\mathrm{ICCH}(\mathrm{D}))
\]
where: \(\quad\) ICCL \(=\) Supply Current with Low State Drive Outputs
\(\mathrm{ICCH}=\) Supply Current with High State Drive Outputs
\(D=\) Output Duty Cycle
The capacitive load power dissipation is directly related to the load capacitance value, frequency, and Drive Output voltage swing. The capacitive load power dissipation per driver is:
\[
\mathrm{PC}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}\left(\mathrm{~V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right) \mathrm{C}_{\mathrm{L}} f
\]
where: \(\quad \mathrm{V}_{\mathrm{OH}}=\) High State Drive Output Voltage
\(\mathrm{V}_{\mathrm{OL}}=\) Low State Drive Output Voltage
\(C_{L}=\) Load Capacitance
\(\mathrm{f}=\) frequency
When driving a MOSFET, the calculation of capacitive load power \(\mathrm{P}_{\mathrm{C}}\) is somewhat complicated by the changing gate to source capacitance \(\mathrm{C}_{\mathrm{GS}}\) as the device switches. To aid in this calculation, power MOSFET manufacturers provide gate charge information on their data sheets. Figure 17 shows a curve of gate voltage versus gate charge for the Motorola MTM15N50. Note that there are three distinct slopes to the curve representing different input capacitance values. To
completely switch the MOSFET 'on', the gate must be brought to 10 V with respect to the source. The graph shows that a gate charge \(\mathrm{Q}_{\mathrm{g}}\) of 110 nC is required when operating the MOSFET with a drain to source voltage VDS of 400 V .

Figure 17. Gate-To-Source Voltage versus Gate Charge

The capacitive load power dissipation is directly related to the required gate charge, and operating frequency. The capacitive load power dissipation per driver is:
\[
P C(M O S F E T)=V_{C} Q_{g} f
\]

The flat region from 10 nC to 55 nC is caused by the drain-to-gate Miller capacitance, occuring while the MOSFET is in the linear region dissipating substantial amounts of power. The high output current capability of the MC34151 is able to quickly deliver the required gate charge for fast power efficient MOSFET switching. By operating the MC34151 at a higher \(\mathrm{V}_{\mathrm{CC}}\), additional charge can be provided to bring the gate above 10 V . This will reduce the 'on' resistance of the MOSFET at the expense of higher driver dissipation at a given operating frequency.

The transition power dissipation is due to extremely short simultaneous conduction of internal circuit nodes when the Drive Outputs change state. The transition power dissipation per driver is approximately:
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{T}} \approx \mathrm{~V}_{\mathrm{CC}}\left(1.08 \mathrm{~V}_{\mathrm{CC}} \mathrm{C}_{\mathrm{L}} \mathrm{f}-8 \times 10^{-4}\right) \\
& \mathrm{P}_{\mathrm{T}} \text { must be greater than zero. }
\end{aligned}
\]

Switching time characterization of the MC34151 is performed with fixed capacitive loads. Figure 13 shows that for small capacitance loads, the switching speed is limited by transistor turn-on/off time and the slew rate of the internal nodes. For large capacitance loads, the switching speed is limited by the maximum output current capability of the integrated circuit.

\section*{MC34151 MC33151}

\section*{LAYOUT CONSIDERATIONS}

High frequency printed circuit layout techniques are imperative to prevent excessive output ringing and overshoot. Do not attempt to construct the driver circuit on wire-wrap or plug-in prototype boards. When driving large capacitive loads, the printed circuit board must contain a low inductance ground plane to minimize the voltage spikes induced by the high ground ripple currents. All high current loops should be kept as short as possible using heavy copper runs to provide a low impedance high frequency path. For

Figure 18. Enhanced System Performance with Common Switching Regulators

The MC34151 greatly enhances the drive capabilities of common switching regulators and CMOS/TTL logic devices.

Figure 20. Direct Transformer Drive

Output Schottky diodes are recommended when driving inductive loads at high frequencies. The diodes reduce the driver's power dissipation by preventing the output pins from being driven above \(\mathrm{V}_{\mathrm{CC}}\) and below ground.
optimum drive performance, it is recommended that the initial circuit design contains dual power supply bypass capacitors connected with short leads as close to the VCC pin and ground as the layout will permit. Suggested capacitors are a low inductance \(0.1 \mu \mathrm{~F}\) ceramic in parallel with a \(4.7 \mu \mathrm{~F}\) tantalum. Additional bypass capacitors may be required depending upon Drive Output loading and circuit layout.

Proper printed circuit board layout is extremely critical and cannot be over emphasized.

Figure 19. MOSFET Parasitic Oscillations

Series gate resistor \(R_{g}\) may be needed to damp high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit. \(\mathrm{R}_{\mathrm{g}}\) will decrease the MOSFET switching speed. Schottky diode \(D_{1}\) can reduce the driver's power dissipation due to excessive ringing, by preventing the output pin from being driven below ground.

Figure 21. Isolated MOSFET Drive

Figure 22. Controlled MOSFET Drive

In noise sensitive applications, both conducted and radiated EMI can be reduced significantly by controlling the MOSFET's turn-on and turn-off times.

Figure 23. Bipolar Transistor Drive

The totem-pole outputs can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor \(\mathrm{C}_{1}\).

Figure 24. Dual Charge Pump Converter

The capacitor's equivalent series resistance limits the Drive Output Current to 1.5 A . An additional series resistor may be required when using tantalum or other low ESR capacitors.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Output Load Regulation } \\
\hline \(\mathbf{I} \mathbf{O}(\mathbf{m A})\) & \(+\mathbf{V}_{\mathbf{O}}(\mathbf{V})\) & \(-\mathbf{V}_{\mathbf{O}}(\mathbf{V})\) \\
\hline 0 & 27.7 & -13.3 \\
1.0 & 27.4 & -12.9 \\
10 & 26.4 & -11.9 \\
20 & 25.5 & -11.2 \\
30 & 24.6 & -10.5 \\
50 & 22.6 & -9.4 \\
\hline
\end{tabular}

\section*{High Speed Dual MOSFET Drivers}

The MC34152/MC33152 are dual noninverting high speed drivers specifically designed for applications that require low current digital signals to drive large capacitive loads with high slew rates. These devices feature low input current making them CMOS/LSTTL logic compatible, input hysteresis for fast output switching that is independent of input transition time, and two high current totem pole outputs ideally suited for driving power MOSFETs. Also included is an undervoltage lockout with hysteresis to prevent system erratic operation at low supply voltages.

Typical applications include switching power supplies, dc-to-dc converters, capacitor charge pump voltage doublers/inverters, and motor controllers.

This device is available in dual-in-line and surface mount packages.
- Two Independent Channels with 1.5 A Totem Pole Outputs
- Output Rise and Fall Times of 15 ns with 1000 pF Load
- CMOS/LSTTL Compatible Inputs with Hysteresis
- Undervoltage Lockout with Hysteresis
- Low Standby Current
- Efficient High Frequency Operation
- Enhanced System Performance with Common Switching Regulator Control ICs

MC34152
MC33152

\section*{HIGH SPEED DUAL MOSFET DRIVERS}

\section*{SEMICONDUCTOR TECHNICAL DATA}

P SUFFIX
PLASTIC PACKAGE CASE 626

D SUFFIX
PLASTIC PACKAGE CASE 751
(SO-8)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34152D & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 1 } MC 34152 P & & Plastic DIP \\
\hline MC33152D & \multirow{2}{*}{\(\mathrm{T}_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 1 } & & Plastic DIP \\
\hline
\end{tabular}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 20 & V \\
\hline Logic Inputs (Note 1) & \(\mathrm{V}_{\text {in }}\) & -0.3 to \(+\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline \begin{tabular}{l}
Drive Outputs (Note 2) \\
Totem Pole Sink or Source Current Diode Clamp Current (Drive Output to \(\mathrm{V}_{\mathrm{CC}}\))
\end{tabular} & \[
\begin{gathered}
\text { IO } \\
\text { lo(clamp) } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.0
\end{aligned}
\] & A \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics D Suffix, Plastic Package Case 751 \\
Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air \\
P Suffix, Plastic Package, Case 626 \\
Maximum Power Dissipation @ \(T_{A}=50^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
PD \(\mathrm{R}_{\theta \mathrm{JA}}\) \\
PD \(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \[
\begin{aligned}
& 0.56 \\
& 180 \\
& \\
& 1.0 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
W \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{w} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\begin{array}{ll}\text { Operating Ambient Temperature } & \text { MC34152 } \\ & \text { MC33152 }\end{array}\) & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=12 \mathrm{~V}\right.\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{LOGIC INPUTS} \\
\hline Input Threshold Voltage High State Logic 1 Low State Logic 0 & \[
\begin{aligned}
& V_{I H} \\
& V_{I L}
\end{aligned}
\] & & \[
\begin{aligned}
& 1.75 \\
& 1.58
\end{aligned}
\] & \[
\overline{0.9}
\] & V \\
\hline \[
\begin{aligned}
& \text { Input Current } \\
& \text { High State }\left(\mathrm{V}_{1 \mathrm{H}}=2.6 \mathrm{~V}\right) \\
& \text { Low State }\left(\mathrm{V}_{\mathrm{LL}}=0.8 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IH}} \\
& \mathrm{I}_{\mathrm{IL}}
\end{aligned}
\] & & 100
20 & \[
\begin{aligned}
& 300 \\
& 100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

DRIVE OUTPUT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { Low State }\left(I_{\text {sink }}=10 \mathrm{~mA}\right) \\
& \left(I_{\text {sink }}=50 \mathrm{~mA}\right) \\
& \left(I_{\text {sink }}=400 \mathrm{~mA}\right) \\
& \text { High State }\left(I_{\text {source }}=10 \mathrm{~mA}\right) \\
& \text { (} \left.I_{\text {source }}=50 \mathrm{~mA}\right) \\
& \left(I_{\text {source }}=400 \mathrm{~mA}\right)
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{VOL}_{\mathrm{OL}}\) \\
\(\mathrm{V}_{\mathrm{OH}}\)
\end{tabular} & \[
\begin{gathered}
- \\
10.5 \\
10.4 \\
10 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1.1 \\
1.8 \\
11.2 \\
11.1 \\
10.8
\end{gathered}
\] & \[
\begin{gathered}
1.2 \\
1.5 \\
2.5 \\
- \\
-
\end{gathered}
\] & V \\
\hline Output Pull-Down Resistor & RPD & - & 100 & - & k \(\Omega\) \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Propagation Delay (\(C_{L}=1.0 \mathrm{nF}\)) \\
Logic Input to: \\
Drive Output Rise (\(10 \%\) Input to \(10 \%\) Output) Drive Output Fall (\(90 \%\) Input to \(90 \%\) Output)
\end{tabular} & & tpLH (IN/OUT) tpHL (IN/OUT) & - & 55
40 & 120
120 & ns \\
\hline Drive Output Rise Time (10\% to 90\%) & \[
\begin{aligned}
& C_{L}=1.0 \mathrm{nF} \\
& C_{L}=2.5 \mathrm{nF}
\end{aligned}
\] & \(\mathrm{t}_{\mathrm{r}}\) & - & \[
\begin{aligned}
& 14 \\
& 36
\end{aligned}
\] & 30
- & ns \\
\hline Drive Output Fall Time (90\% to 10\%) & \[
\begin{aligned}
& C_{L}=1.0 \mathrm{nF} \\
& C_{L}=2.5 \mathrm{nF}
\end{aligned}
\] & \(\mathrm{t}_{\mathrm{f}}\) & - & 15
32 & 30 & ns \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Power Supply Current & ICC & & & & mA \\
Standby (Logic Inputs Grounded) & & - & 6.0 & 8.0 & \\
Operating (CL \(=1.0 \mathrm{nF}\) Drive Outputs 1 and \(2, \mathrm{f}=100 \mathrm{kHz}\)) & & - & 10.5 & 15 & \\
\hline Operating Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 6.5 & - & 18 & V \\
\hline
\end{tabular}

NOTES: 1. For optimum switching speed, the maximum input voltage should be limited to 10 V or \(\mathrm{V}_{\mathrm{C}}\), whichever is less.
2. Maximum package power dissipation limits must be observed.
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34152
\(\mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34152
\(\begin{aligned}=-40^{\circ} \mathrm{C} \text { for MC33152 } & \\ & =+85^{\circ} \mathrm{C} \text { for MC33152 }\end{aligned}\)

Figure 1. Switching Characteristics Test CIrcuit

Figure 2. Switching Waveform Definitions

Figure 4. Logic Input Threshold Voltage versus Temperature

Figure 6. Drive Output Low to High Propagation

Figure 7. Propagation Delay

\(50 \mathrm{~ns} /\) DIV

Figure 9. Drive Output Saturation Voltage versus Load Current

Figure 11. Drive Output Rise Time

\(10 \mathrm{~ns} / \mathrm{DIV}\)

Figure 8. Drive Output Clamp Voltage versus Clamp Current

Io, OUTPUT CLAMP CURRENT (A)

Figure 10. Drive Output Saturation Voltage versus Temperature

Figure 12. Drive Output Fall Time

\(10 \mathrm{~ns} / \mathrm{DIV}\)

Figure 13. Drive Output Rise and Fall Time versus Load Capacitance

Figure 15. Supply Current versus Input Frequency

Figure 14. Supply Current versus Drive Output Load Capacitance

Figure 16. Supply Current versus Supply Voltage

\section*{APPLICATIONS INFORMATION}

\section*{Description}

The MC34152 is a dual noninverting high speed driver specifically designed to interface low current digital circuitry with power MOSFETs. This device is constructed with Schottky clamped Bipolar Analog technology which offers a high degree of performance and ruggedness in hostile industrial environments.

\section*{Input Stage}

The Logic Inputs have 170 mV of hysteresis with the input threshold centered at 1.67 V . The input thresholds are insensitive to \(V_{C C}\) making this device directly compatible with CMOS and LSTTL logic families over its entire operating voltage range. Input hysteresis provides fast output switching that is independent of the input signal transition time, preventing output oscillations as the input thresholds are crossed. The inputs are designed to accept a signal amplitude ranging from ground to VCC. This allows the output of one channel to directly drive the input of a second channel for master-slave operation. Each input has a \(30 \mathrm{k} \Omega\) pull-down resistor so that an unconnected open input will cause the associated Drive Output to be in a known low state.

\section*{Output Stage}

Each totem pole Drive Output is capable of sourcing and sinking up to 1.5 A with a typical 'on' resistance of \(2.4 \Omega\) at 1.0 A. The low 'on' resistance allows high output currents to
be attained at a lower \(V_{C C}\) than with comparative CMOS drivers. Each output has a \(100 \mathrm{k} \Omega\) pull-down resistor to keep the MOSFET gate low when \(\mathrm{V}_{\mathrm{CC}}\) is less than 1.4 V . No over current or thermal protection has been designed into the device, so output shorting to VCC or ground must be avoided.

Parasitic inductance in series with the load will cause the driver outputs to ring above \(V_{C C}\) during the turn-on transition, and below ground during the turn-off transition. With CMOS drivers, this mode of operation can cause a destructive output latch-up condition. The MC34152 is immune to output latch-up. The Drive Outputs contain an internal diode to VCC for clamping positive voltage transients. When operating with VCC at 18 V , proper power supply bypassing must be observed to prevent the output ringing from exceeding the maximum 20 V device rating. Negative output transients are clamped by the internal NPN pull-up transistor. Since full supply voltage is applied across the NPN pull-up during the negative output transient, power dissipation at high frequencies can become excessive. Figures 19, 20, and 21 show a method of using external Schottky diode clamps to reduce driver power dissipation.

\section*{Undervoltage Lockout}

An undervoltage lockout with hysteresis prevents erratic system operation at low supply voltages. The UVLO forces the Drive Outputs into a low state as \(\mathrm{V}_{\mathrm{CC}}\) rises from 1.4 V to
the 5.8 V upper threshold. The lower UVLO threshold is 5.3 V , yielding about 500 mV of hysteresis.

\section*{Power Dissipation}

Circuit performance and long term reliability are enhanced with reduced die temperature. Die temperature increase is directly related to the power that the integrated circuit must dissipate and the total thermal resistance from the junction to ambient. The formula for calculating the junction temperature with the package in free air is:
\[
T_{J}=T_{A}+P_{D}\left(R_{\theta J A}\right)
\]
where: \(T_{J}=\) Junction Temperature
\(\mathrm{T}_{\mathrm{A}}=\) Ambient Temperature
\(P_{D}=\) Power Dissipation
\(R_{\theta J A}=\) Thermal Resistance Junction to Ambient
There are three basic components that make up total power to be dissipated when driving a capacitive load with respect to ground. They are:
\[
P_{D}=P_{Q}+P_{C}+P^{T}
\]
where: \(\quad P_{Q}=\) Quiescent Power Dissipation
PC = Capacitive Load Power Dissipation
PT \(=\) Transition Power Dissipation
The quiescent power supply current depends on the supply voltage and duty cycle as shown in Figure 16. The device's quiescent power dissipation is:
\[
\begin{aligned}
& \mathrm{PQ}=\mathrm{V}_{\mathrm{CC}}(\mathrm{ICCL}[1-\mathrm{D}]+\mathrm{I} \mathrm{CCH}[\mathrm{D}]) \\
& \text { where: } \mathrm{I}_{\mathrm{CCL}}=\text { Supply Current with Low State Drive } \\
& \text { Outputs } \\
& \mathrm{I} \mathrm{CCH}=\text { Supply Current with High State Drive } \\
& \text { Outputs } \\
& \mathrm{D}=\text { Output Duty Cycle }
\end{aligned}
\]

The capacitive load power dissipation is directly related to the load capacitance value, frequency, and Drive Output voltage swing. The capacitive load power dissipation per driver is:
\[
\begin{aligned}
\mathrm{PC}_{\mathrm{C}} & =\mathrm{V}_{\mathrm{CC}}\left(\mathrm{~V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right) \mathrm{C}_{\mathrm{L}} \mathrm{f} \\
\text { where: } \mathrm{V}_{\mathrm{OH}} & =\text { High State Drive Output Voltage } \\
\mathrm{V}_{\mathrm{OL}} & =\text { Low State Drive Output Voltage } \\
\mathrm{C}_{\mathrm{L}} & =\text { Load Capacitance } \\
\mathrm{f} & =\text { Frequency }
\end{aligned}
\]

When driving a MOSFET, the calculation of capacitive load power \(\mathrm{PC}_{\mathrm{C}}\) is somewhat complicated by the changing gate to source capacitance \(\mathrm{C}_{\mathrm{GS}}\) as the device switches. To aid in this calculation, power MOSFET manufacturers provide gate charge information on their data sheets. Figure 17 shows a curve of gate voltage versus gate charge for the Motorola MTM15N50. Note that there are three distinct slopes to the curve representing different input capacitance values. To
completely switch the MOSFET 'on,' the gate must be brought to 10 V with respect to the source. The graph shows that a gate charge \(\mathrm{Q}_{\mathrm{g}}\) of 110 nC is required when operating the MOSFET with a drain to source voltage VDS of 400 V .

Figure 17. Gate-to-Source Voltage versus Gate charge

The capacitive load power dissipation is directly related to the required gate charge, and operating frequency. The capacitive load power dissipation per driver is:
\[
P C(M O S F E T)=V_{C C} Q_{g} f
\]

The flat region from 10 nC to 55 nC is caused by the drain-to-gate Miller capacitance, occurring while the MOSFET is in the linear region dissipating substantial amounts of power. The high output current capability of the MC34152 is able to quickly deliver the required gate charge for fast power efficient MOSFET switching. By operating the MC34152 at a higher \(\mathrm{V}_{\mathrm{CC}}\), additional charge can be provided to bring the gate above 10 V . This will reduce the 'on' resistance of the MOSFET at the expense of higher driver dissipation at a given operating frequency.

The transition power dissipation is due to extremely short simultaneous conduction of internal circuit nodes when the Drive Outputs change state. The transition power dissipation per driver is approximately:
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{T}} \approx \mathrm{~V}_{\mathrm{CC}}\left(1.08 \mathrm{~V}_{\mathrm{CC}} \mathrm{C}_{\mathrm{L}} \mathrm{f}-8 \times 10^{-4}\right) \\
& \mathrm{P}_{\mathrm{T}} \text { must be greater than zero. }
\end{aligned}
\]

Switching time characterization of the MC34152 is performed with fixed capacitive loads. Figure 13 shows that for small capacitance loads, the switching speed is limited by transistor turn-on/off time and the slew rate of the internal nodes. For large capacitance loads, the switching speed is limited by the maximum output current capability of the integrated circuit.

\section*{MC34152 MC33152}

\section*{LAYOUT CONSIDERATIONS}

High frequency printed circuit layout techniques are imperative to prevent excessive output ringing and overshoot. Do not attempt to construct the driver circuit on wire-wrap or plug-in prototype boards. When driving large capacitive loads, the printed circuit board must contain a low inductance ground plane to minimize the voltage spikes induced by the high ground ripple currents. All high current loops should be kept as short as possible using heavy copper runs to provide a low impedance high frequency path. For

Figure 18. Enhanced System Performance with Common Switching Regulators

The MC34152 greatly enhances the drive capabilities of common switching regulators and CMOS/TTL logic devices.

Figure 20. Direct Transformer Drive

\footnotetext{
Output Schottky diodes are recommended when driving inductive loads at high frequencies. The diodes reduce the driver's power dissipation by preventing the output pins from being driven above \(\mathrm{V}_{\mathrm{CC}}\) and below ground.
}
optimum drive performance, it is recommended that the initial circuit design contains dual power supply bypass capacitors connected with short leads as close to the VCC pin and ground as the layout will permit. Suggested capacitors are a low inductance \(0.1 \mu \mathrm{~F}\) ceramic in parallel with a \(4.7 \mu \mathrm{~F}\) tantalum. Additional bypass capacitors may be required depending upon Drive Output loading and circuit layout.

Proper printed circuit board layout is extremely critical and cannot be over emphasized.

Figure 19. MOSFET Parasitic Oscillations

Series gate resistor \(\mathrm{R}_{\mathrm{g}}\) may be needed to damp high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit. \(\mathrm{R}_{\mathrm{g}}\) will decrease the MOSFET switching speed. Schottky diode \(D_{1}\) can reduce the driver's power dissipation due to excessive ringing, by preventing the output pin from being driven below ground.

Figure 21. Isolated MOSFET Drive

Figure 22. Controlled MOSFET Drive

In noise sensitive applications, both conducted and radiated EMI can be reduced significantly by controlling the MOSFET's turn-on and turn-off times.

Figure 23. Bipolar Transistor Drive

The totem-pole outputs can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor \(\mathrm{C}_{1}\).

Figure 24. Dual Charge Pump Converter

The capacitor's equivalent series resistance limits the Drive Output Current to 1.5 A. An additional series resistor may be required when using tantalum or other low ESR capacitors.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Output Load Regulation } \\
\hline \(\mathrm{I}_{\mathbf{O}}(\mathbf{m A})\) & \(+\mathrm{V}_{\mathbf{O}}(\mathbf{V})\) & \(-\mathbf{V}_{\mathbf{O}}(\mathbf{V})\) \\
\hline 0 & 27.7 & -13.3 \\
1.0 & 27.4 & -12.9 \\
10 & 26.4 & -11.9 \\
20 & 25.5 & -11.2 \\
30 & 24.6 & -10.5 \\
50 & 22.6 & -9.4 \\
\hline
\end{tabular}

\section*{Microprocessor} Voltage Regulator and Supervisory Circuit

The MC34160 Series is a voltage regulator and supervisory circuit containing many of the necessary monitoring functions required in microprocessor based systems. It is specifically designed for appliance and industrial applications, offering the designer a cost effective solution with minimal external components. These integrated circuits feature a \(5.0 \mathrm{~V} / 100 \mathrm{~mA}\) regulator with short circuit current limiting, pinned out 2.6 V bandgap reference, low voltage reset comparator, power warning comparator with programmable hysteresis, and an uncommitted comparator ideally suited for microprocessor line synchronization.

Additional features include a chip disable input for low standby current, and internal thermal shutdown for over temperature protection.

These devices are contained in a 16 pin dual-in-line heat tab plastic package for improved thermal conduction.
- 5.0 V Regulator Output Current in Excess of 100 mA
- Internal Short Circuit Current Limiting
- Pinned Out 2.6 V Reference
- Low Voltage Reset Comparator
- Power Warning Comparator with Programmable Hysteresis
- Uncommitted Comparator
- Low Standby Current
- Internal Thermal Shutdown Protection
- Heat Tab Power Package

MC34160 MC33160

\section*{MICROPROCESSOR VOLTAGE REGULATOR/ SUPERVISORY CIRCUIT}

SEMICONDUCTOR TECHNICAL DATA

P SUFFIX
PLASTIC PACKAGE CASE 648C
(DIP-16)

DW SUFFIX
PLASTIC PACKAGE
CASE 751G
(SOP-16L)

ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34160DW & \multirow{2}{*}{\(\mathrm{T}_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SOP-16L \\
\hline MC34160P & & DIP-16 \\
\hline MC33160DW & \multirow{2}{*}{\(\mathrm{T}_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SOP-16L \\
\hline \cline { 1 - 1 } MC33160P & & DIP-16 \\
\hline
\end{tabular}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & V \\
\hline Chip Disable Input Voltage (Pin 15, Note 1) & \(\mathrm{V}_{\mathrm{CD}}\) & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & \(\checkmark\) \\
\hline Comparator Input Current (Pins 1, 2, 9) & lin & -2.0 to +2.0 & mA \\
\hline Comparator Output Voltage (Pins 6, 7, 8) & \(\mathrm{V}_{\mathrm{O}}\) & 40 & V \\
\hline Comparator Output Sink Current (Pins 6, 7, 8) & ISink & 10 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
P Suffix, Dual-In-Line Case 648C \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case (Pins 4, 5, 12, 13) \\
DW Suffix, Surface Mount Case 751G \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case (Pins 4, 5, 12, 13)
\end{tabular} & \begin{tabular}{l}
\(\mathrm{R}_{\theta \mathrm{JJA}}\) \\
\(\mathrm{R}_{\text {日JC }}\) \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(\mathrm{R}_{\text {日JC }}\)
\end{tabular} & \[
\begin{aligned}
& 80 \\
& 15 \\
& \\
& 94 \\
& 18
\end{aligned}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature \\
MC34160 \\
MC33160
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{I}_{\text {ref }}=100 \mu \mathrm{~A}\right)\) For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Notes 2 and 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REGULATOR SECTION} \\
\hline Total Output Variation (\(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\) to 40 V , \(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\) to \(100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) & \(\mathrm{V}_{\mathrm{O}}\) & 4.75 & 5.0 & 5.25 & V \\
\hline Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & Regline & - & 5.0 & 40 & mV \\
\hline Load Regulation (\(\mathrm{l} \mathrm{O}=1.0 \mathrm{~V}\) to \(100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & Regload & - & 20 & 50 & mV \\
\hline Ripple Rejection
\[
\left(\mathrm{V}_{\mathrm{CC}}=25 \mathrm{~V} \text { to } 35 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & RR & 50 & 6.5 & - & dB \\
\hline
\end{tabular}

\section*{REFERENCE SECTION}
\begin{tabular}{|l|l|l|l|l|c|}
\hline \begin{tabular}{l}
Total Output Variation \(\left(\mathrm{V}_{\mathrm{CC}}=7.0\right.\) to 40 V,\(\) \\
\(\mathrm{IO}=0.1 \mathrm{~mA}\) to \(2.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\left.\mathrm{T}_{\text {high }}\right)\)
\end{tabular} & \(\mathrm{V}_{\text {ref }}\) & 2.47 & 2.6 & 2.73 & V \\
\hline Line Regulation \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.\) to \(\left.40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & Regline & - & 2.0 & 20 & mV \\
\hline Load Regulation \(\left(\mathrm{lO}=0.1 \mathrm{~mA}\right.\) to \(\left.2.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & Regload & - & 4.0 & 30 & mV \\
\hline
\end{tabular}

RESET COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l}
Threshold Voltage \\
High State Output (Pin 11 Increasing) \\
Low State Output (Pin 11 Decreasing)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{V}_{\mathrm{IH}}\) \\
\(\mathrm{V}_{\mathrm{IL}}\) \\
Hysteresis
\end{tabular} & \begin{tabular}{c}
- \\
\(\mathrm{V}_{\mathrm{H}}\)
\end{tabular} & \begin{tabular}{c}
4.55 \\
\(\left(\mathrm{~V}_{\mathrm{O}}-0.11\right)\) \\
\(\left(\mathrm{V}_{\mathrm{O}}-0.18\right)\) \\
0.02
\end{tabular} & \begin{tabular}{c}
\(\left(\mathrm{V}_{\mathrm{O}}-0.05\right)\) \\
- \\
-
\end{tabular} & V \\
\hline Output Sink Saturation \(\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {Sink }}=2.0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & - & 0.4 & V \\
\hline Output Off-State Leakage \(\left(\mathrm{V}_{\mathrm{OH}}=40 \mathrm{~V}\right)\) & \(\mathrm{IOH}_{\mathrm{OH}}\) & - & - & 4.0 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

NOTES: 1. The maximum voltage range is -0.3 V to \(\mathrm{V}_{\mathrm{CC}}\) or +35 V , whichever is less.
2. \(T_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34160 \(\quad T_{\text {high }}=70^{\circ} \mathrm{C}\) for MC34160
3. Low duty cycle pulse testing techniques are used during test to maintain junction temperature as close to ambient as possible.

\section*{MC34160 MC33160}

ELECTRICAL CHARACTERISTICS (continued) \(\left(V_{C C}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{I}_{\text {ref }}=100 \mu \mathrm{~A}\right)\) For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(T_{A}\) is the operating ambient temperature range that applies [Notes 2 and 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{POWER WARNING COMPARATOR} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & 1.2 & 10 & mV \\
\hline Input Bias Current (\(\mathrm{V}_{\text {Pin } 9}=3.0 \mathrm{~V}\)) & IB & - & - & 0.5 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Input Hysteresis Current }\left(V_{\text {Pin }} 9=V_{\text {ref }}-100 \mathrm{mV}\right) \\
& \text { RPin } 10=24 \mathrm{k} \\
& \text { RPin } 10=\infty
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{H}}\) & \[
\begin{aligned}
& 40 \\
& 4.5
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 7.5
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 11
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Output Sink Saturation (\({ }^{\text {S }}\) Sink \(=2.0 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.13 & 0.4 & v \\
\hline Output Off-State Leakage (\(\mathrm{V}_{\mathrm{OH}}=40 \mathrm{~V}\)) & \({ }^{\mathrm{O}} \mathrm{OH}\) & - & - & 4.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

UNCOMMITTED COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Offset Voltage (Output Transition Low to High) & \(\mathrm{V}_{\mathrm{IO}}\) & - & - & 20 & mV \\
\hline Input Hysteresis Voltage (Output Transition High to Low) & \(\mathrm{I}_{\mathrm{H}}\) & 140 & 200 & 260 & mV \\
\hline Input Bias Current \(\left(\mathrm{V}_{\text {Pin }} 1,2=2.6 \mathrm{~V}\right.\)) & \(\mathrm{I}_{\mathrm{IB}}\) & - & - & -1.0 & \(\mu \mathrm{~A}\) \\
\hline Input Common Mode Voltage Range & \(\mathrm{V}_{\mathrm{ICR}}\) & 0.6 to 5.0 & - & - & V \\
\hline Output Sink Saturation (ISink \(=2.0 \mathrm{~mA})\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.13 & 0.4 & V \\
\hline Output Off-State Leakage \(\left(\mathrm{V}_{\mathrm{OH}}=40 \mathrm{~V}\right)\) & \(\mathrm{I}_{\mathrm{OH}}\) & - & - & 4.0 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Chip Disable Threshold Voltage (Pin 15) High State (Chip Disabled) Low State (Chip Enabled) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\] & 2.5 & & \[
\overline{0.8}
\] & V \\
\hline \begin{tabular}{l}
Chip Disable Input Current (Pin 15) \\
High State (\(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{~V}\)) \\
Low State (\(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\))
\end{tabular} & \[
\begin{aligned}
& I_{I H} \\
& I_{I L}
\end{aligned}
\] & & & \[
\begin{aligned}
& 100 \\
& 30
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Chip Disable Input Resistance (Pin 15) & \(\mathrm{R}_{\text {in }}\) & 50 & 100 & - & k \(\Omega\) \\
\hline \begin{tabular}{l}
Operating Voltage Range \\
\(\mathrm{V}_{\mathrm{O}}\) (Pin 11) Regulated \\
\(\mathrm{V}_{\text {ref }}\) (Pin 16) Regulated
\end{tabular} & \(\mathrm{V}_{\mathrm{CC}}\) & \begin{tabular}{l}
7.0 to 40 \\
5.0 to 40
\end{tabular} & & - & v \\
\hline Power Supply Current Standby (Chip Disable High State) Operating (Chip Disable Low State) & Icc & - & \[
\begin{gathered}
0.18 \\
1.5
\end{gathered}
\] & \[
\begin{gathered}
0.35 \\
3.0
\end{gathered}
\] & mA \\
\hline
\end{tabular}

NOTES: 1. The maximum voltage range is -0.3 V to \(\mathrm{V}_{\mathrm{CC}}\) or +35 V , whichever is less.
2. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34160 \(\quad T_{\text {high }}=70^{\circ} \mathrm{C}\) for MC34160
3. Low duty cycle pulse testing techniques are used during test to maintain junction temperature as close to ambient as possible.

Figure 1. Regulator Output Voltage Change versus Source Current

Figure 2. Reference and Regulator Output versus Supply Voltage

Figure 3. Reference Output Voltage Change versus Source Current

Figure 5. Power Warning Comparator Delay versus Temperature

Figure 7. Comparator Output Saturation versus Sink Current

Figure 4. Power Warning Hysteresis Current versus Programming Resistor

Figure 6. Uncommitted Comparator Delay versus Temperature

Figure 8. P Suffix (DIP-16) Thermal Resistance and Maximum Power Dlssipation versus P.C.B. Copper Length

\section*{MC34160 MC33160}

Figure 9. DW Suffix (SOP-16L) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Function & Description \\
\hline 1 & Comparator Inverting Input & This is the Uncommitted Comparator Inverting input. It is typically connected to a resistor divider to monitor a voltage. \\
\hline 2 & Comparator Noninverting Input & This is the Uncommitted Comparator Noninverting input. It is typically connected to a reference voltage. \\
\hline 3 & N.C. & No connection. This pin is not internally connected. \\
\hline 4, 5, 12, 13 & Gnd & These pins are the control circuit grounds and are connected to the source and load ground returns. They are part of the IC lead frame and can be used for heatsinking. \\
\hline 6 & Comparator Output & This is the Uncommitted Comparator output. It is an open collector sink-only output requiring a pull-up resistor. \\
\hline 7 & Reset & This is the Reset Comparator output. It is an open collector sink-only output requiring a pull-up resistor. \\
\hline 8 & Power Warning & This is the Power Warning Comparator output. It is an open collector sink-only output requiring a pull-up resistor. \\
\hline 9 & Power Sense & This is the Power Warning Comparator noninverting input. It is typically connected to a resistor divider to monitor the input power source voltage. \\
\hline 10 & Hysteresis Adjust & The Power Warning Comparator hysteresis is programmed by a resistor connected from this pin to ground. \\
\hline 11 & Regulator Output & This is the 5.0 V Regulator output. \\
\hline 14 & \(V_{\text {CC }}\) & This pin is the positive supply input of the control IC. \\
\hline 15 & Chip Disable & This input is used to switch the IC into a standby mode turning off all outputs. \\
\hline 16 & Vref & This is the 2.6 V Reference output. It is intended to be used in conjunction with the Power Warning and Uncommitted comparators. \\
\hline
\end{tabular}

\section*{OPERATING DESCRIPTION}

The MC34160 series is a monolithic voltage regulator and supervisory circuit containing many of the necessary monitoring functions required in microprocessor based systems. It is specifically designed for appliance and industrial applications, offering the designer a cost effective solution with minimal external components. These devices are specified for operation over an input voltage of 7.0 V to 40 V , and with a junction temperature of \(-40^{\circ}\) to \(+150^{\circ} \mathrm{C}\). A typical microprocessor application is shown in Figure 10.

\section*{Regulator}

The 5.0 V regulator is designed to source in excess of 100 mA output current and is short circuit protected. The output has a guaranteed tolerance of \(\pm 5.0 \%\) over line, load, and temperature. Internal thermal shutdown circuitry is included to limit the maximum junction temperature to a safe
level. When activated, typically at \(170^{\circ} \mathrm{C}\), the regulator output turns off.

In specific situations a combination of input and output bypass capacitors may be required for regulator stability. If the regulator is located an appreciable distance (\(\geq 4^{\prime \prime}\)) from the supply filter, an input bypass capacitor (\(\mathrm{C}_{\mathrm{in}}\)) of \(0.33 \mu \mathrm{~F}\) or greater is suggested. Output capacitance values of less than 5.0 nF may cause regulator instability at light load (\(\leq 1.0 \mathrm{~mA}\)) and cold temperature. An output bypass capacitor of \(0.1 \mu \mathrm{~F}\) or greater is recommended to ensure stability under all load conditions. The capacitors selected must provide good high frequency characteristics.

Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator does not have external sense inputs.

\section*{Reference}

The 2.6 V bandgap reference is short circuit protected and has a guaranteed output tolerance of \(\pm 5.0 \%\) over line, load, and temperature. It is intended to be used in conjunction with the Power Warning and Uncommitted comparator. The reference can source in excess of 2.0 mA and sink a maximum of \(10 \mu \mathrm{~A}\). For additional current sinking capability, an external load resistor to ground must be used.

Reference biasing is internally derived from either \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{O}}\), allowing proper operation if either drops below nominal.

\section*{Chip Disable}

This input is used to switch the IC into a standby mode. When activated, internal biasing for the entire die is removed causing all outputs to turn off. This reduces the power supply current (ICC) to less than 0.3 mA .

\section*{Comparators}

Three separate comparators are incorporated for voltage monitoring. Their outputs can provide diagnostic information to the microprocessor, preventing system malfunctions.

The Reset Comparator Inverting Input is internally connected to the 2.6 V reference while the Noninverting Input monitors \(\mathrm{V}_{\mathrm{O}}\). The Reset Output is active low when \(\mathrm{V}_{\mathrm{O}}\) falls approximately 180 mV below its regulated voltage. To prevent erratic operation when crossing the comparator threshold, 70 mV of hysteresis is provided.

The Power Warning Comparator is typically used to detect an impending loss of system power. The Inverting Input is internally connected to the reference, fixing the threshold at 2.6 V. The input power source \(\mathrm{V}_{\text {in }}\) is monitored by the Noninverting Input through the \(R_{1} / R_{2}\) divider (Figure 10). This input features an adjustable \(10 \mu \mathrm{~A}\) to \(50 \mu \mathrm{~A}\) current \(\operatorname{sink} \mathrm{I}_{\mathrm{H}}\) that is programmed by the value selected for resistor RH. A default current of \(6.5 \mu \mathrm{~A}\) is provided if \(\mathrm{R}_{H}\) is omitted. When the comparator input falls below 2.6 V , the current sink is activated. This produces hysteresis if \(\mathrm{V}_{\text {in }}\) is monitored through a series resistor \(\left(\mathrm{R}_{1}\right)\). The comparator thresholds are defined as follows:
\[
\begin{aligned}
& V_{\text {th }} \text { lower) }=V_{\text {ref }}\left(1+\frac{R_{1}}{R_{2}}\right)-I_{I B} R_{1} \\
& V_{\text {th }} \text { (upper) }=V_{\text {ref }}\left(1+\frac{R_{1}}{R_{2}}\right)+I_{H} R_{1}
\end{aligned}
\]

The nominal hysteresis current \(I_{H}\) equals \(1.2 \mathrm{~V} / \mathrm{R}_{\mathrm{H}}\) (Figure 4).

The Uncommitted Comparator can be used to synchronize the microprocessor with the ac line signal for timing functions, or for synchronous load switching. It can also be connected as a line loss detector as shown in Figure 11. The comparator contains 200 mV of hysteresis preventing erractic output behavior when crossing the input threshold.

The Power Warning and Uncommitted Comparators each have a transistor base-emitter connected across their inputs. The base input normally connects to a voltage reference while the emitter input connects to the voltage to be monitored. The transistor limits the negative excursion on the emitter input to -0.7 V below the base input by supply current from \(\mathrm{V}_{\mathrm{CC}}\). This clamp current will prevent forward biasing the IC substrate. Zener diodes are connected to the comparator inputs to enhance the ICs electrostatic discharge capability. Resistors \(R_{1}\) and \(R_{\text {in }}\) must limit the input current to a maximum of \(\pm 2.0 \mathrm{~mA}\).

Each comparator output consists of an open collector NPN transistor capable of sinking 2.0 mA with a saturation voltage less than 0.4 V , and standing off 40 V with minimal leakage. Internal bias for the Reset and Power Warning Comparators is derived from either \(V_{C C}\) or the regulator output to ensure functionality when either is below nominal.

\section*{Heat Tab Package}

The MC34160 is contained in a 16 lead plastic dual-in-line package in which the die is mounted on a special Heat Tab copper alloy lead frame. This tab consists of the four center ground pins that are specifically designed to improve thermal conduction from the die to the surrounding air. The pictorial in Figure 8 shows a simple but effective method of utilizing the printed circuit board medium as a heat dissipator by soldering these tabs to an adequate area of copper foil. This permits the use of standard board layout and mounting practices while having the ability to more than halve the junction to air thermal resistance. The example and graph are for a symmetrical layout on a single sided board with one ounce per square foot copper.

Figure 10. Typical Microprocessor Application

Figure 11. Line Loss Detector Application

Figure 12. Time Delayed Microprocessor Reset

\section*{Universal Voltage Monitors}

The MC34161/MC33161 are universal voltage monitors intended for use in a wide variety of voltage sensing applications. These devices offer the circuit designer an economical solution for positive and negative voltage detection. The circuit consists of two comparator channels each with hysteresis, a unique Mode Select Input for channel programming, a pinned out 2.54 V reference, and two open collector outputs capable of sinking in excess of 10 mA . Each comparator channel can be configured as either inverting or noninverting by the Mode Select Input. This allows over, under, and window detection of positive and negative voltages. The minimum supply voltage needed for these devices to be fully functional is 2.0 V for positive voltage sensing and 4.0 V for negative voltage sensing.

Applications include direct monitoring of positive and negative voltages used in appliance, automotive, consumer, and industrial equipment.
- Unique Mode Select Input Allows Channel Programming
- Over, Under, and Window Voltage Detection
- Positive and Negative Voltage Detection
- Fully Functional at 2.0 V for Positve Voltage Sensing and 4.0 V for Negative Voltage Sensing
- Pinned Out 2.54 V Reference with Current Limit Protection
- Low Standby Current
- Open Collector Outputs for Enhanced Device Flexibility

MC34161
MC33161

PIN CONNECTIONS

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34161D & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 1 } MC34161P & & Plastic DIP \\
\hline MC33161D & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 1 } MC33161P & & Plastic DIP \\
\hline
\end{tabular}

\title{
MC34161 MC33161
}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Input Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & V \\
\hline Comparator Input Voltage Range & \(\mathrm{V}_{\text {in }}\) & -1.0 to +40 & V \\
\hline Comparator Output Sink Current (Pins 5 and 6) (Note 1) & ISink & 20 & mA \\
\hline Comparator Output Voltage & \(V_{\text {out }}\) & 40 & V \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics (Note 1) \\
P Suffix, Plastic Package, Case 626 \\
Maximum Power Dissipation @ \(T_{A}=70^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air \\
D Suffix, Plastic Package, Case 751 \\
Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
PD \\
\(R_{\theta J A}\) \\
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \[
\begin{aligned}
& 800 \\
& 100 \\
& 450 \\
& 178
\end{aligned}
\] & \begin{tabular}{l}
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature (Note 3) \\
MC34161 \\
MC33161
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=5.0 \mathrm{~V}\right.\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Notes 2 and 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{COMPARATOR INPUTS} \\
\hline \[
\begin{array}{ll}
\text { Threshold Voltage, } \mathrm{V}_{\text {in }} \text { Increasing } & \left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\min } \text { to } \mathrm{T}_{\max }\right)
\end{array}
\] & \(\mathrm{V}_{\text {th }}\) & \[
\begin{aligned}
& 1.245 \\
& 1.235
\end{aligned}
\] & \[
1.27
\] & \[
\begin{aligned}
& 1.295 \\
& 1.295
\end{aligned}
\] & V \\
\hline Threshold Voltage Variation (\(\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}\) to 40 V) & \(\Delta \mathrm{V}_{\text {th }}\) & - & 7.0 & 15 & mV \\
\hline Threshold Hysteresis, \(\mathrm{V}_{\text {in }}\) Decreasing & \(\mathrm{V}_{\mathrm{H}}\) & 15 & 25 & 35 & mV \\
\hline Threshold Difference \(\mathrm{I}_{\text {th1 }}-\mathrm{V}_{\text {th2 }} \mathrm{l}\) & \(\mathrm{V}_{\mathrm{D}}\) & - & 1.0 & 15 & mV \\
\hline Reference to Threshold Difference \(\left(\mathrm{V}_{\text {ref }}-\mathrm{V}_{\text {in1 }}\right)\), \(\left(\mathrm{V}_{\text {ref }}-\mathrm{V}_{\text {in2 }}\right)\) & \(V_{\text {RTD }}\) & 1.20 & 1.27 & 1.32 & V \\
\hline \[
\begin{array}{ll}
\text { Input Bias Current } & \left(\mathrm{V}_{\text {in }}=1.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\text {in }}=1.5 \mathrm{~V}\right)
\end{array}
\] & IB & - & \[
\begin{aligned}
& \hline 40 \\
& 85
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 400
\end{aligned}
\] & nA \\
\hline
\end{tabular}

\section*{MODE SELECT INPUT}
\begin{tabular}{|cc|c|c|c|c|c|}
\hline Mode Select Threshold Voltage (Figure 5) & \begin{tabular}{c}
Channel 1 \\
Channel 2
\end{tabular} & \begin{tabular}{c}
\(V_{\text {th }}(\mathrm{CH} 1)\) \\
\(V_{\text {th }}(\mathrm{CH} 2)\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{V}_{\text {ref }}+0.15\) \\
0.3
\end{tabular} & \begin{tabular}{c}
\(\mathrm{V}_{\text {ref }}+0.23\) \\
0.63
\end{tabular} & \begin{tabular}{c}
\(\mathrm{V}_{\text {ref }}+0.30\) \\
0.9
\end{tabular} & V \\
\hline
\end{tabular}

COMPARATOR OUTPUTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Output Sink Saturation Voltage }\left(\begin{array}{l}
\text { ISink }
\end{array}=2.0 \mathrm{~mA}\right) \\
&(\text { (Sink }=10 \mathrm{~mA}) \\
&\left(\text { ISink }=0.25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=1.0 \mathrm{~V}\right)
\end{aligned}
\] & V OL & - & \[
\begin{aligned}
& 0.05 \\
& 0.22 \\
& 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 0.6 \\
& 0.2
\end{aligned}
\] & V \\
\hline Off-State Leakage Current (\(\mathrm{V}_{\mathrm{OH}}=40 \mathrm{~V}\)) & IOH & - & 0 & 1.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

REFERENCE OUTPUT
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage \(\left(\mathrm{IO}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\text {ref }}\) & 2.48 & 2.54 & 2.60 & V \\
\hline Load Regulation \((\mathrm{IO}=0 \mathrm{~mA}\) to 2.0 mA\()\) & Regload & - & 0.6 & 15 & mV \\
\hline Line Regulation \(\left(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}\right.\) to 40 V\()\) & Regline & - & 5.0 & 15 & mV \\
\hline Total Output Variation over Line, Load, and Temperature & \(\Delta V_{\text {ref }}\) & 2.45 & - & 2.60 & V \\
\hline Short Circuit Current & ISC & - & 8.5 & 30 & mA \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|cc|c|c|c|c|c|}
\hline Power Supply Current (VMode, \(\left.\mathrm{V}_{\text {in } 1}, \mathrm{~V}_{\text {in2 }}=\mathrm{Gnd}\right)\) & \begin{tabular}{l}
(VCC \(=5.0 \mathrm{~V})\) \\
\(\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)\)
\end{tabular} & ICC & - & \begin{tabular}{l}
450 \\
560
\end{tabular} & \begin{tabular}{l}
700 \\
900
\end{tabular} & \(\mu \mathrm{~A}\) \\
\hline Operating Voltage Range (Positive Sensing) & & \(\mathrm{V}_{\mathrm{CC}}\) & 2.0 & - & 40 & V \\
(Negative Sensing) & & 4.0 & - & 40 & \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34161 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34161
\(-40^{\circ} \mathrm{C}\) for MC33161 \(+85^{\circ} \mathrm{C}\) for MC33161

Figure 1. Comparator Input Threshold Voltage

Figure 3. Output Propagation Delay Time versus Percent Overdrive

Figure 5. Mode Select Thresholds

Figure 2. Comparator Input Bias Current versus Input Voltage

Figure 4. Output Voltage versus Supply Voltage

Figure 6. Mode Select Input Current versus Input Voltage

Figure 7. Reference Voltage versus Supply Voltage

Figure 9. Reference Voltage Change versus Source Current

Figure 11. Supply Current versus Supply Voltage

Figure 8. Reference Voltage versus Ambient Temperature

Figure 10. Output Saturation Voltage versus Output Sink Current

Figure 12. Supply Current versus Output Sink Current

\section*{MC34161 MC33161}

Figure 13. MC34161 Representative Block Diagram

Figure 14. Truth Table
\begin{tabular}{|c|c|c|c|c|l|}
\hline \begin{tabular}{c}
Mode Select \\
Pin 7
\end{tabular} & \begin{tabular}{c}
Input 1 \\
Pin 2
\end{tabular} & \begin{tabular}{c}
Output 1 \\
Pin 6
\end{tabular} & \begin{tabular}{c}
Input 2 \\
Pin 3
\end{tabular} & \begin{tabular}{c}
Output 2 \\
Pin 5
\end{tabular} & \multicolumn{1}{|c|}{ Comments } \\
\hline GND & 0 & 0 & 0 & 0 & Channels 1 \& 2: Noninverting \\
\hline \(\mathrm{V}_{\text {ref }}\) & 0 & 1 & 1 & 1 & \\
\hline \(\mathrm{~V}_{\mathrm{CC}}(>2.0 \mathrm{~V})\) & 0 & 0 & 0 & 1 & Channel 1: Noninverting \\
& 1 & 1 & 1 & 0 & Channel 2: Inverting \\
\hline
\end{tabular}

\section*{MC34161 MC33161}

\section*{FUNCTIONAL DESCRIPTION}

\section*{Introduction}

To be competitive in today's electronic equipment market, new circuits must be designed to increase system reliability with minimal incremental cost. The circuit designer can take a significant step toward attaining these goals by implementing economical circuitry that continuously monitors critical circuit voltages and provides a fault signal in the event of an out-of-tolerance condition. The MC34161, MC33161 series are universal voltage monitors intended for use in a wide variety of voltage sensing applications. The main objectives of this series was to configure a device that can be used in as many voltage sensing applications as possible while minimizing cost. The flexibility objective is achieved by the utilization of a unique Mode Select input that is used in conjunction with traditional circuit building blocks. The cost objective is achieved by processing the device on a standard Bipolar Analog flow, and by limiting the package to eight pins. The device consists of two comparator channels each with hysteresis, a mode select input for channel programming, a pinned out reference, and two open collector outputs. Each comparator channel can be configured as either inverting or noninverting by the Mode Select input. This allows a single device to perform over, under, and window detection of positive and negative voltages. A detailed description of each section of the device is given below with the representative block diagram shown in Figure 13.

\section*{Input Comparators}

The input comparators of each channel are identical, each having an upper threshold voltage of \(1.27 \mathrm{~V} \pm 2.0 \%\) with 25 mV of hysteresis. The hysteresis is provided to enhance output switching by preventing oscillations as the comparator thresholds are crossed. The comparators have an input bias current of 60 nA at their threshold which approximates a \(21.2 \mathrm{M} \Omega\) resistor to ground. This high impedance minimizes loading of the external voltage divider for well defined trip points. For all positive voltage sensing applications, both comparator channels are fully functional at a \(\mathrm{V}_{\mathrm{CC}}\) of 2.0 V . In order to provide enhanced device ruggedness for hostile industrial environments, additional circuitry was designed into the inputs to prevent device latch-up as well as to suppress electrostatic discharges (ESD).

\section*{Reference}

The 2.54 V reference is pinned out to provide a means for the input comparators to sense negative voltages, as well as a means to program the Mode Select input for window detection applications. The reference is capable of sourcing in excess of 2.0 mA output current and has built-in short circuit protection. The output voltage has a guaranteed tolerance of \(\pm 2.4 \%\) at room temperature.

The 2.54 V reference is derived by gaining up the internal 1.27 V reference by a factor of two. With a power supply voltage of 4.0 V , the 2.54 V reference is in full regulation, allowing the device to accurately sense negative voltages.

\section*{Mode Select Circuit}

The key feature that allows this device to be flexible is the Mode Select input. This input allows the user to program each of the channels for various types of voltage sensing applications. Figure 14 shows that the Mode Select input has three defined states. These states determine whether Channel 1 and/or Channel 2 operate in the inverting or noninverting mode. The Mode Select thresholds are shown in Figure 5. The input circuitry forms a tristate switch with thresholds at 0.63 V and \(\mathrm{V}_{\text {ref }}+0.23 \mathrm{~V}\). The mode select input current is \(10 \mu \mathrm{~A}\) when connected to the reference output, and \(42 \mu \mathrm{~A}\) when connected to a \(\mathrm{V}_{\mathrm{CC}}\) of 5.0 V , refer to Figure 6.

\section*{Output Stage}

The output stage uses a positive feedback base boost circuit for enhanced sink saturation, while maintaining a relatively low device standby current. Figure 10 shows that the sink saturation voltage is about 0.2 V at 8.0 mA over temperature. By combining the low output saturation characteristics with low voltage comparator operation, this device is capable of sensing positive voltages at a \(\mathrm{V}_{\mathrm{CC}}\) of 1.0 V . These characteristics are important in undervoltage sensing applications where the output must stay in a low state as \(\mathrm{V}_{\mathrm{CC}}\) approaches ground. Figure 4 shows the Output Voltage versus Supply Voltage in an undervoltage sensing application. Note that as \(\mathrm{V}_{\mathrm{CC}}\) drops below the programmed 4.5 V trip point, the output stays in a well defined active low state until \(\mathrm{V}_{\mathrm{CC}}\) drops below 1.0 V .

\section*{APPLICATIONS}

The following circuit figures illustrate the flexibility of this device. Included are voltage sensing applications for over, under, and window detectors, as well as three unique configurations. Many of the voltage detection circuits are shown with the open collector outputs of each channel connected together driving a light emitting diode (LED). This 'ORed' connection is shown for ease of explanation and it is only required for window detection applications. Note that
many of the voltage detection circuits are shown with a dashed line output connection. This connection gives the inverse function of the solid line connection. For example, the solid line output connection of Figure 15 has the LED 'ON' when input voltage \(V_{S}\) is above trip voltage \(V_{2}\), for overvoltage detection. The dashed line output connection has the LED 'ON' when \(\mathrm{V}_{\mathrm{S}}\) is below trip voltage \(\mathrm{V}_{2}\), for undervoltage detection.

\section*{MC34161 MC33161}

Figure 15. Dual Postive Overvoltage Detector

The above figure shows the MC34161 configured as a dual positive overvoltage detector. As the input voltage increases from ground, the LED will turn 'ON' when \(\mathrm{V}_{\mathrm{S} 1}\) or \(\mathrm{V}_{\mathrm{S} 2}\) exceeds \(\mathrm{V}_{2}\). With the dashed line output connection, the circuit becomes a dual positive undervoltage detector. As the input voltage decreases from the peak towards ground, the LED will turn 'ON' when \(\mathrm{V}_{\mathrm{S} 1}\) or \(\mathrm{V}_{\mathrm{S} 2}\) falls below \(\mathrm{V}_{1}\).

For known resistor values, the voltage trip points are:
For a specific trip voltage, the required resistor ratio is:
\[
\mathrm{v}_{1}=\left(\mathrm{V}_{\mathrm{th}}-\mathrm{V}_{\mathrm{H}}\right)\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right) \quad \mathrm{V}_{2}=\mathrm{V}_{\mathrm{th}}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)
\]
\[
\frac{R_{2}}{R_{1}}=\frac{V_{1}}{V_{t h}-V_{H}}-1 \quad \frac{R_{2}}{R_{1}}=\frac{V_{2}}{V_{t h}}-1
\]

Figure 16. Dual Postive Undervoltage Detector

The above figure shows the MC34161 configured as a dual positive undervoltage detector. As the input voltage decreases towards ground, the LED will turn 'ON' when \(V_{S 1}\) or \(V_{S 2}\) falls below \(V_{1}\). With the dashed line output connection, the circuit becomes a dual positive overvoltage detector. As the input voltage increases from ground, the LED will turn ' \(O N\) ' when \(V_{S 1}\) or \(V_{S 2}\) exceeds \(V_{2}\).

For known resistor values, the voltage trip points are:
\[
\mathrm{v}_{1}=\left(\mathrm{V}_{\mathrm{th}}-\mathrm{v}_{\mathrm{H}}\right)\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right) \quad \mathrm{v}_{2}=\mathrm{v}_{\mathrm{th}}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)
\]

For a specific trip voltage, the required resistor ratio is:
\[
\frac{R_{2}}{R_{1}}=\frac{V_{1}}{V_{t h}-V_{H}}-1 \quad \frac{R_{2}}{R_{1}}=\frac{V_{2}}{V_{t h}}-1
\]

Figure 17. Dual Negative Overvoltage Detector

The above figure shows the MC34161 configured as a dual negative overvoltage detector. As the input voltage increases from ground, the LED will turn 'ON' when \(-\mathrm{V}_{\mathrm{S} 1}\) or \(-\mathrm{V}_{\mathrm{S} 2}\) exceeds \(\mathrm{V}_{2}\). With the dashed line output connection, the circuit becomes a dual negative undervoltage detector. As the input voltage decreases from the peak towards ground, the LED will turn ' ON ' when \(-\mathrm{V}_{\mathrm{S} 1}\) or \(-\mathrm{V}_{\mathrm{S} 2}\) falls below \(\mathrm{V}_{1}\).

For known resistor values, the voltage trip points are:
\[
V_{1}=\frac{R_{1}}{R_{2}}\left(V_{t h}-V_{r e f}\right)+V_{t h} \quad V_{2}=\frac{R_{1}}{R_{2}}\left(V_{t h}-V_{H}-V_{r e f}\right)+V_{t h}-V_{H}
\]

For a specific trip voltage, the required resistor ratio is:
\[
\frac{R_{1}}{R_{2}}=\frac{V_{1}-V_{\text {th }}}{V_{t h}-V_{\text {ref }}} \quad \frac{R_{1}}{R_{2}}=\frac{V_{2}-V_{\text {th }}+V_{H}}{V_{t h}-V_{H}-V_{\text {ref }}}
\]

Figure 18. Dual Negative Undervoltage Detector

The above figure shows the MC34161 configured as a dual negative undervoltage detector. As the input voltage decreases towards ground, the LED will turn 'ON' when \(-\mathrm{V}_{\mathrm{S} 1}\) or \(-\mathrm{V}_{\mathrm{S} 2}\) falls below \(\mathrm{V}_{1}\). With the dashed line output connection, the circuit becomes a dual negative overvoltage detector. As the input voltage increases from ground, the LED will turn ' \(O N\) ' when \(-V_{S 1}\) or \(-V_{S 2}\) exceeds \(V_{2}\).

For known resistor values, the voltage trip points are:
\[
V_{1}=\frac{R_{1}}{R_{2}}\left(V_{t h}-V_{r e f}\right)+V_{t h} \quad V_{2}=\frac{R_{1}}{R_{2}}\left(V_{t h}-V_{H}-V_{\text {ref }}\right)+V_{t h}-V_{H}
\]

For a specific trip voltage, the required resistor ratio is:
\[
\frac{R_{1}}{R_{2}}=\frac{V_{1}-V_{t h}}{V_{t h}-V_{\text {ref }}} \quad \frac{R_{1}}{R_{2}}=\frac{V_{2}-V_{t h}+V_{H}}{V_{t h}-V_{H}-V_{\text {ref }}}
\]

Figure 19. Positive Voltage Window Detector

The above figure shows the MC34161 configured as a positive voltage window detector. This is accomplished by connecting channel 1 as an undervoltage detector, and channel 2 as an overvoltage detector. When the input voltage \(\mathrm{V}_{\mathrm{S}}\) falls out of the window established by \(\mathrm{V}_{1}\) and \(\mathrm{V}_{4}\), the LED will turn 'ON'. As the input voltage falls within the window, \(\mathrm{V}_{\mathrm{S}}\) increasing from ground and exceeding \(\mathrm{V}_{2}\), or \(\mathrm{V}_{\mathrm{S}}\) decreasing from the peak towards ground and falling below \(\mathrm{V}_{3}\), the LED will turn 'OFF'. With the dashed line output connection, the LED will turn 'ON' when the input voltage \(\mathrm{V}_{\mathrm{S}}\) is within the window.

For known resistor values, the voltage trip points are:
\[
\begin{array}{ll}
v_{1}=\left(v_{\mathrm{th} 1}-v_{\mathrm{H} 1}\right)\left(\frac{R_{3}}{R_{1}+R_{2}}+1\right) & v_{3}=\left(v_{\mathrm{th} 2}-v_{\mathrm{H} 2}\right)\left(\frac{R_{2}+R_{3}}{R_{1}}+1\right) \\
\mathrm{v}_{2}=\mathrm{v}_{\mathrm{th} 1}\left(\frac{R_{3}}{R_{1}+R_{2}}+1\right) & v_{4}=v_{\mathrm{th} 2}\left(\frac{R_{2}+R_{3}}{R_{1}}+1\right)
\end{array}
\]

For a specific trip voltage, the required resistor ratio is:
\[
\begin{array}{ll}
\frac{R_{2}}{R_{1}}=\frac{V_{3}\left(V_{t h 2}-V_{H 2}\right)}{V_{1}\left(V_{t h 1}-V_{H 1}\right)}-1 & \frac{R_{3}}{R_{1}}=\frac{V_{3}\left(V_{1}-V_{t h 1}+V_{H 1}\right)}{V_{1}\left(V_{t h 2}-V_{H 2}\right)} \\
\frac{R_{2}}{R_{1}}=\frac{V_{4} \times V_{t h 2}-1}{V_{2} \times V_{t h 1}} & \frac{R_{3}}{R_{1}}=\frac{V_{4}\left(V_{2}-V_{t h 1}\right)}{V_{2} \times V_{t h 2}}
\end{array}
\]

Figure 20. Negative Voltage Window Detector

The above figure shows the MC34161 configured as a negative voltage window detector. When the input voltage \(-\mathrm{V}_{\mathrm{S}}\) falls out of the window established by \(\mathrm{V}_{1}\) and \(\mathrm{V}_{4}\), the LED will turn 'ON'. As the input voltage falls within the window, \(-\mathrm{V}_{\mathrm{S}}\) increasing from ground and exceeding \(\mathrm{V}_{2}\), or \(-\mathrm{V}_{\mathrm{S}}\) decreasing from the peak towards ground and falling below \(\mathrm{V}_{3}\), the LED will turn 'OFF'. With the dashed line output connection, the LED will turn 'ON' when the input voltage \(-\mathrm{V}_{\mathrm{S}}\) is within the window.

For known resistor values, the voltage trip points are:
\[
\begin{aligned}
& V_{1}=\frac{R_{1}\left(V_{\text {th2 }}-V_{\text {ref }}\right)}{R_{2}+R_{3}}+V_{t h 2} \\
& V_{2}=\frac{R_{1}\left(V_{\text {th2 }}-V_{H 2}-V_{\text {ref }}\right)}{R_{2}+R_{3}}+V_{\text {th2 }}-V_{H 2} \\
& v_{3}=\frac{\left(R_{1}+R_{2}\right)\left(V_{\text {th1 }}-V_{\text {ref }}\right)}{R_{3}}+V_{\text {th1 }} \\
& V_{4}=\frac{\left(R_{1}+R_{2}\right)\left(V_{\text {th } 1}-V_{H 1}-V_{\text {ref }}\right)}{R_{3}}+V_{\text {th } 1}-V_{H 1}
\end{aligned}
\]

For a specific trip voltage, the required resistor ratio is:
\[
\begin{aligned}
& \frac{R_{1}}{R_{2}+R_{3}}=\frac{V_{1}-V_{t h 2}}{V_{t h 2}-V_{r e f}} \\
& \frac{R_{1}}{R_{2}+R_{3}}=\frac{V_{2}-V_{t h 2}+V_{H 2}}{V_{t h 2}-V_{H 2}-V_{\text {ref }}} \\
& \frac{R_{3}}{R_{1}+R_{2}}=\frac{V_{t h 1}-V_{r e f}}{V_{3}-V_{t h 1}} \\
& \frac{R_{3}}{R_{1}+R_{2}}=\frac{V_{t h 1}-V_{H 1}-V_{\text {ref }}}{V_{4}+V_{H 1}-V_{t h 1}}
\end{aligned}
\]

\section*{MC34161 MC33161}

Figure 21. Positive and Negative Overvoltage Detector

The above figure shows the MC34161 configured as a positive and negative overvoltage detector. As the input voltage increases from ground, the LED will turn 'ON' when either \(-\mathrm{V}_{\mathrm{S} 1}\) exceeds \(\mathrm{V}_{2}\), or \(\mathrm{V}_{\mathrm{S} 2}\) exceeds \(\mathrm{V}_{4}\). With the dashed line output connection, the circuit becomes a positive and negative undervoltage detector. As the input voltage decreases from the peak towards ground, the LED will turn 'ON' when either \(\mathrm{V}_{\mathrm{S} 2}\) falls below \(\mathrm{V}_{3}\), or \(-\mathrm{V}_{\mathrm{S} 1}\) falls below \(\mathrm{V}_{1}\).

For known resistor values, the voltage trip points are:
\[
\begin{array}{ll}
\mathrm{V}_{1}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{4}}\left(\mathrm{~V}_{\mathrm{th} 1}-\mathrm{V}_{\mathrm{ref}}\right)+\mathrm{V}_{\mathrm{th} 1} & \mathrm{~V}_{3}=\left(\mathrm{V}_{\mathrm{th} 2}-\mathrm{V}_{\mathrm{H} 2}\right)\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right) \\
\mathrm{V}_{2}=\frac{R_{3}}{\mathrm{R}_{4}}\left(\mathrm{~V}_{\mathrm{th} 1}-\mathrm{V}_{\mathrm{H} 1}-\mathrm{V}_{\mathrm{ref}}\right)+\mathrm{V}_{\mathrm{th} 1}-\mathrm{V}_{\mathrm{H} 1} & \mathrm{~V}_{4}=\mathrm{V}_{\mathrm{th} 2}\left(\frac{R_{2}}{\mathrm{R}_{1}}+1\right)
\end{array}
\]

For a specific trip voltage, the required resistor ratio is:
\[
\begin{array}{ll}
\frac{R_{3}}{R_{4}}=\frac{\left(V_{1}-V_{\text {th1 }}\right)}{\left(V_{t h 1}-V_{r e f}\right)} & \frac{R_{2}}{R_{1}}=\frac{V_{4}}{V_{t h 2}}-1 \\
\frac{R_{3}}{R_{4}}=\frac{\left(V_{2}-V_{\text {th }}+V_{H 1}\right)}{\left(V_{t h 1}-V_{H 1}-V_{\text {ref }}\right)} & \frac{R_{2}}{R_{1}}=\frac{V_{3}}{V_{t h 2}-V_{H 2}}-1
\end{array}
\]

Figure 22. Positive and Negative Undervoltage Detector

The above figure shows the MC34161 configured as a positive and negative undervoltage detector. As the input voltage decreases toward ground, the LED will turn ' \(O N\) ' when either \(\mathrm{V}_{\mathrm{S} 1}\) falls below \(\mathrm{V}_{1}\), or \(-\mathrm{V}_{\mathrm{S} 2}\) falls below \(\mathrm{V}_{3}\). With the dashed line output connection, the circuit becomes a positive and negative overvoltage detector. As the input voltage increases from the ground, the LED will turn ' \(O N\) ' when either \(\mathrm{V}_{\mathrm{S} 1}\) exceeds \(\mathrm{V}_{2}\), or \(-\mathrm{V}_{\mathrm{S} 1}\) exceeds \(\mathrm{V}_{1}\).

For known resistor values, the voltage trip points are:
\[
\begin{array}{ll}
\mathrm{V}_{1}=\left(\mathrm{V}_{\mathrm{th} 1}-\mathrm{V}_{\mathrm{H} 1}\right)\left(\frac{\mathrm{R}_{4}}{R_{3}}+1\right) & \mathrm{V}_{3}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\left(\mathrm{~V}_{\mathrm{th}}-\mathrm{V}_{\mathrm{ref}}\right)+\mathrm{V}_{\mathrm{th} 2} \\
\mathrm{~V}_{2}=\mathrm{V}_{\mathrm{th} 1}\left(\frac{R_{4}}{R_{3}}+1\right) & \mathrm{V}_{4}=\frac{R_{1}}{\mathrm{R}_{2}}\left(\mathrm{~V}_{\mathrm{th}}-\mathrm{V}_{\mathrm{H} 2}-\mathrm{V}_{\mathrm{ref}}\right)+\mathrm{V}_{\mathrm{th} 2}-\mathrm{V}_{\mathrm{H} 2}
\end{array}
\]

For a specific trip voltage, the required resistor ratio is:
\[
\begin{array}{ll}
\frac{R_{4}}{R_{3}}=\frac{V_{2}}{V_{t h 1}}-1 & \frac{R_{1}}{R_{2}}=\frac{V_{4}+V_{H 2}-V_{t h 2}}{V_{t h 2}-V_{H 2}-V_{\text {ref }}} \\
\frac{R_{4}}{R_{3}}=\frac{V_{1}}{V_{t h 1}-V_{H 1}}-1 & \frac{R_{1}}{R_{2}}=\frac{V_{3}-V_{\text {th2 }}}{V_{\text {th2 }}-V_{r e f}}
\end{array}
\]

Figure 23. Overvoltage Detector with Audio Alarm

The above figure shows the MC34161 configured as an overvoltage detector with an audio alarm. Channel 1 monitors input voltage \(V_{S}\) while channel 2 is connected as a simple RC oscillator. As the input voltage increases from ground, the output of channel 1 allows the oscillator to turn 'ON' when \(\mathrm{V}_{\mathrm{S}}\) exceeds \(\mathrm{V}_{2}\).

For known resistor values, the voltage trip points are:
\[
\mathrm{V}_{1}=\left(\mathrm{V}_{\mathrm{th}}-\mathrm{V}_{\mathrm{H}}\right)\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right) \mathrm{V}_{2}=\mathrm{V}_{\mathrm{th}}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)
\]

For a specific trip voltage, the required resistor ratio is:
\[
\frac{R_{2}}{R_{1}}=\frac{V_{1}}{V_{t h}-V_{H}}-1 \quad \frac{R_{2}}{R_{1}}=\frac{V_{2}}{V_{t h}}-1
\]

The above figure shows the MC34161 configured as a microprocessor reset with a time delay. Channel 2 monitors input voltage \(V_{S}\) while channel 1 performs the time delay function. As the input voltage decreases towards ground, the output of channel 2 quickly discharges \(C_{D L Y}\) when \(V_{S}\) falls below \(V_{1}\). As the input voltage increases from ground, the output of channel 2 allows \(R_{D L Y}\) to charge \(C_{D L Y}\) when \(V_{S}\) exceeds \(V_{2}\).

For known resistor values, the voltage trip points are:
\[
\mathrm{V}_{1}=\left(\mathrm{V}_{\mathrm{th}}-\mathrm{V}_{\mathrm{H}}\right)\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right) \mathrm{V}_{2}=\mathrm{V}_{\mathrm{th}}\left(\frac{R_{2}}{\mathrm{R}_{1}}+1\right)
\]

For known \(\mathrm{R}_{\text {DLY }} \mathrm{C}_{\mathrm{DLY}}\) values, the reset time delay is:
\[
t_{D L Y}=R_{D L Y} C_{D L Y} \ln \left(\frac{1}{1-\frac{V_{t h}}{V_{C C}}}\right)
\]

Figure 25. Automatic AC Line Voltage Selector

The above circuit shows the MC34161 configured as an automatic line voltage selector. The IC controls the triac, enabling the circuit to function as a fullwave voltage doubler or a fullwave bridge. Channel 1 senses the negative half cycles of the AC line voltage. If the line voltage is less than150 V, the circuit will switch from bridge mode to voltage doubling mode after a preset time delay. The delay is controlled by the \(100 \mathrm{k} \Omega\) resistor and the \(10 \mu \mathrm{~F}\) capacitor. If the line voltage is greater than 150 V , the circuit will immediately return to fullwave bridge mode.

\section*{MC34161 MC33161}

Figure 26. Step-Down Converter

The above figure shows the MC34161 configured as a step-down converter. Channel 1 monitors the output voltage while Channel 2 performs the oscillator function. Upon initial power-up, the converters output voltage will be below nominal, and the output of Channei 1 will allow the oscillator to run. The external switch transistor will eventually pump-up the output capacitor until its voltage exceeds the input threshold of Channel 1. The output of Channel 1 will then switch low and disable the oscillator. The oscillator will commence operation when the output voltage falls below the lower threshold of Channel 1.

\section*{Power Switching Regulators}

The MC34163 series are monolithic power switching regulators that contain the primary functions required for dc-to-dc converters. This series is specifically designed to be incorporated in step-up, step-down, and voltage-inverting applications with a minimum number of external components.

These devices consist of two high gain voltage feedback comparators, temperature compensated reference, controlled duty cycle oscillator, driver with bootstrap capability for increased efficiency, and a high current output switch. Protective features consist of cycle-by-cycle current limiting, and internal thermal shutdown. Also included is a low voltage indicator output designed to interface with microprocessor based systems.

These devices are contained in a 16 pin dual-in-line heat tab plastic package for improved thermal conduction.
- Output Switch Current in Excess of 3.0 A
- Operation from 2.5 V to 40 V Input
- Low Standby Current
- Precision 2\% Reference
- Controlled Duty Cycle Oscillator
- Driver with Bootstrap Capability for Increased Efficiency
- Cycle-by-Cycle Current Limiting
- Internal Thermal Shutdown Protection
- Low Voltage Indicator Output for Direct Microprocessor Interface
- Heat Tab Power Package

MC34163
MC33163

P SUFFIX
PLASTIC PACKAGE CASE 648C (DIP-16)

DW SUFFIX
PLASTIC PACKAGE CASE 751G (SOP-16L)

ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34163DW & \multirow{2}{*}{\(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SOP-16L \\
\cline { 1 - 1 } \cline { 1 - 1 } MC34163P & & DIP-16 \\
\hline MC33163DW & \multirow{2}{*}{\(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SOP-16L \\
\cline { 1 - 1 } MC33163P & & DIP-16 \\
\hline
\end{tabular}

\section*{MC34163 MC33163}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & V \\
\hline Switch Collector Voltage Range & \(\mathrm{V}_{\mathrm{C}}\) (switch) & -1.0 to +40 & V \\
\hline Switch Emitter Voltage Range & \(\mathrm{V}_{\mathrm{E} \text { (switch) }}\) & -2.0 to \(\mathrm{V}_{\mathrm{C}}\) (switch) & V \\
\hline Switch Collector to Emitter Voltage & \(V_{C E}\) (switch) & 40 & V \\
\hline Switch Current (Note 1) & ISW & 3.4 & A \\
\hline Driver Collector Voltage & \(\mathrm{V}_{\mathrm{C}}\) (driver) & -1.0 to +40 & V \\
\hline Driver Collector Current & IC(driver) & 150 & mA \\
\hline Bootstrap Input Current Range (Note 1) & IBS & -100 to +100 & mA \\
\hline Current Sense Input Voltage Range & \(\mathrm{V}_{\text {lpk }}\) (Sense) & \(\left(\mathrm{V}_{\mathrm{CC}}-7.0\right)\) to \(\left(\mathrm{V}_{\mathrm{CC}}+1.0\right)\) & V \\
\hline Feedback and Timing Capacitor Input Voltage Range & \(V_{\text {in }}\) & -1.0 to +7.0 & V \\
\hline Low Voltage Indicator Output Voltage Range & \(\mathrm{V}_{\mathrm{C}(\mathrm{LVI})}\) & -1.0 to +40 & V \\
\hline Low Voltage Indicator Output Sink Current & \({ }^{1} \mathrm{C}(\mathrm{LVI})\) & 10 & mA \\
\hline \begin{tabular}{l}
Thermal Characteristics \\
P Suffix, Dual-In-Line Case 648C \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case \\
(Pins 4, 5, 12, 13) \\
DW Suffix, Surface Mount Case 751G \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case (Pins 4, 5, 12, 13)
\end{tabular} & \begin{tabular}{l}
\(R_{\theta J A}\) \\
\(R_{\theta J C}\) \\
\(R_{\text {日JA }}\) \\
\(R_{\theta J C}\)
\end{tabular} & \[
\begin{aligned}
& 80 \\
& 15 \\
& \\
& 94 \\
& 18
\end{aligned}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature (Note 3)
\[
\begin{aligned}
& \text { MC34163 } \\
& \text { MC33163 }
\end{aligned}
\] & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{C}} \mathrm{C}=15 \mathrm{~V}\), Pin \(16=\mathrm{V}_{C C}, \mathrm{C}_{\mathrm{T}}=620 \mathrm{pF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/\) max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies (Note 3), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OSCILLATOR} \\
\hline \begin{tabular}{l}
Frequency
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Total Variation over \(\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}\) to 40 V , and Temperature
\end{tabular} & fosc & \[
\begin{aligned}
& 46 \\
& 45
\end{aligned}
\] & 50 & \[
\begin{aligned}
& 54 \\
& 55
\end{aligned}
\] & kHz \\
\hline Charge Current & Ichg & - & 225 & - & \(\mu \mathrm{A}\) \\
\hline Discharge Current & Idischg & - & 25 & - & \(\mu \mathrm{A}\) \\
\hline Charge to Discharge Current Ratio & Ichg/ldischg & 8.0 & 9.0 & 10 & - \\
\hline Sawtooth Peak Voltage & VOSC(P) & - & 1.25 & - & V \\
\hline Sawtooth Valley Voltage & V OSC(V) & - & 0.55 & - & V \\
\hline
\end{tabular}

\section*{FEEDBACK COMPARATOR 1}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Threshold Voltage
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Line Regulation (\(\mathrm{V} \mathrm{CC}=2.5 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \\
Total Variation over Line, and Temperature
\end{tabular} & \(\mathrm{V}_{\text {th(FB1) }}\) & \[
\begin{gathered}
4.9 \\
- \\
4.85
\end{gathered}
\] & \[
\begin{gathered}
5.05 \\
0.008
\end{gathered}
\] & \[
\begin{gathered}
5.2 \\
0.03 \\
5.25
\end{gathered}
\] & \[
\begin{gathered}
\text { V } \\
\% / V \\
V
\end{gathered}
\] \\
\hline Input Bias Current (VFB1 \(=5.05 \mathrm{~V}\)) & IIB(FB1) & - & 100 & 200 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34163 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34163
\[
=-40^{\circ} \mathrm{C} \text { for MC33163 }=+85^{\circ} \mathrm{C} \text { for MC33163 }
\]

ELECTRICAL CHARACTERISTICS (continued) (\(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\), Pin \(16=\mathrm{V}_{\mathrm{CC}}, \mathrm{C}_{\mathrm{T}}=620 \mathrm{pF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(T_{A}\) is the operating ambient temperature range that applies (Note 3), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{FEEDBACK COMPARATOR 2} \\
\hline \begin{tabular}{l}
Threshold Voltage
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \\
Total Variation over Line, and Temperature
\end{tabular} & \(\mathrm{V}_{\text {th(}}\) FB2) & \[
\begin{gathered}
1.225 \\
- \\
1.213
\end{gathered}
\] & \[
\begin{aligned}
& 1.25 \\
& 0.008
\end{aligned}
\] & \[
\begin{gathered}
1.275 \\
0.03 \\
1.287
\end{gathered}
\] & \[
\begin{gathered}
\text { V } \\
\% / V \\
V
\end{gathered}
\] \\
\hline Input Bias Current (VFB2 \(=1.25 \mathrm{~V}\)) & IIB(FB2) & -0.4 & 0 & 0.4 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{CURRENT LIMIT COMPARATOR}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Threshold Voltage
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Total Variation over \(\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}\) to 40 V , and Temperature
\end{tabular} & \(\mathrm{V}_{\text {th(lpk Sense) }}\) & \[
\overline{230}
\] & 250 & 270 & mV \\
\hline Input Bias Current (VIpk (Sense) \(=15 \mathrm{~V}\)) & IIB(sense) & - & 1.0 & 20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{DRIVER AND OUTPUT SWITCH (Note 2)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sink Saturation Voltage (ISW \(=2.5 \mathrm{~A}\), Pins 14, 15 grounded) Non-Darlington Connection (RPin \(9=110 \Omega\) to \(\mathrm{V}_{\mathrm{CC}}\), ISW/IDRV \(\approx 20\)) Darlington Connection (Pins 9, 10, 11 connected) & \(\mathrm{V}_{\text {CE }}\) (sat) & - & \[
\begin{aligned}
& 0.6 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.4
\end{aligned}
\] & V \\
\hline Collector Off-State Leakage Current (\(\mathrm{V}_{\text {CE }}=40 \mathrm{~V}\)) & IC(off) & - & 0.02 & 100 & \(\mu \mathrm{A}\) \\
\hline Bootstrap Input Current Source (\(\mathrm{V}_{\text {BS }}=\mathrm{V}_{\mathrm{CC}}+5.0 \mathrm{~V}\)) & Isource(DRV) & 0.5 & 2.0 & 4.0 & mA \\
\hline Bootstrap Input Zener Clamp Voltage (\(\mathrm{I}=25 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{Z}}\) & \(\mathrm{V}_{\mathrm{CC}}+6.0\) & \(\mathrm{V}_{C C}+7.0\) & \(\mathrm{V}_{\mathrm{CC}}+9.0\) & V \\
\hline
\end{tabular}

LOW VOLTAGE INDICATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Threshold (VFB2 Increasing) & \(\mathrm{V}_{\text {th }}\) & 1.07 & 1.125 & 1.18 & V \\
\hline Input Hysteresis (VFB2 Decreasing) & \(\mathrm{V}_{\mathrm{H}}\) & - & 15 & - & mV \\
\hline Output Sink Saturation Voltage \(\left(\mathrm{I}_{\text {sink }}=2.0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OL}(\mathrm{LVI})}\) & - & 0.15 & 0.4 & V \\
\hline Output Off-State Leakage Current \(\left(\mathrm{V}_{\mathrm{OH}}=15 \mathrm{~V}\right)\) & IOH & - & 0.01 & 5.0 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}

Standby Supply Current (\(\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}\) to 40 V , Pin \(8=\mathrm{V}_{\mathrm{CC}}\),
Pins 6, 14, \(15=\) Gnd, remaining pins open)
NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34163 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34163
\(=-40^{\circ} \mathrm{C}\) for MC33163 \(=+85^{\circ} \mathrm{C}\) for MC33163

Figure 1. Output Switch On-Off Time

Figure 2. Oscillator Frequency Change versus Temperature

Figure 3. Feedback Comparator 1 Input Bias Current versus Temperature

Figure 5. Bootstrap Input Current Source versus Temperature

Figure 7. Output Switch Source Saturation versus Emitter Current

Figure 4. Feedback Comparator 2 Threshold Voltage versus Temperature

Figure 6. Bootstrap Input Zener Clamp Voltage versus Temperature

Figure 8. Output Switch Sink Saturation versus Collector Current

Figure 9. Output Switch Negative Emitter Voltage versus Temperature

Figure 11. Current Limit Comparator Threshold Voltage versus Temperature

Figure 13. Standby Supply Current versus Supply Voltage

Figure 10. Low Voltage Indicator Output Sink Saturation Voltage versus Sink Current

Figure 12. Current Limit Comparator Input Bias Current versus Temperature

Figure 14. Standby Supply Current versus Temperature

Figure 15. Minimum Operating Supply

Figure 16. P Suffix (DIP-16) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 17. DW Suffix (SOP-16L) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 18. Representative Block Diagram

Figure 19. Typical Operating Waveforms

\section*{INTRODUCTION}

The MC34163 series are monolithic power switching regulators optimized for dc-to-dc converter applications. The combination of features in this series enables the system designer to directly implement step-up, step-down, and voltage-inverting converters with a minimum number of external components. Potential applications include cost sensitive consumer products as well as equipment for the automotive, computer, and industrial markets. A Representative Block Diagram is shown in Figure 18.

\section*{OPERATING DESCRIPTION}

The MC34163 operates as a fixed on-time, variable off-time voltage mode ripple regulator. In general, this mode of operation is somewhat analogous to a capacitor charge pump and does not require dominant pole loop compensation for converter stability. The Typical Operating Waveforms are shown in Figure 19. The output voltage waveform shown is for a step-down converter with the ripple and phasing exaggerated for clarity. During initial converter startup, the feedback comparator senses that the output voltage level is below nominal. This causes the output switch to turn on and off at a frequency and duty cycle controlled by the oscillator, thus pumping up the output filter capacitor. When the output voltage level reaches nominal, the feedback comparator sets the latch, immediately terminating switch conduction. The feedback comparator will inhibit the switch until the load current causes the output voltage to fall below nominal. Under these conditions, output switch conduction can be inhibited for a partial oscillator cycle, a partial cycle plus a complete cycle, multiple cycles, or a partial cycle plus multiple cycles.

\section*{Oscillator}

The oscillator frequency and on-time of the output switch are programmed by the value selected for timing capacitor \({ }^{\mathrm{C}}\) т. Capacitor \(\mathrm{C}_{\boldsymbol{T}}\) is charged and discharged by a 9 to 1 ratio internal current source and sink, generating a negative going sawtooth waveform at Pin 6. As \(C_{T}\) charges, an internal pulse is generated at the oscillator output. This pulse is connected to the NOR gate center input, preventing output switch conduction, and to the AND gate upper input, allowing the latch to be reset if the comparator output is low. Thus, the output switch is always disabled during ramp-up and can be enabled by the comparator output only at the start of ramp-down. The oscillator peak and valley thresholds are 1.25 V and 0.55 V , respectively, with a charge current of \(225 \mu \mathrm{~A}\) and a discharge current of \(25 \mu \mathrm{~A}\), yielding a maximum on-time duty cycle of \(90 \%\). A reduction of the maximum duty cycle may be required for specific converter configurations. This can be accomplished with the addition of an external deadtime resistor (RDT) placed across \(\mathrm{C}_{\mathrm{T}}\). The resistor increases the discharge current which reduces the on-time of the output switch. A graph of the Output Switch On-Off Time versus Oscillator Timing Capacitance for various values of \(\mathrm{R}_{\mathrm{DT}}\) is shown in Figure 1. Note that the maximum output duty cycle, \(t_{0 n} / t_{\text {on }}+t_{\text {off }}\), remains constant for values of \(\mathrm{C}_{\mathrm{T}}\) greater than 0.2 nF . The converter output can be inhibited by
clamping \(\mathrm{C}_{\boldsymbol{T}}\) to ground with an external NPN small-signal transistor.

\section*{Feedback and Low Voltage Indicator Comparators}

Output voltage control is established by the Feedback comparator. The inverting input is internally biased at 1.25 V and is not pinned out. The converter output voltage is typically divided down with two external resistors and monitored by the high impedance noninverting input at Pin 2. The maximum input bias current is \(\pm 0.4 \mu \mathrm{~A}\), which can cause an output voltage error that is equal to the product of the input bias current and the upper divider resistance value. For applications that require 5.0 V , the converter output can be directly connected to the noninverting input at Pin 3. The high impedance input, Pin 2, must be grounded to prevent noise pickup. The internal resistor divider is set for a nominal voltage of 5.05 V . The additional 50 mV compensates for a \(1.0 \%\) voltage drop in the cable and connector from the converter output to the load. The Feedback comparator's output state is controlled by the highest voltage applied to either of the two noninverting inputs.

The Low Voltage Indicator (LVI) comparator is designed for use as a reset controller in microprocessor-based systems. The inverting input is internally biased at 1.125 V , which sets the noninverting input thresholds to \(90 \%\) of nominal. The LVI comparator has 15 mV of hysteresis to prevent erratic reset operation. The Open Collector output is capable of sinking in excess of 6.0 mA (see Figure 10). An external resistor (RLVI) and capacitor (CDLY) can be used to program a reset delay time (t DLY) by the formula shown below, where \(\mathrm{V}_{\mathrm{th}}\) (MPU) is the microprocessor reset input threshold. Refer to Figure 20.
\[
\operatorname{tDLY}=R_{L V I} C_{D L Y} \ln \left(\frac{1}{1-\frac{\mathrm{V}_{\text {th(MPU }}}{V_{\text {out }}}}\right)
\]

\section*{Current Limit Comparator,} Latch and Thermal Shutdown

With a voltage mode ripple converter operating under normal conditions, output switch conduction is initiated by the oscillator and terminated by the Voltage Feedback comparator. Abnormal operating conditions occur when the converter output is overloaded or when feedback voltage sensing is lost. Under these conditions, the Current Limit comparator will protect the Output Switch.

The switch current is converted to a voltage by inserting a fractional ohm resistor, RSC, in series with VCC and output switch transistor \(Q_{2}\). The voltage drop across RSC is monitored by the Current Sense comparator. If the voltage drop exceeds 250 mV with respect to \(\mathrm{V}_{\mathrm{CC}}\), the comparator will set the latch and terminate output switch conduction on a cycle-by-cycle basis. This Comparator/Latch configuration ensures that the Output Switch has only a single on-time during a given oscillator cycle. The calculation for a value of RSC is:
\[
\mathrm{RSC}=\frac{0.25 \mathrm{~V}}{\mathrm{lpk}(\text { Switch })}
\]

\section*{MC34163 MC33163}

Figures 11 and 12 show that the Current Sense comparator threshold is tightly controlled over temperature and has a typical input bias current of \(1.0 \mu \mathrm{~A}\). The propagation delay from the comparator input to the Output Switch is typically 200 ns . The parasitic inductance associated with RSC and the circuit layout should be minimized. This will prevent unwanted voltage spikes that may falsely trip the Current Limit comparator.

Internal thermal shutdown circuitry is provided to protect the IC in the event that the maximum junction temperature is exceeded. When activated, typically at \(170^{\circ} \mathrm{C}\), the Latch is forced into the "Set" state, disabling the Output Switch. This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a replacement for proper heatsinking.

\section*{Driver and Output Switch}

To aid in system design flexibility and conversion efficiency, the driver current source and collector, and output switch collector and emitter are pinned out separately. This allows the designer the option of driving the output switch into saturation with a selected force gain or driving it near saturation when connected as a Darlington. The output switch has a typical current gain of 70 at 2.5 A and is designed to switch a maximum of 40 V collector to emitter, with up to 3.4 A peak collector current. The minimum value for RSC is:
\[
\operatorname{RSC}(\min)=\frac{0.25 \mathrm{~V}}{3.4 \mathrm{~A}}=0.0735 \Omega
\]

When configured for step-down or voltage-inverting applications, as in Figures 20 and 24, the inductor will forward bias the output rectifier when the switch turns off. Rectifiers with a high forward voltage drop or long turn-on delay time should not be used. If the emitter is allowed to go sufficiently negative, collector current will flow, causing additional device heating and reduced conversion efficiency.

Figure 9 shows that by clamping the emitter to 0.5 V , the collector current will be in the range \(10 \mu \mathrm{~A}\) over temperature. A 1 N5822 or equivalent Schottky barrier rectifier is recommended to fulfill these requirements.

A bootstrap input is provided to reduce the output switch saturation voltage in step-down and voltage-inverting
converter applications. This input is connected through a series resistor and capacitor to the switch emitter and is used to raise the internal 2.0 mA bias current source above \(\mathrm{V}_{\mathrm{CC}}\). An internal zener limits the bootstrap input voltage to \(\mathrm{V}_{\mathrm{CC}}\) +7.0 V . The capacitor's equivalent series resistance must limit the zener current to less than 100 mA . An additional series resistor may be required when using tantalum or other low ESR capacitors. The equation below is used to calculate a minimum value bootstrap capacitor based on a minimum zener voltage and an upper limit current source.
\[
\mathrm{C}_{\mathrm{B}(\min)}=\mathrm{I} \frac{\Delta \mathrm{t}}{\Delta \mathrm{~V}}=4.0 \mathrm{~mA} \frac{\mathrm{t}_{\mathrm{on}}}{4.0 \mathrm{~V}}=0.001 \mathrm{t}_{\mathrm{on}}
\]

Parametric operation of the MC34163 is guaranteed over a supply voltage range of 2.5 V to 40 V . When operating below 3.0 V , the Bootstrap Input should be connected to \(\mathrm{V}_{\mathrm{CC}}\). Figure 15 shows that functional operation down to 1.7 V at room temperature is possible.

\section*{Package}

The MC34163 is contained in a heatsinkable 16-lead plastic dual-in-line package in which the die is mounted on a special heat tab copper alloy lead frame. This tab consists of the four center ground pins that are specifically designed to improve thermal conduction from the die to the circuit board. Figures 16 and 17 show a simple and effective method of utilizing the printed circuit board medium as a heat dissipater by soldering these pins to an adequate area of copper foil. This permits the use of standard layout and mounting practices while having the ability to halve the junction-to-air thermal resistance. These examples are for a symmetrical layout on a single-sided board with two ounce per square foot of copper.

\section*{APPLICATIONS}

The following converter applications show the simplicity and flexibility of this circuit architecture. Three main converter topologies are demonstrated with actual test data shown below each of the circuit diagrams.

\section*{MC34163 MC33163}

Figure 20. Step-Down Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Condition } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(24 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}\) & \(6.0 \mathrm{mV}= \pm 0.06 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.6 \mathrm{~A}\) to 3.0 A & \(2.0 \mathrm{mV}= \pm 0.02 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}\) & 36 mVpp \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 3.3 A \\
\hline Efficiency, Without Bootstrap & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}\) & \(76.7 \%\) \\
\hline Efficiency, With Bootstrap & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}\) & \(81.2 \%\) \\
\hline
\end{tabular}

Figure 21. External Current Boost Connections for Ipk (Switch) Greater Than 3.4 A

Figure 21A. External NPN Switch

Figure 22. Step-Up Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Condition } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=9.0 \mathrm{~V}\) to \(16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.6 \mathrm{~A}\) & \(30 \mathrm{mV}= \pm 0.05 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~A}\) to 0.6 A & \(50 \mathrm{mV}= \pm 0.09 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.6 \mathrm{~A}\) & 140 mVpp \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.6 \mathrm{~A}\) & \(88.1 \%\) \\
\hline
\end{tabular}

Figure 23. External Current Boost Connections for Ipk (Switch) Greater Than 3.4 A

Figure 23A. External NPN Switch

Figure 23B. External PNP Saturated Switch

\section*{MC34163 MC33163}

Figure 24. Voltage-Inverting Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Condition } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=9.0 \mathrm{~V}\) to \(16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(5.0 \mathrm{mV}= \pm 0.02 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.6 \mathrm{~A}\) to 1.0 A & \(2.0 \mathrm{mV}= \pm 0.01 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & 130 mVpp \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 3.2 A \\
\hline Efficiency, Without Bootstrap & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(73.1 \%\) \\
\hline Efficiency, With Bootstrap & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(77.5 \%\) \\
\hline
\end{tabular}

Figure 25. External Current Boost Connections for Ipk (Switch) Greater Than 3.4 A

Figure 25A. External NPN Switch

Figure 25B. External PNP Saturated Switch

Figure 26. Printed Circuit Board and Component Layout
(Circuits of Figures 20, 22, 24)

All printed circuit boards are \(2.58^{\prime \prime}\) in width by \(1.9^{\prime \prime}\) in height

Figure 27. Design Equations
\begin{tabular}{|c|c|c|c|}
\hline Calculation & Step-Down & Step-Up & Voltage-Inverting \\
\hline \begin{tabular}{l}
\[
\frac{t_{0 n}}{t_{\text {off }}}
\] \\
(Notes 1, 2, 3)
\end{tabular} & \[
\frac{v_{\text {out }}+v_{F}}{v_{\text {in }}-v_{\text {sat }}-v_{\text {out }}}
\] & \[
\frac{v_{\text {out }}+v_{F}-v_{\text {in }}}{v_{\text {in }}-v_{\text {sat }}}
\] & \[
\frac{v_{\text {out }}+v_{F}}{v_{\text {in }}-v_{\text {sat }}}
\] \\
\hline ton & \[
\frac{\frac{\mathrm{t}_{\mathrm{on}}}{\mathrm{t}_{\text {off }}}}{f\left(\frac{\mathrm{t}_{\mathrm{on}}}{\mathrm{t}_{\text {off }}}+1\right)}
\] & \[
\frac{\frac{\mathrm{t}_{\text {on }}}{\mathrm{t}_{\text {off }}}}{f\left(\frac{\mathrm{t}_{\mathrm{on}}}{\mathrm{t}_{\text {off }}}+1\right)}
\] & \[
\frac{\frac{\mathrm{t}_{\mathrm{on}}}{\mathrm{t}_{\text {off }}}}{f\left(\frac{\mathrm{t}_{\mathrm{on}}}{\mathrm{t}_{\text {off }}}+1\right)}
\] \\
\hline CT & \(\frac{32.143 \cdot 10^{-6}}{f}\) & \(\frac{32.143 \cdot 10^{-6}}{f}\) & \(\frac{32.143 \cdot 10^{-6}}{f}\) \\
\hline L(avg) & lout & \(\mathrm{I}_{\text {out }}\left(\frac{\mathrm{t}_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)\) & \({ }^{\text {out }}\left(\frac{t_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)\) \\
\hline Ipk (Switch) & \(\mathrm{L}(\mathrm{avg})+\frac{\Delta \mathrm{L}_{\mathrm{L}}}{2}\) & L (avg) \(+\frac{\Delta l_{\mathrm{L}}}{2}\) & L (avg) \(+\frac{\Delta I_{L}}{2}\) \\
\hline RSC & \[
\frac{0.25}{\text { lpk (Switch) }}
\] & \[
\frac{0.25}{\text { lpk (Switch) }}
\] & \(\frac{0.25}{1 \text { pk (Switch) }}\) \\
\hline L & \(\left(\frac{v_{\text {in }}-v_{\text {sat }}-v_{\text {out }}}{\Delta I_{L}}\right) \mathrm{t}_{\text {on }}\) & \(\left(\frac{v_{\text {in }}-v_{\text {sat }}}{\Delta I_{L}}\right) \mathrm{t}_{\text {on }}\) & \(\left(\frac{v_{\text {in }}-v_{\text {sat }}}{\Delta I_{L}}\right) \mathrm{t}_{\text {on }}\) \\
\hline \(\mathrm{V}_{\text {ripple(pp) }}\) & \(\Delta I L \sqrt{\left(\frac{1}{8 f C_{O}}\right)^{2}+(E S R)^{2}}\) & \[
\approx \frac{\mathrm{t}_{\text {on }} \mathrm{I}_{\text {out }}}{\mathrm{C}_{\mathrm{O}}}
\] & \[
\approx \frac{t_{\text {on }} I_{\text {out }}}{C_{O}}
\] \\
\hline \(V_{\text {out }}\) & \[
v_{\text {ref }}\left(\frac{R_{2}}{R_{1}}+1\right)
\] & \(\mathrm{v}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)\) & \(\mathrm{v}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)\) \\
\hline
\end{tabular}

\section*{The following Converter Characteristics must be chosen:}
\(V_{\text {in }}\) - Nominal operating input voltage.
\(V_{\text {out }}\) - Desired output voltage.
lout - Desired output current.
\(\Delta^{\prime} \mathrm{L}\) - Desired peak-to-peak inductor ripple current. For maximum output current it is suggested that \(\Delta_{\mathrm{L}}\) be chosen to be less than \(10 \%\) of the average inductor current \(\mathrm{I}(\mathrm{avg})\). This will help prevent \(\mathrm{I}_{\mathrm{pk}}\) (Switch) from reaching the current limit threshold set by \(R_{S C}\). If the design goal is to use a minimum inductance value, let \(\Delta_{L}=2(\mathrm{l}(\mathrm{avg}))\). This will proportionally reduce converter output current capability.
\(f\) - Maximum output switch frequency.
\(V_{\text {ripple (pp) }}\) - Desired peak-to-peak output ripple voltage. For best performance the ripple voltage should be kept to a low value since it will directly affect line and load regulation. Capacitor \(C_{O}\) should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.

NOTES: 1. \(V_{\text {sat }}\) - Saturation voltage of the output switch, refer to Figures 7 and 8.
2. \(V_{F}\) - Output rectifier forward voltage drop. Typical value for 1 N 5822 Schottky barrier rectifier is 0.5 V .
3. The calculated \(t_{o n} / t_{\text {off }}\) must not exceed the minimum guaranteed oscillator charge to discharge ratio of 8 , at the minimum operating input voltage.

\section*{Micropower Undervoltage Sensing Circuits}

The MC34164 series are undervoltage sensing circuits specifically designed for use as reset controllers in portable microprocessor based systems where extended battery life is required. These devices offer the designer an economical solution for low voltage detection with a single external resistor. The MC34164 series features a bandgap reference, a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation, an open collector reset output capable of sinking in excess of 6.0 mA , and guaranteed operation down to 1.0 V input with extremely low standby current. These devices are packaged in 3-pin TO-226AA, 8-pin SO-8 and Micro-8 surface mount packages.

Applications include direct monitoring of the 3.0 or 5.0 V MPU/logic power supply used in appliance, automotive, consumer, and industrial equipment.
- Temperature Compensated Reference
- Monitors 3.0 V (MC34164-3) or 5.0 V (MC34164-5) Power Supplies
- Precise Comparator Thresholds Guaranteed Over Temperature
- Comparator Hysteresis Prevents Erratic Reset
- Reset Output Capable of Sinking in Excess of 6.0 mA
- Internal Clamp Diode for Discharging Delay Capacitor
- Guaranteed Reset Operation With 1.0 V Input
- Extremely Low Standby Current: As Low as \(9.0 \mu \mathrm{~A}\)
- Economical TO-226AA, SO-8 and Micro-8 Surface Mount Packages

\section*{MICROPOWER \\ UNDERVOLTAGE SENSING CIRCUITS}

SEMICONDUCTOR TECHNICAL DATA

P SUFFIX
PLASTIC PACKAGE CASE 29 (TO-226AA)

Pin 1. \(\overline{\text { Reset }}\)
2. Input
3. Ground

D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO-8)

DM SUFFIX
PLASTIC PACKAGE
CASE 846A (Micro-8)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC34164D-3 & \multirow{6}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{SO-8} \\
\hline MC34164D-5 & & \\
\hline MC34164DM-3 & & \\
\hline MC34164DM-5 & & Micro-8 \\
\hline MC34164P-3 & & \\
\hline MC34164P-5 & & TO-226AA \\
\hline MC33164D-3 & \multirow{6}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & \multirow[t]{2}{*}{SO-8} \\
\hline MC33164D-5 & & \\
\hline MC33164DM-3 & & Micro-8 \\
\hline MC33164DM-5 & & Micro-8 \\
\hline MC33164P-3 & & \\
\hline MC33164P-5 & & TO-226AA \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Input Supply Voltage & \(V_{\text {in }}\) & -1.0 to 12 & V \\
\hline \(\overline{\text { Reset Output Voltage }}\) & \(\mathrm{V}_{\mathrm{O}}\) & -1.0 to 12 & V \\
\hline \(\overline{\text { Reset }}\) Output Sink Current & ISink & Internally Limited & mA \\
\hline Clamp Diode Forward Current, Pin 1 to 2 (Note 1) & \(\mathrm{I}_{\mathrm{F}}\) & 100 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
P Suffix, Plastic Package \\
Maximum Power Dissipation @ \(T_{A}=25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air \\
D Suffix, Plastic Package \\
Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air \\
DM Suffix, Plastic Package \\
Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \\
\(R_{\theta J A}\) \\
\(P_{D}\) \\
\(R_{\theta J A}\) \\
\(P_{D}\) \\
\(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 700 \\
& 178 \\
& 700 \\
& 178 \\
& 520 \\
& 240
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature Range \\
MC34164 Series \\
MC33164 Series
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.

MC34164-3, MC33164-3 SERIES
ELECTRICAL CHARACTERISTICS (For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Notes 2 \& 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{COMPARATOR} \\
\hline Threshold Voltage & & & & & V \\
\hline High State Output (\(\mathrm{V}_{\text {in }}\) Increasing \()\) & \(\mathrm{V}_{\mathrm{IH}}\) & 2.55 & 2.71 & 2.80 & \\
\hline Low State Output (\(\mathrm{V}_{\text {in }}\) Decreasing) & \(\mathrm{V}_{\text {IL }}\) & 2.55 & 2.65 & 2.80 & \\
\hline Hysteresis (\({ }^{\text {S }}\) Sink \(=100 \mu \mathrm{~A}\)) & \(\mathrm{V}_{\mathrm{H}}\) & 0.03 & 0.06 & - & \\
\hline
\end{tabular}

\section*{RESET OUTPUT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Sink Saturation
\[
\begin{aligned}
& \left(V_{\text {in }}=2.4 \mathrm{~V}, I_{\text {Sink }}=1.0 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\text {in }}=1.0 \mathrm{~V}, I_{\text {Sink }}=0.25 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & & \[
\begin{gathered}
0.14 \\
0.1
\end{gathered}
\] & \[
\begin{aligned}
& 0.4 \\
& 0.3
\end{aligned}
\] & v \\
\hline Output Sink Current (\(\mathrm{V}_{\text {in }}\), \(\overline{\text { Reset }}=2.4 \mathrm{~V}\)) & ISink & 6.0 & 12 & 30 & mA \\
\hline Output Off-State Leakage
\[
\left(\mathrm{V}_{\mathrm{in}}, \overline{\text { Reset }}=3.0 \mathrm{~V}\right)
\]
\[
\left(\mathrm{V}_{\text {in }}, \overline{\text { Reset }}=10 \mathrm{~V}\right)
\] & \({ }^{1} \overline{\mathrm{R}}\) (leak) & - & \[
\begin{aligned}
& 0.02 \\
& 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 1.0
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Clamp Diode Forward Voltage, Pin 1 to 2 (\(\mathrm{IF}=5.0 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{F}}\) & 6.0 & 0.9 & 1.2 & V \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|l|c|c|c|c|}
\hline Operating Input Voltage Range & \(V_{\text {in }}\) & 1.0 to 10 & - & - \\
\hline Quiescent Input Current & \(I_{\text {in }}\) & & & \\
\(V_{\text {in }}=3.0 \mathrm{~V}\) & & - & & \\
\(V_{\text {in }}=6.0 \mathrm{~V}\) & & - & 2.0 & 15 \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.

> 2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible. \(\begin{aligned} & \text { 3. } \mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C} \text { for MC34164 } \\ &-40^{\circ} \mathrm{C} \text { for MC33164 } \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C} \text { for MC34164 } \\ &=+85^{\circ} \mathrm{C} \text { for MC33164 }\end{aligned}\)

MC34164-5, MC33164-5 SERIES
ELECTRICAL CHARACTERISTICS (For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Notes 2 \& 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{COMPARATOR} \\
\hline Threshold Voltage & & & & & V \\
\hline High State Output (\(\mathrm{V}_{\text {in }}\) Increasing) & \(\mathrm{V}_{\mathrm{IH}}\) & 4.15 & 4.33 & 4.45 & \\
\hline Low State Output (V in Decreasing) & \(\mathrm{V}_{\text {IL }}\) & 4.15 & 4.27 & 4.45 & \\
\hline Hysteresis (\({ }^{\text {S }}\) Sink \(=100 \mu \mathrm{~A}\)) & \(\mathrm{V}_{\mathrm{H}}\) & 0.02 & 0.09 & - & \\
\hline
\end{tabular}

\section*{RESET OUTPUT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Sink Saturation
\[
\begin{aligned}
& \left(V_{\text {in }}=4.0 \mathrm{~V}, I_{\text {Sink }}=1.0 \mathrm{~mA}\right) \\
& \left(V_{\text {in }}=1.0 \mathrm{~V}, I_{\text {Sink }}=0.25 \mathrm{~mA}\right)
\end{aligned}
\] & VOL & & \[
\begin{gathered}
0.14 \\
0.1
\end{gathered}
\] & \[
\begin{aligned}
& 0.4 \\
& 0.3
\end{aligned}
\] & V \\
\hline Output Sink Current (\(\mathrm{V}_{\text {in }}, \overline{\text { Reset }}=4.0 \mathrm{~V}\)) & ISink & 7.0 & 20 & 50 & mA \\
\hline \[
\begin{aligned}
& \text { Output Off-State Leakage } \\
& \left(\mathrm{V}_{\text {in }}, \text { Reset }=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\text {in }}, \text { Reset }=10 \mathrm{~V}\right)
\end{aligned}
\] & \({ }^{1} \mathrm{R}\) (leak) & & \[
\begin{aligned}
& 0.02 \\
& 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 2.0
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Clamp Diode Forward Voltage, Pin 1 to 2 (\(\mathrm{I} F=5.0 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{F}}\) & 0.6 & 0.9 & 1.2 & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Operating Input Voltage Range & \(\mathrm{V}_{\text {in }}\) & 1.0 to 10 & - & - & V \\
\hline Quiescent Input Current & \(\mathrm{I}_{\text {in }}\) & & & & \(\mu \mathrm{A}\) \\
\(V_{\text {in }}=5.0 \mathrm{~V}\) & & - & 12 & 20 & \\
\(\mathrm{~V}_{\text {in }}=10 \mathrm{~V}\) & & - & 32 & 50 & \\
\hline
\end{tabular}

NOTES: 2 . Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34164 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34164
\(-40^{\circ} \mathrm{C}\) for MC33164 \(=+85^{\circ} \mathrm{C}\) for MC33164

Figure 1. MC3X164-3 Reset Output Voltage versus Input Voltage

Figure 2. MC3X164-5 Reset Output Voltage versus Input Voltage

Figure 3. MC3X164-3 Reset Output Voltage versus Input Voltage

Figure 5. MC3X164-3 Comparator Threshold Voltage versus Temperature

Figure 7. MC3X164-3 Input Current versus Input Voltage

Figure 4. MC3X164-5 Reset Output Voltage versus Input Voltage

Figure 6. MC3X164-5 Comparator Threshold Voltage versus Temperature

Figure 8. MC3X164-5 Input Current versus Input Voltage

Figure 9. MC3X164-3 Reset Output Saturation versus Sink Current

Figure 11. Clamp Diode Forward Current versus Voltage

Figure 10. MC3X164-5 \(\overline{\text { Reset }}\) Output Saturation versus Sink Current

Figure 12. Reset Delay Time (MC3X164-5 Shown)

Figure 13. Low Voltage Microprocessor Reset

A time delayed reset can be accomplished with the addition of CDLY. For systems with extremely fast power supply rise times (\(<500 \mathrm{~ns}\)) it is recommended that the RCDLY time constant be greater than \(5.0 \mu \mathrm{~s}\). \(V_{\text {th }}(\mathrm{MPU})\) is the microprocessor reset input threshold.

Figure 14. Low Voltage Microprocessor Reset With Additional Hysteresis (MC3X164-5 Shown)

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Test Data } \\
\hline \begin{tabular}{c}
\(\mathbf{V}_{\mathbf{H}}\) \\
\((\mathbf{m V})\)
\end{tabular} & \begin{tabular}{c}
\(\Delta \mathbf{V}_{\mathbf{t h}}\) \\
\((\mathbf{m V})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{R}_{\mathbf{H}}\) \\
\((\Omega)\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{R}_{\mathbf{L}}\) \\
\((\mathbf{k} \Omega)\)
\end{tabular} \\
\hline 60 & 0 & 0 & 43 \\
\hline 103 & 1.0 & 100 & 10 \\
\hline 123 & 1.0 & 100 & 6.8 \\
\hline 160 & 1.0 & 100 & 4.3 \\
\hline 155 & 2.2 & 220 & 10 \\
\hline 199 & 2.2 & 220 & 6.8 \\
\hline 280 & 2.2 & 220 & 4.3 \\
\hline 262 & 4.7 & 470 & 10 \\
\hline 306 & 4.7 & 470 & 8.2 \\
\hline 357 & 4.7 & 470 & 6.8 \\
\hline 421 & 4.7 & 470 & 5.6 \\
\hline 530 & 4.7 & 470 & 4.3 \\
\hline
\end{tabular}

Comparatorhysteresis can be increased with the addition of resistor \(R_{H}\). The hysteresis equation has been simplified and does not account for the change of input current
\(l_{\text {in }}\) as \(V_{\text {in }}\) crosses the comparator threshold (Figure 8). An increase of the lower threshold \(\Delta V_{\text {the }}\) (lower) will be observed due to lin which is typically \(10 \mu A\) at 4.3 V . The
equations are accurate to \(\pm 10 \%\) with \(R_{H}\) less than \(1.0 \mathrm{k} \Omega\) and \(R_{L}\) between \(4.3 \mathrm{k} \Omega\) and \(43 \mathrm{k} \Omega\).

Figure 15. Voltage Monitor

Figure 16. Solar Powered Battery Charger

Figure 17. MOSFET Low Voltage Gate Drive Protection Using the MC3X164-5

\section*{Power Switching Regulators}

The MC34165 series are monolithic power switching regulators that contain the primary functions required for DC-to-DC converters. This series is specifically designed to be incorporated in step-up, step-down, and voltage-inverting applications with a minimum number of external components.

These devices consist of two high gain voltage feedback comparators, temperature compensated reference, controlled duty cycle oscillator, driver with bootstrap capability for increased efficiency, and a high current output switch. Protective features consist of cycle-by-cycle current limiting, and internal thermal shutdown. Also included is a low voltage indicator output designed to interface with microprocessor based systems.

These devices are contained in a 16 pin dual-in-line heat tab plastic package for improved thermal conduction.
- Output Switch Current in Excess of 1.5 A
- Operation from 3.0 V to 65 V Input
- Low Standby Current
- Precision 2\% Reference
- Controlled Duty Cycle Oscillator
- Driver with Bootstrap Capability for Increased Efficiency
- Cycle-by-Cycle Current Limiting
- Internal Thermal Shutdown Protection
- Low Voltage Indicator Output for Direct Microprocessor Interface
- Heat Tab Power Package

\section*{POWER SWITCHING} REGULATORS

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Tested Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34165DW & \multirow{2}{*}{\(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SOP-16L \\
MC34165P & & DIP-16 \\
\hline MC33165DW & \multirow{2}{*}{\(\mathrm{T}_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SOP-16L \\
\cline { 1 - 1 } MC33165P & & DIP-16 \\
\hline
\end{tabular}

\section*{MC34165 MC33165}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Input Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 65 & V \\
\hline Switch Collector Voltage Range & \(\mathrm{V}_{\mathrm{C} \text { (switch) }}\) & -1.0 to +65 & V \\
\hline Switch Emitter Voltage Range & \(\mathrm{V}_{\mathrm{E} \text { (switch) }}\) & -2.0 to \(\mathrm{V}_{\mathrm{C} \text { (switch) }}\) & V \\
\hline Switch Collector to Emitter Voltage & \(\mathrm{V}_{\text {CE }}\) (switch) & 65 & V \\
\hline Switch Current (Note 1) & ISW & 1.5 & A \\
\hline Driver Collector Voltage & \(\mathrm{V}_{\mathrm{C} \text { (driver) }}\) & -1.0 to +65 & V \\
\hline Driver Collector Current & IC(driver) & 70 & mA \\
\hline Bootstrap Input Current Range (Note 1) & IBS & -100 to +100 & mA \\
\hline Current Sense Input Voltage Range & \(V_{\text {lpk }}\) (Sense) & (\(\left.\mathrm{V}_{\mathrm{CC}}-7.0\right)\) to (\(\left.\mathrm{V}_{\mathrm{CC}}+1.0\right)\) & V \\
\hline Feedback and Timing Capacitor Input Voltage Range & \(\mathrm{V}_{\text {in }}\) & -1.0 to +7.0 & V \\
\hline Low Voltage Indicator Output Voltage Range & \(\mathrm{V}_{\mathrm{C} \text { (LVI) }}\) & -1.0 to +65 & V \\
\hline Low Voltage Indicator Output Sink Current & \(\mathrm{IC}(\mathrm{LVI})\) & 10 & mA \\
\hline \begin{tabular}{l}
Thermal Characteristics \\
P Suffix, Dual In Line Case 648C \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case \\
(Pins 4, 5, 12, 13) \\
DW Suffix, Surface Mount Case 751G \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case \\
(Pins 4, 5, 12, 13)
\end{tabular} & \begin{tabular}{l}
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(\mathrm{R}_{\text {өJC }}\) \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(\mathrm{R}_{\text {өJC }}\)
\end{tabular} & \[
\begin{aligned}
& 80 \\
& 15 \\
& \\
& 94 \\
& 18
\end{aligned}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature (Note 3) \\
MC34165 \\
MC33165
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=15 \mathrm{~V}\right.\), Pin \(16=\mathrm{V}_{\mathrm{CC}}, \mathrm{C}_{\mathrm{T}}=620 \mathrm{pF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies (Note 3), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OSCILLATOR} \\
\hline \begin{tabular}{l}
Frequency
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Total Variation over \(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\) to 65 V , and Temperature
\end{tabular} & fosc & \[
\begin{aligned}
& 46 \\
& 45
\end{aligned}
\] & & \[
\begin{aligned}
& 54 \\
& 55
\end{aligned}
\] & kHz \\
\hline Charge Current & \(I_{\text {chg }}\) & - & 225 & - & \(\mu \mathrm{A}\) \\
\hline Discharge Current & Idischg & - & 25 & - & \(\mu \mathrm{A}\) \\
\hline Charge to Discharge Current Ratio & I \({ }_{\text {chg }} /\) /dischg & 7.5 & 9.0 & 10 & - \\
\hline Sawtooth Peak Voltage & \(\mathrm{V}_{\text {OSC(}}(\mathrm{P})\) & - & 1.25 & - & V \\
\hline Sawtooth Valley Voltage & Vosc(V) & - & 0.55 & - & V \\
\hline
\end{tabular}

\section*{FEEDBACK COMPARATOR 1}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Threshold Voltage
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\) to \(65 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \\
Total Variation over Line, and Temperature
\end{tabular} & \(\mathrm{V}_{\text {th(FB1) }}\) & \[
\begin{gathered}
4.9 \\
- \\
4.85
\end{gathered}
\] & \[
\begin{gathered}
5.05 \\
0.008
\end{gathered}
\] & \[
\begin{gathered}
5.2 \\
0.03 \\
5.25
\end{gathered}
\] & \[
\begin{gathered}
\text { V } \\
\% / V \\
V
\end{gathered}
\] \\
\hline Input Bias Current (\(\mathrm{V}_{\mathrm{FB} 1}=5.05 \mathrm{~V}\)) & IIB(FB1) & - & 100 & 200 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34165 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34165
\(=-40^{\circ} \mathrm{C}\) for MC33165 \(=+85^{\circ} \mathrm{C}\) for MC33165
4. The Low Voltage Indicator threshold tracks \(V_{\text {th(FB2) }}\) and is expressed as a percent of the \(\mathrm{V}_{\text {th(FB2) }}\) threshold.

ELECTRICAL CHARACTERISTICS (continued) (\(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\), Pin \(16=\mathrm{V}_{\mathrm{CC}}, \mathrm{C}_{\mathrm{T}}=620 \mathrm{pF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(T_{A}\) is the operating ambient temperature range that applies (Note 3), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

FEEDBACK COMPARATOR 2
\begin{tabular}{|l|c|c|c|c|c|}
\hline Threshold Voltage & \(\mathrm{V}_{\mathrm{th}(\mathrm{FB} 2)}\) & & & & \\
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 1.225 & 1.25 & 1.275 & V \\
Line Regulation \(\left(\mathrm{V} \mathrm{CC}=3.0 \mathrm{~V}\right.\) to \(\left.65 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & & - & 0.008 & 0.03 & \(\% / \mathrm{V}\) \\
Total Variation over Line, and Temperature & & 1.220 & - & 1.280 & V \\
\hline Input Bias Current \(\left(\mathrm{V}_{\mathrm{FB} 2}=1.25 \mathrm{~V}\right)\) & & \(\mathrm{I}_{\mathrm{IB}(\mathrm{FB} 2)}\) & -0.4 & 0 & 0.4 \\
\hline AA \\
\hline
\end{tabular}

CURRENT LIMIT COMPARATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Threshold Voltage
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
Total Variation over \(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\) to 65 V , and Temperature
\end{tabular} & \(\mathrm{V}_{\text {th(lpk Sense) }}\) & \[
225
\] & 245 & \[
\frac{-}{270}
\] & mV \\
\hline Input Bias Current (V1pk (Sense) \(=15 \mathrm{~V}\)) & \(\mathrm{I}_{\mathrm{IB} \text { (sense) }}\) & - & 1.0 & 5.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

DRIVER AND OUTPUT SWITCH (Note 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sink Saturation Voltage (ISW = 1.0 A, Pins 14, 15 grounded) Non-Darlington Connection (RPin \(9=110 \Omega\) to \(\mathrm{V}_{\mathrm{CC}}\), ISW/IDRV \(\approx 8\)) Darlington Connection (Pins 9, 10, 11 connected) & \(\mathrm{V}_{\text {CE }}\) (sat) & - & \[
\begin{aligned}
& 0.3 \\
& 1.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 1.4
\end{aligned}
\] & v \\
\hline Collector Off-State Leakage Current (V CE \(=65 \mathrm{~V}\)) & \({ }^{1} \mathrm{C}\) (off) & - & 0.02 & 100 & \(\mu \mathrm{A}\) \\
\hline Bootstrap Input Current Source (\(\mathrm{V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{CC}}+5.0 \mathrm{~V}\)) & I source(DRV) & 0.5 & 2.0 & 4.0 & mA \\
\hline Bootstrap Input Zener Clamp Voltage (\(\mathrm{I}=25 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{Z}}\) & \(\mathrm{V}_{\mathrm{CC}}+6.0\) & \(\mathrm{V}_{\mathrm{CC}}+7.0\) & \(\mathrm{V}_{C C}+9.0\) & V \\
\hline
\end{tabular}

LOW VOLTAGE INDICATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
LVI Threshold (Percent of \(\mathrm{V}_{\mathrm{FB}}\), Note 4) \\
\(V_{\text {FB2 }}\) Decreasing \\
\(V_{\text {FB2 }}\) Increasing
\end{tabular} & \(\mathrm{V}_{\text {th(LVI) }}\) & \[
\begin{aligned}
& 87 \\
& 88
\end{aligned}
\] & \[
\begin{aligned}
& 88.3 \\
& 89.9
\end{aligned}
\] & \[
\begin{aligned}
& 90 \\
& 92
\end{aligned}
\] & \% \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & - & 20 & - & mV \\
\hline Output Sink Saturation Voltage (\(1_{\text {sink }}=0.5 \mathrm{~mA}\)) & \(\mathrm{V}_{\text {OL(LVI) }}\) & - & 0.15 & 0.4 & V \\
\hline Output Off-State Leakage Current (\(\mathrm{V} \mathrm{OH}=15 \mathrm{~V}\)) & \(\mathrm{IOH}^{\prime}\) & - & 0.01 & 1.0 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{6}{|l|}{TOTAL DEVICE} \\
\hline Standby Supply Current (VCC \(=3.0 \mathrm{~V}\) to 65 V , Pin \(8=\mathrm{V}_{\mathrm{CC}}\), Pins 6, 14, \(15=\) Gnd, remaining pins open) & ICC & - & 6.0 & 10 & mA \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain as close to ambient as possible.
3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34165 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34165
\(=-40^{\circ} \mathrm{C}\) for MC33165 \(\quad=+85^{\circ} \mathrm{C}\) for MC33165
4. The Low Voltage Indicator threshold tracks \(\mathrm{V}_{\mathrm{th}}(\mathrm{FB} 2)\) and is expressed as a percent of the \(\mathrm{V}_{\mathrm{FB}}\) threshold.

Figure 1. Output Switch On-Off Time

\(\mathrm{C}_{\mathrm{T}}\), OSCILLATOR TIMING CAPACITOR (nF)

Figure 2. Oscillator Frequency Change versus Temperature

Figure 3. Feedback Comparator 1 Input Bias Current versus Temperature

Figure 5. Bootstrap Input Current Source versus Temperature

Figure 7. Output Switch Source Saturation versus Emitter Current

Figure 4. Feedback Comparator 2 Threshold Voltage versus Temperature

Figure 6. Bootstrap Input Zener Clamp Voltage versus Temperature

Figure 8. Output Switch Sink Saturation versus Collector Current

Figure 9. Output Switch Negative Emitter Voltage versus Temperature

Figure 11. Current Limit Comparator Threshold Voltage versus Temperature

Figure 13. Standby Supply Current versus Supply Voltage

Figure 10. Low Voltage Indicator Output Sink Saturation Voltage versus Sink Current

Figure 12. Current Limit Comparator Input Bias Current versus Temperature

Figure 14. Standby Supply Current versus Temperature

Figure 15. Minimum Operating Supply Voltage versus Temperature

Figure 16. P Suffix (DIP-16) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 17. DW Suffix (SOP-16L) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 18. Representative Block Diagram

Figure 19. Typical Operating Waveforms

\section*{INTRODUCTION}

The MC34165 series are monolithic power switching regulators optimized for DC-to-DC converter applications. The combination of features in this series enables the system designer to directly implement step-up, step-down, and voltage-inverting converters with a minimum number of external components. This series is constructed on a special high voltage process making it ideal for telecommunication applications. Other potential applications include cost sensitive consumer products as well as equipment for the automotive, computer, and industrial markets. The Representative Block Diagram is shown in Figure 18.

\section*{OPERATING DESCRIPTION}

The MC34165 operates as a fixed on-time, variable off-time voltage mode ripple regulator. In general, this mode of operation is somewhat analogous to a capacitor charge pump and does not require dominant pole loop compensation for converter stability. The Typical Operating Waveforms are shown in Figure 19. The output voltage waveform shown is for a step-down converter, with the ripple and phasing exaggerated for clarity. During initial converter start-up, the feedback comparator senses that the output voltage level is below nominal. This causes the output switch to turn on and off at a frequency and duty cycle controlled by the oscillator, thus pumping up the output filter capacitor. When the output voltage level reaches nominal, the feedback comparator sets the latch, immediately terminating switch conduction. The feedback comparator will inhibit the switch until the load current causes the output voltage to fall below nominal. Under these conditions, output switch conduction can be inhibited for a partial oscillator cycle, a partial cycle plus a complete cycle, multiple cycles, or a partial cycle plus multiple cycles.

\section*{Oscillator}

The oscillator frequency and on-time of the output switch are programmed by the value selected for timing capacitor \(\mathrm{C}_{\mathrm{T}}\). Capacitor \(\mathrm{C}_{\top}\) is charged and discharged by a 9 to 1 ratio internal current source and sink, generating a negative going sawtooth waveform at Pin 6. As CT charges, an internal pulse is generated at the oscillator output. This pulse is connected to the NOR gate center input, preventing output switch conduction, and to the AND gate upper input, allowing the latch to be reset if the comparator output is low. Thus, the output switch is always disabled during ramp-up and can be enabled by the comparator output only at the start of ramp-down. The oscillator peak and valley thresholds are 1.25 V and 0.55 V , respectively, with a charge current of \(225 \mu \mathrm{~A}\) and a discharge current of \(25 \mu \mathrm{~A}\), yielding a maximum on-time duty cycle of \(90 \%\). Since the MC34165 is a ripple mode regulator, the switch frequency will vary with line and load. The value selected for \(C_{T}\) will set the maximum switching frequency of the converter. A reduction of the maximum duty cycle may be required for specific converter configurations. This can be accomplished with the addition of an external dead-time resistor (RDT) placed across \(\mathrm{C}_{\mathrm{T}}\). The resistor increases the discharge current which reduces the on-time of the output switch. A graph of the Output Switch On-Off Time versus Oscillator Timing Capacitance for
various values of RDT is shown in Figure 1. Note that the maximum output duty cycle, \(\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\text {off }}\), remains constant for values of \(\mathrm{C}_{\mathrm{T}}\) greater than 0.2 nF . The converter output can be inhibited by clamping \(C_{T}\) to ground with an external NPN small-signal transistor.

\section*{Feedback and Low Voltage Indicator Comparators}

Output voltage control is established by the Feedback comparator. The inverting input is internally biased at 1.25 V and is not pinned out. The converter output voltage is typically divided down with two external resistors and monitored by the high impedance noninverting input at Pin 2. The maximum input bias current is \(\pm 0.4 \mu \mathrm{~A}\), which can cause an output voltage error that is equal to the product of the input bias current and the upper divider resistance value. For applications that require 5.0 V , the converter output can be directly connected to the noninverting input at Pin 3. The high impedance input, Pin 2, must be grounded to prevent noise pickup. The internal resistor divider is set for a nominal voltage of 5.05 V . The additional 50 mV compensates for a \(1.0 \%\) voltage drop in the cable and connector from the converter output to the load. The Feedback comparator's output state is controlled by the highest voltage applied to either of the two noninverting inputs.

The Low Voltage Indicator (LVI) comparator is designed for use as a reset controller in microprocessor-based systems. The inverting input is internally biased at 1.125 V , which sets the noninverting input thresholds to \(90 \%\) of nominal. The LVI comparator has 15 mV of hysteresis to prevent erratic reset operation. The open collector output is capable of sinking in excess of 1.5 mA (see Figure 10). An external resistor (RLVI) and capacitor (CDLY) can be used to program a reset delay time (tDLY) by the formula shown below, where \(\mathrm{V}_{\mathrm{th}}\) (MPU) is the microprocessor reset input threshold.
\[
t_{D L Y}=R_{L V I} C_{D L Y} \ln \left(\frac{1}{1-\frac{V_{\text {th }}(M P U)}{V_{\text {out }}}}\right)
\]

\section*{Current Limit Comparator,}

\section*{Latch and Thermal Shutdown}

With a voltage mode ripple converter operating under normal conditions, output switch conduction is initiated by the oscillator and terminated by the Voltage Feedback comparator. Abnormal operating conditions occur when the converter output is overloaded or when feedback voltage sensing is lost. Under these conditions, the Current Limit comparator will protect the Output Switch.

The switch current is converted to a voltage by inserting a fractional ohm resistor, RSC, in series with \(\mathrm{V}_{\mathrm{CC}}\) and output switch transistor \(\mathrm{Q}_{2}\). The voltage drop across RSC is monitored by the Current Sense comparator. If the voltage drop exceeds 250 mV with respect to \(\mathrm{V}_{\mathrm{CC}}\), the comparator will set the latch and terminate output switch conduction on a cycle-by-cycle basis. This Comparator/Latch configuration ensures that the Output Switch has only a single on-time during a given oscillator cycle. The calculation for a value of RSC is:
\[
\mathrm{RSC}=\frac{0.25 \mathrm{~V} \cdot \mathrm{~K}}{\operatorname{lpk}(\text { Switch })}
\]

The K factor was added to the previous equation in order to account for a 200 ns propagation delay that occurs from the Current Limit comparator input to the output switch. This propagation delay can cause the actual peak switch current to rise above the calculated peak switch current for small values of \(\mathrm{C}_{\mathrm{T}}\). The following figure shows the relationship of the ratio \(I_{\mathrm{pk}}\) (actual) \(/ \mathrm{l}_{\mathrm{pk}}\) (Switch), expressed as K versus \(\mathrm{C}_{\mathrm{T}}\). Note the ratio rises above 1.0 for \(\mathrm{C}_{\mathrm{T}}\) values less than 1.0 nF .

Figure 20. K Factor versus Timing Capacitance

When analyzing a design, the actual short circuit current must be measured to verify that it is less than the maximum rating of the device.

Figures 11 and 12 show that the Current Sense comparator threshold is tightly controlled over temperature and has a typical input bias current of \(1.0 \mu \mathrm{~A}\). The parasitic inductance associated with RSC and the circuit layout should be minimized. This will prevent unwanted voltage spikes that may falsely trip the Current Limit comparator.

Internal thermal shutdown circuitry is provided to protect the IC in the event that the maximum junction temperature is exceeded. When activated, typically at \(170^{\circ} \mathrm{C}\), the Latch is forced into the "Set" state, disabling the Output Switch. This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a replacement for proper heatsinking.

\section*{Driver and Output Switch}

To aid in system design flexibility and conversion efficiency, the driver current source and collector, and output switch collector and emitter are pinned out separately. This allows the designer the option of driving the output switch into saturation with a selected force gain or driving it near saturation when connected as a Darlington. The output switch is designed to switch a maximum of 65 V collector to emitter, with up to 1.5 A peak collector current. The minimum value for RSC is:
\[
\operatorname{RSC}(\min)=\frac{0.25 \mathrm{~V}}{1.5 \mathrm{~A}}=0.166 \Omega
\]

When configured for step-down or voltage-inverting applications, as in Figures 20 and 24, the inductor will forward
bias the output rectifier when the switch turns off. Rectifiers with a high forward voltage drop or long turn-on delay time should not be used. If the emitter is allowed to go sufficiently negative, collector current will flow, causing additional device heating and reduced conversion efficiency.

Figure 9 shows that by clamping the emitter to less than 0.5 V , the collector current will be in the range \(10 \mu \mathrm{~A}\) over temperature. A MBR160 or equivalent Schottky barrier rectifier is recommended to fulfill these requirements.

A bootstrap input is provided to reduce the output switch saturation voltage in step-down and voltage-inverting converter applications. This input is connected through a series resistor and capacitor to the switch emitter and is used to raise the internal 2.0 mA bias current source above \(\mathrm{V}_{\mathrm{CC}}\). An internal zener limits the bootstrap input voltage to \(\mathrm{V}_{\mathrm{C}}\) C +7.0 V . The capacitor's equivalent series resistance may be large enough to limit the zener current to less than the maximum 100 mA rating. However, in most high voltage applications, an additional series resistor will probably be required. It is recommended that this resistor limit the zener current to approximately 25 mA for optimal performance. The circuit can be optimized by adjusting the zener current (\(\mathrm{R}_{\mathrm{B}}\)) during operation, while observing the circuit's efficiency. The value of the series resistor can be calculated as follows:
\[
R_{B} \approx \frac{V_{i n(\max)}}{I_{Z}}
\]

The equation below is used to calculate a minimum value bootstrap capacitor based on a minimum zener voltage and an upper limit current source.
\[
\mathrm{C}_{\mathrm{B}(\min)}=1 \frac{\Delta \mathrm{t}}{\Delta \mathrm{~V}}=4.0 \mathrm{~mA} \frac{\mathrm{t}_{\mathrm{on}}}{4.0 \mathrm{~V}}=0.001 \mathrm{t}_{\mathrm{on}}
\]

Parametric operation of the MC34165 is guaranteed over a supply voltage range of 3.0 V to 65 V . When operating below 3.0 V , the Bootstrap Input should be connected to \(\mathrm{V}_{\mathrm{CC}}\). Figure 15 shows that non-parametric operation down to 1.7 V at room temperature is possible.

\section*{Package}

The MC34165 is contained in a heatsinkable 16-lead plastic dual-in-line power package in which the die is mounted on a special heat tab copper alloy lead frame. This tab consists of the four center ground pins that are specifically designed to improve thermal conduction from the die to the circuit board. Figures 16 and 17 show a simple and effective method of utilizing the printed circuit board medium as a heat dissipater by soldering these pins to an adequate area of copper foil. This permits the use of standard layout and mounting practices while having the ability to halve the junction-to-air thermal resistance. These examples are for a symmetrical layout on a single-sided board with two ounce per square foot of copper.

\section*{APPLICATIONS}

The following converter applications show the simplicity and flexibility of this circuit architecture. Three main converter topologies are demonstrated with actual test data shown below each of the circuit diagrams.

Figure 21. Step-Down Converter
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Condltion } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}\) to \(56 \mathrm{~V}, \mathrm{IO}=1.0 \mathrm{~A}\) & \(9.0 \mathrm{mV}= \pm 0.049 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~A}\) to 1.0 A & \(9.0 \mathrm{mV}= \pm 0.049 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(20 \mathrm{mVp}-\mathrm{p}\) \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 1.23 A \\
\hline Efficiency, Without Bootstrap & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(74.9 \%\) \\
\hline Efficiency, With Bootstrap & \(\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(75.5 \%\) \\
\hline
\end{tabular}
\(L=65\) turns of \# 18 AWG on Magenetics Inc. 55345-A2 core.

Figure 22. External Current Boost Connections for Ipk (Switch) Greater Than 1.5 A

Figure 22A. External NPN Switch

Figure 22B. External PNP Saturated Switch

\section*{MC34165 MC33165}

Figure 23. Step-Up Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Condition } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=10 \mathrm{~V}\) to \(20 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}\) & \(11 \mathrm{mV}= \pm 0.11 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}\) to 150 mA & \(9.0 \mathrm{mV}= \pm 0.09 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}\) & \(125 \mathrm{mVp}-\mathrm{p}\) \\
\hline Efficiency & \(\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}\) & \(85.8 \%\) \\
\hline
\end{tabular}
\(\mathrm{L}=65\) turns of \# 18 AWG on Magenetics Inc. 55345-A2 core.

Figure 24. External Current Boost Connections for Ipk (Switch) Greater Than 1.5 A

Figure 24A. External NPN Switch

Figure 24B. External NPN Saturated Switch

Figure 25. Voltage-Inverting Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Condition } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=15 \mathrm{~V}\) to \(30 \mathrm{~V}, \mathrm{IO}=300 \mathrm{~mA}\) & \(3.0 \mathrm{mV}= \pm 0.06 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}=30 \mathrm{~mA}\) to 300 mA & \(1.0 \mathrm{mV}= \pm 0.02 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}=300 \mathrm{~mA}\) & \(50 \mathrm{mVp}-\mathrm{p}\) \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 1.12 A \\
\hline Efficiency, Without Bootstrap & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}=300 \mathrm{~mA}\) & \(81.3 \%\) \\
\hline Efficiency, With Bootstrap & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}=300 \mathrm{~mA}\) & \(82.7 \%\) \\
\hline
\end{tabular}
\(\mathrm{L}=65\) turns of \# 18 AWG on Magenetics Inc. 55345-A2 core.
Figure 26. External Current Boost Connections for Ipk (Switch) Greater Than 1.5 A

Figure 26A. External NPN Switch

Figure 26B. External PNP Saturated Switch

Figure 27. Printed Circuit Board and Component Layout
(Circuits of Figures 21, 23, 25)

All printed circuit boards are \(2.58^{\prime \prime}\) in width by \(1.9^{\prime \prime}\) in height.

Table 1. Design Equations
\begin{tabular}{|c|c|c|c|}
\hline Calculation & Step-Down & Step-Up & Voltage-Inverting \\
\hline \[
\frac{t_{\text {on }}}{t_{\text {off }}}(\text { Notes } 1,2,3)
\] & \[
\frac{V_{\text {out }}+V_{F}}{V_{\text {in }}-V_{\text {sat }}-V_{\text {out }}}
\] & \[
\frac{V_{\text {out }}+V_{F}-V_{\text {in }}}{V_{\text {in }}-V_{\text {sat }}}
\] & \(\frac{\left|V_{\text {out }}\right|+V_{F}}{V_{\text {in }}-V_{\text {sat }}}\) \\
\hline ton & \[
\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{f\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)}
\] & \[
\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{f\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)}
\] & \[
\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{f\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)}
\] \\
\hline \(\mathrm{C}^{\text {T }}\) & \[
\frac{32.143 \cdot 10^{-6}}{f}
\] & \[
\frac{32.143 \cdot 10^{-6}}{f}
\] & \(\frac{32.143 \cdot 10^{-6}}{f}\) \\
\hline IL(avg) & lout & \(\mathrm{I}_{\text {out }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)\) & \(I_{\text {out }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)\) \\
\hline lpk (Switch) & \(\mathrm{L}(\) avg \()+\frac{\Delta I_{L}}{2}\) & \(\mathrm{L}(\) avg \()+\frac{\Delta_{L}}{2}\) & \(\mathrm{L}(\) avg \()+\frac{\Delta I_{L}}{2}\) \\
\hline RSC & \[
\frac{0.25 \cdot \mathrm{~K}}{\mathrm{lpk}(\text { Switch })}
\] & \[
\frac{0.25 \cdot \mathrm{~K}}{\text { Ipk (Switch) }}
\] & \(\frac{0.25 \cdot \mathrm{~K}}{\text { lpk (Switch) }}\) \\
\hline L & \(\left(\frac{V_{\text {in }}-V_{\text {sat }}-V_{\text {out }}}{\Delta I_{L}}\right) t_{\text {on }}\) & \(\left(\frac{V_{\text {in }}-V_{\text {sat }}}{\Delta I_{L}}\right) t_{\text {on }}\) & \(\left(\frac{V_{\text {in }}-V_{\text {sat }}}{\Delta I_{L}}\right) t_{\text {on }}\) \\
\hline \(V_{\text {ripple }}(p-p)\) & \(\Delta I L \sqrt{\left(\frac{1}{8 f C O}\right)^{2}+(E S R)^{2}}\) & \(\approx \frac{t_{\text {on }} l_{\text {out }}}{\mathrm{C}_{\mathrm{O}}}\) & \(\approx \frac{t_{\text {on }} l_{\text {out }}}{C_{O}}\) \\
\hline Vout & \(V_{\text {ref }}\left(\frac{R_{2}}{R_{1}}+1\right)\) & \(V_{\text {ref }}\left(\frac{R_{2}}{R_{1}}+1\right)\) & \(\mathrm{V}_{\text {ref }}\left(\frac{R_{2}}{R_{1}}+1\right)\) \\
\hline
\end{tabular}

\section*{The following Converter Characteristics must be chosen:}
\(V_{\text {in }}-\quad\) Nominal operating input voltage.
Vout - Desired output voltage.
lout - Desired output current.
\(\Delta L_{\mathrm{L}}\) - Desired peak-to-peak inductor ripple current. For maximum output current, it is suggested that \(\Delta \mathrm{l}_{\mathrm{L}}\) be chosen to be less
 set by RSC. If the design goal is to use a minimum inductance value, let \(\Delta L_{\mathrm{L}}=2(\mathrm{l} \mathrm{L}(\mathrm{avg})\)). This will proportionally reduce converter output current capability.
\(f\) - Maximum output switch frequency.
\(V_{\text {ripple }}(p-p)\) - Desired peak-to-peak output ripple voltage. For best performance, the ripple voltage should be kept to a low value since it will directly affect line and load regulation. Capacitor \(\mathrm{C}_{\mathrm{O}}\) should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.
K - Multiplier number as determined by Figure 20, for determining the appropriate value for RSC.
NOTES: 1. \(\mathrm{V}_{\text {sat }}\) - Saturation voltage of the output switch, refer to Figures 7 and 8.
2. \(\mathrm{V}_{\mathrm{F}}\) - Output rectifier forward voltage drop. Typical value for MBR160 Schottky barrier rectifier is 0.6 V .
3. The calculated \(\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\mathrm{off}}\) must not exceed the minimum guaranteed oscillator charge to discharge ratio of 8 , at the minimum operating input voltage.

