

LINEAR AND INTERFAGE NTEGRATED GIRCUITS

Index/Cross Reference 1Amplifiers
Power/Motor Control Circuits

Voltage References

Data Conversion
Consumer Electronic Circuits
Automotive Electronic Circuits
Other Linear Circuits
Surface Mount
Technology

Packaging Information

Quality and Reliability Assurance

LINEAR AND INTERFACE INTEGRATED CIRCUITS

This publication presents technical information for the broad line of Linear and Interface Integrated Circuit products. Complete device specifications are provided in the form of Data Sheets which are categorized by product type into ten chapters for easy reference. Selector Guides by product family are provided in the beginning of each Chapter to enable quick comparisons of performance characteristics. A Cross Reference chapter lists Motorola direct replacement and functional equivalent part numbers for other industry products.

A chapter is provided to illustrate Package Outline and mounting hardware drawings, and includes information on Surface Mount Devices (SMD), and Industry Package Cross Reference Guide.

Additionally, chapters are provided with information on Quality program concepts, highreliability processing, and abstracts of available Technical Literature.

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola and (4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Motorola, Inc. general policy does not recommend the use of its components in life support applications wherein a failure or malfunction of the component may directly threaten life or injury. Per Motorola Terms and Conditions of Sale, the user of Motorola components in life support applications assumes all risks of such use and indemnifies Motorola against all damages.

C-QUAM ${ }^{\circledR}$, Designer's, MDTL, MECL, MECL 10,000, MONOMAX, MOSAIC, MRTL, MTTL, SENSEFET and Switchmode are trademarks of Motorola Inc.

Index/Cross Reference

In Brief . . .

In the Cross Reference Section of this chapter, a complete interchangeability list linking over 3000 devices is offered by most major Linear Integrated Circuits manufacturers to the nearest equivalent Motorola device. The "Motorola Direct Replacement" column lists devices with identical pin connections and package and the same or better electrical characteristics and temperature range. The "Motorola Similar Replacement" column provides a device which performs the same function but with possible differences in package configurations, pin connections, temperature range or electrical specifications.

Alphanumeric Index

Device Number	Function	Page	Device Number	Function	Page
AM26LS31	Quad EIA-422 Line Driver with Three-State Output	7-10	LM209 LM211	Positive Voltage Regulator	3-15
AM26LS32	Quad EIA-422/3 Line Receiver with Three-State Outputs	7-13	LM217	Comparator 3-Terminal Adjustable Positive	2-45
CA3054	Dual Differential Amplifier	9-7		Voltage Regulator	3-20
CA3059	Zero Voltage Switch	4-8	LM217L	Low-Current 3-Terminal	
CA3079	Zero Voltage Switch	4-8		Adjustable Positive Voltage	
DAC-08	High-Speed 8-Bit Multiplying D-to-A Converter	6-5	LM223,A	Regulator Ampere, 5 Volt Positive	3-28
LF347	Family of BIFET Operational Amplifiers	2-14	LM224	Voltage Regulator Quad Low-Power Operational	3-36
LF351	Family of BIFET Operational Amplifiers	2-14	LM237	Amplifiers 3-Terminal Adjustable Negative	2-51
LF353	Family of BIFET Operational Amplifiers	2-14	LM239, A	Voltage Regulator Quad Single-Supply	3-42
LF355, B	Monolithic JFET Operational Amplifier	2-16	LM248	Comparators Quad MC1741 Operational	2-57
LF356, B	Monolithic JFET Operational Amplifier	2-16	LM250	Amplifier 3-Terminal Adjustable Positive	2-61
LF357,B	Monolithic JFET Operational Amplifier	2-16	LM258	Voltage Regulator Dual Low-Power Operational	3-65
LF411C	Low Offset, Low Drift JFET Input Operational Amplifier	2-26	LM285	Amplifier Micropower Voltage Reference	2-67
LF412C	Low Offset, Low Drift JFET Input Operational Amplifier	2-26	LM293, A	Diodes	$\begin{gathered} 5-4 \\ 2-73 \end{gathered}$
LM11,C,CL	Precision Operational Amplifiers	2-29	LM301A	General Purpose Adjustable	
LM101A	General Purpose Adjustable Operational Amplifier	2-36	LM307	Operational Amplifier Internally Compensated	2-36
LM108, A	Precision Operational Amplifiers	2-40		Monolithic Operational	
LM109	Positive Voltage Regulator	3-15		Amplifier	2-78
LM111	High Performance Voltage		LM308,A	Precision Operational Amplifiers	2-40
	Comparator	2-45	LM309	Positive Voltage Regulator	3-15
LM117	3-Terminal Adjustable Positive Voltage Regulator	3-20	LM311	High Performance Voltage Comparator	2-45
LM117L	Low-Current 3-Terminal Adjustable Positive Voltage		LM317	3-Terminal Adjustable Positive Voltage Regulator	3-20
	Regulator	3-28	LM317L	Low-Current 3-Terminal	
LM123,A	3-Ampere, 5 Volt Positive Voltage Regulator	3-36		Adjustable Positive Voltage Regulator	3-28
LM124	Quad Low-Power Operational Amplifier	2-51	LM317M	Medium-Current 3-Terminal Adjustable Positive Voltage	
LM137	3-Terminal Adjustable Negative Voltage Regulator	3-42	LM323, A	Regulator 3-Ampere, 5 Volt Positive	3-73
LM139,A	Quad Single-Supply Comparators	2-57	LM324,A	Voltage Regulator Quad Low-Power Operational	3-36
LM140,A	Three-Terminal Positive Fixed Voltage Regulators	3-49	LM337	Amplifier 3-Terminal Adjustable Negative	2-51
LM148	Quad MC1741 Operational Amplifier	2-61	LM337M	Voltage Regulator Medium-Current 3-Terminal	$3-4 c$
LM150	3-Terminal Adjustable Positive Voltage Regulator	3-65		Adjustable Negative Voltage Regulator	3-81
LM158	Dual Low-Power Operational Amplifier	2-67	LM339, A	Quad Single-Supply Comparators	2-57
LM193, A	Dual Comparators	2-73	LM340, A	Three-Terminal Positive Fixed	
LM201A	General Purpose Adjustable Operational Amplifier	2-36	LM348	Voltage Regulators Quad MC1741 Operational	3-49
LM208,A	Precision Operational Amplifiers	2-40		Amplifier	2-61

Device Number	Function	Page	Device Number	Function	Page
LM350	3-Terminal Adjustable Positive Voltage Regulator	3-65	MC1445	Wideband Amplifier	2-108
			MC1454G	1-Watt Power Amplifier	2-114
LM358	Dual Low-Power Operational Amplifier	2-67	MC1455	Timing Circuit	11-4
LM385	Micropower Voltage Reference	2-67	MC1456,C	High-Performance Operational Amplifier	2-118
	Diodes	5-4	MC1458,C	Dual Operational Amplifier	2-124
LM393, A	Dual Comparators	2-73	MC1458S	High-Slew-Rate Dual	
LM833	Dual, Low Noise, Audio Operational Amplifier	2-82		Operational Amplifier	2-129
LM2900	Quad Single-Supply		MC1466L	Voltage and Current Regulator	3-95
	Operational Amplifier	2-189	MC1468	Dual ± 15-Volt Tracking Regulator	3-105
LM2901	Quad Single-Supply Comparators	2-57	MC1472	Dual Peripheral Positive NAND Driver	7-34
LM2902	Quad Low-Power Operational Amplifier		MC1488	Quad MDTL Line Driver	7-37
	Amplifier	2-51	MC1489,A	Quad MDTL Line Receiver	7-43
LM2903	Dual Comparators	2-73	MC1490P	Wideband Amplifier with AGC	2-135
LM2904	Dual Low-Power Operational		MC1494L	Four-Quadrant Multiplier	11-11
	Amplifier	2-67	MC1495L	Four-Quadrant Multiplier	11-25
LM2931	Low Dropout Voltage Regulators	3-88	MC1496	Balanced ModulatorDemodulator	8-13
LM3900	Quad Single-Supply Operational Amplifier	2-189	MC1503,A	Precision Low-Voltage Reference	
MC8T26A	Quad Three-State Bus Transceivei	7-16	MC1504	Precision Low-Drift Voltage Reference	5-12
MC8T28	Noninverting Bus Transceiver	7-21	MC1508	8-Bit Multiplying Digital-to-	
MC8T95	Hex Three-State Buffer/Inverter	7-26		Analog Converter	6-15
MC8T96	Hex Three-State Buffer/Inverter	7-26	MC1514	Dual Differential Voltage	
MC8T97	Hex Three-State Buffer/Inverter	7-26		Comparator	2-88
MC8T98	Hex Three-State Buffer/Inverter	7-26	MC1536	High-Voltage Operational	
MC26S10	Quad Open-Collector Bus Transceiver	7-48		Amplifiers Dual Operational Amplifier	$2-92$ $2-96$
MC75S110	Dual Line Driver	7-176	MC1537 MC1539	Dual Operational Amplifier High-Slew-Rate Operational	2-96
MC1330	Low-Level Video Detector			Amplifier	2-100
1 P		9-9	MC1545	Wideband Amplifier	2-108
MC1330	Low-Level Video Detector		MC1554G	1-Watt Power Amplifier	2-114
2 P		9-9	MC1556	High-Performance Operational	
MC1350	IF Amplifier	9-15		Amplifier	2-118
MC1374	TV Modulator Circuit	9-19	MC1558	Dual Operational Amplifier	2-124
MC1377	Color Television RGB to PAL/ NTSC Encoder	9-27	MC1558S	High-Slew-Rate Dual Operational Amplifier	2-129
MC1378	Complete Color TV Video		MC1568	Dual ± 15-Volt Regulator	3-105
	Overlay Synchronizer	9-31	MC1590G	Wideband Amplifier with AGC	2-141
MC1391P	TV Horizontal Processor	9-35	MC1594L	Four-Quadrant Multiplier	11-11
MC1403,A	Precision Low-Voltage Reference	5-8	MC1595L	Four-Quadrant Multiplier	11-25
MC1404,A	Precision Low-Drift Voltage Reference		MC159	Balanced ModulatorDemodulator	8-13
MC1408	Reference 8-Bit Multiplying Digital-toAnalog Converter	6-15	MC1709, A, C	General-Purpose Operational Amplifier	2-149
MC1411	Peripheral Driver Array	7-30	MC1723, C	Adjustable Positive or Negative Voltage Regulator	3-111
MC1412	Peripheral Driver Array	7-30	MC1733, C	Differential Video Amplifier	2-153
MC1413	Peripheral Driver Array	7-30	MC1741, C	General-Purpose Operational	
MC1414	Dual Differential Voltage Comparator	2-88		Amplifier High-Slew-Rate Operational	2-161
MC1416	Peripheral Driver Array	7-30	SC	Amplifier	2-166
MC1436,C	High-Voltage Operational Amplifier	2-92	MC1747, C	Dual MC1741 Operational Amplifier	2-172
MC1437	Dual Operational Amplifier	2-96	MC1748, C	General-Purpose Operational	
MC1439	High-Slew-Rate Operational Amplifier	2-100		Amplifier	2-176

[^0]| Device Number | Function | Page | Device Number | Function | Page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MC78L00C, | Positive Voltage Regulators | | MC33072 | | |
| AC Series MC78M00 | | 3-145 | MC33072 | Supply Operational Amplifiers | 2-267 |
| BC Series MC78T00 | | 3-151 | MC33074 | Quad High Performance Single Supply Operational Amplifier | 2-267 |
| Series | Regulators | 3-159 | MC33078 | Low Noise Operational Amplifier | 2-241 |
| MC7900C
 Series | Three-Terminal Negative Fixed Voltage Regulators | 3-168 | MC33079 | Low Noise Operational Amplifier | 2-241 |
| MC7900C, ACSeries | Voltage Regulators | 3-177 | MC33129 | High Performance Current Mode Controller | 3-258 |
| MC79M00 Series | Three-Terminal Negative Fixed Voltage Regulators | 3-182 | MC33160 | Microprocessor Voltage Regulator and Supervisory | |
| $\begin{array}{\|c} \text { MC10318L } \\ \text { L9,CL6 } \end{array}$ | High-Speed 8-Bit D/A Converter | | | Circuit | 3-271 |
| CL7 | | 6-45 | MC33171 | Low Power, Single Supply Operational Amplifiers | 2-250 |
| MC10319 | High Speed 8-Bit Analog-toDigital Flash Converter
 Triple 4-Bit Color Palette Vid | 6-62 | MC33172 | Low Power, Single Supply Operational Amplifiers | $2-250$ $2-250$ |
| | DAC | 9-47 | MC33174 | Low Power, Single Supply Operational Amplifiers | 2-250 |
| | Triple 4-Bit Color Palette Video
 DAC | 9-47 | $\begin{aligned} & \text { MC33181, } \\ & 2,4 \end{aligned}$ | Low Power JFET Input Operational Amplifiers | 2-294 |
| M | High Speed 7-Bit A-to-D Flash Converter | 6-80 | MC33282 | JFET Operational Amplifiers | 2-257 |
| MC13001XP | Monomax Black-and-White TV | | MC33284 | JFET Operational Amplifiers | 2-257 |
| | Subsystem | 9-64 | MC3 | JFET-Input Operational Amplifiers | 2-260 |
| 13002 | Monomax Black-and-White TV Subsystem | 9-64 | MC34002 | JFET-Input Operational Amplifiers | |
| MC13010P | TV Parallel Sound IF and AFT | 9-73 | MC3400 | Amplifiers | 2-260 |
| MC13014P | Companion Audio/Vertical Subsystem | 9-78 | MC34004 | Amplifiers | 2-260 |
| MC13020P | C-QUAM ${ }^{\text {® }}$ AM Stereo Decoder | 9-84 | MC34010 | Electronic Telephone Circuit | |
| MC13021 | Motorola C-QUAM ${ }^{\circledR}$ AM Stereo | | MC34011A | Electronic Telephone Circuit | |
| | Tuning Stabilizer | 9-89 | MC34012 Series | Telephone Tone Ringer | * |
| MC13022 | Advanced Medium Voltage AM Stereo Decoder | 9-91 | MC34013A | Speech Network and Ton | |
| MC13023 | AM Stereo Front End and | | | Telephone Speech Network | |
| | Tuner Stabilizer | 9-95 | MC34014 | Telephone Speech Network with Dialer Interface | |
| MC13024 | Low Voltage Motorola | | MC34017 | Telephone Tone Ringer | |
| | Receiver | 9-101 | MC34018 | Voice Switched Speaker Phone | |
| MC13041 | AM Receiver Subsystem | 9-104 | | Circuit 2103 Transceiver | |
| MC13055 | Wideband FSK Receiver | 8-65 | MC34050 | Dual EIA-422/423 Transceiv | 7-164 |
| MC13060 | Mini-Watt Audio Output | 9-110 | MC34051 | Dual EIA-422/423 Trans | 7-164 |
| MC33030 | DC Servo Motor Controller/ Driver | 4-21 | MC34060 | Switchmode Pulse Width Modulation Control Circuits | 3-185 |
| MC33034 | DC Brushless Motor Controller | 4-34 | MC34060A | Switchmode Pulse Width | |
| MC33039 | Closed Loop Brushless Motor | | | Modulation Control Circuits
 Three-Terminal Programmable | 3-197 |
| | Adapter Switchmode Pulse Width | 4-54 | MC34061 | Three-Terminal Programmable Overvoltage Sensing Circuit | 3-209 |
| | Modulation Control Circuits | 3-197 | MC34062 | Pin-Programmable Overvoltage Sensing Circuit | 3-216 |
| | DC to DC Converter Control Circuits | 3-227 | MC34063 | | 3-227 |
| MC33063A | DC to DC Converter Control Circuits | 3-233 | MC34063A | Circuits
 DC to DC Converter Control | 3-227 |
| M C33064 | Undervoltage Sensing Circuit | 3-242 | | Circuits | 3-233 |
| MC33065 | High Performance Dual Channel Current Mode Controller | 3-246 | $\begin{aligned} & \text { MC34064 } \\ & \text { MC34065 } \end{aligned}$ | Undervoltage Sensing Circuit High Performance Dual Channel Current Mode | 3-242 |
| MC33071 | High Performance Single Supply Operational Amplifiers | 2-267 | | Controller | 3-246 |

[^1]| Device Number | Function | Page | Device Number | Function | Page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MC34071 | High Performance Single Supply Operational Amplifiers | 2-267 | MC35080 | High-Speed Decompensated ($\mathrm{A}_{\mathrm{VCL}} \geqslant 2$) JFET Input | |
| MC34072 | Dual High Performance Single Supply Operational Amplifiers | 2-267 | MC35081 | Operational Amplifier High-Speed JFET Input | 2-283 |
| MC34074 | Quad High Performance Single Supply Operational Amplifier | 2-267 | MC35082 | Operational Amplifier Dual High-Speed JFET | 2-283 |
| MC34080 | High Speed Decompensated ($\mathrm{A}_{\mathrm{VCL}} \geqslant 2$) JFET Input Operational Amplifier | 2-283 | MC35083 | Operational Amplifier Dual High-Speed | 2-283 |
| MC34081 | High Speed JFET Input Operational Amplifier | 2-283 | | JFET Input Operational Amplifier | 2-283 |
| MC34082 | Dual High Speed JFET Input Operational Amplifier | 2-283 | MC35084 | Quad High-Speed JFET Input Operational Amplifier | 2-283 |
| MC34083 | Dual High Speed Decompensated ($\mathrm{A}_{\mathrm{VCL}} \geqslant 2$) JFET Input Operational Amplifier | 2-283 | MC35085 | Quad High-Speed Decompensated ($\mathrm{A}_{\mathrm{VCL}} \geqslant 2$) JFET Input Operational Amplifier | 2-283 |
| MC34084 | Quad High Speed JFET Input Operational Amplifier | 2-283 | MC35171 | Low Power, Single Supply Operational Amplifiers | 2-250 |
| MC34085 | Quad High Speed
 Decompensated ($\mathrm{A}_{\mathrm{VCL}} \geqslant 2$) | | MC35172 MC35174 | Low Power, Single Supply Operational Amplifiers | 2-250 |
| | JFET Input Operational Amplifier | 2-283 | MC35174 | Low Power, Single Supply Operational Amplifiers | 2-250 |
| MC34115 | Continuously Variable Slope Delta Modulator/Demodulator | * | $\begin{gathered} \text { MC35181, } \\ 2,4 \end{gathered}$ | Low Power JFET Input Operational Amplifiers | 2-294 |
| MC34119 | Low Power Audio Amplifier | 9-114 | MC44301 | System 4 High Performance | |
| MC34120 | Subscriber Loop Interface Circuit | | MC44802 | Color TV IF
 PLL Tuning Circuit with | 9-123 |
| MC34129 | High Performance Current Mode Controller | 3-258 | MC75107 | 1.3 GHz Prescaler Dual Line Receiver | 9-129 |
| MC34160 | Microprocessor Voltage | | MC75108 | Dual Line Receiver | 7-171 |
| | Regulator and Supervisory | | MC75S110 | Dual Line Driver | 7-176 |
| | Circuit | 3-271 | MC75125 | Seven-Channel Line Receivers | 7-181 |
| MC34181, | Low Power JFET Input | | MC75127 | Seven-Channel Line Receivers | 7-181 |
| 2,4 | Operational Amplifiers | 2-294 | MC75128 | Eight-Channel Line Receivers | 7-185 |
| MC35001 | JFET-Input Operational | | MC75129 | Eight-Channel Line Receivers | 7-185 |
| | Amplifiers | 2-260 | MCC3334 | High Energy Ignition Circuit | 10-9 |
| MC35002 | JFET-Input Operational | | MCCF3334 | High Energy Ignition Circuit | 10-9 |
| | Amplifiers | 2-260 | NE592 | Video Amplifier | 2-303 |
| MC35004 | JFET-Input Operational Amplifiers | 2-260 | OP-27 | Ultra-Low Noise Precision, High Speed Operational Amplifiers | 2-308 |
| MC35060 | Switchmode Pulse Width | | SAA1042,A | Stepper Motor Driver | 4-59 |
| | Modulation Control Circuits | 3-185 | SE592 | Video Amplifier | 2-303 |
| MC35050A | Switchmode Pulse Width Modulation Control Circuits | 3-197 | SG1525A | Pulse Width Modulator Control Circuits | 3-279 |
| MC35062 | Pin-Programmable Overvoltage Sensing Circuit | 3-216 | SG1526 | Pulse Width Modulation Control Circuits | 3-286 |
| MC35063 | DC to DC Converter Control Circuits | 3-227 | SG1527A | Pulse Width Modulator Control Circuits | 3-279 |
| MC35063A | DC to DC Converter Control Circuits | 3-233 | SG2525A | Pulse Width Modulator Control Circuits | 3-279 |
| MC35071 | High Performance Single Supply Operational Amplifiers | 2-267 | SG2526 | Pulse Width Modulation Control Circuits | 3-286 |
| MC35072 | Dual High Performance Single Supply Operational Amplifiers | 2-267 | SG2527A | Pulse Width Modulator Control Circuits | 3-279 |
| MC35074 | Quad High Performance Single Supply Operational Amplifiers | 2-267 | SG3525A | Pulse Width Modulator Control Circuits | 3-279 |

[^2]ALPHANUMERIC INDEX - CONTINUED

Device Number	Function	Page	Device Number	Function	Page
SG3526	Pulse Width Modulation Control Circuits	3-286	TL494	Switchmode Pulse Width Modulation Control Circuits	3-312
SG3527A	Pulse Width Modulator Control Circuits	3-279	TL594	Switchmode Pulse Width Modulation Control Circuits	3-323
SN75172	Quad EIA-485 Line Driver with Three-State Output	7-189	TL780	Three-Terminal Positive Voltage Regulators	3-334
SN75173	Quad EIA-485 Line Receiver with Three-State Output	7-191	UAA1016B UAA1041	Zero Voltage Controller	$4-95$ $10-31$
SN75174	Quad EIA-485 Line Driver with Three-State Output	7-189	UC2842A	High Performance Current Mode Controller	3-340
SN75175	Quad EIA-485 Line Receiver with Three-State Output	7-191	UC2843A	High Performance Current Mode Controller	3-340
TBA120C	FM IF Amplifier, Limiter and Detector	9-137	UC3842A	High Performance Current Mode Controller	3-340
TCA4500A	FM Stereo Demodulator	9-142	UC3843A	High Performance Current	
TCA5550	Stereo Sound Control System	9-149		Mode Controller	3-340
TCA5600	Universal Microprocessor Power Supply Controller	3-294	ULN2001A ULN2002A	Peripheral Driver Array Peripheral Driver Array	$\begin{aligned} & 7-30 \\ & 7-30 \end{aligned}$
TCF6000	Peripheral Clamping Array	7-196	ULN2003A	Peripheral Driver Array	7-30
TCF7000	Pressure Transducer Amplifier	10-29	ULN2004A	Peripheral Driver Array	7-30
TDA1085A	Universal Motor Speed Controller	4-64	ULN2068B	Quad 1.5 A Darlington Switch	$\begin{aligned} & 7-200 \\ & 7-204 \end{aligned}$
TDA1085C	Universal Motor Speed Controller	4-71	ULN2801	Octal Peripheral Driver Array	$\begin{aligned} & 7-208 \\ & 7-208 \end{aligned}$
TDA1185A	Triac Phase Angle Controller	4-81	ULN2803	Octal Peripheral Driver Array	7-208
TDA1190P	TV Sound System	9-153	ULN2804	Octal Peripheral Driver Array	7-208
TDA1285A	Universal Motor Speed Controller	4-88	$\mu \mathrm{A} 78 \mathrm{S40}$	Universal Switching Regulator Subsystem	3-53
TDA1524A	Stereo Tone Control System	9-156			
TDA3190P	TV Sound System	9-153			
TDA3301	TV Color Processor	9-161			
TDA3303	TV Color Processor	9-161			
TDA3330	TV Color Processor	9-175			
TDA3333	TV Color Difference Demodulator	9-183			
TDA4601,B	Flyback Converter Regulator Control Circuit	3-305			
TL061	Low Power JFET Input Operational Amplifier	2-320			
TL062	Low Power JFET Input Operational Amplifier	2-320			
TL064	Low Power JFET Input Operational Amplifier	2-320			
TL071	Low-Noise JFET Input Operational Amplifier	2-328			
TL072	Low-Noise JFET Input Operational Amplifier	2-328			
TL074	Low-Noise JFET Input Operational Amplifier	2-328			
TL081	JFET Input Operational Amplifier	2-335			
TL082	JFET Input Operational Amplifier	2-335			
TL084	JFET Input Operational Amplifier	2-335			
TL431 Series	Programmable Precision References	5-17			

Cross Reference

Part Number	Motorola Direct Replacement	$\begin{gathered} \text { Motorola } \\ \text { Slmilar } \\ \text { Replacement } \end{gathered}$	Page	Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
8216		MC8T26AL	7-16	AD1403AN		MC1403AU	5-8
8226		MC8T28L	7-21	AD1408-7D	MC1408L7	MC1403AU	6-15
9614DC		MC75S110L	7-176	AD1508-8D	MC1508L8		6-15
9614DM		MC75S110L	7-176	AD6108	MCisoal	MC6108	6-27
9615DC		MC75108L	7-171	AM26LS31CJ	AM26LS31DC	M 6108	7-10
9616CDC		MC1488L	$7-37$ $7-37$	AM26LS31CN	AM26LS31PC		7-10
9616EDC		MC1488L	7-37	AM26LS31D	AM26LS31D		7-10
9616DM		MC1488L	7-37	AM26LS31P	AM26LS31P		7-10
9617DC		MC1489AL	-7-43	AM26LS32ACJ	AM26LS32D		7-13
9620DC		MC75S110L	7-176	AM26LS32ACN	AM26LS32APC	MC3486L	7-13
9620DM		MC75S110L	7-176	AM26LS32D	AM26LS32D	MC3486P	7-13
9621DC		MC75108L	7-171	AM26LS32P	AM26LS32PC		7-13
9627CDC		MC1489AL	7-43	AM26LS33DC		MC3486L	7-142
9627DM 9636 T		MC1489AL	$7-43$ $7-149$	AM26LS33PC AM26S10DC		MC3486P	$7-142$ $7-48$
9636AT	MC3488AP		7-149	AM26S10DC	MC26S10L		7-48
9637 T		MC3486P	7-142	AM26S10PC	MC26S10P		7-48
9638T		MC3487P	7-145	AM101		LM101AH	2-36
9640DC	MC26S10L		7-48	AM101A	LM101AH		2-36
9640NC	MC3440AP		7-54	AM101AD		LM101AH	2-36
9640PC	MC26S 10P		7-48	AM101AF		LM101AH	2-36
9665DC	MC1411L		7-30	AM101D		LM101AH	2-36
9665PC	MC1411P		7-30	AM101F		LM101AH	2-36
9666DC	MC1412L		7-30	AM107	LM111J		2-45
9666PC	MC1412P		7-30	AM107D		MC1741G	2-161
9667DC	MC1413L		7-30	AM107F		MC1741G	2-161
9667PC	MC1413P		7-30	AM111D AM111H	LM111H	MC1741G	2-161 $2-45$
${ }_{9668 \mathrm{PCC}}$	MC1416L		7-30	AM201	LMITH	LM201AH	2-36
9668PC	MC1416P		7-30	AM201A	LM201AH	LMzotah	2-36
55110DM		MC75S110L	7-176	AM201AD		LM201AN	2-36
75107ADC	MC75107L		7-171	AM201AD		LM201AN	
75107APC	MC75107P		7-171	AM201AF		LM201AH	2-36
75107 BDC	MC75107P	MC75107L	7-171	AM201D AM201F		LM201AN	2-36
$75107 B P C$		MC75107P	7-171	AM201F		LM201AH	2-36
75108ADC	MC75108L		7-171	AM207 AM207D		MC1741C	2-161
75108APC	MC75108P		7-171	AM207D		MC1741C	2-161
75108BDC		MC75108L	7-171	AM207F		MC1741C	2-161
75108 BPC		MC75108P	7-171	AM211D AM211H	LM211H	MC1741C	$2-161$ $2-45$
75110DC	MC75S110L		7-176	AM301	LM217H	LM301AH	2-46
75207DC	MC75S110P	MC75107L	7-171	AM301A	LM301AH		2-36
75207PC				AM301AD		LM301AJ	2-36
75208DC		MC75108L	7-171	AM301D		LM301AJ	2-36
75208 PC		MC75108P	7-171	AM311D	LM311J-8		2-45
AD DAC-08AD	DAC-08AQ		6-5	AM311H AM592DC	LM311H		2-45
AD DAC-08CD	DAC-08CQ		6-5	AM592DC	NE592F		2-303
				AM5920M	SE592F		2-303
AD DAC-08D	DAC-08Q		6-5	AM592HC	NE592K		2-303
AD DAC-08ED	DAC-08EQ		6-5	AM592HM	SE592K		2-303
AD DAC-08HD AD301AL	DAC-08HQ		6-5	AM592PC	NE592N		2-303
AD505J		MC1776CG	2-180	AM723DC	MC1723CL		3-111
				AM723DM	MC1723L		3-111
AD505K		MC1776CG MC1776G	$2-180$ $2-180$	AM723HC	MC1723CG		3-111
AD509J.		LM301AH	2-36	AM723HM	MC1723G		3-111
AD509K		LM301AH	2-36	AM725A31T	MC1723CP	MC1556G	3-111
AD509S		LM101AH	2-36			MC1556G	
AD518J		LM301AH		AM725HM		MC1556G	2-118
AD518K		LM301AH	2-36	AM733DC	${ }_{\text {MC1733CL }}$		2-153
AD518S		LM101AH	2-36	AM 733 HC	MC1733L		2-153
AD530		MC1595L	11-25	AM 733 HM	MC1733G		2-153
AD531		MC1595L	11-25				
AD532L		MC1595L		AM741DC		MC1741CU	2-161
AD580J		MC1403U	5-8	AM741DM		MC1741U	2-161
AD580K		MC1403P1	5-8	AM741HC	MC1741CG		2-161
AD580M		MC1403AP1	5-8	AM741HM	MC1741G		2-161
AD580S		MC1503U	5-8		MC1747CL		-172
				AM747DM	MC1747L		2-172
AD580T		MC1503AU	5-8	AM747HC	MC1747CG		2-172
AD589J		LM385Z-1.2	5-4	AM747HM	MC1747G		2-172
AD589K		LM385Z-1.2	5-4	AM748DC		MC1748CU	2-176
AD589L		LM385Z-1.2	5-4	AM748DM		MC1748U	2-176
AD589M		LM385BZ-1.2	5-4				
AD741CJ		MC1741CG		AM748HC			2-176
AD741J		MC1741G	2-161	AM748HM	MC1748G		2-176
AD741K		MC1741G	2-161	AM7936PC		MC34129P	3-258
AD741L		MC1741G	2-161	AN5150		MC13002P	9-64
AD741S		MC1741SG	2-166	AN5151		MC13001P	9-64

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
CA081AE		Tl081ACP	2-335
CA081AS		TL081ACJG	2-335
CA081BE		TL081BCP	2-335
CA081CS		TL081CJG	2-335
CA081E		TL081CP	2-335
CA081S		TL081MJG	2-335
CA082AE		TL082ACP	2-335
CA082AS		TL082ACJG	2-335
CA082BE		TL082BCP	2-335
CA082CS		TL082CJG	2-335
CA082E		TL082CP	2-335
CA082S		TL082MJG	2-335
CA084AE		TL084ACN	2-335
CA084E		TL084CN	2-335
CA084S		TL082M S	2-335
CA101AT	LM101AH		2-36
CA101T		LM101AH	2-36
CA107T		MC1741CG	2-161
CA108AS	LM108AJ-8		2-40
CA108AT	LM108AH		2-40
CA108S	LM108J-8		2-40
CA108T	LM108H		2-40
CA139AG	LM139AJ		2-57
CA139G	LM139J		2-57
CA201AT	LM201AH		2-36
CA201T		LM201AH	2-36
CA207T		MC1741C	2-161
CA208AT	LM208AH		2-40
CA208S	LM208J-8		2-40
CA208T	LM208H		2-40
CA239AE	LM239AN		2-57
CA239AG	LM239AJ		2-57
CA239E	LM239N		2-57
CA239G	LM239J		2-57
CA301AT	LM301AH		2-36
CA308AS	LM308N		2-40
CA308AT	LM308AH		2-40
CA308S	LM308H		2-40
CA339AE	LM339AN		2-57
CA339AG	LM339AJ		2-57
CA339E	LM339N		2-57
CA339G	LM339J		2-57
CA723CE	MC1723CP		3-111
CA723CT	MC1723CG		3-111
CA723E	MC1723L		3-111
CA723T	MC1723G		3-111
CA741CS	MC1741CP1		2-161
CA741CT	MC1741CG		2-161
CA741S	MC1741U		2-161
CA741T	MC1741G		2-161
CA747CE	MC1747CL		2-172
CA747CF	MC1747CL		2-172
CA747CT	MC1747CG		2-172
CA747E	MC1747L		2-172
CA747F	MC1747L		2-172
CA747T	MC1747G		2-172
CA748CS	MC1748CP1		2-176
CA748CT	MC1748CG		2-176
CA748S	MC1748U		2-176
CA748T	MC1748G		2-176
CA1391E	MC1391P		9-35
CA1458S	MC1458CP1		2-124
CA1458T	MC1458G		2-124
CA1558S		MC1558U	2-124
CA1558T	MC1558G		2-124
CA3008		MC1709U	2-149
CA3008A		MC1709U	2-149
CA3010		MC1709G	2-149
CA3010A		MC1709G	2-149
CA3011		MC1590G	2-141
CA3012		MC1590G	2-141
CA3015		MC1709G	2-149
CA3015A		MC1709G	2-149
CA3016		MC1709U	2-149
CA3016A		MC1709U	2-149

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
CA3020		MC1554G	2-114
CA3020A		MC1454G	2-114
CA3021		MC1590G	2-141
CA3022		MC1590G	2-141
CA3023		MC1590G	2-141
CA3026		CA3054	9-7
CA3029		MC1709P1	2-149
CA3029A		MC1709P1	2-149
CA3030		MC1709P1	2-149
CA3030A		MC1709P1	2-149
CA3031		MC1733	2-153
CA3032		MC1733	2-153
CA3037		MC1709U	2-149
CA3037A		MC1709U	2-149
CA3038		MC1709U	2-149
CA3038A		MC1709U	2-149
CA3044		MC13010P	9-73
CA3044V1		MC13010P	9-73
CA3045		MC3346P	9-40
CA3045F		MC3346P	9-40
CA3046	MC3346P		9-40
CA3048		MC3301P	2-189
CA3052		MC3301P	2-189
CA3054	CA3054		9-7
CA3056		MC1741CG	2-161
CA3056A		MC1741G	2-161
CA3058		CA3059	4-8
CA3059	CA3059		4-8
CA3064		MC13010P	9-73
CA3076		MC1590G	2-141
CA3078AS		MC1776G	2-180
CA3078AT		MC1776G	2-180
CA3078S		MC1776CG	2-180
CA3078T		MC1776CG	2-180
CA3079	CA3079		
CA3085		MC1723G	3-111
CA3085A		MC1723G	3-111
CA3085AF		MC1723L	3-111
CA3085AS		MC1723G	3-111
CA3085B		MC1723G	$3-111$ $3-111$
CA3085BF		MC1723L	3-111
CA3085BS		MC1723G	3-111
CA3085F		MC1723L	3-111
CA3085S		MC1723G	3-111
CA3086F		MC3346P	9-40
CA30910		MC1594L	11-11
CA3121E		TDA3333	9-183
CA3136A		MC3346P	9-40
CA3139		MC13010P	9-73
CA3145E		TDA3333	9-183
CA3146		MC3346P	9-40
CA3151E		TDA3333	9-183
CA3201E		TDA3301	9-161
CA3210E		MC13001P	9-64
CA3217E		TDA3301	9-161
CA3221E		TDA3333	9-183
CA3223E		MC13002P	9-64
CA3302E	MC3302P		2-57
CA3401E	MC3401P		2-189
CA6078AS		MC1776G	2-180
CA6078AT		MC1776G	2-180
CA6741S		MC1776G	2-180
CA6741T		MC1776G	2-180
CA7607E		MC13010P	9-73
CA7611E		MC13010P	9-73
CMP-01CJ		MC1556G	2-118
CMP-01CP		MC1556P	2-118
CS3471	MC3471P		7-112
D8216		MC8T26AL	7-16
D8226		MC8T28L	7-21
DAC-08AQ	DAC-08AQ		6-5
DAC-08CN		DAC-08CP	6-5
DAC-08CP	DAC-08CP		6-5

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page	Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
DAC-08CQ	DAC-08CQ		6-5	DS75108J	MC75108L		7-171
DAC-08EN		DAC-08EP	6-5	DS75108N	MC75108P		7-171
DAC-08EP	DAC-08EP		6-5	DS75110J	MC75S110L		7-176
DAC-08EQ	DAC-08EQ		6-5	DS75110N	MC75S110P		7-176
DAC-08HN		DAC-08HP	6-5	DS75207J		MC75107L	7-171
DAC-08HP	DAC-08HP		6-5	DS75207N		MC75107P	7-171
DAC-08HQ	DAC-08HQ		6-5	DS75208J		MC75108L	7-171
DAC-08Q	DAC-08Q		6-5	DS75208N		MC75108P	7-171
DAC0800LCJ	DAC-08EQ		6-5	ICB8000C		LM111J	2-45
DAC0800LCN	DAC-08EP		6-5	ICB8001C		LM111J	2-45
DAC0800LD DAC0801LCJ	DAC-08Q DAC-08CQ		6-5	ICB8741C		MC1741CG	2-161
DAC0801LCN	DAC-08CQ		6-5	ICH8500ATV		MC1776CG	2-180
DAC0802LCJ	DAC-08HQ		6-5	ICH8500TV		MC1776CG	2-180
DAC0802LCN	DAC-08HP		6-5	ICL101ALNDP		LM101AH	2-36
				ICL101ALNFB		LM101AH	2-36
DAC0802LD	DAC-08AQ		6-5	ICL101ALNTY		LM101AH	2-36
DAC0806LCJ	MC1408L6		6-15	ICL301ALNPA		LM301AH	2-36
DAC0806LCN	MC1408P6		6-15	ICL301ALNTY		LM301AH	2-36
DAC0807LCJ	MC1408L7		6-15	ICL741CLNPA		MC1741CP1	2-161
DAC0807LCN	MC1408P7		6-15	ICL741CLNTY		MC1741CP1	2-161
DAC0808LCJ	MC1408L8		6-15				
DAC0808LCN	MC1408P8		6-15	ICL8001CTZ		LM111J	2-45
DAC0808LD	MC1508L8		6-15	ICL8001MTZ		LM111J	2-45
DM7822J			7-43	ICL8007CTA		MC1709CG	2-149
DM7837J		MC3437L	7-70	ICL8007MTA		MC1709CG LM301AN	2-149
				,		LM301AN	2-36
DM8822J		MC1489AL	7-43				
DM8822N		MC1489AP	7-43	ICL8008CTY ICL8013A		LM301AN	
DM8837N	MC3437P		7-70	ICL8013A		MC1594L	$11-11$ $11-11$
DS26LS31J DS26LS31N	AM26LS31D		7-10	ICL8013B ICL8013C		MC1594L MC1594L	$11-11$ $11-11$
DS26LS31N	AM26LS31P		7-10	ICL8013C ICL8017CTW		MC1594L LM301AN	$11-11$ $2-36$
DS26LS32J	AM26LS32D		7-13				
DS26LS32N	AM26LS32P		7-13	ICL8017MTW		LM301AN	2-36
DS26S 10CJ	MC26S10L		7-48	ICL8021C		MC1776G	2-180
DS26S10CN	MC26S10P		7-48	ICL8021M		MC1776G	2-180
DS1488J	MC1488L		7-37	ICL8022C ICL8022M		MC1776G MC 1776 G	$\begin{aligned} & 2-180 \\ & 2-180 \end{aligned}$
DS1488N	MC1488P		7-37				
DS1489AJ	MC1489AL		7-43	ICL8043CDE		MC1776G	
DS1489AN	MC1489AP MC1489		7-43	ICL8043CPE		MC1776G MC1776G	2-180
DS1489J	MC1489L MC1489P		7-43	ICL8043MDE ICL8048CDE		MC1776G $M C 1776 \mathrm{G}$	$2-180$ $2-180$
			7-43	ICL8048CPE		MC1776G	2-180
DS3486J	MC3486L		7-142				
DS3486N	MC3486P		7-142	ICL8048DPE		MC1776G	2-180
DS3487J	MC3487L		7-145	ICL8069CCZR		LM385BZ-1.2	$5-4$ $5-4$
DS3487N	MC3487P		7-145	ICL8069DCZR IP494ACJ		LM385BZ-1.2	5-4 $3-323$
DS3612H		MC1472U	7-34	IP494ACN		TL594CN	3-323
DS3612N		MC1472P1	7-34				
DS3632H	MC1472U		7-34	1P494AJ		TL594MJ	3-323
DS3632J	MC1472U		7-34	IP1525AJ	SG1526AJ		3-286
DS3632N	MC1472P1		7-34	IP1526J	SG1526J		3-286
DS3650J	MC3450L		7-72	IP1527AJ IP2525AJ	SG1527AJ SG2525AJ		$3-279$ $3-279$
DS3650N	MC3450P		7-72				
DS3651J	MC3430L		2-213	IP2526J	SG2526J		3-286
DS3651N	MC3430P		2-213	IP2527AJ	SG2527AJ		3-279
DS3652J	MC3452L		7.72	IP3525AJ	SG3525AJ		3-279
DS3652N	MC3452P		7-72	IP3525AN IP3526J	SG3525AN		3-279
				IP3526J	SG3526J		3-286
DS3653J	MC3432L		2-213				
DS3653N	MC3432P	MC3437L	$2-213$ $7-51$	IP3526N IP3527AJ	SG3526N		3-286 $3-279$
DS7837W		MC3437L	7-51	IP3527AN	SG3527AN		3-279
DS8833J		MC8T28L	7-21	IP33063N	MC33063P1		3-227
DS8833N		MC8T28P	7-21	IP34060AN	MC34060AP		3-197
DS8834J		MC8T26AL	7-16				
DS8834N		MC8T26AP	7-16	IP34063N	MC34063P1		$\begin{array}{r}3-227 \\ 3-197 \\ \hline\end{array}$
DS8835J DS8835N		MC8T26AL	$7-16$ $7-16$	IP35060AN	MC35060AL MC35063U		3-197 3-227
DS8835N		MC8T26AP	7-16	ITT652	MC1411P		7-30
DS8837J	MC3437L		7-51	ITT654	MC1412P		7-30
DS8837N	MC3437P		7-51				
DS8839J		MC8T28L	7-21	ITT656	MC1413P		7-30
DS8839N		MC8T28P	$7-21$	ITT3064	MC13010P		9-73
DS8922,A		MC34051	7-164	ITT3710 L144AP		$\begin{aligned} & \text { MC1391P } \\ & \text { LM324N } \end{aligned}$	$\begin{aligned} & 9-35 \\ & 2-51 \end{aligned}$
DS8923,A		MC34050	7-164		MC1411P		7-30
DS55107W		MC75107L	7-171	L202	MC1412P		7-30
DS55110J		MC75S110L	$7-176$	L203	MC1413P		7-30
$\begin{aligned} & \text { DS75107J } \\ & \text { DS75107N } \end{aligned}$	MC75107L MC75107P		7-171	$\llcorner 583$		MC3484S2	10-19
DS75107N	MC75107P			LF347BN	LF347BN		2-14

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
LF347N LF351AH LF351AN LF351BH LF351BN	LF347N	MC34004P MC34001AG MC34001AP MC34001BG MC34001BP	$\begin{gathered} 2-14 \\ 2-260 \\ 2-260 \\ 2-260 \\ 2-260 \end{gathered}$
LF351H LF351N LF352D LF353AH LF353AN	MC34001G LF351N MC34002AG MC34002AP	$\begin{aligned} & \text { MC34001P } \\ & \text { LF355J } \end{aligned}$	$\begin{gathered} 2-260 \\ 2-14 \\ 2-16 \\ 2-260 \\ 2-260 \end{gathered}$
LF353BH LF353BN LF353H LF353N LF355BH	MC34002BG MC34002BP MC34002G LF353N LF355BH	MC34002P	2-260 $2-260$ $2-260$ $2-14$ $2-16$
LF355BJ LF355H LF355J LF355JG LF355L	$\begin{aligned} & \text { LF355BJ } \\ & \text { LF355H } \\ & \text { LF355J } \end{aligned}$	$\begin{aligned} & \text { LF355J } \\ & \text { LF355H } \end{aligned}$	$\begin{aligned} & 2-16 \\ & 2-16 \\ & 2-16 \\ & 2-16 \\ & 2-16 \end{aligned}$
LF355N LF355P LF356BH LF356BJ LF356BN	LF356BH LF356BJ	LF355J LF355J LF356J	$\begin{aligned} & 2-16 \\ & 2-16 \\ & 2-16 \\ & 2-16 \\ & 2-16 \end{aligned}$
LF356H LF356J LF356JG LF356L LF356N	$\begin{aligned} & \text { LF356H } \\ & \text { LF356J } \end{aligned}$	LF356J LF356H LF356J	$\begin{aligned} & 2-16 \\ & 2-16 \\ & 2-16 \\ & 2-16 \\ & 2-16 \end{aligned}$
LF356P LF357BH LF357BJ LF357BN LF357H	LF357BH LF357BJ LF357H	LF356J LF357BJ	$2-16$ $2-16$ $2-16$ $2-16$ $2-16$
LF357J LF357JG LF357L LF357N LF357P	LF357J	LF357J LF357H LF357J LF357J	$\begin{aligned} & 2-16 \\ & 2-16 \\ & 2-16 \\ & 2-16 \\ & 2-16 \end{aligned}$
LF411C LF411CH LF412C LF412CH LG351AH LG351AN	LF411C LF412C	MC34001AG MC34002AG MC34001AG MC34001AP	$\begin{gathered} 2-26 \\ 2-260 \\ 2-26 \\ 2-260 \\ 2-260 \\ 2-260 \end{gathered}$
LH000ACD LH000ACF LH000ACH LHOOOAD LH000AF		MC1776CG MC1776CG MC1776CG MC1776G MC1776G	$\begin{aligned} & 2-180 \\ & 2-180 \\ & 2-180 \\ & 2-180 \\ & 2-180 \end{aligned}$
LH000AH LH0004CH LH0004CHH LH0004H LH042CH		MC1776G MC1436G MC1536G MC1536G MC1776G	$\begin{gathered} 2-180 \\ 2-92 \\ 2-92 \\ 2-92 \\ 2-180 \end{gathered}$
LH101H LH201H LH 740 ACH LH2101AD LH2101AF		MC1741G MC1741G LF355H MC1537L MC1537L	$\begin{aligned} & 2-161 \\ & 2-161 \\ & 2-16 \\ & 2-96 \\ & 2-96 \end{aligned}$
LH2201AD LH2201AF LH2301AD LH2301AF LM 11 CH	LM11CH	MC1537L MC1537L MC1437L MC1437L	$\begin{aligned} & 2-96 \\ & 2-96 \\ & 2-96 \\ & 2-96 \\ & 2-29 \end{aligned}$
LM11CJ LM11CJ-8 LM11CLH LM11CLJ LM11CLJ-8	LM11CJ LM11CJ-8 LM11CLH LM11CLJ LM11CLJ-8		$\begin{aligned} & 2-29 \\ & 2-29 \\ & 2-29 \\ & 2-29 \\ & 2-29 \end{aligned}$
LM11CLN LM11CLN-14 LM11CN LM11CN-14 LM11H	LM11CLN LM11CLN-14 LM11CN LM11CN-14 LM11H		$\begin{aligned} & 2-29 \\ & 2-29 \\ & 2-29 \\ & 2-29 \\ & 2-29 \end{aligned}$

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
LM11J	LM11J		2-29
LM11J-8	LM11J-8		2-29
LM 101 AD		LM101AH	2-36
LM101AF		LM101AH	2-36
LM101AH	LM101AH		2-36
LM101AJ	LM101AJ		2-36
LM101AJ- 14		LM101AJ	2-36
LM101AJG	LM101AJ		2-36
LM101AL	LM101AH		2-36
LM101D		LM101AJ	2-36
LM101F		LM101AH	2-36
LM101H	LM101AH		2-36
LM101J-14		LM101AJ	2-36
LM107H	MC1741		2-161
LM 107L	MC1741		2-161
LM108AF	LM108AF		2-40
LM 108AH	LM108AH		2-40
LM 108AJ	LM108AJ	LM108J-8	2-40
LM108AJ-8	LM108AJ-8		2-40
LM108H	LM108H		2-40
LM 108J	LM108J		2-40
LM108J-8	LM108J-8		2-40
LM109H	LM109H		3-15
LM109K	LM109K		3-15
LM109LA	LM109K		3-15
LM111H	LM111H		$2-45$ $2-45$
LM111HH		LM111H	2-45
LM111J LM111J-8	LM111J		2-45
LM111J-8 LM111JG	LM111J-8 LM $111 \mathrm{~J}-8$		2-45 $2-45$
LM112H		MC1556U	2-118
LM117H	LM117H		3-20
LM117K	LM117K		3-20
LM117LH	LM117LH		3-28
LM118H		MC1741SG	2-161
LM120H-5.0		MC7905CK	3-168
LM120H-12		MC7912CK	3-168
LM120H-15		MC7915CK	3-168
LM120K-5.0		MC7905CK	3-168
LM120K-12		MC7912CK	3-168
LM120K-15		MC7915CK	3-168
LM122H		MC1556G	2-118
LM123AK	LM123AK		3-36
LM123K	LM123K		3-36
LM124AD		LM124J	2-51
LM124AJ		LM124J	
LM124J	LM124J	MC1568G	2-51
LM126H		MC1568G	3-105
LM128H		MC1568G	3-105
LM137H	LM137H		3-42
LM137K	LM137K		3-42
LM139AJ	LM139AJ		2-57
LM139J	LM139J		2-57
LM140AK-5.0	LM140AK-5.0		3-49
LM140AK-12	LM 140AK-12		3-49
LM 140AK-15	LM140AK-15		3-49
LM140K-5.0	LM140K-5.0		3-49
LM140K-8.0	LM140K-8.0		3-49
LM140K-12	LM140K-12		3-49
LM140K-15	LM140K-15		3-49
LM140LAH-5.0		MC78L05ACG	3-145
LM140LAH-6.0		MC78L05ACG	3-145
LM140LAH-8.0		MC78L08ACG	3-145
LM140LAH-12		MC78L12ACG	3-145
LM140LAH-15		MC78L15ACG	3-145
LM140LAH-50		MC78L05ACG	3-145
L.M140LAH-80		MC78L05ACG	3-145
LM143H		MC1536G	2-92
LM145K		MC7905CK	3-168
LM148J	LM148J		2-61
LM149J		MC4741L	2-227
LM150K	LM150K		3-65
LM158AH		LM158H	2-61
LM158H	LM158H		2-61

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
LM158J	LM158J		2-61
LM158JG		LM158J	2-61
LM158L		LM158H	2-61
LM163J		MC3450L	7-72
LM171H		MC1590G	2-141
LM193AH	LM193AH		$2-73$ 2
LM193H	LM193H		2-73
LM193JG		LM193H	2-73
LM193U		LM193H	2-73
LM201AH	LM201AH		2-36
LM201AJ	LM201AJ		2-36
LM201AJG		LM201AJ	2-36
LM201AJ-14		LM201AJ	2-36
LM201AL	LM201AH		2-36
LM201AN	LM201AN		2-36
LM201AND	LM201AND		2-36
LM201AP		LM201AN	2-36
LM201H		LM201AH	2-36
LM201J	LM201AJ		2-36
LM201J-14		LM201AJ	2-36
LM207H		MC1741C	2-161
LM208AH	LM208AH		2-41
LM208AJ		LM208AJ-8	2-41
LM208AJ-8	LM208AJ-8		2-41
LM208AN	LM208AN		2-41
LM208H	LM208H		2-41
LM208J	LM208J		2-41
LM208J-8	LM208J-8		2-41
LM209H	LM209H		3-15
LM209K	LM209K		3-15
LM211M	LM211D		2-45
LM211H	LM211H		2-45
LM211J-8	LM211J-8		2-45
LM211JG		LM211J-8	2-45
LM212H		MC1456U	2-118
LM217H	LM217H		3-20
LM217K	LM217K		3-20
LM217KC			3-20
LM217KD		LM217H	3-20
LM217LH	LM217LH		3-28
LM218J-8		MC1741SU	2-161
LM218H		MC1741SG	2-161
LM220H-5.0		MC7905CK	3-168
LM220H-12		MC7912CK	3-168
LM220H-15		MC7915CK	3-168
LM220K-5.0		MC7905CK	3-168
LM220K-12		MC7912CK	3-168
LM220K-15		MC7915CK	3-168
LM222H		MC1556G	2-118
LM223AK	LM223AK		3-36
LM223K	LM223K		3-36
LM224AF		LM224J	2-51
LM224AJ		LM224J	2-51
LM224M	LM224D		2-51
LM224J	LM224J		2-51
LM224M	LM224N		2-51
LM225H		MC1568G	3-105
LM226H		MC1568G	3-105
LM228H		MC1568G	3-105
LM237H	LM237H		3-42
LM237K	LM237K		3-42
LM239AJ	LM239AJ		2-57
LM239AN	LM239AN		2-57
LM239M	LM239D		2-57
LM239J	LM239J		2-57
LM239N	LM239N		2-57
LM204LAH-5.0		MC78L05ACG	3-145
LM204LAH-8.0		MC78L08ACG	3-145
LM240LAH-12		MC78L12ACG	3-145
LM240LAH-15		MC78L15ACG	3-145
LM240LAZ-5.0		MC78L05ACP	3-145
LM240LAZ-6.0		MC78L05ACP	3-145
LM240LAZ-8.0		MC78L08ACP	3-145
LM240LAZ-12		MC78L12ACP	3-145
LM240LAZ-15		MC78L15ACP	3-145

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
LM240LAZ-18		MC78L18ACP	3-145
LM240LAZ-24		MC78L24ACP	3-145
LM243H		MC1536G	2-92
LM245K		MC7905CK	3-168
LM248j	LM248J		2-61
LM249N		MC4741P	2-236
LM249J		MC4741L	2-236
LM250K	LM250K		3-65
LM258AH		LM258H	2-67
LM258M	LM258D		2-67
LM258H	LM258H		2-67
LM258J	LM258J		2-67
LM258N	LM258N		2-67
LM271H		MC1590G	2-141
LM285Z-1.2	LM285Z-1.2		2-67
LM285Z-2.5	LM285Z-2.5		2-67
LM293AH	LM293AH		2.73
LM293H	LM293H		2-73
LM293P		LM293H	2-73
LM293U		LM293H	2-73
LM301AM	LM301AD		2-36
LM301AH	LM301AH		2-36
LM301AJ	LM301AJ		2-36
LM301AJD	LM301AJD		2-36
LM301AJDS	LM301AJDS		2-36
LM301AJG		LM301AJ	2-36
LM301AJS	LM301AJS		2-36
LM301AL		LM301AH	2-36
LM301AN	LM301AN		2-36
LM301AND	LM301AND		2-36
LM301ANDS	LM301ANDS		2-36
LM301ANS	LM301ANS		2-36
LM301AP		LM301AN	2-36
LM307N	LM307N		2-78
LM307P		LM307N	2-78
LM308AH	LM308AH		2-40
LM308AH-1		LM308AH	2-40
LM308AH-2		LM308AH	2-40
LM308AJ	LM308AJ		2-40
LM308AJ-8	LM308AJ-8		2-40
LM308AJ-8D	LM308AJ-8D		2-40
LM308AJ-8DS	LM308AJ-8DS		2-40
LM308AJ-8S	LM308AJ-8S		$2-40$
LM308AN	LM308AN		2-40
LM308AND	LM308AND		2-40
LM308ANDS	LM308ANDS		2-40
LM308ANS	LM308ANS		2-40
LM308M	LM308D		2-40
LM308H	LM308H		2-40
LM308J	LM308J		2-40
LM308J-8	LM308J-8		
LM308J-8D	LM308J-8D		2-40
LM308J-8DS	LM308J-8DS		2-40
LM308J-8S	LM308J-8S		2-40
LM308N	LM308N		2-40
LM308ND	LM308ND		2-40
LM308NDS	LM308NDS		2-40
LM308NS	LM308NS		2-40
LM309H	LM309H		3-15
LM309K	LM309K		3-15
LM309KC		LM309K	3-15
LM311M	LM311D		2-45
LM311H	LM311H		2-45
LM311J-8	LM311J-8		2-45
LM311J-8D	LM311J-8D		2-45
LM311J-8DS	LM311J-8DS		2-45
LM311J-8S LM311JG	LM311J-8S		2-45
LM311JG LM311N			2-45
LM311N LM311N-14		$\begin{aligned} & \text { LM311J } \\ & \text { LM311J } \end{aligned}$	2-45 $2-45$
LM311ND	LM311ND		2-45
LM311NDS	LM311NDS		2-45
LM311NS	LM311NS		2-45
LM311P		LM311N	2-45
LM312H		MC1456G	2-118

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
LM317H	LM317H		3-20
LM317K	LM317K		3-20
LM317KC	LM317T		3-20
LM317KD		LM317T	3-20
LM317LH	LM317LH		3-28
LM317LZ	LM317LZ		3-28
LM317MP		LM317MT	3-20
LM317MT	LM317MT		3-20
LM317P		LM317T	3-20
LM317T	LM317T		3-20
LM318D		MC1741SCU	2-161
LM318H		MC1741SCG	2-161
LM318N		MC1741SCP1	2-161
LM320H-5.0		MC7905CK	3-168
LM320H-12		MC,7912CK	3-168
LM320H-15		MC7915CK	3-168
LM320K-5.0		MC7905CK	3-168
LM320K-12		MC7912CK	3-168
LM320K-15		MC7915CK	3-168
LM320LZ-5.0		MC79L05ACP	3-177
LM320LZ-12		MC79L12ACP	3-177
LM320LZ-15		MC79L15ACP	3-177
LM320MP-5.0		MC7905CT	3-168
LM320MP-5.2		MC7905.2CT	3-168
LM320MP-6.0		MC7906CT	3-168
LM320MP-8.0		MC7908CT	3-168
LM320MP-12		MC7912CT	3-168
LM320MP-15		MC7915CT	3-168
LM320MP-18		MC7918CT	3-168
LM320MP-24		MC7924CT	3-168
LM320T-5.0		MC7905CT	3-168
LM320T-5.2		MC7905.2CT	3-168
LM320T-12		MC7912CT	3-168
LM320T-15		MC7915CT	3-168
LM322H		MC1455G	$11-4$
LM322N		MC1455P1	11-4
LM323AK	LM323AK		3-36
LM323AT	LM323AT		3-36
LM323K	LM323K		3-36
LM323T	LM323T		3-36
LM324AJ		LM324J	$2-51$ $2-51$
LM324M	LM324D		2-51
LM324J	LM324J		2-51
LM324JD	LM324JD		2-51
LM324JDS	LM324JDS		2-51
LM324JS	LM324JS		2-51
LM324N	LM324N	MC3403P	2-51
LM324ND	LM324ND		2-51
LM324NDS	LM324NDS		2-51
LM324NS	LM324NS		2-51
LM325AN		MC1468L	3-105
LM325H		MC1468G	3-105
LM325N		MC1468L	3-105
LM326H		MC 1468G	3-105
LM326H		MC1468G	3-105
LM326N		MC1468L	3-105
LM328AN		MC1468L	3-105
LM328H		MC1468G	3-105
LM328N		MC1468L	3-105
LM337H	LM337H		3-42
LM337K	LM337K		3-42
LM337MP		LM337MT	3-42
LM337MT	LM337MT		3-42
LM337T	LM337T		3-42
LM339AM	LM339AD		2-57
LM339AJ	LM339AJ		2-57
LM339AN	LM339AN		2-57
LM339M	LM339D		2-57
LM339J	LM339J		2-57
LM339JD	LM339Jd		2-57
LM339JDS	LM339JDS		2-57
LM339JS	LM339JS		2-57
LM339N	LM339N		2-57
LM339ND	LM339ND		2-57

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
LM339NDS	LM339NDS		2-57
LM339NS	LM339NS		2-57
L.M339P		LM339N	2-57
LM340AK-5.0	LM340AK-5.0		3-49
LM340AK-12	LM340AK-12		3-49
LM 340 AK- 15	LM340AK-15		3-49
LM340AT-5.0	LM340AT-5.0		3-49
LM340AT-12	LM340AT-12		3-49
LM340AT-15	LM340AT-15		3-49
LM340K-5.0	LM340K-5.0	MC7805CK	3-49
LM340K-6.0		MC7806CK	3-132
LM340K-8.0	LM340K-8.0	MC7808CK	3-49
LM340K-12	LM340K-12		3-49
LM340K-15	LM340K-15 -		3-49
LM340KC-5.0	LM340T-5.0		3-49
LM340KC-6.0		MC7806CK	3-132
LM340KC-8.0		MC7808CK	3-132
LM340KC-12	LM340T-12		3-49
LM340KC-15	LM340T-15		3-49
LM340KC-18		MC7818CK	3-132
LM340KC-24		MC7824CK	3-132
LM340LAH-5.0		MC78L05ACG	3-145
LM340LAH-8.0		MC78L08ACG	3-145
LM340LAH-12		MC78L12ACG	3-145
LM340LAH-15		MC78L15ACG	3-145
LM340LAZ-5.0		MC78L05ACP	3-145
LM340LAZ-6.0		MC78L05ACP	3-145
LM340LAZ-8.0		MC78L08ACP	3-145
LM340LAZ-12		MC78L12ACP	3-145
LM340LAZ-15		MC78L15ACP	3-145
LM340LAZ-18		MC78L18ACP	3-145
LM340LAZ-24		MC78L24ACP	3-145
LM340T-5.0	LM340T-5.0	MC7805CT	3-49
LM340T-6.0	LM340T-6.0	MC7806CT	3-49
LM340T-8.0	LM340T-8.0	MC7808CT	3-49
LM340T-12	LM340T-12	MC7812CT	3-49
LM340T-15	LM340T-15	MC7815CT	3-49
LM340T-18	LM340T-18	MC7818CT	3-49
L.M340T-24	LM340T-24	MC7824CT	3-49
LM341P-5.0		MC78M05CT	3-151
LM341P-6.0		MC78M06CT	3-151
LM341P-8.0		MC78M08CT	3-151
LM341P-12		MC78M12CT	3-151
LM341P-15		MC78M15CT	3-151
LM341P-18		MC78M18CT	3-151
LM341P-24		MC78M24CT	3-151
LM342P-5.0		MC78M05CT	3-151
LM342P-6.0		MC78M06CT	3-151
LM342P-8.0		MC78M08CT	3-151
LM342P-12		MC78M12CT	3-151
LM342P-15		MC78M15CT	3-151
LM342P-18		MC78M18CT	3-151
LM342P-24		MC78M24CT	3-151
LM343H		MC1436G	2-92
LM345K		MC7905CK	3-168
LM348M	LM348D		2-61
LM348J	LM348J		2-61
LM348N	LM348N		2-61
LM349J		MC4741CL	2-236
LM349N		MC4741CL	2-236
LM350K	LM350K		3-65
LM351T	LM350T		3-65
LM358AH		LM358H	2-61
LM358AN		LM358N	2-61
LM358M	LM358D		2-61
LM358H	LM358H		2-61
LM358J	LM358J		2-61
LM358JD	LM358JD		2-61
LM358JDS	LM358JDS		2-61
LM358JG		LM358J	2-61
LM358JS	LM358JS		2-61
LM358N	LM358N		2-61
LM358ND	LM358ND		2-61
LM358NDS	LM358NDS		2-61
LM358NS	LM358NS		2-61

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
LM363AJ		MC3450L	$7-72$
LM363AN		MC3450P	7-72
LM363J		MC3450L	7-72
LM363N		MC3450P	7-72
LM371H		MC1590G	2-141
LM385BZ-1.2	LM385BZ-1.2		5-4
LM385M-1.2	LM385D-1.2		5-4
LM385Z-1.2	LM385Z-1.2		5-4
LM385BZ-2.5	LM385BZ-2.5		5-4
LM385M-2.5	LM385D-2.5		5-4
LM385Z-2.5	LM385Z-2.5		5-4
LM386N		MC34119P	-
LM393AH	LM393AH		2-73
LM393AN	LM393AN		$2-73$
LM393M	LM393D		2-73
LM393H	LM393H		$2-73$
LM393J	LM393J		$2-73$
LM393JG		LM393N	$2-73$
LM393N	LM393N		$2-73$
LM393ND	LM393ND		2-73
LM393NDS	LM393NDS		2-73
LM393NS	LM393NS		$2-73$
LM555CH	MC1455G		11-4
LM555CN	MC1455P1		11-4
LM555H	MC1455G		11-4
LM556CD	MC3456L		11-40
LM556CJ	MC3456L		11-40
LM556CN	MC3456P		$11-40$
LM556L	MC3456L		11-40
LM703LN		MC1350P	
LM709AH	MC1709AG		2-149
LM709CN	MC1709CG		2-149
LM709AN-8	MC1709CP1		2-149
LM709H	MC1709G		2-149
LM723CD	MC1723CJ		3-111
LM723CH	MC1723CG		3-111
LM723CJ	MC1723CL		3-111
LM723CN	MC1723CP		3-111
LM723H	MC1723G		3-111
LM723J	MC1723L		3-111
LM733CD	MC1733CL		2-153
LM733CH	MC1733CG		2-153
LM733CJ	MC1733CL		2-153
LM733CN	MC1733CP		2-153
LM733H	MC1733G		2-153
LM733J	MC1733L		2-153
LM741AH		MC1741G	2-161
LM741CD	LM741CJ		2-161
LM741CH	LM741CH		2-161
LM741CJ-14	LM741CJ		2-161
LM741CN	LM741CN		2-161
LM741EH		MC1741CG	2-161
LM741EJ		MC1741CU	2-161
LM741EN		MC1741CP1	2-161
LM741H	LM741H		2-161
LM747CD	LM747CJ		2-172
LM747CH	LM747CH		2-172
LM747CJ	LM747CJ		2-172
LM747CN	LM747CN		2-172
LM747H	LM747H		2-172
LM747J	LM747J		2-172
LM748CH	MC1748CG		2-176
LM748CJ	MC1748CU		2-176
LM748CN	MC1748CP1		2-176
LM748H	MC1748G		2-176
LM748J	MC1748U		2-176
LM833D	LM833D		2-82
LM833N		MC33078P	2-241
LM833P	LM833P		2-82
LM837N		MC33079P	2-241
LM1035		TCA5550	9-149
LM1391N	MC1391P		9-35
LM1408J6		MC1408L6	6-15
LM1408J7		MC1408L7	6-15
LM1408J8		MC1408L8	6-15
LM1408N6		MC1408P6	6-15
LM1408N7		MC1408P7	6-15

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
LM1408N8		MC1408P	6-15
LM1414J	MC1414L		2-88
LM1414N	MC1414P		2-88
LM1458H	MC1458G		2-124
LM1458J	MC1458U		2-124
LM1458N	MC1458P1		2-124
LM1488J	MC1488L		7-37
LM1488N	MC1488P		7-37
LM1489AJ	MC1489AL		7-43
LM1489AN	MC1489AP		7-43
LM1489J	MC1489L		7-43
LM1489N	MC1489P		7-43
LM 1496 H	MC1496G		8-13
LM1496J	MC1496L		8-13
LM1496N	MC1496P		8-13
LM1514J	MC1514L		2-88
LM1558H	MC1558G		2-124
LM1558J	MC1558U		2-124
LM 1596H	MC1596G		8-13
LM1596J	MC1596L		8-13
LM1822		MC13010P	9-73
LM1849A		MC3484S2	10-19
LM1889		MC1374P	9-19
LM1900D		MC3301P	2-189
LM1981		MC13020P	9-84
LM2900N	LM2900N	MC3301P	2-189
LM2901M	LM29010		2-57
LM2901N	LM2901N		2-57
LM2901ND	LM2901ND		2-57
LM2901NDS	LM2901NDS		2-57
LM2901NS	LM2901NS		2-57
LM2902M	LM2902D		2-51
LM2902J	LM2902J		2-51
LM2902N	LM2902N		2-51
LM2903	LM2903N		2-73
LM2903M	LM2903D		2-73
LM2903JG	LM2903JG		2-73
LM2903N	LM2903N		2-73
LM2903P	LM2903N		2-73
LM2903U	LM2903U		2-73
LM2904M	LM2904D		2-67
LM2904H	LM2904H		2-67
LM2904J	LM2904J		2-67
LM2904N	LM2904N		2-67
LM2905N		MC1455P1	11-4
LM2931AT-5.0	LM2931AT-5.0		3-88
LM2931AZ-5.0	LM2931AZ-5.0		3-88
LM2931CM	LM2931CD		3-88
LM2931CT	LM2931CT		3-88
LM2931T-5.0	LM2931T-5.0		3-88
LM2931Z-5.0	LM2931Z-5.0		3-88
LM3026		CA3054	9-7
LM3045		MC3346P	9-40
LM3046N	MC3346P		9-40
LM3054	CA3054		9-7
LM3064N		MC13010P	9-73
LM3089		MC3356P	8-29
LM3146		MC3346P	9-40
LM3146A		MC3346P	9-40
LM3189		MC3356P	8-29
LM3301N	MC3301P		2-189
LM3302	MC3302P		2-57
LM3302J	MC3302L		2-57
LM3302N	MC3302P		2-57
LM3401N	MC3401P		2-189
LM3900N	LM3900N	MC3401P	2-189
LM3905		MC1455P1	$11-4$
LM3905N		MC1455P1	11-4
LM4250CH		MC1776CG	2-180
LM4250CN		MC1776CP1	2-180
LM4250H		MC1776G	2-180
LM4500A	TCA4500A		9-142
LM7805CK	MC7805CK		3-132
LM7805CT	MC7805CT		3-132

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
LM7805KC	MC7805CK		3-132
LM7806KC	MC7806CK		3-132
LM7808KC	MC7808CK		3-132
LM7812CK	MC7812CK		3-132
LM7812CT	MC7812CT		3-132
LM7812KC	MC7812CK		3-132
LM7815CK	MC7815CK		3-132
LM7815CT	MC7815CT		3-132
LM7815KC	MC7815CK		3-132
LM7818KC	MC7818CK		3-132
LM7824KC	MC7824CK		3-132
LM7905CK	MC7905CK		3-168
LM7905CT	MC7905CT		3-168
LM7912CK	MC7912CK		3-168
LM7912CT	MC7912CT		3-168
LM7915CK	MC7915CK		3-168
LM7915CT	MC7915CT		3-168
LM78L05ACH	MC78L05ACG		3-145
LM78L05ACZ	MC78L05ACP		3-145
LM78L05CH	MC78L05CG		3-145
LM78L05CZ	MC78L05CP		3-145
LM78L08ACH	MC78L08ACG		3-145
LM78L08ACZ	MC78L08ACP		3-145
LM78L08CH	MC78L08CG		3-145
LM78L08CZ	MC78L08CP		3-145
LM78L12ACH	MC78L12ACG		3-145
LM78L12ACZ	MC78L12ACP		3-145
LM78L12CH	MC78L12CG		3-145
LM78L12CZ	MC78L12CP		3-145
LM78L15ACH	MC78L15ACG		3-145
LM78L15ACZ	MC78L15ACP		3-145
LM78L15CH	MC78L15CG		3-145
LM78L15CZ	MC78L15CP		3-145
LM78L18ACZ	MC78L18ACP		3-145
LM78L18CZ	MC78L18CP		3-145
LM78L24ACZ	MC78L24ACP		3-145
LM78L24CZ	MC78L24CP		3-145
LM78M05CP		MC78M05CT	3-151
LM78M12CP		MC78M12CT	3-151
LM78M15CP		MC78M 15CT	3-151
LM79L05ACZ	MC79L05ACP		3-177
LM79L12ACZ	MC79L12ACP		3-177
LM79L15ACZ	MC79L.15ACP		3-177
LM79M05CP		MC79M05CT	3-182
LM79M12CP		MC79M12CT	3-182
LM79M15CP		MC79M 15CT	3-182
LM55109J		MC75S110L	7-176
LM55110J		MC75S110L	7-176
LM75107AN	MC75107P		7-171
LM75108AJ	MC75108L		7-17!
LM75108AN	MC75108P		7-171
LM75110J	MC75S110L		7-176
LM75110N	MC75S110P		7-176
LM75207L		MC75107L	7-171
LM75207N		MC75107P	7-171
LM75208J		MC75108L	7-171
LM75208N		MC75108P	7-171
MB3759	TL494CN		3-312
MC1458JG	MC1458U		2-124
MC1458L	MC1458G		2-124
MC1458P	MC1458P1		2-124
MC1489N	MC1489P		7-43
MC1489N3	MC1489PDS		7-43
MC1545J	MC1545L		2-108
MC3446J		MC3446AP	7-58
MC3446N	MC3446AP		$7-58$
MC3470N	MC3470P	MC3470AP	7-98
MC3481J	MC3481L		7-137
MC3481N	MC3481P		7-137
MC3485J	MC3485L		7-137
MC3485N	MC3485P		$7-137$
MC3486J	MC3486L		7-142
MC3486N	MC3486P		7-142
MC3487J	MC3487L		7-145
MC3487N	MC3487P		7-145

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
MP5531CP	MC1404U5		5-12
MP5531DP	MC1404U5		5-12
MP5532CP	MC1404U10		5-12
MP5532DP	MC1404U10		5-12
N8T15A		MC1488L	7-37
N8T15F		MC1488L	7-37
N8T16A		MC1489L	7-43
N8T26AB	MC8T26AP		7-16
N8T26AE	MC8T26AL		7-16
N8T26AJ	MC8T26AL		7-16
N8T26AN	MC8T26AP		7-16
N8T26B	MC8T26AP		7-16
N8T26J	MC8T26AL		7-16
N8T26N	MC8T26AP		7-16
N8T28B	MC8T28P		7-21
N8T37A	MC3437P		7-51
N8T95B	MC8T95P		7-26
N8T95F	MC8T95L		7-26
N8T95N	MC8T95P		7-26
N8T96B	MC8T96P		7-26
N8T96F	MC8T96L		7-26
N8T96N	MC8T96P		7-26
N8T97B	MC8T97P		7-26
N8T97F	MC8T97L		7-26
N8T97N	MC8T97P		7-26
N8T98B	MC8T98P		7-26
N8T98F	MC8T98L		7-26
N8T98N	MC8T98P	,	7-26
N5556T	MC1456G	,	2-118
N5556V	MC1456P1		2-118
N5558F	MC1458U		2-124
N5558T	MC1458G		2-124
N5558V	MC1458P1		2-124
N5595A	MC1495L		11-25
N5595F	MC1495L		11-25
N5596A	MC1496L		8-13
N5596K	MC1496G		8-13
N5709A		MC1709CP1	2-149
N5709G		MC1709CU	2-149
N5709T			2-149
N5709V	MC1709CP1		2-149
N5723A		MC1723CP	3-111
N5723T	MC1723CG		3-111
N5723K	MC1733CG		2-153
N5741A		MC1741CP1	2-161
N5741T	MC1741CG		2-161
N5741V	MC1741CP1		2-161
N5747A	MC1747CL		2-172
N5747F	MC1747CL		2-172
N5748A		MC1747CG	2-172
N5748T	MC1748CG		2-176
NE501A		MC1733CL	2-153
NE501K		MC1733CG	2-153
NE531G			
NE531T		MC1439G	2-100
NE531V		MC1439P	2-100
NE533G		MC1776CG	2-180
NE533T		MC1776CG	2-180
NE533V		MC1776CG	2-180
NE537G		MC1456G	2-118
NE537T		MC1456G	$2-118$
NE540L		MC1554G	2-114
NE550A		MC1723CP	3-111
NE550L		MC1723CG	3-111
NE555JG	MC1455		11-4
NE555L	MC1455G		11-4
NE555N	MC1455P1		11-4
NE555T	MC1455G		11-4
NE555V	MC1455P1		11-4
NE556A	MC3456P		$11-40$
NE5561	MC3456L		11-40
NE592A	NE592A		2-303
NE592K	NE592K		2-303
NE5561FE		MC34060L	3-185
NE5561N		MC34060P	3-185
OP-01C		MC1536	2-92

CROSS REFERENCE - CONTINUED

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page	Part Number	Motorola Direct Replacement	$\begin{gathered} \text { Motorola } \\ \text { Similar } \\ \text { Replacement } \end{gathered}$	Page
OP-01G		MC1536	2-92	RC75110DP	MC75S110P		7-176
OP-01H		MC1536	2-92	REF-01CJ	NC7SST10P	MC1404U10	5-12
OP-01J		MC1536G	2-92	REF-01CP	MC1404U10		5-12
OP-01L		MC1536G	2-92	REF-01CZ	MC1404U10		5-12
OP-01P		MC1436P1	2-92	REF-01DJ		MC1404U10	5-12
OP-08		MC1776	2-180	REF-01DP	MC1404U10		5-12
OP-08A		MC1776	2-180	REF-01DZ	MC1404U10		5-12
OP-08B		MC1776	2-180	REF-02CJ		MC1404U5	5-12
OP-08C		MC1776	2-180	REF-02CP	MC1404U5		5-12
OP-08E		MC1776	2-180	REF-02CZ	MC1404U5		5-12
OP-27AJ		OP-27AZ	2-308	REF-02DJ		MC1404U5	5-12
OP-27AZ	OP-27AZ		2-308	REF-02DP	MC1404U5		5-12
OP-27BJ		OP-27BZ	2-308	REF-02DZ	MC1404U5		5-12
OP-27BZ	OP-27BZ		2-308	RM702T	M	MC1733	2-153
OP-27CJ		OP-27Cz	2-308	RM709T	MC1709G		2-149
OP-27CZ	OP-27CZ		2-308	RM723D	MC1723L		3-111
OP-27EJ		OP-27EZ	2-308	RM723DC	MC1723L		3-111
OP-27EP	OP-27EP		2-308	RM723T	MC1723G		3-111
OP-27EZ	OP-27EZ		2-308	RM733D	MC1733L		3-111
OP-27FJ		OP-27FZ	2-308	RM733T	MC1733G		3-111
OP-27FP	OP-27FP		2-308	RM741DP	MC1741P		2-161
OP-27FZ	OP-27FZ		2-308	RM741T	MC1741G		2-161
OP-27GJ		OP-27GZ	2-308	RM747D	MC1747L		2-172
OP-27GP	OP-27GP		2-308	RM747T	MC1747G		2-172
OP-27GZ	OP-27GZ		2-308	RM748T	MC1748G		2-176
PWM125AK	SG1525AJ		3-279	RM1514DC	MC1514L		2-88
PWM125BK	SG2525AJ		3-279	RM1537D	MC1537L		2-96
PWM125CK	SG3525AJ		3-279	RM4136D		MC3503L	2-199
RC702T		MC1733C	2-153	RM4136J		MC3503L	2-199
RC709DN	MC1709CP1		2-149	RM4194DC		MC1568L	3-105
RC709T	MC1709CG		2-149	RM4195T		MC1568G	3-105
RC723D	MC1723CL		3-111	RM4558D	MC4558U		2-232
RC723DB	MC1723CP		3-111	RM4558JG	MC4558U		2-232
RC723DC	MC1723CL		3-111	RM4558L	MC4558G		2-232
RC723T	MC1723CG		3-111	RM4558T	MC4558G		2-232
RC733D	MC1733CL		2-153	RV3301DB	MC3301P		2-189
RC733T	MC1733CG		2-153	S5556T	MC1556G		2-118
RC741DN	MC1741CP1		2-161	S5558E	MC1558U		2-124
RC741T	MC1741CG		2-161	S5558T	MC1558G		2-124
RC747D	MC1747CL		2-172	S5596F	MC1596L		8-13
RC747T	MC1747CG		2-172	S5596K	MC1596G		8-13
RC748T	MC1748CG		2-176	S5709G	MC1709U		2-149
RC1414DC	MC1414L		2-88	S5709T	MC1709G		2-149
RC1414DP	MC1414P		2-88	S5723T	MC1723G		3-111
RC1488DC	MC1488L		7-37	S5733K	MC1733G		2-153
RC1489ADC	MC1489AL		7-43				2-161
RC1489DC	MC1489L		7-43	SA555N	$\mathrm{MC} 1455 \mathrm{BP} 1$		11-4
RC1437D	MC1437L		2-96	SE501K		MC1733G	2-153
RC1437DP	MC1437P		2-96	SE531G		MC1539G	2-100
RC1458DN	MC1458P1		2-124	SE531T		MC1539G	2-100
RC1458T	MC1458G			SE533G		MC1776G	2-180
RC1556T	MC1456CG		2-118	SE533T		MC1776G	2-180
RC1558T	MC1558G		2-124	SE537G		MC1556G	2-118
RC3302DB	MC3302P		2-57	SE537T		MC1556G	2-118
RC4131DP	-	MC1741SCP1	2-161	SE550L		MC1723G	3-111
RC4131T			2-161	SE556A			11-40
RC4136D		MC3403L	2-199	SE592A	SE592L		2-303
RC4136DP		MC3403P	2-199	SE592K	SE592G		2-303
RC4136J		MC3403L	2-199	SE5561FE		MC35060L	3-185
RC4136N		MC3403P	2-199	SG100T		MC1723G	3-111
RC4194DC		MC1468L	3-105	SG101AD		LM101AH	2-36
RC4195NB		MC1468L	3-105	SG101AT	LM101AH		2-36
RC4195T		MC1468G	3-105	SG101J		LM101AH	2-36
RC4558DN RC4558JG	MC4558CP1 MC4558CU		2-232	SG101T	LM101AH		2-36
RC4558JG	MC4558CU		2-232	SG107J		MC1741	2-161
RC4558L	MC4558CG		2-232	SG107T		MC1741	2-161
RC4558P	MC4558CP1		2-232	SG108AJ	LM108AJ		2-40
RC4558T	MC4558CG		2-232	SG108AT	LM108AH		2-40
RC75107AD	MC75107L		7-171	SG108J	LM108J		2-40
RC75107ADP	MC75107P		7-171	SG108T	LM108H		2-40
RC75108AD	MC75108L		7-171	SG109K	LM109K		3-15
RC75108ADP	MC75108P		7-171	SG109R		LM109K	3-15
RC75109D		MC75S110L	7-176	SG109T	LM109H		3-15
RC75109DP		MC75S110P	7-176	SG111D	LM111J		2-45
RC75110D	MC75S110L		7-176	SG111T	LM111H		2-45

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
SG117K	LM117K		3-20
SG117R		LM117K	3-20
SG117T	LM117H		3-20
SG118T		MC1741SG	2-166
SG123K	LM 123K		3-36
SG124J	LM124J		2-51
SG137K	LM137K		3-42
SG137R		LM137K	3-42
SG137T	LM137H		3-42
SG140K-05	LM140K-5.0		3-49
SG140K-08	LM 140K-8.0		3-49
SG140K-12	LM140K-12		3-49
SG140K-15	LM140K-15		3-49
SG150K	LM150K		3-65
SG200T		MC1723G	3-111
SG201AD		LM201AH	2-36
SG201AM	LM201AN		2-36
SG201AN		LM201AN	2-36
SG201AT	LM201AH		2-36
SG201J		LM201AH	2-36
SG201M	LM201AN		2-36
SG201N		LM201AN	2-36
SG201T	LM201AH		2-36
SG207J		MC1741C	2-161
SG207M		MC1741C	2-161
SG207N		MC1741C	2-161
SG207T		MC1741C	2-161
SG208AJ	LM208AJ		2-40
SG208AM	LM208AJ-8		2-40
SG208AT	LM208AH		2-40
SG208J	LM208J		2-40
SG208M	LM208J-8		2-40
SG208T	LM208H		2-40
SG209K	LM209K		3-15
SG209R		LM209K	3-15
SG209T	LM209H		3-15
SG2110	LM211J-8		2-45
SG211M	LM211J-8		2-45
SG211T	LM211H		2-45
SG217K	LM217K		3-20
SG217R		LM217K	3-20
SG217T SG218J	LM217H		3-20
SG218J		MC1741SL	2-166
SG218M		MC1741SL	$2-166$ $2-166$
SG218T		MC1741SG	2-166
SG223K	LM223K		3-36
SG224J	LM224J		2-51
SG224N	LM224N		2-51
SG237K	LM237K		3-42
SG237R		LM237K	3-42
SG237T	LM237H		3-42
SG250K	LM250K		3-65
SG300N		MC1723CP	3-111
SG300T		MC1723CG	3-111
SG301AD		LM301AH	2-36
SG301AM	LM301AN		2-36
SG301AN		LM301AN	2-36
SG301AT	LM301AH		2-36
SG307J		LM307N	2-78
SG307M	LM307N		2-78
SG307N		LM307N	2-78
SG308AJ	LM308AJ		2-40
SG308AM	LM308AN		2-40
SG308AT	LM308AH		2-40
SG308J	LM308J		2-40
SG308M	LM308N		2-40
SG308T	LM308H		2-40
SG309K	LM309K		3-15
SG309P		LM309K	3-15
SG309R		LM309K	3-15
SG309T	LM309H		3-15
SG311D	LM311J		2-45
SG311M	LM311N		2-45
SG311T	LM311H		2-45
SG317K	LM317K		3-20

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
SG317P	LM317T		3-20
SG317R		LM317T	3-20
SG317T	LM317H		3-20
SG318J		MC1741SCL	2-166
SG318M		MC1741CP1	2-161
SG318T		MC1741CG	2-161
SG324J	LM324J		2-51
SG324N	LM324N		2-51
SG337K	LM337K		3-42
SG337P	LM337T		3-42
SG337R		LM337T	3-42
SG337T	LM337H		3-42
SG340K-05	LM340K-5.0		3-49
SG340K-08	LM340K-8.0		3-49
SG340K-12	LM340K-12		3-49
SG340K-24	LM340K-24		3-49
SG350K	LM350K		3-65
SG501AJ		MC1468G	3-105
SG555CM	MC1455P1		11-4
SG555CT		MC1455G	11-4
SG556CJ		MC3456L	$11-40$
SG556CN	MC3456P		11-40
SG556J	MC3556L		$11-40$
SG556N		MC3556L	11-40
SG723CD		MC1723CL	3-111
SG723CJ	MC1723CL		3-111
SG723CN	MC1723CP		3-111
SG723CT	MC1723CG		3-111
SG723D		MC1723L	3-111
SG723J	MC1723L		3-111
SG723T	MC1723G		3-111
SG733CD		MC1733CL	2-153
SG733CN	MC1733CP		2-153
SG733CT	MC1733CG		2-153
SG733D	MC1733L		2-153
SG733N		MC1733L	2-153
SG733T	MC1733G		2-153
SG741CM	MC1741CP1		2-161
SG741CT	MC1741CG		2-161
SG741SCM	MC1741SCP1		2-166
SG741SCT	MC1741SCG		2-166
SG741ST	MC1741SG		2-166
SG741T	MC1741G		2-161
SG747CJ	MC1747CL		2-172
SG747CN	MC1747CP2		2-172
SG747CT	MC1747CG		2-172
SG747J	MC1747L		2-172
SG747T	MC1747G		2-172
SG748CD		MC1748CP1	2-176
SG748CM		MC1748CP1	2-176
SG748CN		MC1748CP1	2-176
SG748CT	MC1748CG		2-176
SG748D		MC1748G	2-176
SG748T	MC1748G		2-176
SG777CJ		LM308AJ	2-40
SG777CM		LM308AN	2-40
SG777CN		LM308AN	2-40
SG777CT		LM308AH	2-40
SG777J		LM108AJ	2-40
SG777T		LM108AH	$2-40$
SG1118AJ		LM108AJ	2-40
SG1118AT		LM108AH	2-40
SG1118J		LM108J	2-40
SG1118T		LM108H	2-40
SG1217		MC1741G	2-161
SG1217T		MC1741SG	2-166
SG1250T		MC1776G	2-180
SG1402N		MC1594L	11-11
SG1402T		MC1594L	11-11
SG1436CT	MC1436CG		2-92
SG1436M	MC1436U		2-92
SG1436T	MC1436G		2-92
SG1456CT	MC1456CG		2-118
SG1456T	MC1456G		2-118
SG1458M	MC1458P1		2-124

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page	Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
SG1458T	MC1458G		2-124	SG3501AJ		MC1468L	3-105
SG1468J	MC1468L		3-105	SG3501AN		MC1468L	3-105
SG1468N		MC1468L	3-105	SG3501AT		MC1468G	3-105
SG1468T	MC1468G		3-105	SG3501J		MC1468L	3-105
SG1495D	MC1495L		11-25	SG3501D		MC1468L	3-105
SG1495N		MC1495L	11-25	SG3501N		MC1468L	3-105
SG1496D	MC1496L	MCT495L	$8-13$	SG3501T	MC1468G		3-105
SG1496N	MC1496L	MC1496L	8-13	SG3502D		MC1468L	3-105
SG1496T	MC1496G	MC1496L	8-13	SG3502G		MC1468G	3-105
SG1501AD		MC1568L	3-105	SG3502J		MC1468L	3-105
SG1501AJ		MC1568L	3-105	SG3502N		MC1468L	3-105
SG1501AT		MC1568G	3-105	SG3503	MC1403U		5-8
SG1501J	MC1568L		3-105	SG3503M		MC1403U	5-8
SG1501T	MC1568G		3-105	SG3503T		MC1403U	5-8
SG1502D		MC1568L	3-105	SG3503Y	MC1403U		5-8
SG1502J		MC1568L	3-105	SG3523Y		MC3523U	3-117
SG1502N		MC1568L	3-105	SG3524J		TL494CJ	3-312
SG1503	MC1503U		5-8	SG3525AJ	SG3525AJ		3-279
SG1503T		MC1503U	5-8	SG3525AN SG3526J	SG3525AN SG3526J		$3-279$ $3-286$
SG1503Y		MC1503U	5-8	SG3526J	SG3526J		3-286
SG1524J		TL494MJ	3-312	SG3527AJ	SG3527AJ		$3-279$ $3-279$
SG1525AJ	SG1525AJ	L494MJ	3-279	SG3527AN	SG3527AN		3-279
SG1526J	SG1526J		3-286	SG4194J		MC1568L	- 3 3-105
SG1527AJ	SG1527AJ		3-279	SG4250CM		MC1776CP1	2-180
SG1536T	MC1536G		2-92				
				SG4250CT		MC1776CG	2-180
SG1556T	MC1556G		2-118	SG4250T		MC1776G	2-180
SG1558T	MC1558G		2-124	SG4501D	MC1468L		3-105
SG1568J	MC1568L		3-105	SG4501J		MC1468L	3-105
SG1568T	MC1568G		3-105	SG4501N		MC1468L	3-105
SG1595D	MC1595L		11-25				
SG1596D	MC1596L		8-13	SG4501T SG7805ACK		MC1468G	3-105
SG1596T	MC1596G		8-13	SG7805ACP	MC7805ACT		3-132
SG1660D		LM301AH	2-36	SG7805ACR		MC7805ACT	3-132
SG1660J		LM308J	$2-40$ 2-40	SG7805ACT		MC7805ACT	3-132
SG1660T			2-40	SG7805AK	MC7805AK		3-132 3-132
SG1760J		LM308J	2-40	SG7805AT		MC7805AK	3-132 $3-132$
SG1760M		LM308N	2-40	SG7805CK	MC7805CK		3-132
SG1760T		LM308H	2-40	SG7805CP	MC7805CT		3-132
SG2118AJ		LM208AJ	2-40				
SG2118AM		LM208AJ-8	2-40	SG7805CR		MC7805CT	3-132
SG2118AT		LM208AH	2-40	SG7805CT SG7805K		MC78M05CG	3-151 $3-132$
SG2118J		LM208J	2-40	SG7805K SG7805R	MC7805K	MC7805K	3-132 3-132
SG2118M		LM208J-8	2-40	SG7805T		MC7805K	3-132
SG2118T		LM208H	2-40				
				SG7806ACP	MC7806ACT		3-132
SG2250T		MC1776G		SG7806ACR		MC7806ACT	3-132
SG2402N		MC1494L	11-11	SG7806ACT		MC7806ACT	3-132
SG2402T		MC1494L	11-11	SG7806CK	MC7806CK		3-132
SG2501AD		MC1468L	3-105	SG7806CP	MC7806CT		3-132
SG2501AT		MC1468G	3-105				
SG2501D	MC1468L		3-105	SG7806CR		MC7806CT	3-132
SG2501J		MC1468L	3-105	SG7806K	MC7806K		3-132
SG2501N		MC1468L	$3-105$ $3-105$	SG7806R SG7806T		MC7806K MC7806K	3-132 3-132
SG2501T SG2502J	MC1468G	MC1468L	$3-105$ $3-105$	SG7806T SG7808ACP	MC7808ACT	MC7806K	3-132
SG2502J				SG7808ACR		MC78M08ACT	3-151
SG2502N		MC1468L	3-105	SG7808ACT		MC7808ACT	3-132
SG2503M		MC1403AU	5-8	SG7808CK	MC7808CK		3-132
SG2503T		MC1403AU	5-8	SG7808CP	MC7808CT		3-132
SG2503Y		MC1403AU	5-8	SG7808CR		MC7808CT	3-132
SG2524J		TL494IJ	3-312				
SG2525AJ	SG2525AJ		3-279	SG7808CT		MC78M18CG	3-151
SG2526J	SG2526J		3-286	SG7808K	MC7808K		3-132
SG2527AJ	SG2527AJ		3-279	SG7808R		MC7808K	3-132
SG3118AJ		LM308AJ	2-40	SG7808T		MC7808K	3-132
SG3118AM		LM308AN	2-40	SG7812ACK	MC7812ACK		3-132
SG3118AT		LM308AH	2-40	SG7812ACP	MC7812ACT		3-132
SG3118J		LM308J	2-40	SG7812ACR		MC7812ACT	3-132
SG3118M		LM308N	2-40	SG7812ACT		MC7812ACT	3-132
SG3118T		LM308H	2-40	SG7812AK	MC7812AK		3-132
SG3250T		MC1776G	2-180	SG7812AR		MC7812AK	3-132
SG3402N		MC1494L	11-11	SG7812AT		MC7812AK	3-132
SG3402T		MC1494L	11-11	SG7812CK	MC7812CK		3-132
SG3423M		MC3423P1	3-117	SG7812CP	MC7812CT		3-132
SG3423Y		MC3423U	3-117	SG7812CR		MC7812CT	3-132
SG3501AD		MC1468L	3-105	SG7812CT		MC78M12CG	3-151

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
SG7812K	MC7812K		3-132
SG7815ACK	MC7815ACK		3-132
SG7815ACP	MC7815ACT		3-132
SG7815ACR		MC7815ACT	3-132
SG7815ACT		MC7815ACT	3-132
SG7815AK	MC7815AK		3-132
SG7815AR		MC7815AK	3-132
SG7815AT		MC7815AK	3-132
SG7815CK	MC7815CK		3-132
SG7815CP	MC7815CT		3-132
SG7815CR		MC7815CT	3-132
SG7815CT		MC78M15CG	3-151
SG7815K	MC7815K		3-132
SG7815R		MC7815K	3-132
SG7815T		MC7815K	3-132
SG7818ACK	MC7818ACK		3-132
SG7818ACP	MC7818ACT		3-132
SG7818ACR		MC7818ACT	3-132
SG7818ACT		MC7818ACT	3-132
SG7818AK	MC7818AK		3-132
SG7818AR		MC7818AK	3-132
SG7818AT		MC7818AK	3-132
SG7818CK	MC7818CK		3-132
SG7818CP	MC7818CT		3-132
SG7818CR		MC7818CT	3-132
SG7818CT		MC78M18CG	3-151
SG7818K	MC7818K		3-132
SG7818R		MC7818K	3-132
SG7818T		MC7818K	3-132
SG7824ACP	MC7824ACT		3-132
SG7824ACR		MC7824ACT	3-132
SG7824ACT		MC7824ACT	3-132
SG7824CK	MC7824CK		3-132
SG7824CP	MC7824CT		3-132
SG7824CR		MC7824CT	3-132
SG7824K	MC7824K		3-132
SG7824R		MC7824K	3-132
SG7824T		MC7824K	3-132 $3-168$
SG7905ACK	MC7905ACK		$3-168$ $3-168$
SG7905ACP	MC7905ACT		3-168
SG7905ACR		MC7905ACT	3-168
SG7905ACT		MC7905ACT	3-168
SG7905CK		MC7905CK	3-168
SG7905CP	MC7905CT		3-168
SG7905CR		MC7905CT	3-168
SG7905CT		MC7905CT	3-168
SG7905.2CP	MC7905.2CT		3-168
SG7905.2CR		MC7905.2CT	3-168
SG7905.2CT		MC7905.2CT	3-168
SG7908CP	MC7908CT		3-168
SG7908CR		MC7908CT	3-168
SG7908CT		MC7908CT	3-168
SG7912ACK	MC7912ACK		3-168
SG7912ACP	MC7912ACT		3-168
SG7912ACR		MC7912ACT	3-168
SG7912ACT		MC7912ACT	3-168
SG7912CK	MC7912CK		3-168
SG7912CP	MC7912CT		3-168
SG7912CR		MC7912CT	3-168
SG7912CT		MC7912CT	3-168
SG7915ACK	MC7915ACK		3-168
SG7915ACP	MC7915ACT		3-168
SG7915ACR		MC7915,ACT	3-168
SG7915ACT		MC7915ACT	3-168
SG7915CK	MC7915CK		3-168
SG7915CP	MC7915CT		3-168
SG7915CR		MC7915CT	3-168
SG7915CT		MC7915CT	3-168
SG7918CP	MC7918CT		3-168
SH323SKC	LM323K		3-36
SH8090FM		MC1508L8	
SN52101AL	LM101AH		2-36
SN52104L	LM101H		2-36
SN52107L		MC1741	2-161
SN52108AL	LM108AH		2-40

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
SN52108L	LM108H		2-40
SN52109L	LM109H		3-15
SN52514J	MC1514L		2-88
SN75107AJ	MC75107L		7-171
SN75107AN	MC75107P		7-171
SN75107BJ		MC75107L	7-171
SN75107BN		MC75107P	7-171
SN75108AJ	MC75108L		7-171
SN75108AN	MC75108P		7-171
SN75108BJ		MC75108L	7-171
SN75108BN		MC75108P	7-171
SN75110AJ	MC75S110L		7-176
SN75110AN	MC75S110P		7-176
SN75121J		MC3481/5L	7-137
SN75121N		MC3481/5P	7-137
SN75122J		MC75125L	7-181
2N75122N		MC75125P	7-181
SN75125J			7-181
SN75125N			7-181
SN75126J		MC3481/5L	7-137
SN75126N		MC3481/5P	7-137
SN75127J	MC75127L		7-181
SN75127N	MC75127P		7-181
SN75128J	MC75128L		7-185
SN75128N	MC75128P		7-185
SN75129J	MC75129		7-185
SN75129N	MC75129P		7-185
SN75150 J		MC1488L	7-37
SN75150N		MC1488P	7-37
SN75154J		MC1489L	7-43
SN75154N		MC1489P	7-43
SN75160J		MC3447L	7-61
SN75160N		MC3447P/P3	7-61
SN75172J	SN75172J*		7-189
SN75172NG	SN75172NG*		7-189
SN75173J	SN75173J		7-191
SN75173N	SN75173N		7-191
SN75174J	SN75174 ${ }^{*}$		7-189
SN75174NG	SN75174NG*		7-189
SN75175J	SN75175J		7-191
SN75175N	SN75175N		7-191
SN75188J	MC1488L		7-37
SN75188N	MC1488P		7-37
SN75188N3	MC1488PDS		7-37
SN75189AJ	MC1489AL		7-43
SN75189AJ4	MC1489ALDS		7-43
SN75189AN	MC1489AP		7-43
SN75189J	MC1489L		7-43
SN75189J4	MC1489LDS		7-43
SN75189N	MC1489P		7-43
SN75189N3	MC1489PDS		7-43
SN75207J			7-171
SN75207N		MC75107P	7-171
SN75208J		MC75108L	7-171
SN75208N		MC75108P	7-171
SN75251N		MC3471P	7-112
SN75466J	MC1411L		7-30
SN75466N	MC1411P		7-30
SN75467J	MC1412L		7-30
SN75467N	MC1412P		7-30
SN75468J	MC1413L		7-30
SN75468N	MC1413P		7-30
SN75475JG	MC1472U		7-34
SN75475P	MC1472P1		7-34
SN76514L		MC1496G	8-13
SN76514N	MC1496P		8-13
SN76564N		MC13010P	9-73
SN76565N		MC13010P	9-73
SN76591P	MC1391P		9-35
SN76600P	MC1350P		9-15
SN76665N		MC13010P	9-73
SSS101AL		LM101AH	2-36
SSS101AJ	LM 101AH		2-36
SSS 107 J		MC1741	2-161
SSS107P		MC1741	$2-161$ $2-36$
SSS201AJ	LM201AH		2-36

CROSS REFERENCE - CONTINUED

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page	Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
SSS201AL		LM201AH	2-362-36	TA78024AP	MC7824CT		3-132
SSS201AP		LM201AN		TA79005P	MC7905CT		3-168
				TA79006P	MC7906CT		3-168
SSS207J		$\begin{aligned} & \text { MC1741C } \\ & \text { MC1741C } \end{aligned}$	2-161	TA79008P	MC7908CT		3-168
SSS207P			2-161	TA79012P	MC7912CT		3-168
SSS301AL	LM301AH	LM301AH	2-36 2	TA79015P	MC7915CT		3-168
SSS301AP	LM301AN		2-36	TA79018P	MC7918CT		3-168
				TA79024P	MC7924CT		3-168
SSS741BJ		MC1741G	2-161	TBA120		TBA120C	9-137
SSS741CJ		MC1741CG	2-161	TBA440		MC13010P	9-73
SSS741GJ	MC1741SG		2-166	TB920		MC1391P	9-35
SSS741GP		MC1741SGMC1741G	2-1662-161	TBA920S		MC1391P	9-35
SSS741J				TBA1440		MC13010P	-9-73
SSS747BP		MC1747L	2-172	TD62001P/AP	MC1411P		7-30
SSS747CK		MC1747CG	2-172	TD62002P/AP	MC1412P		7-30
SSS747CM		MC1747CF	2-172	TD62003P/AP	MC1413P		7-30
SSS747GK		MC1747CL	-172	TD62004P/AP	MC1414P		2-88
		MC1747G		TD62477P	MC1472P		7-34
				TD62479P	MC1374P		9-19
SSS747GP		MC1747L	2-172	TDA1085	TDA1085C		4-71
SSS747P		MC1747L	2-172	TDA1524		TCA5550	9-149
SSS1408A-6Z	MC1408L6		6-15				
SSS1408A-7Z	MC1408L7		6-15	TDA2540		MC13010P	9-73
SSS1408A-8Z	MC1408L8		6-15	TDA2544		MC13010P MC13010P	$9-73$ $9-73$
SSS1458J	MC1458G		2-124	TDA4500A	TCA4500A		9-142
SSS1508A-8Z	MC1508L8		6-15	TDA4601	TDA4601		3-305
SSS1558J	MC1558G		2-124	TDA4601B	TDA4601B		3-305
TA78L005AP		MC78L05CP	$3-145$	TDA5600		MC13010P	9-73
TA78L005P				TDC1048		MC10319	6-62
TA78L008AP		MC78L08ACP	3-145	TL022CJG		LM358J	2-67
TA78L008P		MC78L08CP	3-145	TLO22CL		LM358H	2-67
TA78L012AP		MC78L12ACP	3-145	TL022CP		LM358N	2-67
TA78L012P		MC78L12CP	3-145	TL022MJG		LM158J	2-67
TA78L015AP				TL022ML		LM158H	2-67
TA78L015P		MC78L15ACP MC78L15CP	3-145 3-145	TL044CJ		LM324J	2-51
TA78L018AP		MC78L18ACP	3-145	TLO44CN TL044MJ		LM324N	2-51
TA78L018P		MC78L18CP	3-145	TL044MJ		LM124J	
TA78L024AP		MC78L24ACP	3-145	TL061ACD	TL061ACD		2-320
TA78L024P		MC78L24CP	3-145	TL061ACP	TL061ACP		2-320
TA78M05P	MC78M05CT		3-151	TL061BCD	TL061BCD		2-320
TA78M06P	MC78M06CT		3-151	TL061BCP	TLO61BCP		2-320
TA78M08P	MC78M08CT		3-151	TL061CD	TL061CD		2-320
TA78M12P	MC78M12CT		3-151				
TA78M18P	MC78M18CT		3-151	TL061CP	TL061CP		2-320
TA78M20P	MC78M20CT		3-151	TL061MJG	TL061MJG		2-320
TA78M24P	MC78M24CT		3-151	TL062ACD	TL062ACD		2-320
TA79L005P		MC79L05CP	3-177	TL062ACP	TL062ACP		2-320
TA79L012P		MC79L12P	3-177	TL062BCD	TL062BCD		2-320
TA79L015P			3-177	TL062BCP	TL062BCP		2-320
TA79L018P		MC79L18P	3-177 $3-177$	TL062CD	TL062CD		2-320
TA79L024P		MC79L24P	3-177	TL062CP	TL062CP		2-320
$\begin{aligned} & \text { TA7179P } \\ & \text { TA7502P } \end{aligned}$	MC1468L MC1709P1		2-149	TL062MJG	TL062MJG		2-320
				TL064ACD.	TL064ACD		2-320
TA7504P	MC1741CP1		2-161				
TA7506P	LM301AN		2-36	TL064ACN	TL064ACN		2-320
TA7555F	MC1455D		11-4	TL064BCD	TL064BCD		2-320
TA7555P	MC1455P1		11-4	TL064BCN	TL064BCN		2-320
TA75071P		MC34001P	2-260	TL064CD	TL064CD		2-320
TA75072P				TL064CN	TL064CN		2-320
TA75074F		MC34004P	2-260	TL064MJ	TL064MJ		
TA75339F	LM339D	LM2901D	2-57	TL071ACJG	TL071ACJG		$2-320$ $2-328$
TA75358CF	LM358D	LM2901N	2-67	TL071ACP	TL071ACP		- 2328
				TL071BCJG	TL071BCJG		2-328
				TL071BCP	TL071BCP		2-328
TA75393F	LM393D	LM2903D	2-73	TL071CJG	TL071CJG		2-328
TA75393P	LM393N	LM2903N	2-73	TL071CP	TL071CP		2-328
TA75458F	MC1458D		2-124	TL072ACJG	TL072ACJG		2-328
TA75458P	MC1458CP1		2-124	TL072ACP	TL072ACP		2-328
				TL072BCJG	TL072BCJG		2-328
TA75558P	MC4558CP1		2-232				
TA75902F	LM324D	LM2902D	2-51	TL072BCP	TL072BCP		2-328
TA75902P	LM324N	LM2902N	2-51	TL072CJG	TL072CJG		2-328
TA76494P		TL494IN	3-312	TL072CP	TL072CP		2-328
TA78005AP	MC7805CT		3-132	TL074ACJ	TL074ACJ		2-328
				TL074ACN	TL074ACN		2-328
TA78006AP	MC7806CT		3-132 $3-132$	TL074BCJ	TL074BCJ		2-328
TA78008AP	MC7808CT MC7812CT		3-132 $3-132$	TL074BCN	TL074BCN		2-328
TA78015AP	MC7815CT		3-132	TL074CJ	TL074CJ		2-328
TA78018AP	MC7818CT		3-132	TL074CN	TL074CN		2-328
				TL081ACJG	TL081ACJG		2-335

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
TL081ACP	TL081ACP		2-335
TLO81BCJG	TL081BCJG		2-335
TL081BCP	TL081BCP		2-335
TL081CJG	TL081CJG		2-335
TL081CP	TL081CP		2-335
tlob2acja	tlo82acjg		2-335
TL082ACP	TL082ACP		2-335
TL082BCJG	TL082BCJG		2-335
TL082BCP	TL082BCP		2-335
TL082CJG	TL082CJG		2-335
TL082CP	TL082CP		2-335
TL084ACJ	TL084ACJ		2-335
TLO84ACN	TL084ACN		2-335
TL084BCJ	TL084BCJ		2-335
TLO84BCN	TLO84BCN		2-335
TL084CJ	TL084CJ		2-335
TL084CN	TLO84CN		2-335
TL431CJG	TL431CJG		5-17
TL431CLP	TL431CLP		5-17
TL431CP	TL431CP		5-17
TL431IJG	TL4311JG		5-17
TL431IP	TL4311P		5-17
TL431ILP	TL4311LP		5-17
TL431MJG	TL431MJG		5-17
TL494CJ	TL494CJ		3-312
TL494CN	TL494CN		3-312
TL494IJ	TL494IJ		3-312
TL494IN	TL494IN		3-312
TL494MJ	TL494MJ		3-312
TL497CJ		MC34063U	3-227
TL497CN		MC34063P1	3-227
TL497MJ		MC35063U	3-227
TL514MJ	MC1514L		2-88
TL594CN	TL594CN		3-323
TL594IN	TL594IN		3-323
TL594MJ	TL594MJ		3-323
TL780-05CKC	TL780-05CKC		3-334
TL780-12CKC	TL780-12CKC		3-334
TL780-15CKC	TL780-15CKC		3-334
TL7805ACKC	MC7805ACT		3-132
UC117K	LM117K		
UC137K	LM137K		3-42
UC150K	LM150K		3-65
UC217K	LM217K		3-20
UC237K	LM237K		3-42
UC250K	LM250K		3-65
UC317K	LM317K		3-20
UC317T	LM317T		3-20
UC337K	LM337K		3-42
UC337T	LM337T		3-42
UC350K UC494ACN	LM350K	TL594CN	$3-65$ $3-323$
UC494AJ		TL594MJ	3-323
UC494CN		TL494CN	3-312
UC494J		TL494MJ	3-312
UC1525AJ	SG1525AJ		3-279
UC1526J	SG1526J		3-286
UC1527AJ	SG1527AJ		3-279
UC2525AJ	SG2525AJ		3-279
UC2526J	SG2526J		3-286
UC2526N	SG2526N		3-286
UC2527AJ	SG2527AJ		3-279
UC2842D	UC2842AD		3-340
UC2842N	UC2842AN		
UC2843D	UC2843AD		3-340
UC2843N	UC2843AN		3-340
UC3525AJ	SG3525AJ		3-279
UC3525AN	SG3525AN		3-279
UC3526J	SG3526J		3-286
UC3526N	SG3526N		3-286
UC3527AJ	SG3527AJ		3-279
UC3527AN	SG3527AN		3-279
UC3842D	UC3842AD		3-340
UC3842N	UC3842AN		3-340
UC3843D	UC3843AD		3-340

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
UC3843N	UC3843AN		3-340
UDN5712M	MC1472P1		7-34
ULN2001A	ULN2001A	MC1411P	7-30
ULN2001AN	MC1411P		7-30
ULN2002A	ULN2002A	MC1412P	7-30
ULN2002AJ	MC1412L		7-30
ULN2002AN	MC1412P		7-30
ULN2003A	ULN2003A	MC1413P	7-30
ULN2003AJ	MC1413L		7-30
ULN2003AJ4	MC1413LDS		7-30
ULN2003AN	MC1413P		7-30
ULN2003AN3	MC1413PDS		7-30
ULN2004A	ULN2004A	MC1416P	7-30
ULN2004AJ	MC1416L		7-30
ULN2004AJ4	MC1416LDS		7-30
ULN2004AN	MC1416P		7.30
ULN2004AN3	MC1416PDS		7-30
ULN2068B	ULN2068B		7-200
ULN2068NE	ULN2068B		7-200
ULN2074B	ULN2074B		7-204
ULN2074NE	ULN2074B		7-204
ULN2139D		MC1439G	2-100
ULN2139G		MC1439G	2-100
ULN2139H		MC1439P2	2-100
ULN2139M		MC1439P1	2-100
ULN2151D		MC1741CG	2-161
ULN2151H		MC1741CP1	2-161
ULN2151M		MC1741CP1	2-161
ULN2156D		MC1456G	2-118
ULN2156G		MC1456G	2-118
ULN2156H		MC1456G	2-118
ULN2156M		MC1456G	2-118
ULN2157K		MC1458G	2-124
ULN2264A		MC13010P	9-73
ULN2741D		MC1741CG	2-161
ULN2747A		MC1747CL	2-172
ULN2801A	ULN2801A		7-208
ULN2802A	ULN2802A		7-208
ULN2803A	ULN2803A		7-208
ULN2804A	ULN2804A		7-208
ULN8126A	SG3526N		3-286
ULN8126R	SG3526J		3-286
ULQ8126A	SG2526N		3-286
ULQ8126R	SG2526J		3-286
ULS2139D		MC1539G	2-100
ULS2139G		MC1539G	2-100
ULS2139H		MC1539L	2-100
ULS2139M		MC1439P1	2-100
ULS21510		MC1741G	2-161
ULS2151M		MC1741CP1	2-161
ULS2156D		MC1556G	2-118
ULS2156G		MC1556G	2-118
ULS2156H		MC1556G	2-118
ULS2156M		MC1556G	2-118
ULS2157A		MC1558U	2-124
ULS2157H		MC1558U	2-124
ULS2157K		MC1558G	2-124
ULS8126R	SG1526J		
ULX8161M		MC34060P	3-185
UPD6950C		MC10319	6-62
UVC3101		MC10319	6-62
XR082CN	TL082CJG		2-335
XR082CP	TL082CP		2-335
XR082M	TL082MJG		2-335
XR084CN	TL084CJ		2-335
XR084CP	TL084CN	-	2-335
XR084M	TL084MJ		2-335
XR3470A	MC3470AP		7-98
μ A0802DC-1	MC1408L		6-15
μ A0802DC-2	MC1408L		6-15
μ A0802DC-3	MC1408L		6-15
$\mu \mathrm{A} 0802 \mathrm{DM}$-1	MC1508L		6-15
μ A0802PC-1	MC1408P		6-15
μ A0802PC-2	MC1408P		6-15
μ A0802PC-3	MC1408P		6-15
μ A78GHM		LM117K	3-20
μ A78GKC		LM117K	3-20

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
μ A78GKM		LM117K	3-20
μ A78GUC		LM317T	3-20
μ A78GU1C		LM317T	3-20
$\mu \mathrm{A} 78 \mathrm{H} 05 \mathrm{KC}$		MC7805CK	3-132
μ A78L05ACJG		MC78L05ACG	3-145
μ A78L05ACLP	MC78L05ACP		3-145
μ A78L05AHC	MC78L05ACG		3-145
μ A78L05AWC		MC78L05ACP	3-145
μ A78L05CJG		MC78L05CG	3-145
μ A78L05CLP	MC78L05CP		3-145
$\mu \mathrm{A} 78 \mathrm{LO5HC}$	MC78L05CG		3-145
μ A78L05WC		MC78L05CP	3-145
μ A78L08ACJG		MC78L08ACG	3-145
μ A78L08ACLP	MC78L08ACP		3-145
μ A78L08AWC		MC78L08ACP	3-145
μ A78L08CJG		MC78L08CG	3-145
$\mu \mathrm{A} 78 \mathrm{LOBCLP}$	MC78L08CP		3-145
μ A78L12ACJG		MC78L12ACG	3-145
μ A78L12ACLP	MC78L12ACP		3-145
μ A78L12AHC	MC78L12ACG		3-145
μ A78L12AWC		MC78L12ACP	3-145
$\mu \mathrm{A} 78 \mathrm{~L} 12 \mathrm{CJG}$		MC78L12CG	3-145
$\mu \mathrm{A} 78 \mathrm{~L} 12 \mathrm{CLP}$	MC78L12CP		3-145
μ A78L12HC	MC78L12CG		3-145
$\mu \mathrm{A} 78 \mathrm{~L} 12 \mathrm{WC}$		MC78L12CP	3-145
μ A78L15ACJG		MC78L15ACG	3-145
μ A78L15ACLP	MC78L15ACP		3-145
μ A78L 15AHC	MC78L15ACG		3-145
μ A78L 15 AWC		MC78L15ACP	3-145
μ A78L15CJG		MC78L15CG	3-145
μ A78L15CLP	MC78L 15 CP		3-145
$\mu \mathrm{A} 78 \mathrm{~L}$ 15HC	MC78L15CG		3-145
μ A78L15WC		MC78L15CP	3-145
μ A78L18AWC		MC78L18ACP	3-145
μ A78L24AHC	MC78L24ACG		3-145
μ A78L24AWC	MC78L24ACP		3-145
μ A78MGT2C		LM317T	3-20
μ A78MGU1C		LM317T	3-20
$\mu A 78$ MGUC		LM317MT	3-20
$\mu \mathrm{A} 78 \mathrm{MO5CKC}$	MC78M05CT		3-151
μ A78M05CKD		MC78M05CT	3-151
$\mu \mathrm{A} 78 \mathrm{MO5CLA}$	MC78M05CG		3-151
$\mu \mathrm{A} 78 \mathrm{MO5HC}$	MC78M05CG		3-151
μ A78M05HM		MC78M05CG	3-151
$\mu \mathrm{A} 78 \mathrm{M05UC}$	MC78M05CT		3-151
μ A78M06CKC	MC78M06CT		3-151
μ A78M06CKD		MC78M06CT	3-151
$\mu \mathrm{A} 78 \mathrm{M} 06 \mathrm{UC}$	MC78M06CT		3-151
μ A78M08CKC	MC78M08CT		3-151
$\mu \mathrm{A} 78 \mathrm{MOBCKD}$		MC78M08CT	3-151
μ A78M08CLA	MC78M08CG		3-151
$\mu \mathrm{A} 78 \mathrm{M} 08 \mathrm{HC}$	MC78M08CG		3-151
μ A78M08HM		MC78M08CG	3-151
μ A78M08UC	MC78M08CT		3-151
μ A78M12CKC	MC78M12CT		3-151
$\mu \mathrm{A} 78 \mathrm{M12CKD}$		MC78M12CT	3-151
$\mu \mathrm{A} 78 \mathrm{M12CLA}$	MC78M12CG		3-151
$\mu \mathrm{A} 78 \mathrm{M12HC}$	MC78M12CG		3-151
$\mu \mathrm{A} 78 \mathrm{M12HM}$		MC78M12CG	3-151
$\mu \mathrm{A} 78 \mathrm{M12UC}$	MC78M12CT		3-151
$\mu \mathrm{A} 78 \mathrm{M} 15 \mathrm{CKC}$	MC78M15CT		-3-151
μ A 78 M 15 CKD μ A78M15CLA		MC78M15CT	3-151 3-151
μ A78M15CLA μ A78M15HC	MC78M15CG	MC78M15CG	$3-151$ $3-151$
$\mu \mathrm{A} 78 \mathrm{M} 15 \mathrm{HM}$		MC78M15CG	3-151
$\mu \mathrm{A} 78 \mathrm{M15UC}$	MC78M15CT		3-151
$\mu \mathrm{A} 78 \mathrm{M} 18 \mathrm{HC}$	MC78M18CG		3-151
$\mu \mathrm{A} 78 \mathrm{M18HM}$		MC78M18CG	3-151
μ A78M18UG	MC78M18CT		3-151
$\mu \mathrm{A} 78 \mathrm{M} 20 \mathrm{CKC}$	MC78M20CT		3-151
$\mu \mathrm{A} 78 \mathrm{M} 20 \mathrm{CKD}$		MC78M20CT	3-151
	MC78M20CT MC78M24CT		$3-151$ $3-151$
	MC78M24CT	MC78M24CT	3-151
$\mu \mathrm{A} 78 \mathrm{M} 24 \mathrm{UC}$	MC78M24CT		3-151
$\mu \mathrm{A} 78 \mathrm{S40DC}$	$\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{DC}$		3-353
μ A78S40DM	$\mu \mathrm{A} 78 \mathrm{S40DM}$		3-353
$\mu \mathrm{A} 78 \mathrm{S40PC}$	μ A78S40PC		3-353

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
μ A78S40PV	μ A78S40PV		3-353
$\mu A 79 L 05 A H C$	MC79L05ACG		3-177
μ A79L05AWC	MC79L05ACP		3-177
$\mu \mathrm{A} 79 \mathrm{~L} 05 \mathrm{HC}$	MC79L05CG		3-177
$\mu A 79 L 05 W C$	MC79L05CP		3-177
μ A79L12AHC	MC79L12ACG		3-177
μ A79L12AWC	MC79L12ACP		3-177
$\mu \mathrm{A} 79 \mathrm{~L} 12 \mathrm{HC}$	MC79L12CG		3-177
$\mu \mathrm{A} 79 \mathrm{~L} 12 \mathrm{WC}$	MC79L12CP		3-177
μ A79L15AHC	MC79L15ACG		3-177
μ A79L15AWC	MC79L15ACP		3-177
$\mu \mathrm{A} 79 \mathrm{~L} 15 \mathrm{HC}$	MC79L15CG		3-177
$\mu \mathrm{A} 79 \mathrm{~L} 15 \mathrm{WC}$	MC79L15CP		3-177
$\mu \mathrm{A} 9 \mathrm{MOSAUC}$	MC79M05CT		3-182
$\mu \mathrm{A} 9 \mathrm{MOSCKC}$	MC79M05CT		3-182
μ A79M06AUC		MC7906CT	3-168
μ A79M06CKC		MC7806CT	3-132
$\mu \mathrm{A} 79 \mathrm{M} 06 \mathrm{UC}$		MC7906CT	3-168
$\mu \mathrm{A} 9 \mathrm{MOBAUC}$		MC7908CT	3-168
μ A79M08CKC		MC7908CT	3-168
$\mu \mathrm{A} 9 \mathrm{MOBUC}$		MC7908CT	3-168
$\mu \mathrm{A} 9 \mathrm{M} 12 \mathrm{AUC}$	MC79M12CT		3-182
$\mu \mathrm{A} 9 \mathrm{M} 12 \mathrm{CKC}$	MC79M12CT		3-182
μ A79M15AUC	MC79M15CT		3-182
μ A79M15CKC	MC79M15CT		3-182
μ A79M18AUC		MC7918CT	3-168
$\mu \mathrm{A} 9 \mathrm{M} 18 \mathrm{UC}$		MC7918CT	3-168
$\mu \mathrm{A} 9 \mathrm{M} 24 \mathrm{AUC}$		MC7924CT	3-168
$\mu \mathrm{A} 9 \mathrm{M} 24 \mathrm{CKC}$		MC7924CT	3-168
μ A79M24UC		MC7924CT	3-168
μ A101AD		LM101AJ	2-36
$\mu \mathrm{A} 101 \mathrm{AF}$		LM101AJ	2-36
$\mu \mathrm{A} 101 \mathrm{AH}$	LM101AH		2-36
$\mu \mathrm{A} 101 \mathrm{D}$		LM101AJ	2-36
$\mu \mathrm{A} 101 \mathrm{~F}$		LM101AJ	2-36
$\mu \mathrm{A} 101 \mathrm{H}$	LM101AH		2-36
$\mu \mathrm{A} 107 \mathrm{H}$		MC1741	2-161
$\mu \mathrm{A} 108 \mathrm{AD}$	LM108AJ		2-40
μ A108AF		LM108AH	2-40
$\mu \mathrm{A} 108 \mathrm{AH}$	LM108AH		2-40
$\mu \mathrm{A} 108 \mathrm{D}$	LM108J		2-40
$\mu \mathrm{A} 108 \mathrm{H}$	LM108H		2-40
$\mu \mathrm{A} 109 \mathrm{KM}$	LM109K		3-15
$\mu \mathrm{A} 117 \mathrm{KM}$	LM117K		3-20
$\mu \mathrm{A} 201 \mathrm{AD}$		LM201AJ	2-36
$\mu \mathrm{A} 201 \mathrm{AF}$		LM201AJ	2-36
$\mu \mathrm{A} 201 \mathrm{AH}$	LM201AH		2-36
$\mu \mathrm{A} 201 \mathrm{D}$		LM201AJ	2-36
$\mu \mathrm{A} 201 \mathrm{~F}$		LM201AJ	2-36
$\mu \mathrm{A} 201 \mathrm{H}$	LM201AH		2-36
$\mu \mathrm{A} 207 \mathrm{H}$		MC1741C	2-161
$\mu A 208 A D$	LM208AJ		2-40
$\mu \mathrm{A} 208 \mathrm{AF}$		LM208AH	2-40
μ A208AH	LM208AH		$2 \cdot 40$
$\mu \mathrm{A} 208 \mathrm{D}$	LM208J		2-40
$\mu \mathrm{A} 208 \mathrm{H}$	LM208H		2-40
$\mu \mathrm{A} 209 \mathrm{KM}$	LM209K		3-15
$\mu \mathrm{A} 217 \mathrm{UV}$		LM217K	3-20
$\mu A 301 A D$		LM301AJ	2-36
$\mu \mathrm{A} 301 \mathrm{AH}$	LM301AH		2-36
$\mu \mathrm{A} 301 \mathrm{AT}$	LM301AN		2-36
$\mu \mathrm{A} 307 \mathrm{~T}$	LM307N		2-78
μ A308AD	LM308AJ		2-40
$\mu \mathrm{A} 308 \mathrm{AH}$	LM308AH		2-40
$\mu \mathrm{A} 308 \mathrm{D}$	LM308J		2-40
$\mu \mathrm{A} 308 \mathrm{H}$	LM308H		2-40
$\mu \mathrm{A} 309 \mathrm{KC}$	LM309K		3-15
$\mu \mathrm{A} 311 \mathrm{~T}$	LM311N		2-45
$\mu \mathrm{A} 317 \mathrm{KC}$	LM317K		3-20
$\mu \mathrm{A} 317 \mathrm{UC}$	LM317T		3-20
μ A431AWC	TL431CP		5-17
μ A494DC	TL494CJ		3-312
μ A 494DM	TL494MJ		3-312
$\mu \mathrm{A} 494 \mathrm{PC}$	TL494CN		3-312
$\mu \mathrm{A} 555 \mathrm{HC}$	MC1455G		11-4
$\mu \mathrm{A} 555 \mathrm{TC}$	MC1455P1		11-4
μ A556DC	MC3456L		11-40
μ A556DM	MC3556L		11-40

CROSS REFERENCE - CONTINUED

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
μ A556PC	MC3456P		$11-40$ $2-153$
${ }_{\mu \text { A }}^{\mu \text { A } 702 \mathrm{DCD}}$		MC1733C MC1733	$\begin{aligned} & 2-153 \\ & 2-153 \end{aligned}$
μ A 702 FM		MC1733	2-153
$\mu \mathrm{A} 702 \mathrm{HC}$		MC1733C	2-153
$\mu \mathrm{A} 702 \mathrm{HM}$		MC1733	2-153
$\mu \mathrm{A} 702 \mathrm{MJ}$		MC1733	2-153
$\mu \mathrm{A} 702 \mathrm{ML}$		MC1733	2-153
$\mu \mathrm{A} 709 \mathrm{AHM}$	MC1709AG		2-149
μ A709AMJG	MC1709AU		2-149
μ A 709AML	MC1709AG		2-149
$\mu \mathrm{A} 709 \mathrm{CJG}$	MC1709CU		2-149
$\mu \mathrm{A} 709 \mathrm{CL}$	MC1709CG		2-149
$\mu \mathrm{A} 709 \mathrm{CP}$	MC1709CP1		2-149
$\mu \mathrm{A} 709 \mathrm{HC}$	MC1709CG		2-149
$\mu \mathrm{A} 709 \mathrm{HM}$	MC1709G		2-149
μ A 709MJG	MC1709U		2-149
μ A 709 ML	MC1709G		2-149
μ A709TC	MC1709CP1		2-149
$\mu \mathrm{A} 715 \mathrm{DC}$		MC1741SCU	2-166
μ A715DM		MC1741SU	2-166
$\mu \mathrm{A} 715 \mathrm{HC}$		MC1741SCG	2-166
$\mu \mathrm{A} 715 \mathrm{HM}$		MC1741SG	2-166
μ A723CF	MC1723CL		3-111
$\mu \mathrm{A} 723 \mathrm{CJ}$	MC1723CL		3-111
$\mu \mathrm{A} 723 \mathrm{CL}$	MC1723CG		3-111
μ A723CN	MC1723CP		3-111
μ A723DC	MC1723CL		3-111
μ A723DM	MC1723L		3-111
μ A 723 F	MC1723L		3-111
$\mu \mathrm{A} 723 \mathrm{HC}$	MC1723CG		3-111
$\mu \mathrm{A} 723 \mathrm{HM}$	MC1723G		3-111
μ A723MJ	MC1723L		3-111
$\mu \mathrm{A} 723 \mathrm{ML}$	MC1723G		3-111
$\mu \mathrm{A} 723 \mathrm{PC}$	MC1723CP		3-111
μ A725AHM			2-40
$\mu \mathrm{A} 725 \mathrm{EHC}$		LM308AH	2-40
$\mu \mathrm{A} 725 \mathrm{HC}$		LM308AH	2-40
$\mu \mathrm{A} 725 \mathrm{HM}$		LM108AH	2-40
μ A733CJ	MC1733CL		2-153
$\mu \mathrm{A} 733 \mathrm{CL}$	MC1733CG		2-153
$\mu A 733 C N$	MC1733CP		2-153
μ A733DC	MC1733CL		2-153
μ A733DM	MC1733L		2-153
μ A 733 FM	MC1733F		2-153
${ }_{\mu} \mathrm{A} 733 \mathrm{HC}$	MC1733CG		2-153
μ A733HM	MC1733G		2-153
μ A733MJ	MC1733L		2-153
$\mu \mathrm{A} 733 \mathrm{ML}$	MC1733G		2-153
μ A734DC		LM311J	2-45
μ A734DM		LM311J	2-45
$\mu \mathrm{A} 734 \mathrm{HC}$		LM311H	2-45
$\mu \mathrm{A} 734 \mathrm{HM}$		LM311H	2-45
$\mu \mathrm{A} 740 \mathrm{HC}$		LF355H	2-16
μ A741ADM		MC1741L	2-161
μ A741AHM		MC1741G	2-161
μ A741CJG	MC1741CU		2-161
$\mu \mathrm{A} 741 \mathrm{CL}$	MC1741CG		2-161
$\mu \mathrm{A} 741 \mathrm{CP}$	MC1741CP1		2-161
μ A741EHC		MC1741G	2-161
$\mu \mathrm{A} 741 \mathrm{HM}$	MC1741G	MC1741G	2-161
μ A741MJG	MC1741U		2-161
$\mu \mathrm{A} 741 \mathrm{ML}$	MC1741G		2-161
μ A741RC	MC1741CU		2-161
μ A741RM	MC1741U	MC1741G	2-161
μ A742DC		CA3059	4-8
μ A747ADM		MC1747L	2-172
μ A747AHM		MC1747G	2-172
$\mu \mathrm{A} 747 \mathrm{CL}$	MC1747CG		2-172
μ A 747 CN	MC1747CP2		2-172
μ A747DC	MC1747CL		2-172
μ A747DM	MC1747L		2-172
μ A747EDC	MC1747CL		2-172
μ A 747 EHC	MC1747CG		2-172
$\mu \mathrm{A} 747 \mathrm{HC}$	MC1747CG		2-172
μ A 747 HM	MC1747G		2-172

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
μ A 747 MJ	MC1747L		2-172
$\mu \mathrm{A} 747 \mathrm{ML}$	MC1747G		2-172
$\mu \mathrm{A} 747 \mathrm{PC}$	MC1747CP2		2-172
μ A748AHM		MC1748G	2-176
μ A748CJG	MC1748CU		2-176
$\mu \mathrm{A} 748 \mathrm{CL}$	MC1748CG		2-176
$\mu \mathrm{A} 748 \mathrm{CP}$	MC1748CP1		2-176
$\mu \mathrm{A} 748 \mathrm{HC}$	MC1748CG		2-176
$\mu \mathrm{A} 748 \mathrm{HM}$	MC1748G		2-176
μ A748MJG	MC1748U		2-176
$\mu \mathrm{A} 748 \mathrm{ML}$	MC1748G		2-176
$\mu \mathrm{A} 748 \mathrm{TC}$	MC1748CP1		2-176
μ A757DC		MC1350P	9-15
μ A757DM		MC 1350P	9-15
$\mu \mathrm{A} 772$		MC1741S	2-166
$\mu \mathrm{A} 775 \mathrm{DC}$	LM339J		2-57
μ A775DM	LM339J		2-57
μ A775PC	LM339N		2-57
μ A776DC		MC1776CG	2-180
$\mu \mathrm{A} 776 \mathrm{DM}$		MC1776G	2-180
$\mu \mathrm{A} 776 \mathrm{HC}$	MC1776CG		2-180
$\mu \mathrm{A} 776 \mathrm{HM}$	MC1776G		2-180
μ A 776 TC	MC1776CP1		2-180
μ A777CJ		LM308AJ-8	2-40
μ A777CJG		LM308AJ-8	2-40
$\mu \mathrm{A} 777 \mathrm{CL}$		LM308AH	2-40
$\mu \mathrm{A} 777 \mathrm{CN}$		LM308AN	2-40
$\mu \mathrm{A} 777 \mathrm{CP}$		LM308AN	2-40
$\mu A 777 D C$		LM308AJ-8	2-40
$\mu \mathrm{A} 777 \mathrm{HC}$		LM308AH	2-40
μ A 777 MJ		LM108AJ-8	2-40
μ A777MJG		LM108AJ-8	2-40
μ A 777 ML		LM108AH	2-40
μ A777TC		LM308AN	2-40
μ A796DC	MC1496L		8-13
$\mu \mathrm{A} 796 \mathrm{DM}$	MC1596L		8-13
$\mu \mathrm{A} 996 \mathrm{HC}$	MC1496G		8-13
$\mu \mathrm{A} 796 \mathrm{HM}$	MC1596G		8-13
μ A798HC	MC3458G		2-221
$\mu \mathrm{A} 798 \mathrm{HM}$	MC3558G		2-221
μ A798RC	MC3458U		2-221
μ A798RM	MC3558U		2-221
$\mu \mathrm{A} 798 \mathrm{TC}$	MC3458P1		2-221
$\mu \mathrm{A} 799 \mathrm{HC}$		MC1741G	2-161
$\mu \mathrm{A} 799 \mathrm{HM}$		MC1741G	2-161
$\mu \mathrm{A} 1391 \mathrm{PC}$	MC1391P		9-35
$\mu \mathrm{A} 1458 \mathrm{CHC}$	MC1458CG		2-124
$\mu \mathrm{A} 1458 \mathrm{CP}$	MC1458CP1		2-124
$\mu \mathrm{A} 1458 \mathrm{CRC}$	MC1458CU		2-124
$\mu \mathrm{A} 1458 \mathrm{CTC}$	MC1458CP1		2-124
$\mu \mathrm{A} 1458 \mathrm{E}$	MC1458G		2-124
$\mu \mathrm{A} 1458 \mathrm{HC}$	MC1558G		2-124
$\mu \mathrm{A} 1458 \mathrm{P}$	MC1458P1		2-124
$\mu \mathrm{A} 1458 \mathrm{RC}$	MC1458U		2-124
μ A1458TC	MC1458P1		2-124
$\mu \mathrm{A} 1558 \mathrm{E}$	MC1558G		2-124
$\mu \mathrm{A} 1558 \mathrm{HM}$	MC1558G		2-124
$\mu \mathrm{A} 2240 \mathrm{DC}$		MC1455U	11-4
$\mu \mathrm{A} 2240 \mathrm{PC}$		MC1455P1	11-4
$\mu \mathrm{A} 3026 \mathrm{HM}$		CA3054	9-7
$\mu \mathrm{A} 3045$		MC3346P	9-40
$\mu \mathrm{A} 3046 \mathrm{DC}$	MC3346P		9-40
μ A3054DC	CA3054P		9-7
$\mu \mathrm{A} 3064 \mathrm{PC}$		MC13010P	9-73
$\mu \mathrm{A} 3301 \mathrm{P}$	MC3301P		2-189
$\mu \mathrm{A} 3302 \mathrm{P}$	MC3302P		2-57
$\mu \mathrm{A} 3303 \mathrm{P}$	MC3303P		2-199
$\mu \mathrm{A} 3401$ P	MC3401P		2-189
μ A3403D	MC3403L		2-199
$\mu \mathrm{A} 3403 \mathrm{P}$	MC3403P		2-199
$\mu \mathrm{A} 4136 \mathrm{DC}$		MC4741CL	2-236
μ A4136DM		MC4741L	2-236
$\mu \mathrm{A} 4136 \mathrm{PC}$		MC4741CP	2-236
$\mu \mathrm{A} 4558 \mathrm{HC}$	MC4558CG		2-232

CROSS REFERENCE - CONTINUED

Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page
$\mu \mathrm{A} 4558 \mathrm{HM}$	MC4558G		2-232
$\mu \mathrm{A} 4558 \mathrm{TC}$	MC4558CP1		2-232
$\mu \mathrm{A} 7805 \mathrm{CKC}$	MC7805CT		3-132
$\mu \mathrm{A} 7805 \mathrm{KC}$	MC7805CK		3-132
$\mu \mathrm{A} 7805 \mathrm{KM}$	MC7805K		3-132
$\mu \mathrm{A} 8805 \mathrm{UC}$	MC7805CT		3-132
$\mu \mathrm{A} 7805 \mathrm{UV}$	MC7805BT		3-132
$\mu \mathrm{A} 7806 \mathrm{CKC}$	MC7806CT		3-132
$\mu \mathrm{A} 7806 \mathrm{KC}$	MC7806CK		3-132
$\mu \mathrm{A} 7806 \mathrm{KM}$	MC7806K		3-132
$\mu \mathrm{A} 7806 \mathrm{UC}$	MC7806CT		3-132
$\mu \mathrm{A} 7806 \mathrm{UV}$	MC7806BT		3-132
$\mu \mathrm{A} 7808 \mathrm{CKC}$	MC7808CT		3-132
$\mu \mathrm{A} 7808 \mathrm{KC}$	MC7808K		3-132
$\mu \mathrm{A} 7808 \mathrm{KM}$	MC7808K		3-132
$\mu \mathrm{A} 7808 \mathrm{UC}$	MC7808CT		3-132
$\mu \mathrm{A} 7808 \mathrm{UV}$	MC7808BT		3-132
$\mu \mathrm{A} 7812 \mathrm{CKC}$	MC7812CT		3-132
$\mu \mathrm{A} 7812 \mathrm{KC}$	MC7812CK		3-132
$\mu \mathrm{A} 7812 \mathrm{KM}$	MC7812K		3-132
$\mu \mathrm{A} 7812 \mathrm{CC}$	MC7812CT		3-132
$\mu \mathrm{A} 7812 \mathrm{UV}$	MC7812BT		3-132
$\mu \mathrm{A} 7815 \mathrm{CKC}$	MC7815CT		3-132
$\mu \mathrm{A} 7815 \mathrm{KC}$	MC7815CK		3-132
$\mu \mathrm{A} 7815 \mathrm{KM}$	MC7815K		3-132
$\mu \mathrm{A} 815 \mathrm{UC}$	MC7815CT		3-132
$\mu \mathrm{A} 7815 \mathrm{UV}$	MC7815BT		3-132
$\mu \mathrm{A} 7818 \mathrm{CKC}$	MC7818CT		3-132
$\mu \mathrm{A} 7818 \mathrm{KC}$	MC7818CK		3-132
$\mu \mathrm{A} 7818 \mathrm{KM}$	MC7818K		3-132

In Brief . . .

For over two decades, Motorola has continually refined and updated integrated circuit technologies, analog circuit design techniques and processes in response to the ever-expanding needs of the market place. The enhanced performance of present day operational amplifiers and comparators have come into being through innovative application of these technologies, designs and processes. Some early designs, though of inferior performance by today's standards, are still available but are rapidly giving way to the new, higher performance operational amplifier and comparator circuits. Motorola has pioneered in JFET inputs, low temperature coefficient input stages, Miller loop compensation, all NPN output stages, dual-doublet frequency compensation and analog "in-the-package" trimming of resistors to produce superior high performance operational amplifiers and comparators, operating in many cases from a single supply, with low input offset, low noise, low power, high output swing, high slew rate and high gain-bandwidth product at reasonable cost to the customer.
Present day operational amplifiers and comparators find application in all segments of society to include motor controls, instrumentation, aerospace, automotive, telecommunication, medical and consumer products.

Amplifiers and Comparators

Selector GuideOperational Amplifiers2-2
High Frequency Amplifiers 2-8
Miscellaneous Amplifiers 2-9
Comparators 2-10
Alphanumeric Listing 2-11
Related Application Notes 2-13
Data Sheets 2-14

Amplifiers and Comparators

Operational Amplifiers

Motorola offers a broad line of bipolar operational amplifiers to meet a wide range of applications. From low-cost industry-standard types to high precision circuits, the span encompasses a large range of performance capabilities. These linear integrated circuits are available as single, dual, and quad monolithic devices in a variety of temperature ranges and package styles. Most devices may be obtained in unencapsulated "chip" form as well. For price and delivery information on chips, please contact your Motorola Sales Representative or Distributor.

Operational Amplifiers	
Single	2-2
Dual.	2-4
Quad	2-6
High Frequency Amplifiers	
AGC	2-8
Non-AGC	2-8
Miscellaneous Amplifiers	
CMOS	
Quad Programmable Op Amp	2-9
Quad Programmable Comparator.	2-9
Dual Prog. Op Amp/Dual Prog. Comp.	
Bipolar	
Dual Op Amp-Comp.	2-9
Power Amplifiers Variable Gain	
Comparators	
Single	2-10
Dual.	2-10
Quad	2-10

Dual. 2-4
. $2-6$
igh Frequency Amplifiers

Miscellaneous Amplifiers CMOS

Quad
Dual Prog. Op Amp/Dual Prog. Comp. 2-9 polar

Dual Op Amp-Comp. 2-9
omparators

是
Quad . 2-10

Single Operational Amplifiers

Device	$\begin{gathered} \text { IIB } \\ \mu A \\ \text { Max } \end{gathered}$	VIO mV Max	TCVIO $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Typ	10 nA Max	Avol V/mV Min	$\begin{gathered} \text { BW } \\ \left(\mathbf{A}_{\mathbf{V}}=1\right) \\ \mathbf{M H z} \\ \text { Typ } \\ \hline \end{gathered}$	$\begin{gathered} \text { SR } \\ \left(A_{v}=1\right) \\ V / \mu \mathrm{s} \\ \text { Typ } \\ \hline \end{gathered}$	S Vo Min	ply age Max	Description	Package Suffix

Noncompensated

Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Commercial Temperature Range $\left(\mathbf{0}^{\circ} \mathbf{C}\right.$ to $\mathbf{+ 7 0 ^ { \circ } \mathbf { C })}$

LM301A	0.25	7.5	10	50	25	1.0	0.5	± 3.0	± 18	General Purpose
LM308	7.0	7.5	15	1.0	25	1.0	0.3	± 3.0	± 18	Precision

LM308A

Industrial Temperature Range ($-\mathbf{2 5 ^ { \circ }} \mathbf{C}$ to $+85^{\circ} \mathrm{C}$)

LM201A	0.075	2.0	10	10	50	1.0	0.5	± 3.0	± 22	General Purpose	$\mathrm{H}, \mathrm{N} / 626, \mathrm{~J} / 693$
LM208	0.002	2.0	3.0	0.2	50	1.0	0.3	± 3.0	± 20	Precision	$\mathrm{H}, \mathrm{N} / 626, \mathrm{~J} / 632, \mathrm{~J}-8$
LM208A	0.002	0.5	1.0	0.2	80	1.0	0.3	± 3.0	± 20	Precision	$\mathrm{H}, \mathrm{N} / 626, \mathrm{~J} / 632, \mathrm{~J}-8$

Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

LM101A	0.075	2.0	10	10	50	1.0	0.5	± 3.0	± 22	General Purpose Precision	$\mathrm{H}, \mathrm{J} / 693$
LM108	0.002	2.0	3.0	0.2	50	1.0	0.3	± 3.0	± 20	$\mathrm{~J}-693$	
LM108A	0.002	0.5	1.0	0.2	80	1.0	0.3	± 3.0	± 20	Precision High Slew Rate	$\mathrm{H}, \mathrm{J}, \mathrm{J} / 8 / 693$
MC1539	0.5	3.0	15	60	50	2.0	4.2	± 4.0	± 18	G/601	
MC1709	0.5	5.0	15	200	25	1.0	0.3	± 3.0	± 18	General Purpose High Performance	$\mathrm{G} / 601, \mathrm{U}$
MC1709A	0.6	3.0	5.0	100	25	1.0	0.5	± 3.0	± 18	$\mathrm{G} / 601$	
MC1748	0.5	5.0	15	200	50	1.0	0.5	± 3.0	± 22	MC1709 General Purpose	$\mathrm{G} / 601, \mathrm{U}$

Device	$\begin{aligned} & \mathrm{I} \mathrm{~B} \\ & \mu \mathrm{~A} \end{aligned}$ Max	ViO $m V$ Max	TCVIO $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Тур	IO nA Max	Avol V / mV Min	$\begin{gathered} B W \\ \left(A_{v}=1\right) \\ M H z \\ T_{y p} \end{gathered}$	$\begin{gathered} \text { SR } \\ \left(A_{V}=1\right) \\ V / \mu s \\ \text { Typ } \end{gathered}$	Supply Voltage V Min Max	Description	Package Suffix

Internally Compensated
Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

LF351	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	N/626
LF355	200 pA	10	5.0	50 pA	50	1.0	5.0	± 5.0	± 18	JFET Input	H/601, J/693
LF355B	100 pA	5.0	5.0	20 pA	50	2.5	5.0	± 5.0	± 22	JFET Input	H/601, J/693
LF356	200 pA	10	5.0	50 pA	50	2.0	15	± 5.0	± 18	JFET Input	H/601, J/693
LF356B	100 pA	5.0	5.0	20 pA	50	5.0	12	± 5.0	± 22	JFET Input	H/601, J/693
LF357	200 pA	10	5.0	50 pA	50	3.0	75	± 5.0	± 18	Wideband FET Input	H/601, J/693
LF357B	100 pA	5.0	5.0	20 pA	50	20	50	± 5.0	± 22	JFET Input	H/601, J/693
LF441C	100 pA	5.0	10	50 pA	25	2.0	6.0	± 5.0	± 18	Low Power JFET Input	N/626
LM11C	100 pA	0.6	2.0	10 pA	250	1.0	0.3	± 3.0	± 20	Precision	$\begin{gathered} H, N / 626, J / 632, \\ J-8 / 693 \end{gathered}$
LM11CL	200 pA	5.0	3.0	25 pA	50	1.0	0.3	± 3.0	± 20	Precision	$\begin{gathered} H, N / 626, J / 632 \\ J-8 / 693 \end{gathered}$
LM307	0.25	7.5	10	50	25	1.0	0.5	± 3.0	± 18	General Purpose	N/626
MC1436	0.04	10	12	10	70	1.0	2.0	± 15	± 34	High Voltage	G/601, U
MC1456	0.03	10	12	10	70	1.0	2.5	± 3.0	± 18	High Performance	G/601, P1, U
MC1733C	30	-	-	$5.0 \mu \mathrm{~A}$	80	90	-	± 4.0	± 8.0	Differential Wideband Video Amp	G/601, L, P/646
MC1741C	0.5	6.0	15	200	20	1.0	0.5	± 3.0	± 18	General Purpose	G/601, P1, U
MC1741SC	0.5	6.0	15	200	20	1.0	10	± 3.0	± 18	High Slew Rate	G/601, P1
MC1776C	0.003	6.0	15	3.0	100	1.0	0.2	± 1.2	± 18	μ Power, Programmable	G/601, P1, U
MC3476	0.05	6.0	15	25	50	1.0	0.2	± 1.5	± 18	Low Cost μ Power, Programmable	G/601, P1, U
MC34001	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	G/601, P/626, U
MC34001A	100 pA	2.0	10	50 pA	50	4.0	13	± 5.0	± 18	JFET Input	G/601, P/626, U
MC34001B	200 pA	5.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	G/601, P/626, U
MC34071	0.50	5.0	10	75	25	4.5	10	+3.0	+44	High Performance,	P/626, U
MC34071A	500 nA	3.0	10	50	50	4.5	10	$+3.0$	+44	Single Supply	P/626, U
MC34080	200 pA	1.0	10	100 pA	25	16	55	± 5.0	± 22	Decompensated	P/626, U
MC34080A	200 pA	0.5	10	100 pA	50	16	55	± 5.0	± 22	MC34081 for $A_{V} \geqslant 2$	P/626, U
MC34081	200 pA	1.0	10	100 pA	25	8.0	30	± 5.0	± 22	High Speed, JFET Input	P/626, U
MC34081A	200 pA	0.5	10	100 pA	50	8.0	30	± 5.0	± 22	High Speed, JFET Input	P/626, U
MC34181	0.1 nA	2.0	10	0.05	25	4.0	10	± 2.5	± 18	Low Power JFET Input	P/626
OP-27E	0.040	0.025	0.2	35	1000	8.0	2.8	± 4.0	± 22	Low Noise, Precision	P/626
OP-27F	0.055	0.060	0.3	50	1000	8.0	2.8	± 4.0	± 22	Low Noise, Precision	P/626
OP-27G	0.080	0.100	0.4	75	700	8.0	2.8	± 4.0	± 22	Low Noise, Precision	P/626
TL061AC	200 pA	6.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	P/626
TL061BC	200 pA	3.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	P/626
TL061C	200 pA	15	10	200 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	P/626
TL071AC	200 pA	6.0	10	50 pA	50	4.0	13	± 5.0	± 18	Low Noise, JFET Input	P/626, JG
TL071BC	200 pA	3.0	10	50 pA	50	4.0	13	± 5.0	± 18	Low Noise, JFET Input	P/626, JG
TL071C	200 pA	10	10	50 pA	25	4.0	13	± 5.0	± 18	Low Noise, JFET Input	P/626, JG
TL081AC	200 pA	6.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	P/626, JG
TL081BC	200 pA	3.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	P/626, JG
TL081C	400 pA	15	10	200 pA	25	4.0	13	± 5.0	± 18	JFET Input	P/626, JG

Industrial Temperature Range ($-\mathbf{2 5}{ }^{\circ} \mathrm{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$)

OP-27E	0.040	0.025	0.2	35	1000	8.0	2.8	± 4.0	± 22	Low Noise, Precision	Z
OP-27F	0.055	0.060	0.3	50	1000	8.0	2.8	± 4.0	± 22	Low Noise, Precision	Z
OP-27G	0.080	0.100	0.4	75	700	8.0	2.8	± 4.0	± 22	Low Noise, Precision	

Automotive Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

MC33071	0.50	5.0	10	75	2.5	4.5	10	+3.0	+44	High Performance,	$\mathrm{P} / 626, \mathrm{U}$
MC33071A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	Single Supply	$\mathrm{P} / 626, \mathrm{U}$
MC33171	0.10	4.5	10	20	50	1.8	2.1	+3.0	+44	Low Power, Single	$\mathrm{P} / 626$
										Supply	
MC33181	0.1 nA	2.0	10	0.05	25	4.0	10	± 2.5	± 18	Low Power JFET Input	$\mathrm{P} / 626$
TLO61V	200 pA	6.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	$\mathrm{P} / 626$

Single Operational Amplifiers (continued)

Device	$\begin{aligned} & \mathrm{I}_{\mathrm{B}} \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$ Max	V10 mV Max	TCVIO $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Typ	10 nA Max	Avol V / mV Min	$\begin{gathered} B W \\ \left(A_{v}=1\right) \\ M H z \\ \text { Typ } \end{gathered}$	$\begin{gathered} \text { SR } \\ \left(A_{\mathbf{v}}=1\right) \\ \mathbf{V} / \mu \mathrm{s} \\ \text { Typ } \end{gathered}$		ly ge Max	Description	Package Suffix

Internally Compensated
Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

LM11	50 pA	0.3	1.0	10 pA	250	1.0	0.3	± 3.0	± 20	Precision	H, J/632, J-8/693
MC1536	0.02	5.0	10	3.0	100	1.0	2.0	± 15	± 40	High Voltage	G/601, U
MC1556	0.015	4.0	10	2.0	100	1.0	2.5	± 3.0	± 22	High Performance	G/601, 693, U
MC1733	0.20	-	-	$3.0 \mu \mathrm{~A}$	90	90	-	± 4.0	± 8.0	Differential Wideband Video Amp	G/603, L
MC1741	0.5	5.0	15	200	50	1.0	0.5	± 3.0	± 22	General Purpose	G/601, U
MC1741S	0.5	5.0	15	200	50	1.0	10	± 3.0	± 22	High Slew Rate	G/601, U
MC1776	0.0075	5.0	15	3.0	200	1.0	0.2	± 1.2	± 18	μ Power, Programmable	G/601, L
MC35001	100 pA	10	10	100 pA	25	4.0	13	± 5.0	± 22	JFET input	G/601, U
MC35001A	75 pA	2.0	10	25 pA	50	4.0	13	± 5.0	± 22	JFET Input	G/601, U
MC35001B	100 pA	5.0	10	50 pA	50	4.0	13	± 5.0	± 22	JFET Input	G/601, U
MC35071	0.50	5.0	10	75	25	4.5	10	+3.0	+44	High Performance,	U
MC35071A	500 nA	3.0	10	50	50	4.5	10	+3.0	$+44$	Single Supply	U
MC35080	200 pA	1.0	10	100 pA	25	16	55	± 5.0	± 22	Decompensated	U
MC35080A	200 pA	0.5	10	100 pA	50	16	55	± 5.0	± 22	MC35081 for $\mathrm{A}_{\mathbf{V}} \geqslant 2$	U
MC35081	200 pA	1.0	10	100 pA	25	8.0	30	± 5.0	± 22	High Speed, JFET Input	U
MC35081A	200 pA	0.5	10	100 pA	50	8.0	30	± 5.0	± 22	High Speed, JFET Input	U
MC35171	0.10	4.5	10	20	50	1.8	2.1	$+3.0$	+44	Low Power, Single Supply	U
MC35181	0.1 nA	2.0	10	0.05	25	4.0	10	± 2.5	± 18	Low Power JFET Input	U
OP-27A	0.040	0.025	0.2	35	1000	8.0	2.8	± 4.0	± 22	Low Noise, Precision	Z
OP-27B	0.055	0.060	0.3	50	1000	8.0	2.8	± 4.0	± 22	Low Noise, Precision	Z
OP-27C	0.080	0.100	0.4	75	700	8.0	2.8	± 4.0	± 22	Low Noise, Precision	Z
TL061M	200 pA	6.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	JG
TL071M	200 pA	6.0	10	50 pA	35	4.0	13	± 5.0	± 18	Low Noise, JFET Input	JG
TL081M	200 pA	9.0	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	JG

Dual Operational Amplifiers

Device	$\begin{aligned} & \mathrm{I} \mathrm{~B} \\ & \mu \mathrm{~A} \end{aligned}$ Max	Vio mV Max	TCVIO $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Typ	IIO nA Max	Avol V / mV Min	$\begin{gathered} \text { BW } \\ \left(\mathrm{A}_{\mathbf{v}}=1\right) \\ \mathrm{MHz} \\ \text { Typ } \end{gathered}$	$\begin{gathered} \text { SR } \\ \left(A_{V}=1\right) \\ V / \mu s \\ \mathbf{T y p} \end{gathered}$	Su Vo Min	ply age Max	Description	Package Suffix

Noncompensated

Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

MC1437	1.5	7.5	10	500	15	1.0	0.25	± 3.0	± 18	Dual MC1709	L, P/646

Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

MC1537	0.5	5.0	10	200	25	1.0	0.25	± 3.0	± 18	Dual MC1709	

Internally Compensated
Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

LF353	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	N/626
LF442C	100 pA	5.0	10	50 pA	25	2.0	6.0	± 5.0	± 18	Low Power JFET Input	N/626
LM358	0.25	6.0	7.0	50	25	1.0	0.6	± 1.5	± 18	Single Supply	H, N/626, J/693
								+3.0	+36	(Low Power Consumption)	
LM833	1.0	5.0	2.0	200	31.6	15	7.0	± 2.5	± 18	Dual, Low Noise, Audio	P/626
MC1458	0.5	6.0	10	200	20	1.1	0.8	± 3.0	± 18	Dual MC1741	G/601, P1, U
MC1458C	0.70	10	10	300	20	1.1	0.8	± 3.0	± 18	Dual General Purpose	G/601, P1
MC1458S	0.5	6.0	10	200	20	1.0	10	± 3.0	± 18	High Slew Rate	G/601, P1, U
MC1747C	0.5	6.0	10	200	25	1.0	0.5	± 3.0	± 18	Dual MC1741	G/603, L, P2
MC3458	0.5	10	7.0	50	20	1.0	0.6	± 1.5	± 18	Split Supplies	G/601, P1, U
								+3.0	+36	Single Supply	
										(Low Crossover Distortion)	

Dual Operational Amplifiers (continued)

Device	$\begin{aligned} & \mathrm{I} \mathrm{~B} \\ & \mu \mathrm{~A} \end{aligned}$ Max	$\begin{aligned} & \mathrm{V}_{10} \\ & \mathrm{mV} \\ & \mathrm{Max} \end{aligned}$	$\begin{gathered} \mathrm{TC}_{\mathrm{V} I \mathrm{O}} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{Typ} \end{gathered}$	10 nA Max	Avol V / mV Min	$\begin{gathered} \text { BW } \\ \left(\mathrm{A}_{\mathrm{v}}=1\right) \\ \mathrm{MHz} \\ \text { Typ } \end{gathered}$	$\begin{gathered} S R \\ \left(A_{V}=1\right) \\ V / \mu s \\ T y p \end{gathered}$	Su Vo Min	ply age Max	Description	Package Suffix

Commercial Temperature Range $\left(\mathbf{0}^{\circ} \mathrm{C}\right.$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$) (continued)

MC4558AC	0.5	5.0	10	200	50	2.8	1.6	± 3.0	± 22	High Frequency	P 1
MC4558C	0.5	6.0	10	200	20	2.8	1.6	± 3.0	± 18	High Frequency	$\mathrm{G} / 601, \mathrm{P}, \mathrm{U}$
MC34002	100 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	$\mathrm{G} / 601, \mathrm{P} / 626, \mathrm{U}$
MC34002A	75 pA	2.0	10	50 pA	50	4.0	13	± 5.0	± 18	JFET Input	$\mathrm{G} / 601, \mathrm{P} / 626, \mathrm{U}$
MC34002B	100 pA	5.0	10	70 pA	25	4.0	13	± 5.0	± 18	JFET Input	$\mathrm{G} / 601, \mathrm{P} / 626, \mathrm{U}$
MC34072	0.50	5.0	10	75	25	4.5	10	+3.0	+44	High Performance,	$\mathrm{P} / 626, \mathrm{U}$
MC34072A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	Single Supply	$\mathrm{P} / 626, \mathrm{U}$
MC34082	200 pA	3.0	10	100 pA	25	8.0	30	± 5.0	± 22	High Speed, JFET Input	$\mathrm{P} / 626, \mathrm{U}$
MC34082A	200 pA	1.0	10	100 pA	50	8.0	30	± 5.0	± 22	High Speed, JFET Input	$\mathrm{P} / 626, \mathrm{U}$
MC34083	200 pA	3.0	10	100 pA	25	16	55	± 5.0	± 22	Decompensated	$\mathrm{P} / 626, \mathrm{U}$
MC34083A	200 pA	1.0	10	100 pA	50	16	55	± 5.0	± 22	MC34082 for Av $\geqslant 2$	$\mathrm{P} / 626, \mathrm{U}$
MC34182	0.1 nA	3.0	10	0.05	25	4.0	10	± 2.5	± 18	Low Power JFET Input	$\mathrm{P} / 626$
TL062AC	200 pA	6.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	$\mathrm{P} / 626$
TL.062BC	200 pA	3.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	$\mathrm{P} / 626$
TL062C	200 pA	15	10	200 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	$\mathrm{P} / 626$
TL072AC	200 pA	6.0	10	50 pA	50	4.0	13	± 5.0	± 18	Low Noise, JFET Input	$\mathrm{P} / 626, \mathrm{JG} / 693$
TL072BC	200 pA	3.0	10	50 pA	50	4.0	13	± 5.0	± 18	Low Noise, JFET Input	$\mathrm{P} / 626, \mathrm{JG} / 693$
TL072C	200 pA	10	10	50 pA	25	4.0	13	± 5.0	± 18	Low Noise, JFET Input	$\mathrm{P} / 626, \mathrm{JG} / 693$
TL082AC	200 pA	6.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	$\mathrm{P} / 626, \mathrm{JG/693}$
TL082BC	200 pA	3.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	$\mathrm{P} / 626, \mathrm{JG} / 693$
TL082C	400 pA	15	10	200 pA	25	4.0	13	± 5.0	± 18	JFET Input	$\mathrm{P} / 626, \mathrm{JG} / 693$

Industrial Temperature Range ($-\mathbf{2 5}{ }^{\circ} \mathrm{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$)

LM258	0.15	5.0	10	30	50	1.0	0.6	± 1.5		
± 3.0	± 18									
± 36										Split or Single Supply Op Amp
:---:										

Automotive Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

LM2904	0.25	7.0	7.0	50	100	1.0	0.6	± 1.5	± 13	Split or Single Supply Op Amp Split Supplies	$\mathrm{H}, \mathrm{N} / 626, \mathrm{~J} / 693$
MC3358	5.0	8.0	10	75	20	1.0	0.6	± 1.5	± 26	± 18	$\mathrm{P} 1 / 626$
MC33072	0.50	5.0	10	75	25	4.5	10	± 3.0	± 36	Single Supply	
MC33072A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	+44	Sigh Performance,

Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)

LM158	0.15	5.0	10	30	50	1.0	0.6	$\begin{aligned} & \pm 1.5 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & +36 \end{aligned}$	Split Supplies Single Supply (Low Power Consumption)	H, J/693
MC1558	0.5	5.0	10	200	50	1.1	0.8	± 3.0	± 22	Dual MC1741	G/601, U
MC1558S	0.5	5.0	10	200	50	1.0	10	± 3.0	± 22	High Slew Rate	G/601, U
MC1747	0.5	5.0	10	200	50	1.0	0.5	± 3.0	± 22	Dual MC1741	G/601, L
MC3558	0.5	5.0	10	50	50	1.0	0.6	± 1.5	± 18	Split Supplies	G/601, U
								+3.0	+36	Single Supply	
MC4558	0.5	5.0	10	200	50	2.8	1.6	± 3.0	± 22	High Frequency	G/601, U
MC35002	100 pA	10	10	100 pA	25	4.0	13	± 5.0	± 22	JFET Input	G/601, U
MC35002A	75 pA	2.0	10	25 pA	50	4.0	13	± 5.0	± 22	JFET Input	G/601, U
MC35002B	100 pA	5.0	10	50 pA	50	4.0	13	± 5.0	± 22	JFET Input	G/601, U
MC35072	0.50	5.0	10	75	25	4.5	10	+3.0	$+44$	High Performance,	U
MC35072A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	Single Supply	U
MC35082	200 pA	3.0	10	100 pA	25	8.0	30	± 5.0	± 22	High Speed, JFET Input	U
MC35082A	200 pA	1.0	10	100 pA	50	8.0	30	± 5.0	± 22	High Speed, JFET Input	U

Dual Operational Amplifiers (continued)

Device	$\begin{aligned} & \mathrm{IIB} \\ & \mu \mathrm{~A} \end{aligned}$ Max	V10 mV Max	TCVIO $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Typ	10 nA Max	Avol V / mV Min	$\begin{gathered} \text { BW } \\ \left(\mathrm{A}_{\mathbf{v}}=1\right) \\ \mathrm{MHz} \\ \text { Typ } \end{gathered}$	$\begin{gathered} \text { SR } \\ \left(A_{V}=1\right) \\ V / \mu s \\ \text { Typ } \end{gathered}$		ply ge Max	Description	Package Suffix

Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

MC35083	200 pA	3.0	10	100 pA	25	16	55	± 5.0	± 22	Decompensated	U
MC35083A	200 pA	1.0	10	100 pA	50	16	55	± 5.0	± 22	MC35082 for $A_{V} \geqslant 2$	U
MC35172	0.10	4.5	10	20	50	1.8	2.1	+3.0	$+44$	Low Power, Single Supply	U
MC35182	0.1 nA	3.0	10	0.05	25	4.0	10	± 2.5	± 18	Low Power JFET Input	U
TL062M	200 pA	6.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	JG
TL072M	200 pA	6.0	10	50 pA	35	4.0	13	± 5.0	± 18	Low Noise, JFET Input	JG
TL082M	200 pA	6.0	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	JG

Quad Operational Amplifiers

Internally Compensated

Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

LF347	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	N/646
LF347B	200 pA	5.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	N/646
LF444C	100 pA	10	10	50 pA	25	2.0	6.0	± 5.0	± 18	Low Power JFET Input	N/646
LM324	0.25	6.0	7.0	50	25	1.0	0.6	± 1.5	± 16	Low Power	J/632, N/646
								+3.0	+32	Consumption	
LM348	0.20	6.0	-	50	25	1.0	0.5	± 3.0	± 18	Quad MC1741	J/632, N/646
MC3401/	0.3	-	-	-	1.0	5.0	0.6	± 1.5	± 18	Norton Input	J/632, N/646
LM3900								+3.0	+36		
MC3403	0.5	10	7.0	50	20	1.0	0.6	± 1.5	± 18	No Crossover	L, P/646
								$+3.0$	+36	Distortion	
MC4741C	0.5	6.0	15	200	20	1.0	0.5	± 3.0	± 18	Quad MC1741	L, P/646
MC34004	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	L, P/646
MC34004B	200 pA	5.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	L, P/646
MC34074	0.50	5.0	10	75	25	4.5	10	$+3.0$	+44	High Performance,	L, P/646
MC34074A	500 nA	3.0	10	50	50	4.5	10	$+3.0$	$+44$	Single Supply	L, P/646
MC34084	200 pA	12	10	100 pA	25	8.0	30	± 5.0	± 22	Hi-Speed, JFET Input	P/646
MC34084A	200 pA	6.0	10	100 pA	50	8.0	30	± 5.0	± 22	Hi-Speed, JFET Input	P/646
MC34085	200 pA	12	10	100 pA	25	16	55	± 5.0	± 22	Decompensated	P/646
MC34085A	200 pA	6.0	10	100 pA	50	16	55	± 5.0	± 22	MC34084 for $A_{V} \geqslant 2$	P/646
MC34184	0.1 nA	10	10	0.05	25	4.0	10	± 2.5	± 18	Low Power JFET Input	P/646
TL064AC	200 pA	6.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	N/646
TL064BC	200 pA	3.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	N/646
TL064C	200 pA	15	10	200 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	N/646
TL074AC	200 pA	6.0	10	50 pA	50	4.0	13	± 5.0	± 18	Low Noise, JFET Input	J/632, N/646
TL074C	200 pA	10	10	50 pA	25	4.0	13	± 5.0	± 18	Low Noise, JFET Input	J/632, N/646
TL084AC	200 pA	6.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	J/632, N/646
TL084BC	200 pA	3.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	J/632, N/646
TL084C	400 pA	15	10	200 pA	25	4.0	13	± 5.0	± 18	JFET Input	J/632, N/646

Industrial Temperature Range $\left(-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)

LM224	0.15	5.0	7.0	30	50	1.0	0.6	± 1.5	± 16	Split or Single Supply OP Amp Quad MC1741	$\mathrm{J} / 632, \mathrm{~N} / 646$
LM248	0.20	6.0	-	50	25	1.0	0.5	$\mathrm{~J} / 632, \mathrm{~N} / 646$			

Automotive Temperature Range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { LM2902 } & 0.5 & 10 & - & 50 & - & 1.0 & 0.6 & \begin{array}{l} \pm 1.5 \\ +3.0\end{array} & \pm 13 \\ +26\end{array}\right)$

Quad Operational Amplifiers (continued)

Device	$\begin{aligned} & \text { l/B } \\ & \mu A \\ & \operatorname{Max} \end{aligned}$	Vio mV Max	TCVIO $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Typ	110 nA Max	Avol V / mV Min	$\begin{gathered} \text { BW } \\ \left(\mathrm{A}_{\mathbf{v}}=1\right) \\ \mathbf{M H z} \\ \mathbf{T y p} \end{gathered}$	$\begin{aligned} & S R \\ & \left(A_{V}=1\right) \\ & V / \mu s \\ & \text { Typ } \end{aligned}$		ply age Max	Description	Package Suffix

Automotive Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ (continued)

$\begin{aligned} & \text { MC3301/ } \\ & \text { LM2900 } \end{aligned}$	0.3	-	-	-	1.0	4.0	0.6	± 2.0 +4.0	± 15 +28	Norton Input	P/646 N/646
MC3303	0.5	8.0	10	75	20	1.0	0.6	± 1.5	± 18	Differential	P/646
								+3.0	+36	General Purpose	
MC33074	0.50	5.0	10	75	25	4.5	10	$+3.0$	+44	High Performance, Single Supply	L, P/646
MC33074A	500 nA	3.0	10	50	50	4.5	10	$+3.0$	$+44$	Quad High Performance	L, P/646
MC33079	750 nA	2.5	2.0	150	31.6	16	7.0	± 5.0	± 18	Quad Low Noise	N/646
MC33174	0.10	4.5	10	20	50	1.8	2.1	$+3.0$	+44	Low Power, Single Supply	P/646
MC33184	0.1 nA	10	10	0.05	25	4.0	10	± 2.5	± 18	Low Power JFET Input	P/646
MC33284	100pA	$200 \mu \mathrm{~V}$	5.0	50pA	50	30	12	± 2.5	± 18	Low Input Offset JFET	P/646
TL064V	200 pA	9.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	N/646

Telecommunications Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| MC1434J3 | 1.0 nA | 30 | - | 200 pA | 45 dB | 0.8 | 1.5 | 4.75 | 12.6 | CMOS, Low Power,
 Drives Low-Impedance
 Loads | L, P/646 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MC143404 | 1.0 nA | 30 | - | 200 pA | 60 dB | 0.8 | 1.0 | 4.75 | 12.6 | CMOS, Very Low Power | L, P/646 |

Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

LM124	0.15	5.0	7.0	30	50	1.0	0.6	$\begin{aligned} & \pm 1.5 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \pm 16 \\ & +32 \end{aligned}$	Low Power Consumption	J/632, N/646
LM148	0.10	5.0	-	25	50	1.0	0.5	± 3.0	± 18	Quad MC1741	J/632
MC3503	0.5	5.0	7.0	50	50	1.0	0.6	± 1.5	± 18	General Purpose	L, P/646
								+3.0	+36	Low Power	
MC4741	0.5	5.0	15	200	50	1.0	0.5	± 3.0	± 22	Quad MC1741	L
MC35004	100 pA	10	10	100 pA	25	4.0	13	± 5.0	± 22	JFET Input	L
MC35004B	100 pA	5.0	10	50 pA	50	4.0	13	± 5.0	± 22	JFET Input	L
MC35074	0.50	5.0	10	75	25	4.5	10	+3.0	+44	High Performance, Single Supply	L
MC35074A	500 nA	3.0	10	50	50	4.5	10	+3.0	+44	Quad High Performance	L
MC35084	200 pA	12	10	100 pA	25	8.0	30	± 5.0	± 22	High Speed, JFET Input	L
MC35084A	200 pA	6.0	10	100 pA	50	8.0	30	± 5.0	± 22	High Speed, JFET Input	L
MC35085	200 pA	12	10	100 pA	25	16	55	± 5.0	± 22	Decompensated	L
MC35085A	200 pA	6.0	10	100 pA	50	16	55	± 5.0	± 22	MC35084 for $\mathrm{A}_{\mathbf{V}} \geqslant 2$	L
MC35174	0.10	4.5	10	20	50	1.8	2.1	+3.0	+44	Low Power, Single Supply	L
MC35184	0.1 nA	10	10	0.05	25	4.0	10	± 2.5	± 18	Low Power JFET Input	L
TL064M	200 pA	9.0	10	100 pA	4.0	2.0	6.0	± 2.5	± 18	Low Power JFET Input	J/632
TL074M	200 pA	9.0	10	50 pA	35	4.0	13	± 5.0	± 18	Low Noise, JFET Input	J/632
TL084M	200 pA	9.0	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	J/632

High Frequency Amplifiers

A variety of high frequency circuits with features ranging from low cost simplicity to multi-function versatility marks Motorola's line of integrated amplifiers. Devices described here are intended for industrial and commu-
nications applications. For devices especially dedicated to consumer products, i.e., TV and entertainment radio, see the "Consumer Electronics" section.
frequency applications such as video switching, FSK circuits, multiplexers, etc. Gating circuit is useful for AGC control.

Non-AGC Amplifiers
 SE/NE592 - Differential Two Stage Video Amplifier

A monolithic, two stage differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems.

MC1733/MC1733C - Video Amplifier

Differential input and output amplifier provides three fixed gain options with bandwidth to 120 MHz . External resistor permits any gain setting from 10 to $400 \mathrm{~V} / \mathrm{V}$. Extremely fast rise time (2.5 ns typ) and propagation delay time (3.6 ns typ) makes this unit particularly useful as pulse amplifier in tape, drum, or disc memory read applications.

High-Frequency Amplifier Specifications

Operating Temperature Range			AV dB	$\begin{array}{cc} & \text { Bandwidth } \\ \text { @ } \quad \mathbf{M H z} \end{array}$			Case/Suffix
-55° to $+125^{\circ} \mathrm{C}$	-40° to $+85^{\circ} \mathrm{C}$	0° to $+70^{\circ} \mathrm{C}$	(Typ)		Min	Max	
MC1590G	-	-	$\begin{aligned} & 50 \\ & 35 \end{aligned}$	$\begin{gathered} 10 \\ 100 \end{gathered}$	$+6.0$	+18	601
-	-	MC1350	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$+6.0$	$+18$	$\begin{aligned} & \text { 626/P, } \\ & 751 / D \end{aligned}$
-	MC1490	-	$\begin{aligned} & 50 \\ & 35 \end{aligned}$	$\begin{gathered} 10 \\ 100 \end{gathered}$	$+6.0$	$+18$	626/P
MC1545	-	MC1445	19	50	± 4.0	± 12	603/G, 632/L
SE592	-	NE592	$\begin{aligned} & 52 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 90 \end{aligned}$	± 4.0	± 8.0	$\begin{gathered} 603 / \mathrm{H}, 632 / \mathrm{F} \\ 646 / \mathrm{N} \end{gathered}$
MC1733	-	MC1733C	$\begin{aligned} & 52 \\ & 40 \\ & 20 \end{aligned}$	$\begin{gathered} 40 \\ 90 \\ 120 \end{gathered}$	± 4.0	± 8.0	$\begin{gathered} \text { 603/G, 632/L } \\ 646 / \mathrm{P} \end{gathered}$

Miscellaneous Amplifiers

Motorola provides several bipolar and CMOS special purpose amplifiers which fill specific needs. These

CMOS

MC14573: Quad Programmable Operational Amplifier
MC14574: Quad Programmable Comparator
MC14575: Dual Programmable Operational Amplifier and Dual Programmable Comparator
These low power devices are designed for applications such as active filters, voltage reference circuits, function generators, oscillators, and limit set alarms.

devices range from low power CMOS programmable amplifiers and comparators to variable-gain bipolar

Bipolar

MC3505/MC3405: Dual Operational Amplifier and Dual Comparator

This device contains two Differential Input Operational Amplifiers and two Comparators each set capable of single supply operation. This operational amplifiercomparator circuit will find its applications as a general purpose product for automotive circuits and as an industrial "building block."

Bipolar

MC3505	0.5	5.0	50	20	1.3	3.0 to 36	± 1.5 to ± 18	L/632
MC3405		10						L/632, P/646

смоs

MC14573	50 pA	± 30	100 pA	1.0	10*	3.0 to 15	± 1.5 to ± 7.5	D/751F, P/648
MC14574								
MC14575								

*Propagation Delay
VOLTAGE GAIN versus FREQUENCY ($\mathrm{R}_{\mathrm{L}}=16$ OHMS)

Power Amplifiers Variable Gain

MC1554G-TA $=-55^{\circ}$ to $+125^{\circ} \mathrm{C}$, Case 603 C MC1454G-TA $=0^{\circ}$ to $+70^{\circ} \mathrm{C}$, Case 603C

One-watt Power Amplifier for single or split supply operation. Typical voltage gain of 10,18 , or $33 \mathrm{~V} / \mathrm{V}$ with 0.4% THD.

Comparators

Device	$\begin{gathered} \mathrm{I}_{18} \\ \mu \mathrm{~A} \\ \mathrm{Max} \end{gathered}$	V_{10} mV Max	$\begin{gathered} I_{10} \\ \mu \mathrm{~A} \\ \operatorname{Max} \end{gathered}$	$\begin{aligned} & A V \\ & V / N \end{aligned}$ Тур	$\begin{aligned} & \mathbf{l}_{0} \\ & \text { mA } \\ & \text { Min } \end{aligned}$	Response Time ns	Supply Voltage V	Description	Temperature Range (${ }^{\circ} \mathrm{C}$)	Package Suffix

Single

BIPOLAR

LM111	0.10	3.0	0.01	$200 K$	8.0	200	$+15,-15$	With strobe, will operate	-55 to +125	H, J-8
LM211	0.10	3.0	0.01	200 K	8.0	200	$+15,-15$	from single supply	-25 to +85	H, J-8
LM311	0.25	7.5	0.05	200 K	8.0	200	$+15,-15$		0 to +70	H, N/626, J-8

CMOS

MC14578	1.0 pA	50	-	-	1.1	-	+3.5 to +14	Requires only $10 \mu \mathrm{~A}$ from single-ended supply	-30 to +70	$\mathrm{D} / 751 \mathrm{~B}$, $\mathrm{P} / 648$

Dual

BIPOLAR

LM193	0.10	5.0	0.025	200 K	6.0	1300	± 1.5 to	Designed for single or split	-55 to +125	H
LM193A	0.10	2.0	0.025	200 K	6.0	1300	± 18 or	supply operation, input	-55 to +125	H
LM293	0.25	5.0	0.050	200 K	6.0	1300	+3.0 to +36	common mode includes	-25 to +85	H
LM293A	0.25	2.0	0.050	200 K	6.0	1300				ground (negative supply)
LM393	0.25 to +85	H								
LM393	0.25	5.0	0.050	200 K	6.0	1300			0 to +70	$\mathrm{H}, \mathrm{N} / 626$
LM393A	0.25	2.0	0.050	200 K	6.0	1300			0 to +70	$\mathrm{H}, \mathrm{N} / 626$
LM2903	0.25	7.0	0.050	200 K	6.0	1500			-40 to +85	$\mathrm{~N} / 626$
MC3405	0.5	10	0.050	200 K	6.0	1300	± 1.5 to	This device contains two	0 to +70	L/632, P/646
MC3505	0.5	5.0	0.050	200 K	6.0	1300	± 7.5 or	op amps and two	-55 to +125	$\mathrm{~L} / 632$
							+3.0 to 15	comparators in a single package		

CMOS

MC14575	0.001	30	0.0001	20K	3.0	1000	$\begin{aligned} & \pm 1.5 \text { to } \\ \pm & 7.5 \text { or } \\ + & 3.0 \text { to } 15 \end{aligned}$	This device contains two op amps and two comparators in a single package	-40 to +85	P/648

Quad

BIPOLAR

LM139	0.10	5.0	0.025	200K	6.0	1300	± 1.5 to	Designed for single or split	-55 to +125	J
LM139A	0.10	2.0	0.025	200 K	6.0	1300	± 18 or	supply operation, input	-55 to +125	J
LM239	0.25	5.0	0.050	200 K	6.0	1300	+3.0 to +36	common mode includes	-25 to +85	$\mathrm{~J}, \mathrm{~N} / 646$
LM239A	0.25	2.0	0.050	200 K	6.0	1300				ground (negative supply)
-25 to +85	$\mathrm{~J}, \mathrm{~N} / 646$									
LM339	0.25	5.0	0.050	200 K	6.0	1300			0 to +70	$\mathrm{~J}, \mathrm{~N} / 646$
LM339A	0.25	2.0	0.050	200 K	6.0	1300			0 to +70	$\mathrm{~J}, \mathrm{~N} / 646$
LM2901	0.25	7.0	0.050	100 K	6.0	1300			-40 to +85	$\mathrm{~N} / 646$
MC3302	0.50	20	0.500	30 K	6.0	1300			-40 to +85	$\mathrm{~N} / 646$
MC3430	40	6.0	1.0 Typ	1.2 K	16	33	$+5.0,-5.0$	High speed comparator/	0 to +70	$\mathrm{~L}, \mathrm{P}$
MC3431	40	10	1.0 Typ	1.2 K	16	33	$+5.0,-5.0$	sense-amplifier	0 to +70	$\mathrm{~L}, \mathrm{P}$
MC3432	40	6.0	1.0 Typ	1.2 K	16	40	$+5.0,-5.0$		0 to +70	$\mathrm{~L}, \mathrm{P}$
MC3433	40	10	1.0 Typ	1.2 K	16	40	$+5.0,-5.0$		0 to +70	$\mathrm{~L}, \mathrm{P}$

CMOS

MC14574	0.001	30	0.0001	20 K	3.0	10000	± 1.5 to ± 7.5 or +3.0 to +15	Externally programmable power dissipation with one or two resistors	-40 to +85	L/620

AMPLIFIERS

OPERATIONAL AMPLIFIERS

DeviceLF347LF351LF353LF355,BLF356,BLF357,B
LF411C
LF412C
LM11,C,CL
LM101A
LM108,ALM124LM148LM158LM201A
LM208,ALM224LM248
LM258
LM301A
LM307
LM308,A
LM324,A
LM348LM358LM833LM2900LM2902
LM2904
LM3900
MC1436, C
MC1437
MC1439
MC1456,C
MC1458,C
MC1458S
MC1490P
MC1536
MC1537
MC1539
MC1556
MC1558
MC1558S
MC1709,A,C
MC1741,C
MC1741S,SC
MC1747, C
MC1748, C
MC1776,C
MC3301
MC3303
MC3358
MC3401
MC3403MC3458MC3476MC3503MC3558MC4558,AC,CMC4741,C
Function Page
Family of BIFET Operational Amplifiers 2-14
Family of BIFET Operational Amplifiers 2-14
Family of BIFET Operational Amplifiers 2-14
Monolithic JFET Operational Amplifier 2-16
Monolithic JFET Operation Amplifier 2-16
Monolithic JFET Operational Amplifier 2-16
Low Offset, Low Drift JFET Input Operational Amplifier 2-26
Low Offset, Low Drift JFET Input Operational Amplifier 2-26
Precision Operational Amplifiers 2-29
General Purpose Adjustable Operational Amplifier 2-36
Precision Operational Amplifiers 2-40
Quad Low Power Operational Amplifier 2-51
Quad MC1741 Operational Amplifier 2-61
Dual Low Power Operational Amplifier 2-67
General Purpose Adjustable Operational Amplifier 2-36
Precision Operational Amplifiers 2-40
Quad Low Power Operational Amplifiers 2-51
Quad MC1741 Operational Amplifier 2-61
Dual Low Power Operational Amplifier 2-67
General Purpose Adjustable Operational Amplifier 2-36
Internally Compensated Monolithic Operational Amplifier 2-78
Precision Operational Amplifiers 2-40
Quad Low Power Operational Amplifier 2-51
Quad MC1741 Operational Amplifier 2-61
Dual Low Power Operational Amplifier 2-67
Dual, Low Noise, Audio Operational Amplifier 2-82
Quad Single Supply Operational Amplifier 2-189
Quad Low Power Operational Amplifier 2-51
Dual Low Power Operational Amplifier 2-67
Quad Single Supply Operational Amplifier 2-189
High Voltage Operational Amplifier 2-92
Dual Operational Amplifier 2-96
High Slew Rate Operational Amplifier 2-100
High Performance Operational Amplifier 2-118
Dual Operational Amplifiers 2-124
High Slew Rate Dual Operational Amplifier 2-129
Wideband Amplifier with AGC 2-135
High Voltage Operational Amplifiers 2-92
Dual Operational Amplifier 2-96
High Slew Rate Operational Amplifier 2-100
High Performance Operational Amplifier 2-118
Low Noise Dual Operational Amplifier 2-124
High Slew Rate Dual Operational Amplifier 2-129
General Purpose Operational Amplifier 2-149
General Purpose Operational Amplifier 2-161
High Slew Rate Operational Amplifier 2-166
Dual MC1741 Operational Amplifier 2-172
General Purpose Operational Amplifier 2-176
Programmable Operational Amplifier 2-180
Quad Operational Amplifier 2-189
Quad Differential Input Operational Amplifier 2-199
Dual Low Power Operational Amplifier 2-221
Quad Operational Amplifier 2-189
Quad Differential Input Operational Amplifier 2-199
Dual Low Power Operational Amplifier 2-221
Programmable Operational Amplifier 2-227
Quad Differential Input Operational Amplifier 2-199
Dual Low Power Operational Amplifier 2-221
Dual High Frequency Operational Amplifier 2-232
Quad MC1741 Operational Amplifier 2-236

AMPLIFIERS

OPERATIONAL AMPLIFIERS (con't)

Device
MC33071
MC33072
MC33074
MC33078
MC33079
MC33171
MC33172
MC33174
MC33181
MC33182
MC33184
MC33282
MC33284
MC34001
MC34002
MC34004
MC34071
MC34072
MC34074
MC34080
MC34081
MC34082
MC34083
MC34084
MC34085
MC34181
MC34182
MC34184
MC35001
MC35002
MC35004
MC35071
MC35072
MC35074
MC35080
MC35081
MC35082
MC35083
MC35084
MC35085
MC35171
MC35172
MC35174
MC35181
MC35182
MC35184
OP-27
TL061
TL062
TL064
TL071
TL072
TL074
TL081
TL082
TL084
Function Page
High Performance, Single Supply Operational Amplifier 2-267
Dual High Performance, Single Supply Operational Amplifier 2-267
Quad High Performance, Single Supply Operational Amplifier 2-267
Low Noise Operational Amplifier 2-241
Low Noise Operational Amplifier 2-241
Low Power, Single Supply Operational Amplifier 2-250
Dual Low Power, Single Supply Operational Amplifier 2-250
Quad Low Power, Single Supply Operational Amplifier 2-250
Low Power JFET Input Operational Amplifier 2-294
Low Power JFET Input Operational Amplifier 2-294
Low Power JFET Input Operational Amplifier 2-294
JFET Operational Amplifier 2-257
JFET Operational Amplifier 2-257
JFET Input Operational Amplifiers 2-260
JFET Input Operational Amplifiers 2-260
JFET Input Operational Amplifiers 2-260
High Performance, Single Supply Operational Amplifier 2-267
Dual High Performance, Single Supply Operational Amplifier 2-267
Quad High Performance, Single Supply Operational Amplifier 2-267
High Speed Decompensated (AVCL $\geqslant 2$) JFET Input OperationalAmplifier2-283
High Speed JFET Input Operational Amplifier 2-283
Dual High Speed JFET Input Operational Amplifier 2-283
Dual High Speed Decompensated (AVCL $\geqslant 2$) JFET Input Operational Amplifier 2-283
Quad High Speed JFET Input Operational Amplifier 2-283
Quad High Speed Decompensated ($\mathrm{AVCL} \geqslant 2$) JFET Input Operational Amplifier 2-283
Low Power JFET Input Operational Amplifier 2-294
Low Power JFET Input Operational Amplifier 2-294
Low Power JFET Input Operational Amplifier 2-294
JFET Input Operational Amplifiers 2-260
JFET Input Operational Amplifiers 2-260
JFET Input Operational Amplifiers 2-260
High Performance, Single Supply Operational Amplifier 2-267
Dual High Performance, Single Supply Operational Amplifier 2-267
Quad High Performance, Single Supply Operational Amplifier 2-267
High Speed Decompensated (AVCL $\geqslant 2$) JFET Input Operational Amplifier 2-283
High Speed JFET Input Operational Amplifier 2-283
Dual High Speed JFET Input Operational Amplifier 2-283
Dual High Speed Decompensated (AVCL $\geqslant 2$) JFET InputOperational Amplifier2-283
Quad High Speed JFET Input Operational Amplifier 2-283
Quad High Speed Decompensated (AVCL $\geqslant 2$) JFET InputOperational Amplifier2-283
Low Power, Single Supply Operational Amplifier 2-250
Dual Low Power, Single Supply Operational Amplifier 2-250
Quad Low Power, Single Supply Operational Amplifier 2-250
Low Power JFET Input Operational Amplifier 2-294
Low Power JFET Input Operational Amplifier 2-294
Low Power JFET Input Operational Amplifier 2-294
Ultra Low Noise Precision, High Speed Operational Amplifiers 2-308
Low Power JFET Input Operational Amplifier 2-320
Low Power JFET Input Operational Amplifier 2-320
Low Power JFET Input Operational Amplifier 2-320
Low Noise JFET Input Operational Amplifier 2-328
Low Noise JFET Input Operational Amplifier 2-328
Low Noise JFET Input Operational Amplifier 2-328
JFET Input Operational Amplifier 2-335
JFET Input Operational Amplifier 2-335
JFET Input Operational Amplifier 2-335

AMPLIFIERS

HIGH FREQUENCY AMPLIFIERS

Device	Function	Page
MC1350	IF Amplifier	See Chapter 9
MC1445	Wideband Amplifier	2-108
MC1490P	Wideband Amplifier with AGC	2-135
MC1545	Wideband Amplifier	2-108
MC1590G	Wideband Amplifier with AGC	2-141
MC1733, ${ }^{\text {c }}$	Differential Video Amplifier . .	2-153
NE592	Video Amplifier	2-303
SE592	Video Amplifier	2-303
MISCELLANEOUS AMPLIFIERS		
Device	Function	Page
MC1454G	1-Watt Power Amplifier	2-114
MC1554G	1-Watt Power Amplifier	2-114
MC3405	Dual Operational Amplifier plus Dual Voltage Comparator	2-205
MC3505	Dual Operational Amplifier plus Dual Voltage Comparator	2-205
TCA0372	Dual Power Operational Amplifier	2-317

COMPARATORS

Device Function Page
LM111 High Performance Voltage Comparator 2-45
LM139,A Quad Single Supply Comparators 2-57LM193,ALM211LM239,ALM293,ALM311LM339,ALM393,A
LM2901LM2903
Dual Comparators 2-73
High Performance Voltage Comparator 2-45
Quad Single Supply Comparators 2-57
Dual Comparators 2-73
High Performance Voltage Comparator 2-45
Quad Single Supply Comparators 2-57
Dual Comparators 2-73
Quad Single Supply Comparators 2-57
Dual Comparators 2-73
MC1414 Dual Differential Voltage Comparator 2-88
MC1514 Dual Differential Voltage Comparator 2-88
Quad Single Supply Comparators 2-57
MC3302
Dual Operational Amplifier plus Dual Voltage Comparator 2-205
MC3430 High Speed Quad Comparator 2-213
MC3431 High Speed Quad Comparator 2-213
MC3432 High Speed Quad Comparator 2-213MC3433
High Speed Quad Comparator 2-213
MC3505 Dual Operational Amplifier plus Dual Voltage Comparator 2-205
RELATED APPLICATION NOTES

Application Note	Title	Related Device
AN926, AR115	Techniques for Improving the Settling of a DAC and Op. Amp. Combination	LF357, MC34084, MC34085, MC34087
AN273A	Getting More Value Out of an Int. Op. Amp. Data Sheet	MC1439, 1539
AN513A	A High Gain Int. Circuit RF-IF Amp. with Wide Range AGC	MC1490P, MC1590G
AN587, EB20	Analysis and Design of the Op. Amp. Current Source	MC1741
EB57	An Economical FM Trans. Voice Proc. from a Single Integrated Circuit	MC3401

JFET INPUT OPERATIONAL AMPLIFIERS

These low cost JFET input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices.

- Input Offset Voltage of 5.0 mV Max (LF347B)
- Low Input Bias Current - 50 pA
- Low Input Noise Voltage - $16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Wide Gain Bandwidth - 4.0 MHz
- High Slew Rate - $13 \mathrm{~V} / \mu \mathrm{s}$
- Low Supply Current - 1.8 mA per Amplifier
- High Input Impedance - $10^{12} \Omega$
- High Common-Mode and Supply Voltage Rejection Ratios - 100 dB

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	+18	V
	$\mathrm{~V}_{\mathrm{EE}}$	-18	
Differential Input Voltage	$\mathrm{V}_{\text {ID }}$	± 30	V
Input Voltage Range (Note 1)	$\mathrm{V}_{\text {IDR }}$	± 15	V
Output Short Circuit Duration (Note 2)	tS_{S}	Continuous	
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}	900	mW
Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$1_{\theta J \mathrm{~A}}$	10	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T_{J}	115	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Unless otherwise specified, the absolute maximum negative input voltage is limited to the negative power supply.
2. Any amplifier output can be shorted to ground indefinitely. However, if more than one amplifier output is shorted simultaneously, maximum junction temperature ratings may be exceeded.

FAMILY OF BIFET OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUITS

N SUFFIX PLASTIC PACKAGE CASE 646-06 (LF347 Only)

D SUFFIX
PLASTIC PACKAGE CASE 751A-02 SO-14

(Top View)

ORDERING INFORMATION

Function	Device	Package
Single	LF351D	SO-8
Single	LF351N	Plastic DIP
Dual	LF353D	SO-8
Dual	LF353N	Plastic DIP
Quad	LF347D	SO-14
Quad	LF347BN	Plastic DIP
Quad	LF347N	Plastic DIP

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted).

Characteristic	Symbol	LF347B			LF347, LF351, LF353			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{array}{r} \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}, \mathrm{~V}_{\mathrm{CM}}=0\right) \\ \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \\ \hline \end{array}$	V_{10}	-	1.0	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	-	5.0	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right. \text {, Note 3) } \\ & \qquad \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \end{aligned}$	110	-	25	$\begin{aligned} & 100 \\ & 4.0 \end{aligned}$	-	25	$\begin{aligned} & 100 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current $\left(\mathrm{V}_{\mathrm{CM}}=0\right.$, Note 3) $\begin{array}{r} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \\ \hline \end{array}$	IIB	-	50	$\begin{gathered} 200 \\ 8.0 \end{gathered}$	-	50	$\begin{gathered} 200 \\ 8.0 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance	r_{i}	-	10^{12}	-	-	10^{12}	-	Ω
Common Mode Input Voltage Range	VICR	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$	-	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$	-	V
$\begin{gathered} \text { Large-Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}\right) \\ \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C} \end{gathered}$	AVOL	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100	-	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100	-	V / mV
Output Voltage Swing ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$)	V_{0}	± 12	± 14	-	± 12	± 14	-	V
Common Mode Rejection Ratio ($\mathrm{RS}_{\mathrm{S}} \leqslant 10 \mathrm{k}$)	CMRR	80	100	-	70	100	-	dB
Supply Voltage Rejection Ratio ($\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}$)	PSRR	80	100	-	70	100	-	dB
Supply Current LF347 LF351 LF353	$l^{\text {D }}$	-	$\begin{aligned} & 7.2 \\ & - \\ & \hline \end{aligned}$	11	-	$\begin{aligned} & 7.2 \\ & 1.8 \\ & 3.6 \end{aligned}$	$\begin{gathered} 11 \\ 3.4 \\ 6.5 \end{gathered}$	mA
Slew Rate ($\mathrm{A}_{\mathrm{V}}=+1$)	SR	-	13	-	-	13	-	$\mathrm{V} / \mu \mathrm{s}$
Gain-Bandwidth Product	BWp	-	4.0	-	-	4.0	-	MHz
Equivalent Input Noise Voltage $\left(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1000 \mathrm{~Hz}\right)$	e_{n}	-	16	-	-	16	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ($f=1000 \mathrm{~Hz}$)	i_{n}	-	0.01	-	-	0.01	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Channel Separation (LF347, LF353) $1.0 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 20 \mathrm{kHz}$ (Input Referred)	-	-	- 120	-	-	-120	-	dB

For Typical Characteristic Performance Curves, refer to MC34001/34002/34004 data sheet.
NOTES: (continued)
3. Input bias currents of JFET input op amps approximately double for every $10^{\circ} \mathrm{C}$ rise in junction temperature. To maintain junction temperatures as close to ambient as is possible, pulse techniques are utilized during test.

Specifications and Applications Information

MONOLITHIC JFET INPUT OPERATIONAL AMPLIFIERS

These internally compensated operational amplifiers incorporate highly matched JFET devices on the same chip with standard bipolar transistors. The JFET devices enhance the input characteristics of these operational amplifiers by more than an order of magnitude over conventional amplifiers.

This series of op amps combines the low current characteristics typical of FET amplifiers with the low initial offset voltage and offset voltage stability of bipolar amplifiers. Also, nulling the offset voltage does not degrade the drift or common mode rejection.

- Low Input Bias Current - 30 pA
- Low Input Offset Current -3.0 pA
- Low Input Offset Voltage - 1.0 mV
- Temperature Compensation of Input Offset Voltage $3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Input Noise Current $-0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High Input Impedance - $10^{12 \Omega}$
- High Common-Mode Rejection Ratio - 100 dB
- High DC Voltage Gain - 106 dB

SERIES FEATURES

- LF355/355B - Low Power Supply Current
- LF356/356B - Wide Bandwidth
- LF357/357B - Wider Bandwidth Decompensated ($\mathrm{A}_{\text {Vmin }}=5$)

	LF355/355B	LF356 $/ 356$ B	LF357/357B
Fast Settling Time to 0.01%	$4.0 \mu \mathrm{~s}$	$1.5 \mu \mathrm{~s}$	$1.5 \mu \mathrm{~s}$
Fast Slew Rate	$5.0 \mathrm{~V} / \mu \mathrm{s}$	$12 \mathrm{~V} / \mu \mathrm{s}$	$50 \mathrm{~V} / \mu \mathrm{s}$
Wide Gain Bandwidth	2.5 MHz	5.0 MHz	20 MHz
Low Input Noise Voltage	$20 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

ORDERING INFORMATION

Device	Temperature Range	Package
LF355BH,H	0 to $+70^{\circ} \mathrm{C}$	Metal Can
LF355BJ,J	0 to $+70^{\circ} \mathrm{C}$	Ceramic DIP
LF356BH,H	0 to $+70^{\circ} \mathrm{C}$	Metal Can
LF356BJ,J	0 to $+70^{\circ} \mathrm{C}$	Ceramic DIP
LF357BH,H	0 to $+70^{\circ} \mathrm{C}$	Metal Can
LF357BJ,J	0 to $+70^{\circ} \mathrm{C}$	Ceramic DIP

MONOLITHIC JFET OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUITS

APPLICATIONS

The LF series is suggested for all general purpose FET input amplifier requirements where precision and frequency response flexibility are of prime importance.

Specific applications include:

- Sample and Hold Circuits
- High Impedance Buffers
- Fast D/A and A/D Converters
- Precision High Speed Integrators
- Wideband, Low Noise, Low Drift Amplifiers

[^3]MAXIMUM RATINGS

Rating	Symbol	$\begin{gathered} \text { LF355B/ } \\ \text { 356B/357B } \end{gathered}$	LF355/356/357	Unit
Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	V
Differential Input Voltage	$V_{\text {ID }}$	± 40	± 30	V
Input Voltage Range (Note 1)	VIDR	± 20	± 16	V
Output Short-Circuit Duration	TS	Continuous		\checkmark
Operating Ambient Temperature Range	TA	0 to +70		${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	115		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150		${ }^{\circ} \mathrm{C}$

Note 1. Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.

CIRCUIT SCHEMATIC

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=15\right.$ to $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15$ to -20 V for LF355B/356B/357B; $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ -15 V for LF355/356/357; $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	LF355B/6B/7B			LF355/6/7			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage (} \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \text {) } \\ & \text { (} T_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {) } \\ & \text { (Over Temperature) } \end{aligned}$	V_{10}	-	3.0	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$		3.0	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\left(\mathbf{R}_{S}=50 \Omega\right)$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	5.0	-	-	5.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Change in Average TC with V_{10} Adjust ($\mathrm{R}_{\mathrm{S}}=50 \Omega$) (Note 2)	$\Delta T C / \Delta V_{10}$	-	0.5	-	-	0.5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 3) \\ & \left(T_{J}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{J} \leqslant 70^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	10	-	3.0	$\begin{aligned} & 20 \\ & 1.0 \end{aligned}$	-	3.0	$\begin{aligned} & 50 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 3) \\ & \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{J}} \leqslant 70^{\circ} \mathrm{C}\right) \end{aligned}$	IIB	-	30	$\begin{aligned} & 100 \\ & 5.0 \end{aligned}$	-	30	$\begin{aligned} & 200 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	r_{i}	-	10^{12}	-	-	10^{12}	-	Ω
Large Signal Voltage Gain $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V},\right. \\ & \left.\mathrm{V}_{E E}=-15 \mathrm{~V}\right) \\ & \left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ & \left(0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}\right) \end{aligned}$	Avol	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200	-	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	200	-	V / mV
$\begin{aligned} & \text { Output Voltage Swing } \\ & \begin{array}{l} \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \\ \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right) \end{array} \end{aligned}$	v_{O}	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{aligned} & \pm 18 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{array}{r} \pm 13 \\ \pm 12 \end{array}$	-	V
Input Common-Mode Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)$	VICR	± 11	$\begin{aligned} & +15.1 \\ & -12.0 \end{aligned}$	-	± 10	$\begin{aligned} & +15.1 \\ & -12.0 \end{aligned}$	-	v
Common-Mode Rejection Ratio	CMRR	85	100	-	80	100	-	dB
Supply Voltage Rejection Ratio (Note 4)	PSRR	85	100	-	80	100	-	dB
```Supply Current \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right.\), \(\mathrm{V}_{\mathrm{EE}}=-15 \mathrm{~V}\) ) LF355B/355 LF356B/357B LF356/357```	${ }^{\text {I }}$	-	$\begin{aligned} & 2.0 \\ & 5.0 \\ & - \end{aligned}$	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	-	$\frac{2.0}{5.0}$	$\frac{4.0}{10}$	mA

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	LF355B/355			LF356B/356			LF357B/357			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Slew Rate (Note 5) } \\ & \left(A_{v}=1\right) \text { LF355/356 } \\ & \left(A_{V}=5\right) \text { LF357 } \\ & \hline \end{aligned}$	SR	-	5.0	-	7.5	12	-	$\overline{30}$	$\overline{50}$	-	$\mathrm{V} / \mu \mathrm{s}$
Gain-Bandwidth Product	GBW	-	2.5	-	-	5.0	-	-	20	-	MHz
Settling Time to 0.01\% (Note 6)	$t_{s}$	-	4.0	-	-	1.5	-	-	1.5	-	$\mu \mathrm{s}$
Equivalent Input Noise Voltage $\begin{aligned} & \left(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=100 \mathrm{~Hz}\right) \\ & \left(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1000 \mathrm{~Hz}\right) \end{aligned}$	$e_{n}$	-	$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	-	-	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	-	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current $\begin{aligned} & (f=100 \mathrm{~Hz}) \\ & (\mathrm{f}=1000 \mathrm{~Hz}) \end{aligned}$	$\mathrm{i}_{\mathrm{n}}$	-	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	-	-	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	-	-	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
Input Capacitance	$\mathrm{C}_{\mathrm{i}}$	-	3.0	-	-	3.0	-	-	3.0	-	pF

NOTES
(1) Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply.
(2) The temperature coefficient of the adjusted input offset voltage changes only a small amount ( $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.
(3) The input bias currents approximately double for every $10^{\circ} \mathrm{C}$ rise in junction temperature, $T_{J}$. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
(4) Supply voltage rejection ratio is measured for both supply magni-
tudes increasing or decreasing simultaneously, in accordance with common practice.
(5) The Min. slew rate limits apply for the LF356B and the LF357B, but do not apply for the LF356 or LF357.
(6) Settling time is defined here, for a unity gain inverter connection using 2.0 k resistors for the LF355/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within $0.01 \%$ of its final value from the time a 10 V step input is applied to the inverter. For the LF357, $A_{V}=-5.0$, the feedback resistor from output to input is 2.0 k and the output step is 10 V (see settling time test circuit).

TYPICAL DC PERFORMANCE CHARACTERISTICS
(Curves are for LF355, LF356, and LF357 series unless otherwise specified) INPUT BIAS CURRENT versus CASE TEMPERATURE

FIGURE 1 - (LF355 SERIES)


FIGURE 3 - INPUT BIAS CURRENT versus INPUT COMMON-MODE VOLTAGE


FIGURE 2 - (LF356 AND LF357 SERIES)


FIGURE 4 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE (LF355B/356B/357B)


SUPPLY CURRENT versus SUPPLY VOLTAGE



FIGURE 9 - POSITIVE COMMON-MODE


FIGURE 11 - OPEN LOOP VOLTAGE GAIN


FIGURE 8 - POSITIVE CURRENT LIMIT


FIGURE 10 - NEGATIVE COMMON-MODE INPUT VOLTAGE LIMIT


FIGURE 12 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


TYPICAL AC PERFORMANCE CHARACTERISTICS
GAIN BANDWIDTH PRODUCT


TYPICAL AC PERFORMANCE CHARACTERISTICS (continued)

BODE PLOT
FIGURE 19 - (LF355 SERIES)



FIGURE 21 - (LF357 SERIES)


## OUTPUT IMPEDANCE

FIGURE 22 - (LF355 SERIES)


FIGURE 23 - (LF356 SERIES)


FIGURE 24 - (LF357 SERIES)


LF355, LF356, LF357, LF355B, LF356B, LF357B

TYPICAL AC PERFORMANCE CHARACTERISTICS (continued)


## LF355, LF356, LF357, LF355B, LF356B, LF357B

## TYPICAL CIRCUIT CONNECTIONS

## FIGURE 31 - DRIVING CAPACITIVE LOADS



Due to a unique output stage design these amplifiers have the ability to drive large capacitive loads and still maintain stability.
$C_{L(\max )} \cong 0.01 \mu \mathrm{~F}$.
Overshoot $\leqslant 20 \%$
Settling time $\left(\mathrm{t}_{\mathrm{s}}\right) \cong 5.0 \mu \mathrm{~s}$

FIGURE 33 - INPUT OFFSET VOLTAGE ADJUSTMENT


- $V_{10}$ is adjusted with a 25 k potentiometer
- The potentiometer wiper is connected to $V_{C C}$
- For potentiometers with temperature coefficient of 100 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less the additional drift with adjust is $\approx 0.5 \mu \mathrm{~V} /$ ${ }^{\circ} \mathrm{C} / \mathrm{mV}$ of adjustment.
- Typical overall drift: $5.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \pm\left(0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} / \mathrm{mV}\right.$ of adjustment.)


## FIGURE 35 - NONINVERTING UNITY GAIN

 OPERATION FOR LF357FIGURE 32 - LARGE POWER BANDWIDTH AMPLIFIER



For distortion $<1 \%$ and a $20 \mathrm{Vp-p} V_{\text {Out }}$ swing, power bandwidth is: 500 kHz .

FIGURE 34 - SETtLING TIME TEST CIRCUIT


FIGURE 36 - INVERTING UNITY GAIN FOR LF357


TYPICAL APPLICATIONS

FIGURE 37 - WIDE BW, LOW NOISE, LOW DRIFT AMPLIFIER


- Power BW: $f_{\text {max }}=\frac{S_{r}}{2 \pi V_{p}} \cong 240 \mathrm{kHz}$
- Parasitic input capacitance (C1 $\cong 3$ pF for LF355, LF356, and LF357 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2C2 $\cong$ R1C1.

FIGURE 38 - ISOLATING LARGE CAPACITIVE LOADS
$\qquad$


- Overshoot 6\%
- $\mathrm{t}_{\mathrm{s}}=10 \mu \mathrm{~s}$
- When driving large $C_{L}$, the $V_{\text {out }}$ slew rate is determined by $C_{L}$ and Iout(max):


$v_{O}=\frac{V_{\text {ref }}}{R 14}\left(R_{O}\right)\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right)$
Adjust $V_{\text {ref }}$ R14 or $R_{O}$ so that $V_{O}$ with all digital inputs at high
$v_{O}=\frac{2 \mathrm{~V}}{1 \mathrm{k}}(5 \mathrm{k})\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right]$
$=10 \mathrm{~V}\left[\frac{255}{256}\right]=9.961 \mathrm{~V}$
FIGURE 41 - LONG INTERVAL RC TIMER


Time $(t)=R 4 C \ln \left(V_{R} / V_{R}-V_{1}\right), R_{3}=R_{4}, R_{5}=0.1 R 6$ If R1 $=$ R2: $t=0.693 R 4 C$
Design Example: 100 Second Timer

$$
\begin{array}{lll}
V_{R}=10 \mathrm{~V} & C=1 \mu \mathrm{~F} & R 3=R 4=144 \mathrm{M} \\
R 6=20 \mathrm{k} & R 5=2 \mathrm{k} & R 1=\mathrm{R} 2=1 \mathrm{k}
\end{array}
$$

FIGURE 40 - PRECISION CURRENT MONITOR


- Common-Mode Range to Supply Range
- Low IIB
- Low Vio
- Low Supply Current

FIGURE 42 - HIGH IMPEDANCE, LOW DRIFT


## Advance Information

## LOW OFFSET, LOW DRIFT JFET INPUT OPERATIONAL AMPLIFIER

Through innovative design concepts and precision matching this monolithic high speed JFET input operational amplifier family offers very low input offset voltage as well as low temperature coefficient of input offset voltage. The amplifier requires less than 3.4 mA per amplifier of supply current yet exhibits greater than 2.7 MHz of gain bandwidth product and more than $8.0 \mathrm{~V} / \mu \mathrm{s}$ slew rate. Through the use of JFET inputs the amplifier has very low input bias currents and low input offset currents. The amplifier utilizes industry standard pinouts which afford the user the opportunity to directly upgrade circuit performance without the need for redesign.
The LF411C and LF412C are available in the industry standard plastic 8-pin DIP and SO-8 surface mount packages, and specified over the commercial temperature range.

- Low Input Offset Voltage: 2.0 mV Max (Single)
3.0 mV Max (Dual)
- Low T.C. of Input Offset Voltage: $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Input Offset Current: 20 pA
- Low Input Bias Current: 60 pA
- Low Input Noise Voltage: $18 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low Input Noise Current: $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Low Total Harmonic Distortion: 0.05\%
- Low Supply Current: 2.5 mA
- High Input Resistance: $10^{12} \Omega$
- Wide Gain Bandwidth: 8.0 MHz
- High Slew Rate: $25 \mathrm{~V} / \mu \mathrm{s}$
- Fast Settling Time: $1.6 \mu \mathrm{~s}$ (to within $0.01 \%$ ).


This document contains information on a new product. Specifications and information herein are subject to change without notice.

SINGLE/DUAL JFET OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT


LF411C


LF412C


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltages	$\mathrm{V}_{\mathrm{CC}},\left\|\mathrm{V}_{\mathrm{EE}}\right\|$	+ 18	Volts
Input Differential Voltage Range (Note 1)	VIDR	$\pm 30$	Volts
Input Voltage Range (Note 1)	$V_{\text {IR }}$	$\pm 15$	Volts
Output Short-Circuit Duration (Note 2)	${ }^{\text {t }}$	Indefinite	Seconds
Maximum Junction Temperature	TJ	$+150$	C
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to 70	C
Thermal Resistance LF411CN/412CN   (Junction to Ambient) LF411CD/412CD	$\mathrm{R}_{\text {HJA }}$	$\begin{aligned} & \hline 100 \\ & 180 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$ Watt
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-60 to +150	C
Maximum Power Dissipation	$P_{\text {D }}$	(Note 2)	mW

NOTES:

1. Input voltages should not exceed $V_{C C}$ or $V_{E E}$.
2. Power dissipation must be considered to ensure maximum junction temperature ( $T_{J}$ ) is not exceeded.
3. Measured with $V_{C C}$ and $V_{E E}$ simultaneously varied

## REPRESENTATIVE CIRCUIT SCHEMATIC

(Each Amplifier)


DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristics	Symbol	Min	Typ	Max	Unit
```Input Offset Voltage (RS}=10\textrm{kS},\mp@subsup{\textrm{V}}{\textrm{CM}}{}=0\textrm{V},\mp@subsup{\textrm{V}}{\textrm{O}}{}=0\textrm{V} LF411 LF412```	$\mathrm{V}_{10}$	-	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\left(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)$		-	10	-	$\mu \mathrm{V}{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Offset Current }(\mathrm{V} \mathrm{CM}\left.=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \text { LF411 } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { LF412 } \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	1 O	-	$\frac{20}{25}$	$\begin{aligned} & 100 \\ & 2.0 \\ & 100 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\begin{aligned} & \text { Input Bias Current (} \mathrm{V} C M \\ & \text { LF411 } \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { LF412 } T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	IIB	$\begin{aligned} & - \\ & - \end{aligned}$	$\frac{0.6}{0.5}$	$\begin{gathered} 200 \\ 4.0 \\ 200 \\ 4.0 \end{gathered}$	$\begin{aligned} & \text { pA } \\ & \text { nA } \\ & \text { pA } \\ & \text { nA } \end{aligned}$
```Large Signal Voltage Gain ( \(\left.\mathrm{V}_{\mathrm{O}}=+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)\) LF411 TA \(=25^{\circ} \mathrm{C}\) \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) LF412 \(T_{A}=25^{\circ} \mathrm{C}\) \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)```	AVOL	$\begin{aligned} & 25 \\ & 15 \\ & 25 \\ & 15 \\ & \hline \end{aligned}$	$\frac{80}{150}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\checkmark \mathrm{mV}$
Output Voltage Swing ( $\mathrm{V}_{\mathrm{ID}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ ) LF411   LF412	$\begin{aligned} & \mathrm{v}_{\mathrm{O}^{+}} \\ & \mathrm{v}_{\mathrm{O}} \\ & \mathrm{v}_{\mathrm{O}^{+}} \\ & \mathrm{v}_{\mathrm{O}} \end{aligned}$	$\frac{12}{12}$	$\begin{array}{r} 13.9 \\ -14.7 \\ 14 \\ -14 \\ \hline \end{array}$	$\begin{gathered} - \\ -12 \\ - \\ \hline 12 \\ \hline \end{gathered}$	V
Common Mode Input Voltage Range $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right)$   LF411   LF412	VICR	$\begin{array}{r} +11 \\ +11 \\ + \end{array}$	$\begin{array}{r} +14 \\ -14 \\ +15 \\ -12 \end{array}$	$\begin{gathered} -11 \\ - \\ -11 \\ - \end{gathered}$	V
$\begin{aligned} & \text { Common Mode Rejection ( } \left.\mathrm{V}_{\mathrm{CM}}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\right) \\ & \text { LF411 } \\ & \text { LF412 } \end{aligned}$	CMR	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{gathered} 90 \\ 100 \end{gathered}$	-	dB
Power Supply Rejection (Note 3) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}} \cdot \mathrm{~V}_{\mathrm{EE}}--15 \mathrm{~V}-15 \mathrm{~V} \text { to }+5.0 \mathrm{~V}-5.0 \mathrm{~V}\right) \\ & \mathrm{LF} 411 \\ & \text { LF412 } \end{aligned}$	PSR	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{gathered} 86 \\ 100 \end{gathered}$	-	dB
$\begin{aligned} & \text { Power Supply Current }\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \text { LF411 } \\ & \text { LF412 } \end{aligned}$	1 D	-	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 6.8 \end{aligned}$	mA

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	Min	Typ	Max	Unit
Slew Rate $\langle\mathrm{V}\| \mathrm{N}=-10 \mathrm{~V}$ to $\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1.0\right)$ LF411   LF412	SR	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 25 \\ & 13 \end{aligned}$	-	Virs
Gain Bandwidth Product LF411   LF412	GBW	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	-	MHz
Channel Separation ( $\mathrm{f}=1.0 \mathrm{~Hz}$ to 20 kHz , LF412)	CS	-	- 120	-	dB
Differential Input Resistance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )	$\mathrm{R}_{\text {in }}$	-	$10^{12}$	-	k $\Omega$
Equivalent Input Voltage Noise $\left(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}\right)$ LF411   LF412	$e_{n}$	-	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	-	$n \mathrm{~V} \backslash \overline{\mathrm{~Hz}}$
```Equivalent Input Noise Current (f=1.0 kHz) LF411 LF412```	$i_{n}$	-	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	-	$\mathrm{pA} \backslash \overline{\mathrm{Hz}}$

PRECISION OPERATIONAL AMPLIFIERS

The LM11 is a precision, low drift operational amplifier providing the best features of existing FET and Bipolar op amps. Implementation of super gain transistors allows reduction of input bias currents by an order of magnitude over earlier devices such as the LM108A. Offset voltage and drift have also been reduced. Although bandwidth and slew rate are not as great as FET devices, input offset voltage, drift and bias current are inherently lower, particularly over temperature. Power consumption is also much lower, eliminating warm-up stabilization time in critical applications.

Offset balancing is provided, with the range determined by an external low resistance potentiometer. Compensation is provided internally, but external compensation can be added for improved stability when driving capacitive loads.

The precision characteristics of the LM11 make this device ideal for applications such as charge integrators, analog memories, electrometers, active filters, light meters and logarithmic amplifiers.

- Low Input Offset Voltage: $100 \mu \mathrm{~V}$
- Low Input Bias Current: 17 pA
- Low Input Offset Current: 0.5 pA
- Low Input Offset Voltage Drift: $1.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Long-Term Stability:
$10 \mu \mathrm{~V} / \mathrm{year}$
- High Common Mode Rejection: 130 dB

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC} to V_{EE}	40	Vdc
Differential Input Current (Note 1)	I_{ID}	± 10	mA
Output Short-Circuit Duration (Note 2)	t_{S}	Indefinite	
Power Dissipation (Note 3)	P_{D}	500	mW
Operating Junction Temperature LM11 LM11C/CL	T_{J}		${ }^{\circ} \mathrm{C}$
		150	
Storage Temperature Range Metal and Ceramic Packages Plastic Package	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

Device	Operating Ambient Temperature Range	Package
LM11CLN,CN	0 to $+70^{\circ} \mathrm{C}$	Plastic 8-Pin DIP
LM11CLJ-8, CJ-8	0 to $+70^{\circ} \mathrm{C}$	Ceramic 8-Pin DIP
LM11CLJ, CJ	0 to $+70^{\circ} \mathrm{C}$	Ceramic 14-Pin DIP
LM11CLH, CH	0 to $+70^{\circ} \mathrm{C}$	Metal Can
LM11J-8	-55 to $+125^{\circ} \mathrm{C}$	Ceramic 8-Pin DIP
LM11J	-55 to $+125^{\circ} \mathrm{C}$	Ceramic 14-Pin DIP
LM11H	-55 to $+125^{\circ} \mathrm{C}$	Metal Can

PRECISION OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC

 INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted [Note 4])

Characteristics	Symbol	LM11			LM11C			LM11CL			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage Tlow to Thigh	V10	-	0.1	$\begin{aligned} & 0.3 \\ & 0.6 \\ & \hline \end{aligned}$	-	0.2	$\begin{aligned} & 0.6 \\ & 0.8 \\ & \hline \end{aligned}$	-	0.5	$\begin{aligned} & 5.0 \\ & 6.0 \\ & \hline \end{aligned}$	mV
Input Offset Current Tlow to Thigh	110	-	0.5	$\begin{aligned} & 10 \\ & 30 \\ & \hline \end{aligned}$	-	1.0	10 20	-	4.0	$\begin{aligned} & 25 \\ & 50 \\ & \hline \end{aligned}$	pA
Input Bias Current Tlow to Thigh	IIB	-	17	$\begin{gathered} \hline 50 \\ 150 \\ \hline \end{gathered}$	-	17	$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$	-	17	$\begin{aligned} & 200 \\ & 300 \\ & \hline \end{aligned}$	pA
Input Resistance	r_{i}	-	10^{11}	-	-	10^{11}	-	-	10^{11}	-	Ω
Input Offset Voltage Drift Tlow to Thigh	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	1.0	3.0	-	2.0	5.0	-	3.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current Drift Tlow to Thigh	$\Delta l_{10} / \Delta T$	-	20	-	-	10	-	-	50	-	$f \mathrm{~A}^{\circ}{ }^{\text {C }}$
Input Bias Current Drift Tlow to Thigh	$\Delta^{\prime} \mathrm{IB}^{\prime} / \Delta T$	-	0.5	1.5	-	0.8	3.0	-	1.4	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Large Signal Voltage Gain $\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {out }}= \pm 12 \mathrm{~V}, \\ \mathrm{I}_{\text {out }}= \pm 2.0 \mathrm{~mA} \\ T_{\text {low }} \text { to } T_{\text {high }} \text { (Note 5) } \end{gathered}$ $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {out }}= \pm 12 \mathrm{~V} \\ & \mathrm{I}_{\text {out }}= \pm 0.5 \mathrm{~mA} \\ & T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	AVOL	$\begin{gathered} 100 \\ 50 \\ 250 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ - \\ 1200 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 250 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ - \\ 1200 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	25 15 50 30	$\begin{gathered} 300 \\ - \\ 800 \\ - \end{gathered}$	$\begin{aligned} & - \\ & - \\ & \text { - } \end{aligned}$	V / mV
Common Mode Rejection Ratio $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-13 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant 14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-12.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant 14 \mathrm{~V}, \end{aligned}$ Tlow to Thigh	CMRR	$\begin{array}{r} 110 \\ 100 \\ \hline \end{array}$	130	-	$\begin{array}{r} 110 \\ 100 \\ \hline \end{array}$	130	-	96 90	110	-	dB
Power Supply Rejection Ratio $\pm 2.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V}$ Tlow to thigh	PSRR	$\begin{gathered} 100 \\ 96 \end{gathered}$	118	-	$\begin{gathered} 100 \\ 96 \end{gathered}$	118	-	$\begin{aligned} & 84 \\ & 80 \\ & \hline \end{aligned}$	100	-	dB
Power Supply Current Tlow to Thigh	ID	-	0.3	$\begin{aligned} & 0.6 \\ & 0.8 \\ & \hline \end{aligned}$	-	0.3	$\begin{aligned} & 0.8 \\ & 1.0 \\ & \hline \end{aligned}$	-	0.3	$\begin{aligned} & 0.8 \\ & 1.0 \\ & \hline \end{aligned}$	mA
Output Short-Circuit Current $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$, Output Shorted to Ground	los	-	± 10	-	-	± 10	-	-	± 10	-	mA

Notes

1. The inputs are shunted by back-to-back diodes for over-voltage protection. Excessive current will flow if the input differential voltage is in excess of 1.0 V if no limiting resistance is used. Additionally, a $2 \mathrm{k} \Omega$ resistance in each input is suggested to prevent possible latch-up initiated by supply reversals.
2. The output is current limited when shorted to ground or any voltages less than the supplies. Continuous overloads will require package dissipation to be considered and heat sinking should be provided when necessary.
3. Devices must be derated based on package thermal resistance (see package outline dimensions).
4. These specifications apply for $\mathrm{V}_{E E}+2.0 \mathrm{~V} \leqslant \mathrm{~V}_{C M} \leqslant \mathrm{~V}_{C C}-1.0 \mathrm{~V}\left(\mathrm{~V}_{E E}+2.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant \mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}\right.$ for $T_{\text {low }}$ to $\left.T_{\text {high }}\right)$ and $\pm 2.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V}$ Tlow to Thigh: $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{J} \leqslant+125^{\circ} \mathrm{C}$ for LM11
$0^{\circ} \mathrm{C} \leqslant T J \leqslant+70^{\circ} \mathrm{C}$ for LM11C and LM11CL
5. $\mathrm{V}_{\text {out }}= \pm 11.5 \mathrm{~V}$, all other conditions unchanged.

LM11, LM11C, LM11CL

FIGURE 1 - INPUT BIAS CURRENT versus CASE TEMPERATURE

FIGURE 2 - INPUT OFFSET CURRENT versus CASE TEMPERATURE

LM11, LM11C, LM11CL

FIGURE 3 - TEMPERATURE COEFFICIENT OF INPUT OFFSET VOLTAGE versus INPUT OFFSET VOLTAGE

FIGURE 5 - COMMON-MODE LIMITS versus TEMPERATURE

FIGURE 7 - OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

FIGURE 4 - SPECTRAL NOISE DENSITY

FIGURE 6 - COMMON-MODE REJECTION AND SLEW LIMIT versus FREQUENCY

FIGURE 8 - OUTPUT SATURATION versus LOAD CURRENT

FIGURE 13 - CLOSED LOOP OUTPUT IMPEDANCE versus FREQUENCY

LM11, LM11C, LM11CL

APPLICATIONS INFORMATION

Due to the extremely low input bias currents of this device, it may be tempting to remove the bias current compensation resistor normally associated with a summing amplifier configuration. Direct connection of the inputs to a low impedance source or ground should be avoided when supply voltages greater than approximately 3 volts are used. The potential problem involves reversal of one supply which can cause excessive current to flow in the second supply. Possible destruction of the IC could result if the second supply is not current limited to approximately 100 mA or if bypass capacitors greater than $1.0 \mu \mathrm{~F}$ are used in the supply bus.

Disconnecting one supply will generally cause reversal due to loading of the other supply within the IC and in external circuitry. Although the problem can usually be avoided by placing clamp diodes across the power supplies of each printed circuit board, a careful design will include sufficient resistance in the input leads to limit the current to 10 mA if the input leads are pulled to either supply by internal currents. This precaution is not limited to only the LM11.

The LM11 is capable of resolving picoampere level signals. Leakage currents external to the IC can severely impair the performance of the device. It is important that high quality insulating materials such as teflon be employed. Proper cleaning to remove fluxes and other residues from printed circuit boards, sockets and the device package are necessary to minimize surface leakage.

When operating in high humidity environments or temperatures near $0^{\circ} \mathrm{C}$, a surface coating is suggested to set up a moisture barrier.

Leakage effects on printed circuit boards can be reduced by encircling the inputs (both sides of p.c. board) with a conductive guard ring connected to a low impedance potential nearly the same as that of the inputs.

The suggested printed circuit board layout for input guarding is shown in Figure 14. Guard ring electrical connections for common operational amplifier configurations are illustrated in Figure 15. For critical applications, a 14-pin
dual in-line package is available with guard pins (internally unconnected) adjacent to the inputs for minimal package leakage effects.

Electrostatic shielding is suggested in high-impedance circuits.

Error voltages in external circuitry can be generated by thermocouple effects. Dissimilar metals along with temperature gradients can set up an error voltage ranging in the hundreds of microvolts. Some of the best thermocouples are junctions of dissimilar metals made up of IC package pins and printed circuit boards. Problems can be avoided by keeping low level circuitry away from heat generating elements.

The LM11 is internally compensated, but external compensation can be added to improve stability, particularly when driving capacitive loads.

FIGURE 14 - SUGGESTED PRINTED
CIRCUIT BOARD LAYOUT FOR INPUT GUARDING USING METAL PACKAGED DEVICE

FIGURE 15 - GUARD RING ELECTRICAL CONNECTIONS FOR COMMON AMPLIFIER CONFIGURATIONS

FIGURE 16 - INPUT PROTECTION FOR SUMMING (INVERTING) AMPLIFIER

Current is limited by R1 in the event the input is connected to a low impedance source outside the common-mode range of the device. Current is controlled by R2 if one supply reverses. R1 and R2 do not affect normal operation.

FIGURE 17 - INPUT PROTECTION FOR A VOLTAGE FOLLOWER

An input shield boot strapped in a voltage follower reduces input capacitance, leakage, and spurious voltages from cable flexing. A small capacitor from the input to ground will prevent any instability.

In a summing amplifier the input is at virtual ground. Therefore the shield can be grounded. A small feedback capacitor will insure stability.

FIGURE 19 - ADJUSTING INPUT OFFSET VOLTAGE WITH BALANCE POTENTIOMETER

Minimum Adjustment Range $(\mathbf{m V})$	\mathbf{R}
± 0.4	Ω
1.0	1.0 k
± 2.0	3.0 k
± 5.0	10 k

Input offset voltage adjustment range is a function of the Balance
Potentiometer Resistance as indicated by the table above. The potentiometer is connected between the two "Balance" pins.

LM101A
 LM201A LM301A

OPERATIONAL AMPLIFIER

A general purpose operational amplifier that allows the user to choose the compensation capacitor best suited to his needs. With proper compensation, summing amplifier slew rates to $10 \mathrm{~V} / \mu \mathrm{s}$ can be obtained.

- Low Input Offset Current - 20 nA maximum Over Temperature Range
- External Frequency Compensation for Flexibility
- Class AB Output Provides Excellent Linearity
- Output Short Circuit Protection
- Guaranteed Drift Characteristics

FIGURE 1 - STANDARD COMPENSATION
AND OFFSET BALANCING CIRCUIT
FIGURE 2 - DOUBLE-ENDED LIMIT DETECTOR

FIGURE 3 - REPRESENTATIVE CIRCUIT SCHEMATIC

OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS

Rating	Symbol	Value			Unit
		LM101A	LM201A	LM301A	
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	± 22	± 22	± 18	Vdc
Input Differential Voltage	VID		± 30	\longrightarrow	Volts
Input Common-Mode Range (Note 1)	$V_{\text {ICR }}$	\longleftarrow	- ± 15	\longrightarrow	Volts
Output Short-Circuit Duration	ts	Continuous			
Power Dissipation (Package Limitation) Metal Can Derate above $T_{A}=+75^{\circ} \mathrm{C}$ Plastic Dual In-Line Package (LM201A) Derate above $T_{A}=+25^{\circ} \mathrm{C} \quad 301 \mathrm{~A}$) Ceramic Package Derate above $25^{\circ} \mathrm{C}$	PD				$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	-25 to +85	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$\longleftrightarrow-65$ to $+150 \longrightarrow$			${ }^{\circ} \mathrm{C}$

Note 1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
ELECTRICAL CHARACTERISTICS ${ }^{(} T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.) Unless otherwise specified, these specifications apply for supply voltages from $\pm 5.0 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for the LM101A and LM201A, and from $\pm 5.0 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the LM301A.

Characteristics	Symbol	LM101A LM201A			LM301A			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$)	V_{10}	-	0.7	2.0	-	2.0	7.5	mV
Input Offset Current	10	-	1.5	10	-	3.0	50	nA
Input Bias Current	IB	-	30	75	-	70	250	nA
Input Resistance	r_{i}	1.5	4.0	-	0.5	2.0	-	Megohms
Supply Current $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 20 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CC}} \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V}$	Icc.lee	-	1.8			$\overline{1.8}$	$\overline{3.0}$	mA
Large Signal Voltage Gain $\left(\mathrm{V}_{\mathrm{CC}} N_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V},\right.$ $\mathrm{R}_{\mathrm{L}}>2.0 \mathrm{k} \Omega$)	AV	50	160	-	25	160	-	V/mV

The following specifications apply over the operating temperature range.

Input Offset Voltage ($\mathrm{RS}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$)	V_{10}	-	-	3.0	-	-	10	mV
Input Offset Current	10	-	-	20	-	-	70	nA
Average Temperature Coefficient of Input Offset Voltage $T_{A}(\min) \leqslant T_{A} \leqslant T_{A}(\max)$	$\Delta V_{10} / \Delta T$	-	3.0	15	-	6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current $\begin{aligned} & +25^{\circ} \mathrm{C} \leqslant T_{A} \leqslant T_{A}(\max) \\ & T_{A(\min)} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \end{aligned}$	$\Delta^{1} \mathrm{IO}^{\prime} / \Delta \mathrm{T}$	-	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	-	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$n A^{\prime} \mathrm{C}$
Input Bias Current	IB	-	-	100	-	-	300	nA
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}} N_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V},\right. \\ & \left.R_{L}>2.0 \mathrm{k} \Omega\right) \end{aligned}$	AV	25	-	-	15	-	-	V/mV
$\begin{aligned} & \text { Input Voltage Range } \\ & V_{C C} N_{E E}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \mathcal{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V} \\ & \hline \end{aligned}$	V_{1}	± 15	-	-	$\begin{gathered} -12 \\ \hline \end{gathered}$			v
Common-Mode Rejection Ratio $\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	CMRR	80	96	-	70	90	-	dB
Supply Voltage Rejection Ratio $\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	PSRR	80	96	-	70	96	-	dB
Output Voltage Swing $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \mathrm{~N}_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$	v_{0}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{array}{r} \pm 14 \\ \pm 13 \end{array}$	-	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	v
$\begin{aligned} & \text { Supply Currents }\left(T_{A}=T_{A}(\text { max }),\right. \\ & \left.V_{C C} N_{E E}= \pm 20 \mathrm{~V}\right) \end{aligned}$	ICC, IEE	-	1.2	2.5	-	-	-	mA

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 4 - MINIMUM INPUT VOLTAGE RANGE

FIGURE 6 - MINIMUM VOLTAGE GAIN

FIGURE 8 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 5 - MINIMUM OUTPUT VOLTAGE SWING

FIGURE 7 - TYPICAL SUPPLY CURRENTS

FIGURE 9 - LARGE-SIGNAL FREQUENCY RESPONSE

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 10 - VOLTAGE FOLLOWER PULSE RESPONSE

FIGURE 12 - LARGE-SIGNAL FREQUENCY RESPONSE

FIGURE 11 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 13 - INVERTER PULSE RESPONSE

TYPICAL COMPENSATION CIRCUITS

FIGURE 14 - SINGLE-POLE COMPENSATON

FIGURE 15 - FEEDFORWARD COMPENSATION

LM108, LM108A
LM208, LM208A
LM308, LM308A

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	Value			Unit
		LM108, LM108A	LM208, LM208A	LM308, LM308A	
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	± 20	± 20	± 18	Vdc
Input Voltage (See Note 1)	V_{1}	\longleftrightarrow			Volts
Input Differential Current (See Note 2)	IID	$\longleftrightarrow \pm 10 \longrightarrow$			mA
Output Short-Circuit Duration	ts	\longleftrightarrow Indefinite \longrightarrow			
Operating Ambient Temperature Range	TA	-55 to +125	-25 to +85	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$\longrightarrow-65$ to $+150 \longrightarrow$			${ }^{\circ} \mathrm{C}$
Junction Temperature Metal, Ceramic Package Plastic Package	TJ	$\longleftrightarrow+175 \longrightarrow$			${ }^{\circ} \mathrm{C}$

Note 1 . For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
Note 2. The inputs are shunted with back-to-back diodes for over-voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1.0 V is applied between the inputs unless some limiting resistance is used.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted these specifications apply for supply voltages of $+5.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant$ +20 V and $-5.0 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{EE}} \geqslant-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Characteristic	Symbol	LM108A LM208A			LM108 LM208			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	V_{10}	-	0.3	0.5	-	0.7	2.0	mV
Input Offset Current	10	-	0.05	0.2	-	0.005	0.2	nA
Input Bias Current	IIB	-	0.8	2.0	-	0.8	2.0	nA
Input Resistance	r_{i}	30	70	-	30	70	-	Megohms
Power Supply Currents $\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}$	${ }^{\text {I CC, }}$ EE	-	± 0.3	± 0.6	-	± 0.3	± 0.6	mA
Large Signal Voltage Gain $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\left\|\mathrm{V}_{\mathrm{EE}}\right\|=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega \end{aligned}$	AVOL	80	300	-	50	300	-	V / mV

The following specifications apply over the operating temperature range.

Input Offset Voltage	V_{10}	-	-	1.0	-	-	3.0	mV
Input Offset Current	1 I	-	-	0.4	-	-	0.4	nA
```Average Temperature Coefficient of Input Offset Voltage \(T_{A}(\min ) \leqslant T_{A} \leqslant T_{A}(\max )\)```	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	1.0	5.0	-	3.0	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current	$\Delta l_{10} / \Delta T$	-	0.5	2.5	-	0.5	2.5	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IIB	-	-	3.0	-	-	3.0	nA
Large Signal Voltage Gain $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\left\|\mathrm{V}_{\mathrm{EE}}\right\|=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	AVOL	40	-	-	25	-	-	$\mathrm{V} / \mathrm{mV}$
Input Voltage Range $V_{C C}=\left\|V_{E E}\right\|=+15 \mathrm{~V}$	$V_{1 R}$	$\pm 13.5$	-	-	$\pm 13.5$	-	-	V
Common-Mode Rejection Ratio	CMRR	96	110	-	85	100	-	dB
Power Supply Voltage Rejection Ratio	PSRR	96	100	-	80	96	-	dB
Output Voltage Range $\mathrm{V}_{\mathrm{CC}}=\left\|\mathrm{V}_{\mathrm{EE}}\right\|=+15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$V_{O R}$	$\pm 13$	$\pm 14$	-	$\pm 13$	$\pm 14$	-	V
Supply Current ( $T_{A}=T_{A}[$ max $]$ )	${ }^{\text {I CC, IEE }}$	-	$\pm 0.15$	$\pm 0.4$	-	$\pm 0.15$	$\pm 0.4$	mA

## LM108, LM108A, LM208, LM208A, LM308, LM308A

ELECTRICAL CHARACTERISTICS (Unless otherwise noted these specifications apply for supply voltages of $+5.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant$ +15 V and $-5.0 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{EE}} \geqslant-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Characteristic	Symbol	LM308A			LM308			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	V10	-	0.3	0.5	-	2.0	7.5	mV
Input Offset Current	10	-	0.2	1.0	-	0.2	1.0	nA
Input Bias Current	IIB	-	1.5	7.0	-	1.5	7.0	nA
Input Resistance	$\mathrm{r}_{\mathrm{i}}$	10	40	-	10	40	-	Megohms
Power Supply Currents $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$	${ }^{\text {ICC,IEE }}$	-	$\pm 0.3$	$\pm 0.8$	-	$\pm 0.3$	$\pm 0.8$	mA
Large Signal Voltage Gain $\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}} & \geqslant 10 \mathrm{k} \Omega \end{aligned}$	AVOL	80	300	-	25	300	-	V/mV

The following specifications apply over the operating temperature range.

Input Offset Voltage	V 1 O	-	-	0.73	-	-	10	mV
Input Offset Current	10	-	-	1.5	-	-	1.5	nA
```Average Temperature Coefficient of Input Offset Voltage \(T_{A}(\min ) \leqslant T_{A} \leqslant T_{A}(\max )\)```	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	1.0	5.0	-	6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current	$\Delta l_{10} / \Delta T$	-	2.0	10	-	2.0	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IIB	-	-	10	-	-	10	nA
Large Signal Voltage Gain $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega \end{aligned}$	AVOL	60	-	-	15	-	-	V / mV
Input Voltage Range $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$	$V_{\text {IR }}$	± 14	-	-	± 14	-	-	V
Common-Mode Rejection Ratio $\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	CMRR	96	110	-	80	100	-	dB
Supply Voltage Rejection Ratio $\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	PSRR	96	110	-	80	96	-	dB
Output Voltage Range $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	V_{OR}	± 13	± 14	-	± 13	± 14	-	V

REPRESENTATIVE CIRCUIT SCHEMATIC

FIGURE 3 - VOLTAGE GAIN versus SUPPLY VOLTAGES

FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 2 - MAXIMUM EQUIVALENT INPUT OFFSET VOLTAGE ERROR versus INPUT RESISTANCE

FIGURE 4 - POWER SUPPLY CURRENTS versus POWER

FIGURE 6 - LARGE-SIGNAL FREQUENCY RESPONSE

SUGGESTED DESIGN APPLICATIONS

FIGURE 7 - FAST (1) SUMMING AMPLIFIER WITH LOW INPUT CURRENT

(1) Power Bandwidth: 250 kHz
Small Signal
Bandwidth:
3.5 MHz

Slew Rate: $10 \mathrm{~V} / \mu \mathrm{s}$
(2) $\mathrm{C} 5=\frac{6 \times 10^{-8}}{\mathrm{R} 1}$

INPUT GUARDING

Special care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the LM108,A amplifier series. Boards must be thoroughly cleaned with alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble at $+125^{\circ} \mathrm{C}$, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 type package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the boards. The

FIGURE 8 - SAMPLE AND HOLD

FIGURE 9 - SUGGESTED PRINTED CIRCUIT BOARD LAYOUT for INPUT GUARDING USING METAL PACKAGED DEVICE

guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard MC1741 and LM101A pin configuration).

FIGURE 10 - CONNECTION OF INPUT GUARDS
(1) Used to compensate for large source resistances.

ORDERING INFORMATION		
Device	Temperature Range	Package
LM111H LM111J-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can Ceramic DIP
LM211D LM211H LM211J-8	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-8 Metal Can Ceramic DIP
LM311D LM311J-8 LM311N	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-8 Ceramic DIP Plastic DIP

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value		Unit
		LM111 LM211	LM311	
Total Supply Voltage	$\mathrm{V}_{\mathrm{CC}}+\left\|\mathrm{V}_{\mathrm{EE}}\right\|$	36	36	Vdc
Output to Negative Supply Voltage	$\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{EE}}$	50	40	Vdc
Ground to Negative Supply Voltage	V_{EE}	30	30	Vdc
Input Differential Voltage	$V_{\text {ID }}$	± 30	± 30	Vdc
Input Voltage (Note 2)	$v_{\text {in }}$	± 15	± 15	Vdc
Voltage at Strobe Pin	-	V_{CC} to $\mathrm{V}_{\mathrm{CC}}-5$	V_{CC} to $\mathrm{V}_{\mathrm{CC}}-5$	Vdc
Power Dissipation and Thermal Characteristics Metal Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Plastic and Ceramic Dual In-Line Packages Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{gathered} P_{D} \\ 1 / / \theta_{J A} \\ P_{D} \\ 1 / \theta_{J A} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Ambient Temperature Range	T_{A}	$\begin{gathered} -55 \text { to }+125 \\ -25 \text { to }+85 \\ - \\ \hline \end{gathered}$	$\frac{-}{-}$	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	$T_{J(\text { max }}$	+150	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted [Note 1].)

Characteristic	Symbol	LM111 LM211			LM311			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage (Note 3) } \\ & R_{S} \leqslant 50 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{S} \leqslant 50 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}{ }^{*} \end{aligned}$	V 1 O	-	0.7 -	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	-	2.0 -	$\begin{aligned} & 7.5 \\ & 10 \end{aligned}$	mV
Input Offset Current (Note 3) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}{ }^{*}$	10	-	1.7	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$-$	1.7	$\begin{aligned} & 50 \\ & 70 \\ & \hline \end{aligned}$	nA
Input Bias Current, $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$ $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}{ }^{*}$	IIB	$-$	45	$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$	-	45	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	nA
Voltage Gain	A_{V}	40	200	-	40	200	-	V / mV
Response Time (Note 4)		-	200	-	-	200	-	ns
$\begin{aligned} & \text { Saturation Voltage } \\ & \left.\begin{array}{l} V_{I D} \leqslant-5.0 \mathrm{mV}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA} \\ V_{I D} \leqslant-10 \mathrm{mV}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA} \end{array}\right\} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & V_{C C} \geqslant 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{A} \leqslant \mathrm{~T}_{\text {high }}{ }^{*} \\ & V_{I D} \leqslant-6.0 \mathrm{mV}, I_{\text {sink }} \leqslant 8.0 \mathrm{~mA} \\ & V_{I D} \leqslant-10 \mathrm{mV}, I_{\text {sink }} \leqslant 8.0 \mathrm{~mA} \\ & \hline \end{aligned}$	V_{OL}	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0.75 \\ - \\ 0.23 \\ - \end{gathered}$	1.5 - 0.4	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} - \\ 0.75 \\ -\overline{2} \\ \hline 0.23 \end{gathered}$	$\begin{gathered} - \\ 1.5 \\ -\overline{0.4} \end{gathered}$	V
Strobe "On" Current (Note 5)	IS	-	3.0	-	-	3.0	-	mA
$\begin{aligned} & \text { Output Leakage Current } \\ & \left.\begin{array}{l} V_{I D} \geqslant 5.0 \mathrm{mV}, \mathrm{~V}_{O}=35 \mathrm{~V} \\ V_{I D} \geqslant 10 \mathrm{mV}, \mathrm{~V}_{\mathrm{O}}=35 \mathrm{~V} \end{array}\right\} \begin{array}{l} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{I}_{\text {strobe }}=3.0 \mathrm{~mA} \end{array} \\ & \hline 5.0 \mathrm{mV}, \mathrm{~V}_{\mathrm{O}}=35 \mathrm{~V}, \mathrm{~T}_{\text {low }} \leqslant T_{A} \leqslant \mathrm{~T}_{\text {high }} \end{aligned}$		-	$\begin{gathered} 0.2 \\ 0.1 \end{gathered}$	$\frac{10}{0.5}$	$-$	$\overline{0.2}$	$\overline{50}$	nA nA $\mu \mathrm{A}$
Input Voltage Range ($\mathrm{T}_{\text {low }} \leqslant \mathrm{T}_{\mathbf{A}} \leqslant \mathrm{T}_{\text {high }}{ }^{*}$)	$\mathrm{V}_{\text {IR }}$	-14.5	$\begin{gathered} -14.7 \text { to } \\ 13.8 \end{gathered}$	13.0	-14.5	$\begin{array}{\|c\|} \hline-14.7 \text { to } \\ 13.8 \end{array}$	13.0	V
Positive Supply Current	ICC	-	+2.4	+6.0	-	+2.4	+7.5	mA
Negative Supply Current	IEE	-	-1.3	-5.0	-	-1.3	-5.0	mA

NOTES:

* $T_{\text {low }}=-55^{\circ} \mathrm{C}$ for LM111 $\quad T_{\text {high }}=+125^{\circ} \mathrm{C}$ for LM111
$=-\mathbf{2 5}{ }^{\circ} \mathrm{C}$ for LM211 $\quad=+85^{\circ} \mathrm{C}$ for LM211
$=0^{\circ} \mathrm{C}$ for LM311
$=+70^{\circ} \mathrm{C}$ for LM311

1. Offset voltage, offset current and bias current specifications apply for a supply voltage range from a single 5.0 volt supply up to ± 15 volt supplies.
2. This rating applies for ± 15 volt supplies. The positive input voltage limit is 30 volts above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 volts below the positive supply, whichever is less
3. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance.
4. The response time specified is for a 100 mV input step with 5.0 mV overdrive.
5. Do not short the strobe pin to ground; it should be current driven at 3.0 to 5.0 mA .

FIGURE 1 - CIRCUIT SCHEMATIC

TYPICAL PERFORMANCE CHARACTERISTICS

FIGURE 2 - INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 4 - INPUT BIAS CURRENT versus DIFFERENTIALINPUT VOLTAGE

FIGURE 3 - INPUT OFFSET CURRENT versus TEMPERATURE

FIGURE 5 - COMMON MODE LIMITS versus TEMPERATURE

FIGURE 8 - RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

FIGURE 10 - OUTPUT SHORT CIRCUIT CURRENT CHARACTERISTICS AND POWER DISSIPATION

FIGURE 7 - RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

FIGURE 9 - RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

FIGURE 11 - OUTPUT SATURATION VOLTAGE versus OUTPUT CURRENT

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

FIGURE 14 - POWER SUPPLY CURRENT versus TEMPERATURE

APPLICATIONS INFORMATION

FIGURE 15 - IMPROVED METHOD OF ADDING HYSTERESIS WITHOUT APPLYING POSITIVE FEEDBACK TO THE INPUTS

FIGURE 16 - CONVENTIONAL TECHNIQUE FOR ADDING HYSTERESIS

APPLICATIONS INFORMATION

Techniques for Avoiding Oscillations in Comparator Applications

When a high-speed comparator such as the LM111 is used with high-speed input signals and low source impedances, the output response will normally be fast and stable, providing the power supplies have been bypassed (with $0.1 \mu \mathrm{~F}$ disc capacitors), and that the output signal is routed well away from the inputs (Pins 2 and 3) and also away from Pins 5 and 6.
However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high ($1.0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$), the comparator may burst into oscillation near the crossing-point. This is due to the high gain and wide bandwidth of comparators like the LM111 series. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 15.
The trim pins (Pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trim-pot, they should be shorted together. If they are connected to a trim-pot, a $0.01 \mu \mathrm{~F}$ capacitor (C1) between Pins 5 and 6 will minimize the susceptibility to ac coupling. A smaller capacitor is used if Pin 5 is used for positive feedback as in Figure 15.
Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor (C2) is connected directly across the input pins. When the signal source is applied through a resistive network, R1, it is usually advantageous to choose R2 of the same value, both for dc and for dynamic (ac) considerations. Carbon, tin-oxide, and metal-film resistors have all been used with good results in comparator input circuitry, but inductive wirewound resistors should be avoided.

When comparator circuits use input resistors (e.g., summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words, there should be a veryshort lead length or printed-circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if $\mathrm{R} 1=10 \mathrm{k} \Omega$, as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to dampen. Twisting these input leads tightly is the best alternative to placing resistors close to the comparator.

FIGURE 17 - ZERO-CROSSING DETECTOR DRIVING CMOS LOGIC

Since feedback to almost any pin of a comparator can resúlt in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM111 circuitry (e.g., one side of a double layer printed circuit board). Ground, positive supply or negative supply foil should extend between the output and the inputs, to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides, to guard against capacitive coupling from any fast highlevel signals (such as the output). If Pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located no more than a few inches away from the LM111, and a $0.01 \mu \mathrm{~F}$ capacitor should be installed across Pins 5 and 6 . If this capacitor cannot be used, a shielding printed-circuit foil may be advisable between Pins 6 and 7. The power supply bypass capacitors should be located within a couple inches of the LM111.
A standard procedure is to add hysteresis to a comparator to prevent oscillation, and to avoid excessive noise on the output. In the circuit of Figure 16, the feedback resistor of $510 \mathrm{k} \Omega$ from the output to the positive input will cause about 3.0 mV of hysteresis. However, if R2 is larger than 100Ω, such as $50 \mathrm{k} \Omega$, it would not be practical to simply increase the value of the positive feedback resistor proportionally above $510 \mathrm{k} \Omega$ to maintain the same amount of hysteresis.
When both inputs of the LM1 11 are connected to active signals, or if a high-impedance signal is driving the positive input of the LM111 so that positive feedback would be disruptive, the circuit of Figure 15 is ideal. The positive feedback is applied to Pin 5 (one of the offset adjustment pins). This will be sufficient to cause 1.0 to 2.0 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz . The positive-feedback signal across the 82Ω resistor swings 240 mV below the positive supply. This signal is centered around the nominal voltage at Pin 5 , so this feedback does not add to the offset voltage of the comparator. As much as 8.0 mV of offset voltage can be trimmed out, using the $5.0 \mathrm{k} \Omega$ pot and $3.0 \mathrm{k} \Omega$ resistor as shown.

FIGURE 18 - RELAY DRIVER WITH STROBE CAPABILITY

LM124, LM224, LM324, LM324A LM2902

Specifications and Applications Information

QUAD LOW POWER OPERATIONAL AMPLIFIERS

The LM124 Series are low-cost, quad operational amplifiers with true differential inputs. These have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 Volts or as high as 32 Volts with quiescent currents about one fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuited Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 to 32 Volts
- Low Input Bias Currents: 100 nA Max (LM324A)
- Four Amplifiers Per Package
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Industry Standard Pinouts

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	LM124 LM224 LM324,A	LM2902	Unit
Power Supply Voltages Single Supply Split Supplies	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{EE}} \end{gathered}$	$\begin{gathered} 32 \\ \pm 16 \end{gathered}$	$\begin{gathered} 26 \\ \pm 13 \end{gathered}$	Vdc
Input Differential Voltage Range (1)	VIDR	± 32	± 26	Vdc
Input Common Mode Voltage Range	VICR	-0.3 to 32	-0.3 to 26	Vdc
Input Forward Current (2) $\left(\mathrm{V}_{1}<-0.3 \mathrm{~V}\right)$	IIF	50	-	mA
Output Short Circuit Duration	ts	Contin	uous	
Junction Temperature Ceramic Package Plastic Packages	TJ			${ }^{\circ} \mathrm{C}$
Storage Temperature Range Ceramic Package Plastic Packages	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { tc } \\ & -55 \text { tc } \end{aligned}$	$\begin{aligned} & +150 \\ & +125 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range LM124 LM224 LM324 LM324A LM2902	$\mathrm{T}_{\text {A }}$	$\left\|\begin{array}{c} -55 \text { to }+125 \\ -25 \text { to }+85 \\ 0 \text { to }+70 \\ 0 \text { to }+70 \\ - \end{array}\right\|$	$\begin{gathered} \text { - } \\ \text { - } \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$

(1) Split Power Supplies.

(2) This input current will only exist when the voltage is negative at any of the input leads. Normal output states will reestablish when the input voltage returns to a voltage greater than -0.3 V .

QUAD DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

J SUFFIX
CERAMIC PACKAGE CASE 632-08

N SUFFIX
PLASTIC PACKAGE CASE 646-06 (LM224, LM324, LM2902 Only)

D SUFFIX
PLASTIC PACKAGE
CASE 751A-02
SO-14

ORDERING INFORMATION		
Device	Temperature Range	Package
LM124J	-55 to $+125^{\circ} \mathrm{C}$	Ceramic DIP
LM2902D		SO-14
LM2902J	-40 to $+85^{\circ} \mathrm{C}$	Ceramic DIP
LM2902N		Plastic DIP
LM224D		SO-14
LM224J	-25 to $+85^{\circ} \mathrm{C}$	Ceramic DIP
LM224N		Plastic DIP
LM324AD		SO-14
LM324AN		Plastic DIP
LM324D	0 to $+70^{\circ} \mathrm{C}$	SO-14
LM324J		Ceramic DIP
LM324N		Plastic DIP

$5.0 \mu \mathrm{~s} /$ Div.

CIRCUIT DESCRIPTION

The LM124 Series is made using four internally compensated, two-stage operational amplifiers. The first stage
of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common-mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regu lator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

FIGURE 1 - INPUT VOLTAGE RANGE

FIGURE 3 - LARGE-SIGNAL FREQUENCY RESPONSE

FIGURE 5 - POWER SUPPLY CURRENT versus POWER SUPPLY VOLTAGE

FIGURE 2 - OPEN LOOP FREQUENCY

FIGURE 4 - SMALL-SIGNAL VOLTAGE FOLLOWER PULSE RESPONSE (Non-Inverting)

FIGURE 6 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE

APPLICATIONS INFORMATION

FIGURE 7 - VOLTAGE REFERENCE

$V_{O}=2.5 V\left(1+\frac{R 1}{R 2}\right)$

FIGURE 8 - WIEN BRIDGE OSCILLATOR

FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

$$
\left.e_{0}=c(1+a+b) \overline{(e 2}-e 1\right)
$$

FIGURE 10 - COMPARATOR WITH HYSTERESIS

$$
\begin{aligned}
V_{\text {inL }} & =\frac{R 1}{R 1+R 2}\left(V_{O L}-V_{\text {ref }}\right)+v_{\text {ref }} \\
V_{\text {inH }} & =\frac{R 1}{R 1+R 2}\left(V_{O H}-V_{\text {ref }}\right)+V_{\text {ref }} \\
H & =\frac{R 1}{R 1+R 2}\left(V_{O H}-V_{O L}\right)
\end{aligned}
$$

FIGURE 11 - BI-QUAD FILTER

FIGURE 12 - FUNCTION GENERATOR
FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER

Given $\quad{ }^{f_{0}}=$ Center Frequency

$$
A\left(f_{0}\right)=\text { Gain at Center Frequency }
$$

Choose Value f_{0}, C
Then:

$$
\begin{aligned}
& R 3=\frac{Q}{\pi f_{0} C} \\
& R 1=\frac{R 3}{2 A\left(f_{0}\right)} \\
& R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}
\end{aligned}
$$

For less than 10% error from operational amplifier

$$
\frac{Q_{0} f_{0}}{B W}<0.1 \quad \text { Where } f_{0} \text { and } B W \text { are expressed in } \mathrm{Hz}
$$

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

QUAD SINGLE SUPPLY COMPARATORS

These comparators are designed for use in level detection, lowlevel sensing and memory applications in Consumer Automotive and Industrial electronic applications.

- Single or Split Supply Operation
- Low Input Bias Current - 25 nA (Typ)
- Low Input Offset Current $- \pm 5.0 \mathrm{nA}$ (Typ)
- Low Input Offset Voltage - $\pm 1.0 \mathrm{mV}$ (Typ LM139A Series)
- Input Common-Mode Voltage Range to Gnd
- Low Output Saturation Voltage - 130 mV (Typ) @ 4.0 mA
- TTL and CMOS Compatible

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage LM139, A/LM239, A/ LM339A/LM2901 MC3302	V_{CC}	$\begin{aligned} & +36 \text { or } \pm 18 \\ & +30 \text { or } \pm 15 \end{aligned}$	Vdc
Input Differential Voltage Range LM139, A/LM239, A/LM339, A/LM2901 MC3302	$\mathrm{V}_{\text {IDR }}$	$\begin{aligned} & 36 \\ & 30 \end{aligned}$	Vdc
Input Common Mode Voltage Range	VICR	-0.3 to $V_{C C}$	Vdc
Output Short-Circuit to Gnd (Note 1)	ISC	Continuous	
Input Current ($\mathrm{V}_{\text {in }}<-0.3 \mathrm{Vdc}$) (Note 2)	In	50	mA
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Ceramic Package Derate above $25^{\circ} \mathrm{C}$ Plastic Package Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 1.0 \\ & 8.0 \\ & 1.0 \\ & 8.0 \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range LM139, A LM239, A LM2901/MC3302 LM339, A	$\mathrm{T}_{\text {A }}$	$\left\lvert\, \begin{gathered} -55 \text { to }+125 \\ -25 \text { to }+85 \\ -40 \text { to }+85 \\ 0 \text { to }+70 \end{gathered}\right.$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

FIGURE 1 - CIRCUIT SCHEMATIC (Diagram shown is for 1 comparator)

QUAD COMPARATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package
LM139J, AJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP
LM239D, AD LM239J, AJ LM239N, AN	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-14 Ceramic DIP Plastic DIP
LM339D, AD LM339J, AJ LM339N, AN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-14 Ceramic DIP Plastic DIP
LM2901D LM2901N MC3302L MC3302P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-14 Plastic DIP Ceramic DIP Plastic DIP

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	LM139A			LM239A/339A			LM139			LM239/339			LM2901			MC3302			Unit
		Min	Typ	Max																
Input Offset Voltage (Note 4)	V_{10}	-	± 1.0	± 2.0	-	± 1.0	± 2.0	-	± 2.0	± 5.0	-	± 2.0	± 5.0	-	± 2.0	± 7.0	-	± 3.0	± 20	mVdc
Input Bias Current (Notes 4, 5) (Output in Linear Range)	IB	-	25	100	-	25	250	-	25	100	-	25	250	-	25	250	-	25	500	nA
Input Offset Current (Note 4)	10	-	± 3.0	± 25	-	± 5.0	± 50	-	± 3.0	± 25	-	± 5.0	± 50	-	± 5.0	± 50	-	± 3.0	± 100	nA
Input Common-Mode Voltage Range (Note 7)	$\mathrm{V}_{\text {ICR }}$	0	-	$\begin{array}{\|c\|} \hline \mathrm{v}_{\mathrm{CC}} \\ -1.5 \\ \hline \end{array}$	0	-	$\begin{array}{\|l\|} \hline \mathrm{v}_{\mathrm{CC}} \\ -1.5 \\ \hline \end{array}$	0	-	$\begin{gathered} v_{C C} \\ -1.5 \\ \hline \end{gathered}$	0	-	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -1.5 \\ & \hline \end{aligned}$	0	-	$\begin{array}{r} \hline v_{C C} \\ -1.5 \\ \hline \end{array}$	0	-	$\begin{gathered} \hline \mathrm{v}_{\mathrm{CC}} \\ -1.5 \\ \hline \end{gathered}$	v
Supply Current $\mathrm{R}_{\mathrm{L}}=\infty$ (For All Comparators) $\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{CC}}=30 \mathrm{Vdc}$	${ }^{\text {I CC }}$	-	0.8	2.0	-	0.8		-	0.8	2.0			2.0	\|-	$\begin{aligned} & 0.8 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	-	0.8		mA
Voltage Gain $\mathrm{R}_{\mathrm{L}} \geqslant 15 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{Vdc}$	A_{V}	50	200	-	50	200	-	-	200	-	-	200	-	25	100	-	2	30	- -	V/mV
Large Signal Response Time $V_{1}=$ TTL Logic Swing, $V_{\text {ref }}=1.4 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{RL}}=5.0 \mathrm{Vdc},$ $R_{L}=5.1 \mathrm{k} \Omega$	-	-	300	-	-	300	-	-	300	-	-	300	-	-	300	-	-	300	-	ns.
Response Time (Note 6) $\mathrm{V}_{\mathrm{RL}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$	-	-	1.3	-	-	1.3	-	-	1.3	-	-	1.3	-	-	1.3	-	-	1.3	-	$\mu \mathrm{s}$
Output Sink Current $\mathrm{V}_{1}(-) \geqslant+1.0 \mathrm{Vdc}, \mathrm{~V}_{1}(+)=0, \mathrm{~V}_{0} \leqslant 1.5 \mathrm{Vdc}$	${ }_{\text {s }}$ ink	6.0	16	-	6.0	16	-	6.0	16	-	6.0	16	-	6.0	16	-	6.0	16	-	mA
Saturation Voltage $\mathrm{V}_{1}(-) \geqslant+1.0 \mathrm{Vdc}, \mathrm{~V}_{1}(+)=0, I_{\text {sink }} \leqslant 4.0 \mathrm{~mA}$	$\mathrm{v}_{\text {sat }}$	-	130	400	-	130	400	-	130	400	-	130	400	-	130	400	-	130	500	mV
Output Leakage Current $V_{(}(+) \geqslant+1.0 \mathrm{Vdc}, V_{1}(-)=0, V_{O}=+5.0 \mathrm{Vdc}$	1 OL	-	0.1	-	-	0.1	-	-	0.1	-	-	0.1	-	-	0.1	-	-	0.1	-	nA

PERFORMANCE CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{T}_{A}=T_{\text {low }}\right.$ to $T_{\text {nigh }}$ (Note 3])

Characteristic	Symbol	LM139A			LM239A/339A			LM139			LM239/339			LM2901			MC3302			Unit
		Min	Typ	Max																
Input Offset Voltage (Note 4)	V_{10}	-	-	± 4.0	-	-	± 4.0	-	-	± 9.0	-	-	+9.0	-	-	± 15	-	-	± 40	mVde
Input Bias Current (Notes 4, 5) (Output in Linear Range)	${ }_{1 / B}$	-	-	300	-	-	400	-	-	300	-	-	400	\cdots	-	500	-	-	1000	nA
Input Offset Current (Note 4)	10	-	-	± 100	-	-	± 150	-	-	± 100	-	-	± 150	-	-	± 200	-	-	± 300	nA
Input Common-Mode Voltage Range	$\mathrm{V}_{\text {ICR }}$	0	-	$\begin{array}{\|c} v_{c \mathrm{cc}} \\ -2.0 \end{array}$	0	-	$\begin{array}{\|c} \hline v_{c c} \\ -2.0 \end{array}$	0	-	$\begin{array}{\|c\|} \hline \mathrm{v}_{\mathrm{CC}} \\ -2.0 \end{array}$	0	-	$\begin{array}{l\|} \hline \mathrm{v}_{\mathrm{cc}} \\ -2.0 \end{array}$	0	-	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & -2.0 \end{aligned}$	0	-	$\begin{aligned} & \hline \mathrm{v}_{\mathrm{CC}} \\ & -2.0 \end{aligned}$	v
Saturation Voltage $V_{1}(-) \geqslant+1.0 \mathrm{Vdc}, V_{1}(+)=0, I_{\text {sink }} \leqslant 4.0 \mathrm{~mA} .$	$\mathrm{v}_{\text {sat }}$	-	-	700	-	-	700	-	-	700	-	-	700	-	-	700	-	-	700	mv
Output Leakage Current $V_{1}(+) \geqslant+1.0 \mathrm{Vdc}, V_{1}(-)=0 . V_{0}=30 \mathrm{Vdc}$	1 OL	-	-	1.0	-	-	1.0	-	-	1.0	-	-	1.0	-	-	1.0	-	-	1.0	${ }_{\mu} \mathrm{A}$
Differential Input Voltage All $\mathrm{V}_{1} \geqslant 0 \mathrm{Vdc}$ \{Note 7 7	$\mathrm{V}_{\text {ID }}$	-	-	v_{Cc}	Vdc															

NOTES:

1. The maximum output current may be as high as 20 mA , independent of the magnitude of V_{CC}. Output short circuits to V_{CC} can cause excessive heating and eventual destruction.
2. This magnitude of input current will only occur if the leads are driven more negative than ground or the negative supply voltage. This is due to the input PNP collector base junction becoming forward biased, acting as an input clamp diode. There is also a lateral PNP parasitic transistor action which cancause the output voltage of the comparators to go to the V_{CC} voltage level (or ground if overdrive is large) during the time that an input is driven negative. This wilf netulestroy the device when limited to the max rating and normal output states will recover when the inputs become \geqslant ground or negative supply.

LM339/339A - $T_{\text {low }}=0^{\circ} \mathrm{C}$, $T_{\text {high }}=+70^{\circ} \mathrm{C}$
3. $L M 239 / 239 \mathrm{~A}-\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}$, $T_{\text {high }}=+85^{\circ} \mathrm{C} \quad \mathrm{LM} 2901 / \mathrm{MC} 3302-\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}$, $\mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$
4. At the output switch point, $\mathrm{V}_{\mathrm{O}} \approx 1.4 \mathrm{Vdc}, R_{S} \leqslant 100 \Omega, 5.0 \mathrm{Vdc} \leqslant \mathrm{V}_{C C} \leqslant 30 \mathrm{Vdc}$, with the inputs over the full common-mode range (0 Vdc to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{Vdc}$).
5. The bias current flows out of the inputs due to the PNP input stage. This current is virtually constant, independent of the output state
6. The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger signals, 300 ns is typical.
7. Positive excursions of input voltage may exceed the power supply level. As long as one of the inputs remain within the common-mode range, the comparator will pro vide the proper output state.

FIGURE 2 - INVERTING COMPARATOR WITH HYSTERESIS

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ (each comparator) unless otherwise noted.)

FIGURE 4 - NORMALIZED INPUT OFFSET VOLTAGE

FIGURE 3 - NON-INVERTING COMPARATOR WITH HYSTERESIS

$R 2 \approx R 1 / / R_{\text {ref }}$
Amount of Hysteresis V_{H}
$V_{H}=\frac{R 2}{R 2+R 3}\left(V_{O_{\text {max }}}-V_{O \text { min }}\right)$

FIGURE 6 - OUTPUT SINK CURRENT versus OUTPUT SATURATION VOLTAGE

FIGURE 7 - DRIVING LOGIC

$R_{S}=$ Source Resistance $R 1 \approx R_{S}$

LOGIC	DEVICE	$V_{C C}$ Volts	R_{L} $k \Omega 2$
CMOS	$1 / 4$ MC14001	+15	100
TTL	$1 / 4$ MC7400	+5	10

FIGURE 8 - SQUAREWAVE OSCILLATOR

APPLICATIONS INFORMATION

These quad comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transistions (V_{OL} to V_{OH}). To alleviate this situation input resistors $<10 \mathrm{k} \Omega$ should be used. The addition of positive feedback $(<10 \mathrm{mV})$ is
also recommended.
It is good design practice to ground all unused input pins.

Differential input voltages may be larger than supply voltages without damaging the comparator's inputs. Voltages more negative than -300 mV should not be used.

FIGURE 9 - ZERO CROSSING DETECTOR

(Single Supply)

D1 prevents input from going negative by more than 0.6 V .

$$
R_{1}+R_{2}=R 3
$$

$$
R 3 \leqslant \frac{R 5}{10} \text { for small error in zero crossing }
$$

FIGURE $10-\underset{\text { (Split Supplies) }}{\text { ZERO CROSSING DETECTOR }}$
$V_{\text {iNmin }} \approx 0.4 \vee$ peak for 1% phase distortion $(\Delta(-))$.

Specifications and Applications Information

(QUAD MC1741)
 OPERATIONAL AMPLIFIERS

The LM148 series is a true quad MC1741. Integrated on a single monolithic chip are four independent, low power operational amplifiers which have been designed to provide operating characteristics identical to those of the industry standard MC1741, and can be applied with no change in circuit performance. In addition, the total supply current for all four amplifiers is comparable to the supply current of a single MC1741. Other features include input offset currents and input bias currents which are much less than the MC1741 industry standard.

The LM148 can be used in applications where amplifier matching or high packing density is important. Other applications include high impedance buffer amplifiers and active filter amplifiers.

- Each Amplifier is Functionally Equivalent to the MC1741
- Low Input Offset and Input Bias Currents
- Class AB Output Stage Eliminates Crossover Distortion
- Pin Compatible with MC3503 and LM124
- True Differential Inputs
- Internally Frequency Compensated
- Short Circut Protection
- Low Power Supply Current (0.6 mA /Amplifier)

EQUIVALENT CIRCUIT SCHEMATIC
 (1/4 of Circuit Shown)

(QUAD MC1741) DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC

 INTEGRATED CIRCUIT

ORDERING INFORMATION		
Device	Temperature Range	Package
LM148J	-55 to $+125^{\circ} \mathrm{C}$	Ceramic DIP
LM248J	-25 to $+85^{\circ} \mathrm{C}$	Ceramic DIP
LM248N	-25 to $+85^{\circ} \mathrm{C}$	Plastic DIP
LM348D	0 to $+70^{\circ} \mathrm{C}$	SO-14
LM348J	0 to $+70^{\circ} \mathrm{C}$	Ceramic DIP
LM348N	0 to $+70^{\circ} \mathrm{C}$	Plastic DIP

LM148, LM248, LM348

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	LM148	LM248/LM348		Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$		Vdc Vdc
Input Differential Voltage	$V_{\text {ID }}$	± 44	± 36		Volts
Input Common Mode Voltage	VICM	± 22	± 18		Volts
Output Short Circuit Duration	ts	Continuous			
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	-25 to +85	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Ceramic Package Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$			${ }^{\circ} \mathrm{C}$
Junction Temperature Ceramic Package Plastic Package	TJ	$\begin{aligned} & 175 \\ & 150 \\ & \hline \end{aligned}$			${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	LM148			LM248/348			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	V_{10}	-	1.0	5.0	-	1.0	6.0	mV
Input Offset Current	110	-	4.0	25	-	4.0	50	nA
Input Bias Current	1 IB	-	30	100	-	30	200	nA
Input Resistance	r_{i}	0.8	2.5	-	0.8	2.5	-	$\mathrm{M} \Omega$
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}$	± 12	-	-	± 12	-	-	V
Large Signal Voltage Gain $\left(R_{L} \geqslant 2.0 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right)$	A_{v}	50	160	-	25	160	-	V / mV
$\begin{aligned} & \text { Channel Separation } \\ & \quad(\mathrm{f}=1.0 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}) \end{aligned}$	-	-	-120	-	-	-120	-	dB
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	CMRR	70	90	-	70	90	-	dB
$\begin{aligned} & \text { Supply Voltage Rejection Ratio } \\ & \quad\left(R_{S} \leqslant 10 \mathrm{k}\right) \end{aligned}$	PSRR	77	96	-	77	96	-	dB
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geqslant 10 k\right) \\ & \left(R_{L} \geqslant 2 k\right) \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$	-	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$	$-$	V
Output Short-Circuit Current	I_{os}	-	25	-	-	25	-	mA
Supply Current - (All Amplifiers)	ID	-	2.4	3.6	-	2.4	4.5	mA
Small Signal Bandwidth ($\mathrm{A}_{\mathrm{V}}=1$)	BW	-	1.0	-	-	1.0	-	MHz
Phase Margin ($\mathrm{A}_{\mathrm{V}}=1$)	$\phi \mathrm{m}$	-	60	-	-	60	-	degrees
Slew Rate ($\mathrm{A}_{\mathrm{V}}=1$)	SR	-	0.5	-	-	0.5	-	$\mathrm{V} / \mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS $\quad \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}={ }^{*} \mathrm{~T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$ unless otherwise noted)

Input Offset Voltage $\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right)$	V_{10}	-	-	6.0	-	-	7.5	mV
Input Offset Current LM148 LM248 LM348	110		$-$	75	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{gathered} \overline{-} \\ 125 \\ 100 \end{gathered}$	nA
Input Bias Current LM148 LM248 LM348	IIB		$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	325	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	- - -	$\begin{array}{r} - \\ 500 \\ 400 \end{array}$	nA
Common Mode Input Voltage Range	$V_{\text {ICR }}$	± 12	-	-	± 12	-	-	V
Large Signal Voltage Gain $\left(R_{L} \geqslant 2 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right)$	A_{v}	25	-	-	15	-	-	V / mV
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	CMRR	70	90	-	70	90	-	dB
Supply Voltage Rejection Ratio $\left(R_{S} \leqslant 10 k\right)$	PSRR	77	96	-	77	96	-	dB
$\begin{gathered} \text { Output Voltage Swing } \\ \left(R_{L} \geqslant 10 \mathrm{k}\right) \\ \left(R_{L} \geqslant 2 \mathrm{k}\right) \\ \hline \end{gathered}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 13 \\ \pm 12 \\ \hline \end{array}$	-	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \\ & \hline \end{aligned}$		V

${ }^{*} T_{\text {high }}=125^{\circ} \mathrm{C}$ for LM148, $85^{\circ} \mathrm{C}$ for LM248, and $70^{\circ} \mathrm{C}$ for LM 348 . Tlow $=-55^{\circ} \mathrm{C}$ for $\mathrm{LM} 148,-25^{\circ} \mathrm{C}$ for LM 248 , and $0^{\circ} \mathrm{C}$ for LM 348 .
NOTE: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted or the maximum junction temperature will be exceeded.

TYPICAL CHARACTERISTICS
$\left(V_{C C}=+15 \mathrm{Vdc}, V_{E E}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted).

FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE (Single Supply Operation)

FIGURE 6 - NONINVERTING PULSE RESPONSE

FIGURE 7 - OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

APPLICATIONS INFORMATION

FIGURE 8 - VOLTAGE REFERENCE

$$
v_{0}-2.5 v\left(1+\frac{R 1}{R 2}\right)
$$

FIGURE 9 - WIEN BRIDGE OSCILLATOR

FIGURE 10 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

FIGURE 11 - COMPARATOR WITH HYSTERESIS

$$
\begin{aligned}
v_{\text {inL }} & =\frac{R 1}{R 1+R 2}\left(v_{\mathrm{OL}}-v_{\text {ref }}\right)+v_{\text {ref }} \\
v_{\text {inH }} & =\frac{R 1}{R 1+R 2}\left(v_{O H}-v_{\text {ref }}\right)+v_{\text {ref }} \\
H & =\frac{R 1}{R 1+R 2}\left(V_{O H}-v_{O L}\right)
\end{aligned}
$$

FIGURE 12 - HIGH IMPEDANCE INSTRUMENTATION BUFFER/FILTER

FIGURE 13 - FUNCTION GENERATOR

FIGURE 14 - BI-QUAD FILTER

FIGURE 15 - ABSOLUTE VALUE DVM FRONT END

Specifications and Applications Information

DUAL LOW POWER OPERATIONAL AMPLIFIERS

Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, these dual operational amplifiers feature 1) low power drain, 2) a common mode input voltage range extending to ground/VEE, 3) Single Supply or Split Supply operation and 4) pin outs compatible with the popular MC1558 dual operational amplifier. The LM158 Series is equivalent to one-half of an LM124.

These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 Volts or as high as 32 Volts with quiescent currents about one-fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 to 32 Volts
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Single and Split Supply Operation
- Similar Performance to the Popular MC1558

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)				
Rating	Symbol	LM158 LM258 LM358	LM2904	Unit
Power Supply Voltages Single Supply Split Supplies	$\begin{gathered} v_{C C} \\ v_{C C}, v_{E E} \end{gathered}$	$\begin{gathered} 32 \\ : 16 \end{gathered}$	$\begin{gathered} 26 \\ +13 \end{gathered}$	Vdc
Input Differential Voltage Range (1)	$V_{\text {IDR }}$: 32	± 26	Vdc
Input Common Mode Voltage Range (2)	VICR	-0.3 to 32	-0.3 to 26	Vdc
Input Forward Current (3) $\left(v_{1}<-0.3 v\right)$	IIF	50	-	mA
Output Short Circuit Duration	${ }^{\text {t }}$	Continuous		
Junction Temperature Ceramic and Metal Packages Plastic Package	TJ	$\begin{aligned} & 175 \\ & 150 \\ & \hline \end{aligned}$		${ }^{\circ} \mathrm{C}$
Storage Temperature Range Ceramic and Metal Packages Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \\ & \hline \end{aligned}$		${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range $\begin{aligned} & \text { LM158 } \\ & \text { LM258 } \\ & \text { LM358 } \\ & \text { LM2904 } \end{aligned}$	TA	$\left\lvert\, \begin{gathered} -55 \text { to }+125 \\ -25 \text { to }+85 \\ 0 \text { to }+70 \\ - \\ \hline \end{gathered}\right.$	$-40 \text { to }+85$	${ }^{\circ} \mathrm{C}$
(1) Split Power Supplies. (2) For Supply Voltages less than 32 V for the LM 158/258/358 and 26 V for the LM2904, the absolute maximum input voltage is equal to the supply voltage. (3) This input current will only exist when the voltage is negative at any of the input leads. Normal output states will reestablish when the input voltage returns to a voltage greater than -0.3 V .				

DUAL DIFFERENTIAL INPUT

 OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION		
Device	Temperature Range	Package
LM158H	-55 to $+125^{\circ} \mathrm{C}$	Metal Can
LM158J		Ceramic DIP
LM2904D	-40 to $+85^{\circ} \mathrm{C}$	SO-8
LM2904H		Metal Can
LM2904J		Ceramic DIP
LM2904N		Plastic DIP
LM258D	-25 to $+85^{\circ} \mathrm{C}$	SO-8
LM258H		Metal Can
LM258J		Ceramic DIP
LM258N		Plastic DIP
$\begin{aligned} & \text { LM358D } \\ & \text { LM358 } \end{aligned}$	0 to $+70^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{SO}-8 \\ \text { Metal Can } \\ \hline \end{gathered}$
LM358J		Ceramic DIP
LM358N		Plastic DIP

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	LM158/LM258			LM358			LM2904			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage } \\ & V_{C C}=5.0 \mathrm{~V} \text { to } 30 \mathrm{~V}(26 \mathrm{~V} \text { for LM2904), } \\ & \mathrm{V}_{\text {IC }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} \simeq 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\text { Note } 1) \\ & \hline \end{aligned}$	V_{10}	-	2.0	5.0 7.0	-	2.0	7.0 9.0	-	2.0	$\begin{aligned} & 7.0 \\ & 10 \\ & \hline \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$ (Note 1)	$\Delta V_{10} / \Delta T$	-	7.0	-	-	7.0	-	-	7.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$ (Note 1)	110	-	3.0	$\begin{gathered} 30 \\ 100 \end{gathered}$	-		$\begin{array}{\|c\|} \hline 50 \\ 150 \\ \hline \end{array}$	-	$\begin{aligned} & 5.0 \\ & 45 \end{aligned}$	$\begin{gathered} 50 \\ 200 \\ \hline \end{gathered}$	nA
Average Temperature Coefficient of Input Offset Current $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$ (Note 1)	$\Delta l_{10} / \Delta T$	-	10	-	-	10	-	-	10	-	pA/ ${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current } \\ & T_{A}=T_{\text {high }} \text { to } T_{\text {low }} \text { (Note 1) } \end{aligned}$	${ }^{1} \mathrm{IB}$		$\begin{aligned} & -45 \\ & -50 \end{aligned}$	$\begin{array}{\|l\|} \hline-150 \\ -300 \end{array}$	-	$\begin{aligned} & -45 \\ & -50 \end{aligned}$	$\begin{array}{\|l\|} \hline-250 \\ -500 \end{array}$	-	$\begin{aligned} & -45 \\ & -50 \end{aligned}$	$\begin{aligned} & -250 \\ & -500 \end{aligned}$	nA
$\begin{aligned} & \text { Input Common-Mode Voltage Range (Note 2) } \\ & V_{C C}=30 \vee(26 \mathrm{~V} \text { for LM2904) } \\ & V_{C C}=30 \vee(26 \mathrm{~V} \text { for } L M 2904), T_{A}=T_{\text {high }} \text { to } T_{\text {low }} \end{aligned}$	VICR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{gathered} 28.3 \\ 28 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{array}{\|c\|c} 28.3 \\ 28 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{array}{\|c\|c} 24.3 \\ 24 \end{array}$	V
Differential Input Voltage Range	VIDR	-	-	V_{CC}	-	-	V_{CC}	-	-	V_{CC}	V
$\begin{aligned} & \text { Large Signal Open-Loop Voltage Gain } \\ & R_{L}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{C C}=15 \mathrm{~V} \text {, For Large } \mathrm{V}_{\mathrm{O}} \text { Swing, } \\ & T_{A}=T_{\text {high }} \text { to } T_{\text {low }}(\text { Note } 1) \end{aligned}$	AVOL	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100	-	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100	-	-	100	-	V / mV
Channel Separation $1.0 \mathrm{kHz} \leqslant \mathrm{f} \leqslant 20 \mathrm{kHz}$, Input Referenced	-	-	-120	-	-	-120	-	-	-120	-	dB
Common-Mode Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega$	CMRR	70	85	-	65	70	-	50	70	-	dB
Power Supply Rejection Ratio	PSRR	65	100	-	65	100	-	50	100	-	dB
Output Voltage Range $R_{L}=2 \mathrm{k} \Omega\left(R_{L} \geqslant 10 \mathrm{k} \Omega \text { for } L M 2904\right)$	$\mathrm{V}_{\text {OR }}$	0	-	3.3	0	-	3.3	0	-	3.3	V
$\begin{aligned} & \text { Output Voltage-High Limit }\left(T_{A}=T_{\text {high }} \text { to } T_{\text {low }}\right)(\text { Note 1) } \\ & V_{C C}=30 \mathrm{~V}\left(26 \mathrm{~V} \text { for LM2904), } R_{\mathrm{L}}=2 \mathrm{k} \Omega\right. \\ & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}\left(26 \mathrm{~V} \text { for LM2904), } \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right. \\ & \hline \end{aligned}$	${ }^{\mathrm{V} \mathrm{OH}}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	28	--	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	-	-	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	24	-	V
Output Voltage-Low Limit $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$ (Note 1)	V_{OL}	-	5.0	20	-	5.0	20	-	5.0	20	mV
Output Source Current $V_{I D}=+1.0 \mathrm{~V}, V_{C C}=15 \mathrm{~V}$	${ }^{1} \mathrm{O}+$	20	40	-	20	40	-	20	40	-	mA
Output Sink Current $\begin{aligned} & V_{1 D}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\text {ID }}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$	${ }^{1} \mathrm{O}-$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	-	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	-	10	20	-	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Output Short Circuit to Ground (Note 3)	Ios	-	40	60	-	40	60	-	40	60	mA
$\begin{aligned} & \text { Power Supply Current (TA }=\text { Thigh to Tlow) (Note 1) } \\ & V_{C C}=30 \mathrm{~V}(26 \mathrm{~V} \text { for } \mathrm{LM} 2904), \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$	${ }^{1} \mathrm{CC}$	-	$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.2 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.2 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.2 \\ & \hline \end{aligned}$	mA

NOTES:
(1) $T_{\text {low }}=-55^{\circ} \mathrm{C}$ for LM158 $=.40^{\circ} \mathrm{C}$ for LM2904 $T_{\text {nigh }}=+125^{\circ} \mathrm{C}$ for LM158 $=+85^{\circ} \mathrm{C}$ for LM2904 and LM 258
$=+70^{\circ} \mathrm{C}$ for LM358
(2) The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than
0.3 V . The upper end of the common-mode voltage range is $V_{C C}-1.7 \mathrm{~V}$, but either or both inputs can go to +32 V without damage (+26 V for LM2904)
(3) Short circuits from the output to $V_{C C}$ can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

$5.0 \mu \mathrm{~s} /$ Div.

CIRCUIT DESCRIPTION

The LM158 Series is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter O 3 and Q 4 . The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common-mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

TYPICAL PERFORMANCE CURVES

FIGURE 1 - INPUT VOLTAGE RANGE

FIGURE 3 - LARGE-SIGNAL FREQUENCY RESPONSE

FIGURE 5 - POWER SUPPLY CURRENT versus POWER SUPPLY VOLTAGE

FIGURE 2 - OPEN LOOP FREQUENCY

FIGURE 4 - SMALL-SIGNAL VOLTAGE FOLLOWER PULSE RESPONSE (Non-Inverting)

FIGURE 6 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE

APPLICATIONS INFORMATION

FIGURE 7 - VOLTAGE REFERENCE

$V_{O} \cdot 2.5 V\left(1+\frac{R 1}{R 2}\right)$

FIGURE 8 - WIEN BRIDGE OSCILLATOR

FIGURE 10 - COMPARATOR WITH HYSTERESIS

APPLICATIONS INFORMATION (continued)

FIGURE 12 - FUNCTION GENERATOR

FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER

Given $\quad \dagger_{0}=$ Center Frequency
$A\left(f_{0}\right)=$ Gain at Center Frequency
Choose Value f_{o}, C
Then:
$R 3=\frac{Q}{\pi f_{0} C}$
$R 1=\frac{R 3}{2 A\left(f_{0}\right)}$
$R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}$

For less than 10\% error from operational amplifier

$$
\frac{Q_{0}{ }^{f} O}{B W}<0.1 \quad \text { Where } f_{O} \text { and } B W \text { are expressed in } \mathrm{Hz} \text {. }
$$

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

SINGLE SUPPLY, LOW POWER, LOW OFFSET VOLTAGE DUAL COMPARATORS

The LM193 series are dual independent precision voltage comparators capable of single-or split-supply operation. These devices are designed to permit a common mode range-to-ground level with single-supply operation. Input offset-voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer automotive, and industrial electronics.

- Wide Single-Supply Range - 2.0 Vdc to 36 Vdc
- Split-Supply Range $- \pm 1.0 \mathrm{Vdc}$ to $\pm 18 \mathrm{Vdc}$
- Very Low Current Drain Independent of Supply Voltage - 0.4 mA
- Low Input Bias Current - 25 nA
- Low Input Offset Current - 5.0 nA
- Low Input Offset Voltage - 2.0 mV (max) LM193A/293A/393A
- 5.0 mV (max) LM193/293/393
- Input Common Mode Range to Ground Level
- Differential Input Voltage Range Equal to Power Supply Voltage
- Output Voltage Compatible with DTL, ECL, TTL, MOS and CMOS Logic Levels

FIGURE 1 - CIRCUIT SCHEMATIC
(Diagram shown is for 1 comparator)

DUAL COMPARATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

N SUFFIX

PLASTIC PACKAGE
CASE 626-05

D SUFFIX

PLASTIC PACKAGE
CASE 751-02
SO-8

ORDERING INFORMATION

Device	Temperature Range	Package
LM193AH, H	-55 to $+125^{\circ} \mathrm{C}$	Metal Can
LM293AH, H	-25 to $+85^{\circ} \mathrm{C}$	Metal Can
LM293D		SO-8
LM393AH, H	0 to $+70^{\circ} \mathrm{C}$	Metal Can
LM393D		SO-8
LM393AN,N		Plastic DIP
LM2903D	-40 to $+85^{\circ} \mathrm{C}$	SO-8
LM2903N		Plastic DIP

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$V_{\text {CC }}$	+36 or ± 18	Vdc
Input Differential Voltage Range	VIDR	36	Vdc
Input Common Mode Voltage Range	VICR	-0.3 to +36	Vdc
Input Current (2) $\left(\mathrm{V}_{\text {in }}<-0.3 \mathrm{Vdc}\right)$	lin	50	mA
Output Short Circuit-to-Ground Output Sink Current (1)	ISC Isink	$\begin{aligned} & \text { Continuous } \\ & 20 \end{aligned}$	mA
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Plastic DIP Derate above $25^{\circ} \mathrm{C}$ Metal Can Derate above $25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ 1 / \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{P}_{\mathrm{D}} \\ 1 / \mathrm{R}_{\theta \mathrm{JA}} \end{gathered}$	$\begin{gathered} 570 \\ 5.7 \\ 830 \\ 6.64 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
```Operating Ambient Temperature Range LM193, 193A LM293, 293A LM393, 393A LM2903```	$\mathrm{T}_{\mathrm{A}}$	$\begin{gathered} -55 \text { to }+125 \\ -25 \text { to }+85 \\ 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Maximum Operating Junction Temperature LM393, 393A, 2903   LM193, 193A, 293, 293A	$T_{J}($ max $)$	$\begin{aligned} & 125 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\quad\left(V_{C C}=5.0 \mathrm{Vdc} ;{ }^{*} T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}\right.$ unless otherwise stated.)

Characteristic	Symbol	LM193A			LM293A, LM393A			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage (3) } \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	$\mathrm{V}_{10}$	-	$\pm 1.0$	$\begin{gathered} \pm 2.0 \\ 4.0 \end{gathered}$	-	$\pm 1.0$	$\begin{gathered} \pm 2.0 \\ 4.0 \end{gathered}$	mV
Input Offset Current $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	10	-	$\pm 3.0$	$\begin{gathered} \pm 25 \\ \pm 100 \\ \hline \end{gathered}$	-	$\pm 5.0$	$\begin{gathered} \pm 50 \\ \pm 150 \\ \hline \end{gathered}$	nA
$\begin{aligned} & \text { Input Bias Current (4) } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{~T}_{\text {high }} \end{aligned}$	IIB	-	25	$\begin{array}{r} 100 \\ 300 \\ \hline \end{array}$	-	25	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	nA
```Input Common Mode Voltage Range (5) TA}=2\mp@subsup{5}{}{\circ}\textrm{C T```	VICR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & V_{C C-}^{-1.5} \\ & V_{C C}-2.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.5 \\ & \mathrm{~V}_{\mathrm{CC}}-2.0 \end{aligned}$	Volts
Voltage Gain $\mathrm{R}_{\mathrm{L}} \geqslant 15 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	AVOL	50	200	-	50	200	-	V / mV
$\begin{aligned} & \text { Large Signal Response Time } \\ & V_{\text {in }}=T T L \text { Logic } S w i n g, V_{\text {ref }}=1.4 \mathrm{Vdc} \\ & V_{R L}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	300	-	-	300	-	ns
```Response Time (5) VRL}=5.0\textrm{Vdc},\mp@subsup{R}{\textrm{L}}{}=5.1\textrm{k}\Omega,\mp@subsup{T}{A}{}=2\mp@subsup{5}{}{\circ}\textrm{C```	${ }^{\text {t }}$ LH	-	1.3	-	-	1.3	-	$\mu \mathrm{S}$
Input Differential Voltage (7)   All $\mathrm{V}_{\text {in }} \geqslant$ Gnd or V - Supply (if used)	$V_{\text {ID }}$	-	-	$\mathrm{V}_{\mathrm{CC}}$	-	-	$\mathrm{V}_{\mathrm{CC}}$	V
$\begin{aligned} & \text { Output Sink Current } \\ & \mathrm{V}_{\text {in- }} \geqslant 1.0 \mathrm{Vdc}, \mathrm{~V}_{\text {in }+}=0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}} \leqslant 1.5 \mathrm{Vdc} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\text {sink }}$	6.0	16	-	6.0	16	-	mA
Output Saturation Voltage $\begin{aligned} & \mathrm{V}_{\text {in }} \geqslant 1.0 \mathrm{Vdc}, \mathrm{~V}_{\text {in }}=0, I_{\text {sink }} \leqslant 4.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{~T}_{\text {high }} \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	-	150	$\begin{array}{r} 400 \\ 700 \\ \hline \end{array}$	-	150	$\begin{aligned} & 400 \\ & 700 \\ & \hline \end{aligned}$	mV
$\begin{aligned} & \text { Output Leakage Current } \\ & \mathrm{V}_{\text {in- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {in }} \geqslant 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {in- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {in }} \geqslant 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{Vdc}, \\ & \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant T_{\text {high }} \\ & \hline \end{aligned}$	${ }^{\prime} \mathrm{OL}$	-	0.1	$\overline{1.0}$	-	0.1	$\overline{1.0}$	$\mu \mathrm{A}$
Supply Current   $R_{L}=\infty$ Both Comparators, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   $R_{L}=\infty$ Both Comparators, $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$	${ }^{1} \mathrm{CC}$	-	$\begin{aligned} & 0.4 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.4 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	mA

$$
\begin{aligned}
* \mathrm{LM} 193 / 193 \mathrm{~A}-\mathrm{T}_{\text {low }} & =-55^{\circ} \mathrm{C}, \mathrm{~T}_{\text {high }}=+125^{\circ} \mathrm{C} \\
\mathrm{LM} 293 / 293 \mathrm{~A}-\mathrm{T}_{\text {low }} & =-25^{\circ} \mathrm{C}, \mathrm{~T}_{\text {high }}=+85^{\circ} \mathrm{C} \\
\mathrm{LM} 393 / 393 \mathrm{~A}-\mathrm{T}_{\text {low }} & =0^{\circ} \mathrm{C}, \mathrm{~T}_{\text {high }}=+70^{\circ} \mathrm{C} \\
\text { LM2903 }-\mathrm{T}_{\text {low }} & =-40^{\circ} \mathrm{C}, \mathrm{~T}_{\text {high }}=+85^{\circ} \mathrm{C}
\end{aligned}
$$

ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc} ;{ }^{*} \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{T}_{\text {high }}\right.$ unless otherwise stated.)

Characteristic	Symbol	LM193			LM293, LM393			LM2903			
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage (3) } \\ & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{~T}_{\text {high }} \end{aligned}$	$\mathrm{V}_{10}$	-	$\pm 1.0$	$\begin{gathered} \pm 5.0 \\ 9.0 \end{gathered}$	-	$\pm 1.0$	$\begin{gathered} \pm 5.0 \\ 9.0 \end{gathered}$	-	$\begin{gathered} \pm 2.0 \\ 9.0 \end{gathered}$	$\begin{gathered} \pm 7.0 \\ 15 \end{gathered}$	mV
$\begin{aligned} & \text { Input Offset Current } \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	I'O	-	$\pm 3.0$	$\begin{gathered} \pm 25 \\ \pm 100 \end{gathered}$	-	$\pm 5.0$	$\begin{gathered} \pm 50 \\ \pm 150 \end{gathered}$	-	$\begin{gathered} \pm 5.0 \\ \pm 50 \end{gathered}$	$\begin{gathered} \pm 50 \\ \pm 200 \end{gathered}$	nA
$\begin{aligned} & \text { Input Bias Current (4) } \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	IB	-	25	$\begin{aligned} & 100 \\ & 300 \end{aligned}$	-	25	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	-	$\begin{gathered} 25 \\ 200 \end{gathered}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	nA
```Input Common Mode Voltage Range (4) TA}=2\mp@subsup{5}{}{\circ}\textrm{C Tlow\leqslant TA```	VICR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$-$	$\begin{aligned} & V_{C C}-1.5 \\ & V_{C C}-2.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & V_{C C}-1.5 \\ & V_{C C}-2.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & v_{C C}-1.5 \\ & v_{C C}-2.0 \\ & \hline \end{aligned}$	Volts
$\begin{aligned} & \text { Voltage Gain } \\ & \qquad \begin{array}{l} R_{L} \geqslant 15 \mathrm{k} \Omega, \mathrm{~V}_{C C}=15 \mathrm{Vdc}, \\ T_{A}=25^{\circ} \mathrm{C} \end{array} \end{aligned}$	AVOL	50	200	-	50	200	-	25	200	-	V / mV
$\begin{aligned} & \text { Large Signal Response Time } \\ & V_{\text {in }}=T T L \text { Logic Swing, } \\ & V_{\text {ref }}=1.4 \mathrm{Vdc} \\ & V_{R L}=5.0 \mathrm{Vdc}, R_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	300	-	-	300	-	-	300	-	ns
$\begin{aligned} & \text { Response Time (6) } \\ & V_{R L}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	${ }^{\text {t }}$ L H	-	1.3	-	-	1.3	-	-	1.5	-	$\mu \mathrm{S}$
Input Differential Voltage (7) All $\mathrm{V}_{\text {in }} \geqslant$ Gnd or V - Supply (if used)	$V_{\text {ID }}$	-	-	V_{CC}	-	-	V_{CC}	-	-	V_{CC}	V
Output Sink Current $\begin{gathered} \mathrm{V}_{\mathrm{in}-} \geqslant 1.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{in}+}=0 \mathrm{Vdc}, \\ \mathrm{~V}_{\mathrm{O}} \leqslant 1.5 \mathrm{Vdc} \mathrm{~T} \end{gathered}$	${ }^{\prime}$ sink	6.0	16	-	6.0	16	-	6.0	16	-	mA
$\begin{aligned} & \text { Output Saturation Voltage } \\ & \mathrm{V}_{\text {in- }} \geqslant 1.0 \mathrm{Vdc}, \mathrm{~V}_{\text {in }}=0, \\ & \mathrm{I}_{\text {sink }} \leqslant 4.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{~T}_{\text {high }} \\ & \hline \end{aligned}$	V_{OL}	-	150	400 700	-	150	400 700	-	200	$\begin{aligned} & 400 \\ & 700 \\ & \hline \end{aligned}$	mV
Output Leakage Current $\begin{gathered} \mathrm{V}_{\text {in- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {in }} \geqslant 1.0 \mathrm{Vdc}, \\ \mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\text {in- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {in }} \geqslant 1.0 \mathrm{Vdc}, \\ \mathrm{~V}_{\mathrm{O}}=30 \mathrm{Vdc}, \\ \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{~T}_{\text {high }} \end{gathered}$	${ }^{1} \mathrm{OL}$	-	0.1 -	1000	-	0.1 -	1000	- -	0.1 -	1000	nA
$\begin{aligned} & \text { Supply Current } \\ & R_{L}=\infty \text { Both Comparators, } \\ & T_{A}=25^{\circ} \mathrm{C} \\ & R_{L}=\infty \text { Both Comparators, } \\ & V_{C C}=30 \mathrm{~V} \\ & \hline \end{aligned}$	${ }^{1} \mathrm{CC}$	-	0.4 -	1.0 2.5	-	0.4 -	1.0 2.5	-	0.4 -	1.0 2.5	mA

*LM193 $/ 193 \mathrm{~A}-\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$
LM293 $/ 293 \mathrm{~A}-\mathrm{T}_{\text {low }}=-25^{\circ} \mathrm{C}$. $\mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$
LM393/393A $-T_{\text {low }}=0^{\circ} \mathrm{C}, T_{\text {high }}=+70^{\circ} \mathrm{C}$

NOTES:
(1) The max. output current may be as high as 20 mA , independent of the magnitude of V_{CC}, output short circuits to V_{C} can cause excessive heating and eventual destruction.
(2) This magnitude of input current will only occur if the input leads are driven more negative than ground or the negative supply voltage. This is due to the input PNP collector base junction becoming forward biased, acting as an input clamp diode. There is also a lateral PNP parasitic transistor action on the IC chip. This phenomena can cause the output voltage of the comparators to go to the $\mathrm{V}_{C C}$ voltage level (or ground if overdrive is large) during the time the input is driven negative. This will not destroy the device and normal output states will recover when the inputs become $>-0.3 \mathrm{~V}$ of ground or negative supply.
(3) At output switch point, $\mathrm{V}_{\mathrm{O}} \approx 1.4 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V_{CC} from 5.0 Vdc to 30 Vdc , and over the full input common-mode range (0 volts to $\mathrm{V}_{\mathrm{CC}}=-1.5$ volts)
(4) Due to the PNP transistor inputs, bias current will flow out of the inputs, this current is essentially constant independent of the output state, therefore, no loading changes will exist on the input lines.
(5) Input common mode of either input should not be permitted to go more than 0.3 V negative of ground or minus supply. The upper limit of common mode range is $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$ but either or both inputs can be taken to as high as 30 volts without damage.
(6) Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times are obtainable.
(7) The comparator will exhibit proper output state if one of the inputs become greater than V_{CC}, the other input must remain within the common mode range. The low input state must not be less than -0.3 volts of ground of minus supply.

LM193, LM193A, LM293, LM293A, LM393, LM393A, LM2903

TYPICAL PERFORMANCE CHARACTERISTICS

LM193,A/293,A/393,A
FIGURE 2 - INPUT BIAS CURRENT versus POWER SUPPLY VOLTAGE

$V_{\text {CC }}$ SUPPLY VOLTAGE (Vdc)
FIGURE 3 - OUTPUT SATURATION VOLTAGE versus OUTPUT SINK CURRENT

FIGURE 4 - POWER SUPPLY CURRENT versus POWER SUPPLY VOLTAGE

LM2903
FIGURE 5 - INPUT BIAS CURRENT versus POWER SUPPLY VOLTAGE

FIGURE 6 - OUTPUT SATURATION VOLTAGE versus OUTPUT SINK CURRENT

FIGURE 7 - POWER SUPPLY CURRENT versus POWER SUPPLY VOLTAGE

APPLICATIONS INFORMATION

These dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V_{OL} to V_{OH}). To alleviate this situation input resistors $<10 \mathrm{k} \Omega$ should be used. The addition of positive feedback ($<10 \mathrm{mV}$) is also recommended.

D1 prevents input from going negative by more than 0.6 V .

$$
R 1+R 2=R 3
$$

$R 3 \leqslant \frac{R 5}{10}$ for small error in zero crossing

FIGURE 10 - FREE-RUNNING SQUARE-WAVE OSCILLATOR

It is good design practice to ground all unused pins.
Differential input voltages may be larger than supply voltage without damaging the comparator's inputs. Voltages more negative than -0.3 V should not be used.

FIGURE 9-ZERO CROSSING DETECTOR
 (Split Supplies)

$V_{\text {INmin }} \approx 0.4 \vee$ peak for 1% phase distortion $(\Delta \Theta)$.

FIGURE 11 - TIME DELAY GENERATOR

FIGURE 12 - COMPARATOR WITH HYSTERESIS

$$
\begin{aligned}
& V_{\text {th1 }}=V_{\text {ref }}+\frac{\left(V_{C C}-V_{\text {ref }}\right) R 1}{R 1+R 2+R L} \\
& V_{\text {th2 }}=V_{\text {ref }}-\frac{\left(V_{\text {ref }}-V_{0} \text { Low }\right) R 1}{R 1+R 2+R_{L}}
\end{aligned}
$$

INTERNALLY COMPENSATED MONOLITHIC OPERATIONAL AMPLIFIER

A general purpose operational amplifier series well suited for applications requiring lower input currents than are available with the popular MC1741. These improved input characteristics permit greater accuracy in sample and hold circuits and long interval integrators.

- Internally Compensated
- Low Offset Voltage: 7.5 mV max
- Low Input Offset Current: 50 nA max
- Low Input Bias Current: 250 nA max

LM307

OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

EQUIVALENT CIRCUIT

Pins 1,5, and 8 no connection.

MAXIMUM RATINGS ($\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	LM307	Unit
Power Supply Voltages	V_{CC}	+18	Vdc
	V_{EE}	-18	
Differential Input Signal Voltage	$\mathrm{V}_{\text {ID }}$	± 30	Volts
Common-Mode Input Swing (Note 1)	$\mathrm{V}_{\text {ICR }}$	± 15	Volts
Output Short-Circuit Duration	$\mathrm{t}_{\mathbf{s}}$	Indefinite	
Power Dissipation (Package Limitation) (Note 2)	P_{D}	500	mW
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TA $=+25^{\circ} \mathrm{C}$ unless otherwise noted, see Note 3.)

Characteristics	Symbol	LM307			Unit
		Min	Typ	Max	
Input Offset Voltage $\begin{aligned} & \mathrm{R}_{S} \leqslant 50 \mathrm{k} \Omega, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega, \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	V_{10}	-	2.0	$\begin{gathered} 7.5 \\ 10 \end{gathered}$	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	10	-	$3.0{ }^{\circ}$	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	$n \mathrm{~A}$
Input Bias Current $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathbf{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	I'B	-	70	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	nA
Input Resistance	r_{i}	0.5	2.0	-	$\mathrm{M} \Omega$
Supply Current $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	'D	-	1.8	3.0	mA
Large-Signal Voltage Gain $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}>2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \end{aligned}$	A_{V}	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	160	-	V / mV
Average Temperature Coefficient of Input Offset Voltage $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	TCV 10	-	6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current $\begin{aligned} & +25^{\circ} \mathrm{C} \leqslant T_{A} \leqslant T_{\text {high }} \\ & T_{\text {low }} \leqslant T_{A} \leqslant+25^{\circ} \mathrm{C} \end{aligned}$	TCl_{10}	-	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$n A /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Output Voltage Swing (} \left.T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \\ & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & +14 \\ & \pm 13 \end{aligned}$	-	V
$\begin{aligned} & \text { Input Voltage Range (} \left.T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	VICR	± 12	-	-	v
$\begin{aligned} & \text { Common-Mode Rejection Ratio (} \left.T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \\ & R_{S} \leqslant 50 \mathrm{k} \Omega \end{aligned}$	CMRR	70	90	-	dB
$\begin{aligned} & \text { Supply-Voltage Rejection Ratio (} \left.T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \\ & R_{S} \leqslant 50 \mathrm{k} \Omega \end{aligned}$	PSRR	70	96	-	dB

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.
Note 1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2. For operating at elevated temperatures, the device must be derated based on a maximum junction temperature of $100^{\circ} \mathrm{C}$
for the LM307. The H package is derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $+45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.

Note 3. Unless otherwise noted, these specifications apply for:
$\pm 5.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} / V_{\mathrm{EE}} \leqslant \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {low }}=0^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$

FIGURE 3 - MINIMUM VOLTAGE GAIN

FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 2 - MINIMUM OUTPUT VOLTAGE SWING

FIGURE 4 - TYPICAL SUPPLY CURRENTS

FIGURE 6 - LARGE-SIGNAL FREQUENCY RESPONSE

DUAL, LOW NOISE, AUDIO OPERATIONAL AMPLIFIER

The LM833 is a standard low-cost monolithic dual generalpurpose operational amplifier employing Bipolar technology with innovative high-performance concepts for audio systems applications. With high frequency PNP transistors, the LM833 offers low voltage noise ($4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$), 15 MHz gain bandwidth product, $7.0 \mathrm{~V} / \mu \mathrm{s}$ slew rate, 0.3 mV input offset voltage with $2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ temperature coefficient of input offset voltage. The LM833 output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source/sink ac frequency response.
The LM833 is specified over the vehicular temperature range and is available in the plastic DIP and SO-8 packages (P and D suffixes). A quad device is available in the MC34079 family.

- Low Voltage Noise: $4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- High Gain Bandwidth Product: 15 MHz
- High Slew Rate: $7.0 \mathrm{~V} / \mu \mathrm{s}$
- Low Input Offset Voltage: 0.3 mV
- Low T.C. of Input Offset Voltage: $2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Distortion: 0.002\%
- Excellent Frequency Stability
- Dual Supply Operation

DUAL OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX
PLASTIC PACKAGE
CASE 626-05

D SUFFIX
PLASTIC PACKAGE
CASE 751-02 SO-8

PIN ASSIGNMENTS

Dual, Top View

ORDERING INFORMATION

Device	Temperature Range	Package
LM833P	-40 to $+85^{\circ} \mathrm{C}$	Plastic DIP
LM833D	-40 to $+85^{\circ} \mathrm{C}$	SO-8

NOTES

1. Either or both input voltages must not exceed the magnitude of $V_{C C}$ or $V_{E E}$.
2. Power dissipation must be considered to ensure maximum junction temperature (T_{j}) is not exceeded (See power dissipation performance, characteristic).
3. Maximum value at $\mathrm{T}_{\mathrm{A}} \leqslant 85^{\circ} \mathrm{C}$.

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted).

Characteristics	Symbol	Min	Typ	Max	Unit
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$)	V_{10}	-	0.3	5.0	mV
Average Temperature Coefficient of Input Offset Voltage $R_{S}=10 \Omega, V_{O}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current ($\left.\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)$	10	-	10	200	nA
Input Bias Current ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$)	1 IB	-	300	1000	nA
Common Mode Input Voltage Range	VICR	-12	$\begin{array}{r} +14 \\ -14 \\ \hline \end{array}$	$+12$	V
Large Signal Voltage Gain ($\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$)	AVOL	90	110	-	dB
	$\mathrm{V}_{\mathrm{O}}+$ V_{O} $\mathrm{V}_{\mathrm{O}}+$ $\mathrm{V}_{\mathrm{O}}-$	$\begin{aligned} & \frac{10}{12} \\ & \hline- \end{aligned}$	$\begin{gathered} 13.7 \\ -14.1 \\ 13.9 \\ -14.7 \end{gathered}$	$\begin{gathered} - \\ -10 \\ -12 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Common Mode Rejection ($\left.\mathrm{V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}\right)$	CMR	80	100	-	dB
Power Supply Rejection ($\mathrm{V}_{\mathrm{S}}=15$ to $5.0 \mathrm{~V},-15$ to -5.0 V)	PSR	80	115	-	dB
Power Supply Current ($\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, Both Amplifiers)	ID	-	4.0	8.0	mA

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted).

Characteristics	Symbol	Min	Typ	Max	Unit
Slew Rate ($\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}$ to $\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1.0\right)$	SR	5.0	7.0	-	$\mathrm{V} / \mu \mathrm{s}$
Gain Bandwidth Product ($f=100 \mathrm{kHz}$)	GBW	10	15	-	MHz
Unity Gain Frequency (Open Loop)	fu	-	9.0	-	MHz
Unity Gain Phase Margin (Open Loop)	θ_{m}	-	60	-	Deg
Equivalent Input Noise Voltage ($\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$)	e_{n}	-	4.5	-	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ($f=1.0 \mathrm{kHz}$)	in_{n}	-	0.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Power Bandwidth ($\mathrm{V}_{\mathrm{O}}=27 \mathrm{~V} \mathrm{~V}_{\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{THD} \leqslant 1.0 \%$)	BWP	-	120	-	kHz
Distortion ($\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}_{\mathrm{rms}}, \mathrm{AV}^{2}=+1.0$)	THD	-	0.002	-	\%
Channel Separation ($\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz)	-	-	-120	-	dB

FIGURE 1 - MAXIMUM POWER DISSIPATION versus TEMPERATURE

FIGURE 2 - INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 3 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE

FIGURE 5 - DC VOLTAGE GAIN versus TEMPERATURE

FIGURE 7 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY

FIGURE 4 - SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 6 - DC VOLTAGE GAIN versus SUPPLY VOLTAGE

FIGURE 8 - GAIN BANDWIDTH PRODUCT versus TEMPERATURE

FIGURE 9 - GAIN BANDWIDTH PRODUCT versus SUPPLY VOLTAGE

FIGURE 11 - SLEW RATE versus SUPPLY VOLTAGE

FIGURE 13 - MAXIMUM OUTPUT VOLTAGE versus SUPPLY VOLTAGE

FIGURE 10 - SLEW RATE versus TEMPERATURE

FIGURE 12 - OUTPUT VOLTAGE versus FREQUENCY

FIGURE 14 - OUTPUT SATURATION VOLTAGE versus TEMPERATURE

FIGURE 15 - POWER SUPPLY REJECTION versus FREQUENCY

FIGURE 17 - TOTAL HARMONIC DISTORTION versus FREQUENCY

FIGURE 19 - INPUT REFERRED NOISE CURRENT versus FREQUENCY

FIGURE 16 - COMMON MODE REJECTION versus FREQUENCY

FIGURE 18 - INPUT REFERRED NOISE VOLTAGE versus FREQUENCY

FIGURE 20 - INPUT REFERRED NOISE VOLTAGE versus SOURCE RESISTANCE

FIGURE 21 - INVERTING AMPLIFIER

t, TIME $(2.0 \mu \mathrm{~s} / \mathrm{DIV}$

FIGURE 22 - NON-INVERTING AMPLIFIER SLEW RATE

t , TIME ($2.0 \mu \mathrm{~s}$: DIV)

FIGURE 23 - NON-INVERTING AMPLIFIER OVERSHOOT

t , TIME (200 ns DIV)

DUAL DIFFERENTIAL VOLTAGE COMPARATOR

...designed for use in level detection, low-level sensing, and memory applications.

- Two Separate Outputs
- Strobe Capability
- High Output Sink Current
2.8 mA Minimum (Each Comparator) for MC1514
1.6 mA Minimum (Each Comparator) for MC1414
- Differential Input Characteristics

Input Offset Voltage $=1.0 \mathrm{mV}$ for MC1514
$=1.5 \mathrm{mV}$ for MC1414
Offset Voltage Drift $=3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for MC1514
$=5.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for MC1414

- Short Propagation Delay Time - 40 ns Typical
- Output Compatible with All Saturating Logic Forms $\mathrm{V}_{\mathrm{O}}=+3.2 \mathrm{~V}$ to -0.5 V Typical

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	V_{CC}	+14	Vdc
	V_{EE}	-7.0	
Differential Mode Input Voltage Range	$\mathrm{V}_{\text {IDR }}$	± 5.0	Vdc
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}$	± 7.0	Vdc
Peak Load Current	I_{L}	10	mA
Power Dissipation (Package Limitation)	P_{D}		
Ceramic Dual In-Line Package		1000	mW
Derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
Plastic Dual In-Line Package		625	mW
Derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature MC1514		T_{A}	-55 to +125
		${ }^{\circ} \mathrm{C}$	
MC1414	to +75		
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

DUAL DIFFERENTIAL COMPARATOR

(DUAL MC1710)
SILICON MONOLITHIC INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.) (Each Comparator)

Characteristic	Symbol	MC1514			MC1414			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{VO}_{\mathrm{O}}=1.8 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}{ }^{*}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}, T_{\mathrm{A}}=\mathrm{T}_{\text {high }}{ }^{*}\right) \end{aligned}$	V_{10}	-	$\begin{aligned} & 1.0 \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & = \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	mVdc
Temperature Coefficient of Input Offset Voltage	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	3.0	-	-	5.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{VO}_{\mathrm{O}}=1.8 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}\right) \\ & \hline \end{aligned}$	Io	-	1.0	$\begin{aligned} & 3.0 \\ & 7.0 \\ & 3.0 \end{aligned}$	-	1.0	$\begin{aligned} & 5.0 \\ & 7.5 \\ & 7.5 \end{aligned}$	μ Adc
Input Bias Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.8 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}\right) \end{aligned}$	I'B	Z	$\begin{aligned} & 12 \\ & - \end{aligned}$	$\begin{aligned} & 20 \\ & 45 \\ & 20 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \\ & - \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \\ & 40 \end{aligned}$	$\mu \mathrm{Adc}$
Open Loop Voltage Gain ($T_{A}=25^{\circ} \mathrm{C}$) ($\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$)	Avol	$\begin{aligned} & 1250 \\ & 1000 \end{aligned}$	1700		$\begin{gathered} 1000 \\ 800 \end{gathered}$	1500	-	V/v
Output Resistance	R_{0}	-	200	-	-	200	-	Ohms
Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	± 5.0	-	-	± 5.0	-	-	Vdc
High Level Output Voltage $\left(V_{I D} \geqslant 5.0 \mathrm{mV}, 0 \leqslant 10 \leqslant 5.0 \mathrm{~mA}\right)$	V_{OH}	2.5	3.2	4.0	2.5	3.2	4.0	Vdc
Low Level Output Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{ID}} \geqslant-5.0 \mathrm{mV}, \mathrm{IOS}=2.8 \mathrm{~mA}\right) \\ & \left(\mathrm{V}_{\mathrm{ID}} \geqslant-5.0 \mathrm{mV}, \mathrm{IOS}=1.6 \mathrm{~mA}\right) \end{aligned}$	V OL	$\begin{gathered} -1.0 \\ - \end{gathered}$	${ }^{-0.5}$		$\overline{-1.0}$	$-$	$\overline{0}$	Vdc
$\begin{aligned} & \text { Output Sink Current } \\ & \left(V_{I D} \geqslant-5.0 \mathrm{mV}, \mathrm{~V}_{O L} \leqslant 0.4 \mathrm{~V},\right. \\ & \left.T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \end{aligned}$	los	2.8	3.4	-	1.6	2.5	-	mAdc
Input Common Mode Voltage Range $\left(\mathrm{V}_{\mathrm{EE}}=-7.0 \mathrm{Vdc}\right)$	VICR	± 5.0	-	-	± 5.0	-	-	Vdc
Common-Mode Rejection Ratio $\left(\mathrm{V}_{\mathrm{EE}}=-7.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}} \leqslant 200 \Omega\right)$	CMRR	80	100	-	70	100	-	dB
Strobe Low Level Current $\left(\mathrm{V}_{\mathrm{IL}}=0\right)$	ILL	-	-	2.5	-	-	2.5	mA
Strobe High Level Current $\left(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{Vdc}\right)$	Ith	-	-	1.0	-	-	1.0	$\mu \mathrm{A}$
Strobe Disable Voltage $\left(\mathrm{V}_{\mathrm{OL}} \leqslant 0.4 \mathrm{Vdc}\right)$	$\mathrm{V}_{\text {IL }}$	-	-	0.4	-	-	0.4	Vdc
Strobe Enable Voltage $\left(\mathrm{V}_{\mathrm{OH}} \geqslant 2.4 \mathrm{Vdc}\right)$	V_{IH}	3.5	-	6.0	3.5	-	6.0	Vdc
Propagation Delay Time (Figure 1)	$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	$-$	$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	-	ns
Strobe Response Time (Figure 2)	$\begin{aligned} & \mathrm{t}_{\mathrm{s} \mathrm{o}} \\ & \mathrm{t}_{\mathrm{sr}} \end{aligned}$	-	$\begin{array}{r} 15 \\ 6.0 \\ \hline \end{array}$	-	-	$\begin{aligned} & 15 \\ & 6.0 \\ & \hline \end{aligned}$	-	ns
Total Power Supply Current, Both Comparators $\left(V_{O} \leqslant 0\right)$	$\begin{aligned} & \mathrm{ICC} \\ & \mathrm{IEE} \\ & \hline \end{aligned}$	-	$\begin{gathered} 12.8 \\ 11 \\ \hline \end{gathered}$	$\begin{aligned} & 18 \\ & 14 \\ & \hline \end{aligned}$	-	$\begin{gathered} 12.8 \\ 11 \\ \hline \end{gathered}$	$\begin{aligned} & 18 \\ & 14 \\ & \hline \end{aligned}$	mAdc
Total Power Consumption, Both Comparators	PD	-	230	300	-	230	300	mW

${ }^{*}$ Thow $=-55^{\circ} \mathrm{C}$ for MC1514, $0^{\circ} \mathrm{C}$ for MC1414
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC1514, $+75^{\circ} \mathrm{C}$ for MC1414

FIGURE 1 - PROPAGATION DELAY TIME

FIGURE 2 - STROBE RESPONSE TIME

TYPICAL CHARACTERISTICS

(Each Comparator)

FIGURE 3 - VOLTAGE TRANSFER CHARACTERISTICS

FIGURE 5 - INPUT OFFSET CURRENT versus TEMPERATURE

FIGURE 7 - GAIN VARIATION WITH POWER SUPPLY VOLTAGE

FIGURE 4 - INPUT OFFSET VOLTAGE versus TEMPERATURE

FIGURE 6 - INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 8 - VOLTAGE GAIN versus TEMPERATURE

FIGURE 11 - RECOMMENDED SERIES RESISTANCE versus MRTL LOADS

FIGURE 10 - POWER DISSIPATION versus TEMPERATURE

FIGURE 12 - SINK CURRENT versus TEMPERATURE

FIGURE 13 - CROSSTALK \dagger

\dagger Worst case condition shown - no load.

Device	Temperature Range	Package
MC1436CD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-8
MC1436D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-8
MC1436P1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC1436CP1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC1436G	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1436U	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC1436CG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1436CU	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC1536G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1536U	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP

HIGH VOLTAGE, INTERNALLY COMPENSATED OPERATIONAL AMPLIFIER

designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Maximum Supply Voltage $- \pm 40$ Vdc (MC1536)
- Output Voltage Swing -

$$
\begin{aligned}
& \pm 30 V_{p k(\min)}\left(V_{C C}=+36 V, V_{E E}=-36 V\right)(M C 1536) \\
& \pm 22 V_{p k}(\min)\left(V_{C C}=+28 V, V_{E E}=-28 V\right)
\end{aligned}
$$

- Input Bias Current - 20 nA max (MC1536)
- Input Offset Current - 3.0 nA max (MC1536)
- Fast Slew Rate - $2.0 \mathrm{~V} / \mu \mathrm{s}$ typ
- Internally Compensated
- Offset Voltage Null Capability
- Input Over-Voltage Protection
- AVol - 500,000 typ
- Characteristics Independent of Power Supply Voltages $(\pm 5.0 \mathrm{Vdc}$ to $\pm 36 \mathrm{Vdc}$)

MC1436
 MC1436C MC1536

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	MC1536	MC1436	MC1436C	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{array}{r} +40 \\ -40 \\ \hline \end{array}$	$\begin{array}{r} +34 \\ +34 \\ \hline \end{array}$	$\begin{array}{r} +30 \\ -30 \\ \hline \end{array}$	Vdc
Input Differential Voltage Range	$V_{\text {IDR }}$	Note 3			Volts
Input Common. Mode Voltage Range	VICR	Note 3			Volts
Output Short Circuit Duration ($\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{EE}} \quad 28 \mathrm{Vdc}, \mathrm{V}_{0}=0$)	${ }^{\text {t }}$	5.0			s
Power Dissipation (Package Limitation) Derate above $T_{A}=+25^{\circ} \mathrm{C}$	P_{O}	$\begin{array}{r} 680 \\ 4.6 \\ \hline \end{array}$			$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	$0 \text { to }+70$		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150			${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{VCC}=+28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=28 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	MC1536			MC1436			MC1436C			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \text { (See Note 1) } \end{aligned}$	1/B	.	8.0	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	-	15	40 55	--	25	90	nAdc
Innut Offset Current $\begin{aligned} & \mathrm{T}_{\mathrm{A}}++25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathbf{A}}=+25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\text {high }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to }+25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	110	-	1.0	$\begin{array}{r} 3.0 \\ 4.5 \\ 7.0 \\ \hline \end{array}$	--	5.0	$\begin{aligned} & 10 \\ & 14 \\ & 14 \end{aligned}$	-	10 \qquad	25	nAdc
Input Offset Voltage $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	V_{10}	-	2.0	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	-	5.0 -	10 14	.	5.0 -	12	mVdc
Differential Input Impedance (Open-Loop, $f \leq 5.0 \mathrm{~Hz}$) Parallel Input Resistance Parallel Input Capacitance	$\begin{aligned} & \text { rp } \\ & C_{p} \end{aligned}$		10 2.0	-	-.	$\begin{array}{r} 10 \\ 2.0 \end{array}$	-	\cdots	$\begin{array}{r} 10 \\ 2.0 \end{array}$		Meg ohms pF
Common-Mode Input Impedance ($\mathrm{f} \leq 5.0 \mathrm{~Hz}$)	$z_{1 c}$	-	250	--	--	250			250	-	Meg ohms
Input Common Mode Voltage Range	$V_{\text {ICR }}$	± 24	$+25$		± 22	± 25	-	$+18$	± 20		V_{pk}
Equivalent Input Noise Voltage $\left(A_{V}=100, R_{s}=10 \mathrm{k} \text { ohms, } f=1.0 \mathrm{kHz}, B W=1.0 \mathrm{~Hz}\right)$	e_{n}		50		-	50			50	-	$n \vee /(H z) 1 / 2$
Common-Mode Rejection Ratio (dc)	CMRR	80	110		70	110	.	50	90		dB
Large Signal dc Open Loop Voltage Gain $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { ohms }\right) \quad\left\{\begin{array}{l} T_{A}=+25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{array}\right. \\ & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { ohms. } \mathrm{T}_{A}=+25^{\circ} \mathrm{C}\right) \end{aligned}$	AVOL	$\begin{gathered} 100,000 \\ 50,000 \end{gathered}$	$\begin{array}{\|c} 500,000 \\ - \\ 200,000 \\ \hline \end{array}$	\checkmark	$\begin{aligned} & 70,000 \\ & 50,000 \end{aligned}$	$\begin{aligned} & 500,000 \\ & 200,000 \\ & \hline \end{aligned}$	-	50,000	$\begin{aligned} & 500,000 \\ & 200,000 \\ & \hline \end{aligned}$		V/V
Power Bandwidth (Voltage Follower) $\left(A_{V}=1, R_{L}=5.0 \mathrm{k} \text { ohms, } \operatorname{THD} \leq 5 \%, V_{0}=40 \mathrm{~V} \cdot \mathrm{p}\right)$	BWp	-	23			23	-		23		kHz
Unity Gain Crossover Frequency (open-loop)	${ }_{\mathrm{f}}^{\mathrm{C}}$.		1.0	.	-	1.0	-		10		NiHz
Phase Margin (open-loop, unity gain)	om		50			50	\cdots		50		degrees
Gaın Margin	A_{M}		18			18			18		dB
Slew Rate (Unity Gain)	SR	\checkmark	2.0	-	-	2.0			2.0		V $\mu \mathrm{s}$
Output Impedance ($\mathrm{f} \leqslant 5.0 \mathrm{~Hz}$)	z_{0}		1.0			1.0	.		1.0		k ohms
Short-Circuit Output Current	'os	-	± 17			+ 17			-19		mAdc
$\begin{gathered} \text { Output Voltage Range }\left(R_{L}=5.0 \mathrm{k} \text { ohms }\right) \\ V_{C C}=+28 \mathrm{Vdc}, V_{E E}=-28 \mathrm{Vdc} \\ V_{C C}=+36 \mathrm{Vdc}, V_{E E}=-36 \mathrm{Vdc} \end{gathered}$	$\mathrm{V}_{\text {OR }}$	$\begin{aligned} & +22 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & +23 \\ & \pm 32 \end{aligned}$	-	± 20	± 22	-	+ 20	+ 22		$V_{p k}$
Power Supply Sensitivity (dc) $V_{E E}=$ constaht, $R_{S} \leq 10 \mathrm{k}$ ohms $\mathrm{V}_{\mathrm{CC}}{ }^{*}$ constant, $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$ ohms	$\begin{aligned} & \text { PSS + } \\ & \text { PSS- } \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$.	$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$		$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current (See Note 2)	$\begin{aligned} & \text { ICC } \\ & \text { IEE } \end{aligned}$,	$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 26 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 50 \end{aligned}$	-	$\begin{array}{r} 2.6 \\ 2.6 \\ \hline \end{array}$	$\begin{array}{r} 5.0 \\ 50 \\ \hline \end{array}$	mAdc
DC Quiescent Power Consumption $\left(v_{0}=0\right)$	${ }^{\text {P }}$ C	-	124	224		146	280		146	280	mW
Note 1: Tlow: $0^{\circ} \mathrm{C}$ for MC1436, C $-55^{\circ} \mathrm{C}$ for MC 1536 Thigh $+70^{\circ} \mathrm{C}$ for MC1436.C $+125^{\circ} \mathrm{C}$ for MC1536	Note 2. $\quad V_{C C}=V_{E E}=5.0 \mathrm{Vdc}$ to 36 Vdc for MC 1536 $V_{C C}-V_{E E}=5.0 \mathrm{Vdc}$ to 30 Vdc for MC1436 $V_{C C}-V_{E E}-5.0 \mathrm{Vdc}$ to 28 Vdc for MC 1436 C										

Note 3: Either or both input voltages must not exceed the magnitude of V_{CC} or $\mathrm{V}_{\mathrm{EE}}+3.0$ volts.

FIGURE 4 - POWER BANDWIDTH

FIGURE 6 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 5 - PEAK OUTPUT VOLTAGE SWING, versus

FIGURE 7 - OUTPUT SHORT-CIRCUIT CURRENT versus TEMPERATURE

FIGURE 8 - INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 9 - INVERTING FEEDBACK MODEL

FIGURE 11 - AUDIO AMPLIFIER

FIGURE 13 - REPRESENTATIVE CIRCUIT SCHEMATIC

Device	Temperature Range	Package
MC1437L	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC1437P	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC1537L	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP

MATCHED DUAL OPERATIONAL AMPLIFIERS

. . . designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. Ideal for chopper stabilized applications where extremely high gain is required with excellent stability

Typical Amplifier Features:

- High-Performance Open Loop Gain Characteristics AVOL $=45,000$ typical
- Low Temperature Drift $- \pm 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Large Output Voltage Swing $\pm 14 \mathrm{~V}$ typical @ $\pm 15 \mathrm{~V}$ Supply

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{array}{r} +18 \\ -18 \end{array}$	Vdc Vdc
Differential Input Voltage Range	V IDR	± 5.0	Volts
Common-Mode Input Voltage Range	$V_{\text {ICR }}$	$\pm \mathrm{V}_{\mathrm{CC}}$	Volts
Output Short Circuit Duration	${ }^{\text {t }}$ S	5.0	S
Power Dissipation (Package Limitation) Ceramic Package Derate above $T_{A}=+25^{\circ} \mathrm{C}$ Plastic Package MC1437P Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	${ }^{\text {P }}$	$\begin{aligned} & 750 \\ & 6.0 \\ & 625 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Ambient Temperature Range MC1537 MC1437	TA	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

L SUFFIX CERAMIC PACKAGE CASE 632-08

MC1437, MC1537
ELECTRICAL CHARACTERISTICS Each Amplifier ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

($\mathrm{f}=20 \mathrm{~Hz}$)	
Output Voltage Range$\begin{aligned} & \left(R_{L}=10 \mathrm{k} \Omega 2\right) \\ & \left(R_{L}=2.0 \mathrm{ks}\right) \end{aligned}$	
Input Common-Mode Voltage Range	
Common-Mode Rejection Ratio	
Input Bias Current	
$\left(I_{1 B}=\frac{I_{1}+1_{2}}{2}\right)$	$\begin{aligned} & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=T_{\text {low }}(1)\right) \end{aligned}$

(1) $T_{\text {low }}=0^{\circ} \mathrm{C}$ for MC1437
(2) $T_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC1437
$=-55^{\circ} \mathrm{C}$ for MC1537
$=+125^{\circ} \mathrm{C}$ for MC 1537
MATCHING CHARACTERISTICS

Open Loop Voltage Gain	AVOL1-AVOL2	-	± 1.0	-	-	± 1.0	-	dB	
Input Bias Current	${ }_{1 B} 1^{-1 / 182}$	-	± 0.15	-	-	± 0.15	-	$\mu \mathrm{A}$	
Input Offset Current	${ }_{101} 1^{-1} 102$	-	± 0.02	-	-	± 0.02	-	$\mu \mathrm{A}$	
Average Temperature Coefficient	$\left\|\frac{\Delta_{1} O_{1}}{\Delta T}\right\|-\left\|\frac{\\|_{102}}{\Delta T}\right\|$	-	± 0.2	-	-	± 0.2	-	$n \mathrm{n} /{ }^{\circ} \mathrm{C}$	
Input Offset Voltage	$V_{101}-V_{102}$	-	± 0.2	-	-	± 0.2	-	mV	
Average Temperature Coefficient	$\left\|\frac{\Delta V_{1 O 1}}{\Delta T}\right\| \cdot\left\|\frac{\Delta V_{1 O 2}}{\Delta T}\right\|$	-	± 0.5	-	-	± 0.5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Channel Separation $(f=10 \mathrm{kHz})$	$\frac{e_{01}}{e_{02}}$	-	90	-	-	90	-	dB	

TYPICAL OUTPUT CHARACTERISTICS

FIGURE 3 - TEST CIRCUIT
$V_{C C}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

FIGURE 4 - LARGE SIGNAL SWING versus FREQUENCY

FIGURE 6 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 5 - VOLTAGE GAIN versus FREQUENCY

FIGURE 7 - TOTAL POWER CONSUMPTION versus POWER SUPPLY VOLTAGE

TYPICAL CHARACTERISTICS (continued)

FIGURE 8 - VOLTAGE GAIN versus POWER SUPPLY VOLTAGE

FIGURE 10 - INPUT OFFSET VOLTAGE versus TEMPERATURE

FIGURE 9 - COMMON INPUT SWING versus POWER SUPPLY VOLTAGE

FIGURE 11 - OUTPUT NOISE VOLTAGE versus SOURCE RESISTANCE

FIGURE 12 - INDUCED OUTPUT SIGNAL
(CHANNEL SEPARATION) versus FREQUENCY

Induced output signal ($\mu \vee$ of induced output signal in amplifier \#2 per volt of output signal at amplifier \#1).

ORDERING INFORMATION

Device	Temperature Range	Package
MC1439G	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1439P1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC1539G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can

UNCOMPENSATED OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Low Input Offset Voltage - 3.0 mV max
- Low Input Offset Current - 60 nA max
- Large Power-Bandwidth - 20 Vp -p Output Swing at 20 kHz min
- Output Short-Circuit Protection
- Input Over-Voltage Protection
- Class AB Output for Excellent Linearity
- High Slew Rate - $34 \mathrm{~V} / \mu \mathrm{s}$ typ

MC1439 MC1539

OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{E E}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MC1539			MC1439			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current $\begin{aligned} & \left(T_{A}=+25^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=T_{\text {low }}(1)\right) \end{aligned}$	IIB		$\begin{aligned} & 0.20 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.70 \end{aligned}$		$\begin{aligned} & 0.20 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\mu \mathrm{A}$
Input Offset Current $\begin{aligned} & \left(T_{A}=T_{\text {low }}\right) \\ & \left(T_{A}=+25^{\circ} C\right) \\ & \left(T_{A}=T_{\text {high }}(1)\right) \end{aligned}$	$\|110\|$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	- 20 -	$\begin{aligned} & 75 \\ & 60 \\ & 75 \end{aligned}$		- 20 -	$\begin{aligned} & 150 \\ & 100 \\ & 150 \end{aligned}$	nA
Input Offset Voltage $\begin{aligned} & \left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}, \mathrm{T}_{\text {high }}\right) \end{aligned}$	$\left\|V_{10}\right\|$		1.0 -	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	${ }_{-}^{-}$	2.0	7.5	mV
Average Temperature Coefficient of Input Offset Voltage ($T_{A}=T_{\text {low }}$ to $T_{\text {high }}$) $\begin{aligned} & \left(R_{S}=50 \Omega\right) \\ & \left(R_{S} \leq 10 \mathrm{k} \Omega\right) \end{aligned}$	$\left\|\mathrm{TCV}_{10}\right\|$		$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	-		$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Impedance $(f=20 \mathrm{~Hz})$	$z_{\text {in }}$	150	300	-	100	300	-	ks
Input Common-Mode Voltage Range	$V_{\text {ICR }}$	± 11	+12	-	± 11	± 12	--	$V_{\text {pk }}$
$\begin{aligned} & \text { Equivalent Input Noise Voltage } \\ & \left(R_{S}=10 \mathrm{ks}, \text {, Noise Bandwidth }=1.0 \mathrm{~Hz},\right. \\ & f=1.0 \mathrm{kHz}) \end{aligned}$	e_{n}	-	30	-	-	30		$n \vee /(H z)^{1 / 2}$
Common-Mode Rejection Ratıo $(f=1.0 \mathrm{kHz})$	CMRR	80	110	-	80	110		dB
$\begin{gathered} \text { Open-Loop Voltage Gain }\left(V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\right. \\ \left.10 \mathrm{k} \Omega, \mathrm{R}_{5}=\infty\right) \quad\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { to } T_{\text {high }}\right) \\ \left(\mathrm{T}_{A}=T_{\text {low }}\right) \end{gathered}$	AVOL	$\begin{aligned} & 50,000 \\ & 25,000 \end{aligned}$	$\begin{aligned} & 120,000 \\ & 100,000 \end{aligned}$		$\begin{aligned} & 15,000 \\ & 15,000 \end{aligned}$	$\begin{aligned} & 100,000 \\ & 100,000 \end{aligned}$		-
$\begin{aligned} & \text { Power Bandwidth }\left(A_{V}=1, T H D \leq 5 \%,\right. \\ & \left.V_{O}=20 \mathrm{Vp}-\mathrm{p}\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega\right) \\ & \left(R_{L}=1.0 \mathrm{k} \Omega, R_{5}=10 \mathrm{k}\right) \end{aligned}$	PBW	20	50	--	10	50	\cdots	kHz
Step Response		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & \cdots \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$	130 190 6.0 80 100 14 60 100 34 120 80 6.25 160 80 4.2			$\begin{gathered} 130 \\ 190 \\ 6.0 \\ 80 \\ 100 \\ 14 \\ 60 \\ 100 \\ 34 \\ 120 \\ 80 \\ 6.25 \\ 160 \\ 80 \\ 4.2 \end{gathered}$		$\begin{gathered} \mathrm{ns} \\ \mathrm{~ns} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
Output Impedance $(f=20 \mathrm{~Hz})$	z_{0}	-	4.0	--	-	4.0	\cdots	ks
Output Voltage Swing $\begin{aligned} & \left(R_{L}=2.0 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}\right) \\ & \left(\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}\right) \end{aligned}$	V_{O}	± 10	± 13	$-$	± 10	± 13	--	V_{pk}
Positive Supply Rejection Ratio (V_{EE} constant, $\mathrm{R}_{5}=\infty$)	PSRR+	-	50	150	--	50	200	$\mu \mathrm{V} / \mathrm{V}$
Negative Supply Rejection Ratio $\left(V_{\mathrm{CC}}\right.$ constant, $\left.\mathrm{R}_{5}=\infty\right)$	PSRR-	-	50	150	-	50	200	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current $\left(V_{O}=0\right)$	$\begin{aligned} & \text { ICC } \\ & { }^{\prime} \mathrm{EE} \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	-	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 6.7 \end{aligned}$	mAdc

[^4]MOTOROLA LINEAR/INTERFACE DEVICES

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +18 \\ & +18 \end{aligned}$	Vdc
Differential Input Voltage Range	$V_{\text {IDR }}$	$\pm\left(V_{C C}+\left\|V_{E E}\right\|\right)$	Vdc
Common-Mode Input Voltage Range	VICR	$+\mathrm{V}_{\mathrm{CC},},-\left\|\mathrm{V}_{\mathrm{EE}}\right\|$	Vdc
Load Current	I_{L}	15	mA
Output Short-Circuit Duration	${ }^{\text {t }}$	Continuous	
Power Dissipation (Package Limitation) Metal Package $\text { Derate above } T_{A}=+25^{\circ} \mathrm{C}$ Plastic Dual In-Line Packages MC1439 Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{array}{r} 680 \\ 4.6 \\ 625 \\ 5.0 \\ \hline \end{array}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\mathrm{o}} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\mathrm{o}} \mathrm{C} \end{gathered}$
Operating Temperature Range MC 1539 MC 1439	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal Packages Plastic Packages	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$

FIGURE 4 - EQUIVALENT CIRCUIT SCHEMATIC

FIGURE 5 - EQUIV ALENT CIRCUIT

FIGURE 6 - TEST CIRCUIT

TYPICAL CHARACTERISTICS (continued)
$\left(V_{C C}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

FIGURE 9 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 11 - OUTPUT VOLTAGE SWING (to clipping) versus SUPPLY

FIGURE 8 - OPEN-LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 10 - OPEN-LOOP PHASE-SHIFT versus FREQUENCY

FIGURE 12 - CLOSED-LOOP GAIN versus FREQUENCY

MC1439, MC1539

TYPICAL CHARACTERISTICS (continued)
$\left(V_{C C}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

FIGURE 15 - $\mathbf{A}_{\text {CL }}=100$ RESPONSE versus TEMPERATURE

FIGURE 17 - SPECTRAL NOISE DENSITY

FIGURE 14 - $A_{C L}=10$ RESPONSE versus TEMPERATURE

FIGURE 16 - A CL $^{\text {= }} 1000$ RESPONSE versus TEMPERATURE

FIGURE 18 - OUTPUT NOISE versus SOURCE RESISTANCE

TYPICAL CHARACTERISTICS (continued)
$\left(V_{C C}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

FIGURE 19 - POWER DISSIPATION versus TEMPERATURE

FIGURE 21 - POWER BANDWIDTH (LARGE-SIGNAL SWING versus FREQUENCY)

FIGURE 23 - COMMON-MODE REJECTION RATIO versus FREQUENCY

FIGURE 20 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE

FIGURE 22 - COMMON-MODE INPUT VOLTAGE versus SUPPLY VOLTAGE

FIGURE 24 - COMMON-MODE REJECTION RATIO versus TEMPERATURE

FIGURE 25 - VOLTAGE-FOLLOWER PULSE RESPONSE

TYPICAL APPLICATIONS

FIGURE 26 - VOLTAGE FOLLOWER

$\left.\left.z_{0 C L}=z_{00 L}\left[\frac{1+\frac{R F}{R_{i}}}{A_{01}}\right]=4 \mathrm{k} \right\rvert\, \frac{1+0}{10^{5}}\right] \approx 0.040 \mathrm{HM}$

FIGURE 27 - DIFFERENTIAL AMPLIFIER

$e_{0}=-\left|\frac{R_{F}}{R_{1}} e_{1}+\frac{R_{F}}{R_{2}} e_{2}\right|+\left|1+\frac{R_{F}}{R_{3}}\right| e_{3}$
For $R_{3}=\frac{R_{1}, R_{2}}{R_{1}+R_{2}}$

FIGURE 28 - SUMMING AMPLIFIER

$R_{B}=$ Parallel Combination of $R_{1}, R_{2}, R_{3}, R_{F}$.

$$
e_{0}=-\left|\frac{R_{F}}{R_{1}} e_{1}+\frac{R_{F}}{R_{2}} e_{2}+\frac{R_{F}}{R_{3}} e_{3}\right|
$$

*Properly Compensated

FIGURE 29 - + 15 VOLT REGULATOR

TYPICAL APPLICATIONS (continued)

Device	Temperature Range	Package
MC1445G	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	Metal Can
MC1445L	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	Ceramic DIP
MC1545G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1545L	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP

gate controlled two channel input

 WIDEBAND AMPLIFIER. . . designed for use as a general purpose gated wideband amplifier, video switch, sense amplifier, multiplexer, modulator, FSK circuit, limiter, AGC circuit, or pulse amplifier. See Application Notes AN491 for design details.

- Large Bandwidth; 50 MHz typical
- Channel-Select Time of 20 ns typical
- Differential Inputs and Differential Output

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +12 \\ & -12 \end{aligned}$	Vdc Vdc
Input Differential Voltage Range	$V_{\text {IDR }}$	± 5.0	Volts
Load Current	${ }^{\prime} \mathrm{L}$	25	mA
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Metal Can Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 625 \\ 5.0 \\ 680 \\ 4.6 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Ambient Temperature Range MC1445 MC1545	$\mathrm{T}_{\text {A }}$	$\begin{gathered} 0 \text { to }+75 \\ -55 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}\right.$, at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, specifications apply to both input channels unless otherwise noted.)

Characteristic	Fig. No.	Symbol	MC1545			MC1445			Unit
			Min	Typ	Max	Min	Typ	Max	
Single-Ended Voltage Gain	1,12	$A_{\text {vs }}$	16	19	21	16	19.5	23	dB
Bandwidth	1,12	BW	40	50	-	-	50	-	MHz
Input Impedance $(f=50 \mathrm{kHz})$	5,14	z_{i}	4.0	10	-	3.0	10	-	k ohms
Output Impedance $(f=50 \mathrm{kHz})$	6,15	z_{0}	-	25	--	-	25	-	Ohms
Output Differential Voltage Range $\left(R_{L}=1.0 \mathrm{k} \text { ohm, } \mathrm{f}=50 \mathrm{kHz}\right)$	4,13	$\mathrm{V}_{\text {ODR }}$	1.5	2.5	-	1.5	2.5	-	Vp.p
Input Bias Current	16	${ }_{1}$ IB	-	15	25	-	15	30	$\mu \mathrm{Adc}$
Input Offset Current	16	110	--	2.0	-	-	2.0	-	$\mu \mathrm{Adc}$
Input Offset Voltage	17	V_{10}	-	1.0	5.0	-	-	7.5	mVdc
Quiescent Output dc Level	17	V_{O}	-	0.1	-	-	0.1	-	Vdc
Output dc Level Change (Gate Input Voltage Change: +5.0 V to 0 V)	17	$\Delta \mathrm{V}_{\mathrm{O}}$	-	± 15	-	-	± 15	-	mV
Common-Mode Rejection Ratio $(f=50 \mathrm{kHz})$	9,18	CMRR	-	85	-	-	85	-	dB
Input Common-Mode Voltage Range	18	$V_{\text {ICR }}$	-	± 2.5	-	-	± 2.5	-	Vp
Gate Characteristics Gate Input Voltage - Low Logic State (Note 1) Gate Input Voltage - High Logic State (Note 2)	8	$\begin{aligned} & V_{I L(G)} \\ & V_{I H(G)} \end{aligned}$	0.40	$\begin{gathered} 0.70 \\ 1.5 \\ \hline \end{gathered}$	2.2	0.2	$\begin{aligned} & 0.4 \\ & 1.3 \end{aligned}$	3.0	Vdc
$\begin{aligned} & \text { Gate Input Current - Low Logic State } \\ & \left(V_{I L}(G)=0 \mathrm{~V}\right) \end{aligned}$	18	IIL(G)	-	-	2.5	-	-	4.0	mA
Gate Input Current - High Logic State $\left(\mathrm{V}_{1 \mathrm{H}(\mathrm{G})}=+5.0 \mathrm{~V}\right)$	18	${ }^{1} \mathrm{H}(\mathrm{G})$	-	-	2.0	-	-	4.0	$\mu \mathrm{A}$
Step Response $\left(\mathrm{e}_{\mathrm{in}}=20 \mathrm{mV}\right)$	19	$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \\ & \text { t TLH } \\ & \text { t THL } \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.3 \\ & 6.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.3 \\ & 6.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	ns
$\begin{aligned} & \text { Wideband Input Noise } \\ & \quad\left(5.0 \mathrm{~Hz}-10 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=50 \text { ohms }\right) \\ & \hline \end{aligned}$	10,20	e_{n}	-	25	-	-	25	-	$\mu \mathrm{V}$ (rms)
DC Power Consumption	11,20	P_{C}	-	70	110	-	70	150	mW

Note 1. $V_{I L(G)}$ is the gate voltage which results in channel A gain of unity or less and channel B gain of 16 dB or greater.
Note 2. $\mathrm{V}_{\mathrm{IH}(\mathrm{G})}$ is the gate voltage which results in channel B gain of unity or less and channel A gain of 16 dB or greater.

FIGURE 3 - VOLTAGE GAIN
versus POWER SUPPLY VOLTAGES

FIGURE 5 - INPUT C_{P} AND Rp versus FREQUENCY (BOTH CHANNELS)

FIGURE 2 - SINGLE-ENDED VOLTAGE GAIN versus TEMPERATURE

FIGURE 4 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

RL, LOAD RESISTANCE (k OHMS)
FIGURE 6 - OUTPUT IMPEDANCE versus FREQUENCY

FIGURE 7 - CHANNEL SEPARATION versus FREQUENCY

fin, INPUT FREQUENCY (Hz)
FIGURE 9 - COMMON MODE REJECTION RATIO versus FREQUENCY

FIGURE 11 -- CIRCUIT SCHEMATIC

FIGURE 8 - GATE CHARACTERISTICS

Vg. GATE VOLTAGE (VOLTS)
FIGURE 10 - INPUT WIDEBAND NOISE versus SOURCE RESISTANCE

FIGURE 12 - SINGLE-ENDED VOLTAGE GAIN AND BANDWIDTH TEST CIRCUIT

FIGURE 15 - OUTPUT IMPEDANCE TEST CIRCUIT

FIGURE 17 - INPUT OFFSET VOLTAGE AND QUIESCENT OUTPUT LEVEL TEST CIRCUIT

FIGURE 14 - INPUT IMPEDANCE TEST CIRCUIT

FIGURE 16 - INPUT BIAS CURRENT AND INPUT OFFSET CURRENT TEST CIRCUIT

FIGURE 18 - GATE CURRENT (HIGH AND LOW). COMMON-MODE REJECTION AND COMMON-MODE INPUT RANGE TEST CIRCUIT

FIGURE 19 - PROPAGATION DELAY AND RISE AND FALL TIMES TEST CIRCUIT

FIGURE 20 - POWER DISSIPATION AND WIDEBAND INPUT NOISE TEST CIRCUIT

FIGURE 21 - LIMITING CHARACTERISTIC

ORDERING INFORMATION

Device	Temperature Range	Package
MC1454G	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1554G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can

- Low Total Harmonic Distortion - 0.4\% (Typ) @ 1 Watt
- Low Output Impedance - 0.2 Ohm
- Excellent Gain - Temperature Stability
. . designed to amplify signals to $300-\mathrm{kHz}$ with 1 -Watt delivered to a direct coupled or capacitively coupled load.

1-WATT POWER AMPLIFIERS

MC1454G, MC1554G

ELECTRICAL CHARACTERISTICS (TC $=+25^{\circ} \mathrm{C}$ unless otherwise noted)
Frequency compensation shown in Figures 6 and 7

Characteristic	Figure	$\mathbf{R}_{\mathbf{L}}$ (Ohms)	Gain Option*	Symbol	$\begin{gathered} \text { MC1554 } \\ \left(-55 \text { to }+125^{\circ} \mathrm{C}\right) \end{gathered}$			$\begin{gathered} \text { MC } 1454 \\ \left(0 \text { to }+70^{\circ} \mathrm{C}\right) \end{gathered}$			Unit
					Min	Typ	Max	Min	Typ	Max	
Output Power (for $\mathrm{e}_{\text {out }}<5.0 \%$ THD)	1	16	-	$P_{\text {out }}$	1.0	1.1	-	-	1.0	-	Watt
Power Dissipation (@ $\mathrm{P}_{\text {out }}=1.0 \mathrm{~W}$)	1	16	-	P_{D}	-	0.9	1.2	-	0.9	-	Watt
Voltage Gain	1	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & 18 \\ & 36 \end{aligned}$	A_{V}	8.0	$\begin{aligned} & 10 \\ & 18 \\ & 36 \end{aligned}$	12		$\begin{aligned} & 10 \\ & 18 \\ & 36 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	V/V
Input Impedance	1	-	10	$z_{\text {in }}$	7.0	10	-	3.0	10	-	$k \Omega$
Output Impedance	1	-	10	z_{0}	-	0.2	-	-	0.4	-	Ω
Power Bandwidth (for $\mathrm{e}_{\text {out }}<5.0 \%$ THD)	2	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 18 \\ & 36 \\ & \hline \end{aligned}$	BW	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 270 \\ & 250 \\ & 210 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 270 \\ & 250 \\ & 210 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	kHz
```Total Harmonic Distortion (for \(\mathbf{e}_{\text {in }}<0.05 \%\) THD, \(\mathbf{f}=20 \mathrm{~Hz}\) to 20 kHz ) \(\mathrm{P}_{\text {out }}=1.0\) Watt (sinewave) \(P_{\text {out }}=0.1\) Watt (sinewave)```	2	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	THD	$-$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$-$	$-$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	\%
Zero Signal Current Drain	3	$\infty$	-	10	-	11	15	-	11	20	mAdc
Output Noise Voltage	3	16	10	$\mathrm{V}_{\mathrm{n}}$	-	0.3	-	--	0.3	-	mV(rms)
Output Quiescent Voltage (Split Supply Operation)	4	16	-	$V_{0}(\mathrm{dc})$	-	$\pm 10$	$\pm 30$	-	$\pm 10$	-	$m V d c$
Positive Supply Sensitivity ( $V_{\text {EE }}$ constant)	5	$\infty$	-	$\mathrm{S}^{+}$	-	-40	-	-	-40	-	$\mathrm{mV} / \mathrm{V}$
Negative Supply Sensitivity ( $V_{\text {CC }}$ constant)	5	$\infty$	-	$\mathrm{S}^{-}$	-	-40	-	-	-40	-	mV/V

*To obtain the voltage gain characteristic desired, use the following pin connections: Voltage Gain
Pin Connection
Pins 2 and 4 open, $P$ in 5 to ac ground Pins 2 and 5 open, $P$ in 4 to ac ground Pin 2 connected to Pin 5, Pin 4 to ac ground

## Characteristic Definitions

(Linear Operation)

## FIGURE 1



FIGURE 3


FIGURE 4


FIGURE 5


MAXIMUM RATINGS ( $T_{C}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Total Power Supply Voltage	$\left\|\mathrm{V}_{\mathrm{CC}}\right\|+\left\|\mathrm{V}_{\mathrm{EE}}\right\|$	18	Vdc
Peak Load Current	lout	0.5	Ampere
Audio Output Power	$\mathrm{P}_{\text {out }}$	1.8	Watts
Power Dissipation (package limitation) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ 1 / \theta \mathrm{J}_{\mathrm{A}} \\ \mathrm{P}_{\mathrm{D}} \\ 1 / \theta \mathrm{J}_{\mathrm{C}} \\ \hline \end{gathered}$	$\begin{gathered} 600 \\ 4.8 \\ 1.8 \\ 14.4 \end{gathered}$	mW   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$   Watts   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	TA	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

## TYPICAL CONNECTIONS

FIGURE 6 - SPLIT SUPPLY OPERATION VOLTAGE GAIN $\left(A_{V}\right)=10$, f LOW $^{2} \approx 25 \mathrm{~Hz}$


FIGURE 7 - SINGLE SUPPLY OPERATION VOLTAGE GAIN $(A V)=10$, LLOW $\approx 100 \mathrm{~Hz}$


## RECOMMENDED OPERATING CONDITIONS

In order to avoid local VHF instability, the following set of rules must be adhered to

1. An R.C stabilizing network ( $0.1 \mu \mathrm{~F}$ in series with 10 ohms) should be placed directly from pin 9 to ground, as shown in Figures 6 and 7, using short leads, to eliminate local VHF instability caused by lead inductance to the load.
2. Excessive lead inductance from the $V_{C C}$ supply to pin 10 can cause high frequency instability. To prevent this, the $V_{C C} b y$-pass capacitor should be connected with short leads from the $V_{C C}$ pin to ground. If this capaci tor is remotely located a series R-C network ( $0.1 \mu \mathrm{~F}$ and 10 ohms) should be used directly from pin 10 to ground as shown in Figures 6 and 7.
3. Lead lengths from the external components to pins 7, 9, and 10 of the package should be as short as possible to insure good VHF grounding for these points.

Due to the large bandwidth of the amplifier, coupling must be avoided between the output and input leads. This can be assured by either (a) use of short leads which are well isolated, (b) narrow-banding the overall amplifier by placing a capacitor from pin 1 to ground to form a low-pass filter in com bination with the source impedance, or (c) use of a shielded input cable. In applications which require upper band-edge control the input low-pass filter is recommended.

TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS (continued)

FIGURE 10 - VOLTAGE GAIN versus TEMPERATURE


FIGURE 11 - OUTPUT VOLTAGE CHANGE



FIGURE 13 - MAXIMUM DEVICE DISSIPATION (SINE WAVE)


Device	Temperature Range	Package
MC1456G,CG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1456CP1,P1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC1556G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1556U	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP

## INTERNALLY COMPENSATED, HIGH PERFORMANCE OPERATONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Low Input Bias Current - 15 nA max
- Low Input Offset Current - 2.0 nA max
- Low Input Offset Voltage - 4.0 mV max
- Fast Slew Rate - $2.5 \mathrm{~V} / \mu \mathrm{s}$ typ
- Large Power Bandwidth - 40 kHz typ
- Low Power Consumption - 45 mW max
- Offset Voltage Null Capability
- Output Short-Circuit Protection
- Input Over-Voltage Protection


## OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT


## MC1456, MC1456C, MC1556

MAXIMUM RATINGS (TA ${ }^{\text {a }}+25^{\circ} \mathrm{C}$ unless otherwise noted)			MC1456   MC1456C	Unit
Rating	Symbol	MC1556		
Power Supply Voltage	$\mathrm{v}_{\mathrm{CC}}$ $V_{E E}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	Vdc
Differential Input Voltage Range	$V_{\text {IDR }}$	$\pm \mathrm{V}_{\mathrm{CC}}$		Volts
Common-Mode Voltage Range	$V_{\text {ICR }}$	$\pm \mathrm{V}_{\mathrm{CC}}$		Volts
Load Current	IL	20		mA
Output Short Circuit Duration	${ }^{\text {t }}$	Continuous		
Power Dissipation (Package Limitation)   Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	$\begin{array}{r} 680 \\ 4.6 \\ \hline \end{array}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{E E}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted $)$.

			MC1556			MC1456			MC1456C			
Characteristic	Fig.	Symbol	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
Input Bias Current $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=T_{\text {low }} \text { to } T_{\text {high }}(\text { See Note } 1) \end{aligned}$		${ }_{1 / 8}$		8.0 -	$\begin{aligned} & 15 \\ & 30 \end{aligned}$		15	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$-$	$15$	90   -	nAdc
Input Offset Current $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\text {high }} \\ & \mathrm{T}_{A}=\mathrm{T}_{\text {low }} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$		110	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 1.0 \\ - \\ - \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 5.0 \\ - \\ - \end{gathered}$	$\begin{aligned} & 10 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$5.0$	30   -   -	nAdc
Input Offset Voltage $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$		$\mathrm{V}_{10}$		$2.0$	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & -- \\ & - \end{aligned}$	$5.0$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$5.0$	$12$	mVdc
Differential Input Impedance (Open-Loop, $f=20 \mathrm{~Hz}$ )   Parallel Input Resistance   Parallel Input Capacitance		$\begin{aligned} & r_{p} \\ & c_{p} \end{aligned}$	--	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	Megohms pF
Common-Mode Input Impedance (f) 20 Hz )		$z_{1}$	-	250	-	-	250		--	250	-	Megohms
Common-Mode Input Voltage Range	1	$V_{\text {ICR }}$	$\pm 12$	$\pm 13$	-	+11	$\pm 12$	-	$\pm 10.5$	$\pm 12$	-	$\mathrm{V}_{\mathrm{pk}}$
Equivalent Input Noise Voltage $\left(A V=100, R_{S}=10 \mathrm{k} \text { ohms, } f=1.0 \mathrm{kHz}, B W=1.0 \mathrm{~Hz}\right)$	2	$\mathrm{e}_{\mathrm{n}}$	-	45			45	.-	-	45	$\cdots$	$n \mathrm{~V} /\left(\mathrm{Hz}_{2}\right)^{1 / 2}$
Common-Mode Rejection Ratio ( $f=100 \mathrm{~Hz}$ )	3	CMRR	80	110	-	70	110	-	-	110	-	dB
$\begin{aligned} & \text { Open-Loop Voltage Gain, }\left(\mathrm{V}_{\mathrm{O}} \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \text { ohms }\right) \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	4,5,6	AVOL	$\begin{gathered} 100,000 \\ 40,000 \end{gathered}$	200,000	-	$\begin{aligned} & 70,000 \\ & 40,000 \end{aligned}$	$\begin{gathered} 100,000 \\ - \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\left\|\begin{array}{c} 25,000 \\ - \end{array}\right\|$	100,000		V/V
Power Bandwidth $\left(A_{V}=1, R_{L}=2.0 \mathrm{k} \text { ohms, } T H D \leq 5 \%, V_{O}-20 \mathrm{Vp-p}\right)$	9	$B W_{P}$	-	40	-	-	40	-		40	-	kHz
Unity Gain Crossover Frequency (open-loop)	5	BW	-	1.0	-	-	1.0	-	-	1.0	-	MHz
Phase Margin (open-loop, unity gain)	5,7		-	70	-	-	70	-	-	70	-	degrees
Gain Margin	5,7		-	18	-	-	18	-	-	18	-	dB
Slew Rate (Unity Gain)		SR	-	2.5	-	-	2.5	-	-	2.5	-	$\mathrm{V} / \mu \mathrm{s}$
Output Impedance ( $\mathrm{f}=\mathbf{2 0 ~ H z}$ )		$z_{0}$	-	1.0	2.0	-	1.0	2.5	-	1.0	-	kohms
Short-Circuit Output Current	8	'OS	-	$-17,+9.9$	-	-	$-17,+9.9$	-	-	$-17,+9.0$	-	mAdc
Output Voltage Swing ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$ ohms)	10	$\mathrm{V}_{\text {OR }}$	$\pm 12$	$\pm 13$	-	+11	$\pm 12$	-	$\pm 10$	$\pm 12$	-	$V_{\text {pk }}$
Power Supply Rejection Ratio   $\mathrm{V}_{\mathrm{CC}}=$ constant, $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}$ ohms   $\mathrm{V}_{\mathrm{EE}}=$ constant, $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}$ ohms		PSRR+ PSRR-		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current		$\begin{aligned} & I_{C C} \\ & I_{E E} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{array}{l\|l} 3.0 \\ 3.0 \end{array}$	-	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	mAdc
DC Quiescent Power Dissipation $\left.N_{O}=0\right)$	11	$P_{\text {D }}$	-	30	45	-	40	90	-	40	120	mW

Note 1: Tlow: $0^{\circ}$ for MC1456 and MC1456C
$-55^{\circ} \mathrm{C}$ for MC1556
Thigh: $+70^{\circ} \mathrm{C}$ for MC1456 and MC1456C
$+125^{\circ} \mathrm{C}$ for MC1556

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted $)$.


FIGURE 3 - COMMON-MODE REJECTION RATIO versus FREQUENCY


FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE


FIGURE 2 - SPECTRAL NOISE DENSITY


FIGURE 4 - OPEN-LOOP VOLTAGE GAIN


FIGURE 6 - OPEN-LOOP VOLTAGE GAIN


TYPICAL CHARACTERISTICS (continued)

FIGURE 7 - OPEN-LOOP PHASE SHIFT


FIGURE 9 - POWER BANDWIDTH


FIGURE 8 - OUTPUT SHORT-CIRCUIT CURRENT versus TEMPERATURE


FIGURE 10 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


FIGURE 11 - POWER DISSIPATION versus POWER SUPPLY VOLTAGE


TYPICAL APPLICATIONS
Where values are not given for external components they must be selected by the designer to fit the requirements of the system.

FIGURE 12 - INVERTING FEEDBACK MODEL


FIGURE 13 - NONINVERTING FEEDBACK MODEL


FIGURE 14 - LOW-DRIFT SAMPLE AND HOLD


FIGURE 15 - HIGH IMPEDANCE BRIDGE AMPLIFIER


## TYPICAL APPLICATIONS (continued)

FIGURE 16 - LOGARITHMIC AMPLIFIER


FIGURE 17 - VOLTAGE OFFSET NULL CIRCUIT


Device	Temperature Range	Package
MC1458CD,D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-8
MC1458G,CG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1558G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1458CU,U	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC1558U	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP
MC1458CP1,P1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP

## (DUAL MC1741) <br> INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIERS

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	MC1458	MC 1558	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	Vdc   Vdc
Input Differential Voltage	$V_{\text {ID }}$	$\pm 30$		Volts
Input Common Mode Voltage (Note 1)	VICM	+15		Volts
Output Short Circuit Duration (Note 2)	${ }^{\text {t }}$	Continuous		
Operating Ambient Temperature Range	TA	0 to +70	55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal and Ceramic Packages Plastic Package	Tstg	$\begin{aligned} & -65 t \\ & -55 t \end{aligned}$	$\begin{aligned} & +150 \\ & +125 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Junction Temperature   Metal and Ceramic Packages   Plastic Package	TJ			${ }^{\mathrm{O}} \mathrm{C}$

Note 1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage
Note 2. Supply voltage equal to or less than 15 V .



MC1458, MC1458C, MC1558

ELECTRICAL CHARACTERISTICS - Note 1. ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted).

Characteristic	Symbol	MC1558			MC1458			MC1458C			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	$\mathrm{V}_{10}$	-	1.0	5.0	-	2.0	6.0	-	2.0	10	mV
Input Offset Current	110	-	20	200	-	20	200	-	20	300	nA
Input Bias Current	$1 / \mathrm{B}$	-	80	500	-	80	500	-	80	700	nA
Input Resistance	$\mathrm{r}_{\mathrm{i}}$	0.3	2.0	-	0.3	2.0	-	-	2.0	-	MS
Input Capacitance	$\mathrm{C}_{\mathrm{i}}$	-	1.4	-	-	1.4	-	-	1.4	-	pF
Offset Voltage Adjustment Range	VIOR	-	$\pm 15$	-	-	$\pm 15$	-	-	$\pm 15$	-	mV
Common Mode Input Voltage Range	$V_{\text {ICR }}$	$\pm 12$	$\pm 13$	-	$\pm 12$	$\pm 13$	-	$\pm 11$	$\pm 13$	-	V
Large Signal Voltage Gain $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right) \end{aligned}$	$\mathrm{A}_{v}$				20	200		$20$	$200$		$\mathrm{V} / \mathrm{mV}$
Output Resistance	$r_{0}$	-	75	-	-	75	-	-	75	-	$\Omega$
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 k\right)$	CMRR	70	90	--	70	90	-	60	90	-	dB
Supply Voltage Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	PSRR	-	30	150	-	30	150	-	30	-	$\mu \mathrm{V} / \mathrm{V}$
$\begin{gathered} \text { Output Voltage Swing } \\ \left(R_{L} \geqslant 10 \mathrm{k}\right) \\ \left(R_{L} \geqslant 2 \mathrm{k}\right) \\ \hline \end{gathered}$	$\mathrm{V}_{\mathrm{O}}$						-	$\begin{gathered} \pm 11 \\ \pm 9.0 \end{gathered}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	V
Output Short-Circuit Current	$\mathrm{I}_{\text {os }}$	-	20	-	-	20	-	-	20	-	mA
Supply Currents (Both Amplifiers)	${ }^{1}$	-	2.3	5.0	-	2.3	5.6	-	2.3	8.0	mA
Power Consumption	$\mathrm{P}_{\mathrm{C}}$	-	70	150	-	70	170	-	70	240	mW
Transient Response (Unity Gain) $\begin{array}{ll} \left(V_{1}=20 \mathrm{mV}, R_{L} \geqslant 2 \mathrm{k} \Omega, C_{L} \leqslant 100 \mathrm{pF}\right) & \text { Rise Time } \\ \left(V_{1}=20 \mathrm{mV}, R_{L} \geqslant 2 \mathrm{k} \Omega, C_{L} \leqslant 100 \mathrm{pF}\right) & \text { Overshoot } \\ \left(V_{1}=10 \mathrm{~V}, R_{L} \geqslant 2 \mathrm{ks}, C_{L} \leqslant 100 \mathrm{pF}\right) & \text { Slew Rate } \end{array}$	$\begin{gathered} \text { TTLH } \\ \text { os } \\ \text { SR } \end{gathered}$	-	$\begin{gathered} 0.3 \\ 15 \\ 0.5 \end{gathered}$	-	-	0.3 15 0.5	-	-	0.3 15 0.5	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$

ELECTRICAL CHARACTERISTICS Note $1\left(\mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}={ }^{*} \mathrm{~T}_{\text {high }}\right.$ to $T_{\text {low }}$ unless otherwise noted $)$.

Characteristic	Symbol	MC1558			MC1458			MC1458C			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right)$	$\mathrm{V}_{10}$	-	1.0	6.0	-	-	7.5	-	-	12	mV
$\begin{aligned} & \text { Input Offset Current } \\ & \qquad \begin{array}{l} \left(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right) \\ \left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \end{array} \end{aligned}$	110	-	$\begin{aligned} & 7.0 \\ & 85 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	$300$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{gathered} - \\ - \\ 400 \end{gathered}$	nA
$\begin{aligned} & \text { Input Bias Current } \\ & \qquad \begin{array}{l} \left(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right) \\ \left(\mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \end{array} \end{aligned}$	1/B	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 30 \\ 300 \end{gathered}$	$\begin{gathered} 500 \\ 1500 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$800$	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} - \\ - \\ 1000 \end{gathered}$	nA
Common Mode Input Voltage Range	VICR	$\pm 12$	$\pm 13$	-	-	-	-	-	-	-	V
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	CMRR	70	90	-	-	-	-	-	-	-	dB
Supply Voltage Rejection Ratio $\left(R_{S} \leqslant 10 k\right)$	PSRR	-	30	150	-	-	-	-	-	-	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geqslant 10 \mathrm{k}\right) \\ & \left(R_{L} \geqslant 2 \mathrm{k}\right) \\ & \hline \end{aligned}$	$\mathrm{v}_{\mathrm{O}}$	$\begin{array}{r}  \pm 12 \\ \pm 10 \\ \hline \end{array}$		-	$\begin{array}{r}  \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{array}{r}  \pm 14 \\ \pm 13 \\ \hline \end{array}$	-	$\pm 9.0$	$\begin{gathered} - \\ \pm 13 \end{gathered}$	-	V
Large Signal Voltage Gain $\begin{aligned} & \left(V_{O}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right) \end{aligned}$	$A_{v}$	25	-	-	$15$	-	-	$15$		-	$\mathrm{V} / \mathrm{mV}$
Supply Currents (Both Amplifiers) $\begin{aligned} & \left(T_{A}=125^{\circ} C\right) \\ & \left(T_{A}=-55^{\circ} C\right) \end{aligned}$	${ }^{\prime} \mathrm{D}$	-	-	$\begin{aligned} & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	-	-	-	-	-	-	mA
$\begin{array}{ll}\text { Power Consumption } & \left(T_{A}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{A}=-55^{\circ} \mathrm{C}\right)\end{array}$	${ }^{\text {P }}$ C	-	-	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	-	-	-	-	-	-	mW

*Thigh $=125^{\circ} \mathrm{C}$ for MC1558 and $70^{\circ} \mathrm{C}$ for MC1458, MC1458C
Tlow $=-55^{\circ} \mathrm{C}$ for MC1558 and $0^{\circ} \mathrm{C}$ for MC1458, MC1458C
Note 1. Input pins of an unused amplifier must be grounded for split supply operation or biased at least 3.0 V above $\mathrm{V}_{\mathrm{EE}}$ for single supply operation.

## MC1458, MC1458C, MC1558

FIGURE 1 - BURST NOISE versus SOURCE RESISTANCE
FIGURE 2 - RMS NOISE versus SOURCE RESISTANCE


FIGURE 3 - OUTPUT NOISE versus SOURCE RESISTANCE



RS, SOURCE RESISTANCE (OHMS)

FIGURE 4 - SPECTRAL NOISE DENSITY


FIGURE 5 - BURST NOISE TEST CIRCUIT


Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 seconds and the $20 \mu \mathrm{~V}$ peak limit refers to the operational amplifier input thus eliminating errors in the closed-loop gain factor of the operational amplifier under test.

TYPICAL CHARACTERISTICS
$\left(V_{C C}=+15 \mathrm{Vdc}, \mathrm{V}_{E E}=-15 \mathrm{Vdc}, T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted) .
FIGURE 6 - POWER BANDWIDTH


FIGURE 8 - POSITIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


FIGURE 10 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE (Single Supply Operation)


FIGURE 9 - NEGATIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE



FIGURE 11 - SINGLE SUPPLY INVERTING AMPLIFIER


FIGURE 12 - NONINVERTING PULSE RESPONSE


FIGURE 13 - TRANSIENT RESPONSE TEST CIRCUIT


FIGURE 14 - OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE


Device	Temperature Range	Package
MC1458SD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-8
MC1458SG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1458SP1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC1458SU	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC1558SG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1558SU	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP



The MC1558S is functionally equivalent, pin compatible, and possesses the same ease of use as the popular MC1558 circuit, yet offers 20 times higher slew rate and power bandwidth. This device is ideally suited for D/A converters due to its fast settling time and high slew rate.

- High Slew Rate - $10 \mathrm{~V} / \mu$ s Guaranteed Minimum (for inverting unity gain only)
- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch-Up


## TYPICAL APPLICATION OUTPUT CURRENT TO

 VOLTAGE TRANSFORMATION FOR A D-TO-A CONVERTER

Settling time to within $\mathbf{1 / 2}$ LSB ( $\pm 19.5 \mathrm{mV}$ ) is approxi-
mately $4.0 \mu_{\mathrm{s}}$ from the time that all bits are switched.

- The value of $C$ may be selected to minimize overshoot and ringing ( $C \approx 68 \mathrm{pF}$ ).

Theoretical $V_{O}$
$V_{O}=\frac{V_{\text {ref }}}{R_{1}}\left(R_{O}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right]$
Adjust $\mathrm{V}_{\text {ref }}, \mathrm{R} 1$ or $\mathrm{R}_{\mathrm{O}}$ so that $\mathrm{V}_{\mathrm{O}}$ with all digital inputs at high level is equal to 9.961 volts.

$$
\begin{aligned}
V_{\text {ref }} & =2.0 \mathrm{Vdc} \\
R 1 & =R 2 \cong 1.0 \mathrm{k} \Omega \\
R_{\mathrm{O}} & =5.0 \mathrm{k} \Omega
\end{aligned}
$$

$V_{O}=\frac{2 V}{1 k}(5 k)\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right]=10 v\left[\frac{255}{256}\right]=9.961 v$

DUAL
OPERATIONAL AMPLIFIERS

## SILICON MONOLITHIC

 INTEGRATED CIRCUIT

$1 / 2$ REPRESENTATIVE CIRCUIT SCHEMATIC


MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	MC1558S	MC1458S	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	Vdc
Input Differential Voltage Range (1)	$V_{\text {IDR }}$	$\pm 30$		Volts
Input Common-Mode Voltage Range (2)	VICR	$\pm 15$		Volts
Output Short Circuit Duration	${ }_{\text {t }}$ S	Continuous		
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Ceramic and Metal Package      Plastic Package	TJ	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	$\begin{aligned} & { }^{{ }^{\circ} \mathrm{C}} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

Note 1. For supply voltages less than $\pm 15 \mathrm{Vdc}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2. Supply voltage equal to or less than 15 Vdc .

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	MC1558S			MC1458S			Unit
		Min	Typ	Max	Min	Typ	Max	
Power Bandwidth (See Figure 3) $A_{V}=1, R_{L}=2.0 \mathrm{k} \Omega, T H D=5 \%, V_{O}=20 \mathrm{~V}(p-p)$	$\mathrm{BW}_{\mathrm{p}}$	150	200		150	200	-	$\mathrm{kHz}^{\text {l }}$
Large-Signal Transient Response   Slew Rate (Figures 10 and 11) $\begin{aligned} & V(-) \text { to } V(+1) \\ & V(+) \text { to } V(-) \end{aligned}$   Settling Time (Figures 10 and 11) (to within $0.1^{\circ}{ }_{0}$ )	SR   ${ }^{\text {tsetig }}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 20 \\ 12 \\ 30 \end{array}$	-	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 20 \\ 12 \\ 3.0 \end{array}$		$V^{\prime} / \mu \mathrm{s}$   $\mu \mathrm{s}$
Small Signal Transient Response   (Gain 1, $E_{\text {in }} 20 \mathrm{mV}$, see Figuras 7 and 8 )   Rise Time   Fall Time   Propagation Delay Time   Overshoot	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{TLH} \\ & { }^{\mathrm{t}} \mathrm{THL} \\ & { }^{\mathrm{T} P L H} \mathrm{H}, \mathrm{tPHL} \\ & \mathrm{OS} \end{aligned}$	-	$\begin{gathered} 0.25 \\ 0.25 \\ 0.25 \\ 20 \end{gathered}$		-	$\begin{gathered} 0.25 \\ 0.25 \\ 0.25 \\ 20 \end{gathered}$	--	$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \% \end{gathered}$
Short-Circuit Output Currents	'os	$\pm 10$		$\pm 45$	$\pm 10$	-	$\pm 45$	mA
```Open-Loop Voltage Gatn (R R 2.0 ksz) (See Figure 4) V```	AVOL	50,000	200,000	-	20,000	100,000	-	-
Output Impedance (f 20 Hz)	z_{0}	--	75	-	--	75	-	Ω
Input Impedance (f 20 Hz)	z_{1}	03	1.0	-	0.3	1.0	-	Ms2
$\begin{aligned} & \text { Output Valtage Swing } \\ & R_{L} 10 \mathrm{ks} \text { ? } \\ & R_{L} \quad 20 \mathrm{ks} \text { ? } \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	\because	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	--	V_{pk}
Input Common-Mode Voltage Swing	VICR	± 12	± 13		± 12	± 13	-	$V_{p k}$
Common-Mode Rejection Ratio (f 20 Hz \	CMRR	70	90	-	70	90	-	dB
Input Bias Current (See Figure 2)	${ }_{1}^{\prime} \mathrm{B}$.	200	500	--	200	500	nA
Input Off set Current	$\|110\|$	--	30	200	-	30	200	nA
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{ks}$)	$\left\|\mathrm{V}_{10}\right\|$		1.0	5.0	--	2.0	6.0	mV
DC Power Consumption (See Figure 9) (Power Supply $\pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$)	${ }^{\text {P }} \mathrm{C}$	-	70	150	-	70	170	mW
Positive Voltage Supply Sensitivity (VEE constant)	PSS+	.	2.0	150	-	2.0	150	$\mu \mathrm{V} / \mathrm{V}$
Negative Voltage Supply Sensitivity ($V_{\text {CC }}$ constant)	PSS-	-	10	150	-	10	150	$\mu \mathrm{V} / \mathrm{V}$

-•Plastic package offered in limited temperature range device only
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$ for MC 1558 S and $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ for MC1458S, unless otherwise noted.)

Characteristic	Symbol	MC1558S			MC1458S			Unit
		Min	Typ	Max	Min	Typ	Max	
Open Loop Voltage Gain $V_{0}= \pm 10 \mathrm{~V}$	A VOL	25,000	-	-	15,000	-	-	V/V
$\begin{aligned} & \text { Output Voltage Swing } \\ & R_{L}=10 \mathrm{ks} \\ & R_{L}=2 \mathrm{ks} \\ & \hline \end{aligned}$	V_{O}	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	--	-	$\begin{array}{r} +12 \\ +10 \\ \hline \end{array}$		-	V_{pk}
Input Common-Mode Voltage Range	$V_{\text {ICR }}$	+12	-	-	-	-	-	$V_{p k}$
Commo.l-Mode Rejection Ratio ($\mathrm{f}=20 \mathrm{~Hz}$)	CMRR	70	-	-	-	-	-	dB
Input Bias Current $\begin{aligned} & T_{A}=125^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	${ }_{1 / B}$		$\begin{aligned} & 200 \\ & 500 \end{aligned}$	$\begin{gathered} 500 \\ 1500 \end{gathered}$			$\begin{gathered} - \\ - \\ 800 \end{gathered}$	nA
$\begin{aligned} & \text { Input Offset Current } \\ & T_{A}=125^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	110	--	30	$\begin{aligned} & 200 \\ & 500 \end{aligned}$			$\begin{gathered} - \\ - \\ 300 \end{gathered}$	nA
Input Offset Voltage $R_{S}=10 \mathrm{k} \Omega 2$	V_{10}	-	-	6.0	-	-	7.5	mV
DC Power Consumption $v_{O}=0 \mathrm{~V}$	${ }^{\text {P }}$ C	-	-	200	-	-	-	mW
Positive Power Supply Sensitivity $V_{E E}=-15 \mathrm{~V}$	${ }^{\text {P SS }}+$	-	-	150	-	-	-	$\mu \mathrm{V} / \mathrm{V}$
Negative Power Supply Sensitivity $V_{C C}=15 \mathrm{~V}$	${ }^{\text {P SS- }}$	-	-	150	-	-	-	$\mu \mathrm{V} / \mathrm{V}$

MC1458S, MC1558S

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 1 - OFFSET ADJUST CIRCUIT

FIGURE 3 - POWER BANDWIDTH - NONDISTORTED OUTPUT VOLTAGE VERSUS FPEOUENCY

FIGURE 2 - INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 4 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 5 - OUTPUT NOISE versus SOURCE RESISTANCE

RS, SOURCE RESISTANCE (OHMS)

TYPICAL CHARACTERISTICS

$\left(V_{C C}=+15 \mathrm{Vdc}, \mathrm{V}_{E E}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 6 - SMALL-SIGNAL TRANSIENT RESPONSE DEFINITIONS

FIGURE 8 - POWER CONSUMPTION versus POWER SUPPLY VOLTAGES

FIGURE 7 - SMALL-SIGNAL TRANSIENT RESPONSE

FIGURE 9 - LARGE-SIGNAL TRANSIENT WAVEFORMS

FIGURE 10 - SLEW RATE AND SETTLING TIME TEST CIRCUIT*

SETTLING TIME

In order to properly utilize the high slew rate and fast settling time of an operational amplifier, a number of system considerations must be observed. Capacitance at the summing node and at the amplifier output must be minimal and circuit board layout should be consistent with common high-frequency considerations. Both power supply connections should be adequately bypassed as close as possible to the device pins. In bypassing, both low and high-frequency components should be considered to avoid the possibility of excessive ringing. In order to achieve optimum damping, the selection of a capacitor in parallel with the feedback resistor may be necessary. A value too small could result in excessive ringing while a value too large will degrade slew rate and settling time.

SETTLING TIME MEASUREMENT

In order to accurately measure the settling time of an operational amplifier, it is suggested that the "false" summing junction approach be taken as shown in Figure 11. This is necessary since it is difficult to determine when the waveform at the output of the operationai amplifier settles to within 0.1% of it's final value. Because the output and input voltages are effectively subtracted from each other at the amplifier inverting input, this seems like an ideal node for the measurement. However, the probe capacitance at this critical node can greatly affect the accuracy of the actual measurement.

The solution to these problems is the creation of a second or "false" summing node. The addition of two diodes at this node clamps the error voltage to limit the voltage excursion to the oscilloscope. Because of the voltage divider effect, only one-half of the actual error appears at this node. For extremely critical measurements, the capacitance of the diodes and the oscilloscope, and the settling time of the oscilloscope must be considered. The expression

$$
t_{\text {setlg }}=\sqrt{x^{2}+y^{2}+z^{2}}
$$

can be used to determine the actual amplifier settling time, where
$\mathrm{t}_{\text {set }} \mathrm{lg}=$ observed settling time
$x=$ amplifier settling time (to be determined)
$y=$ false summing junction settling time
$z=$ oscilloscope settling time
It should be remembered that to settle within $\pm 0.1 \%$ requires 7RC time constants.

The $\pm 0.1 \%$ factor was chosen for the MC1558S settling time as it is compatible with the $\pm 1 / 2$ LSB accuracy of the MC1508L-8 digital-to-analog converter. This D-to-A converter features $\pm 0.19 \%$ maximum error.

TYPICAL APPLICATION

FIGURE 13 - 12.5-WATT WIDEBAND POWER AMPLIFIER

FIGURE 11 - WAVEFORM AT FALSE SUMMING NODE
(Inverting Mode)

FIGURE 12 - EXPANDED WAVEFORM AT FALSE SUMMING NODE

RF/IF/AUDIO AMPLIFIER

... an integrated circuit featuring wide-range AGC for use in RF/ IF amplifiers and audio amplifiers over the temperature range, -40 to $+85^{\circ} \mathrm{C}$. See Motorola Application Note AN513 for design details.

- High Power Gain - 50 dB Typ at 10 MHz

45 dB Typ at 60 MHz 35 dB Typ at 100 MHz

- Wide-Range AGC - 60 dB Min, dc to 60 MHz
- 6.0 to 15 V Operation, Single-Polarity Power Supply

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)			
Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+18	Vdc
Output Supply	V_{0}	+ 18	Vdc
AGC Supply	$\mathrm{V}_{2(\mathrm{AGC})}$	V_{CC}	Vdc
Differential Input Voltage	V_{1}	5.0	Vdc
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	TJ	+150	${ }^{\circ} \mathrm{C}$

Pins 3 and 7 should both be connected to circuit ground.

WIDEBAND AMPLIFIER WITH AGC

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 626-05

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{f}=60 \mathrm{MHz}, \mathrm{BW}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Power Supply Current Drain	-	$I_{C C}$	-	-	17	mA
AGC Range (AGC) 5.0 V Min to 7.0 V Max	19	M $_{\mathrm{AGC}}$	-60	-	-	dB
Output Stage Current (Sum of Pins 1 and 8)	-	I_{O}	4.0	-	7.5	mA
Single Ended Power Gain RS $=\mathrm{R}_{\mathrm{L}}=50$ Ohms	19	Gp	40	-	-	dB
Noise Figure RS $=50$ Ohms	19	NF	-	6.0	-	dB
Power Dissipation	-	P_{D}	-	168	204	mW

TYPICAL CHARACTERISTICS
$\left(V_{2}(A G C)=0, V_{C C}=12 \mathrm{Vdc}, T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 3 - DYNAMIC RANGE: OUTPUT VOLTAGE versus INPUT VOLTAGE (Video Amplifier, See Figure 21)

FIGURE 2 - VOLTAGE GAIN versus FREQUENCY (Video Amplifier, See Figure 21)

FIGURE 4 - VOLTAGE GAIN versus FREQUENCY (Video Amplifier, See Figure 21)

FIGURE 5 - VOLTAGE GAIN AND SUPPLY CURRENT versus SUPPLY VOLTAGE (Video Amplifier, See Figure 21)

FIGURE 7 - TYPICAL GAIN REDUCTION versus AGC CURRENT

FIGURE 9 - POWER GAIN versus SUPPLY VOLTAGE (See Test Circuit, Figure 19)

FIGURE 6 - TYPICAL GAIN REDUCTION versus AGC VOLTAGE

FIGURE 8 - FIXED TUNED POWER GAIN REDUCTION versus TEMPERATURE (See Test Circuit, Figure 19)

FIGURE 10 - NOISE FIGURE versus FREQUENCY

FIGURE 11 - NOISE FIGURE versus SOURCE RESISTANCE

FIGURE 12 - NOISE FIGURE versus AGC GAIN REDUCTION

FIGURE 13 - HARMONIC DISTORTION versus AGC GAIN REDUCTION FOR AM GARRIER (For Test Circuit, See Figure 14)

FIGURE 14 - 10.7 MHz AMPLIFIER
Gain $\simeq 55 \mathrm{~dB}, \mathrm{BW}=100 \mathrm{kHz}$

L1 $=24$ Turns, No. 22 AWG Wire on a T12-44 Micro Metal Toroid Core ($-\mathbf{1 2 4} \mathrm{pF}$)
L2 $=20$ Turns, No. 22 AWG Wire on a T12-44 Micro Metal
Toroid Core (-100 pF)

MC1490P

TYPICAL CHARACTERISTICS (continued)

FIGURE $15-\mathbf{S}_{11}$ AND \mathbf{S}_{22}, INPUT AND OUTPUT REFLECTION COEFFICIENT

FIGURE 16 - \mathbf{S}_{11} AND \mathbf{S}_{22}, INPUT AND OUTPUT REFLECTION COEFFICIENT

FIGURE 17 - $\mathbf{S}_{\mathbf{2 1}}$, FORWARD TRANSMISSION COEFFICIENT (GAIN)

FIGURE 18 - \mathbf{S}_{12}, REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)

TYPICAL APPLICATIONS

FIGURE 19 - $\mathbf{6 0} \mathbf{~ M H z ~ P O W E R ~ G A I N ~ T E S T ~ C I R C U I T ~}$

L1 $=7$ Turns, \#20 AWG Wire, 5/16" Dia., $\quad \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3=(1-30) \mathrm{pF}$ 5/8" Long
$\mathrm{L} 2=\begin{aligned} & 6 \text { Turns, \#14 AWG Wire, } 9 / 16^{\prime \prime} \text { Dia., } \\ & \\ & 3 / 4^{\prime \prime} \text { Long }\end{aligned}$ 3/4" Long

FIGURE 20 - PROCEDURE FOR SETUP USING FIGURE 19

Test	$e_{\text {in }}$	$\mathrm{V}_{\text {2(AGC) }}$	R $_{\text {AGC }}(\mathrm{k} \Omega)$
MAGC	$2.23 \mathrm{mV}(-40 \mathrm{dBm})$	$5-7 \mathrm{~V}$	0
G_{p}	$1.0 \mathrm{mV}(-47 \mathrm{dBm})$	$\leqslant 5.0 \mathrm{~V}$	5.6
NF	$1.0 \mathrm{mV}(-47 \mathrm{dBm})$	$\leqslant 5.0 \mathrm{~V}$	5.6

FIGURE 21 - VIDEO AMPLIFIER

FIGURE 22 - $\mathbf{3 0} \mathbf{~ M H z}$ AMPLIFIER
(Power Gain $=50 \mathrm{~dB}, \mathrm{BW} \approx 1.0 \mathrm{MHz}$)

$\mathrm{L} 1=12$ Turns \#22 AWG Wire on a Toroid Core, (T37-6 Micro Metal or Equiv)
T1: Primary $=17$ Turns \#20 AWG Wire on a Toroid Core, (T44-6)
Secondary $=2$ Turns \#20 AWG Wire

FIGURE $\mathbf{2 3} \mathbf{- 1 0 0} \mathbf{~ M H z}$ MIXER

L1 = 5 Turns, \#16 AWG Wire, $1 / 4^{\prime \prime}$ ID,
5/8" Long
$L 2=16$ Turns, \#20 AWG Wire on a Toroid Core, (T44-6)

(A) MOTOROLA

MC1590G

RFIIF/AUDIO AMPLIFIER

. . . an integrated circuit featuring wide-range AGC for use in RF/IF amplifiers and audio amplifiers over the temperature range, -55 to $+125^{\circ} \mathrm{C}$. See Motorola Application Note AN513 for design details.

- High Power Gain - 50 dB Typ at 10 MHz 45 dB Typ at 60 MHz 35 dB Typ at 100 MHz
- Wide-Range AGC - 60 dB min , dc to 60 MHz
- Low Reverse Transfer Admittance - $<10 \mu \mathrm{mhos}$ Typ at 60 MHz
- 6.0 to 15 -Volt Operation, Single-Polarity Power Supply

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol*	Value	Unit
Power Supply Voltage	V_{CC}	+18	$V \mathrm{dc}$
Output Supply	V_{O}	+18	Vdc
AGC Supply	$V_{2}(\mathrm{AGC})$	V_{CC}	Vdc
Differential input Voltage	V_{1}	5.0	Vdc
Operating Temperature Range	${ }^{T}$ A	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$T_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	+175	${ }^{\circ} \mathrm{C}$

WIDEBAND AMPLIFIER WITH AGC

SILICON MONOLITHIC integrated circuit

ADMITTANCE PARAMETERS $\left(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}\right.$,$\left.T_{A}=+25^{\circ} \mathrm{C}\right)$				
Parameter	Symbol	$\begin{gathered} f=\mathbf{M H z} \\ \text { Typ } \end{gathered}$		Unit
		30	60	
Single-Ended Input Admittance	$\begin{array}{r} g_{11} \\ \mathbf{b}_{11} \\ \hline \end{array}$	$\begin{aligned} & \hline 0.4 \\ & 1.2 \end{aligned}$	$\begin{array}{\|r\|} \hline 0.6 \\ -3.0 \\ \hline \end{array}$	mmhos
Single-Ended Outpui Admittance	$\begin{array}{r} 922 \\ \mathrm{~b}_{22} \\ \hline \end{array}$	$\begin{aligned} & 0.05 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 1.0 \end{aligned}$	mmho
Forward Transfer Admittance (Pin 1 to Pin 5)	$\begin{gathered} \mathrm{Y}_{21} \\ \theta_{21} \\ \text { (Polar) } \\ \hline \end{gathered}$	$\begin{array}{r} 175 \\ -30 \end{array}$	$\begin{array}{\|c\|} \hline 150 \\ -105 \end{array}$	mmhos degrees
Reverse Transfer Admittance*	$\begin{aligned} & \mathrm{g} 12 \\ & \mathrm{~b}_{12} \end{aligned}$	$\begin{gathered} -0 \\ -5.0 \end{gathered}$	$\begin{gathered} \hline-0 \\ -10 \end{gathered}$	$\mu \mathrm{mhos}$

*The value of Reverse Transfer Admittance includes the feedback admittance of the test circuit used in the measurement. The total feedback capacitance (including test circuit) is 0.025 pF and is a more practical value for design calculations than the internal feedback of the device alone. (See Figure 10.)

SCATTERING PARAMETERS ($\mathbf{V C C}_{\mathbf{C}}=+12 \mathrm{Vdc}$,$\left.T_{A}=+25^{\circ} \mathrm{C}, Z_{0}=50 \Omega\right)$				
Parameter	Symbol	$\begin{gathered} f=\mathrm{MHz}^{\prime} \mathrm{Typ} \\ \hline \end{gathered}$		Unit
		30	60	
Input Reflection Coefficient	$\begin{aligned} & S_{11} \\ & \theta_{11} \end{aligned}$	$\begin{aligned} & 0.95 \\ & -7.3 \end{aligned}$	$\begin{gathered} 0.93 \\ -16 \end{gathered}$	degrees
Output Reflection Coefficient	$\begin{aligned} & \mathrm{S}_{22} \\ & \theta_{22} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.99 \\ & -3.0 \end{aligned}$	$\begin{array}{r} 0.98 \\ -5.5 \end{array}$	degrees
Forward Transmission Coefficient	$\begin{aligned} & \mathrm{S}_{21} \\ & \theta_{21} \end{aligned}$	$\begin{gathered} 16.8 \\ 128 \end{gathered}$	$\begin{aligned} & 14.7 \\ & 64.3 \end{aligned}$	degrees
$\begin{aligned} & \text { Reverse } \\ & \text { Transmission } \\ & \text { Coefficient } \end{aligned}$	$\begin{aligned} & \mathrm{S}_{12} \\ & \theta_{12} \end{aligned}$	$\left\|\begin{array}{c} 0.00048 \\ 84.9 \end{array}\right\|$	$\begin{gathered} 0.00092 \\ 79.2 \end{gathered}$	degrees

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+12 \mathrm{Vdc}, \mathrm{f}=60 \mathrm{MHz}, \mathrm{BW}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Fig.	Symbol	Min	Typ	Max	Unit
AGC Range $\begin{aligned} & \left(\mathrm{V}_{2}(\mathrm{AGC})=5.0 \mathrm{~V} \text { to } 7.0 \mathrm{~V}\right) \\ & \left.\mathrm{V}_{2(\mathrm{AGC})}=5.0 \mathrm{~V} \text { to } 7.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	24	MAGC	$\begin{aligned} & 58 \\ & 60 \end{aligned}$	$\overline{68}$	-	dB
Single-Ended Power Gain $\quad\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	24	G_{p}	$\begin{aligned} & 37 \\ & 40 \end{aligned}$	45	-	dB
Noise Figure ($\mathbf{R}_{\mathbf{S}}$ optimized for best NF) $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	24	NF	-	6.0	7.0	dB
Output Stage Current (Sum of Pins 5 and 6) $\left(T_{A}=25^{\circ} \mathrm{C}\right)$	32	10	$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\overline{5.6}$	$\begin{aligned} & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$	mA
Output Current Matching (Magnitude of Difference of Output Currents) $\left(I_{5}-I_{6}\right)$ $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	32	Δ_{0}	-	0.7	-	mA
Power Supply Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	32	${ }^{\prime} \mathrm{CC}$	-	$\overline{14}$	$\begin{aligned} & 20 \\ & 17 \end{aligned}$	mA
Power Consumption ($12 \times \mathrm{I} \mathrm{CC}$) $\begin{aligned} & \left(V_{1}=0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	-	${ }^{\text {PC }}$	-	$\overline{168}$	$\begin{aligned} & 240 \\ & 204 \end{aligned}$	mW

FIGURE 1 - UNNEUTRALIZED POWER GAIN versus FREQUENCY (Tuned Amplifier, See Figure 24)

FIGURE 2 - VOLTAGE GAIN versus FREQUENCY (Video Amplifier, See Figure 26)

TYPICAL CHARACTERISTICS
$\left(V_{2}(A G C)=0, V_{C C}=12 \mathrm{Vdc}, T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 3 - DYNAMIC RANGE: OUTPUT VOLTAGE versus INPUT VOLTAGE (Video Amplifier, See Figure 26)

FIGURE 5 - VOLTAGE GAIN AND SUPPLY CURRENT versus SUPPLY VOLTAGE (Video Amplifier, See Figure 26)

FIGURE 7 - TYPICAL GAIN REDUCTION versus AGC CURRENT

FIGURE 4 - VOLTAGE GAIN versus FREQUENCY (Video Amplifier, See Figure 26)

FIGURE 6 - TYPICAL GAIN REDUCTION versus AGC VOLTAGE

FIGURE 8 - FIXED TUNED POWER GAIN REDUCTION versus TEMPERATURE (See Test Circuit, Figure 24)

MC1590G

TYPICAL CHARACTERISTICS (continued)

FIGURE 9 - POWER GAIN versus SUPPLY VOLTAGE (See Test Circuit, Figure 24)

FIGURE 11 - NOISE FIGURE versus FREQUENCY

FIGURE 10 - REVERSE TRANSFER ADMITTANCE versus FREQUENCY (See Parameter Table, Page 1)

FIGURE 12 - NOISE FIGURE versus SOURCE RESISTANCE

FIGURE 13 - NOISE FIGURE versus AGC GAIN REDUCTION

FIGURE 14 - SINGLE-ENDED OUTPUT ADMITTANCE

FIGURE 16 - HARMONIC DISTORTION versus AGC GAIN REDUCTION FOR AM CARRIER (For Test Circuit, See Figure 17)

FIGURE 18 - Y_{21}, FORWARD TRANSFER ADMITTANCE RECTANGULAR FORM

FIGURE 15 - SINGLE-ENDED INPUT ADMITTANCE

FIGURE 17 - 10.7 MHz AMPLIFIER
Gain $\simeq 55 \mathrm{~dB}, \mathrm{BW} \simeq 100 \mathrm{kHz}$

L1 $=24$ Turns, No. 22 AWG Wire on a T12-44 Micro Metal Toroid Core (-124 pF)
L2 $=20$ Turns, No. 22 AWG Wire on a T12-44 Micro Metal Toroid Core (-100 pF)

FIGURE 19 - Y_{21}, FORWARD TRANSFER ADMITTANCE POLAR FORM

FIGURE 20 - \mathbf{S}_{11} AND \mathbf{S}_{22}, INPUT AND OUTPUT REFLECTION COEFFICIENT

FIGURE 22 - S $_{21}$, FORWARD TRANSMISSION

COEFFICIENT (GAIN)

FIGURE 21 - \mathbf{S}_{11} AND \mathbf{S}_{22}, INPUT AND OUTPUT REFLECTION COEFFICIENT

FIGURE 23 - \mathbf{S}_{12}, REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)

FIGURE 27 - 30 MHz AMPLIFIER
(Power Gain $=50 \mathrm{~dB}, \mathrm{BW} \approx 1.0 \mathrm{MHz}$)

$L 1=12$ Turns \#22 AWG Wire on a Toroid Core,
(T37.6 Micro Metal or Equiv)
T1: Primary $=17$ Turns \#20 AWG Wire on a Toroid Core,
(T44.6 Micro Metal or Equiv)
Secondary $=2$ Turns \#20 AWG Wire

FIGURE 25 - PROCEDURE FOR SETUP USING FIGURE 24

Test	$e_{\text {in }}$	$V_{2(A G C)}$	RAGC $^{\text {A }} \Omega$)
MAGC	$2.23 \mathrm{mV}(-40 \mathrm{dBm})$	5.7 V	0
Gp	$1.0 \mathrm{mV}(-47 \mathrm{dBm})$	$\leqslant 5.0 \mathrm{~V}$	5.6
NF	$1.0 \mathrm{mV}(-47 \mathrm{dBm})$	$\leqslant 5.0 \mathrm{~V}$	5.6

FIGURE 26 - VIDEO AMPLIFIER

FIGURE 28-100 MHz MIXER

$L 1=5$ Turns, \#16 AWG Wire, $1 / 4^{\prime \prime} 10$, 5/8" Long
$L 2=16$ Turns, \#20 AWG Wire on a Toroid Core, (T44-6 Micro Metal or Equiv)

$$
\text { FIGURE } 29 \text { - TWO-STAGE } 60 \mathrm{MHz} \text { IF AMPLIFIER (Power Gain } \approx 80 \mathrm{~dB}, \mathrm{BW} \approx 1.5 \mathrm{MHz} \text {) }
$$

FIGURE 30 - SPEECH COMPRESSOR

FIGURE 31 - OUTPUT VOLTAGE versus INPUT VOLTAGE

DESCRIPTION OF SPEECH COMPRESSOR

The amplifier drives the base of a PNP MPS6517 operating common-emitter with a voltage gain of approximately 20 . The control R1 varies the quiescent Q point of this transistor so that varying amounts of signal exceed the level V_{r}. Diode D1 rectifies the positive peaks of Q1's output only when these peaks are greater than $V_{r} \simeq 7.0$ Volts. The resulting output is filtered by C_{X}, R_{x}.
R_{X} controls the charging time constant or attack time. C_{x} is involved in both charge and discharge. R2 (the $150 \mathrm{k} \Omega$ and input resistance of the emitter-follower Q2) controls the decay time. Making the decay long and attack short is accomplished by making R_{X} small and R2 large. (A Darlington emitter-follower may be needed if extremely slow decay times are required.)

The emitter-follower Q2 drives the AGC Pin 2 of the MC1590G and reduces the gain. R3 controls the slope of signal compression. The following graph (Figure 31) details performance with R3 set to $15 \mathrm{k} \Omega$.

TABLE 1 - DISTORTION versus FREQUENCY

FIGURE 32 - OUTPUT CURRENT, CURRENT MATCH AND ICC FIXTURE

Device	Temperature Range	Package
MC1709CG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1709CU	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC1709CP1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC1709G,AG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1709AU	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP

MONOLITHIC OPERATIONAL AMPLIFIER

. designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- High-Performance Open Loop Gain Characteristics
$A_{\text {vol }}=45,000$ typical
- Low Temperature Drift $- \pm 3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical (MC1709)
- Large Output Voltage Swing $- \pm 14 \mathrm{~V}$ typical @ $\pm 15 \mathrm{~V}$ Supply
- Low Output Impedance $-z_{0}=150$ ohms typical

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+18	Vdc
	V_{EE}	-18	
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	± 5.0	Volts
Input Common-Mode Range	$\mathrm{V}_{\text {ICR }}$	± 10	Volts
Output Load Current	I_{L}	10	mA
Output Short-Circuit Duration	tS	5.0	s
Power Dissipation (Package Limitation)	PD_{D}		
Metal Can		680	mW
Derate above TA $=+25^{\circ} \mathrm{C}$	4.6	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
Plastic Dual In-Line Packages (MC1709C only)		625	mW
Derate above TA $=+25^{\circ} \mathrm{C}$		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Ceramic Dual In-Line Package		750	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Derate above $\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		6.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Ambient \quad MC1709A, MC1709	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Temperature Range		0 to +70	
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$		${ }^{\circ} \mathrm{C}$
Metal and Ceramic Packages		-65 to +150	
Plastic Packages	-55 to +125		

OPERATIONAL AMPLIFIER
SILICON MONOLITHIC INTEGRATED CIRCUIT

FIGURE 1 - EQUIVALENT CIRCUIT SCHEMATIC

MC1709, MC1709A, MC1709C

ELECTRICAL CHARACTERISTICS (unless otherwise noted, $+9.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 15 \mathrm{~V},-9.0 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{EE}} \geqslant-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	MC1709A			MC1709			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\right)$	V_{10}	-	0.6	2.0	-	1.0	5.0	mV
Input Offset Current	110	-	10	50	-	50	200	nA
Input Bias Current	1 IB	-	100	200	-	200	500	nA
Input Resistance	r_{i}	350	700	-	150	400	-	k Ω
Output Resistance	r_{0}	-	150	-	-	150	-	Ω
Power Supply Currents $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)$	${ }^{\text {I CC, IEE }}$	-	2.5	3.6	-	-	-	mA
Power Consumption $\left(V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)$	${ }^{P}$ C	-	75	108	-	80	165	mW
Transient Response $\left(V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)$ See Figure 8 Risetime Overshoot	$\begin{gathered} \mathrm{t} \mathrm{TLH} \\ \mathrm{OS} \end{gathered}$	-	-	$\begin{aligned} & 1.5 \\ & 30 \end{aligned}$	-	$\begin{gathered} 0.3 \\ 10 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 30 \end{aligned}$	$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$

ELECTRICAL CHARACTERISTICS (unless otherwise noted, $+9.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 15 \mathrm{~V},-9.0 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{EE}} \geqslant-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

Characteristic	Symbol	MC1709A			MC1709			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\right)$	V_{10}	-	-	3.0	-	-	6.0	mV
	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} 1.8 \\ 1.8 \\ - \\ 2.0 \\ 4.8 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & - \\ & 15 \\ & 25 \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} - \\ - \\ 3.0 \\ - \\ - \\ 6.0 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{gathered} \text { Input Offset Current } \\ \left(T_{A}=-55^{\circ} \mathrm{C}\right) \\ \left(T_{A}=125^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	110	$\begin{aligned} & \text {-- } \\ & - \end{aligned}$	$\begin{array}{r} 40 \\ 3.5 \end{array}$	$\begin{gathered} 250 \\ 50 \end{gathered}$	-	$\begin{gathered} 100 \\ 20 \end{gathered}$	$\begin{aligned} & 500 \\ & 200 \end{aligned}$	nA
Average Temperature Coefficient of Input Offset Current $\begin{aligned} & \left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } 25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right) \end{aligned}$	$\wedge{ }_{10} / \wedge T$		$\begin{aligned} & 0.45 \\ & 0.08 \\ & \hline \end{aligned}$	$\begin{gathered} 2.8 \\ 0.5 \end{gathered}$	-	-	-	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Input Bias Current $\left(T_{A}=-55^{\circ} C\right)$	${ }_{1 / B}$	-	300	600	-	500	1500	$n \mathrm{~A}$
Input Resistance $\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right)$	r_{i}	85	170	-	40	100	-	ks
Input Common-Mode Voltage Range $\left(\mathrm{V}_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right)$	$\mathrm{V}_{\text {ICR }}$	± 8.0	± 10	-	± 8.0	± 10	-	V
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right.$)	CMRR	80	110	--	70	90	-	dB
Supply Voltage Rejection Ratio $\left(V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\right)$	PSRR	-	40	100	-	25	150	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & \quad\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega,\right. \\ & \left.\mathrm{V}_{\mathrm{O}}= \pm 15 \mathrm{~V}\right) \end{aligned}$	A_{V}	25	45	70	25	45	70	V / mV
Output Voltage Range $\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}\right) \\ \left(\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega\right) \\ \left(\mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega\right) \end{gathered}$	V_{OR}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$\begin{array}{r} \pm 12 \\ \pm 10 \end{array}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	V
Power Supply Currents $\begin{gathered} \left(\mathrm{V}_{C C}=15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}\right) \\ \left(T_{A}=-55^{\circ} \mathrm{C}\right) \\ \left(T_{A}=125^{\circ} \mathrm{C}\right) \end{gathered}$	${ }^{1} \mathrm{CC} / \mathrm{EE}$	-	$\begin{aligned} & 2.7 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	-	-	-	mA
Power Consumption $\begin{gathered} \left(V_{C C}=15, V_{E E}=-15 \mathrm{~V}\right) \\ \left(T_{A}=-55^{\circ} \mathrm{C}\right) \\ \left(T_{A}=125^{\circ} \mathrm{C}\right) \end{gathered}$	${ }^{\text {P }}$ C	-	$\begin{aligned} & 81 \\ & 63 \end{aligned}$	$\begin{gathered} 135 \\ 90 \end{gathered}$	-	-	-	mW

MC1709, MC1709A, MC1709C

ELECTRICAL CHARACTERISTICS (unless otherwise noted, $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	MC1709C			Unit
		Min	Typ	Max	
Input Offset Voltage $\left(R_{S} \leqslant 10 \mathrm{k} \Omega, 9.0 \mathrm{~V} \leqslant 15 \mathrm{~V},-9.0 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{EE}} \geqslant-15 \mathrm{~V}\right)$	V_{10}	-	2.0	7.5	mV
Input Offset Current	110	-	100	500	nA
Input Bias Current	IIB	-	300	1500	nA
Input Resistance	r_{i}	50	250	-	$k \Omega$
Output Resistance	r_{0}	-	150	-	Ω
Power Consumption	${ }^{\text {P }}$ C	-	80	200	mW
Large Signal Voltage Gain $\left(\mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right)$	AV	15	45	-	V / mV
$\begin{gathered} \text { Output Voltage Range } \\ \left(R_{L} \geqslant 10 \mathrm{k} \Omega\right) \\ \left(R_{L} \geqslant 2.0 \mathrm{ks} 2\right) \\ \hline \end{gathered}$	V_{OR}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	$-$	V
Input Common-Mode Voltage Range	VICR	± 8.0	± 10	-	V
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right)$	CMRR	65	90	-	dB
Supply Voltage Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right)$	PSRR	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
Transient Response See Figure 8 Rise Time Overshoot	$\begin{gathered} \text { tTLH } \\ \text { OS } \end{gathered}$	-	$\begin{aligned} & 0.3 \\ & 10 \end{aligned}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$

ELECTRICAL CHARACTERISTICS (unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	MC1709C			Unit
		Min	Typ	Max	
Input Offset Voltage $\left(R_{S} \leqslant 10 \mathrm{k} \Omega, 9.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 15 \mathrm{~V},-9.0 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{EE}} \geqslant 15 \mathrm{~V}\right)$	V_{10}	-	-	10	mV
Input Offset Current	110	-	-	750	nA
Input Bias Current	1 IB	-	-	2.0	$\mu \mathrm{A}$
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & \quad\left(R_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right) \end{aligned}$	A_{V}	12	-	-	V / mV
Input Resistance	ri	35	-	-	k Ω

TYPICAL CHARACTERISTICS

FIGURE 2 - TEST CIRCUIT
$\left(V_{C C}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Fig. No.	Curve No.	Test Conditions				
		$\mathbf{R}_{\mathbf{1}}(\Omega)$	$\mathbf{R}_{\mathbf{2}}(\Omega)$	$\mathbf{R}_{\mathbf{3}}(\Omega)$	$\mathbf{C}_{\mathbf{1}}(\mathbf{p F})$	$\mathbf{C}_{\mathbf{2}}(\mathbf{p F})$
3		10 k	10 k	1.5 k	5.0 k	200
	2	10 k	100 k	1.5 k	500	20
	3	10 k	1.0 M	1.5 k	100	3.0
	4	1.0 k	1.0 M	0	10	3.0
4	1	1.0 k	1.0 M	0	10	3.0
	2	10 k	1.0 M	1.5 k	100	3.0
	3	10 k	100 k	1.5 k	500	20
	4	0 k	10 k	1.5 k	5.0 k	200
5	1	0	∞	1.5 k	5.0 k	200
	2	∞	1.5 k	500	20	
	3	0	∞	1.5 k	100	3.0
	4	0	∞	0	10	3.0

FIGURE 5 - OPEN LOOP VOLTAGE
GAIN versus FREQUENCY

FIGURE 7 - SLEW RATE versus CLOSED LOOP GAIN USING RECOMMENDED COMPENSATION NETWORKS

FIGURE 4 - CLOSED LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 6 - VOLTAGE GAIN versus
POWER SUPPLY VOLTAGE

FIGURE 8 - TRANSIENT RESPONSE TEST CIRCUIT

ORDERING INFORMATION

Device	Temperature Renge	Package
MC1733G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1733L	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP
MC1733CG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1733CL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceranic DIP
MC1733CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP

DIFFERENTIAL VIDEO AMPLIFIER

. . . a wideband amplifier with differential input and differential output. Gain is fixed at 10,100 , or 400 without external components or, with the addition of one external resistor, gain becomes adjustable from 10 to 400.

- Bandwidth - 120 MHz typical @ $A_{v d}=10$
- Rise Time -2.5 ns typical @ $A_{v d}=10$
- Propagation Delay Time - 3.6 ns typical @ Avd $=10$

DIFFERENTIAL VIDEO WIDEBAND AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & \hline+8.0 \\ & -8.0 \end{aligned}$	Volts
Differential Input Voltage	$V_{\text {in }}$	± 5.0	Volts
Common-Mode Input Voltage	$\mathrm{V}_{1} \mathrm{CM}$	± 6.0	Volts
Output Current	10	10	mA
Internal Power Dissipation (Note 1) Metal Can Package Ceramic Dual In-Line Package	$P_{\text {D }}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	mW
Operating Temperature Range $\begin{array}{l}\text { MC1733C } \\ \\ \text { MC1733 }\end{array}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{E E}=-6.0 \mathrm{Vdc}\right.$, at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

		MC1733			MC1733C			
Characteristic	Symbol	Min	Typ	Max	Min	Typ	Max	Units
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)	$A_{\text {vd }}$	$\begin{gathered} 300 \\ 90 \\ 9.0 \end{gathered}$	$\begin{gathered} 400 \\ 100 \\ 10 \end{gathered}$	$\begin{gathered} 500 \\ 110 \\ 11 \end{gathered}$	$\begin{gathered} 250 \\ 80 \\ 8.0 \end{gathered}$	$\begin{gathered} 400 \\ 100 \\ 10 \end{gathered}$	$\begin{gathered} 600 \\ 120 \\ 12 \end{gathered}$	V/V
Bandwidth $\left(R_{\mathrm{s}}=50 \Omega\right)$ Gain 1 Gain 2 Gain 3	BW	-	$\begin{aligned} & 40 \\ & 90 \\ & 120 \end{aligned}$	- - -	-	$\begin{gathered} 40 \\ 90 \\ 120 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	MHz
Rise Time $\left(R_{\mathrm{s}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{Vp}-\mathrm{p}\right)$ Gain 1 Gain 2 Gain 3	${ }^{\text {t TLH }}$ tTHL	-	$\begin{gathered} 10.5 \\ 4.5 \\ 2.5 \end{gathered}$	$\overline{10}$	- - -	$\begin{gathered} 10.5 \\ 4.5 \\ 2.5 \end{gathered}$	$\overline{12}$	ns
Propagation Delay ($\left.\mathrm{R}_{\mathrm{s}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{Vp-p}\right)$ Gain 1 Gain 2 Gain 3	${ }^{\text {tPLH }}$ ${ }^{\text {tPHL }}$	-	$\begin{aligned} & 7.5 \\ & 6.0 \\ & 3.6 \\ & \hline \end{aligned}$	$\overline{10}$	-	$\begin{aligned} & 7.5 \\ & 6.0 \\ & 3.6 \end{aligned}$	10	ns
Input Resistance Gain 1 Gain 2 Gain 3	$\mathrm{R}_{\text {in }}$	$\overline{20}$	$\begin{gathered} 4.0 \\ 30 \\ 250 \end{gathered}$	-	10	$\begin{gathered} 4.0 \\ 30 \\ 250 \end{gathered}$	-	k Ω
Input Capacitance (Gain 2)	$\mathrm{C}_{\text {in }}$	-	2.0	-	-	2.0	-	pF
Input Offset Current (Gain 3)	$\mid 1 \mathrm{lol}$	-	0.4	3.0	-	0.4	5.0	$\mu \mathrm{A}$
Input Bias Current (Gain 3)	${ }_{1} 18$	-	9.0	20	-	9.0	30	$\mu \mathrm{A}$
Input Noise Voltage $\left.\begin{array}{l}\left(R_{\mathrm{s}}=50 \Omega,\right. \\ B W\end{array}\right)=1 \mathrm{kHz}$ to 10 MHz	V_{n}	-	12	-	-	12	-	$\mu \mathrm{V}$ (rms)
Input Voltage Range (Gain 2)	$V_{\text {in }}$	± 1.0	-	-	± 1.0	-	-	V
Common-Mode Rejection Ratio Gain 2 $\left(\mathrm{~V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{f} \leq 100 \mathrm{kHz}\right)$ Gain 2 $\left(\mathrm{~V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}\right)$	CMRR	60	$\begin{aligned} & 86 \\ & 60 \\ & \hline \end{aligned}$	-	60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$	-	dB
Supply Voltage Rejection Ratio Gain 2 $\left(\Delta \mathrm{V}_{\mathrm{s}}= \pm 0.5 \mathrm{~V}\right)$	PSRR	50	70	-	50	70	-	dB
Output Offset Voltage Gain 1 Gain 2 and Gain 3	VOO	-	$\begin{gathered} 0.6 \\ 0.35 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	-	$\begin{gathered} 0.6 \\ 0.35 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	V
Output Common-Mode Voltage (Gain3)	$\mathrm{V}_{\text {CMO }}$	2.4	2.9	3.4	2.4	2.9	3.4	V
Output Voltage Swing (Gain 2)	V_{O}	3.0	4.0	-	3.0	4.0	-	Vp-p
Output Sink Current (Gain 2)	10	2.5	3.6	-	2.5	3.6	-	mA
Output Resistance	$\mathrm{R}_{\text {out }}$	-	20	-	-	20	-	Ω
Power Supply Current (Gain 2)	${ }^{1} \mathrm{D}$	-	18	24	-	18	24	mA

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{C C}=+6.0 \mathrm{Vdc}, \mathrm{V}_{E E}=-6.0 \mathrm{Vdc}\right.$, at $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$ unless otherwise noted.)*

Characteristic	Symbol	MC1733			MC1733C			Units
		Min	Typ	Max	Min	Typ	Max	
```Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)```	$A_{\text {vd }}$	$\begin{gathered} 200 \\ 80 \\ 8.0 \\ \hline \end{gathered}$		$\begin{gathered} 600 \\ 120 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 250 \\ 80 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 600 \\ 120 \\ 12 \\ \hline \end{gathered}$	V/V
Input Resistance Gain 2	$\mathrm{R}_{\text {in }}$	8.0	-	-	8.0	-	-	k $\Omega$
Input Offset Current (Gain 3)	$\|110\|$	-	-	5.0	-	-	6.0	$\mu \mathrm{A}$
Input Bias Current (Gain 3)	1 IB	-	-	40	-	-	40	$\mu \mathrm{A}$
Input Voltage Range (Gain 2)	$V_{\text {in }}$	$\pm 1.0$	-	-	$\pm 1.0$	-	-	V
Common-Mode Rejection Ratio $\text { Gain } 2 \quad\left(V_{C M}= \pm 1 \mathrm{~V}, \mathrm{f} \leqslant 100 \mathrm{kHz}\right)$	CMRR	50	-	-	50	-	-	dB
Supply Voltage Rejection Ratio Gain $2 \quad\left(\Delta \mathrm{~V}_{\mathrm{s}}= \pm 0.5 \mathrm{~V}\right)$	PSRR	50	-	-	50	-	-	dB
Output Offset Voltage Gain 1   Gain 2 and Gain 3	$\mathrm{V}_{\mathrm{OO}}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$		$\begin{array}{r} 1.5 \\ 1.2 \\ \hline \end{array}$		-	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	V
Output Voltage Swing (Gain 2)	$\mathrm{V}_{0}$	2.5	-	-	2.5	-	-	Vp -p
Output Sink Current (Gain 2)	10	2.2	-	-	2.5	-	-	mA
Power Supply Current (Gain 2)	1 D	-	-	27	-	-	27	mA

*T $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC1733C, $-55^{\circ} \mathrm{C}$ for MC1733
$T_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC1733C, $+125^{\circ} \mathrm{C}$ for MC1733.

## NOTES

Note 1: Derate metal package at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and dual in-line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $100^{\circ} \mathrm{C}$ (see Figure 4). If operation at high ambient temperatures is required ( MC 1733 ) a heatsink may be necessary to limit maximum junction temperature to $150^{\circ} \mathrm{C}$. Thermal resistance, junction-to-case, for the metal package is $69.4^{\circ} \mathrm{C}$ per Watt.
Note 2: Gain Select pins $G_{1 A}$ and $G_{1 B}$ connected together. Note 3: Gain Select pins $G_{2 A}$ and $G_{2 B}$ connected together. Note 4: All Gain Select pins open.

FIGURE 4 - MAXIMUM ALLOWABLE POWER DISSIPATION


TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 5 - SUPPLY CURRENT versus TEMPERATURE


FIGURE 6 - SUPPLY CURRENT versus SUPPLY VOLTAGE


## MC1733, MC1733C

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$


FIGURE 9 - GAIN versus SUPPLY VOLTAGE


FIGURE 11 - GAIN versus FREQUENCY and SUPPLY VOLTAGE


FIGURE 8 - GAIN versus FREQUENCY


FIGURE 10 - GAIN versus RADJUST


FIGURE 12 - GAIN versus FREQUENCY and TEMPERATURE


TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 13 - PULSE RESPONSE versus GAIN


FIGURE 15 - PULSE RESPONSE versus TEMPERATURE


FIGURE 17 - PHASE SHIFT versus FREQUENCY


FIGURE 14 - PULSE RESPONSE versus SUPPLY VOLTAGE


FIGURE 16 - DIFFERENTIAL OVERDRIVE RECOVERY TIME


FIGURE 18 - PHASE SHIFT versus FREQUENCY


## MC1733, MC1733C

TYPICAL CHARACTERISTICS (Continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 19 - INPUT RESISTANCE versus TEMPERATURE



FIGURE 23 - OUTPUT VOLTAGE SWING versus FREQUENCY


FIGURE 20 - INPUT NOISE VOLTAGE


FIGURE 22 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


FIGURE 24 - COMMON-MODE REJECTION RATIO


## APPLICATIONS INFORMATION

FIGURE 25 - VOLTAGE CONTROLLED OSCILLATOR


By changing the voltage $V_{C}$ the gain will vary over a range of 10 to 400 . This will give a frequency variation about the value set by the capacitor and shown in Figure 26.

## TAPE,DRUM OR DISC MEMORY READ AMPLIFIERS

The first of several methods to be discussed is shown in Figure 27. This block diagram describes a simple Read circuit with no threshold circuitry. Each block represents a basic function that must be performed by the Read circuit. The first block, referred to as "amplfiication", increases the level of the signal available from the Read head to a level adequate to drive the peak detector. Obviously, these signal levels will vary depending on factors such as tape speed, whether the system used is disc or tape, and the type of head and the circuitry used. For a representative tape system, levels of 7 to 25 mV for the signal from the Read head and 2 V for the signal to the peak detector are typical. These signal levels are "peak-to-peak" unless otherwise specified. On the basis of the signal levels mentioned above, the overall amplification required is 38 to 49 dB .

How the overall gain requirement is implemented will depend somewhat on the system used. For instance, a tape cassette system with variable tape speed may utilize a first stage for gain and a second stage primarily for gain control. Thus, a typical circuit would utilize 35 dB in the first stage and 10 to 15 dB in the second stage.

Devices suitable for use as amplifiers fall into one of two categories, operational amplifiers or wideband video amplifiers. Lower speed equipment with low transfer rates commonly uses low cost operational amplifiers. Examples of these are the MC1741, MC1458, MC1709, and MLM301. Equipment requiring higher transfer rates, such as disc systems normally use wideband amplifiers such as the MC1733. The actual cross-over point where wideband amplifiers are used exclusively varies with equipment de-

FIGURE 27 - TYPICAL READ CIRCUIT (METHOD 1)


FIGURE 26 - OSCILLATOR FREQUENCY FOR VARIOUS CAPACITOR VALUES

sign. For purposes of comparison, the MLM301 has slightly less than a 40 dB open-loop gain at 100 kHz ; the MC1741, a compensated op-amp, has approximately 20 dB open loop gain at 100 kHz ; the MC1733 has approximately 33 dB of gain out to 100 MHz (depending on gain option and loading).

There are a number of ways to implement the peak detector function. However, the simplest and most widely used method is a passive differentiator that generates "'zerocrossings" for each of the data peaks in the Read signal.

The actual circuitry used to differentiate the Read signal varies from a differential LC type in disc systems to a simple RC type in reel and cassette systems. Either type, of course, attenuates the signal by an amount depending on the circuit used and system specifications. A good approximation of attenuation using the RC type is 20 dB . Thus, the 2 V signal going into the differentiator is reduced to 200 mV .

The next block in Figure 27 to be discussed is the zero-crossing detector. In most cases detection of the zerocrossings is combined with the limiter. These functions serve to generate a TTL compatible pulse waveform with "edges" corresponding to zero-crossings. For low transfer rates, the circuit often used consists of an operational amplifier with series or shunt limiting. For higher transfer rates (greater than $100 \mathrm{~K} \mathrm{~B} / \mathrm{S}$ ) comparators are used.

The method described above is often modified to include threshold sensing. In Figure 28, the function called "double-ended, limit-detector" enables the output NAND gate when either the negative or positive data peaks of the Read signal exceed a predetermined threshold. This function can be implemented in either of two ways. One method first rectifies the signal before it is applied to a comparator with a set threshold. The other method utilizes two comparators, one comparator for positive-going peaks and the other for negative-going peaks. These comparator outputs are then combined in the output logic gates.

## APPLICATIONS INFORMATION (continued)

FIGURE 28 - READ CIRCUIT (METHOD 2)


Another common technique is shown in Figure 29. The branch labeled rectifiers, peak detector, etc., provides a clock transition of the $D$ flip-flop that corresponds to the peak of both the positive and negative-going data peaks. This branch may include threshold circuitry prior to the peak detector. The detector in the lower path detects whether the signal peaks are positive or negative and feeds this data to the flip-flop. This detector can be implemented using a comparator with pre-set threshold.

FIGURE 29 - READ CIRCUIT (METHOD 3)


The technique shown in Figure 30 uses separate circuits with threshold provisions for both negative and positive peaks. The peak detectors and threshold detectors
may be implemented with two comparators and two passive differentiators.

Each of the methods shown offer certain intrinsic advantages or disadvantages. The overall decision as to which method to use however often involves other important considerations. These could include cost and system requirements or circuitry other than simply the Read circuitry. For instance, if cost is the predominate overall factor, then approach one may be the only feasible alternative.

Method four was included as a design example because it illustrates several unique advantages. First, it uses threshold sensing to reduce noise peak errors. Second, it may be implemented using only integrated circuits. Third, it offers separate, direct threshold sensing for both positive and negative peaks.

FIGURE 30 - READ CIRCUIT (Method 4)


Device	Alternate	Temperature   Range	Package
MC1741CD	-	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-8
MC1741CG	$\mathrm{LM} 741 \mathrm{CH}, \mu \mathrm{A} 741 \mathrm{HC}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1741CP1	$\mathrm{LM} 741 \mathrm{CN}, \mu \mathrm{A} 741 \mathrm{TC}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC1741CU	-	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC1741G	-	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1741U	-	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP



## INTERNALLY COMPENSATED, HIGH PERFORMANCE OPERATIONAL AMPLIFIERS

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	MC1741C	MC1741	Unit
Power Supply Voltage	$V_{C C}$   $V_{E E}$	$\begin{array}{r} +18 \\ -18 \\ \hline \end{array}$	$\begin{array}{r} +22 \\ -22 \\ \hline \end{array}$	Vdc   Vdc
Input Differential Voltage	$V_{\text {ID }}$	$\pm 30$		Volts
Input Common Mode Voltage (Note 1)	VICM	$\pm 15$		Volts
Output Short Circuit Duration (Note 2)	ts	Continuous		
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +70	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal and Ceramic Packages Plastic Packages	$\mathrm{T}_{\text {stg }}$		$\begin{aligned} & o+150 \\ & o+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Note 1. For supply voltages less than +15 V , the absolute maximum input voltage is equal to the supply voltage.
Note 2. Supply voltage equal to or less than 15 V .

OPERATIONAL AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT



P1 SUFFIX
PLASTIC PACKAGE
CASE 626-05

U SUFFIX
CERAMIC PACKAGE
CASE 693-02



EQUIVALENT CIRCUIT SCHEMATIC


## MC1741, MC1741C

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted).

Characteristic	Symbol	MC1741			MC1741C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	$\mathrm{V}_{10}$	-	1.0	5.0	-	2.0	6.0	mV
Input Offset Current	110	-	20	200	-	20	200	nA
Input Bias Current	1 IB	--	80	500	-	80	500	nA
Input Resistance	$\mathrm{r}_{\mathrm{i}}$	0.3	2.0	-	0.3	2.0	-	$m \Omega$
Input Capacitance	$\mathrm{C}_{\mathrm{i}}$	-	1.4	-	-	1.4	-	pF
Offset Voltage Adjustment Range	$\mathrm{V}_{10 \mathrm{O}}$	-	$\pm 15$	-	-	$\pm 15$	-	mV
Common Mode Input Voltage Range	$V_{\text {ICR }}$	$\pm 12$	$\pm 13$	-	$\pm 12$	$\pm 13$	-	V
Large Signal Voltage Gain $\left(V_{O}= \pm 10 \mathrm{~V}, R_{L} \geqslant 2.0 \mathrm{k}\right)$	$A_{v}$	50	200	-	20	200	-	$\mathrm{V} / \mathrm{mV}$
Output Resistance	$r_{0}$	--	75	-	---	75	-	$\Omega$
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	CMRR	70	90	-	70	90	-	dB
Supply Voltage Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	PSRR	-	30	150	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geqslant 10 k\right) \\ & \left(R_{L} \geqslant 2 k\right) \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$\begin{array}{r}  \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		V
Output Short-Circuit Current	Ios	-	20	-	-	20	-	mA
Supply Current	${ }^{1}$	-	1.7	2.8	-	1.7	2.8	mA
Power Consumption	${ }^{\text {P }}$ C	-	50	85	-	50	85	mW
Transient Response (Unity Gain - Non-Inverting) $\left(V_{1}=20 \mathrm{mV}, R_{L} \geqslant 2 \mathrm{k}, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}\right) \quad$ Rise Time $\left(V_{I}=20 \mathrm{mV}, R_{L} \geqslant 2 \mathrm{k}, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}\right)$ Overshoot $\left(V_{1}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k}, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}\right)$ Slew Rate	$\begin{gathered} \text { tTLH } \\ \text { os } \\ \text { SR } \end{gathered}$	-	$\begin{aligned} & 0.3 \\ & 15 \\ & 0.5 \end{aligned}$	-	--	$\begin{gathered} 0.3 \\ 15 \\ 0.5 \end{gathered}$	--	$\begin{gathered} \mu_{\mathrm{s}} \\ \% \\ \mathrm{v} / \mu_{\mathrm{s}} \end{gathered}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.$ to $T_{\text {high }}$ unless otherwise noted).

Characteristic	Symbol	MC1741			MC1741C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(\mathrm{R}_{S} \leqslant 10 \mathrm{k} \Omega\right)$	$\mathrm{V}_{10}$	-..	1.0	6.0	-	-	7.5	mV
Input Offset Current $\begin{aligned} & \left(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \end{aligned}$	110		$\begin{aligned} & 7.0 \\ & 85 \\ & - \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ - \end{gathered}$	$-$		$300$	nA
$\begin{aligned} & \text { Input Bias Current } \\ & \left(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{A}=-55^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \end{aligned}$	IIB		$\begin{gathered} 30 \\ 300 \\ - \end{gathered}$	$\begin{gathered} 500 \\ 1500 \end{gathered}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} - \\ - \\ 800 \end{gathered}$	nA
Common Mode Input Voltage Range	VICR	$\pm 12$	$\pm 13$	-	-	-	--	V
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	CMRR	70	90	-	-	-	-	dB
Supply Voltage Rejection Ratio $\left(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}\right)$	PSRR	-	30	150	-	-	-	$\mu \mathrm{V} / \mathrm{V}$
$\begin{array}{\|l} \hline \text { Output Voltage Swing } \\ \left(R_{L} \geqslant 10 \mathrm{k}\right) \\ \left(R_{L} \geqslant 2 \mathrm{k}\right) \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$\pm 10$	$\pm 13$	-	V
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & \quad\left(\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k}, \mathrm{~V}_{\text {out }}= \pm 10 \mathrm{~V}\right) \\ & \hline \end{aligned}$	$A_{v}$	25	-	-	15	-	-	$\mathrm{V} / \mathrm{mV}$
$\begin{array}{r} \hline \text { Supply Currents } \\ \left(T_{A}=125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{T}_{A}=-55^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	${ }^{1} \mathrm{D}$	-	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.3 \end{aligned}$	-		-	mA
Power Consumption ( $\left.\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\right)$	${ }^{P_{C}}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \end{aligned}$	$\begin{gathered} 75 \\ 100 \\ \hline \end{gathered}$	-	$-$	-	mW

[^5]
## MC1741, MC1741C

FIGURE 1 - BURST NOISE versus SOURCE RESISTANCE


FIGURE 2 - RMS NOISE versus SOURCE RESISTANCE


FIGURE 4 - SPECTRAL NOISE DENSITY



FIGURE 5 - BURST NOISE TEST CIRCUIT


Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 seconds and the $20 \mu \mathrm{~V}$ peak limit refers to the operational amplifier input thus eliminating errors in the closed-loop gain factor of the operational amplifier under test.

TYPICAL CHARACTERISTICS
$\left(V_{C C}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FIGURE 6 - POWER BANDWIDTH
(LARGE SIGNAL SWING versus FREQUENCY)


FIGURE 8 - POSITIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


FIGURE 10 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE (Single Supply Operation)


FIGURE 7 - OPEN LOOP FREQUENCY RESPONSE


FIGURE 9 - NEGATIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


FIGURE 11 - SINGLE SUPPLY INVERTING AMPLIFIER


FIGURE 12 - NONINVERTING PULSE RESPONSE


FIGURE 13 - TRANSIENT REPONSE TEST CIRCUIT


FIGURE 14 - OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE


Device	Temperature Range	Package
MC1741SG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1741SCD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-8
MC1741SCG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1741SCP1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP

## HIGH SLEW RATE, INTERNALLY COMPENSATED OPERATIONAL AMPLIFIER

The MC1741S/MC1741SC is functionally equivalent, pin compatible, and possesses the same ease of use as the popular MC1741 circuit, yet offers 20 times higher slew rate and power bandwidth. This device is ideally suited for D-to-A converters due to its fast settling time and high slew rate.

- High Slew Rate - $10 \mathrm{~V} / \mu \mathrm{s}$ Guaranteed Minimum (for unity gain only)
- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch-Up

TYPICAL APPLICATION OF OUTPUT CURRENT TO VOLTAGE TRANSFORMATION FOR A D-TO-A CONVERTER



MSB A


Pins not shown are not connected.
Settling time to within $1 / 2$ LSB $( \pm 19.5 \mathrm{mV})$ is approximately $4.0 \mu \mathrm{~s}$ from the time that all bits are switched.
*The value of $C$ may be selected to minimize overshoot and ringing ( $C \approx 150 \mathrm{pF}$ ).

## OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT



P1 SUFFIX PLASTIC PACKAGE CASE 626-05


D SUFFIX
PLASTIC PACKAGE CASE 751-02 SO-8

$$
\text { OFFSET NULLI } \underbrace{\text { B }}_{2}
$$

$$
\begin{array}{ll}
\text { OFFSET NULLI } \\
\text { INVT INPUT } \\
2
\end{array}
$$

(Top View)

Theoretical $V_{0}$
$V_{0}=\frac{V_{\text {ref }}}{R 1}\left(R_{0}\right)\left[\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right]$
Adjust $\mathrm{V}_{\text {ref, }} \mathrm{R} 1$ or $\mathrm{R}_{0}$ so that $\mathrm{V}_{0}$ with all digital inputs at high level is equal to 9.961 volts.

$$
\mathrm{V}_{0}=\frac{2 \mathrm{~V}}{1 \mathrm{k}}(5 \mathrm{k})\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right]=10 \mathrm{~V}\left[\frac{255}{256}\right]=9.961 \mathrm{~V}
$$



STANDARD MC1741 versus MC1741S RESPONSE COMPARISON



MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value		Unit
		MC1741SC	MC1741S	
Power Supply Voltage	$\begin{aligned} & V_{C C} \\ & V_{E E} \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	Vdc
Differential Input Signal Voltage	$V_{\text {ID }}$	$\pm 30$		Volts
Common-Mode Input Voltage Swing (See Note 1)	$\mathrm{V}_{1} \mathrm{CR}$	$\pm 15$		Volts
Output Short-Circuit Duration (See Note 2)	$\mathrm{t}_{5}$	Continuous		
Power Dissipation (Package Limitation)   Metal Package   Derate above $T_{A}=+25^{\circ} \mathrm{C}$   Plastic Dual In-Line Package   Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 680 \\ 4.6 \\ 625 \\ 5.0 \end{gathered}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Ambient Temperature Range	TA	0 to +75	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range   Metal Package   Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$		${ }^{\circ} \mathrm{C}$

Note 1. For supply voltages less than $\pm 15 \mathrm{Vdc}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2. Supply voltage equal to or less than 15 Vdc .


FIGURE 2 - INPUT BIAS CURRENT versus TEMPERATURE


ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{E E}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

Characteristic	Symbol	MC1741S			MC1741SC			Unit
		Min	Typ	Max	Min	Typ	Max	
Power Bandwidth (See Figure 3) $A_{V}=1, R_{L}=2.0 \mathrm{k} \Omega, T H D=5 \%, V_{O}=20 \mathrm{~V}(p-p)$	$\mathrm{BW}_{\mathrm{P}}$	150	200	-	150	200	-	kHz
Large-Signal Transient Response   Slew Rate (Figures 10 and 11) $\begin{aligned} & V(-) \text { to } V(+) \\ & V(+) \text { to } V(-) \end{aligned}$   Settling Time (Figures 10 and 11) (to within $0.1 \%$ )	SR ${ }^{t}$ setig	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 20 \\ 12 \\ 3.0 \end{array}$		$\begin{aligned} & 10 \\ & 10 \\ & - \end{aligned}$	$\begin{array}{r} 20 \\ 12 \\ 3.0 \end{array}$		$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \end{gathered}$
Small-Signal Transient Response   (Gain = 1, $\mathrm{E}_{\text {in }}=20 \mathrm{mV}$, see Figures 7 and 8)   Rise Time   Fall Time   Propagation Delay Time   Overshoot	$\begin{gathered} \mathrm{tTLH} \\ \mathrm{t} \text { THL } \\ \mathrm{tPLH}, \mathrm{tPHL} \\ \mathrm{OS} \\ \hline \end{gathered}$	$-$	$\begin{gathered} 0.25 \\ 0.25 \\ 0.25 \\ 20 \\ \hline \end{gathered}$	-		$\begin{gathered} 0.25 \\ 0.25 \\ 0.25 \\ 20 \\ \hline \end{gathered}$		$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \% \end{gathered}$
Short-Circuit Output Currents	Ios	$\pm 10$	-	$\pm 35$	$\pm 10$	-	$\pm 35$	mA
$\begin{aligned} & \text { Open-Loop Voltage Gain }\left(R_{L}=2.0 \mathrm{ks}\right) \text { (See Figure 4) } \\ & V_{O}= \pm 10 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, \mathrm{~T}_{A}=T_{\text {low }}{ }^{*} \text { to } T_{\text {high }^{*}} \end{aligned}$	A vol	$\begin{aligned} & 50,000 \\ & 25,000 \end{aligned}$	200,000	-	$\begin{aligned} & 20,000 \\ & 15,000 \end{aligned}$	$100,000$	-	-
Output Impedance ( $f=20 \mathrm{~Hz}$ )	$z_{0}$	-	75	-	-	75	-	$\Omega$
Input Impedance ( $f=20 \mathrm{~Hz}$ )	$z_{i}$	0.3	1.0	-	0.3	1.0	-	M $\Omega$
$\begin{aligned} & \text { Output Voltage Swing } \\ & R_{L}=10 \mathrm{k} \Omega, T_{A}=T_{\text {low }} \text { to } T_{\text {high }}(\mathrm{MC} 1741 \mathrm{~S} \text { only) } \\ & R_{L}=2.0 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{L}=2.0 \mathrm{kS}, T_{A} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$\mathrm{V}_{\mathrm{pk}}$
Input Common-Mode Voltage Range $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ (MC1741S)	VICR	$\pm 12$	$\pm 13$	-	$\pm 12$	$\pm 13$	-	$V_{p k}$
Common-Mode Rejection Ratio ( $\mathrm{f}=20 \mathrm{~Hz}$ ) $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ (MC1741S)	CMRR	70	90	-	70	90	-	dB
$\begin{aligned} & \text { Input Bias Current (See Figure 2) } \\ & T_{A}=+25^{\circ} \mathrm{C} \text { and } \mathrm{T}_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	I/B				-	200	$\begin{array}{r} 500 \\ 800 \\ \hline \end{array}$	nA
$\begin{aligned} & \text { Input Offset Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \text { and } T_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	\|liol	-		$\begin{aligned} & 200 \\ & 500 \end{aligned}$			$\begin{aligned} & 200 \\ & 300 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=\leqslant 10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	$\left\|\mathrm{V}_{10}\right\|$	-	1.0	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	-	2.0	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
$\begin{aligned} & \text { DC Power Consumption (See Figure 9) } \\ & \text { (Power Supply }= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \text { ) } \\ & T_{\mathrm{A}}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	${ }^{P} \mathrm{C}$	-	50	85	-	50	85	mW
Positive Voltage Supply Sensitivity   ( $V_{E E}$ constant)   $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ on MC1741S	PSS+	-	2.0	100	-	2.0	150	$\mu \mathrm{V} / \mathrm{V}$
Negative Voltage Supply Sensitivity ( $\mathrm{V}_{\mathrm{CC}}$ constant)	PSS-	-	10	150	-	10	150	$\mu \mathrm{V} / \mathrm{V}$

$$
{ }^{*} T_{\text {low }}=0 \text { for MC1741SC } \quad T_{\text {high }}=+70^{\circ} \mathrm{C} \text { for MC1741SC }
$$

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

FIGURE 3 - POWER BANDWIDTH - NONDISTORTED OUTPUT VOLTAGE versus FREQUENCY


FIGURE 5 - NOISE versus FREQUENCY


FIGURE 7 - SMALL-SIGNAL TRANSIENT RESPONSE DEFINITIONS


FIGURE 4 - OPEN-LOOP FREQUENCY RESPONSE
2

FIGURE 6 - OUTPUT NOISE versus SOURCE RESISTANCE


FIGURE 8 - SMALL-SIGNAL TRANSIENT RESPONSE TEST CIRCUIT


## TYPICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 9 - POWER CONSUMPTION versus POWER SUPPLY VOLTAGES


FIGURE 10 - LARGE-SIGNAL TRANSIENT WAVEFORMS


Figure 11 - SETtLING time and sLew rate test circuit


## SETTLING TIME

In order to properly utilize the high slew rate and fast settling time of an operational amplifier, a number of system considerations must be observed. Capacitance at the summing node and at the amplifier output must be minimal and circuit board layout should be consistent with common high-frequency considerations. Both power supply connections should be adequately bypassed as close as possible to the device pins. In bypassing, both low and high-frequency components should be considered to avoid the possibility of excessive ringing. In order to achieve optimum damping, the selection of a capacitor in parallel with the feedback resistor may be necessary. A value too small could result in excessive ringing while a value too large will degrade slew rate and settling time.

## SETTLING TIME MEASUREMENT

In order to accurately measure the settling time of an operational amplifier, it is suggested that the "false" summing junction approach be taken as shown in Figure 11. This is necessary since it is difficult to determine when the waveform at the output of the operational amplifier settles to within $0.1 \%$ of it's final value. Because the output and input voltages are effectively subtracted from each other at the amplifier inverting input, this seems like an ideal node for the measurement. However, the probe capacitance at this critical node can greatly affect the accuracy of the actual measurement.

The solution to these problems is the creation of a second or "false" summing node. The addition of two diodes at this node clamps the error voltage to limit the voltage excursion to the oscilloscope. Because of the voltage divider effect, only one-half of the actual error appears at this node. For extremely critical measurements, the capacitance of the diodes and the oscilloscope, and the settling time of the oscilloscope must be considered. The expression

$$
t_{\text {setlg }}=\sqrt{x^{2}+y^{2}+z^{2}}
$$

can be used to determine the actual amplifier settling time, where
$\mathrm{t}_{\text {setlg }}=$ observed settling time
$x=$ amplifier settling time (to be determined)
$y=$ false summing junction settling time
$z=$ oscilloscope settling time
It should be remembered that to settle within $\pm 0.1 \%$ requires 7RC time constants.

The $\pm 0.1 \%$ factor was chosen for the MC1741S settling time as it is compatible with the $\pm 1 / 2$ LSB accuracy of the MC1508L8 digital-to-analog converter. This D-to-A converter features $\pm 0.19 \%$ maximum error.

FIGURE 12 - WAVEFORM AT FALSE SUMMING NODE


FIGURE 13 - EXPANDED WAVEFORM AT FALSE SUMMING NODE


TYPICAL APPLICATION
FIGURE 14 - 12.5-WATT WIDEBAND POWER AMPLIFIER


Device	Temperature Range	Package
MC1747G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1747L	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP
MC1747CD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-14
MC1747CG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1747CL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC1747CP2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP

## (DUAL MC1741) <br> INTERNALLY COMPENSATED, HIGH PERFORMANCE OPERATIONAL AMPLIFIER

... designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. The MC1747L and MC1747CL are functionally and electrically equivalent to the $\mu \mathrm{A} 747$ and $\mu \mathrm{A} 747 \mathrm{C}$ respectively.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up
- Offset Voltage Null Capability


Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent right of Motorola Inc. or others.


## (DUAL MC1741)

DUAL
OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT


MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Rating	Symbol	MC1747	MC1747C	Unit
Power Supply Voltages	$V_{C C}$		+18	Vdc
	$V_{\text {EE }}$	-22	-18	
Differential Input Signal Voltage (1)	$V_{10}$	$\pm 30$		Volts
Common-Mode Input Swing Voltage (2)	$V$ ICR	$\pm 15$		Volts
Output Short-Circuit Duration	${ }^{\text {tos }}$	Continuous		
Voltage (Measurement between Offset Null and $\mathrm{V}_{\text {EE }}$ )		$\pm 0.5$		Volts
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Ceramic and Metal Package Plastic Package	TJ	175		${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{E E}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristics	Symbol	MC1747 MC1747C						Unit
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} C \\ & T_{A}=T_{\text {high }}(3) \\ & T_{A}=T_{\text {low }}(3) \end{aligned}$	I/B		$\begin{gathered} 80 \\ 30 \\ 300 \end{gathered}$	$\begin{aligned} & 500 \\ & 500 \\ & 1500 \end{aligned}$	-	$\begin{aligned} & 80 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 500 \\ & 800 \\ & 800 \end{aligned}$	nAdc
$\begin{gathered} \text { Input Offset Current } \\ T_{A}=+25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {high }} \\ T_{A}=T_{\text {low }} \\ \hline \end{gathered}$	110		$\begin{aligned} & 20 \\ & 7.0 \\ & 85 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \\ & 300 \end{aligned}$	nAdc
$\begin{aligned} & \text { Input Offset Voltage }\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {iow }} \text { to } T_{\text {high }} \end{aligned}$	$V_{10}$	-	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mVdc
Offset Voltage Adjustment Range		-	$\pm 15$	-	-	$\pm 15$	-	mV
Differential Input Impedance (Open-loop, $\mathrm{f}=20 \mathrm{~Hz}$ )   Parallel Input Resistance   Parallel Input Capacitance	$\begin{aligned} & r_{i} \\ & c_{i} \end{aligned}$	0.3	$\begin{aligned} & 2.0 \\ & 1.4 \end{aligned}$		0.3	$\begin{aligned} & 2.0 \\ & 1.4 \end{aligned}$	-	$\begin{gathered} \mathrm{M} \Omega \\ \mathrm{pF} \end{gathered}$
Common-Mode Input Voltage Swing $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	$\mathrm{V}_{\text {ICR }}$	$\pm 12$	$\pm 13$	-	$\pm 12$	$\pm 13$	-	Volts
Common-Mode Rejection Ratio ( $\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$ ) $\mathrm{T}_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$ $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	CMRR	70	90	-	70	90	-	dB
$\begin{aligned} & \text { Open-Loop Voltage Gain } \\ & \left.\begin{array}{l} T_{A}=+25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{array}\right\}\left(\mathrm{V}_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \end{aligned}$	$A_{\text {vol }}$	$\begin{aligned} & 50,000 \\ & 25,000 \\ & \hline \end{aligned}$	200,000	-	$\begin{array}{\|l\|} \hline 25,000 \\ 15,000 \end{array}$	200,000 -	-	Volts
```Transient Response (Unity Gain) \(\left(\mathrm{V}_{\mathrm{in}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}\right)\) Rise Time Overshoot Percentage```	tPLH	-	$\begin{aligned} & 0.3 \\ & 5.0 \end{aligned}$	-		$\begin{aligned} & 0.3 \\ & 5.0 \\ & \hline \end{aligned}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \hline \end{gathered}$
Slew Rate (Unity Gain)	SR	-	0.5	-	-	0.5	-	$\mathrm{V} / \mathrm{\mu s}$
Output Impedance	z_{0}	-	75	-	-	75	-	ohms
Short-Circuit Output Current	'os	-	25	-	-	25	-	mAdc
Channel Separation		-	120	-	-	120	-	dB
$\begin{aligned} & \text { Output Voltage Swing }\left(T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}\right) \\ & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega \end{aligned}$	$\mathrm{V}_{\text {OR }}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$\begin{array}{r} \pm 12 \\ \pm 10 \end{array}$	$\begin{array}{r} \pm 14 \\ \pm 13 \end{array}$		$V_{\text {pk }}$
Power Supply Sensitivity ($T_{\text {low }}$ to $T_{\text {high }}$) $V_{E E}=$ Constant, $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$ $\mathrm{V}_{\mathrm{CC}}=$ Constant, $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	PSS+ PSS-	-	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	-	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Current (each amplifier) $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \\ & T_{A}=T_{\text {high }} \\ & \hline \end{aligned}$	'cc.'ee	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.3 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 1.7 \\ & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.3 \\ & 3.3 \end{aligned}$	mAdc
DC Power Consumption (each amplifier) $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \\ & T_{A}=T_{\text {high }} \end{aligned}$	${ }^{P} \mathrm{C}$	-	$\begin{aligned} & 50 \\ & 60 \\ & 45 \end{aligned}$	$\begin{gathered} 85 \\ 100 \\ 75 \end{gathered}$	-	$\begin{aligned} & 50 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 85 \\ & 100 \\ & 100 . \end{aligned}$	mW

(1) For supply voltages of less than $\pm 15 \mathrm{~V}$, the maximum differential input voltage is equal to $\pm\left(\mathrm{V}_{\mathrm{CC}}+\left|\mathrm{V}_{\mathrm{EE}}\right|\right)$.
(2) For supply voltages of less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage ($+\mathrm{V}_{\mathrm{CC}},-\left|\mathrm{V}_{\mathrm{EE}}\right|$.
(3) Tlow: $0^{\circ} \mathrm{C}$ for MC 1747 CL
$-55^{\circ} \mathrm{C}$ for MC1747L
$T_{\text {high: }}+70^{\circ} \mathrm{C}$ for MC1747CL
$+125^{\circ} \mathrm{C}$ for MC1747L

FIGURE 3 - TYPICAL FREQUENCY-SHIFT KEYER TONE
GENERATOR TEST CIRCUIT

$0.5 \mathrm{~ms} /$ DIV.
TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)
FIGURE 5 - OPEN-LOOP VOLTAGE GAIN
versus POWER-SUPPLY VOLTAGE

FIGURE 7 - POWER BANDWIDTH (LARGE SIGNAL SWING versus FREQUENCY)

FIGURE 6 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 8 - POWER CONSUMPTION versus POWER SUPPLY VOLTAGE

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted. $)$

FIGURE 10 - OUTPUT NOISE versus SOURCE RESISTANCE

ORDERING INFORMATION

Device	Temperature Range	Package
MC1748G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC1748U	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP
MC1748CG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Metal Can
MC1748CP1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC1748CU	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP

HIGH PERFORMANCE OPERATIONAL AMPLÍFIER

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Noncompensated MC1741
- Single 30 pF Capacitor Compensation Required For Unity Gain
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

TYPICAL COMPENSATION CIRCUITS

FIGURE 4 - FEEDFORWARD COMPENSATION

MC1748, MC1748C

MAXIMUM RATINGS (TA $=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	MC1748	MC1748C	Unit
Power Supply Voltage	$\begin{aligned} & V_{C C} \\ & V_{E E} \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	$\begin{aligned} & +18 \\ & -18 \end{aligned}$	Vdc
Differential Input Signal	$V_{\text {in }}$	± 30		Volts
Common-Mode Input Swing (1)	VICR	± 15		Volts
Output Short Circuit Duration	t_{s}	Continuous		
Power Dissipation (Package Limitation) Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 680 \\ & 4.6 \end{aligned}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	-55 to +125	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T stg	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($V_{C C}+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted. $)$

Characteristics	Symbol	MC1748			MC1748C			Unit	
		Min	Typ	Max	Min	Typ	Max		
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \text { (2) } \end{aligned}$	$I_{1 B}$	-	$\begin{gathered} 0.08 \\ 0.3 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	-	0.08	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	μ Adc	
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	11101	-	$\begin{aligned} & 0.02 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$		0.02	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\mu \mathrm{Adc}$	
$\begin{aligned} & \text { Input Offset Voltage (} \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{ks} \text {) } \\ & \begin{array}{l} T_{A}=+25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{array} \end{aligned}$	\| VIO		-	1.0	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	--	1.0	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mVdc
Differential Input Impedance (Open-Loop, f=20 Hz) Parallel Input Resistance Parallel Input Capacitance	$\begin{aligned} & R_{p} \\ & C_{p} \end{aligned}$	0.3	$\begin{aligned} & 2.0 \\ & 1.4 \end{aligned}$	--	0.3	$\begin{aligned} & 2.0 \\ & 1.4 \end{aligned}$	$-$	Megohm pF	
Common-Mode Input Impedance (f 20 Hz)	$z_{\text {in }}$	-	200	-	-	200		Megohms	
Common-Mode Input Voltage Swing	VICR	± 12	± 13	-'	± 12	± 13	-	V_{pk}	
Common-Mode Rejection Ratio ($f=100 \mathrm{~Hz}$)	CMRR	70	90	-	70	90	-	dB	
Open-Loop Voltage Gain, ($\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$ ohms) $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	Avol	$\begin{aligned} & 50,000 \\ & 25,000 \end{aligned}$	200,000 -	-	$\begin{aligned} & 20,000 \\ & 15,000 \end{aligned}$	200,000		V / V	
Step Response ($\mathrm{V}_{\mathrm{in}}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{ks}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$) Rise Time Overshoot Percentage Slew Rate	$\begin{gathered} \mathrm{t}_{\mathrm{r}} \\ \mathrm{~d} \mathrm{~V}_{\text {out }} / \mathrm{dt} \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.3 \\ & 5.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$		$\begin{aligned} & 0.3 \\ & 5.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$	
	z_{0}	-	75	-	-	75	-	ohms	
Short-Circuit Output Current	$I_{\text {sc }}$	-	25	-	--	25	-	mAdc	
$\text { Output Voltage Swing (} R_{L}=10 \mathrm{k} \text { ohms) } \quad \begin{aligned} R_{L} & \left.=2 \mathrm{k} \text { ohms (} T_{A}=T_{\text {low }} \text { to } t_{\text {high }}\right) \end{aligned}$	VO	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	$-$	Vpk	
Power Supply Sensitivity $\mathrm{V}_{\mathrm{EE}}=$ constant, $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}$ ohms $\mathrm{V}_{\mathrm{CC}}=$ constant, $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}$ ohms	$\begin{aligned} & \text { S+ } \\ & \mathrm{S}- \end{aligned}$	-	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$-$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$	
Power Supply Current	$\begin{aligned} & 1 \mathrm{D}^{+} \\ & 10^{-} \end{aligned}$	-	$\begin{aligned} & 1.67 \\ & 1.67 \end{aligned}$	$\begin{aligned} & 2.83 \\ & 2.83 \end{aligned}$	-	$\begin{aligned} & 1.67 \\ & 1.67 \end{aligned}$	$\begin{aligned} & 2.83 \\ & 2.83 \end{aligned}$	mAdc	
DC Quiescent Power Dissipation $\left(v_{0}=0\right)$	P_{D}	-	50	85	-	50	85	mW	

(1) For supply voltages less than $\pm 15 \mathrm{~V}$, the Maximum Input Voltage is equal to the Supply Voltage.

(2) Tlow: | | $0^{\circ} \mathrm{C}$ for MC1748C |
| ---: | :--- |
| | $-55^{\circ} \mathrm{C}$ for MC1748 |
| $T_{\text {high: }}$ | $+70^{\circ}$ for MC1748C |
| | $+125^{\circ} \mathrm{C}$ for MC1748 |

TYPICAL CHARACTERISTICS
$\left(V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

TYPICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Specifications and Applications Information

MONOLITHIC MICROPOWER PROGRAMMABLE OPERATIONAL AMPLIFIER

This extremely versatile operational amplifier features low power consumption and high input impedance. In addition, the quiescent currents within the device may be programmed by the choice of an external resistor value or current source applied to the $I_{\text {set }}$ input. This allows the amplifier's characteristics to be optimized for input current and power consumption despite wide variations in operating power supply voltages.

- $\pm 1.2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Operation
- Wide Programming Range
- Offset Null Capability
- No Frequency Compensation Required
- Low Input Bias Currents
- Short-Circuit Protection

bipolar current source

Pins not shown are not connected.

PROGRAMMABLE OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package
MC1776G	-55 to $+125^{\circ} \mathrm{C}$	Metal Can
MC1776U	-	Ceramic DIP
MC1776CD	0 to $+70^{\circ} \mathrm{C}$	SO-8
MC1776CG		Metal Can
MC1776CP1		Plastic DIP
MC1776CU		Ceramic DIP

MAXIMUM RATINGS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}$	± 18	Vdc
Differential Input Voltage	$V_{\text {ID }}$: 30	Vdc
Common-Mode Input Voltage $V_{C C}$ and $i V_{E E}<15 \mathrm{~V}$ $V_{C C}$ and $\mid V_{E E}>15 \mathrm{~V}$	VICM	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{EE}} \\ \pm 15 \end{gathered}$	Vdc
Offset Null to $\mathrm{V}_{\text {EE }}$ Voltage	$V_{\text {off }}-V_{\text {EE }}$	± 0.5	Vdc
Programming Current	$\mathrm{I}_{\text {set }}$	500	$\mu \mathrm{A}$
Programming Voltage (Voltage from $I_{\text {set }}$ terminal to ground)	$\mathrm{V}_{\text {set }}$	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\right) \\ \text { to } \\ \mathrm{V}_{\mathrm{CC}} \\ \hline \end{gathered}$	Vdc
Output Short-Circuit Duration*	$\mathrm{t}_{\text {s }}$	Indefinite	s
Operating Temperature Range MC1776 MC1776C	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal and Ceramic Packages Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Junction Temperature Metal and Ceramic Packages Plastic Package	TJ	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

*May be to ground or either Supply Voltage. Rating applies up to a case temperature of $+125^{\circ} \mathrm{C}$ or ambient temperature of $+70^{\circ} \mathrm{C}$ and $\mathrm{I}_{\text {set }} \leqslant 30 \mu \mathrm{~A}$.

SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS ${ }^{(} \mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{~V} .1_{\text {set }}=1.5 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted. $)$

Characteristic	Symbol	MC1776			MC1776C			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage (} \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega \text {) } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }}{ }^{*} \leqslant T_{A} \leqslant T_{\text {high }}{ }^{*} \\ & \hline \end{aligned}$	V_{10}	$\begin{aligned} & - \\ & - \end{aligned}$	2.0 -	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	2.0 -	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Offset Voltage Adjustment Range	VIOR	-	9.0	-	-	9.0	-	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \\ & \hline \end{aligned}$	110	$\begin{aligned} & - \\ & - \end{aligned}$	0.7 -	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 10 \end{aligned}$	-	0.7 - -	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 10 \end{aligned}$	nA
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	IIB	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	2.0	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 20 \end{aligned}$	-	2.0 - -	$\begin{aligned} & 10 \\ & 10 \\ & 20 \end{aligned}$	nA
Input Resistance	r_{i}	-	50	-	-	50	-	$\mathrm{M} \Omega$
Input Capacitance	c_{i}	-	2.0	-	-	2.0	-	pF
Input Voltage Range $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	$\mathrm{V}_{\text {ID }}$	$+1.0$	-	-	± 1.0	-	-	V
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & R_{L} \geqslant 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}} \geqslant 75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{~T}_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	AVOL	$\begin{aligned} & 50 \mathrm{k} \\ & 25 \mathrm{k} \end{aligned}$	200 k		$\begin{aligned} & 25 k \\ & 25 k \end{aligned}$	$200 \mathrm{k}$		V/V
$\begin{aligned} & \text { Output Voltage Swing } \\ & R_{L} \geqslant 75 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	V_{O}	± 2.0	± 2.4	-	± 2.0	± 2.4	-	V
Output Resistance	r_{0}	-	5.0	-	-	5.0	-	$\mathrm{k} \Omega$
Output Short-Circuit Current	$\mathrm{I}_{\text {os }}$	-	3.0	-	-	3.0	-	mA
$\begin{aligned} & \text { Common-Mode Rejection Ratio } \\ & R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	CMRR	70	86	-	70	86	-	dB
$\begin{aligned} & \text { Supply Voltage Rejection Ratio } \\ & R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	PSRR	-	25	150	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Supply Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{\text {I CC, }}$ IEE	-	13	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	-	13	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{~T}_{\text {high }} \end{aligned}$	${ }^{P}$ D	-	78	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	-	78	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	$\mu \mathrm{W}$
Transient Response (Unity Gain) $V_{\text {in }}=20 \mathrm{mV}, R_{L} \geqslant 5.0 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$ Rise Time Overshoot	$\begin{gathered} \text { tTLH } \\ \text { OS } \end{gathered}$	-	$\begin{gathered} 3.0 \\ 0 \end{gathered}$	-	-	$\begin{gathered} 3.0 \\ 0 \\ \hline \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \% \\ & \hline \end{aligned}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{kS}$)	S_{R}	-	0.03	-	-	0.03	-	$\mathrm{V} / \mu \mathrm{s}$

*T $\begin{array}{rlrl} & -55^{\circ} \mathrm{C} \text { for } \mathrm{MC} 1776 \\ 0^{\circ} \mathrm{C} \text { for } \mathrm{MC} 1776 \mathrm{C}\end{array} \quad \begin{aligned} T_{\text {high }}= & +125^{\circ} \mathrm{C} \text { for } \mathrm{MC} 1776 \\ & +70^{\circ} \mathrm{C} \text { for } \mathrm{MC} 1776 \mathrm{C}\end{aligned}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{~V}, \mathrm{I}_{\text {set }}=15 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MC1776			MC1776C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$) $T_{A}=+25^{\circ} \mathrm{C}$ $T_{\text {low }}{ }^{*} \leqslant T_{A} \leqslant T_{\text {high }}{ }^{*}$	V_{10}	$-$	2.0	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$-$	2.0 -	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Offset Voltage Adjustment Range	VIOR	-	18	-	-	18	-	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	110	-	$\begin{gathered} 2.0 \\ - \\ - \end{gathered}$	$\begin{aligned} & 15 \\ & 15 \\ & 40 \end{aligned}$	-	2.0	$\begin{aligned} & 25 \\ & 25 \\ & 40 \\ & \hline \end{aligned}$	$n \mathrm{~A}$
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \end{aligned}$	$1 / \mathrm{B}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	15	$\begin{gathered} 50 \\ 50 \\ 120 \end{gathered}$	-	15	$\begin{gathered} 50 \\ 50 \\ 100 \end{gathered}$	nA
Input Resistance	r_{i}	-	5.0	-	-	5.0	-	$\mathrm{M} \Omega$
Input Capacitance	c_{i}	-	2.0	-	-	2.0	-	pF
Input Voltage Range $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	$V_{\text {ID }}$	± 1.0	-	-	± 1.0	-	-	V
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & R_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{~T}_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \\ & \hline \end{aligned}$	AVOL	$\begin{aligned} & 50 \mathrm{k} \\ & 25 \mathrm{k} \end{aligned}$	$200 \mathrm{k}$		$\begin{aligned} & 25 k \\ & 25 k \end{aligned}$	$200 \text { k }$		V/V
$\begin{aligned} & \text { Output Voltage Swing } \\ & R_{L} \geqslant 5.0 \mathrm{k} s 2, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	V_{O}	± 1.9	± 2.1	-	± 2.0	± 2.1	-	V
Output Resistance	r_{0}	-	1.0	-	-	1.0	-	ks
Output Short-Circuit Current	Ios	-	5.0	-	-	5.0	-	mA
Common-Mode Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega 2, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	CMRR	70	86	-	70	86	-	dB
$\begin{aligned} & \text { Supply Voltage Rejection Ratio } \\ & R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	PSRR	-	25	150	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
Supply Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{\prime} \mathrm{CC}, ~ I E E$	-		$\begin{aligned} & 160 \\ & 180 \end{aligned}$	$-$		$\begin{aligned} & 170 \\ & 180 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{\text {P }}$	-	780	$\begin{gathered} 960 \\ 1080 \end{gathered}$	-	780	$\begin{aligned} & 1020 \\ & 1080 \end{aligned}$	$\mu \mathrm{W}$
Transient Response (Unity Gain) $V_{\text {in }}=20 \mathrm{mV}, R_{L} \geqslant 5.0 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$ Rise Time Overshoot	$\begin{gathered} \text { tTi-H } \\ \text { OS } \\ \hline \end{gathered}$	-	$\begin{aligned} & 0.6 \\ & 5.0 \end{aligned}$	-	-	$\begin{aligned} & 0.6 \\ & 5.0 \end{aligned}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \% \\ & \hline \end{aligned}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega$)	$\mathrm{S}_{\text {R }}$	-	0.35	-	-	0.35	-	$\mathrm{V} / \mathrm{\mu s}$
$* T$ low $=-55^{\circ} \mathrm{C}$ for MC1776 Thigh $=$ $+125^{\circ} \mathrm{C}$ for MC1776 $0^{\circ} \mathrm{C}$ for MC1776C $+70^{\circ} \mathrm{C}$ for MC1776C								

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{I}_{\text {set }}=1.5 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MC1776			MC1776C			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage }\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }}{ }^{*} \leqslant T_{A} \leqslant T_{\text {high }}{ }^{*} \end{aligned}$	V_{10}	-	2.0 -	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	-	2.0 -	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Offset Voltage Adjustment Range	$V_{\text {IOR }}$	-	9.0	-	-	9.0	-	mV
$\begin{gathered} \text { Input Offset Current } \\ T_{A}=+25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {high }} \\ T_{A}=T_{\text {low }} \end{gathered}$	110	-	0.7 -	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 10 \end{aligned}$	-	0.7 -	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 10 \\ & \hline \end{aligned}$	nA
Input Bias Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \\ & \hline \end{aligned}$	${ }^{1}$ IB	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	2.0 - -	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 20 \end{aligned}$	-	2.0	$\begin{aligned} & 10 \\ & 10 \\ & 20 \end{aligned}$	nA
Input Resistance	r_{i}	-	50	-	-	50	-	$\mathrm{M} \Omega$
Input Capacitance	c_{i}	-	2.0	-	-	2.0	-	pF
Input Voltage Range $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	$V_{\text {ID }}$	± 10	-	-	± 10	-	-	V
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & R_{L} \geqslant 75 \mathrm{k} \Omega, V_{O}= \pm 10 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{L} \geqslant 75 \mathrm{k} \Omega, V_{O}= \pm 10 \mathrm{~V}, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	AVOL	$\begin{aligned} & 200 \mathrm{k} \\ & 100 \mathrm{k} \end{aligned}$			$\begin{aligned} & 50 \mathrm{k} \\ & 50 \mathrm{k} \end{aligned}$	$400 \mathrm{k}$		V/V
$\begin{aligned} & \text { Output Voltage Swing } \\ & R_{L} \geqslant 75 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{L} \geqslant 75 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	± 14	-	$\begin{array}{r} \pm 12 \\ \pm 10 \end{array}$			V
Output Resistance	ro	-	5.0	-	-	5.0	-	$\mathrm{k} \Omega$
Output Short-Circuit Current	Ios	-	3.0	-	-	3.0	-	mA
Common-Mode Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	CMRR	70	90	-	70	90	-	dB
$\begin{aligned} & \text { Supply Voltage Rejection Ratio } \\ & R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \\ & \hline \end{aligned}$	PSRR	-	25	150	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Supply Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{\text {I Co. IEE }}$	-	20	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	-	20	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	P_{D}	-	-	$\begin{gathered} 0.75 \\ 0.9 \end{gathered}$	-	-	$\begin{gathered} 0.9 \\ 1.05 \end{gathered}$	mW
Transient Response (Unity Gain) $V_{i n}=20 \mathrm{mV}, R_{L} \geqslant 5.0 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$ Rise Time Overshoot	$\begin{aligned} & \text { tTLH } \\ & \text { OS } \end{aligned}$	-	$\begin{gathered} 1.6 \\ 0 \end{gathered}$	-	-	$\begin{gathered} 1.6 \\ 0 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega$)	S_{R}	-	0.1	-	-	0.1	-	$\mathrm{V} / \mathrm{\mu s}$

$\begin{array}{rrr}* T_{\text {low }}= & -55^{\circ} \mathrm{C} \text { for MC1776 } \\ 0^{\circ} \mathrm{C} \text { for MC1776C } & \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C} \text { for MC1776 } \\ & +70^{\circ} \mathrm{C} \text { for MC1776C }\end{array}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{i}_{\text {Set }}=15 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MC1776			MC1776C			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset } V \text { oltage }\left(R_{S} \leqslant 10 \mathrm{ks} 2\right) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}{ }^{*} \end{aligned}$	V_{10}	-	2.0	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$		2.0	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Offset Voltage Adjustment Range	VIOR	-	18	-	-	18	-	mV
Input Offset Current $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {high }} \\ & T_{A}=T_{\text {low }} \\ & \hline \end{aligned}$	110	-	2.0 -	$\begin{aligned} & 15 \\ & 15 \\ & 40 \end{aligned}$	-	2.0	$\begin{aligned} & 25 \\ & 25 \\ & 40 \end{aligned}$	nA
$\begin{gathered} \text { Input Bias Current } \\ T_{A}=+25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {high }} \\ T_{A}=T_{\text {low }} \end{gathered}$	I/B	$-$	15	$\begin{gathered} 50 \\ 50 \\ 120 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	15	$\begin{gathered} 50 \\ 50 \\ 100 \end{gathered}$	nA
Input Resistance	r_{i}	-	5.0	--	-	5.0	-	$\mathrm{M} \Omega$
Input Capacitance	c_{i}	-	2.0	-	-	2.0	-	pF
Input Voltage Range $T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	$\mathrm{V}_{\text {ID }}$	± 10	-	-	+10	-	-	V
Large Signal Voltage Gain $\begin{aligned} & R_{L} \geqslant 5.0 \mathrm{k} \Omega, V_{O}= \pm 10 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{L} \geqslant 75 \mathrm{k} \Omega, V_{O}= \pm 10 \mathrm{~V}, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	AVOL	$\begin{aligned} & 100 \mathrm{k} \\ & 75 \mathrm{k} \end{aligned}$	$400 \mathrm{k}$	-	$\begin{aligned} & 50 \mathrm{k} \\ & 50 \mathrm{k} \end{aligned}$	$\begin{gathered} 400 \mathrm{k} \\ \hline \end{gathered}$		V/V
$\begin{aligned} & \text { Output Voltage Swing } \\ & R_{L} \geqslant 5.0 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{L} \geqslant 75 \mathrm{k} \Omega, T_{\text {iow }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	V_{O}	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	± 13			± 13		V
Output Resistance	r_{0}	-	1.0	-	-	1.0	-	k Ω
Output Short-Circuit Current	los	-	12	-	-	12	-	mA
Common-Mode Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	CMRR	70	90	-	70	90	-	dB
Supply Voltage Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega, T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }}$	PSRR	-	25	150	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Supply Current } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{1} \mathrm{CC} .1 \mathrm{IEE}$	$-$	160	$\begin{aligned} & 180 \\ & 200 \end{aligned}$	-	160	$\begin{aligned} & 190 \\ & 200 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {low }} \leqslant T_{A} \leqslant T_{\text {high }} \end{aligned}$	${ }^{\text {P }}$	-	--	$\begin{aligned} & 5.4 \\ & 6.0 \end{aligned}$	-	-	$\begin{aligned} & 5.7 \\ & 6.0 \\ & \hline \end{aligned}$	mW
Transient Response (Unity Gain) $V_{\text {in }}=20 \mathrm{mV}, R_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ Rise Time Overshoot	$\begin{gathered} \text { tTLH } \\ \text { OS } \end{gathered}$	-	$\begin{gathered} 0.35 \\ 10 \end{gathered}$	-	-	$\begin{gathered} 0.35 \\ 10 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \% \\ & \hline \end{aligned}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geqslant 5.0 \mathrm{k} \Omega$)	S_{R}	-	0.8	-	-	0.8	-	$\mathrm{V} / \mu \mathrm{s}$

*T $T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1776
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC 1776
$0^{\circ} \mathrm{C}$ for MC 1776 C
$+70^{\circ} \mathrm{C}$ for MC 1776 C

TYPICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

FIGURE 1 - SET CURRENT versus SET RESISTOR

$I_{\text {set }}$ SET CURRENT ($\mu \mathrm{A}$)

FIGURE 3 - OPEN-LOOP GAIN versus SET CURRENT

FIGURE 5 - INPUT BIAS CURRENT versus AMBIENT TEMPERATURE

FIGURE 2 - POSITIVE STANDBY SUPPLY CURRENT versus SET CURRENT

$I_{\text {set }}$ SET CURRENT ($\mu \mathrm{A}$)

FIGURE 4 -- INPUT BIAS CURRENT versus SET CURRENT

FIGURE 6 - GAIN-BANDWIDTH PRODUCT (GBW) versus SET CURRENT

TYPICAL CHARACTERISTICS (continued)
($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

APPLICATIONS INFORMATION

FIGURE 13 - WIEN BRIDGE OSCILLATOR

FIGURE 14 - MULTIPLE FEEDBACK BANDPASS FILTER

$f_{0}=$ center frequency
$A\left(f_{0}\right)=$ Gain at center frequency
Q = quality factor
Choose a value for C , then

$$
\begin{aligned}
& R_{5}=\frac{Q}{\pi f_{0} C} \\
& R 1=\frac{R 5}{2 A\left(f_{0}\right)} \\
& R 2=\frac{R 1 . R 5}{4 a^{2} R 1 \cdot R 5}
\end{aligned}
$$

To obtain less than 10% error from the operational amplifier:

$$
\frac{a_{0} f_{0}}{G B W} \leqslant 0.1
$$

where f_{0} and GBW are expressed in Hz_{2}. GBW is available from
Figure 6 as a function of Set Current, Iset.

FIGURE 15 - MULTIPLE FEEDBACK BANDPASS FILTER $(1.0 \mathrm{kHz})$

FIGURE 16 - GATED AMPLIFIER

FIGURE 17 - HIGH INPUT IMPEDANCE AMPLIFIER

Specifications and Applications Information

QUAD SINGLE SUPPLY OPERATIONAL AMPLIFIER

These internally compensated Norton operational amplifiers are designed specifically for single positive power supply applications found in industrial control systems and automotive electronics. Each device contains four independent amplifiers - making it ideal for applications such as active filters, multi-channel amplifiers, tachometers, oscillators and other similar usages.

- Single-Supply Operation
- Internally Compensated
- Wide Unity Gain Bandwidth: 4.0 MHz Typical
- Low Input Bias Current: 50 nA Typical
- High Open-Loop Gain: 1000 V/N Minimum
- Large Output Voltage Swing: $\left(V_{C C}-1\right) V_{p-p}$
MAXIMUM RATINGS

Rating	Symbol	$\begin{aligned} & \text { LM2900/ } \\ & \text { LM3900 } \end{aligned}$	MC3301	MC3401	Unit
Supply Voltage	V_{CC}	+32	+28	+ 18	V
Input Currents (lin^{+}or lin^{-})	1 in	5.0	5.0	5.0	mA
Output Current	10	50	50	50	mA
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$) Derate above $T_{A}=+25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ 1 / \mathrm{R}_{\theta J \mathrm{~A}} \\ \hline \end{gathered}$	$\begin{aligned} & 625 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 625 \\ 5.0 \\ \hline \end{array}$	$\begin{aligned} & 625 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating Ambient Temperature Range LM2900 LM3900	$\mathrm{T}_{\mathbf{A}}$.	$\left.\begin{gathered} - \\ -40 \text { to } \\ +85 \\ 0 \text { to }+70 \end{gathered} \right\rvert\,$	$\begin{gathered} -40 \text { to } \\ +85 \\ - \\ - \end{gathered}$	$0 \text { to }+70$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$\begin{gathered} -65 \text { to } \\ +150 \end{gathered}$	$\begin{gathered} -65 \text { to } \\ +150 \end{gathered}$	$\begin{gathered} -65 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	LM2900			LM3900			MC3301			MC3401			Unit
		Min	Typ	Max										
Open-Loop Voltage Gain $\begin{aligned} & f=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \\ & \mathrm{~T}_{\mathbf{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}(\text { Notes } 1,2) \end{aligned}$	AVOL	1.2	2.0	-	1.2	2.0	-	1.2	2.0	-	$\begin{aligned} & 1.2 \\ & 0.8 \end{aligned}$	2.0	-	V/mV
Input Resistance (Inverting Input)	r_{i}	-	1.0	-	-	1.0	-	-	1.0	-	0.1	1.0	-	$\mathrm{M} \Omega$
Output Resistance	ro	-	8.0	-	-	8.0	-	-	8.0	-	-	8.0	-	$\mathrm{k} \Omega$
Input Bias Current (Inverting Input) $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ (Note 1)	I'B	-	50	200	-	50	200	-	50	300	-	50	$\begin{array}{r} 300 \\ 500 \\ \hline \end{array}$	nA
Slew Rate ($C_{L}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}$) Positive Output Swing Negative Output Swing	SR	-	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	-	-	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	-	-	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	-	-	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	-	$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth	BW	-	4.0	-	-	4.0	-	-	4.0	-	-	4.0	-	MHz
Output Voltage Swing (Note 7)	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \\ & \mathrm{v}_{\mathrm{OH}} \end{aligned}$	$\frac{13.5}{-}$	$\begin{aligned} & 14.2 \\ & 0.03 \\ & 29.5 \\ & \hline \end{aligned}$	-	$\left\lvert\, \begin{gathered} 13.5 \\ - \end{gathered}\right.$	$\begin{array}{\|l\|} \hline 14.2 \\ 0.03 \\ 29.5 \\ \hline \end{array}$	$\overline{0.2}$	$\left\lvert\, \begin{gathered} 13.5 \\ - \end{gathered}\right.$	$\begin{array}{\|l} 14.2 \\ 0.03 \\ \\ 25.5 \\ \hline \end{array}$	$\overline{0.2}$	13.5	$\begin{aligned} & 14.2 \\ & 0.03 \\ & 15.5 \\ & \hline \end{aligned}$	$\overline{0.2}$	V
Output Current Source Sink (Note 3) Low Level Output Current $\mathrm{I}_{\text {in }^{-}}=5.0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	Isource I sink IOL	$\begin{aligned} & 6.0 \\ & 0.5 \\ & - \end{aligned}$	$\begin{array}{\|c\|} 10 \\ 0.87 \\ 5.0 \end{array}$	-	6.0 0.5 -	$\begin{array}{\|c\|} 10 \\ 0.87 \\ 5.0 \end{array}$	-	5.0 0.5 -	$\begin{array}{\|c\|} 10 \\ 0.87 \\ 5.0 \end{array}$	-	5.0 0.5 -	$\begin{array}{\|c\|} 10 \\ 0.87 \\ 5.0 \end{array}$	-	mA
Supply Current (All Four Amplifiers) Noninverting Inputs Open Noninverting Inputs Grounded	$\begin{aligned} & \text { IDO } \\ & \text { IDG } \end{aligned}$	-	$\begin{aligned} & 6.9 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	-	6.9 7.8	10	-	6.9 7.8	10 14	-	$\begin{aligned} & 6.9 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	mA
Power Supply Rejection ($f=100 \mathrm{~Hz}$)	PSRR	-	55	-	-	55	-	-	55	-	-	55	-	dB
$\begin{aligned} & \text { Mirror Gain (} T_{A}=T_{\text {low }} \text { to } T_{\text {high; }} \text { Notes 1, 4) } \\ & l_{\text {in }}+=20 \mu \mathrm{~A} \\ & l_{\text {in }}+=200 \mu \mathrm{~A} \end{aligned}$	$\mathrm{A}_{\boldsymbol{i}}$	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	1.0 1.0	1.1 1.1	0.90 0.90	1.0 1.0	1.1 1.1	0	1.0 1.0	1.1 1.1	0.90	1.0 1.0	1.1 1.0	$\mu \mathrm{A}$
Δ Mirror Gain ($\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$; Notes 1,4) $20 \mu \mathrm{~A} \leqslant \mathrm{I}_{\text {in }}+\leqslant 200 \mu \mathrm{~A}$	$\Delta \mathrm{A}_{\mathbf{i}}$	-	2.0	5.0	-	2.0	5.0	-	2.0	5.0	-	2.0	5.0	\%
Mirror Current ($T_{A}=T_{\text {low }}$ to $T_{\text {high }}$; Note 1)		-	10	500	-	10	500	-	10	500	-	10	500	$\mu \mathrm{A}$
Negative Input Current (Note 6)		-	1.0	-	-	1.0	-	-	1.0	-	-	1.0	-	mA

NOTES:

1. $T_{\text {low }}=-40^{\circ} \mathrm{C}$ for LM2900, MC3301 \quad Thigh $=+85^{\circ} \mathrm{C}$ for LM2900, MC3301
2. Open-loop voltage gain is defined as voltage gain from the inverting input to the output.
3. Sink current is specified for linear operation. When the device is used as a comparator (non-linear operation) where the inverting input is overdriven, the sink current (low level output current) capability is typically 5.0 mA .
4. This specification indicates the current gain of the current mirror which is used as the noninverting input.
5. Input VBE match between the noninverting and inverting inputs occurs for a mirror current (noninverting input current) of approximately $10 \mu \mathrm{~A}$.
6. Clamp transistors are included to prevent the input voltages from swinging below ground more than approximately -0.3 volts. The negative input currents that may result from large signal overdrive with capacitive input coupling must be limited externally to values of approximately 1.0 mA . Negative input currents in excess of 4.0 mA will cause the output to drop to a low voltage. These values apply for any one of the input terminals. If more than one of the input terminals are simultaneously driven negative, maximum currents are reduced. Common-mode biasing can be used to prevent negative input voltages.
7. When used as a noninverting amplifier, the minimum output voltage is the V_{BE} of the inverting input transistor.

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$
[each amplifier] unless otherwise noted.)

FIGURE 1 - OPEN-LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 3 - OUTPUT RESISTANCE versus FREQUENCY

FIGURE 5 - LINEAR SOURCE CURRENT versus SUPPLY VOLTAGE

FIGURE 2 - OPEN-LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

FIGURE 4 - SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 6 - LINEAR SINK CURRENT versus SUPPLY VOLTAGE

OPERATION AND APPLICATIONS

BASIC AMPLIFIER

The basic amplifier is the common emitter stage shown in Figures 7 and 8. The active load l_{1} is buffered from the input transistor by a PNP transistor, Q4, and from the output by an NPN transistor, Q2. O2 is biased Class A by the current source I_{2}. The magnitude of I_{2} (specified $\mathrm{I}_{\text {sink }}$) is a limiting factor in capacitively cou-
pled linear operation at the output. The sink current of the device can be forced to exceed the specified level by keeping the output dc voltage above ≈ 1.0 volt resulting in an increase in the distortion appearing at the output. Closed-loop stability is maintained by an on-thechip 3-pF capacitor shown in Figure 10 on the following page. No external compensation is required.

FIGURE 7 - BLOCK DIAGRAM

A noninverting input is obtained by adding a current mirror as shown in Figure 9. Essentially all current which enters the noninverting input, $\mathrm{I}_{\text {in }}{ }^{+}$, flows through the diode CR1. The voltage drop across CR1 corresponds to this input current magnitude and this same voltage is applied to a matched device, Q3. Thus Q3 is biased to conduct an emitter current equal to $\mathrm{l}_{\text {in }}{ }^{+}$. Since the alpha current gain of $\mathrm{Q} 3 \approx 1$, its collector current is
approximately equal to $\mathrm{l}_{\mathrm{in}}{ }^{+}$also. In operation this current flows through an external feedback resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the dc quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedure" section.

FIGURE 9 - OBTAINING A NONINVERTING INPUT

BIASING CIRCUITRY

The circuitry common to all four amplifiers is shown in Figure 11. The purpose of this circuitry is to provide biasing voltage for the PNP and NPN current sources used in the amplifiers.
The voltage drops across diodes CR2, CR3 and CR4 are used as references. The voltage across resistor R1 is the sum of the drops across CR4 and CR3 minus the V_{BE} of $\mathrm{Q8}$. The PNP current sources (Q 5 , etc.) are set to the magnitude $\mathrm{V}_{\mathrm{BE}} / \mathrm{R} 1$ by transistor Q 6 . Transistor

FIGURE 10 - A BASIC OPERATIONAL AMPLIFIER

07 reduces base current loading. The voltage across resistor R 2 is the sum of the voltage drops across CR2, CR3 and CR4, minus the VBE drops of transistor Q9 and diode CR5 thus the current set is established by CR5 in all the NPN current sources (Q10, etc.). This technique results in current source magnitudes which are relatively independent of the supply voltage. Q11 (Figure 7) provides circuit protection from signals that are negative with respect to ground.

FIGURE 11 - BIASING CIRCUITRY

NORMAL DESIGN PROCEDURE

1. Output Q-Point Biasing
A. A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing; as shown in Figures 12 and 13 (see the first page of this specification). The high impedance of the collector of the noninverting "current mirror" transistor helps to achieve the maximum loop gain for any particular configuration. It is desirable that the noninverting input current be in the $10 \mu \mathrm{~A}$ to 200 $\mu \mathrm{A}$ range.
B. V_{CC} Reference Voltage (see Figures 12 and 13) The noninverting input is normally returned to the V_{CC} voltage (which should be well filtered) through a resistor, R_{r}, allowing the input current, $\mathrm{l}_{\text {in }}{ }^{+}$, to be within the range of $10 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$.

- Choosing the feedback resistor, R_{f}, to be equal to $1 / 2 R_{r}$ will now bias the amplifier output dc level to approximately $\frac{\mathrm{V}_{\mathrm{CC}}}{2}$. This allows the maximum dynamic range of the output voltage.
C. Reference Voltage other than V_{CC} (see Figure 14) The biasing resistor R_{r} may be returned to a voltage $\left(V_{r}\right)$ other than $V_{C C}$. By setting $R_{f}=R_{r}$, (still keeping lin^{+}between $10 \mu \mathrm{~A}$ and $200 \mu \mathrm{~A}$) the output dc level will be equal to V_{r}. The expression for determining $V^{\text {Odc }}$ is:

$$
V_{O d c}=\frac{\left(A_{i}\right)\left(V_{r}\right)\left(R_{f}\right)}{R_{r}}+\left(1-\frac{R_{f}}{R_{r}} A_{i}\right) \phi
$$

where ϕ is the $V_{B E}$ drop of the input transistors (approximately $0.6 \mathrm{Vdc} @+25^{\circ} \mathrm{C}$ and assumed equal). A_{i} is the current mirror gain.

FIGURE 12 - INVERTING AMPLIFIER

2. Gain Determination
A. Inverting Amplifier

The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the dc bias and the output is normally capacitively coupled to eliminate the dc voltage across the load. Note that when the output is capacitively coupled to the load, the value of I ${ }_{\text {sink }}$ becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direct coupled. In this configuration, the ac gain is determined by the ratio of R_{f} to R_{i}, in the same manner as for a conventional operational amplifier:

$$
A_{v}=\frac{R_{f}}{R_{i}}
$$

The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 4.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 400 kHz with 20 dB of closed-loop gain or 40 kHz with 40 dB of closed-loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed-loop gain intercepts the open-loop response curve. The inverting input capacity is typically 3.0 pF .

FIGURE 14 - INVERTING AMPLIFIER WITH ARBITRARY REFERENCE

FIGURE 15 - INVERTING AMPLIFIER WITH $A_{V}=100$ AND $V_{r}=V_{C C}$

B. Noninverting Amplifier

These devices may be used in the noninverting mode (see Figure 13). The amplifier gain in this configuration is subject to the current mirror gain. In addition, the resistance of the input diode must be included in the value of the input resistor. This resistance is approximately $\frac{26}{\mathrm{lin}^{+}}$ohms, where $l_{\text {in }}{ }^{+}$is input current in milliamperes. The noninverting ac gain expression is given by:

$$
A_{v}=\frac{\left(R_{f}\right)\left(A_{i}\right)}{R_{i}+\frac{26}{l_{i n}+(m A)}}
$$

The bandwidth of the noninverting configuration for a given R_{f} value is essentially independent of will be in excess of 200 kHz for noninverting gains of 1,10 , or 100 . This is a result of the loop gain remaining constant for these gains since the input resistor is effectively isolated from the feedback loop.

TYPICAL APPLICATIONS

FIGURE 16 - TACHOMETER CIRCUIT

FIGURE 17 - VOLTAGE REGULATOR
FIGURE 18 - LOGIC "OR" GATE

FIGURE 19 - LOGIC "NAND" GATE (Large Fan-In)

FIGURE 21 - R-S FLIP-FLOP

FIGURE 23 - POSITIVE-EDGE DIFFERENTIATOR
Output Rise Time $\approx 0.22 \mathrm{~ms}$
Input Change Time Constant $\approx 1.0 \mathrm{~ms}$

FIGURE 20 - LOGIC "NOR" GATE

FIGURE 22 - ASTABLE MULTIVIBRATOR

FIGURE 24 - NEGATIVE-EDGE DIFFERENTIATOR

$\mathrm{V}_{\mathrm{O}}(\mathrm{dc}) \approx 7.0 \mathrm{Vdc}$
Output Rise Time $\approx 0.22 \mathrm{~ms}$ Input Change Time Constant $\approx 1.0 \mathrm{~ms}$

MC3301, MC3401, LM2900, LM3900

FIGURE 25 - AMPLIFIER AND DRIVER FOR A 50-OHM LINE

FIGURE 26 - BASIC BANDPASS AND NOTCH FILTER

FIGURE 27 - BANDPASS AND NOTCH FILTER

TYPICAL APPLICATIONS (continued)

FIGURE 28 - VOLTAGE REGULATOR

$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Z}}+0.6 \mathrm{Vdc}$
NOTE 1: R is used to bias the zener.
NOTE 2: If the Zener TC is positive, and equal in magnitude to the negative TC of the input to the operational amplifier ($\approx 2.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$), the output is zero-TC. A 7.0 Volt Zener will give approximately zero-TC.

FIGURE 29 - ZERO CROSSING DETECTOR

Specifications and Applications Information

QUAD LOW POWER OPERATIONAL AMPLIFIERS

The MC3503 is a low-cost, quad operational amplifier with true differential inputs. The device has electrical characteristics similar to the popular MC1741. However, the MC3503 has several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 Volts or as high as 36 Volts with quiescent currents about one third of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuit Protected Outputs
- Class AB Output Stage for Minimal Crossover Distortion
- True Differential Input Stage
- Single Supply Operation: 3.0 to 36 Volts
- Split Supply Operation: ± 1.5 to ± 18 Volts
- Low Input Bias Currents: 500 nA Max
- Four Amplifiers Per Package
- Internally Compensated
- SImilar Performance to Popular MC1741
- Industry Standard Pinouts

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltages Single Supply Split Supplies	$\begin{aligned} & v_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{array}{r} 36 \\ +18 \\ -18 \end{array}$	Vdc
Input Differential Voltage Range (1)	$V_{\text {IDR }}$	± 36	V dc
Input Common Mode Voltage Range (1) (2)	$V_{\text {ICR }}$	± 18	$V \mathrm{dc}$
Storage Temperature Range Ceramic Package Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range MC3503 MC3403 MC3303	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Junction Temperature Ceramic Package Plastic Package	TJ	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
(1) Split Power Supplies. (2) For Supply Voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.			

ORDERING INFORMATION

Type	Temperature Range	Package
MC3303L	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic DIP
MC3303P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP
MC3403D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-14
MC3403L	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC3403P	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC3503L	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ for MC3503, MC3403; $\mathrm{V}_{\mathrm{CC}}=+14 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Gnd for MCC3303. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	MC3503			MC3403			MC3303			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $T_{A}=T_{\text {high to }} T_{\text {low }}$ (1)	\checkmark_{10}	-	2.0	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	-	2.0 -	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	-	2.0 -	$\begin{gathered} 8.0 \\ 10 \end{gathered}$	mV
Input Offset Current $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$	110	-	30	$\begin{gathered} 50 \\ 200 \end{gathered}$	-	30	$\begin{gathered} 50 \\ 200 \end{gathered}$	-	30	$\begin{gathered} 75 \\ 250 \end{gathered}$	nA
Large Signal Open-Loop Voltage Gain $\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, R_{L}=2.0 \mathrm{k} \Omega, \\ & T_{A}=T_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \end{aligned}$	AVOL	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	200 -	-	$\begin{aligned} & 20 \\ & 15 \\ & \hline \end{aligned}$	200 -	-	V / mV
Input Bias Current $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$	1/8	-	$\begin{aligned} & -200 \\ & -300 \end{aligned}$	$\begin{aligned} & \hline-500 \\ & -1500 \end{aligned}$	-	-200 -	$\begin{aligned} & -500 \\ & -800 \end{aligned}$	-	-200 -	$\begin{gathered} \hline-500 \\ -1000 \end{gathered}$	nA
Output Impedance $f=20 \mathrm{~Hz}$	z_{0}	-	75	-	-	75	-	-	75	-	Ω
Input Impedance $f=20 \mathrm{~Hz}$	z_{i}	0.3	1.0	-	0.3	1.0	-	0.3	1.0	-	M Ω
$\begin{aligned} & \hline \text { Output Voltage Range } \\ & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega, T_{A}=T_{\text {high }} \text { to } T_{\text {low }} \\ & \hline \end{aligned}$	$\mathrm{v}_{\text {OR }}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 13.5 \\ \pm 13 \\ - \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \pm 10 \\ \hline \end{array}$	$\begin{gathered} \pm 13.5 \\ \pm 13 \end{gathered}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & +12 \\ & +10 \\ & +10 \\ & \hline \end{aligned}$	$\begin{gathered} +12.5 \\ +12 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	V
Input Common-Mode Voltage Range	$V_{\text {ICR }}$	$+13 \mathrm{~V}-\mathrm{V}_{\mathrm{EE}}$	+13.5V-VEE	-	$+13 \mathrm{~V}-\mathrm{V}_{\mathrm{EE}}$	+13.5V-VEE	-	$+12 \mathrm{~V}-\mathrm{VEE}$	$+12.5 \mathrm{~V}-\mathrm{V}_{\mathrm{EE}}$	-	V
Common-Mode Rejection Ratio $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	CMRR	70	90	-	70	90	-	70	90	-	dB
Power Supply Current ($\mathrm{V}_{\mathrm{O}}=0$) $R_{L}=\infty$	${ }^{\prime} \mathrm{CC}$, IEE	-	2.8	4.0	-	2.8	7.0	-	2.8	7.0	mA
Individual Output Short-Circuit Current (2)	IOS \pm	± 10	± 30	± 45	± 10	± 20	± 45	± 10	± 30	± 45	mA
Positive Power Supply Rejection Ratio	PSRR+	-	30	150	-	30	150	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Negative Power Supply Rejection Ratio	PSRR-	-	30	150	-	30	150	-	-	-	$\mu \mathrm{V} / \mathrm{V}$
Average Temperature Coefficient of Input Offset Current $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$	${ }^{21} 10^{/ \angle T}$	-	50	-	-	50	-	-	50	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
```Average Temperature Coefficient of Input Offset Voltage \(T_{A}=T_{\text {high }}\) to \(T_{\text {low }}\)```	$\therefore \mathrm{V}_{10} / \mathrm{AT}$	-	10	-	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Power Bandwidth } \\ & A_{V}=1, R_{L}=2.0 \mathrm{ks}, V_{O}=20 \mathrm{~V}(p-p) . \\ & T H D=5 \% \end{aligned}$	BWP	-	9.0	--	-	9.0	-	-	9.0	-	kHz
Small-Signal Bandwidth $A_{V}=1, R_{L}=10 \mathrm{k} \Omega, V_{0}=50 \mathrm{mV}$	BW	-	1.0	-	-	1.0	-	-	1.0	$\cdots$	MHz
Slew Rate $A_{V}=1, V_{i}=-10 V \text { to }+10 \mathrm{~V}$	SR	-	0.6	-	-	0.6	-	-	0.6	-	$\mathrm{V} / \mu \mathrm{s}$
$\begin{aligned} & \text { Rise Time } \\ & A_{V}=1, R_{L}=10 \mathrm{ks}, V_{0}=50 \mathrm{mV} \\ & \hline \end{aligned}$	${ }^{\text {t }}$ LLH	-	0.35	-	-	0.35	-	-	0.35	-	$\mu \mathrm{s}$
$\begin{aligned} & \text { Fall Time } \\ & \quad A_{V}=1, R_{L}=10 \mathrm{k} \Omega, V_{0}=50 \mathrm{mV} \\ & \hline \end{aligned}$	${ }^{\text {t }}$ THL	-	0.35	-	-	0.35	-	-	0.35	-	$\mu \mathrm{s}$
$\begin{aligned} & \text { Overshoot } \\ & \quad A_{V}=1, R_{L}=10 \mathrm{ks}, V_{O}=50 \mathrm{mV} \\ & \hline \end{aligned}$	OS	-	20	-	-	20	--	-	20	-	\%
Phase Margin $A_{V}=1, R_{L}=2.0 \mathrm{k} \Omega, C_{L}=200 \mathrm{pF}$	¢m	-	60	-	-	60	-	-	60	-	Degrees
$\begin{aligned} & \text { Crossover Distortion } \\ & \quad\left(V_{\text {in }}=30 \mathrm{mVp}-\mathrm{p}, \mathrm{~V}_{\text {out }}=2.0 \mathrm{Vp}-\mathrm{p},\right. \\ & f=10 \mathrm{kHz}) \end{aligned}$	-	-	1.0	-	-	1.0	-	-	1.0	-	\%

(1) $\mathrm{T}_{\text {high }}=125^{\circ} \mathrm{C}$ for MC3503, $70^{\circ} \mathrm{C}$ for MC3403, $85^{\circ} \mathrm{C}$ for MC3303
$T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC3503, $0^{\circ} \mathrm{C}$ for MC3403, $-40^{\circ} \mathrm{C}$ for MC3303
ELECTRICAL CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V}, V_{E E}=G n d, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	MC3503			MC3403			MC3303			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{V}_{10}$	-	2.0	5.0	-	2.0	10	-	-	10	mV
Input Offset Current	110	-	30	50	-	30	50	-	-	75	nA
Input Bias Current	$I_{1 B}$	-	-200	-500	-	-200	-500	-	-	-500	nA
Large-Signal Open-Loop Voltage Gain $R_{\mathrm{L}}=2.0 \mathrm{k} \Omega$	AVOL	10	200	-	10	200	-	10	200	-	$\mathrm{V} / \mathrm{mV}$
Power Supply Rejection Ratio	PSRR	-	-	150	-	-	150	-	-	150	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Output Voltage Range (3) } \\ & R_{L}=10 \mathrm{k} \Omega, V_{C C}=5.0 \mathrm{~V} \\ & R_{L}=10 \mathrm{k} \Omega, 5.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 30 \mathrm{~V} \end{aligned}$	$\mathrm{v}_{\text {OR }}$	$\begin{gathered} 3.3 \\ v_{C C}-2.0 \end{gathered}$	$\begin{gathered} 3.5 \\ \mathrm{~V}_{\mathrm{CC}}-1.7 \end{gathered}$	-	$\begin{gathered} 3.3 \\ \mathrm{v}_{\mathrm{CC}}-2.0 \end{gathered}$	$\begin{gathered} 3.5 \\ \mathrm{~V}_{\mathrm{CC}}-1.7 \end{gathered}$	-	$\begin{gathered} 3.3 \\ \mathrm{v}_{\mathrm{CC}}-2.0 \\ \hline \end{gathered}$	$\begin{gathered} 3.5 \\ v_{C C}-1.7 \end{gathered}$	-	Vp-p
Power Supply Current	'cc	-	2.5	4.0	-	2.5	7.0	-	2.5	7.0	mA
Channel Separation   $\mathrm{f}=1.0 \mathrm{kHz}$ to 20 kHz (Input Referenced)	-	-	-120	-	-	-120	-	-	-120	-	dB

(2) Not to exceed maximum package power dissipation.
(3) Output will swing to ground


$20 \mu \mathrm{~s} / \mathrm{div}$

## CIRCUIT DESCRIPTION

The MC3503/3403/3303 is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q24 and Q22 with input buffer transistors Q25 and Q21 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF ) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q24 and Q22. Another feature of this input stage is that the input common-mode range can include
the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation. This is possible because class $A B$ operation is utilized.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

TYPICAL PERFORMANCE CURVES

FIGURE 1 - SINE WAVE RESPONSE


FIGURE 3 - POWER BANDWIDTH


FIGURE 5 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 2 - OPEN LOOP FREQUENCY RESPONSE


FIGURE 4 - OUTPUT SWING versus SUPPLY VOLTAGE


FIGURE 6 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE


FIGURE 7 - VOLTAGE REFERENCE


FIGURE 8 - WIEN BRIDGE OSCILLATOR


FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER


FIGURE 10 - COMPARATOR WITH HYSTERESIS

$V_{\text {inL }}=\frac{R 1}{R 1+R 2}\left(V_{\text {OL }}-V_{\text {ref }}\right)+V_{\text {ref }}$
$V_{\text {inH }}=\frac{R 1}{R 1+R 2}\left(V_{\text {OH }}-V_{\text {ref }}\right)+V_{\text {ref }}$ $H=\frac{R 1}{R 1+R 2}\left(V_{O H}-V_{O L}\right)$


FIGURE 12 - FUNCTION GENERATOR


FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER


Given $\quad f_{o}=$ Center Frequency

$$
A\left(f_{0}\right)=\text { Gain at Center Frequency }
$$

Choose Value fo. $C$
Then:

$$
\begin{aligned}
& R 3=\frac{Q}{\pi f_{0} C} \\
& R 1=\frac{R 3}{2 A\left(f_{0}\right)} \\
& R 2=\frac{R 1 R 5}{4 Q^{2} R 1-R 5}
\end{aligned}
$$

For less than $10 \%$ error from operational amplifier

$$
\frac{Q_{0} f_{0}}{B W}<0.1 \quad \text { Where } f_{0} \text { and } B W \text { are expressed in } \mathrm{Hz} \text {. }
$$

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.


## DUAL OPERATIONAL AMPLIFIER AND DUAL COMPARATOR

The MC3405/3505 contains two differential-input operational amplifiers and two comparators, each set capable of single supply operation. This operational amplifier-comparator circuit fulfills its applications as a general purpose product for automotive and consumer circuits as well as an industrial building block.

The MC3405 is specified over the commercial operating temperature range of 0 to $+70^{\circ} \mathrm{C}$, while the MC3505 is specified over the military operating range of -55 to $+125^{\circ} \mathrm{C}$.

- Operational Amplifiers Equivalent in Performance to MC3403/3503
- Comparators Similar in Performance to LM339/139
- Single Supply Operation: 3.0 to 36 Volts
- Split Supply Operation: $\pm 1.5$ to $\pm 18$ Volts
- Low Supply Current Drain
- Operational Amplifiers Are Internally Frequency Compensated
- Comparators TTL and CMOS Compatible



## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage-Single Supply Split Supplies	$\begin{gathered} v_{\mathrm{CC}} \\ v_{\mathrm{CC}}, \mathrm{v}_{\mathrm{EE}} \end{gathered}$	$\begin{gathered} 36 \\ \pm 18 \end{gathered}$	Vdc
Input Differential Voltage Range	$V_{\text {IDR }}$	$\pm 36$	Vdc
Input Common Mode Voltage Range	VICR	$\pm 18$	$V \mathrm{dc}$
Operating Ambient Temperature Range-MC3505 MC3405	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range-Ceramic Package Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range-Ceramic Package Plastic Package	TJ	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	MC3505			MC3405			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{V}_{10}$	-	2.0	5.0	-	2.0	10	mV
Input Offset Current	110	-	30	50	-	30	50	nA
Input Bias Current	1 IB	-	-200	-500	-	-200	-500	nA
Large-Signal Open-Loop Voltage Gain $\left(R_{L}=2.0 \mathrm{k} \Omega\right)$	AVOL	20	200	-	20	200	-	$\mathrm{V} / \mathrm{mV}$
Power Supply Rejection Ratio	PSRR	-	-	150	-	-	150	$\mu \mathrm{V} / \mathrm{V}$
$\begin{aligned} & \text { Output Voltage Range (Note 1) } \\ & \qquad \begin{array}{l} \left(R_{L}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \\ \left(R_{L}=10 \mathrm{k} \Omega, 5.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 30 \mathrm{~V}\right) \end{array} \end{aligned}$	$\mathrm{V}_{\text {OR }}$	$\begin{gathered} 3.3 \\ v_{C C}-2.0 \end{gathered}$	$\begin{gathered} 3.5 \\ V_{C C}-1.7 \end{gathered}$	-	$\begin{gathered} 3.3 \\ v_{C C}-2.0 \end{gathered}$	$\begin{gathered} 3.5 \\ V_{C C}-1.7 \end{gathered}$	-	Vp-p
Power Supply Current (Notes 2 and 3)	${ }^{1} \mathrm{CC}$	-	2.5	4.0	-	2.5	7.0	mA
$\begin{aligned} & \text { Channel Separation } \\ & f=1.0 \mathrm{kHz} \text { to } 20 \mathrm{kHz} \\ & \text { (Input Referenced) } \end{aligned}$	-	-	-120	-	-	-120	-	dB

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

$\begin{aligned} & \text { Input Offset Voltage } \\ & \quad\left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \text { (Note 4) } \end{aligned}$	V10	-	$2.0$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	-	$2.0$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	15	-	-	15	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current   ( $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ ) (Note 4)	110	-	-	$\begin{gathered} 50 \\ 200 \\ \hline \end{gathered}$	-	-	$\begin{gathered} 50 \\ 200 \\ \hline \end{gathered}$	nA
$\begin{aligned} & \text { Input Bias Current } \\ & \qquad\left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right. \text { (Note 4) } \end{aligned}$	IIB	-	$\begin{aligned} & -200 \\ & -300 \end{aligned}$	$\begin{gathered} -500 \\ -1500 \end{gathered}$	-	$-200$	$\begin{aligned} & -500 \\ & -800 \end{aligned}$	nA
Input Common Mode Voltage Range	VICR	$+13-V_{E E}$	-	-	$+13-V_{E E}$	-	-	Vdc
$\begin{aligned} & \text { Large Signal Open Loop Voltage Gain } \\ & \left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & \left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right)(\text { Note } 4) \\ & \hline \end{aligned}$	AVOL	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$		$\mathrm{V} / \mathrm{mV}$
Common Mode Rejection Ratio	CMRR	70	90	-	70	90	-	dB
Power Supply Rejection Ratio	PSRR	-	30	150	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage $\begin{aligned} & \left(R_{L}=10 \mathrm{k} \Omega\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega\right) \\ & \left(R_{L}=2.0 \mathrm{k} \Omega, T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \\ & \text { (Note 4) } \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 13.5 \\ \pm 13 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 13.5 \\ \pm 13 \\ - \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	Vdc
Output Short-Circuit Current	${ }^{\prime} \mathrm{OS}$	$\pm 10$	$\pm 30$	$\pm 45$	$\pm 10$	$\pm 20$	$\pm 45$	mA
Power Supply Current (Notes 2 and 3)	${ }^{\text {I CC, I }}$ EE	-	2.8	4.0	-	2.8	7.0	mA
Phase Margin	$\phi \mathrm{m}$	-	60	-	-	60	-	Degrees
Small-Signal Bandwidth $\left(A_{V}=1, R_{L}=10 \mathrm{k} \Omega, V_{O}=50 \mathrm{mV}\right)$	BW	-	1.0	-	-	1.0	-	MHz
$\begin{aligned} & \text { Power Bandwidth } \\ & \left(A_{V}=1, R_{L}=2.0 \mathrm{k} \Omega, V_{O}=20 \mathrm{~V}(p-p),\right. \\ & T H D=5 \%) \end{aligned}$	BWP	-	9.0	-	-	9.0	-	kHz
Rise Time/Fall Time	${ }^{\text {t TLH, }}$ THL	-	0.35	-	-	0.35	-	$\mu \mathrm{s}$
$\begin{aligned} & \text { Overshoot }\left(A_{V}=1, R_{L}=10 \mathrm{k} \Omega,\right. \\ & \left.V_{O}=50 \mathrm{mV}\right) \end{aligned}$	OS	-	20	-	-	20	-	\%
Slew Rate	SR	-	0.6	-	-	0.6	-	$\mathrm{V} / \mu \mathrm{s}$

NOTES: 1. Output will swing to ground
2. Not to exceed maximum package power dissipation.
4. $\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC3505 $\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC 3505
$=0^{\circ} \mathrm{C}$ for MC3405
$=+70^{\circ} \mathrm{C}$ for MC3405
3. For Operational Amplifier and Comparator.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage-Single Supply Split Supplies	$\begin{gathered} v_{\mathrm{CC}} \\ v_{\mathrm{CC}} \cdot \mathrm{v}_{\mathrm{EE}} \end{gathered}$	$\begin{gathered} 36 \\ \pm 18 \end{gathered}$	Vdc
Input Differential Voltage Range	$V_{\text {IDR }}$	$\pm 36$	Vdc
Input Common Mode Voltage Range	VICR	-0.3 to +36	Vdc
Sink Current	$\mathrm{I}_{\text {sink }}$	20	mA
Operating Ambient Temperature Range- MC3505 MC3405	TA	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range-Ceramic Package Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range-Ceramic Package Plastic Package	T」	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	MC3505			MC3405			Unit	
		Min	Typ	Max	Min	Typ	Max		
Input Offset Voltage ( $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ ) (Notes 1 and 2)	$\vee_{10}$	-	$2.0$	$\begin{aligned} & 5.0 \\ & 9.0 \end{aligned}$	-	$2.0$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mV	
Average Temperature Coefficient of Input Offset Voltage	$\Delta \mathrm{V}_{10} / \Delta T$	-	15	-	-	15	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Offset Current ( $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ ) (Note 1)	110	-	$50$	$\begin{gathered} \hline 75 \\ 150 \end{gathered}$	-	$50$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	nA	
$\begin{aligned} & \text { Input Bias Current } \\ & \quad\left(T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right. \text { ) (Note 1) } \end{aligned}$	${ }^{1} \mathrm{~B}$	-	$-125$	$\begin{gathered} -500 \\ -1500 \end{gathered}$	-	$-125$	$\begin{aligned} & -500 \\ & -800 \end{aligned}$	nA	
Input Common Mode Voltage Range ( $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ ) (Note 1)	VICR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.5 \\ & \mathrm{~V}_{\mathrm{CC}}-1.7 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}-1.7 \\ & \mathrm{~V}_{\mathrm{CC}}-2.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.5 \\ & \mathrm{~V}_{\mathrm{CC}}-1.7 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.7 \\ & \mathrm{~V}_{\mathrm{CC}}-2.0 \end{aligned}$	Vp-p	
Input Differential Voltage $\left(\mathrm{A} \\| \mathrm{V}_{\text {in }} \geqslant 0 \mathrm{Vdc}\right)$	$V_{\text {ID }}$	-	-	36	-	-	36	V	
Large-Signal Open-Loop Voltage Gain $\left(R_{L}=15 \mathrm{k} \Omega\right)$	AVOL	-	200	-	-	200	-	$\mathrm{V} / \mathrm{mV}$	
$\begin{aligned} & \text { Output Sink Current } \\ & \quad\left(\mathrm { V } _ { \text { in } } \left(-1 \geqslant 1.0 \mathrm{Vdc}, \mathrm{~V}_{\text {in }}(+)=0,\right.\right. \\ & \left.\mathrm{V}_{\mathrm{O}} \leqslant 1.5 \mathrm{~V}\right) \end{aligned}$	1 sink	6.0	16	-	6.0	16	-	mA	
Low Level Output Voltage $\begin{aligned} & \left(\mathrm{V}_{\text {in }}(+)=0 \mathrm{~V}, \mathrm{~V}_{\text {in }}(-)=1.0 \mathrm{~V},\right. \\ & \left.\mathrm{I}_{\text {sink }}=4.0 \mathrm{~mA}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=T_{\text {low }} \text { to } T_{\text {high }}\right)(\text { Note } 1) \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	$-$	350	$\begin{aligned} & 500 \\ & 700 \end{aligned}$			$\begin{aligned} & 500 \\ & 700 \end{aligned}$	mV	
$\begin{aligned} & \text { Output Leakage Current } \\ & \qquad \mathrm{V}_{\text {in }}(+) \geqslant 1.0 \mathrm{Vdc}, \mathrm{~V}_{\text {in }}(-)=0, \\ & \left.\mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}\right)(\text { Note } 1) \end{aligned}$	${ }^{\prime} \mathrm{OL}$	-	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	-	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$	
Large-Signal Response	-	-	300	-	-	300	-	ns	
$\begin{aligned} & \text { Response Time (Note 3) } \\ & \quad\left(V_{R L}=5.0 \mathrm{Vdc}, R_{L}=5.1 \mathrm{k} \Omega\right) \end{aligned}$	-	-	1.3	-	-	1.3	-	$\mu \mathrm{s}$	

NOTES: 1. $\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC3505 $\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC3505 $=0^{\circ} \mathrm{C}$ for MC3405 $\quad=+70^{\circ} \mathrm{C}$ for MC3405
2. $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}_{\mathrm{CC}}$ from 5.0 Vdc to 30 Vdc , and over the input common mode range 0 to $\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$.
3. The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger signals 300 ns is typical.

80て－乙
SヨコI＾ヨロ ヨコ৮コไヨ



FIGURE 3 - POWER BANDWIDTH


FIGURE 5 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 2 - OPEN LOOP FREQUENCY RESPONSE


FIGURE 4 - OUTPUT SWING versus SUPPLY VOLTAGE


FIGURE 6 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE


COMPARATOR SECTION TYPICAL PERFORMANCE CURVES


FIGURE 11 - PULSE WIDTH MODULATOR SCHEMATIC AND WAVEFORMS


$$
\text { P.W. }=\left(\frac{1}{f}\right)\left(\frac{v_{c}-v_{T L}}{v_{T H}-v_{T L}}\right) \text { when: } v_{T L}<v_{C}<v_{T H}
$$

Duty Cycle in \%
D.C. $=\left(\frac{v_{c}-v_{T L}}{v_{T H}-v_{T L}}\right)(100)$

FIGURE 12 - WINDOW COMPARATOR


FIGURE 13 - SQUELCH CIRCUIT FOR AM OR FM


Calculate: $\quad R 2=\frac{Q}{\omega_{0} C}\left(2 A_{0}+1\right)$

$$
\begin{aligned}
& C 3=\frac{C}{A_{O}} \\
& R 1=\frac{A_{O}}{Q \omega_{0} C\left(2 A_{O}+1\right)}
\end{aligned}
$$

Where: $T_{\text {in }}$ is the period of $v_{\text {in }}$
$\mathrm{Q}=$ Quality Factor
$A_{0}=$ High Frequency Gain
$\omega_{o}=$ Break Frequency
FIGURE 14 - HIGH/LOW LIMIT ALARM


$$
\begin{aligned}
& V_{I L}=V_{C C} \frac{R 3}{R 1+R 2+R 3} \\
& V_{I H}=V_{C C} \frac{R 2+R 3}{R 1+R 2+R 3}
\end{aligned}
$$

Oscillator

$$
\begin{aligned}
& \text { If R4 }=R 5=R 6 \\
& f=0.72 / R_{f} C \\
& \text { As Shown, } f=2.2 \mathrm{kHz}
\end{aligned}
$$

$v_{o}$ Will Oscillate If $\mathrm{V}_{\mathrm{IH}}<\mathrm{v}_{\mathrm{i}}$, or $\mathrm{V}_{\mathrm{IL}}>\mathrm{v}_{\mathrm{i}}$ $v_{o}$ Will Be Low If $\mathrm{V}_{\text {IL }}<\mathrm{v}_{\mathrm{i}}<\mathrm{V}_{\text {IH }}$

FIGURE 15 - ZERO CROSSING DETECTOR WITH TEMPERATURE SENSOR


## FIGURE 16 - LSTTL to CMOS INTERFACE WITH HYSTERESIS


*The same configuration may be used with an Op Amp if the 3 k resistor is removed.

FIGURE 17 - "NOR" GATE

*The same configuration may be used with an Op Amp if the 3 k resistor is removed.

## QUAD DIFFERENTIAL VOLTAGE COMPARATOR/SENSE AMPLIFIERS

The MC3430 thru MC3433 high-speed comparators are ideal for application as sense amplifiers in MOS memory systems. They are specified in a unique way which combines the effects of input offset voltage, input offset current, voltage gain, temperature variations and input common-mode range into a single functional parameter. This parameter, called Input Sensitivity, specifies a minimum differential input voltage which will guarantee a given logic state. Four variations are offered in the comparator series.

The MC3430 and MC3431 versions feature a three-state strobe input common to all four channels which can be used to place the four outputs in a high-impedance state. These two devices use active-pull-up MTTL compatible outputs. The MC3432 and MC3433 are open-collector types which permit the implied AND connection. The MC3430 and MC3432 versionsare specified for a $\pm 7.0 \mathrm{mV}$ input sensitivity over the 0 to $70^{\circ} \mathrm{C}$ temperature range, while the MC3431 and MC3433 are specified for $\pm 12 \mathrm{mV}$.

- Propagation Delay Time - 40 ns
- Outputs Specified for a Fanout of 10 (MC7400 type loads)
- Specified for all conditions of $\pm 5 \%$ Power Supply Variations, Operating Temperature Range, Input Common-Mode Voltage Swing from -3.0 V to 3.0 V , and $\mathrm{R}_{\mathrm{S}} \leqslant 200$ ohms.

FIGURE 1 - A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4-K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103 TYPE MEMORY DEVICES


Only four devices are required for a 4-k word by 16 -bit memory system.

## QUAD HIGH SPEED VOLTAGE COMPARATORS <br> SILICON MONOLITHIC INTEGRATED CIRCUITS


truth table
MC3431 and MC3433

Input	Strobe	Output	Device
$\begin{aligned} & V_{10} \geqslant 12 \mathrm{mV} \\ & T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	L	H	MC3431
	H	- 2	
	L	Off	MC3433
	H	Off	
$\left[\begin{array}{c} -12 \mathrm{mV} \leqslant \mathrm{~V}_{10} \\ \leqslant+12 \mathrm{mV} \\ T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \end{array}\right]$	L	1	MC3431
	H	2	
	L	1	MC3433
	H	Off	
$\begin{aligned} & V_{10} \leqslant-12 \mathrm{mV} \\ & T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	L	L	MC3431
	H	2	
	L	On	MC3433
	H	Off	

L= Low Logic State $H=$ High Logic State
$z=$ Third (High Impedance) $1=$ Indeterminate State RS $<200 \Omega$

MAXIMUM RATINGS ( $T_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	$\pm 7.0$	Vdc
Differential Mode Input Signal Voltage Range	$\mathrm{V}_{\text {IDR }}$	$\pm 6.0$	Vdc
Common-Mode Input Voltage Range	$\mathrm{V}_{\mathrm{ICR}}$	$\pm 5.0$	Vdc
Strobe Input Voltage	$\mathrm{V}_{\mathrm{I}}(\mathrm{S})$	5.5	Vdc
Output Voltage (MC3432 -33 versions)	$\mathrm{V}_{\mathrm{O}}$	+7.0	Vdc
Junction Temperature   Ceramic Package   Plastic Package	$\mathrm{T}_{\mathrm{J}}$		175
Operating Temperature Range		$\mathrm{o}^{\circ} \mathrm{C}$	
Storage Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ}{ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS (T $T_{A}=0$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Power Supply Voltages	$V_{\mathrm{CC}}$	+4.75	+5.0	+5.25	Vdc
	$\mathrm{V}_{\mathrm{EE}}$	-4.75	-5.0	-5.25	
Output Load Current	IOL	-	-	16	mA
Differential-Mode Input Voltage Range	$\mathrm{V}_{\text {IDR }}$	-5.0	-	+5.0	Vdc
Common-Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}$	-3.0	-	+3.0	Vdc
Input Voltage Range (any input to Ground)	$\mathrm{V}_{\text {IR }}$	-5.0	-	+3.0	Vdc

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.) Typical Values are Measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Characteristic	Symbol	MC3430, MC3431			MC3432, MC3433			Unit
		Min	Typ	Max	Min	Typ	Max	
	$V_{\text {IS }}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	- - - -	$\begin{aligned} & \pm 6.0 \\ & \pm 10 \\ & \pm 7.0 \\ & \pm 12 \end{aligned}$	$-$	-	$\begin{gathered} \pm 6.0 \\ \pm 10 \\ \\ \pm 7.0 \\ \pm 12 \end{gathered}$	mV
Input Offset Voltage ( $\mathrm{R}_{\mathrm{S}} \leqslant 200$ Ohms)	$\mathrm{V}_{10}$	-	2.0	-	-	2.0	-	mV
Input Bias Current $\begin{array}{ll} \left(V_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}\right) & \mathrm{MC} 3430, \mathrm{MC} 3432 \\ & \mathrm{MC} 3431, \mathrm{MC} 3433 \end{array}$	I'B	-	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$
Input Offset Current	110	-	1.0	-	-	1.0	-	$\mu \mathrm{A}$
Voltage Gain	$\mathrm{A}_{\text {vol }}$	-	1200	-	-	. 1200	-	$\mathrm{V} / \mathrm{V}$
Strobe Input Voltage (Low State)	$\mathrm{V}_{\text {IL }}(\mathrm{S})$	-	-	0.8	-	-	0.8	V
Strobe Input Voltage (High State)	$\mathrm{V}_{1} \mathrm{H}(\mathrm{S})$	2.0	-	-	2.0	-	-	V
$\begin{aligned} & \text { Strobe Current (Low State) } \\ & \quad\left(V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\right) \end{aligned}$	IIL (S)	-	-	-1.6	-	-	-1.6	mA
$\begin{aligned} & \text { Strobe Current (High State) } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.25 \mathrm{~V}\right) \\ & \hline \end{aligned}$	${ }^{1} \mathrm{H}$ (S)	-	$-$	$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { Output Voltage (High State) } \\ & \qquad\left(I_{\mathrm{O}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}$	2.4	-	-	-	-	-	V
$\begin{aligned} & \text { Output Voltage (Low State) } \\ & \quad\left(I_{\mathrm{O}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=4.75 \mathrm{~V}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.4	-	-	0.4	V
Output Leakage Current $\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.25 \mathrm{~V}\right)$	ICEX	-	-	-	-	-	250	$\mu \mathrm{A}$
$\begin{aligned} & \text { Output Current Short Circuit } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}\right) \end{aligned}$	'os	-18	-	-70	-	-	-	mA
Output Disable Leakage Current $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}\right)$	Ioff	-	-	40	-	-	-	$\mu \mathrm{A}$
High Logic Level Supply Currents $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}\right)$	$\begin{aligned} & \mathrm{I} \mathrm{CC} \\ & \mathrm{I}_{\mathrm{EE}} \end{aligned}$	-	$\begin{array}{r} 45 \\ -17 \end{array}$	$\begin{gathered} 60 \\ -30 \end{gathered}$	-	$\begin{gathered} 45 \\ -17 \end{gathered}$	$\begin{gathered} 60 \\ -30 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

## A UNIQUE FUNCTIONAL PARAMETER FOR COMPARATORS

A unique approach is used in specifying the MC3430-33quad comparators. Previously, comparators have been specified as linear devices with common operational amplifier type parameters such as voltage gain ( $\mathrm{A}_{\text {vol }}$ ), input offset voltage ( $\mathrm{V}_{1 \mathrm{O}}$ ), input offset current ( 1,0 ) and common-mode rejection ratio (CMRR). This is true despite the fact that most comparators are seldom operated in their linear region because it is difficult to hold a high gain comparator in this narrow region. Comparators are normally used to "detect" when an unknown voltage level exceeds a given reference voltage.

The most desirable comparator parameter is what minimum differential input voltage is required at the comparator's input terminals to guarantee a given output logic state. This new and important parameter has been called input sensitivity ( $\mathrm{V}_{\text {IS }}$ ) and is analagous to the input threshold voltage specification on a core memory sense amplifier. The input sensitivity specification includes the effects of voltage gain, input offset voltage and input offset current and eliminates the need for specifying these three parameters.

In order to make this parameter as inclusive as possible on the MC3430-33 series quad comparators, the input sensitivity is specified within the following conditions:

Commercial Temperature Range - 0 to $70^{\circ} \mathrm{C}$
Power Supply Variations - $\pm 5 \%$ (all conditions)
Input Source Resistance $-\leqslant 200$ Ohms
Common-Mode Voltage Range - -3.0 V to +3.0 V
Note: Typical values have been included on the omitted parameters for applications where the offset voltages are externally nulled.

Voltage gain is defined as the ratio of the resulting $\Delta V_{O}$ to a change in the $\mathrm{V}_{\text {IDR }}$ using conditions at which the $\mathrm{V}_{10}$ and $\mathrm{I}_{10}$ are nulled. Thus, for worst case MTTL logic levels, the required output voltage change is $2.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{OH}} \mathrm{min}^{-}-\mathrm{V}_{\mathrm{OL}}\right.$ max $=2.4 \mathrm{~V}-$
0.4 V ). If 2.0 mV are required at the input terminals to induce this change in logic state, the voltage gain would be $1000 \mathrm{~V} / \mathrm{V}$. Gain however is not the only factor affecting the logic transition. Normally input offset voltages, that are not externally nulled, can add an appreciable error that drastically overshadows the comparator gain. Therefore, the 2.0 mV for example, required to cause the logic transition is often masked. An input offset voltage of up to 7.5 mV might be required to reach the linear region. A further consideration is the input offset current of up to $\pm 10 \mu \mathrm{~A}$ flowing through the matched 200 -Ohm source resistors at the input terminals which can create an additional error of $\pm 2.0$ mV . In order to determine a worst case input sensitivity, it must be assumed that minimum specified gain and maximum specified offset voltage and current conditions exist. Also it must be assumed that these three factors are cumulative, requiring a worst case input of:

Logic $\operatorname{Transition}=2.0 \mathrm{mV}$
$\mathrm{V}_{10}=7.5 \mathrm{mV}$
$1_{10}$ of $\pm 10 \mu \mathrm{~A}$ thru 200 -Ohm resistor $=2.0 \mathrm{mV}$
Therefore, $2+7.5+2=11.5 \mathrm{mV}$.
The effects of power supply voltage variations, temperature changes and common-mode input voltage conditions have not been considered, as they are not present in the gain and offset specifications on most comparators.

Thus, the input sensitivity specification greatly reduces the effort required in determining the worst case differential voltage required by a given comparator type.

Table I compares the worst case input sensitivity of three popular comparator types at both room temperature and over the specified commercial temperature range ( 0 to $70^{\circ} \mathrm{C}$ ). This sensitivity was computed from the specified voltage gain, offset voltage and offset current limits.

TABLE I - WORST CASE COMPARISONS

	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$					
Type Number	$\begin{aligned} & V_{10} \\ & m V \\ & M a x \end{aligned}$	$\begin{aligned} & A_{\text {vol }}{ }^{*} \\ & \text { V/V } \\ & \text { Typ } \end{aligned}$	Differential Input Voltage Required for 3.0 V Output Change	$\begin{gathered} \mathrm{I}_{10} \\ \mathrm{R}_{\mathrm{S}}=200 \Omega \\ \mu \mathrm{~A} \\ \mathrm{Max} \end{gathered}$	Error Voltage Generated Into 200 s2 Source Resistors	Total Sensitivity $m V$	$\begin{aligned} & V_{10} \\ & m V \\ & \operatorname{Max} \end{aligned}$	$\begin{aligned} & A_{\text {vol }}{ }^{*} \\ & \text { V/V } \\ & T_{y p} \end{aligned}$	Differential Input Voltage Required for 3.0 V Output Change	$\begin{gathered} I_{10} \\ \mathrm{R}_{\mathrm{S}}=200 \Omega \\ \mu \mathrm{~A} \\ \mathrm{Max} \end{gathered}$	Error Voltage Generated Into $200 \Omega$ Source Resistors	Total Sensitivity mV
$\begin{array}{\|c\|} \hline \text { MC3430 } \\ \text { MC3432 } \end{array}$	-	$\cdots$	-	-	$\checkmark$	6.0	-	.	-	-	---	7.0
$\begin{array}{r} \text { MC3431. } \\ \text { MC3433 } \end{array}$	,			-		10	--		-	-	-	12
MC1711C	5.0	1500	2.0 mV	15	3.0 mV	10	5.0	1000	30 mV	25	5.0 mV	13
LM311	7.5	200 k	0015 mV	$6.0{ }^{\circ}$	0.0012 mV	7.516	10	100 k	0.030 mV	$70^{* *}$	0.014 mV	10.04

*Typical values given, as minimum gan not always specified
**IO measured in nA

FIGURE 2 - GUARANTEED OUTPUT STATE versus DIFFERENTIAL INPUT VOLTAGE


FIGURE 3 - GUARANTEED OUTPUT STATE versus INPUT VOLTAGE


SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Fig.	MC3430, MC3431			MC3432, MC3433			Unit
			Min	Typ	Max	Min	Typ	Max	
High to Low Logic Level Propagation Delay Time (Differential Inputs) $5.0 \mathrm{mV}+\mathrm{V}_{\text {IS }}$	${ }^{\text {tpHL (D) }}$	6,8-11	-	20	45	-	27	50	ns
Low to High Logic Level Propagation Delay Time (Differential Inputs) $5.0 \mathrm{mV}+\mathrm{V}_{\text {IS }}$	${ }^{\text {tpLH(D) }}$	6,8-11	-	33	55	-	40	65	ns
Open State to High Logic Level Propagation Delay Time (Strobe)	tpZ H (S)	4	-	-	35	-	-	-	ns
High Logic Level to Open State Propagation Delay Time (Strobe)	tPHZ(S)	4	-	-	35	-	-	-	ns
Open State to Low Logic Level Propagation Delay Time (Strobe)	tPZL(S)	4	-	-	40	-	-	-	ns
Low Logic Level to Open State Propagation Delay Time (Strobe)	tPLZ (S)	4	-	-	35	-	-	-	ns
High Logic to Low Logic Level Propagation Delay Time (Strobe)	tPHL(S)	5	-	-	$\cdots$	-	-	40	ns
Low Logic to High Logic Level Propagation Delay Time (Strobe)	${ }^{\text {tPLH(S) }}$	5	-	-	-	-	-	35	ns

TEST CIRCUITS
FIGURE 4 - STROBE PROPAGATION DELAY TIMES tPLZ(S), tPZL(S), tPHZ(S), and tPZH(S)


Output of Channel B shown under test
other channels are tested similarly.




FIGURE 5 - STROBE PROPAGATION DELAY tPLH(S) AND tPHL(S)


Output of Channel B shown under test, other channels are tested similarly


$P R R=1.0 \mathrm{MHz}$

$$
\text { Duty Cycle }=50 \%
$$

FIGURE 6 - DIFFERENTIAL INPUT PROPAGATION DELAY TPLH(D) AND TPHL(D)


Output of Channel B shown under test, other channels are tested similarly.
S1 at " $A$ " for MC3430, MC3431 S1 at " $B$ " for MC3432, MC3433 $C_{L}=50$ pF total for MC3430, MC3431 $C_{L}=15 \mathrm{pF}$ total for MC3432, MC3433

Device	V REF mV
MC3430	11
MC3431	15
MC3432	11
MC3433	15

FIGURE 7 - CIRCUIT SCHEMATIC (1/4 Circuit Shown)


Dashed components apply to the MC3430 and MC3431 circuits only.

## RESPONSE TIME versus OVERDRIVE - MC3430, MC3431

FIGURE 8 - OUTPUT LOW TO HIGH


FIGURE 9 - OUTPUT HIGH TO LOW


RESPONSE TIME versus OVERDRIVE - MC3432, MC3433


FIGURE 12 - AVERAGE INPUT OFFSET VOLTAGE versus TEMPERATURE


FIGURE 11 - OUTPUT HIGH TO LOW


FIGURE 13 - RESPONSE TIME versus TEMPERATURE


## APPLICATIONS INFORMATION



FIGURE 15 - LEVEL DETECTOR WITH HYSTERESIS


FIGURE 16 - TRANSFER CHARACTERISTICS AND EQUATIONS FOR FIGURE 15

$$
\begin{aligned}
& v_{\text {high }}=v_{\text {ref }}+\frac{\left.R 2\left[V_{\text {O(max }}\right)-V_{\text {REF }}\right)}{R 1+R 2} \\
& V_{\text {low }}=V_{\text {ref }}+\frac{R 2\left\{V_{\text {O(min }}-V_{\text {REF }}\right\}}{R 1+R 2} \\
& \text { Hysteresis Loop ( } \mathrm{V}_{\mathrm{h}} \text { ) } \\
& V_{h}=V_{\text {high }}-V_{\text {low }}=\frac{R 2}{R 1+R_{2}}\left[V_{O(\text { max })}-V_{O(\text { min })}\right]
\end{aligned}
$$

FIGURE 17 - DOUBLE ENDED LIMIT DETECTOR


FIGURE 18 - VOLTAGE TRANSFER FUNCTION


Device	Temperature Range	Package
MC3358P1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP
MC3458D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-8
MC3458G	$0^{\circ} \mathrm{C}$ t $+70^{\circ} \mathrm{C}$	Metal Can
MC3458P1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
MC3458U	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC3558G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Metal Can
MC3558U	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP

## Specifications and Applications Information

## DUAL LOW POWER OPERATIONAL AMPLIFIERS

Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, these dual operational amplifiers feature 1) low power drain, 2) a common mode input voltage range extending to ground/VEE, 3) Single Supply or Split Supply operation and 4) pin outs compatible with the popular MC1558 dual operational amplifier. The MC3558 Series is equivalent to one-half of a MC3503.

These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 Volts or as high as 36 Volts with quiescent currents about one-fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 to 36 Volts
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Class AB Output Stage for Minimum Crossover Distortion
- Single and Split Supply Operations Available
- Similar Performance to the Popular MC1558

MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Power Supply Voltages Single Supply Split Supplies	$\begin{aligned} & v_{C C} \\ & v_{C C} \\ & v_{E E} \end{aligned}$	$\begin{gathered} 36 \\ +18 \\ -18 \end{gathered}$	Vdc
Input Differential Voltage Range (1)	$V_{\text {IDR }}$	$\pm 30$	Vdc
Input Common Mode Voltage Range (2)	VICR	$\pm 15$	Vdc
Input Forward Current $\left(\mathrm{V}_{1}<-0.3 \mathrm{~V}\right)$	IIF	50	mA
Junction Temperature Ceramic and Metal Packages Plastic Package	TJ	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Ceramic and Metal Packages Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range   MC3558   MC3458   MC3358	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -55 \text { to }+125 \\ 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
(1) Split Power Supplies.   (2) For Supply Voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.			

## DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

(For MC3558, MC3458, $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.) (For MC3358, $\mathrm{V}_{\mathrm{CC}}=+14 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}$,
ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	MC3558			MC3458			MC3358			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Inpur Offset Voltage   $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$   (1)	$\mathrm{V}_{10}$		$2.0$	$\begin{aligned} & 5.0 \\ & 6.0 \\ & \hline \end{aligned}$	$-$	$2.0$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	-	$2.0$	$\begin{aligned} & 8.0 \\ & 10 \end{aligned}$	mV
Input Offset Current $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$	${ }_{1} 10$	-	$30$	$\begin{gathered} 50 \\ 200 \end{gathered}$	$-$	$30$	$\begin{gathered} 50 \\ 200 \end{gathered}$	-	$30$	$\begin{gathered} 75 \\ 250 \end{gathered}$	nA
$\begin{aligned} & \text { Large Signal Open-Loop Voltage Gain } \\ & V_{O}= \pm 10 \mathrm{~V} . \mathrm{R}_{L}=2.0 \mathrm{k} \Omega, \\ & T_{A}=T_{\text {high }} \text { to } T_{\text {low }} \\ & \hline \end{aligned}$	A VOL	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	--	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	200	-	$\begin{array}{r} 20 \\ 15 \\ \hline \end{array}$	$200$	-	$\mathrm{V} / \mathrm{mV}$
$\begin{array}{\|c\|} \hline \text { Input Bias Current } \\ T_{A}=T_{\text {high }} \text { to } T_{\text {low }} \\ \hline \end{array}$	${ }^{1 / 8}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} -200 \\ -300 \\ \hline \end{array}$	$\begin{gathered} \hline-500 \\ -1500 \\ \hline \end{gathered}$		$-200$	$\begin{array}{r} -500 \\ -800 \\ \hline \end{array}$	-	$-200$	$\begin{aligned} & -500 \\ & -1000 \end{aligned}$	nA
Output Impedance $f=20 \mathrm{~Hz}$	$z_{0}$	-	75	-	-	75	-	-	75	-	$\Omega$
Input Impedance $f=20 \mathrm{~Hz}$	$z_{1}$	0.3	1.0		03	1.0	-	0.3	1.0	-	$M \Omega$
$\begin{aligned} & \text { Output Voltage R ange } \\ & R_{L}=10 \mathrm{ks} \Omega \\ & R_{L}=2.0 \mathrm{kS} \\ & R_{L}=2.0 \mathrm{k} \Omega, T_{A}=T_{\text {high }} \text { to } T_{\text {low }} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {OR }}$	$\begin{aligned} & : 12 \\ & : 10 \\ & =10 \end{aligned}$	$\begin{aligned} & \cdot 135 \\ & +13 \end{aligned}$	.	$\begin{array}{r} +12 \\ +10 \\ +10 \end{array}$	$\begin{gathered} +135 \\ \pm 13 \\ - \end{gathered}$		$\begin{aligned} & 12 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 12 \\ - \end{gathered}$		v
Input Common Mode Voltage Range	$V_{\text {ICR }}$	$+13 \mathrm{~V}-\mathrm{VEE}$	$+135 \mathrm{~V}-\mathrm{V}_{\mathrm{EE}}$	$\sim$	$+13 \mathrm{~V}-\mathrm{VEE}$	+135V-VEE	-..	+12 V-VEE	+12.5V-VEE	-	V
Common-Mode Rejection Ratio $R_{S} \leqslant 10 \mathrm{k} \Omega$	CMRR	70	90	-	70	90	-	70	90	-	dB
Power Supply Current ( $\mathrm{V}_{\mathrm{O}}=0$ ) $R_{L}=\infty$	${ }^{\text {I CC. }}$ EE	$\cdots$	16	22	$\cdot$	16	3.7	-	16	3.7	mA
Individual Output Short - Circuit Current (2)	${ }^{\text {IOS. }}$	$\pm 10$	$\cdot 30$	. 45	- 10	: 20	$\pm 45$	:10	$\pm 30$	$\pm 45$	ma
Positive Power Supply Rejection Ratio	PSRR+		30	150	-	30	150	$\cdots$	30	150	$\mu \mathrm{V} / \mathrm{V}$
Negative Power Supply Rejection Ratio	PSRR-		30	150	-	30	150	-	--	.-	$\mu \mathrm{V} / \mathrm{V}$
Average Temperature Coefficient of Input Offset Current $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$	$\therefore 10 / \mathrm{T}$		50		-	50	-	-	50	,	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Voltage   $T_{A}=T_{\text {high }}$ to $T_{\text {low }}$	$\mathrm{V}_{10^{\prime}} \mathrm{T}$	-	10			10	-		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Power Bandwidth $\begin{aligned} & A V=1, R_{L}=2.0 \mathrm{ks} \Omega, V_{0}=20 \mathrm{~V}(p \cdot p) \\ & T H D=5 \% \end{aligned}$	BWp	-	9.0			9.0			9.0	.	kHz
Small-Signal Bandwidth $A_{V}=1, R_{L}=10 \mathrm{k} \Omega, V_{0}=50 \mathrm{mV}$	8W		1.0			10	,	$\cdots$	1.0	-	MHz
$\begin{aligned} & \text { Slew Rate } \\ & A_{V}=1, V_{1}=-10 \mathrm{~V} 10+10 \mathrm{~V} \end{aligned}$	SR	$\cdots$	0.6			0.6			0.6	-	$\mathrm{V} / \mathrm{\mu s}$
$\begin{aligned} & \text { Rise Time } \\ & A_{V}=1, R_{L}=10 \mathrm{ks2}, V_{O}=50 \mathrm{mV} \end{aligned}$	${ }^{\text {T }}$ L ${ }^{\text {ch }}$	-	0.35	.		035			035	-	$\mu \mathrm{s}$
$\begin{aligned} & \text { Fall Time } \\ & \quad A_{V}=1, R_{L}=10 \mathrm{ks} 2, V_{0}=50 \mathrm{mV} \\ & \hline \end{aligned}$	${ }^{\text {T THL }}$		0.35		-	0.35	$\cdots$	-	0.35	$\sim$	$\mu \mathrm{s}$
Overshoot $A_{V}=1, R_{L}=10 \mathrm{ks} 2, V_{0}=50 \mathrm{mV}$	OS	.	20	-	-	20	-	-	20	-	\%
Phase Margin $A_{V}=1, R_{L}=2.0 \mathrm{k} \Omega, C_{L}=200 \mathrm{pF}$	¢m	-	60	.	$\cdots$	60	$\cdots$	$\cdots$	60	$\cdots$	Degrees
$\begin{aligned} & \text { Crossover Distortion } \\ & \left(V_{\text {in }}=30 \mathrm{mV} V_{p-p,} V_{\text {out }}=2.0 \mathrm{Vp}-\mathrm{p} .\right. \\ & f=10 \mathrm{kHz}) \end{aligned}$	-	-	1.0	-	"	1.0	$\sim$	$\cdots$	1.0	-	\%

(1) $T_{\text {high }}=125^{\circ} \mathrm{C}$ for $\mathrm{MC} 3558,70^{\circ} \mathrm{C}$ for $\mathrm{MC} 3458,85^{\circ} \mathrm{C}$ for MC 3358
$T_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC3558, $0^{\circ} \mathrm{C}$ for MC3458, $-40^{\circ} \mathrm{C}$ for MC3358.
ELECTRICAL CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V}, V_{E E}=G\right.$ nd, $T_{A}=25^{\circ} \mathrm{C}$ untess otherwise noted.)

Characteristic	Symbol	MC3558			MC3458			MC3358			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$V_{10}$	-	2.0	5.0	-	2.0	10	--	2.0	10	mV
Input Offset Current	110	-	30	50	-	30	50	--	-	75	nA
Input Bias Current	$1 / 18$	-	-200	-500	-	-200	-500	-	-	-500	nA
Large-Signal Open-Loop Voltage Gain $R_{L}=2.0 \mathrm{k} \Omega$	AVOL	20	200	-	20	200	-	20	200	-	$\mathrm{V} / \mathrm{mV}$
Power Supply Rejection Ratio	PSRR	-	-	150	-	-	150	-	-	150	$\mu \mathrm{V} / \mathrm{V}$
$\begin{array}{\|l\|} \hline \text { Output Voltage Range (3) } \\ R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ R_{\mathrm{L}}=10 \mathrm{k} \Omega, 5.0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V} \\ \hline \end{array}$	$\mathrm{v}_{\text {OR }}$	$\begin{gathered} 3.3 \\ - \\ \hline \end{gathered}$	$\begin{gathered} 3.5 \\ \mathrm{v}_{\mathrm{CC}}-1.7 \mathrm{~V} \\ \hline \end{gathered}$	-	$\begin{gathered} 3.3 \\ - \\ \hline \end{gathered}$	$\begin{gathered} 3.5 \\ \mathrm{v}_{\mathrm{CC}}-\mathbf{1 . 7} \mathrm{v} \end{gathered}$	-	$\begin{gathered} 3.3 \\ - \end{gathered}$	$\begin{gathered} 3.5 \\ \mathrm{v}_{\mathrm{CC}}-1.7 \mathrm{~V} \end{gathered}$	-	$\mathrm{Vp} p \mathrm{p}$
Power Supply Current	${ }^{1} \mathrm{CC}$	-	2.5	4.0	-	2.5	7.0	-	2.5	4.0	mA
Channel Separation $f=1.0 \mathrm{kHz}$ to 20 kHz (Input Referenced)	-	-	-120	-	-	-120	-	-	-120	-	dB.

(2) Not to exceed maximum package power dissipation.
(3) Output will swing to ground


## CIRCUIT DESCRIPTION



The MC3558 Series is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q24 and Q22 with input buffer transistors Q25 and Q21 and the differential to single ended converter Q 3 and Q 4 . The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the trans conductance a smaller compensation capacitor (only 5 pF ) can be employed, thus saving chip area. The transcon ductance reduction is accomplished by splitting the collectors of Q24 and Q22. Another feature of this input stage is that the input common-mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation. This is possible because class AB operation is utilized.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

TYPICAL PERFORMANCE CURVES


FIGURE 3 - POWER BANDWIDTH


FIGURE 5 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 2 - OPEN LOOP FREQUENCY RESPONSE


FIGURE 4 -- OUTPUT SWING versus SUPPLY VOLTAGE


FIGURE 6 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE


## APPLICATIONS INFORMATION

FIGURE 7 - VOLTAGE REFERENCE


FIGURE 8 - WIEN BRIDGE OSCILLATOR


FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER


FIGURE 10 - COMPARATOR WITH HYSTERESIS


FIGURE 11 - BI-QUAD FILTER


## APPLICATIONS INFORMATION (continued)

## FIGURE 12 - FUNCTION GENERATOR



FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER


If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

## LOW COST PROGRAMMABLE OPERATIONAL AMPLIFIER

The MC3476 is a low cost selection of the popular, industrystandard MC1776 programmable operational amplifier. This extremely versatile operational amplifier features low power consumption and high input impedance. In addition, the quiescent currents within the device may be programmed by the choice of an external resistor value or current source applied to the $\mathrm{I}_{\text {set }}$ input. This allows the amplifier's characteristics to be optimized for input current and power consumption despite wide variations in operating power supply voltages.

- $\pm 6.0 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Operation
- Wide Programming Range
- Offset Null Capability
- No Frequency Compensation Required
- Low Input Bias Currents
- Short-Circuit Protection

RESISTIVE PROGRAMMING (See Figure 1.)


LOW COST PROGRAMMABLE OPERATIONAL AMPLIFIER

SILICON MONOLITHIC integrated circuit



P1 SUFFIX PLASTIC PACKAGE CASE 626-05

U SUFFIX
CERAMIC PACKAGE CASE 693-02


ORDERING INFORMATION

Device	Temperature Range	Package
MC3476G	0 to $+70^{\circ} \mathrm{C}$	Metal Can
MC3476 1	0 to $+70^{\circ} \mathrm{C}$	Plastic DIP
$M C 3476 \mathrm{U}$	0 to $+70^{\circ} \mathrm{C}$	Ceramic DIP

## MC3476

MAXIMUM RATINGS ( $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}$	$\pm 18$	Vdc
Input Differential Voltage Range	VIDR	$\pm 30$	Vdc
Input Common-Mode Voltage Range	VICR	$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}$	Vdc
Offset Null to $\mathrm{V}_{\text {EE }}$ Voltage	$\mathrm{V}_{\text {off }}-\mathrm{V}_{\text {EE }}$	$\pm 0.5$	Vdc
Programming Current	$\mathrm{I}_{\text {set }}$	200	$\mu \mathrm{A}$
Programming Voltage   (Voltage from $I_{\text {set }}$ terminal to ground)	$V_{\text {set }}$	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}\right) \\ \text { to } \\ \mathrm{V}_{\mathrm{CC}} \\ \hline \end{gathered}$	Vdc
Output Short-Circuit Duration*	${ }^{\text {t }}$	Indefinite	s
Operating Ambient Temperature Range	TA	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal and Ceramic Packages Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$
Junction Temperature Metal and Ceramic Packages Plastic Package	TJ	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

${ }^{*}$ Short-Circuit to ground with $\mathrm{I}_{\text {set }} \leqslant 15 \mu \mathrm{~A}$. Rating applies up to ambient temperature of $+70^{\circ} \mathrm{C}$.

EQUIVALENT SCHEMATIC DIAGRAM


ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{I}_{\text {set }}=15 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage }\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right) \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{V}_{10}$		$2.0$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	mV
Offset Voltage Adjustment Range	$V_{\text {IOR }}$	-	18	-	mV
Input Offset Current $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	110	-	$\begin{gathered} 2.0 \\ \hline \end{gathered}$	$\begin{aligned} & 25 \\ & 25 \\ & 40 \end{aligned}$	nA
Input Bias Current $\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=0^{\circ} \mathrm{C} \end{aligned}$	IIB	-	$15$	$\begin{gathered} 50 \\ 50 \\ 100 \end{gathered}$	nA
Input Resistance	$\mathrm{r}_{\mathrm{i}}$	-	5.0	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\mathrm{i}}$	-	2.0	-	pF
Input Common-Mode Voltage Range $0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$	VICR	$\pm 10$	-	-	V
$\begin{aligned} & \text { Large Signal Voltage Gain } \\ & R_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	AVOL	$\begin{aligned} & 50 \mathrm{k} \\ & 25 \mathrm{k} \end{aligned}$	$400 \mathrm{k}$	-	V/V
$\begin{aligned} & \text { Output Voltage Range } \\ & R_{L} \geqslant 10 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \\ & R_{L} \geqslant 10 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant 70^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {OR }}$	$\begin{aligned} & \pm 12 \\ & \pm 12 \end{aligned}$	$\pm 13$	-	V
Output Resistance	$\mathrm{r}_{0}$	-	1.0	-	k $\Omega$
Output Short-Circuit Current	Ios	-	12	-	mA
Common-Mode Rejection Ratio $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$	CMRR	70	90	-	dB
$\begin{aligned} & \text { Supply Voltage Rejection Ratio } \\ & R_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C} \end{aligned}$	PSRR	-	25	200	$\mu \mathrm{V} / \mathrm{V}$
$\begin{gathered} \hline \text { Supply Current } \\ \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C} \\ \hline \end{gathered}$	ICC, IEE	$-$	160	$\begin{aligned} & 200 \\ & 225 \end{aligned}$	$\mu \mathrm{A}$
Power Dissipation $\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C} \end{aligned}$	${ }^{\text {P }}$	-	$4.8$	$\begin{gathered} 6.0 \\ 6.75 \end{gathered}$	mW
```Transient Response (Unity Gain) Vin}=20\textrm{mV},\mp@subsup{\textrm{R}}{\textrm{L}}{}\geqslant10\textrm{k}\Omega,\mp@subsup{C}{L}{}=100\textrm{pF Rise Time Overshoot```	$\begin{aligned} & \text { t'LH } \\ & \text { OS } \end{aligned}$		$\begin{gathered} 0.35 \\ 10 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Slew Rate ($\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k}$)	SR	-	0.8	-	$\mathrm{V} / \mu \mathrm{s}$

TYPICAL CHARACTERISTICS
($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

FIGURE 3 - OPEN-LOOP GAIN versus SET CURRENT

FIGURE 2 - POSITIVE STANDBY SUPPLY CURRENT versus SET CURRENT

$I_{\text {set }}$, SET CURRENT ($\left.\mu \mathrm{A}\right)$

FIGURE 4 - INPUT BIAS CURRENT versus SET CURRENT

FIGURE 6 - GAIN-BANDWIDTH PRODUCT (GBW) versus SET CURRENT

$I_{\text {set }}$, SET CURRENT ($\mu \mathrm{A}$)

RL, LOAD RESISTANCE (OHMS)

FIGURE 8 - OUTPUT SWING versus SUPPLY VOLTAGE

DUAL WIDEBAND OPERATIONAL AMPLIFIER

The MC4558, MC4558AC, and MC4558C combine all the outstanding features of the MC1458 and, in addition, possess three times the unity gain bandwidth of the industry standard.

- 2.5 MHz Unity Gain Bandwidth Guaranteed on MC4558 and MC4558AC
- 2 MHz Unity Gain Bandwidth Guaranteed on MC4558C
- Internally Compensated
- Short-Circuit Protection
- Gain and Phase Match between Amplifiers
- Low Power Consumption

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	MC4558 MC4558AC	MC4558C	Unit
Power Supply Voltage	V_{CC}	+22	+18	Vdc
	V_{EE}	-22	-18	Vdc
Input Differential Voltage	$\mathrm{V}_{\text {ID }}$	± 30	Volts	
Input Common Mode Voltage (Note 1)	$\mathrm{V}_{\text {ICM }}$	± 15	Volts	
Output Short-Circuit Duration (Note 2)	t^{t}	Continuous		
Operating Ambient Temperature Range	T_{A}	See Ordering Information Below		
Storage Temperature Range Metal and Ceramic Packages Plastic Package	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$	
Junction Temperature Metal and Ceramic Packages Plastic Package		-55 to +125		

Note 1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2. Short circuit may be to ground or either supply.

DUAL WIDE BANDWIDTH OPERATIONAL AMPLIFIER

> SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package
MC4558G	-55 to $+125^{\circ} \mathrm{C}$	Metal Can
MC4558U		Ceramic DIP
MC4558CD	0 to $+70^{\circ} \mathrm{C}$	SO-8
MC4558CG		Metal Can
MC4558ACP1, CP1		Plastic DIP
MC4558CU		Ceramic DIP

MC4558, MC4558AC, MC4558C

FREQUENCY CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	MC4558, MC4558AC			MC4558C			Unit
		Min	Typ	Max	Min	Typ	Max	
Unity Gain Bandwidth	BW	2.5	2.8	-	2.0	2.8	-	MHz

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Input Offset Voltage ($\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$)	V_{10}	-	1.0	5.0	-	2.0	6.0	mV
Input Offset Current	110	-	20	200	-	20	200	nA
Input Bias Currentt	${ }_{1 / 8}$	-	80	500	-	80	500	nA
Input Resistance	r_{i}	0.3	2.0	-	0.3	2.0	-	$\mathrm{M} \Omega$
Input Capacitance	C_{i}	-	1.4	-	-	1.4	-	pF
Common Mode Input Voltage Range	$V_{\text {ICR }}$	± 12	± 13	-	± 12	± 13	-	V
Large Signal Voltage Gain $\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)$	A_{v}	50	200	-	20	200	-	V / mV
Output Resistance	ro	-	75	-	-	75	--	Ω
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k} \Omega 2\right)$	CMRR	70	90	-	70	90	-	dB
Supply Voltage Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k} \Omega 2\right)$	PSRR	-	30	150	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
$\begin{gathered} \hline \text { Output Voltage Swing } \\ \left(R_{L} \geqslant 10 \mathrm{k} \Omega\right) \\ \left(R_{L} \geqslant 2 \mathrm{k} \Omega\right) \\ \hline \end{gathered}$	V_{O}	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$		V
Output Short-Circuit Current	Ios	10	20	40	10	20	40	mA
Supply Currents (Both Amplifiers)	${ }^{1}$	-	2.3	5.0	-	2.3	5.6	mA
Power Consumption (Both Amplifiers)	${ }^{\text {P }}$	-	70	150	-	70	170	mW
Transient Response (Unity Gain) $\begin{array}{ll} \left(\mathrm{V}_{1}=20 \mathrm{mV}, R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}\right) & \text { Rise Time } \\ \left(\mathrm{V}_{1}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, C_{L} \leqslant 100 \mathrm{pF}\right) & \text { Overshoot } \\ \left(\mathrm{V}_{1}=10 \mathrm{~V}, R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, C_{L} \leqslant 100 \mathrm{pF}\right) & \text { Slew Rate } \end{array}$	$\begin{gathered} \text { tTLH } \\ \text { os } \\ \text { SR } \end{gathered}$	1.5	$\begin{gathered} 0.3 \\ 15 \\ 1.6 \end{gathered}$	- - -	- - 1.0	$\begin{gathered} 0.3 \\ 15 \\ 1.6 \end{gathered}$	-	$\begin{gathered} \mu \mathrm{s} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}={ }^{*} \mathrm{~T}_{\text {high }}\right.$ to $\mathrm{T}_{\text {low }}$ unless otherwise noted).

Input Offset Voltage $\left(R_{S} \leqslant 10 \mathrm{ks} 2\right)$ $\left(R_{S} \leqslant 10 k s 2\right)$	V_{10}	-	1.0	6.0	-	-	7.5	mV
$\begin{aligned} & \text { Input Offset Current } \\ & \left(T_{A}=T_{\text {high }}\right) \\ & \left(T_{A}=T_{\text {low }}\right) \\ & \left(T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \end{aligned}$	110	$-$	$\begin{aligned} & 7.0 \\ & 85 \end{aligned}$	$\begin{gathered} 200 \\ 500 \\ - \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{gathered} - \\ - \\ 300 \end{gathered}$	nA
$\begin{aligned} & \text { Input Bias Current } \\ & \left(T_{A}=T_{\text {high }}\right) \\ & \left(T_{A}=T_{\text {low }}\right) \\ & \left(T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \end{aligned}$	I'B	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 30 \\ 300 \end{gathered}$	$\begin{aligned} & 500 \\ & 1500 \end{aligned}$	-		$\begin{gathered} - \\ - \\ 800 \end{gathered}$	nA
Common Mode Input Voltage Range	$V_{\text {ICR }}$	± 12	± 13	-	-	-	-	V
Large Signal Voltage Gain $\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right)$	A_{v}	25	-	-	15	-	-	V / mV
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right)$	CMRR	70	90	-	-	-	-	dB
Supply Voltage Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k} \Omega\right)$	PSRR	-	30	150	-	-	-	$\mu \mathrm{V} / \mathrm{V}$
$\begin{gathered} \hline \text { Output Voltage Swing } \\ \left(R_{L} \geqslant 10 \mathrm{k} \Omega\right) \\ \left(R_{L} \geqslant 2 \mathrm{k} \Omega\right) \\ \hline \end{gathered}$	V_{O}	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$	-	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{array}{r} \pm \\ \pm 13 \\ \hline \end{array}$	-	V
Supply Currents (Both Amplifiers) $\begin{aligned} & \left(T_{A}=T_{\text {high }}\right) \\ & \left(T_{A}=T_{\text {low }}\right) \end{aligned}$	${ }^{\prime}$	$-$	-	$\begin{aligned} & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 5.0 \\ & 6.7 \\ & \hline \end{aligned}$	mA
$\begin{aligned} & \text { Power Consumption (Both Amplifiers) } \\ & \left(T_{A}=T_{\text {high }}\right) \\ & \left(T_{A}=T_{\text {low }}\right) \end{aligned}$	${ }^{\text {PC }}$	-	-	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	-	-	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	mW

[^6]FIGURE 1 - BURST NOISE versus SOURCE RESISTANCE

FIGURE 3 - OUTPUT NOISE versus SOURCE RESISTANCE

FIGURE 2 - RMS NOISE versus SOURCE RESISTANCE

FIGURE 4 - SPECTRAL NOISE DENSITY

FIGURE 5 - BURST NOISE TEST CIRCUIT

The test time employed is 10 seconds and the $20 \mu \mathrm{~V}$ peak limit refers to the operational amplifier input thus eliminating errors in the closed-loop gain factor of the operational amplifier under test.

Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

FIGURE 8 - POSITIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 10 - POWER BANDWIDTH
(LARGE SIGNAL SWING versus FREQUENCY)

FIGURE 7 - PHASE MARGIN versus FREQUENCY

FIGURE 9 - NEGATIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 11 - TRANSIENT RESPONSE TEST CIRCUIT

\section*{ORDERING INFORMATION
 | Device | Temperature Range | Package |
| :--- | :---: | :---: |
| MC4741L | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Ceramic DIP |
| MC4741CD | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | SO-14 |
| MC4741CL | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Ceramic DIP |
| MC4741CP | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Plastic DIP |
 Specifications and Applications Information}

(QUAD MC1741) OPERATIONAL AMPLIFIERS

The MC4741 series is a true quad MC1741. Integrated on a single monolithic chip are four independent, low-power operational amplifiers which have been designed to provide operating characteristics identical to those of the industry standard MC1741, and can be applied with no change in circuit performance.

The MC4741 can be used in applications where amplifier matching or high packing density is important. Other applications include high impedance buffer amplifiers and active filter amplifiers.

- Each Amplifier is Functionally Equivalent to the MC1741
- Class AB Output Stage Eliminates Crossover Distortion
- True Differential Inputs
- Internally Frequency Compensated
- Short Circuit Protection
- Low Power Supply Current ($0.6 \mathrm{~mA} /$ Amplifier)

MC4741 MC4741C

(QUAD MC1741)
DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX

CERAMIC PACKAGE CASE 632-08

D SUFFIX

PLASTIC PACKAGE CASE 751A-02 SO-14

P SUFFIX PLASTIC PACKAGE CASE 646-06

MAXIMUM RATINGS (T ${ }_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted).

Rating	Symbol	MC4741	MC4741C	Unit
Power Supply Voltage	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \\ & \hline \end{aligned}$	$\begin{array}{r} +18 \\ -18 \\ \hline \end{array}$	Vdc Vdc
Input Differential Voltage	$V_{\text {ID }}$	± 44	± 36	Volts
Input Common Mode Voltage	$V_{\text {ICM }}$	± 22	± 18	Volts
Output Short Circuit Duration	${ }^{\text {t }}$	Continuous		
Operating Ambient Temperature Range	TA	-55 to +125	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Ceramic Package Plastic Package	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$		${ }^{\circ} \mathrm{C}$
Junction Temperature Ceramic Package Plastic Package	TJ	17		${ }^{\circ} \mathrm{C}$

TYPICAL APPLICATION

HIGH IMPEDANCE INSTRUMENTATION BUFFER/FILTER

MC4741, MC4741C

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted).

Characteristic	Symbol	MC4741			MC4741C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	V10	-	1.0	5.0	-	2.0	6.0	mV
Input Offset Current	110	-	20	200	-	20	200	nA
Input Bias Current	1 IB	-	80	500	-	80	500	nA
Input Resistance	r_{i}	0.3	2.0	-	0.3	2.0	-	$\mathrm{M} \Omega$
Input Capacitance	C_{i}	-	1.4	-	-	1.4	-	pF
Offset Voltage Adjustment Range	$\mathrm{V}_{10 \mathrm{R}}$	-	± 15	-	-	± 15	-	mV
Common Mode Input Voltage Range	$V_{\text {ICR }}$	± 12	± 13	-	± 12	± 13	-	V
Large Signal Voltage Gain $\left(V_{0}= \pm 10 \mathrm{~V}, R_{L} \geqslant 2.0 \mathrm{k}\right)$	A_{v}	50	200	-	20	200	-	V / mV
Output Resistance	r_{0}	-	75	-	-	75	-	Ω
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	CMRR	70	90	-	70	90	-	dB
Supply Voltage Rejection Ratio $\left(R_{S} \leqslant 10 k\right)$	PSRR	-	30	150	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geqslant 10 \mathrm{k}\right) \\ & \left(\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k}\right) \\ & \hline \end{aligned}$	V_{O}	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-		$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$		V
Output Short-Circuit Current	Ios	-	20	-	-	20	-	mA
Supply Current - (All Amplifiers)	I_{D}	-	2.4	4.0	-	3.5	7.0	mA
Power Consumption (All Amplifiers)	P_{C}	-	72	120	-	105	210	mW
$\begin{array}{ll} \text { Transient Response (Unity Gain - Non-Inverting) } \\ \left(V_{1}=20 \mathrm{mV}, R_{\mathrm{L}} \geqslant 2 \mathrm{k}, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}\right) & \text { Rise Time } \\ \left(\mathrm{V}_{1}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k}, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}\right) & \text { Overshoot } \\ \left(\mathrm{V}_{1}=10 \mathrm{~V}, R_{\mathrm{L}} \geqslant 2 \mathrm{k}, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}\right) & \text { Slew Rate } \\ \hline \end{array}$	$\begin{aligned} & \text { t T LH } \\ & \text { os } \\ & \text { SR } \end{aligned}$	-	$\begin{array}{r} 0.3 \\ 15 \\ 0.5 \end{array}$	-	--	$\begin{aligned} & 0.3 \\ & 15 \\ & 0.5 \end{aligned}$	-	$\begin{gathered} \mu_{\mathrm{s}} \\ \% \\ \mathrm{v} / \mu_{\mathrm{s}} \end{gathered}$

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}={ }^{*} \mathrm{~T}_{\text {high }}\right.$ to $T_{\text {low }}$ unless otherwise noted.)

Characteristic	Symbol	MC4741			MC4741C			Unit
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\right)$	V_{10}	-	1.0	6.0	-	-	7.5	mV
Input Offset Current $\begin{aligned} & \left(T_{A}=125^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=-55^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \end{aligned}$	110	-	$\begin{aligned} & 7.0 \\ & 85 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	-	-	300	nA
Input Bias Current $\begin{aligned} & \left(T_{A}=125^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=-55^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \end{aligned}$	'IB	-	$\begin{gathered} 30 \\ 300 \end{gathered}$	$\begin{gathered} 500 \\ 1500 \end{gathered}$	-	-	$\begin{gathered} - \\ - \\ 800 \end{gathered}$	nA
Common Mode Input Voltage Range	$V_{\text {ICR }}$	± 12	± 13	-	-	-	-	V
Large Signal Voltage Gain $\left(R_{L} \geqslant 2 \mathrm{k}, \mathrm{~V}_{\text {out }}= \pm 10 \mathrm{~V}\right)$	A_{v}	25	-	-	15	-	-	V / mV
Common Mode Rejection Ratio $\left(R_{S} \leqslant 10 k\right)$	CMRR	70	90	-	-	-	-	dB
Supply Voltage Rejection Ratio $\left(R_{S} \leqslant 10 \mathrm{k}\right)$	PSRR	-	30	150	-	-	-	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geqslant 10 \mathrm{k}\right) \\ & \left(R_{\mathrm{L}} \geqslant 2 \mathrm{k}\right) \end{aligned}$	V_{O}	$\begin{array}{r} \pm 12 \\ \pm 10 \\ \hline \end{array}$	$\begin{array}{r} \pm 14 \\ \pm 13 \\ \hline \end{array}$	-	$\begin{array}{r} - \\ \pm 10 \\ \hline \end{array}$	± 13	-	V
$\begin{aligned} & \text { Supply Currents - (Al! Amplifiers) } \\ & \left(T_{A}=125^{\circ} \mathrm{C}\right) \\ & \left(T_{A}=-55^{\circ} \mathrm{C}\right) \end{aligned}$	ID	-	$\begin{array}{r} 2.4 \\ 3.6 \\ \hline \end{array}$	$\begin{aligned} & 3.4 \\ & 5.0 \\ & \hline \end{aligned}$	-	-	-	mA
Power Consumption ($\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$) (All Amplifiers) $\quad\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$)	${ }^{\text {P }}$ C	-	$\begin{gathered} \hline 72 \\ 108 \\ \hline \end{gathered}$	$\begin{aligned} & 102 \\ & 150 \end{aligned}$	-	-	-	mW

${ }^{*} \mathrm{~T}_{\text {high }}=125^{\circ} \mathrm{C}$ for MC4741 and $70^{\circ} \mathrm{C}$ for MC4741 C
Tlow $=-55^{\circ} \mathrm{C}$ for MC4741 and $0^{\circ} \mathrm{C}$ for MC4741C

TYPICAL CHARACTERISTICS
$\left(V_{C C}=+15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}-+25^{\circ} \mathrm{C}\right.$ unless otherwise noted $)$.

FIGURE 3 - POSITIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE (Single Supply Operation)

FIGURE 2 - OPEN LOOP FREQUENCY RESPONSE

FIGURE 4 - NEGATIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 6 - NONINVERTING PULSE RESPONSE

$10 \mu \mathrm{~s} / \mathrm{DIV}$

FIGURE 7 - BI-QUAD FILTER

FIGURE 8 - OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

FIGURE 9 - TRANSIENT RESPONSE TEST CIRCUIT

FIGURE 10 - ABSOLUTE VALUE DVM FRONT END

Advance Information

LOW NOISE
 OPERATIONAL AMPLIFIER

The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative highperformance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source and sink ac frequency performance.

The MC33078/9 family offers both dual and quad amplifier versions, tested over the vehicular temperature range and available in the plastic DIP and SOIC packages (P and D suffixes).

- Dual Supply Operation: $\pm 18 \mathrm{~V}$ (Max)
- Low Voltage Noise: $4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low Input Offset Voltage: 0.15 mV
- Low T.C. of Input Offset Voltage: $2.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Total Harmonic Distortion: 0.002\%
- High Gain Bandwidth Product: 16 MHz
- High Slew Rate: $7.0 \mathrm{~V} / \mu \mathrm{s}$
- High Open-Loop ac Gain: $800 \cong 20 \mathrm{kHz}$
- Excellent Frequency Stability
- Large Output Voltage Swing: +14.1 V/-14.6 V

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (VCC to V_{EE})	V_{S}	+36	Volts
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	Volts
Input Voltage Range	$\mathrm{V}_{\text {IR }}$	(Note 1)	Volts
Output Short-Circuit Duration (Note 2)	tS	Indefinite	Seconds
Maximum Junction Temperature	TJ	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {Stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	P_{D}	(Note 2)	mW

Notes

1. Either or both input voltages must not exceed the magnitude of $V_{C C}$ or $V_{E E}$.
2. Power dissipation must be considered to ensure maximum junction temperature (T_{J}) is not exceeded (See power dissipation performance characteristic, Figure 1).
3. Measured with $V_{C C}$ and $V_{E E}$ differentially varied simultaneously.