\section*{Power Switching Regulators}

The MC34166, MC33166 series are high performance fixed frequency power switching regulators that contain the primary functions required for dc-to-dc converters. This series was specifically designed to be incorporated in step-down and voltage-inverting configurations with a minimum number of external components and can also be used cost effectively in step-up applications.
These devices consist of an internal temperature compensated reference, fixed frequency oscillator with on-chip timing components, latching pulse width modulator for single pulse metering, high gain error amplifier, and a high current output switch.
Protective features consist of cycle-by-cycle current limiting, undervoltage lockout, and thermal shutdown. Also included is a low power standby mode that reduces power supply current to \(36 \mu \mathrm{~A}\).
- Output Switch Current in Excess of 3.0 A
- Fixed Frequency Oscillator (72 kHz) with On-Chip Timing
- Provides 5.05 V Output without External Resistor Divider
- Precision 2\% Reference
- 0\% to 95\% Output Duty Cycle
- Cycle-by-Cycle Current Limiting
- Undervoltage Lockout with Hysteresis
- Internal Thermal Shutdown
- Operation from 7.5 V to 40 V
- Standby Mode Reduces Power Supply Current to \(36 \mu \mathrm{~A}\)
- Economical 5-Lead TO-220 Package with Two Optional Leadforms
- Also Available in Surface Mount D2PAK Package

MC34166 MC33166

\section*{POWER SWITCHING REGULATORS}

SEMICONDUCTOR TECHNICAL DATA

Heatsink surface connected to Pin 3.

T SUFFIX
PLASTIC PACKAGE
CASE 314D

Pin 1. Voltage Feedback Input
2. Switch Output
3. Ground
4. Input Voltage/VCC
5. Compensation/Standby

D2T SUFFIX
PLASTIC PACKAGE CASE 936A (D2PAK)

Heatsink surface (shown as terminal 6 in case outline drawing) is connected to Pin 3.

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC33166D2T & \multirow{4}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & Surface Mount \\
\hline MC33166T & & Straight Lead \\
\hline MC33166TH & & Horiz. Mount \\
\hline MC33166TV & & Vertical Mount \\
\hline MC34166D2T & \multirow{4}{*}{\(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & Surface Mount \\
\hline MC34166T & & Straight Lead \\
\hline MC34166TH & & Horiz. Mount \\
\hline MC34166TV & & Vertical Mount \\
\hline
\end{tabular}

\section*{MC34166 MC33166}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Input Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & V \\
\hline Switch Output Voltage Range & \(\mathrm{V}_{\mathrm{O}}\) (switch) & -1.5 to \(+\mathrm{V}_{\text {in }}\) & V \\
\hline Voltage Feedback and Compensation Input & \(\mathrm{V}_{\mathrm{FB}}, \mathrm{V}_{\mathrm{Comp}}\) & -1.0 to +7.0 & V \\
Voltage Range & & & \\
\hline Power Dissipation & & & \\
Case 314A, 314B and 314D (TA \(\left.=+25^{\circ} \mathrm{C}\right)\) & \(\mathrm{PD}_{\mathrm{D}}\) & Internally Limited & W \\
Thermal Resistance, Junction-to-Ambient & \(\theta \mathrm{JA}\) & 65 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Thermal Resistance, Junction-to-Case & \(\theta_{\mathrm{JC}}\) & 5.0 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Case 936A (D2PAK) (TA \(\left.=+25^{\circ} \mathrm{C}\right)\) & \(\mathrm{PD}_{\mathrm{D}}\) & Internally Limited & W \\
Thermal Resistance, Junction-to-Ambient & \(\theta \mathrm{JA}\) & 70 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Thermal Resistance, Junction-to-Case & \(\theta \mathrm{JC}\) & 5.0 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature (Note 3) & \(\mathrm{T}_{\mathrm{A}}\) & & \({ }^{\circ} \mathrm{C}\) \\
MC34166 & & 0 to +70 & \\
MC33166 & & -40 to +85 & \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=12 \mathrm{~V}\right.\), for typical values \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Notes 2, 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OSCILLATOR} \\
\hline Frequency (\(\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}\) to 40 V\() \quad \begin{aligned} & \text { TA }\end{aligned}\) & \({ }^{\text {fose }}\) & \[
\begin{aligned}
& 65 \\
& 62
\end{aligned}
\] & \[
72
\] & \[
\begin{aligned}
& 79 \\
& 81
\end{aligned}
\] & kHz \\
\hline \multicolumn{6}{|l|}{ERROR AMPLIFIER} \\
\hline \(\begin{array}{ll}\text { Voltage Feedback Input Threshold } & \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{Thigh}^{\text {h }}\end{array}\) & \(\mathrm{V}_{\mathrm{FB}}\) (th) & \[
\begin{aligned}
& 4.95 \\
& 4.85
\end{aligned}
\] & \[
5.05
\] & \[
\begin{gathered}
5.15 \\
5.2
\end{gathered}
\] & V \\
\hline Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)) & Regline & - & 0.03 & 0.078 & \%/V \\
\hline Input Bias Current (\(\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{FB}}\) (th) \(\left.+0.15 \mathrm{~V}\right)\) & IIB & - & 0.15 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Power Supply Rejection Ratio (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to \(20 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\)) & PSRR & 60 & 80 & - & dB \\
\hline ```
Output Voltage Swing
 High State (ISource =75 \muA, VFB = 4.5 V)
 Low State (ISink = 0.4 mA, VFB=5.5 V)
``` & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}}
\end{aligned}
\] & \[
4.2
\] & \[
\begin{aligned}
& 4.9 \\
& 1.6
\end{aligned}
\] & \[
\overline{-}
\] & V \\
\hline
\end{tabular}

PWM COMPARATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Duty Cycle Maximum ( \(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\) ) Minimum ( \(\mathrm{V}_{\mathrm{Comp}}=1.9 \mathrm{~V}\) )} & & & & & \multirow[t]{3}{*}{\%} \\
\hline & DC \({ }_{(\text {max }}\) & 92 & 95 & 100 & \\
\hline & \(D C_{(\text {min }}\) ) & 0 & 0 & 0 & \\
\hline
\end{tabular}

SWITCH OUTPUT
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Voltage Source Saturation ( \(\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}\), ISource \(=3.0 \mathrm{~A}\) ) & \(\mathrm{V}_{\text {sat }}\) & - & \[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{CC}}\right. \\
-1.5)
\end{gathered}
\] & \[
\begin{gathered}
(\mathrm{V} C \mathrm{CC} \\
-1.8)
\end{gathered}
\] & V \\
\hline Off-State Leakage ( \(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{Pin} 2=\) Gnd) & \(\mathrm{I}_{\mathrm{sw} \text { (off) }}\) & - & 0 & 100 & \(\mu \mathrm{A}\) \\
\hline Current Limit Threshold & \(\mathrm{l}_{\mathrm{pk} \text { (switch) }}\) & 3.3 & 4.3 & 6.0 & A \\
\hline Switching Times ( \(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{pk}}=3.0 \mathrm{~A}, \mathrm{~L}=375 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) Output Voltage Rise Time Output Voltage Fall Time & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \\
& \mathrm{t}_{\mathrm{f}}
\end{aligned}
\] & - & \[
\begin{aligned}
& 100 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & ns \\
\hline \multicolumn{6}{|l|}{UNDERVOLTAGE LOCKOUT} \\
\hline Startup Threshold ( \(\mathrm{V}_{\mathrm{CC}}\) Increasing, \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {th }}\) (UVLO) & 5.5 & 5.9 & 6.3 & V \\
\hline Hysteresis ( \(\mathrm{V}_{\mathrm{CC}}\) Decreasing, \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{H} \text { (UVLO) }}\) & 0.6 & 0.9 & 1.2 & V \\
\hline \multicolumn{6}{|l|}{TOTAL DEVICE} \\
\hline \[
\begin{aligned}
& \text { Power Supply Current }\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\
& \text { Standby }\left(\mathrm{V}_{C \mathrm{C}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{Comp}}<0.15 \mathrm{~V}\right) \\
& \text { Operating }\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V} \text {, Pin } 1=\text { Gnd for maximum duty cycle }\right)
\end{aligned}
\] & ICC & - & \[
\begin{aligned}
& 36 \\
& 31 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
100 \\
55
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed to prevent thermal shutdown activation.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34166 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34166
\[
=-40^{\circ} \mathrm{C} \text { for MC33166 }=+85^{\circ} \mathrm{C} \text { for MC33166 }
\]

Figure 1. Voltage Feedback Input Threshold versus Temperature


Figure 3. Error Amp Open Loop Gain and Phase versus Frequency


Figure 5. Oscillator Frequency Change versus Temperature


Figure 2. Voltage Feedback Input Bias Current versus Temperature


Figure 4. Error Amp Output Saturation versus Sink Current


Figure 6. Switch Output Duty Cycle versus Compensation Voltage


Figure 7. Switch Output Source Saturation


Figure 9. Switch Output Current Limit Threshold versus Temperature


Figure 11. Undervoltage Lockout


Figure 8. Negative Switch Output Voltage versus Temperature


Figure 10. Standby Supply Current versus Supply Voltage


Figure 12. Operating Supply Current versus Supply Voltage


Figure 13. MC34166 Representative Block Diagram


Figure 14. Timing Diagram


\section*{INTRODUCTION}

The MC34166, MC33166 series are monolithic power switching regulators that are optimized for dc-to-dc converter applications. These devices operate as fixed frequency, voltage mode regulators containing all the active functions required to directly implement step-down and voltage-inverting converters with a minimum number of external components. They can also be used cost effectively in step-up converter applications. Potential markets include automotive, computer, industrial, and cost sensitive consumer products. A description of each section of the device is given below with the representative block diagram shown in Figure 13.

\section*{Oscillator}

The oscillator frequency is internally programmed to 72 kHz by capacitor \(\mathrm{C}_{\mathrm{T}}\) and a trimmed current source. The charge to discharge ratio is controlled to yield a \(95 \%\) maximum duty cycle at the Switch Output. During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates an internal blanking pulse that holds the inverting input of the AND gate high, disabling the output switch transistor. The nominal oscillator peak and valley thresholds are 4.1 V and 2.3 V respectively.

\section*{Pulse Width Modulator}

The Pulse Width Modulator consists of a comparator with the oscillator ramp voltage applied to the noninverting input, while the error amplifier output is applied into the inverting input. Output switch conduction is initiated when \(\mathrm{C}_{T}\) is discharged to the oscillator valley voltage. As \(\mathrm{C}_{\top}\) charges to a voltage that exceeds the error amplifier output, the latch resets, terminating output transistor conduction for the duration of the oscillator ramp-up period. This PWM/Latch combination prevents multiple output pulses during a given oscillator clock cycle. Figures 6 and 14 illustrate the switch output duty cycle versus the compensation voltage.

\section*{Current Sense}

The MC34166 series utilizes cycle-by-cycle current limiting as a means of protecting the output switch transistor from overstress. Each on-cycle is treated as a separate situation. Current limiting is implemented by monitoring the output switch transistor current buildup during conduction, and upon sensing an overcurrent condition, immediately turning off the switch for the duration of the oscillator ramp-up period.

The collector current is converted to a voltage by an internal trimmed resistor and compared against a reference by the Current Sense comparator. When the current limit threshold is reached, the comparator resets the PWM latch. The current limit threshold is typically set at 4.3 A. Figure 9 illustrates switch output current limit threshold versus temperature.

\section*{Error Amplifier and Reference}

A high gain Error Amplifier is provided with access to the inverting input and output. This amplifier features a typical dc voltage gain of 80 dB , and a unity gain bandwidth of 600 kHz with 70 degrees of phase margin (Figure 3). The noninverting input is biased to the internal 5.05 V reference and is not pinned out. The reference has an accuracy of \(\pm 2.0 \%\) at room temperature. To provide 5.0 V at the load, the reference is programmed 50 mV above 5.0 V to compensate for a \(1.0 \%\) voltage drop in the cable and connector from the
converter output. If the converter design requires an output voltage greater than 5.05 V , resistor \(\mathrm{R}_{1}\) must be added to form a divider network at the feedback input as shown in Figures 13 and 18. The equation for determining the output voltage with the divider network is:
\[
\mathrm{V}_{\text {out }}=5.05\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)
\]

External loop compensation is required for converter stability. A simple low-pass filter is formed by connecting a resistor \(\left(\mathrm{R}_{2}\right)\) from the regulated output to the inverting input, and a series resistor-capacitor ( \(\mathrm{RF}_{\mathrm{F}}, \mathrm{C}_{\mathrm{F}}\) ) between Pins 1 and 5. The compensation network component values shown in each of the applications circuits were selected to provide stability over the tested operating conditions. The step-down converter (Figure 18) is the easiest to compensate for stability. The step-up (Figure 20) and voltage-inverting (Figure 22) configurations operate as continuous conduction flyback converters, and are more difficult to compensate. The simplest way to optimize the compensation network is to observe the response of the output voltage to a step load change, while adjusting \(R_{F}\) and \(C_{F}\) for critical damping. The final circuit should be verified for stability under four boundary conditions. These conditions are minimum and maximum input voltages, with minimum and maximum loads.

By clamping the voltage on the error amplifier output (Pin 5) to less than 150 mV , the internal circuitry will be placed into a low power standby mode, reducing the power supply current to \(36 \mu \mathrm{~A}\) with a 12 V supply voltage. Figure 10 illustrates the standby supply current versus supply voltage.

The Error Amplifier output has a \(100 \mu \mathrm{~A}\) current source pull-up that can be used to implement soft-start. Figure 17 shows the current source charging capacitor CSS through a series diode. The diode disconnects CSS from the feedback loop when the 1.0 M resistor charges it above the operating range of \(\operatorname{Pin} 5\).

\section*{Switch Output}

The output transistor is designed to switch a maximum of 40 V , with a minimum peak collector current of 3.3 A. When configured for step-down or voltage-inverting applications, as in Figures 18 and 22, the inductor will forward bias the output rectifier when the switch turns off. Rectifiers with a high forward voltage drop or long turn-on delay time should not be used. If the emitter is allowed to go sufficiently negative, collector current will flow, causing additional device heating and reduced conversion efficiency. Figure 8 shows that by clamping the emitter to 0.5 V , the collector current will be in the range of \(100 \mu \mathrm{~A}\) over temperature. A 1 N 5822 or equivalent Schottky barrier rectifier is recommended to fulfill these requirements.

\section*{Undervoltage Lockout}

An Undervoltage Lockout comparator has been incorporated to guarantee that the integrated circuit is fully functional before the output stage is enabled. The internal 5.05 V reference is monitored by the comparator which enables the output stage when \(\mathrm{V}_{\mathrm{CC}}\) exceeds 5.9 V . To prevent erratic output switching as the threshold is crossed, 0.9 V of hysteresis is provided.

\section*{Thermal Protection}

Internal Thermal Shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically at \(170^{\circ} \mathrm{C}\), the latch is forced into a 'reset' state, disabling the output switch. This feature is provided to prevent catastrophic failures
from accidental device overheating. It is not intended to be used as a substitute for proper heatsinking. The MC34166 is contained in a 5-lead TO-220 type package. The tab of the package is common with the center pin (Pin 3) and is normally connected to ground.

\section*{DESIGN CONSIDERATIONS}

Do not attempt to construct a converter on wire-wrap or plug-in prototype boards. Special care should be taken to separate ground paths from signal currents and ground paths from load currents. All high current loops should be kept as short as possible using heavy copper runs to minimize ringing and radiated EMI. For best operation, a tight
component layout is recommended. Capacitors \(\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{\mathrm{O}}\), and all feedback components should be placed as close to the IC as physically possible. It is also imperative that the Schottky diode connected to the Switch Output be located as close to the IC as possible.

Figure 16. Over Voltage Shutdown Circuit

\(V_{\text {Shutdown }}=V_{\text {Zener }}+0.7\)

Figure 17. Soft-Start Circuit

\({ }^{\text {tSoft-Start }} \approx 35,000 \mathrm{C}_{\text {ss }}\)

\section*{MC34166 MC33166}

Figure 18. Step-Down Converter


L = Coilcraft M1496-A or General Magnetics Technology GMT-0223, 42 turns of \#16 AWG on Magnetics Inc. 58350-A2 core. Heatsink = AAVID Engineering Inc. 5903B, or 5930B.

The Step-Down Converter application is shown in Figure 18. The output switch transistor \(Q_{1}\) interrupts the input voltage, generating a squarewave at the \(L_{0}\) filter input. The filter averages the squarewaves, producing a dc output voltage that can be set to any level between \(\mathrm{V}_{\text {in }}\) and \(\mathrm{V}_{\text {ref }}\) by controlling the percent conduction time of \(Q_{1}\) to that of the total oscillator cycle time. If the converter design requires an output voltage greater than 5.05 V , resistor \(\mathrm{R}_{1}\) must be added to form a divider network at the feedback input.

Figure 19. Step-Down Converter Printed Circuit Board and Component Layout

(Top View)

Figure 20. Step-Up/Down Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & \multicolumn{1}{|c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(24 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.6 \mathrm{~A}\) & \(23 \mathrm{mV}= \pm 0.41 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~A}\) to 0.6 A & \(3.0 \mathrm{mV}= \pm 0.005 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.6 \mathrm{~A}\) & 100 mV pp \\
\hline Short Circuit Current & \(\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 4.0 A \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.6 \mathrm{~A}\) & \(82.8 \%\) \\
\hline
\end{tabular}

L = Coilcraft M1496-A or General Magnetics Technology GMT-0223, 42 turns of \#16 AWG on
Magnetics Inc. 58350-A2 core.
Heatsink = AAVID Engineering Inc.
MC34166: 5903B, or 5930B
MTP3055EL: 5925B
Figure 20 shows that the MC34166 can be configured as a step-up/down converter with the addition of an external power MOSFET. Energy is stored in the inductor during the on-time of transistors \(Q_{1}\) and \(Q_{2}\). During the off-time, the energy is transferred, with respect to ground, to the output filter capacitor and load. This circuit configuration has two significant advantages over the basic step-up converter circuit. The first advantage is that output short-circuit protection is provided by the MC34166, since \(Q_{1}\) is directly in series with \(V_{\text {in }}\) and the load. Second, the output voltage can be programmed to be less than \(V_{\text {in }}\). Notice that during the off-time, the inductor forward biases diodes \(D_{1}\) and \(D_{2}\), transferring its energy with respect to ground rather than with respect to \(V_{\text {in }}\). When operating with \(V_{\text {in }}\) greater than 20 V , a gate protection network is required for the MOSFET. The network consists of components \(R_{G}, D_{3}\), and \(D_{4}\).

Figure 21. Step-Up/Down Converter Printed Circuit Board and Component Layout

(Bottom View)

(Top View)

\section*{MC34166 MC33166}

Figure 22. Voltage-Inverting Converter


Two potential problems arise when designing the standard voltage-inverting converter with the MC34166. First, the Switch Output emitter is limited to -1.5 V with respect to the ground pin and second, the Error Amplifier's noninverting input is internally committed to the reference and is not pinned out. Both of these problems are resolved by connecting the IC ground pin to the converter's negative output as shown in Figure 22. This keeps the emitter of \(\mathrm{Q}_{1}\) positive with respect to the ground pin and has the effect of reversing the Error Amplifier inputs. Note that the voltage drop across \(\mathrm{R}_{1}\) is equal to 5.05 V when the output is in regulation.

Figure 23. Voltage-Inverting Converter Printed Circuit Board and Component Layout

(Bottom View)

(Top View)

\section*{MC34166 MC33166}

Figure 24. Triple Output Converter

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Tests} & Conditions & Results \\
\hline Line Regulation & \[
\begin{array}{r}
5.0 \mathrm{~V} \\
12 \mathrm{~V} \\
-12 \mathrm{~V}
\end{array}
\] & \(\mathrm{V}_{\text {in }}=15 \mathrm{~V}\) to \(30 \mathrm{~V}, \mathrm{IO1}=2.0 \mathrm{~A}, \mathrm{IO}_{2}=300 \mathrm{~mA}, \mathrm{l}_{03}=100 \mathrm{~mA}\) & \[
\begin{aligned}
& 4.0 \mathrm{mV}= \pm 0.04 \% \\
& 450 \mathrm{mV}= \pm 1.9 \% \\
& 350 \mathrm{mV}= \pm 1.5 \%
\end{aligned}
\] \\
\hline Load Regulation & \[
\begin{array}{r}
5.0 \mathrm{~V} \\
12 \mathrm{~V} \\
-12 \mathrm{~V}
\end{array}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}_{1}=500 \mathrm{~mA} \text { to } 2.0 \mathrm{~A}, \mathrm{IO}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\
& \mathrm{~V}_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}_{1}=2.0 \mathrm{~A}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \text { to } 300 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\
& \mathrm{~V}_{\text {in }}=24 \mathrm{~V}, \mathrm{I}_{1}=2.0 \mathrm{~A}, \mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA} \text { to } 100 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \mathrm{mV}= \pm 0.02 \% \\
& 420 \mathrm{mV}= \pm 1.7 \% \\
& 3.10 \mathrm{mV}= \pm 1.3 \%
\end{aligned}
\] \\
\hline Output Ripple & \[
\begin{array}{r}
5.0 \mathrm{~V} \\
12 \mathrm{~V} \\
-12 \mathrm{~V}
\end{array}
\] & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=2.0 \mathrm{~A}, \mathrm{IO} 2=300 \mathrm{~mA}, \mathrm{IO}^{2}=100 \mathrm{~mA}\) & \[
\begin{aligned}
& 50 \mathrm{mV} \mathrm{Vpp}^{2} \\
& 25 \mathrm{mV} \mathrm{pp} \\
& 10 \mathrm{mV} \mathrm{pp}
\end{aligned}
\] \\
\hline Short Circuit Current & \[
\begin{array}{r}
5.0 \mathrm{~V} \\
12 \mathrm{~V} \\
-12 \mathrm{~V}
\end{array}
\] & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & \[
\begin{aligned}
& 4.3 \mathrm{~A} \\
& 1.83 \mathrm{~A} \\
& 1.47 \mathrm{~A}
\end{aligned}
\] \\
\hline Efficiency & TOTAL & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}_{1}=2.0 \mathrm{~A}, \mathrm{l} \mathrm{O} 2=300 \mathrm{~mA}, \mathrm{l}_{3}=100 \mathrm{~mA}\) & 83.3\% \\
\hline
\end{tabular}

T1 = Primary: Coilcraft M1496-A or General Magnetics Technology GMT-0223, 42 turns of \#16 AWG on Magnetics Inc. 58350-A2 core.
Secondary: \(\mathrm{V}_{\mathrm{O} 2}-65\) turns of \#26 AWG
\(\mathrm{V}_{\mathrm{O} 3}-96\) turns of \#28 AWG
Heatsink = AAVID Engineering Inc. 5903B, or 5930B.
Multiple auxiliary outputs can easily be derived by winding secondaries on the main output inductor to form a transformer. The secondaries must be connected so that the energy is delivered to the auxiliary outputs when the Switch Output turns off. During the OFF time, the voltage across the primary winding is regulated by the feedback loop, yielding a constant Volts/Turn ratio. The number of turns for any given secondary voltage can be calculated by the following equation:
\[
\# \operatorname{TURNS}_{(\mathrm{SEC})}=\frac{\mathrm{V}_{\mathrm{O}(\mathrm{SEC})}+\mathrm{V}_{\mathrm{F}(\mathrm{SEC})}}{\left(\frac{\mathrm{VO}_{\mathrm{O}(\mathrm{PRI})}+\mathrm{VF}_{\mathrm{F}}(\mathrm{PRI})}{\# T U R N S(\mathrm{PRI})}\right)}
\]

\footnotetext{
Note that the 12 V winding is stacked on top of the 5.0 V output. This reduces the number of secondary turns and improves lead regulation. For best auxiliary regulation, the auxiliary outputs should be less than \(33 \%\) of the total output power.
}

Figure 25. Negative Input/Positive Output Regulator

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & \multicolumn{1}{|c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\mathrm{in}}=-10 \mathrm{~V}\) to \(-20 \mathrm{~V}, \mathrm{IO}=0.25 \mathrm{~A}\) & \(250 \mathrm{mV}= \pm 0.35 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\mathrm{in}}=-12 \mathrm{~V}, \mathrm{IO}=0.025 \mathrm{~A}\) to 0.25 A & \(790 \mathrm{mV}= \pm 1.19 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\mathrm{in}}=-12 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=0.25 \mathrm{~A}\) & 80 mV pp \\
\hline Efficiency & \(\mathrm{V}_{\mathrm{in}}=-12 \mathrm{~V}, \mathrm{IO}=0.25 \mathrm{~A}\) & \(79.2 \%\) \\
\hline
\end{tabular}

L = Coilcraft M1496-A or ELMACO CHK1050, 42 turns of \#16 AWG on Magnetics Inc. 58350-A2 core. Heatsink = AAVID Engineering Inc. 5903B or 5930B

Figure 26. Variable Motor Speed Control with EMF Feedback Sensing


\section*{MC34166 MC33166}

Figure 27. Off-Line Preconverter

\(\mathrm{T}_{1}=\) Core and Bobbin -Coilcraft PT3595
Primary - 104 turns \#26 AWG
Base Drive - 3 turns \#26 AWG
Secondaries - 16 turns \#16 AWG
Total Gap - \(0.002^{\prime \prime}\)
\(\mathrm{T}_{2}=\) Core - TDK T6 \(\times 1.5 \times 3 \mathrm{H} 5 \mathrm{C} 2\)
14 turns center tapped \#30 AWG Heatsink = AAVID Engineering Inc. MC34166 and MJE13005-5903B MBR20100CT-5925B

The MC34166 can be used cost effectively in off-line applications even though it is limited to a maximum input voltage of 40 V . Figure 27 shows a simple and efficient method for converting the AC line voltage down to 24 V . This preconverter has a total power rating of 125 W with a conversion efficiency of \(90 \%\). Transformer \(\mathrm{T}_{1}\) provides output isolation from the \(A C\) line and isolation between each of the secondaries. The circuit self-oscillates at 50 kHz and is controlled by the saturation characteristics of \(T_{2}\). Multiple MC34166 post regulators can be used to provide accurate independently regulated outputs for a distributed power system.

Figure 28. D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


Table 1. Design Equations
\begin{tabular}{|c|c|c|c|}
\hline Calculation & Step-Down & Step-Up/Down & Voltage-Inverting \\
\hline \[
\frac{\text { ton }_{\text {on }}^{t_{\text {off }}}}{(\text { Notes } 1,2)}
\] & \[
\frac{V_{\text {out }}+V_{F}}{V_{\text {in }}-V_{\text {sat }}-V_{\text {out }}}
\] & \[
\frac{V_{\text {out }}+V_{F 1}+V_{F 2}}{V_{\text {in }}-V_{\text {satQ1 }}-V_{\text {satQ2 }}}
\] & \[
\frac{\mid V_{\text {out }}+V_{F}}{V_{\text {in }}-V_{\text {sat }}}
\] \\
\hline ton & \[
\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{\mathrm{fosc}^{\mathrm{t}_{\mathrm{on}}}\left(\frac{t_{\text {off }}}{}+1\right)}
\] & \[
\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{\left.\mathrm{tosc}^{\left(\frac{t_{\mathrm{on}}}{t_{\text {off }}}\right.}+1\right)}
\] & \[
\frac{\frac{t_{\text {on }}}{t_{\text {off }}}}{\mathrm{f}_{\mathrm{osc}}\left(\frac{\mathrm{ton}^{\prime}}{t_{\text {off }}}+1\right)}
\] \\
\hline Duty Cycle (Note 3) & ton fosc & ton fosc & ton fosc \\
\hline 'L avg & lout & \(l_{\text {out }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)\) & \(l_{\text {out }}\left(\frac{t_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)\) \\
\hline Ipk(switch) & LL avg \(+\frac{\Delta L_{L}}{2}\) & LL avg \(+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}\) & LL avg \(+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}\) \\
\hline L & \(\left(\frac{V_{\text {in }}-V_{\text {sat }}-V_{\text {out }}}{\Delta l_{\text {L }}}\right) \mathrm{ton}_{\text {on }}\) & \(\left(\frac{V_{\text {in }}-V_{\text {satQ1 }}-V_{\text {satQ2 }}}{\Delta l_{\text {L }}}\right)_{\text {ton }}\) & \(\left(\frac{V_{\text {in }}-V_{\text {sat }}}{\Delta l_{\text {s }}}\right)_{\text {ton }}\) \\
\hline \(V_{\text {ripple(pp) }}\) & \(\Delta \mathrm{l} \mathrm{L} \sqrt{\left(\frac{1}{8 \mathrm{fosc} \mathrm{C}_{\mathrm{o}}}\right)^{2}+(\mathrm{ESR})^{2}}\) & \(\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right) \sqrt{\left(\frac{1}{f_{\text {osc }} \mathrm{C}_{\mathrm{o}}}\right)^{2}+(\mathrm{ESR})^{2}}\) & \(\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right) \sqrt{\left(\frac{1}{f_{\text {osc }} \mathrm{C}_{\mathrm{o}}}\right)^{2}+(\mathrm{ESR})^{2}}\) \\
\hline \(V_{\text {out }}\) & \(\mathrm{V}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)\) & \(\mathrm{V}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)\) & \(\mathrm{V}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)\) \\
\hline
\end{tabular}

NOTES: 1. \(V_{\text {sat }}\) - Switch Output source saturation voltage, refer to Figure 7.
2. \(V_{F}\)-Output rectifier forward voltage drop. Typical value for 1 N5822 Schottky barrier rectifier is 0.5 V .
3. Duty cycle is calculated at the minimum operating input voltage and must not exceed the guaranteed minimum \(\mathrm{DC}_{(\max )}\) specification of 0.92 .

The following converter characteristics must be chosen:
\(V_{\text {out }}\) - Desired output voltage.
Iout - Desired output current.
\(\Delta l_{\mathrm{L}}\) - Desired peak-to-peak inductor ripple current. For maximum output current especially when the duty cycle is greater than 0.5 , it is suggested that \(\Delta \mathrm{I}_{\mathrm{L}}\) be chosen to be less than \(10 \%\) of the average inductor current \(\mathrm{I}_{\mathrm{L}}\) avg. This will help prevent \(\mathrm{I}_{\mathrm{pk}}(\mathrm{switch})\) from reaching the guaranteed minimum current limit threshold of 3.3 A . If the design goal is to use a minimum inductance value, let \(\Delta I_{\mathrm{L}}=2\) ( \(\mathrm{I}_{\mathrm{L}}\) avg). This will proportionally reduce the converter's output current capability.
\(\mathrm{V}_{\text {ripple(pp) }}\) - Desired peak-to-peak output ripple voltage. For best performance, the ripple voltage should be kept to less than \(2 \%\) of \(\mathrm{V}_{\mathrm{O}}\). Capacitor \(\mathrm{C}_{\mathrm{O}}\) should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.

\section*{Power Switching Regulators}

The MC34167, MC33167 series are high performance fixed frequency power switching regulators that contain the primary functions required for dc-to-dc converters. This series was specifically designed to be incorporated in step-down and voltage-inverting configurations with a minimum number of external components and can also be used cost effectively in step-up applications.

These devices consist of an internal temperature compensated reference, fixed frequency oscillator with on-chip timing components, latching pulse width modulator for single pulse metering, high gain error amplifier, and a high current output switch.
Protective features consist of cycle-by-cycle current limiting, undervoltage lockout, and thermal shutdown. Also included is a low power standby mode that reduces power supply current to \(36 \mu \mathrm{~A}\).
- Output Switch Current in Excess of 5.0 A
- Fixed Frequency Oscillator ( 72 kHz ) with On-Chip Timing
- Provides 5.05 V Output without External Resistor Divider
- Precision 2\% Reference
- 0\% to \(95 \%\) Output Duty Cycle
- Cycle-by-Cycle Current Limiting
- Undervoltage Lockout with Hysteresis
- Internal Thermal Shutdown
- Operation from 7.5 V to 40 V
- Standby Mode Reduces Power Supply Current to \(36 \mu \mathrm{~A}\)
- Economical 5-Lead TO-220 Package with Two Optional Leadforms
- Also Available in Surface Mount D2PAK Package


\section*{POWER SWITCHING REGULATORS}

SEMICONDUCTOR TECHNICAL DATA


Heatsink surface connected to Pin 3.
T SUFFIX
PLASTIC PACKAGE
CASE 314D


Pin 1. Voltage Feedback Input
2. Switch Output
3. Ground
4. Input Voltage/VCC
5. Compensation/Standby


D2T SUFFIX
PLASTIC PACKAGE CASE 936A
(D2PAK)

Heatsink surface (shown as terminal 6 in case outline drawing) is connected to \(\operatorname{Pin} 3\).

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline MC33167D2T & \multirow{4}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & Surface Mount \\
\hline MC33167T & & Straight Lead \\
\hline MC33167TH & & Horiz. Mount \\
\hline MC33167TV & & Vertical Mount \\
\hline MC34167D2T & \multirow{4}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & Surface Mount \\
\hline MC34167T & & Straight Lead \\
\hline MC34167TH & & Horiz. Mount \\
\hline MC34167TV & & Vertical Mount \\
\hline
\end{tabular}

\section*{MC34167 MC33167}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Input Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & V \\
\hline Switch Output Voltage Range & \(\mathrm{V}_{\mathrm{O}(\text { switch })}\) & -2.0 to \(+\mathrm{V}_{\text {in }}\) & V \\
\hline \begin{tabular}{l} 
Voltage Feedback and Compensation Input \\
Voltage Range
\end{tabular} & \(\mathrm{V}_{\mathrm{FB}} \mathrm{V}_{\mathrm{Comp}}\) & -1.0 to +7.0 & V \\
\hline Power Dissipation & & & \\
Case 314A, 314B and 314D \(\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\) & \(\mathrm{P}_{\mathrm{D}}\) & Internally Limited & W \\
Thermal Resistance, Junction-to-Ambient & \(\theta_{\mathrm{JA}}\) & 65 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Thermal Resistance, Junction-to-Case & \(\theta_{\mathrm{JC}}\) & 5.0 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Case 936A (D2PAK) ( \(\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\) & \(\mathrm{P}_{\mathrm{D}}\) & Internally Limited & \({ }^{\mathrm{W}}\) \\
Thermal Resistance, Junction-to-Ambient & \(\theta_{\mathrm{JA}}\) & 70 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Thermal Resistance, Junction-to-Case & \(\theta_{\mathrm{JC}}\) & 5.0 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature (Note 3) & \(\mathrm{T}_{\mathrm{A}}\) & & 0 to +70 \\
MC34167 & & \({ }^{\circ} \mathrm{C}\) \\
MC33167 & & -40 to +85 & \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right.\), for typical values \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Notes 2, 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Characteristic} & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{OSCILLATOR} \\
\hline Frequency ( \(\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}\) to 40 V ) & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & fosc & \[
\begin{aligned}
& 65 \\
& 62
\end{aligned}
\] & \[
72
\] & \[
\begin{aligned}
& 79 \\
& 81
\end{aligned}
\] & kHz \\
\hline
\end{tabular}

\section*{ERROR AMPLIFIER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\begin{array}{ll}\text { Voltage Feedback Input Threshold } & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\end{array}\) & \(\mathrm{V}_{\mathrm{FB} \text { (th) }}\) & \[
\begin{aligned}
& 4.95 \\
& 4.85
\end{aligned}
\] & \[
5.05
\] & \[
\begin{aligned}
& \hline 5.15 \\
& 5.20
\end{aligned}
\] & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) & Regline & - & 0.03 & 0.078 & \%/V \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{FB}}(\mathrm{th})+0.15 \mathrm{~V}\) ) & IIB & - & 0.15 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Power Supply Rejection Ratio ( \(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to \(20 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) ) & PSRR & 60 & 80 & - & dB \\
\hline \(\begin{array}{ll}\text { Output Voltage Swing } & \begin{array}{l}\text { High State (ISource }=75 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{FB}}=4.5 \mathrm{~V} \text { ) } \\ \text { Low State (ISink }=0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=5.5 \mathrm{~V}\end{array}\end{array}\) & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & \[
4.2
\] & \[
\begin{aligned}
& 4.9 \\
& 1.6
\end{aligned}
\] & \[
1.9
\] & V \\
\hline \multicolumn{6}{|l|}{PWM COMPARATOR} \\
\hline \(\begin{array}{ll}\text { Duty Cycle }\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\right) & \begin{array}{l}\text { Maximum }\left(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\right) \\ \\ \\ \\ \end{array} \text { Minimum }\left(\mathrm{V}_{\mathrm{Comp}}=1.9 \mathrm{~V}\right)\end{array}\) & \[
\begin{aligned}
& \mathrm{DC}_{(\text {max })} \\
& \mathrm{DC}_{(\text {min })}
\end{aligned}
\] & \[
\begin{gathered}
92 \\
0
\end{gathered}
\] & \[
\begin{gathered}
95 \\
0
\end{gathered}
\] & \[
\begin{gathered}
100 \\
0
\end{gathered}
\] & \% \\
\hline
\end{tabular}

\section*{SWITCH OUTPUT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Voltage Source Saturation ( \(\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}\), ISource \(=5.0 \mathrm{~A}\) ) & \(\mathrm{V}_{\text {sat }}\) & - & ( \(\mathrm{VCC}^{-1.5}\) ) & ( \(\left.\mathrm{V}_{\mathrm{CC}}-1.8\right)\) & V \\
\hline Off-State Leakage ( \(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{Pin} 2=\) Gnd) & \(\mathrm{I}_{\mathrm{sw} \text { (off) }}\) & - & 0 & 100 & \(\mu \mathrm{A}\) \\
\hline Current Limit Threshold ( \(\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}\) ) & 1 lpk (switch) & 5.5 & 6.5 & 8.0 & A \\
\hline Switching Times ( \(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{pk}}=5.0 \mathrm{~A}, \mathrm{~L}=225 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) Output Voltage Rise Time Output Voltage Fall Time & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \\
& \mathrm{t}_{\mathrm{f}}
\end{aligned}
\] & - & \[
\begin{gathered}
100 \\
50
\end{gathered}
\] & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & ns \\
\hline \multicolumn{6}{|l|}{UNDERVOLTAGE LOCKOUT} \\
\hline Startup Threshold ( \(\mathrm{V}_{\mathrm{CC}}\) Increasing, \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {th }}\) (UVLO) & 5.5 & 5.9 & 6.3 & V \\
\hline Hysteresis ( \(\mathrm{V}_{\mathrm{CC}}\) Decreasing, \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{H} \text { (UVLO) }}\) & 0.6 & 0.9 & 1.2 & V \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|c|c|c|c|c|}
\hline Power Supply Current \(\left(T_{A}=+25^{\circ} \mathrm{C}\right)\) & ICC & & & \\
\begin{tabular}{l} 
Standby \(\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{Comp}}<0.15 \mathrm{~V}\right)\) \\
Operating \(\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \operatorname{Pin} 1=G n d\right.\) for maximum duty cycle \()\)
\end{tabular} & & - & 36 & 100 \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed to prevent thermal shutdown activation.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34167 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34167
\[
=-40^{\circ} \mathrm{C} \text { for MC33167 } \quad=+85^{\circ} \mathrm{C} \text { for MC33167 }
\]

Figure 1. Voltage Feedback Input Threshold versus Temperature


Figure 3. Error Amp Open Loop Gain and Phase versus Frequency


Figure 5. Oscillator Frequency Change versus Temperature


Figure 2. Voltage Feedback Input Bias Current versus Temperature


Figure 4. Error Amp Output Saturation versus Sink Current


Figure 6. Switch Output Duty Cycle versus Compensation Voltage


Figure 7. Switch Output Source Saturation


Figure 9. Switch Output Current Limit Threshold versus Temperature


Figure 11. Undervoltage Lockout


Figure 8. Negative Switch Output Voltage versus Temperature


Figure 10. Standby Supply Current versus Supply Voltage


Figure 12. Operating Supply Current versus Supply Voltage


\section*{MC34167 MC33167}

Figure 13. MC34167 Representative Block Diagram


Figure 14. Timing Diagram


\section*{INTRODUCTION}

The MC34167, MC33167 series are monolithic power switching regulators that are optimized for dc-to-dc converter applications. These devices operate as fixed frequency, voltage mode regulators containing all the active functions required to directly implement step-down and voltage-inverting converters with a minimum number of external components. They can also be used cost effectively in step-up converter applications. Potential markets include automotive, computer, industrial, and cost sensitive consumer products. A description of each section of the device is given below with the representative block diagram shown in Figure 13.

\section*{Oscillator}

The oscillator frequency is internally programmed to 72 kHz by capacitor \(\mathrm{C}_{\top}\) and a trimmed current source. The charge to discharge ratio is controlled to yield a \(95 \%\) maximum duty cycle at the Switch Output. During the discharge of \(C_{T}\), the oscillator generates an internal blanking pulse that holds the inverting input of the AND gate high, disabling the output switch transistor. The nominal oscillator peak and valley thresholds are 4.1 V and 2.3 V respectively.

\section*{Pulse Width Modulator}

The Pulse Width Modulator consists of a comparator with the oscillator ramp voltage applied to the noninverting input, while the error amplifier output is applied into the inverting input. Output switch conduction is initiated when \(\mathrm{C}_{\boldsymbol{T}}\) is discharged to the oscillator valley voltage. As \(\mathrm{C}_{T}\) charges to a voltage that exceeds the error amplifier output, the latch resets, terminating output transistor conduction for the duration of the oscillator ramp-up period. This PWM/Latch combination prevents multiple output pulses during a given oscillator clock cycle. Figures 6 and 14 illustrate the switch output duty cycle versus the compensation voltage.

\section*{Current Sense}

The MC34167 series utilizes cycle-by-cycle current limiting as a means of protecting the output switch transistor from overstress. Each on cycle is treated as a separate situation. Current limiting is implemented by monitoring the output switch transistor current buildup during conduction, and upon sensing an overcurrent condition, immediately turning off the switch for the duration of the oscillator ramp-up period.

The collector current is converted to a voltage by an internal trimmed resistor and compared against a reference by the Current Sense comparator. When the current limit threshold is reached, the comparator resets the PWM latch. The current limit threshold is typically set at 6.5 A. Figure 9 illustrates switch output current limit threshold versus temperature.

\section*{Error Amplifier and Reference}

A high gain Error Amplifier is provided with access to the inverting input and output. This amplifier features a typical dc voltage gain of 80 dB , and a unity gain bandwidth of 600 kHz with 70 degrees of phase margin (Figure 3). The noninverting input is biased to the internal 5.05 V reference and is not pinned out. The reference has an accuracy of \(\pm 2.0 \%\) at room temperature. To provide 5.0 V at the load, the reference is programmed 50 mV above 5.0 V to compensate for a \(1.0 \%\) voltage drop in the cable and connector from the
converter output. If the converter design requires an output voltage greater than 5.05 V , resistor \(\mathrm{R}_{1}\) must be added to form a divider network at the feedback input as shown in Figures 13 and 18. The equation for determining the output voltage with the divider network is:
\[
\mathrm{V}_{\text {out }}=5.05\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)
\]

External loop compensation is required for converter stability. A simple low-pass filter is formed by connecting a resistor \(\left(R_{2}\right)\) from the regulated output to the inverting input, and a series resistor-capacitor ( \(\mathrm{R}_{\mathrm{F}}, \mathrm{C}_{\mathrm{F}}\) ) between Pins 1 and 5. The compensation network component values shown in each of the applications circuits were selected to provide stability over the tested operating conditions. The step-down converter (Figure 18) is the easiest to compensate for stability. The step-up (Figure 20) and voltage-inverting (Figure 22) configurations operate as continuous conduction flyback converters, and are more difficult to compensate. The simplest way to optimize the compensation network is to observe the response of the output voltage to a step load change, while adjusting \(R_{F}\) and \(C_{F}\) for critical damping. The final circuit should be verified for stability under four boundary conditions. These conditions are minimum and maximum input voltages, with minimum and maximum loads.

By clamping the voltage on the error amplifier output (Pin 5) to less than 150 mV , the internal circuitry will be placed into a low power standby mode, reducing the power supply current to \(36 \mu \mathrm{~A}\) with a 12 V supply voltage. Figure 10 illustrates the standby supply current versus supply voltage.

The Error Amplifier output has a \(100 \mu \mathrm{~A}\) current source pull-up that can be used to implement soft-start. Figure 17 shows the current source charging capacitor CSS through a series diode. The diode disconnects CSS from the feedback loop when the 1.0 M resistor charges it above the operating range of Pin 5.

\section*{Switch Output}

The output transistor is designed to switch a maximum of 40 V , with a minimum peak collector current of 5.5 A . When configured for step-down or voltage-inverting applications, as in Figures 18 and 22, the inductor will forward bias the output rectifier when the switch turns off. Rectifiers with a high forward voltage drop or long turn on delay time should not be used. If the emitter is allowed to go sufficiently negative, collector current will flow, causing additional device heating and reduced conversion efficiency. Figure 8 shows that by clamping the emitter to 0.5 V , the collector current will be in the range of \(100 \mu \mathrm{~A}\) over temperature. A 1 N 5825 or equivalent Schottky barrier rectifier is recommended to fulfill these requirements.

\section*{Undervoltage Lockout}

An Undervoltage Lockout comparator has been incorporated to guarantee that the integrated circuit is fully functional before the output stage is enabled. The internal reference voltage is monitored by the comparator which enables the output stage when \(\mathrm{V}_{\mathrm{C}}\) exceeds 5.9 V . To prevent erratic output switching as the threshold is crossed, 0.9 V of hysteresis is provided.

\section*{Thermal Protection}

Internal Thermal Shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically at \(170^{\circ} \mathrm{C}\), the latch is forced into a 'reset' state, disabling the output switch. This feature is provided to prevent catastrophic failures
from accidental device overheating. It is not intended to be used as a substitute for proper heatsinking. The MC34167 is contained in a 5-lead TO-220 type package. The tab of the package is common with the center pin (Pin 3) and is normally connected to ground.

\section*{DESIGN CONSIDERATIONS}

Do not attempt to construct a converter on wire-wrap or plug-in prototype boards. Special care should be taken to separate ground paths from signal currents and ground paths from load currents. All high current loops should be kept as short as possible using heavy copper runs to minimize ringing and radiated EMI. For best operation, a tight
component layout is recommended. Capacitors \(\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{\mathrm{O}}\), and all feedback components should be placed as close to the IC as physically possible. It is also imperative that the Schottky diode connected to the Switch Output be located as close to the IC as possible.

Figure 16. Over Voltage Shutdown Circuit


Figure 17. Soft-Start Circuit


Figure 18. Step-Down Converter


The Step-Down Converter application is shown in Figure 18. The output switch transistor \(Q_{1}\) interrupts the input voltage, generating a squarewave at the \(L C_{0}\) filter input. The filter averages the squarewaves, producing a dc output voltage that can be set to any level between \(\mathrm{V}_{\text {in }}\) and \(\mathrm{V}_{\text {ref }}\) by controlling the percent conduction time of \(\mathrm{Q}_{1}\) to that of the total oscillator cycle time. If the converter design requires an output voltage greater than 5.05 V , resistor \(\mathrm{R}_{1}\) must be added to form a divider network at the feedback input.

Figure 19. Step-Down Converter Printed Circuit Board and Component Layout

(Bottom View)

(Top View)

Figure 20. Step-Up/Down Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=10 \mathrm{~V}\) to \(24 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.9 \mathrm{~A}\) & \(10 \mathrm{mV}= \pm 0.017 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~A}\) to 0.9 A & \(30 \mathrm{mV}= \pm 0.053 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.9 \mathrm{~A}\) & 140 mV pp \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 6.0 A \\
\hline Efficiency & \(\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.9 \mathrm{~A}\) & \(80.1 \%\) \\
& \(\mathrm{~V}_{\text {in }}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.9 \mathrm{~A}\) & \(87.8 \%\) \\
\hline
\end{tabular}

L = Coilcraft M1496-A or General Magnetics Technology GMT-0223, 42 turns of \#16 AWG on
Magnetics Inc. 58350-A2 core.
Heatsink = AAVID Engineering Inc.
MC34167: 5903B, or 5930B
MTP3055EL: 5925B
Figure 20 shows that the MC34167 can be configured as a step-up/down converter with the addition of an external power MOSFET. Energy is stored in the inductor during the ON time of transistors \(Q_{1}\) and \(Q_{2}\). During the OFF time, the energy is transferred, with respect to ground, to the output filter capacitor and load. This circuit configuration has two significant advantages over the basic step-up converter circuit. The first advantage is that output short circuit protection is provided by the MC34167, since \(Q_{1}\) is directly in series with \(V_{\text {in }}\) and the load. Second, the output voltage can be programmed to be less than \(\mathrm{V}_{\text {in }}\). Notice that during the OFF time, the inductor forward biases diodes \(\mathrm{D}_{1}\) and \(\mathrm{D}_{2}\), transferring its energy with respect to ground rather than with respect to \(\mathrm{V}_{\text {in }}\). When operating with \(\mathrm{V}_{\text {in }}\) greater than 20 V , a gate protection network is required for the MOSFET. The network consists of components \(\mathrm{R}_{\mathrm{G}}, \mathrm{D}_{3}\), and \(\mathrm{D}_{4}\).

Figure 21. Step-Up/Down Converter Printed Circuit Board and Component Layout

(Bottom View)

(Top View)

Figure 22. Voltage-Inverting Converter


Two potential problems arise when designing the standard voltage-inverting converter with the MC34167. First, the Switch Output emitter is limited to -1.5 V with respect to the ground pin and second, the Error Amplifier's noninverting input is internally committed to the reference and is not pinned out. Both of these problems are resolved by connecting the IC ground pin to the converter's negative output as shown in Figure 22. This keeps the emitter of \(Q_{1}\) positive with respect to the ground pin and has the effect of reversing the Error Amplifier inputs. Note that the voltage drop across \(\mathrm{R}_{1}\) is equal to 5.05 V when the output is in regulation.

Figure 23. Voltage-Inverting Converter Printed Circuit Board and Component Layout


\section*{MC34167 MC33167}

Figure 24. Triple Output Converter

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Tests} & Conditions & Results \\
\hline Line Regulation & \[
\begin{array}{r}
5.0 \mathrm{~V} \\
12 \mathrm{~V} \\
-12 \mathrm{~V}
\end{array}
\] & \(\mathrm{V}_{\text {in }}=15 \mathrm{~V}\) to \(30 \mathrm{~V}, \mathrm{l}_{\mathrm{O} 1}=3.0 \mathrm{~A}, \mathrm{l}_{\mathrm{O} 2}=250 \mathrm{~mA}, \mathrm{l}_{\mathrm{O} 3}=200 \mathrm{~mA}\) & \[
\begin{aligned}
& 3.0 \mathrm{mV}= \pm 0.029 \% \\
& 572 \mathrm{mV}= \pm 2.4 \% \\
& 711 \mathrm{mV}= \pm 2.9 \%
\end{aligned}
\] \\
\hline Load Regulation & \[
\begin{array}{r}
5.0 \mathrm{~V} \\
12 \mathrm{~V} \\
-12 \mathrm{~V}
\end{array}
\] & \[
\begin{aligned}
& V_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}_{1}=30 \mathrm{~mA} \text { to } 3.0 \mathrm{~A}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}, \mathrm{IO}_{\mathrm{O}}=200 \mathrm{~mA} \\
& \mathrm{~V}_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}_{1}=3.0 \mathrm{~A}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \text { to } 250 \mathrm{~mA}, \mathrm{IO}_{\mathrm{O}}=200 \mathrm{~mA} \\
& \mathrm{~V}_{\text {in }}=24 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=75 \mathrm{~mA} \text { to } 200 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
1.0 \mathrm{mV} & = \pm 0.009 \% \\
409 \mathrm{mV} & = \pm 1.5 \% \\
528 \mathrm{mV} & = \pm 2.0 \%
\end{aligned}
\] \\
\hline Output Ripple & \[
\begin{array}{r}
5.0 \mathrm{~V} \\
12 \mathrm{~V} \\
-12 \mathrm{~V}
\end{array}
\] & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{l}_{\mathrm{O} 1}=3.0 \mathrm{~A}, \mathrm{l}_{\mathrm{O} 2}=250 \mathrm{~mA}, \mathrm{l}_{\mathrm{O} 3}=200 \mathrm{~mA}\) & 75 mV pp 20 mV pp 20 mV pp \\
\hline Short Circuit Current & \[
\begin{array}{r}
5.0 \mathrm{~V} \\
12 \mathrm{~V} \\
-12 \mathrm{~V}
\end{array}
\] & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & \[
\begin{aligned}
& 6.5 \mathrm{~A} \\
& 2.7 \mathrm{~A} \\
& 2.2 \mathrm{~A}
\end{aligned}
\] \\
\hline Efficiency & TOTAL & \(\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 1}=3.0 \mathrm{~A}, \mathrm{I}_{\mathrm{O} 2}=250 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\) & 84.2\% \\
\hline
\end{tabular}

T1 = Primary: Coilcraft M1496-A or General Magnetics Technology GMT-0223, 42 turns of \#16 AWG on Magnetics Inc. 58350-A2 core.
Secondary: \(\mathrm{V}_{\mathrm{O} 2}\) - 69 turns of \#26 AWG
VO3-104 turns of \#28 AWG
Heatsink = AAVID Engineering Inc. 5903B, or 5930B.
Multiple auxiliary outputs can easily be derived by winding secondaries on the main output inductor to form a transformer. The secondaries must be connected so that the energy is delivered to the auxiliary outputs when the Switch Output turns off. During the OFF time, the voltage across the primary winding is regulated by the feedback loop, yielding a constant Volts/Turn ratio. The number of turns for any given secondary voltage can be calculated by the following equation:
\[
\# \operatorname{TURNS}_{(\text {SEC })}=\frac{V_{O(S E C)}+V_{F(S E C)}}{\left(\frac{V_{O(P R I)}+V_{F(P R I I)}}{\# T U R N S(P R I)}\right)}
\]

Note that the 12 V winding is stacked on top of the 5.0 V output. This reduces the number of secondary turns and improves lead regulation. For best auxiliary regulation, the auxiliary outputs should be less than \(33 \%\) of the total output power.

\section*{MC34167 MC33167}

Figure 25. Negative Input/Positive Output Regulator

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=-10 \mathrm{~V}\) to \(-20 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.3 \mathrm{~A}\) & \(266 \mathrm{mV}= \pm 0.38 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=-12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.03 \mathrm{~A}\) to 0.3 A & \(7.90 \mathrm{mV}= \pm 1.1 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=-12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.3 \mathrm{~A}\) & 100 mV pp \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=-12 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=0.3 \mathrm{~A}\) & \(78.4 \%\) \\
\hline
\end{tabular}
\(\mathrm{L}=\) General Magnetics Technology GMT-0223, 42 turns of \#16 AWG on Magnetics Inc. 58350-A2 core. Heatsink = AAVID Engineering Inc. 5903B or 5930B

Figure 26. Variable Motor Speed Control with EMF Feedback Sensing


\section*{MC34167 MC33167}

Figure 27. Off-Line Preconverter


The MC34167 can be used cost effectively in off-line applications even though it is limited to a maximum input voltage of 40 V . Figure 27 shows a simple and efficient method for converting the AC line voltage down to 24 V . This preconverter has a total power rating of 125 W with a conversion efficiency of \(90 \%\). Transformer \(T_{1}\) provides output isolation from the AC line and isolation between each of the secondaries. The circuit self-oscillates at 50 kHz and is controlled by the saturation characteristics of \(T_{2}\). Multiple MC34167 post regulators can be used to provide accurate independently regulated outputs for a distributed power system.

Figure 28. D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


Table 1. Design Equations
\begin{tabular}{|c|c|c|c|}
\hline Calculation & Step-Down & Step-Up/Down & Voltage-Inverting \\
\hline \[
\frac{t_{\text {on }}}{\frac{t_{\text {off }}}{(\text { Notes } 1,2)}}
\] & \[
\frac{V_{\text {out }}+V_{F}}{V_{\text {in }}-V_{\text {sat }}-V_{\text {out }}}
\] & \[
\frac{V_{\text {out }}+V_{F 1}+V_{F 2}}{V_{\text {in }}-V_{\text {satQ1 }}-V_{\text {satQ2 }}}
\] & \[
\frac{\mid V_{\text {out }}+V_{F}}{V_{\text {in }}-V_{\text {sat }}}
\] \\
\hline ton & \[
\frac{\frac{t_{0 n}}{t_{\text {off }}}}{\left.\mathrm{fosc}^{\left(\frac{t_{\mathrm{on}}}{t_{\text {off }}}+1\right.}\right)}
\] & \[
\frac{\frac{\text { ton }}{t_{\text {off }}}}{\mathrm{fosc}^{\left(\frac{t_{\mathrm{on}}}{t_{\text {off }}}+1\right)}}
\] & \[
\frac{\frac{\text { ton }}{t_{\text {off }}}}{\mathrm{f}_{\mathrm{osc}}\left(\frac{\mathrm{ton}_{\mathrm{on}}}{t_{\text {off }}}+1\right)}
\] \\
\hline Duty Cycle (Note 3) & ton fosc & ton fosc & ton fosc \\
\hline L avg & lout & \(\mathrm{l}_{\text {out }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)\) & lout ( \(\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)\) \\
\hline Ipk(switch) & LL avg \(+\frac{\Delta \mathrm{IL}_{\mathrm{L}}}{2}\) & LL avg \(+\frac{\Delta \mathrm{IL}_{\mathrm{L}}}{2}\) & LL avg \(+\frac{\Delta l_{L}}{2}\) \\
\hline L & \(\left(\frac{V_{\text {in }}-V_{\text {sat }}-V_{\text {out }}}{\Delta L_{\text {L }}}\right) \mathrm{ton}\) & \(\left(\frac{V_{\text {in }}-V_{\text {satQ1 }}-V_{\text {satQ2 }}}{\Delta l_{\text {L }}}\right)\) ton & \(\left(\frac{V_{\text {in }}-V_{\text {sat }}}{\Delta l_{\text {L }}}\right)_{\text {ton }}\) \\
\hline \(V_{\text {ripple(pp) }}\) & \(\Delta{ }^{\text {L }}\) L \(\sqrt{\left(\frac{1}{8 \mathrm{fosc}^{\text {c }}}\right)^{2}+(\mathrm{ESR})^{2}}\) & \(\left(\frac{t_{\text {on }}}{t_{\text {toff }}}+1\right) \sqrt{\left(\frac{1}{f_{\text {osc }} \mathrm{C}_{0}}\right)^{2}+(\mathrm{ESR})^{2}}\) & \(\left(\frac{t_{\text {on }}}{t_{\text {toff }}}+1\right) \sqrt{\left(\frac{1}{f_{\text {osc }} C_{0}}\right)^{2}+(\mathrm{ESR})^{2}}\) \\
\hline \(V_{\text {out }}\) & \(\mathrm{V}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)\) & \(\mathrm{V}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)\) & \(\mathrm{V}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1\right)\) \\
\hline
\end{tabular}

NOTES: 1. \(V_{\text {sat }}-\) Switch Output source saturation voltage, refer to Figure 7.
2. \(V_{F}\) - Output rectifier forward voltage drop. Typical value for 1 N 5822 Schottky barrier rectifier is 0.35 V .
3. Duty cycle is calculated at the minimum operating input voltage and must not exceed the guaranteed minimum \(\mathrm{DC}_{\text {(max) }}\) specification of 0.92 .

The following converter characteristics must be chosen:
\(V_{\text {out }}\) - Desired output voltage.
Iout - Desired output current.
\(\Delta l_{\mathrm{L}}\) - Desired peak-to-peak inductor ripple current. For maximum output current especially when the duty cycle is greater than 0.5 , it is suggested that \(\Delta_{\mathrm{L}}\) be chosen minimum current limit threshold of 5.5 A . If the design goal is to use a minimum inductance value, let \(\Delta l_{\mathrm{L}}=2\) ( \(\mathrm{I}_{\mathrm{L}}\) avg \()\). This will proportionally reduce the converter's output current capability.
\(V_{\text {ripple }}(\mathrm{pp})\) - Desired peak-to-peak output ripple voltage. For best performance, the ripple voltage should be kept to less than \(2 \%\) of \(\mathrm{V}_{\text {out }}\). Capacitor \(\mathrm{C}_{\mathrm{O}}\) should be a low equivalent series resistance (ESR) electrolytic designed for switching regulator applications.

\section*{Power Factor Controllers}

The MC34261/MC33261 are active power factor controllers specifically designed for use as a preconverter in electronic ballast and in off-line power converter applications. These integrated circuits feature an internal startup timer, a one quadrant multiplier for near unity power factor, zero current detector to ensure critical conduction operation, high gain error amplifier, trimmed internal bandgap reference, current sensing comparator, and a totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of input undervoltage lockout with hysteresis, cycle-by-cycle current limiting, and a latch for single pulse metering. These devices are available in dual-in-line and surface mount plastic packages.
- Internal Startup Timer
- One Quadrant Multiplier
- Zero Current Detector
- Trimmed 2\% Internal Bandgap Reference
- Totem Pole Output
- Undervoltage Lockout with Hysteresis
- Low Startup and Operating Current
- Pinout Equivalent to the SG3561
- Functional Equivalent to the TDA4817

MC34261 MC33261

POWER FACTOR CONTROLLERS

SEMICONDUCTOR TECHNICAL DATA


PIN CONNECTIONS

(Top View)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34261D & \multirow{2}{*}{\(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 1 } MC34261P & & Plastic DIP \\
\hline MC33261D & \multirow{2}{*}{\(\mathrm{T}_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 2 } MC33261P & Plastic DIP \\
\hline
\end{tabular}

\section*{MC34261 MC33261}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & (ICC + Iz) & 30 & mA \\
\hline Output Current, Source or Sink (Note 1) & 10 & 500 & mA \\
\hline Current Sense, Multiplier, and Voltage Feedback Inputs & \(\mathrm{V}_{\text {in }}\) & -1.0 to 10 & V \\
\hline Zero Current Detect Input High State Forward Current Low State Reverse Current & 1 in & \[
\begin{array}{r}
50 \\
-10
\end{array}
\] & mA \\
\hline Power Dissipation and Thermal Characteristics P Suffix, Plastic Package Case 626 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air D Suffix, Plastic Package Case 626 Maximum Power Dissipation @ \(T_{A}=70^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air & \begin{tabular}{l}
PD \(R_{\theta J A}\) \\
PD \(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 800 \\
& 100 \\
& \\
& 450 \\
& 178
\end{aligned}
\] & \begin{tabular}{l}
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature (Note 3) \\
MC34261 \\
MC33261
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=12 \mathrm{~V}\right.\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

ERROR AMPLIFIER
\begin{tabular}{|c|c|c|c|c|c|}
\hline Voltage Feedback Input Threshold
\[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }}(\mathrm{V} C \mathrm{C}=12 \mathrm{~V} \text { to } 28 \mathrm{~V})
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{FB}}\) & \[
\begin{gathered}
2.465 \\
2.44
\end{gathered}
\] & 2.5 & \[
\begin{gathered}
2.535 \\
2.54
\end{gathered}
\] & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to \(28 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & Regline & - & 1.0 & 10 & mV \\
\hline Input Bias Current (VFB \(=0 \mathrm{~V}\) ) & IB & - & -0.3 & -1.0 & \(\mu \mathrm{A}\) \\
\hline Open Loop Voltage Gain & Avol & 65 & 85 & - & dB \\
\hline Gain Bandwidth Product ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & GBW & 0.7 & 1.0 & - & MHz \\
\hline Output Source Current ( \(\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) & ISource & 0.25 & 0.5 & 0.75 & mA \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State (ISource \(=0.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) \\
Low State (ISink \(=0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) )
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
VOL
\end{tabular} & 5.0 & \[
\begin{aligned}
& 5.7 \\
& 2.1
\end{aligned}
\] & \[
2.44
\] & V \\
\hline
\end{tabular}

\section*{MULTIPLIER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Dynamic Input Voltage Range Multiplier Input (Pin 3) Compensation (Pin 2) & \begin{tabular}{l}
\(V_{\text {Pin }} 3\) \\
\(V_{\text {Pin }} 2\)
\end{tabular} & \[
\begin{gathered}
0 \text { to } 2.5 \\
V_{F B} \text { to } \\
\left(V_{F B}+1.0\right)
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to } 3.5 \\
V_{F B} \text { to } \\
\left(V_{F B}+1.5\right)
\end{gathered}
\] & - & v \\
\hline Input Bias Current ( \(\left.\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\right)\) & IB & - & -0.3 & -1.0 & \(\mu \mathrm{A}\) \\
\hline Multiplier Gain ( \(\mathrm{V}_{\text {Pin } 3}=0.5 \mathrm{~V}\), \(\mathrm{V}_{\text {Pin } 2}=\mathrm{V}_{\text {FB }}+1.0 \mathrm{~V}\) ) ( Note 2\()\) & K & 0.4 & 0.62 & 0.8 & 1/V \\
\hline
\end{tabular}

\section*{ZERO CURRENT DETECTOR}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Threshold Voltage ( \(\mathrm{V}_{\text {in }}\) Increasing) & \(\mathrm{V}_{\text {th }}\) & 1.3 & 1.6 & 1.8 & V \\
\hline Hysteresis ( \(\mathrm{V}_{\text {in }}\) Decreasing) & \(\mathrm{V}_{\mathrm{H}}\) & 40 & 110 & 200 & mV \\
\hline \begin{tabular}{l}
Input Clamp Voltage \\
High State (IDET \(=3.0 \mathrm{~mA}\) ) \\
Low State ( \({ }^{\text {DET }}=-3.0 \mathrm{~mA}\) )
\end{tabular} & \[
\begin{aligned}
& V_{\text {IH }} \\
& V_{\text {IL }}
\end{aligned}
\] & 6.1
0.3 & 6.7
0.7 & 1.0 & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. \(\mathrm{K}=\frac{\text { Pin } 4 \text { Threshold Voltage }}{V_{\text {Pin } 3}\left(V_{\text {Pin 2 }}-V_{\text {FB }}\right)}\)
3. \(\begin{aligned} \mathrm{T}_{\text {low }} & =0^{\circ} \mathrm{C} \text { for MC34261 } \\ & =-40^{\circ} \mathrm{C} \text { for MC33261 }\end{aligned} \quad \begin{aligned} \mathrm{T}_{\text {high }} & =+70^{\circ} \mathrm{C} \text { for MC34261 } \\ & =+85^{\circ} \mathrm{C} \text { for MC33261 }\end{aligned}\)
\(=+85^{\circ} \mathrm{C}\) for MC33261

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{CURRENT SENSE COMPARATOR} \\
\hline Input Bias Current ( \(\mathrm{V}_{\text {Pin }} 4=0 \mathrm{~V}\) ) & IIB & - & -0.5 & -2.0 & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage ( \(\left.\mathrm{V}_{\text {Pin } 2}=1.1 \mathrm{~V}, \mathrm{~V}_{\text {Pin } 3}=0 \mathrm{~V}\right)\) & \(\mathrm{V}_{10}\) & - & 3.5 & 15 & mV \\
\hline Delay to Output & tPHL (in/out) & - & 200 & 400 & ns \\
\hline
\end{tabular}

DRIVE OUTPUT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\text { Output Voltage } & (\text { VCC }=12 \mathrm{~V}) \\
\text { Low State } & (\text { ISink }=20 \mathrm{~mA}) \\
& (\text { ISink }=200 \mathrm{~mA}) \\
\text { High State } & (\text { ISource }=20 \mathrm{~mA}) \\
& \text { (ISource }=200 \mathrm{~mA})
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{OL}} \\
& \mathrm{v}_{\mathrm{OH}}
\end{aligned}
\] & \[
\begin{gathered}
- \\
1.8 \\
9.8 \\
7.8
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
2.4 \\
10.3 \\
8.3
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
3.3 \\
- \\
8.8
\end{gathered}
\] & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}\right) \\
& \text { High State (ISource } \left.=20 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O} \text { (max) }}\) & 14 & 16 & 18 & V \\
\hline Output Voltage Rise Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) ) & \(\mathrm{tr}_{r}\) & - & 50 & 120 & ns \\
\hline Output Voltage Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) ) & \(t_{f}\) & - & 50 & 120 & ns \\
\hline Output Voltage with UVLO Activated ( \(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\), \(\mathrm{I}_{\text {Sink }}=1.0 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{OH} \text { (UVLO) }}\) & - & 0.2 & 0.8 & V \\
\hline
\end{tabular}

RESTART TIMER
\begin{tabular}{|l|l|l|l|l|l|}
\hline Restart Time Delay & tDLY & 150 & 400 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT
\begin{tabular}{|l|c|c|c|c|c|}
\hline Startup Threshold (VCC Increasing) & \(\mathrm{V}_{\text {th }}\) & 9.2 & 10.0 & 10.8 & V \\
\hline Minimum Operating Voltage After Turn-On ( \(\mathrm{V}_{\text {CC }}\) Decreasing) & \(\mathrm{V}_{\text {Shutdown }}\) & 7.0 & 8.0 & 9.0 & V \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & 1.75 & 2.0 & 2.5 & V \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Power Supply Current & \(I C C\) & & & & \\
Startup \(\left.V_{C C}=7.0 \mathrm{~V}\right)\) & & - & 0.3 & 0.5 & mA \\
Operating & & - & 7.1 & 12 & \\
Dynamic Operating ( \(50 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) ) & & - & 9.0 & 20 & \\
\hline Power Supply Zener Voltage & \(V_{Z}\) & 30 & 36 & - & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. \(K=\frac{\text { Pin } 4 \text { Threshold Voltage }}{V_{\text {Pin }}\left(V_{\text {Pin 2 }}-\mathrm{V}_{\mathrm{FB}}\right)}\)
3. \(\begin{aligned} \text { low } & =0^{\circ} \mathrm{C} \text { for MC34261 } \\ & =-40^{\circ} \mathrm{C} \text { for MC33261 }\end{aligned} \quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34261
\(=-40^{\circ} \mathrm{C}\) for \(\mathrm{MC} 33261 \quad=+85^{\circ} \mathrm{C}\) for MC 33261

Figure 1. Current Sense Input Threshold versus Multiplier Input


Figure 2. Current Sense Input Threshold versus Multiplier Input



Figure 5. Error Amp Small Signal Transient Response

\(0.5 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 7. Error Amp Output Saturation versus Sink Current


Figure 4. Error Amp Open Loop Gain and Phase versus Frequency


Figure 6. Error Amp Large Signal Transient Response

\(1.0 \mu \mathrm{~s} / \mathrm{DVV}\)


Figure 9. Zero Current Detector Input Threshold Voltage Change versus Temperature


Figure 11. Drive Output Waveform

\(100 \mathrm{~ns} /\) DIV

Figure 13. Supply Current versus Supply Voltage


Figure 10. Output Saturation Voltage versus Load Current


Figure 12. Drive Output Cross Conduction


Figure 14. Undervoltage Lockout Thresholds versus Temperature


\section*{FUNCTIONAL DESCRIPTION}

\section*{Introduction}

Most electronic ballasts and switching power supplies use a bridge rectifier and a filter capacitor to derive raw dc voltage from the utility ac line. This simple rectifying circuit draws power from the line when the instantaneous ac voltage exceeds the capacitor's voltage. This occurs near the line voltage peak and results in a high charge current spike. Since power is only taken near the line voltage peaks, the resulting spikes of current are extremely nonsinusoidal with a high content of harmonics. This results in a poor power factor condition where the apparent input power is much higher than the real power.

The MC34261, MC33261 are high performance, critical conduction, current mode power factor controllers specifically designed for use in off-line active preconverters. These devices provide the necessary features required to significantly enhance poor power factor loads by keeping the ac line current sinusoidal and in phase with the line voltage. With proper control of the preconverter, almost any complex load can be made to appear resistive to the ac line, thus significantly reducing the harmonic current content.

\section*{Operating Description}

The MC34261, MC33261 contains many of the building blocks and protection features that are employed in modern high performance current mode power supply controllers. There are, however, two areas where there is a major difference when compared to popular devices such as the UC3842 series. Referring to the block diagram in Figure 15, note that a multiplier has been added to the current sense loop and that this device does not contain an oscillator. A description of each of the functional blocks is given below.

\section*{Error Amplifier}

A fully compensated Error Amplifier with access to the inverting input and output is provided. It features a typical dc voltage gain of 85 dB , and a unity gain bandwidth of 1.0 MHz with \(58^{\circ}\) of phase margin (Figure 4). The noninverting input is internally biased at \(2.5 \mathrm{~V} \pm 2.0 \%\) and is not pinned out. The output voltage of the power factor converter is typically divided down and monitored by the inverting input. The maximum input bias current is \(-1.0 \mu \mathrm{~A}\) which can cause an output voltage error that is equal to the product of the input bias current and the value of the upper divider resistor \(\mathrm{R}_{2}\). The Error Amp Output is internally connected to the Multiplier and is pinned out (Pin 2) for external loop compensation. Typically, the bandwidth is set below 20 Hz , so that the Error Amp output voltage is relatively constant over a given ac line cycle. The output stage consists of a \(500 \mu \mathrm{~A}\) current source pull-up with a Darlington transistor pull-down. It is capable of swinging from 2.1 V to 5.7 V , assuring that the Multiplier can be driven over its entire dynamic range.

\section*{Multiplier}

A single quadrant, two input multiplier is the critical element that enables this device to control power factor. The ac haversines are monitored at Pin 3 with respect to ground while the Error Amp output at Pin 2 is monitored with respect
to the Voltage Feedback Input threshold. A graph of the Multiplier transfer curve is shown in Figure 1. Note that both inputs are extremely linear over a wide dynamic range, 0 V to 3.2 V for the Multiplier input ( \(\operatorname{Pin} 3\) ), and 2.5 V to 4.0 V for the Error Amp output (Pin 2). The Multiplier output controls the Current Sense Comparator threshold (Pin 4) as the ac voltage traverses sinusoidally from zero to peak line. This has the effect of forcing the MOSFET peak current to track the input line voltage, thus making the preconverter load appear to be resistive.
\[
\text { Pin } 4 \text { Threshold } \approx 0.62\left(V_{\text {Pin } 2}-V_{\text {FB }}\right) V_{\text {Pin }} 3
\]

\section*{Zero Current Detector}

The MC34261 operates as a critical conduction current mode controller, whereby output switch conduction is initiated by the Zero Current Detector and terminated when the peak inductor current reaches the threshold level established by the Multiplier output. The Zero Current Detector initiates the next on-time by setting the RS Latch at the instant the inductor current reaches zero. This critical conduction mode of operation has two significant benefits. First, since the MOSFET cannot turn on until the inductor current reaches zero, the output rectifier's reverse recovery time becomes less critical allowing the use of an inexpensive rectifier. Second, since there are no deadtime gaps between cycles, the ac line current is continuous thus limiting the peak switch to twice the average input current.

The Zero Current Detector indirectly senses the inductor current by monitoring when the auxiliary winding voltage falls below 1.6 V . To prevent false tripping, 110 mV of hysteresis is provided. The Zero Current Detector input is internally protected by two clamps. The upper 6.7 V clamp prevents input overvoltage breakdown while the lower 0.7 V clamp prevents substrate injection. Device destruction can result if this input is shorted to ground. An external resistor must be used in series with the auxiliary winding to limit the current through the clamps.

\section*{Current Sense Comparator and RS Latch}

The Current Sense Comparator RS Latch configuration ensures that only a single pulse appears at the Drive Output during a given cycle. The inductor current is converted to a voltage by inserting a ground referenced sense resistor Rg in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input and compared to the Multiplier output voltage. The peak inductor current is controlled by the threshold voltage of Pin 4 where:
\[
\mathrm{I}_{\mathrm{pk}}=\frac{\mathrm{Pin} 4 \text { Threshold }}{\mathrm{Rg}_{9}}
\]

With the component values shown in Figure 16, the Current Sense Comparator threshold, at the peak of the haversine varies from 1.1 V at 90 Vac to 100 mV at 268 Vac . The Current Sense Input to Drive Output propagation delay is typically 200 ns .

\section*{MC34261 MC33261}

\section*{Timer}

A watchdog timer function was added to the IC to eliminate the need for an external oscillator when used in stand alone applications. The Timer provides a means to automatically start or restart the preconverter if the Drive Output has been off for more than \(400 \mu \mathrm{~s}\) after the inductor current reaches zero.

\section*{Undervoltage Lockout}

An Undervoltage Lockout comparator guarantees that the IC is fully functional before enabling the output stage. The positive power supply terminal ( \(\mathrm{V}_{\mathrm{CC}}\) ) is monitored by the UVLO comparator with the upper threshold set at 10 V and the lower threshold at 8.0 V (Figure 14). In the standby mode, with \(\mathrm{V}_{\mathrm{CC}}\) at 7.0 V , the required supply current is less than 0.5 mA (Figure 13). This hysteresis and low startup current allow the implementation of efficient bootstrap startup techniques, making these devices ideally suited for wide input range off line preconverter applications. An internal 36 V clamp has been added from \(V_{C C}\) to ground to protect the IC and capacitor \(\mathrm{C}_{5}\) from an overvoltage condition. This feature
is desirable if external circuitry is used to delay the startup of the preconverter.

\section*{Output}

The MC34261/MC33261 contain a single totem pole output stage specifically designed for direct drive of power MOSFETs. The Drive Output is capable of up to \(\pm 500 \mathrm{~mA}\) peak current with a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the Drive Output in a sinking mode whenever the Undervoltage Lockout is active. This characteristic eliminates the need for an external gate pull-down resistor. The totem pole output has been optimized to minimize cross conduction current during high speed operation. The addition of two \(10 \Omega\) resistors, one in series with the source output transistor and one in series with the sink output transistor, reduces the cross conduction current, as shown in Figure 12. A 16 V clamp has been incorporated into the output stage to limit the high state \(\mathrm{V}_{\mathrm{OH}}\). This prevents rupture of the MOSFET gate when \(\mathrm{V}_{\mathrm{CC}}\) exceeds 20 V .

Table 1. Design Equations
\begin{tabular}{|c|c|c|}
\hline Notes & Calculation & Formula \\
\hline Calculate the maximum required output power. & Required Converter Output Power & \(\mathrm{P}_{\mathrm{O}}=\mathrm{V}_{\mathrm{O}} \mathrm{l}_{\mathrm{O}}\) \\
\hline Calculated at the minimum required ac line for regulation. Let the efficiency \(\mathrm{n}=0.95\). & Peak Inductor Current & \[
\mathrm{L}(\mathrm{pk})=\frac{2 \sqrt{2} \mathrm{P}_{\mathrm{O}}}{\eta \operatorname{Vac}_{(\mathrm{LL})}}
\] \\
\hline Let the switching cycle \(\mathrm{t}=20 \mu \mathrm{~s}\). & Inductance & \[
L=\frac{2 t\left(\frac{V_{O}}{\sqrt{2}}-V_{a c}\right) V_{a c}^{2}}{V_{O} V^{2}(L L) L(p k)}
\] \\
\hline In theory the on-time \(t_{\text {on }}\) is constant. In practice \(t_{o n}\) tends to increase at the ac line zero crossings due to the charge on capacitor \(\mathrm{C}_{6}\). & Switch On-Time & \(\mathrm{t}_{\text {On }}=\frac{2 \mathrm{POL}}{\eta \mathrm{Vac}^{2}}\) \\
\hline The off-time \(t_{\text {off }}\) is greatest at peak ac line and approaches zero at the ac line zero crossings. Theta ( \(\theta\) ) represents the angle of the ac line voltage. & Switch Off-Time & \[
t_{\text {off }}=\frac{t_{\text {on }}}{\frac{v_{O}}{\sqrt{2} \mathrm{Vac}|\operatorname{Sin} \theta|}-1}
\] \\
\hline The minimum switching frequency occurs at peak ac line and increases as \(\mathrm{t}_{\mathrm{off}}\) decreases. & Switching Frequency & \[
f=\frac{1}{t_{\text {on }}+t_{\text {off }}}
\] \\
\hline Set the current sense threshold \(\mathrm{V}_{\mathrm{CS}}\) to 1.0 V for universal input ( 85 Vac to 265 Vac ) operation and to 0.5 V for fixed input ( 92 Vac to 138 Vac , or 184 to 276 Vac ) operation. & Peak Switch Current & \[
\mathrm{R}_{9}=\frac{\mathrm{V}_{\mathrm{CS}}}{\mathrm{I}_{\mathrm{L}(\mathrm{pk})}}
\] \\
\hline Set the multiplier input voltage \(\mathrm{V}_{\mathrm{M}}\) to 3.0 V at high line. Empirically adjust \(\mathrm{V}_{\mathrm{M}}\) for the lowest distortion over the ac line range while guaranteeing startup at minimum line. & Multiplier Input Voltage & \[
\mathrm{V}_{\mathrm{M}}=\frac{\operatorname{Vac} \sqrt{2}}{\left(\frac{R_{7}}{R_{3}}+1\right)}
\] \\
\hline The \(I_{I B} R_{1}\) error term can be minimized with a divider current in excess of \(100 \mu \mathrm{~A}\). & Converter Output Voltage & \(\mathrm{v}_{\mathrm{O}}=\mathrm{v}_{\text {ref }}\left(\frac{\mathrm{R}_{2}}{R_{1}}+1\right)-\mathrm{I}_{\mathrm{IB}} \mathrm{R}_{2}\) \\
\hline The bandwidth is typically set to 20 Hz for minimum output ripple over the ac line haversine. & Error Amplifier Bandwidth & \[
B W=\frac{1}{2 \pi \frac{R_{1} R_{2}}{R_{1}+R_{2}} C_{1}}
\] \\
\hline
\end{tabular}

The following converter characteristics must be chosen:
\(\mathrm{V}_{\mathrm{O}}\) - Desired output voltage
Vac - AC RMS line voltage
\(I_{0}\) - Desired output current \(\quad \mathrm{Vac}_{(L L)}-\mathrm{AC}\) RMS low line voltage

\section*{MC34261 MC33261}

Figure 15. 80 W Power Factor Controller


Power Factor Controller Test Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{AC Line Input} & \multicolumn{5}{|c|}{DC Output} \\
\hline & & & \multicolumn{5}{|c|}{Current Harmonic Distortion (\%)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{O}}(\mathrm{pp})\)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{O}}\)} & \multirow[b]{2}{*}{10} & \multirow[b]{2}{*}{PO} & \multirow[b]{2}{*}{\(n(\%)\)} \\
\hline \(\mathrm{V}_{\text {rms }}\) & \(\mathrm{P}_{\text {in }}\) & PF & THD & 2 & 3 & 5 & 7 & & & & & \\
\hline 90 & 85.6 & -0.998 & 2.4 & 0.11 & 0.52 & 1.3 & 0.67 & 10.0 & 230 & 0.350 & 80.5 & 94.0 \\
\hline 100 & 85.1 & -0.997 & 5.0 & 0.13 & 1.7 & 2.4 & 1.4 & 10.1 & 230 & 0.350 & 80.5 & 94.6 \\
\hline 110 & 84.8 & -0.997 & 5.3 & 0.12 & 2.5 & 2.6 & 1.5 & 10.2 & 230 & 0.350 & 80.5 & 94.9 \\
\hline 120 & 84.5 & -0.997 & 5.8 & 0.12 & 3.2 & 2.7 & 1.4 & 10.2 & 230 & 0.350 & 80.5 & 95.3 \\
\hline 130 & 84.2 & -0.996 & 6.6 & 0.12 & 4.0 & 2.8 & 1.5 & 10.2 & 230 & 0.350 & 80.5 & 95.6 \\
\hline 138 & 84.1 & -0.995 & 7.2 & 0.13 & 4.5 & 3.0 & 1.6 & 10.2 & 230 & 0.350 & 80.5 & 95.7 \\
\hline
\end{tabular}

This data was taken with the test set-up shown in Figure 17.
\(T=\) Coilcraft N2881-A
Primary: 62 turns of \# 22 AWG
Secondary: 5 turns of \# 22 AWG
Core: Coilcraft PT2510, EE 25
Gap: 0.072" total for a primary inductance of \(320 \mu \mathrm{H}\)
Heatsink \(=\) AAVID Engineering Inc. 5903B, or 5930B

Figure 16. 175 W Universal Input Power Factor Controller


Power Factor Controller Test Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{AC Line Input} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{DC Output}} \\
\hline & & & \multicolumn{5}{|c|}{Current Harmonic Distortion (\%)} & & & & & \\
\hline \(\mathrm{V}_{\mathrm{rms}}\) & \(\mathrm{P}_{\text {in }}\) & PF & THD & 2 & 3 & 5 & 7 & \(\mathrm{V}_{\mathrm{O}(\mathrm{pp})}\) & \(\mathrm{V}_{\mathrm{O}}\) & 10 & PO & n (\%) \\
\hline 90 & 187.5 & -0.998 & 2.0 & 0.10 & 0.98 & 0.90 & 0.78 & 8.0 & 400.7 & 0.436 & 174.7 & 93.2 \\
\hline 120 & 184.6 & -0.997 & 1.8 & 0.09 & 1.3 & 1.3 & 0.93 & 8.0 & 400.7 & 0.436 & 174.7 & 94.6 \\
\hline 138 & 183.6 & -0.997 & 2.3 & 0.05 & 1.6 & 1.5 & 1.0 & 8.0 & 400.7 & 0.436 & 174.7 & 95.2 \\
\hline 180 & 181.0 & -0.995 & 4.3 & 0.16 & 2.5 & 2.0 & 1.2 & 8.0 & 400.6 & 0.436 & 174.7 & 95.6 \\
\hline 240 & 179.3 & -0.993 & 6.0 & 0.08 & 3.7 & 2.7 & 1.4 & 8.0 & 400.6 & 0.436 & 174.7 & 97.4 \\
\hline 268 & 178.6 & -0.992 & 6.7 & 0.16 & 2.8 & 3.7 & 1.7 & 8.0 & 400.6 & 0.436 & 174.7 & 97.8 \\
\hline
\end{tabular}

This data was taken with the test set-up shown in Figure 17.
\(T=\) Coilcraft N2880-A
Primary: 78 turns of \# 16 AWG
Secondary: 6 turns of \# 18 AWG
Core: Coilcraft PT4215, EE 42-15
Gap: \(0.104^{\prime \prime}\) total for a primary inductance of \(870 \mu \mathrm{H}\)
Heatsink = AAVID Engineering Inc. 5903B

Figure 17. Power Factor Test Set-Up


\footnotetext{
An RFI filter is required for best performance when connecting the preconverter directly to the AC line. Commercially available two stage filters such as the Delta Electronics 03DPCG5 work excellent. The simple single stage test filter shown above can easily be constructed with a common mode transformer. Transformer (T) is a Coilcraft CMT3-28-2 with 28 mH minimum inductance and a 2.0 A maximum current rating.
}

Figure 18. Soft-Start Circuit


Startup overshoot can be eliminated with the addition of a Soft-Start circuit.

Figure 19. Error Amp Compensation


Figure 20. Printed Circuit Board and Component Layout
(Circuits of Figures 15 and 16)


\section*{Power Factor Controllers}

The MC34262/MC33262 are active power factor controllers specifically designed for use as a preconverter in electronic ballast and in off-line power converter applications. These integrated circuits feature an internal startup timer for stand-alone applications, a one quadrant multiplier for near unity power factor, zero current detector to ensure critical conduction operation, transconductance error amplifier, quickstart circuit for enhanced startup, trimmed internal bandgap reference, current sensing comparator, and a totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of an overvoltage comparator to eliminate runaway output voltage due to load removal, input undervoltage lockout with hysteresis, cycle-by-cycle current limiting, multiplier output clamp that limits maximum peak switch current, an RS latch for single pulse metering, and a drive output high state clamp for MOSFET gate protection. These devices are available in dual-in-line and surface mount plastic packages.
- Overvoltage Comparator Eliminates Runaway Output Voltage
- Internal Startup Timer
- One Quadrant Multiplier
- Zero Current Detector
- Trimmed 2\% Internal Bandgap Reference
- Totem Pole Output with High State Clamp
- Undervoltage Lockout with 6.0 V of Hysteresis
- Low Startup and Operating Current
- Supersedes Functionality of SG3561 and TDA4817




PIN CONNECTIONS

(Top View)

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34262D & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 1 } MC34262P & Plastic DIP \\
\hline MC33262D & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\)} & SO-8 \\
\hline MC33262P & & Plastic DIP \\
\hline
\end{tabular}

MC34262 MC33262
MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & (ICC + Iz) & 30 & mA \\
\hline Output Current, Source or Sink (Note 1) & 10 & 500 & mA \\
\hline Current Sense, Multiplier, and Voltage Feedback Inputs & \(\mathrm{V}_{\text {in }}\) & -1.0 to +10 & V \\
\hline Zero Current Detect Input High State Forward Current Low State Reverse Current & lin & \[
\begin{array}{r}
50 \\
-10
\end{array}
\] & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics P Suffix, Plastic Package, Case 626 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
D Suffix, Plastic Package, Case 751 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & PD \(\mathrm{R}_{\theta \mathrm{JA}}\) PD \(\mathrm{R}_{\theta \mathrm{JA}}\) & \[
\begin{aligned}
& 800 \\
& 100 \\
& \\
& 450 \\
& 178
\end{aligned}
\] & \begin{tabular}{l}
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature (Note 3) MC34262 \\
МС33262
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+85 \\
-40 \text { to }+105
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(T_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) (Note 2), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Voltage Feedback Input Threshold
\[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\left(\mathrm{V}_{C C}=12 \mathrm{~V} \text { to } 28 \mathrm{~V}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{FB}}\) & \[
\begin{gathered}
2.465 \\
2.44
\end{gathered}
\] & \[
\begin{aligned}
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
2.535 \\
2.54
\end{gathered}
\] & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to \(28 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & Regline & - & 1.0 & 10 & mV \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\) ) & İB & - & -0.1 & -0.5 & \(\mu \mathrm{A}\) \\
\hline Transconductance ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & 9 m & 80 & 100 & 130 & \(\mu \mathrm{mho}\) \\
\hline \begin{tabular}{l}
Output Current \\
Source ( \(\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) \\
Sink ( \(\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) )
\end{tabular} & 10 & - & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing } \\
& \text { High State }\left(\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\right) \\
& \text { Low State }\left(\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\right)
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{VOH}(e a)\) \\
\(\mathrm{V}_{\mathrm{OL}(e a)}\)
\end{tabular} & 5.8 & 6.4
1.7 & & V \\
\hline
\end{tabular}

\section*{OVERVOLTAGE COMPARATOR}
\begin{tabular}{|l|l|l|l|l|c|}
\hline Voltage Feedback Input Threshold & \(\mathrm{V}_{\mathrm{FB}}(\mathrm{OV})\) & \(1.065 \mathrm{~V}_{\mathrm{FB}}\) & \(1.08 \mathrm{~V}_{\mathrm{FB}}\) & \(1.095 \mathrm{~V}_{\mathrm{FB}}\) & V \\
\hline
\end{tabular}

MULTIPLIER
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current, Pin 3 (VFB \(=0 \mathrm{~V}\) ) & IB & - & -0.1 & -0.5 & \(\mu \mathrm{A}\) \\
\hline Input Threshold, Pin 2 & \(\mathrm{V}_{\mathrm{th}}(\mathrm{M})\) & 1.05 V OL(EA) & 1.2 V OL(EA) & - & V \\
\hline Dynamic Input Voltage Range Multiplier Input (Pin 3) Compensation (Pin 2) & \begin{tabular}{l}
\(V_{\text {Pin }} 3\) \\
\(V_{\text {Pin } 2}\)
\end{tabular} & \[
\begin{gathered}
0 \text { to } 2.5 \\
V_{\text {th }(M)} \text { to } \\
\left(V_{\text {th }}(M)+1.0\right) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to } 3.5 \\
V_{\text {th }(M)} \text { to } \\
\left(V_{\text {th }}(M)+1.5\right)
\end{gathered}
\] & - & V \\
\hline Multiplier Gain ( \(\left.\mathrm{V}_{\text {Pin }} 3=0.5 \mathrm{~V}, \mathrm{~V}_{\text {Pin } 2}=\mathrm{V}_{\text {th }}(\mathrm{M})+1.0 \mathrm{~V}\right)\) (Note 4) & K & 0.43 & 0.65 & 0.87 & 1/V \\
\hline
\end{tabular}

\section*{ZERO CURRENT DETECTOR}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Threshold Voltage \(\left(\mathrm{V}_{\text {in }}\right.\) Increasing) & \(\mathrm{V}_{\text {th }}\) & 1.33 & 1.6 & 1.87 & V \\
\hline Hysteresis ( \(\mathrm{V}_{\text {in }}\) Decreasing) & \(\mathrm{V}_{\mathrm{H}}\) & 100 & 200 & 300 & mV \\
\hline Input Clamp Voltage & & & & & V \\
High State (IDET \(=+3.0 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{IH}}\) & 6.1 & 6.7 & - & \\
Low State ( \(\mathrm{IDET}=-3.0 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{IL}}\) & 0.3 & 0.7 & 1.0 & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C}=12 \mathrm{~V}\right.\) (Note 2), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies (Note 3), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{CURRENT SENSE COMPARATOR} \\
\hline Input Bias Current ( \(\mathrm{V}_{\text {Pin } 4}=0 \mathrm{~V}\) ) & IB & - & -0.15 & -1.0 & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage ( \(\mathrm{V}_{\text {Pin } 2}=1.1 \mathrm{~V}, \mathrm{~V}_{\text {Pin }}=0 \mathrm{~V}\) ) & \(\mathrm{V}_{\mathrm{IO}}\) & - & 9.0 & 25 & mV \\
\hline Maximum Current Sense Input Threshold (Note 5) & \(\mathrm{V}_{\text {th }}\) (max) & 1.3 & 1.5 & 1.8 & V \\
\hline Delay to Output & tPHL(in/out) & - & 200 & 400 & ns \\
\hline
\end{tabular}

DRIVE OUTPUT


RESTART TIMER
\begin{tabular}{|l|c|c|c|c|c|}
\hline Restart Time Delay & tDLY & 200 & 620 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular} \begin{tabular}{|l|c|c|c|c|c|}
\hline UNDERVOLTAGE LOCKOUT & \(\mathrm{V}_{\text {th }}(\mathrm{on})\) & 11.5 & 13 & 14.5 & V \\
\hline Startup Threshold (VCC Increasing) & \(\mathrm{V}_{\text {Shutdown }}\) & 7.0 & 8.0 & 9.0 & V \\
\hline Minimum Operating Voltage After Turn-On \(\left(\mathrm{V}_{\mathrm{CC}}\right.\) Decreasing & \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & 3.8 & 5.0 & 6.2 & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Power Supply Current & ICC & & & & mA \\
Startup \(\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\right)\) & & - & 0.25 & 0.4 & \\
Operating & & - & 6.5 & 12 & \\
Dynamic Operating \(\left(50 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\right)\) & - & 9.0 & 20 & \\
\hline Power Supply Zener Voltage \(\left(\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{Z}}\) & 30 & 36 & - & V \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the startup threshold before setting to 12 V .
3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34262
\[
\begin{aligned}
\mathrm{T}_{\text {high }} & =+85^{\circ} \mathrm{C} \text { for MC34262 } \\
& =+105^{\circ} \mathrm{C} \text { for MC33326 }
\end{aligned}
\]
4. \(K=\frac{\text { Pin } 4 \text { Threshold }}{V_{\text {Pin } 3}\left(V_{\text {Pin 2 }}-V_{\text {th }}(M)\right)}\)
5. This parameter is measured with \(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\), and \(\mathrm{V}_{\text {Pin } 3}=3.0 \mathrm{~V}\)

Figure 1. Current Sense Input Threshold versus Multiplier Input


Figure 2. Current Sense Input Threshold versus Multiplier Input, Expanded View


Figure 3. Voltage Feedback Input Threshold Change versus Temperature


Figure 5. Error Amp Transconductance and Phase versus Frequency


Figure 7. Quickstart Charge Current versus Temperature


Figure 4. Overvoltage Comparator Input Threshold versus Temperature


Figure 6. Error Amp Transient Response


Figure 8. Restart Timer Delay versus Temperature


Figure 9. Zero Current Detector Input Threshold Voltage versus Temperature


Figure 11. Drive Output Waveform

\(100 \mathrm{~ns} /\) DIV

Figure 13. Supply Current versus Supply Voltage


Figure 10. Output Saturation Voltage versus Load Current


Figure 12. Drive Output Cross Conduction


Figure 14. Undervoltage Lockout Thresholds versus Temperature


\section*{Introduction}

With the goal of exceeding the requirements of legislation on line-current harmonic content, there is an ever increasing demand for an economical method of obtaining a unity power factor. This data sheet describes a monolithic control IC that was specifically designed for power factor control with minimal external components. It offers the designer a simple, cost-effective solution to obtain the benefits of active power factor correction.

Most electronic ballasts and switching power supplies use a bridge rectifier and a bulk storage capacitor to derive raw dc voltage from the utility ac line, Figure 15.

Figure 15. Uncorrected Power Factor Circuit


This simple rectifying circuit draws power from the line when the instantaneous ac voltage exceeds the capacitor voltage. This occurs near the line voltage peak and results in a high charge current spike, Figure 16. Since power is only taken near the line voltage peaks, the resulting spikes of current are extremely nonsinusoidal with a high content of harmonics. This results in a poor power factor condition where the apparent input power is much higher than the real power. Power factor ratios of 0.5 to 0.7 are common.

Power factor correction can be achieved with the use of either a passive or an active input circuit. Passive circuits usually contain a combination of large capacitors, inductors, and rectifiers that operate at the ac line frequency. Active circuits incorporate some form of a high frequency switching converter for the power processing, with the boost converter being the most popular topology, Figure 17. Since active input circuits operate at a frequency much higher than that of the ac line, they are smaller, lighter in weight, and more efficient than a passive circuit that yields similar results. With proper control of the preconverter, almost any complex load
can be made to appear resistive to the ac line, thus significantly reducing the harmonic current content.

Figure 16. Uncorrected Power Factor Input Waveforms


The MC34262, MC33262 are high performance, critical conduction, current-mode power factor controllers specifically designed for use in off-line active preconverters. These devices provide the necessary features required to significantly enhance poor power factor loads by keeping the ac line current sinusoidal and in phase with the line voltage.

\section*{Operating Description}

The MC34262, MC33262 contain many of the building blocks and protection features that are employed in modern high performance current mode power supply controllers. There are, however, two areas where there is a major difference when compared to popular devices such as the UC3842 series. Referring to the block diagram in Figure 19, note that a multiplier has been added to the current sense loop and that this device does not contain an oscillator. The reasons for these differences will become apparent in the following discussion. A description of each of the functional blocks is given below.

Figure 17. Active Power Factor Correction Preconverter


\section*{Error Amplifier}

An Error Amplifier with access to the inverting input and output is provided. The amplifier is a transconductance type, meaning that it has high output impedance with controlled voltage-to-current gain. The amplifier features a typical gm of \(100 \mu\) mhos (Figure 5). The noninverting input is internally biased at \(2.5 \mathrm{~V} \pm 2.0 \%\) and is not pinned out. The output voltage of the power factor converter is typically divided down and monitored by the inverting input. The maximum input bias current is \(-0.5 \mu \mathrm{~A}\), which can cause an output voltage error that is equal to the product of the input bias current and the value of the upper divider resistor \(\mathrm{R}_{2}\). The Error Amp output is internally connected to the Multiplier and is pinned out (Pin 2) for external loop compensation. Typically, the bandwidth is set below 20 Hz , so that the amplifier's output voltage is relatively constant over a given ac line cycle. In effect, the error amp monitors the average output voltage of the converter over several line cycles. The Error Amp output stage was designed to have a relatively constant transconductance over temperature. This allows the designer to define the compensated bandwidth over the intended operating temperature range. The output stage can sink and source \(10 \mu \mathrm{~A}\) of current and is capable of swinging from 1.7 V to 6.4 V , assuring that the Multiplier can be driven over its entire dynamic range.

A key feature to using a transconductance type amplifier, is that the input is allowed to move independently with respect to the output, since the compensation capacitor is connected to ground. This allows dual usage of of the Voltage Feedback Input pin by the Error Amplifier and by the Overvoltage Comparator.

\section*{Overvoltage Comparator}

An Overvoltage Comparator is incorporated to eliminate the possibility of runaway output voltage. This condition can occur during initial startup, sudden load removal, or during output arcing and is the result of the low bandwidth that must be used in the Error Amplifier control loop. The Overvoltage Comparator monitors the peak output voltage of the converter, and when exceeded, immediately terminates MOSFET switching. The comparator threshold is internally set to \(1.08 \mathrm{~V}_{\text {ref. }}\) In order to prevent false tripping during normal operation, the value of the output filter capacitor \(\mathrm{C}_{3}\) must be large enough to keep the peak-to-peak ripple less than \(16 \%\) of the average dc output. The Overvoltage Comparator input to Drive Output turn-off propagation delay is typically 400 ns . A comparison of startup overshoot without and with the Overvoltage Comparator circuit is shown in Figure 23.

\section*{Multiplier}

A single quadrant, two input multiplier is the critical element that enables this device to control power factor. The ac full wave rectified haversines are monitored at Pin 3
with respect to ground while the Error Amp output at Pin 2 is monitored with respect to the Voltage Feedback Input threshold. The Multiplier is designed to have an extremely linear transfer curve over a wide dynamic range, 0 V to 3.2 V for Pin 3, and 2.0 V to 3.75 V for Pin 2, Figure 1 . The Multiplier output controls the Current Sense Comparator threshold as the ac voltage traverses sinusoidally from zero to peak line, Figure 18. This has the effect of forcing the MOSFET on-time to track the input line voltage, resulting in a fixed Drive Output on-time, thus making the preconverter load appear to be resistive to the ac line. An approximation of the Current Sense Comparator threshold can be calculated from the following equation. This equation is accurate only under the given test condition stated in the electrical table.
\(V_{\text {CS }}\), Pin 4 Threshold \(\approx 0.65\left(V_{\text {Pin } 2}-V_{\text {th( }}\right)\) ) \(V_{\text {Pin }} 3\)
A significant reduction in line current distortion can be attained by forcing the preconverter to switch as the ac line voltage crosses through zero. The forced switching is achieved by adding a controlled amount of offset to the Multiplier and Current Sense Comparator circuits. The equation shown below accounts for the built-in offsets and is accurate to within ten percent. Let \(\mathrm{V}_{\mathrm{th}}(\mathrm{M})=1.991 \mathrm{~V}\)
\[
\begin{gathered}
V_{\text {CS }} \text {, Pin } 4 \text { Threshold }=0.544\left(V_{\text {Pin } 2}-V_{\text {th }}(M)\right) V_{\text {Pin }} 3 \\
+0.0417\left(V_{\text {Pin } 2}-V_{\text {th }}(M)\right)
\end{gathered}
\]

\section*{Zero Current Detector}

The MC34262 operates as a critical conduction current mode controller, whereby output switch conduction is initiated by the Zero Current Detector and terminated when the peak inductor current reaches the threshold level established by the Multiplier output. The Zero Current Detector initiates the next on-time by setting the RS Latch at the instant the inductor current reaches zero. This critical conduction mode of operation has two significant benefits. First, since the MOSFET cannot turn-on until the inductor current reaches zero, the output rectifier reverse recovery time becomes less critical, allowing the use of an inexpensive rectifier. Second, since there are no deadtime gaps between cycles, the ac line current is continuous, thus limiting the peak switch to twice the average input current.

The Zero Current Detector indirectly senses the inductor current by monitoring when the auxiliary winding voltage falls below 1.4 V . To prevent false tripping, 200 mV of hysteresis is provided. Figure 9 shows that the thresholds are well-defined over temperature. The Zero Current Detector input is internally protected by two clamps. The upper 6.7 V clamp prevents input overvoltage breakdown while the lower 0.7 V clamp prevents substrate injection. Current limit protection of the lower clamp transistor is provided in the event that the input pin is accidentally shorted to ground. The Zero Current Detector input to Drive Output turn-on propagation delay is typically 320 ns .

Figure 18. Inductor Current and MOSFET Gate Voltage Waveforms


\section*{Current Sense Comparator and RS Latch}

The Current Sense Comparator RS Latch configuration used ensures that only a single pulse appears at the Drive Output during a given cycle. The inductor current is converted to a voltage by inserting a ground-referenced sense resistor \(R_{7}\) in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input and compared to a level derived from the Multiplier output. The peak inductor current under normal operating conditions is controlled by the threshold voltage of Pin 4 where:
\[
\mathrm{L}(\mathrm{pk})=\frac{\text { Pin } 4 \text { Threshold }}{\mathrm{R}_{7}}
\]

Abnormal operating conditions occur during preconverter startup at extremely high line or if output voltage sensing is lost. Under these conditions, the Multiplier output and Current Sense threshold will be internally clamped to 1.5 V . Therefore, the maximum peak switch current is limited to:
\[
\operatorname{Ipk}(\max )=\frac{1.5 \mathrm{~V}}{\mathrm{R}_{7}}
\]

An internal RC filter has been included to attenuate any high frequency noise that may be present on the current waveform. This filter helps reduce the ac line current distortion especially near the zero crossings. With the component values shown in Figure 20, the Current Sense Comparator threshold, at the peak of the haversine varies from 1.1 V at 90 Vac to 100 mV at 268 Vac . The Current Sense Input to Drive Output turn-off propagation delay is typically less than 200 ns .

\section*{Timer}

A watchdog timer function was added to the IC to eliminate the need for an external oscillator when used in stand-alone applications. The Timer provides a means to automatically start or restart the preconverter if the Drive Output has been off for more than \(620 \mu \mathrm{~s}\) after the inductor current reaches zero. The restart time delay versus temperature is shown in Figure 8.

\section*{Undervoltage Lockout and Quickstart}

An Undervoltage Lockout comparator has been incorporated to guarantee that the IC is fully functional before enabling the output stage. The positive power supply terminal ( \(\mathrm{V}_{\mathrm{CC}}\) ) is monitored by the UVLO comparator with the upper threshold set at 13 V and the lower threshold at 8.0 V . In the stand-by mode, with \(\mathrm{V}_{\mathrm{CC}}\) at 7.0 V , the required supply current is less than 0.4 mA . This large hysteresis and low startup current allow the implementation of efficient bootstrap startup techniques, making these devices ideally suited for wide input range off-line preconverter applications. An internal 36 V clamp has been added from \(\mathrm{V}_{\mathrm{CC}}\) to ground to protect the IC and capacitor \(\mathrm{C}_{4}\) from an overvoltage condition. This feature is desirable if external circuitry is used to delay the startup of the preconverter. The supply current, startup, and operating voltage characteristics are shown in Figures 13 and 14.

A Quickstart circuit has been incorporated to optimize converter startup. During initial startup, compensation capacitor \(C_{1}\) will be discharged, holding the error amp output below the Multiplier threshold. This will prevent Drive Output switching and delay bootstrapping of capacitor \(\mathrm{C}_{4}\) by diode \(\mathrm{D}_{6}\). If Pin 2 does not reach the multiplier threshold before \(\mathrm{C}_{4}\) discharges below the lower UVLO threshold, the converter will "hiccup" and experience a significant startup delay. The Quickstart circuit is designed to precharge \(\mathrm{C}_{1}\) to 1.7 V , Figure 7. This level is slightly below the Pin 2 Multiplier threshold, allowing immediate Drive Output switching and bootstrap operation when \(\mathrm{C}_{4}\) crosses the upper UVLO threshold.

\section*{Drive Output}

The MC34262/MC33262 contain a single totem-pole output stage specifically designed for direct drive of power MOSFETs. The Drive Output is capable of up to \(\pm 500 \mathrm{~mA}\) peak current with a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the Drive Output in a sinking mode whenever the Undervoltage Lockout is active. This characteristic eliminates the need for an external gate pull-down resistor. The totem-pole output has been optimized to minimize cross-conduction current during high speed operation. The addition of two \(10 \Omega\) resistors, one in series with the source output transistor and one in series with the sink output transistor, helps to reduce the cross-conduction current and radiated noise by limiting the output rise and fall time. A 16 V clamp has been incorporated into the output stage to limit the high state \(\mathrm{V}_{\mathrm{OH}}\). This prevents rupture of the MOSFET gate when \(\mathrm{V}_{\mathrm{CC}}\) exceeds 20 V .

\section*{MC34262 MC33262}

\section*{APPLICATIONS INFORMATION}

The application circuits shown in Figures 19, 20 and 21 reveal that few external components are required for a complete power factor preconverter. Each circuit is a peak detecting current-mode boost converter that operates in critical conduction mode with a fixed on-time and variable off-time. A major benefit of critical conduction operation is that the current loop is inherently stable, thus eliminating the need for ramp compensation. The application in Figure 19 operates over an input voltage range of 90 Vac to 138 Vac and provides an output power of \(80 \mathrm{~W}(230 \mathrm{~V}\) at 350 mA\()\) with an associated power factor of approximately 0.998 at
nominal line. Figures 20 and 21 are universal input preconverter examples that operate over a continuous input voltage range of 90 Vac to 268 Vac . Figure 20 provides an output power of \(175 \mathrm{~W}(400 \mathrm{~V}\) at 440 mA\()\) while Figure 21 provides \(450 \mathrm{~W}(400 \mathrm{~V}\) at 1.125 A\()\). Both circuits have an observed worst-case power factor of approximately 0.989 . The input current and voltage waveforms of Figure 20 are shown in Figure 22 with operation at 115 Vac and 230 Vac. The data for each of the applications was generated with the test set-up shown in Figure 24.

Table 1. Design Equations
\begin{tabular}{|c|c|c|}
\hline Notes & Calculation & Formula \\
\hline Calculate the maximum required output power. & Required Converter Output Power & \(\mathrm{PO}_{\mathrm{O}}=\mathrm{V}_{\mathrm{O}} \mathrm{l}_{\mathrm{O}}\) \\
\hline Calculated at the minimum required ac line voltage for output regulation. Let the efficiency \(\eta=0.92\) for low line operation. & Peak Inductor Current & \[
\mathrm{L}_{\mathrm{L}(\mathrm{pk})}=\frac{2 \sqrt{2} \mathrm{P}_{\mathrm{O}}}{\eta \operatorname{Vac}_{(\mathrm{LL})}}
\] \\
\hline Let the switching cycle \(t=40 \mu\) s for universal input ( 85 to 265 Vac ) operation and \(20 \mu\) for fixed input ( 92 to 138 Vac , or 184 to 276 Vac ) operation. & Inductance & \[
\mathrm{L}_{\mathrm{P}}=\frac{\mathrm{t}\left(\frac{\mathrm{~V}_{\mathrm{O}}}{\sqrt{2}}-\operatorname{Vac}_{(\mathrm{LL})}\right) \eta \operatorname{Vac}_{(\mathrm{LL})^{2}}^{2}}{\sqrt{2} \mathrm{~V}_{\mathrm{O}} \mathrm{P}_{\mathrm{O}}}
\] \\
\hline In theory the on-time \(t_{o n}\) is constant. In practice \(t_{o n}\) tends to increase at the ac line zero crossings due to the charge on capacitor \(\mathrm{C}_{5}\). Let \(\mathrm{Vac}=\mathrm{Vac}_{(\mathrm{LL})}\) for initial \(t_{\text {on }}\) and \(\mathrm{t}_{\text {off }}\) calculations. & Switch On-Time & \[
\mathrm{t}_{\mathrm{on}}=\frac{2 \mathrm{P}_{\mathrm{O}} \mathrm{LP}_{\mathrm{P}}}{\eta \mathrm{Vac}^{2}}
\] \\
\hline The off-time \(t_{\text {off }}\) is greatest at the peak of the ac line voltage and approaches zero at the ac line zero crossings. Theta \((\theta)\) represents the angle of the ac line voltage. & Switch Off-Time & \[
t_{\text {off }}=\frac{t_{\text {on }}}{\frac{v_{O}}{\sqrt{2} \mathrm{Vac}|\operatorname{Sin} \theta|}-1}
\] \\
\hline The minimum switching frequency occurs at the peak of the ac line voltage. As the ac line voltage traverses from peak to zero, \(t_{\text {off }}\) approaches zero producing an increase in switching frequency. & Switching Frequency & \[
f=\frac{1}{t_{\text {on }}+t_{\text {off }}}
\] \\
\hline Set the current sense threshold \(\mathrm{V}_{\mathrm{CS}}\) to 1.0 V for universal input ( 85 Vac to 265 Vac ) operation and to 0.5 V for fixed input ( 92 Vac to 138 Vac , or 184 Vac to 276 Vac ) operation. Note that \(\mathrm{V}_{\mathrm{CS}}\) must be \(<1.4 \mathrm{~V}\). & Peak Switch Current & \[
R_{7}=\frac{V_{C S}}{I_{\mathrm{L}(\mathrm{pk})}}
\] \\
\hline Set the multiplier input voltage \(\mathrm{V}_{\mathrm{M}}\) to 3.0 V at high line. Empirically adjust \(\mathrm{V}_{\mathrm{M}}\) for the lowest distortion over the ac line voltage range while guaranteeing startup at minimum line. & Multiplier Input Voltage & \[
\mathrm{V}_{\mathrm{M}}=\frac{\operatorname{Vac} \sqrt{2}}{\left(\frac{R_{5}}{R_{3}}+1\right)}
\] \\
\hline The \(I_{I B} R_{1}\) error term can be minimized with a divider current in excess of \(50 \mu \mathrm{~A}\). & Converter Output Voltage & \(\mathrm{v}_{\mathrm{O}}=\mathrm{v}_{\text {ref }}\left(\frac{R_{2}}{R_{1}}+1\right)-I_{1 B} \mathrm{R}_{2}\) \\
\hline The calculated peak-to-peak ripple must be less than \(16 \%\) of the average dc output voltage to prevent false tripping of the Overvoltage Comparator. Refer to the Overvoltage Comparator text. ESR is the equivalent series resistance of \(\mathrm{C}_{3}\) & \begin{tabular}{l}
Converter Output \\
Peak to Peak \\
Ripple Voltage
\end{tabular} & \(\Delta V_{O(p p)}=I_{O} \sqrt{\left(\frac{1}{2 \pi f_{a c} C_{3}}\right)^{2}+E S R^{2}}\) \\
\hline The bandwidth is typically set to 20 Hz . When operating at high ac line, the value of \(C_{1}\) may need to be increased. (See Figure 25) & Error Amplifier Bandwidth & \[
\mathrm{BW}=\frac{\mathrm{gm}}{2 \pi \mathrm{C}_{1}}
\] \\
\hline
\end{tabular}

The following converter characteristics must be chosen:

\footnotetext{
\(\mathrm{V}_{\mathrm{O}}\) - Desired output voltage \(\quad \mathrm{Vac}\) - AC RMS line voltage
\(\mathrm{I}_{\mathrm{O}}\) - Desired output current \(\quad \mathrm{Vac}_{(\mathrm{LL})}-\mathrm{AC}\) RMS low line voltage
\(\Delta V_{O}\) - Converter output peak-to-peak ripple voltage
}

\section*{MC34262 MC33262}

Figure 19. 80 W Power Factor Controller


Power Factor Controller Test Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{AC Line Input} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{DC Output}} \\
\hline & & & & \multicolumn{5}{|l|}{Current Harmonic Distortion (\% Ifund)} & & & & & \\
\hline \(\mathrm{V}_{\text {rms }}\) & \(\mathrm{P}_{\text {in }}\) & PF & Ifund & THD & 2 & 3 & 5 & 7 & \(\mathrm{V}_{\mathrm{O}(\mathrm{pp})}\) & \(\mathrm{V}_{0}\) & 10 & PO & \(\eta(\%)\) \\
\hline 90 & 85.9 & 0.999 & 0.93 & 2.6 & 0.08 & 1.6 & 0.84 & 0.95 & 4.0 & 230.7 & 0.350 & 80.8 & 94.0 \\
\hline 100 & 85.3 & 0.999 & 0.85 & 2.3 & 0.13 & 1.0 & 1.2 & 0.73 & 4.0 & 230.7 & 0.350 & 80.8 & 94.7 \\
\hline 110 & 85.1 & 0.998 & 0.77 & 2.2 & 0.10 & 0.58 & 1.5 & 0.59 & 4.0 & 230.7 & 0.350 & 80.8 & 94.9 \\
\hline 120 & 84.7 & 0.998 & 0.71 & 3.0 & 0.09 & 0.73 & 1.9 & 0.58 & 4.1 & 230.7 & 0.350 & 80.8 & 95.3 \\
\hline 130 & 84.4 & 0.997 & 0.65 & 3.9 & 0.12 & 1.7 & 2.2 & 0.61 & 4.1 & 230.7 & 0.350 & 80.8 & 95.7 \\
\hline 138 & 84.1 & 0.996 & 0.62 & 4.6 & 0.16 & 2.4 & 2.3 & 0.60 & 4.1 & 230.7 & 0.350 & 80.8 & 96.0 \\
\hline
\end{tabular}

This data was taken with the test set-up shown in Figure 24.
T = Coilcraft N2881-A
Primary: 62 turns of \# 22 AWG
Secondary: 5 turns of \# 22 AWG
Core: Coilcraft PT2510, EE 25
Gap: \(0.072^{\prime \prime}\) total for a primary inductance (Lp) of \(320 \mu \mathrm{H}\)
Heatsink = AAVID Engineering Inc. 590302B03600, or 593002B03400

Figure 20. 175 W Universal Input Power Factor Controller


Power Factor Controller Test Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{AC Line Input} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{DC Output}} \\
\hline & & & & \multicolumn{5}{|l|}{Current Harmonic Distortion (\% \(I_{\text {fund }}\) )} & & & & & \\
\hline \(\mathrm{V}_{\text {rms }}\) & \(P_{\text {in }}\) & PF & Ifund & THD & 2 & 3 & 5 & 7 & \(\mathrm{V}_{\mathrm{O}}(\mathrm{pp})\) & \(\mathrm{V}_{\mathrm{O}}\) & 10 & \(\mathrm{PO}_{0}\) & \(\eta(\%)\) \\
\hline 90 & 193.3 & 0.991 & 2.15 & 2.8 & 0.18 & 2.6 & 0.55 & 1.0 & 3.3 & 402.1 & 0.44 & 176.9 & 91.5 \\
\hline 120 & 190.1 & 0.998 & 1.59 & 1.6 & 0.10 & 1.4 & 0.23 & 0.72 & 3.3 & 402.1 & 0.44 & 176.9 & 93.1 \\
\hline 138 & 188.2 & 0.999 & 1.36 & 1.2 & 0.12 & 1.3 & 0.65 & 0.80 & 3.3 & 402.1 & 0.44 & 176.9 & 94.0 \\
\hline 180 & 184.9 & 0.998 & 1.03 & 2.0 & 0.10 & 0.49 & 1.2 & 0.82 & 3.4 & 402.1 & 0.44 & 176.9 & 95.7 \\
\hline 240 & 182.0 & 0.993 & 0.76 & 4.4 & 0.09 & 1.6 & 2.3 & 0.51 & 3.4 & 402.1 & 0.44 & 176.9 & 97.2 \\
\hline 268 & 180.9 & 0.989 & 0.69 & 5.9 & 0.10 & 2.3 & 2.9 & 0.46 & 3.4 & 402.1 & 0.44 & 176.9 & 97.8 \\
\hline
\end{tabular}

This data was taken with the test set-up shown in Figure 24.
T = Coilcraft N2880-A
Primary: 78 turns of \# 16 AWG
Secondary: 6 turns of \# 18 AWG
Core: Coilcraft PT4215, EE 42-15
Gap: 0.104" total for a primary inductance ( \(L_{p}\) ) of \(870 \mu \mathrm{H}\)
Heatsink = AAVID Engineering Inc. 590302B03600

\section*{MC34262 MC33262}

Figure 21. 450 W Universal Input Power Factor Controller


Power Factor Controller Test Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{AC Line Input} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{DC Output}} \\
\hline & & & & \multicolumn{5}{|l|}{Current Harmonic Distortion (\% \(l_{\text {fund }}\) )} & & & & & \\
\hline \(\mathrm{V}_{\text {rms }}\) & \(P_{\text {in }}\) & PF & Ifund & THD & 2 & 3 & 5 & 7 & \(\mathrm{V}_{\mathrm{O}}(\mathrm{pp})\) & \(\mathrm{V}_{\mathrm{O}}\) & 10 & PO & \(\eta(\%)\) \\
\hline 90 & 489.5 & 0.990 & 5.53 & 2.2 & 0.10 & 1.5 & 0.25 & 0.83 & 8.8 & 395.5 & 1.14 & 450.9 & 92.1 \\
\hline 120 & 475.1 & 0.998 & 3.94 & 2.5 & 0.12 & 0.29 & 0.62 & 0.52 & 8.8 & 395.5 & 1.14 & 450.9 & 94.9 \\
\hline 138 & 470.6 & 0.998 & 3.38 & 2.1 & 0.06 & 0.70 & 1.1 & 0.41 & 8.8 & 395.5 & 1.14 & 450.9 & 95.8 \\
\hline 180 & 463.4 & 0.998 & 2.57 & 4.1 & 0.21 & 2.0 & 1.6 & 0.71 & 8.9 & 395.5 & 1.14 & 450.9 & 97.3 \\
\hline 240 & 460.1 & 0.996 & 1.91 & 4.8 & 0.14 & 4.3 & 2.2 & 0.63 & 8.9 & 395.5 & 1.14 & 450.9 & 98.0 \\
\hline 268 & 459.1 & 0.995 & 1.72 & 5.8 & 0.10 & 5.0 & 2.5 & 0.61 & 8.9 & 395.5 & 1.14 & 450.9 & 98.2 \\
\hline
\end{tabular}

This data was taken with the test set-up shown in Figure 24.
T = Coilcraft P3657-A
Primary: 38 turns Litz wire, 1300 strands of \#48 AWG, Kerrigan-Lewis, Chicago, IL
Secondary: 3 turns of \# 20 AWG
Core: Coilcraft PT4220, EE 42-20
Gap: \(0.180^{\prime \prime}\) total for a primary inductance (Lp) of \(190 \mu \mathrm{H}\)
Heatsink = AAVID Engineering Inc. 604953B04000 Extrusion

MC34262 MC33262

Figure 22. Power Factor Corrected Input Waveforms
(Figure 20 Circuit)


Figure 23. Output Voltage Startup Overshoot
(Figure 20 Circuit)


Figure 24. Power Factor Test Set-Up


An RFI filter is required for best performance when connecting the preconverter directly to the ac line. The filter attenuates the level of high frequency switching that appears on the ac line current waveform. Figures 19 and 20 work well with commercially available two stage filters such as the Delta Electronics 03DPCG5. Shown above is a single stage test filter that can easily be constructed with four ac line rated capacitors and a common-mode transformer. Coilcraft CMT3-28-2 was used to test Figures 19 and 20. It has a minimum inductance of 28 mH and a maximum current rating of 2.0 A. Coilcraft CMT4-17-9 was used to test Figure 21. It has a minimum inductance of 17 mH and a maximum current rating of 9.0 A . Circuit conversion efficiency \(\eta(\%)\) was calculated without the power loss of the RFI filter.

\section*{MC34262 MC33262}

Figure 25. Error Amp Compensation


\begin{abstract}
The Error Amp output is a high impedance node and is susceptible to noise pickup. To minimize pickup, compensation capacitor \(\mathrm{C}_{1}\) must be connected as close to Pin 2 as possible with a short, heavy ground returning directly to Pin 6 . When operating at high ac line, the voltage at Pin 2 may approach the lower threshold of the Multiplier, \(\approx 2.0 \mathrm{~V}\). If there is excessive ripple on Pin 2, the Multiplier will be driven into cut-off causing circuit instability, high distortion and poor power factor. This problem can be eliminated by increasing the value of \(\mathrm{C}_{1}\).
\end{abstract}

Figure 26. Current Waveform Spike Suppression

A narrow turn-on spike is usually present on the leading edge of the current waveform and can cause circuit instability. The MC34262 provides an internal RC filter with a time constant of 220 ns . An additional external RC filter may be required in universal input applications that are above 200 W . It is suggested that the external filter be placed directly at the Current Sense Input and have a time constant that approximates the spike duration.


Figure 27. Negative Current Waveform Spike Suppression

A negative turn-off spike can be observed on the trailing edge of the current waveform. This spike is due to the parasitic inductance of resistor \(R_{7}\), and if it is excessive, it can cause circuit instability. The addition of Shottky diode \(D_{1}\) can effectively clamp the negative spike. The addition of the external RC filter shown in Figure 26 may provide sufficient spike attenuation.

Figure 28. Printed Circuit Board and Component Layout (Circuits of Figures 15 and 16)


NOTE: Use 2 oz. copper laminate for optimum circuit performance.

\section*{SCSI-2 Active Terminator}

\section*{Regulator}

The MC34268 is a medium current, low dropout positive voltage regulator specifically designed for use in SCSI-2 active termination circuits. This device offers the circuit designer an economical solution for precision voltage regulation, while keeping power losses to a minimum. The regulator consists of a 1.0 V dropout composite PNP/NPN pass transistor, current limiting, and thermal limiting. These devices are packaged in the 8-pin SOP-8 and 3-pin DPAK surface mount power packages.

Applications include active SCSI-2 terminators and post regulation of switching power supplies.
- 2.85 V Output Voltage for SCSI-2 Active Termination
- 1.0 V Dropout
- Output Current in Excess of 800 mA
- Thermal Protection
- Short Circuit Protection
- Output Trimmed to \(1.4 \%\) Tolerance
- No Minimum Load Required
- Space Saving DPAK and SOP-8 Surface Mount Power Packages



\section*{SCSI-2 ACTIVE TERMINATOR REGULATOR}

\section*{SEMICONDUCTOR} TECHNICAL DATA


PIN CONNECTIONS

(Top View)

(Top View)
\begin{tabular}{|c|c|c|}
\hline ORDERING INFORMATION \\
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34268D & \multirow{2}{*}{\(\mathrm{T}_{J}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\)} & SOP-8 \\
\hline MC34268DT & & DPAK \\
\hline
\end{tabular}
\end{tabular}

\section*{MC34268}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Input Voltage & \(V_{\text {in }}\) & 15 & V \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristic DT Suffix, Plastic Package, Case 369A \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Derate Above \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Air \\
D Suffix, Plastic Package, Case 751 \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Derate Above \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \\
\(R_{\theta J C}\) \\
\(R_{\theta J A}\) \\
PD \\
\(R_{\text {日JC }}\) \\
\(R_{\theta J A}\)
\end{tabular} & \begin{tabular}{l}
Internally Limted \\
5.0 \\
87 \\
Internally Limited \\
22 \\
140
\end{tabular} & \[
\begin{gathered}
W \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature Range & \(T_{J}\) & 0 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}
( \(\mathrm{V}_{\text {in }}=4.25 \mathrm{~V}, \mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}\), for typical values \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\) ) Output Voltage, over Line, Load, and Temperature ( \(\mathrm{V}_{\mathrm{in}}=3.9 \mathrm{~V}\) to 15 V , \(\mathrm{I}=0 \mathrm{~mA}\) to 490 mA ) & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 2.81 \\
& 2.76
\end{aligned}
\] & \[
\begin{aligned}
& 2.85 \\
& 2.85
\end{aligned}
\] & \[
\begin{aligned}
& 2.89 \\
& 2.93
\end{aligned}
\] & V \\
\hline Line Regulation ( \(\mathrm{V}_{\text {in }}=4.25 \mathrm{~V}\) to \(15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & Regline & - & - & 0.3 & \% \\
\hline Load Regulation ( \(\mathrm{l} \mathrm{O}=0 \mathrm{~mA}\) to \(800 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\) ) & Regload & - & - & 0.5 & \% \\
\hline Dropout Voltage ( \(\mathrm{l} \mathrm{O}=490 \mathrm{~mA}\) ) & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & 0.95 & 1.1 & V \\
\hline Ripple Rejection ( \(\mathrm{f}=120 \mathrm{~Hz}\) ) & RR & 55 & - & - & dB \\
\hline Maximum Output Current ( \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}\) ) & \({ }^{(m a x)}\) & 800 & - & - & mA \\
\hline Bias Current ( \(\mathrm{V}_{\text {in }}=4.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\) ) & \(\mathrm{I}_{\mathrm{B}}\) & - & 5.0 to 3.0 & 8.0 & mA \\
\hline Minimum Load Current to maintain Regulation ( \(\mathrm{V}_{\mathrm{in}}=15 \mathrm{~V}\) ) & L (min) & - & - & 0 & mA \\
\hline
\end{tabular}

Figure 1. Dropout Voltage versus Output Load Current



\section*{MC34268}

Figure 3. Typical SCSI Application


Figure 3 is a circuit of a typical SCSI terminator application. The MC34268 is designed specifically to provide 2.85 V required to drive a SCSI-2 bus. The output current capability of the regulator is in excess of 800 mA ; enough to drive standard SCSI-2, fast SCSI-2, and some wide SCSI-2 applications. The typical dropout voltage is less than 1.0 V , allowing the IC to regulate to input voltages less than 4.0 V . Internal protective features include current and thermal limiting.

The MC34268 requires an external \(10 \mu \mathrm{~F}\) capacitor with an ESR of less than \(10 \Omega\) for stability over temperature. With economical electrolytic capacitors, cold temperature operation can pose a stability problern. As temperature decreases, the capacitance also decreases and the ESR increases, which could cause the circuit to oscillate. Tantalum capacitors may be a better choice if small size is a requirement. Also, the capacitance and ESR of a tantalum capacitor is more stable over temperature.

Figure 4. SOP-8 Thermal Resistance versus


Figure 5. DPAK Thermal Resistance


\section*{Liquid Crystal Display and Backlight Integrated Controller}

The MC34270 and MC34271 are low power dual switching voltage regulators, specifically designed for handheld and laptop applications, to provide several regulated output voltages using a minimum of external parts. Two uncommitted switching regulators feature a very low standby bias current of \(5.0 \mu \mathrm{~A}\), and an operating current of 7.0 mA capable of supplying output currents in excess of 200 mA .

Both devices have three additional features. The first is an ELD Output that can be used to drive a backlight or a liquid crystal display. The ELD output frequency is the clock divided by 256. The second feature allows four additional output bias voltages, in specific proportions to \(\mathrm{V}_{\mathrm{B}}\), one of the switching regulated output voltages. It allows use of mixed logic circuitry and provides a voltage bias for N -Channel load control MOSFETs \({ }^{\mathrm{mm}}\). The third feature is an Enable input that allows a logic level signal to turn-"off" or turn-"on" both switching regulators.

Due to the low bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable.

MC34270 and MC34271 Features:
- Low Standby Bias Current of \(5.0 \mu \mathrm{~A}\)
- Uncommitted Switching Regulators Allow Both Positive and Negative Supply Voltages
- Logic Enable Allows Microprocessor Control of All Outputs
- Synchronizable to External Clock
- Mode Commandable for ELD and LCD Interface
- Frequency Synchronizable
- Auxiliary Output Bias Voltages Enable Load Control via N-Channel FETs

MOSFET is a trademark of Motorola, Inc.

MAXIMUM RATINGS ( \(T_{A}=25^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{DD}}\) & 16 & Vdc \\
\hline \begin{tabular}{l} 
Power Dissipation and \\
Thermal Characteristics \\
Maximum Power Dissipation \\
Case 873 \\
Thermal Resistance, Junction-to-Ambient \\
Thermal Resistance, Junction-to-Case
\end{tabular} & \(\mathrm{R}_{\theta \mathrm{JJA}}\) & \(\mathrm{R}_{\theta \mathrm{JC}}\) & 100 \\
\hline \begin{tabular}{l} 
Output \#1 and \#2 Switch Current
\end{tabular} & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline ISL \& ISB & 500 & mA \\
\hline Output \#1 and \#2 "Off"-State Voltage & \(\mathrm{V}_{\mathrm{SL}}\) & 60 & Vdc \\
\hline Feedback Enable MOSFETs "Off"-State Voltage & \(\mathrm{V}_{\mathrm{LF}}\) & 20 & Vdc \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {Stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{SEMICONDUCTOR TECHNICAL DATA}

\begin{tabular}{|c|c|c|}
\hline ORDERING INFORMATION \\
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC34270FB & \multirow{2}{*}{\(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & QFP- 32 \\
\hline MC34271FB & QFP- 32 \\
\hline
\end{tabular}
\end{tabular}


ORDERING INFORMATION

Representative Block Diagram


This device contains 350 active transistors.

ELECTRICAL CHARACTERISTICS ( \(V_{D D}=6.0 \mathrm{~V}\), for typical values \(T_{A}=\) Low to High [Note 1], for min/max values \(T_{A}\) is the operating ambient temperature range that applies, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline Reference Voltage ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & Vref & 1.225 & 1.250 & 1.275 & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}\) to 12.5 V ) & Regline & - & 2.0 & 10 & mV \\
\hline Load Regulation ( \(\mathrm{I}_{\mathrm{O}}=0\) to \(120 \mu \mathrm{~A}\) ) & Regload & - & 2.0 & 10 & mV \\
\hline Total Variation (Line, Load and Temperature) & Vref & 1.215 & - & 1.285 & V \\
\hline
\end{tabular}

ERROR AMPLIFIERS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage ( \(\mathrm{V}_{\mathrm{CM}}=1.25 \mathrm{~V}\) ) & \(\mathrm{V}_{10}\) & - & 1.0 & 10 & mV \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{CM}}=1.25 \mathrm{~V}\) ) & IIB & - & 120 & 600 & \(n A\) \\
\hline Open Loop Voltage Gain ( \(\left.\mathrm{V}_{\mathrm{CM}}=1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{COMP}}=2.0 \mathrm{~V}\right)\) & AVOL & 80 & 100 & - & dB \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State ( \(\mathrm{IOH}=-100 \mu \mathrm{~A}\) ) \\
Low State ( \(\mathrm{IOL}=100 \mu \mathrm{~A}\) )
\end{tabular} & VeOH VeOL & \[
\begin{gathered}
\mathrm{V}_{\mathrm{A}}-1.5 \\
0
\end{gathered}
\] & \[
4.0
\] & \[
\begin{aligned}
& 5.5 \\
& 1.0 \\
& \hline
\end{aligned}
\] & V \\
\hline
\end{tabular}

BIAS VOLTAGE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Voltage ( \(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}\) to \(\left.12.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0\right)\) & \(\mathrm{V}_{\text {A }}\) & 4.6 & 5.0 & 5.4 & V \\
\hline \multicolumn{6}{|l|}{OSCILLATOR AND PWM SECTIONS} \\
\hline Total Frequency Variation Over Line and Temperature \(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}\) to \(10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ}\) to \(70^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{T}}=169 \mathrm{k}\) & \(\mathrm{f}^{\prime} \mathrm{OSC}\) & 90 & 115 & 140 & kHz \\
\hline Duty Cycle at Each Output Maximum Minimum & \(\mathrm{DC}_{\text {max }}\) \(\mathrm{DC}_{\text {min }}\) & \[
92
\] & 95 & \[
\overline{0}
\] & \% \\
\hline \begin{tabular}{l}
Sync Input \\
Input Resistance \(\left(\mathrm{V}_{\text {sync }}=3.5 \mathrm{~V}\right.\) ) Minimum Sync Pulse Width
\end{tabular} & \(R_{\text {sync }}\) Tp & 25 & 50
1.0 & 100 & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mu \mathrm{~s}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{OUTPUT MOSFETS}
\begin{tabular}{|l|c|c|c|c|}
\hline Output Voltage - "On"-State \(\left(l_{\text {sink }}=200 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 150 & 250 \\
\hline Output Current - "Off"-State \(\left(\mathrm{V}_{\mathrm{OH}}=40 \mathrm{~V}\right)\) & mV \\
\hline Rise and Fall Times & \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & - & 0.1 & 1.0 \\
\hline
\end{tabular}

EL DISCHARGE OUTPUT (ELD) AND DRV 1
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage - "On"-State \(\left(I_{\text {sink }}=100 \mu \mathrm{~A}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 30 & 100 & mV \\
\hline Output Voltage - "On"-State \(\left(I_{\text {sink }}=50 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 2.0 & 2.5 & V \\
\hline Output Voltage - "Off"-State \(\left(I_{\text {source }}=-100 \mu \mathrm{~A}\right)\) & \(\mathrm{V}_{\mathrm{OH}}\) & \(\mathrm{V}_{\mathrm{DD}}-0.5\) & 5.9 & - & V \\
\hline Output Voltage - "Off"-State \(\left(I_{\text {source }}=-50 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OH}}\) & \(\mathrm{V}_{\mathrm{DD}^{-3.5}}\) & 3.3 & - & V \\
\hline
\end{tabular}

FEEDBACK ENABLE SWITCHES (DS \(\mathbf{1}_{\mathbf{1}}\), DS \(_{2}\) )
\begin{tabular}{|l|c|c|c|c|c|}
\hline Output Voltage - "Low"-State \(\left(\mathrm{I}_{\text {sink }}=1.0 \mathrm{~mA}\right)\) & Vfe OL & - & 10 & 100 & mV \\
\hline Output Current - "Off"-State \(\left(\mathrm{V}_{\mathrm{OH}}=12.5 \mathrm{~V}\right)\) & \(\mathrm{Ife}_{\mathrm{OH}}\) & - & 0.6 & 1.0 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

SWITCHED VDD OUTPUT (SW \({ }_{1}\) )
\begin{tabular}{|l|l|l|l|l|}
\hline Output Voltage & & & \\
Switch "On" \(\left(E N_{1}=1, I_{\text {source }}=100 \mu \mathrm{~A}\right)\) & Vsw & & \\
Switch "Off" \(\left(E N_{1}=0, I_{\text {sink }}=100 \mu \mathrm{~A}\right)\) & 5.5 & 5.9 & 6.0 & \\
\hline
\end{tabular}

\section*{AUXILIARY VOLTAGE OUTPUTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\mathrm{V}_{0}\) Enable Switch} \\
\hline "On"-Resistance: \(\mathrm{V}_{\mathrm{B}}\) to \(\mathrm{V}_{0}\) & Rds & 0 & 2.0 & 10 & \(\Omega\) \\
\hline "Off"-State Leakage Current ( \(\mathrm{V}_{\mathrm{B}}=10 \mathrm{~V}\) ) & \({ }^{\prime} / \mathrm{kg}\) & 0 & 0.1 & 2.0 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{0}\) Voltage ( \(\mathrm{V}_{\mathrm{B}}=30 \mathrm{~V}\), \(\left.\mathrm{I}_{\text {source }}=0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{0}\) & 29.5 & 29.9 & 30 & V \\
\hline \(\mathrm{V}_{0}\) Resistance ( \({ }_{\text {source }}=4.0 \mathrm{~mA}\) ) & \(\mathrm{R}_{0}\) & 20 & 40 & 60 & \(\Omega\) \\
\hline
\end{tabular}

NOTE: 1. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

\section*{MC34270 MC34271}

ELECTRICAL CHARACTERISTICS (continued) ( \(V_{D D}=6.0 \mathrm{~V}\), for typical values \(\mathrm{T}_{\mathrm{A}}=\) Low to High [Note 1], for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies, unless otherwise noted.)


LOGIC INPUTS (EN 1, EN \(_{2}\), MODE)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Low State & \(\mathrm{V}_{\mathrm{IL}}\) & 0 & - & 0.8 & V \\
\hline Input High State & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & - & 6.0 & V \\
\hline Input Impedance & \(\mathrm{R}_{\mathrm{in}}\) & 25 & 50 & 100 & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}

SOFT START CONTROL ( \(\mathbf{S S}_{\mathbf{1}}, \mathbf{S S}_{\mathbf{2}}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Charge Current (Capacitor Voltage \(=1.0 \mathrm{~V}\) to 4.0 V\()\) & \(I_{\text {chg }}\) & 0.5 & 1.0 & 2.5 & \(\mu \mathrm{~A}\) \\
\hline Discharge Current (Capacitor Voltage \(=1.0 \mathrm{~V}\) ) & \(I_{\text {dschg }}\) & 250 & 650 & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

TOTAL SUPPLY CURRENT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
VDD Current \\
Standby Mode ( \(\mathrm{EN}_{1}=\mathrm{EN}_{2}=0\) )
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=6.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DD}}=16 \mathrm{~V}
\end{aligned}
\] & ICC & - & \[
\begin{aligned}
& 2.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 15
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
\(V_{D D}\) Current \\
Backlight "On" (EN \(=1 ; \mathrm{EN}_{2}=0\) )
\end{tabular} & & ICC & - & 0.7 & 3.0 & mA \\
\hline \(V_{D D}\) Current LCD "On" (No Inductor) ( \(\mathrm{EN}_{1}=0 ; \mathrm{EN}_{2}=1\) ) & & ICC & - & 0.9 & 2.0 & mA \\
\hline \(\mathrm{V}_{\mathrm{B}}\) Current ( \(\mathrm{V}_{0}=35 \mathrm{~V}\) ) & & 10 & - & 1.2 & 3.0 & mA \\
\hline
\end{tabular}

NOTE: 1. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

Figure 1. Switch Output Duty Cycle versus Compensation Voltage


Figure 2. Error Amp Open Loop Gain and Phase versus Frequency


Figure 3. Reference Voltage Change versus Reference Current


Figure 5. FET Drain Voltage versus Sink Current


Figure 7. \(\mathrm{V}_{\text {ref }}\) and \(\mathrm{V}_{\mathrm{A}}\) Variation versus Temperature


Figure 4. Quiescent Current versus Supply Voltage


Figure 6. ELD and DRV 1 Switch Output Source


Figure 8. Oscillator Frequency Variation versus Temperature


Figure 9. Frequency versus Timing


Figure 10. \(\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\text {ref }}\) versus \(\mathrm{V}_{\mathrm{D}}\)


\section*{OPERATING DESCRIPTION}

The MC34270 and MC34271 series are monolithic, fixed frequency power switching regulators specifically designed for dc to dc converter and battery powered applications. These devices operate as fixed frequency, voltage mode regulators containing all the active functions required to directly implement step-up, step-down and voltage inverting converters with a minimum number of external components. Potential markets include battery powered, handheld, automotive, computer, industrial and cost sensitive consumer products. A description of each section is given below with the representative block diagram shown in Figure 9.

\section*{Oscillator}

The oscillator frequency is programmed by resistor RT. The charge to discharge ratio is controlled to yield a \(95 \%\) maximum duty cycle at the switch outputs. During the fall time of the internal sawtooth waveform, the oscillator generates an internal blanking pulse that holds the inverting input of the AND gates high, disabling the output switching MOSFETs. The internal sawtooth waveform has a nominal peak voltage of 3.3 V and a valley voltage of 1.7 V .

\section*{Pulse Width Modulators}

Both pulse width modulators consist of a comparator with the oscillator ramp voltage applied to the noninverting input, while the error amplifier output is applied to the inverting input. A third input to the comparator has a 0.5 mA typical current source that can be used to implement soft start. Output switch conduction is initiated when the ramp waveform is discharged to the valley voltage. As the ramp voltage increases to a voltage that exceeds the error amplifier output, the latch resets, terminating output MOSFET conduction for the duration of the oscillator ramp. This PWM/latch combination prevents multiple output pulses during a given oscillator cycle.

Each PWM circuit is enabled by a logic input. When disabled, the entire block is turned off, drawing only leakage current from the power source. Shared circuits, like the
reference and oscillator, can be activated by either \(\mathrm{EN}_{1}\) or \(\mathrm{EN}_{2}\).

Circuit \#1 has an ELD output which may be used to drive an LCD or backlight. Its output frequency is the oscillator frequency divided by 1024.

\section*{Error Amplifiers and Reference}

Each error amplifier is provided with access to both inverting and noninverting inputs, and the output. The Error Amplifiers' Common Mode Input Range is 0 to 2.5 V . The amplifiers have a minimum dc voltage gain of 60 dB . The 1.25 V reference has an accuracy of \(\pm 4.0 \%\) at room temperature.

External loop compensation is required for converter stability. A simple low-pass filter is formed by connecting a resistive divider from the output to the error amplifier inverting input, and a series resistor-capacitor from the error amplifier output also to the to the inverting input. The step down converter is easiest to compensate for stability. The step-up and voltage inverting configurations, when operated as continuous conduction boost or flyback converters, are more difficult to compensate, and may require a lower loop design bandwidth.

\section*{MOSFET Switch Outputs}

The output MOSFETs are designed to switch a maximum of 60 V , with a peak drain current capability of 500 mA . In circuit \#1 an additional DRV \({ }_{1}\) output is provided for interfacing with an external MOSFET.The gates of the MOSFETs are held low when the circuit is disabled.

\section*{Auxiliary Output Voltages}

Output voltages \(\mathrm{V}_{0}\) through \(\mathrm{V}_{4}\) are provided for use as references or bias voltages. \(\mathrm{V}_{0}\) is the circuit \#2 output voltage, when an internal FET switch is activated. The other auxiliary output voltages are proportional to \(\mathrm{V}_{\mathrm{B}}\). The amplifiers for \(V_{1}\) and \(V_{2}\) are powered from \(V_{0}\), while the amplifiers for \(V_{3}\) and \(V_{4}\) are powered from \(V_{D D}\).

Figure 11. Representative Block Diagram Electroluminescent Backlight Configuration


Figure 12. Auxiliary Supply Configuration


Figure 13. MC34270 Incandescent Backlight Configuration


Figure 14. EL PANEL Drive Circuit


\section*{High Performance Current Mode Controller}

The MC44602 is an enhanced high performance fixed frequency current mode controller that is specifically designed for off-line and high voltage dc-to-dc converter applications. This device has the unique ability of changing operating modes if the converter output is overloaded or shorted, offering the designer additional protection for increased system reliability. The MC44602 has several distinguishing features when compared to conventional current mode controllers. These features consist of a foldback amplifier for overload detection, valid load and demag comparators with a fault latch for short circuit detection, thermal shutdown, and separate high current source and sink outputs that are ideally suited for driving a high voltage bipolar power transistor, such as the MJE18002, MJE18004, or MJE18006.

Standard features include an oscillator with a sync input, a temperature compensated reference, high gain error amplifier, and a current sensing comparator. Protective features consist of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, a latch for single pulse metering, and a flip-flop which blanks the output off every other oscillator cycle, allowing output deadtimes to be programmed from \(50 \%\) to \(70 \%\). This device is manufactured in a 16 pin dual-in-line heat tab package for improved thermal conduction.
- Separate High Current Source and Sink Outputs Ideally Suited for Driving Bipolar Power Transistors: 1.0 A Source, 1.5 A Sink
- Unique Overload and Short Circuit Protection
- Thermal Protection
- Oscillator with Sync Input
- Current Mode Operation to 500 kHz Output Switching Frequency
- Output Deadtime Adjustable from \(50 \%\) to \(70 \%\)
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-By-Cycle Current Limiting
- Input and Reference Undervoltage Lockouts with Hysteresis
- Low Startup and Operating Current


HIGH PERFORMANCE CURRENT MODE CONTROLLER SEMICONDUCTOR TECHNICAL DATA



ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC44602 & \(\mathrm{T}_{\mathrm{A}}=-25\) to \(85^{\circ} \mathrm{C}\) & DIP \((12+2+2)\) \\
\hline
\end{tabular}

\section*{MC44602}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & (ICC + Iz) & 30 & mA \\
\hline Sink Ground Voltage with Respect to Gnd (Pin 9) & \(V_{\text {Sink }}\) (neg) & -5.0 & V \\
\hline Output Supply Voitage with Respect to Sink Gnd (Pins 4, 5, 12, 13) & \(\mathrm{V}_{\mathrm{C}}\) & 20 & V \\
\hline \begin{tabular}{l}
Output Current (Note 1) \\
Source \\
Sink
\end{tabular} & IO(Source)
IO(Sink) & \[
\begin{aligned}
& 1.0 \\
& 1.5
\end{aligned}
\] & A \\
\hline Output Energy (Capacitive Load per Cycle) & W & 5.0 & \(\mu \mathrm{J}\) \\
\hline Current Sense and Voltage Feedback Inputs & \(\mathrm{V}_{\text {in }}\) & -0.3 to 5.5 & V \\
\hline Sync Input High State Voltage Low State Reverse Current & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{I}_{\mathrm{LL}}
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& -20
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline Load Detect Input Current & lin & -20 to +10 & mA \\
\hline Error Amplifier Output Sink Current & IEA (Sink) & 10 & mA \\
\hline Power Dissipation and Thermal Characteristics Maximum Power Dissipation at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air Thermal Resistance, Junction-to-Case & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\text {өJA }}\) \\
\(\mathrm{R}_{\text {өJC }}\)
\end{tabular} & \[
\begin{aligned}
& 2.5 \\
& 80 \\
& 15
\end{aligned}
\] & \[
\begin{gathered}
w \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & TJ & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -25 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Maximum package power dissipation limits must be observed.

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(T_{A}=-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) [Note 3] unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Voltage Feedback Input ( \(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\) ) & \(V_{\text {FB }}\) & 2.45 & 2.5 & 2.65 & V \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=2.5 \mathrm{~V}\) ) & İB & - & -0.6 & -2.0 & \(\mu \mathrm{A}\) \\
\hline Open Loop Voltage Gain ( \(\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}\) to 4.0 V ) & AVOL & 65 & 90 & - & dB \\
\hline Unity Gain Bandwidth
\[
\begin{aligned}
\mathrm{TJ}_{J} & =25^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{A}} & =-25 \mathrm{to}+85^{\circ} \mathrm{C}
\end{aligned}
\] & BW & \[
\begin{aligned}
& 1.0 \\
& 0.8
\end{aligned}
\] & 1.4 & \[
\begin{aligned}
& 1.8 \\
& 2.0
\end{aligned}
\] & MHz \\
\hline Power Supply Rejection Ratio ( \(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 16 V ) & PSRR & 65 & 70 & - & dB \\
\hline  & \begin{tabular}{l}
Isink \\
ISource
\end{tabular} & \[
\begin{gathered}
- \\
1.5 \\
- \\
-2.0
\end{gathered}
\] & \[
5.0
\]
\[
-
\]
\[
-1.1
\] & \[
\begin{gathered}
- \\
10 \\
- \\
-0.2
\end{gathered}
\] & mA \\
\hline Output Voltage Swing High State (IO(Source) \(=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) Low State ( l (Sink) \(=0.33 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) ) & \begin{tabular}{l}
\(\mathrm{VOH}_{\mathrm{OH}}\) \\
VOL
\end{tabular} & 6.0 & 7.0
1.0 & \[
\overline{1.1}
\] & V \\
\hline
\end{tabular}

NOTES: 2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the startup threshold before setting to 12 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

\section*{MC44602}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) [Note 3] unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OSCILLATOR SECTION} \\
\hline \[
\begin{aligned}
& \text { Frequency } \\
& \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & fosc & \[
\begin{aligned}
& 168 \\
& 160
\end{aligned}
\] & \[
180
\] & \[
\begin{aligned}
& 192 \\
& 200
\end{aligned}
\] & kHz \\
\hline Frequency Change with Voltage ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 18 V ) & \(\Delta \mathrm{fosc} / \Delta \mathrm{V}\) & - & 0.1 & 0.2 & \%/V \\
\hline Frequency Change with Temperature & \(\Delta \mathrm{OSC} / \Delta \mathrm{T}\) & - & 0.05 & - & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Oscillator Voltage Swing (Peak-to-Peak) & VOSC(pp) & 1.3 & 1.6 & - & V \\
\hline \[
\begin{aligned}
& \text { Discharge Current }(\mathrm{V} \text { OSC }=3.0 \mathrm{~V}) \\
& \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & Idischg & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & 10 & \[
\begin{gathered}
13.5 \\
14
\end{gathered}
\] & mA \\
\hline Sync Input Threshold Voltage High State Low State & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.8 \\
& 1.3
\end{aligned}
\] & \[
\begin{aligned}
& 3.2 \\
& 1.7
\end{aligned}
\] & V \\
\hline Sync Input Resistance
\[
\begin{aligned}
& \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{R}_{\text {in }}\) & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & 10 & \[
\begin{gathered}
13.5 \\
18
\end{gathered}
\] & k \(\Omega\) \\
\hline
\end{tabular}

REFERENCE SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Output Voltage ( \(\mathrm{I} \mathrm{O}=1.0 \mathrm{~mA}\) ) & \(V_{\text {ref }}\) & 4.7 & 5.0 & 5.3 & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 18 V ) & Regline & - & 1.0 & 10 & mV \\
\hline Load Regulation ( \(\mathrm{O}=1.0 \mathrm{~mA}\) to 20 mA ) & Regload & - & 3.0 & 15 & mV \\
\hline Temperature Stability & Ts & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Total Output Variation over Line, Load and Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.65 & - & 5.35 & V \\
\hline Output Noise Voltage ( \(\mathrm{f}=10 \mathrm{~Hz}\) to \(10 \mathrm{kHz}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}\) ) & \(V_{n}\) & - & 50 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability ( \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) for 1000 Hours) & S & - & 5.0 & - & mV \\
\hline Output Short Circuit Current
\[
\begin{aligned}
& \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & ISC & \[
\overline{-70}
\] & \[
-130
\] & \[
\stackrel{-}{-180}
\] & mA \\
\hline
\end{tabular}

\section*{CURRENT SENSE SECTION}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Current Sense Input Voltage Gain (Notes 4 \& 5) \\
\(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) \\
\(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\end{tabular} & AV & & & & \(\mathrm{V} / \mathrm{V}\) \\
\hline Maximum Current Sense Input Threshold (Note 4) & & \begin{tabular}{c}
2.85 \\
2.7
\end{tabular} & \begin{tabular}{c}
3.0 \\
- \\
3.15 \\
3.2
\end{tabular} & \\
\hline Input Bias Current & \(\mathrm{V}_{\text {th }}\) & 0.9 & 1.0 & 1.1 & V \\
\hline Propagation Delay (Current Sense Input to Sink Output) & \(\mathrm{I}_{\mathrm{IB}}\) & - & -4.0 & -10 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{UNDERVOLTAGE LOCKOUT SECTIONS}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Startup Threshold (VCC Increasing) & \(\mathrm{V}_{\text {th }}\) & 13 & 14.1 & 15 & V \\
\hline Minimum Operating Voltage After Turn-On \(\left(\mathrm{V}_{\text {CC }}\right.\) Decreasing) & \(\mathrm{V}_{\mathrm{CC}}(\min )\) & 9.0 & 10.2 & 11 & V \\
\hline Reference Undervoltage Threshold \(\left(\mathrm{V}_{\text {ref }}\right.\) Decreasing) & \(\mathrm{V}_{\text {ref }}(\mathrm{UVLO})\) & 3.0 & 3.35 & 3.7 & V \\
\hline
\end{tabular}

NOTES: 2. Adjust \(\mathrm{V}_{C C}\) above the startup threshold before setting to 12 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
4. This parameter is measured at the latch trip point with \(\mathrm{I}_{\mathrm{FB}}=-5.0 \mu \mathrm{~A}\), refer to Figure 9 .
5. Comparator gain is defined as \(A_{V}=\frac{\Delta V \text { Compensation }}{\Delta V \text { Current Sense Input }}\)

\section*{MC44602}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{C}}\) and \(\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) [Note 3] unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OUTPUT SECTION} \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \text { Low State }(\text { ISink }=100 \mathrm{~mA}) \\
&(\text { ISink }=1.0 \mathrm{~A}) \\
&(\text { ISink }=1.5 \mathrm{~A}) \\
& \text { High State } \\
&(\text { ISource }=50 \mathrm{~mA}) \\
&\text { (ISource }=0.5 \mathrm{~A}) \\
&\text { (ISource }=0.75 \mathrm{~A}) \\
& \hline
\end{aligned}
\] & \[
\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}\right)
\] &  & \[
\begin{aligned}
& 0.6 \\
& 1.8 \\
& 2.1 \\
& 1.4 \\
& 1.7 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 2.0 \\
& 2.6 \\
& 1.7 \\
& 2.0 \\
& 2.2
\end{aligned}
\] & V \\
\hline Output Voltage with UVLO Activated (VCC \(=6.0 \mathrm{~V}\), I \(\mathrm{I}_{\text {Sink }}=1.0 \mathrm{~mA}\) ) & VOL(UVLO) & - & 0.1 & 1.1 & V \\
\hline Output Voltage Rise Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{tr}_{r}\) & - & 50 & 150 & ns \\
\hline Output Voltage Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{tf}_{f}\) & - & 50 & 150 & ns \\
\hline
\end{tabular}

PWM SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Duty Cycle \\
Maximum \\
Minimum
\end{tabular} & \(\mathrm{DC}_{(\max )}\) & 46 & 48 & 50 & \(\%\) \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Power Supply Current & ICC & & & & mA \\
\begin{tabular}{l} 
Startup \(\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right)\) \\
Operating (Note 2) \\
\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) \\
\(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\end{tabular} & & - & 0.2 & 0.5 & \\
\hline Power Supply Zener Voltage (ICC \(=25 \mathrm{~mA})\) & & - & 17 & 20 & \\
\hline
\end{tabular}

OVERLOAD AND SHORT CIRCUIT PROTECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Foldback Amplifier Threshold (Figures 9,10) & \(\Delta \mathrm{V}_{\mathrm{FB}}\) & ( \(\mathrm{VFB}^{-100}\) ) & ( \(\mathrm{VFB}^{\text {-200 }}\) ) & \(\left(V_{F B}{ }^{-300}\right)\) & mV \\
\hline Load Detect Input & & & & & \\
\hline Valid Load Comparator Threshold (VPin 2 Increasing) & \(\left.\mathrm{V}_{\text {th( }} \mathrm{VL}\right)\) & 2.0 & 2.5 & 3.0 & v \\
\hline Demag Comparator Threshold (V \(\mathrm{V}_{\text {Pin }} 2\) Decreasing) & \(V_{\text {th }}\) (Demag) & 50 & 88 & 120 & mV \\
\hline Propagation Delay (Input to Sink or Source Output) & tPLH(in/out) & - & 1.1 & 1.6 & \(\mu \mathrm{S}\) \\
\hline Input Resistance & \(\mathrm{R}_{\text {in }}\) & 12 & 18 & 30 & k \(\Omega\) \\
\hline
\end{tabular}

NOTES: 2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the startup threshold before setting to 12 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

Figure 1. Timing Resistor versus Oscillator Frequency


Figure 2. Output Deadtime versus Oscillator Frequency


Figure 3. Oscillator Discharge Current versus Temperature


Figure 5. Error Amp Small Signal Transient Response


Figure 7. Error Amp Open Loop Gain and Phase versus Frequency


Figure 4. Oscillator Voltage Swing versus Temperature


Figure 6. Error Amp Large Signal Transient Response


Figure 8. Current Sense Input Threshold versus Error Amp Output Voltage


Figure 9. Voltage Feedback Input, Voltage versus Current


Figure 11. Reference Short Circuit Current versus Temperature


Figure 13. Reference Voltage Change versus Source Current



Figure 10. Voltage Feedback Input versus Current Sense Clamp Level


Figure 12. Reference Line and Load Regulation versus Temperature


Figure 14. Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 15. Output Waveform

t , TIME ( \(100 \mathrm{~ns} / \mathrm{DIV}\) )

Figure 17. Sink Output Saturation Voltage versus Sink Current


Figure 19. Supply Current versus Supply Voltage



Figure 18. Source Output Saturation Voltage versus Load Current


Figure 20. Power Supply Zener Voltage
versus Temperature


Figure 21. Valid Load Comparator Threshold


Figure 23. Load Detect Input


Figure 25. Minimum Operating Voltage After Turn-On versus Temperature


Figure 22. Demag Comparator Threshold versus Temperature


Figure 24. Startup Threshold Voltage versus Temperature


Figure 26. Reference Undervoltage Threshold versus Temperature


Figure 27. Representative Block Diagram


Figure 28. Timing Diagram


\section*{MC44602}

\section*{OPERATING DESCRIPTION}

The MC44602 is a high performance, fixed frequency, current mode controller specifically designed to directly drive a bipolar power switch in off-line and high voltage dc-to-dc converter applications. This device offers the designer a cost effective solution with minimal external components. The representative block and timing diagrams are shown in Figures 27 and 28.

\section*{Oscillator}

The oscillator frequency is programmed by the values selected for the timing components \(R_{T}\) and \(C_{T}\). Capacitor \(C_{T}\) is charged from the 5.0 V reference through resistor \(\mathrm{R}_{\boldsymbol{T}}\) to approximately 2.8 V and discharged to 1.2 V by an internal current sink. During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates an internal blanking pulse that holds one of the inputs of the NOR gate high. This causes the Source and Sink outputs to be in a low state, thus producing a controlled amount of output deadtime. An internal toggle flip-flop has been incorporated in the MC44602 which blanks the output off every other clock cycle by holding one of the inputs of the NOR gate high. This in combination with the \(\mathrm{C}_{\mathrm{T}}\) discharge period yields output deadtimes programmable from \(50 \%\) to 70\%. Figure 1 shows RT versus Oscillator Frequency and Figure 2, Output Deadtime versus Frequency, both for a given value of \(\mathrm{C}_{\boldsymbol{T}}\). Note that many values of \(\mathrm{R}_{\boldsymbol{T}}\) and \(\mathrm{C}_{\boldsymbol{T}}\) will give the same oscillator frequency but only one combination will yield a specific output deadtime at a given frequency.

In many noise sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a narrow rectangular clock signal with an amplitude of 3.2 V to 5.5 V to the Sync Input (Pin 7). For reliable locking, the free-running oscillator frequency should be set about \(10 \%\) less than the clock frequency. If the clock signal is ac coupled through a capacitor, an external clamp diode may be required if the negative sync input current is greater than -5.0 mA . Connecting Pin 7 to \(\mathrm{V}_{\text {ref }}\) will cause \(\mathrm{C}_{\top}\) to discharge to 0 V , inhibiting the Oscillator and conduction of the Source Output. Multi-unit synchronization can be accomplished by connecting the \(\mathrm{C}_{\top}\) pin of each IC to a single MC1455 timer.

\section*{Error Amplifier}

A fully compensated Error Amplifier with access to the inverting input and output is provided. It features a typical dc voltage gain of 90 dB , and a unity gain bandwith of 1.0 MHz with 57 degrees of phase margin (Figure 7). The noninverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input. The maximum input bias current with the inverting input at 2.5 V is \(-2.0 \mu \mathrm{~A}\). This can cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance.

The Error Amp Output (Pin 1) is provided for external loop compensation (Figure 29). The output voltage is offset by two diodes drops ( \(\approx 1.4 \mathrm{~V}\) ) and divided by three before it connects to the inverting input of the Current Sense Comparator. This
guarantees that no drive pulses appear at the Source Output (Pin 11) when Pin 1 is at its lowest state ( \(\mathrm{V}_{\mathrm{OL}}\) ). This occurs when the power supply is operating and the load is removed, or at the beginning of a soft-start interval. The Error Amp minimum feedback resistance is limited by the amplifier's minimum source current ( 0.5 mA ) and the required output voltage \((\mathrm{V} \mathrm{OH})\) to reach the comparator's 1.0 V clamp level:
\[
\mathrm{Rff}_{\mathrm{f}(\min )} \approx \frac{3.0(1.0 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=8800 \Omega
\]

Figure 29. Error Amplifier Compensation


\section*{Current Sense Comparator and PWM Latch}

The MC44602 operates as a current mode controller, where output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier output (Pin 1). Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The Current Sense Comparator PWM Latch configuration used ensures that only a single pulse appears at the Source Output during the appropriate oscillator cycle. The inductor current is converted to a voltage by inserting the ground referenced sense resistor \(\mathrm{R}_{\mathrm{S}}\) in series with the emitter of output switch Q1. This voltage is monitored by the Current Sense Input (Pin 6) and compared to a level derived from the Error Amp output. The peak inductor current under normal operating conditions is controlled by the voltage at Pin 1 where:
\[
\mathrm{I}_{\mathrm{pk}} \approx \frac{\mathrm{~V}(\operatorname{Pin} 1)-1.4 \mathrm{~V}}{3 \mathrm{R}_{\mathrm{S}}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 1.0 V . Therefore the maximum peak switch current is:
\[
\operatorname{lpk}(\max ) \approx \frac{1.0 \mathrm{~V}}{R_{S}}
\]

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and the output rectifier recovery time. The addition of an RC filter on the Current Sense Input with a time constant that approximates the spike duration will usually eliminate the instability; refer to Figure 30.

\section*{Undervoltage Lockout}

Two undervoltage lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stage is enabled. The positive power supply terminal ( \(\mathrm{V}_{\mathrm{CC}}\) ) and the reference output ( \(\mathrm{V}_{\text {reff }}\) ) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The VCC comparator upper and lower thresholds are \(14.1 \mathrm{~V} / 10.2 \mathrm{~V}\). The \(\mathrm{V}_{\text {ref }}\) comparator upper and lower thresholds are \(3.6 \mathrm{~V} / 3.3 \mathrm{~V}\). The large hysteresis and low startup current of the MC44602 make it ideally suited for off-line converter applications (Figures 33, 34) where efficient bootstrap startup techniques are required.

A 20 V zener is connected as a shunt regulator from \(\mathrm{V}_{\mathrm{CC}}\) to ground. Its purpose is to protect the IC from excessive voltage that can occur during system startup. The upper limit for the minimum operating voltage of the MC44602 is 11 V .

\section*{Outputs}

The MC44602 contains a high current split totem pole output that was specifically designed for direct drive of Bipolar Power Transistors. By splitting the totem pole into separate source and sink outputs, the power supply designer has the ability to independently adjust the turn-on and turn-off base drive to the external power transistor for optimal switching. The Source and Sink outputs are capable of up to 1.0 A and 1.5 A respectively and feature 50 ns switching times with a 1.0 nF load. Additional internal circuitry has been added to keep the Source Output "Off" and the Sink Output "On" whenever an undervoltage lockout is active. This feature eliminates the need for an external pull-down resistor and guarantees that the power transistor will be held in the "Off" state.

Separate output stage power and ground pins are provided to give the designer added flexibility in tailoring the base drive circuitry for a specific application. The Source Output high-state is controlled by applying a positive voltage to \(V_{C}\) (Pin 14) and is independent of \(V_{C C}\). A zener clamp is typically connected to this input when driving power MOSFETs in systems where \(\mathrm{V}_{\mathrm{CC}}\) is greater than 20V. The Sink Output low-state is controlled by applying a negative voltage to the Sink Ground (Pins 4, 5, 12, 13). The Sink Ground can be biased as much as 5.0 V negative with respect to Ground (Pin 7). Proper implementation of the \(\mathrm{V}_{\mathrm{C}}\) and Sink Ground pins will significantly reduce the level of switching transient noise imposed on the control circuitry.

This becomes particularly useful when reducing the \(\mathrm{I}_{\mathrm{pk}(\max )}\) clamp level.

\section*{Reference}

The 5.0 V bandgap reference has a tolerance of \(\pm 6.0 \%\) over a junction temperature range of \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\). Its primary purpose is to supply charging current to the oscillator timing capacitor. The reference has short circuit protection and is capable of providing in excess of 20 mA for powering additional control system circuitry.

Figure 30. Bipolar Transistor Drive


\section*{Thermal Protection and Package}

Internal Thermal Shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically at \(160^{\circ} \mathrm{C}\), the PWM Latch is held in the "reset" state, forcing the Source Output "Off" and the Sink Output "On". This feature is provided to prevent catastrophic failures from accidental device overheating. It is not intended to be used as a substitute for proper heatsinking.

The MC44602 is contained in a heatsinkable 16-lead plastic dual-in-line package in which the die is mounted on a special heat tab copper alloy lead frame. This tab consists of the four center Sink Ground pins that are specifically designed to improve the thermal conduction from the die to the circuit board. Figure 14 shows a simple and effective method of utilizing the printed circuit medium as a heat dissipater by soldering these pins to an adequate area of copper foil. This permits the use of standard layout and mounting practices while having the ability to halve the junction to air thermal resistance. This example is for a symmetrical layout on a single-sided board with two ounce per square foot of copper.

\section*{Design Considerations}

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulse-width jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with low-current signal, and high current switch and output grounds returning on separate
paths back to the input filter capacitor. Ceramic bypass capacitors ( \(0.1 \mu \mathrm{~F}\) ) connected directly to \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{C}}\), and \(V_{\text {ref }}\) may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage divider should be located close to the IC and as far as possible from the power switch and other noise generating components.

\section*{PROTECTION MODES}

The MC44602 operates as a conventional fixed frequency current mode controller when the power supply output load is less than the design limit. For enhanced system reliability, this device has the unique ability of changing operating modes if the power supply output is overloaded or shorted.

\section*{Overload Protection}

Power supply overload protection is provided by the Foldback Amplifier. As the output load gradually increases, the Error Amplifier senses that the voltage at Pin 3 is less than the 2.5 V threshold. This causes the voltage at Pin 1 to rise, increasing the Current Sense Comparator threshold in order to maintain output regulation. As the load further increases, the inverting input of the Current Sense Comparator reaches the internal 1.0 V clamp level, limiting the switch current to the calculated \(\mathrm{I}_{\mathrm{pk}(\max )}\). At this point any further increase in load will cause the power supply output to fall out of regulation. As the voltage at Pin 3 falls below 2.5 V , current will flow out of the Foldback Amplifier input, and the internal clamp level will be proportionally reduced (Figures 9, 10). The increase in current flowing out of the Foldback Amplifier input in conjunction with the reduced clamp level, causes the power supply output voltage to fall at a faster rate than the voltage at Pin 3. This results in the output foldback characteristic shown in Figure 31. The shape of the current limit "knee" can be modified by the value of resistor \(\mathrm{R}_{1}\) in the feedback divider. Lower values of \(\mathrm{R}_{1}\) will reduce the \(\mathrm{I}_{\mathrm{pk}}(\max )\) clamp level at a faster rate.

Improper operation of the Foldback Amp can be encountered when the Error Amp compensation capacitor \(\mathrm{C}_{f}\) exceeds 2.0 nF . The problem appears at Startup when the output voltage of the power supply is below nominal, causing the Error Amp output to rise quickly. The rapid change in output voltage will be coupled through \(\mathrm{C}_{f}\) to the Inverting Input (Pin 3), keeping it at its 2.5 V threshold as the 1.0 mA Error Amp current source charges \(\mathrm{C}_{\mathrm{f}}\). This has the effect of disabling the Foldback Amp by preventing Pin 3 and the clamp level at the inverting input of the Current Sense Comparator, from rising in proportion to the power supply output voltage. By adding resistor RFB in series with \(\mathrm{C}_{\mathrm{f}}\), the voltage at Pin 3 can be held to 1.0 V , corresponding to a Current Sense clamp level of 0.08 V (Figure 10), while allowing the Error Amp output to reach its high state \(\mathrm{V}_{\mathrm{OH}}\) of 7.0 V . The required resistor to keep Pin 3 below 1.0 V during initial Startup is:
\[
\frac{R_{F B} R_{f}}{R_{F B}+R_{f}} \geq 6\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)
\]

Figure 31. Output Foldback Characteristic


\section*{Short Circuit Protection}

Short circuit protection for the power supply is provided by the Valid Load Comparator, Fault Latch, and Demag Comparator. Figure 32 shows the logic truth table of the functional blocks. When operating the power supply with nominal output loading, the Fault Latch is "Set" by the NOR gate driver during the Power Transistor "On" time and "Reset" by the Fault Comparator during the "Off" time. When a severe overload or short circuit occurs on any output, the voltage during the "Off" time (flyback voltage) at the Load Detect Input, is unable to reach the 2.5 V threshold of the Valid Load Comparator. This causes the Fault Latch to remain in the "Set" state with output \(\bar{Q}\) "Low". During the "Off" time the Demag Comparator output will also be "Low". This causes the NOR gate to internally hold the Sync Input "High", inhibiting the next fixed frequency Oscillator cycle and switching of the Power Transistor. As the load dissipates the stored transformer energy, the voltage at the Load Detect Input will fall. When this voltage reaches 85 mV , the Demag Comparator output goes "High", allowing the Sync Input to go "Low", and the Power Transistor to turn "On".

Note that as long as there is an output short, the switching frequency will shift to a much lower frequency than that set by \(\mathrm{R}_{\mathrm{T}} / \mathrm{C}_{\mathrm{T}}\). The frequency shift has the effect of lowering the duty cycle, resulting in a significant reduction in Power Transistor and Output Rectifier heating when compared to conventional current mode controllers. The extended "On" time is the result of \(\mathrm{C}_{\mathrm{T}}\) charging from 0 V to 2.8 V instead of 1.2 V to 2.8 V . The extended "Off" time is the result of the output short time constant. The time constant consists of the output filter capacitance, and the equivalent series resistance (ESR) of the capacitor plus the associated wire resistance.

Figure 32. Logic Truth Table of Functional Blocks
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Output Load} & \multirow[t]{2}{*}{Power Transistor} & \multicolumn{2}{|l|}{Demag} & \multicolumn{3}{|c|}{Fault Latch} & Sync & \multirow[b]{2}{*}{Operating Comments} \\
\hline & & Input & Out & S & R & \(\overline{\mathbf{Q}}\) & Input & \\
\hline \multirow[t]{3}{*}{Nominal} & On & <85mV & 1 & 1 & 0 & 0 & 0 & NOR gate driver sets Fault Latch. \\
\hline & At Turn-Off & >85 mV, <2.5 V & 0 & 0 & 0 & 0 & - & Narrow spike at Sync Input ( \(<2.5 \mathrm{~V}\) ) as transformer voltage rises quickly, Oscillator is not affected. \\
\hline & Off & >2.5 V & 0 & 0 & 1 & 1 & 0 & Valid Load Comparator resets Fault Latch. \\
\hline \multirow[t]{3}{*}{Short} & On & \(<85 \mathrm{mV}\) & 1 & 1 & 0 & 0 & 0 & Short is not detected until transistor turn-off. \\
\hline & At Turn-Off & \(>85 \mathrm{mV},<2.5 \mathrm{~V}\) & 0 & 0 & 0 & 0 & 1 & Valid Load Comparator fails to reset Fault Latch, Pulse at Sync Input exceeds 2.5 V , Oscillator is disabled. \\
\hline & Off & \(<85 \mathrm{mV}\) & 1 & 0 & 0 & 0 & 0 & Load dissipates transformer energy, Oscillator enabled. \\
\hline
\end{tabular}

During the initial power supply startup the controller sequences through the Short Circuit and Overload Protection modes as the output filter capacitors charge-up. If an output is shorted and the auxiliary feedback winding is used to power the control IC as in Figure 33, the VCC UVLO lower threshold level will be reached after several cycles, disabling the IC and initiating a new startup sequence. The Short Circuit Protection mode can be disabled by grounding the Sync Input. Narrow switching spikes are present on this pin during normal operation. These spikes are caused by the rise time of the flyback voltage from the 85 mV Demag Comparator threshold to the 2.5 V Valid Load Comparator threshold. In high power applications, the increased negative current at the Load Detect Input can extend the switching spikes to the point where they exceed the Sync Input threshold. This problem can be eliminated by placing an external small signal clamp diode at the Load Detect Input. The diode is connected with the cathode at Pin 2 and the anode at ground.

The divide-by-two toggle flip-flop will appear not to function properly during power supply startup without foldback, or operation with an overloaded output. This phenomena appears at the end of the oscillator cycle if there was not a current sense comparison, and after the flyback voltage at the Load Detect Input failed to exceed 2.5 V. Under these conditions, the Sync input will go high approximately \(1.0 \mu \mathrm{~s}\) after the Load Detect Input exceeds the 85 mV Demag

Comparator threshold. This causes \(\mathrm{C}_{\boldsymbol{T}}\) to discharge down towards ground, generating a second negative going edge on the oscillator waveform. This second edge results in the divide-by-two flip-flop being clocked twice for each "On" time of the switch transistor. During initial startup, this effect can be eliminated by insuring that the Foldback Amplifier is fully active with the addition of resistor RFB. With the Foldback Amplifier active, the clamp level at the inverting input of the Current Sense Comparator will be low, allowing a comparison to take place during the switch transistor "On" time. When the Load Detect Input exceeds 85 mV , the Sync Input will go high, discharging \(C \top\) to ground after \(1.0 \mu \mathrm{~s}\), thus eliminating the second negative edge. Operation with the output overloaded will cause the toggle flip-flop to be clocked twice for each "On" time. This should not be a problem since the next "On" time is delayed by the Demag Comparator until the load dissipates the transformers energy.

The point where the IC detects that there is a severe output overload, or that the transformer has reached zero current, is controlled by the voltage of the auxiliary winding and a resistor divider. The divider consists of an external series resistor and an internal shunt resistor. The shunt resistor is nominally \(18 \mathrm{k} \Omega\) but can range from \(12 \mathrm{k} \Omega\) to \(30 \mathrm{k} \Omega\) due to process variations. If more precise overload and zero current detection is required, the internal resistor variations can be swamped out by connecting a low value external resistor ( \(\leq 2.7 \mathrm{k} \Omega\) ) from Pin 2 to ground.

\section*{MC44602}

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Function & Description \\
\hline 1 & Compensation & This pin is the Error Amplifier output and is made available for loop compensation. \\
\hline 2 & Load Detect Input & A voltage indicating a severe overload or short circuit condition at any output of the switching power supply is connected to this input. The Oscillator is controlled by this information making the power supply short circuit proof. \\
\hline 3 & Voltage Feedback Input & This is the inverting input of the Error Amplifier and the noninverting input of the Foldback Amplifier. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 4, 5, 12, 13 & Sink Ground & The Sink Ground pins form a single power return that is typically connected back to the power source on a separate path from Pin 9 Ground, to reduce the effects of switching transient noise on the control circuitry. These pins can be used to enhance the package power capabilities (Figure 14). The Sink Output low state ( \(\mathrm{V}_{\mathrm{OL}}\) ) can be modified by applying a negative voltage to these pins with respect to Ground (Pin 9) to optimize turn-off of a bipolar junction transistor. \\
\hline 6 & Current Sense Input & A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate conduction of the output switch transistor. \\
\hline 7 & Sync Input & A narrow rectangular waveform applied to this input will synchronize the Oscillator. A dc voltage within the range of 3.2 V to 5.5 V will inhibit the Oscillator. \\
\hline 8 & \(\mathrm{R}_{\mathrm{T}} / \mathrm{C}_{T}\) & The Oscillator frequency and maximum Output duty cycle are programmed at this pin by connecting resistor \(\mathrm{R}_{\boldsymbol{T}}\) to \(\mathrm{V}_{\text {ref }}\) and capacitor \(\mathrm{C}_{\boldsymbol{T}}\) to ground. \\
\hline 9 & Ground & This pin is the control circuitry ground and is typically connected back to the power source on a separate path from the Sink Ground (Pins 4, 5, 12, 13). \\
\hline 10 & Sink Output & Peak currents up to 1.5 A are sunk by this output suiting it ideally for turning-off a bipolar junction transistor. The output switches at one-half the oscillator frequency. \\
\hline 11 & Source Output & Peak currents up to 1.0 A are sourced by this output suiting it ideally for turning-on a bipolar junction transistor. The output switches at one-half the oscillator frequency. \\
\hline 14 & \(\mathrm{V}_{\mathrm{C}}\) & The Output high state \(\left(\mathrm{V}_{\mathrm{OH}}\right)\) is set by the voltage applied to this pin. With a separate connection to the power source, it can reduce the effects of switching transient noise on the control circuitry. \\
\hline 15 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply of the control IC. The minimum operating voltage range after startup is 11 V to 18 V . \\
\hline 16 & \(V_{\text {ref }}\) & This is the 5.0 V reference output. It provides charging current for capacitor \(\mathrm{C}_{\mathrm{T}}\) through resistor \(\mathrm{R}_{\mathrm{T}}\) and can be used to bias any additional system circuitry. \\
\hline
\end{tabular}

MC44602

Figure 33. 60 Watt Off-Line Flyback Regulator

\begin{tabular}{|c|c|c|}
\hline Test & Conditions & Results \\
\hline \begin{tabular}{lr} 
Line Regulation & \\
& 85 V \\
& 20 V \\
& 6.8 V
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=85 \mathrm{Vac} \text { to } 265 \mathrm{Vac} \\
& \mathrm{lO}=0.5 \mathrm{~A} \\
& \mathrm{l}=0.5 \mathrm{~A} \\
& \mathrm{O}=0.8 \mathrm{~A} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \Delta=1.0 \mathrm{~V} \text { or } \pm 0.6 \% \\
& \Delta=0.04 \mathrm{~V} \text { or } \pm 0.1 \% \\
& \Delta=0.07 \mathrm{~V} \text { or } \pm 0.5 \%
\end{aligned}
\] \\
\hline Load Regulation
\[
\begin{array}{r}
85 \mathrm{~V} \\
20 \mathrm{~V} \\
6.8 \mathrm{~V}
\end{array}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=220 \mathrm{Vac} \\
& \mathrm{l}=0.1 \mathrm{~A} \text { to } 0.5 \mathrm{~A} \\
& \mathrm{O}=0.1 \mathrm{~A} \text { to } 0.5 \mathrm{~A} \\
& \mathrm{O}=0.1 \mathrm{~A} \text { to } 0.8 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \Delta=1.0 \mathrm{~V} \text { or } \pm 0.6 \% \\
& \Delta=0.4 \mathrm{~V} \text { or } \pm 1.0 \% \\
& \Delta=0.2 \mathrm{~V} \text { or } \pm 1.5 \%
\end{aligned}
\] \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=110 \mathrm{Vac}, \mathrm{P}_{\mathrm{O}}=58 \mathrm{~W}\) & 81\% \\
\hline Standby Power & \(\mathrm{V}_{\text {in }}=110 \mathrm{Vac}, \mathrm{P}_{\mathrm{O}}=0 \mathrm{~W}\) & 2.0 W \\
\hline
\end{tabular}

T1 - Orega SMT2 (G4787-01)
Primary: 41 Turns, \#25AWG
Auxiliary Feedback: 12 Turns, \#25AWG
Secondary: 85 V-60 Turns, \#25AWG
20 V-15 Turns, \#25AWG (2 Strands) Bifiliar Wound \(6.8 \mathrm{~V}-5\) Turns, \#25AWG (2 Strands) Bifiliar Wound
Core - ETD39 34×17×11 B52
Gap - \(\approx 0.020^{\prime \prime}\) for a primary inductance of \(750 \mu \mathrm{H}, A_{L}=500 \mathrm{nH} /\) Turn \(^{2}\)

\section*{MC44602}

Figure 34. 150 Watt Off-Line Flyback Regulator

\begin{tabular}{|c|c|c|}
\hline Test & Conditions & Results \\
\hline Line Regulation
\[
\begin{aligned}
& 155 \mathrm{~V} \\
& 24.5 \mathrm{~V} \\
& 15.5 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=185 \mathrm{Vac} \text { to } 265 \mathrm{Vac} \\
& \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{O}}=1.0 . \mathrm{A} \\
& \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \Delta=1.0 \mathrm{~V} \text { or } \pm 0.3 \% \\
& \Delta=0.4 \mathrm{~V} \text { or } \pm 0.8 \% \\
& \Delta=0.3 \mathrm{~V} \text { or } \pm 1.0 \%
\end{aligned}
\] \\
\hline Load Regulation
\[
\begin{aligned}
& 155 \mathrm{~V} \\
& 24.5 \mathrm{~V} \\
& 15.5 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{in}}=220 \mathrm{Vac} \\
& \mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~A} \text { to } 0.5 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~A} \text { to } 1.0 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~A} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \Delta=2.0 \mathrm{~V} \text { or } \pm 0.7 \% \\
& \Delta=0.4 \mathrm{~V} \text { or } \pm 0.8 \% \\
& \Delta=0.2 \mathrm{~V} \text { or } \pm 0.7 \%
\end{aligned}
\] \\
\hline Efficiency & \(\mathrm{V}_{\mathrm{in}}=220 \mathrm{Vac}, \mathrm{P}_{\mathrm{O}}=117.5 \mathrm{~W}\) & 83\% \\
\hline Standby Power & \(\mathrm{V}_{\text {in }}=220 \mathrm{Vac}, \mathrm{PO}=0 \mathrm{~W}\) & 5.0 W \\
\hline
\end{tabular}

T1 - Orega SMT2 (G4717-01)
Primary: 55 Turns, \#25AWG
Auxiliary Feedback: 6 Turns, \#25AWG
Secondary: \(155 \mathrm{~V}-52\) Turns, \#25AWG
24.5 V - 9 Turns, \#25AWG (2 Strands) Bifiliar Wound 15.5 V-6 Turns, \#25AWG (2 Strands) Bifiliar Wound

Core - GETV 53x18x18 B52
Gap - \(\approx 0.020^{\prime \prime}\) for a primary inductance of \(1.35 \mu \mathrm{H}, \mathrm{A}_{\mathrm{L}}=450 \mathrm{nH} / \mathrm{Turn}^{2}\)

\section*{Advance Information}

\section*{Mixed Frequency Mode} GreenLine \({ }^{T M}\) PWM Controller: Fixed Frequency, Variable Frequency, Standby Mode

The MC44603 is an enhanced high performance controller that is specifically designed for off-line and dc-to-dc converter applications. This device has the unique ability of automatically changing operating modes if the converter output is overloaded, unloaded, or shorted, offering the designer additional protection for increased system reliability. The MC44603 has several distinguishing features when compared to conventional SMPS controllers. These features consist of a foldback facility for overload protection, a standby mode when the converter output is slightly loaded, a demagnetization detection for reduced switching stresses on transistor and diodes, and a high current totem pole output ideally suited for driving a power MOSFET. It can also be used for driving a bipolar transistor in low power converters (< 150 W ). It is optimized to operate in discontinuous mode but can also operate in continuous mode. Its advanced design allows use in current mode or voltage mode control applications.

\section*{Current or Voltage Mode Controller}
- Operation up to 250 kHz Output Switching Frequency
- Inherent Feed Forward Compensation
- Latching PWM for Cycle-by-Cycle Current Limiting
- Oscillator wit̂h Precise Frequency Control

\section*{High Flexibility}
- Externally Programmable Reference Current
- Secondary or Primary Sensing
- Synchronization Facility
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis

\section*{Safety/Protection Features}
- Overvoltage Protection Against Open Current and Open Voltage Loop
- Protection Against Short Circuit on Oscillator Pin
- Fully Programmable Foldback
- Soft-Start Feature
- Accurate Maximum Duty Cycle Setting
- Demagnetization (Zero Current Detection) Protection
- Internally Trimmed Reference

GreenLine Controller: Low Power Consumption in Standby Mode
- Low Startup and Operating Current
- Fully Programmable Standby Mode
- Controlled Frequency Reduction in Standby Mode
- Low dV/dT for Low EMI Radiations


PIN CONNECTIONS


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC44603P & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & Plastic DIP-16 \\
\cline { 1 - 2 } MC44603DW & SOP-16L \\
\hline
\end{tabular}

\section*{MC44603}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & ( \(\mathrm{ICC}+\mathrm{I}\) ) & 30 & mA \\
\hline Supply Voltage with Respect to Ground (Pin 4) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{C}} \\
& \mathrm{v}_{\mathrm{CC}}
\end{aligned}
\] & 18 & V \\
\hline Output Current (Note 1) Source Sink & IO(Source)
lo(Sink) & \[
\begin{gathered}
-750 \\
750
\end{gathered}
\] & mA \\
\hline Output Energy (Capacitive Load per Cycle) & W & 5.0 & \(\mu \mathrm{J}\) \\
\hline RF Stby, \(\mathrm{C}_{\text {T, }}\) Soft-Start, R Ref, Rp Stby Inputs & \(\mathrm{V}_{\text {in }}\) & -0.3 to 5.5 & V \\
\hline Foldback Input, Current Sense Input, E/A Output, Voltage Feedback Input, Overvoltage Protection, Synchronization Input & \(\mathrm{V}_{\text {in }}\) & \[
\begin{gathered}
-0.3 \text { to } \\
v_{\mathrm{CC}}+0.3
\end{gathered}
\] & V \\
\hline \begin{tabular}{l}
Synchronization Input \\
High State Voltage \\
Low State Reverse Current
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}+0.3 \\
-20
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Demagnetization Detection Input Current \\
Source \\
Sink
\end{tabular} & Idemag-ib (Source) Idemag-ib (Sink) & \[
\begin{gathered}
-4.0 \\
10
\end{gathered}
\] & mA \\
\hline Error Amplifier Output Sink Current & IE/A (Sink) & 20 & mA \\
\hline Power Dissipation and Thermal Characteristics P Suffix, Dual-In-Line, Case 648 Maximum Power Dissipation at \(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air DW Suffix, Surface Mount, Case 751G Maximum Power Dissipation at \(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air & \begin{tabular}{l}
PD \(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(P_{D}\) \(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \[
\begin{gathered}
0.6 \\
100 \\
\\
0.45 \\
145
\end{gathered}
\] & \[
\begin{gathered}
W \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
W \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -25 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. ESD data available upon request.

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}\), [Note 3], \(\mathrm{R}_{\text {ref }}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=820 \mathrm{pF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\),
for min/max values \(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\) [Note 4], unless otherwise noted.)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Voltage (Note 5) & & & & & V \\
\hline Low State ( \(\mathrm{I}_{\text {Sink }}=100 \mathrm{~mA}\) ) & \(\mathrm{V}_{\text {OL }}\) & - & 1.0 & 1.2 & \\
\hline ( ISink \(=500 \mathrm{~mA}\) ) & & - & 1.4 & 2.0 & \\
\hline High State ( 1 Source \(=200 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{OH}}\) & - & 1.5 & 2.0 & \\
\hline ( Source \(=500 \mathrm{~mA}\) ) & & - & 2.0 & 2.7 & \\
\hline Output Voltage During Initialization Phase & \(\mathrm{V}_{\mathrm{OL}}\) & & & & V \\
\hline \(\mathrm{V}_{C C}=0\) to 1.0 V , IS \({ }^{\text {ink }}=10 \mu \mathrm{~A}\) & & - & - & 1.0 & \\
\hline \(\mathrm{V}_{\text {CC }}=1.0\) to 5.0 V , IS Sink \(=100 \mu \mathrm{~A}\) & & - & 0.1 & 1.0 & \\
\hline \(\mathrm{V}_{\mathrm{CC}}=5.0\) to 13 V , \(\mathrm{I}_{\text {S }}\) Sk \(=1.0 \mathrm{~mA}\) & & - & 0.1 & 1.0 & \\
\hline Output Voltage Rising Edge Slew-Rate ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & dVo/dT & - & 300 & - & V/us \\
\hline Output Voltage Falling Edge Slew-Rate ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}\) ) & dVo/dT & - & -300 & - & V/ \(/ \mathrm{s}\) \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Voltage Feedback Input \(\left(\mathrm{V}_{\mathrm{E} / \mathrm{A} \text { out }}=2.5 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{FB}}\) & 2.42 & 2.5 & 2.58 & V \\
\hline Input Bias Current \(\left(\mathrm{V}_{\mathrm{FB}}=2.5 \mathrm{~V}\right)\) & \(\mathrm{I}_{\mathrm{FB}}-\mathrm{ib}\) & -2.0 & -0.6 & - & \(\mu \mathrm{A}\) \\
\hline Open Loop Voltage Gain \(\left(\mathrm{V}_{\mathrm{E} / \mathrm{A}}\right.\) out \(=2.0\) to 4.0 V\()\) & \(\mathrm{A}_{\mathrm{VOL}}\) & 65 & 70 & - & dB \\
\hline
\end{tabular}

NOTES: 3. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the startup threshold before setting to 12 V .
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
5. \(\mathrm{V}_{\mathrm{C}}\) must be greater than 5.0 V .

ELECTRICAL CHARACTERISTICS (continued) ( \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}\), [Note 3], \(\mathrm{R}_{\mathrm{ref}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=820 \mathrm{pF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\) [Note 4], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ERROR AMPLIFIER SECTION (continued)} \\
\hline Unity Gain Bandwidth
\[
\begin{aligned}
& \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & BW & - & \[
4.0
\] & \[
5.5
\] & MHz \\
\hline Voltage Feedback Input Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=10\) to 15 V ) & \(V_{\text {FBline-reg }}\) & -10 & - & 10 & mV \\
\hline \[
\begin{aligned}
& \text { Output Current } \\
& \text { Sink }\left(V_{\mathrm{E} / \mathrm{A}} \text { out }=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\right) \\
& T_{\mathrm{A}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C} \\
& \text { Source }\left(\mathrm{V}_{\mathrm{E} / \mathrm{A}} \text { out }=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & \begin{tabular}{l}
ISink \\
ISource
\end{tabular} & \[
\begin{gathered}
2.0 \\
-2.0
\end{gathered}
\] & 12 & \[
-0.2
\] & mA \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State ( \(\mathrm{I} / \mathrm{A}\) out (source) \(=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) \\
Low State ( \(\mathrm{I}_{\mathrm{E} / \mathrm{A} \text { out (sink) }}=0.33 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) )
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & & & & V \\
\hline
\end{tabular}

REFERENCE SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Reference Output Voltage ( \(\mathrm{V}_{\mathrm{CC}}=10\) to 15 V ) & \(\mathrm{V}_{\text {ref }}\) & 2.4 & 2.5 & 2.6 & V \\
\hline Reference Current Range \(\left(\mathrm{I}_{\text {ref }}=\mathrm{V}_{\text {ref }} / \mathrm{R}_{\text {ref }}, \mathrm{R}=5.0 \mathrm{k}\right.\) to \(25 \mathrm{k} \Omega\) ) & \(\mathrm{I}_{\text {ref }}\) & -500 & - & -100 & \(\mu \mathrm{~A}\) \\
\hline Reference Voltage Over \(I_{\text {ref }}\) Range & \(\Delta \mathrm{V}_{\text {ref }}\) & -40 & - & 40 & mV \\
\hline
\end{tabular}

OSCILLATOR AND SYNCHRONIZATION SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frequency & fosc & & & & kHz \\
\hline \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & & \[
44.5
\] & & \[
\begin{gathered}
51.5 \\
52
\end{gathered}
\] & \\
\hline Frequency Change with Voltage ( \(\mathrm{V}_{\mathrm{CC}}=10\) to 15 V ) & \(\Delta \mathrm{f} \mathrm{OSC}^{\prime} / \mathrm{V}\) & - & 0.05 & - & \%/V \\
\hline Frequency Change with Temperature ( \(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\) ) & \(\Delta \mathrm{f} \mathrm{OSC}^{\prime} / \mathrm{T}\) & - & 0.05 & - & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Oscillator Voltage Swing (Peak-to-Peak) & \(\mathrm{V}_{\text {OSC(pp) }}\) & 1.65 & 1.8 & 1.95 & V \\
\hline Ratio Charge Current/Reference Current
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C}(\mathrm{~V} \mathrm{CT}=2.0 \mathrm{~V}) \\
& \mathrm{T}_{\mathrm{A}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & \(I_{\text {charge }} / I_{\text {ref }}\) & \[
\begin{gathered}
0.375 \\
0.37
\end{gathered}
\] & & \[
\begin{gathered}
0.425 \\
0.43
\end{gathered}
\] & - \\
\hline Fixed Maximum Duty Cycle \(=I_{\text {discharge }} /\left(I_{\text {discharge }}+I_{\text {charge }}\right.\) ) & D & 78 & 80 & 82 & \% \\
\hline Ratio Standby Discharge Current versus IR F Stby (Note 6)
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C} \text { (Note 8) }
\end{aligned}
\] & Idisch-Stby' IR F Stby & \[
\begin{aligned}
& 0.46 \\
& 0.43
\end{aligned}
\] & \[
0.53
\] & \[
\begin{gathered}
0.6 \\
0.63
\end{gathered}
\] & - \\
\hline VR F Stby (lR F Stby \(=100 \mu \mathrm{~A}\) ) & \(\mathrm{V}_{\text {R F Stby }}\) & 2.4 & 2.5 & 2.6 & V \\
\hline Frequency in Standby Mode ( RF Stby \(^{\text {(Pin } 15)=25 \mathrm{k} \Omega)}\) & FStby & 18 & 21 & 24 & kHz \\
\hline Current Range & IR F Stby & -200 & - & -50 & \(\mu \mathrm{A}\) \\
\hline Synchronization Input Threshold Voltage (Note 7) & \begin{tabular}{l}
\(V_{\text {inthH }}\) \\
\(V_{\text {inthL }}\)
\end{tabular} & \[
\begin{gathered}
\hline 3.2 \\
0.45
\end{gathered}
\] & \[
\begin{aligned}
& 3.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 4.3 \\
& 0.9
\end{aligned}
\] & V \\
\hline Synchronization Input Current & ISync-in & -5.0 & - & 0 & \(\mu \mathrm{A}\) \\
\hline Minimum Synchronization Pulse Width (Note 8) & TSync & - & - & 0.5 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{UNDERVOLTAGE LOCKOUT SECTION}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Startup Threshold & \(V_{\text {stup-th }}\) & 13.6 & 14.5 & 15.4 & V \\
\hline Output Disable Voltage After Threshold Turn-On (UVLO 1) & \(V_{\text {disable1 }}\) & & & & V \\
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & & 8.6 & 9.0 & 9.4 & \\
\(\mathrm{~T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & & 8.3 & - & 9.6 & \\
\hline Reference Disable Voltage After Threshold Turn-On (UVLO 2) & \(V_{\text {disable2 }}\) & 7.0 & 7.5 & 8.0 & V \\
\hline
\end{tabular}

NOTES: 3. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the startup threshold before setting to 12 V .
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
6. Standby is disabled for \(V_{R P}\) Stby \(<25 \mathrm{mV}\) typical.
7. If not used, Synchronization input must be connected to Ground.
8. Synchronization Pulse Width must be shorter than \(T_{O S C}=1 / \mathrm{f} O S C\)

\section*{MC44603}

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\mathrm{CC}}\right.\) and \(\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V},[\) Note 3\(], \mathrm{R}_{\mathrm{ref}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=820 \mathrm{pF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\) [Note 4], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{DEMAGNETIZATION DETECTION SECTION (Note 9)} \\
\hline \begin{tabular}{l}
Demagnetization Detect Input \\
Demagnetization Comparator Threshold (VPin 9 Decreasing) Propagation Delay (Input to Output, Low to High) Input Bias Current ( \(\mathrm{V}_{\text {demag }}=65 \mathrm{mV}\) )
\end{tabular} & \[
\begin{gathered}
\mathrm{V}_{\text {demag-th }} \\
\mathrm{I}_{\text {demag-lb }} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
50 \\
- \\
-0.5
\end{gathered}
\] & \[
\begin{gathered}
65 \\
0.25
\end{gathered}
\] & 80 & \[
\begin{array}{r}
\mathrm{mV} \\
\mu \mathrm{~s} \\
\mu \mathrm{~A}
\end{array}
\] \\
\hline Negative Clamp Level ( demag \(^{\text {a }}\) - 2.0 mA ) & \(\mathrm{C}_{\mathrm{L} \text { (neg) }}\) & - & -0.38 & - & V \\
\hline Positive Clamp Level ( \(l_{\text {demag }}=2.0 \mathrm{~mA}\) ) & \(\mathrm{C}_{\mathrm{L} \text { (pos) }}\) & - & 0.72 & - & V \\
\hline
\end{tabular}

SOFT-START SECTION (Note 11)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Ratio Charge Current/ } / I_{\text {ref }} \\
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & \(\mathrm{lss}(\mathrm{ch})^{\prime} \mathrm{I} \mathrm{ref}\) & \[
\begin{aligned}
& 0.37 \\
& 0.36 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 0.43 \\
& 0.44 \\
& \hline
\end{aligned}
\] & - \\
\hline Discharge Current ( \(\mathrm{V}_{\text {soft-start }}=1.0 \mathrm{~V}\) ) & Idischarge & 1.5 & 5.0 & - & mA \\
\hline Clamp Level & \(\mathrm{V}_{\mathrm{Ss} \text { ( } \mathrm{CL})}\) & 2.2 & 2.4 & 2.6 & V \\
\hline \[
\begin{aligned}
\text { Duty Cycle } & \left(\mathrm{R}_{\text {soft-start }}=12 \mathrm{k} \Omega\right) \\
& \left(\mathrm{V}_{\text {soft-start }}(\text { Pin 11 })=0.1 \mathrm{~V}\right)
\end{aligned}
\] & \[
\left\lvert\, \begin{gathered}
D_{\text {soft-start } 12 \mathrm{k}} \\
D_{\text {soft-start }}
\end{gathered}\right.
\] & \[
36
\] & 42 & \[
\begin{gathered}
49 \\
0 \\
\hline
\end{gathered}
\] & \% \\
\hline \multicolumn{6}{|l|}{OVERVOLTAGE SECTION} \\
\hline Protection Threshold Level on V \({ }_{\text {OVP }}\) & V OVP-th & 2.42 & 2.5 & 2.58 & V \\
\hline Propagation Delay (VOVP \(>2.58 \mathrm{~V}\) to \(\mathrm{V}_{\text {out }}\) Low) & & 1.0 & - & 3.0 & \(\mu \mathrm{s}\) \\
\hline \[
\begin{aligned}
& \text { Protection Level on } \mathrm{V}_{\mathrm{CC}} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\text {CC prot }}\) & \[
\begin{aligned}
& 16.1 \\
& 15.9
\end{aligned}
\] & 17 & \[
\begin{aligned}
& 17.9 \\
& 18.1
\end{aligned}
\] & V \\
\hline Input Resistance
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.5 \\
& 1.4
\end{aligned}
\] & 2.0 & & k \(\Omega\) \\
\hline
\end{tabular}

FOLDBACK SECTION (Note 10)
\begin{tabular}{|l|c|c|c|c|}
\hline Current Sense Voltage Threshold \(\left(V_{\text {foldback }}(\right.\) Pin 5\(\left.)=0.9 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{CS}} \mathrm{th}\) & 0.86 & 0.89 & 0.9 \\
\hline Foldback Input Bias Current \(\left(\mathrm{V}_{\text {foldback }}(\operatorname{Pin} 5)=0 \mathrm{~V}\right)\) & \(\mathrm{I}_{\text {foldback }} \mathrm{lb}\) & -6.0 & -2.0 & - \\
\hline
\end{tabular}

STANDBY SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Ratio } I_{R} P \text { Stby } / I_{\text {ref }} \\
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & \({ }^{\prime}\) R P Stby \(/{ }^{\text {ref }}\) & \[
\begin{aligned}
& 0.37 \\
& 0.36
\end{aligned}
\] & \[
0.4
\] & \[
\begin{aligned}
& 0.43 \\
& 0.44
\end{aligned}
\] & - \\
\hline Ratio Hysteresis ( \(\mathrm{V}_{\mathrm{h}}\) Required to Return to Normal Operation from Standby Operation)
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{h}} / \mathrm{V}_{\mathrm{R}} \mathrm{P}\) Stby & \[
\begin{gathered}
1.42 \\
1.4
\end{gathered}
\] & \[
1.5
\] & \[
\begin{gathered}
1.58 \\
1.6
\end{gathered}
\] & - \\
\hline Current Sense Voltage Threshold (VR P Stby (Pin 12) \(=1.0 \mathrm{~V}\) ) & \(\mathrm{V}_{\text {CS-Stby }}\) & 0.28 & 0.31 & 0.34 & V \\
\hline \multicolumn{6}{|l|}{CURRENT SENSE SECTION} \\
\hline Maximum Current Sense Input Threshold \(\left(\mathrm{V}_{\text {feedback }}\left(\right.\right.\) Pin 14) \(=2.3 \mathrm{~V}\) and \(\left.\mathrm{V}_{\text {foldback }}(\operatorname{Pin} 6)=1.2 \mathrm{~V}\right)\) & \(\mathrm{V}_{\text {CS-th }}\) & 0.96 & 1.0 & 1.04 & V \\
\hline Input Bias Current & ICS-ib & -10 & -2.0 & - & \(\mu \mathrm{A}\) \\
\hline Propagation Delay (Current Sense Input to Output at \(\mathrm{V}_{\mathrm{TH}}\) of MOS transistor \(=3.0 \mathrm{~V}\) ) & - & - & 120 & 200 & ns \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Power Supply Current \\
Startup \(\left(\mathrm{V}_{\mathrm{CC}}=13 \mathrm{~V}\right.\) with \(\mathrm{V}_{\mathrm{CC}}\) Increasing) \\
Operating \(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}(\) Note 3)
\end{tabular} & I CC & & c \\
\hline Power Supply Zener Voltage \(\left(\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}\right)\) & & \begin{tabular}{c}
0.3 \\
17
\end{tabular} & \begin{tabular}{c}
0.45 \\
20
\end{tabular} & mA \\
\hline Thermal Shutdown & \(\mathrm{V}_{\mathrm{Z}}\) & 18.5 & - & - & V \\
\hline
\end{tabular}

NOTES: 3. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the startup threshold before setting to 12 V .
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
9. This function can be inhibited by connecting Pin 8 to Gnd. This allows a continuous current mode operation.
10. This function can be inhibited by connecting Pin 5 to \(V_{C C}\).
11. The MC44603 can be shut down by connecting the Soft-Start pin (Pin 11) to Ground.

MC44603
Representative Block Diagram


This device contains 243 active transistors.

Figure 1. Timing Resistor versus Oscillator Frequency


Figure 2. Standby Mode Timing Capacitor versus Oscillator Frequency


Figure 4. Ratio Charge Current/Reference Current versus Temperature


Figure 5. Output Waveform

\(1.0 \mu \mathrm{~s} / \mathrm{Div}\)

Figure 6. Output Cross Conduction


Figure 7. Oscillator Discharge Current versus Temperature


Figure 9. Sink Output Saturation Voltage versus Sink Current


Figure 11. Voltage Feedback Input versus Temperature


Figure 8. Source Output Saturation Voltage versus Load Current


Figure 10. Error Amplifier Gain and Phase versus Frequency


Figure 12. Demag Comparator Threshold versus Temperature


Figure 13. Current Sense Gain versus Temperature


Figure 15. Propagation Delay Current Sense Input to Output versus Temperature


Figure 17. Supply Current versus


Figure 14. Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


Figure 16. Startup Current versus \(\mathbf{V C C}_{\mathbf{C}}\)


Figure 18. Power Supply Zener Voltage versus Temperature


Figure 19. Startup Threshold Voltage


Figure 21. Disable Voltage After Threshold Turn-On (UVLO2) versus Temperature


Figure 23. Protection Level on \(V_{C C}\)


Figure 20. Disable Voltage After Threshold Turn-On (UVLO1) versus Temperature


Figure 22. Protection Threshold Level on


Figure 24. Propagation Delay (VOVP > 2.58 V to Vout Low) versus Temperature


Figure 25. Standby Reference Current


Figure 26. Current Sense Voltage Threshold Standby Mode versus Temperature


PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Name & Description \\
\hline 1 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply of the IC. The operating voltage range after startup is 9.0 to 14.5 V . \\
\hline 2 & \(\mathrm{V}_{\mathrm{C}}\) & The output high state \(\left(\mathrm{V}_{\mathrm{OH}}\right)\) is set by the voltage applied to this pin. With a separate connection to the power source, it can reduce the effects of switching noise on the control circuitry. \\
\hline 3 & Output & Peak currents up to 750 mA can be sourced or sunk, suitable for driving either MOSFET or Bipolar transistors. This output pin must be shunted by a Schottky diode, 1N5819 or equivalent. \\
\hline 4 & Gnd & The ground pin is a single return, typically connected back to the power source; it is used as control and power ground. \\
\hline 5 & Foldback Input & The foldback function provides overload protection. Feeding the foldback input with a portion of the \(\mathrm{V}_{\mathrm{CC}}\) voltage ( 1.0 V max) establishes on the system control loop a foldback characteristic allowing a smoother startup and sharper overload protection. Above 1.0 V the foldback input is inactive. \\
\hline 6 & \begin{tabular}{l}
Overvoltage \\
Protection
\end{tabular} & When the overvoltage protection pin receives a voltage greater than 17 V , the device is disabled and requires a complete restart sequence. The overvoltage level is programmable. \\
\hline 7 & Current Sense Input & A voltage proportional to the current flowing into the power switch is connected to this input. The PWM latch uses this information to terminate the conduction of the output buffer when working in a current mode of operation. A maximum level of 1.0 V allows either current or voltage mode operation. \\
\hline 8 & Demagnetization Detection & A voltage delivered by an auxiliary transformer winding provides to the demagnetization pin an indication of the magnetization state of the flyback transformer. A zero voltage detection corresponds to complete core saturation. The demagnetization detection ensures a discontinuous mode of operation. This function can be inhibited by connecting Pin 8 to Gnd. \\
\hline 9 & Synchronization Input & The synchronization input pin can be activated with either a negative pulse going from a level between 0.7 V and 3.7 V to G d or a positive pulse going from a level between 0.7 V and 3.7 V up to a level higher than 3.7V. The oscillator runs free when Pin 9 is connected to Gnd. \\
\hline 10 & \(\mathrm{C}_{\mathrm{T}}\) & The normal mode oscillator frequency is programmed by the capacitor \(\mathrm{C}_{\boldsymbol{T}}\) choice together with the \(\mathrm{R}_{\mathrm{ref}}\) resistance value. \(\mathrm{C}_{\mathrm{T}}\), connected between Pin 10 and Gnd, generates the oscillator sawtooth. \\
\hline 11 & Soft-Start/D max \(^{\prime}\) Voltage-Mode & A capacitor, resistor or a voltage source connected to this pin limits the switching duty-cycle. This pin can be used as a voltage mode control input. By connecting Pin 11 to Ground, the MC44603 can be shut down. \\
\hline 12 & RP Standby & A voltage level applied to the RP Standby pin determines the output power level at which the oscillator will turn into the reduced frequency mode of operation (i.e. standby mode). An internal hysteresis comparator allows to return in the normal mode at a higher output power level. \\
\hline 13 & E/A Out & The error amplifier output is made available for loop compensation. \\
\hline 14 & Voltage Feedback & This is the inverting input of the Error Amplifier. It can be connected to the switching power supply output through an optical (or other) feedback loop. \\
\hline 15 & RF Standby & The reduced frequency or standby frequency programming is made by the RF Standby resistance choice. \\
\hline 16 & Rref & \(R_{r e f}\) sets the internal reference current. The internal reference current ranges from \(100 \mu \mathrm{~A}\) to \(500 \mu \mathrm{~A}\). This requires that \(5.0 \mathrm{k} \Omega \leq \mathrm{R}_{\mathrm{ref}} \leq 25 \mathrm{k} \Omega\). \\
\hline
\end{tabular}

Figure 27. Starting Behavior and Overvoltage Management


Figure 28. Demagnetization


Figure 29. Switching Off Behavior


Figure 30. Oscillator


\section*{MC44603}

Figure 31. Soft-Start \& \(D_{\max }\)


\section*{OPERATING DESCRIPTION}

\section*{Error Amplifier}

A fully compensated Error Amplifier with access to the inverting input and output is provided. It features a typical dc voltage gain of 70 dB . The noninverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input. The maximum input bias current with the inverting input at 2.5 V is \(-2.0 \mu \mathrm{~A}\). This can cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance.

The Error Amp output (Pin 13) is provided for external loop compensation. The output voltage is offset by two diode drops ( \(\approx 1.4 \mathrm{~V}\) ) and divided by three before it connects to the inverting input of the Current Sense Comparator. This guarantees that no drive pulses appear at the Output (Pin 3) when Pin 13 is at its lowest state ( V OL ). The Error Amp minimum feedback resistance is limited by the amplifier's minimum source current ( 0.2 mA ) and the required output voltage \((\mathrm{VOH})\) to reach the current sense comparator's 1.0 V clamp level:
\[
\mathrm{R}_{\mathrm{f}(\min )} \approx \frac{3.0(1.0 \mathrm{~V})+1.4 \mathrm{~V}}{0.2 \mathrm{~mA}}=22 \mathrm{k} \Omega
\]

Figure 32. Error Amplifier Compensation


\section*{Current Sense Comparator and PWM Latch}

The MC44603 can operate as a current mode controller or as a voltage mode controller. In current mode operation, the MC44603 uses the current sense comparator. The output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level
established by the Error Amplifier output (Pin 13). Thus, the error signal controls the peak inductor current on a cycle-by-cycle basis. The Current Sense Comparator PWM Latch ensures that only a single pulse appears at the Source Output during the appropriate oscillator cycle.

The inductor current is converted to a voltage by inserting the ground referenced sense resistor \(R_{S}\) in series with the power switch Q1.

This voltage is monitored by the Current Sense Input (Pin 7) and compared to a level derived from the Error Amp output. The peak inductor current under normal operating conditions is controlled by the voltage at Pin 13 where:
\[
I_{p k} \approx \frac{V(\operatorname{Pin} 13)-1.4 \mathrm{~V}}{3 R_{S}}
\]

The Current Sense Comparator threshold is internally clamped to 1.0 V . Therefore, the maximum peak switch current is:
\[
\mathrm{Ipk}(\max ) \approx \frac{1.0 \mathrm{~V}}{\mathrm{R}_{\mathrm{S}}}
\]

Figure 33. Output Totem Pole


\section*{Oscillator}

The oscillator is a very accurate sawtooth generator that can work either in free mode or in synchronization mode. In this second mode, the oscillator stops in the low state and waits for a demagnetization or a synchronization pulse to start a new charging cycle.

\section*{- The Sawtooth Generation:}

In the steady state, the oscillator voltage varies between about 1.6 V and 3.6 V .

The sawtooth is obtained by charging and discharging an external capacitor \(\mathrm{C}_{\mathrm{T}}\) (Pin 10), using two distinct current sources \(=I_{\text {charge }}\) and \(I_{\text {discharge }} \cdot \operatorname{In}\) fact, \(\mathrm{C}_{\mathrm{T}}\) is permanently connected to the charging current source ( \(0.4 \mathrm{I}_{\text {ref }}\) ) and so, the discharge current source has to be higher than the charge current to be able to decrease the \(\mathrm{C}_{\boldsymbol{\top}}\) voltage (refer to Figure 35).

This condition is performed, its value being ( \(2.0 \mathrm{I}_{\text {ref }}\) ) in normal working and ( \(0.4 \mathrm{I}_{\text {ref }}+0.5 \mathrm{IF}\) Stby in standby mode).

Figure 34. Oscillator


Figure 35. Simplified Block Oscillator


Two comparators are used to generate the sawtooth. They compare the \(\mathrm{C}_{\mathrm{T}}\) voltage to the oscillator valley ( 1.6 V ) and peak reference ( 3.6 V ) values. A latch (Ldisch) memorizes the oscillator state.

In addition to the charge and discharge cycles, a third state can exist. This phase can be produced when, at the end of the discharge phase, the oscillator has to wait for a synchronization or demagnetization pulse before restarting. During this delay, the \(\mathrm{C}_{\mathrm{T}}\) voltage must remain equal to the oscillator valley value ( \(\sim 1.6 \mathrm{~V}\) ). So, a third regulated current source I Regul controlled by COSC Regul, is connected to CT in order to perfectly compensate the ( \(0.4 I_{\text {reff }}\) ) current source that permanently supplies \(\mathrm{C}_{\mathrm{T}}\).

The maximum duty cycle is \(80 \%\). Indeed, the on-time is allowed only during the oscillator capacitor charge.
Consequently:
\(T_{\text {charge }}=\mathrm{C}_{\boldsymbol{T}} \times \Delta \mathrm{V} / \mathrm{I}_{\text {charge }}\)
\(\mathrm{T}_{\text {discharge }}=\mathrm{C}_{\boldsymbol{T}} \times \Delta \mathrm{V} / /_{\text {discharge }}\)
where:
Tcharge is the oscillator charge time
\(\Delta \mathrm{V}\) is the oscillator peak-to-peak value
\(I_{\text {charge }}\) is the oscillator charge current
and
\(T_{\text {discharge }}\) is the oscillator discharge time
\(I_{\text {discharge }}\) is the oscillator discharge current

So, as \(\mathrm{fS}_{\mathrm{S}}=1 /\left(\mathrm{T}_{\text {charge }}+\mathrm{T}_{\text {discharge }}\right)\) when the Regul arrangement is not activated, the operating frequency can be obtained from the graph in Figure 1.
NOTE: The output is disabled by the signal VOSC prot when \(\mathrm{V}_{\mathrm{CT}}\) is lower than 1.0 V (refer to Figure 30).

\section*{Synchronization and Demagnetization Blocks}

To enable the output, the LOSC latch complementary output must be low. Reset is activated by the Ldisch output during the discharge phase. To restart, the LOSC has to be set (refer to Figure 34). To perform this, the demagnetization signal and the synchronization must be low.

\section*{- Synchronization:}

The synchronization block consists of two comparators that compare the synchronization signal (external) to 0.7 and 3.7 V (typical values). The comparators' outputs are connected to the input of an AND gate so that the final output of the block should be :
- high when \(0.7<\) SYNC < 3.7 V
- low in the other cases.

As a low level is necessary to enable the output, synchronized low level pulses have to be generated on the output of the synchronization block. If synchronization is not required, the Pin 9 must be connected to the ground.

Figure 36. Synchronization

- Demagnetization:

In flyback applications, a good means to detect magnetic saturation of the transformer core, or demagnetization, consists in using the auxiliary winding voltage. This voltage is:
- negative during the on-time,
- positive during the off-time,
- equal to zero for the dead-time with generally some ringing (refer to Figure 37).
That is why, the MC44603 demagnetization detection consists of a comparator that can compare the auxiliary winding voltage to a reference that is typically equal to 65 mV .

Figure 37. Demagnetization Detection


A diode D has been incorporated to clamp the positive applied voltages while an active clamping system limits the negative voltages to typically -0.33 V . This negative clamp level is sufficient to avoid the substrate diode switching on.

In addition to the comparator, a latch system has been incorporated in order to keep the demagnetization block output level low as soon as a voltage lower than 65 mV is detected and as long as a new restart is produced (high level on the output) (refer to Figure 38). This process prevents ringing on the signal at Pin 8 from disrupting the demagnetization detection. This results in a very accurate demagnetization detection.

The demagnetization block output is also directly connected to the output, disabling it during the demagnetization phase (refer to Figure 33).
NOTE: The demagnetization detection can be inhibited by connecting Pin 8 to the ground.

Figure 38. Demagnetization Block


Standby
- Power Losses in a Classical Flyback Structure

Figure 39. Power Losses in a Classical Flyback Structure


In a classical flyback (as depicted in Figure 39), the standby losses mainly consist of the energy waste due to:
- the startup resistor \(\mathrm{R}_{\text {startup }}\)
\(P_{\text {startup }}\)
- the consumption of the IC and the power switch control
- the inrush current limitation resistor RICL
- the switching losses in the power switch
- the snubber and clamping network
\(P_{\text {startup }}\) is nearly constant and is equal to:
\[
\left(\left(\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{CC}}\right)^{2} / R_{\text {startup }}\right)
\]

PICL only depends on the current drawn from the mains. Losses can be considered constant. This waste of energy decreases when the standby losses are reduced.
\(P_{\text {control }}\) increases when the oscillator frequency is increased (each switching requires some energy to turn on the power switch).

PSW and PSN-CLN are proportional to the switching frequency.

Consequently, standby losses can be minimized by decreasing the switching frequency as much as possible.

The MC44603 was designed to operate at a standby frequency lower than the normal working one.

\section*{- Standby Power Calculations with MC44603}

During a switching period, the energy drawn by the transformer during the on-time to be transferred to the output during the off-time, is equal to:
\[
E=\frac{1}{2} \times L \times I_{p k}^{2}
\]
where:
- \(L\) is the transformer primary inductor,
- lpk is the inductor peak current.

Input power is labelled \(\mathrm{P}_{\text {in }}\) :
\[
P_{\text {in }}=0.5 \times L \times \mathrm{lpk}^{2} \times \mathrm{f}_{\mathrm{S}}
\]
where \(f_{S}\) is the normal working switching frequency.
Also,
\[
\mathrm{I}_{\mathrm{pk}}=\frac{\mathrm{V}_{\mathrm{CS}}}{\mathrm{R}_{\mathrm{S}}}
\]
where \(R_{S}\) is the resistor used to measure the power switch current.

Thus, the input power is proportional to \(\mathrm{V}_{C S}{ }^{2}\left(\mathrm{~V}_{\mathrm{CS}}\right.\) being the internal current sense comparator input).

That is why the standby detection is performed by creating a \(\mathrm{V}_{\mathrm{CS}}\) threshold. An internal current source ( \(0.4 \times \mathrm{I}_{\text {ref }}\) ) sets the threshold level by connecting a resistor to Pin 12.

As depicted in Figure 40, the standby comparator noninverting input voltage is typically equal to ( \(3.0 \times \mathrm{V}_{\mathrm{CS}}+\mathrm{V}_{\mathrm{F}}\) ) while the inverter input value is ( \(V_{R} P\) Stby \(+V_{F}\) ).

Figure 40. Standby


The \(\mathrm{V}_{\mathrm{CS}}\) threshold level is typically equal to \(\left[\left(\mathrm{V}_{\mathrm{R}} \mathrm{P}\right.\right.\) Stby \(\left.) / 3\right]\) and if the corresponding power threshold is labelled \(\mathrm{P}_{\mathrm{thL}}\) :
\[
P_{\text {thL }}=0.5 \times L \times\left(\frac{V_{R} P \text { Stby }}{3.0 R_{S}}\right)^{2} \times \mathrm{fS}
\]

And as:
\[
\begin{array}{r}
V_{R P S \text { Stby }}=R_{\text {P Stby }} \times 0.4 \times I_{\text {ref }} \\
=R_{R} P \text { Stby } \times 0.4 \times \frac{V_{\text {ref }}}{R_{\text {ref }}} \\
R_{\text {P Stby }}= \\
\frac{10.6 \times R_{S} \times R_{\text {ref }}}{V_{\text {ref }}} \times \sqrt{\frac{P_{\text {thL }}}{L \times f S}}
\end{array}
\]

Thus, when the power drawn by the converter decreases, \(\mathrm{V}_{\text {CS }}\) decreases and when \(\mathrm{V}_{\text {CS }}\) becomes lower than [ \(\mathrm{V}_{\mathrm{CS}}\)-th \(\left.x\left(V_{R} P \operatorname{Stby}\right) / 3\right]\), the standby mode is activated. This results in an oscillator discharge current reduction in order to increase the oscillator period and to diminish the switching frequency. As it is represented in Figure 40, the ( \(0.8 \times I_{\text {ref }}\) ) current source is disconnected and is replaced by a lower value one ( \(0.25 \times \mathrm{IF}\) Stby).

Where: IF Stby \(=V_{\text {ref }} / R_{F}\) Stby
In order to prevent undesired mode switching when power is close to the threshold value, a hysteresis that is proportional to \(\mathrm{V}_{\mathrm{R}} \mathrm{P}\) Stby is incorporated creating a second \(\mathrm{V}_{\mathrm{CS}}\) threshold level that is equal to [2.5x(VRP Stby)/3]. When the standby comparator output is high, a second current source ( \(0.6 \times I_{\text {ref }}\) ) is connected to Pin 12.

Finally, the standby mode function can be shown graphically in Figure 41.

Figure 41. Dynamic Mode Change


This curve shows that there are two power threshold levels:
-the low one:
\(P_{\text {thL }}\) fixed by \(V_{R} P\) Stby
- the high one:
\[
\begin{aligned}
& P_{\text {thH }}=(2.5)^{2} \times P_{\text {thL }} \times \frac{f_{\text {Stby }}}{f_{S}} \\
& P_{\text {thH }}=6.25 \times P_{\text {thL }} \times \frac{f_{\text {tby }}}{f_{S}}
\end{aligned}
\]

\section*{Maximum Duty Cycle and Soft-Start Control}

Maximum duty cycle can be limited to values less than \(80 \%\) by utilizing the \(\mathrm{D}_{\max }\) and soft-start control. As depicted in Figure 42, the Pin 11 voltage is compared to the oscillator sawtooth.

Figure 42. \(\mathrm{D}_{\text {max }}\) and Soft-Start


Figure 43. Maximum Duty Cycle Control


Using the internal current source ( \(0.4 I_{\text {ref }}\) ), the Pin 11 voltage can easily be set by connecting a resistor to this pin.

If a capacitor is connected to Pin 11, the voltage increases from 0 to its maximum value progressively (refer to Figure 44), thereby, implementing a soft-start. The soft-start capacitor is discharged internally when the \(\mathrm{V}_{\mathrm{CC}}\) (Pin 1) voltage drops below 9.0 V .

Figure 44. Different Possible Uses of Pin 11


If no external component is connected to Pin 11, an internal zener diode clamps the Pin 11 voltage to a value \(\mathrm{V}_{\mathrm{Z}}\) that is higher than the oscillator peak value, disabling soft-start and maximum duty cycle limitation.

\section*{Foldback}

As depicted in Fgure 32, the foldback input (Pin 5) can be used to reduce the maximum \(V_{C S}\) value, providing foldback protection. The foldback arrangement is a programmable peak current limitation.

If the output load is increased, the required converter peak current becomes higher and \(\mathrm{V}_{\mathrm{CS}}\) increases until it reaches its maximum value (normally, \(\mathrm{V}_{\mathrm{CS}} \max =1.0 \mathrm{~V}\) ).

Then, if the output load keeps on increasing, the system is unable to supply enough energy to maintain the output voltages in regulation. Consequently, the decreasing output can be applied to Pin 5, in order to limit the maximum peak current. In this way, the well known foldback characteristic can be obtained (refer to Figure 45).

Figure 45. Foldback Characteristic


NOTE: Foldback is disabled by connecting Pin 5 to \(\mathrm{V}_{\mathrm{CC}}\).

\section*{Overvoltage Protection}

The overvoltage arrangement consists of a comparator that compares the Pin 6 voltage to \(\mathrm{V}_{\text {ref }}(2.5 \mathrm{~V})\) (refer to Figure 46).

If no external component is connected to Pin 6, the comparator noninverting input voltage is nearly equal to:
\[
\left(\frac{2.0 \mathrm{k} \Omega}{11.6 \mathrm{k} \Omega+2.0 \mathrm{k} \Omega}\right) \times \mathrm{V}_{\mathrm{CC}}
\]

The comparator output is high when:
\[
\begin{gathered}
\left(\frac{2.0 \mathrm{k} \Omega}{11.6 \mathrm{k} \Omega+2.0 \mathrm{k} \Omega}\right) \times \mathrm{V}_{\mathrm{CC}} \geq 2.5 \mathrm{~V} \\
\Leftrightarrow \mathrm{~V}_{\mathrm{CC}} \geq 17 \mathrm{~V}
\end{gathered}
\]

A delay latch \((2.0 \mu \mathrm{~s})\) is incorporated in order to sense overvoltages that last at least \(2.0 \mu \mathrm{~s}\).

If this condition is achieved, VOVP out, the delay latch output, becomes high. As this level is brought back to the input through an OR gate, VOVP out remains high (disabling the IC output) until V ref is disabled.

Consequently, when an overvoltage longer than \(2.0 \mu \mathrm{~s}\) is detected, the output is disabled until \(\mathrm{V}_{\mathrm{CC}}\) is removed and then re-applied.

The \(\mathrm{V}_{\mathrm{CC}}\) is connected after \(\mathrm{V}_{\text {ref }}\) has reached steady state in order to limit the circuit startup consumption.

The overvoltage section is enabled \(5.0 \mu \mathrm{~s}\) after the regulator has started to allow the reference \(\mathrm{V}_{\text {ref }}\) to stabilize.

By connecting an external resistor to Pin 6, the threshold \(V_{C C}\) level can be changed.

Figure 46. Overvoltage Protection


\section*{Undervoltage Lockout Section}

Figure 47. \(\mathbf{V C C}_{\text {C }}\) Management


As depicted in Figure 47, an undervoltage lockout has been incorporated to garantee that the IC is fully functional before allowing system operation.

This block particularly, produces \(\mathrm{V}_{\text {ref }}\) (Pin 16 voltage) and Iref that is determined by the resistor \(\mathrm{R}_{\text {ref }}\) connected between Pin 16 and the ground:
\[
I_{\text {ref }}=\frac{\mathrm{V}_{\text {ref }}}{\mathrm{R}_{\text {ref }}} \text { where } \mathrm{V}_{\text {ref }}=2.5 \mathrm{~V} \text { (typically) }
\]

Another resistor is connected to the Reference Block: RF Stby that is used to fix the standby frequency.

In addition to this, \(\mathrm{V}_{\mathrm{CC}}\) is compared to a second threshold level that is nearly equal to 9.0 V ( \(\mathrm{V}_{\text {disable1 }}\) ). UVLO1 is generated to reset the maximum duty cycle and soft-start block disabling the output stage as soon as \(\mathrm{V}_{\mathrm{CC}}\) becomes lower than \(\mathrm{V}_{\text {disable1. }}\) In this way, the circuit is reset and made ready for the next startup, before the reference block is disabled (refer to Figure 29). Finally, the upper limit for the minimum normal operating voltage is 9.4 V (maximum value of \(\mathrm{V}_{\text {disable1 }}\) ) and so the minimum hysteresis is 4.2 V . \(\left(\left(V_{\text {stup-th }}\right) \min =13.6 \mathrm{~V}\right)\).

The large hysteresis and the low startup current of the MC44603 make it ideally suited for off-line converter applications where efficient bootstrap startup techniques are required.

\section*{MC44603}

Figure 48. 250 W Input Power Off-Line Flyback Converter with MOSFET Switch


\section*{MC44603}

250 W Input Power Fly-Back Converter
185 V - 270 V Mains Range
MC44603P \& MTP6N60E
\begin{tabular}{|c|c|c|}
\hline Tests & Conditions & Results \\
\hline Line Regulation
\[
\begin{gathered}
150 \mathrm{~V} \\
30 \mathrm{~V} \\
14 \mathrm{~V} \\
7.0 \mathrm{~V}
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=185 \mathrm{Vac} \text { to } 270 \mathrm{Vac} \\
& \mathrm{~F}_{\text {mains }}=50 \mathrm{~Hz} \\
& \mathrm{I}_{\text {out }}=0.6 \mathrm{~A} \\
& \mathrm{I}_{\text {out }}=2.0 \mathrm{~A} \\
& \mathrm{I}_{\text {out }}=2.0 \mathrm{~A} \\
& \mathrm{I}_{\text {out }}=2.0 \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
10 mV \\
10 mV \\
10 mV \\
20 mV
\end{tabular} \\
\hline Load Regulation 150 V & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=220 \mathrm{Vac} \\
& \mathrm{l}_{\text {out }}=0.3 \mathrm{~A} \text { to } 0.6 \mathrm{~A}
\end{aligned}
\] & 50 mV \\
\hline Cross Regulation
\[
150 \mathrm{~V}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=220 \mathrm{Vac} \\
& \mathrm{I}_{\text {out }}(150 \mathrm{~V})=0.6 \mathrm{~A} \\
& \text { I out }(30 \mathrm{~V})=0 \mathrm{~A} \text { to } 2.0 \mathrm{~A} \\
& \text { I }_{\text {out }}(14 \mathrm{~V})=2.0 \mathrm{~A} \\
& \text { I out }(7.0 \mathrm{~V})=2.0 \mathrm{~A}
\end{aligned}
\] & \(<1.0 \mathrm{mV}\) \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=220 \mathrm{Vac}, \mathrm{P}_{\text {in }}=250 \mathrm{~W}\) & 81\% \\
\hline \begin{tabular}{l}
Standby Mode \(P\) input \\
Switching Frequency
\end{tabular} & \(\mathrm{V}_{\text {in }}=220 \mathrm{Vac}, \mathrm{P}_{\text {out }}=0 \mathrm{~W}\) & \begin{tabular}{l}
3.3 W \\
20 kHz fully stable
\end{tabular} \\
\hline Output Short Circuit & \(\mathrm{P}_{\text {out }}(\mathrm{max})=270 \mathrm{~W}\) & Safe on all outputs \\
\hline Startup & \(\mathrm{P}_{\text {in }}=250 \mathrm{~W}\) & \(\mathrm{Vac}=160 \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{MC44603}

Figure 49. 125 W Input Power Off-Line Flyback Converter with Bipolar Switch


\section*{125 W Input Power Fly-Back Converter \\ 185 V - 270 V Mains Range \\ MC44603P \& MJF18006}
\begin{tabular}{|c|c|c|}
\hline Tests & Conditions & Results \\
\hline Line Regulation
\[
\begin{gathered}
120 \mathrm{~V} \\
28 \mathrm{~V} \\
15 \mathrm{~V} \\
8.0 \mathrm{~V}
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=185 \mathrm{Vac} \text { to } 270 \mathrm{Vac} \\
& \mathrm{~F}_{\text {mains }}=60 \mathrm{~Hz} \\
& \mathrm{I}_{\text {out }}=0.5 \mathrm{~A} \\
& \mathrm{I}_{\text {out }}=1.0 \mathrm{~A} \\
& \mathrm{I}_{\text {out }}=1.0 \mathrm{~A} \\
& \mathrm{I}_{\text {out }}=1.0 \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
10 mV \\
10 mV \\
10 mV \\
20 mV
\end{tabular} \\
\hline Load Regulation 120 V & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=220 \mathrm{Vac} \\
& \mathrm{l}_{\text {out }}=0.2 \mathrm{~A} \text { to } 0.5 \mathrm{~A}
\end{aligned}
\] & \(=0.05 \mathrm{~V}\) \\
\hline Cross Regulation
\[
120 \mathrm{~V}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=220 \mathrm{Vac} \\
& \mathrm{I}_{\text {out }}(120 \mathrm{~V})=0.5 \mathrm{~A} \\
& \text { Iout }(28 \mathrm{~V})=0 \mathrm{~A} \text { to } 1.0 \mathrm{~A} \\
& \text { I }_{\text {out }}(15 \mathrm{~V})=1.0 \mathrm{~A} \\
& \text { Iout }(8.0 \mathrm{~V})=1.0 \mathrm{~A}
\end{aligned}
\] & \(<1.0 \mathrm{mV}\) \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=220 \mathrm{Vac}, \mathrm{P}_{\text {in }}=125 \mathrm{~W}\) & 85\% \\
\hline \begin{tabular}{l}
Standby Mode \(P\) input \\
Switching Frequency
\end{tabular} & \(\mathrm{V}_{\text {in }}=220 \mathrm{Vac}, \mathrm{P}_{\text {out }}=0 \mathrm{~W}\) & \begin{tabular}{l}
\[
2.46 \text { W }
\] \\
20 kHz fully stable
\end{tabular} \\
\hline Output Short Circuit & \(\mathrm{P}_{\text {out (max) }}=140 \mathrm{~W}\) & Safe on all outputs \\
\hline Startup & \(\mathrm{P}_{\text {in }}=125 \mathrm{~W}\) & \(\mathrm{Vac}=150 \mathrm{~V}\) \\
\hline
\end{tabular}


\section*{Product Preview High Safety Standby Ladder Mode GreenLine \({ }^{\text {TM }}\) PWM Controller}

The MC44604 is an enhanced high performance controller that is specifically designed for off-line and dc-to-dc converter applications.
The MC44604 is a modification of the MC44603. The MC44604 offers enhanced safety and reliable power management in its protection features (foldback, overvoltage detection, soft-start, accurate demagnetization detection). Its high current totem pole output is also ideally suited for driving a power MOSFET but can also be used for driving a bipolar transistor in low power converters (< 150 W ).

In addition, the MC44604 offers a new efficient way to reduce the standby operating power by means of a patented standby ladder mode operation of the converter significantly reducing the converter consumption in standby mode.

\section*{Current or Voltage Mode Controller}
- Operation Up to 250 kHz Output Switching Frequency
- Inherent Feed Forward Compensation
- Latching PWM for Cycle-by-Cycle Current Limiting
- Oscillator with Precise Frequency Control

\section*{High Flexibility}
- Externally Programmable Reference Current
- Secondary or Primary Sensing
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis

\section*{Safety/Protection Features}
- Overvoltage Protection Facility Against Open Loop
- Protection Against Short Circuit on Oscillator Pin
- Fully Programmable Foldback
- Soft-Start Feature
- Accurate Maximum Duty Cycle Setting
- Demagnetization (Zero Current Detection) Protection
- Internally Trimmed Reference

\section*{GreenLine \({ }^{\text {TM }}\) Controller:}
- Low Startup and Operating Current
- Patented Standby Ladder Mode for Low Standby Losses
- Low dV/dT for Low EMI

\section*{HIGH SAFETY STANDBY LADDER MODE GREENLINE \({ }^{T M}\) PWM CONTROLLER}

\section*{SEMICONDUCTOR TECHNICAL DATA}


P SUFFIX PLASTIC PACKAGE

CASE 648


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC44604P & \(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

\section*{Product Preview}

\section*{High Safety Latched Mode GreenLine \({ }^{\text {TM }}\) PWM Controller for (Multi)Synchronized Applications}

The MC44605 is a high performance current mode controller that is specifically designed for off-line converters. The MC44605 has several distinguishing features that make it particularly suitable for multisynchronized monitor applications.

The MC44605 synchronization arrangement enables operation from 16 kHz up to 130 kHz . This product was optimized to operate with universal ac mains voltage from 80 V to 280 V , and its high current totem pole output makes it ideally suited for driving a power MOSFET.

The MC44605 protections provide well controlled, safe power management. Safety enhancements detect four different fault conditions and provide protection through a disabling latch.

\section*{Current or Voltage Mode Controller}
- Current Mode Operation Up to 250 kHz Output Switching Frequency
- Inherent Feed Forward Compensation
- Latching PWM for Cycle-by-Cycle Current Limiting
- Oscillator with Precise Frequency Control
- Externally Programmable Reference Current
- Secondary or Primary Sensing (Availability of Error Amplifier Output)
- Synchronization Facility
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis
- Low Output dV/dT for Low EMI
- Low Startup and Operating Current

\section*{Safety/Protection Features}
- Soft-Start Feature
- Demagnetization (Zero Current Detection) Protection
- Overvoltage Protection Facility Against Open Loop
- EHT Overvoltage Protection (E.H.T.OVP): Protection Against Excessive Amplitude Synchronization Pulses
- Winding Short Circuit Detection (W.S.C.D.)
- Limitation of the Maximum Input Power (M.P.L.): Calculation of Input Power for Overload Protection
- Over Heating Detection (O.H.D.): to Prevent the Power Switch from Excessive Heating

\section*{Latched Disabling Mode}
- When one of the following faults is detected: EHT overvoltage, Winding Short Circuit (WSCD), excessive input power (M.P.L.), power switch over heating (O.H.D.), a counter is activated
- If the counter is activated for a time that is long enough, the circuit gets definitively disabled. The latch can only be reset by removing and then re-applying power

\section*{HIGH SAFETY LATCHED} MODE GREENLINETM PWM CONTROLLER FOR (MULTI)SYNCHRONIZED APPLICATIONS

\section*{SEMICONDUCTOR} TECHNICAL DATA


P SUFFIX PLASTIC PACKAGE CASE 648

\section*{PIN CONNECTIONS}

(Top View)
* Winding Short Circuit Detection


\section*{Pulse Width Modulator Control Circuits}

The SG3525A, SG3527A pulse width modulator control circuits offer improved performance and lower external parts count when implemented for controlling all types of switching power supplies. The on-chip +5.1 V reference is trimmed to \(\pm 1 \%\) and the error amplifier has an input common-mode voltage range that includes the reference voltage, thus eliminating the need for external divider resistors. A sync input to the oscillator enables multiple units to be slaved or a single unit to be synchronized to an external system clock. A wide range of deadtime can be programmed by a single resistor connected between the \(\mathrm{C}_{\boldsymbol{T}}\) and Discharge pins. These devices also feature built-in soft-start circuitry, requiring only an external timing capacitor. A shutdown pin controls both the soft-start circuitry and the output stages, providing instantaneous turn off through the PWM latch with pulsed shutdown, as well as soft-start recycle with longer shutdown commands. The under voltage lockout inhibits the outputs and the changing of the soft-start capacitor when \(\mathrm{V}_{\mathrm{CC}}\) is below nominal. The output stages are totem-pole design capable of sinking and sourcing in excess of 200 mA . The output stage of the SG3525A features NOR logic resulting in a low output for an off-state while the SG3527A utilized OR logic which gives a high output when off.
- 8.0 V to 35 V Operation
- \(5.1 \mathrm{~V} \pm 1.0 \%\) Trimmed Reference
- 100 Hz to 400 kHz Oscillator Range
- Separate Oscillator Sync Pin
- Adjustable Deadtime Control
- Input Undervoltage Lockout
- Latching PWM to Prevent Multiple Pulses
- Pulse-by-Pulse Shutdown
- Dual Source/Sink Outputs: \(\pm 400\) mA Peak


\section*{SG3525A sG3527A}

PULSE WIDTH MODULATOR CONTROL CIRCUITS

SEMICONDUCTOR TECHNICAL DATA


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline SG3525AN & \multirow{3}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & Plastic DIP \\
\hline SG3525ADW & & SO-16L \\
\hline SG3527AN & & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS (Note 1)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +40 & Vdc \\
\hline Collector Supply Voltage & \(\mathrm{V}_{\mathrm{C}}\) & +40 & Vdc \\
\hline Logic Inputs & & -0.3 to +5.5 & V \\
\hline Analog Inputs & & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Output Current, Source or Sink & \(\mathrm{I}_{\mathrm{O}}\) & \(\pm 500\) & mA \\
\hline Reference Output Current & \(\mathrm{I}_{\text {ref }}\) & 50 & mA \\
\hline Oscillator Charging Current & & 5.0 & mA \\
\hline \begin{tabular}{l} 
Power Dissipation (Plastic \& Ceramic Package) \\
\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) (Note 2) \\
\(\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}\) (Note 3)
\end{tabular} & \(\mathrm{P}_{\mathrm{D}}\) & 1000 & mW \\
\hline Thermal Resistance Junction-to-Air & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance Junction-to-Case & \(\mathrm{R}_{\theta \mathrm{JC}}\) & 60 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 10 seconds) & \(\mathrm{T}_{\text {Solder }}\) & +300 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Values beyond which damage may occur.
2. Derate at \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperatures above \(+50^{\circ} \mathrm{C}\).
3. Derate at \(16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for case temperatures above \(+25^{\circ} \mathrm{C}\).

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & Min & Max & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 8.0 & 35 & Vdc \\
\hline Collector Supply Voltage & \(\mathrm{V}_{\mathrm{C}}\) & 4.5 & 35 & Vdc \\
\hline \begin{tabular}{l} 
Output Sink/Source Current \\
(Steady State) \\
(Peak)
\end{tabular} & IO & & & mA \\
\hline Reference Load Current & & 0 & \begin{tabular}{l}
\(\pm 100\) \\
\(\pm 400\)
\end{tabular} & \\
\hline Oscillator Frequency Range & \(\mathrm{I}_{\text {ref }}\) & 0 & 20 & mA \\
\hline Oscillator Timing Resistor & \(\mathrm{f}_{\mathrm{osc}}\) & 0.1 & 400 & kHz \\
\hline Oscillator Timing Capacitor & \(\mathrm{R}_{\mathrm{T}}\) & 2.0 & 150 & \(\mathrm{k} \Omega\) \\
\hline Deadtime Resistor Range & \(\mathrm{C}_{\mathrm{T}}\) & 0.001 & 0.2 & \(\mu \mathrm{~F}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{R}_{\mathrm{D}}\) & 0 & 500 & \(\Omega\) \\
\hline
\end{tabular}

\section*{APPLICATION INFORMATION}

Shutdown Options (See Block diagram, front page)
Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of \(100 \mu \mathrm{~A}\) to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.

An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions: the PWM
latch is immediately set providing the fastest turn-off signal to the outputs; and a \(150 \mu \mathrm{~A}\) current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.

Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 4], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline Reference Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & Vref & 5.00 & 5.10 & 5.20 & Vdc \\
\hline Line Regulation ( \(+8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+35 \mathrm{~V}\) ) & Regline & - & 10 & 20 & mV \\
\hline Load Regulation ( \(0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{L}} \leq 20 \mathrm{~mA}\) ) & Regload & - & 20 & 50 & mV \\
\hline Temperature Stability & \(\Delta \mathrm{V}_{\text {ref }} / \Delta \mathrm{T}\) & - & 20 & - & mV \\
\hline Total Output Variation Includes Line and Load Regulation over Temperature & \(\Delta V_{\text {ref }}\) & 4.95 & - & 5.25 & Vdc \\
\hline Short Circuit Current
\[
\left(V_{\text {ref }}=0 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & ISC & - & 80 & 100 & mA \\
\hline Output Noise Voltage ( \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & 200 & \(\mu \mathrm{V}_{\mathrm{rms}}\) \\
\hline Long Term Stability ( \(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\) ) (Note 5) & S & - & 20 & 50 & \(\mathrm{mV} / \mathrm{khr}\) \\
\hline
\end{tabular}

OSCILLATOR SECTION (Note 6, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Initial Accuracy ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & & - & \(\pm 2.0\) & \(\pm 6.0\) & \% \\
\hline Frequency Stability with Voltage
\[
\left(+8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+35 \mathrm{~V}\right)
\] & \[
\frac{\Delta \mathrm{f}_{\mathrm{osc}}}{\mathrm{D} \mathrm{VCC}}
\] & - & \(\pm 1.0\) & \(\pm 2.0\) & \% \\
\hline Frequency Stability with Temperature & \[
\frac{\Delta \mathrm{f}_{\mathrm{OSC}}}{\mathrm{D} \quad \mathrm{~T}}
\] & - & \(\pm 0.3\) & - & \% \\
\hline Minimum Frequency ( \(\mathrm{R}_{\mathrm{T}}=150 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=0.2 \mu \mathrm{~F}\) ) & \(f_{\text {min }}\) & - & 50 & - & Hz \\
\hline Maximum Frequency ( \(\mathrm{R}_{\mathrm{T}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\) ) & \(f_{\text {max }}\) & 400 & - & - & kHz \\
\hline Current Mirror ( \(\mathrm{I}_{\text {RT }}=2.0 \mathrm{~mA}\) ) & & 1.7 & 2.0 & 2.2 & mA \\
\hline Clock Amplitude & & 3.0 & 3.5 & - & V \\
\hline Clock Width ( \(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & & 0.3 & 0.5 & 1.0 & \(\mu \mathrm{s}\) \\
\hline Sync Threshold & & 1.2 & 2.0 & 2.8 & V \\
\hline Sync Input Current (Sync Voltage \(=+3.5 \mathrm{~V}\) ) & & - & 1.0 & 2.5 & mA \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION \(\left(\mathrm{V}_{\mathrm{CM}}=+5.1 \mathrm{~V}\right.\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage & V IO & - & 2.0 & 10 & mV \\
\hline Input Bias Current & IfB & - & 1.0 & 10 & \(\mu \mathrm{A}\) \\
\hline Input Offset Current & 10 & - & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline DC Open Loop Gain ( \(\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{M} \Omega\) ) & AVOL & 60 & 75 & - & dB \\
\hline Low Level Output Voltage & VOL & - & 0.2 & 0.5 & V \\
\hline High Level Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & 3.8 & 5.6 & - & V \\
\hline Common Mode Rejection Ratio ( \(+1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+5.2 \mathrm{~V}\) ) & CMRR & 60 & 75 & - & dB \\
\hline Power Supply Rejection Ratio ( \(+8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+35 \mathrm{~V}\) ) & PSRR & 50 & 60 & - & dB \\
\hline
\end{tabular}

PWM COMPARATOR SECTION
\begin{tabular}{|l|c|c|c|c|}
\hline Minimum Duty Cycle & \(\mathrm{DC}_{\text {min }}\) & - & - & 0 \\
\hline Maximum Duty Cycle & \(\mathrm{DC}_{\text {max }}\) & 45 & 49 & - \\
\hline Input Threshold, Zero Duty Cycle (Note 6) & \(\mathrm{V}_{\text {th }}\) & 0.6 & 0.9 & - \\
\hline Input Threshold, Maximum Duty Cycle (Note 6) & \(\mathrm{V}_{\text {th }}\) & - & 3.3 & 3.6 \\
\hline Input Bias Current & I IB & - & 0.05 & 1.0 \\
\hline
\end{tabular}

NOTES: 4. Tlow \(=0^{\circ}\) for SG3525A, 3527A \(T_{\text {high }}=+70^{\circ} \mathrm{C}\) for SG3525A, 3527A
5. Since long term stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
6. Tested at \(\mathrm{f}_{\mathrm{OSC}}=40 \mathrm{kHz}\left(\mathrm{R}_{\mathrm{T}}=3.6 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{D}}=0 \Omega\right)\).

ELECTRICAL CHARACTERISTICS (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{SOFT-START SECTION} \\
\hline Soft-Start Current ( \(\mathrm{V}_{\text {shutdown }}=0 \mathrm{~V}\) ) & & 25 & 50 & 80 & \(\mu \mathrm{A}\) \\
\hline Soft-Start Voltage ( \(\mathrm{V}_{\text {shutdown }}=2.0 \mathrm{~V}\) ) & & - & 0.4 & 0.6 & V \\
\hline Shutdown Input Current ( \(\mathrm{V}_{\text {shutdown }}=2.5 \mathrm{~V}\) ) & & - & 0.4 & 1.0 & mA \\
\hline
\end{tabular}

OUTPUT DRIVERS (Each Output, \(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Output Low Level } \\
& \left(I_{\text {sink }}=20 \mathrm{~mA}\right) \\
& \left(I_{\text {sink }}=100 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & - & \[
\begin{aligned}
& 0.2 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 2.0
\end{aligned}
\] & V \\
\hline \[
\begin{aligned}
& \text { Output High Level } \\
& \qquad \begin{array}{l}
(\text { source }=20 \mathrm{~mA}) \\
\left(I_{\text {source }}=100 \mathrm{~mA}\right)
\end{array}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& 18 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 18
\end{aligned}
\] & - & V \\
\hline Under Voltage Lockout (V8 and V9 = High) & VUL & 6.0 & 7.0 & 8.0 & V \\
\hline Collector Leakage, \(\mathrm{V}_{\mathrm{C}}=+35 \mathrm{~V}\) (Note 7) & \({ }^{\text {I }}\) (leak) & - & - & 200 & \(\mu \mathrm{A}\) \\
\hline Rise Time ( \(\left.\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{t}_{\mathrm{r}}\) & - & 100 & 600 & ns \\
\hline Fall Time ( \(\left.\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(t_{f}\) & - & 50 & 300 & ns \\
\hline Shutdown Delay ( \(\left.\mathrm{V}_{\mathrm{DS}}=+3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{S}}=0, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) & \(t_{\text {ds }}\) & - & 0.2 & 0.5 & \(\mu \mathrm{s}\) \\
\hline Supply Current ( \(\left.\mathrm{V}_{\mathrm{CC}}=+35 \mathrm{~V}\right)\) & ICC & - & 14 & 20 & mA \\
\hline
\end{tabular}

NOTE: 7. Applies to SG3525A only, due to polarity of output pulses.

Lab Test Fixture


Figure 1. Oscillator Charge Time versus \(\mathbf{R T}_{\mathbf{T}}\)


Figure 3. Error Amplifier Open Loop Frequency Response


Figure 5. Oscillator Schematic (SG3525A)


Figure 2. Oscillator Discharge Time versus RD


Figure 4. Output Saturation Characteristics (SG3525A)


Figure 6. Error Amplifier Schematic (SG3525A)


Figure 7. SG3525A Output Circuit
(1/2 Circuit Shown)


Figure 8. Single-Ended Supply


For single-ended supplies, the driver outputs are grounded. The \(\mathrm{V}_{\mathrm{C}}\) terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

Figure 10. Driving Power FETS


The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components.

Figure 9. Push-Pull Configuration


In conventional push-pull bipolar designs, forward base drive is controlled by R1-R3. Rapid turn-off times for the power devices are achieved with speed-up capacitors C 1 and C 2 .

Figure 11. Driving Transformers in a Half-Bridge Configuration


Low power transformers can be driven directly by the SG3525A. Automatic reset occurs during deadtime, when both ends of the primary winding are switched to ground.

\section*{Pulse Width Modulation Control Circuit}

The SG3526 is a high performance pulse width modulator integrated circuit intended for fixed frequency switching regulators and other power control applications.

Functions included in this IC are a temperature compensated voltage reference, sawtooth oscillator, error amplifier, pulse width modulator, pulse metering and steering logic, and two high current totem pole outputs ideally suited for driving the capacitance of power FETs at high speeds.

Additional protective features include soft start and undervoltage lockout, digital current limiting, double pulse inhibit, adjustable dead time and a data latch for single pulse metering. All digital control ports are TTL and B-series CMOS compatible. Active low logic design allows easy wired-OR connections for maximum flexibility. The versatility of this device enables implementation in single-ended or push-pull switching regulators that are transformerless or transformer coupled. The SG3526 is specified over a junction temperature range of \(0^{\circ}\) to \(+125^{\circ} \mathrm{C}\).
- 8.0 V to 35 V Operation
- \(5.0 \mathrm{~V} \pm 1 \%\) Trimmed Reference
- 1.0 Hz to 400 kHz Oscillator Range
- Dual Source/Sink Current Outputs: \(\pm 100 \mathrm{~mA}\)
- Digital Current Limiting
- Programmable Dead Time
- Undervoltage Lockout
- Single Pulse Metering
- Programmable Soft-Start
- Wide Current Limit Common Mode Range
- Guaranteed 6 Unit Synchronization



\section*{PULSE WIDTH MODULATION CONTROL CIRCUIT}

SEMICONDUCTOR TECHNICAL DATA


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline SG3526N & \(T_{J}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS (Note 1)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +40 & Vdc \\
\hline Collector Supply Voltage & \(\mathrm{V}_{\mathrm{C}}\) & +40 & Vdc \\
\hline Logic Inputs & & -0.3 to +5.5 & V \\
\hline Analog Inputs & & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Output Current, Source or Sink & \(\mathrm{IO}_{\mathrm{O}}\) & \(\pm 200\) & mA \\
\hline Reference Load Current (VCC \(=40 \mathrm{~V}\), Note 2) & \(\mathrm{I}_{\text {ref }}\) & 50 & mA \\
\hline Logic Sink Current & & 15 & mA \\
\hline \begin{tabular}{l} 
Power Dissipation \\
\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) (Note 3) \\
\(\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}\) (Note 4)
\end{tabular} & \(\mathrm{P}_{\mathrm{D}}\) & & 1000 \\
\hline Thermal Resistance Junction-to-Air & & 3000 & mW \\
\hline Thermal Resistance Junction-to-Case & \(\mathrm{R}_{\theta J A}\) & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & \(\mathrm{R}_{\theta \mathrm{JC}}\) & 42 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 10 Seconds) & \(\mathrm{T}_{\text {Solder }}\) & \(\pm 300\) & \({ }^{\circ}{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Values beyond which damage may occur.
2. Maximum junction temperature must be observed.
3. Derate at \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperatures above \(+50^{\circ} \mathrm{C}\).
4. Derate at \(24 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for case temperatures above \(+25^{\circ} \mathrm{C}\).

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & Min & Max & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 8.0 & 35 & Vdc \\
\hline Collector Supply Voltage & \(\mathrm{V}_{\mathrm{C}}\) & 4.5 & 35 & Vdc \\
\hline Output Sink/Source Current (Each Output) & \(\mathrm{I}_{\mathrm{O}}\) & 0 & \(\pm 100\) & mA \\
\hline Reference Load Current & \(\mathrm{I}_{\text {ref }}\) & 0 & 20 & mA \\
\hline Oscillator Frequency Range & \(\mathrm{f}_{\mathrm{OSC}}\) & 0.001 & 400 & kHz \\
\hline Oscillator Timing Resistor & \(\mathrm{R}_{\mathrm{T}}\) & 2.0 & 150 & \(\mathrm{k} \Omega\) \\
\hline Oscillator Timing Capacitor & \(\mathrm{C}_{\mathrm{T}}\) & 0.001 & 20 & \(\mu \mathrm{~F}\) \\
\hline Available Deadtime Range (40 kHz\()\) & - & 3.0 & 50 & \(\%\) \\
\hline Operating Junction Temperature Range & \(\mathrm{T}_{\mathrm{J}}\) & 0 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 5], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION (Note 6)} \\
\hline Reference Output Voltage ( \(\mathrm{T}_{\mathbf{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {ref }}\) & 4.90 & 5.00 & 5.10 & V \\
\hline Line Regulation ( \(+8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+35 \mathrm{~V}\) ) & Regline & - & 10 & 30 & mV \\
\hline Load Regulation ( \(0 \mathrm{~mA} \leq \mathrm{L} \leq 20 \mathrm{~mA}\) ) & Regload & - & 10 & 50 & mV \\
\hline Temperature Stability & \(\Delta \mathrm{V}_{\text {ref }} / \Delta \mathrm{T}\) & - & 10 & - & mV \\
\hline Total Reference Output Voltage Variation
\[
\left(+8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+35 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 20 \mathrm{~mA}\right)
\] & \(\Delta \mathrm{V}_{\text {ref }}\) & 4.85 & 5.00 & 5.15 & V \\
\hline Short Circuit Current ( \(\mathrm{V}_{\text {ref }}=0 \mathrm{~V}\) ) ( ( tote 2) & Isc & 25 & 80 & 125 & mA \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT
\begin{tabular}{|l|l|c|c|c|c|}
\hline Reset Output Voltage \(\left(\mathrm{V}_{\text {ref }}=+3.8 \mathrm{~V}\right)\) & & - & 0.2 & 0.4 & \(\forall\) \\
\hline Reset Output Voltage \(\left(\mathrm{V}_{\text {ref }}=+4.8 \mathrm{~V}\right)\) & & 2.4 & 4.8 & - & V \\
\hline
\end{tabular}

OSCILLATOR SECTION (Note 7)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Initial Accuracy ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & & - & \(\pm 3.0\) & \(\pm 8.0\) & \% \\
\hline Frequency Stability over Power Supply Range
\[
\left(+8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+35 \mathrm{~V}\right)
\] & \[
\frac{\Delta \mathrm{f}_{\mathrm{osc}}}{\Delta \mathrm{v}_{\mathrm{CC}}}
\] & - & 0.5 & 1.0 & \% \\
\hline Frequency Stability over Temperature
\[
\left(\Delta T_{J}=T_{\text {low }} \text { to } T_{\text {high }}\right)
\] & \[
\frac{\Delta \mathrm{f}_{\mathrm{osc}}}{\Delta \mathrm{~T}_{\mathrm{J}}}
\] & - & 2.0 & - & \% \\
\hline Minimum Frequency
\[
\left(\mathrm{R}_{\mathrm{T}}=150 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=20 \mu \mathrm{~F}\right)
\] & \(f_{\text {min }}\) & - & 0.5 & - & Hz \\
\hline Maximum Frequency
\[
\left(\mathrm{R}_{\mathrm{T}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}\right)
\] & \(\mathrm{f}_{\text {max }}\) & 400 & - & - & kHz \\
\hline Sawtooth Peak Voltage ( \(\mathrm{V}_{\mathrm{CC}}=+35 \mathrm{~V}\) ) & \(\mathrm{V}_{\text {osc }}(\mathrm{P})\) & - & 3.0 & 3.5 & V \\
\hline Sawtooth Valley Voltage ( \(\mathrm{V}_{\mathrm{CC}}=+8.0 \mathrm{~V}\) ) & \(\mathrm{V}_{\text {osc }}(\mathrm{V})\) & 0.45 & 0.8 & - & V \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION (Note 8)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage ( \(\mathrm{R}_{\mathrm{S}} \leq 2.0 \mathrm{k} \Omega\) ) & \(\mathrm{V}_{10}\) & - & 2.0 & 10 & mV \\
\hline Input Bias Current & IB & - & -350 & -2000 & nA \\
\hline Input Offset Current & 10 & - & 35 & 200 & nA \\
\hline DC Open Loop Gain ( \(\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{M} \Omega\) ) & Avol & 60 & 72 & - & dB \\
\hline \begin{tabular}{l}
High Output Voltage \\
\(\left(V_{\text {Pin } 1}-V_{\text {Pin } 2} \geq+150 \mathrm{mV}\right.\), \(\left.I_{\text {source }}=100 \mu \mathrm{~A}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & 3.6 & 4.2 & - & V \\
\hline \begin{tabular}{l}
Low Output Voltage \\
\(\left(V_{\text {Pin } 2}-V_{\text {Pin } 1} \geq+150 \mathrm{mV}\right.\), \(\left.I_{\text {sink }}=100 \mu \mathrm{~A}\right)\)
\end{tabular} & VOL & - & 0.2 & 0.4 & V \\
\hline Common Mode Rejection Ratio ( \(\mathrm{R}_{\mathrm{S}} \leq 2.0 \mathrm{k} \Omega\) ) & CMRR & 70 & 94 & - & dB \\
\hline Power Supply Rejection Ratio ( \(+12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+18 \mathrm{~V}\) ) & PSRR & 66 & 80 & - & dB \\
\hline
\end{tabular}

NOTES: 2. Maximum junction temperature must be observed.
\[
\text { 5. } T_{\text {low }}=0^{\circ} \mathrm{C} \quad T_{\text {high }}=+125^{\circ} \mathrm{C}
\]
6. \(\mathrm{L}_{\mathrm{L}}=0 \mathrm{~mA}\) unless otherwise noted.
7. \(\mathrm{f}_{\mathrm{osc}}=40 \mathrm{kHz}\left(\mathrm{R}_{\mathrm{T}}=4.12 \mathrm{k} \Omega \pm 1 \%, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F} \pm 1 \%, \mathrm{R}_{\mathrm{D}}=0 \Omega\right)\)
\(8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+5.2 \mathrm{~V}\).

ELECTRICAL CHARACTERISTICS (continued)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular} \begin{tabular}{|l|c|c|c|c|c|}
\hline PWM COMPARATOR SECTION (Note 7) & DC \(_{\text {min }}\) & - & - & 0 & \(\%\) \\
\hline \begin{tabular}{c} 
Minimum Duty Cycle \\
\(\left(V_{\text {Compensation }}=+0.4 ~ V\right)\)
\end{tabular} & DC \(_{\text {max }}\) & 45 & 49 & - & \(\%\) \\
\hline \begin{tabular}{c} 
Maximum Duty Cycle \\
\(\left(V_{\text {Compensation }}=+3.6 \mathrm{~V}\right)\)
\end{tabular} &
\end{tabular}

DIGITAL PORTS ( \(\overline{\text { SYNC, }} \overline{\text { SHUTDOWN, }} \overline{\text { RESET }}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Output Voltage \\
(High Logic Level) \(\left(I_{\text {source }}=40 \mu \mathrm{~A}\right)\) \\
(Low Logic Level) ( \(\mathrm{l}_{\text {sink }}=3.6 \mathrm{~mA}\) )
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) \(V_{\mathrm{OL}}\) & 2.4 & \[
\begin{aligned}
& 4.0 \\
& 0.2
\end{aligned}
\] & \[
\overline{-\quad .4}
\] & v \\
\hline Input Current - High Logic Level (High Logic Level) ( \(\mathrm{V}_{\mathrm{IH}}=+2.4 \mathrm{~V}\) ) (Low Logic Level) ( \(\mathrm{V}_{\mathrm{IL}}=+0.4 \mathrm{~V}\) ) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{H}} \\
& \mathrm{IIL}^{2}
\end{aligned}
\] & - & \[
\begin{aligned}
& -125 \\
& -225
\end{aligned}
\] & \[
\begin{aligned}
& -200 \\
& -360
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

CURRENT LIMIT COMPARATOR SECTION (Note 9)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Sense Voltage \(\left(\mathrm{R}_{\mathrm{S}} \leq 50 \Omega\right)\) & \(\mathrm{V}_{\text {sense }}\) & 80 & 100 & 120 & mA \\
\hline Input Bias Current & \(\mathrm{I}_{\mathrm{IB}}\) & - & -3.0 & -10 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

SOFT-START SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Error Clamp Voltage \((\overline{\text { Reset }}=+0.4 \mathrm{~V})\) & & - & 0.1 & 0.4 & V \\
\hline C Soft-Start \(^{\text {Charging Current }(\overline{\text { Reset }}=+2.4 \mathrm{~V})}\) & I CS & 50 & 100 & 150 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

OUTPUT DRIVERS (Each Output, \(\mathrm{V}_{\mathrm{C}}=+15 \mathrm{Vdc}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output High Level \(I_{\text {source }}=20 \mathrm{~mA}\) \(I_{\text {source }}=100 \mathrm{~mA}\) & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{gathered}
12.5 \\
12
\end{gathered}
\] & \[
\begin{gathered}
13.5 \\
13
\end{gathered}
\] & - & V \\
\hline \[
\begin{gathered}
\text { Output Low Level } \\
I_{\text {sink }}=20 \mathrm{~mA} \\
I_{\text {sink }}=100 \mathrm{~mA}
\end{gathered}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & - & \[
\begin{aligned}
& 0.2 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 2.0
\end{aligned}
\] & V \\
\hline Collector Leakage, \(\mathrm{V}_{\mathrm{C}}=+40 \mathrm{~V}\) & \({ }^{\text {I }}\) (leak) & - & 50 & 150 & \(\mu \mathrm{A}\) \\
\hline Rise Time ( \(C_{L}=1000 \mathrm{pF}\) ) & \(t_{r}\) & - & 0.3 & 0.6 & \(\mu \mathrm{s}\) \\
\hline Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}\) ) & \(t_{f}\) & - & 0.1 & 0.2 & \(\mu \mathrm{s}\) \\
\hline Supply Current
\[
\text { (Shutdown }=+0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+35 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=4.12 \mathrm{k} \Omega \text { ) }
\] & ICC & - & 18 & 30 & mA \\
\hline
\end{tabular}

NOTES: \(\begin{aligned} & \text {. } \mathrm{f}_{\text {OSC }}=40 \mathrm{kHz}\left(\mathrm{R}_{\mathrm{T}}=4.12 \mathrm{k} \Omega \pm 1 \%, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F} \pm 1 \%, \mathrm{R}_{\mathrm{D}}=0 \Omega\right) \\ & 8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+5.2 \mathrm{~V}\end{aligned}\) 8. \(0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+5.2 \mathrm{~V}\)
\(9.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}\)

Figure 1. Reference Stability over Temperature


Figure 3. Error Amplifier Open Loop Frequency Response


Figure 5. Undervoltage Lockout Characteristic


Figure 2. Reference Voltage as a Function Supply Voltage


Figure 4. Current Limit Comparator Threshold


Figure 6. Output Driver Saturation Voltage as a Function of Sink Current


Figure 7. \(\mathbf{V}_{\mathbf{C}}\) Saturation Voltage as a Function of Sink Current


Figure 9. Error Amplifier


Figure 8. Oscillator Period


Figure 10. Undervoltage Lockout


Figure 11. Pulse Processing Logic


The metering Flip-Flop is an asynchronous data latch which suppresses high frequency oscillations by allowing only one PWM pulse per oscillator cycle.

The memory Flip-Flop prevents double pulsing in a push-pull configuration by remembering which output produced the last pulse.

\section*{APPLICATIONS INFORMATION}

Figure 12. Extending Reference Output Current Capability

Figure 13. Error Amplifier Connections

Figure 14. Oscillator Connections


Figure 16. Soft-Start Circuity


Figure 15. Foldback Current Limiting


Figure 17. Driving VMOS Power FETs


The totem pole output drivers of the SG3526 are ideally suited for driving the input capacitance of power FETs at high speeds.

Figure 18. Half-Bridge Configuration

Figure 20. Single-Ended Configuration


Figure 19. Flyback Converter with Current Limiting


In the above circuit, current limiting is accomplished by using the current limit comparator output to reset the soft-start capacitor.

Figure 21. Push-Pull Configuration


\section*{Universal Microprocessor Power Supply/Controllers}

The TCA5600, TCF5600 are versatile power supply control circuits for microprocessor based systems and are mainly intended for automotive applications and battery powered instruments. To cover a wide range of applications, the devices offer high circuit flexibility with a minimum of external components.

Functions included in this IC are a temperature compensated voltage reference, on-chip dc/dc converter, programmable and remote controlled voltage regulator, fixed 5.0 V supply voltage regulator with external PNP power device, undervoltage detection circuit, power-on RESET delay and watchdog feature for safe and hazard free microprocessor operations.
- 6.0 V to 30 V Operation Range
- 2.5 V Reference Voltage Accessible for Other Tasks
- Fixed \(5.0 \mathrm{~V} \pm 4 \%\) Microprocessor Supply Regulator Including Current Limitation, Overvoltage Protection and Undervoltage Monitor.
- Programmable 6.0 V to 30 V Voltage Regulator Exhibiting High Peak Current ( 150 mA ), Current Limiting and Thermal Protection.
- Two Remote Inputs to Select the Regulator's Operation Mode:

> OFF = 5.0 V, 5.0 V Standby

Programmable Output Voltage
- Self-Contained dc/dc Converter Fully Controlled by the Programmable Regulator to Guarantee Safe Operation Under All Working Conditions
- Programmable Power-On RESET Delay
- Watchdog Select Input
- Negative Edge Triggered Watchdog Input
- Low Current Consumption in the VCC1 Standby Mode
- All Digital Control Ports are TTL and MOS-Compatible

\section*{Applications Include:}
- Microprocessor Systems with E2PROMs
- High Voltage Crystal and Plasma Displays
- Decentralized Power Supplies in Computer Telecom Systems

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & Min & Max & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC} 1}\) & 5.0 & 30 & V \\
& \(\mathrm{~V}_{\mathrm{CC} 2}\) & 5.5 & 30 & \\
\hline Collector Current & I C & - & 800 & mA \\
\hline Output Voltage & \(\mathrm{V}_{\text {out2 }}\) & 6.0 & 30 & V \\
\hline Reference Source Current & \(\mathrm{I}_{\text {ref }}\) & 0 & 2.0 & mA \\
\hline
\end{tabular}

TCF5600

UNIVERSAL MICROPROCESSOR POWER SUPPLY/CONTROLLERS

SEMICONDUCTOR TECHNICAL DATA


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline TCA5600 & \(T_{J}=0^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline TCF5600 & \(T_{J}=-40^{\circ}\) to \(+150^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage (Pin 3,14) & \(\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}\) & 35 & Vdc \\
\hline Base Drive Current (Pin 15) & \(\mathrm{I}_{\mathrm{B}}\) & 20 & mA \\
\hline Collector Current (Pin 10) & Ic & 1.0 & A \\
\hline Forward Rectifier Current (Pin 10 to Pin 9) & \(\mathrm{I}_{\text {F }}\) & 1.0 & A \\
\hline Logic Inputs INH1, INH2, \(\overline{\text { WDS }}\) (Pin 6, 11, 18) & VINP & -0.3 V to Vcc1 & Vdc \\
\hline Logic Input Current WDI (Pin 4) & IWDI & \(\pm 0.5\) & mA \\
\hline Output Sink Current \(\overline{\text { RESET (Pin 1) }}\) & \(\overline{\text { RES }}\) & 10 & mA \\
\hline Analog Inputs (Pin 2) (Pin 7) & & \[
\begin{aligned}
& -0.3 \text { to } 10 \\
& -0.3 \text { to } 5.0
\end{aligned}
\] & V \\
\hline Reference Source Current (Pin 5) & Iref & 5.0 & mA \\
\hline \[
\begin{gathered}
\text { Power Dissipation (Note 2) } \\
T_{A}=+75^{\circ} \mathrm{C} \text { TCA5600 } \\
\mathrm{T}_{A}=+85^{\circ} \mathrm{C} \text { TCF5600 }
\end{gathered}
\] & PD & \[
\begin{aligned}
& 500 \\
& 650
\end{aligned}
\] & mW \\
\hline Thermal Resistance, Junction-to-Air & \(\mathrm{R}_{\text {OJA }}\) & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature Range TCA5600 \\
TCF5600
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+75 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Junction Temperature Range TCA5600 \\
TCF5600
\end{tabular} & TJ & \[
\begin{aligned}
& +125 \\
& +150
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Values beyond which damage may occur.
2. Derate at \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for junctlon temperature above \(+75^{\circ} \mathrm{C}\) (TCA5600). Derate at \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for junction temperature above \(+85^{\circ} \mathrm{C}\) (TCF5600).


ELECTRICAL CHARACTERISTICS \(\left(V_{C C 1}=V_{C C 2}=12 \mathrm{~V} ; \mathrm{T}_{J}=25^{\circ} \mathrm{C} ; I_{\text {ref }}=0 ; I_{\text {out }}=0[\mathrm{Note} 3] ;\right.\) RSC \(=0.5 \Omega ; \operatorname{INH}=\) High INH2 = High; WDS \(=\) High; lout2 \(=0\) [Note 4]; unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Figure & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{REFERENCE SECTION} \\
\hline Nominal Reference Voltage & 1 & \(V_{\text {ref nom }}\) & 2.42 & 2.5 & 2.58 & V \\
\hline Reference Voltage \(I_{\text {ref }}=0.5 \mathrm{~mA}, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{J}} \leq T_{\text {high }}(\) Note 5\(), 6.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC} 1} \leq 18 \mathrm{~V}\) & & \(\mathrm{V}_{\text {ref }}\) & 2.4 & - & 2.6 & V \\
\hline Line Regulation ( \(6.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC} 2} \leq 18 \mathrm{~V}\) ) & & Regline & - & 2.0 & 15 & mV \\
\hline Average Temperature Coefficient \(\mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {high }}\) (Note 5) & 2 & \[
\frac{\Delta \mathrm{V}_{\mathrm{ref}}}{\Delta \mathrm{~T}_{J}}
\] & - & - & \(\pm 0.5\) & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Ripple Rejection Ratio \(f=1.0 \mathrm{kHz}, V_{\text {sin }}=1.0 \mathrm{~V}_{\mathrm{pp}}\) & 3 & RR & 60 & 70 & - & dB \\
\hline Output Impedance \(0 \leq I_{\text {ref }} \leq 2.0 \mathrm{~mA}\) & & ZO & - & 1.0 & - & \(\Omega\) \\
\hline Standby Current Consumption
\[
V_{c C 2}=\text { Open }
\] & 4 & ICC1 & - & 3.0 & - & mA \\
\hline
\end{tabular}
5.0 V MICROPROCESSOR VOLTAGE REGULATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Nominal Output Voltage & & \(V_{\text {out } 1 \text { (nom) }}\) & 4.8 & 5.0 & 5.2 & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& 5.0 \mathrm{~mA} \leq \text { I out } 1 \leq 300 \mathrm{~mA}, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{J} \leq T_{\text {high }} \text { (Note 5) } \\
& 6.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC} 2} \leq 18 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 6
\end{aligned}
\] & \(V_{\text {out } 1}\) & 4.75 & - & 5.25 & V \\
\hline Line Regulation ( \(6.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC} 2} \leq 18 \mathrm{~V}\) ) & & Regline & - & 10 & 50 & mV \\
\hline Load Regulation ( \(5.0 \mathrm{~mA} \leq \mathrm{l}_{\text {out } 1} \leq 300 \mathrm{~mA}\) ) & & Regioad & - & 20 & 100 & mV \\
\hline Base Current Drive (VCC2 \(=6.0 \mathrm{~V}, \mathrm{~V}_{15}=4.0 \mathrm{~V}\) ) & & \(\mathrm{I}_{\mathrm{B}}\) & 10 & 15 & - & mA \\
\hline Ripple Rejection Ratio
\[
f=1.0 \mathrm{kHz}, \mathrm{~V}_{\mathrm{sin}}=1.0 \mathrm{~V}_{\mathrm{pp}}
\] & 3 & RR & 50 & 65 & - & dB \\
\hline Undervoltage Detection Level (RSC \(=5.0 \Omega\) ) & 7 & \(V_{\text {low }}\) & 4.5 & \(0.93 \times \mathrm{V}_{\text {out1 }}\) & - & V \\
\hline Current Limitation Threshold (RSC \(=5.0 \Omega\) ) & & \(V_{\text {RSC }}\) & 210 & 250 & 290 & mV \\
\hline Average Temperature Coefficient \(\mathrm{T}_{\text {low }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {high }}\) (Note 5) & & \(\frac{\Delta V_{\text {out }}}{\Delta T_{J}}\) & - & - & \(\pm 1.0\) & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC/DC CONVERTER SECTION
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Collector Current Detection Level \\
RC \(=10 \mathrm{k}\)
\end{tabular} & \begin{tabular}{c} 
High \\
Low
\end{tabular} & 10 & \begin{tabular}{c}
\(\mathrm{V}_{12}(\mathrm{H})\) \\
\(\mathrm{V}_{12}(\mathrm{~L})\)
\end{tabular} & \begin{tabular}{c}
350 \\
-
\end{tabular} & \begin{tabular}{c}
400 \\
50
\end{tabular} & \begin{tabular}{c}
450 \\
\hline
\end{tabular} \\
\hline \begin{tabular}{c} 
Collector Saturation Voltage \\
\(\mathrm{I}^{2}=600 \mathrm{~mA}(\) Note 6)
\end{tabular} & 11 & mV \\
\hline \begin{tabular}{c} 
Rectifier Forward Voltage Drop \\
\(\mathrm{IF}_{\mathrm{F}}=600 \mathrm{~mA}\) (Note 6)
\end{tabular} & - & - & 1.6 & V \\
\hline
\end{tabular}

NOTES: 3. The external PNP power transistor satisfies the following minimum specifications:
\(h_{F E} \geq 60\) at \(I_{C}=500 \mathrm{~mA}\) and \(V_{C E}=5.0 \mathrm{~V}\);
\(\mathrm{V}_{\mathrm{CE}}\) (sat) \(\leq 300 \mathrm{mV}\) at \(\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}\) and \(\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}\)
4. Regulator \(V_{\text {out2 }}\) programmed for nominal 24 V output by means of R4, R5 (see Figure 1).
5. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for TCA5600
\(T_{\text {low }}=-40^{\circ} \mathrm{C}\) for TCF5600
\(T_{\text {high }}=+150^{\circ} \mathrm{C}\) for TCF5600
Thigh \(=+125^{\circ} \mathrm{C}\) for TCA560
6. Pulse tested \(\mathrm{t}_{\mathrm{p}} \leq 300 \mu \mathrm{~s}\).

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} ; I_{\text {ref }}=0 ; \mathrm{I}_{\text {out }}=0\right.\) [Note 3 ]; RSC \(=0.5 \Omega ;\) INH \(=\) High INH2 = High; WDS \(=\) High; lout2 \(=0\) [Note 4]; unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{PROGRAMMABLE VOLTAGE REGULATOR SECTION (Note 6)} \\
\hline Nominal Output Voltage & \(V_{\text {out2(nom) }}\) & 23 & 24 & 25 & V \\
\hline ```
Output Voltage (Figure 8)
    1.0 mA \leq lout2 < }100\textrm{mA},\mp@subsup{\textrm{T}}{\mathrm{ low }}{}\leq\mp@subsup{T}{J}{}\leq\mp@subsup{T}{\mathrm{ high (Notes 5, 7)}}{
``` & \(V_{\text {out2 }}\) & 22.8 & - & 25.2 & V \\
\hline Load Regulation \(1.0 \mathrm{~mA} \leq \mathrm{l}_{\text {out } 2} \leq 100 \mathrm{~mA}\) (Note 7) & Regload & - & 40 & 200 & mV \\
\hline DC Output Current & lout2 & 100 & - & - & mA \\
\hline Peak Output Current (Internally Limited) & lout2 p & 150 & 200 & - & mA \\
\hline Ripple Rejection Ratio \(\mathrm{f}=20 \mathrm{kHz}, \mathrm{V}=0.4 \mathrm{~V} \mathrm{pp}\) & RR & 45 & 55 & - & dB \\
\hline \[
\begin{aligned}
& \text { Output Voltage (Fixed } 5.0 \mathrm{~V} \text {) } \\
& 1.0 \mathrm{~mA} \leq \text { Iout2 } \leq 20 \mathrm{~mA}, \mathrm{~T}_{\text {low }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {high }} \\
& \text { INH1 }=\text { HIGH (Note 5) }
\end{aligned}
\] & \(\mathrm{V}_{\text {out2 }}(5.0 \mathrm{~V})\) & 4.75 & - & 5.25 & V \\
\hline Off State Output Impedance (INH2 = Low) & \(\mathrm{R}_{\text {out1 }}\) & - & 10 & - & k \(\Omega\) \\
\hline Average Temperature Coefficient \(T_{\text {low }} \leq T_{J} \leq T_{\text {high }}\) (Note 5) & \(\frac{\Delta V_{\text {out2 }}}{\Delta T J V_{\text {out2 }}}\) & - & - & \(\pm 0.25\) & \(\mathrm{mV} /{ }^{\circ} \mathrm{C} \mathrm{V}\) \\
\hline
\end{tabular}