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage (} \left.\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \text { MC33078 } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{MC} 33079 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\left\|\mathrm{V}_{\mathrm{IO}}\right\|$	—	$\begin{gathered} 0.15 \\ - \\ 0.15 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 2.5 \\ & 3.5 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	2.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	IIB	-	300	$\begin{aligned} & 750 \\ & 800 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	10	-	25	$\begin{aligned} & 150 \\ & 175 \end{aligned}$	nA
Common Mode Input Voltage Range ($\Delta \mathrm{V}_{1 \mathrm{O}}=5.0 \mathrm{mV}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$)	VICR	± 13	± 14	-	V
```Large Signal Voltage Gain ( \(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) ) \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) \(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)```	AVOL	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$110$	-	dB
$\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{V}_{I D}= \pm 1.0 \mathrm{~V}\right) \\ & R_{L}=600 \Omega \\ & R_{L}=600 \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{v}_{\mathrm{O}^{+}} \\ & \mathrm{V}_{\mathrm{O}^{-}} \\ & \mathrm{v}_{\mathrm{O}^{+}} \\ & \mathrm{v}_{\mathrm{O}^{-}} \\ & \mathrm{V}_{\mathrm{O}^{+}} \\ & \mathrm{v}_{\mathrm{O}^{-}} \end{aligned}$	$\begin{gathered} \overline{-} \\ \frac{13.2}{-} \\ 13.5 \end{gathered}$	$\begin{gathered} 10.7 \\ -11.9 \\ 13.8 \\ -13.7 \\ 14.1 \\ -14.6 \end{gathered}$	$\begin{gathered} \overline{-} \\ - \\ -13.2 \\ - \\ -14 \end{gathered}$	V
Common Mode Rejection ( $\mathrm{V}_{\text {in }}= \pm 13 \mathrm{~V}$ )	CMR	80	100	-	dB
$\begin{aligned} & \text { Power Supply Rejection (Note 3) } \\ & \mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=+15 \mathrm{~V} /-15 \mathrm{~V} \text { to }+5.0 \mathrm{~V} /-5.0 \mathrm{~V} \end{aligned}$	PSR	80	105	-	dB
Output Short Circuit Current ( $\mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}$, Output to Ground)   Source   Sink	ISC	$\begin{aligned} & +15 \\ & -20 \\ & \hline \end{aligned}$	$\begin{array}{r} +29 \\ -37 \\ \hline \end{array}$	-	mA
$\begin{aligned} & \text { Power Supply Current } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text {, All Amplifiers) } \\ & \text { MC33078 } \begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { MC33079 } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned} \end{aligned}$	ID	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\frac{4.1}{8.4}$	$\begin{gathered} 5.0 \\ 5.5 \\ 10 \\ 11 \end{gathered}$	mA

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	Min	Typ	Max	Unit
Slew Rate ( $\mathrm{V}_{\text {in }}=-10 \mathrm{~V}$ to $\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}_{\mathrm{V}}=+1.0\right)$	SR	5.0	7.0	-	$\mathrm{V} / \mu \mathrm{s}$
Gain BAndwidth Product ( $f=100 \mathrm{kHz}$ )	GBW	10	16	-	MHz
Unity Gain Frequency (Open-Loop)	fu	-	9.0	-	MHz
	$A_{m}$	-	$\begin{array}{r} -11 \\ -6.0 \\ \hline \end{array}$	-	dB
Phase Margin ( $\left.\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \mathrm{l}$	$\phi_{\mathrm{m}}$	-	$\begin{aligned} & 55 \\ & 40 \\ & \hline \end{aligned}$	-	Deg
Channel Separation ( $f=20 \mathrm{~Hz}$ to 20 kHz )	CS	-	-120	-	dB
Power Bandwidth ( $\mathrm{V}_{\mathrm{O}}=27 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{THD} \leqslant 1.0 \%$ )	$B W_{P}$	-	120	-	kHz
Distortion ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}_{\mathrm{rms}}, \mathrm{A}_{\mathrm{V}}=+1.0$ )	THD	-	0.002	-	\%
Open-Loop Output Impedance ( $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=9.0 \mathrm{MHz}$ )	ZO\|	-	37	-	$\Omega$
Differential Input Resistance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )	RIN	-	175	-	$\mathrm{k} \Omega$
Differential Input Capacitance ( $\left.\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right)$	$\mathrm{CIN}^{\text {N }}$	-	12	-	pF
Equivalent Input Noise Voltage ( $\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$ )	$e_{n}$	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ( $f=1.0 \mathrm{kHz}$ )	$i_{n}$	-	0.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

## TYPICAL CHARACTERISTICS

FIGURE 1 - MAXIMUM POWER DISSIPATION versus TEMPERATURE


FIGURE 3 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 2 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE


FIGURE 4 - INPUT OFFSET VOLTAGE versus TEMPERATURE


TYPICAL CHARACTERISTICS - continued

FIGURE 5 - INPUT BIAS CURRENT versus COMMON MODE VOLTAGE


FIGURE 7 - OUTPUT SATURATION VOLTAGE versus LOAD RESISTANCE TO GROUND


FIGURE 9 - SUPPLY CURRENT versus TEMPERATURE


FIGURE 6 - INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE


FIGURE 8 - OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE


FIGURE 10 - COMMON MODE REJECTION versus FREQUENCY


## MC33078, MC33079

FIGURE 11 - POWER SUPPLY REJECTION versus FREQUENCY


FIGURE 13 - GAIN BANDWIDTH PRODUCT versus TEMPERATURE


FIGURE 15 - OUTPUT VOLTAGE versus FREQUENCY


FIGURE 12 - GAIN BANDWIDTH PRODUCT versus SUPPLY VOLTAGE


FIGURE 14 - MAXIMUM OUTPUT VOLTAGE versus SUPPLY VOLTAGE


FIGURE 16 - OPEN-LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE


TYPICAL CHARACTERISTICS - continued

FIGURE 17 - OPEN-LOOP VOLTAGE GAIN versus TEMPERATURE


FIGURE 19 - CHANNEL SEPARATION versus FREQUENCY


FIGURE 21 - TOTAL HARMONIC DISTORTION versus OUTPUT VOLTAGE


FIGURE 18 - OUTPUT IMPEDANCE versus FREQUENCY


FIGURE 20 - TOTAL HARMONIC DISTORTION versus FREQUENCY


FIGURE 22 - SLEW RATE versus SUPPLY VOLTAGE


FIGURE 23 - SLEW RATE versus TEMPERATURE


FIGURE 25 - OPEN-LOOP GAIN MARGIN AND PHASE MARGIN versus LOAD CAPACITANCE


FIGURE 27 - INPUT REFERRED NOISE VOLTAGE AND CURRENT versus FREQUENCY


FIGURE 24 - VOLTAGE GAIN AND PHASE versus FREQUENCY


FIGURE 26 - OVERSHOOT versus OUTPUT LOAD CAPACITANCE


FIGURE 28 - TOTAL INPUT REFERRED NOISE VOLTAGE versus SOURCE RESISTANCE


TYPICAL CHARACTERISTICS - continued


FIGURE 30 - INVERTING AMPLIFIER SLEW RATE

t , TIME ( $2.0 \mu \mathrm{~s}$ DIV.)

FIGURE 32 - NON-INVERTING AMPLIFIER OVERSHOOT

t, TIME ( $200 \mathrm{~ns} /$ DIV.)

FIGURE 31 - NON-INVERTING AMPLIFIER SLEW RATE

t, TIME ( $2.0 \mu \mathrm{~S}$ DIV.)

FIGURE 33 - LOW FREQUENCY NOISE VOLTAGE versus TIME

t , TIME (1.0 SEC DIV.)

FIGURE 34 - VOLTAGE NOISE TEST CIRCUIT
( $0.1 \mathrm{~Hz}-\mathrm{TO}-10 \mathrm{~Hz}$ p-p)


2

## LOW POWER, SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Quality bipolar fabrication with innovative design concepts are employed for the MC33171/2/4, MC35171/2/4 series of monolithic operational amplifiers. This series of operational amplifiers operates at $180 \mu \mathrm{~A}$ per amplifier and offers 1.8 MHz of gain bandwidth product and $2.1 \mathrm{~V} / \mu \mathrm{s}$ slew rate without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage range includes ground potential ( $\mathrm{V}_{\mathrm{EE}}$ ). With a Darlington input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source/sink AC frequency response.

The MC33171/2/4, MC35171/2/4 series of devices are specified over the industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in the plastic and ceramic DIP as well as the SOIC surface mount packages.

- Low Supply Current: $180 \mu \mathrm{~A}$ (Per Amplifier)
- Wide Supply Operating Range: +3.0 V to +44 V or $\pm 1.5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Wide Input Common Mode Range Including Ground (VEE)
- Wide Bandwidth: 1.8 MHz
- High Slew Rate: $2.1 \mathrm{~V} / \mu \mathrm{s}$
- Low Input Offset Voltage: 2.0 mV
- Large Output Voltage Swing: -14.2 V to +14.2 V (with $+/-15 \mathrm{~V}$ Supplies)
- Large Capacitance Drive Capability: 0 to 500 pF
- Low Total Harmonic Distortion: 0.03\%
- Excellent Phase Margin: $60^{\circ}$
- Excellent Gain Margin: 15 dB
- Output Short Circuit Protection

ORDERING INFORMATION

Op Amp   Function	Device	Temperature   Range	Package
Single	MC33171D   MC35171U    MC33171P	-40 to $+85^{\circ} \mathrm{C}$   -55 to $+125^{\circ} \mathrm{C}$   -40 to $+85^{\circ} \mathrm{C}$	SO-8 Plastic DIP   Ceramic DIP   Plastic DIP
Dual	MC33172D	-40 to $+85^{\circ} \mathrm{C}$	SO-8 Plastic DIP
	MC35172U	-55 to $+125^{\circ} \mathrm{C}$	Ceramic DIP
	MC33172P	-40 to $+85^{\circ} \mathrm{C}$	Plastic DIP
Quad	MC33174D	-40 to $+85^{\circ} \mathrm{C}$	SO-14 Plastic DIP
	MC35174L	-55 to $+125^{\circ} \mathrm{C}$	Ceramic DIP
	MC33174P	-40 to $+85^{\circ} \mathrm{C}$	Plastic DIP

## LOW POWER, SINGLE SUPPLY OPERATIONAL AMPLIFIERS




P SUFFIX
PLASTIC PACKAGE
CASE 646-06


L SUFFIX
CERAMIC PACKAGE CASE 632-08


PIN ASSIGNMENTS


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}$	$\pm \mathbf{2 2}$	Volts
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	Volts
Input Voltage Range	$\mathrm{V}_{\text {IR }}$	(Note 1)	Volts
Output Short Circuit Duration (Note 2)	$\mathrm{tS}_{\mathrm{S}}$	Indefinite	Seconds
Operating Ambient Temperature Range   MC35171/MC35172/MC35174   MC33171/MC33172/MC33174	$\mathrm{T}_{\mathrm{A}}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	-40 to +85	
Storage Temperature Range   Ceramic Package   Plastic Package	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER)


DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ connected to ground, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ [Note 3] unless otherwise noted.)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic \& Symbol \& Min \& Typ \& Max \& Unit \\
\hline \[
\begin{aligned}
\& \text { Input Offset Voltage }\left(V_{C M}=0 \mathrm{~V}\right) \\
\& V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\& \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] \& \(\mathrm{V}_{10}\) \& - \& \[
\begin{aligned}
\& 2.0 \\
\& 2.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 4.5 \\
\& 5.0 \\
\& 6.5
\end{aligned}
\] \& mV \\
\hline Average Temperature Coefficient of Offset Voltage \& \(\Delta \mathrm{V}_{10} / \Delta \mathrm{T}\) \& - \& 10 \& - \& \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
\& \text { Input Bias Current }\left(V_{C M}=0 \mathrm{~V}\right) \\
\& \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] \& IB \& \& 20 \& \[
\begin{aligned}
\& 100 \\
\& 200
\end{aligned}
\] \& nA \\
\hline \[
\begin{aligned}
\& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right) \\
\& \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\
\& \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] \& 10 \& - \& 5.0 \& \[
\begin{aligned}
\& 20 \\
\& 40
\end{aligned}
\] \& nA \\
\hline \begin{tabular}{l}
Large Signal Voltage Gain ( \(\left.\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right)\)
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
\(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\)
\end{tabular} \& AVol \& \[
\begin{aligned}
\& 50 \\
\& 25
\end{aligned}
\] \& 500 \& - \& \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing
\[
\begin{aligned}
\& \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, T_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \\
\& \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, T_{A}=+25^{\circ} \mathrm{C} \\
\& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, T_{\mathrm{A}}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] \& \(\mathrm{V}_{\mathrm{OH}}\)

$\mathrm{V}_{\mathrm{OL}}$ \& \[
$$
\begin{gathered}
3.5 \\
13.6 \\
13.3
\end{gathered}
$$

\] \& | 4.3 |
| :---: |
14.2
0.05
-14.2
-
:---:
-
-
0.15
-13.6
-13.3

\hline Output Short Circuit Current ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ) Input Overdrive $=1.0 \mathrm{~V}$, Output to Ground Source Sink \& Isc \& \[
$$
\begin{aligned}
& 3.0 \\
& 15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.0 \\
& 27
\end{aligned}
$$
\] \& - \& mA <br>

\hline Input Common Mode Voltage Range

$$
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
$$ \& VICR \& \multicolumn{3}{|r|}{$V_{E E}$ to ( $\left.\mathrm{V}_{\text {CC }}-1.8\right)$} \& V <br>

\hline Common Mode Rejection Ratio ( $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}$ ) \& CMRR \& 80 \& 90 \& - \& dB <br>
\hline Power Supply Rejection Ratio ( $\mathrm{R}_{\mathrm{S}}=100 \Omega$ ) \& PSRR \& 80 \& 100 \& - \& dB <br>
\hline Power Supply Current (Per Amplifier)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
$$ \& ID \& - \& \[

$$
\begin{aligned}
& 180 \\
& 220
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 250 \\
& 250 \\
& 300
\end{aligned}
$$
\] \& $\mu \mathrm{A}$ <br>

\hline
\end{tabular}

[^7][^8]AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ connected to ground, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Slew Rate }\left(V_{\text {in }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right) \\ & \mathrm{AV}^{2}+1 \\ & \mathrm{AV}-1 \end{aligned}$	SR	$1.6$	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	—	$\mathrm{V} / \mu \mathrm{s}$
Gain Bandwidth Product ( $f=100 \mathrm{kHz}$ )	GBW	1.4	1.8	-	MHz
Power Bandwidth $A_{V}=+1.0, R_{L}=10 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{THD}=5 \%$	BWp	-	35	-	kHz
$\begin{aligned} & \text { Phase Margin } \\ & R_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \hline \end{aligned}$	$\phi \mathrm{m}$	-	$\begin{aligned} & 60 \\ & 45 \end{aligned}$	-	Degrees
Gain Margin $\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	$A_{m}$	-	$\begin{array}{r} 15 \\ 5.0 \end{array}$	-	dB
Equivalent Input Noise Voltage $R_{S}=100 \Omega, f=1.0 \mathrm{kHz}$	$e_{n}$	-	32	-	$\frac{\mathrm{nV} /}{\sqrt{\mathrm{Hz}}}$
Equivalent input Noise Current ( $f=1.0 \mathrm{kHz}$ )	$I_{n}$	-	0.2	-	$\frac{\mathrm{pA} /}{\sqrt{\mathrm{Hz}}}$
Differential Input Resistance $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	RIN	-	300	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\mathrm{i}}$	-	0.8	-	pF
Total Harmonic Distortion $A_{V}=+10, R_{L}=10 \mathrm{k}, 2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant 20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{f}=10 \mathrm{kHz}$	THD	-	0.03	-	\%
Channel Separation ( $f=10 \mathrm{kHz}$ )	-	-	120	-	dB
Open-Loop Output Impedance ( $f=1.0 \mathrm{MHz}$ )	$z_{0}$	-	100	一	$\Omega$

## TYPICAL PERFORMANCE CURVES

FIGURE 1 - INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE


FIGURE 2 - SPLIT SUPPLY OUTPUT SATURATION versus LOAD CURRENT


## FIGURE 3 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY

FIGURE 4 - PHASE MARGIN AND PERCENT OVERSHOOT versus LOAD CAPACITANCE


FIGURE 5 - NORMALIZED GAIN BANDWIDTH PRODUCT AND SLEW RATE versus TEMPERATURE


FIGURE 7 - OUTPUT IMPEDANCE versus FREQUENCY



FIGURE 6 - SMALL AND LARGE SIGNAL TRANSIENT RESPONSE


FIGURE 8 - SUPPLY CURRENT versus SUPPLY VOLTAGE


## APPLICATIONS INFORMATION <br> CIRCUIT DESCRIPTION/PERFORMANCE FEATURES

Although the bandwidth, slew rate, and settling time of the MC33171/72/74 amplifier family is similar to low power op amp products utilizing JFET input devices, these amplifiers offer additional advantages as a result of the PNP transistor differential inputs and an all NPN transistor output stage.

Because the input common mode voltage range of this input stage includes the VEE potential, single supply operation is feasible to as low as 3.0 volts with the common mode input voltage at ground potential.

The input stage also allows differential input voltages up to $\pm 44$ volts, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ supply voltages as shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the $\mathrm{V}_{\mathrm{C}}$ voltage by approximately 3.0 volts and decrease below the $V_{E E}$ voltage by 0.3 volts without causing product damage, although output phase reversal may occur. It is also possible to source up to 5.0 mA of current from $V_{E E}$ through either input's clamping diode without damage or latching, but phase reversal may again occur. If at least one input is within the common mode input voltage range and the other input is within the maximum input voltage range, no phase reversal will occur. If both inputs exceed the upper common mode input voltage limit, the output will be forced to its lowest voltage state.

Since the input capacitance associated with the small geometry input device is substantially lower ( 0.8 pF ) than that of a typical JFET ( 3.0 pF ), the frequency response for a given input source resistance is greatly enhanced. This becomes evident in D-to-A current to voltage conversion applications where the feedback resistance can form a pole with the input capacitance of the op amp. This input pole creates a $2 n d$ order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher values of feedback resistances (lower current DAC's). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For $10 \mathrm{k} \Omega$ of feedback resistance, the MC33171/72/74 family can typically settle to within $1 / 2$ LSB of 8 bits in 4.2 $\mu \mathrm{s}$, and within $1 / 2$ LSB of 12 bits in $4.8 \mu \mathrm{~s}$ for a 10 volt step. In a standard inverting unity gain fast settling configuration, the symmetrical slew rate is typically $\pm 2.1$ volts $/ \mu \mathrm{s}$. In the classic noninverting unity gain configuration the typical output positive slew rate is also 2.1 volts $/ \mu \mathrm{s}$, and the corresponding negative slew rate will usually exceed the positive slew rate as a function of the fall time of the input waveform.

The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class $A B$ output stage. A $10 \mathrm{k} \Omega$ load resistance can typically swing within 0.8 volt of the positive rail ( $\mathrm{V}_{\mathrm{CC}}$ ) and negative rail (VEE), providing a $28.4 \mathrm{Vp}-\mathrm{p}$ swing from $\pm 15$ volt supplies. This large output swing becomes most noticeable at lower supply voltages.

The positive swing is limited by the saturation voltage of the current source transistor Q7, the $V_{B E}$ of the NPN pull up transistor Q17, and the voltage drop associated with the short circuit resistance, $R_{5}$. For sink currents less than 0.4 mA , the negative swing is limited by the saturation voltage of the pull-down transistor Q15, and the voltage drop across $R_{4}$ and $R_{5}$. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts
of $V_{E E}$. For sink currents ( $>0.4 \mathrm{~mA}$ ), diode D3 clamps the voltage across $R_{4}$. Thus the negative swing is limited by the saturation voltage of Q15, plus the forward diode drop of $\mathrm{D} 3\left(\approx \mathrm{~V}_{\mathrm{EE}}+1.0 \mathrm{~V}\right)$. Therefore an unprecedented peak-to-peak output voltage swing is possible for a given supply voltage as indicated by the output swing specifications.

If the load resistance is referenced to $\mathrm{V}_{\text {CC }}$ instead of ground for single supply applications, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to $V_{C C}$ during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull up capability.

Because the PNP output emitter follower transistor has been eliminated, the MC33171/72/74 family offers a 15 mA minimum current sink capability, typically to an output voltge of ( $\mathrm{V}_{\mathrm{EE}}+1.8 \mathrm{~V}$ ). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for high current switching applications.

In addition, the all NPN transistor output stage is inherently faster than PNP types, contributing to the bipolar amplifier's improved gain bandwidth products. The associated high frequency low output impedance ( $200 \Omega$ typ (a 1.0 MHz ) allows capacitive drive capability from 0 to 400 pF without oscillation in the noninverting unity gain configuration. The $60^{\circ}$ phase margin and 15 dB gain margin as well as the general gain and phase characteristics are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The ac characteristics of the MC33171/72/74 family also allow excellent active filter capability, especially for low voltage single supply applications.

Although the single supply specification is defined at 5.0 volts, these amplifiers are functional to at least 3.0 volts@ $25^{\circ} \mathrm{C}$. However slight changes in parametrics such as bandwidth, slew rate, and dc gain may occur.

If power to this integrated circuit is applied in reverse polarity or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction.

As usual with most high frequency amplifiers, proper lead dress, component placement and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature.

The output of any one amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for $\pm 15$ volt supplies, any one output can be shorted continuously to ground without exceeding the maximum temperature rating.

FIGURE 9 - AC COUPLED NONINVERTING AMPLIFIER WITH SINGLE +5.0 V SUPPLY


FIGURE 11 - DC COUPLED INVERTING AMPLIFIER MAXIMUM OUTPUT SWING WITH SINGLE +5.0 V SUPPLY


FIGURE 13 - ACTIVE HIGH-Q NOTCH FILTER


FIGURE 10 - AC COUPLED INVERTING AMPLIFIER WITH SINGLE +5.0 V SUPPLY


FIGURE 12 - OFFSET NULLING CIRCUIT


Offset Nulling range is approximately $\pm 80 \mathrm{mV}$ with a 10 k potentiometer, MC33171/MC35171 only.

FIGURE 14 - ACTIVE BANDPASS FILTER


Given $\mathrm{f}_{\mathrm{O}}=$ Center Frequency

$$
R 1=\frac{R 3}{2 H_{0}} \quad R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}
$$

$A_{O}=$ Gain at Center Frequency
Choose Value $f_{0}, ~ Q, A_{0}, C$
$R 3=\frac{Q}{\pi f_{o} C} \quad \frac{Q_{O} f_{\mathrm{O}}}{G B W}<0.1$
Then
For less than $10 \%$ error from operational amplifier
Where $f_{0}$ and GBW are expressed in Hz .

## Advance Information

## LOW INPUT OFFSET, HIGH SLEW RATE, WIDE BANDWIDTH, JFET INPUT OPERATIONAL AMPLIFIERS

The MC33282,4 series of monolithic operational amplifiers are quality fabricated with innovative Bipolar and JFET design concepts. This dual and quad operational amplifier series incorporates JFET inputs along with a patented unique resistor trim element for input offset voltage reduction. The MC33282,4 series of operational amplifiers exhibits low input offset voltage, low input bias current, high gain bandwidth and high slew rate. Dual-doublet frequency compensation is incorporated to produce high quality phase/gain performance. In addition, the MC33282,4 series exhibits moderately low input noise characteristics for JFET input amplifiers. It's all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margin, low open-loop high frequency output impedance with symmetrical source and sink ac frequency performance.
The MC33282,4 series is specified over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and is available in the plastic DIP and SOIC surface mount packages ( $P$ and $D$ suffixes).

- Low Input Offset Voltage: $200 \mu \mathrm{~V}$
- Low Input Bias Current: 30 pA
- Low Input Offset Current: 6.0 pA
- Low Total Harmonic Distortion: 0.003\%
- Low Noise: $18 \mathrm{nV} / \mathrm{Hz}$ @ 1.0 kHz
- High Gain Bandwidth Product: 30 MHz (a 100 kHz
- High Slew Rate: $12 \mathrm{~V} / \mu \mathrm{s}$
- Excellent Frequency Stability
- Large Output Voltage Swing: +14.1 V/-14.6 V
- Dual Supply Operation: $\pm 18 \mathrm{~V}$ (Max)

ORDERING INFORMATION			
Op Amp   Function	Device	Ambient Test   Temperature Range	Package
Dual	MC33282D   MC33282P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-8   Plastic DIP
Quad	MC33284D   MC33284P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-14   Plastic DIP

This document contains information on a new product. Specifications and information herein are subject to change without notice.



MC33282, MC33284

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (VCC to $\mathrm{V}_{\mathrm{EE}}$ )	$\mathrm{V}_{\mathrm{S}}$	+36	Volts
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	(Note 1)	Volts
Input Voltage Range	$\mathrm{V}_{\text {IR }}$	(Note 1)	Volts
Output Short Circuit Duration (Note 2)	$\mathrm{t}_{\mathrm{S}}$	Indefinite	Seconds
Maximum Junction Temperature	$\mathrm{TJ}_{\mathrm{J}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {Stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	(Note 2)	mW

NOTES:

1. Either or both input voltages should not exceed $V_{C C}$ or $V_{E E}$.
2. Power dissipation must be considered to ensure maximum junction temperature ( $T_{J}$ ) is not exceeded.

EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER)


DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristics	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage ( } \mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { ) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\|\mathrm{VIO}\|$	-	0.2	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $T_{\text {high }}$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	5.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	IIB	-	$30$	$\begin{aligned} & 100 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \text { pA } \\ & \text { nA } \end{aligned}$
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V} \mathrm{CM}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	110	-	6.0	$\begin{aligned} & 50 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \text { pA } \\ & \text { nA } \end{aligned}$
Common Mode Input Voltage Range ( $\Delta \mathrm{V}_{1 \mathrm{O}}=5.0 \mathrm{mV}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ )	VICR	$-11$	$\begin{gathered} -12 \\ 14 \end{gathered}$	$\overline{11}$	V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	AVOL	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200	-	$\mathrm{V} / \mathrm{mV}$
$\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{V}_{1 D}= \pm 1.0 \mathrm{~V}\right) \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{v}_{\mathrm{O}^{+}} \\ & \mathrm{v}_{\mathrm{O}^{-}} \\ & \mathrm{v}_{\mathrm{O}^{+}} \\ & \mathrm{v}_{\mathrm{O}^{-}} \end{aligned}$	$\frac{13.2}{-}$	$\begin{gathered} 13.7 \\ -13.9 \\ 14.1 \\ -14.6 \\ \hline \end{gathered}$	$\begin{gathered} -\overline{13.2} \\ - \\ -14 \\ \hline \end{gathered}$	V
Common Mode Rejection ( $\mathrm{V}_{\text {in }}= \pm 11 \mathrm{~V}$ )	CMR	75	95	-	dB
Power Supply Rejection (Note 3) $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=+15 \mathrm{~V} /-15 \mathrm{~V} \text { to }+5.0 \mathrm{~V} /-5.0 \mathrm{~V}$	PSR	75	105	-	dB
Output Short Circuit Current (VID $=1.0 \mathrm{~V}$, Output to Ground) Source   Sink	ISC	$\begin{gathered} 15 \\ -15 \end{gathered}$	$\begin{gathered} 21 \\ -27 \end{gathered}$	-	mA
$\begin{aligned} & \text { Power Supply Current ( } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text {, Per Amplifier) } \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	'D	-	1.75	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	mA

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Slew Rate $\left(\mathrm{V}_{\mathrm{in}}=-10 \mathrm{~V}\right.$ to $\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}_{\mathrm{V}}=+1.0\right)$	SR	8.0	12	-	$\mathrm{V} / \mu \mathrm{s}$
Gain Bandwidth Product ( $f=100 \mathrm{kHz}$ )	GBW	-	30	-	MHz
AC Voltage Gain ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=20 \mathrm{kHz}$ )	Avo	-	1500	-	V/V
Unity Gain Frequency (Open-Loop)	fu	-	5.0	-	MHz
Gain Margin ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )	$A_{m}$	-	8.0	-	dB
Phase Margin ( $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ )	$\phi_{\mathrm{m}}$	-	55	-	Deg.
Channel Separation ( $f=20 \mathrm{~Hz}$ to 20 kHz )	CS	-	-120	-	dB
Power Bandwidth ( $\mathrm{V}_{\mathrm{O}}=27 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$, THD $=1.0 \%$ )	$B W_{P}$	-	120	-	kHz
Distortion $\left\langle\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz}\right.$ to $\left.20 \mathrm{kHz}, \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}_{\mathrm{rms}}, \mathrm{AV}=+1.0\right)$	THD	-	0.003	-	\%
Open-Loop Output Impedance ( $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=9.0 \mathrm{MHz}$ )	$\left\|\mathrm{Z}_{\mathrm{O}}\right\|$	-	37	-	$\Omega$
Differential Input Resistance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )	RIN	-	$10^{12}$	-	$\mathrm{k} \Omega$
Differential Input Capacitance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ )	$\mathrm{CIN}_{\text {I }}$	-	5.0	-	pF
Equivalent Input Noise Voltage ( $\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$ )	$e_{n}$	-	18	-	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ( $f=1.0 \mathrm{kHz}$ )	in	-	0.01	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

NOTE:
3. Measured with $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ differentially varied simultaneously.

## JFET INPUT OPERATIONAL AMPLIFIERS

These low cost JFET Input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.
The Motorola BIFET family offers single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices. The MC35001/35002/35004 series are specified over the military operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the MC34001/34002/34004 series are specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

- Input Offset Voltage Options of 2.0, 5.0, and 10 mV Maximum
- Low Input Bias Current - 40 pA
- Low Input Offset Current - 10 pA
- Wide Gain Bandwidth - 4.0 MHz
- High Slew Rate - $13 \mathrm{~V} / \mu \mathrm{s}$
- Low Supply Current - 1.8 mA per Amplifier
- High Input Impedance - $10^{12} \Omega$
- High Common-Mode and Supply Voltage Rejection Ratios 100 dB
- Industry Standard Pinouts


MAXIMUM RATINGS

Rating	Symbol	MC35001 MC35002 MC35004	MC34001 MC34002 MC34004	Unit
Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & +22 \\ & -22 \end{aligned}$	$\begin{array}{r} +18 \\ +18 \end{array}$	V
Differential Input Voltage	$V_{\text {ID }}$	$\pm 40$	$\pm 30$	V
Input Voltage Range	$V_{\text {IDR }}$	$\pm 20$	$\pm 16$	V
Output Short-Circuit Duration	ts	Continuous		
Operating Ambient Temperature Range	${ }^{\text {T }}$ A	-55 to +125	0 to +70	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Metal and Ceramic Packages Plastic Packages	TJ	150	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range Metal and Ceramic Packages Plastic Packages	${ }^{\text {stg }}$	-65 to +150	$\begin{aligned} & -65 \text { to }+150 \\ & -55 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ}\right.$ unless otherwise noted).

Characteristic	Symbol	MC35001/35002/35004			MC34001/34002/34004			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage ( } \left.\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}\right) \\ & \text { MC3500XA, MC3400XA } \\ & \text { MC3500XB, MC3400XB } \\ & \text { MC3500X, MC3400X } \end{aligned}$	V10	—	$\begin{aligned} & 1.0 \\ & 3.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 2.0 \\ 5.0 \\ 10 \end{gathered}$	-	$\begin{aligned} & 1.0 \\ & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 5.0 \\ & 10 \end{aligned}$	mV
Average Temperature Coefficient of Input Offset Voltage $R_{S} \leqslant 10 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ (Note 1)	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Offset Current }(\mathrm{V} \mathrm{CM}=0) \text { (Note 2) } \\ & \mathrm{MC} 3500 \times \mathrm{A}, \mathrm{MC} 3400 \times \mathrm{A} \\ & \mathrm{MC} 3500 \times \mathrm{B}, \mathrm{MC} 3400 \times \mathrm{B} \\ & \mathrm{MC} 3500 \mathrm{X}, \mathrm{MC} 3400 \mathrm{X} \end{aligned}$	110	-	$\begin{aligned} & 10 \\ & 10 \\ & 25 \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$	-	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 100 \end{gathered}$	pA
Input Bias Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note 2) } \\ & \mathrm{MC} 3500 \mathrm{XA}, \mathrm{MC} 3400 \mathrm{XA} \\ & \text { MC3500XB, MC3400XB } \\ & \text { MC3500X, MC3400X } \end{aligned}$	/1B	-	$\begin{aligned} & 40 \\ & 40 \\ & 50 \end{aligned}$	$\begin{gathered} 75 \\ 100 \\ 200 \end{gathered}$	-	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & 200 \end{aligned}$	pA
Input Resistance	$r_{i}$	-	$10^{12}$	-	-	$10^{12}$	-	$\Omega$
Common Mode Input Voltage Range	VICR	$\pm 11$	$\begin{aligned} & +15 \\ & -12 \end{aligned}$	-	$\pm 11$	$\begin{aligned} & +15 \\ & -12 \end{aligned}$	-	V
Large Signal Voltage Gain ( $\left.\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}\right)$ MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	AVOL	$\begin{aligned} & 50 \\ & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 100 \end{aligned}$	$-$	$\begin{aligned} & 50 \\ & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 100 \end{aligned}$	—	$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geqslant 10 \mathrm{k}\right) \\ & \left(R_{L} \geqslant 2.0 \mathrm{k}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$	-	V
$\begin{aligned} &\text { Common Mode Rejection Ratio (RS } \leqslant 10 \mathrm{k}) \\ & \text { MC3500XA, MC3400XA } \\ & \text { MC3500XB, MC3400XB } \\ & \text { MC3500X, MC3400X } \end{aligned}$	CMRR	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	-	$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$	-	dB
Supply Voltage Rejection Ratio ( $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}$ ) (Note 3) MC3500XA, MC3400XA MC3500XB, МС3400XB MC3500X, MC3400X	PSRR	$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	-	$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	-	dB
Supply Current (Each Amplifier) $\begin{aligned} & \text { MC3500XA, MC3400XA } \\ & \text { MC3500XB, MC3400XB } \\ & \text { MC3500X, MC3400X } \end{aligned}$	ID	-	$\begin{aligned} & 1.4 \\ & 1.4 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.4 \\ & 1.4 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$	mA
Slew Rate ( $\mathrm{A}_{V}=1$ )	SR	-	13	-	-	13	-	$\mathrm{V} / \mu \mathrm{s}$
Gain-Bandwidth Product	GBW	-	4.0	-	-	4.0	-	MHz
Equivalent Input Noise Voltage $\left(R_{S}=100 \Omega, f=1000 \mathrm{~Hz}\right)$	$\mathrm{e}_{\mathrm{n}}$	-	25	-	-	25	-	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Equivalent Input Noise Current ( $f=1000 \mathrm{~Hz}$ )	$\mathrm{in}_{n}$	-	0.01	-	-	0.01	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.$ to $T_{\text {high }}$ [Note 1]).

Characteristic	Symbol	MC35001/35002/35004			MC34001/34002/34004			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Input Offset Voltage ( } \mathrm{R}_{S} \leqslant 10 \mathrm{k} \text { ) } \\ & \text { MC3500XA, MC3400XA } \\ & \text { MC3500XB, MC3400XB } \\ & \text { MC3500X, MC3400X } \end{aligned}$	V10	—	-	$\begin{aligned} & 4.0 \\ & 7.0 \\ & 14 \end{aligned}$	I	-	$\begin{aligned} & 4.0 \\ & 7.0 \\ & 13 \end{aligned}$	mV
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note 2) } \\ & \\ & \mathrm{MC3500XA}, \mathrm{MC} 3400 \times \mathrm{A} \\ & \\ & \mathrm{MC} 3500 \times \mathrm{B}, \mathrm{MC} 3400 \times \mathrm{B} \\ & \mathrm{MC} 3500 \mathrm{X}, \mathrm{MC} 3400 \mathrm{X} \end{aligned}$	110	-	-	$\begin{aligned} & 20 \\ & 40 \\ & 40 \end{aligned}$	-	-	$\begin{aligned} & 2.0 \\ & 4.0 \\ & 4.0 \end{aligned}$	nA
Input Bias Current ( $\mathrm{V}_{\mathrm{CM}}=0$ ) (Note 2)   MC3500XA, MC3400XA   MC3500XB, MC3400XB   MC3500X, MC3400X	IIB	-	-	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$-$	-	$\begin{aligned} & 4.0 \\ & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	nA
Common Mode Input Voltage Range	VICR	$\pm 11$	-	-	$\pm 11$	-	-	V
$\begin{aligned} \text { Large Signal }\left(\mathrm{V}_{\mathrm{O}}= \pm\right. & \left.10 \mathrm{~V}, R_{\mathrm{L}}=2.0 \mathrm{k}\right) \\ & \mathrm{MC} 3500 \times \mathrm{A}, \mathrm{MC} 3400 \times \mathrm{A} \\ & \mathrm{MC} 3500 \times \mathrm{B}, \mathrm{MC} 3400 \times \mathrm{B} \\ & M C 3500 \mathrm{X}, \mathrm{MC} 3400 \mathrm{X} \end{aligned}$	AVOL	$\begin{aligned} & 25 \\ & 25 \\ & 15 \end{aligned}$	-	$-$	$\begin{aligned} & 25 \\ & 25 \\ & 15 \end{aligned}$	-	-	$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing $\begin{aligned} & \left(R_{L} \geqslant 10 \mathrm{k}\right) \\ & \left(R_{L} \geqslant 2.0 \mathrm{k}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	-	-	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	-	-	V
Common Mode Rejection Ratio ( $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}$ ) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	CMRR	$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	-	-	$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	-	-	dB
Supply Voltage Rejection Ratio ( $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}$ ) (Note 3) MC3500XA, MC3400XA   MC3500XB, MC3400XB   MC3500X, MC3400X	PSRR	$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	-	-	$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	-	-	dB
$\begin{aligned} & \text { Supply Current (Each Amplifier) } \\ & \text { MC3500XA, MC3400XA } \\ & \text { MC3500XB, MC3400XB } \\ & \text { MC3500X, MC3400X } \end{aligned}$	1 D	$-$	-	$\begin{aligned} & 2.8 \\ & 2.8 \\ & 3.0 \end{aligned}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \\ & 3.0 \end{aligned}$	mA

NOTES: (1) Tlow $=-55^{\circ} \mathrm{C}$ for MC35001/MC35001A 35001 B MC35002/MC35002A/35002B MC35004/35004B $=0^{\circ} \mathrm{C}$ for $\mathrm{MC} 34001 / 34001 \mathrm{~A} / 34001 \mathrm{~B}$ MC34002/34002A/34002B MC34004/34004B Thigh - $+125^{\circ} \mathrm{C}$ for MC35001/MC35001A/35001B MC35002/MC35002A/35002B MC35004/35004B
$=+70^{\circ} \mathrm{C}$ for $\mathrm{MC} 34001 / 34001 \mathrm{~A} / 34001 \mathrm{~B}$ MC34002/34002A/34002B MC34004/34004B
(2) The input bias currents approximately double for every $10^{\circ} \mathrm{C}$ rise in junction temperature, $\mathrm{T}_{\mathrm{J}}$. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
(3) Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
(4) Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply.

FIGURE 1 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 3 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


FIGURE 5 - OUTPUT VOLTAGE SWING versus TEMPERATURE


FIGURE 2 - OUTPUT VOLTAGE SWING versus FREQUENCY


FIGURE 4 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE


FIGURE 6 - SUPPLY CURRENT PER AMPLIFIER versus TEMPERATURE


FIGURE 7 - LARGE-SIGNAL VOLTAGE GAIN AND PHASE SHIFT versus FREQUENCY


FIGURE 9 - NORMALIZED SLEW RATE versus TEMPERATURE


FIGURE 8 - LARGE-SIGNAL VOLTAGE GAIN versus TEMPERATURE


FIGURE 10 - EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY


FIGURE 11 - TOTAL HARMONIC DISTORTION versus FREQUENCY



TYPICAL APPLICATIONS



FIGURE 14 - LONG INTERVAL RC TIMER


Time $(t)=R 4 C \notin n\left(V_{R} / V_{R}-V_{1}\right), R_{3}=R_{4}, R_{5}=0.1 R_{6}$ If R1 $=$ R2: $t=0.693$ R4C

Design Example: 100 Second Timer
$V_{R}=10 \mathrm{v} \quad \mathrm{C}=1.0 \mu \mathrm{~F} \quad \mathrm{R} 3=\mathrm{R} 4=144 \mathrm{M}$
$\mathrm{R} 6=20 \mathrm{k} \quad \mathrm{R} 5=2.0 \mathrm{k} \quad \mathrm{R} 1=\mathrm{R} 2=1.0 \mathrm{k}$

FIGURE 15 - ISOLATING LARGE CAPACITIVE LOADS


- Overshoot <10\%
- $\mathrm{t}_{\mathrm{s}}=10 \mu \mathrm{~s}$
- When driving large $C_{L}$, the $V_{\text {out }}$ slew rate is determined by $C_{L}$ and Iout(max):


FIGURE 16 - WIDE BW, LOW NOISE, LOW DRIFT AMPLIFIER


- Power BW: $f_{\max }=\frac{S_{r}}{2 \pi V_{p}} \cong 240 \mathrm{kHz}$
- Parasitic input capacitance ( $\mathrm{C} 1 \cong 3 \mathrm{pF}$ plus any additional layout capacitance) interacts with feedback elements and creates undesirable high-frequency pole. To compensate add C2 such that: R2C2 $\cong \mathrm{R} 1 \mathrm{C} 1$.


## HIGH SLEW RATE, WIDE BANDWIDTH, SINGLE SUPPLY OPERATIONAL AMPLIFIERS

Quality bipolar fabrication with innovative design concepts are employed for the MC33071/2/4, MC34071/2/4, MC35071/2/4 series of monolithic operational amplifiers. This series of operational amplifiers offer 4.5 MHz of gain bandwidth product, $13 \mathrm{~V} / \mu$ s slew rate and fast settling time without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage range includes ground potential ( $\mathrm{V}_{\mathrm{EE}}$ ). With a Darlington input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source/sink ac frequency response.

The MC33071/2/4, MC34071/2/4, MC35071/2/4 series of devices are available in standard or prime performance (A Suffix) grades and are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in the plastic, ceramic DIP and SOIC surface mount packages.

- Wide Bandwidth: 4.5 MHz
- High Slew Rate: $13 \mathrm{~V} / \mu \mathrm{s}$
- Fast Settling Time: $1.1 \mu$ s to $0.1 \%$
- Wide Single Supply Operation: 3.0 V to 44 V
- Wide Input Common Mode Voltage Range: Includes Ground (VEE)
- Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)
- Large Output Voltage Swing: -14.7 V to +14 V (with $\pm 15 \mathrm{~V}$ Supplies)
- Large Capacitance Drive Capability: 0 to 10,000 pF
- Low Total Harmonic Distortion: 0.02\%
- Excellent Phase Margin: $60^{\circ}$
- Excellent Gain Margin: 12 dB
- Output Short Circuit Protection

ORDERING INFORMATION

Op Amp   Function	Device	Temperature Range	Package
Single	MC34071P, AP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
	MC34071D, AD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-8
	MC34071U, AU	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
	MC33071P, AP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP
	MC33071D, AD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-8
	MC33071U, AU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic DIP
	MC35071U, AU	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP
Dual	MC34072P, AP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
	MC33072D AD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-8
	MC34072U, AU	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
	MC33072P, AP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP
	MC33072D AD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-8
	MC33072U, AU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic DIP
	MC35072U, AU	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP
	MC34074P, AP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-14	
	MC34074D, AD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
	MC34074U, AU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP
	MC33074P, AP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-14
	MC33074D, AD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic DIP
	MC33074U, AU	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP

## HIGH PERFORMANCE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from V $\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{\mathrm{CC}}$ )	$\mathrm{V}_{\mathrm{S}}$	+44	Volts
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	Note 1	Volts
Input Voltage Range	$\mathrm{V}_{\mathrm{IR}}$	Note 1	Volts
Output Short-Circuit Duration (Note 2)	tS	Indefinite	Seconds
Operating Junction Temperature   Ceramic Package   Plastic Package	$\mathrm{TJ}_{\mathrm{J}}$	+160   +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range   Ceramic Package   Plastic Package		$\mathrm{T}_{\text {stg }}$	-65 to +160

## NOTES:

1. Either or both input voltages should not exceed the magnitude of $V_{C C}$ or $V_{E E}$.
2. Power dissipation must be considered to ensure maximum junction temperature ( $T_{J}$ ) is not exceeded (see Figure 1).

EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER)


DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\right.$ connected to ground unless otherwise noted. See [Note 3] for $T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ )

		A Suffix			Non-Suffix			
Characteristic	Symbol	Min	Typ	Max	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Voltage (RS } \left.=100 \Omega, V_{C M}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	$V_{10}$	-	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	mV
Average Temperature Coefficient of input Offset Voltage $\mathrm{R}_{\mathrm{S}}=10 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	IB	-	100	$\begin{aligned} & 500 \\ & 700 \end{aligned}$	-	100	$\begin{aligned} & 500 \\ & 700 \end{aligned}$	nA
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	Io	-	6.0	$\begin{gathered} 50 \\ 300 \end{gathered}$	-	6.0	$\begin{gathered} 75 \\ 300 \end{gathered}$	nA
Input Common Mode Voltage Range $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	VICR	$\mathrm{V}_{\mathrm{EE}}$ to $\left(\mathrm{V}_{\mathrm{CC}}-1.8\right)$   $\mathrm{V}_{\mathrm{EE}}$ to $\left(\mathrm{V}_{\mathrm{CC}}-2.2\right)$			$\mathrm{V}_{\mathrm{EE}}$ to $\left(\mathrm{V}_{\mathrm{CC}}-1.8\right)$ $\mathrm{V}_{\mathrm{EE}}$ to $\left(\mathrm{V}_{\mathrm{CC}}-2.2\right)$			V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	Avol	$\begin{aligned} & 50 \\ & 25 \\ & \hline \end{aligned}$	100	-	25 20	100	-	V/mV
$\begin{aligned} & \text { Output Voltage Swing }\left(V_{I D}= \pm 1.0 \mathrm{~V}\right) \\ & V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}$	$\begin{array}{\|c} 3.7 \\ 13.6 \\ 13.4 \\ \hline \end{array}$	$\begin{gathered} 4.0 \\ 14 \end{gathered}$	-	$\begin{array}{\|c\|} 3.7 \\ 13.6 \\ 13.4 \\ \hline \end{array}$	$\begin{gathered} 4.0 \\ 14 \end{gathered}$	-	v
$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k},, T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$	-	$\begin{gathered} \hline 0.1 \\ -14.7 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.3 \\ -14.3 \\ -13.5 \\ \hline \end{array}$	-	$\begin{gathered} \hline 0.1 \\ -14.7 \end{gathered}$	$\begin{array}{c\|} \hline 0.3 \\ -14.3 \\ -13.5 \\ \hline \end{array}$	V
Output Short-Circuit Current ( $\mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) Source Sink	Isc	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \\ 30 \\ \hline \end{array}$	-	mA
Common Mode Rejection $\mathrm{R}_{\mathrm{S}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {ICR }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	CMR	80	97	-	70	97	-	dB
Power Supply Rejection ( $\mathrm{R}_{\mathrm{S}}=100 \Omega$ )   ${ }^{1} \mathrm{CC} / \mathrm{V}_{\mathrm{EE}}=+16.5 \mathrm{~V} /-16.5 \mathrm{~V}$ to $+13.5 \mathrm{~V} /-13.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PSR	80	97	-	70	97	-	dB
Power Supply Current (Per Amplifier, No Load) $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$	'D	-	$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	2.0 2.5 2.8	-	$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	2.0 2.5 2.8	mA

NOTES: (continued)
3. $\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}$ for $\mathrm{MC} 35071,2,4 / \mathrm{A}$
$T_{\text {high }}=+125^{\circ} \mathrm{C}$ for MC35071,2,4/ A
$=-40^{\circ} \mathrm{C}$ for $\mathrm{MC} 33071,2,4 / \mathrm{A}$
$=0^{\circ} \mathrm{C}$ for $\mathrm{MC} 34071,2,4, / \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\right.$ connected to ground, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

		A Suffix			Non-Suffix			
Characteristic	Symbol	Min	Typ	Max	Min	Typ	Max	Unit
$\begin{aligned} & \text { Slew Rate }\left(\mathrm{V}_{\text {in }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\right) \\ & \mathrm{AV}_{\mathrm{V}}=+1.0 \\ & \mathrm{AV}=-1.0 \end{aligned}$	SR	8.0	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	-	8.0	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	-	$\mathrm{V} / \mu \mathrm{s}$
$\begin{aligned} & \text { Settling Time (10 V Step, } A V=-1.0) \\ & \text { To } 0.1 \%(+1 / 2 \text { LSB of } 9 \text {-Bits) } \\ & \text { To } 0.01 \%(+1 / 2 \text { LSB of } 12 \text {-Bits) } \end{aligned}$	$\mathrm{t}_{\text {s }}$	-	$\begin{aligned} & 1.1 \\ & 2.2 \end{aligned}$	-	-	$\begin{aligned} & 1.1 \\ & 2.2 \end{aligned}$	-	$\mu \mathrm{S}$
Gain Bandwidth Product ( $f=100 \mathrm{kHz}$ )	GBW	3.5	4.5	-	3.5	4.5	-	MHz
Power Bandwidth $A_{V}=+1.0, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{THD}=5.0 \%$	BW	-	200	-	-	200	-	kHz
Phase Margin $\begin{aligned} & R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \end{aligned}$	$\phi_{\mathrm{m}}$	-	$\begin{aligned} & 60 \\ & 40 \end{aligned}$	-	-	$\begin{aligned} & 60 \\ & 40 \end{aligned}$	-	Deg
$\begin{aligned} & \text { Gain Margin } \\ & R_{L}=2.0 \mathrm{k} \Omega \\ & R_{L}=2.0 \mathrm{k} \Omega, C_{L}=300 \mathrm{pF} \end{aligned}$	$A_{m}$	-	$\begin{aligned} & 12 \\ & 4.0 \end{aligned}$	-	-	$\begin{array}{r} 12 \\ 4.0 \end{array}$	-	dB
Equivalent Input Noise Voltage $\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$	$e_{n}$	-	32	-	-	32	-	$\frac{\mathrm{pA}}{\sqrt{\mathrm{~Hz}}}$
Equivalent Input Noise Current $f=1.0 \mathrm{kHz}$	$i_{n}$	-	0.22	-	-	0.22	-	$\frac{\mathrm{pA}}{\sqrt{\mathrm{~Hz}}}$
Differential Input Resistance $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	RIN	-	150	-	-	150	-	$\mathrm{M} \Omega$
Differential Input Capacitance $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	CIN	-	2.5	-	-	2.5	-	pF
Total Harmonic Distortion $A V=+10, R_{L}=2.0 \mathrm{k} \Omega, 2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant 20 \mathrm{~V}_{\mathrm{p}-\mathrm{p},} \mathrm{f}=10 \mathrm{kHz}$	THD	-	0.02	-	-	0.02	-	\%
Channel Separation ( $\mathrm{f}=10 \mathrm{kHz}$ )	-	-	120	-	-	120	-	dB
Open-Loop Output Impedance ( $f=1.0 \mathrm{MHz}$ )	$\left\|\mathrm{Z}_{\mathrm{O}}\right\|$	-	30	-	-	30	-	$\Omega$

FIGURE 1 - POWER SUPPLY CONFIGURATIONS


SPLIT SUPPLIES


FIGURE 2 - OFFSET NULL CIRCUIT


TYPICAL PERFORMANCE CURVES

FIGURE 3 - MAXIMUM POWER DISSIPATION versus TEMPERATURE FOR PACKAGE TYPES


FIGURE 5 - INPUT COMMON MODE VOLTAGE RANGE versus TEMPERATURE


FIGURE 7 - NORMALIZED INPUT BIAS CURRENT versus INPUT COMMON MODE VOLTAGE


VIC, INPUT COMMON-MODE VOLTAGE (V)

FIGURE 4 - INPUT OFFSET VOLTAGE versus TEMPERATURE FOR REPRESENTATIVE UNITS


FIGURE 6 - NORMALIZED INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 8 - SPLIT SUPPLY OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE


FIGURE 9 - SPLIT SUPPLY OUTPUT SATURATION versus LOAD CURRENT


FIGURE 11 - SINGLE SUPPLY OUTPUT SATURATION versus LOAD RESISTANCE TO VCC


FIGURE 13 - OUTPUT IMPEDANCE versus FREQUENCY


FIGURE 10 - SINGLE SUPPLY OUTPUT SATURATION versus LOAD RESISTANCE TO GROUND


FIGURE 12 - OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE


FIGURE 14 - OUTPUT VOLTAGE SWING versus FREQUENCY


FIGURE 15 - OUTPUT DISTORTION versus FREQUENCY


FIGURE 17 - OPEN-LOOP VOLTAGE GAIN versus
TEMPERATURE


FIGURE 19 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY



FIGURE 20 - NORMALIZED GAIN BANDWIDTH PRODUCT versus TEMPERATURE


FIGURE 21 - PERCENT OVERSHOOT versus LOAD CAPACITANCE


FIGURE 23 - GAIN MARGIN versus LOAD CAPACITANCE


FIGURE 25 - GAIN MARGIN versus TEMPERATURE


FIGURE 22 - PHASE MARGIN versus LOAD CAPACITANCE


FIGURE 24 - PHASE MARGIN versus TEMPERATURE


FIGURE 26 - PHASE MARGIN AND GAIN MARGIN versus DIFFERENTIAL SOURCE RESISTANCE


FIGURE 27 - NORMALIZED SLEW RATE versus TEMPERATURE


FIGURE 29 - SMALL SIGNAL TRANSIENT RESPONSE


FIGURE 31 - COMMON MODE REJECTION versus FREQUENCY


FIGURE 28 - OUTPUT SETTLING TIME


FIGURE 30 - LARGE SIGNAL TRANSIENT RESPONSE


FIGURE 32 - POWER SUPPLY REJECTION versus FREQUENCY


FIGURE 33 - SUPPLY CURRENT versus SUPPLY VOLTAGE


FIGURE 35 - CHANNEL SEPARATION versus FREQUENCY


FIGURE 34 - POWER SUPPLY REJECTION versus TEMPERATURE


FIGURE 36 - INPUT NOISE versus FREQUENCY


## APPLICATIONS INFORMATION CIRCUIT DESCRIPTION/PERFORMANCE FEATURES OF THE MC34071 SERIES

Although the bandwidth, slew rate, and settling time of the MC34071 amplifier series are similar to op amp products utilizing JFET input devices, these amplifiers offer other additional distinct advantages as a result of the PNP transistor differential input stage and an all NPN transistor output stage.
Since the input common mode voltage range of this input stage includes the VEE potential, single supply operation is feasible to as low as 3.0 volts with the common mode input voltage at ground potential.
The input stage also allows differential input voltages up to $\pm 44$ volts, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between $\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{CC}}$ supply voltages as
shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the $V_{C C}$ voltage by approximately 3.0 volts and decrease below the $\mathrm{V}_{\mathrm{EE}}$ voltage by 0.3 volts without causing product damage, although output phase reversal may occur. It is also possible to source up to approximately 5.0 mA of current from $\mathrm{V}_{\mathrm{EE}}$ through either input's clamping diode without damage or latching, although phase reversal may again occur.
If one or both inputs exceed the upper common mode voltage limit the amplifier output is readily predictable and may be in a low or high state depending on the existing input bias conditions.

Since the input capacitance associated with the small geometry input device is substantially lower ( 2.5 pF ) than the typical JFET input gate capacitance ( 5.0 pF ), better frequency response for a given input source resistance can be achieved using the MC34071 series of amplifiers. This performance feature becomes evident, for example, in fast settling D-to-A current to voltage conversion applications where the feedback resistance can form an input pole with the input capacitance of the op amp. This input pole creates a 2 nd order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher values of feedback resistances (lower current DAC's). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For $2.0 \mathrm{k} \Omega$ of feedback resistance, the MC34071 series can settle to within $1 / 2$ LSB of 8 bits in $1.0 \mu \mathrm{~s}$, and within $1 / 2$ LSB of 12 bits in $2.2 \mu \mathrm{~s}$ for a 10 volt step. In a inverting unity gain fast settling configuration, the symmetrical slew rate is $\pm 13$ volts/ $\mu \mathrm{s}$. In the classic noninverting unity gain configuration the output positive slew rate is +10 volts $/ \mu \mathrm{s}$, and the corresponding negative slew rate will exceed the positive slew rate as a function of the fall time of the input waveform.
Since the bipolar input device matching characteristics are superior to that of JFETs, a low untrimmed maximum offset voltage of 3.0 mV prime and 5.0 mV downgrade can be economically offered with high frequency performance characteristics. This combination is ideal for low cost precision, high speed quad op amp applications.
The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class $A B$ output stage. $A 10 \mathrm{k} \Omega$ load resistance can swing within 1.0 volt of the positive rail $\left(\mathrm{V}_{\mathrm{CC}}\right)$, and within 0.3 volts of the negative rail ( $\mathrm{V}_{\mathrm{EE}}$ ), providing a $28.7 V_{p-p}$ swing from $\pm 15$ volt supplies. This large output swing becomes most noticable at lower supply voltages.
The positive swing is limited by the saturation voltage of the current source transistor $\mathrm{Q}_{7}$, and $\mathrm{V}_{\mathrm{BE}}$ of the NPN pull up transistor $\mathrm{Q}_{17}$, and the voltage drop associated with the short circuit resistance, $R_{7}$. The negative swing is limited by the saturation voltage of the pull-down transistor $Q_{16}$, the voltage drop $l_{L} R_{6}$, and the voltage drop associated with resistance $R_{7}$, where $I_{L}$ is the sink load current. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts of $V_{E E}$. For large valued sink currents ( $>5.0 \mathrm{~mA}$ ), diode D3 clamps the voltage across $\mathrm{R}_{6}$, thus limiting the negative swing to the saturation voltage of $\mathrm{Q}_{16}$, plus the forward diode drop of $\mathrm{D} 3\left(\approx \mathrm{~V}_{\mathrm{EE}}+1.0 \mathrm{~V}\right)$. Thus for a given supply voltage, unprecedented peak-to-peak output voltage swing is possible as indicated by the output swing specifications.
If the load resistance is referenced to $\mathrm{V}_{\mathrm{CC}}$ instead of ground for single supply applications, the maximum possible output swing can be achieved for a given sup-
ply voltage. For light load currents, the load resistance will pull the output to $V_{C C}$ during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull up capability.

Because the PNP output emitter-follower transistor has been eliminated, the MC34071 series offers a 20 mA minimum current sink capability, typically to an output voltage of ( $\mathrm{V}_{\mathrm{EE}}+1.8 \mathrm{~V}$ ). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for fast high current switching applications.

In addition, the all NPN transistor output stage is inherently fast, contributing to the bipolar amplifier's high gain bandwidth product and fast settling capability. The associated high frequency low output impedance ( $30 \Omega$ typ @ 1.0 MHz ) allows capacitive drive capability from 0 to $10,000 \mathrm{pF}$ without oscillation in the unity closed loop gain configuration. The $60^{\circ}$ phase margin and 12 dB gain margin as well as the general gain and phase characteristics are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The high frequency characteristics of the MC34071 series also allow excellent high frequency active filter capability, especially for low voltage single supply applications.
Although the single supply specification is defined at 5.0 volts, these amplifiers are functional to 3.0 volts @ $25^{\circ} \mathrm{C}$ although slight changes in parametrics such as bandwidth, slew rate, and dc gain may occur.

If power to this integrated circuit is applied in reverse polarity or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction.

Special static precautions are not necessary for these bipolar amplifiers since there are no MOS transistors on the die.

As usual with most high frequency amplifiers, proper lead dress, component placement, and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input-output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature.

The output of any one amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for $\pm 15$ volt supplies, any one output can be shorted continuously to ground without exceeding the maximum temperature rating.

TYPICAL SINGLE SUPPLY APPLICATIONS $V_{C C}=5.0$ VOLTS

FIGURE 37 - AC COUPLED NONINVERTING AMPLIFIER


FIGURE 39 - DC COUPLED INVERTING AMPLIFIER


FIGURE 41 - ACTIVE HIGH-Q NOTCH FILTER


FIGURE 38 - AC COUPLED INVERTING AMPLIFIER


FIGURE 40 - UNITY GAIN BUFFER TTL DRIVER


FIGURE 42 - ACTIVE BANDPASS FILTER


For less than $10 \%$ error from operational amplifier
$\frac{\mathrm{O}_{\mathrm{o}} \mathrm{f}_{\mathrm{O}}}{\mathrm{GBW}}<0.1$
Where $f_{\mathrm{O}}$ and GBW are expressed in Hz .
GBW $=4.5 \mathrm{MHz}$ Typ.

$1.0 \mu \mathrm{~s}$ (8 Bits, $1 / 2$ LSB)
figure 44 - high speed low voltage comparator


FIGURE 48 - PHOTOVOLTAIC CELL AMPLIFIER


$$
\begin{aligned}
& V_{O}=I_{\text {Cell }} R_{F} \\
& V_{O}>0.1 \mathrm{~V}
\end{aligned}
$$



GENERAL ADDITIONAL APPLICATIONS INFORMATION $V_{S}= \pm 15$ VOLTS

FIGURE 55 - SECOND ORDER LOW-PASS ACTIVE FILTER

$\mathrm{R} 2=\frac{\sqrt{2}}{4 \pi \mathrm{f}_{\mathrm{o}} \mathrm{C} 2}$

FIGURE 57 - FAST SETTLING INVERTER


FIGURE 59 - BASIC NON INVERTING AMPLIFIER


FIGURE 56 - SECOND ORDER HIGH-PASS ACTIVE FILTER


$$
\mathrm{R} 2=\frac{\sqrt{2}}{2 \pi \mathrm{f}_{\mathrm{o}} \mathrm{C} 1\left(1 / \mathrm{H}_{\mathrm{o}}+2\right)}
$$

$$
\mathrm{C} 2=\frac{\mathrm{C}}{\mathrm{H}_{\mathrm{O}}}
$$

FIGURE 58 - BASIC INVERTING AMPLIFIER


$$
\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{in}}}=\frac{\mathrm{R} 2}{\mathrm{R} 1} \quad \mathrm{BW}\left(-3.0 \mathrm{~dB}=\mathrm{GBW}\left[\frac{\mathrm{R} 1}{\mathrm{R} 1+\mathrm{R} 2}\right]\right.
$$

$$
\mathrm{SR}=13 \mathrm{~V} / \mu \mathrm{s}
$$

FIGURE 60 - UNITY GAIN BUFFER ( $A_{V}=+1.0$ )


$$
\begin{aligned}
& \mathrm{BW} \mathrm{P}_{\mathrm{P}}=200 \mathrm{kHz} \\
& \mathrm{VO}_{\mathrm{O}}=20 \mathrm{~V} \mathrm{p}-\mathrm{p} \\
& \mathrm{SR}=10 \mathrm{~V} / \mu \mathrm{s}
\end{aligned}
$$

FIGURE 61 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER


FIGURE 62 - DUAL VOLTAGE DOUBLER


## HIGH SLEW RATE, WIDE BANDWIDTH, JFET INPUT OPERATIONAL AMPLIFIERS

These devices are a new generation of high speed JFET input monolithic operational amplifiers. Innovative design concepts along with JFET technology provide wide gain bandwidth product and high slew rate. Well matched JFET input devices and advanced trim techniques ensure low input offset errors and bias currents. The all NPN output stage features large output voltage swing, no deadband crossover distortion, high capacitive drive capability, excellent phase and gain margins, low open-loop output impedance, and symmetrical source/sink ac frequency response.
This series of devices are available in standard or prime performance (A suffix) grades, fully compensated or decompensated ( $\mathrm{A} V C L \geqslant 2$ ) and are specified over commercial or Military temperature ranges. They are pin compatible with existing Industry standard operational amplifiers, and allow the designer to easily upgrade the performance of existing designs.

- Wide Gain Bandwidth: 8.0 MHz for Fully Compensated Devices 16 MHz for Decompensated Devices
- High Slew Rate: $25 \mathrm{~V} / \mu$ s for Fully Compensated Devices $50 \mathrm{~V} / \mu \mathrm{s}$ for Decompensated Devices
- High Input Impedance: $10^{12} \Omega$
- Input Offset Voltage: 0.5 mV Maximum (Single Amplifier)
- Large Output Voltage Swing: -14.7 V to +14 V for

$$
\mathrm{V}_{\mathrm{CC}} v_{\mathrm{EE}}= \pm 15 \mathrm{~V}
$$

- Low Open-Loop Output Impedance: $30 \Omega(\omega 1.0 \mathrm{MHz}$
- Low THD Distortion: 0.01\%
- Excellent Phase/Gain Margins: $55^{\circ} 7.6 \mathrm{~dB}$ for Fully Compensated Devices


ORDERING INFORMATION

Op Amp Function	Fully Compensated	$\begin{gathered} \text { AVCL } \geqslant 2 \\ \text { Decompensated } \end{gathered}$	Temperature Range	Package
Single	MC35081U,AU MC34081D,AD MC34081P,AP	MC35080U,AU MC34080D,AD MC34080P,AP	$\begin{gathered} -55 \text { to }+125^{\circ} \mathrm{C} \\ 0 \text { to }+70^{\circ} \mathrm{C} \\ 0 \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Ceramic DIP } \\ \text { SO-8 } \\ \text { Plastic DIP } \end{gathered}$
Dual	MC34082P,AP	MC34083P,AP	0 to $+70^{\circ} \mathrm{C}$	Plastic DIP
Quad	MC35084L,AL MC34084DW MC34084P,AP	MC35085L,AL MC34085DW MC34085P,AP	$\begin{gathered} -55 \text { to }+125^{\circ} \mathrm{C} \\ 0 \text { to }+70^{\circ} \mathrm{C} \\ 0 \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Ceramic DIP } \\ \text { SO-16L } \\ \text { Plastic DIP } \end{gathered}$

## HIGH PERFORMANCE JFET INPUT OPERATIONAL AMPLIFIERS




## MC34080, MC35080 Series

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$ )	$\mathrm{V}_{\mathrm{S}}$	+44	Volts
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	Note 1	Volts
Input Voltage Range	$\mathrm{V}_{\mathrm{IR}}$	Note 1	Volts
Output Short-Circuit Duration (Note 2)	$\mathrm{ts}_{\mathrm{S}}$	Indefinite	Seconds
Operating Ambient Temperature Range   MC35XXX   MC34XXX	$\mathrm{T}_{\mathrm{A}}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature   Ceramic Package   Plastic Package		to +70	
Storage Temperature Range   Ceramic Package   Plastic Package	$\mathrm{T}_{\mathrm{J}}$	+165   +125	${ }^{\circ} \mathrm{C}$

NOTES

1. Either or both input voltages must not exceed the magnitude of $V_{C C}$ or $V_{E E}$.
2. Power dissipation must be considered to ensure maximum junction temperature ( $T_{J}$ ) is not exceeded.

EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER)


DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.$ to $\mathrm{T}_{\text {high }}$ [Note 3], unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} \& \multirow[b]{2}{*}{Symbol} \& \multicolumn{3}{|c|}{A Suffix} \& \multicolumn{3}{|c|}{Non-Suffix} \& \multirow[b]{2}{*}{Unit} <br>
\hline \& \& Min \& Typ \& Max \& Min \& Typ \& Max \& <br>
\hline ```
Input Offset Voltage (Note 4)
Single
$T_{A}=+25^{\circ} \mathrm{C}$
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (MC34080, MC34081)
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (MC35080, MC35081)
Dual
$T_{A}=+25^{\circ} \mathrm{C}$
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (MC34082, MC34083)
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (MC35082, MC35083)
Quad
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (MC34084, MC34085)
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (MC35084, MC35085)

``` & V10 & - & \[
\begin{aligned}
& 0.3 \\
& - \\
& - \\
& 0.6 \\
& - \\
& - \\
& 3.0 \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 2.5 \\
& 3.5 \\
& 1.0 \\
& 3.0 \\
& 4.0 \\
& \\
& 6.0 \\
& 8.0 \\
& 9.0
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& - \\
& 1.0 \\
& - \\
& 6.0 \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 3.0 \\
& 4.0 \\
& \\
& 3.0 \\
& 5.0 \\
& 6.0 \\
& \\
& 12 \\
& 14 \\
& 15
\end{aligned}
\] & mV \\
\hline Average Temperature Coefficient of Offset Voltage & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{T}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right. \text { Note 5) } \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & IIB & E & \[
0.06
\] & \[
\begin{aligned}
& 0.2 \\
& 4.0 \\
& 50
\end{aligned}
\] & - & \[
\begin{gathered}
0.06 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 0.2 \\
& 4.0 \\
& 50
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right. \text { Note 5) } \\
& \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & 10 & - & \[
\begin{gathered}
0.02 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 0.1 \\
& 2.0 \\
& 25
\end{aligned}
\] & - & 0.02 & \[
\begin{aligned}
& 0.1 \\
& 2.0 \\
& 25
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
& \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & AVOL & \[
\begin{aligned}
& 50 \\
& 25
\end{aligned}
\] & 80 & - & \[
\begin{aligned}
& 25 \\
& 15
\end{aligned}
\] & 80 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing
\[
\begin{aligned}
& R_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& R_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& R_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \\
& R_{\mathrm{L}}=2.0 \mathrm{k}, T_{A}=+25^{\circ} \mathrm{C} \\
& R_{\mathrm{L}}=10 \mathrm{k}, T_{A}=+25^{\circ} \mathrm{C} \\
& R_{\mathrm{L}}=10 \mathrm{k}, T_{A}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & \(\mathrm{VOH}_{\text {OH }}\)

\(\mathrm{V}_{\mathrm{OL}}\) & \begin{tabular}{l}
13.2 \\
13.4 \\
13.4 \\
-
\end{tabular} & \begin{tabular}{l}
13.7 \\
13.9 \\
- 14.1 \\
- 14.7
\end{tabular} & \[
\begin{gathered}
\text { — } \\
\text { — } \\
-13.5 \\
-14.1 \\
-14.0
\end{gathered}
\] & \[
\begin{gathered}
13.2 \\
13.4 \\
13.4 \\
\hline- \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 13.7 \\
& 13.9
\end{aligned}
\]
\(\qquad\)
\[
\begin{aligned}
& -14.1 \\
& -14.7
\end{aligned}
\] & \[
\begin{gathered}
\text { - } \\
- \\
-13.5 \\
-14.1 \\
-14.0
\end{gathered}
\] & V \\
\hline Output Short-Circuit Current (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)) Input Overdrive \(=1.0 \mathrm{~V}\), Output to Ground Source Sink & ISC & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 31 \\
& 28
\end{aligned}
\] & - & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 31 \\
& 28
\end{aligned}
\] & - & mA \\
\hline Input Common Mode Voltage Range
\[
T_{A}=+25^{\circ} \mathrm{C}
\] & VICR & & \[
+4
\] & & & & & V \\
\hline Common Mode Rejection Ratio (\(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)) & CMRR & 75 & 90 & - & 70 & 90 & - & dB \\
\hline Power Supply Rejection Ratio (\(\mathrm{R}_{S}=100 \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\)) & PSRR & 75 & 86 & - & 70 & 86 & - & dB \\
\hline \begin{tabular}{l}
Power Supply Current Single
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] \\
Dual
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] \\
Quad
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\]
\end{tabular} & \({ }^{1}\) & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \begin{tabular}{l}
2.5 \\
- \\
4.9 \\
- \\
9.7
\end{tabular} & \[
\begin{aligned}
& 3.4 \\
& 4.2 \\
& \\
& 6.0 \\
& 7.5 \\
& \\
& 11 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \begin{tabular}{l}
2.5 \\
- \\
4.9 \\
- \\
9.7
\end{tabular} & \[
\begin{aligned}
& 3.4 \\
& 4.2 \\
& \\
& 6.0 \\
& 7.5 \\
& \\
& 11 \\
& 13
\end{aligned}
\] & mA \\
\hline
\end{tabular}

NOTES: (CONTINUED)
\begin{tabular}{|c|c|c|c|c|}
\hline 3. \(\mathrm{T}_{\text {low }}=\) & \(55^{\circ} \mathrm{C}\) for MC35080,A
\(\mathrm{MC35081,A}\) & \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34080, A & \(\begin{array}{r}\text { Thigh }\end{array}{ }^{\text {a }}+125^{\circ} \mathrm{C}\) for MC35080, A & \(\begin{array}{r}\text { Thigh }\end{array}=+70^{\circ} \mathrm{C}\) for MC34080,A \\
\hline & MC35082,A & MC34082,A & MC35082,A & MC34082,A \\
\hline & MC35083,A & MC34083,A & МС35083, А & MC34083, A \\
\hline & MC35084,A & MC34084, A & МС35084,A & MC34084, A \\
\hline & MC35085, A & MC34085, A & MC35085,A & MC34085, A \\
\hline
\end{tabular}
4. See application information for typical changes in input offset voltage due to solderability and temperature cycling.
5. Limits at \(T_{A}=+25^{\circ} \mathrm{C}\) are guaranteed by high temperature (\(T_{\text {high }}\)) testing.

AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{A Suffix} & \multicolumn{3}{|c|}{Non-Suffix} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline ```
Slew Rate \(\left(\mathrm{V}_{\text {in }}=\cdots 10 \mathrm{~V}\right.\) to \(\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)\)
 Compensated \(\quad A_{V}=+1.0\)
 \(A_{V}=-1.0\)
 Decompensated \(A V=+2.0\)
 \(A_{V}=-1.0\)
``` & SR & \[
\frac{20}{40}
\] & \[
\begin{aligned}
& 25 \\
& 30 \\
& 50 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\frac{20}{40}
\] & \[
\begin{aligned}
& 25 \\
& 30 \\
& 50 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline \[
\begin{aligned}
& \text { Settling Time }(10 \mathrm{~V} \text { Step, } A V=-1.0) \\
& \text { To } 0.10 \%( \pm 1 / 2 \text { LSB of } 9 \text {-Bits }) \\
& \text { To } 0.01 \%( \pm 1 / 2 \text { LSB of } 12 \text {-Bits }) \\
& \hline
\end{aligned}
\] & \({ }^{\text {t }}\) & - & \[
\begin{gathered}
0.72 \\
1.6
\end{gathered}
\] & - & - & \[
\begin{gathered}
0.72 \\
1.6
\end{gathered}
\] & - & \(\mu \mathrm{S}\) \\
\hline Gain Bandwidth Product ( \(f=200 \mathrm{kHz}\) ) Compensated Decompensated & GBW & \[
\begin{gathered}
6.0 \\
12
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
16
\end{gathered}
\] & - & \[
\begin{gathered}
6.0 \\
12
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
16
\end{gathered}
\] & - & MHz \\
\hline \[
\begin{aligned}
& \text { Power Bandwidth }\left(R_{L}=2.0 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \text { THD }=5.0 \%\right) \\
& \text { Compensated } \mathrm{A}_{\mathrm{V}}=+1.0 \\
& \text { Decompensated } \mathrm{AV}_{\mathrm{V}}=-1.0
\end{aligned}
\] & BWp & - & \[
\begin{aligned}
& 400 \\
& 800
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 400 \\
& 800
\end{aligned}
\] & - & kHz \\
\hline Phase Margin (Compensated)
\[
\begin{aligned}
& R_{L}=2.0 \mathrm{k} \\
& R_{L}=2.0 \mathrm{k}, C_{L}=100 \mathrm{pF}
\end{aligned}
\] & \(\phi \mathrm{m}\) & - & \[
\begin{aligned}
& 55 \\
& 39
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 55 \\
& 39
\end{aligned}
\] & - & Degrees \\
\hline Gain Margin (Compensated)
\[
\begin{aligned}
& R_{L}=2.0 \mathrm{k} \\
& R_{L}=2.0 \mathrm{k}, C_{L}=100 \mathrm{pF}
\end{aligned}
\] & \(A_{m}\) & - & \[
\begin{array}{r}
7.6 \\
4.5 \\
\hline
\end{array}
\] & - & - & \[
\begin{aligned}
& 7.6 \\
& 4.5
\end{aligned}
\] & - & dB \\
\hline Equivalent Input Noise Voltage
\[
\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}
\] & \(e_{n}\) & - & 30 & - & - & 30 & - & \[
\frac{n \mathrm{~V} /}{\sqrt{\mathrm{Hz}}}
\] \\
\hline Equivalent Input Noise Current ( \(f=1.0 \mathrm{kHz}\) ) & In & - & 0.01 & - & - & 0.01 & - & \[
\frac{\mathrm{pA}}{\sqrt{\mathrm{~Hz}}}
\] \\
\hline Input Capacitance & \(\mathrm{C}_{\mathrm{i}}\) & - & 5.0 & - & - & 5.0 & - & pF \\
\hline Input Resistance & \(\mathrm{r}_{\mathrm{i}}\) & - & \(10^{12}\) & - & - & \(10^{12}\) & - & \(\Omega\) \\
\hline Total Harmonic Distortion
\[
A_{V}=+10, R_{L}=2.0 \mathrm{k}, 2.0 \leqslant V_{O} \leqslant 20 \mathrm{~V}_{\mathrm{p}-\mathrm{p},}, \mathrm{f}=10 \mathrm{kHz}
\] & THD & - & 0.05 & - & - & 0.05 & - & \% \\
\hline Channel Separation ( \(f=10 \mathrm{kHz}\) ) & - & - & 120 & - & - & 120 & - & dB \\
\hline Open-Loop Output Impedance ( \(f=1.0 \mathrm{MHz}\) ) & \(z_{0}\) & - & 35 & - & - & 35 & - & \(\Omega\) \\
\hline
\end{tabular}

\section*{TYPICAL PERFORMANCE CURVES}


FIGURE 3 - INPUT BIAS CURRENT versus INPUT COMMON-MODE VOLTAGE


FIGURE 5 - OUTPUT SATURATION versus
LOAD CURRENT


FIGURE 7 - OUTPUT SATURATION versus LOAD RESISTANCE TO \(V_{C C}\)


FIGURE 4 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE


FIGURE 6 - OUTPUT SATURATION versus LOAD RESISTANCE TO GROUND


FIGURE 8 - OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE


FIGURE 9 - OUTPUT IMPEDANCE versus FREQUENCY


FIGURE 11 - OUTPUT VOLTAGE SWING versus FREQUENCY


FIGURE 10 - OUTPUT IMPEDANCE versus FREQUENCY


FIGURE 12 - OUTPUT DISTORTION versus FREQUENCY


FIGURE 13 - OPEN-LOOP VOLTAGE GAIN
versus TEMPERATURE


FIGURE 14 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY


FIGURE 16 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY


FIGURE 18 - PERCENT OVERSHOOT versus LOAD CAPACITANCE


FIGURE 15 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY


FIGURE 17 - NORMALIZED GAIN BANDWIDTH PRODUCT versus TEMPERATURE


FIGURE 19 - PHASE MARGIN versus LOAD CAPACITANCE


FIGURE 20 - GAIN MARGIN versus LOAD CAPACITANCE


FIGURE 22 - GAIN MARGIN versus TEMPERATURE


FIGURE 21 - PHASE MARGIN versus TEMPERATURE


FIGURE 23 - NORMALIZED SLEW RATE versus TEMPERATURE

\[
A_{V}=+1.0, R_{L}=2.0 \mathrm{k}, \mathrm{~V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\]


MC34085 TRANSIENT RESPONSE
\(A_{V}=+2.0, R_{L}=2.0 \mathrm{k}, \mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)


FIGURE 28 - COMMON-MODE REJECTION RATIO versus FREQUENCY


FIGURE 30 - POWER SUPPLY REJECTION RATIO versus TEMPERATURE


FIGURE 32 - CHANNEL SEPARATION versus FREQUENCY


FIGURE 29 - POWER SUPPLY REJECTION RATIO versus FREQUENCY


FIGURE 31 - NORMALIZED SUPPLY CURRENT versus SUPPLY VOLTAGE


FIGURE 33 - SPECTRAL NOISE DENSITY


\section*{APPLICATIONS INFORMATION}

The bandwidth and slew rate of the MC34080 series is nearly double that of currently available general purpose JFET op-amps. This improvement in ac performance is due to the P-channel JFET differential input stage driving a compensated miller integration amplifier in conjunction with an all NPN output stage.

The all NPN output stage offers unique advantages over the more conventional NPN/PNP transistor Class \(A B\) output stage. With a 10 k load resistance, the op-amp can typically swing within 1.0 V of the positive rail ( \(\mathrm{V}_{\mathrm{CC}}\) ), and within 0.3 volts of the negative rail ( \(V_{E E}\) ), providing a \(28.7 \mathrm{Vp}-\mathrm{p}\) swing from \(\pm 15\) volt supplies. This large output swing becomes most noticeable at lower supply voltages. If the load resistance is referenced to \(\mathrm{V}_{\mathrm{CC}}\) instead of ground, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to \(\mathrm{V}_{\mathrm{CC}}\) during the positive swing and the NPN output transistor will pull the output very near \(V_{E E}\) during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull-up capability.

The all NPN transistor output stage is also inherently fast, contributing to the operational amplifier's high gain-bandwidth product and fast settling time. The associated high frequency output impedance is 50 ohms (typical) at 8.0 MHz . This allows driving capacitive loads from 0 to 300 pF without oscillations over the military temperature range, and over the full range of output swing. The \(55^{\circ}\) phase margin and 7.6 dB gain margin as well as the general gain and phase characteristics are virtually independent of the sink/source output swing conditions. The high frequency characteristics of the MC34080 series is especially useful for active filter applications.

The common mode input range is from 2.0 volts below the positive rail ( \(V_{C C}\) ) to 4.0 volts above the neg-
ative rail ( \(V_{E E}\) ). The amplifier remains active if the inputs are biased at the positive rail. This may be useful for some applications in that single supply operation is possible with a single negative supply. However, a degradation of offset voltage and voltage gain may result.

Phase reversal does not occur if either the inverting or noninverting input (or both) exceeds the positive common mode limit. If either input (or both) exceeds the negative common mode limit, the output will be in the high state. The input stage also allows a differential up to \(\pm 44\) volts, provided the maximum input voltage range is not exceeded. The supply voltage operating range is from \(\pm 5.0 \mathrm{~V}\) to \(\pm 22 \mathrm{~V}\).

For optimum frequency performance and stability careful component placement and printed circuit board layout should be exercised. For example, long unshielded input or output leads may result in unwanted input-output coupling. In order to reduce the input capacitance, resistors connected to the input pins should be physically close to these pins. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pickup" at this node.

Supply decoupling with adequate capacitance close to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit large impedance changes over temperature.

Primarily due to the JFET inputs of the op amp, the input offset voltage may change due to temperature cycling and board soldering. After 20 temperature cycles \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.165^{\circ} \mathrm{C}\right)\), the typical standard deviation for input offset voltage is \(559 \mu \mathrm{~V}\) and \(473 \mu \mathrm{~V}\) in the plastic and ceramic packages respectively. With respect to board soldering ( \(260^{\circ} \mathrm{C}, 10\) seconds) the typical standard deviation for input offset voltage is \(525 \mu \mathrm{~V}\) and \(227 \mu \mathrm{~V}\) in the plastic and ceramic package respectively. Socketed plastic or ceramic packaged devices should be used over a minimal temperature range for optimum input offset voltage performance.


\section*{LOW POWER, HIGH SLEW RATE, WIDE BANDWIDTH, JFET INPUT OPERATIONAL AMPLIFIERS}

Quality bipolar fabrication with innovative design concepts are employed for the MC33181/2/4, MC34181/2/4, MC35181/2/4 series of monolithic operational amplifiers. This JFET input series of operational amplifiers operate at \(210 \mu \mathrm{~A}\) per amplifier and offer 4.0 MHz of gain bandwidth product and \(10 \mathrm{~V} / \mu \mathrm{s}\) slew rate. Precision matching and an innovative trim technique of the single and dual versions provide low input offset voltages. With a JFET input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source/sink ac frequency response.
The MC33181/2/4, MC34181/2/4, MC35181/2/4 series of devices are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in the plastic and ceramic DIP as well as the SOIC surface mount packages.
- Low Supply Current: \(210 \mu \mathrm{~A}\) (Per Amplifier)
- Wide Supply Operating Range: \(\pm 1.5 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\)
- Wide Bandwidth: 4.0 MHz
- High Slew Rate: \(10 \mathrm{~V} / \mu \mathrm{s}\)
- Low Input Offset Voltage: 2.0 mV
- Large Output Voltage Swing: -14 V to +14 V (with \(\pm 15 \mathrm{~V}\) Supplies)
- Large Capacitance Drive Capability: 0 to 500 pF
- Low Total Harmonic Distortion: 0.04\%
- Excellent Phase Margin: \(67^{\circ}\)
- Excellent Gain Margin: 6.7 dB
- Output Short Circuit Protection

ORDERING INFORMATION
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{c} 
Op Amp \\
Function
\end{tabular} & Device & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Test Temperature \\
Range
\end{tabular}} & \multicolumn{1}{|c|}{ Package } \\
\hline Single & MC34181P & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
& MC34181D & 0 to \(+70^{\circ} \mathrm{C}\) & SO-8 \\
& MC33181P & -40 to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
& MC33181D & -40 to \(+85^{\circ} \mathrm{C}\) & SO-8 \\
& MC35181U & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline Dual & MC34182P & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
& MC34182D & 0 to \(+70^{\circ} \mathrm{C}\) & SO-8 \\
& MC33182P & -40 to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
& MC33182D & -40 to \(+85^{\circ} \mathrm{C}\) & SO-8 \\
& MC35182U & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline Quad & MC34184P & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
& MC34184D & 0 to \(+70^{\circ} \mathrm{C}\) & SO-14 \\
& MC33184P & -40 to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
& MC33184D & -40 to \(+85^{\circ} \mathrm{C}\) & SO-14 \\
& MC35184L & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline
\end{tabular}

\section*{LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS}

SILICON MONOLITHIC INTEGRATED CIRCUITS



P SUFFIX
PLASTIC PACKAGE
CASE 646-06


D SUFFIX
PLASTIC PACKAGE CASE 751A-02 SO-14


MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage (from \(\mathrm{V}_{\mathrm{CC}}\) to \(\mathrm{V}_{\mathrm{EE}}\) ) & \(\mathrm{V}_{\mathrm{S}}\) & +36 & Volts \\
\hline Input Differential Voltage Range & \(\mathrm{V}_{\text {IDR }}\) & Note 1 & Volts \\
\hline Input Voltage Range & \(\mathrm{V}_{\mathrm{IR}}\) & Note 1 & Volts \\
\hline Output Short-Circuit Duration (Note 2) & tS & Indefinite & Seconds \\
\hline \begin{tabular}{l} 
Operating Junction Temperature \\
Ceramic Package \\
Plastic Package
\end{tabular} & \(\mathrm{TJ}^{\mathrm{TJ}}\) & \begin{tabular}{c}
+160 \\
+150
\end{tabular} & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Storage Temperature Range \\
Ceramic Package \\
Plastic Package
\end{tabular} & & \(\mathrm{T}_{\text {stg }}\) & -65 to +160 \\
\hline
\end{tabular}

\section*{NOTES}
1. Either or both input voltages must not exceed the magnitude of \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{EE}}\).
2. Power dissipation must be considered to ensure maximum junction temperature ( \(T_{J}\) ) is not exceeded (see Figure 1 ).

EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER)


MC3X181 Input Offset
Voltage Null Circuit

DC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline  & \(\mathrm{V}_{10}\) & -
-
-
-
-
-
-
-
- & \[
\begin{aligned}
& 0.5 \\
& - \\
& - \\
& 1.0 \\
& = \\
& - \\
& 4.0 \\
& -
\end{aligned}
\] & \[
\begin{gathered}
2.0 \\
3.0 \\
3.5 \\
4.5 \\
3.0 \\
4.0 \\
4.5 \\
5.5 \\
\\
10 \\
11 \\
11.5 \\
12.5
\end{gathered}
\] & mV \\
\hline Average Temperature Coefficient of \(\mathrm{V}_{1 \mathrm{O}}\) ( \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\) ) & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{T}\) & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& T_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & 10 & - & \[
\begin{gathered}
0.001 \\
-
\end{gathered}
\] & \[
\begin{gathered}
0.05 \\
1.0 \\
2.0 \\
13 \\
\hline
\end{gathered}
\] & nA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& T_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& T_{A}=-40^{\circ} \text { to }+85^{\circ} \mathrm{C} \\
& T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & IB & \[
\begin{aligned}
& \bar{Z} \\
& \text { - }
\end{aligned}
\] & \[
\begin{gathered}
0.003 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 0.1 \\
& 2.0 \\
& 4.0 \\
& 25 \\
& \hline
\end{aligned}
\] & nA \\
\hline Input Common Mode Voltage Range & VICR & \(\mathrm{V}_{\mathrm{EE}}+4\) & to \(\mathrm{V}^{\text {c }}\) & 2.0 V ) & V \\
\hline \[
\begin{aligned}
& \text { Large Signal Voltage Gain ( } \left.R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right) \\
& T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & Avol & \[
\begin{aligned}
& 25 \\
& 15 \\
& \hline
\end{aligned}
\] & \({ }^{60}\) & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing ( \(\mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) )
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{O}}+ \\
& \mathrm{v}_{\mathrm{O}}
\end{aligned}
\] & +13.5 & \[
\begin{aligned}
& +14 \\
& -14
\end{aligned}
\] & \[
\overline{-13.5}
\] & v \\
\hline Common Mode Rejection ( \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{ICR}}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) ) & CMR & 70 & 86 & - & dB \\
\hline Power Supply Rejection ( \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\) ) & PSR & 70 & 84 & - & dB \\
\hline \begin{tabular}{l}
Output Short Circuit Current ( \(\mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}\), Output to Ground) \\
Source \\
Sink
\end{tabular} & ISC & \[
\begin{aligned}
& 3.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 11 \\
& \hline
\end{aligned}
\] & - & mA \\
\hline ```
Power Supply Current (No Load, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) )
    Single
        \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
        \(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
    Dual
        \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
        \(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
    Quad
        \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
        \(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\)
``` & ID & - & \begin{tabular}{l}
210 \\
420 \\
- \\
840
\end{tabular} & \[
\begin{aligned}
& 250 \\
& 250 \\
& \\
& 500 \\
& 500 \\
& \\
& 1000 \\
& 1000 \\
& \hline
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \cdot \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Slew Rate }\left(\mathrm{V}_{\text {in }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right) \\
& \mathrm{AV}_{\mathrm{V}}=+1.0 \\
& \mathrm{AV}_{\mathrm{V}}=-1.0
\end{aligned}
\] & SR & 7.0 & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline ```
Settling Time \(\left(A_{V}=-1.0, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right.\) to +10 V Step \()\)
 To Within 0.10\%
 To Within 0.01\%
``` & \(t_{s}\) & & \[
\begin{aligned}
& 1.1 \\
& 1.5
\end{aligned}
\] & - & \(\mu \mathrm{s}\) \\
\hline Gain Bandwidth Product ( \(f=100 \mathrm{kHz}\) ) & GBW & 3.0 & 4.0 & - & MHz \\
\hline Power Bandwidth ( \(\mathrm{A}_{\mathrm{V}}=+1.0, \mathrm{R}_{\mathrm{L}}=10 \cdot \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\), THD \(=5 \%\) ) & \(\mathrm{BW}_{\mathrm{p}}\) & - & 200 & - & kHz \\
\hline \[
\begin{gathered}
\text { Phase Margin }\left(-10 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<+10 \mathrm{~V}\right) \\
R_{\mathrm{L}}=10 \mathrm{k} \Omega \\
\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\
\hline
\end{gathered}
\] & \(\emptyset_{m}\) & - & \[
\begin{aligned}
& 67 \\
& 34 \\
& \hline
\end{aligned}
\] & - & Degrees \\
\hline \[
\begin{aligned}
& \text { Gain Margin ( } \left.-10 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<+10 \mathrm{~V}\right) \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\end{aligned}
\] & \(A_{m}\) & - & \[
\begin{aligned}
& 6.7 \\
& 3.4
\end{aligned}
\] & - & dB \\
\hline Equivalent Input Noise Voltage \(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}\) & \(e_{n}\) & - & 38 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Equivalent Input Noise Current
\[
f=1.0 \mathrm{kHz}
\] & \(\mathrm{in}_{n}\) & - & 0.01 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Differential Input Capacitance & \(\mathrm{C}_{i}\) & - & 3.0 & - & pF \\
\hline Differential Input Resistance & \(\mathrm{R}_{\mathrm{i}}\) & - & \(10^{12}\) & - & \(\Omega\) \\
\hline Total Harmonic Distortion
\[
A_{V}=10, R_{L}=10 \mathrm{k} \Omega, 2 V_{p-p}<V_{O}<20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{f}=10 \mathrm{kHz}
\] & THD & - & 0.04 & - & \% \\
\hline Channel Separation ( \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega,-10 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<+10 \mathrm{~V}, 0 \mathrm{~Hz}<\mathrm{f}<10 \mathrm{kHz}\) ) & - & - & 120 & - & dB \\
\hline Open-Loop Output Impedance
\[
(f=1.0 \mathrm{MHz})
\] & \(\left|Z_{0}\right|\) & - & 200 & - & \(\Omega\) \\
\hline
\end{tabular}

FIGURE 1 - MAXIMUM POWER DISSIPATION versus temperature for package variations


FIGURE 2 - INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE


FIGURE 3 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 5 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE


FIGURE 7 - OUTPUT SATURATION VOLTAGE versus LOAD RESISTANCE TO GROUND


RL, LOAD RESISTANCE TO GROUND ( \(\Omega\) )

FIGURE 4 - INPUT BIAS CURRENT versus INPUT COMMON-MODE VOLTAGE


FIGURE 6 - OUTPUT SATURATION VOLTAGE versus LOAD CURRENT


FIGURE 8 - OUTPUT SATURATION VOLTAGE versus LOAD RESISTANCE TO VCC

\(R_{\mathrm{L}}\), LOAD RESISTANCE \((\Omega)\)


FIGURE 11 - OUTPUT VOLTAGE SWING versus FREQUENCY


FIGURE 13 - OPEN-LOOP VOLTAGE GAIN versus TEMPERATURE


FIGURE 10 - OUTPUT IMPEDANCE versus FREQUENCY


FIGURE 12 - OUTPUT DISTORTION versus FREQUENCY


FIGURE 14 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY


FIGURE 15 - NORMALIZED GAIN BANDWIDTH PRODUCT versus TEMPERATURE


FIGURE 17 - PHASE MARGIN versus LOAD CAPACITANCE


FIGURE 19 - PHASE MARGIN versus TEMPERATURE


FIGURE 16 - OUTPUT VOLTAGE OVERSHOOT versus LOAD CAPACITANCE


FIGURE 18 - GAIN MARGIN versus LOAD CAPACITANCE


FIGURE 20 - GAIN MARGIN versus TEMPERATURE


FIGURE 21 - NORMALIZED SLEW RATE versus TEMPERATURE


FIGURE 23 - INPUT NOISE VOLTAGE versus FREQUENCY


FIGURE 25 - POWER SUPPLY REJECTION versus FREQUENCY


FIGURE 22 - COMMON MODE REJECTION versus FREQUENCY


FIGURE 24 - POWER SUPPLY REJECTION versus TEMPERATURE


FIGURE 26 - NORMALIZED SUPPLY CURRENT versus SUPPLY VOLTAGE


FIGURE 27 - CHANNEL SEPARATION versus FREQUENCY


FIGURE 28 - TRANSIENT RESPONSE


FIGURE 29 - SMALL SIGNAL TRANSIENT RESPONSE

t , TIME \((0.5 \mu \mathrm{~S}(\mathrm{DIV})\)
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ Device } & Temperature Range & Package \\
\hline NE592D & 0 to \(70^{\circ} \mathrm{C}\) & SO-14 \\
NE592N & 0 to \(70^{\circ} \mathrm{C}\) & Plastic DIP \\
NE592H & 0 to \(70^{\circ} \mathrm{C}\) & Metal Can \\
NE592F & 0 to \(70^{\circ} \mathrm{C}\) & Ceramic DIP \\
SE592H & -55 to \(+125^{\circ} \mathrm{C}\) & Metal Can \\
SE592F & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline
\end{tabular}


\section*{DIFFERENTIAL TWO STAGE VIDEO AMPLIFIER}

The SE/NE592 is a monolithic, two stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems. The 592 is a pin-for-pin replacement for the MC1733.
- 90 MHz Bandwidth
- Adjustable Gains From 0 to 400
- Adjustable Pass Band
- No Frequency Compensation Required




F SUFFIX
CERAMIC PACKAGE CASE 632-10


N SUFFIX PLASTIC PACKAGE CASE 646-06


MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}} \\
& \mathrm{~V}_{\mathrm{EE}}
\end{aligned}
\] & \[
\begin{array}{r}
+8.0 \\
-8.0
\end{array}
\] & Volts \\
\hline Differential Input Voltages & \(V_{\text {ID }}\) & \(\pm 5.0\) & Volts \\
\hline Common-Mode Input Voltage & \(\mathrm{V}_{\text {IC }}\) & \(\pm 6.0\) & Volts \\
\hline Output Current & Io & 10 & mA \\
\hline \begin{tabular}{l}
Operating Ambient Temperature Range SE592 \\
NE592
\end{tabular} & TA & \[
\begin{gathered}
-55 \text { to }+125 \\
0 \text { to }+70
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature Range Metal and Ceramic Packages Plastic Package & TJ & \[
\begin{array}{r}
175 \\
150 \\
\hline
\end{array}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range Metal and Ceramic Packagee Plastic Package & \(\mathrm{T}_{\text {stg }}\) & \[
\begin{aligned}
& -65 \text { to }+150 \\
& -55 \text { to }+125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted. \(\left(\mathrm{V}_{\mathrm{CC}}=+6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{SE592} & \multicolumn{3}{|c|}{NE592} & \multirow[b]{2}{*}{Units} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Differential Voltage Gain - Figure 3
\[
\begin{gathered}
\left(R_{L}=2 \mathrm{k} \Omega, e_{\text {out }}=3 \vee p-p\right) \\
\text { (Gain 1, Note 1) } \\
\text { (Gain 2, Note 2) }
\end{gathered}
\] & \(\mathrm{A}_{\mathrm{vd}}\) & \[
\begin{gathered}
300 \\
90
\end{gathered}
\] & \[
\begin{aligned}
& 400 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 110
\end{aligned}
\] & \[
\begin{aligned}
& 250 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 600 \\
& 120
\end{aligned}
\] & V/V \\
\hline \begin{tabular}{l}
Bandwidth - Figure 3 \\
(Gain 1, Note 1) \\
(Gain 1, Note 2)
\end{tabular} & BW & - & \[
\begin{aligned}
& 40 \\
& 90 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 40 \\
& 90
\end{aligned}
\] & - & MHz \\
\hline \[
\begin{aligned}
& \text { Rise Time - Figure } 3 \\
& \text { (Gain 1, } e_{\text {out }}=1 \mathrm{Vp-p}, \text { Note 1) } \\
& \text { (Gain 2, } \left.e_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, \text { Note } 2\right)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{TLH}} \\
& \mathrm{t}_{\mathrm{THL}} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & & & - & \[
\begin{gathered}
10.5 \\
4.5 \\
\hline
\end{gathered}
\] & \[
12
\] & ns \\
\hline \[
\begin{aligned}
& \text { Propagation Delay }- \text { Figure } 3 \\
& \quad\left(\text { Gain } 1, e_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, \text { Note } 1\right) \\
& \left(\text { Gain } 2, e_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, \text { Note } 2\right)
\end{aligned}
\] & \[
\begin{aligned}
& \text { tPLH } \\
& \text { tPHL }
\end{aligned}
\] &  & \[
\begin{aligned}
& 7.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & \[
10
\] & & \[
\begin{aligned}
& 7.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & \[
10
\] & ns \\
\hline Input Resistance (Gain 1, Note 1) (Gain 2, Note 2) & \(\mathrm{R}_{\text {in }}\) & \[
20
\] & \[
\begin{aligned}
& 4.0 \\
& 30 \\
& \hline
\end{aligned}
\] & & \[
10
\] & \[
\begin{aligned}
& 4.0 \\
& 30 \\
& \hline
\end{aligned}
\] & - & \(k \Omega\) \\
\hline Input Capacitance (Gain 2, Note 2) & \(\mathrm{C}_{\text {in }}\) & - & 2.0 & - & - & 2.0 & - & pF \\
\hline Input Offset Current (Gain 3, Note 3) - Fig. 2 & 110 & - & 0.4 & 3.0 & - & 0.4 & 5.0 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current (Gain 3, Note 3) - Fig. 2 & \(1{ }_{1 B}\) & - & 9.0 & 20 & - & 9.0 & 30 & \(\mu \mathrm{A}\) \\
\hline Input Noise Voltage (Gain 1 and Gain 2) ( \(\mathrm{BW}=1 \mathrm{kHz}\) to 10 MHz ) - Figure 1 & \(\mathrm{V}_{\mathrm{n}}\) & - & 12 & - & - & 12 & - & \(\mu \mathrm{V}\) (rms) \\
\hline Input Voltage Range (Gain 2, Note 2)-Fig. 3 & \(V_{\text {in }}\) & \(\pm 1.0\) & - & - & \(\pm 1.0\) & - & - & V \\
\hline \begin{tabular}{l}
Common-Mode Rejection Ratio - Figure 3 (Gain 2, \(\mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) \\
(Gain 2, \(V_{C M}= \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}\) )
\end{tabular} & CMRR & 60 & \[
\begin{aligned}
& 86 \\
& 60
\end{aligned}
\] & & & \[
\begin{aligned}
& 86 \\
& 60
\end{aligned}
\] & & dB \\
\hline Supply Voltage Rejection Ratio - Figure 2 (Gain 2, \(\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}\) ) & PSRR & 50 & 70 & - & 50 & 70 & - & dB \\
\hline Output Offset Voltage - Figure 2 (Gain 3, \(R_{L}=\infty\), Note 3) & VOO & - & 0.35 & 0.75 & - & 0.35 & 0.75 & V \\
\hline \[
\begin{aligned}
& \text { Output Common-Mode Voltage - Figure } 2 \\
& \qquad\left(R_{L}=\infty,\right. \text { Gain 3, Note 3) }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{CMO}}\) & 2.4 & 2.9 & 3.4 & 2.4 & 2.9 & 3.4 & V \\
\hline Output Voltage Swing - Figure 3 ( \(R_{L}=2 k\), Gain 2, Note 2) & \(\mathrm{V}_{\mathrm{O}}\) & 3.0 & 4.0 & - & 3.0 & 4.0 & - & Vp-p \\
\hline Output Resistance & ro & - & 20 & - & - & 20 & - & \(\Omega\) \\
\hline Power Supply Current - Figure 2 ( \(R_{L}=\infty\), Gain 2, Note 2) & \({ }^{\prime} \mathrm{D}\) & - & 18 & 24 & - & 18 & 24 & mA \\
\hline
\end{tabular}

Note 1. Gain select pins \(\mathrm{G1} \mathrm{~A}_{\mathrm{A}}\) and \(\mathrm{G1} \mathrm{~B}_{\mathrm{B}}\) connected together.
Note 2. Gain select pins \(\mathrm{G} 2_{\mathrm{A}}\) and \(\mathrm{G} 2_{\mathrm{B}}\) connected together.
Note 3. All gain select pins open.

ELECTRICAL CHARACTERISTICS \(T_{A}=T_{\text {high }}\) to \(T_{\text {low }}\) unless otherwise noted. \({ }^{*}\left(\mathrm{~V}_{\mathrm{CC}}=+6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CM}}=0\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{SE592} & \multicolumn{3}{|c|}{NE592} & \multirow[b]{2}{*}{Units} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Differential Voltage Gain - Figure 3
\[
\begin{aligned}
& \left(R_{L}=2 \mathrm{k} \Omega, e_{\text {out }}=3 \mathrm{Vp} \cdot \mathrm{p}\right) \\
& \text { (Gain 1, Note 1) } \\
& \text { (Gain 2, Note 2) }
\end{aligned}
\] & \(\mathrm{A}_{\mathrm{vd}}\) & \[
\begin{gathered}
200 \\
80
\end{gathered}
\] &  & \[
\begin{aligned}
& 600 \\
& 120 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
250 \\
80
\end{gathered}
\] & \[
-
\] & \[
\begin{aligned}
& 600 \\
& 120 \\
& \hline
\end{aligned}
\] & V/V \\
\hline Input Resistance (Gain 2) & \(\mathrm{R}_{\text {in }}\) & 8.0 & - & - & 8.0 & - & - & \(\mathrm{k} \Omega\) \\
\hline Input Offset Current (Gain 3) - Figure 2 & \(\|_{10}{ }^{1}\) & - & - & 5.0 & - & - & 6.0 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current (Gain 3) - Figure 2 & \(1 / \mathrm{B}\) & - & - & 40 & - & - & 40 & \(\mu \mathrm{A}\) \\
\hline Input Voltage Range (Gain 2) - Figure 3 & \(V_{\text {in }}\) & \(\pm 1.0\) & - & - & \(\pm 1.0\) & - & - & V \\
\hline Common-Mode Rejection Ratio - Figure 3 (Gain 2, \(V_{C M}= \pm 1 \mathrm{~V}, \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & CMRR & 50 & - & - & 50 & - & - & dB \\
\hline Supply Voltage Rejection Ratio - Figure 2 (Gain \(2, \Delta \mathrm{~V}_{\mathrm{s}}= \pm 0.5 \mathrm{~V}\) ) & PSRR & 50 & - & - & 50 & - & - & dB \\
\hline Output Offset Voltage (Gain 3) - Figure 2 & Voo & - & - & 1.2 & - & - & 1.5 & V \\
\hline Output Voltage Swing (Gain 2) - Figure 3 & \(\mathrm{V}_{0}\) & 2.5 & - & - & 2.5 & - & - & \(\mathrm{Vp}-\mathrm{p}\) \\
\hline Power Supply Current (Gain 2) - Figure 2 & \({ }^{1}\) & - & - & 27 & - & - & 27 & mA \\
\hline
\end{tabular}
\({ }^{*} \mathrm{~T}_{\text {low }}=0^{\circ} \mathrm{C}\) for NE592, \(-55^{\circ} \mathrm{C}\) for SE592
\(\mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for NE592, \(+125^{\circ} \mathrm{C}\) for SE592

\section*{GENERAL TEST CIRCUITS} figure 1


FIGURE 2
figure 3



FIGURE 8 - VOLTAGE GAIN AS A FUNCTION OF
Radj \(_{\text {ade }}\) RESISTANCE



FIGURE 9 - DISK/TAPE PHASE MODULATED
READBACK SYSTEMS


FIGURE 10 - DIFFERENTIATION WITH HIGH COMMON MODE NOISE REJECTION


FOR FREQUENCY \(f_{1} \ll 1 / 2 \pi\) (32) C
\(v_{O} \cong 1.4 \times 10^{4} c \frac{d_{v 1}}{d t}\)
FIGURE 11 - FILTER NETWORKS


\section*{ULTRA-LOW NOISE PRECISION, HIGH SPEED OPERATIONAL AMPLIFIER}

The OP-27 series of monolithic operational amplifiers combine low-noise, precision dc performance and high bandwidth in one device. Advanced Bipolar processing and innovative design techniques are used to produce this low noise precision operational amplifier. This device is trimmed for extremely low initial input offset voltage by utilizing a highly stable and reliable zener zap technique during factory testing which yields guaranteed \(\mathrm{V}_{1 \mathrm{O}}\) limits as tight as \(25 \mu \mathrm{~V}\). A unique input bias current cancellation scheme maintains low \(I_{\mathrm{IB}}\) and \(\mathrm{I}_{\mathrm{O}}\) to typically \(\pm 20 \mathrm{nA}\) and 15 nA respectively over the full military temperature range. Other sources of input errors are reduced in excess of -120 dB due to extremely high common-mode and power supply rejection ratios. The OP-27 has a gain bandwidth product of 8.0 MHz and slew rate of \(2.8 \mathrm{~V} / \mu \mathrm{s}\).

The precision, low noise and high speed characteristics of this device makes it ideal for amplifying transducer signals, RIAA phono, NAB tape head and microphone preamplifiers, wide band instrumentation amplifiers and high speed signal conditioning for data acquisition systems.
- Extremely Low-Noise - \(3.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}\) at 1.0 kHz
\[
80 \mathrm{nVp}-\mathrm{p}, 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}
\]
- Low Initial Input Offset Voltage - \(10 \mu \mathrm{~V}\)
- Ultra Stable Input Offset Voltage - \(0.2 \mu \mathrm{~V} / \mathrm{mo}\).
- High Gain Bandwidth Product and High Slew Rate - 8.0 MHz, \(2.8 \mathrm{~V} / \mu \mathrm{s}\)
- High Open-Loop Gain - 1.8 Million
- High Common-Mode Rejection - 126 dB

\section*{ULTRA-LOW NOISE PRECISION, HIGH SPEED OPERATIONAL AMPLIFIER}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT


\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ORDERING INFORMATION} \\
\hline \multirow[b]{2}{*}{Slew Rate} & \multicolumn{3}{|c|}{Device} & \multirow[t]{2}{*}{Temperature Range} & \multirow[b]{2}{*}{Package} \\
\hline & \(\mathbf{V} 10 \leqslant 25 \mu \mathrm{~V}\) & \(\mathrm{V}_{10} \leqslant 60 \mu \mathrm{~V}\) & \(\mathrm{V}_{10} \leqslant 100 \mu \mathrm{~V}\) & & \\
\hline \multirow{3}{*}{\(\geqslant 1.7 \mathrm{~V} / \mu \mathrm{s}\)} & OP-27AZ & OP-27BZ & OP-27CZ & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline & OP-27EZ & OP-27FZ & OP-27GZ & -25 to \(+85^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline & OP-27EP & OP-27FP & OP-27GP & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}} \\
& \mathrm{~V}_{\mathrm{EE}}
\end{aligned}
\] & \[
\begin{aligned}
& +22 \\
& -22
\end{aligned}
\] & V \\
\hline Input Voltage Range (Note 1) & VIDR & \(\pm 22\) & V \\
\hline Differential Input Voltage (Note 2) & \(V_{\text {ID }}\) & \(\pm 0.7\) & V \\
\hline Differential Input Current (Note 2) & 1 ID & \(\pm 25\) & mA \\
\hline Output Short-Circuit Duration & \(t_{s}\) & Indefinite & \\
\hline Power Dissipation and Thermal Characteristics Plastic Package (P Suffix) \(\mathrm{T}_{\mathrm{A}}=+36^{\circ} \mathrm{C}\) & PD & 500 & mW \\
\hline Derate above \(\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}\) & \(1 / R_{\theta J A}\) & 6.7 & \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Ceramic Package ( \(Z\) Suffix) \(\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}\) & PD & 500 & mW \\
\hline Derate above \(\mathrm{T}_{\mathrm{A}}=+80^{\circ} \mathrm{C}\) & \(1 / \mathrm{R}_{\text {OJA }}\) & 7.1 & \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature \(A, B\) and \(C\) Grades & \(\mathrm{T}_{\mathrm{A}}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
\(E, F\) and \(G\) Grades \\
(Ceramic Package)
\end{tabular} & & -25 to +85 & \\
\hline EP, FP and GP Grades (Plastic Package) & & 0 to +70 & \\
\hline Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range Ceramic Package Plastic Package & \(\mathrm{T}_{\text {stg }}\) & \[
\begin{aligned}
& -65 \text { to }+150 \\
& -65 \text { to }+125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES:
1. For supply voltages less than \(\pm 22 \mathrm{~V}\), the absolute maximum input voltage range is equal to the supply voltage.
2. The inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds \(\pm 0.7 \mathrm{~V}\), the input current must be limited to 25 mA .

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{OP-27A/E/EP} & \multicolumn{3}{|c|}{OP-278/F/FP} & \multicolumn{3}{|c|}{OP-27C/G/GP} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Input Offset Voltage & V10 & - & 10 & 25 & - & 20 & 60 & - & 30 & 100 & \(\mu \mathrm{V}\) \\
\hline Long Term Input Offset Voltage Stability (Note 3) & \(\mathrm{V}_{10} / \mathrm{t}\) & - & 0.2 & 1.0 & - & 0.3 & 1.5 & - & 0.4 & 2.0 & \(\mu \mathrm{V} / \mathrm{mo}\) \\
\hline Input Offset Current & 10 & - & 7.0 & 35 & - & 9.0 & 50 & - & 12 & 75 & nA \\
\hline Input Bias Current & IIB & - & \(\pm 10\) & \(\pm 40\) & - & \(\pm 12\) & \(\pm 55\) & - & \(\pm 15\) & \(\pm 80\) & nA \\
\hline Input Noise Voltage 0.1 to 10 Hz (Note 4) & \(e_{\text {np-p }}\) & - & 0.08 & 0.18 & - & 0.08 & 0.18 & - & 0.09 & 0.25 & \(\mu V_{\text {p-p }}\) \\
\hline Input Noise Voltage Density
\[
\begin{aligned}
& \mathrm{f}_{\mathrm{o}}=10 \mathrm{~Hz} \\
& \mathrm{f}_{\mathrm{O}}=30 \mathrm{~Hz} \\
& \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \\
& \text { (Note 4) }
\end{aligned}
\] & \(e_{n}\) & - & \[
\begin{aligned}
& 3.5 \\
& 3.1 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 4.5 \\
& 3.8
\end{aligned}
\] & - & \[
\begin{aligned}
& 3.5 \\
& 3.1 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 4.5 \\
& 3.8
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 3.8 \\
& 3.3 \\
& 3.2
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 5.6 \\
& 4.5
\end{aligned}
\] & \(n \mathrm{~V} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Noise Current Density
\[
\begin{aligned}
& \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\
& \mathrm{f}_{\mathrm{O}}=30 \mathrm{~Hz} \\
& \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \\
& \text { (Note 4) }
\end{aligned}
\] & \(i_{n}\) & - & \[
\begin{aligned}
& 1.7 \\
& 1.0 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 2.3 \\
& 0.6
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.7 \\
& 1.0 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 2.3 \\
& 0.6
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.7 \\
& 1.0 \\
& 0.4
\end{aligned}
\] & \[
\overline{-}
\] & \(\mathrm{pA} \sqrt{\mathrm{Hz}}\) \\
\hline Input Resistance - Differential Mode & \(\mathrm{r}_{\mathrm{i}}\) & 1.5 & 6.0 & - & 1.2 & 5.0 & - & 0.8 & 4.0 & - & M \(\Omega\) \\
\hline Input Resistance - Common Mode & \(\mathrm{R}_{\text {incm }}\) & - & 3.0 & - & - & 2.5 & - & - & 2.0 & - & G \(\Omega\) \\
\hline Input Voltage Range & \(\mathrm{V}_{\text {IR }}\) & \(\pm 11.0\) & \(\pm 12.3\) & - & \(\pm 11.0\) & \(\pm 12.3\) & - & \(\pm 11.0\) & \(\pm 12.3\) & - & V \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{OP-27A/E/EP} & \multicolumn{3}{|c|}{OP-27B/F/FP} & \multicolumn{3}{|c|}{OP-27C/G/GP} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Common Mode Rejection Ratio
\[
V_{C M}= \pm 11 \mathrm{~V}
\] & CMRR & 114 & 126 & - & 106 & 123 & - & 100 & 120 & - & dB \\
\hline Power Supply Rejection Ratio
\[
V_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 4.0 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}
\] & PSRR & 100 & 120 & - & 100 & 120 & - & 94 & 114 & - & dB \\
\hline Large-Signal Voltage Gain
\[
\begin{aligned}
& R_{\mathrm{L}} \geqslant 2.0 \mathrm{kS}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}} \geqslant 1.0 \mathrm{kS}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 4.0 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}
\end{aligned}
\] & AVOL & \[
\begin{gathered}
1000 \\
800
\end{gathered}
\] & \[
\begin{aligned}
& 1800 \\
& 1500 \\
& 700
\end{aligned}
\] & -
\[
-
\] & \[
\begin{gathered}
1000 \\
800
\end{gathered}
\] & \[
\begin{aligned}
& 1800 \\
& 1500 \\
& 700
\end{aligned}
\] & - & \[
\stackrel{700}{-}
\] & \[
\begin{aligned}
& 1500 \\
& 1500 \\
& 500
\end{aligned}
\] & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing
\[
\begin{aligned}
& R_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}} \geqslant 600 \Omega \\
& \hline
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& \pm 12 \\
& \pm 10
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.8 \\
& \pm 11.5
\end{aligned}
\] & - & \[
\begin{aligned}
& \pm 12 \\
& \pm 10
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.8 \\
& \pm 11.5
\end{aligned}
\] & — & \[
\begin{gathered}
\pm 11.5 \\
\pm 10
\end{gathered}
\] & \[
\begin{aligned}
& \pm 13.5 \\
& \pm 11.5
\end{aligned}
\] & - & V \\
\hline Slew Rate, \(R_{L} \geqslant 2.0 \mathrm{k} \Omega\) & SR & 1.7 & 2.8 & - & 1.7 & 2.8 & - & 1.7 & 2.8 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Gain Bandwidth Product & GBW & 5.0 & 8.0 & - & 5.0 & 8.0 & - & 5.0 & 8.0 & - & MHz \\
\hline Open Loop Output Resistance
\[
v_{\mathrm{O}}=0, \mathrm{I}_{\mathrm{O}}=0
\] & ro & - & 70 & - & - & 70 & - & - & 70 & - & \(\Omega\) \\
\hline Power Dissipation \(V_{O}=0\), No Load & PD & - & 90 & 140 & - & 90 & 140 & - & 100 & 170 & mW \\
\hline Offset Adjustment Range
\[
R p=10 \mathrm{k} \Omega
\] & & - & \(\pm 4.0\) & - & - & \(\pm 4.0\) & - & - & \(\pm 4.0\) & - & mV \\
\hline
\end{tabular}

NOTES (continued)
3. Long term input offset voltage stability for the OP-27 series, refers to the average trend line of \(\mathrm{V}_{10}\) versus time over extended periods after the first 30 days of operation. Excluding the first hour of operation, changes in \(V_{I O}\) during the first 30 days are typically \(2.5 \mu \mathrm{~V}\).
4. Sample tested.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 5])
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{OP-27A} & \multicolumn{3}{|c|}{OP-27B} & \multicolumn{3}{|c|}{OP-27C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & 30 & 60 & - & 50 & 200 & - & 70 & 300 & \(\mu \mathrm{V}\) \\
\hline Average Input Offset Drift (Note 6) & TCV \({ }_{\text {IO }}\) & - & 0.2 & 0.6 & - & 0.3 & 1.3 & - & 0.4 & 1.8 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & 10 & - & 15 & 50 & - & 22 & 85 & - & 30 & 135 & nA \\
\hline Input Bias Current & IIB & - & \(\pm 20\) & \(\pm 60\) & - & \(\pm 28\) & \(\pm 95\) & - & \(\pm 35\) & \(\pm 150\) & nA \\
\hline Input Voltage Range & \(V_{\text {IR }}\) & \(\pm 10.3\) & \(\pm 11.5\) & - & \(\pm 10.3\) & \(\pm 11.5\) & - & \(\pm 10.2\) & \(\pm 11.5\) & - & V \\
\hline Common Mode Rejection Ratio
\[
\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}
\] & CMRR & 108 & 122 & - & 100 & 119 & - & 94 & 116 & - & dB \\
\hline Power Supply Rejection Ratio
\[
V_{\mathrm{CC}} / V_{\mathrm{EE}}= \pm 4.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}
\] & PSRR & 96 & 114 & - & 94 & 114 & - & 86 & 108 & - & dB \\
\hline Large-Signal Voltage Gain
\[
\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}
\] & AVOL & 600 & 1200 & - & 500 & 1000 & - & 300 & 800 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing
\[
\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega
\] & \(\mathrm{V}_{\mathrm{O}}\) & \(\pm 11.5\) & \(\pm 13.5\) & - & \(\pm 11.0\) & \(\pm 13.2\) & - & \(\pm 10.5\) & \(\pm 13.0\) & - & V \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 5])
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{OP-27E/EP} & \multicolumn{3}{|c|}{OP-27F/FP} & \multicolumn{3}{|c|}{OP-27G/GP} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & 20 & 50 & - & 40 & 140 & - & 55 & 220 & \(\mu \mathrm{V}\) \\
\hline Average Input Offset Drift (Note 6) & TCV \({ }_{10}\) & - & 0.2 & 0.6 & - & 0.3 & 1.3 & - & 0.4 & 1.8 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & 10 & - & 10 & 50 & - & 14 & 85 & - & 20 & 135 & nA \\
\hline Input Bias Current & IIB & - & \(\pm 14\) & \(\pm 60\) & - & \(\pm 18\) & \(\pm 95\) & - & \(\pm 25\) & \(\pm 150\) & nA \\
\hline Input Voltage Range & VIR & \(\pm 10.5\) & \(\pm 11.8\) & - & \(\pm 10.5\) & \(\pm 11.8\) & - & \(\pm 10.5\) & \(\pm 11.8\) & - & V \\
\hline Common Mode Rejection Ratio
\[
\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}
\] & CMRR & 110 & 124 & - & 102 & 121 & - & 96 & 118 & - & dB \\
\hline Power Supply Rejection Ratio
\[
\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}= \pm 4.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}
\] & PSRR & 97 & 114 & - & 96 & 114 & - & 90 & 114 & - & dB \\
\hline Large-Signal Voltage Gain
\[
\mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}
\] & AVOL & 750 & 1500 & - & 700 & 1300 & - & 450 & 1000 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing
\[
\mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k} \Omega
\] & \(\mathrm{V}_{\mathrm{O}}\) & \(\pm 11.7\) & \(\pm 13.6\) & - & \(\pm 11.4\) & \(\pm 13.5\) & - & \(\pm 11\) & \(\pm 13.3\) & - & V \\
\hline
\end{tabular}

6. \(T C V_{I O}\) performance is within specifications unnulled or when nulled with a potentiometer \(R p=8.0 \mathrm{k} \Omega\) to \(20 \mathrm{k} \Omega\).



FIGURE 3 - VOLTAGE NOISE versus FREQUENCY


FIGURE 5 - TOTAL NOISE versus SOURCE RESISTANCE


FIGURE 2 - VOLTAGE NOISE TEST CIRCUIT (0.1 Hz-TO-10 Hz)


Note: All capacitor values are for non polarized capacitors only.

FIGURE 4 - INPUT WIDEBAND VOLTAGE NOISE versus BANDWIDTH ( 0.1 Hz TO FREQUENCY INDICATED)


FIGURE 6 - VOLTAGE NOISE versus TEMPERATURE


FIGURE 7 - VOLTAGE NOISE versus SUPPLY VOLTAGE


FIGURE 9 - SUPPLY CURRENT versus SUPPLY VOLTAGE


FIGURE 11 - INPUT OFFSET CURRENT versus TEMPERATURE


FIGURE 8 - CURRENT NOISE versus FREQUENCY


FIGURE 10 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 12 - COMMON MODE INPUT RANGE versus SUPPLY VOLTAGE


FIGURE 13 - OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE


FIGURE 15 - MAXIMUM OUTPUT SWING versus RESISTIVE LOAD


FIGURE 17 - COMMON MODE REJECTION RATIO versus FREQUENCY


FIGURE 14 - OPEN LOOP VOLTAGE GAIN versus LOAD RESISTANCE


FIGURE 16 - POWER SUPPLY REJECTION RATIO versus FREQUENCY


FIGURE 18 - OPEN LOOP GAIN versus FREQUENCY


FIGURE 19 - MAXIMUM UNDISTORTED OUTPUT versus FREQUENCY


FIGURE 20 - SMALL-SIGNAL TRANSIENT RESPONSE


FIGURE 21 - LARGE-SIGNAL TRANSIENT RESPONSE

t , TIME \((2.0 \mu \mathrm{~s} / \mathrm{DIV})\)
\[
\begin{array}{ll}
\mathrm{AV}=+1.0 & \mathrm{~V}_{E E}=-15 \mathrm{~V} \\
\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} & C_{\mathrm{L}}=12 \mathrm{pF} \\
V_{C C}=+15 \mathrm{~V} & R_{\mathrm{L}}=x
\end{array}
\]

\section*{APPLICATIONS INFORMATION}

The designer is cautioned that stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the drift performance indicated. Best operation will be obtained when both input contacts are maintained at the same temperature, preferably close to the temperature of the device's package.

\section*{OFFSET VOLTAGE ADJUSTMENT}

The input offset voltage and drift over temperature are permanently trimmed at wafer testing. However, if further adjustment of \(\mathrm{V}_{10}\) is required, nulling with a \(10 \mathrm{k} \Omega\) potentiometer as shown in Figure 22 will not degrade \(\mathrm{TCV} / \mathrm{IO}\). Other potentiometer values from \(1.0 \mathrm{k} \Omega\) to \(1.0 \mathrm{M} \Omega\) can be used with a slight degradation \((0.1\) to \(0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) ) of \(\mathrm{TCV}_{1 \mathrm{O}}\). Trimming to a value other than zero creates a drift of \(\left(\mathrm{V}_{1 \mathrm{O}} / 300\right) \mu \mathrm{V} /{ }^{\circ} \mathrm{C}\), e.g. if \(\mathrm{V}_{\mathrm{IO}}\) is adjusted to \(100 \mu \mathrm{~V}\), the change in \(\mathrm{TCV}_{10}\) will be 0.33 \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\). The offset voltage adjustment range with a \(10 \mathrm{k} \Omega\) potentiometer is \(\pm 4.0 \mathrm{mV}\). If a smaller adjustment range is required, the sensitivity and/or resolution of the nulling can be increased by using a smaller pot in conjunction with fixed resistors.

FIGURE 22 - OFFSET NULLING CIRCUIT


\section*{NOISE MEASUREMENTS}

The extremely low noise of these devices can make accurate measurement a difficult task. In order to realize the 80 nV peak-to-peak noise specification of the op amp in the 0.1 Hz to 10 Hz frequency range, the following guidelines must be observed:
(1) The device has to be warmed up for at least five minutes. As the op amp warms up, its offset voltage changes typically \(4.0 \mu \mathrm{~V}\) due to its chip temperature increasing 14 to \(20^{\circ} \mathrm{C}\) from the moment the power supplies are turned on. In the 10 sec measurement interval these temperature-induced effects can easily exceed tens of nanovolts.
(2) For similar reasons, the device has to be well shielded from air currents to eliminate the possibility of thermoelectric effects in excess of several nanovolts.
(3) Sudden motion in the vicinity of the device can also "feed-through" to increase the observed noise.
(4) The test time to measure 0.1 Hz to 10 Hz noise should not exceed 10 sec . As shown in the noise tester frequency response curve (Figure 1) the 0.1 Hz corner is defined by only one zero. The test time of 10 sec acts as an additional zero to eliminate noise contributions from the frequency band below 0.1 Hz .

A noise-voltage density test is recommended when measuring noise on a large number of units. A 10 Hz noise-voltage density measurement will correlate well with a 0.1 Hz -to- 10 Hz peak-to-peak noise reading since both results are determined by the white noise and the location of the \(1 / \mathrm{f}\) corner frequency.

\section*{UNITY GAIN BUFFER APPLICATIONS}

When \(R_{F} \leqslant 100 \Omega\) and the input is driven with a fast, large signal pulse (>1.0 V), the output waveform will look as shown in Figure 23.
During the initial fast input step, the input protection diodes effectively short the output to the input and current limit only by the output short circuit protection of
the op amp and the source resistance of the generator. With \(R_{F} \geqslant 500 \Omega\), the output is capable of handling the current requirements ( \(\mathrm{L} \leqslant 20 \mathrm{~mA}\) at 10 V ) and the amplifier stays in its active made and a smooth transition will occur.
As with all operational amplifiers when \(R_{F}>2.0 \mathrm{k} \Omega\), a pole will be created with \(R_{F}\) and the amplifier's input capacitance ( 8.0 pF ), creating additional phase shift and reducing the phase margin. A small capacitor (20 to 50 pF ) in parallel with \(\mathrm{RF}_{\mathrm{F}}\) will eliminate this problem.

FIGURE 23 - PULSED OPERATION


\section*{Product Preview}

\section*{DUAL POWER OPERATIONAL AMPLIFIER}

The TCA0372 is a monolithic circuit intended for use as a power operational amplifier in a wide range of applications, including servo amplifiers and power supplies. No deadband crossover distortion provides better performance for driving coils.
- Output Current to 1.0 A
- Slew Rate of \(1.3 \mathrm{~V} / \mu \mathrm{s}\)
- Wide Bandwidth of 1.1 MHz
- Internal Thermal Shutdown
- Single or Split Supply Operation
- Excellent Gain and Phase Margins
- Common Mode Input Includes Ground
- Zero Deadband Crossover Distortion


This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.


ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Operating Junction \\
Temperature Range
\end{tabular} & Package \\
\hline \begin{tabular}{l} 
TCA0372DP1 \\
TCA0372DP2 \\
TCA0372SP
\end{tabular} & \(\mathrm{TJ}^{2}+-40^{\circ} \mathrm{C}\) to & \begin{tabular}{l} 
Plastic DIP \\
Plastic DIP \\
Plastic Power
\end{tabular} \\
\hline
\end{tabular}

,
CA0372SP

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage (from \(\mathrm{V}_{\mathrm{CC}}\) to \(\mathrm{V}_{\mathrm{EE}}\) ) & \(\mathrm{V}_{\mathrm{S}}\) & 40 & Volts \\
\hline Input Differential Voltage Range & VIDR & (Note 1) & Volts \\
\hline Input Voltage Range & \(V_{\text {IR }}\) & (Note 1) & Volts \\
\hline Operating Junction Temperature (Note 2) & TJ & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline DC Output Current & 10 & 1.0 & A \\
\hline Peak Output Current (Nonrepetitive) & \(I_{\text {max }}\) & 1.5 & A \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right.\), \(\mathrm{R}_{\mathrm{L}}\) connected to ground \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\) ( Note 3 ) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Input Offset Voltage }\left(V_{C M}=0\right) \\
& V_{C C}=+15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, \top_{J}=+25^{\circ} \mathrm{C} \\
& V_{C C}=+15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, T_{J}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & \(\mathrm{V}_{10}\) & & & \[
\begin{aligned}
& 15 \\
& 20 \\
& \hline
\end{aligned}
\] & mV \\
\hline Average Temperature Coefficient of Offset Voltage & \(\Delta V_{10} / \Delta T\) & - & 20 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{CM}}=0\) ) & IB & - & 100 & 500 & nA \\
\hline Input Offset Current ( \(\mathrm{V}_{\mathrm{CM}}=0\) ) & 10 & - & 10 & 50 & nA \\
\hline Large Signal Voltage Gain
\[
\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}
\] & Avol & 30 & 100 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing }\left(\mathrm{IL}_{\mathrm{L}}=100 \mathrm{~mA}\right) \\
& \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{TJ}^{\mathrm{V}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{TJ}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\
& \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{TJ}^{2}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{VOH} \\
& \mathrm{v}_{\mathrm{OL}}
\end{aligned}
\] & \[
\begin{gathered}
14 \\
13.9 \\
-
\end{gathered}
\] & \[
\begin{gathered}
14.2 \\
- \\
-14.2
\end{gathered}
\] & \[
\begin{gathered}
- \\
- \\
-14 \\
-13.9 \\
\hline
\end{gathered}
\] & v \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing ( }(\mathrm{L}=1.0 \mathrm{~A}) \\
& \mathrm{V}_{\mathrm{CC}}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{TJ}^{2}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \\
& \mathrm{V}_{\mathrm{CC}}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+24 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{v}_{\mathrm{OL}}
\end{aligned}
\] & \[
\begin{gathered}
22.5 \\
22.5 \\
-
\end{gathered}
\] & \[
\begin{gathered}
22.7 \\
1.3
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& 1.5 \\
& 1.5 \\
& \hline
\end{aligned}
\] & v \\
\hline \begin{tabular}{l}
Input Common Mode Voltage Range
\[
\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] \\
\(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
\end{tabular} & VICR & \multicolumn{3}{|r|}{\[
\begin{aligned}
& V_{E E} \text { to }\left(V_{C C}-1.0\right) \\
& V_{E E} \text { to }\left(V_{C C}-1.3\right) \\
& \hline
\end{aligned}
\]} & v \\
\hline Common Mode Rejection Ratio (RS \(=10 \mathrm{k}\) ) & CMRR & 70 & 90 & - & dB \\
\hline Power Supply Rejection Ratio ( \(\mathrm{R}_{\mathrm{S}}=100 \Omega\) ) & PSRR & 70 & 90 & - & dB \\
\hline Power Supply Current
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & ID & - & 7.0 & \[
\begin{aligned}
& 10 \\
& 14 \\
& \hline
\end{aligned}
\] & mA \\
\hline
\end{tabular}

\section*{NOTES:}
1. Either or both input voltages must not exceed the magnitude of \(V_{C C}\) or \(V_{E E}\).
2. Power dissipation must be considered to ensure maximum junction temperature ( \(T_{J}\) ) is not exceeded.
3. \(T_{\text {low }}=-40^{\circ} \mathrm{C} \quad T_{\text {high }}=+125^{\circ} \mathrm{C}\)

AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.\) connected to ground, \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)
unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Slew Rate \(\left(\mathrm{V}_{\mathrm{in}}=-10 \mathrm{~V}\right.\) to \(\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)\) \(A_{V}=-1.0, T_{J}=T_{\text {low }}\) to \(T_{\text {high }}\) & SR & 1.0 & 1.4 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline \[
\begin{aligned}
& \text { Gain Bandwidth Product ( } \mathrm{f}=100 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \text { ) } \\
& \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & GBW & \[
\begin{aligned}
& 0.9 \\
& 0.7
\end{aligned}
\] & \[
1.1
\] & — & MHz \\
\hline Phase Margin \(T_{J}=T_{\text {low }}\) to \(T_{\text {high }}\)
\[
R_{L}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\] & \(\phi_{m}\) & - & 80 & - & Degrees \\
\hline Gain Margin
\[
\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\] & \(A_{m}\) & - & 15 & - & dB \\
\hline Equivalent Input Noise Voltage
\[
\text { RS }=100 \text { Ohms, } f=1.0 \mathrm{kHz} \text { to } 100 \mathrm{kHz}
\] & \(e_{n}\) & - & 22 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Total Harmonic Distortion
\[
A_{V}=-1.0, R_{L}=50 \mathrm{Ohms}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{VRMS}, \mathrm{f}=1.0 \mathrm{kHz}
\] & THD & - & 0.02 & - & \% \\
\hline
\end{tabular}

NOTE: In case \(V_{E E}\) is disconnected before \(V_{C C}\), a diode between \(V_{E E}\) and GROUND is recommended to avoid damaging device.

FIGURE 1 - BIDIRECTIONAL DC MOTOR CONTROL WITH MICROPROCESSOR-COMPATIBLE INPUTS

\(\mathrm{V}_{\mathrm{S}}=\) Logic Supply Voltage
Must Have \(\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{S}}\)
E1, E2 = Logic Inputs

FIGURE 2 - BIDIRECTIONAL SPEED CONTROL OF DC MOTORS

For circuit stability ensure that \(R_{X}>\frac{2 R 3 \cdot R 1}{R_{M}}\) where
\(R_{M}=\) internal resistance of motor. The voltage available at the terminals of the motor is:
\[
V_{M}=2\left(V_{1}-\frac{V_{S}}{2}\right)+\left|R_{O}\right| \cdot I_{M}
\]
where \(\left|R_{O}\right|=\frac{2 R 3 \cdot R 1}{R_{X}}\) and \(I_{M}\) is the motor current.


\section*{LOW POWER JFET INPUT OPERATIONAL AMPLIFIER}

These JFET input operational amplifiers are designed for low power applications. They feature high input impedance, low input bias current and low input offset current. Advanced design techniques allow for higher slew rates, gain bandwidth products and output swing. The TL061 device provides for the external null adjustment of input offset voltage.
These devices are specified over the commercial, vehicular and military temperature ranges. The commercial and vehicular devices are available in Plastic dual in-line and SOIC packages. The military devices are available in Ceramic dual in-line packages.
- Low Supply Current - \(200 \mu \mathrm{~A} /\) Amplifier
- Low Input Bias Current - 5.0 pA
- High Gain Bandwidth - 2.0 MHz
- High Slew Rate - \(6.0 \mathrm{~V} / \mu \mathrm{s}\)
- High Input Impedance - \(10^{12} \Omega\)
- Large Output Voltage Swing \(- \pm 14 \mathrm{~V}\)
- Output Short Circuit Protection
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ORDERING INFORMATION} \\
\hline Op Amp Function & Device & Tested Temperature Range & Package \\
\hline Single & TL061CD, ACD, BCD TL061CP, ACP, BCP TL061VD TL061VP TL061MJG & \[
\begin{array}{r}
0 \text { to }+70^{\circ} \mathrm{C} \\
0 \text { to }+70^{\circ} \mathrm{C} \\
-40 \text { to }+85^{\circ} \mathrm{C} \\
-40 \text { to }+85^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C}
\end{array}
\] & \begin{tabular}{l}
SO-8 \\
Plastic DIP SO-8 \\
Plastic DIP Ceramic DIP
\end{tabular} \\
\hline Dual & \begin{tabular}{l}
TL062CD, ACD, BCD TL062CP, ACP, BCP TL062VD \\
TL062VP \\
TL062MJG
\end{tabular} & \[
\begin{array}{r}
0 \text { to }+70^{\circ} \mathrm{C} \\
0 \text { to }+70^{\circ} \mathrm{C} \\
-40 \text { to }+85^{\circ} \mathrm{C} \\
-40 \text { to }+85^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { SO-8 } \\
\text { Plastic DIP } \\
\text { SO-8 } \\
\text { Plastic DIP } \\
\text { Ceramic DIP }
\end{gathered}
\] \\
\hline Quad & TLO64CD, ACD, BCD TLO64CN, ACN, BCN TL064VD TL064VP TL064MJ & \[
\begin{array}{r}
0 \text { to }+70^{\circ} \mathrm{C} \\
0 \text { to }+70^{\circ} \mathrm{C} \\
-40 \text { to }+85^{\circ} \mathrm{C} \\
-40 \text { to }+85^{\circ} \mathrm{C} \\
-55 \text { to }+125^{\circ} \mathrm{C}
\end{array}
\] & \begin{tabular}{l}
SO-14 \\
Plastic DIP SO-14 \\
Plastic DIP Ceramic DIP
\end{tabular} \\
\hline
\end{tabular}


MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage (from \(\mathrm{V}_{\mathrm{CC}}\) to \(\mathrm{V}_{\mathrm{EE}}\) ) & \(\mathrm{V}_{\mathrm{S}}\) & +36 & V \\
\hline Input Differential Voltage Range (Note 1) & \(\mathrm{V}_{\text {IDR }}\) & \(\pm 30\) & V \\
\hline Input Voltage Range (Notes 1 and 2) & \(\mathrm{V}_{\text {IR }}\) & \(\pm 15\) & V \\
\hline Output Short-Circuit Duration (Note 3) & ts & Indefinite & Seconds \\
\hline \begin{tabular}{l} 
Operating Junction Temperature (Note 3) \\
Ceramic Package \\
Plastic Package
\end{tabular} & \(\mathrm{TJ}_{\mathrm{J}}\) & \begin{tabular}{c} 
\\
+160 \\
+150
\end{tabular} & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Storage Temperature Range \\
Ceramic Package \\
Plastic Package
\end{tabular} & & \(\mathrm{T}_{\text {stg }}\) & \begin{tabular}{c}
-65 to +160 \\
-60 to +150
\end{tabular} \\
\hline
\end{tabular}

NOTES:
1. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
2. The magnitude of the input voltage must never exceed the magnitude of the supply or 15 volts, whichever is less
3. Power dissipation must be considered to ensure maximum junction temperature ( \(T_{J}\) ) is not exceeded. (See Figure 1.)

\section*{EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER)}

*Null adjustment pins for TL061 only.


DC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.\) to \(+70^{\circ} \mathrm{C}\), unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{\begin{tabular}{l}
TL061BC \\
TL062BC \\
TL064BC
\end{tabular}} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { TLO61AC } \\
& \text { TLO62AC } \\
& \text { TL064AC }
\end{aligned}
\]} & \multicolumn{3}{|c|}{TL061C TL062C TL064C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & VIO & - & 2.0 & \[
\begin{aligned}
& 3.0 \\
& 5.0
\end{aligned}
\] & - & 3.0 & \[
\begin{aligned}
& 6.0 \\
& 7.5
\end{aligned}
\] & - & 3.0 & \[
\begin{aligned}
& 15 \\
& 20
\end{aligned}
\] & mV \\
\hline Average Temperature Coefficient for Offset Voltage
\[
\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)
\] & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{T}\) & - & 10 & - & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Input Offset Current ( } \left.\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & 1 iO & - & 0.5 & \[
\begin{aligned}
& 100 \\
& 2.0
\end{aligned}
\] & - & 0.5 & \[
\begin{aligned}
& 100 \\
& 2.0
\end{aligned}
\] & - & 0.5 & \[
\begin{array}{|l|l}
200 \\
2.0
\end{array}
\] & \[
\begin{aligned}
& \mathrm{pA} \\
& \mathrm{nA}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V} C M=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & IIB & - & 3.0 & \[
\begin{aligned}
& 200 \\
& 7.0
\end{aligned}
\] & - & 3.0 & \[
\begin{aligned}
& 200 \\
& 7.0
\end{aligned}
\] & - & 3.0 & \[
\begin{gathered}
200 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& \text { pA } \\
& \text { nA }
\end{aligned}
\] \\
\hline Input Common Mode Voltage Range ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & \(V_{\text {ICR }}\) & \(-11.5\) & +14.5
-12 & +11.5
- & -11.5 & +14.5
-12 & +11.5 & -11 & +14.5
-12 & +11 & V \\
\hline \[
\begin{aligned}
& \text { Large Signal Voltage Gain ( } \left.\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & AVOL & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & 58 & - & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & 58 & - & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & 58 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing ( \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{ID}}=1.0 \mathrm{~V}\) )
\[
T_{A}=25^{\circ} \mathrm{C}
\]
\[
\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\] & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{O}^{+}} \\
& \mathrm{v}_{\mathrm{O}^{-}} \\
& \mathrm{v}_{\mathrm{O}^{+}} \\
& \mathrm{v}_{\mathrm{O}^{-}}
\end{aligned}
\] & \[
\begin{gathered}
+10 \\
- \\
+10
\end{gathered}
\] & \[
\begin{gathered}
+14 \\
-14 \\
-
\end{gathered}
\] & \[
\begin{gathered}
- \\
-10 \\
-10
\end{gathered}
\] & \[
\begin{gathered}
+10 \\
- \\
+10 \\
-
\end{gathered}
\] & \[
\begin{array}{r}
+14 \\
-14
\end{array}
\]
- & \[
\begin{gathered}
- \\
-10 \\
- \\
-10
\end{gathered}
\] & \(\left\lvert\, \begin{gathered}+10 \\ - \\ +10 \\ -\end{gathered}\right.\) & \[
\begin{gathered}
+14 \\
-14 \\
- \\
-
\end{gathered}
\] & \[
\left|\begin{array}{c}
-10 \\
-10 \\
-10
\end{array}\right|
\] & V \\
\hline Common Mode Rejection
\[
\left(R_{S}=50 \Omega, V_{C M}=V_{I C R} \min , V_{O}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\right)
\] & CMR & 80 & 84 & - & 80 & 84 & - & 70 & 84 & - & dB \\
\hline Power Supply Rejection
\[
\left(R_{S}=50 \Omega, V_{C M}=0 \mathrm{~V}, V_{O}=0, T_{A}=25^{\circ} \mathrm{C}\right)
\] & PSR & 80 & 86 & - & 80 & 86 & - & 70 & 86 & - & dB \\
\hline Power Supply Current (each amplifier) (No Load, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & ID & - & 200 & 250 & - & 200 & 250 & - & 200 & 250 & \(\mu \mathrm{A}\) \\
\hline Total Power Dissipation (each amplifier) (No Load, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & PD & - & 6.0 & 7.5 & - & 6.0 & 7.5 & - & 6.0 & 7.5 & mW \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) (Note 4), unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL061M,V TL062M, V} & \multicolumn{3}{|c|}{TL064M, V} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & \(\mathrm{V}_{10}\) & - & \[
3.0
\] & \[
\begin{aligned}
& 6.0 \\
& 9.0
\end{aligned}
\] & - & 3.0 & \[
\begin{gathered}
9.0 \\
15
\end{gathered}
\] & mV \\
\hline Average Temperature Coefficient of Offset Voltage
\[
\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)
\] & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{T}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & 10 & - & \[
5.0
\] & \[
\begin{aligned}
& 100 \\
& 20
\end{aligned}
\] & - & 5.0 & \[
\begin{aligned}
& 100 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& \text { pA } \\
& \text { nA }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & İB & - & 30 & \[
\begin{gathered}
200 \\
50
\end{gathered}
\] & - & 30 & \[
\begin{gathered}
200 \\
50
\end{gathered}
\] & \[
\begin{aligned}
& \text { pA } \\
& \text { nA }
\end{aligned}
\] \\
\hline Input Common Mode Voltage Range ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & VICR & \[
\begin{array}{|c|}
\hline-11.5 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline+14.5 \\
-12 \\
\hline
\end{array}
\] & \begin{tabular}{|c}
+11.5 \\
- \\
\hline
\end{tabular} & \[
-\overline{11.5}
\] & \[
\begin{gathered}
+14.5 \\
-12
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline+11.5 \\
- \\
\hline
\end{array}
\] & v \\
\hline \[
\begin{aligned}
& \text { Large Signal Voltage Gain }\left(R_{L}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\right) \\
& T_{A}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & Avol & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & 58 & - & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & 58 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing }\left(R_{L}=10 \mathrm{k} \Omega, \mathrm{~V}_{I D}=1.0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{v}_{\mathrm{O}}+\) \\
\(\mathrm{V}_{\mathrm{O}}{ }^{-}\) \\
\(\mathrm{v}_{\mathrm{O}}+\) \\
\(\mathrm{V}_{\mathrm{O}}{ }^{-}\)
\end{tabular} & \[
\begin{gathered}
+10 \\
- \\
+10 \\
-
\end{gathered}
\] & \[
\begin{gathered}
+14 \\
-14 \\
- \\
-
\end{gathered}
\] & \[
\begin{gathered}
- \\
-10 \\
- \\
-10
\end{gathered}
\] & \[
\begin{gathered}
+10 \\
+ \\
+10 \\
- \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
+14 \\
-14 \\
- \\
- \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
- \\
-10 \\
-10 \\
\hline
\end{gathered}
\] & v \\
\hline Common Mode Rejection
\[
\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{I C R} \min , \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & CMR & 80 & 84 & - & 80 & 84 & - & dB \\
\hline Power Supply Rejection
\[
\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & PSR & 80 & 86 & -- & 80 & 86 & - & dB \\
\hline Power Supply Current (each Amplifier) (No Load, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & 1 D & - & 200 & 250 & - & 200 & 250 & \(\mu \mathrm{A}\) \\
\hline Total Power Dissipation (each Amplifier) (No Load, \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & PD & - & 6.0 & 7.5 & - & 6.0 & 7.5 & mW \\
\hline
\end{tabular}

Note 4. TL06XM Tlow \(=-55^{\circ} \mathrm{C}\) Thigh \(=+125^{\circ} \mathrm{C}\)
TL06XV \(T_{\text {low }}=-40^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}\)

AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\), unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Slew Rate ( \(\mathrm{V}_{\text {in }}=-10 \mathrm{~V}\) to \(\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{A}_{\mathrm{V}}=+1.0\right)\) & SR & 2.0 & 6.0 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time ( \(\left.\mathrm{V}_{\text {in }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{AV}^{2}=+1.0\right)\) & \(t_{r}\) & - & 0.1 & - & \(\mu \mathrm{s}\) \\
\hline Overshoot ( \(\left.\mathrm{V}_{\mathrm{in}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{AV}=+1.0\right)\) & OS & - & 10 & - & \% \\
\hline Settling Time
\[
\begin{array}{ll}
\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{AV}=-1.0,\right. & \text { To within } 10 \mathrm{mV} \\
\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { step) } & \text { To within } 1.0 \mathrm{mV} \\
\hline
\end{array}
\] & ts & — & \[
\begin{aligned}
& 1.6 \\
& 2.2
\end{aligned}
\] & - & \(\mu \mathrm{s}\) \\
\hline Gain Bandwidth Product ( \(f=200 \mathrm{kHz}\) ) & GBW & - & 2.0 & - & MHz \\
\hline Equivalent Input Noise ( \(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}\) ) & \(e_{n}\) & - & 47 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Resistance & \(\mathrm{R}_{\mathrm{i}}\) & - & \(10^{12}\) & - & \(\Omega\) \\
\hline Channel Separation ( \(f=10 \mathrm{kHz}\) ) & CS & - & 120 & - & dB \\
\hline
\end{tabular}

FIGURE 1 - MAXIMUM POWER DISSIPATION versus TEMPERATURE FOR PACKAGE VARIATIONS


FIGURE 3 - OUTPUT VOLTAGE SWING versus TEMPERATURE


FIGURE 5 - OUTPUT VOLTAGE SWING versus FREQUENCY


FIGURE 2 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE


FIGURE 4 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


FIGURE 6 - LARGE SIGNAL VOLTAGE GAIN versus TEMPERATURE


FIGURE 7 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY


FIGURE 9 - SUPPLY CURRENT PER AMPLIFIER versus TEMPERATURE


FIGURE 11 - COMMON-MODE REJECTION versus TEMPERATURE


FIGURE 8 - SUPPLY CURRENT PER AMPLIFIER versus SUPPLY VOLTAGE


FIGURE 10 - TOTAL POWER DISSIPATION versus TEMPERATURE


FIGURE 12 - COMMON-MODE REJECTION versus FREQUENCY


FIGURE 13 - POWER SUPPLY REJECTION versus FREQUENCY


FIGURE 15 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 17 - SMALL SIGNAL RESPONSE

t , TIME ( \(0.5 \mu \mathrm{~s} / \mathrm{DIV}\) )

FIGURE 14 - NORMALIZED GAIN BANDWIDTH PRODUCT, SLEW RATE AND PHASE MARGIN versus TEMPERATURE


FIGURE 16 - INPUT NOISE VOLTAGE versus FREQUENCY


FIGURE 18 - LARGE SIGNAL RESPONSE

t , TIME \((2.0 \mu \mathrm{~s}\) DIV \()\)

FIGURE 20 - HIGH-Q NOTCH FILTER



FIGURE \(22-0.5 \mathrm{~Hz}\) SQUARE-WAVE OSCILLATOR


\section*{Specifications and Applications Information}

\section*{LOW NOISE, JFET INPUT OPERATIONAL AMPLIFIERS}

These low-noise JFET input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents. Moreover, the devices exhibit lownoise and low harmonic distortion making them ideal for use in high-fidelity audio amplifier applications.
These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar products. Devices with an " M " suffix are specified over the military operating temperature range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and those with a "C." suffix are specified from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
- Low Input Noise Voltage - \(18 \mathrm{nV} / \sqrt{\mathrm{Hz}}\) Typ
- Low Harmonic Distortion - 0.01\% Typ
- Low Input Bias and Offset Currents
- High Input Impedance - \(10^{12} \Omega\) Typ
- High Slew Rate - \(13 \mathrm{~V} / \mu \mathrm{s}\) Typ
- Wide Gain Bandwidth - 4.0 MHz Typ
- Low Supply Current - 1.4 mA per Amp

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Op Amp Function & Device & Temperature Range & Package \\
\hline \multirow{4}{*}{Single} & TL071ACD, BCD, CD & \multirow{3}{*}{0 to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\hline & TL071ACJG, BCJG, CJG & & Ceramic DIP \\
\hline & TL071ACP, BCP, CP & & Plastic DIP \\
\hline & TL071MJG & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline \multirow{4}{*}{Dual} & TL072ACD, BCD, CD & \multirow{3}{*}{0 to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\hline & TL072ACJG, BCJG, CJG & & Ceramic DIP \\
\hline & TL072ACP, BCP, CP & & Plastic DIP \\
\hline & TL072MJG & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline \multirow{4}{*}{Quad} & TL074ACD, BCD, CD & \multirow{3}{*}{0 to \(+70^{\circ} \mathrm{C}\)} & SO-14 \\
\hline & TL074ACJ, BCJ, CJ & & Ceramic DIP \\
\hline & TL074ACN, BCN, CN & & Plastic DIP \\
\hline & TL074MJ & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline
\end{tabular}

LOW NOISE, JFET INPUT OPERATIONAL AMPLIFIERS

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUITS



N SUFFIX
PLASTIC PACKAGE
CASE 646-06
(TL074 Only)


J SUFFIX
CERAMIC PACKAGE CASE 632-08 (TL074 Only)


D SUFFIX
PLASTIC PACKAGE
CASE 751A-02
SO-14


\section*{TL071, TL072, TL074}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|c|}
\hline Rating & Symbol & TL07_M & \[
\begin{aligned}
& \text { TL07_C } \\
& \text { TL07_AC } \\
& \text { TL07_BC } \\
& \hline
\end{aligned}
\] & Unit \\
\hline Supply Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}} \\
& \mathrm{~V}_{\mathrm{EE}}
\end{aligned}
\] & \[
\begin{aligned}
& +18 \\
& -18
\end{aligned}
\] & \[
\begin{aligned}
& +18 \\
& -18
\end{aligned}
\] & V \\
\hline Differential Input Voltage & VID & \(\pm 30\) & \(\pm 30\) & V \\
\hline Input Voltage Range (Note 1) & VIDR & \(\pm 15\) & \(\pm 15\) & V \\
\hline Output Short-Circuit Duration (Note 2) & \({ }^{\text {t }}\) & \multicolumn{2}{|c|}{Continuous} & \\
\hline \begin{tabular}{l}
Power Dissipation Plastic Package ( \(\mathrm{N}, \mathrm{P}\) ) \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+47^{\circ} \mathrm{C}\) \\
Ceramic Package (J, JG) \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+82^{\circ} \mathrm{C}\)
\end{tabular} & \[
\begin{gathered}
\mathrm{PD} \\
1 / \theta \mathrm{JA} \\
\mathrm{PD}^{1} \\
1 / \theta \mathrm{JA}
\end{gathered}
\] & \[
\begin{gathered}
\overline{680} \\
10
\end{gathered}
\] & \[
\begin{gathered}
680 \\
10 \\
680 \\
10
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
\mathrm{~mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Operating Ambient Temperature Range & TA & -55 to +125 & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. The magnitude of the input voltage must not exceed the magnitude of the supply voltage or 15 volts, whichever is less.
2. The output may be shorted to ground or either supply. Temperature and/or supply voltages must be limited to ensure that power dissipation ratings are not exceeded.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ}\right.\) unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL07_M} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { TL07_C } \\
\text { TL07_AC } \\
\text { TL07_BC } \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
\text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}, \mathrm{~V}_{\mathrm{CM}}\right. & =0) \\
& \text { TL071, TL072 } \\
& \text { TL074 } \\
& \text { TL07_A } \\
& \text { TLO7_B }
\end{aligned}
\] & VIO & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
3.0 \\
3.0 \\
- \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 6.0 \\
& 9.0 \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& 3.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
10 \\
6.0 \\
3.0
\end{array}
\] & mV \\
\hline Average Temperature Coefficient of Input Offset Voltage \(R_{S}=50 \Omega, T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) (Note 3) & \(\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{array}{r}
\text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 4) \\
\\
\text { TLO7_ } \\
\text { TLO7_A, TL07_B }
\end{array}
\] & 110 & - & 5.0 & 50 & - & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & pA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note 4) } \\
& \qquad \begin{array}{ll}
\text { TLO7_ } \\
& \text { TLO7_A, TL07_B }
\end{array}
\end{aligned}
\] & IIB & - & 30 & 200 & - & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & pA \\
\hline Input Resistance & \(\mathrm{r}_{\mathrm{i}}\) & - & \(10^{12}\) & - & - & \(10^{12}\) & - & \(\Omega\) \\
\hline \begin{tabular}{rl} 
Common Mode Input Voltage Range & \\
& \\
& TLO7_ \\
& TLO7_A, TLO7_B
\end{tabular} & \(\mathrm{V}_{\text {ICR }}\) & \[
\pm 11
\] & \(+15,-12\)
- & - & \[
\begin{aligned}
& \pm 10 \\
& \pm 11
\end{aligned}
\] & \[
\begin{aligned}
& +15,-12 \\
& +15,-12 \\
& \hline
\end{aligned}
\] & - & V \\
\hline \[
\begin{aligned}
\text { Large-Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm\right. & \left.10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k}\right) \\
& \text { TL07_- } \\
& \text { TL07_A, TL07_B }
\end{aligned}
\] & AVOL & \[
35
\] & 150 & - & \[
\begin{aligned}
& 25 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 150
\end{aligned}
\] & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing (Peak-to-Peak)
\[
\left(R_{L}=10 \mathrm{k}\right)
\] & \(\mathrm{V}_{\mathrm{O}}\) & 24 & 28 & - & 24 & 28 & - & V \\
\hline \begin{tabular}{rl} 
Common Mode Rejection Ratio ( \(\mathrm{RS}_{\mathrm{S}} \leqslant\) & \(10 \mathrm{k})\) \\
& TLO7_- \\
& TLO7_A, TL07_B
\end{tabular} & CMRR & \[
80
\] & 100 & - & \[
\begin{aligned}
& 70 \\
& 80 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & - & dB \\
\hline \[
\begin{aligned}
\hline \text { Supply Voltage Rejection Ratio ( } \mathrm{RS}_{\mathrm{S}} \leqslant & \leqslant 10 \mathrm{k}) \\
& \text { TLO7_- } \\
& \text { TLO7_A, TLO7_B }
\end{aligned}
\] & PSRR & 80 & 100 & - & \[
\begin{aligned}
& 70 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & - & dB \\
\hline Supply Current (Each Amplifier) & ID & - & 1.4 & 2.5 & - & 1.4 & 2.5 & mA \\
\hline Unity Gain Bandwidth & BW & - & 4.0 & - & - & 4.0 & - & MHz \\
\hline Slew Rate (See Figure 1)
\[
\mathrm{V}_{\mathrm{in}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\] & SR & 10 & 13 & - & - & 13 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{TL071, TL072, TL074}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ}\right.\) unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TLO7_ M} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { TL07_C } \\
\text { TL07_AC } \\
\text { TLO7_BC }
\end{gathered}
\]} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Rise Time (See Figure 1) & \(\mathrm{t}_{\mathrm{r}}\) & - & 0.1 & - & - & 0.1 & - & \(\mu \mathrm{s}\) \\
\hline Overshoot Factor
\[
\mathrm{V}_{\mathrm{in}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\] & - & - & 10 & - & - & 10 & - & \% \\
\hline Equivalent Input Noise Voltage
\[
R_{S}=100 \Omega, f=1000 \mathrm{~Hz}
\] & \(e_{n}\) & - & 18 & - & - & 18 & - & \(n \mathrm{~V} / \sqrt{\mathrm{Hz}}\) \\
\hline Equivalent Input Noise Current
\[
R_{S}=100 \Omega, f=1000 \mathrm{~Hz}
\] & \(i_{n}\) & - & 0.01 & - & - & 0.01 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \[
\begin{aligned}
& \text { Total Harmonic Distortion } \\
& V_{O}(R M S)=10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leqslant 1.0 \mathrm{k} \\
& R_{L} \geqslant 2.0 \mathrm{k}, \mathrm{f}=1000 \mathrm{~Hz}
\end{aligned}
\] & THD & - & 0.01 & - & - & 0.01 & - & \% \\
\hline Channel Separation
\[
A V=100
\] & - & - & 120 & - & - & 120 & - & dB \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}\right.\) to \(\mathrm{T}_{\text {low }}\) [Note 3]).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL07_M} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { TLO7_C } \\
\text { TL07_AC } \\
\text { TLO7_BC }
\end{gathered}
\]} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \begin{tabular}{rl} 
Input Offset Voltage (RS \(\leqslant 10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}\) & \(=0\) ) \\
& TL071, TL072 \\
& TL074 \\
& TL07_A \\
& TL07_B
\end{tabular} & \(\mathrm{V}_{10}\) & - & - & 9.0
15
- & - & - & \[
\begin{array}{r}
13 \\
13 \\
7.5 \\
5.0 \\
\hline
\end{array}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)\left(\begin{array}{l}
\text { (Note 4) } \\
\text { TLO7_ } \\
\text { TL07_A, TL07__ B }
\end{array}\right.
\end{aligned}
\] & 10 & - & - & 20 & - & - & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note } 4)^{\text {TLO7_- }} \\
& \qquad \begin{array}{ll}
\text { TL07_A, TL07_ B }
\end{array}
\end{aligned}
\] & IIB & - & - & & - & - & \[
\begin{aligned}
& 7.0 \\
& 7.0
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
\text { Large-Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}=\right. & \pm \\
& \left.10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k}\right) \\
& \text { TLOT_ } \\
& \text { TL07_A, TL07_B }
\end{aligned}
\] & Avol & 20 & - & - & \[
\begin{aligned}
& 15 \\
& 25
\end{aligned}
\] & - & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing (Peak-to-Peak) } \\
& (\mathrm{RL} \geqslant 10 \mathrm{k}) \\
& \left(\mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k}\right) \\
& \hline
\end{aligned}
\] & \(\mathrm{v}_{0}\) & \begin{tabular}{l}
24 \\
20 \\
\hline
\end{tabular} & - & - & \begin{tabular}{l}
24 \\
20 \\
\hline
\end{tabular} & - & - & V \\
\hline
\end{tabular}

NOTES (Continued):
3. \(\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}\) for TL071M, TL072M, TL074M \(=0^{\circ} \mathrm{C}\) for TL071C, TL071AC, TL071BC TL072C, TL072AC, TL072BC TL074C, TL074AC
\(T_{\text {high }}=+125^{\circ} \mathrm{C}\) for TL071M, TL072M, TL074M
\(=+70^{\circ} \mathrm{C}\) for TL071C, TL071AC, TL071BC
TL072C, TL072AC, TL072BC
TL074C, TL074AC
4. Input Bias currents of JFET input op amps approximately double for every \(10^{\circ} \mathrm{C}\) rise in Junction Temperature as shown in Figure 3. To maintain Junction Temperature as close to ambient temperatures as possible, pulse techniques must be used during test.

\section*{TEST CIRCUITS}

FIGURE 1 - UNITY GAIN VOLTAGE FOLLOWER


FIGURE 2 - INVERTING GAIN OF 10 AMPLIFIER


FIGURE 3 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


FIGURE 7 - OUTPUT VOLTAGE SWING versus TEMPERATURE


FIGURE 4 - OUTPUT VOLTAGE SWING versus FREQUENCY


FIGURE 6 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE


FIGURE 8 - SUPPLY CURRENT PER AMPLIFIER versus TEMPERATURE


FIGURE 9 - LARGE-SIGNAL VOLTAGE GAIN AND PHASE SHIFT versus FREQUENCY


FIGURE 11 - NORMALIZED SLEW RATE versus TEMPERATURE


FIGURE 10 - LARGE-SIGNAL VOLTAGE GAIN versus TEMPERATURE


FIGURE 12 - EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY


FIGURE 13 - TOTAL HARMONIC DISTORTION versus FREQUENCY




FIGURE 15 - HIGH Q NOTCH FILTER


TL081
TL082
TL084

\section*{Specifications and Applications Information}

\section*{JFET INPUT OPERATIONAL AMPLIFIERS}

These low-cost JFET input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar products. Devices with an " M " suffix are specified over the military operating temperature range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and those with a " C " suffix are specified from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
- Input Offset Voltage Options of 3.0, 6.0, and 15 mV Max
- Low Input Bias Current - 30 pA
- Low Input Offset Current - 5.0 pA
- Wide Gain Bandwidth - 4.0 MHz
- High Slew Rate - \(13 \mathrm{~V} / \mu \mathrm{s}\)
- Low Supply Current - 1.4 mA per Amplifier
- High Input Impedance - \(10^{12} \Omega\)
- Industry Standard Pinouts
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ORDERING INFORMATION} \\
\hline Op Amp Function & Device & Temperature Range & Package \\
\hline \multirow{4}{*}{Single} & TL081ACD, BCD, CD & \multirow{3}{*}{0 to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\hline & TL081ACJG, BCJG, CJG & & Ceramic DIP \\
\hline & TL081ACP, BCP, CP & & Plastic DIP \\
\hline & TL081MJG & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline \multirow{4}{*}{Dual} & TL082ACD, BCD, CD & \multirow{3}{*}{0 to \(+70^{\circ} \mathrm{C}\)} & SO-8 \\
\hline & TL082ACJG, BCJG, CJG & & Ceramic DIP \\
\hline & TL082ACP, BCP, CP & & Plastic DIP \\
\hline & TL082MJG & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline \multirow{4}{*}{Quad} & TL084ACD, BCD, CD & \multirow{3}{*}{0 to \(+70^{\circ} \mathrm{C}\)} & SO-14 \\
\hline & TL084ACJ, BCJ, CJ & & Ceramic DIP \\
\hline & TL084ACN, BCN, CN & & Plastic DIP \\
\hline & TL084MJ & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline
\end{tabular}

\section*{JFET INPUT OPERATIONAL AMPLIFIERS}

SILICON MONOLITHIC INTEGRATED CIRCUITS



N SUFFIX
PLASTIC PACKAGE
CASE 646-06
(TL084 Only)


J SUFFIX
CERAMIC PACKAGE
CASE 632-08
(TL084 Only)

D SUFFIX
plastic package
CASE 751A-02 SO-14


MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|c|}
\hline Rating & Symbol & TL08__M & \[
\begin{aligned}
& \text { TL08___C } \\
& \text { TL08__AC } \\
& \text { TL08_BC }
\end{aligned}
\] & Unit \\
\hline Supply Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}} \\
& \mathrm{~V}_{\mathrm{EE}}
\end{aligned}
\] & \[
\begin{array}{r}
+18 \\
-18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
+18 \\
-18 \\
\hline
\end{array}
\] & V \\
\hline Differential Input Voltage & VID & \(\pm 30\) & \(\pm 30\) & V \\
\hline Input Voltage Range (Note 1) & VIDR & \(\pm 15\) & \(\pm 15\) & V \\
\hline Output Short-Circuit Duration (Note 2) & ts & \multicolumn{2}{|c|}{Continuous} & \\
\hline \begin{tabular}{l}
Power Dissipation \\
Plastic Package ( \(\mathrm{N}, \mathrm{P}\) ) \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+47^{\circ} \mathrm{C}\) \\
Ceramic Package (J,JG) \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+82^{\circ} \mathrm{C}\)
\end{tabular} & \[
\begin{gathered}
\mathrm{PD}^{2} \\
1 / \theta \mathrm{JA} \\
\mathrm{PD}_{\mathrm{D}} \\
1 / \theta \mathrm{JA} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
- \\
- \\
680 \\
10
\end{gathered}
\] & \[
\begin{gathered}
680 \\
10 \\
680 \\
10 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
\mathrm{~mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -55 to +125 & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. The magnitude of the input voltage must not exceed the magnitude of the supply voltage or 15 volts, whichever is less.
2. The output may be shorted to ground or either supply. Temperature and/or supply voltages must be limited to ensure that power dissipation ratings are not exceeded.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL08__M} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { TL08__C } \\
& \text { TL08_AC } \\
& \text { TL08_BC }
\end{aligned}
\]} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
\text { Input Offset Voltage ( } \mathrm{RS}_{\mathrm{S}} \leqslant 10 \mathrm{k}, \mathrm{~V}_{\mathrm{CM}} & =0) \\
& \text { TL081, TL082 } \\
& \text { TL084 } \\
& \text { TL08_A } \\
& \text { TL08_B }
\end{aligned}
\] & VIO & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 9.0 \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& 3.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 6.0 \\
& 3.0
\end{aligned}
\] & mV \\
\hline Average Temperature Coefficient of Input Offset Voltage \(R_{S}=50 \Omega, T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) (Note 3) & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{T}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)\left(\begin{array}{r}
\text { Note 4) } \\
\text { TL08___A, TLO8__B } \\
\text { TLO8__B }
\end{array}\right.
\end{aligned}
\] & 10 & - & 5.0 & 100 & - & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & pA \\
\hline \[
\begin{aligned}
\text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note 4) } & \\
& \text { TL08___ TL08_B_B_B TLO_B }
\end{aligned}
\] & IIB & - & 30 & 200 & - & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 200
\end{aligned}
\] & pA \\
\hline Input Resistance & \(\mathrm{r}_{\mathrm{i}}\) & - & \(10^{12}\) & - & - & \(10^{12}\) & - & \(\Omega\) \\
\hline Common Mode Input Voltage Range \begin{tabular}{ll} 
& \\
& TL08____A, TL08__B \\
& TL08__B
\end{tabular} & VICR & \[
\pm 11
\] & +15, -12 & - & \[
\begin{aligned}
& \pm 10 \\
& \pm 11
\end{aligned}
\] & \[
\begin{aligned}
& +15,-12 \\
& +15,-12
\end{aligned}
\] & - & V \\
\hline \(\begin{aligned} & \text { Large-Signal Voltage Gain ( } \mathrm{V}_{\mathrm{O}}= \pm\left.10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k}\right) \\ & \mathrm{TLO8} \\ & \text { TL08_A, TL08__B }\end{aligned}\) & AVOL & 25 & 150 & - & \[
\begin{aligned}
& 25 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 150
\end{aligned}
\] & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing (Peak-to-Peak)
\[
R_{L}=10 \mathrm{k}
\] & \(\mathrm{V}_{0}\) & 24 & 28 & - & 24 & 28 & - & V \\
\hline \(\begin{aligned} & \text { Common Mode Rejection Ratio ( } \mathrm{RS} \leqslant 10 \mathrm{k} \text { ) } \\ & \text { TL08___A, TL08_B } \\ & \text { TL08_B }\end{aligned}\) & CMRR & 80 & 100 & - & \[
\begin{aligned}
& 70 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & - & dB \\
\hline \[
\begin{aligned}
&\left.\hline \text { Supply Voltage Rejection Ratio ( } \mathrm{R}_{\mathbf{S}} \leqslant 10 \mathrm{k}\right) \\
& \text { TL08___A, TL08__B } \\
& \text { TL08__A, } \\
& \hline
\end{aligned}
\] & PSRR & 80 & 100 & - & \[
\begin{aligned}
& 70 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & - & dB \\
\hline Supply Current (Each Amplifier) & ID & - & 1.4 & 2.8 & - & 1.4 & 2.8 & mA \\
\hline Unity Gain Bandwidth & BW & - & 4.0 & - & - & 4.0 & - & MHz \\
\hline
\end{tabular}

\section*{TL081, TL082, TL084}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL08__M} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { TL08__C } \\
& \text { TL08__AC } \\
& \text { TL08__BC }
\end{aligned}
\]} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Slew Rate (See Figure 1)
\[
\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\] & SR & 8.0 & 13 & - & - & 13 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time (See Figure 1) & \(\mathrm{t}_{\mathrm{r}}\) & - & 0.1 & - & - & 0.1 & - & \(\mu \mathrm{s}\) \\
\hline Overshoot Factor
\[
V_{\text {in }}=20 \mathrm{mV}, R_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
\] & - & - & 10 & - & - & 10 & - & \% \\
\hline Equivalent Input Noise Voltage
\[
R_{S}=100 \Omega, f=1000 \mathrm{~Hz}
\] & \(e_{n}\) & - & 25 & - & - & 25 & - & \(n \mathrm{~V} / \sqrt{\mathrm{Hz}}\) \\
\hline Channel Separation
\[
A_{V}=100
\] & - & - & 120 & - & - & 120 & - & dB \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 3].)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TLO8__M} & \multicolumn{3}{|c|}{TL08__C
TLO8_AC
TL08_BC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \begin{tabular}{rl} 
Input Offset Voltage ( \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}\) & \(=0\) ) \\
& \\
& TL081, TL 082 \\
& TL084 \\
& TL08__A \\
& TL08__B
\end{tabular} & \(\mathrm{V}_{10}\) & -
-
- & - & 9.0
15
- & - & - & \[
\begin{gathered}
20 \\
20 \\
7.5 \\
5.0 \\
\hline
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0\right)(\text { Note 4) } \\
& \qquad \begin{array}{l}
\text { TL08__ } \\
\text { TL08_A, TL08_B }
\end{array}
\end{aligned}
\] & 10 & - & - & 20 & - & - & \[
\begin{aligned}
& 5.0 \\
& 3.0
\end{aligned}
\] & nA \\
\hline Input Bias Current \(\left(\mathrm{V}_{\mathrm{CM}}=0\right)\) (Note 4)
\[
\begin{aligned}
& \text { TLO8_- } \\
& \text { TL08_A, TL08_B }
\end{aligned}
\] & IB & - & - & & - & - & \[
\begin{aligned}
& 10 \\
& 7.0
\end{aligned}
\] & nA \\
\hline \[
\begin{aligned}
& \hline \text { Large-Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}=\right.\left. \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2.0 \mathrm{k}\right) \\
& \mathrm{TLO8} \\
& \mathrm{TL} 08
\end{aligned}
\] & Avol & \[
15
\] & - & - & \[
\begin{aligned}
& 15 \\
& 25
\end{aligned}
\] & - & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline \[
\begin{aligned}
& \text { Output Voltage Swing (Peak-to-Peak) } \\
& \left(R_{L} \geqslant 10 \mathrm{k}\right) \\
& \left(R_{L} \geqslant 2.0 \mathrm{k}\right) \\
& \hline
\end{aligned}
\] & \(\mathrm{v}_{0}\) & \[
\begin{aligned}
& 24 \\
& 20
\end{aligned}
\] & - & - & 24
20 & - & - & V \\
\hline
\end{tabular}

NOTES (continued):
3. Tlow \(=-55^{\circ} \mathrm{C}\) for TL081M, TL082M, TL084M \(\quad\) Thigh \(=+125^{\circ} \mathrm{C}\) for TL081M, TL082M, TL084M \(=0^{\circ} \mathrm{C}\) for TL081C, TL081AC, TL081BC \(\quad=+70^{\circ} \mathrm{C}\) for TL081C, TL081AC, TL081BC

TL082C, TL082AC, TL082BC
TL082C, TL082AC, TL082BC
TL084C, TL084AC, TL084BC
TL084C, TL084AC, TL084BC
4. Input Bias currents of JFET input Op Amps approximately double for every \(10^{\circ} \mathrm{C}\) rise in junction temperature as shown in Figure 3 . To maintain junction temperature as close to ambient temperature as possible, pulse techniques must be used during test.


FIGURE 3 - INPUT BIAS CURRENT versus TEMPERATURE


FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE


FIGURE 7 - OUTPUT VOLTAGE SWING versus TEMPERATURE


FIGURE 4 - OUTPUT VOLTAGE SWING versus FREQUENCY


FIGURE 6 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE


FIGURE 8 - SUPPLY CURRENT PER AMPLIFIER versus TEMPERATURE



FIGURE 13 - TOTAL HARMONIC DISTORTION versus FREQUENCY



TYPICAL APPLICATIONS


Settling time to within \(1 / 2\) LSB ( \(\pm 19.5 \mathrm{mV}\) ) is approximately \(4.0 \mu \mathrm{~s}\) from the time all bits are switched.
*The value of C may be selected to minimize overshoot and ringing ( \(C \approx 68 \mathrm{pF}\) ).

Theoretical \(\mathrm{V}_{\mathrm{O}}\)
\(V_{O}=\frac{V_{\text {ref }}}{R 1}\left(\mathrm{R}_{\mathrm{O}}\right)\left[\frac{\mathrm{A} 1}{2}+\frac{\mathrm{A} 2}{4}+\frac{\mathrm{A} 3}{8}+\frac{\mathrm{A} 4}{16}+\frac{\mathrm{A} 5}{32}+\frac{\mathrm{A} 6}{64}+\frac{\mathrm{A} 7}{128}+\frac{\mathrm{A} 8}{256}\right]\)
Adjust \(\mathrm{V}_{\text {ref, }}, \mathrm{R} 1\) or \(\mathrm{R}_{\mathrm{O}}\) so that \(\mathrm{V}_{\mathrm{O}}\) with all digital inputs at high level is equal to 9.961 volts.
\[
\begin{gathered}
V_{\text {ref }}=2.0 \mathrm{Vdc} \\
R_{1}=\mathrm{R} 2 \approx 1.0 \mathrm{k} \Omega \\
\mathrm{R}_{\mathrm{O}}=5.0 \mathrm{k} \Omega \\
\mathrm{~V}_{\mathrm{O}}=\frac{2.0 \mathrm{~V}}{1.0 \mathrm{k}}(5.0 \mathrm{k})\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right] \\
=10 \mathrm{~V}\left[\frac{255}{256}\right]=9.961 \mathrm{~V}
\end{gathered}
\]

FIGURE 15 - POSITIVE PEAK DETECTOR


FIGURE 16 - LONG INTERVAL RC TIMER


Time \((t)=R 4 C\) n \(\left(V_{R} / V_{R}-V_{1}\right), R_{3}=R_{4}, R_{5}=0.1 R 6\) If R1 \(=\) R2: \(\mathrm{t}=0.693 \mathrm{R} 4 \mathrm{C}\)
Design Example: 100 Second Timer
\(\begin{array}{lll}V_{R}=10 \mathrm{~V} & \mathrm{C}=1.0 \mu \mathrm{~F} & \mathrm{R} 3=\mathrm{R} 4=144 \mathrm{M} \\ \mathrm{R} 6=20 \mathrm{k} & \mathrm{R} 5=2.0 \mathrm{k} & \mathrm{R} 1=\mathrm{R} 2=1.0 \mathrm{k}\end{array}\)

FIGURE 17 - ISOLATING LARGE CAPACITIVE LOADS


FIGURE 18 - VOLTAGE CONTROLLED CURRENT SOURCE



\section*{Power Circuits}

\section*{In Brief . .}

In most electronic systems some form of voltage regulation is required. Yesterday the task of voltage regulator design was tediously accomplished with discrete devices, and the results were quite often complex and costly. Today with bipolar monolithic regulators, this task has been reduced considerably. The designer now has a wide choice of fixed, low \(\mathrm{V}_{\text {diff }}\), adjustable, and tracking series-type regulators.

These devices incorporate many built-in protection features making them virtually immune to the catastrophic failures encountered in older discrete designs.

The Switching Power Supply continues to increase in popularity and is one of the fastest growing markets in the world of power conversion. They offer the designer several important advantages over that of linear series-pass regulators. These advantages include significant advancements in the areas of size and weight reduction, efficiency, and the ability to perform voltage step-up and voltage-inverting. Motorola offers an ever increasing diverse portfolio of full featured switching regulator control circuits which meet the needs of today's modern compact electronic equipment.
Selector GuideLinear Voltage Regulators3-2
Switching Regulators ..... 3-7
Special Power Controllers ..... 3-9
Power Supervisory ..... 3-10
Alphanumeric Listing ..... 3-13
Related Application Notes ..... 3-14
Data Sheets ..... 3-15

\section*{Power Circuits}

\section*{Linear Voltage Regulators}

\section*{Fixed Output}

These low-cost monolithic circuits provide positive and/or negative regulation at currents from 100 mA to 3.0 A . They are ideal for on-card regulation employing current limiting and thermal shutdown. Low \(\mathrm{V}_{\text {diff }}\) devices are offered for battery powered systems.
Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Fixed-Voltage, 3-Terminal Regulators for Positive or Negative Polarity Power Supplies
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Vout Volts & Tol.t Volts & \({ }^{1} 0\) mA Max & Device Positive Output & Device Negative Output & \(V_{\text {in }}\) Min/Max & Regline mV & Regload mV & \(\Delta V_{O} / \Delta T\) \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) Typ & Case Suffix \\
\hline \multirow[t]{20}{*}{5} & \(\pm 0.5\) & \multirow[t]{4}{*}{100} & LM2931-5.0 & - & 5.6/40 & 30 & 50 & \multirow[t]{4}{*}{1.0} & Z, T \\
\hline & \multirow[t]{4}{*}{\(\pm 0.25\)} & & MC78L05C & MC79L05C & 6.7/30 & 200 & 60 & & P, G \\
\hline & & & LM2931A-5.0 & - & 5.6/40 & 30 & 50 & & Z, T \\
\hline & & & MC78L05AC & MC79L05AC & 6.7/30 & 150 & 60 & & P, G \\
\hline & & 500 & MC78M05C & MC79M05C & \multirow[t]{4}{*}{7/35} & \multirow[t]{2}{*}{100} & \multirow[t]{7}{*}{100} & 1.0 & G, T \\
\hline & \multirow[t]{2}{*}{\(\pm 0.4\)} & \multirow[t]{13}{*}{1500} & LM109 & - & & & & 1.1 & \multirow[t]{3}{*}{K, H} \\
\hline & & & LM209 & - & & \multirow{3}{*}{50} & & & \\
\hline & \(\pm 0.25\) & & LM309 & - & & & & 1.0 & \\
\hline & \(\pm 0.35\) & & MC7805* & - & \multirow[t]{2}{*}{\[
\begin{gathered}
8.0 / 35 \\
8 / 35
\end{gathered}
\]} & & & 0.6 & K \\
\hline & \multirow[t]{2}{*}{\(\pm 0.25\)} & & MC7805B\# & - & & \multirow[t]{2}{*}{100} & & \multirow[t]{2}{*}{1.0} & \(T\) \\
\hline & & & MC7805C & MC7905C & 7/35 & & & & K, T \\
\hline & \multirow[t]{2}{*}{\(\pm 0.2\)} & & MC7805A* & - & \multirow[t]{2}{*}{7.5/35} & \multirow[t]{2}{*}{10} & 50 & \multirow[t]{6}{*}{0.6} & K \\
\hline & & & MC7805AC & MC7905AC & & & 100 & & K, T \\
\hline & \(\pm 0.25\) & & LM140-5* & - & \multirow[t]{4}{*}{7.0/35} & 50 & 50 & & \multirow[t]{2}{*}{K} \\
\hline & \(\pm 0.2\) & & LM140A-5* & - & & 10 & 25 & & \\
\hline & \(\pm 0.25\) & & LM340-5 & - & & 50 & 50 & & \multirow[t]{2}{*}{K, T} \\
\hline & \(\pm 0.2\) & & LM340A-5 & - & & 10 & 25 & & \\
\hline & \(\pm 0.1\) & & TL780-05C & - & 7.0/35 & 5.0 & 25 & 0.06 & KC \\
\hline & \(\pm 0.25\) & \multirow[t]{2}{*}{3000} & MC78T05C & - & \multirow[t]{2}{*}{7.3/35} & 25 & 30 & \multirow[t]{2}{*}{0.1} & \multirow[t]{2}{*}{K, T} \\
\hline & \(\pm 0.2\) & & MC78T05AC & - & & 10 & 25 & & \\
\hline
\end{tabular}
\(\# T_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C} \quad\) tOutput Voltage Tolerance for Worst Case
\({ }^{*} T \mathrm{~J}=-55^{\circ}\) to \(+150^{\circ} \mathrm{C}\)
(continued)

Fixed Output Voltage Regulators (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Vout \\
Volts
\end{tabular} & \begin{tabular}{l}
Tol. \(\dagger\) \\
Volts
\end{tabular} & 10 mA Max & Device Positive Output & Device Negative Output & \(V_{\text {in }}\) Min/Max & Regline mV & Regload mV & \[
\begin{gathered}
\Delta V_{\mathbf{O}} / \Delta \mathbf{\Delta T} \\
\mathbf{m V} /{ }^{\circ} \mathbf{C} \\
\mathbf{T y p} \\
\hline
\end{gathered}
\] & Case Suffix \\
\hline \multirow[t]{6}{*}{5} & \multirow[t]{2}{*}{\(\pm 0.4\)} & \multirow[t]{6}{*}{3000} & LM123* & - & \multirow[t]{6}{*}{7.5/20} & \multirow[t]{3}{*}{25} & \multirow[t]{3}{*}{100} & \multirow[t]{6}{*}{0.1} & \multirow[t]{2}{*}{K} \\
\hline & & & LM223 & - & & & & & \\
\hline & \(\pm 0.25\) & & LM323 & - & & & & & T \\
\hline & \multirow[t]{3}{*}{\(\pm 0.2\)} & & LM123A & - & & \multirow{3}{*}{15} & \multirow{3}{*}{50} & & \multirow[t]{2}{*}{K} \\
\hline & & & LM223A & - & & & & & \\
\hline & & & LM323A & - & & & & & T \\
\hline 5.2 & \(\pm 0.26\) & 1500 & - & MC7905.2C & 7.2/35 & 105 & 105 & 1.0 & T \\
\hline \multirow[t]{7}{*}{6} & \(\pm 0.3\) & 500 & MC78M06C & - & 8/35 & 100 & 120 & 1.0 & T \\
\hline & \(\pm 0.35\) & \multirow[t]{6}{*}{1500} & MC7806* & - & \multirow[t]{2}{*}{9/35} & 60 & \[
100
\] & \multirow[t]{6}{*}{0.7} & K \\
\hline & \multirow[t]{2}{*}{\(\pm 0.3\)} & & MC7806B\# & - & & \multirow[t]{2}{*}{120} & \multirow[t]{2}{*}{120} & & T \\
\hline & & & MC7806C & MC7906C & 8/35 & & & & K, T \\
\hline & \[
\pm 0.24
\] & & MC7806AC & - & 8.6/35 & 11 & 100 & & T \\
\hline & \multirow[b]{2}{*}{\(\pm 0.3\)} & & LM140-6* & - & \multirow[t]{2}{*}{8/35} & \multirow[t]{2}{*}{60} & \multirow[t]{2}{*}{60} & & K \\
\hline & & & LM340-6 & - & & & & & K, T \\
\hline \multirow[t]{10}{*}{8} & \multirow[t]{2}{*}{\(\pm 0.8\)} & \multirow[t]{2}{*}{100} & MC78L08C & - & \multirow[t]{2}{*}{9.7/30} & 200 & \multirow[t]{2}{*}{80} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{P, G} \\
\hline & & & MC78L08AC & - & & 175 & & & \\
\hline & \multirow[t]{4}{*}{\(\pm 0.4\)} & 500 & MC78M08C & - & 10/35 & 100 & 160 & \multirow[t]{7}{*}{1.0} & G, T \\
\hline & & \multirow[t]{6}{*}{1500} & MC7808* & - & \multirow[t]{2}{*}{11.5/35} & & 100 & & K \\
\hline & & & MC7808B\# & - & & \multirow[t]{2}{*}{\[
160
\]} & \multirow[t]{2}{*}{160} & & T \\
\hline & & & MC7808C & MC7908C & 10.5/35 & & & & K, T \\
\hline & \(\pm 0.3\) & & MC7808AC & - & 10.6/35 & 13 & 100 & & T \\
\hline & \multirow[t]{3}{*}{\(\pm 0.4\)} & & LM140-8* & - & \multirow[t]{2}{*}{10.5/35} & \multirow[t]{2}{*}{80} & \multirow[t]{2}{*}{80} & & K \\
\hline & & & LM340-8 & - & & & & & \multirow[t]{2}{*}{K, T} \\
\hline & & 3000 & MC78T08C & - & 10.4/35 & 35 & 30 & 0.16 & \\
\hline \multirow[t]{15}{*}{12} & \(\pm 1.2\) & \multirow[t]{2}{*}{100} & MC78L12C & MC79L12C & \multirow[t]{2}{*}{13.7/35} & \multirow[t]{2}{*}{250} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{P, G} \\
\hline & \multirow[t]{5}{*}{\(\pm 0.6\)} & & MC78L12AC & MC79L12AC & & & & & \\
\hline & & 500 & MC78M12C & MC79M12C & 14/35 & 100 & 240 & 1.0 & G, T \\
\hline & & \multirow[t]{10}{*}{1500} & MC7812* & - & \multirow[t]{2}{*}{15.5/35} & 120 & 120 & \multirow[t]{5}{*}{1.5} & K \\
\hline & & & MC7812B\# & - & & \multirow[t]{2}{*}{240} & \multirow[t]{2}{*}{240} & & T \\
\hline & & & MC7812C & MC7912C & 14.5/35 & & & & K, T \\
\hline & \multirow[t]{2}{*}{\(\pm 0.5\)} & & MC7812A* & - & \multirow[t]{2}{*}{14.8/35} & \multirow[t]{2}{*}{18} & 50 & & K \\
\hline & & & MC7812AC & - & & & 100 & & T \\
\hline & \(\pm 0.6\) & & LM140-12* & - & \multirow[t]{5}{*}{14.5/35} & 120 & 120 & \multirow[t]{4}{*}{1.5} & \multirow[t]{2}{*}{K} \\
\hline & \(\pm 0.5\) & & LM140A-12* & - & & 18 & 32 & & \\
\hline & \(\pm 0.6\) & & LM340-12 & - & & 120 & 120 & & \multirow[t]{2}{*}{K, T} \\
\hline & \(\pm 0.5\) & & LM340A-12 & - & & 18 & 32 & & \\
\hline & \(\pm 0.24\) & & TL780-12C & - & & 5.0 & & 0.15 & KC \\
\hline & \(\pm 0.6\) & \multirow[t]{2}{*}{3000} & MC78T12C & - & \multirow[t]{2}{*}{14.5/35} & 45 & 30 & \multirow[t]{2}{*}{0.24} & \multirow[t]{2}{*}{K, T} \\
\hline & \(\pm 0.5\) & & MC78T12AC & - & & 18 & 25 & & \\
\hline
\end{tabular}
\(\# \mathrm{~T}_{\mathrm{J}}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C} \quad\) Output Voltage Tolerance for Worst Case \(\quad{ }^{*} \mathrm{~T}_{\mathrm{J}}=-55^{\circ}\) to \(+150^{\circ} \mathrm{C} \quad\) (continued)

Fixed Output Voltage Regulators (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Vout Volts & \begin{tabular}{l}
Tol. \(\dagger\) \\
Volts
\end{tabular} & 10 mA Max & \begin{tabular}{l}
Device \\
Positive Output
\end{tabular} & Device Negative Output & \(V_{\text {in }}\) Min/Max & Regline mV & \[
\begin{aligned}
& \text { Regload }^{\mathrm{mV}} \\
& \text {. }
\end{aligned}
\] & \[
\begin{gathered}
\Delta V_{O} / \Delta T \\
m V /{ }^{\circ} \mathrm{C} \\
\mathrm{Typ}^{2} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Case \\
Suffix
\end{tabular} \\
\hline \multirow[t]{15}{*}{15} & \(\pm 1.5\) & \multirow[t]{2}{*}{100} & MC78L15C & MC79L15C & \multirow[t]{2}{*}{16.7/35} & \multirow[t]{2}{*}{300} & \multirow[t]{2}{*}{150} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{P, G} \\
\hline & \multirow[t]{5}{*}{\(\pm 0.75\)} & & MC78L15AC & MC79L15A & & & & & \\
\hline & & 500 & MC78M15C & MC79M15C & 17/35 & 100 & 300 & 1.0 & G, T \\
\hline & & \multirow[t]{10}{*}{1500} & MC7815* & - & \multirow[t]{2}{*}{18.5/35} & 150 & 150 & \multirow[t]{9}{*}{1.8} & K \\
\hline & & & MC7815B\# & - & & \multirow[t]{2}{*}{300} & \multirow[t]{2}{*}{300} & & T \\
\hline & & & MC7815C & MC7915C & 17.5/35 & & & & K, T \\
\hline & \multirow[t]{2}{*}{\(\pm 0.6\)} & & MC7815A* & - & \multirow[t]{2}{*}{17.9/35} & \multirow[t]{2}{*}{22} & 50 & & K \\
\hline & & & MC7815AC & - & & & 100 & & K, T \\
\hline & \(\pm 0.75\) & & LM140-15* & - & \multirow[t]{5}{*}{17.5/35} & 150 & 150 & & \multirow[t]{2}{*}{K} \\
\hline & \(\pm 0.6\) & & LM140A-15* & - & & 22 & 35 & & \\
\hline & \(\pm 0.75\) & & LM340-15 & - & & 150 & 150 & & \multirow[t]{2}{*}{K, T} \\
\hline & \(\pm 0.6\) & & LM340A-15 & - & & 22 & 35 & & \\
\hline & \(\pm 0.3\) & & TL780-15C & - & & 15 & 60 & 0.18 & KC \\
\hline & \(\pm 0.75\) & \multirow[t]{2}{*}{3000} & MC78T15C & - & \multirow[t]{2}{*}{17.5/40} & 55 & 30 & \multirow[t]{2}{*}{0.3} & \multirow[t]{2}{*}{K, T} \\
\hline & \(\pm 0.6\) & & MC78T15AC & - & & 22 & 25 & & \\
\hline \multirow[t]{8}{*}{18} & \(\pm 1.8\) & \multirow[t]{2}{*}{100} & MC78L18C & MC79L18C & \multirow[t]{2}{*}{19.7/35} & \multirow[t]{2}{*}{325} & \multirow[t]{2}{*}{170} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{P} \\
\hline & \multirow[t]{4}{*}{\(\pm 0.9\)} & & MC78L18AC & MC79L18AC & & & & & \\
\hline & & 500 & MC78M18C & - & 20/35 & 100 & 360 & 1.0 & G, T \\
\hline & & \multirow[t]{5}{*}{1500} & MC7818* & - & \multirow[t]{2}{*}{22/35} & 180 & 180 & \multirow[t]{5}{*}{2.3} & K \\
\hline & & & MC7818B\# & - & & \multirow[t]{2}{*}{360} & \multirow[t]{2}{*}{360} & & T \\
\hline & \multirow[t]{2}{*}{\(\pm 0.7\)} & & MC7818C & MC7918C & \multirow[t]{3}{*}{21/35} & & & & K, T \\
\hline & & & MC7818AC & - & & 31 & 100 & & T \\
\hline & \(\pm 0.9\) & & LM340-18 & - & & 180 & 180 & & T \\
\hline 20 & \(\pm 1.0\) & 500 & MC78M20C & - & 22/40 & 10 & 400 & 1.1 & G, T \\
\hline \multirow[t]{8}{*}{24} & \(\pm 2.4\) & \multirow[t]{2}{*}{100} & MC78L24C & MC79L24C & \multirow[t]{2}{*}{25.7/40} & 350 & \multirow[t]{2}{*}{200} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{P} \\
\hline & \multirow[t]{5}{*}{\(\pm 1.2\)} & & MC78L24AC & MC79L24AC & & 300 & & & \\
\hline & & 500 & MC78M24C & - & 26/40 & 100 & 480 & 1.2 & G, T \\
\hline & & \multirow[t]{5}{*}{1500} & MC7824* & - & \multirow[t]{2}{*}{28/40} & 240 & 240 & \multirow[t]{5}{*}{3.0} & K \\
\hline & & & MC7824B\# & - & & \multirow[t]{2}{*}{480} & \multirow[t]{2}{*}{480} & & T \\
\hline & & & MC7824C & MC7924C & 27/40 & & & & K, T \\
\hline & \(\pm 1.0\) & & MC7824AC & - & \multirow[t]{2}{*}{27.3/40} & 36 & 100 & & T \\
\hline & \(\pm 1.2\) & & LM340-24 & - & & 240 & 240 & & T \\
\hline
\end{tabular}

\footnotetext{
\#TJ \(=-40^{\circ}\) to \(+125^{\circ} \mathrm{C} \quad\) OOutput Voltage Tolerance for Worst Case \(\quad{ }^{*} \mathrm{~T}_{\mathrm{J}}=-55^{\circ}\) to \(+150^{\circ} \mathrm{C}\)
}

\section*{Adjustable Output Voltage Regulators}

Motorola offers a broad line of adjustable output voltage regulators with a variety of output current capabilities. Adjustable voltage regulators provide users the capability of stocking a single integrated circuit provid-
ing a wide range of output voltages for industrial and communications applications. The three-terminal devices require only two external resistors to set the output voltage.

\section*{Positive Output Regulators}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\mathbf{I O}_{\mathrm{O}}^{2} \\
\mathrm{max}
\end{gathered}
\]} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{Suffix} & \multicolumn{2}{|c|}{Vout Volts} & \multicolumn{2}{|c|}{\[
\begin{gathered}
\mathrm{V}_{\text {in }} \\
\text { Volts }
\end{gathered}
\]} & \multirow[t]{2}{*}{\(V_{\text {in }}\) Vout Differential Volts Min} & \multicolumn{2}{|c|}{PD Watts Max} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Regulation \% V out @
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
Max
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { TC V } \text { out }^{\text {Typ }} \\
\% /{ }^{\circ} \mathbf{C}
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathrm{T}_{\mathrm{J}}= \\
& { }^{\circ} \mathrm{C} \\
& \text { Max }
\end{aligned}
\]} & \multirow[b]{2}{*}{Case} \\
\hline & & & Min & Max & Min & Max & & \[
\begin{aligned}
& \mathrm{T}_{A}= \\
& 25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
{ }_{7}^{\mathrm{T}_{\mathbf{C}}{ }^{\circ}=}=
\] & Line & Load & & & \\
\hline \multirow[t]{4}{*}{100} & LM317L & \multirow[t]{3}{*}{H,Z} & \multirow[t]{3}{*}{1.2} & \multirow[t]{3}{*}{37} & \multirow[t]{3}{*}{5.0} & \multirow[t]{4}{*}{40} & \multirow[t]{3}{*}{3.0} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Internally Limited}} & 0.04 & 0.5 & 0.006 & 125 & \multirow[t]{3}{*}{29,79} \\
\hline & LM217L\# & & & & & & & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{0.3} & 0.004 & \multirow[t]{2}{*}{150} & \\
\hline & LM117L* & & & & & & & & & & & 0.003 & & \\
\hline & LM2931C & T & 3.0 & 24 & 3.16 & & 0.6 & & & 0.15 & 1.0 & - & 125 & 314D \\
\hline \multirow[t]{5}{*}{150} & \multirow[t]{5}{*}{MC1723} & CP & \multirow[t]{5}{*}{2.0} & \multirow[t]{5}{*}{37} & \multirow[t]{5}{*}{9.5} & \multirow[t]{5}{*}{40} & \multirow[t]{5}{*}{3.0} & 1.25 & - & \multirow[t]{5}{*}{0.1} & \multirow[t]{5}{*}{0.3} & 0.003 & \multirow[t]{3}{*}{150} & 646 \\
\hline & & CG & & & & & & \multirow[t]{2}{*}{1.0} & \multirow[t]{2}{*}{2.1} & & & 0.003 & & \multirow[t]{2}{*}{603C} \\
\hline & & G & & & & & & & & & & 0.002 & & \\
\hline & & CL & & & & & & \multirow[t]{2}{*}{1.5} & - & & & 0.003 & \multirow[t]{2}{*}{175} & \multirow[t]{2}{*}{632} \\
\hline & & L & & & & & & & - & & & 0.002 & & \\
\hline 500 & LM317M & T & 1.2 & 37 & 5.0 & 40 & 3.0 & \multicolumn{2}{|l|}{Internally Limited} & 0.04 & 0.5 & 0.0056 & 125 & 221A \\
\hline \multirow[t]{4}{*}{1500} & LM317 & \[
\frac{T}{H, K}
\] & \multirow[t]{4}{*}{1.2} & \multirow[t]{4}{*}{37} & \multirow[t]{4}{*}{5.0} & \multirow[t]{4}{*}{40} & \multirow[t]{4}{*}{3.0} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Internally Limited}} & \multirow[t]{2}{*}{0.04} & \multirow[t]{2}{*}{0.5} & \multirow[t]{2}{*}{0.006} & \multirow[t]{3}{*}{125} & 221A \\
\hline & LM317 & \multirow[t]{3}{*}{H, K} & & & & & & & & & & & & \multirow[t]{3}{*}{79, 1} \\
\hline & LM217\# & & & & & & & & & \multirow[b]{2}{*}{0.02} & \multirow[b]{2}{*}{0.3} & 0.004 & & \\
\hline & LM117* & & & & & & & & & & & 0.003 & 150 & \\
\hline \multirow[t]{4}{*}{3000} & LM350 & T & \multirow[t]{4}{*}{1.2} & \multirow[t]{4}{*}{33} & \multirow[t]{4}{*}{5.0} & \multirow[t]{4}{*}{36} & \multirow[t]{4}{*}{3.0} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Internally Limited}} & \multirow[t]{2}{*}{0.03} & \multirow[t]{2}{*}{0.5} & \multirow[t]{2}{*}{0.008} & \multirow[t]{2}{*}{125} & 221A \\
\hline & LM350 & \multirow[t]{3}{*}{K} & & & & & & & & & & & & \multirow[t]{3}{*}{1} \\
\hline & LM250\# & & & & & & & & & \multirow[t]{2}{*}{0.01} & \multirow[t]{2}{*}{0.3} & 0.0057 & \multirow[t]{2}{*}{150} & \\
\hline & LM150* & & & & & & & & & & & 0.0051 & & \\
\hline
\end{tabular}

Negative Output Regulators
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { lo } \\
\text { mA } \\
\text { Max }
\end{gathered}
\]} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{Suffix} & \multicolumn{2}{|c|}{\(V_{\text {out }}\) Volts} & \multicolumn{2}{|c|}{\[
\underset{\text { Volts }}{V_{\text {in }}}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(V_{\text {in }}\) - \\
Vout \\
Differential \\
Volts \\
Min
\end{tabular}} & \multicolumn{2}{|c|}{PD Watts Max} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Regulation \% Vout \({ }^{\text {@ }}\)
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
Max
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { TC V } V_{\text {out }} \\
\text { Typ } \\
\% /{ }^{\circ} \mathrm{C}
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathrm{T}_{\mathrm{J}}= \\
& { }^{\circ} \mathrm{C} \\
& \text { Max }
\end{aligned}
\]} & \multirow[b]{2}{*}{Case} \\
\hline & & & Min & Max & Min & Max & & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}= \\
& 25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{C}}= \\
& 25^{\circ} \mathrm{C}
\end{aligned}
\] & Line & Load & & & \\
\hline 500 & LM337M & T & - 1.2 & -37 & 5.0 & 40 & 3.0 & \multicolumn{2}{|l|}{Internally Limited} & 0.04 & 1.0 & 0.0048 & 125 & 221A \\
\hline \multirow[t]{4}{*}{1500} & LM337 & T & \multirow[t]{4}{*}{\(-1.2\)} & \multirow[t]{4}{*}{-37} & \multirow[t]{4}{*}{5.0} & \multirow[t]{4}{*}{40} & \multirow[t]{4}{*}{3.0} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Internally Limited}} & \multirow[t]{2}{*}{0.04} & \multirow[t]{2}{*}{1.0} & \multirow[t]{2}{*}{0.0048} & \multirow[t]{2}{*}{125} & 221A \\
\hline & LM337 & \multirow[t]{3}{*}{H, K} & & & & & & & & & & & & \multirow[t]{3}{*}{79, 1} \\
\hline & LM237\# & & & & & & & & & \multirow[t]{2}{*}{0.02} & \multirow[t]{2}{*}{0.5} & 0.0034 & \multirow[t]{2}{*}{150} & \\
\hline & LM137* & & & & & & & & & & & 0.0031 & & \\
\hline
\end{tabular}
\(\# \mathrm{~T}_{\mathrm{J}}=-25^{\circ}\) to \(+150^{\circ} \mathrm{C}\) * \(\mathrm{T} \mathrm{J}=-55^{\circ}\) to \(+150^{\circ} \mathrm{C}\)

\section*{Special Regulators}

\section*{Floating Voltage and Current Regulators}

Designed for laboratory type power supplies. Voltage is limited only by the break down voltage of associated, external, series-pass transistors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\(V_{\text {out }}\) Volts} & \multirow[t]{2}{*}{10 mA Max} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{Suffix} & \multicolumn{2}{|c|}{\(V_{\text {aux }}\) Volts} & \multirow[t]{2}{*}{\(P_{D}\) Watts Max} & \multicolumn{2}{|l|}{\[
\underset{\%}{\Delta V_{\text {ref }} / V_{\text {ref }}}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\Delta l_{\mathrm{L}} / \mathrm{L}_{\mathrm{L}} \\
\% \\
\text { Max }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { TC Vout } \\
\% /{ }^{\circ} \mathrm{C} \\
\text { Typ }
\end{gathered}
\]} & \multirow[b]{2}{*}{Case} \\
\hline Min & Max & & & & Min & Max & & Line & Load & & & \\
\hline 0 & * & * & MC1466 & L & 21 & 30 & 0.75 & 0.015 & 0.015 & 0.2 & 0.001 & 632 \\
\hline
\end{tabular}
*Dependent on characteristics of external series-pass elements.

\section*{Dual \(\pm 15\) V Tracking Regulators}

Internally, the device is set for \(\pm 15 \mathrm{~V}\), but an external adjustment can change both outputs simultaneously, from 8.0 V to 20 V .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Vout Volts} & \multirow[t]{2}{*}{lo mA Max} & \multicolumn{2}{|c|}{\(V_{\text {in }}\) Volts} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{Suffix} & \multirow[t]{2}{*}{\(P_{D}\) Watts Max} & \multirow[b]{2}{*}{Regline mV} & \multirow[b]{2}{*}{Regload
\[
\mathrm{mV}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { TC } \\
\text { \%/ }{ }^{\circ} \mathrm{C} \\
\text { (T Tow to } \\
\text { Thigh }^{\text {Thp }} \\
\text { Typ }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathbf{T}_{\mathbf{A}} \\
& { }^{\circ} \mathbf{C}
\end{aligned}
\]} & \multirow[b]{2}{*}{Case} \\
\hline Min & Max & & Min & Max & & & & & & & & \\
\hline \multirow[t]{4}{*}{14.8} & \multirow[t]{4}{*}{15.2} & \multirow[t]{4}{*}{\(\pm 100\)} & \multirow[t]{4}{*}{17} & \multirow[t]{4}{*}{30} & \multirow[t]{2}{*}{MC1468} & G & 0.8 & \multirow[t]{4}{*}{10} & \multirow[t]{4}{*}{10} & \multirow[t]{4}{*}{3.0} & \multirow[t]{2}{*}{0 to +75} & 603C \\
\hline & & & & & & L & 1.0 & & & & & 632 \\
\hline & & & & & \multirow[t]{2}{*}{MC1568} & G & 0.8 & & & & \multirow[t]{2}{*}{-55 to +125} & 603C \\
\hline & & & & & & L & 1.0 & & & & & 632 \\
\hline
\end{tabular}

\section*{Microprocessor Voltage Regulator/Supervisory Circuit}

A 5.0 V fixed output with many monitoring functions required in microprocessor-based systems.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(V_{\text {out }}, V_{\text {ref }}\) Volts} & \multirow[t]{2}{*}{ISINK mA Max} & \multicolumn{2}{|c|}{\[
v_{\text {in }}
\]
Volts} & \multirow[b]{2}{*}{Regline mV Max} & \multirow[b]{2}{*}{Regload mV Max} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{Suffix} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathbf{T}_{\mathbf{A}} \\
& { }^{\circ} \mathbf{C}
\end{aligned}
\]} & \multirow[b]{2}{*}{Case} \\
\hline Min & Max & & Min & Max & & & & & & \\
\hline 4.75 & 5.25 & 100 & 7.0 & \multirow[t]{2}{*}{40} & 40 & 50 & MC34160 & \multirow[t]{2}{*}{P} & 0 to +70 & \multirow[t]{2}{*}{648C} \\
\hline 2.47 & 2.73 & 2.0 & 5.0 & & 20 & 30 & MC33160 & & -40 to +85 & \\
\hline
\end{tabular}

\section*{Switching Regulators}

Used as a control circuit in PWM, push-pull, bridge and series type Switchmode supplies, the devices include a voltage reference, oscillator, pulse-width modulator, phase splitter and output drive sections. Frequency and
duty cycle are independently adjustable. Most of these devices also include one or two on-chip error amplifiers for voltage or current error signal feedback.

\section*{Single-Ended Controllers}

These single-ended voltage- and current-mode controllers are designed for use in buck, boost, flyback, and forward converters. They are cost effective in applications that range from 0.1 to 200 watts power output.


\footnotetext{
\# Tolerance applies over the specified operating temperature range.
}

\section*{Double-Ended Controllers}

These double-ended voltage-mode controllers are designed for use in push-pull, half-bridge, and full-bridge converters. They are cost effective in applications that range from 100 to 2000 watts power output.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\underset{\mathrm{mA}}{\mathbf{I}}
\]
Max} & \multicolumn{2}{|c|}{VCC Volts} & \multirow[t]{2}{*}{\begin{tabular}{l}
V/I \\
Operating Mode
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Ref. \\
Volts
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Max Osc. \\
Freq. (kHz)
\end{tabular}} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{Suffix} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathbf{T}_{\mathbf{A}} \\
& { }^{\circ} \mathbf{C}
\end{aligned}
\]} & \multirow[b]{2}{*}{Case} \\
\hline & Min & Max & & & & & & & \\
\hline \multirow[t]{8}{*}{500} & \multirow[t]{8}{*}{7.0} & \multirow[t]{23}{*}{40} & \multirow[t]{23}{*}{V} & \multirow[t]{5}{*}{\(5.0 \pm 5.0 \%\) \#} & \multirow[t]{5}{*}{200} & \multirow[t]{5}{*}{TL494} & CN & \multirow[t]{2}{*}{0 to +70} & 648 \\
\hline & & & & & & & CJ & & 620 \\
\hline & & & & & & & IN & \multirow[t]{2}{*}{-25 to +85} & 648 \\
\hline & & & & & & & IJ & & \multirow[t]{2}{*}{620} \\
\hline & & & & & & & MJ & -55 to +125 & \\
\hline & & & & \multirow[t]{3}{*}{\(5.0 \pm 1.5 \%\)} & \multirow[t]{3}{*}{300} & \multirow[t]{3}{*}{TL594} & CN & 0 to +70 & \multirow[t]{2}{*}{648} \\
\hline & & & & & & & IN & -25 to +85 & \\
\hline & & & & & & & MJ & -55 to +125 & 620 \\
\hline \multirow[t]{10}{*}{\(\pm 500\)} & \multirow[t]{15}{*}{8.0} & & & \multirow[t]{2}{*}{\(5.1 \pm 2.0 \%\)} & \multirow[t]{10}{*}{400} & \multirow[t]{2}{*}{SG3525A} & N & \multirow[t]{2}{*}{0 to +70} & 648 \\
\hline & & & & & & & J & & 620 \\
\hline & & & & \multirow[t]{3}{*}{\(5.1 \pm 1.0 \%\)} & & \multirow[t]{2}{*}{SG2525A} & N & \multirow[t]{2}{*}{-25 to +85} & 648 \\
\hline & & & & & & & J & & \multirow[t]{2}{*}{620} \\
\hline & & & & & & SG1525A & J & -55 to +125 & \\
\hline & & & & \multirow[t]{2}{*}{\(5.1 \pm 2.0 \%\)} & & \multirow[t]{2}{*}{SG3527A} & N & \multirow[t]{2}{*}{0 to +70} & 648 \\
\hline & & & & & & & J & & 620 \\
\hline & & & & \multirow[t]{3}{*}{\(5.1 \pm 1.0 \%\)} & & \multirow[t]{2}{*}{SG2527A} & N & \multirow[t]{2}{*}{-25 to +85} & 648 \\
\hline & & & & & & & J & & \multirow[t]{2}{*}{620} \\
\hline & & & & & & SG1527A & J & -55 to +125 & \\
\hline \multirow[t]{5}{*}{\(\pm 200\)} & & & & \multirow[t]{2}{*}{\(5.0 \pm 2.0 \%\)} & \multirow[t]{5}{*}{350} & \multirow[t]{2}{*}{SG3526} & N & \multirow[t]{2}{*}{0 to \(+125^{*}\)} & 707 \\
\hline & & & & & & & J & & 726 \\
\hline & & & & \multirow[t]{3}{*}{\(5.0 \pm 1.0 \%\)} & & \multirow[t]{2}{*}{SG2526} & N & \multirow[t]{2}{*}{-25 to \(+150 *\)} & 707 \\
\hline & & & & & & & J & & \multirow[t]{2}{*}{726} \\
\hline & & & & & & SG1526 & J & -55 to \(+150^{*}\) & \\
\hline
\end{tabular}
*Junction Temperature Range
\#Tolerance applies over the specified operating temperature range.

\section*{Special Power Supply Controllers}

\section*{High Performance Dual Current-Mode Controllers}

Optimized for off-line AC-to-DC power supplies and DC-to-DC converters in the flyback topology. Applications include desktop computers, peripherals, televisions, games, and various consumer appliances.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{IO} \\
\mathrm{~mA} \\
\mathrm{Max}
\end{gathered}
\]} & \multicolumn{2}{|c|}{\begin{tabular}{l}
\(V_{C C}\) \\
Volts
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
V/I \\
Operating Mode
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Ref. \\
Volts
\end{tabular}} & \multirow[t]{2}{*}{Max Osc. Freq. (kHz)} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{Suffix} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathbf{T}_{\mathbf{A}} \\
& { }^{\circ} \mathbf{C}
\end{aligned}
\]} & \multirow[b]{2}{*}{Case} \\
\hline & Min & Max & & & & & & & \\
\hline \multirow[t]{4}{*}{\(\pm 1000\)} & \multirow[t]{4}{*}{11} & \multirow[t]{4}{*}{15.5} & \multirow[t]{4}{*}{1} & \multirow[t]{4}{*}{\(5.0 \pm 2.0 \%\)} & \multirow[t]{4}{*}{500} & \multirow[t]{2}{*}{MC34065} & DW & \multirow[t]{2}{*}{0 to +70} & 751G \\
\hline & & & & & & & P & & 648 \\
\hline & & & & & & \multirow[t]{2}{*}{MC33065} & DW & \multirow[t]{2}{*}{-40 to +85} & 751G \\
\hline & & & & & & & P & & 648 \\
\hline
\end{tabular}

\section*{Universal Microprocessor Power Supply Controller}

TCA5600 - \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+75^{\circ} \mathrm{C}\), Case 707
A versatile power supply control circuit for microprocessor-based systems which is mainly intended for automotive applications and battery powered instruments. The device provides a power-on RESET delay and a watchdog feature for orderly microprocessor operation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Regulated Outputs} & \multirow[t]{2}{*}{Output Current mA} & \multicolumn{2}{|c|}{\begin{tabular}{l}
VCC \\
Volts
\end{tabular}} & \multirow[b]{2}{*}{Ref. Volts} & \multirow[t]{2}{*}{Key Supervisory Features} \\
\hline & & Min & Max & & \\
\hline E2PROM Programmable Output: 24 Volts (Write Mode) 5.0 Volts (Read Mode) & 150 peak & 6.0 & 35 & \(2.5 \pm 3.2 \%\) & MPU Reset and Watchdog Circuit \\
\hline Fixed Linear Output: 5.0 Volts & 10 to external buffer transistor & & & & \\
\hline
\end{tabular}

\section*{Control IC for Line-Isolated Free Running Flyback Converter}

Regulates and monitors the switching transistor in power supplies based on the free oscillating flyback converter principle. Provides excellent Switchmode performance in Hi-Fi equipment, active loudspeakers, as well as applications in TV receivers and video recorders.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { IO } \\
& \text { mA } \\
& \text { Max }
\end{aligned}
\]} & \multicolumn{2}{|c|}{\begin{tabular}{l}
VCC \\
Volts
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
V/I \\
Operating Mode
\end{tabular}} & \multirow[b]{2}{*}{Ref. Volts} & \multirow[t]{2}{*}{\begin{tabular}{l}
Max Osc. \\
Freq. (kHz)
\end{tabular}} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{Suffix} & \multirow[b]{2}{*}{\[
{ }_{{ }^{\circ} \mathbf{C}}^{\mathrm{T}_{\mathbf{C}}}
\]} & \multirow[b]{2}{*}{Case} \\
\hline & Min & Max & & & & & & & \\
\hline \multirow[t]{2}{*}{\(\pm 1500\)} & \multirow[t]{2}{*}{12.3} & \multirow[t]{2}{*}{20} & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{\(4.2 \pm 5.0 \%\)} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{TDA4601} & - & \multirow[t]{2}{*}{-15 to +85} & 762 \\
\hline & & & & & & & B & & 707 \\
\hline
\end{tabular}

\section*{Power Supervisory}

A variety of Power Supervisory Circuits are offered. Overvoltage sensing circuits which drive "crowbar" SCR's are provided in several configurations from a low cost three-terminal version to 8-pin devices which provide pin-programmable trip-voltages or additional features such as an indicator output drive and remote activation capability. An over-under-voltage protection circuit is also offered.

\section*{Overvoltage "Crowbar" Sensing Circuit}

MC3523U - \(\mathrm{T}_{\mathrm{A}}=-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case 693
MC3423P1,U- \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 626, 693

This device can protect sensitive circuitry from power supply transients or regulator failure when used with an external "Crowbar" SCR. The device senses voltage and compares it to an internal 2.6 V reference. Overvoltage trip is adjustable by means of an external resistive voltage divider. A minimum duration before trip is programmable with an external capacitor. Other features include a 300 mA high current output for driving the gate of a "Crowbar" SCR, an open-collector indicator output and remote activation capability.


\section*{Over-Under Voltage Protection Circuit}

MC3425P1 - \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 626
The MC3425 is a power supply supervisory circuit containing all the necessary functions required to monitor overand under-voltage fault conditions. This device features dedicated over- and under-voltage sensing channels with independently programmable time delays. The over-voltage channel has a high current Drive Output for use in conjunction with an external SCR "Crowbar" for shutdown. The undervoltage channel input comparator has hysteresis which is externally programmable, and an open-collector output for fault indication.


\section*{Undervoltage Sensing Circuit}

MC34064P-5, D-5 - TA \(=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 29, 751
MC33064P-5, D-5 - \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 29,751

The MC34064 is an undervoltage sensing circuit specifically designed for use as a reset controller in microprocessor-based systems. It offers the designer an economical solution for low voltage detection with a single external resistor. The MC34064 features a trimmed-in-package bandgap reference, and a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation. The open collector reset output is capable of sinking in excess of 10 mA , and operation is guaranteed down to 1.0 volt input with low standby current. These devices are packaged in 3-pin TO-92 and 8-pin surface mount packages.

Applications include direct monitoring of the 5.0 volt MPU/ logic power supply used in appliance, automotive, consumer, and industrial equipment.


Pin numbers adjacent to terminals are for the 3 pin TO-92 package. Pin numbers in parenthesis are for the \(D\) suffix \(\mathrm{SO}-8\) package.

\section*{Microprocessor Voltage Regulator and Supervisory Circuit}

MC34160P - \(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 648C
MC33160P - \(T_{A}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 648C
The MC34160 Series is a voltage regulator and supervisory circuit containing many of the necessary monitoring functions required in microprocessor based systems. It is specifically designed for appliance and industrial applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature a \(5.0 \mathrm{~V}, 100 \mathrm{~mA}\) regulator with short circuit current limiting, pinned out 2.6 V bandgap reference, low voltage reset comparator, power warning comparator with programmable hysteresis, and an uncommitted comparator ideally suited for microprocessor line synchronization.

Additional features include a chip disable input for low standby current, and internal thermal shut-down for over temperature protection.

These devices are contained in a 16 pin dual-in-line heat tab plastic package for improved thermal conduction.


\section*{Series Switch Transient Protection Circuit}

\section*{MC3397T - \(\mathrm{T}_{\mathrm{J}}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case 221A}

This device acts as a saturated series pass element with a very low voltage drop for load currents in excess of 750 mA . In the event of an over voltage condition ( \(\geqslant 17.5 \mathrm{~V}\) typically) or high voltage transient of either positive or negative polarity, the MC3397T instantaneously switches to an open circuit (OFF) state, interrupting power to the load and protecting the load during this potentially destructive condition. The device will immediately recover to an ON state when supply voltages fall within the normal operating range.


NOTE:
*Depending on Load Current and Transient Duration, an Output Capacitor ( \(\mathrm{C}_{\mathrm{O}}\) ) of sufficient value may be used to hold up Output Voltage during the Transient, and absorb Turn-off Delay Voltage Overshoot.

\section*{POWER CIRCUITS}

\section*{Linear Voltage Regulators}
\begin{tabular}{|c|c|c|}
\hline Device & Function & Page \\
\hline LM109 & Positive Voltage Regulator & 3-15 \\
\hline LM117 & 3-Terminal Adjustable Positive Voltage Regulator & 3-20 \\
\hline LM117L & Low-Current 3-Terminal Adjustable Positive Voltage Regulator & 3-28 \\
\hline LM123,A & 3-Ampere, 5 Volt Positive Voltage Regulator & 3-36 \\
\hline LM137 & 3-Terminal Adjustable Negative Voltage Regulator & 3-42 \\
\hline LM140,A & Three-Terminal Positive Fixed Voltage Regulators & 3-49 \\
\hline LM150 & 3-Terminal Adjustable Positive Voltage Regulator & 3-65 \\
\hline LM209 & Positive Voltage Regulator & 3-15 \\
\hline LM217 & 3-Terminal Adjustable Positive Voltage Regulator & 3-20 \\
\hline LM217L & Low-Current 3-Terminal Adjustable Positive Voltage Regulator & 3-28 \\
\hline LM223,A & 3-Ampere, 5 Volt Positive Voltage Regulator & 3-36 \\
\hline LM237 & 3-Terminal Adjustable Negative Voltage Regulator & 3-42 \\
\hline LM250 & 3-Terminal Adjustable Positive Voltage Regulator & 3-65 \\
\hline LM309 & Positive Voltage Regulator & 3-15 \\
\hline LM317 & 3-Terminal Adjustable Positive Voltage Regulator & 3-20 \\
\hline LM317L & Low-Current 3-Terminal Adjustable Positive Voltage Regulator & 3-28 \\
\hline LM317M & Medium-Current 3-Terminal Adjustable Positive Voltage Regulator & 3-73 \\
\hline LM323,A & 3-Ampere, 5 Volt Positive Voltage Regulator & 3-36 \\
\hline LM337 & 3-Terminal Adjustable Negative Voltage Regulator & 3-42 \\
\hline LM337M & Medium-Current 3-Terminal Adjustable Negative Voltage Regulator & 3-81 \\
\hline LM340, A & Three-Terminal Positive Fixed Voltage Regulators & 3-49 \\
\hline LM350 & 3-Terminal Adjustable Positive Voltage Regulator & 3-65 \\
\hline LM2931 Series & Low Dropout Voltage Regulators & 3-88 \\
\hline MC1466L & Voltage and Current Regulator & 3-95 \\
\hline MC1468 & Dual \(\pm 15\)-Volt Tracking Regulator & 3-105 \\
\hline MC1568 & Dual \(\pm 15\)-Volt Regulator & 3-105 \\
\hline MC1723, \({ }^{\text {c }}\) & Adjustable Positive or Negative Voltage Regulator & 3-111 \\
\hline MC7800 Series & 3-Terminal Positive Voltage Regulators & 3-132 \\
\hline MC78L00,A Series & Positive Voltage Regulators & 3-145 \\
\hline MC78M00 Series & Positive Voltage Regulator & 3-151 \\
\hline MC78T00 Series & Three-Ampere Positive Voltage Regulators & 3-159 \\
\hline MC7900 Series & Three-Terminal Negative Fixed Voltage Regulators & 3-168 \\
\hline MC79L00,A Series & Three-Terminal Negative Fixed Voltage Regulators & 3-177 \\
\hline MC79M00 Series & Three-Terminal Negative Fixed Voltage Regulators & 3-182 \\
\hline MC33160 & Microprocessor Voltage Regulator and Supervisory Circuit & 3-271 \\
\hline MC34160 & Microprocessor Voltage Regulator and Supervisory Circuit & 3-271 \\
\hline TL780 & Three-Terminal Positive Voltage Regulators & 3-334 \\
\hline
\end{tabular}

\section*{Switching Regulators}
\begin{tabular}{|c|c|c|}
\hline Device & Function & Page \\
\hline MC33060A & Switchmode Pulse Width Modulation Control Circuits & 3-197 \\
\hline MC33063 & DC-to-DC Converter Control Circuits & 3-227 \\
\hline MC33063A & DC-to-DC Converter Control Circuits & 3-233 \\
\hline MC33129 & High Performance Current Mode Controller & 3-258 \\
\hline MC34060 & Switchmode Pulse Width Modulation Control Circuits & 3-185 \\
\hline MC34060A & Switchmode Pulse Width Modulation Control Circuits & 3-197 \\
\hline MC34063 & DC-to-DC Converter Control Circuits & 3-227 \\
\hline MC34063A & DC-to-DC Converter Control Circuits & 3-233 \\
\hline MC34129 & High Performance Current Mode Controller & 3-258 \\
\hline MC35060 & Switchmode Pulse Width Modulation Control Circuits & 3-185 \\
\hline MC35060A & Switchmode Pulse Width Modulation Control Circuits & 3-197 \\
\hline MC35063 & DC-to-DC Converter Control Circuits & 3-227 \\
\hline MC35063A & DC-to-DC Converter Control Circuits & 3-233 \\
\hline
\end{tabular}

\section*{Switching Regulators (continued)}
Device Function Page
SG1525APulse Width Modulator Control Circuits3-279
SG1526 Pulse Width Modulation Control Circuits ..... 3-286
SG1527A Pulse Width Modulator Control Circuits ..... 3-279
SG2525A Pulse Width Modulator Control Circuits ..... 3-279
SG2526 Pulse Width Modulation Control Circuits ..... 3-286
SG2527A Pulse Width Modulator Control Circuits ..... 3-279
SG3525A Pulse Width Modulator Control Circuits ..... 3-279
SG3526 Pulse Width Modulation Control Circuits ..... 3-286SG3527A
Pulse Width Modulator Control Circuits ..... 3-279
TL494
Switchmode Pulse Width Modulation Control Circuits ..... 3-312
TL594 Switchmode Pulse Width Modulation Control Circuits ..... 3-323
UC2842A High Performance Current Mode Controller ..... 3-340
UC2843A High Performance Current Mode Controller ..... 3-340
UC3842A High Performance Current Mode Controller ..... 3-340
UC3843A High Performance Current Mode Controller ..... 3-340
\(\mu\) A78S40 Universal Switching Regulator Subsystem ..... 3-353
Special Power Supply Controllers
Device Function Page
MC33065 High Performance Dual Channel Current Mode Controller ..... 3-246
MC34065 High Performance Dual Channel Current Mode Controller ..... 3-246
TCA5600 Universal Microprocessor Power Supply Controller ..... 3-294
TDA4601,B Flyback Converter Regulator Control Circuit ..... 3-305
Power Supervisory
\begin{tabular}{|c|c|c|}
\hline Device & Function & Page \\
\hline MC3397T & Transient Suppressor & See Chapter 10 \\
\hline MC3423 & Overvoltage Sensing Circuit & 3-117 \\
\hline MC3425 & Power Supply Supervisory/Over-Under-Voltage Protection & 3-124 \\
\hline MC3523 & Overvoltage Sensing Circuit & 3-117 \\
\hline MC33160 & Microprocessor Voltage Regulator and Supervisory Circuit & 3-271 \\
\hline MC34061,A & Three-Terminal Programmable Overvoltage Sensing Circuit & . 3-209 \\
\hline MC34062 & Pin-Programmable Overvoltage Sensing Circuit & 3-216 \\
\hline MC34064 & Pin-Programmable Overvoltage Sensing Circuit & 3-242 \\
\hline MC34160 & Microprocessor Voltage Regulator and Supervisory Circuit & 3-271 \\
\hline MC35062 & Pin-Programmable Overvoltage Sensing Circuit & . . . 3-216 \\
\hline
\end{tabular}
RELATED APPLICATION NOTES
\begin{tabular}{|c|c|c|}
\hline Application Note & Title & Related Device \\
\hline AN703 & Designing Digitally-Controlled Power Supplies & MC1466, MC1723 \\
\hline AN920A & Theory and Applications of the MC34063 and \(\mu\) A78S40 & \\
\hline & Switching Regulator Control Circuits & MC34063, \(\mu\) A78S40 \\
\hline AN778 & Mounting Techniques for Power Semiconductors & LM317, LM337, \\
\hline & & MC7800, MC78M00, \\
\hline & & MC7900, MC79M00 \\
\hline AN954 & A Unique Converter Configuration & MC34063 \\
\hline AN976 & A New High Performance Current-Mode Controller Teams Up with Current Sensing Power MOSFETs & MC34129 \\
\hline AN983 & A Simplified Power Supply Design Using the TL494 & \\
\hline & Control Circuit & TL494 \\
\hline ANE002 & 130 W Ringing Choice Power Supply Using TDA4601 & TDA4601,B \\
\hline
\end{tabular}

\section*{POSITIVE \\ VOLTAGE REGULATOR}

\section*{MONOLITHIC POSITIVE THREE-TERMINAL FIXED VOLTAGE REGULATOR}

A versatile positive fixed +5.0 -volt regulator designed for easy application as on on-card, local voltage regulator for digital logic systems. Current limiting and thermal shutdown are provided to make the units extremely rugged.
In most applications only one external component, a capacitor, is required in conjunction with the LM109 Series devices. Even this component may be omitted if the power-supply filter is not located an appreciable distance from the regulator.
- High Maximum Output Current - Over 1.0 Ampere in TO-204AA type Package - Over 200 mA in TO-205AD type Package.
- Minimum External Components Required
- Internal Short-Circuit Protection
- Internal Thermal Overload Protection
- Excellent Line and Load Transient Rejection
- Designed for Use with Popular MDTL and MTTL Logic

CIRCUIT SCHEMATIC


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION } \\
\hline Device & \begin{tabular}{c} 
Tested Operating \\
Temperature Range
\end{tabular} & Package \\
\hline LM 109 H & \(\mathrm{T}_{J}=-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Can \\
\hline LM 109 K & \(\mathrm{~T}_{J}=-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM 209 H & \(\mathrm{T}_{J}=-25^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Can \\
\hline LM 209 K & \(\mathrm{~T}_{J}=-25^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM 309 H & \(\mathrm{T}_{J}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Can \\
\hline LM 309 K & \(\mathrm{~T}_{J}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Power \\
\hline
\end{tabular}

TYPICAL APPLICATION FIXED 5.0 V REGULATOR

- Required if regulator is located an appreciable
distance from power supply filter.
Although no output capacitor is needed for stability, it does improve transient response.

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input Voltage & \(\mathrm{V}_{\text {in }}\) & 35 & Vdc \\
\hline Power Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & Internally Limited & \\
\hline \begin{tabular}{c} 
Junction Temperature Range \\
LM109 \\
LM209 \\
LM309
\end{tabular} & \(\mathrm{T}_{\mathrm{J}}\) & & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{c} 
Lead Temperature \\
(soldering, \(\mathrm{t}=60\) s)
\end{tabular} & & \begin{tabular}{c}
-55 to +150 \\
-25 to +150 \\
0 to +125
\end{tabular} & \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM109/LM2091} & \multicolumn{3}{|c|}{LM3092} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\left.T_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\mathrm{O}}\) & 4.7 & 5.05 & 5.3 & 4.8 & 5.05 & 5.2 & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& 7.0 \leqslant V_{\text {in }} \leqslant 25 \mathrm{~V}
\end{aligned}
\] & Regline & - & 4.0 & 50 & - & 4.0 & 50 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \text { Case 1-03 } 5.0 \mathrm{~mA} \leq 10 \leq 1.5 \mathrm{~A} \\
& \text { Case } 79-05 \quad 5.0 \mathrm{~mA} \leq 1_{0} \leqslant 0.5 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{Reg}_{\text {Ioad }}\) & & \[
\begin{aligned}
& 50 \\
& 20
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50
\end{gathered}
\] & - & \[
\begin{array}{r}
50 \\
20 \\
\hline
\end{array}
\] & \[
\begin{gathered}
100 \\
50
\end{gathered}
\] & mv \\
\hline Output Voltage Range
\[
\begin{aligned}
& 7.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{~V} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant \mathrm{I}_{\text {max }}, \mathrm{P} \leqslant \mathrm{P}_{\text {max }}
\end{aligned}
\] & \(\mathrm{V}_{0}\) & 4.6 & . & 5.4 & 4.75 & & 5.25 & Vdc \\
\hline \[
\begin{aligned}
& \text { Quiescent Current } \left.17.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{~V}\right) \\
& \text { Quiescent Current Change }\left(7.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{~V}\right) \\
& \\
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant I_{\mathrm{max}}
\end{aligned}
\] & \[
\begin{array}{r}
I_{B} \\
\Delta I_{B}
\end{array}
\] & - & 5.2 & \[
\begin{aligned}
& \hline 10 \\
& 0.5 \\
& 0.8 \\
& \hline
\end{aligned}
\] &  & \[
5.2
\] & \[
\begin{array}{r}
10 \\
0.5 \\
0.8 \\
\hline
\end{array}
\] & mAdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage (TA } \begin{array}{l}
\left(T_{A}=+25^{\circ} \mathrm{C}\right) \\
\qquad 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\end{array}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{N}}\) & - & 40 & -- & \(\cdots\) & 40 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability & S & - & - & 10 & - & - & 20 & mV \\
\hline Thermal Resistance, Junction to Case \({ }^{3}\) Case 1-03 (TO-204AA) Case 79-05 (TO-205AD) & \(\theta \mathrm{JC}\) & - & \[
\begin{gathered}
3.0 \\
15
\end{gathered}
\] & - & - & \[
\begin{array}{r}
3.0 \\
15
\end{array}
\] & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

NOTES:
1. Unless otherwise specified, these specifications apply for \(-55^{\circ} \mathrm{C} \leqslant T_{J} \leqslant+150^{\circ} \mathrm{C}\left(-25^{\circ} \mathrm{C} \leqslant T_{J} \leqslant+150^{\circ} \mathrm{C}\right.\) for the LM 209\()\). For Case \(79-05, \mathrm{~V}_{\text {in }}=10 \mathrm{~V}, 10=0.1 \mathrm{~A}\), \(\mathrm{I}_{\max }=0.2 \mathrm{~A}\) and \(\mathrm{P}_{\max }=2.0 \mathrm{~W}\). For Case \(1-03, \mathrm{~V}_{\mathrm{in}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}, \mathrm{I}_{\max }=1.0 \mathrm{~A}\) and \(\mathrm{P}_{\max }=20 \mathrm{~W}\).
2. Unless otherwise specified, these specifications apply for \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{in}}=10 \mathrm{~V}\). For Case \(79-05, \mathrm{IO}=0.1 \mathrm{~A}, \mathrm{I}_{\max }=0.2 \mathrm{~A}\) and \(\mathrm{P}_{\max }=2.0 \mathrm{~W}\). For Case \(1-03\), \(\mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}, I_{\text {max }}=1.0 \mathrm{~A}\) and \(\mathrm{P}_{\text {max }}=20 \mathrm{~W}\)
3. Without a heat sink, the thermal resistance of the Case \(79-05\) package is about \(150^{\circ} \mathrm{C} / \mathrm{W}\), while that of the Case \(1-03\) package is approximately \(35^{\circ} \mathrm{C} / \mathrm{W}\). With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the heat sink.

TYPICAL CHARACTERISTICS
( \(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)

FIGURE 1 - MAXIMUM AVERAGE POWER DISSIPATION (LM109K, LM209K)


FIGURE 2 - MAXIMUM AVERAGE POWER DISSIPATION (LM109H, LM209H)


\section*{TYPICAL CHARACTERISTICS (continued)}
\(\left(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)

FIGURE 3 - MAXIMUM AVERAGE POWER DISSIPATION (LM309K)


FIGURE 5 - OUTPUT IMPEDANCE versus FREQUENCY


FIGURE 7 - PEAK OUTPUT CURRENT (H PACKAGE)


FIGURE 4 - MAXIMUM AVERAGE POWER DISSIPATION (LM309H)


FIGURE 6 - PEAK OUTPUT CURRENT (K PACKAGE)


FIGURE 8 - RIPPLE REJECTION


TYPICAL CHARACTERISTICS (continued)

FIGURE 9 - DROPOUT VOLTAGE


FIGURE 11 - OUTPUT VOLTAGE


FIGURE 13 - QUIESCENT CURRENT


FIGURE 10 - DROPOUT CHARACTERISTIC (K PACKAGE)


FIGURE 12 - OUTPUT NOISE VOLTAGE


FIĠURE 14 - QUIESCENT CURRENT


\section*{TYPICAL APPLICATIONS}

FIGURE 15 - ADJUSTABLE OUTPUT REGULATOR


FIGURE 17 - 5.0-VOLT, 3.0-AMPERE REGULATOR (with plastic boost transistor)


FIGURE 19 - 5.0-VOLT, 10-AMPERE REGULATOR


FIGURE 16 - CURRENT REGULATOR

*DETERMINES OUTPUT CURRENT.

FIGURE 18 - 5.0 VOLT, 4.0-AMPERE TRANSISTOR (with plastic Darlington boost transistor)


FIGURE 20 - 5.0-VOLT, 10-AMPERE REGULATOR (with Short-Circuit Current Limiting for Safe-Area Protection of pass transistors)


\section*{Specifications and Applications Information}

\section*{THREE-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATORS}

The LM117/217/317 are adjustable 3 -terminal positive voltage regulators capable of supplying in excess of 1.5 A over an output voltage range of 1.2 V to 37 V . These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM117 series serve a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117 series can be used as a precision current regulator.
- Output Current in Excess of 1.5 Ampere in K and T Suffix Packages
- Output Current in Excess of 0.5 Ampere in H Suffix Package
- Output Adjustable between 1.2 V and 37 V
- Internal Thermal Overload Protectiion
- Internal Short-Circuit Current Limiting Constant with Temperature
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages
 term is negligible in most applications

\section*{THREE-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATORS}

SILICON MONOLITHIC INTEGRATED CIRCUIT


Pins 1 and 2 electrically isolated from case Case is third electrical connection.


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Tested Operating Temperature Range & Package \\
\hline LM117H & \(\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal \\
\hline LM117K & \(\mathrm{TJ}=-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Pow \\
\hline LM217H & \(\mathrm{TJ}=-25^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Can \\
\hline LM217K & \(\mathrm{TJ}=-25^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM317H & \(T \mathrm{~J}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Can \\
\hline LM317K & \(\mathrm{T}^{\mathrm{J}} \mathrm{J}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM317T & \(\mathrm{TJ}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plast \\
\hline LM317BT\# & \(\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Pla \\
\hline
\end{tabular}
\#Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information.

\section*{LM117, LM217, LM317}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{\mathbf{1}}-\mathrm{V}_{\mathrm{O}}\) & \(\mathbf{4 0}\) & Vdc \\
\hline Power Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & \begin{tabular}{c} 
Internally \\
Limited
\end{tabular} & \\
\hline \begin{tabular}{c} 
Operating Junction Temperature Range \\
LM117 \\
LM217 \\
LM317
\end{tabular} & \(\mathrm{T}_{\mathrm{J}}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & \begin{tabular}{c}
-25 to +150 \\
0 to +150
\end{tabular} & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{1}-V_{O}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}\right.\) for K and \(T\) packages; \(I_{\mathrm{O}}=0.1 \mathrm{~A}\) for H package; \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\) [see Note 1]; I max and \(P_{\text {max }}\) per Note 2; unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Figure} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM117/217} & \multicolumn{3}{|c|}{LM317} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min & Typ & Max & Min & Typ & Max & \\
\hline Line Regulation (Note 3)
\[
T_{A}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{O} \leqslant 40 \mathrm{~V}
\] & 1 & Regline & - & 0.01 & 0.02 & - & 0.01 & 0.04 & \%/V \\
\hline Load Regulation (Note 3)
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant I_{\max } \\
& \mathrm{V}_{\mathrm{O}} \leqslant 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \geqslant 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & \[
-
\] & \[
\begin{aligned}
& 5.0 \\
& 0.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
0.3 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& 5.0 \\
& 0.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 0.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
m V \\
\% V_{0}
\end{gathered}
\] \\
\hline Thermal Regulation ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) 20 ms Pulse & & - & - & 0.02 & 0.07 & - & 0.03 & 0.07 & \%/W \\
\hline Adjustment Pin Current & 3 & \({ }^{\text {Adj }}\) & - & 50 & 100 & - & 50 & 100 & \(\mu \mathrm{A}\) \\
\hline Adjustment Pin Current Change
\[
\begin{aligned}
& 2.5 \mathrm{~V} \leqslant V_{1}-V_{O} \leqslant 40 \mathrm{~V} \\
& 10 \mathrm{~mA} \leqslant I_{L} \leqslant I_{\text {max }}, P_{D} \leqslant P_{\max }
\end{aligned}
\] & 1,2 & \({ }^{\text {a Adj }}\) & - & 0.2 & 5.0 & - & 0.2 & 5.0 & \(\mu \mathrm{A}\) \\
\hline Reference Voltage (Note 4)
\[
\begin{aligned}
& 3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{O} \leqslant 40 \mathrm{~V} \\
& 10 \mathrm{~mA} \leqslant I_{0} \leqslant I_{\text {max }}, P_{D} \leqslant P_{\max }
\end{aligned}
\] & 3 & \(V_{\text {ref }}\) & 1.20 & 1.25 & 1.30 & 1.20 & 1.25 & 1.30 & V \\
\hline Line Regulation (Note 3)
\[
3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 40 \mathrm{~V}
\] & 1 & Regline & - & 0.02 & 0.05 & - & 0.02 & 0.07 & \%/V \\
\hline Load Regulation (Note 3)
\[
\begin{gathered}
10 \mathrm{~mA} \leqslant I_{O} \leqslant I_{\text {max }} \\
V_{O} \leqslant 5.0 \mathrm{~V} \\
V_{O} \geqslant 5.0 \mathrm{~V}
\end{gathered}
\] & 2 & Regload & - & \[
\begin{array}{r}
20 \\
0.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
50 \\
1.0 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& 20 \\
& 0.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
m V \\
\% V_{O} \\
\hline
\end{gathered}
\] \\
\hline Temperature Stability ( \(T_{\text {low }} \leqslant T_{J} \leqslant T_{\text {high }}\) ) & 3 & TS & - & 0.7 & - & - & 0.7 & - & \(\% \mathrm{~V}_{0}\) \\
\hline \begin{tabular}{l}
Minimum Load Current to \\
Maintain Regulation ( \(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}\) )
\end{tabular} & 3 & \(l_{\text {L min }}\) & - & 3.5 & 5.0 & - & 3.5 & 10 & mA \\
\hline \begin{tabular}{l}
Maximum Output Current
\[
V_{1}-V_{O} \leqslant 15 V, P_{D} \leqslant P_{\max }
\] \\
K and T Packages \\
H Package
\[
\begin{aligned}
& \mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leqslant \mathrm{P}_{\max }, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~K} \text { and } \mathrm{T} \text { Packages } \\
& \mathrm{H} \text { Package }
\end{aligned}
\]
\end{tabular} & 3 & \(I_{\text {max }}\) & \[
\begin{array}{r}
1.5 \\
0.5 \\
0.25
\end{array}
\] & \[
\begin{gathered}
2.2 \\
0.8 \\
\\
0.4 \\
0.07
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
1.5 \\
0.5 \\
0.15 \\
-
\end{gathered}
\] & \[
\begin{gathered}
2.2 \\
0.8 \\
\\
0.4 \\
0.07
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & A \\
\hline RMS Noise, \% of \(\mathrm{V}_{\mathrm{O}}\)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 10 \mathrm{kHz}
\] & - & N & - & 0.003 & - & - & 0.003 & - & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline ```
Ripple Rejection, \mp@subsup{V}{O}{}=10 V,f=120 Hz
    (Note 5)
        Without CAdj
        C
``` & 4 & RR & \[
66
\] & \[
\begin{aligned}
& 65 \\
& 80 \\
& \hline
\end{aligned}
\] & - & \(\overline{66}\) & \[
\begin{aligned}
& 65 \\
& 80
\end{aligned}
\] & - & dB \\
\hline Long-Term Stability, \(T_{J}=T_{\text {high }}\) (Note 6) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & - & 0.3 & 1.0 & \[
\begin{gathered}
\% / 1.0 \mathrm{k} \\
\text { Hrs. }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Thermal Resistance Junction to Case \\
H Package \\
K Package \\
T Package
\end{tabular} & - & \(\mathrm{R}_{\theta J \mathrm{C}}\) & \[
-
\] & \[
\begin{gathered}
12 \\
2.3 \\
-
\end{gathered}
\] & \[
\begin{array}{r}
15 \\
3.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 2.3 \\
& 5.0
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
3.0 \\
-
\end{array}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

NOTES: (1) \(\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}\) for LM117 \(\mathrm{T}_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM117
\(=-25^{\circ} \mathrm{C}\) for LM217 \(=+150^{\circ} \mathrm{C}\) for LM217
\(=0^{\circ} \mathrm{C}\) for LM317 \(\quad=+125^{\circ} \mathrm{C}\) for LM317
(2) \(I_{\text {max }}=1.5 \mathrm{~A}\) for K and T Packages
\(=0.5 \mathrm{~A}\) for H Package
\(P_{\text {max }}=20 \mathrm{~W}\) for K Package
\(=20 \mathrm{~W}\) for T Package
\(=2.0 \mathrm{~W}\) for H Package
(3) Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating
effects must be taken into account separately. Pulse testing with low duty cycle is used.
(4) Selected devices with tightened tolerance reference voltage available.
(5) CADJ, when used, is connected between the adjustment pin and ground.
(6) Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

FIGURE 1 - LINE REGULATION AND \(\Delta^{\prime} I_{\text {Adj }} /\) LINE TEST CIRCUIT

FIGURE 2 - LOAD REGULATION AND \(\Delta^{\prime} I_{\text {Adj }} /\) LOAD TEST CIRCUIT

FIGURE 3 - STANDARD TEST CIRCUIT

FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT

FIGURE 5 - LOAD REGULATION

FIGURE 7 - ADJUSTMENT PIN CURRENT

FIGURE 9 - TEMPERATURE STABILITY

FIGURE 6 - CURRENT LIMIT

FIGURE 10 - MINIMUM OPERATING CURRENT

FIGURE 11 - RIPPLE REJECTION versus OUTPUT VOLTAGE

FIGURE 13 - RIPPLE REJECTION versus FREQUENCY

FIGURE 12 - RIPPLE REJECTION versus OUTPUT CURRENT

FIGURE 15 - LINE TRANSIENT RESPONSE

FIGURE 14 - OUTPUT IMPEDANCE

\section*{APPLICATIONS INFORMATION}

\section*{BASIC CIRCUIT OPERATION}

The LM117 is a 3-terminal floating regulator. In operation, the LM117 develops and maintains a nominal 1.25 volt reference (\(\mathrm{V}_{\text {ref }}\)) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 17), and this constant current flows through R2 to ground. The regulated output voltage is given by:
\(v_{\text {out }}=V_{\text {ref }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {Adj }} R 2\)

Since the current from the adjustment terminal (1Adj) represents an error term in the equation, the LM117 was designed to control IAdj to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the outtput voltage will rise.

Since the LM117 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

\section*{LOAD REGULATION}

The LM117 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{EXTERNAL CAPACITORS}

A \(0.1 \mu \mathrm{~F}\) disc or \(1 \mu \mathrm{~F}\) tantalum input bypass capacitor (\(\mathrm{C}_{\mathrm{in}}\)) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (\(C_{A D J}\)) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.

Although the LM117 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (\(\mathrm{C}_{0}\)) in the form of a \(1 \mu \mathrm{~F}\) tantalum or \(25 \mu \mathrm{~F}\) aluminum electrolytic capacitor on the output swamps this effect and insures stability.

\section*{PROTECTION DIODES}

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM117 with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values \(\left(\mathrm{C}_{\mathrm{o}}>25 \mu \mathrm{~F}, \mathrm{C}_{\text {ADJ }}>10 \mu \mathrm{~F}\right.\)). Diode \(D_{1}\) prevents \(C_{o}\) from discharging thru the I.C. during an input short circuit. Diode \(D_{2}\) protects against capacitor CADJ discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents CADJ from discharging through the I.C. during an input short circuit.

FIGURE 18 - VOLTAGE REGULATOR WITH PROTECTION DIODES

FIGURE 19 - "LABORATORY" POWER SUPPLY WITH ADJUSTABLE CURRENT LIMIT AND OUTPUT VOLTAGE

FIGURE 20 - ADJUSTABLE CURRENT LIMITER

FIGURE 22 - SLOW TURN-ON REGULATOR

FIGURE 21 - 5 V ELECTRONIC SHUT DOWN REGULATOR

\(D_{1}\) protects the device during an input short circuit.

FIGURE 23 - CURRENT REGULATOR

\section*{Specifications and Applications Information}

\section*{THREE-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATORS}

The LM117L/217L/317L are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 100 mA over an output voltage range of 1.2 V to 37 V . These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.
The LM117L series serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117L series can be used as a precision current regulator.
- Output Current in Excess of 100 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

Since IAdj is controlled to less than \(100 \mu \mathrm{~A}\), the error associated with this term is negligible in most applications
\#Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information.

\section*{LOW-CURRENT}

THREE-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

D SUFFIX
PLASTIC PACKAGE
CASE 751-02
SOP-8*
PIN 1. \(\mathrm{V}_{\mathrm{IN}}\)
2. VOUT
3. VOUT 4. ADJUST 5. N.C. 6. VOUT 7. VOUT 8. N.C.

SOP-8 is an internally modified SO-8 Package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOP-8 conforms to all external dimensions of the standard SO-8 Package.
\begin{tabular}{l}
ORDERING INFORMATION \\
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Tested Operating \\
Temperature Range
\end{tabular} & Package \\
\hline LM117LH & \(\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Can \\
\hline LM217LH & \(\mathrm{T}_{\mathrm{J}}=-25^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Can \\
\hline LM317LD & & SOP-8 \\
\hline LM317LH & \multirow{3}{*}{\(\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)} & Metal Can \\
& & Plastic \\
\hline LM317LZ & & Plastic \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{LM117L, LM217L, LM317L}

MAXIMUM RATINGS
\begin{tabular}{|ll|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{V}_{\mathbf{O}}\) & 40 & Vdc \\
\hline Power Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & Internally Limited & \\
\hline Operating Junction Temperature Range & LM117L & \(\mathrm{T}_{J}\) & \begin{tabular}{c}
-55 to +150 \\
\\
\\
\\
\\
LM217L \\
LM317L
\end{tabular} & \\
\hline Sto +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & \(\mathrm{T}_{\mathbf{s t g}}\) & -65 to +150 & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
\(\left(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA} ; \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [see Note 1]; \(I_{\text {max }}\) and \(\mathrm{P}_{\text {max }}\) per Note 2; unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Figure} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM117U217L} & \multicolumn{3}{|c|}{LM317L} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min & Typ & Max & Min & Typ & Max & \\
\hline Line Regulation (Note 3)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 40 \mathrm{~V}
\] & 1 & Regline & - & 0.01 & 0.02 & - & 0.01 & 0.04 & \%/V \\
\hline \[
\begin{aligned}
& \text { Load Regulation }(\text { Note } 3), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leq I_{\max }-\mathrm{LM} 1117 \mathrm{~L} 217 \mathrm{~L} \\
& 10 \mathrm{~mA} \leq 10 \leqslant I_{\max }-\mathrm{LM} 317 \mathrm{~L} \\
& \mathrm{~V}_{\mathrm{O}} \leqslant 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \geqslant 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & & \[
\begin{aligned}
& 5.0 \\
& 0.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
15 \\
0.3
\end{array}
\] & - & \[
\begin{aligned}
& 5.0 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 0.5
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mv} \\
\% \mathrm{v}_{\mathrm{O}}
\end{gathered}
\] \\
\hline Adjustment Pin Current & 3 & \({ }^{\text {I Adj }}\) & - & 50 & 100 & - & 50 & 100 & \(\mu \mathrm{A}\) \\
\hline Adjustment Pin Current Change
\[
\begin{aligned}
& 2.5 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leqslant P_{\max } \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant I_{\max }-L M 117 \mathrm{LM} 217 \mathrm{~L} \\
& 10 \mathrm{~mA} \leqslant 10 \leqslant I_{\max }-L M 317 \mathrm{~L} \\
& \hline
\end{aligned}
\] & 1,2 & \({ }^{\Delta{ }^{\text {a }} \text { Adj }}\) & - & 0.2 & 5.0 & - & 0.2 & 5.0 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Reference Voltage (Note 4) } \\
& 3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 40 \mathrm{~V}, \mathrm{PD}_{\mathrm{D}} \leqslant \mathrm{P}_{\text {max }} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant \mathrm{Imax}_{\mathrm{max}}-\mathrm{LM} 117 \mathrm{~L} 217 \mathrm{~L} \\
& 10 \mathrm{~mA} \leqslant 10 \leqslant I_{\max }-\mathrm{LM} 317 \mathrm{~L} \\
& \hline
\end{aligned}
\] & 3 & \(V_{\text {ref }}\) & 1.20 & 1.25 & 1.30 & 1.20 & 1.25 & 1.30 & v \\
\hline Line Regulation (Note 3)
\[
3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 40 \mathrm{~V}
\] & 1 & Regline & - & 0.02 & 0.05 & - & 0.02 & 0.07 & \%N \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note } 3 \text {) } \\
& 5.0 \mathrm{~mA} \leqslant 10 \leq I_{\max }-L M 117 \mathrm{~L} 217 \mathrm{~L} \\
& 10 \mathrm{~mA} \leq 10 \leqslant I_{\max }-\mathrm{LM} 317 \mathrm{~L} \\
& \mathrm{~V}_{\mathrm{O}} \leqslant 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \geqslant 5.0 \mathrm{~V} \\
& \hline
\end{aligned}
\] & 2 & Regload & & \[
\begin{aligned}
& 20 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 1.0
\end{aligned}
\] & & \[
\begin{aligned}
& 20 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.5
\end{aligned}
\] & \[
\stackrel{m V}{\% V_{0}}
\] \\
\hline Temperature Stability (\(T_{\text {low }} \leqslant T_{J} \leqslant T_{\text {high }}\)) & 3 & TS & - & 0.7 & - & - & 0.7 & - & \(\% \mathrm{~V}_{0}\) \\
\hline Minimum Load Current to Maintain Regulation (\(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}\)) & 3 & ILmin & - & 3.5 & 5.0 & - & 3.5 & 10 & mA \\
\hline \begin{tabular}{l}
Maximum Output Current \\
\(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 20 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leqslant \mathrm{P}_{\text {max }}, \mathrm{H}\) Package \\
\(V_{1}-V_{O} \leqslant 6.25 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leqslant P_{\text {max }}, Z\) Package \\
\(V_{1}-V_{O}=40 \mathrm{~V}, P_{D} \leqslant P_{\text {max }}, T_{A}=25^{\circ} \mathrm{C}\) \\
H Package \\
Z Package
\end{tabular} & 3 & \(I_{\text {max }}\) & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
200 \\
200 \\
50 \\
20 \\
\hline
\end{gathered}
\] & - & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
200 \\
200 \\
50 \\
20
\end{gathered}
\] & \[
-
\] & mA \\
\hline \[
\begin{aligned}
& \text { RMS Noise, } \% \text { of } V_{O} \\
& T_{A}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 10 \mathrm{kHz}
\end{aligned}
\] & - & N & - & 0.003 & - & - & 0.003 & - & \% V \\
\hline Ripple Rejection (Note 5) \(\mathrm{V}_{\mathrm{O}}=1.25 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) \(\mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \mathrm{~V}_{\mathrm{O}}=10.0 \mathrm{~V}\) & 4 & RR & 66 & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & - & 60 & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & - & dB \\
\hline Long Term Stability, \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}\) (Note 6) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & - & 0.3 & 1.0 & \[
\begin{gathered}
\text { \%/1.0 k } \\
\text { Hrs. }
\end{gathered}
\] \\
\hline Thermal Resistance Junction to Case H Package Z Package & - & \(\mathrm{R}_{\text {өJC }}\) & - & 40 & - & - & \[
\begin{aligned}
& 40 \\
& 83 \\
& \hline
\end{aligned}
\] & - & \({ }^{\circ} \mathrm{C} / \mathrm{N}\) \\
\hline Thermal Resistance Junction to Air H Package Z Package & - & \(\mathrm{R}_{\text {өJA }}\) & 二 & 185 & - & - & \[
\begin{aligned}
& 185 \\
& 160
\end{aligned}
\] & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

NOTES:
(1) \(\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}\) for LM117L
\(-25^{\circ} \mathrm{C}\) for LM217L
\(0^{\circ} \mathrm{C}\) for LM317L
\(T_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM117L
\(=+150^{\circ} \mathrm{C}\) for LM 217 L
\(=+125^{\circ} \mathrm{C}\) for LM317
(2) \(I_{\max }=100 \mathrm{~mA}\)
\(P_{\text {max }}=2 \mathrm{~W}\) for H Package
\(=625 \mathrm{~mW}\) for Z Package
(3) Load and line regulation are specified at constant junction temperature Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
(4) Selected devices with tightened tolerance reference voltage available
(5) CADJ, when used, is connected between the adjustment pin and ground.
(6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stapility from lot to lot.

FIGURE 1 - LINE REGULATION AND \(\Delta^{\prime} I_{\text {Adj }} /\) LINE TEST CIRCUIT

FIGURE 2 - LOAD REGULATION AND \(\Delta_{\text {Adj }} /\) LOAD TEST CIRCUIT

FIGURE 3 - STANDARD TEST CIRCUIT

FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT

\section*{LM117L, LM217L, LM317L}

FIGURE 5 - LOAD REGULATION

FIGURE 7 - CURRENT LIMIT

FIGURE 9 - MINIMUM OPERATING CURRENT

FIGURE 6 - RIPPLE REJECTION

FIGURE 8 - DROPOUT VOLTAGE

FIGURE 10 - RIPPLE REJECTION versus FREQUENCY

\section*{APPLICATIONS INFORMATION}

\section*{BASIC CIRCUIT OPERATION}

The LM117L is a 3 -terminal floating regulator. In operation, the LM117L develops and maintains a nominal 1.25 volt reference (\(\mathrm{V}_{\text {ref }}\)) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 13), and this constant current flows through R2 to ground. The regulated output voltage is given by:
\[
V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {Adj }} R 2
\]

Since the current from the adjustment terminal (I \({ }_{\text {Adj }}\)) represents an error term in the equation, the LM117L was designed to control IAdj to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM117L is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

\section*{LOAD REGULATION}

The LM117L is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{EXTERNAL CAPACITORS}

A \(0.1 \mu \mathrm{~F}\) disc or \(1 \mu \mathrm{~F}\) tantalum input bypass capacitor \(\left(C_{\text {in }}\right)\) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (CADJ) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.

Although the LM117L is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (\(\mathrm{C}_{0}\)) in the form of a \(1 \mu \mathrm{~F}\) tantalum or \(25 \mu \mathrm{~F}\) aluminum electrolytic capacitor on the output swamps this effect and insures stability.

\section*{PROTECTION DIODES}

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 14 shows the LM117L with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values (\(\mathrm{C}_{\mathrm{o}}>10 \mu \mathrm{~F}, \mathrm{C}_{\text {ADJ }}>5 \mu \mathrm{~F}\)). Diode \(D_{1}\) prevents \(C_{o}\) from discharging thru the I.C. during an input short circuit. Diode \(\mathrm{D}_{2}\) protects against capacitor CADJ discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents CADJ from discharging through the I.C. during an input short circuit.

FIGURE 18 - VOLTAGE REGULATOR WITH PROTECTION DIODES

FIGURE 19 - ADJUSTABLE CURRENT LIMITER

FIGURE 21 - SLOW TURN-ON REGULATOR

FIGURE 20-5 V ELECTRONIC SHUTDOWN REGULATOR

FIGURE 22 - CURRENT REGULATOR

\title{
LM123, LM123A LM223, LM223A LM323, LM323A
}

\section*{Specifications and Applications Information}

\section*{POSITIVE VOLTAGE REGULATORS}

The LM123,A/LM223,A/LM323,A are a family of monolithic integrated circuits which supply a fixed positive 5.0 volt output with a load driving capability in excess of 3.0 amperes. These threeterminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. An improved series with superior electrical characteristics and a \(2 \%\) output voltage tolerance is available as A-suffix (LM123A/LM223A/LM323A) device types.
These regulators are offered in a hermetic metal power package in three operating temperature ranges. \(\mathrm{A} 0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range version is also available in a low cost plastic power package.
Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series pass transistor to supply up to 15 amperes at 5.0 volts.
- Output Current in Excess of 3.0 Amperes
- Available with \(2 \%\) Output Voltage Tolerance
- No external Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Thermal Regulation and Ripple Rejection Have Specified Limits

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rating} & Symbol & Value & Unit \\
\hline Input Voltage & & \(V_{\text {in }}\) & 20 & Vdc \\
\hline Power Dissipation & & PD & Internally Limited & \\
\hline Operating Junction Temperature Range & \[
\begin{aligned}
& \text { LM123, A } \\
& \text { LM223, A } \\
& \text { LM323, A }
\end{aligned}
\] & TJ & \[
\begin{gathered}
-55 \text { to }+150 \\
-25 \text { to }+150 \\
0 \text { to }+150
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & \(\mathrm{T}_{\text {Stg }}\) & -65 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 10 s) & & T \({ }_{\text {solder }}\) & 300 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Output Voltage \\
Tolerance
\end{tabular} & \begin{tabular}{c}
Tested Operating \\
Junction Temp. Range
\end{tabular} & Package \\
\hline LM123K & \(6 \%\) & -55 to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
LM123AK & \(2 \%\) & & \\
\hline LM223K & \(6 \%\) & -25 to \(+150^{\circ} \mathrm{C}\) & \\
LM223AK & \(2 \%\) & & \\
\hline LM323K & \(4 \%\) & 0 to \(+125^{\circ} \mathrm{C}\) & \\
LM323AK & \(2 \%\) & & Plastic Power \\
\hline LM323T & \(4 \%\) & & \\
\hline LM323AT & \(2 \%\) & & \\
\hline
\end{tabular}

\section*{3-AMPERE, 5 VOLT POSITIVE VOLTAGE REGULATORS}

SILICON MONOLITHIC INTEGRATED CIRCUIT

\section*{K SUFFIX}

METAL PACKAGE CASE 1-03

PIN 1. INPUT
2. OUTPUT CASE GROUND

(Bottom View)

\section*{T SUFFIX}

PLASTIC PACKAGE CASE 221A-04

1. INPUT
2. GROUND
3. OUTPUT
(Heatsink surface connected to Pin 2)

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.5 V above the output voltage even during the low point on the input ripple voltage.
* \(=C_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter. (See Applications Information for details.)
** \(=C_{O}\) is not needed for stability; however, it does improve transient response.

ELECTRICAL CHARACTERISTICS (\(T_{J}=T_{\text {low }}\) to \(T_{\text {high }}\) [see Note 1] unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|l|}{LM123A/LM223A/LM323A} & \multicolumn{3}{|l|}{LM123/LM223} & \multicolumn{3}{|c|}{LM323} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage
\[
\left(V_{\text {in }}=7.5 \mathrm{~V}, 0 \leqslant \mathrm{I}_{\text {out }} \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{v}_{\mathrm{O}}\) & 4.9 & 5.0 & 5.1 & 4.7 & 5.0 & 5.3 & 4.8 & 5.0 & 5.2 & \(v\) \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(7.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 15 \mathrm{~V}, 0 \leqslant \mathrm{I}_{\text {out }} \leqslant 3.0 \mathrm{~A} .\right. \\
& \left.\mathrm{P} \leqslant \mathrm{P}_{\max }[\text { Note } 2]\right)
\end{aligned}
\] & \(\mathrm{v}_{0}\) & 4.8 & 5.0 & 5.2 & 4.6 & 5.0 & 5.4 & 4.75 & 5.0 & 5.25 & v \\
\hline Line Regulation
\[
\left(7.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)(\text { Note 3) }
\] & \(\mathrm{Reg}_{\text {line }}\) & - & 1.0 & 15 & - & 1.0 & 25 & - & 1.0 & 25 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{V}_{\text {in }}=7.5 \mathrm{~V}, 0 \leqslant \mathrm{I}_{\text {out }} \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right) \\
& (\text { Note 3) }
\end{aligned}
\] & Regload & - & 10 & 50 & - & 10 & 100 & - & 10 & 100 & mV \\
\hline Thermal Regulation
\[
\text { (Pulse }=10 \mathrm{~ms}, \mathrm{P}=20 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {) }
\] & \(\mathrm{Reg}_{\text {therm }}\) & - & 0.001 & 0.01 & - & 0.002 & 0.03 & - & 0.002 & 0.03 & \(\% \mathrm{~V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline Quiescent Current
\[
\left(7.5 \mathrm{~V} \leqslant \mathrm{v}_{\text {in }} \leqslant 15 \mathrm{~V}, 0 \leqslant \mathrm{I}_{\text {out }} \leqslant 3.0 \mathrm{~A}\right)
\] & \({ }^{\prime} \mathrm{B}\) & - & 3.5 & 10 & - & 3.5 & 20 & - & 3.5 & 20 & mA \\
\hline Ouiput Noise Voltage
\[
\left(10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\mathrm{N}}\) & - & 40 & - & - & 40 & - & - & 40 & - & \(\mu \mathrm{V}_{\text {rms }}\) \\
\hline Ripple Rejection
\[
\begin{aligned}
& \left(8.0 \mathrm{~V} \leqslant V_{\text {in }} \leqslant 18 \mathrm{~V}, \mathrm{I}_{\text {out }}=2.0 \mathrm{~A},\right. \\
& f=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text {) }
\end{aligned}
\] & RR & 62 & 75 & - & 62 & 75 & - & 62 & 75 & - & dB \\
\hline Short Circuit Current Limit
\[
\begin{aligned}
& \left(V_{\text {in }}=15 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{V}_{\text {in }}=7.5 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \({ }^{\text {I }} \mathrm{Sc}\) & - & \[
\begin{array}{r}
4.5 \\
5.5 \\
\hline
\end{array}
\] & - & - & \[
\begin{aligned}
& 4.5 \\
& 5.5 \\
& \hline
\end{aligned}
\] & \[
-
\] & - & \[
\begin{array}{r}
4.5 \\
5.5 \\
\hline
\end{array}
\] & \[
-
\] & A \\
\hline Long Term Stability & S & - & - & 35 & - & - & 35 & - & - & 35 & mV \\
\hline Thermal Resistance Junction to Case (Note 4) & \(\mathrm{R}_{\theta \mathrm{JCC}}\) & - & 2.0 & - & - & 2.0 & - & - & 2.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

Note 1. \(T_{\text {low }}=-55^{\circ} \mathrm{C}\) for LM123, A \(T_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM123, A \(=-25^{\circ} \mathrm{C}\) for LM223, \(\mathrm{A} \quad=+150^{\circ} \mathrm{C}\) for LM223, A \(=0^{\circ} \mathrm{C}\) for LM323, \(\mathrm{A} \quad=+125^{\circ} \mathrm{C}\) for LM323, A

Note 2. Although power dissipation is internally limited, specifications apply only for \(P \leqslant P_{\text {max }}\)
\(P_{\text {max }}=30 \mathrm{~W}\) for K package
\(P_{\text {max }}=25 \mathrm{~W}\) for T package

Note 3. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width \(\leqslant 1.0 \mathrm{~ms}\) and a duty cycle \(\leqslant 5 \%\).

Note 4. Without a heat sink, the thermal resistance (\(\mathrm{R}_{\boldsymbol{\theta J A}}\) is \(35^{\circ} \mathrm{C} / \mathrm{W}\) for the K package, and \(65^{\circ} \mathrm{C} / \mathrm{W}\) for the T package. With a heat sink, the effective thermal resistance can approach the specified val ues of \(2.0^{\circ} \mathrm{C} / \mathrm{W}\), depending on the efficiency of the heat sink.

\section*{VOLTAGE REGULATOR PERFORMANCE}

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration (\(<100 \mu \mathrm{~s}\)) and are strictly a function of electrical gain. However, pulse widths of longer duration (\(>1.0 \mathrm{~ms}\)) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.

Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The
change in dissipated power can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of I.C. layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms , additional changes in the output voltage are due to the temperature coefficient of the device.
Figure 1 shows the line and thermal regulation response of a typical LM123A to a 20 watt input pulse. The variation of the output voltage due to line regulation is labeled (1) and the thermal regulation component is labeled (2). Figure 2 shows the load and thermal regulation response of a typical LM123A to a 20 watt load pulse. The output voltage variation due to load regulation is labeled (1) and the thermal regulation component is labeled (2).

FIGURE 2 - LOAD AND THERMAL REGULATION

FIGURE 3 - TEMPERATURE STABILITY

FIGURE 5 - RIPPLE REJECTION versus FREQUENCY

FIGURE 7 - QUIESCENT CURRENT versus INPUT VOLTAGE

FIGURE 4 - OUTPUT IMPEDANCE

FIGURE 6 - RIPPLE REJECTION versus OUTPUT CURRENT

FIGURE 8 - QUIESCENT CURRENT versus OUTPUT CURRENT

FIGURE 9 - DROPOUT VOLTAGE

FIGURE 11 - LINE TRANSIENT RESPONSE

FIGURE 13 - MAXIMUM AVERAGE POWER DISSIPATION FOR LM123K and LM223K

FIGURE 10 - SHORT CIRCUIT CURRENT

FIGURE 12 - LOAD TRANSIENT RESPONSE

FIGURE 14 - MAXIMUM AVERAGE POWER DISSIPATION FOR LM323K

\section*{APPLICATIONS INFORMATION}

\section*{Design Considerations}

The LM123,A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with
long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

The LM123,A regulator can also be used as a current source when connected as above. Resistor \(R\) determines the current as follows:
\[
10=\frac{5.0 v}{R}+I_{B}
\]
\(\Delta \mathrm{I}_{\mathrm{B}} \equiv 0.7 \mathrm{~mA}\) over line, load and temperature changes \(\mathrm{I}_{\mathrm{B}} \cong \mathbf{3 . 5 \mathrm { mA }}\)

For example, a 2-ampere current source would require \(R\) to be a 2.5 ohm, 15 W resistor and the output voltage compliance would be the input voltage less 7.5 volts.

FIGURE 17 - CURRENT BOOST REGULATOR

The LM123,A series can be current boosted with a PNP transistor. The 2N4398 provides current to 15 amperes. Resistor \(R\) in conjunction with the \(V_{B E}\) of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by the \(V_{B E}\) of the pass transistor.

FIGURE 16 - ADJUSTABLE OUTPUT REGULATOR

\[
\begin{aligned}
& v_{O} .8 .0 \mathrm{~V} \text { to } 20 \mathrm{~V} \\
& \mathrm{v}_{\mathrm{in}}-\mathrm{v}_{\mathrm{O}} \geqslant 2.5 \mathrm{v}
\end{aligned}
\]

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3.0 volts greater than the regulator voltage.

FIGURE 18 - CURRENT BOOS I WITH SHORT-CIRCUIT PROTECTION

The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, an eight-ampere power transistor is specified.

\section*{Specifications and Applications Information}

\section*{THREE-TERMINAL ADJUSTABLE OUTPUT NEGATIVE VOLTAGE REGULATORS}

The LM137/237/337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of 1.5 A over an output voltage range of -1.2 V to -37 V . These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM137 series serve a wide variety of applications including local, on-card regulation. This device can also be used to make a programmable output regulator; or, by connecting a fixed resistor between the adjustment and output, the LM137 series can be used as a precision current regulator.
- Output Current in Excess of 1.5 Ampere in K and T Suffix Packages
- Output Current in Excess of 0.5 Ampere in H Suffix Package
- Output Adjustable Between -1.2 V and -37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit-Current Limiting, Constant with Temperature
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

\footnotetext{
\#Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information.
}

THREE-TERMINAL ADJUSTABLE NEGATIVE VOLTAGE REGULATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

Pins 1 and 2 electrically isolated from case. Case is third electrical connection.

T SUFFIX

Heatsink surface connected to Pin 2
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
H SUFFIX \\
METAL PACKAGE \\
CASE 79-05 \\
CASE IS INPUT
\end{tabular}} & \begin{tabular}{l}
1. ADJUST \\
2. OUTPUT \\
3. INPUT
\end{tabular} \\
\hline \multicolumn{3}{|c|}{ORDERING INFORMATION} \\
\hline Device & Tested Operating Temperature Range & Package \\
\hline LM137H & \(\mathrm{T}_{J}=-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Can \\
\hline LM137K & \(\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM237H & \(\mathrm{T}_{J}=-25^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Can \\
\hline LM237K & \(\mathrm{T}_{J}=-25^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM337H & \(\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Can \\
\hline LM337K & \(\mathrm{T}_{J}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM337T & \(\mathrm{T}_{J}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline LM337BT\# & \(\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|ll|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input－Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & 40 & Vdc \\
\hline Power Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & Internally Limited & \\
\hline Operating Junction Temperature Range & LM137 & \(\mathrm{T}_{\mathrm{J}}\) & \begin{tabular}{c}
-55 to +150 \\
\\
\\
\\
\\
LM237 \\
LM337
\end{tabular} & \\
\hline LM & & \({ }^{\circ} \mathrm{C}\) \\
\hline Sto to +150 & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\| \mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \mid=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}\) for K and T packages； \(\mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~A}\) for H package； \(T_{J}=T_{\text {low }}\) to \(T_{\text {high }}\)［see Note 1］，\(I_{\text {max }}\) and \(P_{\text {max }}\) per Note 2，unless otherwise specified．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Figure} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM137／237} & \multicolumn{3}{|c|}{LM337} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min & Typ & Max & Min & Typ & Max & \\
\hline Line Regulation（Note 3）
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leqslant\left|\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}}\right| \leqslant 40 \mathrm{~V}
\] & 1 & Regline & － & 0.01 & 0.02 & － & 0.01 & 0.04 & \％／V \\
\hline Load Regulation（Note 3）
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leqslant 10 \leqslant I_{\text {max }} \\
& \left|\mathrm{VO}_{\mathrm{O}}\right| \leqslant 5.0 \mathrm{~V} \\
& \left|\mathrm{~V}_{\mathrm{O}}\right| \geqslant 5.0 \mathrm{~V} \\
& \hline
\end{aligned}
\] & 2 & Regload & - & \[
\begin{aligned}
& 15 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 0.5
\end{aligned}
\] & － & \[
\begin{aligned}
& 15 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 1.0
\end{aligned}
\] & \[
\begin{gathered}
m V \\
\% v_{0}
\end{gathered}
\] \\
\hline Thermal Regulation 10 ms Pulse， \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & － & Regtherm & － & 0.002 & 0.02 & － & 0.003 & 0.04 & \％Vow \\
\hline Adjustment Pin Current & 3 & \({ }^{\text {adj }}\) & － & 65 & 100 & － & 65 & 100 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Adjustment Pin Current Change \\
\(2.5 \mathrm{~V} \leq\left|V_{-}-V_{O}\right| \leq 40 \mathrm{~V}\) \\
\(10 \mathrm{~mA} \leq I_{L} \leq I_{\text {max }}^{\prime}\) \\
\(\mathrm{P}_{\mathrm{D}} \leqslant \mathrm{P}_{\text {max }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
\hline
\end{tabular} & 1，2 & \({ }^{\Delta}{ }^{\text {Adj }}\) & － & 2.0 & 5.0 & － & 2.0 & 5.0 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Reference Voltage }(\text { Note } 4) \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& 3.0 \mathrm{~V} \leqslant \mid \mathrm{V}_{1}-\mathrm{VO}_{\mathrm{O}} \leqslant 40 \mathrm{~V}, 10 \mathrm{~mA} \leqslant 10 \leqslant \\
& I_{\text {max }}, \mathrm{PD} \leqslant \mathrm{P}_{\text {max }}, \mathrm{TJ}_{\mathrm{J}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & 3 & \(\mathrm{V}_{\text {ref }}\) & \[
\begin{array}{|l|}
\hline-1.225 \\
-1.20
\end{array}
\] & \[
\begin{array}{|c|}
\hline-1.250 \\
-1.25 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline-1.275 \\
-1.30 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline-1.213 \\
-1.20 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-1.250 \\
-1.25 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-1.287 \\
-1.30 \\
\hline
\end{array}
\] & v \\
\hline Line Regulation（Note 3）
\[
3.0 \mathrm{~V} \leqslant\left|\mathrm{~V}_{\mathrm{l}}-\mathrm{V}_{\mathrm{O}}\right| \leqslant 40 \mathrm{~V}
\] & 1 & Regline & － & 0.02 & 0.05 & － & 0.02 & 0.07 & \％N \\
\hline Load Regulation（Note 3）
\[
10 \mathrm{~mA} \leqslant I_{\mathrm{O}} \leqslant I_{\max } \left\lvert\, \begin{aligned}
& \mathrm{V}_{\mathrm{O}} \mid \leqslant 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \mid \geqslant 5.0 \mathrm{~V}
\end{aligned}\right.
\] & 2 & Regload & 二 & \[
\begin{array}{r}
20 \\
0.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 50 \\
& 1.0 \\
& \hline
\end{aligned}
\] & － & \[
\begin{array}{r}
20 \\
0.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 70 \\
& 1.5
\end{aligned}
\] & \[
\begin{gathered}
m V \\
\% V_{0}
\end{gathered}
\] \\
\hline Temperature Stability（ \(\mathrm{l}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant \mathrm{T}_{\text {high }}\) ） & 3 & TS & － & 0.6 & － & － & 0.6 & － & \(\% \mathrm{~V}_{0}\) \\
\hline \begin{tabular}{l}
Minimum Load Current to \\
Maintain Regulation（ \(\left|\mathrm{V}_{\mathrm{l}}-\mathrm{V}_{\mathrm{O}}\right| \leqslant 10 \mathrm{~V}\) ） \\
\(\left(\left|\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\right| \leqslant 40 \mathrm{~V}\right)\)
\end{tabular} & 3 & ＇Lmin & - & \[
\begin{aligned}
& 1.2 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 5.0
\end{aligned}
\] & － & \[
\begin{aligned}
& 1.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 10
\end{aligned}
\] & mA \\
\hline Maximum Output Current
\[
\begin{aligned}
& \left|V_{1}-V_{O}\right| \leqslant 15 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leqslant \mathrm{P}_{\text {max }} \\
& \mathrm{K} \text { and } \mathrm{T} \text { Packages } \\
& \text { H Package } \\
& \left|\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\right|=40 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leqslant P_{\text {max }}, T_{J}=25^{\circ} \mathrm{C} \\
& \text { K and T Packages } \\
& \text { H Package }
\end{aligned}
\] & 3 & \(I_{\text {max }}\) & \[
\begin{aligned}
& 1.5 \\
& 0.5 \\
& \\
& 0.24 \\
& 0.15
\end{aligned}
\] & \[
\begin{aligned}
& 2.2 \\
& 0.8 \\
& 0.4 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
1.5 \\
0.5 \\
0.15 \\
0.1
\end{gathered}
\] & \[
\begin{aligned}
& 2.2 \\
& 0.8 \\
& 0.4 \\
& 0.2
\end{aligned}
\] & & A \\
\hline \[
\begin{aligned}
& \text { RMS Noise, } \% \text { of } V_{O} \\
& T_{A}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant f \leqslant 10 \mathrm{kHz}
\end{aligned}
\] & － & N & － & 0.003 & － & － & 0.003 & － & \％V \\
\hline ```
Ripple Rejection, \(\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) (Note 5)
 Without \(\mathrm{C}_{\text {Adj }}\)
 \(\mathrm{C}_{\text {Adj }}=10 \mu \mathrm{~F}\)
``` & 4 & RR & \[
\overline{66}
\] & \[
\begin{aligned}
& 60 \\
& 77
\end{aligned}
\] & 二 & 66 & \[
\begin{array}{r}
60 \\
77 \\
\hline
\end{array}
\] & 二 & dB \\
\hline Long－Term Stability， \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}\)（Note 6） \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & － & 0.3 & 1.0 & － & 0.3 & 1.0 & \[
\begin{gathered}
\text { \%/1.0 k } \\
\text { Hrs. }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Thermal Resistance Junction to Case \\
H Package \\
\(K\) Package \\
T Package
\end{tabular} & － & \(\mathrm{R}_{\theta \mathrm{JC}}\) & - & \[
\begin{aligned}
& 12 \\
& 2.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 3.0 \\
& \hline-
\end{aligned}
\] & 二 & \[
\begin{aligned}
& 12 \\
& 2.3 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

NOTES：
（1） \(\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}\) for LM137
\(=-25^{\circ} \mathrm{C}\) for LM237
\(T_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM137 \(=+150^{\circ} \mathrm{C}\) for LM237 \(=+125^{\circ} \mathrm{C}\) for LM337
（2）\(I_{\max }=1.5 \mathrm{~A}\) for K and \(T\) Packages \(=0.5 \mathrm{~A}\) for H Package
\(\begin{aligned} P_{\text {max }} & =20 \mathrm{~W} \text { for } \mathrm{K} \text { and } \mathrm{T} \text { Packages } \\ & =2 \mathrm{~W} \text { or } \mathrm{H} \text { Package }\end{aligned}\)
（3）Load and line regulation are specified at a constant junction tempera－ ture．Pulse testing with a low duty cycle is used．Change in \(\mathrm{V}_{\mathrm{O}}\) because of heating effects is covered under the Thermal Regulation specifi－ cation．
（4）Selected devices with tightened tolerance reference voltage available．
（5） \(\mathrm{C}_{\text {adj，}}\) when used，is connected between the adjustment pin and ground．
（6）Since Long Term Stability cannot be measured on each device before shipment，this specification is an engineering estimate of average stability from lot to lot．
（7）Power dissipation within an I．C．voltage regulator produces a tempera－ ture gradient on the die，affecting individual I．C．components on the die These effects can be minimized by proper integrated circuit design and layout techniques．Thermal Regulation is the effect of these tempera－ ture gradients on the output voltage and is expressed in percentage of output change per watt of power change in a specified time．

SCHEMATIC DIAGRAM

figure 1 - line regulation and \(\Delta^{\prime}\) Adj/Line test circuit


FIGURE 2 - LOAD REGULATION AND IIAdj/LOAD TEST CIRCUIT \(^{\text {I }}\)


FIGURE 3 - STANDARD TEST CIRCUIT


FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT


FIGURE 5 - LOAD REGULATION


FIGURE 7 - ADJUSTMENT PIN CURRENT


FIGURE 9 - TEMPERATURE STABILITY


FIGURE 6 - CURRENT LIMIT


FIGURE 8 - DROPOUT VOLTAGE


FIGURE 10 - MINIMUM OPERATING CURRENT


FIGURE 11 - RIPPLE REJECTION versus OUTPUT VOLTAGE


FIGURE 13 - RIPPLE REJECTION versus FREQUENCY


FIGURE 15 - LINE TRANSIENT RESPONSE


FIGURE 12 - RIPPLE REJECTION versus OUTPUT CURRENT


FIGURE 14 - OUTPUT IMPEDANCE


FIGURE 16 - LOAD TRANSIENT RESPONSE


\section*{APPLICATIONS INFORMATION}

\section*{BASIC CIRCUIT OPERATION}

The LM137 is a 3 -terminal floating regulator. In operation, the LM137 develops and maintains a nominal -1.25 volt reference ( \(\mathrm{V}_{\text {ref }}\) ) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 17), and this constant current flows through R2 from ground. The regulated output voltage is given by:
\[
V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R 2}{R 1}\right)+l_{\text {adj }} R 2
\]

Since the current into the adjustment terminal (ladj) represents an error term in the equation, the LM137 was designed to control \(\mathrm{l}_{\text {adj }}\) to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will increase.

Since the LM137 is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION


\section*{LOAD REGULATION}

The LM137 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor ( R 1 ) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be
returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{EXTERNAL CAPACITORS}

A \(1 \mu \mathrm{~F}\) tantalum input bypass capacitor \(\left(\mathrm{C}_{\mathrm{in}}\right)\) is recommended to reduce the sensitivity to input line impedance. The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor ( \(\mathrm{C}_{\mathrm{adj}}\) ) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.

An output capacitor ( \(\mathrm{C}_{\mathrm{O}}\) ) in the form of a \(1 \mu \mathrm{~F}\) tantalum or \(10 \mu \mathrm{~F}\) aluminum electrolytic capacitor is required for stability.

\section*{PROTECTION DIODES}

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM137 with the recommended protection diodes for output voltages in excess of -25 V or high capacitance values ( \(C_{o}>25 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{adj}}>10 \mu \mathrm{~F}\) ). Diode \(D_{1}\) prevents \(C_{o}\) from discharging thru the I.C. during an input short circuit. Diode \(D_{2}\) protects against capacitor \(C_{\text {adj }}\) discharging through the I.C. during an output short circuit. The combination of diodes D1 and D 2 prevents \(\mathrm{C}_{\text {adj }}\) from discharging through the I.C. during an input short circuit.

FIGURE 18 - VOLTAGE REGULATOR WITH PROTECTION DIODES


\title{
(4) \\ MOTOROLA
}

\title{
LM140,A Series \\ LM340,A Series
}

\section*{Specifications and Applications Information}

\section*{THREE-TERMINAL POSITIVE VOLTAGE REGULATORS}

This family of fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 1.0 ampere. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. Devices are available with improved specifications, including a \(2 \%\) output voltage tolerance, on A-suffix \(5.0,12\) and 15 volt device types.

Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series-pass transistor to boost output current capability at the nominal output voltage.
- Output Current in Excess of 1.0 Ampere
- No External Components Required
- Output Voltage Offered in \(2 \%\) and \(4 \%\) Tolerance*
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & Output Voltage and Tolerance & Tested Operating Junction Temp. Range & Package \\
\hline LM140K-5.0 & \(5.0 \mathrm{~V} \pm 4 \%\) & --55 \({ }^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM140AK-5.0 & \(5.0 \mathrm{~V} \pm 2 \%\) & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM140K-8.0 & \(8.0 \mathrm{~V} \pm 4 \%\) & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM140K-12 & \(12 \mathrm{~V} \pm 4 \%\) & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM140AK-12 & \(12 \mathrm{~V} \pm 2 \%\) & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM140K-15 & \(15 \mathrm{~V} \pm 4 \%\) & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM140AK-15 & \(15 \mathrm{~V} \pm 2 \%\) & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM340K-5.0 & \(5.0 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM340AK-5.0 & \(5.0 \mathrm{~V} \pm 2 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \\
\hline LM340T-5.0 & \(5.0 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline LM340AT-5.0 & \(5.0 \mathrm{~V} \pm 2 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \\
\hline LM340T-6.0 & \(6.0 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline LM340K-8.0 & \(8.0 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM340T-8.0 & \(8.0 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline LM340K-12 & \(12 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM340AK-12 & \(12 \mathrm{~V} \pm 2 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \\
\hline LM340T-12 & \(12 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline LM340AT-12 & \(12 \mathrm{~V} \pm 2 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \\
\hline LM340K-15 & \(15 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Power \\
\hline LM340AK-15 & \(15 \mathrm{~V} \pm 2 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \\
\hline LM340T-15 & \(15 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline LM340AT-15 & \(15 \mathrm{~V} \pm 2 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \\
\hline LM340T-18 & \(18 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline LM340T-24 & \(24 \mathrm{~V} \pm 4 \%\) & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline
\end{tabular}

\section*{THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS}

SILICON MONOLITHIC INTEGRATED CIRCUIT


A common ground is required between the input and the output voltages. The input voltage must remain typically 1.7 V above the output voltage even during the low point on the input ripple voltage.
\(X X=\) these two digits of the type number indicate voltage.
* \(=\mathrm{C}_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter.
** \(=C_{O}\) is not needed for stability; however, it does improve transient response. If needed, use a \(0.1 \mu \mathrm{~F}\) ceramic disc.

\footnotetext{
*2\% regulators are available in 5,12 and 15 volt devices
}

\section*{LM140,A, LM340,A}

MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input Voltage (5.0 \(\mathrm{V}-18 \mathrm{~V})\) & \(\mathrm{V}_{\text {in }}\) & 35 & Vdc \\
\((24 \mathrm{~V})\)
\end{tabular}

EQUIVALENT SCHEMATIC DIAGRAM


\section*{DEFINITIONS}

Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation - The change in output voltage for a change in load current at constant chip temperature.
Maximum Power Dissipation - The maximum total device
dissipation for which the regulator will operate within specifications.
Quiescent Current - That part of the input current that is not delivered to the load.
Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

LM140/340 - 5.0
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{I}_{0}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) ( \(N\) ote 1 ), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T} J=+25^{\circ} \mathrm{C}\) ) \(10=5.0 \mathrm{~mA}\) to 1.0 A & \(\mathrm{V}_{\mathrm{O}}\) & 4.8 & 5.0 & 5.2 & Vdc \\
\hline ```
Line Regulation (Note 2)
    8.0 to 20 Vdc
    7.0 to \(25 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
    8.0 to \(12 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\)
    7.3 to \(20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T} \mathrm{~J}=+25^{\circ} \mathrm{C}\right)\)
``` & Regline & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & — & \[
\begin{aligned}
& 50 \\
& 50 \\
& 25 \\
& 50 \\
& \hline
\end{aligned}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & — & - & \[
\begin{aligned}
& 50 \\
& 50 \\
& 25
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
LM140
\[
\begin{aligned}
& 8.0 \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant 15 \mathrm{~W} \\
& \mathrm{LM} 340 \\
& 7.0 \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant 15 \mathrm{~W}
\end{aligned}
\]
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{array}{r}
4.75 \\
4.75 \\
\hline
\end{array}
\] & - & \[
\begin{array}{r}
5.25 \\
5.25 \\
\hline
\end{array}
\] & Vdc \\
\hline Quiescent Current
\[
\begin{aligned}
& \mathrm{O}=1.0 \mathrm{~A} \\
& \mathrm{LM} 140 \\
& \mathrm{LM} 340 \\
& \mathrm{LM} 140\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{LM} 340\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & \(I_{B}\) & — & \[
\begin{gathered}
- \\
4.0 \\
4.0
\end{gathered}
\] & \[
\begin{aligned}
& 7.0 \\
& 8.5 \\
& 6.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{array}{ll}
8.0 \leqslant V_{\text {in }} \leqslant 25 \mathrm{Vdc}, I_{O}=500 \mathrm{~mA} & \text { LM140 } \\
7.0 \leqslant V_{\text {in }} \leqslant 25 \mathrm{Vdc}, I_{O}=500 \mathrm{~mA} & \text { LM340 } \\
5.0 \mathrm{~mA} \leqslant I_{O} \leqslant 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=10 \mathrm{~V} & \text { LM140, LM340 } \\
8.0 \leqslant V_{\text {in }} \leqslant 20 \mathrm{Vdc}, I_{O}=1.0 \mathrm{~A} & \text { LM140 } \\
7.5 \leqslant V_{\text {in }} \leqslant 20 \mathrm{Vdc}, I_{O}=1.0 \mathrm{~A} & \text { LM340 }
\end{array}
\] & \({ }^{\Delta 1} \mathrm{~B}_{\mathrm{B}}\) & — & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 1.0 \\
& 0.5 \\
& 0.8 \\
& 1.0
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
LM140 \\
LM340
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \text { LM140 } \\
& \text { LM340 }
\end{aligned}
\]
\end{tabular} & RR & \[
\begin{aligned}
& 68 \\
& 62 \\
& 68 \\
& 62
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& 80 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & dB \\
\hline Dropout Voltage & \(\mathrm{v}_{\text {in }}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{I}_{\mathrm{sc}}\) & - & 2.0 & - & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)) \(10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
I_{0}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 0.6\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current (\(\mathrm{J}=+25^{\circ} \mathrm{C}\)) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\))
\[
I_{0}=1.0 \mathrm{~A}
\] & & 7.3 & - & - & Vdc \\
\hline
\end{tabular}

NOTES: 1. Tlow \(=-55^{\circ} \mathrm{C}\) for LM140 \(\quad\) Thigh \(=+150^{\circ} \mathrm{C}\) for LM140
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140A/340A - 5.0
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) (Note 1), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 1 \mathrm{O}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{0}\) & 4.9 & 5.0 & 5.1 & Vdc \\
\hline Line Regulation (Note 2) 7.5 to \(20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) 7.3 to \(20 \mathrm{Vdc}\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) 8.0 to 12 Vdc 8.0 to \(12 \mathrm{Vdc}\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right)\) & Regline & \[
\begin{aligned}
& \text { Z } \\
& -
\end{aligned}
\] & \[
\overline{3.0}
\] & \[
\begin{array}{r}
10 \\
10 \\
12 \\
4.0 \\
\hline
\end{array}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant I_{O} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leqslant I_{O} \leqslant 750 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & - & \[
\begin{aligned}
& 25 \\
& 25 \\
& 15
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
7.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 1.0 \mathrm{~A}, \mathrm{PD}_{\mathrm{D}} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 4.8 & - & 5.2 & Vdc \\
\hline Quiescent Current
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & IB & - & \[
\overline{3.5}
\] & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=10 \mathrm{~V} \\
& 8.0 \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, 10=500 \mathrm{~mA} \\
& 7.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \({ }^{\Delta}{ }_{B}\) & - & - & \[
\begin{aligned}
& 0.5 \\
& 0.8 \\
& 0.8
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& \qquad 8.0 \leqslant \mathrm{~V}_{\text {in }} \leqslant 18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz} \\
& \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T} \mathrm{~J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 68 \\
& 68
\end{aligned}
\] & \[
\overline{80}
\] & - & dB \\
\hline Dropout Voltage & \(v_{\text {in }}-v_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{I}_{\text {sc }}\) & - & 2.0 & - & mA \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage (} \left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}
\] & TCV \({ }_{\text {O}}\) & - & \(\pm 0.6\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation (\(T_{J}=+25^{\circ} \mathrm{C}\)) & & 7.3 & - & - & Vdc \\
\hline
\end{tabular}

\section*{NOTES:}
1. Tlow \(=-55^{\circ} \mathrm{C}\) for LM140A \(\quad T_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM140A
\(0^{\circ} \mathrm{C}\) for LM340A \(=+125^{\circ} \mathrm{C}\) for LM340A
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 - 6.0
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) (Note 1), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) \(1 \mathrm{O}=5.0 \mathrm{~mA}\) to 1.0 A & \(\mathrm{V}_{0}\) & 5.75 & 6.0 & 6.25 & Vdc \\
\hline ```
Line Regulation (Note 2)
 9.0 to 21 Vdc
 8.0 to \(25 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
 9.0 to \(13 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=1.0 \mathrm{~A}\)
 8.3 to \(21 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T} \mathrm{~J}=+25^{\circ} \mathrm{C}\right)\)
``` & Regline & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & - & \[
\begin{aligned}
& 60 \\
& 60 \\
& 30 \\
& 60 \\
& \hline
\end{aligned}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & - & \[
\begin{aligned}
& 60 \\
& 60 \\
& 30
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
\begin{aligned}
& \text { LM } 140 \\
& 9.0 \leqslant V_{\text {in }} \leqslant 21 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant 15 \mathrm{~W} \\
& \mathrm{LM} 340 \\
& 8.0 \leqslant \mathrm{~V}_{\text {in }} \leqslant 21 \mathrm{Vdc}, 6.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant 15 \mathrm{~W}
\end{aligned}
\] & \(\mathrm{v}_{0}\) & 5.7
5.7 & & \[
\begin{aligned}
& 6.3 \\
& 6.3
\end{aligned}
\] & Vdc \\
\hline Quiescent Current
\[
\begin{aligned}
& \mathrm{IO}=1.0 \mathrm{~A} \\
& \mathrm{LM} 140 \\
& \text { LM340 } \\
& \text { LM140 }\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \text { LM340 }\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & 'B & -
- & \[
\begin{aligned}
& - \\
& \overline{4.0} \\
& 4.0
\end{aligned}
\] & \[
\begin{array}{r}
7.0 \\
8.5 \\
6.0 \\
8.0 \\
\hline
\end{array}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{array}{ll}
9.0 \leqslant V_{\text {in }} \leqslant 25 \mathrm{Vdc}, 10=500 \mathrm{~mA} & \text { LM140 } \\
8.0 \leqslant V_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{O}=500 \mathrm{~mA} & \text { LM340 } \\
5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=11 \mathrm{~V} & \text { LM140, LM } 340 \\
9.0 \leqslant \mathrm{~V}_{\text {in }} \leqslant 21 \mathrm{Vdc}, 10=1.0 \mathrm{~A} & \text { LM140 } \\
8.6 \leqslant V_{\text {in }} \leqslant 21 \mathrm{Vc}, 10=1.0 \mathrm{~A} & \text { LM } 340
\end{array}
\] & \(\left.{ }^{\Delta}\right|_{B}\) & -
-
- & \[
\begin{aligned}
& \text { Z } \\
& \text { - }
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 1.0 \\
& 0.5 \\
& 0.8 \\
& 1.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
LM140 \\
LM340
\[
\begin{aligned}
& \mathrm{O}^{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right) \\
& \text { LM140 } \\
& \text { LM340 }
\end{aligned}
\]
\end{tabular} & RR & \[
\begin{aligned}
& 65 \\
& 59 \\
& \\
& 65 \\
& 59 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& 78 \\
& 78
\end{aligned}
\] &  & dB \\
\hline Dropout Voltage & \(\mathrm{v}_{\text {in }}-\mathrm{v}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{I}_{\text {sc }}\) & - & 1.9 & - & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\(10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) & \(\mathrm{v}_{\mathrm{n}}\) & - & 45 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}
\] & TCV \({ }_{\text {O }}\) & - & \(\pm 0.7\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{i}_{\mathrm{O}}=1.0 \mathrm{~A}
\] & & 8.3 & - & - & Vdc \\
\hline
\end{tabular}

\section*{NOTES}
1. Tlow \(=-55^{\circ} \mathrm{C}\) for LM140 \(\quad \mathrm{T}_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM140
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 - 8.0
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) (Note 1), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage ( } \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \text { ) } \\
& \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 7.7 & 8.0 & 8.3 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note 2) } \\
& 11 \text { to } 23 \mathrm{Vdc} \\
& 10.5 \text { to } 25 \mathrm{Vdc}\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 11 \text { to } 17 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} \\
& 10.5 \text { to } 23 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80 \\
& 40 \\
& 80
\end{aligned}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant I_{0} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant I_{0} \leqslant 1.5 \mathrm{~A}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & \[
-
\] & - & \[
\begin{aligned}
& 80 \\
& 80 \\
& 40
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
\begin{aligned}
& \text { LM140 } \\
& 11.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant 15 \mathrm{~W} \\
& \text { LM340 } \\
& \quad 10.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant 15 \mathrm{~W}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 7.6 \\
& 7.6 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 8.4 \\
& 8.4
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Quiescent Current
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}
\] \\
LM140 \\
LM340 \\
LM140 ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) \\
LM340 ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) )
\end{tabular} & 'B & - & \[
\begin{aligned}
& - \\
& 4.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 8.5 \\
& 6.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{array}{ll}
\text { Quiescent Current Change } & \\
11.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} & \text { LM140 } \\
10.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{0}=500 \mathrm{~mA} & \text { LM340 } \\
5.0 \mathrm{~mA} \leqslant \mathrm{IO}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=14 \mathrm{~V} & \text { LM140, LM340 } \\
11.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} & \text { LM140 } \\
10.6 \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} & \text { LM340 } \\
\hline
\end{array}
\] & \(د^{\prime} \mathrm{B}\) & - & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 1.0 \\
& 0.5 \\
& 0.8 \\
& 1.0
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
LM140 \\
LM340
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{LM} 140 \\
& \mathrm{LM} 340
\end{aligned}
\]
\end{tabular} & RR & \[
\begin{aligned}
& 62 \\
& 56 \\
& \\
& 62 \\
& 56
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& 76 \\
& 76
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & \({ }^{2} \mathrm{O}\) & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {sc }}\) & - & 1.5 & - & mA \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage ( } T_{A}=+25^{\circ} \mathrm{C} \text { ) } \\
& 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(V_{n}\) & - & 52 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage \(\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\) & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 1.0\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{I}_{0}=1.0 \mathrm{~A}
\] & & 10.5 & - & - & Vdc \\
\hline
\end{tabular}

\section*{NOTES:}
1. Tlow \(\begin{array}{rlrl} & =-55^{\circ} \mathrm{C} \text { for LM140 } \\ & =0^{\circ} \mathrm{C} \text { for LM340 } & \quad \text { Thigh } & =+150^{\circ} \mathrm{C} \text { for LM140 } \\ & =+125^{\circ} \mathrm{C} \text { for LM340 }\end{array}\)
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{LM140/340 - 12}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=19 \mathrm{~V}, \mathrm{I}_{0}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) (Note 1\()\), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 11.5 & 12 & 12.5 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note 2) } \\
& 15 \text { to } 27 \mathrm{Vdc} \\
& 14.6 \text { to } 30 \mathrm{Vdc}\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right) \\
& 16 \text { to } 22 \mathrm{Vdc}, \mathrm{O}=1.0 \mathrm{~A} \\
& 14.6 \text { to } 27 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regline & \[
-
\] & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
120 \\
120 \\
60 \\
120
\end{gathered}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant I_{0} \leqslant 1.5 \mathrm{~A}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leqslant I_{O} \leqslant 750 \mathrm{~mA}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & E & \[
\begin{gathered}
120 \\
120 \\
60 \\
\hline
\end{gathered}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
LM140
\[
\begin{aligned}
& 15.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{PD}_{\mathrm{L}} \leqslant 15 \mathrm{~W} \\
& \mathrm{LM} 340 \\
& 14.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant 15 \mathrm{~W}
\end{aligned}
\]
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 11.4 \\
& 11.4 \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{r}
12.6 \\
12.6 \\
\hline
\end{array}
\] & Vdc \\
\hline \begin{tabular}{l}
Quiescent Current
\[
\mathrm{I}_{0}=1.0 \mathrm{~A}
\] \\
LM140 \\
LM340 \\
LM140 ( \(\mathrm{T} J=+25^{\circ} \mathrm{C}\) ) \\
LM340 ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) )
\end{tabular} & \({ }^{\prime} \mathrm{B}\) & - & \[
\begin{aligned}
& - \\
& 4.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 8.5 \\
& 6.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{array}{ll}
15 \leqslant V_{\text {in }} \leqslant 30 \mathrm{Vdc}, I_{O}=500 \mathrm{~mA} & \text { LM } 140 \\
14.5 \leqslant V_{\text {in }} \leqslant 30 \mathrm{Vdc}, I_{O}=500 \mathrm{~mA} & \text { LM340 } \\
5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=19 \mathrm{~V} & \text { LM140, LM } 340 \\
15 \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}, I_{O}=1.0 \mathrm{~A} & \text { LM } 140 \\
14.8 \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}, I_{O}=1.0 \mathrm{~A} & \text { LM } 340 \\
\hline
\end{array}
\] & \(د_{B}\) & - & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 1.0 \\
& 0.5 \\
& 0.8 \\
& 1.0
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
LM140 \\
LM340
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{LM} 140 \\
& \mathrm{LM} 340
\end{aligned}
\]
\end{tabular} & RR & \[
\begin{aligned}
& 61 \\
& 55 \\
& \\
& 61 \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& 72 \\
& 72
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & dB \\
\hline Dropout Voltage & \(V_{\text {in }}-V_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{I}_{\text {sc }}\) & - & 1.1 & - & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{0}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{0}\) & - & \(\pm 1.5\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{IO}=1.0 \mathrm{~A}
\] & & 14.6 & - & - & Vdc \\
\hline
\end{tabular}

\section*{NOTES:}
1. Tlow \(=-55^{\circ} \mathrm{C}\) for LM140 \(\quad T_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM140
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140A/340A - 12
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) (Note 1\()\), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage ( } \left.T_{J}=+25^{\circ} \mathrm{C}\right) \\
& 10=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 11.75 & 12 & 12.25 & Vdc \\
\hline \begin{tabular}{l}
Line Regulation (Note 2) \\
14.8 to \(27 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) \\
14.5 to \(27 \mathrm{Vdc}\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right)\) \\
16 to 22 Vdc \\
16 to \(22 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right.\) )
\end{tabular} & Regline & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \begin{tabular}{l} 
- \\
\hline- \\
-
\end{tabular} & \[
\begin{aligned}
& 18 \\
& 18 \\
& 30 \\
& 9.0 \\
& \hline
\end{aligned}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & - & \[
\begin{aligned}
& 60 \\
& 32 \\
& 19
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
14.8 \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{PD}_{\mathrm{D}} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 11.5 & - & 12.5 & Vdc \\
\hline Quiescent Current
\[
\left(T_{J}=+25^{\circ} \mathrm{C}\right)
\] & IB & - & \[
3.5
\] & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=19 \mathrm{~V} \\
& 15 \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 14.8 \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \({ }^{\prime \prime} \mathrm{I}_{\mathrm{B}}\) & - & - & \[
\begin{aligned}
& 0.5 \\
& 0.8 \\
& 0.8
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\begin{aligned}
15 & \leqslant V_{\text {in }} \leqslant 25 \mathrm{Vdc}, f=120 \mathrm{~Hz} \\
\mathrm{I}_{0} & =500 \mathrm{~mA} \\
\mathrm{I}_{0} & =1.0 \mathrm{~A},\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 61 \\
& 61
\end{aligned}
\] & \[
\overline{72}
\] & - & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{I}_{\mathrm{sc}}\) & - & 1.1 & - & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
I_{0}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{0}\) & - & \(\pm 1.5\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & & 14.5 & - & - & Vdc \\
\hline
\end{tabular}

\section*{NOTES:}
1. Tlow \(=-55^{\circ} \mathrm{C}\) for LM140A \(\quad \mathrm{T}_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM140A \(=0^{\circ} \mathrm{C}\) for LM340A
\(=+125^{\circ} \mathrm{C}\) for LM340A
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140A/340 - 15
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=23 \mathrm{~V}, \mathrm{I}_{0}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) (Note 1\()\), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) \(\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\) to 1.0 A & \(\mathrm{V}_{\mathrm{O}}\) & 14.4 & 15 & 15.6 & Vdc \\
\hline ```
Line Regulation (Note 2)
    18.5 to 30 Vdc
    17.5 to \(30 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
    20 to \(26 \mathrm{Vdc}, \mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~A}\)
    17.7 to \(30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
``` & Regline & \[
\begin{aligned}
& - \\
& \text { - } \\
& \hline
\end{aligned}
\] & - & \[
\begin{gathered}
150 \\
150 \\
75 \\
150 \\
\hline
\end{gathered}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.5 \mathrm{~A}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & \[
\bar{Z}
\] & I & \[
\begin{aligned}
& 150 \\
& 150 \\
& 75
\end{aligned}
\] & mV \\
\hline ```
Output Voltage
 LM140
 \(18.5 \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant 15 \mathrm{~W}\)
 LM340
 \(17.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant 15 \mathrm{~W}\)
``` & \(\mathrm{v}_{\mathrm{O}}\) & \[
\begin{aligned}
& 14.25 \\
& 14.25
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& 15.75 \\
& 15.75
\end{aligned}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Quiescent Current } \\
& \text { IO }=1.0 \mathrm{~A} \\
& \text { LM140 } \\
& \text { LM340 } \\
& \text { LM140 }\left(T J=+25^{\circ} \mathrm{C}\right) \\
& \text { LM340 }\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & IB & - & \[
\begin{aligned}
& - \\
& \overline{-} \\
& 4.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 8.5 \\
& 6.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{array}{ll}
18.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} & \text { LM140 } \\
17.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{I}=500 \mathrm{~mA} & \text { LM340 } \\
5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=23 \mathrm{~V} & \text { LM140, LM340 } \\
18.5 \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{I}=1.0 \mathrm{~A} & \text { LM140 } \\
17.9 \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~A} & \text { LM340 } \\
\hline
\end{array}
\] & \({ }^{1} \mathrm{~B}_{\mathrm{B}}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 1.0 \\
& 0.5 \\
& 0.8 \\
& 1.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
LM140 \\
LM340
\[
\begin{aligned}
& \mathrm{I}^{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \text { LM140 } \\
& \text { LM340 }
\end{aligned}
\]
\end{tabular} & RR & \[
\begin{aligned}
& 60 \\
& 54 \\
& \\
& 60 \\
& 54
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& 70 \\
& 70
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & dB \\
\hline Dropout Voltage & \(\mathrm{v}_{\text {in }}-\mathrm{v}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{l}_{\text {sc }}\) & - & 800 & - & mA \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage ( } \left.T_{A}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leqslant f \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{O}=5.0 \mathrm{~mA}
\] & TCVO & - & \(\pm 1.8\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{I}_{0}=1.0 \mathrm{~A}
\] & & 17.7 & - & - & Vdc \\
\hline
\end{tabular}

\section*{NOTES:}
1. Tlow \(=-55^{\circ} \mathrm{C}\) for LM140 \(\quad\) Thigh \(=+150^{\circ} \mathrm{C}\) for LM140
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{LM140,A, LM340,A}

LM140A/340A - 15
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) (Note 1 ), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) \(10=5.0 \mathrm{~mA}\) to 1.0 A & \(\mathrm{V}_{0}\) & 14.7 & 15 & 15.3 & Vdc \\
\hline \begin{tabular}{l}
Line Regulation (Note 2) \\
17.9 to \(30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) \\
17.5 to \(30 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) \\
20 to \(26 \mathrm{Vdc}, \mathrm{I}=1.0 \mathrm{~A}\) \\
20 to \(26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & Regline & - & \[
4.0
\] & \[
\begin{aligned}
& 22 \\
& 22 \\
& 30 \\
& 10 \\
& \hline
\end{aligned}
\] & . mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant 1 \leqslant 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & \[
\overline{12}
\] & \[
\begin{aligned}
& 75 \\
& 35 \\
& 21
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
17.9 \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{V}_{0}\) & 14.4 & - & 15.6 & Vdc \\
\hline Quiescent Current
\[
\left(T_{J}=+25^{\circ} \mathrm{C}\right)
\] & \({ }^{\prime} \mathrm{B}\) & & \[
\overline{3.5}
\] & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 5.0 \mathrm{~mA} \leq 1 \mathrm{O} \leq 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=23 \mathrm{~V} \\
& 17.9 \leqslant \mathrm{~V}_{\text {in }} \leq 30 \mathrm{Vdc}, \mathrm{l}=500 \mathrm{~mA} \\
& 17.9 \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \({ }^{\Delta} \|_{B}\) & - & - & \[
\begin{aligned}
& 0.5 \\
& 0.8 \\
& 0.8
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\begin{aligned}
18.5 & \leqslant V_{i n} \leqslant 28.5 \mathrm{Vdc}, f=120 \mathrm{~Hz} \\
I_{0} & =500 \mathrm{~mA} \\
\mathrm{O} & =1.0 \mathrm{~A},\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 60 \\
& 60
\end{aligned}
\] & \[
\overline{70}
\] & - & dB \\
\hline Dropout Voltage & \(v_{\text {in }}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{I}_{\text {sc }}\) & - & 800 & - & mA \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage ( } \left.T_{A}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leqslant f \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
l_{0}=5.0 \mathrm{~mA}
\] & TCVO & - & \(\pm 1.8\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & & 17.5 & - & - & Vdc \\
\hline
\end{tabular}

NOTES:
1. \(T_{\text {low }}=-55^{\circ} \mathrm{C}\) for LM140A \(\quad T_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM140A
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 - 18
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) (Note 1\()\), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) \(10=5.0 \mathrm{~mA}\) to 1.0 A & \(\mathrm{V}_{\mathrm{O}}\) & 17.3 & 18 & 18.7 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note 2) } \\
& 21.5 \text { to } 33 \mathrm{Vdc} \\
& 21 \text { to } 33 \mathrm{Vdc}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 24 \text { to } 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} \\
& 21 \text { to } 33 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
180 \\
180 \\
90 \\
180
\end{gathered}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}\left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & \[
-
\] & \[
\begin{gathered}
180 \\
180 \\
90
\end{gathered}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
LM140
\[
\begin{aligned}
& 22 \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{PD}_{\mathrm{D}} \leqslant 15 \mathrm{~W} \\
& 21 \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}, \mathrm{PD}_{\mathrm{D}} \leqslant 15 \mathrm{~W}
\end{aligned}
\]
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & \begin{tabular}{l}
17.1 \\
17.1
\end{tabular} & - & \[
\begin{aligned}
& 18.9 \\
& 18.9
\end{aligned}
\] & Vdc \\
\hline Quiescent Current
\[
\begin{aligned}
& \mathrm{I}^{\mathrm{O}}=1.0 \mathrm{~A} \\
& \mathrm{LM} 140 \\
& \mathrm{LM} 340 \\
& \mathrm{LM} 140\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{LM} 340\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IB & - & \[
\begin{aligned}
& - \\
& 4.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 8.5 \\
& 6.0 \\
& 8.0
\end{aligned}
\] & mA \\
\hline Quiescent Current Change & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & — & \[
\begin{aligned}
& 0.8 \\
& 1.0 \\
& 0.5 \\
& 0.8 \\
& 1.0
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
LM140 \\
LM340
\[
\begin{aligned}
& \mathrm{IO}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{LM} 140 \\
& \text { LM340 }
\end{aligned}
\]
\end{tabular} & RR & \[
\begin{aligned}
& 59 \\
& 53 \\
& 59 \\
& 53
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& 69 \\
& 69
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & dB \\
\hline Dropout Voltage & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(\mathrm{TJ}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{I}_{\mathrm{sc}}\) & - & 500 & - & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 110 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
10=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 2.3\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{JJ}^{\prime}=+25^{\circ} \mathrm{C}\) ) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation ( \(\mathrm{TJ}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}
\] & & 21 & - & - & Vdc \\
\hline
\end{tabular}

\section*{NOTES:}
1. Tlow \(=-55^{\circ} \mathrm{C}\) for LM140 \(\quad T_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM140
\[
0^{\circ} \mathrm{C} \text { for LM340 } \quad=+125^{\circ} \mathrm{C} \text { for LM340 }
\]
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{LM140,A, LM340,A}

LM140/340 - 24
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) (Note 1\()\), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Output Voltage }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& 10=5.0 \mathrm{~mA} \text { to } 1.0 \mathrm{~A} \\
& \hline
\end{aligned}
\] & vo & 23 & 24 & 25 & Vdc \\
\hline ```
Line Regulation (Note 2)
    28 to 38 Vdc
    27 to \(38 \mathrm{Vdc}\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right.\) )
    30 to \(36 \mathrm{Vdc}, \mathrm{IO}=1.0 \mathrm{~A}\)
    27.1 to \(38 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\left(\mathrm{~T} J=+25^{\circ} \mathrm{C}\right)\)
``` & Regline & \[
\begin{aligned}
& \text { Z } \\
& \text { Z }
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& \text { I }
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 240 \\
& 120 \\
& 240
\end{aligned}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 1.5 \mathrm{~A}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& 250 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA}\left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regload & - & - & \[
\begin{aligned}
& 240 \\
& 240 \\
& 120 \\
& \hline
\end{aligned}
\] & mV \\
\hline ```
Output Voltage
 LM140
 \(28 \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{PD}_{\mathrm{D}} \leqslant 15 \mathrm{~W}\)
 LM340
 \(27 \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{PD} \leqslant 15 \mathrm{~W}\)
``` & \(\mathrm{v}_{0}\) & \[
\begin{aligned}
& 22.8 \\
& 22.8
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& 25.2 \\
& 25.2
\end{aligned}
\] & Vdc \\
\hline Quiescent Current
\[
\begin{aligned}
& \mathrm{O}=1.0 \mathrm{~A} \\
& \mathrm{LM} 140 \\
& \text { LM340 } \\
& \text { LM140 }\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{LM} 340\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \(I_{B}\) & - & \[
\begin{aligned}
& \overline{-} \\
& 4.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 8.5 \\
& 6.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline Quiescent Current Change & \(\Delta^{\text {d }}\) & \[
\begin{aligned}
& \text { - } \\
& \text { — }
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.8 \\
& 1.0 \\
& 0.5 \\
& 0.8 \\
& 1.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& \text { LM140 } \\
& \text { LM340 } \\
& \text { IO }=1.0 \mathrm{~A}\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \text { LM140 } \\
& \text { LM340 }
\end{aligned}
\] & RR & \[
\begin{aligned}
& 56 \\
& 50 \\
& 56 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& 66 \\
& 66
\end{aligned}
\] & -
-
- & dB \\
\hline Dropout Voltage & \(\mathrm{v}_{\text {in }}-\mathrm{V}_{0}\) & - & 1.7 & - & Vdc \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit ( \(T_{J}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{I}_{\text {sc }}\) & - & 200 & - & mA \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{A}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 170 & - & \(\mu \mathrm{V}\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
10=5.0 \mathrm{~mA}
\] & TCV \({ }_{0}\) & - & \(\pm 3.0\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current ( \(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\) ) & 10 & - & 2.4 & - & A \\
\hline Input Voltage to Maintain Line Regulation ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) \(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & & 27.1 & - & - & Vdc \\
\hline
\end{tabular}

\section*{NOTES:}
1. \(T_{\text {low }}=-55^{\circ} \mathrm{C}\) for \(\mathrm{LM} 140 \quad \mathrm{~T}_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM 140
\(0^{\circ} \mathrm{C}\) for LM340
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{VOLTAGE REGULATOR PERFORMANCE}

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration ( \(<100 \mu \mathrm{~s}\) ) and are strictly a function of electrical gain. However, pulse widths of longer duration ( \(>1.0 \mathrm{~ms}\) ) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.

Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The change in dissipated
power can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of IC layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms , additional changes in the output voltage are due to the temperature coefficient of the device.

Figure 1 shows the line and thermal regulation response of a typical LM140AK-5.0 to a 10 watt input pulse. The variation of the output voltage due to line regulation is labeled (1) and the thermal regulation component is labeled (2). Figure 2 shows the load and thermal regulation response of a typical LM140AK-5.0 to a 15 watt load pulse. The output voltage variation due to load regulation is labeled (1) and the thermal regulation component is labeled (2).

FIGURE 1 - LINE AND THERMAL REGULATION

t. TIME ( \(2.0 \mathrm{~ms} /\) div.)

LM140AK-5.0
\(V_{0}=5.0 \mathrm{~V}\)
\(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V} \rightarrow 18 \mathrm{~V} \rightarrow 8.0 \mathrm{~V} \quad(1)=\) Reg \(_{\text {line }}=2.4 \mathrm{mV}\)
\(\mathrm{l}_{\text {out }}=1.0 \mathrm{~A} \quad\) (2) \(=\) Reg \(_{\text {therm }}=0.0030 \% \mathrm{~V}_{\mathrm{O}} W\)

FIGURE 2 - LOAD AND THERMALREGULATION

( TIME (2 \(0 \mathrm{~ms} / \mathrm{div}\) )
LM140AK-5.0
\(V_{0}=5.0 \mathrm{~V}\)
\[
\begin{array}{ll}
V_{\text {in }}=15 & (1)=\text { Reg load }=4.4 \mathrm{mV} \\
\mathrm{l}_{\text {out }}=0 \mathrm{~A} \rightarrow 1.5 \mathrm{~A} \rightarrow 0 \mathrm{~A} & \text { (2) }=\text { Reg therm }=0.0020 \% \mathrm{~V}_{0} \mathrm{~W}
\end{array}
\]

FIGURE 4 - OUTPUT IMPEDANCE


FIGURE 5 - RIPPLE REJECTION versus FREQUENCY


FIGURE 7 - QUIESCENT CURRENT versus INPUT VOLTAGE


FIGURE 9 - DROPOUT VOLTAGE


FIGURE 6 - RIPPLE REJECTION versus OUTPUT CURRENT


FIGURE 8 - QUIESCENT CURRENT versus OUTPUT CURRENT


FIGURE 10 - PEAK OUTPUT CURRENT


FIGURE 11 - LINE TRANSIENT RESPONSE


FIGURE 13 - WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE (Case 221A)


FIGURE 12 - LOAD TRANSIENT RESPONSE


3

FIGURE 14 - WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE (Case 1)


\section*{Design Considerations}

The LM140 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter
with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.


These regulators can also be used as a current source when connected as above. In order to minimize dissipation the LM140-5.0 is chosen in this application. Resistor R determines the current as follows:
\[
I_{0}=\frac{5.0 V}{R}+I_{0}
\]
\(\mathrm{O} \cong 1.5 \mathrm{~mA}\) over line and load changes
For example, a 1 -ampere current source would require R to be a \(5-\mathrm{ohm}, 10-\mathrm{W}\) resistor and the output voltage compliance would be the input voltage less 7.0 volts.

FIGURE 16 - ADJUSTABLE OUTPUT REGULATOR


The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with thi arrangement is 2.0 volts greater than the regulator voltage.

FIGURE 17 - CURRENT BOOST REGULATOR


The LM140 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor \(R\) in conjunction with the \(\mathrm{V}_{\mathrm{BE}}\) of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by \(\mathrm{V}_{\mathrm{BE}}\) of the pass transistor.

FIGURE 18 - SHORT-CIRCUIT PROTECTION


The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, \(\mathrm{P}_{\mathrm{Sc}}\), and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified.

\section*{Specifications and Applications Information}

\section*{THREE-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATORS}

The LM150/250/350 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 3.0 A over an output voltage range of 1.2 V to 33 V . These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal strutdown and safe area compensation, making them essentially blow-out proof.

The LM1 50 series serve a wide variety of applications including local, on card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM150 series can be used as a precision current regulator.
- Guaranteed 3.0 Amps Output Current
- Output Adjustable between 1.2 V and 33 V
- Load Regulation Typically 0.1\%
- Line Regulation Typically 0.005\%/V
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting Constant with Temperature
- Output Transistor Safe-area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

* \(=C_{i n}\) is required if regulator is located an appreciable distance from power supply filter.
** \(=C_{0}\) is not needed for stability, however it does improve transient response.
\[
V_{\text {out }}=1.25 V\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {Adj }} R_{2}
\]

Since 'Adj is controlled to less than \(100 \mu \mathrm{~A}\), the error associated with this term is negligible in most applications
\#Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information.

THREE-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

\section*{K SUFFIX}

METAL PACKAGE
CASE 1-03

(Bottom View)

Pins 1 and 2 electrically isolated from case. Case is third electrical connection.

ORDERING INFORMATION
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{c|}{ ORDERING INFORMATION } \\
\hline \multicolumn{1}{|c|}{\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Tested Operating \\
Temperature Range
\end{tabular}} & \multicolumn{1}{c|}{ Package } \\
\hline LM150K & \(\mathrm{T}_{J}=-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
LM250K & \(\mathrm{T}_{J}=-25^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Metal Power \\
LM350K & \(\mathrm{T}_{J}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Power \\
LM350T & \(\mathrm{T}_{J}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
LM350BT\# & \(\mathrm{T}_{J}=-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline
\end{tabular}}
\end{tabular}


MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rating} & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & 35 & Vdc \\
\hline Power Dissipation & & \(\mathrm{P}_{\mathrm{D}}\) & Internally Limited & \\
\hline Operating Junction Temperature Range & LM150 LM250 LM350 & TJ & \[
\begin{aligned}
& -55 \text { to }+150 \\
& -25 \text { to }+150 \\
& 0 \text { to }+125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Soldering Lead Temperature (10 seconds) & & & 300 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, \(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V} ; \mathrm{I}=1.5 \mathrm{~A} ; \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }} ; \mathrm{P}_{\text {max }}\) [see Note 1].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Figure} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM150/250} & \multicolumn{3}{|c|}{LM350} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min & Typ & Max & Min & Typ & Max & \\
\hline Line Regulation (Note 2)
\[
T_{A}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leqslant V_{1}-V_{O} \leqslant 35 \mathrm{~V}
\] & 1 & Regline & - & 0.005 & 0.01 & - & 0.005 & 0.03 & \%N/ \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{L}} \leqslant 3.0 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{O}} \leqslant 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \geqslant 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regioad & - & \[
\begin{aligned}
& 5.0 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 0.3
\end{aligned}
\] & - & \[
\begin{aligned}
& 5.0 \\
& 0.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 0.5
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\% \mathrm{~V}_{\mathrm{o}} \\
\hline
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { Thermal Regulation, Pulse }=20 \mathrm{~ms}, \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & - & \(\mathrm{Reg}_{\text {therm }}\) & - & 0.002 & - & - & 0.002 & - & \% \(\mathrm{V}_{\mathrm{O}}\) W \\
\hline Adjustment Pin Current & 3 & \({ }^{\prime} \mathrm{Adj}\) & - & 50 & 100 & - & 50 & 100 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Adjustment Pin Current Change } \\
& 3.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{O}} \leqslant 35 \mathrm{~V} \\
& 10 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{L}} \leqslant 3.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant \mathrm{P}_{\max }
\end{aligned}
\] & 1,2 & \({ }^{\Delta}{ }_{\text {Adj }}\) & - & 0.2 & 5.0 & - & 0.2 & 5.0 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Reference Voltage (Note } 3 \text { ) } \\
& 3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{0} \leqslant 35 \mathrm{~V} \\
& 10 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{L}} \leqslant 3.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant \mathrm{P}_{\max }
\end{aligned}
\] & 3 & \(\mathrm{v}_{\text {ref }}\) & 1.20 & 1.25 & 1.30 & 1.20 & 1.25 & 1.30 & v \\
\hline Line Regulation (Note 2)
\[
3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 35 \mathrm{~V}
\] & 1 & Regline & - & 0.02 & 0.05 & - & 0.02 & 0.07 & \%/V \\
\hline \[
\begin{gathered}
\text { Load Regulation (Note 2) } \\
10 \mathrm{~mA} \leqslant 1 \mathrm{~L} \leqslant 3.0 \mathrm{~A} \\
\mathrm{~V}_{\mathrm{O}} \leqslant 5.0 \mathrm{~V} \\
V_{O} \geqslant 5.0 \mathrm{~V}
\end{gathered}
\] & 2 & Regload & - & \[
\begin{aligned}
& 20 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 1.0
\end{aligned}
\] & & \[
\begin{gathered}
20 \\
0.3
\end{gathered}
\] & \[
\begin{aligned}
& 70 \\
& 1.5
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\% \mathrm{v}_{\mathrm{O}} \\
\hline
\end{gathered}
\] \\
\hline Temperature Stability ( \(\mathrm{l}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant \mathrm{T}_{\text {high }}\) ) & 3 & Ts & - & 1.0 & - & - & 1.0 & - & \(\% \mathrm{~V}_{0}\) \\
\hline Minimum Load Current to Maintain Regulation ( \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}=35 \mathrm{~V}\) ) & 3 & \({ }^{\prime}\) Lmin & - & 3.5 & 5.0 & - & 3.5 & 10 & mA \\
\hline \[
\begin{aligned}
& \text { Maximum Output Current } \\
& V_{1}-V_{O} \leqslant 10 \mathrm{~V}, \mathrm{PD}_{\mathrm{D}} \leqslant \mathrm{P}_{\max } \\
& \mathrm{V}_{1}-\mathrm{V}_{0}=30 \mathrm{~V}, \mathrm{P}_{\mathrm{D}} \leqslant \mathrm{P}_{\max }, \mathrm{T}_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 3 & \(I_{\text {max }}\) & \[
\begin{aligned}
& 3.0 \\
& 0.3
\end{aligned}
\] & \[
\begin{array}{r}
4.5 \\
.1 .0 \\
\hline
\end{array}
\] & & \[
\begin{gathered}
3.0 \\
0.25 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 4.5 \\
& 1.0 \\
& \hline
\end{aligned}
\] & & A \\
\hline \[
\begin{aligned}
& \text { RMS Noise, } \% \text { of } V_{O} \\
& T_{A}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 10 \mathrm{kHz}
\end{aligned}
\] & - & N & - & 0.003 & - & - & 0.003 & - & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline ```
Ripple Rejection, \(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\)
    (Note 4)
        Without \(\mathrm{C}_{\text {Adj }}\)
        \(\mathrm{C}_{\text {Adj }}=10 \mu \mathrm{~F}\)
``` & 4 & RR & 66 & \[
\begin{aligned}
& 65 \\
& 80
\end{aligned}
\] & & 66 & \[
\begin{aligned}
& 65 \\
& 80
\end{aligned}
\] & & dB \\
\hline Long-Term Stability, \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}\) (Note 5) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & - & 0.3 & 1.0 & \[
\begin{gathered}
\text { \%/1.0k } \\
\text { Hrs. }
\end{gathered}
\] \\
\hline \begin{tabular}{cl}
Thermal Resistance Junction to Case \\
Peak (Note 6) & K Package \\
& \begin{tabular}{l}
T Package \\
Average (Note 7)
\end{tabular} \\
& K Package \\
& T Package
\end{tabular} & - & \(\mathrm{R}_{\theta \mathrm{JC}}\) & 二 & 2.3
-
-
- & \begin{tabular}{l}
- \\
\hline- \\
\hline
\end{tabular} & 二 & 2.3
2.3
- & \begin{tabular}{l}
- \\
\hline 1.5 \\
1.5
\end{tabular} & \({ }^{\circ} \mathrm{C}\) W \\
\hline
\end{tabular}

NOTES:
(1) \(\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}\) for LM150 \(-25^{\circ} \mathrm{C}\) for LM250 \(0^{\circ} \mathrm{C}\) for LM350
\(\mathrm{T}_{\text {high }}=+150^{\circ} \mathrm{C}\) for LM150
\(=+150^{\circ} \mathrm{C}\) for LM 250
\(=+125^{\circ} \mathrm{C}\) for LM 350
(5) Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
(6) Thermal Resistance evaluated measuring the hottest temperature on the die using an infrared scanner. This method of evaluation yields very accurate thermal resistance values which are conservative when compared to other measurement techniques.
(7) The average die temperature is used to derive the value of thermal resistance junction to case (average).

FIGURE 1 - LINE REGULATION AND \(\Delta^{\prime}\) Adj \(^{\prime} /\) LINE TEST CIRCUIT

\section*{LM150, LM250, LM350}

FIGURE 3 - STANDARD TEST CIRCUIT

FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT

FIGURE 5 - LOAD REGULATION

FIGURE 7 - ADJUSTMENT PIN CURRENT

FIGURE 9 - TEMPERATURE STABILITY

FIGURE 6 - CURRENT LIMIT

FIGURE 10 - MINIMUM OPERATING CURRENT

\section*{LM150, LM250, LM350}

FIGURE 11 - RIPPLE REJECTION versus OUTPUT VOLTAGE

FIGURE 13 - RIPPLE REJECTION versus FREQUENCY

FIGURE 15 - LINE TRANSIENT RESPONSE

FIGURE 12 - RIPPLE REJECTION versus OUTPUT CURREN1

FIGURE 14 - OUTPUT IMPEDANCE

FIGURE 16 - LOAD TRANSIENT RESPONSE

\section*{APPLICATIONS INFORMATION}

\section*{BASIC CIRCUIT OPERATION}

The LM150 is a 3-terminal floating regulator. In operation, the LM 150 develops and maintains a nominal 1.25 volt reference (\(V_{\text {ref }}\)) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 17), and this constant current flows through R2 to ground. The regulated output voltage is given by:
\(V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {Adj }} R 2\)

Since the current from the adjustment terminal (IAdj) represents an error term in the equation, the LM150 was designed to control IAdj to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM150 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

\section*{LOAD REGULATION}

The LM150 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{EXTERNAL CAPACITORS}

A \(0.1 \mu \mathrm{~F}\) disc or \(1 \mu \mathrm{~F}\) tantalum input bypass capacitor \(\left(\mathrm{C}_{\mathrm{in}}\right)\) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (CADJ) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.

Although the LM150 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance \(\left(\mathrm{C}_{\mathrm{O}}\right)\) in the form of a \(1 \mu \mathrm{~F}\) tantalum or \(25 \mu \mathrm{~F}\) aluminum electrolytic capacitor on the output swamps this effect and insures stability.

\section*{PROTECTION DIODES}

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM150 with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values \(\left(\mathrm{C}_{\mathrm{O}}>25 \mu \mathrm{~F}, \mathrm{C}_{\text {ADJ }}>10 \mu \mathrm{~F}\right)\). Diode \(D_{1}\) prevents \(C_{0}\) from discharging thru the I.C. during an input short circuit. Diode \(D_{2}\) protects against capacitor CADJ discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents CADJ from discharging through the I.C. during an input short circuit.

FIGURE 18 - VOLTAGE REGULATOR WITH PROTECTION DIODES

FIGURE 19 - "LABORATORY" POWER SUPPLY WITH ADJUSTABLE CURRENT LIMIT AND OUTPUT VOLTAGE

FIGURE 20 - ADJUSTABLE CURRENT LIMITER

FIGURE 22 - SLOW TURN-ON REGULATOR

FIGURE 21 - 5 V ELECTRONIC SHUT DOWN REGULATOR

FIGURE 23 - CURRENT REGULATOR

\section*{THREE-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATOR}

The LM317M is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 500 mA over an output voltage range of 1.2 V to 37 V . This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof.

The LM317M serves a wide variety of applications including local, on-card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317M can be used as a precision current regulator.
- Output Current in Excess of 500 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit-Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

STANDARD APPLICATION

\({ }^{*} \mathrm{C}_{\mathrm{in}}\) is required if regulator is located in appreciable distance from power supply filter.
** \(C_{0}\) is not needed for stability, however it does improve transient response.
\[
V_{O}=1.25 V\left(1+\frac{R_{2}}{R_{1}}\right)+I_{a d j} R_{2}
\]

Since ladj is controlled to less than \(100 \mu \mathrm{~A}\), the error associated with this term is negligible in most applications.

\section*{MEDIUM-CURRENT THREE-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR}

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION
\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Device } & \multicolumn{1}{c|}{\begin{tabular}{c}
Tested Operating \\
Temperature Range
\end{tabular}} & \multicolumn{1}{c|}{ Package } \\
\hline LM317MT & \begin{tabular}{c}
\(\mathrm{T}_{J}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
LM317MBT\# \\
\(\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{c}
Plastic Power \\
Plastic Power \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\#Automotive temperature range selections are
available with special test conditions and additional tests. Contact your local Motorola sales office for information.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & 40 & Vdc \\
\hline Power Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & Internally Limited & \\
\hline Operating Junction Temperature Range & \(\mathrm{T}_{\mathrm{J}}\) & 0 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}
\(\left(V_{1}-V_{O}=5.0 \mathrm{~V}, I_{0}=0.1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [see Note 1], \(\mathrm{P}_{\max }\) per Note 2, unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Figure & Symbol & Min & Typ & Max & Unit \\
\hline Line Regulation (Note 3)
\[
T_{A}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 40 \mathrm{~V}
\] & 1 & Regline & - & 0.01 & 0.04 & \%N \\
\hline Load Regulation (Note 3)
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 0.5 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{O}} \leqslant 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \geqslant 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & - & \[
\begin{aligned}
& 5.0 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 0.5
\end{aligned}
\] & \[
\begin{gathered}
m v \\
\% v_{0} \\
\hline
\end{gathered}
\] \\
\hline Adjustment Pin Current & 3 & ladj & - & 50 & 100 & \(\mu \mathrm{A}\) \\
\hline Adjustment Pin Current Change
\[
2.5 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 40 \mathrm{~V}, 10 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{L}} \leqslant 0.5 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant P_{\max }
\] & 1,2 & \(\Delta{ }_{\text {adj }}\) & - & 0.2 & 5.0 & \(\mu \mathrm{A}\) \\
\hline Reference Voltage (Note 4)
\[
3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 40 \mathrm{~V}, 10 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 0.5 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leqslant \mathrm{P}_{\max }
\] & 3 & \(V_{\text {ref }}\) & 1.20 & 1.25 & 1.30 & V \\
\hline Line Regulation (Note 3)
\[
3.0 \mathrm{~V} \leqslant \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}} \leqslant 40 \mathrm{~V}
\] & 1 & Regline & - & 0.02 & 0.07 & \%N \\
\hline Load Regulation (Note 3)
\[
\begin{gathered}
10 \mathrm{~mA} \leqslant 10 \leqslant 0.5 \mathrm{~A} \\
\mathrm{~V}_{\mathrm{O}} \leqslant 5.0 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{O}} \geqslant 5.0 \mathrm{~V} \\
\hline
\end{gathered}
\] & 2 & Regload & \[
-
\] & \[
\begin{aligned}
& 20 \\
& 0.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.5
\end{aligned}
\] & \[
\begin{gathered}
m v \\
\% v_{0} \\
\hline
\end{gathered}
\] \\
\hline Temperature Stability (\(T_{\text {low }} \leqslant T_{J} \leqslant T_{\text {high }}\)) & 3 & Ts & - & 0.7 & - & \% \(\mathrm{V}_{0}\) \\
\hline Minimum Load Current to Maintain Regulation
\[
\left(V_{1}-V_{O}=40 \mathrm{~V}\right)
\] & 3 & \(I_{\text {Lmin }}\) & - & 3.5 & 10 & mA \\
\hline Maximum Output Current
\[
\begin{aligned}
& V_{1}-V_{O} \leqslant 15 \mathrm{~V}, P_{D} \leqslant P_{\max } \\
& V_{1}-V_{O}=40 \mathrm{~V}, P_{D} \leqslant P_{\max }, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 3 & \(I_{\text {max }}\) & \[
\begin{gathered}
0.5 \\
0.15
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
0.25 \\
\hline
\end{gathered}
\] & & A \\
\hline RMS Noise, \% of \(V_{O}\)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 10 \mathrm{kHz}
\] & - & N & - & 0.003 & - & \% V \\
\hline ```
Ripple Rejection, \(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) (Note 5)
 Without \(\mathrm{C}_{\text {adj }}\)
 \(\mathrm{C}_{\mathrm{adj}}=10 \mu \mathrm{~F}\)
``` & 4 & RR & \[
\overline{66}
\] & \[
\begin{aligned}
& 65 \\
& 80
\end{aligned}
\] & - & dB \\
\hline Long Term Stability, \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}\) (Note 6) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & \[
\% / 1.0 \mathrm{k}
\]
Hrs. \\
\hline Thermal Resistance Junction to Case & - & \(\mathrm{R}_{\theta \mathrm{JCC}}\) & - & 7.0 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

\section*{NOTES:}
(1) \(\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
(2) \(P_{\text {max }}=7.5 \mathrm{~W}\)
(3) Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
(4) Selected devices with tightened tolerance reference voltage available.
(5) Cadj, when used, is connected between the adjustment pin and \(_{\text {w }}\) ground.
(6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

SCHEMATIC DIAGRAM


FIGURE 1 - LINE REGULATION AND \(د^{\prime}\) Adj \(/\) LINE TEST CIRCUIT


FIGURE 2 - LOAD REGULATION AND \(\Delta^{\prime} I_{\text {Adj }} /\) LOAD TEST CIRCUIT


FIGURE 3 - STANDARD TEST CIRCUIT


FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT


FIGURE 5 - LOAD REGULATION


FIGURE 7 - CURRENT LIMIT


FIGURE 9 - MINIMUM OPERATING CURRENT


FIGURE 6 - RIPPLE REJECTION


FIGURE 8 - DROPOUT VOLTAGE


FIGURE 10 - RIPPLE REJECTION versus FREQUENCY


FIGURE 13 - LINE REGULATION


FIGURE 15 - LINE TRANSIENT RESPONSE


FIGURE 12 - ADJUSTMENT PIN CURRENT


FIGURE 14 - OUTPUT NOISE


FIGURE 16 - LOAD TRANSIENT RESPONSE


\section*{APPLICATIONS INFORMATION}

\section*{BASIC CIRCUIT OPERATION}

The LM317M is a 3 -terminal floating regulator. In operation, the LM317M develops and maintains a nominal 1.25 volt reference ( \(\mathrm{V}_{\text {ref }}\) ) between its output and adjustment terminals. This reference voltage is converted to a programming current (1 prog) by R1 (see Figure 17), and this constant current flows through R2 to ground. The regulated output voltage is given by:
\[
V_{O}=V_{\text {ref }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {adj }} R 2
\]

Since the current from the adjustment terminal (ladj) represents an error term in the equation, the LM317M was designed to control ladj to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.
Since the LM317M is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION


\section*{LOAD REGULATION}

The LM317M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{EXTERNAL CAPACITORS}

A \(0.1 \mu \mathrm{~F}\) disc or \(1 \mu \mathrm{~F}\) tantalum input bypass capacitor ( \(\mathrm{C}_{\mathrm{in}}\) ) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor ( \(\mathrm{C}_{\mathrm{adj}}\) ) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.

Although the LM317M is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance ( \(\mathrm{C}_{\mathrm{O}}\) ) in the form of a \(1 \mu \mathrm{~F}\) tantalum or \(25 \mu \mathrm{~F}\) aluminum electrolytic capacitor on the output swamps this effect and insures stability.

\section*{PROTECTION DIODES}

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capcitors from discharging through low current points into the regulator.

Figure 18 shows the LM317M with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values \(\left(\mathrm{C}_{\mathrm{o}}>25 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{adj}}>5.0 \mu \mathrm{~F}\right)\). Diode D1 prevents \(C_{0}\) from discharging thru the I.C. during an input short circuit. Diode D2 protects against capacitor \(\mathrm{C}_{\mathrm{adj}}\) discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents \(C_{a d j}\) from discharging through the I.C. during an input short circuit.

FIGURE 18 - VOLTAGE REGULATOR WITH PROTECTION DIODES


FIGURE 19 - ADJUSTABLE CURRENT LIMITER


FIGURE 21 - SLOW TURN-ON REGULATOR


FIGURE 20-5 V ELECTRONIC SHUTDOWN REGULATOR


D1 protects the device during an input short circuit.

FIGURE 22 - CURRENT REGULATOR


\section*{Specifications and Applications Information}

\section*{THREE-TERMINAL ADJUSTABLE OUTPUT NEGATIVE VOLTAGE REGULATOR}

The LM337M is an adjustable 3-terminal negative voltage regulator capable of supplying in excess of 500 mA over an output voltage range of -1.2 V to -37 V . This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof.

The LM337M serves a wide variety of applications including local, on-card regulation. This device can also be used to make a programmable output regulator; or, by connecting a fixed resistor between the adjustment and output, the LM337M can be used as a precision current regulator.
- Output Current in Excess of 500 mA
- Output Adjustable Between - 1.2 V and -37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit-Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

\section*{MEDIUM-CURRENT THREE-TERMINAL adJUSTABLE NEGATIVE VOLTAGE REGULATOR}

SILICON MONOLITHIC INTEGRATED CIRCUIT


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Tested Operating \\
Temperature Range
\end{tabular}} & Package \\
\hline LM337MT & \(\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
LM337MBT & \(\mathrm{TJ}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline
\end{tabular}


\footnotetext{
\#Automotive temperature range selections are available with special test conditions and
} additional tests. Contact your local Motorola sales office for information.

\section*{LM337M}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input-Output Voltage Differential & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & 40 & Vdc \\
\hline Power Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & Internally Limited & \\
\hline Operating Junction Temperature Range & \(\mathrm{TJ}_{\mathrm{J}}\) & 0 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\left|\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\right|=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.1 ; \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [see Note 1], \(\mathrm{P}_{\text {max }}\) per Note 2, unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Figure & Symbol & Min & Typ & Max & Unit \\
\hline Line Regulation (Note 3)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leqslant\left|\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{O}}\right| \leqslant 40 \mathrm{~V}
\] & 1 & Regline & - & 0.01 & 0.04 & \% N \\
\hline Load Regulation (Note 3)
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 0.5 \mathrm{~A} \\
& \left|\mathrm{~V}_{\mathrm{O}}\right| \leqslant 5.0 \mathrm{~V} \\
& \left|\mathrm{~V}_{\mathrm{O}}\right| \geqslant 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & - & \[
\begin{aligned}
& 15 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 1.0
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\% \mathrm{v}_{\mathrm{o}}
\end{gathered}
\] \\
\hline Thermal Regulation 10 ms Pulse, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & - & \(\mathrm{Reg}_{\text {therm }}\) & - & 0.03 & 0.04 & \% \(\mathrm{V}_{\mathrm{O}} \mathrm{W}\) \\
\hline Adjustment Pin Current & 3 & ladj & - & 65 & 100 & \(\mu \mathrm{A}\) \\
\hline Adjustment Pin Current Change
\[
\begin{aligned}
& 2.5 \mathrm{~V} \leqslant\left|V_{1}-V_{O}\right| \leqslant 40 \mathrm{~V}, 10 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{L}} \leqslant 0.5 \mathrm{~A}, \\
& P_{D} \leqslant P_{\max }, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 1,2 & \(\Delta^{\text {adj }}\) & - & 2.0 & 5.0 & \(\mu \mathrm{A}\) \\
\hline Reference Voltage (Note 4)
\[
\begin{aligned}
& 3.0 \mathrm{~V} \leqslant\left|V_{1}-V_{O}\right| \leqslant 40 \mathrm{~V}, 10 \mathrm{~mA} \leqslant I_{0} \leqslant 0.5 \mathrm{~A}, \\
& P_{D} \leqslant P_{\text {max }}, T_{A}=25^{\circ} \mathrm{C} \\
& T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & 3 & \(\mathrm{V}_{\text {ref }}\) & \[
\begin{gathered}
-1.213 \\
-1.20 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
-1.250 \\
-1.25 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
-1.287 \\
-1.30 \\
\hline-1
\end{array}
\] & v \\
\hline Line Regulation (Note 3)
\[
3.0 \mathrm{~V} \leqslant\left|\mathrm{~V}_{1}-\mathrm{V}_{0}\right| \leqslant 40 \mathrm{~V}
\] & 1 & Regline & - & 0.02 & 0.07 & \%.V \\
\hline Load Regulation (Note 3)
\[
\begin{aligned}
& 10 \mathrm{~mA} \leqslant 10 \leqslant 0.5 \mathrm{~A} \\
& \left|\mathrm{~V}_{\mathrm{O}}\right| \leqslant 5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}} \mid \geqslant 5.0 \mathrm{~V}
\end{aligned}
\] & 2 & Regload & - & \[
\begin{gathered}
20 \\
0.3
\end{gathered}
\] & \[
\begin{aligned}
& 70 \\
& 1.5
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\% \mathrm{~V}_{0}
\end{gathered}
\] \\
\hline Temperature Stability ( low \(\leqslant T_{J} \leqslant T_{\text {high }}\) ) & 3 & Ts & - & 0.6 & - & \(\% \mathrm{~V}_{0}\) \\
\hline \begin{tabular}{l}
Minimum Load Current to \\
Maintain Regulation ( \(\left|\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\right| \leqslant 10 \mathrm{~V}\) )
\[
\left(\left|V_{1}-V_{0}\right| \leq 40 \mathrm{~V}\right)
\]
\end{tabular} & 3 & ILmin & - & \[
\begin{aligned}
& 1.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 10 \\
& \hline
\end{aligned}
\] & mA \\
\hline Maximum Output Current
\[
\begin{aligned}
& \left|V_{1}-V_{O}\right| \leqslant 15 \mathrm{~V}, P_{D} \leqslant P_{\max } \\
& \left|V_{1}-V_{O}\right|=40 \mathrm{~V}, P_{D} \leqslant P_{\max }, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 3 & \(I_{\text {max }}\) & \[
\begin{aligned}
& 0.5 \\
& 0.1
\end{aligned}
\] & \[
\begin{gathered}
0.9 \\
0.25
\end{gathered}
\] & - & A \\
\hline \[
\begin{aligned}
& \text { RMS Noise, } \% \text { of } V_{O} \\
& T_{A}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 10 \mathrm{kHz}
\end{aligned}
\] & - & N & - & 0.003 & - & \% V \\
\hline ```
Ripple Rejection, \(\mathrm{V}_{\mathrm{O}}=-10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}\) (Note 5)
    Without \(\mathrm{C}_{\text {adj }}\)
    \(\mathrm{C}_{\text {adj }}=10 \mu \mathrm{~F}\)
``` & 4 & RR & \[
\overline{66}
\] & \[
\begin{aligned}
& 60 \\
& 77 \\
& \hline
\end{aligned}
\] & - & dB \\
\hline Long Term Stability, \(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {high }}\) (Note 6) \(T_{A}=25^{\circ} \mathrm{C}\) for Endpoint Measurements & 3 & S & - & 0.3 & 1.0 & \[
\begin{gathered}
\%, 1.0 \mathrm{k} \\
\text { Hrs. }
\end{gathered}
\] \\
\hline Thermal Resistance Junction to Case & - & \(\mathrm{R}_{\theta J \mathrm{~J}}\) & - & 7.0 & - & \({ }^{\text {c }}\). W \\
\hline
\end{tabular}

NOTES:
(1) \(\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
(2) \(\mathrm{P}_{\text {max }}=7.5 \mathrm{~W}\)
(3) Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
(4) Selected devices with tightened tolerance reference voltage available.
(5) \(\mathrm{C}_{\text {adj }}\), when used, is connected between the adjustment pin and ground.
(6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

\section*{LM337M}

FIGURE 1 - LINE REGULATION AND \(\triangle I_{\text {adj }} /\) LINE TEST CIRCUIT

FIGURE 2 - LOAD REGULATION AND \(\triangle I_{\text {adj }} /\) LOAD TEST CIRCUIT

FIGURE 3 - STANDARD TEST CIRCUIT

FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT

FIGURE 5 - LOAD REGULATION

FIGURE 7 - ADJUSTMENT PIN CURRENT

FIGURE 9 - TEMPERATURE STABILITY

FIGURE 6 - CURRENT LIMIT

FIGURE 8 - DROPOUT VOLTAGE

FIGURE 10 - MINIMUM OPERATING CURRENT

FIGURE 11 - RIPPLE REJECTION versus OUTPUT VOLTAGE

FIGURE 13 - RIPPLE REJECTION versus FREQUENCY

FIGURE 15 - LINE TRANSIENT RESPONSE

FIGURE 12 - RIPPLE REJECTION versus OUTPUT CURRENT

FIGURE 14 - OUTPUT IMPEDANCE

FIGURE 16 - LOAD TRANSIENT RESPONSE

\section*{APPLICATIONS INFORMATION}

\section*{BASIC CIRCUIT OPERATION}

The LM337M is a 3-terminal floating regulator. In operation, the LM337M develops and maintains a nominal -1.25 volt reference (\(\mathrm{V}_{\text {ref }}\)) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 17), and this constant current flows through R2 from ground. The regulated output voltage is given by:
\[
V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {adj }} R 2
\]

Since the current into the adjustment terminal (ladj) represents an error term in the equation, the LM337M was designed to control \(l_{\text {adj }}\) to less than \(100 \mu \mathrm{~A}\) and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will increase.

Since the LM337M is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17- BASIC CIRCUIT CONFIGURATION

\section*{LOAD REGULATION}

The LM337M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can
be returned near the load ground to provide remote ground sensing and improve load regulation.

\section*{EXTERNAL CAPACITORS}

A \(1.0 \mu \mathrm{~F}\) tantalum input bypass capacitor \(\left(\mathrm{C}_{\mathrm{in}}\right)\) is recommended to reduce the sensitivity to input line impedance.
The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (\(\mathrm{C}_{\text {adj }}\)) prevents ripple from being amplified as the output voltage is increased. A \(10 \mu \mathrm{~F}\) capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.

An output capacitor \(\left(C_{0}\right)\) in the form of a \(1.0 \mu \mathrm{~F}\) tantalum or \(10 \mu \mathrm{~F}\) aluminum electrolytic capacitor is required for stability.

\section*{PROTECTION DIODES}

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.
Figure 18 shows the LM337M with the recommended protection diodes for output voltages in excess of -25 \(V\) or high capacitance values \(\left(\mathrm{C}_{\mathrm{o}}>25 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{adj}}>10\right.\) \(\mu F\)). Diode \(D_{1}\) prevents \(C_{0}\) from discharging thru the I.C. during an input short circuit. Diode \(D_{2}\) protects against capacitor \(\mathrm{C}_{\text {adj }}\) discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents \(C_{a d j}\) from discharging through the I.C. during an input short circuit.

FIGURE 18- VOLTAGE REGULATOR WITH PROTECTION DIODES

\section*{LOW DROPOUT VOLTAGE REGULATORS}

The LM2931 series consists of positive fixed and adjustable output voltage regulators that are specifically designed to maintain proper regulation with an extremely low input-to-output voltage differential. These devices are capable of supplying output currents in excess of 100 mA and feature a low bias current of 0.4 mA at 10 mA output.
Designed primarily to survive in the harsh automotive environment, these devices will protect all external load circuitry from input fault conditions caused by reverse battery connection, two battery jump starts, and excessive line transients during load dump. This series also includes internal current limiting, thermal shutdown, and additionally, is able to withstand temporary powerup with mirror-image insertion.
Due to the low dropout voltage and bias current specifications, the LM2931 series is ideally suited for battery powered industrial and consumer equipment where an extension of useful battery life is desirable. The ' \(C\) ' suffix adjustable output regulators feature an output inhibit pin which is extremely useful in microprocessorbased systems.
- Input-to-Output Voltage Differential of Less Than 0.6 V at 100 mA
- Output Current in Excess of 100 mA
- Low Bias Current
- 60 V Load Dump Protection
- - 50 V Reverse Transient Protection
- Internal Current Limiting with Thermal Shutdown
- Temporary Mirror-Image Protection
- Ideally Suited for Battery-Powered Equipment

\section*{LOW DROPOUT VOLTAGE REGULATORS}

\section*{SILICON MONOLITHIC INTEGRATED CIRCUITS}

T SUFFIX
PLASTIC PACKAGE CASE 221A-04
(Heatsink surface
connected to Pin 2)

Pin 1. Input
2. Ground
3. Output

Output
2

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{ Device } & \multicolumn{2}{|c|}{ Output } & \begin{tabular}{c}
Package \\
Case \\
Number
\end{tabular} \\
\cline { 2 - 3 } & Voltage & Tolerance & \\
\hline LM2931AD-5.0 & 5.0 V & \(\pm 2.5 \%\) & 751 \\
\hline LM2931AT-5.0 & 5.0 V & \(\pm 2.5 \%\) & \(221 \mathrm{~A}-02\) \\
\hline LM2931AZ-5.0 & 5.0 V & \(\pm 2.5 \%\) & \(29-02\) \\
\hline LM2931D-5.0 & 5.0 V & \(\pm 5.0 \%\) & 751 \\
\hline LM2931T-5.0 & 5.0 V & \(\pm 5.0 \%\) & \(221 \mathrm{~A}-02\) \\
\hline LM2931Z-5.0 & 5.0 V & \(\pm 5.0 \%\) & \(29-02\) \\
\hline LM2931ACD & Adjustable & \(\pm 2.5 \%\) & 751 \\
\hline LM2931ACT & Adjustable & \(\pm 2.5 \%\) & \(314 \mathrm{D}-01\) \\
\hline LM2931CD & Adjustable & \(\pm 5.0 \%\) & 751 \\
\hline LM2931CT & Adjustable & \(\pm 5.0 \%\) & 314D-01 \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage Continuous & \(\mathrm{V}_{\text {in }}\) & 40 & Vdc \\
\hline Transient Input Voltage (\(\tau \leqslant 100 \mathrm{~ms}\)) & \(\mathrm{V}_{\text {in }}(\tau)\) & 60 & \(V_{p k}\) \\
\hline Transient Reverse Polarity Input Voltage \(1.0 \%\) Duty Cycle, \(\tau \leqslant 100 \mathrm{~ms}\) & \(-\mathrm{V}_{\mathrm{in}(\tau)}\) & -50 & \(V_{p k}\) \\
\hline \begin{tabular}{l}
Power Dissipation \\
Case 29-04 (TO-92)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance Junction to Ambient \\
Thermal Resistance Junction to Case \\
Case 751-02 (SOP-8)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance Junction to Ambient Thermal Resistance Junction to Case \\
Case 221A-03 and 314D-01 (TO-220 Type)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Thermal Resistance Junction to Ambient Thermal Resistance Junction to Case
\end{tabular} & \begin{tabular}{l}
PD \\
\({ }^{\theta} \mathrm{JA}\) \\
\({ }^{\theta} \mathrm{JC}\) \\
\(P_{D}\) \\
\({ }^{\theta}\) JA \\
\({ }^{\theta} \mathrm{JC}\) \\
\(P_{D}\) \\
\({ }^{\theta} \mathrm{JA}\) \\
\({ }^{\theta} \mathrm{JC}\)
\end{tabular} & Internally Limited
178
83
Internally Limited
180
45
Internally Limited
65
5.0 & \begin{tabular}{l}
Watts \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Watts \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Watts \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Junction Temperature Range & TJ & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=100 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}(E S R)}=0.3 \Omega, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.\), Note 1, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM2931A-5.0} & \multicolumn{3}{|c|}{LM2931-5.0} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

FIXED OUTPUT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Output Voltage
\[
\begin{aligned}
& \mathrm{V}_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\text {in }}=6.0 \mathrm{~V} \text { to } 26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}} \leqslant 100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{gathered}
4.875 \\
4.75
\end{gathered}
\] & 5.0
- & \[
\begin{gathered}
5.125 \\
5.25
\end{gathered}
\] & \[
\begin{aligned}
& 4.75 \\
& 4.50
\end{aligned}
\] & \[
5.0
\] & \[
\begin{aligned}
& 5.25 \\
& 5.50
\end{aligned}
\] & V \\
\hline Line Regulation
\[
\begin{aligned}
& \mathrm{V}_{\text {in }}=9.0 \mathrm{~V} \text { to } 16 \mathrm{~V} \\
& \mathrm{~V}_{\text {in }}=6.0 \mathrm{~V} \text { to } 26 \mathrm{~V}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 2.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 30
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 30
\end{aligned}
\] & mV \\
\hline Load Regulation (\(\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\) to 100 mA) & Regload & - & 14 & 50 & - & 14 & 50 & mV \\
\hline \[
\begin{aligned}
& \text { Output Impedance } \\
& \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \Delta \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{Z}_{\mathrm{O}}\) & - & 200 & - & - & 200 & - & \(\mathrm{m} \Omega\) \\
\hline Bias Current
\[
\begin{aligned}
& \mathrm{V}_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\text {in }}=6.0 \mathrm{~V} \text { to } 26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C}
\end{aligned}
\] & IB & - & \[
\begin{aligned}
& 5.8 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 1.0 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 5.8 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 1.0
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(f=10 \mathrm{~Hz}\) to 100 kHz) & \(\mathrm{V}_{\mathrm{n}}\) & - & 700 & - & - & 700 & - & \(\mu \mathrm{Vrms}\) \\
\hline Long-Term Stability & S & - & 20 & - & - & 20 & - & \[
\begin{aligned}
& \mathrm{mV} / \\
& \mathrm{kHR}
\end{aligned}
\] \\
\hline Ripple Rejection (\(f=120 \mathrm{~Hz}\)) & RR & 60 & 90 & - & 60 & 90 & - & dB \\
\hline Dropout Voltage
\[
\begin{aligned}
& I_{O}=10 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & \[
\begin{gathered}
0.015 \\
0.16
\end{gathered}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.6
\end{aligned}
\] & - & \[
\begin{gathered}
0.015 \\
0.16
\end{gathered}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.6
\end{aligned}
\] & V \\
\hline Over-Voltage Shutdown Threshold & \(\left.\mathrm{V}_{\text {th(}} \mathrm{OV}\right)\) & 26 & 29.5 & 40 & 26 & 29.5 & 40 & V \\
\hline Output Voltage with Reverse Polarity Input (\(\mathrm{V}_{\text {in }}=-15 \mathrm{~V}\)) & \(-\mathrm{V}_{\mathrm{O}}\) & -0.3 & 0 & - & -0.3 & 0 & - & V \\
\hline
\end{tabular}

NOTES:
1) Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
2) The reference voltage on the adjustable device is measured from the output to the adjust pin across \(R_{1}\).

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{R}_{1}=27 \mathrm{k}, \mathrm{C}_{\mathrm{O}}=100 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}(\mathrm{ESR})}=0.3 \Omega\right.\),
\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\), Note 1 , unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM2931AC} & \multicolumn{3}{|c|}{LM2931C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Reference Voltage (Note 2, Figure 18)
\[
\begin{aligned}
& I_{O}=10 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{O}} \leqslant 100 \mathrm{~mA}, T_{J}=-40 \text { to } 125^{\circ} \mathrm{C}
\end{aligned}
\] & \(V_{\text {ref }}\) & \[
\begin{aligned}
& 1.17 \\
& 1.14
\end{aligned}
\] & 1.20 & \[
\begin{aligned}
& 1.23 \\
& 1.26
\end{aligned}
\] & \[
\begin{aligned}
& 1.14 \\
& 1.08
\end{aligned}
\] & 1.20 & \[
\begin{aligned}
& 1.26 \\
& 1.32
\end{aligned}
\] & V \\
\hline Output Voltage Range & V Orange & 3.0 & \[
\begin{gathered}
2.7 \text { to } \\
29.5
\end{gathered}
\] & 24 & 3.0 & \[
\begin{gathered}
2.7 \text { to } \\
29.5
\end{gathered}
\] & 24 & V \\
\hline Line Regulation (\(\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{O}}+0.6 \mathrm{~V}\) to 26 V) & Regline & - & 0.2 & 1.5 & - & 0.2 & 1.5 & \(\mathrm{mV} / \mathrm{N}\) \\
\hline Load Regulation (\(\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\) to 100 mA) & Regload & - & 0.3 & 1.0 & - & 0.3 & 1.0 & \%/V \\
\hline Output Impedance
\[
\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \Delta \mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{f}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}
\] & \(\mathrm{Z}_{\mathrm{O}}\) & - & 40 & - & - & 40 & - & \(\mathrm{m} \Omega / \mathrm{N}\) \\
\hline Bias Current
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \\
& \text { Output Inhibited }(\mathrm{V} \mathrm{th}(\mathrm{O} \mathrm{I})=2.5 \mathrm{~V})
\end{aligned}
\] & \({ }^{\prime} \mathrm{B}\) & - & \[
\begin{aligned}
& 6.0 \\
& 0.4 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& -\overline{1.0} \\
& 1.0 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 6.0 \\
& 0.4 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& -\overline{1.0} \\
& 1.0
\end{aligned}
\] & mA \\
\hline Adjustment Pin Current & \({ }^{\prime}\) Adj & - & 0.2 & - & - & 0.2 & - & \(\mu \mathrm{A}\) \\
\hline Output Noise Voltage (\(\mathrm{f}=10 \mathrm{~Hz}\) to 100 kHz) & \(\mathrm{V}_{\mathrm{n}}\) & - & 140 & - & - & 140 & - & \[
\begin{gathered}
\mu \mathrm{Vrms} \\
\mathrm{~V}
\end{gathered}
\] \\
\hline Long-Term Stability & S & - & 0.4 & - & - & 0.4 & - & \%/kHR \\
\hline Ripple Rejection (\(f=120 \mathrm{~Hz}\)) & RR & 0.10 & 0.003 & - & 0.10 & 0.003 & - & \%/V \\
\hline Dropout Voltage
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \\
& \mathrm{O}=100 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & \[
\begin{gathered}
0.015 \\
0.16
\end{gathered}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.6
\end{aligned}
\] & - & \[
\begin{gathered}
0.015 \\
0.16
\end{gathered}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.6
\end{aligned}
\] & V \\
\hline Over-Voltage Shutdown Threshold & \(\mathrm{V}_{\mathrm{th}}(\mathrm{OV})\) & 26 & 29.5 & 40 & 26 & 29.5 & 40 & V \\
\hline Output Voltage with Reverse Polarity Input (\(\mathrm{V}_{\text {in }}=-15 \mathrm{~V}\)) & \(-\mathrm{V}_{\mathrm{O}}\) & -0.3 & 0 & - & -0.3 & 0 & - & V \\
\hline \[
\begin{aligned}
& \text { Output Inhibit Threshold Voltages } \\
& \text { Output "On," } T_{J}=25^{\circ} \mathrm{C} \\
& T_{J}=-40 \text { to } 125^{\circ} \mathrm{C} \\
& \text { Output "Off," } T_{J}=25^{\circ} \mathrm{C} \\
& T_{J}=-40 \text { to } 125^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & \(\left.\mathrm{V}_{\text {th(}} \mathrm{OI}\right)\) & \[
\begin{gathered}
\overline{-} \\
2.50 \\
3.25
\end{gathered}
\] & \[
\begin{gathered}
2.15 \\
2.26
\end{gathered}
\] & \[
\begin{gathered}
1.90 \\
1.20 \\
-
\end{gathered}
\] & \[
\begin{gathered}
\text { - } \\
2.50 \\
3.25
\end{gathered}
\] & \[
\begin{gathered}
2.15 \\
2.26
\end{gathered}
\] & \[
\begin{gathered}
1.90 \\
1.20 \\
-
\end{gathered}
\] & V \\
\hline Output Inhibit Threshold Current (\(\left.\mathrm{V}_{\mathrm{th}(\mathrm{OI})}=2.5 \mathrm{~V}\right)\) & \(\left.\mathrm{I}_{\text {th(}} \mathrm{OI}\right)\) & - & 30 & 50 & - & 30 & 50 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{DEFINITIONS}

Dropout Voltage - The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output decreases 100 mV from nominal value at 14 V input, dropout voltage is affected by junction temperature and load current.
Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.
Bias Current - That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long-Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices electrical characteristics and maximum power dissipation.

FIGURE 1 - DROPOUT VOLTAGE versus OUTPUT CURRENT

FIGURE 3 - PEAK OUTPUT CURRENT versus input voltage

FIGURE 5 - OUTPUT VOLTAGE versus INPUT VOLTAGE

FIGURE 2 - DROPOUT VOLTAGE versus JUNCTION TEMPERATURE

FIGURE 4 - OUTPUT VOLTAGE versus INPUT VOLTAGE

FIGURE 6 - LOAD DUMP CHARACTERISTICS

\section*{LM2931 Series}

FIGURE 7 - BIAS CURRENT versus INPUT VOLTAGE

FIGURE 9 - BIAS CURRENT versus JUNCTION TEMPERATURE

FIGURE 11 - RIPPLE REJECTION versus FREQUENCY

FIGURE 8 - BIAS CURRENT versus OUTPUT CURRENT

FIGURE 10 - OUTPUT IMPEDANCE versus FREQUENCY

FIGURE 12 - RIPPLE REJECTION versus OUTPUT CURRENT

\section*{LM2931 Series}

\section*{TYPICAL APPLICATIONS}

FIGURE 17 - FIXED OUTPUT REGULATOR

FIGURE 18 - ADJUSTABLE OUTPUT REGULATOR

Switch Position \(1=\) Output 'On,' \(2=\) Output 'Off'
\[
V_{\mathrm{O}}=\mathrm{V}_{\mathrm{ref}}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)+\mathrm{I}_{\text {Adj }} \mathrm{R} 2 \quad 22.5 \mathrm{k} \geqslant \frac{\mathrm{R} 1 \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}
\]

FIGURE 19 - 5.0 A LOW DIFFERENTIAL VOLTAGE REGULATOR

The LM2931 series can be current boosted with a PNP transistor. The D45VH7, on a heatsink, will provide an output current of 5.0 A with an input to output voltage differential of approximately 1.0 V . Resistor R in conjunction with the \(V_{B E}\) of the PNP determines when the pass transistor begins conducting. This circuit is not short-circuit proof.

FIGURE 21 - CONSTANT INTENSITY LAMP FLASHER

\section*{APPLICATIONS INFORMATION}

The LM2931 series regulators are designed with many protection features making them essentially blow-out proof. These features include internal current limiting, thermal shutdown, overvoltage and reverse polarity input protection, and the capability to withstand temporary power-up with mirror-image insertion. Typical application circuits for the fixed and adjustable output device are shown in Figures 17 and 18.

The input bypass capacitor \(\mathrm{C}_{\mathrm{in}}\) is recommended if the regulator is located an appreciable distance (\(\geqslant 4^{\prime \prime}\)) from the supply input filter. This will reduce the circuit's sensitivity to the input line impedance at high frequencies.

This regulator series is not internally compensated and thus requires an external output capacitor for stability. The capacitance value required is dependent upon the load current, output voltage for the adjustable regulator, and the type of capacitor selected. The leaststable condition is encountered at maximum load current and minimum output voltage. Figure 22 shows that for operation in the "Stable" region, under the conditions specified, the magnitude of the output capacitor impedance \(\left|Z_{O}\right|\) must not exceed \(0.4 \Omega\). This limit must

\section*{FIGURE 20 - CURRENT BOOST REGULATOR WITH SHORT-CIRCUIT PROJECTION}

The circuit of Figure 19 can be modified to provide supply protection against short circuits by adding the current sense resistor RSC and an additional PNP transistor. The current sensing PNP must be capable of handling the short-circuit current of the LM2931. Safe operating area of both transistors must be considered under worst case conditions.

be observed over the entire operating temperature range of the regulator circuit.

With economical electrolytic capacitors, cold temperature operation can pose a serious stability problem. As the electrolyte freezes, around \(-30^{\circ} \mathrm{C}\), the capacitance will decrease and the equivalent series resistance ESR will increase drastically, causing the circuit to oscillate. Quality electrolytic capacitors with extended temperature ranges of -40 to \(85^{\circ} \mathrm{C}\) and -55 to \(105^{\circ} \mathrm{C}\) are readily available. Solid tantalum capacitors may be a better choice if small size is a requirement, however, the maximum \(\left|Z_{O}\right|\) limit over temperature must be observed.

Note that in the stable region, the output noise voltage is linearly proportional to \(\left|\mathrm{Z}_{\mathrm{O}}\right|\). In effect, \(\mathrm{C}_{\mathrm{O}}\) dictates the high frequency roll-off point of the circuit. Operation in the area titled "Marginally Stable" will cause the output of the regulator to exhibit random bursts of oscillation that decay in an under-damped fashion. Continuous oscillation occurs when operating in the area titled "Unstable." It is suggested that oven testing of the entire circuit be performed with maximum load, minimum input voltage, and minimum ambient temperature.

\section*{Specifications and Applications Information}

\section*{PRECISION WIDE RANGE VOLTAGE AND CURRENT REGULATOR}

This unique "floating" regulator can deliver hundreds of volts - limited only by the breakdown voltage of the external series pass transistor. Output voltage and output current are adjustable. The MC1466 integrated circuit voltage and current regulator is designed to give "laboratory" power-supply performance.
- Voltage/Current Regulation with Automatic Crossover
- Excellent Line Voltage Regulation, \(0.03 \%+3.0 \mathrm{mV}\) (Max)
- Excellent Load Voltage Regulation, \(0.03 \%+3.0 \mathrm{mV}\) (Max)
- Excellent Current Regulation, \(0.2 \%+1.0 \mathrm{~mA}\)
- Short-Circuit Protection
- Output Voltage Adjustable to Zero Volts
- Internal Reference Voltage
- Adjustable Internal Current Source

\section*{PRECISION WIDE RANGE VOLTAGE and CURRENT REGULATOR}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT

L SUFFIX
CERAMIC PACKAGE CASE 632-08

TYPICAL APPLICATIONS

FIGURE 1 - 0-TO-15 VDC, 10-AMPERES REGULATOR

FIGURE 3 - 0-TO-250 VDC, 0.1-AMPERE REGULATOR

FIGURE 2 - 0-TO-40 VDC, 0.5-AMPERE REGULATOR

FIGURE 4 - REMOTE PROGRAMMING

MAXIMUM RATINGS \({ }^{(} T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Auxiliary Voltage & \(\mathrm{V}_{\text {aux }}\) & 30 & Vdc \\
\hline Power Dissipation (Package Limitation) & \(\mathrm{P}_{\mathrm{D}}\) & 750 & mW \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}\) & \(1 / \theta \mathrm{JA}\) & 6.0 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {aux }}=+25 \mathrm{Vdc}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic Definition & Characteristic & Symbol & Min & Typ & Max & Units \\
\hline \multirow[t]{6}{*}{} & Auxiliary Voltage (See Notes 1 \& 2) (Voltage from pin 14 to pin 7) & \(V_{\text {aux }}\) & 21 & - & 30 & Vdc \\
\hline & Auxiliary Current & \(l_{\text {aux }}\) & - & 9.0 & 12 & mAdc \\
\hline & Internal Reference Voltage (Voltage from pin 12 to pin 7) & \(\mathrm{V}_{\mathrm{IR}}\) & 17.3 & 18.2 & 19.7 & Vdc \\
\hline & Reference Current (See Note 3) & Iref & 0.8 & 1.0 & 1.2 & mAdc \\
\hline & Input Current - Pin 8 & \(\mathrm{l}_{8}\) & - & 6.0 & 12 & \(\mu \mathrm{Adc}\) \\
\hline & Power Dissipation & PD & - & - & 360 & mW \\
\hline \multirow[t]{4}{*}{} & Input Offset Voltage, Voltage Control Amplifier (See Note 4) & \(\mathrm{V}_{\text {iov }}\) & 0 & 15 & 40 & \(m V d c\) \\
\hline & Load Voltage Regulation (See Note 5) & \[
\begin{gathered}
\Delta V_{\text {iov }} \\
\Delta V_{\text {ref }} / V_{\text {ref }}
\end{gathered}
\] & 二 & \[
\begin{gathered}
1.0 \\
0.015
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 3.0 \\
0.03 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{mV} \\
\%
\end{gathered}
\] \\
\hline & Line Voltage Regulation (See Note 6) & \[
\stackrel{\Delta V_{\text {iov }}}{\Delta V_{\text {ref }} V_{\text {ref }}}
\] & - & \[
\begin{gathered}
1.0 \\
0.015
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 3.0 \\
0.03 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{mV} V \\
\%
\end{gathered}
\] \\
\hline & Temperature Coefficient of Output Voltage (\(\mathrm{T}_{\mathrm{A}}=0\) to \(+75^{\circ} \mathrm{C}\)) & \(\mathrm{TC}_{\mathrm{V}}\) & - & 0.01 & - & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{} & Input Offset Voltage, Current Control Amplifier (See Note 4) (Voltage from pin 10 to pin 11) & \(\mathrm{V}_{\text {ioi }}\) & 0 & 15 & 40 & mVdc \\
\hline & Load Current Regulation (See Note 7) & \[
\begin{gathered}
\Delta l_{L} / L_{L} \\
\Delta I_{\text {ref }}
\end{gathered}
\] & - & \[
0.2
\] & \[
\overline{1.0}
\] & \[
\begin{gathered}
\% \\
\text { mAdc }
\end{gathered}
\] \\
\hline
\end{tabular}

\footnotetext{
*Pins 1 and 4 no connection.
}

NOTE 1
The instantaneous input voltage, \(\mathrm{V}_{\text {aux }}\), must not exceed the maximum value of 30 volts for the MC1466. The instantaneous value of \(\mathrm{V}_{\text {aux }}\) must be greater than 21 volts for the MC1466 for proper internal regulation.
NOTE 2:
The auxiliary supply voltage \(\mathrm{V}_{\text {aux }}\), must "float" and be electri-
cally isolated from the unregulated high voltage supply, \(\mathrm{V}_{\mathrm{in}}\).
NOTE 3:
Reference current may be set to any value of current less than 1.2 mAdc by applying the relationship:
\[
I_{\mathrm{ref}}(\mathrm{~mA})=\frac{8.55}{\mathrm{R}_{1}(\mathrm{k} \Omega)} .
\]

NOTE 4:
A built-in offset voltage (15 mVdc nominal) is provided so that the power supply output voltage or current may be adjusted to zero.
NOTE 5:
Load Voltage Regulation is a function of two additive components, \(\Delta V_{i o v}\) and \(\Delta V_{\text {ref }}\), where \(\Delta V_{\text {iov }}\) is the change in input offset voltage (measured between pins 8 and 9) and \(\Delta V_{\text {ref }}\) is the change in voltage across R2 (measured between pin 8 and ground). Each component may be measured separately or the sum may be measured across the load. The measurement procedure for the test circuit shown is:
a. With S 1 open \(\left(I_{4}=0\right)\) measure the value of \(\mathrm{V}_{\mathrm{iov}}(1)\) and \(V_{\text {ref (1) }}\)
b. Close S1, adjust R4 so that \(\mathrm{I}_{4}=500 \mu \mathrm{~A}\) and note \(\mathrm{V}_{\text {iov (2) }}\) and \(V_{\text {ref (2) }}\).
Then \(\Delta V_{i o v}=V_{i o v}\) (1) \(-V_{i o v}\) (2)
\(\%\) Reference Regulation \(=\)
\(\frac{\left[V_{\text {ref }}(1)-V_{\text {ref }}(2)\right]}{V_{\text {ref }}(1)}(100 \%)=\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}(100 \%)\)

Load Voltage Regulation =
\[
\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}(100 \%)+\Delta V_{\text {iov }}
\]

NOTE 6:
Line Voltage Regulation is a function of the same two additive components as Load Voltage Regulation, \(\Delta \mathrm{V}_{\text {iov }}\) and \(\Delta \mathrm{V}_{\text {ref }}\) (see Note 5). The measurement procedure is:
a. Set the auxiliary voltage, \(\mathrm{V}_{\text {aux }}\), to 22 volts. Read the value of \(V_{\text {iov (1) }}\) and \(V_{\text {ref (1). }}\).
b. Change the \(\mathrm{V}_{\text {aux }}\) to 28 volts and note the value of \(\mathrm{V}_{\text {iov (2) }}\) and \(\mathrm{V}_{\text {ref (2) }}\). Then compute Line Voltage Regulation:
\(\Delta \mathrm{V}_{\text {iov }}=\Delta \mathrm{V}_{\text {iov (1) }}-\mathrm{V}_{\text {iov (2) }}\)
\% Reference Regulation =
\(\frac{\left[V_{\text {ref }}(1)-V_{\text {ref }}(2)\right]}{V_{\text {ref }}(1)}(100 \%)=\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}(100 \%)\)
Line Voltage Regulation \(=\)
\[
\frac{\Delta V_{\text {ref }}}{V_{\text {ref }}}(100 \%)+\Delta V_{\text {iov }} .
\]

NOTE 7:
Load Current Regulation is measured by the following procedure:
a. With S2 open, adjust R3 for an initial load current, \(\mathrm{I}_{\mathrm{L}(1)}\), such that \(\mathrm{V}_{\mathrm{O}}\) is 8.0 Vdc .
b. With S 2 closed, adjust \(\mathrm{RT}_{\mathrm{T}}\) for \(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}\) and read \(\mathrm{I}_{\mathrm{L}(2)}\). Then Load Current Regulation \(=\)
\(\frac{I_{L(2)}-I_{L(1)]}}{(100 \%)}+I_{\text {ref }}\)
L(1)
where \(I_{\text {ref }}\) is 1.0 mAdc, Load Current Regulation is specified in this manner because Iref passes through the load in a direction opposite that of load current and does not pass through the current sense resistor, \(\mathrm{R}_{\mathrm{S}}\).

FIGURE 5

\section*{FIGURE 6 - TYPICAL CIRCUIT CONNECTION}

\section*{NORMAL DESIGN PROCEDURE AND DESIGN CONSIDERATIONS}
1. Constant Voltage

For constant voltage operation, output voltage \(\mathrm{V}_{\mathrm{O}}\) is given by: \(V_{0}=\left(I_{\text {ref }}\right)\left(R_{2}\right)\)
where R2 is the resistance from pin 8 to ground and Iref is the output current of pin 3 .
The recommended value of \(I_{\text {ref }}\) is 1.0 mAdc. Resistor R1 sets the value of \(I_{\text {ref }}\) :
\[
I_{\text {ref }}=\frac{8.5}{R_{1}}
\]
where R1 is the resistance between pins 2 and 12.
2. Constant Current:

For constant current operation:
(a) Select \(\mathbf{R}_{\mathbf{S}}\) for a 250 mV drop at the maximum desired regulated output current, Imax.
(b) Adjust potentiometer R3 to set constant current output at desired value between zero and I max.
3. If \(\mathrm{V}_{\text {in }}\) is greater than \(20 \mathrm{Vdc}, \mathrm{CR} 2, \mathrm{CR} 3\), and CR4 are necessary to protect the MC1466 during short circuit or transient conditions.
4. In applications where very low output noise is desired, R2 may be bypassed with \(\mathrm{C} 1(0.1 \mu \mathrm{~F}\) to \(2.0 \mu \mathrm{~F})\). When R2 is bypassed, CR1 is necessary for protection during short circuit conditions.
5. CR5 is recommended to protect the MC1466 from simultaneous pass transistor failure and output short circuit.
6. The RC network (\(10 \mathrm{pF}, 240 \mathrm{pF}, 1.2 \mathrm{k} \Omega\)) is used for compen sation. The values shown are valid for all applications. However, the 10 pF capacitor may be omitted if \(\mathrm{f}_{\tau}\) of Q 1 and Q 2 is greater than 0.5 MHz .
7. For remote sense applications, the positive voltage sense terminal (\(\operatorname{Pin} 9\)) is connected to the positive load terminal through a separate sense lead; and the negative sense terminal (the ground side of R2) is connected to the negative load terminal through a separate sense lead.
8. \(C_{o}\) may be selected by using the relationship:
\(\left.\mathrm{C}_{\mathrm{o}}=(100 \mu \mathrm{~F}) \mathrm{I}_{\mathrm{L}(\text { max })}\right)\) where \(\mathrm{I}_{\mathrm{L}(\text { max })}\) is the maximum load current in amperes.
9. C 2 is necessary for the internal compensation of the MC1466.
10. For optimum regulation, current out of Pin \(5, \mathrm{I}_{5}\) should not exceed 0.5 mAdc . Therefore select Q 1 and Q 2 such that:
\[
\frac{I_{\max }}{\beta 1 \beta 2} \leqslant 0.5 \mathrm{mAdc}
\]
where: \(I_{\max }=\) maximum short-circuit load current (mAdc)
\[
\begin{aligned}
& \beta 1=\text { minimum beta of } Q 1 \\
& \beta 2=\text { minimum beta of } Q 2
\end{aligned}
\]

Although Pin 5 will source up to \(1.5 \mathrm{mAdc}, \mathrm{l}_{5}>0.5 \mathrm{mAdc}\) will result in a degradation in regulation.
11. CR6 is recommended when \(\mathrm{V}_{\mathrm{O}}>150 \mathrm{Vdc}\) and should be rated such that Peak Inverse Voltage \(>\mathrm{V}_{\mathrm{O}}\).
12. In applications where R2 might be rapidly reduced in value, it is recommended that CR3 be replaced by Q 2 and R4.

This design consideration prevents R2 from being destroyed by excessive discharge current from \(\mathrm{C}_{\mathrm{O}}\). Components O 2 and R4 should be selected such that:
\[
\begin{gathered}
\mathrm{R} 4=\frac{\mathrm{R} 2}{10} \text { and } \\
\mathrm{V}_{\mathrm{CEO}} \text { of } \mathrm{Q} 2 \geqslant \mathrm{~V}_{\mathrm{O}}
\end{gathered}
\]

\section*{MC1466L}

\section*{OPERATION AND APPLICATIONS}

This section describes the operation and design of the MC1466 voltage and current regulator and also provides information on useful applications.

\section*{SUBJECT SEQUENCE}

\section*{THEORY OF OPERATION}

The schematic of Figure 5 can be simplified by breaking it down into basic functions, beginning with a simplified version of the voltage reference, Figure 7. Zener diodes CR1 and CR5 with their associated forward biased diodes CR2 through CR4 and CR6 through CR8 form the stable reference needed to balance the differential amplifier. At balance \(\left(\mathrm{V}_{\mathrm{B} 1}=\mathrm{V}_{\mathrm{B} 2}\right)\), the output voltage, \(\left(\mathrm{V}_{12}-\mathrm{V}_{7}\right)\), is at a value that is twice the drop across either of the two diode strings: \(\mathrm{V}_{12}-\mathrm{V}_{7}=2\left(\mathrm{~V}_{\mathrm{CR} 1}+\mathrm{V}_{\mathrm{CR} 2}+\mathrm{V}_{\mathrm{CR}}+\right.\) \(\mathrm{V}_{\mathrm{CR} 4}\)). Other voltages, temperature compensated or otherwise, are also derived from these diodes strings for use in other parts of the circuit.

The voltage controlled current source (Figure 8) is a PNP-NPN composite which, due to the high NPN beta,

FIGURE 7 - REFERENCE VOLTAGE REGULATOR

yields a good working PNP from a lateral device working at a collector current of only a few microamperes. Its base voltage \(\left(\mathrm{V}_{\mathrm{B}_{2}}\right)\) is derived from a temperature compensated portion of the diode string and consequently the overall current is dependent on the value of emitter resistor R1. Temperature compensation of the base emitter junction of Q3 is not important because approximately 9 volts exists between \(\mathrm{V}_{\mathrm{B}_{2}}\) and \(\mathrm{V}_{12}\), making the \(\Delta \mathrm{V}_{\mathrm{BE}}\) 's very small in percentage. Circuit reference voltage is derived from the product of \(I_{R}\) and \(R_{R}\); if \(I_{R}\) is set at 1 mA \((\mathrm{R} 1=8.5 \mathrm{k} \Omega)\), then \(\mathrm{R}_{\mathrm{R}}(\) in \(\mathrm{k} \Omega)=\mathrm{V}_{\mathrm{o}}\). Other values of current may be used as long as the following restraints are kept in mind: 1) package dissipation will be increased by about \(11 \mathrm{~mW} / \mathrm{mA}\) and 2) bias current for the voltage control amplifier is \(3 \mu \mathrm{~A}\), temperature dependent, and is extracted from the reference current. The reference current should

FIGURE 8 - VOLTAGE CONTROLLED CURRENT SOURCE

be at least two orders of magnitude above the largest expected bias current.

Loop amplification in the constant voltage mode is supplied by the voltage controlled amplifier (Figure 9), a standard high gain differential amplifier. The inputs are diode-protected against differential overvoltages and an emitter degenerating resistor, ROS, has been added to one of the transistors. For an emitter current in both Q5 and Q6 of \(1 / 2\) milliampere there will exist a preset offset voltage in this differential amplifier of 15 mV to insure that the output voltage will be zero when the reference voltage is zero. Without ROS, the output voltage could be a few millivolts above zero due to the inherent offset. Since the load resistor is so large in this stage compared with the load (Q9) it will be more instructive to look at the gain on a transconductance basis rather than voltage gain. Transconductance of the differential stage is defined for small signals as:
\[
\begin{equation*}
g_{m}=\frac{1}{2 r_{e}+R_{E}} \tag{1}
\end{equation*}
\]
where
\[
\mathrm{r}_{\mathrm{e}} \approx \frac{0.026}{\mathrm{I}_{\mathrm{E}}} \text { and }
\]
\(\mathrm{R}_{\mathrm{E}}=\) added emitter degenerating resistance.
For \(\mathrm{I}_{\mathrm{E}}=0.5 \mathrm{~mA}\),
\[
\begin{equation*}
\mathrm{g}_{\mathrm{m}}=\frac{1}{104+30}=\frac{1}{134}=7.5 \mathrm{~mA} / \mathrm{volt} . \tag{2}
\end{equation*}
\]

FIGURE 9 - VOLTAGE CONTROL AMPLIFIER

FIGURE 10 - CURRENT CONTROL CIRCUIT

This level is further boosted by the output stage such that in the constant voltage mode overall transconductance is about \(300 \mathrm{~mA} /\) volt.

A second differential stage nearly identical to the first stage, serves as the current control amplifier (Figure 10). The gain of this stage insures a rapid crossover from the constant voltage to constant current modes and provides a convenient point to control the maximum deliverable load current. In use, a reference voltage derived from the preregulator and a voltage divider is applied to pin 10 while the output current is sampled across \(\mathrm{R}_{\mathrm{S}}\) by pin 11 . When \(\mathrm{I}_{\mathrm{L}} \mathrm{R}_{\mathrm{S}}\) is 15 mV below the reference value, voltage \(\mathrm{V}_{1}\) begins to rapidly rise, eventually gaining complete control of Q9 and limiting output current to a value of \(\mathrm{V}_{2} / \mathrm{R}_{\mathrm{S}}\). If \(\mathrm{V}_{2}\) is derived from a variable source, short circuit current may be controlled over the complete output current capability of the regulator. Since the constantvoltage to constant-current change-over requires only a few millivolts the voltage regulation maintains its quality to the current limit and accordingly shows a very sharp "knee" \((1 \%+1 \mathrm{~mA}\), Figure 11). Note that the regulator can switch back into the constant voltage mode if the output voltage reaches a value greater than \(\mathrm{V}_{\mathrm{R}}\). Operation through zero milliamperes is guaranteed by the inclusion of another emitter offsetting resistor.
\[
\text { FIGURE } 11 \text { - V CURVE FOR 0-TO-40 V, }
\] 0.5-AMPERE REGULATOR

Transistor Q9 and five diodes comprise the essential parts of the output stage (Figure 12). The diodes perform an "OR" function which allows only one mode of operation at a time - constant current or constant voltage. However, an additional stage (Q9) must be included to invert the logic and make it compatible with the driving requirements of series pass transistors as well as provide additional gain. A 1.5 mA collector current source sets the maximum deliverable output current and boosts the output impedance to that of the current source.

Note that the negative (substrate) side of the MC1466 is 7.25 volts lower than the output voltage, and the reference regulator guarantees that the positive side is 11 volts above the output. Thus the IC remains at a voltage (relative to ground) solely dependent on the output, "floating'" above and below \(\mathrm{V}_{\mathrm{o}}\). \(\mathrm{V}_{\mathrm{CE}}\) across Q 9 is only two or three \(\mathrm{V}_{\mathrm{BE}}\) 's depending on the number of transistors used in the series pass configuration

Performance characteristics of the regulator may be approximately calculated for a given circuit (Figure 2). Assuming that the two added transistors (Q12 and Q13) have minimum betas of 20 , then the overall regulator transconductance will be:
\[
\begin{equation*}
\mathrm{gmT}_{\mathrm{m}}=(400) 300 \mathrm{~mA} / \mathrm{volt}=120 \mathrm{~A} / \mathrm{volt} . \tag{3}
\end{equation*}
\]

For a change in current of 500 mA the output voltage will drop only:
\[
\begin{equation*}
\Delta \mathrm{V}=\frac{0.5}{120}=4.2 \mathrm{mV} \tag{4}
\end{equation*}
\]

FIGURE 12 - MC1466 OUTPUT STAGE

The analysis thus far does not consider changes in \(\mathrm{V}_{\mathrm{R}}\) due to output current changes. If I increases by 500 mA the collector current of Q9 decreases by 1.25 mA , causing the collector current of Q5 to increase by \(30 \mu \mathrm{~A}\). Accordingly, IR will be decreased by \(\approx 0.30 \mu \mathrm{~A}\) which will drop the output by \(0.03 \%\). This figure may be improved considerably by either using high beta devices as the pass transistors, or by increasing IR. Note again, however, that the maximum power rating of the package must be kept in mind. For example if \(I_{R}=4 \mathrm{~mA}\), power dissipation is
\[
\begin{equation*}
\mathrm{P}_{\mathrm{D}}=20 \mathrm{~V}(8 \mathrm{~mA})+(11 \mathrm{~V} \times 3 \mathrm{~mA})=193 \mathrm{~mW} \tag{5}
\end{equation*}
\]

This indicates that the circuit may be safely operated up to \(118^{\circ} \mathrm{C}\) using 20 volts at the auxiliary supply voltage. If, however, the auxiliary supply voltage is 35 volts,
\[
\begin{equation*}
P_{D}=35 \mathrm{~V}(8 \mathrm{~mA})+26 \mathrm{~V}(3 \mathrm{~mA})=358 \mathrm{~mW} \tag{6}
\end{equation*}
\]
which dictates that the maximum operating temperature must be less than \(91^{\circ} \mathrm{C}\) to keep package dissipation within specified limits.

Line voltage regulation is also a function of the voltage change between pins 8 and 9 , and the change of \(V_{\text {ref }}\). In this case, however, these voltages change due to changes in the internal regulator's voltages, which in turn are caused by changes in \(\mathrm{V}_{\text {aux }}\). Note that line voltage regulation is not a function of \(\mathrm{V}_{\mathrm{in}}\). Note also that the instantaneous value of \(\mathrm{V}_{\text {aux }}\) must always be between 20 and 35 volts.

Figure 6 shows six external diodes \(\left(\mathrm{CR}_{1}\right.\) to \(\left.\mathrm{CR}_{6}\right)\) added for protective purposes. \(\mathrm{CR}_{1}\) should be used if the output voltage is less than 20 volts and \(\mathrm{CR}_{2}, \mathrm{CR}_{3}\) are absent. For \(V_{0}\) higher than 20 volts, \(\mathrm{CR}_{1}\) should be discarded in favor of \(\mathrm{CR}_{2}\) and \(\mathrm{CR}_{3}\). Diode \(\mathrm{CR}_{4}\) prevents IC failure if the series pass transistors develop collector-base shorts while the main power transistor suffers a simultaneous open emitter. If the possibility of such a transistor failure mode seems remote, CR4 may be deleted. To prevent instantaneous differential and common mode breakdown of the current sense amplifier, \(\mathrm{CR}_{5}\) must be placed across the current limit resistor \(\mathrm{R}_{\mathrm{S}}\).

Load transients occasionally produce a damaging reversal of current flow from output to input \(\mathrm{V}_{\mathrm{O}}>150\) volts (which will destroy the IC). Diode \(\mathrm{CR}_{6}\) prevents such reversal and renders the circuit immune from destruction for such conditions, e.g., adding a large output capacitor after the supply is turned "on". Diodes \(\mathrm{CR}_{1}, \mathrm{CR}_{2}, \mathrm{CR}_{3}\), and \(\mathrm{CR}_{5}\) may be general purpose silicon units such as 1 N 4001 or equivalent whereas \(\mathrm{CR}_{4}\) and \(\mathrm{CR}_{6}\) should have a peak inverse voltage rating equal to \(\mathrm{V}_{\text {in }}\) or greater.

\section*{APPLICATIONS}

Figure 2 shows a typical 0 -to- 40 volts, 0.5 -ampere regulator with better than \(0.01 \%\) performance. The RC network between pins 5 and 6 and the capacitor between pins 13 and 14 provide frequency compensation for the MC1466. The external pass transistors are used to boost load current, since the output current of the regulator is less than 2 mA .

Figure 1 is a 0 -to- 15 volts, 10 -ampere regulator with the pass transistor configuration necessary to boost the load current to 10 amperes. Note that \(\mathrm{C}_{\mathrm{O}}\) has been increased to \(1000 \mu \mathrm{~F}\) following the general rule:
\[
\mathrm{C}_{\mathrm{O}}=100 \mu \mathrm{~F} / \mathrm{A} \mathrm{I}_{\mathrm{L}} .
\]

The prime advantage of the MC1466 is its use as a high voltage regulator, as shown in Figure 3. This 0 -to- 250 volts 0.1 -ampere regulator is typical of high voltage applications, limited only by the breakdown and safe areas of the output pass transistors.

The primary limiting factor in high voltage series regulators is the pass transistor. Figure 13 shows a safe area curve for the MJ413. Looking at Figure 3, we see that if the output is shorted, the transistor will have a collector current of 100 mA , with a \(V_{C E}\) approximately equal to 260 volts. Thus this point falls on the dc line of the safe area curve, insuring that the transistor will not enter secondary breakdown.

In this respect (Safe Operating Area) the foldback circuit of Figure 14 is superior for handling high voltages and yet is short-circuit protected. This is due to the fact that load current is diminished as output voltage drops (\(\mathrm{V}_{\mathrm{CE}}\) increases as \(\mathrm{V}_{\mathrm{O}}\) drops) as seen in Figure 15. By careful design the load current at a short, ISC can be made low enough such that the combined \(\mathrm{V}_{\mathrm{CE}}\left(\mathrm{V}_{\text {in }}\right)\) and \(\mathrm{I}_{S C}\) still falls within the dc safe operating area of the transistor. For the illustrated design (Figure 14), an input voltage of 210 volts is compa-
tible with a short circuit current of 100 mA . Yet current foldback allows us to design for a maximum regulated load current of 500 mA . the pertinent design equations are:
\[
\begin{aligned}
& \text { Let } \mathrm{R}_{2}(\mathrm{k} \Omega)=\mathrm{V}_{\mathrm{O}} \\
& \alpha=\frac{0.25}{\mathrm{~V}_{\mathrm{O}}}\left[\frac{\mathrm{I}_{\mathrm{k}}}{\mathrm{I}_{\mathrm{SC}}}-1\right] \\
& \mathrm{R}_{1}(\mathrm{k} \Omega)=\frac{\alpha}{1-\alpha} \mathrm{V}_{\mathrm{O}} \\
& \mathrm{R}_{\mathrm{SC}}=\frac{0.25}{(1-\alpha) \mathrm{ISC}}
\end{aligned}
\]

FIGURE 14 - A 200 V, 0.5-AMPERE REGULATOR WITH CURRENT FOLDBACK

The terms \(I_{S C}\) and \(I_{k}\) correspond to the short-circuit current and maximum available load current as shown in Figure 15.

Figure 16 shows a remote sense application which should be used when high current or long wire lengths are used. This type of wiring is recommended for any application where the best possible regulation is desired. Since the sense lines draw only a small current, large voltage drops do not destroy the excellent regulation of the MC1466.

\section*{TRANSIENT FAILURES}

In industrial areas where electrical machinery is used
the normal ac line often contains bursts of voltage running from hundreds to thousands of volts in magnitude and only microseconds in duration. Under some conditions this energy is dissipated across the internal zener connected between pins 9 and 7. This transient condition may produce a total failure of the regulator device without any apparent explanation. This type of failure is identified by absence of the 7 volt zener (CR1) between pin 9 and pin 7 . To prevent this failure mode the use of a shielded power transformer is recommended, as shown in Figure 6. In addition, it is recommended that \(\mathrm{C} 1, \mathrm{C} 3\) and C 4 be included to aid in transient repression. These capacitors should have good high frequency characteristics.

If the possibility of transients on the output exists, the addition of a resistor and zener diode between pins 9 and 7 as shown on Figure 17 should be added.

\section*{VOLTAGE/CURRENT MODE INDICATOR}

There may be times when it is desirable to know when the MC1466 is in the constant current mode or constant voltage mode. A mode indicator can be easily added to provide this feature. Figure 18 shows how a PNP transistor has replaced a protection diode between pins 8 and 9 of Figure 2. When the MC1466 goes from constant voltage mode to constant current mode, \(\mathrm{V}_{\mathrm{O}}\) will drop below \(\mathrm{V}_{8}\) and the PNP transistor will turn on. The 1 mA current'supplied by pin 8 will now be shunted to base of Q2 thereby turning on the indicator device II.

FIGURE 16 - REMOTE SENSE

FIGURE 17 - A 0-TO-250 VOLT, 0.1-AMPERE REGULATOR

FIGURE 18 - 0-TO-- 40 Vdc , 0.5-AMPERE REGULATOR WITH MODE INDICATOR

\section*{MC1468} MC1568

The MC1568/MC1468 is a dual polarity tracking regulator designed to provide balanced positive and negative output voltages at currents to 100 mA . Internally, the device is set for \(\pm 15\)-volt outputs but an external adjustment can be used to change both outputs simultaneously from 8.0 to 20 volts. Input voltages up to \(\pm 30\) volts can be used and there is provision for adjustable current limiting.
- Internally Set to \(\pm 15 \mathrm{~V}\) Tracking Outputs
- Output Currents to 100 mA
- Outputs Balanced to within \(1.0 \%\) (MC1568)
- Line and Load Regulation of \(0.06 \%\)
- \(1.0 \%\) Maximum Output Variation Due to Temperature Changes
- Standby Current Drain of 3.0 mA
- Externally Adjustable Current Limit
- Remote Sensing Provisions

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION } \\
\hline Device & Temperature Range & Package \\
\hline MC1468G & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Metal Can \\
\hline MC1468L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline MC1568G & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Can \\
\hline MC1568L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline
\end{tabular}

\section*{MC1468, MC1568}

MAXIMUM RATINGS \(\left(T_{\mathrm{C}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|}
\hline Rating & Symbol & \multicolumn{2}{|c|}{Value} & Unit \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}\) & \multicolumn{2}{|c|}{30} & Vdc \\
\hline Peak Load Current & lpk & \multicolumn{2}{|c|}{100} & mA \\
\hline Power Dissipation and Thermal Characteristics & & G Package & L Package & \\
\hline \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & PD & 0.83 & 1.25 & Watts \\
\hline Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & \(1 /{ }^{1}\) JA & 6.6 & 10 & \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance, Junction to Air & \(\theta_{\text {JA }}\) & 150 & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \(\mathrm{T}^{\mathrm{T}} \mathrm{C}=+25^{\circ} \mathrm{C}\) & PD & 1.8 & 2.5 & Watts \\
\hline Derate above \(\mathrm{T}^{\text {C }}=+25^{\circ} \mathrm{C}\) & \(1 / \theta \mathrm{JC}\) & 14.3 & 20 & \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance, Junction to Case & \(\theta \mathrm{JC}\) & 70 & 50 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Storage Junction to Temperature Range & \(\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}\) & \multicolumn{2}{|r|}{-65 to +150} & \({ }^{\circ} \mathrm{C}\) \\
\hline Minimum Short-Circuit Resistance & \(\mathrm{R}_{\mathrm{SC}}(\mathrm{min})\) & \multicolumn{2}{|c|}{4.0} & Ohms \\
\hline
\end{tabular}

\section*{OPERATING TEMPERATURE RANGE}
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l}
Ambient Temperature \\
MC1468 \\
MC1568
\end{tabular} & TA \(_{A}\) & \begin{tabular}{c}
0 to +70 \\
-55 to +125
\end{tabular} & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1500 \mathrm{pF}, \mathrm{C} 3=\mathrm{C} 4=1.0 \mu \mathrm{~F}, \mathrm{RSC}^{+}=\mathrm{RSC}^{-}=\right.\) \(4.0 \Omega, \mathrm{I}^{+}=\mathrm{I}^{-}=0, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.) (See Figure 1.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC1568} & \multicolumn{3}{|c|}{MC1468} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage & \(\mathrm{V}_{0}\) & \(\pm 14.5\) & \(\pm 15\) & \(\pm 15.5\) & \(\pm 14.5\) & \(\pm 15\) & \(\pm 15.5\) & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\text {in }}\) & - & - & \(\pm 30\) & - & - & \(\pm 30\) & Vdc \\
\hline Input-Output Voltage Differential & \(\left|\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\right|\) & 2.0 & - & - & 2.0 & - & - & Vdc \\
\hline Output Voltage Balance (L package only) & \(\mathrm{V}_{\text {Bal }}\) & - & \(\pm 50\) & \(\pm 150\) & - & \(\pm 50\) & \(\pm 300\) & mV \\
\hline Line Regulation Voltage \(\left(\mathrm{V}_{\text {in }}=18 \mathrm{~V}\right.\) to 30 V\()\) (\(T_{\text {low }}{ }^{(1)}\) to \(\mathrm{Thigh}^{(2)}\)) & Regline & - & - & \[
\begin{aligned}
& 10 \\
& 20 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 10 \\
& 20
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation Voltage } \\
& \left(\mathrm{I}_{\mathrm{L}}=0 \text { to } 50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\text { constant }\right) \\
& \left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }}\right)
\end{aligned}
\] & Regload & - & - & \[
\begin{array}{r}
10 \\
30 \\
\hline
\end{array}
\] & - & - & \[
\begin{array}{r}
10 \\
30 \\
\hline
\end{array}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage Range \\
L Package (See Figure 4) \\
G Package (See Figures 2 and 13)
\end{tabular} & \(\mathrm{V}_{\text {OR }}\) & \[
\begin{array}{r}
\pm 8.0 \\
\pm 14.5 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& \pm 20 \\
& \pm 20 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\pm 8.0 \\
\pm 14.5
\end{gathered}
\] & - & \[
\begin{aligned}
& \pm 20 \\
& \pm 20
\end{aligned}
\] & Vdc \\
\hline Ripple Rejection (\(f=120 \mathrm{~Hz}\)) & RR & - & 75 & - & - & 75 & - & dB \\
\hline Output Voltage Temperature Stability (Tlow to Thigh) & \(\left|T \mathrm{~V}_{\mathrm{O}}\right|\) & - & 0.3 & 1.0 & - & 0.3 & 1.0 & \% \\
\hline Short-Circuit Current Limit (\(\mathrm{R}_{\mathrm{SC}}=10 \mathrm{ohms}\)) & Isc & - & 60 & - & - & 60 & - & mA \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage } \\
& (\mathrm{BW}=100 \mathrm{~Hz}-10 \mathrm{kHz})
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 100 & - & - & 100 & - & \(\mu \mathrm{V}\) (RMS) \\
\hline Positive Standby Current
\[
\left(\mathrm{V}_{\mathrm{in}}=+30 \mathrm{~V}\right)
\] & \(\mathrm{IB}^{+}\) & - & 2.4 & 4.0 & - & 2.4 & 4.0 & mA \\
\hline Negative Standby Current
\[
\left(\mathrm{V}_{\mathrm{in}}=-30 \mathrm{~V}\right)
\] & \(\mathrm{I}_{\mathrm{B}}{ }^{-}\) & - & 1.0 & 3.0 & - & 1.0 & 3.0 & mA \\
\hline Long-Term Stability & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{t}\) & - & 0.2 & - & - & 0.2 & - & \%/k Hr \\
\hline
\end{tabular}

\section*{TYPICAL APPLICATIONS}

\section*{FIGURE 1 - BASIC 50-mA REGULATOR}

C1 and C2 should be located as close to the device as possible. A 0.1 \(\mu \mathrm{F}\) ceramic capacitor (\(\mathrm{C}_{\mathrm{in}}\)) may be required on the input lines if the device is located an appreciable distance from the rectifier filter capacitors. C3 and C4 may be increased to improve load transient response and to reduce the output noise voltage. At low temperature operation, it may be necessary to bypass C 4 with a \(0.1 \mu \mathrm{~F}\) ceramic disc capacitor.

FIGURE \(3- \pm 1.5-A M P E R E\) REGULATOR
(Short-Circuit Protected, with Proper Heatsinking)

FIGURE 2 - VOLTAGE ADJUST AND BALANCE ADJUST CIRCUIT
\[
\left(14.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {out }} \leqslant 20 \mathrm{~V}\right)
\]

Balance adjust available in MC1568L, MC1468L ceramic dual in-line package only.

FIGURE 4 - OUTPUT VOLTAGE ADJUSTMENT
\[
\text { FOR } 8.0 \mathrm{~V} \leqslant\left| \pm V_{0}\right| \leqslant 14.5 \mathrm{~V}
\]
(Ceramic-Packaged Devices Only)

The presence of \(\mathrm{Bal}_{\mathrm{adj}}\), pin 2, on devices housed in the dual in-line package (\(L\) suffix) allows the user to adjust the output voltages down to \(\pm 8.0 \mathrm{~V}\). The required value of resistor R2 can be calculated from
\[
\mathrm{R} 2=\frac{\mathrm{R}_{1} \mathrm{R}_{\text {int }}\left(\phi+\mathrm{V}_{\mathrm{Z}}\right)}{\mathrm{R}_{\text {int }}\left(\mathrm{V}_{\mathrm{O}}-\phi-\mathrm{V}_{\mathbf{z}}\right)-\phi \mathrm{R} 1}
\]

Where: \(\mathbf{R}_{\text {int }}=\) An Internal Resistor \(=\mathbf{R 1}=1.0 \mathrm{k} \Omega\)
\[
\phi=0.68 \mathrm{~V}
\]
\[
\mathrm{V}_{\mathrm{z}}=6.6 \mathrm{~V}
\]

Some common design values are listed below:
\begin{tabular}{cccc}
\(\pm \mathrm{V}_{\mathrm{O}}(\mathrm{V})\) & R 2 & \(\mathrm{~T}_{\mathrm{C}} \mathrm{V}_{\mathrm{O}}\left(\% /{ }^{\circ} \mathrm{C}\right)\) & \(\mathrm{I}_{\mathrm{B}}+(\mathrm{mA})\) \\
\hline 14 & 1.2 k & 0.003 & 10 \\
12 & 1.8 k & 0.022 & 7.2 \\
10 & 3.5 k & 0.025 & 5.0 \\
8.0 & \(\infty\) & 0.028 & 2.6
\end{tabular}

TYPICAL CHARACTERISTICS
\(\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)

FIGURE 5 - LOAD REGULATION

FIGURE 7 - MAXIMUM CURRENT CAPABILITY

FIGURE 9 - ISC versus RSC

FIGURE 6 - REGULATOR DROPOUT VOLTAGE

FIGURE 8 - MAXIMUM CURRENT CAPABILITY

FIGURE 10 - CURRENT-LIMITING CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)
\(\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)

FIGURE 11 - STANDBY CURRENT DRAIN

FIGURE 13 - TEMPERATURE COEFFICIENT OF OUTPUT VOLTAGE

FIGURE 15 - LINE TRANSIENT RESPONSE

FIGURE 12 - STANDBY CURRENT DRAIN

FIGURE 14 - LOAD TRANSIENT RESPONSE

FIGURE 16 - RIPPLE REJECTION

TYPICAL CHARACTERISTICS (continued)
\(\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted. \()\)

\begin{tabular}{lccl}
\hline \multicolumn{1}{c}{ Device } & \multicolumn{1}{c}{ Alternate } & Temperature Range & \multicolumn{1}{c}{ Package } \\
\hline MC1723CD & & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & SO-14 \\
MC1723CG & LM723CH, \(\mu \mathrm{A} 723 \mathrm{HC}\) & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Metal Can \\
MC1723CL & LM723CD, \(\mu \mathrm{A} 723 \mathrm{DC}\) & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
MC1723CP & LM723CN, \(\mu \mathrm{A} 723 \mathrm{PC}\) & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
MC1723G & & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Metal Can \\
MC1723L & & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline
\end{tabular}

\section*{MONOLITHIC VOLTAGE REGULATOR}

The MC1723 is a positive or negative voltage regulator designed to deliver load current to 150 mAdc . Output current capability can be increased to several amperes through use of one or more external pass transistors. MC1723 is specified for operation over the military temperature range \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) and the MC 1723 C over the commercial temperature range (0 to \(+70^{\circ} \mathrm{C}\))
- Output Voltage Adjustable from 2 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- \(0.01 \%\) Line and \(0.03 \%\) Load Regulation
- Adjustable Short-Circuit Protection

\section*{VOLTAGE REGULATOR}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 632-08

\section*{D SUFFIX}

\section*{PLASTIC PACKAGE}

CASE 751A-02
SO-14

FIGURE 2 - TYPICAL CIRCUIT CONNECTION

FIGURE 3 - TYPICAL NPN CURRENT BOOST CONNECTION

MAXIMUM RATINGS (\(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Pulse Voltage from \(V_{C C}\) to \(V_{E E}(50 \mathrm{~ms}\)) & \(V_{\text {in }}(p)\) & 50 & \(V_{\text {peak }}\) \\
\hline Continuous Voltage from \(\mathrm{V}_{\text {CC }}\) to \(\mathrm{V}_{\mathrm{EE}}\) & \(\mathrm{V}_{\text {in }}\) & 40 & Vdc \\
\hline Input-Output Voltage Differential & \(v_{\text {in }}-v_{0}\) & 40 & Vdc \\
\hline Maximum Output Current & \({ }_{L}\) & 150 & mAdc \\
\hline Current from \(V_{\text {ref }}\) & Iref & 15 & mAdc \\
\hline Current from \(\mathrm{V}_{\mathrm{z}}\) & \(\mathrm{I}_{2}\) & 25 & mA . \\
\hline Voltage Between Non-Inverting Input and \(\mathrm{V}_{\text {EE }}\) & \(V_{\text {ie }}\) & 8.0 & Vdc \\
\hline Differential Input Voltage & \(V_{i d}\) & \(\pm 5.0\) & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics Plastic Package
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction to Air \\
Metal Package
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction to Air
\[
\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction to Case \\
Dual In-Line Ceramic Package \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction to Air
\end{tabular} & \[
\begin{gathered}
\mathrm{P}_{\mathrm{D}} \\
1 / \theta \mathrm{JAA} \\
\theta \mathrm{JA} \\
\mathrm{P}_{\mathrm{D}} \\
1 / \theta \mathrm{JA} \\
\theta_{\mathrm{JA}} \\
\mathrm{P}_{\mathrm{D}} \\
1 / \theta \mathrm{JA} \\
\theta_{\mathrm{JC}} \\
\mathrm{P}_{\mathrm{D}} \\
1 / \theta \mathrm{JA} \\
\theta_{\mathrm{JA}} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1.25 \\
10 \\
100 \\
\\
1.0 \\
6.6 \\
150 \\
2.1 \\
14 \\
35 \\
1.5 \\
10 \\
100 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
\(\underset{\substack{\mathrm{W} \\ \mathrm{o}_{\mathrm{C}} / \mathrm{W} \\ \mathrm{O}}}{\mathrm{C}}\) \\
Watt \\
\(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Watts \\
\(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Watt \\
\(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Operating and Storage Junction Temperature Range Metal Package \\
Dual In-Line Ceramic
\end{tabular} & \(\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}\) & \[
\begin{aligned}
& -65 \text { to }+150 \\
& -65 \text { to }+175
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature Range \\
MC1723C \\
MC1723
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-55 \text { to }+125 \\
\hline
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{in}} 12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{mAdc}, \mathrm{R} \mathrm{SC}=0\), \(\mathrm{C} 1=100 \mathrm{pF}, \mathrm{C}_{\text {ref }}=0\) and divider impedance as seen by the error amplifier \(\leqslant 10 \mathrm{k} \Omega\) connected as shown in Figure 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC1723} & \multicolumn{3}{|c|}{MC1723C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Input Voltage Range & \(V_{\text {in }}\) & 9.5 & - & 40 & 9.5 & - & 40 & Vdc \\
\hline Output Voltage Range & \(\mathrm{V}_{\mathrm{O}}\) & 2.0 & - & 37 & 2.0 & - & 37 & Vdc \\
\hline Input-Output Voltage Differential & \(v_{\text {in }}-v_{\text {C }}\) & 3.0 & - & 38 & 3.0 & - & 38 & Vdc \\
\hline Reference Voltage & \(V_{\text {ref }}\) & 6.95 & 7.15 & 7.35 & 6.80 & 7.15 & 7.50 & Vdc \\
\hline Standby Current Drain (\(\mathrm{I}_{\mathrm{L}}=0, \mathrm{~V}_{\text {in }}=30 \mathrm{~V}\)) & IIB & - & 2.3 & 3.5 & - & 2.3 & 4.0 & mAdc \\
\hline ```
Output Noise Voltage (f = 100 Hz to 10 kHz)
Cref =0
C
``` & \(\mathrm{V}_{\mathrm{n}}\) & - & \[
\begin{aligned}
& 20 \\
& 2.5
\end{aligned}
\] & - & & \[
\begin{aligned}
& 20 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \(\mu \mathrm{V}\) (RMS) \\
\hline Average Temperature Coefficient of Output Voltage ( \(T_{\text {low }}{ }^{(1)}<T_{A}<T_{\text {high }}\) (2)) & \(\mathrm{TCV}_{\mathrm{O}}\) & - & 0.002 & 0.015 & - & 0.003 & 0.015 & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Line Regulation
\[
\begin{gathered}
\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\left\{\begin{array}{l}
12 \mathrm{~V}<\mathrm{V}_{\text {in }}<15 \mathrm{~V} \\
12 \mathrm{~V}<\mathrm{V}_{\text {in }}<40 \mathrm{~V}
\end{array}\right. \\
\left(\mathrm{T}_{\text {low }}(1)<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {high }}(2),\right. \\
12 \mathrm{~V}<\mathrm{V}_{\text {in }}<15 \mathrm{~V}
\end{gathered}
\] & Regline & - & \[
\begin{aligned}
& 0.01 \\
& 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0.2 \\
& 0.3
\end{aligned}
\] &  & \[
\begin{gathered}
0.01 \\
0.1
\end{gathered}
\] & \[
\begin{aligned}
& 0.1 \\
& 0.5 \\
& 0.3
\end{aligned}
\] & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(1.0 \mathrm{~mA}<\mathrm{I}_{\mathrm{L}}<50 \mathrm{~mA}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\text {low }}(1)<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {high }} \text { (2) } \\
& \hline
\end{aligned}
\] & \(\mathrm{Reg}_{\text {load }}\) & - & 0.03 & \[
\begin{gathered}
0.15 \\
0.6
\end{gathered}
\] & & 0.03 & \[
\begin{aligned}
& 0.2 \\
& 0.6 \\
& \hline
\end{aligned}
\] & \% \(\mathrm{V}_{\mathrm{O}}\) \\
\hline ```
Ripple Rejection (f=50 Hz to 10 kHz)
Cref = 0
    Cref = 5.0 \muF
``` & RR & - & \[
\begin{aligned}
& 74 \\
& 86 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 74 \\
& 86 \\
& \hline
\end{aligned}
\] & - & dB \\
\hline Short Circuit Current Limit (\(\mathrm{R}_{\mathrm{SC}}=10 \Omega\),
\(\left.\qquad \mathrm{V}_{\mathrm{O}}=0\right)\) & \(\mathrm{I}_{\text {sc }}\) & - & 65 & - & - & 65 & - & mAdc \\
\hline Long Term Stability & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{t}\) & - & 0.1 & - & - & 0.1 & - & \(\% / 1000 \mathrm{Hr}\) \\
\hline
\end{tabular}
(1) \(T\)
low \(=0^{\circ} \mathrm{C}\) for MC1723C
(2) \(\begin{aligned} T_{\text {high }} & =+70^{\circ} \mathrm{C} \text { for } \mathrm{MC1723C} \\ & =+125^{\circ} \mathrm{C} \text { for } \mathrm{MC} 1723\end{aligned}\)

\section*{TYPICAL CHARACTERISTICS}
\(\left(\mathrm{V}_{\text {in }}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{SC}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted. \()\)

FIGURE 4 - MAXIMUM LOAD CURRENT AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

\(\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{0}\), INPUT-OUTPUT VOLTAGE (VOLTS)

FIGURE 6 - LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

Io, OUTPUT CURRENT (mA)

FIGURE 8 - CURRENT LIMITING CHARACTERISTICS

\({ }^{1} 0\), OUTPUT CURRENT (mA)

FIGURE 5 - LOAD REGULATION CHARACTERISTICS WITHOUT CURRENT LIMITING

10, OUTPUT CURRENT (mA)

FIGURE 7 - LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

IO, OUTPUT CURRENT (mA)

FIGURE 9 - CURRENT LIMITING CHARACTERISTICS AS A FUNCTION OF JUNCTION TEMPERATURE

TJ.JUNCTION TEMPERATURE (\({ }^{\circ} \mathrm{C}\))

TYPICAL CHARACTERISTICS (continued)

FIGURE 12 - STANDBY CURRENT DRAIN AS A FUNCTION OF INPUT VOLTAGE

\(\mathrm{V}_{\mathrm{in}}\). INPUT VOLTAGE (VOLTS)

FIGURE 14 - LOAD TRANSIENT RESPONSE

FIGURE 11 - LOAD REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

FIGURE 13 - LINE TRANSIENT RESPONSE

FIGURE 15 - OUTPUT IMPEDANCE AS FUNCTION OF FREQUENCY

TYPICAL APPLICATIONS
Pin numbers adjacent to terminals are for the metal package; pin numbers in parenthesis are for the dual in-line packages.

FIGURE 16 - TYPICAL CONNECTION FOR \(2<\mathrm{V}_{\mathrm{O}}<7\)

FIGURE \(18-+5 \mathrm{~V}\), 1-AMPERE SWITCHING REGULATOR

FIGURE \(20-+15 \mathrm{~V}\), 1-AMPERE REGULATOR WITH REMOTE SENSE

FIGURE 21 - - 15 V NEGATIVE REGULATOR

\title{
TYPICAL APPLICATIONS (continued)
}

FIGURE 22 - +12 V, 1-AMPERE REGULATOR USING PNP CURRENT BOOST

\section*{Specifications and Applications Information}

\section*{OVERVOLTAGE "CROWBAR" SENSING CIRCUIT}

These overvoltage protection circuits (OVP) protect sensitive electronic circuitry from overvoltage transients or regulator failures when used in conjunction with an external "crowbar" SCR. They sense the overvoltage condition and quickly "crowbar" or short circuit the supply, forcing the supply into current limiting or opening the fuse or circuit breaker.

The protection voltage threshold is adjustable and the MC3423/ 3523 can be programmed for minimum duration of overvoltage condition before tripping, thus supplying noise immunity.

The MC3423/3523 is essentially a "two terminal" system, therefore it can be used with either positive or negative supplies.

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Differential Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\) & 40 & Vdc \\
\hline Sense Voltage (1) & \(\mathrm{V}_{\text {Sense }}\) & 6.5 & Vdc \\
\hline Sense Voltage (2) & \(\mathrm{V}_{\text {Sense }}\) & 6.5 & Vdc \\
\hline Remote Activation Input Voltage & \(\mathrm{V}_{\mathrm{act}}\) & 7.0 & Vdc \\
\hline Output Current & \(\mathrm{I}_{\mathrm{O}}\) & 300 & mA \\
\hline \begin{tabular}{l}
Operating Ambient Temperature Range \\
MC3423 \\
MC3523
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & \begin{tabular}{c}
0 to +70 \\
\({ }^{\circ}\)
\end{tabular} & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Junction Temperature \\
Plastic Package \\
Ceramic Package
\end{tabular} & \(\mathrm{TJ}_{\mathrm{J}}\) & -55 to +125 & \\
\hline \begin{tabular}{l}
Storage Temperature Range
\end{tabular} & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{OVERVOLTAGE SENSING CIRCUIT}

SILICON MONOLITHIC INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS (5 \(\mathrm{V} \leqslant \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \leqslant 36 \mathrm{~V}, \mathrm{~T}_{\text {low }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {high }}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Supply Voltage Range & \(\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {EE }}\) & 4.5 & - & 40 & Vdc \\
\hline Output Voltage
\[
\left(1 O_{O}=100 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{O}}\) & \(\mathrm{V}_{\mathrm{CC}}-2.2\) & \(\mathrm{V}_{\mathrm{CC}}{ }^{-1.8}\) & - & Vdc \\
\hline Indicator Output Voltage
\[
(1 \mathrm{O}(\operatorname{lnd})=1.6 \mathrm{~mA})
\] & \(\mathrm{V}_{\text {OL }}\) (Ind) & - & 0.1 & 0.4 & Vdc \\
\hline Sense Trip Voltage
\[
\left(T_{A}=25^{\circ} \mathrm{C}\right)
\] & \begin{tabular}{l}
\(V_{\text {Sense }} 1\), \\
\(V_{\text {Sense }} 2\)
\end{tabular} & 2.45 & 2.6 & 2.75 & Vdc \\
\hline Temperature Coefficient of \(V_{\text {Sense }} 1\) (Figure 2) & TCV \({ }_{\text {S1 }}\) & - & 0.06 & - & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Remote Activation Input Current
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& I_{I H} \\
& I_{I L}
\end{aligned}
\] & - & \[
\begin{gathered}
5.0 \\
-120
\end{gathered}
\] & \[
\begin{gathered}
40 \\
-180
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Source Current & 'Source & 0.1 & 0.2 & 0.3 & mA \\
\hline Output Current Risetime
\[
\left(T_{A}=25^{\circ} C\right)
\] & \(\mathrm{t}_{\mathrm{r}}\) & - & 400 & - & \(\mathrm{mA} / \mu \mathrm{s}\) \\
\hline Propagation Delay Time
\[
\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \({ }^{\text {tpd }}\) & - & 0.5 & - & \(\mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
Supply Current MC3423 \\
MC3523
\end{tabular} & \({ }^{\prime} \mathrm{D}\) & - & \[
\begin{aligned}
& 6.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 7.0
\end{aligned}
\] & mA \\
\hline
\end{tabular}
\[
\begin{aligned}
\mathrm{T}_{\text {low }} & =-55^{\circ} \mathrm{C} \text { for MC3523 } & \mathrm{T}_{\text {high }} & =+125^{\circ} \mathrm{C} \text { for MC3523 } \\
& =0^{\circ} \mathrm{C} \text { for MC3423 } & & +70^{\circ} \mathrm{C} \text { for MC3423 }
\end{aligned}
\]

FIGURE 1 - BLOCK DIAGRAM

FIGURE 2 - SENSE VOLTAGE TEST CIRCUIT

FIGURE 3 - BASIC CIRCUIT CONFIGURATION

FIGURE 4 - CIRCUIT CONFIGURATION FOR SUPPLY VOLTAGE ABOVE 36 V

FIGURE 5 - BASIC CONFIGURATION FOR PROGRAMMABLE DURATION OF OVERVOLTAGE CONDITION BEFORE TRIP

\section*{BASIC CIRCUIT CONFIGURATION}

The basic circuit configuration of the MC3423/3523 OVP is shown in Figure 3 for supply voltages from 4.5 V to 36 V , and in Figure 4 for trip voltages above 36 V . The threshold or trip voltage at which the MC3423/3523 will trigger and supply gate drive to the crowbar SCR, Q1, is determined by the selection of R1 and R2. Their values can be determined by the equation given in Figures 3 and 4, or by the graph shown in Figure 8. The minimum value of the gate current limiting resistor, \(\mathrm{R}_{\mathrm{G}}\), is given in Figure 9. Using this value of \(R_{G}\), the \(S C R, ~ Q 1\), will receive the greatest gate current possible without damaging the MC3423/3523. If lower output currents are required, \(\mathrm{R}_{\mathrm{G}}\) can be increased in value. The switch, S1, shown in Figure 3 may be used to reset the SCR crowbar. Otherwise, the power supply, across which the SCR is connected, must be shut down to reset the crowbar. If a non currentlimited supply is used, a fuse or circuit breaker, F1, should be used to protect the SCR and/or the load.

The circuit configurations shown in Figures 3 and 4 will have a typical propogation delay of \(1.0 \mu \mathrm{~s}\). If faster operation is desired, pin 3 may be connected to pin 2 with pin 4 left floating. This will result in decreasing the propogation delay to approximately \(0.5 \mu \mathrm{~s}\) at the expense of a slightly increased TC for the trip voltage value.

\section*{CONFIGURATION FOR PROGRAMMABLE MINIMUM DURATION OF OVERVOLTAGE CONDITION BEFORE TRIPPING}

In many instances, the MC3423/3523 OVP will be used in a noise environment. To prevent false tripping of the OVP circuit by noise which would not normally harm the load, MC3423/3523 has a programmable delay feature. To implement this feature, the circuit configuration of Figure 5 is used. In this configuration, a capacitor is connected from pin 3 to \(V_{E E}\). The value of this capacitor determines the minimum duration of the overvoltage condition which is necessary to trip the OVP. The value of C can be found from Figure 10. The circuit operates in the following manner: When \(V_{C C}\) rises above the trip point set by R1 and R2, an internal current source (pin 4) begins charging the capacitor, C , connected to pin 3 . If the overvoltage condition disappears before this occurs, the capacitor is discharged at a rate \(\cong 10\) times faster than the charging rate, resetting the timing feature until the next overvoltage condition occurs.

Occasionally, it is desired that immediate crowbarring of the supply occur when a high overvoltage condition occurs, while retaining the false tripping immunity of Figure 5. In this case, the circuit of Figure 6 can be used. The circuit will operate as previously described for small overvoltages, but will immediately trip if the power supply voltage exceeds \(\mathrm{V}_{\mathrm{Z} 1}+1.4 \mathrm{~V}\).

FIGURE 6 - CONFIGURATION FOR PROGRAMMABLE DURATION OF OVERVOLTAGE CONDITION BEFORE TRIP/WITH IMMEDIATE TRIP AT HIGH OVERVOLTAGES

\section*{ADDITIONAL FEATURES}

\section*{1. Activation Indication Output}

An additional output for use as an indicator of OVP activation is provided by the MC3423/3523. This output is an open collector transistor which saturates when the OVP is activated. In addition, it can be used to clock an edge triggered flip-flop whose output inhibits or shuts down the power supply when the OVP trips. This reduces or eliminates the heatsinking requirements for the crowbar SCR.

\section*{2. Remote Activation Input}

Another feature of the MC3423/3523 is its remote activation input, pin 5 . If the volage on this CMOS/TTL compatible input is held below 0.8 V , the MC3423/ 3523 operates normally. However, if it is raised to a voltage above 2.0 V , the OVP output is activated independent of whether or not an overvoltage condition is present. It should be noted that pin 5 has an internal pull-up current source. This feature can be used to accomplish an orderly and sequenced shutdown of system power supplies during a system fault condition. In addition, the activation indication output of one MC3423/3523 can be used to activate another MC3423/3523 if a single transistor inverter is used to interface the former's indication output to the latter's remote activation input, as shown in Figure 7. In this circuit, the indication output (pin 6) of the MC3423 on power supply 1 is used to activate the MC3423 associated with power supply 2 . Q1 is any small PNP with adequate voltage rating.

FIGURE 7 - CIRCUIT CONFIGURATION FOR ACTIVATING ONE MC3523 FROM ANOTHER

Note that both supplies have their negative output leads tied together (i.e., both are positive supplies). If their positive leads are common (two negative supplies) the emitter of Q1 would be moved to the positive lead of supply 1 and R1 would therefore have to be resized to deliver the appropriate drive to Q1.

\section*{CROWBAR SCR CONSIDERATIONS}

Referring to Figure 11, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, \(\mathrm{C}_{\text {out }}\). This capacitance consists of the power supply output caps, the load's decoupling caps, and in the case of Figure 11A, the supply's input filter caps. This surge current is illustrated in Figure 12, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or \(\mathrm{l}^{2} \mathrm{t}\). The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

\section*{1. \(\mathrm{di} / \mathrm{dt}\)}

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities - depending on the severity of the occasion.

FIGURE 8-R1 versus TRIP VOLTAGE

FIGURE 9 - MINIMUM R \(\mathrm{R}_{\mathrm{G}}\) versus SUPPLY VOLTAGE

FIGURE 10 - CAPACITANCE versus MINIMUM OVERVOLTAGE DURATION

* FIGURE 11 - TYPICAL CROWBAR OVP CIRCUIT CONFIGURATIONS

FIGURE 12 - CROWBAR SCR SURGE CURRENT WAVEFORM

FIGURE 13 - CIRCUIT ELEMENTS AFFECTING SCR SURGE \& di/dt

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times \(\mathrm{I}_{\mathrm{GT}}\)) the SCR gate with a fast \(<1.0 \mu\) s rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than \(50 \mathrm{~A}(\mathrm{RMS})\) rating might be \(200 \mathrm{~A} / \mu \mathrm{s}\), assuming a gate current of five times IGT and \(<1.0 \mu \mathrm{~s}\) rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 13. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt.

\section*{2. Surge Current}

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance - see Figure 13) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

\section*{A WORD ABOUT FUSING}

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 11A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!
In order to protect the SCR, the fuse would have to possess an \(1^{2}\) t rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

\section*{CROWBAR SCR SELECTION GUIDE}

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ DEVICE } & IRMS & IFSM & PACKAGE \\
\hline 2N6400 Series & \(16 A\) & \(160 A\) & TO220 Plastic \\
2N6504 Series & \(25 A\) & \(160 A\) & TO220 Plastic \\
2N1842 Series & \(16 A\) & \(125 A\) & Metal Stud \\
2N2573 Series & \(25 A\) & \(260 A\) & Metal TO-3 Type \\
2N681 Series & \(25 A\) & \(200 A\) & Metal Stud \\
MCR3935-1 Series & 35A & \(350 A\) & Metal Stud \\
MCR81-5 Series & \(80 A\) & \(1000 A\) & Metal Stud \\
\hline
\end{tabular}

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 11B.

For a complete and detailed treatment of SCR and fuse selection, refer to Motorola Application Note AN-789.

\section*{POWER SUPPLY SUPERVISORY/OVER-UNDER-VOLTAGE PROTECTION CIRCUIT}

The MC3425 is a power supply supervisory circuit containing all the necessary functions required to monitor over- and undervoltage fault conditions. These integrated circuits contain dedicated over- and under-voltage sensing channels with independently programmable time delays. The over-voltage channel has a high current Drive Output for use in conjunction with an external SCR "Crowbar" for shutdown. The under-voltage channel input comparator has hysteresis which is externally programmable, and an open-collector output for fault indication.
- Dedicated Over- And Under-Voltage Sensing
- Programmable Hysteresis Of Under-Voltage Comparator
- Internal 2.5 V Reference
- 300 mA Over-Voltage Drive Output
- 30 mA Under-Voltage Indicator Output
- Programmable Time Delays
- 4.5 V to 40 V Operation

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & Vdc \\
\hline Comparator Input Voltage Range (Note 1) & \(V_{\text {IR }}\) & -0.3 to +40 & Vdc \\
\hline Drive Output Short-Circuit Current & IOS(DRV) & Internally Limited & mA \\
\hline Indicator Output Voltage & VIND & 0 to 40 & Vdc \\
\hline Indicator Output Sink Current & IIND & 30 & mA \\
\hline Power Dissipation and Thermal Characteristics Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) Thermal Resistance Junction to Air & \(P_{D}\) \(\mathrm{R}_{\theta \mathrm{JA}}\) & \[
\begin{gathered}
1000 \\
80
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\text {A }}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: (1) The input signal voltage should not be allowed to go negative by more than 300 mV or positive by more than 40 V , independent of \(\mathrm{V}_{\mathrm{CC}}\), without device destruction.

\section*{TYPICAL APPLICATION}

Over-Voltage Crowbar Protection, Under-Voltage Indication

\section*{POWER SUPPLY SUPERVISORY/} OVER-UNDER-VOLTAGE PROTECTION CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

P1 SUFFIX
PLASTIC PACKAGE
CASE 626-05

PIN CONNECTIONS

(Top View)

ELECTRICAL CHARACTERISTICS (4.5 \(\mathrm{V} \leqslant \mathrm{V}_{C C} \leqslant 40 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) [see Note 2] unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline \begin{tabular}{l}
Sense Trip Voltage (Reference Voltage)
\[
\begin{aligned}
V_{C C} & =15 \mathrm{~V} \\
T_{A} & =25^{\circ} \mathrm{C}
\end{aligned}
\] \\
Tlow to Thigh (Note 2)
\end{tabular} & \(V_{\text {Sense }}\) & \[
\begin{gathered}
2.4 \\
2.33
\end{gathered}
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{gathered}
2.6 \\
2.63
\end{gathered}
\] & Vdc \\
\hline Line Regulation of \(\mathrm{V}_{\text {Sense }}\)
\[
4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 40 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}
\] & Regline & - & 7.0 & 15 & mV \\
\hline Power Supply Voltage Operating Range & \(\mathrm{V}_{\mathrm{CC}}\) & 4.5 & - & 40 & Vdc \\
\hline ```
Power Supply Current
 \(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\); No Output Loads
 O.V. Sense \((\) Pin 3) \(=0 \mathrm{~V}\);
 U.V. Sense (Pin 4) \(=\mathrm{V}_{\mathrm{CC}}\)
``` & ICC(off) & - & 8.5 & 10 & mA \\
\hline \begin{tabular}{l}
O.V. Sense \((\operatorname{Pin} 3)=V_{C C}\); \\
U.V. Sense \((\) Pin 4\()=0 \mathrm{~V}\)
\end{tabular} & \({ }^{\text {I CCO }}\) (on) & - & 16.5 & 19 & mA \\
\hline
\end{tabular}

INPUT SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current, O.V. and U.V. Sense & IIB & - & 1.0 & 2.0 & \(\mu \mathrm{A}\) \\
\hline ```
Hysteresis Activation Voltage, U.V. Sense
    \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\);
        \(l_{H}=10 \%\)
        \(l_{H}=90 \%\)
``` & \(\mathrm{V}_{\mathrm{H} \text { (act) }}\) & - & \[
\begin{aligned}
& 0.6 \\
& 0.8
\end{aligned}
\] & - & V \\
\hline \begin{tabular}{l}
Hysteresis Current, U.V. Sense \\
\(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\); U.V. Sense \((\) Pin 4\()=2.5 \mathrm{~V}\)
\end{tabular} & \({ }^{\mathrm{H}}\) & 9.0 & 12.5 & 16 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Delay Pin Voltage (IDLY \(=0 \mathrm{~mA}\)) \\
Low State \\
High State
\end{tabular} & \begin{tabular}{l}
\(V_{O L(D L Y)}\) \\
\(\mathrm{V}_{\mathrm{OH}}\) (DLY)
\end{tabular} & \[
\frac{-}{\mathrm{v}_{\mathrm{CC}}^{-0.5}}
\] & \[
\begin{gathered}
0.2 \\
\mathrm{~V}_{\mathrm{CC}}{ }^{-0.15}
\end{gathered}
\] & 0.5 & v \\
\hline Delay Pin Source Current
\[
V_{C C}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{DLY}}=0 \mathrm{~V}
\] & IDLY(source) & 140 & 200 & 260 & \(\mu \mathrm{A}\) \\
\hline Delay Pin Sink Current
\[
V_{C C}=15 \mathrm{~V} ; V_{D L Y}=2.5 \mathrm{~V}
\] & 'DLY(sink) & 1.8 & 3.0 & - & mA \\
\hline
\end{tabular}

\section*{OUTPUT SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Drive Output Peak Current (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & 'DRV(peak) & 200 & 300 & - & mA \\
\hline Drive Output Voltage
\[
\mathrm{I} R V=100 \mathrm{~mA} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{\mathrm{OH}}\) (DRV) & \(\mathrm{V}_{\mathrm{CC}}-2.5\) & \(\mathrm{V}_{\mathrm{CC}}-2.0\) & - & v \\
\hline Drive Output Leakage Current
\[
V_{D R V}=0 V
\] & \({ }^{\prime} \mathrm{DRV}\) (leak) & - & 15 & 200 & nA \\
\hline Drive Output Current Slew Rate (\(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\)) & di/dt & - & 2.0 & - & \(\mathrm{A} / \mu \mathrm{s}\) \\
\hline Drive Output \(\mathrm{V}_{\mathrm{CC}}\) Transient Rejection \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) to 15 V at \(\mathrm{dV} / \mathrm{dt}=200 \mathrm{~V} / \mu \mathrm{s}\); O.V. Sense (Pin 3) \(=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & IDRV(trans) & - & 1.0 & - & \[
\begin{gathered}
\mathrm{mA} \\
(\text { Peak })
\end{gathered}
\] \\
\hline Indicator Output Saturation Voltage
\[
I_{N D}=30 \mathrm{~mA} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{\text {IND }}\) (sat) & - & 560 & 800 & mV \\
\hline Indicator Output Leakage Current
\[
\mathrm{V}_{\mathrm{OH}(\mathrm{IND})}=40 \mathrm{~V}
\] & IIND(leak) & - & 25 & 200 & nA \\
\hline Output Comparator Threshold Voltage (Note 3) & \(\mathrm{V}_{\text {th(} \mathrm{OC})}\) & 2.33 & 2.5 & 2.63 & v \\
\hline \begin{tabular}{l}
Propagation Delay Time
\[
\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] \\
Input to Drive Output or Indicator Output 100 mV Overdrive, \(\mathrm{C}_{\mathrm{DLY}}=0 \mu \mathrm{~F}\)
\end{tabular} & tpLH(IN/OUT) & - & 1.7 & - & \(\mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
Input to Delay \\
2.5 V Overdrive (0 V to 5.0 V Step)
\end{tabular} & tPLH(IN/DLY) & - & 700 & - & ns \\
\hline
\end{tabular}

\section*{NOTES:}
(2) \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\)
(3) The \(\mathrm{V}_{\mathrm{th}}(\mathrm{OC})\) limits are approximately the \(\mathrm{V}_{\text {Sense }}\) limits over the applicable temperature range.

FIGURE 1 - HYSTERESIS CURRENT versus HYSTERESIS ACTIVATION VOLTAGE

FIGURE 3 - HYSTERESIS CURRENT versus TEMPERATURE

FIGURE 5 - OUTPUT DELAY TIME versus DELAY CAPACITANCE

FIGURE 2 - HYSTERESIS ACTIVATION VOLTAGE versus TEMPERATURE

FIGURE 4 - SENSE TRIP VOLTAGE CHANGE versus TEMPERATURE

FIGURE 6 - DELAY PIN SOURCE CURRENT versus TEMPERATURE

FIGURE 7 - DRIVE OUTPUT SATURATION VOLTAGE versus OUTPUT PEAK CURRENT

FIGURE 9 - DRIVE OUTPUT SATURATION VOLTAGE versus TEMPERATURE

FIGURE 8 - INDICATOR OUTPUT SATURATION VOLTAGE versus OUTPUT SINK CURRENT

FIGURE 10 - POWER SUPPLY CURRENT versus VOLTAGE

\section*{APPLICATIONS INFORMATION}

FIGURE 11 - OVERVOLTAGE PROTECTION AND UNDER VOLTAGE FAULT INDICATION WITH

U.V. Hysteresis \(=I_{H}\left(\frac{R 1 B R 2 B}{R 1 B+R 2 B}\right) \quad V_{O(\text { trip })}=2.5 \mathrm{~V}\left(1+\frac{R 1 A}{R 2 A}\right)\) \({ }^{t} D L Y=12500 C_{D L Y}\)

FIGURE 13 - OVERVOLTAGE AUDIO ALARM CIRCUIT

FIGURE 12 - OVERVOLTAGE PROTECTION OF 5.0 V SUPPLY WITH LINE LOSS DETECTOR

FIGURE 14 - PROGRAMMABLE FREQUENCY SWITCH

\section*{CIRCUIT DESCRIPTION}

The MC3425 is a power supply supervisory circuit containing all the necessary functions required to monitor over- and under-voltage fault conditions. The block diagram is shown below in Figure 15. The OverVoltage (O.V.) and Under-Voltage (U.V.) Input Comparators are both referenced to an internal 2.5 V regulator. The U.V. Input Comparator has a feedback activated \(12.5 \mu \mathrm{~A}\) current sink (\(\mathrm{I}_{\mathrm{H}}\)) which is used for programming the input hysteresis voltage \(\left(\mathrm{V}_{\mathrm{H}}\right)\). The source resistance feeding this input \(\left(R_{H}\right)\) determines the amount of hysteresis voltage by \(\mathrm{V}_{\mathrm{H}}=\mathrm{I}_{\mathrm{H}} \mathrm{R}_{\mathrm{H}}=\) \(12.5 \times 10^{-6} R_{H}\).

Separate Delay pins (O.V. DLY, U.V. DLY) are provided for each channel to independently delay the Drive and Indicator outputs, thus providing greater input noise immunity. The two Delay pins are essentially the outputs of the respective input comparators, and provide a constant current source, IDLY(source), of typically \(200 \mu \mathrm{~A}\) when the non-inverting input voltage is greater than the inverting input level. A capacitor connected from these Delay pins to ground, will establish a predictable delay time (tDLY) for the Drive and Indicator outputs. The Delay pins are internally connected to the non-inverting inputs of the O.V. and U.V. Output Comparators, which are referenced to the internal 2.5 V regulator. Therefore, delay time (DLY)
is based on the constant current source, IDLY(source), charging the external delay capacitor (CDLY) to 2.5 volts.
\[
t_{D L Y}=\frac{V_{\text {ref }} C_{D L Y}}{I_{D L Y(\text { source })}}=\frac{2.5 C_{D L Y}}{200 \mu \mathrm{~A}}=12500 \mathrm{C}_{\mathrm{DLY}}
\]

Figure 5 provides \(C_{D L Y}\) values for a wide range of time delays. The Delay pins are pulled low when the respective input comparator's non-inverting input is less than the inverting input. The sink current, IDLY(sink), capability of the Delay pins is \(\geqslant 1.8 \mathrm{~mA}\) and is much greater than the typical \(200 \mu \mathrm{~A}\) source current, thus enabling a relatively fast delay capacitor discharge time.

The Over-Voltage Drive Output is a current-limited emitter-follower capable of sourcing 300 mA at a turn-on slew rate of \(2.0 \mathrm{~A} / \mu \mathrm{s}\), ideal for driving "Crowbar" SCR's. The Under-Voltage Indicator Output is an open-collector, NPN transistor, capable of sinking 30 mA to provide sufficient drive for LED's, small relays or shut-down circuitry. These current capabilities apply to both channels operating simultaneously, providing device power dissipation limits are not exceed \(\in d\).

The MC3425 has an internal 2.5 V bandgap reference regulator with an accuracy of \(\pm 4.0 \%\) for the basic devices and \(\pm 1.0 \%\) for the A-suffix device types at \(25^{\circ} \mathrm{C}\). The reference has a typical temperature coefficient of 30 ppm \(/{ }^{\circ} \mathrm{C}\) for A-suffix devices.

FIGURE 15 - BLOCK DIAGRAM

Note: All voltages and currents are nominal.

\section*{CROWBAR SCR CONSIDERATIONS}

Referring to Figure 16, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, \(\mathrm{C}_{\text {out }}\). This capacitance consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 16A, the supply's input filter capacitors. This surge current is illustrated in Figure 17, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or \(\mathrm{I}^{\mathrm{t}} \mathrm{t}\). The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

\section*{1. di/dt}

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on
gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities - depending on the severity of the occasion.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times \(\mathrm{I}_{\mathrm{GT}}\)) the SCR gate with a fast \(<1.0 \mu \mathrm{~s}\) rise time signal will maximize its \(\mathrm{di} / \mathrm{dt}\) capability. A typical maximum number in phase control SCRs of less than \(50 \mathrm{~A}(\mathrm{RMS})\) rating might be \(200 \mathrm{~A} / \mu \mathrm{s}\), assuming a gate current of five times \(\mathrm{I}_{\mathrm{G}}\) T and \(<1.0 \mu \mathrm{~s}\) rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 18. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and \(\mathrm{di} / \mathrm{dt}\).

FIGURE 16 - TYPICAL CROWBAR CIRCUIT CONFIGURATIONS

\section*{16A - SCR ACROSS INPUT OF REGULATOR}

\(16 B\) - SCR ACROSS OUTPUT OF REGULATOR

FIGURE 17 - CROWBAR SCR SURGE CURRENT WAVEFORM

\section*{2. Surge Current}

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance - see Figure 18) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

FIGURE 18 - CIRCUIT ELEMENTS AFFECTING SCR SURGE \& di/dt

\section*{A WORD ABOUT FUSING}

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 16A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!

In order to protect the SCR, the fuse would have to possess an \(12_{t}\) rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 16B.

\section*{CROWBAR SCR SELECTION GUIDE}

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ DEVICE } & IRMS & IFSM & PACKAGE \\
\hline MCR67 Series & 12 A & 100 A & Metal Stud \\
MCR68 Series & 12 A & 100 A & TO-220 Plastic \\
2N1842 Series & 16 A & 125 A & Metal Stud \\
2N6400 Series & 16 A & 160 A & TO-220 Plastic \\
2N6504 Series & 25 A & 160 A & TO-220 Plastic \\
2N681 Series & 25 A & 200 A & Metal Stud \\
2N2573 Series & 25 A & 260 A & TO-3 Metal Can \\
MCR69 Series & 25 A & 300 A & TO-220 Plastic \\
MCR70 Series & 35 A & 350 A & Metal Stud \\
MCR71 Series & 55 A & 550 A & Metal Stud \\
\hline
\end{tabular}

For a complete and detailed treatment of SCR and fuse selection refer to Motorola Application Note AN789.

\section*{THREE-TERMINAL POSITIVE VOLTAGE REGULATORS}

These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 ampere. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.
- Output Current in Excess of 1.0 Ampere
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Voltage Offered in \(2 \%\) and \(4 \%\) Tolerance

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Output Voltage \\
Tolerance
\end{tabular} & \begin{tabular}{c}
Tested Operating \\
Junction Temp. Range
\end{tabular} & Package \\
\hline MC78XXK & \(4 \%\) & -55 to \(+150^{\circ} \mathrm{C}\) & \begin{tabular}{c}
Metal \\
Power
\end{tabular} \\
MC78XXAK* & \(2 \%\) & & \\
\hline MC78XXCK & \(4 \%\) & 0 to \(+125^{\circ} \mathrm{C}\) & \\
MC78XXACK* & \(2 \%\) & & Plastic \\
\hline MC78XXCT & \(4 \%\) & & Power \\
MC78XXACT & \(2 \%\) & & \\
\hline MC78XXBT & \(4 \%\) & -40 to \(+125^{\circ} \mathrm{C}\) & \\
\hline
\end{tabular}
*2\% regulators in Metal Power packages are available in 5, 12 and 15 volt devices.

\section*{MC7800 Series}

\section*{THREE-TERMINAL \\ POSITIVE FIXED VOLTAGE REGULATORS}

SILICON MONOLITHIC INTEGRATED CIRCUITS
```

K SUFFIX
METAL PACKAGE
CASE 1-03

```

(Bottom View)
Pins 1 and 2 electrically isolated from case Case is third electrical connection

T SUFFIX
PLASTIC PACKAGE CASE 221A-04

PIN 1. INPUT
2. GROUND
3. OUTPUT

surface connected
to Pin 2.1
0 Pin 2.)

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
\(X X=\) these two digits of the type number indicate voltage.
* \(=\mathrm{C}_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter.
** \(=C_{O}\) is not needed for stability; however, it does improve transient response.
\(x X\) indicates nominal voltage
\begin{tabular}{|ll|ll|}
\hline \multicolumn{4}{|c|}{ TYPE NO./VOLTAGE } \\
\hline MC7805 & 5.0 Volts & MC7812 & 12 Volts \\
MC7806 & 6.0 Volts & MC7815 & 15 Volts \\
MC7808 & 8.0 Volts & MC7818 & 18 Volts \\
MC7809 & 9.0 Volts & MC7824 & 24 Volts \\
\hline
\end{tabular}

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rating} & Symbol & Value & Unit \\
\hline & & \(V_{\text {in }}\) & \[
\begin{aligned}
& 35 \\
& 40
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics Plastic Package
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction to Air
\[
\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{C}}=+75^{\circ} \mathrm{C}\) (See Figure 1) \\
Thermal Resistance, Junction to Case \\
Metal Package
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction to Air
\[
\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{C}=+65^{\circ} \mathrm{C}\) (See Figure 2) \\
Thermal Resistance, Junction to Case
\end{tabular} & & \begin{tabular}{l}
PD \\
1/*JA \\
ӨJA \\
PD \\
1/OJC \\
\(\theta_{\mathrm{JC}}\) \\
PD \\
1/0JA \\
\(\theta\) JA \\
PD \\
1/OJC \\
\(\theta J C\)
\end{tabular} & Internally Limited
15.4
65
Internally Limited
200
5.0
Internally Limited
22.5
45
Internally Limited
182
5.5 & \begin{tabular}{l}
Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Watts \\
\(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Watts \\
\(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
Watts \\
\(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Storage Junction Temperature Range & & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature Range & MC7800,A MC7800C,AC MC7800B & TJ & \[
\begin{array}{r}
-55 \text { to }+150 \\
0 \text { to }+150 \\
-40 \text { to }+150
\end{array}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{DEFINITIONS}

Line Regulation -. The change in output voltage for a change in the input voltage The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected

Load Regulation - - The change in output voltage for a change in load current at constant chip temperature

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications

Quiescent Current -- That part of the input current that is not delivered to the load

Output Norse Voltage -- The rms ac voltage at the output, with constant load and no input ripple, measured over a specified fre. quency range
Long Term Stability - Outpui voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation

\section*{MC7800 Series}

MC7805, B, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1] unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[t]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7805} & \multicolumn{3}{|c|}{MC7805B} & \multicolumn{3}{|c|}{MC7805C} & \multirow[t]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{0}\) & 4.8 & 5.0 & 5.2 & 4.8 & 5.0 & 5.2 & 4.8 & 5.0 & 5.2 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leqslant 15 \mathrm{~W}\right. \text {) } \\
& 7.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc} \\
& 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & \(\mathrm{v}_{0}\) & \[
\overline{4.65}
\] & \[
\overline{50}
\] & \[
5 . \overline{35}
\] & \[
4 . \overline{75}
\] & \[
5.0
\] & \[
5 . \overline{25}
\] & & \begin{tabular}{l}
5.0 \\
- \\
\hline
\end{tabular} & 5.25
- & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(T_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right. \text {, Note 2) } \\
& 7.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\
& 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 12 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & \(\mathrm{Reg}_{\text {line }}\) & & \[
\begin{aligned}
& 2.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 25
\end{aligned}
\] & & \[
\begin{aligned}
& 7.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50 \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& 7.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
100 \\
50 \\
\hline
\end{array}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right. \text {. Note 2) } \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regload & - & \[
\begin{gathered}
25 \\
8.0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
100 \\
25 \\
\hline
\end{gathered}
\] & - & \[
\begin{aligned}
& 40 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50 \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& 40 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
100 \\
50 \\
\hline
\end{array}
\] & mV \\
\hline Quiescent Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{B}\) & - & 3.2 & 6.0 & - & 4.3 & 8.0 & - & 4.3 & 8.0 & mA \\
\hline \[
\begin{gathered}
\text { Quiescent Current Change } \\
7.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\
8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A} \\
\hline
\end{gathered}
\] & \({ }^{11} B\) & - & \[
\begin{gathered}
- \\
0.3 \\
0.04
\end{gathered}
\] & \[
\begin{aligned}
& \overline{0.8} \\
& 0.5
\end{aligned}
\] & - & - & \[
\begin{array}{r}
- \\
1.3 \\
0.5
\end{array}
\] & - & - & \[
\begin{gathered}
1.3 \\
-0.5
\end{gathered}
\] & mA \\
\hline Ripple Rejection \(80 \mathrm{Vdc}: \mathrm{V}_{\text {in }} \leqslant 18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}\) & RR & 68 & 75 & - & - & 68 & - & - & 68 & - & dB \\
\hline Dropout Voltage (\(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(v_{\text {in }}-v_{0}\) & - & 2.0 & 2.5 & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{A}=+25^{\circ} \mathrm{C}\right) \\
& \qquad 10 \mathrm{~Hz} \approx f \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(v_{n}\) & - & 10 & 40 & - & 10 & - & - & 10 & - & \[
\begin{gathered}
\mu \mathrm{V} / \\
\mathrm{v}_{\mathrm{O}}
\end{gathered}
\] \\
\hline Output Resistance \(f=1.0 \mathrm{kHz}\) & ro & - & 17 & - & - & 17 & - & - & 17 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)) \(\mathrm{V}_{\mathrm{m}}=35 \mathrm{Vdc}\) & Isc & - & 0.2 & 1.2 & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & 1.3 & 2.5 & 3.3 & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 0.6\) & - & - & -1.1 & - & - & -1.1 & - & \[
\begin{aligned}
& \mathrm{mV} / \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{MC7805A, AC}

ELECTRICAL CHARACTERISTICS \(V_{i n}=10 \mathrm{~V}, I_{0}=1.0 \mathrm{~A} . \mathrm{T}_{J}=T_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) (Note 1) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7805A} & \multicolumn{3}{|c|}{MC7805AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(T_{J}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{\mathrm{O}}\) & 4.9 & 5.0 & 5.1 & 4.9 & 5.0 & 5.1 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& 15.0 \mathrm{~mA} \leq \mathrm{IO}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leq 15 \mathrm{~W} \text {) } \\
& 75 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & 4.8 & 5.0 & 52 & 4.8 & 5.0 & 5.2 & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& 7.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} . \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 12 \mathrm{Vdc} \\
& 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 12 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 7.3 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 3.0 \\
& 1.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& 4.0 \\
& 10
\end{aligned}
\] & -
-
-
- & \[
\begin{aligned}
& 7.0 \\
& 10 \\
& 2.0 \\
& 7.0
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& 25 \\
& 50
\end{aligned}
\] & mv \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 750 \mathrm{~mA}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 25 \\
& 15 \\
& 25
\end{aligned}
\] & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & \[
\begin{aligned}
& 25 \\
& 25 \\
& -8.0
\end{aligned}
\] & \[
\begin{gathered}
100 \\
100 \\
- \\
50
\end{gathered}
\] & mV \\
\hline Quiescent Current
\[
T_{J}=+25^{\circ} \mathrm{C}
\] & \(I_{B}\) & - & \[
3.2
\] & \[
\begin{aligned}
& 5.0 \\
& 4.0
\end{aligned}
\] & \[
-
\] & \[
4.3
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 7.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & \(د^{1} \mathrm{~B}\) & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
0.3 \\
0.2 \\
0.04 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline ```
Ripple Rejection
 \(8.0 \mathrm{Vdc} \leqslant \mathrm{V}_{\mathrm{in}} \leqslant 18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}\).
 \(T_{J}=+25^{\circ} \mathrm{C}\)
 \(8.0 \mathrm{Vdc} \leqslant \mathrm{V}_{\mathrm{in}} \leqslant 18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}\).
 \(I_{0}=500 \mathrm{~mA}\)
``` & RR & \begin{tabular}{l}
68 \\
68
\end{tabular} & \[
\begin{array}{r}
75 \\
75 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & 68 & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & dB \\
\hline Dropout Voltage ( \(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\) ) & \(v_{\text {in }}-v_{0}\) & - & 2.0 & 2.5 & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{A}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leqslant f \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(v_{n}\) & - & 10 & 40 & - & 10 & - & \({ }^{\mathrm{V} / \mathrm{V}_{\mathrm{O}}}\) \\
\hline Output Resistance ( \(\mathrm{f}=1.0 \mathrm{kHz}\) ) & ro & - & 2.0 & - & - & 17 & - & ms \\
\hline Short-Circuit Current Limit \(\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\)
\[
\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\] & Isc & - & 0.2 & 1.2 & - & 0.2 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & 1.3 & 2.5 & 3.3 & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{0}\) & - & \(\pm 0.6\) & - & - & -1.1 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Tlow \(=-55^{\circ} \mathrm{C}\) for MC78XX, A \(\quad T_{\text {high }}=+150^{\circ} \mathrm{C}\) for MC78XX, A
\[
\begin{aligned}
& =0^{\circ} \text { for MC78XXC, AC } \\
& =-40^{\circ} \mathrm{C} \text { for MC78XXB }
\end{aligned}
\]
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used

MC7806, B, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{J}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1] unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Characteristic} & \multirow{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7806} & \multicolumn{3}{|c|}{MC7806B} & \multicolumn{3}{|c|}{MC7806C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 5.75 & 6.0 & 6.25 & 5.75 & 6.0 & 6.25 & 5.75 & 6.0 & 6.25 & Vdc \\
\hline Output Voltage
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{IO}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leqslant 15 \mathrm{~W}\right) \\
& 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 21 \mathrm{Vdc} \\
& 9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 21 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\overline{5.65}
\] & \[
\overline{6.0}
\] & \[
6.35
\] & \[
5.7
\] & \(\overline{6.0}\) & - 6.3 & 5.7 & 6.0 & 6.3 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \text { Note } 2\right) \\
& 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\
& 9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 13 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 3.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 30 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 9.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 60
\end{aligned}
\] & - & \[
\begin{aligned}
& 9.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 60
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right. \text {, Note 2) } \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq 10 \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 27 \\
& 9.0
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 30
\end{aligned}
\] & - & \[
\begin{aligned}
& 43 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 60
\end{aligned}
\] & - & \[
\begin{aligned}
& 43 \\
& 16
\end{aligned}
\] & \[
\begin{gathered}
120 \\
60
\end{gathered}
\] & mV \\
\hline Quiescent Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & IB & - & 3.2 & 6.0 & - & 4.3 & 8.0 & - & 4.3 & 8.0 & mA \\
\hline \[
\begin{gathered}
\text { Quiescent Current Change } \\
8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\
9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leqslant \mathrm{IO}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}
\end{gathered}
\] & \(د_{B}\) & - & \[
\begin{gathered}
\overline{-} \\
0.3 \\
0.04 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \overline{-} \\
& 0.8 \\
& 0.5
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & - & - & \[
\frac{1.3}{0.5}
\] & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
\(9.0 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 19 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}\)
\end{tabular} & RR & 65 & 73 & - & - & 65 & - & - & 65 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(v_{\text {in }}-v_{0}\) & - & 2.0 & 2.5 & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{V}_{n}\) & - & 10 & 40 & - & 10 & - & - & 10 & - & \[
\begin{aligned}
& \mu \mathrm{V} / \\
& \mathrm{V}_{\mathrm{O}}
\end{aligned}
\] \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 17 & - & - & 17 & - & - & 17 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & \(\mathrm{I}_{\mathrm{sc}}\) & - & 0.2 & 1.2 & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & 1.3 & 2.5 & 3.3 & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCV \({ }_{\text {O }}\) & - & \(\pm 0.7\) & - & - & -0.8 & - & - & -0.8 & - & \[
\begin{gathered}
\mathrm{mV} / \\
{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline
\end{tabular}

MC7806AC
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1] unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Characteristics} & \multirow{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7806AC} & \multirow{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{v}_{\mathrm{O}}\) & 5.88 & 6.0 & 6.12 & Vdc \\
\hline Output Voltage
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leqslant 15 \mathrm{~W}\right) \\
& 8.6 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 21 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 5.76 & 6.0 & 6.24 & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& 8.6 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{IO}=500 \mathrm{~mA} \\
& 9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 13 \mathrm{Vdc} \\
& 9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 13 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 8.3 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 21 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & I & \[
\begin{aligned}
& 9.0 \\
& 11 \\
& 3.0 \\
& 9.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 60 \\
& 30 \\
& 60 \\
& \hline
\end{aligned}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 43 \\
& 43 \\
& -16
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& - \\
& 50
\end{aligned}
\] & mV \\
\hline Quiescent Current
\[
\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & IB & - & \[
\overline{4.3}
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 8.6 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 21 \mathrm{Vdc}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & \(\Delta^{\prime \prime}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& 9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 19 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 19 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{l}=500 \mathrm{~mA}
\end{aligned}
\] & RR & & \[
65
\] & & dB \\
\hline Dropout Voltage ( \(10=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{v}_{\mathrm{in}}-\mathrm{v}_{0}\) & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{A}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leqslant f \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & ro & - & 17 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\] & \(\mathrm{I}_{\mathrm{sc}}\) & - & 0.2 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCV \({ }_{\text {O }}\) & - & -0.8 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Tlow \(=-55^{\circ} \mathrm{C}\) for MC78XX \(\quad T_{\text {high }}=+150^{\circ} \mathrm{C}\) for MC78XX

2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7808, B, C
ELECTRICAL CHARACTERISTICS \(\mathrm{V}_{\mathrm{in}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\) [Note 1] unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7808} & \multicolumn{3}{|c|}{MC7808B} & \multicolumn{3}{|c|}{MC7808C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 7.7 & 8.0 & 8.3 & 7.7 & 8.0 & 8.3 & 7.7 & 8.0 & 8.3 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { (5.0 mA } \leqslant \mathrm{IO}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leqslant 15 \mathrm{~W} \text { ) } \\
& 10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc} \\
& 11.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\overline{7.6}
\] & \[
\overline{8.0}
\] & \[
\overline{8.4}
\] & \[
\overline{7.6}
\] & \[
\overline{8.0}
\] & \[
\overline{8.4}
\] & 7.6 & 8.0 & 8.4 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right. \text {, Note 2) } \\
& 10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\
& 11 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 17 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & & \[
\begin{aligned}
& 3.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 40 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 12 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
160 \\
80 \\
\hline
\end{gathered}
\] & - & \[
\begin{aligned}
& 12 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
160 \\
80 \\
\hline
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right. \text {, Note 2) } \\
& 5.0 \mathrm{~mA} \leqslant I_{O} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant I_{O} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{array}{r}
28 \\
9.0 \\
\hline
\end{array}
\] & \[
\begin{gathered}
100 \\
40
\end{gathered}
\] & - & \[
\begin{aligned}
& 45 \\
& 16
\end{aligned}
\] & \[
\begin{gathered}
160 \\
80
\end{gathered}
\] & & \[
\begin{aligned}
& 45 \\
& 16 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 160 \\
& 80
\end{aligned}
\] & mV \\
\hline Quiescent Current ( \(T_{J}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{I}_{\mathrm{B}}\) & - & 3.2 & 6.0 & - & 4.3 & 8.0 & - & 4.3 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\
& 11.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta} I_{B}\) & - & \[
\begin{gathered}
- \\
0.3 \\
0.04
\end{gathered}
\] & \[
\begin{aligned}
& -\overline{2} \\
& 0.8 \\
& 0.5
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \overline{1.0} \\
& 0.5
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.0 \\
& -0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
11.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 21.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & 62 & 70 & - & -- & 62 & - & - & 62 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{v}_{\mathrm{in}}-\mathrm{v}_{0}\) & - & 2.0 & 2.5 & - & 2.0 & - & - & 2.0 & - & Vdic \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & 40 & - & 10 & - & - & 10 & - & \[
\begin{aligned}
& \mu \mathrm{V} / \\
& \mathrm{V}_{\mathrm{O}}
\end{aligned}
\] \\
\hline Output Resistance \(f=1.0 \mathrm{kHz}\) & ro & - & 18 & - & - & 18 & - & - & 18 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & Isc & - & 0.2 & 1.2 & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & 1.3 & 2.5 & 3.3 & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 1.0\) & - & - & -0.8 & - & - & -0.8 & - & \[
\begin{aligned}
& \mathrm{mV} / \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

MC7808AC
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1] unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Characteristics} & \multirow{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7808AC} & \multirow{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 7.84 & 8.0 & 8.16 & Vdc \\
\hline Output Voltage
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 1.0 \mathrm{~A}, \mathrm{PO}_{0} \leqslant 15 \mathrm{~W}\right) \\
& 10.6 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & 7.7 & 8.0 & 8.3 & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& 10.6 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{~J}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 11 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 17 \mathrm{Vdc} \\
& 11 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 17 \mathrm{Vdc}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 10.4 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 15 \\
& 5.0 \\
& 12
\end{aligned}
\] & \[
\begin{array}{r}
80 \\
80 \\
.40 \\
80 \\
\hline
\end{array}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant I_{0} \leqslant 1.5 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & Z & \[
\begin{aligned}
& 45 \\
& 45 \\
& \hline-16
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& - \\
& 50
\end{aligned}
\] & mV \\
\hline Quiescent Current
\[
\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{I}_{\mathrm{B}}\) & - & \[
4.3
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 11 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 10.6 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & \(\Delta^{\prime \prime}{ }_{B}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\begin{aligned}
& 11.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 21.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 11.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 21.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}=500 \mathrm{~mA}
\end{aligned}
\] & RR & & \[
\overline{62}
\] & - & dB \\
\hline Dropout Voltage ( \(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{v}_{\text {in }}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} N_{\mathrm{O}}\) \\
\hline Output Resistance ( \(f=1.0 \mathrm{kHz}\) ) & ro & - & 18 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & Isc & - & 0.2 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{\mathrm{O}}\) & \(\because\) & -0.8 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Tlow \(=-55^{\circ} \mathrm{C}\) for MC78XX \(\quad T_{\text {high }}=+150^{\circ} \mathrm{C}\) for MC78XX

\section*{MC7800 Series}

MC7809CT
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=0^{\circ} \mathrm{C}\right.\) to \(+125^{\circ} \mathrm{C}\) unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7809CT} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 8.65 & 9.0 & 9.35 & Vdc \\
\hline Output Voltage
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{PO}_{\mathrm{O}} \leqslant 15 \mathrm{~W}\right) \\
& 11.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 24 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 8.55 & 9.0 & 9.45 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right. \text {, Note 1) } \\
& 11.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 26 \mathrm{Vdc} \\
& 11.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 17 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 12 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 25
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right. \text {, Note 1) } \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 35 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 25
\end{aligned}
\] & mV \\
\hline Quiescent Current ( \(T \mathrm{~J}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{I}_{\mathrm{B}}\) & - & 4.3 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 11.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 26 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A} \\
& \hline
\end{aligned}
\] & \(\Delta^{1} \mathrm{~B}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
11.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 21.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & - & 61 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C}\) ) & \(V_{\text {in }}-V_{0}\) & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage ( } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { ) } \\
& 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(V_{n}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 18 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) )
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & \({ }_{\text {sc }}\) & - & 0.2 & - & A \\
\hline Peak Output Current ( \(\mathrm{TJ}^{\text {J }}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCVO & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE 1: Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7812, B, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=19 \mathrm{~V} . \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{J}=T_{\text {low }}\right.\) to \(T_{\text {high }}\) (Note 1) unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Characteristic} & \multirow[t]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7812} & \multicolumn{3}{|c|}{MC7812B} & \multicolumn{3}{|c|}{MC7812C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 11.5 & 12 & 12.5 & 11.5 & 12 & 12.5 & 11.5 & 12 & 12.5 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { (5.0 mA } \leqslant I_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leqslant 15 \mathrm{~W} \text { ) } \\
& 14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc} \\
& 15.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & \(\mathrm{v}_{0}\) & 11.4 & \[
\overline{12}
\] & \[
1 \overline{12.6}
\] & \[
\overline{11.4}
\] & \[
\overline{12}
\] & \[
12.6
\] & \[
\begin{gathered}
114 \\
-
\end{gathered}
\] & \begin{tabular}{l}
12 \\
- \\
\hline
\end{tabular} & \[
12.6
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right. \text {, Note 2) } \\
& 14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} \\
& 16 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 22 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Reg \({ }_{\text {line }}\) & \[
-
\] & \[
\begin{aligned}
& 5.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{gathered}
120 \\
60
\end{gathered}
\] & - & \[
\begin{aligned}
& 13 \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & - & \[
\begin{aligned}
& 13 \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C} \text {. Note } 2\right) \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regload & \[
-
\] & \[
\begin{aligned}
& 30 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
120 \\
60 \\
\hline
\end{gathered}
\] & - & \[
\begin{aligned}
& 46 \\
& 17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120 \\
& \hline
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& 46 \\
& 17 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
240 \\
120 \\
\hline
\end{array}
\] & mV \\
\hline Quiescent Current ( \(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\) ) & \({ }^{\prime} \mathrm{B}\) & - & 3.4 & 60 & - & 4.4 & 8.0 & - & 4.4 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} \\
& 15 \mathrm{Vdc} \leqslant \mathrm{~V} \leqslant 30 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A} \\
& \hline
\end{aligned}
\] & \({ }^{1} 1_{8}\) & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & \[
\begin{gathered}
0.3 \\
0.04
\end{gathered}
\] & \[
\begin{array}{r}
- \\
0.8 \\
0.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
- \\
1.0 \\
0.5 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
- \\
\hline
\end{array}
\] & mA \\
\hline Ripple Rejection
\[
15 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & 61 & 68 & - & - & 60 & - & - & 60 & - & dB \\
\hline Dropout Voltage ( \(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(v_{\text {in }}-v_{0}\) & - & 2.0 & 2.5 & - & 20 & - & - & 20 & - & Vdc \\
\hline \[
\text { Output Noise Voltage }\left(T_{A}=+25^{\circ} \mathrm{C}\right)
\]
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & 40 & - & 10 & - & - & 10 & - & \[
\begin{gathered}
\mu \mathrm{V} / \\
\mathrm{v}_{\mathrm{O}}
\end{gathered}
\] \\
\hline Output Resistance \(f=1.0 \mathrm{kHz}\) & ro & - & 18 & - & - & 18 & - & - & 18 & - & ms \\
\hline Short-Circuit Current Limit ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ) \(\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}\). & \(\mathrm{I}_{\text {sc }}\) & - & 0.2 & 12 & - & 02 & - & - & 0.2 & - & A \\
\hline Peak Output Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(I_{\text {max }}\) & 1.3 & 2.5 & 3.3 & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCV \({ }_{\text {O }}\) & - & \(\pm 1.5\) & - & - & -1.0 & - & - & -10 & - & \[
\begin{aligned}
& m \mathrm{~V} / \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

MC7812A, AC
ELECTRICAL CHARACTERISTICS \(\left(V_{\text {in }}=19 \mathrm{~V} . \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} . \mathrm{T}_{J}=T_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1] unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[t]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7812A} & \multicolumn{3}{|c|}{MC7812AC} & \multirow[t]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{v}_{\mathrm{O}}\) & 11.75 & 12 & 12.25 & 11.75 & 12 & 12.25 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { ( } 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leqslant 15 \mathrm{~W} \text { ) } \\
& 14.8 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{v}_{\text {O }}\) & 11.5 & 12 & 12.5 & 11.5 & 12 & 12.5 & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& 14.8 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 16 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 22 \mathrm{Vdc} \\
& 16 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 22 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{Reg}_{\text {line }}\) & \[
\begin{aligned}
& - \\
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 80 \\
& 3.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 18 \\
& 30 \\
& 9.0 \\
& 18
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 16 \\
& 60 \\
& 13 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
120 \\
120 \\
60 \\
120 \\
\hline
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 750 \mathrm{~mA}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{Reg}_{\text {load }}\) & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 25 \\
& 15 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 46 \\
& 46 \\
& -17
\end{aligned}
\] & \[
\begin{gathered}
100 \\
100 \\
- \\
50
\end{gathered}
\] & mV \\
\hline Quiescent Current
\[
T_{J}=+25^{\circ} \mathrm{C}
\] & 'B & - & \[
3.4
\] & \[
\begin{aligned}
& 5.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & - & \[
4.4
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 15 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} . \mathrm{IO}=500 \mathrm{~mA} \\
& 14.8 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A} \\
& \hline
\end{aligned}
\] & \(د_{B}\) & \[
-
\] & \[
\begin{gathered}
0.3 \\
0.2 \\
0.04 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.2 \\
& \hline
\end{aligned}
\] & \[
-
\] & -- & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline ```
Ripple Rejection
    \(15 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}\).
        \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)
    \(15 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}\),
        \(10=500 \mathrm{~mA}\)
``` & RR & \[
\begin{array}{r}
61 \\
61 \\
\hline
\end{array}
\] & \begin{tabular}{l}
68 \\
68
\end{tabular} & - & - & \[
60
\] & - & dB \\
\hline Dropout Voltage (\(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{\text {in }}-\mathrm{v}_{0}\) & - & 2.0 & 2.5 & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(T_{A}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leqslant f \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(v_{n}\) & - & 10 & 40 & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & ro & - & 2.0 & - & - & 18 & - & \(\mathrm{m} / \mathrm{l}\) \\
\hline \[
\begin{aligned}
& \text { Short-Circuit Current Limit }\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\end{aligned}
\] & \(I_{\text {sc }}\) & - & 0.2 & 1.2 & - & 0.2 & - & A \\
\hline Peak Output Current (\(T_{J}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & 1.3 & 2.5 & 3.3 & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCV \({ }_{0}\) & - & \(\pm 1.5\) & - & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
ut Voltage
NOTES: 1. Tlow \(=-55^{\circ} \mathrm{C}\) for MC78XX, A
2. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7815, B, C
ELECTRICAL CHARACTERISTICS \(\mathrm{I}_{\mathrm{in}}=23 \mathrm{~V} . \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) (Note 1) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7815} & \multicolumn{3}{|c|}{MC7815B} & \multicolumn{3}{|c|}{MC7815C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{0}\) & 144 & 15 & 156 & 144 & 15 & 156 & 14.4 & 15 & 15.6 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \quad\left(50 \mathrm{~mA} \leqslant \mathrm{IO}_{\mathrm{O}}: 0 \mathrm{~A}, \mathrm{PO}_{\mathrm{O}} \approx 15 \mathrm{~W}\right) \\
& 175 \mathrm{Vdc}=\mathrm{V}_{\text {In }} \leqslant 30 \mathrm{Vdc} \\
& 18.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {In }} \leqslant 30 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\stackrel{-}{14.25}
\] & \[
\overline{15}
\] & \[
15.75
\] & \[
1425
\] & \[
\overline{15}
\] & \[
15.75
\] & \[
1425
\] & & \[
15.75
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (} \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \text {, Note 2) } \\
& 175 \mathrm{Vdc}=\mathrm{V}_{\text {in }} 30 \mathrm{Vdc} \\
& 20 \mathrm{Vdc} \mathrm{~V} \text { in } \leqslant 26 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{Reg}_{\text {line }}\) & -- & \[
\begin{aligned}
& 60 \\
& 30 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
150 \\
75 \\
\hline
\end{gathered}
\] & \[
-
\] & \[
\begin{array}{r}
13 \\
60 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 300 \\
& 150 \\
& \hline
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& 13 \\
& 60 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
300 \\
150 \\
\hline
\end{array}
\] & mv \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C} \text {. Note } 2\right) \\
& 50 \mathrm{~mA}=1 \mathrm{O} \leq 15 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{Reg}_{\text {load }}\) & - & \[
\begin{aligned}
& 32 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 75
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& 52 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& 52 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & mV \\
\hline Quiescent Current (\(T_{J}=+25^{\circ} \mathrm{C}\)) & \({ }^{\prime}{ }_{B}\) & - & 3.4 & 6.0 & - & 4.4 & 80 & - & 4.4 & 8.0 & mA \\
\hline Quiescent Current Change \(175 \mathrm{Vdc}:-\mathrm{V}_{\mathrm{in}} \leqslant 30 \mathrm{Vdc}\) \(185 \mathrm{Vdc} \cdot \mathrm{V}_{\text {In }} \div 30 \mathrm{Vdc}\) \(50 \mathrm{~mA}=1 \mathrm{O}=10 \mathrm{~A}\) & \({ }^{1} \mathrm{~B}\). & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
0.3 \\
004
\end{gathered}
\] & \[
\begin{aligned}
& \overline{0.8} \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& -1.0 \\
& 0.5
\end{aligned}
\] & - & - & \[
\frac{1.0}{-5}
\] & mA \\
\hline Ripple Rejection
\[
185 \mathrm{Vdc}: \mathrm{V}_{\mathrm{in}} \cdot 285 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & 60 & 66 & - & - & 58 & - & - & 58 & - & dB \\
\hline Dropout Voltage (\({ }_{\mathrm{O}}\) O \(=10 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\)) & \(v_{1 n}-v_{0}\) & - & 2.0 & 2.5 & - & 20 & - & - & 2.0 & - & Vdc \\
\hline Output Norse Voltage (\(T_{A}=+25^{\circ} \mathrm{C}\))
\[
10 \mathrm{~Hz} \cdot f \cdot 100 \mathrm{kHz}
\] & \(v_{n}\) & - & 10 & 40 & -- & 10 & - & - & 10 & - & \[
\begin{gathered}
\mu \mathrm{v} / \\
\mathrm{v}_{0}
\end{gathered}
\] \\
\hline Output Resistance \(f=10 \mathrm{kHz}\) & ro & - & 19 & - & - & 19 & - & - & 19 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit \(\left(T_{A}=+25^{\circ} \mathrm{C}\right)\) \(\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}\) & 'sc & - & 02 & 12 & - & 02 & - & - & 02 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & 13 & 25 & 33 & - & 22 & - & -- & 22 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCV \({ }_{\text {O }}\) & - & \(\pm 1.8\) & - & - & -1.0 & - & - & -10 & - & \[
\mathrm{m}^{\circ} \mathrm{V}
\] \\
\hline
\end{tabular}

\section*{MC7815A, AC}

ELECTRICAL CHARACTERISTICS \(\mathrm{IV}_{\text {in }}=23 \mathrm{~V} . \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) [Note 1] unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[t]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7815A} & \multicolumn{3}{|c|}{MG7815AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{TJ}^{\prime}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 14.7 & 15 & 15.3 & 14.7 & 15 & 153 & Vdc \\
\hline Output Voltage
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \cdot-1 \mathrm{O}=10 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \cdot 15 \mathrm{~W}\right) \\
& 179 \mathrm{Vdc} \cdot \mathrm{~V}_{\text {in }} \cdot 30 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 14.4 & 15 & 156 & 14.4 & 15 & 156 & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& 17.9 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 20 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 26 \mathrm{Vdc} \\
& 20 \mathrm{Vdc} \approx \mathrm{~V}_{\text {In }} \leqslant 26 \mathrm{Vdc}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 17.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 30 \mathrm{Vdc}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & Reglıne & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0 \\
& 3.0 \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& 22 \\
& 22 \\
& 10 \\
& 22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 16 \\
& 6.0 \\
& 13
\end{aligned}
\] & \[
\begin{gathered}
150 \\
150 \\
75 \\
150
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note } 2) \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 750 \mathrm{~mA}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{Reg}_{\text {foad }}\) & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& 10 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 25 \\
& 15 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& \sim \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 52 \\
& 52 \\
& - \\
& 20 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
100 \\
100 \\
- \\
50 \\
\hline
\end{gathered}
\] & mV \\
\hline Quiescent Current
\[
T_{J}=+25^{\circ} \mathrm{C}
\] & \({ }^{\prime} \mathrm{B}\) & - & \[
3.4
\] & \[
\begin{aligned}
& 5.5 \\
& 4.5 \\
& \hline
\end{aligned}
\] & - & \[
4.4
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 17.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 17.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{TJ}_{J}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\prime}{ }_{B}\) & \[
-
\] & \[
\begin{gathered}
0.3 \\
0.2 \\
0.04
\end{gathered}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.2
\end{aligned}
\] & \[
-
\] & \[
-
\] & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\begin{aligned}
& 18.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 28.5 \mathrm{Vdc}, f=120 \mathrm{~Hz}, \\
& \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 18.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 28.5 \mathrm{Vdc}, f=120 \mathrm{~Hz}, \\
& I_{0}=500 \mathrm{~mA}
\end{aligned}
\] & RR & \[
\begin{aligned}
& 60 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 66 \\
& 66
\end{aligned}
\] & & - & \[
58
\] & \[
-
\] & dB \\
\hline Dropout Voltage (\(\left.\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) & \(v_{\text {in }}-v_{0}\) & - & 2.0 & 2.5 & - & 2.0 & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\
& 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\end{aligned}
\] & \(\mathrm{V}_{n}\) & - & 10 & 40 & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & ro & - & 2.0 & - & - & . 19 & - & \(\mathrm{m} \Omega\) \\
\hline \[
\begin{aligned}
& \text { Short-Circuit Current Limit }\left(T_{A}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\end{aligned}
\] & Isc & - & 0.2 & 1.2 & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & 1.3 & 2.5 & 3.3 & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCV & - & \(\pm 1.8\) & - & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
NOTES: 1
\[
\begin{aligned}
T_{\text {low }} & =-55^{\circ} \mathrm{C} \text { for MC78XX, A } & T_{\text {high }} & =+150^{\circ} \mathrm{C} \text { for MC78XX, A } \\
& =0^{\circ} \text { for MC78XXC, AC } & & =+125^{\circ} \mathrm{C} \text { for MC78XXC, AC, B } \\
& =-40^{\circ} \mathrm{C} \text { for MC78XXB } & &
\end{aligned}
\] \\
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account
\end{tabular}} \\
\hline
\end{tabular}

MC7818, B, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 1] unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7818} & \multicolumn{3}{|c|}{MC7818B} & \multicolumn{3}{|c|}{MC7818C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{TJ}^{\text {J }}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & 17.3 & 18 & 18.7 & 17.3 & 18 & 18.7 & 17.3 & 18 & 18.7 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { (5.0 } \mathrm{mA} \leqslant 1 \mathrm{IO} \leqslant 1.0 \mathrm{~A}, \mathrm{PO}_{\mathrm{O}} \leqslant 15 \mathrm{~W} \text {) } \\
& 21 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc} \\
& 22 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\overline{17.1}
\] & \[
\overline{18}
\] & \[
\overline{18.9}
\] & \[
\overline{17.1}
\] & \[
\overline{18}
\] & & 17.1 & 18 & & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right. \text {, Note 2) } \\
& 21 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc} \\
& 24 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & & \[
\begin{aligned}
& 7.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{gathered}
180 \\
90
\end{gathered}
\] & - & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180
\end{aligned}
\] & - & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right. \text {, Note 2) } \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 35 \\
& 12 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
180 \\
90
\end{gathered}
\] & & \[
\begin{aligned}
& 55 \\
& 22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180 \\
& \hline
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& 55 \\
& 22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180 \\
& \hline
\end{aligned}
\] & mV \\
\hline Quiescent Current (\(\mathrm{TJ}^{\prime}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{I}_{\mathrm{B}}\) & - & 3.5 & 6.0 & - & 4.5 & 8.0 & - & 4.5 & 8.0 & mA \\
\hline \[
\begin{gathered}
\text { Quiescent Current Change } \\
21 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc} \\
22 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc} \\
5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.0 \mathrm{~A} \\
\hline
\end{gathered}
\] & \(\left.{ }^{\Delta}\right|_{B}\) & — & \[
\begin{gathered}
\overline{0.3} \\
0.04
\end{gathered}
\] & \[
\overline{0.8}
\] & - & - & \[
\begin{aligned}
& \overline{1.0} \\
& 0.5
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
22 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & 59 & 65 & - & - & 57 & - & - & 57 & - & dB \\
\hline Dropout Voltage (\(\left.\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C}\right)\) & \(\mathrm{v}_{\text {in }}-\mathrm{v}_{\mathrm{O}}\) & - & 2.0 & 2.5 & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\))
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & 40 & - & 10 & - & - & 10 & - & \[
\begin{aligned}
& \mu \mathrm{V} / \\
& \mathrm{V}_{\mathrm{O}}
\end{aligned}
\] \\
\hline Output Resistance \(f=1.0 \mathrm{kHz}\) & ro & - & 19 & - & - & 19 & - & - & 19 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & Isc & - & 0.2 & 1.2 & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T} \mathrm{J}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & 1.3 & 2.5 & 3.3 & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & \(\mathrm{TCV}_{\mathrm{O}}\) & - & \(\pm 2.3\) & - & - & -1.0 & - & - & -1.0 & - & \[
\begin{aligned}
& \mathrm{mV} / \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{MC7818AC}

ELECTRICAL CHARACTERISTICS \(\mathrm{V}_{\mathrm{in}}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) [Note 1] unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7818AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & 17.64 & 18 & 18.36 & Vdc \\
\hline Output Voltage
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{IO}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{O}} \leqslant 15 \mathrm{~W}\right) \\
& 21 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 33 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & 17.3 & 18.7 & 17.3 & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& 21 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 24 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc} \\
& 24 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 20.6 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc}, \mathrm{TJ}^{\circ}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & E & \[
\begin{aligned}
& 25 \\
& 28 \\
& 10 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
180 \\
180 \\
90 \\
180 \\
\hline
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& 5.0 \mathrm{~mA} \leqslant I_{0} \leqslant 1.5 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 55 \\
& 55 \\
& \hline \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& -50
\end{aligned}
\] & mV \\
\hline Quiescent Current
\[
\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & 'B & - & \[
\overline{4.5}
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 21 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 21 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 33 \mathrm{Vdc}, \mathrm{TJ}^{2}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta} I_{B}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\begin{aligned}
& 22 \mathrm{Vdc} \leqslant V_{\text {in }} \leqslant 32 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 22 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 32 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{IO}=500 \mathrm{~mA}
\end{aligned}
\] & RR & & \[
\overline{57}
\] & & dB \\
\hline Dropout Voltage (\(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(v_{i n}-v_{0}\) & - & 2.0 & - & Vdc \\
\hline \begin{tabular}{l}
Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)) \\
\(10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)
\end{tabular} & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & ro & - & 19 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}
\] & Isc & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCVO & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\[
\text { NOTES: 1. Tlow } \begin{array}{rlrl}
& =-55^{\circ} \mathrm{C} \text { for MC78XX } \\
& =0^{\circ} \text { for MC78XXC, AC } & & T_{\text {high }}
\end{array}=+150^{\circ} \mathrm{C} \text { for MC78XX } 0+125^{\circ} \mathrm{C} \text { for MC78XXC, AC, B }
\]
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC7800 Series}

MC7824, B, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=T_{\text {low }}\right.\) to \(T_{\text {high }}\) [Note 1] unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7824} & \multicolumn{3}{|c|}{MC7824B} & \multicolumn{3}{|c|}{MC7824C} & \multirow{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voitage (\(\mathrm{TJ}^{\text {J }}++25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & 23 & 24 & 25 & 23 & 24 & 25 & 23 & 24 & 25 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { (5.0 mA } \leqslant \mathrm{IO}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{PO}_{\mathrm{O}} \leqslant 15 \mathrm{~W} \text {) } \\
& 27 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc} \\
& 28 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\overline{22.8}
\] & \[
\overline{24}
\] & \[
\overline{25.2}
\] & & 24 & & \(\stackrel{22.8}{-}\) & 24 & 25.2 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right. \text {, Note 2) } \\
& 27 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 36 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 10 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & - & \[
\begin{aligned}
& 31 \\
& 14 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 480 \\
& 240 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 31 \\
& 14
\end{aligned}
\] & \[
\begin{array}{r}
480 \\
240 \\
\hline
\end{array}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right. \text {, Note 2) } \\
& 5.0 \mathrm{~mA} \leq I_{\mathrm{O}} \leq 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 40 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 60 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 480 \\
& 240 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 60 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
480 \\
240 \\
\hline
\end{array}
\] & mV \\
\hline Quiescent Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 1 B & - & 3.6 & 6.0 & - & 4.6 & 8.0 & - & 4.6 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& 27 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc} \\
& 28 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & \(\Delta_{B}\) & - & \[
\begin{gathered}
\overline{-} \\
0.3 \\
0.04 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \overline{0.8} \\
& 0.5 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \overline{1.0} \\
& 0.5
\end{aligned}
\] & - & - & \[
\frac{1.0}{0.5}
\] & mA \\
\hline Ripple Rejection
\[
28 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 38 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & 56 & 62 & - & - & 54 & - & - & 54 & - & dB \\
\hline Dropout Voltage (\(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}^{\prime}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{\text {in }}-\mathrm{v}_{\mathrm{O}}\) & - & 2.0 & 2.5 & - & 2.0 & - & - & 2.0 & - & Vdc \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\))
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & 40 & - & 10 & - & - & 10 & - & \[
\begin{gathered}
\mu \mathrm{V} / \\
\mathrm{V}_{\mathrm{O}}
\end{gathered}
\] \\
\hline Output Resistance \(\mathrm{f}=1.0 \mathrm{kHz}\) & ro & - & 20 & - & - & 20 & - & - & 20 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & Isc & - & 0.2 & 1.2 & - & 0.2 & - & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & 1.3 & 2.5 & 3.3 & - & 2.2 & - & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCV \({ }_{\text {O }}\) & - & \(\pm 3.0\) & - & - & -1.5 & - & - & -1.5 & - & \[
\begin{aligned}
& \mathrm{mV} / \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

MC7824AC
ELECTRICAL CHARACTERISTICS \(\mathrm{V}_{\mathrm{in}}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\) (Note 1] unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC7824AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{TJ}^{\text {J }}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 23.5 & 24 & 24.5 & Vdc \\
\hline Output Voltage
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{PO}_{\mathrm{O}} \leqslant 15 \mathrm{~W}\right) \\
& 27.3 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 38 \mathrm{Vdc}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & 23 & 24 & 25 & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& 27 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 30 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 36 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 36 \mathrm{Vdc}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 26.7 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc}, \mathrm{TJ}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 31 \\
& 35 \\
& 14 \\
& 31 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 240 \\
& 120 \\
& 240 \\
& \hline
\end{aligned}
\] & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 60 \\
& 60 \\
& - \\
& \hline 25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& - \\
& 50 \\
& \hline
\end{aligned}
\] & mV \\
\hline Quiescent Current
\[
\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \({ }^{\prime} \mathrm{B}\) & - & \[
4.6
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& 27.3 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 27.3 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{IO}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & \({ }^{\Delta 1}{ }_{B}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Ripple Rejection
\[
\begin{aligned}
& 28 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \\
& 28 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 38 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{IO}=500 \mathrm{~mA}
\end{aligned}
\] & RR & - & \[
\overline{54}
\] & & dB \\
\hline Dropout Voltage (\(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{\text {in }}-\mathrm{v}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\))
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & ro & - & 20 & - & \(\mathrm{m} \Omega\) \\
\hline Short-Circuit Current Limit (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}
\] & \(\mathrm{I}_{\mathrm{sc}}\) & - & 0.2 & - & A \\
\hline Peak Output Current (\(\mathrm{T} \mathrm{J}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 2.2 & - & A \\
\hline Average Temperature Coefficient of Output Voltage & TCV \({ }_{\text {O }}\) & - & -1.5 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\[
\text { NOTES: 1. Tlow } \begin{array}{rlrl}
& =-55^{\circ} \mathrm{C} \text { for MC78XX } \\
& =0^{\circ} \text { for MC78XXC, AC } & & T_{\text {high }}
\end{array}=+150^{\circ} \mathrm{C} \text { for MC78XX }
\]
2. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC7800 Series}

TYPICAL CHARACTERISTICS
(\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)

TYPICAL CHARACTERISTICS (continued)
(\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted.)

FIGURE 7 - RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES
(MC78XXC, AC)

FIGURE 9 - OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE (MC78XXC. AC, B)

FIGURE 11 - QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE (MC78XXC, AC, B)

FIGURE 8 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY
(MC78XXC, AC, A)

FIGURE 10 - OUTPUT IMPEDANCE AS A FUNCTION OF OUTPUT VOLTAGE (MC78XXC, AC)

FIGURE 12 - DROPOUT CHARACTERISTICS
(MC78XX, A)

\section*{MC7800 Series}

\section*{APPLICATIONS INFORMATION}

\section*{Dosign Considerations}

The MC7800 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected
to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directlyacross the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistancedrops since the regulator has no external sense lead.

\section*{FIGURE 13 - CURRENT REGULATOR}

The MC7800 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor \(R\) determines the current as follows:
\[
I_{0}=\frac{5 V}{R}+I_{0}
\]
\({ }_{1} \cong 1.5 \mathrm{~mA}\) over line anid load changes
For example, a 1-ampere current source would require R to be a \(5 \cdot \mathrm{ohm}, 10 \cdot \mathrm{~W}\) resistor and the output voltage compliance would be the input voltage less 7 volts

FIGURE 14 - ADJUSTABLE OUTPUT REGULATOR

\(\mathrm{V}_{\mathrm{O}}, 7.0 \mathrm{~V}\) to 20 V
\(\mathrm{V}_{\mathrm{IN}} \quad \mathrm{V}_{\mathrm{O}} \geqslant 2.0 \mathrm{~V}\)
The addition of an operational amplifier aliows adjustment to higher or intermediate values while retaining regulation character istics. The minirnum voltage obtainable with this arrangement is 2.0 volts greater than the regulator voltage.

FIGURE 15 - CURRENT BOOST REGULATOR

\(X X=2\) digits of type number indicating voltage.

The MC7800 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor \(R\) in conjunction with the \(\mathrm{V}_{\mathrm{BE}}\) of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by \(V_{B E}\) of the pass transistor.

FIGURE 16 - SHORT-CIRCUIT PROTECTION

\(X X=2\) digits of type number indicating voltage.

The circuit of Figure 15 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, \(\mathrm{R}_{\text {sc }}\), and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the threeterminal regulator. Therefore, a four-ampere plastic power transistor is specified.

\section*{THREE-TERMINAL LOW CURRENT POSITIVE VOLTAGE REGULATORS}

The MC78L00 Series of positive voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100 mA . Like their higher powered MC7800 and MC78M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the MC78L00 devices in many applications.

These devices offer a substantial performance advantage over the traditional zener diode-resistor combination, as output impedance and quiescent current are substantially reduced.
- Wide Range of Available, Fixed Output Voltages
- Low Cost
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- No External Components Required
- Complementary Negative Regulators Offered
(MC79L00 Series)
- Available in Either \(\pm 5 \%\) (AC) or \(\pm 10 \%\) (C) Selections

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{ORDERING INFORMATION} \\
\hline Device & Junction Temperature Range & Package \\
\hline MC78LXXACD & \multirow{6}{*}{\(\mathrm{T}_{J}=0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)} & SOP-8 \\
\hline MC78LXXACG & & Metal Can \\
\hline MC78LXXACP & & Plastic Power \\
\hline MC78LXXCD & & SOP-8 \\
\hline MC78LXXCG & & Metal Can \\
\hline MC78LXXCP & & Plastic Power \\
\hline MC78LXXABP\# & \(\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Plastic Power \\
\hline \multicolumn{3}{|c|}{XX indicates nominal voltage} \\
\hline
\end{tabular}
\#Automotive temperature range selections are available with special test conditions and additional tests in 5, 8, 12 and 15 volts devices. Contact your local Motorola sales office for information.

\section*{THREE-TERMINAL LOW CURRENT POSITIVE FIXED VOLTAGE REGULATORS}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Device No. \\
\(: \mathbf{1 0 \%}\)
\end{tabular} & \begin{tabular}{c}
Device No. \\
\(\pm 5 \%\)
\end{tabular} & \begin{tabular}{c}
Nominal \\
Voltage
\end{tabular} \\
\hline MC78L05C & MC78L05AC & 5.0 \\
MC78L08C & MC78L08AC & 8.0 \\
MC78L12C & MC78L12AC & 12 \\
MC78L15C & MC78LL15AC & 15 \\
MC78L 18C & MC78L 18AC & 18 \\
MC78L24C & MC78L24AC & 24 \\
\hline
\end{tabular}

\section*{MC78L00,A Series}

MC78L00 Series MAXIMUM RATINGS (\(T_{A}=+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage (2.6 V-8.0 V) & \(\mathrm{V}_{1}\) & 30 & Vdc \\
\((12 \mathrm{~V}-18 \mathrm{~V})\) & & 35 & \\
\((24 \mathrm{~V})\) & & 40 & \\
\hline Storage Junction Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature Range & \(\mathrm{TJ}_{\mathrm{J}}\) & 0 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC78L05C, MC78L05AC ELECTRICAL CHARACTERISTICS \(\mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}\),
\(0^{\circ} \mathrm{C}<\mathrm{TJ}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L05AC} & \multicolumn{3}{|c|}{MC78L05C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 4.8 & 5.0 & 5.2 & 4.6 & 5.0 & 5.4 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, I_{O}=40 \mathrm{~mA}\right) \\
& 7.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 20 \mathrm{Vdc} \\
& 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 20 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 55 \\
& 45
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 100
\end{aligned}
\] & & \[
\begin{aligned}
& 55 \\
& 45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 150 \\
& \hline
\end{aligned}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & I & \[
\begin{array}{r}
11 \\
5.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 60 \\
& 30 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 11 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 30 \\
& \hline
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
\begin{aligned}
& \left(7.0 \mathrm{Vdc} \leqslant V_{1} \leqslant 20 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 10 \leqslant 40 \mathrm{~mA}\right) \\
& \left(V_{1}=10 \mathrm{~V}, 1.0 \mathrm{~mA} \leqslant I_{0} \leqslant 70 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\begin{aligned}
& 4.75 \\
& 4.75
\end{aligned}
\] & - & \[
\begin{aligned}
& 5.25 \\
& 5.25
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 4.5
\end{aligned}
\] & - & \[
\begin{aligned}
& 5.5 \\
& 5.5
\end{aligned}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Bias Current } \\
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{TJ}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & I'B & - & 3.8 & \[
\begin{aligned}
& 6.0 \\
& 5.5 \\
& \hline
\end{aligned}
\] & - & 3.8 & \[
\begin{aligned}
& 6.0 \\
& 5.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Input Bias Current Change (\(8.0 \mathrm{Vdc} \leqslant \mathrm{V}_{1} \leqslant 20 \mathrm{Vdc}\)) \\
\(\left(1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA}\right)\)
\end{tabular} & \(\Delta^{\prime} / \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant\) 100 kHz) & \(\mathrm{V}_{n}\) & - & 40 & - & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection (} \mathrm{O}=40 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \\
& \left.8.0 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 18 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 41 & 49 & - & 40 & 49 & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

MC78L08C, MC78L08AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}\right.\),
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L08AC} & \multicolumn{3}{|c|}{MC78L08C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & 7.7 & 8.0 & 8.3 & 7.36 & 8.0 & 8.64 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=40 \mathrm{~mA}\right) \\
& 10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 23 \mathrm{Vdc} \\
& 11 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 23 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & & \[
\begin{aligned}
& 20 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 175 \\
& 125
\end{aligned}
\] & & \[
\begin{aligned}
& 20 \\
& 12
\end{aligned}
\] & \[
\begin{array}{r}
200 \\
150 \\
\hline
\end{array}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant I_{O} \leqslant 100 \mathrm{~mA}\right) \\
& \left(T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant I_{O} \leqslant 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & & \[
\begin{array}{r}
15 \\
8.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 80 \\
& 40
\end{aligned}
\] & & \[
\begin{array}{r}
15 \\
6.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 80 \\
& 40 \\
& \hline
\end{aligned}
\] & mV \\
\hline ```
Output Voltage
 (10.5 Vdc }\leqslant\mp@subsup{V}{1}{}\leqslant23\textrm{Vdc},1.0\textrm{mA}\leqslant10\leqslant40\textrm{mA}
 (}\mp@subsup{V}{1}{}=14\textrm{V},1.0\textrm{mA}\leqslant10\leqslant70\textrm{mA}
``` & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 7.6 \\
& 7.6 \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{r}
8.4 \\
8.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 7.2 \\
& 7.2
\end{aligned}
\] & - & \[
\begin{aligned}
& 8.8 \\
& 8.8
\end{aligned}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(T_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IIB & - & 3.0 & \[
\begin{array}{r}
6.0 \\
5.5 \\
\hline
\end{array}
\] & - & & \[
\begin{aligned}
& 6.0 \\
& 5.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Input Bias Current Change
\[
\left(11 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 23 \mathrm{Vdc}\right)
\]
\[
(1.0 \mathrm{~mA} \leqslant 10 \leqslant 40 \mathrm{~mA})
\] & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1
\end{aligned}
\] & & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant\) 100 kHz ) & \(\mathrm{V}_{n}\) & - & 60 & - & - & 52 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(1 \mathrm{O}=40 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\),
\[
\left.12 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 23 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & RR & 37 & 57 & - & 36 & 55 & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

MC78L12C, MC78L12AC ELECTRICAL CHARACTERISTICS \(\left(V_{I}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{l}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}, 0^{\circ} \mathrm{C}<\mathrm{T}_{J}<\right.\) \(+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L12AC} & \multicolumn{3}{|c|}{MC78L12C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 11.5 & 12 & 12.5 & 11.1 & 12 & 12.9 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}\right) \\
& 14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 27 \mathrm{Vdc} \\
& 16 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 27 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 120 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 250 \\
& 200
\end{aligned}
\] & - & \[
\begin{aligned}
& 120 \\
& 100 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
250 \\
200 \\
\hline
\end{array}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 100 \mathrm{~mA}\right) \\
& \left(T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant I_{O} \leqslant 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 20 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50 \\
\hline
\end{gathered}
\] & - & \[
\begin{aligned}
& 20 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50 \\
\hline
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \left(14.5 \mathrm{Vdc} \leq \mathrm{V}_{1} \leqslant 27 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{1}=19 \mathrm{~V}, 1.0 \mathrm{~mA} \leq 10 \leqslant 70 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\begin{aligned}
& 11.4 \\
& 11.4 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 12.6 \\
& 12.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.8 \\
& 10.8 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 13.2 \\
& 13.2 \\
& \hline
\end{aligned}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(T_{J}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \(I_{B}\) & - & \[
4.2
\] & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & - & 4.2 & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Input Bias Current Change (16 Vdc \(\leqslant \mathrm{V}_{1} \leqslant 27 \mathrm{Vdc}\) ) \\
\(\left(1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA}\right)\)
\end{tabular} & \(\Delta^{1}{ }^{\text {B }}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant\) 100 kHz ) & \(v_{n}\) & - & 80 & - & - & 80 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 15 \mathrm{~V} \leqslant\) \(\mathrm{V}_{1} \leqslant 25 \mathrm{~V}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & RR & 37 & 42 & - & 36 & 42 & - & dB \\
\hline Dropout Voltage
\[
\left(T_{J}=+25^{\circ} \mathrm{C}\right)
\] & \(V_{1}-V_{0}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

MC78L15C, MC78L15AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{l}}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}\right.\),
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L15AC} & \multicolumn{3}{|c|}{MC78L15C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 14.4 & 15 & 15.6 & 13.8 & 15 & 16.2 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, 10=40 \mathrm{~mA}\right) \\
& 17.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 30 \mathrm{Vdc} \\
& 20 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 30 \mathrm{Vdc}
\end{aligned}
\] & Regline & & \[
\begin{aligned}
& 130 \\
& 110
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 250
\end{aligned}
\] & & \[
\begin{aligned}
& 130 \\
& 110
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 250
\end{aligned}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant I_{O} \leqslant 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant I_{\mathrm{O}} \leqslant 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & & \[
\begin{aligned}
& 25 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 75
\end{aligned}
\] & & \[
\begin{aligned}
& 25 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 75
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
\begin{aligned}
& \left(17.5 \mathrm{Vdc} \leqslant V_{1} \leqslant 30 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 10 \leqslant 40 \mathrm{~mA}\right) \\
& \left(V_{1}=23 \mathrm{~V}, 1.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 70 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 14.25 \\
& 14.25
\end{aligned}
\] & - & \[
\begin{aligned}
& 15.75 \\
& 15.75
\end{aligned}
\] & \[
\begin{aligned}
& 13.5 \\
& 13.5
\end{aligned}
\] & - & \[
\begin{aligned}
& 16.5 \\
& 16.5
\end{aligned}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & 1 B & - & 4.4 & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & & 4.4 & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Input Bias Current Change ( \(20 \mathrm{Vdc} \leqslant \mathrm{V}_{1} \leqslant 30 \mathrm{Vdc}\) ) \\
\(\left(1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA}\right)\)
\end{tabular} & \(\Delta_{18}\) & I & - & \[
\begin{aligned}
& 1.5 \\
& 0.1
\end{aligned}
\] & & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant\) 100 kHz ) & \(V_{n}\) & - & 90 & - & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection ( } I_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 18.5 \mathrm{~V} \\
& \left.\leqslant \mathrm{~V}_{1} \leqslant 28.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 34 & 39 & - & 33 & 39 & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

MC78L18C, MC78L18AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{l}}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}\right.\), \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L18AC} & \multicolumn{3}{|c|}{MC78L18C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 17.3 & 18 & 18.7 & 16.6 & 18 & 19.4 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}\right) \\
& 21.4 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 33 \mathrm{Vdc} \\
& 20.7 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 33 \mathrm{Vdc} \\
& 22 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 33 \mathrm{Vdc} \\
& 21 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 33 . \mathrm{Vdc}
\end{aligned}
\] & Regline & - & 45
\[
35
\] & \[
\begin{array}{r}
325 \\
275 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 27
\end{aligned}
\] & \[
\begin{aligned}
& 325 \\
& 275
\end{aligned}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 30 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
170 \\
85 \\
\hline
\end{gathered}
\] & - & \[
\begin{aligned}
& 30 \\
& 15 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
170 \\
85
\end{tabular} & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { (21.4 Vdc } \left.\leq \mathrm{V}_{1} \leqslant 33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA}\right) \\
& \left(20.7 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{1}=27 \mathrm{~V}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leqslant 70 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{1}=27 \mathrm{~V}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 70 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{array}{r}
17.1 \\
17.1 \\
\hline
\end{array}
\] & - & \[
\begin{array}{r}
18.9 \\
18.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 16.2 \\
& 16.2
\end{aligned}
\] & - & \[
\begin{aligned}
& 19.8 \\
& 19.8
\end{aligned}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IIB & - & 3.1 & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & & 3.1 & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& \text { (22 Vdc } \left.\leq \mathrm{V}_{1} \leq 33 \mathrm{Vdc}\right) \\
& \left(21 \mathrm{Vdc} \leq \mathrm{V}_{1}=33 \mathrm{Vdc}\right) \\
& \left(1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA}\right)
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & & - & \[
\begin{aligned}
& 1.5 \\
& 0.1
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant\) 100 kHz ) & \(\mathrm{v}_{\mathrm{n}}\) & - & 150 & - & - & 150 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\), \(23 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 33 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\) ) & RR & 33 & 48 & - & 32 & 46 & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

MC78L24C, MC78L24AC ELECTRICAL CHARACTERISTICS \(\left(V_{I}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}\right.\),
\(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78L24AC} & \multicolumn{3}{|c|}{MC78L24C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{TJ}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 23 & 24 & 25 & 22.1 & 24 & 25.9 & Vdc \\
\hline Line Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, I_{O}=40 \mathrm{~mA}\right) \\
& 27.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 38 \mathrm{Vdc} \\
& 28 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 80 \mathrm{Vdc} \\
& 27 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 38 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& \overline{50} \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& \overline{3} \\
& 300 \\
& 350
\end{aligned}
\] & - & \[
\begin{aligned}
& 35 \\
& 30 \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
350 \\
300 \\
-
\end{gathered}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 100 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{C}} \leqslant 40 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 40 \\
& 20 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 100 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 40 \\
& 20 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 100 \\
& \hline
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { (28 Vdc } \left.\leqslant \mathrm{V}_{1} \leqslant 38 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA}\right) \\
& \left(27 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 38 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA}\right) \\
& \left(28 \mathrm{Vdc} \leqslant \mathrm{~V}_{1}=33 \mathrm{~V}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 70 \mathrm{~mA}\right) \\
& \left(27 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 33 \mathrm{~V}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 70 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{array}{r}
22.8 \\
22.8 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& 25.2 \\
& 25.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 21.6 \\
& 21.6
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 26.4 \\
& 26.4
\end{aligned}
\] & Vdc \\
\hline Input Bias Current
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IIB & - & & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & & & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Input Bias Current Change ( \(28 \mathrm{Vdc} \leqslant \mathrm{V}_{1} \leqslant 38 \mathrm{Vdc}\) ) \\
\(\left(1.0 \mathrm{~mA} \leqslant \mathrm{l}_{0} \leqslant 40 \mathrm{~mA}\right)\)
\end{tabular} & \(\Delta^{\prime}{ }_{\text {IB }}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1 \\
& \hline
\end{aligned}
\] & & - & \[
\begin{aligned}
& 1.5 \\
& 0.2 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant\) \(f \leqslant 100 \mathrm{kHz}\) ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 200 & - & - & 200 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection (IO }=40 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 29 \mathrm{~V} \leqslant \\
& \left.\mathrm{~V}_{1} \leqslant 35 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 31 & 45 & - & 30 & 43 & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

\section*{TYPICAL CHARACTERISTICS}
( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)


FIGURE 3-INPUT BIAS CURRENT versus AMBIENT TEMPERATURE


FIGURE 5 - MAXIMUM AVERAGE POWER DISSIPATION versus AMBIENT TEMPERATURE - TO-92 Type Package


FIGURE 2 - DROPOUT VOLTAGE versus JUNCTION TEMPERATURE


FIGURE 4 - INPUT BIAS CURRENT versus INPUT VOLTAGE


FIGURE 6 - MAXIMUM AVERAGE POWER DISSIPATION versus AMBIENT TEMPERATURE - TO-39 Type Package


\section*{MC78L00,A Series}

\section*{Design Considerations}

The MC78L00 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short-Circuit Protection limits the maximum current the circuit will pass.
In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. The input bypass capacitor should be selected

FIGURE 7 - CURRENT REGULATOR


The MC78L00 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78L05C is chosen in this application. Resistor R determines the current as follows:
\[
10=\frac{5 V}{R}+1_{1 B}
\]
\(I_{1 B}=3.8 \mathrm{~mA}\) over line and load changes
For example, a 100 mA current source would require \(R\) to be a 50 -ohm, 1/2-W resistor and the output voltage compliance would be the input voltage less 7 volts.

\section*{APPLICATIONS INFORMATION}
to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regular has no external sense lead. Bypassing the output is also recommended.

FIGURE \(8- \pm 15\) V TRACKING VOLTAGE REGULATOR


FIGURE 9 - POSITIVE AND NEGATIVE REGULATOR


STANDARD APPLICATION


A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the out put voltage even during the low point on the input ripple voltage
* \(=C_{1}\) is required if regulator is located an appreciable distance from power supply filter.
** \(=\mathrm{C}_{\mathrm{O}}\) is not needed for stability; however, it does improve transient response.

\section*{THREE-TERMINAL MEDIUM CURRENT POSITIVE VOLTAGE REGULATORS}

The MC78M00 Series positive voltage regulators are identical to the popular MC7800 Series devices, except that they are specified for only half the output current. Like the MC7800 devices, the MC78M00 three-terminal regulators are intended for local, oncard voltage regulation.

Internal current limiting, thermal shutdown circuitry and safearea compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions. Maximum output current, with adequate heatsinking is 500 mA .
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ TYPE NO./VOLTAGE } \\
\hline MC78M05B,C 5.0 Volts & MC78M12B,C 12 Volts & MC78M20B,C 20 Volts \\
MC78M06B,C 6.0 Volts & MC78M15B, 15 Volts & MC78M24B,C 24 Volts \\
MC78M08B,C 8.0 Volts & MC78M18B,C 18 Volts & \\
\hline
\end{tabular}

MC78M00 Series

THREE-TERMINAL MEDIUM CURRENT POSITIVE FIXED VOLTAGE REGULATORS


\section*{MC78M00 Series}

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rating} & Symbol & Value & Unit \\
\hline \[
\begin{array}{r}
\text { Input Voltage }(5.0 \mathrm{~V}-18 \mathrm{~V}) \\
(20 \mathrm{~V}-24 \mathrm{~V})
\end{array}
\] & & \(V_{1}\) & \[
\begin{aligned}
& 35 \\
& 40
\end{aligned}
\] & Vdc \\
\hline ```
Power Dissipation (Package Limitation)
    Plastic Package
        \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
            Derate above \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
        \(\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}\)
            Derate above \(\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}\)
    Metal Package
        \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
            Derate above \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
        \(\mathrm{T}_{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}\)
            Derate above \(T_{C}=85^{\circ} \mathrm{C}\)
``` & & \begin{tabular}{l}
\(P_{D}\) \({ }^{\theta} \mathrm{JA}\) PD日JC \\
PD \({ }^{\theta} \mathrm{J}\) A \(P_{D}\) \({ }^{\text {JJ }}\)
\end{tabular} & Internally Limited
70
Internally Limited
5.0
Internally Limited
185
Internally Limited
25 & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} / \mathrm{W} \\
& { }^{\circ} \mathrm{C} / \mathrm{W} \\
& { }^{\circ} \mathrm{C} / \mathrm{W} \\
& { }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
\] \\
\hline Operating Junction Temperature Range & \begin{tabular}{l}
MC78MXXC \\
MC78MXXB
\end{tabular} & TJ & \[
\begin{gathered}
0 \text { to }+150 \\
-40 \text { to }+150
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC78M05 ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leqslant 5.0 \mathrm{~W}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{TJ}^{\text {J }}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 4.8 & 5.0 & 5.2 & Vdc \\
\hline Line Regulation
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 7.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 3.0 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 20 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50 \\
\hline
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \qquad \begin{array}{l}
\left.7.0 \mathrm{Vdc} \leq \mathrm{V}_{1} \leqslant 25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 200 \mathrm{~mA}\right) \\
\left(7.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\end{array}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 4.75 & - & 5.25 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IIB & - & 3.2 & 6.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \left(8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right) \\
& \hline
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection (T, DT and DT-1 suffixes only) } \\
& \qquad I_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 8.0 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 18 \mathrm{~V} \text {) } \\
& \left(I_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 8.0 \leqslant \mathrm{~V}_{1} \leqslant 18 \mathrm{~V}, \mathrm{TJ}=25^{\circ} \mathrm{C}\right. \text {) }
\end{aligned}
\] & RR & \[
\begin{aligned}
& 62 \\
& 62
\end{aligned}
\] & \[
\overline{80}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit (\(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}\)) & los & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
\left(\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\right)
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.2\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(T J=25^{\circ} \mathrm{C}\right)
\] & Io & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M06 ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leqslant 5.0 \mathrm{~W}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 5.75 & 6.0 & 6.25 & Vdc \\
\hline Line Regulation
\[
\left(T_{J}=+25^{\circ} \mathrm{C}, 8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 5.0 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 20 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
120 \\
60
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
\begin{aligned}
& \left(8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 200 \mathrm{~mA}\right) \\
& \left(8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 21 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & 5.7 & - & 6.3 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 1 IB & - & 3.2 & 6.0 & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& \left(9.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 45 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection (T suffix only) } \\
& \qquad\left(\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 9.0 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 19 \mathrm{~V}\right) \\
& \left(\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 9.0 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 19 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 59 \\
& 59
\end{aligned}
\] & \[
\overline{80}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(T_{J}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit (\(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}\)) & Ios & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
\left(I_{\mathrm{O}}=5.0 \mathrm{~mA}\right)
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.2\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & \({ }^{1} 0\) & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M08 ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leqslant 5.0 \mathrm{~W}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & 7.7 & 8.0 & 8.3 & Vdc \\
\hline Line Regulation
\[
\left(\mathrm{TJ}=+25^{\circ} \mathrm{C}, 10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{I}} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 6.0 & 50 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \qquad\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA}\right) \\
& \left(\mathrm{TJ}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 160 \\
& 80
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \qquad\left(10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 200 \mathrm{~mA}\right) \\
& \left(10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 23 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & 7.6 & - & 8.4 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IIB & - & 3.2 & 6.0 & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& \left(10.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 52 & - & \(\mu \mathrm{V}\) \\
\hline ```
Ripple Rejection (T suffix only)
((IO = 100 mA, f = 120 Hz, 11.5 V }\leqslant\mp@subsup{\textrm{V}}{1}{}\leqslant21.5\textrm{V}
(IO}=300\textrm{mA},\textrm{f}=120\textrm{Hz},11.5\textrm{V}\leqslant\mp@subsup{\textrm{V}}{\textrm{I}}{}\leqslant21.5\textrm{V},\textrm{T}J=2\mp@subsup{5}{}{\circ}\textrm{C}
``` & RR & \[
\begin{aligned}
& 56 \\
& 56
\end{aligned}
\] & \[
\overline{80}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit ( \(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}\) ) & los & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
\left(\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\right)
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.2\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

\section*{MC78M00 Series}

MC78M12 ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{1}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leqslant 5.0 \mathrm{~W}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 11.5 & 12 & 12.5 & Vdc \\
\hline Line Regulation
\[
\left(T_{J}=+25^{\circ} \mathrm{C}, 14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 8.0 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA}\right) \\
& \left(\mathrm{TJ}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
(14.5 Vdc \(\left.\leqslant \mathrm{V}_{1} \leqslant 27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant 10 \leqslant 350 \mathrm{~mA}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & 11.4 & - & 12.6 & Vdc \\
\hline Input Bias Current ( \(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & IIB & - & 3.2 & 6.0 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \left(14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant I_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection (T, DT and DT-1 suffixes only) } \\
& \text { (IO }_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 15 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 25 \mathrm{~V} \text { ) } \\
& \text { (IO }_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 15 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 25 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C} \text { ) }
\end{aligned}
\] & RR & \[
\begin{aligned}
& 55 \\
& 55
\end{aligned}
\] & 80 & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}\) ) & los & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(1 \mathrm{O}=5.0 \mathrm{~mA})
\] & \(\Delta V_{0} / \Delta T\) & - & \(\pm 0.3\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M15 ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leqslant 5.0 \mathrm{~W}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{TJ}^{\text {J }}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 14.4 & 15 & 15.6 & Vdc \\
\hline Input Regulation
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 17.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 10 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{TJ}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA}\right) \\
& \left(\mathrm{TJ}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 25 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
(17.5 Vdc \(\left.\leqslant \mathrm{V}_{1} \leqslant 30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & 14.25 & - & 15.75 & Vdc \\
\hline Input Bias Current ( \(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & 1 B & - & 3.2 & 6.0 & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& \left(17.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (T, DT and DT-1 suffixes only)
\[
\begin{aligned}
& \left(I_{O}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 18.5 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 28.5 \mathrm{~V}\right) \\
& \left(\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 18.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{I}} \leqslant 28.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 54 \\
& 54
\end{aligned}
\] & \[
\overline{70}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T} J=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}\) ) & los & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
(10=5.0 \mathrm{~mA})
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.3\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(T_{J}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

\section*{MC78M00 Series}

MC78M18 ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leqslant 5.0 \mathrm{~W}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{TJ}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & 17.3 & 18 & 18.7 & Vdc \\
\hline Line Regulation
\[
\left(T_{J}=+25^{\circ} \mathrm{C}, 21 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 33 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 10 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 30 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 180 \\
& \hline
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Output Voltage \\
\(\left(21 \mathrm{Vdc} \leqslant \mathrm{V}_{1} \leqslant 33 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{O}}\) & 17.1 & - & 18.9 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & IIB & - & 3.2 & 6.5 & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& \left(21 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 33 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(V_{n}\) & - & 100 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection (T suffix only) } \\
& \left(I_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 22 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 32 \mathrm{~V}\right. \text { ) } \\
& \left(\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 22 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 32 \mathrm{~V}, \mathrm{~T} J=25^{\circ} \mathrm{C}\right. \text { ) }
\end{aligned}
\] & RR & \[
\begin{aligned}
& 53 \\
& 53
\end{aligned}
\] & \[
\overline{70}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(T_{J}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit ( \(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}\) ) & 'OS & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
\left(\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\right)
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.3\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & Io & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M20 ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=29 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leqslant 5.0 \mathrm{~W}\right.\) unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & 19.2 & 20 & 20.8 & Vdc \\
\hline Line Regulation
\[
\left(T_{J}=+25^{\circ} \mathrm{C}, 23 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 10 & 50 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& \qquad\left(T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant I_{O} \leqslant 500 \mathrm{~mA}\right) \\
& \left(\mathrm{TJ}^{2}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant I_{O} \leqslant 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 30 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 200
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
\left(23 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 35 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{O}}\) & 19 & - & 21 & Vdc \\
\hline Input Bias Current ( \(\mathrm{TJ}^{\prime}=+25^{\circ} \mathrm{C}\) ) & IIB & - & 3.2 & 6.5 & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \left(23 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 35 \mathrm{Vdc}, \mathrm{IO}=200 \mathrm{~mA}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(\mathrm{V}_{\mathrm{n}}\) & - & 110 & - & \(\mu \mathrm{V}\) \\
\hline ```
Ripple Rejection (T suffix only)
    (IO = 100 mA, f = 120 Hz, 24 V \leqslant V V }\leqslant34\textrm{V}
    (IO}=300\textrm{mA},\textrm{f}=120\textrm{Hz},24\textrm{V}\leqslant\mp@subsup{\textrm{V}}{1}{}\leqslant34\textrm{V},\mp@subsup{\textrm{TJ}}{J}{}=2\mp@subsup{5}{}{\circ}\textrm{C}
``` & RR & \[
\begin{aligned}
& 52 \\
& 52
\end{aligned}
\] & \[
\overline{70}
\] & - & dB \\
\hline \[
\begin{aligned}
& \text { Dropout Voltage } \\
& \quad\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit (\(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}\)) & los & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
\left(\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\right)
\] & \(\Delta \mathrm{V}_{\mathrm{O}^{\prime}} \Delta \mathrm{T}\) & - & \(\pm 0.5\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

MC78M24 ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{1}=33 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}} \leqslant 5.0 \mathrm{~W}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & 23 & 24 & 25 & Vdc \\
\hline Line Regulation
\[
\left(T_{J}=+25^{\circ} \mathrm{C}, 27 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 38 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right)
\] & Regline & - & 10 & 50 & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA}\right) \\
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 200 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 30 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 480 \\
& 240
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
\left(27 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 38 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{O}}\) & 22.8 & - & 25.2 & Vdc \\
\hline Input Bias Current (\(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IIB & - & 3.2 & 7.0 & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& \left(27 \mathrm{Vdc} \leqslant \mathrm{~V}_{1} \leqslant 38 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}\right)
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 170 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection (T suffix only) } \\
& \left(I_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 28 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{I}} \leqslant 38 \mathrm{~V}\right) \\
& \left(\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, 28 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{I}} \leqslant 38 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & \[
\overline{70}
\] & - & dB \\
\hline Dropout Voltage
\[
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Short Circuit Current Limit (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & los & - & 50 & - & mA \\
\hline Average Temperature Coefficient of Output Voltage
\[
\left(I_{O}=5.0 \mathrm{~mA}\right)
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & \(\pm 0.5\) & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Peak Output Current
\[
\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & 10 & - & 700 & - & mA \\
\hline
\end{tabular}

\section*{DEFINITIONS}

Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation - The change in output voltage for a change in load current at constant chip temperature.
Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Input Bias Current - That part of the input current that is not delivered to the load.
Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voitage listed in the devices' electrical characteristics and maximum power dissipation.

\section*{TYPICAL PERFORMANCE CURVES}

FIGURE 1 - WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE

TO-220AB (CASE 221A)

FIGURE 2 - WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE
(CASE 79)

\section*{MC78M00 Series}

TYPICAL PERFORMANCE CURVES

FIGURE 3 - PEAK OUTPUT CURRENT versus DROPOUT VOLTAGE

FIGURE 5 - RIPPLE REJECTION versus FREQUENCY

FIGURE 7 - BIAS CURRENT versus INPUT VOLTAGE

FIGURE 4 - DROPOUT VOLTAGE versus JUNCTION TEMPERATURE

FIGURE 6 - RIPPLE REJECTION versus OUTPUT CURRENT

FIGURE 8 - BIAS CURRENT versus OUTPUT CURRENT

\section*{MC78M00 Series}

\section*{APPLICATIONS INFORMATION}

\section*{DESIGN CONSIDERATIONS}

The MC78M00 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.
In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power sup-
ply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

FIGURE 9 - CURRENT REGULATOR

The MC78M00 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78M05C is chosen in this application. Resistor R determines the current as follows:
\[
\mathrm{I}_{\mathrm{O}}=\frac{5.0 \mathrm{~V}}{\mathrm{R}}+\mathrm{I}_{1 \mathrm{~B}}
\]
\(I_{B}=1.5 \mathrm{~mA}\) over line and load changes
For example, a 500 mA current source would require \(R\) to be a 10 ohm, 10 W resistor and the output voltage compliance would be the input voltage less 7.0 volts.

FIGURE 10 - ADJUSTABLE OUTPUT REGULATOR

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 volts greater than the regulator voltage.

FIGURE 11 - CURRENT BOOST REGULATOR

\(X X=2\) digits of type number indicating voltage.

The MC78M00 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the \(\mathrm{V}_{\mathrm{BE}}\) of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input output differential voltage minimum is increased by \(V_{B E}\) of the pass transistor.

FIGURE 12 - CURRENT BOOST WITH SHORT-CIRCUIT PROTECTION

The circuit of Figure 7 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor, \(\mathrm{R}_{\text {SC }}\), and an additional PNP transistor. The current sensing PNP must be able to handle the shortcircuit current of the three-terminal regulator. Therefore, a two-ampere plastic power transistor is specified.

\section*{Specifications and Applications Information}

\section*{THREE-AMPERE POSITIVE VOLTAGE REGULATORS}

This family of fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 3.0 amperes. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. Devices are available with improved specifications, including a \(2 \%\) output voltage tolerance, on AC-suffix 5.0, 12 and 15 volt device types.

Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series-pass transistor to supply up to 15 amperes at the nominal output voltage.
- Output Current in Excess of 3.0 Amperes
- Power Dissipation: 30 W (K-Suffix), 25 W (T-Suffix)
- No External Components Required
- Output Voltage Offered in \(2 \%\) and \(4 \%\) Tolerance*
- Thermal Regulation is Specified
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

MAXIMUM RATINGS (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage (5.0 V-12 V) (15 V) & \(\mathrm{V}_{\text {in }}\) & \[
\begin{aligned}
& 35 \\
& 40
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
Plastic Package (Note 1)
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction to Air
\[
\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction to Case \\
Metal Package (Note 1)
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction to Air
\[
\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance, Junction to Case
\end{tabular} & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
PD \\
\(\mathrm{R}_{\text {日JC }}\) \\
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(P_{D}\) \\
\(\mathrm{R}_{\theta \mathrm{JC}}\)
\end{tabular} & \begin{tabular}{l}
Internally Limited 65 Internally Limited 2.5 \\
Internally Limited 35 Internally Limited 2.5
\end{tabular} & \begin{tabular}{l}
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Storage Junction Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature Range MC78T00C, AC & TJ & 0 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTE:}
1. Although power dissipation is internally limited, specifications apply only for \(\mathrm{P}_{\mathrm{O}} \leqslant \mathrm{P}_{\text {max }}\). \(P_{\text {max }}=30 \mathrm{~W}\) for K package
\(P_{\max }=25 \mathrm{~W}\) for T package.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ TYPE NO./VOLTAGE } \\
\hline MC78T05 & 5.0 Volts & MC78T12 & 12 Volts \\
MC78T08 & 8.0 Volts & MC78T15 & 15 Volts \\
\hline
\end{tabular}

PIN 1. INPUT
2. OUTPUT

CASE GROUND

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ORDERING INFORMATION} \\
\hline Device & Output Voltage Tolerance & Tested Operating Junction Temp. Range & Package \\
\hline MC78TXXCK MC78TXXACK & \[
\begin{aligned}
& 4 \% \\
& 2 \%{ }^{*}
\end{aligned}
\] & & \begin{tabular}{l}
Metal \\
Power
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { MC78TXXCT } \\
& \text { MC78TXXACT }
\end{aligned}
\] & \[
\begin{aligned}
& 4 \% \\
& 2 \%{ }^{*}
\end{aligned}
\] & & Plastic Power \\
\hline MC78TXXBT\# MC78TXXABT\# & \[
\begin{aligned}
& 4 \% \\
& 2 \%{ }^{*}
\end{aligned}
\] & \[
\begin{aligned}
& -40 \text { to } \\
& +125^{\circ} \mathrm{C}
\end{aligned}
\] & Plastic Power \\
\hline
\end{tabular}
\(X X\) Indicates nominal voltage.
* \(2 \%\) regulators are available in 5,12 and 15 volt devices.
\#Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information.

MC78T05AC, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=3.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant 125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{O}} \leqslant \mathrm{P}_{\max }\right.\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78T05AC} & \multicolumn{3}{|c|}{MC78T05C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant 10 \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& (5.0 \mathrm{~mA} \leqslant 10 \leqslant 3.0 \mathrm{~A} ; \\
& \left.5.0 \mathrm{~mA} \leqslant 10 \leqslant 2.0 \mathrm{~A}, 7.3 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 4.9 \\
& 4.8
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.1 \\
& 5.2
\end{aligned}
\] & \[
\begin{gathered}
4.8 \\
4.75
\end{gathered}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{gathered}
5.2 \\
5.25
\end{gathered}
\] & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& \left(7.2 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 35 \mathrm{Vdc}, \mathrm{IO}=5.0 \mathrm{~mA}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ;\right. \\
& 7.2 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 35 \mathrm{Vdc}, \mathrm{IO}_{=1.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ;}^{8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 12 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ;} \\
& \left.7.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc}, \mathrm{IO}=1.0 \mathrm{~A}\right)
\end{aligned}
\] & Regline & - & 3.0 & 25 & - & 3.0 & 25 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& \left(5.0 \mathrm{~mA} \leqslant 10 \leqslant 3.0 \mathrm{~A}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& (5.0 \mathrm{~mA} \leqslant 10 \leqslant 3.0 \mathrm{~A})
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Thermal Regulation } \\
& \quad\left(\text { Puise }=10 \mathrm{~ms}, \mathrm{P}=20 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & Regtherm & - & 0.001 & 0.01 & - & 0.002 & 0.03 & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline Quiescent Current
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}\right)
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{B}}\) & - & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& \left(7.2 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 35 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ;\right. \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{O} \leqslant 3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ; \\
& \left.7.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{o}}=1.0 \mathrm{~A}\right) \\
& \hline
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{B}\) & - & 0.3 & 1.0 & - & 0.3 & 1.0 & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& \quad\left(8.0 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 18 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz},\right. \\
& \left.\mathrm{IO}=2.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & RR & 62 & 75 & - & 62 & 75 & - & dB \\
\hline Dropout Voltage (\(\mathrm{l}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{\text {in }}-\mathrm{v}_{0}\) & - & 2.2 & 2.5 & - & 2.2 & 2.5 & Vdc \\
\hline \begin{tabular}{l}
Output Noise Voltage \\
\(\left(10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & \(\mathrm{R}_{\mathrm{O}}\) & - & 2.0 & - & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit \(\left(\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) & ISC & - & 1.5 & - & - & 1.5 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 5.0 & - & - & 5.0 & - & A \\
\hline Average Temperature Coefficient of Output Voltage
\[
\left(\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\right)
\] & TCV \({ }_{\text {O }}\) & - & 0.2 & - & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES:
1. Although power dissipation is internally limited, specifications apply only for \(P_{O} \leqslant P_{\text {max }}\).
\[
P_{\max }=30 \mathrm{~W} \text { for } \mathrm{K} \text { package } \quad P_{\max }=25 \mathrm{~W} \text { for } \mathrm{T} \text { package }
\]
2. Line and load regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC78T08C}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=13 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant 125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{O}} \leqslant \mathrm{P}_{\max }\right.\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78T08C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A} ;\right. \\
& \left.5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 2.0 \mathrm{~A}, 10.4 \mathrm{Vdc} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 23 \mathrm{Vdc}\right)
\end{aligned}
\] & \(\mathrm{V}_{0}\) & \[
\begin{aligned}
& 7.7 \\
& 7.6
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.3 \\
& 8.4
\end{aligned}
\] & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& \left(10.3 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ;\right. \\
& 10.3 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ; \\
& 11 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 17 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ; \\
& \left.10.7 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\right)
\end{aligned}
\] & Regline & - & 4.0 & 35 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 2) } \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}\right) \\
& \hline
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & mV \\
\hline \begin{tabular}{l}
Thermal Regulation \\
(Pulse \(=10 \mathrm{~ms}, \mathrm{P}=20 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\))
\end{tabular} & Regtherm & - & 0.002 & 0.03 & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline \[
\begin{aligned}
& \text { Quiescent Current } \\
& \quad\left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}, \mathrm{TJ}=\cdot+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}\right)
\end{aligned}
\] & IB & - & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Quiescent Current Change } \\
& \quad\left(10.3 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{TJ}=+25^{\circ} \mathrm{C}\right. \text {; } \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{IO}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} \text {; } \\
& \left.10.7 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 23 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\right)
\end{aligned}
\] & \({ }^{\Delta} \|_{B}\) & - & 0.3 & 1.0 & mA \\
\hline \begin{tabular}{l}
Ripple Rejection \\
\(\left(11 \mathrm{Vdc} \leqslant \mathrm{V}_{\text {in }} \leqslant 21 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=2.0 \mathrm{~A}, \mathrm{TJ}=25^{\circ} \mathrm{C}\right)\)
\end{tabular} & RR & 60 & 71 & - & dB \\
\hline Dropout Voltage (\(\mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{0}\) & - & 2.2 & 2.5 & Vdc \\
\hline Output Noise Voltage
\[
\left(10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance (\(\dagger=1.0 \mathrm{kHz}\)) & \(\mathrm{R}_{\mathrm{O}}\) & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit
\[
\left(\mathrm{V}_{\mathrm{in}}=35 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & ISC & - & 1.5 & - & A \\
\hline Peak Output Current (\(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 5.0 & - & A \\
\hline Average Temperature Coefficient of Output Voltage (\(\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}\)) & TCV \({ }_{\text {O }}\) & - & 0.3 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular} NOTES:
1. Although power dissipation is internally limited, specifications apply only for \(P_{O} \leqslant P_{\max }\). \(P_{\max }=30 \mathrm{~W}\) for K package \(\quad P_{\max }=25 \mathrm{~W}\) for \(T\) package
2. Line and load regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC78T12AC, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=17 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant 125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{O}} \leqslant \mathrm{P}_{\max }\right.\) [Note 1], unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78T12AC} & \multicolumn{3}{|c|}{MC78T12C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \text { (} \left.5.0 \mathrm{~mA} \leqslant 10 \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& (5.0 \mathrm{~mA} \leqslant 10 \leqslant 3.0 \mathrm{~A} ; \\
& \left.5.0 \mathrm{~mA} \leqslant 10 \leqslant 2.0 \mathrm{~A}, 14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}\right)
\end{aligned}
\] & vo & \[
\begin{gathered}
11.75 \\
11.5
\end{gathered}
\] & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
12.25 \\
12.5
\end{gathered}
\] & \[
\begin{aligned}
& 11.5 \\
& 11.4
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 12.5 \\
& 12.6
\end{aligned}
\] & Vdc \\
\hline Line Regulation (Note 2)
\[
\begin{aligned}
& \left(14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} ;\right. \\
& 14.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} ; \\
& 16 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 22 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}} 3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ; \\
& \left.14.9 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\right)
\end{aligned}
\] & Regline & - & 6.0 & 45 & - & 6.0 & 45 & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant I_{0} \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & mV \\
\hline Thermal Regulation
\[
\text { (Pulse } \left.=10 \mathrm{~ms}, \mathrm{P}=20 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)
\] & Regtherm & - & 0.001 & 0.01 & - & 0.002 & 0.03 & \% \(\mathrm{V}_{\mathrm{O}} \mathrm{W}\) \\
\hline \[
\begin{aligned}
& \text { Quiescent Current } \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}\right) \\
& \hline
\end{aligned}
\] & IB & - & \[
\begin{aligned}
& 3.5 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 3.5 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline & \(\Delta^{\Delta}{ }_{B}\) & - & 0.3 & 1.0 & - & 0.3 & 1.0 & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& \left(15 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz},\right. \\
& \left.10=2.0 \mathrm{~A}, \mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & RR & 57 & 67 & - & 57 & 67 & - & dB \\
\hline Dropout Voltage (\(\mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{\text {in }}-\mathrm{V}_{0}\) & - & 2.2 & 2.5 & - & 2.2 & 2.5 & Vdc \\
\hline \begin{tabular}{l}
Output Noise Voltage \\
\(\left(10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}\) \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & \(\mathrm{R}_{\mathrm{O}}\) & - & 2.0 & - & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit \(\left(\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\) & Isc & - & 1.5 & - & - & 1.5 & - & A \\
\hline Peak Output Current (\(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 5.0 & - & - & 5.0 & - & A \\
\hline Average Temperature Coefficient of Output Voltage (\(1 \mathrm{O}=5.0 \mathrm{~mA}\)) & TCV \({ }_{\text {O }}\) & - & 0.5 & - & - & 0.5 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES:
1. Although power dissipation is internally limited, specifications apply only for \(\mathrm{P}_{\mathrm{O}} \leqslant \mathrm{P}_{\text {max }}\) -
\[
\mathrm{P}_{\max }=30 \mathrm{~W} \text { for } \mathrm{K} \text { package } \quad \mathrm{P}_{\max }=25 \mathrm{~W} \text { for } \mathrm{T} \text { package }
\]
2. Line and load regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC78T15AC, C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=20 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=3.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant 125^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{O}} \leqslant \mathrm{P}_{\max }\right.\) [Note 1], unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC78T15AC} & \multicolumn{3}{|c|}{MC78T15C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \begin{array}{l}
\text { (} \left.5.0 \mathrm{~mA} \leqslant 10 \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right) \\
(5.0 \mathrm{~mA} \leq 10 \leqslant 3.0 \mathrm{~A} ; \\
\left.5.0 \mathrm{~mA} \leqslant 10 \leqslant 2.0 \mathrm{~A}, 17.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}\right)
\end{array}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\begin{aligned}
& 14.7 \\
& 14.4
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 15.3 \\
& 15.6
\end{aligned}
\] & \[
\begin{gathered}
14.4 \\
14.25
\end{gathered}
\] & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & \[
\begin{gathered}
15.6 \\
15.75
\end{gathered}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation (Note 2) } \\
& \left(17.6 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 40 \mathrm{Vdc}, \mathrm{IO}=5.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} ;\right. \\
& 17.6 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 40 \mathrm{Vdc}, \mathrm{IO}=1.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ; \\
& 20 \mathrm{Vdc} \leqslant \mathrm{Vin}_{\text {in }} \leqslant 26 \mathrm{Vdc}, 1 \mathrm{O}=3.0 \mathrm{~A}, \mathrm{TJ}=+25^{\circ} \mathrm{C} ; \\
& \left.18 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{IO}=1.0 \mathrm{~A}\right)
\end{aligned}
\] & Regline & - & 7.5 & 55 & - & 7.5 & 55 & mV \\
\hline Load Regulation (Note 2)
\[
\begin{aligned}
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \left(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}\right)
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80
\end{aligned}
\] & - & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 80 \\
& \hline
\end{aligned}
\] & mV \\
\hline Thermal Regulation
\(\quad\left(\right.\) Pulse \(\left.=10 \mathrm{~ms}, \mathrm{P}=20 \mathrm{~W}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\) & \(\mathrm{Reg}_{\text {therm }}\) & - & 0.001 & 0.01 & - & 0.002 & 0.03 & \% \(\mathrm{V}_{\mathrm{O}} / \mathrm{W}\) \\
\hline \[
\begin{aligned}
& \text { Quiescent Current } \\
& \left(5.0 \mathrm{~mA} \leq 10 \leq 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& (5.0 \mathrm{~mA} \leqslant 10 \leqslant 3.0 \mathrm{~A})
\end{aligned}
\] & IB & - & \[
\begin{aligned}
& 3.5 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 3.5 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
5.0 \\
6.0 \\
\hline
\end{array}
\] & mA \\
\hline Quiescent Current Change
\[
\begin{aligned}
& \left(17.6 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 40 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=5.0 \mathrm{~mA}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} ;\right. \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C} ; \\
& \left.18 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\right)
\end{aligned}
\] & \({ }^{\Delta} \mathrm{I}_{\mathrm{B}}\) & - & 0.3 & 1.0 & - & 0.3 & 1.0 & mA \\
\hline \[
\begin{aligned}
& \text { Ripple Rejection } \\
& \quad\left(18.5 \mathrm{Vdc} \leqslant \mathrm{~V}_{\text {in }} \leqslant 28.5 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz},\right. \\
& \left.\mathrm{I} \mathrm{O}=2.0 \mathrm{~A}, \mathrm{TJ}=25^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & RR & 55 & 65 & - & 55 & 65 & - & dB \\
\hline Dropout Voltage (\(\mathrm{l}_{\mathrm{O}}=3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{v}_{\text {in }}-\mathrm{v}_{0}\) & - & 2.2 & 2.5 & - & 2.2 & 2.5 & Vdc \\
\hline \begin{tabular}{l}
Output Noise Voltage \\
\(\left(10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)\)
\end{tabular} & \(\mathrm{v}_{\mathrm{n}}\) & - & 10 & - & - & 10 & - & \(\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}\) \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & Ro & - & 2.0 & - & - & 2.0 & - & \(\mathrm{m} \Omega\) \\
\hline Short Circuit Current Limit
\[
\left(\mathrm{V}_{\mathrm{in}}=40 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & ISC & - & 1.0 & - & - & 1.0 & - & A \\
\hline Peak Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{\text {max }}\) & - & 5.0 & - & - & 5.0 & - & A \\
\hline Average Temperature Coefficient of Output Voltage
\[
(10=5.0 \mathrm{~mA})
\] & TCV \({ }_{\text {O }}\) & - & 0.6 & - & - & 0.6 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES:
1. Although power dissipation is internally limited, specifications apply only for \(P_{O} \leqslant P_{\text {max }}\).
\[
P_{\max }=30 \mathrm{~W} \text { for } \mathrm{K} \text { package } \quad P_{\max }=25 \mathrm{~W} \text { for } T \text { package }
\]
2. Line and load regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC78T00 Series}

\section*{VOLTAGE REGULATOR PERFORMANCE}

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration (\(<100 \mu \mathrm{~s}\)) and are strictly a function of electrical gain. However, pulse widths of longer duration (\(>1.0 \mathrm{~ms}\)) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.
Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output
voltage change per watt. The change in dissipated power can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of I.C. layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms , additional changes in the output voltage are due to the temperature coefficient of the device.
Figure 1 shows the line and thermal regulation response of a typical MC78T05AC to a 20 watt input pulse. The variation of the output voltage due to line regulation is labeled (1) and the thermal regulation component is labeled (2). Figure 2 shows the load and thermal regulation response of a typical MC78T05AC to a 20 watt load pulse. The output voltage variation due to load regulation is labeled (1) and the thermal regulation component is labeled (2).

FIGURE 1 - LINE AND THERMAL REGULATION

\(\mathrm{t}, \mathrm{TIME}(2.0 \mathrm{~ms} /\) div.)
MC78T05AC
\(\mathrm{V}_{0}=5.0 \mathrm{~V}\)
\(V_{\text {in }}=8.0 \mathrm{~V} \rightarrow 18 \mathrm{~V} \rightarrow 8.0 \mathrm{~V}\)
(1) \(=\) Regline \(=2.4 \mathrm{mV}\)
\(\mathrm{l}_{\text {out }}=2.0 \mathrm{~A}\)
(2) \(=\) Regtherm \(=0.0015 \% \mathrm{~V}_{\mathrm{O}} \mathrm{W}\)

FIGURE 2 - LOAD AND THERMAL REGULATION

t , TIME (\(2.0 \mathrm{~ms} / \mathrm{div}\).)
MC78T05AC
\(\mathrm{V}_{0}=5.0 \mathrm{~V}\)
\(\begin{array}{ll}V_{\text {in }}=15 & \text { (1) }=\text { Reg load }=4.4 \mathrm{mV} \\ \mathrm{I}_{\text {out }}=0 \mathrm{~A} \rightarrow 2.0 \mathrm{~A} \rightarrow 0 \mathrm{~A} & \text { (2) }=\text { Reg therm }=0.0015 \% \mathrm{~V}_{0} \mathrm{~W}\end{array}\)

\section*{MC78T00 Series}

FIGURE 3 - TEMPERATURE STABILITY

FIGURE 5 - RIPPLE REJECTION versus FREQUENCY

FIGURE 7 - QUIESCENT CURRENT versus INPUT VOLTAGE

FIGURE 4 - OUTPUT IMPEDANCE

FIGURE 6 - RIPPLE REJECTION versus OUTPUT CURRENT

FIGURE 8 - QUIESCENT CURRENT versus OUTPUT CURRENT

FIGURE 9 - DROPOUT VOLTAGE

FIGURE 11 - LINE TRANSIENT RESPONSE

FIGURE 13 - MAXIMUM AVERAGE POWER DISSIPATION FOR MC78T00CK, ACK

FIGURE 10 - PEAK OUTPUT CURRENT

FIGURE 12 - LOAD TRANSIENT RESPONSE

FIGURE 14 - MAXIMUM AVERAGE POWER DISSIPATION FOR MC78T00CT, ACT

\section*{MC78T00 Series}

\section*{APPLICATIONS INFORMATION}

\section*{DESIGN CONSIDERATIONS}

The MC78T00,A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.
In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a
capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

The MC78T05 regulator can also be used as a current source when connected as above. In order to minimize dissipation, the MC78T05 is chosen in this application. Resistor R determines the current as follows:
\[
I_{O}=\frac{5.0 V}{R}+I_{B}
\]
\(\Delta I_{B} \cong 0.7 \mathrm{~mA}\) over line, load and temperature changes \(\mathrm{I}_{\mathrm{B}} \cong 3.5 \mathrm{~mA}\)
For example, a 2-ampere current source would require R to be a 2.5 ohm, 15 W resistor and the output voltage compliance would be the input voltage less 7.5 volts.

FIGURE 16 - ADJUSTABLE OUTPUT REGULATOR

\(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}} \geqslant 2.5 \mathrm{~V}\)
The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3.0 volts greater than the regulator voltage.

FIGURE 17 - CURRENT BOOST REGULATOR

\(X X=2\) digits of type number indicating voltage.
The MC78T00,A series can be current boosted with a PNP transistor. The 2N4398 provides current to 15 amperes. Resistor R in conjunction with the \(\mathrm{V}_{\mathrm{BE}}\) of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by the \(\mathrm{V}_{\mathrm{BE}}\) of the pass transistor.

FIGURE 18 - CURRENT BOOST WITH SHORT-CIRCUIT PROTECTION

\(X X=2\) digits of type number indicating voltage.
The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the shortcircuit current of the three-terminal regulator. Therefore, an eight-ampere power transistor is specified.

\section*{STANDARD APPLICATION}

A common ground is required between the input and
 he output voltages. The input voltage must remain typically 2.2 V above the output voltage even during the low point on the input ripple voltage.
\(X X=\) these two digits of the type number indicate voltage.
* \(=\mathrm{C}_{\mathrm{in}}\) is required if regulator is located an appreciable distance from power supply filter. (See Applications Information for details.)
\({ }^{* *}=\mathrm{C}_{\mathrm{O}}\) is not needed for stability; however, it does improve transient response.

\section*{THREE-TERMINAL \\ NEGATIVE VOLTAGE REGULATORS}

The MC7900 Series of fixed output negative voltage regulators are intended as complements to the popular MC7800 Series devices. These negative regulators are available in the same seven-voltage options as the MC7800 devices. In addition, one extra voltage option commonly employed in MECL systems is also available in the negative MC7900 Series.

Available in fixed output voltage options from -5.0 to - 24 volts, these regulators employ current limiting, thermai shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heat sinking they can deliver output currents in excess of 1.0 ampere.
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Available in 2\% Voltage Tolerance (See Ordering Information)

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Output Voltage \\
Tolerance
\end{tabular} & \begin{tabular}{c}
Tested Operating \\
Junction Temp. Range
\end{tabular} & Package \\
\hline MC79XXCK & \(4 \%\) & & Metal Power** \\
MC79XXACK* & \(2 \%\)
\end{tabular}\(\quad\)\begin{tabular}{c}
\\
\hline MC79XXCT \\
MC79XXACT*
\end{tabular}
\(X X\) indicates nominal voltage.
* \(2 \%\) output voltage tolerance available in 5,12 and 15 volt devices.
**Metal power package available in 5, 12 and 15 volt devices.
\#Automotive temperature range selections are available with special test conditions and additional tests in 5, 12 and 15 volt devices. Contact your local Motorola sales office for information

\section*{THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS}

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V more negative even during the high point on the input ripple voltage.
\(X X=\) these two digits of the type number indicate voltage.
* \(=\mathrm{C}_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter.
** \(=\mathrm{C}_{\mathrm{O}}\) improves stability and transient response.
\begin{tabular}{|ll|ll|}
\hline \multicolumn{4}{|c|}{ DEVICE TYPE/ NOMINAL OUTPUT VOLTAGE } \\
\hline MC7905 & 5.0 Volts & MC7912 & 12 Volts \\
MC7905.2 & 5.2 Volts & MC7915 & 15 Volts \\
MC7906 & 6.0 Volts & MC7918 & 18 Volts \\
MC7908 & 8.0 Volts & MC7924 & 24 Volts \\
\hline
\end{tabular}

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \begin{tabular}{l}
Input Voltage (-5.0 \(\mathrm{V} \geqslant \mathrm{V}_{\mathrm{O}} \geqslant-18 \mathrm{~V}\)) \\
(24 V)
\end{tabular} & \(V_{1}\) & \[
\begin{aligned}
& -35 \\
& -40
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation \\
Plastic Package
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
\[
\mathrm{T}_{\mathrm{C}} \mathrm{C}=+25^{\circ} \mathrm{C}
\] \\
Derate above \({ }^{\top} \mathrm{C}=+95^{\circ} \mathrm{C}\) (See Figure 1) \\
Metal Package
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\)
\[
T_{C}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{C}}=+65^{\circ} \mathrm{C}\)
\end{tabular} & & \begin{tabular}{l}
Internally Limited \\
15.4 \\
Internally Limited \\
200 \\
Internally Limited \\
22.2 \\
Internally Limited \\
182
\end{tabular} & \begin{tabular}{l}
Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Storage Junction Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature Range & \(\mathrm{T}_{J}\) & 0 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|}
\hline Characteristic & Symbol & Max & Unit \\
\hline Thermal Resistance, Junction to Ambient - Plastic Package & \(R_{\theta J A}\) & 65 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
& - Metal Package & & 45 \\
\hline Thermal Resistance, Junction to Case & - Plastic Package & \(R_{\theta J C}\) & 5.0 \\
& - Metal Package & & 5.5 \\
\hline
\end{tabular}

MC7905C ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{1}=-10 \mathrm{~V}, \mathrm{I}_{0}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & -4.8 & -5.0 & -5.2 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
& -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-12 \mathrm{Vdc} \\
& \left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\
& -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-12 \mathrm{Vdc}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 2.0 \\
& \\
& 35 \\
& 8.0
\end{aligned}
\] & \[
\begin{gathered}
50 \\
25 \\
\\
100 \\
50
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 11 \\
& 4.0
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{v}_{\mathrm{O}}\) & -4.75 & - & -5.25 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 1 IB & - & 4.3 & 8.0 & mA \\
\hline Input Bias Current Change \(-7.0 \mathrm{Vdc} \geqslant \mathrm{V}_{1} \geqslant-25 \mathrm{Vdc}\)
\(5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A}\) \(5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}\) & \(د_{1 B}\) & - & - & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)) & \(\mathrm{e}_{\text {on }}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 70 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}^{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
I_{O}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{O} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Note}
1. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately Pulse testing with low duty cycle is used.

\section*{MC7900 Series}

MC7905AC ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & -4.9 & -5.0 & -5.1 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-12 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-12 \mathrm{Vdc} \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} \\
& -7.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} I_{\mathrm{O}}=500 \mathrm{~mA} \\
& -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-20 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 7.0 \\
& 7.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 50 \\
& 50 \\
& 50 \\
& \hline
\end{aligned}
\] & mV \\
\hline Load Regulation (Note 1)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.5 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & Regload & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 11 \\
& 4.0 \\
& 9.0
\end{aligned}
\] & \[
\begin{gathered}
.100 \\
50 \\
100
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-7.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -4.80 & - & -5.20 & Vdc \\
\hline Input Bias Current & 1 IB & - & 4.4 & 8.0 & mA \\
\hline Input Bias Current Change
\[
\begin{aligned}
& -7.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \(د_{1 B}\) & - & \[
-
\] & \[
\begin{array}{r}
1.3 \\
0.5 \\
0.5 \\
\hline
\end{array}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)) & \(e_{\text {on }}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\({ }_{\mathrm{O}} \mathrm{O}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\)) & RR & - & 70 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{O} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC7905.2C ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) uniess otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & -5.0 & -5.2 & -5.4 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
& -7.2 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-12 \mathrm{Vdc} \\
& \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\
& -7.2 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-12 \mathrm{Vdc}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 2.2 \\
& \\
& 37 \\
& 8.5
\end{aligned}
\] & \[
\begin{gathered}
52 \\
27 \\
\\
105 \\
52
\end{gathered}
\] & mV \\
\hline ```
Load Regulation (TJ=+25}\mp@subsup{}{}{\circ}\textrm{C})(Note 1
 5.0 mA \leqslant IO \leqslant 1.5 A
 250 mA\leqslant10\leqslant750 mA
``` & Regload & - & \[
\begin{array}{r}
12 \\
4.5
\end{array}
\] & \[
\begin{gathered}
105 \\
52
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-7.2 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-20 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{v}_{\mathrm{O}}\) & -4.95 & - & -5.45 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & IIB & - & 4.3 & 8.0 & mA \\
\hline \begin{tabular}{l}
Input Bias Current Change \\
\(-7.2 \mathrm{Vdc} \geqslant \mathrm{V}_{1} \geqslant-25 \mathrm{Vdc}\) \\
\(5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A}\)
\end{tabular} & \(د_{\text {IB }}\) & - & - & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(e_{\text {on }}\) & - & 42 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\) ) & RR & - & 68 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{O} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note:
1. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7906C ELECTRICAL CHARACTERISTICS \(\left(V_{1}=-11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & -5.75 & -6.0 & -6.25 & Vdc \\
\hline Line Regulation (Note \({ }^{1)}\)
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, 1_{0}=100 \mathrm{~mA}\right) \\
& -8.0 \mathrm{Vdc} \geqslant V_{1} \geqslant-25 \mathrm{Vdc} \\
& -9.0 \mathrm{Vdc} \geqslant V_{1} \geqslant-13 \mathrm{Vdc} \\
& \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{0}=500 \mathrm{~mA}\right) \\
& -8.0 \mathrm{Vdc} \geqslant V_{1} \geqslant-25 \mathrm{Vdc} \\
& -9.0 \mathrm{Vdc} \geqslant V_{1} \geqslant-13 \mathrm{Vdc}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 3.0 \\
& 43 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
60 \\
30 \\
\\
120 \\
60
\end{gathered}
\] & \[
\mathrm{mV}
\] \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right)(\text { Note } 1) \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 13 \\
& 5.0
\end{aligned}
\] & \[
\begin{gathered}
120 \\
60
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-21 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -5.7 & - & -6.3 & Vdc \\
\hline Input Bias Current ( \(\mathrm{TJ}^{\prime}=+25^{\circ} \mathrm{C}\) ) & 1 B & - & 4.3 & 8.0 & mA \\
\hline Input Bias Current Change
\[
\begin{aligned}
& -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A}
\end{aligned}
\] & \(د_{1 \mathrm{~B}}\) & - & - & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(e_{\text {on }}\) & - & 45 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\) ) & RR & - & 65 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
I^{\prime}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{O} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC7908C ELECTRICAL CHARACTERISTICS \(\left(V_{I}=-14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(T J=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & -7.7 & -8.0 & -8.3 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
& -10.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& -11 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-17 \mathrm{Vdc} \\
& \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{0}=500 \mathrm{~mA}\right) \\
& -10.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& -11 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-17 \mathrm{Vdc}
\end{aligned}
\] & Regline &  & \[
\begin{aligned}
& 12 \\
& 5.0 \\
& 50 \\
& 22
\end{aligned}
\] & \[
\begin{gathered}
80 \\
40 \\
\\
160 \\
80
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 1_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 26 \\
& 9.0
\end{aligned}
\] & \[
\begin{gathered}
160 \\
80
\end{gathered}
\] & \[
\mathrm{mV}
\] \\
\hline Output Voltage
\[
-10.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-23 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -7.6 & - & -8.4 & Vdc \\
\hline Input Bias Current ( \(T_{J}=+25^{\circ} \mathrm{C}\) ) & 1 B & - & 4.3 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -10.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant I_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}
\end{aligned}
\] & \(د_{1 B}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(e_{\text {on }}\) & - & 52 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{l}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\) ) & RR & - & 62 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(V_{1}-V_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
I_{O}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{J} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{0} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note:
1. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used

MC7912C ELECTRICAL CHARACTERISTICS \(\left(V_{1}=-19 \mathrm{~V}, I_{0}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & -11.5 & -12 & -12.5 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& \left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
& -14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& -16 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-22 \mathrm{Vdc} \\
& \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\
& -14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& -16 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-22 \mathrm{Vdc}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
13 \\
6.0 \\
\\
55 \\
24
\end{array}
\] & \[
\begin{gathered}
120 \\
60 \\
240 \\
120
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right)(\text { Note } 1) \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 46 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 240 \\
& 120
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
-14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{v}_{\mathrm{O}}\) & -11.4 & - & -12.6 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & IIB & - & 4.4 & 8.0 & mA \\
\hline Input Bias Current Change
\[
\begin{aligned}
& -14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& \hline
\end{aligned}
\] & \(د_{1 B}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(e_{\text {on }}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\) ) & RR & - & 61 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
{ }^{1} 0=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant T_{J} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{O} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC7912AC ELECTRICAL CHARACTERISTICS \(\left(V_{1}=-19 \mathrm{~V}, I_{0}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{J}<+125^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & -11.75 & -12 & -12.25 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& -16 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-22 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& -16 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-22 \mathrm{Vdc} \cdot \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \\
& -14.8 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& -14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-27 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{TJ}^{2}=25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 24 \\
& 24 \\
& 13 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
60 \\
120 \\
120 \\
120
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (Note 1) } \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}, \mathrm{TJ}=25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & Regload & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 46 \\
& 17 \\
& 35 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
150 \\
75 \\
150 \\
\hline
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-14.8 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-27 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{v}_{\mathrm{O}}\) & -11.5 & - & -12.5 & Vdc \\
\hline Input Bias Current & IB & - & 4.4 & 8.0 & mA \\
\hline Input Bias Current Change
\[
\begin{aligned}
& -15 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant 1_{0} \leqslant 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\lambda_{1} \mathrm{~B}\) & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 0.5 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(e_{\text {on }}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\) ) & RR & - & 61 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(V_{1}-V_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{O} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note:
1. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC7900 Series}

MC7915C ELECTRICAL CHARACTERISTICS \(\left(V_{1}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & -14.4 & -15 & -15.6 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
& -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& -20 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-26 \mathrm{Vdc} \\
& \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{0}=500 \mathrm{~mA}\right) \\
& -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& -20 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-26 \mathrm{Vdc}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 6.0 \\
& \\
& 57 \\
& 27
\end{aligned}
\] & \[
\begin{gathered}
150 \\
75 \\
\\
300 \\
150
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right)(\text { Note } 1) \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 68 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
-17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -14.25 & - & -15.75 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & IIB & - & 4.4 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}
\end{aligned}
\] & \(د_{1 B}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & eon & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{O}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\) ) & RR & - & 60 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(V_{1}-V_{O}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}^{\circ}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{O} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC7915AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{TJ}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & -14.7 & -15 & -15.3 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& -20 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-26 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& -20 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-26 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \\
& -17.9 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & Regline & \(\square\) & \[
\begin{aligned}
& 27 \\
& 57 \\
& 57 \\
& 57
\end{aligned}
\] & \[
\begin{gathered}
75 \\
150 \\
150 \\
150
\end{gathered}
\] & mV \\
\hline Load Regulation (Note 1)
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}
\end{aligned}
\] & Regload & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 68 \\
& 25 \\
& 40 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
150 \\
75 \\
150 \\
\hline
\end{gathered}
\] & mV \\
\hline Output Voltage
\[
-17.9 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{v}_{\mathrm{O}}\) & -14.4 & - & -15.6 & Vdc \\
\hline Input Bias Current & IIB & - & 4.4 & 8.0 & mA \\
\hline Input Bias Current Change
\[
\begin{aligned}
& -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.0 \mathrm{~A} \\
& 5.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1.5 \mathrm{~A}, \mathrm{TJ}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \(د^{\prime} \mathrm{IB}\) & - & - & \[
\begin{aligned}
& 0.8 \\
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(e_{\text {on }}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\) ) & RR & - & 60 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{O} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note:
1. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{MC7900 Series}

MC7918C ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{1}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{TJ}<+125^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & -17.3 & -18 & -18.7 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\right) \\
& -21 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-33 \mathrm{Vdc} \\
& -24 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& \left(\mathrm{~T}_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\right) \\
& -21 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-33 \mathrm{Vdc} \\
& -24 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 10 \\
& 90 \\
& 50
\end{aligned}
\] & \[
\begin{gathered}
180 \\
90 \\
\\
360 \\
180
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 1_{0} \leqslant 750 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regload & - & \[
\begin{gathered}
110 \\
55
\end{gathered}
\] & \[
\begin{aligned}
& 360 \\
& 180
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
-21 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-33 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -17.1 & - & -18.9 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & IB & - & 4.5 & 8.0 & mA \\
\hline Input Bias Current Change
\[
\begin{aligned}
& -21 \mathrm{Vdc} \geqslant V_{1} \geqslant-33 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A}
\end{aligned}
\] & \(د_{1 / 8}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(\mathrm{e}_{\text {on }}\) & - & 110 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\) ) & RR & - & 59 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(V_{1}-V_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{0} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC7924C ELECTRICAL CHARACTERISTICS \(\left(V_{I}=-33 V, I_{0}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{0}\) & -23 & -24 & -25 & Vdc \\
\hline Line Regulation (Note 1)
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}, \mathrm{I}_{0}=100 \mathrm{~mA}\right) \\
& -27 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-38 \mathrm{Vdc} \\
& -30 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-36 \mathrm{Vdc} \\
& \left(\mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{I}_{0}=500 \mathrm{~mA}\right) \\
& -27 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-38 \mathrm{Vdc} \\
& -30 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-36 \mathrm{Vdc}
\end{aligned}
\] & Regline & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
31 \\
14 \\
\\
118 \\
70
\end{gathered}
\] & \[
\begin{aligned}
& 240 \\
& 120 \\
& 480 \\
& 240
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{gathered}
150 \\
85
\end{gathered}
\] & \[
\begin{aligned}
& 480 \\
& 240 \\
& \hline
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
-27 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-38 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -22.8 & - & -25.2 & Vdc \\
\hline Input Bias Current ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & 1 IB & - & 4.6 & 8.0 & mA \\
\hline Input Bias Current Change
\[
\begin{aligned}
& -27 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-38 \mathrm{Vdc} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 1.5 \mathrm{~A}
\end{aligned}
\] & \(د_{1 / 8}\) & \[
-
\] &  & \[
\begin{aligned}
& 1.0 \\
& 0.5 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage ( \(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) ) & \(e_{\text {on }}\) & - & 170 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection ( \(\mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}\) ) & RR & - & 56 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(V_{1}-V_{0}\) & - & 2.0 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{J} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{O} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Note}
. Load and line regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately Pulse testing with low duty cycle is used

\section*{MC7900 Series}

TYPICAL CHARACTERISTICS
( \(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)

FIGURE 1 - WORST CASE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE


FIGURE 3 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE


FIGURE 5 - RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES


FIGURE 2 - WORST CASE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE


FIGURE 4 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY


FIGURE 6 - OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE


\section*{FIGURE 7 - QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE}


\section*{DEFINITIONS}

Line Regulation. The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation -- The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Input Bias Current -- That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

\section*{APPLICATIONS INFORMATION}

\section*{Design Considerations}

The MC7900 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. IThe bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

FIGURE 9 - CURRENT BOOST REGULATOR
(-5.0 V @ 4.0 A , with 5.0 A current limiting)

- Mounted on common heat sink, Motorola MS-10 or equivalent.

When a boost transistor is used, short-circuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to \(0.6 \mathrm{~V} / \mathrm{R}_{\text {SC }}\). Operation beyond this point to the peak current capability of the MC7905C is possible if the regulator is mounted on a heat sink; otherwise thermal shutdown will occur when the additional load current is picked up by the regulator.

\section*{FIGURE 8 - CURRENT REGULATOR}


The MC7905, -5.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows:
\[
I_{O}=\frac{5.0 \mathrm{~V}}{\mathrm{R}}+\mathrm{I}_{\mathrm{B}}
\]

The quiescent current for this regulator is typically 4.3 mA . The 5.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage.

\section*{FIGURE 10 - OPERATIONAL AMPLIFIER SUPPLY}
( \(\pm 15 \mathrm{~V} @ 1.0 \mathrm{~A}\) )


The MC7815 and MC7915 positive and negative regulators may be connected as shown to obtain a dual power supply for operational amplifiers. A clamp diode shoutd be used at the output of the MC7815 to prevent potential latch-up problems whenever the output of the positive regulator (MC7815) is drawn below ground with an output current greater than 200 mA .

\section*{THREE-TERMINAL LOW CURRENT NEGATIVE VOLTAGE REGULATORS}

The MC79L00 Series negative voltage regulators are inexpensive, easy-to-use devices suitable for numerous applications requiring up to 100 mA . Like the higher powered MC7900 Series negative regulators, this series features thermal shutdown and current limiting, making them remarkably rugged. In most applications, no external components are required for operation.
The MC79L00 devices are useful for on-card regulation or any other application where a regulated negative voltage at a modest current level is needed. These regulators offer substantial advantage over the common resistor/zener diode approach.
- No External Components Required
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Low Cost
- Complementary Positive Regulators Offered (MC78L00 Series)
- Available in Either \(\pm 5 \%\) (AC) or \(\pm 10 \%\) (C) Selections

\begin{tabular}{|c|c|c|}
\hline Device No. \(\pm \mathbf{1 0 \%}\) & Device No. \(\pm \mathbf{5 \%}\) & Nominal Voltage \\
\hline MC79L05C & MC79L05AC & -5.0 \\
MC79L12C & MC79L12AC & -12 \\
MC79L15C & MC79L15AC & -15 \\
MC79L18C & MC79L18AC & -18 \\
MC79L24C & MC79L24AC & \(-\mathbf{2 4}\) \\
\hline
\end{tabular}
\#Automotive temperature range selections are available with special test conditions and additional tests in 5, 12 and 15 volt devices. Contact your local Motorola sales office for information.

\section*{THREE-TERMINAL LOW CURRENT NEGATIVE FIXED VOLTAGE REGULATORS}



SOP-8 is an internally modified SO-8 Package. Pins \(2,3,6\) and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOP-8 conforms to all external dimensions of the standard SO-8 Package.


\section*{MC79L00,A Series}

MAXIMUM RATINGS ( \(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input Voltage \begin{tabular}{ll}
\((-5 \mathrm{~V})\) \\
\((-12,-15,-18 \mathrm{~V})\) \\
\((-24 \mathrm{~V})\)
\end{tabular} & \(\mathrm{V}_{\text {I }}\) & -30 \\
& & -35 \\
& -40 & Vdc \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature Range & \(\mathrm{T}_{J}\) & 0 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC79L05C, AC Series ELECTRICAL CHARACTERISTICS \(\mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}\),
\(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC79L05C} & \multicolumn{3}{|c|}{MC79L05AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{j}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & -4.6 & -5.0 & -5.4 & -4.8 & -5.0 & -5.2 & Vdc \\
\hline Input Regulation
\[
\begin{aligned}
& \left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-20 \mathrm{Vdc} \\
& -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-20 \mathrm{Vdc}
\end{aligned}
\] & Regline & & - & & - & - & \[
\begin{aligned}
& 150 \\
& 100
\end{aligned}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 100 \mathrm{~mA} \\
& 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA}
\end{aligned}
\] & Regload & \[
-
\] & & \[
\begin{aligned}
& 60 \\
& 30
\end{aligned}
\] & - & & \[
\begin{array}{r}
60 \\
30
\end{array}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& -7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-20 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 40 \mathrm{~mA} \\
& \mathrm{~V}_{1}=-10 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 70 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& -4.5 \\
& -4.5
\end{aligned}
\] & & \[
\begin{aligned}
& -5.5 \\
& -5.5
\end{aligned}
\] & \[
\begin{aligned}
& -4.75 \\
& -4.75
\end{aligned}
\] & & \[
\begin{aligned}
& -5.25 \\
& -5.25
\end{aligned}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Bias Current } \\
& \qquad \begin{array}{l}
\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
\left(T_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right) \\
\hline
\end{array}
\end{aligned}
\] & \({ }_{1 / 8}\) & - & & \[
\begin{aligned}
& 6.0 \\
& 5.5
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 6.0 \\
& 5.5
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -8.0 \mathrm{Vdc} \geqslant V_{1} \geqslant-20 \mathrm{Vdc} \\
& 1.0 \mathrm{~mA} \leqslant 10 \leqslant 40 \mathrm{~mA}
\end{aligned}
\] & \({ }^{1} 18\) & \[
-
\] & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & - & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\left(-8.0 \geqslant V_{l} \geqslant 18 \mathrm{Vdc}, f=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)
\] & RR & 40 & 49 & - & 41 & 49 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\left|\mathrm{V}_{1}-\mathrm{v}_{\mathrm{O}}\right|\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

MC79L12C, AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{1}=-19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}\right.\),
\(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC79L12C} & \multicolumn{3}{|c|}{MC79L12AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(\mathrm{V}_{\mathrm{O}}\) & -11.1 & -12 & -12.9 & -11.5 & -12 & -12.5 & Vdc \\
\hline ```
Input Regulation
    ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) )
    \(-14.5 \mathrm{Vdc} \geqslant \mathrm{V}_{1} \geqslant-27 \mathrm{Vdc}\)
    -16 Vdc \(\geqslant V_{1} \geqslant-27\) Vdc
``` & \(\mathrm{Reg}_{\text {line }}\) & - & - & \[
\begin{aligned}
& 250 \\
& 200
\end{aligned}
\] & & & \[
\begin{array}{r}
250 \\
200
\end{array}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 100 \mathrm{~mA} \\
& 1.0 \mathrm{~mA} \leqslant 1_{\mathrm{O}} \leqslant 40 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regload & - & & \[
\begin{gathered}
100 \\
50
\end{gathered}
\] & - & & \[
\begin{gathered}
100 \\
50 \\
\hline
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& -14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-27 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 40 \mathrm{~mA} \\
& V_{1}=-19 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 70 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\begin{aligned}
& -10.8 \\
& -10.8
\end{aligned}
\] & & \[
\begin{aligned}
& -13.2 \\
& -13.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -11.4 \\
& -11.4 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
-12.6 \\
-12.6 \\
\hline
\end{array}
\] & Vdc \\
\hline \[
\begin{gathered}
\hline \text { Input Bias Current } \\
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
\left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right) \\
\hline
\end{gathered}
\] & IIB & - & - & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & - & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
-16 \mathrm{Vdc} \geqslant V_{1} \geqslant-27 \mathrm{Vdc} \\
1.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 40 \mathrm{~mA} \\
\hline
\end{gathered}
\] & \(\wedge_{1 B}\) & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & - & & \[
\begin{aligned}
& 1.5 \\
& 0.1
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\right)
\] & \(V_{n}\) & - & 80 & - & - & 80 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\left(-15 \leqslant V_{1} \leqslant-25 \mathrm{Vdc}, f=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & RR & 36 & 42 & - & 37 & 42 & - & dB \\
\hline \[
\begin{aligned}
& \text { Dropout Voltage } \\
& \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\left|\mathrm{V}_{1}-\mathrm{v}_{0}\right|\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

\section*{MC79L00,A Series}

MC79L15C, AC ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{1}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}\right.\),
\(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) uniess otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC79L15C} & \multicolumn{3}{|c|}{MC79L15AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & -13.8 & -15 & -16.2 & -14.4 & -15 & -15.6 & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Regulation } \\
& \quad\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& -20 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & & & \[
\begin{aligned}
& 300 \\
& 250
\end{aligned}
\] & & & \[
\begin{aligned}
& 300 \\
& 250
\end{aligned}
\] & mV \\
\hline \[
\begin{array}{|l|}
\hline \text { Load Regulation } \\
T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 100 \mathrm{~mA} \\
1.0 \mathrm{~mA} \leqslant 10 \leqslant 40 \mathrm{~mA} \\
\hline
\end{array}
\] & Regload & - & & \[
\begin{gathered}
150 \\
75
\end{gathered}
\] & - & & \[
\begin{gathered}
150 \\
75
\end{gathered}
\] & mV \\
\hline \[
\begin{array}{|l}
\hline \text { Output Voltage } \\
\quad-17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 10 \leqslant 40 \mathrm{~mA} \\
V_{1}=-23 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 10 \leqslant 70 \mathrm{~mA} \\
\hline
\end{array}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\begin{aligned}
& -13.5 \\
& -13.5
\end{aligned}
\] & & \[
\begin{array}{r}
-16.5 \\
-16.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -14.25 \\
& -14.25
\end{aligned}
\] & & \[
\begin{aligned}
& -15.75 \\
& -15.75 \\
& \hline
\end{aligned}
\] & Vdc \\
\hline \[
\begin{gathered}
\text { Input Bias Current } \\
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
\left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right) \\
\hline
\end{gathered}
\] & \({ }^{1 / B}\) & - & - & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & - & & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\hline \text { Input Bias Current Change } \\
-20 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA} \\
\hline
\end{gathered}
\] & \(\Delta_{1 B}\) & - & \[
-
\] & \[
\begin{aligned}
& 1.5 \\
& 0.2 \\
& \hline
\end{aligned}
\] & \[
-
\] & \[
-
\] & \[
\begin{aligned}
& 1.5 \\
& 0.1 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 90 & - & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\left(-18.5 \leqslant V_{1} \leqslant-28.5 \mathrm{Vdc}, f=120 \mathrm{~Hz}\right)
\] & RR & 33 & 39 & - & 34 & 39 & - & dB \\
\hline \[
\begin{aligned}
& \text { Dropout Voltage } \\
& \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\left|V_{1}-v_{0}\right|\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

MC79L 18C, AC ELECTRICAL CHARACTERISTICS \(\left(V_{1}=-27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}\right.\), \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC79L18C} & \multicolumn{3}{|c|}{MC79L18AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & -16.6 & -18 & -19.4 & -17.3 & -18 & -18.7 & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Regulation } \\
& \left(T_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& -20.7 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-33 \mathrm{Vdc} \\
& -21.4 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-33 \mathrm{Vdc} \\
& -22 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-33 \mathrm{Vdc} \\
& -21 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-33 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & - & \[
\begin{aligned}
& 325 \\
& 275
\end{aligned}
\] & - & - & \[
\begin{gathered}
325 \\
- \\
- \\
275
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation } \\
& T_{J}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 100 \mathrm{~mA} \\
& 1.0 \mathrm{~mA} \leqslant I_{O} \leqslant 40 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{Reg}_{\text {load }}\) & & & \[
\begin{aligned}
& 170 \\
& 85
\end{aligned}
\] & & & \[
\begin{gathered}
170 \\
85
\end{gathered}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& -20.7 \mathrm{Vdc} \geqslant V_{1} \geqslant-33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 40 \mathrm{~mA} \\
& -21.4 \mathrm{Vdc} \geqslant V_{1} \geqslant-33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 1 \mathrm{I} \leqslant 40 \mathrm{~mA} \\
& V_{1}=-27 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 70 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& -16.2 \\
& -16.2
\end{aligned}
\] & & \[
\begin{aligned}
& -19.8 \\
& -19.8
\end{aligned}
\] & \[
\begin{array}{r}
-17.1 \\
-17.1
\end{array}
\] & - & \[
\begin{gathered}
-18.9 \\
- \\
-18.9 \\
\hline
\end{gathered}
\] & Vdc \\
\hline \[
\begin{gathered}
\text { Input Bias Current } \\
\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
\left(\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}\right)
\end{gathered}
\] & \(1 / 8\) & - & - & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & - & & \[
\begin{aligned}
& 6.5 \\
& 6.0 \\
& \hline
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
-21 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-33 \mathrm{Vdc} \\
-27 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-33 \mathrm{Vdc} \\
1.0 \mathrm{~mA} \leqslant I_{\mathrm{O}} \leqslant 40 \mathrm{~mA} \\
\hline
\end{gathered}
\] & \(81 / 8\) & -- & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
- \\
1.5 \\
0.2
\end{gathered}
\] & \[
-
\] & - & \[
\begin{gathered}
1.5 \\
- \\
0.1
\end{gathered}
\] & mA \\
\hline Output Noise Voltage
\[
\left(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 150 & - & - & 150 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\left(-23 \leqslant V_{1} \leqslant-33 V_{d c}, f=120 \mathrm{~Hz}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & RR & 32 & 46 & - & 33 & 48 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}^{\circ}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & , \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) I & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

\section*{MC79L00,A Series}

MC79L24C, AC ELECTRICAL CHARACTERISTICS \(\left(V_{1}=-33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}\right.\),
\(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC79L.24C} & \multicolumn{3}{|c|}{MC79L24AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{O}}\) & -22.1 & -24 & -25.9 & -23 & -24 & -25 & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Regulation } \\
& \quad\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& -27 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-38 \mathrm{~V} \\
& -27.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-38 \mathrm{Vdc} \\
& -28 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-38 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & - & \[
\begin{aligned}
& 350 \\
& 300
\end{aligned}
\] & \[
-
\] & - & \[
\begin{gathered}
350 \\
- \\
300
\end{gathered}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 100 \mathrm{~mA} \\
& 1.0 \mathrm{~mA} \leqslant 1_{\mathrm{O}} \leqslant 40 \mathrm{~mA}
\end{aligned}
\] & Regload & & & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & & & \[
\begin{aligned}
& 200 \\
& 100
\end{aligned}
\] & mV \\
\hline Output Voltage
\[
\begin{aligned}
& -27 \mathrm{Vdc} \geqslant V_{1} \geqslant-38 \mathrm{~V}, 1.0 \mathrm{~mA} \leqslant I_{O} \leqslant 40 \mathrm{~mA} \\
& -28 \mathrm{Vdc} \geqslant V_{1} \geqslant-38 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant I_{\mathrm{O}} \leqslant 40 \mathrm{~mA} \\
& V_{1}=-33 \mathrm{Vdc}, 1.0 \mathrm{~mA} \leqslant I_{\mathrm{O}} \leqslant 70 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{O}}\) & \[
\begin{aligned}
& -21.4 \\
& -21.4
\end{aligned}
\] & & \[
\begin{aligned}
& -26.4 \\
& -26.4
\end{aligned}
\] & \[
\begin{gathered}
-22.8 \\
- \\
-22.8
\end{gathered}
\] & - & \[
\begin{gathered}
-25.2 \\
- \\
-25.2
\end{gathered}
\] & Vdc \\
\hline \[
\begin{gathered}
\hline \text { Input Bias Cuirent } \\
\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
\left(T_{J}=+125^{\circ} \mathrm{C}\right) \\
\hline
\end{gathered}
\] & 1/B & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & - & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & - & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Input Bias Current Change } \\
-28 \mathrm{Vdc} \geqslant V_{1} \geqslant-38 \mathrm{Vdc} \\
1.0 \mathrm{~mA} \leqslant 10 \leqslant 40 \mathrm{~mA}
\end{gathered}
\] & \(\Delta l_{1 B}\) & - & & \[
\begin{aligned}
& 1.5 \\
& 0.2
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.5 \\
& 0.1 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage
\[
\left(T_{A}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 200 & - & - & 200 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection
\[
\left(-29 \leqslant V_{1} \leqslant-35 V d c, f=120 \mathrm{~Hz}, T_{J}=25^{\circ} \mathrm{C}\right)
\] & RR & 30 & 43 & - & 31 & 47 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\left|v_{1}-v_{0}\right|\) & - & 1.7 & - & - & 1.7 & - & Vdc \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

\section*{Design Considerations}

The MC79L00 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass.
In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance

FIGURE 1 - POSITIVE AND NEGATIVE REGULATOR

is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A \(0.33 \mu \mathrm{~F}\) or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

FIGURE 2 - STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
* \(=C_{1}\) is required if regulator is located an appreciable distance from power supply filter.
\({ }^{* *}=C_{O}\) improves stability and transient response.