WATCHDOG AND RESET CIRCUIT SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{C} 5(\mathrm{H})}\) \\
\(V_{C 5(L)}\)
\end{tabular} & - & \[
\begin{aligned}
& 2.5 \\
& 1.0
\end{aligned}
\] & 二 & V \\
\hline ```
Current Source Tlow }\leq\mp@subsup{T}{J}{}\leq\mp@subsup{T}{\mathrm{ high (Note 5)}}{
 Power-Up RESET
 Watchdog Time Out
 Watchdog RESET
``` & IC5 & -1.8 & \[
\begin{gathered}
-2.5 \\
5 \times 1 \mathrm{C} 5 \\
-50 \times 1 \mathrm{C} 5
\end{gathered}
\] & -3.2 & \(\mu \mathrm{A}\) \\
\hline Watchdog Input Voltage Swing & VWDI & - & - & \(\pm 5.5\) & V \\
\hline Watchdog Input Impedance & r & 12 & 15 & - & k \(\Omega\) \\
\hline Watchdog Reset Pulse Width ( \(\mathrm{C8}=1.0 \mathrm{nF}\) ) ( Note 9 ) & \(t_{p}\) & - & - & 10 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

DIGITAL PORTS: WDS, INH 1, INH 2, RESET (Note 8)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Voltage Range & VINP & - & - & -0.3 to VCC1 & V \\
\hline Input High Current
\[
2.0 \mathrm{~V} \leq \mathrm{V}_{1 H} \leq 5.5 \mathrm{~V}
\]
\[
5.5 \mathrm{~V} \leq V_{I H} \leq V_{C C 1}
\] & 1 H & - & - & \[
\begin{aligned}
& 100 \\
& 150
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Low Current
\[
-0.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IL}} \leq 0.8 \mathrm{~V} \text { for } \mathrm{INH} 1, \text { INH2, }-0.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IL}} \leq 0.4 \mathrm{~V} \text { for } \overline{\mathrm{WDS}}
\] & IL & - & - & -100 & \(\mu \mathrm{A}\) \\
\hline Leakage Current Immunity (INH2, High "Z" State) (Figure 12) & Iz & \(\pm 20\) & - & - & \(\mu \mathrm{A}\) \\
\hline Output Low Voltage RESET ( \(\mathrm{IOL}=6.0 \mathrm{~mA}\) ) & VOL & - & - & 0.4 & \(V\) \\
\hline Output High Voltage RESET ( \(\mathrm{V} \mathrm{OH}=5.5 \mathrm{~V}\) ) & VOH & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 3. The external PNP power transistor satisfies the following minimum specifications:
\(\mathrm{h}_{\mathrm{FE}} \geq 60\) at \(\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}\) and \(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}\);
\(V_{C E}\) (sat) \(\leq 300 \mathrm{mV}\) at \(I_{B}=10 \mathrm{~mA}\) and \(\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}\)
4. Regulator \(V_{\text {out2 }}\) programmed for nominal 24 V output by means of R4, R5 (see Figure 1),
5. Tlow \(=0^{\circ} \mathrm{C}\) for TCA5600 \(\quad T_{\text {low }}=-40^{\circ} \mathrm{C}\) for TCF5600

Thigh \(=+125^{\circ} \mathrm{C}\) for TCA5600 Thigh \(=+150^{\circ} \mathrm{C}\) for TCF5600
6. \(\mathrm{V}_{\mathrm{g}}=28 \mathrm{~V}, \mathrm{INH}=\) LOW for this Electrical Characteristic section unless otherwise noted.
7. Pulse tested \(t_{p} \leq 300 \mu \mathrm{~s}\).
8. Temperature range \(T_{\text {low }} \leq T_{j} \leq T_{\text {high }}\) applles to this Electrical Characteristics section.
9. For test purposes, a negative pulse is applied to \(\operatorname{Pin} 4\) ( \(-2.5 \mathrm{~V} \geq \mathrm{V}_{4} \geq-5.5 \mathrm{~V}\) ).

Figure 1. Reference Voltage versus Supply Voltage


Figure 2. Reference Stability versus Temperature


Figure 3. Ripple Rejection versus Frequency



Figure 4. Standby Current versus Supply Voltage


Figure 5. Power-Up Behavior of the 5.0 V Regulator


Figure 6. Foldback Characteristics of the 5.0 V Regulator



Figure 7. Undervoltage Lockout Characteristics


Figure 8. Output Current Capability of the Programming Regulator


Figure 9. Collector Current Detection Level



Figure 10. Power Switch Characteristics


Figure 11. Rectifier Characteristics



Figure 12. INH 2 Leakage Current Immunity



\section*{APPLICATIONS INFORMATION}
(See Figure 18)

\section*{Voltage Reference (Vref)}

The voltage reference \(\mathrm{V}_{\text {ref }}\) is based upon a highly stable bandgap voltage reference and is accessible on Pin 5 for additional tasks. This circuit part has its own supply connection on Pin 3 and is, therefore, able to operate in standby mode. The RC network R3, C6 improves the ripple rejection on both regulators.

\section*{DC/DC Converter}

The dc/dc converter performs according to the flyback principle and does not need a time base circuit. The maximum coil current is well defined by means of the current sensing resistor R1 under all working conditions (startup phase, circuit overload, wide supply voltage range and extreme load current change). Figure 13 shows the Simplified Converter Schematic.

Figure 13. Simplified Converter Schematic


A simplified method on "how to calculate the coil inductance" is given below. The operation point at minimum supply voltage ( \(\mathrm{V}_{\mathrm{CC} 2}\) ) and max. output current (lout2) for a fixed output voltage ( \(\mathrm{V}_{\text {out2 }}\) ) determines the coil data. Figure 14 shows the typical voltage and current waveforms on the coil L1 (coil losses neglected).
Equations (1) and (2) yield the respective coil voltage \(\mathrm{V}_{\mathrm{L}}\) - and \(\mathrm{V}_{\mathrm{L}}+\) (see Figure 14):
\[
\begin{gather*}
\left.\mathrm{V}_{\mathrm{L}}+=\mathrm{V}_{\text {Out2 }}+\Delta \mathrm{V}_{(\text {Pin } 9}-\operatorname{Pin} 8\right)+\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{CC}}  \tag{1}\\
\mathrm{~V}_{\mathrm{L}}-=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}}(\text { sat })-\mathrm{V}_{12(\mathrm{H})}
\end{gather*}
\]
\(\left[\Delta \mathrm{V}_{\text {( }}\right.\) Pin \(\left.9-\operatorname{Pin} 8\right)\) : input/output voltage drop of the regulator, 2.5 V typical]
[ \(\mathrm{V}_{\mathrm{F}}, \mathrm{V}_{\mathrm{CE}}(\) sat \(), \mathrm{V}_{12(\mathrm{H})}\) : see Electrical Characteristics Table] The time ratio \(\alpha\) for the charging time to dumping time is defined by Equation (3):
\[
\begin{equation*}
\alpha=\frac{t_{1}}{t_{2}}=\frac{V_{L^{+}}}{V_{L-}} \tag{3}
\end{equation*}
\]

Figure 14. Voltage and Current Waveform on the Coil (not to scale)


The coil charging time \(t_{1}\) is found using Equation (4):
\[
\begin{equation*}
t_{1}=\frac{1}{\left(1+\frac{1}{\alpha}\right) \cdot f} \tag{4}
\end{equation*}
\]
[ \(f\) : minimum oscillation frequency which should be chosen above the audio frequency band (e.g. 20 kHz )]
Knowing the dc output current \(\mathrm{I}_{\text {out2 }}\) of the programmable regulator, the peak coil current 1 L (peak) can now be calculated:
\[
\begin{equation*}
\mathrm{I}(\text { peak })=2 \cdot\left(\mathrm{l}_{\text {out }}\right)(1+\alpha) \tag{5}
\end{equation*}
\]

The coil inductance L1 of the nonsaturated coil is given by Equation (6):
\[
\begin{equation*}
L 1=\frac{t_{1}}{l_{L}(\text { peak })}\left(V_{L-}\right) \tag{6}
\end{equation*}
\]

The formula (6a) yields the current sensing resistor R1 for a defined peak coil current ll(peak):
\[
\begin{equation*}
R 1=\frac{V_{12(H)}}{\left.L_{\text {L peak }}\right)} \tag{6a}
\end{equation*}
\]

In order to limit the by-pass current through capacitor C7 during the energy dumping phase the value \(\mathrm{C} 2 \gg \mathrm{C} 7\) should be implemented.
For all other operation conditions, the feedback signal from the programmable voltage regulator controls the activity of the converter.

\section*{Programmable Voltage Regulator}

This series voltage regulator is programmable by the voltage divider R4, R5 for a nominal output voltage of \(6.0 \mathrm{~V} \leq\) \(\mathrm{V}_{\text {out2 }} \leq 30 \mathrm{~V}\).
\[
\begin{gather*}
R 4=\frac{\left(V_{\text {out2 }}-V_{\text {ref nom }}\right) \cdot R 5}{V_{\text {ref nom }}}  \tag{7}\\
{\left[R 5=10 \mathrm{k}, V_{\text {ref nom }}=2.5 \mathrm{~V}\right]}
\end{gather*}
\]

Current limitation and thermal shutdown capability are standard features of this regulator. The voltage drop \(\Delta \mathrm{V}_{\text {(Pin } 9-\operatorname{Pin} 8)}\) across the series pass transistor generates the feedback signal to control the dc/dc converter (see Figure 13).

\section*{Control Inputs INH1, INH2}

The dc/dc converter and/or the regulator \(\mathrm{V}_{\text {out }}\) are remote controllable through the TTL, MOS compatible inhibit inputs INH1 and INH2 where the latter is a three-level detector (Logic " 0 ", High Impedance " \(Z\) ", Logic " 1 "). Both inputs are set-up to provide the following truth table:

Figure 15. INH1, INH2 TruthTable
\begin{tabular}{|c|c|c|c|c|}
\hline Mode & INH1 & INH2 & Vout2 & DC/DC \\
\hline 1 & 0 & 0 & OFF & INT \\
2 & 0 & High "Z" & V out2 & ON \\
3 & 0 & 1 & V out2 & INT \\
4 & 1 & 0 & OFF & INT \\
5 & 1 & High " \(Z\) " & 5.0 V & ON \\
6 & 1 & 1 & 5.0 V & INT \\
\hline
\end{tabular}

INT: Intermittent operation of the converter means that the converter operates only if \(\mathrm{V}_{\mathrm{CC} 2}<\mathrm{V}_{\text {out2 }}\).
ON: The converter loads the storage capacitor C 2 to its full charge \(\left(\mathrm{V}_{9}=33 \mathrm{~V}\right)\), allowing fast response time of the regulator \(\mathrm{V}_{\text {out2 }}\) when addressed by the control software.
OFF: High impedance (internal resistor 10 k to ground)

Figure 16 represents a typical timing diagram for an E2PROM programming sequence in a microprocessor based system. The High "Z" state enables the dc/dc converter to ramp during \(\mathrm{t}_{3}\) to the voltage \(\mathrm{V}_{9}\) at \(\operatorname{Pin} 9\) to a high level before the write cycle takes place in the memory.

Figure 16. Typical E2PROM Programming Sequence (not to scale)


\section*{Microprocessor Supply Regulator}

Together with an external PNP power transistor (Q1), a 5.0 V supply exhibiting low voltage drop is obtained to power microprocessor systems and auxiliary circuits. Using a power Darlington with adequate heat sink in the output stage boosts the output current lout1 above 1.0 A.

The current limitation circuit measures the emitter current of Q1 by means of the sensing resistor, RSC:
\[
\begin{equation*}
R_{S C}=\frac{V_{R S C}}{I_{E}} \tag{8}
\end{equation*}
\]
[ \({ }^{\mathrm{E}}\) : emitter current of Q1]
[VRSC: threshold voltage
(see Electrical Characteristics Table)]
The voltage protection circuit performs a foldback characteristic above a nominal operating voltage, \(\mathrm{V}_{\mathrm{CC} 2} \geq\) 18 V.

\section*{Delay and Watchdog Circuit}

The undervoltage monitor supervises the power supply \(V_{\text {out } 1}\) and releases the delay circuit RESET as soon as the regulator output reaches the microprocessor operating a range [e.g., \(\mathrm{V}_{\text {low }} \geq 0.93 \cdot \mathrm{~V}_{\text {out1 }}\) (nom) ]. The RESET outputhas an open-collector and may be connected in a "wired-OR" configuration.

The watchdog circuit consists of a retriggerable monostable with a negative edge sensitive control input WDI. The watchdog feature may be disabled by means of the watchdog select input WDS driven to a "1". Figure 17 displays the Typical \(\overline{R E S E T}\) Timing Diagram.

The commuted current source IC5 on Pin 17, threshold voltage \(\mathrm{V}_{\mathrm{C} 5(\mathrm{~L})}, \mathrm{V}_{\mathrm{C} 5(\mathrm{H})}\) and an external capacitor C 5 define the RESET delay and the watchdog timing. The relationship of the timing signals are indicated by the Equations (9) to (11).
\[
\begin{align*}
\text { RESET delay: } & \mathrm{t}_{\mathrm{d}}=\frac{\mathrm{C} 5 \cdot \mathrm{~V}_{\mathrm{C} 5}(\mathrm{H})}{\mathrm{II}_{\mathrm{C} 5}}  \tag{9}\\
\text { Watchdog timeout: } & \mathrm{t}_{\mathrm{wd}}=\frac{\mathrm{C} 5 \cdot\left(\mathrm{~V}_{\mathrm{C} 5(\mathrm{H})}-\mathrm{V}_{\mathrm{C} 5(\mathrm{~L})}\right)}{5 \cdot \mathrm{I}_{\mathrm{C} 5}} \tag{10}
\end{align*}
\]

Watchdog RESET: \(\quad \mathrm{t}_{\mathrm{r}}=\frac{\mathrm{C} 5 \cdot\left(\mathrm{~V}_{\mathrm{C} 5(\mathrm{H})}-\mathrm{V}_{\mathrm{C} 5(\mathrm{~L})}\right)}{50 \cdot \mathrm{II}_{\mathrm{C} 5} \mathrm{I}}\)
[ \(\mathrm{I}_{\mathrm{C} 5}, \mathrm{~V}_{\mathrm{C} 5(\mathrm{H})}, \mathrm{V}_{\mathrm{C} 5(\mathrm{~L})}\) : see Electrical Characteristics Table]

Figure 17. Typical \(\overline{\text { RESET Timing Diagram (not to scale) }}\)


Figure 18. Typical Automative Application


\section*{SWITCHMODETM Pulse Width Modulation Control Circuit}

The TL494 is a fixed frequency, pulse width modulation control circuit designed primarily for SWITCHMODE power supply control.
- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator with Master or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5.0 V Reference
- Adjustable Deadtime Control
- Uncommitted Output Transistors Rated to 500 mA Source or Sink
- Output Control for Push-Pull or Single-Ended Operation
- Undervoltage Lockout

MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & TL494C \({ }^{\text {TL4 }}\) TL44 & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 42 & V \\
\hline Collector Output Voltage & \begin{tabular}{l}
\(V_{C 1}\), \\
\(V_{C 2}\)
\end{tabular} & 42 & V \\
\hline Collector Output Current (Each transistor) (Note 1) & \({ }^{\mathrm{I}} \mathrm{C}^{\prime}, \mathrm{I}_{\mathrm{C} 2}\) & 500 & mA \\
\hline Amplifier Input Voltage Range & \(\mathrm{V}_{\mathrm{IR}}\) & -0.3 to +42 & v \\
\hline Power Dissipation @ \(T_{A} \leq 45^{\circ} \mathrm{C}\) & \(\mathrm{P}_{\mathrm{D}}\) & 1000 & mW \\
\hline Thermal Resistance, Junction-to-Ambient & \(\mathrm{R}_{\text {өJA }}\) & 80 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & TJ & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range
\[
\begin{aligned}
& \text { TL494C } \\
& \text { TL494I }
\end{aligned}
\] & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-25 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Derating Ambient Temperature & \(\mathrm{T}_{\text {A }}\) & 45 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Maximum thermal limits must be observed.

\section*{TL494}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & 15 & 40 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}\) & - & 30 & 40 & V \\
\hline Collector Output Current (Each transistor) & \(\mathrm{I}_{\mathrm{C} 1}, \mathrm{I}_{\mathrm{C} 2}\) & - & - & 200 & mA \\
\hline Amplified Input Voltage & \(\mathrm{V}_{\mathrm{in}}\) & -0.3 & - & \(\mathrm{V}_{\mathrm{CC}}-2.0\) & V \\
\hline Current Into Feedback Terminal & \(\mathrm{I}_{\mathrm{fb}}\) & - & - & 0.3 & mA \\
\hline Reference Output Current & \(\mathrm{I}_{\mathrm{ref}}\) & - & - & 10 & mA \\
\hline Timing Resistor & \(\mathrm{R}_{\mathrm{T}}\) & 1.8 & 30 & 500 & \(\mathrm{k} \Omega\) \\
\hline Timing Capacitor & \(\mathrm{C}_{\mathrm{T}}\) & 0.0047 & 0.001 & 10 & \(\mu \mathrm{~F}\) \\
\hline Oscillator Frequency & \(\mathrm{f}_{\mathrm{OsC}}\) & 1.0 & 40 & 200 & kHz \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\), unless otherwise noted.)
For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies, unless otherwise noted.
\begin{tabular}{|l|l|l|l|l|l|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

REFERENCE SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Reference Voltage \((\mathrm{IO}=1.0 \mathrm{~mA})\) & \(\mathrm{V}_{\text {ref }}\) & 4.75 & 5.0 & 5.25 & V \\
\hline Line Regulation \(\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\right.\) to 40 V\()\) & Regline & - & 2.0 & 25 & mV \\
\hline Load Regulation \((\mathrm{IO}=1.0 \mathrm{~mA}\) to 10 mA\()\) & Regload & - & 3.0 & 15 & mV \\
\hline Short Circuit Output Current \(\left(\mathrm{V}_{\text {ref }}=0 \mathrm{~V}\right)\) & ISC & 15 & 35 & 75 & mA \\
\hline
\end{tabular}

\section*{OUTPUT SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Collector Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=40 \mathrm{~V}\right)
\] & IC(off) & - & 2.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Emitter Off-State Current
\[
\left.\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}\right)
\] & \({ }^{\prime} E(\mathrm{off})\) & - & - & -100 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Collector-Emitter Saturation Voltage (Note 2) \\
Common-Emitter ( \(\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}\) ) \\
Emitter-Follower ( \(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-200 \mathrm{~mA}\) )
\end{tabular} & \begin{tabular}{l}
\(V_{\text {sat }}(\mathrm{C})\) \\
\(\mathrm{V}_{\text {sat( }}\) (E)
\end{tabular} & - & \[
\begin{aligned}
& 1.1 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 2.5
\end{aligned}
\] & V \\
\hline Output Control Pin Current Low State ( \(\mathrm{V}_{\mathrm{OC}} \leq 0.4 \mathrm{~V}\) ) High State ( \(\mathrm{V}_{\mathrm{OC}}=\mathrm{V}_{\text {ref }}\) ) & \[
\begin{aligned}
& \mathrm{IOCL} \\
& \mathrm{IOCH}
\end{aligned}
\] & - & \[
\begin{aligned}
& 10 \\
& 0.2
\end{aligned}
\] & \[
3.5
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Output Voltage Rise Time \\
Common-Emitter (See Figure 12) \\
Emitter-Follower (See Figure 13)
\end{tabular} & \(\mathrm{tr}_{r}\) & - & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & ns \\
\hline Output Voltage Fall Time Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13) & \(t_{f}\) & - & 25
40 & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & ns \\
\hline
\end{tabular}

NOTE: 2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

\section*{TL494}

ELECTRICAL CHARACTERISTICS (VCC \(=15 \mathrm{~V}, \mathrm{C}_{\boldsymbol{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\boldsymbol{T}}=12 \mathrm{k} \Omega\), unless otherwise noted.)
For typical values \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies, unless otherwise noted.
\begin{tabular}{|l|l|l|l|l|l|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

\section*{ERROR AMPLIFIER SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage ( \(\mathrm{V}_{\mathrm{O}}(\) Pin 3) \(=2.5 \mathrm{~V}\) ) & V 10 & - & 2.0 & 10 & mV \\
\hline Input Offset Current ( \(\mathrm{V}_{\mathrm{O}}^{(\text {Pin 3) }}=2.5 \mathrm{~V}\) ) & 110 & - & 5.0 & 250 & nA \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{O}}(\) Pin 3\()=2.5 \mathrm{~V}\) ) & IIB & - & -0.1 & -1.0 & \(\mu \mathrm{A}\) \\
\hline Input Common Mode Voltage Range ( \(\mathrm{VCC}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & VICR & \multicolumn{3}{|c|}{-0.3 to \(\mathrm{VCC}^{-2.0}\)} & V \\
\hline Open Loop Voltage Gain ( \(\Delta \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}\) to 3.5 \(\left.\mathrm{V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)\) & Avol & 70 & 95 & - & dB \\
\hline Unity-Gain Crossover Frequency ( \(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}\) to \(3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) ) & \(\mathrm{f}_{\mathrm{C}}\) & - & 350 & - & kHz \\
\hline Phase Margin at Unity-Gain ( \(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}\) to \(3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) ) & \(\varphi_{m}\) & - & 65 & - & deg. \\
\hline Common Mode Rejection Ratio ( \(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\) ) & CMRR & 65 & 90 & - & dB \\
\hline Power Supply Rejection Ratio ( \(\Delta \mathrm{V} C \mathrm{CC}=33 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) ) & PSRR & - & 100 & - & dB \\
\hline Output Sink Current ( \(\mathrm{V}_{\mathrm{O}}(\) Pin 3\(\left.)=0.7 \mathrm{~V}\right)\) & \(10-\) & 0.3 & 0.7 & - & mA \\
\hline Output Source Current ( \(\mathrm{V}_{\mathrm{O}}(\mathrm{Pin} 3)=3.5 \mathrm{~V}\) ) & \(10+\) & 2.0 & -4.0 & - & mA \\
\hline
\end{tabular}

PWM COMPARATOR SECTION (Test Circuit Figure 11)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Threshold Voltage (Zero Duty Cycle) & \(\mathrm{V}_{\mathrm{TH}}\) & - & 2.5 & 4.5 & V \\
\hline Input Sink Current \(\left(\mathrm{V}_{(\text {Pin } 3)}=0.7 \mathrm{~V}\right)\) & \(\mathrm{I}_{-}\) & 0.3 & 0.7 & - & mA \\
\hline
\end{tabular}

DEADTIME CONTROL SECTION (Test Circuit Figure 11)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current (Pin 4) ( \(\mathrm{V}_{\text {Pin }} 4=0 \mathrm{~V}\) to 5.25 V ) & IIB (DT) & - & -2.0 & -10 & \(\mu \mathrm{A}\) \\
\hline Maximum Duty Cycle, Each Output, Push-Pull Mode
\[
\begin{aligned}
& \left(V_{\text {Pin } 4}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{RT}_{\mathrm{T}}=12 \mathrm{k} \Omega\right) \\
& \left(\mathrm{V}_{\text {Pin } 4}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{RT}_{\mathrm{T}}=30 \mathrm{k} \Omega\right)
\end{aligned}
\] & \(D_{\text {max }}\) & 45 & \[
\begin{aligned}
& 48 \\
& 45
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & \% \\
\hline Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle) & \(\mathrm{V}_{\text {th }}\) & 0 & 2.8 & 3.3 & V \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Frequency \(\left(C_{T}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=30 \mathrm{k} \Omega\right)\) & \(\mathrm{f}_{\mathrm{osc}}\) & - & 40 & - & kHz \\
\hline Standard Deviation of Frequency* \(\left(\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=30 \mathrm{k} \Omega\right)\) & \(\mathrm{of}_{\mathrm{osc}}\) & - & 3.0 & - & \(\%\) \\
\hline Frequency Change with Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\right.\) to \(\left.40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & \(\Delta \mathrm{f}_{\mathrm{Osc}}(\Delta \mathrm{V})\) & - & 0.1 & - & \(\%\) \\
\hline \begin{tabular}{c} 
Frequency Change with Temperature \(\left(\Delta \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\left.\mathrm{T}_{\text {high }}\right)\) \\
\(\left(\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right)\)
\end{tabular} & \(\Delta \mathrm{f}_{\mathrm{OSC}}(\Delta \mathrm{T})\) & - & - & 12 & \(\%\) \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|l|l|l|l|l|}
\hline Turn-On Threshold ( \(V_{\text {CC }}\) increasing, Iref \(=1.0 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{th}}\) & 5.5 & 6.43 & 7.0 & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Standby Supply Current (Pin 6 at \(\mathrm{V}_{\text {ref }}\), All other inputs and outputs open)
\[
\begin{aligned}
& (V C C=15 V) \\
& \left(V_{C C}=40 V\right)
\end{aligned}
\] & ICC & - & 5.5
7.0 & 10
15 & mA \\
\hline Average Supply Current
\[
\left(\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega, \mathrm{~V}_{(\text {Pin } 4)}=2.0 \mathrm{~V}\right)
\]
\[
\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right)(\text { See Figure } 12)
\] & & - & 7.0 & - & mA \\
\hline
\end{tabular}
*Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, \(\sigma \sqrt{\frac{N}{\sum\left(X_{n}-\bar{X}\right)^{2}}} \frac{N-1}{N-1}\)

Figure 1. Representative Block Diagram


This device contains 46 active transistors.

Figure 2. Timing Diagram


\section*{Description}

The TL494 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequencyprogrammable by two external components, \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). The approximate oscillator frequency is determined by:
\[
\mathrm{f}_{\mathrm{OSC}} \approx \frac{1.1}{\mathrm{RT}^{2} \cdot \mathrm{CT}_{T}}
\]

For more information refer to Figure 3.
Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor \(\mathrm{C}_{T}\) to either of two control signals. The NOR gates, which drive output transistors Q1 and Q2, are enabled only when the flip-flop clock-input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the Timing Diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the deadtime control, the error amplifier inputs, or the feedback input. The deadtime control comparator has an effective 120 mV input offset which limits the minimum output deadtime to approximately the first \(4 \%\) of the sawtooth-cycle time. This would result in a maximum duty cycle on a given output of \(96 \%\) with the output control grounded, and \(48 \%\) with it connected to the reference line. Additional deadtime may be imposed on the output by setting the deadtime-control input to a fixed voltage, ranging between 0 V to 3.3 V .

Functional Table
\begin{tabular}{|c|l|c|}
\hline \begin{tabular}{c} 
Input/Output \\
Controls
\end{tabular} & \multicolumn{1}{|c|}{ Output Function } & \(\frac{\mathbf{f}_{\text {out }}}{\mathbf{f}_{\text {osc }}}=\) \\
\hline Grounded & Single-ended PWM @ Q1 and Q2 & 1.0 \\
\hline @ \(\mathrm{V}_{\text {ref }}\) & Push-pull Operation & 0.5 \\
\hline
\end{tabular}

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the deadtime control input, down to zero, as the voltage at the feedback pin varies from 0.5 V to 3.5 V . Both error amplifiers have a common mode input range from -0.3 V to \(\left(\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}\right)\), and
may be used to sense power-supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the noninverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

When capacitor \(C_{T}\) is discharged, a positive pulse is generated on the output of the deadtime comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2. With the output-control connected to the reference line, the pulse-steering flip-flop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single-ended operation with a maximum on-time of less than \(50 \%\) is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher output-drive currents are required for single-ended operation, Q1 and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator.

The TL494 has an internal 5.0 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of \(\pm 5.0 \%\) with a typical thermal drift of less than 50 mV over an operating temperature range of \(0^{\circ}\) to \(70^{\circ} \mathrm{C}\).

Figure 3. Oscillator Frequency versus Timing Resistance


Figure 4. Open Loop Voltage Gain and Phase versus Frequency


Figure 6. Percent Duty Cycle versus Deadtime Control Voltage


Figure 8. Common-Emitter Configuration Output Saturation Voltage versus Collector Current


Figure 5. Percent Deadtime versus Oscillator Frequency


Figure 7. Emitter-Follower Configuration Output Saturation Voltage versus Emitter Current


Figure 9. Standby Supply Current versus Supply Voltage


Figure 10. Error-Amplifier Characteristics

Figure 11. Deadtime and Feedback Control Circuit


Figure 13. Emitter-Follower Configuration Test Circuit and Waveform


\section*{TL494}

Figure 14. Error-Amplifier Sensing Techniques


Figure 15. Deadtime Control Circuit


Max. \% on Time, each output \(\approx 45-\left(\frac{80}{1+\frac{R 1}{R 2}}\right)\)


Figure 16. Soft-Start Circuit


Figure 17. Output Connections for Single-Ended and Push-Pull Configurations


Figure 18. Slaving Two or More Control Circuits


Figure 19. Operation with \(\mathrm{V}_{\text {in }}>40 \mathrm{~V}\) Using External Zener


Figure 20. Pulse Width Modulated Push-Pull Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=10 \mathrm{~V}\) to 40 V & \(14 \mathrm{mV} 0.28 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\mathrm{in}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\) to 1.0 A & \(3.0 \mathrm{mV} \mathrm{0.06} \mathrm{\%}\) \\
\hline Output Ripple & \(\mathrm{V}_{\mathrm{in}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & 65 mV pp P.A.R.D. \\
\hline Short Circuit Current & \(\mathrm{V}_{\mathrm{in}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 1.6 A \\
\hline Efficiency & \(\mathrm{V}_{\mathrm{in}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(71 \%\) \\
\hline
\end{tabular}

L1-3.5 mH @ 0.3A
T1 - Primary: 20T C.T. \#28 AWG Secondary: 120T C.T. \#36 AWG Core: Ferroxcube 1408P-L00-3CB

\section*{TL494}

Figure 21. Pulse Width Modulated Step-Down Converter

\begin{tabular}{|l|l|r|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to 40 V & \(3.0 \mathrm{mV} \quad 0.01 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\mathrm{in}}=12.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.2 \mathrm{~mA}\) to 200 mA & \(5.0 \mathrm{mV} \quad 0.02 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\mathrm{in}}=12.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\) & \(40 \mathrm{mV} \mathrm{pp} \quad\) P.A.R.D. \\
\hline Short Circuit Current & \(\mathrm{V}_{\mathrm{in}}=12.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 250 mA \\
\hline Efficiency & \(\mathrm{V}_{\mathrm{in}}=12.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\) & \(72 \%\) \\
\hline
\end{tabular}

\section*{Precision Switchmode Pulse Width Modulation Control Circuit}

The TL594 is a fixed frequency, pulse width modulation control circuit designed primarily for Switchmode power supply control.
- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator with Master or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5.0 V Reference, 1.5\% Accuracy
- Adjustable Deadtime Control
- Uncommitted Output Transistors Rated to 500 mA Source or Sink
- Output Control for Push-Pull or Single-Ended Operation
- Undervoltage Lockout

MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 42 & V \\
\hline Collector Output Voltage & \begin{tabular}{l}
\(V_{C 1}\), \\
\(\mathrm{V}_{\mathrm{C} 2}\)
\end{tabular} & 42 & V \\
\hline Collector Output Current (each transistor) (Note 1) & \({ }^{\text {IC1 }}\), IC2 & 500 & mA \\
\hline Amplifier Input Voltage Range & \(\mathrm{V}_{\mathrm{IR}}\) & -0.3 to +42 & V \\
\hline Power Dissipation @ \(\mathrm{T}_{\mathrm{A}} \leq 45^{\circ} \mathrm{C}\) & \(\mathrm{P}_{\mathrm{D}}\) & 1000 & mW \\
\hline Thermal Resistance, Junction-to-Ambient & \(\mathrm{R}_{\text {өJA }}\) & 80 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & TJ & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range
\[
\begin{aligned}
& \text { TL594ID, CN } \\
& \text { TL594CD, IN }
\end{aligned}
\] & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-25 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Derating Ambient Temperature & \(\mathrm{T}_{\text {A }}\) & 45 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\footnotetext{
NOTES: 1. Maximum thermal limits must be observed.
}

\section*{PRECISION SWITCHMODE} PULSE WIDTH MODULATION CONTROL CIRCUIT

SEMICONDUCTOR TECHNICAL DATA


ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Device
\end{tabular}} & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline TL594CD & \multirow{2}{*}{\(\mathrm{T}_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-16 \\
\hline TL594CN & & Plastic \\
\hline TL594IN & \(\mathrm{T}_{A}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & Plastic \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & 15 & 40 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}\) & - & 30 & 40 & V \\
\hline Collector Output Current (Each transistor) & \(\mathrm{I}_{\mathrm{C} 1}, \mathrm{I}_{\mathrm{C} 2}\) & - & - & 200 & mA \\
\hline Amplified Input Voltage & \(\mathrm{V}_{\text {in }}\) & 0.3 & - & \(\mathrm{V}_{\mathrm{CC}}-2.0\) & V \\
\hline Current Into Feedback Terminal & \(\mathrm{I}_{\mathrm{fb}}\) & - & - & 0.3 & mA \\
\hline Reference Output Current & \(\mathrm{I}_{\text {ref }}\) & - & - & 10 & mA \\
\hline Timing Resistor & \(\mathrm{R}_{\mathrm{T}}\) & 1.8 & 30 & 500 & \(\mathrm{k} \Omega\) \\
\hline Timing Capacitor & \(\mathrm{C}_{\mathrm{T}}\) & 0.0047 & 0.001 & 10 & \(\mu \mathrm{~F}\) \\
\hline Oscillator Frequency & \(\mathrm{f}_{\mathrm{osc}}\) & 1.0 & 40 & 200 & kHz \\
\hline PWM Input Voltage (Pins 3, 4, 13) & - & 0.3 & - & 5.3 & V \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\), unless otherwise noted.)
For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for min/max values \(T_{A}\) is the operating ambient temperature range that applies, unless otherwise noted
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline Reference Voltage
\[
\begin{aligned}
& \left(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\right)
\end{aligned}
\] & Vref & \[
\begin{gathered}
4.925 \\
4.9
\end{gathered}
\] & \[
\begin{gathered}
5.0 \\
-
\end{gathered}
\] & \[
\begin{gathered}
5.075 \\
5.1
\end{gathered}
\] & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\) to 40 V ) & Regline & - & 2.0 & 25 & mV \\
\hline Load Regulation ( \(\mathrm{l} \mathrm{O}=1.0 \mathrm{~mA}\) to 10 mA ) & Regload & - & 2.0 & 15 & mV \\
\hline Short Circuit Output Current ( \(\mathrm{V}_{\text {ref }}=0 \mathrm{~V}\) ) & ISC & 15 & 40 & 75 & mA \\
\hline
\end{tabular}

OUTPUT SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Collector Off-State Current ( \(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=40 \mathrm{~V}\) ) & \({ }^{\prime} \mathrm{C}\) (off) & - & 2.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Emitter Off-State Current ( \(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}\) ) & \({ }^{1} \mathrm{E}\) (off) & - & - & -100 & \(\mu \mathrm{A}\) \\
\hline Collector-Emitter Saturation Voltage (Note 2) Common-Emitter ( \(\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}\) ) Emitter-Follower \(\left(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-200 \mathrm{~mA}\right)\) & \begin{tabular}{l}
\(V_{\text {SAT(C) }}\) \\
\(V_{\text {SAT }}(\mathrm{E})\)
\end{tabular} & - & 1.1
1.5 & \[
\begin{aligned}
& 1.3 \\
& 2.5
\end{aligned}
\] & V \\
\hline Output Control Pin Current Low State ( \(\mathrm{V}_{\mathrm{OC}} \leq 0.4 \mathrm{~V}\) ) High State \(\left(\mathrm{V}_{\mathrm{OC}}=\mathrm{V}_{\text {ref }}\right)\) & \({ }^{\text {IOCL }}\)
\[
\mathrm{IOCH}
\] & - & 0.1
2.0 & \[
\overline{20}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Voltage Rise Time \\
Common-Emitter (See Figure 13) \\
Emitter-Follower (See Figure 14)
\end{tabular} & \(\mathrm{tr}_{r}\) & - & 100
100 & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & ns \\
\hline \[
\begin{aligned}
& \text { Output Voltage Fall Time } \\
& \quad \text { Common-Emitter (See Figure 13) } \\
& \text { Emitter-Follower (See Figure 14) }
\end{aligned}
\] & \(t_{f}\) & - & 40
40 & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & ns \\
\hline
\end{tabular}

\section*{ERROR AMPLIFIER SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage ( \(\left.\mathrm{V}_{\mathrm{O}}(\mathrm{Pin} 3)=2.5 \mathrm{~V}\right)\) & \(\mathrm{V}_{10}\) & - & 2.0 & 10 & mV \\
\hline Input Offset Current ( \(\left.\mathrm{V}_{\mathrm{O}}(\mathrm{Pin} 3)=2.5 \mathrm{~V}\right)\) & 1 O & - & 5.0 & 250 & nA \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{O}}\) (Pin 3) \(=2.5 \mathrm{~V}\) ) & IB & - & -0.1 & -1.0 & \(\mu \mathrm{A}\) \\
\hline Input Common Mode Voltage Range ( \(\mathrm{VCC}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & VICR & \multicolumn{3}{|c|}{0 to \(\mathrm{V}_{\mathrm{CC}}-2.0\)} & V \\
\hline Inverting Input Voltage Range & \(\mathrm{V}_{\text {IR }}(\mathrm{INV}\) ) & \multicolumn{3}{|c|}{-0.3 to \(\mathrm{V}_{\mathrm{CC}}-2.0\)} & V \\
\hline Open Loop Voltage Gain ( \(\Delta \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}\) to \(3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) ) & AVOL & 70 & 95 & - & dB \\
\hline Unity-Gain Crossover Frequency ( \(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}\) to \(3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) ) & \({ }^{\mathrm{f}} \mathrm{C}\) & - & 700 & - & kHz \\
\hline Phase Margin at Unity-Gain ( \(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}\) to \(3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) ) & ¢m & - & 65 & - & deg. \\
\hline Common Mode Rejection Ratio ( \(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\) ) & CMRR & 65 & 90 & - & dB \\
\hline Power Supply Rejection Ratio ( \(\Delta \mathrm{V}_{\mathrm{CC}}=33 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) ) & PSRR & - & 100 & - & dB \\
\hline Output Sink Current ( \(\left.\mathrm{V}_{\mathrm{O}}(\mathrm{Pin} 3)=0.7 \mathrm{~V}\right)\) & \(\mathrm{l}^{-}\) & 0.3 & 0.7 & - & mA \\
\hline Output Source Current ( \(\mathrm{V}_{\mathrm{O}}(\) Pin 3) \(=3.5 \mathrm{~V}\) ) & \(\mathrm{O}^{+}\) & -2.0 & -4.0 & - & mA \\
\hline
\end{tabular}

\footnotetext{
NOTE: 2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\), unless otherwise noted.)
For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies, unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{PWM COMPARATOR SECTION (Test Circuit Figure 11)} \\
\hline Input Threshold Voltage (Zero Duty Cycle) & \(\mathrm{V}_{\text {TH }}\) & - & 3.6 & 4.5 & V \\
\hline Input Sink Current ( \(\mathrm{V}_{\text {Pin } 3}=0.7 \mathrm{~V}\) ) & I- & 0.3 & 0.7 & - & mA \\
\hline
\end{tabular}

DEADTIME CONTROL SECTION (Test Circuit Figure 11)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current (Pin 4) (VPin 4 \(=0 \mathrm{~V}\) to 5.25 V ) & IIB (DT) & - & -2.0 & -10 & \(\mu \mathrm{A}\) \\
\hline Maximum Duty Cycle, Each Output, Push-Pull Mode
\[
\left(V_{\operatorname{Pin} 4}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right)
\]
\[
\left(\mathrm{V}_{\text {Pin } 4}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=30 \mathrm{k} \Omega\right)
\] & \(\mathrm{DC}_{\text {max }}\) & 45 & \[
\begin{aligned}
& 48 \\
& 45
\end{aligned}
\] & 50 & \% \\
\hline Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle) & \(\mathrm{V}_{\mathrm{TH}}\) & \(\overline{0}\) & \(\stackrel{2.8}{-}\) & 3.3 & V \\
\hline
\end{tabular}

\section*{OSCILLATOR SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& \qquad \begin{array}{l}
\left(\mathrm{CT}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=30 \mathrm{k} \Omega\right) \\
\left(\mathrm{CT}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{RT}_{\mathrm{T}}=12 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
\left(\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right)
\end{array}
\end{aligned}
\] & fosc & \[
\begin{aligned}
& -\overline{2} \\
& 9.2 \\
& 9.0
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
- \\
10.8 \\
12
\end{gathered}
\] & kHz \\
\hline Standard Deviation of Frequency* ( \(\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=30 \mathrm{k} \Omega\) ) & ofosc & - & 1.5 & - & \% \\
\hline Frequency Change with Voltage ( \(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & \(\Delta \mathrm{f}_{\text {osc }}(\Delta \mathrm{V})\) & - & 0.2 & 1.0 & \% \\
\hline Frequency Change with Temperature ( \(\Delta \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\) ) & \(\Delta \mathrm{f}_{\text {osc }}(\Delta \mathrm{T})\) & - & 4.0 & - & \% \\
\hline
\end{tabular}

\section*{UNDERVOLTAGE LOCKOUT SECTION}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Turn-On Threshold (VCC Increasing, Iref \(=1.0 \mathrm{~mA})\) & \(\mathrm{V}_{\text {th }}\) & & & & V \\
\(\mathrm{T}_{\mathrm{A}}=25^{\circ}{ }^{\circ}\) & & 4.0 & 5.2 & 6.0 & \\
\(\mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) & & 3.5 & - & 6.5 & \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & & & & mV \\
TL594C,I & & 100 & 150 & 300 & \\
TL594M & & 50 & 150 & 300 & \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Standby Supply Current (Pin 6 at \(V_{\text {ref }}\), All other inputs and outputs open) \\
\(\left(V_{C C}=15 \mathrm{~V}\right)\) \\
\(\left(V_{C C}=40 \mathrm{~V}\right)\)
\end{tabular} & ICC & - & 8.0 & 15 & mA \\
\hline Average Supply Current \(\left(\mathrm{V}_{\text {Pin }} 4=2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\), & & - & 8.0 & 18 & \\
\hline \(\mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\), See Figure 11) & & - & 11 & - & mA \\
\hline
\end{tabular}
*Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, \(\sigma \sqrt{\begin{array}{l}\sum_{n}\left(X_{n}-\bar{X}\right)^{2} \\ n=1\end{array}}\)

Figure 1. Representative Block Diagram


Figure 2. Timing Diagram


\section*{Description}

The TL594 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequencyprogrammable by two external components, \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). The approximate oscillator frequency is determined by:
\[
\mathrm{f}_{\mathrm{OSC}} \approx \frac{1.1}{\mathrm{R}_{\mathrm{T}} \cdot \mathrm{C}_{\mathrm{T}}}
\]

For more information refer to Figure 3.
Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor \(\mathrm{C}_{\mathrm{T}}\) to either of two control signals. The NOR gates, which drive output transistors Q1 and Q2, are enabled only when the flip-flop clock-input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the Timing Diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the deadtime control, the error amplifier inputs, or the feedback input. The deadtime control comparator has an effective 120 mV input offset which limits the minimum output deadtime to approximately the first \(4 \%\) of the sawtooth-cycle time. This would result in a maximum duty cycle on a given output of \(96 \%\) with the output control grounded, and \(48 \%\) with it connected to the reference line. Additional deadtime may be imposed on the output by setting the deadtime-control input to a fixed voltage, ranging between 0 V to 3.3 V .

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the deadtime control input, down to zero, as the voltage at the feedback pin varies from 0.5 V to 3.5 V . Both error amplifiers have a

Functional Table
\begin{tabular}{|c|l|c|}
\hline \begin{tabular}{c} 
Input/Output \\
Controls
\end{tabular} & \multicolumn{1}{|c|}{ Output Function } & \(\frac{\text { fout }}{\mathbf{f}_{\text {osc }}}=\) \\
\hline Grounded & Single-ended PWM @ Q1 and Q2 & 1.0 \\
\hline @ \(V_{\text {ref }}\) & Push-pull Operation & 0.5 \\
\hline
\end{tabular}
common-mode input range from -0.3 V to ( \(\mathrm{VCC}-2 \mathrm{~V}\) ), and may be used to sense power-supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the noninverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

When capacitor \(\mathrm{C}_{\mathrm{T}}\) is discharged, a positive pulse is generated on the output of the deadtime comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2. With the output-control connected to the reference line, the pulse-steering flip-flop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single-ended operation with a maximum on-time of less than \(50 \%\) is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher output-drive currents are required for single-ended operation, Q1 and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator.

The TL594 has an internal 5.0 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of \(\pm 1.5 \%\) with a typical thermal drift of less than 50 mV over an operating temperature range of \(0^{\circ}\) to \(70^{\circ} \mathrm{C}\).

Figure 3. Oscillator Frequency versus Timing Resistance


Figure 4. Open Loop Voltage Gain and Phase versus Frequency


Figure 5. Percent Deadtime versus Oscillator Frequency


Figure 7. Emitter-Follower Configuration Output Saturation Voltage versus Emitter Current


Figure 9. Standby Supply Current versus Supply Voltage


Figure 6. Percent Duty Cycle versus Deadtime Control Voltage


Figure 8. Common-Emitter Configuration Output Saturation Voltage versus Collector Current


Figure 10. Undervoltage Lockout Thresholds versus Reference Load Current


Figure 11. Error-Amplifier Characteristics

Figure 12. Deadtime and Feedback Control Circuit


Figure 14. Emitter-Follower Configuration Test Circuit and Waveform



\section*{TL594}

Figure 15. Error-Amplifier Sensing Techniques


Figure 16. Deadtime Control Circuit


Max. \% on Time, each output \(\approx 45-\left(\frac{80}{1+\frac{R 1}{R 2}}\right)\)


Figure 17. Soft-Start Circuit


Figure 18. Output Connections for Single-Ended and Push-Pull Configurations


Figure 19. Slaving Two or More Control Circuits

Figure 20. Operation with \(\mathrm{V}_{\text {in }}>40 \mathrm{~V}\) Using External Zener


Figure 21. Pulse Width Modulated Push-Pull Converter

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=10 \mathrm{~V}\) to 40 V & \(14 \mathrm{mV} 0.28 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\) to 1.0 A & \(3.0 \mathrm{mV} 0.06 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & 65 mVpp P.A.R.D. \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 1.6 A \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(71 \%\) \\
\hline
\end{tabular}
\(\mathrm{L} 1-3.5 \mathrm{mH} @ 0.3 \mathrm{~A}\)
T1 - Primary: 20T C.T. \#28 AWG
Secondary: 120T C.T. \#36 AWG
Core: Ferroxcube 1408P-L00-3CB

\section*{TL594}

Figure 22. Pulse Width Modulated Step-Down Converter

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to 40 V & \(3.0 \mathrm{mV} \quad 0.01 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.2 \mathrm{~mA}\) to 200 mA & \(5.0 \mathrm{mV} \quad 0.02 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\) & \(40 \mathrm{mVpp} \quad\) P.A.R.D. \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 250 mA \\
\hline Efficiency & \(\mathrm{V}_{\mathrm{in}}=12.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\) & \(72 \%\) \\
\hline
\end{tabular}

\section*{Three-Terminal Positive Fixed Voltage Regulators}

This family of precision fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 1.5 A. Innovative design concepts, coupled with advanced thermal layout techniques have resulted in improved accuracy and excellent load, line and thermal regulation characteristics. Internal current limiting, thermal shutdown and safe-area compensation are employed, making these devices extremely rugged and virtually immune to overload.
- \(\pm 1 \%\) Output Voltage Tolerance @ \(25^{\circ} \mathrm{C}\)
- \(\pm 2 \%\) Output Voltage Tolerance over Full Operating Temperature Range
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- Output Transistor Safe-Area Compensation
- No External Components Required
- Pinout Compatible with MC7800 Series

\section*{THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS}

SEMICONDUCTOR TECHNICAL DATA

KC SUFFIX PLASTIC PACKAGE CASE 221A

Pin 1. Input
2. Ground
3. Output


Heatsink surface is connected to \(\operatorname{Pin} 2\).

\section*{STANDARD APPLICATION}


A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
(XX), these two digits of the type number indicate voltage.
\({ }^{*} \mathrm{C}_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter.
\({ }^{* *} \mathrm{C}_{\mathrm{O}}\) is not needed for stability; however, it does improve transient response.

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Nominal \\
Output
\end{tabular} & Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} \\
\hline 5.0 V & TL780-05CKC & \\
12 V & \(\mathrm{TL780-12CKC}\) & \(\mathrm{~T}_{J}=0^{\circ}\) to \(125^{\circ} \mathrm{C}\) \\
15 V & \(\mathrm{TL780-15CKC}\) & \\
\hline
\end{tabular}

\section*{TL780 Series}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage & \(\mathrm{V}_{\text {in }}\) & 35 & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{C}}=+75^{\circ} \mathrm{C}\) (See Figure 1) Thermal Resistance, Junction-to-Case
\end{tabular} & \(P_{D}\) \(1 / \theta_{J A}\) \({ }^{\theta}\) JA PD 1/日JC \(\theta_{\mathrm{JC}}\) & \[
\begin{gathered}
2.0 \\
16 \\
62.5 \\
15 \\
200 \\
5.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{W} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{CW} \\
\mathrm{~W} \\
\mathrm{WW} /{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature Range & \(\mathrm{T}_{J}\) & 0 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}\right.\), unless otherwise noted [Note 1].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL780-05C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& 5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W} \\
& 7.0 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & Vo & \[
\begin{array}{r}
4.95 \\
4.90 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5.0 \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
5.05 \\
5.10 \\
\hline
\end{array}
\] & V \\
\hline \[
\begin{gathered}
\text { Line Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
7.0 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{~V} \\
8.0 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 12 \mathrm{~V} \\
\hline
\end{gathered}
\] & Regline & - & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
5.0 \\
5.0 \\
\hline
\end{array}
\] & mV \\
\hline \[
\begin{gathered}
\text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
5.0 \mathrm{~mA} \leq 10 \leq 1.5 \mathrm{~A} \\
250 \mathrm{~mA} \leq 10 \leq 750 \mathrm{~mA} \\
\hline
\end{gathered}
\] & Regload & - & \[
\begin{aligned}
& 4.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 15
\end{aligned}
\] & mV \\
\hline Ripple Rejection
\[
8.0 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 18 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & 70 & 80 & - & dB \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & ro & - & 0.0035 & - & W \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & 0.06 & - & \(\mathrm{mV}^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Dropout Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{vin}^{\text {- }}\) - \(\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & V \\
\hline Bias Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{I}_{\mathrm{B}}\) & - & 3.5 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Bias Current Change } \\
& 7.0 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }} \leq 10 \mathrm{~V} \\
& \hline
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{I}_{\mathrm{B}}\) & - & \[
\begin{gathered}
0.7 \\
0.03
\end{gathered}
\] & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Short Circuit Output Current \(\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{~V}
\] & ISC & - & 200 & - & mA \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & Ip & - & 2.2 & - & A \\
\hline
\end{tabular}

NOTE: 1. Line and load regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with tow duty cycle is used.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}\right.\), unless otherwise noted [Note 1].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL780-12C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \begin{array}{l}
5.0 \mathrm{~mA} \leq \mathrm{IO} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}, 14.5 \leq \mathrm{V}_{\text {in }} \leq 27 \mathrm{~V} \\
\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
\end{array}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 11.88 \\
& 11.76
\end{aligned}
\] & & \[
\begin{aligned}
& 12.12 \\
& 12.24
\end{aligned}
\] & V \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 14.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 30 \\
& 16 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 22
\end{aligned}
\] & Regline & - & 1.2
1.2 & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & mV \\
\hline
\end{tabular}

\section*{TL780 Series}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}\right.\), unless otherwise noted [Note 1].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL780-12C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline \[
\begin{gathered}
\text { Load Regulation }\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \\
5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA}
\end{gathered}
\] & Regload & & \[
\begin{aligned}
& 6.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 36
\end{aligned}
\] & mV \\
\hline Ripple Rejection \(15 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 25 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) & RR & 65 & 77 & - & dB \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & ro & - & 0.0035 & - & W \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{IO}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & 0.15 & - & \(\mathrm{mV}^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 180 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Dropout Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{IO}=1.0 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{v}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & V \\
\hline Bias Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & IB & - & 3.5 & 8.0 & mA \\
\hline Bias Current Change
\[
\begin{aligned}
& 14.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }} \leq 19 \mathrm{~V}
\end{aligned}
\] & \({ }^{\text {I }} \mathrm{B}\) & & \[
\begin{gathered}
0.4 \\
0.03
\end{gathered}
\] & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Short Circuit Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{v}_{\mathrm{in}}=35 \mathrm{~V}
\] & ISC & - & 200 & - & mA \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & IP & - & 2.2 & - & A \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}\right.\), unless otherwise noted [Note 1].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL780-15C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { 5.0 mA } \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}, 17.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 14.85 \\
& 14.70
\end{aligned}
\] & \[
15
\] & \[
\begin{aligned}
& 15.15 \\
& 15.30
\end{aligned}
\] & V \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& 17.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{~V} \\
& 20 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 26 \mathrm{~V} \\
& \hline
\end{aligned}
\] & Regline & - & \[
\begin{array}{r}
1.5 \\
1.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& \hline
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq 1 \mathrm{O} \leq 750 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 7.0 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 75 \\
& 45
\end{aligned}
\] & mV \\
\hline Ripple Rejection
\[
18.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{in}} \leq 28.5 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & 60 & 75 & - & dB \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & ro & - & 0.0035 & - & W \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{IO}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & 0.18 & - & \(\mathrm{mV}^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 225 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Dropout Voltage }\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{IO}=1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & V \\
\hline \begin{tabular}{l}
Bias Current \(\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) \\
Bias Current Change
\[
\begin{aligned}
& 17.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{~V}, \mathrm{I}_{0}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }} \leq 23 \mathrm{~V}
\end{aligned}
\]
\end{tabular} & \[
\begin{gathered}
\mathrm{I}_{\mathrm{B}} \\
\Delta \mathrm{I}_{\mathrm{B}}
\end{gathered}
\] & - & \[
\begin{gathered}
\hline 3.6 \\
\\
0.4 \\
0.02
\end{gathered}
\] & \[
\begin{aligned}
& 8.0 \\
& \\
& 1.3 \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Short Circuit Output Current \(\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{~V}
\] & ISC & - & 200 & - & mA \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & Ip & - & 2.2 & - & A \\
\hline
\end{tabular}

NOTE: 1. Line and load regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{TL780 Series}

\section*{VOLTAGE REGULATOR PERFORMANCE}

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration (< \(100 \mu \mathrm{~s}\) ) and are strictly a function of electrical gain. However, pulse widths of longer duration ( \(>1.0 \mathrm{~ms}\) ) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.

Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The change in dissipated power can be caused by a change in either the input voltage or the load
current. Thermal regulation is a function of IC layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms , additional changes in the output voltage are due to the temperature coefficient of the device.

Figure 1 shows the line and thermal regulation response of a typical TL780-05C to a 10 W input pulse. The variation of the output voltage due to line regulation is labeled (1) and the thermal regulation component is labeled (2). Figure 2 shows the load and thermal regulation response of a typical TL780-05C to a 15 W load pulse. The output voltage variation due to load regulation is labeled (1) and the thermal regulation component is labeled (2).

Figure 1. Line and Thermal Regulation


Figure 3. Temperature Stability

Figure 2. Load and Thermal Regulation
\[
\begin{array}{lll}
V_{\text {out }}=5.0 \mathrm{~V} & & \text { (1) }=\text { Regline }=4.4 \mathrm{mV} \\
V_{\text {in }}=15 \mathrm{~V} & & \text { (2) }=\text { Regtherm }=0.0020 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{W}
\end{array}
\]

Figure 5. Ripple Rejection versus Frequency


Figure 7. Bias Current versus Input Voltage


Figure 9. Dropout Voltage


Figure 6. Ripple Rejection versus Output Current


Figure 8. Bias Current versus Output Current


Figure 10. Peak Output Current


Figure 11. Line Transient Response


Figure 12. Load Transient Response


Figure 13. Worst Case Power Dissipation versus Ambient Temperature


\section*{High Performance Current Mode Controllers}

The UC3842A, UC3843A series of high performance fixed frequency current mode controllers are specifically designed for off-line and dc-to-dc converter applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, programmable output deadtime, and a latch for single pulse metering.

These devices are available in an \(8-\) pin dual-in-line plastic package as well as the 14-pin plastic surface mount (SO-14). The SO-14 package has separate power and ground pins for the totem pole output stage.

The UCX842A has UYLO thresholds of 16 V (on) and 10 V (off), ideally suited for off-line converters. The UCX843A is tailored for lower voltage applications having UVLO thresholds of 8.5 V (on) and 7.6 V (off).
- Trimmed Oscillator Discharge Current for Precise Duty Cycle Control
- Current Mode Operation to 500 kHz
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis
- Low Startup and Operating Current
- Direct Interface with Motorola SENSEFET Products


UC3842A, 43A UC2842A, 43A

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

\section*{N SUFFIX}

PLASTIC PACKAGE CASE 626


D SUFFIX
PLASTIC PACKAGE CASE 751A
(SO-14)


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline UC3842AD & \multirow{4}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-14 \\
\hline UC3843AD & & SO-14 \\
\hline UC3842AN & & Plastic \\
\hline UC3843AN & & Plastic \\
\hline UC2842AD & \multirow{4}{*}{\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-14 \\
\hline UC2843AD & & SO-14 \\
\hline UC2842AN & & Plastic \\
\hline UC2843AN & & Plastic \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & \((\mathrm{ICC}+\mathrm{Iz})\) & 30 & mA \\
\hline Output Current, Source or Sink (Note 1) & 10 & 1.0 & A \\
\hline Output Energy (Capacitive Load per Cycle) & W & 5.0 & \(\mu \mathrm{J}\) \\
\hline Current Sense and Voltage Feedback Inputs & \(v_{\text {in }}\) & -0.3 to +5.5 & \(\checkmark\) \\
\hline Error Amp Output Sink Current & 10 & 10 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
D Suffix, Plastic Package Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
N Suffix, Plastic Package Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
PD \\
\(R_{\theta J A}\) \\
\(P_{D}\) \\
\(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& \\
& 1.25 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature \\
UC3842A, UC3843A \\
UC2842A, UC2843A
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-25 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=15 \mathrm{~V}\right.\), [Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) [Note 3],
unless otherwise noted.)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \multirow{3}{*}{ Characteristics } & \multirow{3}{|c|}{ UC284XA } & \multicolumn{3}{|c|}{ UC384XA } & \\
\cline { 3 - 9 } & Symbol & Min & Typ & Max & Min & Typ & Max & Unit \\
\hline
\end{tabular}
REFERENCE SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Reference Output Voltage \(\left(\mathrm{IO}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\text {ref }}\) & 4.95 & 5.0 & 5.05 & 4.9 & 5.0 & 5.1 & V \\
\hline Line Regulation \(\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right.\) to 25 V\()\) & Regline & - & 2.0 & 20 & - & 2.0 & 20 & mV \\
\hline Load Regulation \((\mathrm{IO}=1.0 \mathrm{~mA}\) to 20 mA\()\) & Regload & - & 3.0 & 25 & - & 3.0 & 25 & mV \\
\hline Temperature Stability & \(\mathrm{T}_{\mathrm{S}}\) & - & 0.2 & - & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Total Output Variation over Line, Load, Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.9 & - & 5.1 & 4.82 & - & 5.18 & V \\
\hline Output Noise Voltage \(\left(\mathrm{f}=10 \mathrm{~Hz}\right.\) to \(\left.10 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 50 & - & - & 50 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability \(\left(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\right.\) for 1000 Hours) & S & - & 5.0 & - & - & 5.0 & - & mV \\
\hline Output Short Circuit Current & ISC & -30 & -85 & -180 & -30 & -85 & -180 & mA \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& T_{J}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & fosc & \[
\begin{aligned}
& 47 \\
& 46
\end{aligned}
\] & & \[
\begin{aligned}
& 57 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 47 \\
& 46
\end{aligned}
\] & 52 & \[
\begin{aligned}
& 57 \\
& 60
\end{aligned}
\] & kHz \\
\hline Frequency Change with Voltage ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 25 V ) & \(\Delta \mathrm{f}_{\text {Osc }} / \Delta \mathrm{V}\) & - & 0.2 & 1.0 & - & 0.2 & 1.0 & \% \\
\hline Frequency Change with Temperature \(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) & \(\Delta \mathrm{f}_{\mathrm{osc}} / \Delta \mathrm{T}\) & - & 5.0 & - & - & 5.0 & - & \% \\
\hline Oscillator Voltage Swing (Peak-to-Peak) & \(V_{\text {osc }}\) & - & 1.6 & - & - & 1.6 & - & V \\
\hline \[
\begin{aligned}
& \text { Discharge Current }\left(\mathrm{V}_{\text {osc }}=2.0 \mathrm{~V}\right) \\
& \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & Idischg & \[
\begin{aligned}
& 7.5 \\
& 7.2
\end{aligned}
\] & 8.4 & 9.3
9.5 & \[
\begin{aligned}
& 7.5 \\
& 7.2
\end{aligned}
\] & 8.4 & 9.3
9.5 & mA \\
\hline
\end{tabular}

NOTES: 1. Maximum Package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible
\(\begin{array}{rlrl}\mathrm{T}_{\text {low }}= & 0^{\circ} \mathrm{C} \text { for UC3842A, UC3843A } \\ & -25^{\circ} \mathrm{C} \text { for UC2842A, UC2843A } & T_{\text {high }}= & +70^{\circ} \mathrm{C} \text { for UC3842A, UC3843A } \\ & +85^{\circ} \mathrm{C} \text { for UC2842A, UC2843A }\end{array}\)

\section*{UC3842A, 43A UC2842A, 43A}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right.\), [Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) [Note 3],
unless otherwise noted.)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ Characteristics } & \multirow{3}{|c|}{ UC284XA } & \multicolumn{3}{|c|}{ UC384XA } & \\
\cline { 3 - 9 } & Symbol & Min & Typ & Max & Min & Typ & Max & Unit \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Voltage Feedback Input ( \(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\) ) & \(V_{\text {FB }}\) & 2.45 & 2.5 & 2.55 & 2.42 & 2.5 & 2.58 & V \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) ) & IB & - & -0.1 & -1.0 & - & -0.1 & -2.0 & \(\mu \mathrm{A}\) \\
\hline Open Loop Voltage Gain ( \(\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}\) to 4.0 V ) & AVOL & 65 & 90 & - & 65 & 90 & - & dB \\
\hline Unity Gain Bandwidth ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & BW & 0.7 & 1.0 & - & 0.7 & 1.0 & - & MHz \\
\hline Power Supply Rejection Ratio (VCC \(=12 \mathrm{~V}\) to 25 V ) & PSRR & 60 & 70 & - & 60 & 70 & - & dB \\
\hline \[
\begin{aligned}
& \text { Output Current } \\
& \text { Sink }\left(\mathrm{V}_{\mathrm{O}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\right) \\
& \text { Source }\left(\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\right)
\end{aligned}
\] & ISink ISource & \[
\begin{gathered}
2.0 \\
-0.5
\end{gathered}
\] & \[
\begin{gathered}
12 \\
-1.0
\end{gathered}
\] & - & \[
\begin{gathered}
2.0 \\
-0.5
\end{gathered}
\] & \[
\begin{gathered}
12 \\
-1.0
\end{gathered}
\] & & mA \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing } \\
& \text { High State }\left(R_{L}=15 \mathrm{k} \text { to ground, } \mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\right) \\
& \text { Low State }\left(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \text { to } \mathrm{V}_{\text {ref }}, \mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\right)
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & 5.0 & 6.2
0.8 & 1.1 & 5.0 & \[
\begin{aligned}
& 6.2 \\
& 0.8
\end{aligned}
\] & \[
\overline{1.1}
\] & V \\
\hline
\end{tabular}

CURRENT SENSE SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Current Sense Input Voltage Gain (Notes 4 \& 5) & \(\mathrm{AV}_{\mathrm{V}}\) & 2.85 & 3.0 & 3.15 & 2.85 & 3.0 & 3.15 & \(\mathrm{~V} / \mathrm{V}\) \\
\hline Maximum Current Sense Input Threshold (Note 4) & \(\mathrm{V}_{\mathrm{th}}\) & 0.9 & 1.0 & 1.1 & 0.9 & 1.0 & 1.1 & V \\
\hline \begin{tabular}{l} 
Power Supply Rejection Ratio \\
\(\mathrm{V}_{\mathrm{CC}}=12\) to 25 V (Note 4)
\end{tabular} & PSRR & & - & 70 & - & - & 70 & - \\
\hline Input Bias Current & \(\mathrm{I}_{\mathrm{IB}}\) & - & -2.0 & -10 & - & -2.0 & -10 & \(\mu \mathrm{~A}\) \\
\hline Propagation Delay (Current Sense Input to Output) & tPLH(in/out) & - & 150 & 300 & - & 150 & 300 & ns \\
\hline
\end{tabular}

\section*{OUTPUT SECTION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Output Voltage & & & & & & & & \multirow[t]{5}{*}{V} \\
\hline Low State ( \({ }^{\text {Sink }}=20 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.1 & 0.4 & - & 0.1 & 0.4 & \\
\hline ( \({ }^{\text {Sink }}=200 \mathrm{~mA}\) ) & & - & 1.6 & 2.2 & - & 1.6 & 2.2 & \\
\hline High State ( \({ }^{\text {S Sink }}=20 \mathrm{~mA}\) ) & VOH & 13 & 13.5 & - & 13 & 13.5 & - & \\
\hline ( \({ }_{\text {Sink }}=200 \mathrm{~mA}\) ) & & 12 & 13.4 & - & 12 & 13.4 & - & \\
\hline Output Voltage with UVLO Activated
\[
V_{C C}=6.0 \mathrm{~V}, I_{\text {Sink }}=1.0 \mathrm{~mA}
\] & VOL(UVLO) & - & 0.1 & 1.1 & - & 0.1 & 1.1 & V \\
\hline Output Voltage Rise Time ( \(\mathrm{C}_{L}=1.0 \mathrm{nF}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}\) ) & \(t_{r}\) & - & 50 & 150 & - & 50 & 150 & ns \\
\hline Output Voltage Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(t_{f}\) & - & 50 & 150 & - & 50 & 150 & ns \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Startup Threshold UCX842A UCX843A & \(\mathrm{V}_{\text {th }}\) & \[
\begin{aligned}
& 15 \\
& 7.8
\end{aligned}
\] & 16
8.4 & 17
9.0 & 14.5
7.8 & 16
8.4 & 17.5
9.0 & V \\
\hline Minimum Operating Voltage After Turn-On UCX842A UCX843A & \(\mathrm{VCC}_{\text {(min) }}\) & \[
\begin{aligned}
& 9.0 \\
& 7.0
\end{aligned}
\] & 10
7.6 & 11
8.2 & 8.5
7.0 & 10
7.6 & 11.5
8.2 & V \\
\hline \multicolumn{9}{|l|}{PWM SECTION} \\
\hline Duty Cycle Maximum Minimum & \begin{tabular}{l}
\(D_{\text {max }}\) \\
\(D C_{\text {min }}\)
\end{tabular} & 94 & 96 & 0 & 94 & 96 & 0 & \% \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Power Supply Current (Note 2) \\
Startup: \\
(VCC \(=6.5 \mathrm{~V}\) for UCX843A, \\
14 V for UCX842A) Operating
\end{tabular} & ICC & & & & & & & mA \\
\hline Power Supply Zener Voltage (ICC \(=25 \mathrm{~mA}\) ) & & - & 0.5 & 1.0 & - & 0.5 & 1.0 & \\
\hline
\end{tabular}

NOTES: 2. Adjust \(V_{C C}\) above the Startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible
\(T_{\text {low }}=0^{\circ} \mathrm{C}\) for UC3842A, UC3843A \(\quad T_{\text {hlgh }}=+70^{\circ} \mathrm{C}\) for UC3842A, UC3843A
\(-25^{\circ} \mathrm{C}\) for UC2842A, UC2843A \(+85^{\circ} \mathrm{C}\) for UC2842A, UC2843A
4. This parameter is measured at the latch trip point with \(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\).
5. Comparator gain is defined as: \(A V \frac{\Delta V \text { Output Compensation }}{\Delta V \text { Current Sense Input }}\)

Figure 1. Timing Resistor versus Oscillator Frequency


Figure 3. Oscillator Discharge Current versus Temperature


Figure 5. Error Amp Small Signal Transient Response


Figure 2. Output Deadtime versus Oscillator Frequency


Figure 4. Maximum Output Duty Cycle versus Timing Resistor


Figure 6. Error Amp Large Signal Transient Response


Figure 7. Error Amp Open Loop Gain and Phase versus Frequency


Figure 9. Reference Voltage Change versus Source Current


Figure 11. Reference Load Regulation


Figure 8. Current Sense Input Threshold versus Error Amp Output Voltage


Figure 10. Reference Short Circuit Current versus Temperature


Figure 12. Reference Line Regulation


Figure 13. Output Saturation Voltage versus Load Current



Figure 14. Output Waveform

\(50 \mathrm{~ns} / \mathrm{DIV}\)

Figure 16. Supply Current versus Supply Voltatage


Figure 17. Representative Block Diagram


Pin numbers in parenthesis are for the \(D\) suffix SO-14 package.

Figure 18. Timing Diagram

Capacitor CT


Latch
"Set" Input

\(\square\) ■ .


Large \(\mathrm{R}_{\mathrm{T}} /\) Small \(\mathrm{C}_{T}\)

\(\cdots \cdots \cdots \cdots\)


Small \(R_{T} /\) Large \(C_{T}\)

\section*{OPERATING DESCRIPTION}

The UC3842A, UC3843A series are high performance, fixed frequency, current mode controllers. They are specifically designed for Off-Line and dc-to-dc converter applications offering the designer a cost effective solution with minimal external components. A representative block diagram is shown in Figure 17.

\section*{Oscillator}

The oscillator frequency is programmed by the values selected for the timing components \(\mathrm{RT}_{\top}\) and \(\mathrm{C}_{\mathrm{T}}\). Capacitor \(\mathrm{C}_{T}\) is charged from the 5.0 V reference through resistor \(\mathrm{RT}_{\top}\) to approximately 2.8 V and discharged to 1.2 V by an internal current sink. During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates and internal blanking pulse that holds the center
input of the NOR gate high. This causes the Output to be in a low state, thus producing a controlled amount of output deadtime. Figure 1 shows RT versus Oscillator Frequency and Figure 2, Output Deadtime versus Frequency, both for given values of \(C_{T}\). Note that many values of \(R_{T}\) and \(C_{T}\) will give the same oscillator frequency but only one combination will yield a specific output deadtime at a given frequency. The oscillator thresholds are temperature compensated, and the discharge current is trimmed and guaranteed to within \(\pm 10 \%\) at \(T J=25^{\circ} \mathrm{C}\). These internal circuit refinements minimize variations of oscillator frequency and maximum output duty cycle. The results are shown in Figures 3 and 4.

In many noise sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a clock signal to the circuit shown in Figure 20. For reliable locking, the free-running oscillator frequency should be set about 10\% less than the clock frequency. A method for multi unit synchronization is shown in Figure 21. By tailoring the clock waveform, accurate Output duty cycle clamping can be achieved.

\section*{Error Amplifier}

A fully compensated Error Amplifier with access to the inverting input and output is provided. It features a typical dc voltage gain of 90 dB , and a unity gain bandwidth of 1.0 MHz with 57 degrees of phase margin (Figure 7). The noninverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input. The maximum input bias current is \(-2.0 \mu \mathrm{~A}\) which can cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance.

The Error Amp Output (Pin 1) is provide for external loop compensation (Figure 30). The output voltage is offset by two diode drops ( \(\approx 1.4 \mathrm{~V}\) ) and divided by three before it connects to the inverting input of the Current Sense Comparator. This guarantees that no drive pulses appear at the Output (Pin 6) when Pin 1 is at its lowest state ( \(\mathrm{VOL}_{\mathrm{O}}\) ). This occurs when the power supply is operating and the load is removed, or at the beginning of a soft-start interval (Figures 23, 24). The Error Amp minimum feedback resistance is limited by the
amplifier's source current ( 0.5 mA ) and the required output voltage \((\mathrm{VOH})\) to reach the comparator's 1.0 V clamp level:
\[
\mathrm{R}_{\mathrm{f}(\min )} \approx \frac{3.0(1.0 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=8800 \Omega
\]

\section*{Current Sense Comparator and PWM Latch}

The UC3842A, UC3843A operate as a current mode controller, whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier Output/Compensation (Pin1). Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The current Sense Comparator PWM Latch configuration used ensures that only a single pulse appears at the Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting the ground referenced sense resistor \(\mathrm{R}_{\mathrm{S}}\) in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input (Pin 3) and compared a level derived from the Error Amp Output. The peak inductor current under normal operating conditions is controlled by the voitage at pin 1 where:
\[
\mathrm{I}_{\mathrm{pk}}=\frac{\mathrm{V}(\operatorname{Pin} 1)-1.4 \mathrm{~V}}{3 R_{\mathrm{S}}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 1.0 V . Therefore the maximum peak switch current is:
\[
\operatorname{Ipk}(\max )=\frac{1.0 \mathrm{~V}}{\mathrm{R}_{\mathrm{S}}}
\]

When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of \(R_{S}\) to a reasonable level. A simple method to adjust this voltage is shown in Figure 22. The two external diodes are used to compensate the internal diodes yielding a constant clamp voltage over temperature. Erratic operation due to noise pickup can result if there is an excessive reduction of the \(\operatorname{lpk}(\max )\) clamp voltage.

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Current Sense Input with a time constant that approximates the spike duration will usually eliminate the instability; refer to Figure 26.

\section*{UC3842A, 43A UC2842A, 43A}

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Pin} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Description} \\
\hline 8-Pin & 14-Pin & & \\
\hline 1 & 1 & Compensation & This pin is Error Amplifier output and is made available for loop compensation. \\
\hline 2 & 3 & Voltage Feedback & This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 3 & 5 & Current Sense & A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction. \\
\hline 4 & 7 & \(\mathrm{RT}_{\mathrm{T}} / \mathrm{C}_{\mathrm{T}}\) & The Oscillator frequency and maximum Output duty cycle are programmed by connecting resistor \(R_{T}\) to \(V_{\text {ref }}\) and capacitor \(C_{T}\) to ground. Operation to 500 kHz is possible. \\
\hline 5 & - & Gnd & This pin is the combined control circuitry and power ground (8-pin package only). \\
\hline 6 & 10 & Output & This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sunk by this pin. \\
\hline 7 & 12 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply of the control IC. \\
\hline 8 & 14 & Vref & This is the reference output. It provides charging current for capacitor \(\mathrm{C}_{\boldsymbol{T}}\) through resistor RT. \\
\hline - & 8 & Power Ground & This pin is a separate power ground return (14-pin package only) that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline - & 11 & \(\mathrm{V}_{\mathrm{C}}\) & The Output high state \(\left(\mathrm{V}_{\mathrm{OH}}\right)\) is set by the voltage applied to this pin (14-pin package only). With a separate power source connection, it can reduce the effects of switching transient noise on the control circuitry. \\
\hline - & 9 & Gnd & This pin is the control circuitry ground return (14-pin package only) and is connected back to the power source ground. \\
\hline - & 2,4,6,13 & NC & No connection (14-pin package only). These pins are not internally connected. \\
\hline
\end{tabular}

\section*{Undervoltage Lockout}

Two undervoltage lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stage is enabled. The positive power supply terminal ( \(\mathrm{V}_{\mathrm{CC}}\) ) and the reference output ( \(\mathrm{V}_{\mathrm{ref}}\) ) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The VCC comparator upper and lower thresholds are \(16 \mathrm{~V} / 10 \mathrm{~V}\) for the UCX842A, and \(8.4 \mathrm{~V} / 7.6 \mathrm{~V}\) for the UCX 843 A . The \(\mathrm{V}_{\text {ref }}\) comparator upper and lower thresholds are \(3.6 \mathrm{~V} / 3.4 \mathrm{~V}\). The large hysteresis and low startup current of the UCX842A makes it ideally suited in off-line converter applications where efficient bootstrap startup techniques are required (Figure 33). The UCX843A is intended for lower voltage dc to dc converter applications. A 36 V zener is connected as a shunt regulator form \(V_{C C}\) to ground. Its purpose is to protect the IC from excessive voltage that can occur during system startup. The minimum operating voltage for the UCX842A is 11 V and 8.2 V for the UCX843A.

\section*{Output}

These devices contain a single totem pole output stage that was specifically designed for direct drive of power MOSFETs. It is capable of up to \(\pm 1.0\) A peak drive current and
has a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the Output in a sinking mode whenever an undervoltage lockout is active. This characteristic eliminates the need for an external pull-down resistor.

The SO-14 surface mount package provides separate pins for \(V_{C}\) (output supply) and Power Ground. Proper implementation will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomes particularly useful when reducing the lpk(max) clamp level. The separate \(\mathrm{V}_{\mathrm{C}}\) supply input allows the designer added flexibility in tailoring the drive voltage independent of \(V_{C C}\). A zener clamp is typically connected to this input when driving power MOSFETs in systems where \(\mathrm{V}_{\mathrm{C}}\) is greater that 20 V . Figure 25 shows proper power and control ground connections in a current sensing power MOSFET application.

\section*{Reference}

The 5.0 V bandgap reference is trimmed to \(\pm 1.0 \%\) tolerance at \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) on the UC284XA, and \(\pm 2.0 \%\) on the UC384XA. Its primary purpose is to supply charging current to the oscillator timing capacitor. The reference has short circuit protection and is capable of providing in excess of 20 mA for powering additional control system circuitry.

\section*{DESIGN CONSIDERATIONS}

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. High Frequency circuit layout techniques are imperative to prevent pulsewidth jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with low-current signal and high-current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors ( \(0.1 \mu \mathrm{~F}\) ) connected directly to \(\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{C}}\), and \(V_{\text {ref }}\) may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage divider should be located close to the IC and as far as possible from the power switch and other noise generating components.

Current mode converters can exhibit subharmonic oscillations when operating at a duty cycle greater than \(50 \%\) with continuous inductor current. This instability is independent of the regulators closed-loop characteristics and is caused by the simultaneous operating conditions of fixed frequency and peak current detecting. Figure 19A shows the phenomenon graphically. At \(t_{0}\), switch conduction begins, causing the inductor current to rise at a slope of \(m_{1}\). This slope is a function of the input voltage divided by the inductance. At \(t_{1}\), the Current Sense Input reaches the threshold established by the control voltage. This causes the switch to turn off and the current to decay at a slope of \(m_{2}\) until the next oscillator cycle. The unstable condition can be shown if a pertubation is added to the control voltage, resulting in a small \(\Delta \mathrm{I}\) (dashed line). With a fixed oscillator period, the current decay time is reduced, and the minimum current at switch turn-on ( \(\mathrm{t}_{2}\) ) is increased by \(\Delta l+\Delta l \mathrm{~m} 2 / \mathrm{m} 1\). The minimum current at the next cycle ( \(\mathrm{t}_{3}\) ) decreases to ( \(\Delta l+\) \(\left.\Delta^{l} m_{2} / m_{1}\right)\left(m_{2} / m_{1}\right)\). This pertubation is multiplied by \(m_{2} \cdot m_{1}\) on
each succeeding cycle, alternately increasing and decreasing the inductor current at switch turn-on. Several oscillator cycles may be required before the inductor current reaches zero causing the process to commence again. If \(\mathrm{m}_{2} / \mathrm{m}_{1}\) is greater than 1 , the converter will be unstable. Figure 19B shows that by adding an artificial ramp that is synchronized with the PWM clock to the control voltage, the \(\Delta l\) pertubation will decrease to zero on succeeding cycles. This compensation ramp ( \(m_{3}\) ) must have a slope equal to or slightly greater than \(\mathrm{m}_{2} / 2\) for stability. With \(\mathrm{m}_{2} / 2\) slope compensation, the average inductor current follows the control voltage yielding true current mode operation. The compensating ramp can be derived from the oscillator and added to either the Voltage Feedback or Current Sense inputs (Figure 32).

Figure 19. Continuous Current Waveforms


Figure 20. External Clock Synchronization


The diode clamp is required if the Sync amplitude is large enough to cause the bottom side of CT to go more than 300 mV below ground.

Figure 21. External Duty Cycle Clamp and Multi Unit Synchronization


Figure 22. Adjustable Reduction of Clamp Level

\(\begin{aligned} & V_{\text {Clamp }}=\frac{1.67}{\left(\frac{R_{2}}{R_{1}}+1\right)}+0.33 \times 10-3\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right) \quad \mathrm{I}_{\mathrm{pk}(\text { max })}=\frac{\mathrm{VClamp}}{R S} \\ & \text { Where: } 0 \leq \mathrm{V}_{\text {Clamp }} \leq 1.0 \mathrm{~V}\end{aligned}\)

Figure 24. Adjustable Buffered Reduction of Clamp Level with Soft-Start


Figure 23. Soft-Start Circuit


Figure 25. Current Sensing Power MOSFET


Virtually lossless current sensing can be achieved with the implementation of a SENSEFET power switch. For proper operation during over current conditions, a reduction of the \(l_{\mathrm{pk}(\max )}\) clamp level must be implemented. Refer to Figures 22 and 24 .

Figure 26. Current Waveform Spike Suppression


The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform.

Figure 27. MOSFET Parasitic Oscillations


Series gate resistor \(R_{g}\) will damp any high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit.

Figure 29. Isolated MOSFET Drive


The totem-pole output can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor \(\mathrm{C}_{1}\).

Figure 30. Latched Shutdown


The MCR101 SCR must be selected for a holding of less than 0.5 mA at \({ }^{T} A(\min )\). The simple two transistor circuit can be used in place of the SCR as shown. All resistors are 10 k .

Figure 31. Error Amplifier Compensation


Error Amp compensation circuitfor stabilizing any current-mode topology except for boost and flyback converters operating with continuous inductor current.


Error Amp compensation circuit for stabilizing current-mode boost and flyback topologies operating with continuous inductor current.

\section*{UC3842A, 43A UC2842A, 43A}

Figure 32. Slope Compensation


The buffered oscillator ramp can be resistively summed with either the voltage feedback or current sense inputs to provide slope compensation.

Figure 33. 27 Watt Off-Line Flyback Regulator


All outputs are at nominal load currents, unless otherwise noted.

\section*{UC3842B, 43B UC2842B, 43B}

\section*{HIGH PERFORMANCE CURRENT MODE CONTROLLERS}

N SUFFIX PLASTIC PACKAGE CASE 626

D1 SUFFIX PLASTIC PACKAGE CASE 751
(SO-8)

LASTIC PACKAGE CASE 751A (SO-14)

- Trimmed Oscillator for Precise Frequency Control
- Oscillator Frequency Guaranteed at 250 kHz
- Current Mode Operation to 500 kHz
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis
- Low Startup and Operating Current


\section*{High Performance Current Mode Controllers}

The UC3842B, UC3843B series are high performance fixed frequency current mode controllers. They are specifically designed for Off-Line and dc-to-dc converter applications offering the designer a cost-effective solution with minimal external components. These integrated circuits feature a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, programmable output deadtime, and a latch for single pulse metering.

These devices are available in an 8-pin dual-in-line and surface mount (SO-8) plastic package as well as the 14-pin plastic surface mount (SO-14). The SO-14 package has separate power and ground pins for the totem pole output stage.

The UCX842B has UVLO thresholds of 16 V (on) and 10 V (off), ideally suited for off-line converters. The UCX843B is tailored for lower voltage applications having UVLO thresholds of 8.5 V (on) and 7.6 V (off).

UC3842B, 43B UC2842B, 43B
MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & ( ICC +I Z ) & 30 & mA \\
\hline Output Current, Source or Sink (Note 1) & IO & 1.0 & A \\
\hline Output Energy (Capacitive Load per Cycle) & W & 5.0 & \(\mu \mathrm{J}\) \\
\hline Current Sense and Voltage Feedback Inputs & \(\mathrm{V}_{\text {in }}\) & -0.3 to +5.5 & V \\
\hline Error Amp Output Sink Current & 10 & 10 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
D Suffix, Plastic Package, SO-14 Case 751A Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
D1 Suffix, Plastic Package, SO-8 Case 751 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
\(N\) Suffix, Plastic Package, Case 626 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
PD \(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(P_{D}\) \(R_{\theta J A}\) \\
PD \(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& \\
& 702 \\
& 178 \\
& \\
& 1.25 \\
& 100 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\hline
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature \\
UC3842B, UC3843B \\
UC2842B, UC2843B \\
UC3842BV, UC3843BV
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-25 \text { to }+85 \\
-40 \text { to }+105
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C}=15 \mathrm{~V}\right.\) [Note 2], \(\mathrm{R}_{\boldsymbol{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}\). For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ Characteristics } & \multirow{3}{|c|}{} & \multicolumn{3}{|c|}{ UC284XB } & \multicolumn{3}{|c|}{ UC384XB, XBV } & \\
\cline { 3 - 9 } & Symbol & Min & Typ & Max & Min & Typ & Max & Unit \\
\hline
\end{tabular}

\section*{REFERENCE SECTION}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Reference Output Voltage \(\left(\mathrm{I} \mathrm{O}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\text {ref }}\) & 4.95 & 5.0 & 5.05 & 4.9 & 5.0 & 5.1 & V \\
\hline Line Regulation \(\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right.\) to 25 V\()\) & Regline & - & 2.0 & 20 & - & 2.0 & 20 & mV \\
\hline Load Regulation ( \(\mathrm{I} \mathrm{O}=1.0 \mathrm{~mA}\) to 20 mA\()\) & Regload & - & 3.0 & 25 & - & 3.0 & 25 & mV \\
\hline Temperature Stability & \(\mathrm{T}_{\mathrm{S}}\) & - & 0.2 & - & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Total Output Variation over Line, Load, and Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.9 & - & 5.1 & 4.82 & - & 5.18 & V \\
\hline Output Noise Voltage \(\left(\mathrm{f}=10 \mathrm{~Hz}\right.\) to \(\left.10 \mathrm{kHz}, \mathrm{T} \mathrm{J}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 50 & - & - & 50 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability \(\left(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\right.\) for 1000 Hours \()\) & S & - & 5.0 & - & - & 5.0 & - & mV \\
\hline Output Short Circuit Current & I SC & -30 & -85 & -180 & -30 & -85 & -180 & mA \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& T_{J}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \\
& T_{J}=25^{\circ} \mathrm{C}\left(\mathrm{R}_{\mathrm{T}}=6.2 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\right)
\end{aligned}
\] & fosc & \[
\begin{gathered}
49 \\
48 \\
225
\end{gathered}
\] & \[
\begin{gathered}
52 \\
- \\
255
\end{gathered}
\] & \[
\begin{gathered}
55 \\
56 \\
275
\end{gathered}
\] & \[
\begin{gathered}
49 \\
48 \\
225
\end{gathered}
\] & \[
\begin{gathered}
52 \\
- \\
250
\end{gathered}
\] & \[
\begin{gathered}
55 \\
56 \\
275
\end{gathered}
\] & kHz \\
\hline Frequency Change with Voltage ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 25 V ) & \(\Delta \mathrm{fosc} / \Delta \mathrm{V}\) & - & 0.2 & 1.0 & - & 0.2 & 1.0 & \% \\
\hline Frequency Change with Temperature \(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) & \(\Delta \mathrm{fosc} / \Delta \mathrm{T}\) & - & 1.0 & - & - & 0.5 & - & \% \\
\hline Oscillator Voltage Swing (Peak-to-Peak) & VOSC & - & 1.6 & - & - & 1.6 & - & V \\
\hline \[
\begin{aligned}
& \text { Discharge Current }(\mathrm{V} O S C=2.0 \mathrm{~V}) \\
& \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}(\mathrm{UC} 284 \mathrm{XB}, \mathrm{UC} 384 \mathrm{XB}) \\
& \text { (UC384XBV) }
\end{aligned}
\] & Idischg & \[
\begin{aligned}
& 7.8 \\
& 7.5
\end{aligned}
\] & 8.3 & 8.8
8.8 & \[
\begin{aligned}
& 7.8 \\
& 7.6 \\
& 7.2
\end{aligned}
\] & 8.3
- & \[
\begin{aligned}
& 8.8 \\
& 8.8 \\
& 8.8
\end{aligned}
\] & mA \\
\hline
\end{tabular}

NOTES: 1. Maximum Package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for UC3842B, UC3843B
\(-25^{\circ} \mathrm{C}\) for UC2842B, UC2843B
\(T_{\text {high }}=+70^{\circ} \mathrm{C}\) for UC3842B, UC3843B
\(+85^{\circ} \mathrm{C}\) for UC2842B, UC2843B
\(-40^{\circ} \mathrm{C}\) for UC3842BV, UC3843BV \(+105^{\circ} \mathrm{C}\) for UC3842BV, UC3843BV

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=15 \mathrm{~V}\right.\) [Note 2], \(R_{T}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}\). For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \multirow{2}{*}{ Characteristics } & \multirow{3}{|c|}{ UC284XB } & \multicolumn{3}{|c|}{ UC384XB, XBV } & \\
\cline { 3 - 9 } & Symbol & Min & Typ & Max & Min & Typ & Max & Unit \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Voltage Feedback Input ( \(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\) ) & \(\mathrm{V}_{\text {FB }}\) & 2.45 & 2.5 & 2.55 & 2.42 & 2.5 & 2.58 & V \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=5.0 \mathrm{~V}\) ) & IIB & - & -0.1 & -1.0 & - & -0.1 & -2.0 & \(\mu \mathrm{A}\) \\
\hline Open Loop Voltage Gain ( \(\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}\) to 4.0 V ) & Avol & 65 & 90 & - & 65 & 90 & - & dB \\
\hline Unity Gain Bandwidth ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & BW & 0.7 & 1.0 & - & 0.7 & 1.0 & - & MHz \\
\hline Power Supply Rejection Ratio ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 25 V ) & PSRR & 60 & 70 & - & 60 & 70 & - & dB \\
\hline \begin{tabular}{l}
Output Current \\
Sink ( \(\mathrm{V}_{\mathrm{O}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) ) \\
Source ( \(\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) )
\end{tabular} & ISink ISource & \[
\begin{gathered}
2.0 \\
-0.5
\end{gathered}
\] & \[
\begin{gathered}
12 \\
-1.0
\end{gathered}
\] & & \[
\begin{gathered}
2.0 \\
-0.5
\end{gathered}
\] & \[
\begin{gathered}
12 \\
-1.0
\end{gathered}
\] & & mA \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State ( \(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to ground, \(\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) \\
Low State ( \(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to \(\mathrm{V}_{\text {ref }}, \mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) ) \\
(UC284XB, UC384XB) \\
(UC384XBV)
\end{tabular} & \begin{tabular}{l}
\(\mathrm{VOH}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & 5.0 & 6.2
0.8 & 1.1 & 5.0 & \[
\begin{aligned}
& 6.2 \\
& 0.8 \\
& 0.8
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 1.2 \\
& \hline
\end{aligned}
\] & V \\
\hline
\end{tabular}

\section*{CURRENT SENSE SECTION}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Current Sense Input Voltage Gain (Notes 4 \& 5) \\
(UC284XB, UC384XB) \\
(UC384XBV)
\end{tabular} & AV & 2.85 & 3.0 & 3.15 & 2.85 & 3.0 & 3.15 & \(\mathrm{~V} / \mathrm{V}\) \\
\hline \begin{tabular}{l} 
Maximum Current Sense Input Threshold (Note 4) \\
(UC284XB, UC384XB) \\
(UC384XBV)
\end{tabular} & \(\mathrm{V}_{\text {th }}\) & - & 0.9 & 1.0 & 1.1 & 0.9 & 1.0 & 1.1 \\
\hline \begin{tabular}{l} 
Power Supply Rejection Ratio \\
VCC = 12 V to 25 V, Note 4
\end{tabular} & & - & - & - & 0.85 & 1.0 & 1.1 & \\
\hline Input Bias Current & PSRR & - & 70 & - & - & 70 & - & dB \\
\hline Propagation Delay (Current Sense Input to Output) & tpLH(In/Out) & - & 150 & 300 & - & 150 & 300 & ns \\
\hline
\end{tabular}

\section*{OUTPUT SECTION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow{4}{*}{VOL} & & & & & & & \multirow[t]{7}{*}{V} \\
\hline Low State ( \({ }^{\text {S }}\) Sink \(=20 \mathrm{~mA}\) ) & & - & 0.1 & 0.4 & - & 0.1 & 0.4 & \\
\hline ( \({ }^{\text {S Sink }}=200 \mathrm{~mA}\) ) ( \(\mathrm{UC} 284 \mathrm{XB}, \mathrm{UC} 384 \mathrm{XB}\) ) & & - & 1.6 & 2.2 & - & 1.6 & 2.2 & \\
\hline (UC384XBV) & & - & - & - & - & 1.6 & 2.3 & \\
\hline High State ( \({ }^{\text {ISource }}=20 \mathrm{~mA}\) ) (UC284XB, UC384XB) & \(\mathrm{V}_{\mathrm{OH}}\) & 13 & 13.5 & - & 13 & 13.5 & - & \\
\hline (UC384XBV) & & - & - & - & 12.9 & 13.5 & - & \\
\hline ( Source \(=200 \mathrm{~mA}\) ) & & 12 & 13.4 & - & 12 & 13.4 & - & \\
\hline Output Voltage with UVLO Activated
\[
\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{I}_{\text {Sink }}=1.0 \mathrm{~mA}
\] & VOL(UVLO) & - & 0.1 & 1.1 & - & 0.1 & 1.1 & V \\
\hline Output Voltage Rise Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{tr}_{r}\) & - & 50 & 150 & - & 50 & 150 & ns \\
\hline Output Voltage Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(t_{f}\) & - & 50 & 150 & - & 50 & 150 & ns \\
\hline
\end{tabular}

\section*{UNDERVOLTAGE LOCKOUT SECTION}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Startup Threshold (VCC) & \(V_{\text {th }}\) & & & & & & & V \\
UCX842B, BV \\
UCX843B, BV & & 15 & 16 & 17 & 14.5 & 16 & 17.5 & \\
\hline Minimum Operating Voltage After Turn-On \(\left(\mathrm{V}_{\mathrm{CC}}\right)\) & \(\mathrm{V}_{\mathrm{CC}}(\min )\) & & & & & & & \\
UCX842B, BV & & 9.0 & 10 & 11 & 8.5 & 10 & 11.5 & V \\
UCX843B, BV & & 7.0 & 7.6 & 8.2 & 7.0 & 7.6 & 8.2 & \\
\hline
\end{tabular}

NOTES: 2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for UC3842B, UC3843B \(-25^{\circ} \mathrm{C}\) for UC2842B, UC2843B
\(-40^{\circ} \mathrm{C}\) for UC3842BV, UC3843BV
\(\begin{aligned} \mathrm{T}_{\text {high }}= & +70^{\circ} \mathrm{C} \text { for UC3842B, UC3843B } \\ & +85^{\circ} \mathrm{C} \text { for UC2842B, UC2843B }\end{aligned}\) \(+85^{\circ} \mathrm{C}\) for UC2842B, UC2843B
\(+105^{\circ} \mathrm{C}\) for UC3842BV, UC3843BV
4. This parameter is measured at the latch trip point with \(V_{F B}=0 \mathrm{~V}\).
5. Comparator gain is defined as: \(A_{V} \frac{\Delta V \text { Output Compensation }}{\Delta V \text { Current Sense Input }}\)

\section*{UC3842B, 43B UC2842B, 43B}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right.\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ Characteristics } & \multirow{3}{|c|}{} & \multicolumn{3}{|c|}{ UC284XB } & \multicolumn{3}{|c|}{ UC384XB, BV } & \\
\cline { 3 - 9 } & Symbol & Min & Typ & Max & Min & Typ & Max & Unit \\
\hline
\end{tabular}
PWM SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Duty Cycle \\
Maximum (UC284XB, UC384XB) \\
(UC384XBV) & \(\mathrm{DC}_{(\text {max })}\) & 94 & 96 & - & 94 & 96 & - & \(\%\) \\
Minimum & \(\mathrm{DC}_{(\mathrm{min})}\) & - & - & - & 93 & 96 & - & \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Power Supply Current \\
Startup (VCC \(=6.5 \mathrm{~V}\) for UCX843B, \\
( \(\mathrm{V}_{\mathrm{CC}} 14 \mathrm{~V}\) for UCX842B, BV) \\
Operating (Note 2)
\end{tabular} & \({ }^{\text {I C C }}+\mathrm{l}\) C & - & 0.3
12 & 0.5
17 & - & 0.3
12 & 0.5
17 & mA \\
\hline Power Supply Zener Voltage (lCC \(=25 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{Z}}\) & 30 & 36 & - & 30 & 36 & - & v \\
\hline
\end{tabular}

NOTES: 2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\begin{aligned} T_{\text {low }}= & 0^{\circ} \mathrm{C} \text { for UC3842B, UC3843B } \\ & -25^{\circ} \mathrm{C} \text { for UC2842B, UC2843B }\end{aligned} \quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for UC3842B, UC3843B \(-25^{\circ} \mathrm{C}\) for UC2842B, UC2843B
\(+85^{\circ} \mathrm{C}\) for UC2842B, UC2843B
\(-40^{\circ} \mathrm{C}\) for UC3842BV, UC3843BV
\(+105^{\circ} \mathrm{C}\) for UC3842BV, UC3843BV

Figure 1. Timing Resistor versus Oscillator Frequency


Figure 3. Oscillator Discharge Current versus Temperature


Figure 2. Output Deadtime versus Oscillator Frequency


Figure 4. Maximum Output Duty Cycle versus Timing Resistor


Figure 5. Error Amp Small Signal Transient Response


Figure 7. Error Amp Open Loop Gain and Phase versus Frequency


Figure 9. Reference Voltage Change versus Source Current


Figure 6. Error Amp Large Signal Transient Response


Figure 8. Current Sense Input Threshold versus Error Amp Output Voltage


Figure 10. Reference Short Circuit Current versus Temperature


Figure 11. Reference Load Regulation


Figure 13. Output Saturation Voltage versus Load Current


Figure 15. Output Cross Conduction


Figure 12. Reference Line Regulation


Figure 14. Output Waveform

\(50 \mathrm{~ns} /\) DIV

Figure 16. Supply Current versus Supply Voltage


UC3842B, 43B UC2842B, 43B

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Pin} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Description} \\
\hline 8-Pin & 14-Pin & & \\
\hline 1 & 1 & Compensation & This pin is the Error Amplifier output and is made available for loop compensation. \\
\hline 2 & 3 & Voltage Feedback & This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 3 & 5 & Current Sense & A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction. \\
\hline 4 & 7 & \(\mathrm{R}_{\mathrm{T}} / \mathrm{C}_{T}\) & The Oscillator frequency and maximum Output duty cycle are programmed by connecting resistor \(R_{T}\) to \(V_{\text {ref }}\) and capacitor \(C_{T}\) to ground. Operation to 500 kHz is possible. \\
\hline 5 & & Gnd & This pin is the combined control circuitry and power ground. \\
\hline 6 & 10 & Output & This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sunk by this pin. \\
\hline 7 & 12 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply of the control IC. \\
\hline 8 & 14 & Vref & This is the reference output. It provides charging current for capacitor \(\mathrm{C}_{T}\) through resistor \(\mathrm{R}_{T}\). \\
\hline & 8 & Power Ground & This pin is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline & 11 & \(\mathrm{V}_{\mathrm{C}}\) & The Output high state \(\left(\mathrm{V}_{\mathrm{OH}}\right)\) is set by the voltage applied to this pin. With a separate power source connection, it can reduce the effects of switching transient noise on the control circuitry. \\
\hline & 9 & Gnd & This pin is the control circuitry ground return and is connected back to the power source ground. \\
\hline & 2,4,6,13 & NC & No connection. These pins are not internally connected. \\
\hline
\end{tabular}

\section*{OPERATING DESCRIPTION}

The UC3842B, UC3843B series are high performance, fixed frequency, current mode controllers. They are specifically designed for Off-Line and dc-to-dc converter applications offering the designer a cost-effective solution with minimal external components. A representative block diagram is shown in Figure 17.

\section*{Oscillator}

The oscillator frequency is programmed by the values selected for the timing components \(\mathrm{R}_{\boldsymbol{T}}\) and \(\mathrm{C}_{\boldsymbol{T}}\). Capacitor \(\mathrm{C}_{\boldsymbol{T}}\) is charged from the 5.0 V reference through resistor \(\mathrm{R}_{\mathrm{T}}\) to approximately 2.8 V and discharged to 1.2 V by an internal current sink. During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates an internal blanking pulse that holds the center input of the NOR gate high. This causes the Output to be in a low state, thus producing a controlled amount of output deadtime. Figure 1 shows \(R_{T}\) versus Oscillator Frequency and Figure 2, Output Deadtime versus Frequency, both for given values of \(C_{T}\). Note that many values of \(R_{T}\) and \(C_{T}\) will give the same oscillator frequency but only one combination will yield a specific output deadtime at a given frequency. The oscillator thresholds are temperature compensated to within \(\pm 6 \%\) at 50 kHz . Also because of industry trends moving the UC384X into higher and higher frequency applications, the UC384XB is guaranteed to within \(\pm 10 \%\) at 250 kHz . These internal circuit refinements minimize variations of oscillator frequency and maximum output duty cycle. The results are shown in Figures 3 and 4.

In many noise-sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a clock signal to the circuit shown in Figure 20. For reliable locking, the free-running oscillator frequency should be set about \(10 \%\) less than the clock frequency. A method for multi-unit synchronization is shown in Figure 21. By tailoring the clock waveform, accurate Output duty cycle clamping can be achieved.

\section*{Error Amplifier}

A fully compensated Error Amplifier with access to the inverting input and output is provided. It features a typical dc voltage gain of 90 dB , and a unity gain bandwidth of 1.0 MHz with 57 degrees of phase margin (Figure 7). The non-inverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input. The maximum input bias current is \(-2.0 \mu \mathrm{~A}\) which can cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance.

The Error Amp Output (Pin 1) is provided for external loop compensation (Figure 31). The output voltage is offset by two diode drops \((\approx 1.4 \mathrm{~V})\) and divided by three before it connects to the non-inverting input of the Current Sense Comparator. This guarantees that no drive pulses appear at the Output (Pin 6) when pin 1 is at its lowest state ( \(\mathrm{V}_{\mathrm{OL}}\) ). This occurs when the power supply is operating and the load is removed,
or at the beginning of a soft-start interval (Figures 23, 24). The Error Amp minimum feedback resistance is limited by the amplifier's source current ( 0.5 mA ) and the required output voltage \((\mathrm{VOH})\) to reach the comparator's 1.0 V clamp level:
\[
R_{f(\min )} \approx \frac{3.0(1.0 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=8800 \Omega
\]

\section*{Current Sense Comparator and PWM Latch}

The UC3842B, UC3843B operate as a current mode controller, whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier Output/Compensation (Pin 1). Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The Current Sense Comparator PWM Latch configuration used ensures that only a single pulse appears at the Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting the ground-referenced sense resistor \(R_{S}\) in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input (Pin 3) and compared to a level derived from the Error Amp Output. The peak inductor current under normal operating conditions is controlled by the voltage at pin 1 where:
\[
\mathrm{I}_{\mathrm{pk}}=\frac{\mathrm{V}_{(\operatorname{Pin} 1)}-1.4 \mathrm{~V}}{3 \mathrm{R}_{\mathrm{S}}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 1.0 V . Therefore the maximum peak switch current is:
\[
\operatorname{Ipk}(\max )=\frac{1.0 \mathrm{~V}}{\mathrm{RS}_{\mathrm{S}}}
\]

When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of RS to a reasonable level. A simple method to adjust this voltage is shown in Figure 22. The two external diodes are used to compensate the internal diodes, yielding a constant clamp voltage over temperature. Erratic operation due to noise pickup can result if there is an excessive reduction of the \(\mathrm{lpk}(\max )\) clamp voltage.

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Current Sense Input with a time constant that approximates the spike duration will usually eliminate the instability (refer to Figure 26).

Figure 17. Representative Block Diagram


Figure 18. Timing Diagram
Capacitor \(\mathrm{C}_{\mathrm{T}}\)


Latch
"Set" Input


\section*{Undervoltage Lockout}

Two undervoltage lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stage is enabled. The positive power supply terminal ( \(\mathrm{V}_{\mathrm{CC}}\) ) and the reference output ( \(\mathrm{V}_{\text {ref }}\) ) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The \(\mathrm{V}_{\mathrm{CC}}\) comparator upper and lower thresholds are \(16 \mathrm{~V} / 10 \mathrm{~V}\) for the UCX842B, and \(8.4 \mathrm{~V} / 7.6 \mathrm{~V}\) for the UCX 843 B . The \(\mathrm{V}_{\text {ref }}\) comparator upper and lower thresholds are \(3.6 \mathrm{~V} / 3.4 \mathrm{~V}\). The large hysteresis and low startup current of the UCX842B makes it ideally suited in off-line converter applications where efficient bootstrap startup techniques are required (Figure 33). The UCX843B is intended for lower voltage dc-to-dc converter applications. A 36 V zener is connected as a shunt regulator from \(V_{C C}\) to ground. Its purpose is to protect the IC from excessive voltage that can occur during system startup. The minimum operating voltage ( \(\mathrm{V}_{\mathrm{CC}}\) ) for the UCX842B is 11 V and 8.2 V for the UCX843B.

These devices contain a single totem pole output stage that was specifically designed for direct drive of power MOSFETs. It is capable of up to \(\pm 1.0 \mathrm{~A}\) peak drive current and has a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the Output in a sinking mode whenever an undervoltage lockout is active. This characteristic eliminates the need for an external pull-down resistor.

The SO-14 surface mount package provides separate pins for \(\mathrm{V}_{\mathrm{C}}\) (output supply) and Power Ground. Proper implementation will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomes particularly useful when reducing the \(\mathrm{I}_{\mathrm{pk}(\max )}\) clamp level. The separate \(V_{C}\) supply input allows the designer added flexibility in tailoring the drive voltage independent of \(V_{C C}\). A zener clamp is typically connected to this input when driving power MOSFETs in systems where \(\mathrm{V}_{\mathrm{CC}}\) is greater than 20 V . Figure 25 shows proper power and control ground connections in a current-sensing power MOSFET application.

\section*{Reference}

The 5.0 V bandgap reference is trimmed to \(\pm 1.0 \%\) tolerance at \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) on the UC284XB, and \(\pm 2.0 \%\) on the UC384XB. Its primary purpose is to supply charging current to the oscillator timing capacitor. The reference has shortcircuit protection and is capable of providing in excess of 20 mA for powering additional control system circuitry.

\section*{Design Considerations}

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulse-width jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with low-current signal and high-current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors ( \(0.1 \mu \mathrm{~F}\) ) connected directly to \(\mathrm{V}_{\mathrm{C}}\), \(\mathrm{V}_{\mathrm{C}}\), and \(V_{\text {ref }}\) may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as
possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage divider should be located close to the IC and as far as possible from the power switch and other noise-generating components.

Current mode converters can exhibit subharmonic oscillations when operating at a duty cycle greater than \(50 \%\) with continuous inductor current. This instability is independent of the regulator's closed loop characteristics and is caused by the simultaneous operating conditions of fixed frequency and peak current detecting. Figure 19A shows the phenomenon graphically. At \(\mathrm{t}_{0}\), switch conduction begins, causing the inductor current to rise at a slope of \(m_{1}\). This slope is a function of the input voltage divided by the inductance. At \(t_{1}\), the Current Sense Input reaches the threshold established by the control voltage. This causes the switch to turn off and the current to decay at a slope of \(m_{2}\), until the next oscillator cycle. The unstable condition can be shown if a perturbation is added to the control voltage, resulting in a small \(\Delta \mathrm{l}\) (dashed line). With a fixed oscillator period, the current decay time is reduced, and the minimum current at switch turn-on ( \(\mathrm{t}_{2}\) ) is increased by \(\Delta \mathrm{l}+\Delta \mathrm{l} \mathrm{m}_{2} / \mathrm{m}_{1}\). The minimum current at the next cycle ( \(\mathrm{t}_{3}\) ) decreases to ( \(\Delta l+\) \(\left.\Delta I m_{2} / m_{1}\right)\left(m_{2} / m_{1}\right)\). This perturbation is multiplied by \(m_{2} / m_{1}\) on each succeeding cycle, alternately increasing and decreasing the inductor current at switch turn-on. Several oscillator cycles may be required before the inductor current reaches zero causing the process to commence again. If \(\mathrm{m}_{2} / \mathrm{m}_{1}\) is greater than 1 , the converter will be unstable. Figure 19B shows that by adding an artificial ramp that is synchronized with the PWM clock to the control voltage, the \(\Delta l\) perturbation will decrease to zero on succeeding cycles. This compensating ramp \(\left(m_{3}\right)\) must have a slope equal to or slightly greater than \(\mathrm{m}_{2} / 2\) for stability. With \(\mathrm{m}_{2} / 2\) slope compensation, the average inductor current follows the control voltage, yielding true current mode operation. The compensating ramp can be derived from the oscillator and added to either the Voltage Feedback or Current Sense inputs (Figure 32).

Figure 19. Continuous Current Waveforms

(B)


Figure 20. External Clock Synchronization


The diode clamp is required if the Sync amplitude is large enough to cause the bottom side of \(\mathrm{C}_{\mathrm{T}}\) to go more than 300 mV below ground

Figure 21. External Duty Cycle Clamp and Multi-Unit Synchronization


Figure 22. Adjustable Reduction of Clamp Level


Figure 23. Soft-Start Circuit


Figure 24. Adjustable Buffered Reduction of Clamp Level with Soft-Start


Figure 26. Current Waveform Spike Suppression


The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform.

Figure 25. Current Sensing Power MOSFET


Virtually lossless current sensing can be achieved with the implementation of a SENSEFET power switch. For proper operation during over-current conditions, a reduction of the \(\mathrm{I}_{\mathrm{pk}(\max )}\) clamp level must be implemented. Refer to Figures 22 and 24.

Figure 27. MOSFET Parasitic Oscillations


Series gate resistor \(R_{p}\) will damp any high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit.

Figure 28. Bipolar Transistor Drive


The totem pole outputcan furnıshnegative base current for enhanced transistor turn-off, with the addition of capacitor \(\mathrm{C}_{1}\).

Figure 30. Latched Shutdown


The MCR101 SCR must be selected for a holding of \(<0.5 \mathrm{~mA} @ \mathrm{~T}_{\mathrm{A}(\mathrm{min})}\). The simple two transistor circuit can be used in place of the SCR as shown. All resistors are 10 k .

Figure 29. Isolated MOSFET Drive


Figure 31. Error Amplifier Compensation


Error Amp compensation circuit for stablizing any current mode topology except for boost and flyback converters operating with continuous inductor current.


Error Amp compensation circuit for stabillzing current mode boost and flyback
topologies operating with continuous inductor current.


Figure 33. 27 W Off-Line Flyback Regulator


All outputs are at nominal load currents, unless otherwise noted

\section*{High Performance Current Mode Controllers}

The UC3844, UC3845 series are high performance fixed frequency current mode controllers. They are specifically designed for Off-Line and dc-to-dc converter applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature an oscillator, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, a latch for single pulse metering, and a flip-flop which blanks the output off every other oscillator cycle, allowing output deadtimes to be programmed for 50\% to \(70 \%\).

These devices are available in an 8-pin dual-in-line plastic package as well as the \(14-\) pin plastic surface mount (SO-14). The SO-14 package has separate power and ground pins for the totem pole output stage.

The UCX844 has UVLO thresholds of 16 V (on) and 10 V (off), ideally suited for off-line converters. The UCX845 is tailored for lower voltage applications having UVLO thresholds of 8.5 V (on) and 7.6 V (off).
- Current Mode Operation to 500 kHz Output Switching Frequency
- Output Deadtime Adjustable from \(50 \%\) to \(70 \%\)
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- High Current Totem Pole Output
- Input Undervoltage Lockout with Hysteresis
- Low Startup and Operating Current
- Direct Interface with Motorola SENSEFET Products



\section*{HIGH PERFORMANCE CURRENT MODE CONTROLLERS}

N SUFFIX PLASTIC PACKAGE CASE 626

D SUFFIX
PLASTIC PACKAGE CASE 751A
(SO-14)


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Operating Temperature Range & Package \\
\hline UC3844D & \multirow{4}{*}{\(\mathrm{T}^{\prime} \mathrm{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-14 \\
\hline UC3845D & & SO-14 \\
\hline UC3844N & & Plastic \\
\hline UC3845N & & Plastic \\
\hline UC2844D & \multirow{4}{*}{\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-14 \\
\hline UC2845D & & SO-14 \\
\hline UC2844N & & Plastic \\
\hline UC2845N & & Plastic \\
\hline
\end{tabular}

\title{
UC3844, 45 UC2844, 4
}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & ( \(\mathrm{ICC}+\mathrm{Iz}\) ) & 30 & mA \\
\hline Output Current, Source or Sink (Note 1) & IO & 1.0 & A \\
\hline Output Energy (Capacitive Load per Cycle) & W & 5.0 & \(\mu \mathrm{J}\) \\
\hline Current Sense and Voltage Feedback Inputs & \(\mathrm{V}_{\text {in }}\) & -0.3 to +5.5 & V \\
\hline Error Amp Output Sink Current & 10 & 10 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
D Suffix, Plastic Package, Case 751A \\
Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction-to-Air \\
N Suffix, Plastic Package, Case 626 \\
Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction-to-Air
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \\
\(R_{\text {日JA }}\) \\
PD \\
\(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& \\
& 1.25 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{~W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & TJ & + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature \\
UC3844, UC3845 \\
UC2844, UC2845
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-25 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V},\left[\right.\right.\) Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) [Note 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ Characteristics } & \multirow{3}{|c|}{} & \multicolumn{3}{|c|}{ UC284X } & \multicolumn{3}{|c|}{ UC384X } & \\
\cline { 3 - 9 } & Symbol & Min & Typ & Max & Min & Typ & Max & Unit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Reference Output Voltage ( \(\mathrm{I} \mathrm{O}=1.0 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\) ) & \(V_{\text {ref }}\) & 4.95 & 5.0 & 5.05 & 4.9 & 5.0 & 5.1 & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 25 V ) & Regline & - & 2.0 & 20 & - & 2.0 & 20 & mV \\
\hline Load Regulation ( \(\mathrm{l} \mathrm{O}=1.0 \mathrm{~mA}\) to 20 mA ) & Regload & - & 3.0 & 25 & - & 3.0 & 25 & mV \\
\hline Temperature Stability & Ts & - & 0.2 & - & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Total Output Variation over Line, Load, Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.9 & - & 5.1 & 4.82 & - & 5.18 & V \\
\hline Output Noise Voltage ( \(\mathrm{f}=10 \mathrm{~Hz}\) to \(\mathrm{kHz}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{v}_{\mathrm{n}}\) & - & 50 & - & - & 50 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability ( \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) for 1000 Hours) & S & - & 5.0 & - & - & 5.0 & - & mV \\
\hline Output Short Circuit Current & ISC & -30 & -85 & -180 & -30 & -85 & -180 & mA \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Frequency \\
\(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) \\
\(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
\end{tabular} & \(\mathrm{f}_{\mathrm{Osc}}\) & & 47 & 52 & 57 & 47 & 52 & 57 \\
\hline Frequency Change with Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right.\) to 25 V\()\) & \(\Delta \mathrm{f}_{\mathrm{OSC}} / \Delta \mathrm{V}\) & - & 0.2 & 1.0 & - & 0.2 & 1.0 & \(\%\) \\
\hline \begin{tabular}{l} 
Frequency Change with Temperature \\
\(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\)
\end{tabular} & \(\Delta \mathrm{f}_{\mathrm{OSC}} / \Delta \mathrm{T}\) & - & 5.0 & - & - & 5.0 & - & \(\%\) \\
\hline Oscillator Voltage Swing (Peak-to-Peak) & \(\mathrm{V}_{\text {osc }}\) & - & 1.6 & - & - & 1.6 & - & V \\
\hline Discharge Current \(\left(\mathrm{V}_{\mathrm{OSC}}=2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{I}_{\text {dischg }}\) & - & 10.8 & - & - & 10.8 & - & mA \\
\hline
\end{tabular}

NOTES: 1. Maximum Package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible \(\begin{array}{rlrl}\mathrm{T}_{\text {low }}= & 0^{\circ} \mathrm{C} \text { for UC3844, UC3845 } \\ -25^{\circ} \mathrm{C} \text { for UC2844, UC2845 }\end{array} \quad \begin{aligned} & \\ & \text { Thigh }=+70^{\circ} \mathrm{C} \text { for UC3844, UC3845 } \\ &+85^{\circ} \mathrm{C} \text { for UC2844, UC2845 }\end{aligned}\)

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=15 \mathrm{~V},\left[\right.\right.\) Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) [Note 3], unless otherwise noted,)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{UC284X} & \multicolumn{3}{|c|}{UC384X} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Voltage Feedback Input ( \(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\) ) & VFB & 2.45 & 2.5 & 2.55 & 2.42 & 2.5 & 2.58 & V \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) ) & IIB & - & -0.1 & -1.0 & - & -0.1 & -2.0 & \(\mu \mathrm{A}\) \\
\hline Open Loop Voltage Gain ( \(\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}\) to 4.0 V ) & AVOL & 65 & 90 & - & 65 & 90 & - & dB \\
\hline Unity Gain Bandwidth ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & BW & 0.7 & 1.0 & - & 0.7 & 1.0 & - & MHz \\
\hline Power Supply Rejection Ratio ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 25 V ) & PSRR & 60 & 70 & - & 60 & 70 & - & dB \\
\hline \[
\begin{aligned}
& \text { Output Current } \\
& \text { Sink }\left(\mathrm{V}_{\mathrm{O}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\right) \\
& \text { Source }\left(\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\right)
\end{aligned}
\] & ISink ISource & \[
\begin{gathered}
2.0 \\
-0.5 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
12 \\
-1.0
\end{gathered}
\] & & \[
\begin{gathered}
2.0 \\
-0.5 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
12 \\
-1.0
\end{gathered}
\] & - & mA \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State ( \(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to ground, \(\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) \\
Low State ( \(R_{L}=15 \mathrm{k}\) to \(\mathrm{V}_{\text {ref }}, \mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) )
\end{tabular} & \begin{tabular}{l}
VOH \\
VOL
\end{tabular} & 5.0 & \[
\begin{aligned}
& 6.2 \\
& 0.8
\end{aligned}
\] & \[
\overline{-1.1}
\] & 5.0 & \[
\begin{aligned}
& 6.2 \\
& 0.8
\end{aligned}
\] & \[
\overline{1.1}
\] & V \\
\hline \multicolumn{9}{|l|}{CURRENT SENSE SECTION} \\
\hline Current Sense Input Voltage Gain (Notes 4 \& 5) & AV & 2.85 & 3.0 & 3.15 & 2.85 & 3.0 & 3.15 & V/V \\
\hline Maximum Current Sense Input Threshold (Note 4) & \(\mathrm{V}_{\text {th }}\) & 0.9 & 1.0 & 1.1 & 0.9 & 1.0 & 1.1 & V \\
\hline Power Supply Rejection Ratio \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 25 V (Note 4) & PSRR & - & 70 & - & - & 70 & - & dB \\
\hline Input Bias Current & IIB & - & -2.0 & -10 & - & -2.0 & -10 & \(\mu \mathrm{A}\) \\
\hline Propagation Delay (Current Sense Input to Output) & tPLH(IN/OUT) & - & 150 & 300 & - & 150 & 300 & ns \\
\hline
\end{tabular}

\section*{OUTPUT SECTION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Output Voltage & & & & & & & & \multirow[t]{5}{*}{V} \\
\hline Low State ( \({ }^{\text {S Sink }}=20 \mathrm{~mA}\) ) & VOL & - & 0.1 & 0.4 & - & 0.1 & 0.4 & \\
\hline ( 1 Sink \(=200 \mathrm{~mA}\) ) & & - & 1.6 & 2.2 & - & 1.6 & 2.2 & \\
\hline High State ( \({ }^{\text {S Sink }}=20 \mathrm{~mA}\) ) & VOH & 12 & 13.5 & - & 13 & 13.5 & - & \\
\hline ( \({ }^{\text {Sink }}=200 \mathrm{~mA}\) ) & & 12 & 13.4 & - & 12 & 13.4 & - & \\
\hline Output Voltage with UVLO Activated
\[
\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, I_{\text {Sink }}=1.0 \mathrm{~mA}
\] & VOL(UVLO) & - & 0.1 & 1.1 & - & 0.1 & 1.1 & V \\
\hline Output Voltage Rise Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{tr}_{r}\) & - & 50 & 150 & - & 50 & 150 & ns \\
\hline Output Voltage Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{TJ}=25^{\circ} \mathrm{C}\) ) & \(t_{f}\) & - & 50 & 150 & - & 50 & 150 & ns \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Startup Threshold & \(\mathrm{V}_{\text {th }}\) & & & & & & \\
UCX844 \\
UCX845
\end{tabular}

\section*{PWM SECTION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Duty Cycle \\
Maximum \\
Minimum
\end{tabular} & \begin{tabular}{cc}
\(D C_{\max }\) \\
\(D C_{\min }\)
\end{tabular} & 46 & 48 & 50 & 47 & 48 & 50 & \(\%\) \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Power Supply Current (Note 2) & ICC & & & & & & & mA \\
\begin{tabular}{l} 
Startup: \\
(VCC \(=6.5 \mathrm{~V}\) for UCX845A, \\
14 V for UCX844) Operating
\end{tabular} & & - & 0.5 & 1.0 & - & 0.5 & 1.0 & \\
\hline Power Supply Zener Voltage (ICC \(=25 \mathrm{~mA})\) & & - & 12 & 17 & - & 12 & 17 & \\
\hline
\end{tabular}

NOTES: 2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible
\(\mathrm{T}_{\text {low }}=\begin{array}{rr}0^{\circ} \mathrm{C} \text { for UC3844, UC3845 } \\ -25^{\circ} \mathrm{C} \text { for UC2844, UC2845 }\end{array} \quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for UC3844, UC3845
4. This parameter is measured at the latch trip point with \(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\).
5. Comparator gain is defined as: \(A V \frac{\Delta V \text { Output Compensation }}{\Delta V \text { Current Sense Input }}\)

Figure 1. Timing Resistor versus Oscillator Frequency


Figure 3. Error Amp Small Signal Transient Response


Figure 5. Error Amp Open Loop Gain and Phase versus Frequency


Figure 2. Output Deadtime versus Oscillator Frequency


Figure 4. Error Amp Large Signal Transient Response


Figure 6. Current Sense Input Threshold versus Error Amp Output Voltage


Figure 7. Reference Voltage Change versus Source Current


Figure 9. Reference Load Regulation


Figure 11. Output Saturation Voltage versus Load Current


Figure 8. Reference Short Circuit Current


Figure 10. Reference Line Regulation


Figure 12. Output Waveform



Figure 14. Supply Current versus Supply Voltage


PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Pin} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Description} \\
\hline 8-Pin & 14-Pin & & \\
\hline 1 & 1 & Compensation & This pin is Error Amplifier output and is made available for loop compensation. \\
\hline 2 & 3 & Voltage Feedback & This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 3 & 5 & Current Sense & A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction. \\
\hline 4 & 7 & \(\mathrm{R}_{\mathrm{T}} / \mathrm{C}_{\mathrm{T}}\) & The Oscillator frequency and maximum Output duty cycle are programmed by connecting resistor \(\mathrm{R}_{\mathrm{T}}\) to \(\mathrm{V}_{\text {ref }}\) and capacitor \(\mathrm{C}_{\mathrm{T}}\) to ground. Operation to 1.0 MHz is possible. \\
\hline 5 & - & Gnd & This pin is combined control circuitry and power ground (8-pin package only). \\
\hline 6 & 10 & Output & This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sunk by this pin. The output switches at one-half the oscillator frequency. \\
\hline 7 & 12 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply of the control IC. \\
\hline 8 & 14 & \(V_{\text {ref }}\) & This is the reference output. It provides charging current for capacitor \(\mathrm{C}_{\mathrm{T}}\) through resistor \(\mathrm{R}_{\mathrm{T}}\). \\
\hline - & 8 & Power Ground & This pin is a separate power ground return (14-pin package only) that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline - & 11 & \(\mathrm{V}_{\mathrm{C}}\) & The Output high state ( \(\mathrm{V}_{\mathrm{OH}}\) ) is set by the voltage applied to this pin (14-pin package only). With a separate power source connection, it can reduce the effects of switching transient noise on the control circuitry. \\
\hline - & 9 & Gnd & This pin is the control circuitry ground return (14-pin package only) and is connected to back to the power source ground. \\
\hline - & 2,4,6,13 & NC & No connection (14-pin package only). These pins are not internally connected. \\
\hline
\end{tabular}

\section*{OPERATING DESCRIPTION}

The UC3844, UC3845 series are high performance, fixed frequency, current mode controllers. They are specifically designed for Off-Line and dc-to-dc converter applications offering the designer a cost effective solution with minimal external components. A representative block diagram is shown in Figure 15.

\section*{Oscillator}

The oscillator frequency is programmed by the values selected for the timing components \(\mathrm{R}_{\boldsymbol{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). Capacitor \(\mathrm{C}_{\boldsymbol{T}}\) is charged from the 5.0 V reference through resistor \(\mathrm{R}_{\top}\) to approximately 2.8 V and discharged to 1.2 V by an internal current sink. During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates an internal blanking pulse that holds the center input of the NOR gate high. This causes the Output to be in a low state, thus producing a controlled amount of output deadtime. An internal flip-flop has been incorporated in the UCX844/5 which blanks the output off every other clock cycle by holding one of the inputs of the NOR gate high. This in combination with the \(\mathrm{C}_{\boldsymbol{T}}\) discharge period yields output deadtimes programmable from \(50 \%\) to \(70 \%\). Figure 1 shows RT versus Oscillator Frequency and figure 2, Output Deadtime versus Frequency, both for given values of \(\mathrm{C}_{\mathrm{T}}\). Note that many values of \(\mathrm{R}_{\boldsymbol{T}}\) and \(\mathrm{C}_{\boldsymbol{T}}\) will give the same oscillator frequency but only one combination will yield a specific output deadtime at a given frequency.

In many noise sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a clock signal to the circuit shown in Figure 17. For reliable locking, the free-running oscillator frequency should be set about \(10 \%\) less than the clock frequency. A method for multi unit synchronization is shown in Figure 18. By tailoring the clock waveform, accurate Output duty cycle clamping can be achieved to realize output deadtimes of greater than 70\%

\section*{Error Amplifier}

A fully compensated Error Amplifier with access to the inverting input and output is provided. It features a typical dc voltage gain of 90 dB , and a unity gain bandwidth of 1.0 MHz with 57 degrees of phase margin (Figure 5). The noninverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input. The maximum input bias current is \(-2.0 \mu \mathrm{~A}\) which can cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance.

The Error Amp Output (Pin 1) is provide for external loop compensation (Figure 28). The output voltage is offset by two diode drops ( \(\approx 1.4 \mathrm{~V}\) ) and divided by three before it connects to the inverting input of the Current Sense Comparator. This guarantees that no drive pulses appear at the Output (Pin 6) when Pin 1 is at its lowest state ( \(\mathrm{V}_{\mathrm{OL}}\) ). This occurs when the power supply is operating and the load is removed, or at the beginning of a soft-start interval (Figures 20, 21). The Error

Amp minimum feedback resistance is limited by the amplifier's source current ( 0.5 mA ) and the required output voltage \((\mathrm{VOH})\) to reach the comparator's 1.0 V clamp level:
\[
R_{f(\min )} \approx \frac{3.0(1.0 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=8800 \Omega
\]

\section*{Current Sense Comparator and PWM Latch}

The UC3844, UC3845 operate as a current mode controller, whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier Output/Compensation (Pin1). Thus the error signal controls the inductor current on a cycle-by-cycle basis. The current Sense Comparator PWM Latch configuration used ensures that only a single pulse appears at the Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting the ground referenced sense resistor RS in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input (Pin 3) and compared a level derived from the Error Amp Output. The peak inductor current under normal operating conditions is controlled by the voltage at pin 1 where:
\[
I_{p k}=\frac{V(\operatorname{Pin} 1)-1.4 \mathrm{~V}}{3 R_{S}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 1.0 V . Therefore the maximum peak switch current is:
\[
\operatorname{Ipk}(\max )=\frac{1.0 \mathrm{~V}}{\mathrm{R}_{\mathrm{S}}}
\]

When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of RS to a reasonable level. A simple method to adjust this voltage is shown in Figure 19. The two external diodes are used to compensate the internal diodes yielding a constant clamp voltage over temperature. Erratic operation due to noise pickup can result if there is an excessive reduction of the \(\operatorname{lpk}(\max )\) clamp voltage.

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Current Sense Input with a time constant that approximates the spike duration will usually eliminate the instability; refer to Figure 23.

Figure 15. Representative Block Diagram


Pin numbers in parenthesis are for the D suffix SO-14 package.

Figure 16. Timing Diagram

Capacitor \(\mathrm{C}_{T}\)





Small \(R_{T} /\) /Large \(C_{T}\)

\section*{Undervoltage Lockout}

Two undervoltage lockout comparators have been incorporated to guartantee that the IC is fully functional before the output stage is enabled. The positive power supply terminal ( \(V_{C C}\) and the reference output ( \(V_{\text {reff }}\) ) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The VCC comparator upper and lower thresholds are \(16 \mathrm{~V} / 10 \mathrm{~V}\) for the UCX844, and \(8.4 \mathrm{~V} / 7.6 \mathrm{~V}\) for the UCX 845 . The \(\mathrm{V}_{\text {ref }}\) comparator upper and lower thresholds are \(3.6 \mathrm{~V} / 3 / 4 \mathrm{~V}\). The large hysteresis and low startup current of the UCX844 makes it ideally suited in off-line converter applications where efficient bootstrap startup techniques later required (Figure 29). The UCX845 is intended for lower voltage dc-to-dc converter applications. A 36 V zener is connected as a shunt regulator from \(\mathrm{V}_{\mathrm{CC}}\) to ground. Its purpose is to protect the IC from excessive voltage that can occur during system startup. The minimum operating voltage for the UCX844 is 11 V and 8.2 V for the UCX845.

\section*{Output}

These devices contain a single totem pole output stage that was specifically designed for direct drive of power MOSFETs. It is capable of up to \(\pm 1.0\) A peak drive current and has a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the Output in a sinking mode whenever and undervoltage lockout is active. This characteristic eliminates the need for an external pull-down resistor.

The SO-14 surface mount package provides separate pins for \(\mathrm{V}_{\mathrm{C}}\) (output supply) and Power Ground. Proper implementation will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomes particularly useful when reducing the \(\mathrm{I}_{\mathrm{pk} \text { (max) }}\) clamp level. The separate \(\mathrm{V}_{\mathrm{C}}\) supply input allows the designer
added flexibility in tailoring the drive voltage independent of \(V_{C C}\). A zener clamp is typically connected to this input when driving power MOSFETs in systems where \(\mathrm{V}_{\mathrm{CC}}\) is greater the 20 V . Figure 22 shows proper power and control ground connections in a current sensing power MOSFET application.

\section*{Reference}

The 5.0 V bandgap reference is trimmed to \(\pm 1.0 \%\) tolerance at \(T_{J}=25^{\circ} \mathrm{C}\) on the UC284X, and \(\pm 2.0 \%\) on the UC384X. Its primary purpose is to supply charging current to the oscillator timing capacitor. The reference has short circuit protection and is capable of providing in excess of 20 mA for powering additional control system circuitry.

\section*{Design Considerations}

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulsewidth jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with low-current signal and high-current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors ( \(0.1 \mu \mathrm{~F}\) ) connected directly to \(\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{C}}\), and \(V_{\text {ref }}\) may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage divider should be located close to the IC and as far as possible from the power switch and other noise generating components.

Figure 17. External Clock Synchronization


The diode clamp is required if the Sync amplitude is large enough to cause the bottom side of CT to go more than 300 mV below ground.

Figure 18. External Duty Cycle Clamp and Multi-Unit Synchronization


Figure 19. Adjustable Reduction of Clamp Level


Figure 21. Adjustable Buffered Reduction of


Figure 20. Soft-Start Circuit


Figure 22. Current Sensing Power MOSFET


Virtually lossless current sensing can be achieved with the implement of a SENSEFET power switch. For proper operation during over current conditions, a reduction of the \(\mathrm{l}_{\mathrm{pk}(\max )}\) clamp level must be implemented. Refer to Figures 19 and 21.
\(\mathrm{I}_{\mathrm{pk}(\max )} \approx \frac{\mathrm{V}_{\text {Clamp }}}{\mathrm{R}_{\mathrm{S}}} \quad\) Where: \(0 \leq \mathrm{V}_{\text {Clamp }} \leq 1.0 \mathrm{~V}\)
tsoftstart \(=-\ln \left[1-\frac{V_{C}}{3 V_{\text {Clamp }}}\right]\) C \(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\)

Figure 23. Current Waveform Spike Suppression


Figure 24. MOSFET Parasitic Oscillations


Series gate resistor \(\mathrm{R}_{\mathrm{g}}\) will damp any high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit.

Figure 25. Bipolar Transistor Drive


The totem-pole output can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor \(\mathrm{C}_{1}\).

Figure 26. Isolated MOSFET Drive


Figure 27. Latched Shutdown


The MCR101 SCR must be selected for a holding of less than 0.5 mA at \(\mathrm{T}_{\mathrm{A}(\mathrm{min}) \text {. The simple two transistor circuit can be used in place of the SCR as }}\) shown. All resistors are 10 k .

Figure 28. Error Amplifier Compensation


Error Amp compensation circuitfor stabilizing any current-mode topology except for boost and flyback converters operating with continuous inductor current.


Error Amp compensation circuit for stabilizing current-mode boost and flyback topologies operating with continuous inductor current.

\section*{UC3844, 45 UC2844, 45}

Figure 29. 27 Watt Off-Line Flyback Regulator


T1 - Primary: 45 Turns \# 26 AWG
Secondary \(\pm 12 \mathrm{~V}: 9\) Turns \# 30 AWG
(2 strands) Bifiliar Wound
Secondary 5.0 V: 4 Turns (six strands) \#26 Hexfiliar Wound
Secondary Feedback: 10 Turns \#30 AWG (2 strands) Bifiliar Wound
Core: Ferroxcube EC35-3C8
Bobbin: Ferroxcube EC35PCB1
Gap \(=0.01^{\prime \prime}\) for a primary inductance of 1.0 mH
L1-15 \(\mu \mathrm{H}\) at 5.0 A , Coilcraft Z7156.
\(\mathrm{L} 2, \mathrm{~L} 3-25 \mu \mathrm{H}\) at 1.0 A , Coilcraft Z7157.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Test} & Conditions & Results \\
\hline Line Regulation: & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& \pm 12 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{V}_{\text {in }}=95 \mathrm{Vac}\) to 130 Vac & \[
\begin{aligned}
& \Delta=50 \mathrm{mV} \text { or } \pm 0.5 \% \\
& \Delta=24 \mathrm{mV} \text { or } \pm 0.1 \%
\end{aligned}
\] \\
\hline Load Regulation: & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& \pm 12 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{I}_{\text {out }}=1.0 \mathrm{~A} \text { to } 4.0 \mathrm{~A} \\
& \mathrm{~V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{I}_{\text {out }}=100 \mathrm{~mA} \text { to } 300 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& \Delta=300 \mathrm{mV} \text { or } \pm 3.0 \% \\
& \Delta=60 \mathrm{mV} \text { or } \pm 0.25 \%
\end{aligned}
\] \\
\hline Output Ripple: & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& \pm 12 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{in}}=115 \mathrm{Vac}\) & \[
\begin{aligned}
& 40 \mathrm{mV} \mathrm{pp}_{\mathrm{pp}} \\
& 80 \mathrm{mV}
\end{aligned}
\] \\
\hline Efficiency & & \(\mathrm{V}_{\text {in }}=115 \mathrm{Vac}\) & 70\% \\
\hline
\end{tabular}

All outputs are at nominal load currents, unless otherwise noted.

Figure 30. Step-Up Charge Pump Converter


The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A. An additional series resistor may be required when using tantalum or other low ESR capacitors. The converter's output can provide excellent line and load regulation by connecting the R2/R1 resistor divider as shown.

Figure 31. Voltage-Inverting Charge Pump Converter


The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A .
An additional series resistor may be required when using tantalum or other low ESR capacitors.

\section*{High Performance \\ Current Mode Controllers}

The UC3844B, UC3845B series are high performance fixed frequency current mode controllers. They are specifically designed for Off-Line and dc-to-dc converter applications offering the designer a cost-effective solution with minimal external components. These integrated circuits feature an oscillator, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting, a latch for single pulse metering, and a flip-flop which blanks the output off every other oscillator cycle, allowing output deadtimes to be programmed from \(50 \%\) to \(70 \%\).

These devices are available in an 8-pin dual-in-line and surface mount (SO-8) plastic package as well as the 14-pin plastic surface mount (SO-14). The SO-14 package has separate power and ground pins for the totem pole output stage.

The UCX844B has UVLO thresholds of 16 V (on) and 10 V (off), ideally suited for off-line converters. The UCX845B is tailored for lower voltage applications having UVLO thresholds of 8.5 V (on) and 7.6 V (off).
- Trimmed Oscillator for Precise Frequency Control
- Oscillator Frequency Guaranteed at 250 kHz
- Current Mode Operation to 500 kHz Output Switching Frequency
- Output Deadtime Adjustable from 50\% to 70\%
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis
- Low Startup and Operating Current


UC3844B, 45B UC2844B, 45B

\section*{HIGH PERFORMANCE CURRENT MODE CONTROLLERS}

\section*{N SUFFIX}

PLASTIC PACKAGE CASE 626


D1 SUFFIX
PLASTIC PACKAGE CASE 751
(SO-8)
D SUFFIX
PLASTIC PACKAGE CASE 751A
(SO-14)



ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{l}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline UC384XBD & \multirow{3}{*}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\)} & SO-14 \\
\hline UC384XBD1 & & SO-8 \\
\hline UC384XBN & & Plastic \\
\hline UC284XBD & \multirow{3}{*}{\(\mathrm{T}_{\mathrm{A}}=-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-14 \\
\hline UC284XBD1 & & SO-8 \\
\hline UC284XBN & & Plastic \\
\hline UC384XBVD & \multirow{3}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\)} & SO-14 \\
\hline UC384XBVD1 & & SO-8 \\
\hline UC384XBVN & & Plastic \\
\hline
\end{tabular}
\(X\) indicates either a 4 or 5 to define specific device part numbers.

\section*{UC3844B, 45B UC2844B, 45B}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & (ICC + IZ) & 30 & mA \\
\hline Output Current, Source or Sink (Note 1) & 10 & 1.0 & A \\
\hline Output Energy (Capacitive Load per Cycle) & W & 5.0 & \(\mu \mathrm{J}\) \\
\hline Current Sense and Voltage Feedback Inputs & \(V_{\text {in }}\) & -0.3 to +5.5 & \(\checkmark\) \\
\hline Error Amp Output Sink Current & 10 & 10 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
D Suffix, Plastic Package, SO-14 Case 751A \\
Maximum Power Dissipation @ \(T_{A}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
D1 Suffix, Plastic Package, SO-8 Case 751 \\
Maximum Power Dissipation © \(T_{A}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air \\
N Suffix, Plastic Package, Case 626 Maximum Power Dissipation @ \(T_{A}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\theta \mathrm{BA}}\) \\
PD \\
\(\mathrm{R}_{\text {өJA }}\) \\
PD \\
\(R_{\text {日JA }}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& 702 \\
& 178 \\
& \\
& 1.25 \\
& 100
\end{aligned}
\] & \begin{tabular}{l}
mW \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
mW \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
W \({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature UC3844B, UC3845B UC2844B, UC2845B & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-25 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V} C \mathrm{C}=15 \mathrm{~V}\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}\). For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/ \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characterlstic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{UC284XB} & \multicolumn{3}{|c|}{UC384XB, XBV} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

REFERENCE SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Reference Output Voltage ( \(10=1.0 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\text {ref }}\) & 4.95 & 5.0 & 5.05 & 4.9 & 5.0 & 5.1 & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 25 V ) & Regline & - & 2.0 & 20 & - & 2.0 & 20 & mV \\
\hline Load Regulation ( \(1 \mathrm{O}=1.0 \mathrm{~mA}\) to 20 mA ) & Regload & - & 3.0 & 25 & - & 3.0 & 25 & mV \\
\hline Temperature Stability & Ts & - & 0.2 & - & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Total Output Variation over Line, Load, and Temperature & \(V_{\text {ref }}\) & 4.9 & - & 5.1 & 4.82 & - & 5.18 & V \\
\hline Output Noise Voltage ( \(f=10 \mathrm{~Hz}\) to \(10 \mathrm{kHz}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}\) ) & \(V_{n}\) & - & 50 & - & - & 50 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability ( \(\mathrm{T}_{A}=125^{\circ} \mathrm{C}\) for 1000 Hours) & \(s\) & - & 5.0 & - & - & 5.0 & - & mV \\
\hline Output Short Circuit Current & ISC & -30 & -85 & -180 & -30 & -85 & -180 & mA \\
\hline
\end{tabular}

\section*{OSCILLATOR SECTION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \\
& \mathrm{T}_{J}=25^{\circ} \mathrm{C}\left(\mathrm{R}_{\mathrm{T}}=6.2 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\right)
\end{aligned}
\] & fosc & \[
\begin{gathered}
49 \\
48 \\
225
\end{gathered}
\] & \[
\begin{gathered}
52 \\
- \\
250
\end{gathered}
\] & \[
\begin{gathered}
55 \\
56 \\
275
\end{gathered}
\] & \[
\begin{gathered}
49 \\
48 \\
225
\end{gathered}
\] & \[
\begin{gathered}
52 \\
- \\
250
\end{gathered}
\] & \[
\begin{gathered}
55 \\
56 \\
275
\end{gathered}
\] & kHz \\
\hline Frequency Change with Voltage (VCC \(=12 \mathrm{~V}\) to 25 V ) & \(\Delta f o s c / \Delta V\) & - & 0.2 & 1.0 & - & 0.2 & 1.0 & \% \\
\hline Frequency Change with Temperature \(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) & \(\Delta \mathrm{f}^{\text {OSC }} / \Delta \mathrm{T}\) & - & 1.0 & - & - & 0.5 & - & \% \\
\hline Oscillator Voltage Swing (Peak-to-Peak) & Vosc & - & 1.6 & - & - & 1.6 & - & \(\checkmark\) \\
\hline \[
\begin{aligned}
& \text { Discharge Current (VOSC }=2.0 \mathrm{~V}) \\
& T_{J}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }}(\text { UC284XB, UC384XB) } \\
& \text { (UC384XBV) }
\end{aligned}
\] & ldischg & \[
\begin{aligned}
& 7.8 \\
& 7.5
\end{aligned}
\] & 8.3 & 8.8
8.8 & 7.8
7.6
7.2 & 8.3 & 8.8
8.8
8.8 & mA \\
\hline
\end{tabular}

NOTES: 1. Maximum package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for UC3844B, UC3845B \(\quad T_{\text {high }}=+70^{\circ} \mathrm{C}\) for UC3844B, UC3845B
\(=-25^{\circ} \mathrm{C}\) for UC2844B, UC2845B
\(=+85^{\circ} \mathrm{C}\) for \(\mathrm{UC} 2844 \mathrm{~B}, \mathrm{UC} 2845 \mathrm{~B}\)
\(=-40^{\circ} \mathrm{C}\) for \(\mathrm{UC} 3844 \mathrm{BV}, \mathrm{UC} 3845 \mathrm{BV}\)
\(=+105^{\circ} \mathrm{C}\) for UC3844BV, UC3845BV

\section*{UC3844B, 45B UC2844B, 45B}

ELECTRICAL CHARACTERISTICS (VCC \(=15 \mathrm{~V}\) [Note 2], \(\mathrm{R}_{\boldsymbol{T}}=10 \mathrm{k}, \mathrm{C}_{\boldsymbol{T}}=3.3 \mathrm{nF}\). For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min \(/\) max values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{UC284XB} & \multicolumn{3}{|c|}{UC384XB, XBV} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Voltage Feedback Input ( \(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\) ) & \(V_{\text {FB }}\) & 2.45 & 2.5 & 2.55 & 2.42 & 2.5 & 2.58 & V \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=5.0 \mathrm{~V}\) ) & IB & - & -0.1 & -1.0 & - & -0.1 & -2.0 & \(\mu \mathrm{A}\) \\
\hline Open Loop Voltage Gain ( \(\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}\) to 4.0 V ) & AVOL & 65 & 90 & - & 65 & 90 & - & dB \\
\hline Unity Gain Bandwidth ( \(\mathrm{TJ}^{\prime}=25^{\circ} \mathrm{C}\) ) & BW & 0.7 & 1.0 & - & 0.7 & 1.0 & - & MHz \\
\hline Power Supply Rejection Ratio (VCC \(=12 \mathrm{~V}\) to 25 V ) & PSRR & 60 & 70 & - & 60 & 70 & - & dB \\
\hline \begin{tabular}{l}
Output Current \\
Sink ( \(\mathrm{V}_{\mathrm{O}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) ) \\
Source ( \(\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) )
\end{tabular} & \({ }^{1}\) Sink ISource & \[
\begin{gathered}
2.0 \\
-0.5
\end{gathered}
\] & \[
\begin{gathered}
12 \\
-1.0
\end{gathered}
\] & - & \[
\begin{gathered}
2.0 \\
-0.5 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
12 \\
-1.0
\end{gathered}
\] & & mA \\
\hline ```
Output Voltage Swing
    High State ( \(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to ground, \(\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) )
    Low State ( \(R_{L}=15 \mathrm{k}\) to \(\mathrm{V}_{\text {ref }}, \mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) )
        (UC284XB, UC384XB)
        (UC384XBV)
``` & VOH VOL & 5.0 & 6.2
0.8 & -
1.1 & 5.0 & 6.2
0.8
0.8 & -
1.1
1.2 & V \\
\hline
\end{tabular}

\section*{CURRENT SENSE SECTION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Current Sense Input Voltage Gain (Notes 4 \& 5) (UC284XB, UC384XB) (UC384XBV) & AV & \[
2.85
\] & & & \[
\begin{aligned}
& 2.85 \\
& 2.85
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.15 \\
& 3.25
\end{aligned}
\] & V/V \\
\hline \begin{tabular}{l}
Maximum Current Sense Input Threshoid (Note 4) (UC284XB, UC384XB) \\
(UC384XBV)
\end{tabular} & \(\mathrm{V}_{\text {th }}\) & 0.9 & 1.0 & & \[
\begin{gathered}
0.9 \\
0.85
\end{gathered}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 1.1
\end{aligned}
\] & V \\
\hline Power Supply Rejection Ratio (\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 25 V) (Note 4) & PSRR & - & 70 & - & - & 70 & - & dB \\
\hline Input Bias Current & IB & - & -2.0 & -10 & - & -2.0 & -10 & \(\mu \mathrm{A}\) \\
\hline Propagation Delay (Current Sense Input to Output) & tpLH(In/Out) & - & 150 & 300 & - & 150 & 300 & ns \\
\hline
\end{tabular}

\section*{OUTPUT SECTION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Output Voltage & & & & & & & & \multirow[t]{7}{*}{V} \\
\hline Low State (\({ }^{\text {S }}\) Sink \(=20 \mathrm{~mA}\)) & VOL & - & 0.1 & 0.4 & - & 0.1 & 0.4 & \\
\hline (\({ }^{\text {Sink }}=200 \mathrm{~mA}, \mathrm{UC} 284 \mathrm{XB}, \mathrm{UC} 384 \mathrm{XB}\)) & & - & 1.6 & 2.2 & - & 1.6 & 2.2 & \\
\hline (\({ }^{\text {S Sink }}=200 \mathrm{~mA}, \mathrm{UC} 384 \mathrm{XBV}\)) & & - & - & - & - & 1.6 & 2.3 & \\
\hline High State (\({ }^{\text {ISource }}=20 \mathrm{~mA}, \mathrm{UC284XB}, \mathrm{UC384XB}\)) & VOH & 13 & 13.5 & - & 13 & 13.5 & - & \\
\hline ((Source \(=20 \mathrm{~mA}\), UC384XBV) & & - & - & - & 12.9 & - & - & \\
\hline (Source \(=200 \mathrm{~mA}\)) & & 12 & 13.4 & - & 12 & 13.4 & - & \\
\hline Output Voltage with UVLO Activated
\[
V_{C C}=6.0 \mathrm{~V}, I_{\text {Sink }}=1.0 \mathrm{~mA}
\] & VOL(UVLO) & - & 0.1 & 1.1 & - & 0.1 & 1.1 & V \\
\hline Output Voltage Rise Time (\(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(t_{r}\) & - & 50 & 150 & - & 50 & 150 & ns \\
\hline Output Voltage Fall Time (\(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{tf}^{\text {f }}\) & - & 50 & 150 & - & 50 & 150 & ns \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Startup Threshold & \(V_{\text {th }}\) & & & & & & \\
UCX844B, BV & & 15 & 16 & 17 & 14.5 & 16 & 17.5 & V \\
UCX845B, BV & & 7.8 & 8.4 & 9.0 & 7.8 & 8.4 & 9.0 & \\
\hline Minimum Operating Voltage After Turn-On & \(V_{\text {CC }}(\min)\) & & & & & & & V \\
UCX844B, BV & & 9.0 & 10 & 11 & 8.5 & 10 & 11.5 & \\
UCX845B, BV & & 7.0 & 7.6 & 8.2 & 7.0 & 7.6 & 8.2 & \\
\hline
\end{tabular}

NOTES: 2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\begin{array}{rlrl} \\ T_{\text {low }} & =0^{\circ} \mathrm{C} \text { for UC3844B, UC3845B } & T_{\text {high }}=+70^{\circ} \mathrm{C} \text { for UC3844B, UC3845B } \\ & =-25^{\circ} \mathrm{C} \text { for UC2844B, UC2845B } & & \end{array}\)
\[
\begin{array}{ll}
=-25^{\circ} \mathrm{C} \text { for UC2844B, UC2845B } & =+85^{\circ} \mathrm{C} \text { for UC2844B, UC2845B } \\
=-40^{\circ} \mathrm{C} \text { for UC3844BV, UC3845BV } & =+105^{\circ} \mathrm{C} \text { for UC3844BV, UC3845BV }
\end{array}
\]
4. This parameter is measured at the latch trip point with \(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\).
5. Comparator gain is defined as: \(A V=\frac{\Delta V \text { Output/Compensation }}{\Delta V \text { Current Sense Input }}\)

ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{C C}=15 \mathrm{~V}\left[\right.\) Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{T}=3.3 \mathrm{nF}\). For typical values \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\), for min \(/\) max values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{UC284XB} & \multicolumn{3}{|c|}{UC384XB, XBV} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \multicolumn{9}{|l|}{PWM SECTION} \\
\hline Duty Cycle & & & & & & & & \% \\
\hline Maximum (UC284XB, UC384XB) & \(D C_{(\text {max })}\) & 47 & 48 & 50 & 47 & 48 & 50 & \\
\hline (UC384XBV) & & - & - & - & 46 & 48 & 50 & \\
\hline Minimum & \(\mathrm{DC}_{(\text {min })}\) & - & - & 0 & - & - & 0 & \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Power Supply Current \\
Startup (VCC \(=6.5 \mathrm{~V}\) for UCX845B, 14 V for UCX844B, BV) Operating (Note 2)
\end{tabular} & Icc & - & 0.3
12 & 0.5
17 & - & 0.3
12 & 0.5
17 & mA \\
\hline Power Supply Zener Voltage (ICC = 25 mA) & \(V_{Z}\) & 30 & 36 & - & 30 & 36 & - & V \\
\hline
\end{tabular}

NOTES: 2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Startup threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(T_{\text {low }}=0^{\circ} \mathrm{C}\) for UC3844B, UC3845B
\(T_{\text {high }}=+70^{\circ} \mathrm{C}\) for UC3844B, UC3845B
\(=-25^{\circ} \mathrm{C}\) for UC2844B, UC2845B
\(=+85^{\circ} \mathrm{C}\) for UC2844B, UC2845B
\(=-40^{\circ} \mathrm{C}\) for UC3844BV, UC3845BV
\(=+105^{\circ} \mathrm{C}\) for UC3844BV, UC3845BV

Figure 1. Timing Resistor versus Oscillator Frequency

Figure 3. Error Amp Small Signal Translent Response

Figure 2. Output Deadtime versus Oscillator Frequency

Figure 4. Error Amp Large Signal Translent Response

Figure 5. Error Amp Open Loop Gain and Phase versus Frequency

Figure 7. Reference Voltage Change

Figure 9. Reference Load Regulation

Figure 6. Current Sense Input Threshold versus Error Amp Output Voltage

Figure 8. Reference Short Circuit Current versus Temperature

Figure 10. Reference Line Regulation

Figure 11. Output Saturation Voltage versus Load Current

Figure 12. Output Waveform

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Pin} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Description} \\
\hline 8-Pin & 14-Pin & & \\
\hline 1 & 1 & Compensation & This pin is the Error Amplifier output and is made available for loop compensation. \\
\hline 2 & 3 & Voltage Feedback & This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 3 & 5 & Current Sense & A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction. \\
\hline 4 & 7 & \(\mathrm{R}_{\mathrm{T}} / \mathrm{C}_{T}\) & The Oscillator frequency and maximum Output duty cycle are programmed by connecting resistor \(R_{T}\) to \(V_{\text {ref }}\) and capacitor \(C_{T}\) to ground. Oscillator operation to 1.0 kHz is possible. \\
\hline 5 & & Gnd & This pin is the combined control circuitry and power ground. \\
\hline 6 & 10 & Output & This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sunk by this pin. The output switches at one-half the oscillator frequency. \\
\hline 7 & 12 & VCC & This pin is the positive supply of the control IC. \\
\hline 8 & 14 & Vref & This is the reference output. It provides charging current for capacitor \(\mathrm{C}_{\boldsymbol{T}}\) through resistor RT. \\
\hline & 8 & Power Ground & This pin is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline & 11 & VC & The Output high state (V OH) is set by the voltage applied to this pin. With a separate power source connection, it can reduce the effects of switching transient noise on the control circuitry. \\
\hline & 9 & Gnd & This pin is the control circuitry ground return and is connected back to the power source ground. \\
\hline & 2,4,6,13 & NC & No connection. These pins are not internally connected. \\
\hline
\end{tabular}

\section*{UC3844B, 45B UC2844B, 45B}

\section*{OPERATING DESCRIPTION}

The UC3844B, UC3845B series are high performance, fixed frequency, current mode controllers. They are specifically designed for Off-Line and dc-to-dc converter applications offering the designer a cost-effective solution with minimal external components. A representative block diagram is shown in Figure 15.