\section*{MC79L00,A Series}

TYPICAL CHARACTERISTICS
(\(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)

FIGURE 3 - DROPOUT CHARACTERISTICS

FIGURE 5 - INPUT BIAS CURRENT versus AMBIENT TEMPERATURE

FIGURE 7 - MAXIMUM AVERAGE POWER DISSIPATION versus AMBIENT TEMPERATURE - TO-92 Type Package

FIGURE 4 - DROPOUT VOLTAGE versus JUNCTION TEMPERATURE

FIGURE 6 - INPUT BIAS CURRENT versus INPUT VOLTAGE

FIGURE 8 - MAXIMUM AVERAGE POWER DISSIPATION versus AMBIENT TEMPERATURE - TO-39 Type Package

\section*{THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS}

The MC79M00 Series of fixed output negative voltage regulators are intended as complements to the popular MC78M00 Series devices.
Available in fixed output voltage options of \(-5.0,-12\) and - 15 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of 0.5 ampere.
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Output \\
Voltage
\end{tabular} & \begin{tabular}{c}
Tested Operating \\
Junction Temp. Range
\end{tabular} & Package \\
\hline MC79M05CDT, CDT-1 & -5.0 Volts & & DPAK \\
MC7905CT & & PLASTIC POWER \\
MC79M12CDT, CDT-1 & -12 Volts & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & DPAK \\
MC79M12CT & PLASTIC POWER \\
MC79M15CDT, CDT-1 & -15 Volts & & \begin{tabular}{c}
DPAK \\
MC79M15CT
\end{tabular} \\
\hline
\end{tabular}

THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS

SILICON MONOLITHIC INTEGRATED CIRCUITS

STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 1.1 V more negative even during the high point on the input ripple voltage.
\(X X=\) these two digits of the type number indicate voltage.
* \(=C_{\text {in }}\) is required if regulator is located an appreciable distance from power supply filter.
** \(=C_{O}\) improves stability and transient response.

MC79MXX Series MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage & \(V_{1}\) & -35 & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation Plastic Package
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\)
\[
\mathrm{T}^{\mathrm{C}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{C}=+95^{\circ} \mathrm{C}\)
\end{tabular} & \[
\begin{gathered}
P_{D} \\
1 / R \theta_{J A} \\
P_{D} \\
1 / R \theta_{J C} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Internally Limited 14.2 \\
Internally Limited 200
\end{tabular} & Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Storage Junction Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature Range & TJ & 0 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL CHARACTERISTICS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Max & Unit \\
\hline Thermal Resistance, Junction to Ambient & R \(\theta\) JA & 65 & \({ }^{\circ} \mathrm{C} W\) \\
\hline Thermal Resistance, Junction to Case & R \(\theta\) JC & 5.0 & \({ }^{\circ} \mathrm{C} W\) \\
\hline
\end{tabular}

MC79MO5C ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}, 1 \mathrm{O}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{TJ}^{\text {J }}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & -4.8 & -5.0 & -5.2 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(T_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \text { (Note 1) } \\
& \quad-7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{\mathrm{i}} \geqslant-18 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 7.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \text { (Note 1) } \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 500 \mathrm{~mA}
\end{aligned}
\] & Regload & - & 30 & 100 & mV \\
\hline Output Voltage
\[
-7.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}
\] & \(\mathrm{V}_{\mathrm{O}}\) & -4.75 & - & -5.25 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 1 IB & - & 4.3 & 8.0 & mA \\
\hline Input Bias Current Change
\[
\begin{aligned}
& -8.0 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc}, \mathrm{IO}_{\mathrm{O}}=350 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leqslant I_{0} \leqslant 350 \mathrm{~mA}, \mathrm{~V}_{1}=-10 \mathrm{~V}
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}^{\text {a }}\) & - & - & \[
\begin{aligned}
& 0.4 \\
& 0.4 \\
& \hline
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(\mathrm{f}=120 \mathrm{~Hz}\)) & RR & 54 & 66 & - & dB \\
\hline \[
\begin{aligned}
& \text { Dropout Voltage } \\
& \qquad 1 \mathrm{O}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.1 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}^{0}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\jmath} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Note:}
1. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC79M12C ELECTRICAL CHARACTERISTICS \(\mathrm{I}_{\mathrm{I}}=-19 \mathrm{~V}, 10=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & -11.5 & -12 & -12.5 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right)(\text { Note } 1) \\
& -14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& -15 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-25 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 5.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mV} \\
& \mathrm{mV}
\end{aligned}
\] \\
\hline \[
\text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right)(\text { Note } 1)
\]
\[
5.0 \mathrm{~mA} \leqslant 10 \leqslant 500 \mathrm{~mA}
\] & Regload & - & 30 & 240 & mV \\
\hline Output Voltage
\[
-14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}
\] & \(\mathrm{V}_{0}\) & -11.4 & - & -12.6 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & IB & - & 4.4 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -14.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 350 \mathrm{~mA}, \mathrm{~V}_{1}=-19 \mathrm{~V} \\
& \hline
\end{aligned}
\] & \(\Delta^{\prime}\) IB & \[
-
\] & - & \[
\begin{aligned}
& 0.4 \\
& 0.4
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(f=120 \mathrm{~Hz}\)) & RR & 54 & 60 & - & dB \\
\hline \[
\begin{aligned}
& \text { Dropout Voltage } \\
& 1 \mathrm{O}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.1 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{J} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}\) & - & -0.8 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC79M15C ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{I}}=-23 \mathrm{~V}, 1 \mathrm{O}=350 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<+125^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{0}\) & -14.4 & -15 & -15.6 & Vdc \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(T_{\mathrm{J}}=+25^{\circ}\right) \text { (Note 1) } \\
& -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc} \\
& -18 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-28 \mathrm{Vdc}
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 5.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 50
\end{aligned}
\] & mV \\
\hline Load Regulation (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) (Note 1)
\[
5.0 \mathrm{~mA} \leqslant 10 \leqslant 500 \mathrm{~mA}
\] & Regload & - & 30 & 240 & mV \\
\hline Output Voltage
\[
-17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 350 \mathrm{~mA}
\] & \(\mathrm{v}_{0}\) & - 14.25 & - & - 15.75 & Vdc \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(I_{1 B}\) & - & 4.4 & 8.0 & mA \\
\hline \[
\begin{aligned}
& \text { Input Bias Current Change } \\
& -17.5 \mathrm{Vdc} \geqslant \mathrm{~V}_{1} \geqslant-30 \mathrm{Vdc}, \mathrm{I}=350 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 350 \mathrm{~mA}, \mathrm{~V}_{1}=-23 \mathrm{~V}
\end{aligned}
\] & \(\Delta^{\prime} \mathrm{IB}^{\text {B }}\) & - & - & \[
\begin{aligned}
& 0.4 \\
& 0.4
\end{aligned}
\] & mA \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)) & \(V_{n}\) & - & 90 & - & \(\mu \mathrm{V}\) \\
\hline Ripple Rejection (\(f=120 \mathrm{~Hz}\)) & RR & 54 & 60 & - & dB \\
\hline Dropout Voltage
\[
\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}
\] & \(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}\) & - & 1.1 & - & Vdc \\
\hline Average Temperature Coefficient of Output Voltage
\[
10=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}
\] & \(\Delta V_{0} / \Delta T\) & - & -1.0 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Note:}
1. Load and line regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUITS}

The MC35060 and MC34060 are low cost fixed frequency, pulse width modulation control circuits designed primarily for single ended SWITCHMODE power supply control. These devices feature:
- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator With Master or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5.0 Volt Reference
- Adjustable Dead Time Control
- Uncommitted Output Transistor for 200 mA Source or Sink

The MC34060 is specified over the commercial operating range of \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\). The MC35060 is specified over the full military range of -55 to \(+125^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION } \\
\hline Device & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline MC35060L & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline MC34060P & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline MC34060L & 0 to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline
\end{tabular}

FIGURE 1 - BLOCK DIAGRAM

FIGURE 2 - TIMING DIAGRAM

\section*{Description}

The MC35060/34060 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequency-programmable by two external components, \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). The approximate oscillator frequency is determined by:
\[
\mathrm{f}_{\mathrm{osc}} \cong \frac{1.1}{R_{T} \cdot C_{T}}
\]

For more information refer to Figure 3.

Output pulse width modulation is accompiished by comparison of the positive sawtooth waveform across capacitor \(\mathrm{C}_{\boldsymbol{T}}\) to either of two control signals. The output is enabled only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feed-back input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first \(4 \%\) of the sawtooth-cycle time. This would result in a maximum duty cycle of \(96 \%\). Additional dead time may be imposed on the output by setting the dead timecontrol input to a fixed voltage, ranging between 0 to 3.3 V .

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V . Both
error amplifiers have a common-mode input range from -0.3 V to (\(\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}\)), and may be used to sense power supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

The MC35060/34060 has an internal 5.0 V reference capable of sourcing up to 10 mA of load currents for external bias circuits. The reference has an internal accuracy of \(\pm 5 \%\) with a typical thermal drift of less than 50 mV over an operating temperature range of 0 to \(+70^{\circ} \mathrm{C}\).

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|}
\hline Rating & Symbol & MC35060 & MC34060 & Unit \\
\hline Power Supply Voltage & \(V_{C C}\) & 42 & 42 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C}}\) & 42 & 42 & \(\checkmark\) \\
\hline Collector Output Current & \({ }^{1} \mathrm{C}\) & 250 & 250 & mA \\
\hline Amplifier Input Voltage & \(V_{\text {in }}\) & \(\mathrm{V}_{\mathrm{CC}}+0.3\) & \(\mathrm{V}_{\mathrm{CC}}+0.3\) & V \\
\hline Power Dissipation @ \(T_{A} \leqslant 45^{\circ} \mathrm{C}\) & \(P_{\text {D }}\) & 1000 & 1000 & mW \\
\hline Operating Junction Temperature Plastic Package Ceramic Package & TJ & \[
\overline{150}
\] & \[
\begin{aligned}
& 125 \\
& 150
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(T_{\text {A }}\) & -55 to 125 & 0 to 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Storage Temperature Range \\
Plastic Package \\
Ceramic Package
\end{tabular} & \(\mathrm{T}_{\text {stg }}\) & \[
\overline{-65 \text { to } 150}
\] & \[
\begin{aligned}
& -55 \text { to } 125 \\
& -65 \text { to } 150
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THERMAL CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & \begin{tabular}{c}
L Suffix \\
Ceramic Package
\end{tabular} & \begin{tabular}{c}
P Suffix \\
Plastic Package
\end{tabular} & Unit \\
\hline Thermal Resistance, Junction to Ambient & \(R_{\theta J A}\) & 100 & 80 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Power Derating Factor & \(1 / \mathrm{R}_{\theta J A}\) & 10 & 12.5 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Derating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 50 & 45 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Condition / Value} & \multirow[t]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC35060/MC34060} & \multirow[t]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 70 & 15 & 40 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C}}\) & - & 30 & 40 & V \\
\hline Collector Output Current & \({ }^{1} \mathrm{C}\) & - & - & 200 & mA \\
\hline Amplifier Input Voltage & \(v_{\text {in }}\) & -0.3 & - & \(\mathrm{V}_{\mathrm{CC}}-2\) & V \\
\hline Current Into Feedback Termınal & If \(b\) & - & - & 0.3 & mA \\
\hline Reference Output Current & Iref & - & - & 10 & mA \\
\hline Timing Resistor & \(\mathrm{R}_{\mathrm{T}}\) & 1.8 & 47 & 500 & \(k \Omega\) \\
\hline Timing Capacitor & \(\mathrm{C}_{T}\) & 0.0047 & 0.001 & 10 & \(\mu \mathrm{F}\) \\
\hline Oscillator Frequency & \(\mathrm{f}_{\text {OSC }}\) & 1.0 & 25 & 200 & kHz \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(V_{C C}=15 \mathrm{~V}, \mathrm{C}_{\boldsymbol{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\boldsymbol{T}}=12 \mathrm{k} \Omega\) unless otherwise noted. For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(T_{A}\) is the operating ambient temperature range that applies unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC35060} & \multicolumn{3}{|c|}{MC34060} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

REFERENCE SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Reference Voltage
\[
\left(I_{0}=1.0 \mathrm{~mA}\right)
\] & \(V_{\text {ref }}\) & 4.75 & 5.0 & 5.25 & 4.75 & 5.0 & 5.25 & V \\
\hline Input Regulation
\[
\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V} \text { to } 40 \mathrm{~V}\right)
\] & Regline & - & 2.0 & 25 & - & 2.0 & 25 & mV \\
\hline Output Regulation
\[
\left(I_{O}=1.0 \mathrm{~mA} \text { to } 10 \mathrm{~mA}\right)
\] & Regload & - & 3.0 & 15 & - & 3.0 & 15 & \(m V\) \\
\hline Short-Circuit Output Current
\[
\left(V_{\text {ref }}=0 \mathrm{~V}\right)
\] & ISC & 15 & 35 & 75 & 15 & 35 & 75 & mA \\
\hline
\end{tabular}

OUTPUT SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Collector Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=40 \mathrm{~V}\right)
\] & \({ }^{\prime} \mathrm{C}\) (off) & - & 2.0 & 100 & - & 2.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Emitter Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}\right)
\] & \({ }^{\text {E }}\) (off) & - & - & -150 & - & - & -100 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Collector-Emitter Saturation Voltage Common-Emitter
\[
\left(V_{E}=0 V, I_{C}=200 \mathrm{~mA}\right)
\] \\
Emitter-Follower
\[
\left(V_{C}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-200 \mathrm{~mA}\right)
\]
\end{tabular} & \[
\begin{aligned}
& V_{\text {sat }(C)} \\
& V_{\text {sat }(E)}
\end{aligned}
\] & & \[
1.1
\]
\[
1.5
\] & \[
\begin{aligned}
& 1.5 \\
& 2.5
\end{aligned}
\] & & \[
1.1
\]
\[
1.5
\] & \[
1.3
\]
\[
2.5
\] & \(V\)
\(v\) \\
\hline Output Voltage Rise Time (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13) & \(\mathrm{t}_{\mathrm{r}}\) & - & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & - & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Output Voltage Fall Time (\(T_{A}=25^{\circ} \mathrm{C}\)) \\
Common-Emitter (See Figure 12) \\
Emitter-Follower (See Figure 13)
\end{tabular} & \(t_{f}\) & \[
-
\] & \[
\begin{aligned}
& 25 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & - & \[
\begin{aligned}
& 25 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Characteristic} & \multirow[t]{2}{*}{Symbol} & \multicolumn{3}{|l|}{MC35060/MC34060} & \multirow[t]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage \(\left(\mathrm{V}_{\mathrm{O}}\right.\) Pin 3] \(\left.=2.5 \mathrm{~V}\right)\) & \(\mathrm{V}_{10}\) & - & 2.0 & 10 & mV \\
\hline \begin{tabular}{l}
Input Offset Current \\
\(\left(\mathrm{V}_{\mathrm{C}[\text { Pin 3] }}=2.5 \mathrm{~V}\right)\)
\end{tabular} & 10 & - & 5.0 & 250 & nA \\
\hline Input Bias Current \(\left(\mathrm{V}_{\mathrm{O}}\right.\) Pin 3] \(\left.=2.5 \mathrm{~V}\right)\) & IIB & - & -0.1 & \(-1.0\) & \(\mu \mathrm{A}\) \\
\hline Input Common-Mode Voltage Range
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & VICR & \[
\left\lvert\, \begin{gathered}
-0.3 \text { to } \\
\mathrm{V}_{\mathrm{CC}}-2.0
\end{gathered}\right.
\] & - & - & V \\
\hline Open Loop Voltage Gain
\[
\left(\Delta \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & AVOL & 70 & 95 & - & dB \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(V_{C C}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\) unless otherwise noted. For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*|}{ Characteristic } & \multirow{2}{*|}{ Symbol } & \multicolumn{2}{|c|}{ MC35060/MC34060 } & \multirow{2}{*|}{ Unit } \\
& & Min. & Typ. & Max. & \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTIONS (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Unity-Gain Crossover Frequency
\[
\left(\mathrm{V}_{\mathrm{O}}=0.5 \text {, to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & \(\mathrm{f}_{\mathrm{c}}\) & - & 350 & - & kHz \\
\hline Phase Margin at Unity-Gain
\[
\left(\mathrm{V}_{\mathrm{O}}=0.5 \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & \(\phi_{m}\) & - & 65 & - & deg. \\
\hline Common-Mode Rejection Ratio
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\] & CMRR & 65 & 90 & - & \(d B\) \\
\hline Power Supply Rejection Ratio
\[
\left(\Delta \mathrm{V}_{\mathrm{CC}}=33 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & PSRR & - & 100 & - & dB \\
\hline Output Sink Current \(\left(\mathrm{V}_{\mathrm{O}[\text { Pin } 3]}=0.7 \mathrm{~V}\right)\) & \({ }^{1} \mathrm{O}^{-}\) & 0.3 & 0.7 & - & mA \\
\hline \begin{tabular}{l}
Output Source Current \\
\(\left(\mathrm{V}_{\mathrm{O}(\mathrm{Pin} 3]}=3.5 \mathrm{~V}\right)\)
\end{tabular} & \({ }^{1} \mathrm{O}^{+}\) & -2.0 & -4.0 & - & mA \\
\hline
\end{tabular}

PWM COMPARATOR SECTION (Test circuit Figure 11)
\begin{tabular}{|l|l|l|c|c|}
\hline \begin{tabular}{l}
Input Threshold Voltage \\
(Zero Duty Cycle)
\end{tabular} & \(V_{T H}\) & - & 3.5 & 4.5 \\
\hline \begin{tabular}{l}
Input Sink Current \\
\(\left(V_{\text {IPIn 3) }}=0.7 \mathrm{~V}\right)\)
\end{tabular} & \(\mathrm{I}^{-}\) & V \\
\hline
\end{tabular}

DEAD-TIME CONTROL SECTION (Test Circuit Figure 11)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current (Pin 4)
\[
\left(V_{\text {in }}=0 \text { to } 525 \mathrm{~V}\right)
\] & \(1 \mathrm{IB}(\mathrm{DT})\) & - & -2.0 & -10 & \(\mu \mathrm{A}\) \\
\hline Maximum Output Duty Cycle
\[
\begin{aligned}
& \left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right) \\
& \left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right)
\end{aligned}
\] & \(D C_{\text {max }}\) & 90 & \[
\begin{aligned}
& 96 \\
& 92
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \% \\
\hline \begin{tabular}{l}
Input Threshold Voltage (Pin 4) (Zero Duty Cycle) \\
(Maxımum Duty Cycle)
\end{tabular} & \(V_{\text {TH }}\) & \(\overline{0}\) & & 3.3 & v \\
\hline
\end{tabular}

\section*{OSCILLATOR SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& \qquad\left(C_{T}=0001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}} \cdot 47 \mathrm{k!}\right)
\end{aligned}
\] & \(f_{\text {Osc }}\) & - & 25 & - & kHz \\
\hline Standard Deviation of Frequency*
\[
\left(C_{T}=0001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k}!\Omega\right)
\] & ofosc & - & 3.0 & - & \% \\
\hline Frequency Change with Voltage \(\left(V_{C C}=7.0 \mathrm{~V}\right.\) to \(\left.40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & \(\Delta f_{\text {csc }}(\Delta \mathrm{V})\) & - & 0.1 & - & \% \\
\hline Frequency Change with Temperature
\[
\begin{aligned}
& \left(\Delta T_{A}=T_{\text {low }} \text { to } T_{\text {high }}\right) \\
& \left(C_{T}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right)
\end{aligned}
\] & \(\Delta \mathrm{f}_{\mathrm{osc}}(\mathrm{DT})\) & - & - & 12 & \% \\
\hline
\end{tabular}
total device
Standby Supply Current
(Pin 6 at \(\mathrm{V}_{\text {ref, }}\) all other inputs and outputs open)
\(\left(V_{C C}=15 \mathrm{~V}\right)\)
\(\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)\)
Average Supply Current
\(\left(V_{[\operatorname{Pin} 4]}=2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right)\). See Figure 11
- Standard deviation is a measure of the statistical distribution about the mean as derived from the formula. \(\omega\),
\(=\sqrt{\)\begin{tabular}{l}
\(\sum\left(X_{n}-\bar{x}\right)^{2}\) \\
\(\frac{n=1}{N-1}\)
\end{tabular}\(}\)

FIGURE 5 - PERCENT DEAD-TIME versus OSCILLATOR FREQUENCY

fo. OSCillator frequency (Hz)

FIGURE 7 - EMITTER FOLLOWER CONFIGURATION OUTPUT-SATURATION VOLTAGE versus EMITTER CURRENT

FIGURE 4 - OPEN LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY

FIGURE 6 - PERCENT DUTY CYCLE versus DEAD-TIME CONTROL VOLTAGE

DEAD-TIME CONTROL VOLTAGE (V)

FIGURE 8 - COMMON EMITTER CONFIGURATION OUTPUT-SATURATION VOLTAGE versus COLLECTOR CURRENT

FIGURE 9 - STANDBY-SUPPLY CURRENT vefsus SUPPLY VOLTAGE

FIGURE 10 - ERROR AMPLIFIER CHARACTERISTICS

FIGURE 12 - COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM

FIGURE 11 - DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT

FIGURE 13 - EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM

FIGURE 14 - ERROR AMPLIFIER SENSING TECHNIQUES

\[
v_{O}=v_{\text {ref }}\left(1+\frac{R_{1}}{R_{2}}\right)
\]
FIGURE 15 - DEAD-TIME CONTROL CIRCUIT

FIGURE 17 - SLAVING TWO OR MORE CONTROL CIRCUITS

FIGURE 18 - STEP-DOWN CONVERTER WITH SOFTSTART AND OUTPUT CURRENT LIMITING

\begin{tabular}{|c|c|c|}
\hline TEST & CONDITIONS & RESULTS \\
\hline Line Regulation & \(\mathrm{V}_{\text {In }}=8.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{I}^{\prime}=1.0 \mathrm{~A}\) & 25 mV 0.5\% \\
\hline Load Regulation & \(V_{\text {in }}=12 \mathrm{~V} .1 \mathrm{O}=1.0 \mathrm{~mA}\) to 1.0 A & 3.0 mV 0.06\% \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & 75 mV p-p P.A.R.D. \\
\hline Short Circuit Current & \(V_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \mathrm{\Omega}\) & 1.6 A \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & 73\% \\
\hline
\end{tabular}

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ TEST } & \multicolumn{1}{|c|}{ CONDITIONS } & RESULTS \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(26 \mathrm{~V}, \mathrm{IO}=0.5 \mathrm{~A}\) & \(40 \mathrm{mV} \quad 0.14 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\) to 0.5 A & \(5.0 \mathrm{mV} \quad 0.18 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, 1_{\mathrm{O}}=0.5 \mathrm{~A}\) & 24 mV p-p P.A.R.D. \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, 1_{\mathrm{O}}=0.5 \mathrm{~A}\) & \(75 \%\) \\
\hline
\end{tabular}
- Optional circuit to minimize output ripple

\begin{tabular}{|c|l|c|}
\hline \multicolumn{2}{|c|}{ TEST } & \multicolumn{1}{|c|}{ CONDITIONS } \\
\hline Rine Regulation & \(V_{\text {in }}=8.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{I} \mathrm{O}=250 \mathrm{~mA}\) & \(52 \mathrm{mV} 0.35 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}\) to 250 mA & \(47 \mathrm{mV} 0.32 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}\) & 10 mV p.p. P.A.R.D. \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 330 mA \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}\) & \(86 \%\) \\
\hline
\end{tabular}
*Optional circuit to minimize output ripple.

FIGURE 21 - 33 WATT OFF-LINE FLYBACK CONVERTER WITH SOFT-START AND PRIMARY POWER LIMITING

PRECISION SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUITS

SILICON MONOLITHIC INTEGRATED CIRCUITS frequency, pulse width modulation control circuits designed primarily for single ended SWITCHMODE power supply control. These devices feature:

The MC34060A is specified over the commercial operating range of \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\). The MC35060A is specified over the full military range of \(-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\). The MC33060A is specified over the vehicular temperature range of \(-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\).
- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator With Master or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5.0 Volt Reference, 1.5\% Accuracy
- Adjustable Dead Time Control
- Uncommitted Output Transistor Rated to 500 mA Source or Sink
- Undervoltage Lockout
- Available in Surface Mount Package

PIN CONNECTIONS

P SUFFIX
PLASTIC PACKAGE CASE 646-06

D SUFFIX
PLASTIC PACKAGE
CASE 751A-02 SO-14

L SUFFIX
CERAMIC PACKAGE CASE 632-08

FIGURE 1 - BLOCK DIAGRAM

FIGURE 2 - TIMING DIAGRAM

\section*{Description}

The MC35060A/34060A/33060A is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internallinear sawtooth oscillator is frequency-programmable by two external components, \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). The approximate oscillator frequency is determined by:
\[
\mathrm{f}_{\mathrm{OSC}} \cong \frac{1.2}{\mathrm{R}_{\mathrm{T}} \cdot \mathrm{C}_{\mathrm{T}}}
\]

For more information refer to Figure 3.

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor \(\mathrm{C}_{T}\) to either of two control signals. The output is enabled only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feedback input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first \(4 \%\) of the sawtooth-cycle time. This would result in a maximum duty cycle of \(96 \%\). Additional dead time may be imposed on the output by setting the dead timecontrol input to a fixed voltage, ranging between 0 to 3.3 V .

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V . Both
error amplifiers have a common-mode input range from -0.3 V to \(\left(\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\right)\), and may be used to sense power supply output voltage and current. The error-amplifer outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

The MC35060A/34060A/33060A has an internal 5.0 V reference capable of sourcing up to 10 mA of load currents for external bias circuits. The reference has an internal accuracy of \(\pm 1.5 \%\) with a typical thermal drift of less than 50 mV over an operating temperature range of \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\).

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rating & Symbol & MC35060A & MC34060A & MC33060A & Unit \\
\hline Power Supply Voltage & \(V_{C C}\) & 42 & 42 & 42 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C}}\) & 42 & 42 & 42 & V \\
\hline Collector Output Current (Note 1) & \({ }^{\text {I }}\) C & 500 & 500 & 500 & mA \\
\hline Amplifier Input Voltage Range & \(V_{\text {IR }}\) & -0.3 to +42 & -0.3 to +42 & -0.3 to +42 & V \\
\hline Power Dissipation (") \(\mathrm{T}_{\mathrm{A}} \geqslant 45^{\circ} \mathrm{C}\) & \(P_{D}\) & 1000 & 1000 & 1000 & mW \\
\hline Operating Junction Temperature Plastic Package Ceramic Package & TJ & \[
\overline{150}
\] & \[
125
\] & \[
125
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\text {A }}\) & -55 to +125 & 0 to 70 & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range Plastic Package Ceramic Package & \(\mathrm{T}_{\text {stg }}\) & \[
\begin{gathered}
- \\
-65 \text { to }+150
\end{gathered}
\] & \[
-55 \text { to }+125
\] & \[
-55 \text { to }+125
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: Maximum thermal limits must be observed.
THERMAL CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & & \begin{tabular}{c}
L Suffix \\
Ceramic \\
Package
\end{tabular} & \begin{tabular}{c}
P Suffix \\
Plastic \\
Package
\end{tabular} & \begin{tabular}{c}
D Suffix \\
Plastic \\
Package
\end{tabular} & \begin{tabular}{c}
Unit
\end{tabular} \\
\hline Thermal Resistance, Junction to Ambient & \(R_{\theta J A}\) & 100 & 80 & 120 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Derating Ambient Temperziure & \(\mathrm{TA}_{A}\) & 50 & 45 & 45 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Condition/Value} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|l|}{MC35060A/MC34060A/MC33060A} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Power Supply Voltage & \(V_{C C}\) & 7.0 & 15 & 40 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C}}\) & - & 30 & 40 & V \\
\hline Collector Output Current & \({ }^{1} \mathrm{C}\) & - & - & 200 & mA \\
\hline Amplifier Input Voltage & \(\mathrm{V}_{\text {in }}\) & \(-0.3\) & - & \(\mathrm{V}_{\mathrm{CC}}-2\) & V \\
\hline Current Into Feedback Terminal & \(\mathrm{l}_{\mathrm{fb}}\) & - & - & 0.3 & mA \\
\hline Reference Output Current & Iref & - & - & 10 & mA \\
\hline Timing Resistor & \(\mathrm{R}_{\mathrm{T}}\) & 1.8 & 47 & 500 & k \(\Omega\) \\
\hline Timing Capacitor & \(\mathrm{C}_{T}\) & 0.0047 & 0.001 & 10 & \(\mu \mathrm{F}\) \\
\hline Oscillator Frequency & \(\mathrm{f}_{\mathrm{osc}}\) & 1.0 & 25 & 200 & kHz \\
\hline PWM Input Voltage (Pins 3 and 4) & - & -0.3 & - & 5.3 & V \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\) unless otherwise noted. For typical values
\(T_{A}=25^{\circ} \mathrm{C}\), for min/max values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|l|}{MC35060A/MC34060A/MC33060A} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline
\end{tabular}

\section*{REFERENCE SECTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Reference Voltage } \\
& \left(I_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\right)
\end{aligned}
\] & \(V_{\text {ref }}\) & \[
\begin{gathered}
4.925 \\
4.9
\end{gathered}
\] & \[
5.0
\] & \[
\begin{gathered}
5.075 \\
5.1
\end{gathered}
\] & V \\
\hline Line Regulation
\[
\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V} \text { to } 40 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\right)
\] & Regline & - & 2.0 & 25 & mV \\
\hline Load Regulation
\[
\left(I_{\mathrm{O}}=1.0 \mathrm{~mA} \text { to } 10 \mathrm{~mA}\right)
\] & Regload & - & 2.0 & 15 & mV \\
\hline Short-Circuit Output Current
\[
\left(V_{\text {ref }}=0 \mathrm{~V}\right)
\] & ISC & 15 & 35 & 75 & mA \\
\hline
\end{tabular}

OUTPUT SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Collector Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=40 \mathrm{~V}\right)
\] & \({ }^{1}\) (off) & - & 2.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Emitter Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}\right)
\] & 'E(off) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Collector-Emitter Saturation Voltage (Note 2) \\
Common-Emitter
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}\right) \\
& \text { Emitter-Follower } \\
& \left(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}} \quad 200 \mathrm{~mA}\right)
\end{aligned}
\]
\end{tabular} & Vsat(C)

\(V_{\text {Sat }}(E)\) & -
-
- & 1.1
1.5 & 1.5
2.5 & V \\
\hline Output Voltage Rise Time (\(\mathrm{T}_{\mathrm{A}} \quad 25 \mathrm{C}\)) Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13) & \(\mathrm{t}_{\mathrm{r}}\) & - & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & ns \\
\hline Output Voltage Fall Time (TA 25 C) Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13) & tf & - & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& \hline
\end{aligned}
\] & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|l|}{MC35060A/MC34060A/MC33060A} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline \multicolumn{6}{|l|}{ERROR AMPLIFIER SECTIONS} \\
\hline Input Offset Voltage
\[
\left(\mathrm{V}_{\mathrm{O}}[\mathrm{Pin} 3]=2.5 \mathrm{~V}\right)
\] & \(\mathrm{V}_{10}\) & - & 2.0 & 10 & mV \\
\hline Input Offset Current
\[
\left(\mathrm{V}_{\mathrm{C}[\mathrm{Pin} 3]}=2.5 \mathrm{~V}\right)
\] & 10 & - & 5.0 & 250 & nA \\
\hline Input Bias Current
\[
\left(\mathrm{V}_{\mathrm{O}[\mathrm{Pin} 3]}-2.5 \mathrm{~V}\right)
\] & \(I_{1 B}\) & - & 0.1 & 2.0 & \(\mu \mathrm{A}\) \\
\hline Input Common-Mode Voltage Range
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\] & VICR & \[
\] & - & - & V \\
\hline Inverting Input Voltage Range & \(V / R(I N V)\) & \[
\begin{array}{r}
0.3 \text { to } \\
\mathrm{V}_{\mathrm{CC}} \quad 2.0 \\
\hline
\end{array}
\] & -- & - & V \\
\hline \begin{tabular}{l}
Open Loop Voltage Gain \\
\(\left(\Delta \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5\right.\) to \(3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}!\) !)
\end{tabular} & AVOL & 70 & 95 & - & dB \\
\hline
\end{tabular}

\footnotetext{
Note 2: Low duty cycle techniques are used during test to maintain junction temperature as close to ambient temperatures as possible.
}

\section*{MC34060A, MC35060A, MC33060A}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\) unless otherwise noted. For typical values
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} /\) max values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|c|}{ MC35060A/MC34060A/MC33060A } \\
& Characteristic & Symbol & Min & Typ & Max \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Unity-Gain Crossover Frequency
\[
\left(\mathrm{V}_{\mathrm{O}}=0.5 \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & \(\mathrm{f}_{\mathrm{C}}\) & - & 600 & - & kHz \\
\hline Phase Margin at Unity-Gain
\[
\left(\mathrm{V}_{\mathrm{O}}=0.5 \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}-2.0 \mathrm{k} \Omega\right)
\] & \(\phi_{\mathrm{m}}\) & - & 65 & - & deg. \\
\hline Common-Mode Rejection Ratio \(\left(\mathrm{V}_{\mathrm{CC}}-40 \mathrm{~V}, \mathrm{~V}_{\text {in }}-0 \mathrm{~V}\right.\) to 38 V) & CMRR & 65 & 90 & - & dB \\
\hline Power Supply Rejection Ratio
\[
\left(\Delta \mathrm{V}_{\mathrm{CC}}=33 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & PSRR & - & 100 & - & dB \\
\hline Output Sink Current
\[
\left(\mathrm{V}_{\mathrm{O}}[\operatorname{Pin} 3]=0.7 \mathrm{~V}\right)
\] & 10 & 0.3 & 0.7 & - & mA \\
\hline \begin{tabular}{l}
Output Source Current \\
\(\left(\mathrm{V}_{\mathrm{O}}\right.\) [Pin 3] \(\left.=3.5 \mathrm{~V}\right)\)
\end{tabular} & \(10^{+}\) & -2.0 & -4.0 & - & mA \\
\hline
\end{tabular}

PWM COMPARATOR SECTION (Test circuit Figure 11)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Input Threshold Voltage \\
(Zero Duty Cycle)
\end{tabular} & \(\mathrm{V}_{\mathrm{TH}}\) & - & 3.5 & 4.5 & V \\
\hline \begin{tabular}{c}
Input Sink Current \\
\(\left(\mathrm{V}_{[\text {Pin 3] }=0.7 \mathrm{~V})}\right.\)
\end{tabular} & \(1-\) & 0.3 & 0.7 & - & mA \\
\hline
\end{tabular}

DEAD-TIME CONTROL SECTION (Test Circuit Figure 11)
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l}
Input Bias Current (Pin 4) \\
\(\left(\mathrm{V}_{\text {in }}=0\right.\) to 5.25 V\()\)
\end{tabular} & \(\mathrm{IIB}(\mathrm{DT})\) & - & -1.0 & -10 \\
\hline \begin{tabular}{l}
Maximum Output Duty Cycle \\
\(\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega 2\right)\) \\
\(\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right)\)
\end{tabular} & DC max & & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Input Threshold Voltage (Pin 4) \\
(Zero Duty Cycle) \\
(Maximum Duty Cycle)
\end{tabular} & & 90 & 96 & \(\%\) \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& \qquad\left(\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \\
& \left(\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{k} \Omega\right)
\end{aligned}
\] & \(\mathrm{f}_{\text {Osc }}\) & \[
\begin{aligned}
& 9.7 \\
& 9.5
\end{aligned}
\] & \[
\frac{10.5}{25}
\] & \[
\begin{gathered}
11.3 \\
12.5 \\
-
\end{gathered}
\] & kHz \\
\hline Standard Deviation of Frequency*
\[
\left(C_{\mathbf{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathbf{T}}=47 \mathrm{k} \Omega\right)
\] & ofosc & - & 1.5 & - & \% \\
\hline Frequency Change with Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V} \text { to } 40 \mathrm{~V}\right)
\] & \(\Delta f_{\text {osc }}(\Delta \mathrm{V})\) & - & 0.5 & 2.0 & \% \\
\hline \[
\begin{aligned}
& \text { Frequency Change with Temperature } \\
& \left(\Delta T_{A}=T_{\text {low }} \text { to } \mathrm{T}_{\text {high }}\right) \\
& \left(\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right)
\end{aligned}
\] & \(\Delta f_{\text {osc }}(\Delta T)\) & - & 4.0 & - & \% \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|l|l|l|l|c|}
\hline Turn-On Threshold \(\left(\mathrm{V}_{\text {CC }}\right.\) increasing, \(\left.I_{\text {ref }}=1.0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\text {th }}\) & 4.0 & 4.7 & 5.5 & V \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & 50 & 150 & 300 & mV \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Standby Supply Current \\
(Pin 6 at \(V_{\text {ref, }}\) all other inputs and outputs open) \\
\(\left(V_{C C}=15 \mathrm{~V}\right)\)
\end{tabular} & ICC & & & \\
\(\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)\) & & - & 5.5 & \\
\hline Average Supply Current & & - & 7.0 & 10 \\
\(\left(\mathrm{~V}_{[\operatorname{Pin} 4]}=2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=47 \mathrm{kS}\right)\). See Figure 11. & IS & - & 7.0 & - \\
\hline
\end{tabular}
*Standard deviation is a measure of the statistical distribution about the mean as derived from the formula; \(c r=\)

FIGURE 3 - OSCILLATOR FREQUENCY versus TIMING RESISTANCE

FIGURE 5 - PERCENT DEAD-TIME versus OSCILLATOR FREQUENCY

FIGURE 7 - EMITTER FOLLOWER CONFIGURATION OUTPUT SATURATION VOLTAGE versus EMITTER CURRENT

FIGURE 4 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY

FIGURE 6 - PERCENT DUTY CYCLE versus DEAD-TIME CONTROL VOLTAGE

FIGURE 8 - COMMON EMITTER CONFIGURATION OUTPUT SATURATION VOLTAGE versus COLLECTOR CURRENT

FIGURE 9 - STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 11 - ERROR AMPLIFIER CHARACTERISTICS

FIGURE 13 - COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM

FIGURE 10 - UNDERVOLTAGE LOCKOUT THRESHOLDS versus REFERENCE LOAD CURRENT

FIGURE 12 - DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT

FIGURE 14 - EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM

\section*{MC34060A, MC35060A, MC33060A}

FIGURE 15 - ERROR AMPLIFIER SENSING TECHNIQUES
\[
v_{O}=v_{\text {ref }}\left(1+\frac{R_{1}}{R_{2}}\right)
\]

FIGURE 16 - DEAD-TIME CONTROL CIRCUIT

Max \% On Time \(\approx 92-\left(\frac{160}{1+\frac{R 1}{R 2}}\right)\)

FIGURE 17 - SOFT-START CIRCUIT

FIGURE 18 - SLAVING TWO OR MORE CONTROL CIRCUITS

FIGURE 19 - STEP-DOWN CONVERTER WITH SOFTSTART AND OUTPUT CURRENT LIMITING

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ TEST } & \multicolumn{1}{|c|}{ CONDITIONS } & RESULTS \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{I} \mathrm{O}=1.0 \mathrm{~A}\) & \(25 \mathrm{mV} \quad 0.5 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {In }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\) to 1.0 A & \(3.0 \mathrm{mV} \quad 0.06 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & 75 mV p-p P.A.R.D \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {In }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 1.6 A \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(73 \%\) \\
\hline
\end{tabular}

\section*{MC34060A, MC35060A, MC33060A}

FIGURE 20 - STEP-UP CONVERTER

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ TEST } & \multicolumn{1}{|c|}{ CONDITIONS } & RESULTS \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(26 \mathrm{~V}, \mathrm{I} \mathrm{O}=0.5 \mathrm{~A}\) & \(40 \mathrm{mV} \quad 0.14 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\) to 0.5 A & \(5.0 \mathrm{mV} \quad 0.18 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}\) & 24 mV p-p P.A.R.D. \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}\) & \(75 \%\) \\
\hline
\end{tabular}
*Optional circuit to minimize output ripple.

FIGURE 21 - STEP-UP/DOWN VOLTAGE INVERTING CONVERTER WITH SOFT-START AND

CURRENT LIMITING

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ TEST } & \multicolumn{1}{|c|}{ CONDITIONS } & RESULTS \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{I} \mathrm{O}=250 \mathrm{~mA}\) & \(52 \mathrm{mV} \quad 0.35 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}\) to 250 mA & \(47 \mathrm{mV} \quad 0.32 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}\) & 10 mV p.p. P.A.R.D. \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 330 mA \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}\) & \(86 \%\) \\
\hline
\end{tabular}
* Optional circuit to minimize output ripple

Bobbin：
Coilcraft 37－573
Windings：
Primary， 2 each：
75 turns \＃26 Awg Bifilar wound
Feedback：
15 turns \＃26 Awg
Secondary， 5.0 V ：
6 turns \＃22 Awg Bifilar wound
Secondary， 2 each：
14 turns \＃24 Awg Bifilar wound
L1
Coilcraft Z7156， \(15 \mu \mathrm{H}\)＠ 5.0 A
L2，L3
Coilcraft Z7157， \(25 \mu \mathrm{H}\)＠ 1.0 A

\section*{Advance Information}

\section*{THREE-TERMINAL OVERVOLTAGE "CROWBAR" SENSING CIRCUIT}

The MC34061,A overvoltage protection (OVP) circuit, in combination with two external programming resistors and a "crowbar" SCR, protects sensitive electronic circuitry from overvoltage damage. It senses an overvoltage condition and quickly "crowbars," or short circuits, the supply. An external capacitor may be used to program a minimum overvoltage duration before tripping, thus providing noise immunity.
This three-terminal circuit provides a cost-effective means of protecting either positive or negative power supplies. The unique design of the MC34061, A eliminates trip voltage and temperature drift errors due to SCR gate variations.
The basic MC34061,A device offers a \(\pm 2 \%\) tolerance on the sense trip voltage. The A-suffix device has a \(\pm 1 \%\) sense trip voltage specification and other key parameters have tightened limits. The device is available in a low-cost plastic package and features: age and features:
- Unique Three-Terminal Design
- SCR Gate Drive Output of 200 mA
- Sense Voltage of \(2.5 \mathrm{~V} \pm 1 \%\) or \(\pm 2 \%\)
- Hysteresis of 250 mV
- Wide Supply Range: \(4.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 41 \mathrm{~V}\)

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Operating Voltage & \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {DRV }}\) & 40 & Vdc \\
\hline Sense Voltage & \(\mathrm{V}_{\text {Sense }}\) & 40 & Vdc \\
\hline Drive Output Current & IDRV & \begin{tabular}{c}
Internally \\
Limited
\end{tabular} & mA \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

THREE-TERMINAL PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline MC34061P,AP & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic TO-92 \\
\hline
\end{tabular}

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}-V_{D R V}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [see Note 1] unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC34061A} & \multicolumn{3}{|c|}{MC34061} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Operating Voltage Range & \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {DRV }}\) & 3.0 & - & 40 & 3.0 & - & 40 & Vdc \\
\hline \begin{tabular}{l}
Sense Trip Voltage
\[
\mathrm{T}_{A}=25^{\circ} \mathrm{C}
\] \\
Tlow to \(T_{\text {high }}\) (Note 1)
\end{tabular} & \(\mathrm{V}_{\text {Sense }}\) & \[
\begin{gathered}
2.475 \\
2.45
\end{gathered}
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{gathered}
2.525 \\
2.55
\end{gathered}
\] & \[
\begin{gathered}
2.45 \\
2.4
\end{gathered}
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{gathered}
2.55 \\
2.6
\end{gathered}
\] & Vdc \\
\hline Line Regulation, \(\mathrm{V}_{\text {Sense }}\)
\[
\begin{aligned}
& \left(3.0 \leqslant V_{C C}-V_{D R V} \leqslant 40 \mathrm{~V}\right) \\
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 1) }
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 0.001 \\
& 0.001
\end{aligned}
\] & \[
\begin{gathered}
0.005 \\
0.01
\end{gathered}
\] & & \[
\begin{aligned}
& 0.001 \\
& 0.001
\end{aligned}
\] & \[
\begin{aligned}
& 0.01 \\
& 0.02
\end{aligned}
\] & \%N \\
\hline Input Bias Current, Sense Pin At Trip Point (Note 2) After Trip (\(\mathrm{V}_{\text {Sense }}=3.0 \mathrm{~V}\)) & IB & & \[
\begin{aligned}
& 0.3 \\
& 0.9
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 3.0
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 0.9
\end{aligned}
\] & 2.0
6.0 & \(\mu \mathrm{A}\) \\
\hline Hysteresis Voltage, Sense Pin & \(\mathrm{V}_{\mathrm{H}}\) & - & 250 & - & - & 250 & - & mV \\
\hline \begin{tabular}{l}
Drive Output Current, ON State
\[
\mathrm{I}_{\mathrm{J}}=25^{\circ} \mathrm{C}
\] \\
Tlow to Thigh (Note 1)
\end{tabular} & IDRV(on) & \[
\begin{aligned}
& 130 \\
& 90
\end{aligned}
\] & 200 & \[
\begin{aligned}
& 300 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& 130 \\
& 90
\end{aligned}
\] & 200 & \[
\begin{aligned}
& 300 \\
& 350
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Drive Output Current, OFF State \\
\(V_{C C}-V_{\text {DRV }}=5.0 \mathrm{~V}\) \\
\(3.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DRV}} \leqslant 40 \mathrm{~V}\)
\end{tabular} & 'DRV(off) & \[
\begin{aligned}
& 0.2 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.5
\end{aligned}
\] & mA \\
\hline Drive Output Current Slew Rate
\[
T_{A}=25^{\circ} \mathrm{C}
\] & di/dt & - & 2.0 & - & - & 2.0 & - & A/ \(\mu \mathrm{s}\) \\
\hline Drive Output \(\mathrm{V}_{\mathrm{CC}}\) Transient Rejection \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {DRV }}=0 \mathrm{~V}\) to 15 V at \(\mathrm{dV} / \mathrm{dt}=\) \(200 \mathrm{~V} / \mu \mathrm{S} ; \mathrm{V}_{\text {Sense }}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & \(\Delta^{\prime}\) DRV(trans) & - & 1.0 & - & - & 1.0 & - & \[
\underset{\text { (Peak) }}{\mathrm{mA}}
\] \\
\hline Propagation Delay Time (\(T_{A}=25^{\circ} \mathrm{C}\)) 500 mV Overdrive & tPLH & - & 500 & - & - & 500 & - & ns \\
\hline
\end{tabular}

NOTES:
(1) \(T_{\text {low }}\) to \(T_{\text {high }}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
(2) This specification is an engineering estimate based on design parameters, and is not tested.

FIGURE 1 - STANDARD TEST CIRCUIT

*A \(1.0 \mu \mathrm{~F}\) tantalum or \(10 \mu \mathrm{~F}\) electrolytic capacitor may be necessary to compensate for lead inductance when measuring Hysteresis Voltage. When this capacitor is used, it should be placed as close as possible to the device package.

\section*{MC34061, MC34061A}

TYPICAL CHARACTERISTICS

FIGURE 4 - OFF STATE DRIVE CURRENT versus SUPPLY VOLTAGE

FIGURE 6 - DELAY CAPACITANCE versus DELAY TIME

FIGURE 3 - SENSE TRIP VOLTAGE versus TEMPERATURE

FIGURE 5 - INPUT BIAS CURRENT versus SENSE VOLTAGE

FIGURE 7 - MINIMUM RG versus SUPPLY VOLTAGE

\section*{APPLICATIONS INFORMATION}

\section*{FIGURE 8 - BLOCK DIAGRAM AND} TYPICAL APPLICATION

\section*{BASIC CIRCUIT CONFIGURATION}

The MC34061,A consists of a 2.5 V shunt reference, a comparator with 250 mV hysteresis and a power output transistor. In the typical application of Figure 8, the voltage at the inverting input of the comparator is \(\frac{V_{C C} R_{2}}{R_{1}+R_{2}}\), while the voltage at the non-inverting input is \(V_{C C}-2.5\) V . Thus, given (\(\mathrm{R}_{1}, \mathrm{R}_{2}\)) voltage divider, the comparator's output state is a function of \(\mathrm{V}_{\mathrm{C}}\). The following table applies:
\begin{tabular}{|c|c|}
\hline\(V_{\mathbf{C}}\) & \begin{tabular}{c}
Drive \\
Output
\end{tabular} \\
\hline\(<\frac{R_{1}+R_{2}}{R_{1}}(2.5 \mathrm{~V})\) & OFF State \\
\hline\(>\frac{R_{1}+R_{2}}{R_{1}}(2.5 \mathrm{~V})\) & ON State \\
\hline
\end{tabular}

By making the proper choice of \(R_{1}\) and \(R_{2}\), a level detector for any voltage within the device's operating voltage range may be realized. A few precautions are necessary, however.

Note that even in the OFF State, a minimum drive output current, equal to the sum of the reference and comparator supply currents, is available. Therefore, a means of shunting this current away from the driven circuit is necessary. In the example of Figure 8, a \(100 \Omega\) resistor (\(R_{G K}\)) is used, producing a voltage at the Drive Output of approximately 60 mV in the OFF State.

In the ON State the MC34061,A becomes a current source capable of saturating to within 2.0 V of \(\mathrm{V}_{\mathrm{CC}}\). Therefore, when driving a high impedance load, it may be desirable to clamp the drive output to at least 3.0 V below \(V_{C C}\left(V_{C C}-V_{D R V} \geqslant 3.0 \mathrm{~V}\right)\) if it is important that the voltage reference continue to regulate.

\section*{FIGURE 9 - OVERVOLTAGE PROTECTION}

\section*{PROGRAMMING A MINIMUM OVERVOLTAGE DURATION BEFORE TRIPPING}

A time delay may be programmed into the operation of the MC34061,A to provide noise immunity. This time delay is implemented by adding a capacitor (\(C_{D L Y}\)) between the \(\mathrm{V}_{\mathrm{CC}}\) and Sense leads as shown in Figure 9. The time delay obtained by this technique is a function of \(R_{1}, R_{2}\) and CDLY as well as the nominal supply voltage, \(\mathrm{V}_{\mathrm{CC}}(\) nom \()\), and the overvoltage supply voltage, \(\mathrm{V}_{\mathrm{C}}\). The nominal supply voltage determines the initial charge on CDLY, while the magnitude of the overvoltage condition determines the rate at which CDLY charges to the reference voltage, \(\mathrm{V}_{\text {ref }}=2.5 \mathrm{~V}\). Thus, for a given \(R_{1}, R_{2}\) and \(C_{D L Y}\), the time delay is reduced as the overvoltage is increased. The expression for the time delay, \(T_{D L Y}\), is:
\[
t_{D L Y}=\frac{R_{1} R_{2} C_{D L Y}}{R_{1}+R_{2}} \ln \left[\frac{V_{C C}-V_{C C(\text { nom })}}{V_{C C}-V_{\text {trip }}}\right]
\]
where:
\[
V_{\text {trip }}=\frac{R_{1}+R_{2}}{R_{1}}(2.5 \mathrm{~V})
\]

Figure 6 shows the CDLY values versus delay time (tDLY) for a typical 5.0 V power supply protection circuit. The figure also shows the change in tDLY with variations in the overvoltage supply, \(\mathrm{V}_{\mathrm{CC}}\). In this example \(\mathrm{R}_{1}=1.8\) \(\mathrm{k}, \mathrm{R}_{2}=2.7 \mathrm{k}, \mathrm{V}_{\mathrm{CC}}(\) nom \()=5.0 \mathrm{~V}\), and \(\mathrm{V}_{\text {trip }}=6.25 \mathrm{~V}\).

\section*{THE NEED FOR A GATE RESISTOR}

For power supplies above 11 V , a gate resistor, \(\mathrm{R}_{\mathrm{G}}\), in series with the SCR gate is recommended to limit the power dissipated by the IC to approximately 2.0 W . This resistor will protect the MC34061,A in the event of a defective or missing SCR, while allowing the maximum drive output current to the gate of the SCR. Figure 7 shows the minimum recommended gate resistor, \(\mathrm{R}_{\mathrm{G}(\min)}\), versus the power supply voltage, \(\mathrm{V}_{\mathrm{CC}}\). A larger value of \(R_{G}\) may be used if less drive current is needed.

\section*{CROWBAR SCR CONSIDERATIONS}

Referring to Figure 10, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the outputcapacitance, \(C_{\text {out }}\). This capacitance consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 10A, the supply's input filter capacitors. This surge current is illustrated in Figure 11, and can cause SCR failure or degradation by any one of three mechanisms: \(\mathrm{di} / \mathrm{dt}\), absolute peak surge, or \(\mathrm{I}_{\mathrm{t}}\). The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.
1. di/dt

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on
gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities - depending on the severity of the occasion.

The value of \(\mathrm{di} / \mathrm{dt}\) that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times \(\mathrm{I}_{\mathrm{GT}}\)) the SCR gate with a fast \(<1.0 \mu \mathrm{~s}\) rise time signal will maximize its \(\mathrm{di} / \mathrm{dt}\) capability. A typical maximum number in phase control SCRs of less than \(50 \mathrm{~A}(\mathrm{RMS})\) rating might be \(200 \mathrm{~A} / \mu \mathrm{s}\), assuming a gate current of five times \(\mathrm{I}_{\mathrm{G}} \mathrm{T}\) and \(<1.0 \mu\) s rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the \(\mathrm{di} / \mathrm{dt}\) of the current waveform by adding inductance in series with the SCR, as shown in Figure 12. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and \(\mathrm{di} / \mathrm{dt}\).
\(10 A\) - SCR ACROSS INPUT OF REGULATOR

10B - SCR ACROSS OUTPUT OF REGULATOR

FIGURE 11 - CROWBAR SCR SURGE CURRENT WAVEFORM

\section*{2. Surge Current}

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance - see Figure 12) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

FIGURE 12 - CIRCUIT ELEMENTS AFFECTING SCR SURGE AND di/dt

\section*{A WORD ABOUT FUSING}

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 10A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!
In order to protect the SCR, the fuse would have to possess an \(12 t\) rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 10B.

\section*{CROWBAR SCR SELECTION GUIDE}

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ DEVICE } & IRMS & IFSM & PACKAGE \\
\hline MCR67 Series & 12 A & 100 A & Metal Stud \\
MCR68 Series & 12 A & 100 A & TO-220 Plastic \\
2N1842 Series & 16 A & 125 A & Metal Stud \\
2N6400 Series & 16 A & 160 A & TO-220 Plastic \\
2N6504 Series & 25 A & 160 A & TO-220 Plastic \\
2N681 Series & 25 A & 200 A & Metal Stud \\
2N2573 Series & 25 A & 260 A & TO-3 Metal Can \\
MCR69 Series & 25 A & 300 A & TO-220 Plastic \\
MCR70 Series & 35 A & 350 A & Metal Stud \\
MCR71 Series & 55 A & 550 A & Metal Stud \\
\hline
\end{tabular}

For a complete and detailed treatment of SCR and fuse selection refer to Motorola Application Note AN-789.

\section*{Advance Information}

\section*{PIN-PROGRAMMABLE OVERVOLTAGE "CROWBAR" SENSING CIRCUIT}

The MC34062 / 35062 overvoltage protection (OVP) circuits require only an external "crowbar" SCR to protect sensitive electronic circuitry from overvoltage damage. They sense an overvoltage condition and quickly "crowbar", or short circuit, the supply. An on-chip, tapped resistor network allows the device to be programmed for trip voltages ranging from 3.5 to 40 V . Each of the five programming pins provides one standard overvoltage trip point for nominal power supply voltages of \(5.0,12,15,24\) or 28 V . Many other trip voltages may be programmed by interconnecting and grounding various combinations of these programming pins. Tables are provided in the Applications Information which show connection schemes for 120 trip voltages.

These circuits provide a cost-effective means of protecting either positive or negative power supplies. In addition, an external capacitor may be used to program a minimum overvoltage duration before tripping, thus providing noise immunity. The unique design of the MC34062/35062 eliminates voltage and temperature drift errors due to SCR gate variations.
- Unique Pin-Programmable Trip Voltage from 3.5 to 40 V
- One-Pin Programming for 5.0,12,15,24 and \(28 \vee\) Power Supplies
- SCR Gate Drive Output of 200 mA
- Built-In Hysteresis Voltage
- Wide Supply Range: \(4.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 40 \mathrm{~V}\)

\footnotetext{
This document contains information on a new product. Specifications and information herein are subject to change without notice
}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Operating Voltage & \(\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {DRV }}\) & 40 & Vdc \\
\hline Voltage Across Any Internal Resistor In Network & \(V_{\text {RN }}\) & 40 & Vdc \\
\hline Current Through Any Resistor in Network & IRN & 10 & mA \\
\hline Sense Voltage & \(\mathrm{V}_{\text {Sense }}\) & 40 & Vdc \\
\hline Drive Output Current & IDRV & Internally Limited & mA \\
\hline Operating Ambient Temperature
\[
\begin{aligned}
& \text { MC34062 } \\
& \text { MC35062 }
\end{aligned}
\] & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-55 \text { to }+125
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & TJ & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to \(+150^{\circ} \mathrm{C}\) & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=5.0 V_{i} V_{D R V}=0 V_{i} T_{A}=T_{\text {low }}\right.\) to \(T_{\text {high }}\) unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Operating Voltage Range & \(V_{C C}-V_{\text {DRV }}\) & 3.0 & - & 40 & Vdc \\
\hline \begin{tabular}{l}
Sense Trip Voltage
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
\(T_{\text {low }}\) to \(T_{\text {high }}\)
\end{tabular} & \(V_{\text {Sense }}\) & \[
\begin{aligned}
& 2.425 \\
& 2.375
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.575 \\
& 2.625
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Line Regulation, \(\mathrm{V}_{\text {Sense }}\left(3.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DRV}} \leqslant 40 \mathrm{~V}\right.\))
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
\(T_{\text {low }}\) to \(T_{\text {high }}\)
\end{tabular} & Regline & & \[
\begin{aligned}
& 0.001 \\
& 0.001
\end{aligned}
\] & \[
\begin{aligned}
& c .01 \\
& 0.02
\end{aligned}
\] & \%/V \\
\hline \[
\begin{aligned}
& \text { Trip Voltage (Pin } 4=\text { Gnd; } V_{\text {DRV }}=0 \mathrm{~V} \text {) } \\
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & \(V_{\text {trip(4) }}\) & \[
\begin{aligned}
& 6.01 \\
& 5.89
\end{aligned}
\] & \[
\begin{aligned}
& 6.2 \\
& 6.2
\end{aligned}
\] & \[
\begin{aligned}
& 6.39 \\
& 6.51
\end{aligned}
\] & V \\
\hline Hysteresis Voltage (Pin \(4=\) Gnd; \(\mathrm{V}_{\text {DRV }}=0 \mathrm{~V}\)) & \(\mathrm{V}_{\mathrm{H}(4)}\) & - & 0.62 & -- & V \\
\hline ```
Trip Voltage (Pin \(5=\) Gnd; \(V_{\text {DRV }}=0 \mathrm{~V}\))
 \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
 \(T_{\text {low }}\) to \(T_{\text {high }}\)
``` & \(V_{\text {trip }}\) (5) & \[
\begin{aligned}
& 13.3 \\
& 13.0
\end{aligned}
\] & \[
\begin{aligned}
& 13.7 \\
& 13.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 14.1 \\
& 14.4
\end{aligned}
\] & V \\
\hline Hysteresis Voltage (Pin \(5=\) Gnd; \(\mathrm{V}_{\text {DRV }}=0 \mathrm{~V}\) ) & \(\mathrm{V}_{\mathrm{H}(5)}\) & - & 1.37 & -- & V \\
\hline \begin{tabular}{l}
Trip Voltage (Pin \(6=\) Gnd; \(V_{D R V}=0 \mathrm{~V}\) )
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
\(T_{\text {low }}\) to \(T_{\text {high }}\)
\end{tabular} & \(V_{\text {trip }}(6)\) & \[
\begin{aligned}
& 16.6 \\
& 16.2
\end{aligned}
\] & \[
\begin{aligned}
& 17.1 \\
& 17.1
\end{aligned}
\] & \[
\begin{aligned}
& 17.6 \\
& 18.0
\end{aligned}
\] & V \\
\hline Hysteresis Voltage (Pin \(6=\) Gnd; \(\mathrm{V}_{\text {DRV }}=0 \mathrm{~V}\) ) & \(\mathrm{V}_{\mathrm{H}(6)}\) & - & 1.71 & - & V \\
\hline \begin{tabular}{l}
Trip Voltage (Pin \(7=\) Gnd; \(V_{\text {DRV }}=0 \mathrm{~V}\) )
\[
T_{A}=2.5^{\circ} \mathrm{C}
\] \\
Tlow to \(T_{\text {high }}\)
\end{tabular} & \(V_{\text {trip(7) }}\) & \[
\begin{aligned}
& 26.6 \\
& 26.0
\end{aligned}
\] & \[
\begin{aligned}
& 27.4 \\
& 27.4
\end{aligned}
\] & \[
\begin{aligned}
& 28.2 \\
& 28.8
\end{aligned}
\] & V \\
\hline Hysteresis Voltage (Pin \(7=\) Gnd; \(\mathrm{V}_{\text {DRV }}=0 \mathrm{~V}\) ) & \(\mathrm{V}_{\mathrm{H}(7)}\) & - & 2.74 & - & V \\
\hline \[
\begin{aligned}
& \text { Trip Voltage (Pin } \left.8=\text { Gnd; } V_{\text {DRV }}=0 \mathrm{~V}\right) \\
& T_{\text {A }}=25^{\circ} \mathrm{C} \\
& T_{\text {low }} \text { to } T_{\text {high }} \\
& \hline
\end{aligned}
\] & \(V_{\text {trip }}\) (8) & \[
\begin{aligned}
& 30.9 \\
& 30.3
\end{aligned}
\] & \[
\begin{aligned}
& 31.9 \\
& 31.9
\end{aligned}
\] & \[
\begin{aligned}
& 32.9 \\
& 33.5
\end{aligned}
\] & V \\
\hline Hy'steresis Voltage (Pin \(8=\) Gnd; \(\mathrm{V}_{\text {DRV }}=0 \mathrm{~V}\) ) & \(\mathrm{V}_{\mathrm{H}(8)}\) & - & 3.19 & - & V \\
\hline Resistor Network Current at Nominal Power Supply Voltage
\[
V_{C C}=28 \mathrm{~V} ; V_{D R V}=0 \mathrm{~V} ; \operatorname{Pin} 8=G n d
\] & IRN & 0.5 & 1.1 & 2.0 & mA \\
\hline \begin{tabular}{l}
Drive Output Current, ON State
\[
\mathrm{T}_{J}=25^{\circ} \mathrm{C}
\] \\
\(T_{\text {low }}\) to \(T_{\text {high }}\)
\end{tabular} & 'DRV(on) & \[
\begin{gathered}
130 \\
90
\end{gathered}
\] & 200 & \[
\begin{aligned}
& 300 \\
& 350
\end{aligned}
\] & mA \\
\hline Drive Output Current, OFF State
\[
\begin{aligned}
& V_{C C}=5.0 \mathrm{~V} ; V_{D R V}=0 \mathrm{~V} \\
& 3.0 \mathrm{~V} \leqslant \mathrm{~V}_{C C}-V_{D R V} \leqslant 40 \mathrm{~V}
\end{aligned}
\] & I DRV(off) & \[
\begin{aligned}
& 0.2 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.5
\end{aligned}
\] & mA \\
\hline Drive Output Current Slew Rate ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & di/dt & - & 2.0 & - & \(\mathrm{A} / \mu \mathrm{S}\) \\
\hline Drive Output \(\mathrm{V}_{\mathrm{CC}}\) Transient Rejection \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) to 15 V at \(\mathrm{dV} / \mathrm{dt}=200 \mathrm{~V} / \mu \mathrm{s}\); \(V_{\text {DRV }}=0 \mathrm{~V}\); \(\mathrm{V}_{\text {Sense }}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & \(\Delta^{\prime} \mathrm{DRV}\) (trans) & - & 1.0 & - & \[
\begin{gathered}
\mathrm{mA} \\
\text { (Peak) }
\end{gathered}
\] \\
\hline Propagation Delay Time ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; 500 \mathrm{mV}\) Overdrive) & tPLH & - & 500 & - & ns \\
\hline
\end{tabular}

FIGURE 1 - STANDARD TEST CIRCUIT


FIGURE 2 - DRIVE CURRENT versus NORMALIZED RESISTOR DIVIDER VOLTAGE


FIGURE 4 - OFF STATE DRIVE CURRENT versus SUPPLY VOLTAGE


FIGURE 3 - NORMALIZED TRIP VOLTAGE versus TEMPERATURE
(Normalized to \(\mathbf{T}_{A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\) )


FIGURE 5 - MINIMUM R G \(_{G}\) versus SUPPLY VOLTAGE


FIGURE 6 - DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 5.0 V POWER SUPPLY


FIGURE 8 - DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 15 V POWER SUPPLY


FIGURE 7 - DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 12 V POWER SUPPLY


FIGURE 9 - DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 24 V POWER SUPPLY



\section*{APPLICATIONS INFORMATION}

\section*{BASIC CIRCUIT CONFIGURATION}

The MC34062 and MC35062 each consist of a 2.5 V shunt reference, a comparator with built-in hysteresis, a power output transistor, and an on-chip, tapped resistor network. In the typical application of Figure 11 the voltage at the inverting input of the comparator is \(\frac{V_{C C} R_{2}}{R_{1}+R_{2}}\),
while the voltage at the non-inverting input is \(V_{C C}-2.5 \mathrm{~V}\). Thus, for a given ( \(\mathrm{R}_{1}, \mathrm{R}_{2}\) ) voltage divider, the comparator's output state is a function of \(\mathrm{V}_{\mathrm{C}}\). The following table applies:
\begin{tabular}{|c|c|}
\hline \(\mathbf{V}_{\mathbf{C C}}\) & \begin{tabular}{c} 
Drive \\
Output
\end{tabular} \\
\hline\(<\frac{R_{1}+R_{2}}{R_{1}}(2.5 \mathrm{~V})\) & OFF State \\
\hline\(>\frac{R_{1}+R_{2}}{R_{1}}(2.5 \mathrm{~V})\) & ON State \\
\hline
\end{tabular}

By making the proper choice of \(R_{1}\) and \(R_{2}\), a level detector for any voltage from 3.5 to 40 V may be realized.

The on-chip resistor network is configured as shown in the Functional Block Diagram on the front page of this data sheet. Each of the five programming pins (4 through 8) provides one standard overvoltage trip point for nominal power supply voltages of \(5.0,12,15,24\) or 28 V . These standard trip points are implemented by grounding one of the five programming pins, and are summarized in the following table:
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Nominal \\
Power \\
Supply \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Ground \\
Pin \\
Number
\end{tabular} & \begin{tabular}{c} 
Typical \\
Trip \\
Voltage
\end{tabular} \\
\hline 5.0 V & 4 & 6.2 V \\
12 V & 5 & 13.7 V \\
15 V & 6 & 17.1 V \\
24 V & 7 & 27.4 V \\
28 V & 8 & 31.9 V \\
\hline
\end{tabular}

FIGURE 11 - BLOCK DIAGRAM AND TYPICAL APPLICATION


Many other trip voltages may be programmed by interconnecting and grounding various combinations of the programming pins. Table 1 provides connection schemes for 120 nominal Trip Voltages ( \(V_{\text {trip }}\) ) Additional Trip Voltages may also be implemented with other pin connections. All of these Trip Voltages will be within \(\pm 3.0 \%\) of the nominal value at \(\mathrm{TA}=25^{\circ} \mathrm{C}\) and within \(\pm 5.0 \%\) over the operating temperature range.
The hysteresis built into the comparator is 250 mV at the inverting input. This comparator hysteresis voltage is multiplied by the ratio \(\frac{R_{1}+R_{2}}{R_{1}}\), just as the 2.5 V Sense Trip
Voltage ( \(V_{\text {Sense }}\) ) is multiplied by the same ratio to define the Trip Voltage ( \(\mathrm{V}_{\text {trip }}\) ). Thus, the Hysteresis Voltage \(\left(\mathrm{V}_{\mathrm{H}}\right)\) is approximately \(10 \%\) of the Trip Voltage for any Trip Voltage.

Some precautions are necessary in the operation of the protection circuit shown in Figure 11. Note that even in the OFF State, a minimum drive output current, equal to the sum of the reference and comparator supply currents, is available. Therefore, a means of shunting this current away from the driven circuit is necessary. In the example of Figure 11; a \(100 \Omega\) resistor ( \(\mathrm{R}_{\mathrm{GK}}\) ) is used, producing a voltage at the Drive Output of approximately 60 mV in the OFF State

In the ON State the MC34062 becomes a current source capable of saturating to within 2.0 V of \(\mathrm{V}_{\mathrm{C}}\). Therefore, when driving a high impedance load, it may be desirable to clamp the drive output to at least 3.0 V below \(\mathrm{V}_{\mathrm{CC}}\) \(\left(V_{C C}-V_{D R V} \geqslant 3.0 \mathrm{~V}\right.\) ) if it is important that the reference continue to regulate.

\section*{PROGRAMMINGAMINIMUMOVERVOLTAGE DURATION BEFORE TRIPPING}

A time delay may be programmed into the operation of the MC34062/35062 to provide noise immunity. This time delay is implemented by adding a capacitor (CDLY) between the \(\mathrm{V}_{\mathrm{C}}\) and Sense leads as shown in Figure 12. The time delay obtained by this technique is a function of the internal resistors ( \(R_{1}, R_{2}\) ) and CDLY, as well as the nominal supply voltage, \(\mathrm{V}_{\mathrm{CC}}(\) nom \()\), and the overvoltaged supply voltage \(V_{C C}\). The nominal supply voltage determines the initial charge on \(C_{D L Y}\), while the magnitude of the overvoltage condition determines the rate at which \(C_{D L Y}\) charges to the reference voltage, \(\mathrm{V}_{\text {ref }}=2.5 \mathrm{~V}\). Thus, for a given \(R_{1}, R_{2}\) and \(C_{D L Y}\), the time delay is reduced as the overvoltage is increased. The expression for the time delay, tDLY is:
\[
\begin{gathered}
t_{D L Y}=\frac{R_{1} R_{2} C_{D L Y}}{R_{1}+R_{2}} \text { in }\left[\frac{V_{C C}-V_{C C(\text { nom })}}{V_{C C}-V_{\text {trip }}}\right] \\
\text { where: } V_{\text {trip }}=\frac{R_{1}+R_{2}}{R_{1}}(2.5 V)
\end{gathered}
\]

Figures 6 through 10 show the CDLY values versus delay time ( \(\mathrm{t}_{\mathrm{DLY}}\) ) for nominal 5.0, 12, 15, 24 and 28 V power supply protection circuits, each using a one-pin MC34062/35062 programming scheme. These figures also show the change in tDLY with variations in the overvoltaged supply, \(\mathrm{V}_{\mathrm{C}}\).

\section*{THE NEED FOR A GATE RESISTOR}

For power supplies above 11 V , a gate resistor, \(\mathrm{R}_{\mathrm{G}}\), in series with the SCR gate is recommended to limit the power dissipated by the IC to approximately 2.0 W . This resistor will protect the MC34062/35062 in the event of a defective or missing SCR, while allowing the maximum drive output current to the gate of the SCR. Figure 5 shows the minimum recommended gate resistor, \(\mathrm{R}_{\mathrm{G}}(\mathrm{min})\), versus the power supply voltage, \(\mathrm{V}_{\mathrm{C}}\). A larger value of \(\mathrm{R}_{\mathrm{G}}\) may be used if less drive current is needed.


TABLE 1 - PIN-PROGRAMMING OF RESISTOR NETWORK FOR NOMINAL TRIP VOLTAGES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(V_{\text {trip }}\) & Pin 3 & Pin 4 & Pin 5 & Pin 6 & Pin 7 & Pin 8 & \(V_{\text {trip }}\) & Pin 3 & Pin 4 & Pin 5 & Pin 6 & Pin 7 & Pin 8 \\
\hline 3.483 & & Gnd & - & Gnd & & Gnd & 5.101 & & & Gnd & & & Gnd \\
\hline 3.632 & & Gnd & Gnd & 9 & Gnd & & 5.222 & \(\bigcirc\) & Gnd & & Gnd & & \\
\hline 3.758 & & Gnd & 9 & Gnd & \(\varphi\) & & 5.328 & & Gnd &  & & & \(\bigcirc\) \\
\hline 3.807 & & Gnd & 9 & Gnd & & 9 & 5.413 & - & Gnd & Gnd & & & \\
\hline 3.883 & & Gnd & 9 & \(\bigcirc\) & Gnd & 9 & 5.563 & & Gnd & &  & , & \\
\hline 3.923 & & & Gnd & \(\bigcirc\) & Gnd & \(\bigcirc\) & 5.673 & & Gnd & & , & & \(\bigcirc\) \\
\hline 4.012 & & Gnd & Gnd & & Gnd & & 5.734 & & Gnd & & & & \\
\hline 4.098 & & Gnd & 9 & & \(\bigcirc\) & Gnd & 5.887 & & & \(\bigcirc\) & & Gnd & \\
\hline 4.130 & & & 9 & Gnd & \(\bigcirc\) & Gnd & 5.900 & & & 9 & Gnd & & \\
\hline 4.196 & & Gnd & & Gnd & \(\bigcirc\) & Gnd & 5.991 & & 9 & Gnd & & 9 & - \\
\hline 4.272 & & Gnd & Gnd & - & & & 6.092 & & 9 & \[
\zeta
\] & \(\bigcirc\) & Gnd & 9 \\
\hline 4.353 & & Gnd & & & 9 & Gnd & 6.200 & & Gnd & & & & \\
\hline 4.407 & & \(\bigcirc\) & Gnd & \(\bigcirc\) & Gnd & & 6.311 & & & & & Gnd & \(\bigcirc\) \\
\hline 4.520 & & \(\bigcirc\) & Gnd & \(\bigcirc\) & & Gnd & 6.610 & & &  & 9 & Gnd & - \\
\hline 4.598 & & Gnd & \(\bigcirc\) & & Gnd & & 6.703 & & & & Gnd & & \\
\hline 4.673 & & & & Gnd & 9 & Gnd & 6.840 & & 9 & Gnd & Gnd & 9 & \\
\hline 4.709 & & & Gnd & Gnd & & Gnd & 7.000 & & & & & & Gnd \\
\hline 4.845 & & Gnd & & Gnd & & 9 & 7.132 & & & Gnd & , & ¢ & 9 \\
\hline 4.947 & & & Gnd & Gnd & I & Gnd & 7.298 & & \(\bigcirc\) & 6 & Gnd & & 9 \\
\hline 4.996 & & \(\delta\) & Gnd & \(\checkmark\) & Gnd & 9 & 7.347 & \(\bullet\) & 9 & Gnd & & 9 & \\
\hline
\end{tabular}

TABLE 1 - (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(v_{\text {trip }}\) & Pin 3 & Pin 4 & Pin 5 & Pin 6 & Pin 7 & Pin 8 & \(v_{\text {trip }}\) & Pin 3 & Pin 4 & Pin 5 & Pin 6 & Pin 7 & Pin 8 \\
\hline 7.478 & & \(\bigcirc\) & Gnd & Gnd & & \(\bigcirc\) & 10.400 & & & 9 & & & Gnd \\
\hline 7.799 & & & Gnd & - & & 9 & 10.540 & & 9 & Gnd & Gnd & & \\
\hline 8.106 & & & Gnd & 9 & Gnd & & 10.700 & & & & & & Gnd \\
\hline 8.220 & & & Gnd & 9 & & Gnd & 11.047 & & & Gnd & & & \\
\hline 8.409 & & & Gnd & Gnd & & Gnd & 11.178 & & & Gnd & Gnd & & 9 \\
\hline 8.539 & & & Gnd & \(\bigcirc\) & & & 11.496 & & & & Gnd & & \\
\hline 8.633 & & & & Gnd & & Gnd & 11.630 & & & & Gnd & - & Gnd \\
\hline 8.756 & & & \(\bigcirc\) & Gnd & \(\bigcirc\) & & 11.895 & & & & Gnd & \(\bigcirc\) & \(\mathrm{v}_{\mathrm{CC}}\) \\
\hline 8.870 & & & Gnd & Gnd & & & 11.937 & & 9 & - & Gnd & Gnd & \\
\hline 8.906 & & , & & - & & Gnd & 12.086 & Q & & Gnd & & 9 & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 9.013 & & & Gnd & & Gnd & 9 & 12.477 & & 9 & & Gnd & & 9 \\
\hline 9.178 & & & & - & & Gnd & 12.556 & & 9 & 9 & Gnd & 9 & \\
\hline 9.331 & & \(\mathrm{V}_{\mathrm{CC}}\) & \(\bigcirc\) & Gnd & & & 12.732 & & & - & \(\bigcirc\) & Gnd & 9 \\
\hline 9.377 & & & Gnd & & & 9 & 12.800 & 9 & & & \(\bigcirc\) & Gnd & \\
\hline 9.385 & & & & Gnd & Gnd & \(\bigcirc\) & 13.387 & & \(\bigcirc\) & \(\bullet\) & & Gnd & \(\bigcirc\) \\
\hline 9.433 & \(\bullet\) & & Gnd & & & \(\bigcirc\) & 13.400 & & - & & Gnd & & \\
\hline 9.600 & & \(\bigcirc\) & \(\bigcirc\) & Gnd & & & 13.700 & & & Gnd & & & \\
\hline 9.826 & & & & Gnd & & 9 & 14.233 & & & 9 & - & Gnd & \\
\hline 9.912 & & \(\varphi\) & & & Gnd & \(\varphi\) & 14.500 & \(\bigcirc\) & 9 & \(\bigcirc\) & & 9 & Gnd \\
\hline 10.000 & 9 & - & Gnd & & & & 15.330 & & & 9 & Gnd & - & Gnd \\
\hline
\end{tabular}

TABLE 1 - (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(V_{\text {trip }}\) & Pin 3 & Pin 4 & Pin 5 & Pin 6 & Pin 7 & Pin 8 & \(V_{\text {trip }}\) & Pin 3 & Pin 4 & \(\operatorname{Pin} 5\) & Pin 6 & Pin 7 & Pin 8 \\
\hline 15.637 & & & & Gnd & Gnd & \(\bigcirc\) & 22.673 & & & \(\mathrm{V}_{\mathrm{CC}}\) & & Gnd & \\
\hline 16.200 & & & & & Gnd & & 23.700 & & & & & Gnd & \\
\hline 16.256 & & & & Gnd & & & 23.807 & & 9 & \(\mathrm{V}_{\mathrm{CC}}\) & & Gnd & \\
\hline 16.465 & & & & Gnd & & \(\bigcirc\) & 24.000 & & & & & Gnd & \\
\hline 16.500 & & & & \(\varphi\) & Gnd & & 24.283 & & & \(\mathrm{V}_{\mathrm{CC}}\) & & & Gnd \\
\hline 16.532 & & & & & Gnd & \(\bigcirc\) & 24.400 & & & & & & Gnd \\
\hline 16.832 & & & & 9 & Gnd & 9 & 24.800 & & 1 & & 9 & & Gnd \\
\hline 17.087 & & & & & Gnd & 9 & 25.211 & & & & Gnd & \(\mathrm{V}_{\mathrm{CC}}\) & \\
\hline 17.100 & & & & Gnd & & & 27.333 & - & \(\mathrm{V}_{\mathrm{CC}}\) & \(V_{C C}\) & \(\bigcirc\) & Gnd & \\
\hline 17.300 & & & & 9 & & Gnd & 27.400 & & & & & Gnd & \\
\hline 17.900 & & 9 & & & \(\bigcirc\) & Gnd & 28.200 & & & & & & Gnd \\
\hline 18.200 & & & & & & Gnd & 28.500 & & & & & & Gnd \\
\hline 18.733 & & & & & & Gnd & 30.023 & & \(\mathrm{v}_{\mathrm{CC}}\) & & & Gnd & \\
\hline 19.900 & & & - & & Gnd & & 30.694 & & V Cc & & & & Gnd \\
\hline 20.232 & & & & & Gnd & 9 & 31.486 & & & \(\mathrm{V}_{\mathrm{CC}}\) & & & Gnd \\
\hline 20.300 & & & & & Gnd & & 31.900 & & & & & & Gnd \\
\hline 20.700 & & & 9 & & & Gnd & 32.233 & & \(\mathrm{V}_{\mathrm{CC}}\) & & & & Gnd \\
\hline 21.000 & & & & 9 & & Gnd & 33.116 & & \(\bigcirc\) & \(\mathrm{V}_{\mathrm{CC}}\) & & & Gnd \\
\hline 21.600 & & & & & \(\bigcirc\) & Gnd & 38.182 & & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & & & Gnd \\
\hline 22.122 & \(\bigcirc\) & \(\mathrm{V}_{\mathrm{CC}}\) & & 9 & Gnd & & 39.064 & & \(\mathrm{V}_{\mathrm{CC}}\) & , & & & Gnd \\
\hline
\end{tabular}

\section*{CROWBAR SCR CONSIDERATIONS}

Referring to Figure 13, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the outputcapacitance, \(C_{\text {out }}\). This capacitance consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 13A, the supply's input filter capacitors. This surge current is illustrated in Figure 14, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or \(12 t\). The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

\section*{1. \(d i / d t\)}

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a verysmall region and gradually spreading.

Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high a node currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities - depending on the severity of the occasion.

The value of \(\mathrm{di} / \mathrm{dt}\) that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving ( 3 to 5 times \(\mathbf{I G T}^{\text {) the SCR gate }}\) with a fast \(<1.0 \mu \mathrm{~s}\) rise time signal will maximize its \(\mathrm{di} / \mathrm{dt}\) capability. A typical maximum number in phase control SCRs of less than \(50 \mathrm{~A}(\mathrm{RMS})\) rating might be \(200 \mathrm{~A} / \mu \mathrm{s}\), assuming a gate current of five times \(\mathrm{I}_{\mathrm{G}}\) T and \(<1.0 \mu \mathrm{~s}\) rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the \(\mathrm{di} / \mathrm{dt}\) of the current waveform by adding inductance in series with the SCR, as shown in Figure 15. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and \(\mathrm{di} / \mathrm{dt}\).

FIGURE 13 - TYPICAL CROWBAR CIRCUIT CONFIGURATIONS


FIGURE 14 - CROWBAR SCR SURGE CURRENT WAVEFORM


\section*{2. Surge Current}

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance - see Figure 15) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

\section*{FIGURE 15 - CIRCUIT ELEMENTS AFFECTING SCR SURGE \& di/dt}


\section*{A WORD ABOUT FUSING}

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 13A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!

In order to protect the SCR, the fuse would have to possess an \(12 t\) rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 13B.

\section*{CROWBAR SCR SELECTION GUIDE}

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ DEVICE } & IRMS & IFSM & PACKAGE \\
\hline MCR67 Series & 12 A & 100 A & Metal Stud \\
MCR68 Series & 12 A & 100 A & TO-220 Plastic \\
2N1842 Series & 16 A & 125 A & Metal Stud \\
2N6400 Series & 16 A & 160 A & TO-220 Plastic \\
2N6504 Series & 25 A & 160 A & TO-220 Plastic \\
2N681 Series & 25 A & 200 A & Metal Stud \\
2N2573 Series & 25 A & 260 A & TO-3 Metal Can \\
MCR69 Series & 25 A & 300 A & TO-220 Plastic \\
MCR70 Series & 35 A & 350 A & Metal Stud \\
MCR71 Series & 55 A & 550 A & Metal Stud \\
\hline
\end{tabular}

For a complete and detailed treatment of SCR and fuse selection refer to Motorola Application Note AN-789.


MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & Vdc \\
\hline Comparator Input Voltage Range & \(V_{\text {IR }}\) & -0.3 to +40 & Vdc \\
\hline Switch Collector Voltage & \(\mathrm{V}_{\mathrm{C} \text { (switch) }}\) & 40 & Vdc \\
\hline Switch Emitter Voltage & \(\mathrm{V}_{\text {E(switch) }}\) & 40 & Vdc \\
\hline Switch Collector to Emitter Voltage & \(V_{C E}\) (switch) & 40 & Vdc \\
\hline Driver Collector Voltage & \(\mathrm{V}_{\mathrm{C} \text { (driver) }}\) & 40 & Vdc \\
\hline Switch Current & Isw & 1.5 & Amps \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
Ceramic Package
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\) \\
Plastic Package
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\)
\end{tabular} &  & \[
\begin{gathered}
1.25 \\
10 \\
\\
1.0 \\
10 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{W} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
\mathrm{~W} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Operating Junction Temperature Ceramic Package Plastic Package & TJ & \[
\begin{aligned}
& +150 \\
& +125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature Range MC35063 \\
MC33063 \\
MC34063
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
-55 \text { to }+125 \\
-40 \text { to }+85 \\
0 \text { to }+70
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [ Note 1] unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OSCILLATOR} \\
\hline Charging Current (5.0 V & Ichg & 20 & 35 & 50 & \(\mu \mathrm{A}\) \\
\hline Discharge current ( \(\left.5.0 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 40 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & Idischg & 150 & 200 & 250 & \(\mu \mathrm{A}\) \\
\hline Voltage Swing ( \(T_{A}=25^{\circ} \mathrm{C}\) ) & \(V_{\text {osc }}\) & - & 0.5 & - & \(V_{p-p}\) \\
\hline Discharge to Charge Current Ratio ( \(\mathrm{l}_{\text {pk( }}\) sense) \()=\mathrm{V}_{C C}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) ) & \({ }^{\text {dischg }}\) / \({ }^{\text {chg }}\) & - & 6.0 & - & - \\
\hline Current Limit Sense Voltage \(I_{\text {chg }}=I_{\text {dischg }}, T_{A}=25^{\circ} \mathrm{C}\) & \(V_{\text {lpk(sense }}\) ) & 250 & 300 & 350 & mV \\
\hline
\end{tabular}

\section*{OUTPUT SWITCH (Note 2)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Saturation Voltage, Darlington Connection \(I_{S W}=1.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{C}(\text { driver })}=\mathrm{V}_{\mathrm{C}}(\) switch \()\) & \(\mathrm{V}_{\text {CE(sat }}\) & - & 1.0 & 1.3 & V \\
\hline Saturation Voltage
\[
\mathrm{SW}=1.0 \mathrm{~A} ; \mathrm{I} \mathrm{C}(\text { driver })=50 \mathrm{~mA},(\text { Forced } \mathrm{B}=20)
\] & \(\mathrm{V}_{\text {CE(sat) }}\) & - & 0.45 & 0.7 & V \\
\hline DC Current Gain
\[
I_{S W}=1.0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] & \(h_{\text {FE }}\) & 35 & 120 & - & - \\
\hline Collector Off-State Current ( \(\mathrm{V}_{\text {CE }}=40 \mathrm{~V}\); \(\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}\) ) & IC(off) & - & 10 & - & nA \\
\hline
\end{tabular}

COMPARATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Threshold Voltage & \(\mathrm{V}_{\text {th }}\) & 1.18 & 1.25 & 1.32 & V \\
\hline Threshold Voltage Line Regulation ( \(3.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 40 \mathrm{~V}\) ) & Regline & - & 0.04 & 0.2 & \(\mathrm{mV} / \mathrm{V}\) \\
\hline Input Bias Current ( \(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\) ) & 1 B & - & 40 & 400 & nA \\
\hline \multicolumn{6}{|l|}{TOTAL DEVICE} \\
\hline Supply Current
\[
\begin{aligned}
& 5.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leq 40 \mathrm{~V}, \mathrm{C}_{T}=0.001 \mu \mathrm{~F} \\
& \text { Ipk } \text { (sense) }=\mathrm{V}_{\mathrm{CC}},{\mathrm{~V} \text { pin } 5>\mathrm{V}_{\text {th }},}_{\text {Pin } 2=\text { Gnd, Remaining pins open }}
\end{aligned}
\] & \({ }^{\text {I CC }}\) & - & 2.4 & 3.5 & mA \\
\hline
\end{tabular}

\section*{NOTES:}
 \(0^{\circ} \mathrm{C}\) for \(\mathrm{MC} 34063+70^{\circ} \mathrm{C}\) for MC34063
2. Output switch tests are performed under pulsed conditions to minimize power dissipation.

FIGURE 1 - OUTPUT SWITCH ON-OFF TIME versus OSCILLATOR TIMING CAPACITOR


FIGURE 3 - EMITTER-FOLLOWER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE versus EMITTER CURRENT


FIGURE 2 - STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE


FIGURE 4 - COMMON-EMITTER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE versus COLLECTOR CURRENT


FIGURE 5 - STEP-DOWN CONVERTER

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=15\) to \(25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & 15 mV \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=50\) to 500 mA & 5.0 mV \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & 40 mV \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 2.3 A \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & \(84.7 \%\) \\
\hline
\end{tabular}

FIGURE 6 - EXTERNAL CURRENT BOOST CONNECTIONS
FOR IC PEAK GREATER THAN 1.5 A


FIGURE 7 - STEP-UP CONVERTER

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0\) to \(16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & 12 mV \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=75\) to 175 mA & 45 mV \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & \(150 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}\) \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \mathrm{~s} \Omega\) & 2.0 A \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & \(93^{\circ} \%\) \\
\hline
\end{tabular}

FIGURE 8 - EXTERNAL CURRENT BOOST CONNECTIONS
FOR IC PEAK GREATER THAN 1.5 A


FIGURE 9 - DESIGN FORMULA TABLE
\begin{tabular}{|c|c|c|}
\hline Calculation & Step-Down & Step-Up \\
\hline \[
\frac{t_{\text {on }}}{t_{\text {off }}}
\] & \[
\frac{V_{\text {out }}+V_{F}}{V_{\text {in }(\min )}-V_{\text {sat }}-V_{\text {out }}}
\] & \[
\frac{V_{\text {out }}+V_{F}-V_{\text {in }}(\min )}{V_{\text {in }}(\min )}-V_{\text {sat }}
\] \\
\hline \(\left(t_{\text {on }}+t_{\text {off }}\right)_{\text {max }}\) & \[
\frac{1}{f_{\min }}
\] & \[
\frac{1}{f_{\min }}
\] \\
\hline \(\mathrm{C}_{\text {T }}\) & \(4 \times 10^{-5} \mathrm{t}_{\text {on }}\) & \(4 \times 10^{-5} t_{\text {on }}\) \\
\hline Ipk(switch) & 21 out(max) & \[
21_{\text {out }} \text { max }\left(\frac{t_{\text {on }}+t_{\text {off }}}{t_{\text {off }}}\right)
\] \\
\hline RSC & 0.33/Ipk(switch) & 0.33/lpk(switch) \\
\hline \(L_{(m i n)}\) &  &  \\
\hline \(\mathrm{C}_{0}\) & \[
\frac{I_{\mathrm{pk}}(\text { switch })\left(\mathrm{t}_{\text {On }}+t_{\text {off }}\right)}{8 V_{\text {ripple }}(\mathrm{p}-\mathrm{p})}
\] & \[
\approx \frac{l_{\text {out }} t_{\text {on }}}{V_{\text {ripple }}}
\] \\
\hline
\end{tabular}
\(V_{\text {sat }}=\) Saturation voltage of the output switch.
\(V_{F}=\) Forward voltage drop of the ringback rectifier

The following power supply characteristics must be chosen:
\(V_{\text {in }}\) - Nominal input voltage. If this voltage is not constant, then use \(V_{i n}\) (max) for step-down and \(V_{\text {in }}(\min )\) for stepup converter.
\(V_{\text {out }}\) - Desired output voltage, \(V_{\text {out }}=1.25\left(1+\frac{R_{2}}{R_{1}}\right)\).
Iout - Desired output current.
\(f_{\min }\) - Minimum desired output switching frequency at the selected values for \(V_{\text {in }}\) and \(I_{0}\).
Vripple(p-p) - Desired peak-to-peak output ripple voltage. In practice, the calculated value will need to be increased due to the capacitor's equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly effect the line and load regulation.

\section*{Note:}

For further information refer to application note AN920A.

\section*{Advance Information}

\section*{DC-TO-DC CONVERTER CONTROL CIRCUITS}

The MC34063A Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components. Refer to Application Notes AN920A and AN954 for additional design information.
- Operation from 3.0 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5 A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2\% Reference

\section*{DC-TO-DC CONVERTER CONTROL CIRCUITS}

SILICON MONOLITHIC INTEGRATED CIRCUITS

P1 SUFFIX
PLASTIC PACKAGE CASE 626-05


ORDERING INFORMATION
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Temperature \\
Range
\end{tabular} & \multicolumn{1}{|c|}{ Package } \\
\hline MC35063AU & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline MC33063AD & \multirow{2}{*}{-40 to \(+85^{\circ} \mathrm{C}\)} & Plastic SOIC \\
& Plastic DIP \\
\hline MC33063AP1 & \multirow{2}{*}{0 to \(+70^{\circ} \mathrm{C}\)} & Plastic SOIC \\
\cline { 1 - 1 } MC34063AD & Plastic DIP \\
\hline\(y\) & & \\
\hline
\end{tabular}

This document contains information on a new product. Specifications and information herein are subject to change without notice.

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\text {CC }}\) & 40 & Vdc \\
\hline Comparator Input Voltage Range & \(\mathrm{V}_{\text {IR }}\) & -0.3 to +40 & Vdc \\
\hline Switch Collector Voltage & \(\mathrm{V}_{\text {C(switch) }}\) & 40 & Vdc \\
\hline Switch Emitter Voltage ( \(\mathrm{V}_{\text {Pin }} 1=40 \mathrm{~V}\) ) & \(V_{E(s w i t c h)}\) & 40 & Vdc \\
\hline Switch Collector to Emitter Voltage & \(\mathrm{V}_{\text {CE }}\) (switch) & 40 & Vdc \\
\hline Driver Collector Voltage & \(\mathrm{V}_{\mathrm{C} \text { (driver) }}\) & 40 & Vdc \\
\hline Driver Collector Current (Note 1) & IC(driver) & 100 & mA \\
\hline Switch Current & Isw & 1.5 & Amps \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics Ceramic Package, U Suffix
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance \\
Plastic Package, P Suffix
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance \\
SOIC Package, D Suffix
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Thermal Resistance
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\) \\
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \[
\begin{aligned}
& 1.25 \\
& 100 \\
& \\
& 1.25 \\
& 100 \\
& \\
& 625 \\
& 160 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{W} \\
{ }^{\circ} \mathrm{C} \mathrm{~W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{C} \mathrm{~W} \\
\mathrm{~mW} \\
{ }^{\circ} \mathrm{CW} \\
\hline
\end{gathered}
\] \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature Range MC35063A \\
MC33063A \\
MC34063A
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
-55 \text { to }+125 \\
-40 \text { to }+85 \\
0 \text { to }+70
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [Note 2] unless otherwise specified)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Characteristic & Symbol & Min & Typ & Max & Units \\
\hline OSCILLATOR & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frequency
\[
\left(\mathrm{V}_{\text {Pin } 5}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & fosc & 24 & 33 & 42 & kHz \\
\hline Charge Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { to } 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & I chg & 24 & 33 & 42 & \(\mu \mathrm{A}\) \\
\hline Discharge Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { to } 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & Idischg & 140 & 200 & 260 & \(\mu \mathrm{A}\) \\
\hline Discharge to Charge Current Ratio
\[
\left(\operatorname{Pin} 7=V_{C C}, T_{A}=25^{\circ} \mathrm{C}\right)
\] & 'dischg \({ }^{\prime \prime}\) chg & 5.2 & 6.2 & 7.5 & - \\
\hline Current Limit Sense Voltage
\[
\left(I_{\mathrm{chg}}=I_{\text {dischg }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\text {ipk }}\) (sense) & 250 & 300 & 350 & mV \\
\hline
\end{tabular}

\section*{NOTES:}
1. Maximum package power dissipation limits must be observed.
2. \(\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}\) for MC35063A \(\quad \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}\) for MC35063A
\begin{tabular}{rlrl}
\(-55^{\circ} \mathrm{C}\) & for MC35063A & \(\mathrm{T}_{\text {high }}=\) & \(+125^{\circ} \mathrm{C}\) for MC35063A \\
\(-40^{\circ} \mathrm{C}\) for MC33063A & & \(+85^{\circ} \mathrm{C}\) for MC33063A \\
\(0^{\circ} \mathrm{C}\) for MC34063A & & \(+70^{\circ} \mathrm{C}\) for MC34063A
\end{tabular}

ELECTRICAL CHARACTERISTICS - continued ( \(\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{T}_{A}=\mathrm{T}_{\text {low }}\) to \(T_{\text {high }}\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Units \\
\hline \multicolumn{6}{|l|}{OUTPUT SWITCH (Note 3)} \\
\hline Saturation Voltage, Darlington Connection (ISW = 1.0 A, Pins 1,8 connected) & \(\mathrm{V}_{\text {CE (sat) }}\) & - & 1.0 & 1.3 & v \\
\hline Saturation Voltage (ISW \(=1.0 \mathrm{~A}, \mathrm{RP}_{\mathrm{Pin}} 8=82 \Omega\) to \(\mathrm{V}_{\mathrm{CC}}\), Forced \(\beta=20\) ) & \(\mathrm{V}_{\text {CE (sat) }}\) & - & 0.45 & 0.7 & v \\
\hline DC Current Gain
\[
\left(I_{S W}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{h}_{\text {FE }}\) & 50 & 120 & - & - \\
\hline Collector Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}\right)
\] & \({ }^{\text {I }}\) (off) & - & 0.01 & 100 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Threshold Voltage \\
\(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) \\
\(\left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\left.\mathrm{T}_{\text {high }}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{th}}\) & & & & V \\
\hline \begin{tabular}{l} 
Threshold Voltage Line Regulation \\
\(\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.\) to 40 V\()\)
\end{tabular} & & 1.225 & 1.25 & 1.275 & \\
\hline \begin{tabular}{l} 
Input Bias Current \\
\(\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)\)
\end{tabular} & Regline & - & - & 1.4 & 5.0 \\
\hline
\end{tabular}

TOTAL DEVICE


\section*{TOTAL DEVICE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Supply Current \\
\(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.\) to \(40 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\), \(\operatorname{Pin} 7=\mathrm{V}_{\mathrm{CC}}\), \\
\(V_{\text {Pin } 5}>V_{\text {th }}\), Pin \(2=\) Gnd, Remaining pins open)
\end{tabular} & ICC & - & 2.5 & 4.0 & mA \\
\hline
\end{tabular}

NOTES:
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
4. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ( \(\leqslant 300 \mathrm{~mA}\) ) and high driver currents ( \(\geqslant 30 \mathrm{~mA}\) ), it may take up to \((2.0 \mu \mathrm{~s})\) to come out of saturation. This condition will shorten the "off" time at frequencies \(\geqslant 30 \mathrm{kHz}\), and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:

Forced \(\beta\) of output switch \(={ }^{1} \mathrm{C}\), output \(/\left(\mathrm{I}_{\mathrm{C}}\right.\), driver \(\left.-7.0 \mathrm{~mA}^{*}\right) \geqslant 10\)
*The \(100 \Omega\) resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

FIGURE 1 - OUTPUT SWITCH ON-OFF TIME versus OSCILLATOR TIMING CAPACITOR


FIGURE 3 - EMITTER FOLLOWER CONFIGURATION OUTPUT SATURATION VOLTAGE versus EMITTER CURRENT


FIGURE 5 - CURRENT LIMIT SENSE VOLTAGE versus TEMPERATURE


FIGURE 2 - TIMING CAPACITOR WAVEFORM


FIGURE 4 - COMMON EMITTER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE versus COLLECTOR CURRENT


FIGURE 6 - STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE


FIGURE 7 - STEP-UP CONVERTER

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{|c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}\) to \(16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & \(30 \mathrm{mV}= \pm 0.05 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=75 \mathrm{to} 175 \mathrm{~mA}\) & \(10 \mathrm{mV}= \pm 0.017 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & \(400 \mathrm{mVp}-\mathrm{p}\) \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & \(89.2 \%\) \\
\hline Output Ripple With Optional Filter & \(\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}\) & \(40 \mathrm{mVp}-\mathrm{p}\) \\
\hline
\end{tabular}

FIGURE 8 - EXTERNAL CURRENT BOOST CONNECTIONS FOR IC PEAK GREATER THAN 1.5 A

8A - EXTERNAL NPN SWITCH


8B - EXTERNAL NPN SATURATED SWITCH (REFER TO NOTE 4)


FIGURE 9 - STEP-DOWN CONVERTER

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=15 \mathrm{~V}\) to \(25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & \(12 \mathrm{mV}= \pm 0.12 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=50\) to 500 mA & \(3.0 \mathrm{mV}= \pm 0.03 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & \(120 \mathrm{mVp}-\mathrm{p}\) \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 1.1 A \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & \(82.5 \%\) \\
\hline Output Ripple With Optional Filter & \(\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}\) & \(40 \mathrm{mVp}-\mathrm{p}\) \\
\hline
\end{tabular}

FIGURE 10 - EXTERNAL CURRENT BOOST CONNECTIONS
FOR IC PEAK GREATER THAN 1.5 A
\(10 A\) - EXTERNAL NPN SWITCH


10B - EXTERNAL PNP SATURATED SWITCH


FIGURE 11 - VOLTAGE INVERTING CONVERTER

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & \multicolumn{1}{c|}{ Results } \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}\) to \(6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\) & \(3.0 \mathrm{mV}= \pm 0.012 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{to} 100 \mathrm{~mA}\) & \(0.022 \mathrm{~V}= \pm 0.09 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\) & \(50 \mathrm{mVp}-\mathrm{p}\) \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 910 mA \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\) & \(64.5 \%\) \\
\hline Output Ripple With Optional Filter & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}\) & \(70 \mathrm{mVp}-\mathrm{p}\) \\
\hline
\end{tabular}

FIGURE 12 - EXTERNAL CURRENT BOOST CONNECTIONS FOR IC PEAK GREATER THAN 1.5 A


FIGURE 13 - PRINTED CIRCUIT BOARD AND COMPONENT LAYOUT (CIRCUITS OF FIGURES 7, 9, 11)

(Top view, copper foil as seen through the board from the component side)


INDUCTOR DATA
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Converter } & Inductance ( \(\boldsymbol{\mu H})\) & Turns/Wire \\
\hline Step-Up & 170 & 38 Turns of \#22 AWG \\
\hline Step-Down & 220 & 48 Turns of \#22 AWG \\
\hline Voltage-Inverting & 88 & 28 Turns of \#22 AWG \\
\hline
\end{tabular}

All inductors are wound on Magnetics 55117 toroidal core.

FIGURE 14 - DESIGN FORMULA TABLE
\begin{tabular}{|c|c|c|c|}
\hline Calculation & Step-Up & Step-Down & Voltage-Inverting \\
\hline \(\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }}\) & \begin{tabular}{l}
\[
V_{\text {out }}+V_{F}-V_{\text {in }}(\min )
\] \\
\(V_{\text {in }}(\min )-V_{\text {sat }}\)
\end{tabular} & \[
\begin{aligned}
& V_{\text {out }}+V_{F} \\
& V_{\text {in }(\min )}-V_{\text {sat }}-V_{\text {out }}
\end{aligned}
\] & \[
\begin{aligned}
& \left|V_{\text {out }}\right|+V_{F} \\
& V_{\text {in }}-V_{\text {sat }}
\end{aligned}
\] \\
\hline ( \(\mathrm{t}_{\text {On }}+t_{\text {off }}\) ) max & \(1 / \mathrm{f}_{\mathrm{min}}\) & \(1 / \mathrm{f}_{\text {min }}\) & \(1 / f_{\text {min }}\) \\
\hline \(\mathrm{C}_{\mathrm{T}}\) & \(4 \times 10^{-5} t_{\text {on }}\) & \(4 \times 10^{-5} t_{\text {on }}\) & \(4 \times 10^{-5} \mathrm{t}_{\text {on }}\) \\
\hline Ipk(switch) & \(21_{\text {out(max) }}\left(\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }}+1\right)\) & \(21_{\text {out(max) }}\) & \(21_{\text {out }}\) (max) \({ }^{\left(t_{\text {on }} / \mathrm{t}_{\text {off }}+1\right)}\) \\
\hline RSC & 0.3/1 pk(switch) & 0.3/ lpk (switch) & 0.3/1 pk(switch) \\
\hline \(L_{(m i n)}\) & \(\left(V_{\text {in }}\right.\) (min) \()-V_{\text {sat }} / t_{\text {on }}\) (max) lpk(switch) & \(\left(V_{\text {in }}(\right.\) min \(\left.)-V_{\text {sat }}-V_{\text {out }}\right) t_{\text {on }}\) (max) lpk(switch) & \(\left(\mathrm{V}_{\text {in( }}\right.\) min) \(\left.-\mathrm{V}_{\text {sat }}\right) \mathrm{t}_{\text {on(max }}\) ) Ipk(switch) \\
\hline \(\mathrm{CO}_{0}\) & \(\simeq I_{\text {out }}{ }^{\text {on }}\) ( \(V_{\text {ripple( }}\) (p-p) & \[
\begin{aligned}
& I_{p k}(\text { switch })\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right) \\
& 8 V_{\text {ripple }}(\mathrm{p}-\mathrm{p}) \\
& \hline
\end{aligned}
\] & \(\simeq I_{\text {out }}{ }^{\text {on }}\) ( \(N_{\text {ripple }}(p-p)\) \\
\hline
\end{tabular}
\(\mathrm{V}_{\text {sat }}=\) Saturation voltage of the output switch.
\(V_{F}=\) Forward voltage drop of the output rectifier.

\section*{The following power supply characteristics must be chosen:}
\(\mathbf{V}_{\mathbf{i n}}\) - Nominal input voltage.
\(\mathrm{V}_{\text {out }}-\) - Desired output voltage, \(\left|\mathrm{V}_{\text {out }}\right|=1.25(1+\mathrm{R} 2 / \mathrm{R} 1)\)
Iout - Desired output current.
\(\mathrm{f}_{\min }\) - Minimum desired output switching frequency at the selected values of \(\mathrm{V}_{\mathrm{in}}\) and \(\mathrm{I}_{\mathrm{O}}\).
Vripple(p-p) - Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

\section*{MOTOROLA}

\section*{Product Preview}

\section*{UNDERVOLTAGE SENSING CIRCUIT}

The MC34064 is an undervoltage sensing circuit specifically designed for use as a reset controller in microprocessor-based systems. It offers the designer an economical solution for low voltage detection with a single external resistor. The MC34064 features a trimmed-in-package bandgap reference, and a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation. The open collector reset output is capable of sinking in excess of 10 mA , and operation is guaranteed down to 1.0 volt input with low standby current. These devices are packaged in 3-pin TO-226AA and 8-pin surface mount packages.

Applications include direct monitoring of the 5.0 volt MPU/logic power supply used in appliance, automotive, consumer and industrial equipment.
- Trimmed-In-Package Temperature Compensated Reference
- Precise Comparator Thresholds Guaranteed Over Temperature
- Comparator Hysteresis Prevents Erratic Reset
- Reset Output Capable of Sinking in Excess of 10 mA
- Internal Clamp Diode for Discharging Delay Capacitor
- Guaranteed Reset Operation with 1.0 Volt Input
- Low Standby Current
- Economical TO-226AA and Surface Mount Packages

\section*{REPRESENTATIVE BLOCK DIAGRAM}


Pin numbers adjacent to terminals are for the 3-pin TO-226AA package. Pin numbers in parenthesis are for the \(D\) suffix SO-8 package.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ORDERING INFORMATION} \\
\hline Device & Temperature Range & Package \\
\hline MC34064D-5 & \multirow[b]{2}{*}{\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)} & Plastic SO-8 \\
\hline MC34064P-5 & & Plastic TO-226AA \\
\hline MC33064D-5 & \multirow[b]{2}{*}{\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)} & Plastic SO-8 \\
\hline MC33064P-5 & & Plastic TO-226AA \\
\hline
\end{tabular}

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Input Supply Voltage & \(V_{\text {in }}\) & -1.0 to 10 & V \\
\hline \(\overline{\text { Reset Output Voltage }}\) & \(\mathrm{V}_{\mathrm{O}}\) & 10 & V \\
\hline \(\overline{\text { Reset Output Sink Current }}\) & ISink & Internally Limited & mA \\
\hline Clamp Diode Forward Current, Pin 1 to 2 (Note 1) & IF & 100 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
P Suffix, Plastic Package \\
Maximum Power Dissipation (a) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction to Air \\
D Suffix, Plastic Package \\
Maximum Power Dissipation (a \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Air
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \(\mathrm{R}_{\theta \mathrm{JA}}\) \\
\(P_{D}\) \(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \[
\begin{aligned}
& 625 \\
& 200 \\
& 625 \\
& 200 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mWW} \\
& { }^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{~mW} \\
& { }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
\] \\
\hline Operating Junction Temperature & TJ & + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature MC34064 \\
MC33064
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Notes 2 and 3].
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{COMPARATOR} \\
\hline Threshold Voltage High State Output ( \(\mathrm{V}_{\text {in }}\) Increasing) Low State Output (Vin Decreasing) Hysteresis & \[
\begin{aligned}
& V_{I H} \\
& V_{I L} \\
& V_{H}
\end{aligned}
\] & \[
\begin{gathered}
4.5 \\
4.5 \\
0.01
\end{gathered}
\] & \[
\begin{aligned}
& 4.61 \\
& 4.59 \\
& 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 4.7 \\
& 4.7 \\
& 0.05
\end{aligned}
\] & V \\
\hline
\end{tabular}

\section*{RESET OUTPUT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Sink Saturation
\[
\begin{aligned}
& \left(\mathrm{V}_{\text {in }}=4.0 \mathrm{~V}, \mathrm{I}_{\text {Sink }}=8.0 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\text {in }}=4.0 \mathrm{~V}, \mathrm{I}_{\text {Sink }}=2.0 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\text {in }}=1.0 \mathrm{~V}, \mathrm{I}_{\text {Sink }}=0.1 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & — & \[
\begin{aligned}
& 0.46 \\
& 0.15
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 0.4 \\
& 0.1
\end{aligned}
\] & V \\
\hline Output Sink Current ( \(\mathrm{V}_{\text {in }}, \overline{\text { Reset }}=4.0 \mathrm{~V}\) ) & ISink & 10 & 27 & 60 & mA \\
\hline Output Off-State Leakage ( \(\mathrm{V}_{\text {in }}, \overline{\text { Reset }}=5.0 \mathrm{~V}\) ) & \({ }^{\mathrm{I}} \mathrm{OH}\) & - & 0.02 & 0.5 & \(\mu \mathrm{A}\) \\
\hline Clamp Diode Forward Voltage, Pin 1 to \(2\left(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)\) & \(V_{F}\) & 0.6 & 0.9 & 1.2 & V \\
\hline
\end{tabular}

TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Operating Input Voltage Range & \(\mathrm{V}_{\text {in }}\) & 1.0 to 6.5 & - & - & V \\
\hline Quiescent Input Current \(\left(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}\right)\) & \(\mathrm{l}_{\text {in }}\) & - & 390 & 500 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{NOTES:}
1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34064 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34064
\(=-40^{\circ} \mathrm{C}\) for MC33064 \(=+85^{\circ} \mathrm{C}\) for MC33064

FIGURE 1 - \(\overline{\text { RESET OUTPUT VOLTAGE versus }}\) INPUT VOLTAGE


FIGURE 3 - COMPARATOR THRESHOLD VOLTAGE versus TEMPERATURE


FIGURE 5 - \(\overline{\text { RESET OUTPUT SATURATION versus }}\) SINK CURRENT


FIGURE \(2-\overline{\text { RESET OUTPUT VOLTAGE versus }}\) INPUT VOLTAGE


FIGURE 4 - INPUT CURRENT versus INPUT VOLTAGE


FIGURE 6 - CLAMP DIODE FORWARD CURRENT versus VOLTAGE


FIGURE 7 - LOW VOLTAGE MICROPROCESSOR RESET


FIGURE 8 - VOLTAGE MONITOR


FIGURE 9 - SOLAR POWERED BATTERY CHARGER


FIGURE 10 - LOW POWER SWITCHING REGULATOR


\section*{Product Preview}

\section*{HIGH PERFORMANCE DUAL CHANNEL CURRENT MODE CONTROLLER}

The MC34065 series are high performance, fixed frequency, dual current mode controllers. They are specifically designed for Off-Line and DC to DC converter applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature a unique oscillator for precise duty cycle limit and frequency control, a temperature compensated reference, two high gain error amplifiers, two current sensing comparators, drive output 2 enable pin, and two high current totem pole outputs ideally suited for driving power MOSFETs.
Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-bycycle current limiting, and a latch for single pulse metering of each output.
These devices are available in dual-in-line and surface mount packages.
- Unique Oscillator for Precise Duty Cycle Limit and Frequency Control
- Current Mode Operation to 500 kHz
- Automatic Feed Forward Compensation
- Separate Latching PWMs for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- Drive Output 2 Enable Pin
- Two High Current Totem Pole Outputs
- Input Undervoltage Lockout with Hysteresis
- Low Start-Up and Operating Current
- Direct Interface with Motorola SENSEFET Products


\footnotetext{
This document contains information on a product under development. Motorola reserves the right
to change or discontinue this product without notice.
}

\section*{HIGH PERFORMANCE DUAL CHANNEL CURRENT MODE CONTROLLER}

SILICON MONOLITHIC INTEGRATED CIRCUIT

\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION } \\
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Temperature \\
Range
\end{tabular} & \multicolumn{1}{|c|}{ Package } \\
\hline MC34065DW & \multirow{2}{*}{0 to \(+70^{\circ} \mathrm{C}\)} & SO-16 \\
MC34065P & & Plastic DIP \\
\hline\(y n y\) & MC33065DW & \multirow{2}{*}{-40 to \(+85^{\circ} \mathrm{C}\)} \\
\cline { 1 - 1 } MC33065P & & SO-16 \\
\hline
\end{tabular}

\section*{MC34065, MC33065}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & ( \(\mathrm{CCC}+\mathrm{Iz}\) ) & 50 & mA \\
\hline Output Current, Source or Sink (Note 1) & 10 & 1.0 & A \\
\hline Output Energy (Capacitive Load per Cycle) & w & 5.0 & \(\mu \mathrm{J}\) \\
\hline Current Sense, Enable, and Voltage Feedback Inputs & \(\mathrm{v}_{\text {in }}\) & -0.3 to +5.5 & v \\
\hline \begin{tabular}{l}
Sync Input \\
High State (Voltage) \\
Low State (Reverse Current)
\end{tabular} & \[
V_{I H}
\] & \[
\begin{array}{r}
5.5 \\
-5.0
\end{array}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline Error Amp Output Sink Current & 10 & 10 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics DW Suffix Package SO-16 Case 751G-01 Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance Junction to Air \\
P Suffix Package Case 648-06 Maximum Power Dissipation @ \(T_{A}=25^{\circ} \mathrm{C}\) Thermal Resistance Junction to Air
\end{tabular} & \[
\begin{gathered}
\mathrm{P}_{\mathrm{D}} \\
\mathrm{R}_{\theta \mathrm{AJ}} \\
\mathrm{P}_{\mathrm{D}} \\
\mathrm{R}_{\theta \mathrm{AJA}}
\end{gathered}
\] & \[
\begin{array}{r}
862 \\
145 \\
\\
1.25 \\
100 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} W \\
\mathrm{~W} \\
\mathrm{~W} \\
{ }^{\circ} \mathrm{CW} \\
\hline
\end{gathered}
\] \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temperature MC34065 \\
MC33065
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=15 \mathrm{~V}\right.\) [Note 2\(], \mathrm{R}_{\boldsymbol{T}}=8.2 \mathrm{k} \Omega, \mathrm{C}_{\boldsymbol{T}}=3.3 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\min / \mathrm{max}\) values \(T_{A}\) is the operating ambient temperature range that applies [Note 3].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTION} \\
\hline Reference Output Voltage ( \(\mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & \(V_{\text {ref }}\) & 4.9 & 5.0 & 5.1 & V \\
\hline Line Regulation ( \(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}\) to 15 V ) & Regline & - & 2.0 & 20 & mV \\
\hline Load Regulation ( \(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\) to 10 mA ) & Regload & - & 3.0 & 25 & mV \\
\hline Total Output Variation over Line, Load, and Temperature & \(V_{\text {ref }}\) & 4.85 & - & 5.15 & V \\
\hline Output Short Circuit Current & ISC & 30 & 100 & - & mA \\
\hline
\end{tabular}

OSCILLATOR and PWM SECTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Total Frequency Variation over Line and Temperature \(\left(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}\right.\) to \(15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\left.T_{\text {high }}\right)\) MC34065 MC33065 & fosc & \[
\begin{gathered}
46.5 \\
45
\end{gathered}
\] & \[
\begin{aligned}
& 49 \\
& 49
\end{aligned}
\] & \[
\begin{gathered}
51.5 \\
53
\end{gathered}
\] & kHz \\
\hline Frequency Change with Voltage ( \(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}\) to 15 V ) & \(\Delta \mathrm{fosc} / \Delta \mathrm{V}\) & - & 0.2 & 1.0 & \% \\
\hline Duty Cycle at each Output Maximum Minimum & DC max DC min & 46 & 49.5 & \[
\begin{gathered}
52 \\
0
\end{gathered}
\] & \% \\
\hline \begin{tabular}{l}
Sync Input Current \\
High State ( \(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\) ) \\
Low State ( \(\mathrm{V}_{\mathrm{in}}=0.8 \mathrm{~V}\) )
\end{tabular} & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IH}} \\
& \mathrm{I}^{2}
\end{aligned}
\] & - & \[
\begin{aligned}
& 170 \\
& 80 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 250 \\
& 160
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

ERROR AMPLIFIERS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Voltage Feedback Input ( \(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\) ) & \(\mathrm{V}_{\mathrm{FB}}\) & 2.42 & 2.5 & 2.58 & V \\
\hline Input Bias Current ( \(\mathrm{V}_{\mathrm{FB}}=5.0 \mathrm{~V}\) ) & IB & - & -0.1 & -1.0. & \(\mu \mathrm{A}\) \\
\hline Open-Loop Voltage Gain ( \(\mathrm{V}_{\mathrm{O}}=2.0\) to 4.0 V ) & Avol & 65 & 100 & - & dB \\
\hline Unity Gain Bandwidth ( \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\) ) & BW & 0.7 & 1.0 & - & MHz \\
\hline Power Supply Rejection Ratio ( \(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}\) to 15 V ) & PSRR & 60 & 90 & - & dB \\
\hline \[
\begin{aligned}
& \text { Output Current } \\
& \text { Source }\left(\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\right) \\
& \text { Sink }\left(\mathrm{V}_{\mathrm{O}}=1.2 \mathrm{~V}, \mathrm{~V}_{F B}=2.7 \mathrm{~V}\right)
\end{aligned}
\] & ISource ISink & \[
\begin{gathered}
-0.45 \\
2.0
\end{gathered}
\] & \[
\begin{gathered}
-1.0 \\
12
\end{gathered}
\] & & mA \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State ( \(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to ground, \(\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) \\
Low State ( \(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to \(\mathrm{V}_{\text {ref }} \mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) )
\end{tabular} & \[
\mathrm{v}_{\mathrm{OH}}
\]
\[
V_{\mathrm{OL}}
\] & 5.0 & \[
\begin{aligned}
& 6.2 \\
& 0.8
\end{aligned}
\] & \(\overline{1.1}\) & V \\
\hline
\end{tabular}

Notes: 1. Maximum package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Start-Up threshold before setting to 15 V
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for the MC34065 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34065 \(=-40^{\circ} \mathrm{C}\) for MC33065 \(\begin{aligned} & =+85^{\circ} \mathrm{C} \text { for MC33065 }\end{aligned}\)

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=15 \mathrm{~V}\right.\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=8.2 \mathrm{k} \Omega, \mathrm{C}_{\boldsymbol{T}}=3.3 \mathrm{nF}\), for typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\min / \mathrm{max}\) values \(T_{A}\) is the operating ambient temperature range that applies [Note 3].)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{CURRENT SENSE SECTION} \\
\hline Current Sense Input Voltage Gain (Notes 4 and 5) & AV & 2.75 & 3.0 & 3.25 & V/V \\
\hline Maximum Current Sense Input Threshold (Note 4) & \(\mathrm{V}_{\text {th }}\) & 430 & 480 & 530 & mV \\
\hline Input Bias Current & IIB & - & -2.0 & \(-10\) & \(\mu \mathrm{A}\) \\
\hline Propagation Delay (Current Sense Input to Output) & tPLN(IN/OUT) & - & 150 & 300 & ns \\
\hline
\end{tabular}

\section*{DRIVE OUTPUT 2 ENABLE PIN}
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l} 
Enable Pin Voltage \\
High State (Output 2 Enabled) \\
Low State (Output 2 Disabled)
\end{tabular} & \(\mathrm{V}_{\mathrm{IH}}\) & 3.5 & - & \(\mathrm{V}_{\text {ref }}\) \\
\hline Low State Input Current ( \(\left.\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{IL}}\) & 0 & - & V \\
\hline
\end{tabular}

\section*{DRIVE OUTPUTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { Output Voltage } \\
& \text { Low State (ISink }=20 \mathrm{~mA} \text { ) } \\
& \text { (ISink }=200 \mathrm{~mA} \text { ) } \\
& \text { High State }(\text { ISource }=20 \mathrm{~mA}) \\
& \text { (ISource }=200 \mathrm{~mA})
\end{aligned}
\]} & & & & & \multirow[t]{5}{*}{V} \\
\hline & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.1 & 0.4 & \\
\hline & & - & 1.6 & 2.5 & \\
\hline & \(\mathrm{V}_{\mathrm{OH}}\) & 13 & 13.5 & - & \\
\hline & & 12 & 13.4 & - & \\
\hline Output Voltage with UVLO Activated
\[
\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{I}_{\text {Sink }}=1.0 \mathrm{~mA}\right)
\] & Vol(UVLO) & - & 0.1 & 1.1 & V \\
\hline Output Voltage Rise Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) ) & \(\mathrm{tr}_{r}\) & - & 28 & 150 & ns \\
\hline Output Voltage Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}\) ) & \(t_{f}\) & - & 25 & 150 & ns \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Start-Up Threshold & \(\mathrm{V}_{\mathrm{th}}\) & 13 & 14 & 15 & V \\
\hline Minimum Operating Voltage After Turn-On & \(\mathrm{V}_{\mathrm{CC}(\mathrm{min})}\) & 9.0 & 10 & 11 & V \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l} 
Power Supply Current \\
Start-Up (VCC = 12 V) \\
Operating (Note 2)
\end{tabular} & ICC & & & mA \\
\hline Power Supply Zener Voltage (ICC \(=30 \mathrm{~mA}\) ) & & - & 0.6 & 1.0 \\
25 & \\
\hline
\end{tabular}

Notes: 1. Maximum package power dissipation limits must be observed.
2. Adjust \(V_{C C}\) above the Start-Up threshold before setting to 15 V .
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

Tlow \(=0^{\circ} \mathrm{C}\) for the MC34065
Thigh \(=+70^{\circ} \mathrm{C}\) for MC34065
4. This parameter is measured at the latch trip point with \(\mathrm{V}_{\mathrm{fb}}=0 \mathrm{~V}\).
5. Comparator gain is defined as \(A_{V}=\frac{\Delta V \text { Compensation }}{\Delta V \text { Current Sense }}\)

FIGURE 1 - TIMING RESISTOR versus OSCILLATOR FREQUENCY


FIGURE 2 - MAXIMUM OUTPUT DUTY CYCLE versus OSCILLATOR FREQUENCY


FIGURE 3 - ERROR AMP SMALL-SIGNAL TRANSIENT RESPONSE

\(1.0 \mu \mathrm{~s} / \mathrm{DIV}\)

FIGURE 5 - ERROR AMP OPEN-LOOP GAIN AND
PHASE versus FREQUENCY


FIGURE 7 - REFERENCE VOLTAGE CHANGE versus SOURCE CURRENT


FIGURE 4 - ERROR AMP LARGE-SIGNAL TRANSIENT RESPONSE

\(1.0 \mu \mathrm{~s} / \mathrm{DIV}\)

FIGURE 6 - CURRENT SENSE INPUT THRESHOLD versus ERROR AMP OUTPUT VOLTAGE


FIGURE 8 - REFERENCE SHORT CIRCUIT CURRENT versus TEMPERATURE


FIGURE 9 - REFERENCE LOAD REGULATION

\(1.0 \mathrm{~ms} / \mathrm{DIV}\)

FIGURE 11 - OUTPUT SATURATION VOLTAGE versus LOAD CURRENT


FIGURE 13 - OUTPUT CROSS-CONDUCTION


FIGURE 10 - REFERENCE LINE REGULATION

\(1.0 \mathrm{~ms} / \mathrm{DIV}\)

FIGURE 12 - OUTPUT WAVEFORM

\(50 \mathrm{~ns} / \mathrm{DIV}\)

FIGURE 14 - SUPPLY CURRENT versus SUPPLY VOLTAGE


\section*{OPERATING DESCRIPTION}

The MC34065 series are high performance, fixed frequency, dual channel current mode controllers specifically designed for Off-Line and DC to DC converter applications. These devices offer the designer a cost effective solution with minimal external components where independent regulation of two power converters is required. The Representative Block Diagram is shown in Figure 15. Each channel contains a high gain error amplifier, current sensing comparator, pulse width modulator latch, and totem pole output driver. The oscillator, reference regulator, and undervoltage lockout circuits are common to both channels.

\section*{Oscillator}

The unique oscillator configuration employed features precise frequency and duty cycle control. The frequency is programmed by the values selected for the timing components \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). Capacitor \(\mathrm{C}_{\mathrm{T}}\) is charged and discharged by an equal magnitude internal current source and sink, generating a symmetrical 50 percent duty cycle waveform at Pin 2. The oscillator peak and valley thresholds are 3.5 V and 1.6 V respectively. The source/sink current magnitude is controlled by resistor \(\mathrm{R}_{\mathrm{T}}\). For proper operation over temperature it must be in the range of \(4.0 \mathrm{k} \Omega\) to \(16 \mathrm{k} \Omega\) as shown in Figure 1.

As \(\mathrm{C}_{\mathrm{T}}\) charges and discharges, an internal blanking pulse is generated that alternately drives the center inputs of the upper and lower NOR gates high. This, in conjunction with a precise amount of delay time introduced into each channel, produces well defined nonoverlapping output duty cycles. Output 2 is enabled while \(C_{T}\) is charging, and Output 1 is enabled during the discharge. Figure 2 shows the Maximum Output Duty Cycle versus Oscillator Frequency. Note that even at 500 kHz , each output is capable of approximately \(44 \%\) on-time, making this controller suitable for high frequency power conversion applications.
In many noise sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a clock signal as shown in Figure 17. For reliable locking, the free-running oscillator frequency should be set about \(10 \%\) less than the clock frequency. Referring to the timing diagram shown in Figure 16, the rising edge of the clock signal applied to the Sync input, terminates charging of \(\mathrm{C}_{\mathrm{T}}\) and Drive Output 2 conduction. By tailoring the clock waveform symmetry, accurate duty cycle clamping of either output can be achieved. A circuit method for this, and multi unit synchronization, is shown in Figure 18.

\section*{Error Amplifier}

Each channel contains a fully-compensated Error Amplifier with access to the inverting input and output. The amplifier features a typical dc voltage gain of 100 dB , and a unity gain bandwidth of 1.0 MHz with 71 degrees of phase margin (Figure 5). The non-inverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input through a resistor divider. The maximum input bias current is \(-1.0 \mu \mathrm{~A}\) which will cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance.

The Error Amp output (Pin 5, 12) is provided for external loop compensation. The output voltage is offset by two diode drops ( \(\approx 1.4 \mathrm{~V}\) ) and divided by three before it connects to the inverting input of the Current Sense Comparator. This guarantees that no pulses appear at the Drive Output (Pin 7, 10) when the error amplifier output is at its lowest state ( \(\mathrm{V}_{\mathrm{OL}}\) ). This occurs when the power supply is operating and the load is removed, or at the beginning of a soft-start interval (Figures 20, 21).
The minimum allowable Error Amp feedback resistance is limited by the amplifier's source current ( 0.5 mA ) and the output voltage \(\left(\mathrm{V}_{\mathrm{OH}}\right)\) required to reach the comparator's 0.5 V clamp level with the inverting input at ground. This condition happens during initial system startup or when the sensed output is shorted:
\[
\mathrm{R}_{\mathrm{f}(\mathrm{MIN})} \approx \frac{3.0(0.5 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=5800 \Omega
\]

\section*{Current Sense Comparator and PWM Latch}

The MC34065 operates as a current mode controller, whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier output. Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The Current Sense Comparator-PWM Latch configuration used ensures that only a single pulse appears at the Drive Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting a groundreferenced sense resistor \(R_{S}\) in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input (Pin 6, 11) and compared to a level derived from the Error Amp output. The peak inductor current under normal operating conditions is controlled by the voltage at \(\operatorname{Pin} 5,12\) where:
\[
I_{p k}=\frac{V(\operatorname{Pin} 5,12)-1.4 \mathrm{~V}}{3 R_{S}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 0.5 V . Therefore the maximum peak switch current is:
\[
\operatorname{Ipk}(\max )=\frac{0.5 \mathrm{~V}}{\mathrm{R}_{\mathrm{S}}}
\]

When designing a high power switching regulator it may be desirable to reduce the internal clamp voltage in order to keep the power dissipation of RS to a reasonable level. A simple method to adjust this voltage is shown in Figure 19. The two external diodes are used to compensate the internal diodes, yielding a constant clamp voltage over temperature. Erratic operation due to noise pickup can result if there is an excessive reduction of the \(\mathrm{I}_{\mathrm{pk}(\max )}\) clamp voltage.

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Current Sense input with a time constant that approximates the spike duration will usually eliminate the instability; refer to Figure 24.

FIGURE 15 - REPRESENTATIVE BLOCK DIAGRAM


FIGURE 16 - TIMING DIAGRAM


\section*{Undervoltage Lockout}

Two Undervoltage Lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stages are enabled. The positive power supply terminal \(\left(\mathrm{V}_{\mathrm{C}}\right)\) and the reference output ( \(\mathrm{V}_{\text {ref }}\) ) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The \(V_{\text {CC }}\) comparator upper and lower thresholds are 14 V and 10 V respectively. The hysteresis and low start-up current makes these devices ideally suited to off-line converter applications where efficient bootstrap startup techniques are required (Figure 28). The \(V_{\text {ref }}\) comparator disables the Drive Outputs until the internal circuitry is functional. This comparator has upper and lower thresholds of 3.6 V and 3.4 V . A 17 V zener is connected as a shunt regulator from \(V_{C C}\) to ground. Its purpose is to protect the IC and power MOSFET gate from excessive voltage that can occur during systemi start-up. The guaranteed minimum operating voltage after turn-on is 11 V .

\section*{Drive Outputs and Drive Ground}

Each channel contains a single totem-pole output stage that is specifically designed for direct drive of power MOSFET's. The Drive Outputs are capable of up to \(\pm 10\) A peak current and have a typical rise and fall times of 28 ns with a 1.0 nF load. Internal circuitry has been added to keep the outputs in a sinking mode whenever an Undervoltage Lockout is active. This characteristic eliminates the need for an external pull-down resistor. Cross-conduction current in the totem-pole output stage has been minimized for high speed operation, as shown in Figure 13. The average added power due to cross-conduction with \(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}\) is only 60 mW at 500 kHz .
Although the Drive Outputs were optimized for MOSFETs, they can easily supply the negative base current required by bipolar NPN transistors for enhanced turn-off (Figure 25). The outputs do not contain internal current limiting, therefore an external series resistor may be required to prevent the peak output current from exceeding the \(\pm 1.0 \mathrm{~A}\) maximum rating. The sink saturation \(\left(\mathrm{V}_{\mathrm{OL}}\right)\) is less than 0.4 V at 100 mA .

FIGURE 17 - EXTERNAL CLOCK SYNCHRONIZATION


The external diode clamp is required if the negative Sync current is greater than -5.0 mA .

A separate Drive Ground pin is provided and, with proper implementation, will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomes particularly useful when reducing the \(I_{\mathrm{pk}}\) (max) clamp level. Figure 23 shows the proper ground connections required for current sensing power MOSFET applications.

\section*{Drive Output 2 Enable Pin}

This input is used to enable Drive Output 2. Drive Output 1 can be used to control circuitry that must run continuously such as volatile memory and the system clock, or a remote controlled receiver, while Drive Output 2 controls the high power circuitry that is occasionally turned off.

\section*{Reference}

The 5.0 V bandgap reference is trimmed to \(\pm 2.0 \%\) tolerance at \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\). The reference has short circuit protection and is capable of providing in excess of 30 mA for powering any additional control system circuitry.

\section*{Design Considerations}

Do not attempt to construct the converter on wirewrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulsewidth jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with low current signal and high current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors ( \(0.1 \mu F\) ) connected directly to \(\mathrm{V}_{\mathrm{C}}\) and \(\mathrm{V}_{\text {ref }}\) may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage-divider should be located close to the IC and as far as possible from the power switch and other noise generating components.

FIGURE 18 - EXTERNAL DUTY CYCLE CLAMP AND MULTI UNIT SYNCHRONIZATION


FIGURE 19 - ADJUSTABLE REDUCTION OF CLAMP LEVEL


FIGURE 21 - ADJUSTABLE REDUCTION OF CLAMP LEVEL WITH SOFT-START


FIGURE 20 - SOFT-START CIRCUIT


FIGURE 22 - MOSFET PARASITIC OSCILLATIONS


Series gate resistor \(R_{g}\) may be needed to damp high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit. \(\mathrm{R}_{\mathrm{g}}\) will decrease the MOSFET switching speed. Schottky diode \(D_{1}\)
is required if circuit ringing drives the output pin below ground.

FIGURE 23 - CURRENT SENSING POWER MOSFET


FIGURE 24 - CURRENT WAVEFORM SPIKE SUPPRESSION


FIGURE 25 - BIPOLAR TRANSISTOR DRIVE
FIGURE 26 - ISOLATED MOSFET DRIVE


The totem-pole outputs can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor \(\mathrm{C}_{1}\).


FIGURE 27 - DUAL CHARGE PUMP CONVERTER


The capacitor is equivalent series resistance must limit the Drive Output current to 1.0 A .
An additional series resistor may be required when using tantalum or other low ESR
capacitors. The positive output can provide excellent line and load regulation by
connecting the R2/R1 resistor divider as shown.


PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin \# & Function & Description \\
\hline 1 & Sync Input & A narrow rectangular waveform applied to this input will synchronize the Oscillator. A dc voltage within the range of 2.4 V to 5.5 V will inhibit the Oscillator. \\
\hline 2 & \(\mathrm{C}_{T}\) & Timing capacitor \(\mathrm{C}_{\mathrm{T}}\) connects from this pin to ground setting the free-running Oscillator frequency range. \\
\hline 3 & \(\mathrm{R}_{\mathrm{T}}\) & Resistor \(\mathrm{R}_{\mathrm{T}}\) connects from this pin to ground precisely setting the charge current for \(\mathrm{C}_{\mathrm{T}} . \mathrm{R}_{\mathrm{T}}\) must be between 4.0 k and 16 k . \\
\hline 4 & Voltage Feedback 1 & This pin is the inverting input of Error Amplifier 1. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 5 & Compensation 1 & This pin is the output of Error Amplifier 1 and is made available for loop compensation. \\
\hline 6 & Current Sense 1 & A voltage proportional to the inductor current is connected to this input. PWM 1 uses this information to terminate conduction of output switch Q1. \\
\hline 7 & Drive Output 1 & This pin directly drives the gate of a power MOSFET Q1. Peak currents up to 1.0 A are sourced and sinked by this pin. \\
\hline 8 & Gnd & This pin is the control circuitry ground return and is connected back to the source ground. \\
\hline 9 & Drive Gnd & This pin is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline 10 & Drive Output 2 & This pin directly drives the gate of a power MOSFET Q2. Peak currents up to 1.0 A are sourced and sinked by this pin. \\
\hline 11 & Current Sense 2 & A voltage proportional to inductor current is connected to this input. PWM 2 uses this information to terminate conduction of output switch Q2. \\
\hline 12 & Compensation 2 & This pin is the output of Error Amplifier 2 and is made available for loop compensation. \\
\hline 13 & Voltage Feedback 2 & This pin in the inverting input of Error Amplifier 2. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 14 & Drive Output 2 Enable & A logic low at this input disables Drive Output 2. \\
\hline 15 & \(V_{\text {ref }}\) & This is the 5.0 V reference output. It can provide bias for any additional system circuitry. \\
\hline 16 & \(V_{\text {CC }}\) & This pin is the positive supply of the control IC. The minimum operating voltage range after start-up is 11 V to 15.5 V . \\
\hline
\end{tabular}

\section*{Advance Information}

\section*{HIGH PERFORMANCE CURRENT MODE CONTROLLER}

The MC34129 series are high performance current mode switching regulators specifically designed for use in low power digital telephone applications. These integrated circuits feature a unique internal fault timer that provides automatic restart for overload recovery. For enhanced system efficiency, a start/run comparator is included to implement bootstrapped operation of \(\mathrm{V}_{\mathrm{CC}}\). Other functions contained are a temperature compensated reference, reference amplifier, fully accessible error amplifier, sawtooth oscillator with sync input, pulse width modulator comparator, and a high current totem pole driver ideally suited for driving a power MOSFET.

Also included are protective features consisting of soft-start, undervoltage lockout, cycle-by-cycle current limiting, adjustable dead time, and a latch for single pulse metering.

Although these devices are primarily intended for use in digital telephone systems, they can be used cost effectively in many other applications.
- Current Mode Operation to 300 kHz
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-By-Cycle Current Limiting
- Continuous Retry after Fault Timeout
- Soft-Start with Maximum Peak Switch Current Clamp
- Internally Trimmed 2\% Bandgap Reference
- High Current Totem Pole Driver
- Input Undervoltage Lockout
- Low Start-Up and Operating Current
- Direct Interface with Motorola SENSEFET Products


This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATING
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \(\mathrm{V}_{\text {CC }}\) Zener Current & \(\mathrm{I}\left(\mathrm{V}_{\mathrm{CC}}\right)\) & 50 & mA \\
\hline Start/Run Output Zener Current & IZ(Start/Run) & 50 & mA \\
\hline Analog Inputs (Pins 3, 5, 9, 10, 11, 12) & - & -0.3 to 5.5 & V \\
\hline Sync Input Voltage & \(\mathrm{V}_{\text {sync }}\) & -0.3 to \(V_{\text {CC }}\) & V \\
\hline Drive Output Current, Source or Sink & IDRV & 1.0 & A \\
\hline Current, Reference Outputs (Pins 6, 8) & Iref & 20 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
D Suffix Package SO-14 Case 751A-02 \\
Maximum Power Dissipation \(@_{\mathrm{A}} \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Air \\
P Suffix Package Case 646-06 \\
Maximum Power Dissipation \({ }^{(a)} \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Air
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \(R_{\theta J A}\) \\
\(P_{D}\) \(R_{\theta J A}\)
\end{tabular} & \[
\begin{aligned}
& 552 \\
& 145 \\
& \\
& 800 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mW} \\
& { }^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{~mW} \\
& { }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature
\[
\begin{aligned}
& \text { MC34129 } \\
& \text { MC33129 }
\end{aligned}
\] & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-40 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V} C \mathrm{CC}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) [Note 1] unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REFERENCE SECTIONS} \\
\hline \[
\begin{aligned}
& \text { Reference Output Voltage, } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& 1.25 \mathrm{~V} \text { Ref., } \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA} \\
& 2.50 \mathrm{~V} \text { Ref., } \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & \(V_{\text {ref }}\) & \[
\begin{aligned}
& 1.225 \\
& 2.375
\end{aligned}
\] & \[
\begin{aligned}
& 1.250 \\
& 2.500
\end{aligned}
\] & \[
\begin{aligned}
& 1.275 \\
& 2.625
\end{aligned}
\] & V \\
\hline ```
Reference Output Voltage, \(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
    1.25 V Ref., \(\mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}\)
    2.50 V Ref., \(\mathrm{I}_{\mathrm{L}}=1.0 \mathrm{~mA}\)
``` & \(V_{\text {ref }}\) & \[
\begin{aligned}
& 1.200 \\
& 2.250
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.300 \\
& 2.750
\end{aligned}
\] & V \\
\hline \[
\begin{aligned}
& \text { Line Regulation }(\mathrm{V} \mathrm{CC}=4.0 \mathrm{~V} \text { to } 12 \mathrm{~V}) \\
& \text { 1.25 V Ref., } \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA} \\
& 2.50 \mathrm{~V} \text { Ref., } \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{~mA}
\end{aligned}
\] & Regline & - & \[
\begin{gathered}
2.0 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& 12 \\
& 50
\end{aligned}
\] & mV \\
\hline Load Regulation
\[
\begin{aligned}
& \text { 1.25 V Ref., } I_{\mathrm{L}}=-10 \text { to }+500 \mu \mathrm{~A} \\
& 2.50 \mathrm{~V} \text { Ref., } \mathrm{I}_{\mathrm{L}}=-0.1 \text { to }+1.0 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 1.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 25
\end{aligned}
\] & mV \\
\hline
\end{tabular}

\section*{ERROR AMPLIFIER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Input Offset Voltage }\left(\mathrm{V}_{\mathrm{in}}=1.25 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & V10 & & 1.5 & \[
10
\] & mV \\
\hline Input Offset Current (\(\mathrm{V}_{\text {in }}=1.25 \mathrm{~V}\)) & 10 & - & 10 & - & nA \\
\hline Input Bias Current (\(\mathrm{V}_{\text {in }}=1.25 \mathrm{~V}\))
\[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & I'B & & \[
25
\] & \[
200
\] & nA \\
\hline Input Common-Mode Voltage Range & \(V_{\text {ICR }}\) & - & 0.5 to 5.5 & - & V \\
\hline Open-Loop Voltage Gain (\(\mathrm{V}_{\mathrm{O}}=1.25 \mathrm{~V}\)) & AVOL & 65 & 87 & - & dB \\
\hline Gain Bandwidth Product (\(\mathrm{V}_{\mathrm{O}}=1.25 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}\)) & GBW & 500 & 750 & - & kHz \\
\hline Power Supply Rejection Ratio (\(\mathrm{V}_{\mathrm{CC}}=5.0\) to 10 V) & PSRR & 65 & 85 & - & dB \\
\hline Output Source Current (\(\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}\)) & 'Source & 40 & 80 & - & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State (ISource \(=0 \mu \mathrm{~A}\)) \\
Low State (\({ }^{\text {Sink }}=500 \mu \mathrm{~A}\))
\end{tabular} & \[
\mathrm{v}_{\mathrm{OH}}
\]
\[
\mathrm{v}_{\mathrm{OL}}
\] & 1.75 & \[
\begin{gathered}
1.96 \\
0.1
\end{gathered}
\] & \[
\begin{aligned}
& 2.25 \\
& 0.15 \\
& \hline
\end{aligned}
\] & V \\
\hline
\end{tabular}

\footnotetext{
Note 1. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34129
\(T_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34129
\(=-40^{\circ} \mathrm{C}\) for MC33129
\(=+85^{\circ} \mathrm{C}\) for MC33129
}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) [Note 1] unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline PWM COMPARATOR \\
\hline Input Offset Voltage \(\left(V_{\text {in }}=1.25 \mathrm{~V}\right.\)) & \(\mathrm{V}_{1 \mathrm{O}}\) & 150 & 275 & 400 & mV \\
\hline Input Bias Current & I IB & - & -120 & -250 & \(\mu \mathrm{~A}\) \\
\hline Propagation Delay, Ramp Input to Drive Output & tPLH(IN/DRV) & - & 250 & - & ns \\
\hline
\end{tabular}

\section*{SOFT-START}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Capacitor Charge Current (Pin \(12=0 \mathrm{~V})\) & \(\mathrm{I}_{\mathrm{chg}}\) & 0.75 & 1.2 & 1.50 & \(\mu \mathrm{~A}\) \\
\hline Buffer Input Offset Voltage \(\left(\mathrm{V}_{\text {in }}=1.25 \mathrm{~V}\right)\) & \(\mathrm{V}_{\mathrm{IO}}\) & - & 15 & 40 & mV \\
\hline Buffer Output Voltage \(\left(I_{\text {Sink }}=100 \mu \mathrm{~A}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.15 & 0.225 & V \\
\hline
\end{tabular}

\section*{FAULT TIMER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Restart Delay Time & tDLY & 200 & 400 & 600 & \(\mu \mathrm{S}\) \\
\hline \multicolumn{6}{|l|}{START/RUN COMPARATOR} \\
\hline Threshold Voltage (Pin 12) & \(V_{\text {th }}\) & - & 2.0 & - & V \\
\hline Threshold Hysteresis Voltage (Pin 12) & \(\mathrm{V}_{\mathrm{H}}\) & - & 350 & - & mV \\
\hline Output Voltage (\({ }^{\text {S }}\) Sink \(=500 \mu \mathrm{~A}\)) & \(\mathrm{V}_{\mathrm{OL}}\) & 9.0 & 10 & 10.3 & V \\
\hline Output Off-State Leakage Current (\(\mathrm{V}_{\mathrm{OH}}=15 \mathrm{~V}\)) & IS/R(leak) & - & 0.4 & 2.0 & \(\mu \mathrm{A}\) \\
\hline Output Zener Voltage (\(\mathrm{Z}^{\prime}=10 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{Z}}\) & - & \(\left(\mathrm{V}_{\mathrm{CC}}+7.6\right)\) & - & V \\
\hline
\end{tabular}

OSCILLATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frequency (\(\mathrm{R}_{\mathrm{T}}=25.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}\)) & fosc & 80 & 100 & 120 & kHz \\
\hline Capacitor \(\mathrm{C}_{\mathrm{T}}\) Discharge Current (Pin \(5=1.2 \mathrm{~V}\)) & Idischg & 240 & 350 & 460 & \(\mu \mathrm{A}\) \\
\hline Sync Input Current High State (\(\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}\)) Low State (\(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\)) & \[
\begin{aligned}
& \mathrm{IIH}^{\prime} \\
& \mathrm{IIL}^{2}
\end{aligned}
\] & - & \[
\begin{aligned}
& 40 \\
& 15
\end{aligned}
\] & \[
\begin{gathered}
125 \\
35
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Sync Input Resistance & \(\mathrm{R}_{\text {in }}\) & 12.5 & 32 & 50 & k \(\Omega\) \\
\hline \multicolumn{6}{|l|}{DRIVE OUTPUT} \\
\hline \begin{tabular}{l}
Output Voltage \\
High State (ISource \(=200 \mathrm{~mA})\) \\
Low State (ISink \(=200 \mathrm{~mA}\))
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & \[
8.3
\] & \[
\begin{aligned}
& 8.9 \\
& 1.4
\end{aligned}
\] & \[
\overline{1.8}
\] & V \\
\hline Low State Holding Current & \({ }_{\mathrm{H}}^{\mathrm{H}}\) & - & 225 & - & \(\mu \mathrm{A}\) \\
\hline Output Voltage Rise Time (\(\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\)) & \(\mathrm{t}_{\mathrm{r}}\) & - & 100 & - & ns \\
\hline Output Voltage Fall Time (\(\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\)) & \(\mathrm{t}_{\mathrm{f}}\) & - & 30 & - & ns \\
\hline Output Pull-Down Resistance & RPD & 100 & 225 & 350 & k \(\Omega\) \\
\hline \multicolumn{6}{|l|}{UNDERVOLTAGE LOCKOUT} \\
\hline Start-Up Threshold & \(\mathrm{V}_{\text {th }}\) & 3.0 & 3.6 & 4.2 & V \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & 5.0 & 10 & 15 & \% \\
\hline \multicolumn{6}{|l|}{TOTAL DEVICE} \\
\hline Power Supply Current
\[
\mathrm{R}_{\mathrm{T}}=25.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}
\] & \({ }^{\prime} \mathrm{CC}\) & 1.0 & 2.5 & 4.0 & mA \\
\hline Power Supply Zener Voltage (\(\mathrm{I} \mathrm{Z}=10 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{Z}}\) & 12 & 14.3 & - & V \\
\hline
\end{tabular}

\footnotetext{
Note 1. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34129 \(\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34129
}

FIGURE 1 - TIMING RESISTOR versus OSCILLATOR FREQUENCY

FIGURE 3 - OSCILLATOR FREQUENCY CHANGE versus TEMPERATURE

FIGURE 5 - ERROR AMP SMALL-SIGNAL TRANSIENT RESPONSE

\(0.5 \mu \mathrm{~s} / \mathrm{DIV}\)

FIGURE 2 - OUTPUT DEAD-TIME versus OSCILLATOR FREQUENCY

FIGURE 4 - ERROR AMP OPEN-LOOP GAIN AND PHASE versus FREQUENCY

FIGURE 6 - ERROR AMP LARGE-SIGNAL TRANSIENT RESPONSE

FIGURE 9 - SOFT-START BUFFER OUTPUT SATURATION versus SINK CURRENT

FIGURE 11 - 1.25 V REFERENCE OUTPUT VOLTAGE

FIGURE 8 - ERROR AMP OUTPUT SATURATION versus SINK CURRENT

FIGURE 10 - REFERENCE OUTPUT VOLTAGE versus SUPPLY VOLTAGE

FIGURE 12 - 2.5 V REFERENCE OUTPUT VOLTAGE CHANGE versus SOURCE CURRENT

FIGURE 17 - SUPPLY CURRENT versus SUPPLY VOLTAGE

\begin{tabular}{|c|c|c|}
\hline Pin No. & Function & Description \\
\hline 1 & Drive Output & This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sinked by this pin. \\
\hline 2 & Drive Ground & This pin is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline 3 & Ramp Input & A voltage proportional to the inductor current is connected to this input. The PWM uses this information to terminate output switch conduction. \\
\hline 4 & Sync/Inhibit Input & A rectangular waveform applied to this input will synchronize the Oscillator and limit the maximum Drive Output duty cycle. A dc voltage within the range of 2.0 V to \(\mathrm{V}_{\mathrm{CC}}\) will inhibit the controller. \\
\hline 5 & \(\mathrm{R}_{T} / \mathrm{C}_{T}\) & The free-running Oscillator frequency and maximum Drive Output duty cycle are programmed by connecting resistor \(\mathrm{R}_{\mathrm{T}}\) to \(\mathrm{V}_{\text {ref }} 2.5 \mathrm{~V}\) and capacitor \(\mathrm{C}_{\boldsymbol{T}}\) to Ground. Operation to 300 kHz is possible. \\
\hline 6 & \(\mathrm{V}_{\text {ref }} 2.50 \mathrm{~V}\) & This output is derived from \(\mathrm{V}_{\text {ref }} 1.25 \mathrm{~V}\). It provides charging current for capacitor \(\mathrm{C}_{\boldsymbol{T}}\) through resistor \(\mathrm{R}_{\mathrm{T}}\). \\
\hline 7 & Ground & This pin is the control circuitry ground return and is connected back to the source ground. \\
\hline 8 & \(\mathrm{V}_{\text {ref }} 1.25 \mathrm{~V}\) & This output furnishes a voltage reference for the Error Amplifier Non-Inverting Input. \\
\hline 9 & Error Amp Non-Inverting Input & This is the non-inverting input of the Error Amplifier. It is normally connected to the 1.25 V reference. \\
\hline 10 & Error Amp Inverting Input & This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 11 & Feedback/PWM Input & This pin is available for loop compensation. It is connected to the Error Amplifier and Soft-Start Buffer outputs, and the Pulse Width Modulator input. \\
\hline 12 & CSoft-Start & A capacitor \(\mathrm{C}_{\text {Soft-Start }}\) is connected from this pin to Ground for a controlled ramp-up of peak inductor current during start-up. \\
\hline 13 & Start/Run Output & This output controls the state of an external bootstrap transistor. During the start mode, operating bias is supplied by the transistor from \(\mathrm{V}_{\mathrm{in}}\). In the run mode, the transistor is switched off and bias is supplied by an auxiliary power transformer winding. \\
\hline 14 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply of the control IC. The controller is functional over a minimum \(\mathrm{V}_{\mathrm{CC}}\) range of 4.2 V to 12 V . \\
\hline
\end{tabular}

\section*{OPERATING DESCRIPTION}

The MC34129 series are high performance current mode switching regulator controllers specifically designed for use in low power telecommunication applications. Implementation will allow remote digital telephones and terminals to shed their power cords and derive operating power directly from the twisted pair used for data transmission. Although these devices are primarily intended for use in digital telephone systems, they can be used cost effectively in a wide range of converter applications. A representative block diagram is shown in Figure 18.

\section*{OSCILLATOR}

The oscillator frequency is programmed by the values selected for the timing components \(R_{T}\) and \(C_{T}\). Capacitor \(\mathrm{C}_{\mathrm{T}}\) is charged from the 2.5 V reference through resistor \(\mathrm{R}_{\mathrm{T}}\) to approximately 1.25 V and discharged by an internal current sink to ground. During the discharge of \(\mathrm{C}_{\top}\), the oscillator generates an internal blanking pulse that holds the lower input of the NOR gate high. This causes the Drive Output to be in a low state, thus producing a controlled amount of output deadtime. Figure 1 shows Oscillator Frequency versus \(\mathrm{R}_{\mathrm{T}}\) and Figure 2, Output Deadtime versus Frequency, both for given values of \(C_{T}\). Note that many values of \(R_{T}\) and \(C_{T}\) will give the same oscillator frequency but only one combination will yield a specific output deadtime at a given frequency. In many noise sensitive applications it may be desirable to frequency-lock one or more switching regulators to an external system clock. This can be accomplished by applying the clock signal to the Sync/Inhibit Input. For reliable locking, the free-running oscillator frequency should be about \(10 \%\) less than the clock frequency. Referring to the timing diagram shown in Figure 19, the rising edge of the clock signal applied to the Sync/Inhibit Input, terminates charging of \(\mathrm{C}^{\boldsymbol{T}}\) and Drive Output conduction. By tailoring the clock waveform, accurate duty cycle clamping of the Drive Output can be achieved. A circuit method is shown in Figure 20. The Sync/Inhibit Input may also be used as a means for system shutdown by applying a dc voltage that is within the range of 2.0 V to \(\mathrm{V}_{\mathrm{CC}}\).

\section*{PWM COMPARATOR AND LATCH}

The MC34129 operates as a current mode controller whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches a threshold level established by the output of the Error Amp or Soft-Start Buffer (Pin 11). Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The PWM Comparator-Latch configuration used, ensures that only a single pulse appears at the Drive Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting the ground-referenced resistor \(R_{S}\) in series with the source of output switch \(\mathrm{Q}_{1}\). The Ramp Input adds an offset of 275 mV to this voltage to guarantee that no pulses appear at the Drive Output when Pin 11 is at its
lowest state. This occurs at the beginning of the softstart interval or when the power supply is operating and the load is removed. The peak inductor current under normal operating conditions is controlled by the voltage at Pin 11 where:
\[
I_{\mathrm{pk}}=\frac{\mathrm{V}_{(\operatorname{Pin} 11)}-0.275 \mathrm{~V}}{R_{\mathrm{S}}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the voltage at Pin 11 will be internally clamped to 1.95 V by the output of the Soft-Start Buffer. Therefore the maximum peak switch current is:
\[
\mathrm{I}_{\mathrm{pk}(\max)}=\frac{1.95 \mathrm{~V}-0.275}{R_{\mathrm{S}}}=\frac{1.675 \mathrm{~V}}{R_{\mathrm{S}}}
\]

When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of \(\mathrm{R}_{\mathrm{S}}\) to a reasonable level. A simple method which adjusts this voltage in discrete increments is shown in Figure 22. This method is possible because the Ramp Input bias current is always negative (typically \(-120 \mu \mathrm{~A}\)). A positive temperature coefficient equal to that of the diode string will be exhibited by \(I_{\mathrm{pk}}\) (max). An adjustable method that is more precise and temperature stable is shown in Figure 23. Erratic operation due to noise pickup can result if there is an excessive reduction of the clamp voltage. In this situation, high frequency circuit layout techniques are imperative.

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Ramp Input with a time constant that approximates the spike duration will usually eliminate the instability; refer to Figure 25.

\section*{ERROR AMP AND SOFT-START BUFFER}

A fully-compensated Error Amplifier with access to both inputs and output is provided for maximum design flexibility. The Error Amplifier output is common with that of the Soft-Start Buffer. These outputs are opencollector (sink only) and are ORed together at the inverting input of the PWM Comparator. With this configuration, the amplifier that demands lower peak inductor current dominates control of the loop. Soft-start is mandatory for stable start-up when power is provided through a high source impedance such as the long twisted pair used in telecommunications. It effectively removes the load from the output of the switching power supply upon initial start-up. The Soft-Start Buffer is configured as a unity gain follower with the noninverting input connected to Pin 12. An internal \(1.0 \mu \mathrm{~A}\)

FIGURE 18 - REPRESENTATIVE BLOCK DIAGRAM

\section*{OPERATING DESCRIPTION (continued)}
current source charges the soft-start capacitor (CSoftStart) to an internally clamped level of 1.95 V . The rate of change of peak inductor current, during start-up, is programmed by the capacitor value selected. Either the Fault Timer or the Undervoltage Lockout can discharge the soft-start capacitor.

\section*{FAULT TIMER}

This unique circuit prevents sustained operation in a lockout condition. This can occur with conventional switching control IC's when operating from a power source with a high series impedance. If the power required by the load is greater than that available from the source, the input voltage will collapse, causing the lockout condition. The Fault Timer provides automatic recovery when this condition is detected. Under normal operating conditions, the output of the PWM Comparator will reset the Latch and discharge the internal Fault Timer capacitor on a cycle-by-cycle basis. Under operating conditions where the required power into the load is greater than that available from the source \(\left(\mathrm{V}_{\text {in }}\right)\), the Ramp Input voltage (plus offset) will not reach the comparator threshold level (Pin 11), and the output of the PWM Comparator will remain low. If this condition persists for more than \(600 \mu \mathrm{~s}\), the Fault Timer will activate, discharging CSoft-Start and initiating a soft-start cycle. The power supply will operate in a skip cycle or hiccup mode until either the load power or source impedance is reduced. The minimum fault timeout is \(200 \mu \mathrm{~s}\), which limits the useful switching frequency to a minimum of 5.0 kHz .

\section*{START/RUN COMPARATOR}

A bootstrap start-up circuit is included to improve system efficiency when operating from a high input voltage. The output of the Start/Run Comparator controls the state of an external transistor. A typical application is shown in Figure 21. While \(\mathrm{C}_{\text {Soft-Start }}\) is charging, start-up bias is supplied to \(\mathrm{V}_{\mathrm{CC}}\) (Pin 14) from \(\mathrm{V}_{\text {in }}\) through transistor Q2. When CSoft-Start reaches the 1.95 V clamp level, the Start-Run output switches low (\(\mathrm{V}_{\mathrm{CC}}-50 \mathrm{mV}\)), turning off \(\mathrm{O2}\). Operating bias is now derived from the auxiliary bootstrap winding of the transformer, and all drive power is efficiently converted down from \(\mathrm{V}_{\mathrm{in}}\). The start time must be long enough for the power supply output to reach regulation. This will ensure that there is sufficient bias voltage at the auxiliary bootstrap winding for sustained operation.
\[
{ }^{\text {tStart }}=\frac{1.95 \mathrm{~V} \mathrm{C}_{\text {Soft-Start }}}{1.0 \mu \mathrm{~A}}=1.95 \mathrm{C}_{\text {Soft }} \text { Start in } \mu \mathrm{F}
\]

The Start/Run Comparator has 350 mV of hysteresis.

The output off-state is clamped to \(\mathrm{V}_{\mathrm{CC}}+7.6 \mathrm{~V}\) by the internal zener and PNP transistor base-emitter junction.

\section*{DRIVE OUTPUT AND DRIVE GROUND}

The MC34129 contains a single totem-pole output stage that was specifically designed for direct drive of power MOSFETs. It is capable of up to \(\pm 1.0 \mathrm{~A}\) peak drive current and has a typical fall time of 30 ns with a 500 pF load. The totem-pole stage consists of an NPN transistor for turn-on drive and a high speed SCR for turn-off. The SCR design requires less average supply current (ICC) when compared to conventional switching control IC's that use an all NPN totem-pole. The SCR accomplishes this during turn-off of the MOSFET, by utilizing the gate charge as regenerative on-bias, whereas the conventional all transistor design requires continuous base current. Conversion efficiency in low power applications is greatly enhanced with this reduction of ICC. The SCR's low-state holding current (\(/ \mathrm{H}\)) is typically \(225 \mu \mathrm{~A}\). An internal \(225 \mathrm{k} \Omega\) pull-down resistor is included to shunt the Drive Output off-state leakage to ground when the Undervoltage Lockout is active. A separate Drive Ground is provided to reduce the effects of switching transient noise imposed on the Ramp input. This feature becomes particularly useful when the Ipk(max) clamp level is reduced. Figure 24 shows the proper implementation of the MC34129 with a current sensing power MOSFET.

\section*{UNDERVOLTAGE LOCKOUT}

The Undervoltage Lockout comparator holds the Drive Output and CSoft-Start pins in the low state when \(\mathrm{V}_{\mathrm{CC}}\) is less than 3.6 V . This ensures that the MC34129 is fully functional before the output stage is enabled and a soft-start cycle begins. A built-in hysteresis of 350 mV prevents erratic output behavior as \(\mathrm{V}_{\mathrm{CC}}\) crosses the comparator threshold voltage. A 14.3 V zener is connected as a shunt regulator from \(\mathrm{V}_{\mathrm{CC}}\) to ground. Its purpose is to protect the MOSFET gate from excessive drive voltage during system start-up. An external 9.1 V zener is required when driving low threshold MOSFETs. Refer to Figure 21. The minimum operating voltage range of the IC is 4.2 V to 12 V .

\section*{REFERENCES}

The 1.25 V bandgap reference is trimmed to \(\pm 2.0 \%\) tolerance at \(T_{A}=25^{\circ} \mathrm{C}\). It is intended to be used in conjunction with the Error Amp. The 2.50 V reference is derived from the 1.25 V reference by an internal op amp with a fixed gain of 2.0. It has an output tolerance of \(\pm 5.0 \%\) at \(T_{A}=25^{\circ} \mathrm{C}\) and its primary purpose is to supply charging current to the oscillator timing capacitor.

\(f=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C} \quad D_{\text {max }}=\frac{R_{B}}{R_{A}+2 R_{B}}\)
FIGURE 22 - DISCRETE STEP REDUCTION OF CLAMP LEVEL
FIGURE 23 - ADJUSTABLE REDUCTION OF CLAMP LEVEL

Virtually lossless current sensing can be achieved with the implementation of a SENSEFET power switch.
\(\mathrm{R}_{\mathrm{S}} \cdot I_{\mathrm{pk}} \cdot \mathrm{r}_{\mathrm{DS} \text { ion }}\)

\section*{FIGURE 24 - CURRENT SENSING POWER MOSFET}

FIGURE 25 - CURRENT WAVEFORM SPIKE SUPPRESSION

The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform.

FIGURE 26 - MOSFET PARASITIC OSCILLATIONS

Series gate resistor \(\mathrm{R}_{\mathrm{g}}\) will damp any high frequency parasitic oscitlations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit.

FIGURE 27 - BIPOLAR TRANSISTOR DRIVE

The totem-pole output can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor C 1.

FIGURE 28 - NON-ISOLATED 725 mW FLYBACK REGULATOR

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Conditions } & Results \\
\hline Line Regulation 5 V & \(\mathrm{V}_{\text {in }}=20 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{I}_{\text {out }} 5 \mathrm{~V}=125 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5 \mathrm{~V}=20 \mathrm{~mA}\) & \(\Delta=1.0 \mathrm{mV}\) \\
\hline Load Regulation 5 V & \(\mathrm{~V}_{\text {in }}=30 \mathrm{~V}, \mathrm{I}_{\text {out }} 5 \mathrm{~V}=0 \mathrm{~mA}\) to \(150 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5 \mathrm{~V}=20 \mathrm{~mA}\) & \(\Delta=2.0 \mathrm{mV}\) \\
\hline Output Ripple 5 V & \(\mathrm{V}_{\text {in }}=30 \mathrm{~V}, \mathrm{I}_{\text {out }} 5 \mathrm{~V}=125 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5 \mathrm{~V}=20 \mathrm{~mA}\) & \(150 \mathrm{mVp}-\mathrm{p}\) \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=30 \mathrm{~V}, \mathrm{I}_{\text {out }} 5 \mathrm{~V}=125 \mathrm{~mA}, \mathrm{I}_{\text {out }}-5 \mathrm{~V}=20 \mathrm{~mA}\) & \(77 \%\) \\
\hline
\end{tabular}
\[
\mathrm{V}_{\text {out }}=1.25\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right)
\]

FIGURE 30 - ISOLATED 3.0 W FLYBACK REGULATOR WITH SECONDARY SIDE SENSING

An economical method of achieving secondary sensing is to combine the TL.431A with a 4 N 26 optocoupler

MOTOROLA

\section*{MC34160 \\ MC33160}

\section*{Product Preview}

\section*{MICROPROCESSOR VOLTAGE REGULATOR AND SUPERVISORY CIRCUIT}

The MC34160 Series is a voltage regulator and supervisory circuit containing many of the necessary monitoring functions required in microprocessor based systems. It is specifically designed for appliance and industrial applications, offering the designer a cost effective solution with minimal external components. These integrated circuits feature a \(5.0 \mathrm{~V} / 100 \mathrm{~mA}\) regulator with short circuit current limiting, pinned out 2.6 V bandgap reference, low voltage reset comparator, power warning comparator with programmable hysteresis, and an uncommitted comparator ideally suited for microprocessor line synchronization.

Additional features include a chip disable input for low standby current, and internal thermal shutdown for over temperature protection.

These devices are contained in a 16 pin dual-in-line heat tab plastic package for improved thermal conduction.
- 5.0 Volt Regulator Output Current in Excess of 100 mA
- Internal Short Circuit Current Limiting
- Pinned Out 2.6 V Reference
- Low Voltage Reset Comparator
- Power Warning Comparator with Programmable Hysteresis
- Uncommitted Comparator
- Low Standby Current
- Internal Thermal Shutdown Protection
- Heat Tab Power Package

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MICROPROCESSOR VOLTAGE REGULATOR/ SUPERVISORY CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline MC34160P & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline MC33160P & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATING
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & V \\
\hline Chip Disable Input Voltage (Pin 15, Note 1) & \(\mathrm{V}_{\mathrm{CD}}\) & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Comparator Input Current (Pin 1, 2, 9) & \(\mathrm{I}_{\text {in }}\) & -2.0 to +2.0 & mA \\
\hline Comparator Output Voltage (Pin 6, 7, 8) & \(\mathrm{V}_{\mathrm{O}}\) & 40 & V \\
\hline Comparator Output Sink Current (Pin 6, 7, 8) & \(\mathrm{I}_{\mathrm{Sink}}\) & 10 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
Maximum Power Dissipation @ TA \(=70^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Air \\
Thermal Resistance Junction to Case (Pin 4,5,12, 13)
\end{tabular} & \(\mathrm{P}_{\mathrm{D}}\) & 1000 & mW \\
\hline Operating Junction Temperature & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 80 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Ambient Temperature & \(\mathrm{R}_{\theta \mathrm{JC}}\) & 15 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \begin{tabular}{l}
MC34160 \\
MC33160
\end{tabular} & \(\mathrm{TJ}_{\mathrm{A}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=30 \mathrm{~V}, I_{O}=10 \mathrm{~mA}\right.\), \(\left.I_{\text {ref }}=100 \mu \mathrm{~A}\right)\) For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for min/max values \(T_{A}\) is the operating ambient temperature range that applies [Notes 2 and 3] unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{REGULATOR SECTION} \\
\hline Total Output Variation (\(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\) to 40 V , \(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\) to \(100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)) & \(\mathrm{V}_{\mathrm{O}}\) & 4.75 & 5.0 & 5.25 & V \\
\hline Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\) to \(40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & Regline & - & 5.0 & 40 & mV \\
\hline Load Regulation (\(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}\) to \(100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & Regload & - & 20 & 50 & mV \\
\hline Ripple Rejection
\[
\left(\mathrm{V}_{\mathrm{CC}}=25 \mathrm{~V} \text { to } 35 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & RR & 50 & 65 & - & dB \\
\hline
\end{tabular}

\section*{REFERENCE SECTION}
\begin{tabular}{|l|l|l|l|c|c|}
\hline \begin{tabular}{l}
Total Output Variation \(\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}\right.\) to 40 V,\(\) \\
\(\mathrm{I}_{\mathrm{O}}=0.1 \mathrm{~mA}\) to \(2.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\left.\mathrm{T}_{\text {high }}\right)\)
\end{tabular} & \(\mathrm{V}_{\text {ref }}\) & 2.47 & 2.6 & 2.73 & V \\
\hline Line Regulation \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.\) to \(\left.40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & Regline & - & 2.0 & 20 & mV \\
\hline Load Regulation \(\left(I_{\mathrm{O}}=0.1 \mathrm{~mA}\right.\) to \(\left.2.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & Regload & - & 4.0 & 30 & mV \\
\hline
\end{tabular}

\section*{RESET COMPARATOR}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Threshold Voltage High State Output (Pin 11 Increasing) Low State Output (Pin 11 Decreasing) Hysteresis} & & & & & \multirow[t]{4}{*}{V} \\
\hline & \(\mathrm{V}_{\text {IH }}\) & - & \(\left(\mathrm{V}_{\mathrm{O}}-0.11\right)\) & \(\left(\mathrm{V}_{\mathrm{O}}-0.05\right)\) & \\
\hline & VIL & 4.55 & \(\left(\mathrm{V}_{\mathrm{O}}-0.18\right)\) & - & \\
\hline & \(\mathrm{V}_{\mathrm{H}}\) & 0.02 & 0.07 & - & \\
\hline Output Sink Saturation (\(\left.\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {Sink }}=2.0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & - & 0.4 & V \\
\hline Output Off-State Leakage (\(\mathrm{V}_{\mathrm{OH}}=40 \mathrm{~V}\)) & \({ }^{\mathrm{I} \mathrm{OH}}\) & - & - & 4.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Notes:
1. The maximum voltage range is -0.3 V to \(\mathrm{V}_{\mathrm{CC}}\) or +35 V , whichever is less.
2. \(\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}\) for MC34160
\(T_{\text {high }}=+70^{\circ} \mathrm{C}\) for MC34160
\(=-40^{\circ} \mathrm{C}\) for MC33160
\[
=+85^{\circ} \mathrm{C} \text { for MC33160 }
\]
3. Low duty cycle pulse testing techniques are used during test to maintain junction temperature as close to ambient as possible.

ELECTRICAL CHARACTERISTICS - Continued (\(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}\), \(\mathrm{I}_{\text {ref }}=100 \mu \mathrm{~A}\)) For typical values \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{\mathrm{A}}\) is the operating ambient temperature range that applies [Notes 2 and 3] unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{POWER WARNING COMPARATOR} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & 1.2 & 10 & mV \\
\hline Input Bias Current (\(\mathrm{V}_{\text {Pin } 9}=3.0 \mathrm{~V}\)) & IIB & - & - & 0.5 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Input Hysteresis Current }\left(V_{\text {Pin } 9}=V_{\text {ref }}-100 \mathrm{mV}\right) \\
& R_{\text {Pin } 10}=24 \mathrm{k} \\
& \mathrm{R}_{\text {Pin } 10}=\infty
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{H}}\) & \[
\begin{aligned}
& 40 \\
& 4.5
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 7.5
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 11
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Output Sink Saturation (\({ }^{\text {S Sink }}=2.0 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.13 & 0.4 & V \\
\hline Output Off-State Leakage (\(\mathrm{V}_{\mathrm{OH}}=40 \mathrm{~V}\)) & \({ }^{\mathrm{IOH}}\) & - & - & 4.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

UNCOMMITTED COMPARATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage (Output Transition Low to High) & \(\mathrm{V}_{10}\) & - & - & 20 & mV \\
\hline Input Hysteresis Voltage (Output Transition High to Low) & \({ }_{\mathrm{I}}^{\mathrm{H}}\) & 140 & 200 & 260 & mV \\
\hline Input Bias Current (\(\mathrm{V}_{\text {Pin }} 1,2=2.6 \mathrm{~V}\)) & IIB & - & - & -1.0 & \(\mu \mathrm{A}\) \\
\hline Input Common-Mode Voltage Range & \(V_{\text {ICR }}\) & 0.6 to 5.0 & - & - & V \\
\hline Output Sink Saturation (\({ }_{\text {S Sink }}=2.0 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.13 & 0.4 & V \\
\hline Output Off-State Leakage (\(\mathrm{V} \mathrm{OH}=40 \mathrm{~V}\)) & \({ }^{\mathrm{I}} \mathrm{OH}\) & - & - & 4.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Chip Disable Threshold Voltage (Pin 15) High State (Chip Disabled) Low State (Chip Enabled) & \[
\begin{aligned}
& \mathrm{V}_{\text {IH }} \\
& \mathrm{V}_{\mathrm{IL}} \\
& \hline
\end{aligned}
\] & \[
2.5
\] & & \[
\overline{0.8}
\] & V \\
\hline \begin{tabular}{l}
Chip Disable Input Current (Pin 15) High State (\(\mathrm{V}_{\text {in }}=2.5 \mathrm{~V}\)) \\
Low State (\(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\))
\end{tabular} & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IH}} \\
& \mathrm{I}^{2}
\end{aligned}
\] & - & & \[
\begin{gathered}
100 \\
30
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Chip Disable Input Resistance (Pin 15) & \(\mathrm{R}_{\text {in }}\) & 50 & 100 & - & \(\mathrm{k} \Omega\) \\
\hline Operating Voltage Range \(\mathrm{V}_{\mathrm{O}}\) (Pin 11) Regulated \(V_{\text {ref }}\) (Pin 16) Regulated & \(\mathrm{V}_{\text {CC }}\) & \[
\begin{aligned}
& 7.0 \text { to } 40 \\
& 5.0 \text { to } 40
\end{aligned}
\] & — & - & V \\
\hline Power Supply Current Standby (Chip Disable High State) Operating (Chip Disable Low State) & \({ }^{\text {I CC }}\) & - & \[
\begin{gathered}
0.18 \\
1.5
\end{gathered}
\] & \[
\begin{gathered}
0.35 \\
3.0
\end{gathered}
\] & mA \\
\hline
\end{tabular}

FIGURE 1 - REGULATOR OUTPUT VOLTAGE CHANGE versus SOURCE CURRENT

FIGURE 2 - REFERENCE AND REGULATOR OUTPUT versus SUPPLY VOLTAGE

FIGURE 3 - REFERENCE OUTPUT VOLTAGE CHANGE versus SOURCE CURRENT

FIGURE 5 - POWER WARNING COMPARATOR DELAY versus TEMPERATURE

FIGURE 7 - COMPARATOR OUTPUT SATURATION versus SINK CURRENT

FIGURE 4 - POWER WARNING HYSTERESIS CURRENT versus PROGRAMMING RESISTOR

FIGURE 6 - UNCOMMITTED COMPARATOR DELAY versus TEMPERATURE

FIGURE 8 - THERMAL RESISTANCE AND MAXIMUM POWER DISSIPATION versus P.C.B. COPPER LENGTH

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin No. & Function & Description \\
\hline 1 & Comparator Inverting Input & This is the Uncommitted Comparator inverting input. It is typically connected to a resistor divider to monitor a voltage. \\
\hline 2 & Comparator Noninverting Input & This is the Uncommitted Comparator noninverting input. It is typically connected to a reference voltage. \\
\hline 3 & N.C. & No connection. This pin is not internally connected. \\
\hline 4,5,12,13 & Gnd & These pins are the control circuit grounds and are connected to the source and load ground returns. They are part of the IC lead frame and can be used for heatsinking. \\
\hline 6 & Comparator Output & This is the Uncommitted Comparator output. It is an open collector sink-only output requiring a pull-up resistor. \\
\hline 7 & Reset & This is the Reset Comparator output. It is an open collector sink-only output requiring a pull-up resistor. \\
\hline 8 & Power Warning & This is the Power Warning Comparator output. It is an open collector sink-only output requiring a pull-up resistor. \\
\hline 9 & Power Sense & This is the Power Warning Comparator noninverting input. It is typically connected to a resistor divider to monitor the input power source voltage. \\
\hline 10 & Hysteresis Adjust & The Power Warning Comparator hysteresis is programmed by a resistor connected from this pin to ground. \\
\hline 11 & Regulator Output & This is the 5.0 V Regulator output. \\
\hline 14 & \(\mathrm{V}_{\mathrm{CC}}\) & This pin is the positive supply input of the control IC. \\
\hline 15 & Chip Disable & This input is used to switch the IC into a standby mode turning off all outputs. \\
\hline 16 & \(V_{\text {ref }}\) & This is the 2.6 V Reference output. It is intended to be used in conjunction with the Power Warning and Uncommitted comparators. \\
\hline
\end{tabular}

\section*{OPERATING DESCRIPTION}

The MC34160 Series is a monolithic voltage regulator and supervisory circuit containing many of the necessary monitoring functions required in microprocessor based systems. It is specifically designed for appliance and industrial applications, offering the designer a cost effective solution with minimal external components. These devices are specified for operation over an input voltage of 7.0 V to 40 V , and with a junction temperature of \(-40^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\). A typical microprocessor application is shown in Figure 9.

\section*{Regulator}

The 5.0 V regulator is designed to source in excess of 100 mA output current and is short circuit protected. The output has a guaranteed tolerance of \(\pm 5.0 \%\) over line, load, and temperature. Internal thermal shutdown circuitry is included to limit the maximum junction temperature to a safe level. When activated, typically at \(170^{\circ} \mathrm{C}\), the regulator output turns off.
In specific situations a combination of input and output bypass capacitors may be required for regulator
stability. If the regulator is located an appreciable distance (\(\geqslant 4^{\prime \prime}\)) from the supply filter, an input bypass capacitor (\(\mathrm{C}_{\mathrm{in}}\)) of \(0.33 \mu \mathrm{~F}\) or greater is suggested. Output capacitance values of less than 5.0 nF may cause regulator instability at light load (\(\leqslant 1.0 \mathrm{~mA}\)) and cold temperature. An output bypass capacitor of \(0.1 \mu \mathrm{~F}\) or greater is recommended to ensure stability under all load conditions. The capacitors selected must provide good high frequency characteristics.

Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator does not have external sense inputs.

\section*{Reference}

The 2.6 V bandgap reference is short circuit protected and has a guaranteed output tolerance of \(\pm 5.0 \%\) over line, load, and temperature. It is intended to be used in conjunction with the Power Warning and Uncommitted Comparator. The reference can source in excess of 2.0 mA and sink a maximum of \(10 \mu \mathrm{~A}\). For additional current sinking capability, an external load resistor to ground must be used.

Reference biasing is internally derived from either \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{O}}\), allowing proper operation if either drops below nominal.

\section*{Chip Disable}

This input is used to switch the IC into a standby mode. When activated, internal biasing for the entire die is removed causing all outputs to turn off. This reduces the power supply current (\({ }^{\mathrm{CC}}\)) to less than 0.3 mA .

\section*{Comparators}

Three separate comparators are incorporated for voltage monitoring. Their outputs can provide diagnostic information to the microprocessor, preventing system malfunctions.

The Reset comparator inverting input is internally connected to the 2.6 V reference while the noninverting input monitors \(\mathrm{V}_{\mathrm{O}}\). The Reset output is active low when \(V_{O}\) falls approximately 180 mV below its regulated voltage. To prevent erratic operation when crossing the comparator threshold, 70 mV of hysteresis is provided.

The Power Warning comparator is typically used to detect an impending loss of system power. The inverting input is internally connected to the reference, fixing the threshold at 2.6 V . The input power source \(\mathrm{V}_{\mathrm{in}}\) is monitored by the noninverting input through the \(R_{1} / R_{2}\) divider (Figure 9). This input features an adjustable 10 \(\mu \mathrm{A}\) to \(50 \mu \mathrm{~A}\) current sink \(\mathrm{I}_{\mathrm{H}}\) that is programmed by the value selected for resistor \(R_{H}\). A default current of 6.5 \(\mu A\) is provided if \(R_{H}\) is omitted. When the comparator input falls below 2.6 V , the current sink is activated. This
produces hysteresis if \(\mathrm{V}_{\text {in }}\) is monitored through a series resistor \(\left(R_{1}\right)\). The comparator thresholds are defined as follows:
\[
\begin{aligned}
& V_{\text {th(lower) }}=V_{\text {ref }}\left(1+\frac{R_{1}}{R_{2}}\right)-I_{I B} R_{1} \\
& V_{\text {th(upper) }}=V_{\text {ref }}\left(1+\frac{R_{1}}{R_{2}}\right)+I_{H} R_{1}
\end{aligned}
\]

The nominal hysteresis current \(I_{H}\) equals \(1.2 \mathrm{~V} / R_{H}\) (Figure 4).
The Uncommitted Comparator can be used to synchronize the microprocessor with the ac line signal for timing functions, or for synchronous load switching. It can also be connected as a line loss detector as shown in Figure 10. The comparator contains 200 mV of hysteresis preventing erractic output behavior when crossing the input threshold.
The Power Warning and Uncommitted comparators each have a transistor base-emitter connected across their inputs. The base input normally connects to a voltage reference while the emitter input connects to the voltage to be monitored. The transistor limits the negative excursion on the emitter input to -0.7 V below the base input by supplying current from \(\mathrm{V}_{\mathrm{CC}}\). This clamp current will prevent forward biasing the IC substrate. Zener diodes are connected to the comparator inputs to enhance the IC's electrostatic discharge capability. Resistors \(R_{1}\) and \(R_{\text {in }}\) must limit the input current to a maximum of \(\pm 2.0 \mathrm{~mA}\).
Each comparator output consists of an open collector NPN transistor capable of sinking 2.0 mA with a saturation voltage less than 0.4 V , and standing off 40 V with minimal leakage. Internal bias for the Reset and Power Warning comparators is derived from either \(\mathrm{V}_{\mathrm{CC}}\) or the regulator output to ensure functionality when either is below nominal.

\section*{Heat Tab Package}

The MC34160 is contained in a 16 lead plastic dual-in-line package in which the die is mounted on a special Heat Tab copper alloy lead frame. This tab consists of the four center ground pins that are specifically designed to improve thermal conduction from the die to the surrounding air. The pictorial in Figure 8 shows a simple but effective method of utilizing the printed circuit board medium as a heat dissipator by soldering these tabs to an adequate area of copper foil. This permits the use of standard board layout and mounting practices while having the ability to more than halve the junction to air thermal resistance. The example and graph are for a symmetrical layout on a single sided board with one ounce per square foot copper.

FIGURE 9 - TYPICAL MICROPROCESSOR APPLICATION

FIGURE 10 - LINE LOSS DETECTOR APPLICATION

FIGURE 11 - TIME DELAYED MICROPROCESSOR RESET

> SG1525A/SG1527A SG2525A/SG2527A G \(3525 A /\) SG3527A

\section*{PULSE WIDTH MODULATOR CONTROL CIRCUITS}

The SG1525A/1527A series of pulse width modulator controlcircuits offer improved performance and lower external parts count when implemented for controlling all types of switching power supplies. The on-chip +5.1 volt reference is trimmed to \(\pm 1 \%\) and the error amplifier has an input common-mode voltage range that includes the reference voltage, thus eliminating the need for external divider resistors. A sync input to the oscillator enables multiple units to be slaved or a single unit to be synchronized to an external system clock. A wide range of dead time can be programmed by a single resistor connected between the \(\mathrm{C}_{\boldsymbol{T}}\) and Discharge pins. These devices also feature built-in softstart circuitry, requiring only an external timing capacitor. A shutdown pin controls both the soft-start circuitry and the output stages, providing instantaneous turn off through the PWM latch with pulsed shutdown, as well as soft-start recycle with longer shutdown commands. The under voltage lockout inhibits the outputs and the changing of the soft-start capacitor when \(\mathrm{V}_{\mathrm{CC}}\) is below nominal. The output stages are totem-pole design capable of sinking and sourcing in excess of 200 mA . The output stage of the SG1525A series features NOR Logic resulting in a low output for an off state while the SG1527A series utilizes OR Logic which gives a high output when off. The devices are available in Military, Industrial and Commercial temperature ranges.
- 8.0 to 35 Volt Operation
- 5.1 Volt \(\pm 1.0 \%\) Trimmed Reference
- 100 Hz to 400 kHz Oscillator Range
- Separate Oscillator Sync Pin
- Adjustable Dead Time Control
- Input Undervoltage Lockout
- Latching PWM to Prevent Multiple Pulses
- Pulse-by-Pulse Shutdown
- Dual Source/Sink Outputs: \(\pm 400 \mathrm{~mA}\) Peak

\section*{PULSE WIDTH MODULATOR CONTROL CIRCUITS}

ORDERING INFORMATION
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & \multicolumn{1}{|c|}{ Package } \\
\hline SG1525AJ & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
SG1527AJ & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline SG2525AJ & -25 to \(+85^{\circ} \mathrm{C}\) & Ceramic DIP \\
SG2525AN & -25 to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
SG2527AJ & -25 to \(+85^{\circ} \mathrm{C}\) & Ceramic DIP \\
SG2527AN & -25 to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline SG3525AJ & 0 to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
SG3525AN & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
SG3527AJ & 0 to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
SG3527AN & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS (Note 1)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +40 & Vdc \\
\hline Collector Supply Voltage & \(\mathrm{V}_{\mathrm{C}}\) & +40 & Vdc \\
\hline Logic Inputs & - & -0.3 to +5.5 & V \\
\hline Analog Inputs & - & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Output Current, Source or Sink & \({ }^{1}\) & \(\pm 500\) & mA \\
\hline Reference Output Current & Iref & 50 & mA \\
\hline Oscillator Charging Current & - & 5.0 & mA \\
\hline \[
\begin{aligned}
& \text { Power Dissipation (Plastic \& Ceramic Package) } \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { (Note 2) } \\
& \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \text { (Note 3) } \\
& \hline
\end{aligned}
\] & \(P_{\text {D }}\) & \[
\begin{aligned}
& 1000 \\
& 2000
\end{aligned}
\] & mW \\
\hline Thermal Resistance Junction to Air Plastic and Ceramic Package & \(\mathrm{R}_{\theta}\) JA & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance Junction to Case Plastic and Ceramic Package & \(\mathrm{R}_{\text {®JC }}\) & 60 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{ll}
Storage Temperature Range & \begin{tabular}{l}
Ceramic Package \\
Plastic Package
\end{tabular} \\
\hline
\end{tabular} & \(\mathrm{T}_{\text {stg }}\) & \[
\begin{aligned}
& -65 \text { to }+150 \\
& -55 \text { to }+125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 10 Seconds) & TSolder & +300 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTES:}
1. Values beyond which damage may occur
2. Derate at \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperatures above \(+50^{\circ} \mathrm{C}\)
3. Derate at \(16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for case temperatures above \(+25^{\circ} \mathrm{C}\)

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Symbol & Min. & Max. & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\text {CC }}\) & +8.0 & +35 & Vdc \\
\hline Collector Supply Voltage & \(\mathrm{V}_{\mathrm{C}}\) & +4.5 & +35 & Vdc \\
\hline Output Sink/Source Current (Steady State) (Peak) & 10 & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \pm 100 \\
& \pm 400
\end{aligned}
\] & mA \\
\hline Reference Load Current & Iref & 0 & 20 & mA \\
\hline Oscillator Frequency Range & \(\mathrm{f}_{\text {osc }}\) & 0.1 & 400 & kHz \\
\hline Oscillator Timing Resistor & \(\mathrm{R}_{T}\) & 2.0 & 150 & \(\mathrm{k} \Omega\) \\
\hline Oscillator Timing Capacitor & \(\mathrm{C}_{\mathrm{T}}\) & 0.001 & 0.2 & \(\mu \mathrm{F}\) \\
\hline Deadtime Resistor Range & \(\mathrm{R}_{\mathrm{D}}\) & 0 & 500 & \(\Omega\) \\
\hline ```
Operating Ambient Temperature Range
 SG1525A, SG1527A
 SG2525A, SG2527A
 SG3525A, SG3527A
``` & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
-55 \\
-25 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& +125 \\
& +85 \\
& +70
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=+20 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.\) to \(\mathrm{T}_{\text {high }}\) [ \(N\) ote 4], unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|l|}{SG1525A/2525A SG1527A/2527A} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { SG3525A } \\
& \text { SG3527A }
\end{aligned}
\]} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \multicolumn{9}{|l|}{REFERENCE SECTION} \\
\hline Reference Output Voltage ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & \(V_{\text {ref }}\) & 5.05 & 5.10 & 5.15 & 5.00 & 5.10 & 5.20 & Vdc \\
\hline Line Regulation ( \(+8.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+35 \mathrm{~V}\) ) & Regline & - & 10 & 20 & - & 10 & 20 & mV \\
\hline Load Regulation ( \(0 \mathrm{~mA} \leqslant \mathrm{~L}_{\mathrm{L}} \leqslant 20 \mathrm{~mA}\) ) & Regload & - & 20 & 50 & - & 20 & 50 & mV \\
\hline Temperature Stability & \(\Delta V_{\text {ref }} / \Delta T\) & - & 20 & - & - & 20 & - & mV \\
\hline Total Output Variation Includes Line and Load Regulation over Temperature & \(\Delta V_{\text {ref }}\) & 5.00 & - & 5.20 & 4.95 & - & 5.25 & Vdc \\
\hline Short Circuit Current
\[
\left(V_{\text {ref }}=0 \mathrm{~V}, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & 'SC & - & 80 & 100 & - & 80 & 100 & mA \\
\hline Output Noise Voltage
\[
\left(10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 10 \mathrm{kHz}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 40 & 200 & - & 40 & 200 & \(\mu V_{r m s}\) \\
\hline Long Term Stability ( \(\mathrm{T}^{\mathrm{J}}=+125^{\circ} \mathrm{C}\) ) (Note 5) & S & - & 20 & 50 & - & 20 & 50 & mV khr \\
\hline
\end{tabular}

OSCILLATOR SECTION (Note 6, unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Initial Accuracy ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & - & - & \(\pm 2.0\) & \(\pm 60\) & - & \(\pm 2.0\) & \(\pm 6.0\) & \% \\
\hline Frequency Stability with Voltage
\[
\left(+8.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+35 \mathrm{~V}\right)
\] & \(\frac{\Delta f_{\text {osc }}}{\Delta \mathrm{V}_{\mathrm{CC}}}\) & -- & \(\pm 0.3\) & \(\pm 1.0\) & - & \(\pm 1.0\) & \(\pm 2.0\) & 0 \\
\hline Frequency Stability with Temperature & \(\frac{\Delta f_{\text {OSC }}}{\Delta T}\) & - & \(\pm 3.0\) & - & - & \(\pm 3.0\) & - & 0. \\
\hline Minimum Frequency ( \(\mathrm{R}_{\mathbf{T}}=150 \mathrm{k} \Omega, \mathrm{C}_{\mathbf{T}}=0.2 \mu \mathrm{~F}\) ) & \(f_{\text {min }}\) & - & 50 & - & - & 50 & - & Hz \\
\hline Maximum Frequency ( \(\mathrm{R}_{\mathrm{T}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}\) ) & \(f_{\text {max }}\) & 400 & - & - & 400 & - & - & kHz \\
\hline Current Mirror ( \(\mathrm{R}_{\mathrm{T}}=2.0 \mathrm{~mA}\) ) & -- & 1.7 & 20 & 2.2 & 1.7 & 2.0 & 2.2 & mA \\
\hline Clock Amplitude & - & 3.0 & 3.5 & - & 3.0 & 3.5 & - & V \\
\hline Clock Width ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) & - & 0.3 & 0.5 & 1.0 & 0.3 & 05 & 1.0 & \(\mu \mathrm{S}\) \\
\hline Sync Threshold & - & 1.2 & 2.0 & 28 & 12 & 2.0 & 2.8 & \(\checkmark\) \\
\hline Sync Input Current (Sync Voltage \(=+3.5 \mathrm{~V}\) ) & - & - & 1.0 & 2.5 & - & 1.0 & 25 & mA \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION \(\left(\mathrm{V}_{\mathrm{CM}}=+5.1 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & 0.5 & 5.0 & - & 2.0 & 10 & mV \\
\hline Input Bias Current & IB & - & 1.0 & 10 & - & 1.0 & 10 & \(\mu \mathrm{A}\) \\
\hline Input Offset Current & 110 & - & - & 1.0 & - & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline DC Open Loop Gain ( \(\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{M} \Omega\) ) & AVOL & 60 & 75 & - & 60 & 75 & - & dB \\
\hline Low Level Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.2 & 0.5 & - & 0.2 & 0.5 & V \\
\hline High Level Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & 3.8 & 5.6 & - & 3.8 & 5.6 & - & \(\checkmark\) \\
\hline Common Mode Rejection Ratio
\[
\left(+1.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant+5.2 \mathrm{~V}\right)
\] & CMRR & 60 & 75 & - & 60. & 75 & - & dB \\
\hline Power Supply Rejection Ratio
\[
\left(+8.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+35 \mathrm{~V}\right)
\] & PSRR & 50 & 60 & - & 50 & 60 & - & dB \\
\hline
\end{tabular}

PWM COMPARATOR SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Minimum Duty Cycle & \(\mathrm{DC}_{\min }\) & - & - & 0 & - & - & 0 & \(\%\) \\
\hline Maximum Duty Cycle & \(\mathrm{DC}_{\max }\) & 45 & 49 & - & 45 & 49 & - & \(\%\) \\
\hline Input Threshold, Zero Duty Cycle (Note 6) & \(\mathrm{V}_{\mathrm{TH}}\) & 0.6 & 0.9 & - & 0.6 & 0.9 & - & V \\
\hline Input Threshold, Maximum Duty Cycle (Note 6) & \(\mathrm{V}_{\mathrm{TH}}\) & - & 3.3 & 3.6 & - & 3.3 & 3.6 & V \\
\hline Input Bias Current & \(\mathrm{I}_{\mathrm{IB}}\) & - & 0.05 & 1.0 & - & 0.05 & 1.0 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|l|}{SG1525A/2525A
SG1527A/2527A} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { SG3525A } \\
& \text { SG3527A }
\end{aligned}
\]} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

SOFT-START SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Soft-Start Current \(\left(V_{\text {shutdown }}=0 \mathrm{~V}\right)\) & - & 25 & 50 & 80 & 25 & 50 & 80 & \(\mu \mathrm{~A}\) \\
\hline Soft-Start Voltage \(\left(\mathrm{V}_{\text {shutdown }}=2.0 \mathrm{~V}\right)\) & - & - & 0.4 & 0.6 & - & 0.4 & 0.6 & V \\
\hline Shutdown Input Current \(\left(\mathrm{V}_{\text {shutdown }}=2.5 \mathrm{~V}\right)\) & - & - & 0.4 & 1.0 & - & 0.4 & 1.0 & mA \\
\hline
\end{tabular}

OUTPUT DRIVERS (Each Output, \(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Output Low Level
\[
\begin{aligned}
& \left(I_{\text {sink }}=20 \mathrm{~mA}\right) \\
& \left(I_{\text {sink }}=100 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & - & \[
\begin{aligned}
& 0.2 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 2.0
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.2 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 2.0
\end{aligned}
\] & V \\
\hline Output High Level
\[
\begin{aligned}
& \left(I_{\text {source }}=20 \mathrm{~mA}\right) \\
& \left(I_{\text {source }}=100 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& 18 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 18
\end{aligned}
\] & - & \[
\begin{aligned}
& 18 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 18
\end{aligned}
\] & - & V \\
\hline Under Voltage Lockout (V8 and V9 = High) & VUL & 6.0 & 7.0 & 8.0 & 6.0 & 7.0 & 8.0 & V \\
\hline Collector Leakage, \(\mathrm{V}_{\mathrm{C}}=+35 \mathrm{~V}\) (Note 7 ) & \({ }^{\text {I C }}\) (eak) & - & - & 200 & - & - & 200 & \(\mu \mathrm{A}\) \\
\hline Rise Time ( \(C_{L}=1.0 \mathrm{nF}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}\) ) & \(\mathrm{tr}_{\mathrm{r}}\) & - & 100 & 600 & - & 100 & 600 & ns \\
\hline Fall Time ( \(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{TJ}_{J}=25^{\circ} \mathrm{C}\) ) & \(t_{f}\) & - & 50 & 300 & - & 50 & 300 & ns \\
\hline Shutdown Delay
\[
\left(V_{S D}=+3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{S}}=0, \mathrm{~T}_{J}=+25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{t}_{\mathrm{ds}}\) & - & 0.2 & 0.5 & - & 0.2 & 0.5 & \(\mu \mathrm{S}\) \\
\hline Supply Current, ( \(\mathrm{V}_{\mathrm{CC}}=+35 \mathrm{~V}\) ) & \({ }^{\prime} \mathrm{CC}\) & - & 14 & 20 & - & 14 & 20 & mA \\
\hline
\end{tabular}

NOTES:
4. \(\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}\) for SG1525A/1527A
\(-25^{\circ} \mathrm{C}\) for SG2525A/2527A
\(0^{\circ} \mathrm{C}\) for SG3525A/3527A
\(T_{\text {high }}=+125^{\circ} \mathrm{C}\) for SG1525A/1527A
\(+85^{\circ} \mathrm{C}\) for SG2525A/2527A
\(+70^{\circ} \mathrm{C}\) for SG3525A/3527A
5. Since long term stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
6. Tested at \(\mathrm{f}_{\mathrm{OSC}}=40 \mathrm{kHz}\left(\mathrm{R}_{\mathrm{T}}=3.6 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{D}}=0 \Omega\right)\).
7. Applies to SG1525A/2525A/3525A only, due to polarity of output pulses.

\section*{APPLICATION INFORMATION}

\section*{SHUTDOWN OPTIONS}

\section*{(See Block Diagram, front page)}

Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of \(100 \mu \mathrm{~A}\) to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.
An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two
functions: the PWM latch is immediately set providing the fastest turn-off signal to the outputs; and a \(150 \mu \mathrm{~A}\) current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.

Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.

FIGURE 1 - SG1525A OSCILLATOR SCHEMATIC


FIGURE 3 - OSCILLATOR DISCHARGE TIME versus \(R_{D}\)


FIGURE 5 - ERROR AMPLIFIER OPEN-LOOP FREQUENCY RESPONSE


FIGURE 2 - OSCILLATOR CHARGE TIME versus \(R_{T}\)


FIGURE 4 - SG1525A ERROR AMPLIFIER SCHEMATIC


FIGURE 6 - SG1525A OUTPUT CIRCUIT ( \(1 / 2\) CIRCUIT SHOWN)


FIGURE 7 - SG1525A/2525A/3525A OUTPUT SATURATION CHARACTERISTICS


FIGURE 8 - SINGLE ENDED SUPPLY


For single-ended supplies, the driver outputs are grounded The \(\mathrm{V}_{\mathrm{C}}\) terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

FIGURE 10 - DRIVING POWER FETS


The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components.

FIGURE 9 - PUSH-PULL CONFIGURATION


In conventional push-pull bipolar designs, forward base drive is controlled by R1-R3. Rapid turn-off times for the power devices are achieved with speed-up capacitors C1 and C2
FIGURE 11 - DRIVING TRANSFORMERS IN A HALF-BRIDGE CONFIGURATION


Low power transformers can be driven directly by the SG1525A. Automatic reset occurs during deadtime, when both ends of the primary winding are switched to ground.


\section*{PULSE WIDTH MODULATION CONTROL CIRCUIT}

The SG1526 is a high performance pulse width modulator integrated circuit intended for fixed frequency switching regulators and other power control applications.

Functions included in this IC are a temperature compensated voltage reference, sawtooth oscillator, error amplifier, pulse width modulator, pulse metering and steering logic, and two high current totem pole outputs ideally suited for driving the capacitance of power FETs at high speeds.

Additional protective features include soft start and undervoltage lockout, digital current limiting, double pulse inhibit, adjustable dead time and a data latch for single pulse metering. All digital control ports are TTL and B-series CMOS compatible. Active low logic design allows easy wired-OR connections for maximum flexibility. The versatility of this device enables implementation in single-ended or push-pull switching regulators that are transformerless or transformer coupled. The SG1526 is specified over the full military junction temperature range of \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\). The SG2526 is specified over a junction temperature range of \(-40^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) while the SG3526 is specified over a range of \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).
- 8.0 to 35 Volt Operation
- 5.0 Volt \(\pm 1 \%\) Trimmed Reference
- 1.0 Hz to 400 kHz Oscillator Range
- Dual Source/Sink Current Outputs: \(\pm 100 \mathrm{~mA}\)
- Digital Current Limiting
- Programmable Dead Time
- Undervoltage Lockout
- Single Pulse Metering
- Programmable Soft Start
- Wide Current Limit Common Mode Range
- Guaranteed 6 Unit Synchronization


\section*{PULSE WIDTH MODULATION CONTROL CIRCUITS}

SILICON MONOLITHIC INTEGRATED CIRCUITS


ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c} 
Junction \\
Temperature Range
\end{tabular} & \multicolumn{1}{c|}{ Package } \\
\hline SG1526J & -55 to \(+150^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline \begin{tabular}{l} 
SG2526J \\
SG2526N
\end{tabular} & -40 to \(+150^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
Ceramic DIP \\
Plastic DIP
\end{tabular} \\
\hline \begin{tabular}{l} 
SG3526J \\
SG3526N
\end{tabular} & 0 to \(+125^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
Ceramic DIP \\
Plastic DIP
\end{tabular} \\
\hline
\end{tabular}

MAXIMUM RATINGS (Note 1)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +40 & Vdc \\
\hline Collector Supply Voltage & \(\mathrm{V}_{\mathrm{C}}\) & +40 & Vdc \\
\hline Logic Inputs & - & -0.3 to +5.5 & V \\
\hline Analog Inputs & - & -0.3 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Output Current, Source or Sink & \(\mathrm{I}_{\mathrm{O}}\) & \(\pm 200\) & mA \\
\hline Reference Load Current (V \(\mathrm{CC}=40 \mathrm{~V}\), Note 2) & \(\mathrm{I}_{\mathrm{ref}}\) & 50 & mA \\
\hline Logic Sink Current & - & 15 & mA \\
\hline \begin{tabular}{l} 
Power Dissipation (Plastic and Ceramic Package) \\
(Note 3) \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) \\
(Note 4) TC \(=+25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{P}_{\mathrm{D}}\) & mW \\
\hline \begin{tabular}{l} 
Thermal Resistance Junction to Air \\
(Plastic and Ceramic Package)
\end{tabular} & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 1000 & \\
\hline \begin{tabular}{l} 
Thermal Resistance Junction to Case \\
(Plastic and Ceramic Package)
\end{tabular} & \(\mathrm{R}_{\theta \mathrm{JCC}}\) & 3000 & 100 \\
\hline \begin{tabular}{l} 
Operating Junction Temperature
\end{tabular} & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Lead Temperature (Soldering, 10 Seconds) & \(\mathrm{T}_{\text {Solder }}\) & \(\pm 300\) & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Notes:
1. Values beyond which damage may occur
2. Maximum junction temperature must be observed
3. Derate at \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperatures above \(+50^{\circ} \mathrm{C}\)
4. Derate at \(24 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for case temperatures above \(+25^{\circ} \mathrm{C}\)

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Max & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +8.0 & +35 & Vdc \\
\hline Collector Supply Voltage & \(\mathrm{V}_{\mathrm{C}}\) & +4.5 & +35 & Vdc \\
\hline Output Sink/Source Current (Each Output) & 10 & 0 & \(\pm 100\) & mA \\
\hline Reference Load Current & Iref & 0 & 20 & mA \\
\hline Oscillator Frequency Range & \(\mathrm{f}_{\mathrm{OSC}}\) & 0.001 & 400 & kHz \\
\hline Oscillator Timing Resistor & RT & 2.0 & 150 & \(\mathrm{k} \Omega\) \\
\hline Oscillator Timing Capacitor & \(C_{T}\) & 0.001 & 20 & \(\mu \mathrm{F}\) \\
\hline Available Deadtime Range ( 40 kHz ) & & 3.0 & 50 & \% \\
\hline ```
Operating Junction Temperature Range
    SG1526
    SG2526
    SG3526
``` & TJ & \[
\begin{gathered}
-55 \\
-40 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& +150 \\
& +150 \\
& +125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.\) to \(T_{\text {high }}\) [\(N o t e 5\)] unless otherwise specified)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Characteristic } & \multirow{2}{*}{ Symbol } & \multicolumn{2}{|c|}{ SG1526/2526 } & \multicolumn{3}{|c|}{ SG3526 } & \multirow{2}{*}{ Unit } \\
\cline { 4 - 8 } & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

REFERENCE SECTION (Note 6)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Reference Output Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(V_{\text {ref }}\) & 4.95 & 5.00 & 5.05 & 4.90 & 5.00 & 5.10 & V \\
\hline Line Regulation
\[
\left(+8.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+35 \mathrm{~V}\right)
\] & Regline & - & 10 & 20 & - & 10 & 30 & mV \\
\hline Load Regulation, \(0 \mathrm{~mA} \leqslant \mathrm{~L}_{\mathrm{L}} \leqslant 20 \mathrm{~mA}\) & Regload & - & 10 & 30 & - & 10 & 50 & mV \\
\hline Temperature Stability & \(\Delta V_{\text {ref }} / \Delta T_{J}\) & - & 15 & - & - & 10 & - & mV \\
\hline Total Reference Output Voltage Variation
\[
\left(+8.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+35 \mathrm{~V}, 0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{L}} \leqslant 20 \mathrm{~mA}\right)
\] & \(\Delta V_{\text {ref }}\) & 4.90 & 5.00 & 5.10 & 4.85 & 5.00 & 5.15 & V \\
\hline Short Circuit Current (\(\mathrm{V}_{\text {ref }}=0 \mathrm{~V}\), Note 2) & ISC & 25 & 80 & 125 & 25 & 80 & 125 & mA \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT
\begin{tabular}{|l|l|l|l|l|l|l|c|}
\hline \begin{tabular}{c}
Reset Output Voltage \\
\(\left(\mathrm{V}_{\text {ref }}=+3.8 \mathrm{~V}\right)\)
\end{tabular} & - & - & 0.2 & 0.4 & - & 0.2 & 0.4 \\
\hline \begin{tabular}{c}
Reset Output Voltage \\
\(\left(\mathrm{V}_{\text {ref }}=+4.8 \mathrm{~V}\right)\)
\end{tabular} & - & 2.4 & 4.8 & - & 2.4 & 4.8 & - \\
\hline
\end{tabular}

OSCILLATOR SECTION (Note 7)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Initial Accuracy (\(T_{J}=+25^{\circ} \mathrm{C}\)) & - & - & \(\pm 3.0\) & \(\pm 8.0\) & - & \(\pm 3.0\) & \(\pm 8.0\) & \% \\
\hline Frequency Stability over Power Supply Range
\[
\left(+8.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+35 \mathrm{~V}\right)
\] & \[
\frac{\Delta \mathrm{f}_{\mathrm{OSC}}}{\Delta \mathrm{~V}_{\mathrm{CC}}}
\] & - & 0.5 & 1.0 & - & 0.5 & 1.0 & \% \\
\hline Frequency Stability over Temperature (\(\Delta T_{J}=T_{\text {low }}\) to \(T_{\text {high }}\)) & \[
\frac{\Delta \mathrm{f}_{\mathrm{osc}}}{\Delta \mathrm{~T}_{\mathrm{J}}}
\] & - & 4.0 & - & - & 2.0 & - & \% \\
\hline Minimum Frequency
\[
\left(\mathrm{R}_{\mathrm{T}}=150 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=20 \mu \mathrm{~F}\right)
\] & \(f_{\text {min }}\) & - & 0.5 & - & - & 0.5 & - & Hz \\
\hline Maximum Frequency
\[
\left(\mathrm{R}_{\mathrm{T}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathbf{T}}=0.001 \mu \mathrm{~F}\right)
\] & \(f_{\text {max }}\) & 400 & - & - & 400 & - & - & kHz \\
\hline Sawtooth Peak Voltage
\[
\left(V_{C C}=+35 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\mathrm{osc}(\mathrm{P})}\) & - & 3.0 & 3.5 & - & 3.0 & 3.5 & V \\
\hline Sawtooth Valley Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=+8.0 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\text {osc }}(\mathrm{V})\) & 0.45 & 0.8 & - & 0.45 & 0.8 & - & V \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION (Note 8)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Input Offset Voltage
\[
\left(\mathrm{R}_{\mathrm{S}} \leqslant 2.0 \mathrm{k} \Omega\right)
\] & V10 & - & 2.0 & 5.0 & - & 2.0 & 10 & mV \\
\hline Input Bias Current & IIB & - & -350 & -1000 & - & -350 & -2000 & nA \\
\hline Input Offset Current & 1 O & - & 35 & 100 & - & 35 & 200 & nA \\
\hline DC Open Loop Gain
\[
\left(\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{M} \Omega\right)
\] & AVol & 64 & 72 & - & 60 & 72 & - & dB \\
\hline \begin{tabular}{l}
High Output Voltage \\
\(\left(V_{\text {Pin } 1}-V_{\text {Pin } 2} \geqslant+150 \mathrm{mV}, I_{\text {source }}=100 \mu \mathrm{~A}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & 3.6 & 4.2 & - & 3.6 & 4.2 & - & V \\
\hline \begin{tabular}{l}
Low Output Voltage \\
\(\left(V_{\text {Pin }}\right.\) 2- \(\left._{\text {Pin }} 1 \geqslant+150 \mathrm{mV}, \mathrm{I}_{\text {sink }}=100 \mu \mathrm{~A}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.2 & 0.4 & - & 0.2 & 0.4 & V \\
\hline Common Mode Rejection Ratio
\[
\left(R_{S} \leqslant 2.0 \mathrm{k} \Omega\right)
\] & CMRR & 70 & 94 & - & 70 & 94 & - & dB \\
\hline Power Supply Rejection Ratio
\[
\left(+12 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant+18 \mathrm{~V}\right)
\] & PSRR & 66 & 80 & - & 66 & 80 & - & dB \\
\hline
\end{tabular}

Notes:
5. Tlow \(=-55^{\circ} \mathrm{C}\) for SG1526
\(-40^{\circ} \mathrm{C}\) for SG2526 \(0^{\circ} \mathrm{C}\) for SG3526
\(T_{\text {high }}=+150^{\circ} \mathrm{C}\) for SG1526/2526 \(+125^{\circ} \mathrm{C}\) for SG3526
6. \(\mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}\) unless otherwise noted.
7. \(\mathrm{f}_{\mathrm{OSC}}=40 \mathrm{kHz}\left(\mathrm{R}_{\mathrm{T}}=4.12 \mathrm{k} \Omega \pm 1 \%\right.\),
\(\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F} \pm 1 \%, \mathrm{R}_{\mathrm{D}}=0 \Omega\))
8. \(0 \vee \leqslant V_{C M} \leqslant+5.2 V\)

ELECTRICAL CHARACTERISTICS (Continued)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Characteristic } & \multirow{2}{*}{ Symbol } & \multicolumn{2}{|c|}{ SG1526/2526 } & \multicolumn{3}{|c|}{ SG3526 } & \multirow{2}{*}{ Unit } \\
\cline { 3 - 8 } & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

PWM COMPARATOR SECTION (Note 7)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Minimum Duty Cycle \\
\(\left(\mathrm{V}_{\text {compensation }}=+0.4 \mathrm{~V}\right)\)
\end{tabular} & \(D C_{\min }\) & - & - & 0 & - & - & 0 & \(\%\) \\
\hline \begin{tabular}{c}
Maximum Duty Cycle \\
\(\left(\mathrm{V}_{\text {compensation }}=+3.6 \mathrm{~V}\right)\)
\end{tabular} & \(D C_{\max }\) & 45 & 49 & - & 45 & 49 & - & \(\%\) \\
\hline
\end{tabular}

DIGITAL PORTS (SYNC, SHUTDOWN, \(\overline{\text { RESET }}\)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Output Voltage - High Logic Level \\
\(\left(I_{\text {source }}=40 \mu \mathrm{~A}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & 4.0 & - & 2.4 & 4.0 & - \\
\hline \begin{tabular}{c}
Output Voltage - Low Logic Level \\
\(\left(I_{\text {sink }}=3.6 \mathrm{~mA}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.2 & 0.4 & - & 0.2 & 0.4 \\
\hline \begin{tabular}{l}
Input Current - High Logic Level \\
\(\left(\mathrm{V}_{\mathrm{IH}}=+2.4 \mathrm{~V}\right)\)
\end{tabular} & \(\mathrm{I}_{\mathrm{IH}}\) & - & -125 & -200 & - & -125 & -200 \\
\hline \begin{tabular}{l}
Input Current - Low Logic Level \\
\(\left(\mathrm{V}_{\mathrm{IL}}=+0.4 \mathrm{~V}\right)\)
\end{tabular} & \(\mathrm{I}_{\mathrm{IL}}\) & - & -225 & -360 & - & -225 & -360 \\
\hline
\end{tabular}

CURRENT LIMIT COMPARATOR SECTION (Note 9)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Sense Voltage \\
\(\left(R_{S} \leqslant 50 \Omega\right)\)
\end{tabular} & \(V_{\text {sense }}\) & 90 & 100 & 110 & 80 & 100 & 120 & mV \\
\hline Input Bias Current & \(I \mathrm{IB}\) & - & -3.0 & -10 & - & -3.0 & -10 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

SOFT-START SECTION
\begin{tabular}{|l|l|l|l|l|l|l|c|c|}
\hline \begin{tabular}{c}
Error Clamp Voltage \\
(Reset \(=+0.4 \mathrm{~V})\)
\end{tabular} & - & - & 0.1 & 0.4 & - & 0.1 & 0.4 & V \\
\hline \begin{tabular}{c}
CSoft-Start Charging Current \\
(Reset \(=+2.4 \mathrm{~V}\))
\end{tabular} & ICS & 50 & 100 & 150 & 50 & 100 & 150 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

OUTPUT DRIVERS
(Each Output, \(\mathrm{V}_{\mathrm{C}}=+15 \mathrm{Vdc}\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Output High Level
\[
\begin{aligned}
& I_{\text {source }}=20 \mathrm{~mA} \\
& I_{\text {source }}=100 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{gathered}
12.5 \\
12
\end{gathered}
\] & \[
\begin{gathered}
13.5 \\
13
\end{gathered}
\] & \[
-
\] & \[
\begin{gathered}
12.5 \\
12
\end{gathered}
\] & \[
\begin{gathered}
13.5 \\
13
\end{gathered}
\] & - & V \\
\hline Output Low Level
\[
\begin{aligned}
& I_{\text {sink }}=20 \mathrm{~mA} \\
& I_{\text {sink }}=100 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & - & \[
\begin{aligned}
& 0.2 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 2.0
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.2 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 2.0
\end{aligned}
\] & V \\
\hline Collector Leakage, \(\mathrm{V}_{\mathrm{C}}=+40 \mathrm{~V}\) & \({ }^{\text {I }}\) C(leak) & - & 50 & 150 & - & 50 & 150 & \(\mu \mathrm{A}\) \\
\hline Rise Time (\(\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}\)) & \(\mathrm{t}_{\mathrm{r}}\) & - & 0.3 & 0.6 & - & 0.3 & 0.6 & \(\mu \mathrm{s}\) \\
\hline Fall Time (\(\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}\)) & \(\mathrm{t}_{f}\) & - & 0.1 & 0.2 & - & 0.1 & 0.2 & \(\mu \mathrm{s}\) \\
\hline Supply Current
\[
\begin{aligned}
& \text { (Shutdown }=+0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+35 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{T}}=4.12 \mathrm{k} \Omega \text {) }
\end{aligned}
\] & \({ }^{\text {I CC }}\) & - & 18 & 30 & - & 18 & 30 & mA \\
\hline
\end{tabular}
7. \(\mathrm{fosc}_{\mathrm{O}}=40 \mathrm{kHz}\left(\mathrm{RT}_{\mathrm{T}}=4.12 \mathrm{k} \Omega \pm 1 \%\right.\),
\(C_{T}=0.01 \mu \mathrm{~F} \pm 1 \%, \mathrm{R}_{\mathrm{D}}=0 \Omega\))
8. \(0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant+5.2 \mathrm{~V}\)
9. \(0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CM}} \leqslant+12 \mathrm{~V}\)

\section*{TYPICAL CHARACTERISTICS}

FIGURE 1 - SG1526 REFERENCE STABILITY OVER TEMPERATURE

FIGURE 3 - ERROR AMPLIFIER OPEN LOOP FREQUENCY RESPONSE

FIGURE 5 - UNDERVOLTAGE LOCKOUT
CHARACTERISTIC

FIGURE 2 - REFERENCE VOLTAGE AS A FUNCTION SUPPLY VOLTAGE

FIGURE 4 - CURRENT LIMIT
COMPARATOR THRESHOLD

FIGURE 6 - OUTPUT DRIVER SATURATION VOLTAGE AS A FUNCTION OF SINK CURRENT

FIGURE 7 - VC SATURATION VOLTAGE AS A FUNCTION OF SINK CURRENT

FIGURE 8 - SG1526 OSCILLATOR PERIOD

FIGURE 10 - SG1526 UNDERVOLTAGE LOCKOUT

FIGURE 11 - SG1526 PULSE PROCESSING LOGIC

The metering FLIP-FLOP is an asynchronous data latch which suppresses high frequency oscillations by allowing only one PWM pulse per oscillator cycle

The memory FLIP-FLOP prevents double pulsing in a push-pull configuration by remem bering which output produced the last pulse.

\section*{APPLICATIONS INFORMATION}

FIGURE 12 - EXTENDING REFERENCE OUTPUT CURRENT CAPABILITY

FIGURE 13 - ERROR AMPLIFIER CONNECTIONS

\[
v_{\text {out }}=v_{\text {ref }}\left(\frac{R_{1}+R_{2}}{R_{2}}\right)
\]
\[
V_{\text {out }}=V_{\text {ref }}\left(\frac{R_{1}}{R 2}\right)
\]
\[
R_{3}=\left(\frac{-R_{1} R_{2}}{R_{1}+R_{2}}\right)
\]

Figure 15 - Foldback current limiting

FIGURE 17 - DRIVING VMOS POWER FETS

The totem pole output drivers of the SG1526 are ideally suited for driving the input capacitance of power FETs at high speeds.

FIGURE 18 - HALF-BRIDGE CONFIGURATION

FIGURE 20 - SINGLE-ENDED CONFIGURATION

FIGURE 19 - FLYBACK CONVERTER WITH CURRENT LIMITING

In the above circuit, current limiting is accomplished by using the current limit comparator output to reset the soft-start capacitor.

FIGURE 21 - PUSH-PULL CONFIGURATION +V Supply

\section*{Advance Information}

\section*{UNIVERSAL MICROPROCESSOR POWER SUPPLY CONTROLLER}

The TCA5600 is a versatile power supply control circuit for microprocessor based systems and mainly intended for automotive applications and battery powered instruments. To cover a wide range of applications, the device offers high circuit flexibility with minimum of external components.

Functions included in this IC are a temperature compensated voltage reference, on chip dc/dc converter, programmable and remote controlled voltage regulator, fixed 5.0 V supply voltage regulator with external PNP power device, undervoltage detection circuit, power-on RESET delay and watchdog feature for safe and hazard free microprocessor operations.
- 6.0 to 30 V Operation Range
- 2.5 V Reference Voltage Accessible for Other Tasks
- Fixed \(5.0 \mathrm{~V} \pm 4 \%\) Microprocessor Supply Regulator Including Current Limitation, Overvoltage Protection and Undervoltage Monitor
- Programmable 6.0 to 30 V Voltage Regulator Exhibiting High Peak Current (150 mA), Current Limiting and Thermal Protection
- Two Remote Inputs to Select the Regulator's Operation Mode: OFF, 5.0 V, 5.0 V Standby and Programmable Output Voltage
- Self Contained dc/dc Converter Fully Controlled By the Programmable Regulator to Guarantee Safe Operation Under All Working Conditions
- Programmable Power-On RESET Delay
- Watchdog Select Input
- Negative Edge Triggered Watchdog Input
- Low Current Consumption in the \(\mathrm{V}_{\mathrm{CC}}\) Standby Mode
- All Digital Control Ports are TTL- and MOS-Compatible

APPLICATIONS INCLUDE:
- Microprocessor Systems with E2PROMs
- High Voltage Crystal and Plasma Displays
- Decentralized Power Supplies in Computer and Telecommunication Systems

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Max & Unit \\
\hline Power Supply Voltage & \[
\begin{aligned}
& V_{C C 1} \\
& V_{C C 2}
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.5
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & V \\
\hline Collector Current & IC & - & 800 & mA \\
\hline Output Voltage & \(V_{\text {out } 2}\) & 6.0 & 30 & V \\
\hline Reference Source Current & Iref & 0 & 2.0 & mA \\
\hline
\end{tabular}

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS (\(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted, Note 1)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage (Pin 3, 14) & \(\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}\) & 35 & Vdc \\
\hline Base Drive Current (Pin 15) & \({ }^{\prime} \mathrm{B}\) & 20 & mA \\
\hline Collector Current (Pin 10) & \({ }^{\prime}\) & 1.0 & A \\
\hline Forward Rectifier Current (Pin 10-Pin 9) & If & 1.0 & A \\
\hline Logic Inputs INH1, INH2, WDS (Pin 6, 11, 18) & VINP & -0.3 V to \(\mathrm{V}_{\mathrm{CC} 1}\) & Vdc \\
\hline Logic Input Current WDI (Pin 4) & IWDI & \(\pm 0.5\) & mA \\
\hline Output Sink Current \(\overline{\text { RESET }}\) (Pin 1) & ' \(\overline{\text { RES }}\) & 10 & mA \\
\hline \begin{tabular}{l}
Analog Inputs (Pin 2) \\
(Pin 7)
\end{tabular} & - & \[
\begin{aligned}
& -0.3 \text { to } 10 \\
& -0.3 \text { to } 5.0
\end{aligned}
\] & V \\
\hline Reference Source Current (Pin 5) & Iref & 5.0 & mA \\
\hline Power Dissipation (Note 2)
\[
\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}
\] & PD & 500 & mW \\
\hline Thermal Resistance (Junction to Air) & \(\mathrm{R}_{\theta J \mathrm{~A}}\) & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Temperature Range & \(T_{A}\) & -40 to \(+85^{\circ} \mathrm{C}\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & TJ & + 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES:
1. Values beyond which damage may occur.
2. Derate at \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperature above \(+85^{\circ} \mathrm{C}\).

FIGURE 1 - FUNCTIONAL BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C 1}=\mathrm{V}_{\mathrm{CC}} 2=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\text {ref }}=0 ; l_{\text {out }}=0(\right.\) Note 3\()\); RSC \(=0.5 \Omega\); INH1 \(=\) "High"; INH2 = "High"; WDS = "High"; l lout2 = 0 (Note 4); if not otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Figure & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{REFERENCE SECTION} \\
\hline Nominal Reference Voltage & 1 & \(V_{\text {ref nom }}\) & 2.42 & 2.5 & 2.58 & V \\
\hline ```
Reference Voltage
 Iref = 0.5 mA, Tlow }\leqslant\mp@subsup{T}{J}{}\leqslant\mp@subsup{T}{\mathrm{ high (Note 5),}}{
 6.0V\leqslant V CC1 }\leqslant18\textrm{V
``` & & \(V_{\text {ref }}\) & 2.4 & - & 2.6 & V \\
\hline Line Regulation ( \(6.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC} 2} \leqslant 18 \mathrm{~V}\) ) & & Regline & - & 2.0 & 15 & mV \\
\hline Average Temperature Coefficient \(T_{\text {low }} \leqslant T_{J} \leqslant T_{\text {high }}\) (Note 5) & 2 & \[
\frac{\Delta V_{\text {ref }}}{\Delta T_{J}}
\] & - & - & +/-0.5 & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Ripple Rejection Ratio
\[
\mathrm{f}=1.0 \mathrm{kHz}, \mathrm{~V}_{\mathrm{sin}}=1.0 \mathrm{~V}_{\mathrm{pp}}
\] & 3 & RR & 60 & 70 & - & dB \\
\hline Output Impedance
\[
0 \leqslant I_{\text {ref }} \leqslant 2.0 \mathrm{~mA}
\] & & \(\mathrm{Z}_{\mathrm{O}}\) & - & 1.0 & - & Ohm \\
\hline Standby Current Consumption
\[
\mathrm{V}_{\mathrm{CC} 2}=\text { Open }
\] & 4 & ICC1 & - & 3.0 & - & mA \\
\hline
\end{tabular}
5.0 V MICROPROCESSOR VOLTAGE REGULATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Nominal Output Voltage & & \(\mathrm{V}_{\text {out } 1 \text { (nom) }}\) & 4.8 & 5.0 & 5.2 & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage } \\
& \qquad 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\text {out } 1} \leqslant 300 \mathrm{~mA}, \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant \mathrm{~T}_{\text {high }} \text { (Note 5) } \\
& 6.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC} 2} \leqslant 18 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 6
\end{aligned}
\] & \(\mathrm{V}_{\text {out } 1}\) & 4.75 & - & 5.25 & V \\
\hline Line Regulation ( \(6.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC} 2} \leqslant 18 \mathrm{~V}\) ) & & Regline & - & 10 & 50 & mV \\
\hline Load Regulation ( \(5.0 \mathrm{~mA} \leqslant \mathrm{l}_{\text {out }} \leqslant 300 \mathrm{~mA}\) ) & & Regload & - & 20 & 100 & mV \\
\hline Base Current Drive ( \(\left.\mathrm{V}_{\mathrm{CC} 2}=6.0 \mathrm{~V}, \mathrm{~V}_{15}=4.0 \mathrm{~V}\right)\) & & \(\mathrm{I}_{\mathrm{B}}\) & 10 & 15 & - & mA \\
\hline Ripple Rejection Ratio
\[
\mathrm{f}=1.0 \mathrm{kHz}, \mathrm{~V}_{\mathrm{sin}}=1.0 \mathrm{~V}_{\mathrm{pp}}
\] & 3 & RR & 50 & 65 & - & dB \\
\hline Undervoltage Detection Level ( \(\mathrm{RSC}_{\text {S }}=5.0 \Omega\) ) & 7 & VIow & 4.5 & \(0.93 \times \mathrm{V}_{\text {out } 1}\) & - & V \\
\hline Current Limitation Threshold (RSC \(=5.0 \Omega\) ) & & \(V_{\text {RSC }}\) & 210 & 250 & 290 & mV \\
\hline Average Temperature Coefficient \(T_{\text {low }} \leqslant T_{J} \leqslant T_{\text {high }}\) (Note 5) & & \[
\frac{\Delta V_{\text {out1 }}}{\Delta T_{J}}
\] & - & - & \(\pm 1.0\) & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTES:}
3. The external PNP power transistor satisfies the following minimum specifications:
\(\mathrm{hFE}_{\mathrm{FE}} \geqslant 60\) at \(\mathrm{I} \mathrm{C}=500 \mathrm{~mA}\) and \(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CE}}(\mathrm{sat}) \leqslant 300 \mathrm{mV}\) at \(\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}\) and \(\mathrm{I} \mathrm{C}=300 \mathrm{~mA}\)

5. \(\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}\)

Thigh \(=+125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Figure & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{PROGRAMMABLE VOLTAGE REGULATOR SECTION (Note 6)} \\
\hline Nominal Output Voltage & & \(V_{\text {out } 2 \text { (nom) }}\) & 23 & 24 & 25 & v \\
\hline Output Voltage
\[
1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\text {out } 2} \leqslant 100 \mathrm{~mA}, \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant T_{\text {high }}(\text { Notes } 5,7)
\] & 8 & \(V_{\text {out }}\) & 22.8 & - & 25.2 & v \\
\hline Load Regulation \(1.0 \mathrm{~mA} \leqslant \mathrm{l}_{\text {out }} \leqslant \leqslant 100 \mathrm{~mA}\) (Note 7) & & Regload & - & 40 & 200 & mV \\
\hline DC Output Current & & lout2 & 100 & - & - & mA \\
\hline Peak Output Current (Internally Limited) & & lout 2 p & 150 & 200 & - & mA \\
\hline Ripple Rejection Ratio
\[
f=20 \mathrm{kHz}, \mathrm{~V}=0.4 \mathrm{~V}_{\mathrm{pp}}
\] & & RR & 45 & 55 & - & dB \\
\hline \[
\begin{aligned}
& \text { Output Voltage (Fixed } 5.0 \mathrm{~V} \text { ) } \\
& 1.0 \mathrm{~mA} \leqslant I_{\text {out } 2} \leq 20 \mathrm{~mA}, \mathrm{~T}_{\text {low }} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant \mathrm{~T}_{\text {high }}, \\
& \mathrm{NH} 1=\text { "High" (Note } 5 \text { ) } \\
& \hline
\end{aligned}
\] & & \(\mathrm{V}_{\text {out2(5.0 }} \mathrm{V}\) ) & 4.75 & - & 5.25 & v \\
\hline OFF State Output Impedance (INH2 = 'Low") & & Rout1 & - & 10 & - & \(\mathrm{k} \Omega\) \\
\hline Average Temperature Coefficient \(T_{\text {low }} \leqslant T_{J} \leqslant T_{\text {high }}\) (Note 5) & & \[
\frac{\Delta V_{\text {out } 2}}{\Delta T J V_{\text {out } 2}}
\] & - & - & \(\pm 0.25\) & \(\mathrm{mV}^{\circ} \mathrm{C} \mathrm{V}\) \\
\hline
\end{tabular}

DC/DC CONVERTER SECTION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Collector Current Detection Level "High" " }{ }^{\text {"Low" }} \\
& \mathrm{R}_{\mathrm{C}}=10 \mathrm{k}
\end{aligned}
\] & 9 & \[
\begin{aligned}
& \mathrm{V}_{12}(\mathrm{H}) \\
& \mathrm{V}_{12}(\mathrm{~L})
\end{aligned}
\] & \[
350
\] & \[
\begin{gathered}
400 \\
50
\end{gathered}
\] & \[
450
\] & mV \\
\hline Collector Saturation Voltage
\[
\mathrm{I}_{\mathrm{C}}=600 \mathrm{~mA}(\text { Note } 7)
\] & 10 & \(\mathrm{V}_{\text {CE }}\) (sat) & - & - & 1.6 & V \\
\hline Rectifier Forward Voltage Drop \(I_{F}=600 \mathrm{~mA}\) (Note 7) & 11 & \(V_{F}\) & - & - & 1.4 & V \\
\hline
\end{tabular}

WATCHDOG AND RESET CIRCUIT SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Threshold Voltage "High"
(static) & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{C} 5(\mathrm{H})}\) \\
\(V_{C 5(L)}\)
\end{tabular} & - & \[
\begin{aligned}
& 2.5 \\
& 1.0
\end{aligned}
\] & - & V \\
\hline ```
Current Source Tlow }\leqslant\mp@subsup{T}{J}{}\leqslant\mp@subsup{T}{\mathrm{ high (Note 5)}}{\mathrm{ 5 }
    Power-Up \overline{RESET}
    Watchdog Time Out
    Watchdog RESET
``` & \({ }^{\text {C }} 5\) & \[
\begin{gathered}
-1.8 \\
- \\
-
\end{gathered}
\] & \[
\begin{gathered}
-2.5 \\
5 \times 1 \mathrm{C} 5 \\
-50 \times 1 \mathrm{C} 5
\end{gathered}
\] & \[
-3.2
\] & \(\mu \mathrm{A}\) \\
\hline Watchdog Input Voltage Swing & \(\mathrm{V}_{\text {WDI }}\) & - & - & \(\pm 5.5\) & V \\
\hline Watchdog Input Impedance & \(\mathrm{ri}^{\text {i }}\) & 12 & 15 & - & k \(\Omega\) \\
\hline Watchdog Reset Pulse Width (C8 = 1.0 nF) (Note 9) & \(t_{p}\) & - & - & 10 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

DIGITAL PORTS: \(\overline{\text { WDS, }}\) INH 1, INH 2, \(\overline{\text { RESET }}\) (Note 8)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Input Voltage Range & & VINP & - & - & \[
\begin{gathered}
-0.3 \text { to } \\
\mathrm{V}_{\mathrm{CC}} \\
\hline
\end{gathered}
\] & v \\
\hline Input HIGH Current
\[
\begin{aligned}
& 2.0 \mathrm{~V} \leqslant V_{1 H} \leqslant 5.5 \mathrm{~V} \\
& 5.5 \mathrm{~V} \leqslant \mathrm{~V}_{1 H} \leqslant V_{C C 1}
\end{aligned}
\] & & 1 H & & & \[
\begin{aligned}
& 100 \\
& 150
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input LOW Current
\[
\begin{aligned}
& -0.3 V \leqslant V_{\mathrm{IL}} \leqslant 0.8 \mathrm{~V} \text { for } \operatorname{INH} 1, \text { INH2, } \\
& -0.3 V \leqslant V_{\mathrm{IL}} \leqslant 0.4 \mathrm{~V} \text { for } \mathrm{WDS}
\end{aligned}
\] & & ILI & - & - & -100 & \(\mu \mathrm{A}\) \\
\hline Leakage Current Immunity (INH2, High " Z " State) & 12 & Iz & \(\pm 20\) & - & - & \(\mu \mathrm{A}\) \\
\hline Output LOW Voltage \(\overline{\text { RESET }}\) (\(1 \mathrm{OL}=6.0 \mathrm{~mA}\)) & & VOL & - & - & 0.4 & V \\
\hline Output HIGH Current \(\overline{\text { RESET }}\left(\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}\right)\) & & \(\mathrm{V}_{\mathrm{OH}}\) & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{NOTES:}
5. \(T_{\text {low }}=-40^{\circ} \mathrm{C}\)
\(T_{\text {high }}=+125^{\circ} \mathrm{C}\)
6. \(\mathrm{V}_{9}=28 \mathrm{~V}\), \(\mathrm{INH} 1=\) "Low" for this Electrical Characteristic section unless otherwise specified.
7. Pulse tested \(\mathrm{t}_{\mathrm{p}} \leqslant 300 \mu \mathrm{~s}\)
8. Temperature range \(T_{\text {low }} \leqslant T_{J} \leqslant T_{\text {high }}\) applies to this Electrical Characteristics section.
9. For test purposes, a negative pulse is applied to \(\operatorname{Pin} 4\left(-2.5 \mathrm{~V} \geqslant \mathrm{~V}_{4} \geqslant-5.5 \mathrm{~V}\right)\).

FIGURE 2 - REFERENCE STABILITY versus TEMPERATURE

FIGURE 3 - RIPPLE REJECTION versus FREQUENCY

FIGURE 4 - STAND-BY CURRENT versus SUPPLY VOLTAGE

FIGURE 5 - POWER-UP BEHAVIOR OF THE 5.0 V REGULATOR

FIGURE 6 - FOLDBACK CHARACTERISTICS OF THE 5.0 V REGULATOR

FIGURE 7 - UNDERVOLTAGE LOCKOUT CHARACTERISTICS

FIGURE 8 - OUTPUT CURRENT CAPABILITY OF THE PROGRAMMING REGULATOR

FIGURE 9 - COLLECTOR CURRENT DETECTION LEVEL

FIGURE 10 - POWER SWITCH CHARACTERISTICS

FIGURE 11 - RECTIFIER CHARACTERISTICS

FIGURE 12 - INH 2 LEAKAGE CURRENT IMMUNITY

\section*{APPLICATIONS INFORMATION \\ (See Figure 18)}

\section*{1. VOLTAGE REFERENCE \(\mathrm{V}_{\text {ref }}\)}

The voltage reference \(V_{\text {ref }}\) is based upon a highly stable bandgap voltage reference and is accessible on Pin 5 for additional tasks. This circuit part has its own supply connection on Pin 3 and is therefore able to operate in standby mode. The RC network R3, C6 improves the ripple rejection on both regulators.

\section*{2. DC/DC CONVERTER}

The dc/dc converter performs according to the fly back principle and does not need a time base circuit. The maximum coil current is well defined by means of the current sensing resistor Ry under all working conditions (start-up phase, circuit overload, wide supply voltage range and extreme load current change). Figure 13 shows the simplified converter schematic:

FIGURE 13 - SIMPLIFIED CONVERTER SCHEMATIC

A simplified method on "how to calculate the coil inductance" is given below. The operation point at min. supply voltage (\(\mathrm{V}_{\mathrm{CC} 2}\)) and max. output current (\(\mathrm{I}_{\mathrm{out} 2}\)) for a fixed output voltage (\(\mathrm{V}_{\text {out2 }}\)) determines the coil data. Figure 14 shows the typical voltage and current wave forms on the coil L1 (coil losses neglected).

The equations (1) and (2) yield the respective coil voltage \(V_{L}-\) and \(V_{L}+\) (see Figure 14):
\[
\begin{gather*}
\left.V_{L}+=V_{\text {out } 2}+\Delta V_{(\text {Pin } 9}-\operatorname{Pin} 8\right)+V_{F}-V_{C C 2}(1) \\
V_{L}-=V_{C C 2}-V_{C E(\text { sat })}-V_{12(H)} \tag{2}
\end{gather*}
\]
\(\left(\Delta V_{(\text {Pin }} 9-\operatorname{Pin} 8\right):\) input/output voltage drop of the regulator, 2.5 V typical)
\(\left(\mathrm{V}_{\mathrm{F}}, \mathrm{V}_{\mathrm{CE}}(\mathrm{sat}), \mathrm{V}_{12(\mathrm{H})}\right.\) : see electrical characteristics)

FIGURE 14 - VOLTAGE AND CURRENT WAVEFORM ON THE COIL (not to scale)

The time ratio \(\alpha\) for the charging time to dumping time is defined by equation (3):
\[
\begin{equation*}
\alpha=\frac{t_{1}}{t_{2}}=\frac{V_{L}+}{V_{L}-} \tag{3}
\end{equation*}
\]

The coil charging time \(t_{1}\) is found using equation (4):
\[
\begin{equation*}
t_{1}=\frac{1}{\left(1+\frac{1}{\alpha}\right) \cdot f} \tag{4}
\end{equation*}
\]
(f : min. oscillation frequency which should be chosen above the audio frequency band (e.g. 20 kHz))

Knowing the dc output current \(\mathrm{I}_{\text {out2 }}\) of the programmable regulator, the peak coil current \(l_{L(p e a k)}\) can now be calculated:
\[
\begin{equation*}
I_{L(\text { peak })}=2 \cdot I_{\text {out } 2} \cdot(1+\alpha) \tag{5}
\end{equation*}
\]

The coil inductance L1 of the nonsaturated coil is given by equation (6):
\[
\begin{equation*}
\mathrm{L} 1=\frac{\mathrm{t}_{1}}{I_{\mathrm{L}(\text { peak })}} \cdot \mathrm{V}_{\mathrm{L}}- \tag{6}
\end{equation*}
\]

The formula (6a) yields the current sensing resister R1 for a defined peak coil current \(I_{L(p e a k): ~}^{\text {: }}\)
\[
\begin{equation*}
\mathrm{R} 1=\frac{\mathrm{V}_{12}(\mathrm{H})}{\mathrm{L}_{\mathrm{L}(\text { peak })}} \tag{6a}
\end{equation*}
\]

In order to limit the by-pass current through capacitor C 7 during the energy dumping phase the value \(\mathrm{C} 2 \gg \mathrm{C} 7\) should be implemented.

For all other operation conditions, the feedback signal from the programmable voltage regulator controls the activity of the converter.

\section*{3. PROGRAMMABLE VOLTAGE REGULATOR}

This series voltage regulator is programmable by the voltage divider R4, R5 for a nominal output voltage \(6.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {out } 2} \leqslant 30 \mathrm{~V}\).
\[
\begin{align*}
& R 4=\frac{\left(V_{\text {out } 2}-V_{\text {ref nom }}\right) \cdot R 5}{V_{\text {ref nom }}} \tag{7}\\
& \left(R 5=10 \mathrm{k}, V_{\text {ref nom }}=2.5 \mathrm{~V}\right)
\end{align*}
\]

Current limitation and thermal shutdown capability are standard features of this regulator. The voltage drop \(\Delta \mathrm{V}_{\text {(Pin } 9-\text { Pin } 8)}\) across the series pass transistor generates the feedback signal to control the \(\mathrm{dc} / \mathrm{dc}\) converter (see Figure 13).

\section*{4. CONTROL INPUTS INH1, INH2}

The dc/dc converter and/or the regulator \(\mathrm{V}_{\text {out2 }}\) are remote controllable through the TTL, MOS compatible inhibit inputs INH1 and INH2 where the latter is a 3 -level detector (Logic " 0 ", high impedance " \(Z\) ", Logic " 1 "). Both inputs are setup to provide the following truth table:

FIGURE 15 - INH1, INH2 TRUTH TABLE
\begin{tabular}{c|c|c|c|c}
Mode & INH1 & INH2 & \(\mathbf{V}_{\text {out2 }}\) & dc/dc \\
\hline 1 & 0 & 0 & OFF & INT \\
2 & 0 & High "Z" & Vout2 \(^{\text {out }}\) & ON \\
3 & 0 & 1 & \(V_{\text {out2 }}\) & INT \\
4 & 1 & 0 & ONT \\
5 & 1 & High "Z" & OFF & INT \\
6 & 1 & 1 & 5.0 V & ON \\
& & & &
\end{tabular}

INT: Intermittent operation of the converter means that the converter operates only if \(\mathrm{V}_{\mathrm{CC} 2}<\mathrm{V}_{\text {out2 }}\).
ON: The converter loads the storage capacitor C 2 to its full charge (\(\mathrm{V}_{9}=33 \mathrm{~V}\)), allowing fast response time of the regulator \(\mathrm{V}_{\text {out } 2}\) when addressed by the control software.
OFF: High impedance (internal resistor 10 k to ground)
Figure 16 represents a typical timing diagram for an \(E^{2}\) PROM programming sequence in a microprocessor based system. The high " \(Z\) " state enables the dc/dc converter to ramp during \(\mathrm{t}_{3}\) to the voltage \(\mathrm{V}_{9}\) at \(\operatorname{Pin} 9\) to a high level before the write cycle takes place in the memory.

\section*{5. MICROPROCESSOR SUPPLY REGULATOR}

Together with an external PNP power transistor (Q1), a 5.0 V supply exhibiting low voltage drop is obtained to power microprocessor systems and auxilliary circuits. Using a power Darlington with adequate heat sink in the output stage boosts the output current \(\mathrm{I}_{\text {out }} 1\) above 1 amp .

FIGURE 16 - TYPICAL E2PROM PROGRAMMING SEQUENCE (not to scale)

The current limitation circuit measures the emitter current of Q1 by means of the sensing resistor RSC.
\[
\begin{equation*}
R_{S C}=\frac{V_{R S C}}{I_{E}} \tag{8}
\end{equation*}
\]
(\(\mathrm{I}_{\mathrm{E}}\) : emitter current of Q1)
(\(V_{\text {RSC }}\) : threshold voltage (see electrical characteristics))

The voltage protection circuit performs a fold-back characteristic above a nominal operating voltage \(\mathrm{V}_{\mathrm{CC} 2} \geqslant 18 \mathrm{~V}\).

\section*{6. DELAY AND WATCHDOG CIRCUIT}

The under voltage monitor supervises the power supply \(V_{\text {out } 1}\) and releases the delay circuit \(\overline{R E S E T}\) as soon as the regulator output reaches the microprocessor operating range (e.g. \(\mathrm{V}_{\mathrm{LOW}} \geqslant 0.93 \cdot \mathrm{~V}_{\text {out }}\) (nom)). The RESET output has an open-collector and may be connected in a "wired-OR" configuration.

The watchdog circuit consists of a retriggerable monostable with a negative edge sensitive control input WDI. The watchdog feature may be disabled by means of the watchdog select input \(\overline{W D S}\) driven to a " 1 ". Figure 17 displays the typical \(\overline{\operatorname{RESET}}\) timing diagram.

The commuted current source \(\mathrm{I}_{\mathrm{C} 5}\) on Pin 17, threshold voltage \(\mathrm{V}_{\mathrm{C} 5(\mathrm{~L})}, \mathrm{V}_{\mathrm{C} 5(\mathrm{H})}\) and an external capacitor C 5 define the \(\overline{\operatorname{RESET}}\) delay and the watchdog timing. The relationship of the timing signals are indicated by the equations (9) to (11).

RESET delay:
\(t_{d}=\frac{C 5 \cdot V_{C 5(H)}}{\left|I_{C 5}\right|}\)
Watchdog timeout:
\[
\begin{equation*}
\mathrm{t}_{\mathrm{wd}}=\frac{\mathrm{C} 5 \cdot\left(\mathrm{~V}_{\mathrm{C} 5(H)}-\mathrm{V}_{\mathrm{C} 5(\mathrm{~L})}\right)}{5 \cdot I_{\mathrm{C} 5}} \tag{9}
\end{equation*}
\]

Watchdog \(\overline{\text { RESET: }}\)
\[
\begin{equation*}
t_{r}=\frac{C 5 \cdot\left(V_{C 5(H)}-V_{C 5(L)}\right)}{50 \cdot\left|I_{C 5}\right|} \tag{10}
\end{equation*}
\]
\({ }^{(}{ }^{C} 5, V_{C 5(H)}, V_{C 5(L)}\) : see electrical characteristics.)

(a) Watchdog inhibited, \(\overline{\text { WDS }}=" 1 "\)
(b) Watchdog operational, \(\overline{\text { WDS }}=\) " 0 "

FIGURE 18 - TYPICAL AUTOMOTIVE APPLICATION

\section*{Advance Information}

\section*{CONTROL IC FOR LINE-ISOLATED FREE RUNNING FLYBACK CONVERTER}

The bipolar integrated circuit TDA4601,B drives, regulates and monitors the switching transistor in a power supply based on the ringing choke flyback principle.
Due to the wide regulating range and the high voltage stability during large load changes, SMPS for Hi-Fi equipment and active loudspeakers can be realized as well as applications in TV receivers and video recorders.

The TDA4601,B is available in a 9-pin power SIP and an 18-pin plastic medium power dual-in-line package. The operating temperature range is \(-15^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\).
- Wide Operational Range
- High Voltage Stability Even at High Load Changes
- Direct Control of Switching Transistor
- Low Start-Up Current
- Linear Foldback of the Overload Characteristic
- Base Drive Proportional to the Current Through the Power Switching Transistor
- Stand-By Mode 3.5 W into the External Load
- Inhibit Capability (TTL Compatible)
- Undervoltage Lockout

For Application Details See ANE002

This document contains information on a new product. Specifications and information herein are subject to change without notice.

\section*{FLYBACK CONVERTER CONTROL CIRCUIT}

SILICON MONOLITHIC INTEGRATED CIRCUIT

PIN ASSIGNMENTS

ORDERING INFORMATION
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline TDA4601 & \multirow{2}{*}{\(-15^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)} & Plastic SIP \\
\cline { 1 - 1 } & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{9}\) & 20 & V \\
\hline Sink Output Voltage & \[
\begin{gathered}
v_{7} \\
v_{7}-v_{8}
\end{gathered}
\] & \[
\begin{gathered}
0 \text { to } V_{9} \\
\pm 6.0
\end{gathered}
\] & \[
\begin{aligned}
& v \\
& v
\end{aligned}
\] \\
\hline Reference Output & 11 & -10 to +1.0 & mA \\
\hline Zero Crossing & \(\mathrm{I}_{2}\) & -3.0 to +3.0 & mA \\
\hline Control Amplifier & 13 & -3.0 to 0 & mA \\
\hline Collector Current & 14 & -2.0 to +5.0 & mA \\
\hline Trigger Input & \(\mathrm{I}_{5}\) & -2.0 to +3.0 & mA \\
\hline Sink Output & 17 & -1.5 & A \\
\hline Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance (Junction to Air) & \(\theta\) JA & 70 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance (Junction to Case) & \(\theta \mathrm{JC}\) & 15 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise stated)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Range of Operation } & Symbol & Fig. No. & Min & Typ & Max & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{9}\) & & - & 15 & 18 & V \\
\hline Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & & -15 & - & 85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

START OPERATION TA \(=25^{\circ} \mathrm{C}\)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Current Consumption (\(\mathrm{V}_{1}\) Not Yet Switched) & \(\mathrm{I}_{9}\) & 1 & & & & mA \\
\(\mathrm{~V}_{9}=3.0 \mathrm{~V}\) \\
\(\mathrm{~V}_{9}=5.0 \mathrm{~V}\) & & & - & - & 0.5 & \\
\(\mathrm{~V}_{9}=10 \mathrm{~V}\) & & & - & 1.5 & 2.0 & \\
\hline Turn-On Point for \(\mathrm{V}_{1}\) & & \(\mathrm{~V}_{9}\) & 1 & 11.3 & 11.8 & 12.3 \\
\hline \(\mathrm{~V}_{4}\) Before Start-Up \(\left(\mathrm{V}_{9}<11.8 \mathrm{~V}\right)\) & \(\mathrm{V}_{4}\) & 1 & 6.0 & 6.7 & - & V \\
\hline
\end{tabular}

REGULATION MODE \(\mathrm{V}_{9}=15 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\text { Current Consumption } V_{\text {reg }} & =-10 \mathrm{~V} \\
V_{\text {reg }} & =0
\end{aligned}
\] & 19 & 1 & \[
\begin{gathered}
110 \\
55
\end{gathered}
\] & \[
\begin{gathered}
135 \\
85
\end{gathered}
\] & \[
\begin{aligned}
& 160 \\
& 110
\end{aligned}
\] & mA \\
\hline Reference Voltage \(\mathrm{I}_{1}<0.1 \mathrm{~mA}\)
\[
\mathrm{I}_{1}=5.0 \mathrm{~mA}
\] & \(\mathrm{V}_{1}\) & 1 & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 4.2 \\
& 4.2
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 4.4
\end{aligned}
\] & V \\
\hline Reference Voltage Temperature Coefficient & TC 1 & 1 & - & 100 & - & ppm/ \(/{ }^{\circ} \mathrm{C}\) \\
\hline VPin 4 Low Static Voltage & \(\mathrm{V}_{4}\) & 1 & 1.8 & 2.08 & 2.5 & V \\
\hline \(V_{\text {Pin }} 4\) Regulation Peak Voltage
\[
\begin{aligned}
& I \operatorname{Pin} 3=5.0 \mu \mathrm{~A} \\
& \mathrm{I} \operatorname{Pin} 3=1.3 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & \(\mathrm{V}_{4}\) peak & 1 & 4.0 & \[
\begin{aligned}
& 4.2 \\
& 2.4
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 3.0
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
\(V_{\text {Pin }} 3\) \\
Full Fold Back IPin \(3=1.3 \mathrm{~mA}\) \\
Fold Back IPin \(3=0.5 \mathrm{~mA}\) \\
Overload Decision IPin \(3=1.0 \mu \mathrm{~A}\) \\
\(V_{\text {Pin }} 3\) Regulation
\end{tabular} & \(\mathrm{V}_{3}\) & 1 & -
-
- & \[
\begin{gathered}
3.7 \\
2.5 \\
2.4 \\
2.11
\end{gathered}
\] & \[
\begin{aligned}
& 4.0 \\
& 3.0 \\
& 2.9
\end{aligned}
\] & V \\
\hline IPin 3 Regulation IPin 3 Leakage at \(V_{\text {Pin } 3}=1.5 \mathrm{~V}\) & \({ }^{3}\) & 1 & - & \[
\begin{aligned}
& 1.0 \\
& 0.4
\end{aligned}
\] & - & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
\(V_{\text {Pin }} 7\) Peak High \\
\(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}\) (Full Fold Back) \\
\(\mathrm{V}_{\mathrm{R}}=-10 \mathrm{~V}\) (Regulation) \\
\(\mathrm{V}_{\mathrm{R}}=-15 \mathrm{~V}\) (Standby)
\end{tabular} & \(V_{7}\) peak & 1 & -- & \[
\begin{aligned}
& 3.5 \\
& 4.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & - & V \\
\hline \(V_{\text {Pin }} 7\) Peak Low
\[
\begin{aligned}
& V_{R}=0 \mathrm{~V} \\
& V_{R}=-10 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=-15 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{V}_{7}\) peak & 1 & - & \[
\begin{gathered}
1.4 \\
1.45 \\
1.57
\end{gathered}
\] & - & V \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (continued) \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Range of Operation & Symbol & Fig. No. & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{REGULATION MODE (continued) \(\mathrm{V}_{9}=15 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} \\
\hline IPin 7 Sink Peak
\[
V_{R}=-15 \mathrm{~V}
\] & 17 peak & 1 & - & \(+0.7\) & - & A \\
\hline IPin 8 Source Peak
\[
V_{R}=-15 \mathrm{~V}
\] & 18 peak & 1 & - & -0.8 & - & A \\
\hline \[
\begin{aligned}
V_{\text {Pin } 2} & \\
I_{\text {Pin } 2}= & -3.0 \mathrm{~mA} \\
= & -0.3 \mathrm{~mA} \\
& +3.0 \mathrm{~mA} \\
& +0.3 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{2}\) & 1 & -
-
- & \[
\begin{aligned}
& -0.3 \\
& -0.2 \\
& +0.7 \\
& +0.8
\end{aligned}
\] & - & V \\
\hline
\end{tabular}

PROTECTIVE OPERATION \(\mathrm{V}_{9}=15 \mathrm{~V}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Current Consumption (\(\mathrm{V}_{5}<1.8 \mathrm{~V}\)) & 19 & 1 & 14 & 20 & 26 & mA \\
\hline Turn-Off Voltage (\(\mathrm{V}_{5}<1.8 \mathrm{~V}\)) & \[
\begin{aligned}
& v_{7} \\
& v_{4}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 2.1
\end{aligned}
\] & \[
\begin{aligned}
& 1.8 \\
& 2.5
\end{aligned}
\] & \(\checkmark\) \\
\hline \begin{tabular}{l}
External Trigger Input \\
Enable Voltage (\(\mathrm{V}_{\text {reg }}=0 \mathrm{~V}\)) \\
Disabled Voltage (\(\mathrm{V}_{\text {reg }}=0 \mathrm{~V}\))
\end{tabular} & \(\mathrm{V}_{5}\) & 1 & 2.0 & \[
\begin{aligned}
& 2.2 \\
& 2.2
\end{aligned}
\] & 2.4 & V \\
\hline Supply Voltage Disabling \(\mathrm{V}_{8}\) and \(\mathrm{V}_{1}\) & \(\mathrm{V}_{9}\) & 1 & 6.7 & 7.4 & 7.8 & V \\
\hline VPin 5 Zener Voltage (Pin 5 Open) & \(\mathrm{V}_{5}\) & 1 & 6.5 & 7.3 & 7.8 & V \\
\hline \[
\begin{aligned}
\mathrm{I} \text { Pin } 5 V \operatorname{Vin} 5 & =3.0 \mathrm{~V} \\
V \text { Pin } 5 & =0 \mathrm{~V}
\end{aligned}
\] & 15 & 1 & - & \[
\begin{gathered}
1.4 \\
-11 \\
\hline
\end{gathered}
\] & - & \(\mu \mathrm{A}\) \\
\hline Turn-On Time (Secondary Voltages) & \(\mathrm{t}_{\mathrm{on}}\) & 2 & - & 350 & 450 & ms \\
\hline \begin{tabular}{l}
Voltage Change \\
When \(\mathrm{S}_{3}=\operatorname{Closed}\left(\Delta \mathrm{P}_{3}=19 \mathrm{~W}\right)\) \\
When \(\mathrm{S}_{2}=\) Closed \(\left(\Delta \mathrm{P}_{2}=15 \mathrm{~W}\right)\)
\end{tabular} & \(\Delta \mathrm{V}_{2}\) & 2 & - & \[
\begin{aligned}
& 100 \\
& 500
\end{aligned}
\] & \[
\begin{gathered}
500 \\
1000
\end{gathered}
\] & mV \\
\hline Standby Operation (Minimum Secondary Power: 3.0 Watts) When \(\mathrm{S}_{1}=\) Open & \(\Delta \mathrm{V}_{2}\) & 2 & - & 20 & 30 & V \\
\hline Switching Frequency During Standby Mode & \(f\) & 2 & 70 & 75 & - & kHz \\
\hline Primary Power Consumption During Standby Mode The heat sink must be optimized, taking the maximum data (\(T_{J}, \theta_{J C}, T_{A}\)) into consideration & Pprim & 2 & - & 10 & 15 & VA \\
\hline
\end{tabular}

\section*{CIRCUIT DESCRIPTION}

The TDA4601 regulates, controls and protects the switching transistor in flyback converter power supplies at starting-up, normal, and overload operation.

\section*{A. Start-Up Sequence}

During start-up there are three consecutive operations:
1. An internal reference voltage is created. It supplies the voltage regulator and enables the supply to the coupling electrolytic capacitor and the switching transistor. For a supply voltage \((\mathrm{Vg})\) of 12 V , the current is less than 3.2 mA .
2. Activation of the internal reference voltage \(\mathrm{V}_{1}=4.0\) V . This voltage is suddenly available when \(\mathrm{V}_{9}\) reaches 12 V and enables all parts of the IC to be supplied from the control logic including thermal and overload protection.
3. Activation of the control logic. As soon as the reference voltage is available, the control is switched on through an additional stabilization circuit.

This start-up sequence is necessary for smoothly driving the switching transistor through the coupling electrolytic capacitor.

FIGURE 1 - TEST CONFIGURATION

\section*{B. Normal Operation}

Zero crossing detection is sensed on Pin 2 and linked to the control logic.

The signal picked up on the feedback winding is applied, after filtering, to Pin 3 (used for input regulation and for overload protection). The regulating section works with an input voltage of about 2.0 V for normal regulation and a current of about 1.4 mA for foldback operation. Together with the collector current simulation Pin 4, the overload recognition defines the operating region of the regulating amplifier depending on the internal reference voltage. The simulation of the collector current is generated by an external RC network at Pin 4 and an internally set voltage level.

For a constant line voltage and for a given output power on the load (\(t\) on fixed) less than the maximum output power, a decrease of C 4 produces an increase of the current sent to the base of the power switching transistor. So the foldback point is reached earlier. The regulation range starts from a 2.0 Vdc level which is the bottom of a sawtooth waveform; the maximum is limited at 4.0 V (reference voltage).

A secondary load of 19 W produces a switching frequency of about 50 kHz at an almost constant duty cycle (approximately 3). Furthermore, when the switchmode power supply delivers approximately 3.0 W , the switching frequency jumps to about 70 kHz at a duty cycle of approximately 11 . At the same time, the collector peak current falls below 1.0 A.

The comparison of the output level of the regulating amplifier, the overload detection and the collector current simulation drives the control logic. An additional steering control and blocking possibility is offered thru Pin 5. When the voltage applied on Pin 5 falls below 2.2 V then the source output (Pin 8) is blocked.

The control logic is set according to the start-up circuit, the zero crossing detection and the trigger enabling. This logic drives the base current amplifier and the base current shutdown. The base current amplifier drives the source output (\(\operatorname{Pin} 8\)) proportionally to the sawtooth voltage (Pin 4). A current feedback is performed by an external shunt inserted between Pin 8 and the base of the switching power transistor. This resistor determines the maximum amplitude of the base current drive.

\section*{C. Protective Features}

The base current shut-down, released by the control logic, clamps the sink output (Pin 7) at 1.6 V , turning off the switching transistor. This feature will be released if the voltage on Pin 9 is less than 7.4 V , or if the applied voltage on Pin 5 is less than 2.2 V . In case of a short circuit of the secondary windings, the TDA4601 continuously monitors the fault condition.

In standby operation the circuit is set to a high duty cycle. The total power consumption of the power supply is held below 6.0 to 10 W .

FIGURE 3 - FREQUENCY versus OUTPUT POWER

FIGURE 5 - OUTPUT VOLTAGE \(\left(\mathrm{V}_{2}\right)\) versus OUTPUT CURRENT (\(\mathbf{I q}_{\mathbf{q}}\))

FIGURE 4 - EFFICIENCY versus OUTPUT POWER

FIGURE 6 - OUTPUT VOLTAGE (\(\mathbf{V}_{\mathbf{2}}\)) versus LINE VOLTAGE

\section*{TEST CIRCUIT AND TYPICAL APPLICATION (See Figure 7)}

This application circuit shown in Figure 2 represents a blocking converter for color TV sets with 30 W to 120 W of output power and line voltages from 160 to 270 V .
In spite of regulation on the primary side, good voltage stability of the various secondary voltages is achieved even with large load changes.

For line voltage isolation and transformation to the desired secondary voltages, a transformer with ferrite core is used.

\section*{SPECIAL FEATURES OF THE FLYBACK CONVERTER} POWER, SUPPLY USING THE TDA4601
- Direct driving of the power switching transistor
- Low starting current, defined starting behavior also at slowly rising line voltage
- Short circuit proof and open-loop resistant circuit. In both cases a power of only 6.0 to 10 W is consumed. Linear foldback characteristic at overload.
- Automatic restart after elimination of the overload.
- Efficiency of more than \(80 \%\) at an output power of 40 to 100 W .
- Frequency of oscillation between \(20 \mathrm{kHz}(100 \mathrm{~W})\) and 70 kHz (without load).
- Simple RF1 suppression
- Good regulation of load current and line voltage variations. At a line voltage variation between 170 and 240 V the output voltage of 150 V will change approximately 2.0 V .

FIGURE 7 - TYPICAL APPLICATION

Note: For more application information refer to ANE002

\section*{SWITCHMODE \\ PULSE WIDTH MODULATION CONTROL CIRCUITS}

The TL494 is a fixed frequency, pulse width modulation control circuit designed primarily for Switchmode power supply control. This device features:
- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator With Master Or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5 Volt Reference
- Adjustable Dead-Time Control
- Uncommitted Output Transistors Rated to 500 mA Source Or Sink
- Output Control For Push-Pull Or Single-Ended Operation
- Undervoltage Lockout

The TL494C is specified over the commercial operating range of \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\). The TL4941 is specified over the industrial range of \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\). The TL494M is specified over the full military range of \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION } \\
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & \multicolumn{1}{c|}{ Package } \\
\hline TL494CN & \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline TL494CJ & \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline TL494IN & \(-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline TL494IJ & \(-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline TL494MJ & \(-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline \multicolumn{4}{|c}{} \\
\hline
\end{tabular}

FIGURE 1 - BLOCK DIAGRAM

FIGURE 2 - TIMING DIAGRAM

\section*{Description}

The TL494 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequency-programmable by two external components, \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). The approximate oscillator frequency is determined by:
\[
\mathrm{f}_{\mathrm{osc}} \approx \frac{1.1}{\mathrm{R}_{\mathrm{T}} \cdot \mathrm{C}_{\mathrm{T}}}
\]

For more information refer to Figure 4.
Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor \(C_{T}\) to either of two control signals. The NOR gates, which drive output transistors \(Q 1\) and Q2, are enabled only when the flip-flop clock-input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feedback input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first \(4 \%\) of the sawtooth-cycle time. This would result in a maximum duty cycle on a given output of \(96 \%\) with the output control grounded, and \(48 \%\) with it connected to the reference line. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 to 3.3 V .

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V . Both error amplifiers have a common-mode input range from -0.3 V to \(\left(\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}\right)\), and may be used to sense powersupply output voltage and current. The error-amplifier outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

When capacitor \(\mathrm{C}_{\boldsymbol{T}}\) is discharged, a positive pulse is generated on the output of the dead-time comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2. With the output-control connected to the reference line, the pulse-steering flipflop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single-ended operation with a maximum on-time of less than \(50 \%\) is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher output-drive currents are required for single-ended operation, Q1 and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator.

The TL494 has an internal 5 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of \(\pm 1.5 \%\) with a typical thermal drift of less than 50 mV over an operating temperature range of 0 to \(70^{\circ} \mathrm{C}\).

FIGURE 3 - FUNCTIONAL TABLE
\begin{tabular}{|c|l|c|}
\hline Input & \multicolumn{1}{|c|}{ Output Function } & \begin{tabular}{c}
\(\frac{\mathbf{f}_{\text {out }}}{\boldsymbol{f}_{\text {osc }}}=\) \\
\hline \begin{tabular}{c}
Output \\
Control
\end{tabular}
\end{tabular} \\
\hline Grounded & Single-ended P.W.M. at Q1 and Q2 & 1 \\
\hline At \(\mathrm{V}_{\text {ref }}\) & Push-pull operation & 0.5 \\
\hline
\end{tabular}

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rating & Symbol & TL494C & TL4941 & TL494M & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 42 & 42 & 42 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}\) & 42 & 42 & 42 & V \\
\hline Collector Output Current (each transistor) (1) & \({ }^{\prime} \mathrm{C} 1 . \mathrm{I}^{\prime} 2\) & 500 & 500 & 500 & mA \\
\hline Amplifier Input Voltage Range & \(\mathrm{V}_{\mathrm{IR}}\) & -0.3 to 42 & -0.3 to 42 & -0.3 to 42 & V \\
\hline Power Dissipation (\(a \mathrm{~T}_{\mathrm{A}} \leqslant 45^{\circ} \mathrm{C}\) & \(P_{\text {D }}\) & 1000 & 1000 & 1000 & mW \\
\hline Operating Junction Temperature Plastic Package Ceramic Package & TJ & \[
\begin{aligned}
& 125 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 125 \\
& 150
\end{aligned}
\] & \[
\overline{150}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline Operating Ambient Temperature Range & \(T_{\text {A }}\) & 0 to 70 & -25 to 85 & -55 to 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range Plastic Package Ceramic Package & \(\mathrm{T}_{\text {stg }}\) & \[
\begin{aligned}
& -55 \text { to } 125 \\
& -65 \text { to } 150
\end{aligned}
\] & \[
\begin{aligned}
& -55 \text { to } 125 \\
& -65 \text { to } 150
\end{aligned}
\] & \[
-65 \text { to } 150
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE 1: Maximum thermal limits must be observed.
THERMAL CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & N Suffix Plastic Package & J Suffix Ceramic Package & Unit \\
\hline Thermal Resistance, Junction to Ambient & \(\mathrm{R}_{6} \mathrm{JA}\) & 80 & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Derating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 45 & 50 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Condition/Value} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL494} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & 15 & 40 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}\) & - & 30 & 40 & \(\checkmark\) \\
\hline Collector Output Current (each transistor) & \(\mathrm{I}_{\mathrm{C} 1} \mathrm{I}^{\text {C } 2}\) & - & - & 200 & mA \\
\hline Amplifier Input Voltage & \(V_{\text {in }}\) & \(-0.3\) & - & \(\mathrm{V}_{\mathrm{CC}}-2.0\) & V \\
\hline Current Into Feedback Terminal & lfb & - & - & 0.3 & mA \\
\hline Reference Output Current & Iref & - & - & 10 & mA \\
\hline Timing Resistor & RT & 1.8 & 30 & 500 & k \(\Omega\) \\
\hline Timing Capacitor & \(\mathrm{C}_{T}\) & 0.0047 & 0.001 & 10 & \(\mu \mathrm{F}\) \\
\hline Oscillator Frequency & \(\mathrm{f}_{\text {OSC }}\) & 1.0 & 40 & 200 & kHz \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\) unless otherwise noted. \()\)
For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for \(\min / \max\) values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL494C,I} & \multicolumn{3}{|c|}{TL494M} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

\section*{REFERENCE SECTION}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Reference Voltage \\
\(\left(I_{\mathrm{O}}=1.0 \mathrm{~mA}\right)\)
\end{tabular} & \(\mathrm{V}_{\text {ref }}\) & 4.75 & 5.0 & 5.25 & 4.75 & 5.0 & 5.25 & V \\
\hline \begin{tabular}{c}
Line Regulation \\
\(\left(V_{\mathrm{CC}}=7.0 \mathrm{~V}\right.\) to 40 V\()\)
\end{tabular} & Regline & - & 2.0 & 25 & - & 2.0 & 25 & mV \\
\hline \begin{tabular}{c}
Load Regulation \\
\(\left(I_{\mathrm{O}}=1.0 \mathrm{~mA}\right.\) to 10 mA\()\)
\end{tabular} & Regload & - & 3.0 & 15 & - & 3.0 & 15 & mV \\
\hline \begin{tabular}{c}
Short-Circuit Output Current \\
\(\left(V_{\text {ref }}=0 \mathrm{~V}\right)\)
\end{tabular} & ISC & 15 & 35 & 75 & 15 & 35 & 75 & mA \\
\hline
\end{tabular}

\section*{TL494}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\) unless otherwise noted.)
For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Characteristic } & \multirow{2}{*}{ Symbol } & \multicolumn{3}{|c|}{ TL494C,I } & \multicolumn{3}{|c|}{ TL494M } & \multirow{2}{*}{ Unit } \\
\cline { 3 - 10 } & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

\section*{OUTPUT SECTION}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Collector Off-State Current
\[
\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=40 \mathrm{~V}
\] & IC(off) & - & 2.0 & 100 & - & 2.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Emitter Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \cdot \mathrm{~V}\right)
\] & 'E(off) & - & - & \(-100\) & - & - & - 150 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Collector-Emitter Saturation Voltage (2) Common-Emitter
\[
\left(V_{E}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}\right)
\] \\
Emitter-Follower
\[
\left(V_{C}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-200 \mathrm{~mA}\right)
\]
\end{tabular}} & \(\mathrm{V}_{\text {SAT }}(\mathrm{C})\) & - & 1.1 & 1.3 & - & 1.1 & 1.5 & V \\
\hline & \(V_{\text {SAT }}(\mathrm{E})\) & - & 1.5 & 2.5 & - & 1.5 & 2.5 & V \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Output Control Pin Current \\
Low State
\[
\left(\mathrm{V}_{\mathrm{OC}} \leq 0.4 \mathrm{~V}\right)
\] \\
High State
\[
\left(V_{\mathrm{OC}}=v_{\text {ref }}\right)
\]
\end{tabular}} & \({ }^{\text {I O }}\) OCL & - & 10 & - & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline & \({ }^{\mathrm{I}} \mathrm{OCH}\) & - & 0.2 & 3.5 & - & 0.2 & 3.5 & mA \\
\hline \multirow[t]{2}{*}{Output Voltage Rise Time Common-Emitter (See Figure 13) Emitter-Follower (See Figure 14)} & \(\mathrm{t}_{\mathrm{r}}\) & - & 100 & 200 & - & 100 & 200 & ns \\
\hline & & - & 100 & 200 & - & 100 & 200 & ns \\
\hline \multirow[t]{2}{*}{Output Voltage Fall Time Common-Emitter (See Figure 13) Emitter-Follower (See Figure 14)} & \(t_{f}\) & - & 25 & 100 & - & 25 & 100 & ns \\
\hline & & - & 40 & 100 & - & 40 & 100 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Characteristic } & \multirow{2}{*}{ Symbol } & \multicolumn{3}{|c|}{ TL494 } & \\
\cline { 3 - 5 } & & Min & Typ & Max \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Off'set Voltage
\[
\left(\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 3)=2.5 \mathrm{~V}\right)
\] & VIO & - & 2.0 & 10 & mV \\
\hline Input Offset Current
\[
\left(\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 3)=2.5 \mathrm{~V}\right)
\] & \[
10
\] & - & 5.0 & 250 & \(n A\) \\
\hline Input Bias Current
\[
\left(\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 3)=2.5 \mathrm{~V}\right)
\] & 1 B & - & -0.1 & -1.0 & \(\mu \mathrm{A}\) \\
\hline Input Common-Mode Voltage Range
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & VICR & \[
\begin{gathered}
-0.3 \text { to } \\
v_{C C}-2.0
\end{gathered}
\] & - & - & V \\
\hline \[
\begin{aligned}
& \text { Open-Loop Voltage Gain } \\
& \left(\Delta \mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \text { to } 3.5 \mathrm{~V},\right. \\
& \left.\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{kS}\right) .
\end{aligned}
\] & AVOL & 70 & 95 & - & dB \\
\hline Unity-Gain Crossover Frequency
\[
\left(\mathrm{V}_{\mathrm{O}}=0.5 \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & \({ }^{f} \mathrm{C}\) & - & 350 & - & kHz \\
\hline Phase Margin at Unity-Gain
\[
\left(\mathrm{V}_{\mathrm{O}}=0.5 \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & 0 m & - & 65 & - & deg. \\
\hline Common-Mode Rejection Ratio
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\] & CMRR & 65 & 90 & & dB \\
\hline Power Supply Rejection Ratio
\[
\left(\Delta \mathrm{V}_{\mathrm{CC}}=33 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & PSRR & - & 100 & - & dB \\
\hline Output Sink Current
\[
\left(\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 3)=0.7 \mathrm{~V}\right)
\] & '10- & 0.3 & 0.7 & - & mA \\
\hline Output Source Current
\[
\left(\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 3)=3.5 \mathrm{~V}\right)
\] & \(10^{+}\) & -2.0 & -4.0 & - & mA \\
\hline
\end{tabular}

NOTE 2: Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperatures as possible.