\section*{Oscillator}

The oscillator frequency is programmed by the values selected for the timing components \(\mathrm{R}_{\boldsymbol{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). Capacitor \(\mathrm{C}_{\boldsymbol{T}}\) is charged from the 5.0 V reference through resistor \(R T\) to approximately \(2,8 \mathrm{~V}\) and discharged to 1.2 V by an internal current sink. During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates an internal blanking pulse that holds the center input of the NOR gate high. This causes the Output to be in a low state, thus producing a controlled amount of output deadtime. An internal flip-flop has been incorporated in the UCX844/5B which blanks the output off every other clock cycle by holding one of the inputs of the NOR gate high. This in combination with the \(\mathrm{C}_{\mathrm{T}}\) discharge period yields output deadtimes programmable from \(50 \%\) to \(70 \%\). Figure 1 shows RT versus Oscillator Frequency and Figure 2, Output Deadtime versus Frequency, both for given values of \(\mathrm{C}_{\mathrm{T}}\). Note that many values of \(R_{T}\) and \(C_{T}\) will give the same oscillator frequency but only one combination will yield a specific output deadtime at a given frequency. The oscillator thresholds are temperature compensated to within \(\pm 6 \%\) at 50 kHz . Also, because of industry trends moving the UC384X into higher and higher frequency applications, the UC384XB is guaranteed to within \(\pm 10 \%\) at 250 kHz .

In many noise-sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a clock signal to the circuit shown in Figure 17. For reliable locking, the free-running oscillator frequency should be set about 10\% less than the clock frequency. A method for multi-unit synchronization is shown in Figure 18. By tailoring the clock waveform, accurate Output duty cycle clamping can be achieved to realize output deadtimes of greater than \(70 \%\).

\section*{Error Amplifier}

A fully compensated Error Amplifier with access to the inverting input and output is provided. It features a typical dc voltage gain of 90 dB , and a unity gain bandwidth of 1.0 MHz with 57 degrees of phase margin (Figure 5). The non-inverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input. The maximum input bias current is \(-2.0 \mu \mathrm{~A}\) which can cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance.

The Error Amp Output (Pin 1) is provided for external loop compensation (Figure 28). The output voltage is offset by two diode drops (\(\approx 1.4 \mathrm{~V}\)) and divided by three before it connects to the inverting input of the Current Sense Comparator. This guarantees that no drive pulses appear at the Output (Pin 6) when Pin 1 is at its lowest state (\(\mathrm{V}_{\mathrm{OL}}\)). This occurs when the
power supply is operating and the load is removed, or at the beginning of a soft-start interval (Figures 20, 21). The Error Amp minimum feedback resistance is limited by the amplifier's source current (0.5 mA) and the required output voltage \((\mathrm{VOH})\) to reach the comparator's 1.0 V clamp level:
\[
R_{f(\min)} \approx \frac{3.0(1.0 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=8800 \Omega
\]

\section*{Current Sense Comparator and PWM Latch}

The UC3844B, UC3845B operate as a current mode controller, whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier Output/Compensation (Pin 1). Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The Current Sense Comparator PWM Latch configuration used ensures that only a single pulse appears at the Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting the ground-referenced sense resistor RS in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input (Pin 3) and compared to a level derived from the Error Amp Output. The peak inductor current under normal operating conditions is controlled by the voltage at Pin 1 where:
\[
I_{p k}=\frac{V(\operatorname{Pin} 1)-1.4 \mathrm{~V}}{3 R_{S}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 1.0 V . Therefore the maximum peak switch current is:
\[
\operatorname{Ipk}(\max)=\frac{1.0 \mathrm{~V}}{R_{\mathrm{S}}}
\]

When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of RS to a reasonable level. A simple method to adjust this voltage is shown in Figure 19. The two external diodes are used to compensate the internal diodes, yielding a constant clamp voltage over temperature. Erratic operation due to noise pickup can result if there is an excessive reduction of the \(\mathrm{lpk}(\max)\) clamp voltage.

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Current Sense Input with a time constant that approximates the spike duration will usually eliminate the instability (refer to Figure 23).

UC3844B, 45B UC2844B, 45B

Figure 15. Representative Block Diagram

Figure 16. Timing Diagram

\section*{Undervoltage Lockout}

Two undervoltage lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stage is enabled. The positive power supply terminal (\(\mathrm{V}_{\mathrm{CC}}\)) and the reference output (\(\mathrm{V}_{\mathrm{ref}}\)) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The VCC comparator upper and lower thresholds are \(16 \mathrm{~V} / 10 \mathrm{~V}\) for the UCX844B, and \(8.4 \mathrm{~V} / 7.6 \mathrm{~V}\) for the UCX 845 B . The \(\mathrm{V}_{\text {ref }}\) comparator upper and lower thresholds are \(3.6 \mathrm{~V} / 3.4 \mathrm{~V}\). The large hysteresis and low startup current of the UCX844B makes it ideally suited in off-line converter applications where efficient bootstrap startup techniques are required (Figure 29). The UCX845B is intended for lower voltage dc-to-dc converter applications. A 36 V zener is connected as a shunt regulator from \(V_{C C}\) to ground. Its purpose is to protect the IC from excessive voltage that can occur during system startup. The minimum operating voltage for the UCX844B is 11 V and 8.2 V for the UCX845B.

\section*{Output}

These devices contain a single totem pole output stage that was specifically designed for direct drive of power MOSFETs. It is capable of up to \(\pm 1.0\) A peak drive current and has a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the Output in a sinking mode whenever an undervoltage lockout is active. This characteristic eliminates the need for an external pull-down resistor.

The SO-14 surface mount package provides separate pins for \(\mathrm{V}_{\mathrm{C}}\) (output supply) and Power Ground. Proper implementation will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomesparticularly useful when reducing the \(\mathrm{I}_{\mathrm{pk} \text { (max) }}\) clamp level. The separate \(\mathrm{V}_{\mathrm{C}}\) supply input allows the designer
added flexibility in tailoring the drive voltage independent of \(V_{C C}\). A zener clamp is typically connected to this input when driving power MOSFETs in systems where \(\mathrm{V}_{\mathrm{CC}}\) is greater than 20 V . Figure 22 shows proper power and control ground connections in a current-sensing power MOSFET application.

\section*{Reference}

The 5.0 V bandgap reference is trimmed to \(\pm 1.0 \%\) tolerance at \(T_{J}=25^{\circ} \mathrm{C}\) on the UC284XB, and \(\pm 2.0 \%\) on the UC384XB. Its primary purpose is to supply charging current to the oscillator timing capacitor. The reference has short-circuit protection and is capable of providing in excess of 20 mA for powering additional control system circuitry.

\section*{Design Considerations}

Do not attempt to construct the converter on wire-wrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulse-width jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with low-current signal and high-current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors \((0.1 \mu \mathrm{~F})\) connected directly to \(\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{C}}\), and \(V_{\text {ref }}\) may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage divider should be located close to the IC and as far as possible from the power switch and other noise-generating components.

Figure 18. External Duty Cycle Clamp and Multi-Unit Synchronization

Figure 19. Adjustable Reduction of Clamp Level

Figure 21. Adjustable Buffered Reduction of Clamp Level with Soft-Start

Figure 20. Soft-Start Circuit

Virtually lossless current sensing can be achieved with the implementation of a SENSEFET power switch. For proper operation during over-current conditions, a reduction of the \(\mathrm{l}_{\mathrm{pk}(\max)}\) clamp level must be implemented. Refer to Figures 19 and 21.

Figure 23. Current Waveform Spike Suppression

The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform.

Figure 24. MOSFET Parasitic Oscillations

Series gate resistor \(R_{g}\) will damp any high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit.

Figure 25. Bipolar Transistor Drive

The totem pole output can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor \(\mathrm{C}_{1}\).

Figure 26. Isolated MOSFET Drive

Figure 27. Latched Shutdown

The MCR101 SCR must be selected for a holding of \(<0.5 \mathrm{~mA} @ T_{A(\text { min })}\). The simple two transistor circuit can be used in place of the SCR as shown. All resistors are 10 k .

Figure 28. Error Amplifier Compensation

Error Amp compensation circuit for stabilizing any current mode topology except for boost and flyback converters operating with continuous inductor current.

Error Amp compensation circuit for stabilizing current mode boost and flyback topologies operating with continuous inductor current.

\section*{UC3844B, 45B UC2844B, 45B}

Figure 29. 7 W Off-Line Flyback Regulator

T1 - Primary: 45 Turns \#26 AWG
Secondary \(\pm 12 \mathrm{~V}: 9\) Turns \#30 AWG (2 Strands) Bifiliar Wound Secondary 5.0 V: 4 Turns (six strands) \#26 Hexfiliar Wound Secondary Feedback: 10 Turns \#30 AWG (2 strands) Bifiliar Wound Core: Ferroxcube EC35-3C8
Bobbin: Ferroxcube EC35PCB1
Gap: \(\approx 0.10\) " for a primary inductance of 1.0 mH
\begin{tabular}{|cl|l|c|}
\hline \multicolumn{2}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & Results \\
\hline Line Regulation: & \begin{tabular}{ll}
5.0 V \\
\(\pm 12 \mathrm{~V}\)
\end{tabular} & \(\mathrm{~V}_{\text {in }}=95 \mathrm{Vac}\) to 130 Vac & \(\Delta=50 \mathrm{mV}\) or \(\pm 0.5 \%\) \\
& & \(\Delta=24 \mathrm{mV}\) or \(\pm 0.1 \%\)
\end{tabular}

All outputs are at nominal load currents unless otherwise noted.

UC3844B, 45B UC2844B, 45B

Figure 30. Step-Up Charge Pump Converter

The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A. An additional series resistor may be required when using tantalum or other low ESR capacitors. The converter's output can provide excellent line and load regulation by connecting the R2/R1 resistor divider as shown.

Figure 31. Voltage-Inverting Charge Pump Converter

The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A .
An additional series resistor may be required when using tantalum or other low ESR capacitors.

\section*{Universal Switching Regulator Subsystem}

The \(\mu \mathrm{A} 78 \mathrm{~S} 40\) is a switching regulator subsystem, consisting of a temperature compensated voltage reference, controlled-duty cycle oscillator with an active current limit circuit, comparator, high-current and high-voltage output switch, capable of 1.5 A and 40 V , pinned-out power diode and an uncommitted operational amplifier, which can be powered up or down independent of the IC supply. The switching output can drive external NPN or PNP transistors when voltages greater the 40 V , or currents in excess of 1.5 A , are required. Some of the features are wide-supply voltage range, low standby current, high efficiency and low drift. The \(\mu \mathrm{A} 78 \mathrm{~S} 40\) is available in commercial \(\left(0^{\circ}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\), and automotive \(\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) temperature ranges.

Some of the applications include use in step-up, step-down, and inverting regulators, with extremely good results obtained in batteryoperated systems.
- Output Adjustable from 1.25 V to 40 V
- Peak Output Current of 1.5 A Without External Transistor
- 80 dB Line and Load Regulation
- Operation from 2.5 V to 40 V Supply
- Low Standby Current Drain
- High Gain, High Output Current, Uncommitted Op Amp

\(\mu\) A78S40

\section*{UNIVERSAL SWITCHING REGULATOR SUBSYSTEM}

\section*{SEMICONDUCTOR} TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline\(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{PC}\) & \(\mathrm{T}_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Plastic \\
\hline\(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{PV}\) & \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & Plastic \\
\hline
\end{tabular}

\section*{\(\mu \mathrm{A} 78 \mathrm{~S} 40\)}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & V \\
\hline Op Amp Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) (Op Amp) & 40 & V \\
\hline Common Mode Input Range (Comparator and Op Amp) & VICR & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Differential Input Voltage (Note 2) & VID & \(\pm 30\) & V \\
\hline Output Short Circuit Duration (Op Amp) & & Continuous & - \\
\hline Reference Output Current & Iref & 10 & mA \\
\hline Voltage from Switch Collectors to Gnd & & 40 & V \\
\hline Voltage from Switch Emitters to Gnd & & 40 & V \\
\hline Voltage from Switch Collectors to Emitter & & 40 & V \\
\hline Voltage from Power Diode to Gnd & & 40 & V \\
\hline Reverse-Power Diode Voltage & \(\mathrm{V}_{\text {DR }}\) & 40 & V \\
\hline Current through Power Switch & ISW & 1.5 & A \\
\hline Current through Power Diode & \({ }^{1}\) & 1.5 & A \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics: \\
Plastic Package (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)) \\
Derate above \(+25^{\circ} \mathrm{C}\) (Note 1)
\end{tabular} & \[
\begin{gathered}
\mathrm{PD}_{\mathrm{D}} \\
1 / \mathrm{R}_{\text {JJA }}
\end{gathered}
\] & \[
\begin{gathered}
1500 \\
14
\end{gathered}
\] & \[
\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~mW}}
\] \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range \(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{~V}\) \(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{C}\) & TA & \[
\begin{gathered}
-40 \text { to }+85 \\
0 \text { to }+70
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: \(1 . T_{\text {low }}=-40^{\circ}\) for \(\mu \mathrm{A} 78\) S40PV
\(T_{\text {high }}=+85^{\circ}\) for \(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{PV}\)
\(=0^{\circ}\) for \(\mu\) A78S40PC
\(=+70^{\circ}\) for \(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{PC}\)
2. For supply voltages less than 30 V the maximum differential input voltage (Error Amp and Op Amp) is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C}=\mathrm{V}_{C C}\right.\) (Op Amp) \(5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high, }}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

GENERAL
\begin{tabular}{|c|c|c|c|c|c|}
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 2.5 & - & 40 & \(\checkmark\) \\
\hline Supply Current (Op Amp \(\mathrm{V}_{\mathrm{CC}}\), disconnected)
\[
\begin{aligned}
& (\mathrm{VCC}=5.0 \mathrm{~V}) \\
& \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\end{aligned}
\] & ICC & & \[
\begin{aligned}
& 1.8 \\
& 2.3
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 5.0
\end{aligned}
\] & mA \\
\hline Supply Current (Op Amp \(\mathrm{V}_{\mathrm{CC}}\), connected)
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\end{aligned}
\] & \({ }^{\text {I CC }}\) & - & - & 4.0
5.5 & mA \\
\hline
\end{tabular}

REFERENCE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Reference Voltage \\
\((\) Iref \(=1.0 \mathrm{~mA})\)
\end{tabular} & Vref & 1.180 & 1.245 & 1.310 & V \\
\hline \begin{tabular}{c}
Reference Voltage Line Regulation \\
\(\left(3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 40 \mathrm{~V}, I_{\text {ref }}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
\end{tabular} & Regline & - & 0.04 & 0.2 & \(\mathrm{mV} / \mathrm{V}\) \\
\hline \begin{tabular}{c}
Reference Voltage Load Regulation \\
\(\left(1.0 \mathrm{~mA} \leq I_{\text {ref }} \leq 10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
\end{tabular} & Regload & - & 0.2 & 0.5 & \(\mathrm{mV} / \mathrm{mA}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C}=\mathrm{V}_{C C}\right.\) (Op Amp) \(5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\), unless otherwise noted.)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline OSCILLATOR
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Charging Current }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\end{aligned}
\] & lchg & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & & \[
\begin{aligned}
& 50 \\
& 70
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \hline \text { Discharging Current }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\end{aligned}
\] & \({ }^{\text {dis }}\) & \[
\begin{aligned}
& 150 \\
& 150
\end{aligned}
\] & & \[
\begin{aligned}
& 250 \\
& 350
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Oscillator Voltage Swing (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\text {osc }}\) & - & 0.5 & - & V \\
\hline Ratio of Charge/Discharge Time & \(\mathrm{t}_{\text {chg }} / \mathrm{t}_{\text {dis }}\) & - & 6.0 & - & - \\
\hline
\end{tabular}

\section*{CURRENT LIMIT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Current-Limit Sense Voltage \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {lpk }}\right.\) Sense \()\)
\end{tabular} & \(\mathrm{V}_{\mathrm{CLS}}\) & 250 & - & 350 & mV \\
\hline
\end{tabular}

\section*{OUTPUT SWITCH}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Saturation Voltage 1 (ISW = 1.0 A, Pin 15 tied to Pin 16) & \(\mathrm{V}_{\text {sat1 }}\) & - & 0.93 & 1.3 & V \\
\hline Output Saturation Voltage 2 (ISW \(=1.0 \mathrm{~A}, \mathrm{I}_{15}=50 \mathrm{~mA}\)) & \(\mathrm{v}_{\text {sat2 }}\) & - & 0.5 & 0.7 & V \\
\hline \[
\text { Output Transistor Current Gain }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\]
\[
\left(\mathrm{I} C=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right)
\] & \(h_{\text {FE }}\) & - & 70 & - & - \\
\hline Output Leakage Current (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\left(\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}\right)
\] & IC(off) & - & 10 & - & nA \\
\hline
\end{tabular}

\section*{POWER DIODE}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Forward Voltage Drop \(\left(\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}\right)\) & \(\mathrm{V}_{\mathrm{D}}\) & - & 1.25 & 1.5 & V \\
\hline Diode Leakage Current \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{DR}}=40 \mathrm{~V}\right)\) & IDR & - & 10 & - & nA \\
\hline
\end{tabular}

COMPARATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage (\(\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {ref }}\)) & \(\mathrm{V}_{10}\) & - & 1.5 & 15 & mV \\
\hline Input Bias Current (\(\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {ref }}\)) & IB & - & 35 & 200 & nA \\
\hline Input Offset Current (\(\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {ref }}\)) & 1 O & - & 5.0 & 75 & nA \\
\hline Common Mode Voltage Range (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & VICR & 0 & - & \(\mathrm{V}_{\text {CC }}-2.0\) & V \\
\hline \[
\begin{aligned}
& \text { Power-Supply Rejection Ratio }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \left(3.0 \leq \mathrm{V}_{\mathrm{CC}} \leq 40 \mathrm{~V}\right)
\end{aligned}
\] & PSRR & 70 & 96 & - & dB \\
\hline
\end{tabular}

OUTPUT OPERATION AMPLIFIER
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage (\(\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}\)) & \(\mathrm{V}_{10}\) & - & 4.0 & 15 & mV \\
\hline Input Bias Current (\(\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}\)) & IB & - & 30 & 200 & nA \\
\hline Input Offset Current (\(\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}\)) & 10 & - & 5.0 & 75 & nA \\
\hline \[
\begin{aligned}
& \text { Voltage Gain }+\left(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\right) \\
& \left(R_{L}=2.0 \mathrm{k} \Omega \text { to Gnd, } 1.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.5 \mathrm{~V}\right)
\end{aligned}
\] & AVOL+ & 25 & 250 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline \[
\begin{aligned}
& \text { Voltage Gain - }\left(T_{A}=25^{\circ} \mathrm{C}\right) \\
& \quad\left(R_{L}=2.0 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}}(\mathrm{Op} \mathrm{Amp}), 1.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.5 \mathrm{~V}\right)
\end{aligned}
\] & Avol- & 25 & 250 & - & V/mV \\
\hline Common Mode Voltage Range (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & VICR & 0 & - & \(\mathrm{V}_{\mathrm{CC}}-2.0\) & V \\
\hline Common Mode Rejection Ratio (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3.0 \mathrm{~V}\right)
\] & CMRR & 76 & 100 & - & dB \\
\hline Power-Supply Rejection Ratio (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \(\left(3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}(\mathrm{Op} \mathrm{Amp}) \leq 40 \mathrm{~V}\right)\) & PSRR & 76 & 100 & - & dB \\
\hline Output Source Current (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & ISource & 75 & 150 & - & mA \\
\hline Output Sink Current (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & ISink & 10 & 35 & - & mA \\
\hline Slew Rate (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & SR & - & 0.6 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline Output Low Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=-5.0 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{OL}}\) & - & - & 1.0 & V \\
\hline Output High Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{L}=50 \mathrm{~mA}\)) & V OH & \[
\begin{gathered}
\hline \mathrm{V}_{\mathrm{CC}}(\mathrm{Op} \mathrm{Amp}) \\
-3.0
\end{gathered}
\] & - & - & V \\
\hline
\end{tabular}

Figure 1. Output Switch On/Off Time versus Oscillator Timing Capacitor

Figure 3. Emitter-Follower Configuration Output Switch Saturation Voltage versus Emitter Current

Figure 2. Standby Supply Current versus Supply Voltage

Figure 4. Common-Emitter Configuration Output Switch Saturation Voltage versus Collector Current

Figure 5. Step-Down Converter

Figure 6. Step-Up Converter

Figure 7. Inverting Converter

Design Formula Table
\begin{tabular}{|c|c|c|c|}
\hline Calculation & Step-Down & Step-Up & Inverting \\
\hline \[
\frac{t_{\mathrm{on}}}{\mathrm{t}_{\mathrm{off}}}
\] & \[
\frac{V_{\text {out }}+V_{F}}{V_{\text {in }(\mathrm{min})}-V_{\text {sat }}-V_{\text {out }}}
\] & \[
\frac{V_{\text {out }}-V_{F} V_{\text {in }(\text { min })}}{V_{\text {in } / \text { min }}}
\] & \[
\frac{V_{\text {out }}+V_{F}}{V_{\text {in } / \text { min })}-V_{\text {cat }}}
\] \\
\hline & & & \\
\hline (\(\mathrm{o}_{\text {on }}+\mathrm{t}_{\text {off }}\)) max & \[
\frac{1}{f_{\min }}
\] & \[
\frac{1}{f_{\min }}
\] & \(\frac{1}{f_{\text {min }}}\) \\
\hline \(\mathrm{C}_{\mathrm{T}}\) & \(4 \times 10^{5} \mathrm{t}_{\mathrm{on}}\) & \(4 \times 10^{5} \mathrm{t}_{\text {on }}\) & \(4 \times 10^{5} \mathrm{t}_{\text {on }}\) \\
\hline 1 pk (switch) & \(2 \mathrm{l}_{\text {out(max) }}\) & \(21_{\text {out(max }}\left(\frac{t_{\text {on }}-t_{\text {off }}}{t_{\text {off }}}\right)\) & \(2 \mathrm{l}_{\text {out(max) }}\left(\frac{\mathrm{t}_{\text {on }}+t_{\text {off }}}{t_{\text {off }}}\right)\) \\
\hline RSC & \[
\frac{0.33}{\mathrm{Ipk}(\text { switch })}
\] & \[
\frac{0.33}{\mathrm{Ipk}(\mathrm{switch})}
\] & \[
\frac{0.33}{\operatorname{lpk}(\text { switch })}
\] \\
\hline \(\mathrm{L}_{(\text {min })}\) & & & \(\left(\frac{V_{\text {in }}(\text { min })}{}-\mathrm{V}_{\text {sat }} I_{\text {pk(switch }}\right) t_{\text {on(max }}\) \\
\hline \(\mathrm{CO}_{\mathrm{O}}\) & \[
\frac{\mathrm{Ipk}_{\mathrm{p}(\text { switch })}\left(\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\text {off }}\right)}{8 \mathrm{~V}_{\text {ripple }}(\mathrm{pp})}
\] & \[
\approx \frac{I_{\text {out }} t_{\text {on }}}{V_{\text {ripple }}}
\] & \[
\approx \frac{I_{\text {out }} t_{\text {on }}}{V_{\text {ripple }}}
\] \\
\hline
\end{tabular}
\(V_{\text {sat }}=\) Saturation voltage of the output switch. \(\mathrm{V}_{\mathrm{F}}=\) Forward voltage drop of the ringback rectifier.

The following power supply characteristics must be chosen:
\(\mathbf{V}_{\text {in }}\) - Nominal input voltage. If this voltage is not constant, then use \(\mathrm{V}_{\text {in(max) }}\) for step-down and \(\mathrm{V}_{\text {in }}(\min)\) for step-up and inverting convertor.
\(V_{\text {out }}\) - Desired output voltage: \(V_{\text {out }}=1.25\left(1+\frac{R_{2}}{R_{1}}\right)\) for step-down and step-up: \(V_{\text {out }}=\frac{1.25 R_{2}}{R_{1}}\) for inverting.
Iout - Desired output current.
\(f_{\min }\) - Minimum desired output switching frequency at the selected values for \(\mathrm{V}_{\text {in }}\) and \(\mathrm{I}_{\mathrm{O}}\).
\(V_{\text {ripple(pp) }}\) - Desired peak-to-peak output ripple voltage. In practice, the calculated value will need to be increased due to the capacitor's equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly effect the line and load regulation.

\section*{See Application Note AN920 for further information}

\section*{Addendum}

\section*{Linear \& Switching Voltage Regulator Applications Information}

\section*{In Brief}

In most electronic systems, voltage regulation is required for various functions. Today's complex electronic systems are requiring greater regulating performance, higher efficiency and lower parts count. Present integrated circuit and power package technology has produced IC voltage regulators which can ease the task of regulated power supply design, provide the performance required and remain cost effective. Available in a growing variety, Motorola offers a wide range of regulator products from fixed and adjustable voltage types to special-function and switching regulator control ICs.

This handbook describes Motorola's voltage regulator products and provides information on applying these products. Basic Linear regulator theory and switching regulator topologies have been included along with practical design examples. Other relevant topics include trade-offs of Linear versus switching regulators, series pass elements for Linear regulators, switching regulator component design considerations, heatsinking, construction and layout, power supply supervision and protection, and reliability.

\section*{TABLE OF CONTENTS}
Page
Section 1. Basic Linear Regulator Theory 3-805
IC Voltage Regulator 3-805
Voltage Reference 3-805
The Error Amplifier 3-809
The "Regulator within a Regulator" Approach 3-812
Section 2. Selecting a Linear IC Voltage Regulator 3-814
Selecting the Type of Regulator 3-814
Positive versus Negative Regulators 3-814
Three-Terminal, Fixed Output Regulators 3-814
Three-Terminal, Adjustable Output Regulators 3-816
Selecting an IC Regulator 3-816
Section 3. Linear Regulator Circuit Configuration and Design Considerations 3-817
Positive, Adjustable Regulator 3-817
Negative, Adjustable Regulator 3-821
Positive, Fixed Output Regulator 3-821
Negative, Fixed Output Regulator 3-824
General Design Considerations 3-826
Section 4. Series Pass Element Considerations for Linear Regulators 3-828
Series Pass Element Configurations 3-828
Series Pass Element Specifications 3-829
Current Limiting Techniques 3-830
Constant Current Limiting 3-830
Foldback Current Limiting 3-833
Paralleling Series Pass Elements 3-835
Section 5. Linear Regulator Construction and Layout 3-836
General Layout and Component Placement Considerations 3-836
Ground Loops and Remote Voltage Sensing 3-836
Mounting Considerations for Power Semiconductors 3-838
Insulation Considerations 3-842
Fastener and Hardware Characteristics 3-846
Thermal System Evaluation 3-854
Appendix A: Thermal Resistance Concepts 3-855
Appendix B: Measurement of Interface Thermal Resistance 3-856
Section 6. Linear Regulator Design Example 3-858
IC Regulator Selection 3-858
Circuit Configuration 3-858
Determination of Component Values 3-858
Determination of Input Voltage 3-859
Selection of Series Pass Element 3-859
Q1 Heatsink Calculation 3-860
Clamp Diode 3-860
Construction Input Supply Design 3-860
Section 7. Linear Regulator Circuit Troubleshooting Check List 3-861

\section*{TABLE OF CONTENTS (Continued)}
Section 8. Designing the Input Supply 3-862
Design of Capacitor-Input Filters 3-863
Surge Current 3-865
Design Procedure 3-866
Design Example 3-867
Section 9. An Introduction to Switching Power Supplies 3-868
Comparison with Linear Regulators 3-868
Basic Configurations 3-869
The Future 3-871
Section 10. Switching Regulator Topologies 3-873
FET and Bipolar Drive Considerations 3-873
Control Circuits 3-875
Overvoltage Protection 3-876
Surge Current Protection 3-877
Transformer Design 3-877
Filter Capacitor Considerations 3-879
Section 11. Switching Regulator Component Design Tips 3-881
Transistors 3-881
Zener and Mosorb Transient Suppressors 3-883
Rectifiers 3-883
Section 12. Basic Switching Power Supply Configurations 3-885
Flyback and Forward Converters 3-885
Push-Pull and Bridge Converters 3-888
Half and Full Bridge 3-891
Section 13. Switching Regulator Design Examples 3-893
Section 14. Power Supply Supervisory and Protection Considerations 3-894
The Crowbar Technique 3-894
SCR Considerations 3-895
The Sense and Drive Circuit 3-896
MC3425 Power Supply Supervisory Circuit 3-899
MC34064 and MC34164 Series 3-901
Section 15. Heatsinking 3-902
The Thermal Equation 3-902
Selecting a Heatsink 3-903
Commercial Heatsinks 3-903
Custom Heatsink Design 3-905
Heatsink Design Example 3-908
SOIC Miniature IC Plastic Package 3-908
Thermal Characteristics of SOIC Packages 3-909
SOP-8 and SOP-16L Packaged Devices 3-909
Thermal Characteristics of DPAK and D2PAK Packages 3-910

\section*{SECTION 1}

\section*{BASIC LINEAR REGULATOR THEORY}

\section*{A. IC Voltage Regulator}

The basic functional block diagram of an integrated circuit voltage regulator is shown in Figure 1-1. It consists of a stable reference, whose output voltage is \(\mathrm{V}_{\text {ref }}\), and a high gain error amplifier. The output voltage (\(\mathrm{V}_{\mathrm{O}}\)), is equal to or a multiple of \(\mathrm{V}_{\text {ref }}\). The regulator will tend to keep \(\mathrm{V}_{\mathrm{O}}\) constant by sensing any changes in \(\mathrm{V}_{\mathrm{O}}\) and trying to return it to its original value. Therefore, the ideal voltage regulator could be considered a voltage source with a constant output voltage. However, in practice the IC regulator is better represented by the model shown in Figure 1-2.

In this figure, the regulator is modeled as a voltage source with a positive output impedance (\(\mathrm{Z}_{\mathrm{O}}\)). The value of the voltage source \((\mathrm{V})\) is not constant; instead it varies with changes in supply voltage (VCC) and with changes in IC junction temperature (\(\mathrm{TJ}_{\mathrm{J}}\)) induced by changes in ambient temperature and power dissipation. Also, the regulator output voltage (\(\mathrm{VO}_{\mathrm{O}}\)) is affected by the voltage drop across \(\mathrm{ZO}_{\mathrm{O}}\), caused by the output current (IO). In the following text, the reference and amplifier sections will be described, and their contributions to the changes in the output voltage analyzed.

\section*{B. Voltage Reference}

Naturally, the major requirement for the reference is that it be stable; variations in supply voltage or junction temperature should have little or no effect on the value of the reference voltage (Vref).

\section*{1. Zener Diode Reference}

The simplest form of a voltage reference is shown in Figure 1-3a. It consists of a resistor and a zener diode. The zener voltage \((\mathrm{V} Z)\) is used as the reference voltage. In order to determine \(\mathrm{V}_{\mathrm{Z}}\), consider Figure \(1-3 \mathrm{~b}\). The zener diode (VR1) of Figure 1-3a has been replaced with its equivalent circuit model and the value of \(V_{Z}\) is therefore given by (at a constant junction temperature):
\[
\begin{equation*}
v_{Z}=v_{B Z}+I_{Z Z Z}=v_{B Z}+\left(\frac{v_{C C}-v_{B Z}}{R+Z_{Z}}\right) Z_{Z} \tag{1}
\end{equation*}
\]
where: \(\mathrm{V}_{\mathrm{BZ}}=\) zener breakdown voltage
\[
\mathrm{IZ}=\text { zener current }
\]
\(Z Z=\) zener impedance at \(I Z\).
Note that changes in the supply voltage give rise to changes in the zener current, thereby changing the value of the reference voltage \((\mathrm{V} Z)\).

Figure 1-1. Voltage Regulator Functional Block Diagram

Figure 1-2. Voltage Regulator Equivalent Circuit Model

Figure 1-3. Zener Diode Reference

\section*{2. Constant Current - Zener Reference}

The effect of zener impedance can be minimized by driving the zener diode with a constant current as shown in Figure 1-4. The value of the zener current is largely independent of \(V_{C C}\) and is given by:
\[
\begin{equation*}
\mathrm{IZ}=\frac{\mathrm{V}_{\mathrm{BEQ} 1}}{\mathrm{RSC}_{\mathrm{SC}}} \tag{2}
\end{equation*}
\]
where: \(\mathrm{V}_{\mathrm{BEQ}} 1\) = base-emitter voltage of Q1.
This gives a reference voltage of:
\[
\begin{equation*}
V_{\text {ref }}=V_{Z}+V_{B E Q 1}=V_{B Z}+I_{Z} Z Z+V_{B E Q 1} \tag{3}
\end{equation*}
\]
where I Z is constant and given by Equation 2.
The reference voltage (about 7.0 V) of this configuration is therefore largely independent of supply voltage variations. This configuration has the additional benefit of better temperature stability than that of a simple resistor-zener reference.

Referring back to Figure 1-3a, it can be seen that the reference voltage temperature stability is equal to that of the zener diode, VR1. The stability of zener diodes used in most integrated circuitry is about \(+2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) or \(\simeq 0.04 \% /{ }^{\circ} \mathrm{C}\) (for a 6.2 V zener). If the junction temperature varies \(100^{\circ} \mathrm{C}\), the zener or reference voltage would vary \(4 \%\). A variation this large is usually unacceptable.

However, the circuit of Figure 1-4 does not have this drawback. Here the positive \(2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) temperature coefficient (TC) of the zener diode is offset by the negative \(2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C} T C\) of the \(\mathrm{V}_{B E}\) of Q . This results in a reference voltage with very stable temperature characteristics.

Figure 1-4. Constant Current (Zener Reference)

\section*{3. Bandgap Reference}

Although very stable, the circuit of Figure 1-4 does have a disadvantage in that it requires a supply voltage of 9.0 V or more. Another type of stable reference which requires only a few volts to operate was described by Widlar(1) and is shown in Figure 1-5. In this circuit \(\mathrm{V}_{\text {ref }}\) is given by:
\[
\begin{equation*}
V_{\text {ref }}=V_{\text {BEQ }}+I_{2} R_{2} \tag{4}
\end{equation*}
\]
where:
\[
\mathrm{I}_{2}=\frac{\mathrm{V}_{\mathrm{BEQ}} 1-\mathrm{V}_{\mathrm{BEQ}}}{\mathrm{R}_{1}} \text { (neglecting base currents) }
\]

The change in \(V_{\text {ref }}\) with junction temperature is given by:
\[
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{ref}}=\Delta \mathrm{V}_{\mathrm{BE} 3}+\left\{\frac{\Delta \mathrm{V}_{\mathrm{BEQ}} 1-\Delta \mathrm{V}_{\mathrm{BEQ}}}{\mathrm{R}_{1}}\right\} \mathrm{R}_{2} \tag{5}
\end{equation*}
\]

It can be shown that,
\[
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{BEQ}} 1=\Delta \mathrm{TJK} \ln \mathrm{I}_{1} \tag{6}
\end{equation*}
\]
and, \(\Delta V_{B E Q 2}=\Delta T J K \ln I_{2}\)
where: \(K=\) a constant
\(\Delta T J=\) change in junction temperature
and, \(\quad I_{1}>I_{2}\)
Combining (5), (6), and (7)
\[
\begin{equation*}
\Delta V_{\text {ref }}=\Delta V_{\text {BEQ3 }}+\Delta T J K\left(\frac{R_{2}}{R_{1}}\right) \ln \frac{l_{1}}{l_{2}} \tag{8}
\end{equation*}
\]

Since \(\Delta V_{B E Q 3}\) is negative, and with \(I_{1}>I_{2}, \ln I_{1} / I_{2}\) is positive, the net change in \(V_{r e f}\) with temperature variations can be made to equal zero by appropriately selecting the values of \(l_{1}, R_{1}\), and \(R_{2}\).

Figure 1-5. Bandgap Reference

\section*{C. The Error Amplifier}

Given a stable reference, the error amplifier becomes the determining factor in integrated circuit voltage regulator performance. Figure 1-6 shows a typical differential error amplifier in a voltage regulator configuration. With a constant supply voltage (V CC) and junction temperature, the output voltage is given by:
\[
\begin{equation*}
\mathrm{V}_{\mathrm{O}}=\mathrm{AVOL} v_{i}-\mathrm{Z}_{\mathrm{OL}} \mathrm{IO}=\mathrm{AVOL}\left\{\left(\mathrm{~V}_{\mathrm{ref}} \pm \mathrm{V}_{\mathrm{IO}}\right)-\mathrm{V}_{\mathrm{O}} \beta\right\}-\mathrm{Z}_{\mathrm{OL}} \mathrm{IO}^{2} \tag{9}
\end{equation*}
\]
where: \(\mathrm{AVOL}=\) amplifier open loop gain
\(\mathrm{V}_{\mathrm{IO}}=\) input offset voltage
ZOL = open loop output impedance
\[
\beta=\frac{R_{1}}{R_{1}+R_{2}}=\text { feedback ratio (} \beta \text { is always } \leq 1 \text {) }
\]

IO = output current
\(v_{i}=\) true differential input voltage
Manipulating Equation 9:
\[
\begin{equation*}
\mathrm{V}_{\mathrm{O}}=\frac{\left(\mathrm{V}_{\mathrm{ref}} \pm \mathrm{V}_{\mathrm{IO}}\right)-\frac{\mathrm{Z}_{\mathrm{OL}}}{\mathrm{AVOL}_{\mathrm{VOL}}} \mathrm{IO}}{\beta+\frac{1}{\mathrm{AVOL}}} \tag{10}
\end{equation*}
\]

Note that if the amplifier open loop gain is infinite, this expression reduces to:
\[
\begin{equation*}
V_{O}=\frac{1}{\beta}\left(V_{\text {ref }} \pm V_{I O}\right)=\left(V_{\text {ref }} \pm V_{I O}\right)\left(1+\frac{R_{2}}{R_{1}}\right) \tag{11}
\end{equation*}
\]

The output voltage can thus be setany value equal to or greater than (\(\mathrm{V}_{\mathrm{ref}} \pm \mathrm{V}_{\mathrm{IO}}\)). Note also that if AVOL is not infinite, with constant output current (a non-varying output load), the output voltage can still be "tweaked-in" by varying \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\), even though \(\mathrm{V}_{\mathrm{O}}\) will not exactly equal that given by Equation 11.

Assuming a stable reference and a finite value of AVOL, inaccuracy of the output voltage can be traced to the following amplifier characteristics:

\section*{1. Amplifier Input Offset Voltage Drift}

The input transistors of integrated circuit amplifiers are usually not perfectly matched. As in operational amplifiers, this is expressed in terms of an input offset voltage \(\left(\mathrm{V}_{\mathrm{IO}}\right)\). At a given temperature, this effect can be nulled out of the desired output voltage by adjusting \(\mathrm{V}_{\text {ref }}\) or \(1 / \beta\). However, \(\mathrm{V}_{\mathrm{IO}}\) drifts with temperature, typically \(\pm 5.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) to \(+15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), causing a proportional change in the output voltage. Closer matching of the internal amplifier input transistors minimizes this effect, as does selecting a feedback ratio (\(\beta\)) to be close to unity.

\section*{2. Amplifier Power Supply Sensitivity}

Changes in regulator output voltage due to power supply voltage variations can be attributed to two amplifier performance parameters: power supply rejection ratio (PSRR) and common mode rejection ratio (CMRR). In modern integrated circuit regulator amplifiers, the utilization of constant current sources gives such large values of PSRR that this effect on VO can usually be neglected. However, supply voltage changes can affect the output voltage since these changes appear as common mode voltage changes, and they are best measured by the CMRR.

Figure 1-6. Typical Voltage Regulator Configuration

The definition of common mode voltage (\(\mathrm{V}_{\mathrm{CM}}\)), illustrated by Figure 1-7a, is:
\[
\begin{equation*}
\mathrm{V}_{\mathrm{CM}}=\left[\frac{\mathrm{V}_{1}+\mathrm{V}_{2}}{2}\right]-\left[\frac{(\mathrm{V}+)+\left(\mathrm{V}_{-}\right)}{2}\right] \tag{12}
\end{equation*}
\]
where: \(\quad \mathrm{V}_{1}=\) voltage on amplifier noninverting input
\(\mathrm{V}_{2}=\) voltage on amplifier inverting input
\(\mathrm{V}_{+}=\)positive supply voltage
\(\mathrm{V}_{-}=\)negative supply voltage

Figure 1-7. Definition of Common Mode Voltage Error

Figure 1-8. Common Mode Regulator Effects

In an ideal amplifier, only the differential input voltage \(\left(V_{1}-V_{2}\right)\) has any effect on the output voltage; the value of \(\mathrm{V}_{\mathrm{CM}}\) would not effect the output. In fact, \(\mathrm{V}_{\mathrm{CM}}\) does influence the amplifier output voltage. This effect can be modeled as an additional voltage offset at the amplifier input equal to \(\mathrm{V}_{\mathrm{CM}} / \mathrm{CMRR}\) as shown in Figures \(1-7 \mathrm{~b}\) and \(1-8\). The latter figure is the same configuration as Figure \(1-6\), with amplifier input offset voltage and output impedance deleted for clarity and common mode voltage effects added. The output voltage of this configuration is given by:
\[
\begin{equation*}
V_{\mathrm{O}}=A V O L v_{i}=A V O L\left(V_{\text {ref }}-\frac{V_{C M}}{C M R R}-\beta V_{O}\right) \tag{13}
\end{equation*}
\]

Manipulating,
\[
\begin{equation*}
V_{O}=\frac{\left(v_{\text {ref }}-\frac{v_{C M}}{\mathrm{CMRR}}\right)}{\beta+\frac{1}{\mathrm{AVOL}}} \tag{14}
\end{equation*}
\]
where: \(\quad V_{C M}=V_{\text {ref }}-\frac{V_{C C}}{2}\)
and, \(\quad\) CMRR \(=\) common mode rejection ratio
It can be seen from Equations (14) and (15) that the output can vary when \(\mathrm{V}_{\mathrm{CC}}\) varies. This can be reduced by designing the amplifier to have a high AVOL, a high CMRR, and by choosing the feedback ratio (\(\beta\)) to be unity.

\section*{3. Amplifier Output Impedance}

Referring back to Equation (9), it can be seen that the equivalent regulator output impedance (ZO) is given by:
\[
\begin{equation*}
\mathrm{Z}_{\mathrm{O}}=\frac{\Delta \mathrm{VO}_{\mathrm{O}}}{\Delta \mathrm{I}_{\mathrm{O}}} \simeq \frac{\mathrm{ZOL}}{\beta \mathrm{AVOL}} \tag{16}
\end{equation*}
\]

This impedance must be as low as possible, in order to minimize load current effects on the output voltage. This can be accomplished by lowering ZOL, choosing an amplifier with high AVOL, and by selecting the feedback ratio \((\beta)\) to be unity.

A simple way of lowering the effective value of ZOL is to make an impedance transformation with an emitter follower, as shown in Figure 1-9. Given a change in output current (\(\Delta \mathrm{I} \mathrm{O}\)) the amplifier will see a change of only \(\Delta \mathrm{IO} / \mathrm{hFEQ1}\) in its output current (\(\mathrm{IO}^{\prime}\)). Therefore, (ZOL) in Equation (16) has been effectively reduced to \(\mathrm{ZOL}^{\prime} / \mathrm{hFEQ} 1\), reducing the overall regulator output impedance \(\left(\mathrm{ZO}_{\mathrm{O}}\right)\).

\section*{D. The Regulator within a Regulator Approach}

In the preceding text, we have analyzed the sections of an integrated circuit voltage regulator and determined how they contribute to its non-ideal performance characteristics. These are shown in Table 1-1 along with procedures which minimize their effects.

It can be seen that in all cases regulator performance can be improved by selecting AVOL as high as possible and \(\beta=1\). Since a limit is soon approached in how much AVOL can be practically obtained in an integrated circuit amplifier, selecting a feedback ratio \((\beta)\) equal to unity is the only viable way of improving total regulator performance, especially in reducing regulator output impedance. However, this method presents a basic problem to the regulator designer. If the configuration of Figure 1-6 is used, the output voltage cannot be adjusted to a value other than \(\mathrm{V}_{\text {ref. }}\). The solution is to utilize a different regulator configuration known as the regulator within a regulator approach.(2) Its greatest benefit is in reducing total regulator output impedance.

Figure 1-9. Emitter Follower Output

Table 1-1
\begin{tabular}{|l|c|l|}
\hline \begin{tabular}{c}
VO Changes \\
Section
\end{tabular} & \begin{tabular}{c}
Effect Can Be \\
Induced By:
\end{tabular} & \multicolumn{1}{c|}{ Minimized By Selecting: }
\end{tabular}

As shown in Figure 1-10, amplifier A1 sets up a voltage \(\left(\mathrm{V}_{1}\right)\) given by:
\[
\begin{equation*}
\mathrm{V}_{1} \simeq \mathrm{~V}_{\mathrm{ref}}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right) \tag{17}
\end{equation*}
\]
\(V_{1}\) now serves as the reference voltage for amplifier \(A 2\), whose output voltage \(\left(\mathrm{VO}_{\mathrm{O}}\right)\) is given by:
\[
\begin{equation*}
V_{O} \simeq v_{1} \simeq V_{r e f}\left(1+\frac{R_{2}}{R_{1}}\right) \tag{18}
\end{equation*}
\]

Note that the output impedance of A2, and therefore the regulator output impedance, has been minimized by selecting A2's feedback factor to be unity; and that output voltage can still be set at voltages greater than \(V_{\text {ref }}\) by adjusting \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\).

Figure 1-10. The "Regulator within a Regulator" Configuration

\footnotetext{
(1)Widlar, R. J., New Developments in IC Voltage Regulators, IEEE Journal of Solid State Circuits, Feb.1971, Vol. SC-6, pgs. 2-7.
\({ }^{(2)}\) Tom Fredericksen, IEEE Journal of Solid State Circuits, Vol. SC-3, Number 4, Dec. 1968, A Monolithic High Power Series Voltage Regulator.
}

\section*{A. Selecting the Type of Regulator}

There are five basic linear regulator types; positive, negative, fixed output, tracking and floating regulators. Each has its own particular characteristics and best uses, and selection depends on the designer's needs and trade-offs in performance and cost.

\section*{1. Positive Versus Negative Regulators}

In most cases, a positive regulator is used to regulate positive voltages and a negative regulator negative voltages. However, depending on the system's grounding requirements, each regulator type may be used to regulate the "opposite" voltage.

Figures \(2-1 \mathrm{a}\) and \(2-1 \mathrm{~b}\) show the regulators used in the conventional and obvious mode. Note that the ground reference for each (indicated by the heavy line) is continuous. Several positive regulators could be used with the same input supply to deliver several voltages with common grounds; negative regulators may be utilized in a similar manner.

If no other common supplies or system components operate off the input supply to the regulator, the circuits of Figures 2-1c and 2-1d may be used to regulate positive voltages with a negative regulator and vice versa. In these configurations, the input supply is essentially floated, i.e., neither side of the input is tied to the system ground.

There are methods of utilizing positive regulators to obtain negative output voltages without sacrificing ground bus continuity. However, these methods are only possible at the expense of increased circuit complexity and cost. An example of this technique is shown in Section 3.

\section*{2. Three-Terminal, Fixed Output Regulators}

These regulators offer the designer a simple, inexpensive way to obtain a source of regulated voltage. They are available in a variety of positive or negative output voltages and current ranges.
The advantages of these regulators are:
a) Easy to use.
b) Internal overcurrent and thermal protection.
c) No circuit adjustments necessary.
d) Low cost.

Their disadvantages are:
a) Output voltage cannot be precisely adjusted. (Methods for obtaining adjustable outputs are shown in Section 3).
b) Available only in certain output voltages and currents.
c) Obtaining greater current capability is more difficult than with other regulators. (Methods for obtaining greater output currents are shown in Section 3.)

Figure 2-1. Regulator Configurations

(a) Positive Output Using Positive Regulator

(b) Negative Output Using Negative Regulator

(c) Positive Output Using Negative Regulator

(d) Negative Output Using Positive Regulator

\section*{3. Three-Terminal, Adjustable Output Regulators}

Like the three-terminal fixed regulators, the three-terminal adjustable regulators are easy and inexpensive to use. These devices provide added flexibility with output voltage adjustable over a wide range, from 1.2 V to nearly 40 V , by means of an external, two-resistor voltage divider. A variety of current ranges from 100 mA to 3.0 A are available.

\section*{B. Selecting an IC Regulator}

Once the type of regulator is decided upon, the next step is to choose a specific device. To provide higher currents than are available from monolithic technologies, an IC regulator will often be used as a driver to a boost transistor. This complicates the selection and design task, as there are now several overlapping solutions to many of the design problems.

Unfortunately, there is no exact step-by-step procedure that can be followed which will lead to the ideal regulator and circuit configuration for a specific application. The regulating circuit that is finally accepted will be a compromise between such factors as performance, cost, size and complexity. Because of this, the following general design procedure is suggested:
1. Select the regulators which meet or exceed the requirements for line regulation, load regulation, TC of the output voltage and operating ambient temperature range. At this point, do not be overly concerned with the regulator capabilities in terms of output voltage, output current, SOA and special features.
2. Next, select application circuits from Section 3 which meet the requirements for output current, output voltage, special features, etc. Preliminary designs using the chosen regulators and circuit configurations are then possible. From these designs a judgement can be made by the designer as to which regulator circuit configuration combination best meets his or her requirements in terms of cost, size and complexity.

\title{
SECTION 3 \\ LINEAR REGULATOR CIRCUIT CONFIGURATION AND DESIGN CONSIDERATIONS
}

Once the IC regulators, which meet the designer's performance requirements, have been selected, the next step is to determine suitable circuit configurations. Initial designs are devised and compared to determine the IC regulator/circuit configuration that best meets the designer's requirements. In this section, several circuit configurations and design equations are given for the various regulator ICs. Additional circuit configurations can be found on the device data sheets. Organization is first by regulator type and then by variants, such as current boost. Each circuit diagram has component values for a particular voltage and current regulator design.
A. Positive, Adjustable
B. Negative, Adjustable
C. Positive, Fixed
D. Negative, Fixed
E. Tracking
F. Special
1. Obtaining Extended Output Voltage Range
2. Electronic Shutdown
G. General Design Considerations

It should be noted that all circuit configurations shown have constant current limiting. If foldback limiting is desired, see Section 4C for techniques and design equations.

\section*{A. Positive, Adjustable Output IC Regulator Configurations}

\section*{1. Basic Regulator Configurations}

\section*{Positive Three-Terminal Adjustables}

These adjustables, comprised of the LM317L, LM317, and LM350 series devices range in output currents of \(100 \mathrm{~mA}, 500 \mathrm{~mA}, 1.5 \mathrm{~A}\), and 3.0 A respectively. All of these devices utilize the same basic circuit configuration as shown in Figure 3-1A.

\section*{MC1723C}

The basic circuit configurations for the MC1723C regulator are shown in Figures 3-2A and 3-3A. For output voltages from \(\approx 7.0 \mathrm{~V}\) to 37 V the configuration of Figure 3-2A can be used, while Figure 3-3A can be used to obtain output voltages from 2.0 V to \(\simeq 7.0 \mathrm{~V}\).

\section*{2. Output Current Boosting}

If output currents greater than those available from the basic circuit configurations are desired, the current boost circuits shown in this section can be used. The output currents which can be obtained with this configurations are limited only by capabilities of the external pass element(s).

Figure 3-1A. Basic Configuration for Positive, Adjustable Output Three-Terminal Regulators

\(\mathrm{C}_{\mathrm{in}}\) : required if regulator is located an appreciable distance from power supply filter.
\(\mathrm{C}_{0}\) : improves transient response.
CAdj: improves Ripple Rejection
\[
V_{\text {out }}=1.25 \mathrm{~V} 1+\left(\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
\]

Since \(I_{\text {Adj }}\) is controlled to less than \(100 \mu \mathrm{~A}\), the error associated with this term is negligible in most applications.

Figure 3-2A. MC1723C Basic Circuit Configuration for \(\mathrm{V}_{\text {ref }} \leq \mathrm{V}_{\mathbf{O}} \leq \mathbf{3 7} \mathrm{V}\)

\[
\begin{aligned}
& R_{S C} \cong \frac{0.66 \mathrm{~V}}{\mathrm{ISC}} ; 10 \mathrm{k} \Omega<R_{1}+R_{2}<100 \mathrm{k} \Omega \\
& R_{3} \cong R_{1} \| R_{2} ; 0 \leq C_{\text {ref }} \leq 0.1 \mu \mathrm{~F} \\
& R_{2}=\frac{V_{\text {ref }}}{V_{0}}\left(R_{1}+R_{2}\right) \approx \frac{7.0 \mathrm{~V}}{V_{O}}\left(R_{1}+R_{2}\right)
\end{aligned}
\]

Values shown are for a \(15 \mathrm{~V}, 30 \mathrm{~mA}\) regulator using an MC1723CP for a \(T_{A(\max)}=25^{\circ} \mathrm{C}\).

Figure 3-3A. MC1723C Basic Circuit Configuration for \(2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\text {ref }}\)

\[
\begin{aligned}
& R_{S C} \simeq \frac{0.66 \mathrm{~V}}{I S C} ; 10 \mathrm{k} \Omega<R_{1}+R_{2}<100 \mathrm{k} \Omega \\
& R_{2}=\frac{V_{0}}{V_{\text {ref }}}\left(R_{1}+R_{2}\right) \simeq \frac{V_{O}}{7.0 \mathrm{~V}}\left(R_{1}+R_{2}\right) \\
& R_{3}=R_{1} \| R_{2} ; 0 \leq C_{\text {ref }} \leq 0.1 \mu \mathrm{~F}
\end{aligned}
\]

Values shown are for a \(5.0 \mathrm{~V}, 30 \mathrm{~mA}\) regulator using an MC1723CP for a \(\mathrm{T}_{\mathrm{A}(\max)}=70^{\circ} \mathrm{C}\).

To obtain greater output currents with the MC1723C the configurations shown in Figures 3-4A and \(3-5 A\) can be used. Figure 3-4A uses an NPN external pass element, while a PNP is used in Figure 3-5A.

Figure 3-4A. MC1723C NPN Boost Configuration

Values shown are for a \(15 \mathrm{~V}, 500 \mathrm{~mA}\) regulator using an unheatsinked MC1723CP and a 2N3055 on a \(6^{\circ} \mathrm{C} / \mathrm{W}\) heatsink for \(T_{A}\) up to \(+70^{\circ} \mathrm{C}\).

Figure 3-5A. MC1723C PNP Boost Configuration

\[
\begin{aligned}
& \mathrm{R}_{\mathrm{SC}} \cong \frac{0.66 \mathrm{~V}}{\mathrm{ISC}} ; 10 \mathrm{k} \Omega<\mathrm{R}_{1}+\mathrm{R}_{2}<100 \mathrm{k} \Omega ; 0 \leq \mathrm{C}_{\text {ref }} \leq 0.1 \mu \mathrm{~F} \\
& \mathrm{R}_{2}=\frac{\mathrm{V}_{\text {ref }}}{V_{0}}\left(R_{1}+R_{2}\right) \cong \frac{7.0 \mathrm{~V}}{V_{0}}\left(R_{1}+R_{2}\right) \\
& R_{3}=R_{1} \| R_{2} \\
& 0<R_{4} \leq V_{B E_{\text {on }}(Q 1)} / 5.0 \mathrm{~mA}
\end{aligned}
\]

Selection of Q1 based on considerations of Section 4.
Values shown are for a \(12 \mathrm{~V}, 750 \mathrm{~mA}\) regulator using an unheatsinked MC1723CP and a 2 N 3791 on a \(4^{\circ} \mathrm{C} W\) heatsink for \(\mathrm{T}_{\mathrm{A}}\) up to \(+70^{\circ} \mathrm{C}\).

\section*{3. High Efficiency Regulator Configurations}

When large output currents at voltages under approximately 9.0 V are desired, the configuration of Figure 3-6A can be utilized to obtain increased operating efficiency. This is accomplished by providing a separate low voltage input supply for the pass element. This method, however, usually necessitates that separate short circuit protection be provided for the IC regulator and external pass element. Figure 3-6A shows a high efficiency regulator configuration for the MC1723C.

Figure 3-6A. MC1723C High Efficiency Regulator Configuration

\section*{B. Negative, Adjustable Output IC Regulator Configurations}

\section*{1. Basic Regulator Configurations (MC1723C)}

Although a positive regulator, the MC1723C can be used in a negative regulator circuit configuration. This is done by using an external pass element and a zener level shifter as shown in Figure 3-1B. It should be noted that for proper operation, the input supply must not vary over a wide range, since the correct value for VZ depends directly on this voltage. In addition, it should be noted that this circuit will not operate with a shorted output.

Figure 3-1B. MC1723C Negative Regulator Configuration

\[
\begin{aligned}
& \left|V_{\mathrm{O}}\right| \geq 10 \mathrm{~V} ; 10 \mathrm{k} \Omega \leq \mathrm{R}_{1}+\mathrm{R}_{2} \leq 100 \mathrm{k} \Omega \\
& \mathrm{R}_{2}=\frac{V_{\text {ref }}}{\left|\mathrm{V}_{\mathrm{O}}\right|}\left(R_{1}+R_{2}\right) \cong \frac{7.0 \mathrm{~V}}{\left|\mathrm{~V}_{\mathrm{O}}\right|}\left(R_{1}+R_{2} \mid\right. \\
& \mathrm{V}_{\mathrm{Z}} \leq\left|\mathrm{V}_{\text {in }}\right|-V_{B E(Q 1)}-3.0 \mathrm{~V} ; \mathrm{V}_{Z} \geq\left|\mathrm{V}_{\text {in }}\right|-\left|\mathrm{V}_{\mathrm{O}}\right|-\mathrm{V}_{\mathrm{BE}(\mathrm{Q} 1)}+6.0 \mathrm{~V}
\end{aligned}
\]

Selection of Q1 based on considerations of Section 4.
Values shown are for a \(-15 \mathrm{~V}, 750 \mathrm{~mA}\) regulator using the MC1723CP with Q1 mounted on a \(20^{\circ} \mathrm{C} / \mathrm{W}\) heatsink at \(\mathrm{T}_{\mathrm{A}}\) up to \(+70^{\circ} \mathrm{C}\). Do not short circuit output.

\section*{C. Positive, Fixed Output IC Regulator Configurations}

\section*{1. Basic Regulator Configuration}

The basic current configuration for the positive three-terminal regulators is shown in Figure 3-1C. Depending on which regulator type is used, this configuration can provide output currents in excess of 3.0 A .

\section*{2. Output Current Boosting}

Figure 3-2C illustrates a method for obtaining greater output currents with the three-terminal positive regulators. Although any of these regulators may be used, usually it is most economical to use the 1.0 A MC7800C in this configuration.

Figure 3-1C. Basic Circuit Configuration for Positive, Fixed Output, Three-Terminal Regulators

\(\mathrm{C}_{\mathrm{in}}\) : required if regulator is located more than a few \((\approx 2\) to 4\()\) inches away from input supply capacitor; for long input leads to regulator, up to \(1.0 \mu \mathrm{~F}\) may be needed for \(\mathrm{C}_{\mathrm{in}}\). (\(\mathrm{C}_{\mathrm{in}}\) should be a high frequency type capacitor.)
\(\mathrm{C}_{0}\) : improves transient response.
XX : two digits of type number indicating nominal output voltage.
See Section 15 for heatsinking.

Figure 3-2C. Current Boost Configuration for Positive Three-Terminal Regulators

\[
\begin{aligned}
& \text { XX: two digits of type number indicating nominal output voltage. } \\
& \text { R: used to divert IC regulator bias current and determines at } \\
& \text { what output current level Q1 begins conducting. } \\
& 0<\mathrm{R} \leq \frac{V_{B E} \text { on(Q1) }}{I_{\mathrm{Bias}}(\mathrm{IC} 1)} ; \mathrm{RSC} \approx \frac{0.6 \mathrm{~V}}{\operatorname{ISC}(Q 1)} \text {; ISCTOT }=\operatorname{ISC(Q1)+ISC(IC1)} \\
& \text { Selection of Q1 based on considerations of Section } 4 \text {. } \\
& \text { Values shown are for a } 5.0 \mathrm{~V}, 5.0 \mathrm{~A} \text { regulator using an } \mathrm{MC} 7805 \mathrm{CT} \text { on } \\
& \text { a } 2.5^{\circ} \mathrm{C} / \mathrm{W} \text { heatsink and } \mathrm{Q} 1 \text { on a } 1^{\circ} \mathrm{C} / \mathrm{W} \text { heatsink for } \mathrm{T}_{\mathrm{A}} \text { up to } 70^{\circ} \mathrm{C} \text {. }
\end{aligned}
\]

\section*{3. Obtaining an Adjustable Output Voltage}

With the addition of an op amp, an adjustable output voltage supply can be obtained with the MC7805C. Regulation characteristics of the three-terminal regulators are retained in this configuration, shown in Figure 3-3C. If lower output currents are required, then an MC78M05C (0.5 A) could be used in place of the MC7805C.

\section*{4. Current Regulator}

In addition to providing voltage regulation, the three-terminal positive regulators can also be used as current regulators to provide a constant current source. Figure 3-4C shows this configuration. The output current can be adjusted to any value from \(\approx 8.0 \mathrm{~mA}\) (lQ , the regulator bias current) up to the available output current of the regulator. Five-volt regulators should be used to obtain the greatest output voltage compliance range for a given input voltage.

Figure 3-3C. Adjustable Output Voltage Configuration Using a Three-Terminal Positive Regulator

\[
\begin{aligned}
& V_{0}=7.0 \mathrm{~V} \text { to } 33 \mathrm{~V} \\
& V_{\text {in }}-V_{0} \geq 2.0 \mathrm{~V} \\
& V_{\text {in }} \geq 35 \mathrm{~V}
\end{aligned}
\]

Figure 3-4C. Current Regulator Configuration

\(I_{O}=\frac{V_{O^{\prime}}}{R}+I_{I B}\)
Current Reg \(\Delta \mathrm{I}_{\mathrm{O}}=\frac{\Delta \mathrm{V}_{\mathrm{O}^{\prime}}}{\mathrm{R}}+\Delta \mathrm{I}_{\mathrm{IB}}\)
\(V_{O}+V_{O^{\prime}}+2.0 V \leq V_{\text {in }} \leq 35 V\)

\section*{5. High Input Voltage}

Occasionally, it may be necessary to power a three-terminal regulator from a supply voltage greater than \(\mathrm{V}_{\text {in }}(\max), 35 \mathrm{~V}\) or 40 V . In these cases a preregulator circuit, as shown in Figure 3-5C, may be used.

Figure 3-5C. Preregulator for Input Voltages Above \(\mathbf{V}_{\text {in(max }}\))

XX : two digits of type number indicating nominal output voltage.
Values shown for \(\mathrm{V}_{\text {in }}=60 \mathrm{~V}\)
Q1 should be mounted on a \(2^{\circ} \mathrm{C} / \mathrm{W}\) heatsink for operation at \(T_{A}\) up to \(+70^{\circ} \mathrm{C}\). IC1 should be appropriately heatsinked for the package type used.

\section*{6. High Output Voltage}

If output voltages above 24 V are desired, the circuit configuration of Figure 3-6C may be used. Zener diode (Z1) sets the output voltage, while Q1, Z2, and D1 assure that the MC7824C does not have more than 30 V across it during short circuit conditions.

Figure 3-6C. High Output Voltage Configuration for Three-Terminal Positive Regulators

\[
V_{\mathrm{O}}=V_{\mathrm{Z} 1}+24 ; \mathrm{R}_{1}=\left(\frac{V_{\mathrm{in}}-\left(V_{\mathrm{Z} 1}+V_{\mathrm{Z} 2}\right)}{1.5}\right) \cdot h_{\mathrm{fe}(\mathrm{Q} 2)}
\]

Values shown are for a \(48 \mathrm{~V}, 1.0 \mathrm{~A}\) regulator
Q1 mounted on a \(10^{\circ} \mathrm{C} W\) heatsink
and IC1 mounted on a \(2^{\circ} \mathrm{C} / \mathrm{W}\) heatsink for \(\mathrm{T}_{\mathrm{A}}\) up to \(+70^{\circ} \mathrm{C}\).

\section*{D. Negative, Fixed Output IC Regulator Configurations}

\section*{1. Basic Regulator Configurations}

Figure 3-1D gives the basic circuit configuration for the MC79XX and MC79LXX three-terminal negative regulators.

Figure 3-1D. Basic Circuit Configuration for Negative Three-Terminal Regulators

\(\mathrm{C}_{\mathrm{in}}\) : required if regulator is located more than a few (\(\approx 2\) to 4) inches away from input supply capacitor; for long input leads to regulator, up to \(1.0 \mu \mathrm{~F}\) may be required. \(\mathrm{C}_{\mathrm{in}}\) should be a high frequency type capacitor.
\(\mathrm{C}_{\mathrm{O}}\) : improves stability and transient response.
XX: two digits of type number indicating nominal output voltage.
See Section 15 for heatsinking.

\section*{Output Current Boosting}

In order to obtain increased output current capability from the negative three-terminal regulators, the current boost configuration of Figure 3-2D may be used. Currents which can be obtained with this configuration are limited only by the capabilities of the external pass transistor(s).

Figure 3-2D. Output Current Boost Configuration for Three-Terminal Negative Regulators

\section*{2. Current Regulator}

The three-terminal negative regulators may also be used to provide a constant current sink, as shown in Figure 3-3D. In order to obtain the greatest output voltage compliance range at a given input voltage, the MC7905C or MC79L05C should be used in this configuration.

Figure 3-3D. Current Regulator Configuration for the Three-Terminal Negative Regulators

\section*{F. General Design Considerations}

In addition to the design equations given in the regulator circuit configuration panels of Sections 3A-E, there are a few general design considerations which apply to all regulator circuits. These considerations are given below.

\section*{1. Regulator Voltages}

For any circuit configuration, the worse-case voltages present on each pin of the IC regulator must be within the maximum and/or minimum limits specified on the device data sheets. These limits are instantaneous values, not averages.

They include: a. \(\mathrm{V}_{\text {in }}(\mathrm{min})\)
b. \(V_{\text {in }}(\max)\)
c. \(\left(V_{\text {in }}-V_{\text {out }}\right)\) min
d. \(V_{\text {out }}(\min)\)
e. Vout(max)

For example, the voltage between Pins 12 and \(7(\mathrm{Vin})\) of an MC1723CP must never fall below 9.5 V , even instantaneously, or the regulator will not function properly, (see Figure 3-1B).

\section*{2. Regulator Power Dissipation, Junction Temperature and Safe Operating Area}

The junction temperature, power dissipation output current or safe operating area limits of the IC regulator must never be exceeded.

\section*{3. Operation with a Load Common to a Voltage of Opposite Polarity}

In many cases, a regulator powers a load which is not connected to ground but instead is connected to a voltage source of opposite polarity (e.g. op amps, level shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 3-1F. This protects the regulator, during startup and short circuit operation, from output polarity reversals.

Figure 3-1F. Output Polarity Reversal Protection

\section*{4. Reverse Bias Protection}

Occasionally, there exists the possibility that the input voltage to the regulator can collapse faster than the output voltage. This could occur, for example, if the input supply is "crowbarred" during an output overvoltage condition. If the output voltage is greater \(\approx 7.0 \mathrm{~V}\), the emitter-base junction of the series pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be employed, as shown in Figure 3-2F.

Figure 3-3F shows a three-terminal positive-adjustable regulator with the recommended protection diodes for output voltages in excess of 25 V , or high output capacitance values (\(\mathrm{CO}>25 \mu \mathrm{~F}, \mathrm{CAdj}>10 \mu \mathrm{~F}\)). Diode D1 prevents \(\mathrm{CO}_{\mathrm{O}}\) from discharging through the regulator during an input short circuit. Diode D2 protects against capacitor CAdj from discharging through the regulator during an output short circuit. The combination of diodes D1 and D2 prevents CAdj from discharging through the regulator during an input short circuit.

Figure 3-2F. Reverse Bias Protection

Figure 3-3F. Reverse Bias Protection for Three-Terminal Adjustable Regulators

\section*{SECTION 4}

\section*{SERIES PASS ELEMENT CONSIDERATIONS FOR LINEAR REGULATORS}

Presently, most monolithic IC voltage regulators that are available have output current capabilities from 100 mA to 3.0 A. If greater current capability is required, or if the IC regulator does not possess sufficient safe-operating-area (SOA), the addition of an external series pass element is necessary.

In this section, configurations, specifications and current limit techniques for external series pass elements will be considered. For illustrative purposes, pass elements for only positive regulator types will be discussed. However, the same considerations apply for pass elements used with negative regulators.

\section*{A. Series Pass Element Configurations}

\section*{Using an NPN Type Transistor}

If the IC regulator has an external sense lead, an NPN type series pass element may be used, as shown in Figure 4-1 A. This pass element could be a single transistor or multiple transistors arranged in Darlington and/or paralleled configurations.

In this configuration, the IC regulator supplies the base current (IB) to the pass element (Q2) which acts as a current amplifier and provides the increased output current (IO) capability.

Figure 4-1A. NPN Type Series Pass Element Configuration

\section*{Using a PNP Type Transistor}

If the IC regulator does not have an external sense lead, as in the case of the three-terminal fixed output regulators, the configuration of Figure 4-1B can be used. (Regulators which possess an external sense lead may also be used with this configuration.) As before, the PNP type pass element can be a single transistor or multiple transistors.

Figure 4-1B. PNP Type Series Pass Element Configuration

This configuration functions in a similar manner to that of Figure 4-1A, in that the regulator supplies base current to pass element. The resistor (R) serves to route the IC regulator bias current (IBias) away from the base of Q2. If not included, regulation would be lost at low output currents. The value of R is low enough to prevent Q2 from turning on when IBias flows through this resistor, and is given by:
\[
\begin{equation*}
0<\mathrm{R} \leq \frac{\mathrm{V}_{\mathrm{BEon}}(\mathrm{Q} 2)}{\mathrm{I}_{\text {Bias }}} \tag{4.0}
\end{equation*}
\]

\section*{B. Series Pass Element Specifications}

Independent of which configuration is utilized, the transistor or transistors that compose the pass element must have adequate ratings for \(\mathrm{IC}(\max), \mathrm{V}_{\mathrm{CEO}}\), hfe, power dissipation, and safe operating area.
1. IC(max) - for the pass element of Figure \(4-1 \mathrm{~A}, \mathrm{I} C(\max)\) is given by:
\[
\begin{align*}
& \mathrm{IC}(\max)(\mathrm{Q} 2) \geq \mathrm{IO}(\max)-\mathrm{I}(\max)(\mathrm{Q} 2)=\mathrm{IO}(\max)-\frac{\mathrm{IC}(\max)(\mathrm{Q} 2)}{\mathrm{h}_{\mathrm{fe}(\mathrm{Q} 2)}} \tag{4.1}\\
& \geq \mathrm{IO}(\max)
\end{align*}
\]

For the configuration of Figure 4-1B:
\[
\begin{align*}
\mathrm{I}(\max)(\mathrm{Q} 2) & \geq \mathrm{IO}(\max)+\mathrm{I} \mathrm{~B}(\max)(\mathrm{Q} 2) \tag{4.3}\\
& \geq \mathrm{IO}(\max) \tag{4.4}
\end{align*}
\]
2. VCEO - since \(\operatorname{VCE}(Q 2)\) is equal to \(V_{\operatorname{in} 1}\) (max) when the output is shorted or during start up:
\[
\begin{equation*}
\mathrm{V}_{\mathrm{CEO}}(\mathrm{Q} 2) \leq \mathrm{V}_{\text {in1 }}(\max) \tag{4.5}
\end{equation*}
\]
3. hfe - the minimum DC current gain for Q2 in Figures 4-1A and 4-1B is given by:
\[
\begin{equation*}
\mathrm{hfe}_{\mathrm{fe}(\min)(\mathrm{Q} 2)} \geq \frac{\mathrm{I}(\max)(\mathrm{Q} 2)}{\mathrm{I}(\max)(\mathrm{Q} 2)} @ \mathrm{~V}_{\mathrm{CE}}=\left(\mathrm{V}_{\mathrm{in} 1(\min)}-\mathrm{V}_{\mathrm{O}}\right) \tag{4.6}
\end{equation*}
\]

\section*{4. Maximum Power Dissipation PD(max), and Safe Operating Area (SOA)}

For any transistor there are certain combinations of \(I_{C}\) and \(V_{C E}\) at which it may safely be operated. When plotted on a graph, whose axes are VCE and IC, a safe-operating region is formed.

As an example, the safe-operating-area (SOA) curve for the well known 2N3055 NPN silicon power transistor is shown in Figure 4-2. The boundaries of the SOA curve are formed by IC(max), power dissipation, second breakdown and VCEO ratings of the transistor. Notice that the power dissipation and second breakdown ratings are given for a case temperature of \(+25^{\circ} \mathrm{C}\) and must be derated at higher case temperatures. (Derating factors may be found in the transistors' data sheets.) These boundaries must never be exceeded during operation, or destruction of the transistor(s) which constitute the pass element may result. (In addition, the maximum operating junction temperature must not be exceeded, see Section 15.)

\section*{C. Current Limiting Techniques}

In order to select a transistor or transistors with adequate SOA, the locus of pass element IC and VCE operating points must be known. This locus of points is determined by the input voltage (\(\mathrm{V}_{\text {in1 }}\), output voltage \((\mathrm{VO})\), output current (IO) and the type of output current limiting technique employed.

In most cases, \(\mathrm{V}_{\text {in1 }}, \mathrm{V}_{\mathrm{O}}\), and the required output current are already known. All that is left to determine is how the chosen current limit scheme affects required pass element SOA.

Note, since the external pass element is merely an extension of the IC regulator, the following discussions apply equally well to IC regulators not using an external pass element.

\section*{1. Constant Current Limiting}

This method is the simplest to implement and is extensively used, especially at the lower output current levels. The basic circuit configuration is shown in Figure 4-3A, and operates in the following manner.

As the output current increases, the voltage drop across RSC increases, proportionately. When the output current has increased to the point that the voltage drop across RSC is equal to the base-emitter ON voltage of Q3(VBEon(Q3)), Q3conducts. This diverts base current (IDrive) away from Q1, the IC regulator's internal series pass element. Base drive (\(\mathrm{IB}(\mathrm{Q} 2)\)) of Q2 is therefore reduced and its collector-emitter voltage increases, thereby reducing the output voltage below its regulated value, \(\mathrm{V}_{\text {out }}\). The resulting output voltage-current characteristic is shown in Figure 4-3B.

The value of ISC is given by:
\[
\begin{equation*}
\mathrm{ISC}=\frac{\mathrm{V}_{\mathrm{BE}} \mathrm{on}(\mathrm{Q} 3)}{\mathrm{RSC}} \tag{4.7}
\end{equation*}
\]

Figure 4-2. 2N3055 Safe Operating Area (SOA)

By using the base of Q1 in the IC regulator as a control point, this configuration has the added benefit of limiting the IC regulator output current (\(\mathrm{IB}_{\mathrm{B}}(\mathrm{Q} 2)\)) to \(\mathrm{Isc} / \mathrm{hfe}(\mathrm{Q} 2)\), as well as limiting the collector current of Q2 to ISC. Of course, access to this point is necessary. Fortunately, it is usually available in the form of a separate pin or as the regulator's compensation terminal.(1)

The required safe-operating-area for Q2 can be obtained by plotting the \(\mathrm{V}_{\mathrm{CE}}\) and IC of Q2 given by:
\[
\begin{gather*}
\mathrm{V}_{\mathrm{CE}(\mathrm{Q} 2)}=\mathrm{V}_{\text {in } 1}-\mathrm{V}_{\mathrm{O}}-\mathrm{IORSC} \simeq \mathrm{~V}_{\text {in } 1}-\mathrm{V}_{\mathrm{O}} \tag{4.8}\\
\mathrm{I}(\mathrm{Q} 2) \simeq \mathrm{IO}_{\mathrm{O}} \tag{4.9}\\
\text { where, } \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {Out }} \text { for } 0 \leq \mathrm{IO}_{\mathrm{O}} \leq \mathrm{ISC} \tag{4.10}\\
\text { and, } \mathrm{IO}=\mathrm{ISC} \text { for } 0 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\text {out }} \tag{4.11}
\end{gather*}
\]

The resulting plot is shown in Figure 4-4. The transistor chosen for Q2 must have an SOA which encloses this plot, see Figure 4-4. Note that the greatest demand on the transistor's SOA capability occurs when the output of the regulator is short circuited and the pass element must support the full input voltage and short circuit current simultaneously.

Figure 4-4. Constant Current Limit SOA Requirements

(1) The three-terminal regulators have internal current limiting and therefore do not provide access to this point. If an external pass element is used with these regulators, constant current limiting can still be accomplished by diverting pass element drive.

\section*{2. Foldback Current Limiting}

A disadvantage of the constant current limit technique is that in order to obtain sufficient SOA the pass element must have a much greater collector current capability than is actually needed. If the short circuit current could be reduced, while still allowing full output current to be obtained during normal regulator operation, more efficient utilization of the pass elements SOA capability would result. This can be done by using a "foldback" current limiting technique instead of constant current limiting.

The basic circuit configuration for this method is shown in Figure 4-5(A). The circuit operates in a manner similar to that of the constant current limiting circuit, in that output current control is obtained by diverting base drive away from Q1 with Q3.

At low output currents, \(\mathrm{V}_{\mathrm{A}}\) approximately equals \(\mathrm{V}_{\mathrm{O}}\) and \(\mathrm{V}_{\mathrm{R}}\) is less than than \(\mathrm{V}_{\mathrm{O}}\). Q 3 is therefore non-conducting and the output voltage remains constant. As the output current increases, the voltage drop across RSC increases until VA and VR2 are great enough to bias Q3 on. The output current at which this occurs is IK , the "knee" current.

Figure 4-5. Foldback Current Limiting

Figure 4-6. Foldback Current Limit SOA Requirements

The output voltage will now decrease. Less output current is now required to keep \(\mathrm{V}_{\mathrm{A}}\) and \(\mathrm{V}_{\mathrm{R} 2}\) at a level sufficient to bias Q3 on since the voltage at its emitter has the tendency to decrease faster than that at its base. The output current will continue to "foldback" as the output voltage decreases, until an output short circuit current level (ISC) is reached when the output voltage is zero. The resulting output current-voltage characteristic is shown in Figure 4-5B. The values for \(R_{1}, R_{2}\), and RSC (neglecting base current of Q3) are given by:
\[
\begin{align*}
& \text { RSC }= \frac{V_{\text {out }} / \text { ISC }}{\left(1+\frac{V_{\text {out }}}{V_{\text {BEon(Q3) }}}\right)-\frac{I K}{I S C}} \tag{4.12}\\
& \frac{R_{2}}{R_{1}+R_{2}}=\frac{V_{\text {BEon(Q3 }}}{\operatorname{ISC} R S C} \tag{4.13}\\
& \text { and, } R_{1}+R_{2} \leq \frac{V_{\text {out }}}{\text { IDrive }} \tag{4.14}
\end{align*}
\]
where: \(V_{\text {out }}=\) normal regulator output voltage
IK = knee current
ISC = short circuit current
IDrive = base drive to regulator's internal pass element(s)
A plot of Q2 operating points, which result when using this technique, is shown in Figure 4-6. Note that the pass element is required to operate with a collector current of only ISC during short circuit conditions, not the full output current, IK. This results in a more efficient utilization of the SOA of Q2 allowing the use of a smaller transistor than if constant current limiting were used. Although foldback current limiting allows use of smaller pass element transistors for a given regulator output current than does constant current limiting, it does have a few disadvantages.

Referring to Equation (4.12), as the foldback ratio (IK/ISC) is increased, the required value of RSC increases. This results in a greater input voltage at higher foldback ratios. In addition, it can be seen for Equation (4.12) that there exists an absolute limit to the foldback ratio equal to:
\[
\begin{equation*}
\left(\frac{I_{K}}{\operatorname{ISC}(\max)}\right)=1+\frac{V_{\text {out }}}{V_{B E o n(Q 3)}} \text { for } R_{S C}=\infty \tag{4.15}
\end{equation*}
\]

For these reasons, foldback ratios greater than \(2: 1\) or \(3: 1\) are not usually practical for the lower output voltage regulators.

\section*{D. Paralleling Pass Element Transistors}

Occasionally, it will not be possible to obtain a transistor with sufficient safe-operating-area. In these cases it is necessary to parallel two or more transistors. Even if a single transistor with sufficient capability is available, it is possible that paralleling two smaller transistors is more economical.

In order to insure that the collector currents of the paralleled transistors are approximately equal, the configuration of Figure 4-7 can be used. Emitter-ballasting resistors are used to force collector-current sharing between Q1 and Q2. The collector-current mismatch can be determined by considering the following, from Figure 4-7,
\[
\begin{align*}
& \mathrm{V}_{\mathrm{BE} 1}+\mathrm{V}_{1}=\mathrm{V}_{\mathrm{BE} 2}+\mathrm{V}_{2} \tag{4.16}\\
& \text { and, } \Delta \mathrm{V}_{\mathrm{BE}}=\Delta \mathrm{V} \tag{4.17}
\end{align*}
\]
where: \(\mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\) and, \(\Delta \mathrm{V}=\mathrm{V}_{2}-\mathrm{V}_{1}\)

Assuming \(\mathrm{I}_{\mathrm{E} 1} \simeq \mathrm{I}_{\mathrm{C}}\) and \(\mathrm{I}_{\mathrm{E} 2} \simeq \mathrm{O}_{\mathrm{C}}\), the collector-current mismatch is given by,
\[
\begin{equation*}
\frac{I_{C 2}-I_{C 1}}{I_{C 2}}=\frac{\left(\frac{V_{2}}{R_{E}}\right)-\left(\frac{V_{1}}{R_{E}}\right)}{\left(\frac{V_{2}}{R_{E}}\right)}=\frac{V_{2}-V_{1}}{V_{2}}=\frac{\Delta V}{V_{2}}=\frac{\Delta V_{B E}}{V_{2}} \tag{4.18}
\end{equation*}
\]
and, percent collector-current mismatch \(=\frac{\Delta V_{B E}}{V_{2}} \times 100 \%\)
From Equation (4.20), the collector-current mismatch is dependent on \(\Delta V_{B E}\) and \(V_{2}\). Since \(\Delta V_{B E}\) is usually acceptable, \(\mathrm{V}_{2}\) should be 1.0 V to 0.5 V , respectively. \(\mathrm{RE}_{\mathrm{E}}\) is therefore given by:
\[
\begin{equation*}
\mathrm{R}_{\mathrm{E}}=\frac{0.5 \mathrm{~V} \text { to } 1.0 \mathrm{~V}}{\mathrm{I} \mathrm{C} 1}=\frac{0.5 \mathrm{~V} \text { to } 1.0 \mathrm{~V}}{\mathrm{I} \mathrm{C} 2}=\frac{0.5 \mathrm{~V} \text { to } 1.0 \mathrm{~V}}{\mathrm{I} / 2} \tag{4.21}
\end{equation*}
\]

Figure 4-7. Paralleling Pass Element Transistors

\title{
SECTION 5 LINEAR REGULATOR CONSTRUCTION AND LAYOUT
}

An important, and often neglected, aspect of the total regulator circuit design is the actual layout and component placement of the circuit. In order to obtain excellent transient response performance, high frequency transistors are used in modern integrated circuit voltage regulators. Proper attention to circuit layout is therefore necessary to prevent regulator instability or oscillations, or degraded performance.

In this section, guidelines will be given on proper regulator layout and placement of circuit components. In addition, topics such as remote voltage sensing, semiconductor mounting techniques, and thermal system evaluations will also be discussed.

\section*{1. General Layout and Component Placement Considerations}

As mentioned previously, modern integrated circuit regulators are necessarily high bandwidth devices in order to obtain good transient response characteristics. To insure stable closed-loop operation, all these devices are frequency compensated, either internally or externally. This compensation can easily be upset by unwanted stray circuit capacitances and lead inductances, resulting in spurious oscillations. Therefore, it is important that the circuit lead lengths be short and the layout as tight as possible. Particular attention should be paid to locating the compensation and bypass capacitors as close to the IC as possible. Lead lengths associated with the external pass element(s), if used, should also be minimized.

Often overlooked is the stray inductance associated with the input leads to the regulator circuit. If the lead length from the input supply filter capacitor to the regulator input is more than a couple of inches, a \(0.01 \mu \mathrm{~F}\) to \(1.0 \mu \mathrm{~F}\) high frequency type capacitor (tantalum, ceramic, etc.) should be used to bypass the supply leads close to the regulator input pins.

\section*{2. Ground Loops and Remote Voltage Sensing}

Ground Loops - Regulator performance can also suffer if ground loops in the circuit wiring are not avoided. The most common ground loop problem occurs when the return lead of the input supply filter capacitor is improperly located, as shown in Figure 5-1. If this return lead is physically connected between the load return and the regulator circuit ground point ("B"), a ripple voltage component (60 Hz or 120 Hz) can be induced on the load voltage \(\left(\mathrm{V}_{\mathrm{L}}\right)\). This is due to the high peaks of the filter capacitor ripple current (Iripple) flowing through the lead resistance between the load and regulator. These peaks can be 5 to 15 times the value of load current. Since the regulator will only keep constant the voltage between its sense lead and ground point, points " \(A\) " and " \(B\) " in Figure 5-1, this additional ripple voltage (Vlead), will appear at the load.

This problem can be avoided by proper placement and connection of the filter capacitor return load as shown in Figure 5-2.
Remote Voltage Sensing - Closely related to the above ground loop problem is resistance in the current carrying leads to the load. This can cause poorer than expected load regulation in cases where the load currents are large or where the load is located some distance from the regulator. This is illustrated in Figure 5-3. As stated previously, the regulator circuit will keep the voltage present between its sense and ground pins constant. From Figure 5-3 we can see that any lead resistance between these points and the load will cause the load voltage \(\left(\mathrm{V}_{\mathrm{L}}\right)\) to vary with varying load current, IL . This effectively lowers the load regulation of the circuit.

Figure 5-1. Filter Capacitor Ground Loop - WRONG!

Figure 5-2. Filter Capacitor Ground Loop - RIGHT!

This problem can be avoided by the use of remote Sense leads, as shown in Figure 5-4. The voltage drops in the high current carrying leads now have no effect on the load voltage (VL). However, since the Sense and Ground leads are usually rather long, care must be exercised that their associated lead inductance is minimized, or loop instability may result. The Ground and Sense leads should be formed into a twisted pair lead to minimize their lead inductance and noise pickup.

Figure 5-3. Effects of Resistance In Output Leads

Figure 5-4. Remote Voltage Sensing

\section*{3. Mounting Considerations for Power Semiconductors}

Current and power ratings of semiconductors are inseparably linked to their thermal environment. Except for lead-mounted parts used at low currents, a heat exchanger is required to prevent the junction temperature from exceeding its rated limit, thereby running the risk of a high failure rate. Furthermore, the semiconductor industry's field history indicated that the failure rate of most silicon semiconductors decreases approximately by one-half for a decrease in junction temperature from \(160^{\circ}\) to \(135^{\circ} \mathrm{C}\).(1) Guidelines for designers of military power supplies impose a \(110^{\circ} \mathrm{C}\) limit upon junction temperature.(2) Proper mounting minimizes the temperature gradient between the semiconductor case and the heat exchanger.

Most early life field failures of power semiconductors can be traced to faulty mounting procedures. With metal packaged devices, faulty mounting generally. causes unnecessarily high junction temperature, resulting in reduced component lifetime, although mechanical damage has occurred on occasion from improperly mounting to a warped surface. With the widespread use of various plastic packaged semiconductors, the prospect of mechanical damage is very significant. Mechanical damage can impair the case moisture resistance or crack the semiconductor die.

Figure 5-5 shows an example of doing nearly everything wrong. A tab mount TO-220 package is shown being used as a replacement for a TO-213AA (TO-66) part which was socket mounted. To use the socket, the leads are bent - an operation which, if not properly done, can crack the package, break the internal bonding wires, or crack the die. The package is fastened with a sheet metal screw through a \(1 / 4^{\prime \prime}\) hole containing a fiber-insulating sleeve. The force used to tighten the screw tends to pull the package into the hole, possibly causing enough distortion to crack the die. In addition the contact area is small because of the area consumed by the large hole and the bowing of the package, the result is a much higher junction temperature than expected. If a rough heatsink surface and/or burrs around the hole were displayed in the illustration, most but not all poor mounting practices would be covered.

Figure 5-5. Extreme Case of Improperly Mounting a Semiconductor (Distortion Exaggerated)

\footnotetext{
(1) MIL-HANDBOOK - 2178, SECTION 2.2.
(2) Navy Power Supply Reliability — Design and Manufacturing Guidelines NAVMAT P4855-1, Dec. 1982 NAVPUBFORCEN, 5801 Tabor Ave., Philadelphia, PA 19120.

Cho-Therm is a registered trademark of Chromerics, Inc. Grafoil is a registered trademark of Union Carbide Kapton is a registered trademark of E.I. Dupont Rubber-Duc is a trademark of AAVID Engineering Sil Pad is a trademark of Berquist
Sync-Nut is a trademark of ITW Shakeproof
Thermasil is a registered trademark and Thermafilm is a trademark of Thermalloy, Inc. ICePAK, Full Pak, POWERTAP and Thermopad are trademarks of Motorola, Inc.
}

In many situations the case of the semiconductor must be electrically isolated from its mounting surface. The isolation material is, to some extent, a thermal isolator as well, which raises junction operating temperatures. In addition, the possibility of arc-over problems is introduced if high voltages are present. Various regulating agencies also impose creepage distance specifications which further complicates design. Electrical isolation thus places additional demands upon the mounting procedure.

Proper mounting procedures usually necessitate orderly attention to the following:
1. Preparing the mounting surface
2. Applying a thermal grease (if required)
3. Installing the insulator (if electrical isolation is desired)
4. Fastening the assembly
5. Connecting the terminals to the circuit

In this note, mounting procedures are discussed in general terms for several generic classes of packages. As newer packages are developed, it is probable that they will fit into the generic classes discussed in this note. Unique requirements are given on data sheets pertaining to the particular package. The following classes are defined:

Flange Mount
Tab Mount
Plastic Body Mount Surface Mount
Appendix A contains a brief review of thermal resistance concepts.
Appendix \(B\) discusses measurement difficulties with interface thermal resistance tests.

\section*{Mounting Surface Preparation}

In general, the heatsink mounting surface should have a flatness and finish comparable to that of the semiconductor package. In lower power applications, the heatsink surface is satisfactory if it appears flat against a straight edge and is free from deep scratches. In high power applications, a more detailed examination of the surface is required. Mounting holes and surface treatment must also be considered.

\section*{Surface Flatness}

Surface flatness is determined by comparing the variance in height \((\Delta h)\) of the test specimen to that of a reference standard as indicated in Figure 5-6. Flatness is normally specified as a fraction of the Total Indicator Reading (TIR). The mounting surface flatness (i.e, \(\Delta h / T I R\)) if less than 4 mils per inch, normal for extruded aluminum, is satisfactory in most cases.

Figure 5-6. Surface Flatness Measurement
TIR = Total Indicator Reading

\section*{Surface Finish}

Surface finish is the average of the deviations both above and below the mean value of surface height. For minimum interface resistance, a finish in the range of \(50 \mu \mathrm{in}\). to \(60 \mu \mathrm{in}\). is satisfactory. A finer finish is costly to achieve and does not significantly lower contact resistance. Tests conducted by Thermalloy using a copper TO-204 (TO-3) package with a typical \(32 \mu \mathrm{in}\). finish, showed that heatsink finishes between \(16 \mu \mathrm{in}\). and \(64 \mu \mathrm{in}\). caused less than \(\pm 2.5 \%\) difference in interface thermal resistance when the voids and scratches were filled with a thermal joint compound.(3) Most commercially available cast or extruded heatsinks will require spotfacing when used in high power applications. In general, milled or machined surfaces are satisfactory if prepared with tools in good working condition.

\section*{Mounting Holes}

Mounting holes generally should only be large enough to allow clearance of the fastener. The larger thick flange type packages having mounting holes removed from the semiconductor die location, such as the TO-204AA, may successfully be used with larger holes to accommodate an insulating bushing, but many plastic encapsulated packages are intolerant of this condition. For these packages, a smaller screw size must be used such that the hole for the bushing does not exceed the hole in the package.

Punched mounting holes have been a source of trouble because if not properly done, the area around a punched hole is depressed in the process. This "crater" in the heatsink around the mounting hole can cause two problems. The device can be damaged by distortion of the package as the mounting pressure attempts to conform it to the shape of the heatsink indentation, or the device may only bridge the crater and leave a significant percentage of its heat-dissipating surface out of contact with the heatsink. The first effect may often be detected immediately by visual cracks in the package (if plastic), but usually an unnatural stress is imposed, which results in an early-life failure. The second effect results in hotter operation and is not manifested until much later.

Although punched holes are seldom acceptable in the relatively thick material used for extruded aluminum heatsinks, several manufacturers are capable of properly utilizing the capabilities inherent in both fine-edge blanking or sheared-through holes when applied to sheet metal as commonly used for stamped heatsinks. The holes are pierced using Class A progressive dies mounted on four-post die sets equipped with proper pressure pads and holding fixtures.

When mounting holes are drilled, a general practice with extruded aluminum, surface cleanup is important. Chamfers must be avoided because they reduce heat transfer surface and increase mounting stress. However, the edges must be broken to remove burrs which cause poor contact between device and heatsink and may puncture isolation material.

\section*{Surface Treatment}

Many aluminum heatsinks are black-anodized to improve radiation ability and prevent corrosion. Anodizing results in significant electrical but negligible thermal insulation. It need only be removed from the mounting area when electrical contact is required. Heatsinks are also available which have a nickel plated copper insert under the semiconductor mounting area. No treatment of this surface is necessary.

Another treated aluminum finish is iridite, or chromate-acid dip, which offers low resistance because of its thin surface, yet has good electrical properties because it resists oxidation. It need only be cleaned of the oils and films that collect in the manufacture and storage of the sinks, a practice which should be applied to all heatsinks.

For economy, paint is sometimes used for sinks; removal of the paint where the semiconductor is attached is usually required because of the paint's high thermal resistance. However, when it is necessary to insulate the semiconductor package from the heatsink, hard anodized or painted surfaces allow an easy installation for low voltage applications. Some manufacturers will provide anodized or painted surfaces meeting specific insulation voltage requirements, usually up to 400 V .

It is also necessary that the surface be free from all foreign material, film, and oxide (freshly bared aluminum forms an oxide layer in a few seconds). Immediately prior to assembly, it is a good practice to polish the mounting area with No. 000 steel wool, followed by an acetone or alcohol rinse.
(3) Catalog \#87-HS-9 (1987), page 8, Thermalloy, Inc., P.O. Box 810839, Dallas, Texas 75381-0839.

\section*{Interface Decisions}

When any significant amount of power is being dissipated, something must be done to fill the air voids between mating surfaces in the thermal path. Otherwise, the interface thermal resistance will be unnecessarily high and quite dependent upon the surface finishes.

For several years, thermal joint compounds, often called grease, have been used in the interface. They have a resistivity of approximately \(60^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{in}\) whereas air has \(1200^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{in}\). Since surfaces are highly pockmarked with minute voids, use of a compound makes a significant reduction in the interface thermal resistance of the joint. However, the grease causes a number of problems, as discussed in the following section. To avoid using grease, manufacturers have developed dry conductive and insulating pads to replace the more traditional materials. These pads are conformal and therefore partially fill voids when under pressure.

\section*{Thermal Compounds (Grease)}

Joint compounds are a formulation of fine zinc or other conductive particles in a silicone oil or other synthetic base fluid which maintains a grease-like consistency with time and temperature. Since some of these compounds do not spread well, they should be evenly applied in a very thin layer using a spatula or lintless brush, and wiped lightly to remove excess material. Some cyclic rotation of the package will help the compound spread evenly over the entire contact area. Some experimentation is necessary to determine the correct quantity; too little will not fill all the voids, while too much may permit some compound to remain between well mated metal surfaces where it will substantially increase the thermal resistance of the joint.

To determine the correct amount, several semiconductor samples and heatsinks should be assembled with different amounts of grease applied evenly to one side of each mating surface. When the amount is correct, a very small amount of grease should appear around the perimeter of each mating surface as the assembly is slowly torqued to the recommended value. Examination of a dismantled assembly should reveal even wetting across each mating surface. In production, assemblers should be trained to slowly apply the specified torque even though an excessive amount of grease appears at the edges of mating surfaces. Insufficient torque causes a significant increase in the thermal resistance of the interface.

To prevent accumulation of airborne particulate matter, excess compound should be wiped away using a cloth moistened with acetone or alcohol. These solvents should not contact plastic-encapsulated devices, as they may enter the package and cause a leakage path or carry in substances which might attack the semiconductor chip.

Data showing the effect of compounds on several package types under different mounting conditions is shown in Table 5-1. The rougher the surface, the more valuable the grease becomes in lowering contact resistance; therefore, when mica insulating washers are used, use of grease is generally mandatory. The joint compound also improves the breakdown rating of the insulator.

Table 5-1. Approximate Values for Interface Thermal Resistance Data from Measurements Performed In Motorola Applications Engineering Laboratory

Dry interface values are subject to wide variation because of extreme dependence upon surface conditions. Unless otherwise noted the case temperature is monitored by a thermocouple located directly under the die reached through a hole in the heatsink. (See Appendix B for a discussion of Interface Thermal Resistance Measurements.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Package Type and Data} & \multicolumn{7}{|c|}{Interface Thermal Resistance (\({ }^{\circ} \mathrm{C} / \mathrm{W}\))} \\
\hline & \multirow[b]{2}{*}{Description} & \multirow[t]{2}{*}{Test Torque In-Lb} & \multicolumn{2}{|l|}{Metal-to-Metal} & \multicolumn{3}{|c|}{With Insulator} & \multirow[b]{2}{*}{\begin{tabular}{l}
See \\
Note
\end{tabular}} \\
\hline Outlines & & & Dry & Lubed & Dry & Lubed & Type & \\
\hline TO-204AA (TO-3) & Diamond Flange & 6 & 0.5 & 0.1 & 1.3 & 0.36 & 3 mil Mica & 1 \\
\hline TO-220AB & Thermowatt & 8 & 1.2 & 1.0 & 3.4 & 1.6 & 2 mil Mica & 1,2 \\
\hline
\end{tabular}

NOTES: 1. See Figures 5-7 and 5-8 for additional data on TO-204AA and TO-220 packages.
2. Screw not insulated (see Figure 5-12).

\section*{Conductive Pads}

Because of the difficulty of assembly using grease and the evaporation problem, some equipment manufacturers will not, or cannot, use grease. To minimize the need for grease, several vendors offer dry conductive pads which approximate performance obtained with grease. Data for a greased bare joint and a joint using Grafoil, a dry graphite compound, is shown in the data of Figure 5-7. Grafoil is claimed to be a replacement for grease when no electrical isolation is required; the data indicates it does indeed perform as well as grease. Another conductive pad available from AAVID is called KON-DUX. It is made with a unique, grain oriented, flake-like structure (patent pending). Highly compressible, it becomes formed to the surface roughness of both the heatsink and semiconductor. Manufacturer's data shows it to provide an interface thermal resistance better than a metal interface with filled silicone grease. Similar dry conductive pads are available from other manufacturers. They are a fairly recent development; long term problems, if they exist, have not yet become evident.

\section*{Insulation Considerations}

Since most power semiconductors use are vertical device construction it is common to manufacture power semiconductors with the output electrode (anode, collector or drain) electrically common to the case; the problem of isolating this terminal from ground is a common one. For lowest overall thermal resistance, which is quite important when high power must be dissipated, it is best to isolate the entire heatsink/semiconductor structure from ground, rather than to use an insulator between the semiconductor and the heatsink. Heatsink isolation is not always possible, however, because of EMI requirements, safety reasons, instances where a chassis serves as a heatsink or where a heatsink is common to several non-isolated packages. In these situations insulators are used to isolate the individual components from the heatsink. Newer packages, such as the Motorola Full Pak and EMS modules, contain the electrical isolation material within, thereby saving the equipment manufacturer the burden of addressing the isolation problem.

\section*{Insulator Thermal Resistance}

When an insulator is used, thermal grease is of greater importance than with a metal-to-metal contact, because two interfaces exist instead of one and some materials, such as mica, have a hard, markedly uneven surface. With many isolation materials reduction of interface thermal resistance of between 2 to 1 and 3 to 1 are typical when grease is used.

Data obtained by Thermalloy, showing interface resistance for different insulators and torques applied to TO-204 (TO-3) and TO-220 packages, is shown in Figure 5-7, for bare and greased surfaces. Similar materials to those shown are available from several manufacturers. It is obvious that with some arrangements, the interface thermal resistance exceeds that of the semiconductor (junction-to-case).

Referring to Figure 5-7, one may conclude that when high power is handled, beryllium oxide is unquestionably the best. However, it is an expensive choice. (It should not be cut or abraided, as the dust is highly toxic.) Thermafilm is a filled polyimide material which is used for isolation (variation of Kapton). It is a popular material for low power applications because of its low cost ability to withstand high temperatures, and ease of handling in contrast to mica which chips and flakes easily.

A number of other insulating materials are also shown. They cover a wide range of insulation resistance, thermal resistance and ease of handling. Mica has been widely used in the past because it offers high break down voltage and fairly low thermal resistance at a low cost but it certainly should be used with grease.

Silicone rubber insulators have gained favor because they are somewhat conformal under pressure. Their ability to fill in most of the metal voids at the interface reduces the need for thermal grease. When first introduced, they suffered from cut-through after a few years in service. The ones presently available have solved this problem by having imbedded pads of Kapton or fiberglass. By comparing Figures 5-7(c) and 5-7(d), it can be noted that Thermasil, a filled silicone rubber without grease, has about the same interface thermal resistance as greased mica for the TO-220 package.

Figure 5-7. Interface Thermal Resistance Using Different Insulating Materials as a Function of Mounting Screw Torque

(a) TO-204AA (TO-3)

Without Thermal Grease

(c) TO-220

Without Thermal Grease
(1) Thermalfilm, .002 (.05) thick
(2) Mica, .003 (.08) thick
(3) Mica, . 002 (.05) thick
(4) Hard anodized, .020 (.51) thick
(5) Aluminum oxide, .062 (1.57) thick
(6) Berylium oxide, . 062 (1.57) thick
(7) Bare joint - no finish
(8) Grafoil, .005 (.13) thick*
*Grafoil is not an insulating material

(b) TO-204AA (TO-3) With Thermal Grease

(d) TO-220

With Thermal Grease
(1) Thermalfilm, .022 (.05) thick
(2) Mica, .003 (.08) thick
(3) Mica, 002 (.05) thick
(4) Hard anodized, .020 (.51) thick
(5) Thermalsil II, .009 (.23) thick
(6) Thermalsil II, 006 (.15) thick
(7) Bare joint - no finish
(8) Grafoil, .005 (.13) thick*
*Grafoil is not an insulating material

A number of manufacturers offer silicone rubber insulators. Table 5-2 shows measured performance of a number of these insulators under carefully controlled, nearly identical conditions. The interface thermal resistance extremes are over 2:1 for the various materials. It is also clear that some of the insulators are much more tolerant than others of out-of-flat surfaces. Since the tests were performed, newer products have been introduced. The Bergquist \(\mathrm{K}-10\) pad, for example, is described as having about \(2 / 3\) the interface resistance of the Sil Pad 1000 which would place its performance close to the Chomerics 1671 pad. AAVID also offers an isolated pad called Rubber-Duc, however it is only available vulcanized to a heatsink and therefore was not included in the comparison. Published data from AAVID shows R \(\theta \mathrm{CS}\) below \(0.3^{\circ} \mathrm{C} / \mathrm{W}\) for pressures above 500 psi. However, surface flatness and other details are not specified so a comparison cannot be made with other data in this note.

Table 5-2. Thermal Resistance of Silicone Rubber Pads
\begin{tabular}{|l|l|c|c|}
\hline Manufacturer & \multicolumn{1}{|c|}{ Product } & R \(_{\boldsymbol{\theta} \mathbf{C s}} @\) 3 Mils* & R \(_{\boldsymbol{\theta} \text { Cs }}\) @ 7.5 Mils \\
\hline Wakefield & Delta Pad 173-7 & 0.790 & 1.175 \\
Bergquist & Sil Pad K-4 & 0.752 & 1.470 \\
Stockwell Rubber & 1867 & 0.742 & 1.015 \\
Bergquist & Sil Pad 400-9 & 0.735 & 1.205 \\
Thermalloy & Thermalsil II & 0.680 & 1.045 \\
Shin-Etsu & TC-30AG & 0.664 & 1.260 \\
Bergquist & Sil Pad 400-7 & 0.633 & 1.060 \\
Chomerics & 1674 & 0.592 & 1.190 \\
Wakefield & Delta Pad 174-9 & 0.574 & 0.755 \\
Bergquist & Sil Pad 1000 & 0.529 & 0.935 \\
Ablestik & Thermal Wafers & 0.500 & 0.990 \\
Thermalloy & Thermalsil III & 0.440 & 1.035 \\
Chomerics & 1671 & 0.367 & 0.655 \\
\hline
\end{tabular}
*Test Fixture Deviation from flat Thermalloy EIR86-1010.
The thermal resistance of some silicone rubber insulators is sensitive to surface flatness when used under a fairly rigid base package. Data for a TO-204AA (TO-3) package insulated with Thermasil is shown on Figure 5-8. Observe that the "worst case" encountered (7.5 mils) yields results having about twice the thermal resistance of the "typical case" (3 mils), for the more conductive insulator. In order for Thermasil III to exceed the performance of greased mica, total surface flatness must be under 2 mils, a situation that requires spot finishing.

Figure 5-8. Effect of Total Surface Flatness on Interface Resistance Using Silicon Rubber Insulators

Silicon rubber insulators have a number of unusual characteristics. Besides being affected by surface flatness and initial contact pressure, time is a factor. For example, in a study of the Cho-Therm 1688 pad thermal interface impedance dropped from \(0.90^{\circ} \mathrm{C} / \mathrm{W}\) to \(0.70^{\circ} \mathrm{C} / \mathrm{W}\) at the end of 1000 hours. Most of the change occurred during the first 200 hours where R \(\theta\) CS measured \(0.74^{\circ} \mathrm{C} / \mathrm{W}\). The torque on the conventional mounting hardware had decreased to 3 in-lb from an initial 6 in-lb. With non-conformal materials, a reduction in torque would have increased the interface thermal resistance.

Because of the difficulties in controlling all variables affecting tests of interface thermal resistance, data from different manufacturers is not in good agreement. Table 5-3 shows data obtained from two sources. The relative performance is the same, except for mica which varies widely in thickness. Appendix B discusses the variables which need to be controlled. At the time of this writing ASTM Committee D9 is developing a standard for interface measurements.

The conclusions to be drawn from all this data is that some types of silicon rubber pads, mounted dry, will out perform the commonly used mica with grease. Cost may be a determining factor in making a selection.

Table 5-3. Performance of Silicon Rubber Insulators Tested per MIL-I-49456
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Material } & \multicolumn{2}{|c|}{ Measured Thermal Resistance (\({ }^{\circ} \mathbf{C} / \mathbf{W}\)) } \\
\cline { 2 - 3 } & Thermalloy Data(1) & Bergquist Data(2) \\
\hline Bare Joint, greased & 0.033 & 0.008 \\
BeO, greased & 0.082 & - \\
Cho-Therm, 1617 & 0.233 & - \\
Q Pad (non-insulated) & - & 0.009 \\
Sil-Pad, K-10 & 0.263 & 0.200 \\
Thermasil III & 0.267 & - \\
\hline & & \\
Mica, greased & 0.329 & 0.400 \\
Sil-Pad 1000 & 0.400 & 0.300 \\
Cho-therm 1674 & 0.433 & - \\
Thermasil II & 0.500 & - \\
Sil-Pad 400 & 0.533 & 0.440 \\
Sil-Pad K-4 & 0.583 & 0.440 \\
\hline
\end{tabular}
(1) From Thermalloy EIR 87-1030
(2) From Bergquist Data Sheet

\section*{Insulation Resistance}

When using insulators, care must be taken to keep the mating surfaces clean. Small particles of foreign matter can puncture the insulation, rendering it useless or seriously lowering its dielectric strength. In addition, particularly when voltages higher than 300 V are encountered, problems with creepage may occur. Dust and other foreign material can shorten creepage distances significantly, so having a clean assembly area is important. Surface roughness and humidity also lower insulation resistance. Use of thermal grease usually raises the withstand voltage of the insulation system but excess must be removed to avoid collecting dust. Because of these factors, which are not amenable to analysis, hi-pot testing should be done on prototypes and a large margin of safety employed.

\section*{Insulated Electrode Packages}

Because of the nuisance of handling and installing the accessories needed for an insulated semiconductor mounting, equipment manufacturers have longed for cost-effective insulated packages since the 1950s. The first to appear were stud mount types which usually have a layer of beryllium oxide between the stud hex and the can. Although effective, the assembly is costly and requires manual mounting and lead wire soldering to terminals on top of the case. In the late eighties, a number of electrically isolated parts became available from various semiconductor manufacturers. These offerings presently consist of multiple chips and integrated circuits as well as the more conventional single chip devices.

The newer insulated packages can be grouped into two categories. The first has insulation between the semiconductor chips and the mounting base; an exposed area of the mounting base is used to secure the part. The second category contains parts which have a plastic overmold covering the metal mounting base. The Full Pak (Case 221C) illustrated in Figure 5-13, is an example of parts in the second category.

Parts in the first category - those with an exposed metal flange or tab - are mounted the same as their non-insulated counterparts. However, as with any mounting system where pressure is bearing on plastic, the overmolded type should be used with a conical compression washer, described later in this note.

\section*{Fastener and Hardware Characteristics}

Characteristics of fasteners, associated hardware, and the tools to secure them determine their suitability for use in mounting the various packages. Since many problems have arisen because of improper choices, the basic characteristics of several types of hardware are discussed next.

\section*{Compression Hardware}

Normal split ring lock washers are not the best choice for mounting power semiconductors. A typical \#6 washer flattens at about 50 pounds, whereas 150 to 300 pounds is needed for good heat transfer at the interface. A very useful piece of hardware is the conical, sometimes called a Belleville washer, compression washer. As shown in Figure 5-9, it has the ability to maintain a fairly constant pressure over a wide range of its physical deflection - generally \(20 \%\) to \(80 \%\). When installing, the assembler applies torque until the washer depresses to half its original height. (Tests should be run prior to setting up the assembly line to determine the proper torque for the fastener used to achieve \(50 \%\) deflection.) The washer will absorb any cyclic expansion of the package, insulating washer or other materials caused by temperature changes. Conical washers are the key to successful mounting of devices requiring strict control of the mounting force or when plastic hardware is used in the mounting scheme. They are used with the large face contacting the packages. A new variation of the conical washer includes it as part of a nut assembly. Called a Sync Nut, the patented device can be soldered to a PC board and the semiconductor mounted with a 6-32 machine screw.(4)

Figure 5-9. Characteristics of the Conical Compression Washers Designed for Use with Plastic Body Mounted Semiconductors

\footnotetext{
(4) ITW Shakeproof, St. Charles Road, Elgin, IL 60120.
}

\section*{Clips}

Fast assembly is accomplished with clips. When only a few watts are being dissipated, the small board-mounted or free-standing heat dissipators with an integral clip, offered by several manufacturers, result in a low cost assembly. When higher power is being handled, a separate clip may be used with larger heatsinks. In order to provide proper pressure, the clip must be specially designed for a particular heatsink thickness and semiconductor package.

Clips are especially popular with plastic packages such as the TO-220 and TO-126. In addition to fast assembly, the clip provides lower interface thermal resistance than other assembly methods when it is designed for proper pressure to bear on the top of the plastic over the die. The TO-220 package usually is lifted up under the die location when mounted with a single fastener through the hole in the tab because of the high pressure at one end.

\section*{Machine Screws}

Machine screws, conical washers, and nuts (or Sync Nut) can form a trouble-free fastener system for all types of packages which have mounting holes. However, proper torque is necessary. Torque ratings apply when dry; therefore, care must be exercised when using thermal grease to prevent it from getting on the threads as inconsistent torque readings result. Machine screw heads should not directly contact the surface of plastic packages types as the screw heads are not sufficiently flat to provide properly distributed force. Without a washer, cracking of the plastic case may occur.

\section*{Self-Tapping Screws}

Under carefully controlled conditions, sheet metal screws are acceptable. However, during the tapping process with a standard screw, a volcano-like protrusion will develop in the metal being threaded; an unacceptable surface that could increase the thermal resistance may result. When standard sheet metal screws are used, they must be used in a clearance hole to engage a speed nut. If a self-tapping process is desired, the screw type must be used which roll-forms machine screw threads.

\section*{Rivets}

Rivets are not recommended fasteners for any of the plastic packages. When a rugged metal flange-mount package is being mounted directly to a heatsink, rivets can be used provided press-riveting is used. Crimping force must be applied slowly and evenly. Pop-riveting should never be used because the high crimping force could cause deformation of most semiconductor packages. Aluminum rivets are much preferred over steel because less pressure is required to set the rivet and thermal conductivity is improved.

The hollow rivet, or eyelet, is preferred over solid rivets. An adjustable, regulated pressure press is used such that a gradually increasing pressure is used to pan the eyelet. Use of sharp blows could damage the semiconductor die.

\section*{Solder}

Until the advent of the surface mount assembly technique, solder was not considered a suitable fastener for power semiconductors. However, user demand has led to the development of new packages for this application. Acceptable soldering methods include conventional belt-furnace, irons, vapor-phase reflow, and infrared reflow. It is important that the semiconductor temperature not exceed the specified maximum (usually \(260^{\circ} \mathrm{C}\)) or the die bond to the case could be damaged. A degraded die bond has excessive thermal resistance which often leads to a failure under power cycling.

\section*{Adhesives}

Adhesives are available which have coefficients of expansion compatible with copper and aluminum.(5) Highly conductive types are available; a 10 mil layer has approximately \(0.3^{\circ} \mathrm{C} / \mathrm{W}\) interface thermal resistance. Different types are offered: high strength types for non-field-serviceable systems or low strength types for field-serviceable systems. Adhesive bonding is attractive when case mounted parts are used in wave soldering assembly because thermal greases are not compatible with the conformal coatings used and the greases foul the solder process.

\section*{Plastic Hardware}

Most plastic materials will flow, but differ widely in this characteristic. When plastic materials form parts of the fastening system, compression washers are highly valuable to assure that the assembly will not loosen with time and temperature cycling. As previously discussed, loss of contact pressure will increase interface thermal resistance.

\section*{Fastening Techniques}

Each of the various classes of packages in use requires different fastening techniques. Details pertaining to each type are discussed in following sections. Some general considerations follow.

To prevent galvanic action from occurring when devices are used on aluminum heatsinks in a corrosive atmosphere, many devices are nickel or gold-plated. Consequently, precautions must be taken not to mar the finish.

Another factor to be considered is that when a copper based part is rigidly mounted to an aluminum heatsink, a bimetallic system results which will bend with temperature changes. Not only is the thermal coefficient of expansion different for copper and aluminum, but the temperature gradient through each metal also causes each component to bend. If bending is excessive and the package is mounted by two or more screws the semiconductor chip could be damaged. Bending can be minimized by:
1. Mounting the component parallel to the heatsink fins to provide increased stiffness.
2. Allowing the heatsink holes to be a bit oversized so that some slip between surfaces can occur as temperature changes.
3. Using a highly conductive thermal grease or mounting pad between the heatsink and semiconductor to minimize the temperature gradient and allow for movement.

\section*{Flange Mount}

Few known mounting difficulties exist with the smaller flange mount packages, such as the TO-204 (TO-3). The rugged base and distance between die and mounting hose combine to make it extremely difficult to cause any warpage unless mounted on a surface which is badly bowed or unless one side is tightened excessively before the other screw is started. It is therefore good practice to alternate tightening of the screws so that pressure is evenly applied. After the screws are finger-tight the hardware should be torqued to its final specification in at least two sequential steps. A typical mounting installation for a popular flange type part is shown in Figure 5-10. Machine screws (preferred), self-tapping screws, islets or rivets may be used to secure the package using guidelines in the previous section, Fastener and Hardware Characteristics.

\footnotetext{
(5) Robert Batson, Elliot Fraunglass and James P. Moran, Heat Dissipation Through Thermalloy Conductive Adhesives, EMTAS ' 83 Conference, February 1-3, Phoenix, AZ; Society of Manufacturing Engineers, One SME Drive, P.O. Box 930, Dearborn, MI 48128.
}

Figure 5-10. Hardware Used for a TO-204AA (TO-3) Flange Mount Part

\section*{Tab Mount}

The tab mount class is composed of a wide array of packages as illustrated in Figure 5-11. Mounting considerations for all varieties are similar to that for the popular TO-220 package, whose suggested mounting arrangements and hardware are shown in Figure 5-12. The rectangular washer shown in Figure \(5-12 \mathrm{a}\) is used to minimize distortion of the mounting flange; excessive distortion could cause damage to the semiconductor chip. Use of the washer is only important when the size of the mounting hole exceeds 0.140 inch (6-32 clearance). Larger holes are needed to accommodate the lower insulating bushing when the screw is electrically connected to the case; however, the holes should not be larger than necessary to provide hardware clearance and should never exceed a diameter of 0.250 inch. Flange distortion is also possible if excessive torque is used during mounting. A maximum torque of 8 inch-pounds is suggested when using a 6-32 screw.

Care should be exercised to assure that the tool used to drive the mounting screw never comes in contact with the plastic body during the driving operation. Such contact can result in damage to the plastic body and internal device connections. To minimize this problem, Motorola TO-220 packages have a chamfer on one end. TO-220 packages of other manufacturers may need a spacer or combination spacer and isolation bushing to raise the screw head above the top surface of the plastic.

The popular TO-220 package and others of similar construction lift off the mounting surface as pressure is applied to one end. (See Appendix B, Figure B1.) To counter this tendency, at least one hardware manufacturer offers a hard plastic cantilever beam which applies more even pressure on the tab.(6) In addition, it separates the mounting screw from the metal tab. Tab mount parts may also be effectively mounted with clips as shown in Figure 5-14(c). To obtain high pressure without cracking the case, a pressure spreader bar should be used under the clip. Interface thermal resistance with the cantilever beam or clips can be lower than with screw mounting.

Figure 5-11. Several Types of Tab Mounted Parts

CASE 221A (TO-220AB)

CASE 314D

CASE 340 (TO-218)

Figure 5-12. Mounting Arrangements for Tab Mount TO-220

\footnotetext{
(6) Catalog, Edition 18, Richco Plastic Company, 5825 N. Tripp Ave., Chicago, IL 60546.
}

\section*{Plastic Body Mount}

The Full Pak plastic power packages shown in Figure 5-13 are typical of packages in this group. They have been designed to feature minimum size with no compromise in thermal resistance.

The Full Pak (Case 221C) is similar to a TO-220 except that the tab is encased in plastic. Because the mounting force is applied to plastic, the mounting procedure differs from a standard TO-220 and is similar to that of the Thermopad.

Several types of fasteners may be used to secure these packages; machine screws, eyelets, or clips are preferred. With screws or eyelets, a conical washer should be used which applies the proper force to the package over a fairly wide range of deflection and distributes the force over a fairly large surface area. Screws should not be tightened with any type of air-driven torque gun or equipment which may cause high impact. Characteristics of a suitable conical washer is shown in Figure 5-9.

The Full Pak (Case 221C, 221D and 340B) permits the mounting procedure to be greatly simplified over that of a standard TO-220. As shown in Figure 5-14(c), one properly chosen clip, inserted into two slotted holes in the heatsink, is all the hardware needed. Even though clip pressure is much lower than obtained with a screw, the thermal resistance is about the same for either method. This occurs because the clip bears directly on top of the die and holds the package flat while the screw causes the package to lift up somewhat under the die. (See Figure B1 of Appendix B.) The interface should consist of a layer of thermal grease or a highly conductive thermal pad. Of course, screw mounting shown in Figure 5-14(b) may also be used but a conical compression washer should be included. Both methods afford a major reduction in hardware as compared to the conventional mounting method with a TO-220 package which is shown in Figure 5-14(a).

Figure 5-13. Plastic Body Mounted Packages

Figure 5-14. Mounting Arrangements for the Full Pak as Compared to a Conventional TO-220

\section*{Surface Mount}

Although many of the tab mount parts have been surface mounted, special small footprint packages for mounting power semiconductors using surface mount assembly techniques have been developed. The DPAK, shown in Figure 5-15, for example, will accommodate a die up to 112 mils \(\times 112\) mils, and has a typical thermal resistance around \(2^{\circ} \mathrm{C} / \mathrm{W}\) junction to case. The thermal resistance values of the solder interface is well under \(1^{\circ} \mathrm{C} / \mathrm{W}\). The printed circuit board also serves as the heatsink.

Standard glass-epoxy 2 oz . boards do not make very good heatsinks because the thin foil has a high thermal resistance. As Figure 5-16 shows, thermal resistance assymtotes to about \(20^{\circ} \mathrm{C} / \mathrm{W}\) at 10 square inches of board area, although a point of diminishing returns occurs at about 3 square inches.

Boards are offered that have thick aluminum or copper substrates. A dielectric coating designed for low thermal resistance is overlayed with one or two ounce copper foil for the preparation of printed conductor traces. Tests run on such a product indicate that case to substrate thermal resistance is in the vicinity of \(1^{\circ} \mathrm{C} / \mathrm{W}\), exact values depending upon board type. (7) The substrate may be an effective heatsink itself, or it can be attached to a conventional finned heatsink for improved performance.

Since DPAK and other surface mount packages are designed to be compatible with surface mount assembly techniques, no special precautions are needed other than to insure that maximum temperature/time profiles are not exceeded.

Figure 5-15. Surface Mounted DPAK Packages

CASE 369

CASE 369A

Figure 5-16. Effect of Footprint Area on Thermal Resistance of DPAK Mounted on a Glass-Epoxy Board

\footnotetext{
(7) Herb Fick, Thermal Management of Surface Mount Power Devices, Powerconversion and Intelligent Motion, August 1987.
}

\section*{Free Air and Socket Mounting}

In applications where average power dissipation is on the order of a watt or so, most power semiconductors may be mounted with little or no heatsinking. The leads of the various metal power packages are not designed to support the packages; their cases must be firmly supported to avoid the possibility of cracked seals around the leads. Many plastic packages may be supported by their leads in applications where high shock and vibration stresses are not encountered and where no heatsink is used. The leads should be as short as possible to increase vibration resistance and reduce thermal resistance. As a general practice however, it is better to support the package. A plastic support for the TO-220 Package and other similar types is offered by heatsink accessory vendors.

In certain situations, in particular where semiconductor testing is required or prototypes are being developed, sockets are desirable. Manufacturers have provided sockets for many of the packages available from Motorola. The user is urged to consult manufacturers' catalogs for specific details. Sockets with Kelvin connections are necessary to obtain accurate voltage readings across semiconductor terminals.

\section*{Connecting and Handling Terminals}

Pins, leads, and tabs must be handled and connected properly to avoid undue mechanical stress which could cause semiconductor failure. Change in mechanical dimensions as a result of thermal cycling over operating temperature extremes must be considered. Standard metal, plastic, and RF stripline packages each have some special considerations.

\section*{Metal Packages}

The pins of metal packaged devices using glass to metal seals are not designed to handle any significant bending or stress. If abused, the seals could crack. Wires may be attached using sockets, crimp connectors or solder, provided the data sheet ratings are observed. When wires are attached directly to the pins, flexible or braided leads are recommended in order to provide strain relief.

\section*{Plastic Packages}

The leads of the plastic packages are somewhat flexible and can be reshaped although this is not a recommended procedure. In many cases, a heatsink can be chosen which makes lead-bending unnecessary. Numerous lead and tab-forming options are available from Motorola on large quantity orders. Preformed leads remove the users risk of device damage caused by bending.

If, however, lead-bending is done by the user, several basic considerations should be observed. When bending the lead, support must be placed between the point of bending and the package. For forming small quantities of units, a pair of pliers may be used to clamp the leads at the case, while bending with the fingers or another pair of pliers. For production quantities, a suitable fixture should be made.

The following rules should be observed to avoid damage to the package.
1. A leadbend radius greater than \(1 / 32\) inch for TO-220.
2. No twisting of leads should be done at the case.
3. No axial motion of the lead should be allowed with respect to the case.

The leads of plastic packages are not designed to withstand excessive axial pull. Force in this direction greater than 4 pounds may result in permanent damage to the device. If the mounting arrangement imposes axial stress on the leads, a condition which may be caused by thermal cycling, some method of strain relief should be devised. When wires are used for connections, care should be exercised to assure that movement of the wire does not cause movement of the lead at the lead-to-plastic junctions. Highly flexible or braided wires are good for providing strain relief.

Wire wrapping of the leads is permissible, provided that the lead is restrained between the plastic case and the point of the wrapping. The leads may be soldered; the maximum soldering temperature, however, must not exceed \(260^{\circ} \mathrm{C}\) and must be applied for not more than 5 seconds at a distance greater than \(1 / 8\) inch from the plastic case.

\section*{Cleaning Circuit Boards}

It is important that any solvents or cleaning chemicals used in the process of degreasing or flux removal do not affect the reliability of the devices. Alcohol and unchlorinated freon solvents are generally satisfactory for use with plastic devices, since they do not damage the package. Hydrocarbons such as gasoline and chlorinated freon may cause the encapsulant to swell, possibly damaging the transistor die.

When using an ultrasonic cleaner for cleaning circuit boards, care should be taken with regard to ultrasonic energy and time of application. This is particularly true if any packages are free-standing without support.

\section*{Thermal System Evaluation}

Assuming that a suitable method of mounting the semiconductor without incurring damage has been achieved, it is important to ascertain whether the junction temperature is within bounds.

In applications where the power dissipated in the semiconductor consists of pulses at a low duty cycle, the instantaneous or peak junction temperature, not average temperature, may be the limiting condition. In this case, use must be made of transient thermal resistance data. For a full explanation of its use, see Motorola Application Note, AN569.

Other applications, notably switches driving highly reactive loads, may create severe current crowding conditions which render the traditional concepts of thermal resistance or transient thermal impedance invalid. In this case, transistor safe operating area, thyristor di/dt limits, or equivalent ratings as applicable, must be observed.

Fortunately, in many applications, a calculation of the average junction temperature is sufficient. It is based on the concept of thermal resistance between the junction and a temperature reference point on the case. (See Appendix A.) A fine wire thermocouple should be used, such as \#36 AWG, to determine case temperature. Average operating junction temperature can be computed from the following equation:
\[
T_{J}=T_{C}+R_{\theta J C} \times P_{D}
\]
where, \(\mathrm{TJ}=\) junction temperature \(\left({ }^{\circ} \mathrm{C}\right)\),
TC = case temperature (\({ }^{\circ} \mathrm{C}\)),
\(\mathrm{R}_{\text {ӨJC }}=\) thermal resistance junction-to-case as specified on the data sheet (\({ }^{\circ} \mathrm{C} / \mathrm{W}\)),
\(\mathrm{PD}=\) power dissipated in the device \((\mathrm{W})\).
The difficulty in applying the equation often lies in determining the power dissipation. Two commonly used empirical methods are graphical integration and substitution.

\section*{Graphical Integration}

Graphical integration may be performed by taking oscilloscope pictures of a complete cycle of the voltage and current waveforms, using a limit device. The pictures should be taken with the temperature stabilized. Corresponding points are then read from each photo at a suitable number of time increments. Each pair of voltage and current values are multiplied together to give instantaneous values of power. The results are plotted on linear graph paper, the number of squares within the curve counted, and the total divided by the number of squares along the time axis. The quotient is the average power dissipation. Oscilloscopes are available to perform these measurements and make the necessary calculations.

\section*{Substitution}

This method is based upon substituting an easily measurable, smooth dc source for a complex waveform. A switching arrangement is provided which allows operating the load with the device under test, until it stabilizes in temperature. Case temperature is monitored. By throwing the switch to the "test" position, the device under test is connected to a dc power supply, while another pole of the switch supplies the normal power to the load to keep it operating at full power level. The dc supply is adjusted so that the semiconductor case temperature remains approximately constant when the switch is thrown to each position for about 10 seconds. The dc voltage and current values are multiplied together to obtain average power. It is generally necessary that a Kelvin connection be used for the device voltage measurement.

\section*{Appendix A \\ Thermal Resistance Concepts}

The basic equation for heat transfer under steady-state conditions is generally written as:
\[
\begin{equation*}
q=h A \Delta T \tag{1}
\end{equation*}
\]
where, \(q=\) rate of heat transfer or power dissipation (PD),
\(h=\) heat transfer coefficient,
A = area involved in heat transfer,
\(\Delta T=\) temperature difference between regions of heat transfer.
However, electrical engineers generally find it easier to work in terms of thermal resistance, defined as the ratio of temperature to power. From Equation 1, thermal resistance \(\left(R_{\theta}\right)\) is
\[
\begin{equation*}
R_{\theta}=\Delta T / q=1 / h A \tag{2}
\end{equation*}
\]

The coefficient (h) depends upon the heat transfer mechanism used and various factors involved in that particular mechanism.

An analogy between Equation 2 and Ohm's Law is often made to form models of heat flow. Note that T could be thought of as a voltage thermal resistance corresponds to electrical resistance (R); and, power \((\mathrm{q})\) is analogous to current (I). This gives rise to a basic thermal resistance model for a semiconductor as indicated by Figure A-1.

Figure A-1. Basic Thermal Resistance Model Showing Thermal to Electrical Analogy for a Semiconductor

Reference Temperature

The equivalent electrical circuit may be analyzed by using Kirchoff's Law and the following equation results:
\[
\begin{equation*}
T_{J}=P_{D}\left(R_{\theta J C}+R_{\theta C S}+R_{\theta S A}\right)+T_{A} \tag{3}
\end{equation*}
\]
where, \(\mathrm{T} \mathrm{J}=\) junction temperature,
\(\mathrm{PD}=\) power dissipation,
\(\mathrm{R}_{\mathrm{JJC}}=\) semiconductor thermal resistance (junction-to-case),
\(\mathrm{R}_{\theta C S}=\) interface thermal resistance (case-to-heatsink),
\(R_{\theta S A}=\) heatsink thermal resistance (heatsink-to-ambient),
\(\mathrm{T}_{\mathrm{A}}=\) ambient temperature .
The thermal resistance junction-to-ambient is the sum of the individual components. Each component must be minimized if the lowest junction temperature is to result.

The value for the interface thermal resistance (\(\mathrm{R}_{\theta \mathrm{CS}}\)) may be significant compared to the other thermal resistance terms. A proper mounting procedure can minimize \(\mathrm{R}_{\theta \mathrm{CS}}\).

The thermal resistance of the heatsink is not absolutely constant; its thermal efficiency increases as ambient temperature increases and it is also affected by orientation of the sink. The thermal resistance of the semiconductor is also variable; it is a function of biasing and temperature. Semiconductor thermal resistance specifications are normally at conditions where current density is fairly uniform. In some applications such as in RF power amplifiers and short-pulse applications, current density is not uniform and localized heating in the semiconductor chip will be the controlling factor in determining power handling ability.

\section*{Appendix B}

\section*{Measurement of Interface Thermal Resistance}

Measuring the interface thermal resistance R \(\theta\) ©S appears deceptively simple. All that's apparently needed is a thermocouple on the semiconductor case, a thermocouple on the heatsink, and a means of applying and measuring dc power. However, \(\mathrm{R}_{\theta \mathrm{CS}}\) is proportional to the amount of contact area between the surfaces and consequently is affected by surface flatness and finish and the amount of pressure on the surfaces. The fastening method may also be a factor. In addition, placement of the thermocouples can have a significant influence upon the results. Consequently, values for interface thermal resistance presented by different manufacturers are not in good agreement. Fastening methods and thermocouple locations are considered in this Appendix.

When fastening the test package in place with screws, thermal conduction may take place through the screws, for example, from the flange ear on a TO-204AA package directly to the heatsink. This shunt path yields values which are artificially low for the insulation material and dependent upon screw head contact area and screw material. MIL-1-49456 allows screws to be used in tests for interface thermal resistance probably because it can be argued that this is "application oriented".

Thermalloy takes pains to insulate all possible shunt conduction paths in order to more accurately evaluate insulation materials. The Motorola fixture uses an insulated clamp arrangement to secure the package which also does not provide a conduction path.

As described previously, some packages, such as a TO-220, may be mounted with either a screw through the tab or a clip bearing on the plastic body. These two methods often yield different values for interface thermal resistance. Another discrepancy can occur if the top of the package is exposed to the ambient air where radiation and convection can take place. To avoid this, the package should be covered with insulating foam. It has been estimated that a \(15 \%\) to \(20 \%\) error in \(\mathrm{R}_{\theta \mathrm{CS}}\) can be incurred from this source.

Another significant cause for measurement discrepancies is the placement of the thermocouple to measure the semiconductor case temperature. Consider the TO-220 package shown in Figure B-1. The mounting pressure at one end causes the other end - where the die is located - to lift off the mounting surface slightly. To improve contact, Motorola TO-220 Packages are slightly concave. Use of a spreader bar under the screw lessens the lifting, but some is inevitable with a package of this structure.

\section*{B-1. JEDEC TO-220 Package Mounted to Heatsink Showing Various Thermocouple Locations and Lifting Caused by Pressure at One End}

Three thermocouple locations are shown.
a) The Motorola location is directly under the die reached through a hole in the heatsink. The thermocouple is held in place by a spring which forces the thermocouple into intimate contact with the bottom of the semi's case.
b) The JEDEC location is close to the die on the top surface of the package base reached through a blind hole drilled through the molded body. The thermocouple is swaged in place.
c) The Thermalloy location is on the top portion of the tab between the molded body and the mounting screw. The thermocouple is soldered into position.

Temperatures at the three locations are generally not the same. Consider the situation depicted in Figure B-1. Because the only area of direct contact is around the mounting screw, nearly all the heat travels horizontally along the tab from the die to the contact area. Consequently, the temperature at the JEDEC location is hotter than at the Thermalloy location and the Motorola location is even hotter. Since junction-to-sink thermal resistance must be constant for a given test setup, the calculated junction-to-case thermal resistance values decrease and case-to-sink values increase as the case temperature thermocouple readings become warmer. Thus the choice of reference point for the case temperature is quite important.

There are examples where the relationship between the thermocouple temperatures are different from the previous situation. If a mica washer with grease is installed between the semiconductor package and the heatsink, tightening the screw will not bow the package; instead, the mica will be deformed. The primary heat conduction path is from the die through the mica to the heatsink. In this case, a small temperature drop will exist across the vertical dimension of the package mounting base so that the thermocouple at the EIA location will be the hottest. The thermocouple temperature at the Thermalloy location will be lower but close to the temperature at the EIA location as the lateral heat flow is generally small. The Motorola location will be coolest.

The EIA location is chosen to obtain the highest temperature on the case. It is of significance because power ratings are supposed to be based on this reference point. Unfortunately, the placement of the thermocouple is tedious and leaves the semiconductor in a condition unfit for sale.

The Motorola location is chosen to obtain the highest temperature of the case at a point where, hopefully, the case is making contact to the heatsink. Once the special heatsink to accommodate the thermocouple has been fabricated, this method lends itself to production testing and does not mark the device. However, this location is not easily accessible to the user.

The Thermalloy location is convenient and is often chosen by equipment manufacturers. However, it also blemishes the case and may yield results differing up to \(1^{\circ} \mathrm{C} / \mathrm{W}\) for a TO-220 package mounted to a heatsink without thermal grease and no insulator. This error is small when compared to the thermal resistance of heat dissipaters often used with this package, since power dissipation is usually a few watts. When compared to the specified junction-to-case values of some of the higher power semiconductors becoming available, however, the difference becomes significant and it is important that the semiconductor manufacturer and equipment manufacturer use the same reference point.

Another EIA method of establishing reference temperatures utilizes a soft copper washer (thermal grease is used) between the semiconductor package and the heatsink. The washer is flat to within 1.0 mil/inch, has a finish better than \(63 \mu \mathrm{in}\)., and has an imbedded thermocouple near its center. This reference includes the interface resistance under nearly ideal conditions and is therefore application-oriented. It is also easy to use but has not become widely accepted.

A good way to improve confidence in the choice of case reference point is to also test for junction-to-case thermal resistance while testing for interface thermal resistance. If the junction-to-case values remain relatively constant as insulators are changed, torque varied, etc., then the case reference point is satisfactory.

\section*{SECTION 6}

\section*{LINEAR REGULATOR DESIGN EXAMPLE}

As an illustration of the use of the material contained in the preceding sections, the following regulator design example is given.

\section*{Regulator Performance Requirements:}

Output Voltage, \(\mathrm{V} \mathrm{O}=+10 \mathrm{~V} \pm 0.1 \mathrm{~V}\)
Output Current, IO = 1.0 A, current limited
Load Regulation, \(\leq 0.1 \%\) for \(\mathrm{IO}=10 \mathrm{~mA}\) to 750 mA
Line Regulation, \(\leq 0.1 \%\)
Output ripple, \(\leq 2.0 \mathrm{mV} p \mathrm{p}\)
Max Ambient Temperature, \(\mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\)
Supply will have common loads to a negative supply.

\section*{1. IC Regulator Selection}

Study of the available regulators given in the selection guide reveals that the MC1723C would meet the regulation performance requirements. This regulator must be current boosted to obtain the required 1.0 A output current. 'A rough cost estimate shows that an MC1723C series pass element combination is the most economical approach.