\section*{TL494}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\top}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\boldsymbol{T}}=12 \mathrm{k} \Omega\right.\) unless otherwise noted.)
For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \multirow{2}{*}{ Symbol } & \multicolumn{3}{|c|}{ TL494 } & Unit \\
& & Min & Typ & Max & \\
\hline
\end{tabular}

PWM COMPARATOR SECTION (Test Circuit Figure 12)
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l}
Input Threshold Voltage \\
(Zero duty cycle)
\end{tabular} & \(\mathrm{V}_{\mathrm{TH}}\) & - & 3.5 & 4.5 \\
\hline \begin{tabular}{c}
Input Sink Current \\
\((\mathrm{V}(\) Pin 3) \(=0.7 \mathrm{~V})\)
\end{tabular} & \(\mathrm{I}-\) & 0.3 & 0.7 & - \\
\hline
\end{tabular}

DEAD-TIME CONTROL SECTION (Test Circuit Figure 12)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current (Pin 4)
\[
\left.\left(V_{\text {Pin } 4}\right)=0 \text { to } 5.25 \mathrm{~V}\right)
\] & IIB (DT) & - & -2.0 & -10 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Maximum Duty Cycle, Each Output, Push-Pull Mode \(\left(\mathrm{V}_{\text {Pin } 4}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\)) \\
\(\left(\mathrm{V}_{\text {Pin } 4}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=30 \mathrm{k} \Omega\right)\)
\end{tabular} & \(\mathrm{DC}_{\text {max }}\) & 45 & \[
\begin{aligned}
& 48 \\
& 45
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & \% \\
\hline Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle) & \(\mathrm{V}_{\text {TH }}\) & \(\overline{0}\) & 2.8 & 3.3 & V \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& \qquad\left(\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=30 \mathrm{k} \Omega\right)
\end{aligned}
\] & \(\mathrm{f}_{\text {OSC }}\) & - & 40 & - & kHz \\
\hline Standard Deviation of Frequency*
\[
\left(\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=30 \mathrm{k} \Omega\right)
\] & \(\sigma \mathrm{f}_{\mathrm{osc}}\) & - & 3.0 & - & \% \\
\hline Frequency Change with Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V} \text { to } 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \(\Delta \mathrm{f}_{\text {osc }}(\Delta \mathrm{V})\) & - & 0.1 & - & \% \\
\hline ```
Frequency Change with Temperature
 (\(\Delta \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\))
 \(\left(\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\))
``` & \(\Delta f_{\text {osc }}(\Delta T)\) & - & - & 12 & \% \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|l|l|l|l|l|}
\hline Turn-On Threshold ( \(\mathrm{V}_{\mathrm{CC}}\) Increasing, \(\mathrm{I}_{\mathrm{ref}}=1.0 \mathrm{~mA}\) ) & \(\mathrm{V}_{\mathrm{th}}\) & 5.5 & 6.43 & 7.0 & V \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Standby Supply Current \\
(Pin 6 at \(\mathrm{V}_{\text {ref }}\), All Other Inputs and Outputs Open)
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\end{aligned}
\]
\end{tabular} & \({ }^{\text {I CC }}\) & - & \[
\begin{aligned}
& 5.5 \\
& 7.0
\end{aligned}
\] & 10
15 & mA \\
\hline Average Supply Current \(\left(V_{(\text {Pin } 4)}=2.0 \mathrm{~V}\right)(\) See Figure 12)
\(\left(C_{T}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right)\) & - & - & 7.0 & - & mA \\
\hline
\end{tabular}
* Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, \(\sigma-\sqrt{N}\left(X_{n}-\bar{X}\right)^{2}\)
\(\sqrt{\frac{\sum_{n=1}^{N}\left(x_{n}-\bar{x}\right)^{2}}{N-1}}\)

FIGURE 4 - OSCILLATOR FREQUENCY
versus TIMING RESISTANCE


FIGURE 6 - PERCENT DEAD-TIME versus OSCILLATOR FREQUENCY


FIGURE 8 - EMITTER FOLLOWER CONFIGURATION OUTPUT SATURATION VOLTAGE versus EMITTER CURRENT


FIGURE 5 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY


FIGURE 7 - PERCENT DUTY CYCLE versus DEAD-TIME CONTROL VOLTAGE


FIGURE 9 - COMMON EMITTER CONFIGURATION OUTPUT SATURATION VOLTAGE versus COLLECTOR CURRENT


FIGURE 10 - STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE


FIGURE 11 - ERROR AMPLIFIER CHARACTERISTICS


FIGURE 13 - COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM


FIGURE 12 - DEAD-TIME AND FEEDBACK CONTROL


FIGURE 14 - EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM


FIGURE 15 - ERROR-AMPLIFIER SENSING TECHNIQUES


FIGURE 16 - DEAD-TIME CONTROL CIRCUIT


Max \% on Time, Each Output \(\approx 45-\left(\frac{80}{1+\frac{R_{1}}{R_{2}}}\right)\)


FIGURE 17 - SOFT-START CIRCUIT


FIGURE 18 - OUTPUT CONNECTIONS FOR SINGLE-ENDED AND PUSH-PULL CONFIGURATIONS


Single Ended Configuration


Push-Pull Configuration

FRGURE 19 - SLAVING TWO OR MORE CONTROL CIRCUITS


FIGURE 20 - OPERATION WITH VIN > 40 V USING EXTERNAL ZENER


FIGURE 21 - PULSE-WIDTH MODULATED PUSH-PULL CONVERTER
\(+V_{\text {in }}=8.0\) to 20 V


L1 - \(3.5 \mathrm{mH} @ 0.3 \mathrm{~A}\)
T1 - Primary: 20T C.T. \#28 AWG
Secondary: 120T C.T. \#36 AWG
Core: Ferroxcube 1408P-L00-3C8
\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ TEST } & \multicolumn{1}{|c|}{ CONDITIONS } & RESULTS \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=10 \mathrm{~V}\) to 40 V & \(14 \mathrm{mV} 0.28 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}\) to 1 A & \(3.0 \mathrm{mV} 0.06 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(65 \mathrm{mV} \mathrm{P-P} \mathrm{P.A.R.D}\). \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 1.6 amps \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}\) & \(71 \%\) \\
\hline
\end{tabular}

\section*{TL494}

FIGURE 22 - PULSE-WIDTH MODULATED STEP-DOWN CONVERTER

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ TEST } & \multicolumn{1}{c|}{ CONDITIONS } & RESULTS \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0\) to 40 V & \(3.0 \mathrm{mV} \quad 0.01 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, 1 \mathrm{IO}=0.2\) to 200 mA & \(5.0 \mathrm{mV} \quad 0.02 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, 1 \mathrm{IO}=200 \mathrm{~mA}\) & \(40 \mathrm{mV} \mathrm{p}-\mathrm{P} \quad\) P.A.R.D. \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \mathrm{\Omega}\) & 250 mA \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, 1 \mathrm{IO}=200 \mathrm{~mA}\) & \(72 \%\) \\
\hline
\end{tabular}

\section*{Advance Information}

\section*{PRECISION SWITCHMODE PULSE WIDTH MODULATION} CONTROL CIRCUIT

The TL594 is a fixed frequency, pulse width modulation control circuit designed primarily for Switchmode power supply control. This device features:
- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator With Master Or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5 Volt Reference, 1.5\% Accuracy
- Adjustable Dead-Time Control
- Uncommitted Output Transistors Rated to 500 mA Source Or Sink
- Output Control For Push-Pull Or Single-Ended Operation
- Undervoltage Lockout


The TL594C is specified over the commercial operating range of \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\). The TL5941 is specified over the industrial range of \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\). The TL594M is specified over the full military range of \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\).

PRECISION SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUITS


J SUFFIX
CERAMIC PACKAGE CASE 620-10


N SUFFIX
PLASTIC PACKAGE
CASE 648-06
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION } \\
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c} 
Temperature \\
Range
\end{tabular} & \multicolumn{1}{c|}{ Package } \\
\hline TL594CN & \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline TL594IN & \(-25^{\circ}\) to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline TL594MJ & \(-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline
\end{tabular}

This document contains information on a new product. Specifications and information herein are subject to change without notice.

FIGURE 1 - BLOCK DIAGRAM


FIGURE 2 - TIMING DIAGRAM


\section*{Description}

The TL594 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequency-programmable by two external components, \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). The approximate oscillator frequency is determined by:
\[
\mathrm{f}_{\mathrm{osc}} \approx \frac{1.2}{\mathrm{R}_{\mathrm{T}} \cdot \mathrm{C}_{\mathrm{T}}}
\]

For more information refer to Figure 4.
Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor \(C_{T}\) to either of two control signals. The NOR gates, which drive output transistors 01 and Q2, are enabled only when the flip-flop clock-input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feedback input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first \(4 \%\) of the sawtooth-cycle time. This would result in a maximum duty cycle on a given output of \(96^{\circ} \circ\) with the output control grounded, and \(48 \%\) with it connected to the reference line. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 to 3.3 V .

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V . Both error amplifiers have a common-mode input range from -0.3 V to \(\left(\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}\right)\), and may be used to sense powersupply output voltage and current. The error-amplifier outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

When capacitor \(C_{T}\) is discharged, a positive pulse is generated on the output of the dead-time comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2. With the output-control connected to the reference line, the pulse-steering flipflop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single-ended operation with a maximum on-time of less than \(50 \%\) is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher output-drive currents are required for single-ended operation, Q1 and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator.

The TL594 has an internal 5.0 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of \(\pm 1.5 \%\) with a typical thermal drift of less than 50 mV over an operating temperature range of 0 to \(70^{\circ} \mathrm{C}\).

FIGURE 3 - FUNCTIONAL TABLE
\begin{tabular}{|c|l|c|}
\hline Input & \multicolumn{1}{|c|}{ Output Function } & \begin{tabular}{c}
\(\underline{\mathbf{f}_{\text {out }}}=\) \\
\(\mathbf{f}_{\text {osc }}\)
\end{tabular} \\
\hline \begin{tabular}{c} 
Output \\
Control
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c|c|}
\hline Grounded & Single-ended P.W.M. at Q1 and Q2
\end{tabular}} \\
\hline At \(\mathrm{V}_{\text {ref }}\) & Push-pull operation & 0.5 \\
\hline
\end{tabular}

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & TL594C & TL5941 & TL594M & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 42 & 42 & 42 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}\) & 42 & 42 & 42 & V \\
\hline Collector Output Current (each transistor) (Note 1 ) & \(\mathrm{I}_{\mathrm{C} 1}, \mathrm{I}_{\mathrm{C} 2}\) & 500 & 500 & 500 & mA \\
\hline Amplifier Input Voltage Range & \(\mathrm{V}_{\mathrm{IR}}\) & -0.3 to 42 & -0.3 to 42 & -0.3 to 42 & V \\
\hline Power Dissipation (a \(\mathrm{T}_{\mathrm{A}} \leqslant 45^{\circ} \mathrm{C}\) & \(\mathrm{P}_{\mathrm{D}}\) & 1000 & 1000 & 1000 & mW \\
\hline \begin{tabular}{l} 
Operating Junction Temperature \\
Plastic Package \\
Ceramic Package
\end{tabular} & \(\mathrm{T}_{\mathrm{J}}\) & 125 & 125 & - & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & & - & - & 150 & \\
\hline \begin{tabular}{l} 
Storage Temperature Range \\
Plastic Package \\
Ceramic Package
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & 0 to 70 & -25 to 85 & -55 to 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE 1: Maximum thermal limits must be observed.
THERMAL CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & N Suffix Plastic Package & J Suffix Ceramic Package & Unit \\
\hline Thermal Resistance, Junction to Ambient & \(\mathrm{R}_{\text {HJA }}\) & 80 & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Derating Ambient Temperature & \(\mathrm{T}_{A}\) & 45 & 50 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Condition/Value} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL594} & \multirow{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Power Supply Voltage & \(V_{\text {CC }}\) & 7.0 & 15 & 40 & V \\
\hline Collector Output Voltage & \(\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}\) & - & 30 & 40 & V \\
\hline Collector Output Current (each transistor) & \({ }^{1} \mathrm{C} 1 . \mathrm{I}^{\text {C2 }}\) & - & - & 200 & mA \\
\hline Amplifier Input Voltage & \(\mathrm{V}_{\text {in }}\) & 0.3 & - & \(\mathrm{V}_{\text {CC }} \quad 2.0\) & V \\
\hline Current Into Feedback Terminal & 1 fb & - & - & 0.3 & mA \\
\hline Reference Output Current & Iref & - & - & 10 & mA \\
\hline Timing Resistor & \(\mathrm{R}_{T}\) & 1.8 & 30 & 500 & k』 \\
\hline Timing Capacitor & \(\mathrm{C}_{\top}\) & 0.0047 & 0.001 & 10 & \(\mu \mathrm{F}\) \\
\hline Oscillator Frequency & \(\mathrm{f}_{\text {OSC }}\) & 1.0 & 40 & 200 & kHz \\
\hline PWM Input Voltage (Pins 3, 4 \& 13) & - & -0.3 & - & 5.3 & V \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathbf{C}_{\mathbf{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathbf{T}}=12 \mathrm{k} \Omega\) unless otherwise noted.)
For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for min max values \(T_{A}\) is the operating ambient temperature range that applies unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Characteristic } & \multirow{2}{*}{ Symbol } & \multicolumn{3}{|c|}{ TL594C,I } & \multicolumn{3}{|c|}{ TL594M } & \multirow{2}{*}{ Unit } \\
\cline { 3 - 9 } & & Min & Typ & Max & Min & Typ & Max & \\
\hline
\end{tabular}

\section*{REFERENCE SECTION}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Reference Voltage \\
\(\left(I_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{TA}_{\mathrm{O}}=25^{\circ} \mathrm{C}\right)\) \\
\(\left(\mathrm{IO}_{\mathrm{O}}=1.0 \mathrm{~mA}\right)\)
\end{tabular} & \(\mathrm{V}_{\text {ref }}\) & 4.925 & 5.0 & 5.075 & 4.925 & 5.0 & 5.075 \\
\hline \begin{tabular}{c} 
Line Regulation \\
\(\left(V_{\mathrm{CC}}=7.0 \mathrm{~V}\right.\) to 40 V\()\)
\end{tabular} & Regline & - & 2.0 & 25 & - & 2.0 & 25 \\
\hline \begin{tabular}{c} 
Load Regulation \\
\(\left(I_{\mathrm{O}}=1.0 \mathrm{~mA}\right.\) to 10 mA\()\)
\end{tabular} & Regload & - & 2.0 & 15 & - & 2.0 & 15 \\
\hline \begin{tabular}{c} 
Short-Circuit Output Current \\
\(\left(V_{\text {ref }}=0 \mathrm{~V}\right)\)
\end{tabular} & ISC & 15 & 40 & 75 & 15 & 40 & 75 \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\) unless otherwise noted.)
For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(\mathrm{T}_{A}\) is the operating ambient temperature range that applies unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Characteristic } & \multirow{2}{*}{ Symbol } & \multicolumn{3}{|c|}{ TL594C,I } & \multicolumn{3}{|c|}{ TL594M } & \multirow{2}{*}{ Unit } \\
\cline { 4 - 8 } & & & Min & Typ & Max & Min & Typ & Max \\
\hline
\end{tabular}

OUTPUT SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Collector Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=40 \mathrm{~V}\right)
\] & IC(off) & - & 2.0 & 100 & - & 2.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Emitter Off-State Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}\right)
\] & 'E(off) & - & - & - 100 & - & - & - 100 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Collector-Emitter Saturation Voltage (Note 2) Common-Emitter
\[
\left(V_{E}=0 V, I_{C}=200 \mathrm{~mA}\right)
\] \\
Emitter-Follower
\[
\left(\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-200 \mathrm{~mA}\right)
\]
\end{tabular}} & \(V_{\text {SAT }}(\mathrm{C})\) & - & 1.1 & 1.3 & - & 1.1 & 1.5 & V \\
\hline & \(\mathrm{V}_{\text {SAT }}(\mathrm{E})\) & - & 1.5 & 2.5 & - & 1.5 & 2.5 & V \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Output Control Pin Current Low State
\[
\left(\mathrm{V}_{\mathrm{OC}} \leqslant 0.4 \mathrm{~V}\right)
\] \\
High State
\[
\left(V_{\mathrm{OC}}=V_{\mathrm{ref}}\right)
\]
\end{tabular}} & \({ }^{1} \mathrm{OCL}\) & - & 0.1 & - & - & 0.1 & - & \(\mu \mathrm{A}\) \\
\hline & \({ }^{1} \mathrm{OCH}\) & - & 2.0 & 20 & - & 2.0 & 20 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Output Voltage Rise Time \\
Common-Emitter (See Figure 13) \\
Emitter-Follower (See Figure 14)
\end{tabular}} & \(\mathrm{t}_{\mathrm{r}}\) & - & 100 & 200 & - & 100 & 200 & ns \\
\hline & & - & 100 & 200 & - & 100 & 200 & ns \\
\hline \multirow[t]{2}{*}{Output Voltage Fall Time Common-Emitter (See Figure 13) Emitter-Follower (See Figure 14)} & \(t_{f}\) & - & 40 & 100 & - & 40 & 100 & ns \\
\hline & & - & 40 & 100 & - & 40 & 100 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \multirow{2}{*}{ Symbol } & \multicolumn{3}{|c|}{ TL594 } & \\
\cline { 3 - 6 } & Min & Typ & Max \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage
\[
\left(\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 3)=2.5 \mathrm{~V}\right)
\] & \(\mathrm{V}_{10}\) & - & 2.0 & 10 & mV \\
\hline Input Offset Current
\[
\left(\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 3)=2.5 \mathrm{~V}\right)
\] & 10 & - & 5.0 & 250 & \(n A\) \\
\hline Input Bias Current
\[
\left(\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 3)=2.5 \mathrm{~V}\right)
\] & IIB & - & -0.1 & -1.0 & \(\mu \mathrm{A}\) \\
\hline Input Common-Mode Voltage Range
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & VICR & \[
\begin{gathered}
0 \text { to } \\
\mathrm{V}_{\mathrm{CC}}-2.0
\end{gathered}
\] & - & - & V \\
\hline Inverting Input Voltage Range & VIR(INV) & \[
\begin{gathered}
-0.3 \text { to } \\
v_{C C}-2.0
\end{gathered}
\] & - & - & V \\
\hline Open-Loop Voltage Gain
\[
\begin{aligned}
\left(\Delta \mathrm{V}_{\mathrm{O}}\right. & =3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \text { to } 3.5 \mathrm{~V}, \\
\mathrm{R}_{\mathrm{L}} & =2.0 \mathrm{kS})
\end{aligned}
\] & AVOL & 70 & 95 & - & dB \\
\hline Unity-Gain Crossover Frequency
\[
\left(\mathrm{V}_{\mathrm{O}}=0.5 \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & \({ }^{\mathrm{f}} \mathrm{C}\) & - & 700 & - & kHz \\
\hline Phase Margin at Unity-Gain
\[
\left(\mathrm{V}_{\mathrm{O}}=0.5 \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & 0 m & - & 65 & - & deg. \\
\hline Common-Mode Rejection Ratio
\[
\left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\] & CMRR & 65 & 90 & - & dB \\
\hline Power Supply Rejection Ratio
\[
\left(\Delta \mathrm{V}_{\mathrm{CC}}=33 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\right)
\] & PSRR & - & 100 & - & dB \\
\hline Output Sink Current
\[
\left(\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 3)=0.7 \mathrm{~V}\right)
\] & \(10^{-}\) & 0.3 & 0.7 & - & mA \\
\hline Output Source Current \(\left(\mathrm{V}_{\mathrm{O}}(\mathrm{Pin} 3)=3.5 \mathrm{~V}\right)\) & \(1 \mathrm{O}^{+}\) & -2.0 & -4.0 & - & mA \\
\hline
\end{tabular}

NOTE 2: Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\) unless otherwise noted.)
For typical values \(T_{A}=25^{\circ} \mathrm{C}\), for \(\mathrm{min} / \mathrm{max}\) values \(T_{A}\) is the operating ambient temperature range that applies unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \multirow{2}{*|}{ Symbol } & \multicolumn{3}{|c|}{ TL594 } & \\
\cline { 4 - 6 } & & Min & Typ & Max \\
\hline
\end{tabular}

PWM COMPARATOR SECTION (Test Circuit Figure 12)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Input Threshold Voltage \\
(Zero Duty Cycle)
\end{tabular} & \(\mathrm{V}_{\mathrm{TH}}\) & - & 3.6 & 4.5 \\
\hline \begin{tabular}{c} 
Input Sink Current \\
(VPin 3 \(=0.7 \mathrm{~V}\) )
\end{tabular} & \(11-\) & 0.3 & 0.7 & - \\
\hline
\end{tabular}

DEAD-TIME CONTROL SECTION (Test Circuit Figure 12)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Bias Current (Pin 4)
\[
\left(\mathrm{V}_{\operatorname{Pin} 4}=0 \text { to } 5.25 \mathrm{~V}\right)
\] & \(1 \mathrm{~B}(\mathrm{DT})\) & - & -2.0 & \(-10\) & \(\mu \mathrm{A}\) \\
\hline Maximum Duty Cycle, Each Output, Push-Pull Mode
\[
\begin{aligned}
& \left(\mathrm{V}_{\text {Pin } 4}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right) \\
& \left(\mathrm{V}_{\text {Pin } 4}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=30 \mathrm{k} \Omega\right)
\end{aligned}
\] & DC max & \[
45
\] & \[
\begin{aligned}
& 48 \\
& 45
\end{aligned}
\] & \[
50
\] & \% \\
\hline Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle) & \(\mathrm{V}_{\text {TH }}\) & \(\overline{0}\) & \[
2.8
\] & \[
3.3
\] & V \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
Frequency
    (CT}=0.001\mu\textrm{F},\mp@subsup{\textrm{R}}{\textrm{T}}{}=30\textrm{k}\Omega
    ( }\mp@subsup{\textrm{C}}{\textrm{T}}{}=0.01\mu\textrm{F},\mp@subsup{\textrm{R}}{\textrm{T}}{}=12\textrm{ks},\mp@subsup{\textrm{T}}{\textrm{A}}{}=2\mp@subsup{5}{}{\circ}\textrm{C}
    (CT}=0.01\mu\textrm{F},\mp@subsup{\textrm{R}}{\textrm{T}}{}=12\textrm{k}\Omega,\mp@subsup{\textrm{T}}{\textrm{A}}{}=\mp@subsup{\textrm{T}}{\mathrm{ low }}{}\mathrm{ to Thigh)
``` & \(\mathrm{f}_{\text {OSC }}\) & \[
\begin{aligned}
& \overline{-2} \\
& 9.2
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\overline{10.8} \\
12
\end{gathered}
\] & kHz \\
\hline Standard Deviation of Frequency*
\[
\left(\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=30 \mathrm{k} \Omega\right)
\] & \({ }^{\text {of }} \mathrm{OSC}\) & - & 1.5 & - & \% \\
\hline Frequency Change with Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V} \text { to } 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \(\Delta f_{\text {Osc }}(\Delta \mathrm{V})\) & - & 0.2 & 1.0 & \% \\
\hline \begin{tabular}{l}
Frequency Change with Temperature \\
\(\left(\Delta T_{A}=T_{\text {low }}\right.\) to \(T_{\text {high }}, C_{T}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\))
\end{tabular} & \(\Delta f_{\text {OSC }}(\Delta T)\) & - & 4.0 & - & \% \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|c|c|c|c|}
\hline Turn-On Threshold (VCC Increasing, Iref \(=1.0 \mathrm{~mA})\) & \(\mathrm{V}_{\mathrm{th}}\) & & & V \\
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 4.0 & 5.2 & 6.0 \\
\(\mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to Thigh & & 3.5 & - & 6.5 \\
\hline Hysteresis & \(\mathrm{V}_{\mathrm{H}}\) & & & \\
TL594C,I & & 100 & 150 & 300 \\
TL594M & & 50 & 150 & 300 \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Standby Supply Current \\
(Pin 6 at \(V_{\text {ref }}\), All Other Inputs and Outputs Open)
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\end{aligned}
\]
\end{tabular} & \({ }^{1} \mathrm{CC}\) & - & \[
\begin{aligned}
& 8.0 \\
& 8.5
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 18
\end{aligned}
\] & mA \\
\hline Average Supply Current \(\left(V_{\text {Pin } 4}=2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega\right.\), \(V_{C C}=15 \mathrm{~V}\), See Figure 12) & - & - & 11 & - & mA \\
\hline
\end{tabular}
*Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, \(\sigma=\sqrt{\frac{\sum_{n=1}^{N}\left(X_{n}-\bar{X}\right)^{2}}{N-1}}\)

FIGURE 4 - OSCILLATOR FREQUENCY
versus TIMING RESISTANCE

FIGURE 6 - PERCENT DEAD-TIME versus OSCILLATOR FREQUENCY

FIGURE 8 - EMITTER FOLLOWER CONFIGURATION OUTPUT SATURATION VOLTAGE versus EMITTER CURRENT

FIGURE 5 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY

FIGURE 7 - PERCENT DUTY CYCLE versus DEAD-TIME CONTROL VOLTAGE

FIGURE 9 - COMMON EMITTER CONFIGURATION OUTPUT SATURATION VOLTAGE versus COLLECTOR CURRENT

FIGURE 10 - STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 12 - ERROR AMPLIFIER CHARACTERISTICS

FIGURE 14 - COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM

FIGURE 11 - UNDERVOLTAGE LOCKOUT THRESHOLDS versus REFERENCE LOAD CURRENT

FIGURE 13 - DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT

FIGURE 15 - EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM

FIGURE 16 - ERROR-AMPLIFIER SENSING TECHNIQUES

FIGURE 17 - DEAD-TIME CONTROL CIRCUIT
FIGURE 18 - SOFT-START CIRCUIT

Max \% on Time, Each Output \(\approx 45-\left(\frac{80}{1+\frac{R_{1}}{R_{2}}}\right)\)

FIGURE 19 - OUTPUT CONNECTIONS FOR SINGLE-ENDED AND PUSH-PULL CONFIGURATIONS

\footnotetext{
Single Ended Configuration
}

FIGURE 20 - SLAVING TWO OR MORE CONTROL CIRCUITS

FIGURE 21 - OPERATION WITH VIN \(>40 \mathrm{~V}\) USING EXTERNAL ZENER

FIGURE 22 - PULSE-WIDTH MODULATED PUSH-PULL CONVERTER

\(\mathrm{L} 1-3.5 \mathrm{mH}\) (") 0.3 A
T1 - Primary: 20T C.T. \#28 AWG
Secondary: 120T C.T. \#36 AWG
Core: Ferroxcube 1408P-L00-3C8
\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ TEST } & \multicolumn{1}{|c|}{ CONDITIONS } & RESULTS \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=10 \mathrm{~V}\) to 40 V & \(14 \mathrm{mV} \quad 0.28 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=1 \mathrm{~mA}\) to 1 A & \(3.0 \mathrm{mV} \quad 0.06 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(65 \mathrm{mV} \mathrm{P-P}\) P.A.R.D. \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 1.6 amps \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}\) & \(71 \%\) \\
\hline
\end{tabular}
- FIGURE 23 - PULSE-WIDTH MODULATED STEP-DOWN CONVERTER

\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ TEST } & \multicolumn{1}{|c|}{ CONDITIONS } & RESULTS \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=8.0\) to 40 V & \(3.0 \mathrm{mV} \quad 0.01 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.2\) to 200 mA & 5.0 mV \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\) & 40 mV p-P \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 250 mA \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=12.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}\) & \(72 \%\) \\
\hline
\end{tabular}

\section*{THREE-TERMINAL POSITIVE VOLTAGE REGULATORS}

This family of precision fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 1.5 amperes. Innovative design concepts, coupled with advanced thermal layout techniques has resulted in improved accuracy and excellent load, line and thermal regulation characteristics. Internal current limiting, thermal shutdown and safe-area compensation are employed, making these devices extremely rugged and virtually immune to overload.
- \(\pm 1 \%\) Output Voltage Tolerance (a \(25^{\circ} \mathrm{C}\)
- \(\pm \mathbf{2 \%}\) Output Voltage Tolerance Over Full Operating Temperature Range
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Output Transistor Safe-Area Compensation
- No External Components Required
- Pinout Compatible with MC7800 Series

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
\(X X=\) these two digits of the type number indicate voltage.
* \(=\mathrm{C}_{\mathrm{in}}\) is required if regulator is located an appreciable distance from power supply filter.
\({ }^{* *}=\mathrm{C}_{\mathrm{O}}\) is not needed for stability; however, it does improve transient response.

ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Nominal Output \\
Voltage
\end{tabular} & Device \\
\hline 5.0 V & TL780-05CKC \\
12 V & TL780-12CKC \\
15 V & TL780-15CKC \\
\hline
\end{tabular}

\section*{TL780 Series}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage & \(\mathrm{V}_{\text {in }}\) & 35 & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance, Junction to Air
\[
T_{C}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{C}=+75^{\circ} \mathrm{C}\) (See Figure 1) \\
Thermal Resistance, Junction to Case
\end{tabular} & \[
\begin{gathered}
\mathrm{PD}^{\mathrm{l}} \\
1 / \theta_{\mathrm{JA}} \\
\theta_{\mathrm{JA}} \\
\mathrm{PD}^{1 / \theta \mathrm{JC}} \\
\theta_{\mathrm{JC}} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
16 \\
62.5 \\
15 \\
200 \\
5.0 \\
\hline
\end{gathered}
\] & Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \({ }^{\circ} \mathrm{C} / \mathrm{W}\) Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature Range & TJ & 0 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

TL780-05C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{I} \mathrm{O}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}\right.\) unless otherwise noted [Note 1])
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL780-05C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W} \\
& 7.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 20 \mathrm{~V} \\
& \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leqslant \mathrm{TJ} \leqslant+125^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 4.95 \\
& 4.90
\end{aligned}
\] & \[
5.0
\] & \[
\begin{aligned}
& 5.05 \\
& 5.10
\end{aligned}
\] & V \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& 7.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{~V} \\
& 8.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 12 \mathrm{~V} \\
& \hline
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& 5.0 \mathrm{~mA} \leqslant 1_{O} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant 1_{O} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & — & \[
\begin{aligned}
& 4.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 15
\end{aligned}
\] & mV \\
\hline Ripple Rejection
\[
8.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{in}} \leqslant 18 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & 70 & 80 & - & dB \\
\hline Output Resistance (\(\mathrm{f}=1.0 \mathrm{kHz}\)) & ro & - & 0.0035 & - & \(\Omega\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
I_{0}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & 0.06 & - & \(\mathrm{mV}{ }^{\circ} \mathrm{C}\) \\
\hline Output Noise Voltage (\(\mathrm{T} J=+25^{\circ} \mathrm{C}\))
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 75 & - & \(\mu \mathrm{V}\) \\
\hline \[
\begin{aligned}
& \text { Dropout Voltage }\left(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\right) \\
& \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & V \\
\hline Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 1 B & - & 3.5 & 8.0 & mA \\
\hline Bias Current Change
\[
\begin{aligned}
& 7.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=10 \mathrm{~V}
\end{aligned}
\] & \(د_{B}\) & - & \[
\begin{gathered}
0.7 \\
0.03
\end{gathered}
\] & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Short-Circuit Output Current (\(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{~V}
\] & \(I_{\text {Sc }}\) & - & 200 & - & mA \\
\hline Peak Output Current (\(\mathrm{J}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & Ip & - & 2.2 & - & A \\
\hline
\end{tabular}

Note 1: Line and load regulation are specified at constant junction temperature. Changes in \(V_{O}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

TL780-12C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}\right.\) unless otherwise noted [Note 1])
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL780-12C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant \mathrm{l}_{\mathrm{l}} \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W} \\
& 14.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 27 \mathrm{~V} \\
& T_{J}=+25^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leqslant T_{J} \leqslant+125^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{v}_{\text {O }}\) & \[
\begin{aligned}
& 11.88 \\
& 11.76
\end{aligned}
\] & 12 & \[
\begin{aligned}
& 12.12 \\
& 12.24
\end{aligned}
\] & V \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& 14.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \\
& 16 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 22
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 1.2 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & mV \\
\hline
\end{tabular}

\section*{TL780 Series}

TL780-12C (continued)
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{in}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}\right.\) unless otherwise noted [Note 1])
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL780-12C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(\mathrm{T}_{J}=+25^{\circ} \mathrm{C}\right) \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 6.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 36
\end{aligned}
\] & mV \\
\hline Ripple Rejection
\[
15 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 25 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & 65 & 77 & - & dB \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & ro & - & 0.0035 & - & \(\Omega\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{0}\) & - & 0.15 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Output Noise Voltage (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\))
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 180 & - & \(\mu \mathrm{V}\) \\
\hline Dropout Voltage \(\left(\mathrm{T} J=+25^{\circ} \mathrm{C}\right.\)) \(\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & V \\
\hline Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & 1 B & - & 3.5 & 8.0 & mA \\
\hline Bias Current Change
\[
\begin{aligned}
& 14.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=19 \mathrm{~V}
\end{aligned}
\] & \(\left.{ }^{\Delta}\right|_{B}\) & - & \[
\begin{gathered}
0.4 \\
0.03
\end{gathered}
\] & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Short-Circuit Output Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\))
\[
v_{\text {in }}=35 \mathrm{~V}
\] & \(I_{\text {SC }}\) & - & 200 & - & mA \\
\hline Peak Output Current (\(\mathrm{TJ}=+25^{\circ} \mathrm{C}\)) & Ip & - & 2.2 & - & A \\
\hline
\end{tabular}

Note 1: Line and load regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

TL780-15C
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=23 \mathrm{~V}, \mathrm{IO}=500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}\right.\) unless otherwise noted [Note 1])
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL780-15C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & \\
\hline Output Voltage
\[
\begin{aligned}
& 5.0 \mathrm{~mA} \leqslant 10 \leqslant 1.0 \mathrm{~A}, \mathrm{P} \leqslant 15 \mathrm{~W} \\
& 17.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{~V} \\
& \mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leqslant \mathrm{TJ}^{2} \leqslant+125^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 14.85 \\
& 14.70
\end{aligned}
\] & \[
15
\] & \[
\begin{aligned}
& 15.15 \\
& 15.30
\end{aligned}
\] & V \\
\hline \[
\begin{aligned}
& \text { Line Regulation }\left(T_{J}=+25^{\circ} \mathrm{C}\right) \\
& 17.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{~V} \\
& 20 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 26 \mathrm{~V} \\
& \hline
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 1.5 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation }\left(T J=+25^{\circ} \mathrm{C}\right) \\
& 5.0 \mathrm{~mA} \leqslant 1_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\
& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & Regload & - & \[
\begin{aligned}
& 7.0 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 75 \\
& 45
\end{aligned}
\] & mV \\
\hline Ripple Rejection
\[
18.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 28.5 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}
\] & RR & 60 & 75 & - & dB \\
\hline Output Resistance (\(f=1.0 \mathrm{kHz}\)) & ro & - & 0.0035 & - & \(\Omega\) \\
\hline Average Temperature Coefficient of Output Voltage
\[
\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}
\] & \(\mathrm{TCV}_{\mathrm{O}}\) & - & 0.18 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Output Noise Voltage (\(\mathrm{TJ}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\))
\[
10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}
\] & \(\mathrm{V}_{\mathrm{n}}\) & - & 225 & - & \(\mu \mathrm{V}\) \\
\hline Dropout Voltage (\(\mathrm{T} \mathrm{J}=+25^{\circ} \mathrm{C}\))
\[
\mathrm{I}_{0}=1.0 \mathrm{~A}
\] & \(\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{O}}\) & - & 2.0 & - & V \\
\hline Bias Current (\(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\)) & \(\mathrm{I}_{\mathrm{B}}\) & - & 3.6 & 8.0 & mA \\
\hline Bias Current Change
\[
\begin{aligned}
& 17.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\
& 5.0 \mathrm{~mA} \leqslant I_{\mathrm{O}} \leqslant 1.0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=23 \mathrm{~V}
\end{aligned}
\] & \(\left.{ }^{\Delta}\right|_{B}\) & - & \[
\begin{gathered}
0.4 \\
0.02
\end{gathered}
\] & \[
\begin{aligned}
& 1.3 \\
& 0.5
\end{aligned}
\] & mA \\
\hline Short-Circuit Output Current (\(\mathrm{T} J=+25^{\circ} \mathrm{C}\))
\[
\mathrm{V}_{\mathrm{in}}=35 \mathrm{~V}
\] & \({ }^{\text {sc }}\) & - & 200 & - & mA \\
\hline Peak Output Current (\(\mathrm{JJ}^{\prime}=+25^{\circ} \mathrm{C}\)) & Ip & - & 2.2 & - & A \\
\hline
\end{tabular}

Note 1: Line and load regulation are specified at constant junction temperature. Changes in \(\mathrm{V}_{\mathrm{O}}\) due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

\section*{TL780 Series}

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

\section*{VOLTAGE REGULATOR PERFORMANCE}

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration (\(<100 \mu \mathrm{~s}\)) and are strictly a function of electrical gain. However, pulse widths of longer duration (\(>1.0 \mathrm{~ms}\)) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.
Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change
per watt. The change in dissipated power can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of I.C. layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms , additional changes in the output voltage are due to the temperature coefficient of the device.

Figure 1 shows the line and thermal regulation response of a typical TL780-05C to a 10 watt input pulse. The variation of the output voltage due to line regulation is labeled (1) and the thermal regulation component is labeled (2). Figure 2 shows the load and thermal regulation response of a typical TL78005 C to a 15 watt load pulse. The output voltage variation due to load regulation is labeled (1) and the thermal regulation component is labeled (2).

FIGURE 1 - LINE AND THERMAL REGULATION

FIGURE 3 - TEMPERATURE STABILITY

FIGURE 2 - LOAD AND THERMAL REGULATION

FIGURE 4 - OUTPUT IMPEDANCE

FIGURE 5 - RIPPLE REJECTION versus FREQUENCY

FIGURE 7 - BIAS CURRENT versus INPUT VOLTAGE

FIGURE 9 - DROPOUT VOLTAGE

FIGURE 6 - RIPPLE REJECTION versus OUTPUT CURRENT

FIGURE 8 - BIAS CURRENT versus OUTPUT CURRENT

FIGURE 10 - PEAK OUTPUT CURRENT

FIGURE 11 - LINE TRANSIENT RESPONSE

FIGURE 12 - LOAD TRANSIENT RESPONSE

FIGURE 13 - WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE

\section*{Advance Information}

\section*{HIGH PERFORMANCE CURRENT MODE CONTROLLER}

The UC3842A, UC3843A series are high performance fixed frequency current mode controllers. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-bycycle current limiting, programmable output deadtime, and a latch for single pulse metering.

These devices are available in 8-pin dual-in-line ceramic and plastic packages as well as the 14 -pin plastic surface mount (SO-14). The SO-14 package has separate power and ground pins for the totem pole output stage.
The UCX842A has UVLO thresholds of 16 V (on) and 10 V (off), ideally suited for off-line converters. The UCX843A is tailored for lower voltage applications having UVLO thresholds of 8.5 V (on) and 7.6 V (off).
- Trimmed Oscillator Discharge Current for Precise Duty Cycle Control
- Current Mode Operation to 500 kHz
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis
- Low Start-Up and Operating Current
- Direct Interface with Motorola SENSEFET Products

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATING
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Total Power Supply and Zener Current & (\({ }_{\text {CC }}+\mathrm{I} \mathrm{Z}\)) & 30 & mA \\
\hline Output Current, Source or Sink (Note 1) & 10 & 1.0 & A \\
\hline Output Energy (Capacitive Load per Cycle) & W & 5.0 & \(\mu \mathrm{J}\) \\
\hline Current Sense and Voltage Feedback Inputs & \(\mathrm{V}_{\text {in }}\) & -0.3 to +5.5 & V \\
\hline Error Amp Output Sink Current & 10 & 10 & mA \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
D Suffix, Plastic Package \\
Maximum Power Dissipation (\(\omega\) TA \(=25^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Air \\
N Suffix, Plastic Package and \\
\(J\) Suffix, Ceramic Package \\
Maximum Power Dissipation (a) TA \(=25^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Air
\end{tabular} & \begin{tabular}{l}
PD \\
\(\mathrm{R}_{\theta J \mathrm{~A}}\) \\
PD \\
\(\mathrm{R}_{\theta \mathrm{JA}}\)
\end{tabular} & \[
\begin{aligned}
& 862 \\
& 145 \\
& \\
& 1.25 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\\
W \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature UC3842A, UC3843A UC2842A, UC2843A & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-25 \text { to }+85
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right.\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
[Note 3] unless otherwise noted)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline \multirow{10}{|c|}{} & & \multicolumn{3}{|c|}{ UC284XA } & \multicolumn{3}{|c|}{ UC384XA } & \\
\cline { 3 - 10 } & Characteristic & Symbol & Min & Typ & Max & Min & Typ & Max & Unit \\
\hline
\end{tabular}
REFERENCE SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Reference Output Voltage (\(I_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{TJ}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\text {ref }}\) & 4.95 & 5.0 & 5.05 & 4.9 & 5.0 & 5.1 & V \\
\hline Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 25 V) & Regline & - & 2.0 & 20 & - & 2.0 & 20 & mV \\
\hline Load Regulation (IO \(=1.0 \mathrm{~mA}\) to 20 mA) & Regload & - & 3.0 & 25 & - & 3.0 & 25 & mV \\
\hline Temperature Stability & \(\mathrm{TS}_{\mathrm{S}}\) & - & 0.2 & - & - & 0.2 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Total Output Variation over Line, Load, and Temperature & \(\mathrm{V}_{\text {ref }}\) & 4.9 & - & 5.1 & 4.82 & - & 5.18 & V \\
\hline Output Noise Voltage (f \(=10 \mathrm{~Hz}\) to \(10 \mathrm{kHz}, \mathrm{TJ}=25^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{\mathrm{n}}\) & - & 50 & - & - & 50 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability (TA \(=125^{\circ} \mathrm{C}\) for 1000 Hours) & S & - & 5.0 & - & - & 5.0 & - & mV \\
\hline Output Short Circuit Current & ISC & -30 & -85 & -180 & -30 & -85 & -180 & mA \\
\hline
\end{tabular}

OSCILLATOR SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Frequency } \\
& T_{J}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }}
\end{aligned}
\] & fosc & \[
\begin{aligned}
& 47 \\
& 46
\end{aligned}
\] & 52 & \[
\begin{aligned}
& 57 \\
& 60 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47 \\
& 46
\end{aligned}
\] & 52 & \[
\begin{aligned}
& 57 \\
& 60
\end{aligned}
\] & kHz \\
\hline Frequency Change with Voltage (\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) to 25 V) & \(\Delta \mathrm{fOSC}^{/ \Delta V}\) & - & 0.2 & 1.0 & - & 0.2 & 1.0 & \% \\
\hline Frequency Change with Temperature \(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) & \(\Delta \mathrm{f}_{\mathrm{OSC}} / \Delta \mathrm{T}\) & - & 5.0 & - & - & 5.0 & - & \% \\
\hline Oscillator Voltage Swing (Peak-to-Peak) & V OSC & - & 1.6 & - & - & 1.6 & - & V \\
\hline \[
\begin{aligned}
& \text { Discharge Current }\left(\mathrm{V}_{\mathrm{OSC}}=2.0 \mathrm{~V}\right) \\
& T_{J}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } \mathrm{T}_{\text {high }}
\end{aligned}
\] & 'dischg & \[
\begin{aligned}
& 7.5 \\
& 7.2
\end{aligned}
\] & 8.4 & 9.3
9.5 & \[
\begin{aligned}
& 7.5 \\
& 7.2
\end{aligned}
\] & 8.4 & \[
\begin{aligned}
& 9.3 \\
& 9.5
\end{aligned}
\] & mA \\
\hline
\end{tabular}

Notes: 1. Maximum Package power dissipation limits must be observed.
2. Adjust \(\mathrm{V}_{\mathrm{CC}}\) above the Start-Up threshold before setting to 15 V
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
\(\begin{aligned} T_{\text {low }} & =0^{\circ} \mathrm{C} \text { for UC3842A, UC3843A } & T_{\text {high }} & =+70^{\circ} \mathrm{C} \text { for UC3842A, UC3843A } \\ & =-25^{\circ} \mathrm{C} \text { for UC2842A, UC2843A } & & =+85^{\circ} \mathrm{C} \text { for UC2842A, UC2843A }\end{aligned}\)
4. This parameter is measured at the latch trip point with \(\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}\).
5. Comparator gain is defined as: \(A V=\frac{\Delta V \text { Output/Compensation }}{\Delta V \text { Current Sense Input }}\)

\section*{UC3842A, UC3843A, UC2842A, UC2843A}

ELECTRICAL CHARACTERISTICS \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\) [Note 2], \(\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\)
[Note 3] unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ Characteristic } & \multirow{3}{|c|}{} & \multicolumn{3}{|c|}{ UC284XA } & \multicolumn{3}{|c|}{ UC384XA } & \\
\cline { 3 - 9 } & Symbol & Min & Typ & Max & Min & Typ & Max & Unit \\
\hline
\end{tabular}

ERROR AMPLIFIER SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Voltage Feedback Input (\(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\)) & \(\mathrm{V}_{\mathrm{FB}}\) & 2.45 & 2.5 & 2.55 & 2.42 & 2.5 & 2.58 & V \\
\hline Input Bias Current (\(\mathrm{V}_{\mathrm{FB}}=5.0 \mathrm{~V}\)) & IB & - & -0.1 & -1.0 & - & -0.1 & -2.0 & \(\mu \mathrm{A}\) \\
\hline Open-Loop Voltage Gain (\(\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}\) to 4.0 V) & AVOL & 65 & 90 & - & 65 & 90 & - & dB \\
\hline Unity Gain Bandwidth (\(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & BW & 0.7 & 1.0 & - & 0.7 & 1.0 & - & MHz \\
\hline Power Supply Rejection Ratio (VCC \(=12 \mathrm{~V}\) to 25 V) & PSRR & 60 & 70 & - & 60 & 70 & - & dB \\
\hline \begin{tabular}{l}
Output Current \\
Sink \(\left(V_{O}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\right)\) \\
Source (\(\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\))
\end{tabular} & \begin{tabular}{l}
ISink \\
ISource
\end{tabular} & \[
\begin{gathered}
2.0 \\
-0.5 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
12 \\
-1.0 \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
2.0 \\
-0.5 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
12 \\
-1.0 \\
\hline
\end{gathered}
\] & - & mA \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State (\(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to ground, \(\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\)) \\
Low State (\(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to \(\mathrm{V}_{\text {ref }}, \mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\))
\end{tabular} & \[
\mathrm{v}_{\mathrm{OH}}
\]
\[
\mathrm{V}_{\mathrm{OL}}
\] & 5.0 & 6.2
0.8 & 1.1 & 5.0 & \[
\begin{aligned}
& 6.2 \\
& 0.8
\end{aligned}
\] & & v \\
\hline
\end{tabular}

CURRENT SENSE SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Current Sense Input Voltage Gain (Notes 4 \& 5) & \(\mathrm{AV}_{\mathrm{V}}\) & 2.85 & 3.0 & 3.15 & 2.85 & 3.0 & 3.15 & VN \\
\hline Maximum Current Sense Input Threshold (Note 4) & \(\mathrm{V}_{\text {th }}\) & 0.9 & 1.0 & 1.1 & 0.9 & 1.0 & 1.1 & V \\
\hline \begin{tabular}{l}
Power Supply Rejection Ratio \\
\(\mathrm{V}_{\text {CC }}=12 \mathrm{~V}\) to 25 V , Note 4
\end{tabular} & PSRR & - & 70 & - & - & 70 & - & dB \\
\hline Input Bias Current & IIB & - & -2.0 & -10 & - & -2.0 & -10 & \(\mu \mathrm{~A}\) \\
\hline Propagation Delay (Current Sense Input to Output) & tPLH(IN/OUT) & - & 150 & 300 & - & 150 & 300 & ns \\
\hline
\end{tabular}

OUTPUT SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Output Voltage } \\
& \text { Low State (}{ }^{\text {ISink }}=20 \mathrm{~mA} \text {) } \\
& \text { (ISink }=200 \mathrm{~mA} \text {) } \\
& \text { High State (ISource }=20 \mathrm{~mA} \text {) } \\
& \text { (ISource }=200 \mathrm{~mA} \text {) }
\end{aligned}
\]} & & & & & & & & \multirow[t]{4}{*}{v} \\
\hline & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.1 & 0.4 & - & 0.1 & 0.4 & \\
\hline & & - & 1.6 & 2.2 & - & 1.6 & 2.2 & \\
\hline & \(\mathrm{V}_{\mathrm{OH}}\) & 13
12 & 13.5
13.4 & - & 13
12 & 13.5
13.4 & - & \\
\hline Output Voltage with UVLO Activated
\[
V_{C C}=6.0 \mathrm{~V}, I_{\text {Sink }}=1.0 \mathrm{~mA}
\] & VOL(UVLO) & - & 0.1 & 1.1 & - & 0.1 & 1.1 & V \\
\hline Output Voltage Rise Time (\(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{tr}_{\mathrm{r}}\) & - & 50 & 150 & - & 50 & 150 & ns \\
\hline Output Voltage Fall Time (\(\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)) & \(t_{f}\) & - & 50 & 150 & - & 50 & 150 & ns \\
\hline
\end{tabular}

UNDERVOLTAGE LOCKOUT SECTION
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Start-Up Threshold & \(V_{\text {th }}\) & & & & & & & V \\
UCX842A & & 15 & 16 & 17 & 14.5 & 16 & 17.5 & \\
UCX843A & & 7.8 & 8.4 & 9.0 & 7.8 & 8.4 & 9.0 & \\
\hline Minimum Operating Voltage After Turn-On & \(\mathrm{V}_{\mathrm{CC}}(\mathrm{min})\) & & & & & & & V \\
UCX842A & & 9.0 & 10 & 11 & 8.5 & 10 & 11.5 & \\
UCX843A & & 7.0 & 7.6 & 8.2 & 7.0 & 7.6 & 8.2 & \\
\hline
\end{tabular}

\section*{PWM SECTION}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Duty Cycle \\
Maximum \\
Minimum
\end{tabular} & \(\mathrm{DC}_{\text {max }}\) & 94 & 96 & - & 94 & 96 & - & \(\%\) \\
\hline
\end{tabular}
TOTAL DEVICE
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Power Supply Current \\
\begin{tabular}{l}
Start-Up \\
(VCC \(=6.5 \mathrm{~V}\) for UCX843A, 14 V for UCX842A) \\
Operating (Note 2)
\end{tabular} & & \\
\hline ICC & - & 0.5 & 1.0 & - & 0.5 & 1.0 & mA \\
\hline Power Supply Zener Voltage (ICC \(=25 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{Z}}\) & 30 & 36 & - & 30 & 36 & - & V \\
\hline
\end{tabular}

FIGURE 1 - TIMING RESISTOR versus OSCILLATOR FREQUENCY

FIGURE 3 - OSCILLATOR DISCHARGE CURRENT versus TEMPERATURE

FIGURE 5 - ERROR AMP SMALL SIGNAL TRANSIENT RESPONSE

FIGURE 2 - OUTPUT DEAD TIME versus OSCILLATOR FREQUENCY

FIGURE 4 - MAXIMUM OUTPUT DUTY CYCLE versus TIMING RESISTOR

FIGURE 6 - ERROR AMP LARGE SIGNAL TRANSIENT RESPONSE

FIGURE 7 - ERROR AMP OPEN-LOOP GAIN AND PHASE versus FREQUENCY

FIGURE 9 - REFERENCE VOLTAGE CHANGE versus SOURCE CURRENT

FIGURE 11 - REFERENCE LOAD REGULATION

FIGURE 8 - CURRENT SENSE INPUT THRESHOLD versus ERROR AMP OUTPUT VOLTAGE

FIGURE 10 - REFERENCE SHORT CIRCUIT CURRENT versus TEMPERATURE

FIGURE 12 - REFERENCE LINE REGULATION

FIGURE 13 - OUTPUT SATURATION VOLTAGE versus LOAD CURRENT

FIGURE 15 - OUTPUT CROSS CONDUCTION

100 ns/DIV

FIGURE 14 - OUTPUT WAVEFORM

\(50 \mathrm{~ns} / \mathrm{DV}\)

FIGURE 16 - SUPPLY CURRENT versus SUPPLY VOLTAGE

\(V_{C C}\), SUPPLY VOLTAGE (V)

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Pin No.} & Function & Description \\
\hline 8-Pin & 14-Pin & & \\
\hline 1 & 1 & Compensation & This pin is the Error Amplifier output and is made available for loop compensation. \\
\hline 2 & 3 & Voltage Feedback & This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider. \\
\hline 3 & 5 & Current Sense & A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction. \\
\hline 4 & 7 & \(\mathrm{R}_{T} / \mathrm{C}_{\mathrm{T}}\) & The Oscillator frequency and maximum Output duty cycle are programmed by connecting resistor \(\mathrm{R}_{\boldsymbol{T}}\) to \(\mathrm{V}_{\text {ref }}\) and capacitor \(\mathrm{C}_{\boldsymbol{T}}\) to ground. Operation to 500 kHz is possible. \\
\hline 5 & - & Gnd & This pin is the combined control circuitry and power ground (8-pin package only). \\
\hline 6 & 10 & Output & This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sinked by this pin. \\
\hline 7 & 12 & \(V_{C C}\) & This pin is the positive supply of the control IC. \\
\hline 8 & 14 & \(\mathrm{V}_{\text {ref }}\) & This is the reference output. It provides charging current for capacitor \(\mathrm{C}_{\boldsymbol{T}}\) through resistor \(\mathrm{R}_{\mathrm{T}}\). \\
\hline - & 8 & Power Ground & This pin is a separate power ground return (14-pin package only) that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. \\
\hline - & 11 & \(\mathrm{V}_{\mathrm{C}}\) & The Output high state \(\left(\mathrm{V}_{\mathrm{OH}}\right)\) is set by the voltage applied to this pin (14-pin package only). With a separate power source connection, it can reduce the effects of switching transient noise on the control circuitry. \\
\hline - & 9 & Gnd & This pin is the control circuitry ground return (14-pin package only) and is connected back to the power source ground. \\
\hline - & 2,4,6,13 & NC & No connection (14-pin package only). These pins are not internally connected. \\
\hline
\end{tabular}

\section*{OPERATING DESCRIPTION}

The UC3842A, UC3843A series are high performance, fixed frequency, current mode controllers. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. A representative block diagram is shown in Figure 17.

\section*{Oscillator}

The oscillator frequency is programmed by the values selected for the timing components \(\mathrm{R}_{T}\) and \(\mathrm{C}_{\top}\). Capacitor \(\mathrm{C}_{\mathrm{T}}\) is charged from the 5.0 V reference through resistor \(\mathrm{R}_{\mathrm{T}}\) to approximately 2.8 V and discharged to 1.2 V by an internal current sink. During the discharge of \(\mathrm{C}_{\mathrm{T}}\), the oscillator generates an internal blanking pulse that holds the center input of the NOR gate high. This causes the Output to be in a low state, thus producing a controlled amount of output deadtime. Figure 1 shows \(\mathrm{R}_{\mathrm{T}}\) versus Oscillator Frequency and Figure 2, Output Deadtime versus Frequency, both for given values of \(\mathrm{C}_{\mathrm{T}}\). Note that many values of \(\mathrm{R}_{\boldsymbol{T}}\) and \(\mathrm{C}_{\boldsymbol{T}}\) will give the same oscillator frequency but only one combination will yield a specific output deadtime at a given frequency. The oscillator thresholds are temperature compensated, and the discharge current is trimmed and guaranteed to within \(\pm 10 \%\) at \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\). These internal circuit refinements minimize variations of oscillator frequency and maximum output duty cycle. The results are shown in Figures 3 and 4.

In many noise sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a clock signal to the circuit shown in Figure 20. For reliable locking, the free-running oscillator frequency should be set about \(10 \%\) less than the clock frequency. A method for multi unit synchronization is shown in Figure 21. By tailoring the clock waveform, accurate Output duty cycle clamping can be achieved.

\section*{Error Amplifier}

A fully compensated Error Amplifier with access to the inverting input and output is provided. It features a typical DC voltage gain of 90 dB , and a unity gain bandwidth of 1.0 MHz with 57 degrees of phase margin (Figure 7). The non-inverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input. The maximum input bias current is \(-2.0 \mu \mathrm{~A}\) which can cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance.

The Error Amp Output (Pin 1) is provided for external loop compensation (Figure 31). The output voltage is offset by two diode drops (\(\approx 1.4 \mathrm{~V}\)) and divided by three before it connects to the inverting input of the Current Sense Comparator. This guarantees that no drive pulses appear at the Output (Pin 6) when pin 1 is at its lowest
state \(\left(\mathrm{V}_{\mathrm{OL}}\right)\). This occurs when the power supply is operating and the load is removed, or at the beginning of a soft-start interval (Figures 23, 24). The Error Amp minimum feedback resistance is limited by the amplifier's source current (0.5 mA) and the required output voltage \(\left(\mathrm{V}_{\mathrm{OH}}\right)\) to reach the comparator's 1.0 V clamp level:
\[
\mathrm{R}_{\mathrm{f}(\mathrm{MIN})} \approx \frac{3.0(1.0 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=8800 \Omega
\]

\section*{Current Sense Comparator and PWM Latch}

The UC3842A, UC3843A operate as a current mode controller, whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier Output/Compensation (Pin 1). Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The Current Sense Comparator PWM Latch configuration used ensures that only a single pulse appears at the Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting the ground referenced sense resistor \(R_{S}\) in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input (Pin 3) and compared a level derived from the Error Amp Output. The peak inductor current under normal operating conditions is controlled by the voltage at pin 1 where:
\[
I_{p k}=\frac{\mathrm{V}(\operatorname{Pin} 1)-1.4 \mathrm{~V}}{3 \mathrm{R}_{\mathrm{S}}}
\]

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 1.0 V . Therefore the maximum peak switch current is:
\[
I_{\mathrm{pk}(\max)}=\frac{1.0 \mathrm{~V}}{\mathrm{R}_{\mathrm{S}}}
\]

When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of RS to a reasonable level. A simple method to adjust this voltage is shown in Figure 22. The two external diodes are used to compensate the internal diodes yielding a constant clamp voltage over temperature. Erratic operation due to noise pickup can result if there is an excessive reduction of the \(I_{p k(m a x) ~ c l a m p ~ v o l t a g e . ~}^{\text {m }}\)

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Current Sense Input with a time constant that approximates the spike duration will usually eliminate the instability; refer to Figure 26.

FIGURE 17 - REPRESENTATIVE BLOCK DIAGRAM

Pin numbers adjacent to terminals are for the 8 pin dual-in-line package. Pin numbers in parenthesis are for the D suffix SO-14 package.

FIGURE 18 - TIMING DIAGRAM

Output/

\section*{Undervoltage Lockout}

Two undervoltage lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stage is enabled. The positive power supply terminal (\(\mathrm{V}_{\mathrm{CC}}\)) and the reference output (\(\mathrm{V}_{\text {ref }}\)) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as

their respective thresholds are crossed. The \(\mathrm{V}_{\mathrm{CC}}\) comparator upper and lower thresholds are \(16 \mathrm{~V} / 10 \mathrm{~V}\) for the UCX842A, and \(8.4 \mathrm{~V} / 7.6 \mathrm{~V}\) for the UCX843A. The \(V_{\text {ref }}\) comparator upper and lower thresholds are \(3.6 \mathrm{~V} /\) 3.4 V. The large hysteresis and low start-up current of the UCX842A makes it ideally suited in off-line converter applications where efficient bootstrap start-up tech-
niques are required (Figure 33). The UCX843A is intended for lower voltage DC to DC converter applications. A 36 V zener is connected as a shunt regulator from \(\mathrm{V}_{\mathrm{CC}}\) to ground. Its purpose is to protect the IC from excessive voltage that can occur during system start-up. The minimum operating voltage for the UCX842A is 11 V and 8.2 V for the UCX843A.

\section*{Output}

These devices contain a single totem pole output stage that was specifically designed for direct drive of power MOSFET's. It is capable of up to \(\pm 1.0 \mathrm{~A}\) peak drive current and has a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the Output in a sinking mode whenever an undervoltage lockout is active. This characteristic eliminates the need for an external pull-down resistor.
The SO-14 surface mount package provides separate pins for \(\mathrm{V}_{\mathrm{C}}\) (output supply) and Power Ground. Proper implementation will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomes particularly useful when reducing the \(I_{\mathrm{pk}(\max)}\) clamp level. The separate \(\mathrm{V}_{\mathrm{C}}\) supply input allows the designer added flexibility in tailoring the drive voltage independent of \(\mathrm{V}_{\mathrm{CC}}\). A zener clamp is typically connected to this input when driving power MOSFETs in systems where \(\mathrm{V}_{\mathrm{CC}}\) is greater than 20 V . Figure 25 shows proper power and control ground connections in a current sensing power MOSFET application.

\section*{Reference}

The 5.0 V bandgap reference is trimmed to \(\pm 1.0 \%\) tolerance at \(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\) on the UC284XA, and \(\pm 2.0 \%\) on the UC384XA. Its primary purpose is to supply charging current to the oscillator timing capacitor. The reference has short circuit protection and is capable of providing in excess of 20 mA for powering additional control system circuitry.

\section*{Design Considerations}

Do not attempt to construct the converter on wirewrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulsewidth jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with lowcurrent signal and high-current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors (\(0.1 \mu \mathrm{~F}\)) connected directly to \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{C}}\), and \(\mathrm{V}_{\text {ref }}\) may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage divider should be located close to the IC and as far as possible from the power switch and other noise generating components.

FIGURE 19 - CONTINUOUS CURRENT WAVEFORMS

Current mode converters can exhibit subharmonic oscillations when operating at a duty cycle greater than \(50 \%\) with continuous inductor current. This instability is independent of the regulators closed loop characteristics and is caused by the simultaneous operating conditions of fixed frequency and peak current detecting. Figure 19A shows the phenomenon graphically. At \(\mathrm{t}_{0}\), switch conduction begins, causing the inductor current to rise at a slope of \(m_{1}\). This slope is a function of the input voltage divided by the inductance. At \(\mathrm{t}_{1}\), the Current Sense Input reaches the threshold established by the control voltage. This causes the switch to turn off and the current to decay at a slope of \(m_{2}\), until the next oscillator cycle. The unstable condition can be shown if a pertubation is added to the control voltage, resulting in a small \(\Delta l\) (dashed line). With a fixed oscillator period, the current decay time is reduced, and the minimum current at switch turn-on (\(\mathrm{t}_{2}\)) is increased by \(\Delta l+\Delta l\) \(\mathrm{m}_{2} / \mathrm{m}_{1}\). The minimum current at the next cycle (\(\mathrm{t}_{3}\)) decreases to \(\left(\Delta I+\Delta I m_{2} / m_{1}\right)\left(m_{2} / m_{1}\right)\). This pertubation is multiplied by \(m_{2} / m_{1}\) on each succeeding cycle, alternately increasing and decreasing the inductor current at switch turn-on. Several oscillator cycles may be required before the inductor current reaches zero causing the process to commence again. If \(m_{2} / m_{1}\) is greather than 1, the converter will be unstable. Figure 19B shows that by adding an artificial ramp that is synchronized with the PWM clock to the control voltage, the \(\Delta l\) pertubation will decrease to zero on succeeding cycles. This compensating ramp (\(\mathrm{m}_{3}\)) must have a slope equal to or slightly greater than \(\mathrm{m}_{2} / 2\) for stability. With \(\mathrm{m}_{2} / 2\) slope compensation, the average inductor current follows the control voltage yielding true current mode operation. The compensating ramp can be derived from the oscillator and added to either the Voltage Feedback or Current Sense inputs (Figure 32).

FIGURE 20 - EXTERNAL CLOCK SYNCHRONIZATION

The diode clamp is required if the Sync amplitude is large enough to cause the bottom side of \(C_{T}\) to go more than 300 mV below ground.

FIGURE 22 - ADUSTABLE REDUCTION OF CLAMP LEVEL.

FIGURE 24 - ADJUSTABLE BUFFERED REDUCTION OF

FIGURE 21 - EXTERNAL DUTY CYCLE CLAMP AND MULTI UNIT SYNCHRONIZATION

FIGURE 23 - SOFT-START CIRCUIT

FIGURE 25 - CURRENT SENSING POWER MOSFET

Virtually lossless current sensing can be achieved with the implementation of a SENSEFET power switch. For proper operation during over current conditions, a reduction of the \(l_{\text {pk(max) }}\) clamp level must be implemented. Refer to Figures 22 and 24.

FIGURE 26 - CURRENT WAVEFORM SPIKE SUPPRESSION

The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform

\section*{FIGURE 28 - BIPOLAR TRANSISTOR DRIVE}

The totem-pole output can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor \(C_{1}\)

FIGURE 30 - LATCHED SHUTDOWN

The MCR101 SCR must be selected for a holding of less than 0.5 mA at \(\mathrm{T}_{\text {A(min) }}\). The simple two transistor circuit can be used in place of the SCR as shown. All resistors are 10 k .

FIGURE 27 - MOSFET PARASITIC OSCILLATIONS

Series gate resistor \(\mathrm{R}_{\mathrm{g}}\) will damp any high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit.

FIGURE 29 - ISOLATED MOSFET DRIVE

FIGURE 31 - ERROR AMPLIFIER COMPENSATION

Error Amp compensation circuit for stabilizing any currentmode topology except for boost and flyback converters operating with continuous inductor current.

Error Amp compensation circuit for stabilizing current-mode boost and flyback topologies operating with continuous inductor current.

The buffered oscillator ramp can be resistively summed with either the voltage
feedback or current sense inputs to provide slope compensation.

FIGURE 33 - 27 WATT OFF-LINE FLYBACK REGULATOR

T1 - Primary: 45 Turns \#26 AWG
Secondary \(\pm 12 \mathrm{~V}: 9\) Turns \#30 AWG (2 strands) Bifiliar Wound Secondary 5.0 V: 4 Turns (six strands) \#26 Hexfiliar Wound
Secondary Feedback: 10 Turns \#30 AWG (2 strands) Bifiliar Wound
Core: Ferroxcube EC35-3C8
Bobbin: Ferroxcube EC35PCB1
Gap: \(\approx 0.10^{\prime \prime}\) for a primary inductance of 1.0 mH
\begin{tabular}{|c|c|c|}
\hline Line Regulation: 5.0 V
\[
\pm 12 \mathrm{~V}
\] & \(V_{\text {in }}=95\) to 130 Vac & \[
\begin{aligned}
& \Delta=50 \mathrm{mV} \text { or } \pm 0.5 \% \\
& \Delta=24 \mathrm{mV} \text { or } \pm 0.1 \%
\end{aligned}
\] \\
\hline Load Regulation: 5.0 V
\[
\pm 12 \mathrm{~V}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{I}_{\text {out }}=1.0 \mathrm{~A} \text { to } 4.0 \mathrm{~A} \\
& \mathrm{~V}_{\text {in }}=115 \mathrm{Vac}, \mathrm{I}_{\text {out }}=100 \mathrm{~mA} \text { to } 300 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& \Delta=300 \mathrm{mV} \text { or } \pm 3.0 \% \\
& \Delta=60 \mathrm{mV} \text { or } \pm 0.25 \%
\end{aligned}
\] \\
\hline \[
\text { Output Ripple: } \begin{aligned}
& 5.0 \mathrm{~V} \\
& \pm 12 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{V}_{\text {in }}=115 \mathrm{Vac}\) & \[
\begin{aligned}
& 40 \mathrm{mV}_{\mathrm{p}-\mathrm{p}} \\
& 80 \mathrm{mV} \text { p-p }
\end{aligned}
\] \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=115 \mathrm{Vac}\) & 70\% \\
\hline
\end{tabular}

All outputs are at nominal load currents unless otherwise noted.

\section*{Specifications and Applications Information}

The \(\mu \mathrm{A} 78 \mathrm{~S} 40\) is a monolithic-switching regulator subsystem, providing all active functions necessary for a switching regulator system. The device consists of a temperature compensated voltage reference, controlled-duty cycle oscillator with an active current limit circuit, comparator, high-current and high-voltage output switch, capable of 1.5 A and 40 V , pinned-out power diode and an uncommitted operational amplifier, which can be powered up or down independent of the IC supply. The switching output can drive external NPN or PNP transistors when voltages greater than 40 V , or currents in excess of 1.5 A , are required. Some of the features are wide-supply voltage range, low standby current, high efficiency and low drift. The \(\mu \mathrm{A} 78 \mathrm{~S} 40\) is available in commercial (\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)), automotive (\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)), and military \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) temperature ranges.
Some of the applications include use in step-up, step-down, and inverting regulators, with extremely good results obtained in battery-operated systems.
- Output Adjustable from 1.25 V to 40 V
- Peak Output Current of 1.5 A Without External Transistor
- 80 dB Line and Load Regulation
- Operation from 2.5 V to 40 V Supply
- Low Standby Current Drain
- High Gain, High Output Current, Uncommitted Op Amp

\section*{\(\mu \mathrm{A} 78 \mathrm{~S} 40\)}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\text {CC }}\) & 40 & V \\
\hline Op Amp Power Supply Voltage & \(V_{C C}(O p\) Amp) & 40 & V \\
\hline Common Mode Input Range (Comparator and Op Amp) & VICR & -0.3 to \(V_{C C}\) & V \\
\hline Differential Input Voltage (Note 2) & VID & \(\pm 30\) & V \\
\hline Output Short-Circuit Duration (Op Amp) & - & Continuous & - \\
\hline Reference Output Current & Iref & 10 & mA \\
\hline Voltage from Switch Collectors to Gnd & - & 40 & V \\
\hline Voltage from Switch Emitters to Gnd & - & 40 & V \\
\hline Voltage from Switch Collectors to Emitter & - & 40 & V \\
\hline Voltage from Power Diode to Gnd & - & 40 & V \\
\hline Reverse-Power Diode Voltage & \(V_{\text {DR }}\) & 40 & V \\
\hline Current through Power Switch & ISW & 1.5 & A \\
\hline Current through Power Diode & ID & 1.5 & A \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics \\
Plastic Package \(-\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) \\
Derate above \(+25^{\circ} \mathrm{C}\) (Note 1) \\
Ceramic Package - \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
Derate above \(+25^{\circ} \mathrm{C}\) (Note 1)
\end{tabular} & \[
\begin{gathered}
P_{D} \\
1 / R_{\theta J A} \\
P_{D} \\
1 / R_{\theta J A} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1500 \\
14 \\
1000 \\
8.0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
\mathrm{~mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range
\[
\begin{aligned}
& \mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{M} \\
& \mu \mathrm{~A} 78 \mathrm{~S} 40 \mathrm{~V} \\
& \mu \mathrm{~A} 78 \mathrm{~S} 40 \mathrm{C}
\end{aligned}
\] & \({ }^{\text {A }}\) & \[
\left\lvert\, \begin{gathered}
-55 \text { to }+125 \\
-40 \text { to }+85 \\
0 \text { to }+70
\end{gathered}\right.
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Notes:
1. low \(=-55^{\circ} \mathrm{C}\) for \(\mu\) A78S40DM \(=-40^{\circ} \mathrm{C}\) for \(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{PV}\)
\(=0^{\circ} \mathrm{C}\) for \(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{DC}\) and \(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{PC}\)
\(T_{\text {high }}=+125^{\circ} \mathrm{C}\) for \(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{DM}\)
\(=+85^{\circ} \mathrm{C}\) for \(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{PV}\)
\(=+70^{\circ} \mathrm{C}\) for \(\mu \mathrm{A} 78 \mathrm{~S} 40 \mathrm{DC}\) and \(\mu \mathrm{A} 78 \mathrm{S40PC}\)
2. For supply voltages less than 30 V the maximum differential input voltage (Error Amp and Op Amp) is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{C C}=\mathrm{V}_{C C}(O \mathrm{pAmp})=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=T_{\text {low }}\right.\) to \(T_{\text {high }}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{GENERAL} \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 2.5 & - & 40 & \(\checkmark\) \\
\hline Supply Current (Op Amp \(V_{C C}\) Disconnected)
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\end{aligned}
\] & \({ }^{\text {c C }}\) & - & \[
\begin{aligned}
& 1.8 \\
& 2.3
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 5.0
\end{aligned}
\] & mA \\
\hline Supply Current (Op Amp VCC Connected)
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\end{aligned}
\] & \({ }^{1} \mathrm{CC}\) & - & - & \[
\begin{aligned}
& 4.0 \\
& 5.5
\end{aligned}
\] & mA \\
\hline
\end{tabular}

REFERENCE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Voltage
\[
\left(I_{\text {ref }}=1.0 \mathrm{~mA}\right)
\] & \(V_{\text {ref }}\) & 1.180 & 1.245 & 1.310 & V \\
\hline Reference Voltage Line Regulation
\[
\left(3.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 40 \mathrm{~V}, I_{\text {ref }}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & Regline & - & 0.04 & 0.2 & \(\mathrm{mV} / \mathrm{N}\) \\
\hline Reference Voltage Load Regulation
\[
\left(1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\text {ref }} \leqslant 10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & Regload & - & 0.2 & 0.5 & \(\mathrm{mV} / \mathrm{mA}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OSCILLATOR} \\
\hline \[
\begin{aligned}
& \text { Charging Current }\left(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right)
\end{aligned}
\] & Ichg & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & - & \[
\begin{aligned}
& 50 \\
& 70
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Discharge Current }\left(T_{A}=25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}\right) \\
& \hline
\end{aligned}
\] & \({ }^{\text {dis }}\) & \[
\begin{aligned}
& 150 \\
& 150
\end{aligned}
\] & - & \[
\begin{aligned}
& 250 \\
& 350
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Oscillator Voltage Swing (\(T_{A}=25^{\circ} \mathrm{C}\))
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\text {Osc }}\) & - & 0.5 & - & V \\
\hline Ratio of Charge/Discharge Time & \(\mathrm{t}_{\text {chg }} / \mathrm{t}_{\text {dis }}\) & - & 6.0 & - & - \\
\hline
\end{tabular}

CURRENT LIMIT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Current-Limit Sense Voltage \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\) \\
\(\left(V_{C C}-V_{\text {lpk }}\right.\) Sense \()\)
\end{tabular} & \(V_{C L S}\) & 250 & - & 350 & mV \\
\hline
\end{tabular}

OUTPUT SWITCH
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Saturation Voltage 1 (ISW = 1.0 A, Pin 15 tied to Pin 16) & \(\mathrm{V}_{\text {sat } 1}\) & - & 0.93 & 1.3 & V \\
\hline Output Saturation Voltage 2
\[
\left(I_{S W}=1.0 \mathrm{~A}, \mathrm{I}_{15}=50 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\text {sat }}\) & - & 0.5 & 0.7 & V \\
\hline Output Transistor Current Gain (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\left(I_{C}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right)
\] & \(h_{\text {h }}\) & - & 70 & - & - \\
\hline Output Leakage Current (\(T_{A}=25^{\circ} \mathrm{C}\))
\[
\left(\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}\right)
\] & \({ }^{\text {L }}\) (off) & - & 10 & - & nA \\
\hline
\end{tabular}

\section*{POWER DIODE}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Forward Voltage Drop (\(\left.I_{D}=1.0 \mathrm{~A}\right)\) & \(\mathrm{V}_{\mathrm{D}}\) & - & 1.25 & 1.5 & V \\
\hline Diode Leakage Current \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\left(\mathrm{V}_{\mathrm{DR}}=40 \mathrm{~V}\right)\) & \(\mathrm{I}_{\mathrm{DR}}\) & - & 10 & - & nA \\
\hline
\end{tabular}

COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Offset Voltage \(\left(V_{C M}=V_{\text {Ref }}\right)\) & \(V_{I O}\) & - & 1.5 & 15 & mV \\
\hline Input Bias Current \(\left(\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {Ref }}\right)\) & \(I_{\mathrm{IB}}\) & - & 35 & 200 & nA \\
\hline Input Offset Current \(\left(\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {Ref }}\right)\) & \(\mathrm{I}_{\mathrm{IO}}\) & - & 5.0 & 75 & nA \\
\hline Common-Mode Voltage Range \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\mathrm{ICR}}\) & 0 & - & \(\mathrm{V}_{\mathrm{CC}}-2.0\) & V \\
\hline \begin{tabular}{l}
Power-Supply Rejection Ratio \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) \\
\(\left(3.0 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 40 \mathrm{~V}\right)\)
\end{tabular} & PSRR & 70 & 96 & - & dB \\
\\
\hline
\end{tabular}

OUTPUT OPERATIONAL AMPLIFIER
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage (\(\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}\)) & \(\mathrm{V}_{10}\) & - & 4.0 & 15 & mV \\
\hline Input Bias Current (\(\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}\)) & 1 B & - & 30 & 200 & nA \\
\hline Input Offset Current (\(\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}\)) & 110 & - & 5.0 & 75 & nA \\
\hline \begin{tabular}{l}
Voltage Gain + (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \\
(\(\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) to \(\mathrm{Gnd}, 1.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant 2.5 \mathrm{~V}\))
\end{tabular} & AVOL + & 25 & 250 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline \begin{tabular}{l}
Voltage Gain - (\(\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) \\
(\(\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega\) to \(\mathrm{V}_{\mathrm{CC}}(\mathrm{Op} A m p), 1.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant 2.5 \mathrm{~V}\))
\end{tabular} & AVOL - & 25 & 250 & - & V/mV \\
\hline Common-Mode Voltage Range (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & VICR & 0 & - & \(\mathrm{V}_{\mathrm{CC}}-2.0\) & V \\
\hline Common-Mode Rejection Ratio (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\[
\left(\mathrm{V}_{\mathrm{CM}}=0 \text { to } 3.0 \mathrm{~V}\right)
\] & CMRR & 76 & 100 & - & dB \\
\hline Power-Supply Rejection Ratio (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) \(\left(3.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}}(\mathrm{Op} \mathrm{Amp}) \leqslant 40 \mathrm{~V}\right)\) & PSRR & 76 & 100 & - & dB \\
\hline Output Source Current (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & ISource & 75 & 150 & - & mA \\
\hline Output Sink Current (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & ISink & 10 & 35 & - & mA \\
\hline Slew Rate (\(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\)) & SR & - & 0.6 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Output Low Voltage (\(\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=-5.0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & - & 1.0 & V \\
\hline Output High Voltage (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}(\mathrm{Op} \mathrm{Amp}) \\
-3.0
\end{gathered}
\] & - & - & V \\
\hline
\end{tabular}

FIGURE 5 - STEP-DOWN CONVERTER

FIGURE 7 - INVERTING CONVERTER

FIGURE 8 - DESIGN FORMULA TABLE
\begin{tabular}{|c|c|c|c|}
\hline Caiculation & Step-Down & Step-Up & Inverting \\
\hline \[
\frac{t_{\mathrm{on}}}{t_{\mathrm{off}}}
\] & \[
\frac{V_{\text {out }}+V_{F}}{V_{\text {in }(\text { min })}-V_{\text {sat }}-V_{\text {out }}}
\] & \[
\frac{V_{\text {out }}-V_{F}-V_{\text {in }(\min)}}{V_{\text {in }(\min)}} V_{\text {sat }}
\] & \[
\frac{V_{\text {out }}+V_{F}}{V_{\text {in }(\min)}-V_{\text {sat }}}
\] \\
\hline (ton + toff max & \[
\frac{1}{f_{\text {min }}}
\] & \[
\frac{1}{f_{\min }}
\] & \[
\frac{1}{f_{\min }}
\] \\
\hline \(\mathrm{C}_{T}\) & \(4 \times 10^{5} \mathrm{t}_{\text {on }}\) & \(4 \times 10^{5} \mathrm{t}_{\text {on }}\) & \(4 \times 10^{5} \mathrm{t}_{\text {On }}\) \\
\hline Ipk(switch) & \(2 \mathrm{I}_{\text {out(max) }}\) & \(2 \mathrm{I}_{\text {out(max }}\left(\frac{\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}}{\mathrm{t}_{\text {off }}}\right)\) & \(2 I_{\text {out(max) }}\left(\frac{t_{\text {on }}+t_{\text {off }}}{t_{\text {off }}}\right)\) \\
\hline RSC & \[
\frac{0.33}{\mathrm{pk}(\text { switch })}
\] & \[
\frac{0.33}{\text { pk(switch) }}
\] & \[
\frac{0.33}{\text { pk(switch) }}
\] \\
\hline \(L_{(m i n)}\) & & \(\left(\frac{V_{\text {in }}(\text { min })}{}-\mathrm{V}_{\text {sat }}{ }^{\text {pk(switch })}\right.\)) \(t_{\text {on(max }}\) & \\
\hline \(\mathrm{CO}_{0}\) & \[
\frac{\left.\mathrm{I}_{\mathrm{pk}(\mathrm{switch})} \mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\mathrm{off}}\right)}{8 V_{\text {ripple }}(\mathrm{p}-\mathrm{p})}
\] & \[
=\frac{l_{\text {out }} t_{\text {on }}}{v_{\text {ripple }}}
\] & \[
\approx \frac{l_{\text {out }} t_{\text {on }}}{v_{\text {ripple }}}
\] \\
\hline
\end{tabular}
\(\mathrm{V}_{\text {sat }}=\) Saturation voltage of the output switch. \(\mathrm{V}_{\mathrm{F}}=\) Forward voltage drop of the ringback rectifier.
The following power supply characteristics must be chosen:
\(\mathrm{V}_{\text {in }}\) - Nominal input voltage. If this voltage is not constant, then use \(\mathrm{V}_{\text {in }}(\max)\) for step-down and \(\mathrm{V}_{\mathrm{in}(\mathrm{min})}\) for stepup and inverting convertor.
\(\mathbf{V}_{\text {out }}\) - Desired output voltage, \(\mathrm{V}_{\text {out }}=1.25\left(1+\frac{R_{2}}{R_{1}}\right)\) for step-down and step-up; \(\mathrm{V}_{\text {out }}=\frac{1.25 \mathrm{R} 2}{\mathrm{R} 1}\) for Inverting.
\(I_{\text {out }}\) - Desired output current.
\(\mathbf{f}_{\min }\) - Minimum desired output switching frequency at the selected values for \(\mathrm{V}_{\text {in }}\) and \(\mathrm{I}_{\mathrm{O}}\).
\(\mathbf{V}_{\text {ripple(p-p) }}\) - Desired peak-to-peak output ripple voltage. In practice, the calculated value will need to be increased due to the capacitor's equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly effect the line and load regulation.

\section*{See Application Note AN920A for further information.}

\section*{In Brief . . .}

With the expansion of electronics into more and more mechanical systems there comes an ever increasing demand for simple but intelligent circuits that can blend these two technologies together. In past years, the task of power/motor control was once the domain of discrete devices. But today, increasingly, this task is being performed by bipolar IC technology because of cost, size, and reliability constraints. Motorola offers integrated circuits designed to anticipate the requirements for both simple and sophisticated control systems, while providing cost effective solutions to meet the application.

\section*{Power/Motor Control Circuits}
Selector GuidePower Controllers.4-2
Motor Controllers 4-4 4
Alphanumeric Listing 4-7
Data Sheets 4-8

\section*{Power/Motor Control Circuits}Power Controllers
Zero Voltage Switches 4-2
Zero Voltage Controller 4-3
Integrated Solenoid Driver 4-3
High-Side Driver Switch. 4-3
Motor Controllers
DC Servo Motor Controller/Driver 4-4
DC Brushless Motor Controller 4-4
Closed-Loop Brushless Motor Adapter 4-5
Stepper Motor Drivers 4-5
Triac Phase Angle Controller 4-5
Universal Motor Speed Controllers 4-6

\section*{Power Controllers}

An assortment of battery and ac line-operated control ICs for specific applications are shown. They are designed to enhance system performance and reduce complexity in a wide variety of control applications.

\section*{Zero Voltage Switches CA3079P/CA3059P}
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 646
. . . designed for thyristor control in a variety of ac power switching applications for ac input voltages of \(24 \mathrm{~V}, 120 \mathrm{~V}\), 208/230 V, and 227 V @ \(50 / 60 \mathrm{~Hz}\). Features include:
- Limiter-Power Supply - Allows operation directly from an ac line.
- Differential On/Off Sensing Amplifier - Tests for condition of external sensors or input command signals. Proportional control capability or hysteresis may be implemented.
- Zero-Crossing Detector - Synchronizes the output pulses to the zero voltage point of the ac cycle. Eliminates RFI when used with resistive loads.
- Triac Drive - Supplies high-current pulses to the external power controlling thyristor.
- Protection Circuit (CA3059 only) - A built-in circuit may be actuated, if the sensor opens or shorts, to remove the drive circuit from the external triac.
- Inhibit Capability (CA3059 only) - Thyristor firing may be inhibited by the action of an internal diode gate.
- High Power DC Comparator Operation (CA3059 only) - Operation in this mode is accomplished by connecting Pin 7 to Pin 12 (thus overriding the action of the zero-crossing detector).

CA3079

NOTE: Shaded Area Not included With CA3079.

\section*{Zero Voltage Controller}

UAA1016B- \(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+100^{\circ} \mathrm{C}\), Case 626
... designed to drive triacs with the Zero Voltage technique which allows RFI free power regulation of resistive loads. They provide the following features:
- Proportional Temperature Control Over an Adjustable Band
- Adjustable Burst Frequency (to Comply with Standards)
- Sensor Fail-Safe
- No dc Current Component Through the Main Line (to Comply with Standards)
- Negative Output Current Pulses (Triacs Quadrants 2 and 3)
- Direct ac Line Operation
- Low External Components Count

\section*{Integrated Solenoid Driver}

MC3484S2,S4 - \(T_{J}=-40^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case 314D
The MC3484 is an integrated monolithic solenoid driver. Its typical function is to apply full battery voltage to fuel injector(s) for rapid current rise, in order to produce positive injector opening. When load current reaches a preset level (4.0 A in MC3484S4 or 2.4 A in MC3484S2) the injector driver reduces the load current by a 4-to-1 ratio and operates as a constant current supply. This condition holds the injector open and reduces system dissipation.

\section*{High-Side Driver Switch}

MC3399T - \(\mathrm{TJ}_{\mathrm{J}}=-40^{\circ}\) to \(+150^{\circ} \mathrm{C}\), Case 314D
The MC3399T is a High-Side Driver Switch that is designed to drive loads from the positive side of the power supply. The output is controlled by a TTL compatible Enable pin. In the ON state, the device exhibits very low saturation voltages for load currents in excess of 750 mA . The device also protects the load from positive- or negative-going high voltage transients by becoming an open circuit and isolating the transient for its duration from the load.

The MC3399T is fabricated on a power BIMOS process which combines the best features of Bipolar and MOS technologies. The mixed technology provides higher gain PNP output devices and results in Power Integrated Circuits with reduced quiescent current.

UAA1016B

NOTE:
*Depending on Load Current and Transient Duration, an Output Capacitor (\(C_{0}\)) of sufficient value may be used to hold up Output Voltage during the Transient, and absorb Turn-off Delay Voltage Overshoot.

\section*{Motor Controllers}

This section contains integrated circuits designed for cost effective control of specific motor-families. Included are controllers for dc servo, stepper, brushless, and universal type motors.

\section*{DC Servo Motor Controller/Driver MC33030P - \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 648C}

A monolithic dc servo motor controller providing all active functions necessary for a complete closed loop system. This device consists of an on-chip op amp and window comparator with wide input commonmode range, drive and brake logic with direction memory, power H switch driver capable of 1.0 A , independently programmable over-current monitor and shutdown delay, and over-voltage monitor. This part is ideally suited for almost any servo positioning application that requires sensing of temperature, pressure, light, magnetic flux, or any other means that can be converted to a voltage.

MC33034

\section*{Closed-Loop Brushless Motor Adapter \\ MC33039P - \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626}

The MC33039P is a high performance closed-loop speed control adapter specifically designed for use in dc brushless motor control systems. Implementation will allow precise speed regulation without the need for a magnetic or optical tachometer. This device contains three input buffers each with hysteresis for noise immunity, three digital edge detectors, a programmable monostable, and an internal shunt regulator. Also included is an inverter output for use in systems that require conversion of sensor phasing. Although this device is primarily intended for use with the MC33034 brushless motor controller, it can be used cost effectively in many other closed-loop speed control applications.

\section*{Stepper Motor Drivers}

MC3479P - \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 648C SAA1042,A - \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 721

Stepper Motor Drivers provide up to 500 mA of drive per coil for two phase 6.0 V to 24 V stepper motors. Control logic is provided to accept commands for clockwise, counter clockwise and half or full step operation. MC3479P has added Output Impedance Control (OIC) and Phase A drive state indicator (not available on SAA1042 devices).

\section*{Triac Phase Angle Controller} TDA1185A \(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 646
...generates controlled triac triggering pulses and allows tacholess speed stabilization of universal motors by an integrated positive feedback function.
- Low Cost External Components Count
- Optimum Triac Firing (2nd and 3rd Quadrants)
- Repetitive Trigger Pulses When Triac Current is Interrupted by Motor Brush Bounce
- Triac Current Sensed to Allow Inductive Loads
- Soft Start
- Power Failure Detection and General Circuit Reset
- Low Power Consumption: 1.0 mA

\section*{Universal Motor Speed Controllers TDA1085A \(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 648}
. . . all the necessary functions for the speed control of universal (\(\mathrm{ac} / \mathrm{dc} \mathrm{)} \mathrm{motors} \mathrm{in} \mathrm{an} \mathrm{open} \mathrm{or} \mathrm{closed} \mathrm{loop} \mathrm{con-}\) figuration. Facility for defining the initial speed/time characteristic. The circuits provide a phase angle varied trigger pulse to the motor control triac
- Guaranteed Full Wave Triac Drive
- Soft Start from Power-up
- On-Chip Frequency/Voltage Converter and Ramp Generator
- Current Limiting Incorporated
- Direct Drive from ac Line

TDA1085C \(\mathrm{T}_{\mathrm{A}}=-10^{\circ}\) to \(+120^{\circ} \mathrm{C}\), Case 648
Similar to TDA1085A, but designed for commercial washing machine service.

TDA1285A TA \(=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 648
Similar to TDA1085A, plus:
- Repeated Trigger Pulse if Triac Fails to Latch
- Over 65 mA Output Pulse Current
- Automatic Adaptation to Inductive or Hall Effect Sensors
- Sensor Circuit Continuity Detection

TDA1285A

\section*{POWER CONTROLLERS}
\begin{tabular}{|c|c|c|}
\hline Device & Function & Page \\
\hline CA3059 & Zero Voltage Switch & 4-8 \\
\hline CA3079 & Zero Voltage Switch & 4-8 \\
\hline MC3399T & High Side Driver Switch & See Chapter 10 \\
\hline MC3484S2,S4 & Integrated Solenoid Driver & See Chapter 10 \\
\hline UAA1016B & Zero Voltage Controller & 4-95 \\
\hline \multicolumn{3}{|c|}{MOTOR CONTROLLERS} \\
\hline Device & Function & Page \\
\hline MC33030 & DC Servo Motor Controller/Driver & 4-21 \\
\hline MC33034 & DC Brushless Motor Controller & 4-34 \\
\hline MC33039 & Closed Loop Brushless Motor Adapter & 4-54 \\
\hline MC3479P & Stepper Motor Driver & 4-13 \\
\hline SAA1042,A & Stepper Motor Driver & 4-59 \\
\hline TDA1085A & Universal Motor Speed Controller & 4-64 \\
\hline TDA1085C & Universal Motor Speed Controller & 4-71 \\
\hline TDA1185A & TRIAC Phase Angle Controller & 4-81 \\
\hline TDA1285A & Universal Motor Speed Controller & 4-88 \\
\hline
\end{tabular}

\section*{ZERO VOLTAGE SWITCHES}
...designed for thyristor control in a variety of ac power switching applications for ac input voltages of \(24 \mathrm{~V}, 120 \mathrm{~V}, 208 / 230 \mathrm{~V}\), and 277 V @ \(50 / 60 \mathrm{~Hz}\).

\section*{Applications:}
- Relay Control
- Heater Control
- Valve Control
- Lamp Control
- Synchronous Switching of Flashing Lights
- On-Off Motor Switching
- Differential Comparator With Self-Contained Power Supply for Industrial Applications
- Photosensitive Control
- Power One-Shot Control

*NTC Sensor
NOTE: Shaded Area Not Included With CA3079.
TABLE A
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
AC Input Voltage \\
\((50 / 60 \mathrm{~Hz})\) \\
vac
\end{tabular} & \begin{tabular}{c}
Input Series \\
Resistor (R्S) \\
\(\mathbf{k} \Omega\)
\end{tabular} & \begin{tabular}{c}
Dissipation Rating \\
for \(\mathbf{R}_{\mathbf{S}}\) \\
\(\mathbf{W}\)
\end{tabular} \\
\hline 24 & 2.0 & 0.5 \\
120 & 10 & 2.0 \\
\(208 / 230\) & 20 & 4.0 \\
277 & 25 & 5.0 \\
\hline
\end{tabular}

\section*{ZERO VOLTAGE SWITCHES}

\section*{SILICON MONOLITHIC INTEGRATED CIRCUITS}

PLASTIC PACKAGE CASE 646-06

\section*{functional block} description
1. Limiter-Power Supply - Allows operation of the CA3059/79 directly from an ac line. Suggested dropping resistor (\(\mathrm{R}_{\mathbf{S}}\)) values are given in Table A.
2. Differential On/Off Sensing Amplifier Tests for condition of external sensors or input command signals. Proportional control capability or hysteresis may be implemented using this block.
3. Zero-Crossing Detector - Synchronizes the output pulses to the zero voltage point of the ac cycle. This synchronization eliminates RFI when used with resistive loads.
4. Triac Drive - Supplies high-current pulses to the external power controlling thyristor.
5. Protection Circuit (CA3059 only) - A built-in circuit may be actuated, if the sensor opens or shorts, to remove the drive current from the external triac.
6. Inhibit Capability (CA3059 only) Thyristor firing may be inhibited by the action of an internal diode gate at Pin 1.
7. High Power DC Comparator Operation (CA3059 only) - Operation in this mode is accomplished by connecting Pin 7 to Pin 12 (thus overriding the action of the zero-crossing detector). When Pin 13 is positive with respect to Pin 9 , current to the thyristor is continuous.

\section*{CA3059, CA3079}

MAXIMUM RATINGS (T \(A=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rating} & Symbol & Value & Unit \\
\hline \begin{tabular}{l}
DC Supply Voltage \\
(Between Pins 2 and 7
\end{tabular} & \[
\begin{aligned}
& \text { CA3059 } \\
& \text { CA3079 }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{CC}}\) & \[
\begin{aligned}
& 12 \\
& 10
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
DC Supply Voltage \\
(Between Pins 2 and 8)
\end{tabular} & \[
\begin{aligned}
& \text { CA3059 } \\
& \text { CA3079 }
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{CC}}\) & \[
\begin{aligned}
& 12 \\
& 10
\end{aligned}
\] & Vdc \\
\hline Peak Supply Current (Pins 5 and 7) & & 15,7 & \(\pm 50\) & mA \\
\hline Fail-Safe Input Current (Pin 14) & & 114 & 2.0 & mA \\
\hline Output Pulse Current (Pin 4) & & Iout & 150 & mA \\
\hline Junction Temperature & & TJ & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & & \(\mathrm{T}_{\text {A }}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Operation@ \(120 \mathrm{Vrms}, 50-60 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))**
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Test Circuits & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
DC Supply Voltage \\
Inhibit Mode
\[
\begin{aligned}
& R_{S}=10 \mathrm{k}, I_{\mathrm{L}}=0 \\
& R_{\mathrm{S}}=5.0 \mathrm{k}, I_{\mathrm{L}}=2.0 \mathrm{~mA}
\end{aligned}
\] \\
Pulse Mode
\[
\begin{aligned}
& R_{S}=10 \mathrm{k}, \mathrm{I}_{\mathrm{L}}=0 \\
& R_{\mathrm{S}}=5.0 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{~mA}
\end{aligned}
\]
\end{tabular} & Fig. 2 & \(\mathrm{V}_{\text {S }}\) & \[
\begin{gathered}
6.1 \\
- \\
6.0 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 6.5 \\
& 6.1 \\
& 6.4 \\
& 6.2
\end{aligned}
\] & \[
\begin{gathered}
7.0 \\
- \\
7.0
\end{gathered}
\] & Vdc \\
\hline Gate Trigger Current (\(\mathrm{V}_{\mathrm{GT}}=1.0 \mathrm{~V}\), Pins 3 and 2 connected) & Fig. 3 & IGT & - & 160 & - & mA \\
\hline \begin{tabular}{l}
Peak Output Current, Pulsed \\
With Internal Power Supply, \(\mathrm{V}_{\mathrm{GT}}=0\) \\
Pin 3 Open \\
Pins 3 and 2 Connected \\
With External Power Supply, \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GT}}=0\) Pin 3 Open \\
Pins 3 and 2 Connected
\end{tabular} & \begin{tabular}{l}
Fig. 3 \\
Fig. 4
\end{tabular} & IOM & \[
\begin{aligned}
& 50 \\
& 90 \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 125 \\
& 190 \\
& \\
& 230 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & mA \\
\hline Inhibit Input Ratio (Ratio of Voltage @ Pin 9 to Pin 2) & Fig. 5 & \(V_{9} / V_{2}\) & 0.465 & 0.485 & 0.520 & - \\
\hline \begin{tabular}{l}
Total Gate Pulse Duration (\(\mathrm{C}_{\mathrm{Ext}}=0\)) \\
Positive dv/dt \\
Negative dv/dt
\end{tabular} & Fig. 6 & \[
\begin{aligned}
& \text { tp } \\
& \text { tn }
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 70 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 140 \\
& 140
\end{aligned}
\] & \(\mu \mathrm{S}\) \\
\hline \begin{tabular}{l}
Pulse Duration After Zero Crossing
\[
\left(C_{E x t}=0, R_{E x t}=\infty\right)
\] \\
Positive dv/dt \\
Negative dv/dt
\end{tabular} & Fig. 6 & \[
\begin{aligned}
& \mathrm{tp}_{1} \\
& \mathrm{nt}_{1} \\
& \hline
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& 50 \\
& 60
\end{aligned}
\] & & \(\mu \mathrm{s}\) \\
\hline Output Leakage Current Inhibit Mode*** & Fig. 3 & 14 & - & 0.001 & 10 & \(\mu \mathrm{A}\) \\
\hline \(\begin{array}{ll}\text { Input Bias Current } & \text { CA3059 } \\ & \text { CA3079 }\end{array}\) & Fig. 7 & I'B & - & \[
\begin{aligned}
& 0.15 \\
& 0.15
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 2.0
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Common Mode Input Voltage Range (Pins 9 and 13 Connected) & - & \(\mathrm{V}_{\text {CMR }}\) & - & 1.4 to 5.0 & - & Vdc \\
\hline Inhibit Input Voltage CA3059 only & Fig. 8 & \(\mathrm{V}_{1}\) & - & 1.4 & 1.6 & Vdc \\
\hline External Trigger Voltage CA3059 only & - & \(\mathrm{V}_{6}-\mathrm{V}_{4}\) & - & 1.4 & - & Vdc \\
\hline
\end{tabular}
*Care must be taken, especially when using an external power supply, that total package dissipation is not exceeded.
**The values given in the Electrical Characteristics Chart at 120 V also apply for operation at input voltages of \(24 \mathrm{~V}, 208 / 230 \mathrm{~V}\), and 277 V , except for Pulse Duration test. However, the series resistor (\(\mathrm{R}_{\mathrm{S}}\)) must have the indicated value, shown in Table A for the specified input voltage.
*** \(1_{4}\) out of Pin 4
2 V on P in 1
S1 position 2

TEST CIRCUITS
(All resistor values are in ohms)

FIGURE 2 - DC SUPPLY VOLTAGE

FIGURE 4 - PEAK OUTPUT CURRENT (PULSED) WITH EXTERNAL POWER SUPPLY

FIGURE 6 - GATE PULSE DURATION TEST CIRCUIT WITH ASSOCIATED WAVEFORM

FIGURE 3 - PEAK OUTPUT (PULSED) AND GATE TRIGGER CURRENT WITH INTERNAL POWER SUPPLY

FIGURE 5 - INPUT INHIBIT RATIO

FIGURE 7 - INPUT BIAS CURRENT TEST CIRCUIT

FIGURE 8 - INHIBIT INPUT VOLTAGE TEST

FIGURE 10 - PEAK OUTPUT CURRENT (PULSED) versus AMBIENT TEMPERATURE

FIGURE 12 - INTERNAL SUPPLY versus AMBIENT TEMPERATURE

FIGURE 9 - PEAK OUTPUT CURRENT (PULSED) versus EXTERNAL POWER SUPPLY VOLTAGE

FIGURE 11 - TOTAL PULSE WIDTH versus AMBIENT TEMPERATURE

FIGURE 13 - INHIBIT VOLTAGE RATIO versus AMBIENT TEMPERATURE

NOTE: Current sources are established by an internal reference.
Pins 1, 6, 12, and 14 are not used with CA3079.

\section*{APPLICATION INFORMATION}

\section*{Power Supply}

The CA3059 and CA3079 are self-powered circuits, powered from the ac line through an appropriate dropping resistor (see Table A). The internal supply is designed to power the auxiliary power circuits.

In applications where more output current from the internal supply is required, an external power supply of higher voltage should be used. To use an external power supply, connect pin 5 and pin 7 together and apply the synchronizing voltage to pin 12 and the dc supply voltage to pin 2 as shown in Figure 4.

\section*{Operation of Protection Circuit (CA3059 Only)}

The protection circuit, when connected, will remove current drive from the triac if an open or shorted sensor is detected. This circuit is activated by connecting pin 13 to pin 14 (see Figure 1).

The following conditions should be observed when the protection circuit is utilized:
\(A\). The internal supply should be used and the external load current must be limited to 2 mA with a \(5 \mathrm{k} \Omega\) dropping resistor.
B. Sensor Resistance (\(R X\)) and \(R p\) values should be between \(2 \mathrm{k} \Omega\) and \(100 \mathrm{k} \Omega\).
C. The relationship \(0.33<R_{X} / R_{p}<3\) must be met over the anticipated temperature range to prevent undesired activation of the circuit. A shunt or series resistor may have to be added.

\section*{External Inhibit Function (CA3059 Only)}

A priority inihibit command applied to pin 1 will remove current drive from the thyristor. A command of at least \(+1.2 \mathrm{~V} @ 10 \mu \mathrm{~A}\) is required. A DTL or \(\mathrm{T}^{2} \mathrm{~L}\) logic 1 applied to pin 1 will activate the inhibit function.

\section*{DC Gate Current Mode (CA3059 Only)}

When comparator operation is desired or inductive loads are being switched, pins 7 and 12 should be connected. This connection disables the zero-crossing detector to permit the flow of gate current from the differential sensing amplifier on demand. Care should be exercised to avoid possible overloading of the internal power supply when operating the device in this mode. A resistor should be inserted between pin 4 and the thyristor gate in order to limit the current.

\section*{Advance Information}

\section*{STEPPER MOTOR DRIVER}

The MC3479P is designed to drive a two-phase stepper motor in the bipolar mode. The circuit consists of four input sections, a logic decoding/sequencing section, two driver-stages for the motor coils, and an output to indicate the Phase A drive state.
- Single Supply Operation -+7.2 to +16.5 Volts
- \(350 \mathrm{~mA} /\) Coil Drive Capability
- Clamp Diodes Provided for Back-EMF Suppression
- Selectable \(\overline{\mathrm{CW}} / \mathrm{CCW}\) and \(\overline{\mathrm{Full} / \text { Half Step Operation }}\)
- Selectable High/Low Output Impedance (Half Step Mode)
- TTL/CMOS Compatible Inputs
- Input Hysteresis - 400 mV Minimum
- Phase Logic Can Be Initialized to Phase A
- Phase A Output Drive State Indication (Open-Collector)

This document contains information on a new product. Specifications and information herein
are subject to change without notice.

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{M}}\) & +18 & Vdc \\
\hline Clamp Diode Cathode Voltage (Pin 1) & \(\mathrm{V}_{\mathrm{D}}\) & \(\mathrm{V}_{\mathrm{M}}+5.0\) & Vdc \\
\hline Driver Output Voltage (Pins 2, 3, 14, 15) & \(\mathrm{V}_{\mathrm{OD}}\) & \(\mathrm{V}_{\mathrm{M}}+6.0\) & Vdc \\
\hline Driver Output Current/Coil & \(\mathrm{I}_{\mathrm{OD}}\) & \(\pm 500\) & mA \\
\hline Input Voltage (Pins 7, 8, 9, 10) & \(\mathrm{V}_{\text {in }}\) & -0.5 to +7.0 & Vdc \\
\hline\(\overline{\text { Bias/Set Current (Pin 6) }}\) & \(\mathrm{I}_{\mathrm{BS}}\) & -10 & mA \\
\hline\(\overline{\text { Phase A Output Voltage (Pin 11) }}\) & \(\mathrm{V}_{\mathrm{OA}}\) & +18 & Vdc \\
\hline\(\overline{\text { Phase A Sink Current (Pin 11) }}\) & \(\mathrm{I}_{\mathrm{OA}}\) & 20 & mA \\
\hline Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{stg}}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Max & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{M}}\) & +7.2 & +16.5 & Vdc \\
\hline Clamp Diode Cathode Voltage & \(\mathrm{V}_{\mathrm{D}}\) & \(\mathrm{V}_{\mathrm{M}}\) & \(\mathrm{V}_{\mathrm{M}}+4.5\) & Vdc \\
\hline Driver Output Current (Per Coil) (Note 5) & \(\mathrm{I}_{\mathrm{OD}}\) & - & 350 & mA \\
\hline Input Voltage (Pins 7, 8,9,10) & \(\mathrm{V}_{\mathrm{in}}\) & 0 & +5.5 & Vdc \\
\hline\(\overline{\mathrm{Bias} / \text { Set Current (Outputs Active) }}\) & \(\mathrm{I}_{\mathrm{BS}}\) & -300 & -75 & \(\mu \mathrm{~A}\) \\
\hline\(\overline{\text { Phase A Output Voltage }}\) & \(\mathrm{V}_{\mathrm{OA}}\) & - & \(\mathrm{V}_{\mathrm{M}}\) & Vdc \\
\hline\(\overline{\text { Phase A Sink Current }}\) & \(\mathrm{I}_{\mathrm{OA}}\) & 0 & 8.0 & mA \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS
(Specifications apply over the recommended supply voltage and temperature ranges unless otherwise noted.) (See Notes 1, 2)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Pins & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{INPUT LOGIC LEVELS} \\
\hline Threshold Voltage (Low-to-High) & \multirow[t]{4}{*}{\[
\begin{gathered}
7,8,9 \\
10
\end{gathered}
\]} & \(\mathrm{V}_{\text {TLH }}\) & - & - & 2.0 & Vdc \\
\hline Threshold Voltage (High-to-Low) & & \(\mathrm{V}_{\text {THL }}\) & 0.8 & - & - & Vdc \\
\hline Hysteresis & & \(\mathrm{V}_{\text {HYS }}\) & 0.4 & - & - & Vdc \\
\hline \begin{tabular}{ll}
Current & \(\left(\mathrm{V}_{1}=0.4 \mathrm{~V}\right)\) \\
& \(\left(\mathrm{V}_{1}=5.5 \mathrm{~V}\right)\) \\
& \(\left(\mathrm{V}_{1}=2.7 \mathrm{~V}\right)\)
\end{tabular} & & \[
\begin{gathered}
I_{\mathrm{IL}} \\
\mathrm{I}_{\mathrm{H} 1} \\
I_{\mathrm{H} 2}
\end{gathered}
\] & \[
\begin{gathered}
-100 \\
- \\
-
\end{gathered}
\] & - & \[
\begin{gathered}
- \\
+100 \\
+20
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

DRIVER OUTPUT LEVELS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Output High Voltage
\[
\begin{array}{ll}
\left(I_{\mathrm{BS}}=-300 \mu \mathrm{~A}\right) & \left(I_{\mathrm{OD}}=-350 \mathrm{~mA}\right) \\
& \left(I_{\mathrm{OD}}=-0.1 \mathrm{~mA}\right)
\end{array}
\] & \multirow[t]{5}{*}{\[
\begin{gathered}
2,3, \\
14,15
\end{gathered}
\]} & \(\mathrm{V}_{\mathrm{OHD}}\) & \[
\begin{aligned}
& V_{M}-2.0 \\
& V_{M}-1.2
\end{aligned}
\] & - & - & Vdc \\
\hline Output Low Voltage
\[
\left(I_{\mathrm{BS}}=-300 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{OD}}=350 \mathrm{~mA}\right)
\] & & \(\mathrm{V}_{\text {OLD }}\) & - & - & 0.8 & Vdc \\
\hline Differential Mode Output Voltage Difference (Note 3)
\[
\left(I_{B S}=-300 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{OD}}=350 \mathrm{~mA}\right)
\] & & DV \({ }_{\text {OD }}\) & - & - & 0.15 & Vdc \\
\hline Common Mode Output Voltage Difference (Note 4)
\[
\left(I_{\mathrm{BS}}=-300 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{OD}}=-0.1 \mathrm{~mA}\right)
\] & & \(C V_{O D}\) & - & - & 0.15 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Leakage }-\mathrm{Hi} \text { Z State } \\
& \left(0 \leqslant \mathrm{~V}_{\mathrm{OD}} \leqslant \mathrm{~V}_{\mathrm{M}}, I_{\mathrm{BS}}=-5.0 \mu \mathrm{~A}\right) \\
& \left(0 \leqslant \mathrm{~V}_{\mathrm{OD}} \leqslant \mathrm{~V}_{\mathrm{M}}, I_{\mathrm{BS}}=-300 \mu \mathrm{~A}, \operatorname{Pin} 9=2.0 \mathrm{~V}, \operatorname{Pin} 8=0.8 \mathrm{~V}\right)
\end{aligned}
\] & & \[
\begin{aligned}
& \text { IOZ1 } \\
& \text { IOZ2 }
\end{aligned}
\] & \[
\begin{aligned}
& -100 \\
& -100
\end{aligned}
\] & - & \[
\begin{aligned}
& +100 \\
& +100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS (continued)
(Specifications apply over the recommended supply voltage and temperature ranges unless otherwise noted.)(See Notes 1, 2)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Pins & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{CLAMP DIODES} \\
\hline Forward Voltage
\[
\left(I_{D}=350 \mathrm{~mA}\right)
\] & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1,2,3 \\
& 14,15
\end{aligned}
\]} & \(\mathrm{V}_{\text {DF }}\) & - & 2.5 & 3.0 & Vdc \\
\hline \begin{tabular}{l}
Leakage Current (Per Diode) \\
(Pin \(1=21 \mathrm{~V}\); Pins 2, 3, 14, \(\left.15=0 \mathrm{~V} ;{ }_{\mathrm{B}} \mathrm{BS}=0 \mu \mathrm{~A}\right)\)
\end{tabular} & & \({ }^{\prime} \mathrm{DR}\) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

PHASE A OUTPUT
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Output Low Voltage \\
\(\left({ }^{\prime} \mathrm{OA}=8.0 \mathrm{~mA}\right)\)
\end{tabular} & 11 & \(\mathrm{~V}_{\mathrm{OLA}}\) & - & - & 0.4 & Vdc \\
\hline \begin{tabular}{c}
Off State Leakage Current \\
\(\left(\mathrm{V}_{\mathrm{OHA}}=16.5 \mathrm{~V}\right)\)
\end{tabular} & & IOHA & - & - & 100 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{POWER SUPPLY}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Power Supply Current } \\
& \left(I_{O D}=0 \mu A, I_{B S}=-300 \mu A\right) \\
& \left(L 1=V_{O H D}, L 2=V_{O L D}, L 3=V_{O H D}, L 4=V_{O L D}\right) \\
& \left(L 1=V_{O H D}, L 2=V_{O L D}, L 3=H i Z, L 4=H i Z\right) \\
& \left(L 1=V_{O H D}, L 2=V_{O L D}, L 3=V_{O H D}, L 4=V_{O H D}\right)
\end{aligned}
\] & 16 & \begin{tabular}{l}
\({ }^{\text {IMW }}\) \\
\(I_{M Z}\) \\
\(I_{\mathrm{MN}}\)
\end{tabular} & - & - & \[
\begin{aligned}
& 70 \\
& 40 \\
& 75
\end{aligned}
\] & mA \\
\hline \multicolumn{7}{|l|}{\(\overline{\text { BIAS }} /\) SET CURRENT} \\
\hline To Set \(\overline{\text { Phase A }}\) & 6 & \(\mathrm{I}_{\mathrm{BS}}\) & -5.0 & - & - & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{NOTES:} \\
\hline \begin{tabular}{l}
1. Algebraic convention rather than absolute values is \\
2. Current into a pin is designated as positive. Current o \\
3. \(D V_{O D}=\left|V_{O D 1,2}-V_{O D 3,4}\right|\) where \\
\(V_{O D 1,2}=\left(V_{O H D 1}-V_{\text {OLD2 }}\right)\) or \(\left(V_{O H D 2}-V_{O L D 1}\right)\), and \\
\(\mathrm{V}_{\mathrm{OD} 3,4}=\left(\mathrm{V}_{\mathrm{OHD}}-\mathrm{V}_{\mathrm{OLD}}\right)\) or \(\left(\mathrm{V}_{\mathrm{OHD}}-\mathrm{V}_{\mathrm{OLD}}\right)\). \\
4. \(C V_{O D}=\left|V_{O H D} 1-V_{O H D}\right|\) or \(\left|V_{O H D} 3-V_{O H D}\right|\). \\
5. See section on Power Dissipation in Application In
\end{tabular} & limit & egative & & & & \\
\hline
\end{tabular}

PACKAGE THERMAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Thermal Resistance, Junction to Ambient - No Heat Sink & \(\mathrm{R}_{\theta J A}\) & - & 45 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

AC SWITCHING CHARACTERISTICS \(\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{M}}=12 \mathrm{~V}\right)(\) See Figures 2, 3, 4)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Pins & Symbol & Min & Typ & Max & Unit \\
\hline Clock Frequency & 7 & \({ }^{\text {f CK }}\) & 0 & - & 50 & kHz \\
\hline Clock Pulse Width - High & 7 & PW \({ }_{\text {CKH }}\) & 10 & - & - & \(\mu \mathrm{s}\) \\
\hline Clock Pulse Width - Low & 7 & \(\mathrm{PW}_{\text {CKL }}\) & 10 & - & - & \(\mu \mathrm{s}\) \\
\hline \(\overline{\text { Bias }}\) /Set Pulse Width & 6 & \(\mathrm{PW}_{\text {BS }}\) & 10 & - & - & \(\mu \mathrm{s}\) \\
\hline Setup Time - \(\overline{\mathrm{CW}} / \mathrm{CCW}\) and \(\overline{\mathrm{F}} / \mathrm{HS}\) & \[
\begin{gathered}
10-7 \\
9-7
\end{gathered}
\] & \({ }^{\text {s }}\) S & 5.0 & - & - & \(\mu \mathrm{S}\) \\
\hline Hold Time - \(\overline{\mathrm{CW}} / \mathrm{CCW}\) and \(\overline{\mathrm{F}} / \mathrm{HS}\) & \[
\begin{gathered}
10-7 \\
9-7
\end{gathered}
\] & th & 10 & - & - & \(\mu \mathrm{S}\) \\
\hline Propagation Delay - Clk-to-Driver Output & & \({ }_{\text {tPCD }}\) & - & 8.0 & - & \(\mu \mathrm{S}\) \\
\hline Propagation Delay - \(\overline{\overline{\mathrm{Bias}}}\) /Set-to-Driver Output & & tPBSD & - & 1.0 & - & \(\mu \mathrm{S}\) \\
\hline Propagation Delay - Clk-to- \(\overline{\text { Phase A }}\) Low & 7-11 & tPHLA & - & 12 & - & \(\mu \mathrm{s}\) \\
\hline Propagation Delay - Clk-to- \(\overline{\text { Phase A }}\) High & 7-11 & \({ }^{\text {t PLHA }}\) & - & 5.0 & - & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}

FIGURE 2 - AC TEST CIRCUIT

FIGURE 3 - \(\overline{\text { BIAS }} /\) SET TIMING (Refer to Figure 2)

Note: \(t_{r}, t_{f}(10 \%-90 \%)\) for input signals are \(\leqslant 25 \mathrm{~ns}\).

\section*{PIN DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline Name & Symbol & Pin \# & Description \\
\hline Power Supply & \(\mathrm{V}_{\mathrm{M}}\) & 16 & Power supply pin for both the logic circuit and the motor coil current. Voltage range is +7.2 to +16.5 volts. \\
\hline Ground & Gnd & \[
\begin{gathered}
4,5 \\
12,13
\end{gathered}
\] & Ground pins for the logic circuit and the motor coil current. The physical configuration of the pins aids in dissipating heat from within the IC package. \\
\hline Clamp Diode Voltage & \(V_{D}\) & 1 & This pin is used to protect the outputs where large voltage spikes may occur as the motor coils are switched. Typically a diode is connected between this pin and Pin 16. See Figure 11. \\
\hline Driver Outputs & \[
\begin{aligned}
& \text { L1, L2 } \\
& \text { L3, L4 }
\end{aligned}
\] & \[
\begin{gathered}
2,3 \\
14,15
\end{gathered}
\] & High current outputs for the motor coils. L1 and L2 are connected to one coil, and L3 and L4 to the other coil. \\
\hline \(\overline{\text { Bias }} /\) Set & \(\overline{\mathrm{B}} / \mathrm{S}\) & 6 & This pin is typically 0.7 volts below \(\mathrm{V}_{\mathrm{M}}\). The current out of this pin (through a resistor to ground) determines the maximum output sink current. If the pin is opened (IBS \(<5.0 \mu \mathrm{~A}\)) the outputs assume a high impedance condition, while the internal logic presets to a Phase A condition. \\
\hline Clock & Clk & 7 & The positive edge of the clock input switches the outputs to the next position. This input has no effect if Pin 6 is open. \\
\hline Full/Half Step & \(\overline{\mathrm{F}} / \mathrm{HS}\) & 9 & When low (Logic " 0 "), each clock pulse will cause the motor to rotate one full step. When high, each clock pulse will cause the motor to rotate one-half step. See Figure 7 for sequence. \\
\hline Clockwise/ Counterclockwise & \(\overline{\mathrm{CW}} / \mathrm{CCW}\) & 10 & This input allows reversing the rotation of the motor. See Figure 7 for sequence. \\
\hline Output Impedance Control & OIC & 8 & This input is relevant only in the half step mode (Pin \(9>2.0 \mathrm{~V}\)). When low (Logic " 0 ") the two driver outputs of the non-energized coil will be in a high impedance condition. When high the same driver outputs will be at a low impedance referenced to \(V_{M}\). See Figure 7. \\
\hline \(\overline{\text { Phase A }}\) & \(\overline{\text { Ph A }}\) & 11 & This open-collector output indicates (when low) that the driver outputs are in the Phase \(A\) condition (\(\mathrm{L} 1=\mathrm{L} 3=\mathrm{V}_{\mathrm{OHD}}, \mathrm{L} 2=\mathrm{L} 4=\mathrm{V}_{\mathrm{OLD}}\)). \\
\hline
\end{tabular}

FIGURE 5 - OUTPUT STAGES

\section*{APPLICATION INFORMATION}

\section*{GENERAL}

The MC3479P integrated circuit is designed to drive a stepper positioning motor in applications such as disk drives and robotics. The outputs can provide up to 350 mA to each of two coils of a two-phase motor. The outputs change state with each low-to-high transition of the clock input, with the new output state depending on the previous state, as well as the input conditions on Pins 8, 9, and 10.

\section*{OUTPUTS (Pins 2, 3, 14, 15)}

The outputs (L1-L4) are high current outputs (see Fig-
ure 5), which when connected to a two-phase motor, provide two full-bridge configurations (L3 and L4 are not shown in Figure 5). The polarities applied to the motor coils depend on which transistor (\(\mathrm{Q}_{H}\) or \(\mathrm{Q}_{\mathrm{L}}\)) of each output is on, which in turn depends on the inputs and the decoding circuitry.

The maximum sink current available at the outputs is a function of the resistor connected between Pin 6 and ground (see section on \(\overline{\mathrm{Bias}} /\) Set operation). Whenever the outputs are to be in a high impedance state, both transistors \(\left(Q_{H}\right.\) and \(O_{L}\) of Figure 5\()\) of each output are off.

\section*{\(V_{D}(\operatorname{Pin} 1)\)}

This pin allows for provision of a current path for the motor coil current during switching, in order to suppress back-EMF voltage spikes. Pin 1 is normally connected to \(\mathrm{V}_{\mathrm{M}}\) (Pin 16) through a diode (zener or regular), a resistor, or directly. The peak instantaneous voltage at the outputs (Pins 2, 3, 14, and 15) must not exceed \(\mathrm{V}_{M}\) by more than 6 volts. The voltage drop across the internal clamping diodes must be included in this portion of the design (see Figure 6). Note the parasitic diodes (Figure 5) across each \(Q_{L}\) of each output provide for a complete circuit path for the switched current.

\section*{FIGURE 6 - CLAMP DIODE CHARACTERISTICS}

\section*{FULL/HALF STEP (Pin 9)}

When this input is at a Logic " 0 " \((<0.8\) volts), the outputs change a full step with each clock cycle, with the sequence direction depending on the \(\overline{\mathrm{CW}} / \mathrm{CCW}\) input (Pin 10). There are four steps (Phase A, B, C, D) for each complete cycle of the sequencing logic. Current flows through both motor coils during each step. See Figure 7.

When taken to a Logic " 1 " (\(>2.0\) volts), the outputs change a half step with each clock cycle, with the sequence direction depending on the \(\overline{\mathrm{CW}} / \mathrm{CCW}\) input (Pin 10). Eight steps (Phases \(A-H\)) result for each complete cycle of the sequencing logic. Phases A, C, E and G correspond (in polarity) to the phases \(A, B, C\), and \(D\), respectively, of the full step sequence. Phases B, D, F and \(H\) provide current to one motor coil, while de-energizing the other coil. The condition of the outputs of the de-energized coil depends on the OIC input (Pin 8). See Figure 7 for timing diagram.

\section*{OIC (Pin 8)}

The output impedance control input determines the output impedance to the de-energized coil when operating in the half-step mode. When the outputs are in Phase B, D, F or H (Figure 7) and this input is at a Logic " 0 " (\(<0.8 \mathrm{~V}\)), the two outputs to the de-energized coil are in a high-impedance condition - \(\mathrm{O}_{\mathrm{L}}\) and \(\mathrm{Q}_{H}\) of both outputs (Figure 5) are off. When this input is at a Logic " 1 " (\(>2.0 \mathrm{~V}\)), a low impedance output is provided to the de-energized coil as both outputs have \(\mathrm{Q}_{H}\) on (\(\mathrm{Q}_{\mathrm{L}}\) off). To complete the low impedance path requires connecting Pin \(1\left(V_{D}\right)\) to Pin \(16\left(V_{M}\right)\) as described elsewhere in this data sheet.

\section*{BIAS/SET (Pin 6)}

This pin can be used for three functions: a) determining the maximum output sink current; b) setting the internal logic to a known state; and c) reducing power consumption.
a) The maximum output sink current is determined by the base drive current supplied to the lower transistors (\(\mathrm{O}_{\mathrm{L}}\) 's of Figure 5) of each output, which in turn, is a function of \(I_{B S}\). The appropriate value of \(I_{B S}\) is determined by:
\[
I_{B S}=I_{O D} \times 0.86
\]
where \({ }^{\prime} \mathrm{BS}\) is in microamps, and \(\mathrm{I}_{\mathrm{OD}}\) is the motor current/ coil in milliamps.

The value of \(R_{B}\) (between Pin 6 and ground) is then determined by:
\[
R_{B}=\frac{V_{M}-0.7 V}{I_{B S}}
\]
b) When Pin 6 is opened (raised to \(V_{M}\)) such that \(I_{B S}\) is \(<5.0 \mu \mathrm{~A}\), the internal logic is set to the Phase A condition, and the four driver outputs are put into a high impedance state. The Phase A output (Pin 11) goes active (low), and input signals at Pins 7, 8, 9 and 10 are ignored during this time. Upon re-establishing \(I_{B S}\), the driver outputs become active, and will be in the Phase A position (\(\mathrm{L} 1=\mathrm{L} 3=\mathrm{V}_{\mathrm{OHD}}, \mathrm{L} 2=\mathrm{L} 4=\mathrm{V}_{\mathrm{OLD}}\)). The circuit will then respond to the inputs at Pins 7, 8, 9 and 10.

The Set function (opening Pin 6) can be used as a powerup reset while supply voltages are settling. A CMOS logic gate (powered by \(\mathrm{V}_{\mathrm{M}}\)) can be used to control this pin as shown in Figure 11.
c) Whenever the motor is not being stepped, power dissipation in the IC and in the motor may be lowered by reducing \(I_{B S}\), so as to reduce the output (motor) current. Setting IBS to \(75 \mu \mathrm{~A}\) will reduce the motor current, but will not reset the internal logic as described above. See Figure 12 for a suggested circuit.

\section*{POWER DISSIPATION}

The power dissipated by the MC3479P must be such that the junction temperature (\(\mathrm{T}_{\mathrm{J}}\)) does not exceed \(150^{\circ} \mathrm{C}\). The power dissipated can be expressed as:
\[
P=\left(V_{M} \times I_{M}\right)+\left(2 \times I_{O D}\right)\left[\left(V_{M}-V_{O H D}\right)+V_{O L D}\right]
\]
where \(V_{M}=\) Supply voltage;
\(I_{M}=\) Supply current other than IOD;
IOD = Output current to each motor coil;
\(\mathrm{V}_{\mathrm{OHD}}=\) Driver output high voltage;
\(\mathrm{V}_{\text {OLD }}=\) Driver output low voltage.
The power supply current (\(I_{M}\)) is obtained from Figure 8. After the power dissipation is calculated, the junction temperature can be calculated using:
\[
T_{J}=\left(P \times R_{\theta J A}\right)+T_{A}
\]
where \(R_{\theta J A}=\) Junction to ambient thermal resistance; \(\mathrm{T}_{\mathrm{A}}=\) Ambient temperature.
For example, assume an application where \(\mathrm{V}_{\mathrm{M}}=12 \mathrm{~V}\), the motor requires 200 mA /coil, operating at room temperature with no heat sink on the IC. IBS is calculated:
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{BS}}=200 \times 0.86 \\
& \mathrm{I}_{\mathrm{BS}}=172 \mu \mathrm{~A}
\end{aligned}
\]
\(R_{B}\) is calculated:
\(\mathrm{R}_{\mathrm{B}}=(12-0.7) \mathrm{V} / 172 \mu \mathrm{~A}\)
\(R_{B}=65.7 \mathrm{k} \Omega\)

From Figure \(8, \mathrm{I}_{\mathrm{M}}\) (max) is determined to be 40 mA . From Figure 9, \(\mathrm{V}_{\mathrm{OLD}}\) is 0.46 volts, and from Figure \(10,\left(\mathrm{~V}_{\mathrm{M}}-\right.\) \(\mathrm{V}_{\mathrm{OHD}}\)) is 1.4 volts.
\[
\begin{aligned}
& P=(12 \times 0.040)+(2 \times 0.2)(1.4+0.46) \\
& P=1.22 \mathrm{~W} \\
& T_{J}=\left(1.22 \mathrm{~W} \times 45^{\circ} \mathrm{C} / \mathrm{W}\right)+25^{\circ} \mathrm{C} \\
& T_{J}=80^{\circ} \mathrm{C}
\end{aligned}
\]

This temperature is well below the maximum limit. If the calculated \(\mathrm{T}_{\mathrm{J}}\) had been higher than \(150^{\circ} \mathrm{C}\), a heat sink such as the Staver Co. V-7 series, Aavid \#5802, or Thermalloy \#6012 could be used to reduce R RJA. . In extreme cases forced air cooling should be considered.

The above calculation, and \(R_{\theta J A}\), assumes that a ground plane is provided under the MC3479P (either or both sides of the PC board) to aid in the heat dissipation. Single nominal width traces leading from the four ground pins should be avoided as this will increase \(T_{J}\), as well as provide potentially disruptive ground noise and \(I_{R}\) drops when switching the motor current.

FIGURE 8 - POWER SUPPLY CURRENT

FIGURE 11 - TYPICAL APPLICATIONS CIRCUIT

\section*{Advance Information}

\section*{DC SERVO MOTOR CONTROLLER/DRIVER}

The MC33030 is a monolithic dc servo motor controller providing all active functions necessary for a complete closed loop system. This device consists of an on-chip op amp and window comparator with wide input common-mode range, drive and brake logic with direction memory, power \(H\) switch driver capable of 1.0 A, independently programmable over-current monitor and shutdown delay, and over-voltage monitor. This part is ideally suited for almost any servo positioning application that requires sensing of temperature, pressure, light, magnetic flux, or any other means that can be converted to a voltage.

Although this device is primarily intended for servo applications, it can be used as a switchmode motor controller.
- On-Chip Error Amp for Feedback Monitoring
- Window Detector with Deadband and Self Centering Reference Input
- Drive/Brake Logic with Direction Memory
- 1.0 A Power H Switch
- Programmable Over-Current Detector
- Programmable Over-Current Shutdown Delay
- Over-Voltage Shutdown are subject to change without notice.

Pins 4, 5, 12 and 13 are electrical ground and heat sink pins for IC
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline MC33030P & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}
 INTEGRATED CIRCUIT

\section*{MC33030}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 36 & \(V\) \\
\hline \begin{tabular}{l}
Input Voltage Range \\
Op Amp, Comparator, Current Limit. Pins 1, 2, 3, 6, 7, 8, 9, 15.
\end{tabular} & VIR & -0.3 to \(V_{\text {CC }}\) & V \\
\hline Input Differential Voltage Range Op Amp, Comparator. Pins 1, 2, 3, 6, 7, 8, 9. & \(\mathrm{V}_{\text {IDR }}\) & -0.3 to \(V_{C C}\) & V \\
\hline Delay Pin Sink Current (Pin 16) & IDLY(sink) & 20 & mA \\
\hline Output Source Current (Op Amp) & Isource & 10 & mA \\
\hline Drive Output Voltage Range (Note 1) & V \({ }_{\text {DRV }}\) & -0.3 to \(\left(V_{C C}+V_{F}\right)\) & V \\
\hline Drive Output Source Current (Note 2) & IDRV(source) & 1.0 & A \\
\hline Drive Output Sink Current (Note 2) & IDRV(sink) & 1.0 & A \\
\hline Brake Diode Forward Current (Note 2) & If & 1.0 & A \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics Maximum Power Dissipation (a \(T_{A}=70^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Air Thermal Resistance Junction to Case. Pins 4, 5, 12, 13.
\end{tabular} & \begin{tabular}{l}
\(P_{D}\) \\
\(R_{\theta J A}\) \\
\(\mathrm{R}_{\theta \mathrm{JC}}\)
\end{tabular} & \[
\begin{gathered}
1000 \\
80 \\
15
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{mW} \\
& { }^{\circ} \mathrm{C} / \mathrm{W} \\
& { }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
\] \\
\hline Operating Junction Temperature & TJ & \(+150\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & TA & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Notes:
1. The upper voltage level is clamped by the forward drop, \(V_{F}\), of the brake diode.
2. These values are for continuous dc current. Maximum package power dissipation limits must be observed.

ELECTRICAL CHARACTERISTICS (V CC \(=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ERROR AMP} \\
\hline Input Offset Voltage (\(-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}\))
\[
V_{\text {Pin } 6}=7.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}
\] & \(\mathrm{V}_{10}\) & - & 1.5 & 10 & mV \\
\hline Input Offset Current
\[
V_{\text {Pin } 6}=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}
\] & 10 & - & 0.7 & - & nA \\
\hline Input Bias Current
\[
\mathrm{V}_{\text {Pin } 6}=7.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}
\] & IIB & - & 7.0 & - & nA \\
\hline Input Common-Mode Voltage Range
\[
\Delta V_{I O}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}
\] & VICR & - & 0 to (\(\left.V_{C C}-1.2\right)\) & - & v \\
\hline Slew Rate, Open Loop (\(\mathrm{V}_{\text {ID }}=0.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)) & SR & - & 0.40 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Unity-Gain Crossover Frequency & \(\mathrm{f}_{\mathrm{C}}\) & - & 550 & - & kHz \\
\hline Unity-Gain Phase Margin & \(ø_{m}\) & - & 63 & - & deg. \\
\hline Common-Mode Rejection Ratio
\[
V_{\text {Pin } 6}=7.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}
\] & CMRR & 50 & 82 & - & dB \\
\hline Power Supply Rejection Ratio
\[
\mathrm{V}_{\mathrm{CC}}=9.0 \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\text {Pin } 6}=7.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}
\] & PSRR & - & 89 & - & dB \\
\hline Output Source Current (\(\mathrm{V}_{\text {Pin }} 6=12 \mathrm{~V}\)) & \(10+\) & - & 1.8 & - & mA \\
\hline Output Sink Current (\(\mathrm{V}_{\text {Pin } 6}=1.0 \mathrm{~V}\)) & \(10-\) & - & 250 & - & \(\mu \mathrm{A}\) \\
\hline Output Voltage Swing (\(\mathrm{R}_{\mathrm{L}}=17 \mathrm{k}\) to Ground) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}}
\end{aligned}
\] & \[
12.5
\] & \[
\begin{aligned}
& 13.1 \\
& 0.02
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{v} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline
\end{tabular}
(Continued)

\section*{MC33030}

ELECTRICAL CHARACTERISTICS (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{WINDOW DETECTOR} \\
\hline Input Hysteresis Voltage (\(\mathrm{V}_{1}-\mathrm{V}_{4}, \mathrm{~V}_{2}-\mathrm{V}_{3}\), Figure 17) & \(\mathrm{V}_{\mathrm{H}}\) & 25 & 35 & 45 & mV \\
\hline Input Dead Zone Range (\(\mathrm{V}_{2}-\mathrm{V}_{4}\), Figure 17) & VIDZ & 166 & 210 & 254 & mV \\
\hline Input Offset Voltage (\(\left|\left[\mathrm{V}_{2}-\mathrm{V}_{\text {Pin } 2}\right]-\left[\mathrm{V}_{\text {Pin }} 2-\mathrm{V}_{4}\right]\right|\), Figure 17) & \(\mathrm{V}_{10}\) & - & 25 & - & mV \\
\hline \begin{tabular}{l}
Input Functional Common-Mode Range (Note 3) \\
Upper Threshold \\
Lower Threshold
\end{tabular} & \[
\begin{aligned}
& V_{\text {IH }} \\
& V_{I L}
\end{aligned}
\] & - & \[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{CC}}-1.05\right) \\
0.24 \\
\hline
\end{gathered}
\] & - & V \\
\hline Reference Input Self Centering Voltage Pins 1 and 2 Open & \(V_{\text {RSC }}\) & - & (1/2 \(\mathrm{V}_{\mathrm{CC}}\)) & - & V \\
\hline Window Detector Propagation Delay Comparator Input, Pin 3, to Drive Outputs \(V_{\text {ID }}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}(\mathrm{DRV})}=390 \Omega\) & \(t_{p(1 N / D R V)}\) & - & 2.0 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{OVER-CURRENT MONITOR}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Over-Current Reference Resistor Voltage (Pin 15) & \(\mathrm{R}_{\mathrm{OC}}\) & 3.9 & 4.3 & 4.7 & V \\
\hline \begin{tabular}{l}
Delay Pin Source Current \\
\(V_{D L Y}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{OC}}=27 \mathrm{k}, \mathrm{I}_{\mathrm{DRV}}=0 \mathrm{~mA}\)
\end{tabular} & IDLY(source) & - & 5.5 & 6.9 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Delay Pin Sink Current }\left(\mathrm{R}_{\mathrm{OC}}=27 \mathrm{k}, \mathrm{I}_{\mathrm{DRV}}=0 \mathrm{~mA}\right) \\
& \mathrm{V}_{\mathrm{DLY}}=5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DLY}}=8.3 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DLY}}=14 \mathrm{~V}
\end{aligned}
\] & IDLY(sink) & - & \[
\begin{gathered}
0.1 \\
0.7 \\
16.5
\end{gathered}
\] & - & mA \\
\hline Delay Pin Voltage, Low State (\({ }^{\text {DLY }}\) (\(=0 \mathrm{~mA}\)) & \(\mathrm{V}_{\mathrm{OL}(\mathrm{DLY}}\) & - & 0.3 & 0.4 & V \\
\hline Over-Current Shutdown Threshold
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=8.0 \mathrm{~V}
\end{aligned}
\] & \(\left.V_{\text {th(}} \mathrm{OC}\right)\) & \[
\begin{aligned}
& 6.8 \\
& 5.5
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.2 \\
& 6.5 \\
& \hline
\end{aligned}
\] & V \\
\hline Over-Current Shutdown Propagation Delay Delay Capacitor Input, Pin 16, to Drive Outputs \(\mathrm{V}_{\mathrm{ID}}=0.5 \mathrm{~V}\) & \(t_{p(D L Y / D R V) ~}^{\text {a }}\) & - & 1.8 & - & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}

\section*{POWER H-SWITCH}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{ll}
\text { Drive-Output Saturation }\left(-40^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant\right. & \leqslant 85^{\circ} \mathrm{C} \text {, Note 4) } \\
\text { High State } & \left(I_{\text {source }}=100 \mathrm{~mA}\right) \\
\text { Low State } & \left(I_{\text {sink }}=100 \mathrm{~mA}\right) \\
\hline
\end{array}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) (DRV) \\
\(V_{\mathrm{OL}}(\mathrm{DRV})\)
\end{tabular} & \[
\left(\mathrm{V}_{\mathrm{CC}}-2\right)
\] & \[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{CC}}-0.85\right) \\
0.12
\end{gathered}
\] & \[
\overline{1.0}
\] & V \\
\hline \begin{tabular}{l}
Drive-Output Voltage Switching Time (\(C_{L}=15 \mathrm{pF}\)) \\
Rise Time \\
Fall Time
\end{tabular} & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \\
& \mathrm{t}_{\mathrm{f}}
\end{aligned}
\] & - & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & - & ns \\
\hline Brake Diode Forward Voltage Drop (\(\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}\), Note 4) & \(V_{F}\) & - & 1.04 & 2.5 & V \\
\hline
\end{tabular}

\section*{TOTAL DEVICE}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Standby Supply Current & I CC & - & 14 & 25 & mA \\
\hline \begin{tabular}{l}
Over-Voltage Shutdown Threshold \\
\(\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{th}(\mathrm{OV})}\) & 16.5 & 18 & 20.5 & V \\
\hline Over-Voltage Shutdown Hysteresis (Device off to on) & \(\mathrm{V}_{\mathrm{H}(\mathrm{OV})}\) & 0.3 & 0.6 & 1.0 & V \\
\hline \begin{tabular}{l}
Operating Voltage Lower Threshold \\
\(\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{CC}}\) & - & 7.5 & 8.0 & V \\
\hline
\end{tabular}

\section*{NOTES:}
3. The upper or lower hysteresis will be lost when operating the Input, Pin 3, close to the respective rail. Refer to Figure 4.
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperatures as possible.

FIGURE 1 - ERROR AMP INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE

FIGURE 3 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY

FIGURE 5 - WINDOW DETECTOR FEEDBACK-INPUT THRESHOLDS versus TEMPERATURE

FIGURE 2 - ERROR AMP OUTPUT SATURATION versus LOAD CURRENT

FIGURE 4 - WINDOW DETECTOR REFERENCE-INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE

FIGURE 6 - OUTPUT DRIVE SATURATION versus LOAD CURRENT

FIGURE 7 - BRAKE DIODE FORWARD CURRENT versus FORWARD VOLTAGE

FIGURE 9 - OUTPUT SOURCE CURRENT-LIMIT versus TEMPERATURE

FIGURE 11 - NORMALIZED OVER-CURRENT DELAY THRESHOLD VOLTAGE versus TEMPERATURE

FIGURE 8 - OUTPUT SOURCE CURRENT-LIMIT versus OVER-CURRENT REFERENCE RESISTANCE

FIGURE 10 - NORMALIZED DELAY PIN SOURCE CURRENT versus TEMPERATURE

FIGURE 12 - SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 13 - NORMALIZED OVER-VOLTAGE SHUTDOWN THRESHOLD versus TEMPERATURE

FIGURE 14 - NORMALIZED OVER-VOLTAGE SHUTDOWN HYSTERESIS versus TEMPERATURE

FIGURE 15 - THERMAL RESISTANCE AND MAXIMUM POWER DISSIPATION versus P.C.B. COPPER LENGTH

\section*{OPERATING DESCRIPTION}

The MC33030 was designed to drive fractional horsepower dc motors and sense actuator position by voltage feedback. A typical servo application and representative internal block diagram are shown in Figure 16. The system operates by setting a voltage on the reference input of the Window Detector (Pin 1) which appears on (Pin 2). A dc motor then drives a position sensor, usually a potentiometer driven by a gear box, in a corrective fashion so that a voltage proportional to position is present at Pin 3. The servo motor will continue to run until the voltage at Pin 3 falls within the dead zone, which is centered about the reference voltage.

The Window Detector is composed of two comparators, \(A\) and \(B\), each containing hysteresis. The reference input, common to both comparators, is pre-biased at \(1 / 2 \mathrm{~V}_{\mathrm{C}}\) for simple two position servo systems and can easily be overriden by an external voltage divider. The feedback voltage present at Pin 3 is connected to the center of two resistors that are driven by an equal magnitude current source and sink. This generates an offset voltage at the input of each comparator which is
centered about Pin 3 that can float virtually from \(V_{C C}\) to ground. The sum of the upper and lower offset voltages is defined as the window detector input dead zone range.

To increase system flexibility, an on-chip Error Amp is provided. It can be used to buffer and/or gain-up the actuator position voltage which has the effect of narrowing the dead zone range. A PNP differential input stage is provided so that the input common-mode voltage range will include ground. The main design goal of the error amp output stage was to be able to drive the window detector input. It typically can source 1.8 mA and sink \(250 \mu \mathrm{~A}\). Special design considerations must be made if it is to be used for other applications.

The Power H -Switch provides a direct means for motor drive and braking with a maximum source, sink, and brake current of 1.0 A continuous. Maximum package power dissipation limits must be observed. Refer to Figure 15 for thermal information. For greater drive current requirements, a method for buffering that maintains all the system features is shown in Figure 29.

FIGURE 16 - REPRESENTATIVE BLOCK DIAGRAM AND TYPICAL SERVO APPLICATION

The Over-Current Monitor is designed to distinguish between motor start-up or locked rotor conditions that can occur when the actuator has reached its travel limit. A fraction of the Power H-Switch source current is internally fed into one of the two inverting inputs of the current comparator, while the non-inverting input is driven by a programmable current reference. This reference level is controlled by the resistance value selected for ROC, and must be greater than the required motor run-current with its mechanical load over temperature; refer to Figure 8. During an over-current condition, the comparator will turn off and allow the current source to charge the delay capacitor, \(\mathrm{C}_{\text {DLY }}\). When \(\mathrm{C}_{\text {DLY }}\) charges to a level of 7.5 V , the set input of the over-current latch will go high, disabling the drive and brake functions of the Power H-Switch. The programmable time delay is determined by the capacitance value-selected for \(\mathrm{C}_{\mathrm{DLY}}\) -
\(\mathrm{t}_{\mathrm{DLY}}=\frac{\mathrm{V}_{\text {ref }} \mathrm{C}_{\mathrm{DLY}}}{\operatorname{IDLY}(\text { source })}=\frac{7.5 \mathrm{C}_{\mathrm{DLY}}}{5.5 \mu \mathrm{~A}}=1.36 \mathrm{C}_{\mathrm{DLY}}\) in \(\mu \mathrm{F}\)

This system allows the Power H-Switch to supply motor start-up current for a predetermined amount of time. If the rotor is locked, the system will time-out and shutdown. This feature eliminates the need for servo end-of-travel or limit switches. Care must be taken so as not to select too large of a capacitance value for CDLY. An over-current condition for an excessively long time-out period can cause the integrated circuit to overheat and eventually fail. Again, the maximum package power dissipation limits must be observed. The over-current latch is reset upon power-up or by readjusting \(V_{\text {pin } 2}\) as to cause \(V_{\text {pin }} 3\) to enter or pass through the dead zone. This can be achieved by requesting the motor to reverse direction.

An Over-Voltage Monitor circuit provides protection for the integrated circuit and motor by disabling the Power H -Switch functions if \(\mathrm{V}_{\mathrm{CC}}\) should exceed 18 V . Resumption of normal operation will commence when \(\mathrm{V}_{\mathrm{CC}}\) falls below 17.4 V .

A timing diagram that depicts the operation of the Drive/Brake Logic section is shown in Figure 17. The waveforms grouped in [1] show a reference voltage that was preset, appearing on Pin 2, which corresponds to the desired actuator position. The true actuator position is represented by the voltage on \(\operatorname{Pin} 3\). The points \(\mathrm{V}_{1}\) through \(V_{4}\) represent the input voltage thresholds of comparators A and B that cause a change in their respective output state. They are defined as follows:
\(V_{1}=\) Comparator B turn-off threshold
\(V_{2}=\) Comparator A turn-on threshold
\(V_{3}=\) Comparator A turn-off threshold
\(\mathrm{V}_{4}=\) Comparator B turn-on threshold
\(V_{1}-V_{4}=\) Comparator \(B\) input hysteresis voltage
\(V_{2}-V_{3}=\) Comparator \(A\) input hysteresis voltage \(V_{2}-V_{4}=\) Window detector input dead zone range \(\left|\left(V_{2}-V_{\text {pin2 }}\right)-\left(V_{\text {pin2 }}-V_{4}\right)\right|=\) Window detector input offset voltage

It must be remembered that points \(\mathrm{V}_{1}\) through \(\mathrm{V}_{4}\) always try to follow and center about the reference voltage setting if it is within the input common-mode voltage range of Pin 3; Figures 4 and 5. Initially consider that the feedback input voltage level is somewhere on the dashed line between \(\mathrm{V}_{2}\) and \(\mathrm{V}_{4}\) in [1]. This is within the dead zone range as defined above and the motor will be off. Now if the reference voltage is raised so that \(\mathrm{V}_{\mathrm{pin} 3}\) is less than \(\mathrm{V}_{4}\), comparator \(B\) will turn-on [3] enabling \(\overline{\mathrm{Q}}\) Drive, causing Drive Output A to sink and B to source motor current [8]. The actuator will move in Direction B until \(\mathrm{V}_{\text {pin }} 3\) becomes greater than \(\mathrm{V}_{1}\). Comparator \(B\) will turn-off, activating the brake enable [4] and \(\overline{\mathrm{O}}\) Brake [6] causing Drive Output A to go high and \(B\) to go into a-high impedance state. The inertia of the mechanical system will drive the motor as a generator creating a positive voltage on Pin 10 with respect to Pin 14. The servo system can be stopped quickly, so as not to over-shoot through the dead zone range, by braking. This is accomplished by shorting the motor/generator terminals together. Brake current will flow into the diode at Drive Output B, through the internal \(\mathrm{V}_{\mathrm{CC}}\) rail, and out the emitter of the sourcing transistor at Drive Output A. The end of the solid line and beginning of the dashed for \(\mathrm{V}_{\text {pin }} 3\) [1] indicates the possible resting position of the actuator after braking.

If \(\mathrm{V}_{\text {pin }} 3\) should continue to rise and become greater than \(V_{2}\), the actuator will have over shot the dead zone range and cause the motor to run in Direction A until \(V_{\text {pin } 3}\) is equal to \(V_{3}\). The Drive/Brake behavior for Direction \(A\) is identical to that of \(B\). Overshooting the dead zone range in both directions can cause the servo system to continuously hunt or oscillate. Notice that the
last motor run-direction is stored in the direction latch. This information is needed to determine whether Q or \(\overline{\mathrm{Q}}\) Brake is to be enabled when \(\mathrm{V}_{\text {pin }} 3\) enters the dead zone range. The dashed lines in \([8,9]\) indicate the resulting waveforms of an over-current condition that has exceeded the programmed time delay. Notice that both Drive Outputs go into a high impedance state until \(V_{\text {pin } 2}\) is readjusted so that \(V_{\text {pin }} 3\) enters or crosses through the dead zone [7,4].
The inputs of the Error Amp and Window Detector can be susceptible to the noise created by the brushes of the dc motor and cause the servo to hunt. Therefore, each of these inputs are provided with an internal series resistor and are pinned out for an external bypass capacitor. It has been found that placing a capacitor with short leads directly across the brushes will significantly reduce noise problems. Good quality RF bypass capacitors in the range of 0.001 to \(0.1 \mu \mathrm{~F}\) may be required. Many of the more economical motors will generate significant levels of RF energy over a spectrum that extends from dc to beyond 200 MHz . The capacitance value and method of noise filtering must be determined on a system by system basis.
Thus far, the operating description has been limited to servo systems in which the motor mechanically drives a potentiometer for position sensing. Figures 18 , 19, 26, and 30 show examples that use light, magnetic flux, temperature, and pressure as a means to drive the feedback element. Figures 20,21 and 22 are examples of two position, open-loop servo systems. In these systems, the motor runs the actuator to each end of its travel limit where the Over-Current Monitor detects a locked rotor condition and shuts down the drive. Figures 31 and 32 show two possible methods of using the MC33030 as a switching motor controller. In each example a fixed reference voltage is applied to Pin 2. This causes \(\mathrm{V}_{\text {pin }} 3\) to be less than \(\mathrm{V}_{4}\) and Drive Output \(A\), Pin 14, to be in a low state saturating the TIP42 transistor. In Figure 31, the motor drives a tachometer that generates an ac voltage proportional to RPM. This voltage is rectified, filtered, divided down by the speed set potentiometer, and applied to Pin 8. The motor will accelerate until \(V_{\text {pin }} 3\) is equal to \(V_{1}\) at which time \(\operatorname{Pin} 14\) will go to a high state and terminate the motor drive. The motor will now coast until \(V_{\text {pin }} 3\) is less than \(V_{4}\) where upon drive is then reapplied. The system operation of Figure 32 identical to that of 31 except the signal at Pin 3 is an amplified average of the motors drive and back EMF voltages. Both systems exhibit excellent control of RPM with variations of \(\mathrm{V}_{\mathrm{CC}}\); however, Figure 31 has somewhat better torque characteristics at low RPM.

FIGURE 18 - SOLAR TRACKING SERVO SYSTEM

FIGURE 20 - INFRARED LATCHED TWO POSITION SERVO SYSTEM

Over-current monitor (not shown) shuts down servo when end stop is reached.

FIGURE 22 - 0.25 Hz SQUARE-WAVE SERVO AGITATOR

FIGURE 19 - MAGNETIC SENSING SERVO SYSTEM

Typical sensitivity with gain set at 3.9 k is \(1.5 \mathrm{mV} /\) gauss. Servo motor controls magnetic field about sensor.

FIGURE 21 - DIGITAL TWO POSITION SERVO SYSTEM

Over-Current monitor (not shown) shuts down servo when end stop is reached.

FIGURE 23 - SECOND ORDER LOW-PASS ACTIVE FILTER

FIGURE 24 - NOTCH FILTER

\(f_{\text {notch }}=\frac{1}{2 \pi R C}\)
For \(60 \mathrm{~Hz} \mathrm{R}=53.6 \mathrm{k}, \mathrm{C}=0.05\)

FIGURE 25 - DIFFERENTIAL INPUT AMPLIFIER

FIGURE 26 - TEMPERATURE SENSING SERVO SYSTEM

In this application the servo motor drives the heat/air conditioner modulator door in a duct system.

FIGURE 28 - REMOTE LATCHED SHUTDOWN

A direction change signal is required at Pins 2 or 3 to reset the over-current latch.

FIGURE 27 - BRIDGE AMPLIFIER

FIGURE 29 - POWER H-SWITCH BUFFER

This circuit maintains the brake and over-current features of the MC33030. Set ROC to 15 k for \(\operatorname{lDRV}(\max) \approx 0.5 \mathrm{~A}\).

FIGURE 30 - ADJUSTABLE PRESSURE DIFFERENTIAL REGULATOR

FIGURE 31 - SWITCHING MOTOR CONTROLLER WITH BUFFERED OUTPUT
AND TACH FEEDBACK

FIGURE 32 - SWITCHING MOTOR CONTROLLER WITH BUFFERED OUTPUT AND BACK EMF SENSING

\section*{Advance Information}

\section*{BRUSHLESS DC MOTOR CONTROLLER}

The MC33034 Series is a high performance monolithic brushless motor controller containing all of the active functions required to implement a full featured open-loop three or four phase motor control system. These devices consist of a rotor position decoder for proper commutation sequencing, temperature compensated reference capable of supplying sensor power, frequency programmable sawtooth oscillator, fully accessible error amplifier, pulse width modulator comparator, three open collector top drivers, and three high current totem pole bottom drivers ideally suited for driving power MOSFETs.
Also included are protective features consisting of undervoltage lockout, cycle-by-cycle current limiting with a selectable time delayed latched shutdown mode, internal thermal shutdown, and a unique fault output that can be interfaced into microprocessor controlled systems.
Typical motor control functions include open-loop speed, forward or reverse direction, run enable, and dynamic braking.
The MC33034P60 and MC33034P120 are designed to operate with an electrical sensor phasing of \(60^{\circ} / 300^{\circ}\) and \(120^{\circ} / 240^{\circ}\) respectively.
- 10 V to 40 V Operation
- Undervoltage Lockout
- 6.25 V Reference Capable of Supplying Sensor Power
- Fully Accessible Error Amplifier for Servo Applications
- High Current Totem Pole Bottom Drivers
- Cycle-By-Cycle Current Limiting
- Internal Thermal Shutdown

\footnotetext{
This document contains information on a new product. Specifications and information herein are subject to change without notice.
}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 40 & V \\
\hline Digita! Inputs (Pins 3, 4, 5, 6, 7, 23) & - & \(V_{\text {ref }}\) & V \\
\hline Oscillator Input Current (Source or Sink) & IOSC & 30 & mA \\
\hline Error Amp Input Voltage Range (Pins 11, 12, Note 1) & \(V_{\text {IR }}\) & -0.3 to 40 & V \\
\hline Error Amp Output Current, Source or Sink (Note 2) & IOut & 10 & mA \\
\hline Current Sense Ir.put Voltage & \(V_{\text {Sense }}\) & 5.0 & V \\
\hline \(\overline{\text { Fault Output Voltage }}\) & \(\mathrm{V}_{\text {CE }}(\overline{\text { Fault }}\)) & 20 & V \\
\hline Fault Output Sink Current & ISink(\(\overline{\text { Fault }}\)) & 20 & mA \\
\hline Top Drive Voltage (Pins 1, 2, 24) & \(\mathrm{V}_{\text {CE }}(\) top \()\) & 45 & V \\
\hline Top Drive Sink Current (Pins 1, 2, 24) & ISink(top) & 50 & mA \\
\hline Bottom Drive Supply Voltage (Pin 18) & \(\mathrm{V}_{\mathrm{C}}\) & 40 & V \\
\hline Bottom Drive Output Current, Source or Sink (Pins 19, 20, 21) & IDRV & 100 & mA \\
\hline Power Dissipation and Thermal Characteristics Maximum Power Dissipation "f \(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\) Thermal Resistance Junction to Air & \begin{tabular}{l}
\(P_{D}\) \\
\(R_{\text {BJA }}\)
\end{tabular} & \[
\begin{gathered}
867 \\
75
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & TJ & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\text {A }}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}\right.\) and \(V_{C}=20 \mathrm{~V}, R_{T}=4.7 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=10 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Reference Output Voltage }\left(I_{\text {Ref }}=1.0 \mathrm{~mA}\right) \\
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\] & \(V_{\text {ref }}\) & \[
\begin{gathered}
5.9 \\
5.82
\end{gathered}
\] & \[
\begin{gathered}
6.25 \\
-
\end{gathered}
\] & \[
\begin{gathered}
6.5 \\
6.57
\end{gathered}
\] & V \\
\hline Line Regulation (\(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\) to 40 V , \(\left.\mathrm{I}_{\text {ref }}=1.0 \mathrm{~mA}\right)\) & Regline & - & 12 & 30 & mV \\
\hline Load Regulation (\(1_{\text {ref }}=1.0 \mathrm{~mA}\) to 20 mA) & Regload & - & 5.0 & 30 & mV \\
\hline Output Short-Circuit Current (Note 3) & ISC & 40 & 60 & - & mA \\
\hline Reference Under Voltage Lockout Threshold & \(\mathrm{V}_{\text {th }}\) & 4.0 & 4.5 & 5.0 & V \\
\hline
\end{tabular} ERROR AMPLIFIER
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Offset Voltage (\(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)) & \(\mathrm{V}_{10}\) & - & 2.0 & 10 & mV \\
\hline Input Offset Current (\(T_{A}=-40\) to \(+85^{\circ} \mathrm{C}\)) & 1 O & - & 10 & 500 & nA \\
\hline Input Bias Current (\(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)) & IIB & - & -25 & - 1000 & nA \\
\hline Input Common-Mode Voltage Range & \(V_{\text {ICR }}\) & \multicolumn{3}{|c|}{\(\left(0 \mathrm{~V}\right.\) to \(\left.\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\right)\)} & V \\
\hline Open-Loop Voltage Gain (\(\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\)) & AVOL & 75 & 95 & - & dB \\
\hline Input Common-Mode Rejection Ratio & CMRR & 55 & 80 & - & dB \\
\hline Power Supply Rejection Ratio (\(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}\) to 40 V) & PSRR & 65 & 95 & - & dB \\
\hline \begin{tabular}{l}
Output Voltage Swing \\
High State (\(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to Gnd) \\
Low State (\(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to \(\mathrm{V}_{\text {ref }}\))
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & 4.6 & \[
\begin{aligned}
& 5.4 \\
& 0.7
\end{aligned}
\] & \[
\overline{1.0}
\] & V \\
\hline
\end{tabular}

\section*{Notes:}
1. The input common mode voltage or input signal voltage should not be allowed to go negative by more than 0.3 V . The upper functional limit of the common mode voltage range is typically \(\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\), but either or both inputs can go to 40 V , independent of \(\mathrm{V}_{\mathrm{CC}}\) without device destruction.
2. The compliance voltage must not exceed the range of \(-0.3 \vee\) to \(V_{\text {ref }}\).
3. Maximum package power dissipation limits must be observed.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}\right.\) and \(\mathrm{V}_{\mathrm{C}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=4.7 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=10 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{OSCILLATOR SECTION} \\
\hline Oscillator Frequency & fosc & 21 & 23.5 & 26 & kHz \\
\hline Frequency Change with Voltage (\(\mathrm{VCC}_{\text {c }}=10 \mathrm{~V}\) to 40 V) & -fosc/دV & - & 0.1 & 5.0 & \% \\
\hline Sawtooth Peak Voltage & \(\mathrm{V}_{\text {OSC }}(\mathrm{P})\) & - & 4.0 & 4.2 & V \\
\hline Sawtooth Valley Voltage & \(\mathrm{V}_{\text {OSC }}(\mathrm{V})\) & 1.2 & 1.5 & - & V \\
\hline
\end{tabular}

LOGIC INPUTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Input Threshold Voltage (Pins 3, 4, 5, 6, 7, 23) \\
High State \\
Low State
\end{tabular} & \[
\begin{aligned}
& V_{\text {IH }} \\
& V_{I L}
\end{aligned}
\] & \[
2.0
\] & \[
\begin{aligned}
& 1.4 \\
& 1.4
\end{aligned}
\] & \[
\overline{0.8}
\] & V \\
\hline Sensor Inputs (Pins 4, 5, 6) High State Input Current (\(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}\)) Low State Input Current (\(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\)) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{H}} \\
& \mathrm{I}_{\mathrm{IL}}
\end{aligned}
\] & \[
\begin{array}{r}
-250 \\
-900 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -150 \\
& -600
\end{aligned}
\] & \[
\begin{gathered}
-40 \\
-300
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Forward/Reverse and Brake Inputs (Pins 3, 23) High State Input Current (\(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}\)) Low State Input Current (\(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\)) & \[
\begin{aligned}
& \mathrm{IIH}_{1} \\
& \mathrm{IIL}^{2}
\end{aligned}
\] & \[
\begin{array}{r}
-150 \\
-600 \\
\hline
\end{array}
\] & \[
\begin{gathered}
-88 \\
-325
\end{gathered}
\] & \[
\begin{gathered}
-25 \\
-150 \\
\hline
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Enable \\
High State Input Current \(\left(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}\right)\) \\
Low State Input Current (\(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\))
\end{tabular} & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{H}} \\
& \mathrm{IIL}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& -70 \\
& -80
\end{aligned}
\] & \[
\begin{aligned}
& -40 \\
& -40
\end{aligned}
\] & \[
\begin{aligned}
& -10 \\
& -20
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

CURRENT-LIMIT COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline Threshold Voltage & \(\mathrm{V}_{\text {th }}\) & 75 & 100 & 125 & mV \\
\hline Input Bias Current \(\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right.\) to 5.0 V\()\) & \(\mathrm{I}_{\mathrm{IB}}\) & - & -1.0 & -2.0 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

OUTPUTS AND POWER SECTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Top Drive Output Sink Saturation (\(1_{\text {sink }}=25 \mathrm{~mA}\)) & \(V_{\text {CE (sat) }}\) & - & 0.95 & 1.5 & V \\
\hline Top Drive Output Off-State Leakage (\(\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}\)) & IDRV(leak) & - & 2.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Top Drive Output Switching Time \(\left(C_{L}=47 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}\right)\) Rise Time Fall Time & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \\
& \mathrm{t}_{\mathrm{f}}
\end{aligned}
\] & - & \[
\begin{gathered}
100 \\
35
\end{gathered}
\] & \[
\begin{aligned}
& 300 \\
& 300 \\
& \hline
\end{aligned}
\] & ns \\
\hline Bottom Drive Output Voltage High State \(\left(I_{\text {source }}=50 \mathrm{~mA}\right)\) Low State (\(\mathrm{I}_{\text {sink }}=50 \mathrm{~mA}\)) & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & \[
\left(V_{C}-3.0\right)
\] & \[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{C}}-2.4\right) \\
1.5 \\
\hline
\end{gathered}
\] & 2.0 & V \\
\hline Bottom Drive Output Switching Time (\(\left.C_{L}=1000 \mathrm{pF}\right)\) Rise Time Fall Time & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \\
& \mathrm{t}_{\mathrm{f}} \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 75 \\
& 65
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & ns \\
\hline \(\overline{\text { Fault }}\) Output Sink Saturation (\(\mathrm{s}_{\text {sink }}=16 \mathrm{~mA}\)) & \(\mathrm{V}_{\text {CE(sat) }}\) & - & 225 & 500 & mV \\
\hline \(\overline{\text { Fault Output Off-State Leakage (} \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V} \text {) } \text {) }{ }^{\text {a }} \text { (}}\) & IFLT(leak) & - & 1.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Under Voltage Lockout Drive Outputs Enabled (\(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{C}}\) Increasing) Hysteresis & \[
V_{\text {th }} \text { (on) }
\]
\[
V_{H}
\] & \[
\begin{aligned}
& 8.2 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 9.1 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 0.3
\end{aligned}
\] & \(\checkmark\) \\
\hline \begin{tabular}{l}
Power Supply Current \\
\(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{C}}=20 \mathrm{~V}\) \\
\(V_{C C}\) Current (Pin 17) \\
\(\mathrm{V}_{\mathrm{C}}\) Current (Pin 18)
\end{tabular} & \[
\begin{aligned}
& \text { ICC } \\
& \text { IC }
\end{aligned}
\] & - & \[
\begin{aligned}
& 16 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 22 \\
& 7.0
\end{aligned}
\] & mA \\
\hline
\end{tabular}

FIGURE 1 - OSCILLATOR FREQUENCY versus TIMING RESISTOR

FIGURE 3 - ERROR AMP OPEN-LOOP GAIN AND PHASE versus FREQUENCY

FIGURE 5 - ERROR AMP SMALL-SIGNAL
TRANSIENT RESPONSE

FIGURE 2 - OSCILLATOR FREQUENCY CHANGE versus TEMPERATURE

FIGURE 4 - ERROR AMP OUTPUT SATURATION versus LOAD CURRENT

FIGURE 6 - ERROR AMP LARGE-SIGNAL TRANSIENT RESPONSE

FIGURE 7 - REFERENCE OUTPUT VOLTAGE CHANGE versus SOURCE CURRENT

FIGURE 9 - REFERENCE OUTPUT VOLTAGE versus TEMPERATURE

FIGURE 11 - BOTTOM DRIVE RESPONSE TIME versus CURRENT SENSE INPUT VOLTAGE

FIGURE 8 - REFERENCE OUTPUT VOLTAGE versus SUPPLY VOLTAGE

FIGURE 10 - OUTPUT DUTY CYCLE versus PWM INPUT VOLTAGE

FIGURE 12 - FAULT OUTPUT SATURATION versus SINK CURRENT

FIGURE 13 - TOP DRIVE OUTPUT SATURATION versus SINK CURRENT

FIGURE 15 - BOTTOM DRIVE OUTPUT WAVEFORM

\(100 \mathrm{~ns} / \mathrm{DiV}\)

FIGURE 17 - BOTTOM DRIVE OUTPUT SATURATION versus LOAD CURRENT

FIGURE 14 - TOP DRIVE OUTPUT WAVEFORM

\(100 \mathrm{~ns} / \mathrm{DIV}\)

FIGURE 16 - BOTTOM DRIVE OUTPUT WAVEFORM

100 ns/DIV

FIGURE 18 - POWER AND BOTTOM DRIVE SUPPLY CURRENT versus SUPPLY VOLTAGE

PIN FUNCTION DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline Pin No. & Function & Description \\
\hline 1, 2, 24 & \(\mathrm{B}_{\mathrm{T}}, \mathrm{A}_{\mathrm{T}}, \mathrm{C}_{T}\) & These three open collector Top Drive Outputs are designed to drive the external upper power switch transistors. \\
\hline 3 & FWD/REV & The Forward/Reverse input is used to change the direction of motor rotation. \\
\hline 4, 5,6 & \(S_{A}, S_{B}, S_{C}\) & These three Sensor Inputs control the commutation sequence. \\
\hline 7 & Output Enable & A logic high at this input causes the motor to run, while a low causes it to coast. \\
\hline 8 & Reference Output & This output provides charging current for the oscillator timing capacitor \(\mathrm{C}_{\mathrm{T}}\) and a reference for the error amplifier. It can also furnish sensor power. \\
\hline 9 & Current Sense Input & A 100 mV signal at this input terminates output switch conduction during a given oscillator cycle. \\
\hline 10 & Oscillator & The Oscillator frequency is programmed by the values selected for timing components \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\). \\
\hline 11 & Error Amp Non-Inverting Input & This input is normally connected to the speed set potentiometer. \\
\hline 12 & Error Amp Inverting Input & This input is normally connected to the Error Amp Output in open-loop applications. \\
\hline 13 & Error Amp Output/PWM Input & This pin is available for compensation in closed-loop applications. \\
\hline 14 & Fault Output & This open collector output is active low during one or more of the following conditions: Invalid Sensor Input code, Enable Input at logic 0, Current Sense Input > 100 mV , Undervoltage Lockout activation, and Thermal Shutdown. \\
\hline 15 & Ground & This pin is the control circuitry ground return and is connected back to the source ground. \\
\hline 16 & Drive Ground & This pin is a separate power ground return that is connected back to the power source. It reduces the effects of switching transient noise on the control circuitry. \\
\hline 17 & \(\mathrm{V}_{\text {CC }}\) & This pin is the positive supply of the control IC. The controller is functional over a minimum \(V_{C C}\) range of 10 V to 40 V . \\
\hline 18 & \(\mathrm{V}_{\mathrm{C}}\) & The high state \(\left(\mathrm{V}_{\mathrm{OH}}\right)\) of the Bottom Drive Outputs are set by the voltage applied to this pin. The controller is operational over a minimum \(\mathrm{V}_{\mathrm{C}}\) range of 10 V to 40 V . \\
\hline 19, 20, 21 & \(\mathrm{C}_{B}, \mathrm{~B}_{B}, A_{B}\) & These three totem pole Bottom Drive Outputs are designed for direct drive of the external bottom power switch transistors. \\
\hline 22 & N.C. & No connection. This pin is not internally connected. \\
\hline 23 & Brake Input & A logic low at this input causes the motor to run, while a high causes rapid deceleration. \\
\hline
\end{tabular}

\section*{INTRODUCTION}

The Motorola MC33034 is a high performance monolithic brushless motor controller containing all of the active functions required to implement a full featured, open-loop, three or four phase motor control system. These integrated circuits are constructed with Bipolar Anaiog technology which offers a high degree of performance and ruggedness in hostile industrial environments. The MC33034 consists of a rotor position decoder for proper commutation sequencing, temperature compensated reference capable of supplying sensor power, frequency programmable sawtooth oscillator, fully accessible error amplifier, pulse width modulator comparator, three open collector top drivers, and three high current totem pole bottom drivers ideally suited for driving power MOSFETs.

Also included are protective features consisting of undervoltage lockout, cycle by cycle current limiting with a selectable time delayed latched shutdown mode, internal thermal shutdown, and a unique fault output that can be interfaced into microprocessor controlled systems.

Typical motor control functions include open-loop speed control, forward or reverse direction, run enable, and dynamic braking.

\section*{FUNCTIONAL DESCRIPTION}

A representative internal block diagram and a typical system application are shown in Figures 19 and 36. A discussion of the features and function of each of the internal blocks is given below.

\section*{Rotor Position Decoder}

An internal rotor position decoder monitors the three sensor inputs (Pins \(4,5,6\)) to provide the proper sequencing of the top and bottom drive outputs. The sensor inputs are designed to interface directly with open collector type Hall effect switches or opto slotted couplers. Internal pull-up resistors are included to minimize the required number of external components. The inputs are TTL compatible, with the thresholds typically at 1.4 volts. The MC33034 Series consists of two device types, each is designed to control three phase motors and operate with two of the four most common conventions of sensor phasing. The MC33034P60 is intended to operate with an electrical sensor phasing of \(60^{\circ}\) or \(300^{\circ}\) and the MC33034P120 with \(120^{\circ}\) or \(240^{\circ}\). With three sensor inputs there are eight possible input code combinations, six of these are valid rotor positions. The remaining two codes are invalid and are usually caused by an open or shorted sensor line. When an invalid input condition exists, the fault output is activated and the drive outputs are disabled. With six valid input codes, the decoder can resolve the rotor position to within a window of 60 electrical degrees.

The forward/reverse input (Pin 3) is used to change the direction of motor rotation by reversing the voltage across the stator winding. When this input changes state, from high to low with a given sensor input code
(for example 100), the enabled top and bottom drive outputs with the same alpha designation are exchanged (\(A_{T}\) to \(A_{B}, C_{B}\) to \(C_{T}\)). In effect the commutation sequence is reversed.

Motor on/off control is accomplished by the output enable (Pin 7). When left disconnected, an internal \(40 \mu \mathrm{~A}\) current source enables sequencing of the top and bottom drive outputs. When grounded, the top drive outputs turn off and the bottom drives are forced low, causing the motor to coast and activating the fault output.

Dynamic motor braking allows an additional margin of safety to be designed into the final product. Braking is accomplished by placing the brake input (Pin 23) in a high state. This causes the top drive outputs to turn off and the bottom drives to turn on, shorting the motorgenerated back EMF. The brake input has unconditional priority over all other inputs. The internal \(20 \mathrm{k} \Omega\) pull-up resistor simplifies interfacing with the system safetyswitch by ensuring brake activation if opened or disconnected. The commutation truth table is shown in Figure 20. A four input AND gate is used to monitor the brake input and the three top drive outputs. Its purpose is to disable braking until the top drive outputs attain a high state. This helps to avoid simultaneous conduction of the top and bottom power switches. In half wave motor drive applications, the top drive outputs are not required and are typically left disconnected. Under these conditions braking will be disabled by the AND gate. If required, it can be enabled by connecting a single pull-up resistor from \(V_{C C}\) to the three open collector outputs. Figure 38 shows a pull-up method utilizing the enable input current source.

\section*{Error Amplifier}

A high performance, fully compensated error amplifier with access to both inputs and output (Pins 11, 12, 13) is provided to facilitate the implementation of closed-loop motor speed control. The amplifier features a typical DC voltage gain of \(95 \mathrm{~dB}, 800 \mathrm{kHz}\) gain bandwidth, and a wide input common mode voltage range that extends from ground to \(\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}\). In most open-loop speed control applications, the amplifier is configured as a unity gain voltage follower with the noninverting input connected to the speed set voltage source. Additional configurations are shown in Figures 31 through 35.

\section*{Oscillator}

The frequency of the internal ramp oscillator is programmed by the values selected for timing components \(R_{T}\) and \(C_{T}\). Capacitor \(C_{T}\) is charged from the reference output (Pin 8) through resistor \(R_{T}\) and discharged by an internal transistor. The ramp peak and valley voltages are typically 4.0 V and 1.5 V respectively. To provide a good compromise between audible noise and output switching efficiency, an oscillator frequency in the range of 20 kHz to 30 kHz is recommended. Refer to Figure 1 for component selection.

FIGURE 19 - REPRESENTATIVE BLOCK DIAGRAM

FIGURE 20 - THREE PHASE, SIX STEP COMMUTATION TRUTH TABLE

Notes:
1. The digital inputs (Pins 3, 4,5,6,7,23) are all TTL compatible. The current sense input (Pin 9) has a 100 mV threshold. A logic 0 for this input is defined as \(<80 \mathrm{mV}\), and a logic 1 is \(>120 \mathrm{mV}\).
2. The fault and top drive outputs are open collectors and are active in the low (0) state.
3. \(\mathrm{V}=\) any one of the six valid sensor combinations.
\(\mathrm{X}=\) Don't care.

\section*{Pulse Width Modulator}

The use of pulse width modulation provides an energy efficient method of controlling the motor speed by varying the average voltage applied to each stator winding during the commutation sequence. As \(\mathrm{C}_{\boldsymbol{\top}}\) discharges, the oscillator sets both latches, allowing conduction of the top and bottom drive outputs. The PWM comparator resets the upper latch, terminating bottom drive output conduction when the positive-going ramp on \(\mathrm{C}_{\boldsymbol{T}}\) becomes greater than the error amplifier output. The pulse width modulator timing diagram is shown in Figure 21. Pulse width modulation for speed control appears only at the bottom drive outputs.

\section*{Current Limit}

Continuous operation of a motor that is severely overloaded results in overheating and eventual failure. This destructive condition can best be prevented with the use of cycle-by-cycle current limiting. That is, each on-cycle is treated as a separate problem. This is implemented by monitoring the stator current buildup each time the output switch conducts, and upon sensing an over current condition, immediately turns off the switch and holds it off for the duration of the oscillator ramp-up period. The stator current is converted to a voltage by inserting a ground-referenced sense resistor RS (Figure 36) in series with the three bottom switch transistors (Q4, Q5, Q6). This voltage is monitored by the current sense input (Pin 9), and compared to an internal 100 mV reference. If exceeded, the comparator resets the lower latch and terminates output switch conduction. The value for the sense resistor is:
\[
\mathrm{R}_{\mathrm{S}}=\frac{0.1}{I_{\text {stator }(\max)}}
\]

The \(\overline{\text { fault }}\) output is activated during the over current
condition. The dual-latch PWM configuration ensures that only a single output conduction pulse will occur during any given oscillator cycle, whether terminated by the output of the error amp or current limit comparator.

\section*{Reference}

The on chip 6.25 V regulator (Pin 8) provides charging current for the oscillator timing capacitor, a reference for the error amplifier, and has a current capability of 40 mA for direct power of the sensors in low voltage applications. In higher voltage applications it may become necessary to transfer the power dissipated by the regulator off the I.C. This is easily accomplished with the addition of an external pass transistor as shown in Figure 22. A 6.25 V reference level was chosen to allow implementation of the simpler NPN circuit, where \(V_{\text {ref }}\) - \(V_{B E}\) exceeds the minimum voltage required by Hall effect sensors over temperature. With proper transistor selection, and adequate heatsinking, up to 1.0 amp of load current can be obtained.

\section*{FIGURE 22 - REFERENCE OUTPUT BUFFERS}

The NPN circuit is recommended for powering Hall or opto sensors, where the output voltage temperature coefficient is not critical. The PNP circuit is slightly more complex, but is also more accurate over temperature. Neither circuit has current limiting.

FIGURE 21 - PULSE WIDTH MODULATOR TIMING DIAGRAM

\section*{Undervoltage Lockout}

A triple Undervoltage Lockout has been incorporated to prevent damage to the control IC and the external power switch transistors. Under low power supply conditions, it guarantees that the IC and sensors are fully functional, and that there is sufficient bottom drive output voltage. The positive power supplies to the IC (V \(\left.\mathrm{V}_{\mathrm{CC}}\right)\) and the bottom drives \(\left(\mathrm{V}_{\mathrm{C}}\right)\) are each monitored by separate comparators that have their thresholds at 8.9 V . This level ensures sufficient gate drive for low rDS(on) when interfacing with standard power MOSFETs. When directly powering the Hall sensors from the reference, improper sensor operation can result if the output voltage should fall below 4.5 V . A third comparator is used to detect this condition. If one or more of the comparators detects an undervoltage condition, the fault output is activated, the top drives are turned off and the bottom drive outputs are held in a low state. Each of the comparators contain hysteresis to prevent oscillations when crossing their respective thresholds.

\section*{Fault Output}

The open collector \(\overline{\text { fault }}\) output (Pin 14) was designed to provide diagnostic information in the event of a system malfunction. It has a sink current capability of 16 mA and can directly drive a light emitting diode for visual indication. Additionally, it is easily interfaced with TTL/CMOS logic for use in a microprocessor controlled system. The fault output is active low when one or more of the following conditions occur:
1) Invalid Sensor Input code.
2) Enable Input at Logic " 0 ."
3) Current Sense Input \(>100 \mathrm{mV}\).
4) Undervoltage Lockout, activation of one or more of the comparators.
5) Thermal Shutdown, maximum junction temperature has been exceeded.
This unique output can also be used to distinguish between motor start-up or sustained operation in an overloaded condition. With the addition of an R/C network between the fault output and the enable input, it is possible to create a time-delayed latched shutdown for overcurrent. The added circuitry shown in Figure 23, makes easy starting of motor systems which have high inertial loads by providing additional starting torque, while still preserving overcurrent protection. This task is accomplished by setting the current limit to a higher than nominal value for a predetermined time. During an excessively long overcurrent condition, capacitor \(C_{\text {DLY }}\) will charge causing the enable input to cross its threshold to a low state. A latch will now be formed by a positive feedback loop from the \(\overline{\text { fault }}\) output to the enable input. Once set by the current sense input, it can only be reset by shorting CDLY or cycling the power supply.

\section*{Drive Outputs}

The three top drive outputs (Pins 1,2,24) are open collector NPN transistors capable of sinking 50 milliamps with a minimum breakdown of 45 volts. Interfacing into higher voltage applications is easily accomplished with the circuits shown in Figures 24 and 25.

The three totem pole bottom drive outputs (Pins 19, 20,21) are particularly suited for direct drive of ' N 'channel MOSFETs or NPN bipolar transistors (Figures 26, 27 and 28). Each output is capable of sourcing and sinking up to 100 mA . Power for the bottom drives is supplied from \(V_{C}\) (Pin 18). This separate supply input allows the designer added flexibility in tailoring the drive voltage, independent of \(V_{C C}\). A zener clamp is typically connected to this input when driving power MOSFETs in systems where \(\mathrm{V}_{\mathrm{CC}}\) is greater than 20 V .
A separate drive ground (Pin 16) is included to reduce the effects of switching transient noise imposed on the current sense input. This feature becomes particularly useful when driving current sensing power MOSFETs (Figure 29).

\section*{Thermal Shutdown}

Internal thermal shutdown circuitry is provided to protect the \(I C\) in the event that the maximum junction temperature is exceeded. When activated, typically at \(170^{\circ} \mathrm{C}\), the I.C. acts as though the enable input was grounded.

FIGURE 23 - TIMED DELAYED LATCHED OVER-CURRENT SHUTDOWN

\[
\begin{aligned}
\mathrm{t}_{\mathrm{DLY}} & \approx R_{\mathrm{DLY}} C_{D L Y} \ln \left(\frac{V_{\text {ref }}-\left(I_{I L} \text { enable } R_{D L Y}\right)}{V_{\text {th enable }}-\left(I_{L L} \text { enable } R_{D L Y}\right)}\right) \\
& \approx R_{D L Y} C_{D L Y} \ln \left(\frac{6.25-\left(40 \times 10^{-6} R_{D L Y}\right)}{1.4-\left(40 \times 10^{-6} R_{D L Y}\right)}\right)
\end{aligned}
\]

FIGURE 24 - HIGH VOLTAGE INTERFACE WITH

Transistor Q 1 is a common base stage used to level shift from \(\mathrm{V}_{\mathrm{CC}}\) to the high motor voltage \(\mathrm{V}_{\mathrm{M}}\). The collector diode is required if \(\mathrm{V}_{\mathrm{CC}}\) is present while \(V_{M}\) is low.

FIGURE 26 - CURRENT WAVEFORM SPIKE SUPPRESSION

The addition of the RC filter will eliminate current-limit instability caused by the leading edge spike on the current waveform. Resistor RS should be a low inductance type.

FIGURE 28 - BIPOLAR TRANSISTOR DRIVE

The totem-pole output can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor C .

FIGURE 25 - HIGH VOLTAGE INTERFACE WITH ' N ' CHANNEL POWER MOSFETs

Series gate resistor \(R_{g}\) will damp any high frequency oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit. Diode \(D\) is required if the negative current into the Bottom Drive Outputs exceeds 5.0 mA peak.

FIGURE 29 - CURRENT SENSING POWER MOSFETs

Virtually lossless current sensing can be achieved with the implementation of SENSEFET power switches.

FIGURE 30 - HIGH VOLTAGE BOOST SUPPLY

FIGURE 32 - CONTROLLED ACCELERATION/DECELERATION

Resistors R1 with capacitor C sets the acceleration time constant while R2 controls the deceleration. The values of R1 and R2 should be at least ten times greater than that of the speed set potentiometer to minimize time constant variations with different speed settings.

FIGURE 34 - CLOSED-LOOP SPEED CONTROL

The rotor position sensors can be used as a tachometer. By differentiating the positive-going edges and then integrating them over time, a voltage proportional to speed can be generated. The error amp compares this voltage to that of the speed set to control the PWM.

FIGURE 31 - DIFFERENTIAL INPUT SPEED CONTROLLER

FIGURE 33 - DIGITAL SPEED CONTROLLER

The SN74LS175 is an open collector BCD to One of Ten decoder. When connected as shown, input codes 0000 through 1001 steps the PWM in increments of approximately \(10 \%\) from 0 to \(90 \%\) on-time. Input codes 1010 through 1111 will produce \(100 \%\) on-time or full motor speed.

FIGURE 35 - CLOSED-LOOP TEMPERATURE CONTROL

This circuit can control the speed of a cooling fan proportional to the difference between the sensor and set temperatures. The control loop is closed as the forced air cools the NTC thermistor. For controlled heating applications, exchange the positions of R1 and R2.

\section*{SYSTEM APPLICATIONS}

\section*{Three Phase Motor Commutation}

The three phase application shown in Figure 36 is a full-featured open-loop motor controller with full wave, six step drive. The upper power switch transistors are Darlingtons while the lower devices are power MOSFETs. Each of these devices contains an internal parasitic catch diode that is used to return the stator inductive energy back to the power supply. The outputs are capable of driving a delta or wye connected stator, and a grounded neutral wye if split supplies are used. At any given rotor position, only one top and one bottom power switch (of different totem poles) is enabled. This configuration switches both ends of the stator winding from supply to ground which causes the current flow to be bidirectional or full wave. A leading edge spike is usually present on the current waveform and can cause a current-limit instability. The spike can be eliminated by adding an RC filter in series with the current sense input. Using a low inductance type resistor for \(R_{S}\) will
also aid in spike reduction. Care must be taken in the selection of the bottom power switch transistors so that the current during braking does not exceed the device rating. During braking, the peak current generated is limited only by the series resistance of the conducting bottom switch and winding.
\[
I_{\text {peak }}=\frac{V_{M}+E M F}{R_{\text {Switch }}+R_{\text {winding }}}
\]

If the motor is running at maximum speed with no load, the generated back EMF can be as high as the supply voltage, and at the onset of braking the peak current may approach twice the motor stall current. Figure 37 shows the commutation waveforms over two electrical cycles. The first cycle (\(0^{\circ}\) to \(360^{\circ}\)) depicts motor operation at full speed while the second cycle \(\left(360^{\circ}\right.\) to \(\left.720^{\circ}\right)\) shows a reduced speed with about 50 percent pulse width modulation. The current waveforms reflect a constant torque load and are shown synchronous to the commutation frequency for clarity.

FIGURE 36 - THREE PHASE, SIX STEP, FULL WAVE MOTOR CONTROLLER

FIGURE 37 - THREE PHASE, SIX STEP, FULL WAVE COMMUTATION WAVEFORMS

FIGURE 38 - THREE PHASE, THREE STEP, HALF WAVE MOTOR CONTROLLER

Figure 38 shows a three phase, three step, half wave motor controller. This configuration is ideally suited for automotive and other low voltage applications since there is only one power switch voltage drop in series with a given stator winding. Current flow is unidirectional or half wave because only one end of each winding is switched. Continuous braking with the typical half wave arrangement presents a motor overheating problem since stator current is limited only by the winding resistance. This is due to the lack of upper power switch transistors, as in the full wave circuit, used to disconnect the windings from the supply voltage \(\mathrm{V}_{\mathrm{M}}\). A unique
solution is to provide braking until the motor stops and then turn off the bottom drives. This can be accomplished by using the fault output in conjunction with the enable input as an over current timer. Components \(R_{D L Y}\) and \(C_{D L Y}\) are selected to give the motor sufficient time to stop before latching the enable input and the top drive AND gate low. To enabling the motor, the PNP transistor along with resistors R1 and R3 are used to reset the latch by discharging \(C_{D L Y}\) upon brake switch closure. The stator flyback voltage is clamped by a single zener and three diodes.

\section*{Sensor Phasing Comparison}

There are four conventions used to establish the relative phasing of the sensor signals in three phase motors. With six step drive, an input signal change must occur every 60 electrical degrees, however, the relative signal phasing is dependent upon the mechanical sensor placement. A comparison of the conventions in electrical degrees is shown in Figure 39(a). From the sensor phasing table, Figure 39(b), note that the order of input codes for \(60^{\circ}\) phasing is the reverse of \(300^{\circ}\). This means that a P60 suffix part will operate with either convention with a resulting change in rotor direction. The same is true for the P120 part operating between \(120^{\circ}\) and \(240^{\circ}\) conventions. Further examination of the \(60^{\circ}\) and \(120^{\circ}\) columns reveal that either suffix part will operate with any of the sensor conventions with the addition of an

FIGURE 39(a) - SENSOR PHASING COMPARISON

FIGURE 39(b) - SENSOR PHASING TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Sensor Electrical Phasing (Degrees)} \\
\hline \multicolumn{3}{|c|}{\(60^{\circ}\)} & \multicolumn{3}{|c|}{\(120^{\circ}\)} & \multicolumn{3}{|c|}{\(240^{\circ}\)} & \multicolumn{3}{|c|}{\(300^{\circ}\)} \\
\hline \(\mathrm{S}_{\mathbf{A}}\) & \(\mathrm{S}_{\mathrm{B}}\) & \(\mathrm{S}_{\mathrm{C}}\) & \(\mathbf{S}_{\mathbf{A}}\) & \(\mathrm{S}_{\mathbf{B}}\) & \(\mathrm{S}_{\mathbf{C}}\) & \(S_{\text {A }}\) & \(\mathrm{S}_{\mathrm{B}}\) & \(\mathrm{S}_{\mathbf{C}}\) & \(\mathrm{S}_{\mathbf{A}}\) & S & \(\mathrm{S}_{\mathbf{C}}\) \\
\hline 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
\hline & 1. & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1. & 0 & 0 \\
\hline 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline
\end{tabular}
inverter and the interchanging of \(S_{B}\) and \(S_{C}\) inputs as shown in Figure 40.

In this data sheet, the rotor position has always been given in electrical degrees, since the mechanical position is a function of the number of rotating magnetic poles. The relationship between the electrical and mechanical position is:
Electrical Degrees \(=\) Mechanical Degrees \(\left(\frac{\text { \#Rotor Poles }}{2}\right)\)
An increase in the number of magnetic poles causes more electrical revolutions for a given mechanical revolution. General purpose three phase motors typically contain a four pole rotor which yields two electrical revolutions for one mechanical.

FIGURE 40 - SENSOR PHASING CONVERSION

Two and Four Phase Motor Commutation
The MC33034P60 is also capable of providing a four step output that can be used to drive two or four phase motors. The truth table in Figure 41 shows that by connecting sensor inputs \(S_{B}\) and \(S_{C}\) together, it is possible to truncate the number of drive output states from six to four. The output power switches are connected to \(\mathrm{B}_{\mathrm{T}}, \mathrm{C}_{\mathrm{T}}, \mathrm{B}_{\mathrm{B}}\), and \(\mathrm{C}_{\mathrm{B}}\). Figure 42 shows a four phase, four step, full wave motor control application. Power switch
transistors Q1 through Q8 are Darlington type, each with an internal parasitic catch diode. With four step drive, only two rotor position sensors spaced at 90 electrical degrees are required. The commutation waveforms are shown in Figure 43.

Figure 44 shows a four phase, four step, half wave motor controller. It has the same features as the circuit in Figure 38, except for the deletion of braking.

FIGURE 41 - TWO AND FOUR PHASE, FOUR STEP, COMMUTATION TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{MC33034P60} \\
\hline \multicolumn{2}{|l|}{Inputs} & \multicolumn{4}{|c|}{Outputs} \\
\hline Sensor Electrical Spacing \(=90^{\circ}\) \(S_{A}\) SB & F/R & BT & ces
\(C_{T}\) & Bott
BB & ives
\(C_{B}\) \\
\hline 10 & 1 & 1 & 1 & 0 & 1 \\
\hline 11 & 1 & 0 & 1 & 0 & 0 \\
\hline \(0 \quad 1\) & 1 & 1 & 0 & 0 & 0 \\
\hline \(0 \quad 0\) & 1 & 1 & 1 & 1 & 0 \\
\hline 10 & 0 & 1 & 0 & 0 & 0 \\
\hline \(1 \quad 1\) & 0 & 1 & 1 & 1 & 0 \\
\hline \(0 \quad 1\) & 0 & 1 & 1 & 0 & 1 \\
\hline 00 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}
\(\mathbf{S}_{\mathbf{B}}\) connected to \(\mathbf{S}_{\mathbf{C}}\)

FIGURE 42 - FOUR PHASE, FOUR STEP, FULL WAVE MOTOR CONTROLLER

FIGURE 43 - FOUR PHASE, FOUR STEP, FULL WAVE COMMUTATION WAVEFORMS

\section*{LAYOUT CONSIDERATIONS}

Do not attempt to construct any of the brushless motor control circuits on wire-wrap or plug-in prototype boards. High frequency printed circuit layout techniques are imperative to prevent pulse jitter. This is usually caused by excessive noise pick-up imposed on the current sense or error amp inputs. The printed circuit layout should contain a ground plane with low current signal and high current drive and output buffer grounds
returning on separate paths back to the power supply input filter capacitor \(\mathrm{V}_{\mathrm{M}}\). Ceramic bypass capacitors \((0.1 \mu \mathrm{~F})\) connected close to the integrated circuit at \(\mathrm{V}_{\mathrm{CC}}\), \(V_{C}, V_{\text {ref }}\) and the error amp non-inverting input may be required depending upon circuit layout. This provides a low impedance path for filtering any high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI.
figure 44 - FOUR PHASE, FOUR STEP, HALF WAVE MOTOR CONTROLLER

\section*{Advance Information}

The MC33039 is a high performance closed-loop speed control adapter specifically designed for use in brushless dc motor control systems. Implementation will allow precise speed regulation without the need for a magnetic or optical tachometer. This device contains three input buffers each with hysteresis for noise immunity, three digital edge detectors, a programmable monostable, and an internal shunt regulator. Also included is an inverter output for use in systems that require conversion of sensor phasing. Although this device is primarily intended for use with the MC33034 brushless motor controller, it can be used cost effectively in many other closed-loop speed control applications.
- Digital Detection of Each Input Transition for Improved Low Speed Motor Operation
- TTL Compatible Inputs With Hysteresis
- Operation Down to 5.5 V for Direct Powering from MC33034 Reference
- Internal Shunt Regulator Allows Operation from a NonRegulated Voltage Source
- Inverter Output for Easy Conversion Between \(60^{\circ} / 300^{\circ}\) and \(120^{\circ} / 240^{\circ}\) Sensor Phasing Conventions

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \(\mathrm{V}_{\text {CC }}\) Zener Current & \(\mathrm{I}\left(\mathrm{V}_{\mathrm{CC}}\right)\) & 30 & mA \\
\hline Logic Input Current (Pins 1, 2, 3) & IIH & 5.0 & mA \\
\hline Output Current (Pin 4, 5), Sink or Source & IDRV & 20 & mA \\
\hline Power Dissipation and Thermal Characteristics Maximum Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\) Thermal Resistance Junction to Air & \[
\mathrm{P}_{\mathrm{D}}
\]
\[
\mathrm{R}_{\theta \mathrm{JA}}
\] & \[
\begin{aligned}
& 650 \\
& 100
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
\] \\
\hline Operating Junction Temperature & \(\mathrm{T}_{J}\) & + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & TA & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=6.25 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=22 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{LOGIC INPUTS} \\
\hline Input Threshold Voltage High State Low State Hysteresis & \[
\begin{aligned}
& V_{I H} \\
& V_{I L} \\
& V_{H}
\end{aligned}
\] & \[
\frac{2.4}{0.4}
\] & \[
\begin{aligned}
& 2.1 \\
& 1.4 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& \overline{1.0} \\
& 0.9
\end{aligned}
\] & V \\
\hline ```
Input Current
 High State (V }\mp@subsup{\textrm{V}}{\textrm{IH}}{}=5.0\textrm{V}
 \phiA
 \phiB},\mp@subsup{\phi}{\textrm{C}}{
 Low State (VIL = 0 V)
 \phiA
 \phiB},\mp@subsup{\phi}{\textrm{C}}{
``` & IH
IIL & \[
\begin{gathered}
-40 \\
- \\
-190
\end{gathered}
\] & \[
\begin{gathered}
-60 \\
-0.3 \\
-300 \\
-0.3
\end{gathered}
\] & \[
\begin{array}{r}
-80 \\
-5.0 \\
-380 \\
-5.0
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

MONOSTABLE AND OUTPUT SECTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Output Voltage} & & & & \multirow[t]{7}{*}{V} \\
\hline High State & \multirow[t]{3}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & & \\
\hline \(\mathrm{f}_{\text {out }}\left(l_{\text {source }}=5.0 \mathrm{~mA}\right)\) & & 3.60 & 3.95 & 4.20 & \\
\hline \(\phi \overline{\mathrm{A}}\left(1_{\text {source }}=2.0 \mathrm{~mA}\right)\) & & 4.20 & 4.75 & - & \\
\hline Low State & \(\mathrm{V}_{\mathrm{OL}}\) & & & & \\
\hline \(\mathrm{f}_{\text {out }}\left(l_{\text {sink }}=10 \mathrm{~mA}\right)\) & & - & 0.25 & 0.50 & \\
\hline \(\bar{\phi} \overline{\mathrm{A}}\left(1{ }_{\text {sink }}=10 \mathrm{~mA}\right)\) & & - & 0.25 & 0.50 & \\
\hline Capacitor \(\mathrm{C}_{T}\) Discharge Current & Idischg & 20 & 35 & 60 & mA \\
\hline Output Pulse Width (Pin 5) & tW & 205 & 225 & 245 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}
POWER SUPPLY SECTION
\begin{tabular}{|l|c|c|c|c|c|}
\hline Power Supply Operating Voltage Range \(\left(T_{A}=-40^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) & \(\mathrm{V}_{\mathrm{CC}}\) & 5.5 & - & \(\mathrm{V}_{\mathrm{Z}}\) & V \\
\hline Power Supply Current & \(\mathrm{I}_{\mathrm{CC}}\) & 1.8 & 3.9 & 5.0 & mA \\
\hline Zener Voltage \(\left(I_{\mathrm{Z}}=10 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{Z}}\) & 7.5 & 8.25 & 9.0 & V \\
\hline Zener Dynamic Impedance \(\left(\Delta I_{\mathrm{Z}}=10 \mathrm{~mA}\right.\) to \(\left.20 \mathrm{~mA}, \mathrm{f} \leqslant 1.0 \mathrm{kHz}\right)\) & \(\mathrm{Z}_{\mathrm{ka}} \mid\) & - & 2.0 & 5.0 & \(\Omega\) \\
\hline
\end{tabular}


\section*{OPERATING DESCRIPTION}

The MC33039 provides an economical method of implementing closed-loop speed control of brushless dc motors by eliminating the need for a magnetic or optical tachometer. Shown in the timing diagram of Figure 1, the three inputs (Pins 1, 2, 3) monitor the brushless motor rotor position sensors. Each sensor signal transition is digitally detected, OR'ed at the Latch 'Set' Input, and causes \(\mathrm{C}_{\mathrm{T}}\) to discharge. A corresponding output pulse is generated at \(f_{\text {out }}\) (Pin 5) of a defined amplitude, and programmable width determined by the values selected for \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{C}_{\mathrm{T}}\) (Pin 6). The average voltage of the output pulse train increases with motor speed. When fed through a low pass filter or integrator, a dc voltage proportional to speed is generated. Figure 2 shows the proper connections for a typical closed loop
application using the MC33034 brushless motor controller. Constant speed operation down to 100 RPM is possible with economical three phase four pole motors.
The \(\phi_{A}\) inverter output (Pin 4) is used in systems where the controller and motor sensor phasing conventions are not compatible. A method of converting from either convention to the other is shown in Figure 3. For a more detailed explanation of this subject, refer to the text above Figure 39 on the MC33034 data sheet.
The output pulse amplitude \(\mathrm{V}_{\mathrm{OH}}\) is constant with temperature and controlled by the supply voltage on \(V_{C C}\) (Pin 8). Operation down to 5.5 V is guaranteed over temperature. For systems without a regulated power supply, an internal 8.25 V shunt regulator is provided.

FIGURE 2 - TYPICAL CLOSED-LOOP SPEED CONTROL APPLICATION


FIGURE 3 - CONVERSION BETWEEN SENSOR PHASING CONVENTIONS


FIGURE 4 - \(\mathbf{f}_{\text {out }}\) PULSE WIDTH versus TIMING RESISTOR


FIGURE 6 - \(f_{\text {out }}\) PULSE WIDTH CHANGE versus SUPPLY VOLTAGE


FIGURE 8 - \(\mathbf{f}_{\text {out }}\), SATURATION versus LOAD CURRENT


FIGURE 5 - fout, PULSE WIDTH CHANGE versus TEMPERATURE


FIGURE 7 - SUPPLY CURRENT versus SUPPLY VOLTAGE


FIGURE 9 - fout, SATURATION CHANGE versus TEMPERATURE


\section*{SAA1042 \\ SAA1042A}

\section*{Specifications and Applications Information}

\section*{STEPPER MOTOR DRIVER}

The SAA1042 drives a two-phase stepper motor in the bipolar mode. The device contains: three input stages, a logic section and two output stages.
- Drive Stages Designed for Motors: 6.0 V and 12 V : SAA1042 24 V: SAA1042A
- 500 mA /Coil Drive Capability
- Built-In Clamp Diodes for Overvoltage Suppression
- Wide Logic Supply Voltage Range
- Accepts Commands for CW/CCW and Half/Full Step Operation
- Inputs Compatible with Popular Logic Families: MOS, TTL, DTL
- Set Input Defined Output State
- Drive Stage Bias Adaptable to Motor Power Dissipation for Optimum Efficiency

FIGURE 1 - SAA1042 BLOCK DIAGRAM


STEPPER MOTOR DRIVER
SILICON MONOLITHIC INTEGRATED CIRCUIT


PLASTIC PACKAGE CASE 721-02

PIN ASSIGNMENT

(Top View)

Note: Case heat sink is electrically connected to ground (Pin 9) through the die substrate.

MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise stated)
\begin{tabular}{|c|c|c|c|c|}
\hline Rating & Symbol & SAA1042 & SAA1042A & Unit \\
\hline Clamping Voltage (Pins 1, 3, 14 \& 16) & \(V_{\text {clamp }}\) & 20 & 30 & V \\
\hline Over Voltage ( \(\mathrm{V}_{\mathrm{OV}}=\mathrm{V}_{\text {clamp }}-\mathrm{V}_{\mathrm{M}}\) ) & Vov & \multicolumn{2}{|c|}{6.0} & V \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 20 & 30 & V \\
\hline Switching or Motor Current/Coil & 1 M & \multicolumn{2}{|c|}{500} & mA \\
\hline Input Voltage (Pins 7, 8 \& 10) & \begin{tabular}{l}
\(V_{\text {in }}\) clock \\
\(v_{\text {in }}\) Full/Half \\
\(V_{\text {in }}\) CW/CCW
\end{tabular} & \multicolumn{2}{|c|}{\(\mathrm{V}_{\mathrm{CC}}\)} & V \\
\hline Power Dissipation Derate above \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Thermal Resistance, Junction to Air Thermal Resistance, Junction to Case & \begin{tabular}{l}
\(\mathrm{PD}^{*}\) \\
\({ }^{1}\) OJA \\
\(\theta \mathrm{JA}\) \\
\(\theta \mathrm{JC}\)
\end{tabular} & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{W} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\hline
\end{gathered}
\] \\
\hline Operating Junction Temperature Range & TJ & \multicolumn{2}{|r|}{-30 to +125} & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & \multicolumn{2}{|r|}{-65 to +150} & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
*The power dissipation, \(\mathrm{P}_{\mathrm{D}}\), of the circuit is given by the supply voltage, \(\mathrm{V}_{\mathrm{M}}\) and \(\mathrm{V}_{\mathrm{CC}}\), and the motor current, \(\mathrm{I}_{\mathrm{M}}\), and can be determined from Figures 3 and 5. \(\mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\text {drive }}+\mathrm{P}_{\text {logic }}\)

ELECTRICAL CHARACTERISTICS ( \(T_{A}=+25^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Characteristic & Pin & Symbol & \(V_{\text {cc }}\) & Min & Typ & Max & Unit \\
\hline Supply Current & 11 & \({ }^{\prime} \mathrm{CC}\) & \[
\begin{gathered}
5.0 \mathrm{~V} \\
20 \mathrm{~V}
\end{gathered}
\] & - & - & \[
\begin{aligned}
& 3.5 \\
& 8.5
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Motor Supply Current \\
( 1 Pin \(6=-400 \mu \mathrm{~A}\), Pins 1, 3, 14, 16 Open)
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{M}}=6.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{M}}=24 \mathrm{~V}
\end{aligned}
\]
\end{tabular} & 15 & \({ }^{\prime} \mathrm{M}\) & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& 5.0 \mathrm{~V} \\
& 5.0 \mathrm{~V}
\end{aligned}
\] & E & \[
\begin{aligned}
& 25 \\
& 30 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & mA \\
\hline Input Voltage - High State & 7, 8, 10 & \(\mathrm{V}_{\mathrm{IH}}\) & \[
\begin{gathered}
5.0 \mathrm{~V} \\
10 \mathrm{~V} \\
15 \mathrm{~V} \\
20 \mathrm{~V}
\end{gathered}
\] & \[
\begin{aligned}
& 2.0 \\
& 7.0 \\
& 10 \\
& 14
\end{aligned}
\] & -
-
- & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & V \\
\hline Input Voltage - Low State & 7, 8, 10 & \(\mathrm{V}_{\text {IL }}\) & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& 10 \mathrm{~V} \\
& 15 \mathrm{~V} \\
& 20 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.8 \\
& 1.5 \\
& 2.5 \\
& 3.5
\end{aligned}
\] & V \\
\hline Input Reverse Current - High State
\[
\left(\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{CC}}\right)
\] & 7, 8, 10 & IIR & \[
\begin{gathered}
5.0 \mathrm{~V} \\
10 \mathrm{~V} \\
15 \mathrm{~V} \\
20 \mathrm{~V}
\end{gathered}
\] & - & -
-
- & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 3.0 \\
& 5.0
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Forward Current - Low State
\[
\left(V_{i n}=G n d\right)
\] & 7, 8, 10 & IIF & \[
\begin{gathered}
5.0 \mathrm{~V} \\
10 \mathrm{~V} \\
15 \mathrm{~V} \\
20 \mathrm{~V}
\end{gathered}
\] & \[
\begin{aligned}
& -10 \\
& -25 \\
& -40 \\
& -55
\end{aligned}
\] & -
-
- & -
-
- & \(\mu \mathrm{A}\) \\
\hline \[
\begin{array}{r}
\text { Output Voltage — High State } \\
\left(V_{\mathrm{M}}=12 \mathrm{~V}\right) \quad \begin{array}{l}
\mathrm{l}_{\text {out }}=-500 \mathrm{~mA} \\
\mathrm{l}_{\text {out }}=-50 \mathrm{~mA}
\end{array}
\end{array}
\] & 1, 3, 14, 16 & \(\mathrm{V}_{\mathrm{OH}}\) & 5.0 to 20 V & - & \[
\begin{aligned}
& V_{M}-2.0 \\
& V_{M}-1.2 \\
& \hline
\end{aligned}
\] & - & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage - Low State } \\
& \mathrm{l}_{\text {out }}=500 \mathrm{~mA} \\
& \mathrm{l}_{\text {out }}=50 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & 1, 3, 14, 16 & \(\mathrm{V}_{\mathrm{OL}}\) & 5.0 to 20 V & - & \[
\begin{aligned}
& 0.7 \\
& 0.2
\end{aligned}
\] & - & V \\
\hline Output Leakage Current
\[
\begin{aligned}
& \left(V_{M}=V_{D}=V_{\text {clamp max }} .\right) \\
& \text { Pin 6: Open }
\end{aligned}
\] & 1, 3, 14, 16 & IDR & 5.0 to 20 V & -100 & - & - & \(\mu \mathrm{A}\) \\
\hline Clamp Diode Forward Voltage (Drop at \(\mathrm{I}_{\mathrm{M}}=500 \mathrm{~mA}\) ) & 2 & \(V_{F}\) & - & - & 2.5 & 3.5 & V \\
\hline Clock Frequency & 7 & \(\mathrm{f}_{\mathrm{c}}\) & 5.0 to 20 V & 0 & - & 50 & kHz \\
\hline Clock Pulse Width & 7 & \(t_{w}\) & 5.0 to 20 V & 10 & - & - & \(\mu \mathrm{S}\) \\
\hline Set Pulse Width & 6 & \(t_{s}\) & - & 10 & - & - & \(\mu \mathrm{s}\) \\
\hline Set Control Voltage - High State & 6 & - & - & \(\mathrm{V}_{\mathrm{M}}\) & - & \(\overline{0.5}\) & V \\
\hline
\end{tabular}

\section*{INPUT/OUTPUT FUNCTIONS}

Clock - (Pin 7) This input is active on the positive edge of the clock pulse and accepts Logic ' 1 ' input levels dependant on the supply voltage and includes hysteresis for noise immunity.

CW/CCW - (Pin 10) This input determines the motor's rotational direction. When the input is held low, (OV, see the electrical characteristics) the motor's direction is nominally clockwise (CW). When the input is in the high state, Logic '1,' the motor direction will be nominally counter clockwise (CCW), depending on the motor connections.

Full/Half Step - (Pin 8) This input determines the angular rotation of the motor for each clock pulse. In the low state the motor will make a full step for each applied clock pulse, while in the high state, the motor will make half a step.
\(\mathbf{V}_{\mathbf{D}}\) - (Pin 2) This pin is used to protect the outputs (1, \(3,14,16)\) where large positive spikes occur due to switching the motor coils. The maximum allowable voltage on these pins is the clamp voltage ( \(\mathrm{V}_{\text {clamp }}\) ). Motor performance is improved if a zener diode is connected between Pin 2 and Pin 15 as shown in Figure 1.

The following conditions have to be considered when selecting the zener diode:
\(V_{\text {clamp }}=V_{M}+6.0 V\)
\(V_{Z}=V_{\text {clamp }}-V_{M}-V_{F}^{*}\)
where: \(\mathrm{V}_{\mathrm{F}}=\) clamp diodes forward voltage drop (see Figure 4)
\(\mathrm{V}_{\text {clamp: }}\)
\(\leqslant 20 \mathrm{~V}\) for SAA1042
\(\leqslant 30 \mathrm{~V}\) for SAA1042A
Pins 2 and 15 can be linked, in this case \(V_{Z}=0 \mathrm{~V}\).
Set/Bias Input - (Pin 6) This input has two functions:
The resistor \(R_{B}\) adapts the drivers to the motor current.
A pulse via the resistor \(R_{B}\) sets the outputs (1, 3, 14, 16) to a defined state.

The resistor \(\mathrm{R}_{\mathrm{B}}\) can be determined from the graph of Figure 2 according to the motor current and voltage. Smaller values of \(\mathrm{R}_{\mathrm{B}}\) will increase the power dissipation of the circuit and larger values of \(R_{B}\) may increase the saturation voltage of the driver transistors.
When the "set" function is not used, terminal A of the resistor \(R_{B}\) must be grounded. When the set function is used, terminal \(A\) has to be connected to an opencollector (buffer) circuit. Figure 7 shows this configuration. The buffer circuit (off-state) has to sustain the motor voltage \(\mathrm{V}_{\mathrm{M}}\). When a pulse is applied via the buffer and the bias resistor \(\mathrm{R}_{\mathrm{B}}\) :

During the pulse duration, the motor driver transis-
tors are turned off.
After elapsing the pulse, the outputs will have defined states.
Figure 6 shows the timing diagram.
Figure 7 illustrates a typical application in which the SAA1042 drives a 12 V stepper motor with a current consumption of 200 mA coil.

A bias resistor \(\left(R_{B}\right)\) of \(56 \mathrm{k} \Omega\) is chosen according to Figure 2.

The maximum voltage permitted at the output pin is \(V_{M}+6.0 \mathrm{~V}\) (see the Maximum Ratings), in this application \(\mathrm{V}_{\mathrm{M}}=12 \mathrm{~V}\), therefore the maximum voltage is 18 V . The outputs are protected by the internal diodes and an external zener connected between Pins 2 and 15.

From Figure 4, it can be seen that the voltage drop across the internal diodes is about 1.7 V at 200 mA . This results in a zener voltage between Pins 2 and 15 of:
\[
V_{Z}=6.0 \mathrm{~V}-1.7 \mathrm{~V}=4.3 \mathrm{~V}
\]

To allow for production tolerances and a safety margin, a 3.9 V zener has been chosen for this example.

The clock is derived from the line frequency which is phase locked by the MC14046B and the MC14024.

The voltage on the clock input, is normally low (Logic ' 0 '). The motor steps on the positive going transition of the clock pulse.

A Logic ' 0 ' applied to the Full/Half input, Pin 8, operates the motor in the Full Step mode. A Logic '1' at this input will result in the Half Step mode. The logic level state on the CW/CCW input, Pin 10, and the connection of the motor coils to the outputs determines the rotational direction of the motor.

These two inputs should be biased to a Logic '0' or ' 1 ' and not left floating. In the event of non-use, they should be tied to ground or the logic supply line, \(\mathrm{V}_{\mathrm{CC}}\).

The output drivers can be set to a fixed operating point by use of the Set input and a bias resistor \(R_{B}\). \(A\) positive pulse to this input turns the drivers off and sets the logic state of the outputs.

After the negative going transition of the Set pulse, and until the first positive going transition of the clock, the outputs will be:
\[
L 1=L 3=\text { high and } L 2=L 4=\text { low. }
\]
(See Figure 6, the timing diagram).
The Set input can be driven by a MC14007B or a transistor whose collector resistor is \(R_{B}\). If the input is not used, the 'bottom' of \(R_{B}\) must be grounded.

The total power dissipation of the circuit can be determined from Figures 3 and 5.
\[
P_{D}=0.9 W+0.08 \mathrm{~W}=0.98 \mathrm{~W}
\]

This results in a junction to ambient temperature, without a heatsink of:
\[
\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C} / \mathrm{W} \times 0.98 \mathrm{~W}=49^{\circ} \mathrm{C}
\]
or a maximum ambient temperature of \(76^{\circ} \mathrm{C}\). For operation at elevated temperatures a heatsink is required.

\section*{SAA1042，SAA1042A}

FIGURE 2 －BIAS RESISTOR RB versus MOTOR CURRENT


FIGURE 4 －CLAMP DIODE FORWARD CURRENT versus FORWARD VOLTAGE


FIGURE 3 －DRIVE STAGE POWER DISSIPATION


FIGURE 5 －POWER DISSIPATION versus LOGIC SUPPLY VOLTAGE


FIGURE 6 －TIMING DIAGRAM


Half Step Motor Drive Mode．Full／Half Step Input＝ 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Clock \\
Set \\
CW／CCW
\end{tabular}} & \multicolumn{9}{|l|}{} \\
\hline & \multicolumn{9}{|l|}{\(\square\)} \\
\hline & \multicolumn{9}{|c|}{」} \\
\hline L1 & Sll｜lle & W0． & & VID & & & 凹®． & & ETU \\
\hline L2 & SWITM． & VIU & & WIL & & & ［III & & שIT． \\
\hline L3 & ज以ए & & ■ロ & & שITI & ए®． & & WIU & \\
\hline L4 & Nㅔ： & & ［IIT & & 区ด & Ш⿺𠃊 & & WIIT & \\
\hline
\end{tabular}

FIGURE 7 - TYPICAL APPLICATION
SELECTABLE STEP RATES WITH THE TIME BASE DERIVED FROM THE LINE FREQUENCY


\section*{Specification and Applications Information}

\section*{UNIVERSAL MOTOR SPEED CONTROLLER}

The TDA1085A has all the necessary functions for the speed control of universal (ac/dc) motors in an open or closed loop configuration. Additionally it has the facility for defining the initial speed/time characteristic. The circuit provides a phase angle varied trigger pulse to the motor control triac.
- Guaranteed Full Wave Triac Drive
- Soft Start from Powerup
- On-Chip Frequency/Voltage Convertor and Ramp Generator
- Current Limiting Incorporated
- Direct Drive from ac Line

\section*{UNIVERSAL MOTOR SPEED CONTROLLER}

SILICON MONOLITHIC INTEGRATED CIRCUIT


LASTIC PACKAGE CASE 648-06

FIGURE 1 - BLOCK DIAGRAM AND PIN ASSIGNMENT


MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(V_{\text {Pin }} 9-8\) & 17 & V \\
\hline Power Supply Current (Pin 10 Open) & IPin 9 & 15 & mA \\
\hline Peak Power Supply Regulation Current & \(\underline{1}\) pin \(9+1\) Pin 10 & 35 & mA \\
\hline Peak ac Synchronization Input Current & IPin 1
\[
\text { IPin } 2
\] & \(\pm 1.0\) & mA \\
\hline Peak Output Triggering Current (Pulse Width \(300 \mu \mathrm{~s}\); Duty Cycle \(\leqslant 3 \%\) ) & IPin 13 & 200 & mA \\
\hline Current Drain per Listed Pin & \[
\begin{aligned}
& l_{15} \\
& l_{3} \\
& l_{12} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
1.0 \\
-5.0 \\
-3.0,+0.1
\end{gathered}
\] & mA \\
\hline Power Dissipation ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) Derate above \(25^{\circ} \mathrm{C}\) & \[
\begin{gathered}
\mathrm{PD}_{\mathrm{D}} \\
1 / \mathrm{R}_{\theta J \mathrm{~A}}
\end{gathered}
\] & \[
\begin{gathered}
625 \\
6.8
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {A }}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise stated)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{VOLTAGE REGULATOR} \\
\hline Regulated Voltage*
\[
\left(l_{g}+l_{10}=10 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{CC}}\) & - & 15.5 & - & V \\
\hline Monitoring Enable Level* & \(\mathrm{V}_{\text {ME }}\) & - & 15.1 & - & V \\
\hline Monitoring Disable Level* & \(\mathrm{V}_{\text {MD }}\) & - & 14.5 & - & V \\
\hline Internal Current Consumption, Note 1 & IPin 9 & - & 4.2 & - & mA \\
\hline
\end{tabular}

RAMP GENERATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Input Voltage Range, Note 2 & \(V_{\text {Pin 5-8 }}\) & 0.08 & - & 13.5 & V \\
\hline Reference Input Bias Current & IPin 5 & - & - & -20 & \(\mu \mathrm{A}\) \\
\hline Distribute Low Level Voltage Range & \(\mathrm{V}_{\text {Pin } 6}\) & 0 & - & 2.0 & V \\
\hline Distribute - Low Level (Figure 2) & \(V_{\text {DL }}\) & - & \(V_{\text {Pin } 6}\) & - & V \\
\hline \[
\begin{aligned}
& \text { Distribute - Upper Level* (Figure 2) } \\
& \left(V_{\text {Pin } 6}=950 \mathrm{mV}\right)
\end{aligned}
\] & VDU & \(1.9 \mathrm{~V}_{6}\) & \(2.0 \mathrm{~V}_{6}\) & \(2.1 \mathrm{~V}_{6}\) & V \\
\hline Low-High Acceleration Range (Figure 2) & \(\Delta \mathrm{V}_{\text {DA }}\) & - & 400 & - & mV \\
\hline High Acceleration Charging Current & \({ }^{\text {ICH7 }}\) & - & 1.2 & - & mA \\
\hline Low Charging Current, Note 3 & ICL7 & - & 5.0 & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{NOTES:}
1. Pins 1, 2, 11, 12, 14 and 15 not connected; Pins 4,5,6 and 7 grounded to \(\operatorname{Pin} 8: V_{C C}=15.5 \mathrm{~V}\)
2. When \(V_{P i n} 5\) is \(\leqslant 80 \mathrm{mV}\), the internal monitoring circuit interprets it as a true zero, thus minimizing the effects of control amplifier offsets.
3. This value should be accounted for when externally setting the distribute acceleration charging current.

ELECTRICAL CHARACTERISTICS (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{CURRENT LIMITER} \\
\hline Stage Current Gain & \[
\frac{\mathrm{IDL7}}{\Delta I_{3}}
\] & - & 170 & - & - \\
\hline Output Discharge Current Swing & IDL7 & - & 35 & - & mA \\
\hline
\end{tabular}
CONTROL AMPLIFIER
\begin{tabular}{|l|c|c|c|c|c|}
\hline Actual Speed Voltage Range & \(V_{\text {Pin } 4-8}\) & 0 & - & 13.5 & V \\
\hline Actual Speed Input Bias Current & \(\mathrm{I}_{\text {Pin } 4}\) & - & - & -350 & nA \\
\hline Total Input Offset Voltage, Note 4 & \(\mathrm{V}_{\text {off }}\) & -60 & - & 20 & mV \\
\hline Transconductance \(\left(\frac{\Delta l_{\text {Pin } 16}}{V_{\text {Pin } 4}-V_{\text {Pin } 7}}\right)\) & \(\mathrm{g}_{\mathrm{m}}\) & - & 300 & - & \(\mu \mathrm{AV}\) \\
\hline Output Current Swing & & \(\mathrm{I}_{\text {Pin }} 16\) & - & \(\pm 100\) & - \\
\hline
\end{tabular}

FREQUENCY/VOLTAGE CONVERTER
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Signal Low Voltage, Note 5 & \(\mathrm{V}_{\mathrm{L} 12}\) & -0.1 & - & - & V \\
\hline Input Signal High Voltage & \(\mathrm{V}_{\mathrm{H} 12}\) & 0.1 & - & 5.0 & V \\
\hline Polarization Current & \(\mathrm{I}_{\mathrm{Pin} 12}\) & - & -25 & - & \(\mu \mathrm{A}\) \\
\hline Conversion Rate, Note 6* & \(\mathrm{K}_{\mathrm{C}}\) & - & 15 & - & \(\mathrm{mV} / \mathrm{Hz}\) \\
\hline Linearity* (Figure 3) & \(\mathrm{K}_{\mathrm{L}}\) & - & \(\pm 4.0\) & - & \(\%\) \\
\hline
\end{tabular}

\section*{TRIGGER PULSE GENERATOR}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Voltage Synchronization Levels & IPin 2 & - & \(\pm 50\) & - & \(\mu \mathrm{A}\) \\
\hline Current Synchronization Levels & IPin 1 & - & \(\pm 50\) & - & \(\mu \mathrm{A}\) \\
\hline Input Voltage Swing (for full angle swing) & V & - & 11.7 & - & V \\
\hline Trigger Pulse Width, Note 7 & \(\mathrm{t}_{\mathrm{p}}\) & - & 55 & - & \(\mu \mathrm{s}\) \\
\hline Trigger Pulse Repetition Period & \(t\) & - & 215 & - & \(\mu \mathrm{s}\) \\
\hline Trigger Pulse High Level ( \({ }^{\text {Pin }} 13=150 \mathrm{~mA}\) ) & \(\mathrm{V}_{\text {Pin }} 13\) & \(\mathrm{V}_{\mathrm{CC}}-4\) & - & - & V \\
\hline Output Leakage Current \(\left(V_{\text {Pin } 13}=0 \mathrm{~V}\right)\) & IoPin 13 & - & - & 30 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
4. \(V_{\text {off }}\) is defined as being the voltage difference between Pin 5 and 4
with no current flow on Pin 16.
5. The negative swing is clamped to -0.3 V .
6. \(V_{P i n} 4=k \cdot C_{\text {Pin } 11} \cdot\left(V_{C C}-V_{a}\right) \cdot R_{\text {Pin }} 4 \cdot\left(1+\frac{180 \times 10^{3}}{R_{\text {Pin }} 11}\right)-1 \cdot\) freq in.

Where: \(9<K<13 \& V_{a}=1.3 \mathrm{~V}\).
7. The timing given is when CPin \(14=47 \mathrm{nF}\).
* These figures apply for the application shown in Figure 4.

\section*{INPUT/OUTPUT FUNCTIONS}

VOLTAGE REGULATOR - (Pins 8, 9, 10). This is a parallel type voltage regulator able to sink a large amount of current while offering good regulation characteristics.

A resistor between Pins 9 and 10 reduces the internal power dissipation. Under minimal current sink conditions ( min . current from the unregulated supply, max. consumption by the circuitry), at least 1.0 mA should flow through this resistor. Under max. sink conditions (max. current from the unregulated supply, min. consumption by the circuitry), the maximum resistor value is chosen so that the voltage at Pin 10 falls towards 3.0 V , but not lower. The above, fixed dynamic range of the regulator must not be exceeded within one line cycle.

A power supply failure causes shutdown.
For operation from an externally regulated voltage, Pin 10 is not connected.

SPEED SENSING - (Pins 4, 11, 12). Speed sensing can be achieved either digitally (tachogenerator frequency) or analogically (tachogenerator amplitude).

For digital sensing, a bipolar signal with respect to ground is applied to Pin 12. During positive excursions

FIGURE 2 - RAMP GENERATOR TRANSFER CHARACTERISTIC


The shape of the curve is determined by CRPin 7; where Cpin 7 defines the high acceleration slope and RPin 7 defines that of the low acceleration.
\(\mathrm{C}_{\text {Pin }} 11\) is charged. An internal mirror delivers ten times the charge on \(\mathrm{C}_{\text {Pin }} 11\) via Pin 4. However, due to internal circuitry, the charge on Pin 4 can vary in the region of 9 to 13 times the charge on \(\mathrm{C}_{\text {Pin }}{ }_{11}\). For that reason it is necessary to calibrate the Frequency/Voltage Convertor (F/VC) with a variable resistor on Pin 4. Thus the relationship between speed and \(V_{\text {Pin }} 4\) is defined by \(\mathrm{R}_{\text {Pin }} 4\) and \(\mathrm{C}_{\text {Pin }} 11\).
To maintain linearity in the high speed ranges it is important that \(\mathrm{C}_{\text {Pin }} 11\) is fully charged across an equivalent resistor of about \(180 \mathrm{k} \Omega\). It should be borne in mind that the impedance on Pin 11 should be kept as low as possible as \(\mathrm{C}_{\text {Pin }} 11\) has a large influence on the temperature coefficient of the FV/C. The time constant on Pin 4 should also be kept as low as possible.

Pin 12 is also an impedance monitoring input; at high impedances \(V_{\text {Pin }} 12\) increases. Should \(V_{\text {Pin }} 12\) exceed 5.0 V the triac trigger pulses are inhibited and the circuit resets.
A \(470 \mathrm{k} \Omega\) resistor from Pin 11 to \(+\mathrm{V}_{\mathrm{CC}}\) significantly reduces the leakage current and reduces the device temperature coefficient to almost zero.

FIGURE 3 - FREQUENCY/VOLTAGE CONVERTER


\section*{OUTPUT CHARACTERISTIC}

\section*{INPUT/OUTPUT FUNCTIONS (continued)}

For analog sensing input 12 should be grounded and a positive signal, with respect to ground, \(\operatorname{Pin} 8\), applied to Pin 4.

RAMP GENERATOR - (Pins 5, 6, 7) (refer to Figure 2). A preset voltage applied to Pin 5 will initiate the generation of a ramp whose final value is determined by the voltage applied to Pin 5. The voltage applied to Pin 6 will determine how much of the full ramp, shown in Figure 2, is used. The charging current passing through Pin 7 to the ramp generator timing capacitor determines the ramp slope.

When Pin 6 is held at \(-\mathrm{V}_{\mathrm{CC}}\) a charging current of 1.2 mA is delivered to Pin 7, regardless of the voltage of Pin 5. This represents the high acceleration period shown in Figure 2.

If the preset voltage applied to Pin 5 is equal to or less than the voltage on Pin 6 the charging current will be 1.2 mA , or high acceieration.

If the preset voltage applied to Pin 5 is between \(\mathrm{V}_{\text {Pin }}\) 6 and \(2 \mathrm{~V}_{\text {Pin }} 6\) the charging current is 1.2 mA (high acceleration) until the voltage at the reference input of the control amplifier equals \(\mathrm{V}_{\text {Pin } 6}\). At this point the charging current will switch to \(5.0 \mu \mathrm{~A}\); i.e. low acceleration.

If the preset voltage applied to Pin 5 is greater than \(2 \mathrm{~V}_{\text {Pin } 6}\) the charging current will be 1.2 mA (high acceleration) until the control amplifier's reference input reaches \(V_{\text {Pin }} 6\) when it will switch to \(5.0 \mu \mathrm{~A}\) (low acceleration) until \(2 \mathrm{~V}_{\text {Pin }} 6\) is reached. At this point the charging current will revert to 1.2 mA , high acceleration, until the final value of \(V_{\text {Pin }} 5\) is reached.

Should the preset voltage at Pin 5 fall below 80 mV , the triac trigger pulses are inhibited and the circuit resets. This fact should be borne in mind when switching from one preset value to another.

As long as the voltages applied at Pins 5 and 6 are derived from the internal voltage regulator, they and the voltage on Pin 4 are ratioed and thus independent of the voltage regulator spread and temperature coefficient.

CURRENT LIMITER - (Pin 3). Safe operation of the motor and triac under all conditions is ensured by reducing the motor speed if a preset current limit is exceeded.

This is achieved as follows: The motor current will set up an alternating current, consisting of positive and negative peaks through the shunt resistor ( \(0.05 \Omega\) in Figure 4).

The negative peaks of this current are fed through a resistor to Pin 3 where they are compared with a preset current defined by a resistor between Pin 3 and \(+V_{C C}\). An excessive shunt current will try to pull Pin 3 below \(-V_{C C}\), but the current limiter becomes active at this point and reduces the charge on \(\mathrm{C}_{\mathrm{Pin}} 7\), consequently reducing the motor speed.
Thus the value of the shunt and the ratio of the two resistors to Pin 3 fix the level at which the limiter becomes active, while the parallel equivalent of the two resistors determines the magnitude of the discharge current and thus how rapidly the circuit responds to an overcurrent condition.

CONTROL AMPLIFIER - (Pin 16). Connected to this pin is a network which compensates electrically for the mechanical characteristics of the motor and its load to give the circuit optimum closed loop stability and transient response.
The component values are best determined empirically by connecting \(R\) and \(C\) substitution boxes and looking for the best results.

TRIGGER PULSE GENERATOR - (Pins 1, 2, 13, 14, 15). This circuit performs four functions:
1. The conversion of the control amplifier's dc output level to a proportional firing angle positioned to within half a line cycle.
2. The calibration of the pulse width.
3. The repetition of the firing pulse if the triac fails to latch, or if the current is interrupted by brush bounce.
4. To delay the firing pulse until the current crosses zero at wide firing angles.

RPin 15 and \(C_{\text {Pin }} 14\) fix the sawtooth while \(C_{\text {Pin }} 14\) also determines the pulse width.

Pin 13 is the trigger pulse output. A current limiting resistor is essential on this pin. This configuration will drive two thyristors controlling a bridge if the supply for the speed controller is isolated.

\section*{TYPICAL APPLICATIONS}

FIGURE 4 - CLOSED LOOP, FULLY PROGRAMMED, MULTI-SPEED SYSTEM WITH CURRENT LIMITING


Speed Control Resistor Network Equations
\begin{tabular}{|c|c|c|}
\hline R17 & \(=\) & given \\
\hline R18 & \(=\) & \[
\mathrm{R} 17\left(\frac{15.5 \mathrm{~V}}{\mathrm{~V}_{W}}-1\right)
\] \\
\hline R19 & \(=\) & \[
\mathrm{R} 17\left(\frac{14.8 \mathrm{~V}}{\mathrm{~V}_{\mathrm{Spin}} 2}-1\right)
\] \\
\hline R20 & \(=\) & \[
R 17\left(\frac{14.8 \mathrm{~V}}{\mathrm{~V}_{\text {Spin } 1}}-1\right)-\mathrm{R} 19
\] \\
\hline R21 & \(=\) & \[
\mathrm{R} 17\left(\frac{14.8 \mathrm{~V}}{\mathrm{k} . \mathrm{V}_{W}}-1\right)-\mathrm{R} 19-\mathrm{R} 20
\] \\
\hline R15 & \(=\) & \(R 21\left(\frac{K . V_{W}}{15.5 \mathrm{~V}(2-K)}\right)\) \\
\hline R14 & \(=\) & \[
R 15\left(\frac{15.5 \mathrm{~V}}{\mathrm{~V}_{\mathrm{W}}}-1\right)
\] \\
\hline
\end{tabular}

The ratio distribute speed to wash speed can be chosen as:
\[
\frac{V_{\text {DIST }}}{V_{\text {WASH }}} \leqslant 2=K
\]
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & S1 & S2 & S3 & S4 & \(V_{\text {Pin 5 }}\) & \(V_{\text {Pin 6 }}\) \\
\hline Wash & sc & oc & oc & \(o c\) & \(V_{W}\) & 0 \\
\hline Distribute & oc & sc & oc & \(o c\) & \(\mathrm{KV}_{W}\) & \(\mathrm{~V}_{W}\) \\
\hline Spin 1 & oc & oc & sc & oc & \(>K V_{W}\) & \(\frac{K}{2} V_{W}\) \\
\hline Spin 2 & oc & oc & oc & sc & \(\gg K V_{W}\) & \(\simeq \frac{K}{2} V_{W}\) \\
\hline
\end{tabular}
sc \(=\) switch closed
oc \(=\) switch open
Note:
When changing from one speed to another \(V_{\text {Pin }} 5\) must not be allowed to fall below 80 mV - otherwise the circuit will reset and restart from zero.

The component values given in Figure 4 correspond to:
\begin{tabular}{rl}
\(V_{W}\) & \(=0.7 \mathrm{~V}\) \\
\(V_{D}\) & \(=1.13 \mathrm{~V}\) \\
\(V_{\text {spin } 1}\) & \(=5.0 \mathrm{~V}\) \\
\(V_{\text {spin } 2}\) & \(=11 \mathrm{~V}\) \\
K & \(=1.6\)
\end{tabular}


FIGURE 6 - OPEN LOOP,
SOFT-START/SOFT-STOP, LIGHTING/INDUCTIVE LOAD CONTROLLER


\section*{Designer's Data Sheet}

\section*{UNIVERSAL MOTOR SPEED CONTROLLER}

The TDA1085C is a phase angle triac controller having all the necessary functions for universal motor speed control in washing machines. It operates in closed loop configuration and provides two ramps possibilities.
- On-Chip Frequency to Voltage Converter
- On-Chip Ramps Generator
- Soft Start
- Load Current Limitation
- Tachogenerator Circuit Sensing
- Direct Supply from AC Line
- Security Functions Performed by Monitor

UNIVERSAL MOTOR SPEED CONTROLLER

LINEAR INTEGRATED CIRCUIT

FIGURE 1 - BLOCK DIAGRAM AND PIN ASSIGNMENT


MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), Voltages are referred to pin 8 [Ground])
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply, when externally regulated, \(\mathrm{V}_{\text {Pin9 }}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 15 & V \\
\hline \begin{tabular}{l}
Maximum Voltage per listed pin Pin 3 \\
Pin 4-5-6-7-13-14-16 \\
Pin 10
\end{tabular} & \(\mathrm{V}_{\text {pin }}\) & \[
\begin{gathered}
+5.0 \\
0 \text { to }+\mathrm{V}_{\mathrm{CC}} \\
0 \text { to }+17
\end{gathered}
\] & v \\
\hline \begin{tabular}{l}
Maximum Current per listed pin Pin 1 and 2 \\
Pin 3 \\
Pin \(9\left(V_{\mathrm{CC}}\right)\) \\
Pin 10 shunt regulator \\
Pin 12 \\
Pin 13
\end{tabular} & Ipin & \[
\begin{gathered}
-3.0 \text { to }+3.0 \\
-1.0 \text { to }+0 \\
15 \\
35 \\
-1.0 \text { to }+1.0 \\
-200
\end{gathered}
\] & mA \\
\hline Maximum Power Dissipation & PD & 1.0 & w \\
\hline Junction to Air Thermal Resistance & \(\mathrm{R}_{\theta \text { JA }}\) & 65 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\text {A }}\) & -10 to +120 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{VOLTAGE REGULATOR} \\
\hline Internally Regulated Voltage ( \(V_{\text {Ping }}\) ) ( \(\left.I_{\text {Pin } 7}=0, I_{\text {Pin }}+I_{\text {Pin } 10 ~}=15 \mathrm{~mA}, I_{\text {Pin } 13 ~}=0\right)\) & \(\mathrm{V}_{\mathrm{CC}}\) & 15 & 15.3 & 15.6 & V \\
\hline \(\mathrm{V}_{\text {CC }}\) Temperature Factor & TF & - & \(-100\) & - & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Current Consumption ( \({ }^{(1 P i n 9)}\)
\[
\left(V_{9}=15 V, V_{12}=V_{8}=0, I_{1}=I_{2}=100 \mu A\right.
\] \\
all other pins not connected)
\end{tabular} & \({ }^{\text {I CC }}\) & - & 4.5 & 6.0 & mA \\
\hline VCC Monitoring Enabling Level Disable Level & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{CC}} \mathrm{EN}\) \\
\(\mathrm{V}_{\mathrm{CC}}\) DIS
\end{tabular} & - & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}-0.4 \\
& \mathrm{~V}_{\mathrm{CC}}-1.0
\end{aligned}
\] & - & V \\
\hline
\end{tabular}

RAMP GENERATOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Speed Input Voltage Range & \(V_{\text {Pin5 }}\) & 0.08 & - & 13.5 & V \\
\hline Reference Input Bias Current & - IPin5 & 0 & 0.8 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Ramp Selection Input Bias Current & - IPin6 & 0 & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline Distribution Starting Level Range ( \(\mathrm{V}_{\mathrm{DS}}\) ) & \(V_{\text {Pin6 }}\) & 0 & - & 2.0 & V \\
\hline Distribution Final Level (VDF)
\[
V_{\text {Pin6 }}=0.75 \mathrm{~V}
\] & \(\mathrm{V}_{\text {DS }} / \mathrm{V}_{\text {Pin6 }}\) & 2.0 & 2.09 & 2.2 & \\
\hline High Acceleration Charging Current
\[
\begin{aligned}
& V_{\operatorname{Pin7} 7}=0 \mathrm{~V} \\
& V_{\operatorname{Pin} 7}=10 \mathrm{~V}
\end{aligned}
\] & \(-^{\prime} \mathrm{Pin7}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\overline{1.2}
\] & \[
\begin{aligned}
& 1.7 \\
& 1.4
\end{aligned}
\] & mA \\
\hline Distribution Charging Current \(V_{\text {Pin7 }}=2.0\) Volts & -P in7 & 4.0 & 5.0 & 6.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{TDA1085C}

ELECTRICAL CHARACTERISTICS (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{CURRENT LIMITER} \\
\hline \[
\begin{aligned}
& \text { Limiter Current Gain — I Pin7/IPin3 } \\
& (\operatorname{IPin3}=-300 \mu \mathrm{~A})
\end{aligned}
\] & \(\mathrm{C}_{\mathrm{g}}\) & 130 & 180 & 250 & \\
\hline Detection Threshold Voltage
\[
\text { IPin3 }=-10 \mu \mathrm{~A}
\] & VPin3 TH & 50 & 65 & 80 & mV \\
\hline
\end{tabular}

\section*{FREQUENCY TO VOLTAGE CONVERTER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Signal "Low Voltage" Input Signal "High Voltage" Monitoring Reset Voltage & \[
\begin{aligned}
& \mathrm{V}_{12 \mathrm{~L}} \\
& \mathrm{~V}_{12 \mathrm{H}} \\
& \mathrm{~V}_{12 \mathrm{R}}
\end{aligned}
\] & \[
\begin{gathered}
-100 \\
+100 \\
5.0
\end{gathered}
\] & - & - & \[
\begin{gathered}
\mathrm{mV} \\
\mathrm{mV} \\
\mathrm{~V}
\end{gathered}
\] \\
\hline Negative Clamping Voltage
\[
\operatorname{IPin} 12=-200 \mu \mathrm{~A}
\] & \(-\mathrm{V}_{12} \mathrm{CL}\) & - & 0.6 & - & V \\
\hline Input Bias Current & \(-I_{\text {Pin } 12}\) & - & 25 & - & \(\mu \mathrm{A}\) \\
\hline Internal Current Source Gain
\[
\mathrm{G}=\frac{I_{\operatorname{Pin} 4}}{I_{\operatorname{Pin} 11}}, V_{\operatorname{Pin} 4}=V_{\operatorname{Pin} 11}=0
\] & G. 0 & 10 & 10.3 & 10.5 & \\
\hline Gain Linearity versus Voltage on Pin 4 ( \(\mathrm{G}_{8.6}=\) Gain for \(V_{\text {Pin4 }}=8.6\) Volts)
\[
\begin{aligned}
& \mathrm{V}_{4}=0 \mathrm{~V} \\
& \mathrm{~V}_{4}=4.3 \mathrm{~V} \\
& \mathrm{~V}_{4}=12 \mathrm{~V}
\end{aligned}
\] & G/G8.6 & \[
\begin{gathered}
1.04 \\
1.015 \\
0.965
\end{gathered}
\] & \[
\begin{gathered}
1.05 \\
1.025 \\
0.975
\end{gathered}
\] & \[
\begin{gathered}
1.06 \\
1.035 \\
0.985
\end{gathered}
\] & \\
\hline Gain Temperature Effect ( \(\left.\mathrm{V}_{\text {Pin4 }}=0\right)\) & TF & - & 350 & - & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline Output Leakage Current ( 1 Pin11 \(=0\) ) & \({ }^{-I}\) Pin4 & 0 & - & 100 & nA \\
\hline
\end{tabular}

\section*{CONTROL AMPLIFIER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Actual Speed Input Voltage Range & \(V_{\text {Pin4 }}\) & 0 & - & 13.5 & V \\
\hline Input Offset Voltage \(\mathrm{V}_{\text {Pin5 }}\) - \(\mathrm{V}_{\text {Pin4 }}\) (IPin16 \(=0, V_{\text {Pin16 }}=3.0\) and 8.0 Volts) & \(V_{\text {off }}\) & 0 & - & 50 & mV \\
\hline \begin{tabular}{l}
Amplifier Transconductance \\
( \(\mathrm{I}_{\text {Pin16 }} / \Delta\left(\mathrm{V}_{5}-\mathrm{V}_{4}\right.\) ) \\
( \(I_{\text {Pin16 }}=+\) and \(-50 \mu \mathrm{~A}, V_{\text {Pin } 16}=3.0\) Volts)
\end{tabular} & T & 270 & 340 & 400 & \(\mu \mathrm{A} V\) \\
\hline Output Current Swing Capability Source Sink & \({ }^{1} \operatorname{Pin} 16\) & \[
\begin{gathered}
-200 \\
50
\end{gathered}
\] & \[
\begin{gathered}
-100 \\
100
\end{gathered}
\] & \[
\begin{aligned}
& -50 \\
& 200
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Output Saturation Voltage & \(V_{16 \text { sat }}\) & - & - & 0.8 & V \\
\hline
\end{tabular}

\section*{TRIGGER PULSE GENERATOR}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Synchronization Level Currents Voltage Line Sensing Triac Sensing & \begin{tabular}{l}
\({ }^{\prime}\) Pin2 \\
IPin1
\end{tabular} & & \[
\begin{aligned}
& \pm 50 \\
& \pm 50
\end{aligned}
\] & \[
\begin{aligned}
& \pm 100 \\
& \pm 100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Trigger Pulse Duration ( \(\mathrm{C}_{\operatorname{Pin} 14}=47 \mathrm{nF}, \mathrm{R}_{\operatorname{Pin} 15}=270 \mathrm{k} \Omega\) ) & \(\mathrm{T}_{\mathrm{p}}\) & - & 55 & - & \(\mu \mathrm{s}\) \\
\hline Trigger Pulse Repetition Period, conditions as a.m. & \(\mathrm{T}_{\mathrm{R}}\) & - & 220 & - & \(\mu \mathrm{S}\) \\
\hline Output Pulse Current \(\mathrm{V}_{\text {Pin13 }}=\mathrm{V}_{\text {CC }}-4.0\) Volts & - IPin13 & 180 & 192 & - & mA \\
\hline Output Leakage Current \(\mathrm{V}_{\text {Pin } 13}=-3.0\) Volts & 113 L & - & - & 30 & \(\mu \mathrm{A}\) \\
\hline Full Angle Conduction Input Voltage & \(\mathrm{V}_{14}\) & - & 11.7 & - & V \\
\hline Saw Tooth "High" Level Voltage & \(\mathrm{V}_{14} \mathrm{H}\) & 12 & - & 12.7 & V \\
\hline Saw Tooth Discharge Current, IPin15 = \(100 \mu \mathrm{~A}\) & IPin14 & 95 & - & 105 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The TDA 1085C triggers a triac accordingly to the speed regulation requirements. Motor speed is digitally sensed by a tachogenerator and then converted into an analog voltage.

The speed set is externally fixed and is applied to the internal linear regulation input after having been submitted to programmable acceleration ramps. The overall result consists in a full motor speed range with two acceleration ramps which allow efficient washing machine control (Distribute function).
Additionnally, the TDA 1085C protects the whole system against AC line stop or variations, overcurrent in the motor and tachogenerator failure.

\section*{INPUT/OUTPUT FUNCTIONS}

\section*{(Referred to Figures 1 and 8)}

VOLTAGE REGULATOR - (pins 9 and 10) This is a parallel type regulator able to sink a large amount of current and offering good characteristics. Current flow is provided from AC line by external dropping resistors R1, R2, and rectifier: This half wave current is used to feed a smoothering capacitor, the voltage of which is checked by the IC.
When \(\mathrm{V}_{\mathrm{cc}}\) is reached, the excess of current is derived by another dropping resistor R10 and by pin 10. These three resistors must be determined in order:
- to let 1 mA flow through pin 10 when AC line is minimum and \(V_{c c}\) consumption is maximum (fast ramps and pulses present).
- to let \(\mathrm{V}_{10}\) reach 3 V when AC line provides maximum current and \(V_{\text {cc }}\) consumption is minimum (no ramps and no pulses).
- all along the main line cycle, the pin 10 dynamic range must not be exceeded unless loss of regulation.
An AC line supply failure would cause shut down.
The double capacitive filter built with \(R_{1}\) and \(R_{2}\) gives an efficient \(V_{c c}\) smoothing and helps to remove noise from set speeds.

SPEED SENSING - (pins 4-11-12) The IC is compatible with an external analog speed sensing: its output must be applied to pin 4, and pin 12 connected to pin 8.

In most of the applications it is more convenient to use a digital speed sensing with an unexpensive tachogenerator which doesn't need any tuning. During every positive cycle at pin 12, the capacitor \(C_{\text {pin }} 11\) is charged to almost \(V_{c c}\) and during this time, pin 4 delivers a current which is 10 time the one charging \(C_{\text {pin }} 11\). The current source gain is called \(G\) and is tightly specified, but nevertheless requires an adjustment on \(R_{\text {pin 4 4 }}\). The current into this resistor is proportional to \(\mathrm{C}_{\text {pin }} 11\) and to the motor speed; being filtered by a capacitor, \(V_{\text {pin }} 4\) becomes smoothered and represents the "true actual motor speed".
To maintain linearity into the high speed range, it is important to verify that \(\mathrm{C}_{\text {pin }} 11\) is fully charged: the internal source on pin 11 has \(100 \mathrm{~K} \Omega\) impedance. Nevertheless \(C_{\text {pin }} 11\) has to be as high as possible as it has a large influence on FV/C temperature factor. A \(470 \mathrm{~K} \Omega\) resistor between pins 11 and 9 reduces leakage currents and temperature factor as well, down to neglectable effects.

Pin 12 has also a monitoring function: when its voltage is above \(\dot{5} \mathrm{~V}\), the trigger pulses are inhibited and the IC is reset. It also senses the tachogenerator continuity and in case of any circuit aperture, it inhibits pulse, avoiding the motor to run out of control. In the TDA 1085C, pin 12 is negatively clamped by an internal diode which removes the necessity of the external one used in the former circuit.

RAMP GENERATOR - (pins 5-6-7) The true Set Speed value taken in consideration by the regulation is the output of the ramp generator (pin 7). With a given value of speed set input ( \(p\) in 5 ), the ramp generator charges an external capacitor \(\mathrm{C}_{\text {pin }} 7\) up to the moment \(\mathrm{V}_{\text {pin } 5}\) (set speed) equals \(\mathrm{V}_{\text {pin }} 4\) (true speed), see fig. 2. The IC has an internal charging current source of 1.2 mA and delivers it from 0 to 12 V at pin 7 . It is the high acceleration ramp ( 5 seconds typ.) which allows rapid motor speed changes without excessive strains on the mechanics. The TDA 1085 C offers in addition the possibility to break this high acceleration with the introduction of a low acceleration ramp (called Distribution) by reducing the pin 7 source current down to \(5 \mu \mathrm{~A}\) under pin 6 full control, as shown by following conditions:
- Presence of high acceleration ramp \(V_{\text {pin }} 5>V_{\text {pin }} 4\)
- Distribution occurs in the \(V_{\text {pin }} 4\) range (true motor speed) defined by \(V_{\text {pin }} 6 \leqq V_{\text {pin }} 4 \leqq 2 V_{\text {pin }} 6\)
For two fixed values of \(V_{\text {pin }} 5\) and \(V_{\text {pin }} 6\), the motor speed will have high acceleration, excluding the time for \(V_{\text {pin }} 4\) to go from \(V_{\text {pin }} 6\) to two times this value, high acceleration again, up to the moment the motor has reached the set speed value, at which it will stay, see fig. 3 .
Should a reset happen (whatever the cause would be), the above mentionned successive ramps will be fully reprocessed from 0 to the max. speed. If \(\mathrm{V}_{\text {pin }} 6=0\), only the high acceleration ramp occurs.
To get a real zero speed position, pin 5 has been designed in such a way that its voltage from 0 to 80 mV is interpreted as a true zero. As a consequence, when changing the speed set position, the designer must be sure that any transient zero would not occur: if any, the entire circuit will be reset.
As the voltages applied by pins 5 and 6, are derived from the internal voltage regulator supply and pin 4 voltage is also derived from the same source, motor speed, which is determined by the ratios between above mentioned voltages, is totally independent from \(V_{c c}\) variations and temperature factor.

CONTROL AMPLIFIER - (pin 16) It amplifies the difference between true speed ( \(\operatorname{pin} 4\) ) and set speed ( \(\operatorname{pin} 5\) ), through the ramp generator. Its output available at pin 16 is a double sense current source with a max. capability of \(\pm 100 \mu \mathrm{~A}\) and a specified transconductance ( \(340 \mu \mathrm{~A} / \mathrm{v}\). typ.). Pin 16 drives directly the trigger pulse generator, and must be loaded by an electrical network which compensates the mechanical characteristics of the motor and its load, in order to provide stability in any condition and shortest transient response, see fig. 4.
This network must be adjusted experimentally.
In case of a periodic torque variations, pin 16 provides directly the phase angle oscillations.

TRIGGER PULSE GENERATOR - (pins 5 1-2-13-14-15)
This circuit performs four functions:
- The conversion of the control amplifier DC output level to a proportionnal firing angle at every main line half cycle.
- The calibration of pulse duration.
- The repetition of the pulse if the triac fails to latch on if the current has been interrupted by brush bounce.
- The delay of firing pulse until the current crosses zero at wide firing angles and inductive loads.
\(R_{\text {pin }} 15\) programs the pin 14 discharging current. Saw-tooth signal is then fully determined by R15 and C14 (usually 47 nF ). Firing pulse duration and repetition period are in inverse ratio to the saw-tooth slope.
Pin 13 is the pulse output and an external limiting resistor is mandatory. Max current capability is 200 mA .

CURRENT LIMITER - (pin 3) Safe operation of the motor and triac under all conditions is ensured by limiting the peak current. The motor current develops an alternative voltage in the shunt resistor ( 0.05 ohm in fig. 4). The negative half waves are transferred to pin 3 which is positively preset at a voltage determined by resistors \(\mathrm{R}_{3}\) and \(\mathrm{R}_{4}\). As motor current increases, the dynamical voltage range of pin 3 increases and when pin 3 becomes slightly negative in respect of pin 8 a current starts to circulate in it. This current, amplified typically 180 times, is then used to discharge pin 7 capacitor and, as a result, reduces firing angle down to a value where an equilibrium is reached. The choice of resistors \(\mathrm{R}_{3}, \mathrm{R}_{4}\) and shunt determines the magnitude of the discharge current signals on \(\mathrm{C}_{\text {pin }} 7\).

Notice that the current limiter acts only on peak Triac current.

\section*{APPLICATION NOTES}

\section*{(Referred to Figure 4)}

\section*{PRINTED CIRCUIT LAYOUT RULES}

In the common applications, where TDA 1085C is used, there is on the same board, presence of high voltage; high currents as well as low voltage signals where millivolts count. It is of first magnitude importance to separate them each other and to respect following rules:
- Capacitors decoupling pins which are the inputs of the same comparator, must be physically close to the IC, close to each other and grounded in the same point.
- Ground connexion for tachogenerator must be directly connected to pin 8 and should ground only the tacho. In effect the latter is a first magnitude noise generator due to its proximity of the motor which induces high \(\mathrm{d} \varnothing / \mathrm{dt}\) signals.
- The ground pattern must be in the "star style", in order to fully eliminate power currents flowing in the ground network devoted to capacitors decoupling sensitive pins: (4-5-7-11-12-14-16).
As an example, fig. 5 presents a PC board pattern which concerns the group of sensitive pins and their associated capacitors into which the a.m. rules have been implemented. Notice the full separation of "Signal World" from "Power" one by line \(A B\) and their communication by a unique strip.
These rules will lead to much satisfactory volume production
in the sense that speed adjustment will stay valid in the entire speed range.

\section*{POWER SUPPPLY}

As dropping resistor dissipates noticeable power, it is necessary to reduce the \(I_{c c}\) needs down to a minimum. Triggering pulses, if a certain number of repetition is in reserve to cope with motor brush wearing at end of its life, are the largest \(I_{c c}\) user. Classical worst case configuration have to be considered to select dropping resistor. In addition the parallel regulator must be always into its dynamic range, i.e. Ipin 10 over 1 mA and \(V_{\text {pin }} 10\) over 3 volt in any extreme configuraton. The double filtering cell is mandatory.

\section*{TACHOGENERATOR CIRCUIT}

The tacho signal voltage is proportional to the motor speed. Stability considerations, in addition, require a RC filter the pole of which must be looked at. The combination of both elements yield a constant amplitude signal on pin 12 in most of the speed range. It is recommended to verify this maximum amplitude to be within 1 volt peak in order to have the largest signal/noise ratio without resetting the integrated circuit (which occurs if \(\mathrm{V}_{\text {pin }} 12\) reaches 5.5 V ). It must be also verified that the pin 12 signal is approximately balanced between "High" (over 300 mV ) and "Low". A 8 poles tacho is a minimum for low speed stability and a 16 poles is even better.
The RC pole of the tacho circuit should be chosen within 30 Hz in order to be as far as possible from the 150 Hz which corresponds to the AC line 3rd harmonic generated by the motor during starting procedure. In addition, a high value resistor coming from \(V_{c c}\) introduces a positive offset at pin 12, removes noise to be interpreted as a tacho signal. This offset should be designed in order to let pin 12 to reach at least 200 mV (negative voltage) at the lowest motor speed. We remember the necessity of an individual tacho ground connection.

\section*{FREQUENCY TO VOLTAGE CONVERTER - F V/C}
\(\mathrm{C}_{\text {pin }} 11\) has a recommended value of 820 pF for 8 poles tachos and max. motor rpm of 15000, and \(R_{\text {pin }} 11\) must be always 470 K .
\(R_{\text {pin }} 4\) should be choosen to deliver within 12 volts at maximum motor speed in order to maximize signal/noise ratio. As the \(\mathrm{FV} / \mathrm{C}\) ratio as well as the \(\mathrm{C}_{\text {pin }} 11\) value are dispersed, Rpin 4 must be adjustable and should be made of a fixed resistor in serie with a trimmer representing \(25 \%\) of the total. Adjustment would become easier.

Once adjusted, for instance at maximum motor speed, the F V/C presents a residual non linearity; the conversion factor (mV per R.P.M.) increases by within \(7.7 \%\) as speed tends to zero. The guaranteed dispersion of the latter being very narrow, a maximum \(1 \%\) speed error is guaranteed if during pin 5 network design the small set values are modified, once for ever, according this increase.

The following formulae gives \(V_{\text {pin }} 4\) :
\(V_{\text {pin4 }}=140 \cdot C_{\text {pin11 }} \cdot R_{4} \cdot f \cdot \frac{1}{\left(1+\frac{180 k}{R_{\text {pin11 }}}\right)}\) in volt per Hertz.
SPEED SET - (pin 5) Upon designer choice, a set of external resistors apply a serie of various voltages corresponding to the various motor speeds. When switching external resistors, verify that a voltage below 80 mV in never applied to pin 5 , if no, a full circuit reset will occur.

\section*{TDA1085C}

RAMPS GENERATOR - (pin 6) If only a high acceleration ramp is needed, connect pin 6 to ground.
When a Distribute ramp should occur, pre-set a voltage on pin 6 to which corresponds the motor speed starting ramp point. Distribution (or low ramp) will continue up to the moment the motor speed would have reached twice the starting value.
The ratio of two is imposed by the IC. Nevertheless it could be externally changed downwards (fig. 6) or upwards (fig. 7).

The distribution ramp can be shortened by an external resistor from \(\mathrm{V}_{\mathrm{cc}}\) charging \(\mathrm{C}_{\text {pin }} 7\), adding its current to the internal \(5 \mu \mathrm{~A}\) generator

\section*{POWER CIRCUITS}

Triac Triggering pulse amplitude must be determined by Pin 13 resistor according the needs in Quadrant IV. Trigger pulses duration can be disturbed by noise signals, generated by the triac itself, which interfere within pins 14 and 16, precisely those which determine it. While easily visible this effect is harmless.

Triac must be protected from high AC line dV/dt during external disturbances by \(100 \mathrm{nF} \times 100 \Omega\) network.
Shunt resistor must be as non selfic as possible. It can be made locally by Constantan alloy wiring.

When the load is a DC fed universal motor through a rectifier

FIGURE 2 - ACCELERATION RAMP

bridge, the triac must be protected from commutating \(\mathrm{dV} / \mathrm{dt}\) by a 1 to 2 mH coil in serie with \(\mathrm{MT}_{2}\).

Synchronisation functions are performed by resistors sensing AC line and triac conduction. 820 K values are usual but could be reduced down to 330 K in order to detect the Zeros with accuracy and to reduce the residual DC line component below 20 mA .

\section*{CURRENT LIMITATION}

The current limiter starts to discharge pin 7 capacitor (reference speed) as Motor current reaches the designed threshold level. The loop gain is determined by the resistor connecting pin 3 to the serie shunt. Experience has shown that its optimal value for a 10 A rms limitation is within \(2 \mathrm{~K} \Omega\). Pin 3 input has a sensitivity in current which is limited to reasonable values and should not react to spikes.

If not used, pin 3 must be connected to a max. positive voltage of 5 V rather to be left open.

\section*{LOOP STABILITY}

The pin 16 network is predominant and must be adjusted experimentally during module development. The values indicated in fig. 4 are typical for washing machines applications but accept large modifications from one model to another. R16, it is the sole restriction, should not be below 33 k otherwise slew rate limitation will cause large transient errors for load steps.


Current limitation: 10 A adjusted by \(\mathrm{R}_{4}\) experimentally
Ramps High acceleration: 3200 rpm per second
Distribution ramp: 10 s from 850 to 1300 rpm

Speeds:
Wash 800 rpm
Distribution 1300
Spin 1:7500
Spin 2:15000

Pin 5 voltage Set:
609 mV Including non linearity corrections 996 mV Including non linearity corrections 5.912 V Including non linearity corrections 12,000V Adjustment poin

Motor Speed Range : 0 to 15000 rpm
Tachogenerator
8 poles
delivering 30 v peak to peak at 6000 rpm , in open circuit
FV/C Factor: \(\cdot 8 \mathrm{mV}\) per rpm ( 12 v full speed) \(\quad \mathrm{C}_{\text {pin11 }}=680 \mathrm{pF} \quad \mathrm{V}_{\mathrm{CC}}=15.3 \mathrm{v}\)
Triac MAC \(15 \mathrm{~A}-815 \mathrm{~A} 600 \mathrm{v}\)
Igt \(\mathrm{min}=90 \mathrm{~mA}\) to cover Quad. IV at \(-10^{\circ} \mathrm{C}\)


FIGURE 6 - DISTRIBUTION SPEED \(\mathbf{k}<2\)


FIGURE 7 - DISTRIBUTON SPEED k > 2


FIGURE 8 - INTERNAL CONFIGURATION


\section*{Specifications and Applications Information}

\section*{TRIAC PHASE ANGLE CONTROLLER}

The TDA1185A generates controlled triac triggering pulses and allows tacholess speed stabilization of universal motors by an integrated positive feedback function. Typical applications are power hand tools, vacuum cleaners, mixers and other small appliances.
- Low Cost External Components Count
- Optimum Triac Firing (2nd and 3rd Quadrants)
- Repetitive Trigger Pulses When Triac Current is Interrupted by Motor Brush Bounce
- Triac Current Sensed to Allow Inductive Loads
- Soft Start
- Power Failure Detection and General Circuit Reset
- Low Power Consumption: 1.0 mA

TRIAC PHASE ANGLE CONTROLLER

SILICON MONOLITHIC INTEGRATED CIRCUIT

FIGURE 1 - TYPICAL SYSTEM CONFIGURATION - INTERNAL BLOCK DIAGRAM/PIN ASSIGNMENT


MAXIMUM RATINGS (Voltages are referred to Pin 14 (ground) unless otherwise noted)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \begin{tabular}{l}
Maximum Voltage Range per Listed Pin Pins 3-5-11 (not connected) \\
Pins 4-8-13 \\
Pin 2 \\
Maximum Positive Voltage (No minimum value allowed; see current ratings)
\end{tabular} & \begin{tabular}{l}
\(V_{\text {Pin }}\) \\
\(V_{\text {Pin }} 12\) \\
\(V_{\text {Pin }} 1\)
\end{tabular} & \[
\begin{gathered}
-20 \text { to }+20 \\
-V_{C C} \text { to } 0 \\
-3.0 \text { to }+3.0 \\
+0 \\
+0.5
\end{gathered}
\] & Volt \\
\hline \begin{tabular}{l}
Maximum Current per Listed Pin Pin 1 \\
Pins 6 and 7 \\
Pin 9 \\
Pin 10 \\
Pin 12
\end{tabular} & \({ }^{\prime}\) Pin & \[
\begin{aligned}
& \pm 20 \\
& \pm 2.0 \\
& \pm 0.5 \\
& \pm 300 \\
& -500
\end{aligned}
\] & \begin{tabular}{l}
mA \\
mA \\
mA \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline Maximum Power Dissipation (at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) & PD & 250 & mW \\
\hline Maximum Junction to Ambient Thermal Resistance & \(\mathrm{R}_{\theta J \mathrm{~A}}\) & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Ambient Temperature Range & TA & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\) Voltages are related to Pin 14 (ground)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Power Supply \\
Zener Regulated Voltage, \(\left(V_{\text {Pin 1 }}\right) I_{\text {Pin }} 1=2.0 \mathrm{~mA}\) Circuit Current Consumption, Ipin 1
\[
V_{\operatorname{Pin} 1}=-6.0 \mathrm{~V}, \mathrm{I}_{\operatorname{Pin} 2}=0 \mathrm{~V}
\]
\end{tabular} & \[
\begin{aligned}
& -V_{C C} \\
& -I_{C C}
\end{aligned}
\] & \[
\begin{aligned}
& -9.6 \\
& -2.0
\end{aligned}
\] & \[
\begin{aligned}
& -8.6 \\
& -1.0
\end{aligned}
\] & \[
-7.6
\]
\(\qquad\) & \begin{tabular}{l}
Volt \\
mA
\end{tabular} \\
\hline \begin{tabular}{l}
Monitoring Enable Supply Voltage ( \(\mathrm{V}_{\mathrm{EN}}\) ) \\
Monitoring Disable Supply Voltage (VIS)
\end{tabular} & \begin{tabular}{l}
\(V_{\text {Pin 1EN }}\) \\
\(V_{\text {Pin 1 }}\) DIS
\end{tabular} & \[
\begin{gathered}
V_{C C}+0.2 \\
V_{E N}+0.12 \\
\hline
\end{gathered}
\] & - & \[
\begin{array}{|l|}
\hline \mathrm{V}_{\mathrm{CC}}+0.5 \\
\mathrm{~V}_{\mathrm{EN}}+0.3 \\
\hline
\end{array}
\] & Volt \\
\hline Phase Set Control Voltage Static Offset \(\mathrm{V}_{\text {Pin }} 8-\mathrm{V}_{\text {Pin }} 12\) Pin 12 Input Bias Current \(V_{\text {Pin }} 4-V_{\text {Pin }} 12\) Residual Offset & \[
\begin{gathered}
V_{\text {off }} \\
\text { IPin } 12
\end{gathered}
\] & \[
\begin{gathered}
1.2 \\
-200
\end{gathered}
\] & \[
\frac{-}{180}
\] & \[
\begin{gathered}
1.8 \\
0 \\
-
\end{gathered}
\] & Volt nA mV \\
\hline \begin{tabular}{l}
Soft Start Capacitor Charging Current \\
RPin \(10=100 \mathrm{k} \Omega, V_{\text {Pin }} 13\) from \(-V_{C C}\) to -3.0 Volts
\end{tabular} & IPin 13 & -17 & -14 & -11 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Sawtooth Generator \\
Sawtooth Capacitor Discharge Current \\
\(R_{10}=100 \mathrm{k} \Omega \quad V_{\text {Pin }} 4\) from -2.0 to -6.0 Volts \\
Capacitor Charging Current \\
Sawtooth "High" Voltage ( \(V_{\text {Pin 4 }}\) ) \\
Sawtooth Minimum "Low" Voltage (VPin 4) referred to Pin 1
\end{tabular} & \begin{tabular}{l}
IPin 4 \\
IPin 4 \\
\(\mathrm{V}_{\mathrm{HTH}}\) \\
\(V_{\text {LTH }}\)
\end{tabular} & \[
\begin{gathered}
67 \\
-10 \\
-2.5
\end{gathered}
\] & \[
\begin{gathered}
70 \\
-1.6 \\
+1.5
\end{gathered}
\] & \[
\begin{gathered}
73 \\
-1.5 \\
-1.0
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA \\
Volt \\
Volt
\end{tabular} \\
\hline \begin{tabular}{l}
Positive Feedback \\
Pin 9 Input Bias Current, \(V_{\text {Pin }} 9=0\) \\
Programming Pin Voltage Related to Pin 1 \\
Transfer Function Gain \(\Delta \mathrm{V}_{\text {Pin }} 8 / \Delta \mathrm{V}_{\text {Pin }} 9\)
\[
\begin{aligned}
& \mathrm{R}_{10}=100 \mathrm{k} \Omega, \Delta \mathrm{~V}_{\text {Pin }} 9=50 \mathrm{mV} \\
& \mathrm{R}_{10}=270 \mathrm{k} \Omega, \Delta \mathrm{~V}_{\text {Pin }} 9=50 \mathrm{mV}
\end{aligned}
\] \\
Pin 8 Output Internal Impedance
\end{tabular} & \begin{tabular}{l}
IPin 9 \\
\(V_{\text {Pin }} 10\) \\
A \\
A \\
\(Z_{\text {Pin }} 8\)
\end{tabular} & \(\overline{1}\) & \[
\left\lvert\, \begin{gathered}
2 \times I \operatorname{Pin} 10 \\
1.25 \\
\\
75 \\
36 \\
120
\end{gathered}\right.
\] & \[
\overline{1.5}
\] & Volt
\[
\mathrm{k} \Omega
\] \\
\hline \begin{tabular}{l}
Trigger Pulse Generator \\
Output Current (Sink)
\[
V_{\text {Pin } 2}=0 \mathrm{~V}
\] \\
Output Leakage Current
\[
V_{\operatorname{Pin} 2}=+2.0 \mathrm{~V}
\] \\
Output Pulse Width
\[
\mathrm{C}_{1}=47 \mathrm{nF} \quad \mathrm{R}_{10}=270 \mathrm{k} \Omega
\] \\
Output Pulse Repetition Period
\[
\mathrm{C}_{1}=47 \mathrm{nF} \quad \mathrm{R}_{10}=270 \mathrm{k} \Omega
\] \\
Current Synchronization Threshold Levels IPin 6, IPin 7
\end{tabular} & \begin{tabular}{l}
IPin 2 \\
tp \\
t ISYNC
\end{tabular} & 60
-
-
-
-40 & -
55
420
- & \[
\begin{gathered}
80 \\
4.0 \\
- \\
- \\
+40
\end{gathered}
\] & mA
\(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{CIRCUIT DESCRIPTION}

The TDA1185A generates trigger pulses for triac control of power into an ac load. The firing angle is determined by generating a ramp voltage synchronized to the ac line half cycle and compared to an external set voltage representing the conduction angle.

Gate pulses are negative (sink current) and thus the triac is driven in its most effective quadrants (Q2-Q3).

If the load is a Universal motor (the speed of which is decreasing as torque increases), the TDA1185A allows to increase the firing angle proportionally to the
motor current, sensed by a low value series resistor.

Notice: Perfect motor speed compensation cannot be provided by open-loop systems, since no negative feedback is used. Due to the low cost of tacholess systems, the TDA1185A is the optimum solution for applications tolerating \(5 \%\) motor speed variations.

Nevertheless by accurate circuit design, these variations can be reduced down to \(2 \%\) from no load to full load conditions.

\section*{CIRCUIT FUNCTIONS}

DC POWER SUPPLY - DC power is directly derived from the ac line through a 2.0 watt, \(18 \mathrm{k} \Omega\) resistor, rectifier and filtering capacitor circuit. The latter being directly connected to the dropping resistor protects the whole IC from any ac line overvoltage. The \(-\mathrm{V}_{\mathrm{CC}}\) voltage is internally regulated by an integrated zener. Referred to Pin 14 (ground) the power supply voltage is negative ( -8.6 volts). The TDA1185A internal consumption is 1.0 mA .
TRIGGER PULSE GENERATOR - It delivers a 60 mA minimum pulse current (sink) through an internally short-circuit protected output. Pulse width is roughly proportional to \(R_{10} \cdot C_{4}\) and is repeated every \(420 \mu \mathrm{~s}\) if triac fails to latch or is switched off by brush bounce. With inductive loads, the current lags in respect of the voltage: Pin 6 delays the triggering pulse up to the moment the triac is off, in order to prevent erratic power control (see Figure 2). The logic structure guarantees full-wave triac operation.

SAWTOOTH GENERATOR - A constant current generator discharges the capacitor \(\mathrm{C}_{4}\), the voltage of which is the sawtooth signal synchronized with main line. Pin 4 voltage is reset to -1.6 volt at every ac line zero crossing (see Figure 3). The constant current generator is externally programmable by an external resistor connected to Pin 10:
\[
\begin{aligned}
& I_{\operatorname{Pin} 4}=I_{\operatorname{Pin}} 1010 \pm 5 \% \\
& I_{\operatorname{Pin} 10}=\frac{-V_{C C} \pm 1.25}{R_{10}}
\end{aligned}
\]

MAIN COMPARATOR - Its role is to determine the trigger pulse time which occurs as the sawtooth voltage equals set voltage. Fixed set values lead to a constant triac conduction angle unless positive current feedback is connected or soft start capacitor is not charged.

SOFT START - The TDA1185A allows the user to avoid any abrupt inrush current in the load, for various purposes: motor soft start, protection of high performance bulbs or ac line minimum disturbances.

The firing angle is established from zero to the set value according to a voltage ramp generated by a constant current delivered to capacitor \(\mathrm{C}_{13}\). The constant current value is:
\[
I_{\operatorname{Pin} 13}=0.2 \times I_{\operatorname{Pin}} 10 \pm 10 \%
\]

The voltage ramp lasts as long as \(V_{\text {Pin }} 13\) is lower than \(V_{\text {Pin }} 12\). \(V_{\text {Pin }} 13\) reset voltage is \(-V_{\text {CC }}\). See Figure 4.

Notice. Universal motors do not have any motion effect as long as a minimum conduction angle is not reached. The time the voltage ramp reaches this threshold value is considered as "dead" time and can be eliminated by a series resistor at Pin 13. The voltage drop developed by IPin 13 makes the firing angle immediately reach the threshold value and have the soft start function without dead time. See Figure 5.

POSITIVE CURRENT FEEDBACK - The Universal motor speed drops as load increases. To maintain it as stable as possible, the triac firing angle must be increased. For this purpose the Pin 9 input senses the motor current as a voltage developed in a low resistor value, \(R_{g}\), amplifies, rectifies and adds it to Pin 12 set voltage. The transfer function \(\Delta V_{\text {Pin }} 8=f\left(\Delta V_{\text {Pin }} 9\right)\) and is represented on Figure 6.

The gain in the linear region is dependent on \(R_{10}\). The voltage transferred to Pin 8 is proportional to the average value of the motor current and is very close to its RMS value (as motor current is not far from a sine wave). This averaging effect is represented in Figure 7.

For large amplitude Pin 9 signals, the am function presents a saturation effect which limits the maximum firing angle increase. Figure 8 presents this aspect as well as the total Pin 8 voltage which is:
\[
V_{\text {Pin } 8}=V_{\text {Pin } 12}+f\left(\left|V_{\text {Pin } 9}\right| R_{10}\right)+\text { offset }
\]

The offset is the addition of two PN Junctions and is compensated with respect to \(V_{\text {Pin }} 4\) (sawtooth) by additional diodes within the main comparator (See Figure 10).

The effect of positive feedback is described per Figure 9.

MONITORING - A central logic block performs the following functions: - ENABLE/DISABLE of the IC with respect to power supply voltage. Under DISABLE conditions, Pins 4, 8, 12, and 13 are forced to appropriate voltages to prepare for the next reset (See Figure 10).

\section*{APPLICATION CONSIDERATIONS}

PINS CHARACTERISTICS - Figure 10 describes more details in the internal IC layout and defines the pin characteristics. Pin 9 has a low internal impedance and requires a maximum \(100 \Omega\) trimmer on \(R_{g}\) to adjust reaction ratio. Pin 8 must always be connected to \(-\mathrm{V}_{\mathrm{CC}}\) through a filtering capacitor.
TEMPERATURE EFFECTS - The TDA1185A has very efficient internal temperature compensation. If positive current feedback is not connected, the RMS power delivered to the load is stabilized within \(\pm 0.2 \%\) over a temperature range of +20 to \(+70^{\circ} \mathrm{C}\). The positive feedback introduces in the same temperature range, a drift of 250 mV on \(\mathrm{V}_{\text {Pin }}\); this slight firing angle increase may be successfully used to compensate a motor ohmic resistance increase with temperature as well.
MAIN LINE VOLTAGE COMPENSATION - As the firing angle is independent of main line voltage, any change in the latter (usually \(\pm 15 \%\) ) induces a very large power
variation to the load. An external compensation must be used, introducing a \(V_{\text {Pin }} 12\) decrease as \(V_{\text {mains }}\) increases. An inexpensive resistor R\({ }_{\text {COMP, }}\) connected to the rectifier anode and to Pin 12 performs this role and its value depends on \(\mathrm{V}_{\text {Pin } 12}, \mathrm{R}_{10} \mathrm{C}_{4}, \mathrm{R}_{12}\). \(\mathrm{R}_{\text {COMP }}\) can be empirically determined without difficulty under no load conditions.

FIRING ANGLE DYNAMIC - With purely resistive loads, the effective RMS applied power to the load is an increasing function of the firing angle (per Figure 11). We notice the fact that a firing angle of \(150^{\circ}\) provides \(97 \%\) of the full power corresponding to \(180^{\circ}\).
With inductive loads, as currents lag with respect to Voltage, \(100 \%\) power corresponds to a firing angle which is smaller than \(180^{\circ}\).
These considerations will simplify positive feedback design if maximum firing angle is accepted to be within \(150-160^{\circ}\).
 generated up to the moment latching oocurs.

The triac turned off due to brush bounce, a new puise is immediately delivered.

FIGURE 3 - TRIGGERING PULSE TIMING


FIGURE 4 - SOFT START


FIGURE 5 - SOFT START WITHOUT DEAD TIME


FIGURE 6 - TRANSFER FUNCTION


FIGURE 7 - AVERAGING EFFECT OF TRANSFER FUNCTION


FIGURE 8 - TRANSFER FUNCTION (Pin 8/Pin 9)


FIGURE 9 - POSITIVE FEEDBACK EFFECT
offset Voltages have been neglected


FIGURE 10 - INTERNAL BLOCK DIAGRAM


FIGURE 11 - EFFECTIVE POWER AS A FUNCTION OF FIRING ANGLE


\section*{MOTOR SPEED CONTROLLER}

The TDA1285A has all the necessary functions for the speed control of universal motors in a closed loop configuration. Directly driven from the ac line, the circuits generate a phase angle varied trigger pulse to the control triac. In addition it provides the following features:
- Full Wave Triac Drive
- Repeated Trigger Pulse if Triac Fails to Latch
- Over 65 mA Output Pulse Current
- Automatic Adaptation to Inductive or Hall Effect Sensors
- Sensor Circuit Continuity Detection
- Motor Current Limitation
- Controlled Motor Starting Acceleration
- Typical 1-2\% Motor Speed Variation Within All Temperature and Load Ranges

UNIVERSAL MOTOR SPEED CONTROLLER

SILICON MONOLITHIC INTEGRATED CIRCUIT


PLASTIC PACKAGE
CASE 648-06

FIGURE 1 - BLOCK DIAGRAM AND PIN ASSIGNMENT


MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Symbol & Value & Unit \\
\hline Supply Current & IPin 9 RMS & 20 & mA \\
\hline Peak Supply Current, \(t<250 \mu \mathrm{~s}\) & 1 Pin 9 PEAK & 200 & mA \\
\hline Regulated Supply Current Drain & IPin 10 & 10 & mA \\
\hline Peak ac Synchronization Input Currents & \begin{tabular}{l}
IPin 1 \\
IPin 2
\end{tabular} & \[
\begin{array}{r} 
\pm 2.0 \\
\pm 2.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA} \\
& \hline
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Current Drain per Listed Pin} & 13 & \[
\begin{aligned}
& -1.0 \\
& +2.0
\end{aligned}
\] & mA \\
\hline & 112 & \[
\begin{aligned}
& +500 \\
& -4.0
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline & \({ }^{1} 6\) & \[
\begin{aligned}
& -7.0 \\
& +1.0
\end{aligned}
\] & mA \\
\hline & 115 & + 1.0 & mA \\
\hline Pin 3 Reverse Voltage & \(V_{\text {Pin }} 3\) & -5.0 & V \\
\hline Power Dissipation ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) Derate above \(25^{\circ} \mathrm{C}\) & \[
\begin{gathered}
\mathrm{PD}_{\mathrm{D}} \\
1 / \mathrm{R}_{\theta J \mathrm{~A}}
\end{gathered}
\] & \[
\begin{aligned}
& 625 \\
& 6.8 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Operating Temperature Range & TA & 0 to 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS ( \(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline ```
Power Supply
    Zener Regulated Voltage, Ipin \(9=20 \mathrm{~mA}\)
    Regulated Supply Voltage (Pin 10)
        \(I_{\text {Pin }} 10=0 ; I_{\text {Pin }} 13=0 ; \mid \operatorname{Pin} 15=0\)
        \(\left.\right|_{\text {Pin } 7}=0 ; V_{\text {Pin } 9}=18 \mathrm{~V}\)
Current Consumption (I \(\operatorname{Pin} 9\) )
        \(I_{\operatorname{Pin} 6}=0 ; I_{\operatorname{Pin}} 13=0 ; I_{\operatorname{Pin} 10=0} 10\)
        \(I_{\text {Pin }} 15=0 ; I_{\operatorname{Pin}} 7=0 ; V_{\text {Pin }} 9=18 \mathrm{~V}\)
``` & \begin{tabular}{l}
\(V_{\text {Pin }} 9\) \(V_{C C}\) \\
\({ }^{\prime} \mathrm{CC}\)
\end{tabular} & \[
\begin{gathered}
19 \\
13.6
\end{gathered}
\] & \[
\begin{aligned}
& 20.5 \\
& 14.6 \\
& 4.5
\end{aligned}
\] & \[
\begin{gathered}
23 \\
15.6 \\
7.0
\end{gathered}
\] & V
\[
\mathrm{mA}
\] \\
\hline \[
\begin{aligned}
& \text { Speed Reference } \\
& \text { Reference Input Voltage Range } \\
& \text { Reference Input Bias Current (VPin } 5: 0 \text { to }+12 \mathrm{~V} \text {) }
\end{aligned}
\] & \(V_{\text {Pin } 5}\) IPin 5 & \[
\begin{gathered}
0 \\
-2.0
\end{gathered}
\] & - & \[
\begin{gathered}
12 \\
0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
V \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Frequency to Voltage Converter \\
Inductive Sensor Application Range \\
Hall-Effect Sensor Application Range \\
Maximum Input Signal Voltage \\
Common-Mode Reference Voltage \\
Polarization Current \(\left(-5.0 \mathrm{~V}<\mathrm{V}_{\text {Pin }} 12-\mathrm{V}_{\text {Pin }} 6<+5.0 \mathrm{~V}\right.\)) \\
Threshold Hysteresis Voltage (See Figure 4) \\
Floating Input Voltage (1 Pin \(12=0\))
\end{tabular} & IPin 6
\(I_{\text {Pin }} 6\)
\(V_{\text {Pin }} 12-V_{\text {Pin }} 6\)
\(V_{\text {Pin }}\)
IPin 12
(Vensor \(\left.-V_{\text {Pin } 6}\right)\) THRS
\(V_{\text {Pin } 12}\) & \[
\begin{gathered}
-2.5 \\
-8.0 \\
-5.0 \\
- \\
- \\
-
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& 5.0 \\
& -50 \\
& \pm 60
\end{aligned}
\] & \[
\begin{gathered}
0 \\
-3.5 \\
+5.0 \\
- \\
- \\
-
\end{gathered}
\] & \begin{tabular}{l}
mA \\
mA \\
V \\
V \\
\(\mu \mathrm{A}\) \\
mV \\
V
\end{tabular} \\
\hline \begin{tabular}{l}
Main Comparator \\
Output Voltage Range (1 Pin \(16=0\)) \\
Output Current Swing \\
Transconductance \(\left(I_{\text {Pin }} 7=0 ; I_{\text {Pin }} 10=0 ; V_{\text {Pin }} 16=5.2 \mathrm{~V}\right.\)) \\
Output Resistance \\
Offset Voltage (\(\left(I_{\text {Pin }} 7=0\right.\); \(\left.I_{\text {Pin } 16}=0 ; V_{\text {Pin } 16}=5.0 \mathrm{~V}\right)\)
\end{tabular} & \begin{tabular}{l}
\(V_{\text {Pin }} 16\) \\
IPin 16 \\
\(\Delta l_{\text {Pin }} 16\) \\
\(\Delta V_{\text {Pin }} 4\) \\
\(R_{\text {out }}\) Pin 16 \\
\(V_{\text {Pin } 5}-V_{\text {Pin }} 4\)
\end{tabular} & \(\overline{140}\)
-
-20 & \[
\begin{gathered}
0 ;+12 \\
\pm 100 \\
205 \\
\\
10^{6} \\
0 \\
\hline
\end{gathered}
\] & -
265
-
+20 & \[
\begin{gathered}
\mathrm{V} \\
\mu \mathrm{~A} \\
\mu \mathrm{~A} V \\
\Omega \\
\mathrm{mV}
\end{gathered}
\] \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Current Limitation \\
Detection Level Clamping Voltage Level Output Discharge Current Saturation Resistance
\end{tabular} & \begin{tabular}{l}
\(V_{\text {Pin }} 3\) Min. \\
\(V_{\text {Pin }} 3\) CLAMP ldL7 \\
\(\mathrm{R}_{\text {sat }}\) Pin 7
\end{tabular} & - & \[
\begin{gathered}
0.65 \\
1.3 \\
0.5 \\
1.6 \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mathrm{~mA} \\
\mathrm{k} \Omega \\
\hline
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Start-up \\
Maximum Start-up Voltage (\({ }^{\text {Pin }} 7=0\)) \\
Start-up Current (until motor turns) (Pin \(7=0\))
\end{tabular} & \[
\begin{aligned}
& \text { VPin } 7 \\
& I_{\text {Pin }} 7
\end{aligned}
\] & - & \[
\begin{gathered}
4.5 \\
-1.0
\end{gathered}
\] & - & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline Soft-Start Acceleration Charging Current & 1 Pin 7 & - & -8.0 & - & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Trigger Pulse Generator \\
Trigger Pulse Width* \\
Trigger Pulse Repetition Period* \\
Output Pulse Current (\(\mathrm{V}_{\text {Pin }} 13=1.0 \mathrm{~V}\)) \\
Output Leakage Current (\(V_{\text {Pin }} 13=-2.0 \mathrm{~V}\)) \\
Current Synchronization Threshold Levels (Pin 1 and Pin 2) \\
Sawtooth Current Generator \\
Pin 15 Voltage (1 Pin \(15=0\))
\end{tabular} & \[
\begin{gathered}
\text { tp } \\
\mathrm{t} \\
\text { IPin } 13 \\
\text { I O Pin } 13 \\
\text { IThrs } \\
\text { IPin } 14 \\
V_{\operatorname{Pin} 15} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& -70 \\
& -
\end{aligned}
\] & 100
600
-
-
\(\pm 80\)
-65
1.3 & -
-65
10
-
- & \begin{tabular}{l}
\(\mu \mathrm{S}\) \\
\(\mu \mathrm{S}\) \\
mA \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
Volt
\end{tabular} \\
\hline
\end{tabular}
* These figures apply for the application shown in this data sheet.

\section*{CIRCUIT DESCRIPTION}

The TDA1285A generates trigger pulses for a triac controlling the power into an ac motor connected to a line voltage. The firing angle of the triac is determined by comparison between a sawtooth signal (line voltage synchronized) and the main internal comparator signal. The latter is the difference between a set voltage (externally adjustable) representing the reference speed and the actual motor speed issued from an external sensor and converted by an internal frequency to voltage converter. This sensor may be inductive (tachometer) or Hall-effect. Other functions are also provided by the TDA1285A.

\section*{KEY CIRCUIT FUNCTIONS}

\section*{DC POWER SUPPLY}

DC Power is directly derived from the ac line by a low cost resistor-rectifier-capacitor circuit. The voltage on Pin 9 is Zener protected. The voltage on Pin 10 is fully regulated by a series ballast regulator, but is not selflimiting. Special provisions for Hall-effect sensor power are included.

TACHOMETER INPUT (Pins 6 and 12)
The maximum allowable voltage swing is -5.0 to +5.0 V . Circuit continuity is permanently checked by the monitor.

\section*{HALL-EFFECT INPUT (Pins 6 and 12)}

When IPin 6 exceeds 3.0 mA , the circuit detects the use of a Hall-effect sensor and thus sensor circuit continuity is not checked (an open circuit would provide full triac conduction angle).

\section*{FREQUENCY TO VOLTAGE CONVERTER}

This circuit converts the tachometer input frequency into a proportional voltage on Pin 4 (eventually usable for any feedback). Particular care must be devoted to the conversion ratio of the F/V converter which is under the user control. In effect, it depends on the values of the \(C_{11}\) capacitor and on tachometer frequency \(f(H z)\).
\(V_{\text {Pin } 4}=1.410 \times 10^{-10} \times C_{11}(p F) \times R_{4} \times F(H z) \times(1 \pm 0.15)\)
\(V_{\text {Pin }} 4\) corresponding to maximum allowed motor speed must be chosen as close as possible to 12 V in order to minimize noise disturbance down to a negligible level.

\section*{MAIN COMPARATOR}

Its role is to amplify the signal error. Negative feedback from the output (Pin 16) to the input may be used to reduce the closed loop gain of the system and increase stability.

\section*{SOFT START (Pin 7)}

Set speed input (Pin 5) is overruled by similar data from Pin 7 as long as \(V_{\text {Pin }} 7\) is smaller than \(V_{\operatorname{Pin} 5}+\) 400 mV (Typ). An internal \(8.0 \mu \mathrm{~A}\) current source allows an external capacitor, \(\mathrm{C}_{7}\) to be charged slowly and thus lets the ac motor soft start (Figure 2). Pin 4 offset
may be set appropriately by an external resistor \(\left(R_{1}=1 \mathrm{M} \Omega\right)\). Notice that \(R_{1}\) may affect \(F / V\) conversion ratio. An external 10 nF capacitor on \(\operatorname{Pin} 5\) reduces noise sensitivity.

\section*{START-UP CIRCUIT}

From the moment power is applied to the circuit (or the circuit is enabled by Monitoring) to the moment a speed input signal is detected, \(C_{7}\) is charged at a high current level (typically 1.0 mA). Detection of the first tachometer input resets the Pin 7 current to its nominal value \((8.0 \mu \mathrm{~A})\). The result of such a circuit is to start the acceleration ramp at the moment the motor starts to turn, avoiding any dead time (see Figure 2). When the motor is cycled on and off in close succession, the acceleration ramp is started immediately without waiting for the motor to stop.

\section*{MOTOR CURRENT LIMITATION (Pin 3)}

The motor current is sensed as a voltage developed across a resistor (\(R_{3}\)) in series with the triac. The limiter acts on positive peak values of \(R_{3} \times I\) filtered by a 22 k and \(0.1 \mu \mathrm{~F}, \mathrm{RC}\) network (Figure 7). The motor current is reduced, decreasing its speed reference by discharging \(\mathrm{C}_{7}\) until current limit equilibrium is reached (see Figure 3).

\section*{TRIGGER PULSE GENERATOR}

It delivers a 65 mA min. current pulse to the triac gate and repeats it if the triac fails to latch or if brush bounce has switched it off (Figure 6). Current and voltage detection through the triac are performed by Pins 1 and 2, delaying the trigger pulse until the triac current collapses. The pulse time is determined by the comparison of a sawtooth signal (available at Pin 14 and synchronous with line voltage) and the error signal directly supplied by the comparator.

Sawtooth slope is determined by the external capacitor \(\mathrm{C}_{14}\). Under these conditions pulse width is typically \(100 \mu \mathrm{~s}\) (Figure 5).

\section*{MONITORING}

This is an internal function, disabling the circuit when \(-V_{C C}\) is insufficient
- Tachometer circuit is open and \(\operatorname{IPin} 6<|-3.0 \mathrm{~mA}|\)

FIGURE 2 - START-UP AND SOFT-START CIRCUIT ACTIONS

FIGURE 3 - CURRENT LIMITATION

FIGURE 4 - SENSOR VOLTAGE DEFINITION

2.2 k is a recommended value to balance the voltage offset caused by sensor continuity detection circuit.

FIGURE 5 - FIRING PULSE GENERATION

FIGURE 6 - MULTIPLE FIRING PULSE AND FIRING PULSE DELAY

\section*{TYPICAL APPLICATION CIRCUITS}

A motor control circuit using tachometer as speed sensor. It provides speed regulation as follows:
- \(\pm 1.0 \%\) from 20 to \(70^{\circ} \mathrm{C}\)
- \(1.0 \%\) in full load range.

It is strictly recommended to design the PC board in order to plug every connection to ground (Pin 8)
directly and individually; otherwise, violent erratic currents may induce high level noise in the circuitry.
Motor will run full speed in case of tacho open circuit if a 47 k resistor is connncted permanently between Pins 6 and 12.

\section*{NOTES:}

Frequency to Voltage converter
- Max. motor speed \(30,000 \mathrm{rpm}\)
- Tachogenerator 4 pairs of poles: max. frequency \(=\frac{30,000}{60} \times 4=2 \mathrm{kHz}\)
\(-\mathrm{C} 11=680 \mathrm{pF}\). R4 adjusted to obtain \(\mathrm{V}_{\text {Pin }} 4=12 \mathrm{~V}\) at max. speed: \(68 \mathrm{k} \Omega\)
- Power Supply
with \(\mathrm{V}_{\text {mains }}=120 \mathrm{Vac}, \mathrm{R}_{1}=4.7 \mathrm{k} \Omega\). Perfect operation will occur down to 80 Vac .

FIGURE 8 - CIRCUIT MODIFICATIONS TO CONNECT A HALL-EFFECT SENSOR

\section*{ZERO VOLTAGE CONTROLLER}

The UAA1016B is designed to drive triacs with the Zero Voltage technique which allows RFI free power regulation of resistive loads. It provides the following features:
- Proportional Temperature Control Over an Adjustable Band
- Adjustable Burst Frequency (to Comply with Standards)
- Sensor Fail-Safe
- No dc Current Component Through the Main Line (to Comply with Standards)
- Negative Output Current Pulses (Triacs Quadrants 2 and 3)
- Direct ac Line Operation
- Low External Components Count

P1 SUFFIX PLASTIC PACKAGE CASE 626-05

\section*{UAA1016B}

MAXIMUM RATINGS (Voltages referred to Pin 7)
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Symbol & Max. Rating & Unit \\
\hline Supply Current (lpin 5) & Icc & 15 & mA \\
\hline Nonrepetitive Supply Current (lpin 5) & ICCP & 200 & mA \\
\hline AC Synchronization Current (Pin 8) & \(\mathrm{I}_{\text {syn }}\) & 3.0 & mA (RMS) \\
\hline Maximum Pin Voltages & \begin{tabular}{l}
\(V_{\text {Pin }} 1\) \\
\(V_{\text {Pin }} 2\) \\
\(V_{\text {Pin }} 3\) \\
\(V_{\text {Pin }} 4\) \\
\(V_{\text {Pin } 6}\)
\end{tabular} & \[
\begin{gathered}
0 ;-V_{C C} \\
0 ;-V_{C C} \\
0 ;-V_{C C} \\
0 ;-V_{C C} \\
+2.0 ;-V_{C C} \\
\hline
\end{gathered}
\] & Volt \\
\hline Maximum Current Drain & 1 Pin 1 & 1.0 & mA \\
\hline Power Dissipation
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] & PD & 625 & mW \\
\hline Maximum Thermal Resistance & \(\mathrm{R}_{\text {®JA }}\) & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {A }}\) & -20 to +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), Voltages referred to Pin 7 unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Current Consumption (Pins 6 and 8 not connected) & ICC & - & 0.8 & 1.5 & mA \\
\hline Stabilized Supply Voltage (\(\mathrm{V}_{\text {Pin } 5}\)) \(I^{C} C=2.0 \mathrm{~mA}\) max & - \(\mathrm{V}_{\mathrm{CC}}\) & -9.6 & -8.6 & -7.6 & V \\
\hline Output Pulse Current (\(\mathrm{V}_{\text {Pin }} 6\) from -1.0 to +1.0 Volt) & lout & 60 & 90 & 120 & mA \\
\hline \begin{tabular}{l}
Output Pulse Width \\
\(R_{\text {Pin }} 8=220 \mathrm{k} \Omega, \mathrm{V}_{\text {mains }}=220 \mathrm{Vac} / 50 \mathrm{~Hz}\), (Figures 4 and 5\()\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{p} 1} \\
& \mathrm{t}_{\mathrm{p} 2} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
58 \\
160
\end{gathered}
\] & \[
\begin{gathered}
60 \\
220
\end{gathered}
\] & \[
\begin{aligned}
& 120 \\
& 320
\end{aligned}
\] & \(\mu \mathrm{s}\) \\
\hline Comparator Input Offset Voltage (\(\mathrm{V}_{\text {Pin }} 3-\mathrm{V}_{\text {Pin }} 4\)) & \(\mathrm{V}_{\text {off }}\) & -10 & - & +10 & mV \\
\hline Comparator Common Mode Voltage Range & \(\mathrm{V}_{\text {CM }}\) & \(-\mathrm{v}_{\mathrm{Cc}}+1\) & - & -1.5 & V \\
\hline Input Bias Current (Pins 3 and 4) & IB & - & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline Output Leakage Current (IPin 6)
\[
V_{\text {Pin } 6}=+2.0 \mathrm{~V}
\] & loutL & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline Fail-safe Threshold Voltage (\(\mathrm{V}_{\text {Pin }}\) 3) & \(\mathrm{V}_{\text {FSTH }}\) & - & -0.7 & - & V \\
\hline Capacitor Charging Current (Source) & 1 Pin 2 & -20 & -16 & -12 & \(\mu \mathrm{A}\) \\
\hline Capacitor Discharge Current (Sink) & I'Pin 2 & - & 6.4 & - & mA \\
\hline & \(\mathrm{t}_{\text {saw }}\) & - & 0.85 & - & S \\
\hline Output Threshold Sawtooth Levels (\(\mathrm{V}_{\text {Pin }}\) 2) & \[
\begin{aligned}
& \mathrm{V}_{\text {TH1 }} \\
& \mathrm{V}_{\text {TH2 }} \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{|c|}
\hline-1.0 \\
-\mathrm{V}_{\mathrm{CC}}+1.25 \\
\hline
\end{array}
\] & - & V \\
\hline Output Voltage Pin 1 & \(V_{\text {Pin } 1}\) & - & \(\mathrm{V}_{\text {Pin } 2-0.75}\) & - & V \\
\hline
\end{tabular}

\section*{CIRCUIT DESCRIPTION}

The circuit delivers current pulses to the triac at zero crossings of the main line sensed by Pin 8 through \(\mathrm{R}_{\text {sync. }}\). An internal full wave logic allows the triac to latch during full wave periods in order to avoid any dc component in the main line, in compliance with European regulations. Trigger pulses are generated when the comparator detects \(V_{\operatorname{Pin} 3}\) is above \(V_{\text {Pin }} 4\) (or \(V_{\text {reference) }}\) as sensed temperature through the NTC is then lower than the set value (VREF corresponding to the external Wheatstone bridge equilibrium).

In order to comply with norms limiting the frequency at which a kW sized load, or above, may be connected to the main line (fluorescent tubes "flickering"), the UAA1016B has an internal time base providing (power
is delivered by bursts to the load) a proportional temperature band control. In fact, most of the heating regulation systems require low temperature overshoot for more precision and stability which cannot be accomplished by direct on/off regulation (see Figure 2). An internal low frequency sawtooth generator whose output is available at Pin 1, allows the designer to introduce a periodic linear change of \(\mathrm{V}_{\text {Ref }}\). This deviation defines the temperature band allowing proportional power control (see Figure 3).
A fail-safe circuit inhibits output pulses when the sensor circuit has a fault (open or short circuit).
The IC is directly powered from the mains by a dropping resistor, a diode and a filter capacitor.

FIGURE 2 - PROPORTIONAL TEMPERATURE CONTROL versus ON/OFF CONTROL

PROPORTIONAL TEMPERATURE CONTROL
Reduced Overshoot
Stability

ON/OFF CONTROL
Large Overshoot
Marginal Stability

\section*{KEY CIRCUIT FUNCTIONS DESCRIPTION}

POWER SUPPLY - The rectified supply current is Ze ner regulated to 8.6 V . Current consumption of the UAA1016B is typically less than 1.0 mA . The major part of the current fed by the dropping resistor is used for the sensor bridge and triac gate pulses. Any excess of supply current is excess power dissipation into the integrated Zener. Current consumption of the triac pulses may be derived from Figure 4 and 5 (Igt max. and pulse duration). Usually an \(18 \mathrm{k} \Omega, 2.0 \mathrm{~W}\) dropping resistor is convenient to feed the UAA1016.

COMPARATOR - When \(V_{\text {Pin }} 3\) is higher than \(V_{\text {Pin }} 4\) (\(V_{\text {Ref }}\)), the comparator allows the triggering logic to deliver pulses to the triac (Figure 3). The offset hysteresis input voltage has been designed to be as low as possible (\(\pm 10 \mathrm{mV}\) max) in order to minimize the uncontrollable temperature band (proportional to the hysteresis) as per Figure 6. Noise rejection is performed by a synchronous sampling of the comparator output during very short times (typ. less than 100 ns).

SAWTOOTH GENERATOR - A sawtooth voltage signal is generated by a constant current source (typ. \(7.5 \mu \mathrm{~A}\)), charging an external capacitor \(C_{\text {Pin }} 2\) between two threshold levels, \(\mathrm{V}_{\mathrm{TH} 1}\) and \(\mathrm{V}_{\mathrm{TH} 2}\), which are respectively:
\(\mathrm{V}_{\mathrm{TH} 1}=-1.0 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{TH} 2}=-\mathrm{V}_{\mathrm{CC}}+1.25 \mathrm{~V}\).
Charging and discharging currents occur only with negative halfcycles of the line.

In the UAA1016B, the sawtooth signal is available at Pin 1 as a voltage source V Pin \(1=\mathrm{V}_{\text {Pin }} 2-0.75 \mathrm{~V}\).

Maximum source current is 1.0 mA , but to keep good linearity of sawtooth signal, a source current of \(40 \mu \mathrm{~A}\) is recommended (see Figure 7).

FAIL-SAFE - Output pulses are inhibited by the "failsafe" circuit if the comparator input voltage exceeds the specified threshold voltage. This would occur if the temperature sensor circuit had a fault.

SAMPLING FULL WAVE LOGIC - Two consecutive zero-crossing trigger pulses are generated at every positive mains half-cycle of the line to minimize generation of noise (as per Figure 8). Within every zero-crossing the pulses are positioned as per Figure 4. Pulse length is also adjustable by \(R_{\text {sync }}\) on Pin 8 to allow positive triggering of the triac at this critical moment (firing with low voltage between main terminals requires long pulses).

PULSE AMPLIFIER - The pulse amplifier circuit delivers minimum current pulses of 60 mA (sink). The triac is triggered in quadrants II and III.

SYNCHRONIZATION CIRCUIT - This circuit detects mains zero-crossings through \(R_{\text {sync }}\) and the value selected determines the trigger pulse length. A zero crossing current detector is employed with typical thresholds of \(\mp 27 \mu \mathrm{~A}\) to \(\pm 98 \mu \mathrm{~A}\) (see Figures 4 and 5).

\section*{FIGURE 3 - SAWTOOTH GENERATOR AND PROPORTIONAL BAND}

\section*{COMMENTS TO FIGURE 3}

Referring to Figure 1, the average value of \(\mathrm{V}_{\text {Ref }}\) is set by \(R_{2}\) and \(R_{3}\). \(R_{4}\) defines the amplitude of the sawtooth signal superimposed on \(V_{\text {Ref }}\), defining the Proportional Band.

Figure 3 shows three conditions:
1) During time \(t_{1}\) we always have \(V_{P i n} 3>V_{\text {Ref }}\), and as a result, the comparator is always "on" and the : triac fired (\(100 \%\) max. power)
2) During time \(t_{2}, V_{\text {Pin }} 3\) is in the proportional band, and the average power delivered to the load is a fraction of maximum power.
3) During time \(t_{3}, V_{\text {Pin }} 3<V_{\text {Ref }}\), and the triac is always "off."
When the sensor temperature is above the set value and is slowly decreasing as no heating occurs, \(V_{\text {Pin }} 3\) - VPin 4 must exceed half the hysteresis value before power is applied again (1). A similar effect occurs in the opposite direction when temperature sensor is below
the set value and can remain stable as position (2). This defines the "uncontrollable temperature band" which will be very small if hysteresis is also very small.

\section*{SUGGESTIONS FOR USE}

The temperature sensor circuit is a Wheatstone bridge including the sensor element. Comparator inputs may be free from power line noise only if the sensor element is purely resistive (NTC resistor). Usage of any P-N junction sensor would drastically reduce noise rejection.

Fixed phase sensing of the internal comparator output eliminates parasitic signals.

Some loads, even designed to be resistive, have in fact a slight inductive component. A phase shift at Pin 8 can be achieved with external capacitor \(\mathrm{C}_{3}\) connected to Pin 8 network (see Figure 9).

Suggested maximum source current at Pin 1 is \(40 \mu \mathrm{~A}\), in order to have acceptable sawtooth signal linearity.

FIGURE 4 - OUTPUT PULSE WIDTH DEFINITIONS

FIGURE 6 - EFFECTS OF INPUTS COMPARATOR HYSTERESIS

FIGURE 5 - TYPICAL OUTPUT PULSE LENGTH versus SYNCHRONIZATION RESISTOR

FIGURE 7 - PIN 1 INTERNAL NETWORK

FIGURE 8 - TRIGGER PULSE GENERATION

\section*{APPLICATION CIRCUITS}

Figure 9 shows a very simple application of the UAA1016B as an electronic rheostat having \(100 \%\) efficiency. \(\mathrm{C}_{3}\) is required only if load has an inductive com-
ponent. Figure 10 shows a typical application as a panel heater thermostat with a proportional temperature band of \(1^{\circ} \mathrm{C}\) at \(25^{\circ} \mathrm{C}\).

FIGURE 10 - APPLICATION CIRCUIT - ELECTRIC RADIATOR WITH PROPORTIONAL BAND THERMOSTAT, PROPORTIONAL BAND \(1^{\circ} \mathrm{C}\) AT \(25^{\circ} \mathrm{C}\)

\section*{Voltage References}

\section*{In Brief . . .}

Motorola's line of precision voltage references is designed for applications requiring high initial accuracy, low temperature drift, and long term stability. Initial accuracies of \(\pm 1.0 \%\), and \(\pm 2.0 \%\) means production line adjustments can be eliminated. Temperature coefficients of \(25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max (typically \(10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)) provide excellent stability. Uses for the references include D/A converters, A/D converters, precision power supplies, voltmeter systems, temperature monitors, and others.

\section*{Voltage References}

\section*{Precision Low Voltage References}

A family of precision low voltage bandgap reference devices designed for applications requiring low temperature drift.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) Volts Typ} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathbf{I O}_{\mathbf{n}} \\
\mathbf{m A} \\
\operatorname{Max}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathbf{V}_{\text {out }} / \mathbf{T} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\operatorname{Max} \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|c|}{Device} & \multirow[b]{2}{*}{Regline mV Max} & \multirow[b]{2}{*}{Regload mV Max} & \multirow[b]{2}{*}{Case} \\
\hline & & & \(0^{\circ}\) to \(70^{\circ} \mathrm{C}\) & \[
\begin{gathered}
-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \\
-40^{\circ} \text { to }+85^{\circ} \mathrm{C}
\end{gathered}
\] & & & \\
\hline \[
\begin{aligned}
& 1.235 \pm 12 \mathrm{mV} \\
& 1.235 \pm 25 \mathrm{mV}
\end{aligned}
\] & \multirow[t]{2}{*}{20} & \multirow[t]{2}{*}{20 Typ} & \begin{tabular}{l}
LM385BZ-1.2 \\
LM385Z-1.2
\end{tabular} & \[
\begin{aligned}
& \text { LM285Z-1.2 } \\
& \left(-40^{\circ} \text { to }+85^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \multirow[t]{2}{*}{(Note 1)} & \begin{tabular}{l}
1.0 \\
(Note 2)
\end{tabular} & \multirow[t]{2}{*}{29} \\
\hline \[
\begin{aligned}
& 2.5 \pm 38 \mathrm{mV} \\
& 2.5 \pm 75 \mathrm{mV}
\end{aligned}
\] & & & \begin{tabular}{l}
LM385BZ-2.5 \\
LM385Z-2.5
\end{tabular} & \[
\begin{aligned}
& \text { LM285Z-2.5 } \\
& \left(-40^{\circ} \text { to }+85^{\circ} \mathrm{C}\right)
\end{aligned}
\] & & \[
\begin{gathered}
2.0 \\
\text { (Note 3) }
\end{gathered}
\] & \\
\hline \multirow[t]{3}{*}{\(2.5 \pm 25 \mathrm{mV}\)} & \multirow[t]{12}{*}{10} & 25 & MC1403A & MC1503A & \multirow[t]{3}{*}{\[
\begin{gathered}
3.0 / 4.5 \\
\text { (Note 4) }
\end{gathered}
\]} & \multirow[t]{12}{*}{\[
\begin{gathered}
10 \\
\text { (Note 6) }
\end{gathered}
\]} & \multirow[t]{3}{*}{693, 751} \\
\hline & & 40 & MC1403 & & & & \\
\hline & & 55 & & MC1503 & & & \\
\hline \multirow[t]{3}{*}{\(5.0 \pm 50 \mathrm{mV}\)} & & 25 & MC1404AU5 & & \multirow[t]{9}{*}{\[
\begin{gathered}
6.0 \\
\text { (Note 5) }
\end{gathered}
\]} & & \multirow[t]{9}{*}{693} \\
\hline & & 40 & MC1404U5 & & & & \\
\hline & & 55 & & MC1504U5 & & & \\
\hline \multirow[t]{3}{*}{\(6.25 \pm 60 \mathrm{mV}\)} & & 25 & MC1404AU6 & & & & \\
\hline & & 40 & MC1404U6 & & & & \\
\hline & & 55 & & MC1504U6 & & & \\
\hline \multirow[t]{3}{*}{\(10 \pm 100 \mathrm{mV}\)} & & 25 & MC1404AU10 & & & & \\
\hline & & 40 & MC1404U10 & & & & \\
\hline & & 55 & & MC1504U10 & & & \\
\hline \multirow[t]{2}{*}{2.5 to 37} & \multirow[t]{2}{*}{100} & \multirow[t]{2}{*}{50 Typ} & \multirow[t]{2}{*}{TL431C,AC} & \[
\begin{aligned}
& \text { TL431I, } \mathrm{Al} \\
& \left(-40^{\circ} \text { to }+85^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Shunt Reference Dynamic Impedance \(z \leqslant 0.5\)}} & \[
\begin{gathered}
29,626 \\
693 \\
\hline
\end{gathered}
\] \\
\hline & & & & TL431M & & & 693 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Notes: 1. Micro-Power Reference Diode Dynamic \\
3. \(20 \mu \mathrm{~A} \leqslant \mathrm{I}_{\mathrm{R}} \leqslant 1.0 \mathrm{~mA}\) \\
Impedance \((z) \leqslant 1.0 \Omega\) at \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) \\
4. \(4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 15 \mathrm{~V} / 15 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant 40 \mathrm{~V}\) \\
2. \(10 \mu \mathrm{~A} \leqslant \mathrm{I}_{\mathrm{R}} \leqslant 1.0 \mathrm{~mA}\)
\end{tabular}} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { 5. }\left(V_{\text {out }}+2.5 \mathrm{~V}\right) \leqslant \mathrm{V}_{\text {in }} \leqslant 40 \mathrm{~V} \\
& \text { 6. } 0 \mathrm{~mA} \leqslant I_{\mathrm{L}} \leqslant 10 \mathrm{~mA}
\end{aligned}
\]} \\
\hline
\end{tabular}

\section*{VOLTAGE REFERENCES}
Device Function PageLM285Micropower Voltage Reference Diodes5-4
LM385 Micropower Voltage Reference Diode 5-4
MC1403,A Precision Low Voltage Reference 5-8
MC1404,A Precision Low Drift Voltage Reference 5-12
MC1503,A Precision Low Voltage Reference 5-8MC1504
Precision Low Drift Voltage Reference 5-12
TL431,A Programmable Precision References 5-17

\section*{MICROPOWER VOLTAGE REFERENCE DIODES}

The LM285/LM385 series are micropower two-terminal bandgap voltage regulator diodes. Designed to operate over a wide current range of \(10 \mu \mathrm{~A}\) to 20 mA , these devices feature exceptionally low dynamic impedance, low noise and stable operation over time and temperature. Tight voltage tolerances are achieved by on-chip trimming. The large dynamic operating range enables these devices to be used in applications with widely varying supplies with excellent regulation. Extremely low operating current make these devices ideal for micropower circuitry like portable instrumentation, regulators and other analog circuitry where extended battery life is required.

The LM285/LM385 series are packaged in a low cost TO-226AA plastic case and are available in two voltage versions of 1.235 and 2.500 volts as denoted by the device suffix (see ordering information table). The LM285 is specified over a \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) temperature range while the LM385 is rated from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).

The LM385 is also available in a surface mount plastic package in voltages of 1.235 and 2.500 volts.
- Operating Current from \(10 \mu \mathrm{~A}\) to 20 mA
- \(1.0 \%, 1.5 \%, 2.0 \%\) and \(3.0 \%\) Initial Tolerance Grades
- Low Temperature Coefficient
- \(1.0 \Omega\) Dynamic Impedance
- Surface Mount Package Available

\section*{MICROPOWER VOLTAGE REFERENCE DIODES}

\section*{SILICON MONOLITHIC INTEGRATED CIRCUIT}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Device & Temp. Range & Reverse Breakdown Voltage & Tolerance \\
\hline LM285Z-1.2 & \multirow{2}{*}{\[
\begin{gathered}
-40^{\circ} \mathrm{C} \\
\text { to }+85^{\circ} \mathrm{C}
\end{gathered}
\]} & \begin{tabular}{l}
1.235 \\
Volts
\end{tabular} & \(\pm 1.0 \%\) \\
\hline LM285Z-2.5 & & \[
\begin{aligned}
& 2.500 \\
& \text { Volts }
\end{aligned}
\] & \(\pm 1.5 \%\) \\
\hline LM385BZ-1.2 & \multirow{4}{*}{\[
\begin{aligned}
& 0^{\circ} \mathrm{C} \text { to } \\
& +70^{\circ} \mathrm{C}
\end{aligned}
\]} & \[
\begin{aligned}
& 1.235 \\
& \text { Volts }
\end{aligned}
\] & \(\pm 1.0 \%\) \\
\hline \begin{tabular}{l}
LM385Z-1.2 \\
LM385D-1.2
\end{tabular} & & \[
\begin{aligned}
& 1.235 \\
& \text { Volts }
\end{aligned}
\] & \(\pm 2.0 \%\) \\
\hline LM385BZ-2.5 & & \[
\begin{aligned}
& 2.500 \\
& \text { Volts }
\end{aligned}
\] & \(\pm 1.5 \%\) \\
\hline \begin{tabular}{l}
LM385Z-2.5 \\
LM385D-2.5
\end{tabular} & & \[
\begin{aligned}
& 2.500 \\
& \text { Volts }
\end{aligned}
\] & \(\pm 3.0 \%\) \\
\hline
\end{tabular}

\section*{LM285, LM385}

MAXIMUM RATINGS (\(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Reverse Current & \({ }_{\text {IR }}\) & 30 & mA \\
\hline Forward Current & IF & 10 & mA \\
\hline \begin{tabular}{l}
Operating Ambient Temperature Range LM285 \\
LM385
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
-40 \text { to }+85 \\
0 \text { to }+70
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & TJ & + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM285-1.2} & \multicolumn{3}{|l|}{LM385-1.2/LM385B-1.2} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \begin{tabular}{l}
Reverse Breakdown Voltage \\
\(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) (Note 1) \\
LM385-1.2 \\
\(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) (Note 1)
\end{tabular} & \(V_{(B R) R}\) & \[
\begin{gathered}
1.223 \\
1.200 \\
- \\
-
\end{gathered}
\] & \[
\begin{gathered}
1.235 \\
- \\
-
\end{gathered}
\] & \[
\begin{gathered}
1.247 \\
1.270 \\
- \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 1.223 \\
& 1.210 \\
& 1.205 \\
& 1.192 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
1.235 \\
- \\
1.235 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 1.247 \\
& 1.260 \\
& 1.260 \\
& 1.273 \\
& \hline
\end{aligned}
\] & V \\
\hline Minimum Operating Current
\[
\begin{aligned}
& \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 1) }
\end{aligned}
\] & \(I_{\text {Rmin }}\) & - & 8.0 & \[
\begin{aligned}
& 10 \\
& 20
\end{aligned}
\] & - & 8.0 & \[
\begin{aligned}
& 15 \\
& 20
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Reverse Breakdown Voltage Change with Current
\[
\begin{aligned}
& \mathrm{I}_{R \min } \leqslant \mathrm{I}_{\mathrm{R}} \leqslant 1.0 \mathrm{~mA}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}(\text { Note } 1) \\
& 1.0 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{R}} \leqslant 20 \mathrm{~mA}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 1) }
\end{aligned}
\] & \(\Delta V_{(B R) R}\) & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.0 \\
& 1.5 \\
& 10 \\
& 20
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.0 \\
& 1.5 \\
& 20 \\
& 25
\end{aligned}
\] & mV \\
\hline Reverse Dynamic Impedance
\[
\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] & Z & - & 0.6 & - & - & 0.6 & - & \(\Omega\) \\
\hline Average Temperature Coefficient \(10 \mu \mathrm{~A} \leqslant \mathrm{I}_{\mathrm{R}} \leqslant 20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) (Note 1) & \(\Delta V_{(B R)} / \Delta T\) & - & 80 & - & - & 80 & - & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Wideband Noise (RMS)
\[
\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 10 \mathrm{kHz}
\] & n & - & 60 & - & - & 60 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability
\[
I_{R}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}
\] & S & - & 20 & - & - & 20 & - & ppm/ kHR \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{LM285-2.5} & \multicolumn{3}{|l|}{LM385-2.5/LM385B-2.5} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \begin{tabular}{l}
Reverse Breakdown Voltage
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{Rmin}} \leqslant \mathrm{I}_{\mathrm{R}} \leqslant 20 \mathrm{~mA} \leqslant 5-2.5 / \mathrm{LM} 385 \mathrm{~B}-2.5
\end{aligned}
\] \\
\(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\) to \(\mathrm{T}_{\text {high }}\) (Note 1) \\
LM385-2.5 \\
\(T_{A}=T_{\text {low }}\) to \(T_{\text {high }}\) (Note 1)
\end{tabular} & \(V_{(B R) R}\) & \[
\begin{gathered}
2.462 \\
2.415 \\
- \\
-
\end{gathered}
\] & \[
\frac{2.5}{-}
\] & \[
\begin{gathered}
2.538 \\
2.585 \\
- \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 2.462 \\
& 2.436 \\
& 2.425 \\
& 2.400 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& - \\
& 2.5 \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 2.538 \\
& 2.564 \\
& 2.575 \\
& 2.600 \\
& \hline
\end{aligned}
\] & V \\
\hline Minimum Operating Current
\[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high (}} \text { (Note 1) }
\end{aligned}
\] & \(I_{\text {Rmin }}\) & - & 13 & \[
\begin{aligned}
& 20 \\
& 30
\end{aligned}
\] & - & 13 & \[
\begin{aligned}
& 20 \\
& 30 \\
& \hline
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Reverse Breakdown Voltage Change with Current
\[
\begin{aligned}
& I_{R \min } \leqslant I_{R} \leqslant 1.0 \mathrm{~mA}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }}(\text { Note } 1) \\
& 1.0 \mathrm{~mA} \leqslant I_{R} \leqslant 20 \mathrm{~mA}, T_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=T_{\text {low }} \text { to } T_{\text {high }} \text { (Note 1) }
\end{aligned}
\] & \(\Delta \mathrm{V}_{(\mathrm{BR}) \mathrm{R}}\) & - & - & \[
\begin{aligned}
& 1.0 \\
& 1.5 \\
& 10 \\
& 20 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 2.0 \\
& 2.5 \\
& 20 \\
& 25 \\
& \hline
\end{aligned}
\] & mV \\
\hline Reverse Dynamic Impedance
\[
\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] & Z & - & 0.6 & - & - & 0.6 & - & \(\Omega\) \\
\hline Average Temperature Coefficient
\[
20 \mu \mathrm{~A} \leqslant \mathrm{I}_{\mathrm{R}} \leqslant 20 \mathrm{~mA}, \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note } 1 \text {) }
\] & \(\Delta \mathrm{V}_{(\mathrm{BR})} / \Delta \mathrm{T}\) & - & 80 & - & - & 80 & - & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Wideband Noise (RMS) } \\
& \qquad \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 10 \mathrm{kHz}
\end{aligned}
\] & n & - & 120 & - & - & 120 & - & \(\mu \mathrm{V}\) \\
\hline Long Term Stability
\[
I_{R}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}
\] & S & - & 20 & - & - & 20 & - & ppm/ kHR \\
\hline
\end{tabular}

Note: 1. Tlow \(=-40^{\circ} \mathrm{C}\) for LM285-1.2, LM285-2.5
\(=0^{\circ} \mathrm{C}\) for LM385-1.2, LM385B-1.2, LM385-2.5, LM385B-2.5
\(T_{\text {high }}=+85^{\circ} \mathrm{C}\) for LM285-1.2, LM285-2.5
\(=+70^{\circ} \mathrm{C}\) for LM385-1.2, LM385B-1.2, LM385-2.5, LM385B-2.5

\section*{LM285, LM385}

\section*{TYPICAL PERFORMANCE CURVES FOR LM285-1.2/385-1.2/385B-1.2}

FIGURE 1 - REVERSE CHARACTERISTICS

FIGURE 3 - FORWARD CHARACTERISTICS

FIGURE 5 - NOISE VOLTAGE

FIGURE 2 - REVERSE CHARACTERISTICS

FIGURE 4 - TEMPERATURE DRIFT

FIGURE 6 - RESPONSE TIME

FIGURE 7 - REVERSE CHARACTERISTICS

FIGURE 9 - FORWARD CHARACTERISTICS

FIGURE 11 - NOISE VOLTAGE

FIGURE 8 - REVERSE CHARACTERISTICS

FIGURE 10 - TEMPERATURE DRIFT

FIGURE 12 - RESPONSE TIME

\section*{LOW VOLTAGE REFERENCE}

A precision band-gap voltage reference designed for critical instrumentation and D/A converter applications. This unit is designed to work with Motorola MC1508 and MC3510 D/A converters, and MC14433 A/D systems. Low temperature drift is a prime design consideration.
- Output Voltage: \(2.5 \mathrm{~V} \pm 25 \mathrm{mV}\)
- Input Voltage Range: 4.5 V to 40 V
- Quiescent Current: 1.2 mA Typ
- Output Current: 10 mA
- Temperature Coefficient: \(10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) Typ
- Guaranteed Temperature Drift Specification
- Equivalent to AD580
- Standard 8-Pin DIP, and 8-Pin SOIC Package

\section*{Typical Applications}
- Voltage Reference for 8-12 Bit D/A Converters
- Low TC Zener Replacement
- High Stability Current Reference
- Voltmeter System Reference

MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input Voltage & \(\mathrm{V}_{\mathbf{1}}\) & 40 & V \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -65 to 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Ambient Temeprature Range \\
MC1503, A
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & & \\
MC1403,A
\end{tabular}

FIGURE 1 - A REFERENCE FOR MOTOROLA MONOLITHIC D/A CONVERTERS

\section*{PROVIDING THE REFERENCE CURRENT}

\section*{FOR MOTOROLA MONOLITHIC D/A CONVERTERS}

The MC1403/1503 makes an ideal reference for the Motorola monolithic D/A converters. The MC1408/1508, MC3410/3510 and MC3408 D/A converters all require a stable current reference of nominally 2.0 mA . This can be easily obtained from the MC1403/1503 with the addition of a series resistor, R1. A variable resistor, R2, is recom-
mended to provide means for full-scale adjust on the D/ A converter.
The resistor R3 improves temperature performance by matching the impedance on both inputs of the D/A reference amplifier. The capacitor decouples any noise present on the reference line. It is essential if the D/A converter is located any appreciable distance from the reference.

A single MC1403/1503 reference can provide the required current input for up to five of the monolithic D/A converters.

ELECTRICAL CHARACTERISTICS \(\left(V_{\text {in }}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Output Voltage
\[
\left(I_{0}=0 \mathrm{~mA}\right)
\] & VOUT & 2.475 & 2.50 & 2.525 & V \\
\hline ```
Temperature Coefficient of Output Voltage
 MC1503
 MC1503A
 MC1403
 MC1403A
``` & \(\Delta V_{O} / \Delta T\) & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & 10
\[
10
\] & \[
\begin{aligned}
& 55 \\
& 25 \\
& 40 \\
& 25 \\
& \hline
\end{aligned}
\] & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{aligned}
& \text { Output Voltage Change } \\
& \begin{array}{l}
\text { (over specified temperature range) } \\
\left.\begin{array}{l}
\text { MC1503 } \\
\text { MC1503A }
\end{array}\right\}-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
\left.\begin{array}{l}
\text { MC1403 } \\
\text { MC1403A }
\end{array}\right\} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{array}
\end{aligned}
\] & \(\Delta \mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
25 \\
11 \\
7.0 \\
4.4
\end{array}
\] & mV \\
\hline \[
\begin{aligned}
& \text { Line Regulation }(10=0 \mathrm{~mA}) \\
& \left(15 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 40 \mathrm{~V}\right) \\
& \left(4.5 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 15 \mathrm{~V}\right) \\
& \hline
\end{aligned}
\] & Regline & - & \[
\begin{aligned}
& 1.2 \\
& 0.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 3.0
\end{aligned}
\] & mV \\
\hline Load Regulation
\[
\left(0 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<10 \mathrm{~mA}\right)
\] & Regload & - & - & 10 & mV \\
\hline Quiescent Current
\[
\left(1_{0}=0 \mathrm{~mA}\right)
\] & \({ }^{1}\) & - & 1.2 & 1.5 & mA \\
\hline
\end{tabular}

FIGURE 2 - MC1403/1503 SCHEMATIC



FIGURE 7 - CHANGE IN \(V_{\text {out }}\) versus TEMPERATURE
(NORMALIZED TO \(T_{A}=I_{0}, V_{\text {in }}=15 \mathrm{~V}, \mathrm{I}_{\text {out }}=0 \mathrm{~mA}\) )


\section*{3-1/2-DIGIT VOLTMETER - COMMON ANODE DISPLAYS, FLASHING OVERRANGE}

An example of a 3-1/2-digit voltmeter using the MC14433 is shown in the circuit diagram of Figure 8. The reference voltage for the system uses an MC1403 2.5 V reference \(I \mathrm{C}\). The full scale potentiometer can calibrate for a full scale of 199.9 mV or 1.999 V . When switching from 2 V to 200 mV operation, \(\mathrm{R}_{\mathrm{l}}\) is also changed, as shown on the diagram.

When using \(R_{C}\) equal to \(300 \mathrm{k} \Omega\), the clock frequency for the system is about 66 kHz . The resulting conversion time is approximately 250 ms .

When the input is overrange, the display flashes on and off. The flashing rate is one-half the conversion rate.

This is done by dividing the EOC pulse rate by 2 with 1/2 MC14013B flip-flop and blanking the display using the blanking input of the MC14543B.

The display uses an LED display with common anode digit lines driven with an MC14543B decoder and an MC1413 LED driver. The MC1413 contains 7 Darlington transistor drivers and resistors to drive the segments of the display. The digit drive is provided by four MPS-A12 Darlington transistors operating in an emitter-follower configuration. The MC14543B, MC14013B and LED displays are referenced to VEE via pin 13 of the MC14433. This places the full power supply voltage across the display. The current for the display may be adjusted by the value of the segment resistors shown as 150 ohms in Figure 8.

FIGURE 8 - 3-1/2-DIGIT VOLTMETER


\section*{VOLTAGE REFERENCE FAMILY}

The MC1404 series of ICs is a family of temperaturecompensated voltage references for precision data conversion applications, such as A/D, D/A, V/F, and F/N. Advances in lasertrimming and ion-implanted devices, as well as monolithic fabrication techniques, make these devices stable and accurate to 12 bits over both military and commercial temperature ranges. In addition to excellent temperature stability, these parts offer excellent long-term stability and low noise.
- Output Voltages: Standard, 5.0 V, 6.25 V, 10 V
- Trimmable Output: \(> \pm 6 \%\)
- Wide Input Voltage Range: \(\mathrm{V}_{\text {ref }}+2.5 \mathrm{~V}\) to 40 V
- Low Quiescent Current: 1.25 mA Typical
- Temperature Coefficient: \(10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) Typical
- Low Output Noise: \(12 \mu \mathrm{~V}\) p-p Typical
- Excellent Ripple Rejection: >80 dB Typical

\section*{TYPICAL APPLICATIONS}
- Voltage Reference for 8-12 Bit D/A Converters
- Low TC Zener Replacement
- High Stability Current Reference
- MPU D/A and A/D Applications

FIGURE 1 - VOLTAGE OUTPUT 8-BIT DAC USING MC1404U10


\section*{PRECISION LOW DRIFT} VOLTAGE REFERENCES
5.0, 6.25, and 10 -VOLT OUTPUT VOLTAGES

LASER TRIMMED SILICON MONOLITHIC INTEGRATED CIRCUIT

6.25 Volts
\begin{tabular}{|l|c|}
\hline MC1504U6 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
MC1404U6 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
MC1404AU6 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

10 Volts
\begin{tabular}{|l|c|}
\hline MC1504U10 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
MC1404U10 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
MC1404AU10 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Input Voltage & \(\mathrm{V}_{\text {in }}\) & 40 & V \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Operating Ambient Temperature Range \\
MC1504 \\
MC1404,A
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=15\right.\) Volts, \(T_{A}=25^{\circ} \mathrm{C}\) and Trim Terminal not connected unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC1404, A} & \multicolumn{3}{|c|}{MC1504} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Output Voltage
\[
\left(I_{0}=0 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{0}\) & & & & & & & Voit \\
\hline MC1404U5, AU5/MC1504U5 & & 4.95 & 5.00 & 5.05 & 4.95 & 5.00 & 5.05 & \\
\hline MC1404U6, AU6/MC1504U6 & & 6.19 & 6.25 & 6.31 & 6.19 & 6.25 & 6.31 & \\
\hline MC1404U10, AU10/MC1504U10 & & 9.90 & 10 & 10.10 & 9.90 & 10 & 10.10 & \\
\hline Output Voltage Tolerance & - & - & \(\pm 0.1\) & \(\pm 1.0\) & - & \(\pm 0.1\) & \(\pm 1.0\) & \% \\
\hline Output Trim Range (Figure 10)
\[
\left(R_{p}=100 \mathrm{k} \Omega\right)
\] & \(\Delta V_{\text {TRIM }}\) & \(\pm 6.0\) & - & - & \(\pm 6.0\) & - & - & \% \\
\hline Output Voltage Temperature Coefficient, Over Full Temperature Range & \(\Delta V_{0} / \Delta T\) & & & & & & & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \[
\begin{array}{r}
\text { MC1404, MC1504 } \\
\text { MC1404A }
\end{array}
\] & & - & \[
10
\] & \[
\begin{aligned}
& 40 \\
& 25 \\
& \hline
\end{aligned}
\] & - & - & 55 & \\
\hline Maximum Output Voltage Change Over Temperature Range & \(\Delta V_{0}\) & & & & & & & mV \\
\hline MC1404U5, MC1504U5 & & - & - & 14 & - & - & 50 & \\
\hline MC1404AU5 & & - & - & 9.0 & - & \(\stackrel{-}{-}\) & - & \\
\hline MC1404U6, MC1504U6 & & - & - & 17.5 & - & - & 62 & \\
\hline MC1404AU6 & & - & - & 11 & - & - & - & \\
\hline MC1404U10, MC1504U10 & & - & - & 28 & - & - & 99 & \\
\hline MC1404AU10 & & - & - & 18 & - & - & - & \\
\hline \[
\begin{aligned}
& \text { Line Regulation (1) } \\
& \quad\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}+2.5 \mathrm{~V} \text { to } 40 \mathrm{~V}, \mathrm{I}_{\text {out }}=0 \mathrm{~mA}\right)
\end{aligned}
\] & Regline & - & 2.0 & 6.0 & - & 2.0 & 6.0 & mV \\
\hline \[
\begin{aligned}
& \text { Load Regulation (1) } \\
& \left(0 \leqslant \mathrm{I}_{\mathrm{o}} \leqslant 10 \mathrm{~mA}\right)
\end{aligned}
\] & Regload & - & - & 10 & - & - & 10 & mV \\
\hline Quiescent Current
\[
\left(I_{0}=0 \mathrm{~mA}\right)
\] & \({ }^{1}\) & - & 1.2 & 1.5 & - & 1.2 & 1.5 & mA \\
\hline Short Circuit Current & \(\mathrm{I}_{\mathrm{sc}}\) & - & 20 & 30 & - & - & 30 & mA \\
\hline Long Term Stability & - & - & 25 & - & - & 25 & - & ppm/1000 hrs \\
\hline
\end{tabular}

Note 1 : Includes thermal effects.
DYNAMIC CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{in}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) all voltage ranges unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC1404, A} & \multicolumn{3}{|c|}{MC1504} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Turn-On Settling Time } \\
& \text { (to } \pm 0.01 \% \text { ) }
\end{aligned}
\] & \({ }^{\text {t }}\) & - & 50 & - & - & 50 & - & \(\mu \mathrm{s}\) \\
\hline Output Noise Voltage - P to P (Bandwidth 0.1 to 10 Hz ) & \(V_{n}\) & - & 12 & - & - & 12 & - & \(\mu \mathrm{V}\) \\
\hline Small-Signal Output Impedance
\[
\begin{aligned}
& 120 \mathrm{~Hz} \\
& 500 \mathrm{~Hz}
\end{aligned}
\] & ro & - & \[
\begin{array}{r}
0.15 \\
0.2 \\
\hline
\end{array}
\] & - & - & \[
\begin{gathered}
0.15 \\
0.2 \\
\hline
\end{gathered}
\] & - & \(\Omega\) \\
\hline Power Supply Rejection Ratio & PSRR & 70 & 80 & - & 70 & 80 & - & dB \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS

FIGURE 2 - SIMPLIFIED DEVICE DIAGRAM


FIGURE 4 - OUTPUT VOLTAGE versus TEMPERATURE MC1404U10


FIGURE 6 - POWER SUPPLY REJECTION RATIO versus FREQUENCY


FIGURE 3 - LINE REGULATION versus TEMPERATURE


FIGURE 5 - LOAD REGULATION versus TEMPERATURE


FIGURE 7 - QUIESCENT CURRENT versus TEMPERATURE


FIGURE 8 - SHORT CIRCUIT CURRENT versus TEMPERATURE


FIGURE 10 - OUTPUT TRIM CONFIGURATION


The MC1404 trim terminal can be used to adjust the output voltage over a \(\pm 6 \%\) range. For example, the output can be set to 10.000 V or to 10.240 V for binary applications. For trimming, Bourns type \(3059,100 \mathrm{k} \Omega\) or \(200 \mathrm{k} \Omega\) trimpot is recommended.

Although Figure 10 illustrates a wide trim range, temperature coefficients may become unpredictable for trim \(> \pm 6.0 \%\).

FIGURE 9 - \(V_{\text {TEMP }}\) OUTPUT versus TEMPERATURE


FIGURE 11 - PRECISION SUPPLY USING MC1404


The addition of a power transistor, a resistor, and a capacitor converts the MC1404 into a precision supply with one ampere current capability. At \(\mathrm{V}+=15 \mathrm{~V}\), the MC1404 can carry in excess of 14 mA of load current with good regulation. If the power transistor current gain exceeds 75 , a one ampere supply can be realized.

FIGURE 12 - ULTRA STABLE REFERENCE FOR MC1723 VOLTAGE REGULATOR


FIGURE \(13-5.0 \mathrm{~V}, 6.0 \mathrm{AMP}, 25 \mathrm{kHz}\) SWITCHING REGULATOR WITH SEPARATE ULTRA-STABLE REFERENCE


FIGURE 14 - HIGH SPEED 8-BIT D/A CONVERTER USING MC1404U10

\section*{Specifications and Applications Information}

\section*{PROGRAMMABLE PRECISION REFERENCES}

The TL431,A integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from \(V_{\text {ref }}\) to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100 mA with a typical dynamic impedance of \(0.22 \Omega\). The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 volt reference makes it convenient to obtain a stable reference from 5.0 volt logic supplies, and since the TL431,A operates as a shunt regulator, it can be used as either a positive or negative voltage reference.
- Programmable Output Voltage to 36 Volts
- Voltage Reference Tolerance: \(\pm 1.0 \%\) (TL431,A)
- Low Dynamic Output Impedance, \(0.22 \Omega\) Typical
- Sink Current Capability of 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of \(50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) Typical
- Temperature Compensated for Operation over Full Rated Operating Temperature Range
- Low Output Noise Voltage


\section*{PROGRAMMABLE PRECISION REFERENCES}

SILICON MONOLITHIC INTEGRATED CIRCUITS


ORDERING INFORMATION
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Device } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Temperature \\
Range
\end{tabular}} & \multicolumn{1}{|c|}{ Package } \\
\hline TL431CLP,ACLP & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic \\
\hline TL431CP,ACP & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline TL431CD,ACD & 0 to \(+70^{\circ} \mathrm{C}\) & SOP-8 \\
\hline TL431CJG & 0 to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline TL431ILP,AILP & -40 to \(+85^{\circ} \mathrm{C}\) & Plastic \\
\hline TL431IP,AIP & -40 to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline TL431IJG & -40 to \(+85^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline TL431MJG & -55 to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline
\end{tabular}

\section*{TL431,A Series}

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Cathode To Anode Voltage & \(V_{K A}\) & 37 & V \\
\hline Cathode Current Range, Continuous & \(l_{K}\) & -100 to +150 & mA \\
\hline Reference Input Current Range, Continuous & Iref & -0.05 to +10 & mA \\
\hline Operating Junction Temperature & TJ & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range
\[
\begin{aligned}
& \text { TL431M } \\
& \text { TL431I, TL431AI } \\
& \text { TL431C, TL431AC }
\end{aligned}
\] & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
-55 \text { to }+125 \\
-40 \text { to }+85 \\
0 \text { to }+70
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Total Power Dissipation @ \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Derate above \(25^{\circ} \mathrm{C}\) Ambient Temperature D, LP Suffix Plastic Package P Suffix Plastic Package JG Suffix Ceramic Package & PD & \[
\begin{aligned}
& 0.70 \\
& 1.10 \\
& 1.25
\end{aligned}
\] & W \\
\hline Total Power Dissipation \(\left(a T_{C}=25^{\circ} \mathrm{C}\right.\) Derate above \(25^{\circ} \mathrm{C}\) Case Temperature D, LP Suffix Plastic Package P Suffix Plastic Package JG Suffix Ceramic Package & PD & \[
\begin{aligned}
& 1.5 \\
& 3.0 \\
& 3.3
\end{aligned}
\] & W \\
\hline
\end{tabular}

THERMAL CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & \begin{tabular}{c} 
D, LP Suffix \\
Package
\end{tabular} & \begin{tabular}{c} 
P Suffix \\
Package
\end{tabular} & \begin{tabular}{c} 
JG Suffix \\
package
\end{tabular} & Unit \\
\hline Thermal Resistance, Junction to Ambient & \(\mathrm{R}_{\theta J A}\) & 178 & 114 & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance, Junction to Case & \(\mathrm{R}_{\theta J C}\) & 83 & 41 & 38 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Condition/Value } & Symbol & Min & Max & Unit \\
\hline Cathode To Anode Voltage & \(V_{K A}\) & \(V_{\text {ref }}\) & 36 & \(V\) \\
\hline Cathode Current & \(I_{K}\) & 1.0 & 100 & mA \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Ambient temperature at \(25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL431M} & \multicolumn{3}{|c|}{TL4311} & \multicolumn{3}{|c|}{TL431C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Reference Input Voltage (Figure 1)
\[
\begin{aligned}
V_{K A} & =V_{\text {ref. }} I_{K}=10 \mathrm{~mA} \\
T_{A} & =+25^{\circ} \mathrm{C} \\
T_{A} & =T_{\text {low }} \text { to } T_{\text {high }} \text { (Note 1) }
\end{aligned}
\] & \(V_{\text {ref }}\) & \[
\begin{array}{|l|}
\hline 2.440 \\
2.396
\end{array}
\] & 2.495 & \[
\begin{aligned}
& 2.550 \\
& 2.594
\end{aligned}
\] & \[
\begin{aligned}
& 2.440 \\
& 2.410
\end{aligned}
\] & 2.495
- & \[
\begin{aligned}
& 2.550 \\
& 2.580
\end{aligned}
\] & \[
\begin{aligned}
& 2.440 \\
& 2.423
\end{aligned}
\] & 2.495 & \[
\begin{aligned}
& 2.550 \\
& 2.567
\end{aligned}
\] & V \\
\hline Reference Input Voltage Deviation Over Temperature Range (Figure 1, Note 1, 2, 4)
\[
V_{K A}=V_{\text {ref }}, I_{K}=10 \mathrm{~mA}
\] & \(\triangle V_{\text {ref }}\) & - & 15 & 44 & - & 7.0 & 30 & - & 3.0 & 17 & mV \\
\hline Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage & \[
\frac{\Delta V_{\text {ref }}}{\Delta V_{\text {KA }}}
\] & - & \[
\begin{array}{r}
-1.4 \\
-1.0 \\
\hline
\end{array}
\] & \[
\begin{array}{|}
-2.7 \\
-2.0
\end{array}
\] & - & \[
\begin{array}{r}
-1.4 \\
-1.0 \\
\hline
\end{array}
\] & \[
\begin{array}{|}
-2.7 \\
-2.0 \\
\hline
\end{array}
\] & - & \[
\begin{array}{|r}
-1.4 \\
-1.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-2.7 \\
-2.0 \\
\hline
\end{array}
\] & \(\mathrm{mV} / \mathrm{v}\) \\
\hline \[
\begin{aligned}
& \text { Reference Input Current (Figure 2) } \\
& \mathrm{I}_{\mathrm{K}}=10 \mathrm{~mA}, \mathrm{R} 1=10 \mathrm{k}, \mathrm{R} 2=\infty \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 1) }
\end{aligned}
\] & Iref & - & 1.8 & \[
\begin{aligned}
& 4.0 \\
& 7.0
\end{aligned}
\] & - & 1.8 & \[
\begin{aligned}
& 4.0 \\
& 6.5
\end{aligned}
\] & - & 1.8 & \[
\begin{aligned}
& 4.0 \\
& 5.2
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Reference Input Current Deviation Over Temperature Range (Figure 2, Note 1, 4)
\[
I_{K}=10 \mathrm{~mA}, \mathrm{R} 1=10 \mathrm{k}, \mathrm{R} 2=x
\] & \(\Delta I_{\text {ref }}\) & - & 1.0 & 3.0 & - & 0.8 & 2.5 & - & 0.4 & 1.2 & \(\mu \mathrm{A}\) \\
\hline Minimum Cathode Current For Regulation
\[
V_{K A}=V_{\text {ref }}(\text { Figure 1) }
\] & \(I_{\text {min }}\) & - & 0.5 & 1.0 & - & 0.5 & 1.0 & - & 0.5 & 1.0 & mA \\
\hline Off-State Cathode Current (Figure 3)
\[
V_{K A}=36 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=0 \mathrm{~V}
\] & loff & - & 2.6 & 1000 & - & 2.6 & 1000 & - & 2.6 & 1000 & nA \\
\hline Dynamic Impedance (Figure 1, Note 3)
\[
\begin{aligned}
& V_{K A}=V_{\text {ref }}, \Delta I_{K}=1.0 \mathrm{~mA} \text { to } 100 \mathrm{~mA} \\
& f \leqslant 1.0 \mathrm{kHz}
\end{aligned}
\] & \(\left|z_{\text {ka }}\right|\) & - & 0.22 & 0.5 & - & 0.22 & 0.5 & - & 0.22 & 0.5 & \(\Omega\) \\
\hline
\end{tabular}

\section*{TL431,A Series}

ELECTRICAL CHARACTERISTICS (Ambient temperature at \(25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{TL431AI} & \multicolumn{3}{|c|}{TL431AC} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Reference Input Voltage (Figure 1)
\[
\begin{aligned}
V_{K A} & =V_{\text {ref }}, I_{K}=10 \mathrm{~mA} \\
T_{A} & =+25^{\circ} \mathrm{C} \\
T_{A} & =T_{\text {low }} \text { to } T_{\text {high }}(\text { Note 4) }
\end{aligned}
\] & Vref & \[
\begin{aligned}
& 2.470 \\
& 2.440
\end{aligned}
\] & 2.495 & \[
\begin{aligned}
& 2.520 \\
& 2.550 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.470 \\
& 2.453
\end{aligned}
\] & 2.495 & \[
\begin{aligned}
& 2.520 \\
& 2.537
\end{aligned}
\] & V \\
\hline Reference Input Voltage Deviation Over Temperature Range (Figure 1, Note 1, 2) \(V_{K A}=V_{\text {ref }}, I_{K}=10 \mathrm{~mA}\) & \(\Delta V_{\text {ref }}\) & - & 7.0 & 30 & - & 3.0 & 17 & mV \\
\hline Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage & \[
\frac{\Delta V_{\text {ref }}}{\Delta V_{K A}}
\] & - & \[
\begin{aligned}
& -1.4 \\
& -1.0
\end{aligned}
\] & \[
\begin{aligned}
& -2.7 \\
& -2.0
\end{aligned}
\] & - & \[
\begin{array}{r}
-1.4 \\
-1.0
\end{array}
\] & \[
\begin{aligned}
& -2.7 \\
& -2.0
\end{aligned}
\] & \(\mathrm{mV} / \mathrm{N}\) \\
\hline Reference Input Current (Figure 2)
\[
\begin{gathered}
\mathrm{I}_{\mathrm{K}}=10 \mathrm{~mA}, \mathrm{R} 1=10 \mathrm{k}, \mathrm{R} 2=x \\
T_{A}=+25^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } T_{\text {high }} \text { (Note 1) }
\end{gathered}
\] & Iref & - & 1.8 & \[
\begin{aligned}
& 4.0 \\
& 6.5
\end{aligned}
\] & - & 1.8 & \[
\begin{aligned}
& 4.0 \\
& 5.2
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Reference Input Current Deviation Over Temperature Range (Figure 2, Note 1) \(I_{K}=10 \mathrm{~mA}, \mathrm{R} 1=10 \mathrm{k}, \mathrm{R} 2=x\) & \(\triangle I_{\text {ref }}\) & - & 0.8 & 2.5 & - & 0.4 & 1.2 & \(\mu \mathrm{A}\) \\
\hline Minimum Cathode Current For Regulation \(V_{K A}=V_{\text {ref }}\) (Figure 1) & \(I_{\text {min }}\) & - & 0.5 & 1.0 & - & 0.5 & 1.0 & mA \\
\hline Off-State Cathode Current (Figure 3)
\[
V_{\text {KA }}=36 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=0 \mathrm{~V}
\] & loff & - & 2.6 & 1000 & - & 2.6 & 1000 & nA \\
\hline Dynamic Impedance (Figure 1, Note 3)
\[
\begin{aligned}
& V_{K A}=V_{\text {ref }}, \Delta I_{K}=1.0 \mathrm{~mA} \text { to } 100 \mathrm{~mA} \\
& f \leqslant 1.0 \mathrm{kHz}
\end{aligned}
\] & \(\left|Z_{\text {ka }}\right|\) & - & 0.22 & 0.5 & - & 0.22 & 0.5 & \(\Omega\) \\
\hline
\end{tabular}

\section*{Note 1:}
\(T_{\text {low }}=-55^{\circ} \mathrm{C}\) for TL431MJG
\(=-40^{\circ} \mathrm{C}\) for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431IJG
\(=0^{\circ} \mathrm{C}\) for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CJG, TL431CD, TL431ACD

Note 2:
The deviation parameter \(\Delta V_{\text {ref }}\) is defined as the differences between the maximum and minimum values obtained over the full operating ambient temperature range that applies.


The average temperature coefficient of the reference input voltage, \(\alpha V_{\text {ref }}\), is defined as:
\(\alpha V_{\text {ref }} \frac{\mathrm{ppm}}{{ }^{\circ} \mathrm{C}}=\frac{\left(\frac{\Delta V_{\text {ref }}}{V_{\text {ref }} @ 25^{\circ} \mathrm{C}}\right) \times 10^{6}}{\Delta T_{\mathrm{A}}}=\frac{\Delta V_{\text {ref }} \times 10^{6}}{\Delta T_{A}\left(V_{\text {ref }} @ 25^{\circ} \mathrm{C}\right)}\)
\(\alpha V_{\text {ref }}\) can be positive or negative depending on whether \(V_{\text {ref }}\) Min or \(V_{\text {ref }}\) Max occurs at the lower ambient temperature. (Refer to Figure 6)
Example: \(\quad \Delta V_{\text {ref }}=8.0 \mathrm{mV}\) and slope is positive, \(V_{\text {ref }} @ 25^{\circ} \mathrm{C}=\) \(2.495 \mathrm{~V}, \Delta \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\)
\[
\alpha V_{\text {ref }}=\frac{0.008 \times 10^{6}}{70(2.495)}=45.8 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
\]

Note 3:
The dynamic impedance \(Z_{k a}\) is defined as: \(\left|Z_{k a}\right|=\frac{\Delta V_{K A}}{\Delta I_{K}}\)
When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as
\[
\left|Z_{k a^{\prime}}\right| \approx\left|Z_{k a}\right|\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
\]
\(T_{\text {high }}=+125^{\circ} \mathrm{C}\) for TL431MJG
\(=+85^{\circ} \mathrm{C}\) for TL431AIP, TL431AILP, TL4311P, TL4311LP, TL431IJG
\(=+70^{\circ} \mathrm{C}\) fcr TL431ACP, TL431ACLP, TL431'CP, TL431CLP, TL431CJG, TL431CD, TL431ACD

Note 4:
This test is not applicable to surface mount ( \(D\) suffix) devices.

FIGURE 1 - TEST CIRCUIT FOR \(V_{K A}=V_{\text {ref }}\)


FIGURE 2 - TEST CIRCUIT FOR \(V_{K A}>V_{\text {ref }}\) Input \(\mathrm{O}-\mathrm{Mn}\)


FIGURE 3 - TEST CIRCUIT FOR \(I_{\text {off }}\)



FIGURE 6 - REFERENCE INPUT VOLTAGE versus AMBIENT TEMPERATURE


FIGURE 8 - CHANGE IN REFERENCE INPUT VOLTAGE versus CATHODE VOLTAGE


FIGURE 5 - CATHODE CURRENT versus CATHODE VOLTAGE


FIGURE 7 - REFERENCE INPUT CURRENT versus AMBIENT TEMPERATURE


FIGURE 9 - OFF-STATE CATHODE CURRENT versus AMBIENT TEMPERATURE


\section*{TL431,A Series}


FIGURE 12 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY


FIGURE 14 - PULSE RESPONSE


FIGURE 11 - DYNAMIC IMPEDANCE versus AMBIENT TEMPERATURE


FIGURE 13 - SPECTRAL NOISE DENSITY


FIGURE 15 - STABILITY BOUNDARY CONDITIONS


\section*{TL431,A Series}

FIGURE 16 - TEST CIRCUIT FOR CURVE A OF STABILITY BOUNDARY CONDITIONS


FIGURE 17 - TEST CIRCUIT FOR CURVES B, C, AND D OF STABILITY BOUNDARY CONDITIONS


\section*{TYPICAL APPLICATIONS}

FIGURE 18 - SHUNT REGULATOR

\[
V_{\text {out }}=\left(1+\frac{R 1}{R 2}\right) V_{\text {ref }}
\]

FIGURE 20 - OUTPUT CONTROL OF A THREE-TERMINAL FIXED REGULATOR


FIGURE 19 - HIGH CURRENT SHUNT REGULATOR


FIGURE 21 - SERIES PASS REGULATOR


\section*{TL431,A Series}

FIGURE 22 - CONSTANT CURRENT SOURCE


FIGURE 24 - TRIAC CROWBAR


FIGURE 26 - VOLTAGE MONITOR

L.E.D. indicator is 'on' when \(V+\) is between the upper and lower limits.
Lower Limit \(=\left(1+\frac{R 1}{R 2}\right) V_{\text {ref }}\)
Upper Limit \(=\left(1+\frac{R 3}{R 4}\right) V_{\text {ref }}\)

FIGURE 28 - LINEAR OHMMETER


FIGURE 23 - CONSTANT CURRENT SINK


FIGURE 25 - SCR CROWBAR


FIGURE 27 -- SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED THRESHOLD


FIGURE 29 - SIMPLE 400 mW PHONO AMPLIFIER


\section*{TL431 Series}

FIGURE 30 - HIGH EFFICIENCY STEP-DOWN

\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ TEST } & \multicolumn{1}{|c|}{ CONDITIONS } & RESULTS \\
\hline Line Regulation & \(\mathrm{V}_{\text {in }}=10 \mathrm{~V}\) to \(20 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}\) & \(53 \mathrm{mV} \mathrm{(1.1} \mathrm{\%)}\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=0 \mathrm{~A}\) to 1.0 A & \(25 \mathrm{mV} \quad(0.5 \%)\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=1.0 \mathrm{~A}\) & 50 mV p-p P.A.R.D. \\
\hline Output Ripple & \(\mathrm{V}_{\mathrm{in}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=1.0 \mathrm{~A}\) & 100 mV p-p P.A.R.D. \\
\hline Efficiency & \(\mathrm{V}_{\mathrm{in}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=1.0 \mathrm{~A}\) & \(82 \%\) \\
\hline
\end{tabular}


\section*{In Brief . . .}

Motorola's line of digital-to-analog and analog-todigital converters include several well established industry standards, and many are available in various linearity grades so as to suit most any application.

The A/D converters have 7 and 8-bit flash converters suitable for NTSC and PAL systems, a \(1.8 \mu\) s SAR converter, CMOS 8 to 10-bit converters, as well as other high-speed digitizing applications.
The D/A converters have 6 and 8-bit devices, video speed (for NTSC and PAL) devices, and triple video DAC with on-board color pallette for color graphics applications.

\section*{Data Conversion}
Selector Guide
A-D Converters ..... 6-2
D-A Converters ..... 6-3
A-D/D-A Converters ..... 6-3
Alphanumeric Listing ..... 6-4
Related Application Notes ..... 6-4
Data Sheets ..... 6-5

\section*{Data Conversion}

The line of data conversion products which Motorola offers spans a wide spectrum of speed and resolution/ accuracy. Features, including bus compatibility, minimize external parts count and provide easy interface to microprocessor systems. Various technologies, such as Bipolar and CMOS, are utilized to achieve functional capability, accuracy and production repeatability. Bipolar technology generally results in higher speed, while CMOS devices offer greatly reduced power consumption.
A-D Converters CMOS ..... 6-2
Bipolar ..... 6-2
D-A Converters
CMOS ..... 6-3
Bipolar ..... 6-3
A-D/D-A Converters
CMOS - For Telecommunications ..... 6-3

\section*{A-D Converters}

CMOS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Resolution (Bits) & Device & Nonlinearity (Max) & Conversion Time & \begin{tabular}{l}
Input \\
Voltage \\
Range
\end{tabular} & \begin{tabular}{l}
Supplies \\
(V)
\end{tabular} & Temperature Range & Package & Comments \\
\hline \multirow[t]{4}{*}{8} & MC145040 & \multirow[t]{3}{*}{\(\pm 1 / 2\) LSB} & \(10 \mu \mathrm{~s}\) & \multirow[t]{3}{*}{0 to \(\mathrm{V}_{\mathrm{DD}}\)} & \multirow[t]{3}{*}{\(+5.0 \pm 10 \%\)} & \multirow[t]{2}{*}{\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{P} / 738 \\
\mathrm{FN} / 775
\end{gathered}
\]} & Requires External Clock \\
\hline & MC145041 & & \(20 \mu \mathrm{~s}\) & & & & & Includes Internal Clock \\
\hline & MC14442 & & \(32 \mu \mathrm{~s}\) & & & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \[
\begin{gathered}
\mathrm{P} / 710 \\
\mathrm{FN} / 776
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{P}\) Compatible \\
11-Channel MUX \\
S.A.R.
\end{tabular} \\
\hline & MC14549B MC14559B & \multicolumn{3}{|c|}{successive approximation registers} & +3.0 to +18 & \[
\left|\begin{array}{c}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{array}\right|
\] & \[
\begin{aligned}
& \mathrm{L} / 620 \\
& \mathrm{P} / 648
\end{aligned}
\] & \begin{tabular}{l}
Compatible with MC1408 S.A.R. \\
8-bit D-A Converter
\end{tabular} \\
\hline 8-10 & MC14443/47 & \[
\begin{aligned}
& \pm 0.5 \% \\
& \text { Full Scale }
\end{aligned}
\] & \(300 \mu \mathrm{~s}\) & Variable w/Supply & +5.0 to +18 & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \[
\begin{gathered}
\mathrm{P} / 648 \\
\mathrm{DW} / 751 \mathrm{G}
\end{gathered}
\] & \(\mu \mathrm{P}\) Compatible, Single Slope, 6-Channel MUX \\
\hline 3-1/2 Digit & MC14433 & \[
\begin{aligned}
& \pm 0.05 \% \\
& \pm 1 \text { Count }
\end{aligned}
\] & 40 ms & \[
\begin{gathered}
\pm 2.0 \mathrm{~V} \\
\pm 200 \mathrm{mV}
\end{gathered}
\] & \(+5.0,+8.0\) & & P/709 & Dual Slope \\
\hline
\end{tabular}

Bipolar
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 7 & MC10321 & \(\pm 1 / 2 \mathrm{LSB}\) & \multirow[t]{2}{*}{40 ns} & \multirow[t]{2}{*}{\[
\begin{gathered}
0 \text { to } 2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\
\mathrm{Max}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& +5.0 \mathrm{~V} \text { and } \\
& -3.0 \mathrm{~V} \text { to } \\
& -6.0 \mathrm{~V}
\end{aligned}
\]} & \multirow[t]{3}{*}{\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)} & \[
\begin{array}{|c|}
\hline \mathrm{P} / 738 \\
\mathrm{DW} / 751 \mathrm{D}
\end{array}
\] & Video Speed, Grey Code \\
\hline \multirow[t]{2}{*}{8} & MC10319 & \(\pm 1\) LSB & & & & & \begin{tabular}{l}
L/623 \\
P/709 \\
DW/751F \\
Die Form
\end{tabular} & Video Speed Flash Converter, Internal Grey Code \\
\hline & MC6108 & \(\pm 1 / 2 \mathrm{LSB}\) & \(1.8 \mu \mathrm{~s}\) & \[
\begin{gathered}
\pm 5.0 \mathrm{~V} \\
0 \text { to } 5.0 \mathrm{~V} \\
0 \text { to } 10 \mathrm{~V}
\end{gathered}
\] & \(+5.0,-5.2\) & & P/710 & \(\mu \mathrm{P}\) Compatible, Three-State Outputs, includes Reference \\
\hline
\end{tabular}

\section*{D-A Converters}

CMOS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{c} 
Resolution \\
(Bits)
\end{tabular}} & Device & Suffix & \begin{tabular}{c} 
Accuracy \\
\(@ \mathbf{2 5}{ }^{\circ}\) \\
\((\) Max)
\end{tabular} & \begin{tabular}{c} 
Max \\
Settling \\
Time \\
\(( \pm 1 / 2\) LSB)
\end{tabular} & \begin{tabular}{c} 
Supplies \\
(V)
\end{tabular} & \begin{tabular}{c} 
Temperature \\
Range
\end{tabular} & Package & Comments \\
\hline 6 & MC144110 & P & - & - & +5.0 to +15 & \(0^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 707 & \begin{tabular}{l} 
Serial input, Hex DAC, \\
6 outputs
\end{tabular} \\
\hline
\end{tabular}

\section*{Bipolar}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{13}{*}{8} & \multirow[t]{5}{*}{DAC-08} & Q & \(\pm 1 / 2\) LSB & 150 ns & \multirow[t]{5}{*}{\(\pm 4.5\) to \(\pm 18\)} & \multirow[t]{2}{*}{\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)} & \multirow[t]{2}{*}{620} & \multirow[t]{5}{*}{High-Speed Multiplying} \\
\hline & & AQ & \(\pm 1 / 4\) LSB & 135 ns & & & & \\
\hline & & C & \(\pm 1\) LSB & \multirow[t]{2}{*}{150 ns} & & \multirow[t]{3}{*}{\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)} & \multirow[t]{3}{*}{\[
\begin{gathered}
620 \\
648 \\
\mathrm{D} / 751 \mathrm{~B}
\end{gathered}
\]} & \\
\hline & & E & \(\pm 1 / 2\) LSB & & & & & \\
\hline & & H & \(\pm 1 / 4\) LSB & 135 ns & & & & \\
\hline & \multirow[t]{3}{*}{MC1408} & L6/P6 & \(\pm 2\) LSB & \multirow[t]{4}{*}{300 ns Typ} & \multirow[t]{4}{*}{\[
\begin{gathered}
+5.0 \\
-5.0 \text { to }-15
\end{gathered}
\]} & \multirow[t]{3}{*}{\(0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 620 \\
& 648
\end{aligned}
\]} & \multirow[t]{4}{*}{Multiplying} \\
\hline & & L7/P7 & \(\pm 1\) LSB & & & & & \\
\hline & & L8/P8 & \multirow[t]{2}{*}{\(\pm 1 / 2\) LSB} & & & & & \\
\hline & MC1508 & L8 & & & & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 620 & \\
\hline & \multirow[t]{4}{*}{MC10318} & CL6 & \(\pm 2\) LSB & \multirow[t]{4}{*}{10 ns Typ} & \multirow[t]{4}{*}{\[
-5.2
\]} & \multirow[t]{6}{*}{\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 620 \\
& 690
\end{aligned}
\]} & \multirow[t]{4}{*}{ECL input Logic Levels Video Applications} \\
\hline & & CL7 & \(\pm 1\) LSB & & & & & \\
\hline & & L & \(\pm 1 / 2 \mathrm{LSB}\) & & & & & \\
\hline & & L9 & \multirow[t]{3}{*}{\(\pm 1 / 4\) LSB} & & & & & \\
\hline \multirow[t]{2}{*}{\(4 \times 3\)} & MC10320 & \multirow[t]{2}{*}{L} & & \multirow[t]{2}{*}{3 ns} & \multirow[t]{2}{*}{+5.0, or \(\pm 5.0\)} & & \multirow[t]{2}{*}{733} & 125 MHz Color Graphics Triple DAC \\
\hline & MC10320-1 & & & & & & & 90 MHz Color \\
\hline
\end{tabular}

\section*{A-D/D-A Converters}

CMOS - For Telecommunications
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Resolution \\
(Bits)
\end{tabular} & Device & \begin{tabular}{c} 
Monotonicity \\
(Bits)
\end{tabular} & \begin{tabular}{c} 
Conversion \\
Time
\end{tabular} & \begin{tabular}{c} 
Input \\
Voltage \\
Range
\end{tabular} & \begin{tabular}{c} 
Supplies \\
(V)
\end{tabular} & \begin{tabular}{c} 
Temperature \\
Range
\end{tabular} & Package & Comments \\
\hline 13 & MC145402 & 13 & \(31.25 \mu \mathrm{~s}\) & \begin{tabular}{c}
\(\pm 3.28 \mathrm{~V}\) \\
peak
\end{tabular} & \(\pm 5.0\) to 6.0 & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
L/620 \\
\begin{tabular}{l} 
Digital signal pro- \\
cessing (e.g., echo \\
cancelling, high- \\
speed modems, \\
phone systems \\
with conferencing)
\end{tabular} \\
\hline
\end{tabular} & \\
\hline
\end{tabular}

\section*{DATA CONVERTERS}

\section*{A-D Converters}
Device Function ..... Page
MC6108 8-Bit MPU Bus-Compatible High Speed A-to-D Converter ..... 6-27
MC10319 High Speed 8-Bit D-to-A Flash Converter ..... 6-62
MC10321 High Speed 7-Bit A-to-D Flash Converter ..... 6-80
D-A Converters
Device Function ..... Page
DAC-08 High Speed 8-Bit Multiplying D-to-A Converter ..... 6-5
MC1408 8-Bit Multiplying D-to-A Converter ..... 6-15
MC1508 8-Bit Multiplying D-to-A Converter ..... 6-15
MC10318L, L9, CL6, CL7 High Speed 8-Bit D-to-A Converters ..... 6-45
MC10320, 20-1 Triple 4-Bit Color Palette Video DAC. ..... See Chapter 9
RELATED APPLICATION NOTES
\begin{tabular}{lll}
\begin{tabular}{l} 
Application \\
Note
\end{tabular} & Title & \begin{tabular}{c} 
Related \\
Device
\end{tabular} \\
EB-51 & \begin{tabular}{l} 
Successive Approximation BCD A-to-D Converter \(\ldots \ldots .\).
\end{tabular} \\
AN963 & \begin{tabular}{c} 
Interfacing the MC6108 A-to-D to a Microprocessor \\
It's Easier Than You Think! \(\ldots\)
\end{tabular} & MC1408, MC1508
\end{tabular}

\section*{Specifications and Applications Information}

\section*{HIGH SPEED 8-BIT MULTIPLYING D-TO-A CONVERTER}

The DAC-08 series is a monolithic 8 -bit high speed multiplying digital-toanalog converter, capable of settling to within \(1 / 2\) LSB ( \(0.19 \%\) ) in 85 ns . Monotonic multiplying performance is retained over a wide 40 -to- 1 reference current range. Full scale and reference currents are matched to within 1 LSB, therefore eliminating the need for full scale trim in most applications.
Dual complementry current outputs with high voltage compliance provide added versatility and allow differential mode of operation to effectively double the peak-to-peak output swing. In many applications, output current-tovoltage conversion can be accomplished without requiring an external op amp. Noise-immune inputs permit direct interface with TTL and DTL levels when the logic threshold control, \(\mathrm{V}_{\mathrm{LC}}\), (Pin 1) is grounded. All other logic family thresholds are attainable by adjusting the voltage level of Pin 1. Performance characteristics are virtually unchanged over the entire \(\pm 4.5 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) power supply range. Power consumption is typically 33 mW with \(\pm 5.0 \mathrm{~V}\) supplies.
The DAC-08 is available in several versions, with nonlinearity as tight as \(\pm 0.1 \%( \pm 1 / 4\) LSB) over temperature. All versions are guaranteed monotonic over 8 bits. For an extra margin of performance, Motorola utilizes thin-film resistors permitting very accurate resistive values which are extremely stable over temperature.

High performance characteristics along with low cost, make the DAC-08 an excellent selection for applications such as CRT displays, waveform generation, high speed modems, and high speed analog-to-digital converters.
- Fast Settling Time - 85 ns
- Full Scale Current Prematched to \(\pm 1\) LSB
- Nonlinearity Over Temperature to \(\pm 0.1 \%\) Max
- Differential Current Outputs
- High Voltage Compliance Outputs -10 V to +18 V
- Wide Range Multiplying Capability
- Inputs Compatable With TTL, DTL, CMOS, PMOS, ECL, HTL
- Low Full Scale Current Drift
- Wide Power Supply Range \(\pm 4.5 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\)
- Low Power Consumption
- Thin-Film Resistors
- Low Cost


DAC-08

\section*{HIGH SPEED 8-BIT MULTIPLYING D-TO-A CONVERTER}

SILICON MONOLITHIC INTEGRATED CIRCUIT


CERAMIC PACKAGE CASE 620-10

\begin{tabular}{|c|c|c|c|}
\hline Device & Nonlinearity & Temperature Range & Package \\
\hline DAC-08AQ & \(\pm 0.1 \%\) & \(-55^{\circ} \mathrm{C}\) to & Ceramic \\
\hline DAC-08Q & \(\pm 0.19 \%\) & \(+125^{\circ} \mathrm{C}\) & Ceramic \\
\hline DAC-08HQ & \(\pm 0.1 \%\) & \multirow{8}{*}{\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)} & Ceramic \\
\hline DAC-08EQ & \(\pm 0.19 \%\) & & Ceramic \\
\hline DAC-08C0 & \(\pm 0.39 \%\) & & Ceramic \\
\hline DAC-08CD & \(\pm 0.39 \%\) & & SO-16 \\
\hline DAC-08ED & \(\pm\) 0.19\% & & SO-16 \\
\hline DAC-08HP & \(\pm 0.1 \%\) & & Plastic \\
\hline DAC-08EP & \(\pm 0.19 \%\) & & Plastic \\
\hline DAC-08CP & \(\pm 0.39 \%\) & & Plastic \\
\hline
\end{tabular}

MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline V+ Supply to V-Supply & - & 36 & V \\
\hline Logic Inputs & - & V - to V-Plus 36 & V \\
\hline Logic Threshold Control & \(\mathrm{V}_{\mathrm{LC}}\) & V - to \(\mathrm{V}+\) & V \\
\hline Analog Current Outputs & lout & See Figure 7 & mA \\
\hline Reference Inputs (V14, V15) & \(V_{\text {REF }}\) & V - to \(\mathrm{V}+\) & V \\
\hline Reference Input Differential Voltage (V14 to V15) & \(\mathrm{V}_{\text {REF ( }}\) ) & \(\pm 18\) & V \\
\hline Reference Input Current (114) & IREF & 5.0 & mA \\
\hline \[
\begin{aligned}
& \text { Operating Temperature Range } \\
& \text { DAC-08AQ, } \mathrm{Q} \\
& \text { DAC-08HQ, EQ, CQ, HP, EP, CP, ED, CD }
\end{aligned}
\] & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
-55 \text { to }+125 \\
0 \text { to }+70
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {A }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Dissipation Derate above \(100^{\circ} \mathrm{C}\) & \[
P_{D}
\]
\[
\mathrm{R}_{\theta} \mathrm{JA}
\] & \[
\begin{gathered}
500 \\
10
\end{gathered}
\] & \[
\mathrm{mW}_{\mathrm{mW} /{ }^{\circ} \mathrm{C}}
\] \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\quad\left(V_{S}= \pm 15 \mathrm{~V}, I_{R E F}=2.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.\) to \(+125^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{DAC-08A} & \multicolumn{3}{|c|}{DAC-08} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Resolution & - & 8 & 8 & 8 & 8 & 8 & 8 & Bits \\
\hline Monotonicity & - & 8 & 8 & 8 & 8 & 8 & 8 & Bits \\
\hline Nonlinearity, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & NL & - & - & \(\pm 0.1\) & - & - & \(\pm 0.19\) & \%FS \\
\hline \begin{tabular}{l}
Settling Time to \(\pm 1 / 2\) LSB, Figure 24 \\
(All Bits Switched On or Off, TA \(=25^{\circ} \mathrm{C}\) )(Note 1)
\end{tabular} & \({ }^{\text {t }}\) s & - & 85 & - & - & 85 & - & ns \\
\hline \begin{tabular}{l}
Propagation Delay, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Note 1) Each Bit \\
All Bits Switched
\end{tabular} & \({ }^{t}\) PLH \({ }^{\text {tPHL }}\) & - & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] & - & ns \\
\hline Full Scale Tempco & \(\mathrm{TCl}_{\text {FS }}\) & - & \(\pm 10\) & - & - & \(\pm 10\) & - & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Output Voltage Compliance Full Scale Current Change \(<1 / 2\) LSB, \(R_{\text {out }}>20\) megohm typ. & \(\mathrm{V}_{\text {OC }}\) & -10 & - & +18 & -10 & - & +18 & V \\
\hline Full Range Current \(\left(V_{\text {REF }}=10.000 \mathrm{~V} ; \mathrm{R} 14, \mathrm{R} 15=5.000 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & IFR4 & 1.984 & 1.992 & 2.000 & 1.94 & 1.99 & 2.04 & mA \\
\hline Full Range Symmetry (IFR4-I \({ }^{\text {FR2 }}\) ) & IFRS & - & \(\pm 0.5\) & \(\pm 4.0\) & - & \(\pm 1.0\) & \(\pm 8.0\) & \(\mu \mathrm{A}\) \\
\hline Zero Scale Current & IzS & - & 0.1 & 1.0 & - & 0.2 & 2.0 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Output Current Range } \\
& \mathrm{V}-=--5.0 \mathrm{~V} \\
& \mathrm{~V}-=-8.0 \mathrm{~V} \text { to }-18 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \text { IOR1 } \\
& \text { IOR2 }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.1 \\
& 4.2
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.1 \\
& 4.2
\end{aligned}
\] & mA \\
\hline ```
Logic Input '.evels (VLC = 0 V)
    Logic "0"
    Logic "1"
``` & \[
\begin{aligned}
& V_{I L} \\
& V_{I H}
\end{aligned}
\] & 2.0 & - & 0.8 & 2.0 & - & 0.8 & V \\
\hline Logic Input Current (\(\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}\)) Logic Input " 0 " (\(\mathrm{V}_{\text {in }}=-10 \mathrm{~V}\) to +0.8 V) Logic Input "1" \(\mathrm{V}_{\text {in }}=+2.0 \mathrm{~V}\) to \(\left.+18 \mathrm{~V}\right)\) & \[
\begin{aligned}
& I_{\mathrm{IL}} \\
& \mathrm{I}_{\mathrm{IH}}
\end{aligned}
\] & - & \[
\begin{gathered}
-2.0 \\
0.002
\end{gathered}
\] & \[
\begin{gathered}
-10 \\
10
\end{gathered}
\] & - & \[
\begin{gathered}
-2.0 \\
0.002
\end{gathered}
\] & \[
\begin{gathered}
-10 \\
10
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Logic Input Swing, \(\mathrm{V}-=-15 \mathrm{~V}\) & \(V_{\text {IS }}\) & -10 & - & +18 & -10 & - & +18 & V \\
\hline Logic Threshold Range, \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\) & \(V_{\text {THR }}\) & -10 & - & +13.5 & -10 & - & +13.5 & V \\
\hline Reference Bias Current & 115 & - & -1.0 & -3.0 & - & -1.0 & -3.0 & \(\mu \mathrm{A}\) \\
\hline Reference Input Slew Rate Figure 19 (Note 1) & di/dt & - & 8.0 & - & - & 8.0 & - & \(\mathrm{mA} / \mu \mathrm{s}\) \\
\hline \[
\begin{aligned}
& \text { Power Supply Sensitivity (IREF }=1.0 \mathrm{~mA}) \\
& \mathrm{V}+=4.5 \mathrm{~V} \text { to } 18 \mathrm{~V} \\
& \mathrm{~V}-=-4.5 \mathrm{~V} \text { to }-18 \mathrm{~V}
\end{aligned}
\] & PSSIFS+
PSSIFS- & - & \[
\begin{gathered}
\pm 0.0003 \\
\pm 0.002 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \pm 0.01 \\
& \pm 0.01
\end{aligned}
\] & - & \[
\begin{gathered}
\pm 0.0003 \\
\pm 0.002
\end{gathered}
\] & \[
\begin{aligned}
& \pm 0.01 \\
& \pm 0.01
\end{aligned}
\] & \%/\% \\
\hline \[
\begin{aligned}
& \text { Power Supply Current } \\
& V_{S}= \pm 5.0 \mathrm{~V}, I_{R E F}=1.0 \mathrm{~mA} \\
& V_{S}=+5.0 \mathrm{~V},-15 \mathrm{~V}, I_{R E F}=2.0 \mathrm{~mA} \\
& V_{S}= \pm 15 \mathrm{~V}, I_{R E F}=2.0 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& 1+ \\
& 1- \\
& 1+ \\
& 1- \\
& 1+ \\
& 1-
\end{aligned}
\] & 二 & \[
\begin{gathered}
2.3 \\
-4.3 \\
2.4 \\
-6.4 \\
2.5 \\
-6.5
\end{gathered}
\] & \[
\begin{gathered}
3.8 \\
-5.8 \\
3.8 \\
-7.8 \\
3.8 \\
-7.8
\end{gathered}
\] & - & \[
\begin{gathered}
2.3 \\
-4.3 \\
2.4 \\
-6.4 \\
2.5 \\
-6.5
\end{gathered}
\] & \[
\begin{gathered}
3.8 \\
-5.8 \\
3.8 \\
-7.8 \\
3.8 \\
-7.8
\end{gathered}
\] & mA \\
\hline ```
Power Dissipation
 VS}=\pm5.0 V, IREF = 1.0 mA
 VS}=+5.0\textrm{V},-15\textrm{V},\mp@subsup{I}{REF}{}=2.0\textrm{mA
 VS}=\pm15\textrm{V},\mp@subsup{I}{REF}{}=2.0\textrm{mA
``` & PD & - & \[
\begin{gathered}
33 \\
103 \\
135 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
48 \\
136 \\
174 \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
33 \\
108 \\
135 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
48 \\
136 \\
174 \\
\hline
\end{gathered}
\] & mW \\
\hline
\end{tabular}

Note 1. Parameter is not \(100 \%\) tested; guaranteed by design.

ELECTRICAL CHARACTERISTICS \(\left(V_{S}= \pm 15 \mathrm{~V}, I_{\text {REF }}=2.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.\) to \(70^{\circ} \mathrm{C}\), unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{DAC-08H} & \multicolumn{3}{|c|}{DAC-08E} & \multicolumn{3}{|c|}{DAC-08C} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \\
\hline Resolution & - & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & Bits \\
\hline Monotonicity & - & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & Bits \\
\hline Nonlinearity, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & NL & - & - & \(\pm 0.1\) & - & - & \(\pm 0.19\) & - & - & \(\pm 0.39\) & \%FS \\
\hline \begin{tabular}{l}
Settling Time to \(\pm 1 / 2\) LSB \\
(All Bits Switched On or Off, ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) Figure 24 (Note 1)
\end{tabular} & \(\mathrm{t}_{s}\) & - & 85 & - & - & 85 & - & - & 85 & - & ns \\
\hline \begin{tabular}{l}
Propagation Delay, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Note 1) Each Bit \\
All Bits Switched
\end{tabular} & \[
{ }^{t_{P}}
\]
\[
{ }^{\mathrm{tPHL}}
\] & - & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] & - & ns \\
\hline Full Scale Tempco & \(\mathrm{TCl}_{\text {FS }}\) & - & \(\pm 10\) & - & - & \(\pm 10\) & - & - & \(\pm 10\) & - & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Output Voltage Compliance Full Scale Current Change \(<1 / 2\) LSB, \(\mathrm{R}_{\text {out }}>20\) megohm typ. & \(\mathrm{V}_{\mathrm{OC}}\) & -10 & - & +18 & -10 & - & +18 & -10 & - & +18 & V \\
\hline ```
Full Range Current
    (VREF = 10.000 V;
        R14, R15 = 5.000 k\Omega)
        TA}=2\mp@subsup{5}{}{\circ}\textrm{C
``` & IfR4 & 1.984 & 1.992 & 2.000 & 1.94 & 1.99 & 2.04 & 1.94 & 1.99 & 2.04 & mA \\
\hline Full Range Symmetry (\({ }_{\text {FR4 }}\) - I FR2) & IFRS & - & \(\pm 0.5\) & \(\pm 4.0\) & - & \(\pm 1.0\) & \(\pm 8.0\) & - & \(\pm 2.0\) & \(\pm 16.0\) & \(\mu \mathrm{A}\) \\
\hline Zero Scale Current & IZS & - & 0.1 & 1.0 & - & 0.2 & 2.0 & - & 0.2 & 4.0 & \(\mu \mathrm{A}\) \\
\hline Output Current Range
\[
\begin{aligned}
& \mathrm{V}-=-5.0 \mathrm{~V} \\
& \mathrm{~V}-=-8.0 \mathrm{~V} \text { to }-18 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \text { IOR1 } \\
& \text { IOR2 }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.1 \\
& 4.2
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.1 \\
& 4.2
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.1 \\
& 4.2
\end{aligned}
\] & mA \\
\hline ```
Logic Input Levels (\(\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}\))
 Logic " 0 "
 Logic " 1 "
``` & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{IH}} \\
& \hline
\end{aligned}
\] & \(\overline{2.0}\) & - & 0.8 & 2.0 & - & 0.8
- & 2.0 & - & 0.8 & V \\
\hline ```
Logic Input Current (VLC =0 V)
    Logic Input "0"
        ( }\mp@subsup{\textrm{V}}{\mathrm{ in }}{}=-10\textrm{V}\mathrm{ to +0.8 V)
    Logic Input "1"
        ( }\mp@subsup{\textrm{V}}{\mathrm{ in }}{}=+2.0\textrm{V}\mathrm{ to +18 V)
``` & IIL
\[
\mathrm{IIH}^{2}
\] & - & \[
\begin{gathered}
-2.0 \\
0.002 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
-10 \\
10 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& -2.0 \\
& 0.002 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-10 \\
10 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& -2.0 \\
& 0.002
\end{aligned}
\] & \[
\begin{gathered}
-10 \\
10 \\
\hline
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Logic Input Swing, \(\mathrm{V}-=-15 \mathrm{~V}\) & VIS & -10 & - & +18 & -10 & - & +18 & -10 & - & +18 & V \\
\hline Logic Threshold Range, \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\) & \(\mathrm{V}_{\text {THR }}\) & -10 & - & +13.5 & -10 & - & + 13.5 & -10 & - & + 13.5 & V \\
\hline Reference Bias Current . & \(\mathrm{I}_{15}\) & - & -1.0 & -3.0 & - & -1.0 & -3.0 & - & -1.0 & -3.0 & \(\mu \mathrm{A}\) \\
\hline Reference Input Slew Rate Figure 19 (Note 1) & \(\mathrm{dl} / \mathrm{dt}\) & - & 8.0 & - & - & 8.0 & - & - & 8.0 & - & \(\mathrm{mA} / \mu \mathrm{s}\) \\
\hline Power Supply Sensitivity
\[
\begin{aligned}
\left(\mathrm{I}_{\mathrm{REF}}\right. & =1.0 \mathrm{~mA}) \\
\mathrm{V}+ & =4.5 \mathrm{~V} \text { to } 18 \mathrm{~V} \\
\mathrm{~V}- & =-4.5 \mathrm{~V} \text { to }-18 \mathrm{~V}
\end{aligned}
\] & \[
\begin{array}{|l|}
\text { PSSIFS }^{2} \\
\text { PSSIFS }^{2} \\
\hline
\end{array}
\] & - & \[
\begin{gathered}
\pm 0.0003 \\
\pm 0.002
\end{gathered}
\] & \[
\begin{aligned}
& \pm 0.01 \\
& \pm 0.01
\end{aligned}
\] & - & \[
\begin{gathered}
\pm 0.0003 \\
\pm 0.002 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \pm 0.01 \\
& \pm 0.01 \\
& \hline
\end{aligned}
\] & - & \[
\begin{gathered}
\pm 0.0003 \\
\pm 0.002 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \pm 0.01 \\
& \pm 0.01
\end{aligned}
\] & \%/\% \\
\hline Power Supply Current
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}, \mathrm{I}_{\text {REF }}=1.0 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{S}}=+5.0 \mathrm{~V},-15 \mathrm{~V}, \mathrm{I}_{\text {REF }}=2.0 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\text {REF }}=2.0 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& 1+ \\
& 1- \\
& 1+ \\
& 1- \\
& 1+ \\
& 1-
\end{aligned}
\] & -
-
-
- & \[
\begin{array}{r}
2.3 \\
-4.3 \\
2.4 \\
-6.4 \\
2.5 \\
-6.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.8 \\
-5.8 \\
3.8 \\
-7.8 \\
3.8 \\
-7.8 \\
\hline
\end{array}
\] & — & \[
\begin{array}{r}
2.3 \\
-4.3 \\
2.4 \\
-6.4 \\
2.5 \\
-6.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.8 \\
-25.8 \\
3.8 \\
-7.8 \\
3.8 \\
-7.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
2.3 \\
-4.3 \\
2.4 \\
-6.4 \\
2.5 \\
-6.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.8 \\
-5.8 \\
3.8 \\
-7.8 \\
3.8 \\
-7.8
\end{array}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Power Dissipation } \\
& \mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}, \text { I }_{\text {REF }}=1.0 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{S}}=+5.0 \mathrm{~V},-15 \mathrm{~V}, I_{R E F}=2.0 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, I_{\text {REF }}=2.0 \mathrm{~mA}
\end{aligned}
\] & PD & E & \[
\begin{gathered}
33 \\
108 \\
135
\end{gathered}
\] & \[
\begin{gathered}
48 \\
136 \\
174
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
33 \\
108 \\
135
\end{gathered}
\] & \[
\begin{gathered}
48 \\
136 \\
174
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
33 \\
108 \\
135
\end{gathered}
\] & \[
\begin{gathered}
48 \\
136 \\
174
\end{gathered}
\] & mW \\
\hline
\end{tabular}

Note 1. Parameter is not \(100 \%\) tested; guaranteed by design.

\section*{TYPICAL PERFORMANCE CURVES}

FIGURE 3 - REFERENCE INPUT FREQUENCY RESPONSE

Curve \(1-\mathrm{C}_{\mathrm{C}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{in}}=2.0 \mathrm{Vp-p}\) Centered at +1.0 V (Large-Signal) Curve \(2-\mathrm{C}_{\mathrm{c}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{in}}=50 \mathrm{mV} \mathrm{p}-\mathrm{p}\) Centered at +200 mV (Small-Signal)

FIGURE 5 - LOGIC INPUT CURRENT versus INPUT VOLTAGE

LOGIC INPUT VOLTAGE (V)

FIGURE 2 - REFERENCE AMP COMMON MODE RANGE

NOTE: Positive Common Mode Range is Always (\(\mathrm{V}+\)) -1.5 V
FIGURE 4 - LSB PROPAGATION DELAY versus IFS

FIGURE \(6-V_{T H}-V_{\text {LC }}\) versus TEMPERATURE

TYPICAL PERFORMANCE CURVES

FIGURE 7 - OUTPUT CURRENT versus OUTPUT VOLTAGE
(Output Voltage Compliance)

FIGURE 9 - BIT TRANSFER CHARACTERISTICS

NOTE: B1-B8 have identical transfer characteristics. Bits are fully switched with less than \(1 / 2\) LSB error, at less than \(\pm 100 \mathrm{mV}\) from actual threshold. These switching points are guaranteed to lie between 0.8 V and 2.0 V over operating temperature range (\(\left.\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}\right)\).

FIGURE 11 - POWER SUPPLY CURRENT versus V-

FIGURE 8 - OUTPUT VOLTAGE COMPLIANCE versus TEMPERATURE

FIGURE 10 - POWER SUPPLY CURRENT versus \(V_{+}\)

FIGURE 12 - POWER SUPPLY CURRENT versus TEMPERATURE

\section*{BASIC CIRCUIT CONFIGURATIONS}

FIGURE 13 - RECOMMENDED FULL SCALE ADJUSTMENT CIRCUIT

FIGURE 15 - NEGATIVE LOW IMPEDANCE OUTPUT OPERATION

If complementry output (Negative Logic DAC) is desired, connect noninverting input of op amp to \(\mathrm{l}_{\mathrm{O}}\) (Pin 2) and ground \(\mathrm{l}_{\mathrm{O}}\) (Pin 4)

FIGURE 17 - BASIC NEGATIVE REFERENCE OPERATION

NOTE: R \(_{\text {REF }}\) sets full scale current \(\mathrm{I}_{\text {FR }}\); \(\mathbf{R 1 5}\) is for bias current cancellation.

FIGURE 14 - POSITIVE LOW IMPEDANCE OUTPUT OPERATION

If complementry output (Negative Logic DAC) operation is desired, connect inverting input of op amp to \(\overline{\mathrm{O}}\) (Pin 2) and ground \(\mathrm{I}_{\mathrm{O}}(\) Pin 4)

FIGURE 16 - BASIC POSITIVE REFERENCE OPERATION

\section*{BASIC CIRCUIT CONFIGURATIONS}

FIGURE 18 - ACCOMMODATING BIPOLAR REFERENCES

\(I_{\text {REF }} \geqslant\) Peak Negative Swing of \(I_{\text {in }}\)

\(R_{\text {REF }}=R 15+V_{\text {REF }}\) must be above peak positive swing of \(V_{\text {in }}\)

FIGURE 19 - PULSED REFERENCE OPERATION

FIGURE 20 - BASIC UNIPOLAR NEGATIVE OPERATION

\section*{BASIC CIRCUIT CONFIGURATIONS}

FIGURE 21 - BASIC BIPOLAR OUTPUT OPERATION

\section*{FIGURE 22 - OFFSET BINARY OPERATION}

figure 24 - SEttling time measurement circuit

NOTE: Oscilloscope bandwidth for settling time measurement \(\geqslant 50 \mathrm{MHz}\)

\section*{MC1408 MC1508}

\section*{Specifications and Applications Information}

\section*{EIGHT-BIT MULTIPLYING} DIGITAL-TO-ANALOG CONVERTER
designed for use where the output current is a linear product of an eight-bit digital word and an analog input voltage.
- Eight-Bit Accuracy Available in Both Temperature Ranges Relative Accuracy: \(\pm 0.19 \%\) Error maximum (MC1408L8, MC1408P8, MC1508L8)
- Seven and Six-Bit Accuracy Available with MC1408 Designated by 7 or 6 Suffix after Package Suffix
- Fast Settling Time - 300 ns typical
- Noninverting Digital Inputs are MTTL and CMOS Compatible
- Output Voltage Swing - +0.4 V to -5.0 V
- High-Speed Multiplying Input Slew Rate \(4.0 \mathrm{~mA} / \mu \mathrm{s}\)
- Standard Supply Voltages: +5.0 V and -5.0 V to -15 V

EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX
PLASTIC PACKAGE
CASE 648-06

\section*{L SUFFIX} CERAMIC PACKAGE CASE 620-10

FIGURE 2 - BLOCK DIAGRAM
FIGURE 1 - D-to-A TRANSFER CHARACTERISTICS

\section*{TYPICAL APPLICATIONS}
- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- 2 1/2 Digit Panel Meters and DVM's
- Waveform Synthesis
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- CRT Character Generation
- Audio Digitizing and Decoding
- Programmable Power Supplies
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Digital Addition and Subtraction
- Speech Compression and Expansion
- Stepping Motor Drive

MAXIMUM RATINGS (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}} \\
& \mathrm{~V}_{\mathrm{EE}}
\end{aligned}
\] & \[
\begin{array}{r}
+5.5 \\
-16.5
\end{array}
\] & Vdc \\
\hline Digital Input Voltage & \(\mathrm{V}_{5}\) thru \(\mathrm{V}_{12}\) & 0 to +5.5 & Vdc \\
\hline Applied Output Voltage & \(\mathrm{V}_{\mathrm{O}}\) & +0.5,-5.2 & Vdc \\
\hline Reference Current & 114 & 5.0 & mA \\
\hline Reference Amplifier Inputs & \(\mathrm{V}_{14} \mathrm{~V}_{15}\) & \(\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}\) & Vdc \\
\hline \(\begin{array}{ll}\text { Operating Temperature Range } & \\ & \text { MC1508 } \\ & \text { MC1408 Series }\end{array}\) & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
-55 \text { to }+125 \\
0 \text { to }+75
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}, \frac{\mathrm{Vref}}{\mathrm{R14}}=2.0 \mathrm{~mA}, \mathrm{MC} 1508 \mathrm{L8}: \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.\) to \(+125^{\circ} \mathrm{C}\). MC1408L Series: \(T_{A}=0\) to \(+75^{\circ} \mathrm{C}\) unless otherwise noted. All digital inputs at high logic level.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Figure & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Relative Accuracy (Error relative to full scale \({ }^{\prime} \mathrm{O}\)) \\
MC1508L8, MC1408L8, MC1408P8 \\
MC1408P7, MC1408L7, See Note 1 \\
MC1408P6, MC1408L6, See Note 1
\end{tabular} & 4 & \(\mathrm{E}_{\mathrm{r}}\) & - & - & \[
\begin{aligned}
& \pm 0.19 \\
& \pm 0.39 \\
& \pm 0.78
\end{aligned}
\] & \% \\
\hline Settling Time to within \(\pm 1 / 2 \mathrm{LSB}\) [includes tPLH] \(\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\) See Note 2 & 5 & ts & - & 300 & - & ns \\
\hline Propagation Delay Time
\[
T_{A}=+25^{\circ} \mathrm{C}
\] & 5 & tPLH, tPHL & - & 30 & 100 & ns \\
\hline Output Full Scale Current Drift & & \(\mathrm{TCl}_{\mathrm{O}}\) & - & -20 & - & PPM \(/{ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Digital Input Logic Levels (MSB) \\
High Level, Logic " 1 " \\
Low Level, Logic " 0 "
\end{tabular} & 3 & \[
\begin{aligned}
& V_{I H} \\
& V_{I L}
\end{aligned}
\] & 2.0 & - & \[
\overline{0.8}
\] & Vdc \\
\hline \begin{tabular}{l}
Digital Input Current (MSB) \\
High Level, \(\mathrm{V}_{\mathrm{IH}}=5.0 \mathrm{~V}\) \\
Low Level, \(\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}\)
\end{tabular} & 3 & \[
\begin{aligned}
& I_{\text {IH }} \\
& I_{1 L}
\end{aligned}
\] & & \[
\begin{gathered}
0 \\
-0.4
\end{gathered}
\] & \[
\begin{aligned}
& 0.04 \\
& -0.8
\end{aligned}
\] & mA \\
\hline Reference Input Bias Current (Pin 15) & 3 & 115 & - & -1.0 & -5.0 & \(\mu \mathrm{A}\) \\
\hline Output Current Range
\[
\begin{aligned}
& V_{E E}=-5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 3 & 'OR & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.1 \\
& 4.2
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Output Current } \\
& V_{\text {ref }}=2.000 \mathrm{~V}, R 14=1000 \Omega
\end{aligned}
\] & 3 & '0 & 1.9 & 1.99 & 2.1 & mA \\
\hline \begin{tabular}{l}
Output Current \\
(All bits low)
\end{tabular} & 3 & \({ }^{1} \mathrm{O}(\mathrm{min})\) & - & 0 & 4.0 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Voltage Compliance (\(\mathrm{E}_{\mathrm{r}} \leq 0.19 \%\) at \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)) \\
Pin 1 grounded \\
Pin 1 open, \(\mathrm{V}_{\mathrm{EE}}\) below -10 V
\end{tabular} & 3 & \(\mathrm{v}_{\mathrm{O}}\) & - & - & \[
\begin{gathered}
-0.55,+0.4 \\
-5.0,+0.4
\end{gathered}
\] & Vdc \\
\hline Reference Current Slew Rate & 6 & SR \(I_{\text {ref }}\) & - & 4.0 & - & \(\mathrm{mA} / \mu \mathrm{s}\) \\
\hline Output Current Power Supply Sensitivity & & PSRR(-) & - & 0.5 & 2.7 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline Power Supply Current (All bits low) & 3 & \[
\begin{aligned}
& \text { ICC } \\
& \text { IEE }
\end{aligned}
\] & - & \[
\begin{gathered}
+13.5 \\
-7.5
\end{gathered}
\] & \[
\begin{aligned}
& +22 \\
& -13
\end{aligned}
\] & mA \\
\hline Power Supply Voltage Range
\[
\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)
\] & 3 & \[
\begin{aligned}
& V_{\text {CCR }} \\
& V_{\text {EER }}
\end{aligned}
\] & \[
\begin{aligned}
& \hline+4.5 \\
& -4.5
\end{aligned}
\] & \[
\begin{gathered}
+5.0 \\
-15
\end{gathered}
\] & \[
\begin{array}{r}
+5.5 \\
-16.5
\end{array}
\] & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation \\
All bits low
\[
\begin{aligned}
& V_{E E}=-5.0 \mathrm{Vdc} \\
& \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{Vdc}
\end{aligned}
\] \\
All bits high
\[
\begin{aligned}
& V_{E E}=-5.0 \mathrm{Vdc} \\
& V_{E E}=-15 \mathrm{Vdc}
\end{aligned}
\]
\end{tabular} & 3 & \(\mathrm{P}_{\mathrm{D}}\) & - & \[
\begin{array}{r}
105 \\
190 \\
90 \\
160
\end{array}
\] & \[
\begin{aligned}
& 170 \\
& 305
\end{aligned}
\] & mW \\
\hline
\end{tabular}

Note 1. All current switches are tested to guarantee at least \(50 \%\) of rated output current.
Note 2. All bits switched.

\section*{TEST CIRCUITS}

FIGURE 3 - NOTATION DEFINITIONS TEST CIRCUIT

\(V_{1}\) and \(i_{1}\) apply to inputs \(A 1\) thru A8
The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.
\[
{ }^{\prime} O=K\left\{\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right\}
\]
\[
\text { where } k \cong \frac{V_{\text {ref }}}{R 14}
\]
and \(A_{N}=" 1\) " if \(A_{N}\) is at high level
\(A_{N}=\) " 0 " if \(A_{N}\) is at low level

FIGURE 4 - RELATIVE ACCURACY TEST CIRCUIT

FIGURE 5 - TRANSIENT RESPONSE and SETTLING TIME

TEST CIRCUITS (continued)

FIGURE 6 - REFERENCE CURRENT SLEW RATE MEASUREMENT

FIGURE 7 - POSITIVE \(V_{\text {ref }}\)

FIGURE 8 - NEGATIVE \(V_{\text {ref }}\)

FIGURE 9 - MC1408, MC1508 SERIES EQUIVALENT CIRCUIT SCHEMATIC
DIGITAL INPUTS

\section*{CIRCUIT DESCRIPTION}

The MC1408 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a reference resistor and reference voltage need be added.

The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain foedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching, and provides
a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is \(255 / 256\) of the reference amplifier current, or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.

\section*{Reference Amplifier Drive and Compensation}

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a curtent, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, 114, must always flow into pin 14 regardless of the setup method or reference vol tage polarity.

Connections for a positive reference voltage are shown in Figure 7. The reference voltage source supplies the full current I14. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift. Another method for bipolar inputs is shown in Figure 25.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of \(1.0,2.5\) and 5.0 kilohms, minimum capacitor values are 15, 37 , and 75 pF . The capacitor should be tied to \(\mathrm{V}_{\mathrm{EE}}\) as this increases negative supply rejection.

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to \(\mathrm{V}_{\text {EE }}\) on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 3.0 -volts above the \(V_{E E}\) supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The \(5.0-\mathrm{V}\) logic supply is not recommended as a reference voltage. If a well regulated \(5.0-\mathrm{V}\) supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with \(0.1 \mu \mathrm{~F}\) to ground. For reference voltages greater than 5.0 V , a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

\section*{Output Voltage Range}

The voltage on pin 4 is restricted to a range of -0.55 to +0.4 volts at \(+25^{\circ} \mathrm{C}\), due to the current switching methods employed in the MC1408. When a current switch is turned "off", the positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington transistor is one diode voltage below ground when pin 1 is grounded, so a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

The negative output voltage compliance of the MC1408 may be extended to -5.0 V volts by opening the circuit at pin 1 . The negative supply voltage must be more negative than -10 volts. Using a full scale current of 1.992 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of \(R_{L}\) up to 500 ohms do not significantly affect performance, but a 2.5 -kilohm load increases "worst case" settling time to \(1.2 \mu \mathrm{~s}\) (when all bits are switched on).

Refer to the subsequent text section on Settling Time for more details on output loading.

If a power supply value between -5.0 V and -10 V is desired, a voltage of between 0 and -5.0 V may be applied to pin 1 . The value of this voltage will be the maximum allowable negative output swing.

\section*{Output Current Range}

The output current maximum rating of 4.2 mA may be used only for negative supply voltages typically more negative than -8.0 volts, due to the increased voltage drop across the 350 -ohm resistors in the reference current amplifier.

\section*{Accuracy}

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1408 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the MC1408 has a very low full scale current drift with temperature.

The MC1408/MC1508 Series is guaranteed accurate to within \(\pm 1 / 2\) LSB at \(+25^{\circ} \mathrm{C}\) at a full scale output current of 1.992 mA . This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA , with the loss of one \(\mathrm{LSB}=8.0 \mu \mathrm{~A}\) which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA , allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full scale output current of 1.992 mA . This is an optional step since the MC1408 accuracy is essentially the same between 1.5 and 2.5 mA . Then the MC1408 circuits' full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16 -bit accurate D-to-A converter. 16 -bit accuracy implies a total error of \(\pm 1 / 2\) of one part in 65,536 , or \(\pm 0.00076 \%\), which is much more accurate than the \(\pm 0.19 \%\) specification provided by the MC1408×8.

\section*{Multiplying Accuracy}

The MC1408 may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of \(256: 1\). The major source of error is the bias current of the termination amplifier. Under "worst case" conditions, these eight amplifiers can contribute a total of \(1.6 \mu \mathrm{~A}\) extra current at the output terminal. If the reference current in the multiplying mode ranges from \(16 \mu \mathrm{~A}\) to 4.0 mA , the \(1.6 \mu \mathrm{~A}\) contributes an error of 0.1 LSB. This is well within eight-bit accuracy referenced to 4.0 mA .

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1408 is monotonic for all values of reference current above 0.5 mA . The recommended range for operation with a dc reference current is 0.5 to 4.0 mA .

\section*{GENERAL INFORMATION (Continued)}

\section*{Settling Time}

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a low-to-high transition for all bits. This time is typically 300 ns for settling to within \(\pm 1 / 2\) LSB, for 8 -bit accuracy, and 200 ns to \(1 / 2\) LSB for 7 and 6 -bit accuracy. The turn off is typically under 100 ns . These times apply when \(R_{L} \leqslant 500\) ohms and \(C_{O} \leqslant 25\) pF

The slowest single switch is the least significant bit, which turns "on" and settles in 250 ns and turns "off" in 80 ns . In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 300 ns may be realized. Bit A7 turns "on" in 200 ns and "off" in 80 ns , while bit A6 turns "on" in 150 ns and "off" in 80 ns .

The test circuit of Figure 5 requires a smaller voltage swing for the current switches due to internal voltage clamping in the MC. 1408. A 1.0 -kilohm load resistor from pin 4 to ground gives a typical settling time of 400 ns. Thus, it is voltage swing and not the output RC time constant that determines settling time for most applications.

Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, \(100 \mu \mathrm{~F}\) supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

TYPICAL CHARACTERISTICS
\(\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \top_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)

FIGURE 10 - LOGIC INPUT CURRENT versus INPUT VOLTAGE

VI, LOGIC INPUT VOLTAGE (Vdc)

FIGURE 12 - OUTPUT CURRENT versus OUTPUT VOLTAGE
(See text for pin 1 restrictions)

FIGURE 11 - TRANSFER CHARACTERISTIC versus TEMPERATURE (A5 thru A8 thresholds lie within range for A1 thru A4)

FIGURE 13 - OUTPUT VOLTAGE versus TEMPERATURE (Negative range with pin 1 open is -5.0 Vdc over full temperature range)

TYPICAL CHARACTERISTICS (continued)
\(\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)

FIGURE 14 - REFERENCE INPUT FREQUENCY RESPONSE

FIGURE 16 - TYPICAL POWER SUPPLY CURRENT versus \(\mathrm{V}_{\mathrm{EE}}\) (all bits low)

APPLICATIONS INFORMATION
FIGURE 17 - OUTPUT CURRENT TO VOLTAGE CONVERSION

Theoretical \(\mathrm{V}_{\mathrm{O}}\)
\[
V_{\mathrm{O}}=\frac{V_{\mathrm{ref}}}{\mathrm{R} 14}\left(\mathrm{R}_{\mathrm{O}}\right)\left[\frac{\mathrm{A} 1}{2}+\frac{\mathrm{A} 2}{4}+\frac{\mathrm{A} 3}{8}+\frac{\mathrm{A} 4}{16}+\frac{\mathrm{A} 5}{32}+\frac{\mathrm{A} 6}{64}+\frac{\mathrm{A} 7}{128}+\frac{\mathrm{A} 8}{256}\right]
\]

Adjust \(\mathrm{V}_{\text {ref }}, \mathrm{R} 14\) or \(\mathrm{R}_{\mathrm{O}}\) so that \(\mathrm{V}_{\mathrm{O}}\) with all digital inputs at high level is equal to 9.961 volts.
\[
\begin{aligned}
\mathrm{V}_{\mathrm{O}} & =\frac{2 \mathrm{~V}}{1 \mathrm{k}}(5 \mathrm{k})\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right] \\
& =10 \mathrm{~V}\left[\frac{255}{256}\right]=9.961 \mathrm{~V}
\end{aligned}
\]

Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1408 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of \(2.0 \mu \mathrm{~s}\).

FIGURE 18

An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of \(2.0 \mu \mathrm{~s}\). See Motorola Application Note AN-459 for more details on this concept.

The positive voltage range may be extended by cascading the output with a high beta common base transistor, Q1, as shown.

\section*{FIGURE 20 - EXTENDING POSITIVE VOLTAGE RANGE}

The output voltage range for this circuit is 0 volts to \(B V_{C B O}\) of the transistor. If pin 1 is left open, the transistor base may be grounded, eliminating both the resistor and the diode. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because pin 4 is held at a constant voltage. The resistor (\(R\)) to \(V_{E E}\) maintains the transistor emitter voltage when alf bits are "off" and insures fast turn-on of the least significant bit.

\section*{Combined Output Amplifier and Voltage Reference}

For many of its applications the MC1408 requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current. See Figure 21. The MC1723G uses both a positive and negative power supply. The reference voitage of the MC1723G is then developed with respect to the negative voltage and appears as a common-mode signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.

Since \(\pm 15 \mathrm{~V}\) and +5.0 V are normally available in a combination digital-to-analog system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2.0 to -8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing \(\mathrm{R}_{\mathrm{O}}\) and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. Co may be decreased to maintain the same \(\mathrm{R}_{\mathrm{O}} \mathrm{C}_{\mathrm{O}}\) product if maximum speed is desired.

\section*{APPLICATIONS INFORMATION (continued)}

\section*{Programmable Power Supply}

The circuit of Figure 21 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +25.5 vol ts in 0.1 -volt increments, \(\pm 0.05\) volt; or 0 to 5.1 volts in 20 mV increments, \(\pm 10 \mathrm{mV}\).

FIGURE 21 - COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT

\section*{Bipolar or Negative Output Voltage}

The circuit of Figure 22 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 8 -bit " 1 's" complement offset binary. \(V_{\text {ref }}\) may be used as this auxiliary reference. Note that \(R_{O}\) has been doubled to 10 kilohms because of the anticipated \(20 \mathrm{~V}(\mathrm{p}-\mathrm{p})\) output range.

\section*{FIGURE 22 - BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT}

FIGURE 23 - BIPOLAR OR INVERTED NEGATIVE OUTPUT VOLTAGE CIRCUIT

Decrease \(R_{O}\) to \(2.5 \mathrm{k} \Omega\) for a 0 to \(\mathbf{- 5 . 0}\)-volt output range. This application provides somewhat lower speed, as previously discussed in the Output Voltage Range section of the General Information.

\section*{APPLICATIONS INFORMATION (continued)}

\section*{Polarity Switching Circuit, 8-Bit Magnitude}

\section*{Plus Sign D-to-A Converter}

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 24 gives 8 -bit magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0 . Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.

FIGURE 24 - POLARITY SWITCHING CIRCUIT
(8-Bit Magnitude Plus Sign D-to-A Converter)

Programmable Gain Amplifier or Digital Attenuator
When used in the multiplying mode the MC1408 can be applied as a digital attenuator. See Figure 25. One advantage of this technique is that if \(\mathrm{R}_{\mathrm{S}}=50\) ohms, no compensation capacitor is needed. The small and large signal bandwidths are now identical and are shown in Figure 14.

The best frequency response is obtained by not allowing \(\mathrm{I}_{14}\) to reach zero. However, the high impedance node, pin 16, is clamped to prevent saturation and insure fast recovery when the current through R14 goes to zero. \(\mathrm{R}_{\mathrm{S}}\) can be set for a \(\pm 1.0 \mathrm{~mA}\) variation in relation to \(l_{14}\). \(1_{14}\) can never be negative.

The output current is always unipolar. The quiescent dc output current level changes with the digital word which makes ac coupling necessary.

FIGURE 25 - PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT

\section*{Panel Meter Readout}

The MC1408 can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R14 or \(V_{\text {ref }}\).

FIGURE 26 - PANEL METER READOUT CIRCUIT

FIGURE 27 - DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION

APPLICATIONS INFORMATION (continued)

Two 8-bit, D-to-A converters can be used to build a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of
4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten and thus an MC1408L6 may be used for the least significant word.

The circuit shown is a simple counter ramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.

\section*{FIGURE 37 - DIGITAL QUOTIENT OF TWO ANALOG VARIABLES} or ANALOG-TO-DIGITAL CONVERSION

\section*{Advance Information}

\section*{8-BIT MPU BUS-COMPATIBLE HIGH SPEED A-TO-D CONVERTER}

The MC6108 is a microprocessor compatible, 8-bit, high speed analog-to-digital converter. Included are a precision reference, DAC, comparator, SAR, matched scale resistors, 3-state output buffers, and control logic. Conversion can be completed in under \(2.0 \mu \mathrm{~s}\) and input voltage ranges of 0 to \(+10 \mathrm{~V}, 0\) to +5.0 V , and -5.0 to +5.0 V can be converted without additional external components. With appropriate external resistors, the converter can accommodate other input voltage ranges. 8-bit linearity and monotonic operation with no missing codes are guaranteed over temperature. Bus compatibility is provided for by the 3-state outputs (latches not required).

The MC6108 conversion time is short enough to allow most microprocessors to accept the data immediately after requesting a conversion. Applications include process control systems, servo control systems, waveform storage, signal processing, and others.

This device is functionally and pin compatible with the AM6108.
- \(1.8 \mu \mathrm{~s}\) Conversion Time (Guaranteed)
- Microprocessor Compatible - Connect Directly to Data Bus
- Trimmed Internal Voltage Reference
- 0.1\% Nonlinearity (Typ)
- Low Operating Voltage (+5.0 V, -5.2 V)
- Internal Matched Gain, Reference, and Offset Resistors
- Pin Programmable Natural Binary or Two's Complement
- Conversion Complete Available as Interrupt or on Data Bus
- Max Power Dissipation - 415 mW

This document contains information on a new product. Specifications and information herein are subject to change without notice.

\section*{8-BIT MPU BUS-COMPATIBLE HIGH SPEED A-TO-D CONVERTER}

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX
PLASTIC PACKAGE
CASE 710-02

PIN CONNECTIONS

\section*{MC6108}

ABSOLUTE MAXIMUM RATINGS
(Voltages referred to D. Gnd except where noted)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Value & Units \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) (Pin 1) & \(-0.3,+7.0\) & V \\
\hline \(\mathrm{~V}_{\mathrm{EE}}\) (Pin 28) & \(+0.3,-7.0\) & V \\
\hline Max Differential (\(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\)) & 12 & V \\
\hline Digital Inputs (Pins 11-16) & \(-0.5,+6.0\) & V \\
\hline A. Gnd (Pin 26) & \(\pm 1.0\) & V \\
\hline Input Current (a Ref In, Gain R & 3.0 & mA \\
\hline Voltage (a Gain R & \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}\) & V \\
\hline Voltage (a \(\mathrm{R}_{\text {in }}\) R R off & \(\pm 12\) & V \\
\hline Voltage (a +Comp, -Comp, \(\overline{\mathrm{O}}_{\mathrm{O}}\) & \(-2.5,+12\) & V \\
\hline Voltage (a D0-D7 (in 3-state mode) & \(-0.5,+6.0\) & V \\
\hline Junction Temperature & \(-65,+150\) & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Devices should not be operated at these values. The "Recommended Operating Limits" provide for actual device operation.

RECOMMENDED OPERATING LIMITS
(Voltages referred to D. Gnd except where noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline \multirow[t]{2}{*}{Power Supply Voltage} & \(\mathrm{V}_{\mathrm{CC}}\) & 4.75 & 5.0 & 5.25 & V \\
\hline & \(\mathrm{V}_{\mathrm{EE}}\) & -5.46 & -5.2 & -4.94 & v \\
\hline Analog Ground & AGnd & -0.1 & 0 & 0.1 & V \\
\hline \(\mathrm{V}_{\text {ref }}\) Current & IVref & 0 & - & 5.0 & mA \\
\hline Voltage @ Gain R & - & 1.25 & 2.5 & 5.0 & V \\
\hline Ref In Current & \(I_{\text {ref }}\) & 0.5 & 1.0 & 2.0 & mA \\
\hline Voltage @ \(\mathrm{R}_{\text {in }}\) & \(\mathrm{V}_{\text {in }}\) & -8.0 & - & 10 & V \\
\hline Voltage @ \(\mathrm{R}_{\text {off }}\) & \(v_{\text {off }}\) & -8.0 & - & 10 & V \\
\hline Clock Frequency & \(\mathrm{f}_{\text {clk }}\) & 0 & - & 5.0 & MHz \\
\hline Voltage @ - Comp & - & 0 & 0 & 4.0 & V \\
\hline Voltage @ \(\bar{o}_{0}\) & - & -1.0 & 0 & +5.0 & V \\
\hline Digital Input Voltage & - & 0 & - & 5.25 & v \\
\hline Ambient Temperature & \(T_{\text {A }}\) & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

TRANSFER CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \pm 5.0 \%, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \pm 5.0 \%, 0<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}, \mathrm{Clk}=5.0 \mathrm{MHz}\right.\),
\(\mathrm{V}_{\text {ref }}\) connected to Gain R, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline Resolution & Res & 8.0 & - & 8.0 & Bits \\
\hline Monotonicity & Mon & \multicolumn{4}{|c|}{GUARANTEED} \\
\hline Differential NonLinearity & DNL & - & \(\pm 1 / 4\) & \(\pm 3 / 4\) & LSB \\
\hline Integral NonLinearity (Unipolar) & INLU & - & \(\pm 1 / 4\) & \(\pm 1 / 2\) & LSB \\
\hline Integral NonLinearity (Bipolar) & INLB & - & \(\pm 1 / 4\) & \(\pm 3 / 4\) & LSB \\
\hline Unipolar Gain Error (\(\mathrm{V}_{\text {in }}=0\) to \(+5.0 \mathrm{~V} @\) Pin 22) & UGER & - & - & \(\pm 2-1 / 2\) & LSB \\
\hline Unipolar Gain Error (\(\mathrm{V}_{\text {in }}=0\) to +10 V @ Pin 20) & UGER & - & - & \(\pm 2-1 / 2\) & LSB \\
\hline Unipolar Offset Error (D7-D0 \(=00 \mathrm{H}\) to 01 H) & UOFF & - & - & \(\pm 1.0\) & LSB \\
\hline Bipolar Gain Error (\(\mathrm{V}_{\text {in }}=-5.0\) to +5.0 V @ Pin 20) & BGER & - & - & \(\pm 2-1 / 2\) & LSB \\
\hline Bipolar Zero Error (D7-D0 \(=7 \mathrm{~F}_{\mathrm{H}}\) to 80 H) & BZER & - & - & \(\pm 1-1 / 2\) & LSB \\
\hline Bipolar Offset Error (D7-D0 \(=00^{H}\) to \(0^{1} \mathrm{H}\)) & BOFF & - & - & \(\pm 2-1 / 2\) & LSB \\
\hline
\end{tabular}

TRANSFER CHARACTERISTICS (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline \(\mathrm{I}_{0}\) Full Scale Current (D7-D0 \(=\mathrm{FF}_{H}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}\)) (See Text "DAC") & IFS & 3.1 & 3.992 & 4.9 & mA \\
\hline \(\bar{T}_{\text {O }}\) Zero Scale Current (\(\mathrm{D} 7-\mathrm{DO}=\mathrm{FF}_{\mathrm{H}}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}\)) (See Text "DAC") & \(\overline{\mathrm{ZS}}\) & \(-5.0\) & - & +5.0 & \(\mu \mathrm{A}\) \\
\hline \(I_{0}\) Zero Scale Current (\(\mathrm{D} 7-\mathrm{DO}=00_{\mathrm{H}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) (See Text "DAC") & Izs & 3.0 & 7.8 & 13 & \(\mu \mathrm{A}\) \\
\hline \(\Gamma_{\mathrm{O}}\) Full Scale Current (D7-D0 \(=00_{H}, T_{A}=25^{\circ} \mathrm{C}\)) (See Text "DAC") & \(\overline{\mathrm{FS}}\) & 3.1 & 3.984 & 4.9 & mA \\
\hline DAC Current Gain (See Text "DAC") & GDAC & 3.92 & 4.0 & 4.08 & - \\
\hline Gain Sensitivity to \(V_{C C}\) Variations
\[
\left(4.75<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}\right)
\] & PSSV \({ }_{\text {CC }}\) & - & \(\pm 0.01\) & \(\pm 0.2\) & \%FS \\
\hline Gain Sensitivity to \(V_{E E}\) Variations
\[
\left(-5.46<\mathrm{V}_{\mathrm{EE}}<-4.94 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}\right)
\] & PSSVEE & - & \(\pm 0.02\) & \(\pm 0.2\) & \%FS \\
\hline
\end{tabular}

INTERNAL REFERENCE SUPPLY
\begin{tabular}{|l|c|c|c|c|c|}
\hline Pin 25 Voltage (I ref \(\left.\approx-1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=+5.0, \mathrm{~V}_{\mathrm{EE}}=-5.2\right)\) & \(\mathrm{V}_{\text {ref }}\) & 2.475 & 2.5 & 2.525 & V \\
\hline Temperature Coefficient & \(\mathrm{T}_{\mathrm{C}}\) & - & \(\pm 20\) & - & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline Load Regulation \(\left(-1.0 \mathrm{~mA}<\mathrm{I}_{\text {ref }}<-5.0 \mathrm{~mA}\right)\) & Regload & - & \(\pm 0.05\) & \(\pm 0.2\) & \(\% \mathrm{~V}_{\text {ref }}\) \\
\hline Line Regulation \(\left(4.75<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}\right)\) & Regline & - & \(\pm 0.02\) & \(\pm 0.2\) & \(\% \mathrm{~V}_{\text {ref }}\) \\
\hline Noise \(\left(\mathrm{f}_{\mathrm{n}}=10 \mathrm{kHz}\right.\) to \(\left.1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & - & - & 20 & - & \(\mu \mathrm{V}_{\mathrm{rms}}\) \\
\hline Short Circuit Current \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & IRSC & -30 & -20 & -5 & mA \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline\(V_{C C}\) Current (Outputs unloaded) & \(I_{C C}\) & 5.0 & 20 & 27 & mA \\
\hline\(V_{E E}\) Current (Outputs unloaded) & \(I_{E E}\) & -50 & -38 & -5 & mA \\
\hline Power Dissipation (Outputs unloaded) & \(\mathrm{P}_{\mathrm{D}}\) & - & 300 & 415 & mW \\
\hline
\end{tabular}

ANALOG INPUTS \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Resistance (ut Gain R (Pin 24) & \(\mathrm{R}_{\mathrm{GR}}\) & - & 2.5 & - & k \(\Omega\) \\
\hline Input Resistance (\(1 \mathrm{R}_{\text {in }}\) (Pin 20) & \(\mathrm{R}_{\mathrm{RI}}\) & 1.75 & 2.5 & 3.25 & \(\mathrm{k} \Omega\) \\
\hline Input Resistance (1 R \(\mathrm{R}_{\text {Off }}\) (Pin 22) & RRO & - & 1.25 & - & \(\mathrm{k} \Omega\) \\
\hline Reference Input Offset Voltage (Pin 23-26) & Refoff & -10 & - & \(+10\) & mV \\
\hline \begin{tabular}{l}
Comparator Input Clamp Voltage \\
(4.0 mA through the back-to-back diodes)
\end{tabular} & \(V_{\text {clamp }}\) & \(\pm 0.4\) & \(\pm 0.8\) & \(\pm 1.3\) & V \\
\hline Input Capacitance (\(11+\) Comp (Pin 19) & \(\mathrm{C}_{\mathrm{C}}\) & - & 20 & - & pF \\
\hline Input Capacitance (a \(\overline{\mathrm{O}}_{\mathrm{O}}\) (Pin 21) & \(\mathrm{C}_{1}\) & - & 10 & - & pF \\
\hline Input Capacitance (1 R R in, \(\mathrm{R}_{\text {off }}\), Ref In, Gain R, - Comp. & - & - & 2.0 & - & pF \\
\hline
\end{tabular}

\section*{DIGITAL INPUTS}
\begin{tabular}{|l|c|c|c|c|}
\hline Input Voltage - High (Pins 11-16) & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & - & 5.25 \\
\hline Input Voltage - Low (Pins 11-16) & \(\mathrm{V}_{\mathrm{IL}}\) & 0 & - & 0.8 \\
\hline Input Current \((a \operatorname{4.0} \mathrm{~V}\) (Pins 11-16) & \(\mathrm{I}_{\mathrm{IH}}\) & - & - & 10 \\
\hline Input Current \((a 0 \mathrm{~V}\) (Pins \(11-16)\) & \(\mathrm{I}_{\mathrm{IL}}\) & - & - & 10 \\
\hline
\end{tabular}

\section*{DIGITAL OUTPUTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Output Voltage - High (\({ }_{\mathrm{OH}}=-400 \mu \mathrm{~A}\), Pins 2-10) & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & 3.2 & - & V \\
\hline Output Voltage - Low (\(\mathrm{OL}^{\text {OL }}=8.0 \mathrm{~mA}\), Pins 2-10) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.15 & 0.4 & V \\
\hline Short Circuit Current* (Pins 2-10, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & ISC & -50 & -25 & - & mA \\
\hline & IHLK ILLK & \[
\begin{aligned}
& -20 \\
& -20 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& +20 \\
& +20 \\
& \hline
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Capacitance (3-State Mode, Pins 2-9) & \(\mathrm{C}_{\mathrm{O}}\) & - & 7.0 & - & pF \\
\hline
\end{tabular}
*Short circuits should be limited to 1.0 second max, 1 output at a time.
Note: Currents into a pin designated as + , currents out of a pin designated as

\section*{MC6108}

TIMING CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), See System Timing Diagram)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline \multicolumn{6}{|l|}{INPUTS} \\
\hline S] High After CLK High* & tCKS & 0 & - & - & ns \\
\hline \(\overline{\text { S }}\) High Before CLK High* & tSS & 25 & - & - & ns \\
\hline CLK Low Time & \({ }^{\text {t CKL }}\) & 50 & - & - & ns \\
\hline CLK High Time & tCKH & 50 & - & - & ns \\
\hline CLK Rise, Fall Time & \(\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & - & - & 100 & ns \\
\hline \(\overline{\text { CS }}\), CLK, \(\overline{\text { S }}\) Concurrent Low Time* & tST & 50 & - & - & ns \\
\hline Clock Frequency & \({ }_{\text {f CLK }}\) & - & - & 5.0 & MHz \\
\hline
\end{tabular}
*See text (Sequence of Operation)
OUTPUTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\overline{\mathrm{CC}}\) High from \(\overline{\mathrm{S}}\), \(\overline{\mathrm{CS}}\), or CLK Low & tscc & - & 25 & 55 & ns \\
\hline Data to 3-State from \(\overline{\mathrm{S}}\), and CLK Low** & tsz & - & 25 & 55 & ns \\
\hline \(\overline{\text { CC Low from CLK High }}\) & \({ }^{\text {t }}\) CKCC & - & 15 & 40 & ns \\
\hline Data Valid from CLK High** & teKDV & - & 25 & 50 & ns \\
\hline Data Valid from \(\overline{\text { CS }}\) Low** & tCSDV & - & 25 & 40 & ns \\
\hline Data to 3-State from \(\overline{\mathrm{CS}}\) High** & \({ }^{\text {t }}\) CSZ & - & 20 & 40 & ns \\
\hline Data Valid from \(\overline{\mathrm{R}}\) Low** & trDV & - & 20 & 40 & ns \\
\hline Data to 3-State from \(\overline{\mathrm{R}} \mathrm{High}^{* *}\) & trz & - & 20 & 40 & ns \\
\hline D7 to Status from D/ST Low** & t DSTS & - & 20 & 40 & ns \\
\hline D7 to Data from D/ड̄T High** & t DSTD & - & 20 & 40 & ns \\
\hline D7 to Status from \(\overline{\mathrm{R}}\) Low** & \({ }_{\text {t }} \mathrm{S}\) & - & 20 & 40 & ns \\
\hline
\end{tabular}
**See Figure 1 for output conditions

\section*{SYSTEM TIMING DIAGRAM}

FIGURE 1 - DATA OUTPUT LOAD TEST CIRCUIT

Active Outputs

Outputs To 3-State From Active

TEMPERATURE SPECIFICATIONS \(\left(0^{\circ}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & Pin & \begin{tabular}{c}
Typical \\
Change
\end{tabular} & Units \\
\hline\(V_{\text {ref }}\) & 25 & \(\pm 20\) & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline DAC Current Gain & - & \(\pm 8.0\) & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {O }}\) Dynamic Impedance & 21 & +1.1 & \(\% /{ }^{\circ} \mathrm{C}\) \\
\hline Reference Input Offset & \(23-26\) & \(\pm 20\) & \(\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\hline Resistance (1 \(\mathrm{R}_{\text {in }}, R_{\text {off, }}\) Gain R & \(20,22,24\) & +0.1 & \(\% /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{PIN DESCRIPTIONS}
\begin{tabular}{|c|c|c|}
\hline Symbol & Pin & Description \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & 1 & To be connected to a 5.0 volts (\(\pm 5.0 \%\)) supply. \\
\hline D0-D7 & 2-9 & TTL level data outputs capable of three-state mode. Pin 2 is the LSB, Pin 9 is the MSB. Pin 9 can also indicate conversion status. \\
\hline \(\overline{\mathrm{CC}}\) & 10 & Conversion Complete. TTL level output. High indicates conversion in progress, low indicates conversion complete and valid data at the outputs. This output does not have three-state capability. \\
\hline \(\overline{\mathrm{S}}\) & 11 & Start conversion - TTL Input. Taking \(\overline{\mathrm{S}}\) low (with Clock and Chip Select low) resets the SAR. Taking \(\overline{\mathrm{S}}\) high allows the conversion to start. \\
\hline \(\overline{\mathrm{CS}}\) & 12 & Chip Select - TTL Input. When low, a conversion may be initiated or data read at the outputs. When high, data outputs are in the three-state mode, and other digital inputs are ignored. \\
\hline \(\overline{\mathrm{R}}\) & 13 & Read - TTL Input. When low, data may be read at D0-D7. When high, D0-D7 are in three-state condition. \\
\hline D/ \(\overline{\text { ST }}\) & 14 & Data/Status - TTL Input. When high, D0-D7 provide normal data. When low, D7 indicates "Conversion Complete" status, while D0-D6 are in three-state mode. \\
\hline CLK & 15 & Clock - TTL input. \(0-5.0 \mathrm{MHz}\). \\
\hline CodeSel & 16 & Code Select - TTL Input. When low, output data is in 2's complement format. When high, output data is straight binary (offset binary when used in the bipolar mode). \\
\hline D. Gnd & 17 & Digital Ground. Connect to ground associated with digital side of the circuitry. \\
\hline - Comp & 18 & Negative input of the comparator. Normally grounded, a voltage on this pin will provide an offset of the input voltage range. \\
\hline + Comp & 19 & Positive input of the comparator. Normally open, this pin may be used for input voltage ranges other than \(0-10\) volts, or \(\pm 5.0\) volts. \\
\hline \(\mathrm{R}_{\mathrm{in}}\) & 20 & The voltage to be converted to a digital equivalent is normally applied to this pin. A nominal \(2.5 \mathrm{k} \Omega\) resistor is internally connected from this pin to the comparator/DAC output node. \\
\hline To & 21 & Current flows into this pin, complementary in value to the DAC's normal current output (\(I_{0}\)). Normally grounded, it may be connected to a resistor to ground or a positive voltage source in order to provide an analog output. \\
\hline
\end{tabular}

PIN DESCRIPTIONS - continued
\begin{tabular}{|c|c|c|}
\hline Symbol & Pin & Description \\
\hline \(\mathrm{R}_{\text {off }}\) & 22 & An input for the bipolar offset function. This input can also serve as an alternate voltage input with half the range at \(R_{i n}\). A nominal \(1.25 \mathrm{k} \Omega\) resistor is internally connected from this pin to the comparator/DAC output node. When not used this pin should be grounded. \\
\hline Ref In & 23 & DAC's reference input. Reference current may be supplied to the DAC through this pin rather than through Pin 24 . The DAC's full scale current is \(4 x\) the reference current. Source impedance should be less than \(10 \mathrm{k} \Omega\). \\
\hline Gain R & 24 & Normally 2.5 volts (from pin 25) is applied to this pin to supply the 1.0 mA reference current to the DAC. An internal \(2.5 \mathrm{k} \Omega\) resistor connects this pin to the DAC's reference input. \\
\hline \(V_{\text {ref }}\) & 25 & Output of the internal precision 2.5 volt reference supply, it can supply up to 5.0 mA . Normally used to supply the DAC's reference current and the bipolar offset current. \\
\hline A. Gnd & 26 & Analog Ground. Connect to ground associated with the analog side of the circuitry. \\
\hline Compen & 27 & Compensation for the reference supply regulator. Typically, a \(0.01 \mu \mathrm{~F}\) capacitor is connected from this pin to \(A\). Gnd or to \(\mathrm{V}_{\mathrm{EE}}\). \\
\hline \(V_{\text {EE }}\) & 28 & To be connected to a -5.2 volts (\(\pm 5.0 \%\)) supply. \\
\hline
\end{tabular}

\section*{DESIGN GUIDELINES}

\section*{ANALOG SECTION}

DAC (Refer to Figures 2 and 3)
The DAC generates an output current (\(1_{0}\)) which is proportional to both the reference current and the digital input presented to it by the Successive Approximation Register (SAR), according to the following formula:
\[
\begin{equation*}
I_{0}=\frac{I_{\text {ref }} \times 4 \times A}{256}+I_{z s} \tag{1}
\end{equation*}
\]
where \(A\) is the binary digital code (\(0-255\)), and \(\mathrm{I}_{\mathrm{zs}}\) is the zero scale current. Io flows into the DAC, never out. The \(4 \times(\pm 2.0 \%)\) factor is a current gain built into the DAC. For a nominal \(I_{r e f}\) of 1.0 mA , the maximum \(\mathrm{I}_{0}(@ A=\) 255) is 3.992 mA (which includes an \(\mathrm{I}_{\mathrm{zs}}\) of \(7.8 \mu \mathrm{~A}\)). \(\mathrm{I}_{\mathrm{zs}}\) is built in so the first transition occurs when the signal voltage (\(\mathrm{V}_{\mathrm{in}}\)) is \(1 / 2\) LSB above its minimum value. In normal operation, \(I_{0}\) is supplied from the signal voltage that is being converted to a digital code. Therefore, the signal source must be capable of supplying up to 4.0 mA in the unipolar mode. Iref is the reference current flowing in through either pin 23 or 24. See Figure 2 for the basic unipolar configuration.
In the bipolar mode, an offset current of 2.0 mA is supplied to the \(I_{0}\) node (normally through \(R_{\text {off }}\)) in order that \(\mathrm{V}_{\text {in }}\) may be symmetrical about zero volts. The signal source must be capable of sinking 2.0 mA when at the negative extreme, and sourcing 2.0 mA when at the positive extreme. See Figure 3 for the basic bipolar configuration.
+Comp (Pin 19) is maintained close to a virtual ground after a conversion as long as -Comp (Pin 18) is at ground. The voltage at + Comp varies (nominally \(\pm 0.8\) volts) during a conversion as the DAC forces different current values at \(\mathrm{I}_{\mathrm{O}}\) and will end up close to zero at the end of a conversion. Because of the varying voltage at +Comp, the current from the signal source and the offset source (if used) will vary with each step of the successive approximation sequence, necessitating that
the signal source have a dynamic impedance less than
\[
\begin{equation*}
\frac{\mathrm{V}_{1} \times \mathrm{R}_{\mathrm{x}}}{1.6 \mathrm{~V}} \tag{2}
\end{equation*}
\]
where \(V_{1}=1 / 2\) LSB of the signal voltage, and
\(R_{X}=\) Resistance between the signal source and Pin 19
(\(2.5 \mathrm{k} \Omega\) if using \(R_{i n}, 1.25 \mathrm{k} \Omega\) if using \(R_{\text {off }}\)).
Normally Pin 19 is left open, although it may be used as a path for the offset current, or the signal current (to be digitized), with appropriate external resistors. See the Applications Information for more details.

Iref flows into the DAC, never out, and should be between 0.5 mA and 2.0 mA to preserve linearity and accuracy. Linearity specified in the Electrical Characteristics is tested (\(a I_{\text {ref }}\) of \(\approx 1.0 \mathrm{~mA}\). The reference input stage is depicted in Figure 4. Normally \(I_{\text {ref }}\) is supplied by the MC6108's internal 2.5 volt reference (Pin 25) through Gain R (Pin 24). If a separate voltage source is used for the reference current, it must be free of noise, spikes, and ripple since the accuracy of a conversion is directly related to the quality and stability of the reference.

\section*{SIGNAL VOLTAGE}

The input signal voltage (to be digitized) is applied to either \(R_{\text {in }}, R_{\text {off }}\), or through an appropriate external resistor to +Comp, such that current from the signal source flows into the DAC's \(l_{0}\) port. The preset ranges, with \(V_{\text {ref }}\) connected to Gain \(R\) are as follows:
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Input \\
Range
\end{tabular} & \begin{tabular}{c}
Connect \(\mathbf{R}_{\text {in }}\) \\
to
\end{tabular} & \begin{tabular}{c}
Connect \(R_{\text {off }}\) \\
to
\end{tabular} \\
\hline 0 to +10 V & \(\mathrm{~V}_{\text {in }}\) & A. Gnd \\
\hline 0 to +5.0 V & A. Gnd & \(\mathrm{V}_{\text {in }}\) \\
\hline-5.0 to +5.0 V & \(\mathrm{~V}_{\text {in }}\) & \(\mathrm{V}_{\text {ref }}\) \\
\hline
\end{tabular}

\section*{MC6108}

FIGURE 2 - BASIC UNIPOLAR CONFIGURATION

FIGURE 3 - BASIC BIPOLAR CONFIGURATION

FIGURE 4 - REFERENCE AMPLIFIER

Although the tolerance on the absolute values of the resistors at Gain \(R, R_{i n}\), and \(R_{\text {off }}\) is \(\approx \pm 30 \%\), the ratio of their values is accurately controlled. Due to this fact, when the MC6108 is connected for any of the above mentioned ranges, the conversion accuracy is assured.

The voltage being digitized must be steady to within \(\pm 1 / 2\) LSB during a conversion cycle in order to get an accurate representation of that voltage. The maximum slew rate during the conversion is defined by:
\[
\begin{array}{r}
\frac{V_{\text {range }}}{2 \times 256 \times \text { t }_{\text {CONV }}}=\frac{V_{\text {range }} \times \mathrm{f}_{\mathrm{CLK}}}{2 \times 256 \times 9} \tag{3}\\
=\frac{V_{\text {range }} \times \mathrm{f} \text { CLK }}{4608}
\end{array}
\]
where Vrange \(=\) range of the input voltage;
\({ }^{\mathrm{t}} \mathrm{CONV}=\) conversion time (min. 9 clock cycles); and
\({ }^{\mathrm{f}} \mathrm{CLK}=\) clock frequency.
For a typical input range of 10 volts, and a clock frequency of 5.0 MHz , the maximum input slew rate is \(0.0108 \mathrm{~V} / \mu \mathrm{s}\). The maximum sine-wave frequency which can be digitized without using a sample-and-hold is:
\[
\begin{equation*}
\frac{\mathrm{f}_{\mathrm{f}} \mathrm{LK}}{4608 \times \pi} \tag{4}
\end{equation*}
\]

The above equation assumes the signal's peak-topeak voltage is equal to the input range of the MC6108. If the input signal will change more than \(1 / 2\) LSB during a conversion, a sample-and-hold is then needed at the input. With the use of a sample-and-hold, the maximum frequency which can be accurately digitized is \(1 / 2\) the conversion frequency, \((277.78 \mathrm{kHz}\) with an fCLK of 5.0 MHz).

The dynamic impedance requirements of the signal source are discussed in the DAC section.

\section*{- COMP}

Pin 18 is normally grounded, resulting in + COMP (Pin 19) being close to a virtual ground at the end of a conversion. However, this pin may be used as an alternate means of offsetting the input range. Applying a positive voltage to -COMP shifts the input voltage range in a positive direction.

The amount of the input's shift depends not only on the voltage applied to - COMP, but also on the imped-
ances between the \(I_{0}\) node and the input source and ground. For example, if the signal voltage applied to \(R_{i n}\), and \(R_{\text {off }}\) is at ground (+COMP open), the input range shifts 3 volts for each volt applied to - COMP.

Since a portion of the DAC's \(l_{0}\) current will be drawn from the voltage at -COMP, that voltage source must be capable of supplying \(\pm 2.0 \mathrm{~mA}\), and must have a low dynamic impedance. The voltage at -COMP, \(\mathrm{R}_{\mathrm{in}}\), and \(\mathrm{R}_{\text {off }}\) must be kept within the limits listed in the Recommended Operating Conditions.

\section*{\(\bar{T}\)}
\(\bar{T}_{\mathrm{O}}\) (Pin 21) is the DAC's complementary current output. The current at this pin changes opposite to that at \(\mathrm{I}_{\mathrm{O}}\) such that their sum is a constant value [\(4 \times I_{\text {ref }}\)]. Current flow is into the pin.
In most applications, this pin is grounded. However, connecting this pin to a resistor to ground permits monitoring the steps of the SAR(see figure 5), or obtaining an analog output representative of the input voltage. The steps in Figure 5 indicate how the circuit finds the value of \(\bar{I}_{0}\), representative of \(\mathrm{V}_{\text {in }}\), by successively trying each bit, and leaving each bit on or off (a conversion always starts with the MSB on). The voltage at \(\bar{I}_{0}\) will swing negative, and is limited to -1.0 volt (max resistor value is \(250 \Omega\)). To get a wider voltage swing, a larger resistor may be connected to a pull-up voltage \((+5.0\) volts max). For example, using a \(1.25 \mathrm{k} \Omega\) resistor pulled up to +5.0 volts results in this pin swinging between ground and +5.0 volts. The output dynamic impedance of the \(\overline{T_{\mathrm{O}}}\) current source (when \(\overline{\bar{I}_{\mathrm{O}}}\) is maximum) is \(\approx 2.0\) \(\mathrm{M} \Omega\) for applied voltages of -1.0 to +4.0 V , and is \(\approx 50\) \(k \Omega\) for applied voltages \(>+4.0 \mathrm{~V}\), and tends to increase as the nominal value of \(\overline{I_{\mathrm{O}}}\) decreases.

FIGURE 5 - SUCCESSIVE APPROXIMATION STEPS AT \(\bar{T}_{0}\)

At the end of a conversion, \(\bar{I}_{0}\) produces a spike approximately 40 ns wide which starts with the falling edge of \(\overline{C C}\). The spike's amplitude varies from \(\approx 1.0 \mathrm{~mA}\) \(\left(@ V_{i n}=0\right)\) to \(0 m A\left(@ V_{\text {in }}=m a x\right)\).After the spike, \(\overline{\mathrm{I}}_{\mathrm{o}}\) remains at the final current value until the start of the next conversion. The current value, once established, is independent of the inputs at \(\overline{\mathrm{R}}, \mathrm{D} / \overline{\mathrm{ST}}\), CodeSel, and \(\overline{\mathrm{CS}}\).

\section*{REFERENCE SUPPLY}

The internal bandgap reference produces an output of +2.500 volts, \(\pm 25 \mathrm{mV}\) (\(\left(\omega V_{\text {ref }}\right.\), pin 25\()\), and is primarily intended to supply the reference current and the bipolar offset current. The output impedance is typically \(<0.5 \Omega\) for load currents up to 5.0 mA , and increases rapidly at higher currents. Variations in \(V_{\text {ref }}\) are typically \(<0.5 \mathrm{mV}\) as \(\mathrm{V}_{\mathrm{CC}}\) is varied from +4.75 to +5.25 volts, and \(V_{\text {ref }}\) is independent of \(V_{E E}\) variations. The output is designed to source, not sink current.

A \(0.001 \mu \mathrm{~F}\) capacitor from \(\mathrm{V}_{\text {ref }}\) to A . Gnd is recommended to reduce noise on this output produced by the digital section. A \(0.01 \mu \mathrm{~F}\) capacitor from the Compensation pin (Pin 27) to \(A\). Gnd, or to \(\mathrm{V}_{\mathrm{EE}}\), is necessary to stabilize the regulator.

\section*{POWER SUPPLIES}

The power supplies are to be +5.0 volts, \(\pm 5.0 \%\) at \(V_{C C}\) (Pin 1), and -5.2 volts, \(\pm 5.0 \%\) at \(V_{E E}\) (Pin 28). For proper operation, bypassing is required for both supplies at the IC. \(10 \mu \mathrm{~F}\) tantalum in parallel with \(0.01 \mu \mathrm{~F}\) ceramic is recommended for each supply.
\({ }^{I} \mathrm{CC}\) varies with the chip's different operating conditions, and is a maximum (typically 20 mA) during a conversion (\(\bar{R}=0, D / \overline{S T}=1, \overline{C S}=0\)) with the signal voltage at its minimum value. Minimum ICC (typically 12 mA) occurs during a conversion with the signal voltage at its maximum value. ICC is typically 16 mA when the MC6108 is deselected (\(\overline{\mathrm{CS}}=1\)), and under all conditions, \({ }^{I} C C\) is independent of clock frequency.
\({ }^{I} E E\) is typically 38 mA , and varies \(<2.0 \mathrm{~mA}\) over different operating conditions. IEE is independent of clock frequency.

\section*{DIGITAL SECTION}

\section*{SEQUENCE OF OPERATION}

A conversion is initiated when the \(\overline{\mathrm{S}}\) (Start), \(\overline{\mathrm{CS}}\) (Chip select), and CLK (Clock) inputs are simultaneously low for a minimum of 50 ns . The three inputs may be taken low in any sequence, including simultaneously. After all three have been brought low, \(\overline{\mathrm{CC}}\) (Conversion Com-
plete) will change to a high state \(\approx 25\) ns later, indicating the SAR has been reset. A clock low-to-high transition must then occur before or with \(\overline{\mathrm{S}}\) switching high, and the conversion begins with the next CLK rising edge (\(\overline{\mathrm{S}}\) must precede that one by \(>25 \mathrm{~ns}\)). The conversion then requires seven complete clock cycles. At the end of the conversion, \(\overline{\mathrm{CC}}\) will switch low indicating the end of the conversion, and that valid data is available. See Figure 6 for the basic timing sequence.

If the \(\bar{S}, \overline{\mathrm{CS}}\), and CLK inputs appear simultaneously low during a conversion, the conversion sequence will be re-initiated at that point.

The following truth table describes the relationship of the six digital inputs (Pins 11-16):
\begin{tabular}{|c|c|c|c|c|c|l|}
\hline \multicolumn{6}{|c|}{ Logic Inputs } & \multicolumn{1}{|c|}{ Function } \\
\hline CLK & \(\overline{\mathrm{CS}}\) & \(\overline{\mathrm{S}}\) & \(\overline{\mathrm{R}}\) & \(\mathrm{D} / \overline{\mathrm{ST}}\) & CodeSel & \\
\hline X & 1 & X & X & X & X & \begin{tabular}{l}
Chip de-selected, \\
D0-D7 @ Hi-Z
\end{tabular} \\
\hline 0 & 0 & 0 & X & X & X & Reset SAR \\
\hline\(\uparrow \downarrow\) & X & 1 & X & X & X & \begin{tabular}{l}
Conversion process \\
(after SAR is reset)
\end{tabular} \\
\hline X & 0 & X & 1 & X & X & \(\mathrm{D0-D7} \mathrm{@} \mathrm{Hi-Z}\) \\
\hline X & 0 & 1 & 0 & 1 & 1 & \begin{tabular}{l}
Read binary or \\
offset binary data at \\
D0-D7 after \\
conversion
\end{tabular} \\
\hline X & 0 & 1 & 0 & 1 & 0 & \begin{tabular}{l}
Read 2's \\
complement data at \\
D0-D7 after \\
conversion
\end{tabular} \\
\hline X & 0 & 1 & 0 & 0 & X & \begin{tabular}{l}
Read \(\overline{\mathrm{CC}}\) status at \\
\(\mathrm{D7}\) (D0-D6 @ Hi-Z)
\end{tabular} \\
\hline
\end{tabular}

X = Don't care

Figure 7 depicts the input configurations in order to read the various output formats. Any digital input left open is equivalent to a Logic " 0 " - however, good design practice dictates that inputs should never be left open.

FIGURE 6 - CONVERSION TIMING DIAGRAM

FIGURE 7 - OUTPUT DATA CONTROL

\section*{CLOCK}

The clock input (Pin 15) is a TTL level input which steps the SAR through the successive approximation conversion process. There is no minimum required frequency, and the maximum operating frequency is listed in the timing characteristics. The clock duty cycle does not have to be \(50 \%\), but the minimum low and high times must be observed. The clock is needed only for the conversion, and may be removed or left applied to the MC6108 between conversions. The operation of \(\overline{C S}\), \(\mathrm{D} / \overline{\mathrm{ST}}, \overline{\mathrm{R}}\), and CodeSel are not affected by the presence or absence of the clock.

\section*{CHIP SELECT}

Chip Select (\(\operatorname{Pin} 12\)) is a TTL level input which is normally used by a microprocessor's address decoding to select and de-select the device. A Logic " 0 " selects (enables) the MC6108, while a Logic " 1 " disables it. \(\overline{\mathrm{CS}}\) must be low for a conversion to start, and to read data at D0-D7 or status at D7 (see D/ST description). \(\overline{C S}\) may be taken high during a conversion, as long as the minimum low time for CS, S, and CLK is adhered to, and then taken low in order to read the data after \(\overline{\mathrm{CC}}\) goes
low. Alternately \(\overline{\mathrm{CS}}\) may be left low during the entire conversion.

Whenever the MC6108 is de-selected, a conversion cannot be initiated, and D0-D7 are in the highimpedance condition, regardless of the other digital inputs.

\section*{\(\overline{\text { START }}\)}
\(\overline{\mathrm{S}}\) (Pin 11) is a TTL level input used to reset the SAR, and initiate a conversion. The SAR is reset when this pin is low simultaneous with the Clock and \(\overline{\mathrm{CS}}\) inputs for a minimum of \(50 \mathrm{~ns} . \overline{\mathrm{CC}}\) output will then change to a high state. A clock rising edge must occur while \(\overline{\mathrm{S}}\) is low, or no later than coincident with its rising edge. There is no maximum time limit for \(\bar{S}\) to stay low, but the conversion will not begin until the next rising edge of the Clock input after \(\overline{\mathrm{S}}\) goes high. Seven complete clock cycles are then needed to complete the conversion.

If the \(\overline{\mathrm{S}}\) input is connected to the \(\overline{\mathrm{CC}}\) output through a flip-flop (see Figure 8), the MC6108 will operate at the maximum possible conversion repetition rate, i.e. one conversion each 9 clock cycles.

FIGURE 8 - CONFIGURATION FOR MAXIMUM CONVERSION RATE

\section*{\(\overline{\text { READ }}\)}
\(\overline{R e a d}\) (Pin 13) is a TTL level input which controls the state of the outputs (D0-D7) between conversions as long as the MC6108 is enabled (\(\overline{\mathrm{CS}}=0\)). A Logic " 1 " forces the 8 outputs to a high impedance condition regardless of the other digital inputs. A Logic " 0 " permits reading the data at D0-D7 after the conversion is complete, or the \(\overline{C C}\) status at \(D 7\) (depending on the \(D / \overline{S T}\) input). During a conversion, \(\overline{\mathrm{R}}\) is ineffective, except for controlling D7 if \(D / \overline{\mathrm{ST}}\) is low.

The \(\overline{\text { Read }}\) input differs from the \(\overline{\mathrm{CS}}\) input in that taking \(\overline{\text { Read }}\) high does not prevent a conversion from being initiated in response to the \(\overline{\mathrm{CS}}, \mathrm{CLK}\), and \(\overline{\mathrm{S}}\) inputs (described elsewhere). If desired, the Read input may be kept low at all times in a simple application.

\section*{CONVERSION COMPLETE}
\(\overline{\mathrm{CC}}\) (Pin 10) is a TTL level output which indicates the status of the conversion. After \(\overline{\mathrm{CS}}, \mathrm{CLK}\), and \(\overline{\mathrm{S}}\) are taken low to initiate a conversion, \(\overline{C C}\) will go high \(\approx 25\) ns later. \(\overline{\mathrm{CC}}\) will stay high during the conversion, and then go low \(\approx 15 \mathrm{~ns}\) after the rising edge of the clock corresponding to the end of the conversion. See Figure 6 and the System Timing Diagram.

The \(\overline{\mathrm{CC}}\) pin does not have a high impedance capability, and is therefore always active. The \(\overline{\mathrm{CC}}\) status is typically monitored through a port, or an interrupt pin.

\section*{DATA/STATUS}

D/ST (Pin 14) is a TTL level input which controls the information presented at D0-D7. When at a Logic " 1 ", D0-D7 will provide the digital equivalent of the analog input at the end of the conversion (D0-D7 are in a high impedance mode during the conversion). When at a Logic " 0 ", D0-D6 are maintained in a high impedance mode, while D7 provides the Conversion Complete status both during and after the conversion (D7 does not go into a high impedance mode). The rising and falling edges of D7, when providing status, follow those of \(\overline{C C}\) (Pin 10) within \(=10 \mathrm{~ns}\).

D/ST may be used by the microprocessor as a means of reading the Status and the Data on the bus rather than using a separate port for the \(\overline{\mathrm{CC}}\) output (\(\operatorname{Pin} 10\)). However, since D7 is active during the conversion, the microprocessor cannot be busy with other functions during this time. If the microprocessor is to be busy during the conversion, the status may be checked by periodically switching the \(\mathrm{D} / \overline{\mathrm{ST}}\) pin, or the \(\overline{\mathrm{CS}}\) pin, or by reading the \(\overline{C C}\) pin (Pin 10) through a separate port or interrupt pin. \(\bar{R}\) (Pin 13) must be low to read data or status.

\section*{CODE SELECT}

CodeSel (Pin 16) is a TTL level input which controls the format of the binary data presented at D0-D7 at the end of a conversion. When at a Logic " 1 ", the data is presented as natural binary or offset binary, depending on whether the analog input is unipolar or bipolar, respectively. When at a Logic " 0 ", the output code is in 2's complement form (applicable to bipolar operation only). This pin has no effect on D7 when the D/ \(\overline{S T}\) input is low (see section on Data/(Status). The following tables illustrate examples of the different codes:

UNIPOLAR
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Input } & \(+\mathbf{1 0} \mathrm{V}\) Range & \(+\mathbf{5 . 0} \mathrm{V}\) Range & Natural Binary \\
\hline FS - 1 LSB & 9.961 V & 4.980 V & 11111111 \\
\(3 / 4 \mathrm{FS}\) & 7.500 V & 3.750 V & 11000000 \\
\(1 / 2 \mathrm{FS}\) & 5.000 V & 2.500 V & 10000000 \\
\(1 / 4 \mathrm{FS}\) & 2.500 V & 1.250 V & 01000000 \\
0 & 0.000 V & 0.000 V & 00000000 \\
\hline
\end{tabular}

BIPOLAR
BIPOLAR
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Input } & \(\mathbf{5 5 . 0}\) V Range & Offset Binary & \begin{tabular}{c}
\(\mathbf{2 ' s}\) \\
Complement
\end{tabular} \\
\hline+ FS - 1LSB & 4.961 V & 11111111 & 01111111 \\
\(+1 / 2 \mathrm{FS}\) & 2.500 V & 11000000 & 01000000 \\
MidScale & 0.000 V & 10000000 & 00000000 \\
\(-1 / 2 \mathrm{FS}\) & -2.500 V & 01000000 & 11000000 \\
- FS + 1LSB & -4.961 V & 00000001 & 10000001 \\
- FS & -5.000 V & 00000000 & 10000000 \\
\hline
\end{tabular}

If an input voltage range other than those listed above is used, and CodeSel is at a Logic " 1 " (binary format), the code 00000000 will correspond to the most negative input voltage, while the code 11111111 corresponds to the most positive input voltage (-1 LSB). The 2's complement code is the same as the binary with the MSB (D7) inverted.

\section*{DATA OUTPUTS}

The data outputs (Pins 2-9) are TTL level outputs with high impedance capability. Pin 2 is the LSB (D0), while Pin 9 is the MSB (D7). The 8 outputs are in the high impedance mode during a conversion (\(\overline{C C}=\) high \()\), or if \(\overline{C S}\) or \(\bar{R}\) are high. D0-D6 are in the high impedance mode, and D7 is active, anytime that \(D / \overline{\mathrm{ST}}\) is low \((\overline{\mathrm{CS}}=\) \(\bar{R}=0\)).

During normal operation, the 8 outputs change from valid data to high impedance within 55 ns after the SAR has been reset (\(\overline{\mathrm{CS}}=\mathrm{CLK}=\overline{\mathrm{S}}=0\)) at the beginning of a conversion, and back to valid data within 50 ns after the rising edge of the CLK at the end of a conversion.

\section*{APPLICATIONS INFORMATION}

\section*{POWER SUPPLIES, GROUNDING}

The P.C. board layout, the quality of the power supplies and the ground system at the IC are very important in order to obtain proper operation. Noise, from any source, coming into the device on \(\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{EE}}\), or ground can cause an incorrect output code due to interaction with the analog portion of the circuit. At the same time, noise generated within the MC6108 can cause incorrect operation if that noise does not have a clear path to ac ground.

Both the \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{E E}\) power supplies must be decoupled to ground at the IC (within \(1^{\prime \prime}\) max) with a 10 \(\mu \mathrm{F}\) tantalum and a \(0.01 \mu \mathrm{~F}\) ceramic. Tantalum capacitors are recommended since electrolytic capacitors simply have too much inductance at the frequencies of interest. The quality of the \(V_{C C}\) and \(V_{E E}\) supplies should then be checked at the IC with a high frequency scope. Noise spikes (always present when digital circuits are present) can easily exceed 400 mV peak, and if they get into the analog portion of the IC, the operation can be disrupted. Noise can be reduced by inserting resistors (\(<10 \Omega\), metal film) or inductors between the supplies and the IC.
If switching power supplies are used, there will usually be spikes of 0.5 volts or greater at frequencies of \(50-200 \mathrm{kHz}\). These spikes are generally more difficult to reduce because of their greater energy content. In
extreme cases, 3-terminal regulators (MC78L05ACP, MC7905.2CT), with appropriate high frequency filtering, should be used and dedicated to the MC6108.

The ripple content of the supplies should not allow their magnitude to exceed the values in the Recommended Operating Limits.

The P.C. board tracks supplying \(V_{C C}\) and \(V_{E E}\) to the MC6108 should preferably not be at the tail end of the bus distribution, after passing through a maze of digital circuitry. The MC6108 should be close to the power supply, or the connector where the supply voltages enter the board. If the \(\mathrm{V}_{\mathrm{C}}\) and \(\mathrm{V}_{\mathrm{EE}}\) lines are supplying considerable current to other parts of the boards, then it is preferable to have dedicated lines from the supply or connector directly to the MC6108.

The MC6108 has two ground pins - A. Gnd (Pin 26), and D. Gnd. (Pin 17). \(V_{C C}\) and \(V_{E E}\) should be referenced to D. Gnd. A. Gnd is mainly a signal ground, and is the return path for the internal 2.5 volt reference, and the DAC's reference amplifier. A. Gnd must be connected to D. Gnd, preferably at one point, and in a manner so as to not pick up noise. The dc voltage between A. Gnd and D. Gnd must be \(<100 \mathrm{mV}\). Long PC tracks between them should be avoided as the inductance (at 5.0 MHz) can create stability problems. See Figure 9 for a depiction of the major current paths.

FIGURE 9 - MAJOR CURRENT PATHS

\section*{FULL SCALE, ZERO ADJUSTMENTS}

The unadjusted full scale accuracy (at max. \(\mathrm{V}_{\text {in }}\)) of the MC6108, when the internal resistors are used (Figures 2 and 3), is guaranteed to be within \(2-1 / 2\) LSBs. The offset error (at min. \(\mathrm{V}_{\text {in }}\)) is guaranteed to be less than 1LSB for the unipolar configuration, and 2-1/2 LSBs for the bipolar configuration. If the application requires greater accuracy at the end points, then adjustments are needed, as shown in Figures 10 and 11. The potentiometers should be 20 -turn type, with low T.C. The \(50 \Omega\) resistor is added to the \(\mathrm{R}_{\mathrm{in}}\) pin to ensure that the potentiometers can provide adjustment over the full plus and minus error range.

FIGURE 10 - UNIPOLAR ADJUSTMENTS

FIGURE 11 - BIPOLAR ADJUSTMENTS

\section*{OTHER INPUT RANGES}

The MC6108 has interna! resistors providing preset input ranges of 0 to +10 volts, 0 to +5.0 volts, and -5.0 to +5.0 volts (see previous section entitled "Signal Voltage"'). The input range, and the offset, are determined by the value of the resistors at Pins 20, 22, and 24. Where input ranges other than those listed above are to be digitized, then external resistors of comparable tolerance and temperature coefficient should be used for the reference (at Pin 23), and for the input signal (at Pin 19), and for the bipolar offset function (also at Pin 19). See Figures 12 and 13. \(R_{\text {in }}\) and \(R_{\text {off }}\) should be connected to A. Gnd when not used. Due to the tolerances of the absolute value of the internal resistors, they should not be used in conjunction with external resistors.

Figure 13 shows the reference current and the offset current supplied from the same reference source, which may be the internal reference (Pin 25). However, separate sources may be used for the two currents if desired.

FIGURE 12 - UNIPOLAR CONVERSION USING EXTERNAL REFERENCE AND RESISTORS

A modulation of the input signal (for waveform manipulation or signal processing) may be done by applying the modulating signal to the reference current. Rewriting equation 1 to determine the output code results in:
\[
\begin{equation*}
A=\frac{I_{0} \times 256}{4 \times I_{\text {ref }}}=\frac{V_{\text {in }} \times 256}{R_{\text {in }} \times 4 \times I_{\text {ref }}} \tag{5}
\end{equation*}
\]
(The offset term has been omitted to simplify the equation.) As can be seen, the output code varies inversely with the reference. When varying the reference current, its value must be maintained between 0.5 and 2.0 mA , and the current flow must always be into Pin 23 or 24.

FIGURE 13 - BIPOLAR CONVERSION USING EXTERNAL REFERENCE \& RESISTORS

\section*{MAXIMUM CONVERSION RATE}

Although a conversion, once initiated, requires 7+ clock cycles, the maximum conversion repetition rate is once per 9 clock cycles, due to the DAC and SAR reset times. This is easily achieved by connecting \(\overline{\mathrm{C}}\) to \(\overline{\mathrm{S}}\), through a D-type flip-flop, allowing the MC6108 to restart itself at the end of each conversion (see Figure 8). In this mode, the data outputs may be connected directly to the microprocessor bus, and the BUSY output used to indicate when valid data is available. Alternately, the data outputs may be connected to latches, which are activated by the BUSY signal, in order that the microprocessor may read the data at its convenience. This configuration may also be used for DMA loading of memory.

\section*{MICROPROCESSOR INTERFACING}

With the proliferation of microprocessors available today, interfacing schemes can take any one of several hundred configurations. Figures 14, 15, and 16 indicate some generic interfacing schemes which can be adapted to most any microprocessor. Some of the terminology in the Figures is based on the MC6800 series of processors - other processors have similar functions by different names.

Figure 14 depicts a simple basic interface using a port (such as an MC6821) and/or an interrupt. A conversion

FIGURE 14 - BASIC MICROPROCESSOR INTERFACE

is initiated when the active low address decoder switches low, \(R \bar{W}\) is high, and the port outputs one active low pulse to \(\overline{\mathrm{S}}\). At the end of the conversion, \(\overline{\mathrm{CC}}\) goes low, alerting the processor through the port or through an interrupt. The processor can then read the data at its convenience by switching \(\bar{R}\) and \(\overline{C S}\) low.
Figure 15 eliminates the need for an interrupt, and instead periodically checks the conversion status at D7 (\(D / \overline{\mathrm{ST}}=\) low) by reading the data bus. When \(\mathrm{D7}\) is low, the conversion is complete, and the D/ST input is then taken high so as to read the data at D0-D7.
Figure 16 eliminates the need for an interrupt or a port, but requires the processor to wait during the conversion until it is complete. The conversion is initiated when the address decoder switches low, and \(R \bar{W}\) goes high - that brings \(\overline{\mathrm{CS}}\) low and provides the \(\overline{\text { Start pulse. }}\) The processor waits 9 clock cycles, and then reads the data.
In the above examples, the timing of the \(\overline{\mathrm{S}}\) pulse must be such that it is low for \(>50 \mathrm{~ns}\) concurrently with \(\overline{\mathrm{CS}}\) and CLK low, and must include one rising clock edge. If the \(\overline{\mathrm{S}}\) pulse timing is synchronized with the other inputs, this is relatively easy to guarantee. If, however, in Figure 16, the \(\overline{C S}\) and CLK are not synchronized, then the SN74LS122 must be set for a pulse width that is equal to or greater than one clock cycle.

FIGURE 15 - MICROPROCESSOR INTERFACE WITHOUT AN INTERRUPT

FIGURE 16 - MICROPROCESSOR INTERFACE WITHOUT USING A PORT OR INTERRUPT

\section*{STAND-ALONE USE}

Although the MC6108 was designed for use with microprocessors, it can be used in a stand-alone mode. The digital inputs may be controlled by other digital circuitry, or hard-wired in a simple application. Figure 17 shows a simple configuration whereby the MC6108 is permanently enabled, and each \(\overline{\mathrm{S}}\) input pulse provides new data at the outputs. Figure 18 shows a circuit whereby the MC6108 is continually self-updating the information into latches. The latches are necessary since in this mode of operation, the MC6108 data outputs are in the 3 -state mode the majority of the time. The \(430 \Omega\) resistor and 68 pF capacitor provide a \(\approx 60\) ns delay from \(\overline{\mathrm{CC}}\) 's falling edge to allow D0-D7 to stabilize, and to allow the setup time required by the SN74LS374 latches. The clock high time in this circuit must be \(\geqslant 100 \mathrm{~ns}\).

\section*{NEGATIVE VOLTAGE REGULATOR}

In the cases where a negative power supply is not available - neither the -5.2 volts, nor a higher negative voltage from which to derive the -5.2 volts - the circuit of Figure 19 can be used to generate the -5.2 volts from the +5.0 volts supply. The PC board space required is small (\(\approx 2.0 \mathrm{in}^{2}\)), and it can be located physically close to the MC6108. The MC34063 is a switching regulator, and in Figure 19 is configured in an inverting mode of operation. The regulator operating specifications are given in the Figure.

FIGURE 17 - STAND-ALONE OPERATION (CONTINUOUSLY ENABLED)

FIGURE 18 - STAND-ALONE OPERATION AT MAXIMUM UPDATE RATE

Output
Data

FIGURE \(19-\mathbf{- 5 . 2}\) VOLTAGE REGULATOR

\begin{tabular}{|l|l|c|}
\hline Line Regulation & \(4.75 \mathrm{~V}<\mathrm{V}_{\text {in }}<5.25 \mathrm{~V}\left(\mathrm{I}_{\text {out }}=20 \mathrm{~mA}\right)\) & \(0.04 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, 20 \mathrm{~mA}<\mathrm{I}_{\text {out }}<50 \mathrm{~mA}\) & \(0.8 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {out }}=50 \mathrm{~mA}\) & 3.0 mV p-p \\
\hline Short Circuit \(\mathrm{I}_{\text {out }}\) & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{R1}=0.1 \Omega\) & 300 mA \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {out }}=50 \mathrm{~mA}\) & \(57 \%\) \\
\hline
\end{tabular}

\section*{GLOSSARY}

BANDGAP REFERENCE - A voltage reference circuit based on the predictable base-emitter voltage of a transistor. The silicon bandgap voltage of \(\approx 1.2\) volts is the basis for generating other voltages which are stable with time and temperature.

BIPOLAR INPUT - A mode of operation whereby the analog input (of an A-D), or output (of a DAC), includes both negative and positive values. Examples are -5 to +5 V , -2 to +8 V , etc.

BIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the 00 H to \(01_{\mathrm{H}}\) transition, where the ideal location is \(1 / 2\) LSB above the most negative input voltage.

BIPOLAR ZERO ERROR - The error (usually expressed in LSBs) of the input voltage location (of an A-D) of the \(7 \mathrm{~F}_{\mathrm{H}}\) to \(80_{\mathrm{H}}\) transition. The ideal location is \(1 / 2 \mathrm{LSB}\) below zero volts in the case of an A-D set up for a symmetrical bipolar input (e.g., -5 to +5 V).

DAC CURRENT GAIN - The internal gain the DAC applies to the reference current to determine the full scale output current. The actual maximum current out of a DAC is one LSB less than the full scale current.

DIFFERENTIAL NON-LINEARITY - The maximum deviation in the actual step size (one transition level to another) from the ideal step size. The ideal step size is defined as the Full Scale Range divided by \(2^{n}\) (\(n=\) number of bits). This error must be within \(\pm 1\) LSB for proper operation.

FULL SCALE CURRENT or RANGE (ACTUAL) - The difference between the actual minimum and maximum end points of the analog input (of an A-D), or output (of a DAC).
FULL SCALE RANGE (IDEAL) - The difference between the actual minimum and maximum end points of the analog input (of an A-D), or output (of a DAC), plus one LSB.

GAIN ERROR - The difference between the actual and expected gain (end point to end point) of a data converter, with respect to the device's internal reference. The gain error is usually expressed in LSBs.

INTEGRAL NON-LINEARITY - The maximum error of an A-D, or DAC, transfer function from the ideal straight line connecting the analog end points. This parameter is sensitive to dynamics, and test conditions must be specified in order to be meaningful. This parameter is the best overall indicator of the device's performance.

LSB - Least Significant Bit. It is the lowest order bit of a binary code.

LINE REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the input to the regulator is varied. The error is typically expressed as a percent of the nominal output voltage.

LOAD REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the load current is varied. The error is typically expressed as a percent of the nominal output voltage.

MONOTONICITY - The characteristic of the transfer function whereby increasing the input code (of a DAC), or the input signal (of an A-D), results in the output never decreasing.

MSB - Most Significant Bit. It is the highest order bit of a binary code.

NATURAL BINARY CODE - A binary code whose normalized decimal value is defined by: \(N=A_{n} 2^{n}+\ldots+A_{3} 2^{3}+A_{2} 2^{2}+A_{1} 2^{1}+A_{0} 2^{0}\)
where each " \(A\) " coefficient has a value of 1 or 0 . Typically, all zeroes corresponds to a zero input voltage of an A-D, and all ones corresponds to the most positive input voltage.

OFFSET BINARY CODE - Applicable only to bipolar input (or output) data converters, it is the same as Natural Binary, except that all zeroes corresponds to the most negative input voltage (of an A-D), while all ones corresponds to the most positive input.

POWER SUPPLY SENSITIVITY - The change in a data converter's performance with changes in the power supply voltage(s). This parameter is usually expressed in percent of full scale versus \(\Delta V\).

QUANTITIZATION ERROR - Also known as digitization error or uncertainty. It is the inherent error involved in digitizing an analog signal due to the finite number of steps at the digital output versus the infinite number of values at the analog input. This error is a minimum of \(\pm 1 / 2\) LSB.

RESOLUTION - The smallest change which can be discerned by an A-D converter, or produced by a DAC. It is usually expressed as the number of bits, \(n\), where the converter has \(2^{n}\) possible states.

SAMPLING THEOREM - Also known as the Nyquist Theorem. It states that the sampling frequency of an A-D must be no less than \(2 x\) the highest frequency (of interest) of the analog signal to be digitized in order to preserve the information of that analog signal.

TWO'S COMPLEMENT CODE - A binary code applicable to bipolar operation, in which the positive and negative codes of the same analog magnitude sum to all zeroes, plus a carry. It is the same as Offset Binary Code, with the MSB inverted.

UNIPOLAR INPUT - A mode of operation whereby the analog input range (of an A-D), or output range (of a

DAC), includes values of a single polarity. Examples are 0 to \(+10 \mathrm{~V}, 0\) to \(-5 \mathrm{~V},+2\) to +8 V , etc.

UNIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the 00 H to \(01_{\mathrm{H}}\) transition, where the ideal location is \(1 / 2\) LSB above the most negative input voltage.

\section*{Specifications and Applications Information}

\section*{HIGH SPEED}

\section*{8-BIT DIGITAL-TO-ANALOG CONVERTER}

The MC10318 (Series) is a high-speed D/A converter capable of data conversion rates in excess of 25 MHz . The digital inputs are compatible with MECL 10,000 Series Logic. Complementary current outputs provide up to 56 mA full scale capability. The MC10318 Series is available in 4 accuracy grades (over temperature) to meet the requirements of many applications, including: high-speed instrumentation and test equipment, storage oscilliscopes, display processing, radar systems, and digital video systems (broadcast and receiver applications).
- Fast Settling Time - 10 ns (Typ to \(\pm 0.19 \%\))
- Four Accuracy Grades
- 9-Bit Linearity (\(\pm 0.10 \%\)) - MC10318L9
- 8-Bit Linearity (\(\pm 0.19 \%\)) - MC10318L
- 7-Bit Linearity (\(\pm 0.39 \%\)) - MC10318CL7
- 6-Bit Linearity (\(\pm 0.78 \%\)) - MC10318CL6
- Inputs MECL 10,000 Compatible
- Complementary Current Outputs
- Output Compliance: -1.3 V to +2.5 V
- Single MECL Supply: -5.2 V
- Standard 16-Pin Dual-In-Line Package
- Evaluation Kit MCK8DA Available

MAXIMUM RATINGS (\(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(V_{E E}\) & -6.0 to +0.5 & Vdc \\
\hline Digital Input Voltage & \(V_{1}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline Applied Output Voltage & \(\mathrm{V}_{0}\) & +5.0 to \(V_{\mathrm{EE}}\) & Vdc \\
\hline Reference Current & \(I_{\text {ref }}(12)\) & 5.0 & mA \\
\hline Output Current & IFS & -75 & mA \\
\hline Reference Amplifier Input Range & \(V_{\text {ref }}\) & +0.5 to \(V_{\mathrm{EE}}\) & Vdc \\
\hline Reference Amplifier Differential Inputs & \(V_{\text {ref }}(\mathrm{D})\) & \(\pm 5.0\) & Vdc \\
\hline Operating Temperature Range & \(T_{\text {A }}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature Ceramic Package & TJ & + 175 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{rr}
Thermal Resistance, & Still Air \\
Junction to Ambient & With 500 LFPM
\end{tabular} & R \({ }_{\text {JJA }}\) & \[
\begin{aligned}
& 80 \\
& 50
\end{aligned}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

DC CHARACTERISTICS (\(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \pm 5 \% \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) after thermal equilibrium is reached.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Fig. & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{ll}
\hline Nonlinearity (Integral) & MC10318L9 \\
(Pin 14 or 15) & MC10318L \\
(\(a\) I FS \(\left.^{2}=51 \mathrm{~mA}, 25.5 \mathrm{~mA}\right)\) & MC10318CL7 \\
& MC10318CL6
\end{tabular} & & -
-
- & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& \pm 0.10 \\
& \pm 0.19 \\
& \pm 0.39 \\
& \pm 0.78
\end{aligned}
\] & \% FS \\
\hline Zero Scale Output Current (Pin 14 or 15) (\(T_{\text {A }}=25^{\circ} \mathrm{C}\)) & 10 & IzS & - & 5.0 & 50 & \(\mu \mathrm{A}\) \\
\hline Zero Scale Output Current Temperature Drift (Pin 14 or 15)
\[
\begin{aligned}
& 0<\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C} \\
& 25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & & IZS/DT & \[
-
\] & \[
\begin{aligned}
& \pm 17 \\
& \pm 2.0
\end{aligned}
\] & - & \(n A{ }^{\circ} \mathrm{C}\) \\
\hline Full Scale Output Current (Pin 14 or 15)
\[
\left(I_{\mathrm{ref}}=3.2 \mathrm{~mA}, D 0-\mathrm{D7}=1\right)
\] & 10 & IFS & -46.00 & -51.00 & \(-56.00\) & mA \\
\hline \begin{tabular}{l}
Full Scale Output Current Temperature Drift \\
(Pin 14 or 15)
\[
\begin{array}{r}
0<T_{A}<25^{\circ} \mathrm{C} \\
25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\
\hline
\end{array}
\]
\end{tabular} & & \(\Delta^{\prime} \mathrm{FS} /{ }^{\circ} \mathrm{C}\) & \[
-
\] & \[
\begin{aligned}
& \pm 50 \\
& \pm 10
\end{aligned}
\] & - & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{|cl|}
\hline Full Scale Output Sensitivity to Power & MC10318L,9 \\
Supply Variations (Pin 14 or 15) & MC10318CL6,7 \\
\(\left(-4.94 \mathrm{~V}<\mathrm{VEE}_{\mathrm{E}}<-5.46 \mathrm{~V}\right)\) & \\
\hline
\end{tabular} & & 1 FSPSS & - & \[
\begin{aligned}
& \pm 0.005 \\
& \pm 0.005
\end{aligned}
\] & \[
\begin{aligned}
& \pm 0.02 \\
& \pm 0.04
\end{aligned}
\] & \%/\% \\
\hline Full Scale Symmetry (\({ }_{\text {FS }}-\overline{\bar{I}_{\text {FS }}}\)) & 10 & \({ }^{\text {I FSS }}\) & - & \(\pm 21\) & \(\pm 100\) & \(\mu \mathrm{A}\) \\
\hline Output Voltage Compliance (Pin 14 or 15) Full Scale Current Change \(\leqslant 1 / 2\) LSB (Specified Nonlinearity) (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & & \(\mathrm{V}_{\text {OC }}\) & -1.3 & - & \(+2.5\) & V \\
\hline Output Resistance (Pin 14 or 15) (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & 12 & \(\mathrm{R}_{\mathrm{O}}\) & - & 69 & - & \(\mathrm{k} \Omega\) \\
\hline Reference Amplifier Offset Voltage (\(\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}\)) & & \(\mathrm{V}_{10}\) & - & \(\pm 3.2\) & - & mV \\
\hline Reference Amplifier Offset Voltage Temperature Drift
\[
\begin{array}{r}
0<\mathrm{T}_{A}<25^{\circ} \mathrm{C} \\
25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}
\end{array}
\] & & \(\Delta V_{1 O} / \Delta T\) & - & \[
\begin{array}{r}
\pm 10 \\
\pm 4.0
\end{array}
\] & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Reference Amplifier Bias Current (Pin 10) (1 ref \(=3.2 \mathrm{~mA}\)) & & IB & - & 4.0 & 15 & \(\mu \mathrm{A}\) \\
\hline Reference Amplifier Bias Current Temperature Drift
\[
\begin{array}{lr}
\text { (I ref } & =3.2 \mathrm{~mA}) \\
& 0<\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C} \\
25^{\circ} \mathrm{C} & <\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & & \(\Delta l^{\prime} \mathrm{B} / \Delta \mathrm{T}\) & - & \[
\begin{array}{r}
-40 \\
-10 \\
\hline
\end{array}
\] & \[
-
\] & \(n \mathrm{~A} /{ }^{\circ} \mathrm{C}\) \\
\hline Reference Amplifier Common Mode Range
\[
\left(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}\right)\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & & VICR & - & \(\pm 1.15\) & - & V \\
\hline Reference Amplifier Common Mode Rejection
\[
\text { Ratio }\left(T_{A}=25^{\circ} \mathrm{C}\right)\left(I_{\text {ref }}=3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ICR}}=0 \text { to }-2.0 \mathrm{~V}\right. \text {, }
\]
\[
\text { Pins } 1-8=\text { Logic } 1 \text {) }
\] & & VICMRR & - & 58 & - & dB \\
\hline Reference Amplifier Input Impedance
\[
(\operatorname{Pin} 10)\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & & RIN & - & 1.0 & - & \(\mathrm{M} \Omega\) \\
\hline \begin{tabular}{l}
Power Supply Current \\
\(\left(\right.\) Pins 1 thru 8 Open, I \(\begin{array}{rl}\text { ref } & \left.=3.2 \mathrm{~mA} \text {, Includes } \mathrm{I}_{0}+T_{0}\right)\end{array}\)
\end{tabular} & & \({ }^{\prime} \mathrm{EE}\) & - & 90 & 130 & mA \\
\hline
\end{tabular}

AC CHARACTERISTICS \(\left\langle T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \pm 5 \%\right.\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Fig. & Symbol & Min & Typ & Max & Unit \\
\hline Feedthrough Current - All Bits Off \(\quad\)\begin{tabular}{l}
\(f=10 \mathrm{kHz}\) \\
\(f=100 \mathrm{kHz}\)
\end{tabular} & 9 & IfC & - & \[
\begin{gathered}
2.0 \\
18
\end{gathered}
\] & - & \(\mu \mathrm{A} p\)-p \\
\hline \begin{tabular}{l}
Distortion - ((\(\mathrm{a}_{\mathrm{O}} \mathrm{I}_{\mathrm{O}}\)) \\
(Sinewave applied to reference amplifier Input,
\[
\text { D0-D7 = Logic } 1)
\]
\[
\begin{array}{ll}
C=0.01 \mu \mathrm{~F}, & f=20 \mathrm{kHz} \\
C=0.01 \mu \mathrm{~F}, & \mathrm{f}=65 \mathrm{kHz} \\
\mathrm{C}=0.001 \mu \mathrm{~F}, & \mathrm{f}=340 \mathrm{kHz} \\
\mathrm{C}=0.001 \mu \mathrm{~F}, & \mathrm{f}=600 \mathrm{kHz} \\
C=240 \mathrm{pF}, & \mathrm{f}=600 \mathrm{kHz}
\end{array}
\]
\end{tabular} & & \[
\begin{aligned}
& \text { THD } \\
& \text { THD }
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 5.0 \\
& 1.0 \\
& 2.0 \\
& 0.8
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \% \\
\hline Reference Amplifier Slew Rate (Step change at Pin 10, all bits on)
\[
\begin{aligned}
& C=0.01 \mu \mathrm{~F} \\
& \mathrm{C}=0.001 \mu \mathrm{~F} \\
& \mathrm{C}=240 \mathrm{pF}
\end{aligned}
\] & 13 & & - & \[
\begin{aligned}
& 0.5 \\
& 5.0 \\
& 20
\end{aligned}
\] & - & \(\mathrm{mA} / \mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
Settling Time (to \(\pm 0.19 \%\) of Full Scale) \\
1 LSB Change All Bits Switched
\end{tabular} & 1,22 & \(\mathrm{t}_{s}\) & - & \[
\begin{aligned}
& 7.0 \\
& 10
\end{aligned}
\] & - & ns \\
\hline Propagation Delay & 2 & \(t_{p}\) & - & 5.0 & - & ns \\
\hline Output Glitch Energy (with De-Skewing Capacitors) (Input Change: \(01111111 \longleftrightarrow 10000000\)) & & & - & 50 & - & LSB.ns \\
\hline Glitch Duration & & & - & 5.0 & - & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{DIGITAL INPUT VOLTAGE LEVELS} \\
\hline \multicolumn{5}{|c|}{Volts (See Note)} \\
\hline \(\mathrm{T}_{\mathbf{A}}\) & \(\mathrm{V}_{\text {IH }}\) max & VIHAmin & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\text {IL }}\) min \\
\hline \(0^{\circ} \mathrm{C}\) & -0.845 & - 1.151 & -1.516 & -1.868 \\
\hline \(25^{\circ} \mathrm{C}\) & -0.810 & -1.105 & \(-1.505\) & -1.850 \\
\hline \(70^{\circ} \mathrm{C}\) & -0.727 & - 1.052 & -1.480 & -1.830 \\
\hline
\end{tabular}

\section*{FUNCTIONAL PIN DESCRIPTION}

D0-D7 (Pins 1-8) The eight ECL digital inputs compatible with MECL 10,000 series devices. Logic " 0 " is nominally -1.8 V , and Logic " 1 " is nominally -0.9 V .
\(\mathbf{V}_{\text {ref }}\) (Pin 10) The high impendance input of the reference amplifier. This input is normally grounded, but may be used for ac applications involving modulation, digitally controlled gain, etc. Normal operating range is from ground to \(\mathrm{V}_{\mathrm{EE}}+2.9\) V (nominally -2.3 V).
\(\mathbf{V}_{\text {ref }}^{+}\)(\(\mathbf{P i n} 12\)) The noninverting input of the reference amplifier. The inverted output of the reference amplifier is internally fed back to this input, thus causing it to track Pin 10. A nominal 3.2 mA is to be supplied to this pin from an external (stable and noise free) voltage source and current setting resistor.
Comp. (Pin 11) A nominal \(0.01 \mu \mathrm{~F}\) capacitor is connected to this pin and to ground to stabilize the reference amplifier. Lower values of capacitor may be used if a good PC board layout is used, where frequencies higher than 10 kHz are applied to the reference amplifier.
 flow is into the DAC and varies linearily with I ref and the digital input code. Iout increases as the digital input increases. Output compliance range is -1.3 V to +2.5 V .
\(\mathrm{V}_{\mathrm{EE}}(\operatorname{Pin} 9)\) The power supply pin. \(\mathrm{V}_{\mathrm{EE}}\) is nominal -5.2 V , \(\pm 5 \%\).
Gnd (Pin 16) The ground pin. This line should be as noise-free as possible in order to obtain a noise-free output.

NOTE: \(\mathrm{V}_{\mathrm{EE}}-\quad-\quad 5.2 \mathrm{~V},+5 \%\) Inputs are MECL 10,000 compatible within the temperature and power supply ranges listed. See MECL System Design Handbook for further details. See Fig. 19 in this data sheet.

FIGURE 1 - SETTLING TIME

FIGURE 2 - PROPAGATION DELAY

\section*{REFERENCE AMPLIFIER RESPONSE}

\section*{Inverting Input (\(\mathrm{V}_{\text {ref- }}\)) Test Circuit of Fig. 14}
Noninverting Input \(\left(\mathbf{V}_{\text {ref }}{ }^{+}\right.\)) Test Circuit of Fig. 11

FIGURE 3 - FREQUENCY RESPONSE

FIGURE 4 - FREQUENCY RESPONSE

FIGURE 5 - FREQUENCY RESPONSE

FIGURE 6 - FREQUENCY RESPONSE

FIGURE 7 - FREQUENCY RESPONSE

FIGURE 8 - FREQUENCY RESPONSE

\section*{TEST CIRCUITS}

FIGURE 9 - FEEDTHROUGH MEASUREMENT

FIGURE 10 - ZERO/FULL SCALE CURRENT

FIGURE 12 - OUTPUT RESISTANCE

Reference dB Level: See Text
See Figures 6-8
figure 13 - reference amplifier slew rate

FIGURE 11 - GAIN/PHASE MEASUREMENT

FIGURE 14 - GAIN/PHASE MEASUREMENT

\section*{OPERATIONAL INFORMATION}

\section*{Typical DAC Operation}

The MC10318 is designed to be operated with an \(I_{\text {ref }}\) (Pin 12) of 3.2 mA , resulting in a full scale output current (\(1_{0}\)) of 51 mA when D0 through D7 are at a Logical " 1 " \((-0.9 \mathrm{~V})\). The transfer equation for \(\mathrm{I}_{\mathrm{O}}\) is therefore:
\[
I_{0}=I_{\text {ref }} \times 16 \times \frac{A}{256}
\]
(" \(A\) " is the binary value of the digital input).
Typically \(V_{\text {ref.. }}\) (Pin 10) is connected to Ground, and \(I_{\text {ref }}\) is supplied to \(V_{\text {ref }}^{+}\)(Pin 12) by means of an external supply \(V_{r}\) (see Figure 15). A resistor inserted between Pin 10 and Ground will minimize temperature drift, and should have a value equivalent to that connected to Pin 12. Any noise or ripple present on the reference current will be present on the output current, and the stability of the reference directly affects the output current's stability. The ground connection for \(V_{\text {ref }}\) - should be chosen with care so as not to pick up noise (digital or otherwise).

The complementary outputs (\(\|_{0}\) and \(T_{0}\)) are high impedance current sources having a compliance range of \(3.8 \mathrm{~V}(-1.3\) to +2.5 V). Io increases with increasing digital input, while \(\bar{I}_{0}\) decreases. Their sum is a constant equal to \(15.94 \times I_{\text {ref }}\). Neither output can be left open - an unused output must be connected to ground or a load resistor. Typically both outputs should be loaded similarly for best speed and accuracy performance. A compensation capacitor must be connected between Pin 11 and Ground to stabilize the amplifier. A \(0.01 \mu \mathrm{~F}\) ceramic is satisfactory for most applications, and should be located physically close to the device. The ground side of the capacitor should be noise-free. When operated as above, the output(s) will be controlled by the digital inputs, and the MC10318 can be used for various functions such as waveform generation, process control, ADC conversion, and others.

FIGURE 15 - TYPICAL OPERATION

\section*{Common Mode Range - AC Operation}

The reference amplifier inputs (Pins 10 and 12) may be used to control the output current in conjunction
with the digital inputs for applications such as digitally controlled gain of an ac signal, digitally controlled amplitude modulation, and others. Either the positive or negative input of the reference amplifier may be used, depending on the application. There are, however, differences in the manner in which an ac signal is to be applied.
1) When applying a signal to the \(V_{\text {ref. }}\) (Pin 10) input (See Figure 16), the signal must be kept within the range of 0 to -2.3 V . The input has a high impedance (typically 1 Megohm). The \(V_{\text {ref }}+\) pin (Pin 12) will track this signal, causing \(I_{\text {ref }}\) to vary, in turn causing \(I_{o}\) and \(T_{0}\) to vary. The ac component of \(I_{0}\) (and \(T_{0}\)) will be in phase with the applied signal. The ac gain of the circuit shown is:
\[
\frac{\Delta V_{\text {out }}}{\Delta V_{\text {in }}}=\frac{A \times R_{L}}{16 \times R_{R}}
\]

Applying the above to the test circuit of Figure 14 yields a gain of 0.0966 , which is the 0 dB reference level for the curves of Figures 3-5.

FIGURE 16 - AC OPERATION, NONINVERTING

If the peak values of the applied ac signal cannot be kept within the above mentioned voltage range, an alternate circuit is shown in Figure 17.

FIGURE 17 - AC OPERATION, NONINVERTING (ALTERNATE)

The compensation capacitor (Pin 11) of Figures 16 and 17 is to be nominally \(0.01 \mu \mathrm{~F}\) for best overall stability. If frequencies higher than 10 kHz are to be applied to the reference input, a smaller value capacitor will be necessary as indicated by Figures 3-5. However, greater care will be necessary in the breadboarding and PC layout to prevent instabilities caused by unintended feedback paths.
2) When applying a signa! to the \(\mathrm{V}_{\text {ref }}\), (Pin 12) input (see Figure 18), the effect is a direct modulation of the reference current supplied by \(\mathrm{V}_{\text {ref }}\). \(\operatorname{Pin} 12\) is a virtual ground, and therefore the current \(I_{\text {ref }}\) is equal to:
\[
I_{\text {ref }}=\frac{V_{\text {ref }}}{R_{\text {ref }}}+\frac{V_{i}}{R_{i}}
\]
\(I_{0}\) and \(T_{0}\) will vary with the reference current, but the ac component will be \(180^{\circ}\) out of phase with the applied signal. The ac gain of the circuit shown is:
\[
\frac{\Delta V_{\text {out }}}{\Delta V_{i}}=\frac{-A \times R_{L}}{16 \times R_{i}}
\]

Applying the above to the test circuit of Figure 11 yields a gain of -0.3188 , which is the 0 dB reference level for the curves of Figures 6-8.
The reference current I ref must always flow into Pin 12 , requiring that the values of \(V_{\text {ref }}, R_{\text {ref }}, R_{i}\), and \(V_{i}\) be chosen so as to guarantee this.

FIGURE 18 - AC OPERATION, INVERTING

The compensation capacitor (Pin 11) of Figure 18 is to be nominally \(0.01 \mu \mathrm{~F}\) for best overall stability. If frequencies higher than 4 kHz are to be applied, a smaller value capacitor will be necessary as indicated by Figures \(6-8\). However, greater care will be necessary in the breadboarding and PC layout to prevent instabilities caused by unintended feedback paths.

\section*{DIGITAL INTERFACE}

The digital inputs (Pins 1-8) are compatible with MECL 10,000 series devices over the temperature and \(V_{E E}\) range listed on page 3. Standard MECL 10,000 de-
sign guidelines apply, and should be implemented. Maximum speed response requires careful PC board layout and choice of components. See Motorola's MECL System Design Handbook for a complete explanation of specifications and characteristics. Figure 19 shows a typical ECL interconnection with recommended values for optimum speed performance. Other values of \(\mathrm{R}_{\mathrm{T}}\) and \(V_{T T}\) may be used, but at a slight increase in overall propagation delay. Unused inputs should not be left open, but should be connected to a Logic 0(-1.8 V), or a Logic \(1\left(-0.9 \mathrm{~V}\right.\)). Resistors \(\mathrm{R}_{\top}\) should be connected at the receiving end of the interconnection, i.e. physically located adjacent to the MC10318 inputs, for best speed performance.

FIGURE 19 - STANDARD MECL INTERFACE

Interfacing a TTL system to the MC10318 is easily accomplished by the use of two MC10124 devices (Figure 20).

FIGURE 20 - TTL INTERFACE

\section*{OUTPUT CHARACTERISTICS}

The MC10318 DAC has been designed specifically for high-speed operation by incorporating ECL structured inputs, bit switching circuits which are small in size and
simple in operation, and high-current complementary outputs (which permits current steering rather than onoff switching). In this manner, very short propagation delays and settling times are possible.

\section*{Output Glitch}

All DAC's will produce a glitch at the output when various bits are switched in opposite directions, due to differences in transition times of the switching transistors. During the switching period, typically the output current will momentarily seek a value other than the desired final value, and then return to and settle at the final value. This glitch can be several LSBs in magnitude, but of a very short duration (5-6 ns). In some instances, the output current may overshoot, and then undershoot before reaching the final value, resulting in a "glitch doublet."

The glitch is most apparent when switching the higher order bits, and in the case of the MC10318, the maximum glitch generally occurs when switching bit D5 and the lower 5 bits (typically 85 LSB-ns). Switching bit D6 and the lower 6 bits produces a similar but slightly reduced glitch. Switching bit D7 and the seven lower bits (major carry transition) results in a glitch of typically 50 LSB-ns, with an amplitude of 17 LSBs. Switching of lower order bits while maintaining the higher ones constant produces glitches typically of less than 1 LSB in magnitude, and less than 10 ns in duration, and are generally not considered to be of significance.

Glitches can be removed from the output by filtering, or by using a sample-and-hold circuit on the output, or by using de-skewing capacitors on the higher order bits. See Fig. 31.

Output glitch is generally specified in terms of glitch energy, which is the area under the curve of the waveform. Most glitches appear as a triangle, and so the area is simply \(1 / 2 \times t \times \Delta l\), where \(t\) is the duration of the glitch, and \(\Delta l\) is the amplitude normalized in terms of LSBs. In the case of a glitch doublet, having both positive and negative amplitude, the areas are summed algebraically. It is possible, therefore to have a glitch with zero energy, although having amplitudes of several LSB's.

In applications where the output glitch is of concern, steps can be taken to minimize its magnitude. The two main factors to consider are: 1) That the 8 bits of data reach the MC10318 simultaneously; and 2) that the PC board layout prevent noise from reaching the MC10318.

It is obvious that if the updated 8 bits are not received by the DAC simultaneously, even an ideal DAC will not produce an ideal waveform. Where simultaneous transmission by the sending device(s) cannot be guaranteed (such as two cascaded counters), latches should be used ahead of the MC10318. The latches should then be clocked after their inputs have settled. Suggested latches are the MC10133/MC10153/MC10168 at the ECL level, and the SN74LS273 at the TTL level.

FIGURE 21 - PRECISION HIGH-SPEED MEASUREMENTS

\section*{Nonlinearity}

Integral nonlinearity has been specified, rather than differential nonlinearity, as this is a better indicator of the maximum error to be expected. Integral nonlinearity is measured by comparing the actual output (at each digital value) with the expected ideal value. The expected values lie along a straight line between zero and the full scale output current. The MC10318 series will not differ from the ideal value by more than the specified nonlinearity.

\section*{PC Board Layout}

A proper PC board layout is very important in order to obtain the full benefits of the MC10318's high-speed characteristics. Each of the current paths (\(l_{0}, I_{0}, I_{E E}, I_{\text {ref }}\), etc.) must be carefully considered to avoid interference, and isolation from other circuits on the board (particularly digital) is essential. By-passing of all supplies is, of course, necessary, and in some cases, by-passing to \(V_{E E}\) may be more beneficial than by-passing to Ground. Sockets should be avoided as the extra pin-to-pin capacitance can slow down the ECL edges and/or the output settling time. PC board layout should include the following guidelines:
1) A dedicated ground track from the power supply to Pin 16 (Gnd);
2) A single dedicated ground track from the power supply to the two load resistors associated with \(I_{0}\) and \(T_{0}\) - this results in a constant de current in this track;
3) A separate ground for the circuitry associated with \(V_{\text {ref }}^{+}, V_{\text {ref }}\), and Comp (Pins 10-12). Any noise on this ground will feed through the reference amplifier and show up on the output;
4) The compensation capacitor must be physically adjacent to Pin 11;
5) Bypass \(V_{E E}(\operatorname{Pin} 9)\) with a \(0.1 \mu \mathrm{~F}\) to the ground line feeding the load resistors;
6) Provide proper terminations at the inputs - the suggested values for \(\mathrm{R}_{\mathrm{T}}\) and \(\mathrm{V}_{T \mathrm{~T}}\) will provide best speed response;
7) Bypass \(V_{T T}\) to \(V_{E E}\) and to Ground with \(0.1 \mu \mathrm{~F}\) capacitors;
8) If the power supplies are not on the same PC board with the MC10318, bypass \(V_{E E}\) and \(V_{T T}\) to Ground with (minimum) \(10 \mu \mathrm{~F}\) and \(0.1 \mu \mathrm{~F}\) where the supply voltages enter the PC board;
9) Use of a ground plane is mandatory in all high speed applications;
10) Keep all TTL circuitry tracks separate from the MC10318 by means of ground tracks and/or ground planes.

Many of the above points have to do with isolating the device from all other circuitry, since most applications involve using the MC10318 (which is \(50 \%\) analog) in a (noisy) digital circuit. If the output voltage swing
is typically 1 volt, then 1 LSB is approximately 4 mV . Since TTL circuitry can easily generate 50 mV noise on the ground line, the need for isolation is apparent.

The above points are not the only ones to be considered by the designer, as each application will have its own individual additional requirements.

\section*{Propagation Delay}

The propagation delay is measured from the \(50 \%\) point of the input transition to the \(50 \%\) point of the output transition. Since the typical propagation delay is on the order of 5 ns , see Figure 21 and the information in Settling Time if this parameter is to be measured. Switching 1 LSB or all of the bits simultaneously produces no significant difference in propagation delay.

FIGURE 22 - SETTLING TIME MEASUREMENT

\section*{NOTES:}
1) Pulse generator outputs -0.9 V to \(-1.8 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}\) and \(\mathrm{t}_{\mathrm{f}}\) \(\approx 2 \mathrm{~ns}\).
2) Adjust \(\mathrm{V}_{\text {ref }}\) for full scale output at \(\mathrm{V}_{\mathrm{A}}=-1.3000 \mathrm{~V}\).
3) Adjust R 1 for -1.3075 V at input of lower comparator.
4) Adjust R2 for -1.2925 V at input of upper comparator.
5) R1, R2 are 20 turn trimpots.
6) Keep all wiring as short, tidy as possible - isolate
all digital and analog supplies, grounds, signal lines, etc.
7) Heavily bypass all supplies at each device, and reference (-) inputs to the comparators.
8) Comparators are high-speed devices, such as AM687ADL.
9) Account for comparator offset when setting reference values.

\section*{Settling Time}

The settling time is defined as the time from the \(50 \%\) point of the input transition to the point at which the output enters into and stays within \(\pm 1 / 2\) LSB (the error band) of the final value. Minimum settling time occurs when the output enters the error band at the maximum slew rate, and then settles out within the band. In actuality, however, the output's slew rate will lessen prior to entering the error band, and then may exit and enter the band once or twice as it settles to its final value. The settling time is determined by the last time the output enters the error band. See Figure 1.

When testing for settling time, the measurement technique used will have an effect on the result. Simply connecting scope probes to an input and output is generally not satisfactory due to the capacitive loading (typically \(10-20 \mathrm{pF}\)) of the probes. The rise (fall) time of an ECL input can be significantly increased by such a probe, with the result that the inputs of the MC10318 may be skewed from each other, which, in turn, affects the output. However, probes with low input capacitance, on the order of 2 pF or less (such as FET probes), can be used with very little degradation of the waveforms. The overall propagation delay of the probe (from tip to scope input) must be taken into account, as this can be on the order of 10 ns .

When attempting to view the output on a scope, several factors need to be considered. If the output swing is a full scale transition (e.g., 1.0 V), 1 LSB is 3.9 mV . The scope's amplifier must then be set at a sensitive range (\(5 \mathrm{mV} / \mathrm{cm}\) or \(10 \mathrm{mV} / \mathrm{cm}\)), with the result that the scope's amplifier will be saturated when the MC10318's output is at the initial value. When the device inputs are switched, the output approaches the final value, but the scope's amplifier will require some time to come out of saturation, and then may overshoot, causing a false indication. In order to overcome this problem, the MC10318 was tested for settling time by connecting the output to a dual high-speed comparator configured as a window detector. The window is 1 LSB wide, centered about the final value. The outputs of the comparators are then monitored on a scope, as they indicate when the MC10318 output is settled within the error band. Propagation delays of the comparators, scope probes, and cable lengths are taken into account. See Figure 22. This method of monitoring the DAC's output, although indirect, does not cause changes to the output waveform because of probe loading, characteristics of the scope, or noise which the probe (and cable) may pick up.

\section*{APPLICATIONS}

\section*{Voltage Output}

There are two methods of converting the current output of the MC10318 to voltage outputs, depending on the voltage swing desired. For a limited range (\(<3.8 \mathrm{~V}\) p-p) the circuit of Figure 23 can be used.

FIGURE 23 - VOLTAGE OUTPUT

Where a larger voltage swing is required, an op amp is required at the output. The choice of op amp will be based on whether accuracy or speed is of primary importance. Where repeatable and stable accuracy is required, the op amp characteristics to consider are openloop gain, offset voltage, bias current, and temperature drift. Where speed is paramount, a wideband amplifier should be used. Slew rate, propagation delay, and settling time of the op amp are the primary factors to evaluate. The PC board should be designed for high frequency operation, possibly using Microstrip or Stripline techniques. See Figure 24 for a suggested circuit.

FIGURE 24 - VOLTAGE OUTPUT

Connecting \(I_{0}\) and \(T_{0}\) as shown in the above figures places a constant dc load (51 mA) on the \(\mathrm{V}_{\mathrm{S}}\) supply, thus facilitating its design. The Gain Adjust resistor should be a 20 turn trimpot, as this will result in one turn equaling approximately 1 LSB of adjustment (for the recommended values in the figure). All of the resistors should have similar temperature coefficients for best temperature stability.

WAVEFORM GENERATION

FIGURE 25 - SAWTOOTH GENERATOR

FIGURE 27 - SINEWAVE GENERATOR

FIGURE 29 - OUTPUT CONNECTED TO \(50 \Omega\) LINE

NOTES:
1) When generating waveforms at low frequencies, filtering the output is recommended to smooth out the steps.
2) In many applications, bipolar voltage output may be

FIGURE 26 - TRIANGLE GENERATOR

FIGURE 28 - OUTPUT CONNECTED TO \(75 \Omega\) LINE

FIGURE 30 - DIGITAL MULTIPLICATION

obtained by monitoring the differential voltage at Pins 14 and 15 (with equal load resistors)
3) When connecting the outputs to transmission lines (See Figures 28 and 29), proper transmission line theory and techniques must be used for optimum performance.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { P.P } \\
& \text { VIN }^{2}
\end{aligned}
\]} & \multicolumn{3}{|l|}{\(\mathrm{R}_{\text {IN }}=50 \Omega\)} & \multicolumn{3}{|l|}{\(\mathrm{R}_{\mathbf{I N}}=75 \Omega\)} & \multicolumn{3}{|l|}{\(\mathrm{R}_{\mathbf{\prime} \mathrm{N}}=\mathbf{6 0 0} \Omega\)} & \multicolumn{3}{|l|}{\(\mathrm{R}_{\text {IN }}=1000 \Omega\)} \\
\hline & R1 & R2 & R3 \\
\hline 1 & 51 & 0 & \(\times\) & 75 & 0 & \(x\) & 1200 & 0 & 1200 & 1000 & 0 & \(\infty\) \\
\hline 2 & 51 & 1300 & 1300 & 100 & 150 & 150 & 1000 & 750 & 750 & 2000 & 1000 & 1000 \\
\hline 4 & 51 & 3000 & 1000 & 91 & 300 & 100 & 1200 & 910 & 300 & 2000 & 1500 & 510 \\
\hline 5 & 51 & 3000 & 750 & 150 & 120 & 30 & 1000 & 1200 & 300 & 3000 & 1200 & 300 \\
\hline 10 & 51 & 2700 & 300 & 100 & 270 & 30 & 750 & 2700 & 300 & 1500 & 2700 & 300 \\
\hline
\end{tabular}

\section*{EVALUATION BOARD FOR HIGH SPEED TESTING}

\section*{Introduction}

In order to facilitate evaluation of the MC10318 DAC, a PC board layout has been developed providing the appropriate signal levels and timing requirements. The board is designed to simultaneously evaluate the MC10315 and the MC10317 flash ADC's in conjunction with the MC10318 DAC, and the system is capable of passing video speed signals at sampling rates of up to 15 MHz . However, the MC10318 may be evaluated alone by installing only the appropriate components. The board may be purchased from Motorola (blank), or the user may make his own from the artwork shown on Figures 33 and 34.

\section*{Board Specifications}

Power supply requirements: +15 V (a 100 mA .
\[
\begin{aligned}
& -15 \mathrm{~V} \text { (a } 120 \mathrm{~mA} . \\
& -5.2 \mathrm{~V} \text { (a } 550 \mathrm{~mA} . \\
& +5.0 \mathrm{~V} \text { (a } 300 \mathrm{~mA} .
\end{aligned}
\]

Sampling clock: \(\mathrm{V}_{\mathrm{IH}}=-0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-1.8 \mathrm{~V}\) (ECL levels) terminated with 50 ohms, 15 MHz max. Analog Input level: Selectable, see chart. Analog Input Impedance: Selectable, see chart. Output level: 0 to -1.0 V , user alterable. Digital Input levels: (When ADC converters are not included) \(\mathrm{V}_{\mathrm{IH}}=-0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-1.8 \mathrm{~V}\) (ECL levels).

\section*{Operation}

The power supplies should be connected as shown in Figure 32. The leads should be short and direct.
The CLK Input (necessary if the ADC converters and/ or the latches are used) uses a BNC connector, and is terminated with 50 ohms to ground.

The Analog Input level (if the ADC converters are installed) depends on the input resistors selected (see chart). The output of the buffer amplifier should produce a maximum 4 Vp -p signal, or an amplitude equal to the references (user adjustable).

The Analog Output is 0 to -1.0 V , corresponding to a digital input (to the MC10318) of FF and 00 respectively. Output impedance is normally 20 ohms, but may be varied by the user (see previous text).

\section*{Options}

Input Signal - The p-p voltage level of the analog input signal (when using the ADC converters) is accommodated by selection of the input resistors from the chart (see schematic).
ALT IN - The analog signal may be applied directly to the ADC converters (by-passing the on-board amplifier) by applying the input signal to this connector, and relocating the jumper adjacent to the ALT IN connector. The signal source must be capable of driving 2.5 k ohms in parallel with approx. 140 pF .
\(\mathbf{V}+\) OUT - A pullup voltage (max. +2.5 V) may be applied to this connector in order to increase the output voltage swing. See the APPLICATIONS section of this data sheet. The 20 ohm load resistors may then be changed to other values. The jumper adjacent to the A OUT connector must be relocated.

Evaluating the MC10318 only - Only those components within the dotted line on the schematic are required. The digital inputs (ECL level) are to be applied to a connector strip located in pins 15-22 of the MC10317 position. +15 V and -5.2 V supplies are required. The latches transfer the information on the rising edge of the clock.

\section*{Video Testing}

The above described printed circuit board has been tested, with a standard video test signal, for differential phase and differential gain (40 IRE sub-carrier on a 100 IRE ramp, sampled at 14.3 MHz) with results of \(1 \%\) gain error and \(2^{\circ}\) phase error. The signal was obtained from a Tektronix 147A video test generator, applied to the ALT IN connector. The output (of the MC10318) was configured into a 75 ohm output impedance, and applied to a vector scope.
Tests conducted with the Evaluation Board in a video system (video camera and a TV monitor) showed no visible degradation of picture quality (at 8 bits resolution). The board provides an easy means of testing picture quality at reduced number of bits, or for conducting any test on a digitized video signal.

FIGURE 32 - COMPONENT LOCATION AND EXTERNAL CONNECTIONS

FIGURE 33 - COMPONENT SIDE ARTWORK (TOP)
\(\left(\right.\) OVERALL SIZE \(\left.=6.00^{\prime \prime} \times 8.00^{\prime \prime}\right)\)

FIGURE 34 - SOLDER SIDE ARTWORK (BOTTOM)

FIGURE 35 - MC10318 EQUIVALENT CIRCUIT

MOTOROLA

\section*{Specifications and Applications Information}

\section*{HIGH SPEED \\ 8-BIT ANALOG-TO-DIGITAL CONVERTER}

The MC10319 is an 8-bit high speed parallel flash A/D converter. The device employs an internal Grey code structure to eliminate large output errors on fast slewing input signals. It is fully TTL compatible, requiring a +5.0 V supply and a wide tolerance negative supply of -3.0 to -6.0 V . Three-state TTL outputs allow direct drive of a data bus or common I/O memory.
The MC10319 contains 256 parallel comparators across a precision input reference network. The comparator outputs are fed to latches and then to an encoder network, to produce an 8 -bit data byte plus an overrange bit. The data is latched and converted to 3 -state LS-TTL outputs. The overrange bit is always active to allow for either sensing of the overrange condition or ease of interconnecting a pair of devices to produce a 9-bit A/D converter.

Applications include Video Display and Radar processing, high speed instrumentation and TV Broadcast encoding.
- Internal Grey Code for Speed and Accuracy, Binary Outputs
- 8-Bit Resolution/9-Bit Typical Accuracy
- Easily Interconnected for 9-Bit Conversion
- 3-State LS-TTL Outputs with True and Complement Enable Inputs
- 25 MHz Sampling Rate
- Wide Input Range: 1.0-2.0 Vp-p Between \(\pm 2.0 \mathrm{~V}\)
- Low Input Capacitance: 50 pF
- Low Power Dissipation: 618 mW
- No Sample/Hold Required for Video Bandwidth Signals
- Single Clock Cycle Conversion

HIGH SPEED

\section*{8-BIT ANALOG-TO-DIGITAL} FLASH CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX
CERAMIC PACKAGE CASE 623-05

PIN DIAGRAM

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Temperature Range & Package \\
\hline MC 10319 L & \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & Ceramic \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Symbol & Value & Unit \\
\hline Supply Voltage & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CE}}(\mathrm{~A}),(\mathrm{D}) \\
\mathrm{V}_{\mathrm{EE}}
\end{gathered}
\] & \[
\begin{aligned}
& +7.0 \\
& -7.0
\end{aligned}
\] & Vdc \\
\hline Positive Supply Voltage Differential & \[
\begin{aligned}
& V_{C C(D)^{-}} \\
& V_{C C(A)}
\end{aligned}
\] & -0.3 to +0.3 & Vdc \\
\hline Digital Input Voltage (Pins 18-20) & \(V_{1}(\mathrm{D})\) & -0.5 to +7.0 & Vdc \\
\hline Analog Input Voltage (Pins 1, 14, 23, 24) & \(\mathrm{V}_{1}(\mathrm{~A})\) & -2.5 to +2.5 & Vdc \\
\hline Reference Voltage Span (Pin 24-Pin 23) & - & 2.3 & Vdc \\
\hline Applied Output Voltage (Pins 4-10, 21 in 3-State) & - & -0.3 to +7.0 & Vdc \\
\hline Junction Temperature & TJ & + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Devices should not be operated at these values. The "Recommended Operating Limits" provide guidelines for actual device operation.

RECOMMENDED OPERATING LIMITS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voitage (Pin 15)
(Pins 11, 17) & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{CC}(\mathrm{A})}\) \\
\(\mathrm{V}_{\mathrm{CC}}(\mathrm{D})\)
\end{tabular} & +4.5 & +5.0 & +5.5 & Vdc \\
\hline \(\mathrm{V}_{\mathrm{CC}(\mathrm{D})}-\mathrm{V}_{\mathrm{CC}}(\mathrm{A})\) & \(\Delta V_{C C}\) & -0.1 & 0 & +0.1 & Vdc \\
\hline Power Supply Voltage (Pin 13) & \(\mathrm{V}_{\mathrm{EE}}\) & -6.0 & -5.0 & -3.0 & Vdc \\
\hline Digital Input Voltages (Pins 18-20) & \(V_{\text {I(}}\) (\()\) & 0 & - & +5.0 & Vdc \\
\hline Analog Input (Pin 14) & \(V_{\text {I(}}(\mathrm{A})\) & -2.1 & - & +2.1 & Vdc \\
\hline Voltage @ V \(\mathrm{R}_{\text {T }}\) (Pin 24) & \(V_{\text {RT }}\) & -1.0 & - & +2.1 & Vdc \\
\hline Voltage @ \(\mathrm{V}_{\text {RB }}\) (Pin 23) & \(\mathrm{V}_{\text {RB }}\) & -2.1 & - & +1.0 & Vdc \\
\hline \(V_{R T}-V_{R B}\) & \(\Delta V_{R}\) & +1.0 & - & +2.1 & Vdc \\
\hline \(\mathrm{V}_{\text {RB }}-\mathrm{V}_{\mathrm{EE}}\) & - & 1.3 & - & - & Vdc \\
\hline Applied Output Voltage (Pins 4-10, 21 in 3-State) & \(\mathrm{V}_{0}\) & 0 & - & 5.5 & Vdc \\
\hline Clock Pulse Width - High & \[
\begin{aligned}
& \text { tCKH } \\
& \text { tCKL } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
5.0 \\
15 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& \hline
\end{aligned}
\] & - & ns \\
\hline Clock Frequency & \({ }_{\text {f CLK }}\) & 0 & - & 25 & MHz \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\text {A }}\) & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(10^{\circ}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=+1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-1.0 \mathrm{~V}\), except where noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{TRANSFER CHARACTERISTICS (\(\mathrm{f}_{\text {CKL }}=25 \mathrm{MHz}\))} \\
\hline Resolution & N & - & - & 8.0 & Bits \\
\hline Monotonicity & MON & \multicolumn{3}{|c|}{Guaranteed} & Bits \\
\hline Integral Nonlinearity & INL & - & \(\pm 1 / 4\) & \(\pm 1.0\) & LSB \\
\hline Differential Nonlinearity & DNL & - & - & \(\pm 1.0\) & LSB \\
\hline Differential Phase (See Figure 16) & DP & - & 1.0 & - & Deg. \\
\hline Differential Gain (See Figure 16) & DG & - & 1.0 & - & \% \\
\hline Power Supply Rejection Ratio
\[
\begin{aligned}
& \left(4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}\right) \\
& \left(-6.0 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}\right)
\end{aligned}
\] & PSRR & - & \[
\begin{gathered}
0.1 \\
0
\end{gathered}
\] & - & LSB/V \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS - continued \(10^{\circ}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=+1.0 \mathrm{~V}\),
\(V_{R B}=-1.0 \mathrm{~V}\), except where noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{ANALOG INPUT (PIN 14)} \\
\hline Input Current @ \(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {RB }}\) (See Figure 5) & IINL & -100 & 0 & - & \(\mu \mathrm{A}\) \\
\hline Input Current @ \(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{RT}}\) (See Figure 5) & IINH & - & 60 & 150 & \(\mu \mathrm{A}\) \\
\hline Input Capacitance (\(\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}=2.0 \mathrm{~V}\), See Figure 4) & \(\mathrm{C}_{\text {in }}\) & - & 36 & - & pF \\
\hline Input Capacitance (\(\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}=1.0 \mathrm{~V}\), See Figure 4) & \(\mathrm{C}_{\text {in }}\) & - & 55 & - & pF \\
\hline Bipolar Offset Error & \(\mathrm{v}_{\text {OS }}\) & - & 0.1 & - & LSB \\
\hline
\end{tabular}

REFERENCE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ladder Resistance \(\left(\mathrm{V}_{\mathrm{RT}}\right.\) to \(\mathrm{V}_{\mathrm{RB}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & \(\mathrm{R}_{\text {ref }}\) & 104 & 130 & 156 & \(\Omega\) \\
\hline Temperature Coefficient & \(\mathrm{T}_{\mathrm{C}}\) & - & +0.29 & - & \(\% /{ }^{\circ} \mathrm{C}\) \\
\hline Ladder Capacitance (Pin 1 open) & \(\mathrm{C}_{\text {ref }}\) & - & 25 & - & pF \\
\hline
\end{tabular}

ENABLE INPUTS \(\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right)\) (See Figure 6)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Voltage - High (Pins 19-20) & VIHE & 2.0 & - & - & V \\
\hline Input Voltage - Low (Pins 19-20) & VILE & - & - & 0.8 & V \\
\hline Input Current (\(\omega 2.7 \mathrm{~V}\) & IIHE & - & 0 & 20 & \(\mu \mathrm{A}\) \\
\hline Input Current (a) 0.4 V (a) \(\overline{\mathrm{EN}}(0<\mathrm{EN}<5.0 \mathrm{~V})\) & IIL1 & -400 & -100 & - & \(\mu \mathrm{A}\) \\
\hline Input Current (\(\omega 0.4 \mathrm{~V}(\omega \mathrm{EN}(\overline{\mathrm{EN}}=0 \mathrm{~V})\) & IL2 & -400 & -100 & - & \(\mu \mathrm{A}\) \\
\hline Input Current (\(\omega 0.4 \mathrm{~V}\) (\(\omega\) EN (\(\overline{\mathrm{EN}}=2.0 \mathrm{~V}\)) & ILL3 & -20 & -2.0 & - & \(\mu \mathrm{A}\) \\
\hline Input Clamp Voltage (\(\mathrm{I}_{\mathrm{K}}=-18 \mathrm{~mA}\)) & \(V_{\text {IKE }}\) & -1.5 & -1.3 & - & V \\
\hline
\end{tabular}

CLOCK INPUT (\(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\))
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Voltage High & \(\mathrm{V}_{\mathrm{IHC}}\) & 2.0 & - & - & Vdc \\
\hline Input Voltage Low & \(\mathrm{V}_{\mathrm{ILC}}\) & - & - & 0.8 & Vdc \\
\hline Input Current @ 0.4 V (See Figure 7) & \(\mathrm{I}_{\mathrm{ILC}}\) & -400 & -80 & - & \(\mu \mathrm{A}\) \\
\hline Input Current (a2.7 V (See Figure 7) & \(\mathrm{I}_{\mathrm{IHC}}\) & -100 & -20 & - & \(\mu \mathrm{A}\) \\
\hline Input Clamp Voltage (I \(\mathrm{IK}=-18 \mathrm{~mA})\) & \(\mathrm{V}_{\mathrm{IKC}}\) & -1.5 & -1.3 & - & Vdc \\
\hline
\end{tabular}

DIGITAL OUTPUTS
\begin{tabular}{|l|c|c|c|c|c|}
\hline High Output Voltage (IOH \(=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\), See Figure 8) & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & 3.0 & - & V \\
\hline Low Output Voltage (IOL \(=4.0 \mathrm{~mA}\), See Figure 9) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.35 & 0.4 & V \\
\hline Output Short Circuit Current* \(\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right)\) & I SC & - & 35 & - & mA \\
\hline \begin{tabular}{l}
Output Leakage Current (0.4 \(<\mathrm{V}_{\mathrm{O}}<2.4 \mathrm{~V}\), See Figure 3, \\
\(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{D} 0-\mathrm{D7}\) in 3-State Mode)
\end{tabular} & I LK & -50 & - & +50 & \(\mu \mathrm{~A}\) \\
\hline Output Capacitance (D0-D7 in 3-State Mode) & \(\mathrm{C}_{\mathrm{Out}}\) & - & 9.0 & - & pF \\
\hline
\end{tabular}
*Only one output is to be shorted at a time, not to exceed 1 second.

POWER SUPPLIES
\begin{tabular}{|l|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{CC}(\mathrm{A})}\) Current \(\left(4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}(\mathrm{A})}<5.5 \mathrm{~V}\right)\) (Outputs unloaded) & \(\mathrm{I}_{\mathrm{CC}(\mathrm{A})}\) & 10 & 17 & 25 & mA \\
\hline \(\mathrm{~V}_{\mathrm{CC}(\mathrm{D})}\) Current \(\left(4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}(\mathrm{D})}<5.5 \mathrm{~V}\right)\) (Outputs unloaded) & \(\mathrm{I}_{\mathrm{CC}(\mathrm{D})}\) & 50 & 90 & 133 & mA \\
\hline \(\mathrm{~V}_{\mathrm{EE}}\) Current \(\left(-6.0 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-3.0 \mathrm{~V}\right)\) & \(\mathrm{I}_{\mathrm{EE}}\) & -14 & -10 & -6.0 & mA \\
\hline Power Dissipation \(\left(\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}=2.0 \mathrm{~V}\right)\) (Outputs unloaded) & \(\mathrm{P}_{\mathrm{D}}\) & - & 618 & 995 & mW \\
\hline
\end{tabular}

TIMING CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=+1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-1.0 \mathrm{~V}\right.\), See System Timing Diagram.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{INPUTS} \\
\hline Min Clock Pulse Width - High & \({ }^{\text {t }} \mathrm{CKH}\) & - & 5.0 & - & ns \\
\hline Min Clock Pulse Width - Low & \({ }^{\text {t CKL }}\) & - & 15 & - & ns \\
\hline Max Clock Rise, Fall Time & \({ }_{\text {t }}^{\text {R, }}\), & - & 100 & - & ns \\
\hline Clock Frequency & \({ }^{\text {f CLK }}\) & 0 & 30 & 25 & MHz \\
\hline
\end{tabular}

OUTPUTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline New Data Valid from Clock Low & \({ }^{\text {t }}\) CKDV & - & 19 & - & ns \\
\hline Aperture Delay & \({ }_{\text {t }}\) AD & - & 4.0 & - & ns \\
\hline Hold Time & \({ }_{\text {t }}^{\mathrm{H}}\) & - & 6.0 & - & ns \\
\hline Data High to 3-State from Enable Low* & tEHZ & - & 27 & - & ns \\
\hline Data Low to 3-State from Enable Low* & telz & - & 18 & - & ns \\
\hline Data High to 3-State from Enable High* & tĖHZ & - & 32 & - & ns \\
\hline Data Low to 3-State from Enable High* & tELZ & - & 18 & - & ns \\
\hline Valid Data from Enable High (Pin \(20=0 \mathrm{~V}\))* & tEDV & - & 15 & - & ns \\
\hline Valid Data from Enable Low (Pin \(19=5.0 \mathrm{~V}\))* & tEDV & - & 16 & - & ns \\
\hline Output Transition Time* (10\%-90\%) & \(\mathrm{t}_{\mathrm{tr}}\) & - & 8.0 & - & ns \\
\hline
\end{tabular}
*See Figure 2 for output loading.

PIN DESCRIPTIONS
\begin{tabular}{|c|c|c|}
\hline Symbol & Pin & Description \\
\hline VRM & 1 & The midpoint of the reference resistor ladder. Bypassing can be done at this point to improve performance at high frequencies. \\
\hline GND & \[
\begin{aligned}
& 2,12 \\
& 16,22
\end{aligned}
\] & Power supply and signal ground. The four pins should be connected directly together, and through a low impedance to the power supply. \\
\hline OVR & 3 & Overrange output. Indicates \(\mathrm{V}_{\mathrm{in}}\) is more positive than \(\mathrm{V}_{\mathrm{RT}}-1 / 2\) LSB. This output does not have 3 -state capability. \\
\hline D7-D0 & \[
\begin{aligned}
& 4-10, \\
& 21
\end{aligned}
\] & Digital Outputs. D7 (Pin 4) is the MSB, D0 (Pin 21) is the LSB. LSTTL compatible with 3 -state capability. \\
\hline \(\mathrm{V}_{\text {CC(D) }}\) & 11,17 & Power supply for the digital section. \(+5.0 \mathrm{~V}, \pm 10 \%\) required. \\
\hline \(V_{\text {EE }}\) & 13 & Negative Power supply. Nominally -5.2 V , it can range from -3.0 to -6.0 V , and must be more negative than \(\mathrm{V}_{\mathrm{RB}}\) by \(>1.3 \mathrm{~V}\). \\
\hline \(V_{\text {in }}\) & 14 & Signal voltage input. This voltage is compared to the reference to generate a digital equivalent. Input impedance is nominally 16-33 \(\mathrm{k} \Omega\) in parallel with 36 pF . \\
\hline \(\mathrm{V}_{\mathrm{CC}}(\mathrm{A})\) & 15 & Power supply for the analog section. \(+5.0 \mathrm{~V}, \pm 10 \%\) required. \\
\hline CLK & 18 & Clock input. TTL compatible. \\
\hline EN & 19 & Enable input. TTL compatible, a Logic " 1 " (and Pin 20 a Logic " 0 ") enables the data outputs. A Logic " 0 " puts the outputs in a 3 -state mode. \\
\hline \(\overline{\mathrm{EN}}\) & 20 & Enable input. TTL compatible, a Logic " 0 " (and Pin 19 a Logic " 1 ") enables the data outputs. A Logic " 1 " puts the outputs in a 3-state mode. \\
\hline VRB & 23 & The bottom (most negative point) of the internal reference resistor ladder. \\
\hline VRT & 24 & The top (most positive point) of the internal reference resistor ladder. \\
\hline
\end{tabular}

FIGURE 1 - SYSTEM TIMING DIAGRAM

\({ }^{\mathrm{t}} \mathrm{CKDV}\) and \(\mathrm{t}_{\mathrm{H}}\) measured at output levels of 0.8 and 2.4 volts.

FIGURE 2 - DATA OUTPUT TEST CIRCUIT

Diodes \(=1\) N914 or equivalent, \(\mathrm{C} 1 \approx 15 \mathrm{pF}\)

FIGURE 3 - OUTPUT 3-STATE LEAKAGE CURRENT

FIGURE 4 - INPUT CAPACITANCE @ VIN (PIN 14)

FIGURE 6 - INPUT CURRENT @ ENABLE, ENABLE

FIGURE 8 - OUTPUT VOLTAGE versus OUTPUT CURRENT

FIGURE 5 - INPUT CURRENT@ VIN (PIN 14)

FIGURE 7 - CLOCK INPUT CURRENT

FIGURE 9 - OUTPUT VOLTAGE versus OUTPUT CURRENT

FIGURE 12 - DIFFERENTIAL LINEARITY ERROR

FIGURE 14 - DIFFERENTIAL LINEARITY ERROR

FIGURE 11 - SUPPLY CURRENT versus TEMPERATURE

FIGURE 13 - INTEGRAL LINEARITY ERROR

FIGURE 15 - INTEGRAL LINEARITY ERROR

\section*{DESIGN GUIDELINES}

\section*{INTRODUCTION}

The MC10319 is a high-speed, 8-bit, parallel ("Flash") type analog-to-digital converter containing 256 comparators at the front end. See Figure 17 for a block diagram. The comparators are arranged such that one input of each is referenced to evenly spaced voltages, derived from the reference resistor ladder. The other input of the comparators is connected to the input signal \(\left(\mathrm{V}_{\text {in }}\right)\). Some of the comparator's differential outputs will be "true," while other comparators will have "not true" outputs, depending on their relative position. Their outputs are then latched, and converted to an 8-bit Grey code by the Differential Latch Array. The Grey code ensures any input errors due to cross talk, feed-thru, or timing disparaties, result in glitches at the output of only a few LSBs, rather than the more traditional \(1 / 2\) scaie and \(1 / 4\) scale glitches.

The Grey code is then translated to an 8-bit binary code, and the differential levels are translated to TTL levels before being applied to the output latches. ENABLE inputs at this final stage permit the TTL outputs (except Overrange) to be put into a high impedance (3-state) condition.

\section*{ANALOG SECTION}

\section*{SIGNAL INPUT}

The signal voltage to be digitized \(\left(V_{i n}\right)\) is applied simultaneously to one input of each of the 256 comparators through Pin 14. The other inputs of the comparators are connected to 256 evenly spaced voltages derived from the reference ladder. The output code depends on the relative position of the input signal and the reference voltages. The comparators have a bandwidth of \(>50 \mathrm{MHz}\), which is more than sufficient for the allowable (Nyquist theory) input frequency of 12.5 MHz .

The current into Pin 14 varies linearly from 0 (when \(V_{\text {in }}=V_{R B}\)) to \(\approx 60 \mu \mathrm{~A}\) (when \(V_{\text {in }}=V_{R T}\)). If \(V_{\text {in }}\) is taken below \(V_{R B}\) or above \(V_{R T}\), the input current will remain at the value corresponding to \(\mathrm{V}_{R B}\) and \(\mathrm{V}_{R T}\) respectively (see Figure 5). However, \(\mathrm{V}_{\text {in }}\) must be maintained within the absolute range of \(\pm 2.5\) volts (with respect to ground) - otherwise excessive currents will result at Pin 14, due to internal clamps.

The input capacitance at Pin 14 is typically 36 pF if [\(\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}\)] is 2.0 volts, and increases to 55 pF if [\(\mathrm{V}_{\mathrm{RT}}\) - \(V_{R B}\)] is reduced to 1.0 volt (see Figure 4). The capacitance is constant as \(\mathrm{V}_{\text {in }}\) varies from \(\mathrm{V}_{\mathrm{RT}}\) down to \(\approx 0.1\) volt above \(V_{R B}\). Taking \(V_{\text {in }}\) to \(V_{R B}\) will show an increase in the capacitance of \(\approx 50 \%\). If \(V_{\text {in }}\) is taken above \(V_{R T}\), or below \(V_{R B}\), the capacitance will stay at the values corresponding to \(V_{R T}\) and \(V_{R B}\), respectively.

The source impedance of the signal voltage should be maintained below \(100 \Omega\) (at the frequencies of interest) in order to avoid sampling errors.

\section*{REFERENCE}

The reference resistor ladder is composed of a string of equal value resistors so as to provide 256 equally spaced voltages for the comparators (see Figure 17 for the actual configuration). The voltage difference between adjacent comparators corresponds to 1 LSB of the input range. The first comparator (closest to \(\mathrm{V}_{\mathrm{RB}}\)) is referenced \(1 / 2\) LSB above \(V_{R B}\), and the 256th comparator (for the overrange) is referenced \(1 / 2\) LSB below \(V_{R T}\). The total resistance of the ladder is nominally 130 \(\Omega, \pm 20 \%\), requiring \(15.4 \mathrm{~mA} @ 2.0\) volts, and \(7.7 \mathrm{~mA} @\) 1.0 volt. There is a nominal warm-up change of \(\approx+9.0 \%\) in the ladder resistance due to the \(+0.29 \% /{ }^{\circ} \mathrm{C}\) temperature coefficient.

The minimum recommended span [\(V_{R T}-V_{R B}\)] is 1.0 volt. A lower span will allow offsets and nonlinearities to become significant. The maximum recommended span is 2.1 volts due to power limitations of the resistor ladder. The span may be anywhere within the range of -2.1 to +2.1 volts with respect to ground, and \(V_{R B}\) must be at least 1.3 volts more positive than \(V_{E E}\). The reference voltages must be stable and free of noise and spikes, since the accuracy of a conversion is directly related to the quality of the reference.

In most applications, the reference voltages will remain fixed. In applications involving a varying reference for modulation or signal scrambling, the modulating signal may be applied to \(V_{R T}\), or \(V_{R B}\), or both. The output will vary inversly with the reference signal, introducing a nonlinearity into the transfer function. The addition of the modulating signal and the de level applied to the reference must be such that the absolute voltage at \(\mathrm{V}_{\mathrm{RT}}\) and \(\mathrm{V}_{\mathrm{RB}}\) are maintained within the values listed in the Recommended Operating Limits. The RMS value of the span must be maintained \(\leqslant 2.1\) volts.
\(\mathrm{V}_{\mathrm{RM}}\) (Pin 1) is the midpoint of the resistor ladder, excluding the Overrange comparator. The voltage at \(V_{R M}\) is:
\[
\frac{V_{R T}+V_{R B}}{2.0}-1 / 2 \mathrm{LSB}
\]

In most applications, bypassing this pin to ground (0.1 \(\mu \mathrm{F}\)) is sufficient to maintain accuracy. In applications involving very high frequencies, and where linearity is critical, it may be necessary to trim the voltage at the midpoint. A means for accomplishing this is indicated in Figure 18.

\section*{POWER SUPPLIES}
\(\mathrm{V}_{\mathrm{CC}(\mathrm{A})}\) (Pin 15) is the positive power supply for the comparators, and \(V_{C C}(D)\) (Pins 11, 17) is the positive power supply for the digital portion. Both are to be +5.0 volts, \(\pm 10 \%\), and the two are to be within 100 millivolts of each other. There is indirect internal coupling between \(\mathrm{V}_{\mathrm{CC}}(\mathrm{D})\) and \(\mathrm{V}_{\mathrm{CC}}(\mathrm{A})\). If they are powered separately, and one supply fails, there will be current flow through the MC10319 to the failed supply.

\section*{MC10319}
\({ }^{I} \mathrm{CC}(\mathrm{A})\) is nominally 17 mA , and does not vary with clock frequency or with \(\mathrm{V}_{\mathrm{in}}\). It does vary linearly with \(\mathrm{V}_{\mathrm{CC}}(\mathrm{A}) \cdot \operatorname{ICC}(\mathrm{D})\) is nominally 90 mA , and is independent of clock frequency. It does vary, however, by 6-7 mA as \(\mathrm{V}_{\text {in }}\) is changed, with the lowest current occuring when \(V_{i n}=V_{R T}\). It varies linearly with \(V_{C C}(D)\).
\(\mathrm{V}_{\mathrm{EE}}\) is the negative power supply for the comparators, and is to be within the range -3.0 to -6.0 volts. Additionally, \(\mathrm{V}_{\mathrm{EE}}\) must be at least 1.3 volts more negative than \(V_{R B}\). \(I_{E E}\) is a nominal -10 mA , and is independent of clock frequency, \(\mathrm{V}_{\mathrm{in}}\), and \(\mathrm{V}_{\mathrm{EE}}\).
For proper operation, the supplies must be bypassed at the IC. A \(10 \mu \mathrm{~F}\) tantalum, in parallel with a \(0.1 \mu \mathrm{~F}\) ceramic is recommended for each supply to ground.

\section*{DIGITAL SECTION}

\section*{CLOCK}

The Clock input (Pin 18) is TTL compatible with a typical frequency range of 0 to 30 MHz . There is no duty cycle limitation, but the minimum low and high times must be adhered to. See Figure 7 for the input current requirements.
The conversion sequence is shown in Figure 19, and is as follows:
- On the rising edge, the data output latches are latched with old data, and the comparator output latches are released to follow the input signal \(\left(\mathrm{V}_{\text {in }}\right)\).
- During the high time, the comparators track the input signal. The data output latches retain the old data.
- On the falling edge, the comparator outputs are latched with the data immediately prior to this edge. The conversion to digital occurs within the device, and the data output latches are released to indicate the new data within 20 ns .
- During the clock low time, the comparator outputs remain latched, and the data output latches remain transparent.
A summary of the sequence is that data present at \(V_{\text {in }}\) just prior to the Clock falling edge is digitized and available at the data outputs immediately after that same falling edge.

The comparator output latches provide the circuit with an effective sample-and-hold function, eliminating the need for an external sample-and-hold.

\section*{ENABLE INPUTS}

The two Enable inputs (Pins 19, 20) are TTL compatible, and are used to change the data outputs (D7-D0) from active to 3 -state. This capability allows cascading two MC10319s into a 9-bit configuration, flip-flopping two MC10319s into a 50 MHz configuration, connecting the outputs directly to a data bus, multiplexing multiple converters, etc. See the Applications Information section for more details. For the outputs to be active, Pin 19 must be a Logic " 1, " and Pin 20 must be a Logic " 0 ." Changing either input will put the outputs into the high impedance mode. The Enable inputs affect only the state of the outputs - they do not inhibit a conversion. The input current into Pins 19 and 20 is shown in Figure 6, and the input - output timing is shown in Figure 1 and 20. Leaving either pin open is equivalent to a Logic " 1, " although good design practice dictates that an input should never be left open.
The Overrange output (Pin 3) is not affected by the Enable inputs as it does not have 3-state capability.

\section*{OUTPUTS}

The data outputs (Pins 4-10, 21) are TTL level outputs with high impedance capability. Pin 4 is the MSB (D7), and Pin 21 is the LSB (D0). The eight outputs are active as long as the Enable inputs are true (Pin \(19=\) high, Pin \(20=\) low). The timing of the outputs relative to the Clock input and the Enable inputs is shown in Figures 1 and 20 . Figures 8 and 9 indicate the output voltage versus load current, while Figure 3 indicates the leakage current when in the high impedance mode.
The output code is natural binary, depicted in the table below.
The Overrange output (\(\operatorname{Pin} 3\)) goes high when the input, \(\mathrm{V}_{\mathrm{in}}\), is more positive than \(\mathrm{V}_{\mathrm{R}}\) - \(1 / 2 \mathrm{LSB}\). This output is always active - it does not have high impedance capability. Besides being used to indicate an input overrange, it is additionally used for cascading two MC10319s to form a 9-bit A/D converter (see Figure 27).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Input} & \multicolumn{3}{|c|}{\(\mathrm{V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RB}}\) (volts)} & \multirow[t]{2}{*}{Output Code} & \multirow[b]{2}{*}{Overrange} \\
\hline & \(2.048 \mathrm{~V}, 0 \mathrm{~V}\) & +1.0 V, -1.0 V & \(+1.0 \mathrm{~V}, 0 \mathrm{~V}\) & & \\
\hline \(>\mathrm{V}_{\text {RT }}-1 / 2\) LSB & \(>2.044 \mathrm{~V}\) & \(>0.9961 \mathrm{~V}\) & \(>0.9980 \mathrm{~V}\) & \(\mathrm{FF}_{\mathrm{H}}\) & 1 \\
\hline \(V_{R T}-1 / 2\) LSB & 2.044 V & 0.9961 V & 0.9980 V & \(\mathrm{FFH}_{\mathrm{H}}\) & \(0 \leftrightarrow 1\) \\
\hline \(V_{\text {RT }}-1\) LSB & 2.040 V & 0.992 V & 0.9961 V & \(\mathrm{FF}_{\mathrm{H}}\) & 0 \\
\hline \(V_{\text {RT }}-1-1 / 2\) LSB & 2.036 V & 0.988 V & 0.9941 V & \(\mathrm{FE}_{\mathrm{H}} \leftrightarrow \mathrm{FF}_{\mathrm{H}}\) & 0 \\
\hline Midpoint & 1.024 V & 0.000 V & 0.5000 V & 80 H & 0 \\
\hline \(V_{R B}+1 / 2 L S B\) & 4.0 mV & -0.9961 V & 1.95 mV & \(00_{H} \leftrightarrow 01_{\mathrm{H}}\) & 0 \\
\hline \(<\mathrm{V}_{\mathrm{RB}}\) & \(<0 \mathrm{~V}\) & \(<-1.0 \mathrm{~V}\) & \(<0 \mathrm{~V}\) & \(\mathrm{OOH}^{\mathrm{H}}\) & 0 \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

\section*{POWER SUPPLIES, GROUNDING}

The PC board layout, and the quality of the power supplies and the ground system at the IC are very important in order to obtain proper operation. Noise, from any source, coming into the device on \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}\), or ground can cause an incorrect output code due to interaction with the analog portion of the circuit. At the same time, noise generated within the MC10319 can cause incorrect operation if that noise does not have a clear path to ac ground.
Both the \(V_{C C}\) and \(V_{E E}\) power supplies must be decoupled to ground at the IC (within 1" max) with a 10 \(\mu \mathrm{F}\) tantalum and a \(0.1 \mu \mathrm{~F}\) ceramic. Tantalum capacitors are recommended since electrolytic capacitors simply have too much inductance at the frequencies of interest. The quality of the \(V_{C C}\) and \(V_{E E}\) supplies should then be checked at the IC with a high frequency scope. Noise spikes (always present when digital circuits are present) can easily exceed 400 mV peak, and if they get into the analog portion of the IC, the operation can be disrupted. Noise can be reduced by inserting resistors and/or inductors between the supplies and the IC.
If switching power supplies are used, there will usually be spikes of 0.5 volts or greater at frequencies of \(50-200 \mathrm{kHz}\). These spikes are generally more difficult to reduce because of their greater energy content. In extreme cases, 3 -terminal regulators (MC78L05ACP, MC7905.2CT), with appropriate high frequency filtering, should be used and dedicated to the MC10319.
The ripple content of the supplies should not allow their magnitude to exceed the values in the Recommended Operating Limits.
The PC board tracks supplying \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{EE}}\) to the MC10319 should preferably not be at the tail end of the bus distribution, after passing through a maze of digital circuitry. The MC10319 should be close to the power supply, or the connector where the supply voltages enter the board. If the \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{EE}}\) lines are supplying considerable current to other parts of the boards, then it is preferable to have dedicated lines from the supply or connector directly to the MC10319.
The four ground pins \((2,12,16,22)\) must be connected directly together. Any long path beween them can cause stability problems due to the inductance ((125 MHz) of the PC tracks. The ground return for the signal source must be noise free.

\section*{REFERENCE VOLTAGE CIRCUITS}

Since the accuracy of the conversion is directly related to the quality of the references, it is imperative that accurate and stable voltages be provided to \(\mathrm{V}_{\mathrm{RT}}\) and \(\mathrm{V}_{\mathrm{RB}}\). If the reference span is 2 volts, then \(1 / 2\) LSB is only 3.9 millivolts, and it is desireable that \(\mathrm{V}_{\mathrm{RT}}\) and \(\mathrm{V}_{\mathrm{RB}}\) be accurate to within this amount, and furthermore, that they do not drift more than this amount once set. Over the temperature range of 0 to \(70^{\circ} \mathrm{C}\), a maximum tempera-
ture coefficient of \(28 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) is required.
The voltage supplies used for digital circuits should preferably not be used as a source for generating \(V_{R T}\) and \(V_{R B}\), due to the noise spikes (\(50-400 \mathrm{mV}\)) present on the supplies and on their ground lines. Generally \(\pm 15\) volts, or \(\pm 12\) volts, are available for analog circuits, and are usually clean compared to supplies used for digital circuits, although ripple may be present in varying amounts. Ripple is easier to filter out than spikes, however, and so these supplies are preferred.
Figure 21 depicts a circuit which can provide an extremely stable voltage to \(\mathrm{V}_{\mathrm{R}}\) at the current required (the maximum reference current is \(19.2 \mathrm{~mA} @ 2.0\) volts). The MC1400 and MC1403 series of reference sources have very low temperature coefficients, good noise rejection, and a high initial accuracy, allowing the circuit to be built without an adjustment pot if the \(\mathrm{V}_{\mathrm{RT}}\) voltage is to remain fixed at one value. Using \(0.1 \%\) wirewound resistors for the divider provides sufficient accuracy and stability in many cases. Alternately, resistor networks provide high ratio accuracies, and close temperature tracking. If the application requires \(\mathrm{V}_{\mathrm{RT}}\) to be changed periodically, the two resistors can be replaced with a 20 turn, cermet potentiometer. Wirewound potentiometers should not be used for this type of application since the pot's slider jumps from winding to winding, and an exact setting can be difficult to obtain. Cermet pots allow for a smooth continuous adjustment.
In Figure 21, R1 reduces the power dissipation in the transistor, and can be carbon composition. The \(0.1 \mu \mathrm{~F}\) capacitor in the feedback path provides stability in the unity gain configuration. Recommended op amps are: LM358, MC34001 series, LM308A, LM324, and LM11C. Offset drift is the key parameter to consider in choosing an op amp, and the LM308A has the lowest drift of those mentioned. Bypass capacitors are not shown in Figure 21, but should always be provided at the input to the 2.5 volt reference, and at the power supply pins of the op amp.
Figure 22 shows a simpler and more economical circuit, using the LM317LZ regulator, but with lower initial accuracy and temperature stability. The op amp/current booster is not needed since the LM317LZ can supply the current directly. In a well controlled environment, this circuit will suffice for many applications. Because of the lower initial accuracy, an adjustment pot is a necessity.
Figure 23 shows two circuits for providing the voltage to \(\mathrm{V}_{\mathrm{RB}}\). The circuits are similar to those of Figures 21 and 22, and have similar accuracy and stability. AIthough the MC1400G2 is meant to provide a positive voltage, it can be configured to provide a negative regulated voltage by grounding the input and output, and deriving the regulated voltage at the ground pin (Pin 4). The MC1403 series of regulators cannot be used in this manner. The output transistor is a PNP in this case since the circuit must sink the reference current.

\section*{VIDEO APPLICATIONS}

The MC10319 is suitable for digitizing video signals directly without signal conditioning, although the standard 1 volt p-p video signal can be amplified to a 2.0 volt p -p signal for slightly better accuracy. Figure 24 shows the input (top trace) and reconstructed output of a standard NTSC test signal, sampled at 25 MSPS, consisting of a sync pulse, 3.58 MHz color burst, a 3.58 MHz signal in a \(\operatorname{Sin}^{2} x\) envelope, a puulse, a white level signal, and a black level signal. Figure 25 shows a \(\operatorname{Sin}^{2} \times\) pulse that has been digitized and reconstructed at 25 MSPS. The width of the pulse is \(\approx 450 \mathrm{~ns}\) at the base. Figure 26 shows an application circuit for digitizing video.

\section*{9-BIT A/D CONVERTER}

Figure 27 shows how two MC10319s can be connected to form a 9 -bit converter. In this configuration, the outputs (D7-D0) of the two 8 -bit converters are paralleled. The outputs of one device are active, while the outputs of other are in the 3 -state mode. The selection is made by the OVERRANGE output of the lower MC10319, which controls Enable inputs on the two devices. Additionally, this output provides the 9th bit.

The reference ladders are connected in series, providing the 512 steps required for 9 bits. The input voltage range is determined by \(\mathrm{V}_{\mathrm{R}}\) of the upper MC10319, and \(V_{R B}\) of the lower device. A minimum of 1.0 volt is required across each converter. The \(500 \Omega\) pot (20 turn cermet) allows for adjustment of the midpoint since the reference resistors of the two MC10319s may not be identical in value. Without the adjustment, a non-equal voltage division would occur, resulting in a nonlinear
conversion. If the references are to be symmetrical about ground (e.g., \(\pm 1.0\) volt), the adjustment can be eliminated, and the midpoint connected to ground.
The use of latches on the outputs is optional, depending on the application.

\section*{\(50 \mathrm{MHz}, 8\)-BIT A/D CONVERTER}

Figure 28 shows how two MC10319s can be connected together in a flip-flop arrangement in order to have an effective conversion speed of 50 MHz . The 74F74 D-type flip-flop provides a 25 MHz clock to each converter, and at the same time, controls the ENABLES so as to alternately enable and disable the outputs. The Overranges do not have 3 -state capability, and so cannot be paralleled. Instead they are OR'd together. The use of latches is optional, and depends on the application. Data should be latched, or written to RAM (in a DMA operation), on the high-to-low transition of the 50 MHz clock.

\section*{NEGATIVE VOLTAGE REGULATOR}

In the cases where a negative power supply is not available - neither the -3.0 to -6.0 volts, nor a higher negative voltage from which to derive it - the circuit of Figure 29 can be used to generate -5.0 volts from the +5.0 volts supply. The PC board space required is small (\(\approx 2.0 \mathrm{in}^{2}\)), and it can be located physically close to the MC10319. The MC34063 is a switching regulator, and in Figure 29 is configured in an inverting mode of operation. The regulator operating specifications are given in the Figure.

FIGURE 17 - MC10319

FIGURE 18 - ADJUSTING VRM FOR IMPROVED LINEARITY

FIGURE 19 - CONVERSION SEQUENCE

FIGURE 20 - ENABLE TO OUTPUT CRITICAL TIMING

Timing (a D7-D0 measured where waveform starts to change. Indicated time values are typical (a \(25^{\circ} \mathrm{C}\), and are in ns.

FIGURE 21 - PRECISION VRT VOLTAGE SOURCE
\[
\mathrm{R1}=100 \Omega \text { for }+5.0 \mathrm{~V}
\]
\[
620 \Omega \text { for }+15 \mathrm{~V}
\]

\begin{tabular}{|l|c|c|c|}
\hline 2.5 V References & MC1400G2 & MC1403U & MC1403AU \\
\hline Line Regulation & 1.0 mV & 0.5 mV & 0.5 mV \\
\hline \(\mathrm{T}_{\mathrm{C}}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \max\) & 25 & 40 & 25 \\
\hline\(\Delta \mathrm{~V}_{\text {out }}\) for \(0-70^{\circ} \mathrm{C}\) & 4.4 mV & 7.0 mV & 4.4 mV \\
\hline Initial Accuracy & \(\pm 0.2 \%\) & \(\pm 1 \%\) & \(\pm 1 \%\) \\
\hline
\end{tabular}

FIGURE 22 - \(\mathbf{V}_{\text {RT }}\), VOLTAGE SOURCE

\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ LM317LZ } \\
\hline Line Regulation & 1.0 mV \\
\hline \(\mathrm{T}_{\mathrm{C}}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \max\) & 60 \\
\hline\(\Delta \mathrm{~V}_{\text {out }}\) for \(0-70^{\circ} \mathrm{C}\) & 8.4 mV \\
\hline Initial Accuracy & \(\pm 4 \%\) \\
\hline
\end{tabular}

FIGURE 23 - \(\mathbf{V}_{\text {RB }}\) VOLTAGE SOURCES

FIGURE 24 - COMPOSITE VIDEO WAVEFORM

FIGURE 25 - SIN \({ }^{2} \times\) WAVEFORM

FIGURE 26 - APPLICATION CIRCUIT FOR DIGITIZING VIDEO

FIGURE 27 - 9-BIT A/D CONVERTER

FIGURE 28 - \(\mathbf{5 0} \mathbf{M H z}\) 8-BIT A/D CONVERTER

FIGURE 29 - - 5.0 VOLT REGULATOR

APERTURE DELAY - The time difference between the sampling signal (typically a clock edge) and the actual analog signal converted. The actual signal converted may occur before or after the sampling signal, depending on the internal configuration of the converter.

BIPOLAR INPUT - A mode of operation whereby the analog input (of an A-D), or output (of a DAC), includes both negative and positive values. Examples are - 1.0 to \(+1.0 \mathrm{~V},-5.0\) to \(+5.0 \mathrm{~V},-2.0\) to +8.0 V , etc.

BIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the \(00_{\mathrm{H}}\) to \(01_{\mathrm{H}}\) transition, where the ideal location is \(1 / 2\) LSB above the most negative reference voltage.

BIPOLAR ZERO ERROR - The error (usually expressed in LSBs) of the input voltage location (of an A-D) of the 80 H to 81 H transition. The ideal location is \(1 / 2 \mathrm{LSB}\) above zero volts in the case of an A-D setup for a symmetrical bipolar input (e.g., -1.0 to +1.0 V).

DIFFERENTIAL NONLINEARITY - The maximum deviation in the actual step size (one transition level to another) from the ideal step size. The ideal step size is defined as the Full Scale Range divided by \(2^{n}\) (\(n=\) number of bits). This error must be within \(\pm 1\) LSB for proper operation.

ECL - Emitter coupled logic.
FULL SCALE RANGE (ACTUAL) - The difference between the actual minimum and maximum end points of the analog input (of an A-D).

FULL SCALE RANGE (IDEAL) - The difference between the actual minimum and maximum end points of the analog input (of an A-D), plus one LSB.

GAIN ERROR - The difference between the actual and expected gain (end point to end point), with respect to the reference, of a data converter. The gain error is usually expressed in LSBs.

GREY CODE - Also known as reflected binary code, it is a digital code such that each code differs from adjacent codes by only one bit. Since more than one bit is never changed at each transition, race condition errors are eliminated.

INTEGRAL NONLINEARITY - The maximum error of an A-D, or DAC, transfer function from the ideal straight line connecting the analog end points. This parameter is sensitive to dynamics, and test conditions must be specified in order to be meaningfull. This parameter is the best overall indicator of the device's performance.
LSB - Least Significant Bit. It is the lowest order bit of a binary code.

LINE REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the input to the regulator is varied. The error is typically expressed as a percent of the nominal output voltage.

LOAD REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the load current is varied. The error is typically expressed as a percent of the nominal output voltage.

MONOTONICITY - The characteristic of the transfer function whereby increasing the input code (of a DAC), or the input signal (of an A-D), results in the output never decreasing.

MSB - Most Significant Bit. It is the highest order bit of a binary code.

NATURAL BINARY CODE - A binary code defined by: \(N=A_{n} 2^{n}+\ldots+A_{3} 2^{3}+A_{2} 2^{2}+A_{1} 2^{1}+A_{0} 2^{0}\)
where each " \(A\) " coefficient has a value of 1 or 0 . Typically, all zeroes correspond to a zero input voltage of an A-D, and all ones correspond to the most positive input voltage.

NYQUIST THEORY - See Sampling Theorem.
OFFSET BINARY CODE - Applicable only to bipolar input (or output) data converters, it is the same as Natural Binary, except that all zeroes correspond to the most negative input voltage (of an A-D), while all ones correspond to the most positive input.

POWER SUPPLY SENSITIVITY - The change in a data converter's performance with changes in the power supply voltage(s). This parameter is usually expressed in percent of full scale versus \(\Delta \mathrm{V}\).

QUANTITIZATION ERROR - Also known as digitization error or uncertainty. It is the inherent error involved in digitizing an analog signal due to the finite number of steps at the digital output versus the infinite number of values at the analog input. This error is a minimum of \(\pm 1 / 2\) LSB.
RESOLUTION - The smallest change which can be discerned by an A-D converter, or produced by a DAC. It is usually expressed as the number of bits, \(n\), where the converter has \(2^{n}\) possible states.

SAMPLING THEOREM - Also known as the Nyquist Theorem. It states that the sampling frequency of an A-D must be no less than \(2 x\) the highest frequency (of interest) of the analog signal to be digitized in order to preserve the information of that analog signal.

UNIPOLAR INPUT - A mode of operation whereby the analog input range (of an A-D), or output range (of a DAC), includes values of a signal polarity. Examples are 0 to \(+2.0 \mathrm{~V}, 0\) to \(-5.0 \mathrm{~V},+2.0\) to +8.0 V , etc.

UNIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the \(00_{\mathrm{H}}\) to \(01_{\mathrm{H}}\) transition, where the ideal location is \(1 / 2\) LSB above the most negative input voltage.

\section*{Specifications and Applications Information}

\section*{HIGH SPEED 7-BIT ANALOG-TO-DIGITAL FLASH CONVERTER}

The MC10321 is a 7-bit high speed parallel flash A/D converter, which employs an internal Grey Code structure to eliminate large output errors on fast slewing input signals. It is fully TTL compatible, requiring a +5.0 volt supply, and a negative supply between -3.0 and -6.0 volts. Three-state TTL outputs allow direct connection to a data bus or common I/O memory.

The MC10321 contains 128 parallel comparators wired along a precision input reference network. The comparator outputs are fed to latches, and then to an encoder network which produces a 7-bit data byte, plus an overrange bit. The data is latched and converted to three-state LSTTL levels. Enable inputs permit setting the outputs to a three-state condition. The overrange bit is always active to allow for sensing of the overrange condition, and to ease the interconnection of two MC10321s into an 8-bit configuration.
The MC10321 is available in a 20 -pin standard plastic and SOIC packages.

Applications include Video displays (digital TV, picture-inpicture, special effects), radar processing, high speed instrumentation, and TV broadcast.
- Internal Grey Code for Speed and Accuracy
- 25 MHz Sampling Rate
- 7-Bit Resolution with 8-Bit Accuracy
- Easily Cascadable into an 8-Bit System
- Three-State LSTTL Outputs with True and Complement Enable Inputs
- Low Input Capacitance: 25 pF
- No Clock Kick-Out Currents on Input or Reference
- Wide Input Range: 1.0-2.1 Volts within a \(\pm 2.1\) Volt Range
- No Sample and Hold Required for Video Applications
- Edge Triggered Conversion - No Pipeline Delay
- True and Complement Enable Inputs for Three-State Control
- Standard DIP and Surface Mount Packages Available
- Operating Temperature Range: \(-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)

ORDERING INFORMATION
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Device } & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline MC10321P & \multirow{2}{*}{\(-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\)} & Plastic DIP \\
\cline { 1 - 1 } & MC10321DW & SO-20 \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Symbol & Value & Units \\
\hline Supply Voltage & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}(\mathrm{~A}), \mathrm{V}_{\mathrm{CC}}(\mathrm{D}) \\
\mathrm{V}_{\mathrm{EE}}
\end{gathered}
\] & \[
\begin{aligned}
& +7.0 \\
& -7.0
\end{aligned}
\] & Vdc \\
\hline Positive Supply Voltage Differential & \(V_{C C}(\mathrm{D})^{-} \mathrm{V}_{\text {CC }}(\mathrm{A})\) & \(-0.3,+0.3\) & Vdc \\
\hline Digital Input Voltage (Pins 13-15) & \(V_{1(D)}\) & \(-0.5,+7.0\) & Vdc \\
\hline Analog Input Voltage (Pins 5, 6, 7) & \(V_{1(A)}\) & \(-2.5,+2.5\) & Vdc \\
\hline Reference Voltage Span (Pin 7-Pin 5) & - & +2.3 & Vdc \\
\hline Applied Output Voltage (D0-D6 in 3-State) & - & \(-0.3,+7.0\) & Vdc \\
\hline Junction Temperature & TJ & + 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & \(-65,+150\) & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Devices should not be operated at these values. The "Recommended Operating Limits" provide guidelines for actual device operation.

RECOMMENDED OPERATING LIMITS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline \begin{tabular}{l}
Power Supply Voltage (Pin 9) \\
Power Supply Voltage (Pins 10, 16) \(\mathrm{V}_{\mathrm{CC}(\mathrm{D})} \mathrm{V}_{\mathrm{CC}}(\mathrm{A})\)
\end{tabular} & \begin{tabular}{l}
\(V_{C C}(A)\) \\
\(\mathrm{V}_{\mathrm{CC}}(\mathrm{D})\) \\
\(\Delta V_{C C}\)
\end{tabular} & \[
\begin{aligned}
& +4.5 \\
& +4.5 \\
& -0.1 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
+5.0 \\
+5.0 \\
0 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& +5.5 \\
& +5.5 \\
& +0.1 \\
& \hline
\end{aligned}
\] & Vdc \\
\hline Power Supply Voltage (Pin 8) & \(\mathrm{V}_{\mathrm{EE}}\) & -6.0 & -5.0 & -3.0 & Vdc \\
\hline Digital Input Voltages (Pins 13-15) & - & 0 & - & \(\mathrm{V}_{\text {CC(}}(\mathrm{D})\) & Vdc \\
\hline Analog Input (Pin 6) & \(\mathrm{v}_{\text {in }}\) & -2.1 & - & +2.1 & Vdc \\
\hline \[
\begin{aligned}
& \text { Voltage @ } \mathrm{V}_{\mathrm{RT}} \text { (Pin } 7 \text {) } \\
& \text { @ } \mathrm{V}_{\mathrm{RB}} \text { (Pin 5) } \\
& \mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}} \\
& \mathrm{~V}_{\mathrm{RB}}-\mathrm{V}_{\mathrm{EE}}
\end{aligned}
\] & \begin{tabular}{l}
\(V_{R T}\) \\
\(V_{\mathrm{RB}}\) \\
\(\Delta V_{R}\)
\end{tabular} & \[
\begin{gathered}
-1.0 \\
-2.1 \\
+1.0 \\
1.3
\end{gathered}
\] & — & \[
\begin{aligned}
& +2.1 \\
& +1.0 \\
& +2.1
\end{aligned}
\] & Vdc \\
\hline Applied Output Voltage (Pins D0-D6 in 3-State) & \(\mathrm{V}_{0}\) & 0 & - & \(\mathrm{V}_{\text {CC }}(\mathrm{D})\) & Vdc \\
\hline \begin{tabular}{l}
Clock Pulse Width — High \\
- Low
\end{tabular} & \[
\begin{aligned}
& { }^{\mathrm{t}} \mathrm{CKH} \\
& { }^{\mathrm{t}} \mathrm{CKL}
\end{aligned}
\] & \[
\begin{array}{r}
5.0 \\
15 \\
\hline
\end{array}
\] & - & - & ns \\
\hline Clock Frequency & \(\mathrm{f}_{\text {CLK }}\) & 0 & - & 25 & M Hz \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -40 & - & +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

All limits are not necessarily functional concurrently.

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=+1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-1.0 \mathrm{~V}\right.\), except where noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Units \\
\hline \multicolumn{6}{|l|}{TRANSFER CHARACTERISTICS (\(\mathrm{f}_{\text {CKL }}=25 \mathrm{MHz}\))} \\
\hline Resolution & N & - & - & 7.0 & Bits \\
\hline Monotonicity & MON & \multicolumn{3}{|c|}{Guaranteed} & Bits \\
\hline Integral Nonlinearity Differential Nonlinearity & INL DNL & - & \(\pm 1 / 4\) & \[
\begin{aligned}
& \pm 1.0 \\
& \pm 1.0
\end{aligned}
\] & LSB \\
\hline Differential Phase (See Figure 11) Differential Gain (See Figure 11) & \[
\begin{aligned}
& \hline \text { DP } \\
& \text { DG }
\end{aligned}
\] & & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & - & \[
\begin{aligned}
& \text { Deg. } \\
& \%
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Power Supply Rejection Ratio } \\
& \left(4.5 \mathrm{~V}<\mathrm{V}_{C C}<5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}\right) \\
& \left(-6.0 \mathrm{~V}<\mathrm{V}_{E E}<-3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}\right)
\end{aligned}
\] & PSRR & - & \[
\begin{gathered}
0.02 \\
0
\end{gathered}
\] & - & LSBN \\
\hline
\end{tabular}

ANALOG INPUT (Pin 6)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Input Current \(@ V_{\text {in }}=V_{R B}-0.1 \mathrm{~V}\) (See Figure 4) \\
\(@ \mathrm{~V}_{\text {in }}=\mathrm{V}_{\mathrm{RT}}+0.1 \mathrm{~V}\) (See Figure 4)
\end{tabular} & \[
\begin{aligned}
& \text { IINL } \\
& \text { IINH }
\end{aligned}
\] & - & \[
\begin{array}{r}
+1.0 \\
+60 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +5.0 \\
& +80
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Capacitance (\(1.0 \mathrm{~V}<\left(\mathrm{V}_{\mathrm{R} T}-\mathrm{V}_{\mathrm{RB}}\right.\)) \(<2.0 \mathrm{~V}\)) & \(\mathrm{c}_{\text {in }}\) & - & 22 & - & pF \\
\hline Bipolar Offset Error & \(\mathrm{v}_{\mathrm{OS}}\) & - & 0.1 & - & LSB \\
\hline
\end{tabular}

REFERENCE
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ladder Resistance \(\left(\mathrm{V}_{\mathrm{RT}}\right.\) to \(\left.\mathrm{V}_{\mathrm{RB}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{R}_{\text {ref }}\) & 100 & 140 & 175 & \(\Omega\) \\
\hline Temperature Coefficient & \(\mathrm{T}_{\mathrm{C}}\) & - & +0.29 & - & \(\% /{ }^{\circ} \mathrm{C}\) \\
\hline Ladder Capacitance (Pin 1 Open) & \(\mathrm{C}_{\text {ref }}\) & - & 5.0 & - & pF \\
\hline
\end{tabular}

ENABLE INPUTS (\(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Input Voltage \\
- High \\
-Low
\end{tabular} & V VIHE & 2.0 & - & - & V \\
\hline Input Current @ 2.4 Volts (See Figure 5) & \(\mathrm{V}_{\text {ILE }}\) & - & - & 0.8 & \\
\hline @ 0.4 Volts (See Figure 5)
\end{tabular}

CLOCK INPUT (VCC \(=5.5 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Voltage - High \\
-Low & \(\mathrm{V}_{\mathrm{IHC}}\) & 2.0 & - & - & Vdc \\
\hline Input Current @ 0.4 V (See Figure 6) & \(\mathrm{V}_{\mathrm{ILC}}\) & - & - & 0.8 & \\
\hline\(@ 2.7 \mathrm{~V}\) (See Figure 6) & \(\mathrm{I}_{\mathrm{ILC}}\) & -150 & -80 & - & \(\mu \mathrm{A}\) \\
\hline Input Clamp Voltage (IIK \(=-18 \mathrm{~mA})\) & \(\mathrm{I}_{\mathrm{IHC}}\) & -80 & -40 & - & \\
\hline
\end{tabular}

DIGITAL OUTPUTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline High Output Voltage (\(I_{\mathrm{OH}}=-400 \mu \mathrm{~A} @ \mathrm{D} 6-\mathrm{D} 0, \mathrm{OR}\), \(V_{C C}=4.5 \mathrm{~V}\), See Figure 7) & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & 3.0 & - & V \\
\hline Low Output Voltage (\(1 \mathrm{OL}=4.0 \mathrm{~mA} @ \mathrm{D} 6-\mathrm{D} 0\), OR, \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\), See Figure 8) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.3 & 0.4 & V \\
\hline Output Short Circuit Current* (D6-D0, OR, \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\)) & ISC & - & -35 & - & mA \\
\hline Output Leakage Current \(\left(0.4<\mathrm{V}_{\mathrm{O}}<2.4 \mathrm{~V}\right.\), See Figure 3, \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), D0-D6 in 3-State Mode) & ILK & -10 & - & +10 & \(\mu \mathrm{A}\) \\
\hline Output Capacitance (D0-D6 in 3-State Mode) & \(\mathrm{C}_{\text {out }}\) & - & 5.0 & - & pF \\
\hline
\end{tabular}
*Only one output to be shorted at a time, not to exceed 1 second.
POWER SUPPLIES
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{CC}}(\mathrm{A})\) Current (4.5 \(\mathrm{V}<\mathrm{V}_{\mathrm{CC}}(\mathrm{A})<5.5 \mathrm{~V}\), Outputs Unloaded) & \({ }^{\text {I CCC(A) }}\) & 10 & 13 & 16 & mA \\
\hline \(\mathrm{V}_{\mathrm{CC}}(\mathrm{D})\) Current (4.5 V \(<\mathrm{V}_{\mathrm{CC}}(\mathrm{D})<5.5 \mathrm{~V}\), Outputs Unloaded) & \({ }^{1} \mathrm{CC}(\mathrm{D})\) & 40 & 60 & 80 & \\
\hline \(\mathrm{V}_{\mathrm{EE}}\) Current (\(-6.0 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-3.0 \mathrm{~V}\)) & IEE & -16 & -13 & -8.0 & \\
\hline Power Dissipation (\(\mathrm{VRT}^{\text {- }}\) - \(\mathrm{V}_{\mathrm{RB}}=2.0 \mathrm{~V}\), Outputs Unloaded) & PD & - & 459 & 668 & mW \\
\hline
\end{tabular}

TIMING CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=+1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-1.0 \mathrm{~V}\right.\), See System Timing Diagram)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline \multicolumn{6}{|l|}{INPUTS} \\
\hline \begin{tabular}{l}
Min Clock Pulse Width — High \\
- Low
\end{tabular} & \[
\begin{aligned}
& { }^{\mathrm{t}} \mathrm{CKH} \\
& { }^{\mathrm{t}} \mathrm{CKL}
\end{aligned}
\] & - & \[
\begin{gathered}
5.0 \\
15
\end{gathered}
\] & - & ns \\
\hline Max Clock Rise, Fall Time & \(\mathrm{t}_{\mathrm{R}, \mathrm{F}}\) & - & 100 & - & ns \\
\hline Clock Frequency & \({ }^{\text {f CLK }}\) & 0 & 30 & 25 & MHz \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline New Data Valid from Clock Low & \({ }^{\text {t }}\) CKDV & - & 22 & - & ns \\
\hline Aperture Delay & \({ }^{\text {t }}\) AD & - & 3.0 & - & ns \\
\hline Hold Time & \({ }_{\text {t }}^{\mathrm{H}}\) & - & 6.0 & - & ns \\
\hline Data High to 3-State from Enable Low* & \({ }_{\text {tehz }}\) & - & 22 & - & ns \\
\hline Data Low to 3-State from Enable Low* & \({ }^{\text {t ELL }}\) & - & 17 & - & ns \\
\hline Data High to 3-State from ENABLE High* & \({ }^{\text {t }}\) ' \({ }^{\prime} \mathrm{HZ}\) & - & 27 & - & ns \\
\hline Data Low to 3-State from ENABLE High* & te'LZ & - & 19 & - & ns \\
\hline Valid Data from Enable High (Pin \(14=0 \mathrm{~V}\))* & teDV & - & 13 & - & ns \\
\hline Valid Data from ENABLE Low (Pin \(13=5.0 \mathrm{~V}\))* & te'DV & - & 20 & - & ns \\
\hline Output Transition Time (10\%-90\%)* & \(\mathrm{t}_{\mathrm{tr}}\) & - & 6.0 & - & ns \\
\hline
\end{tabular}
*See Figure 2 for output loading.
TEMPERATURE CHARACTERISTICS
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & \begin{tabular}{c}
Typical Value \\
\(@ \mathbf{2 5}\)
\end{tabular} & \begin{tabular}{c}
Typical Change \\
-40
\end{tabular} \\
\hline ICC (+5.0 V Supply Current) & 73 mA & \(-\mathbf{8 5}{ }^{\circ} \mathrm{C}\)
\end{tabular}

\section*{PIN DESCRIPTIONS}
\begin{tabular}{|c|c|c|}
\hline Symbol & Pin & Description \\
\hline GND & 11,17 & Power supply ground. The two pins should be connected directly together, and through a low impedance path to the power supply. \\
\hline OR & 12 & Overrange output. Indicates \(\mathrm{V}_{\text {in }}\) is more positive than \(\mathrm{V}_{\mathrm{RT}}-1 / 2\) LSB. This output does not have 3-state capability, and therefore is always active. \\
\hline D6-D0 & \[
\begin{array}{|l|}
\hline 1-4, \\
18-20
\end{array}
\] & Digital Outputs. D6 (Pin 4) is the MSB, D0 (Pin 18) is the LSB. LSTTL compatible with 3-state capability. \\
\hline \(\mathrm{V}_{\text {CC(}}\) (\()\) & 10,16 & Power supply for the digital section. \(+5.0 \mathrm{~V}, \pm 10 \%\) required. \\
\hline \(\mathrm{V}_{\mathrm{EE}}\) & 8 & Negative Power supply. Nominally -5.2 V, it can range from -3.0 to -6.0 V , and must be more negative than \(V_{R B}\) by \(>1.3 \mathrm{~V}\). \\
\hline \(v_{\text {in }}\) & 6 & Signal voltage input. This voltage is compared to the reference to generate a digital equivalent. Input impedance is nominally \(16-33 \mathrm{k} \Omega\) (See Figure 4) in parallel with 22 pF. \\
\hline
\end{tabular}

\section*{PIN DESCRIPTIONS}
\begin{tabular}{|l|l|l|}
\hline Symbol & Pin & Description \\
\hline\(V_{\text {CC(A) }}\) & 9 & \begin{tabular}{l}
Power supply for the analog section. \\
+5.0 V, \(\pm 10 \%\) required.
\end{tabular} \\
\hline CLK & 15 & \begin{tabular}{l}
Clock input, TTL compatible, and can \\
range from dc to 25 MHz. Conversion \\
occurs on the negative edge of the clock.
\end{tabular} \\
\hline EN & 13 & \begin{tabular}{l}
Enable input. TTL compatible, a Logic "1" \\
(and Pin 14 a Logic "0") enables the data \\
outputs. A Logic "0" sets the outputs \\
(except Overrange) to a 3-state mode.
\end{tabular} \\
\hline\(\overline{E N}\) & 14 & \begin{tabular}{l}
ENABLE input. TTL compatible, a Logic \\
"0" (and Pin 13 a Logic "1") enables the \\
data outputs. A Logic "1" sets the outputs \\
(except Overrange) to a 3-state mode.
\end{tabular} \\
\hline VRB & 5 & \begin{tabular}{l}
The bottom (most negative point) of the \\
internal reference resistor ladder. The lad- \\
der resistance is typically 140 \(\Omega\) to V VT.
\end{tabular} \\
\hline VRT & 7 & \begin{tabular}{l}
The top (most positive point) of the inter- \\
nal reference resistor ladder.
\end{tabular} \\
\hline
\end{tabular}

Pin assignments are the same for the standard DIP package and the surface mount package.

\section*{MC10321}

FIGURE 1 - SYSTEM TIMING DIAGRAM

\({ }^{\text {t CKDV }}\) and \(\mathrm{t}_{\mathrm{H}}\) measured at output levels of 0.8 and 2.4 volts.

FIGURE 2 - DATA OUTPUT TEST CIRCUIT

FIGURE 3 - OUTPUT 3-STATE LEAKAGE CURRENT

FIGURE 5 - INPUT CURRENT AT ENABLE, ENABLE

FIGURE 7 - OUTPUT VOLTAGE versus OUTPUT CURRENT

FIGURE 4 - INPUT CURRENT @ \(V_{\text {in }}\)

FIGURE 6 - CLOCK INPUT CURRENT

FIGURE 9 - INTEGRAL LINEARITY ERROR IN LSBs versus CODE

FIGURE 10 - DIFFERENTIAL LINEARITY ERROR IN LSBs versus LOWER CODE

\section*{DESIGN GUIDELINES}

\section*{INTRODUCTION}

The MC10321 is a high speed, 7-bit parallel ("Flash") type Analog-to-Digital converter containing 128 comparators at the front end. See Figure 12 for a block diagram. The comparators are arranged such that one input of each is referenced to evenly spaced voltages, derived from the reference resistor ladder. The other input of each of the comparators is connected to the input signal (\(\mathrm{V}_{\text {in }}\)). Some of the comparator's differential outputs will be "true," while other comparators will have "not true" outputs, depending on their relative position. Their outputs are then latched, and converted to a 7-bit Grey code by the Differential Latch Array. The Grey code ensures that errors caused at the input stage, due to cross talk, feed-thru, or timing disparaties, result in glitches at the output of only a few LSBs, rather than the more traditional \(1 / 2\) scale and \(1 / 4\) scale glitches.

The Grey code is then translated to a 7-bit binary code, and the differential levels are translated to TTL levels before being applied to the output latches. ENABLE inputs (\(E N\) and \(\overline{E N}\)) at this final stage permit the TTL outputs (except Overrange) to be put into a high impedance (3-state) condition.

\section*{ANALOG SECTION}

\section*{SIGNAL INPUT}

The signal voltage to be digitized (\(V_{i n}\)) is applied simultaneously to one input of each of the 128 com parators through Pin 6. The other inputs of the comparators are connected to 128 evenly spaced voltages derived from the reference ladder. The output code depends on the relative position of the input signal to the reference voltages. The comparators have a bandwidth of \(>50 \mathrm{MHz}\), which is more than sufficient for the allowable (Nyquist theory) input frequency of 12.5 MHz.

The current into Pin 6 varies linearly from 0 (when \(V_{\text {in }}=V_{R B}\)) to \(\approx 60 \mu \mathrm{~A}\) (when \(V_{\text {in }}=V_{R T}\)). If \(V_{\text {in }}\) is taken below \(V_{R B}\) or above \(V_{R T}\), the input current will remain at the value corresponding to \(V_{R B}\) and \(V_{R T}\) respectively
(see Figure 4). However, \(\mathrm{V}_{\text {in }}\) must be maintained within the absolute range of \(\pm 2.5\) volts (with respect to ground) - otherwise excessive currents will result at Pin 6.

The input capacitance at Pin 6 is typically 22 pF , and is constant as \(\mathrm{V}_{\text {in }}\) varies from \(\mathrm{V}_{\mathrm{RT}}\) to \(\mathrm{V}_{\mathrm{RB}}\).

The source impedance of the signal voltage should be maintained below \(100 \Omega\) (at the frequencies of interest) in order to avoid sampling errors.

\section*{REFERENCE}

The reference resistor ladder is composed of a string of equal value resistors so as to provide 128 equally spaced voltages for the comparators (see Figure 12 for the actual configuration). The voltage difference between adjacent comparators corresponds to 1 LSB of the input range. The first comparator (closest to \(\mathrm{V}_{\mathrm{RB}}\)) is referenced \(1 / 2\) LSB above \(\mathrm{V}_{\mathrm{RB}}\), and the 128th comparator (for the overrange) is referenced 1/ 2 LSB below \(V_{R T}\). The total resistance of the ladder is nominally \(140 \Omega, \pm 25 \%\), requiring \(14.3 \mathrm{~mA} @ 2.0\) volts and \(7.14 \mathrm{~mA} @ 1.0\) volt. There is a nominal warm up change of \(\approx+8.0 \%\) in the ladder resistance due to the \(+0.29 \% /{ }^{\circ} \mathrm{C}\) temperature coefficient.

The minimum recommended span [\(\mathrm{V}_{\mathrm{R} T}-\mathrm{V}_{\mathrm{RB}}\)] is 1.0 volt. A lower span will allow offsets and nonlinearities to become significant. The maximum recommended span is 2.1 volts due to power limitations of the resistor ladder. The span may be anywhere within the range of -2.1 to +2.1 volts with respect to ground, and \(V_{R B}\) must be at least 1.3 volts more positive than \(V_{E E}\). The reference voltages must be stable and free of noise and spikes, since the accuracy of a conversion is directly related to the quality of the reference.

In most applications, the reference voltages will remain fixed. In applications involving a varying reference for modulation or signal scrambling, the modulating signal may be applied to \(\mathrm{V}_{\mathrm{R}}\), or \(\mathrm{V}_{\mathrm{RB}}\), or both. The output will vary inversely with the reference signal, introducing a nonlinearity into the transfer function. The addition of the modulating signal and the de level
applied to the reference must be such that the absolute voltage at \(V_{R T}\) and \(V_{R B}\) are maintained within the values listed in the Recommended Operating Limits. The RMS value of the span must be maintained \(\leqslant 2.1\) volts.

\section*{POWER SUPPLIES}
\(V_{C C}(A)(\operatorname{Pin} 9)\) is the positive power supply for the comparators, and \(V_{C C}(D)\) (Pins 10, 16) is the positive power supply for the digital portion. Both are to be +5.0 volts, \(\pm 10 \%\), and the two are to be within 100 millivolts of each other. There is indirect internal coupling between \(\mathrm{V}_{\mathrm{CC}}(\mathrm{D})\) and \(\mathrm{V}_{\mathrm{CC}}(\mathrm{A})\). If they are powered separately, and one supply fails, there will be current flow through the MC10321 to the failed supply.
\(\operatorname{ICC}(A)\) is nominally 13 mA , and does not vary with clock frequency or with \(V_{i n}\), but does vary slightly with \(V_{C C}(A) . I C C(D)\) is nominally 60 mA , and is independent of clock frequency. It does vary, however, by 4-5 mA as \(V_{\text {in }}\) is varied from \(V_{R T}\) to \(V_{R B}\), and varies directly with \(V_{C C}(D)\).
\(V_{E E}\) is the negative power supply for the comparators, and is to be within the range -3.0 to -6.0 volts. Additionally, \(V_{E E}\) must be at least 1.3 volts more negative than \(V_{R B}\). IEE is a nominal -13 mA , and is independent of clock frequency, \(V_{\text {in }}\) and \(V_{E E}\).

For proper operation, the supplies must be bypassed at the IC. A \(10 \mu \mathrm{~F}\) tantalum, in parallel with a \(0.1 \mu \mathrm{~F}\) ceramic is recommended for each supply to ground.

\section*{DIGITAL SECTION}

\section*{CLOCK}

The Clock input (\(\operatorname{Pin} 15\)) is TTL compatible with a typical frequency range of 0 to 30 MHz . There is no duty cycle limitation, but the minimum low and high times must be adhered to. See Figure 6 for the input current requirements.

The conversion sequence is shown in Figure 13, and is as follows:
- On the rising edge, the data output latches are latched with old data, and the comparator output latches are released to follow the input signal (\(\mathrm{V}_{\mathrm{in}}\)).
- During the high time, the comparators track the input signal. The data output latches retain the old data.
- On the falling edge, the comparator outputs are latched with the data immediately prior to this edge. The conversion to digital occurs within the device, and the data output latches are released to indicate the new data in \(\approx 22 \mathrm{~ns}\).
- During the clock low time, the comparator outputs remain latched, and the data output latches remain transparent.

A summary of the sequence is that data present at \(\mathrm{V}_{\text {in }}\) just prior to the Clock falling edge is digitized and available at the data outputs immediately after that same falling edge. The minimum amount of time the data must be present prior to the clock falling edge (aperture delay) is \(2.0-6.0 \mathrm{~ns}\), typically 3.0 ns .

The comparator output latches provide the circuit with an effective sample-and-hold function, eliminating the need for an external sample-and-hold.

\section*{ENABLE INPUTS}

The two Enable inputs (Pins 13,14) are TTL compatible, and are used to change the data outputs (D6-D0) from active to 3 -state. This capability allows cascading two MC10321s into an 8-bit configuration, connecting the outputs directly to a data bus, multiplexing multiple converters, etc. See the Applications Information section for more details. For the outputs to be active, Pin 13 must be Logic " 1, ," and Pin 14 must be a Logic " 0. ." Changing either input will put the outputs into the high impedance mode. The Enable inputs affect only the state of the outputs - they do not inhibit a conversion. Both pins have a nominal threshold of \(\approx 1.2\) volts, their input currents are shown in Figure 5, and their inputoutput timing is shown in Figure 1 and 14. Leaving either pin open is equivalent to a Logic " 1 ," although good design practice dictates that an input should never be left open.

The Overrange output (Pin 12) is not affected by the Enable inputs as it does not have 3-state capability.

\section*{OUTPUTS}

The data outputs (Pins 1-4, 12, 18-20) are TTL level outputs with high impedance capability (except Overrange). Pin 4 is the MSB (D6), and Pin 18 is the LSB (D0). The seven outputs are active as long as the Enable inputs are true (\(\mathrm{EN}=\) high, \(\overline{\mathrm{EN}}=\) low). The timing of the outputs relative to the Clock input and the Enable inputs is shown in Figures 1 and 14. Figures 7 and 8 indicate the output voltage versus load current, while Figure 3 indicates the leakage current when in the high impedance mode.

The output code is natural binary, depicted in Table 1.
The Overrange output (Pin 12) goes high when the input, \(V_{\text {in }}\), is more positive than \(V_{R T}-1 / 2\) LSB. This output is always active - it does not have high impedance capability. Besides used to indicate an input overrange, it is additionally used for cascading two MC10321s to form an 8-bit A/D converter (see Figure 21).

TABLE 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Input} & \multicolumn{3}{|c|}{\(\mathrm{V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RB}}\) (Volts)} & \multirow[t]{2}{*}{Output Code} & \multirow[b]{2}{*}{Overrange} \\
\hline & 2.048, 0 & +1.0 V, -1.0 V & \(+1.0 \mathrm{~V}, 0 \mathrm{~V}\) & & \\
\hline \(>V_{R T}-1 / 2\) LSB & \(>2.040 \mathrm{~V}\) & \(>0.9922 \mathrm{~V}\) & \(>0.9961 \mathrm{~V}\) & \(7 \mathrm{~F}_{\mathrm{H}}\) & 1 \\
\hline \(V_{\text {RT }}-1 / 2\) LSB & 2.040 V & 0.9922 V & 0.9961 V & \(7 \mathrm{~F}_{\mathrm{H}}\) & \(0 \leftrightarrow 1\) \\
\hline \(V_{\text {RT }}-1\) LSB & 2.032 V & 0.9844 V & 0.9922 V & \(7 \mathrm{~F}_{\mathrm{H}}\) & 0 \\
\hline \(V_{\text {RT }}-11 / 2\) LSB & 2.024 V & 0.9766 V & 0.9883 V & \({ }^{7} \mathrm{E}_{\mathrm{H}} \leftrightarrow \mathrm{FF}_{\mathrm{H}}\) & 0 \\
\hline Midpoint & 1.024 V & 0.000 V & 0.5000 V & 40 H & 0 \\
\hline \(\mathrm{V}_{\mathrm{RB}}+1 / 2 \mathrm{LSB}\) & 8.0 mV & \(-0.9922 \mathrm{~V}\) & 3.9 mV & \(00 \mathrm{H} \leftrightarrow 01^{\text {H }}\) & 0 \\
\hline \(<\mathrm{V}_{\text {RB }}+1 / 2\) LSB & \(<8.0 \mathrm{mV}\) & <-0.9922 V & \(<3.9 \mathrm{mV}\) & \(0^{00} \mathrm{H}\) & 0 \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

\section*{POWER SUPPLIES, GROUNDING}

The PC board layout, and the quality of the power supplies and the ground system at the IC are very important in order to obtain proper operation. Noise, from any source, coming into the device on \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}\), or ground can cause an incorrect output code due to interaction with the analog portion of the circuit. At the same time, noise generated within the MC10321 can cause incorrect operation if that noise does not have a clear path to ac ground.

Both the \(V_{C C}\) and \(V_{E E}\) power supplies must be decoupled to ground at the IC (within \(1^{\prime \prime}\) max) with a \(10 \mu \mathrm{~F}\) tantalum and a \(0.1 \mu \mathrm{~F}\) ceramic. Tantalum capacitors are recommended since electrolytic capacitors simply have too much inductance at the frequencies of interest. The quality of the \(V_{C C}\) and \(V_{E E}\) supplies should then be checked at the IC with a high frequency scope. Noise spikes (always present when digital circuits are present) can easily exceed 400 mV peak, and if they get into the analog portion of the IC, the operation can be disrupted. Noise can be reduced by inserting resistors and/or inductors between the supplies and the IC.

If switching power supplies are used, there will usually be spikes of 0.5 volts or greater at frequencies of \(50-200 \mathrm{kHz}\). These spikes are generally more difficult to reduce because of their greater energy content. In extreme cases, 3-terminal regulators (MC78L05ACP, MC7905.2CT), with appropriate high frequency filtering, should be used and dedicated to the MC10321.

The ripple content of the supplies should not allow their magnitude to exceed the values in the Recommended Operating Limits.
The PC board tracks supplying \(V_{C C}\) and \(V_{E E}\) to the MC10321 should preferably not be at the tail end of the bus distribution, after passing through a maze of digital circuitry. The MC10321 should be close to the power supply, or the connector where the supply voltages enter the board. If the \(V_{C C}\) and \(V_{E E}\) lines are supplying considerable current to other parts of the boards, then it is preferable to have dedicated lines from the supply or connector directly to the MC10321.
The two ground pins \((11,17)\) must be connected directly together. Any long path between them can cause stability problems due to the inductance (@ 25 MHz) of the PC tracks. The ground return for the signal source must be noise free.

\section*{REFERENCE VOLTAGE CIRCUITS}

Since the accuracy of the conversion is directly related to the quality of the references, it is imperative that accurate and stable voltages be provided to \(\mathrm{V}_{\mathrm{R}}\) and \(V_{R B}\). If the reference span is 2.0 volts, then \(1 / 2 \mathrm{LSB}\) is only 7.8 millivolts, and it is desireable that \(V_{R T}\) and \(V_{R B}\) be accurate to within this amount, and furthermore, that they do not drift more than this amount once set. Over
the temperature range of -40 to \(+85^{\circ} \mathrm{C}\), a maximum temperature coefficient of \(31 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) is required.

The voltage supplies used for digital circuits should preferably not be used as a source for generating \(V_{R T}\) and \(V_{\text {RB }}\), due to the noise spikes (up to 500 mV) present on the supplies and on their ground lines. Generally \(\pm 15\) volts, or \(\pm 12\) volts, are available for analog circuits, and are usually clean compared to supplies used for digital circuits, although ripple may be present in varying amounts. Ripple is easier to filter out than spikes, however, and so these supplies are preferred.

Figure 15 depicts a circuit which can provide an extremely stable voltage to \(\mathrm{V}_{\mathrm{RT}}\) at the current required (the maximum reference current is \(20 \mathrm{~mA} @ 2.0\) volts). The MC1403 series of references have very low temperature coefficients, good noise rejection, and a high initial accuracy, allowing the circuit to be built without an adjustment pot if the \(V_{R T}\) voltage is to remain fixed at one value. Using \(0.1 \%\) wirewound resistors for the divider provides sufficient accuracy and stability in many cases. Alternately, resistor networks provide high ratio accuracies, and close temperature tracking. If the application requires \(V_{R T}\) to be changed periodically, the two resistors can be replaced with a 20 turn, cermet potentiometer. Wirewound potentiometers should not be used for this type of application since the pot's slider jumps from winding to winding, and an exact setting can be difficult to obtain. Cermet pots allow for a smooth continuous adjustment.

In Figure 15, R1 reduces the power dissipation in the transistor, and can be carbon composition. The \(0.1 \mu \mathrm{~F}\) capacitor in the feedback path provides stability in the unity gain configuration. Recommended op amps are: LM358, MC34001 series, LM308A, LM324, and LM11C. Offset drift is the key parameter to consider in choosing an op amp, and the LM308A has the lowest drift of those mentioned. Bypass capacitors are not shown in Figure 15, but should always be provided at the input to the 2.5 volt reference, and at the power supply pins of the op amp.
Figure 16 shows a simpler and more economical circuit, using the LM317LZ regulator, but with lower initial accuracy and temperature stability. The op amp/current booster is not needed since the LM317LZ can supply the current directly. In a well controlled environment, this circuit will suffice for many applications. Because of the lower initial accuracy, an adjustment pot is a necessity.

Figure 17 shows two circuits for providing the voltage to \(V_{\text {RB }}\). The circuits are similar to those of Figures 15 and 16, and have similar accuracy and stability. The MC1403 reference is used in conjunction with an op amp configured as an inverter, providing the negative voltage. The output transistor is a PNP in this case since the circuit must sink the reference current.

\section*{VIDEO APPLICATIONS}

The MC10321 is suitable for digitizing video signals directly without signal conditioning, although the standard 1.0 volt p-p video signal can be amplified to a 2.0 volt p-p signal for slightly better accuracy. Figure 18 shows the input (top trace) and reconstructed output of a standard NTSC test signal, sampled at 25 MSPS, consisting of a sync pulse, 3.58 MHz color burst, a 3.58 MHz signal in a \(\operatorname{Sin}^{2} x\) envelope, a pulse, a white level signal, and a black level signal. Figure 19 shows a \(\operatorname{Sin}^{2} x\) pulse that has been digitized and reconstructed at 25 MSPS. The width of the pulse is \(\approx 225 \mathrm{~ns}\) at the base. Figure 20 shows an application circuit for digitizing video.