\section*{2. Circuit Configuration}

In Section 3, an appropriate circuit configuration is found. This is the MC1723C NPN boost configuration of Figure 3-4A.

\section*{3. Determination of Component Values}

Using the equations given in Figure 3-4A, the values of Cref, \(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}\) and RSC are determined.
a) Cref is chosen to be \(0.1 \mu \mathrm{~F}\) for low noise operation.
b) \(R_{1}+R_{2}\) is chosen to be \(\approx 10 \mathrm{k}\).
c) \(R_{2}\) is then given by: \(R_{2} \approx \frac{7.0 \mathrm{~V}}{\mathrm{~V}_{\mathrm{O}}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=0.7(10 \mathrm{k})=7.0 \mathrm{k}\)
d) Since \(V_{\text {ref }}\) can vary by as much as \(\pm 5 \%\) for the MC1723C, \(R_{2}\) should be made variable by at least that much, so that \(\mathrm{V}_{\mathrm{O}}\) can be set to the required value of \(+10 \mathrm{~V} \pm 0.1 \mathrm{~V}\). \(\mathrm{R}_{2}\) is therefore chosen to consist of a 62 k resistor and a 2.0 k trimpot.
e) \(R_{1}=10 \mathrm{k}-\mathrm{R}_{2}=10 \mathrm{k}-7.0 \mathrm{k}=3.0 \mathrm{k}\)
f) \(\mathrm{RSC} \approx \frac{0.6 \mathrm{~V}}{\mathrm{ISC}}=\frac{0.6 \mathrm{~V}}{1.0 \mathrm{~A}}=0.6 \Omega ; 0.56 \Omega, 1.0 \mathrm{~W}\) chosen for RSC.
g) \(R_{3}=R_{1} \| R_{2} \cong 2.2 \mathrm{k}\)

\section*{4. Determination of Input Voltage (Vin)}

There are two basic constraints on the input voltage: 1) the device limits for minimum and maximum \(V_{\text {in }}\) and, 2) the minimum input-output voltage differential. These limits are found on the device data sheet to be:
\[
9.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 40 \mathrm{~V} \text { and }\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right) \geq 3.0 \mathrm{~V}
\]

For the configuration of Figure \(3-5 \mathrm{~A},\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{O}}\right)\) is given by:
\[
\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right)=\left[\mathrm{V}_{\text {in }}-\left(\mathrm{V}_{\mathrm{O}}+2 \phi\right)\right] \geq 3.0 \mathrm{~V} \text {, where } \phi=\mathrm{V}_{\text {BEon }} \approx 0.6 \mathrm{~V}
\]

Note that \(\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right)\) is defined on the device data sheet to be the differential between the input and output pins. Since the base-emitter junction drops of Q1 and RSC have been added to the circuit, they must be added to the minimum value of \(\left(\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{O}}\right)\). Therefore,
\[
\begin{gathered}
\mathrm{V}_{\text {in }} \geq \mathrm{V}_{\mathrm{O}}+2 \phi+3.0 \mathrm{~V}=10+1.2+3 \\
\mathrm{~V}_{\text {in }} \geq 14.2 \mathrm{~V}
\end{gathered}
\]

This condition also satisfies the requirement for a minimum \(\mathrm{V}_{\text {in }}\) of 9.5 V .
In order to simplify the design of the input supply (see Section 8), \(\mathrm{V}_{\text {in }}\) is chosen to be 16 V average with a 3.0 Vpp ripple at full load and up to 25 V at no load. This assures that the input voltage is always above the required minimum value of 14.2 V . Now, the output ripple can be determined. The MC1723C has a typical ripple rejection ratio of -74 db , as given on its data sheet. With an input ripple of 3.0 Vpp , the output ripple would be less than 1.0 mVpp , which meets the regulator output ripple requirements.

\section*{5. Selection of the Series Pass Element (Q1)}

The transistor type chosen for Q1 must have the following characteristics (see Section 4):
a) \(\mathrm{V}_{\mathrm{CEO}} \geq \mathrm{V}_{\text {in }}(\max)\)
b) IC(max) \(\geq\) ISC
c) \(\mathrm{h}_{\mathrm{fe}} \geq \frac{\mathrm{ISC}}{\mathrm{IO}} @ \mathrm{~V} \mathrm{CE}=\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{O}}-\phi\), where \(\phi=\mathrm{V}_{\mathrm{BE}} \approx 0.6 \mathrm{~V}\)
d) \(\mathrm{PD}_{\mathrm{D}}(\max) \geq \mathrm{V}_{\text {in }}, \times \mathrm{ISC}\)
e) \(\theta\) JC such to allow practical heatsinking
f) SOA such that it can withstand \(V_{C E}=V_{\text {in }} @\) IC \(=I\) ISC

For this example: \(\mathrm{V}_{\mathrm{CEO}} \geq 25 \mathrm{~V}\)
\[
\begin{aligned}
\mathrm{I}(\max) & \geq 1.0 \mathrm{~A} \\
\mathrm{hfe} & \geq 25 @ \mathrm{~V} \mathrm{CE}=5.0 \mathrm{~V} @ \mathrm{I} \mathrm{C}=1.0 \mathrm{~A} \\
\mathrm{PD}(\max) & \geq 16 \mathrm{~W} \\
\theta_{\mathrm{JC}} & =1.52^{\circ} \mathrm{C} / \mathrm{W} \\
\mathrm{SOA} & =1.0 \mathrm{~A} @ 16 \mathrm{~V}
\end{aligned}
\]

A 2N3055 transistor is chosen as a suitable device for Q1 using the selection guide of Section 4 and the transistor data sheets (available from the device manufacturer).

\section*{6. Q1 Heatsink Calculation}
\[
T_{J}=T_{A}+P_{D} \theta_{J A} \quad(\text { Equation } 15.1 \text { from Section } 15)
\]
where, \(\mathrm{PD}=\mathrm{V}_{\text {in }} \times \mathrm{ISC}\)
\(\theta \mathrm{JA}=\theta \mathrm{JC}+\theta \mathrm{CS}+\theta \mathrm{SA} \quad\) (Equation 6.2)
Solving for \(\theta\) SA:
\[
\begin{equation*}
\theta S A=\left[\frac{T J-T A}{P D}\right]-(\theta J C+\theta C S) \tag{6.2}
\end{equation*}
\]

From the 2 N 3055 data sheet, \(\mathrm{TJ}=200^{\circ} \mathrm{C}\) and \(\theta \mathrm{JC}=1.52^{\circ} \mathrm{C} / \mathrm{W}\). The transistor will be mounted with thermal grease directly to the heatsink. Therefore, \(\theta_{\mathrm{CS}}\) is found to be \(0.1^{\circ} \mathrm{C} / \mathrm{W}\) from Table 15-1.
Solving for Equation 6.2:
\[
\begin{gathered}
\theta \mathrm{SA}=\left[\frac{200^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{16 \mathrm{~V} \times 1.0 \mathrm{~A}}\right]-(1.52+0.1)^{\circ} \mathrm{C} / \mathrm{W} \\
\leq 6.6^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\]

A commercial heatsink is now chosen from Table 15-2 or one custom designed using the methods given in Section 15. For this example, a Thermalloy \#6003 heatsink, having a \(\theta \mathrm{CS}\) of \(6.2^{\circ} \mathrm{C} / \mathrm{W}\), was used.

\section*{7. Clamp Diode}

Since the regulator can power a load which is also connected to a negative supply, a 1 N4001 diode is connected to the output for protection. The complete circuit schematic is shown in Figure 6-1.

Figure 6-1. 10 V, 1.0 A Design Example

\section*{8. Construction Input Supply Design}

The input supply is now designed using the information contained in Section 8 and the regulator circuit is constructed using the guidelines given in Section 5.

\section*{SECTION 7 \\ LINEAR REGULATOR CIRCUIT TROUBLESHOOTING CHECKLIST}

Occasionally, the designer's prototype regulator circuit will not operate properly. If problems do occur, the trouble can be traced to a design error in \(99.9 \%\) of the cases. As a troubleshooting aid to the designer, the following guide is presented.

Of course, it would be difficult, if not impossible, to devise a troubleshooting guide which would cover all possible situations. However, the checklist provided will help the designer pinpoint the problem in the majority of cases. To use the guide, first locate the problem's symptom(s) and then carefully recheck the regulator design in the area indicated using the information contained in the referenced handbook section.

If, after carefully rechecking the circuit, the designer is not successful in resolving the problem, seek assistance from the factory by contacting the nearest Motorola Sales office.
\begin{tabular}{|c|c|c|}
\hline Symptoms & Design Area to Check & Section \\
\hline Regulator oscillates & \begin{tabular}{l}
1. Layout \\
2. Compensation capacitor too small \\
3. Input leads not bypassed \\
4. External pass element parasitically oscillating
\end{tabular} & \[
\begin{aligned}
& 5 \\
& 3 \\
& 5 \\
& 5
\end{aligned}
\] \\
\hline Loss of regulation at light loads & \begin{tabular}{l}
1. Emitter-base resistor in "PNP" type boost configuration too large \\
2. Absence of 1.0 mA "minimum" load. \\
(See load regulation test spec on device data sheet) \\
3. Improper circuit configuration
\end{tabular} & \begin{tabular}{l}
\[
4
\] \\
3
\end{tabular} \\
\hline Loss of regulation at heavy loads & \begin{tabular}{l}
1. Input voltage too low \(\left[\mathrm{V}_{\mathrm{in}(\mathrm{min})}, \mathrm{I} \mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}} \mathrm{l}_{\text {min }}\right.\)] \\
2. External pass element gain too low \\
3. Current limit too low \\
4. Line resistance between sense points and load \\
5. Inadequate heatsinking
\end{tabular} & \[
\begin{gathered}
2,3 \\
4 \\
3 \\
5 \\
15
\end{gathered}
\] \\
\hline IC regulator or pass element fails after warm-up or at high \(\mathrm{T}_{\mathrm{A}}\). & \begin{tabular}{l}
1. Inadequate heatsinking \\
2. Input Voltage Transient \(\mathrm{V}_{\text {in(max }}, \mathrm{V}_{\text {CEO }}\)
\end{tabular} & \[
\begin{gathered}
15 \\
2,4,5
\end{gathered}
\] \\
\hline Pass element fails during short circuit. & \begin{tabular}{l}
1. Insufficient pass element ratings SOA, IC(max) \\
2. Inadequate heatsinking
\end{tabular} & \[
\begin{gathered}
4 \\
15
\end{gathered}
\] \\
\hline IC regulator fails during short circuit. & \begin{tabular}{l}
1. IC current or SOA capability exceeded \\
2. Inadequate heatsinking
\end{tabular} & 2 \\
\hline IC regulator fails during power-up & \begin{tabular}{l}
1. Input voltage transient \(\mathrm{V}_{\text {in (max }}\) \\
2. IC current or SOA capability exceeded as load (capacitor) is charged up.
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] \\
\hline IC regulator fails during power-down. & 1. Regulator reverse biased & 3 \\
\hline Output voltage does not come up during power-up or after short circuit & \begin{tabular}{l}
1. Out polarity reversal \\
2. Load has "latched-up" in some manner. (Usually seen with op amps, current sources, etc.)
\end{tabular} & 3 \\
\hline Excessive 60 Hz or 120 Hz output ripple & 1. Input supply filter capacitor ground loop & 5 \\
\hline
\end{tabular}

\section*{SECTION 8 DESIGNING THE INPUT SUPPLY}

Most input supplies used to power series pass regulator circuits consist of a 60 Hz , single phase step-down transformer followed by a rectifier circuit whose output is smoothed by a choke or capacitor input filter. The type of rectifier circuit used can be either a half-wave, full-wave, or full-wave bridge type, as shown in Figure 8-1. The half-wave circuit is used in low current applications, while the full-wave is preferable in high-current, low output voltage cases. The full-wave bridge is usually used in all other high-current applications.

Figure 8-1. Rectification Schemes

(a) Half-Wave

(b) Full-Wave or Full-Wave Center Tap

(c) Full-Wave Bridge

In this section, specification of the filter capacitor, rectifier and transformer ratings will be discussed. The specifications for the choke input filter will not be considered since the simpler capacitor input type is more commonly used in series regulated circuits. A detailed description of this type of filter can be found in the reference listed at the end of this section.

\section*{1. Design of Capacitor-Input Filters}

The best practical procedure for the design of capacitor-input filters still remains based on the graphical data presented by Schade(1) in 1943. The curves shown in Figures 8-2 through 8-5 give all the required design information for half-wave and full-wave rectifier circuits. Whereas Schade originally also gave curves for the impedance of vacuum-tube rectifiers, the equivalent values for semiconductor diodes must be substituted. However, the rectifier forward drop often assumes more significance than the dynamic resistance in low-voltage supply applications, as the dynamic resistance can generally be neglected when compared with the sum of the transformer secondary-winding resistance plus the reflected primary-winding resistance. The forward drop may be of considerable importance, however, since it is about 1.0 V , which clearly cannot be ignored in supplies of 12 V or less.

Figure 8-2. Relation of Applied Alternating Peak Voltage to Direct Output Voltage in Half-Wave Capacitor-Input Circuits

\(\omega=2 \pi f, f=\) Line Frequency
C in Farads
\(\mathrm{R}_{\mathrm{L}}\) in Ohms

\footnotetext{
\(\overline{(1)}\) From O. H. Schade, Proc. IRE, Vol. 31, p. 356, 1943.
}

Figure 8-3. Relation of Applied Alternating Peak Voltage to Direct Output Voltage in Full-Wave Capacitor-Input Circuits

Figure 8-4. Relation of RMS and Peak-to-Average Diode Current in Capacitor-Input Circuits

Figure 8-5. Root-Mean-Square Ripple Voltage for Capacitor-Input Circuits

Returning to the above curves, the full-wave circuit will be considered. Figure 8-3 shows that a circuit must operate with \(\omega C R_{L} \geq 10\) in order to hold the voltage reduction to less than \(10 \%\) and \(\omega C R_{L} \geq 40\) to obtain less than \(2.0 \%\) reduction. However, it will also be seen that these voltage reduction figures require \(\mathrm{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{L}}\), where RS is now the total series resistance, to be about \(0.1 \%\) which, if attainable, causes repetitive peak-to-average current ratios from 10 to 17 respectively, as can be seen from Figure 8-4. These ratios can be satisfied by many diodes; however, they may not be able to tolerate the turn-on surge current generated when the input-filter capacitor is discharged and the transformer primary is energized at the peak of the input waveform. The rectifier is then required to pass a surge current determined by the peak secondary voltage less the rectifier forward drop and limited only by the series resistance RS. In order to control this turn-on surge, additional resistance must often be provided in series with each rectifier. It becomes evident, then, that a compromise must be made between voltage reduction on the one hand and diode surge rating and hence average current-carrying capacity on the other hand. If small voltage reduction, that is good voltage regulation, is required, a much larger diode is necessary than that demanded by the average current rating.

\section*{Surge Current}

The capacitor-input filter allows a large surge to develop, because the reactance of the transformer leakage inductance is rather small. The maximum instantaneous surge current is approximately \(\mathrm{V}_{\mathrm{M}} / \mathrm{RS}_{S}\) and the capacitor charges with a time constant \(\tau \approx \mathrm{RS}_{\mathrm{S}}\). As a rough - but conservative - check, the surge will not damage the diode if \(\mathrm{V}_{\mathrm{M}} / \mathrm{R}_{S}\) is less than the diode IFSM rating and \(\tau\) is less than 8.3 ms . It is wise to make \(R_{S}\) as large as possible and not pursue tight voltage regulation; therefore, not only will the surge be reduced but rectifier and transformer ratings will more nearly approach the DC power requirements of the supply.

\section*{2. Design Procedure}
A) From the regulator circuit design (see Section 6), we know:
\(\mathrm{VC}(\mathrm{DC})=\) the required full load average dc output voltage of the capacitor input filter
\(V_{\text {Ripple }}(\mathrm{pp})=\) the maximum no load peak-to-peak ripple voltage
\(\mathrm{V}_{\mathrm{m}}=\) the maximum no load output voltage
\(10=\) the full-load filter output current \(\mathrm{f}=\) the input ac line frequency
B) From Figure 8-5, we can determine a range of minimum capacitor values to obtain sufficient ripple attenuation. First determine rf :
\[
\begin{equation*}
\mathrm{rf}=\frac{\mathrm{V}_{\text {Ripple }}(\mathrm{pp})}{2 \sqrt{2 \mathrm{~V}_{\mathrm{C}}(\mathrm{DC})}} \times 100 \% \tag{8.1}
\end{equation*}
\]

A range for \(\omega C R_{L}\) can now be found from Figure 8-5.
C) Next, determine the range of \(R_{S} / R_{L}\) from Figure 8-2 or8-3using \(V_{C(D C)}\) and the values for \(\omega C R_{L}\) found in part \(B\). If the range of \(\omega C R_{L}\) values initially determined from Figure \(8-5\) is above \(\simeq 10, R_{S} / R_{L}\) can be found from Figures \(8-2\) and \(8-3\) using the lowest \(\omega C R L\) value. Otherwise, several iterations between Figures 8-2 or 8-3 and 8-5 may be necessary before an exact solution for \(R_{S} / R_{L}\) and \(\omega C R_{L}\) for a given rf and \(V_{C}(D C) / V_{m}\) can be found.
D) Once \(\omega C R L\) is found, the value of the filter capacitor (C) can be determined from:
\[
\begin{equation*}
\mathrm{C}=\frac{\omega \mathrm{CRL}_{\mathrm{L}}}{2 \pi \mathrm{f}\left(\frac{\mathrm{~V}_{\mathrm{C}(\mathrm{DC})}}{\mathrm{I}_{\mathrm{O}}}\right)} \tag{8.2}
\end{equation*}
\]
E) The rectifier requirements may now be determined:
1. Average current per diode;
\[
\begin{align*}
\mathrm{IF}(\mathrm{avg}) & =\mathrm{IO} \text { for half-wave rectification } \tag{8.3}\\
& =\mathrm{IO} / 2 \text { for full-wave rectification }
\end{align*}
\]
2. RMS and Peak repetitive rectifier current ratings can be determined from Figure 8-4.
3. The rectifier PIV rating is \(2 \mathrm{~V}_{\mathrm{m}}\) for the half-wave and full-wave circuits, \(\mathrm{V}_{\mathrm{m}}\) for the full wave bridge circuit. In addition, a minimum safety margin of \(20 \%\) to \(50 \%\) is advisable due to the possibility of line transients.
4. Maximum surge current, I surge \(=V_{m} /(R S+E S R)\)
where, \(\mathrm{ESR}=\) minimum equivalent series resistance of filter capacitor from its data sheet.
F) Transformer Specification
1. Secondary leg \(R M S\) voltage, \(V_{S}=\left\{V_{m}+(n) 1.0\right\} / \sqrt{2}\)
where; \(n=1\) for half-wave and full-wave
\(\mathrm{n}=2\) for full-wave bridge
2. Total resistance of secondary and any external resistors to be equal to RS found from

Figures 8-2, 8-3, and 8-4 (see Part C).
3. Secondary RMS current; half-wave \(=1 \mathrm{rms}\)
\[
\begin{equation*}
\text { full-wave }=I_{\mathrm{rms}} \tag{8.6}
\end{equation*}
\]
where, Irms = rms rectifier current (from part E. 1 and E.2).
4. Transformer VA rating; half-wave \(=V_{S} I_{\mathrm{rms}}\)
\[
\text { full-wave }=2 \mathrm{~V}_{\mathrm{S}} \text { Irms }
\]
full-wave bridge \(=V_{S} \operatorname{Irms}^{(\sqrt{2})}\)
where, Irms = rms rectifier current (from part E. 1 and E.2) and,
VS = secondary leg RMS voltage.

\section*{3. Design Example}
A) Find the values for the filter capacitor, transformer rectifier ratings, given Full-Wave Bridge Rectification;
\[
\begin{aligned}
\mathrm{VC}(\mathrm{DC}) & =16 \mathrm{~V} \\
\mathrm{~V}_{\text {Ripple }(\mathrm{pp})} & =3.0 \mathrm{~V} \\
\mathrm{VM} & =25 \mathrm{~V} \\
\mathrm{IO} & =1.0 \mathrm{~A} \\
\mathrm{f} & =60 \mathrm{~Hz}
\end{aligned}
\]
B) Using Equation (8.1),
\[
r_{f}=\frac{3}{2 \sqrt{2}(16)} \times 100 \%=6.6 \%
\]
from Figure \(8.5, \omega C R L \simeq 7\) to 15
C) Using \(\omega C R_{L}=10, R_{S} / R_{L}\) is found from Figure 8-3 using,
\[
\begin{gathered}
\frac{V_{C(D C)}}{V_{M}}=\frac{16}{25}=0.64=64 \% \\
R_{S} / R_{L}=20 \% \text { or } R_{S}=0.2 \times R_{L}=0.2\left(\frac{V_{C(D C)}}{I_{O}}\right)=0.2(16)
\end{gathered}
\]
\[
\mathrm{RS}=3.2 \Omega
\]
D) From Equation (8.2), the filter capacitor size is found:
\[
C=\frac{\omega C R_{L}}{2 \pi f\left(\frac{V_{C(D C)}}{I_{O}}\right)}=\frac{10}{2 \pi f(60) 16}=1658 \mu \mathrm{~F}
\]
E) The rectifier ratings are now specified:
1. \(\mathrm{IF}(\mathrm{avg})=\mathrm{IO} / 2=0.5 \mathrm{~A}\) from Equation (8.3)
2. \(\mathrm{IF}(\mathrm{rms})=2 \times \mathrm{IF}(\mathrm{AVG})=1.0 \mathrm{~A}\) from Figure \(8-4\)
3. \(\mathrm{IF}(\) Peak \()=5.2 \times \mathrm{IF}(\mathrm{AVG})=2.6 \mathrm{~A}\) from Figure \(8-4\)
4. \(\mathrm{PIV}=\mathrm{V}_{\mathrm{M}}=25 \mathrm{~V}\) (use 50 V for safety margin)
5. \(I_{\text {surge }}=V_{M} /(R S+E S R) \simeq 25 / 3.2=7.8 \mathrm{~A}\) from Equation (8.4), neglecting capacitor ESR.
F) The transformer should have the following ratings:
1. \(\mathrm{V}_{\mathrm{S}}=\left\{\mathrm{V}_{\mathrm{M}}+\mathrm{n}(1.0)\right\} / \sqrt{2}=(25+2) / \sqrt{2}=19 \mathrm{VRMS}\) \{from Equation (8.5) \}
2. Secondary Resistance should be \(3.2 \Omega\)
3. Secondary RMS current rating should be 1.4 A , (from Equation (8.6)).
4. From Equation (8.7), the transformer should have a 27 VA rating.

It should be noted that, in order to simplify the procedure, the above design does not allow for line voltage variations or component tolerances. The designer should take these factors into account when designing his input supply. Typical tolerances would be: line voltage \(=+10 \%\) to \(-15 \%\) and filter capacitors \(=+75 \%\) to \(-10 \%\).

\section*{REFERENCES}
1. O. H. Schade, Proc. IRE, Vol. 31, 1943.
2. Motorola Silicon Rectifier Manual, 1980.

\section*{SECTION 9}

\section*{AN INTRODUCTION TO SWITCHING POWER SUPPLIES}

The Switching Power Supply continues to increase in popularity and is one of the fastest growing markets in the world of power conversion. Its performance and size advantages meet the needs of today's modern and compact electronic equipment and the increasing variety of components directed at these applications makes new designs even more practical.

This guide is intended to provide the designer with an overview of the more popular inverter circuits, their basic theory of operation, and some of the subtle characteristics involved in selecting a circuit and the appropriate components. Also included are valuable design tips on both the major passive and active components needed for a successful design. Finally, a complete set of selector guides to Motorola's Switchmode components is provided which gives a detailed listing of the industry's most comprehensive line of semiconductor products for switching power supplies.

\section*{Comparison with Linear Regulators}

The primary advantages of a switching power supply are efficiency, size,and weight. It is also a more complex design, cannot meet some of the performance capabilities of linear supplies and generates a considerable amount of electrical noise. However switchers are being accepted in the industry, particularly where size and efficiency are of prime importance. Performance continues to improve and for most applications they are usually cost competitive down to the 20 W power level.

In the past the switcher's advantage versus the linear regulator was in the high power arena where passive components such as transformers and filters were small compared to the linear regulator at the same power level. However, active component count was high and tended to make the switcher less cost effective at low power levels. In recent years, Switchers have been significantly cost reduced because designers have been able to simplify the control circuits with new, cost effective integrated circuits and have found even lower cost alternatives in the passive component area.

A performance comparison chart of switching versus linear supplies is shown in Table 9-1. Switcher efficiencies run from \(70 \%\) to \(80 \%\) but occasionally fall to (\(60 \%\) to \(65 \%\)) when linear post regulators are used for the auxiliary outputs. Some linear power supplies on the other hand, are operated with up to \(50 \%\) efficiency but these are areas where line variations or hold-up time problems are minimal. Most linears operate with typical efficiencies of only \(30 \%\). The overall size reduction of a 20 kHz switcher is about \(4: 1\) and newer designs in the 100 kHz to 200 kHz region end up at about 8:1 (versus a linear). Other characteristics such as static regulation specs are comparable, while ripple and load transient response are usually worse. Output noise specs can be somewhat misleading. Very often a 500 mV switching spike at the output may be attenuated considerably at the load itself due to the series inductance of the connecting cables and the additional filter capacitors found in many logic circuits. In the future, the noise generated at higher switching frequencies (100 kHz to 500 kHz) will probably be easier to filter and the transient response will be faster. Hold-up time is greater for switchers because it is easier to store energy in high voltage capacitors (200 V to 400 V) than in the lower voltage (20 V to 50 V) filter capacitors common to linear power supplies. This is due to the fact that the physical size of a capacitor is dependent on its CV product while energy storage is proportional to CV2.

Table 9-1. 20 kHz Switcher versus Linear Performance
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Parameter } & \multicolumn{1}{|c|}{ Switcher } & Linear \\
\hline Efficiency & \(75 \%\) & \(30 \%\) \\
Size & \(2.0 \mathrm{~W} / \mathrm{in}^{3}\) & \(0.5 \mathrm{~W} / \mathrm{in}^{3}\) \\
Weight & \(40 \mathrm{~W} / \mathrm{lb}\) & \(10 \mathrm{~W} / \mathrm{b}\) \\
Line and Load Regulation & \(0.1 \%\) & \(0.1 \%\) \\
Output Ripple Vpp & 50 mV & 5.0 mV \\
Noise Vpp & 50 mV to 200 mV & - \\
Transient Response & 1.0 ms & \(20 \mu \mathrm{~s}\) \\
Hold-Up Time & 20 ms to 30 ms & 1.0 ms to 2.0 ms \\
\hline
\end{tabular}

\section*{Basic Configurations}

A switching power supply is a relatively complex circuit as is shown by the four basic building blocks of Figure 9-1. It is apparent here that the heart of the supply is really the high frequency inverter. It is here that the work of chopping the rectified line at a high frequency (20 kHz to 200 kHz) is done. It is here also that the line voltage is transformed down to the correct output level for use by logic or other electronic circuits. The remaining blocks support this basic function. The 60 Hz input line is rectified and filtered by one block and after the inverter steps this voltage down, the output is again rectified and filtered by another. The task of regulating the output voltage is left to the control circuit which closes the loop from the output to the inverter. Most control circuits generate a fixed frequency internally and utilize pulse width modulation techniques to implement the desired regulation. Basically, the on-time of the square wave drive to the inverter is controlled by the output voltage. As load is removed or input voltage increases, the slight rise in output voltage will signal the control circuit to deliver shorter pulses to the inverter and conversely as the load is increased or input voltage decreases, wider pulses will be fed to the inverter.

The inverter configurations used in today's switchers actually evolved from the buck and boost circuits shown in Figures 9-2a and 9-2b. In each case the regulating means and loop analysis will remain the same but a transformer is added in order to provide electrical isolation between the line and load. The forward converter family which includes the push-pull and half bridge circuits evolved from the buck regulator (Figure 9-2a). And the newest switcher, the flyback converter, actually evolved from the boost regulator. The buck circuit interrupts the line and provides a variable pulse width square wave to a simple averaging LC filter. In this case, the first order approximation of the output voltage is \(\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }} \times\) duty cycle and regulation is accomplished by simply varying the duty cycle. This is satisfactory for most analysis work and only the transformer turns ratio will have to be adjusted slightly to compensate for IR drops, diode drops, and transistor saturation voltages.

Operation of the boost circuit is more subtle in that it first stores energy in a choke and then delivers this energy plus the input line to the load. However, the flyback regulators which evolved from this configuration delivers only the energy stored in the choke to the load. This method of operation is actually based on the buck boost model shown in Figure 9-2c. Here, when the switch is opened, only the stored inductive energy is delivered to the load. The true boost circuit can also regulate by stepping up (or boosting) the input voltage whereas the buck-boost or flyback regulator can step the input voltage up or down. Analysis of the boost regulator begins by dealing with the choke as an energy storage element which delivers a fixed amount of power to the load: \(\mathrm{PO}=1 / 2 \mathrm{~L}\) Ifo where, \(I=\) the peak choke current; fo \(=\) the operating frequency; and, \(L=\) the inductance.

Because it delivers a fixed amount of power to the load regardless of load impedance (except for short circuits), the boost regulator is the designer's first choice in photoflash and capacitive-discharge (CD) automotive ignition circuits to recharge the capacitive load. It also makes a good battery charger. For an electronic circuit load, however, the load resistance must be known in order to determine the output voltage:
\[
V_{O}=\sqrt{P_{O R}}=I \sqrt{\frac{L_{\mathrm{fO}}^{\mathrm{L}}}{}} \frac{1}{2} \quad \text { where, } \mathrm{R}_{\mathrm{L}}=\text { the load resistance. }
\]

In this case, the choke current is proportional to the on-time or duty cycle of the switch and regulation for fixed loads simply involves varying the duty cycle as before. However, the output also depends on the load which was not the case with buck regulators and results in a variation of loop gain with load.

Figure 9-1. Functional Block Diagram — Switching Power Supply

Figure 9-2. Nonisolated DC-DC Converters

(c) Buck-Boost Regulator which Resembles the Flyback Regulator (Step-Up or Down)

For both regulators, transient response or responses to step changes in load are very difficult to analyze. They lead to what is termed a "load dump" problem. This requires that energy already stored in the choke or filter be provided with a place to go when load is abruptly removed. Practical solutions to this problem include limiting the minimum load and using the right amount of filter capacitance to give the regulator time to respond to this change.

\section*{The Future}

The future offers a lot of growth potential for switchers in general and low power switchers (20 W to 100 W) in particular. The latter are responding to the growth in microprocessor based equipment as well as computer peripherals. Today's configurations have already been challenged by the sine wave inverter which reduces noise and improves transistor reliability but does effect a cost penalty. Also, a trend to higher switching frequencies to reduce size and cost even further has begun. The latest bipolar designs operate efficiently up to 100 kHz and the FET seems destined to own the 200 kHz to 500 kHz range.

At this time there are a lot of safety and noise specifications. Originally governed only by MIL specs and the VDE in Europe, now both UL and the FCC have released a set of specifications that apply to electronic systems which often include switchers (see Table 9-2). It seems probable, however, that system engineers or power supply designers will be able to add the necessary line filters and EMI shields without evoking a significant cost penalty in the design.

The most optimistic note concerning switchers is in the component area. Switching power supply components have actually evolved from components used in similar applications. And it is very likely that newer and more mature products specifically for switchers will continue to appear over the next several years. The ultimate effect of this evolution will be to further simplify, cost reduce and increase the reliability of these designs.

Table 9-2. SMPS Specifications
\begin{tabular}{|c|c|}
\hline Specification & Area \\
\hline UL 478, VDE 0730, VDE 0806 & Safety \\
VDE 0871, VDE 0875 & EMI \\
MIL-STD-217D & Reliability \\
MIL-STD-461A & EMI \\
DOD-STD-1399 & Harmonic Content \\
FCC Class A \& B & EMI \\
CSA C22.2, IEC 380 & Safety \\
\hline
\end{tabular}

The synchronous rectifier is one example of a new component developed specifically for low voltage switchers. As requirements for 2.0 V and 3.0 V supplies emerge for use by fine geometry VLSI chips, the only way to maintain decent conversion efficiency is to develop lower forward drop rectifiers. The differences in 3.0 V and 5.0 V rectifier requirements are shown in Table 9-3. At this time, Motorola offers low \(V_{F}\) Schottky and area efficient TMOS III FETs for this task and is considering a variety of additional technology options. The direct approach involves using low \(V_{F}\) Schottkys or pinch rectifiers which will feature VFs of 0.3 V to 0.4 V . The indirect approach involves using FETs or bipolar transistors and slightly more complex circuitry like that shown in Figure 9-3. Both transistors will feature VFs of 0.2 V and, in addition, the bipolar will have high EBOs (30 V) and high gain (100) with a recovery time of 100 ns .

And for designers who are not satisfied with the relatively low frequency limitations of square wave switchers, there is the SRPS. The series resonant power supply topology seems to offer the possibility of working in the 1.0 MHz region. If components like the relatively exotic power transformer can be cost reduced, then it will be possible for this topology to become dominant in the market. The features generally associated with this type of power supply are listed in Table 9-4 and a typical half bridge circuit is shown in Figure 9-4. In a design now being studied in Motorola's advanced products laboratory, standard FETs, Schottkys and ultrafast rectifiers all appear to work very well at 1.0 MHz .

Table 9-3. Synchronous Rectifier Requirements
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Output \\
Voltage
\end{tabular}} & \multicolumn{2}{|c|}{ Rectifier Characteristics } \\
\cline { 2 - 3 } & \(\mathbf{V}_{\mathbf{F}}\) & \(\mathbf{V}_{\mathbf{R}}\) \\
\hline 5.0 V & \(0.5 \mathrm{~V}-1.0 \mathrm{~V}\) & \(30 \mathrm{~V}-60 \mathrm{~V}\) \\
3.0 V & \(0.3 \mathrm{~V}-0.6 \mathrm{~V}\) & \(20 \mathrm{~V}-40 \mathrm{~V}\) \\
\hline
\end{tabular}

Figure 9-3. Synchronous Rectifiers for 3.0 V Power Supplies

Note: The FET must be operated below \(\mathrm{V}_{\mathrm{F}}\) of the diode in order to gain the \(\mathrm{t}_{\mathrm{rr}}\) advantage.

Table 9-4. SRPS Features
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Feature } & \multicolumn{1}{c|}{ Description } \\
\hline High Frequency & Today's line operated designs use sine waves in the 500 kHz to 1.0 MHz range. \\
\hline Small Size & \begin{tabular}{l}
The ferrite transformer and polypropylene coupling capacitor are smaller than those \\
found in lower frequency square wave designs.
\end{tabular} \\
\hline Low Noise & Switching occurs at zero crossings which reduces component stress and lowers EMI. \\
\hline Efficient & Because switching losses are reduced, efficiency is high (typically 80\%). \\
\hline \begin{tabular}{l}
High Peak to Average \\
Current Ratios
\end{tabular} & \begin{tabular}{l}
Current ratings of the transistors and rectifiers are twice as high as similar flyback \\
designs.
\end{tabular} \\
\hline Special Control Circuit & \begin{tabular}{l}
PDM (density) rather than PWM (width) control is used and requires a control IC \\
with a programmable VCO.
\end{tabular} \\
\hline Market & The SRPS is expected to own 15\% of the power supply market by 1990. \\
\hline
\end{tabular}

Figure 9-4. SRPS Block Diagram

\section*{SECTION 10 \\ SWITCHING REGULATOR TOPOLOGIES}

\section*{FET and Bipolar Drive Considerations}

There are probably as many base drive circuits for bipolars as there are designers. Ideally, the transistor would like just enough forward drive (current) to stay in or near saturation and reverse drive that varies with the amount of stored base charge such as a low impedance reverse voltage. Many of today's common drive circuits are shown in Figure 10-1. The fixed drive circuits of Figure 10(a), (b) and (c) tend to emphasize economy, while the Baker clamp and proportional drive circuits of Figure 10(d) and (e) emphasize performance over cost.

FET drive circuits are another alternative. The standard that has evolved at this time is shown in Figure 10-2A. This transformer coupled circuit will produce forward and reverse voltages applied to the FET gate which vary with the duty cycle as shown. For this example, a \(\mathrm{V}_{\mathrm{GS}}\) rating of 20 V would be adequate for the worst case condition of high logic supply (12 V) and minimum duty cycle. And yet, minimum gate drive levels of 10 V are still available with duty cycles up to \(50 \%\). If wide variations in duty cycle are anticipated, it might be wise to consider using a semi-regulated logic supply for these situations. Finally, one point that is not obvious when looking at the circuit is that FETs can be directly coupled to many ICs with only 100 mA of sink and source capability and still switch efficiently at 20 kHz . However, to achieve switching efficiently at higher frequencies, 1.0 A to 2.0 A of drive may be required on a pulsed basis in order to quickly charge and discharge the gate capacitances. A simple example will serve to illustrate this point and also show that the Miller effect, produced by CDG, is the predominant speed limitation when switching high voltages (see Figure 10-2B). A FET responds instantaneously to changes in gate voltage and will begin to conduct when the threshold is reached (\(\mathrm{VGS}=2.0 \mathrm{~V}\) to 3.0 V) and be fully on with \(\mathrm{VGS}=7.0 \mathrm{~V}\) to 8.0 V . Gate waveforms will show a porch at a point just above the threshold voltage which varies in duration depending on the amount of drive current available and this determines both the rise and fall times for the drain current.

Figure 10-1. Typical Bipolar Base Drive Circuits

(a) Fixed Drive, Turn-Off Energy Stored in Transformer

(b) Fixed Drive, Turn-Off Energy Stored in Capacitor

(c) Direct Drive

(d) Standard Baker Clamp

(e) Proportional Base Drive

Figure 10-2A. Typical Transformer Coupled FET Drive

Figure 10-2B. FET Drive Current Requirements

To estimate drive current requirements, two simple calculations with gate capacitances can be made:
1. \(\mathrm{I}_{\mathrm{M}}=\mathrm{C}_{\mathrm{DG}} \mathrm{dv} / \mathrm{dt}\) and,
2. \(\mathrm{I} G=\mathrm{CGSdv} / \mathrm{dt}\)
\(\mathrm{I}_{\mathrm{M}}\) is the current required by the Miller Effect to charge the drain-to-gate capacitance at the rate it is desired to move the drain voltage (and current). And IG is usually the lesser amount of current required to charge the gate-to-source capacitance through the linear region (2.0 V to 8.0 V). As an example, if 30 ns switching times are desired at 300 V , where \(\mathrm{CDG}=100 \mathrm{pF}\) and \(\mathrm{C}_{\mathrm{GS}}=500 \mathrm{pF}\), then:
1. \(\mathrm{I} \mathrm{M}=100 \mathrm{pF} \times 300 \mathrm{~V} / 30 \mathrm{~ns}=1.0 \mathrm{~A}\) and,
2. \(\mathrm{IG}=500 \mathrm{pF} \times 6.0 \mathrm{~V} / 30 \mathrm{~ns}=0.1 \mathrm{~A}\)

This example shows the direct proportion of drive current capability to speed and also illustrates that for most devices, CDG will have the greatest effect on switching speed and that CGS is important only in estimating turn-on and turn-off delays.

Aside from its unique drive requirements, a FET is very similar to a bipolar transistor. Today's 400 V FETs compete with bipolar transistors in many switching applications. They are faster and easier to drive, but do cost more and have higher saturation, or more accurately, "on" voltages. The performance or efficiency tradeoffs are analyzed using Figure 10-3, where typical power losses for switching transistors versus frequency are shown. The FET (and bipolar) losses were calculated at \(100^{\circ} \mathrm{C}\) rather than \(25^{\circ} \mathrm{C}\) because on resistance and switching times are highest here and \(100^{\circ} \mathrm{C}\) is typical of many applications. These curves are asymptotes of the actual device performance, but are useful in establishing the "breakpoint" of various devices, which is the point where saturation and switching losses are equal.

Figure 10-3. Typical Switching Losses at 300 V and \(5.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=100^{\circ} \mathrm{C}\right)\)

\section*{Control Circuits}

Over the years, a variety of control ICs for SMPS have been introduced. The voltage mode controllers diagramed in Table 10-1 still dominate this market. The basic regulating function is performed in the pulse width modulator (PWM) section. Here, the dc feedback signal is compared to a fixed frequency sawtooth waveform. The result is a variable duty cycle pulse train which, with suitable buffer or interface circuits, can be used to drive the power switching transistor. Some ICs provide only a single output while others provide a phase splitter or flip-flop to alternately pulse two output channels. Additionally, most ICs provide an error amplifier and reference section shown as a means to process, compare and amplify the feedback signal.

Features required by a control IC vary to some extent because of the particular needs of a designer and on the circuit configuration chosen. However, most of today's current generation ICs have evolved with the following capabilities or features:
- Programmable (to 500 kHz) Fixed Frequency Oscillator
- Linear PWM Section with Duty Cycle from 0\% to \(100 \%\)
- On Board Error Amplifiers
- On Board Reference Regulator
- Adjustable Deadtime
- Under Voltage (low VCC) Inhibit
- Good Output Drive (100 mA to 200 mA)
- Option of Single or Dual Channel Output
- Uncommitted Output Collector and Emitter or Totem Pole Drive Configuration
- Soft-Start
- Digital Current Limiting
- Oscillator Sync Capability

It is primarily the cost differences in these parts that determine whether all or only part of these features will be incorporated. Most of these are evident to the designer who has already started comparing competitive device data sheets.

In addition to the control circuits listed in Table 10-2, Motorola also has two dc converter control chips, the \(\mu\) A78S40 and the MC34063A. These chips feature an on-board \(40 \mathrm{~V}, 2.0 \mathrm{~A}\) switching transistor and operate by dropping pulses from a fixed frequency, fixed duty cycle oscillator depending on load demand.

Today there is a demand for simple, low cost, single control ICs. These ICs, like Motorola's MC34060A and MC34063A components, are used to run the low-power flyback type configurations and are usually part of a three chip rather than a single chip system. The differences in these two approaches are illustrated in Figure 10-6.

When it is necessary to drive two or more power transistors, drive transformers are a practical interface element and are driven by the conventional dual channel ICs. In the case of a single transistor converter, however, it is usually more cost effective to directly drive the transistor from the IC. In this situation, an optocoupler is commonly used to couple the feedback signal from the output back to this control IC. And the error amplifier in this case is nothing more than a programmable zener like Motorola's TL431.

\section*{Overvoltage Protection}

Linear and switching power supplies can be protected from overvoltage with a crowbar circuit. For linear supplies, the pass transistor can fail shorted, allowing high line transformer voltage to the load. For switching power supplies, a loose or disconnected remote sense lead can allow high voltage to the load.

Table 10-1. Basic SM Control ICs
\begin{tabular}{|c|c|c|c|}
\hline Control Technique & Type A Voltage Mode & \begin{tabular}{l}
Type B \\
Voltage Mode w/Latch
\end{tabular} & Type C Current Mode \\
\hline Schematic & Osc & & \\
\hline Single Channel Parts & MC34060A & - & UC3842 MC34129 \\
\hline Dual Channel Parts & TL494/594 & \[
\begin{gathered}
\text { SG3525A/27A } \\
\text { SG3526 }
\end{gathered}
\] & - \\
\hline Features & Low Cost & Digital Current Limiting, Good Noise Immunity & Designed for Flyback, Inherent Feed Forward \\
\hline PWM Waveforms Output & & & \[
\square \square
\] \\
\hline
\end{tabular}

Table 10-2. Control Circuits
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c}
Overvoltage \\
Protection \\
(OVP)
\end{tabular}} & \begin{tabular}{c}
Over/Undervoltage \\
Protection \\
(O/UVP)
\end{tabular} & \begin{tabular}{c}
Undervoltage \\
Sense MPU/MCU \\
Reset
\end{tabular} \\
\hline Standard & \begin{tabular}{c}
High \\
Performance
\end{tabular} & MC3425 & MC34064-5 \\
\hline TL431 & MC3423 & MC34161 & MC34164-3 \\
& TL431A & MC34164-5 \\
\hline
\end{tabular}

The list of available circuits is shown in Table 10-2 and a typical 0 V application is shown in Figure 10-4. This crowbar circuit ignores noise spikes but will fire the SCR when a valid overvoltage condition is detected. The SCR will discharge C2 and either blow the fuse or cause the power supply to shut down.

Figure 10-4. Crowbar Circuit

For further information, see the MC3423 data sheet.

\section*{Surge Current Protection}

Many high current PWM switching supplies operate directly off the ac line. They have very large capacitive input filters with high inrush surge currents. The line circuit breaker and the rectifier bridge must be protected during turn-on.

Surge current limiting can be accomplished by adding RS and an SCR short after charging C1, as shown in Figure 10-5, or by phase controlling the line voltage with a Triac.

Figure 10-5. Surge Current Limiting for a Switching Power Supply

\section*{Transformer Design}

With respect to transformer design, many of today's designers would say don't try it. They'd advise using a consultant or winding house to perform this task and with good reason. It takes quite a bit of time to develop a feel for this craft and be able to use both experience and intuition to find solutions to second and third order problems. Because of these subtle problems, most designers find that after the first paper design is done, as many as four or five lab iterations may be necessary before the transformer meets the design goals. However, there is a considerable design challenge in this area and a great deal of satisfaction can be obtained by mastering it.

This component design, as do all others, begins by requesting all available literature from the appropriate manufacturers and then following this up with phone calls when specific questions arise. A partial list of companies is shown in Table 10-3. Designs below 20 W generally use pot cores, but for 20 W and above, E cores are preferred. E cores expose the windings to air so that heat is not trapped inside and make it easier to bring out connections for several windings. Remember that flyback designs require lower permeability cores than the others. The classic approach is to consult manufacturers charts like the one shown in Figure 10-8 and then to pick a core with the required power handling ability. Both E and EC (E cores with a round center leg) are popular now and they are available from several manufacturers. EC cores offer a performance advantage (better coupling) but standard E cores cost less and are also used in these applications. Another approach that seems to work equally well is to do a paper design of the estimated windings and turns required. Size the wire for 500 circular mils (CM) per amp and then find a core that has the required window area for this design. Now, before the windings are put on, it is a good idea to modify the turns so that they fit on one layer or an integral number of layers on that bobbin. This involves checking the turns per inch of the wire against the bobbin length. The primary generally goes on first and then the secondaries. If the primary hangs over an extra half layer, try reducing the turns or the wire size. Conversely, if the secondary does not take up a full layer, try bifilar winding (parallel) using wire half the size originally chosen (i.e., 3 wire sizes smaller, like 23 versus 20). This technique ultimately results in the use of foil for the higher current (20 A) low voltage windings. Most windings can be separated with 3 mil mylar (yellow) tape but for good isolation, cloth is recommended between primary and secondary.

Finally, once a mechanical fit has been obtained, it is time for the circuit tests. The isolation voltage rating is strictly a mechanical problem and is one of the reasons why cloth is preferred over tape between the primary and secondary. The inductance and saturating current level of the primary are inherent to the design, and should be checked in the circuit or other suitable test fixture. Such a fixture is shown in Figure 10-7 where the transistor and diode are sized to handle the anticipated currents. The pulse generator is run at a low enough duty cycle to allow the core to reset. Pulse width is increased until the start of saturation is observed (Isat). Inductance is found using \(L=E /(d i / d t)\).

Figure 10-6. Control Circuit Topologies

(a) Single Chip System - Drive Transformer Isolation

(b) Three Chip System — Opto Coupler Isolation

In forward converters, the transformer generally has no gap in order to minimize the magnetizing current \((\mathrm{I} \mathrm{M})\). For these applications the core should be chosen large enough so that the resulting LI product insures that \(I_{M}\) at operating voltages is less than \(I_{\text {sat }}\). For flyback designs, a gap is necessary and the test circuit is useful again to evaluate the effect of the gap. The gap will normally be quite large, \(\mathrm{Lg} \gg \mathrm{Lm} / \mathrm{u}\),
where, \(\mathrm{Lg}=\) gap length
\(L_{m}=\) magnetic path length, and
\(\mathrm{u}=\) permeability.
Under this stipulation, the gap directly controls the LI parameters and doubling it will decrease \(L\) by two and increase Isat by two until fringing effects occur. Gaps of 5 mils to 20 mils are common. Again, the anticipated switching currents must be less than Isat when the core is gapped for the correct inductance.

Table 10-3. Partial List of Core (C) and Transformer (T) Manufacturers
\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Company } & \multicolumn{1}{|c|}{ Location } & Code \\
\hline Ferroxcube Inc. & Sauggerties, NY & C \\
Indiana General & Keasby, NJ & C \\
Stackpole & St. Marys, PA & C \\
TDK & El Segundo, CA & C \\
Pulse Engineering & San Diego, CA & T \\
Coilcraft & Cary, IL & T \\
\hline
\end{tabular}

Transformer tests in the actual supply are usually done with a high voltage dc power supply on the primary and with a pulse generator or other manual control for the pulse width (such as using the control IC in the open loop configuration). Here the designer must recheck three areas:
1. Core saturation
2. Correct amount of secondary voltage
3. Transformer heat rise

If problems are detected in any of these areas, the ultimate fix may be to redesign using the next larger core size. However, if problems are minimal, or none exist, it is possible to stay with the same core or even consider using the next smaller size.

Figure 10-7. Simple Coil Tester

\section*{Filter Capacitor Considerations}

In today's 20 kHz switchers, aluminum electrolytics still predominate. The good news is that most have been characterized, improved, and cost reduced for this application. The input filter requires a voltage rating that depends on the peak line voltage; i.e., 400 V to 450 V for a 220 V switcher. If voltage is increased beyond this point, the capacitor will begin to act like a zener and be thermally destroyed from high leakage currents if the rating is exceeded for enough time. In doubler circuits, voltage sharing of the two capacitors in series can be a problem. Here extra voltage capability may be needed to make up for the imbalances caused by different values of capacitance and leakage current. A bleeder resistor is normally used here not only for safety but to mask the differences in leakage current. The RMS current rating is also an important consideration for input capacitors and is an example of improvements offered by today's manufacturers. Earlier "lytics" usually lacked this rating and often overheated. Large capacitors that were not needed for performance were used just to reduce this heating. However, today's devices offer lower thermal resistance, improved connection to the foil and good RMS ratings. A partial list of manufacturers that supply both high voltage input and the lower voltage output capacitors for switchers is shown in Table 10-4. Most of the companies offer not only the standard \(85^{\circ} \mathrm{C}\) components, but devices with up to \(125^{\circ} \mathrm{C}\) ratings which are required because of the high ambient temperatures \(\left(55^{\circ}\right.\) to \(85^{\circ} \mathrm{C}\)) that many switchers have to operate in, many times without the benefit of fans.

Table 10-4. Partial List of Capacitor Companies
\begin{tabular}{|l|l|}
\hline Company (U.S.) & Location \\
\hline MEPCO/Electra & Columbia, SC \\
Cornell-Dublier & Sanford, NC \\
Sangamo & Pickens, SC \\
Mallory & Indianapolis, IN \\
\hline
\end{tabular}

For output capacitors the buzz word is low ESR (equivalent series resistance). It turns out that for most capacitors even in the so-called "low ESR" series, the output ripple depends more on this resistance than on the capacitor value itself. Although typical and maximum ESR ratings are now available on most capacitors designed for switchers, the lead inductance generally is not specified except for the ultra-high frequency four terminal capacitors from some vendors. This parameter is responsible for the relatively high switching spikes that appear at the output. However, at this point in time, most designers find it less costly and more effective to add a high frequency noise filter rather than use a relatively expensive capacitor with low equivalent series inductance (ESL).

These LC noise or spike filters are made using small powdered iron toroids (1/2" to \(1^{\prime \prime}\) OD) with distributed windings to minimize interwinding capacitance. And the output is bypassed using a small \(0.1 \mu \mathrm{~F}\) ceramic or a \(10 \mu \mathrm{~F}\) to \(50 \mu \mathrm{~F}\) tantalum or both. Larger powered iron toroids are often used in the main LC output filter although the higher permeability ferrite EC and E cores with relatively large gaps can also be used. Calculations for the size of this component should take into account the minimum load so that the choke will not run "dry" as stated earlier.

Figure 10-8. Core Selection for Bridge Configurations (Reprinted from Ferroxcube Design Manual)

\title{
SECTION 11 SWITCHING REGULATOR COMPONENT DESIGN TIPS
}

\section*{Transistors}

The initial selection of a transistor for a switcher is basically a problem of finding the one with voltage and current capabilities that are compatible with the application. For the final choice performance and cost tradeoffs among devices from the same or several manufacturers have to be weighed. Before these devices can be put in the circuit, both protective and drive circuits will have to be designed.

Motorola's first line of devices for switchers were trademarked "Switchmode" transistors and introduced in the early 70 's with data sheets that provided all the information that a designer would need including reverse bias safe operating area (RBSOA) and performance at elevated temperature \(\left(100^{\circ} \mathrm{C}\right)\). The first series was the 2N6542 through 2N6547, TO-204 (TO-3) and was followed by the MJE13002 through MJE13009 series in a plastic TO-220 package. Finally, high voltage (1.0 kV) requirements were met by the metal MJ8500 thru MJ8505 series and the plastic MJE8500 series. The Switchmode II series is an advanced version of Switchmode I that features faster switching. Switchmode III is a state of the art bipolar with exceptional speed, RBSOA, and up to 1.5 kV blocking capacity. Here, device cost is somewhat higher, but system costs may be lowered because of reduced snubber requirements and higher operating frequencies. A similar argument applies to Motorola TMOS Power FETs. These devices make it possible to switch efficiently at higher frequencies (200 kHz to 500 kHz) but the main selling point is that they are easier to drive. This latter point is the one most often made to show that systems savings are again quite possible even though the initial device cost is higher.

Table 11-1. Motorola High Voltage Switching Transistor Technologies
\begin{tabular}{|l|l|c|c|}
\hline Family & \begin{tabular}{c}
Typical \\
Device
\end{tabular} & \begin{tabular}{c}
Typical Fall \\
Time
\end{tabular} & \begin{tabular}{c}
Approximate \\
Switching \\
Frequency
\end{tabular} \\
\hline SWITCHMODE I & \begin{tabular}{l}
2 2N6545 \\
MJE13005 \\
MJE12007
\end{tabular} & \begin{tabular}{c}
200 ns \\
to \\
500 ns
\end{tabular} & 20 k \\
\hline SWITCHMODE II & MJ13081 & 100 ns & 100 k \\
\hline SWITCHMODE III & MJ16010 & 50 ns & 200 k \\
\hline TMOS & MTP5N40 & 20 ns & 500 k \\
\hline
\end{tabular}

Table 11-2 is a chart of the transistor voltage requirements for the various off-line converter circuits. As illustrated, the most stringent requirement for single transistor circuits (flyback and forward) is the blocking or VCEV rating. Bridge circuits, on the other hand, turn on and off from the dc bus and their most critical voltage is the turn-on or VCEO(sus) rating.

Table 11-2. Power Transistor Voltage Chart
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{c}
\(*\) \\
Line \\
Voltage
\end{tabular}} & \multicolumn{4}{|c|}{ Circuit } \\
\cline { 2 - 5 } & \multicolumn{2}{|c|}{ Flyback, Forward or Push-Pull } & \multicolumn{2}{c|}{ Half or Full-Bridge } \\
\cline { 2 - 5 } & V CEV \(^{2}\) & VCEO(sus) & V CEO(sus) & V \(_{\text {CEV }}\) \\
\hline 220 & 850 kV to 1.0 kV & 450 & 450 & 450 \\
120 & 450 & 250 & 250 & 250 \\
\hline
\end{tabular}

Most switchmode transistor load lines are inductive during turn-on and turn-off. Turn-on is generally inductive because the short circuit created by output rectifier reverse recovery times is isolated by leakage inductance in the transformer. This inductance effectively snubs most turn-on load lines so that the rectifier recovery (or short circuit) current and the input voltage are not applied simultaneously to the transistor. Sometimes primary interwinding capacitance presents a small current spike but usually turn-on transients are not a problem. Turn-off transients due to this same leakage inductance, however, are almost always a problem. In bridge circuits, clamp diodes can be used to limit these voltage spikes. If the resulting inductive load line exceeds the transistor's reverse bias switching capability (RBSOA) then an RC network may also be added across the primary to absorb some of this transient energy. The time constant of this network should equal the anticipated switching time of the transistor (50 ns to 500 ns). Resistance values of \(100 \Omega\) to \(1000 \Omega\) in this RC network are generally appropriate. Trial and error will indicate how low the resistor has to be to provide the correct amount of snubbing. For single transistor converters, the circuits shown in Figure 11-1 are generally used.

Here slightly different criteria are used to define the \(R\) and \(C\) snubber values:
```

                    \(\mathrm{C}=\frac{\mathrm{Itf}}{\mathrm{V}}\)
    where; $\quad I=$ the peak switching current
$\mathrm{t}_{\mathrm{f}}=$ the transistor fall time
$\mathrm{V}=$ the peak switching voltage (Approximately twice the DC bus)
also, $\quad R=t_{0 n} / C$ (it is not necessary to completely discharge this capacitor
in order to obtain the desired effects of this circuit)
where, $t_{\text {on }}=$ the minimum on-time or pulse width
and, $\quad P_{R}=\frac{C V 2 f}{2}$
where, $\quad \mathrm{P}_{\mathrm{R}}=$ the power rating of the resistor
and, $\quad f=$ the operating frequency.

```

In most of today's designs snubber elements are small or nonexistent and voltage spikes from energy left in the leakage inductance a more critical problem depending on how good the coupling is between the primary and clamp windings and how fast the clamp diode turns on. FETs often have to be slowed down to prevent self destruction from this spike.

Figure 11-1. Protection Circuits for Switching Transistors

\section*{Zener and Mosorb Transient Suppressors}

If necessary, protection from voltage spikes may be obtained by adding a zener and rectifier across the primary as shown in Figure 11-1. Here Motorola's 5.0 W zener lines with ratings up to 200 V , and 10 W TO-220 Mosorbs with ratings up to 250 V can provide the clamping or spike limiting function. If the zener must handle most of the power, its size can be estimated using:
\[
P Z=\frac{L_{L} \mid 2 f}{2}
\]
\begin{tabular}{rl}
where, & PZ \\
and, & \(=\) the zener power rating \\
LL & \(=\) the leakage inductance (measured with the clamp winding or secondary shorted) \\
I & \(=\) peak collector current \\
f & \(=\) operating frequency
\end{tabular}

Distinction is sometimes made between devices trademarked Mosorb (by Motorola, Inc.), and standard zener/avalanche diodes used for reference, low-level regulation and low-level protection purposes. It must be emphasized that Mosorb devices are, in fact, zener diodes. The basic semiconductor technology and processing are identical. The primary difference is in the applications for which they are designed. Mosorb devices are intended specifically for transient protection purposes and are designed, therefore, with a large effective junction area that provides high pulse power capability while minimizing the total silicon use. Thus, Mosorb pulse power ratings begin at 600 W - well in excess of low power conventional zener diodes which in many cases do not even include pulse power ratings among their specifications.

MOVs, like Mosorbs, do have the pulse power capabilities for transient suppression. They are metal oxide varistors (not semiconductors) that exhibit bidirectional avalanche characteristics, similar to those of back-to-back connected zeners. The main attributes of such devices are low manufacturing cost, the ability to absorb high energy surges (up to 600 joules) and symmetrical bidirectional "breakdown" characteristics. Major disadvantages are: high clamping factor, an internal wear-out mechanism and an absence of low-end voltage capability. These limitations restrict the use of MOVs primarily to the protection of insensitive electronic components against high energy transients in applications above 20 V , whereas, Mosorbs are best suited for precise protection of sensitive equipment even in the low voltage range the same range covered by conventional zener diodes.

\section*{Rectifiers}

Once components for the inverter section of a switcher have been chosen, it is time to determine how to get power into and out of this section. This is where the all-important rectifier comes into play. (See Figure 11-2.) The input rectifier is generally a standard recovery bridge that operates off the ac line and into a capacitive filter. For the output section, most designers use Schottkys for efficient rectification of the low voltage, 5.0 V output windings and for the higher voltage, 12 V to 15 V outputs, the more economical fast recovery or ultrafast diodes are used.

Figure 11-2. Switchmode Power Supply Flyback or Boost Design

\footnotetext{
D1 - Bridge Rectifier - Line Voltage D2 - Clamp Diode - HV/Fast-Ultrafast
D3 - Snubber Diode - HV/Fast-Ultrafast
D4 - Output Rectifier - Fast/Ultrafast
D5 - Output Rectifier - Schottky
}

For the process of choosing an input rectifier, it is useful to visualize the circuit shown in Figure 11-3. To reduce cost, most earlier approaches of using choke input filters, soft start relays (Triacs), or SCRs to bypass a large limiting resistor have been abandoned in favor of using small limiting resistors or thermistors and a large bridge. The bridge must be able to withstand the surge currents that exist from repetitive starts at peak line. The procedure for finding the right component and checking its fit is as follows:
1. Choose a rectifier with 2 to 5 times the average Io required.
2. Estimate the peak surge current \(\left(\mathrm{l}_{\mathrm{p}}\right)\) and time (t\()\) using:
\[
\mathrm{Ip}=\frac{1.4 \mathrm{~V} \text { in }}{\mathrm{RS}_{\mathrm{S}}} \quad \mathrm{t}=\mathrm{RSC}_{\mathrm{S}}
\]

Where \(\mathrm{V}_{\mathrm{in}}\) is the RMS input voltage; RS is the total series resistance; and C is the filter capacitor size.

Figure 11-3. Choosing Input Rectifiers

3. Compare this current pulse to the sub cycle surge current rating (IS) of the diode itself. If the curve of IS versus time is not given on the data sheet, the approximate value for IS at a particular pulse width (t) may be calculated knowing:
- IFSM - the single cycle (8.3 ms) surge current rating and using.
- \(12 \sqrt{t}=K\), which applies when the diode temperature rise is controlled by its thermal response as well as power (i.e., \(T=K^{\prime} \mathrm{P} \sqrt{\mathrm{t}}\) for \(\mathrm{t}<8.0 \mathrm{~ms}\)).
This gives:
\[
\operatorname{IS} 2 \sqrt{\mathrm{t}}=\operatorname{I2FSM} \sqrt{8.3 \mathrm{~ms}} \quad \text { or, } \quad \operatorname{IS}=\operatorname{IFSM}\left(\frac{8.3 \mathrm{~ms}}{\mathrm{t}}\right)^{1 / 4}, \mathrm{t} \text { is in milliseconds. }
\]
4. If IS < IP, consider either increasing the limiting resistor (RS) or utilizing a larger diode.

In the output section where high frequency rectifiers are needed, there are several types available to the designer. In addition to the Schottky (SBR) and fast recovery (FR), there is also an ultrafast recovery (UFR). Comparative performance for devices with similar current ratings is shown in Table 11-3. The obvious point here is that lower forward voltage improves efficiency and lower recovery times reduce turn-on losses in the switching transistors, but the tradeoff is higher cost. As stated earlier, Schottkys are generally used for 5.0 V outputs and fast recovery and ultrafast devices for 12 V outputs and greater. The ultrafast is competing both with the Schottky where higher breakdown is needed and with the fast recovery in those applications where performance is more important than cost. Ten years ago Schottkys were very fragile and could fail short from either excessive \(\mathrm{dv} / \mathrm{dt}(1.0 \mathrm{~V}\) to 5.0 V per nanosecond) or reverse avalanche. Since that time, Motorola has incorporated a "guard ring" or internal zener which minimizes these earlier problems and reduces the need for RC snubbers and other external protective networks.

Table 11-3. Motorola Rectifier Product Portfolio
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Schottky & Ultrafast & \begin{tabular}{c}
Fast \\
Recovery
\end{tabular} & \begin{tabular}{c}
Standard \\
Recovery
\end{tabular} \\
\hline Forward Voltage (VF) & 0.5 V to 0.6 V & 0.9 V to 1.0 V & 1.2 V to 1.4 V & 1.2 V to 1.4 V \\
\hline Reverse Recovery Time (trr) & \(<10 \mathrm{~ns}\) & 25 ns to 100 ns & 150 ns & \(1.0 \mu \mathrm{~s}\) \\
\hline \(\mathrm{t}_{\mathrm{rr}}\) Form & Soft & Soft & Soft & Soft \\
\hline DC Blocking Voltage \(\left(\mathrm{V}_{\mathrm{R}}\right)\) & 20 V to 60 V & 50 V to 1000 V & 50 V to 1000 V & 50 V to 1000 V \\
\hline Cost Ratio & \(3: 1\) & \(3: 1\) & \(2: 1\) & \(1: 1\) \\
\hline
\end{tabular}

\title{
SECTION 12 BASIC SWITCHING POWER SUPPLY CONFIGURATIONS
}

The implementation of switching power supplies by the non-specialist is becoming increasingly easy due to the availability of power devices and control ICs especially developed for this purpose by the semiconductor manufacturer.

This section is meant to help in the preliminary selection of the devices required for the implementation of the listed switching power supplies.

\section*{Flyback and Forward Converter Switching Power Supplies (50 W to 250 W)}
- Input line variation: V in \(+10 \%,-20 \%\)
- Converter efficiency: \(\eta=80 \%\)
- Output regulation by duty cycle (\(\delta\) variation: \(\delta(\max)=0.4)\)
- Maximum Transistor working current:
\[
\begin{aligned}
I_{\mathrm{w}} & =\frac{2.0 \mathrm{P}_{\text {out }}}{\eta \times \delta(\max) \times \mathrm{V}_{\text {in }(\min)} \times \sqrt{2}}=\frac{5.5 \text { Pout }^{V_{\text {in }}} \text { (Flyback) }}{} \\
& =\frac{P_{\text {out }}}{\eta \times \delta(\max) \times \mathrm{V}_{\text {in }(\min)} \times \sqrt{2}}=\frac{2.25 \text { Pout }^{V_{\text {in }}} \text { (Forward) }}{}
\end{aligned}
\]
- Maximum transistor working voltage: \(\mathrm{V}_{\mathrm{W}}=2 \times \mathrm{V}_{\text {in }}(\max) \times \sqrt{2}+\) guardband
- Working frequency: \(f=20 \mathrm{kHz}\) to 200 kHz

Basic Flyback Configuration

Table 12-1. Flyback and Forward Converter Semiconductor Selection Chart
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Output Power & \multicolumn{2}{|c|}{50 W} & \multicolumn{2}{|c|}{100 W} & \multicolumn{2}{|c|}{175 W} & 250 W \\
\hline Input Line Voltage (\(\mathrm{V}_{\text {in }}\)) & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] & 120 V \\
\hline MOSFET Requirements: Max Working Current (\(\mathrm{I}_{\mathrm{w}}\)) Max Working Voltage (\(\mathrm{V}_{\mathrm{W}}\)) & \[
\begin{aligned}
& 2.25 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 \mathrm{~A} \\
& 750 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \mathrm{~A} \\
& 750 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 4.4 \mathrm{~A} \\
& 750 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 11.4 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Power MOSFETs Recommended: \\
Metal (TO-204AA) (TO-3) \\
Plastic (TO-220AB) \\
Plastic (TO-218AC)
\end{tabular} & MTM4N45 MTP4N45 - & MTM2N90 MTP2N90 - & MTM4N45 MTP4N45 - & MTM2N90 MTP2N90 - & MTM7N45 MTH7N45 & MTM4N90 & \begin{tabular}{l}
MTM15N45 \\
-
\end{tabular} \\
\hline \begin{tabular}{l}
Input Rectifiers: \\
Max Working Current (\({ }^{w}\)) Recommended Types
\end{tabular} & \[
\begin{gathered}
0.4 \mathrm{~A} \\
\text { MDA104A }
\end{gathered}
\] & \begin{tabular}{l}
0.25 A \\
MDA106A
\end{tabular} & \[
\begin{gathered}
0.4 \mathrm{~A} \\
\text { MDA206 }
\end{gathered}
\] & \begin{tabular}{l}
0.5 A \\
MDA210
\end{tabular} & \[
\begin{gathered}
2.35 \mathrm{~A} \\
\text { MDA970 }
\end{gathered}
\] & \[
\begin{gathered}
1.25 \mathrm{~A} \\
\text { MDA210 }
\end{gathered}
\] & \[
\begin{gathered}
4.6 \mathrm{~A} \\
\text { MDA3506 }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Output Rectifiers: Recommended types for Output Voltage of: 5.0 V 10 V \\
20 V \\
50 V \\
100 V
\end{tabular} & MBR
MUR
MUR
MUR
MUR 440 & \[
\begin{aligned}
& \text { 3035PT } \\
& \text { 3010PT } \\
& \text { 615CT } \\
& 615 \mathrm{CT} \\
& \text { MUR840A }
\end{aligned}
\] & \begin{tabular}{l}
MBR \\
MUR \\
MUR \\
MUR \\
MU
\end{tabular} & \[
\begin{aligned}
& 035 \mathrm{PT} \\
& 010 \mathrm{PT} \\
& 615 \mathrm{CT} \\
& 615 \mathrm{CT} \\
& \hline 840 \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
MBR1 \\
MUR1 \\
MUR \\
MUR \\
MUR
\end{tabular} & \[
\begin{aligned}
& 2035 \mathrm{CT} \\
& \hline 0010 \mathrm{CT} \\
& \hline 015 \mathrm{PT} \\
& 615 \mathrm{CT} \\
& \hline 840 \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
MBR20035CT \\
MUR10010CT \\
MUR10015CT \\
MUR3015PT \\
MUR840A
\end{tabular} \\
\hline Recommended Control Circuits & \begin{tabular}{l}
SG1525A \\
MC3423 \\
Error Ampl
\end{tabular} & SG1526, TL vervoltage D fier: Single Quad & \begin{tabular}{l}
94 Inverter tector \\
TL431; Dua MC3403, LM
\end{tabular} & \begin{tabular}{l}
ntrol Circuit \\
LM358 \\
24, LM2902
\end{tabular} & & & \\
\hline
\end{tabular}

\section*{Flyback and Forward Converters}

To take advantage of the regulating techniques discussed earlier and also provide isolation, a total of seven popular configurations have evolved and are listed below. Each circuit has a practical power range or capability associated with it as follows:
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Circuit } & Power Range & Parts Cost \\
\hline DC Converter & 5.0 W & \(\$ 4.00\) \\
\hline Converter w/30 V Transformer & 10 W & 7.00 \\
\hline Blocking OSC & 20 W & 10.00 \\
\hline Flyback & 50 W & 15.00 \\
\hline Forward & 100 W & 20.00 \\
\hline Half-Bridge & 200 W & 30.00 \\
\hline Full-Bridge & 500 W & 75.00 \\
\hline
\end{tabular}

First to be discussed will be the low power (20 W to 200 W) converters which are dominated by the single transistor circuits shown in Figure 12-1. All of these circuits operate the magnetic element in the unipolar rather than bipolar mode. This means that transformer size is sacrificed for circuit simplicity.

The flyback (alternately known as the "ringing choke") regulator stores energy in the primary winding and dumps it into the secondary windings, see Figure 12-1(a). A clamp winding is usually present to allow energy stored in the leakage reactance to return safely to the line instead of avalanching the switching transistor. The operating model for this circuit is the buck-boost discussed earlier. The flyback is the lowest cost regulator because output filter chokes are not required since the output capacitors feed from a current source rather than a voltage source. It does have higher output ripple than the forward converters because of this. However, it is an excellent choice when multiple output voltages are required and does tend to provide better cross regulation than the other types. In other words changing the load on one winding will have little effect on the output voltage of the others.

Figure 12-1. Low Power Popular (20 to 200 W) Converter Configurations

A 120/220 Vac flyback design requires transistors that block twice the peak line plus transients or about 1.0 kV . Motorola's MJE13000 and 16000A series with ratings of 750 V to 1000 V are normally used here. These bipolar devices are relatively fast (100 ns) and are typically used in the 20 kHz to 50 kHz operating frequency range. The recent availability of 900 V and 1000 V TMOS FETs allows designers to operate in the next higher range (50 kHz to 80 kHz) and some have even gone as high as 300 kHz with square wave designs and FETs. Faster 1.0 kV bipolar transistors are also planned in the future and will provide another design alternative. The two transistor variations of this circuit, Figure 12-1(c), eliminate the clamp winding and add a transistor and diode to effectively clamp peak transistor voltages to the line. With this circuit a designer can use the faster 400 V to 500 V FET transistors and push operating frequencies considerably higher. There is a cost penalty here over the single transistor circuit due to the extra transistor, diodes and gate drive circuitry.

A subtle variation in the method of operation can be applied to the flyback regulator. The difference is referred to as operation in the discontinuous or continuous mode and the waveform diagrams are shown in Figure 12-2. The analysis given in the earlier section on boost regulators dealt strictly with the discontinuous mode where all the energy is dumped from the choke before the transistor turns on again. If the transistor is turned on while energy is still being dumped into the load, the circuit is operating in the continuous mode. This is generally an

Figure 12-2. Flyback Transistor Waveforms
 advantage for the transistor in that it needs to switch only half as much peak current in order to deliver the same power to the load. In many instances, the same transformer transformer may be used with only the gap reduced to provide more inductance. Sometimes the core size will need to be increased to support the higher LI product (2 to 4 times) now required because the inductance must increase by almost 10 times to effectively reduce the peak current by two. In dealing with the continuous mode, it should also be noted that the transistor must now turn on from 500 V to 600 V rather than 400 V level because there no longer is any deadtime to allow the flyback voltage to settle back down in the input voltage level. Generally, it is advisable to have VCEO(sus) ratings comparable to the turn-on requirements except for SMIII where turn-on up to VCEV is permitted.

The flyback converter stands out from the others in its need for a low inductance, high current primary. Conventional \(E\) and pot core ferrites are difficult to work with because their permeability is too high even with relatively large gaps (50 to 100 milli-inches). The industry needs something better that will provide permeabilities of 60 to 120 instead of 2000 to 3000 for this application.

The single transistor forward converter is shown in Figure 12-1(b). Although it initially appears very similar to the flyback, it is not. The operating model for this circuit is actually the buck regulator discussed earlier. Instead of storing energy in the transformer and then delivering it to the load, this circuit uses the transformer in the active or forward mode and delivers power to the load while the transistor is on. The additional output rectifier is used as a freewheeling diode for the LC filter and the third winding is actually a reset winding. It generally has the same turns as the primary, (is usually bifilar wound) and does clamp the reset voltage to twice the line. However, its main function is to return energy stored in the magnetizing inductance to the line and thereby reset the core after each cycle of operation. Because it takes the same time to set and reset the core, the duty cycle of this circuit cannot exceed \(50 \%\). This also is a very popular low power converter and like the flyback is practically immune from transformer saturation problems. Transistor waveforms shown in Figure 12-3 illustrate that the voltage requirements are identical to the flyback. For the single transistor versions, 400 V turn-on and 1.0 kV blocking devices like the MJE13000 and MJE16000 transistors are required. The two transistor circuit variations shown in Figure 12-1(b) again adds a cost penalty but allows a designer to use the faster 400 V to 500 V devices. With this circuit, operation in the discontinuous mode refers to the time when the load is reduced to a point where the filter choke runs "dry." This means that choke current starts at and returns to zero during each cycle of

Figure 12-3. Forward Converter Transistor Waveforms
 operation. Most designers prefer to avoid this type of mode because of higher ripple and noise even though there are no adverse effects on the components themselves. Standard ferrite cores work fine here and in the high power converters as well. In these applications, no gap is used as the high permeability (3000) results in the desirable effect of very low magnetizing current levels. And, zeners or RC clamps may be used to reset the core in lieu of the clamp winding to lower the voltage stress on the switching transistors.

\section*{Push-Pull and Bridge Converters}

The high power circuits shown in Figures 12-4 to 12-7 all operate the magnetic element in the bipolar or push-pull mode and require 2 to 4 inverter transistors. Because the transformers operate in this mode they tend to be almost half the size of the equivalent single transistor converters and thereby provide a cost advantage over their counterparts at power levels of 200 kW to 1.0 kW .

The push-pull converter shown in Figure 12-4 is one of the oldest converter circuits around. Its early use was in low voltage inverters such as the 12 Vdc to 120 Vdc power source for recreational vehicles and in dc to dc converters. Because these converters are free running rather than driven and operate from low voltages, transformer saturation problems are minimal. In the high voltage off-line switchers, saturation problems are common and were difficult to solve. The transistors are also subjected to twice the peak line voltage which requires the use of high voltage (1.0 kV) transistors. Both of these drawbacks have tended to discourage designers of off-line switchers from using this configuration until current mode control ICs were introduced. Now these circuits are being looked at with renewed interest.

\section*{Push-Pull Switching Power Supplies (100 W to 500 W)}
- Input line variation: V in \(+10 \%,-20 \%\)
- Converter efficiency: \(\eta=80 \%\)
- Output regulation by duty cycle (\(\delta\)) variation: \(\delta(\max)=0.8\)
- Maximum transistor working current:
\[
I_{w}=\frac{P_{\text {out }}}{\eta \times \delta(\max) \times V_{\text {in }(\min)} \times \sqrt{2}}=\frac{1.4 \text { Pout }^{V_{\text {in }}}}{\text { (}}
\]
- Maximum transistor working voltage: \(\mathrm{V}_{\mathrm{w}}=2 \times \mathrm{V}_{\text {in }}(\max) \times \sqrt{2}+\) guardband
- Working frequency: \(f=20 \mathrm{kHz}\) to 200 kHz

\section*{Basic Push-Pull Configuration}

Table 12-2. Push-Pull Semiconductor Selection Chart
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Output Power & \multicolumn{2}{|c|}{100 W} & \multicolumn{2}{|c|}{250 W} & \multicolumn{2}{|c|}{500 W} \\
\hline Input Line Voltage (\(\mathrm{V}_{\mathrm{in}}\)) & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
MOSFET Requirements: \\
Max Working Current (\(I_{\mathrm{w}}\)) \\
Max Working Voltage (\(\mathrm{V}_{\mathrm{w}}\))
\end{tabular} & \[
\begin{aligned}
& 1.2 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \mathrm{~A} \\
& 750 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 2.9 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \mathrm{~A} \\
& 750 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 5.7 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 3.1 \mathrm{~A} \\
& 750 \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Power MOSFETs Recommended: \\
Metal (TO-204AA) (TO-3) \\
Plastic (TO-220AB) \\
Plastic (TO-218AC)
\end{tabular} & MTM2N50 MTP2N45
\(\qquad\) & MTM2N90 MTP2N90
\(\qquad\) & MTM4N45 MTP4N45
\(\qquad\) & \begin{tabular}{l}
MTM2N90 MTP2N94 \\
-
\end{tabular} & MTM7N45 MTH7N45 & \begin{tabular}{l}
MTM4N90 \\
-
\(\qquad\)
\end{tabular} \\
\hline \begin{tabular}{l}
Input Rectifiers: \\
Max Working Current (\(\mathrm{I}_{\mathrm{w}}\)) Recommended Types
\end{tabular} & \[
\begin{gathered}
0.9 \mathrm{~A} \\
\text { MDA206 }
\end{gathered}
\] & \[
\begin{gathered}
0.5 \mathrm{~A} \\
\text { MDA210 }
\end{gathered}
\] & \[
\begin{gathered}
2.35 \text { A } \\
\text { MDA970-5 }
\end{gathered}
\] & \[
\begin{gathered}
1.25 \mathrm{~A} \\
\text { MDA210 }
\end{gathered}
\] & \[
\begin{gathered}
4.6 \mathrm{~A} \\
\text { MDA3506 }
\end{gathered}
\] & \[
\begin{gathered}
2.5 \mathrm{~A} \\
\text { MDA3510 }
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { Output Rectifiers: } \\
& \text { Recommended types for } \\
& \text { output voltages of: } 5.0 \mathrm{~V} \\
& 10 \mathrm{~V} \\
& 20 \mathrm{~V} \\
& 50 \mathrm{~V} \\
& \\
& \\
& \\
&
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
MBR3035PT \\
MBR3045PT, MUR3010PT \\
MUR1615CT \\
MUR1615CT \\
MUR840A, MUR440
\end{tabular}} & \multicolumn{2}{|c|}{\begin{tabular}{l}
MBR12035CT \\
MUR10010CT \\
MUR3015PT \\
MUR1615CT \\
MUR840A
\end{tabular}} & \multicolumn{2}{|r|}{\begin{tabular}{l}
MBR20035CT \\
MUR10010CT \\
MUR10015CT \\
MUR3015PT \\
MUR840A
\end{tabular}} \\
\hline Recommended Control Circuits & \multicolumn{6}{|l|}{\begin{tabular}{l}
SG1525A, SG1526, TL494 Inverter Control Circuit MC3423 Overvoltage Detector \\
Error Amplifier: Single TL431; Dual-LM358 Quad MC3403, LM324, LM2902
\end{tabular}} \\
\hline
\end{tabular}

\section*{Half-Bridge/Full-Bridge Switching Power Supplies (100 W to 500 W/500 W to 1000 W)}
- Input line variation: Vin \(+10 \%,-20 \%\)
- Converter efficiency: \(\eta=80 \%\)
- Output regulation by duty cycle \((\delta)\) variation: \(\delta(\max)=0.8\)
- Maximum working current:
\[
\begin{aligned}
\mathrm{I}_{\mathrm{W}} & =\frac{2 P_{\text {out }}}{\eta \times \delta(\max) \times \mathrm{V}_{\text {in }(\min)} \times \sqrt{2}}=\frac{2.8 \mathrm{P}_{\text {out }}}{\mathrm{V}_{\text {in }}} \quad(\text { Half-Bridge }) \\
& \left.=\frac{P_{\text {out }}}{\eta \times \delta(\max) \times \mathrm{V}_{\text {in }}(\min) \times \sqrt{2}}=\frac{1.4 \mathrm{P}_{\text {out }}}{\mathrm{V}_{\text {in }}} \quad \text { (Full-Bridge }\right)
\end{aligned}
\]
- Maximum transistor working voltage: \(\mathrm{V}_{\mathrm{w}}=\mathrm{V}_{\mathrm{in}}(\max) \times \sqrt{2}+\) guardband
- Working frequency: \(f=20 \mathrm{kHz}\) to 200 kHz

Basic Half-Bridge Configuration

Table 12-3. Half-Bridge Semiconductor Selection Chart
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Output Power & \multicolumn{2}{|c|}{100 W} & \multicolumn{2}{|c|}{350 W} & \multicolumn{2}{|c|}{500 W} \\
\hline Input Voltage (\(\mathrm{V}_{\text {in }}\)) & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
MOSFET Requirements: \\
Max Working Current (Iw) \\
Max Working Voltage (\(\mathrm{V}_{\mathrm{w}}\))
\end{tabular} & \[
\begin{aligned}
& 2.3 \mathrm{~A} \\
& 190 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 1.25 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 5.7 \mathrm{~A} \\
& 190 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 3.1 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 11.5 \mathrm{~A} \\
& 190 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 6.25 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Power MOSFETs Recommended: \\
Metal (TO-204AA) (TO-3) \\
Plastic (TO-220AB) \\
Plastic (TO-218AC)
\end{tabular} & MTM5N35 MTP3N40 - & MTM2N45 MTP2N45 - & \begin{tabular}{l}
MTM8N40 \\
MTH8N40
\end{tabular} & MTM4N45 MTP4N45 - & MTM10N25 MTP10N25 - & \begin{tabular}{l}
MTM7N45 \\
MTH7N45
\end{tabular} \\
\hline \begin{tabular}{l}
Input Rectifiers: \\
Max Working Current (\(l_{W}\)) \\
Recommended Types
\end{tabular} & \[
\begin{gathered}
0.9 \text { A } \\
\text { MDA206 }
\end{gathered}
\] & 0.5 A MDA210 & \[
\begin{gathered}
2.3 \mathrm{~A} \\
\text { MDA970-5 }
\end{gathered}
\] & \[
\begin{gathered}
1.25 \mathrm{~A} \\
\text { MDA210 }
\end{gathered}
\] & \[
\begin{gathered}
4.6 \mathrm{~A} \\
\text { MDA3506 }
\end{gathered}
\] & \[
\begin{gathered}
2.5 \mathrm{~A} \\
\text { MDA3510 }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Output Rectifiers: Recommended types for output voltage of: 5.0 V 10 V \\
20 V \\
50 V \\
100 V
\end{tabular} & & \begin{tabular}{l}
35PT \\
MUR3010PT \\
15CT \\
15CT \\
, MUR440
\end{tabular} & MBR MUR MUP MUR MU & \[
\begin{aligned}
& 35 \mathrm{CT} \\
& 10 \mathrm{CT} \\
& 15 \mathrm{PT} \\
& 15 \mathrm{CT} \\
& 40 \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
MBR2 \\
MUR1 \\
MUR1 \\
MUR \\
MUP
\end{tabular} & \[
\begin{aligned}
& 35 \mathrm{CT} \\
& 10 \mathrm{CT} \\
& 15 \mathrm{CT} \\
& 15 \mathrm{PT} \\
& 40 \mathrm{~A}
\end{aligned}
\] \\
\hline Recommended Control Circuits & \multicolumn{6}{|l|}{\begin{tabular}{l}
SG1525A, SG1526, TL494 Inverter Control Circuit MC3423 Overvoltage Detector \\
Error Amplifier: Single TL431; Dual-LM358 Quad MC3403, LM324, LM2902
\end{tabular}} \\
\hline
\end{tabular}

\section*{Half and Full-Bridge}

The most popular high power converter is the half-bridge (Figure 12-6). It has two clear advantages over the push-pull and became the favorite rather quickly. First, the transistors never see more than the peak line voltage and the standard 400 V fast switchmode transistors that are readily available may be used. And second, and probably even more important, transformer saturation problems are easily minimized by use of a small coupling capacitor (about \(2.0 \mu \mathrm{~F}\) to \(5.0 \mu \mathrm{~F}\)) as shown above. Because the primary winding is driven in both directions, a full-wave output filter, rather than half, is now used and the core is actually utilized more effectively. Another more subtle advantage of this circuit is that the input filter capacitors are placed in series across the rectified 220 V line which allows them to be used as the voltage doubler elements on a 120 V line. This still allows the inverter transformer to operate from a nominal 320 V bus when the circuit is connected to either 120 V or 220 V . Finally, this topology allows diode clamps across each transistor to contain destructive switching transients. The designer's dream, of course, is for fast transistors that can handle a clamped inductive load line at rated current. And a few (like the MJE16000 series from Motorola) are beginning to appear on the market. With the improved RBSOA that these transistors feature, less snubbing is required and this improves both the cost and efficiency of these designs.

Figure 12-5. Half-Bridge Converter with Split Windings

Figure 12-6. Half-Bridge Converter
(200 W to 1.0 kW)

Basic Full-Bridge Configuration

Table 12-4. Full-Bridge Semiconductor Selection Chart
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Output Power & \multicolumn{2}{|c|}{500 W} & \multicolumn{2}{|c|}{750 W} & \multicolumn{2}{|c|}{1000 W} \\
\hline Input Voltage (\(\mathrm{V}_{\text {in }}\)) & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] & 120 V & \[
\begin{aligned}
& 220 \mathrm{~V} \\
& 240 \mathrm{~V}
\end{aligned}
\] \\
\hline MOSFET Requirements: Max Working Curren (\(\mathrm{I}_{\mathrm{w}}\)) Max Working Voltage (\(\mathrm{V}_{\mathrm{W}}\)) & \[
\begin{aligned}
& 5.7 \mathrm{~A} \\
& 190 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 3.1 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 8.6 \mathrm{~A} \\
& 190 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 4.7 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 11.5 \mathrm{~A} \\
& 190 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 6.25 \mathrm{~A} \\
& 380 \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Power MOSFETs Recommended: \\
Metal (TO-204AA) (TO-3) \\
Plastic (TO-220AB) \\
Plastic (TO-218AC)
\end{tabular} & MTM8N20 MTP8N20 - & MTM4N45 MTP4N45 - & MTM10N25 MTP10N25 - & \begin{tabular}{l}
MTM7N45 \\
MTP4N45 \\
MTH7N45
\end{tabular} & \begin{tabular}{l}
MTM15N20 \\
MTP12N2O \\
MTH15N2O
\end{tabular} & \begin{tabular}{l}
MTM7N45 \\
MTH7N45
\end{tabular} \\
\hline Input Rectifiers: Max Working Current (\(\mathrm{I}_{\mathrm{w}}\)) Recommended Types & \[
\begin{gathered}
4.6 \mathrm{~A} \\
\text { MDA3506 }
\end{gathered}
\] & \[
\begin{gathered}
2.5 \text { A } \\
\text { MDA3510 }
\end{gathered}
\] & 7.0 A & 3.8 A & 9.25 A & 5.0 A \\
\hline \begin{tabular}{l}
Output Rectifiers: Recommended types for output voltage of: 5.0 V 10 V \\
20 V \\
50 V \\
100 V
\end{tabular} & \multicolumn{2}{|r|}{MBR20035CT MUR10010CT MUR10015CT MUR3015PT MUR804PT} & \multicolumn{2}{|l|}{\begin{tabular}{l}
MBR30035CT \\
MUR10010CT* \\
MUR10015CT \\
MUR3015PT* \\
MUR3040PT
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
MBR30035CT* \\
MUR10010CT* \\
MUR10015CT* \\
MUR10015CT \\
MUR3040PT
\end{tabular}} \\
\hline Recommended Control Circuits & \multicolumn{6}{|l|}{\begin{tabular}{l}
SG1525A, SG1526, TL494 Inverter Control Circuit MC3423 Overvoltage Detector \\
Error Amplifier: Single TL431; Dual-LM358 Quad MC3403, LM324, LM2902
\end{tabular}} \\
\hline
\end{tabular}
*More than one device per leg, matched.

The effective current limit of today's low cost TO-218 discrete transistors (250 mil die) is somewhere in the 10 A to 20 A area. Once this limit is reached, the designer generally changes to the full-bridge configurations shown in Figure 12-7. Because full line rather than half is applied to the primary winding, the power out can be almost double that of the half-bridge with the same switching transistors. Power Darlington transistors are a logical choice for higher power control with current, voltage and speed capabilities allowing very high performance and cost effective designs. Another variation of the half-bridge is the split winding circuit, shown in Figure 12-5. A diode clamp can protect the lower transistor but a snubber or zener clamp must still be used to protect the top transistor from switching transients. Because both emitters are at an ac ground point, expensive drive transformers can now be replaced by lower cost capacitively-coupled drive circuits.

Figure 12-7. Full-Bridge Converter
(200 W to 1.0 kW)

\section*{SECTION 13 \\ SWITCHING REGULATOR DESIGN EXAMPLES}

In addition to the application materials in this data book, Motorola publishes several application notes which contain basic information on the design of power supplies using a variety of Motorola Analog ICs. AN920 describes in detail the principles of operation of the MC34063A and \(\mu\) A78S40 Switching Regulator Subsystems. Several converter design examples and numerous applications circuits with test data are included in this application note. The circuit techniques described in this note are also applicable to the MC34163 and MC34165 Power Switching Regulators.

Operating details of the MC34129 Current Mode Switching Regulator Controller, and examples of its use with Motorola SENSEFET \({ }^{\text {TM }}\) products, are provided in AN976. The application note AN983 focuses on a 400 W half-bridge power supply design which uses the TL494 PWM control circuit. The TL594 can be used in this same application.

Essentially all of the data sheets for newer power supply control and supervisory circuits include extensive applications information with test conditions and performance results. Many data sheets also include printed circuit board layouts for some key applications so that the designer can evaluate the integrated circuits in an actual power supply. This data book presents all data sheets in their entirety so that the applications information is readily available for each device.

\section*{SECTION 14}

\section*{POWER SUPPLY SUPERVISORY AND PROTECTION CONSIDERATIONS}

The use of SCR crowbar overvoltage protection (OVP) circuits has been, for many years, a popular method of providing protection from accidental overvoltage stress for the load. In light of the recent advances in LSI circuitry, this technique has taken on added importance. It is not uncommon to have several hundred dollars worth of electronics supplied from a single low voltage supply. If this supply were to fail due to component failure or other accidental shorting of higher voltage supply busses to the low voltage bus, several hundred dollars worth of circuitry could literally go up in smoke. The small additional investment in protection circuitry can easily be justified in such applications.

\section*{A. The Crowbar Technique}

One of the simplest and most effective methods of obtaining overvoltage protection is to use a "crowbar" SCR placed across the equipment's dc power supply bus. As the name implies, the SCR is used much like a crowbar would be, to short the dc supply when an overvoltage condition is detected. Typical circuit configurations for this circuit are shown on Figure 14-1. This method is very effective in eliminating the destructive overvoltage condition. However, the effectiveness is lost if the OVP circuitry is not reliable.

Figure 14-1. Typical Crowbar OVP Circuit Configurations

\footnotetext{
*Needed if supply not current-limited.
}

Figure 14-2. Crowbar SCR Surge Current Waveform

\section*{B. SCR Considerations}

Referring to Figure 14-1, it can easily be seen that, when activated, the crowbar SCR is subjected to a large current surge from the filter and output capacitors. This large current surge, illustrated in Figure 14-2, can cause SCR failure or degradation by any one of three mechanisms: di/dt, peak surge current, or 12 t . In many instances the designer must empirically determine the SCR and circuit elements which will result in reliable and effective OVP operation. To aid in the selection of devices for this application, Motorola has characterized several devices specifically for crowbar applications. A summary of these specifications and a selection guide for this application is shown in Table 14-1. This significantly reduces the amount of empirical testing that must be done by the designer. A good understanding of the factors that influence the SCR's di/dt and surge current capability will greatly simplify the total circuit design task.

Table 14-1. Crowbar SCRs
\begin{tabular}{|c|c|c|}
\hline Device Type** \(^{*}\) Peak Discharge Current* & di/dt* \(^{*}\) \\
\hline MCR67 & 300 A & \(75 \mathrm{~A} / \mu \mathrm{s}\) \\
MCR68 & 300 A & \(75 \mathrm{~A} / \mu \mathrm{s}\) \\
MCR69 & 750 A & \(100 \mathrm{~A} / \mu \mathrm{s}\) \\
MCR70 & 850 A & \(100 \mathrm{~A} / \mu \mathrm{s}\) \\
MCR71 & 1700 A & \(200 \mathrm{~A} / \mu \mathrm{s}\) \\
\hline
\end{tabular}
* \(\mathrm{tw}=1.0 \mu \mathrm{~s}\), exponentially decaying
** All devices available with 25,50 , and 100 V ratings
1. di/dt - As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities, depending upon the severity of the occasion.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times IGT) the SCR gate with a fast \(<1.0 \mu \mathrm{~s}\) rise time signal will maximize its di/dt capability. A typical maximum di/dt in phase control SCRs of less than 50 A rms rating might be \(200 \mathrm{~A} / \mu \mathrm{s}\), assuming a gate current of five times IGT and \(<1.0 \mu\) s rise time. If having done this, a di/dt problem still exists, the designer can also decrease the di/dt of the current saveform by adding inductance in series with the SCR, as shown in Figure 14-3. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage, and a tradeoff must be made between speedy voltage reduction and di/dt.
2. Surge Current - If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance, see Figure 14-3) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

Figure 14-3. Circuit Elements Affecting SCR Surge \& di/dt

(For additional information on SCRs in crowbar applications refer to Characterizing the SCR for Crowbar Applications, AI Pshaenich, Motorola AN789).

\section*{C. The Sense and Drive Circuit}

In order to maximize the crowbar SCR's di/dt capability, it should receive a fast rise time high-amplitude gate-drive signal. This must be one of the primary factors considered when selecting the sensing and drive circuitry. Also important is the sense circuitry's noise immunity.

Noise immunity can be a major factor in the selection of the sense circuitry employed. If the sensing circuit has low immunity and is operated in a noisy environment, nuisance tripping of the OVP circuit can occur on short localized noise spikes, which would not normally damage the load. This results in excessive system down time. There are several types of sense circuits presently being used in OVP applications. These can be classified into three types: zener, discrete, and "723."

Figure 14-4. The Zener Sense Circuit
1. The Zener Sense Circuit - Figure 14-4 shows the use of a zener to trigger the crowbar SCR. This method is NOT recommended since it provides very poor gate drive and greatly decreases the SCR's di/dt handling capability, especially since the SCR steals its own very necessary gate drive as it turns on. Additionally, this method does not allow the trip point to be adjusted except by zener replacement.
2. The Discrete Sense Circuit - A technique which can provide adequate gate drive and an adjustable, low temperature coefficient trip point is shown in Figure 14-5. While overcoming the disadvantages of the zener sense circuit, this technique requires many components and is more costly. In addition, this method is not particularly noise immune and often suffers from nuisance tripping.
3. The "723" Sense Circuit - By using an integrated circuit voltage regulator, such as the industry standard " 723 " type, a considerable reduction in component count can be achieved. This is illustrated in Figure 14-6. Unfortunately, this technique is not noise immune, and suffers an additional disadvantage in that it must be operated at voltages above 9.5 V .

Figure 14-5. The Discrete Sense Circuit

Figure 14-6. The "723" Sense Circuit

4. The MC3423 - To fill the need for a low cost, low complexity method of implementing crowbar overvoltage protection which does not suffer the disadvantages of previous techniques, an IC has been developed for use as an OVP sense and drive circuit, the MC3423.

The MC3423 was designed to provide output currents of up to 300 mA with a \(400 \mathrm{~mA} / \mu \mathrm{s}\) rise time in order to maximize the di/dt capabilities of the crowbar SCR. In addition, its features include:
1. Operation off 4.5 V to 40 V supply voltages.
2. Adjustable low temperature coefficient trip point.
3. Adjustable minimum overvoltage duration before actuation to reduce nuisance tripping in noisy environments.
4. Remote activation input.
5. Indication output.
5. Block Diagram - The block diagram of the MC3423 is shown in Figure 14-7. It consists of a stable 2.6 V reference, two comparators and a high current output. This output, together with the indication output transistor, is activated either by a voltage greater than 2.6 V on Pin 3 or by a TTL/5.0 V CMOS high logic level on the remote activation input, Pin 5.

The circuit also has a comparator-controlled current source which can be used in conjunction with and external timing capacitor to set a minimum overvoltage duration (\(0.5 \mu \mathrm{~s}\) to 1.0 ms) before actuation occurs. This feature allows the OVP circuit to operate in noisy environments without nuisance tripping.

Figure 14-7. MC3423 Block Diagram

6. Basic Circuit Configuration - The basic circuit configuration of the MC3423 OVP is shown in Figure 14-8. In this circuit the voltage sensing inputs of both the internal amplifiers are tied together for sensing the overvoltage condition. The shortest possible propagation delay is thus obtained. The threshold or trip voltage at which the MC3423 will trigger and supply gate drive to the crowbar SCR, Q1, is determined by the selection of \(R_{1}\) and \(R_{2}\). Their values can be determined by the equations given in Figure 14-8 or by the graph shown in Figure 14-9. The switch (S1) shown in Figure 14-8 may be used to reset the SCR crowbar. Otherwise, the power supply, across which the SCR is connected, must be shut down to reset the crowbar. If a non current-limited supply is used a fuse or circuit breaker, F1, should be used to protect the SCR and/or the load.

Figure 14-8. MC3423 Basic Circuit Configuration

\(R_{2} \leq 10 \mathrm{k} \Omega\) for minimum drift
*Needed if supply is not current-limited
7. MC3423 Programmable Configuration - In many instances, MC3423 OVP will be used in a noisy environment. To prevent false tripping of the OVP circuit by noise which would not normally harm the load, MC3423 has a programmable delay feature. To implement this feature, the circuit configuration of Figure 14-10 is used.

Here a capacitor is connected from Pin 3 and Pin 4 to VEE. The value of this capacitor determines the minimum duration of the overvoltage condition (\(\mathrm{t} D\)) which is necessary to trip the OVP. The value of \(C_{D}\) can be found from Figure 14-11. The circuit operates in the following manner: when \(V_{C C}\) rises above the trip point set by \(R_{1}\) and \(R_{2}\), the internal current source begins charging the capacitor, \(C_{D}\), connected to Pins 3 and 4. If the overvoltage condition remains present long enough for the capacitor voltage, VCD to reach Vref, the output is activated. If the overvoltage condition disappears before this occurs, the capacitor is discharged at a rate 10 times faster than the charging rate, resetting the timing feature until the next overvoltage condition occurs.
8. Indication Output - An additional output for use as an indicator of OVP activation is provided by the MC3423. This output (Pin 6) is an open-collector transistor which saturates when the MC3423 OVP is activated. It will remain in a saturated state until the SCR crowbar pulls the supply voltage, VCC, below 4.5 V as in Figure 14-10. This output can be used to clock an edge triggered flip-flop whose output inhibits or shuts down the power supply when the OVP trips. This reduces or eliminates the heatsinking requirements for the crowbar SCR.

Figure 14-9. \(\mathbf{R}_{\mathbf{1}}\) versus Trip Voltage for the MC3423 OVP

Figure 14-10. MC3423 Configuration for Programmable Minimum Duration of Overvoltage Condition Before Tripping

9. Remote Activation Input - Another feature of the MC3423 is its Remote Activation Input, Pin 5. If the voltage on this CMOS/TTL compatible input is held below 0.7 V , the MC 3423 operates normally. However, if it is raised to a voltage above 2.0 V , the OVP output is activated independent of whether or not an overvoltage condition is present.

This feature can be used to accomplish an orderly and sequenced shutdown of system power supplies during a system fault condition. In addition, the Indication Output of one MC3423 can be used to activate another MC3423, if a single transistor inverter is used to interface the former's Indication Output to the latter's Remote Activation Input.

\section*{D. MC3425 Power Supply Supervisory Circuit}

In addition to the MC3423 a second IC, the MC3425 has been developed. Similar in many respects to the MC3423, the MC3425 is a power supply supervisory circuit containing all the necessary functions required to monitor over and undervoltage fault conditions. The block diagram is shown below in Figure 14-12. The Overvoltage (OV) and Undervoltage (UV) Input Comparators are both referenced to an internal 2.5 V regulator. The UV Input Comparator has a feedback activated \(12.5 \mu \mathrm{~A}\) current sink (IH) which is used for programming the input hysteresis voltage \((\mathrm{VH})\). The source resistance feeding this input \((\mathrm{RH})\) determines the amount of hysteresis voltage by \(\mathrm{V}_{\mathrm{H}}=\mathrm{I} H R \mathrm{H}=12.5 \times 10^{-6} \mathrm{RH}_{\mathrm{H}}\).

Figure 14-11. CD versus Minimum Overvoltage Duration, \(t_{D}\) for The MC3423 OVP

Separate Delay pins (OV DLY, UV DLY) are provided for each channel to independently delay the Drive and Indicator outputs, thus providing greater input noise immunity. The two Delay pins are essentially the outputs of the respective input comparators, and provide a constant currentsource, IDLY(source), of typically \(200 \mu \mathrm{~A}\) when the noninverting input voltage is greater than the inverting input level. A capacitor connected from these Delay pins to ground, will establish a predictable delay time (tDLY) for the Drive and Indicator outputs. The Delay pins are internally connected to the non-inverting inputs of the OV and UV Output Comparators, which are referenced to the internal 2.5 V regulator. Therefore, delay time (tDLY) is based on the constant current source, IDLY(source), charging the external delay capacitor (CDLY) to 2.5 V .
\[
t D L Y=\frac{V_{\text {ref }} \text { CDLY }}{\operatorname{IDLY}(\text { source })}=\frac{2.5 C_{D L Y}}{200 \mu \mathrm{~A}}=12500 \mathrm{CDLY}^{2}
\]

Figure 14-13 provides CDLY values for a wide range of time delays. The Delay pins are pulled low when the respective input comparator's non-inverting input is less than the inverting input. The sink current IDLY(sink) capability of the Delay pins is \(\geq 1.8 \mathrm{~mA}\) and is much greater than the typical \(200 \mu \mathrm{~A}\) source current, thus enabling a relatively fast delay capacitor discharge time.

The Overvoltage Drive Output is a current-limited emitter-follower capable of sourcing 300 mA at a turn-on slew rate of \(2.0 \mathrm{~A} / \mu \mathrm{s}\), ideal for driving crowbar SCRs. The Undervoltage Indicator Output is an open-collector NPN transistor, capable of sinking 30 mA to provide sufficient drive for LEDs, small relays or shutdown circuitry. These current capabilities apply to both channels operating simultaneously, providing device power dissipation limits are not exceeded. The MC3425 has an internal 2.5 V bandgap reference regulator with an accuracy of \(\pm 4.0 \%\) for the basic devices.

Figure 14-12. Block Diagram

\footnotetext{
Note: All voltages and currents are nominal.
}

Figure 14-13. Output Delay Time versus Delay Capacitance

\section*{E. MC34064 and MC34164 Series}

The MC34064 and MC34164 series are two families of undervoltage sensing circuits specifically designed for use as reset controllers in microprocessor-based systems. They offer the designer an economical solution for low voltage detection with a single external resistor. Both parts feature a trimmed bandgap reference, and a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation.

The two families of undervoltage sensing circuits, taken together, cover the needs of the most commonly specified power supplies used in MCU/MPU systems. Key parameter specifications of the MC34164 family were chosen to complement the MC34064 series. The table summarizes critical parameters of both families. The MC34064 fulfills the needs of a \(5.0 \mathrm{~V} \pm 5 \%\) system and features a tighter hysteresis specification. The MC34164 series covers \(5.0 \mathrm{~V} \pm 10 \%\) and \(3.0 \mathrm{~V} \pm 5 \%\) power supplies with significantly lower power consumption, making them ideal for applications where extended battery life is required such as consumer products or hand held equipment.

Applications include direct monitoring of the 5.0 V MPU/logic power supply used in appliance, automotive, consumer, and industrial equipment.

=Sink Only Positive True Logic The MC34164 is specifically designed for battery powered applications where low bias current (1/25th of the MC34064's) is an important characteristic.

\section*{REFERENCES}
1. Characterizing the SCR for Crowbar Applications, Al Pshaenich, Motorola AN789. (Out of Print)
2. Semiconductor Considerations for DC Power Supply SCR Crowbar Circuits, Henry Wurzburg, Third National Sold-State Power Conversion Conference, June 25, 1976.
3. Is a Crowbar Enough? Willis C. Pierce Jr., Hewlett-Packard, Electronic Design 20, Sept. 27, 1974.
4. Transient Thermal Response - General Data and Its Use, Bill Roehr and Brice Shiner, Motorola AN569. (Out of Print)

\section*{SECTION 15}

\section*{A. The Thermal Equation}

A necessary and primary requirement for the safe operation of any semiconductor device, whether it be an IC or a transistor, is that its junction temperature be kept below the specified maximum value given on its data sheet. The operating junction temperature is given by:
\[
\begin{equation*}
T_{J}=T_{A}+P D \theta J A \tag{15.1}
\end{equation*}
\]
where: \(\quad \mathrm{T}_{\mathrm{J}}=\) junction temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
\(\mathrm{T}_{\mathrm{A}}=\) ambient air temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
\(P_{D}=\) power dissipated by device (W)
\(\theta \mathrm{JA}=\) thermal resistance from junction-to-ambient air \(\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
The junction-to-ambient thermal resistance (\(\theta \mathrm{JA}\)) in Equation (15.1), can be expressed as a sum of thermal resistances as shown below:
\[
\begin{equation*}
\theta \mathrm{JA}=\theta \mathrm{JC}+\theta \mathrm{CS}+\theta \mathrm{SA} \tag{15.2}
\end{equation*}
\]
where: \(\theta_{J C}=\) junction-to-case thermal resistance
\(\theta C S=\) case-to-heatsink thermal resistance
\(\theta\) SA \(=\) heatsink-to-ambient thermal resistance
Equation (15.2) applies only when an external heatsink is used. If no heatsink is used, \(\theta \mathrm{JA}\) is equal to the device package \(\theta\) JA given on the data sheet.
\(\theta_{\mathrm{JC}}\) depends on the device and its package (case) type, while \(\theta_{\text {SA }}\) is a property of the heatsink and \(\theta\) CS depends on the type of package/heatsink interface employed. Values for \(\theta \mathrm{JC}\) and \(\theta\) SA are found on the device and heatsink data sheets, while \(\theta\) CS is given in Table 15-1.

Table 15-1. \(\theta\) Cs For Various Packages \& Mounting Arrangements
\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{\(\theta\) CS } \\
\hline \multirow{3}{c|}{ Case } & \multicolumn{2}{|c|}{ Metal-to-Metal* } & \multicolumn{2}{c|}{ Using an Insulator* } \\
\cline { 2 - 5 } & Dry & \begin{tabular}{c}
With Heatsink \\
Compound
\end{tabular} & \begin{tabular}{c}
With Heatsink \\
Compound
\end{tabular} & Type \\
\hline TO-204 & \(0.5^{\circ} \mathrm{C} / \mathrm{W}\) & \(0.1^{\circ} \mathrm{C} / \mathrm{W}\) & \begin{tabular}{c}
\(0.36^{\circ} \mathrm{C} / \mathrm{W}\) \\
\(0.28^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} & \begin{tabular}{c}
3 mil MICA \\
Anodized Aluminum
\end{tabular} \\
\hline TO-220 & \(1.2^{\circ} \mathrm{C} / \mathrm{W}\) & \(1.0^{\circ} \mathrm{C} / \mathrm{W}\) & \(1.6^{\circ} \mathrm{C} / \mathrm{W}\) & 2 mil MICA \\
\hline
\end{tabular}
*Typical values; heatsink surface should be free of oxidation, paint, and anodization
Examples showing the use of Equations (15.1) and (15.2) in thermal calculations are as follows:
Example 1: Find required heatsink \(\theta\) SA for an MC7805CT, given:
\[
\begin{gathered}
\mathrm{TJ}(\max)(\text { desired })=+125^{\circ} \mathrm{C} \\
\mathrm{TA}(\max)=+70^{\circ} \mathrm{C} \\
\mathrm{PD}=2.0 \mathrm{~W}
\end{gathered}
\]

Mounted directly to heatsink with silicon thermal grease at interface:
1. From MC7805CT data sheet, \(\theta \mathrm{JC}=5^{\circ} \mathrm{C} / \mathrm{W}\)
2. From Table \(15-1 . \theta C S=1.6^{\circ} \mathrm{C} / \mathrm{W}\)
3. Using Equation (15.1) and (15.2), solve for \(\theta\) SA:
\[
\begin{aligned}
& \theta S A=\frac{\left(T J-T_{A}\right)}{P D}-\theta C S-\theta J C \\
& \theta S A=\frac{(125-70)}{2}-5.0-1.6\left(\leq 20.9^{\circ} \mathrm{C} / \mathrm{W} \text { required }\right)
\end{aligned}
\]

Example 2: Find the maximum allowable \(T_{A}\) for an unheatsinked MC78L15CT, given:
\[
\begin{aligned}
\mathrm{TJ}(\max)(\text { desired }) & =+125^{\circ} \mathrm{C} \\
\mathrm{PD} & =0.25 \mathrm{~W}
\end{aligned}
\]
1. From MC78L15CT data sheet, \(\theta \mathrm{JA}=200^{\circ} \mathrm{C} / \mathrm{W}\)
2. Using Equation (15.1), find \(T_{A}\) :
\[
\begin{aligned}
\mathrm{T}_{\mathrm{A}} & =\mathrm{T}_{\mathrm{j}}-\mathrm{PD} \theta \mathrm{JA} \\
& =125-0.25(200) \\
& =+75^{\circ} \mathrm{C}
\end{aligned}
\]

\section*{B. Selecting a Heatsink}

Usually, the maximum ambient temperature, power being dissipated, the \(T_{J}(\max)\), and \(\theta_{\mathrm{JC}}\) for the device being used are known. The required \(\theta\) SA for the heatsink is then determined using Equations (15.1) and (15.2), as in Example 1. The designer may elect to use a commercially available heatsink, or if packaging or economy demands it, design his own.

\section*{1. Commercial Heatsinks}

As an aid in selecting a heatsink, a representative listing is shown in Table 15-2. This listing is by no means complete and is only included to give the designer an idea of what is available.

Table 15-2. Commercial Heatsink Selection Guide
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{TO-204AA (TO-3)} \\
\hline \(\theta_{\text {SA }}{ }^{*}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)\) & Manufacturer/Series or Part Number \\
\hline 0.3-1.0 & Thermalloy - 6441, 6443, 6450, 6470, 6560, 6590, 6660, 6690 \\
\hline 1.0-3.0 & \begin{tabular}{l}
Wakefield - 641 \\
Thermalloy - 6123, 6135, 6169, 6306, 6401, 6403, 6421, 6423, 6427, 6442, 6463, 6500
\end{tabular} \\
\hline 3.0-5.0 & \[
\begin{aligned}
& \text { Wakefield-621, } 623 \\
& \text { Thermalloy-6606, 6129, 6141, } 6303 \\
& \text { IERC - HP } \\
& \text { Staver - V3-3-2 }
\end{aligned}
\] \\
\hline 5.0-7.0 & ```
Wakefield - 690
Thermalloy - 6002, 6003, 6004, 6005, 6052, 6053, 6054, 6176, 6301
IERC-LB
Staver - V3-5-2
``` \\
\hline 7.0-10 & ```
Wakefield - 672
Thermalloy - 6001, 6016, 6051, 6105, 6601
IERC - LA \(\mu\) P
Staver - V1-3, V1-5, V3-3, V3-5, V3-7
``` \\
\hline 10-25 & Thermalloy - 6013, 6014, 6015, 6103, 6104, 6105, 6117 \\
\hline
\end{tabular}

\footnotetext{
*All values are typical as given by the manufacturer or as determined from characteristic curves supplied by the manufacturer.
}

Table 15-2. Commercial Heatsink Selection Guide (continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ TO-204AA (TO-5) } \\
\hline\(\theta\) SA \(^{*}\left({ }^{\circ}\right.\) C/W) & \multicolumn{1}{c|}{\(\quad\) Manufacturer/Series or Part Number } \\
\hline 12 to 20 & \begin{tabular}{l}
Wakefield - 260 \\
Thermalloy - 1101, 1103 \\
Staver - V3A-5
\end{tabular} \\
\hline 20 to 30 & \begin{tabular}{l}
Wakefield - 209 \\
Thermalloy - 1116, 1121, 1123, 1130, 1131, 1132, 2227, 3005 \\
IERC - LP \\
Staver - F5-5
\end{tabular} \\
\hline 30 to 50 & \begin{tabular}{l}
Wakefield - 207 \\
Thermalloy - 2212, 2215, 225, 2228, 2259, 2263, 2264 \\
Staver - F5-5, F6-5
\end{tabular} \\
\hline \multirow{4}{|c|}{\begin{tabular}{l}
Wakefield - 204, 205, 208 \\
Thermalloy - 1115, 1129, 2205, 2207, 2209, 2210, 2211, 2226, 2230, 2257, 2260, 2262 \\
Staver-F1-5, F5-5
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ TO-204AB } \\
\hline\(\theta_{\text {SA }}{ }^{*}\left({ }^{\circ}\right.\) C/W \()\) & \multicolumn{1}{c|}{ Manufacturer/Series or Part Number } \\
\hline 5.0 to 10 & \begin{tabular}{l}
IERC H P3 Series \\
Staver - V3-7-225, V3-7-96
\end{tabular} \\
\hline 10 to 15 & \begin{tabular}{l}
Thermalloy -6030, 6032, 6034 \\
Staver - V4-3-192, V-5-1
\end{tabular} \\
\hline 20 to 30 & \begin{tabular}{l}
Wakefield -295 \\
Thermalloy -6025, 6107
\end{tabular} \\
\hline 15 to 20 & \begin{tabular}{l}
Thermalloy -6106 \\
Staver - V4-3-128, V6-2
\end{tabular} \\
\hline
\end{tabular}

\({ }^{*}\) All values are typical as given by the manufacturer or as determined from characteristic curves supplied by the manufacturer.

\section*{2. Custom Heatsink Design}

Custom heatsinks are usually either forced air cooled or convection cooled. The design of forced air cooled heatsinks is usually done empirically, since it is difficult to obtain accurate air flow measurements. On the other hand, convection cooled heatsinks can be designed with fairly predictable characteristics. It must be emphasized, however, that any custom heatsink design should be thoroughly tested in the actual equipment configuration to be certain of its performance. In the following sections, a design procedure for convection cooled heatsinks is given.

Obviously, the basic goal of any heatsink design is to produce a heatsink with an adequately low thermal resistance, \(\theta\) SA. Therefore, a means of determining \(\theta\) SA is necessary in the design. Unfortunately, a precise calculation method for \(\theta\) SA is beyond the scope of this book. * However, a first order approximation can be calculated for a convection cooled heatsink if the following conditions are met:
1. The heatsink is a flat rectangular or circular plate whose thickness is smaller than its length or width.
2. The heatsink will not be located near other heat radiating surfaces.
3. The aspect ratio of a rectangular heatsink (length:width) is not greater than 2:1.
4. Unrestricted convective air flow.

For the above conditions, the heatsink thermal resistance can be approximated by:
\[
\begin{equation*}
\theta \mathrm{SA} \simeq \frac{1}{\mathrm{~A} \eta(\text { Fchc }+\in \mathrm{Hr})}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \tag{15.3}
\end{equation*}
\]
where: \(\quad A=\) area of the heatsink surface
\(\eta=\) heatsink effectiveness
\(\mathrm{F}_{\mathrm{C}}=\) convective correction factor
\(h_{C}=\) convection heat transfer coefficient
\(\epsilon=\) emissivity
\(\mathrm{H}_{\mathrm{r}}=\) normalized radiation heat transfer coefficient
The convective heat transfer coefficient, \(h_{c}\), can be found from Figure 15-1. Note that it is a function of the heatsink fin temperature rise (\(\mathrm{TS}-\mathrm{T}_{\mathrm{A}}\)) and the heatsink significant dimension (L). The fin temperature rise (\(T_{S}-T_{A}\)) is given by:
\[
\begin{equation*}
T S-T_{A}=\theta S A P D \tag{15.4}
\end{equation*}
\]
where: \(\quad\) TS \(=\) heatsink temperature
\(\mathrm{T}_{\mathrm{A}}=\) ambient temperature
\(\theta\) SA \(=\) heatsink-to-ambient thermal resistance
\(P D=\) power dissipated

Figure 15-1. Convection Coefficient (\(h_{c}\))

The significant heatsink dimension \((\mathrm{L})\) is dependent on the heatsink shape and mounting place and is given in Table 15-3. The convective correction factor \(\left(\mathrm{F}_{\mathrm{C}}\right)\) is likewise dependent on shape and mounting plane of the heatsink and is also given in Table 15-3.

Table 15-3. Significant Dimension (L) and Correction Factor (\(\mathrm{F}_{\mathrm{C}}\)) for Convection Thermal Resistance
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Surface } & \multicolumn{2}{|c|}{ Significant Dimension L } & \multicolumn{2}{c|}{ Correction Factor F } \\
\cline { 2 - 5 } & Position & L & Position & F \(_{\mathbf{c}}\) \\
\hline Rectangular Plane & Vertical & Height (max 2 ft) & \begin{tabular}{c}
Vertical Plane \\
Horizontal Plane \\
both surfaces \\
exposed
\end{tabular} & 1.0 \\
\hline Circular Plane & Horizontal & \(\frac{\text { length } \times \text { width }}{\text { length }+ \text { width }}\) & 1.35 \\
\hline
\end{tabular}

The normalized radiation heat transfer coefficient \(\left(\mathrm{H}_{r}\right)\) is dependent on the ambient temperature \(\left(\mathrm{T}_{A}\right)\) and the heatsink temperature rise (TS-TA) given by Equation (15.4). Hr can be determined from Figure 15-2.

Figure 15-2. Normalized Radiation Coefficient (\(\mathrm{H}_{\mathrm{r}}\))

The emissivity (\(\epsilon\)) can be found in Table 15-4 for various heatsink surfaces.

Table 15-4. Typical Emissivities of Common Surfaces
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Surface } & Emissivity (\(\epsilon\)) \\
\hline Alodine on Aluminum & 0.15 \\
Aluminum, Anodized & 0.7 to 0.9 \\
Aluminum, Polished & 0.05 \\
Copper, Polished & 0.07 \\
Copper, Oxidized & 0.70 \\
Rolled Sheet Steel & 0.66 \\
Air Drying Enamel (any color) & 0.85 to 0.91 \\
Oil Paints (any color) & 0.92 to 0.96 \\
Varnish & 0.89 to 0.93 \\
\hline
\end{tabular}

Finally, the heatsink efficient \((\eta)\) can be found from the nomograph of Figure 15-3. Use of the nomograph is as follows:
a) Find \(\mathrm{hT}=\) Fchc \(+\epsilon \mathrm{H}_{\mathrm{r}}\) from Figures 15-1, 15-2 and Tables 15-3 and 15-4, and locate this point on the nomograph.
b) Draw a line from h through chosen heatsink fin thickness (x) to find \(\alpha\).
c) Determine D for the heatsink shape as given in Figure 15-4 and draw a line from this point through \(\alpha\), which was found in (b), to determine \(\eta\).
d) If power dissipating element is not located at heatsink's center of symmetry, multiply \(\eta\) by 0.7 (for vertically mounted plates only).
Note that in order to calculate \(\theta\) SA from Equation (15.3), it is necessary to know the heatsink size. Therefore, in order to arrive at a suitable heatsink design, a trial size is selected, its \(\theta\) SA evaluated, and the original size reduced or enlarged as necessary. This process is iterated until the smallest heatsink is obtained that has the required \(\theta\) SA. The following design example is given to illustrate this procedure.

Figure 15-3. Fin Effectiveness Nomogram for Symmetrical Flat, Uniformly Thick Fins

Figure 15-4. Determination of \(D\) for Use in \(\eta\) Nomograph of Figure 15-3

\(D \cong \sqrt{\frac{a b}{\pi}}\), if \(a, b \gg S \& b \leq 2 a\)
\(D \simeq \frac{d}{2}\), if \(d \gg s\)

\section*{Heatsink Design Example}

Design a flat rectangular heatsink for use with a horizontally mounted power device on a PC board, given the following:
1. Heatsink \(\theta \mathrm{SA}=25^{\circ} \mathrm{C} / \mathrm{W}\)
2. Power to be dissipated, \(\mathrm{PD}=2.0 \mathrm{~W}\)
3. Maximum ambient temperature, \(\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\)
4. Heatsink to be constructed from \(1 / 8^{\prime \prime}\left(0.125^{\prime \prime}\right)\) thick anodized aluminum.
a) First, a trial heatsink is chosen: \(2^{\prime \prime} \times 3^{\prime \prime}\) (experience will simplify this selection and reduce the number of necessary iterations.)
b) The factors in Equation (15.3) are evaluated by using the Figures and Tables given:
\[
\begin{aligned}
\mathrm{A} & =2^{\prime \prime} \times 3^{\prime \prime}=6 \mathrm{sq} . \mathrm{in} . \\
\mathrm{L} & =6 / 5^{\prime \prime}=1.2 \mathrm{in} .(\text { from Table 15-3) } \\
\mathrm{T} S-\mathrm{T}_{\mathrm{A}} & =50^{\circ} \mathrm{C}(\text { from Figure } 15-4) \\
\mathrm{h}_{\mathrm{C}} & =5.8 \times 10^{-3} \mathrm{~W} / \mathrm{in} 2-{ }^{\circ} \mathrm{C} \text { (from Figure 15-1) } \\
\mathrm{F}_{\mathrm{C}} & =0.9(\text { from Table } 15-3) \\
\mathrm{H}_{\mathrm{r}} & =6.1 \times 10^{-3} \mathrm{~W} / \mathrm{in} 2-{ }^{\circ} \mathrm{C}(\text { from Figure } 15-2) \\
\epsilon & =0.9(\text { from Table } 15-4) \\
\mathrm{hT} & =\mathrm{Fchc}^{2}+\mathrm{H}_{\mathrm{r} \in}=10.7 \times 10-3 \mathrm{~W} / \mathrm{in} 2-{ }^{\circ} \mathrm{C} \\
\alpha & =0.13 \text { (from Figure } 15-3) \\
\mathrm{D} & =1.77(\text { from Figure } 15-4) \\
\eta & >0.94 \simeq 1 \text { (from Figure } 15-3)
\end{aligned}
\]
c) Using Equation (15.3), find \(\theta\) SA:
\[
\theta S A \simeq \frac{1}{A \eta\left(\text { Fchc }+\epsilon \mathrm{H}_{\mathrm{r}}\right)}=16.66^{\circ} \mathrm{C} / \mathrm{W}<25^{\circ} \mathrm{C} / \mathrm{W}
\]
d) Since \(2^{\prime \prime} \times 3^{\prime \prime}\) is too large, try \(2^{\prime \prime} \times 2^{\prime \prime}\). Following the same procedure, \(\theta\) SA is found to be \(25^{\circ} \mathrm{C} / \mathrm{W}\), which exactly meets the design requirements.

\section*{SOIC MINIATURE IC PLASTIC PACKAGE}

\section*{Thermal Information}

The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
\[
P_{D}\left(T_{A}\right)=\frac{T_{J}(\max)-T_{A}}{R_{\theta J A}(\operatorname{typ})}
\]
where: \(\mathrm{PD}_{\mathrm{D}\left(\mathrm{T}_{\mathrm{A}}\right)}=\) power dissipation allowable at a given operating ambient temperature,
\(T_{J}(\max)=\) maximum operating junction temperature as listed in the maximum ratings section,
\(\mathrm{T}_{\mathrm{A}}=\) desired operating ambient temperature,
\(\mathrm{R}_{\theta \mathrm{JA}}\) (typ) \(=\) typical thermal resistance junction-to-ambient.
Maximum Ratings
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & \begin{tabular}{c}
0 to +70 \\
-40 to +85
\end{tabular} & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{THERMAL CHARACTERISTICS OF SOIC PACKAGES}

Measurement specimens are solder mounted on a Philips SO test board \#7322-078, 80873 in still air. No auxiliary thermal conduction aids are used. As thermal resistance varies inversely with die area, a given package takes thermal resistance values between the max and min curves shown. These curves represent the smallest (2000 square mils) and largest (8000 square mils) die areas expected to be assembled in the SOIC package.

Figure 15-5. Thermal Resistance, Junction-to-Ambient (\({ }^{\circ} \mathrm{C} / \mathrm{W}\))

Data taken using Philips SO test board \#7322-078, 80873
*SOP-8 using standard SO-8 footprint - minimum pad size

Figure 15-6. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

\section*{SOP-8 and SOP-16L Packaged Devices}

Several families of voltage regulators and power control ICs have been introduced in surface mounted packages which were developed by the Analog IC Division. The SOP-8 and SOP-16L packages have external dimensions which are identical to the standard SO-8 and SO-16L surface mount devices, but the center four leads of the packages are all connected to the leadframe die flag. This internal modification decreases the package thermal resistance and therefore increases its power dissipation capability. This advantage is fully realized when the package is mounted on a printed circuit board with a single pad for the four center leads. This large area of copper then acts as an external heat spreader, efficiently conducting heat away from the package.

Figure 15-7. SOP-16L Thermal Resistance and Maximum
 Power Dissipation versus P.C.B. Copper Length

\section*{THERMAL CHARACTERISTICS OF DPAK AND D2PAK PACKAGE}

The evaluation was performed using an active device (4900 square mils) mounted on 2.0 ounce copper foil epoxied to a GIO type printed circuit board. Measurements were made in still air and no auxiliary thermal conduction aids were used. The size of a square copper pad was varied, and all measurements were made with the unit mounted as shown in Figure 15-8. The curve shown in Figure 15-8 is a plot of junction-to-air thermal resistance versus the length of the square copper pad in millimeters. This shows that when the DPAK is mounted on a \(10 \mathrm{~mm} \times 10 \mathrm{~mm}\) square pad of 2.0 ounce copper it has a thermal resistance which is comparable to a TO-220 device mounted vertically without additional heatsinking.

Figure 15-8. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

The thermal characteristics of the D2PAK are shown in Figure 15-9. The device was mounted on 2.0 oz. copper on an FR4-type P.C. board. The maximum power dissipation was measured with a junction temperature of \(150^{\circ} \mathrm{C}\).

Figure 15-9. 3-Pin and 5-Pin D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

\section*{Power/Motor Control Circuits}

\section*{In Brief . . .}

With the expansion of electronics into more and more mechanical systems, there comes an increasing demand for simple but intelligent circuits that can blend these two technologies. In the past, the task of power/motor control was once accomplished with discrete devices. But today this task is being performed by bipolar IC technology due to cost, size, and reliability constraints. Motorola offers integrated circuits designed to anticipate the requirements for both simple and sophisticated control systems, while providing cost effective solutions to meet the needs of the applications.
Page
Power Controllers 4-2
Zero Voltage Switch 4-2
Zero Voltage Controller 4-3
High-Side Driver Switch 4-4
Motor Controllers 4-4
Brushless DC Motor Controllers 4-4
Closed Loop Brushless Motor Adapter 4-7
DC Servo Motor Controller/Driver 4-8
Stepper Motor Driver 4-9
Universal Motor Speed Controller 4-10
Triac Phase Angle Controller 4-11
Package Overview 4-12
Device Listing 4-13

\section*{Power Controllers}

An assortment of battery and ac line-operated control ICs for specific applications are shown. They are designed to enhance system performance and reduce complexity in a wide variety of control applications.

\section*{Zero Voltage Switch}

\section*{CA3059}
\(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 646

This device is designed for thyristor control in a variety of ac power switching applications for ac input voltages of 24 V, 120 V, 208/230 V, and 227 V @ 50/60 Hz.
- Limiter-Power Supply - Allows operation directly from an ac line.
- Differential "On"/"Off" Sensing Amplifier - Tests for condition of external sensors or input command signals. Proportional control capability or hysteresis may be implemented.
- Zero-Crossing Detector - Synchronizes the output pulses to the zero voltage point of the ac cycle. Eliminates RFI when used with resistive loads.
- Triac Drive - Supplies high current pulses to the external power controlling thyristor.
- Protection Circuit (CA3059 only) - A built-in circuit may be actuated, if the sensor opens or shorts, to remove the drive circuit from the external triac.
- Inhibit Capability (CA3059 only) -- Thyristor firing may be inhibited by the action of an internal diode gate.
- High Power DC Comparator Operation (CA3059 only) - Operation in this mode is accomplished by connecting Pin 7 to 12 (thus overriding the action of the zero-crossing detector).
*NTC Sensor

NOTE: Shaded Area Not Included with CA3079.

\section*{Power Controllers (continued)}

\section*{Zero Voltage Controller}

\section*{UAA1016B}
\(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+100^{\circ} \mathrm{C}\), Case 626
The UAA1016B is designed to drive triacs with the Zero voltage technique which allows RFI free power regulation of resistive loads. It provides the following features:
- Proportional Temperature Control Over an Adjustable Band
- Adjustable Burst Frequency (to Comply with Standards)
- No DC Current Component Through the Main Line (to Comply with Standards)
- Negative Output Current Pulses (Triac Quadrants 2 and 3)
- Direct AC Line Operation
- Low External Components Count

\section*{Zero Voltage Controller}

\section*{UAA2016P, D}
\(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626, 751
The UAA2016 is designed to drive triacs with the Zero Voltage technique which allows RFI free power regulation of resistive loads. Operating directly on the ac power line, its main application is the precision regulation of electrical heating systems such as panel heaters or irons.

A built-in digital sawtooth waveform permits proportional temperature regulation action over \(\mathrm{a} \pm 1^{\circ} \mathrm{C}\) band around the set point. For energy savings there is a programmable temperature reduction function, and for security, a sensor failsafe inhibits output pulses when the sensor connection is broken. Preset temperature (i.e., defrost) application is also possible. In applications where high hysteresis is needed, its value can be adjusted up to \(5^{\circ} \mathrm{C}\) around the set point. All these features are implemented with a very low external component count.
- Zero Voltage Switch for Triacs, up to 2.0 kW (MAC212A8)
- Direct AC Line Operation
- Proportional Regulation of Temperature over a \(1^{\circ} \mathrm{C}\) Band
- Programmable Temperature Reduction
- Preset Temperature (i.e., Defrost)
- Sensor Failsafe
- Adjustable Hysteresis
- Low External Component Count

\section*{Power Controllers（continued）}

\title{
High－Side Driver Switch
}

MC3399T，DW
\(T J=-40^{\circ}\) to \(+150^{\circ} \mathrm{C}\) ，Case 314D， 751 G
The MC3399T is a high side driver switch that is designed to drive loads from the positive side of the power supply．The output is controlled by a TTL compatible Enable pin．In the＂on＂state，the device exhibits very low saturation voltages for load currents in excess of 750 mA ．The device also protects the load from positive or negative－going high voltage transients by becoming an open circuit and isolating the transient for its duration from the load．

The MC3399T is fabricated on a Power BiMOS process which combines the best features of Bipolar and MOS technologies． The mixed technology provides higher gain PNP output devices and results in Power Integrated Circuits with reduced quiescent current．

\section*{Motor Controllers}

This section contains integrated circuits designed for cost effective control of specific motor families．Included are controllers for brushless，dc servo，stepper，and universal type motors．

\section*{Brushless DC Motor Controllers}

Advances in magnetic materials technology and integrated circuits have contributed to the unprecedented rise in popularity of brushless dc motors．Analog control ICs are making the many features and advantages of brushless motors available at a much more economical price．Motorola offers a family of monolithic integrated brushless dc motor
controllers．These ICs provide a choice of control functions which allow many system features to be easily implemented at a fraction of the cost of discrete solutions．The following table summarizes and compares the features of Motorola＇s brushless motor controllers．

1Features Summary for Motorola Brushless DC Motor Controllers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Device} & \multicolumn{2}{|l|}{Operating Voltage Range （V）} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \overrightarrow{0} 0 \\
& \text { ex } \\
& 0 \\
& 0 \\
& 3 \\
& 3 \\
& u \\
& u
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Output \\
Drivers
\end{tabular}} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{产密} & \multirow[b]{2}{*}{准志} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\begin{tabular}{l}
Suffix／ \\
Package
\end{tabular}} \\
\hline & \(\mathrm{V}_{\mathrm{Cc}}\) & \(\mathrm{V}_{\mathrm{c}}\) & & & & & & & & & & & & & & \\
\hline MC33033 & 10－30 & － & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(60^{\circ} 300^{\circ}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & Noninv． Only & \(\checkmark\) & － & － & － & P／738， DW／751D \\
\hline MC33035 & 10－40 & 10－30 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(120^{\circ} / 240^{\circ}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & Noninv． and Inv． & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & P／724， DW／751E \\
\hline
\end{tabular}

\section*{Motor Controllers (continued)}

\section*{MC33033P, DW}
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 738, 751D

The MC33033 is a lower cost second generation brushless dc motor controller which has evolved from the full featured MC33034 and MC33035 controllers. The MC33033 contains all of the active functions needed to implement a low cost open loop motor control system. This IC has all of the key control and protection functions of the two full featured devices with the following secondary features deleted: separate drive-circuit supply and ground pins, the brake input, and the fault output signal. Like its MC33035 predecessor, the MC33033 has a control pin which allows the user to select \(60^{\circ} / 300^{\circ}\) or \(120^{\circ} / 240^{\circ}\) sensor electrical phasings.

Because of its low cost, the MC33033 can efficiently be used to control brush dc motors as well as brushless. A brush dc motor can be driven using two of the three drive output phases provided in the MC33033, while the Hall sensor input pins are selectively tied to \(\mathrm{V}_{\text {ref }}\) or ground. Other features such as forward/reverse, output enable, speed control, current limiting, undervoltage lockout and internal thermal shutdown will still remain functional.

MC33035P, DW
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case \(724,751 \mathrm{E}\)

The MC33035 is a second generation high performance brushless dc motor controller which contains all of the active functions required to implement a full featured open loop motor control system. While being pin-compatible with its MC33034 predecessor, the MC33035 offers additional features at a lower price. The two additional features provided by the MC33035 are a pin which allows the user to select
\(60^{\circ} / 300^{\circ}\) or \(120^{\circ} / 240^{\circ}\) sensor electrical phasings, and access to both inverting and noninverting inputs of the current sense comparator. The earlier devices had two part numbers which were needed to support the different sensor phasings, and the inverting input to the current sense comparator was internally grounded. All of the control and protection features of the MC33034 are also provided in the MC33035.

\section*{Motor Controllers (continued)}

\section*{Closed Loop Brushless Motor Adapter}

\section*{MC33039P, D}
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626, 751

The MC33039 is a high performance close loop speed control adapter specifically designed for use in brushless dc motor control systems. Implementation will allow precise speed regulation without the need for a magnetic or optical tachometer. These devices contain three input buffers each with hysteresis for noise immunity, three digital edge
detectors, a programmable monostable, and an internal shunt regulator. Also included is an inverter output for use in systems that require conversion of sensor phasing. Although this device is primarily intended for use with the MC33033/35 brushless motor controllers, it can be used cost effectively in many other closed loop speed control applications.

\section*{Motor Controllers (continued)}

\section*{DC Servo Motor Controller/Driver}

MC33030P, DW
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case \(648 \mathrm{C}, 751 \mathrm{G}\)

A monolithic dc servo motor controller providing all active functions necessary for a complete closed loop system. This device consists of an on-chip op amp and window comparator with wide input common mode range, drive and brake logic with direction memory, a power H switch driver capable of
1.0 A, independently programmable over current monitor and shutdown delay, and over voltage monitor. This part is ideally suited for almost any servo positioning application that requires sensing of temperature, pressure, light, magnetic flux, or any other means that can be converted to a voltage.

\section*{Motor Controllers (continued)}

\section*{Stepper Motor Driver}

\section*{MC3479P, FN}
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case \(648 \mathrm{C}, 775\)

\section*{SAA1042V}
\(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case 648 C

These Stepper Motor Drivers provide up to 500 mA of drive per coil for two phase 6.0 V to 24 V stepper motors. Control logic is provided to accept commands for clockwise, counter
clockwise and half or full step operation. The MC3479 has an added Output Impedance Control (OIC) and a Phase A drive state indicator (not available on SAA1042 devices).

*MC3479 Only

\section*{Motor Controllers (continued)}

\section*{Universal Motor Speed Controller}

TDA1085C, CD
\(T_{A}=-10^{\circ}\) to \(+120^{\circ} \mathrm{C}\), Case \(648,751 \mathrm{~B}\)

The TDA1085C is a phase angle triac controller having all the necessary functions for universal motor speed control in washing machines. It operates in closed loop configuration and provides two ramp possibilities.
- On-Chip Frequency to Voltage Converter
- On-Chip Ramps Generator
- Soft Start
- Load Current Limitation
- Tachogenerator Circuit Sensing
- Direct Supply from AC Line
- Security Functions Peformed by Monitor

\section*{Motor Controllers (continued)}

\section*{Triac Phase Angle Controller}

\section*{TDA1185A}
\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 646

This device generates controlled triac triggering pulses and allows tachless speed stabilization of universal motors by an integrated positive feedback function.
- Low Cost External Components Count
- Optimum Triac Firing (2nd and 3rd Quadrants)
- Repetitive Trigger Pulses when Triac Current is Interrupted by Motor Brush Bounce
- Triac Current Sensed to Allow Inductive Loads
- Soft-Start
- Power Failure Detection and General Circuit Reset
- Low Power Consumption: 1.0 mA

\section*{Power/Motor Control Circuits Package Overview}
\begin{tabular}{|c|c|c|c|}
\hline CASE 314D T SUFFIX & \begin{tabular}{l}
CASE 626 \\
B, P SUFFIX
\end{tabular} & CASE 646 & CASE 648, 648C P, V SUFFIX \\
\hline & & & \\
\hline \begin{tabular}{l}
CASE 724 \\
P SUFFIX
\end{tabular} & \begin{tabular}{l}
CASE 738 \\
P SUFFIX
\end{tabular} & \begin{tabular}{l}
CASE 751 \\
D SUFFIX
\end{tabular} & CASE 751B D SUFFIX \\
\hline \begin{tabular}{l}
 \\
CASE 751D DW SUFFIX
\end{tabular} & \begin{tabular}{l}
 \\
CASE 751E DW SUFFIX
\end{tabular} & CASE 751G DW SUFFIX & \begin{tabular}{l}
 \\
CASE 775 FN SUFFIX
\end{tabular} \\
\hline
\end{tabular}

\section*{Device Listing}

\section*{Power Controller}
Device Function Page
CA3059 Zero Voltage Switches 4-14
UAA1016B Zero Voltage Controller 4-116
UAA2016Zero Voltage Switch Power Controller4-122
Motor Controllers
MC3479 Stepper Motor Driver 4-19
MC33030 DC Servo Motor Controller/Driver 4-27
MC33033 Brushless DC Motor Controller 4-41
MC33035 Brushless DC Motor Controller 4-64
MC33039 Closed-Loop Brushless Motor Adapter 4-87
SAA1042 Stepper Motor Driver 4-92
TDA1085C Universal Motor Speed Controller 4-97
TDA1185A* Triac Phase Angle Controller 4-107

\footnotetext{
NOTE: * Not recommended for new designs.
}

\section*{Zero Voltage Switch}

This series is designed for thyristor control in a variety of AC power switching applications for AC input voltages of \(24 \mathrm{~V}, 120 \mathrm{~V}, 208 / 230 \mathrm{~V}\), and 277 V @ 50/60 Hz.

\section*{Applications:}
- Relay Control
- Heater Control
- Valve Control
- Lamp Control
- On-Off Motor Switching
- Differential Comparator with Self-Contained Power Supply for Industrial Applications
- Synchronous Switching of Flashing Lights

\section*{FUNCTIONAL BLOCK \\ DESCRIPTION}
1. Limiter-Power Supply - Allows operation of the CA3059 directly from an AC line. Suggested dropping resistor (\(\mathrm{R}_{\mathrm{S}}\)) values are given in the table below.
2. Differential On/Off Sensing Amplifier - Tests for condition of external sensors or input command signals. Proportional control capability or hysteresis may be implemented using this block.
3. Zero-Crossing Detector - Synchronizes the output pulses to the zero voltage point of the AC cycle. This synchronization eliminates RFI when used with resistive loads.
4. Triac Drive - Supplies high-current pulses to the external power controlling thyristor.
5. Protection Circuit - A built-in circuit may be actuated, if the sensor opens or shorts, to remove the drive current from the external triac.
6. Inhibit Capability - Thyristor firing may be inhibited by the action of an internal diode gate at Pin 1.
7. High Power DC Comparator Operation Operation in this mode is accomplishedby connecting Pin 7 to Pin 12 (thus overriding the action of the zero-crossing detector). When Pin 13 is positive with respect to Pin 9 , current to the thyristor is continuous.

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline \begin{tabular}{c}
DC Supply Voltage \\
(Between Pins 2 and 7)
\end{tabular} & \(\mathrm{V}_{\mathrm{CC}}\) & 12 & Vdc \\
\hline \begin{tabular}{c}
DC Supply Voltage \\
(Between Pins 2 and 8)
\end{tabular} & \(\mathrm{V}_{\mathrm{CC}}\) & 12 & Vdc \\
\hline Peak Supply Current (Pins 5 and 7) & \(\mathrm{I}_{5,7}\) & \(\pm 50\) & mA \\
\hline Fail-Safe Input Current (Pin 14) & \(\mathrm{I}_{14}\) & 2.0 & mA \\
\hline Output Pulse Current (Pin 4) (Note 1) & \(\mathrm{I}_{\text {out }}\) & 150 & mA \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Operation @ \(120 \mathrm{Vrms}, 50-60 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) [Note 2])
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Figure & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
DC Supply Voltage Inhibit Mode
\[
\begin{aligned}
& \mathrm{R}_{\mathrm{S}}=10 \mathrm{k}, \mathrm{I}_{\mathrm{L}}=0 \\
& \mathrm{RS}_{\mathrm{S}}=5.0 \mathrm{k}, \mathrm{I}_{\mathrm{L}}=2.0 \mathrm{~mA}
\end{aligned}
\] \\
Pulse Mode
\[
\begin{aligned}
& R_{S}=10 \mathrm{k}, \mathrm{I}_{\mathrm{L}}=0 \\
& R_{\mathrm{S}}=5.0 \mathrm{k}, R_{\mathrm{L}}=2.0 \mathrm{~mA}
\end{aligned}
\]
\end{tabular} & 2 & \(\mathrm{V}_{\mathrm{S}}\) & \[
\begin{gathered}
6.1 \\
- \\
6.0
\end{gathered}
\] & \[
\begin{aligned}
& 6.5 \\
& 6.1 \\
& 6.4 \\
& 6.2
\end{aligned}
\] & \[
\begin{gathered}
7.0 \\
- \\
7.0
\end{gathered}
\] & Vdc \\
\hline Gate Trigger Current (\(\mathrm{V}_{\mathrm{GT}}=1.0 \mathrm{~V}\), Pins 3 and 2 connected) & 3 & IGT & - & 160 & - & mA \\
\hline \begin{tabular}{l}
Peak Output Current, Pulsed \\
With Internal Power Supply, \(\mathrm{V}_{\mathrm{GT}}=0\) \\
Pin 3 Open \\
Pins 3 and 2 Connected \\
With External Power Supply, \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GT}}=0\) \\
Pin 3 Open \\
Pins 3 and 2 Connected
\end{tabular} & 3
4 & IOM & \[
\begin{aligned}
& 50 \\
& 90
\end{aligned}
\] & \[
\begin{aligned}
& 125 \\
& 190 \\
& 230 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & mA \\
\hline Inhibit Input Ratio (Ratio of Voltage @ Pin 9 to Pin 2) & 5 & \(\mathrm{V}_{9} / \mathrm{V}_{2}\) & 0.465 & 0.485 & 0.520 & - \\
\hline \begin{tabular}{l}
Total Gate Pulse Duration (\(\mathrm{C}_{\mathrm{Ext}}=0\)) \\
Positive dv/dt \\
Negative dv/dt
\end{tabular} & 6 & \[
\begin{aligned}
& t_{p} \\
& t_{n}
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 70
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 140 \\
& 140
\end{aligned}
\] & \(\mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
Pulse Duration After Zero Crossing
\[
\left(C_{E x t}=0, R_{E x t}=\infty\right)
\] \\
Positive dv/dt \\
Negative dv/dt
\end{tabular} & 6 & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{p} 1} \\
& \mathrm{t}_{\mathrm{n} 1}
\end{aligned}
\] & & \[
\begin{aligned}
& 50 \\
& 60
\end{aligned}
\] & & \(\mu \mathrm{s}\) \\
\hline Output Leakage Current Inhibit Mode (Note 3) & 3 & 14 & - & 0.001 & 10 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 7 & IIB & - & 0.15 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Common Mode Input Voltage Range (Pins 9 and 13 Connected) & - & \(\mathrm{V}_{\text {CMR }}\) & - & 1.4 to 5.0 & - & Vdc \\
\hline Inhibit Input Voltage & 8 & \(V_{1}\) & - & 1.4 & 1.6 & Vdc \\
\hline External Trigger Voltage & - & \(\mathrm{V}_{6}-\mathrm{V}_{4}\) & - & 1.4 & - & Vdc \\
\hline
\end{tabular}

NOTES: 1. Care must be taken, especially when using an external power supply, that total package dissipation is not exceeded
2. The values given in the Electrical Characteristics Table at 120 V also apply for operation at input voltages of \(24 \mathrm{~V}, 208 / 230 \mathrm{~V}\), and 277 V , except for Pulse Duration test. However, the series resistor (\(\mathrm{R}_{\mathrm{S}}\)) must have the indicated value, shown in Table A for the specified input voltage.
3. \(\mathrm{I}_{4}\) out of \(\operatorname{Pin} 4,2.0 \mathrm{~V}\) on \(\operatorname{Pin} 1, \mathrm{~S}_{1}\) position 2.

\section*{TEST CIRCUITS}
(All resistor values are in ohms)
Figure 3. Peak Output (Pulsed) and Gate

Figure 2. DC Supply Voltage

Figure 4. Peak Output Current (Pulsed) with External Power Supply

Figure 6. Gate Pulse Duration Test Circuit with Associated Waveform

Trigger Current with Internal Power Supply

Figure 5. Input Inhibit Ratio

Figure 7. Input Bias Current Test Circuit

\section*{TYPICAL CHARACTERISTICS}

Figure 9. Peak Output Current (Pulsed) versus External Power Supply Voltage

Figure 11. Total Pulse Width versus Ambient Temperature

Figure 13. Inhibit Voltage Ratio versus Ambient Temperature

Figure 14. Circuit Schematic

NOTE: Current sources are established by an internal reference.

\section*{APPLICATION INFORMATION}

\section*{Power Supply}

The CA3059 is a self-powered circuit, powered from the AC line through an appropriate dropping resistor (see Table A). The internal supply is designed to power the auxiliary power circuits.

In applications where more output current from the internal supply is required, an external power supply of higher voltage should be used. To use an external power supply, connect Pin 5 and Pin 7 together and apply the synchronizing voltage to Pin 12 and the DC supply voltage to Pin 2 as shown in Figure 4.

\section*{Operation of Protection Circuit}

The protection circuit, when connected, will remove current drive from the triac if an open or shorted sensor is detected. This circuit is activated by connecting Pin 13 to Pin 14 (see Figure 1).

The following conditions should be observed when the protection circuit is utilized:
a. The internal supply should be used and the external load current must be limited to 2 mA with a \(5 \mathrm{k} \Omega\) dropping resistor.
b. Sensor Resistance (\(\mathrm{RX}_{\mathrm{X}}\)) and Rp values should be between \(2 \mathrm{k} \Omega\) and \(100 \mathrm{k} \Omega\).
c. The relationship \(0.33<R_{X} / R_{P}<3\) must be met over the anticipated temperature range to prevent undesired activation of the circuit. A shunt or series resistor may have to be added.

\section*{External Inhibit Function}

A priority inhibit command applied to Pin 1 will remove current drive from the thyristor. A command of at least +1.2 V @ \(10 \mu \mathrm{~A}\) is required. A DTL or TTL logic 1 applied to Pin 1 will activate the inhibit function.

\section*{DC Gate Current Mode}

When comparator operation is desired or inductive loads are being switched, Pins 7 and 12 should be connected. This connection disables the zero-crossing detector to permit the flow of gate current from the differential sensing amplifier on demand. Care should be exercised to avoid possible overloading of the internal power supply when operating the device in this mode. A resistor should be inserted between Pin 4 and the thyristor gate in order to limit the current.

\section*{MC3479}

\section*{Stepper Motor Driver}

The MC3479 is designed to drive a two-phase stepper motor in the bipolar mode. The circuit consists of four input sections, a logic decoding/sequencing section, two driver-stages for the motor coils, and an output to indicate the Phase A drive state.
- Single Supply Operation: 7.2 to 16.5 V
- \(350 \mathrm{~mA} /\) Coil Drive Capability
- Clamp Diodes Provided for Back-EMF Suppression
- Selectable \(\overline{\mathrm{CW}} / \mathrm{CCW}\) and \(\overline{\text { Full/ }} /\) Half Step Operation
- Selectable High/Low Output Impedance (Half Step Mode)
- TTL/CMOS Compatible Inputs
- Input Hysteresis: 400 mV Minimum
- Phase Logic Can Be Initialized to \(\overline{\text { Phase A }}\)
- Phase A Output Drive State Indication (Open-Collector)
- Available in Standard DIP and Surface Mount

\section*{STEPPER MOTOR DRIVER}

SEMICONDUCTOR TECHNICAL DATA
Figure 1. Representative Block Diagram

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC3479P & \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Plastic \\
\hline
\end{tabular}

PIN CONNECTIONS

INPUT TRUTH TABLE
\begin{tabular}{|l|c|c|}
\hline & Input Low & Input High \\
\hline\(\overline{\text { CW/CCW }}\) & CW & CCW \\
\hline Full/Half Step & Full Step & Half Step \\
\hline OIC & Hi Z & Low Z \\
\hline Clk & \multicolumn{2}{|c|}{ Positive Edge Triggered } \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{M}}\) & \(+18\) & Vdc \\
\hline Clamp Diode Cathode Voltage (Pin 1) & \(V_{D}\) & \(\mathrm{V}_{\mathrm{M}}+5.0\) & Vdc \\
\hline Driver Output Voltage & \(\mathrm{V}_{\text {OD }}\) & \(V_{M}+6.0\) & Vdc \\
\hline Drive Output Current/Coil & IOD & \(\pm 500\) & mA \\
\hline Input Voltage (Logic Controls) & \(V_{\text {in }}\) & -0.5 to +7.0 & Vdc \\
\hline \(\overline{\mathrm{Bias} / \text { Set Current }}\) & IBS & -10 & mA \\
\hline \(\overline{\text { Phase A Output Voltage }}\) & V OA & +18 & Vdc \\
\hline \(\overline{\text { Phase A Sink Current }}\) & IOA & 20 & mA \\
\hline Junction Temperature & TJ & + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Max & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{M}}\) & +7.2 & +16.5 & Vdc \\
\hline Clamp Diode Cathode Voltage & \(\mathrm{V}_{\mathrm{D}}\) & \(\mathrm{V}_{\mathrm{M}}\) & \(\mathrm{V}_{\mathrm{M}}+4.5\) & Vdc \\
\hline Driver Output Current (Per Coil) (Note 1) & \(\mathrm{IOD}_{\mathrm{M}}\) & - & 350 & mA \\
\hline Input Voltage (Logic Controls) & \(\mathrm{V}_{\mathrm{in}}\) & 0 & +5.5 & Vdc \\
\hline\(\overline{\text { Bias }}\) /Set Current (Outputs Active) & \(\mathrm{I}_{\mathrm{BS}}\) & -300 & -75 & \(\mu \mathrm{~A}\) \\
\hline\(\overline{\text { Phase A Output Voltage }}\) & \(\mathrm{V}_{\mathrm{OA}}\) & - & \(\mathrm{V}_{\mathrm{M}}\) & Vdc \\
\hline Phase A Sink Current & \(\mathrm{IOA}_{\mathrm{O}}\) & 0 & 8.0 & mA \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. See section on Power Dissipation in Application Information.
DC ELECTRICAL CHARACTERISTICS (Specifications apply over the recommended supply voltage and temperature range, [Notes 2,3] unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Pins & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{INPUT LOGIC LEVELS} \\
\hline Threshold Voltage (Low-to-High) & \multirow[t]{4}{*}{\[
\begin{aligned}
& 7,8 \\
& 9,10
\end{aligned}
\]} & \(\mathrm{V}_{\text {TLH }}\) & - & - & 2.0 & Vdc \\
\hline Threshold Voltage (High-to-Low) & & \(\mathrm{V}_{\text {THL }}\) & 0.8 & - & - & Vdc \\
\hline Hysteresis & & V HYS & 0.4 & - & - & Vdc \\
\hline \[
\text { Current: } \begin{aligned}
\left(\mathrm{V}_{1}\right. & =0.4 \mathrm{~V}) \\
\left(\mathrm{V}_{1}\right. & =5.5 \mathrm{~V}) \\
\left(\mathrm{V}_{1}\right. & =2.7 \mathrm{~V})
\end{aligned}
\] & & ILL & \begin{tabular}{c}
-100 \\
- \\
\hline-
\end{tabular} & - & \[
\begin{gathered}
- \\
+100 \\
+20
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{DRIVER OUTPUT LEVELS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Output High Voltage
\[
\begin{aligned}
(\mathrm{IBS}=-300 \mu \mathrm{~A}):(\mathrm{IOD} & =-350 \mathrm{~mA}) \\
(\mathrm{IOD} & =-0.1 \mathrm{~mA})
\end{aligned}
\] & \multirow[t]{5}{*}{\[
\begin{gathered}
2,3, \\
14,15
\end{gathered}
\]} & \(\mathrm{V}_{\text {OHD }}\) & \[
\left\lvert\, \begin{aligned}
& V_{M}-2.0 \\
& V_{M}-1.2
\end{aligned}\right.
\] & - & - & Vdc \\
\hline Output Low Voltage
\[
\left(l_{B S}=-300 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{OD}}=350 \mathrm{~mA}\right)
\] & & \(\mathrm{V}_{\text {OLD }}\) & - & - & 0.8 & Vdc \\
\hline Differential Mode Output Voltage Difference (Note 4)
\[
(\mathrm{lBS}=-300 \mu \mathrm{~A}, \mathrm{IOD}=350 \mathrm{~mA})
\] & & DVOD & - & - & 0.15 & Vdc \\
\hline Common Mode Output Voltage Difference (Note 5)
\[
\left(I_{B S}=-300 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{OD}}=-0.1 \mathrm{~mA}\right)
\] & & CV \({ }_{\text {OD }}\) & - & - & 0.15 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Leakage, Hi } Z \text { State } \\
& \quad\left(0 \leqslant V_{O D} \leqslant V_{M}, I_{B S}=-5.0 \mu \mathrm{~A}\right) \\
& \left(0 \leqslant \mathrm{~V}_{\mathrm{OD}} \leqslant \mathrm{~V}_{\mathrm{M}}, I_{\mathrm{BS}}=-300 \mu \mathrm{~A}, F / \mathrm{H}=2.0 \mathrm{~V}, \text { OIC }=0.8 \mathrm{~V}\right)
\end{aligned}
\] & & \[
\begin{aligned}
& \text { loz1 } \\
& \text { loz2 } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-100 \\
-100 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& +100 \\
& +100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 2. Algebraic convention rather than absolute values is used to designate limit values.
\[
\begin{aligned}
& \text { 3. Current into a pin is designated as positive. Current out of a pin is designated as negative. } \\
& \text { 4. } D V_{O D}=\left|V_{O D 1,2}-V_{O D 3,4}\right| \text { where: } V_{O D 1,2}=\left(V_{O H D 1}-V_{O L D 2}\right) \text { or }\left(V_{O H D 2}-V_{O L D 1}\right) \text {, and } \\
& \text { 5. } C V_{O D S}=\left|V_{O H D 1}-V_{O H D 2}\right| \text { or }\left|V_{O H D 3}-V_{O H D 4}\right| \text {. }
\end{aligned}
\]

DC ELECTRICAL CHARACTERISTICS (Specifications apply over the recommended supply voltage and temperature range, [Notes 2, 3] unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Pins & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{CLAMP DIODES} \\
\hline Forward Voltage
\[
\left(I_{D}=350 \mathrm{~mA}\right)
\] & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1,2,3, \\
& 14.15
\end{aligned}
\]} & V \({ }_{\text {DF }}\) & - & 2.5 & 3.0 & Vdc \\
\hline \begin{tabular}{l}
Leakage Current (Per Diode) \\
(Pin \(1=21 \mathrm{~V}\); Outputs \(=0 \mathrm{~V}\); \(\mathrm{IBS}=0 \mu \mathrm{~A}\))
\end{tabular} & & IDR & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{PHASE A OUTPUT}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Output Low Voltage \\
(IOA \(=8.0 \mathrm{~mA})\)
\end{tabular} & 11 & VOLA & - & - & 0.4 & Vdc \\
\hline \begin{tabular}{c}
Off State Leakage Current \\
\(\left(V_{\text {OHA }}=16.5 \mathrm{~V}\right)\)
\end{tabular} & & IOHA & - & - & 100 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular} POWER SUPPLY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Power Supply Current
\[
\begin{aligned}
& \left(I_{O D}=0 \mu A, I_{B S}=-300 \mu A\right) \\
& \left(L 1=V_{O H D}, L 2=V_{O L D}, L 3=V_{O H D}, L 4=V_{O L D}\right) \\
& \left(L 1=V_{O H D}, L 2=V_{O L D}, L 3=H i Z, L 4=H i Z\right) \\
& \left(L 1=V_{O H D}, L 2=V_{O L D}, L 3=V_{O H D}, L 4=V_{O H D}\right)
\end{aligned}
\] & 16 & \[
\begin{aligned}
& I_{M W} \\
& I_{M Z} \\
& I_{M N}
\end{aligned}
\] & & - & 70
40
75 & mA \\
\hline
\end{tabular}

\section*{BIAS/SET CURRENT}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline To Set \(\overline{\text { Phase } A}\) & 6 & \(I_{B S}\) & -5.0 & - & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{PACKAGE THERMAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Thermal Resistance, Junction-to-Ambient (No Heatsink) & \(R_{\theta J A}\) & - & 45 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

AC SWITCHING CHARACTERISTICS \(\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{M}}=12 \mathrm{~V}\right)\) (See Figures 2, 3, 4)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Pins & Symbol & Min & Typ & Max & Unit \\
\hline Clock Frequency & 7 & \({ }^{\text {f }} \mathrm{CK}\) & 0 & - & 50 & kHz \\
\hline Clock Pulse Width (High) & 7 & PWCKH & 10 & - & - & \(\mu \mathrm{s}\) \\
\hline Clock Pulse Width (Low) & 7 & \(\mathrm{PW}_{\text {CKL }}\) & 10 & - & - & \(\mu \mathrm{s}\) \\
\hline \(\overline{\text { Bias/Set Pulse Width }}\) & 6 & PW \({ }_{\text {BS }}\) & 10 & - & - & \(\mu \mathrm{s}\) \\
\hline Setup Time (\(\overline{\mathrm{CW}} / \mathrm{CCW}\) and \(\overline{\mathrm{F}} / \mathrm{HS}\)) & \[
\begin{gathered}
10-7 \\
9-7
\end{gathered}
\] & \(t_{\text {su }}\) & 5.0 & - & - & \(\mu \mathrm{s}\) \\
\hline Hold Time (\(\overline{\mathrm{CW}} / \mathrm{CCW}\) and \(\overline{\mathrm{F}} / \mathrm{HS}\)) & \[
\begin{gathered}
10-7 \\
9-7
\end{gathered}
\] & th & 10 & - & - & \(\mu \mathrm{s}\) \\
\hline Propagation Delay (Clk-to-Driver Output) & & tPCD & - & 8.0 & - & \(\mu \mathrm{s}\) \\
\hline Propagation Delay (Eias/Set-to-Driver Output) & & tPBSD & - & 1.0 & - & \(\mu \mathrm{s}\) \\
\hline Propagation Delay (Clk-to- \(\overline{\text { Phase A }}\) Low) & 7-11 & tPHLA & - & 12 & - & \(\mu \mathrm{s}\) \\
\hline Propagation Delay (Clk-to-- \(\overline{\text { Phase A }}\) High) & 7-11 & tPLHA & - & 5.0 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

NOTES: 2. Algebraic convention rather than absolute values is used to designate limit values.
3. Current into a pin is designated as positive. Current out of a pin is designated as negative.

Figure 2. AC Test Circuit

Figure 3. Bias/Set Timing
(Refer to Figure 2)

Note: \(\mathrm{t}_{\mathrm{r}}, \mathrm{tf}_{f}(10 \%\) to \(90 \%\)) for input signals are \(\leqslant 25 \mathrm{~ns}\).

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Pin No.} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Description} \\
\hline 20-Pin & 16-Pin & & & \\
\hline 20 & 16 & Power Supply & \(\mathrm{V}_{\mathrm{M}}\) & Power supply pin for both the logic circuit and the motor coil current. Voltage range is +7.2 to +16.5 volts. \\
\hline \[
\begin{gathered}
4,5,6,7 \\
14,15,16,17
\end{gathered}
\] & \[
\begin{gathered}
4,5, \\
12,13
\end{gathered}
\] & Ground & Gnd & Ground pins for the logic circuit and the motor coil current. The physical configuration of the pins aids in dissipating heat from within the IC package. \\
\hline 1 & 1 & Clamp Diode Voltage & \(\mathrm{V}_{\mathrm{D}}\) & This pin is used to protect the outputs where large voltage spikes may occur as the motor coils are switched. Typically a diode is connected between this pin and Pin 16 . See Figure 11. \\
\hline \[
\begin{gathered}
2,3, \\
18,19
\end{gathered}
\] & \[
\begin{gathered}
2,3, \\
14,15
\end{gathered}
\] & Driver Outputs & \[
\begin{aligned}
& \mathrm{L} 1, \mathrm{~L} 2 \\
& \mathrm{~L} 3 . \mathrm{L} 4
\end{aligned}
\] & High current outputs for the motor coils. L1 and L2 are connected to one coil, and L3 and L4 to the other coil. \\
\hline 8 & 6 & \(\overline{\text { Bias/Set }}\) & \(\overline{\mathrm{B}} / \mathrm{S}\) & This pin is typically 0.7 volts below \(\mathrm{V}_{\mathrm{M}}\). The current out of this pin (through a resistor to ground) determines the maximum output sink current. If the pin is opened (IBS \(<5.0 \mu \mathrm{~A}\)) the outputs assume a high impedance condition, while the internal logic presets to a Phase A condition. \\
\hline 9 & 7 & Clock & Clk & The positive edge of the clock input switches the outputs to the next position. This input has no effect if Pin 6 is open. \\
\hline 11 & 9 & Full/Half Step & F/HS & When low (Logic " 0 "), each clock input pulse will cause the motor to rotate one full step. When high, each clock pulse will cause the motor to rotate one-half step. See Figure 7 for sequence. \\
\hline 12 & 10 & Clockwise/ Counterclockwise & \(\overline{\text { CW/CCW }}\) & This input allows reversing the rotation of the motor. See Figure 7 for sequence. \\
\hline 10 & 8 & Output Impedance Control & OIC & This input is relevant only in the half step mode (Pin \(9>2.0 \mathrm{~V}\)). When low (Logic " 0 "), the two driver outputs of the non-energized coil will be in a high impedance condition. When high the same driver outputs will be at a low impedance referenced to \(\mathrm{V}_{\mathrm{M}}\). See Figure 7. \\
\hline 13 & 11 & Phase A & Ph A & This open-collector output indicates (when low) that the driver outputs are in the \(\overline{\text { Phase } A}\) condition (\(\mathrm{L} 1=\mathrm{L} 3=\mathrm{V}_{\mathrm{OHD}}, \mathrm{L} 2=\mathrm{L} 4=\mathrm{V}_{\mathrm{OLD}}\)). \\
\hline
\end{tabular}

\section*{APPLICATION INFORMATION}

\section*{General}

The MC3479 integrated circuit is designed to drive a stepper positioning motor in applications such as disk drives and robotics. The outputs can provide up to 350 mA to each of two coils of a two-phase motor. The outputs change state with each low-to-high transition of the clock input, with the new output state depending on the previous state, as well as the input conditions at the logic controls.

\section*{Outputs}

The outputs (L1-L4) are high current outputs (see Figure 5), which when connected to a two-phase motor, provide two full-bridge configurations (L3 and L4 are not shown in Figure 5). The polarities applied to the motor coils depend on which transistor (\(Q_{H}\) or \(Q_{L}\)) of each output is on, which in turn depends on the inputs and the decoding circuitry.

\section*{MC3479}

Figure 4. Clock Timing (Refer to Figure 2)

Figure 5. Output Stages

The maximum sink current available at the outputs is a function of the resistor connected between Pin 6 and ground (see section on \(\overline{\mathrm{Bias}} /\) Set operation). Whenever the outputs are to be in a high impedance state, both transistors \(\left(\mathrm{Q}_{\mathrm{H}}\right.\) and \(Q_{L}\) of Figure 5) of each output are off.

\section*{\(V_{D}\)}

This pin allows for provision of a current path for the motor coil current during switching, in order to suppress back-EMF voltage spikes. \(V_{D}\) is normally connected to \(V_{M}\) (Pin 16) through a diode (zener or regular), a resistor, or directly. The peaks instantaneous voltage at the outputs must not exceed \(\mathrm{V}_{\mathrm{M}}\) by more than 6.0 V . The voltage drop across the internal clamping diodes must be included in this portion of the design (see Figure 6). Note the parasitic diodes (Figure 5) across each \(Q_{L}\) of each output provide for a complete circuit path for the switched current.

Figure 6. Clamp Diode Characteristics

\(\overline{\text { Full/Half Step }}\)
When this input is at a Logic " 0 " (\(<0.8 \mathrm{~V}\)), the outputs change a full step with each clock cycle, with the sequence direction depending on the \(\overline{\mathrm{CW}} / \mathrm{CCW}\) input. There are four steps (Phase A, \(\overline{\mathrm{B}}, \overline{\mathrm{C}}, \overline{\mathrm{D}}\)) for each complete cycle of the sequencing logic. Current flows through both motor coils during each step, as shown in Figure 7.

When taken to a Logic "1" (>2.0 V), the outputs change a half step with each clock cycle, with the sequence direction depending on the \(\overline{\mathrm{CW}} / \mathrm{CCW}\) input. Eight steps (\(\overline{\text { Phase } A}\) to \(\bar{H}\)) result for each complete cycle of the sequencing logic. Phase \(\overline{\mathrm{A}}, \overline{\mathrm{C}}, \overline{\mathrm{E}}\) and \(\overline{\mathrm{G}}\) correspond (in polarity) to Phase A\(, \overline{\mathrm{B}}, \overline{\mathrm{C}}\), and \(\overline{\bar{D}}\), respectively, of the full step sequence. \(\overline{\text { Phase } B}, \bar{D}, \bar{F}\) and \(\overline{\mathrm{H}}\) provide current to one motor coil, while de-energizing the other coil. The condition of the outputs of the de-energized coil depends on the OIC input, see Figure 7 timing diagram.

\section*{OIC}

The output impedance control input determines the output impedance to the de-energized coil when operating in the half-step mode. When the outputs are in \(\overline{\text { Phase B }}, \overline{\mathrm{D}}, \overline{\mathrm{F}}\) or \(\overline{\mathrm{H}}\) (Figure 7) and this input is at a Logic "0" (\(<0.8 \mathrm{~V}\)), the two
outputs to the de-energized coil are in a high impedance condition - \(Q_{L}\) and \(Q_{H}\) of both outputs (Figure 5) are off. When this input is at a Logic "1" (\(>2.0 \mathrm{~V}\)), a low impedance output is provided to the de-energized coil as both outputs have \(Q_{H}\) on (\(Q_{L}\) off). To complete the low impedance path requires connecting \(\mathrm{V}_{\mathrm{D}}\) to \(\mathrm{V}_{\mathrm{M}}\) as described elsewhere in this data sheet.

\section*{\(\overline{B i a s} /\) Set}

This pin can be used for three functions: a) determining the maximum output sink current; b) setting the internal logic to a known state; and c) reducing power consumption.
a) The maximum output sink current is determined by the base drive current supplied to the lower transistors (\(Q_{L S}\) of Figure 5) of each output, which in turn, is a function of IBS. The appropriate value of \(\mathrm{I}_{\mathrm{BS}}\) is determined by:
\[
I_{B S}=I_{O D} \times 0.86
\]
where \({ }^{\mathrm{BS}}\) is in microamps, and \({ }^{\mathrm{OD}}\) 的 the motor current/coil in milliamps.

Figure 7. Output Sequence

The value of \(R_{B}\) (between this pin and ground) is then determined by:
\[
R_{B}=\frac{V_{M}-0.7 V}{I_{B S}}
\]
b) When this pin is opened (raised to \(V_{M}\)) such that \(I_{B S}\) is \(<5.0 \mu \mathrm{~A}\), the internal logic is set to the \(\overline{\text { Phase A }}\) condition, and the four driver outputs are put into a high impedance state. The Phase A output (Pin 11) goes active (low), and input signals at the controls are ignored during this time. Upon re-establishing IBS, the driver outputs become active, and will be in the Phase A position (\(\mathrm{L} 1=\mathrm{L} 3=\mathrm{V}_{\mathrm{OHD}}, \mathrm{L} 2=\mathrm{L} 4=\) \(V_{\text {OLD }}\)). The circuit will then respond to the inputs at the controls.

The Set function (opening this pin) can be used as a power-up reset while supply voltages are settling. A CMOS logic gate (powered by \(\mathrm{V}_{\mathrm{M}}\)) can be used to control this pin as shown in Figure 11.
c) Whenever the motor is not being stepped, power dissipation in the IC and in the motor may be lowered by reducing \(I_{\mathrm{BS}}\), so as to reduce the output (motor) current. Setting IBS to \(75 \mu \mathrm{~A}\) will reduce the motor current, but will not reset the internal logic as described above. See Figure 12 for a suggested circuit.

\section*{Power Dissipation}

The power dissipated by the MC3479 must be such that the junction temperature (T) does not exceed \(150^{\circ} \mathrm{C}\). The power dissipated can be expressed as:
\[
P=\left(V_{M} \times I_{M}\right)+\left(2 \times I_{O D}\right)\left[\left(V_{M}-V_{O H D}\right)+V_{O L D}\right]
\]
where \(\quad V_{M}=\) Supply voltage;
\(\mathrm{I}_{\mathrm{M}}=\) Supply current other than IOD;
IOD = Output current to each motor coil;
VOHD = Driver output high voltage;
VOLD \(=\) Driver output low voltage.
The power supply current \((\mathrm{I} M)\) is obtained from Figure 8. After the power dissipation is calculated, the junction temperature can be calculated using:
\[
T_{J}=\left(P \times R_{\theta J A}\right)+T_{A}
\]
where \(R_{\theta J A}=\) Junction-to-ambient thermal resistance (\(52^{\circ} \mathrm{C} / \mathrm{W}\) for the DIP, \(72^{\circ} \mathrm{C} / \mathrm{W}\) for the FN Package);
\(\mathrm{T}_{\mathrm{A}}=\) Ambient Temperature.
Figure 8. Power Supply Current

For example, assume an application where \(\mathrm{V}_{\mathrm{M}}=12 \mathrm{~V}\), the motor requires \(200 \mathrm{~mA} /\) coil, operating at room temperature with no heatsink on the IC. IBS is calculated:
\[
\begin{aligned}
& \mathrm{I} \mathrm{BS}=200 \times 0.86 \\
& \mathrm{I} \text { BS }=172 \mu \mathrm{~A}
\end{aligned}
\]
\(R_{B}\) is calculated:
\[
\begin{aligned}
& R_{B}=(12-0.7) \mathrm{V} / 172 \mu \mathrm{~A} \\
& R_{B}=65.7 \mathrm{k} \Omega
\end{aligned}
\]

From Figure \(8, \mathrm{I}_{\mathrm{M}}\) (max) is determined to be 40 mA . From Figure 9, \(\mathrm{V}_{\text {OLD }}\) is 0.46 volts, and from Figure \(10,\left(\mathrm{~V}_{\mathrm{M}}-\mathrm{V}_{\mathrm{OHD}}\right)\) is 1.4 volts.
\[
\begin{aligned}
& \mathrm{P}=(12 \times 0.040)+(2 \times 0.2)(1.4+0.46) \\
& \mathrm{P}=1.22 \mathrm{~W} \\
& \mathrm{~T}_{\mathrm{J}}=\left(1.22 \mathrm{~W} \times 52^{\circ} \mathrm{C} / \mathrm{W}\right)+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=88^{\circ} \mathrm{C}
\end{aligned}
\]

This temperature is well below the maximum limit. If the calculated \(\mathrm{T} J\) had been higher than \(150^{\circ} \mathrm{C}\), a heatsink such as the Staver Co. V-7 Series, Aavid \#5802, or Thermalloy \#6012 could be used to reduce R \(\mathrm{R}_{\theta \mathrm{JA}}\). In extreme cases, forced air cooling should be considered.

The above calculation, and \(\mathrm{R}_{\theta J \mathrm{~A}}\), assumes that a ground plane is provided under the MC3479 (either or both sides of the PC board) to aid in the heat dissipation. Single nominal width traces leading from the four ground pins should be avoided as this will increase \(T_{\mathrm{J}}\), as well as provide potentially disruptive ground noise and \(I_{R}\) drops when switching the motor current.

Figure 9. Maximum Saturation Voltage Driver Output Low

Figure 10. Maximum Saturation Voltage Driver Output High

\section*{MC3479}

Figure 11. Typical Applications Circuit

Figure 12. Power Reduction

- Suggested value for \(R_{B 1}\left(V_{M}=12 \mathrm{~V}\right)\) is \(150 \mathrm{k} \Omega\).
- \(R_{B}\) calculation (see text) must take into account
the current through \(R_{B 1}\).

\section*{DC Servo Motor Controller/Driver}

The MC33030 is a monolithic DC servo motor controller providing all active functions necessary for a complete closed loop system. This device consists of an on-chip op amp and window comparator with wide input common-mode range, drive and brake logic with direction memory, Power H -Switch driver capable of 1.0 A , independently programmable over-current monitor and shutdown delay, and over-voltage monitor. This part is ideally suited for almost any servo positioning application that requires sensing of temperature, pressure, light, magnetic flux, or any other means that can be converted to a voltage.

Although this device is primarily intended for servo applications, it can be used as a switchmode motor controller.
- On-Chip Error Amp for Feedback Monitoring
- Window Detector with Deadband and Self Centering Reference Input
- Drive/Brake Logic with Direction Memory
- 1.0 A Power H-Switch
- Programmable Over-Current Detector
- Programmable Over-Current Shutdown Delay
- Over-Voltage Shutdown

\section*{DC SERVO MOTOR CONTROLLER/DRIVER}

SEMICONDUCTOR technical data

Pins 4,5,12 and 13 are electrical ground and heat sink pins for IC.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33030DW & \multirow{2}{*}{\(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SOP-16L \\
\hline MC33030P & & DIP-16 \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 36 & V \\
\hline \begin{tabular}{l}
Input Voltage Range \\
Op Amp, Comparator, Current Limit (Pins 1, 2, 3, 6, 7, 8, 9, 15)
\end{tabular} & VIR & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Input Differential Voltage Range Op Amp, Comparator (Pins 1, 2, 3, 6, 7, 8, 9) & \(V_{\text {IDR }}\) & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Delay Pin Sink Current (Pin 16) & I DLY(sink) & 20 & mA \\
\hline Output Source Current (Op Amp) & \(I_{\text {source }}\) & 10 & mA \\
\hline Drive Output Voltage Range (Note 1) & V DRV & -0.3 to \(\left(\mathrm{V}_{\mathrm{CC}}+\mathrm{V}_{\mathrm{F}}\right)\) & V \\
\hline Drive Output Source Current (Note 2) & IDRV(source) & 1.0 & A \\
\hline Drive Output Sink Current (Note 2) & IDRV(sink) & 1.0 & A \\
\hline Brake Diode Forward Current (Note 2) & \(\mathrm{I}_{\mathrm{F}}\) & 1.0 & A \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
P Suffix, Dual In Line Case 648C \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case (Pins 4, 5, 12, 13) \\
DW Suffix, Dual In Line Case 751G \\
Thermal Resistance, Junction-to-Air \\
Thermal Resistance, Junction-to-Case (Pins 4, 5, 12, 13)
\end{tabular} & \begin{tabular}{l}
\(R_{\theta J A}\) \\
\(\mathrm{R}_{\theta \mathrm{JC}}\) \\
\(R_{\theta J A}\) \\
\(R_{\text {日JC }}\)
\end{tabular} & \begin{tabular}{l}
80 \\
15 \\
94 \\
18
\end{tabular} & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\text {A }}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. The upper voltage level is clamped by the forward drop, \(\mathrm{V}_{\mathrm{F}}\), of the brake diode.
2. These values are for continuous DC current. Maximum package power dissipation limits must be observed.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ERROR AMP} \\
\hline Input Offset Voltage \(\left(-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 85^{\circ} \mathrm{C}\right)\) \(V_{\text {Pin } 6}=7.0 \mathrm{~V}, R_{L}=100 \mathrm{k}\) & V 1 O & - & 1.5 & 10 & mV \\
\hline Input Offset Current (\(\mathrm{V}_{\text {Pin }} 6=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}\)) & 110 & - & 0.7 & - & \(n \mathrm{~A}\) \\
\hline Input Bias Current (\(\mathrm{V}_{\text {Pin }} 6=7.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}\)) & IIB & - & 7.0 & - & nA \\
\hline Input Common-Mode Voltage Range
\[
\Delta \mathrm{V}_{\mathrm{IO}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}
\] & VICR & - & 0 to (\(\left.\mathrm{V}_{\mathrm{CC}}-1.2\right)\) & - & V \\
\hline Slew Rate, Open Loop (\(\mathrm{V}_{\text {ID }}=0.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)) & SR & - & 0.40 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Unity-Gain Crossover Frequency & \(\mathrm{f}_{\mathrm{C}}\) & - & 550 & - & kHz \\
\hline Unity-Gain Phase Margin & \(\phi \mathrm{m}\) & - & 63 & - & deg. \\
\hline Common-Mode Rejection Ratio (VPin \(6=7.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}\)) & CMRR & 50 & 82 & - & dB \\
\hline \begin{tabular}{l}
Power Supply Rejection Ratio \\
\(V_{C C}=9.0\) to \(16 \mathrm{~V}, \mathrm{~V}_{\text {Pin } 6}=7.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}\)
\end{tabular} & PSRR & - & 89 & - & dB \\
\hline Output Source Current (\(\mathrm{V}_{\text {Pin }} 6=12 \mathrm{~V}\)) & \(10+\) & - & 1.8 & - & mA \\
\hline Output Sink Current (\(\mathrm{V}_{\text {Pin } 6=1.0 \mathrm{~V} \text {) }}\) & \(1 \mathrm{O}_{-}\) & - & 250 & - & \(\mu \mathrm{A}\) \\
\hline Output Voltage Swing (\(\mathrm{R}_{\mathrm{L}}=17 \mathrm{k}\) to Ground) & \begin{tabular}{l}
V OH \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & \[
12.5
\] & \[
\begin{aligned}
& 13.1 \\
& 0.02
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTES: 3. The upper or lower hysteresis will be lost when operating the Input, Pin 3, close to the respective rail. Refer to Figure 4.
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{C C}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{WINDOW DETECTOR} \\
\hline Input Hysteresis Voltage (\(\mathrm{V}_{1}-\mathrm{V}_{4}, \mathrm{~V}_{2}-\mathrm{V}_{3}\), Figure 18) & \(\mathrm{V}_{\mathrm{H}}\) & 25 & 35 & 45 & mV \\
\hline Input Dead Zone Range (\(\mathrm{V}_{2}-\mathrm{V}_{4}\), Figure 18) & \(V_{\text {IDZ }}\) & 166 & 210 & 254 & mV \\
\hline Input Offset Voltage (\(\mid\) [\(\left.\mathrm{V}_{2}-\mathrm{V}_{\text {Pin }} 2\right]-\left[\mathrm{V}_{\text {Pin }} 2-\mathrm{V}_{4}\right] \mid\) Figure 18) & \(\mathrm{V}_{10}\) & - & 25 & - & mV \\
\hline Input Functional Common-Mode Range (Note 3) Upper Threshold Lower Threshold & \[
\begin{aligned}
& V_{I H} \\
& V_{I L}
\end{aligned}
\] & - & \[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{CC}}-1.05\right) \\
0.24
\end{gathered}
\] & - & V \\
\hline Reference Input Self Centering Voltage Pins 1 and 2 Open & VRSC & - & (1/2 \(\mathrm{V}_{\mathrm{CC}}\)) & - & V \\
\hline Window Detector Propagation Delay Comparator Input, Pin 3, to Drive Outputs
\[
\mathrm{V}_{\mathrm{ID}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}(\mathrm{DRV})}=390 \Omega
\] & \(\mathrm{t}_{\mathrm{p}}(\mathrm{IN} / \mathrm{DRV})\) & - & 2.0 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

OVER-CURRENT MONITOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Over-Current Reference Resistor Voltage (Pin 15) & ROC & 3.9 & 4.3 & 4.7 & V \\
\hline Delay Pin Source Current
\[
V_{D L Y}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{OC}}=27 \mathrm{k}, \mathrm{I} \mathrm{DRV}=0 \mathrm{~mA}
\] & \({ }^{\text {I DLY (source) }}\) & - & 5.5 & 6.9 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Delay Pin Sink Current }\left(R_{\mathrm{OC}}=27 \mathrm{k}, \mathrm{I} \mathrm{DRV}=0 \mathrm{~mA}\right) \\
& \mathrm{V}_{\mathrm{DLY}}=5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DLY}}=8.3 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DLY}}=14 \mathrm{~V}
\end{aligned}
\] & \({ }^{\prime} \mathrm{DLY}\) (sink) & - & \[
\begin{gathered}
0.1 \\
0.7 \\
16.5
\end{gathered}
\] & - & mA \\
\hline Delay Pin Voltage, Low State (\({ }_{\text {dLY }}=0 \mathrm{~mA}\)) & \(\mathrm{V}_{\text {OL }}\) (DLY) & - & 0.3 & 0.4 & V \\
\hline Over-Current Shutdown Threshold
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=8.0 \mathrm{~V}
\end{aligned}
\] & \(\left.\mathrm{V}_{\text {th(}} \mathrm{OC}\right)\) & \[
\begin{aligned}
& 6.8 \\
& 5.5
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.2 \\
& 6.5
\end{aligned}
\] & V \\
\hline Over-Current Shutdown Propagation Delay Delay Capacitor Input, Pin 16, to Drive Outputs, \(\mathrm{V}_{\mathrm{ID}}=0.5 \mathrm{~V}\) & \(\mathrm{t}_{\mathrm{p} \text { (DLY/DRV) }}\) & - & 1.8 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

POWER H-SWITCH
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{ll}
Drive-Output Saturation \(\left(-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}\right.\), Note 4) \\
High-State & \(\left(I_{\text {source }}=100 \mathrm{~mA}\right)\) \\
Low-State & \(\left(I_{\text {sink }}=100 \mathrm{~mA}\right)\)
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}(\mathrm{DRV})}\) \\
VOL(DRV)
\end{tabular} & \(\left(\mathrm{V}_{\mathrm{CC}}-2\right)\) & \[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{CC}}-0.85\right) \\
0.12
\end{gathered}
\] & \[
\frac{-}{1.0}
\] & V \\
\hline Drive-Output Voltage Switching Time (\(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)) Rise Time Fall Time & \[
\begin{aligned}
& t_{r} \\
& t_{f}
\end{aligned}
\] & - & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & - & ns \\
\hline Brake Diode Forward Voltage Drop (\(1 \mathrm{~F}=200 \mathrm{~mA}\), Note 4) & \(V_{F}\) & - & 1.04 & 2.5 & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Standby Supply Current & ICC & - & 14 & 25 & mA \\
\hline \begin{tabular}{c}
Over-Voltage Shutdown Threshold \\
\(\left(-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{th}(\mathrm{OV})}\) & 16.5 & 18 & 20.5 & V \\
\hline Over-Voltage Shutdown Hysteresis (Device "off" to "on") & \(\mathrm{V}_{\mathrm{H}(\mathrm{OV})}\) & 0.3 & 0.6 & 1.0 & V \\
\hline \begin{tabular}{c}
Operating Voltage Lower Threshold \\
\(\left(-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{CC}}\) & - & 7.5 & 8.0 & V \\
\hline
\end{tabular}

NOTES: 3. The upper or lower hysteresis will be lost when operating the Input, Pin 3, close to the respective rail. Refer to Figure 4.
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

Figure 1. Error Amp Input Common-Mode Voltage Range versus Temperature

Figure 3. Open Loop Voltage Gain and Phase versus Frequency

Figure 5. Window Detector Feedback-Input Thresholds versus Temperature

Figure 2. Error Amp Output Saturation versus Load Current

Figure 4. Window Detector Reference-Input Common-Mode Voltage Range versus Temperature

Figure 6. Output Driver Saturation versus Load Current

Figure 7. Brake Diode Forward Current versus Forward Voltage

Figure 9. Output Source Current-Limit versus Temperature

Figure 11. Normalized Over-Current Delay Threshold Voltage versus Temperature
\(\mathrm{V}_{\text {th }}(\mathrm{OC})\), OVER-CURRENT DELAY THRESHOLD VOLTAGE

Figure 8. Output Source Current-Limit versus Over-Current Reference Resistance

Figure 10. Normalized Delay Pin Source Current versus Temperature

Figure 12. Supply Current versus Supply Voltage

Figure 13. Normalized Over-Voltage Shutdown

Figure 14. Normalized Over-Voltage Shutdown Hysteresis versus Temperature

Figure 15. P Suffix (DIP-16) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 16. DW Suffix (SOP-16L) Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

\section*{OPERATING DESCRIPTION}

The MC33030 was designed to drive fractional horsepower DC motors and sense actuator position by voltage feedback. A typical servo application and representative internal block diagram are shown in Figure 17. The system operates by setting a voltage on the reference input of the Window Dectector (Pin 1) which appears on (Pin 2). A DC motor then drives a position sensor, usually a potentiometer driven by a gear box, in a corrective fashion so that a voltage proportional to position is present at Pin 3. The servo motor will continue to run until the voltage at Pin 3 falls within the dead zone, which is centered about the reference voltage.

The Window Detector is composed of two comparators, A and B , each containing hysteresis. The reference input, common to both comparators, is pre-biased at \(1 / 2 \mathrm{~V}_{\mathrm{CC}}\) for simple two position servo systems and can easily be overriden by an external voltage divider. The feedback voltage present at Pin 3 is connected to the center of two resistors that are driven by an equal magnitude current source and sink. This generates an offset voltage at the input of each comparator which is centered about Pin 3 that can float virtually from \(\mathrm{V}_{\mathrm{CC}}\) to ground. The sum of the upper and lower offset voltages is defined as the window detector input dead zone range.

To increase system flexibility, an on-chip Error Amp is provided. It can be used to buffer and/or gain-up the actuator position voltage which has the effect of narrowing the dead zone range. A PNP differential input stage is provided so that the input common-mode voltage range will include ground. The main design goal of the error amp output stage was to be able to drive the window detector input. It typically can source 1.8 mA and sink \(250 \mu \mathrm{~A}\). Special design considerations must be made if it is to be used for other applications.

The Power H-Switch provides a direct means for motor drive and braking with a maximum source, sink, and brake current of 1.0 A continuous. Maximum package power dissipation limits must be observed. Refer to Figure 15 for thermal information. For greater drive current requirements, a method for buffering that maintains all the system features is shown in Figure 30.

The Over-Current Monitor is designed to distinguish between motor start-up or locked rotor conditions that can occur when the actuator has reached its travel limit. A fraction of the Power H -Switch source current is internally fed into one of the two inverting inputs of the current comparator, while the non-inverting input is driven by a programmable current reference. This reference level is controlled by the resistance value selected for ROC, and must be greater than the required motor run-current with its mechanical load over temperature; refer to Figure 8. During an over-current condition, the comparator will turn off and allow the current source to charge the delay capacitor, CDLY. When CDLY charges to a level of 7.5 V , the set input of the over-current latch will go high, disabling the drive and brake functions of the Power H -Switch. The programmable time delay is determined by the capacitance value-selected for CDLY.
\(t_{D L Y}=\frac{v_{\text {ref }} C_{D L Y}}{I_{D L Y(\text { source })}}=\frac{7.5 C_{D L Y}}{5.5 \mu \mathrm{~A}}=1.36 C_{D L Y}\) in \(\mu F\)
This system allows the Power H-Switch to supply motor start-up current for a predetermined amount of time. If the
rotor is locked, the system will time-out and shut-down. This feature eliminates the need for servo end-of-travel or limit switches. Care must be taken so as not to select too large of a capacitance value for CDLY. An over-current condition for an excessively long time-out period can cause the integrated circuit to overheat and eventually fail. Again, the maximum package power dissipation limits must be observed. The over-current latch is reset upon power-up or by readjusting \(V_{\text {Pin } 2}\) as to cause \(V_{\text {Pin } 3}\) to enter or pass through the dead zone. This can be achieved by requesting the motor to reverse direction.

An Over-Voltage Monitor circuit provides protection for the integrated circuit and motor by disabling the Power H -Switch functions if \(\mathrm{V}_{\mathrm{CC}}\) should exceed 18 V . Resumption of normal operation will commence when \(\mathrm{V}_{\mathrm{CC}}\) falls below 17.4 V .

A timing diagram that depicts the operation of the Drive/Brake Logic section is shown in Figure 18. The waveforms grouped in [1] show a reference voltage that was preset, appearing on Pin 2, which corresponds to the desired actuator position. The true actuator position is represented by the voltage on Pin 3 . The points \(\mathrm{V}_{1}\) through \(\mathrm{V}_{4}\) represent the input voltage thresholds of comparators A and B that cause a change in their respective output state. They are defined as follows:
\(\mathrm{V}_{1}=\) Comparator B turn-off threshold
\(\mathrm{V}_{2}=\) Comparator A turn-on threshold
\(\mathrm{V}_{3}=\) Comparator A turn-off threshold
\(\mathrm{V}_{4}=\) Comparator B turn-on threshold
\(\mathrm{V}_{1}-\mathrm{V}_{4}=\) Comparator \(B\) input hysteresis voltage
\(\mathrm{V}_{2}-\mathrm{V}_{3}=\) Comparator \(A\) input hysteresis voltage
\(\mathrm{V}_{2}-\mathrm{V}_{4}=\) Window detector input dead zone range
\(\left|\left(V_{2}-V_{\text {Pin2 }}\right)-\left(V_{\text {Pin2 }}-V_{4}\right)\right|=\) Window detector input
voltage
It must be remembered that points \(\mathrm{V}_{1}\) through \(\mathrm{V}_{4}\) always try to follow and center about the reference voltage setting if it is within the input common-mode voltage range of Pin 3; Figures 4 and 5 . Initially consider that the feedback input voltage level is somewhere on the dashed line between \(\mathrm{V}_{2}\) and \(V_{4}\) in [1]. This is within the dead zone range as defined above and the motor will be off. Now if the reference voltage is raised so that \(V_{\text {Pin }} 3\) is less than \(\mathrm{V}_{4}\), comparator \(B\) will turn-on [3] enabling Q Drive, causing Drive Output A to sink and \(B\) to source motor current [8]. The actuator will move in Direction \(B\) until \(\mathrm{V}_{\text {Pin }} 3\) becomes greater than \(\mathrm{V}_{1}\). Comparator \(B\) will turn-off, activating the brake enable [4] and \(\bar{Q}\) Brake [6] causing Drive Output A to go high and B to go into a high impedance state. The inertia of the mechanical system will drive the motor as a generator creating a positive voltage on Pin 10 with respect to Pin 14. The servo system can be stopped quickly, so as not to over-shoot through the dead zone range, by braking. This is accomplished by shorting the motor/generator terminals together. Brake current will flow into the diode at Drive Output B, through the internal \(\mathrm{V}_{\mathrm{CC}}\) rail, and out the emitter of the sourcing transistor at Drive Output A. The end of the solid line and beginning of the dashed for \(V_{\text {Pin }} 3\) [1] indicates the possible resting position of the actuator after braking.

Figure 17. Representative Block Diagram and Typical Servo Application

If \(\mathrm{V}_{\text {Pin }} 3\) should continue to rise and become greater than \(\mathrm{V}_{2}\), the actuator will have over shot the dead zone range and cause the motor to run in Direction \(A\) until \(V_{P i n} 3\) is equal to \(\mathrm{V}_{3}\). The Drive/Brake behavior for Direction A is identical to that of B . Overshooting the dead zone range in both directions can cause the servo system to continuously hunt or oscillate. Notice that the last motor run-direction is stored in the direction latch. This information is needed to determine whether \(Q\) or \(\bar{Q}\) Brake is to be enabled when VPin 3 enters the dead zone range. The dashed lines in \([8,9]\) indicate the resulting waveforms of an over-current condition that has exceeded the programmed time delay. Notice that both Drive Outputs go into a high impedance state until \(V_{\text {Pin }}\) 2 is readjusted so that VPin 3 enters or crosses through the dead zone [7, 4].

The inputs of the Error Amp and Window Detector can be susceptible to the noise created by the brushes of the DC motor and cause the servo to hunt. Therefore, each of these inputs are provided with an internal series resistor and are pinned out for an external bypass capacitor. It has been found that placing a capacitor with short leads directly across the brushes will significantly reduce noise problems. Good quality RF bypass capacitors in the range of 0.001 to \(0.1 \mu \mathrm{~F}\) may be required. Many of the more economical motors will generate significant levels of RF energy over a spectrum that extends from DC to beyond 200 MHz . The capacitance value and method of noise filtering must be determined on a system by system basis.

Thus far, the operating description has been limited to servo systems in which the motor mechanically drives a potentiometer for position sensing. Figures 19, 20, 27, and 31 show examples that use light, magnetic flux, temperature, and pressure as a means to drive the feedback element. Figures 21, 22 and 23 are examples of two position, open loop servo systems. In these systems, the motor runs the actuator to each end of its travel limit where the Over-Current Monitor detects a locked rotor condition and shuts down the drive. Figures 32 and 33 show two possible methods of using the MC33030 as a switching motor controller. In each example a fixed reference voltage is applied to Pin 2. This causes \(V_{\text {pin }} 3\) to be less than \(V_{4}\) and Drive Output A, Pin 14, to be in a low state saturating the TIP42 transistor. In Figure 32, the motor drives a tachometer that generates an ac voltage proportional to RPM. This voltage is rectified, filtered, divided down by the speed set potentiometer, and applied to Pin. 8. The motor will accelerate until \(\mathrm{V}_{\text {Pin }} 3\) is equal to \(\mathrm{V}_{1}\) at which time Pin 14 will go to a high state and terminate the motor drive. The motor will now coast until \(V_{\text {Pin }} 3\) is less than \(V_{4}\) where upon drive is then reapplied. The system operation of Figure 31 is identical to that of 32 except the signal at Pin 3 is an amplified average of the motors drive and back EMF voltages. Both systems exhibit excellent control of RPM with variations of \(V_{C C}\); however, Figure 32 has somewhat better torque characteristics at low RPM.

Figure 18. Timing Diagram

Figure 19. Solar Tracking Servo System

Figure 21. Infrared Latched Two Position Servo System

Over-current monitor (not shown) shuts down servo when end stop is reached.

Figure 23. 0.25 Hz Square-Wave Servo Agitator

Figure 20. Magnetic Sensing Servo System

Typical sensitivity with gain set at 3.9 k is \(1.5 \mathrm{mV} /\) gauss. Servo motor controls magnetic field about sensor.

Figure 22. Digital Two Position Servo System

Figure 24. Second Order Low-Pass Active Filter

Figure 25. Notch Filter

Figure 27. Temperature Sensing Servo System

In this application the servo motor drives the heat/air conditioner modulator door in a duct system.

Figure 29. Remote Latched Shutdown

A direction change signal is required at Pins 2 or 3 to reset the over-current latch.

Figure 26. Differential Input Amplifier

Figure 28. Bridge Amplifier

\[
\begin{aligned}
& V_{A}-V_{B}=V_{\text {Ref }}\left(\frac{\Delta R}{4 R+2 \Delta R}\right) \\
& R_{1}=R_{3}, R_{2}=R_{4}, R_{1} \gg R \\
& V_{\text {Pin } 6}=\frac{R_{4}}{R_{3}}\left(V_{A}-V_{B}\right)
\end{aligned}
\]

Figure 30. Power H-Switch Buffer

This circuit maintains the brake and over-current features of the MC33030. Set ROC to 15 k for \({ }^{\mathrm{D} R V}(\max) \approx 0.5 \mathrm{~A}\).

\section*{MC33030}

Figure 31. Adjustable Pressure Differential Regulator

Figure 32. Switching Motor Controller With Buffered Output and Tach Feedback

Figure 33. Switching Motor Controller With Buffered Output and Back EMF Sensing

\section*{Brushless DC Motor Controller}

The MC33033 is a high performance second generation, limited feature, monolithic brushless dc motor controller which has evolved from Motorola's full featured MC33034 and MC33035 controllers. It contains all of the active functions required for the implementation of open loop, three or four phase motor control. The device consists of a rotor position decoder for proper commutation sequencing, temperature compensated reference capable of supplying sensor power, frequency programmable sawtooth oscillator, fully accessible error amplifier, pulse width modulator comparator, three open collector top drivers, and three high current totem pole bottom drivers ideally suited for driving power MOSFETs. Unlike its predessors, it does not feature separate drive circuit supply and ground pins, brake input, or fault output signal.

Included in the MC33033 are protective features consisting of undervoltage lockout, cycle-by-cycle current limiting with a selectable time delayed latched shutdown mode, and internal thermal shutdown.

Typical motor control functions include open loop speed, forward or reverse direction, and run enable.The MC33033 is designed to operate brushless motors with electrical sensor phasings of \(60^{\circ} / 300^{\circ}\) or \(120^{\circ} / 240^{\circ}\), and can also efficiently control brush dc motors.
- 10 to 30 V Operation
- Undervoltage Lockout
- 6.25 V Reference Capable of Supplying Sensor Power
- Fully Accessible Error Amplifier for Closed Loop Servo Applications
- High Current Drivers Can Control External 3-Phase MOSFET Bridge
- Cycle-By-Cycle Current Limiting
- Internal Thermal Shutdown
- Selectable \(60^{\circ} / 300^{\circ}\) or \(120^{\circ} / 240^{\circ}\) Sensor Phasings
- Also Efficiently Control Brush DC Motors with External MOSFET H-Bridge

ORDERING INFORMATION
\begin{tabular}{|l|l|l|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33033DW & \(\mathrm{T}_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & SO-20L \\
\hline MC33033P & & Plastic DIP \\
\hline
\end{tabular}

\section*{BRUSHLESS DC MOTOR CONTROLLER}

\section*{SEMICONDUCTOR} TECHNICAL DATA

P SUFFIX
PLASTIC PACKAGE
CASE 738

DW SUFFIX PLASTIC PACKAGE CASE 751D (SO-20L)

Representative Schematic Diagram

This device contains 266 active transistors.

\section*{MC33033}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 30 & V \\
\hline Digital Inputs (Pins 3, 4, 5, 6, 18, 19) & - & \(\mathrm{V}_{\text {ref }}\) & V \\
\hline Oscillator Input Current (Source or Sink) & Iosc & 30 & mA \\
\hline Error Amp Input Voltage Range (Pins 9, 10, Note 1) & \(\mathrm{V}_{\mathrm{IR}}\) & -0.3 to \(\mathrm{V}_{\text {ref }}\) & V \\
\hline Error Amp Output Current (Source or Sink, Note 2) & IOut & 10 & mA \\
\hline Current Sense Input Voltage Range & \(V_{\text {Sense }}\) & -0.3 to 5.0 & V \\
\hline Top Drive Voltage (Pins 1, 2, 20) & \(\mathrm{V}_{\text {CE(top) }}\) & 40 & V \\
\hline Top Drive Sink Current (Pins 1, 2, 20) & ISink(top) & 50 & mA \\
\hline Bottom Drive Output Current (Source or Sink, Pins 15,16, 17) & IDRV & 100 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
P Suffix, Dual-In-Line, Case 738 \\
Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air \\
DW Suffix, Surface Mount, Case 751D \\
Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction-to-Air
\end{tabular} & \begin{tabular}{l}
PD \\
\(R_{\text {日JA }}\) \\
\(P_{D}\) \\
\(R_{\theta J A}\)
\end{tabular} & \[
\begin{gathered}
867 \\
75 \\
619 \\
105 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=4.7 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=10 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}

REFERENCE SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Reference Output Voltage (} I_{\text {ref }}=1.0 \mathrm{~mA} \text {) } \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\text {ref }}\) & \[
\begin{gathered}
5.9 \\
5.82
\end{gathered}
\] & \[
6.24
\] & \[
\begin{gathered}
6.5 \\
6.57
\end{gathered}
\] & V \\
\hline Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 30 V , \(\mathrm{I}_{\text {ref }}=1.0 \mathrm{~mA}\)) & Regline & - & 1.5 & 30 & mV \\
\hline Load Regulation (\(\mathrm{I}_{\text {ref }}=1.0 \mathrm{~mA}\) to 20 mA) & Regload & - & 16 & 30 & mV \\
\hline Output Short-Circuit Current (Note 3) & ISC & 40 & 75 & - & mA \\
\hline Reference Under Voltage Lockout Threshold & \(\mathrm{V}_{\text {th }}\) & 4.0 & 4.5 & 5.0 & V \\
\hline
\end{tabular}

ERROR AMPLIFIER
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage (\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{10}\) & - & 0.4 & 10 & mV \\
\hline Input Offset Current (\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)) & 10 & - & 8.0 & 500 & nA \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)) & IB & - & -46 & -1000 & nA \\
\hline Input Common Mode Voltage Range & VICR & \multicolumn{3}{|c|}{(0 V to \(\mathrm{V}_{\text {ref }}\))} & V \\
\hline Open Loop Voltage Gain (\(\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\)) & AVOL & 70 & 80 & - & dB \\
\hline Input Common Mode Rejection Ratio & CMRR & 55 & 86 & - & dB \\
\hline Power Supply Rejection Ratio (VCC \(=10 \mathrm{~V}\) to 30 V) & PSRR & 65 & 105 & - & dB \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State (\(R_{L}=15 k\) to Gnd) \\
Low State (\(R_{L}=17 \mathrm{k}\) to \(\mathrm{V}_{\text {ref }}\))
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & 4.6 & \[
\begin{aligned}
& 5.3 \\
& 0.5
\end{aligned}
\] & \[
-\overline{1.0}
\] & V \\
\hline
\end{tabular}

NOTES: 1. The input common mode voltage or input signal voltage should not be allowed to go negative by more than 0.3 V .
2. The compliance voltage must not exceed the range of -0.3 to \(\mathrm{V}_{\text {ref }}\)
3. Maximum package power dissipation limits must be observed.

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=4.7 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=10 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OSCILLATOR SECTION} \\
\hline Oscillator Frequency & fosc & 22 & 25 & 28 & kHz \\
\hline Frequency Change with Voltage (\(\mathrm{V}_{C C}=10 \mathrm{~V}\) to 30 V) & \(\Delta \mathrm{fosc} / \Delta \mathrm{V}\) & - & 0.01 & 5.0 & \% \\
\hline Sawtooth Peak Voltage & Vosc(P) & - & 4.1 & 4.5 & V \\
\hline Sawtooth Valley Voltage & \(\mathrm{V}_{\mathrm{OSC}}(\mathrm{V})\) & 1.2 & 1.5 & - & V \\
\hline
\end{tabular}

LOGIC INPUTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Threshold Voltage (Pins 3, 4, 5, 6, 18, 19) High State Low State & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\] & 3.0 & \[
\begin{aligned}
& 2.2 \\
& 1.7
\end{aligned}
\] & \[
\overline{0.8}
\] & V \\
\hline \begin{tabular}{l}
Sensor Inputs (Pins 4, 5, 6) \\
High State Input Current (\(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}\)) \\
Low State Input Current (\(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\))
\end{tabular} & \[
\begin{aligned}
& \mathrm{IIH}_{\mathrm{I}} \\
& \mathrm{IIL}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& -150 \\
& -600
\end{aligned}
\] & \[
\begin{gathered}
-70 \\
-337
\end{gathered}
\] & \[
\begin{aligned}
& -20 \\
& -150
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Forward/Reverse, \(60^{\circ} / \overline{120^{\circ}}\) Select and Output Enable \\
(Pins 3, 18, 19) \\
High State Input Current (\(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}\)) \\
Low State Input Current (\(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\))
\end{tabular} & \[
\begin{aligned}
& \mathbb{I H}^{\prime} \\
& I_{\mathbb{L}}
\end{aligned}
\] & \[
\begin{gathered}
-75 \\
-300
\end{gathered}
\] & \[
\begin{gathered}
-36 \\
-175
\end{gathered}
\] & \[
\begin{aligned}
& -10 \\
& -75
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

CURRENT-LIMIT COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline Threshold Voltage & \(\mathrm{V}_{\text {th }}\) & 85 & 101 & 115 & mV \\
\hline Input Common Mode Voltage Range & \(\mathrm{V}_{\mathrm{ICR}}\) & - & 3.0 & - & V \\
\hline Input Bias Current & IIB & - & -0.9 & -5.0 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

OUTPUTS AND POWER SECTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Top Drive Output Sink Saturation (\({ }_{\text {S }}\) ink \(=25 \mathrm{~mA}\)) & \(V_{C E}\) (sat) & - & 0.5 & 1.5 & V \\
\hline Top Drive Output Off-State Leakage (\(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}\)) & \({ }^{\text {I DRV(leak }}\)) & - & 0.06 & 100 & \(\mu \mathrm{A}\) \\
\hline Top Drive Output Switching Time (\(C_{L}=47 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}\)) Rise Time Fall Time & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \\
& \mathrm{t}_{\mathrm{f}}
\end{aligned}
\] & - & \[
\begin{gathered}
107 \\
26
\end{gathered}
\] & \[
\begin{aligned}
& 300 \\
& 300
\end{aligned}
\] & ns \\
\hline \begin{tabular}{l}
Bottom Drive Output Voltage \\
High State \(\left(V_{C C}=30 \mathrm{~V}, I_{\text {source }}=50 \mathrm{~mA}\right)\) \\
Low State \(\left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}\right.\), \(\left.I_{\text {sink }}=50 \mathrm{~mA}\right)\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}} \\
& \hline
\end{aligned}
\] & \(\left(\mathrm{V}_{\mathrm{CC}}-2.0\right)\) & \[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{CC}}-1.1\right) \\
1.5 \\
\hline
\end{gathered}
\] & \[
\overline{2.0}
\] & V \\
\hline \begin{tabular}{l}
Bottom Drive Output Switching Time (\(C_{L}=1000 \mathrm{pF}\)) \\
Rise Time \\
Fall Time
\end{tabular} & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \\
& \mathrm{t}_{\mathrm{f}}
\end{aligned}
\] & - & \[
\begin{aligned}
& 38 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & ns \\
\hline Under Voltage Lockout Drive Output Enabled (VCC Increasing) Hysteresis & \(\mathrm{V}_{\text {th(on) }}\) \(\mathrm{V}_{\mathrm{H}}\) & \[
\begin{aligned}
& 8.2 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 8.9 \\
& 0.2 \\
& \hline
\end{aligned}
\] & 10
0.3 & v \\
\hline Power Supply Current & ICC & - & 15 & 22 & mA \\
\hline
\end{tabular}

Figure 1. Oscillator Frequency versus Timing Resistor

\(R_{\top}\), TIMING RESISTOR (\(k \Omega\))

Figure 3. Error Amp Open Loop Gain and Phase versus Frequency

f, FREQUENCY (Hz)

Figure 5. Error Amp Small-Signal Transient Response

\(1.0 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 2. Oscillator Frequency Change versus Temperature

Figure 4. Error Amp Output Saturation Voltage versus Load Current

Figure 6. Error Amp Large-Signal Transient Response

\(5.0 \mu \mathrm{~s} / \mathrm{DIV}\)

Figure 9. Reference Output Voltage versus Temperature

Figure 11. Bottom Drive Response Time versus Current Sense Input Voltage

Figure 8. Reference Output Voltage versus Supply Voltage

Figure 10. Output Duty Cycle versus PWM Input Voltage

Figure 12. Top Drive Output Saturation Voltage versus Sink Current

Figure 13. Top Drive Output Waveform

\(50 \mathrm{~ns} /\) DIV

Figure 15. Bottom Drive Output Waveform

\(50 \mathrm{~ns} /\) DIV

Figure 14. Bottom Drive Output Waveform

Figure 16. Bottom Drive Output Saturation Voltage versus Load Current

Figure 17. Supply Current versus Voltage

MC33033

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Symbol & Description \\
\hline 1, 2, 20 & \(\mathrm{B}_{\mathrm{T},} \mathrm{A}_{\mathrm{T},} \mathrm{C}_{\mathrm{T}}\) & These three open collector Top Drive Outputs are designed to drive the external upper power switch transistors. \\
\hline 3 & Fwd/Rev & The Forward/Reverse Input is used to change the direction of motor rotation. \\
\hline 4, 5, 6 & \(\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{B}}, \mathrm{S}_{\mathrm{C}}\) & These three Sensor Inputs control the commutation sequence. \\
\hline 7 & Reference Output & This output provides charging current for the oscillator timing capacitor \(\mathrm{C}_{\boldsymbol{T}}\) and a reference for the Error Amplifier. It may also serve to furnish sensor power. \\
\hline 8 & Oscillator & The Oscillator frequency is programmed by the values selected for the timing components, \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). \\
\hline 9 & Error Amp Noninverting Input & This input is normally connected to the speed set potentiometer. \\
\hline 10 & Error Amp Inverting Input & This input is normally connected to the Error Amp Output in open loop applications. \\
\hline 11 & Error Amp Out/PWM Input & This pin is available for compensation in closed loop applications. \\
\hline 12 & Current Sense Noninverting Input & A 100 mV signal, with respect to Pin 13, at this input terminates output switch conduction during a given oscillator cycle. This pin normally connects to the top side of the current sense resistor. \\
\hline 13 & Gnd & This pin supplies a separate ground return for the control circuit and should be referenced back to the power source ground. \\
\hline 14 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply of the control IC. The controller is functional over a \(\mathrm{V}_{\mathrm{CC}}\) range of 10 to 30 V . \\
\hline 15, 16, 17 & \(\mathrm{C}_{\mathrm{B}}, \mathrm{B}_{\mathrm{B}}, \mathrm{A}_{\mathrm{B}}\) & These three totem pole Bottom Drive Outputs are designed for direct drive of the external bottom power switch transistors. \\
\hline 18 & \(60^{\circ} \overline{120^{\circ}}\) Select & The electrical state of this pin configures the control circuit operation for either \(60^{\circ}\) (high state) or \(120^{\circ}\) (low state) sensor electrical phasing inputs. \\
\hline 19 & Output Enable & A logic high at this input causes the motor to run, while a low causes it to coast. \\
\hline
\end{tabular}

\section*{INTRODUCTION}

The MC33033 is one of a series of high performance monolithic dc brushless motor controllers produced by Motorola. It contains all of the functions required to implement a limited-feature, open loop, three or four phase motor control system. Constructed with Bipolar Analog technology, it offers a high degree of performance and ruggedness in hostile industrial environments. The MC33033 contains a rotor position decoder for proper commutation sequencing, a temperature compensated reference capable of supplying sensor power, a frequency programmable sawtooth oscillator, a fully accessible error amplifier, a pulse width modulator comparator, three open collector top drive outputs, and three high current totem pole bottom driver outputs ideally suited for driving power MOSFETs.

Included in the MC33033 are protective features consisting of undervoltage lockout, cycle-by-cycle current limiting with a latched shutdown mode, and internal thermal shutdown.

Typical motor control functions include open loop speed control, forward or reverse rotation, and run enable. In addition, the MC33033 has a \(60^{\circ} \overline{120^{\circ}}\) select pin which configures the rotor position decoder for either \(60^{\circ}\) or \(120^{\circ}\) sensor electrical phasing inputs.

\section*{FUNCTIONAL DESCRIPTION}

A representative internal block diagram is shown in Figure 18, with various applications shown in Figures 34, 36, 37, 41, 43, and 44. A discussion of the features and function of each of the internal blocks given below and referenced to Figures 18 and 36.

\section*{Rotor Position Decoder}

An internal rotor position decoder monitors the three sensor inputs (Pins 4,5,6) to provide the proper sequencing of the top and bottom drive outputs. The Sensor Inputs are designed to interface directly with open collector type Hall Effect switches or opto slotted couplers. Internal pull-up resistors are included to minimize the required number of external components. The inputs are TTL compatible, with their thresholds typically at 2.2 V . The MC33033 series is designed to control three phase motors and operate with four of the most common conventions of sensor phasing. A \(60^{\circ} / \overline{120^{\circ}}\) Select (Pin 18) is conveniently provided which affords the MC33033 to configure itself to control motors having either \(60^{\circ}, 120^{\circ}, 240^{\circ}\) or \(300^{\circ}\) electrical sensor phasing. With three Sensor Inputs there are eight possible input code combinations, six of which are valid rotor positions. The remaining two codes are invalid and are usually caused by an open or shorted sensor line. With six valid input codes, the decoder can resolve the motor rotor position to within a window of 60 electrical degrees.

The Forward/Reverse input (Pin 3) is used to change the direction of motor rotation by reversing the voltage across the stator winding. When the input changes state, from high to low with a given sensor input code (for example 100), the enabled top and bottom drive outputs with the same alpha designation are exchanged (\(A_{T}\) to \(A_{B}, B_{T}\) to \(B_{B}, C_{T}\) to \(C_{B}\)). In
effect the commutation sequence is reversed and the motor changes directional rotation.

Motor on/off control is accomplished by the Output Enable (Pin19). When left disconnected, an internal pull-up resistor to a positive source enables sequencing of the top and bottom drive outputs. When grounded, the Top Drive Outputs turn off and the bottom drives are forced low, causing the motor to coast.

The commutation logic truth table is shown in Figure 19. In half wave motor drive applications, the Top Drive Outputs are not required and are typically left disconnected.

\section*{Error Amplifier}

A high performance, fully compensated Error Amplifier with access to both inputs and output (Pins 9, 10, 11) is provided to facilitate the implementation of closed loop motor speed control. The amplifier features a typical dc voltage gain of \(80 \mathrm{~dB}, 0.6 \mathrm{MHz}\) gain bandwidth, and a wide input common mode voltage range that extends from ground to \(\mathrm{V}_{\text {ref. }}\). In most open loop speed control applications, the amplifier is configured as a unity gain voltage follower with the Noninverting Input connected to the speed set voltage source. Additional configurations are shown in Figures 29 through 33.

\section*{Oscillator}

The frequency of the internal ramp oscillator is programmed by the values selected for timing components \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). Capacitor \(\mathrm{C}_{\mathrm{T}}\) is charged from the Reference Output (Pin 7) through resistor RT and discharged by an internal discharge transistor. The ramp peak and valley voltages are typically 4.1 V and 1.5 V respectively. To provide a good compromise between audible noise and output switching efficiency, an oscillator frequency in the range of 20 to 30 kHz is recommended. Refer to Figure 1 for component selection.

\section*{Pulse Width Modulator}

The use of pulse width modulation provides an energy efficient method of controlling the motor speed by varying the average voltage applied to each stator winding during the commutation sequence. As \(\mathrm{C}_{\boldsymbol{T}}\) discharges, the oscillator sets both latches, allowing conduction of the Top and Bottom Drive Outputs. The PWM comparator resets the upper latch, terminating the Bottom Drive Output conduction when the positive-going ramp of \(\mathrm{C}_{\mathrm{T}}\) becomes greater than the Error Amplifier output. The pulse width modulator timing diagram is shown in Figure 20. Pulse width modulation for speed control appears only at the Bottom Drive Outputs.

\section*{Current Limit}

Continuous operation of a motor that is severely over-loaded results in overheating and eventual failure. This destructive condition can best be prevented with the use of cycle-by-cycle current limiting. That is, each on-cycle is treated as a separate event. Cycle-by-cycle current limiting is accomplished by monitoring the stator current build-up each time an output switch conducts, and upon sensing an over current condition, immediately turning off the switch and holding it off for the remaining duration of

\section*{MC33033}

Figure 18. Representative Block Diagram

Figure 19. Three Phase, Six Step Commutation Truth Table (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Inputs (Note 2)} & \multicolumn{6}{|c|}{Outputs (Note 3)} & \\
\hline \multicolumn{6}{|r|}{Sensor Electrical Phasing (Note 4)} & \multirow[b]{2}{*}{F/R} & \multirow[b]{2}{*}{Enable} & \multirow[b]{2}{*}{\begin{tabular}{l}
Current \\
Sense
\end{tabular}} & \multicolumn{3}{|c|}{Top Drives} & \multicolumn{3}{|l|}{Bottom Drives} & \\
\hline \(\mathbf{S A}_{\text {A }}\) & \[
\begin{aligned}
& \mathbf{6 0}^{\circ} \\
& \mathrm{S}_{\mathrm{B}}
\end{aligned}
\] & \(\mathrm{S}_{\mathrm{C}}\) & \(\mathrm{S}_{\mathbf{A}}\) & \[
\begin{gathered}
120^{\circ} \\
\mathrm{S}_{B}
\end{gathered}
\] & \(\mathrm{Sc}_{\mathrm{c}}\) & & & & AT & BT & \(\mathrm{C}_{\mathrm{T}}\) & \(A_{B}\) & \(B_{B}\) & \(\mathrm{C}_{\mathrm{B}}\) & \\
\hline 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & (Note 5) \\
\hline 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & F/R \(=1\) \\
\hline 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & \\
\hline 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & \\
\hline 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & \\
\hline 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & (Note 5) \\
\hline 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & \(\mathrm{F} / \mathrm{R}=0\) \\
\hline 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & \\
\hline 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & \\
\hline 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & \\
\hline 1 & 0 & 1 & 1 & 1 & 1 & X & X & X & , & , & 1 & 0 & 0 & 0 & (Note 6) \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & X & X & X & 1 & 1 & 1 & 0 & 0 & 0 & \\
\hline V & V & V & V & V & V & X & 0 & X & 1 & 1 & 1 & 0 & 0 & 0 & (Note 7) \\
\hline V & V & V & V & V & V & X & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & (Note 8) \\
\hline
\end{tabular}

NOTES: 1. \(V=\) Any one of six valid sensor or drive combinations.
\(X=\) Don't care.
2. The digital inputs (Pins \(3,4,5,6,18,19\)) are all TTL compatible. The current sense input (Pin 12) has a 100 mV threshold with respect to Pin 13. A logic 0 for this input is defined as \(<85 \mathrm{mV}\), and a logic 1 is \(>115 \mathrm{mV}\).
3. The top drive outputs are open collector design and active in the low (0) state.
4. With \(60^{\circ} / 120^{\circ}\) (Pin 18) in the high (1) state, configuration is for \(60^{\circ}\) sensor electrical phasing inputs. With Pin 18 in the low (0) state, configuration is for \(120^{\circ}\) sensor electrical phasing inputs.
5. Valid \(60^{\circ}\) or \(120^{\circ}\) sensor combinations for corresponding valid top and bottom drive outputs.
6. Invalid sensor inputs; All top and bottom drives are off.
7. Valid sensor inputs with enable \(=0\); All top and bottom drives are off.
8. Valid sensor inputs with enable and current sense \(=1\); All top and bottom drives are off.
oscillator ramp-up period. The stator current is converted to a voltage by inserting a ground-referenced sense resistor \(R_{S}\) (Figure 34) in series with the three bottom switch transistors (\(\mathrm{Q}_{4}, \mathrm{Q}_{5}, \mathrm{Q}_{6}\)). The voltage developed across the sense resistor is monitored by the current sense input (Pin 12), and compared to the internal 100 mV reference. If the current sense threshold is exceeded, the comparator resets the lower latch and terminates output switch conduction. The value for the sense resistor is:
\[
\mathrm{R}_{\mathrm{S}}=\frac{0.1}{I_{\text {stator(max) }}}
\]

The dual-latch PWM configuration ensures that only one single output conduction pulse occurs during any given oscillator cycle, whether terminated by the output of the Error Amplifier or the current limit comparator.

\section*{Reference}

The on-chip 6.25 V regulator (Pin 7) provides charging current for the oscillator timing capacitor, a reference for the Error Amplifier, and can supply 20 mA of current suitable for directly powering sensors in low voltage applications. In higher voltage applications it may become necessary to transfer the power dissipated by the regulator off the IC. This is easily accomplished with the addition of an external pass
transistor as shown in Figure 21. A 6.25 V reference level was chosen to allow implementation of the simpler NPN circuit, where \(V_{\text {ref }}-V_{B E}\) exceeds the minimum voltage required by Hall Effect sensors over temperature. With proper transistor selection, and adequate heatsinking, up to one amp of load current can be obtained.

\section*{Undervoltage Lockout}

A dual Undervoltage Lockout has been incorporated to prevent damage to the IC and the external power switch transistors. Under low power supply conditions, it guarantees that the IC and sensors are fully functional, and that there is sufficient Bottom Drive Output voltage. The positive power supply to the IC (\(\mathrm{V}_{\mathrm{CC}}\)) is monitored to a threshold of 8.9 V . This level ensures sufficient gate drive necessary to attain low RDS(on) when interfacing with standard power MOSFET devices. When directly powering the Hall sensors from the reference, improper sensor operation can result if the reference output voltage should fall below 4.5 V . If one or both of the comparators detects an undervoltage condition, the top drives are turned off and the Bottom Drive Outputs are held in a low state. Each of the comparators contain hysteresis to prevent oscillations when crossing their respective thresholds.

Figure 20. PWM Timing Diagram

4

Transistor \(Q_{1}\) is a common base stage used to level shift from \(\mathrm{V}_{C C}\) to the high motorvoltage, \(\mathrm{V}_{\mathrm{M}}\). The collector diode is required if \(\mathrm{V}_{\mathrm{CC}}\) is present while \(\mathrm{V}_{\mathrm{M}}\) is low.

Figure 22. High Voltage Interface with

Figure 21. Reference Output Buffers

The NPN circuit is recommended for powering Hall or opto sensors, where the output voltage temperature coefficient is not critical. The PNP circuit is slightly more complex, but also more accurate. Neither circuit has current limiting.

Figure 23. High Voltage Interface with N -Channel Power MOSFETs

Figure 24. Current Waveform Spike Suppression

The addition of the RC filter will eliminate current-limit instability caused by the leading edge spike on the current waveform. Resistor R R should \(^{\text {s }}\) be a low inductance type.

Figure 25. MOSFET Drive Precautions

Series gate resistor \(\mathrm{R}_{\mathrm{g}}\) will damp any high frequency oscillations caused by the MOSFET input capacitance and any series wiring induction in the gate-source circuit. Diode \(D\) is required if the negative current into the Bottom Drive Outputs exceeds 50 mA .

Figure 27. Current Sensing Power MOSFETs

Virtually lossless current sensing can be achieved with the implementation of SENSEFET power switches.

Figure 29. Differential Input Speed Controller

Figure 30. Controlled Acceleration/Deceleration

Resistor \(\mathrm{R}_{1}\) with capacitor C sets the acceleration time constant while \(\mathrm{R}_{2}\) controls the deceleration. The values of \(R_{1}\) and \(R_{2}\) should be at least tentimes greater than the speed set potentiometer to minimize time constant variations with different speed settings.

Figure 32. Closed Loop Speed Control

The rotor position sensors can be used as a tachometer. By differentiating the positive-going edges and then integrating them over time, a voltage proportional to speed can be generated. The error amp compares this voltage to that of the speed set to control the PWM.

\section*{Drive Outputs}

The three Top Drive Outputs (Pins 1, 2, 20) are open collector NPN transistors capable of sinking 50 mA with a minimum breakdown of 30 V . Interfacing into higher voltage applications is easily accomplished with the circuits shown in Figures 22 and 23.

The three totem pole Bottom Drive Outputs (Pins 15, 16, 17) are particularly suited for direct drive of N -Channel MOSFETs or NPN bipolar transistors (Figures 24, 25, 26, and 27). Each output is capable of sourcing and sinking up to 100 mA .

\section*{Thermal Shutdown}

Internal thermal shutdown circuity is provided to protect the IC in the event the maximum junction temperature is exceeded. When activated, typically at \(170^{\circ} \mathrm{C}\), the IC acts as though the regulator was disabled, in turn shutting down the IC.

\section*{SYSTEM APPLICATIONS}

\section*{Three Phase Motor Commutation}

The three phase application shown in Figure 34 is an open loop motor controller with full wave, six step drive. The upper

Figure 31. Digital Speed Controller

The SN74LS145 is an open collector BCD to One of Ten decoder. When connected as shown, input codes 0000 through 1001 steps the PWM in increments of approximately \(10 \%\) from 0 to \(90 \%\) on-time. Input codes 1010 through 1111 will produce \(100 \%\) on-time or full motor speed.

Figure 33. Closed Loop Temperature Control

This circuit can control the speed of a cooling fan proportional to the difference between the sensor and set temperatures. The control loop is closed as the forced air cools the NTC thermistor. For controlled heating applications, exchange the positions of \(R_{1}\) and \(R_{2}\).
power switch transistors are Darlington PNPs while the lower switches are N -Channel power MOSFETs. Each of these devices contains an internal parasitic catch diode that is used to return the stator inductive energy back to the power supply. The outputs are capable of driving a delta or wye connected stator, and a grounded neutral wye if split supplies are used. At any given rotor position, only one top and one bottom power switch (of different totem poles) is enabled. This configuration switches both ends of the stator winding from supply to ground which causes the current flow to be bidirectional or full wave. A leading edge spike is usually present on the current waveform and can cause a current-limit error. The spike can be eliminated by adding an RC filter in series with the Current Sense Input. Using a low inductance type resistor for RS will also aid in spike reduction. Figure 35 shows the commutation waveforms over two electrical cycles. The first cycle (\(0^{\circ}\) to \(360^{\circ}\)) depicts motor operation at full speed while the second cycle (\(360^{\circ}\) to \(720^{\circ}\)) shows a reduced speed with about \(50 \%\) pulse width modulation. The current waveforms reflect a constant torque load and are shown synchronous to the commutation frequency for clarity.

Figure 34. Three Phase, Six Step, Full Wave Motor Controller

MC33033

Figure 35. Three Phase, Six Step, Full Wave Commutation Waveforms

Figure 36 shows a three phase, three step, half wave motor controller. This configuration is ideally suited for automobile and other low voltage applications since there is only one power switch voltage drop in series with a given stator
winding. Current flow is unidirectional or half wave because only one end of each winding is switched. The stator flyback voltage is clamped by a single zener and three diodes.

Figure 36. Three Phase, Three Step, Half Wave Motor Controller

\section*{Three Phase Closed Loop Controller}

The MC33033, by itself, is capable of open loop motor speed control. For closed loop speed control, the МСЗ3033 requires an input voltage proportional to the motor speed. Traditionally this has been accomplished by means of a tachometer to generate the motor speed feedback voltage. Figure 37 shows an application whereby an MC33039, powered from the 6.25 V reference (Pin 7) of the MC33033, is used to generate the required feedback voltage without the need of a costly tachometer. The same Hall sensor signals used by the MC33033 for rotor position decoding are utilized by the MC33039. Every positive or negative going transition of the Hall sensor signals on any of the sensor lines causes the MC33039 to produce an output pulse of defined amplitude and time duration, as determined by the external resistor \(\mathrm{R}_{1}\) and capacitor \(\mathrm{C}_{1}\). The resulting output
train of pulses present at Pin 5 of the MC33039 are integrated by the Error Amplifier of the МСЗ3033 configured as an integrator, to produce a dc voltage level which is proportional to the motor speed. This speed proportional voltage establishes the PWM reference level at Pin 11 of the MC33033 motor controller and completes or closes the feedback loop. The MC33033 ouputs drive a TMOS power MOSFET 3-phase bridge. High current can be expected during conditions of start-up and when changing direction of the motor.

The system shown in Figure 37 is designed for a motor having 120/240 degrees Hall sensor electrical phasing. The system can easily be modified to accommodate \(60 / 300\) degree Hall sensor electrical phasing by removing the jumper (\(\mathrm{J}_{1}\)) at Pin 18 of the MC33033.

Figure 37. Closed Loop Brushless DC Motor Control With the MC33033 Using the MC33039

\section*{Sensor Phasing Comparison}

There are four conventions used to establish the relative phasing of the sensor signals in three phase motors. With six step drive, an input signal change must occur every 60 electrical degrees, however, the relative signal phasing is dependent upon the mechanical sensor placement. A comparison of the conventions in electrical degrees is shown in Figure 38. From the sensor phasing table (Figure 39), note that the order of input codes for \(60^{\circ}\) phasing is the reverse of \(300^{\circ}\). This means the MC33033, when the \(60^{\circ} \% \overline{120^{\circ}}\) select (Pin 18) and the FWD/REV (Pin 3) both in the high state (open), is configured to operate a \(60^{\circ}\) sensor phasing motor in the forward direction. Under the same conditions a \(300^{\circ}\) sensor phasing motor would operate equally well but in the reverse direction. One would simply have to reverse the FWD/REV switch (FWD/REV closed) in order to cause the \(300^{\circ}\) motor to also operate in the same direction. The same difference exists between the \(120^{\circ}\) and \(240^{\circ}\) conventions.

Figure 38. Sensor Phasing Comparison

Figure 39. Sensor Phasing Table

In this data sheet, the rotor position has always been given in electrical degrees since the mechanical position is a function of the number of rotating magnetic poles. The relationship between the electrical and mechanical position is:
Electrical Degrees \(=\) Mechanical Degrees \(\left(\frac{\# \text { Rotor Poles }}{2}\right)\)
An increase in the number of magnetic poles causes more electrical revolutions for a given mechanical revolution. General purpose three phase motors typically contain a four pole rotor which yields two electrical revolutions for one mechanical.

\section*{Two and Four Phase Motor Commutation}

The MC33033 configured for \(60^{\circ}\) sensor inputs is capable of providing a four step output that can be used to drive two or four phase motors. The truth table in Figure 40 shows that by connecting sensor inputs \(\mathrm{S}_{\mathrm{B}}\) and \(\mathrm{S}_{\mathrm{C}}\) together, it is possible to truncate the number of drive output states from six to four. The output power switches are connected to \(\mathrm{B}_{\mathrm{T}}, \mathrm{C}_{\mathrm{T}}, \mathrm{B}_{\mathrm{B}}\), and \(\mathrm{C}_{\mathrm{B}}\). Figure 41 shows a four phase, four step, full wave motor control application. Power switch transistors \(Q_{1}\) through \(Q_{8}\) are Darlington type, each with an internal parasitic catch diode. With four step drive, only two rotor position sensors spaced at 90 electrical degrees are required. The commutation waveforms are shown in Figure 42.

Figure 43 shows a four phase, four step, half wave motor controller. It has the same features as the circuit in Figure 36, except for the deletion of speed adjust.

Figure 40. Two and Four Phase, Four Step, Commutation Truth Table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{MC33033 (\(60^{\circ} / \overline{120^{\circ}}\) Select Pin Open)} \\
\hline \multicolumn{3}{|c|}{Inputs} & \multicolumn{4}{|c|}{Outputs} \\
\hline \multicolumn{2}{|l|}{Sensor Electrical Spacing* \(=90^{\circ}\)} & \multirow[b]{2}{*}{F/R} & \multicolumn{2}{|l|}{Top Drives} & \multicolumn{2}{|l|}{Bottom Drives} \\
\hline \(\mathrm{S}_{\mathrm{A}}\) & \(\mathrm{S}_{\mathrm{B}}\) & & \(B_{\text {T }}\) & \(\mathrm{C}_{\mathrm{T}}\) & \(\mathrm{B}_{\mathrm{B}}\) & \(C_{B}\) \\
\hline 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
\hline 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
\hline 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 1 & 1 & & 0 \\
\hline 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}
\({ }^{*}\) With MC33033 sensor input \(\mathrm{S}_{\mathrm{B}}\) connected to \(\mathrm{S}_{\mathrm{C}}\)
(10

Figure 41. Four Phase, Four Step, Full Wave Controller

Figure 42. Four Phase, Four Step, Full Wave Commutation Waveforms

Figure 43. Four Phase, Four Step, Half Wave Motor Controller

\section*{Brush Motor Control}

Though the MC33033 was designed to control brushless dc motors, it may also be used to control dc brush-type motors. Figure 44 shows an application of the MC33033 driving a H -bridge affording minimal parts count to operate a brush-type motor. Key to the operation is the input sensor code [100] which produces a top-left (\(Q_{1}\)) and a bottom-right \(\left(Q_{3}\right)\) drive when the controller's Forward/Reverse pin is at logic [1]; top-right \(\left(\mathrm{Q}_{4}\right)\), bottom-left \(\left(\mathrm{Q}_{2}\right)\) drive is realized when the Forward/Reverse pin is at logic [0]. This code supports the requirements necessary for H -bridge drive accomplishing both direction and speed control.

The controller functions in a normal manner with a pulse width modulated frequency of approximately 25 kHz . Motor speed is controlled by adjusting the voltage presented to the noninverting input of the Error Amplifier establishing the PWM's slice or reference level. Cycle-by-cycle current limiting of the motor current is accomplished by sensing the voltage (100 mV threshold) across the RS resistor to ground of the H -bridge motor current. The over current sense circuit makes it possible to reverse the direction of the motor, on the
fly, using the normal Forward/Reverse switch, and not have to completely stop before reversing.

\section*{LAYOUT CONSIDERATIONS}

Do not attempt to construct any of the motor control circuits on wire-wrap or plug-in prototype boards. High frequency printed circuit layout techniques are imperative to prevent pulse jitter. This is usually caused by excessive noise pick-up imposed on the current sense or error amp inputs. The printed circuit layout should contain a ground plane with low current signal and high drive and output buffer grounds returning on separate paths back to the power supply input filter capacitor \(\mathrm{V}_{\mathrm{M}}\). Ceramic bypass capacitors (\(0.01 \mu \mathrm{~F}\)) connected close to the integrated circuit at \(\mathrm{V}_{\mathrm{CC}}\), \(\mathrm{V}_{\text {ref }}\) and error ampliflier noninverting input may be required depending upon circuit layout. This provides a low impedance path for filtering any high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI.

Figure 44. H-Bridge Brush-Type Controller

\section*{Brushless DC Motor Controller}

The MC33035 is a high performance second generation monolithic brushless DC motor controller containing all of the active functions required to implement a full featured open loop, three or four phase motor control system. This device consists of a rotor position decoder for proper commutation sequencing, temperature compensated reference capable of supplying sensor power, frequency programmable sawtooth oscillator, three open collector top drivers, and three high current totem pole bottom drivers ideally suited for driving power MOSFETs.

Also included are protective features consisting of undervoltage lockout, cycle-by-cycle current limiting with a selectable time delayed latched shutdown mode, internal thermal shutdown, and a unique fault output that can be interfaced into microprocessor controlled systems.

Typical motor control functions include open loop speed, forward or reverse direction, run enable, and dynamic braking. The MC33035 is designed to operate with electrical sensor phasings of \(60^{\circ} / 300^{\circ}\) or \(120^{\circ} / 240^{\circ}\), and can also efficiently control brush DC motors.
- 10 to 30 V Operation
- Undervoltage Lockout
- 6.25 V Reference Capable of Supplying Sensor Power
- Fully Accessible Error Amplifier for Closed Loop Servo Applications
- High Current Drivers Can Control External 3-Phase MOSFET Bridge
- Cycle-By-Cycle Current Limiting
- Pinned-Out Current Sense Reference
- Internal Thermal Shutdown
- Selectable \(60^{\circ} / 300^{\circ}\) or \(120^{\circ} / 240^{\circ}\) Sensor Phasings
- Can Efficiently Control Brush DC Motors with External MOSFET H -Bridge

ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Device
\end{tabular}} & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33035DW & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-24L \\
\hline MC33035P & & Plastic DIP \\
\hline
\end{tabular}

\section*{BRUSHLESS DC MOTOR CONTROLLER}

SEMICONDUCTOR TECHNICAL DATA

P SUFFIX
PLASTIC PACKAGE CASE 724

DW SUFFIX

\section*{PLASTIC PACKAGE}

CASE 751E
(SO-24L)

PIN CONNECTIONS

(Top View)

Representative Schematic Diagram

This device contains 285 active transistors.

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & V \\
\hline Digital Inputs (Pins 3, 4, 5, 6, 22, 23) & - & \(\mathrm{V}_{\text {ref }}\) & V \\
\hline Oscillator Input Current (Source or Sink) & losc & 30 & mA \\
\hline Error Amp Input Voltage Range (Pins 11, 12, Note 1) & VIR & -0.3 to \(\mathrm{V}_{\text {ref }}\) & V \\
\hline Error Amp Output Current (Source or Sink, Note 2) & lout & 10 & mA \\
\hline Current Sense Input Voltage Range (Pins 9, 15) & \(\mathrm{V}_{\text {Sense }}\) & -0.3 to 5.0 & V \\
\hline Fault Output Voltage & \(\mathrm{V}_{\text {CE }}(\overline{\text { Fault }}\)) & 20 & V \\
\hline Fault Output Sink Current & ISink(Fault) & 20 & mA \\
\hline Top Drive Voltage (Pins 1, 2, 24) & \(\mathrm{V}_{\text {CE }}\) (top) & 40 & V \\
\hline Top Drive Sink Current (Pins 1, 2, 24) & ISink(top) & 50 & mA \\
\hline Bottom Drive Supply Voltage (Pin 18) & \(\mathrm{V}_{\mathrm{C}}\) & 30 & V \\
\hline Bottom Drive Output Current (Source or Sink, Pins 19, 20, 21) & IDRV & 100 & mA \\
\hline Power Dissipation and Thermal Characteristics P Suffix, Dual In Line, Case 724 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air DW Suffix, Surface Mount, Case 751E Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\) Thermal Resistance, Junction-to-Air & \begin{tabular}{l}
PD \\
\(R_{\theta J A}\) \\
\(P_{D}\) \\
\(R_{\theta J A}\)
\end{tabular} & \[
\begin{gathered}
867 \\
75 \\
\\
650 \\
100 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{C}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=4.7 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=10 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline \[
\begin{aligned}
& \text { Reference Output Voltage (} \left.I_{\text {ref }}=1.0 \mathrm{~mA}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & \(V_{\text {ref }}\) & \[
\begin{gathered}
5.9 \\
5.82
\end{gathered}
\] & \[
6.24
\] & \[
\begin{gathered}
6.5 \\
6.57
\end{gathered}
\] & V \\
\hline Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=10\) to \(30 \mathrm{~V}, \mathrm{I}_{\text {ref }}=1.0 \mathrm{~mA}\)) & Regline & - & 1.5 & 30 & mV \\
\hline Load Regulation (\(\mathrm{I}_{\text {ref }}=1.0\) to 20 mA) & Regload & - & 16 & 30 & mV \\
\hline Output Short Circuit Current (Note 3) & ISC & 40 & 75 & - & mA \\
\hline Reference Under Voltage Lockout Threshold & \(\mathrm{V}_{\text {th }}\) & 4.0 & 4.5 & 5.0 & V \\
\hline
\end{tabular}

ERROR AMPLIFIER
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Offset Voltage \(\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\mathrm{IO}}\) & - & 0.4 & 10 & mV \\
\hline Input Offset Current \(\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) & \(\mathrm{I}_{\mathrm{IO}}\) & - & 8.0 & 500 & nA \\
\hline Input Bias Current \(\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) & \(\mathrm{I}_{\mathrm{IB}}\) & - & -46 & -1000 & nA \\
\hline Input Common Mode Voltage Range & \(\mathrm{V}_{\mathrm{ICR}}\) & \multicolumn{6}{|c|}{\(\left(0 \mathrm{~V}\right.\) to \(\left.\mathrm{V}_{\text {ref }}\right)\)} & V \\
\hline Open Loop Voltage Gain \(\left(\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\right)\) & AVOL & 70 & 80 & - & dB \\
\hline Input Common Mode Rejection Ratio & CMRR & 55 & 86 & - & dB \\
\hline Power Supply Rejection Ratio \(\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{C}}=10\right.\) to 30 V\()\) & PSRR & 65 & 105 & - & dB \\
\hline
\end{tabular}

NOTES: 1. The input common mode voltage or input signal voltage should not be allowed to go negative by more than 0.3 V .
2. The compliance voltage must not exceed the range of -0.3 to \(\mathrm{V}_{\text {ref }}\).
3. Maximum package power dissipation limits must be observed.

ELECTRICAL CHARACTERISTICS (continued) \(\left(\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{C}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=4.7 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=10 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ERROR AMPLIFIER} \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing } \\
& \text { High State }\left(R_{L}=15 \mathrm{k} \text { to } \mathrm{Gnd}\right) \\
& \text { Low State }\left(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \text { to } \mathrm{V}_{\text {ref }}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{VOH}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}}
\end{aligned}
\] & 4.6 & \[
\begin{aligned}
& 5.3 \\
& 0.5 \\
& \hline
\end{aligned}
\] & \[
\overline{-}
\] & V \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Oscillator Frequency & fOSC & 22 & 25 & 28 & kHz \\
\hline Frequency Change with Voltage (VCC \(=10\) to 30 V\()\) & \(\Delta \mathrm{OSC} / \Delta \mathrm{V}\) & - & 0.01 & 5.0 & \(\%\) \\
\hline Sawtooth Peak Voltage & \(\mathrm{VOSC}_{\mathrm{OS}}(\mathrm{P})\) & - & 4.1 & 4.5 & V \\
\hline Sawtooth Valley Voltage & \(\left.\mathrm{VOSC}_{\mathrm{OS}}\right)\) & 1.2 & 1.5 & - & V \\
\hline
\end{tabular}

LOGIC INPUTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Threshold Voltage (Pins 3, 4, 5, 6, 7, 22, 23) High State Low State & \[
\begin{aligned}
& V_{\text {IH }} \\
& V_{\mathrm{IL}}
\end{aligned}
\] & 3.0 & \[
\begin{aligned}
& 2.2 \\
& 1.7
\end{aligned}
\] & \[
\overline{0.8}
\] & V \\
\hline ```
Sensor Inputs (Pins 4, 5, 6)
 High State Input Current \(\left(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}\right)\)
 Low State Input Current (VIL \(=0 \mathrm{~V}\))
``` & \[
\begin{aligned}
& I_{I H} \\
& I_{I L}
\end{aligned}
\] & \[
\begin{aligned}
& -150 \\
& -600
\end{aligned}
\] & \[
\begin{gathered}
-70 \\
-337
\end{gathered}
\] & \[
\begin{aligned}
& -20 \\
& -150
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Forward/Reverse, } 60^{\circ} / \overline{120^{\circ}} \text { Select (Pins 3, 22, 23) } \\
& \text { High State Input Current }\left(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}\right) \\
& \text { Low State Input Current }\left(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\right) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IIH}_{1} \\
& \mathrm{IIL}_{2}
\end{aligned}
\] & \[
\begin{gathered}
-75 \\
-300
\end{gathered}
\] & \[
\begin{gathered}
-36 \\
-175
\end{gathered}
\] & \[
\begin{aligned}
& -10 \\
& -75
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Enable \\
High State Input Current \(\left(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}\right)\) Low State Input Current ( \(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\) )
\end{tabular} & \[
\begin{aligned}
& I_{H} \\
& I_{L}
\end{aligned}
\] & \[
\begin{aligned}
& -60 \\
& -60
\end{aligned}
\] & \[
\begin{aligned}
& -29 \\
& -29
\end{aligned}
\] & \[
\begin{aligned}
& -10 \\
& -10
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

CURRENT-LIMIT COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline Threshold Voltage & \(\mathrm{V}_{\mathrm{th}}\) & 85 & 101 & 115 & mV \\
\hline Input Common Mode Voltage Range & \(\mathrm{V}_{\mathrm{ICR}}\) & - & 3.0 & - & V \\
\hline Input Bias Current & IIB & - & -0.9 & -5.0 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

OUTPUTS AND POWER SECTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Top Drive Output Sink Saturation ( \(I_{\text {sink }}=25 \mathrm{~mA}\) ) & \(\mathrm{V}_{\text {CE }}\) (sat) & - & 0.5 & 1.5 & V \\
\hline Top Drive Output Off-State Leakage ( \(\mathrm{V}_{\text {CE }}=30 \mathrm{~V}\) ) & IDRV(leak) & - & 0.06 & 100 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Top Drive Output Switching Time ( \(C_{L}=47 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}\) ) \\
Rise Time \\
Fall Time
\end{tabular} & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \\
& \mathrm{t}_{\mathrm{f}}
\end{aligned}
\] & & \[
\begin{gathered}
107 \\
26
\end{gathered}
\] & \[
\begin{aligned}
& 300 \\
& 300
\end{aligned}
\] & ns \\
\hline \[
\begin{aligned}
& \text { Bottom Drive Output Voltage } \\
& \text { High State }\left(\mathrm{VCC}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=30 \mathrm{~V}, I_{\text {source }}=50 \mathrm{~mA}\right) \\
& \text { Low State }\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=30 \mathrm{~V}, I_{\text {sink }}=50 \mathrm{~mA}\right)
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(V_{\mathrm{OL}}\)
\end{tabular} & \(\left(\mathrm{V}_{C C}{ }_{-}^{-2.0}\right)\) & \[
\begin{gathered}
\left(V_{C C}-1.1\right) \\
1.5
\end{gathered}
\] & \[
\overline{2.0}
\] & V \\
\hline \begin{tabular}{l}
Bottom Drive Output Switching Time ( \(C_{L}=1000 \mathrm{pF}\) ) \\
Rise Time \\
Fall Time
\end{tabular} & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \\
& \mathrm{t}_{\mathrm{f}}
\end{aligned}
\] & & \[
\begin{aligned}
& 38 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200 \\
& \hline
\end{aligned}
\] & ns \\
\hline Fault Output Sink Saturation ( \(1_{\text {sink }}=16 \mathrm{~mA}\) ) & \(\mathrm{V}_{\text {CE }}\) (sat) & - & 225 & 500 & mV \\
\hline Fault Output Off-State Leakage ( \(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}\) ) & IFLT(leak) & - & 1.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Under Voltage Lockout Drive Output Enabled ( \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{C}}\) Increasing) Hysteresis & \[
\begin{gathered}
V_{\mathrm{th}(\mathrm{on})} \\
\mathrm{V}_{\mathrm{H}} \\
\hline
\end{gathered}
\] & & & & V \\
\hline Power Supply Current
\[
\begin{aligned}
& \text { Pin } 17\left(V_{C C}=V_{C}=20 \mathrm{~V}\right) \\
& \text { Pin } 17\left(V_{C C}=20 \mathrm{~V}, V_{C}=30 \mathrm{~V}\right) \\
& \text { Pin } 18\left(V_{C C}=V_{C}=20 \mathrm{~V}\right) \\
& \text { Pin } 18\left(V_{C C}=20 \mathrm{~V}, V_{C}=30 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \text { ICC } \\
& \text { Ic }
\end{aligned}
\] & -
- & \[
\begin{aligned}
& 12 \\
& 14 \\
& 3.5 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 20 \\
& 6.0 \\
& 10
\end{aligned}
\] & mA \\
\hline
\end{tabular}

Figure 1. Oscillator Frequency versus Timing Resistor

\(\mathrm{R}_{\mathrm{T}}\), TIMING RESISTOR (k \(\Omega\) )

Figure 3. Error Amp Open Loop Gain and Phase versus Frequency


Figure 5. Error Amp Small-Signal Transient Response


Figure 2. Oscillator Frequency Change versus Temperature


Figure 4. Error Amp Output Saturation Voltage versus Load Current


Figure 6. Error Amp Large-Signal Transient Response




Figure 11. Bottom Drive Response Time versus Current Sense Input Voltage


Figure 8. Reference Output Voltage versus Supply Voltage


Figure 10. Output Duty Cycle versus PWM Input Voltage


Figure 12. Fault Output Saturation versus Sink Current


Figure 13. Top Drive Output Saturation
Voltage versus Sink Current


Figure 15. Bottom Drive Output Waveform

\(50 \mathrm{~ns} / \mathrm{DIV}\)

Figure 17. Bottom Drive Output Saturation Voltage versus Load Current


Figure 14. Top Drive Output Waveform

\(100 \mathrm{~ns} /\) DIV

Figure 16. Bottom Drive Output Waveform

\(50 \mathrm{~ns} /\) DIV

Figure 18. Power and Bottom Drive Supply Current versus Supply Voltage


PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin & Symbol & Description \\
\hline 1, 2, 24 & \(\mathrm{B}_{\mathrm{T}, ~ A T, ~} \mathrm{C}_{\mathrm{T}}\) & These three open collector Top Drive outputs are designed to drive the external upper power switch transistors. \\
\hline 3 & Fwd/Rev & The Forward/Reverse Input is used to change the direction of motor rotation. \\
\hline 4, 5, 6 & \(\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{B}}, \mathrm{S}_{\mathrm{C}}\) & These three Sensor Inputs control the commutation sequence. \\
\hline 7 & Output Enable & A logic high at this input causes the motor to run, while a low causes it to coast. \\
\hline 8 & Reference Output & This output provides charging current for the oscillator timing capacitor \(\mathrm{C}_{\mathrm{T}}\) and a reference for the error amplifier. It may also serve to furnish sensor power. \\
\hline 9 & Current Sense Noninverting Input & A 100 mV signal, with respect to Pin 15, at this input terminates output switch conduction during a given oscillator cycle. This pin normally connects to the top side of the current sense resistor. \\
\hline 10 & Oscillator & The Oscillator frequency is programmed by the values selected for the timing components, \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). \\
\hline 11 & Error Amp Noninverting Input & This input is normally connected to the speed set potentiometer. \\
\hline 12 & Error Amp Inverting Input & This input is normally connected to the Error Amp Output in open loop applications. \\
\hline 13 & Error Amp Out/PWM Input & This pin is available for compensation in closed loop applications. \\
\hline 14 & \(\overline{\text { Fault }}\) Output & This open collector output is active low during one or more of the following conditions: Invalid Sensor Input code, Enable Input at logic 0, Current Sense Input greater than 100 mV (Pin 9 with respect to Pin 15), Undervoltage Lockout activation, and Thermal Shutdown. \\
\hline 15 & Current Sense Inverting Input & Reference pin for internal 100 mV threshold. This pin is normally connected to the bottom side of the current sense resistor. \\
\hline 16 & Gnd & This pin supplies a ground for the control circuit and should be referenced back to the power source ground. \\
\hline 17 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply of the control IC. The controller is functional over a minimum \(\mathrm{V}_{\mathrm{CC}}\) range of 10 to 30 V . \\
\hline 18 & \(\mathrm{V}_{\mathrm{C}}\) & The high state \((\mathrm{VOH})\) of the Bottom Drive Outputs is set by the voltage applied to this pin. The controller is operational over a minimum \(\mathrm{V}_{\mathrm{C}}\) range of 10 to 30 V . \\
\hline 19,20, 21 & \(\mathrm{C}_{\mathrm{B}}, \mathrm{B}_{\mathrm{B}}, \mathrm{A}_{\mathrm{B}}\) & These three totem pole Bottom Drive Outputs are designed for direct drive of the external bottom power switch transistors. \\
\hline 22 & \(60^{\circ} / \overline{120^{\circ}}\) Select & The electrical state of this pin configures the control circuit operation for either \(60^{\circ}\) (high state) or \(120^{\circ}\) (low state) sensor electrical phasing inputs. \\
\hline 23 & Brake & A logic low state at this input allows the motor to run, while a high state does not allow motor operation and if operating causes rapid deceleration. \\
\hline
\end{tabular}

\section*{INTRODUCTION}

The MC33035 is one of a series of high performance monolithic DC brushless motor controllers produced by Motorola. It contains all of the functions required to implement a full-featured, open loop, three or four phase motor control system. In addition, the controller can be made to operate DC brush motors. Constructed with Bipolar Analog technology, it offers a high degree of performance and ruggedness in hostile industrial environments. The MC33035 contains a rotor position decoder for proper commutation sequencing, a temperature compensated reference capable of supplying a sensor power, a frequency programmable sawtooth oscillator, a fully accessible error amplifier, a pulse width modulator comparator, three open collector top drive outputs, and three high current totem pole bottom driver outputs ideally suited for driving power MOSFETs.

Included in the MC33035 are protective features consisting of undervoltage lockout, cycle-by-cycle current limiting with a selectable time delayed latched shutdown mode, internal thermal shutdown, and a unique fault output that can easily be interfaced to a microprocessor controller.

Typical motor control functions include open loop speed control, forward or reverse rotation, run enable, and dynamic braking. In addition, the MC33035 has a \(60^{\circ} / 120^{\circ}\) select pin which configures the rotor position decoder for either \(60^{\circ}\) or \(120^{\circ}\) sensor electrical phasing inputs.

\section*{FUNCTIONAL DESCRIPTION}

A representative internal block diagram is shown in Figure 19 with various applications shown in Figures 36, 38, \(39,43,45\), and 46 . A discussion of the features and function of each of the internal blocks given below is referenced to Figures 19 and 36.

\section*{Rotor Position Decoder}

An internal rotor position decoder monitors the three sensor inputs (Pins 4,5,6) to provide the proper sequencing of the top and bottom drive outputs. The sensor inputs are designed to interface directly with open collector type Hall Effect switches or opto slotted couplers. Internal pull-up resistors are included to minimize the required number of external components. The inputs are TTL compatible, with their thresholds typically at 2.2 V . The MC33035 series is designed to control three phase motors and operate with four of the most common conventions of sensor phasing. A \(60^{\circ} / \overline{120}{ }^{\circ}\) Select (Pin 22) is conveniently provided and affords the MC33035 to configure itself to control motors having either \(60^{\circ}, 120^{\circ}, 240^{\circ}\) or \(300^{\circ}\) electrical sensor phasing. With three sensor inputs there are eight possible input code combinations, six of which are valid rotor positions. The remaining two codes are invalid and are usually caused by an open or shorted sensor line. With six valid input codes, the
decoder can resolve the motor rotor position to within a window of 60 electrical degrees.

The Forward/Reverse input ( \(\operatorname{Pin} 3\) ) is used to change the direction of motor rotation by reversing the voltage across the stator winding. When the input changes state, from high to low with a given sensor input code (for example 100), the enabled top and bottom drive outputs with the same alpha designation are exchanged ( \(\mathrm{A}_{T}\) to \(\mathrm{A}_{\mathrm{B}}, \mathrm{B}_{T}\) to \(\mathrm{B}_{\mathrm{B}}, \mathrm{C}_{T}\) to \(\mathrm{C}_{B}\) ). In effect, the commutation sequence is reversed and the motor changes directional rotation.

Motor on/off control is accomplished by the Output Enable (Pin 7). When left disconnected, an internal \(25 \mu \mathrm{~A}\) current source enables sequencing of the top and bottom drive outputs. When grounded, the top drive outputs turn off and the bottom drives are forced low, causing the motor to coast and the Fault output to activate.

Dynamic motor braking allows an additional margin of safety to be designed into the final product. Braking is accomplished by placing the Brake Input (Pin 23) in a high state. This causes the top drive outputs to turn off and the bottom drives to turn on, shorting the motor-generated back EMF. The brake input has unconditional priority over all other inputs. The internal \(40 \mathrm{k} \Omega\) pull-up resistor simplifies interfacing with the system safety-switch by insuring brake activation if opened or disconnected. The commutation logic truth table is shown in Figure 20. A four input NOR gate is used to monitor the brake input and the inputs to the three top drive output transistors. Its purpose is to disable braking until the top drive outputs attain a high state. This helps to
prevent simultaneous conduction of the the top and bottom power switches. In half wave motor drive applications, the top drive outputs are not required and are normally left disconnected. Under these conditions braking will still be accomplished since the NOR gate senses the base voltage to the top drive output transistors.

\section*{Error Amplifier}

A high performance, fully compensated error amplifier with access to both inputs and output (Pins 11, 12, 13) is provided to facilitate the implementation of closed loop motor speed control. The amplifier features a typical DC voltage gain of \(80 \mathrm{~dB}, 0.6 \mathrm{MHz}\) gain bandwidth, and a wide input common mode voltage range that extends from ground to \(\mathrm{V}_{\text {ref. }}\) In most open loop speed control applications, the amplifier is configured as a unity gain voltage follower with the noninverting input connected to the speed set voltage source. Additional configurations are shown in Figures 31 through 35.

\section*{Oscillator}

The frequency of the internal ramp oscillator is programmed by the values selected for timing components \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). Capacitor \(\mathrm{C}_{\mathrm{T}}\) is charged from the Reference Output (Pin 8) through resistor RT and discharged by an internal discharge transistor. The ramp peak and valley voltages are typically 4.1 V and 1.5 V respectively. To provide a good compromise between audible noise and output switching efficiency, an oscillator frequency in the range of 20 to 30 kHz is recommended. Refer to Figure 1 for component selection.

Figure 19. Representative Block Diagram


Figure 20. Three Phase, Six Step Commutation Truth Table (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Inputs (Note 2)} & \multicolumn{7}{|c|}{Outputs (Note 3)} & \\
\hline \multicolumn{6}{|l|}{Sensor Electrical Phasing (Note 4)} & \multirow[b]{2}{*}{F/R} & \multirow[b]{2}{*}{Enable} & \multirow[b]{2}{*}{Brake} & \multirow[b]{2}{*}{Current Sense} & \multicolumn{3}{|c|}{Top Drives} & \multicolumn{3}{|l|}{Bottom Drives} & \multirow[b]{2}{*}{\(\overline{\text { Fault }}\)} & \\
\hline \(\mathbf{S}_{\mathbf{A}}\) & \[
\begin{aligned}
& 60^{\circ} \\
& S_{B}
\end{aligned}
\] & Sc & \(\mathrm{S}_{\mathbf{A}}\) & \[
\begin{gathered}
120^{\circ} \\
\mathrm{S}_{\mathrm{B}}
\end{gathered}
\] & \(\mathrm{Sc}_{\mathrm{c}}\) & & & & & \(A_{T}\) & \(\mathrm{B}_{\mathbf{T}}\) & \(\mathrm{C}_{\text {T }}\) & \(A_{B}\) & \(\mathrm{B}_{\mathrm{B}}\) & \(\mathrm{C}_{B}\) & & \\
\hline 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & (Note 5) \\
\hline 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & F/R \(=1\) \\
\hline 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & \\
\hline 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & \\
\hline 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & \\
\hline 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & (Note 5) \\
\hline 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & F/R \(=0\) \\
\hline 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & \\
\hline 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & \\
\hline 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & \\
\hline 1 & 0 & 1 & 1 & 1 & 1 & X & X & 0 & X & 1 & 1 & 1 & 0 & 0 & 0 & 0 & (Note 6) \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & X & X & 0 & X & 1 & 1 & 1 & 0 & 0 & 0 & 0 & Brake \(=0\) \\
\hline 1 & 0 & 1 & 1 & 1 & 1 & X & X & 1 & X & 1 & 1 & 1 & 1 & 1 & 1 & 0 & (Note 7) \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & X & X & 1 & X & 1 & 1 & 1 & 1 & 1 & 1 & 0 & Brake \(=1\) \\
\hline V & V & V & V & V & V & X & 1 & 1 & X & 1 & 1 & 1 & 1 & 1 & 1 & 1 & (Note 8) \\
\hline V & V & V & V & V & V & X & 0 & 1 & X & 1 & 1 & 1 & 1 & 1 & 1 & 0 & (Note 9) \\
\hline V & V & V & V & V & V & X & 0 & 0 & X & 1 & 1 & 1 & 0 & 0 & 0 & 0 & (Note 10) \\
\hline V & V & V & V & V & V & X & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & (Note 11) \\
\hline
\end{tabular}

NOTES: 1. \(\quad \mathrm{V}=\) Any one of six valid sensor or drive combinations \(\quad \mathrm{X}=\) Don't care.
2. The digital inputs (Pins \(3,4,5,6,7,22,23\) ) are all TTL compatible. The current sense input (Pin 9) has a 100 mV threshold with respect to Pin 15. A logic 0 for this input is defined as \(<85 \mathrm{mV}\), and a logic 1 is \(>115 \mathrm{mV}\).
3. The fault and top drive outputs are open collector design and active in the low (0) state.
4. With \(60^{\circ} / 120^{\circ}\) select (Pin 22) in the high (1) state, configuration is for \(60^{\circ}\) sensor electrical phasing inputs. With Pin 22 in low ( 0 ) state, configuration is for \(120^{\circ}\) sensor electrical phasing inputs.
5. Valid \(60^{\circ}\) or \(120^{\circ}\) sensor combinations for corresponding valid top and bottom drive outputs.
6. Invalid sensor inputs with brake \(=0\); All top and bottom drives off, Fault low
7. Invalid sensor inputs with brake \(=1\); All top drives off, all bottom drives on, Fault low.
8. Valid \(60^{\circ}\) or \(120^{\circ}\) sensor inputs with brake \(=1\); All top drives off, all bottom drives on, Fault high.
9. Valid sensor inputs with brake \(=1\) and enable \(=0\); All top drives off, all bottom drives on, Fault low.
10. Valid sensor inputs with brake \(=0\) and enable \(=0\); All top and bottom drives off, Fault low.
11. All bottom drives off, Fault low.

\section*{Pulse Width Modulator}

The use of pulse width modulation provides an energy efficient method of controlling the motor speed by varying the average voltage applied to each stator winding during the commutation sequence. As \(\mathrm{C}_{\top}\) discharges, the oscillator sets both latches, allowing conduction of the top and bottom drive outputs. The PWM comparator resets the upper latch, terminating the bottom drive output conduction when the positive-going ramp of \(\mathrm{C}_{\mathrm{T}}\) becomes greater than the error amplifier output. The pulse width modulator timing diagram is shown in Figure 21. Pulse width modulation for speed control appears only at the bottom drive outputs.

\section*{Current Limit}

Continuous operation of a motor that is severely over-loaded results in overheating and eventual failure. This destructive condition can best be prevented with the use of cycle-by-cycle current limiting. That is, each on-cycle is treated as a separate event. Cycle-by-cycle current limiting is accomplished by monitoring the stator current build-up each time an output switch conducts, and upon sensing an over current condition, immediately turning off the switch and holding it off for the remaining duration of oscillator ramp-up period. The stator current is converted to a voltage by inserting a ground-referenced sense resistor \(R_{S}\) (Figure 36) in series with the three bottom switch transistors ( \(\mathrm{Q}_{4}, \mathrm{Q}_{5}, \mathrm{Q}_{6}\) ). The voltage developed across the sense resistor is monitored by the Current Sense Input (Pins 9 and 15), and compared to the internal 100 mV reference. The current sense comparator inputs have an input common mode range of approximately 3.0 V . If the 100 mV current sense threshold is exceeded, the comparator resets the
lower sense latch and terminates output switch conduction. The value for the current sense resistor is:
\[
R_{S}=\frac{0.1}{l_{\text {stator(max) }}}
\]

The \(\overline{\text { Fault }}\) output activates during an over current condition. The dual-latch PWM configuration ensures that only one single output conduction pulse occurs during any given oscillator cycle, whether terminated by the output of the error amp or the current limit comparator.

Figure 21. Pulse Width Modulator Timing Diagram


\section*{Reference}

The on-chip 6.25 V regulator (Pin 8) provides charging current for the oscillator timing capacitor, a reference for the error amplifier, and can supply 20 mA of current suitable for directly powering sensors in low voltage applications. In higher voltage applications, it may become necessary to transfer the power dissipated by the regulator off the IC. This is easily accomplished with the addition of an external pass transistor as shown in Figure 22. A 6.25 V reference level was chosen to allow implementation of the simpler NPN circuit, where \(\mathrm{V}_{\text {ref }}-\mathrm{V}_{\mathrm{BE}}\) exceeds the minimum voltage required by Hall Effect sensors over temperature. With proper transistor selection and adequate heatsinking, up to one amp of load current can be obtained.

Figure 22. Reference Output Buffers


The NPN circuit is recommended for powering Hall or opto sensors, where the output voltage temperature coefficient is not critical. The PNP circuit is slightly more complex, but is also more accurate over temperature. Neither circuit has current limiting.

\section*{Undervoltage Lockout}

A triple Undervoltage Lockout has been incorporated to prevent damage to the IC and the external power switch transistors. Under low power supply conditions, it guarantees that the IC and sensors are fully functional, and that there is sufficient bottom drive output voltage. The positive power supplies to the IC ( \(\mathrm{V}_{\mathrm{CC}}\) ) and the bottom drives \(\left(\mathrm{V}_{\mathrm{C}}\right)\) are each monitored by separate comparators that have their thresholds at 9.1 V . This level ensures sufficient gate drive necessary to attain low RDS(on) when driving standard power MOSFET devices. When directly powering the Hall sensors from the reference, improper sensor operation can result if the reference output voltage falls below 4.5 V . A third comparator is used to detect this condition. If one or more of the comparators detects an undervoltage condition, the Fault Output is activated, the top drives are turned off and the bottom drive outputs are held in a low state. Each of the
comparators contain hysteresis to prevent oscillations when crossing their respective thresholds.

\section*{\(\overline{\text { Fault }}\) Output}

The open collector Fault Output (Pin 14) was designed to provide diagnostic information in the event of a system malfunction. It has a sink current capability of 16 mA and can directly drive a light emitting diode for visual indication. Additionally, it is easily interfaced with TTL/CMOS logic for use in a microprocessor controlled system. The \(\overline{\text { Fault }}\) Output is active low when one or more of the following conditions occur:
1) Invalid Sensor Input code
2) Output Enable at logic [0]
3) Current Sense Input greater than 100 mV
4) Undervoltage Lockout, activation of one or more of the comparators
5) Thermal Shutdown, maximum junction temperature being exceeded
This unique output can also be used to distinguish between motor start-up or sustained operation in an overloaded condition. With the addition of an RC network between the Fault Output and the enable input, it is possible to create a time-delayed latched shutdown for overcurrent. The added circuitry shown in Figure 23 makes easy starting of motor systems which have high inertial loads by providing additional starting torque, while still preserving overcurrent protection. This task is accomplished by setting the current limit to a higher than nominal value for a predetermined time. During an excessively long overcurrent condition, capacitor CDLY will charge, causing the enable input to cross its threshold to a low state. A latch is then formed by the positive feedback loop from the Fault Output to the Output Enable. Once set, by the Current Sense Input, it can only be reset by shorting CDLY or cycling the power supplies.

\section*{Drive Outputs}

The three top drive outputs (Pins 1, 2, 24) are open collector NPN transistors capable of sinking 50 mA with a minimum breakdown of 30 V . Interfacing into higher voltage applications is easily accomplished with the circuits shown in Figures 24 and 25.

The three totem pole bottom drive outputs (Pins 19, 20, 21) are particularly suited for direct drive of N -Channel MOSFETs or NPN bipolar transistors (Figures 26, 27, 28 and 29). Each output is capable of sourcing and sinking up to 100 mA . Power for the bottom drives is supplied from \(\mathrm{V}_{\mathrm{C}}\) (Pin 18). This separate supply input allows the designer added flexibility in tailoring the drive voltage, independent of \(V_{\text {CC }}\). A zener clamp should be connected to this input when driving power MOSFETs in systems where \(\mathrm{V}_{\mathrm{CC}}\) is greater than 20 V so as to prevent rupture of the MOSFET gates.

The control circuitry ground (Pin 16) and current sense inverting input (Pin 15) must return on separate paths to the central input source ground.

\section*{Thermal Shutdown}

Internal thermal shutdown circuitry is provided to protect the IC in the event the maximum junction temperature is exceeded. When activated, typically at \(170^{\circ} \mathrm{C}\), the IC acts as though the Output Enable was grounded.

Figure 23. Timed Delayed Latched Over Current Shutdown

\({ }^{t}{ }_{D L Y} \approx R_{D L Y} C_{D L Y} \ln \left(\frac{v_{\text {ref }}-\left(I_{I L} \text { enable } R_{D L Y}\right)}{V_{\text {th }} \text { enable }-\left(I_{I L} \text { enable } R_{D L Y}\right)}\right)\)
\(\approx R_{D L Y} C_{D L Y} \ln \left(\frac{6.25-\left(20 \times 10^{-6} R_{D L Y}\right)}{1.4-\left(20 \times 10^{-6} R_{D L Y}\right)}\right)\)

Figure 25. High Voltage Interface with N -Channel Power MOSFETs


Figure 24. High Voltage Interface with NPN Power Transistors


Transistor \(Q_{1}\) is a common base stage used to level shift from \(V_{C C}\) to the high motor voltage, \(\mathrm{V}_{\mathrm{M}}\). The collector diode is required if \(\mathrm{V}_{\mathrm{CC}}\) is present while \(\mathrm{V}_{\mathrm{M}}\) is low.

Figure 26. Current Waveform Spike Suppression


The addition of the RC filter will eliminate current-limit instability caused by the leading edge spike on the current waveform. Resistor \(R_{S}\) should be a low inductance type.

Figure 27. MOSFET Drive Precautions


Series gate resistor \(R_{g}\) will dampen any high frequency oscillations caused by the MOSFET input capacitance and any series wiring induction in the gate-source circuit. Diode \(D\) is required if the negative current into the Bottom Drive Outputs exceeds 50 mA .

Figure 29. Current Sensing Power MOSFETs


Control Circuitry Ground (Pin 16) and Current Sense Inverting Input (Pin 15) must return on separate paths to the Central Input Source Ground

Virtually lossless current sensing can be achieved with the implementation of SENSEFET power switches.

Figure 28. Bipolar Transistor Drive


The totem-pole output can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor C .

Figure 30. High Voltage Boost Supply


Figure 31. Differential Input Speed Controller

\(v_{\text {Pin } 13}=V_{A}\left(\frac{R_{3}+R_{4}}{R_{1}+R_{2}}\right) \frac{R_{2}}{R_{3}}-\left(\frac{R_{4}}{R_{3}} v_{B}\right)\)

Resistor \(R_{1}\) with capacitor \(C\) sets the acceleration time constant while \(R_{2}\) controls the deceleration. The values of \(R_{1}\) and \(R_{2}\) should be at least ten times greater than the speed set potentiometer to minimize time constant variations with different speed settings.

Figure 34. Closed Loop Speed Control

The rotor position sensors can be used as a tachometer. By differentiating the positive-going edges and then integrating them over time, a voltage proportional to speed can be generated. The error amp compares this voltage to that of the speed set to control the PWM.

Figure 32. Controlled Acceleration/Deceleration



The SN74LS145 is an open collector BCD to One of Ten decoder. When connected as shown, input codes 0000 through 1001 steps the PWM in increments of approximately \(10 \%\) from 0 to \(90 \%\) on-time. Input codes 1010 through 1111 will produce \(100 \%\) on-time or full motor speed.

Figure 33. Digital Speed Controller


Figure 35. Closed Loop Temperature Control


This circuit can control the speed of a cooling fan proportional to the difference between the sensor and set temperatures. The control loop is closed as the forced air cools the NTC thermistor. For controlled heating applications, exchange the positions of \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\).

\section*{SYSTEM APPLICATIONS}

\section*{Three Phase Motor Commutation}

The three phase application shown in Figure 36 is a full-featured open loop motor controller with full wave, six step drive. The upper power switch transistors are Darlingtons while the lower devices are power MOSFETs. Each of these devices contains an internal parasitic catch diode that is used to return the stator inductive energy back to the power supply. The outputs are capable of driving a delta or wye connected stator, and a grounded neutral wye if split supplies are used. At any given rotor position, only one top and one bottom power switch (of different totem poles) is enabled. This configuration switches both ends of the stator winding from supply to ground which causes the current flow to be bidirectional or full wave. A leading edge spike is usually present on the current waveform and can cause a current-limit instability. The spike can be eliminated by adding an RC filter in series with the Current Sense Input. Using a low inductance type resistor for Rs will also aid in spike reduction. Care must be taken in the selection of the
bottom power switch transistors so that the current during braking does not exceed the device rating. During braking, the peak current generated is limited only by the series resistance of the conducting bottom switch and winding.
\[
I_{\text {peak }}=\frac{V_{M}+E M F}{R_{\text {switch }}+R_{\text {winding }}}
\]

If the motor is running at maximum speed with no load, the generated back EMF can be as high as the supply voltage, and at the onset of braking, the peak current may approach twice the motor stall current. Figure 37 shows the commutation waveforms over two electrical cycles. The first cycle ( \(0^{\circ}\) to \(360^{\circ}\) ) depicts motor operation at full speed while the second cycle ( \(360^{\circ}\) to \(720^{\circ}\) ) shows a reduced speed with about \(50 \%\) pulse width modulation. The current waveforms reflect a constant torque load and are shown synchronous to the commutation frequency for clarity.

Figure 36. Three Phase, Six Step, Full Wave Motor Controller


Figure 37. Three Phase, Six Step, Full Wave Commutation Waveforms


Figure 38 shows a three phase, three step, half wave motor controller. This configuration is ideally suited for automotive and other low voltage applications since there is only one power switch voltage drop in series with a given stator winding. Current flow is unidirectional or half wave because only one end of each winding is switched. Continuous braking with the typical half wave arrangement presents a motor overheating problem since stator current is limited only by the winding resistance. This is due to the lack of upper power switch transistors, as in the full wave circuit, used to disconnect the windings from the supply voltage \(\mathrm{V}_{\mathrm{M}}\). A unique
solution is to provide braking until the motor stops and then turn off the bottom drives. This can be accomplished by using the Fault Output in conjunction with the Output Enable as an over current timer. Components RDLY and CDLY are selected to give the motor sufficient time to stop before latching the Output Enable and the top drive AND gates low. When enabling the motor, the brake switch is closed and the PNP transistor (along with resistors \(\mathrm{R}_{1}\) and RDLY) are used to reset the latch by discharging CDLY. The stator flyback voltage is clamped by a single zener and three diodes.

Figure 38. Three Phase, Three Step, Half Wave Motor Controller


\section*{Three Phase Closed Loop Controller}

The MC33035, by itself, is only capable of open loop motor speed control. For closed loop motor speed control, the MC33035 requires an input voltage proportional to the motor speed. Traditionally, this has been accomplished by means of a tachometer to generate the motor speed feedback voltage. Figure 39 shows an application whereby an MC33039, powered from the 6.25 V reference (Pin 8) of the MC33035, is used to generate the required feedback voltage without the need of a costly tachometer. The same Hall sensor signals used by the MC33035 for rotor position decoding are utilized by the MC33039. Every positive or negative going transition of the Hall sensor signals on any of the sensor lines causes the MC33039 to produce an output pulse of defined amplitude and time duration, as determined by the external resistor \(\mathrm{R}_{1}\) and capacitor \(\mathrm{C}_{1}\). The output train
of pulses at Pin 5 of the MC33039 are integrated by the error amplifier of the MC33035 configured as an integrator to produce a DC voltage level which is proportional to the motor speed. This speed proportional voltage establishes the PWM reference level at Pin 13 of the MC33035 motor controller and closes the feedback loop. The MC33035 outputs drive a TMOS power MOSFET 3-phase bridge. High currents can be expected during conditions of start-up, breaking, and change of direction of the motor.

The system shown in Figure 39 is designed for a motor having 120/240 degrees Hall sensor electrical phasing. The system can easily be modified to accommodate 60/300 degree Hall sensor electrical phasing by removing the jumper \(\left(\mathrm{J}_{2}\right)\) at Pin 22 of the MC33035.

Figure 39. Closed Loop Brushless DC Motor Control Using The MC33035 and MC33039


\section*{Sensor Phasing Comparison}

There are four conventions used to establish the relative phasing of the sensor signals in three phase motors. With six step drive, an input signal change must occur every 60 electrical degrees; however, the relative signal phasing is dependent upon the mechanical sensor placement. A comparison of the conventions in electrical degrees is shown in Figure 40. From the sensor phasing table in Figure 41, note that the order of input codes for \(60^{\circ}\) phasing is the reverse of \(300^{\circ}\). This means the MC33035, when configured for \(60^{\circ}\) sensor electrical phasing, will operate a motor with either \(60^{\circ}\) or \(300^{\circ}\) sensor electrical phasing, but resulting in opposite directions of rotation. The same is true for the part when it is configured for \(120^{\circ}\) sensor electrical phasing; the motor will operate equally, but will result in opposite directions of rotation for \(120^{\circ}\) for \(240^{\circ}\) conventions.

Figure 40. Sensor Phasing Comparison


Figure 41. Sensor Phasing Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Sensor Electrical Phasing (Degrees)} \\
\hline \multicolumn{3}{|c|}{\(60^{\circ}\)} & \multicolumn{3}{|c|}{\(120^{\circ}\)} & \multicolumn{3}{|c|}{\(240^{\circ}\)} & \multicolumn{3}{|c|}{\(300^{\circ}\)} \\
\hline \(\mathrm{S}_{\text {A }}\) & \(\mathrm{S}_{\mathrm{B}}\) & Sc & \(\mathrm{S}_{\text {A }}\) & \(\mathrm{S}_{\mathrm{B}}\) & Sc & \(\mathrm{S}_{\mathrm{A}}\) & \(\mathrm{S}_{\mathrm{B}}\) & \(\mathrm{S}_{\mathrm{C}}\) & \(\mathrm{S}_{\mathrm{A}}\) & \(\mathrm{S}_{\mathrm{B}}\) & \(\mathrm{Sc}_{\mathrm{C}}\) \\
\hline 1. & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & A & 1 \\
\hline 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1. & 0 \\
\hline 1 & \[
1
\] & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline
\end{tabular}

In this data sheet, the rotor position is always given in electrical degrees since the mechanical position is a function of the number of rotating magnetic poles. The relationship between the electrical and mechanical position is:

Electrical Degrees \(=\) Mechanical Degrees \(\left(\frac{\text { \#Rotor Poles }}{2}\right)\)
An increase in the number of magnetic poles causes more electrical revolutions for a given mechanical revolution. General purpose three phase motors typically contain a four pole rotor which yields two electrical revolutions for one mechanical.

\section*{Two and Four Phase Motor Commutation}

The MC33035 is also capable of providing a four step output that can be used to drive two or four phase motors. The truth table in Figure 42 shows that by connecting sensor inputs \(S_{B}\) and \(S_{C}\) together, it is possible to truncate the number of drive output states from six to four. The output power switches are connected to \(\mathrm{B}_{\mathrm{T}}, \mathrm{C}_{\mathrm{T}}, \mathrm{B}_{\mathrm{B}}\), and \(\mathrm{C}_{\mathrm{B}}\). Figure 43 shows a four phase, four step, full wave motor control application. Power switch transistors \(\mathrm{Q}_{1}\) through \(\mathrm{Q}_{8}\) are Darlington type, each with an internal parasitic catch diode. With four step drive, only two rotor position sensors spaced at 90 electrical degrees are required. The commutation waveforms are shown in Figure 44.

Figure 45 shows a four phase, four step, half wave motor controiler. It has the same features as the circuit in Figure 38, except for the deletion of speed control and braking.

Figure 42. Two and Four Phase, Four Step, Commutation Truth Table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{MC33035 (60\% \(\overline{\mathbf{1 2 0}^{\circ}}\) Select Pin Open)} \\
\hline \multicolumn{3}{|c|}{Inputs} & \multicolumn{4}{|c|}{Outputs} \\
\hline \multicolumn{2}{|l|}{Sensor Electrical Spacing \({ }^{*}=90^{\circ}\)} & \multirow[b]{2}{*}{F/R} & \multicolumn{2}{|l|}{Top Drives} & \multicolumn{2}{|l|}{Bottom Drives} \\
\hline \(\mathrm{S}_{\mathbf{A}}\) & \(\mathrm{S}_{\mathrm{B}}\) & & BT & \(\mathrm{C}_{\text {T }}\) & B \({ }_{\text {B }}\) & \(\mathrm{C}_{\mathrm{B}}\) \\
\hline 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
\hline 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
\hline 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}
\({ }^{*}\) With MC33035 sensor input \(\mathrm{S}_{\mathrm{B}}\) connected to \(\mathrm{S}_{\mathrm{C}}\).



Figure 44. Four Phase, Four Step, Full Wave Motor Controller

\section*{Rotor Electrical Position (Degrees)}



Figure 45. Four Phase, Four Step, Half Wave Motor Controller


\section*{Brush Motor Control}

Though the MC33035 was designed to control brushless DC motors, it may also be used to control DC brush type motors. Figure 46 shows an application of the MC33035 driving a MOSFET H -bridge affording minimal parts count to operate a brush-type motor. Key to the operation is the input sensor code [100] which produces a top-left \(\left(Q_{1}\right)\) and a bottom-right \(\left(Q_{3}\right)\) drive when the controller's forward/reverse pin is at logic [1]; top-right ( \(Q_{4}\) ), bottom-left ( \(Q_{2}\) ) drive is realized when the Forward/Reverse pin is at logic [0]. This code supports the requirements necessary for H-bridge drive accomplishing both direction and speed control.

The controller functions in a normal manner with a pulse width modulated frequency of approximately 25 kHz . Motor speed is controlled by adjusting the voltage presented to the noninverting input of the error amplifier establishing the PWM's slice or reference level. Cycle-by-cycle current limiting of the motor current is accomplished by sensing the voltage ( 100 mV ) across the RS resistor to ground of the H -bridge motor current. The over current sense circuit makes it possible to reverse the direction of the motor, using the
normal forward/reverse switch, on the fly and not have to completely stop before reversing.

\section*{LAYOUT CONSIDERATIONS}

Do not attempt to construct any of the brushless motor control circuits on wire-wrap or plug-in prototype boards. High frequency printed circuit layout techniques are imperative to prevent pulse jitter. This is usually caused by excessive noise pick-up imposed on the current sense or error amp inputs. The printed circuit layout should contain a ground plane with low current signal and high drive and output buffer grounds returning on separate paths back to the power supply input filter capacitor \(\mathrm{V}_{\mathrm{M}}\). Ceramic bypass capacitors ( \(0.1 \mu \mathrm{~F}\) ) connected
close to the integrated circuit at \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\text {ref }}\) and the error amp noninverting input may be required depending upon circuit layout. This provides a low impedance path for filtering any high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI.

Figure 46. H-Bridge Brush-Type Controller


\section*{Closed Loop Brushless Motor Adapter}

The MC33039 is a high performance closed-loop speed control adapter specifically designed for use in brushless DC motor control systems. Implementation will allow precise speed regulation without the need for a magnetic or optical tachometer. This device contains three input buffers each with hysteresis for noise immunity, three digital edge detectors, a programmable monostable, and an internal shunt regulator. Also included is an inverter output for use in systems that require conversion of sensor phasing. Although this device is primarily intended for use with the MC33035 brushless motor controller, it can be used cost effectively in many other closed-loop speed control applications.
- Digital Detection of Each Input Transition for Improved Low Speed Motor Operation
- TTL Compatible Inputs With Hysteresis
- Operation Down to 5.5 V for Direct Powering from MC33035 Reference
- Internal Shunt Regulator Allows Operation from a Non-Regulated Voltage Source
- Inverter Output for Easy Conversion between \(60^{\circ} / 300^{\circ}\) and \(120^{\circ} / 240^{\circ}\) Sensor Phasing Conventions

\section*{CLOSED LOOP BRUSHLESS MOTOR ADAPTER}

SEMICONDUCTOR TECHNICAL DATA


P SUFFIX PLASTIC PACKAGE CASE 626


D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO-8)


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline MC33039D & \multirow{2}{*}{\(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 1 } & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline \(\mathrm{V}_{\text {CC }}\) Zener Current & \(\mathrm{I}_{\mathrm{Z}\left(\mathrm{V}_{\mathrm{CC}}\right)}\) & 30 & mA \\
\hline Logic Input Current（Pins 1，2，3） & \(\mathrm{I}_{\mathrm{H}}\) & 5.0 & mA \\
\hline Output Current（Pins 4，5），Sink or Source & \(\mathrm{I}_{\mathrm{DRV}}\) & 20 & mA \\
\hline \begin{tabular}{l} 
Power Dissipation and Thermal Characteristics \\
Maximum Power Dissipation＠ \(\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{P}_{\mathrm{D}}\) \\
Thermal Resistance，Junction－to－Air
\end{tabular} & \begin{tabular}{c}
650 \\
100
\end{tabular} & \begin{tabular}{c}
mW \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature
\end{tabular} \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{JJA}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS（ \(\mathrm{V}_{\mathrm{CC}}=6.25 \mathrm{~V}, \mathrm{RT}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=22 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ，unless otherwise noted）
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{LOGIC INPUTS} \\
\hline Input Threshold Voltage High State Low State Hysteresis & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{H}}
\end{aligned}
\] & \[
\frac{2.4}{0.4}
\] & \[
\begin{aligned}
& 2.1 \\
& 1.4 \\
& 0.7
\end{aligned}
\] & \[
\begin{gathered}
\overline{1.0} \\
0.9
\end{gathered}
\] & V \\
\hline ```
Input Current
    High State \(\left(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}\right)\)
        中A
        фB, 申C
    Low State ( \(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\) )
        中A
        ФВ, ФC
``` & \begin{tabular}{l}
\[
\mathbb{I}_{\mathbb{H}}
\] \\
ILL
\end{tabular} & \[
\begin{gathered}
-40 \\
- \\
-190
\end{gathered}
\] & \[
\begin{aligned}
& -60 \\
& -0.3 \\
& -300 \\
& -0.3
\end{aligned}
\] & \[
\begin{aligned}
& -80 \\
& -5.0 \\
& -380 \\
& -5.0
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

MONOSTABLE AND OUTPUT SECTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Voltage & & & & & V \\
\hline High State & \(\mathrm{V}_{\mathrm{OH}}\) & & & & \\
\hline \(\mathrm{f}_{\text {out }}\left(l_{\text {source }}=5.0 \mathrm{~mA}\right)\) & & 3.60 & 3.95 & 4.20 & \\
\hline \(\phi \bar{A}\left(l_{\text {source }}=2.0 \mathrm{~mA}\right)\) & & 4.20 & 4.75 & － & \\
\hline Low State & VOL & & & & \\
\hline \(\mathrm{f}_{\text {out }}\left(l_{\text {sink }}=10 \mathrm{~mA}\right)\) & & － & 0.25 & 0.50 & \\
\hline \(\phi \overline{\mathrm{A}}\left(\mathrm{l}_{\text {sink }}=10 \mathrm{~mA}\right)\) & & － & 0.25 & 0.50 & \\
\hline Capacitor \(\mathrm{C}_{T}\) Discharge Current & Idischg & 20 & 35 & 60 & mA \\
\hline Output Pulse Width（Pin 5） & tpw & 205 & 225 & 245 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

POWER SUPPLY SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Power Supply Operating Voltage Range \(\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\mathrm{CC}}\) & 5.5 & - & \(\mathrm{V}_{\mathbf{Z}}\) & V \\
\hline Power Supply Current & ICC & 1.8 & 3.9 & 5.0 & mA \\
\hline Zener Voltage \((\mathrm{I}=10 \mathrm{~mA})\) & \(\mathrm{V}_{\mathrm{Z}}\) & 7.5 & 8.25 & 9.0 & V \\
\hline Zener Dynamic Impedance \((\Delta \mid \mathrm{Z}=10 \mathrm{~mA}\) to \(20 \mathrm{~mA}, \mathrm{f} \leqslant 1.0 \mathrm{kHz})\) & \(\left|\mathrm{Z}_{\mathrm{ka}}\right|\) & - & 2.0 & 5.0 & \(\Omega\) \\
\hline
\end{tabular}

\section*{MC33039}

Figure 1. Typical Three Phase, Six Step Motor Application

\section*{OPERATING DESCRIPTION}

The MC33039 provides an economical method of implementing closed-loop speed control of brushless DC motors by eliminating the need for a magnetic or optical tachometer. Shown in the timing diagram of Figure 1, the three inputs (Pins 1, 2, 3) monitor the brushless motor rotor position sensors. Each sensor signal transition is digitally detected, OR'ed at the Latch 'Set' Input, and causes \(\mathrm{C}_{\boldsymbol{T}}\) to discharge. A corresponding output pulse is generated at \(f_{\text {out }}\) (Pin 5) of a defined amplitude, and programmable width determined by the values selected for \(\mathrm{R}_{T}\) and \(\mathrm{C}_{\top}\) (Pin 6). The average voltage of the output pulse train increases with motor speed. When fed through a low pass filter or integrator, a DC voltage proportional to speed is generated. Figure 2 shows the proper connections for a typical closed loop
application using the MC33035 brushless motor controller. Constant speed operation down to 100 RPM is possible with economical three phase four pole motors.

The \(\phi A\) inverter output (Pin 4) is used in systems where the controller and motor sensor phasing conventions are not compatible. A method of converting from either convention to the other is shown in Figure 3. For a more detailed explanation of this subject, refer to the text above Figure 39 on the MC33035 data sheet.

The output pulse amplitude VOH is constant with temperature and controlled by the supply voltage on \(\mathrm{V}_{\mathrm{CC}}\) (Pin 8). Operation down to 5.5 V is guaranteed over temperature. For systems without a regulated power supply, an internal 8.25 V shunt regulator is provided.

Figure 2. Typical Closed Loop Speed Control Application

Figure 3. fout, Pulse Width versus Timing Resistor

RT, TIMING RESISTOR (k \(\Omega\))

Figure 5. fout, Pulse Width Change versus Supply Voltage

Figure 7. fout, Saturation versus Load Current

\section*{SAA1042}

\section*{Stepper Motor Driver}

The SAA1042 drives a two-phase stepper motor in the bipolar mode. The device contains three input stages, a logic section and two output stages. The IC is contained in a 16 pin dual-in-line heat tab plastic package for improved heatsinking capability. The center four ground pins are connected to the copper alloy heat tab and improve thermal conduction from the die to the circuit board.
- Drive Stages Designed for Motors: 6.0 V and 12 V : SAA1042V
- \(500 \mathrm{~mA} /\) Coil Drive Capability
- Built-In Clamp Diodes for Overvoltage Suppression
- Wide Logic Supply Voltage Range
- Accepts Commands for CW/CCW and Half/Full Step Operation
- Inputs Compatible with Popular Logic Families: MOS, TTL, DTL
- Set Input Defined Output State
- Drive Stage Bias Adaptable to Motor Power Dissipation for Optimum Efficiency

\section*{STEPPER MOTOR DRIVER}

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline SAA1042V & \(\mathrm{T}_{\mathrm{J}}=-30^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), uniess otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & SAA1042V & Unit \\
\hline Clamping Voltage (Pins 1, 3, 14, 16) & \(V_{\text {clamp }}\) & 20 & V \\
\hline Over Voltage (\(\mathrm{V}_{\text {OV }}=\mathrm{V}_{\text {clamp }}-\mathrm{V}_{\mathrm{M}}\)) & Vov & 6.0 & V \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 20 & V \\
\hline Switching or Motor Current/Coil & 1 M & 500 & mA \\
\hline Input Voltage (Pins 7, 8, 10) & \begin{tabular}{l}
\(V_{\text {in }}\) clock \\
\(V_{\text {in }}\) Full/Half \\
\(V_{\text {in }}\) CW/CCW
\end{tabular} & \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline \begin{tabular}{l}
Power Dissipation (Note 1) \\
Thermal Resistance, Junction-to-Air Thermal Resistance, Junction-to-Case
\end{tabular} & PD
өJA
\({ }^{\prime} \mathrm{JC}\) & \[
\begin{aligned}
& 2.0 \\
& 80 \\
& 15
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{w}
\end{gathered}
\] \\
\hline Operating Junction Temperature Range & \(\mathrm{T}_{J}\) & -30 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. The power dissipation (\(P_{D}\)) of the circuit is given by the supply voltage (\(V_{M}\) and \(V_{C C}\)) and the motor current \(\left({ }^{\prime} \mathrm{M}\right)\), and can be determined from Figures 3 and 5 . \(\mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\text {drive }}-\mathrm{P}_{\text {logic }}\).
ELECTRICAL CHARACTERISTICS (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Characteristics & Pin(s) & Symbol & \(V_{\text {cc }}\) & Min & Typ & Max & Unit \\
\hline Supply Current & 11 & Icc & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& 20 \mathrm{~V}
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 3.5 \\
& 8.5
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Motor Supply Current } \\
& \text { (IPin } 6=-400 \mu \mathrm{~A} \text {, Pins } 1,3,14,16 \text { Open) } \\
& \mathrm{V}_{\mathrm{M}}=6.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{M}}=24 \mathrm{~V} \\
& \hline
\end{aligned}
\] & 15 & 1 M & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& 5.0 \mathrm{~V} \\
& 5.0 \mathrm{~V}
\end{aligned}
\] & - & \[
\begin{aligned}
& 25 \\
& 30 \\
& 40
\end{aligned}
\] & - & mA \\
\hline Input Voltage, High State & 7, 8, 10 & \(\mathrm{V}_{\mathrm{IH}}\) & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& 10 \mathrm{~V} \\
& 15 \mathrm{~V} \\
& 20 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 7.0 \\
& 10 \\
& 14 \\
& \hline
\end{aligned}
\] & - & - & V \\
\hline Input Voltage, Low State & & VIL & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& 10 \mathrm{~V} \\
& 15 \mathrm{~V} \\
& 20 \mathrm{~V}
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 0.8 \\
& 1.5 \\
& 2.5 \\
& 3.5
\end{aligned}
\] & \\
\hline Input Reverse Current, High State
\[
\left(V_{\text {in }}=V_{C C}\right)
\] & 7, 8, 10 & IIR & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& 10 \mathrm{~V} \\
& 15 \mathrm{~V} \\
& 20 \mathrm{~V}
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 3.0 \\
& 5.0
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Forward Current, Low State
\[
\left(V_{i n}=G n d\right)
\] & & IIF & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& 10 \mathrm{~V} \\
& 15 \mathrm{~V} \\
& 20 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& -10 \\
& -25 \\
& -40 \\
& -50
\end{aligned}
\] & - & - & \\
\hline \[
\begin{aligned}
& \text { Output Voltage, High State }\left(\mathrm{V}_{\mathrm{M}}=12 \mathrm{~V}\right) \\
& \text { lout }=-500 \mathrm{~mA} \\
& \text { lout }=-50 \mathrm{~mA} \\
& \text { Output Voltage, Low State } \\
& \text { lout }=500 \mathrm{~mA} \\
& \text { Iout }=50 \mathrm{~mA}
\end{aligned}
\] & 1, 3, 14, 16 & \(\mathrm{VOH}_{\text {OH }}\)
\(\mathrm{V}_{\text {OL }}\) & \[
\begin{aligned}
& 5.0- \\
& 20 \mathrm{~V} \\
& \hline 5.0- \\
& 20 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& V_{M}-2.0 \\
& V_{M}-1.2 \\
& \hline
\end{aligned}
\]
\[
\begin{aligned}
& 0.7 \\
& 0.2
\end{aligned}
\] & -
-
- & V \\
\hline Output Leakage Current, Pin \(6=\) Open
\[
\left(V_{M}=V_{D}=V_{\text {clamp max }}\right)
\] & 1, 3, 14, 16 & IDR & \[
\begin{aligned}
& 5.0- \\
& 20 \mathrm{~V}
\end{aligned}
\] & -100 & - & - & \(\mu \mathrm{A}\) \\
\hline Clamp Diode Forward Voltage (Drop at \(\mathrm{I} M=500 \mathrm{~mA}\)) & 2 & \(\mathrm{V}_{\mathrm{F}}\) & - & - & 2.5 & 3.5 & V \\
\hline Clock Frequency & 7 & \({ }_{\text {f }}\) & \[
\begin{aligned}
& 5.0- \\
& 20 \mathrm{~V}
\end{aligned}
\] & 0 & - & 50 & kHz \\
\hline Clock Pulse Width & 7 & \(t_{\text {w }}\) & \[
\begin{aligned}
& 5.0- \\
& 20 \mathrm{~V}
\end{aligned}
\] & 10 & - & - & \(\mu \mathrm{s}\) \\
\hline Set Pulse Width & 6 & \(t_{s}\) & - & 10 & - & - & \(\mu \mathrm{s}\) \\
\hline Set Control Voltage, High State Low State & 6 & - & - & \(\mathrm{V}_{\mathrm{M}}\) & - & \(\overline{0.5}\) & V \\
\hline
\end{tabular}

\section*{SAA1042}

\section*{INPUT/OUTPUT FUNCTIONS}

Clock - (Pin 7) This input is active on the positive edge of the clock pulse and accepts Logic ' 1 ' input levels dependent on the supply voltage and includes hysteresis for noise immunity.

CW/CCW - (Pin 10) This input determines the motor's rotational direction. When the input is held low, (OV, see the electrical characteristics) the motor's direction is nominally clockwise (CW). When the input is in the high state, Logic ' 1 ', the motor direction is nominally counter clockwise (CCW), depending on the motor connections.
Full/Half Step - (Pin 8) This input determines the angular rotation of the motor for each clock pulse. In the low state, the motor will make a full step for each applied clock pulse, while in the high state, the motor will make half a step.
\(\mathbf{V}_{\mathbf{D}}\) - (Pin 2) This pin is used to protect the outputs (1, 3,14, 16) where large positive spikes occur due to switching the motor coils. The maximum allowable voltage on these pins is the clamp voltage (\(\mathrm{V}_{\text {clamp }}\)). Motor performance is improved if a zener diode is connected between Pin 2 and 15, as shown in Figure 1.

The following conditions have to be considered when selecting the zener diode:
\[
\begin{aligned}
\mathrm{V}_{\text {clamp }} & =\mathrm{V}_{\mathrm{M}}+6.0 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{Z}} & =\mathrm{V}_{\text {clamp }}-\mathrm{V}_{\mathrm{M}}-\mathrm{V}_{\mathrm{F}}
\end{aligned}
\]
where: \(\quad V_{F}=\) clamp diodes forward voltage drop (see Figure 4)
\(V_{\text {clamp }}: \leq 20 \mathrm{~V}\) for SAA1042V \(\leq 30 \mathrm{~V}\) for SAA1042AV
Pins 2 and 15 can be linked, in this case \(V_{Z}=0 V\).

Set/Bias Input - (Pin 6) This input has two functions:
1) The resistor \(R_{B}\) adapts the drivers to the motor current.
2) A pulse via the resistor \(R_{B}\) sets the outputs \((1,3,14,16)\) to a defined state.
The resistor \(R_{B}\) can be determined from the graph of Figure 2 according to the motor current and voltage. Smaller values of \(\mathrm{R}_{\mathrm{B}}\) will increase the power dissipation of the circuit and larger values of \(R_{B}\) may increase the saturation voltage of the driver transistors.

When the "set" function is not used, terminal A of the resistor \(R_{B}\) must be grounded. When the set function is used, terminal A has to be connected to an open-collector (buffer) circuit. Figure 7 shows this configuration. The buffer circuit (off-state) has to sustain the motor voltage (\(\mathrm{V}_{\mathrm{M}}\)). When a
pulse is applied via the buffer and the bias resistor (\(\mathrm{R}_{\mathrm{B}}\)), the motor driver transistors are turned off during the pulse and after the pulse has ended, the outputs will be in defined states. Figure 6 shows the Timing Diagram.

Figure 7 illustrates a typical application in which the SAA1042 drives a 12 V stepper motor with a current consumption of \(200 \mathrm{~mA} /\) coil. A bias resistor (\(\mathrm{R}_{B}\)) of \(56 \mathrm{k} \Omega\) is chosen according to Figure 2.

The maximum voltage permitted at the output pin is \(\mathrm{V}_{\mathrm{M}}+6.0 \mathrm{~V}\) (see Maximum Ratings table), in this application \(\mathrm{V}_{\mathrm{M}}=12 \mathrm{~V}\), therefore the maximum voltage is 18 V . The outputs are protected by the internal diodes and an external zener connected between Pins 2 and 15.

From Figure 4, it can be seen that the voltage drop across the internal diodes is about 1.7 V at 200 mA . This results in a zener voltage between Pins 2 and 15 of:
\[
V_{Z}=6.0 \mathrm{~V}-1.7 \mathrm{~V}=4.3 \mathrm{~V}
\]

To allow for production tolerances and a safety margin, a 3.9 V zener has been chosen for this example.

The clock is derived from the line frequency which is phase-locked by the MC14046B and the MC14024. The voltage on the clock input is normally low (Logic ' 0 '). The motor steps on the positive going transition of the clock pulse.

The Logic ' 0 ' applied to the Full/Half input (Pin 8) operates the motor in Full Step mode. A Logic ' 1 ' at this input will result in Half Step mode. The logic level state on the CW/CCW input (Pin 10), and the connection of the motor coils to the outputs determines the rotational direction of the motor.

These two inputs should be biased to a Logic ' 0 ' or ' 1 ' and not left floating. In the event of non-use, they should be tied to ground or the logic supply line, VCC.

The output drivers can be set to a fixed operating point by use of the Set input and a bias resistor, R \(\mathrm{R}_{\mathrm{B}}\). A positive pulse to this input turns the drivers off and sets the logic state of the outputs.

After the negative going transition of the Set pulse, and until the first positive going transition of the clock, the outputs will be:
\(\mathrm{L} 1=\mathrm{L} 3=\) high and \(\mathrm{L} 2=\mathrm{L} 4=\) low, (see Figure 6).
The Set input can be driven by a MC14007B or a transistor whose collector resistor is \(R_{B}\). If the input is not used, the bottom of \(\mathrm{R}_{\mathrm{B}}\) must be grounded.

The total power dissipation of the circuit can be determined from Figures 3 and 5:
\(\mathrm{PD}_{\mathrm{D}}=0.9 \mathrm{~W}+0.08 \mathrm{~W}=0.98 \mathrm{~W}\).
The junction temperature can then be computed using Figure 8.

Figure 2. Bias Resistor \(\mathbf{R}_{B}\) versus Motor Current

Figure 4. Clamp Diode Forward Current versus Forward Voltage

Figure 3. Drive Stage Power Dissipation

Figure 5. Power Dissipation versus Logic Supply Voltage

Figure 6. Timing Diagram

Figure 7. Typical Application
Selectable Step Rates with the Time Base Derived from the Line Frequency

Figure 8. Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

\section*{Universal Motor Speed Controller}

The TDA1085C is a phase angle triac controller having all the necessary functions for universal motor speed control in washing machines. It operates in closed loop configuration and provides two ramp possibilities.
- On-Chip Frequency to Voltage Converter

TDA1085C
- On-Chip Ramps Generator
- Soft-Start

\section*{UNIVERSAL MOTOR SPEED CONTROLLER}

SEMICONDUCTOR TECHNICAL DATA
- Load Current Limitation
- Tachogenerator Circuit Sensing
- Direct Supply from AC Line
- Security Functions Peformed by Monitor

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline TDA1085CD & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{J}}=-10^{\circ}\) to \(+120^{\circ} \mathrm{C}\)} & SO-16 \\
\cline { 1 - 2 } TDA1085C & Plastic DIP \\
\hline
\end{tabular}

Figure 1. Representative Block Diagram and Pin Connections

\section*{TDA1085C}

MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), voltages are referenced to Pin 8 , ground)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply, when externally regulated, \(\mathrm{V}_{\text {Pin }} 9\) & \(\mathrm{V}_{\mathrm{CC}}\) & 15 & V \\
\hline \begin{tabular}{l}
Maximum Voltage per listed pin Pin 3 \\
Pin 4-5-6-7-13-14-16 \\
Pin 10
\end{tabular} & \(V_{\text {Pin }}\) & \[
\begin{gathered}
+5.0 \\
0 \text { to }+V_{C C} \\
0 \text { to }+17
\end{gathered}
\] & V \\
\hline \begin{tabular}{l}
Maximum Current per listed pin \\
Pin 1 and 2 \\
Pin 3 \\
Pin 9 (VCC) \\
Pin 10 shunt regulator \\
Pin 12 \\
Pin 13
\end{tabular} & IPin & \[
\begin{gathered}
-3.0 \text { to }+3.0 \\
-1.0 \text { to }+0 \\
15 \\
35 \\
-1.0 \text { to }+1.0 \\
-200
\end{gathered}
\] & mA \\
\hline Maximum Power Dissipation & PD & 1.0 & W \\
\hline Thermal Resistance, Junction-to-Air & \(\mathrm{R}_{\text {OJA }}\) & 65 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & -10 to +120 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{VOLTAGE REGULATOR} \\
\hline \begin{tabular}{l}
Internally Regulated Voltage (VPin 9) \\
(\({ }^{\prime}\) Pin \(7=0\), IPin \(9+I_{\text {Pin }} 10=15 \mathrm{~mA}, I\) Pin \(13=0\))
\end{tabular} & \(\mathrm{V}_{\mathrm{CC}}\) & 15 & 15.3 & 15.6 & V \\
\hline \(\mathrm{V}_{\text {cc }}\) Temperature Factor & TF & - & -100 & - & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Current Consumption (IPin 9)
\[
\left(V_{9}=15 \mathrm{~V}, V_{12}=V_{8}=0, I_{1}=I_{2}=100 \mu \mathrm{~A},\right.
\] \\
all other pins not connected)
\end{tabular} & ICC & - & 4.5 & 6.0 & mA \\
\hline \(V_{C C}\) Monitoring Enable Level Disable Level & \begin{tabular}{l}
\(V_{C C} E N\) \\
VCC DIS
\end{tabular} & 二 & \[
\begin{aligned}
& V_{C C}-0.4 \\
& v_{C C}-1.0
\end{aligned}
\] & - & V \\
\hline
\end{tabular}

RAMP GENERATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Speed Input Voltage Range & \(V_{\text {Pin } 5}\) & 0.08 & - & 13.5 & V \\
\hline Reference Input Bias Current & - IPin 5 & 0 & 0.8 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Ramp Selection Input Bias Current & - IPin 6 & 0 & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline Distribution Starting Level Range & \(\mathrm{V}_{\mathrm{DS}}\) & 0 & - & 2.0 & V \\
\hline Distribution Final Level \(V_{\text {Pin } 6}=0.75 \mathrm{~V}\) & \(\mathrm{V}_{\mathrm{DF}} / V_{\text {DS }}\) & 2.0 & 2.09 & 2.2 & \\
\hline \begin{tabular}{l}
High Acceleration Charging Current \\
\(V_{\text {Pin } 7}=0 \mathrm{~V}\) \\
\(V_{\text {Pin } 7}=10 \mathrm{~V}\)
\end{tabular} & - IPin 7 & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\overline{1.2}
\] & \[
\begin{aligned}
& 1.7 \\
& 1.4
\end{aligned}
\] & mA \\
\hline Distribution Charging Current \(V_{\text {Pin } 7}=2.0 \mathrm{~V}\) & - IPin 7 & 4.0 & 5.0 & 6.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

TDA1085C
ELECTRICAL CHARACTERISTICS (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular} \begin{tabular}{|l|c|c|c|c|c|}
\hline CURRENT LIMITER \\
\begin{tabular}{c}
Limiter Current Gain - IPin 7/IPin 3 \\
(IPin3 \(=-300 \mu \mathrm{~A})\)
\end{tabular} & \(\mathrm{C}_{\mathrm{g}}\) & 130 & 180 & 250 & \\
\hline \begin{tabular}{c}
Detection Threshold Voltage \\
IPin \(3=-10 \mu \mathrm{~A}\)
\end{tabular} & \(V_{\text {Pin } 3 \text { TH }}\) & 50 & 65 & 80 & mV \\
\hline
\end{tabular}

FREQUENCY TO VOLTAGE CONVERTER
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Signal "Low Voltage" Input Signal "High Voltage" Monitoring Reset Voltage & \[
\begin{aligned}
& V_{12 L} \\
& V_{12} H \\
& V_{12} R
\end{aligned}
\] & \[
\begin{gathered}
-100 \\
+100 \\
5.0
\end{gathered}
\] & - & - & \[
\begin{aligned}
& \mathrm{mV} \\
& \mathrm{mV} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Negative Clamping Voltage IPin \(12=-200 \mu \mathrm{~A}\) & - \(\mathrm{V}_{12} \mathrm{CL}\) & - & 0.6 & - & V \\
\hline Input Bias Current & - IPin12 & - & 25 & - & \(\mu \mathrm{A}\) \\
\hline Internal Current Source Gain
\[
G=\frac{I_{\operatorname{Pin} 4}}{I_{\operatorname{Pin} 11}}, V_{\operatorname{Pin} 4}=V_{\operatorname{Pin} 11}=0
\] & G. 0 & 9.5 & - & 11 & \\
\hline \[
\begin{aligned}
& \text { Gain Linearity versus Voltage on Pin } 4 \\
& \left(G_{8.6}=\text { Gain for } \mathrm{V}_{\text {Pin }} 4=8.6 \mathrm{~V}\right. \text {) } \\
& \mathrm{V}_{4}=0 \mathrm{~V} \\
& \mathrm{~V}_{4}=4.3 \mathrm{~V} \\
& \mathrm{~V}_{4}=12 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{G} / \mathrm{G}_{8.6}\) & \[
\begin{gathered}
1.04 \\
1.015 \\
0.965
\end{gathered}
\] & \[
\begin{aligned}
& 1.05 \\
& 1.025 \\
& 0.975
\end{aligned}
\] & \[
\begin{aligned}
& 1.06 \\
& 1.035 \\
& 0.985
\end{aligned}
\] & \\
\hline Gain Temperature Effect (\(\mathrm{V}_{\text {Pin }} 4=0\)) & TF & - & 350 & - & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline Output Leakage Current (1 Pin \(11=0\)) & - IPin 4 & 0 & - & 100 & nA \\
\hline
\end{tabular}

CONTROL AMPLIFIER
\begin{tabular}{|c|c|c|c|c|c|}
\hline Actual Speed Input Voltage Range & \(\mathrm{V}_{\text {Pin }} 4\) & 0 & - & 13.5 & V \\
\hline Input Offset Voltage \(V_{\text {Pin } 5}-V_{\text {Pin }} 4\) (PPin \(16=0, \mathrm{~V}_{\text {Pin }} 16=3.0\) and 8.0 V) & \(\mathrm{V}_{\text {off }}\) & 0 & - & 50 & mV \\
\hline \begin{tabular}{l}
Amplifier Transconductance \\
(\(\mathrm{I}_{\text {Pin }} 16 / \Delta\left(\mathrm{V}_{5}-\mathrm{V}_{4}\right)\) \\
(\(I_{\text {Pin }} 16=+\) and \(-50 \mu \mathrm{~A}, \mathrm{~V}_{\text {Pin } 16}=3.0 \mathrm{~V}\))
\end{tabular} & T & 270 & 340 & 400 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline Output Current Swing Capability Source Sink & IPin 16 & \[
\begin{gathered}
-200 \\
50
\end{gathered}
\] & \[
\begin{gathered}
-100 \\
100
\end{gathered}
\] & \[
\begin{array}{r}
-50 \\
200
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Output Saturation Voltage & \(\mathrm{V}_{16 \text { sat }}\) & - & - & 0.8 & V \\
\hline
\end{tabular}

TRIGGER PULSE GENERATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Synchronization Level Currents \\
Voltage Line Sensing \\
Triac Sensing
\end{tabular} & \begin{tabular}{l}
IPin 2 \\
\({ }^{1} \operatorname{Pin} 1\)
\end{tabular} & - & \[
\begin{aligned}
& \pm 50 \\
& \pm 50
\end{aligned}
\] & \[
\begin{aligned}
& \pm 100 \\
& \pm 100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline & \(T_{p}\) & - & 55 & - & \(\mu \mathrm{s}\) \\
\hline Trigger Pulse Repetition Period, conditions as a.m. & \(T_{R}\) & - & 220 & - & \(\mu \mathrm{s}\) \\
\hline Output Pulse Current \(\mathrm{V}_{\text {Pin }} 13=\mathrm{V}_{\text {CC }}-4.0 \mathrm{~V}\) & - IPin 13 & 180 & 192 & - & mA \\
\hline Output Leakage Current \(\mathrm{V}_{\text {Pin }} 13=-3.0 \mathrm{~V}\) & 113 L & - & - & 30 & \(\mu \mathrm{A}\) \\
\hline Full Angle Conduction Input Voltage & \(\mathrm{V}_{14}\) & - & 11.7 & - & V \\
\hline Saw Tooth "High" Level Voltage & \(\mathrm{V}_{14 \mathrm{H}}\) & 12 & - & 12.7 & V \\
\hline Saw Tooth Discharge Current, \({ }^{\text {I }}\) Pin15 \(=100 \mu \mathrm{~A}\) & \({ }^{\prime}\) Pin 14 & 95 & - & 105 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The TDA 1085C triggers a triac accordingly to the speed regulation requirements. Motor speed is digitally sensed by a tachogenerator and then converted into an analog voltage.
The speed set is externally fixed and is applied to the internal linear regulation input after having been submitted to programmable acceleration ramps. The overall result consists in a full motor speed
range with two acceleration ramps which allow efficient washing machine control (Distribute function).

Additionally, the TDA 1085C protects the whole system against AC line stop or variations, overcurrent in the motor and tachogenerator failure.

\section*{INPUT/OUTPUT FUNCTIONS}

\section*{(Refer to Figures 1 and 8)}

Voltage Regulator - (Pins 9 and 10) This is a parallel type regulator able to sink a large amount of current and offering good characteristics. Current flow is provided from AC line by external dropping resistors R1, R2, and rectifier: This half wave current is used to feed a smoothering capacitor, the voltage of which is checked by the IC.
When \(V_{C C}\) is reached, the excess of current is derived by another dropping resistor R10 and by Pin 10. These three resistors must be determined in order:
- To let 1.0 mA flow through Pin 10 when \(A C\) line is minimum and \(V_{C C}\) consumption is maximum (fast ramps and pulses present).
- To let \(\mathrm{V}_{10}\) reach 3.0 V when AC line provides maximum current and \(\mathrm{V}_{\mathrm{CC}}\) consumption is minimum (no ramps and no pulses).
- All along the main line cycle, the Pin 10 dynamic range must not be exceeded unless loss of regulation.

An AC line supply failure would cause shut down.
The double capacitive filter built with R1 and R2 gives an efficient \(V_{C C}\) smoothing and helps to remove noise from set speeds.

Speed Sensing - (Pins 4, 11, 12) The IC is compatible with an external analog speed sensing: its output must be applied to Pin 4, and Pin 12 connected to Pin 8.
In most of the applications it is more convenient to use a digital speed sensing with an unexpensive tachogenerator which doesn't need any tuning. During every positive cycle at Pin 12, the capacitor \(\mathrm{C}_{\text {Pin } 11}\) is charged to almost \(\mathrm{V}_{\mathrm{CC}}\) and during this time, Pin 4 delivers a current which is 10 times the one charging CPin 11. The current source gain is called \(G\) and is tightly specified, but nevertheless requires an adjustment on Rpin 4. The current into this resistor is proportional to \(\mathrm{CPin}_{11}\) and to the motor speed; being filtered by a capacitor, VPin 4 becomes smothered and represents the "true actual motor speed".

To maintain linearity into the high speed range, it is important to verify that CPin \(_{11}\) is fully charged: the internal source on Pin 11 has \(100 \mathrm{~K} \Omega\) impedance. Nevertheless \(C_{\text {Pin }} 11\) has to be as high as possible as it has a large influence on FV/C temperature factor. A \(470 \mathrm{~K} \Omega\) resistor between Pins 11 and 9 reduces leakage currents and temperature factor as well, down to neglectable effects.
Pin 12 also has a monitoring function: when its voltage is above 5.0 V , the trigger pulses are inhibited and the IC is reset. It also senses the tachogenerator continuity, and in case of any circuit aperture, it inhibits pulse, avoiding the motor to run out of control. In the TDA 1085C, Pin 12 is negatively clamped by an internal diode which removes the necessity of the external one used in the former circuit.

Ramp Generator - (Pins 5, 6, 7) The true Set Speed value taken in consideration by the regulation is the output of the ramp generator (Pin 7). With a given value of speed set input (Pin 5), the ramp generator charges an external capacitor \(\mathrm{C}_{\text {Pin }} 7\) up to the moment \(V_{\text {Pin } 5}\) (set speed) equals \(V_{\text {Pin }} 4\) (true speed), see Figure 2. The IC has an internal charging current source of 1.2 mA and delivers it from 0 to 12 V at Pin 7. It is the high acceleration ramp (5.0 s typical) which allows rapid motor speed changes without excessive strains on the mechanics. In addition, the TDA 1085C offers the possibility to break this high acceleration with the introduction of a low acceleration ramp (called Distribution) by reducing the Pin 7 source current down to \(5.0 \mu \mathrm{~A}\) under Pin 6 full control, as shown by following conditions:
- Presence of high acceleration ramp \(V_{\text {Pin }} 5>V_{\text {Pin }} 4\)
- Distribution occurs in the VPin 4 range (true motor speed) defined by \(\mathrm{V}_{\text {Pin } 6} \leqq \mathrm{~V}_{\text {Pin } 4} \leqq 2.0 \mathrm{~V}_{\text {Pin }} 6\)
For two fixed values of \(V_{\text {Pin }} 5\) and \(V_{\text {Pin } 6}\), the motor speed will have high acceleration, excluding the time for \(V_{\text {Pin }} 4\) to go from \(V_{\text {Pin }} 6\) to two times this value, high acceleration again, up to the moment the motor has reached the set speed value, at which it will stay, see Figure 3.
Should a reset happen (whatever the cause would be), the above mentioned successive ramps will be fully reprocessed from 0 to the maximum speed. If \(V_{\text {Pin }} 6=0\), only the high acceleration ramp occurs.

To get a real zero speed position, Pin 5 has been designed in such a way that its voltage from 0 to 80 mV is interpreted as a true zero. As a consequence, when changing the speed set position, the designer must be sure that any transient zero would not occur: if any, the entire circuit will be reset.
As the voltages applied by Pins 5 and 6 are derived from the internal voltage regulator supply and Pin 4 voltage is also derived from the same source, motor speed (which is determined by the ratios between above mentioned voltages) is totally independent from \(\mathrm{V}_{\mathrm{CC}}\) variations and temperature factor.

Control Amplifier - (Pin 16) It amplifies the difference between true speed (Pin 4) and set speed (Pin 5), through the ramp generator. Its output available at Pin 16 is a double sense current source with a maximum capability of \(\pm 100 \mu \mathrm{~A}\) and a specified transconductance (\(340 \mu \mathrm{~A} / \mathrm{V}\) typical). Pin 16 drives directly the trigger pulse generator, and must be loaded by an electrical network which compensates the mechanical characteristics of the motor and its load, in order to provide stability in any condition and shortest transient response; see Figure 4.
This network must be adjusted experimentally.
In case of a periodic torque variations, Pin 16 directly provides the phase angle oscillations.

Trigger Pulse Generator - (Pins 1, 2, 5, 13, 14, 15)
This circuit performs four functions:
- The conversion of the control amplifier DC output level to a proportional firing angle at every main line half cycle.
- The calibration of pulse duration.
- The repetition of the pulse if the triac fails to latch on if the current has been interrupted by brush bounce.
- The delay of firing pulse until the current crosses zero at wide firing angles and inductive loads.

Rein 15 programs the Pin 14 discharging current. Saw tooth signal is then fully determined by R15 and C14 (usually 47 nF). Firing pulse duration and repetition period are in inverse ratio to the saw tooth slope.

Pin 13 is the pulse output and an external limiting resistor is mandatory. Maximum current capability is 200 mA .
Current Limiter - (Pin 3) Safe operation of the motor and triac under all conditions is ensured by limiting the peak current. The motor current develops an alternative voltage in the shunt resistor \((0.05 \Omega\) in Figure 4). The negative half waves are transferred to Pin 3 which is positively preset at a voltage determined by resistors R3 and R4 As motor current increases, the dynamical voltage range of Pin 3 increases and when Pin 3 becomes slightly negative in respect to Pin 8, a current starts to circulate in it. This current, amplified typically 180 times, is then used to discharge Pin 7 capacitor and, as a result, reduces firing angle down to a value where an equilibrium is reached. The choice of resistors R3, R4 and shunt determines the magnitude of the discharge current signals on CPin \(^{7}\)

Notice that the current limiter acts only on peak triac current.

\section*{APPLICATION NOTES}

\section*{(Refer to Figure 4)}

\section*{Printed Circuit Layout Rules}

In the common applications, where TDA 1085C is used, there is on the same board, presence of high voltage, high currents as well as low voltage signals where millivolts count. It is of first magnitude importance to separate them from each other and to respect the following rules:
- Capacitor decoupling pins, which are the inputs of the same comparator, must be physically close to the IC, close to each other and grounded in the same point.
- Ground connection for tachogenerator must be directly connected to Pin 8 and should ground only the tacho. In effect, the latter is a first magnitude noise generator due to its proximity to the motor which induces high d \(\phi / d t\) signals.
- The ground pattern must be in the "star style" in order to fully eliminate power currents flowing in the ground network devoted to capacitors decoupling sensitive Pins: \(4,5,7,11,12,14,16\).

As an example, Figure 5 presents a PC board pattern which concerns the group of sensitive Pins and their associated capacitors into which the a.m. rules have been implemented. Notice the full separation of "Signal World" from "Power", one by line AB and their communication by a unique strip.

These rules will lead to much satisfactory volume production in the sense that speed adjustment will stay valid in the entire speed range.

\section*{Power Supply}

As dropping resistor dissipates noticeable power, it is necessary to reduce the ICC needs down to a minimum. Triggering pulses, if a certain number of repetitions are kept in reserve to cope with motor brush wearing at the end of its life, are the largest ICC user. Classical worst case configuration has to be considered to select dropping resistor. In addition, the parallel regulator must be always into its dynamic range, i.e., IPin 10 over 1.0 mA and \(\mathrm{V}_{\text {Pin }} 10\) over 3.0 V in any extreme configuration. The double filtering cell is mandatory.

\section*{Tachogenerator Circuit}

The tacho signal voltage is proportional to the motor speed. Stablility considerations, in addition, require an RC filter, the pole of which must be looked at. The combination of both elements yield a constant amplitude signal on Pin 12 in most of the speed range. It is recommended to verify this maximum amplitude to be within 1.0 V peak in order to have the largest signal/noise ratio without resetting
the integrated circuit (which occurs if \(\mathrm{V}_{\text {Pin }} 12\) reaches 5.5 V). It must be also verified that the Pin 12 signal is approximately balanced between "high" (over 300 mV) and "low". An 8-poles tacho is a minimum for low speed stability and a 16-poles is even better.

The RC pole of the tacho circuit should be chosen within 30 Hz in order to be as far as possible from the 150 Hz which corresponds to the AC line 3rd harmonic generated by the motor during starting procedure. In addition, a high value resistor coming from \(\mathrm{V}_{\mathrm{CC}}\) introduces a positive offset at Pin 12, removes noise to be interpreted as a tacho signal. This offset should be designed in order to let Pin 12 reach at least -200 mV (negative voltage) at the lowest motor speed. We remember the necessity of an individual tacho ground connection.

\section*{Frequency to Voltage Converter - F V/C}
\(\mathrm{C}_{\text {Pin }} 11\) has a recommended value of 820 pF for 8 -poles tachos and maximum motor rpm of 15000 , and RPin 11 must be always 470 K .
RPin 4 should be choosen to deliver within 12 V at maximum motor speed in order to maximize signal/noise ratio. As the FV/C ratio as well as the C Pin \(_{11}\) value are dispersed, RPin 4 mustbe adjustable and should be made of a fixed resistor in serice with a trimmer representing \(25 \%\) of the total. Adjustment would become easier.

Once adjusted, for instance at maximum motor speed, the FV/C presents a residual non linearity; the conversion factor (mV per RPM) increases by within \(7.7 \%\) as speed draws to zero. The guaranteed dispersion of the latter being very narrow, a maximum \(1 \%\) speed error is guaranteed if during Pin 5 network design the small set values are modified, once forever, according this increase.

The following formulas give \(\mathrm{V}_{\text {Pin }} 4\) :

Speed Set - (Pin 5) Upon designer choice, a set of external resistors apply a series of various voltages corresponding to the various motor speeds. When switching external resistors, verify that no voltage below 80 mV is ever applied to Pin 5. If so, a full circuit reset will occur.

\section*{TDA1085C}

Ramps Generator - (Pin 6) If only a high acceleration ramp is needed, connect Pin 6 to ground.

When a Distribute ramp should occur, preset a voltage on Pin 6 which corresponds to the motor speed starting ramp point. Distribution (or low ramp) will continue up to the moment the motor speed would have reached twice the starting value.

The ratio of two is imposed by the IC. Nevertheless, it could be externally changed downwards (Figure 6) or upwards (Figure 7).

The distribution ramp can be shortened by an external resistor from \(\mathrm{V}_{\mathrm{CC}}\) charging \(\mathrm{C}_{\text {Pin }} 7\), adding its current to the internal \(5.0 \mu \mathrm{~A}\) generator.

\section*{Power Circuits}

Triac Triggering pulse amplitude must be determined by Pin 13 resistor according to the needs in Quadrant IV. Trigger pulse duration can be disturbed by noise signals generated by the triac itself, which interfere within Pins 14 and 16, precisely those which determine it. While easily visible, this effect is harmless.
The triac must be protected from high AC line \(d V / d t\) during external disturbances by \(100 \mathrm{nF} \times 100 \Omega\) network.
Shunt resistor must be as non-inductive as possible. It can be made locally by using constantan alloy wire.
When the load is a DC fed universal motor through a rectifier bridge, the triac must be protected from commutating \(\mathrm{dV} / \mathrm{dt}\) by a 1.0 to 2.0 mH coil in series with \(\mathrm{MT}_{2}\).

Synchronization functions are performed by resistors sensing AC line and triac conduction. 820 k values are normal but could be reduced down to 330 k in order to detect the "zeros" with accuracy and to reduce the residual DC line component below 20 mA .

\section*{Current Limitation}

The current limiter starts to discharge Pin 7 capacitor (reference speed) as the motor current reaches the designed threshold level. The loop gain is determined by the resistor connecting Pin 3 to the series shunt. Experience has shown that its optimal value for a 10 Arms limitation is within \(2.0 \mathrm{k} \Omega\). Pin 3 input has a sensitivity in current which is limited to reasonable values and should not react to spikes.
If not used, Pin 3 must be connected to a maximum positive voltage of 5.0 V rather than be left open.

\section*{Loop Stability}

The Pin 16 network is predominant and must be adjusted experimentally during module development. The values indicated in Figure 4 are typical for washing machine applications but accept large modifications from one model to another. R16 (the sole restriction) should not go below 33 k , otherwise slew rate limitation will cause large transient errors for load steps.

Figure 3. Programmable Double Acceleration Ramp

Current limitation: 10 A adjusted by R4 experimentally
Ramps High acceleration: 3200 rpm per second
Distribution ramp: 10 s from 850 to 1300 rpm

\section*{Speeds: \\ Wash 800 rpm \\ Distribution 1300 \\ Spin 1: 7500}

Spin 2: 15,000

Pin 5 Voltage Set:
609 mV Including nonlinearity corrections 996 mV Including nonlinearity corrections 5,912 V Including nonlinearity corrections \(12,000 \mathrm{~V}\) Adjustment point

Motor Speed Range: 0 to \(15,000 \mathrm{rpm}\)
Tachogenerator 8 poles delivering 30 V peak to peak at 6000 rpm , in open circuit
FV/C Factor: 8 mV per rpm (12 V full speed) \(\mathrm{C}_{\text {Pin } 11}=680 \mathrm{pF} \mathrm{V}_{\mathrm{CC}}=15.3 \mathrm{~V}\)
Triac MAX15A-8 15 A 600 V
lgt \(\mathrm{min}=90 \mathrm{~mA}\) to cover Quad IV at \(-10^{\circ} \mathrm{C}\)

Figure 5. PC Board Layout

\section*{TDA1085C}

Figure 6. Distribution Speed k < 2

For \(k=1.6, \quad R_{3}=0.6(R 1+R 2)\),
\(\mathrm{R}_{3} \mathrm{C}\) within 4 seconds

Figure 7. Distribution Speed k>2

Figure 8. Simplified Schematic

\section*{Triac Phase Angle Controller}

The TDA1185A generates controlled triac triggering pulses and allows tachless speed stabilization of universal motors by an integrated positive feedback function. Typical applications are power hand tools, vacuum cleaners, mixers, light dimmer and other small appliances.
- Supply Power Obtained from AC Line
- Can be used with \(220 \mathrm{~V} / 50 \mathrm{~Hz}\) or \(110 \mathrm{~V} / 60 \mathrm{~Hz}\)
- Low Count/Cost External Components
- Optimum Triac Firing (2nd and 3rd Quadrants)

\section*{TRIAC PHASE ANGLE CONTROLLER}

SEMICONDUCTOR TECHNICAL DATA
- Repetitive Trigger Pulses when Triac Current is Interrupted by Motor Brush Bounce
- Triac Current Sensing to Allow Inductive Loads
- Programmable Soft-Start
- Power Failure Detection and General Circuit Reset
- Low Power Consumption: 6.0 mA

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline TDA1185A & \(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS (Voltages are referenced to Pin 14, ground)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \begin{tabular}{l}
Maximum Voltage Range per Listed Pin \\
Pins 3, 5, 11 (not connected) \\
Pins 4, 8, 13 \\
Pin 2 \\
Maximum Positive Voltage (No minimum value allowed; see current ratings)
\end{tabular} & \begin{tabular}{l}
\(V_{\text {Pin }}\) \\
\(V_{\text {Pin }} 12\) \\
\(V_{\text {Pin }} 1\)
\end{tabular} & \[
\begin{gathered}
-20 \text { to }+20 \\
-V_{C C} \text { to } 0 \\
-3.0 \text { to }+3.0 \\
0 \\
0.5
\end{gathered}
\] & V \\
\hline \begin{tabular}{l}
Maximum Current per Listed Pin \\
Pin 1 \\
Pins 6 and 7 \\
Pin 9 \\
Pin 10 \\
Pin 12
\end{tabular} & IPin & \[
\begin{aligned}
& \pm 20 \\
& \pm 2.0 \\
& \pm 0.5 \\
& \pm 300 \\
& -500
\end{aligned}
\] & \begin{tabular}{l}
mA \\
mA \\
mA \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline Maximum Power Dissipation (\(@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & PD & 250 & mW \\
\hline Maximum Thermal Resistance, Junction-to-Ambient & \(\mathrm{R}_{\text {өJA }}\) & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\text {A }}\) & 0 to +70 & \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), voltages are referenced to Pin 14 [ground] uniess otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min \({ }^{\text {a }}\) & \(\square>\) Typ & Max & Unit \\
\hline \begin{tabular}{l}
Power Supply \\
Zener Regulated Voltage, \(\left(V_{\text {Pin 1 }}\right) I_{\text {Pin }} 1=2.0 \mathrm{~mA}\) \\
Circuit Current Consumption, IPin 1 \\
\(\mathrm{V}_{\operatorname{Pin} 1}=-6.0 \mathrm{~V}, \mathrm{I}_{\operatorname{Pin} 2}=0 \mathrm{~A}\)
\end{tabular} & & \[
\begin{aligned}
& -9.6 \\
& -2.0
\end{aligned}
\] & \[
\begin{array}{r}
-8.6 \\
-1.0 \\
\hline
\end{array}
\] & \[
\begin{gathered}
-7.6 \\
-
\end{gathered}
\] & \begin{tabular}{l}
V \\
mA
\end{tabular} \\
\hline \begin{tabular}{l}
Monitoring Enable Supply Voltage (VEN) \\
Monitoring Disable Supply Voltage (VDIS)
\end{tabular} & \(V_{\text {Pin } 1 E N}\) VPinidIS & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}+0.2 \\
& \mathrm{v}_{\mathrm{EN}}+0.12
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{CC}}+0.5 \\
& \mathrm{v}_{\mathrm{EN}}+0.3
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
Phase Set \\
Control Voltage Static Offset \(\mathrm{V}_{\text {Pin }} 8 \mathrm{~V}_{\text {Pin }} 12\) \\
Pin 12 Input Bias Current \\
\(V_{\text {Pin } 4}\) - \(V_{\text {Pin } 12}\) Residual Offset
\end{tabular} & \begin{tabular}{l}
\(V_{\text {off }}\) \\
IPin 12
\end{tabular} & \[
\begin{array}{r}
1.2 \\
-200
\end{array}
\] & \[
\frac{-}{180}
\] & \[
\begin{gathered}
2.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{nA} \\
\mathrm{mV}
\end{gathered}
\] \\
\hline Soft-Start Capacitor Charging Current RPin \(10=100 \mathrm{k} \Omega, V_{\text {Pin } 13}\) from \(=V_{C C}\) to -3.0 V & IPin 13 & -17 & -14 & -11 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Sawtooth Generator \\
Sawtooth Capacitor Discharge Current \\
\(R_{10}=100 \mathrm{k} \Omega \mathrm{V}_{\text {Pin } 4}\) from -2.0 to - 6.0 V \\
Capacitor Charging Current \\
Sawtooth "High" Voltage (\(V_{\text {Pin 4 }}\)) \\
Sawtooth Minimum "Low" Voltage (\(V_{\text {Pin 4 4) }}\)
\end{tabular} & \begin{tabular}{l}
IPin 4 \\
Pin 4 \\
\(V_{\text {HTH }}\) \\
VLTH
\end{tabular} & \[
\begin{array}{r}
67 \\
-10 \\
-2.5
\end{array}
\] & \[
\begin{gathered}
70 \\
-1.6 \\
-7.1
\end{gathered}
\] & \[
\begin{array}{r}
73 \\
-1.5 \\
-1.0
\end{array}
\] & \[
\begin{gathered}
\mu \mathrm{A} \\
\mathrm{~mA} \\
\mathrm{~V} \\
\mathrm{~V}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Positive Feedback \\
Pin 9 Input Bias Current, \(\mathrm{V}_{\text {Pin } 9}=0\) \\
Programming Pin Voltage Related to Pin 1 Transfer Function Gain \(\Delta \mathrm{V}_{\text {Pin } 8} / \Delta \mathrm{V}_{\text {Pin }} 9\)
\[
\begin{aligned}
& \mathrm{R}_{10}=100 \mathrm{k} \Omega, \Delta V_{\text {Pin } 9}=50 \mathrm{mV} \\
& \mathrm{R}_{10}=270 \mathrm{k} \Omega, \Delta V_{\text {Pin }} 9=50 \mathrm{mV}
\end{aligned}
\] \\
Pin 8 Output Internal Impedance
\end{tabular} & \begin{tabular}{l}
IPin 9 \\
\(V_{\text {Pin }} 10\)
\[
\begin{gathered}
\mathrm{A} \\
\mathrm{~A} \\
\mathrm{Z} \mathrm{Pin} 8
\end{gathered}
\]
\end{tabular} & 1.0 & \[
\begin{gathered}
2 \times \operatorname{lPin} 10 \\
1.25 \\
\\
75 \\
36 \\
120
\end{gathered}
\] & 1.5 & \begin{tabular}{l}
V \\
k \(\Omega\)
\end{tabular} \\
\hline \begin{tabular}{l}
Trigger Pulse Generator Output Current (Sink)
\[
V_{\text {Pin } 2}=0 \mathrm{~V}
\] \\
Output Leakage Current
\[
V_{\text {Pin 2 }}=+2.0 \mathrm{~V}
\] \\
Output Pulse Width
\[
\mathrm{C}_{4}=47 \mathrm{nF}
\]
\[
\mathrm{R}_{10}=270 \mathrm{k} \Omega
\] \\
Output Pulse Repetition Period
\[
\mathrm{C}_{4}=47 \mathrm{nF}
\]
\[
\mathrm{R}_{10}=270 \mathrm{k} \Omega
\] \\
Current Synchronization Threshold Levels IPin 6, IPin 7
\end{tabular} & \[
\begin{gathered}
I_{\text {Pin }} 2 \\
\text { tp } \\
t \\
I_{\text {sync }} \\
\hline
\end{gathered}
\] & 60
-
-
-
-40 & -
55
420 & \[
\begin{gathered}
80 \\
4.0 \\
- \\
- \\
+40
\end{gathered}
\] & \begin{tabular}{l}
mA \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{s}\) \\
\(\mu \mathrm{s}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{TDA1185A}

PIN FUNCTION DESCRIPTION
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pin No. } & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Description } \\
\hline 1 & VEE & \begin{tabular}{l}
This pin is the negative supply for the chip and is clamped at -8.6 V by an \\
internal zener.
\end{tabular} \\
\hline 2 & Gate Trigger Pulse & This pin supplies - 1.0 V triac trigger pulse at twice the line frequency. \\
\hline 3 & NC & Not connected. \\
\hline 4 & Ramp Generator & The value of the capacitor at this pin determines the slope of the ramp. \\
\hline 5 & Current Sense & Not connected. \\
\hline 6 & Voltage Sense & This pin senses if the triac is on, and if so, will disable the gate trigger pulse. \\
\hline 7 & The internal timing of the chip is set by the frequency of the voltage at this pin. \\
\hline 9 & Current Program & This pin is the output of the feedback and the variation in voltage is averaged out \\
by the capacitor.
\end{tabular}

\section*{Introduction}

The Motorola TDA1185A generates trigger pulses (Pin 2) for triac control of power into an AC load. The triac trigger pulse is determined by generating a ramp voltage (Fin 4) synchronized to twice the AC line frequency and compared to an external set voltage (Pin 12) representing the conduction angle. Gate pulses are negative (sink current) and thus the triac is driven into its most effective quadrants (Q2 to Q3).

If the load is a Universal motor (the speed of which decreases as torque increases), the TDA1185A allows to increase the conduction angle proportionally to the motor current, sensed (Pin 9) by a low value resistor in series with the load.

\section*{FUNCTIONAL DESCRIPTION}

\section*{DC Power Supply}

DC power is directly derived from the AC line through a 2.0 W resistor, half-wave rectifier and filtering capacitor circuit. The VEE voltage is internally regulated by an integrated zener. Referenced to ground (Pin 14), the power supply voltage is -8.6 V . The TDA1185A internal consumption is 6.0 mA .

\section*{Trigger Pulse Generator}

It delivers a 60 mA minimum sink current pulse (Pin 2) through an internally short circuit protected output. Pulse width is roughly proportional to \(\mathrm{R}_{10} \times \mathrm{C}_{4}\) and is repeated every \(420 \mu\) s if triac fails to latch or is switched off by brush bounce. With inductive loads, the current lags in respect to the voltage. Pin 6 delays the triggering pulse up to the moment the triac is off, in order to prevent erratic power control (see Figure 2).

Figưre 2. Multipulse Generation Delayed Pulse

The triac failed to latch at the first pulse. Successive pulses are generated up to the moment latching occurs.

The triac turned off due to brush bounce, a new pulse is immediately delivered.

Approaching full conduction, a pulse would occur when the triac still carries current; the pulse is delaye until the triac turns off.

\section*{Ramp Generator}

A constant current sink discharges capacitor \(\mathrm{C}_{4}\) producing a negative voltage ramp synchronized with the main line. Pin 4 voltage is reset to -1.6 V at every AC line zero crossing (see Figure 3) and ramps down to -7.1 V . The constant current sink is externally programmable by \(\mathrm{R}_{10}\) using the equation below.
\[
\begin{aligned}
I_{4} & =I_{10} \pm 5 \% \\
I_{10} & =\frac{\left|V_{E E}+1.25\right|}{R_{10}}
\end{aligned}
\]

\section*{Main Comparator}

Its role is to determine the trigger pulse which occurs when the ramp voltage equals the phase angle set voltage at Pin 12. Fixed phase angle set voltage values lead to a constant TRIAC conduction angle unless positive current feedback (Pin 9) is connected or the Soft-Start capacitor (Pin 13) is not charged.

\section*{Soft-Start}

The TDA1185A allows the user to avoid any abrupt inrush of current into the load. This provides protection for fragile loads, light bulbs or tubes. Another advantage is that the AC line disturbance is minimized.

The conduction angle is established from zero to the set value at Pin 12 according to a voltage ramp generated by a constant current delivered to \(\mathrm{C}_{13}\). The value of current \(\mathrm{l}_{13}\) can be expressed by the following equation:
\[
I_{13}=0.2 \times I_{10} \pm 10 \%
\]

The voltage ramp lasts as long as \(V_{13}\) is lower than the set voltage \(\mathrm{V}_{12}\). Upon reset, \(\mathrm{V}_{13}\) is forced to \(\mathrm{V}_{\mathrm{EE}}\) as shown in Figure 4. If the load is a universal motor, it will not turn until a minimum conduction angle is achieved to overcome friction. The time the voltage ramp requires to reach its threshold value is considered deadtime, and can be eliminated by an appropriate series resistor at Pin 13. The voltage drop developed by \(\mathrm{I}_{13}\) thru the resistor causes the conduction angle to immediately reach the threshold value and have the Soft-Start function without dead time (see Figure 5).

Figure 3. Triggering Pulse Timing

Figure 4. Soft-Start

\section*{Positive Current Feedback}

The Universal motor speed drops as load increases. To maintain the speed, the triac conduction angle must be increased. For this purpose, Pin 9 senses the motor current as a voltage developed in a low value resistor, Rg , amplifies, rectifies and adds it internally to the set voltage at Pin 12. Any voltage variation at the output of the feedback, Pin 8 , is smoothed out by capacitor \(\mathrm{C}_{8}\). The transfer function, \(\Delta \mathrm{V}_{8}=\) \(\mathrm{f}(\Delta \mathrm{V} g)\), is shown in Figure 6.

The gain in the linear region is dependent on \(\mathrm{R}_{10}\). The voltage transferred to Pin 8 is proportional to the current RMS value, as motor current is not far from a sine wave. This averaging effect is shown in Figure 7.

With large amplitude signals at Pin 9, the change in voltage at Pin 8 reaches a maximum value. This saturation effect limits the maximum conduction angle increase. This effect is illustrated in Figure 8 where the total Pin 8 voltage can be written as follows:
\[
V_{8}=V_{12}+f\left(\left|V_{g}\right|, R_{10}\right)+1.25
\]

The effect of the feedback is illustrated in Figure 9.

\section*{Monitoring}

A central logic block performs the ENABLE/DISABLE function of the IC with respect to power supply voltage. Under DISABLE conditions, Pin 4, 8, 12 and 13 are forced to appropriate voltages to prepare for the next reset. Refer to the block diagram in Figure 10.

\section*{APPLICATION CONSIDERATIONS}

\section*{Component Selection}

To regulate the speed of a universal motor, it is necessary to determine how much gain in the feedback is needed. A change in motor current (due to load increase) causes the conduction angle to change by the appropriate amount to keep the speed constant. This entails, through trial and error, choosing an appropriate resistor value for \(\mathrm{R}_{10}\), since the gain of the feedback is determined by value of \(\mathrm{R}_{10}\) as shown in Figure 8.

Figure 7. Averaging Effect of Transfer Function

Figure 8. Transfer Function (Pin 8/Pin 9)

Once \(R_{10}\) is picked, \(C_{4}\) can be calculated from the following equation:
\[
C_{4} \approx \frac{.672}{f_{\text {line }} \times R_{10}}
\]
where \(f_{l i n e}\) is the line frequency.

Figure 9. Positive Feedback Effect (Offset voltages have been neglected)

Figure 10. Internal Block Diagram

Capacitor \(\mathrm{C}_{8}\) is an integration cap used to smooth out the voltage at Pin 8 . The value should be large enough to accomplish this task yet not too large to slow the response of the system.

Capacitor \(\mathrm{C}_{13}\) determines how fast the conduction angle reaches the set value programmed at Pin 12. To achieve at desired delay, the value for \(\mathrm{C}_{13}\) can be calculated by the following equation:
\[
C_{13} \approx \frac{8 \times t_{d}}{8.6-v_{12} \mid \times R_{10}}
\]

The remaining comporient values have experimentally been determined and are constant, regardless of application. The following table lists typical values for 110 V application.
\begin{tabular}{ccc}
Component & Value & Units \\
\(R_{S}\) & \(10 / 2.0 \mathrm{~W}\) & \(\mathrm{k} \Omega\) \\
\(\mathrm{R}_{1}\) & 100 & \(\mathrm{k} \Omega\) \\
\(\mathrm{R}_{1}\) & 100 & \(\Omega\) \\
\(\mathrm{R}_{6}\) & \(330 / 0.5 \mathrm{~W}\) & \(\mathrm{k} \Omega\) \\
\(\mathrm{R}_{7}\) & \(330 / 0.5 \mathrm{~W}\) & \(\mathrm{k} \Omega\) \\
\(\mathrm{R}_{9}\) & \(0.05 / 5.0 \mathrm{~W}\) & \(\Omega\) \\
\(\mathrm{R}_{10}\) & 100 & \(\mathrm{k} \Omega\) \\
\(\mathrm{C}_{4}\) & 0.1 & \(\mu \mathrm{~F}\) \\
\(\mathrm{C}_{8}\) & 0.22 & \(\mu \mathrm{~F}\) \\
\(\mathrm{C}_{13}\) & 10 & \(\mu \mathrm{~F}\)
\end{tabular}

Using an oscilloscope, it should be verified that the ramp generator is ramping down from -1.6 to -7.1 V . The slope of
the ramp can be changed by \(\mathrm{C}_{4}\) and the DC level of the waveform can be adjusted by \(R_{7}\).

Pin 9 has a low internal impedance and requires Rp2 to adjust the feedback level. Pin 8 must always be connected to \(V_{E E}\) through a filtering capacitor. For values of \(R_{10}\) less than \(100 \mathrm{k} \Omega\), the circuit becomes sensitive and could become unstable. Figures 11 and 12 show typical waveforms. As shown, the increase in motor current has resulted in the firing angle to decrease. This translates to an increase in the average power delivered to the load.

Figure 11. No Load Applied

Figure 12. Load Applied

\section*{Temperature Effects}

The TDA1185A has a very efficient internal temperature compensation. If the current feedback is not connected, the RMS power delivered to the load is stabilized within \(\pm 0.2 \%\) over a temperature range of 20 to \(70^{\circ} \mathrm{C}\). The feedback introduces, in the same temperature range, a drift of 250 mV on the voltage of Pin 8 ; this slight increase in conduction angle may be successfully used to compensate a motor ohmic resistance increase with temperature.

\section*{Main Line Voltage Compensation}

As the conduction angle is independent of main line voltage, any change in the latter induces a power variation to the load. A resistor connected to the rectifier anode and to Pin 12 with a capacitor to VEE will introduce a decrease in voltage at Pin 12 as the line voltage is increasing. The values of the RC network can experimentally be determined.

\section*{Firing Angle Dynamics}

With purely resistive loads, the effective RMS applied voltage to the load is directly proportional to the firing angle (Figure 13). With inductive loads; since the current lags with respect to voltage, \(100 \%\) power corresponds to a firing angle which is less than \(180^{\circ}\).

\section*{APPLICATION IDEAS}

\section*{Soft-Start}

The Soft-Start feature of the TDA1185A in itself opens the door to a lot of interesting applications. For example, the TDA1185A can be used to bring up fragile loads slowly. Expensive and sensitive tubes can be turned on slowly, thus eliminating the inrush of current that could lead to burn out. In this application, RP1 is replaced with a resistor divider such that the voltage at Pin 12 results in a conduction angle of \(180^{\circ}\). Pin 9 should be grounded, since the feedback portion of the TDA1185A is not necessary (see Figure 14). The time to achieve full conduction is found by the equation below:
\[
\Delta t \approx 8.71 \times \mathrm{R}_{10} \times \mathrm{C}_{13}
\]

\section*{Light Dimmer}

With practically no modification the TDA1185A can be used in a light dimmer application. All that is required is to ground the input to the feedback Pin 9 . By grounding Pin 9, we have disconnected the feedback loop and the conduction angle is controlled solely by RP1. Further, since the feedback is disconnected, Rg and RP2 are no longer necessary. The Soft-Start feature can still be used to protect the bulb from an inrush of current. This setup can be used in any application that requires manual control of the power delivered to the load (see Figure 15).

Figure 13. RMS Voltage versus Firing Angle

\section*{Soft Shut-Off}

Once again with little modification, the TDA1185A can be used to turnoff the load slowly. An example of this is in automatic garage lighting. Typically, lights that are on a timer go off without a warning, usually in the most inopportune time (like when you're about to step over the dog). With a soft shut-off, the light dims out slowly, alerting you that it is about to go off. As in the previous case, the feedback is disconnected and \(\mathrm{RP}_{\mathrm{P}}\) is replaced with capacitor \(\mathrm{C}_{12}\) and a switch (see Figure 16). The turn-off time can be calculated by the following equation:
\[
\Delta t \approx \mathrm{R}_{12} \times \mathrm{C}_{12}
\]
\(R_{12}\) is the sum of the two resistors on both sides of \(\mathrm{C}_{12}\).

Figure 14. Soft-Start Circuit

\section*{PC Board}

The printed circuit board in Figure 17 is included for the designer's convenience to evaluate the TDA1185A. The size of the board is intentionally small to show the compactness that can be achieved. Figure 18 shows the component layout for the PC board. RP1 has one of the outer leads connected
to \(\mathrm{V}_{\mathrm{EE}}\) and the other to \(\mathrm{R}_{12}\). The center lead of \(\mathrm{RP}_{1}\) is connected to Pin 12.
Warning Shock Hazard: It is highly recommended that an isolation transformer be used. Remove the chassis ground for all test equipment.

Figure 16. Soft Shut-Off Circuit

Figure 17. Evaluation Board
(Component Side)

\section*{TDA1185A}

Figure 18. Evaluation Board (Copper Side)

\section*{Zero Voltage Controller}

The UAA1016B is designed to drive triacs with the Zero Voltage technique which allows RFI free power regulation of resistive loads. It provides the following features:
- Proportional Temperature Control Over an Adjustable Band
- Adjustable Burst Frequency (to Comply with Standards)
- No DC Current Component Through the Main Line (to Comply with Standards)
- Negative Output Current Pulses (Triac Quadrants 2 and 3)
- Direct AC Line Operation
- Low External Components Count

ZERO VOLTAGE SWITCH
PROPORTIONAL BAND
TEMPERATURE CONTROLLER
SEMICONDUCTOR
TECHNICAL DATA

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline UAA1016B & \(T_{A}=-20^{\circ}\) to \(+100^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

\section*{UAA1016B}

MAXIMUM RATINGS (Voltages Referred to Pin 7)
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Symbol & Max. Rating & Unit \\
\hline Supply Current (IPin 5) & ICC & 15 & mA \\
\hline Nonrepetitive Supply Current (lPin 5) & ICCP & 200 & mA \\
\hline AC Synchronization Current (Pin 8) & \(\mathrm{I}_{\text {syn }}\) & 3.0 & mArms \\
\hline Maximum Pin Voltages & \begin{tabular}{l}
\(V_{\text {Pin } 1}\) \\
\(V_{\text {Pin } 2}\) \\
\(V_{\text {Pin }} 3\) \\
\(V_{\text {Pin }} 4\) \\
\(V_{\text {Pin }} 6\)
\end{tabular} & \[
\begin{array}{r}
0 ;-V_{C C} \\
0 ;-V_{C C} \\
0 ;-V_{C C} \\
0 ;-V_{C C} \\
2.0 ;-V_{C C}
\end{array}
\] & V \\
\hline Maximum Current Drain & IPin 1 & 1.0 & mA \\
\hline Power Dissipation
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] & PD & 625 & mW \\
\hline Maximum Thermal Resistance & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Temperature Range & \(T_{A}\) & -20 to +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: ESD data available upon request.
ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), Voltages Referred to Pin 7, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Current Consumption (Pins 6 and 8 not connected) & ICC & - & 0.8 & 1.5 & mA \\
\hline Stabilized Supply Voltage (\(\mathrm{V}_{\text {Pin } 5}\)) \(I_{C C}=2.0 \mathrm{~mA}\) max & \(-\mathrm{V}_{\mathrm{CC}}\) & -9.6 & -8.6 & -7.6 & V \\
\hline Output Pulse Current (\(\mathrm{V}_{\text {Pin }} 6\) from -1.0 to +1.0 V) & Iout & 60 & 90 & 120 & mA \\
\hline \begin{tabular}{l}
Output Pulse Width \\
\(R_{\text {Pin } 8}=220 \mathrm{k} \Omega, \mathrm{V}_{\text {mains }}=220 \mathrm{Vac} / 50 \mathrm{~Hz}\), (Figures 3 and 4)
\end{tabular} & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{p} 1} \\
& \mathrm{t}_{\mathrm{p} 2}
\end{aligned}
\] & \[
\begin{gathered}
58 \\
160
\end{gathered}
\] & \[
\begin{gathered}
60 \\
220
\end{gathered}
\] & \[
\begin{aligned}
& 120 \\
& 320
\end{aligned}
\] & \(\mu \mathrm{s}\) \\
\hline Comparator Input Offset Voltage (\(\mathrm{V}_{\text {Pin }} 3-\mathrm{V}_{\text {Pin }} 4\)) & \(\mathrm{V}_{\text {off }}\) & -10 & - & 10 & mV \\
\hline Comparator Common Mode Voltage Range & \(\mathrm{V}_{\mathrm{CM}}\) & \(-\mathrm{V}_{\mathrm{CC}}+1\) & - & -1.5 & V \\
\hline Input Bias Current (Pins 3 and 4) & IIB & - & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline Output Leakage Current (IPin 6) \(V_{\text {Pin } 6}=+2.0 \mathrm{~V}\) & loutL & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline Capacitor Charging Current (Source) & IPin 2 & -20 & -16 & -12 & \(\mu \mathrm{A}\) \\
\hline Capacitor Discharge Current (Sink) & I'Pin 2 & - & 6.4 & - & mA \\
\hline Sawtooth Pulse Length (\(\mathrm{CPin} 2^{\text {a }} 1.0 \mu \mathrm{~F}\)) & \(t_{\text {saw }}\) & - & 0.85 & - & S \\
\hline Output Threshold Sawtooth Levels (\(\mathrm{V}_{\text {Pin }}\) 2) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{TH} 1} \\
& \mathrm{~V}_{\mathrm{TH} 2}
\end{aligned}
\] & - & \[
\begin{gathered}
-1.0 \\
-\mathrm{v}_{\mathrm{Cc}}+1.25
\end{gathered}
\] & - & V \\
\hline Output Voltage Pin 1 & \(\mathrm{V}_{\text {Pin } 1}\) & - & \(\mathrm{V}_{\text {Pin 2 }}-0.75\) & - & V \\
\hline
\end{tabular}

\section*{CIRCUIT DESCRIPTION}

The circuit delivers current pulses to the triac at zero crossings of the main line sensed by Pin 8 through \(\mathrm{R}_{\text {sync. }}\). An internal full wave logic allows the triac to latch during full wave periods in order to avoid any dc component in the main line, in compliance with European regulations. Trigger pulses are generated when the comparator detects \(V_{\text {Pin }} 3\) is above \(V_{\text {Pin }} 4\) (or Vreference) as sensed temperature through the NTC is then lower than the set value (\(\mathrm{V}_{\text {ref }}\) corresponding to the external Wheatstone bridge equilibrium).

In order to comply with norms limiting the frequency at which a kW sized load, or above, may be connected to the main line (fluorescent tubes "flickering"), the UAA1016B has
an internal time base providing (power is delivered by bursts to the load) a proportional temperature band control. In fact, most of the heating regulation systems require low temperature overshoot for more precision and stability which cannot be accomplished by direct on/off regulation (see Figure 1). An internal low frequency sawtooth generator whose output is available at Pin 1, allows the designer to introduce a periodic linear change of \(\mathrm{V}_{\text {ref }}\). This deviation defines the temperature band allowing proportional power control (see Figure 2).

The IC is directly powered from the mains by a dropping resistor, a diode and a filter capacitor.

\section*{UAA1016B}

Figure 1. Proportional Temperature Control versus On/Off Control

(PROPORTIONAL TEMPERATURE CONTROL)

Reduced Overshoot Stability

(ON/OFF CONTROL)
Large Overshoot
Marginal Stability

\section*{KEY CIRCUIT FUNCTIONS DESCRIPTION}

\section*{Power Supply}

The rectified supply current is Zener regulated to 8.6 V . Current consumption of the UAA1016B is typically less than 1.0 mA . The major part of the current fed by the dropping resistor is used for the sensor bridge and triac gate pulses. Any excess of supply current is excess power dissipation into the integrated Zener. Current consumption of the triac pulses may be derived from Figure 3 and 4 (lgt maximum and pulse duration). Usually an \(18 \mathrm{k} \Omega, 2.0 \mathrm{~W}\) dropping resistor is convenient to feed the UAA1016.

\section*{Comparator}

When \(\mathrm{V}_{\text {Pin }} 3\) is higher than \(\mathrm{V}_{\text {Pin }} 4\left(\mathrm{~V}_{\text {ref }}\right)\), the comparator allows the triggering logic to deliver pulses to the triac (Figure 2). The offset hysteresis input voltage has been designed to be as low as possible (\(\pm 10 \mathrm{mV}\) maximum) in order to minimize the uncontrollable temperature band (proportional to the hysteresis) as per Figure 5. Noise rejection is performed by a synchronous sampling of the comparator output during very short times (typical less than 100 ns).

\section*{Sawtooth Generator}

A sawtooth voltage signal is generated by a constant current source (typical \(7.5 \mu \mathrm{~A}\)), charging an external capacitor CPin 2 between two threshold levels, \(\mathrm{V}_{\mathrm{TH} 1}\) and \(\mathrm{V}_{\mathrm{TH} 2}\), which are respectively:
\[
\begin{aligned}
& \mathrm{V}_{\text {TH } 1}=-1.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{TH} 2}=-\mathrm{V}_{\mathrm{CC}}+1.25 \mathrm{~V}
\end{aligned}
\]

Charging and discharging currents occur only with negative halfcycles of the line. In the UAA1016B, the sawtooth signal is available at Pin 1 as a voltage source \(V_{\text {Pin } 1}=V_{\text {Pin } 2-0.75 ~}\). Maximum source current is 1.0 mA , but to keep good linearity of sawtooth signal, a source current of \(40 \mu \mathrm{~A}\) is recommended (see Figure 6).

\section*{Sampling Full Wave Logic}

Two consecutive zero-crossing trigger pulses are generated at every positive mains half-cycle of the line to minimize generation of noise (as per Figure 7). Within every zero-crossing the pulses are positioned as per Figure 3. Pulse length is also adjustable by \(\mathrm{R}_{\text {sync }}\) on Pin 8 to allow positive triggering of the triac at this critical moment (firing with low voltage between main terminals requires long pulses).

\section*{Pulse Amplifier}

The pulse amplifier circuit delivers minimum current pulses of 60 mA (sink). The triac is triggered in quadrants II and III.

\section*{Synchronization Circuit}

This circuit detects mains zero-crossings through \(\mathrm{R}_{\text {sync }}\) and the value selected determines the trigger pulse length. A zero crossing current detector is employed with typical thresholds of \(\pm 27 \mu \mathrm{~A}\) to \(\pm 98 \mu \mathrm{~A}\) (see Figures 3 and 4).

\section*{UAA1016B}

Figure 2. Sawtooth Generator and Proportional Band

\section*{COMMENTS TO FIGURE 2}

Referring to Figure 1, the average value of \(\mathrm{V}_{\text {ref }}\) is set by R2 and R3. R4 defines the amplitude of the sawtooth signal superimposed on \(V_{\text {ref }}\), defining the Proportional Band.

Figure 2 shows three conditions:
1) During time t1 we always have \(V_{\text {Pin }} 3>V_{\text {ref }}\), and as a result, the comparator is always "on" and the triac fired (100\% maximum power)
2) During time t2, \(\mathrm{V}_{\text {Pin }} 3\) is in the proportional band, and the average power delivered to the load is a fraction of maximum power.
3) During time \(\mathrm{t} 3, \mathrm{~V}_{\text {Pin }}<\mathrm{V}_{\text {ref }}\), and the triac is always "off."

When the sensor temperature is above the set value and is slowly decreasing as no heating occurs, \(V_{\text {Pin }} 3-V_{\text {Pin }} 4\) must exceed half the hysteresis value before power is applied again (1). A similar effect occurs in the opposite direction when temperature sensor is below the set value and can remain stable as position (2). This defines the
"uncontrollable temperature band" which will be very small if hysteresis is also very small.

\section*{SUGGESTIONS FOR USE}

The temperature sensor circuit is a Wheatstone bridge including the sensor element. Comparator inputs may be free from power line noise only if the sensor element is purely resistive (NTC resistor). Usage of any P-N junction sensor would drastically reduce noise rejection.

Fixed phase sensing of the internal comparator output eliminates parasitic signals.

Some loads, even designed to be resistive, have in fact a slight inductive component. A phase shift at Pin 8 can be achieved with external capacitor C3 connected to Pin 8 network (see Figure 8).

Suggested maximum source current at Pin 1 is \(40 \mu \mathrm{~A}\), in order to have acceptable sawtooth signal linearity.

Figure 3. Output Pulse Width Definitions

\(t_{P 2}=\frac{\operatorname{Sin}^{-1}\left(\frac{98 \times 10^{-6}}{V_{\mathrm{ms}} \cdot \sqrt{2.0}}\right)}{360 f_{\mathrm{AC}}} \quad \mathrm{t}_{\mathrm{P} 1}=\frac{\sin ^{-1}\left(\frac{27 \times 10^{-6}}{V_{\mathrm{rms}} \cdot \sqrt{2.0}}\right)}{360 f_{\mathrm{AC}}}\)

Figure 4. Typical Output Pulse Length versus Synchronization Resistor

Figure 6. Pin 1 Internal Network

Figure 7. Trigger Pulse Generation

\section*{UAA1016B}

\section*{APPLICATION CIRCUITS}

Figure 8 shows a very simple application of the UAA1016B as an electronic rheostat having \(100 \%\) efficiency. C3 is required only if load has an inductive component. Figure 9
shows a typical application as a panel heater thermostat with a proportional temperature band of \(1.0^{\circ} \mathrm{C}\) at \(25^{\circ} \mathrm{C}\).

Figure 8. Electronic Rheostat

Figure 9. Application Circuit-Electric Radiator with Proportional Band Thermostat
(Proportional Band \(1^{\circ} \mathrm{C}\) at \(25^{\circ} \mathrm{C}\))

Product Preview
Zero Voltage Switch Power Controller

The UAA2016 is designed to drive triacs with the Zero Voltage technique which allows RFI-free power regulation of resistive loads. Operating directly on the \(A C\) power line, its main application is the precision regulation of electrical heating systems such as panel heaters or irons.

A built-in digital sawtooth waveform permits proportional temperature regulation action over \(\mathrm{a} \pm 1^{\circ} \mathrm{C}\) band around the set point. For energy savings there is a programmable temperature reduction function, and for security a sensor failsafe inhibits output pulses when the sensor connection is broken. Preset temperature (i.e. defrost) application is also possible. In applications where high hysteresis is needed, its value can be adjusted up to \(5^{\circ} \mathrm{C}\) around the set point. All these features are implemented with a very low external component count.
- Zero Voltage Switch for Triacs, up to 2.0 kW (MAC212A8)
- Direct AC Line Operation
- Proportional Regulation of Temperature over a \(1^{\circ} \mathrm{C}\) Band
- Programmable Temperature Reduction
- Preset Temperature (i.e. Defrost)
- Sensor Failsafe
- Adjustable Hysteresis
- Low External Component Count

\section*{ZERO VOLTAGE SWITCH} POWER CONTROLLER

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Operating \\
Temperature Range
\end{tabular} & Package \\
\hline UAA2016D & \multirow{2}{*}{\(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & SO-8 \\
\cline { 1 - 2 } UAA2016P & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS (Voltages referenced to Pin 7)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Current (IPin 5) & \({ }^{\text {ICC }}\) & 15 & mA \\
\hline Non-Repetitive Supply Current (Pulse Width \(=1.0 \mu \mathrm{~s}\)) & I'CP & 200 & mA \\
\hline AC Synchronization Current & \(I_{\text {sync }}\) & 3.0 & mA \\
\hline Pin Voltages & \begin{tabular}{l}
\(V_{\text {Pin } 2}\) \\
\(V_{\text {Pin }} 3\) \\
\(V_{\text {Pin }} 4\) \\
\(V_{\text {Pin }} 6\)
\end{tabular} & \[
\begin{aligned}
& 0 ; \mathrm{V}_{\text {ref }} \\
& 0 ; \mathrm{V}_{\text {ref }} \\
& 0 ; \mathrm{v}_{\text {ref }} \\
& 0 ; \mathrm{V}_{\mathrm{EE}}
\end{aligned}
\] & V \\
\hline \(\mathrm{V}_{\text {ref }}\) Current Sink & IPin 1 & 1.0 & mA \\
\hline \begin{tabular}{l}
Output Current (Pin 6) \\
(Pulse Width \(<400 \mu \mathrm{~s}\))
\end{tabular} & lo & 150 & mA \\
\hline Power Dissipation & PD & 625 & mW \\
\hline Thermal Resistance, Junction-to-Air & \(\mathrm{R}_{\text {өJA }}\) & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -20 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-7.0 \mathrm{~V}\right.\), voltages referred to \(\operatorname{Pin} 7\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Supply Current (Pins 6, 8 not connected)
\[
\left(\mathrm{T}_{A}=-20^{\circ} \text { to }+85^{\circ} \mathrm{C}\right)
\] & ICC & - & 0.9 & 1.5 & mA \\
\hline Stabilized Supply Voltage (Pin 5) (ICC \(=2.0 \mathrm{~mA}\)) & \(\mathrm{V}_{\text {EE }}\) & -10 & -9.0 & -8.0 & V \\
\hline Reference Voltage (Pin 1) & \(\mathrm{V}_{\text {ref }}\) & -6.5 & -5.5 & -4.5 & V \\
\hline \[
\begin{aligned}
& \text { Output Pulse Current }\left(T_{A}=-20^{\circ} \text { to }+85^{\circ} \mathrm{C}\right) \\
& \left(R_{\text {out }}=60 \mathrm{~W}, \mathrm{~V}_{E E}=-8.0 \mathrm{~V}\right)
\end{aligned}
\] & 10 & 90 & 100 & 130 & mA \\
\hline Output Leakage Current (\(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\)) & lOL & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline Output Pulse Width (\(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+85^{\circ} \mathrm{C}\)) (Note 1) (Mains \(=220 \mathrm{Vrms}, \mathrm{R}_{\text {sync }}=220 \mathrm{k} \Omega\)) & \(T_{P}\) & 50 & - & 100 & \(\mu \mathrm{s}\) \\
\hline Comparator Offset (Note 5) & \(V_{\text {off }}\) & -10 & - & +10 & mV \\
\hline Sensor Input Bias Current & IB & - & - & 0.1 & \(\mu \mathrm{A}\) \\
\hline Sawtooth Period (Note 2) & Ts & - & 40.96 & - & sec \\
\hline Sawtooth Amplitude (Note 6) & As & 50 & 70 & 90 & mV \\
\hline Temperature Reduction Voltage (Note 3) (Pin 4 Connected to \(V_{C C}\)) & \(\mathrm{V}_{\text {TR }}\) & 280 & 350 & 420 & mV \\
\hline Internal Hysteresis Voltage (Pin 2 Not Connected) & \(\mathrm{V}_{\mathrm{H}}\) & - & 10 & - & mV \\
\hline Additional Hysteresis (Note 4) (Pin 2 Connected to \(\mathrm{V}_{\mathrm{CC}}\)) & \(\mathrm{V}_{\mathrm{H}}\) & 280 & 350 & 420 & mV \\
\hline Failsafe Threshold (\(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+85^{\circ} \mathrm{C}\)) (Note 7) & \(\mathrm{V}_{\text {FSth }}\) & 180 & - & 300 & mV \\
\hline
\end{tabular}

NOTES: 1. Output pulses are centered with respect to zero crossing point. Pulse width is adjusted by the value of \(\mathrm{R}_{\text {sync }}\). Refer to application curves.
2. The actual sawtooth period depends on the \(A C\) power line frequency. It is exactly 2048 times the corresponding period. For the 50 Hz case it is 40.96 sec . For the 60 Hz case it is 34.13 sec . This is to comply with the European standard, namely that 2.0 kW loads cannot be connected or removed from the line more than once every 30 sec .
3.350 mV corresponds to \(5^{\circ} \mathrm{C}\) temperature reduction. This is tested at probe using internal test pad. Smaller temperature reduction can be obtained by adding an external resistor between Pin 4 and \(V_{C C}\). Refer to application curves.
4.350 mV corresponds to a hysteresis of \(5^{\circ} \mathrm{C}\). This is tested at probe using internal test pad. Smaller additional hysteresis can be obtained by adding an external resistor between Pin 2 and \(V_{C C}\). Refer to application curves.
5. Parameter guaranteed but not tested. Worst case 10 mV corresponds to \(0.15^{\circ} \mathrm{C}\) shift on set point.
6. Measured at probe by internal test pad. 70 mV corresponds to \(1^{\circ} \mathrm{C}\). Note that the proportional band is independent of the NTC value.
7. At very low temperature the NTC resistor increases quickly. This can cause the sensor input voltage to reach the failsafe threshold, thus inhibiting output pulses; refer to application schematics. The corresponding temperature is the limit at which the circuit works in the typical application. By setting this threshold at 0.05 Vref, the NTC value can increase up to 20 times its nominal value, thus the application works below \(-20^{\circ} \mathrm{C}\).

Figure 1. Application Schematic

\section*{APPLICATION INFORMATION}
(For simplicity, the LED in series with Rout is omitted in the following calculations.)

\section*{Triac Choice and Rout Determination}

Depending on the power in the load, choose the triac that has the lowest peak gate trigger current. This will limit the output current of the UAA2016 and thus its power consumption. Use Figure 4 to determine Rout according to the triac maximum gate current (IGT) and the application low temperature limit. For a 2.0 kW load at 220 Vrms , a good triac choice is the Motorola MAC212A8. Its maximum peak gate trigger current at \(25^{\circ} \mathrm{C}\) is 50 mA .

For an application to work down to \(-20^{\circ} \mathrm{C}, \mathrm{R}_{\text {out }}\) should be \(60 \Omega\). It is assumed that: \(\operatorname{IGT}(\mathrm{T})=\operatorname{IGT}\left(25^{\circ} \mathrm{C}\right) \times \exp (-\mathrm{T} / 125)\) with T in \({ }^{\circ} \mathrm{C}\), which applies to the MAC212A8.

\section*{Output Pulse Width, Rsync}

The pulse with \(T_{P}\) is determined by the triac's IHold, ILatch together with the load value and working conditions (frequency and voltage):

Given the RMS AC voltage and the load power, the load value is:
\[
\mathrm{R}_{\mathrm{L}}=\mathrm{V}^{2} \mathrm{rms} / \mathrm{POWER}
\]

The load current is then:
\[
I_{\text {Load }}=\left(V r m s \times \sqrt{2} \times \sin (2 \pi f t)-V_{T M}\right) / R_{\mathrm{L}}
\]
where \(V_{T M}\) is the maximum on state voltage of the triac, \(f\) is the line frequency.
\[
\text { Set } l_{\text {Load }}=I_{\text {Latch }} \text { for } t=T_{P} / 2 \text { to calculate } T_{p} \text {. }
\]

Figures 6 and 7 give the value of \(T p\) which corresponds to the higher of the values of \(l_{\text {Hold }}\) and ILatch, assuming that \(\mathrm{V}_{\mathrm{TM}}=1.6 \mathrm{~V}\). Figure 8 gives the \(\mathrm{R}_{\text {sync }}\) that produces the corresponding Tp .

\section*{RSupply and Filter Capacitor}

With the output current and the pulse width determined as above, use Figures 9 and 10 to determine RSupply, assuming that the sinking current at \(\mathrm{V}_{\text {ref }}\) pin (including NTC bridge current) is less than 0.5 mA . Then use Figure 11 and 12 to determine the filter capacitor (\(C_{F}\)) according to the ripple desired on supply voltage. The maximum ripple allowed is 1.0 V .

\section*{Temperature Reduction Determined by \(\mathbf{R}_{1}\)}
(Refer to Figures 13 and 14.)

Figure 2. Comparison Between Proportional Control and ON/OFF Control

Figure 3. Zero Voltage Technique

\[
T_{P}=\frac{14 \times R_{\text {sync }}+7 \times 10^{5}}{V \mathrm{rms} \times \sqrt{2} \times \pi f}(\mu \mathrm{~s})
\]

\footnotetext{
\(\mathrm{f}=\mathrm{AC}\) Line Frequency (Hz)
Vrms = AC Line RMS Voltage (V)
\(\mathrm{R}_{\text {sync }}=\) Synchronization Resistor \((\Omega)\)
}

\section*{UAA2016}

\section*{CIRCUIT FUNCTIONAL DESCRIPTION}

\section*{Power Supply (Pin 5 and Pin 7)}

The application uses a current source supplied by a single high voltage rectifier in series with a power dropping resistor. An integrated shunt regulator delivers a VEE voltage of - 8.6 V with respect to Pin 7. The current used by the total regulating system can be shared in four functional blocks: IC supply, sensing bridge, triac gate firing pulses and zener current. The integrated zener, as in any shunt regulator, absorbs the excess supply current. The 50 Hz pulsed supply current is smoothed by the large value capacitor connected between Pins 5 and 7.

\section*{Temperature Sensing (Pin 3)}

The actual temperature is sensed by a negative temperature coefficient element connected in a resistor divider fashion. This two element network is connected between the ground terminal Pin 5 and the reference voltage -5.5 V available on Pin 1. The resulting voltage, a function of the measured temperature, is applied to Pin 3 and internally compared to a control voltage whose value depends on several elements: Sawtooth, Temperature Reduction and Hysteresis Adjust. (Refer to Application Information.)

\section*{Temperature Reduction}

For energy saving, a remotely programmable temperature reduction is available on Pin 4 . The choice of resistor \(\mathrm{R}_{1}\) connected between Pin 4 and VCC sets the temperature reduction level.

\section*{Comparator}

When the positive input (Pin 3) receives a voltage greater than the internal reference value, the comparator allows the triggering logic to deliver pulses to the triac gate. To improve the noise immunity, the comparator has an adjustable hysteresis. The external resistor \(\mathrm{R}_{3}\) connected to Pin 2 sets the hysteresis level. Setting Pin 2 open makes a 10 mV hysteresis level, corresponding to \(0.15^{\circ} \mathrm{C}\). Maximum hysteresis is obtained by connecting Pin 2 to VCC. In that

Figure 4. Output Resistor versus Triac Gate Current

case the level is set at \(5^{\circ} \mathrm{C}\). This configuration can be useful for low temperature inertia systems.

\section*{Sawtooth Generator}

In order to comply with European norms, the ON/OFF period on the load must exceed 30 seconds. This is achieved by an internal digital sawtooth which performs the proportional regulation without any additional component. The sawtooth signal is added to the reference applied to the comparator negative input. Figure 2 shows the regulation improvement using the proportional band action.

\section*{Noise Immunity}

The noisy environment requires good immunity. Both the voltage reference and the comparator hysteresis minimize the noise effect on the comparator input. In addition the effective triac triggering is enabled every \(1 / 3 \mathrm{sec}\).

\section*{Failsafe}

Output pulses are inhibited by the "failsafe" circuit if the comparator input voltage exceeds the specified threshold voltage. This would occur if the temperature sensor circuit is open.

\section*{Sampling Full Wave Logic}

Two consecutive zero-crossing trigger pulses are generated at every positive mains half-cycle. This ensures that the number of delivered pulses is even in every case. The pulse length is selectable by \(\mathrm{R}_{\text {sync }}\) connected on Pin 8. The pulse is centered on the zero-crossing mains waveform.

\section*{Pulse Amplifier}

The pulse amplifier circuit sinks current pulses from Pin 6 to \(\mathrm{V}_{\mathrm{EE}}\). The minimum amplitude is 70 mA . The triac is then triggered in quadrants II and III. The effective output current amplitude is given by the external resistor Rout. Eventually, an LED can be inserted in series with the Triac gate (see Figure 1).

Figure 5. Minimum Output Current

Figure 6. Output Pulse Width versus Maximum Triac Latch Current

Figure 8. Synchronization Resistor versus Output Pulse Width

Figure 10. Maximum Supply Resistor

Figure 7. Output Pulse Width versus Maximum Triac Latch Current

Figure 9. Maximum Supply Resistor

Figure 11. Minimum Filter Capacitor versus Output Current

Figure 12. Minimum Filter Capacitor

Figure 14. Temperature Reduction versus Temperature Setpoint

Figure 16. \(\mathbf{R}_{\mathbf{S}}+\mathbf{R}_{\mathbf{2}}\) versus Preset Setpoint

Figure 13. Temperature Reduction versus \(\mathbf{R}_{\mathbf{1}}\)

Figure 15. RDEF versus Preset Temperature

Figure 17. Comparator Hysteresis versus \(\mathbf{R}_{\mathbf{3}}\)

\section*{Tape and Reel Options}

\section*{In Brief}

Motorola offers the convenience of Tape and Reel packaging for our growing family of standard integrated circuit products. Reels are available to support the requirements of both first and second generation pick-and-place equipment. The packaging fully conforms to the latest EIA-481A specification. The antistatic embossed tape provides a secure cavity, sealed with a peel-back cover tape.

\section*{- Tape and Reel Configurations}

\section*{Mechanical Polarization}

\section*{Tape and Reel Configurations (continued)}

TO-92 EIA Radial Tape in Fan Fold Box or On Reel

\section*{Tape and Reel Information Table}
\begin{tabular}{|c|c|c|c|c|}
\hline Package & Tape Width (mm) & Devices(1) per Reel & Reel Size (inch) & Device Suffix \\
\hline \[
\begin{aligned}
& \text { SO-8, SOP-8 } \\
& \text { SO-14 } \\
& \text { SO-16 }
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 16 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 2,500 \\
& 2,500 \\
& 2,500
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 13 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& \text { R2 } \\
& \text { R2 } \\
& \text { R2 }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
SO-16L, SO-8+8L WIDE \\
SO-20L WIDE \\
SO-24L WIDE \\
SO-28L WIDE \\
SO-28L WIDE
\end{tabular} & \[
\begin{aligned}
& 16 \\
& 24 \\
& 24 \\
& 24 \\
& 32
\end{aligned}
\] & \[
\begin{aligned}
& 1,000 \\
& 1,000 \\
& 1,000 \\
& 1,000 \\
& 1,000
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 13 \\
& 13 \\
& 13 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& \text { R2 } \\
& \text { R2 } \\
& \text { R2 } \\
& \text { R2 } \\
& \text { R3 }
\end{aligned}
\] \\
\hline Micro-8 & 12 & 2,500 & 13 & R2 \\
\hline \begin{tabular}{l}
PLCC-20 \\
PLCC-28 \\
PLCC-44
\end{tabular} & \[
\begin{aligned}
& 16 \\
& 24 \\
& 32
\end{aligned}
\] & \[
\begin{gathered}
1,000 \\
500 \\
500
\end{gathered}
\] & \[
\begin{aligned}
& 13 \\
& 13 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& \text { R2 } \\
& \text { R2 } \\
& \text { R2 }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
PLCC-52 \\
PLCC-68 \\
PLCC-84
\end{tabular} & \[
\begin{aligned}
& 32 \\
& 44 \\
& 44
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 250 \\
& 250
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 13 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& \text { R2 } \\
& \text { R2 } \\
& \text { R2 }
\end{aligned}
\] \\
\hline TO-226AA (TO-92)(2) & 18 & 2,000 & 13 & RA, RE, RP, or RM (Ammo Pack) only \\
\hline DPAK & 16 & 2,500 & 13 & RK \\
\hline D2PAK & 24 & 800 & 13 & R4 \\
\hline SOT-23 (5 Pin) & 8 & 3,000 & 7 & TR \\
\hline SOT-89 (3/5 Pin) & 12 & 1,000 & 7 & T1 \\
\hline
\end{tabular}
\({ }^{(1)}\) Minimum order quantity is 1 reel. Distributors/OEM customers may break lots or reels at their option, however broken reels may not be returned.
(2) Integrated circuits in TO-226AA packages are available in Styes A and E only, with optional "Ammo Pack" (Suffix RP or RM). The RA and RP configurations are preferred. For ordering information please contact your local Motorola Semiconductor Sales Office.

\section*{Analog MPQ Table}

Tape/Reel and Ammo Pack
\begin{tabular}{|c|c|c|}
\hline Package Type & Package Code & MPQ \\
\hline \multicolumn{3}{|l|}{PLCC} \\
\hline Case 775 & 0802 & 1000/reel \\
\hline Case 776 & 0804 & 500/reel \\
\hline Case 777 & 0801 & 500/reel \\
\hline \multicolumn{3}{|l|}{SOIC} \\
\hline Case 751 & 0095 & 2500/reel \\
\hline Case 751A & 0096 & 2500/reel \\
\hline Case 751B & 0097 & 2500/reel \\
\hline Case 751G & 2003 & 1000/reel \\
\hline Case 751D & 2005 & 1000/reel \\
\hline Case 751E & 2008 & 1000/reel \\
\hline Case 751F & 2009 & 1000/reel \\
\hline \multicolumn{3}{|l|}{Micro-8} \\
\hline Case 846A & - & 2500/reel \\
\hline \multicolumn{3}{|l|}{TO-92} \\
\hline Case 29 & 0031 & 2000/reel \\
\hline Case 29 & 0031 & 2000/Ammo Pack \\
\hline \multicolumn{3}{|l|}{DPAK} \\
\hline Case 369A & - & 2500/reel \\
\hline \multicolumn{3}{|l|}{D2PAK} \\
\hline Case 936 & - & 800/reel \\
\hline \multicolumn{3}{|l|}{SOT-23 (5 Pin)} \\
\hline Case 1212 & - & 3000/reel \\
\hline \multicolumn{3}{|l|}{SOT-89 (3 Pin)} \\
\hline Case 1213 & - & 1000/reel \\
\hline \multicolumn{3}{|l|}{SOT-89 (5 Pin)} \\
\hline Case 1214 & - & 1000/reel \\
\hline
\end{tabular}

\section*{Packaging Information}

\section*{In Brief . . .}

The packaging availability for each device type is indicated on the individual data sheets and the Selector Guide. All of the outline dimensions for the packages are given in this section.

The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature can be found from the equation:
\[
P_{D(T A)}=\frac{T_{J(\max)}-T_{A}}{R_{\theta J A(T y p)}}
\]
where:
\(P_{D}(T A)=\) Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.
\(T_{J(\max)}=\) Maximum operating Junction Temperature as listed in the Maximum Ratings Section. See individual data sheets for \(T_{J}(\max)\) information.
\(\mathrm{T}_{\mathrm{A}}=\) Maximum desired operating Ambient Temperature
\(\mathrm{R}_{\theta \mathrm{JA}(\mathrm{Typ})}=\) Typical Thermal Resistance Junction-toAmbient

\section*{Case Outline Dimensions}

\section*{LP, P, Z SUFFIX}

CASE 29-04
Plastic Package
(TO-226AA/TO-92)
ISSUE AD

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: \(\operatorname{INCH}\).
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 0.175 & 0.205 & 4.45 & 5.20 \\
\hline B & 0.170 & 0.210 & 4.32 & 5.33 \\
\hline C & 0.125 & 0.165 & 3.18 & 4.19 \\
\hline D & 0.016 & 0.022 & 0.41 & 0.55 \\
\hline F & 0.016 & 0.019 & 0.41 & 0.48 \\
\hline G & 0.045 & 0.055 & 1.15 & 1.39 \\
\hline H & 0.095 & 0.105 & 2.42 & 2.66 \\
\hline J & 0.015 & 0.020 & 0.39 & 0.50 \\
\hline K & 0.500 & - & 12.70 & - \\
\hline L & 0.250 & - & 6.35 & - \\
\hline N & 0.080 & 0.105 & 2.04 & 2.66 \\
\hline P & - & 0.100 & - & 2.54 \\
\hline R & 0.115 & - & 2.93 & - \\
\hline V & 0.135 & - & 3.43 & - \\
\hline
\end{tabular}

KC, T SUFFIX
CASE 221A-06
Plastic Package
ISSUE Y

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: \(\operatorname{INCH}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 0.560 & 0.625 & 14.23 & 15.87 \\
\hline B & 0.380 & 0.420 & 9.66 & 10.66 \\
\hline C & 0.140 & 0.190 & 3.56 & 4.82 \\
\hline D & 0.020 & 0.045 & 0.51 & 1.14 \\
\hline F & 0.139 & 0.155 & \multicolumn{2}{|c|}{3.53} & 3.93 \\
\hline G & \multicolumn{2}{|c|}{0.100} & BSC & \multicolumn{2}{|c|}{2.54 BSC } \\
\hline H & - & 0.280 & - & 7.11 \\
\hline J & \multicolumn{2}{|c|}{} & -012 & 0.045 & 0.31 \\
\hline K & 0.500 & 1.14 \\
\hline L & 0.045 & 0.580 & \multicolumn{2}{|c|}{12.70} & 14.73 \\
\hline N & \multicolumn{2}{|c|}{0.200} & BSC & \multicolumn{2}{|c|}{5.08} \\
\hline Q & 0.100 & 0.135 & 1.77 \\
\hline R & 0.080 & 0.115 & 2.54 & 3.42 \\
\hline S & 0.020 & 0.055 & 2.04 & 2.92 \\
\hline T & 0.235 & 0.255 & \multicolumn{2}{|c|}{5.97} & 1.39 \\
\hline U & 0.000 & 0.050 & 0.47 \\
\hline
\end{tabular}

\section*{B, P, P2, V SUFFIX}

CASE 648C-03
Plastic Package
(DIP-16)
ISSUE C

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH
5. INTERNAL LEAD CONNECTION BETWEEN 4 AND 5,12 AND 13 .
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|r|}{INCHES} & \multicolumn{2}{|l|}{MILLIMETERS} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & 0.740 & 0.840 & 18.80 & 21.34 \\
\hline B & 0.240 & 0.260 & 6.10 & 6.60 \\
\hline c & 0.145 & 0.185 & 3.69 & 4.69 \\
\hline D & 0.015 & 0.021 & 0.38 & 0.53 \\
\hline E & \multicolumn{2}{|l|}{0.050 BSC} & \multicolumn{2}{|l|}{1.27 BSC} \\
\hline F & 0.040 & 0.70 & 1.02 & 1.78 \\
\hline G & \multicolumn{2}{|l|}{0.100 BSC} & \multicolumn{2}{|l|}{2.54 BSC} \\
\hline J & 0.008 & 0.015 & 0.20 & 0.38 \\
\hline \(K\) & 0.115 & 0.135 & 2.92 & 3.43 \\
\hline L & \multicolumn{2}{|l|}{0.300 BSC} & \multicolumn{2}{|l|}{7.62 BSC} \\
\hline M & \(0^{\circ}\) & \(10^{\circ}\) & \(0^{\circ}\) & \(10^{\circ}\) \\
\hline N & 0.015 & 0.040 & 0.39 & 1.01 \\
\hline
\end{tabular}

\section*{P SUFFIX}

CASE 648E-01
Plastic Package
(DIP-16)
ISSUE O

\begin{tabular}{|l|l|l|l|}
\hline\(\oplus\) & \(0.13(0.005)\) & (1) & T \\
\hline
\end{tabular}

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
. DIMENSION LTO CENTER OF LEADS WHEN FORMED PARALLEL
DIMENSION A AND B DOES NOT INCLUDE MOLD PROTRUSION.
5. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.25 (0.010)
ROUNDED CORNER OPTIONAL
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|r|}{INCHES} & \multicolumn{2}{|l|}{MILLIMETERS} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & 0.740 & 0.760 & 18.80 & 19.30 \\
\hline B & 0.245 & 0.260 & 6.23 & 6.60 \\
\hline C & 0.145 & 0.175 & 3.69 & 4.44 \\
\hline D & 0.015 & 0.021 & 0.39 & 0.53 \\
\hline F & 0.050 & 0.070 & 1.27 & 1.77 \\
\hline G & \multicolumn{2}{|l|}{0.100 BSC} & \multicolumn{2}{|l|}{2.54 BSC} \\
\hline H & \multicolumn{2}{|l|}{0.050 BSC} & \multicolumn{2}{|l|}{1.27 BSC} \\
\hline \(J\) & 0.008 & 0.015 & 0.21 & 0.38 \\
\hline K & 0.120 & 0.140 & 3.05 & 3.55 \\
\hline L & 0.295 & 0.305 & 7.50 & 7.74 \\
\hline M & \(0^{\circ}\) & \(10^{\circ}\) & \(0^{\circ}\) & \(10^{\circ}\) \\
\hline P & \multicolumn{2}{|l|}{0.200 BSC} & \multicolumn{2}{|l|}{5.08 BSC} \\
\hline R & \multicolumn{2}{|l|}{0.300 BSC} & \multicolumn{2}{|l|}{7.62 BSC} \\
\hline S & 0.015 & 0.035 & 0.39 & 0.88 \\
\hline
\end{tabular}

\section*{P SUFFIX}

CASE 649-03

DW SUFFIX
CASE 751E-04
Plastic Package (SO-24L,
SOP (16+4+4)L)
ISSUE E

notes:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS A AND B DO NOT INCLUDE

MAXIMROTRUSION. PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE \(0.13(0.005)\) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION
\begin{tabular}{|c|r|r|r|r|}
\hline & \multicolumn{2}{|c|}{ MILIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & \multicolumn{2}{|c|}{ MIN } & MAX & MIN \\
\hline A & 15.25 & 15.54 & 0.601 & 0.612 \\
\hline B & 7.40 & 7.60 & 0.292 & 0.299 \\
\hline C & 2.35 & 2.65 & 0.093 & 0.104 \\
\hline D & 0.35 & 0.49 & 0.014 & 0.019 \\
\hline F & 0.41 & 0.90 & 0.016 & 0.035 \\
\hline G & \multicolumn{2}{|c|}{1.27} & BSC & \multicolumn{2}{|c|}{0.050} & BSC \\
\hline J & 0.23 & 0.32 & 0.009 & 0.013 \\
\hline K & 0.13 & 0.29 & 0.005 & 0.011 \\
\hline M & \(0^{\circ}\) & \(8^{\circ}\) & 0 & \(0^{\circ}\) \\
\hline P & 10.05 & 10.55 & 0.395 & \(8^{\circ}\) \\
\hline R & 0.25 & 0.75 & 0.010 & 0.029 \\
\hline
\end{tabular}

\section*{DW SUFFIX}

CASE 751F-04
Plastic Package (SO-28L, SOIC-28)
ISSUE E

\section*{NOTES}
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE

MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION \(0.15(0.006)\) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILLMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 17.80 & 18.05 & 0.701 & 0.711 \\
\hline B & 7.40 & 7.60 & 0.292 & 0.299 \\
\hline C & 2.35 & 2.65 & 0.093 & 0.104 \\
\hline D & 0.35 & 0.49 & 0.014 & 0.019 \\
\hline F & 0.41 & 0.90 & 0.016 & 0.035 \\
\hline G & 1.27 & BSC & \multicolumn{2}{|c|}{0.050 BSC } \\
\hline J & 0.23 & 0.32 & 0.009 & 0.013 \\
\hline K & 0.13 & 0.29 & 0.005 & 0.011 \\
\hline M & \(0^{\circ}\) & \(8^{\circ}\) & \(0^{\circ}\) & \(8^{\circ}\) \\
\hline P & 10.01 & 10.55 & 0.395 & 0.415 \\
\hline R & 0.25 & 0.75 & 0.010 & 0.029 \\
\hline
\end{tabular}

DW SUFFIX
CASE 751G-02
Plastic Package (SO-16L, SOP-16L, SOP-8+8L) ISSUE A

NOTES
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982 .
2. CONTROLIING DIMENSION: MLLIMETER
2. CONTROLLNG DIMENSION: MILIMETER. protrusion.
4. MAXIMUM MOLD PROTRUSION \(0.15(0.006)\) PER SIDE.
DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE \(0.13(0.005)\) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.
\begin{tabular}{|c|r|r|r|r|}
\hline & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 10.15 & 10.45 & 0.400 & 0.411 \\
\hline B & 7.40 & 7.60 & 0.292 & 0.299 \\
\hline C & 235 & 2.65 & 0093 & 0.104 \\
\hline D & 0.35 & 0.49 & 0.014 & 0.019 \\
\hline F & 0.50 & 0.90 & 0.020 & 0.035 \\
\hline G & \multicolumn{2}{|c|}{1.27 BSC } & \multicolumn{2}{|c|}{0.050 BSC } \\
\hline J & 0.25 & \multicolumn{1}{c|}{0.32} & 0.010 & 0.012 \\
\hline K & 0.10 & 0.25 & 0.004 & 0.009 \\
\hline M & \(0^{\circ}\) & \(7^{\circ}\) & 0 & \(0^{\circ}\) \\
\hline P & 10.05 & 10.55 & 0.395 & 0.415 \\
\hline R & 0.25 & 0.75 & 0.010 & 0.029 \\
\hline
\end{tabular}

FN SUFFIX
CASE 775-02
Plastic Package
(PLCC-20)
ISSUE C

NOTES:
1. DATUMS-L-,-M-, AND -N-DETERMINED Where top of ead shoulder exits pla bODY AT MOLD PARTING LINE.
2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM-T-, SEATING PLANE. 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
5. CONTROLLING DIMENSION: INCH.
6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE HDIMENSION TO BE SMALLER THAN 0.025 (0.635).

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 0.385 & 0.395 & 9.78 & 10.03 \\
\hline B & 0.385 & 0.395 & 9.78 & 10.03 \\
\hline C & 0.165 & 0.180 & 4.20 & 4.57 \\
\hline E & 0.090 & 0.110 & 2.29 & 2.79 \\
\hline F & 0.013 & 0.019 & 0.33 & 0.48 \\
\hline G & 0.050 BSC & 1.27 \\
\hline H & 0.026 & 0.032 & 0.66 & 0.81 \\
\hline J & 0.020 & - & 0.51 & - \\
\hline K & 0.025 & - & 0.64 & - \\
\hline R & 0.350 & 0.356 & 8.89 & 9.04 \\
\hline U & 0350 & 0.356 & 8.89 & 9.04 \\
\hline V & 0.042 & 0.048 & 1.07 & 1.21 \\
\hline W & 0.042 & 0.048 & 1.07 & 1.21 \\
\hline X & 0.042 & 0.056 & 1.07 & 1.42 \\
\hline Y & - & 0.020 & - & 0.50 \\
\hline Z & \(2{ }^{\circ}\) & \(10^{\circ}\) & \(2{ }^{\circ}\) & \(10^{\circ}\) \\
\hline G1 & 0.310 & 0.330 & 7.88 & 8.38 \\
\hline K1 & 0.040 & - & 1.02 & - \\
\hline
\end{tabular}

FN SUFFIX
CASE 776-02
Plastic Package
(PLCC-28)
ISSUE D

VIEW D-D

\begin{tabular}{|l|l|l|l|}
\hline\(\oplus\) & \(0.010(0.250)(\) (3) & T & L-M(S) \\
\hline
\end{tabular}

VIEW S

NOTES:
1. DATUMS \(-\mathrm{L}-,-\mathrm{M}-\), AND - \(\mathrm{N}-\) DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
5. CONTROLLING DIMENSION: INCH
6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BLASH, BU THE TOP AND BOTTOM OF THE BETWEEN THE
7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION OR INTRUSION. THE DAMBA
PROTRUSION(S) SHALL NOT CAUSE THE H PROTRUSION(S) SHALL NOT CAUSE THE
DIMENSION TO BE GREATER THAN 0.037 DIMENSION TO BE GREATER THAN 0.037
\((0.940)\). THE DAMBAR INTRUSION(S) SHALL (0.940). THE DAMBAR INTRUSION(S) SHA
NOT CAUSE THE H DIMENSION TO BE NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 0.485 & 0.495 & 12.32 & 12.57 \\
\hline B & 0.485 & 0.495 & 12.32 & 12.57 \\
\hline C & 0.165 & 0.180 & 4.20 & 4.57 \\
\hline E & 0.090 & 0.110 & 2.29 & 2.79 \\
\hline F & 0.013 & 0.019 & 0.33 & 0.48 \\
\hline G & 0.050 & BSC & \multicolumn{1}{|c|}{1.27} & BSC \\
\hline H & 0.026 & 0.032 & 0.66 & 0.81 \\
\hline J & 0.020 & - & 0.51 & - \\
\hline K & 0.025 & - & 0.64 & - \\
\hline R & 0.450 & 0.456 & 11.43 & 11.58 \\
\hline U & 0.450 & 0.456 & 11.43 & 11.58 \\
\hline V & 0.042 & 0.048 & 1.07 & 1.21 \\
\hline W & 0.042 & 0.048 & 1.07 & 1.21 \\
\hline \(\mathbf{X}\) & 0.042 & 0.056 & 1.07 & 1.42 \\
\hline \(\mathbf{Y}\) & - & 0.020 & - & 0.50 \\
\hline \(\mathbf{Z}\) & \(2{ }^{\circ}\) & \(10^{\circ}\) & \(2^{\circ}\) & \(10^{\circ}\) \\
\hline G1 & 0.410 & 0.430 & 10.42 & 10.92 \\
\hline K1 & 0.040 & - & 1.02 & - \\
\hline
\end{tabular}

FTB SUFFIX
CASE 824D-01
Plastic Package
(TQFP-44)
ISSUE O

NOTES.
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE -AB-IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -T-, - \(\cup\)-AND \(-Z-\) TO BE DETERMINED AT DATUM PLANE -AB-.
5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -AC-.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -AB-
DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.530 (0.021).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{MILLIMETERS} & \multicolumn{2}{|r|}{INCHES} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & 9.950 & 10.050 & 0.392 & 0.396 \\
\hline B & 9.950 & 10.050 & 0.392 & 0.396 \\
\hline C & 1.400 & 1.600 & 0.055 & 0.063 \\
\hline D & 0.300 & 0.450 & 0.012 & 0.018 \\
\hline E & 1.350 & 1.450 & 0.053 & 0.057 \\
\hline F & 0.300 & 0.400 & 0.012 & 0.016 \\
\hline G & \multicolumn{2}{|l|}{0.800 BSC} & \multicolumn{2}{|l|}{0.031 BSC} \\
\hline H & 0.050 & 0.150 & 0.002 & 0.006 \\
\hline \(J\) & 0.090 & 0.200 & 0.004 & 0.008 \\
\hline K & 0.450 & 0.550 & 0.018 & 0.022 \\
\hline L & \multicolumn{2}{|l|}{8.000 BSC} & \multicolumn{2}{|l|}{0.315 BSC} \\
\hline M & \multicolumn{2}{|r|}{\(12^{\circ} \mathrm{REF}\)} & \multicolumn{2}{|r|}{\(12^{\circ} \mathrm{REF}\)} \\
\hline N & 0.090 & 0.160 & 0.004 & 0.006 \\
\hline Q & \(1{ }^{\circ}\) & \(5^{\circ}\) & \(1{ }^{\circ}\) & \(5^{\circ}\) \\
\hline R & 0.100 & 0.200 & 0.004 & 0.008 \\
\hline S & 11.900 & 12.100 & 0.469 & 0.476 \\
\hline V & 11.900 & 12.100 & 0.469 & 0.476 \\
\hline W & \multicolumn{2}{|l|}{0.200 REF} & \multicolumn{2}{|l|}{0.008 REF} \\
\hline X & \multicolumn{2}{|r|}{1.000 REF} & \multicolumn{2}{|l|}{0.039 REF} \\
\hline Y & \multicolumn{2}{|r|}{\(12^{\circ}\) REF} & \multicolumn{2}{|r|}{\(12^{\circ} \mathrm{REF}\)} \\
\hline
\end{tabular}

FB SUFFIX CASE 840F-01 Plastic Package ISSUE O

DETAIL AA

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETEA
3. DATUM PLANE-AB-IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS-T-,-U-AND-Z-TO BE DETERMINED
. ATDATUM PLANE-AC-
DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE-AC-
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
6. PROTRUSION. ALLOWABLE PROTRUSIONIS PROTRUSION. ALLOWABLE PROTRUSION IS
\(0.25(0.010)\) PER SIDE. DIMENSIONS A AND B DO 0.25 (0.010 PER SIDE. DIMENSIONS
INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -AB-
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.350 (0.014).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{MILLIMETERS} & \multicolumn{2}{|r|}{INCHES} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & 9.950 & 10.050 & 0.392 & 0.396 \\
\hline B & 9.950 & 10.050 & 0.392 & 0.396 \\
\hline C & 1.400 & 1.600 & 0.055 & 0.063 \\
\hline D & 0.170 & 0.270 & 0.007 & 0.011 \\
\hline E & 1.350 & 1.450 & 0.053 & 0.057 \\
\hline F & 0.170 & 0.230 & 0.007 & 0.009 \\
\hline G & \multicolumn{2}{|l|}{0.500 BSC} & \multicolumn{2}{|l|}{0.020 BSC} \\
\hline H & 0.050 & 0.150 & 0.002 & 0.006 \\
\hline \(J\) & 0.090 & 0.200 & 0.004 & 0.008 \\
\hline K & 0.450 & 0.550 & 0.018 & 0.022 \\
\hline L & \multicolumn{2}{|r|}{7.500 BSC} & \multicolumn{2}{|l|}{0.295 BSC} \\
\hline M & \multicolumn{2}{|r|}{\(12^{\circ}\) REF} & \multicolumn{2}{|r|}{\(12^{\circ}\) REF} \\
\hline N & 0.090 & 0.160 & 0.004 & 0.006 \\
\hline P & \multicolumn{2}{|l|}{0.250 BSC} & \multicolumn{2}{|l|}{0.010 BSC} \\
\hline Q & \(1{ }^{\circ}\) & \(5^{\circ}\) & \(1^{\circ}\) & \(5{ }^{\circ}\) \\
\hline R & 0.100 & 0.200 & 0.004 & 0.008 \\
\hline 5 & 11.900 & 12.100 & 0.469 & 0.476 \\
\hline V & 11.900 & 12.100 & 0.469 & 0.476 \\
\hline W & \multicolumn{2}{|l|}{0.200 REF} & \multicolumn{2}{|l|}{0.008 REF} \\
\hline X & \multicolumn{2}{|l|}{1.000 REF} & \multicolumn{2}{|l|}{0.039 REF} \\
\hline Y & \multicolumn{2}{|r|}{\(12^{\circ}\) REF} & \multicolumn{2}{|r|}{\(12^{\circ}\) REF} \\
\hline
\end{tabular}

\section*{DM SUFFIX}

CASE 846A-02
Plastic Package
(Micro-8)
ISSUE C

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 2.90 & 3.10 & 0.114 & 0.122 \\
\hline B & 2.90 & 3.10 & 0.114 & 0.122 \\
\hline C & - & 1.10 & - & 0.043 \\
\hline D & 0.25 & 0.40 & 0.010 & 0.016 \\
\hline G & 0.65 BSC & \multicolumn{2}{|c|}{0.026 BSC } \\
\hline H & 0.05 & 0.15 & 0.002 & 0.006 \\
\hline J & 0.13 & 0.23 & 0.005 & 0.009 \\
\hline K & 4.75 & 5.05 & 0.187 & 0.199 \\
\hline L & 0.40 & 0.70 & 0.016 & 0.028 \\
\hline
\end{tabular}
FB SUFFIX
CASE 848B-04
Plastic Package
(TQFP-52)

ISSUE C

\begin{tabular}{|l|l|l|l|l|}
\hline\(\phi\) & \(0.02(0.008)(1)\) & \(C\) & \(A-B(5)\) & \(D(5)\) \\
\hline
\end{tabular}
SECTION B-B
1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DATUM PLANE-H-IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -A-- -B-AND -D-TO BE DETERMINED AT
DATUM PLANE-H-.
5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. dambar cannot be located on the Lower RADIUS OR THE FOOT.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 9.90 & 10.10 & 0.390 & 0.398 \\
\hline B & 9.90 & 10.10 & 0.390 & 0.398 \\
\hline C & 2.10 & 2.45 & 0.083 & 0.096 \\
\hline D & 0.22 & 0.38 & 0.009 & 0.015 \\
\hline E & 2.00 & 2.10 & 0.079 & 0.083 \\
\hline F & 0.22 & 0.33 & 0.009 & 0.013 \\
\hline G & 0.65 BSC & \multicolumn{2}{|c|}{0.026} & BSC \\
\hline H & - & 0.25 & \multicolumn{4}{|c|}{0.010} \\
\hline J & 0.13 & 0.23 & 0.005 & 0.009 \\
\hline K & 0.65 & 0.95 & 0.026 & 0.037 \\
\hline L & 7.80 & REF & 0.307 & REF \\
\hline M & \(5^{\circ}\) & \(10^{\circ}\) & \(5^{\circ}\) & \(10^{\circ}\) \\
\hline N & 0.13 & 0.17 & 0.005 & 0.007 \\
\hline Q & \(0^{\circ}\) & \(7^{\circ}\) & \(0^{\circ}\) & \(7^{\circ}\) \\
\hline R & 0.13 & 0.30 & 0.005 & 0.012 \\
\hline S & 12.95 & 13.45 & 0.510 & 0.530 \\
\hline T & 0.13 & - & 0.005 & - \\
\hline U & \(0^{\circ}\) & - & \(0^{\circ}\) & - \\
\hline V & 12.95 & 13.45 & 0.510 & 0.530 \\
\hline W & 0.35 & 0.45 & \multicolumn{1}{|c|}{0.014} & 0.018 \\
\hline X & 1.6 & REF & 0.063 & REF \\
\hline
\end{tabular}

FB SUFFIX
CASE 848D-03
Plastic Package ISSUE C

VIEW Y

SECTION AB-AB ROTATED \(90^{\circ}\) CLOCKWISE

VIEW AA

NOTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETEA
3. DATUM PLANE - H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE
4. DATUMS -,\(---M-A N D-N-T O B E D E T E R M I N E D\) AT DATUM PLANE-H-
5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -T-
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO NCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.46 0.018). MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07 (0.003).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{MILLIMETERS} & \multicolumn{2}{|r|}{INCHES} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & \multicolumn{2}{|l|}{10.00 BSC} & \multicolumn{2}{|l|}{0.394 BSC} \\
\hline A1 & \multicolumn{2}{|l|}{5.00 BSC} & \multicolumn{2}{|l|}{0.197 BSC} \\
\hline B & \multicolumn{2}{|l|}{10.00 BSC} & \multicolumn{2}{|l|}{0.394 BSC} \\
\hline B1 & \multicolumn{2}{|l|}{5.00 BSC} & \multicolumn{2}{|l|}{0.197 BSC} \\
\hline C & - & 1.70 & - & 0.067 \\
\hline C1 & 0.05 & 0.20 & 0.002 & 0.008 \\
\hline C2 & 1.30 & 1.50 & 0.051 & 0,059 \\
\hline D & 0.20 & 0.40 & 0.008 & 0.016 \\
\hline E & 0.45 & 0.75 & 0.018 & 0.030 \\
\hline F & 0.22 & 0.35 & 0.009 & 0.014 \\
\hline G & \multicolumn{2}{|l|}{0.65 BSC} & \multicolumn{2}{|l|}{0.026 BSC} \\
\hline \(J\) & 0.07 & 0.20 & 0.003 & 0.008 \\
\hline K & \multicolumn{2}{|l|}{0.50 REF} & \multicolumn{2}{|l|}{0.020 REF} \\
\hline R1 & 0.08 & 0.20 & 0.003 & 0.008 \\
\hline S & \multicolumn{2}{|l|}{12.00 BSC} & \multicolumn{2}{|l|}{0.472 BSC} \\
\hline S1 & \multicolumn{2}{|l|}{6.00 BSC} & \multicolumn{2}{|l|}{0.236 BSC} \\
\hline U & 0.09 & 0.16 & 0.004 & 0.006 \\
\hline V & \multicolumn{2}{|l|}{12.00 BSC} & \multicolumn{2}{|l|}{0.472 BSC} \\
\hline V1 & \multicolumn{2}{|l|}{6.00 BSC} & \multicolumn{2}{|l|}{0.236 BSC} \\
\hline W & \multicolumn{2}{|l|}{0.20 REF} & \multicolumn{2}{|l|}{0.008 REF} \\
\hline Z & \multicolumn{2}{|l|}{1.00 REF} & \multicolumn{2}{|l|}{0.039 REF} \\
\hline \(\theta\) & \(0^{\circ}\) & \(7{ }^{\circ}\) & \(0^{\circ}\) & \(7^{\circ}\) \\
\hline \(\theta 1\) & \(0^{\circ}\) & - & \(0^{\circ}\) & - \\
\hline \(\theta 2\) & \multicolumn{2}{|l|}{\(12^{\circ} \mathrm{REF}\)} & \multicolumn{2}{|r|}{\(12^{\circ}\) REF} \\
\hline \(\theta 3\) & \(5^{\circ}\) & \(13^{\circ}\) & \(5^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

FB, FTB SUFFIX CASE 873-01 Plastic Package (TQFP-32)
ISSUE A

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DATUM PLANE -H-IS LOCATED AT BOTTOM OF IEAD AND IS COINCIDENT WITH THE LEAD WHERE LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC B
4. DATUMS - A-, -B-AND -D-TO BE DETERMINED AT DATUM PLANE -H-.
5. DIMENSIONS S AND \(V\) TO BE DETERMINED AT SEATING PLANE -C-.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.2 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE-H-
DETAIL C
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE \(0.08(0.003)\) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{MiLLIMETERS} & \multicolumn{2}{|r|}{INCHES} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & 6.95 & 7.10 & 0.274 & 0.280 \\
\hline B & 6.95 & 7.10 & 0.274 & 0.280 \\
\hline C & 1.40 & 1.60 & 0.055 & 0.063 \\
\hline D & 0.273 & 0.373 & 0.010 & 0.015 \\
\hline E & 1.30 & 1.50 & 0.051 & 0.059 \\
\hline F & 0.273 & - & 0.010 & \\
\hline G & \multicolumn{2}{|l|}{0.80 BSC} & \multicolumn{2}{|l|}{0.031 BSC} \\
\hline H & - & 0.20 & - & 0.008 \\
\hline \(J\) & 0.119 & 0.197 & 0.005 & 0.008 \\
\hline K & 0.33 & 0.57 & 0.013 & 0.022 \\
\hline L & \multicolumn{2}{|c|}{5.6 REF} & \multicolumn{2}{|l|}{0.220 REF} \\
\hline M & \(6^{\circ}\) & \(8^{\circ}\) & \(6^{\circ}\) & \(8^{\circ}\) \\
\hline N & 0.119 & 0.135 & 0.005 & 0.005 \\
\hline P & \multicolumn{2}{|l|}{0.40 BSC} & \multicolumn{2}{|l|}{0.016 BSC} \\
\hline 0 & \(5{ }^{\circ}\) & \(10^{\circ}\) & \(5^{\circ}\) & \(10^{\circ}\) \\
\hline R & 0.15 & 0.25 & 0.006 & 0.010 \\
\hline S & 8.85 & 9.15 & 0.348 & 0.360 \\
\hline T & 0.15 & 0.25 & 0.006 & 0.010 \\
\hline U & \(5^{\circ}\) & \(11^{\circ}\) & \(5^{\circ}\) & \(11^{\circ}\) \\
\hline V & 8.85 & 9.15 & 0.348 & 0.360 \\
\hline X & \multicolumn{2}{|l|}{1.00 REF} & \multicolumn{2}{|l|}{0.039 REF} \\
\hline
\end{tabular}

FTA SUFFIX
CASE 932-02
Plastic Package
(TQFP-48)
ISSUE D

SECTION AE-AE

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DATUM PLANE -AB-IS LOCATED AT BOTTOM OF

LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -T-, - \(\cup-\), AND -Z-TO BE DETERMINED AT DATUM PLANE-AB-.
5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE-AC
6. DIMENSIONS A AND B DO NOT INCLUDE MOID PROTRUSION. ALLOWABLE PROTRUSION IS PROTRUSION. ALLOWABLE PROTRUSION IS
\(0.250(0.010)\) PER SIDE. DIMENSIONS A AND B DO \(0.250(0.010)\) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE-AB--
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.350 (0.014).
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003).
9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{MILLIMETERS} & \multicolumn{2}{|c|}{INCHES} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & \multicolumn{2}{|l|}{7.000 BSC} & \multicolumn{2}{|l|}{0.276 BSC} \\
\hline A1 & \multicolumn{2}{|l|}{3.500 BSC} & \multicolumn{2}{|l|}{0.138 BSC} \\
\hline B & \multicolumn{2}{|l|}{7.000 BSC} & \multicolumn{2}{|l|}{0.276 BSC} \\
\hline B1 & \multicolumn{2}{|l|}{3.500 BSC} & \multicolumn{2}{|l|}{0.138 BSC} \\
\hline C & 1.400 & 1.600 & 0.055 & 0.063 \\
\hline D & 0.170 & 0.270 & 0.007 & 0.011 \\
\hline E & 1.350 & 1.450 & 0.053 & 0.057 \\
\hline F & 0.170 & 0.230 & 0.007 & 0.009 \\
\hline G & \multicolumn{2}{|l|}{0.500 BASIC} & \multicolumn{2}{|l|}{0.020 BASIC} \\
\hline H & 0.050 & 0.150 & 0.002 & 0.006 \\
\hline \(J\) & 0.090 & 0.200 & 0.004 & 0.008 \\
\hline K & 0.500 & 0.700 & 0.020 & 0.028 \\
\hline M & \multicolumn{2}{|r|}{\(12^{\circ}\) REF} & \multicolumn{2}{|r|}{\(12^{\circ} \mathrm{REF}\)} \\
\hline N & 0.090 & 0.160 & 0.004 & 0.006 \\
\hline P & \multicolumn{2}{|l|}{0.250 BASIC} & \multicolumn{2}{|l|}{0.010 BASIC} \\
\hline Q & \(1{ }^{\circ}\) & \(5^{\circ}\) & \(1{ }^{\circ}\) & \(5^{\circ}\) \\
\hline R & 0.150 & 0.250 & 0.006 & 0.010 \\
\hline S & \multicolumn{2}{|l|}{9.000 BSC} & \multicolumn{2}{|l|}{0.354 BSC} \\
\hline S1 & \multicolumn{2}{|l|}{4.500 BSC} & \multicolumn{2}{|l|}{0.177 BSC} \\
\hline V & \multicolumn{2}{|l|}{9.000 BSC} & \multicolumn{2}{|l|}{0.354 BSC} \\
\hline V1 & \multicolumn{2}{|l|}{4.500 BSC} & \multicolumn{2}{|l|}{0.177 BSC} \\
\hline W & \multicolumn{2}{|l|}{0.200 REF} & \multicolumn{2}{|l|}{0.008 REF} \\
\hline X & \multicolumn{2}{|l|}{1.000 REF} & \multicolumn{2}{|l|}{0.039 REF} \\
\hline
\end{tabular}

\section*{D2T SUFFIX}

CASE 936-03
Plastic Package
ISSUE B

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH.
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS AANDK.
4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 4.
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED \(0.025(0.635)\) MAXIMUM.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 0.386 & 0.403 & 9.804 & 10.236 \\
\hline B & 0.356 & 0.368 & 9.042 & 9.347 \\
\hline C & 0.170 & 0.180 & 4.318 & 4.572 \\
\hline D & 0.026 & 0.036 & 0.660 & 0.914 \\
\hline E & 0.045 & 0.055 & 1.143 & 1.397 \\
\hline F & \multicolumn{2}{|c|}{0.051} & REF & \multicolumn{2}{|c|}{1.295 REF } \\
\hline G & \multicolumn{2}{|c|}{0.100 BSC } & \multicolumn{2}{|c|}{2.540 BSC} \\
\hline H & \multicolumn{2}{|c|}{0.539} & 0.579 & 13.691 & 14.707 \\
\hline J & \multicolumn{2}{|c|}{0.125 MAX} & \multicolumn{2}{|c|}{3.175 MAX} \\
\hline K & \multicolumn{2}{|c|}{0.050 REF} & \multicolumn{2}{|c|}{1.270 REF } \\
\hline L & \multicolumn{2}{|c|}{0.000} & 0.010 & 0.000 & 0.254 \\
\hline M & \multicolumn{2}{|c|}{0.088} & 0.102 & 2.235 & 2.591 \\
\hline N & \multicolumn{2}{|c|}{0.018} & 0.026 & 0.457 & 0.660 \\
\hline P & 0.058 & 0.078 & 1.473 & 1.981 \\
\hline R & \multicolumn{2}{|c|}{\(5^{\circ} \mathrm{REF}\)} & \multicolumn{2}{|c|}{\(5^{\circ}\) REF } \\
\hline S & \multicolumn{2}{|c|}{0.116 REF} & 2.946 REF \\
\hline U & \multicolumn{2}{|c|}{0.200 MIN} & \multicolumn{2}{|c|}{5.080 MIN} \\
\hline V & \multicolumn{2}{|c|}{0.250 MIN} & \multicolumn{2}{|c|}{6.350 MIN} \\
\hline
\end{tabular}

\section*{D2T SUFFIX}

CASE 936A-02
Plastic Package (D2PAK)
ISSUE A

13

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K
4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 6.
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ DIM } & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & 0.386 & 0.403 & 9.804 & 10.236 \\
\hline B & 0.356 & 0.368 & 9.042 & 9.347 \\
\hline C & 0.170 & 0.180 & 4.318 & 4.572 \\
\hline D & 0.026 & 0.036 & 0.660 & 0.914 \\
\hline E & 0.045 & 0.055 & 1.143 & 1.397 \\
\hline G & \multicolumn{2}{|c|}{0.067 BSC } & \multicolumn{2}{|c|}{1.702 BSC } \\
\hline H & \multicolumn{2}{|c|}{0.539} & 0.579 & 13.691 & 14.707 \\
\hline K & \multicolumn{2}{|c|}{0.050 REF } & \multicolumn{2}{|c|}{1.270 REF } \\
\hline L & 0.000 & 0.010 & 0.000 & 0.254 \\
\hline M & 0.088 & 0.102 & 2.235 & 2.591 \\
\hline N & 0.018 & 0.026 & 0.457 & 0.660 \\
\hline P & 0.058 & 0.078 & 1.473 & 1.981 \\
\hline R & \multicolumn{2}{|c|}{\(5^{\circ}\) REF } & \multicolumn{2}{|c|}{\(5^{\circ}\) REF } \\
\hline S & \multicolumn{2}{|c|}{0.116 REF } & 2.946 REF \\
\hline U & \multicolumn{2}{|c|}{0.200 MIN} & \multicolumn{2}{|c|}{5.080 MIN} \\
\hline V & \multicolumn{3}{|c|}{0.250 MIN} & \multicolumn{2}{|c|}{6.350 MIN} \\
\hline
\end{tabular}

DTB SUFFIX
CASE 948H-01
Plastic Package ISSUE O

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED PROTRUSION SHALL NOT
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE-W-

\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{|c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 7.70 & 7.90 & 0.303 & 0.311 \\
\hline B & 4.30 & 4.50 & 0.169 & 0.177 \\
\hline C & - & 1.20 & - & 0.047 \\
\hline D & 0.05 & 0.15 & 0.002 & 0.006 \\
\hline F & 0.50 & 0.75 & 0.020 & 0.030 \\
\hline G & 0.65 BSC & 0.026 BSC \\
\hline H & 0.27 & 0.37 & 0.011 & 0.015 \\
\hline J & 0.09 & 0.20 & 0.004 & 0.008 \\
\hline J1 & 0.09 & 0.16 & 0.004 & 0.006 \\
\hline K & 0.19 & 0.30 & 0.007 & 0.012 \\
\hline K1 & 0.19 & 0.25 & 0.007 & 0.010 \\
\hline L & 6.40 BSC & 0.252 \\
\hline M & 0 & 0 & \(8^{\circ}\) & 0.20 \\
\hline
\end{tabular}

FTA SUFFIX

DETAIL AD

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER 3. DATUM PLANE -AB- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
DATUMS -T-, - - - AND -Z-TO BE DETERMINED AT DATUM PLANE-AB-.
. DIMENSIONS S AND V TO BE DETERMINED AT DATUM PLANE -AC-
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -AB-.
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED \(0.350(0.014)\).
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE \(0.0076(0.0003)\).
9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{MILLIMETERS} & \multicolumn{2}{|r|}{INCHES} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & \multicolumn{2}{|l|}{4.000 BSC} & \multicolumn{2}{|l|}{0.157 BSC} \\
\hline A1 & \multicolumn{2}{|l|}{2.000 BSC} & \multicolumn{2}{|l|}{0.079 BSC} \\
\hline B & \multicolumn{2}{|l|}{4.000 BSC} & \multicolumn{2}{|l|}{0.157 BSC} \\
\hline B1 & \multicolumn{2}{|l|}{2.000 BSC} & \multicolumn{2}{|l|}{0.079 BSC} \\
\hline C & 1.400 & 1.600 & 0.055 & 0.063 \\
\hline D & 0.170 & 0.270 & 0.007 & 0.011 \\
\hline E & 1.350 & 1.450 & 0.053 & 0.057 \\
\hline F & 0.170 & 0.230 & 0.007 & 0.009 \\
\hline G & \multicolumn{2}{|l|}{0.500 BSC} & \multicolumn{2}{|l|}{0.020 BSC} \\
\hline H & 0.050 & 0.150 & 0.002 & 0.006 \\
\hline \(J\) & 0.090 & 0.200 & 0.004 & 0.008 \\
\hline K & 0.500 & 0.700 & 0.020 & 0.028 \\
\hline M & \multicolumn{2}{|r|}{\(12^{\circ} \mathrm{REF}\)} & \multicolumn{2}{|l|}{\(12^{\circ} \mathrm{REF}\)} \\
\hline N & 0.090 & 0.160 & 0.004 & 0.006 \\
\hline P & \multicolumn{2}{|l|}{0.250 BSC} & \multicolumn{2}{|l|}{0.010 BSC} \\
\hline Q & \(1{ }^{\circ}\) & \(5^{\circ}\) & \(1{ }^{\circ}\) & \(5^{\circ}\) \\
\hline R & 0.150 & 0.250 & 0.006 & 0.010 \\
\hline S & \multicolumn{2}{|l|}{6.000 BSC} & \multicolumn{2}{|l|}{0.236 BSC} \\
\hline S1 & \multicolumn{2}{|l|}{3.000 BSC} & \multicolumn{2}{|l|}{0.118 BSC} \\
\hline V & \multicolumn{2}{|l|}{6.000 BSC} & \multicolumn{2}{|l|}{0.236 BSC} \\
\hline V1 & \multicolumn{2}{|l|}{3.000 BSC} & \multicolumn{2}{|l|}{0.118 BSC} \\
\hline W & \multicolumn{2}{|l|}{0.200 REF} & \multicolumn{2}{|l|}{0.008 REF} \\
\hline X & \multicolumn{2}{|l|}{1.000 REF} & \multicolumn{2}{|l|}{0.039 REF} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline\(\Phi\) & \(0.080(0.003)\) (S) & AC & T-U (S) & Z (S) \\
\hline
\end{tabular}
SECTION AE-AE

\section*{N SUFFIX}

CASE 1212-01
Plastic Package
(SOT-23)
ISSUE O

NOTES:
1. DIMENSIONS ARE IN MILLIMETERS
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. . DATUM C IS A SEATING PLANE.
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline DIM & MIIN & MAX \\
\hline A1 & 0.00 & 0.10 \\
\hline A2 & 1.00 & 1.30 \\
\hline B & 0.30 & 0.50 \\
\hline C & 0.10 & 0.25 \\
\hline D & 2.80 & 3.00 \\
\hline E & 2.50 & 3.10 \\
\hline E1 & 1.50 & 1.80 \\
\hline e & 0.95 BSC \\
\hline e1 & \multicolumn{2}{|c|}{1.90 BSC } \\
\hline L & 0.20 & - \\
\hline L1 & 0.45 & 0.75 \\
\hline
\end{tabular}

\section*{H SUFFIX}

CASE 1213-01
Plastic Package
(SOT-89)
ISSUE O

notes:
1. DIMENSIONS ARE IN MILLIMETERS
2. INTERPRET DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994
3. DATUM C IS A SEATING PLANE.
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILLIMETERS } \\
\hline DIM & MIN & MAX \\
\hline A2 & 1.40 & 1.60 \\
\hline B & 0.37 & 0.57 \\
\hline B1 & 0.32 & 0.52 \\
\hline C & 0.30 & 0.50 \\
\hline D & 4.40 & 4.60 \\
\hline D1 & 1.50 & 1.70 \\
\hline E & - & 4.25 \\
\hline E1 & 2.40 & 2.60 \\
\hline e & 1.50 & BSC \\
\hline e1 & 3.00 & BSC \\
\hline L1 & 0.80 & - \\
\hline
\end{tabular}1 Alphanumeric Index
2 Amplifiers and Comparators
3 Power Supply Circuits4 Power/Motor Control Circuits
6 Data Conversion
7 Interface Circuits 7
8 Communication Circuits 89 Consumer Electronic Circuits
10 Automotive Electronic Circuits
11 Other Analog Circuits
12 Tape and Reel Options
13 Packaging Information
14 Quality and Reliability Assurance
15 Applications and Product Literature
and Cross References
5 Voltage ReferencesCommunication Circuits
II
II
II
II
II
II
II
II

\section*{(A) MOTOROLA}

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAXO@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center 3-14-2 Tatsumi Kotọ-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8 B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298```

[^0]: C-QUAM ${ }^{\circledR}$, Designer's, Easy Switcher, GreenLine, MDTL, MECL, MECL 10,000, MONOMAX, MOSAIC®, MRTL, MTTL, MOSFET, SENSEFET, Sleep-Mode, SMARTMOS, Switchmode, and ZIP-R-TRIM ${ }^{\circledR}$ are trademarks of Motorola Inc.

[^1]: * $=$ See Communications Device Data (DL136).
 \# = Not recommended for new designs.

[^2]: * $=$ See Communications Device Data (DL136).
 \# = Not recommended for new designs.

[^3]: * $=$ See Communications Device Data (DL136).
 \# = Not recommended for new designs.

[^4]: \# = Not recommended for new designs.

[^5]: ${ }^{*} \mathrm{~T}_{\text {low }}=0^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for $\mathrm{LM} 393 / 393 \mathrm{~A}$
 LM293 $\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$
 LM2903 $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}$, $\mathrm{T}_{\text {high }}=+105^{\circ} \mathrm{C}$
 LM2903V T ${ }_{\text {low }}=-40^{\circ} \mathrm{C}, T_{\text {high }}=+125^{\circ} \mathrm{C}$
 NOTES: 2. At output switch point, $\mathrm{V}_{\mathrm{O}} \approx 1.4 \mathrm{Vdc}, \mathrm{R}_{S}=0 \Omega$ with V_{CC} from 5.0 Vdc to 30 Vdc , and over the full input common mode range (0 V to $\mathrm{V}_{\mathrm{CC}}=-1.5 \mathrm{~V}$).
 3. Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state, there fore, no loading changes will exist on the input lines.
 5. Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times are obtainable.
 6. The comparator will exhibit proper output state if one of the inputs becomes greater than V_{CC}, the other input must remain within the common mode range. The low input state must not be less than -0.3 V of ground or minus supply.

[^6]: Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

[^7]: NOTES: 1 . Output will swing to ground
 2. Not to exceed maximum package power dissipation.
 3. For operational amplifier and comparator.
 4. $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$

[^8]: Note: All capacitors are non-polarized.

[^9]: NOTES: $3 . \begin{aligned} T_{\text {low }} & =-40^{\circ} \mathrm{C} \text { for MC33071, 2, 4, } / \mathrm{A} \\ & =0^{\circ} \mathrm{C} \text { for MC34071, 2, 4, /A }\end{aligned}$