\section*{8-BIT A/D CONVERTER}

Figure 21 shows how two MC10321s can be connected to form an 8-bit converter. In this configuration, the outputs (D6-D0) of the two 7-bit converters are paralleled. The outputs of one device are active, while the outputs of other are in the 3 -state mode. The selection is made by the OVERRANGE output of the lower MC10321, which controls Enable inputs on the two devices. Additionally, this output provides the 8th bit.

The reference ladders are connected in series, providing the 256 steps required for 8 bits. The input voltage range is determined by \(V_{R T}\) of the upper MC10321, and \(V_{R B}\) of the lower device. A minimum of 1.0 volt is required across each converter. The \(500 \Omega\) pot (20 turn cermet) allows for adjustment of the midpoint since the reference resistors of the two MC10321s may not be identical in value. Without the adjustment, a nonequal
voltage division could occur, resulting in a nonlinear conversion. If the references are to be symmetrical about ground (e.g., \(\pm 1.0\) volt or \(\pm 2.0\) volts), the adjustment can be eliminated, and the midpoint connected to ground.

The use of latches on the outputs is optional, depending on the application. If latches are required, SN74LS173As are recommended.

\section*{\(50 \mathrm{MHz}, 7 \mathrm{BIT}\) A/D CONVERTER}

Figure 22 shows how two MC10321s can be connected together in a flip-flop arrangement in order to have an effective conversion speed of 50 MHz . The 74F74D-type flip-flop provides a 25 MHz clock to each converter, and at the same time, controls the SELECT input to the MC74F257 multiplexers to alternately select the outputs of the two converters. A brief timing diagram is shown in the figure.

\section*{NEGATIVE VOLTAGE REGULATOR}

In the cases where a negative power supply is not available - neither the -3.0 to -6.0 volts, nor a higher negative voltage from which to derive it - the circuit of Figure 23 can be used to generate -5.0 volts from the +5.0 volts supply. The PC board space required is small (\(\approx 2.0 \mathrm{in}^{2}\)), and it can be located physically close to the MC10321. The MC34063 is a switching regulator, and in Figure 23 is configured in an inverting mode of operation. The regulator operating specifications are given in the figure.

\section*{GLOSSARY}

APERTURE DELAY - The time difference between the sampling signal (typically a clock edge) and the actual analog signal converted. The actual signal converted may occur before or after the sampling signal, depending on the internal configuration of the converter.

BIPOLAR INPUT - A mode of operation whereby the analog input (of an A-D), or output (of a DAC), includes both negative and positive values. Examples are - 1.0 to \(+1.0 \mathrm{~V},-5.0\) to \(+5.0 \mathrm{~V},-2.0\) to +8.0 V , etc.

BIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the 00 H to \(01_{\mathrm{H}}\) transition, where the ideal location is \(1 / 2\) LSB above the most negative reference voltage.

BIPOLAR ZERO ERROR - The error (usually expressed in LSBs) of the input voltage location (of a 7-bit A/D) of the 40 H to 41 H transition. The ideal location is \(1 / 2 \mathrm{LSB}\) above zero volts in the case of an A/D set up for a symmetrical bipolar input (e.g., -1.0 to +1.0 V).

DIFFERENTIAL NONLINEARITY - The maximum deviation in the actual step size (one transition level to
another) from the ideal step size. The ideal step size is defined as the Full Scale Range divided by \(2^{n}\) (\(\mathrm{n}=\) number of bits). This error must be within \(\pm 1\) LSB for proper operation.

FULL SCALE RANGE (ACTUAL) - The difference between the actual minimum and maximum end points of the analog input (of an A-D).

FULL SCALE RANGE (IDEAL) - The difference between the actual minimum and maximum end points of the analog input (of an A-D), plus one LSB.

GAIN ERROR - The difference between the actual and expected gain (end point to end point), with respect to the reference of a data converter. The gain error is usually expressed in LSBs.

GREY CODE - Also known as reflected binary code, it is a digital code such that each code differs from adjacent codes by only one bit. Since more than one bit is never changed at each transition, race condition errors are eliminated.

INTEGRAL NONLINEARITY - The maximum error of an \(A / D\), or DAC, transfer function from the ideal straight line connecting the analog end points. This parameter is sensitive to dynamics, and test conditions must be specified in order to be meaningfull. This parameter is the best overall indicator of the device's performance.

LSB - Least Significant Bit. It is the lowest order bit of a binary code.

LINE REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the input to the regulator is varied. The error is typically expressed as a percent of the nominal output voltage.

LOAD REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the load current is varied. The error is typically expressed as a percent of the nominal output voltage.

MONOTONICITY - The characteristic of the transfer function whereby increasing the input code (of a DAC), or the input signal (of an A/D), results in the output never decreasing.

MSB - Most Significant Bit. It is the highest order bit of a binary code.

NATURAL BINARY CODE - A binary code defined by:
\[
N=A_{n} 2^{n}+\ldots+A_{3} 2^{3}+A_{2} 2^{2}+A_{1} 2^{1}+A_{0} 2^{0}
\]
where each " \(A\) " coefficient has a value of 1 or 0 . Typically, all zeroes corresponds to a zero input voltage of an \(A / D\), and all ones corresponds to the most positive input voltage.

NYQUIST THEORY - See Sampling Theorem.

OFFSET BINARY CODE - Applicable only to bipolar input (or output) data converters, it is the same as Natural Binary, except that all zeroes corresponds to the most negative input voltage (of an A/D), while all ones corresponds to the most positive input.

POWER SUPPLY SENSITIVITY - The change in a data converters performance with changes in the power supply voltage(s). This parameter is usually expressed in percent of full scale versus \(\Delta \mathrm{V}\).

QUANTITIZATION ERROR - Also known as digitization error or uncertainty. It is the inherent error involved in digitizing an analog signal due to the finite number of steps at the digital output versus the infinite number of values at the analog input. This error is a minimum of \(\pm 1 / 2\) LSB.

RESOLUTION - The smallest change which can be discerned by an A/D converter, or produced by a DAC. It is usually expressed as the number of bits, \(n\), where the converter has \(2^{n}\) possible states.

SAMPLING THEOREM - Also known as the Nyquist Theorem. It states that the sampling frequency of an A/D must be no less than \(2 x\) the highest frequency (of interest) of the analog signal to be digitized in order to preserve the information of that analog signal.

UNIPOLAR INPUT - A mode of operation whereby the analog input range (of an \(A / D\)), or output range (of a DAC), includes values of a single polarity. Examples are 0 to \(+2.0 \mathrm{~V}, 0\) to -5.0 V , +2.0 to +8.0 V , etc.

UNIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the 00 H to \(01_{\mathrm{H}}\) transition, where the ideal location is \(1 / 2\) LSB above the most negative input voltage.

FIGURE 11 - DIFFERENTIAL PHASE AND GAIN TEST

FIGURE 12 - MC10321

FIGURE 13 - CONVERSION SEQUENCE

figure 14 - enable to output critical timing

Timing @ D6-D0 measured where waveform starts to change. Indicated time values are typical @ \(25^{\circ} \mathrm{C}\), and are in ns.

FIGURE 15 - PRECISION VRT VOLTAGE SOURCE

FIGURE 16 - \(V_{R T}\) VOLTAGE SOURCE

\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ LM317LZ } \\
\hline Line Regulation & 1.0 mV \\
\hline TC (ppm/ \(/{ }^{\circ} \mathrm{C}\)) \(\max\) & 60 \\
\hline\(\Delta \mathrm{~V}_{\text {out }}\) for \(0-70^{\circ} \mathrm{C}\) & 8.4 mV \\
\hline Initial Accuracy & \(\pm 4.0 \%\) \\
\hline
\end{tabular}

FIGURE 17 - VRB VOLTAGE SOURCES

FIGURE 18

FIGURE 19

FIGURE 20 - APPLICATION CIRCUIT FOR DIGITIZING VIDEO

FIGURE 21 - 8-BIT A/D CONVERTER

FIGURE 22 - 50 MHz 7 BIT A/D CONVERTER

FIGURE 23 - - 5.0 VOLT REGULATOR

\begin{tabular}{|l|l|c|}
\hline Line Regulation & \(4.5 \mathrm{~V}<\mathrm{V}_{\text {in }}<5.5 \mathrm{~V}, \mathrm{I}_{\text {out }}=10 \mathrm{~mA}\) & \(0.16 \%\) \\
\hline Load Regulation & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, 8.0 \mathrm{~mA}<\mathrm{I}_{\text {out }}<20 \mathrm{~mA}\) & \(0.4 \%\) \\
\hline Output Ripple & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {out }}=20 \mathrm{~mA}\) & \(2.0 \mathrm{mV} \mathrm{p}-\mathrm{p}\) \\
\hline Short Circuit \(\mathrm{I}_{\text {out }}\) & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega\) & 140 mA \\
\hline Efficiency & \(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {out }}=50 \mathrm{~mA}\) & \(52 \%\) \\
\hline
\end{tabular}

\section*{In Brief . . .}

Described in this section is Motorola's line of interface circuits, which provide the means for interfacing microprocessor or digital systems to the external world, or to other systems.

Included are devices for reading and writing to a floppy disk or tape drive system, devices which allow a microprocessor to communicate with its own array of memory and peripheral I/O circuits.

The line drivers, receivers, and transceivers permit communications between systems over cables of several thousand feet in length, and at data rates of up to several megahertz. The common EIA data transmission standards, several European standards, IEEE-488, and IBM 360/370 are addressed by these devices.

The peripheral drivers are designed to handle high current loads such as relay coils, lamps, stepper motors, and others. Input levels to these drivers can be TTL, CMOS, High Voltage MOS, or other user defined levels. The display drivers are designed for LCD, LED, incandescent and other types of displays, and provide various forms of decoding.

\section*{Interface Circuits}
Selector GuideMemory Interface and Control7-2
Microprocessor Bus Interface 7-4
Single-Ended Bus Transceivers 7-5
Line Receivers. 7-5
Line Drivers 7-6
Line Transceivers 7-6
Peripheral Drivers 7-7
Alphanumeric Listing 7-8
Related Application Notes 7-9
Data Sheets 7-10

\section*{Interface Circuits}

\section*{Memory Interface and Control}

Motorola's line of circuits in this category have well established industry standards for reading and writing in a floppy disk system. The write circuits are designed for both straddle erase and tunnel erase heads, and provide both the writing and erasing functions. The read circuits include all the circuitry for peak detection, filtering, wave shaping, and guaranteed peak shift specifications.

\section*{Floppy Disk Write Controllers}

\author{
Straddle Erase Controller \\ MC3469P - \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 648
}

Designed to provide the entire interface between floppy disk heads and the head control and write data signals for straddle-erase heads.

Provisions are made for selecting a range of accurately controlled write currents and for head selection during both read and write operation. Additionally, provisions are included for externally adjusting degauss period and inner/outer track compensation.

\author{
Tunnel/Straddle Erase Controller \\ MC3471P - \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 738
}

Provides the entire interface between the write data and head control signals and the heads (write and erase) for either tunnel or straddle-erase floppy disk systems.

Has provisions for external adjustment of degauss period, inner/outer track compensation, and the delay from write gate to erase turn-on and turn-off.
Memory Interface and Control Floppy Disk Write Controllers 7-2
Floppy Disk Read Amplifier System 7-3
Magnetic Tape Sense Amplifier 7-3
Peripheral Clamping Array 7-3
Microprocessor Bus Interface
Address and Control Bus Extenders 7-4
Microprocessor Data Bus Extenders 7-4
Single-Ended Bus Transceivers For Instrumentation Bus 7-5
For High-Current Party-Line Bus 7-5
Line Receivers
General-Purpose 7-5
360/370 I/O Interface 7-5
EIA Standard 7-5
Line Drivers General-Purpose 7-6
360/370 I/O Interface 7-6
EIA Standard. 7-6
Line Transceivers 7-6
Peripheral Drivers 7-7

Floppy Disk Read Amplifier System

MC3470,A - TA \(=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 707 Select
Designed as monolithic Read Amplifier System for obtaining digital information from floppy disk storage. These devices accept differential ac signals produced by the magnetic head and provides a digital output pulse that corresponds to each peak of the input signal. A gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output. These devices provide all the active circuitry to perform the floppy disk Read amplifier function, and guarantee to have a maximum peak shift of \(5.0 \%\), adjustable to zero, for the MC3470P and \(2.0 \%\), adjustable to zero, for the MC3470AP.

\section*{Magnetic Tape Sense Amplifier}

MC3467L, \(P\) - \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 726, 707
The MC3467 provides three independent preamplifiers with individual electronic gain control, optimized for use in 9-track magnetic tape memory systems where low noise and low distortion are paramount objectives.
The electronic gain control allows each amplifier's gain to be set anywhere from essentially zero to a maximum of approximately \(100 \mathrm{~V} / \mathrm{V}\). Minimum small-signal bandwidth is 10 MHz , and Common-Mode Input Voltage range is 1.5 V min .

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Device Number} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Peak Shift } \\
(f=250 \mathrm{kHz}, \\
V_{\text {ID }}=1.0 \\
\left.V_{\text {PP }}\right)
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Differential } \\
\text { Input } \\
\text { Voltage Gain } \\
\text { (f = } 200 \mathrm{kHz}, \\
\text { VID }^{2}=5.0 \mathrm{mV} \\
\text { [RMS]) } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{Input Common Mode Range (5\% Max THD)} \\
\hline & & \multicolumn{2}{|c|}{V/V} & \multicolumn{2}{|c|}{V} \\
\hline & & Min & Max & Min & Max \\
\hline \[
\begin{aligned}
& \text { MC3470 } \\
& \text { MC3470A }
\end{aligned}
\] & 5.0
2.0 & 80
100 & 130
130 & -0.1 & 1.5 \\
\hline
\end{tabular}

\section*{Peripheral}

\section*{Clamping Array}

TCF6000P1,D - \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626, 751
. . . designed to protect input/output lines of microprocessor systems against voltage transients.
- Optimized for HMOS System
- Minimal Component Count
- Low Board Space Requirement
- No P.C.B. Track Crossovers Required
- Applications Areas Include Automotive, Industrial, Telecommunications and Consumer Goods

\section*{Microprocessor Bus Interface}

Motorola offers a spectrum of line drivers and receivers which provide interfaces to many industry standard specifications. Many of the devices add key
operational features, such as hysteresis, short circuit protection, clamp diode protection, or special control functions.

\section*{Address and Control Bus Extenders}

These devices are designed to extend the drive capabilities of today's standard microprocessors. All devices
are fabricated with Schottky TTL technology for high speed.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\(V_{O L}\) (max) \\
@ 48 mA
\end{tabular} & \begin{tabular}{l}
\(\mathrm{VOH}_{\mathrm{OHin}}\) \\
@ - 5.2 mA
\end{tabular} & Propagation Delay Max (ns) & Buffers Per Package & Device & Package & Comments \\
\hline 0.5 & 2.4 & 13 & 6 & \[
\begin{array}{|l|}
\hline \text { MC8T95/ } \\
\text { MC6885 }
\end{array}
\] & \[
\begin{aligned}
& \mathrm{L} / 620 \\
& \mathrm{P} / 648
\end{aligned}
\] & NonInverting \\
\hline 0.5 & 2.4 & 11 & 6 & \[
\begin{array}{|l}
\text { MC8T96/ } \\
\text { MC6886 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { L/620 } \\
& \mathrm{P} / 648
\end{aligned}
\] & Inverting \\
\hline 0.5 & 2.4 & 13 & 6 & \[
\begin{aligned}
& \text { MC8T97/ } \\
& \text { MC6887 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} / 620 \\
& \mathrm{P} / 648
\end{aligned}
\] & NonInverting \\
\hline 0.5 & 2.4 & 11 & 6 & \[
\begin{array}{|l}
\text { MC8T98/ } \\
\text { MC6888 }
\end{array}
\] & \[
\begin{aligned}
& \mathrm{L} / 620 \\
& \mathrm{P} / 648
\end{aligned}
\] & Inverting \\
\hline
\end{tabular}

Hex 3-State Buffers/Inverters - \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+75^{\circ} \mathrm{C}\)
These devices differ in that the non-inverting MC8T95/ MC6885 and inverting MC8T96/MC6886 provide a twoinput Enable which controls all six buffers, while the noninverting MC8T97/MC6887 and inverting MC8T98/

\section*{MC8T95/MC6885\# - Noninverting}

MC8T96/MC6886\# - Inverting
Two-input Enable controls all six buffers

MC6888 provide two Enable inputs - one controlling four buffers and the other controlling the remaining two buffers.
\#These devices may be ordered by either of the paired numbers.
MC8T97/MC6887\# - Noninverting
MC8T98/MC6888\# - Inverting
Two Enable inputs, one controlling four buffers and the other controlling the remaining two buffers.

Microprocessor Data Bus Extenders
\begin{tabular}{|c|c|c|c|l|l|l|}
\hline \multicolumn{2}{|c|}{ Driver Characteristics } & Receiver Characteristics & & & \\
\hline \begin{tabular}{c}
Output \\
Current \\
(mA)
\end{tabular} & \begin{tabular}{c}
Propagation \\
Delay \\
Max (ns)
\end{tabular} & \begin{tabular}{c}
Propagation \\
Delay \\
Max (ns)
\end{tabular} & \begin{tabular}{c}
Transceivers \\
Per Package
\end{tabular} & \multicolumn{1}{c|}{ Device } & \begin{tabular}{c}
Package/ \\
Suffix
\end{tabular} & \multicolumn{1}{c|}{ Comments } \\
\hline 48 & 14 & 14 & 4 & \begin{tabular}{l}
MC8T26A \\
(MC6880A)
\end{tabular} & \begin{tabular}{l}
P/648 \\
L/620
\end{tabular} & Inverting Logic \\
\hline 48 & 17 & 17 & 4 & \begin{tabular}{l}
MC8T28 \\
(MC6889)
\end{tabular} & \begin{tabular}{l}
P/648 \\
L/620
\end{tabular} & NonInverting Logic \\
\hline
\end{tabular}

\section*{Single-Ended Bus Transceivers}

For Instrumentation Bus, Meets GPIB/IEEE Standard 488
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Driver Characteristics} & \multirow[t]{2}{*}{\begin{tabular}{l}
Receiver Characteristics \\
Propagation Delay Max (ns)
\end{tabular}} & \multirow[b]{2}{*}{Transceivers Per Package} & \multirow[b]{2}{*}{Device} & \multirow[b]{2}{*}{Package/ Suffix} & \multirow[b]{2}{*}{Comments} \\
\hline \begin{tabular}{l}
Output \\
Current (mA)
\end{tabular} & Propagation Delay Max (ns) & & & & & \\
\hline 48 & 50 & 50 & 4 & MC3446A & P/648 & MOS Compatible, Input Hysteresis \\
\hline 48 & 30 & 50 & 8 & MC3447 & \[
\begin{gathered}
\mathrm{P} 3 / 724 \\
\mathrm{~L} / 623
\end{gathered}
\] & Input Hysteresis, Open Collector, 3-State Outputs with Terminations \\
\hline 48 & 17 & 25 & 4 & MC3448A & \[
\begin{aligned}
& \mathrm{P} / 648 \\
& \mathrm{~L} / 620
\end{aligned}
\] & Input Hysteresis, Open Collector 3-State Outputs with Terminations \\
\hline 100 & 30 & 30 & 4 & MC3440A & P/648 & Input Hysteresis, Enable for 3 Drivers \\
\hline & & & & MC3441A & & Common Enable, Input Hysteresis \\
\hline
\end{tabular}

For High-Current Party-Line Bus for Industrial and Data Communications
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 100 & \({ }^{15}\) & \({ }^{15}\) & \({ }^{15}\) & MC26s10 & \begin{tabular}{l}
P6648 \\
L620
\end{tabular} & \begin{tabular}{l}
Open Collector Outputs, Common \\
Enable
\end{tabular} \\
\hline
\end{tabular}

\section*{Line Receivers}

\section*{General-Purpose}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|l|}
\hline \(\mathbf{S}=\)\begin{tabular}{c}
Single \\
Ended \\
Differ- \\
ential
\end{tabular} & \begin{tabular}{c}
Type \\
Of \\
Output
\end{tabular} & \begin{tabular}{c}
tprop \\
Delay \\
Time \\
Max \\
(ns)
\end{tabular} & \begin{tabular}{c}
Party- \\
Line \\
Opera- \\
tion
\end{tabular} & \begin{tabular}{c}
Strobe \\
Or \\
Enable
\end{tabular} & \begin{tabular}{c}
Power \\
Supplies \\
(V)
\end{tabular} & Device & \begin{tabular}{c}
Package/ \\
Suffix
\end{tabular} & \begin{tabular}{c}
Receivers \\
Per \\
Package
\end{tabular} & \begin{tabular}{c}
Companion \\
Drivers
\end{tabular} & Comments \\
\hline D & TP & 25 & Yes & Yes & \(\pm 5\) & MC3450 & P/648 & 4 & MC3453 & Quad version of \\
MC75107/8 \\
\hline D & OC & 25 & Yes & Yes & \(\pm 5\) & MC3452 & \(\mathrm{L} / 620\) & 4 & & \\
\hline D & TP & 25 & Yes & Yes & \(\pm 5\) & MC75107 & P/646 & 2 & MC75S110 & Dual version of \\
D & OC & 25 & Yes & Yes & \(\pm 5\) & MC75108 & \(\mathrm{L} / 632\) & 2 & & MC3450/2 \\
\hline S & TP & 30 & Yes & Yes & +5 & MC3437 & P/648 & 6 & & Input Hysteresis \\
\hline
\end{tabular}

360/370 I/O Interface
\begin{tabular}{|c|c|c|c|c|c|c|c|c|l|l|}
\hline S & TP & 30 & Yes & No & +5 & \begin{tabular}{l}
MC75125 \\
MC75127
\end{tabular} & \begin{tabular}{l}
P/648 \\
\(\mathrm{L} / 620\)
\end{tabular} & 7 & \begin{tabular}{l}
MC3481 \\
MC3485
\end{tabular} & \begin{tabular}{l}
Schottky \\
Circuitry
\end{tabular} \\
\hline S & TP & 30 & Yes & Yes & +5 & \begin{tabular}{l}
MC75128 \\
MC75129
\end{tabular} & \begin{tabular}{l}
\(\mathrm{P} / 738\) \\
\(\mathrm{~L} / 732\)
\end{tabular} & 8 & \begin{tabular}{l}
MC3481 \\
MC3485
\end{tabular} & \begin{tabular}{l}
Active high strobe \\
Active low strobe
\end{tabular} \\
\hline
\end{tabular}
*OC \(=\) Open Collector, TP \(=\) Totem-pole output

\section*{EIA Standard}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline S = Single \\
\begin{tabular}{c}
Ended \\
Differ- \\
ential
\end{tabular} & \begin{tabular}{c}
Type* \\
Of \\
Output
\end{tabular} & \begin{tabular}{c}
tprop \\
Delay \\
Time \\
Max \\
(ns)
\end{tabular} & \begin{tabular}{c}
Party- \\
Line \\
Opera- \\
tion
\end{tabular} & \begin{tabular}{c}
Strobe \\
Or \\
Enable
\end{tabular} & \begin{tabular}{c}
Power \\
Supplies \\
(V)
\end{tabular} & Device & \begin{tabular}{c}
Package/ \\
Suffix
\end{tabular} & \begin{tabular}{c}
Receivers \\
Per \\
Package
\end{tabular} & \begin{tabular}{c}
Companion \\
Drivers
\end{tabular} & \begin{tabular}{c}
EIA \\
Standard
\end{tabular} \\
\hline S & R & 85 & No & No & +5 & \begin{tabular}{l}
MC1489 \\
MC1489A
\end{tabular} & \begin{tabular}{l}
P/646 \\
L/632
\end{tabular} & 4 & MC1488 & \begin{tabular}{l}
(RS-232) \\
EIA-232-D
\end{tabular} \\
\hline S, D & TP & 30 & Yes & Yes & +5 & AM26LS32 & P/648 & 4 & AM26LS31 & (RS-422/423) \\
S, D & TP & 30 & Yes & Yes & +5 & MC3486 & L/620 & 4 & MC3487 & EIA-422/423 \\
\hline S, D & TP & 35 & Yes & Yes & +5 & SN75173 & N/648 & 4 & SN75172 & (RS-422/423/485) \\
S, D & TP & 35 & Yes & Yes & +5 & SN75175 & J/620 & 4 & SN75174 & EIA-422/423/485 \\
\hline
\end{tabular}

\footnotetext{
*R \(=\) Resistor Pull-up, TP \(=\) Totem-pole output
}

\section*{Line Drivers}

\section*{General Purpose}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Output \\
Current
\end{tabular} & \begin{tabular}{c}
tprop \\
Delay \\
Capa- \\
bility \\
(mA)
\end{tabular} & \begin{tabular}{c}
Max \\
Mas) \\
(ns)
\end{tabular} & \begin{tabular}{c}
Single \\
Ended \\
Differ- \\
ential
\end{tabular} & \begin{tabular}{c}
Party- \\
Line \\
Opera- \\
tion
\end{tabular} & \begin{tabular}{c}
Strobe \\
Or \\
Enable
\end{tabular} & \begin{tabular}{c}
Power \\
Supplies \\
(V)
\end{tabular} & Device & \begin{tabular}{c}
\\
Package/ \\
Suffix
\end{tabular} & \begin{tabular}{c}
Drivers \\
Per \\
package
\end{tabular} & \begin{tabular}{c}
Companion \\
Receivers
\end{tabular} \\
\hline 15 & 15 & D & Yes & Yes & \(\pm 5\) & MC3453 & \begin{tabular}{c}
P/648 \\
Comments
\end{tabular} \\
\hline 15 & 15 & D & Yes & Yes & \(\pm 5\) & 4 & \begin{tabular}{l}
MC3450 \\
MC3452
\end{tabular} & \begin{tabular}{l}
Quad version of \\
MC75S110
\end{tabular} \\
\hline
\end{tabular}

360/370 I/O Interface
\begin{tabular}{|c|c|c|c|c|c|c|c|c|l|l|}
\hline 60 & 45 & S & Yes & Yes & +5 & MC3481 & \begin{tabular}{l}
P/648 \\
\(L / 620\)
\end{tabular} & 4 & \begin{tabular}{l}
MC75125 \\
MC75127
\end{tabular} & \begin{tabular}{l}
Short Circuit \\
Fault Flag
\end{tabular} \\
\hline 60 & 45 & S & Yes & Yes & +5 & MC3485 & \begin{tabular}{l}
\(\mathrm{P} / 648\) \\
\(L / 620\)
\end{tabular} & 4 & \begin{tabular}{l}
MC75128 \\
MC75129
\end{tabular} & \begin{tabular}{l}
Short Circuit \\
Fault Flag
\end{tabular} \\
\hline
\end{tabular}

\section*{EIA Standard}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Output Current Capability (mA) & tprop Delay Time Max (ns) & \[
\begin{aligned}
& \mathbf{S}= \begin{array}{l}
\text { Single } \\
\text { Ended }
\end{array} \\
& \mathbf{D}=\begin{array}{l}
\text { Differ- } \\
\text { ential }
\end{array}
\end{aligned}
\] & PartyLine Operation & Strobe Or Enable & Power Supplies (V) & Device & Package/ Suffix & Drivers Per Package & Companion Receivers & EIA Standard \\
\hline \[
\begin{aligned}
& 85 \\
& 85
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{D} \\
& \mathrm{D}
\end{aligned}
\] & \begin{tabular}{l}
Yes \\
Yes
\end{tabular} & \begin{tabular}{l}
Yes \\
Yes
\end{tabular} & \[
\begin{aligned}
& +5 \\
& +5
\end{aligned}
\] & \begin{tabular}{l}
SN75172 \\
SN75174
\end{tabular} & \[
\begin{aligned}
& \mathrm{N} / 648 \\
& \mathrm{~J} / 620
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { SN75173 } \\
& \text { SN75175 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { (RS-485) } \\
& \text { EIA-485 }
\end{aligned}
\] \\
\hline 48 & 20 & D & Yes & Yes & +5 & MC3487 & \[
\begin{aligned}
& \text { P/648 } \\
& \mathrm{L} / 620
\end{aligned}
\] & 4 & MC3486 & (RS-422) EIA-422 \\
\hline 48 & 20 & D & Yes & Yes & +5 & AM26LS31 & \[
\begin{aligned}
& \text { P/648 } \\
& \mathrm{D} / 620
\end{aligned}
\] & 4 & AM26LS32 & Outputs \\
\hline 20 & - & S & No & No & \(\pm 12\) & \[
\begin{aligned}
& \text { MC3488A } \\
& (\mu \mathrm{A} 9636 \mathrm{~A})
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P} 1 / 626 \\
& \mathrm{U} / 693
\end{aligned}
\] & 2 & \[
\begin{aligned}
& \text { MC3486 } \\
& \text { AM26LS32 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { (RS-423/232) } \\
& \text { EIA-423/232-D }
\end{aligned}
\] \\
\hline 10 & 350 & S & No & Yes & \[
\begin{gathered}
\pm 9 \text { to } \\
\pm 12
\end{gathered}
\] & MC1488 & \[
\begin{aligned}
& \text { P/646 } \\
& \text { L/632 }
\end{aligned}
\] & 4 & \[
\begin{aligned}
& \text { MC1489 } \\
& \text { MC1489A }
\end{aligned}
\] & \[
\begin{aligned}
& \text { (RS-232) } \\
& \text { EIA-232-D }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Line Transceivers}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Driver Prop Delay (Max ns) & Receiver Prop Delay (Max ns) & \[
\begin{aligned}
\mathrm{CE}= & \text { Common } \\
& \text { Enable } \\
\text { DE }= & \text { Driver } \\
& \text { Enable } \\
\text { RE }= & \text { Receiver } \\
& \text { Enable }
\end{aligned}
\] & Party Line Operation & Power Supply (V) & Device & Package/ Suffix & Drivers Per Package & Receivers Per Package & \begin{tabular}{l}
EIA \\
Standard
\end{tabular} \\
\hline 20 & 30 & DE, RE & Yes & + 5 & MC34050 & \[
\begin{aligned}
& \mathrm{L} / 620 \\
& \mathrm{P} / 648
\end{aligned}
\] & 2 & 2 & \[
\begin{array}{|l|}
\hline \text { (RS-422) } \\
\text { EIA-422 }
\end{array}
\] \\
\hline 20 & 30 & DE & Yes & +5 & MC34051 & \[
\begin{aligned}
& \mathrm{L} / 620 \\
& \mathrm{P} / 648
\end{aligned}
\] & 2 & 2 & \[
\begin{array}{|l}
\hline \text { (RS-422) } \\
\text { EIA-422 }
\end{array}
\] \\
\hline
\end{tabular}

\section*{Peripheral Drivers}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Output Current Capability (mA) & input Capability & Propagation Delay Time \(\operatorname{Max}(\mu \mathrm{s})\) & Output Clamp Diode & \begin{tabular}{l}
Off State \\
Voltage \\
Max (V)
\end{tabular} & Device & Drivers Per Package & Package/ Suffix & Logic Function \\
\hline 300 & TTL, DTL & 1.0 & Yes & 70 & MC1472 & 2 & \[
\begin{aligned}
& \mathrm{P} 1 / 626 \\
& \mathrm{U} / 693
\end{aligned}
\] & NAND \\
\hline 500 & TTL, CMOS, PMOS & 1.0 & Yes & 50 & ULN2801 & 8 & A/707 & Invert \\
\hline 500 & 14 V to 25 V PMOS & 1.0 & Yes & 50 & ULN2802 & 8 & A/707 & Invert \\
\hline 500 & TTL, CMOS & 1.0 & Yes & 50 & ULN2803 & 8 & A/707 & Invert \\
\hline 500 & 6.0 V to 15 V MOS & 1.0 & Yes & 50 & ULN2804 & 8 & A/707 & Invert \\
\hline 500 & TTL, CMOS PMOS & 1.0 & Yes & 50 & MC1411, B & 7 & P/648 & Invert \\
\hline 500 & 14 V to 25 V PMOS & 1.0 & Yes & 50 & MC1412,B & 7 & P/648 & Invert \\
\hline 500 & \[
\begin{gathered}
\text { TTL, } 5.0 \mathrm{~V} \\
\text { CMOS }
\end{gathered}
\] & 1.0 & Yes & 50 & MC1413,B & 7 & P/648 & Invert \\
\hline 500 & 8.0 V to 18 V MOS & 1.0 & Yes & 50 & MC1416, B & 7 & P/648 & Invert \\
\hline 1500 & \[
\begin{gathered}
\text { TTL, } 5.0 \mathrm{~V} \\
\text { CMOS }
\end{gathered}
\] & 1.0 & Yes & 50 & ULN2068B & 4 & B/648 & Invert \\
\hline 1500 & \[
\begin{aligned}
& \text { TTL, } 5.0 \mathrm{~V} \\
& \text { CMOS }
\end{aligned}
\] & 1.0 & No & 50 & ULN2074B & 4 & B/648 & Collector, Emitter available at Pins \\
\hline
\end{tabular}

\section*{INTERFACE CIRCUITS}

\section*{Memory Interface and Control}
Device Function Page
MC3467 Triple Preamplifier 7-83
MC3469P Floppy Disk Write Controller 7-88
MC3470P,AP Floppy Disk Read Amplifier System 7-98
MC3471P Floppy Disk Write Controller/Head Driver 7-112
MC3480 Memory Controller Circuit 7-123
TCF6000 Peripheral Clamping Array 7-196
Microprocessor Bus Interface
Device Function Page
MC8T26A Quad Three-State Bus Transceiver 7-16
MC8T28 Noninverting Bus Transceiver 7-21
MC8T95 Hex Three-State Buffer/Inverter 7-26
MC8T96 Hex Three-State Buffer/Inverter 7-26
MC8T97 Hex Three-State Buffer/Inverter 7-26
MC8T98 Hex Three-State Buffer/Inverter 7-26
MC6875,A MC6800 Clock Generator/Driver 7-153
MC6880A Quad Three-State Bus Transceiver 7-16
MC6885 Hex Three-State Buffer/Inverter 7-26
MC6886 Hex Three-State Buffer/Inverter 7-26
MC6887 Hex Three-State Buffer/Inverter 7-26
MC6888 Hex Three-State Buffer/Inverter 7-26
MC6889 Noninverting Bus Transceiver 7-21
Single-Ended Bus Transceivers
Device Function Page
MC26S10 Quad Open-Collector Bus Transceiver 7-48
MC3440A Quad Interface Bus Transceiver 7-54
MC3441A Quad Interface Bus Transceiver 7-54
MC3446A Quad Interface Bus Transceiver 7-58
MC3447 Bidirectional Instrumentation Bus Transceiver 7-61
MC3448A Quad Three-State Bus Transceiver 7-67
Line Receivers
Device Function Page
AM26LS32 Quad EIA-422/3 Line Receiver with Three-State Outputs 7-13
MC1489,A Quad MDTL Line Receiver 7-43
MC3437 Hex Unified Bus Receiver 7-51
MC3450 Quad Line Receiver 7-72
MC3452 Quad Line Receiver 7-72
MC3486 Quad EIA-422/423 Line Receiver 7-142
MC75107 Dual Line Receiver 7-171
MC75108 Dual Line Receiver 7-171
MC75125 Seven-Channel Line Receivers 7-181
MC75127 Seven-Channel Line Receivers 7-181
MC75128 Eight-Channel Line Receivers 7-185
MC75129 Eight-Channel Line Receivers 7-185
SN75173 Quad EIA-422A/3 Line Receiver with Three-State Output 7-191
SN75175 Quad EIA-422A/3 Line Receiver with Three-State Output 7-191

\section*{Line Drivers}
Device Function Page
AM26LS31 Quad EIA-422 Line with Three-State Output 7-10
MC1488 Quad MDTL Line Driver 7-37
MC3453 Quad Line Driver 7-79
MC3481 Quad Single-Ended Line Driver 7-137
MC3485 Quad Single-Ended Line Driver 7-137
MC3487 Quad EIA-422 Line Driver with Three-State Outputs 7-145
MC3488A Dual EIA-423/232C Driver 7-149
MC75S110 Dual Line Driver 7-176
SN75172 Quad EIA-485 Line Driver with Three-State Output 7-189
SN75174 Quad EIA-485 Line Driver with Three-State Output 7-189
Line Transceivers
Device Function Page
MC34050 Dual EIA-422/423 Transceiver 7-164
MC34051 Dual EIA-422/423 Transceiver 7-164
Peripheral Drivers
Device Function Page
MC1411,B Peripheral Driver Array 7-30
MC1412,B Peripheral Driver Array 7-30
MC1413,B Peripheral Driver Array 7-30
MC1416,B Peripheral Driver Array 7-30
MC1472 Dual Peripheral Positive NAND Driver 7-34
ULN2068B Quad 1.5 A Darlington Switch 7-200
ULN2074B Quad 1.5 A Darlington Switch 7-204
Octal Peripheral Driver Array 7-208
ULN2802 Octal Peripheral Driver Array 7-208
ULN2803 Octal Peripheral Driver Array 7-208
ULN2804 Octal Peripheral Driver Array 7-208
RELATED APPLICATION NOTES
\begin{tabular}{|c|c|c|}
\hline Application Note & Title & Related Device \\
\hline AN708A & Line Driver and Receiver Considerations & MC3486 \\
\hline AN781A & Revised Data - Interface Standards & MC3488 \\
\hline AN917 & Reading and Writing in Floppy Disk Systems Using Motorola Integrated Circuits & MC3467 \\
\hline
\end{tabular}

MOTOROLA

\section*{QUAD LINE DRIVER WITH NAND ENABLED THREE-STATE OUTPUTS}

The Motorola AM26LS31 is a quad differential line driver intended for digital data transmission over balanced lines. It meets all the requirements of EIA-422 Standard and Federal Standard 1020.

The AM26LS31 provides an enable/disable function common to all four drivers as opposed to the split enables on the MC3487 EIA-422 driver.
The high impedance output state is assured during power down.
- Full EIA-422 Standard Compliance
- Single +5.0 V Supply
- Meets Full \(\mathrm{V}_{\mathrm{O}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}<100 \mu \mathrm{~A}\) Requirement
- Output Short Circuit Protection
- Complementary Outputs for Balanced Line Operation
- High Output Drive Capability
- Advanced LS Processing
- PNP Inputs for MOS Compatibility

\footnotetext{
*Note that the surface mount MC26LS31D devices use the same die as in the ceramic and plastic
} DIP AM26LS31DC devices, but with an MC prefix to prevent confusion with the package suffixes.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ TRUTH TABLE } \\
\hline Input & \begin{tabular}{c}
Control \\
Inputs \\
(E/E)
\end{tabular} & \begin{tabular}{c}
Non-Inverting \\
Output
\end{tabular} & \begin{tabular}{c}
Inverting \\
Output
\end{tabular} \\
\hline H & H/L & H & L \\
L & H/L & L & H \\
X & L/H & Z & Z \\
\hline \multicolumn{4}{|c|}{\(\mathrm{L}=\) Low Logic State } \\
H \(=\) High Logic State \\
X \(=\) Irrelevant \\
Z \(=\) Third-State (High Impedance) \\
\hline
\end{tabular}

\section*{QUAD EIA-422 LINE DRIVER WITH THREE-STATE OUTPUTS}

SILICON MONOLITHIC INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 8.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{I}}\) & 5.5 & Vdc \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature Range & \(\mathrm{TJ}_{\mathrm{J}}\) & & \({ }^{\circ} \mathrm{C}\) \\
Ceramic Package & & 175 & \\
Plastic Package & & 150 & \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply \(4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\) and \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}\). Typical values measured at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\), and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Input Voltage - Low Logic State & \(\mathrm{V}_{\text {IL }}\) & - & - & 0.8 & Vdc \\
\hline Input Voltage - High Logic State & \(\mathrm{V}_{\text {IH }}\) & 2.0 & - & - & Vdc \\
\hline Input Current - Low Logic State
\[
\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right)
\] & ILL & - & - & -360 & \(\mu \mathrm{A}\) \\
\hline Input Current - High Logic State
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{IH}}=7.0 \mathrm{~V}\right)
\end{aligned}
\] & IIH & - & - & \[
\begin{aligned}
& +20 \\
& +100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Clamp Voltage
\[
\left(I_{\mathrm{K}}=-18 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\text {IK }}\) & - & - & -1.5 & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage - Low Logic State } \\
& \left(\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & - & - & 0.5 & V \\
\hline Output Voltage - High Logic State
\[
\left(l_{\mathrm{OH}}=-20 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 2.5 & - & - & V \\
\hline Output Short Circuit Current (\(\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}\)) Note 1 & IOS & \(-30\) & - & -150 & mA \\
\hline Output Leakage Current - Hi-Z State
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}(\mathrm{E})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}(\overline{\mathrm{E}})}=2.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}(\mathrm{E})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}(\overline{\mathrm{E}})}=2.0 \mathrm{~V}\right)
\end{aligned}
\] & \({ }^{1} \mathrm{O}(\mathrm{Z})\) & - & - & \[
\begin{aligned}
& -20 \\
& +20
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Output Leakage Current - Power OFF
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{OH}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{OL}}=-0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right)
\end{aligned}
\] & IO(off) & - & - & \[
\begin{aligned}
& +100 \\
& -100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Output Offset Voltage Difference, Note 2 & \(\mathrm{v}_{\mathrm{OS}}-\overline{\mathrm{v}}_{\text {OS }}\) & - & - & \(\pm 0.4\) & V \\
\hline Output Differential Voltage, Note 2 & \(\mathrm{V}_{\mathrm{OD}}\) & 2.0 & - & - & V \\
\hline Output Differential Voltage Difference, Note 2 & \(\left|\Delta \mathrm{V}_{\mathrm{OD}}\right|\) & - & - & \(\pm 0.4\) & V \\
\hline Power Supply Current (Output Disabled) Note 3 & ICCX & - & 60 & 80 & mA \\
\hline
\end{tabular}

Only one output may be shorted at a time.
2. See EIA Specification EIA-422 for exact test conditions.
3. Circuit in three-state condition.

SWITCHING CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Propagation Delay Times High to Low Output Low to High Output & tPHL tPLH & - & & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & ns \\
\hline Output Skew & & - & - & 6.0 & ns \\
\hline \[
\begin{aligned}
& \text { Propagation Delay - Control to Output } \\
& \left(\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=75 \Omega \text { to } \mathrm{Gnd}\right) \\
& \left(\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=180 \Omega \text { to } \mathrm{V}_{\mathrm{CC}}\right) \\
& \left(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=75 \Omega \text { to } \mathrm{Gnd}\right) \\
& \left(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=180 \Omega \text { to } \mathrm{V}_{\mathrm{CC}}\right) \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
tPHZ(E) \\
tPLZ(E) \\
tPZH(E) \\
tPZL(E)
\end{tabular} & - & - & \[
\begin{aligned}
& 30 \\
& 35 \\
& 40 \\
& 45 \\
& \hline
\end{aligned}
\] & ns \\
\hline
\end{tabular}

\section*{QUAD EIA-422/423 LINE RECEIVER}

Motorola's Quad EIA-422/3 Receiver features four independent receiver chains which comply with EIA Standards for the Electrical Characteristics of Balanced/Unbalanced Voltage Digital Interface Circuits. Receiver outputs are 74LS compatible, three-state structures which are forced to a high impedance state when Pin 4 is a Logic " 0 " and Pin 12 is a Logic "1." A PNP device buffers each output control pin to assure minimum loading for either Logic " 1 " or Logic " 0 " inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms. A summary of AM26LS32 features include:
- Four Independent Receiver Chains
- Three-State Outputs
- High Impedance Output Control Inputs (PIA Compatible)
- Internal Hysteresis - 30 mV (Typ) @ Zero Volts Common Mode
- Fast Propagation Times - 25 ns (Typ)
- TTL Compatible
- Single 5 V Supply Voltage
- Fail-Safe Input-Output Relationship. Output Always High When Inputs Are Open, Terminated or Shorted
- 6 K Minimum Input Impedance

\section*{OUAD EIA-422/3 LINE RECEIVER} WITH THREE-STATE OUTPUTS

\section*{SILICON MONOLITHIC INTEGRATED CIRCUIT}

*Note that the surface mount MC26LS32D devices use the same die as in the ceramic and plastic DIP AM26LS32DC devices, but with an MC prefix to prevent confusion with the package suffixes

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION } \\
\hline Device & Temperature & Package \\
\hline AM26LS32DC & & Ceramic DIP \\
\cline { 1 - 1 } AM26LS32PC & \multirow{3}{*}{0 to \(70^{\circ} \mathrm{C}\)} & Plastic DIP \\
\cline { 1 - 1 } \cline { 3 - 3 } MC26LS32D* & & SO-16 \\
\hline
\end{tabular}

\section*{AM26LS32}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Input Common Mode Voltage & \(\mathrm{V}_{\mathrm{ICM}}\) & \(\pm \mathbf{2 5}\) & Vdc \\
\hline Input Differential Voltage & \(\mathrm{V}_{\mathrm{ID}}\) & \(\pm 25\) & Vdc \\
\hline Three-State Control Input Voltage & \(\mathrm{V}_{\mathrm{I}}\) & 7.0 & Vdc \\
\hline Output Sink Current & \(\mathrm{I}_{\mathrm{O}}\) & 50 & mA \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & & \({ }^{\circ} \mathrm{C}\) \\
& & +175 & \\
& & +150 & \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 4.75 to 5.25 & Vdc \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Input Common Mode Voltage Range & \(\mathrm{V}_{\text {ICR }}\) & -7.0 to +7.0 & Vdc \\
\hline Input Differential Voltage Range & \(\mathrm{V}_{\text {IDR }}\) & 6.0 & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{V}_{\text {IC }}=0 . \mathrm{V}\). See Note 1.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Input Voltage - High Logic State } \\
& \text { (Three-State Control) } \\
& \hline
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & - & - & V \\
\hline Input Voltage - Low Logic State (Three-State Control) & \(V_{\text {IL }}\) & - & - & 0.8 & V \\
\hline \[
\begin{aligned}
& \text { Differential Input Threshold Voltage (Note 2) } \\
& \left(-7.0 \mathrm{~V} \leqslant \mathrm{~V} \mathrm{IC} \leqslant 7.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}\right) \\
& \left(\mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}} \geqslant 2.7 \mathrm{~V}\right) \\
& \left(\mathrm{I}_{\mathrm{O}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}} \leqslant 0.45 \mathrm{~V}\right)
\end{aligned}
\] & \(\mathrm{V}_{\text {TH(D) }}\) & & - & \[
\begin{array}{r}
0.2 \\
-0.2
\end{array}
\] & V \\
\hline \[
\begin{aligned}
& \text { Input Bias Current } \\
& \qquad \begin{array}{l}
\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.25\right) \text { (Other Inputs at }-15 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant+15 \mathrm{~V} \text {) } \\
\mathrm{V}_{\text {in }}=+15 \mathrm{~V} \\
\mathrm{~V}_{\text {in }}=-15 \mathrm{~V}
\end{array}
\end{aligned}
\] & \(I_{\text {IB }(D)}\) & - & - & \[
\begin{array}{r}
2.3 \\
-2.8
\end{array}
\] & mA \\
\hline Input Resistance (\(-15 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant+15 \mathrm{~V}\)) & \(\mathrm{R}_{\text {in }}\) & 6.0 K & - & - & Ohms \\
\hline \begin{tabular}{l}
Input Balance and Output Level
\[
1-7.0 \mathrm{~V} \leqslant \mathrm{~V}_{I C} \leqslant 7.0 \mathrm{~V}, \mathrm{~V}_{I \mathrm{H}}=2.0 \mathrm{~V},
\] \\
See Note 3)
\[
\begin{aligned}
& \left(I_{\mathrm{O}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=0.4 \mathrm{~V}\right) \\
& \left(I_{\mathrm{O}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=-0.4 \mathrm{~V}\right)
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & \[
2.7
\] & - & \[
0.45
\] & V \\
\hline \[
\begin{aligned}
& \text { Output Third State Leakage Current } \\
& \qquad \begin{array}{l}
\left(\mathrm{V}_{1(\mathrm{D})}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}\right) \\
\left(\mathrm{V}_{\mathrm{I}(\mathrm{D})}=-3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V}\right)
\end{array}
\end{aligned}
\] & Ioz & \[
-
\] & - & \[
\begin{array}{r}
-20 \\
20
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Output Short Circuit Current
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{I}(\mathrm{D})}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V},\right. \\
& \text { See Note 4) }
\end{aligned}
\] & 'os & -15 & - & -85 & mA \\
\hline \[
\begin{aligned}
& \text { Input Current - Low Logic State } \\
& \text { (Three-State Control) } \\
& \left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right) \\
& \hline
\end{aligned}
\] & IIL & - & - & -360 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Input Current - High Logic State } \\
& \text { (Three-State Control) } \\
& \left(\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}\right) \\
& \hline
\end{aligned}
\] & 1 IH & - & - & \[
\begin{array}{r}
20 \\
100 \\
\hline
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Input Clamp Diode Voltage (Three-State Control)
\[
(11 C=-18 \mathrm{~mA})
\] & \(\mathrm{V}_{\text {IK }}\) & - & - & -1.5 & V \\
\hline Power Supply Current (\(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\)) (All Inputs Grounded) & ICC & - & - & 70 & mA \\
\hline
\end{tabular}
1. All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless otherwise noted.
2. Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case.
3. Refer to EIA-422/3 for exact conditions. Input balance and guaranteed output levels are done simultaneously for worst case.
4. Only one output at a time should be shorted.

SWITCHING CHARACTERISTICS (Unless otherwise noted, \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Propagation Delay Time - Differential \\
Inputs to Output \\
(Output High to Low)
\end{tabular} & & & & & \\
(Output Low to High) & tPHL(D) & - & & \\
\hline Propagation Delay Time - Three-State & - & - & 30 & \\
Control to Output & & & & \\
(Output Low to Third State) & & & & \\
(Output High to Third State) & tPLZ & - & & \\
(Output Third State to High) & tPHZ & - & - & 30 & \\
(Output Third State to Low) & tPZH & - & - & 35 & \\
\hline
\end{tabular}

FIGURE 2 - PROPAGATION DELAY THREE-STATE CONTROL INPUT TO OUTPUT

\section*{QUAD THREE-STATE BUS TRANSCEIVER}

This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 mA driver and -20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.

The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of \(200 \mu \mathrm{~A}\) at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages.

The MC8T26A is identical to the NE8T26A and it operates from a single +5 V supply.
- High Impedance Inputs
- Single Power Supply
- High Speed Schottky Technology
- Three-State Drivers and Receivers
- Compatible with M6800 Family Microprocessor

MAXIMUM RATINGS (T \({ }_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 8.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\mathbf{I}}\) & 5.5 & Vdc \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & & \({ }^{\circ} \mathrm{C}\) \\
Ceramic Package & & 175 & \\
Plastic Package & & 150 & \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (4.75 V \(\leqslant V_{C C} \leqslant 5.25 \mathrm{~V}\) and \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Input Current - Low Logic State \\
(Receiver Enable Input, \(\mathrm{V}_{\text {IL }}(\mathrm{RE})=0.4 \mathrm{~V}\)) \\
(Driver Enable Input, \(\mathrm{V}_{1 L}(\mathrm{DE})=0.4 \mathrm{~V}\)) \\
(Driver Input, \(\mathrm{V}_{1 \mathrm{~L}(\mathrm{D})}=0.4 \mathrm{~V}\)) \\
(Bus (Receiver) Input, \(\mathrm{V}_{\mathrm{IL}(\mathrm{B})}=0.4 \mathrm{~V}\))
\end{tabular} & \begin{tabular}{l}
IIL (\(\overline{\mathrm{RE}})\) \\
IIL(DE) \\
IIL(D) \\
IIL(B)
\end{tabular} & - & - & \[
\begin{aligned}
& -200 \\
& -200 \\
& -200 \\
& -200
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Disabled Current - Low Logic State (Driver Input, \(\mathrm{V}_{\mathrm{IL}}(\mathrm{D})=0.4 \mathrm{~V}\)) & IIL(D) DIS & - & - & -25 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Input Current-High Logic State \\
(\(\overline{\text { Receiver Enable }}\) Input, \(V_{I H}(R E)=5.25 \mathrm{~V}\)) \\
(Driver Enable Input, \(\mathrm{V}_{1} \mathrm{H}(\mathrm{DE})=5.25 \mathrm{~V}\)) \\
(Driver Input, \(\mathrm{V}_{1 \mathrm{H}}(\mathrm{D})=5.25 \mathrm{~V}\)) \\
(Receiver Input, \(\mathrm{V}_{1 \mathrm{H}(\mathrm{B})}=5.25 \mathrm{~V}\))
\end{tabular} & \begin{tabular}{l}
\(I_{1 H}(\overline{R E})\) \\
1 IH(DE) \\
\(1_{1 H(D)}\) \\
\(1 / \mathrm{H}(\mathrm{B})\)
\end{tabular} & & & \[
\begin{array}{r}
25 \\
25 \\
25 \\
100
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Input Voltage - Low Logic State \\
(Receiver Enable Input) \\
(Driver Enable Input \\
(Driver Input) \\
(Receiver Input)
\end{tabular} & \begin{tabular}{l}
\(V_{I L}(\overline{R E})\) \\
\(V_{\text {IL }}(D E)\) \\
\(V_{\text {IL }}(D)\) \\
\(V_{\text {IL }}(B)\)
\end{tabular} & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & & \[
\begin{aligned}
& 0.85 \\
& 0.85 \\
& 0.85 \\
& 0.85
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
Input Voltage - High Logic State \\
(Receiver Enable Input) \\
(Driver Enable Input) \\
(Driver Input) \\
(Receiver Input)
\end{tabular} & \[
\begin{aligned}
& V_{1 H(\overline{R E})} \\
& V_{1 H(D E)} \\
& V_{1 H(D)} \\
& V_{1 H(B)}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & V \\
\hline Output Voltage - Low Logic State (Bus Driver) Output, \(1 \mathrm{OL}(\mathrm{B})=48 \mathrm{~mA}\)) (Receiver Output, \(\mathrm{I}_{\mathrm{OL}(\mathrm{R})}=20 \mathrm{~mA}\)) & \begin{tabular}{l}
\(V_{\text {OL(B) }}\) \\
\(V_{O L(R)}\)
\end{tabular} & - & & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & V \\
\hline ```
Output Voltage - High Logic State
 (Bus (Driver) Output, IOH(B)=-10 mA)
 (Receiver Output, }\mp@subsup{I}{OH}{\prime}(R)=-2.0\textrm{mA}
 (Receiver Output, IOH(R)}=-100\mu\textrm{A},\mp@subsup{\textrm{V}}{\textrm{CC}}{}=5.0\textrm{V}
``` & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}(\mathrm{B})}\) \\
\(\mathrm{V}_{\mathrm{OH}}(\mathrm{R})\)
\end{tabular} & \[
\begin{aligned}
& 2.4 \\
& 2.4 \\
& 3.5
\end{aligned}
\] & \[
\begin{gathered}
3.1 \\
3.1 \\
-
\end{gathered}
\] & - & V \\
\hline \begin{tabular}{l}
Output Disabled Leakage Current - High Logic State \\
(Bus Driver) Output, \(\mathrm{V}_{\mathrm{OH}(\mathrm{B})}=2.4 \mathrm{~V}\) ) \\
(Receiver Output, \(\mathrm{V}_{\mathrm{OH}}(\mathrm{R})=2.4 \mathrm{~V}\) )
\end{tabular} & \({ }^{1} \mathrm{OHL}(\mathrm{B})\) \({ }^{1} \mathrm{OHL}(\mathrm{R})\) & - & - & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Disabled Leakage Current - Low Logic State (Bus Output, \(\mathrm{V}_{\mathrm{OL}(\mathrm{B})}=0.5 \mathrm{~V}\) ) \\
(Receiver Output, \(\mathrm{V}_{\mathrm{OL}(\mathrm{R})}=0.5 \mathrm{~V}\) )
\end{tabular} & \begin{tabular}{l}
IOLL(B) \\
IOLL(R)
\end{tabular} & - & - & \[
\begin{aligned}
& -100 \\
& -100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Input Clamp Voltage \\
(Driver Enable Input \(I_{I D(D E)}=-12 \mathrm{~mA}\) ) \\
(Receiver Enable Input IIC(RE) \(=+12 \mathrm{~mA}\) ) \\
(Driver Input \(I_{I C}(D)=-12 \mathrm{~mA}\) )
\end{tabular} & \begin{tabular}{l}
\(V_{\text {IC }}(D E)\) \\
VIC(RE) \\
\(V_{I C}(D)\)
\end{tabular} & - & - & \[
\begin{aligned}
& -1.0 \\
& -1.0 \\
& -1.0
\end{aligned}
\] & V \\
\hline Output Short Circuit Current, \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\), Note 1 (Bus (Driver) Output) (Receiver Output) & \[
\begin{aligned}
& \operatorname{los}(B) \\
& \operatorname{los}(R) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -50 \\
& -30
\end{aligned}
\] & - & \[
\begin{aligned}
& -150 \\
& -75
\end{aligned}
\] & mA \\
\hline Power Supply Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)
\] & \({ }^{1} \mathrm{CC}\) & - & - & 87 & mA \\
\hline
\end{tabular}

Note 1. Only one output may be short-circuited at a time.

SWITCHING CHARACTERISTICS (Unless otherwise noted, specifications apply at \(T_{A}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Figure & Min & Max & Unit \\
\hline \begin{tabular}{l} 
Propagation Delay Time from Receiver (Bus) Input to \\
High Logic State Receiver Output
\end{tabular} & tPLH(R) & 1 & - & 14 & ns \\
\hline \begin{tabular}{c} 
Propagation Delay Time from Receiver (Bus) Input to \\
Low Logic State Receiver Output
\end{tabular} & tPHL(R) & 1 & - & 14 & ns \\
\hline \begin{tabular}{l} 
Propagation Delay Time from Driver Input to \\
High Logic State Driver (Bus) Output
\end{tabular} & tPLH(D) & 2 & - & 14 & ns \\
\hline \begin{tabular}{l} 
Propagation Delay Time from Driver Input to \\
Low Logic State Driver (Bus) Output
\end{tabular} & tPHL(D) & 2 & - & 14 & ns \\
\hline \begin{tabular}{l} 
Propagation Delay Time from Receiver Enable Input to \\
High Impedance (Open) Logic State Receiver Output
\end{tabular} & tPLZ(RE) & 3 & - & 15 & ns \\
\hline \begin{tabular}{l} 
Propagation Delay Time from Receiver Enable Input to \\
Low Logic Level Receiver Output
\end{tabular} & tPZL(RE) & 3 & - & 20 & ns \\
\hline \begin{tabular}{l} 
Propagation Delay Time from Driver Enable Input to \\
High Impedance Logic State Driver (Bus) Output
\end{tabular} & tPLZ(DE) & 4 & - & 20 & ns \\
\hline \begin{tabular}{l} 
Propagation Delay Time from Driver Enable Input to \\
Low Logic State Driver (Bus) Output
\end{tabular} & tPZL(DE) & 4 & - & 25 & ns \\
\hline
\end{tabular}

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY FROM BUS (RECEIVER) INPUT TO RECEIVER OUTPUT, TPLH(R) AND tPHL(R)


FIGURE 2 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVER) OUTPUT, TPLH(D) AND tPHL(D)


FIGURE 3 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, \(\mathrm{t}_{\mathrm{PL}} \mathrm{Z}(\mathrm{RE})\) AND tPZL(RE)


\section*{FIGURE 4 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM} DRIVER ENABLE INPUT TO DRIVER (BUS) OUTPUT, tPLZ(DE) AND tPZL(DE)


FIGURE 5 - BIDIRECTIONAL BUS APPLICATIONS


\section*{NONINVERTING}

\section*{QUAD THREE-STATE BUS TRANSCEIVER}

This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 mA driver and -20 mA receiver outputs are short circuit protected and employ threestate enabling inputs.
The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of \(200 \mu \mathrm{~A}\) at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages.
Propagation delay times for the driver portion are 17 ns maximum while the receiver portion runs 17 ns . The MC8T28 is identical to the NE8T28 and it operates from a single +5 V supply.
- High Impedance Inputs
- Single Power Supply
- High Speed Schottky Technology
- Three-State Drivers and Receivers
- Compatible with M6800 Family Microprocessor
- Non-Inverting


MAXIMUM RATINGS ( \(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 8.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\mathbf{I}}\) & 5.5 & Vdc \\
\hline \begin{tabular}{l} 
Junction Temperature \\
Ceramic Package \\
Plastic Package
\end{tabular} & \(\mathrm{T}_{\mathrm{J}}\) & & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & & 175 & 150 \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\right.\) and \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Input Current - Low Logic State \\
( Receiver Enable Input, \(\mathrm{V}_{1 L}(\mathrm{RE})=0.4 \mathrm{~V}\) ) \\
(Driver Enable Input, \(\mathrm{V}_{\text {IL }}(\mathrm{DE})=0.4 \mathrm{~V}\) ) \\
(Driver Input, \(\mathrm{V}_{1 \mathrm{~L}}(\mathrm{D})=0.4 \mathrm{~V}\) ) \\
(Bus (Receiver) Input, \(V_{I L}(B)=0.4 \mathrm{~V}\) )
\end{tabular} & \begin{tabular}{l}
\({ }^{1} \mathrm{IL}(\overline{\mathrm{RE}})\) \\
IIL(DE) \\
IIL(D) \\
ILL(B)
\end{tabular} & - &  & \[
\begin{aligned}
& -200 \\
& -200 \\
& -200 \\
& -200
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Disabled Current - Low Logic State (Driver Input, \(\mathrm{V}_{\mathrm{IL}}(\mathrm{D})=0.4 \mathrm{~V}\) ) & IIL(D) DIS & - & - & -25 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Input Current-High Logic State \\
( \(\overline{\text { Receiver }} \overline{\text { Enable }}\) Input, \(V_{I H}(R E)=5.25 \mathrm{~V}\) ) \\
(Driver Enable Input, \(\mathrm{V}_{1} \mathrm{H}(\mathrm{DE})=5.25 \mathrm{~V}\) ) \\
(Driver Input, \(\mathrm{V}_{1 \mathrm{H}(\mathrm{D})}=5.25 \mathrm{~V}\) )
\end{tabular} & \(1 / H(\overline{R E})\)
\(1 / H(D E)\)
\(1 / H(D)\) &  &  & \[
\begin{aligned}
& 25 \\
& 25 \\
& 25
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Input Voltage - Low Logic State \\
(Receiver Enable Input) \\
(Driver Enable Input \\
(Driver Input) \\
(Receiver Input)
\end{tabular} & \[
\begin{aligned}
& V_{I L(\overline{R E})} \\
& V_{I L}(D E) \\
& V_{I L(D)} \\
& v_{I L(B)}
\end{aligned}
\] &  & - & \[
\begin{aligned}
& 0.85 \\
& 0.85 \\
& 0.85 \\
& 0.85
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
Input Voltage - High Logic State \\
(Receiver Enable Input) \\
(Driver Enable Input) \\
(Driver Input) \\
(Receiver Input)
\end{tabular} & \[
\begin{aligned}
& V_{1 H(\overline{R E})} \\
& V_{I H(D E)} \\
& V_{I H(D)} \\
& V_{I H(B)}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 2.0 \\
& 2.0
\end{aligned}
\] &  & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & V \\
\hline Output Voltage - Low Logic State (Bus Driver) Output, \(\mathrm{I}_{\mathrm{OL}}(\mathrm{B})=48 \mathrm{~mA}\) ) (Receiver Output, \(\mathrm{I}_{\mathrm{OL}(\mathrm{R})}=20 \mathrm{~mA}\) ) & \begin{tabular}{l}
\(V_{\mathrm{OL}(\mathrm{B})}\) \\
\(V_{O L(R)}\)
\end{tabular} & & & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & V \\
\hline ```
Output Voltage - High Logic State
    (Bus (Driver) Output, IOH(B)=-10 mA)
    (Receiver Output, }\mp@subsup{I}{OH}{O}(\textrm{R})=-2.0\textrm{mA}
    (Receiver Output, IOH(R)=-100/\mu\textrm{A},\mp@subsup{V}{CC}{}=5.0\textrm{V})
``` & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}(\mathrm{B})}\) \\
\(\mathrm{V}_{\mathrm{OH}(\mathrm{R})}\)
\end{tabular} & \[
\begin{aligned}
& 2.4 \\
& 2.4 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 3.1 \\
& 3.1
\end{aligned}
\] & - & V \\
\hline Output Disabled Leakage Current - High Logic State (Bus Driver) Output, \(\mathrm{V}_{\mathrm{OH}}(\mathrm{B})=2.4 \mathrm{~V}\)) (Receiver Output, \(\mathrm{VOH}_{\mathrm{OH}}(\mathrm{R})=2.4 \mathrm{~V}\)) & \begin{tabular}{l}
\({ }^{1} \mathrm{OHL}(\mathrm{B})\) \\
\({ }^{\prime} \mathrm{OHL}(\mathrm{R})\)
\end{tabular} & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & - & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Disabled Leakage Current - Low Logic State (Bus Output, \(\mathrm{V}_{\mathrm{OL}}(\mathrm{B})=0.5 \mathrm{~V}\)) \\
(Receiver Output, \(\mathrm{V}_{\mathrm{OL}(\mathrm{R})}=0.5 \mathrm{~V}\))
\end{tabular} & \begin{tabular}{l}
IOLL(B) \\
IOLL(R)
\end{tabular} & - & - & \[
\begin{aligned}
& -100 \\
& -100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Input Clamp Voltage \\
(Driver Enable Input \(I_{I D(D E)}=-12 \mathrm{~mA}\)) \\
(Receiver Enable Input \(\operatorname{IC}(\) RE \()=+12 \mathrm{~mA}\)) \\
(Driver Input \(\left.I_{I C}(D)=-12 \mathrm{~mA}\right)\)
\end{tabular} & \begin{tabular}{l}
\(V_{I C}(D E)\) \\
\(V_{\text {IC }}(\) RE \()\) \\
\(V_{I C}(D)\)
\end{tabular} & \[
-
\] & - & \[
\begin{aligned}
& -1.0 \\
& -1.0 \\
& -1.0
\end{aligned}
\] & V \\
\hline Output Short Circuit Current, \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\), Note 1 (Bus (Driver) Output) (Receiver Output) & \[
\begin{aligned}
& \operatorname{los}(B) \\
& \operatorname{los}(R) \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-50 \\
-30 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& -150 \\
& -75 \\
& \hline
\end{aligned}
\] & mA \\
\hline Power Supply Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)
\] & 'cc & - & - & 110 & mA \\
\hline
\end{tabular}

Note 1. Only one output may be short-circuited at a time.

SWITCHING CHARACTERISTICS (Unless otherwise noted, \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Max & Unit \\
\hline Propagation Delay Time-Receiver (\(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\)) & \begin{tabular}{l}
tPLH(R) \\
tPHL(R)
\end{tabular} & - & \[
\begin{aligned}
& 17 \\
& 17
\end{aligned}
\] & ns \\
\hline Propagation Delay Time-Driver (\(\left.\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}\right)\) & \begin{tabular}{l}
tPLH(D) \\
tPHL(D)
\end{tabular} & - & \[
\begin{aligned}
& 17 \\
& 17
\end{aligned}
\] & ns \\
\hline \begin{tabular}{l}
Propagation Delay Time-Enable (\(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\)) \\
- Receiver \\
- Driver Enable (\(\left.C_{L} 300 \mathrm{pF}\right)\)
\end{tabular} & \begin{tabular}{l}
tPZL(R) \\
tPLZ(R) \\
tPZL(D) \\
tpLZ(D)
\end{tabular} & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 23 \\
& 18 \\
& 28 \\
& 23
\end{aligned}
\] & ns \\
\hline
\end{tabular}

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY FROM BUS (RECEIVER) INPUT TO RECEIVER OUTPUT, tPLH(R) AND TPHL(R)

FIGURE 2 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVER) OUTPUT, tPLH(D) AND tPHL(D)

FIGURE 3 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, tPLZ(RE) AND tPZL(RE)

FIGURE 4 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM DRIVER ENABLE INPUT TO DRIVER (BUS) OUTPUT, tPLZ(DE) AND tPZL(DE)

FIGURE 5 - BIDIRECTIONAL BUS APPLICATIONS

\section*{hex three-state buffer inverters}

This series of devices combines three features usually found desirable in bus-oriented systems: 1) High impedance logic inputs insure that these devices do not seriously load the bus; 2) Three-state logic configuration allows buffers not being utilized to be effectively removed from the bus; 3) Schottky technology allows high-speed operation.

The devices differ in that the non-inverting MC8T95/MC6885 and inverting MC8T96/MC6886 provide a two-input Enable which controls all six buffers, while the non-inverting MC8T97/MC6887 and inverting MC8T98/MC6888 provide two Enable inputs - one controlling four buffers and the other controlling the remaining two buffers.

The units are well-suited for Address buffers on the M6800 or similar microprocessor application.
- High Speed - 8.0 ns (Typ)
- Three-State Logic Configuration
- Single +5 V Power Supply Requirement
- Compatible with 74LS Logic or M6800 Microprocessor Systems
- High Impedance PNP Inputs Assure Minimal Loading of the Bus

ORDERING INFORMATION
(Temperature Range for the following devices = 0 to \(+75^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|}
\hline DEVICE & ALTERNATE & PACKAGE \\
\hline MC8T95L & MC6885L & Ceramic DIP \\
\hline MC8T96L & MC6886L & Ceramic DIP \\
\hline MC8T97L & MC6887L & Ceramic DIP \\
\hline MC8T98L & MC6888L & Ceramic DIP \\
\hline MC8T95P & MC6885P & Plastic DIP \\
\hline MC8T96P & MC6886P & Plastic DIP \\
\hline MC8T97P & MC6887P & Plastic DIP \\
\hline MC8T98P & MC6888P & Plastic DIP \\
\hline
\end{tabular}
PIN CONNECTIONS AND TRUTH TABLES

MC8T96/MC6886

\begin{tabular}{|c|c|c|c|}
\hline Enable 2 & Enable 1 & Input & Output \\
\hline L & L & L & H \\
L & L & H & L \\
L & H & X & Z \\
H & L & X & Z \\
H & H & X & Z \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline\(\overline{\text { Enable }}\) & Input & Output \\
\hline L & L & H \\
L & H & L \\
H & X & Z \\
\hline
\end{tabular}
MAXIMUM RATINGS (\(T_{A}=25{ }^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 8.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{I}}\) & 5.5 & Vdc \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ}{ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & & \({ }^{\circ} \mathrm{C}\) \\
Plastic Package & & 150 & \\
Ceramic Package & & 175 & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}\) and \(4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Input Voltage - High Logic State
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{1 \mathrm{H}}\) & 2.0 & - & - & V \\
\hline Input Voltage - Low Logic State
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & VIL & - & - & 0.8 & V \\
\hline Input Current - High Logic State
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.4 \mathrm{~V}\right)
\] & \(1 / \mathrm{H}\) & - & - & 40 & \(\mu \mathrm{A}\) \\
\hline Input Current - Low Logic State
\[
\left(V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{I L}=0.5 \mathrm{~V}, \mathrm{~V}_{I L}(E)=0.5 \mathrm{~V}\right)
\] & IIL & - & - & -400 & \(\mu \mathrm{A}\) \\
\hline Input Current - High Impedance State
\[
\left(V_{C C}=5.25 \mathrm{~V}, V_{I L(I)}=0.5 \mathrm{~V}, V_{1 H(E)}=2.0 \mathrm{~V}\right)
\] & \({ }^{\prime} \mathrm{IH}(\bar{E})\) & - & - & -40 & \(\mu \mathrm{A}\) \\
\hline Output Voltage - High Logic State
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & - & - & V \\
\hline Output Voltage - Low Logic State
\[
(1 \mathrm{OL}=48 \mathrm{~mA})
\] & \(\mathrm{V}_{\mathrm{OL}}\) & - & - & 0.5 & V \\
\hline Output Current - High Impedance State
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}\right)
\end{aligned}
\] & Ioz & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & - & \[
\begin{array}{r}
40 \\
-40
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Short-Circuit Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0\right)
\] \\
(only one output can be shorted at a time)
\end{tabular} & 'OS & -40 & -80 & -115 & mA \\
\hline \begin{tabular}{cl}
Power Supply Current & \\
\(\left(V_{\mathrm{CC}}=5.25 \mathrm{~V}\right)\) & MC8T95, MC8T97, MC6885, MC6887 \\
& MC8T96, MC8T98, MC6886, MC6888
\end{tabular} & \({ }^{\prime} \mathrm{CC}\) & - & \[
\begin{aligned}
& 65 \\
& 59 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 98 \\
& 89
\end{aligned}
\] & mA \\
\hline Input Clamp Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{IC}}=-12 \mathrm{~mA}\right)
\] & V IC & - & - & -1.5 & V \\
\hline Output \(\mathrm{V}_{\mathrm{CC}}\) Clamp Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=0, \mathrm{IOC}=12 \mathrm{~mA}\right)
\] & VOC & - & - & 1.5 & V \\
\hline Output Gnd Clamp Voltage
\[
\left(V_{C C}=0,1 O C=-12 m A\right)
\] & \(\mathrm{V}_{\text {OC }}\) & - & - & -1.5 & V \\
\hline Input Voltage
\[
\left(I_{1}=1.0 \mathrm{~mA}\right)
\] & \(V_{1}\) & 5.5 & - & - & V \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS \({ }^{(V} \mathbf{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC8T95/97 MC6885/87} & \multicolumn{3}{|c|}{MC8T96/98 MC6886/88} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \[
\begin{aligned}
& \text { Propagation Delay Time - High to Low State } \\
& \left(C_{L}=50 \mathrm{pF}\right) \\
& \left(C_{L}=250 \mathrm{pF}\right) \\
& \left(C_{L}=375 \mathrm{pF}\right) \\
& \left(C_{L}=500 \mathrm{pF}\right) \\
& \hline
\end{aligned}
\] & tPHL & 3.0
-
-
- & \[
\begin{aligned}
& 16 \\
& 20 \\
& 23
\end{aligned}
\] & \[
\begin{gathered}
12 \\
- \\
-
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
- \\
-
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& 15 \\
& 18 \\
& 22
\end{aligned}
\] & \[
\begin{gathered}
11 \\
- \\
-
\end{gathered}
\] & ns \\
\hline \[
\begin{aligned}
& \text { Propagation Delay Time - Low to High State } \\
& \left(C_{L}=50 \mathrm{pF}\right) \\
& \left(\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}\right) \\
& \left(\mathrm{C}_{\mathrm{L}}=375 \mathrm{pF}\right) \\
& \left(\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\right)
\end{aligned}
\] & \({ }^{\text {tPLH }}\) & \[
3.0
\] & \[
\begin{aligned}
& 25 \\
& 33 \\
& 42
\end{aligned}
\] & \[
13
\] & \[
\begin{gathered}
3.0 \\
- \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 22 \\
& 28 \\
& 35
\end{aligned}
\] & \[
10
\] & ns \\
\hline \[
\begin{aligned}
& \text { Transition Time - High to Low State } \\
& \left(C_{L}=250 \mathrm{pF}\right) \\
& \left(C_{L}=375 \mathrm{pF}\right) \\
& \left(C_{L}=500 \mathrm{pF}\right)
\end{aligned}
\] & t THL & - & \[
\begin{aligned}
& 10 \\
& 11 \\
& 14 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 10 \\
& 13 \\
& 15
\end{aligned}
\] & - & ns \\
\hline \[
\begin{aligned}
& \text { Transition Time - Low to High State } \\
& \left(C_{L}=250 \mathrm{pF}\right) \\
& \left(C_{L}=375 \mathrm{pF}\right) \\
& \left(C_{L}=500 \mathrm{pF}\right) \\
& \hline
\end{aligned}
\] & \({ }^{\text {t }}\) LLH & & \[
\begin{aligned}
& 32 \\
& 42 \\
& 60
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 28 \\
& 38 \\
& 53
\end{aligned}
\] & - & ns \\
\hline Propagation Delay Time - High State to Third State (\(\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}\)) & \({ }^{\text {t PHZ }}\) (\(\bar{E}\)) & - & - & 10 & - & - & 10 & ns \\
\hline Propagation Delay Time - Low State to Third State (\(C_{L}=5.0 \mathrm{pF}\)) & \({ }^{\text {t P L }}\) (\(\bar{E}\)) & - & - & 12 & - & - & 16 & ns \\
\hline Propagation Delay Time - Third State to High State (\(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)) & \({ }^{\text {t P P }} \mathbf{H}(\bar{E})\) & - & - & 25 & - & - & 22 & ns \\
\hline \[
\begin{aligned}
& \text { Propagation Delay Time - Third State to Low State } \\
& \quad\left(C_{L}=50 \mathrm{pF}\right)
\end{aligned}
\] & \({ }^{\text {t P }}\) L \(\mathrm{L}(\overline{\mathrm{E}})\) & - & - & 25 & - & - & 24 & ns \\
\hline
\end{tabular}

FIGURE 1 - TEST CIRCUIT FOR SWITCHING CHARACTERISTICS

FIGURE 3 - WAVEFORMS FOR PROPAGATION DELAY TIMES - ENABLE TO OUTPUT

\(H=\) High-Logic State, \(L=\) Low-Logic State, \(\mathbf{Z}=\) High Impedance State

MC1411,B
MC1412,B
MC1413,B MC1416,B

\section*{HIGH VOLTAGE, HIGH CURRENT DARLINGTON TRANSISTOR ARRAYS}

The seven NPN Darlington connected transistors in these arrays are well suited for driving lamps, relays, or printer hammers in a variety of industrial and consumer applications. Their high breakdown voltage and internal suppression diodes insure freedom from problems associated with inductive loads. Peak inrush currents to 600 mA permit them to drive incandescent lamps.
The MC1411,B device is a general purpose array for use with DTL, TTL, PMOS, or CMOS Logic. The MC1412,B contains a zener diode and resistor in series with the input to limit input current for use with 14 to 25 Volt PMOS Logic. The MC1413,B with a 2.7 \(\mathrm{k} \Omega\) series input resistor is well suited for systems utilizing a 5 Volt TTL or CMOS Logic. The MC1416,B uses a series \(10.5 \mathrm{k} \Omega\) resistor and is useful in 8 to 18 Volt MOS systems.

MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) and rating apply to any one device in the package unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Output Voltage & \(\mathrm{V}_{\mathrm{O}}\) & \(50^{*}\) & V \\
\hline Input Voltage (Except MC1411) & \(\mathrm{V}_{\mathrm{I}}\) & 30 & V \\
\hline Collector Current - Continuous & \(\mathrm{I}_{\mathrm{C}}\) & 500 & mA \\
\hline Base Current - Continuous & \(\mathrm{I}_{\mathrm{B}}\) & 25 & mA \\
\hline \begin{tabular}{l}
Operating Ambient Temperature Range \\
MC1411-16 \\
MC1411B-16B
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & -20 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & \begin{tabular}{c}
-40 to +85
\end{tabular} \\
\hline Junction Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Maximum Package Power Dissipation (See Thermal Information Section)
*Higher voltage selection available. See your local representative.

\section*{ORDERING INFORMATION}
\begin{tabular}{ll|l}
MC1411P (ULN2001A) & MC1411D & \\
MC1412P (ULN2002A) & MC1412D & \(-20^{\circ}\) to \\
MC1413P (ULN2003A) & MC1413D & \(+85^{\circ} \mathrm{C}\) \\
MC1416P (ULN2004A) & MC1416D & \\
& & \\
MC1411BP (ULQ2001A) & MC1411BD & \\
MC1412BP (ULQ2002A) & MC1412BD & \(-40^{\circ}\) to \\
MC1413BP (ULQ2003A) & MC1413BD & \(+85^{\circ} \mathrm{C}\) \\
MC1416BP (ULQ2004A) & MC1416BD &
\end{tabular}

\section*{PERIPHERAL DRIVER ARRAYS}

SILICON MONOLITHIC INTEGRATED CIRCUITS

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & & Symbol & Min & Typ & Max & Unit \\
\hline Output Leakage Current
\[
\begin{aligned}
& \left(^{*} \mathrm{~V}_{\mathrm{O}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\right) \\
& \left({ }^{*} \mathrm{~V}_{\mathrm{O}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\
& \left({ }^{*} \mathrm{~V}_{\mathrm{O}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}, \mathrm{~V}_{1}=6.0 \mathrm{~V}\right) \\
& \left({ }^{*} \mathrm{~V}_{\mathrm{O}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}, \mathrm{~V}_{1}=1.0 \mathrm{~V}\right)
\end{aligned}
\] & \begin{tabular}{l}
All Types \\
All Types \\
MC1412,B \\
MC1416,B
\end{tabular} & ICEX & - & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
100 \\
50 \\
500 \\
500
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Collector-Emitter Saturation Voltage
\[
\begin{aligned}
& \left(I_{C}=350 \mathrm{~mA}, I_{B}=500 \mu \mathrm{~A}\right) \\
& \left(I_{C}=200 \mathrm{~mA}, I_{B}=350 \mu \mathrm{~A}\right) \\
& \left(I_{C}=100 \mathrm{~mA}, I_{B}=250 \mu \mathrm{~A}\right)
\end{aligned}
\] & All Types All Types All Types & \(\mathrm{V}_{\text {CE }}\) (sat) & — & \[
\begin{gathered}
1.1 \\
0.95 \\
0.85
\end{gathered}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.3 \\
& 1.1
\end{aligned}
\] & V \\
\hline Input Current - On Condition
\[
\begin{aligned}
& \left(\mathrm{V}_{1}=17 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=3.85 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=12 \mathrm{~V}\right)
\end{aligned}
\] & \begin{tabular}{l}
MC1412,B \\
MC1413,B \\
MC1416,B \\
MC1416,B
\end{tabular} & I/(on) & - & \[
\begin{gathered}
0.85 \\
0.93 \\
0.35 \\
1.0
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
1.35 \\
0.5 \\
1.45
\end{gathered}
\] & mA \\
\hline Input Voltage - On Condition \(\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}\right)\) \(\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}\right)\) \(\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}\right)\) \(\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}\right)\) \(\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA}\right)\) \(\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}\right)\) \(\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=275 \mathrm{~mA}\right)\) \(\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=350 \mathrm{~mA}\right)\) & \begin{tabular}{l}
MC1412,B \\
MC1413,B \\
MC1413,B \\
MC1413,B \\
MC1416,B \\
MC1416,B \\
MC1416,B \\
MC1416,B
\end{tabular} & \(V_{1(o n)}\) & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 2.4 \\
& 2.7 \\
& 3.0 \\
& 5.0 \\
& 6.0 \\
& 7.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & V \\
\hline Input Current - Off Condition
\[
\left(I_{C}=500 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\right)
\] & All Types & 1 (off) & 50 & 100 & - & \(\mu \mathrm{A}\) \\
\hline DC Current Gain
\[
\left(V_{C E}=2.0 \mathrm{~V}, I_{C}=350 \mathrm{~mA}\right)
\] & MC1411,B & hFE & 1000 & - & - & - \\
\hline Input Capacitance & & \(\mathrm{Cl}_{1}\) & - & 15 & 30 & pF \\
\hline Turn-On Delay Time (\(50 \% \mathrm{E}_{1}\) to \(50 \% \mathrm{E}_{\mathrm{O}}\)) & & \(t_{0}\) & - & 0.25 & 1.0 & \(\mu \mathrm{s}\) \\
\hline Turn-Off Delay Time (\(50 \% \mathrm{E}_{1}\) to \(50 \% \mathrm{E}_{\mathrm{O}}\)) & & \(t_{\text {off }}\) & - & 0.25 & 1.0 & \(\mu \mathrm{S}\) \\
\hline Clamp Diode Leakage Current
\[
\left(\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}\right)
\] & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{R}}\) & - & - & \[
\begin{gathered}
50 \\
100
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Clamp Diode Forward Voltage
\[
\left(I_{F}=350 \mathrm{~mA}\right)
\] & & \(\mathrm{V}_{\mathrm{F}}\) & - & 1.5 & 2.0 & V \\
\hline
\end{tabular}
*Higher voltage selections available, contact your local representative.

TYPICAL PERFORMANCE CURVES - \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)

FIGURE 1 - OUTPUT CURRENT versus INPUT VOLTAGE

FIGURE 2 - OUTPUT CURRENT versus INPUT CURRENT

TYPICAL CHARACTERISTIC CURVES \(-\mathbf{T A}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\) (continued)

FIGURE 7 - MAXIMUM COLLECTOR CURRENT
versus DUTY CYCLE
(AND NUMBER OF DRIVERS IN USE)

\section*{DUAL PERIPHERAL-HIGH-VOLTAGE POSITIVE "NAND" DRIVER}

The dual driver consists of a pair of PNP buffered AND gates connected to the bases of a pair of high voltage NPN transistors. They are similar to the MC75452 drivers but with the added advantages of: 1) 70 Volt capability 2) output suppression diodes and 3) PNP buffered inputs for MOS compatibility. These features make the MC1472 ideal for mating MOS logic or microprocessors to lamps, relays, printer hammers and incandescent displays.
- 300 mA Output Capability (each transistor)
- 70 Vdc Breakdown Voltage
- Internal Output Clamp Diodes
- Low Input Loading for MOS Compatibility (PNP buffered)

MAXIMUM RATINGS \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Value & Unit \\
\hline Supply Voltage & 7.0 & Volts \\
\hline Input Voltage & 5.5 & Volts \\
\hline Output Voltage & 80 & Volts \\
\hline Clamp Voltage & 80 & Volts \\
\hline Output Current (Continuous) & 300 & mA \\
\hline \begin{tabular}{l}
Operating Junction Temperature \\
Ceramic Package \\
Plastic Package
\end{tabular} & \begin{tabular}{c}
\({ }^{\circ} \mathrm{C}\) \\
+175 \\
Storage Temperature Range
\end{tabular} & -65 to +150
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Min & Max & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 4.5 & 5.5 & Volts \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Output Voltage & \(\mathrm{V}_{\mathrm{O}}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 70 & Volts \\
\hline Clamp Voltage & \(\mathrm{V}_{\mathrm{C}}\) & \(\mathrm{V}_{\mathrm{O}}\) & 70 & Volts \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Device } & \multicolumn{1}{c|}{\begin{tabular}{c}
Temperature \\
Range
\end{tabular}} & \multicolumn{1}{c|}{ Package } \\
\hline MC1472U & 0 to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline MC1472P1 & 0 to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted \(\mathrm{min} / \mathrm{max}\) limits apply across the \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) temperature range with \(4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}\). All typical values are for \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Volts}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Input Voltage - High Logic State & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & - & 5.5 & Vdc \\
\hline Input Voltage - Low Logic State & \(\mathrm{V}_{\text {IL }}\) & 0 & - & 0.8 & Vdc \\
\hline ```
Input Current - Low Logic State
 \(\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right)\)
 A Input
 B Input
``` & IL & - & - & \[
\begin{array}{r}
-0.3 \\
-0.15
\end{array}
\] & mA \\
\hline ```
Input Current - High Logic State
    \(\left(\mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V}\right)\)
        A Input
        \(B\) Input
        \(\left(\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}\right)\)
        A Input
        B Input
``` & IIH & - & - & \[
\begin{array}{r}
40 \\
20 \\
\\
200 \\
100 \\
\hline
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Input Clamp Voltage
\[
(\mathrm{ICC}=-12 \mathrm{~mA})
\] & \(\mathrm{V}_{\text {IK }}\) & - & - & -1.5 & V \\
\hline Output Leakage Current - High Logic State (\(\mathrm{V}_{\mathrm{O}}=70 \mathrm{~V}\), See Test Figure) & \({ }^{1} \mathrm{OH}\) & & - & 100 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Output Voltage - Low Logic State } \\
& (\mathrm{lOL}=100 \mathrm{~mA}) \\
& (\mathrm{l} \mathrm{OL}=300 \mathrm{~mA})
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & - & - & \[
\begin{aligned}
& 0.4 \\
& 0.7
\end{aligned}
\] & V \\
\hline Output Clamp Diode Leakage Current (\(\mathrm{V}_{\mathrm{C}}=70 \mathrm{~V}\), See Test Figure) & Ioc & - & - & 100 & V \\
\hline Output Clamp Forward Voltage (\({ }^{\text {FC }}=300 \mathrm{~mA}\), See Test Figure) & \(\mathrm{V}_{\mathrm{FC}}\) & - & - & 1.7 & V \\
\hline Power Supply Current (All Inputs at \(\mathrm{V}_{\mathrm{IH}}\)) (All Inputs at \(\mathrm{V}_{\text {IL }}\)) & Icc & - & - & \[
\begin{aligned}
& 70 \\
& 15
\end{aligned}
\] & mA \\
\hline
\end{tabular}

NOTE: All currents into device pins are shown as positive, out of device pins as negative. All voltages referenced to ground unless otherwise noted.

SWITCHING CHARACTERISTICS \(V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Characteristic & Symbol & Min & Typ & Max \\
\hline Propagation Delay Time & & & & & \\
\begin{tabular}{l}
Output High to Low \\
Output Low to High
\end{tabular} & tPHL & - & - & 1.0 & \(\mu \mathrm{~s}\) \\
\hline \begin{tabular}{l}
Output Transition Time \\
Output High to Low \\
Output Low to High
\end{tabular} & tPLH & - & - & 0.75 & \\
\hline
\end{tabular}

\section*{SWITCHING TEST CIRCUIT AND WAVEFORM}

\section*{QUAD LINE DRIVER}

The MC1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. EIA-232C.

Features:
- Current Limited Output
\[
\pm 10 \mathrm{~mA} \text { typ }
\]
- Power-Off Source Impedance 300 Ohms min
- Simple Slew Rate Control with External Capacitor
- Flexible Operating Supply Range
- Compatible with All Motorola MDTL and MTTL Logic Families

\section*{QUAD MDTL LINE DRIVER EIA-232C}

SILICON MONOLITHIC INTEGRATED CIRCUIT

CIRCUIT SCHEMATIC
(1/4 OF CIRCUIT SHOWN)

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted．）
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \begin{tabular}{c}
\(\mathrm{V}_{\mathrm{CC}}\) \\
\(\mathrm{V}_{\mathrm{EE}}\)
\end{tabular} & \begin{tabular}{c}
+15 \\
-15
\end{tabular} & Vdc \\
\hline Input Voltage Range & \(\mathrm{V}_{\mathrm{IR}}\) & \begin{tabular}{c}
\(-15 \leq \mathrm{V}_{\mathrm{IR}} \leq\) \\
7.0
\end{tabular} & Vdc \\
\hline Output Signal Voltage & \(\mathrm{V}_{\mathrm{O}}\) & \(\pm 15\) & Vdc \\
\hline \begin{tabular}{l}
Power Derating（Package Limitation，Ceramic \\
and Plastic Dual－In－Line Package） \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{P}_{\mathrm{D}}\) \\
\(1 / \mathrm{R}_{\theta J \mathrm{~A}}\)
\end{tabular} & 1000 & mW \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +75 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{Stg}}\) & -65 to +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\mathrm{V}_{\mathrm{CC}}=+9.0 \pm 1 \% \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \pm 1 \% \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=0\) to \(75^{\circ} \mathrm{C}\) unless otherwise noted．）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Figure & Symbol & Min & Typ & Max & Unit \\
\hline Input Current－Low Logic State（ \(\mathrm{V}_{\mathrm{IL}}=0\) ） & 1 & ILL & － & 1.0 & 1.6 & mA \\
\hline Input Current－High Logic State（ \(\mathrm{V}_{1 \mathrm{H}}=5.0 \mathrm{~V}\) ） & 1 & IIH & － & － & 10 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Voltage－High Logic State \\
\(\left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=+9.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=+13.2 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-13.2 \mathrm{Vdc}\right)\)
\end{tabular} & 2 & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& +6.0 \\
& +9.0
\end{aligned}
\] & \[
\begin{array}{r}
+7.0 \\
+10.5 \\
\hline
\end{array}
\] & & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Voltage - Low Logic State } \\
& \left(V_{I H}=1.9 \mathrm{Vdc}, R_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=+9.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{EE}}=-9.0 \mathrm{Vdc}\right) \\
& \left(\mathrm{V}_{1 H}=1.9 \mathrm{Vdc}, \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=+13.2 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{EE}}=-13.2 \mathrm{Vdc}\right)
\end{aligned}
\] & 2 & \(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{array}{r}
-6.0 \\
-9.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-7.0 \\
-10.5 \\
\hline
\end{array}
\] & & Vdc \\
\hline Positive Output Short－Circuit Current，Note 1 & 3 & los＋ & ＋6．0 & ＋ 10 & ＋12 & mA \\
\hline Negative Output Short－Circuit Current，Note 1 & 3 & los－ & －6．0 & －10 & －12 & mA \\
\hline Output Resistance（ \(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}=0,\left|\mathrm{~V}_{\mathrm{O}}\right|= \pm 2.0 \mathrm{~V}\) ） & 4 & ro & 300 & － & － & Ohms \\
\hline \begin{tabular}{l}
Positive Supply Current（ \(\mathbf{R}_{\mathrm{I}}=\infty\) ） \\
\(\left(\mathrm{V}_{\mathrm{IH}}=1.9 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=+9.0 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=+9.0 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{HH}}=1.9 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{IH}}=1.9 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}\right)\) \\
（ \(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{Vdc}\) ）
\end{tabular} & 5 & Icc & \[
\begin{aligned}
& \text { - } \\
& \text { 二 } \\
& \text { 二 }
\end{aligned}
\] & \[
\begin{aligned}
& +15 \\
& +4.5 \\
& +19 \\
& +5.5
\end{aligned}
\] & \[
\begin{aligned}
& +20 \\
& +6.0 \\
& +25 \\
& +7.0 \\
& +34 \\
& +12 \\
& \hline
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Negative Supply Current（ \(\mathrm{R}_{\mathrm{L}}=\infty\) ） \\
\(\left(\mathrm{V}_{\mathrm{IH}}=1.9 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{IH}}=1.9 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-12 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-12 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{IH}}=1.9 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-15 \mathrm{Vdc}\right)\)
\end{tabular} & 5 & IEE & \[
\begin{aligned}
& \text { - } \\
& \text { 二 } \\
& \text { - }
\end{aligned}
\] & \[
\begin{gathered}
-13 \\
-18 \\
-
\end{gathered}
\] & \[
\begin{gathered}
-17 \\
-500 \\
-23 \\
-500 \\
-34 \\
-2.5
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mu \mathrm{~A} \\
& \mathrm{~mA} \\
& \mu \mathrm{~A} \\
& \mathrm{~mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Power Consumption \\
\(\left(\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \mathrm{Vdc}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-12 \mathrm{Vdc}\right)\)
\end{tabular} & & \(\mathrm{PC}_{\text {c }}\) & － & － & \[
\begin{aligned}
& 333 \\
& 576
\end{aligned}
\] & mW \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS（VCC \(=+9.0 \pm 1 \% \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-9.0 \pm 1 \% \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) ．）
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Propagation Delay Time（ \(z_{\mid}=3.0 \mathrm{k}\) and 15 pF ） & 6 & tPLH & － & 275 & 350 & ns \\
\hline Fall Time \(\quad\left(z_{1}=3.0 \mathrm{k}\right.\) and 15 pF\()\) & 6 & tTHL & － & 45 & 75 & ns \\
\hline Propagation Delay Time（ \(z^{\prime}=3.0 \mathrm{k}\) and 15 pF\()\) & 6 & tPHL & － & 110 & 175 & ns \\
\hline Rise Time（ \(\mathrm{z}^{\prime}=3.0 \mathrm{k}\) and 15 pF\()\) & 6 & tTLH & － & 55 & 100 & ns \\
\hline
\end{tabular}

Note 1．Maximum Package Power Dissipation may be exceeded if all outputs are shorted simultaneously．

\section*{CHARACTERISTIC DEFINITIONS}

FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT

FIGURE 5 - POWER-SUPPLY CURRENTS

FIGURE 2 - OUTPUT VOLTAGE

FIGURE 4 - OUTPUT RESISTANCE (POWER-OFF)

FIGURE 6 - SWITCHING RESPONSE

TYPICAL CHARACTERISTICS
(\(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)

FIGURE 7 - TRANSFER CHARACTERISTICS versus POWER-SUPPLY VOLTAGE

FIGURE 9 - OUTPUT SLEW RATE versus LOAD CAPACITANCE

\(C_{L}\) CAPACITANCE (pF)

FIGURE 8 - SHORT-CIRCUIT OUTPUT CURRENT versus TEMPERATURE

FIGURE 10 - OUTPUT VOLTAGE AND CURRENT-LIMITING CHARACTERISTICS

FIGURE 11 - MAXIMUM OPERATING TEMPERATURE versus POWER-SUPPLY VOLTAGE

\section*{APPLICATIONS INFORMATION}

The Electronic Industries Association EIA-232C specification detail the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488 quad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the EIA-232C defined levels. The EIA-232C requirements as applied to drivers are discussed herein.

The required driver voltages are defined as between 5 and 15 -volts in magnitude and are positive for a Logic " 0 " and negative for a Logic "1." These voltages are so defined when the drivers are terminated with a 3000 to 7000 -ohm resistor. The MC1488 meets this voltage requirement by converting a DTL/TTL logic level into EIA-232C levels with one stage of inversion.
The EIA-232C specification further requires that during transitions, the driver output slew rate must not exceed 30 volts

FIGURE 12 - SLEW RATE versus CAPACITANCE FOR ISC \(=10 \mathrm{~mA}\)

per microsecond. The inherent slew rate of the MC1488 is much too fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driver output. The required capacitor can be easily determined by using the relationship \(\mathrm{C}=\mathrm{IOS} \times \Delta \mathrm{T} / \Delta \mathrm{V}\) from which Figure 12 is derived. Accordingly, a 330 pF capacitor on each output will guarantee a worst case slew rate of 30 volts per microsecond.
The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15 volt, 500 mA source. The MC1488 is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (i.e., \(\mathrm{V}_{\mathrm{CC}} \geqslant 9.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}} \leqslant-9.0 \mathrm{~V}\)). In some power-supply designs, a loss of system power causes a low impedance on the power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC1488 effectively shorting the 300 ohm output resistors to ground. If all four outputs were then shorted to plus or minus 15 volts, the power dissipation in these resistors

FIGURE 13 - POWER-SUPPLY PROTECTION TO MEET POWER-OFF FAULT CONDITIONS

would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488 to withstand momentary shorts to the \(\pm 25\) volt limits specified in the earlier Standard EIA-232B.) The addition of the diodes also permits the MC1488 to withstand faults with power-supplies of less than the 9.0 volts stated above.

The maximum short-circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.

\section*{Other Applications}

The MC1488 is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility:
1. Output Current Limiting - this enables the circuit designer to define the output voltage levels independent of powersupplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the MC1488 used as a DTL to MOS translator where the high level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit.
2. Power Supply Range - as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for driving the negative pulldown section) to the maximum specified 15 volts. The negative supply can vary from approximately -2.5 volts to the minimum specified -15 volts. The MC1488 will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving EIA-232C lines, the remainder could be used for DTL to MOS or even DTL to DTL translation. Figure 15 shows one such combination.

FIGURE 14 - MDTL/MTTL-TO-MOS TRANSLATOR

FIGURE 15 - LOGIC TRANSLATOR APPLICATIONS

MOTOROLA

\section*{QUAD LINE RECEIVERS}

The MC1489 monolithic quad line receivers are designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. EIA-232C.
- Input Resistance - 3.0 k to 7.0 kilohms
- Input Signal Range \(- \pm 30\) Volts
- Input Threshold Hysteresis Built In
- Response Control
a) Logic Threshold Shifting
b) Input Noise Filtering

TYPICAL APPLICATION

D SUFFIX
PLASTIC PACKAGE CASE 751A-02 SO-14

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 10 & Vdc \\
\hline Input Voltage Range & \(\mathrm{V}_{\mathrm{IR}}\) & \(\pm 30\) & Vdc \\
\hline Output Load Current & \(\mathrm{I}_{\mathrm{L}}\) & 20 & mA \\
\hline \begin{tabular}{l}
Power Dissipation (Package Limitation, Ceramic \\
and Plastic Dual In-Line Package) \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{P}_{\mathrm{D}}\) & 1000 & mW \\
\hline Operating Ambient Temperature Range & \(1 / \theta \mathrm{JA}\) & 6.7 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Response control pin is open.) \(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0\) to \(+75^{\circ} \mathrm{C}\) unless otherwise noted)

SWITCHING CHARACTERISTICS \(\mathrm{I}_{\mathrm{CC}}=5.0 \mathrm{Vdc} \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), See Figure 1.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Propagation Delay Time & \(\left(\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega\right)\) & tplH & - & 25 & 85 & ns \\
\hline Rise Time & \(\left(\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega\right)\) & tTLH & - & 120 & 175 & ns \\
\hline Propagation Delay Time & (\(\mathrm{R}_{\mathrm{L}}=390 \mathrm{k} \Omega\)) & tPHL & - & 25 & 50 & ns \\
\hline Fall Time & \(\left(\mathrm{R}_{\mathrm{L}}=390 \mathrm{k} \Omega\right)\) & tTHL & - & 10 & 20. & ns \\
\hline
\end{tabular}

\section*{TEST CIRCUITS}

FIGURE 1 - SWITCHING RESPONSE

FIGURE 2 - RESPONSE CONTROL NODE

C, capacitor is for noise filtering.
\(R\), resistor is for threshold shifting

TYPICAL CHARACTERISTICS
\(\left(V_{C C}=5.0 \mathrm{Vdc}, \mathrm{T}_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)

FIGURE 7 - INPUT THRESHOLD versus POWER-SUPPLY VOLTAGE

\(V_{C C}\), POWER SUPPLY VOLTAGE (VOLTS)

\section*{APPLICATIONS INFORMATION}

\section*{General Information}

The Electronic Industries Association (EIA) has released the EIA-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leas, but also the voltage levels to be used. The MC 1488 quad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the EIA232C defined levels. The EIA-232C requirements as applied to receivers are discussed herein.

The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude; and any voltage on the receiver input in an open circuit condition must be less than 2.0 volts in magnitude. The MC1489 circuits meet these requirements with a maximum open circuit voltage of one \(V_{B E}\).
The receiver shall detect a voltage between - 3.0 and -25 volts as a Logic " 1 " and inputs between +3.0 and +25 volts as a Logic " 0 ." On some interchange leads, an open circuit of power "OFF" condition (300 ohms or more to ground) shall be decoded as an "OFF" condition or Logic "1." For this reason, the input hysteresis thresholds of the MC1489 circuits are all above ground. Thus an open or grounded input will cause the same output as a negative or Logic " 1 " input.

\section*{Device Characteristics}

The MC1489 interface receivers have internal feedback from the second stage to the input stage providing input
hysteresis for noise rejection. The MC1489 input has typical turn-on voltage of 1.25 volts and turn-off of 1.0 volt for a typical hysteresis of 250 mV . The MC1489A has typical turn-on of 1.95 volts and turn-off of 0.8 volt for typically 1.15 volts of hysteresis.
Each receiver section has an external response control node in addition to the input and output pins, thereby allowing the designer to vary the input threshold voltage levels. A resistor can be connected between this node and an external power supply. Figures 2, 4 and 5 illustrate the input threshold voltage shift possible through this technique.
This response node can also be used for the filtering of high-frequency, high energy noise pulses. Figures 8 and 9 show typical noise-pulse rejection for external capacitors of various sizes.
These two operations on the response node can be combined or used individually for many combinations of interfacing applications. The MC1489 circuits are particularly useful for interfacing between MOS circuits and MDTL/MTTL logic systems. In this application, the input threshold voltages are adjusted (with the appropriate supply and resistor values) to fall in the center of the MOS voltage logic levels. (See Figure 10)
The response node may also be used as the receiver input as long as the designer realizes that he may not drive this node with a low impedance source to a voltage greater than one diode above ground or less than one diode below ground. This feature is demonstrated in Figure 11 where two receivers are slaved to the same line that must still meet the EIA-232C impedance requirement.

FIGURE 8 - TYPICAL TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

FIGURE 9 - TYPICAL TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

FIGURE 10 - TYPICAL TRANSLATOR APPLICATION MOS TO DTL OR TTL

FIGURE 11 - TYPICAL PARALLELING OF TWO MC1489,A RECEIVERS TO MEET EIA-232C

\section*{QUAD OPEN-COLLECTOR BUS TRANSCEIVER}

This quad transceiver is designed to mate Schottky TTL or NMOS logic to a low impedance bus. The Enable and Driver inputs are PNP buffered to ensure low input loading. The Driver (Bus) output is open-collector and can sink up to 100 mA at 0.8 V , thus the bus can drive impedances as low as \(100 \Omega\). The receiver output is active pull-up and can drive ten Schottky TTL loads.
An active-low Enable controls all four drivers allowing the outputs of different device drivers to be connected together for partyline operation. The line can be terminated at both ends and still give considerable noise margin at the receiver. Typical receiver threshold is 2.0 V .
Advanced Schottky processing is utilized to assure fast propagation delay times. Two ground pins are provided to improve ground current handling and allow close decoupling between \(\mathrm{V}_{\mathrm{CC}}\) and ground at the package. Both ground pins should be tied to the ground bus external to the package.
- Driver Can Sink 100 mA at 0.8 V (Max)
- PNP Inputs for Low-Logic Loading
- Typical Driver Delay \(=10 \mathrm{~ns}\)
- Typical Receiver Delay \(=10 \mathrm{~ns}\)
- Schottky Processing for High Speed
- Inverting Driver

\section*{QUAD OPEN-COLLECTOR BUS TRANSCEIVER}

\section*{SCHOTTKY SILICON MONOLITHIC INTEGRATED CIRCUIT}

MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & -0.5 to +7.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{I}}\) & -0.5 to +5.5 & Vdc \\
\hline Input Current & \(\mathrm{I}_{\mathrm{I}}\) & -3.0 to +5.0 & mA \\
\hline Output Voltage - High Impedance State & \(\mathrm{V}_{\mathrm{o}}(\mathrm{Hi}-\mathrm{z})\) & -0.5 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Output Current-Bus & \(\mathrm{I}_{\mathrm{o}}(\mathrm{B})\) & 200 & mA \\
\hline Output Current-Receiver & \(\mathrm{I}_{\mathrm{o}}(\mathrm{R})\) & 30 & mA \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\mathrm{stg}}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Junction Temperature \\
Ceramic Package \\
Plastic Package
\end{tabular} & \(\mathrm{T}_{\mathrm{J}}\) & & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted \(\mathrm{V}_{\mathrm{CC}}=4.75\) to 5.25 V and \(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Input Voltage - Low Logic State } \\
& \text { (Driver and Enable Inputs) }
\end{aligned}
\] & \(V_{\text {IL }}\) & - & - & 0.8 & V \\
\hline Input Voltage - High Logic State (Driver and Enable Inputs) & \(\mathrm{V}_{1} \mathrm{H}\) & 2.0 & - & - & V \\
\hline \begin{tabular}{l}
Input Clamp Voltage \\
(Driver and Enable Inputs)
\[
\left(I_{I K}=-18 \mathrm{~mA}\right)
\]
\end{tabular} & \(\mathrm{V}_{\text {IK }}\) & - & - & -1.2 & V \\
\hline \begin{tabular}{l}
Input Current - Low Logic State
\[
\left(\mathrm{V}_{I L}=0.4 \mathrm{~V}\right)
\] \\
(Enable Input) \\
(Driver Inputs)
\end{tabular} & IIL & & & \[
\begin{aligned}
& -0.36 \\
& -0.54
\end{aligned}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Input Current }- \text { High Logic State }\left(\mathrm{V}_{1 \mathrm{H}}=2.7 \mathrm{~V}\right) \\
& \text { (Enable Input) } \\
& \text { (Driver Inputs) }
\end{aligned}
\] & \({ }^{1 / H}\) & - & & \[
\begin{aligned}
& 20 \\
& 30
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Input Current - Maximum Voltage
\[
\left(\mathrm{V}_{1 \mathrm{H}_{1}}=5.5 \mathrm{~V}\right)
\] \\
(Enable or Driver Inputs)
\end{tabular} & 1/H1 & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Driver Output Voltage - Low Logic State } \\
& (1 \mathrm{OL}=40 \mathrm{~mA}) \\
& (1 \mathrm{OL}=70 \mathrm{~mA}) \\
& (1 \mathrm{OL}=100 \mathrm{~mA})
\end{aligned}
\] & \(\mathrm{V}_{\text {OL }}(\mathrm{D})\) & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & \[
\begin{aligned}
& 0.33 \\
& 0.42 \\
& 0.51
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.7 \\
& 0.8
\end{aligned}
\] & V \\
\hline Driver (Bus) Leakage Current
\[
\begin{aligned}
& (\mathrm{VOH}=4.5 \mathrm{~V}) \\
& (\mathrm{VOL}=0.8 \mathrm{~V})
\end{aligned}
\] & 'O(D) & - & - & \[
\begin{array}{r}
100 \\
-50
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Driver (Bus) Leakage Current
\[
\left(\mathrm{V} \mathrm{CC}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.5 \mathrm{~V}\right)
\] & 'O1(D) & - & - & 100 & \(\mu \mathrm{A}\) \\
\hline Receiver Input High Threshold
\[
\left(\mathrm{V}_{1 \mathrm{H}}(\overline{\mathrm{E}})=2.4 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\text {TH(R) }}\) & 2.25 & 2.0 & - & V \\
\hline Receiver Input Low Threshold
\[
\left(\mathrm{V}_{1 \mathrm{H}}(\overline{\mathrm{E}})=2.4 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\text {TL }}\) (R) & - & 2.0 & 1.75 & V \\
\hline \[
\begin{aligned}
& \text { Receiver Output Voltage - Low Logic State } \\
& \left(I_{\mathrm{OL}}=20 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}(\mathrm{R})}\) & - & - & 0.5 & V \\
\hline Receiver Output Voltage - High Logic State
\[
(1 \mathrm{OH}=-1.0 \mathrm{~mA})
\] & \(\mathrm{V}_{\mathrm{OH}(\mathrm{R})}\) & 2.7 & 3.4 & - & V \\
\hline Receiver Output Short-Circuit Current (Note 1) & IOS(R) & -18 & - & -60 & mA \\
\hline Power Supply Current - Output Low State
\[
\left(V_{I L}(E)=0 \mathrm{~V}\right)
\] & \({ }^{1} \mathrm{CC}\) & - & 45 & 70 & mA \\
\hline
\end{tabular}

NOTE 1: One output shorted at a time. Duration not to exceed 1.0 second.

SWITCHING CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Propagation Delay Time Driver Input to Output & \[
\begin{aligned}
& \operatorname{tPLH}(D) \\
& \operatorname{tPHL}(D) \\
& \hline
\end{aligned}
\] & 二 & \[
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& \hline
\end{aligned}
\] & ns \\
\hline Propagation Delay Time Enable Input to Output & \[
\begin{aligned}
& \operatorname{tPLH}(\bar{E}) \\
& \operatorname{tPHL}(\bar{E})
\end{aligned}
\] & - & \[
\begin{aligned}
& 14 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 18 \\
& 18
\end{aligned}
\] & ns \\
\hline Propagation Delay Time Bus to Receiver Output & \[
\begin{aligned}
& \mathrm{tPLH}(\mathrm{R}) \\
& \mathrm{t} \mathbf{t} \mathbf{n}(\mathrm{R}) \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& \hline
\end{aligned}
\] & ns \\
\hline Rise and Fall Time of Driver Output & tTLH(D)
\[
\operatorname{tTHL}(\mathrm{D})
\] & \[
\begin{aligned}
& 4.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
4.0 \\
\hline
\end{array}
\] & - & ns \\
\hline
\end{tabular}

SWITCHING WAVEFORMS AND CIRCUITS
FIGURE 1 - DATA INPUT TO BUS OUTPUT (DRIVER)

FIGURE 2 - ENABLE INPUT TO BUS OUTPUT (DRIVER)

FIGURE 3 - BUS INPUT TO RECEIVER OUTPUT

\section*{HEX BUS RECEIVER WITH INPUT HYSTERESIS}

These high-speed bus receivers are useful in bus organized data transmission systems employing terminated \(120 \Omega\) lines. The receivers feature input hysteresis to obtain improved noise immunity. The receivers low input current requirement allows up to 27 driver/ receiver pairs to share a common bus. A pair of Disable Inputs are provided. These Disable Inputs along with the receiver outputs are MTTL compatible.
- Built in receiver hysteresis
- Receiver input threshold is not affected by temperature
- Propagation delay time-- 20 ns (Typ)
- Direct Replacement for DM8837

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{MAXIMUM RATINGS (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.)} \\
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Input Voltage & \(V_{1}\) & 5.5 & Vdc \\
\hline Power Dissipation Derate above \(25^{\circ} \mathrm{C}\) & \(P_{\text {D }}\) & \[
\begin{aligned}
& 625 \\
& 3.85 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Operating Ambient Temperature Range & \(T_{\text {A }}\) & 0 to 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

L SUFFIX
CERAMIC PACKAGE CASE 620-10

P SUFFIX plastic package CASE 648-06

TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline Input & Disable & Output & \multirow{5}{*}{\[
\begin{aligned}
\mathrm{O} & =<1.05 \mathrm{~V} \\
\mathrm{I} & =>2.5 \mathrm{~V} \\
\mathrm{H} & =\text { High Logic State } \\
\mathrm{L} & =\text { Low Logic State }
\end{aligned}
\]} \\
\hline \(\bigcirc\) & L & H & \\
\hline O & H & L & \\
\hline 1 & L & L & \\
\hline 1 & H & L & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for \(0 \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}\) and \(4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Receiver Input Threshold Voltage - High Logic State
\[
\left(\mathrm{V}_{\mathrm{IL}(\mathrm{DA})}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}} \leqslant 0.4 \mathrm{~V}\right)
\] & \(V_{\text {ILH }}(\mathrm{R})\) & 1.80 & 2.25 & 2.50 & \(\checkmark\) \\
\hline Receiver Input Threshold Voltage - Low Logic State
\[
\left(\mathrm{V}_{\mathrm{IL}(\mathrm{DA})}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OH}} \geqslant 2.4 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\text {IHL }}(\mathrm{R})\) & 1.05 & 1.30 & 1.55 & V \\
\hline Receiver Input Current
\[
\begin{aligned}
& \left(V_{1(R)}=4.0 \mathrm{~V}, V_{C C}=5.25 \mathrm{~V}\right) \\
& \left(V_{1(R)}=4.0 \mathrm{~V}, V_{C C}=0 \mathrm{~V}\right)
\end{aligned}
\] & II(R) & - & \[
\begin{aligned}
& 15 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Disable Input Voltage - High Logic State
\[
\left(\mathrm{V}_{\mathrm{I}(\mathrm{R})}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}} \leqslant 0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{1 H}(\mathrm{DA})\) & 2.0 & - & - & V \\
\hline \[
\begin{array}{|l}
\hline \text { Disable Input Voltage - Low Logic State } \\
\quad\left(\mathrm{V}_{1}(\mathrm{R})=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}} \geqslant 2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}\right)
\end{array}
\] & \(V_{\text {IL }}(\mathrm{DA})\) & - & - & 0.8 & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage - High Logic State } \\
& \quad\left(\mathrm{V}_{\mathrm{I}}(\mathrm{R})=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}(\mathrm{DA})=0.8 \mathrm{~V}, \mathrm{I} \mathrm{OH}=-400 \mu \mathrm{~A}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & - & - & V \\
\hline Output Voltage - Low Logic State
\[
\left(\mathrm{V}_{\mathrm{I}(\mathrm{R})}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}(\mathrm{DA})}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.25 & 0.4 & V \\
\hline \[
\begin{aligned}
& \text { Disable Input Current - High Logic State } \\
& \left(V_{1 H}(D A)=2.4 \mathrm{~V}\right) \\
& \left(V_{1 H}(D A)=5.5 \mathrm{~V}\right) \\
& \hline
\end{aligned}
\] & IIH(DA) & - & \[
-
\] & \[
\begin{aligned}
& 80 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Disable Input Current - Low Logic State
\[
\left(\mathrm{V}_{\mathrm{I}(\mathrm{R})}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}(\mathrm{DA})}=0.4 \mathrm{~V}\right)
\] & IIL(DA) & - & - & -3.2 & mA \\
\hline Output Short Circuit Current
\[
\left(V_{I(R)}=0.5 \mathrm{~V}, \mathrm{~V}_{I L(D A)}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)
\] & 'OS & -18 & - & -55 & mA \\
\hline Power Supply Current
\[
\left(V_{I(R)}=0.5 \mathrm{~V}, V_{I L}(D A)=0 \mathrm{~V}\right)
\] & \({ }^{\prime} \mathrm{CC}\) & - & 45 & 65 & mA \\
\hline Input Clamp Diode Voltage
\[
I_{I(R)}=-12 \mathrm{~mA}, I_{I(D A)}=-12 \mathrm{~mA} \text {, }
\] & \(\mathrm{V}_{1}\) & - & -1.0 & -1.5 & V \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (\(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) unless otherwise noted.)
\begin{tabular}{|l|l|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Propagation Delay Time from Receiver Input to \\
High Logic State Output
\end{tabular} & tPLH(R) & - & 20 & 30 & ns \\
\hline \begin{tabular}{l}
Propagation Delay Time from Receiver Input to \\
Low Logic State Output
\end{tabular} & tPHL(R) & - & 18 & 30 & ns \\
\hline \begin{tabular}{l}
Propagation Delay Time from Disable Input to \\
High Logic State Output
\end{tabular} & tPLH(DA) & - & 9.0 & 15 & ns \\
\hline \begin{tabular}{l}
Propagation Delay Time from Disable Input to \\
Low Logic State Output
\end{tabular} & tPHL(DA) & - & 4.0 & 15 & ns \\
\hline
\end{tabular}

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - TYPICAL HYSTERESIS

REPRESENTATIVE CIRCUIT SCHEMATIC (1/6 Shown)

\section*{MOTOROLA}

\section*{QUAD GENERAL-PURPOSE INTERFACE BUS (GPIB) TRANSCEIVERS}

The MC3440A, MC3441A are quad bus transceivers intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. These transceivers allow the bidirectional flow of digital data and commands between the various instruments. Each of the transceiver versions provides four open-collector drivers and four receivers featuring input hysteresis.
The MC3440A version consists of three drivers controlled by a common Enable input and a single driver without an Enable input. Terminations are provided in the device.
The MC3441A differs in that all four drivers are controlled by the common Enable input. Again, the terminations are provided.
- Receiver Input Hysteresis Provides Excellent Noise Rejection
- Open-Collector Driver Outputs Permit Wire-OR Connection
- Tailored to Meet the Standards Set by the IEEE and IEC Committees on Instrument Interface (488-1978)
- Terminations comply with IEEE 488-1978; terminations removed when device is unpowered
- Provides Electrical Compatibility with General-Purpose Interface Bus

MAXIMUM RATINGS \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted.) (Note 1)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\mathbf{I}}\) & 5.5 & Vdc \\
\hline Driver Output Current & \(\mathrm{I}(\mathrm{O})\) & 150 & mA \\
\hline \begin{tabular}{l}
Power Dissipation (Package Limitation) \\
Derate above \(\mathbf{2 5}^{\circ} \mathrm{C}\)
\end{tabular} & PD & 830 & mW \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: Devices should not be operated at these values. The "Electrical Characteristics" provide conditions for actual device operation.

\section*{QUAD INTERFACE BUS TRANSCEIVERS}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUITS

\section*{MC3440A, MC3441A}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, \(4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}\) and \(0 \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}\), typical values are at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{DRIVER PORTION} \\
\hline Input Voltage - High Logic State & \(\mathrm{V}_{\mathrm{IH}}(\mathrm{D})\) & 2.0 & - & - & V \\
\hline Input Voltage - Low Logic State & \(\mathrm{V}_{\text {IL }}(\mathrm{D})\) & - & - & 0.8 & V \\
\hline Input Current - High Logic State
\[
\left(\mathrm{V}_{I H}=2.4 \mathrm{~V}\right)
\] & \(1 / H(D)\) & - & - & 40 & \(\mu \mathrm{A}\) \\
\hline Input Current - Low Logic State
\[
\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & IIL(D) & & & \(-0.25\) & mA \\
\hline Input Clamp Voltage
\[
\left(I_{\mathrm{IK}}=-12 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{IK}(\mathrm{D})}\) & - & - & -1.5 & V \\
\hline Output Voltage - High Logic State
\[
\left(\mathrm{V}_{\mathrm{IH}(\mathrm{~S})}=2.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{D})}=0.8 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\mathrm{OH}(\mathrm{D})}\) & 2.5 & - & - & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage - Low Logic State } \\
& \left(\mathrm{V}_{\mathrm{IH}(\mathrm{~S})}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}(\mathrm{E})}=0.8 \mathrm{~V}, \mathrm{IOL}(\mathrm{D})=48 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\mathrm{IH}(\mathrm{D})}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}(\mathrm{E})}=0.8 \mathrm{~V}, \mathrm{I} \mathrm{OL}(\mathrm{D})=100 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\text {OL }}(\mathrm{D})\) & - & - & \[
\begin{gathered}
0.5 \\
0.80
\end{gathered}
\] & V \\
\hline
\end{tabular}

\section*{RECEIVER PORTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Hysteresis & - & 400 & 580 & - & mV \\
\hline Input Threshold Voltage - Low to High Output Logic State
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\text {ILH }}(\mathrm{R})\) & 0.8 & 0.98 & - & V \\
\hline Input Threshold Voltage - High to Low Output Logic State
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\mathrm{IHL}(\mathrm{R})}\) & - & 1.56 & 2.0 & V \\
\hline Output Voltage - High Logic State \(\left(\mathrm{V}_{\mathrm{IL}}(\mathrm{R})=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}(\mathrm{R})=-400 \mu \mathrm{~A}\right)\) & \(\mathrm{VOH}_{(\mathrm{R})}\) & 2.4 & - & - & V \\
\hline Output Voltage - Low Logic State
\[
\left(\mathrm{V}_{\mathrm{IH}(\mathrm{R})}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}(\mathrm{R})}=16 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{OL}(\mathrm{R})}\) & - & - & 0.5 & V \\
\hline \begin{tabular}{l}
Output Short-Circuit Current \\
\(\mathrm{V}_{\text {IL }}(\mathrm{R})=0.8 \mathrm{~V}\)) (Only one output may be shorted at a time)
\end{tabular} & Ios(R) & -20 & - & -55 & mA \\
\hline
\end{tabular}

\section*{BUS TERMINATION PORTION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Bus Voltage }\left(\mathrm{V}_{\mathrm{IL}}(\mathrm{D})=0.8 \mathrm{~V}\right. \text {) } \\
& \text { (IBUS }=-12 \mathrm{~mA}) \\
& \text { (No Load) }
\end{aligned}
\] & \(V_{\text {BUS }}\) & \[
\overline{2.50}
\] & - & \[
\begin{aligned}
& -1.5 \\
& 3.70
\end{aligned}
\] & V \\
\hline Bus Current
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{IL}(\mathrm{D})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}} \geqslant 5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{IL}(\mathrm{D})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}} \leqslant 5.5 \mathrm{~V}\right) \\
& \left.\left(\mathrm{V}_{\text {IL(}}\right)=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=0.5 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=0,0 \leqslant \mathrm{~V}_{\mathrm{BUS}} \leqslant 2.75 \mathrm{~V}\right)
\end{aligned}
\] & IBUS & \[
\begin{gathered}
0.7 \\
-1.3
\end{gathered}
\] & - & \[
\begin{gathered}
- \\
2.5 \\
-3.2 \\
+0.04
\end{gathered}
\] & mA \\
\hline
\end{tabular}

TOTAL DEVICE POWER CONSUMPTION
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
Power Supply Current \\
\(\left(V_{\mid H(D)}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}(E)}=0 \mathrm{~V}\right)\)
\end{tabular} & \(\mathrm{I}_{\mathrm{CC}}\) & 30 & 56 & 75 \\
mA \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{DRIVER PORTION} \\
\hline Propagation Delay Time from Driver Input to Low Logic State Bus Output & tPHL(D) & - & 13 & 30 & ns \\
\hline Propagation Delay Time from Driver Input to High Logic State Bus Output & tPLH(D) & - & 17 & 30 & ns \\
\hline Propagation Delay Time from Enable Input to Low Logic State Bus Output & tPHL(E) & - & 25 & 40 & ns \\
\hline Propagation Delay Time from Enable Input to High Logic State Bus Output & tPLH(E) & - & 25 & 40 & ns \\
\hline \multicolumn{6}{|l|}{RECEIVER PORTION} \\
\hline Propagation Delay Time from Bus Input to High Logic State Receiver Output & \({ }_{\text {tPLH(R) }}\) & - & 15 & 30 & ns \\
\hline Propagation Delay Time from Bus Input to Low Logic State Receiver Output & tPHL(R) & - & 15 & 30 & ns \\
\hline
\end{tabular}

GENERAL PURPOSE INTERFACE BUS APPLICATION

8 Line Data Bus: DI01-DI08
5 General Interrupt Transfer Control Bus: REN - Remote Enable SRQ - Service Request
EOI - End or Identify
ATN - Attention
IFC - Interface Clear

3 Data Byte Transfer Control Bus
DAV - Data Valid
NRFD - Not Ready for Data
NDAC - Not Data Accepted
16 Total Signal Lines

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER INPUT (BUS) TO OUTPUT

FIGURE 2 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER AND COMMON ENABLE INPUTS TO OUTPUT (BUS)

\section*{QUAD GENERAL-PURPOSE INTERFACE BUS (GPIB) TRANSCEIVER}

The MC3446A is a quad bus transceiver intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. This transceiver allows the bidirectional flow of digital data and commands between the various instruments. The transceiver provides four open-collector drivers and four receivers featuring hysteresis.
- Tailored to Meet the IEEE Standard 488-1978 (Digital Interface for Programmable Instrumentation) and the Proposed IEC Standard on Instrument Interface
- Provides Electrical Compatibility with General-Purpose Interface Bus (GPIB)
- MOS Compatible with High Impedance Inputs
- Driver Output Guaranteed Off During Power Up/Power Down
- Low Power - Average Power Supply Current \(=12 \mathrm{~mA}\)
- Terminations Provided

QUAD INTERFACE BUS TRANSCEIVER SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 648-06

\(-\mathrm{T}-=\) Bus Termination

MAXIMUM RATINGS (\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{I}}\) & 5.5 & Vdc \\
\hline Driver Output Current & \(\mathrm{I}_{\mathrm{O}(\mathrm{D})}\) & 150 & mA \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ}{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
(Unless otherwise noted, \(4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.5 \mathrm{~V}\) and \(0 \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}\), typical values are at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{DRIVER PORTION} \\
\hline Input Voltage - High Logic State & \(V_{1 H}(D)\) & 2.0 & - & - & V \\
\hline Input Voltage - Low Logic State & \(V_{\text {IL }}(\mathrm{D})\) & - & - & 0.8 & V \\
\hline Input Current - High Logic State
\[
\left(\mathrm{V}_{I H}=2.4 \mathrm{~V}\right)
\] & IIH(D) & - & 5.0 & 40 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Input Current - Low Logic State } \\
& \quad\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\end{aligned}
\] & IIL(D) & - & -0.2 & \(-0.25\) & mA \\
\hline Input Clamp Voltage
\[
\left(1_{I K}=-12 \mathrm{~mA}\right)
\] & \(V_{\text {IK }}(\mathrm{D})\) & - & - & -1.5 & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage }- \text { High Logic State }(1) \\
& \left(\mathrm{V}_{1 \mathrm{H}(\mathrm{~S})}=2.4 \mathrm{~V} \text { or } \mathrm{V}_{1 \mathrm{H}(\mathrm{D})}=2.0 \mathrm{~V}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}(\mathrm{D})}\) & 2.5 & 3.3 & 3.7 & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage - Low Logic State } \\
& \qquad\left(\mathrm{V}_{1 \mathrm{~L}}(\mathrm{~S})=0.8 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~L}}(\mathrm{D})=0.8 \mathrm{~V}, \mathrm{I} \mathrm{OL}(\mathrm{D})=48 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}(\mathrm{D})\) & - & - & 0.5 & \\
\hline Input Breakdown Current
\[
\left(V_{1}(D)=5.5 \mathrm{~V}\right)
\] & \(1 / B(D)\) & - & - & 1.0 & mA \\
\hline
\end{tabular}

RECEIVER PORTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Hysteresis & - & 400 & 625 & - & mV \\
\hline Input Threshold Voltage - Low to High Output Logic State & \(V_{\text {ILH(R) }}\) & - & 1.66 & 2.0 & V \\
\hline Input Threshold Voltage - High to Low Output Logic State & \(V_{1 H L}(R)\) & 0.8 & 1.03 & - & V \\
\hline Output Voltage - High Logic State
\[
\left(\mathrm{V}_{1 \mathrm{H}(\mathrm{R})}=2.0 \mathrm{~V}, \mathrm{OH}(\mathrm{R})=-400 \mu \mathrm{~A}\right)
\] & \(\mathrm{V}_{\mathrm{OH}}(\mathrm{R})\) & 2.4 & - & - & V \\
\hline Output Voltage - Low Logic State
\(\left(\mathrm{V}_{\text {IL }}(\mathrm{R})=0.8 \mathrm{~V}, \mathrm{I} \mathrm{OL}(\mathrm{R})=8.0 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OL}}(\mathrm{R})\) & - & - & 0.5 & V \\
\hline \begin{tabular}{l}
Output Short-Circuit Current \\
\(\left(\mathrm{V}_{\text {IH }}(\mathrm{R})=2.0 \mathrm{~V}\right)\) (Only one output may be shorted at a time)
\end{tabular} & 'OS(R) & 4.0 & - & 14 & mA \\
\hline
\end{tabular}

\section*{BUS LOAD CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Bus Voltage & \[
\begin{aligned}
& \left(V_{1 H}(E)=2.4 \mathrm{~V}\right) \\
& \left(I_{B \cup S}=-12 \mathrm{~mA}\right)
\end{aligned}
\] & \(V_{(B \cup S)}\) & \[
2.5
\] & \[
3.3
\] & \[
\begin{array}{r}
\hline 3.7 \\
-1.5
\end{array}
\] & V \\
\hline Bus Current & \[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{IH}(\mathrm{O})}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}} \geqslant 5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1 \mathrm{H}(\mathrm{D})}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=0.5 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{BUS}} \leqslant 5.5 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {BUS }} \leqslant 2.75 \mathrm{~V}\right)
\end{aligned}
\] & '(BUS) & \[
\begin{gathered}
\hline 0.7 \\
-1.3 \\
-
\end{gathered}
\] & -
-
- & \[
\begin{gathered}
- \\
-3.2 \\
2.5 \\
0.04
\end{gathered}
\] & mA \\
\hline
\end{tabular}

TOTAL DEVICE POWER CONSUMPTION
\begin{tabular}{|l|l|l|l|l|l|}
\hline Power Supply Current & ICC & & & mA \\
(All Drivers OFF) \\
(All Drivers ON) & & - & 12 & 19 & \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{DRIVER PORTION} \\
\hline Propagation Delay Time from Driver Input to Low Logic State Bus Output & tPHL(D) & - & - & 50 & ns \\
\hline Propagation Delay Time from Driver Input to High Logic State Bus Output & tPLH(D) & - & - & 40 & ns \\
\hline Propagation Delay Time from Enable Input to Low Logic State Bus Output & tPHL(E) & - & - & 50 & ns \\
\hline Propagation Delay Time from Enable Input to High Logic State Bus Output & tPLH(E) & - & - & 50 & ns \\
\hline
\end{tabular}

\section*{RECEIVER PORTION}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Propagation Delay Time from Bus Input to High Logic State Receiver Output & tPLH(R) & - & - & 50 & ns \\
\hline Propagation Delay Time from Bus Input to Low Logic State Receiver Output & tPHL(R) & - & - & 40 & ns \\
\hline
\end{tabular}

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER INPUT (BUS) TO OUTPUT

FIGURE 2 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER AND COMMON ENABLE INPUTS TO OUTPUT (BUS)

* Includes Probe and Jig Capacitance

FIGURE 3 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS

FIGURE 4 - TYPICAL BUS LOAD LINE

\section*{BIDIRECTIONAL INSTRUMENTATION BUS (GPIB) TRANSCEIVER}

This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1978, often referred to as GPIB). The required bus termination is internally provided.

Low power consumption has been achieved by trading a minimum of speed for low current drain on non-critical channels. A fast channel is provided for critical ATN and EOI paths.

Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by a Send/Receive input with the disabled output of the pair forced to a high impedance state. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications.
- Low Power - Average Power Supply Current \(=30 \mathrm{~mA}\) Listening

75 mA Talking
- Eight Driver/Receiver Pairs
- Three-State Outputs
- High Impedance Inputs
- Receiver Hysteresis -600 mV (Typ)
- Fast Propagation Times - 15-20 ns (Typ)
- TTL Compatible Receiver Outputs
- Single +5 Volt Supply
- Open Collector Driver Output with Terminations
- Power Up/Power Down Protection (No Invalid Information Transmitted to Bus)
- No Bus Loading When Power is Removed From Device
- Required Termination Characteristics Provided

MAXIMUM RATINGS (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{I}}\) & 5.5 & Vdc \\
\hline Driver Output Current & \(\mathrm{I}_{\mathrm{O}}(\mathrm{D})\) & 150 & mA \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{OCTAL BIDIRECTIONAL BUS TRANSCEIVER WITH TERMINATION NETWORKS}

\section*{SILICON MONOLITHIC INTEGRATED CIRCUIT}

ELECTRICAL CHARACTERISTICS
(Unless otherwise noted \(4.50 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.50 \mathrm{~V}\) and \(0 \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}\); typical values are at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic - Note 1 & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Bus Voltage } \\
& (\text { Bus Pin Open })\left(\mathrm{V}_{1}(\mathrm{~S} / \overline{\mathrm{R}})=0.8 \mathrm{~V}\right) \\
& (1(\text { Bus })=-12 \mathrm{~mA}) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
V_{\text {(Bus) }} \\
V_{\text {IC (Bus) }} \\
\hline
\end{gathered}
\] & \[
2.5
\] & - & \[
\begin{gathered}
3.7 \\
-1.5
\end{gathered}
\] & V \\
\hline \[
\begin{aligned}
& \text { Bus Current } \\
& \left(5.0 \mathrm{~V} \leqslant \mathrm{~V}_{(\text {Bus })} \leqslant 5.5 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{(\text {Bus })}=0.5 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{(\text {Bus })} \leqslant 2.75 \mathrm{~V}\right)
\end{aligned}
\] & '(Bus) & \[
\begin{gathered}
0.7 \\
-1.3 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
2.5 \\
-3.2 \\
+0.04
\end{gathered}
\] & mA \\
\hline Receiver Input Hysteresis
\[
\left(V_{1}(S / \bar{R})=0.8 \mathrm{~V}\right)
\] & - & 400 & 600 & - & mV \\
\hline \begin{tabular}{ll}
\begin{tabular}{c}
Receiver Input Threshold \\
\(\left.\left(V_{1(S} / \bar{R}\right)=0.8 \mathrm{~V}\right)\)
\end{tabular} & \begin{tabular}{l}
Low to High \\
\\
\end{tabular} \\
\hline
\end{tabular} & \[
\begin{aligned}
& V_{I L H(R)} \\
& V_{I H L(R)}
\end{aligned}
\] & \[
\begin{gathered}
- \\
0.8 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
2.0
\] & V \\
\hline Receiver Output Voltage - High Logic State
\[
\left(\mathrm{V}_{1(\mathrm{~S} / \overline{\mathrm{R}})}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}(\mathrm{R})}=-200 \mu \mathrm{~A}, \mathrm{~V}_{(\mathrm{Bus})}=2.0 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\mathrm{OH}(\mathrm{R})}\) & 2.4 & - & - & V \\
\hline Receiver Output Voltage - Low Logic State
\[
\left(\mathrm{V}_{1(\mathrm{~S} / \overline{\mathrm{R}})}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}(\mathrm{R})}=4.0 \mathrm{~mA},\left(\mathrm{~V}_{(\mathrm{Bus})}=0.8 \mathrm{~V}\right.\right.
\] & \(\mathrm{V}_{\text {OL }}\) (R) & - & - & 0.5 & V \\
\hline Receiver Output Short Circuit Current
\[
\left(\mathrm{V}_{1(\mathrm{~S} / \bar{R})}=0.8 \mathrm{~V}, \mathrm{~V}_{(\mathrm{Bus})}=2.0 \mathrm{~V}\right)
\] & 'OS(R) & -4.0 & - & -20 & mA \\
\hline Driver Input Voltage - High Logic State
\[
\left(\mathrm{V}_{1(\mathrm{~S} / \overline{\mathrm{R}})}=2.0 \mathrm{~V}\right)
\] & \(V_{\text {IH }}(\mathrm{D})\) & 2.0 & - & - & V \\
\hline Driver Input Voltage - Low Logic State \(\left(\mathrm{V}_{1(\mathrm{~S} / \overline{\mathrm{R}})}=2.0 \mathrm{~V}\right)\) & \(V_{\text {IL }}(\mathrm{D})\) & - & - & 0.8 & V \\
\hline Driver Input Current - Data Pins
\[
\begin{aligned}
& \left(\mathrm{V}_{1}(\mathrm{~S} / \overline{\mathrm{R}})=2.0 \mathrm{~V}\right) \\
& \left(0.5 \leqslant \mathrm{~V}_{1}(\mathrm{D}) \leqslant 2.7 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1(\mathrm{D})}=5.5 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& 1_{1(D)} \\
& I_{I B(D)}
\end{aligned}
\] & \[
-100
\] & \[
-
\] & \[
\begin{gathered}
40 \\
200
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline \[
\begin{gathered}
\text { Input Current - Send/Receive } \\
\left(0.5 \leqslant \mathrm{~V}_{1(\mathrm{~S} / \mathrm{R})} \leqslant 2.7 \mathrm{~V}\right) \\
\left(\mathrm{V}_{1(\mathrm{~S} / \overline{\mathrm{R}})}=5.5 \mathrm{~V}\right) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& I_{1(S / \bar{R})} \\
& I_{\mathrm{IB}(\mathrm{~S} / \overline{\mathrm{R}})}
\end{aligned}
\] & \[
-250
\] & \[
-
\] & \[
\begin{gathered}
20 \\
100
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Driver Input Clamp Voltage
\[
\left(\mathrm{V}_{\mid(\mathrm{S} / \overline{\mathrm{R}})}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}(\mathrm{D})}=-18 \mathrm{~mA}\right)
\] & \(V_{\text {IC }}(\mathrm{D})\) & - & - & -1.5 & V \\
\hline Driver Output Voltage - High Logic State
\[
\left(\mathrm{V}_{\mathrm{IS} / \overline{\mathrm{R}})}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}(\mathrm{D})}=2.0 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\mathrm{OH}}(\mathrm{D})\) & 2.5 & - & - & V \\
\hline Driver Output Voltage - Low Logic State (Note 2)
\[
\left(\mathrm{V}_{\mathrm{I}}^{(\mathrm{S} / \overline{\mathrm{R}})}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}(\mathrm{D})}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}(\mathrm{D})}=48 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\text {OL(}}\) (\()\) & - & - & 0.5 & V \\
\hline \begin{tabular}{l}
Power Supply Current \\
(Listening Mode - All Receivers On) \\
(Talking Mode - All Drivers On)
\end{tabular} & \[
\begin{aligned}
& { }^{\mathrm{I}} \mathrm{CCL} \\
& \mathrm{I}^{2}
\end{aligned}
\] & - & \[
\begin{aligned}
& 30 \\
& 75
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 95
\end{aligned}
\] & mA \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Propagation Delay of Driver (Output Low to High) (Output High to Low) & \[
\begin{aligned}
& \text { tPLH(D) } \\
& \text { tpHL(D) }
\end{aligned}
\] & - & \[
\begin{aligned}
& 7.0 \\
& 16 \\
& \hline
\end{aligned}
\] & 15
30 & ns \\
\hline \begin{tabular}{l}
Propagation Delay of Receiver (Channels 0 to 5, 7) \\
(Output Low to High) \\
(Output High to Low)
\end{tabular} & \[
\begin{aligned}
& \text { tPLH(R) } \\
& \text { tPHL(R) }
\end{aligned}
\] & - & \[
\begin{aligned}
& 28 \\
& 15 \\
& \hline
\end{aligned}
\] & 50
30 & ns \\
\hline \begin{tabular}{l}
Propagation Delay of Receiver (Channel 6, Note 3) (Output Low to High) \\
(Output High to Low)
\end{tabular} & \[
\begin{aligned}
& \text { tPLH(R) } \\
& \text { tPHL(R) }
\end{aligned}
\] & - & \[
\begin{aligned}
& 17 \\
& 12 \\
& \hline
\end{aligned}
\] & 30
22 & ns \\
\hline
\end{tabular}

NOTES: 1. Specified test conditions for \(V_{I(S / \bar{R})}\) are 0.8 V (Low) and 2.0 V (High). Where \(V_{I(S / \bar{R})}\) is specified as a test condition, \(\mathrm{V}_{I(\overline{\mathrm{~S}} / \mathrm{R})}\) uses the opposite logic levels.
2. The IEEE 488-1979 Bus Standard changes \(V_{\text {OL }}\) (D) from 0.4 to 0.5 V maximum to permit the use of Schottky technology.
3. In order to meet the IEEE 488-1978 Standard for total system delay on the ATN and EOI channels, a fast receiver has been provided on Channel 6 (Pins 9 and 16).

SWITCHING CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline Propagation Delay Time - Send/Receiver to Data & & & & & ns \\
Logic High to Third State & \(\operatorname{tPHZ}(R)\) & - & 15 & 30 & \\
Third State to Logic High & \(\operatorname{tPZH}(R)\) & - & 15 & 30 \\
Logic Low to Third State & \(\operatorname{tPLZ}(R)\) & - & 15 & 25 & \\
Third State to Logic Low & \(\operatorname{tPZL}(R)\) & - & 10 & 25 & \\
\hline Propagation Delay Time -Send/Receiver to Bus & & & & \\
Logic Low to Third State & \(\operatorname{tPLZ(D)}\) & - & 13 & 25 & ns \\
Third State to Logic Low & \(\operatorname{tPZL(D)}\) & - & 30 & 50 & \\
\hline
\end{tabular}

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS

FIGURE 2 - DATA INPUT TO BUS OUTPUT (DRIVER)

FIGURE 3 - SEND/ RECEIVE INPUT TO BUS OUTPUT (DRIVER)

FIGURE 4 - SEND/RECEIVE INPUT TO DATA OUTPUT (RECEIVER)

FIGURE 7 - SUGGESTED PRINTED CIRCUIT BOARD LAYOUT USING MC3447s AND MC68488

FIGURE 8 - SIMPLE SYSTEM CONFIGURATION

FIGURE 9 - SUGGESTED PIN DESIGNATIONS FOR USE WITH MC68488

\section*{BIDIRECTIONAL INSTRUMENTATION BUS (GPIB) TRANSCEIVER}

This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1978, often referred to as GPIB). The required bus termination is internally provided.

Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by its corresponding Send/Receive input with the disabled output of the pair forced to a high impedance state. An additional option allows the driver outputs to be operated in an open collector(1) or active pull-up configuration. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications.
- Four Independent Driver/Receiver Pairs
- Three-State Outputs
- High Impedance Inputs
- Receiver Hysteresis -600 mV (Typ)
- Fast Propagation Times - 15-20 ns (Typ)
- TTL Compatible Receiver Outputs
- Single +5 Volt Supply
- Open Collector Driver Output Option(1)
- Power Up/Power Down Protection
(No Invalid Information Transmitted to Bus)
- No Bus Loading When Power Is Removed From Device
- Required Termination Characteristics Provided
(1) Selection of the "Open Collector" configuration, in fact, selects an open collector device with a passive pull-up load/termination which conforms to Figure 7, IEEE 488-1978 Bus Standard.
MAXIMUM RATINGS (\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{I}}\) & 5.5 & Vdc \\
\hline Driver Output Current & \(\mathrm{I}_{\mathrm{O}}(\mathrm{D})\) & 150 & mA \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

QUAD THREE-STATE BUS TRANSCEIVER WITH TERMINATION NETWORKS

\section*{SILICON MONOLITHIC INTEGRATED CIRCUIT}

X = Don't Care

ELECTRICAL CHARACTERISTICS
(Unless otherwise noted \(4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{C}} \leqslant 5.25 \mathrm{~V}\) and \(0 \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}\); typical values are at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
& \text { Bus Voltage } \\
& \text { (Bus Pin Open) }\left(\mathrm{V}_{1}(\mathrm{~S} / \mathrm{R})=0.8 \mathrm{~V}\right) \\
& (1(\text { BUS })=-12 \mathrm{~mA})
\end{aligned}
\] & \[
\begin{gathered}
V_{(B \cup S)} \\
V_{\text {IC(BUS) }}
\end{gathered}
\] & & - & \[
\begin{gathered}
3.7 \\
-1.5
\end{gathered}
\] & V \\
\hline \[
\begin{aligned}
& \text { Bus Current } \\
& \left(5.0 \mathrm{~V} \leqslant \mathrm{~V}_{(\mathrm{BUS})} \leqslant 5.5 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{(\mathrm{B} \cup S}=0.5 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, 0 \mathrm{~V} \leqslant \mathrm{~V}_{(\mathrm{B} \cup \mathrm{~S})} \leqslant 2.75 \mathrm{~V}\right)
\end{aligned}
\] & '(BUS) & \[
\begin{gathered}
0.7 \\
-1.3 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
2.5 \\
-3.2 \\
+0.04
\end{array}
\] & mA \\
\hline Receiver Input Hysteresis
\[
\left(\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=0.8 \mathrm{~V}\right)
\] & - & 400 & 600 & - & mV \\
\hline \[
\begin{aligned}
& \text { Receiver Input Threshold } \\
&\left(\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}\right.=0.8 \mathrm{~V}, \text { Low to High) } \\
&\left(\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}\right)=0.8 \mathrm{~V} \text {, High to Low) }
\end{aligned}
\] & \[
\begin{aligned}
& V_{I L H(R)} \\
& V_{I H L(R)}
\end{aligned}
\] & \[
0.8
\] & \[
\begin{aligned}
& 1.6 \\
& 1.0
\end{aligned}
\] & \[
1.8
\] & V \\
\hline Receiver Output Voltage - High Logic State
\[
\left(\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=0.8 \mathrm{~V}, \mathrm{IOH}_{(R)}=-800 \mu \mathrm{~A}, \mathrm{~V}_{(\mathrm{BUS})}=2.0 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\mathrm{OH}(\mathrm{R})}\) & 2.7 & - & - & V \\
\hline \[
\begin{aligned}
& \text { Receiver Output Voltage - Low Logic State } \\
& \quad\left(\mathrm{V}_{\mathrm{I}}(\mathrm{~S} / \mathrm{R})=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}(\mathrm{R})=16 \mathrm{~mA}, \mathrm{~V}_{(\mathrm{B} \cup \mathrm{~S})}=0.8 \mathrm{~V}\right)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}(\mathrm{R})\) & - & - & 0.5 & V \\
\hline Receiver Output Short Circuit Current
\[
\left(V_{1(S / R)}=0.8 \mathrm{~V}, V_{(B \cup S)}=2.0 \mathrm{~V}\right)
\] & 'OS(R) & -15 & - & -75 & mA \\
\hline Driver Input Voltage - High Logic State \(\left(\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=2.0 \mathrm{~V}\right)\) & \(V_{\text {IH(}}(\mathrm{D})\) & 2.0 & - & - & V \\
\hline Driver Input Voltage - Low Logic State \(\left(\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=2.0 \mathrm{~V}\right)\) & \(V_{\text {IL }}(\mathrm{D})\) & - & - & 0.8 & V \\
\hline \[
\begin{gathered}
\text { Driver Input Current - Data Pins } \\
\left(\mathrm{V}_{1}(\mathrm{~S} / \mathrm{R})=\mathrm{V}_{1(\mathrm{E})}=2.0 \mathrm{~V}\right) \\
\left(0.5 \leqslant \mathrm{~V}_{1}(\mathrm{D}) \leqslant 2.7 \mathrm{~V}\right) \\
\left(\mathrm{V}_{1}(\mathrm{D})=5.5 \mathrm{~V}\right) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1_{1(D)} \\
& I_{I B}(D) \\
& \hline
\end{aligned}
\] & \[
-200
\] & & \[
\begin{gathered}
40 \\
200
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline \[
\begin{gathered}
\text { Input Current - Send/Receive } \\
\left(0.5 \leqslant V_{1}(\mathrm{~S} / \mathrm{R}) \leqslant 2.7 \mathrm{~V}\right) \\
\left(\mathrm{V}_{1}(\mathrm{~S} / \mathrm{R})=5.5 \mathrm{~V}\right) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
I_{I(S / R)} \\
I_{I B}(S / R)
\end{gathered}
\] & \[
-100
\] & & \[
\begin{gathered}
20 \\
100
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Input Current - Enable } \\
& \left(0.5 \leqslant V_{1}(\mathrm{E}) \leqslant 2.7 \mathrm{~V}\right) \\
& \left(V_{1}(\mathrm{E})=5.5 \mathrm{~V}\right) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
I_{I(E)} \\
I_{I B(E)}
\end{gathered}
\] & \[
-200
\] & & \[
\begin{gathered}
20 \\
100
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Driver Input Clamp Voltage
\[
\left(\mathrm{V}_{1}(\mathrm{~S} / \mathrm{R})=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IC}(\mathrm{D})}=-18 \mathrm{~mA}\right)
\] & \(V_{\text {IC (}}\) (\()\) & - & - & -1.5 & V \\
\hline Driver Output Voltage - High Logic State
\[
\left(\mathrm{V}_{\mathrm{I}(\mathrm{~S} / \mathrm{R})}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}(\mathrm{D})}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}(\mathrm{E})}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{OH}(\mathrm{D})}\) & 2.5 & - & - & V \\
\hline Driver Output Voltage - Low Logic State (Note 1)
\[
\left(\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}(\mathrm{D})}=48 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{OL}}(\mathrm{D})\) & - & - & 0.5 & V \\
\hline Output Short Circuit Current
\[
\left(\mathrm{V}_{1(\mathrm{~S} / \mathrm{R})}=2.0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}(\mathrm{D})}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}(\mathrm{E})}=2.0 \mathrm{~V}\right)
\] & 'OS(D) & -30 & - & -120 & mA \\
\hline \begin{tabular}{l}
Power Supply Current \\
(Listening Mode - All Receivers On) \\
(Talking Mode - All Drivers On)
\end{tabular} & \[
\begin{aligned}
& \mathrm{I} \mathrm{CCL} \\
& \mathrm{I}^{\mathrm{CCH}}
\end{aligned}
\] & - & \[
\begin{gathered}
63 \\
106
\end{gathered}
\] & \[
\begin{gathered}
85 \\
125
\end{gathered}
\] & mA \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l}
Propagation Delay of Driver \\
(Output Low to High) \\
(Output High to Low)
\end{tabular} & \begin{tabular}{c}
tPLH(D) \\
tPHL(D)
\end{tabular} & - & - & ns \\
\hline \begin{tabular}{l}
Propagation Delay of Receiver \\
(Output Low to High) \\
(Output High to Low)
\end{tabular} & & - & 15 & \\
\hline
\end{tabular}

NOTE 1. A modification of the IEEE 488-1978 Bus Standard changes \(\mathrm{V}_{\mathrm{OL}}(\mathrm{D})\) from 0.4 to 0.5 V maximum to permit the use of Schottky technology.

SWITCHING CHARACTERISTICS (continued) \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Propagation Delay Time - Send/Receive to Data Logic High to Third State Third State to Logic High Logic Low to Third State Third State to Logic Low & \[
\begin{aligned}
& \text { tpHZ(R) } \\
& \text { tpZ } \mathrm{t}(\mathrm{R}) \\
& \text { tpLZ(R) } \\
& \text { tpZL(R) }
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& \text { - }
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& 30
\end{aligned}
\] & ns \\
\hline \begin{tabular}{l}
Propagation Delay Time - Send/Receive to Bus \\
Logic High to Third State \\
Third State to Logic High \\
Logic Low to Third State \\
Third State to Logic Low
\end{tabular} & \[
\begin{aligned}
& \text { tpHZ(D) } \\
& \text { tpZH(D) } \\
& \text { tpLZ(D) } \\
& \text { tpZL(D) }
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& 30
\end{aligned}
\] & ns \\
\hline Turn-On Time - Enable to Bus Pull-Up Enable to Open Collector Open Collector to Pull-Up Enable & tPOFF(E) tpon(E) & - & - & \[
\begin{aligned}
& 30 \\
& 20
\end{aligned}
\] & ns \\
\hline
\end{tabular}

\section*{PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS}

FIGURE 2 - DATA INPUT TO BUS OUTPUT (DRIVER)

FIGURE 4 - SEND/RECEIVE INPUT TO DATA OUTPUT (RECEIVER)

FIGURE 5 - ENABLE INPUT TO BUS OUTPUT (DRIVER)

\(f=1.0 \mathrm{MHz}\)
\(\mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}}=\leqslant 5.0 \mathrm{~ns}(10-90)\)
Duty Cycle \(=50 \%\)

FIGURE 6 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS

FIGURE 7 - TYPICAL BUS LOAD LINE

FIGURE 8 - SIMPLE SYSTEM CONFIGURATION

\section*{Specifications and Applications Information}

\section*{QUAD MTTL COMPATIBLE LINE RECEIVERS}

The MC3450 features four MC75107 type active pullup line receivers with the addition of a common three-state strobe input. When the strobe input is at a logic zero, each receiver output state is determined by the differential voltage across its respective inputs. With the strobe high, the receiver outputs are in the high impedance state.

The MC3452 is the same as the MC3450 except that the outputs are open collector which permits the implied "AND" function.

The strobe input on both devices is buffered to present a strobe loading factor of only one for all four receivers and inverted to provide best compatability with standard decoder devices.
- Receiver Performance Identical to the Popular MC75107/MC75108 Series
- Four Independent Receivers with Common Strobe Input
- Implied "AND" Capability with Open Collector Outputs
- Useful as a Quad 1103 type Memory Sense Amplifier

FIGURE 1 - A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4-K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103 TYPE MEMORY DEVICES

QUAD LINE RECEIVERS WITH COMMON THREE-STATE STROBE INPUT

\section*{SILICON MONOLITHIC INTEGRATED CIRCUITS}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TRUTH TABLE} \\
\hline \multirow[b]{2}{*}{INPUT} & \multirow[b]{2}{*}{STROBE} & \multicolumn{2}{|l|}{OUTPUT} \\
\hline & & MC3450 & MC3452 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
v_{10} \geqslant \\
+25 \mathrm{mV}
\end{gathered}
\]} & L & H & Off \\
\hline & H & Z & Off \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
-25 \mathrm{mv} \leqslant \\
v_{I D} \leqslant+25 \mathrm{mV}
\end{gathered}
\]} & L & 1 & 1 \\
\hline & H & Z & Off \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{I D} \leqslant \\
& -25 \mathrm{mV}
\end{aligned}
\]} & L & \(L\) & L \\
\hline & H & 2 & Off \\
\hline
\end{tabular}
\[
\begin{aligned}
L & =\text { Low Logic State } \\
H & =\text { High Logic State } \\
Z & =\text { Third (High Impedance) State } \\
\text { I } & =\text { Indeterminate State }
\end{aligned}
\]

\section*{MC3450, MC3452}

MAXIMUM RATINGS \(\left(T_{A}=0\right.\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltages & \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}\) & \(\pm 7.0\) & Vdc \\
\hline Differential-Mode Input Signal Voltage Range & \(\mathrm{V}_{\text {IDR }}\) & \(\pm 6.0\) & Vdc \\
\hline Common-Mode Input Voltage Range & \(\mathrm{V}_{\text {ICR }}\) & \(\pm 5.0\) & Vdc \\
\hline Strobe Input Voltage & \(\mathrm{V}_{\mathrm{I}(\mathrm{S})}\) & 5.5 & Vdc \\
\hline Power Dissipation (Package Limitation) & \(\mathrm{P}_{\mathrm{D}}\) & & \\
Ceramic Dual In-Line Package & & 1000 & mW \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & & 6.6 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
Plastic Dual In-Line Package & & 1000 & mW \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & & 6.6 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS (TA \(=0\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voltages & \(\mathrm{V}_{\mathrm{CC}}\) & +4.75 & +5.0 & +5.25 & Vdc \\
& \(\mathrm{V}_{\mathrm{EE}}\) & -4.75 & -5.0 & -5.25 & \\
\hline Output Load Current & IOL & - & - & \(\mathbf{1 6}\) & mA \\
\hline Differential-Mode Input Voltage Range & \(\mathrm{V}_{\text {IDR }}\) & -5.0 & - & +5.0 & Vdc \\
\hline Common-Mode Input Voltage Range & \(\mathrm{V}_{\mathrm{ICR}}\) & -3.0 & - & +3.0 & Vdc \\
\hline Input Voltage Range (any input to Ground) & \(\mathrm{V}_{\mathrm{IR}}\) & -5.0 & - & +3.0 & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=0\right.\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Fig.} & \multicolumn{3}{|c|}{MC3450} & \multicolumn{3}{|c|}{MC3452} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min & Typ & Max & Min & Typ & Max & \\
\hline High Level Input Current to Receiver Input & \(1 / \mathrm{H}(1)\) & 7 & - & - & 75 & - & - & 75 & \(\mu \mathrm{A}\) \\
\hline Low Level Input Current to Receiver Input & IIL(I) & 8 & - & - & -10 & - & - & -10 & \(\mu \mathrm{A}\) \\
\hline High Level Input Current to Strobe Input
\[
\begin{aligned}
& \mathrm{V}_{1 \mathrm{H}(\mathrm{~S})}=+2.4 \mathrm{~V} \\
& \mathrm{~V}_{1 \mathrm{H}(\mathrm{~S})}=+5.25 \mathrm{~V}
\end{aligned}
\] & \({ }^{1} \mathrm{HH}(\mathrm{S})\) & 5 & \[
-
\] & & \[
\begin{aligned}
& 40 \\
& 1.0
\end{aligned}
\] & & - & \[
\begin{aligned}
& 40 \\
& 1.0
\end{aligned}
\] & \[
\mu \mathrm{A}
\]
\[
\mathrm{mA}
\] \\
\hline Low Level Input Current to Strobe Input
\[
V_{1 H(S)}=+0.4 \mathrm{~V}
\] & IIL(S) & 5 & - & - & -1.6 & - & - & -1.6 & mA \\
\hline High Level Output Voltage & V OH & 3 & 2.4 & - & - & - & - & - & Vdc \\
\hline High Level Output Leakage Current & \({ }^{\text {I CEX }}\) & 3 & - & - & - & - & - & 250 & \(\mu \mathrm{A}\) \\
\hline Low Level Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & 3 & - & - & 0.5 & - & - & 0.5 & Vdc \\
\hline Short-Circuit Output Current & Ios & 6 & -18 & - & -70 & - & - & - & mA \\
\hline Output Disable Leakage Current & Ioff & 9 & - & - & 40 & - & - & - & \(\mu \mathrm{A}\) \\
\hline High Logic Level Supply Current from \(\mathrm{V}_{\mathrm{CC}}\) & \({ }^{1} \mathrm{CCH}\) & 4 & - & 45 & 60 & - & 45 & 60 & mA \\
\hline High Logic Level Supply Current from VEE & 'EEH & 4 & - & -17 & -30 & - & -17 & -30 & mA \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}, \mathrm{V}_{\text {EE }}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted. \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Fig.} & \multicolumn{3}{|c|}{MC3450} & \multicolumn{3}{|c|}{MC3452} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min & Typ & Max & Min & Typ & Max & \\
\hline High to Low Logic Level Propagation Delay Time (Differential Inputs) & \({ }^{\text {t PHL }}\) (D) & 10 & - & - & 25 & - & - & 25 & ns \\
\hline Low to High Logic Level Propagation Delay Time (Differential Inputs) & \({ }^{\text {t }}\) LH(D) & 10 & - & - & 25 & - & - & 25 & ns \\
\hline Open State to High Logic Level Propagation Delay Time (Strobe) & tPZH(S) & 11 & - & - & 21 & - & - & - & ns \\
\hline High Logic Level to Open State Propagation Delay Time (Strobe) & \({ }^{\text {tPHZ }}\) (S) & 11 & - & - & 18 & - & - & - & ns \\
\hline Open State to Low Logic Level Propagation Delay Time (Strobe) & tPZL(S) & 11 & - & - & 27 & - & - & - & ns \\
\hline Low Logic Level to Open State Propagation Delay Time (Strobe) & tPLZ(S) & 11 & - & - & 29 & - & - & - & ns \\
\hline High Logic to Low Logic Level Propagation Delay Time (Strobe) & tPHL(S) & 12 & - & - & - & - & - & 25 & ns \\
\hline Low Logic to High Logic Level Propagation Delay Time (Strobe) & \({ }^{\text {tPLH(S) }}\) & 12 & - & - & - & - & - & 25 & ns \\
\hline
\end{tabular}

Dashed components apply to the MC3450 circuit only.
TEST CIRCUITS
FIGURE 3 - ICEX, \(\mathbf{V}_{\mathrm{OH}}\), AND \(\mathrm{V}_{\mathrm{OL}}\)

FIGURE 4 - ICCH AND IEEH

test table

Channel A shown under test. Other channels are tested similarly.

FIGURE 5 - \(I_{I H(S)}\) AND \(I_{I L}(S)\)

\section*{TEST CIRCUITS (continued)}

FIGURE 6 - IOS

Channel A shown under test, other channels are tested similarly Only one output shorted at a time.

FIGURE 7 - IIH

Channel \(A(-)\) shown under test, other channels are tested similarly. Devices are tested with V 1 from +3.0 V to -3.0 V .

FIGURE 8 - IIL

Channel \(\mathbf{A}(-)\) shown under test, other channels are tested similarly. Devices are tested with V 1 from +3.0 V to -3.0 V

FIGURE 9 - \(I_{\text {off }}\)

Output of Channel A shown under test, other outputs are tested similarly for \(\mathrm{V} 1=0.4 \mathrm{~V}\) and +2.4 V .

FIGURE 10 - RECEIVER PROPAGATION DELAY tPLH(D) AND tPHL(D)

TEST CIRCUITS (continued)

FIGURE 11 - STROBE PROPAGATION DELAY TIMES \(t_{P L Z(S) \mid t P Z L(S) ~ t P H Z(S) ~ a n d ~}^{t P Z H}(S)\)

Output of Channel B shown under test, other channels are tested similarly.

FIGURE 12 - STROBE PROPAGATION DELAY tPLH(S) AND tPHL(S)

Output of Channel B shown under test, other channels are tested similarly.

\(E_{\text {in }}\) waveform characteristics:
\({ }^{\mathrm{t}} \mathrm{T}_{\mathrm{LH}}\) and \(\mathrm{t}_{\mathrm{THL}} \leqslant 10 \mathrm{~ns}\) measured \(10 \%\) to \(\mathbf{9 0 \%}\)
\(P R R=1.0 \mathrm{MHz}\)
Duty Cycle \(=500 \mathrm{~ns}\)

The MC3452 can be used for address decoding as illustrated above. All outputs of the MC3452 are tied together through a common resistor to +5.0 voits. In this configuration the MC3452 provides the "AND" function. All addresses have to be true before the output will go high. This scheme eliminates the need for an "AND" gate and enhances speed throughput for address decoding.

FIGURE 15 - SINGLE-ENDED UNI-BUS* LINE RECEIVER APPLICATION FOR MINICOMPUTERS

The MC3450/3452 can be used for single-ended as well as differential line receiving. For single-ended line receiver applications, such as are encountered in minicomputers, the configuration shown in Figure 15 can be used. The voltage source, which generates \(V_{\text {ref, }}\) should be designed so that the \(V_{\text {ref }}\) voltage is halfway between \(\mathrm{V}_{\mathrm{OH}}(\mathrm{min})\) and \(\mathrm{V}_{\mathrm{OL}}\) (max). The maximum input overdrive required to guarantee a given logic state is extremely small, 25 mV maximum. This low-input over drive enhances differential noise immunity. Also the high-input impedance of the line receiver permits many receivers to be placed on a single line with minimum load effects.

FIGURE 16 - WIRED "OR' DATA SELECTION USING THREE-STATE LOGIC

FIGURE 17 - PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING

QUAD LINE DRIVER WITH COMMON INHIBIT INPUT

SILICON MONOLITHIC INTEGRATED CIRCUIT

\section*{MC3453}

MAXIMUM RATINGS \(\left(T_{A}=0\right.\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +7.0 & Volts \\
& \(\mathrm{V}_{\mathrm{EE}}\) & -7.0 & \\
Logic and Inhibitor Input Voltages & \(\mathrm{V}_{\text {in }}\) & 5.5 & Volts \\
\hline Common-Mode Output Voltage Range & \(\mathrm{V}_{\mathrm{OCR}}\) & -5.0 to +12 & Volts \\
\hline Power Dissipation (Package Limitation) & \(\mathrm{P}_{\mathrm{D}}\) & & \\
\begin{tabular}{l}
Plastic and Ceramic Dual In-Line Packages \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
\end{tabular} & & 1000 & mW \\
\hline Operating Ambient Temperature Range & 6.6 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Plastic and Ceramic Dual In-Line Packages & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Nom & Max & Unit \\
\hline Power Supply Voltages & \(V_{C C}\) & +4.75 & +5.0 & +5.25 & Volts \\
& \(V_{\text {EE }}\) & -4.75 & -5.0 & -5.25 & \\
\hline Common-Mode Output Voltage Range & \(V_{\text {OCR }}\) & & & & Volts \\
Positive & & 0 & - & +10 & \\
Negative & & 0 & - & -3.0 & \\
\hline
\end{tabular}

Notes: 1. These voltage values are in respect to the ground terminal.
2. When not using all four channels, unused outputs must be grounded.

DEFINITIONS OF INPUT LOGIC LEVELS*
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Max & Unit \\
\hline High-Level Input Voltage (at any input) & \(\mathrm{V}_{1 \mathrm{H}}\) & 2.0 & 5.5 & Volts \\
Low-Level Input Voltage (at any input) & \(\mathrm{V}_{\mathrm{IL}}\) & 0 & 0.8 & Volts \\
\hline
\end{tabular}
*The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.
ELECTRICAL CHARACTERISTICS (TA \(=0\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic\#\# & Symbol & Min & Typ\# & Max & Unit \\
\hline High-Level Input Current (Logic Inputs)
\[
\begin{aligned}
& \left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{I H_{L}}=2.4 \mathrm{~V}\right) \\
& \left(V_{C C}=M a x, V_{E E}=\operatorname{Max}, V_{I H_{L}}=V_{C C} M a x\right)
\end{aligned}
\] & \({ }^{1} \mathrm{H}_{L}\) & - & & \[
\begin{aligned}
& 40 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Low-Level Input Current (Logic Inputs)
\[
\left(V_{C C}=M a x, V_{E E}=M a x, V_{I L}=0.4 V\right)
\] & \(I_{1 L}\) & - & - & -1.6 & mA \\
\hline High-Level Input Current (Inhibit Input)
\[
\begin{aligned}
& \left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{1 H_{1}}=2.4 \mathrm{~V}\right) \\
& \left(V_{C C}=M a x, V_{E E}=M a x, V_{1 H_{1}}=V_{C C} M a x\right)
\end{aligned}
\] & \({ }_{1} \mathrm{H}_{1}\) & & & \[
\begin{aligned}
& 40 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Low-Level Input Current (Inhibit Input)
\[
\left(V_{C C}=M a x, V_{E E}=\operatorname{Max}, V_{L_{1}}=0.4 V\right)
\] & IILI & - & - & -1.6 & mA \\
\hline \[
\begin{aligned}
& \text { Output Current ("on" state) } \\
& \left(V_{C C}=M a x, V_{E E}=M a x\right) \\
& \left(V_{C C}=M i n, V_{E E}=M i n\right) \\
& \hline
\end{aligned}
\] & 'O(on) & \[
\overline{-}
\] & \[
\begin{aligned}
& 11 \\
& 11
\end{aligned}
\] & \[
\begin{gathered}
15 \\
-
\end{gathered}
\] & mA \\
\hline \[
\begin{aligned}
& \text { Output Current ("off" state) } \\
& \left(V_{C C}=M i n, V_{E E}=\text { Min }\right)
\end{aligned}
\] & IO(off) & - & 5.0 & 100 & \(\mu \mathrm{A}\) \\
\hline Supply Current from \(\mathrm{V}_{\mathrm{CC}}\) (with driver enabled)
\[
\left(V_{1 L_{L}}=0.4 \mathrm{~V}, \mathrm{~V}_{1 H_{1}}=2.0 \mathrm{~V}\right)
\] & 'CC(on) & - & 35 & 50 & mA \\
\hline Supply Current from \(V_{E E}\) (with driver enảbled)
\[
\left(\mathrm{V}_{1 L_{L}}=0.4 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}_{1}}=2.0 \mathrm{~V}\right)
\] & \({ }^{1} \mathrm{EE}\) (on) & - & 65 & 90 & mA \\
\hline Supply Current from \(\mathrm{V}_{\mathrm{CC}}\) (with driver inhibited)
\[
\left(V_{1 L_{L}}=0.4 \mathrm{~V}, V_{I L_{I}}=0.4 \mathrm{~V}\right)
\] & ICC(off) & - & 35 & 50 & mA \\
\hline Supply Current from \(V_{E E}\) (with driver inhibited)
\[
\left(\mathrm{V}_{1 L_{L}}=0.4 \mathrm{~V}, \mathrm{~V}_{1 L_{1}}=0.4 \mathrm{~V}\right)
\] & 'EE(off) & - & 25 & 40 & mA \\
\hline
\end{tabular}
\#All typical values are at \(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
\#\#For conditions shown as Min or Max, use the appropriate value specified under recommended operating
conditions for the applicable device type.
Ground unused inputs and outputs.

SWITCHING CHARACTERISTICS \(\left(V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Propagation Delay Time from Logic Input to Output \(Y\) or \(Z\left(R_{L}=50\right.\) ohms, \(\left.C_{L}=40 \mathrm{pF}\right)\) & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}}^{\mathrm{L}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 9.0 \\
& 9.0
\end{aligned}
\] & \[
\begin{aligned}
& 17 \\
& 17
\end{aligned}
\] & ns \\
\hline Propagation Delay Time from Inhibit Input to Output \(Y\) or \(Z\left(R_{L}=50\right.\) ohms, \(\left.C_{L}=40 \mathrm{pF}\right)\) & \begin{tabular}{l}
\({ }^{\mathrm{t} P \mathrm{LH}} \mathrm{I}_{1}\) \\
\({ }^{\mathrm{t} P \mathrm{HL}} \mathrm{L}_{1}\)
\end{tabular} & - & \[
\begin{aligned}
& 16 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 25
\end{aligned}
\] & ns \\
\hline
\end{tabular}

FIGURE 2 - LOGIC INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

TEST CIRCUITS

FIGURE 4 - LOGIC INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT

FIGURE 3 - INHIBIT INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

FIGURE 5 - INHIBIT INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT

FIGURE 6 - CIRCUIT SCHEMATIC (1/4 Circuit Shown)

TRIPLE MAGNETIC TAPE MEMORY PREAMPLIFIER
TRIPLE WIDEBAND PREAMPLIFIER WITH ELECTRONIC GAIN CONTROL (EGC)

The MC3467 provides three independent preamplifiers with individual electronic gain control in a single 18-pin package. Each preamplifier has differential inputs and outputs allowing operation in completely balanced systems. The device is optimized for use in 9 track magnetic tape memory systems where low noise and low distortion are paramount objectives.

The electronic gain control allows each amplifier's gain to be set anywhere from essentially zero to a maximum of approximately \(100 \mathrm{~V} / \mathrm{V}\).
- Wide Bandwidth - 15 MHz (Typ)
- Individual Electronic Gain Control
- Differential Input/Output

MAXIMUM RATINGS (\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline \(\begin{array}{l}\text { Power Supply Voltages } \\
\text { Positive Supply Voltage } \\
\text { Negative Supply Voltage }\end{array}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 6.0 & V \\
\hline EGC Voltages (Pins 1, 6 and 13) & \(\mathrm{V}_{\text {EE }}\) & -9.0
\end{tabular}\(]\)

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{E E}=-6.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=0\right.\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voltage Range Positive Supply Voltage Negative Supply Voltage Operating EGC Voltage & \begin{tabular}{l}
\(V_{\text {CCR }}\) \\
VEER \\
\(V_{\text {I }}(E G C)\)
\end{tabular} & \[
\begin{gathered}
4.75 \\
-5.5 \\
0
\end{gathered}
\] & \[
\begin{gathered}
5.0 \\
-6.0 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 5.25 \\
& -7.0 \\
& v_{\mathrm{CC}}
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& v \\
& v
\end{aligned}
\] \\
\hline Differential Voltage Gain (Balanced) \(\left(V_{1}(E G C)=0, e_{i}=25 \mathrm{mVp}-\mathrm{p}\right) \quad(\) See Figure 1) & AVD & 85 & 100 & 120 & V/V \\
\hline Differential Voltage Gain \(\left(V_{1(E G C)}=V_{C C}\right)\) & AVD & - & 0.5 & 2.0 & V/V \\
\hline Maximum Input Differential Voltage (Balanced) (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & VIDR & 0.2 & - & - & \(\mathrm{V}_{\mathrm{pp}}\) \\
\hline Output Voltage Swing (Balanced) (Figure 1) \(\left(e_{i}=200 \mathrm{mVp}-\mathrm{p}\right)\) & \(\mathrm{V}_{\text {OR }}\) & 6.0 & 8.0 & - & \(\mathrm{V}_{\mathrm{pp}}\) \\
\hline Input Common-Mode Range & \(V_{\text {ICR }}\) & \(\pm 1.5\) & \(\pm 2.0\) & - & V \\
\hline Differential Output Offset Voltage
\[
\left(T_{A}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{\text {OOD }}\) & - & 500 & - & mV \\
\hline Common-Mode Output Offset Voltage
\[
\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & \(\mathrm{v}_{\text {OOC }}\) & - & 500 & - & mV \\
\hline Common Mode Rejection Ratio (Figure 2)
\[
\begin{aligned}
& V_{((E G C)}=0, V_{C M}=1.0 \mathrm{~V}_{\mathrm{pp}} \\
& (f=100 \mathrm{kHz}) \\
& (f=1.0 \mathrm{MHz})
\end{aligned}
\] & CMRR & \[
\begin{aligned}
& 60 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & - & dB \\
\hline Small-Signal Bandwidth (Figure 1)
\[
\left(-3.0 \mathrm{~dB}, \mathrm{e}_{\mathrm{i}}=1.0 \mathrm{mVp-p}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & BW & 10 & 15 & - & MHz \\
\hline Input Bias Current & 118 & - & 5.0 & 15 & \(\mu \mathrm{A}\) \\
\hline Output Sink Current (Figure 5) & Ios & 1.0 & 1.4 & - & mA \\
\hline Differential Noise Voltage Referred to Input (Figure 3)
\[
\left(V_{I(E G C)}=0, R_{S}=50 \Omega, B W=10 \mathrm{~Hz} \text { to } 1.0 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}\right)
\] & \(e_{n}\) & - & 3.5 & - & \(\mu V_{\text {RMS }}\) \\
\hline Positive Power Supply Current (Figure 4) & \({ }^{\text {I CC }}\) & - & 30 & 40 & mA \\
\hline Negative Power Supply Current (Figure 4) & \({ }^{\text {I E E }}\) & - & -30 & -40 & mA \\
\hline Input Resistance (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & \(r_{i}\) & 12 & 25 & - & \(\mathrm{k} \Omega\) \\
\hline Input Capacitance (\(\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\) & \(\mathrm{C}_{\mathrm{i}}\) & - & 2.0 & - & pF \\
\hline Output Resistance (Unbalanced)
\[
\left(T_{A}=25^{\circ} \mathrm{C}\right)
\] & ro & - & 30 & - & Ohms \\
\hline
\end{tabular}

FIGURE 1 - DIFFERENTIAL VOLTAGE GAIN, BANDWIDTH AND OUTPUT VOLTAGE SWING TEST CIRCUIT
(Channel \(\mathbf{A}\) under test, other channels tested similarly)
\[
50 \mathrm{~V}
\]

FIGURE 5 - OUTPUT SINK CURRENT TEST CIRCUIT (Channel A under test, other channels tested similarly)

FIGURE 2 - COMMON-MODE REJECTION RATIO (Channel A under test, other amplifiers tested similarly)

FIGURE 3 - DIFFERENTIAL NOISE VOLTAGE REFERRED TO THE INPUT

FIGURE 4 - POWER SUPPLY CURRENT TEST CIRCUIT

FIGURE 6 - TOTAL HARMONIC DISTORTION TEST CIRCUIT
(Channel A under test, other channels tested similarly)

\section*{TYPICAL CHARACTERISTICS}

\section*{\(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ}\right.\) unless otherwise noted)}

FIGURE 9 - NORMALIZED VOLTAGE GAIN
versus AMBIENT TEMPERATURE

FIGURE 11 - NORMALIZED NEGATIVE POWER SUPPLY CURRENT versus NEGATIVE POWER SUPPLY VOLTAGE

FIGURE 8 - NORMALIZED VOLTAGE GAIN versus FREQUENCY

FIGURE 10 - NORMALIZED POSITIVE POWER SUPPLY CURRENT versus POSITIVE POWER SUPPLY VOLTAGE

FIGURE 12 - NORMALIZED POWER SUPPLY CURRENTS versus AMBIENT TEMPERATURE

FIGURE 13 - DIFFERENTIAL VOLTAGE GAIN versus ELECTRONIC GAIN CONTROL VOLTAGE (VI(EGC))

FIGURE 15 - PHASE SHIFT versus FREQUENCY

FIGURE 14 - COMMONMODE REJECTION RATIO (CMRR) versus FREQUENCY

FIGURE 16 - TYPICAL EGC INPUT CURRENT versus EGC INPUT VOLTAGE

REPRESENTATIVE CIRCUIT SCHEMATIC

\section*{Specifications and Applications Information}

\section*{FLOPPY DISK WRITE CONTROLLER}

The MC3469 is a monolithic WRITE Current Controller designed to provide the entire interface between floppy disk heads and the head control and write data signals for stradle-erase heads.

Provisions are made for selecting a range of accurately controlled write currents and for head selection during both read and write operation. Additionally, provisions are included for externally adjust ing degauss period and inner/outer track compensation.
- Head Selection - Current Steering Through Write Head and Erase Coil in Write Mode
- Provides High Impedance (Read Data Enable) During Read Mode
- Head Current (Write) Guaranteed Using Laser Trimmed Internal Resistor (3.0 mA using \(\mathrm{R}_{\text {ext }}=10 \mathrm{k} \Omega\))
- IRW Select Input Provides for Inner/Outer Track Compensation
- Degauss Period Externally Adjustable
- Specified With \(\pm 10 \%\) Logic Supply and Head Supply (\(\mathrm{V}_{\mathrm{BB}}\)) from 10.8 V to 26.4 V
- Minimizes External Components

\section*{WRITE CONTROLLER}

FLOPPY DISK

SILICON MONOLITHIC INTEGRATED CIRCUIT

PIN CONNECTIONS

ABSOLUTE MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage (Pin 10) & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Power Supply Voltage (Pin 15) & \(\mathrm{V}_{\mathrm{BB}}\) & 30 & Vdc \\
\hline Input Voltage (Pins 4, 5, 8, 9) & \(\mathrm{V}_{\mathrm{I}}\) & 5.75 & Vdc \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage (Pin 10) & \(\mathrm{V}_{\mathrm{CC}}\) & +4.5 to +5.5 & Vdc \\
\hline Power Supply Voltage (Pin 15) & \(\mathrm{V}_{\mathrm{BB}}\) & +10.8 to +26.4 & Vdc \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=0\right.\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=4.5\) to \(5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=10.8\) to 26.4 V unless otherwise noted. Typicals given for \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=12 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Characteristics & Pins & Symbol & Min & Typ & Max & Unit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { Power Supply Current }-V_{C C} \\
V_{B B}
\end{array}
\] & & \[
\begin{aligned}
& \mathrm{ICC} \\
& \mathrm{I} \mathrm{BB}
\end{aligned}
\] & - & \[
\begin{aligned}
& 22 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & mA \\
\hline High Level Input Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right)
\] & 4, 8, 9 & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & - & - & V \\
\hline Low Level Input Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right)
\] & 4, 8, 9 & \(\mathrm{V}_{\text {IL }}\) & - & - & 0.8 & V \\
\hline Input Clamp Voltage
\[
\left(I_{\mathrm{IK}}=-12 \mathrm{~mA}\right)
\] & 4, 5, 8, 9 & \(\mathrm{V}_{\text {IK }}\) & - & -0.87 & -1.5 & V \\
\hline Positive Threshold
\[
\left(V_{C C}=5.0\right)
\] & 5 & \(\mathrm{V}_{\mathrm{T}(+)}\) & 1.5 & 1.75 & 2.0 & V \\
\hline Negative Threshold
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.0\right)
\] & 5 & \(\mathrm{V}_{\mathrm{T}(-)}\) & 0.7 & 0.98 & 1.3 & V \\
\hline \[
\begin{aligned}
& \text { Hysteresis }\left(\mathrm{V}_{\mathrm{T}(+)}-\mathrm{V}_{\mathrm{T}(-)}\right) \\
& T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& T_{A}=25^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & & VHTS & 0.2
0.4 & \[
0 . \overline{76}
\] & - & V \\
\hline
\end{tabular}

DIGITAL INPUT CURRENTS

ELECTRICAL CHARACTERISTICS (continued) (\(T_{A}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5\) to \(5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=10.8\) to 26.4 V unless otherwise noted. Typicals given for \(\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=12 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Pins & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{CENTER-TAP and ERASE OUTPUTS} \\
\hline Output High Voltage (See Figure 9)
\[
\begin{gathered}
\left(\mathrm{I}_{\mathrm{OH}}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right) \\
\mathrm{V}_{\mathrm{BB}}=10.8 \text { to } 26.4 \mathrm{~V}
\end{gathered}
\] & 14, 16 & \(\mathrm{V}_{\mathrm{OH}}\) & \(\mathrm{V}_{\text {BB }}{ }^{-1.5}\) & \(\mathrm{V}_{\mathrm{BB}}{ }^{-1.0}\) & - & V \\
\hline ```
Output Low Voltage (See Figure 9)
 (IOL = 1.0 mA)
 VBB}=12\textrm{V
 VBB}=24
``` & 14, 16 & \(\mathrm{V}_{\mathrm{OL}}\) & - & \[
\begin{aligned}
& 70 \\
& 70
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 150
\end{aligned}
\] & mV \\
\hline Output High Leakage
\[
\left(\mathrm{V}_{\mathrm{OH}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=24 \mathrm{~V}\right)
\] & 11, 13 & \({ }^{1} \mathrm{OH}\) & - & 0.01 & 100 & \(\mu \mathrm{A}\) \\
\hline Output Low Voltage (See Figure 10)
\[
\begin{aligned}
& \left(\mathrm{I}_{\mathrm{OL}}=90 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{BB}}=24 \mathrm{~V}
\end{aligned}
\] & 11, 13 & \(\mathrm{V}_{\mathrm{OL}}\) & - & \[
\begin{aligned}
& 0.27 \\
& 0.27
\end{aligned}
\] & \[
\begin{aligned}
& 0.60 \\
& 0.60
\end{aligned}
\] & V \\
\hline
\end{tabular}

CURRENT SOURCE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Voltage & 1 & \(V_{\text {ref }}\) & - & 5.7 & - & V \\
\hline Degauss Voltage (See Text) (Voltage Pin 1 - Voltage Pin 2) & 1 & \(V_{\text {DEG }}\) & - & 1.0 & - & V \\
\hline \begin{tabular}{l}
Bias Voltage \\
Write Current Off Leakage
\[
(\mathrm{VOH}=35 \mathrm{~V})
\]
\end{tabular} & \[
\begin{gathered}
2 \\
6,7
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{F}} \\
& \mathrm{I} \mathrm{OH}
\end{aligned}
\] & _ & \[
\begin{gathered}
0.7 \\
0.03
\end{gathered}
\] & \[
15
\] & \[
\begin{gathered}
\mathrm{V} \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline Saturation Voltage
\[
\left(\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}\right)
\] & 6, 7 & \(\mathrm{V}_{\text {sat }}\) & - & 0.85 & 2.7 & v \\
\hline \begin{tabular}{l}
Current Sink Compliance \\
(For \(\mathrm{V}_{6,7}=4.0 \mathrm{~V}\) to \(24 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{WG}}=0.8 \mathrm{~V}\) )
\end{tabular} & 6, 7 & \(\triangle I / R W 2,1\) & - & 15 & 40 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Average Value Write Current
\[
\left(\frac{(|\operatorname{Pin} 6+| \operatorname{Pin} 7)}{2} \text { for } V_{B B}=10.8 \text { to } 26.4 \mathrm{~V}\right)
\] \\
@
\[
\begin{aligned}
& I_{R} / W=I_{L O W} \cdot R=10 \mathrm{k} \\
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=0 \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] \\
@
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{R}} / \mathrm{W}=\mathrm{I}_{\mathrm{LOW}}, \mathrm{R}=5.0 \mathrm{k} \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] \\
@
\[
\begin{aligned}
& I_{R} / W=I_{H I}, R=10 \mathrm{k}\left(I_{H I}=I_{\text {LOW }}+\% I_{\text {LOW }}\right) \\
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=0 \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\]
\end{tabular} & 6,7 & \[
\overline{I_{R} / W(L)}
\]
\[
\overline{J_{\mathrm{R}} / \mathrm{W}(\mathrm{H})}
\] & \[
\begin{aligned}
& 2.91 \\
& 2.84 \\
& \\
& 5.64 \\
& 5.51 \\
& \\
& 31.3 \\
& 30.3
\end{aligned}
\] & \begin{tabular}{l}
3.0 \\
- \\
5.89 \\
- \\
33.3 \\
33.3
\end{tabular} & \[
\begin{aligned}
& 3.09 \\
& 3.16 \\
& \\
& 6.14 \\
& 6.28 \\
& \\
& 35.5 \\
& 36.6
\end{aligned}
\] & \(m A\)


\(\%\) \\
\hline ```
Difference in Write Current
    | |Pin 6- |Pin 7|
    @ I IR/W = I LOW 
        R=10k
            TA}=2\mp@subsup{5}{}{\circ}\textrm{C
            TA}=0\mathrm{ to +70 }\mp@subsup{}{}{\circ}\textrm{C
        R=5.0 k
            TA}=2\mp@subsup{5}{}{\circ}\textrm{C
            TA}=0\mathrm{ to +70 }\mp@subsup{}{}{\circ}\textrm{C
``` & 6,7 & \(\mathrm{I}_{\mathrm{R} / \mathrm{W}} \mathrm{J}\) & -
-
-
- & \[
0.003
\] & \[
\begin{aligned}
& 0.015 \\
& 0.023 \\
& \\
& 0.030 \\
& 0.046
\end{aligned}
\] & mA \\
\hline
\end{tabular}

AC SWITCHING CHARACTERISTICS \(\left(V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BB}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{RWS}}=0.4\right.\) and \(\mathrm{I}_{\mathrm{R}} / \mathrm{W}=3.0 \mathrm{~mA}\) unless otherwise noted - refer to Figure 2 and Figure 11.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics (Note 1) & \(\mathrm{f}_{\text {in }}\) (Note 3) & Min & Typ & Max & Unit \\
\hline 1. Delay from Head Select going low through 0.8 V to CTO going high through 20 V . & HS, Pin 9 & - & 1.6 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 2. Delay from Head Select going low through 0.8 V to CT1 going low through 1.0 V . & HS, Pin 9 & - & 2.1 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 3. Delay from Head Select going high through 2.4 V to CTO going low through 1.0 V . & HS, Pin 9 & - & 1.7 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 4. Delay from Head Select going high through 2.4 V to CT1 going high through 20 V . & HS, Pin 9 & - & 1.4 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 5. Delay from \(\overline{W G}\) going low through 0.8 V to CTO going low through 1.0 V . & \(\bar{W} \bar{G}\), Pin 4 & - & 1.3 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 6. Delay from \(\overline{\mathrm{WG}}\) going low through 0.8 V to CT 1 going high through 20 V . & \(\overline{W G}\), Pin 4 & - & 0.8 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 7. Delay from \(\overline{W G}\) going low through 0.8 V to CTO going high through 20 V . & \(\overline{W G}\), Pin 4 & - & 0.75 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 8. Delay from \(\overline{W G}\) going low through 0.8 V to CT 1 going low through 1.0 V . & \(\overline{W G}\), Pin 4 & - & 1.2 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 9. After \(\overline{W G}\) goes high, delay from R/W1 turning off through \(10 \%\) to CTO going high through 20 V . & \(\overline{W G}\), Pin 4 & 20 & 750 & - & ns \\
\hline 10. After \(\overline{W G}\) goes high, delay from R/W1 turning off through \(10 \%\) to CT1 going low through 1.0 V . & \(\overline{W G}\), Pin 4 & 20 & 1200 & - & ns \\
\hline 11. After \(\overline{W G}\) goes high, delay from \(R / W 2\) turning off through \(10 \%\) to CTO going low through 1.0 V . & \(\overline{W G}\), Pin 4 & 20 & 1200 & - & ns \\
\hline 12. After \(\overline{W G}\) goes high, delay from \(R / W 2\) turning off through \(10 \%\) to CT1 going high through 20 V . & \(\overline{W G}, \operatorname{Pin} 4\) & 20 & 600 & - & ns \\
\hline 13. Delay from \(\overline{W G}\) going low through 0.8 V to \(\overline{\mathrm{EO}}\) going low through 1.0 V . & \(\overline{W G}, \operatorname{Pin} 4\) & - & 0.085 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 14. Delay from \(\overline{W G}\) going low through 0.8 V to \(\overline{\mathrm{E} 1}\) going low through 1.0 V . & \(\overline{W G}\), Pin 4 & - & 0.085 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 15. Delay from \(\overline{W G}\) going high through 2.0 V to \(\overline{\mathrm{EO}}\) going high through 23 V . & \(\overline{W G}\), Pin 4 & - & 0.7 & 4.0 & \(\mu \mathrm{s}\) \\
\hline 16. Delay from \(\overline{W G}\) going high through 2.0 V to \(\overline{\mathrm{EP}}\) going high through 23 V . & \(\overline{W G}\), Pin 4 & - & 0.7 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 17. After \(\overline{W G}\) goes low, delay from CTO going low through 1.0 V to \(\mathrm{R} / \mathrm{W} 1\) turning on through \(10 \%\). & \(\overline{W G}\), Pin 4 & 20 & 750 & - & ns \\
\hline 18. After \(\overline{\mathrm{WG}}\) goes low, delay from CT1 going low through 1.0 V to \(\mathrm{R} / \mathrm{W} 2\) turning on through \(10 \%\). & \(\overline{W G}\), Pin 4 & 20 & 750 & - & ns \\
\hline 19. After \(\bar{W}\) g goes low, fall time (\(10 \%\) to \(90 \%\)) of R/W1. & \(\overline{W G}, \operatorname{Pin} 4\) & - & 5.0 & 200 & ns \\
\hline 20. After \(\bar{W}\) g goes low, fall time (10\% to 90\%) of R/W2. & \(\overline{W G}, \operatorname{Pin} 4\) & - & 5.0 & 200 & ns \\
\hline 21. Setup time, Head Select going low before \(\overline{W G}\) going low. & \(\overline{W G}\), Pin 4 & 4.0 & - & - & \(\mu \mathrm{S}\) \\
\hline 22. Write Data low Hold Time & \(\overline{W D}, \operatorname{Pin} 5\) & 200 & - & - & ns \\
\hline 23. Write Data high Hold Time & \(\overline{W D}\), Pin 5 & 500 & - & - & ns \\
\hline 24. Delay from \(\overline{W G}\) going high through 2.0 V to R/W 1 turning off through \(10 \%\) of on value. & \(\overline{W G}\), Pin 4 & - & 3.9 & - & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}

Notes 1. Test numbers refer to encircled numbers in Figure 2. 2. \(A C\) test waveforms applied to the designated pins as follows:
\begin{tabular}{|c|c|c|c|}
\hline Pin & \(f_{\text {in }}\) & Amplitude & Duty Cycle \\
\hline \(\mathrm{HS}, \operatorname{Pin} 9\) & 50 kHz & 0.4 to 2.4 V & \(50 \%\) \\
\(\overline{\mathrm{WG}}, \operatorname{Pin} 4\) & 50 kHz & 0.4 to 2.4 V & \(50 \%\) \\
\(\overline{\mathrm{WD}}, \operatorname{Pin} 5\) & 1.0 MHz & 0.2 to 2.4 V & \(50 \%\) \\
\hline
\end{tabular}

AC SWITCHING CHARACTERISTICS (continued)
\(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BB}}=24 \mathrm{~V}, \overline{\mathrm{WG}}=0.4\right.\) unless otherwise noted - refer to Figure 3 and Figure 11.)
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics (Note 3) } & Min & Typ & Max & Unit \\
\hline \begin{tabular}{c}
1. Delay from Write Data going low through 0.9 V to R/W1 \\
turning on through 50\%.
\end{tabular} & - & 85 & - & ns \\
\hline \begin{tabular}{c}
2. Delay skew, difference of R/W1 turning off and R/W2 \\
turning on through 50\% after Write Data going low \\
through 0.9 V.
\end{tabular} & - & 1.0 & \(\pm 40\) & ns \\
\hline \begin{tabular}{c}
3. Delay from Write Data going low through 0.9 V to R/W1 \\
turning off through 50\%.
\end{tabular} & - & 80 & - & ns \\
\hline \begin{tabular}{c}
4. Delay skew, difference of R/W1 turning on and R/W2 \\
turning off 50\% after Write Data going low \\
through 0.9 V.
\end{tabular} & - & 1.0 & \(\pm 40\) & ns \\
\hline 5. Rise time, 10\% to 90\%, of R/W1 & - & 1.7 & 200 & ns \\
\hline 6. Rise time, \(10 \%\) to \(90 \%\), of R/W2 & - & 1.7 & 200 & ns \\
\hline 7. Fall time, 90\% to 10\%, of R/W1 & - & 12 & 200 & ns \\
\hline 8. Fall time, 90\% to 10\%, of R/W2 & & 200 & ns \\
\hline
\end{tabular}

Note 3. Test numbers refer to encircled numbers in Figure 4.
\(\mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, 50 \%\) Duty Cycle and Amplitude of 0.2 V to 2.4 V .

PIN DESCRIPTION TABLE
\begin{tabular}{|c|c|c|c|}
\hline Name & Symbol & Pin & Description \\
\hline Head Select & HS & 9 & Head Select input selects between the head I/O pins: center-tap, erase, and read/write. A HIGH selects Head 0 and a LOW selects Head 1. \\
\hline Write Gate & \(\overline{W G}\) & 4 & \(\overline{\text { Write Gate input selects the mode of operation. HIGH selects the read mode, while LOW selects }}\) the Write Control mode and forces the write current. \\
\hline Write Data & \(\overline{W D}\) & 5 & \(\overline{\text { Write Data input controls the turn on/off of the write current. The internal divide-by-two flip-flop }}\) toggles on the negative going edge of this input to direct the current alternately to the two halves of the head coils. \\
\hline IRW Select & IRWS & 8 & IRW Select input selects the amount of write current to be used. When LOW, the current equals the value found in Figure 5, according to the external resistor. When HIGH, the current equals the low current \(+33 \%\). \\
\hline \[
\begin{aligned}
& V_{\text {ref }} \\
& I_{\text {ref }}
\end{aligned}
\] & \begin{tabular}{l}
\(V_{\text {ref }}\) \\
Iref
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & A resistor between these pins sets the write current. Laser trimming reliably produces 3 mA of current for a 10 k resistor. A capacitor from \(\mathrm{V}_{\text {ref }}\) to Gnd will adjust the Degauss period. \\
\hline Center-tap 0 & Сто & 14 & Center-tap 0 output is connected to the center tap of Head 0 . It will be pulted to \(G\) nd or \(\mathrm{V}_{\mathrm{BB}}(+12\) or +24) depending on mode and head selection. \\
\hline \(\overline{\text { Erase 0 }}\) & \(\overline{\mathrm{EO}}\) & 13 & \(\overline{\text { Erase } 0}\) will be LOW for writing on Head 0, and floating for other conditions. \\
\hline Center-tap 1 & CT1 & 16 & Center-tap 1 output is connected to the center tap of Head 1 . It will be pulled to \(G n d\) or \(\mathrm{V}_{\mathrm{BB}}{ }^{(+12}\) or +24) depending on mode and head selection. \\
\hline \(\overline{\text { Erase } 1}\) & E1 & 11 & \(\overline{\text { Erase } 1}\) will be LOW for writing on Head 1, and floating for other conditions. \\
\hline R/W2 & R/W2 & 6 & R/W2 input is one of the differential inputs that sinks current during writing, being the opposite phase of R/W1. It will be connected to one side of the heads. \\
\hline R/W1 & R/W1 & 7 & R/W1 input is one of the differential inputs that sinks current during writing, being the opposite phase of R/W2. It will be connected to one side of the heads. \\
\hline & \(\mathrm{V}_{\mathrm{CC}}\) & 10 & +5V Power \\
\hline & \(V_{B B}\) & 15 & +12 V or + 24 V Power \\
\hline & Gnd & 12 & Coil grounds \\
\hline & Gnd & 3 & Reference and logic ground \\
\hline
\end{tabular}

FIGURE 1 - LOGIC DIAGRAM

oc - open collector

FIGURE 2 - AC TIMING DIAGRAM

FIGURE 3 - R/W1 AND R/W2 RELATIONSHIP

\section*{APPLICATION INFORMATION}

The MC3469P serves as a complete interface between the Write Control functional signals (Head Select, Write Data, Write Gate and inner track compensation, IRWS) and the head itself. A typical configuration is shown in Figure 4. LE's are erase coils.

\section*{WRITE CURRENT SELECTION}

Although the MC3469P has been specified for 3.0 mA write current (with a \(10 \mathrm{k} \Omega\) external resistor), a range of write current values can be chosen by varying \(R_{\text {ext }}\) using the plot in Figure 5. This current can also be derived using the relationship IWrite \((\mathrm{mA})=\frac{30}{R_{\text {ext }}(\mathrm{k} \Omega)}\)
\({ }^{\prime}\) Ref, the current flowing in \(R_{\text {ext }}\) (required only for dissipation calculations) can be worst case using the fact that the differential voltage between Pins 1 and \(2\left(\mathrm{~V}_{\mathrm{Ref}}\right)\) shown in Figure 3 never exceeds 5.0 volts. With a low value of \(R_{\text {ext }}=1.0 \mathrm{k} \Omega, P_{D}=25 \mathrm{~mW}\).

\section*{WRITE CURRENT DAMPING}

Referring to Figure 4, resistors \(R_{D}\) are used to dampen any ringing that results from applying the relatively fast risetime write current pulse to the inductive head load. Values chosen will be a funciton of head characteristics and the desired damping. Rp serves as a common pullup resistor to the head supply \(V_{B B}\)

FIGURE 5 - WRITE CURRENT versus Rext

\section*{DEGAUSS PERIOD}

Degauss of the read/write head can be accomplished at the end of each write operation by attaching a capacitor from pin 1 to ground. The timing relationship that results is shown in Figure 7. A simplified diagram of this function is shown in Figure 6.

While \(\overline{W G}\) is low, the selected write current flows into pin 6 or pin 7 (R/W1 or R/W2) and is mirrored through the external resistor, \(R_{\text {ext }}\). The degauss capacitor, \(\mathrm{C}_{\mathrm{DG}}\), will be charged to approximately 5.7 volts. After \(\overline{W G}\) goes high, the voltage on \(C_{D G}\) begins to decay toward 0.7 V . When the voltage reaches the comparator threshold of 1.7 V , the comparator output triggers the internal logic to completely turn off the write current. At this point, the pulse amplitude on the R/W1 and R/W2 pins has returned to \(10 \%\) of its maximum value.
Figure 7, Degauss Period shows the relationship be-
tween \(C_{D G}\) and Degauss Period for \(R_{e x t}=10 \mathrm{k} \Omega\). This period is equal to the exponential delay time for the voltage as mentioned plus some internal delay times.

\section*{POWER-UP WRITE CURRENT CONTROL}

During power-up, under certain conditions \(\left(V_{B B}\right.\) comes up first while WG is low), there can be a write current transient on Pins 6 and 7 (R/W1 and R/W2) of sufficient magnitude to cause writing to occur if the head is loaded.
This transient can be eliminated by placing a capacitor from Pin 2 to ground. This also delays the write current when \(\overline{W G}\) goes low and this delay must be accounted for when the capacitor on Pin 2 is used. The delay is 3.0 \(\mu \mathrm{s}\) for a 2700 pF capacitor, and \(\mathrm{R}_{\mathrm{ext}}=10 \mathrm{k} \Omega\). Values up to 7000 pF may be used.

FIGURE 6 - SIMPLIFIED DEGAUSS CIRCUIT

FIGURE 7 - DEGAUSS PERIOD versus CAPACITANCE (CDG)

FIGURE 8 - TURN-ON WRITE PROTECTION

\section*{TEST FIGURES}

FIGURE 9 - CENTER TAP OUTPUT VOLTAGE (PINS 14 AND 16)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Measure
\[
\mathrm{V}_{\mathbf{T}}
\]} & \multicolumn{5}{|c|}{Set} \\
\hline & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & V4* & V9* \\
\hline \multirow[b]{2}{*}{\(\mathrm{VOH}_{\mathrm{OH}}(\mathrm{P} 14)\)} & \multirow[b]{2}{*}{On} & \multirow[b]{2}{*}{Off} & \multirow[b]{2}{*}{P14} & 0.8 & 2.0 \\
\hline & & & & 2.0 & 0.8 \\
\hline \multirow[b]{2}{*}{\(\mathrm{VOH}^{(P 16)}\)} & \multirow[t]{2}{*}{On} & \multirow[t]{2}{*}{Off} & \multirow[t]{2}{*}{P16} & 2.0 & 2.0 \\
\hline & & & & 0.8 & 0.8 \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OL }}(\mathrm{P} 14)\)} & \multirow[b]{2}{*}{Off} & \multirow{2}{*}{On} & \multirow{2}{*}{P14} & 0.8 & 0.8 \\
\hline & & & & 2.0 & 2.0 \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {OL }}(\mathrm{P} 16)\)} & \multirow[t]{2}{*}{Off} & \multirow[t]{2}{*}{On} & \multirow[t]{2}{*}{P16} & 2.0 & 0.8 \\
\hline & & & & 0.8 & 2.0 \\
\hline
\end{tabular}
figure 10 - erdase output low voltage (PINS 11 AND 13)

CONDITIONS
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Measure \\
\(\mathbf{V}_{\mathbf{T}}\)
\end{tabular}} & \multicolumn{2}{|c|}{ Set } \\
\cline { 2 - 3 } & \(\mathbf{s}_{\mathbf{1}}\) & \(\mathbf{V}_{\mathbf{8}, \mathbf{9}}\) \\
\hline \(\mathrm{V}_{\mathrm{OL}}(\mathrm{P} 11)\) & P 11 & 0.8 V \\
\hline \(\mathrm{~V}_{\mathrm{OL}}(\mathrm{P} 13)\) & P 13 & 2.0 V \\
\hline
\end{tabular}

FIGURE 11 - TIMING TEST CIRCUIT

\section*{ERASE CURRENT}

The value of \(R_{E}\), the erase current set resistor, is found by referring to Figure 12 and selecting the desired erase current.

Looking at the simplified erase current path in Figure 12, when writing, CTO will be high \(\left(\mathrm{V}_{\mathrm{OH}(\mathrm{min})}=21 \mathrm{~V}\right)\) and EO will be low \(\left(\mathrm{V}_{\mathrm{OL}}(\max)=0.6 \mathrm{~V}\right)\). If the erase coil resistance is \(10 \Omega\) and 40 mA of erase current is desired, then:
\[
\left(R_{E}+10 \Omega\right) \times 40 \mathrm{~mA}=(21-0.6) \mathrm{V}
\]
or
\[
\begin{aligned}
& R_{E}=\frac{20.4 \mathrm{~V}}{0.04 \mathrm{~A}}-10 \Omega=500 \Omega \\
& P_{D}=(0.04)(20.4)=0.816 \mathrm{~W} \text { or } 1.0 \mathrm{~W}
\end{aligned}
\]

Erase timing is provided internally and is active during Write Gate low for the selected head.

FIGURE 12 - ERASE CURRENT
(\(\mathrm{R}_{\mathrm{E}}\) Selection)

This gives the minimum value \(\mathrm{R}_{\mathrm{E}}\) for worst case \(\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}\) conditions. It is also recommended that a diode be used as required for inductive back emf suppression.

FIGURE 13 - TYPICAL DUAL HEAD FLOPPY DISK SYSTEM USING
FET GATE READ CHANNEL SELECTION AND MC3469/MC3470

\section*{Specifications and Applications Information}

\section*{FLOPPY DISK READ AMPLIFIER}

The MC3470 is a monolithic READ Amplifier System for obtaining digital information from floppy disk storage. It is designed to accept the differential ac signal produced by the magnetic head and produce a digital output pulse that corresponds to each peak of the input signal. The gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output.
- Combines All the Active Circuitry To Perform the Floppy Disk Read Amplifier Function in One Circuit
- Guaranteed Maximum Peak Shift of \(2.0 \%\) - MC3470A
- Improved (Positive) Gain TC and Tolerance
- Improved Input Common Mode

FLOPPY DISK READ AMPLIFIER SYSTEM

SILICON MONOLITHIC INTEGRATED CIRCUIT

\section*{MC3470P, MC3470AP}

ABSOLUTE MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage (Pin 11) & \(\mathrm{V}_{\mathrm{CC} 1}\) & 7.0 & Vdc \\
\hline Power Supply Voltage (Pin 18) & \(\mathrm{V}_{\mathrm{CC} 2}\) & 16 & Vdc \\
\hline Input Voltage (Pins 1 and 2) & \(\mathrm{V}_{\text {I }}\) & -0.2 to +7.0 & Vdc \\
\hline Output Voltage (Pin 10) & \(\mathrm{V}_{\mathrm{O}}\) & -0.2 to +7.0 & Vdc \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Junction Temperature \\
Plastic Package
\end{tabular} & \(\mathrm{TJ}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & \begin{tabular}{c}
\(\mathrm{V}_{\mathrm{CC} 1}+4.75\) to +5.25 \\
\(\mathrm{~V}_{\mathrm{CC} 2}+10\) to +14
\end{tabular} & Vdc \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(T_{A}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=10\) to 14 V unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Figure & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{ll}
Differential Voltage Gain & MC3470 \\
\(\left(f=200 \mathrm{kHz}, \mathrm{V}_{\mathrm{iD}}=5.0 \mathrm{mV}\right.\) (RMS) & MC3470A
\end{tabular} & 2 & AVD & \[
\begin{gathered}
80 \\
100
\end{gathered}
\] & \[
\begin{aligned}
& 100 \\
& 110
\end{aligned}
\] & \[
\begin{aligned}
& 130 \\
& 130
\end{aligned}
\] & V/V \\
\hline Input Bias Current & 3 & IIB & - & -10 & -25 & \(\mu \mathrm{A}\) \\
\hline Input Common Mode Range Linear Operation (5\% max THD) & & \(v_{\text {iCM }}\) & -0.1 & - & 1.5 & V \\
\hline Differential Input Voltage Linear Operation (5\% max THD) & & \(v_{i D}\) & - & - & 25 & \(\mathrm{mVp}-\mathrm{p}\) \\
\hline Output Voltage Swing Differential & 2 & \(v_{\text {ob }}\) & 3.0 & 4.0 & - & Vp-p \\
\hline Output Source Current, Toggled & & 10 & - & 8.0 & - & mA \\
\hline Output Sink Current, Pins 16 and 17 & 4 & Ios & 2.8 & 4.0 & - & mA \\
\hline Small Signal Input Resistance (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)) & & \(\mathrm{r}_{\mathrm{i}}\) & 100 & 250 & - & \(\mathrm{k} \Omega\) \\
\hline Small Signal Output Resistance, Single-Ended
\[
\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12 \mathrm{~V}\right)
\] & & \(\mathrm{r}_{0}\) & - & 15 & - & \(\Omega\) \\
\hline \[
\begin{aligned}
& \text { Bandwidth, }-3.0 \mathrm{~dB}\left(\mathrm{v}_{\mathrm{iD}}=2.0 \mathrm{mV}(\mathrm{RMS}), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right. \\
& \left.\mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12 \mathrm{~V}\right)
\end{aligned}
\] & 2,17 & BW & 10 & - & - & MHz \\
\hline \[
\begin{aligned}
& \text { Common Mode Rejection Ratio }\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=100 \mathrm{kHz},\right. \\
& A_{V D}=40 \mathrm{~dB}, \mathrm{v}_{\text {in }}=200 \mathrm{mVp}-\mathrm{p}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\
& \left.V_{C C 2}=12 \mathrm{~V}\right)
\end{aligned}
\] & 5 & CMRR & 50 & - & - & dB \\
\hline \(\mathrm{V}_{\mathrm{CC} 1}\) Supply Rejection Ratio (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V}\),
\[
\left.4.75 \leqslant \mathrm{~V}_{\mathrm{CC} 1} \leqslant 5.25 \mathrm{~V}, \mathrm{~A}_{\mathrm{VD}}=40 \mathrm{~dB}\right)
\] & & - & 50 & - & - & dB \\
\hline \(\mathrm{V}_{\mathrm{C} C 2}\) Supply Rejection Ratio (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=5.0 \mathrm{~V}\), \(10 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC} 2} \leqslant 14 \mathrm{~V}, \mathrm{~A}_{\mathrm{VD}}=40 \mathrm{~dB}\)) & & - & 60 & - & - & dB \\
\hline Differential Output Offset (\(T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{i}} \mathrm{D}=\mathrm{v}_{\text {in }}=0 \mathrm{~V}\)) & & \(\mathrm{V}_{\mathrm{DO}}\) & - & - & 0.4 & V \\
\hline Common Mode Output Offset (\(\mathrm{v}_{\mathrm{i} D}=\mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}\), Differential and Common Mode) & & \(\mathrm{V}_{\mathrm{CO}}\) & - & 3.0 & - & V \\
\hline Differential Noise Voltage Referred to Input
\[
\left(\mathrm{BW}=10 \mathrm{~Hz} \text { to } 1.0 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
\] & 22 & \(e_{n}\) & - & 15 & - & \(\mu \mathrm{V}\) (RMS) \\
\hline Supply Currents
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, \mathrm{~S}_{1} \text { to } \operatorname{Pin} 12 \text { or } \operatorname{Pin} 13\right) \\
& \left(\mathrm{V}_{\mathrm{CC} 2}=14 \mathrm{~V}\right)
\end{aligned}
\] & 1 & \[
\begin{aligned}
& \text { ICc1 } \\
& \text { ICC2 }
\end{aligned}
\] & - & \[
\begin{aligned}
& 40 \\
& 4.8
\end{aligned}
\] & — & mA \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (continued) (\(\mathrm{T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=10\) to 14 V unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Figure & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{ACTIVE DIFFERENTIATOR SECTION} \\
\hline Differentiator Output Sink Current, Pins 12 and 13
\[
\left(v_{O D}=v_{C C 1}\right)
\] & 6 & \({ }^{\prime} \mathrm{OD}\) & 1.0 & 1.4 & - & mA \\
\hline & 7, 8 & PS & \[
-
\] & - & \[
\begin{aligned}
& 5.0 \\
& 2.0
\end{aligned}
\] & \% \\
\hline Differentiator Input Resistance, Differential & & \(r_{\text {id }}\) & - & 30 & - & k \(\Omega\) \\
\hline Differentiator Output Resistance, Differential
\[
\left(T_{A}=25^{\circ} \mathrm{C}\right)
\] & & \(\mathrm{r}_{0} \mathrm{D}\) & - & 40 & - & \(\Omega\) \\
\hline
\end{tabular}

DIGITAL SECTION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Output Voltage High Logic Level, Pin \(10\left(\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right.\),
\[
\left.\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}\right)
\] & 9 & \(\mathrm{V}_{\mathrm{OH}}\) & 2.7 & - & - & V \\
\hline Output Voltage Low Logic Level, Pin \(10\left(\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right.\),
\[
\left.\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}\right)
\] & 10 & \(\mathrm{V}_{\mathrm{OL}}\) & - & - & 0.5 & V \\
\hline Output Rise Time, Pin 10 & 11, 12 & ttin & - & - & 20 & ns \\
\hline Output Fall Time, Pin 10 & 11, 12 & tril & - & - & 25 & ns \\
\hline Timing Range Mono \#1 (\(\mathrm{t}_{1} \mathrm{~A}\) and \(\mathrm{t}_{1} \mathrm{~B}\)) & 13 & \(\mathrm{t}_{1} \mathrm{~A}, \mathrm{~B}\) & 500 & - & 4000 & ns \\
\hline \begin{tabular}{l}
Timing Accuracy Mono \#1
\[
\begin{aligned}
& (\mathrm{t} 1=1.0 \mu \mathrm{~s}=0.625 \mathrm{R1C} 1+200 \mathrm{~ns}) \\
& (\mathrm{R} 1=6.4 \mathrm{k} \Omega, \mathrm{C} 1=200 \mathrm{pF})
\end{aligned}
\] \\
Accuracy guaranteed for R 1 in the range \(1.5 \mathrm{k} \Omega \leqslant \mathrm{R} 1 \leqslant 10 \mathrm{k} \Omega\) and C 1 in the range \(150 \mathrm{pF} \leqslant \mathrm{C} 1 \leqslant 680 \mathrm{pF}\). \\
Note: To minimize current transients, C1 should be kept as small as is convenient.
\end{tabular} & 12, 13 & \[
E_{t 1}
\] & 85 & - & 115 & \% \\
\hline Timing Range Mono \#2 & 11, 12 & t2 & 150 & - & 1000 & ns \\
\hline \begin{tabular}{l}
Timing Accuracy Mono \#2
\[
\begin{aligned}
& (\mathrm{t} 2=200 \mathrm{~ns}=0.625 \mathrm{R} 2 \mathrm{C} 2) \\
& (\mathrm{R} 2=1.6 \mathrm{k} \Omega, \mathrm{C} 2=200 \mathrm{pF})
\end{aligned}
\] \\
Accuracy guaranteed for \(1.5 \mathrm{k} \Omega \leqslant \mathrm{R} 2 \leqslant 10 \mathrm{k} \Omega\), \(100 \mathrm{pF} \leqslant \mathrm{C} 2 \leqslant 800 \mathrm{pF}\)
\end{tabular} & 12, 13 & \(E_{\text {t2 }}\) & 85 & - & 115 & \% \\
\hline
\end{tabular}

FIGURE 1 - POWER SUPPLY CURRENTS,
\(I^{C C 1}\) AND ICC2

FIGURE 2 - VOLTAGE GAIN, BANDWIDTH, OUTPUT VOLTAGE SWING

FIGURE 4 - AMPLIFIER OUTPUT SINK CURRENT, PINS 16 AND 17

FIGURE 5 - AMPLIFIER COMMON MODE REJECTION RATIO, CMRR

NOTE: Measurements may be made with vector voltmeter hp 8405 A or equivalent at 1.0 MHz to guarantee 100 kHz performance.

FIGURE 6 - DIFFERENTIATOR OUTPUT SINK CURRENT, PINS 12 AND 13

FIGURE 7 - PEAK SHIFT, PS See Figure 8 for Output Waveform

FIGURE 8 - PEAK SHIFT, PS \(V_{\text {in }}=1.0 \mathrm{~V}_{\mathrm{pp}} \quad \mathrm{f}=250 \mathrm{kHz}\) Test schematic on Figure 7

FIGURE 9 - DATA OUTPUT VOLTAGE HIGH, PIN 10

FIGURE 11 - DATA OUTPUT RISE TIME, TTLH
DATA OUTPUT FALL TIME, TTHL
TIMING ACCURACY MONO \#2, E \(\mathrm{E}_{\mathrm{t}}\)
\(v_{\text {in }}\) is same as shown on Figure 13, test schematic on Figure 12

FIGURE 10 - DATA OUTPUT VOLTAGE LOW, PIN 10

FIGURE 12 - TIMING ACCURACY, \(E_{\text {t1 }}\) AND \(E_{\text {t } 2}\) DATA OUTPUT RISE AND FALL TIMES, \(\mathrm{t}_{\mathrm{TLH}}\) AND \(\mathrm{t}_{\text {THL }}\) \(V_{\text {in }}\) shown on Figure 13

FIGURE 14 - AMPLIFIER OFFSET DECOUPLING IMPEDANCE, PINS 3 AND 4
\(R_{e}+r_{e}\) and \(A_{V}\) with \(R_{\text {ext }}=500 \Omega\)

FIGURE 15 - NORMALIZED POWER SUPPLY CURRENT (\(\mathbf{I C C} /{ }^{\prime} \mathrm{CC} \mathbf{2 5}^{\circ} \mathrm{C}\)) versus TEMPERATURE

FIGURE 16 - NORMALIZED VOLTAGE GAIN (\(A v / A V 25^{\circ} \mathrm{C}\)) versus TEMPERATURE

FIGURE 19 - NORMALIZED OUTPUT PULSE WIDTH, \(\mathrm{t}_{2} / \mathrm{t}_{2} \quad 25^{\circ} \mathrm{C}\)

FIGURE 21 - EFFECTIVE EMITTER RESISTANCE
DISTRIBUTION, PINS 3 AND 4

FIGURE 20 - NORMALIZED VOLTAGE GAIN,
AVR/AVR \(\mathbf{2 5}^{\circ} \mathrm{C}\)

FIGURE 22 - DIFFERENTIAL NOISE VOLTAGE

\section*{APPLICATION INFORMATION}

The MC3470 is designed to accept a differential ac input from the magnetic head of a floppy disk drive and produce a digital output pulse that corresponds to each peak of the ac input. The gain stage amplifies the input waveform and applies it to a filter network (Figure 23a),

FIGURE 23a - BLOCKING CAPACITORS USED TO ISOLATE THE DIFFERENTIATOR

enabling the active differentiator and time domain filter to produce the desired output.

\section*{FILTER CONSIDERATIONS}

The filter is used to reduce any high frequency noise present on the desired signal. Its characteristics are dictated by the floppy disk system parameters as well as the coupling requirements of the MC3470. The filter design parameters are affected by the read head characteristics, maximum and minimum slew rates, system transient response, system delay distortion, filter center frequency, and other system parameters. This design criteria varies between manufacturers; consequently, the filter configuration also varies. The coupling requirements of the MC3470 are a result of the output structure of the gain stage and the input structure of the differentiator, and must be adhered to regardless of the filter configuration.

The differentiator has an internal biasing network on each input. Therefore, any dc voltage applied to these inputs will perturbate the bias level. Disturbing the bias level does not affect the waveform at the differentiator inputs, but it does cause peak shifting in the digital output (Pin 10). Since the output of the gain stage has an associated dc voltage level, it, as well as any biasing introduced in the filter, must be isolated from the differentiator via series blocking capacitors. The transient response is minimized if the blocking capacitors \(C\) and \(C^{\prime}\) are placed before the filter as shown in Figure 23a. The charging and discharging of \(C\) and \(C^{\prime}\) is controlled by the filter termination resistor instead of the high input impedance of the differentiator.

The filter design must also include the current-sinking capacity of the amplifier output. The current source in the output structure (see circuit schematic - Pins 16 and 17) is guaranteed to sink a current of 2.8 mA . If the current requirement of the filter exceeds 2.8 mA , the current source will saturate, the output waveform will be distorted, and inaccurate peak detection will occur in the differentiator. Therefore, the total impedance of the
filter must be greater than \(Z_{\min }\) as calculated from
\[
Z_{\min }=\frac{\left(E_{p} A V D\right)_{\max }}{2.8 \mathrm{~mA}}
\]
where \(E_{p}\) is the peak differential input voltage to the MC3470.

\section*{TRANSIENT RESPONSE}

The worst-case transient response of the read channel occurs when dc switching at the amplifier input causes its output to be toggled. The dc voltage changes are a consequence of diode switching that takes place when control is transferred from the write channel to the read channel.

If the diode network is balanced, the dc change is a common mode input voltage to the amplifier. The switching of an unbalanced diode network creates a differential input voltage and a corresponding amplified swing in the outputs. The output swing will charge the blocking capacitor resulting in peak shifting in the digital output until the transient has decayed. Eliminating the differential dc changes at the amplifier input by matching the diode network or by coupling the read head to the amplifier via FET switches, as shown in Figure 23b, will minimize the filter transient response.

FIGURE 23b - FET SWITCHES USED TO COUPLE THE R/W HEAD TO THE MC3470

Two of the advantages FET switches have over diode switching are:
1. They isolate the read channel from dc voltage changes in the system; therefore, the transient response of the filter does not influence the system transient response.
2. The low voltage drop across the FETs keeps the input signal below the amplifier's internal clamp voltage; whereas, the voltage dropped across a diode switching network adds a dc bias to the input signal which may exceed the clamp voltage.

\section*{AMPLIFIER GAIN}

For some floppy systems, it may become necessary to either reduce the gain of the amplifier or reduce the

\section*{See Application Note AN917 for further information.}
signal at the input to avoid exceeding the output swing capability of the amplifier. The voltage gain of the amplifier can be reduced by putting a resistor in series with the capacitor between Pins 3 and 4 (Figure 14). The relationship between the gain and the external resistor is given by
\[
A V R=A V O \cdot \frac{2\left(r_{e}+R_{e}\right)}{2\left(r_{e}+R_{e}\right)+R_{e x t}}
\]
where \(A V_{\mathrm{O}} \triangleq\) voltage gain with the external resistor \(=0\),
\(A V_{R} \triangleq\) voltage gain with the external resistor in,
\(\mathbf{R}_{\text {ext }} \triangleq\) the external resistor, and
\(r_{e}+R_{e} \triangleq\) the resistance looking into \(\operatorname{Pin} 3\) or \(\operatorname{Pin} 4\).
Thus,
\[
R_{e x t}=2\left(\frac{A V_{O}}{A V_{R}}-1\right)\left(r_{e}+R_{e}\right)
\]

A plot of (\(r_{e}+R_{e}\)) versus temperature is shown in Figure 21. Figure 20 shows the normalized voltage gain versus temperature with the external resistor equal to 500 ohms.

\section*{ACTIVE DIFFERENTIATOR}

The active differentiator in the MC3470 (simplified circuit shown in Figure 24), is implemented by coupling

FIGURE 24 - ACTIVE DIFFERENTIATOR NETWORK

the emitters of a differential amplifier with a capacitor resulting in a collector current that will be the derivative of the input voltage,
\[
\mathrm{I}=\mathrm{Cdv} / \mathrm{dt}
\]

If the output voltage is taken across a resistor through which the collector current is flowing, the resulting voltage will be the derivative of the input voltage.
\[
V_{o}=2 R i_{c}=2 R C \frac{d v_{i n}(t)}{d t}
\]
\(V_{O}\) is applied to a comparator which will provide zero
crossing detection of the current waveform. Since the capacitor shifts the current \(90^{\circ}\) from the input voltage, the comparator performs peak detection of the input voltage.

The following terms will be used in determining the value of \(C\) to be used in the differentiator:
\(E_{p} \triangleq\) peak differential voltage applied to MC3470 amplifier input.
\(\mathrm{E}_{\mathrm{p}} \sin \omega t \triangleq\) voltage waveform applied to MC3470 amplifier input (for purposes of discussion, assume a sine wave).
AVD \(\triangleq\) differential voltage gain of input amplifier.
\(\mathrm{v}_{\mathrm{in}}(\mathrm{t}) \triangleq\) differential voltage waveform applied to the differentiator inputs.
\(=E_{p} A V D \sin \omega t\) (Note: The filter is assumed to be lossless.)
\(\mathrm{i}_{\mathrm{C}}(\mathrm{t}) \triangleq\) current through capacitor \(\mathrm{C}_{\mathrm{D}}\).
\(\mathrm{R}_{\mathrm{O}} \triangleq\) output resistance of Q 1 (Q2) at Pin 12 (13).
If \(v_{i n}(t)=E_{p} A V D \sin \omega t\), then the current through the capacitor \(C_{D}\) is given by
\[
\begin{aligned}
\mathrm{i}_{C}(\mathrm{t}) & =C_{D} A V D E_{p} \omega \cos \omega t \\
\text { and } V_{O}(t) & =2 R_{C} C_{D} A V D E_{p} \omega \cos \omega t .
\end{aligned}
\]

Accurate zero crossing detection of \(\mathrm{V}_{\mathrm{O}}(\mathrm{t})\) [peak detection of \(\left.v_{\text {in }}(t)\right]\) occurs when the current waveform \(\mathrm{i}_{\mathrm{C}}(\mathrm{t})\) crosses through zero in a minimum amount of time. This condition is satisfied by maximizing current slew rate. For a given value of \(\omega\), the maximum slew rate occurs for the maximum value of \(i_{c}\) or \(\cos \omega t=1\). Therefore,
\[
i_{c}=C_{D} A \vee D E_{p} \omega
\]

The MC3470 current-sourcing capacity will determine the maximum value \(i_{C}\); therefore, \(C_{D}\) must be chosen such that the maximum \(i_{c}\) occurs at the maximum \(A \vee D E_{p} \omega\) product.
\[
C_{D}=-\frac{i_{c} \max }{\left(A V D E_{p} \omega\right)_{\max }}=\frac{1 \mathrm{~mA}}{(120)\left(E_{p} \omega\right)_{\max }}
\]

If the peak value specified for \(i_{c}\) is exceeded, the current source (IO in Figure 24) will saturate and distort the waveform at Pins 12 and 13. Consequently, the differentiator will not accurately locate the peaks and peak shifting will occur in the digital output.

The effective output resistance \(\mathrm{R}_{\mathrm{O}}\) of Q 1 (Q2) will create a pole (as shown in Figure 25) at \(1 / 2 R_{O C D}\). If this pole is ten times greater than the maximum operating frequency \(\left(\omega_{\text {max }}\right)\), the phase shift approaches \(84^{\circ}\). Locating the pole at a frequency much greater than \(10 \omega_{\max }\) needlessly extends the noise bandwidth thus:
\[
2 \mathrm{R}_{\mathrm{O}}=\frac{1}{\mathrm{C}_{\mathrm{D}} 10 \omega_{\max }}
\]

If RO is not large enough to satisfy this condition, a series

FIGURE 25 - RESPONSE OF DIFFERENTIATOR USING ONLY CD

resistor can be added so that
\[
R=2 R_{O}+R_{D}=\frac{1}{C_{D} 10 \omega_{\max }}
\]

To further reduce the noise bandwidth, a second pole can be added (as shown in Figure 26) by putting an

FIGURE 26 - COMPLETE RESPONSE OF DIFFERENTIATOR

inductor in series with the resistor and the capacitor. The values of \(R\) and \(L\) are determined by choosing the center frequency \(\left(\omega_{0}\right)\) and the damping ratio \((\delta)\) to meet the systems requirements where
\[
\begin{gathered}
\omega_{o}=\frac{1}{\sqrt{L C_{D}}} \\
\delta=\frac{R C_{D}}{2 \sqrt{L_{D}}} \\
\omega_{o}=10 \omega_{\max }=\frac{1}{\sqrt{L C_{D}}}
\end{gathered}
\]
where \(C_{D}\) is chosen for maximum \(i_{C}\) as shown previously. Solving for \(L\) gives:
\[
L=\frac{1}{100 C_{D}\left(\omega_{\max }\right)^{2}}
\]

Using this value for \(L\) gives:
\[
\delta=\frac{R C_{D}}{\frac{2}{10} \sqrt{\frac{C_{D}}{C_{D}\left(\omega_{\max }\right)^{2}}}}
\]

Solving for R gives:
\[
\mathrm{R}=\frac{\delta}{5 \mathrm{C}_{\mathrm{D}} \omega_{\max }}
\]

The total resistance (\(R\)) is the effective output resistance (\(\mathrm{R}_{\mathrm{O}}\)) plus the resistor added in the differentiator \(\left(R_{D}\right)\). Values of \(\delta\) from 0.3 to 1 produce satisfactory results.

\section*{PEAK SHIFT CONSIDERATIONS}

Peak shift, resulting from current imbalance in the differentiator, offset voltage in the comparator, etc., can be eliminated by nulling the current in the emitters of the differentiator with a potentiometer as shown in Figure 27.

FIGURE 27 - PEAK SHIFT COMPENSATION

The potentiometer across the differentiator components is adjusted until a symmetrical digital output cycle is obtained at Pin 10 for a sinusoidal input with the minimum anticipated \(E_{p} \omega\) product.

\section*{DESIGN EQUATIONS FOR ONE-SHOTS}

As shown in Figure 28, the MC3470 input waveform may have distortion at zero crossing, which can result in false triggering of the digital output. The time domain filter in the MC3470 can be used to eliminate the distortion by properly setting the period (\(\mathrm{t}_{1}\)) of the one-shot timing elements on Pins 6 and 7. The following equation will optimize immunity to this signal distortion at zero crossing of the read head signal.

The timing equation for the time domain filter's oneshot is:
\[
t_{1}=R_{1} C_{1} K_{1}+T_{0}
\]
where \(K_{1}=0.625, T_{0}=200 \mathrm{~ns}\).
Actual time will be within \(\pm 15 \%\) of \(\mathrm{t} \uparrow\) due to variations in the MC3470.

If \(\Delta T\) is the maximum period of distortion (see Figure

FIGURE 28 - WAVEFORMS THROUGH THE READ CIRCUIT

28), then choose \(t_{1}\) such that
\[
\Delta \mathrm{T}<\mathrm{t}_{1}<\mathrm{T}-\frac{\Delta \mathrm{T}}{2}
\]
where \(T=\frac{1}{4 f(\max)}\).
The width of the digital output pulse \(t_{2}(\operatorname{Pin} 10)\) is determined by
\[
t_{2}=R_{2} C_{2} K_{2}
\]
where \(K_{2}=0.625\).
Actual pulse width will be within \(\pm 15 \%\) of \(t_{2}\) due to variations in the MC3470.

To preserve the specified accuracy of the MC3470, \(R_{1}, R_{2}, C_{1}\), and \(C_{2}\) should remain in the ranges shown in the Electrical Characteristics. Also, to minimize current transients, it is important to keep the values of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) as small as is convenient. For \(\mathrm{t}_{1}=1 \mu \mathrm{~s}\) and \(\mathrm{t}_{2}=200 \mathrm{~ns}\), suggested good values for the capacitors are
\[
\begin{aligned}
& C_{1}=250 \mathrm{pF} \\
& \mathrm{C}_{2}=160 \mathrm{pF}
\end{aligned}
\]

\section*{BOARD LAYOUT AND TESTING CONSIDERATIONS}

An LSI package has many input/output pins in close proximity, some carrying high level signals and others low level signals. As carefully as the on-chip isolation of the devices connected to these pins is implemented by
the manufacturer, the coupling of signals or noise between external wires is under the control of the end-user who designs the integrated circuit into a piece of equipment. The designer should be familiar with the following layout procedures which will optimize the performance of the device. See Figure 29.
1. Build all circuits on printed circuit boards (including breadboards). Transmission line theory for flat conductors in a plane quite convincingly proves that coupling is far less than for round conductors in three dimensions.
2. Use a ground plane under the IC and over as much of the printed circuit board surface as possible without exceeding practical limits.
3. Avoid signal runs under the IC. Also avoid parallel runs of 1 inch or greater on the opposite or same side of board.
4. Use monolithic ceramic \(0.1 \mu \mathrm{~F}\) capacitors for decoupling power supply transients: one from \(\mathrm{V}_{\mathrm{CC}}\) 1 to ground and one from \(V_{\text {CC2 }}\) to ground for each IC package. Keep lead lengths to \(1 / 4\) inch or less and place in close proximity to the IC.
5. Keep all signal runs as short as possible.

When evaluating the device for phase jitter and frequency response, a special test jig should be designed to reduce ground loops and coupling caused by instrumentation. Instrumentation test setups must be calibrated
at each test frequency and differential equipment utilized where required. A valid evaluation of the performance of any read amplifier chain requires considerable care and thought.

FIGURE 29 - POWER AND GROUND DISTRIBUTION FOR MC3470 PRINTED CIRCUIT BOARD LAYOUT

NOTE: Dotted lines outline ground plane on back side of printed circuit board.

\section*{MC3471P}

\section*{Specifications and Applications Information}

\section*{FLOPPY DISK WRITE CONTROLLER/HEAD DRIVER}

The MC3471 is a monolithic integrated Write Controller/Head Driver designed to provide the entire interface between the write data and head control signal's and the heads (write and erase) for either Tunnel or straddle-erase floppy disk systems.

Provisions are made for selecting a range of accurately controlled write currents and for head selection during both read and write operation. Additionally, provisions are included for externally adjusting degauss period, inner/outer track compensation, and the delay from write gate to erase turn-on and turn-off.

Erase Delays are controlled by driving the delay inputs D1 and D2 with standard TTL open-collector logic (microprocessor compatible) or by using the external RC mode in which case the delay is one \(\tau(\mathrm{K}\) factor \(=1.0)\).

In addition, an Inhibit output is provided which indicates that the heads are active during write, degauss, or erase
- Head Selection - Current Steering Through Write Head and Erase Coil in Write Mode
- Adjustable On-Chip Delay of Erase Timing - Stable K Factor
- Delay Pins Logic Compatible for Direct Microprocessor Compatibility
- Inhibit Output Provided to Disable Read or Step During Head Active Time
- Provides High Impedance (Read Data Enable) During Read Mode
- Head Current (Write) Guaranteed \(\pm 3 \%\) (3.0 mA using \(\mathrm{Rext}_{\text {ext }}=\) \(10 \mathrm{k} \Omega\))
- IRW Select Input Provides for Innter/Outer Track Compensation
- Degauss Period Externally Adjustable
- Specified With Head Supply (\(\mathrm{VBB}_{\mathrm{BB}}\)) from 10.8 V to 26.4 V
- Minimizes External Components

\section*{MC3471P}

ABSOLUTE MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage (Pin 14) & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Power Supply Voltage (Pin 19) & \(\mathrm{V}_{\mathrm{BB}}\) & 30 & Vdc \\
\hline Input Voltage (Pins 4, 5, 8, 13) & \(\mathrm{V}_{\mathrm{I}}\) & 5.75 & Vdc \\
\hline Output Applied Voltage (Pin 10) & \(\mathrm{V}_{\mathrm{O}}\) & 7.0 & Vdc \\
\hline Open-Collector Sink Current (Pin 10) & \(\mathrm{I}_{\mathrm{O}}\) & 25 & mA \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage (Pin 14) & \(\mathrm{V}_{\mathrm{CC}}\) & +4.75 to +5.25 & Vdc \\
\hline Power Supply Voltage (Pin 19) & \(\mathrm{V}_{\mathrm{BB}}\) & +10.8 to +26.4 & Vdc \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=0\right.\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=10.8\) to 26.4 V unless otherwise noted Typicals given for \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=12 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Pins & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{DIGITAL INPUT VOLTAGES} \\
\hline \[
\begin{array}{r}
\text { Power Supply Current }-V_{C C} \\
V_{B B}
\end{array}
\] & & \[
\begin{aligned}
& \text { ICC } \\
& \text { IBB }
\end{aligned}
\] & - & \[
\begin{aligned}
& 22 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 30
\end{aligned}
\] & mA \\
\hline High Level Input Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right)
\] & 4, 8, 13 & \(\mathrm{V}_{1} \mathrm{H}\) & 2.0 & - & - & V \\
\hline Low Level Input Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)
\] & 4, 8, 13 & \(V_{\text {IL }}\) & - & - & 0.8 & V \\
\hline Input Clamp Voltage
\[
\left(I_{\mathrm{IK}}=-12 \mathrm{~mA}\right)
\] & 4, 5, 8, 13 & \(V_{\text {IK }}\) & - & -0.87 & -1.5 & V \\
\hline Positive Threshold
\[
\left(V_{C C}=5.0\right)
\] & 5 & \(\mathrm{V}_{T(+)}\) & 1.5 & 1.75 & 2.0 & V \\
\hline Negative Threshold
\[
\left(V_{C C}=5.0\right)
\] & 5 & \(\mathrm{V}_{\text {(}-1}\) & 0.7 & 0.98 & 1.3 & V \\
\hline \[
\begin{aligned}
& \text { Hysteresis }\left(V_{T(+)}-V_{T(-)}\right) \\
& T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 5 & \(V_{\text {HTS }}\) & \[
\begin{aligned}
& 0.2 \\
& 0.4
\end{aligned}
\] & \[
0 . \overline{76}
\] & - & V \\
\hline
\end{tabular}

\section*{DIGITALINPUT CURRENTS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline High Level Input Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=26.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V}\right)
\] & 4, 5, 8, 13 & IH & - & 0.1 & 40 & \(\mu \mathrm{A}\) \\
\hline ```
Low Level Input Current
 \(\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=26.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless
 noted below)
 \(V_{B B}=12 \mathrm{~V}\)
 \(V_{B B}=24 \mathrm{~V}\)
 \(V_{C C}=5.0 \mathrm{~V}\)
 \(V_{C C}=5.0 \mathrm{~V}\)
``` & \begin{tabular}{l}
4, 5, 8, 13 \\
4 \\
4 \\
5 \\
8, 13
\end{tabular} & IIL & -
-
-
- & \[
\begin{array}{r}
\overline{-} \\
0.36 \\
0.76 \\
0.46 \\
0.39 \\
\hline
\end{array}
\] & \[
\begin{gathered}
-1.6 \\
- \\
- \\
-
\end{gathered}
\] & mA \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (continued) ( \(T_{A}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75\) to \(5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=10.8\) to 26.4 V unless otherwise noted. Typicals given for \(\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=12 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristics & Pins & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{7}{|l|}{CENTER-TAP and ERASE OUTPUTS} \\
\hline Output High Voltage (See Figure 14)
\[
\begin{gathered}
\left(\mathrm{I}_{\mathrm{OH}}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right) \\
\mathrm{V}_{\mathrm{BB}}=10.8 \text { to } 26.4 \mathrm{~V}
\end{gathered}
\] & 1?, 20 & \(\mathrm{V}_{\mathrm{OH}}\) & \(\mathrm{V}_{\mathrm{BB}}-1.5\) & \(V_{B B^{-1}}{ }^{\text {d }} 0\) & - & V \\
\hline Output Low Voltage (See Figure 14)
\[
\begin{gathered}
\left(I_{O L}=1.0 \mathrm{~mA}\right) \\
V_{B B}=12 \mathrm{~V} \\
V_{B B}=24 \mathrm{~V}
\end{gathered}
\] & 18, 20 & \(\mathrm{V}_{\mathrm{OL}}\) & - & \[
\begin{aligned}
& 70 \\
& 70
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 150
\end{aligned}
\] & mV \\
\hline Output High Leakage Current
\[
\left(\mathrm{V}_{\mathrm{OH}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=24 \mathrm{~V}\right)
\] & 15, 17 & \({ }^{1} \mathrm{OH}\) & - & 0.01 & 100 & \(\mu \mathrm{A}\) \\
\hline Output Low Voltage (See Figure 15)
\[
\begin{aligned}
& \left(\mathrm{I}_{\mathrm{OL}}=90 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{BB}}=24 \mathrm{~V}
\end{aligned}
\] & 15, 17 & \(\mathrm{V}_{\mathrm{OL}}\) & ... & \[
\begin{aligned}
& 0.27 \\
& 0.27
\end{aligned}
\] & \[
\begin{aligned}
& 0.60 \\
& 0.60
\end{aligned}
\] & V \\
\hline
\end{tabular}

DIGITAL OUTPUT LEVEL (Inhibit)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{c} 
High Level Output Current \\
\(\left(\mathrm{V}_{\mathrm{OH}}=7.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right)\)
\end{tabular} & 10 & IOH & - & - & 100 \\
\hline \begin{tabular}{c} 
Low Level Output Voltage \\
\(\left(\mathrm{IOL}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right)\)
\end{tabular} & 10 & \(\mathrm{~V}_{\mathrm{OL}}\) & - & - & 0.5 \\
\hline
\end{tabular}

CURRENT SOURCE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Voltage & 1 & \(V_{\text {Ref }}\) & - & 5.7 & - & V \\
\hline Degauss Voltage (See Text) (Voltage Pin 1 - Voltage Pin 2) & 1 & \(V_{\text {DEG }}\) & \(\cdots\) & 1.0 & - & V \\
\hline Bias Voltage & 2 & \(V_{F}\) & - & 0.7 & - & \(\checkmark\) \\
\hline Write Current Off Leakage
\[
\left(\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}\right)
\] & 6. 7 & \({ }^{\prime} \mathrm{OH}\) & - & 0.03 & 15 & \(\mu \mathrm{A}\) \\
\hline Saturation Voltage
\[
\left(\mathrm{V}_{\mathrm{BB}}=12 \mathrm{~V}\right)
\] & 6, 7 & \(V_{\text {sat }}\) & - & 0.85 & 2.7 & V \\
\hline Current Sink Compliance (For \(\mathrm{V}_{6,7}=4.0 \mathrm{~V}\) to \(24 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{WG}}=0.8 \mathrm{~V}\) ) & 6. 7 & CI/RW2, 1 & -- & 15 & 40 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Average Value Write Current
\[
\left(\frac{(\operatorname{Pin} 6+I \operatorname{Pin} 7)}{2} \text { for } V_{B B}=10.8 \text { to } 26.4 \mathrm{~V}\right)
\] \\
@
\[
\begin{aligned}
& I_{R} / W=I_{\text {LOW }}, R=10 \mathrm{k} \\
& T_{A}=25^{\circ} \mathrm{C} \\
& { }^{\top} A=0 \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] \\
@
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{R}} / \mathrm{W}=\mathrm{LOW}, \mathrm{R}=5.0 \mathrm{k} \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& T_{A}=0 \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] \\
@
\[
\begin{aligned}
& I_{R} / W=I_{H I}, R=10 \mathrm{k}\left(I_{H I}=I_{\text {LOW }}+\% I_{\text {LOW }}\right) \\
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=0 \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\]
\end{tabular} & 6, 7 & \[
\overline{I_{R / W(L)}}
\]
\[
\overline{\Delta l_{R} / W(H)}
\] & \[
\begin{aligned}
& 2.91 \\
& 2.84 \\
& \\
& 5.64 \\
& 5.51 \\
& 31.3 \\
& 30.3
\end{aligned}
\] & \begin{tabular}{l}
3.0 \\
- \\
5.89 \\
- \\
33.3 \\
33.3
\end{tabular} & \[
\begin{aligned}
& 3.09 \\
& 3.16 \\
& \\
& 6.14 \\
& 6.28 \\
& 35.5 \\
& 36.6
\end{aligned}
\] & mA


\(\%\) \\
\hline \begin{tabular}{l}
Difference in Write Current
\[
||\operatorname{Pin} 6-|\operatorname{Pin} 7|
\] \\
@
\[
\begin{aligned}
& \left.I_{R} / W=I_{L O W}, V_{B B}=10.8 \mathrm{~V} \text { to } 26.4 \mathrm{~V}\right) \\
& R=10 \mathrm{k} \\
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\
& R=5.0 \mathrm{k} \\
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=0 \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\]
\end{tabular} & 6, 7 & IR/W \({ }^{\text {d }}\) & -
-
-
- & 0.003
-
- & \[
\begin{aligned}
& 0.015 \\
& 0.023 \\
& 0.030 \\
& 0.046
\end{aligned}
\] & mA \\
\hline
\end{tabular}

ERASE DELAY ACCURACY \(\left(\mathrm{V}_{\mathrm{C}}=4.75\right.\) to \(5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BB}}=10.8\) to 26.4 V , - refer to Figure 9.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Test & Min & Typ & Max & Unit \\
\hline \begin{tabular}{c} 
Delay Error, Pin 11,12 \\
\(D 1, ~ D 2=R C \pm E_{D 1,2} 30 \mathrm{k} \Omega \leqslant R \leqslant 300 \mathrm{k} \Omega\)
\end{tabular} & \(E_{D 1,2}\) & - & - & 15 & \(\%\) \\
\hline
\end{tabular}

AC SWITCHING CHARACTERISTICS \(\left(V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BB}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{RWS}}=0.4\right.\) and \(\mathrm{I}_{\mathrm{R} / \mathrm{W}}=3.0 \mathrm{~mA}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics (Note 1) & \(\mathrm{fin}_{\text {( }}\) (Note 2) & Min & Typ & Max & Unit \\
\hline 1. Delay from Head Select going low through 0.8 V to CT0 going high through 20 V . & HS, Pin 13 & - & 16 & 4.0 & \(\mu \mathrm{s}\) \\
\hline 2. Delay from Head Select going low through 0.8 V to CT 1 going low through 1.0 V . & HS, Pin 13 & - & 2.1 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 3. Delay from Head Select going high through 2.0 V to CT0 going low through 1.0 V . & HS, Pin 13 & - & 1.7 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 4. Delay from Head Select going high through 2.0 V to CT1 going high through 20 V . & HS, Pin 13 & - & 1.4 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 5. Delay from \(\overline{W G}\) going low through 0.8 V to CTO going low through 1.0 V . & \(\overline{W G}\), Pin 4 & - & 1.3 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 6. Delay from \(\overline{W G}\) going low through 0.8 V to CT 1 going high through 20 V . & \(\overline{W G}\), Pin 4 & - & 0.8 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 7. Delay from \(\overline{W G}\) going low through 0.8 V to CTO going high through 20 V . & \(\overline{W G}, \operatorname{Pin} 4\) & - & 0.75 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 8. Delay from \(\overline{\mathrm{WG}}\) going low through 0.8 V to CT 1 going low through 1.0 V . & \(\overline{W G}, \operatorname{Pin} 4\) & - & 1.2 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 9. After \(\overline{\mathrm{WG}}\) goes high, delay from R/W1 turning off through \(10 \%\) to CT0 going high through 20 V . & \(\overline{W G}\), Pin 4 & 20 & 750 & - & ns \\
\hline 10. After \(\overline{W G}\) goes high, delay from R/W1 turning off through \(10 \%\) to CT 1 going low through 1.0 V . & \(\overline{W G}\), Pin 4 & 20 & 1200 & - & ns \\
\hline 11. After \(\overline{\mathrm{WG}}\) goes high, delay from R/W2 turning off through \(10 \%\) to CT0 going low through 1.0 V . & \(\overline{W G}, \operatorname{Pin} 4\) & 20 & 1200 & - & ns \\
\hline 12. After \(\overline{W G}\) goes high, delay from \(R / W 2\) turning off through \(10 \%\) to CT1 going high through 20 V . & \(\overline{W G}\), Pin 4 & 20 & 600 & - & ns \\
\hline 13. After \(\bar{W}\) goes low, delay from CT0 going low through 1.0 V to R/W1 turning on through \(10 \%\). & \(\overline{W G}, \operatorname{Pin} 4\) & 20 & 750 & - & ns \\
\hline 14. After \(\overline{W G}\) goes low, delay from CT1 going low through 1.0 V to R/W2 turning on through \(10 \%\). & \(\overline{W G}\), Pin 4 & 20 & 750 & - & ns \\
\hline 15. After \(\overline{\mathrm{WG}}\) goes low, fall time ( \(10 \%\) to \(90 \%\) ) of R/W1. & \(\overline{\text { WG, }}\) Pin 4 & - & 5.0 & 200 & ns \\
\hline 16. After \(\overline{\mathrm{WG}}\) goes low, fall time ( \(10 \%\) to 90\%) of R/W2. & \(\overline{W G}, ~ P i n 4\) & - & 5.0 & 200 & ns \\
\hline 17. Setup time, Head Select going low before \(\overline{W G}\) going low. & \(\overline{W G}\), Pin 4 & 4.0 & - & - & \(\mu \mathrm{s}\) \\
\hline 18. Write Data low Hold Time & \(\overline{W D}, \operatorname{Pin} 5\) & 200 & - & - & ns \\
\hline 19. Write Data high Hold Time & \(\overline{\text { WD, Pin } 5}\) & 500 & - & - & ns \\
\hline 20. Delay from \(\overline{W G}\) going high through 2.0 V to R/W 1 turning off through \(10 \%\) of on value. & \(\overline{W G}, \operatorname{Pin} 4\) & - & 3.9 & - & \(\mu \mathrm{S}\) \\
\hline 21. Delay from \(\overline{W G}\) going low thru 0.8 V to Inhibit going low thru 0.5 V & \(\overline{W G}\). Pin 4 & - & 0.08 & 4.0 & \(\mu \mathrm{S}\) \\
\hline 22. After \(\overline{W G}\) goes high, delay from R/W1 turning off thru \(10 \%\) to Inhibit going high thru 1.5 V ( 10 k pullup on Inhibit, Note 3) & \(\overline{W G}, \operatorname{Pin} 4\) & 20 & 750 & - & ns \\
\hline 23. After \(\overline{W G}\) goes high, delay from \(\overline{E 1}\) going high thru 23 V to Inhibit going high thru 1.5 V ( 10 k pullup on Inhibit, Note 3) & \(\overline{W G}\) & 20 & 750 & - & ns \\
\hline
\end{tabular}

Notes:
1. Test numbers refer to encircled numbers in Figures 3 \& 16.
2. AC test waveforms applied to the designated pins as follows:
3. Test Conditions 22, or 23, whichever produces the longer delay, will control Inhibit.
\begin{tabular}{|c|c|c|c|}
\hline Pin & \(\mathrm{f}_{\text {in }}\) & Amplitude & Duty Cycle \\
\hline \(\mathrm{HS}, \operatorname{Pin} 13\) & 50 kHz & 0.4 to 2.4 V & \(50 \%\) \\
WG, Pin 4 & 50 kHz & 0.4 to 2.4 V & \(50 \%\) \\
\hline WD, Pin 5 & 1.0 MHz & 0.2 to 2.4 V & \(50 \%\) \\
\hline
\end{tabular}

\section*{AC SWITCHING CHARACTERISTICS (continued)}
\(\left(V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BB}}=24 \mathrm{~V}, \overline{\mathrm{WG}}=0.4\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristics (Note 4) & Min & Typ & Max & Unit \\
\hline 1. Delay from \(\overline{\text { Write Data going low through } 0.9 \mathrm{~V} \text { to } \mathrm{R} / \mathrm{W} 1) .}\) turning on through 50\%. & - & 85 & - & ns \\
\hline 2. Delay skew, difference of R/W1 turning off a nd R/W2 turning on through 50\% after Write Data going low through 0.9 V . & - & 1.0 & \(\pm 40\) & ns \\
\hline 3. Delay from \(\overline{\text { Write Data going low through } 0.9 \mathrm{~V} \text { to } \mathrm{R} / \mathrm{W} 11020}\) turning off through 50\%. & - & 80 & - & ns \\
\hline 4. Delay skew, difference of R/W1 turning on and R/W2 turning off \(50 \%\) after Write Data going low through 0.9 V . & - & 1.0 & \(\pm 40\) & ns \\
\hline 5. Fall time, \(10 \%\) to \(90 \%\) of R/W1 & - & 1.7 & 200 & ns \\
\hline 6. Fall time, \(10 \%\) to \(90 \%\) of R/W2 & - & 1.7 & 200 & ns \\
\hline 7. Rise time, \(90 \%\) to \(10 \%\), of R/W1 & - & 12 & 200 & ns \\
\hline 8. Rise time, \(90 \%\) to \(10 \%\), of R/W2 & - & 12 & 200 & ns \\
\hline
\end{tabular}

Note 4. Test numbers refer to encircled numbers in Figures 2 \& 15. \(\mathrm{f}_{\mathrm{in}}=1.0 \mathrm{MHz}, 50 \%\) Duty Cycle and Amplitude of 0.2 V to 2.4 V .

\section*{PIN DESCRIPTION TABLE}
\begin{tabular}{|c|c|c|c|}
\hline Name & Symbol & Pin & Description \\
\hline Head Select & HS & 1.3 & Head Select input selects between the head I/O pins; center-tap, erase, and read/write. A HIGH selects Head 0 and a LOW selects Head 1. \\
\hline \(\overline{\text { Write Gate }}\) & \(\overline{W G}\) & 4 & \(\overline{\text { Write Gate input selects the mode of operation. HIGH selects the read mode, while LOW selects }}\) the Write Control mode and forces the write current. \\
\hline \(\overline{\text { Write Data }}\) & \(\overline{W D}\) & 5 & Write Data input controls the turn on/ off of the write current. The internal divide-by-two flip-flop toggles on the negative going edge of this input to direct the current alternately to the two halves of the head coils. \\
\hline IRW Select & IRWS & 8 & IRW Select input selects the amount of write current to be used. When LOW, the current equals the value found in Figure 5, according to the external resistor. When HIGH, the current equals the low current \(+33 \%\). \\
\hline \begin{tabular}{l}
\(V_{\text {Ref }}\) \\
'Ref
\end{tabular} & \(V_{\text {Ref }}\) IRef & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & A resistor between these pins sets the write current. (Refer to Figure 4.) A capacitor from \(V_{\text {Ref }}\) to Gnd will adjust the Degauss period. \\
\hline Center-Tap 0 & CT0 & 18 & Center-Tap \(\emptyset\) output is connected to the center tap of Head \(\emptyset\). It will be pulled to Gnd or \(V_{B B}\) \((+12\) or +24\()\) depending on mode and head selection. \\
\hline Erase 0 & \(\overline{\mathrm{EO}}\) & 17 & Erase \(\emptyset\) will be LOW for writing on Head \(\emptyset\), and floating for other conditions. \\
\hline Center-Tap 1 & CT1 & 20 & Center-Tap 1 output is connected to the center tap of Head 1 . It will be pulled to Gnd or \(\mathrm{V}_{\mathrm{BB}}{ }^{++12}\) or +24 ) depending on mode and head selection. \\
\hline \(\overline{\text { Erase 1 }}\) & \(\overline{\mathrm{E} 1}\) & 15 & \(\overline{\text { Erase } 1}\) will be LOW for writing on Head 1, and floating for other conditions. \\
\hline R/W2 & R/W2 & 6 & R/W2 input is one of the differential inputs that sinks current during writing, being the opposite phase of R/W1. It will be connected to one side of the heads. \\
\hline R/W1 & R/W1 & 7 & R/W1 input is one of the differential inputs that sinks current during writing, being the opposite phase of R/W2. It will be connected to one side of the heads. \\
\hline & \(\mathrm{V}_{\mathrm{CC}}\) & 14 & +5.0 V Power \\
\hline & \(V_{B B}\) & 19 & +12 V or +24 V Power \\
\hline & Gnd & 16 & Coil grounds \\
\hline & Gnd & 3 & Reference and logic ground \\
\hline Delay 1 & D1 & 12 & Erase Turn-On Delay adjust (RC or Logic) \\
\hline Delay 2 & D2 & 11 & Erase Turn-Off Delay adjust (RC or Logic) \\
\hline Inhibit & \(\overline{\text { Inhibit }}\) & 10 & Active low open-collector output provided to indicate heads are active in the write, degauss or erase mode. (Used for step or read inhibit.) \\
\hline
\end{tabular}

FIGURE 1 - LOGIC DIAGRAM


7

FIGURE 2 - R/W1 AND R/W2 RELATIONSHIP


\section*{MC3471P}


FIGURE 4 - TYPICAL APPLICATION


\section*{APPLICATION INFORMATION}

The MC3471P serves as a complete interface between the Write Control functional signals (Head Select, Write Data, Write Gate and inner track compensation, IRWS) and the head itself. A typical configuration is shown in Figure 4. LE's are erase coils

\section*{WRITE CURRENT SELECTION}

Although the MC3471P has been specified for 3.0 mA write current (with a \(10 \mathrm{k} \Omega\) external resistor), a range of write current values can be chosen by varying \(R_{\text {ext }}\) using the plot in Figure 5. This current can also be derived using the relationship IWrite \((m A)=\frac{30}{R_{\text {ext }}(k \Omega)}\)
\(\mathrm{I}_{\text {Ref, }}\) the current flowing in \(\mathrm{R}_{\text {ext }}\) (required only for dissipation calculations) can be worst case using the fact that the differential voltage between Pins 1 and \(2\left(\mathrm{~V}_{\text {Ref }}\right)\) shown in Figure 3 never exceeds 5.0 volts. With a low value of \(R_{e x t}=1.0 \mathrm{k} \Omega, P_{D}=25 \mathrm{~mW}\).


\section*{WRITE CURRENT DAMPING}

Referring to Figure 4, resistors \(R_{D}\) are used to dampen any ringing that results from applying the relatively fast risetime write current pulse to the inductive head load. Values chosen will be a funciton of head characteristics and the desired damping. Rp serves as a common pullup resistor to the head supply \(V_{B B}\).

\section*{DEGAUSS PERIOD}

Degauss of the read/write head can be accomplished at the end of each write operation by attaching a capacitor from Pin 1 to ground. The time relationship that results is shown in Figure 7. A simplified diagram of this function is shown in Figure 6.

While \(\overline{W G}\) is low, the selected write current flows into Pin 6 or Pin 7 (R/W1 or R/W2) and is mirrored through the external resistor, Rext. The degauss capacitor, CDG, will be charged to approximately 5.7 volts. After \(\overline{W G}\) goes high, the voltage on \(C_{D G}\) begins to decay toward 0.7 V . When the voltage reaches the comparator threshold of 1.7 V , the comparator output triggers the internal logic to completely turn off the write current. At this point, the pulse amplitude on the R/W1 and R/W2 pins has returned to \(10 \%\) of its maximum value.

Figure 7. Degauss Period shows the relationship between \(C_{D G}\) and Degauss Period for \(R_{e x t}=10 \mathrm{k} \Omega\). This period is equal to the exponential delay time for the voltage as mentioned plus internal delay times.

FIGURE 6 - SIMPLIFIED DEGAUSS CIRCUIT


FIGURE 7 - DEGAUSS PERIOD versus CAPACITANCE (CDG)


\section*{POWER-UP WRITE CURRENT CONTROL}

During power-up, under certain conditions ( \(V_{B B}\) comes up first while \(\overline{W G}\) is low), there can be a write current transient on Pins 6 and 7 (R/W1 and R/W2) of sufficient magnitude to cause writing to occur if the head is loaded.

This transient can be eliminated by placing a capacitor from Pin 2 to ground. This also delays the write current when \(\overline{W G}\) goes low and this delay must be accounted for when the capacitor on Pin 2 is used. The delay is 3.0 \(\mu \mathrm{s}\) for a 2700 pF capacitor, and \(\mathrm{R}_{\mathrm{ext}}=10 \mathrm{k} \Omega\). Values up to 7000 pF may be used.


See Application Note AN917 for further information.

\section*{ERASE DELAY}

The MC3471P can be used with both straddle and tunnel erase heads. When using the tunnel erase heads, it is necessary to delay the erase current in time with respect to \(\overline{W G}\) due to the physical placement of the erase gap behind the R/W gap on the heads. The amount of delay required depends upon the disk rotation velocity, recording density and format. Turn-on delay and turn-off delay must also be independent to guarantee erase is on for the entire block.

Nominal delays of \(500 \mu \mathrm{~s}\) turn-on; and 1.0 ms turnoff are available by adjusting the value of R1, R2 and C1, C2 shown in Figure 4. These delays are adjustable over a broad range as shown in Figure 9 to achieve any practical delay required. By using 5\% capacitors and \(1 \%\) resistors, total timing accuracy is better than \(\pm 15 \%\) over temperature and supply. Timing is shown in Figure 10.

In applications using logic or microprocessor controlled delays, the D1 and D2 inputs can be used directly to turn-on and turn-off the erase current. (Controlling outputs should be Open-collector w/10 k pullup). Figure 11 shows the relative timing involved for the microprocessor and logic controlled applications.

In straddle erase systems, the erase delays can be eliminated by pulling D1 and D2 high thru a \(10 \mathrm{k} \Omega\) pullup resistor to +5.0 V .

FIGURE 9 - TYPICAL WG TO E0, 1 DELAY versus RC


\section*{ERASE CURRENT}

The value of \(R_{E}\), the erase current set resistor, is found by referring to Figure 12 and selecting the desired erase current.
Looking at the simplified erase current path in Figure 12, when writing, CT0 will be high \(\left(\mathrm{V}_{\mathrm{OH}}(\mathrm{min})=\right.\) 22.5 V ) and EO will be low \(\left(\mathrm{V}_{\mathrm{OL}(\max )}=0.6 \mathrm{~V}\right)\). If the erase coil resistance is \(10 \Omega\) and 40 mA of erase current is desired then:
\[
\begin{aligned}
& \text { or } \quad\left(R_{E}+10 \Omega\right) \times 40 \mathrm{~mA}=(22.5-0.6) \mathrm{V} \\
& \mathrm{R}_{\mathrm{E}}=\frac{21.9 \mathrm{~V}}{0.04 \mathrm{~A}}-10 \Omega=537 \Omega \\
& P_{D}=(537)(0.04)^{2}=0.86 \mathrm{~W}
\end{aligned}
\]

This gives the minimum value \(R_{E}\) for worst case \(\mathrm{VOH}^{\prime}\) \(\mathrm{V}_{\mathrm{OL}}\) conditions. It is also recommended that a diode be used as indicated for inductive back emf suppression.

FIGURE 10 - DELAY INPUT FUNCTION/TIMING WITH RC ELEMENTS


FIGURE 11 - DELAY INPUT FUNCTION/TIMING WITH LOGIC CONTROL


FIGURE 12 - ERASE CURRENT
( \(R_{E}\) Selection)


FIGURE 13 - TYPICAL DUAL HEAD FLOPPY DISK SYSTEM USING FET GATE READ CHANNEL SELECTION AND MC3471/MC3470A

\begin{tabular}{|l||c|c|c|c|}
\hline Function & CT0 & CT1 & E0 & E1 \\
\hline Write 0 & \(V_{B B}\) & \(0 V\) & On & Off \\
Write 1 & \(0 V\) & \(V_{B B}\) & Off & On \\
Read 0 & \(0 V\) & \(V_{B B}\) & Off & Off \\
Read 1 & \(V_{\mathrm{BB}}\) & 0 V & Off & Off \\
\hline
\end{tabular}


\section*{Specifications and Applications Information}

\section*{MEMORY CONTROLLER FOR 16 PIN 4K, 16K AND 64K DYNAMIC RAMs}

The memory controller chip is designed to greatly simplify the interface logic required to control the popular 16 pin multiplexed dynamic NMOS RAMs in a microprocessor system such as the M6800. The controller will generate, on command from the microprocessor, the proper timing signals required to successfully transfer data between the microprocessor and the NMOS memories. The controller, in conjunction with an oscillator, will also generate the necessary signals required to insure that the dynamic memories are refreshed for the retention of data.
- Greatly Simplify the MPU-Dynamic Memory Interface
- Reduce Package Count and System Access/Cycle Times 30\%
- Chip Enable for Expansion to Larger Word Capacity
- Generate 1 of \(4 \overline{\text { RAS }}\) Signals for an Optimum \(16 \mathrm{~K} / 64 \mathrm{~K}\) Memory System
- High Input Impedance for Minimum Loading of MPU Bus
- Schottky TTL Technology for High Performance
- Useful with 4 K and 16 K and Future Expanded Dynamic RAMs


DYNAMIC MEMORY CONTROLLER

\section*{SCHOTTKY MONOLITHIC} INTEGRATED CIRCUIT



ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{1}\) & -0.5 to +7.0 & Vdc \\
\hline Output Voltage & \(\mathrm{V}_{\mathrm{O}}\) & -0.5 to +7.0 & Vdc \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & & \({ }^{\circ} \mathrm{C}\) \\
Ceramic Package & & 175 & \\
Plastic Package & & 150 & \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +4.50 to +5.50 & \(\mathrm{~V}_{\mathrm{dc}}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over recommended power supply and temperature ranges.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Input Voltage - Low Logic State & \(V_{\text {IL }}\) & - & - & 0.8 & V \\
\hline Input Voltage - High Logic State & \(\mathrm{V}_{\text {IH }}\) & 2.0 & - & - & V \\
\hline Input Current - Low Logic State
\[
\left(\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)
\] & IIL & - & - & -250 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{ll} 
Input Current - High Logic State & \(\left(V_{1 H}=2.7 \mathrm{~V}\right)\) \\
& \(\left(\mathrm{V}_{1 \mathrm{H}}=5.5 \mathrm{~V}\right)\)
\end{tabular} & IIH & - & - & \[
\begin{array}{r}
40 \\
100
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Input Clamp Voltages
\[
\left(I_{I K}=18 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\text {IK }}\) & - & - & -1.5 & V \\
\hline \begin{tabular}{l}
Output Voltage - Low Logic State (I \(\mathrm{ILL}^{\prime}=24 \mathrm{~mA}\) for \(\overline{\text { RAS, }} \overline{\text { CAS }}\), and RMW) \\
( \(I_{\mathrm{OL}}=8.0 \mathrm{~mA}\) for Row En, Ref En, \(\overline{\mathrm{MC}}, \overline{\text { Ref Req }}\) )
\end{tabular} & \(\mathrm{V}_{\mathrm{OL}}\) & & - & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
Output Voltage - High Logic State ( \({ }_{\mathrm{OH}}=-1.0 \mathrm{~mA}\) for \(\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}\), and R/W) \\
( \(1 \mathrm{OH}=-0.4 \mathrm{~mA}\) for Row En, Ref En, and \(\overline{\mathrm{MC}}\) ) \({ }^{\prime} \mathrm{OH}=-0.2 \mathrm{~mA}\) for \(\overline{R e f ~ R e q}\) \\
(Note: Ref Req output has internal 5.0 k resistive pullup to \(V_{C C}\).)
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& 3.0 \\
& 2.4 \\
& 2.4
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & - & V \\
\hline \[
\begin{gathered}
\text { Power Supply Current - During R/W or Refresh } \\
\\
\text { - During Idle } \\
\hline
\end{gathered}
\] & \({ }^{\prime} \mathrm{CC}\) & - & - & \[
\begin{aligned}
& 65 \\
& 40
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Output Short-Circuit Current \\
( \(\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}\) for Row En, Ref En, and \(\overline{\mathrm{MC}}\) )
\end{tabular} & 'OS & -10 & - & -55 & mA \\
\hline
\end{tabular}

FIGURE 1 - TYPICAL TPT1,3, and4 (HIGH TO LOW) versus LOAD CAPACITANCE - \(\overline{R A S}, \overline{C A S}\) and R/W


SWITCHING CHARACTERISTICS (Unless otherwise noted, \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline ```
Propagation Delay Times (Full AC Load - All Outputs)
    MC to \(\overline{M C}\) - Low to High
    MC to \(\overline{M C}\) - High to Low
    t1 to \(\overline{\text { RAS }}\)
    t2 to Row En
    t3 to \(\overline{\text { CAS }}\)
    t 4 to RN
    t5 to \(\overline{\text { CAS }}\)
        to \(\overline{\text { RAS }}\)
        to R/W
        to Row En (Refresh)
        to Row En (R/W)
        to Refresh En
    Ref Clk to \(\overline{\text { Ref Req }}\)
    Ref Grant to Row En \(\}\)
                to Ref En \}
    t1 to \(\overline{\text { Ref Req }}\) (Ref only) Note 1
``` & \begin{tabular}{l}
tplH(\(\overline{\mathrm{MC}})\) \\
tPHL(\(\overline{\mathrm{MC}})\) \\
tpT1 \\
tpT2 \\
tPT3 \\
tPT4 \\
tPT5C \\
tpT5R \\
tpT5w \\
tPT5ER \\
tpT5E \\
tPT5F \\
tpCo \\
tPGS \\
tPTQ
\end{tabular} & \[
\begin{aligned}
& 18 \\
& 16 \\
& 17 \\
& 16 \\
& 22 \\
& 19 \\
& 30 \\
& 30 \\
& 25 \\
& 22 \\
& 10 \\
& 20 \\
& \\
& 22
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 9.0 \\
& 26 \\
& 21 \\
& 26 \\
& 22 \\
& 30 \\
& 26 \\
& 42 \\
& 50 \\
& 32 \\
& 46 \\
& 17 \\
& 30 \\
& \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 17 \\
& 40 \\
& 35 \\
& 45 \\
& 45 \\
& 42 \\
& 40 \\
& 58 \\
& 65 \\
& 48 \\
& 55 \\
& 27 \\
& 43
\end{aligned}
\]
\[
75
\] & ns \\
\hline \begin{tabular}{l}
Setup Times (Full AC Load - All Pins) \\
Ref CIk before Ref Grant \\
A12, A13 before 11 \\
R \(N\) Input before 44 \\
\(\overline{\mathrm{CE}}\) before t 1 \\
Ref Grant before t 1
\end{tabular} & \[
\begin{gathered}
\mathrm{t}_{\text {su }}(\mathrm{RC}) \\
\mathrm{t}_{\text {su }}(\mathrm{A}) \\
\mathrm{t}_{\text {su }}(\mathrm{R} / \mathrm{W}) \\
\mathrm{t}_{\text {su }}(\overline{\mathrm{CE}}) \\
\mathrm{t}_{\mathrm{su}}(\mathrm{RG}) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 35 \\
& 10 \\
& 33 \\
& 20 \\
& 50
\end{aligned}
\] & - & & ns \\
\hline \begin{tabular}{l}
Hold Times (Full AC Load - All Pins) \\
A12, A13 after t5 \\
\(\overline{C E}\) after t 1 \\
R/W after t4 \\
MC Rising after t1 Rising
\end{tabular} & \begin{tabular}{l}
\(\operatorname{th}(A)\) \\
\(t_{h}(\overline{C E})\) \\
\(t_{h}\) (R/W) \\
\(t_{h}(M C)\)
\end{tabular} & \[
\begin{gathered}
15 \\
0 \\
0 \\
30
\end{gathered}
\] & -
-
-
- & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & ns \\
\hline \begin{tabular}{l}
Minimum Delay Times (Note 1 - Full AC Load - All Pins) \\
t1 Low to High to t2 Low to High \\
t1 Low to High to t4 Low to High \\
t2 Low to High to t3 Low to High \\
t3 Low to High to t5 Low to High
\end{tabular} & \[
\begin{aligned}
& t_{d}(1-2) \\
& t_{d}(1-4) \\
& t_{d}(2-3) \\
& t_{d}(3-5)
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 33 \\
& 30 \\
& 30
\end{aligned}
\] & - & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & ns \\
\hline \begin{tabular}{lr}
Minimum Pulse Widths & Low \\
t1 through t5 & High \\
MC & \\
Ref Grant &
\end{tabular} & \begin{tabular}{l}
tWL(t) \\
\({ }^{t} \mathrm{WH}(\mathrm{t})\) \\
\({ }^{t} W\) (MC) \\
tw(RG)
\end{tabular} & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& 25
\end{aligned}
\] & & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & ns \\
\hline
\end{tabular}

Notes: 1. Ref. Req. has an internal \(5.0 \mathrm{k} \Omega\) pullup to \(\mathrm{V}_{\mathrm{CC}}\). If faster propagation delay is required (tpTQ), then an external register can be added in parallel to the internal one to decrease the propagation delay. The value of resistance needed is a function of the capacitive loaded connection to Ref. \(\overline{R e g}\). The minimum value of R that can be used is \(5.0 \mathrm{~V} / 8.0 \mathrm{~mA}=625 \Omega\), assuming there are no other dc loads connected to that pin.
2. If delays between \(\mathrm{t} 1-\mathrm{t} 5\) are less than the minimum specified, the succeeding outputs may not switch.
3. All outputs can drive larger capacitive loads than those shown with a small decrease in speed. See Figure 1.

\section*{AC LOADS (Note 3)}
\begin{tabular}{|l|c|}
\hline R/W and \(\overline{\text { CAS }}\) Outputs & 450 pF to Gnd* \\
\hline\(\overline{\mathrm{RAS}}\) Outputs & 150 pF to Gnd* \\
\hline\(\overline{\mathrm{MC}}\), Row En, Ref En, and \(\overline{\text { Ref Req Outputs }}\) & 15 pF to Gnd* \\
\hline
\end{tabular}
*Includes probe and jig capacitance.

PIN DESCRIPTION TABLE
\begin{tabular}{|c|c|c|}
\hline Name & No. & Function \\
\hline \(\overline{\text { RAS } 1}\)
\(\frac{\text { RAS2 }}{}\)
\(\frac{\text { RAS3 }}{\text { RAS4 }}\) & \[
\begin{aligned}
& 16 \\
& 15 \\
& 14 \\
& 13 \\
& \hline
\end{aligned}
\] & Row Address Strobe pins which connect to each of the dynamic RAMs to latch in row address on memory chips. Decoded to 1 of \(\mathbf{4}\) during R/W cycle. All 4 go low during refresh cycle. \\
\hline \(\overline{\text { CAS }}\) & 11 & Column Address Strobe pin which connects to each dynamic RAM to latch in column address. \\
\hline R/W Out * & 10 & This pin signals the dynamic RAM whether the RAM is to be read from or written into. \\
\hline Row En & 9 & Row Enable output which goes to the MC3232A (MC3242A). It signals the Address Multiplexer that the lower half (Row Addresses) or the upper half (Column Addresses) of the address lines are to be multiplexed into the dynamic RAM address inputs. A Logic 1 on this output indicates the Row Addresses, and a Logic 0 indicates Column Addresses. \\
\hline Ref En & 8 & Refresh Enable output. A Logic 1 signals the Address Multiplexer that a refresh cycle is to be done, and a Logic 0 indicates that address multiplexing should be done. \\
\hline \(\overline{C E}\) & 22 & \(\overline{\text { Chip Enable }}\) Input. A Logic 1 on this pin disables all chip functions, except that of Refresh and the \(\overline{M C}\) output. \(\overline{\mathrm{CE}}\) must be low during t1 low to high transition to initiate R/W cycle. Once \(t 1\) is initiated, the cycle is independent of \(\overline{\mathrm{CE}}\). \\
\hline R/W in & 7 & The Read/Write input pin receives information from the M6800 MPU as to the direction of data exchange in the dynamic RAM. It transmits a Logic 0 to the R/W output for a Write Cycle and a Logic 1 for a Read Cycle. \\
\hline \[
\begin{aligned}
& \text { A13 (A15) } \\
& \text { A12 (A14) }
\end{aligned}
\] & \[
\begin{aligned}
& 17 \\
& 18
\end{aligned}
\] & Upper Order Address lines from the M6800. These two inputs decode to four signals controlling the four RAS outputs. A14 and A15 apply to 16 K RAMs. \\
\hline MC & 23 & Memory Clock input from MC6875 clock or other signal source. The rising edge of MC must occur after the rising edge of t 1 to avoid aborting the refresh cycle. When MC rises, it resets an internal flag that will terminate refresh at the end of the current cycle. Failure to reset the flag forces the 3480 to refresh every cycle thereafter. MC can be connected to t2 or t3 in noncritical applications. \\
\hline \(\overline{\mathrm{MC}}\) & 1 & The buffered complement output of MC. It is a buffered output which may be used to drive the circuitry creating the time delays used on inputs t 1 through t 5. \\
\hline \[
\begin{aligned}
& \mathrm{t} 1 \\
& \mathrm{t} 2 \\
& \mathrm{t} 3 \\
& \mathrm{t} 4 \\
& \mathrm{t} 5
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6
\end{aligned}
\] & These pins use external timing inputs to sequentially select the outputs to be enabled. They are positive-edge triggered inputs. Assuming a Read/Write cycle is to be executed, a positive edge on t1 forces a logic 0 on one of the four RAS outputs as determined by the A12/14, A13/15 inputs. After a delay, a positive edge on t 2 causes Row En to go to a Logic 0 , providing address-multiplexing information to the MC3232A or MC3242A. t 3 enables the \(\overline{\mathrm{CAS}}\) output and it goes low. \(t 4\) enables the R/W output and it goes low, assuming the R/W input was low. t5 resets all the outputs to a Logic 1 (with the exception of \(\overline{M C}\), Ref En, and \(\overline{R e f ~ R e q) . ~ T h e ~ i n p u t s ~} t 1, t 2, t 3\), and \(t 5\) are daisy-chained, so they must be sequentially driven to obtain the desired output signals. \(t 4\) can be driven at any time after t 1 . \\
\hline Ref Clk & 21 & The \(32 \mathrm{kHz}(64 \mathrm{kHz})\) Refresh Clock signals this pin that another refresh cycle is required. It is a positive-edge triggered input, and upon triggering, the Ref Req pin goes to a Logic 0. \\
\hline \(\overline{\text { Ref Req }}\) & 20 & The Refresh Request output acts as an input to the MPU system, requesting a refresh cycle. This output has a \(5 \mathrm{k} \Omega\) pullup resistor to the \(V_{\mathrm{CC}}\) supply to allow wire-ORing if desired. \\
\hline Ref Grant & 19 & Through the Refresh Grant input, the MC6875 initiates a refresh cycle. This input is positive-edge triggered and is enabled only after the \(\overline{\text { Ref Req }}\) pin has gone low. This allows the MC3480 to discern between a Refresh Grant or a DMA Grant even though they appear on the same line. When employing both dynamic memory (refresh) and DMA in a microprocessor-based system with a combined Refresh/DMA Request control on the clock, provision must be made for holding off a DMA request during a refresh period (and visa versa). If this provision is not made, clock stretching (cycle stealing) will continue indefinitely and dynamic microprocessor data will be lost. The positive edge on Ref Grant causes Row En output to go low and Ref En output to go high. This signals the MC3232A (MC3242A) that a refresh address is required. The refresh cycle occurs with the succeeding pulses on \(t 1-t 5\). A positive edge on \(t 1\) causes \(\overline{R e f ~ R e q ~ t o ~ g o ~ h i g h ~ a n d ~ a l l ~ t h e ~} \overline{\mathrm{RAS}}\) outputs to go low. A positive going edge on t 2 causes no change in the outputs, since it controls the address multiplexing (Row En) during the Read/Write cycles. There is no output change when \(t 3\) and \(t 4\) go high because no \(\overline{C A S}\) or R/W signal is needed during refresh. A positive edge on \(t 5\) resets the \(\overline{\text { RAS }}\) and Row En to a Logic 1 state, and Ref En to a Logic 0 state, ready for the next Read/Write cycle. \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & 24 & +5.0 V supply. A \(0.1 \mu \mathrm{~F}\) capacitor is recommended to bypass pin 24 to ground. \\
\hline Gnd & 12 & System Ground. \\
\hline
\end{tabular}
*These outputs are designed to drive the highly capacitive inputs of multiple dynamic RAMs/(150 pF for \(\overline{\text { RAS }}\) outputs, and 450 pF for \(\overline{\mathrm{CAS}}\) and R/W outputs). Consequently, these outputs have no short-circuit limit and must be handled accordingly. Good high capacitance load driving techniques usually include a \(10 \Omega\) or greater series damping resistor. It is highly recommended that this be done on \(\overline{\operatorname{RAS}}, \overline{\mathrm{CAS}}\) and R/W outputs of the MC3480. The effect of these series damping resistors on rise and fall times must be included in timing considerations.

NOTE: All other outputs are LS/TTL totem-pole configuration unless otherwise noted.

TIME DELAY INFORMATION

\section*{TIMING REQUIREMENT CONSTRAINTS}
\(\Delta t 1\) Minimum is determined by MPU Address Delay (t AD), plus RAM Row Address Set-Up Time (t ASR), minus MC3480 Propagation Delay (tPT1).
\(\Delta t 2-\Delta t 1 \quad\) Minimum is determined by RAM Row Address Hold Time (\(\mathrm{t} A \mathrm{AH}\)) minus the minimum MC3232A/3242A Row Enable to Output Delay (t00MIN).
\(\Delta t 3-\Delta t 2 \quad\) Minimum is determined by RAM Column Address Set-Up Time (t ASC minimum) plus maximum MC3232A/3242A Row Enable to Output Delay (t001MAX).
\(\Delta t 4-\Delta t 3 \quad\) No Minimum
\(\Delta t 5-\Delta t 3 \quad\) Minimum is determined by RAM minimum \(\overline{\mathrm{CAS}}\) Pulse Width (t CAS) or Access Time from \(\overline{\mathrm{CAS}}\) (t CAC) plus Data Set-Up Time of MPU (\(\mathrm{t}_{\mathrm{DSR}}\)).
\(\Delta t 5-\Delta t 4 \quad\) Minimum is determined by the RAM minimum Write Pulse Width (twp).

Note: Also required in computing time delays are the various delays incurred by the particular delay scheme used; i.e., delays between \(4 \times f_{0}, 2 \times f_{0}\), and \(f_{0}\) from the MC6875 which are used as inputs or the gate delays of the gates used in Figures 5A through 5C.

TYPICAL APPLICATION \(16 \mathrm{~K} \times 8\)-BIT MEMORY SYSTEM FOR M6800 MPU

Note: Numbers in parenthesis indicate part types or values for \(16 \mathrm{~K} \times 1\) RAMs

FIGURE 2 - READ/WRITE TIMING CYCLE

FIGURE 3 - REFRESH TIMING CYCLE

\section*{APPLICATIONS INFORMATION}

\section*{GENERAL DESCRIPTION}

The MC3480 uses five general timing inputs in place of a master clock with on-chip timing generation. This gives the system designer optimum flexibility in interfacing with the various microprocessor families and dynamic memories that are available. In simpler slow speed
systems, the timing signals required can be directly obtained from those available from the microprocessor. In systems requiring high speed memory/microprocessor cycle times, timing input t1-t5 can be obtained using delay lines or a range of techniques as shown in Figures 4 thru 8. It is only necessary to maintain the time delay relationships shown under time delay information.

FIGURE 4 - UNIVERSAL TIME DELAY USING MC6875

FIGURE 5 - ALTERNATE TIME DELAYS USING MC6875

5B

From MC6875

\section*{READ/WRITE CYCLE}

NOTE: 44 can be tied to \(t 3\) and the 4 th delay element can be eliminated.

\section*{REFRESH CONSIDERATIONS}

The MC3480/MC3232A (MC3242A) memory control system can be used with either cycle steal or transparent refresh methods. Figure 9 shows one transparent techrique employing refresh during \(\phi 2\) low in an M6800 microprocessor-based system. Using this technique requires that the memory be capable of completing a Read/Write Cycle and a Refresh Cycle sequentially during the M6800 cycle. The minimum cycle time at the time of printing for dynamic multiplexed RAMs is 320 ns, therefore limiting the microprocessor to 1.56 MHz operation. The D flipflops of Figure 9 produce a trigger at the beginning of both \(\phi 1\) and \(\phi 2\). For a 1.0 MHz system, the \(\mathrm{t} 1-\mathrm{t} 5\) inputs should be adjusted for the following delays:
\(\overline{\text { RAS }}\) falls at 150 ns (triggered by t 1)
Row En falls at 250 ns (triggered by t2)
CAS, R/W falls at 300 ns (triggered by t3)
t5 rises at 500 ns .
A delay line could be used to generate \(\mathrm{t} 1-\mathrm{t} 5\) in place of
the four monostables. For the 1.0 MHz system, it would require either two 5 tap delay lines with 50 ns per tap or a 10 tap line with \(50 \mathrm{~ns} /\) tap. For use with a 600 kHz system, a delay line with 5 taps of 150 ns each could be used. For this case:
\(\overline{\text { RAS }}\) falls at 150 ns
Row En falls at 300 ns

t5 rises at 750 ns
Figure 10 shows typical refresh oscillator configurations for both 32 kHz (fREFmin for 4 K) and 64 kHz (fREFmin for 16 K\()\). In the case of transparent refresh, if the designer is not concerned with power consumption, the refresh oscillator may be eliminated and the Ref Clk input connected to the MC input yielding a refresh every \(\phi 1\).

For DMA operation combined with cycle stealing refresh, care must be taken not to allow a DMA request during a Refresh Request/Grant period and to hold off a refresh during a DMA operation. See comments under pin descriptions, Pin 19.

FIGURE 9 - EXAMPLE OF \(\phi 2\) LOW METHOD OF HIDDEN REFRESH USING MC3480 AND 4K RAMS

\section*{QUAD SINGLE-ENDED LINE DRIVER}

The MC3481 and MC3485 are quad single-ended line drivers specifically designed to meet the IBM 360/370 I/O specification (GA22-6974-3).

Output levels are guaranteed over the full range of output load and fault conditions. Compliance with the IBM requirements for fault protection, flagging, and power up/power down protection for the bus make this an ideal line driver for party line operations.
- Separate Enable and Fault Flags - MC3481
- Common Enable and Fault Flag - MC3485
- Power Up/Down Does Not Disturb Bus
- Schottky Circuitry for High-Speed - PNP Inputs
- Internal Bootstraps for Faster Rise Times
- Driver Output Current Foldback Protection
- MC3485 has LS Totem Pole Driver Output

\section*{IBM 360/370 QUAD LINE DRIVER}

SILICON MONOLITHIC integrated circuit

P SUFFIX
PLASTIC PACKAGE CASE 648-06

L SUFFIX CERAMIC PACKAGE

CASE 620-10

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ \(^{\prime}\) & Max & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 4.5 & 5.0 & 5.95 & Vdc \\
\hline High Level Output Current & \(\mathrm{I}_{\mathrm{OH}}\) & - & - & -59.3 & mA \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at \(T_{A}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC3481} & \multicolumn{3}{|c|}{MC3485} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline High-Level Input Voltage Note 2 & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & - & - & 2.0 & - & - & V \\
\hline Low-Level Input Voltage Note 2 & \(\mathrm{V}_{\text {IL }}\) & - & - & 0.8 & - & - & 0.8 & V \\
\hline \begin{tabular}{l}
High-Level Input Current \\
\(\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V}\right)\) - Input \\
Enable \\
\(\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.5 \mathrm{~V}\right)\) - Input Enable
\end{tabular} & IIH & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
20 \\
40 \\
100 \\
200
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
20 \\
80 \\
100 \\
400
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Low-Level Input Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right)-\underset{ }{\text { Input }} \text { Enable }
\] & IIL & - & - & \[
\begin{aligned}
& -250 \\
& -500
\end{aligned}
\] & - & - & \[
\begin{gathered}
-250 \\
-1000
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Input Clamp Voltage
\[
\left(l_{1 C}=-18 \mathrm{~mA}\right)
\] & VIC & - & - & -1.5 & - & - & -1.5 & V \\
\hline High-Level Driver Output Voltage
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-59.3 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-41 \mathrm{~mA}\right.
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V}_{\mathrm{OH}(\mathrm{D})} \\
\mathrm{V}_{\mathrm{OH}(\mathrm{DS})}
\end{gathered}
\] & \[
\begin{gathered}
3.11 \\
3.9
\end{gathered}
\] & 3.6 & - & \[
\begin{gathered}
3.11 \\
3.9
\end{gathered}
\] & 3.6
- & - & V \\
\hline Low-Level Driver Output Voltage
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=-240 \mu \mathrm{~A}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=-1.0 \mathrm{~mA}\right)
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V}_{\mathrm{OL}(\mathrm{D})} \\
\mathrm{V}_{\mathrm{OL}(\mathrm{DS})}
\end{gathered}
\] & - & - & \[
\begin{aligned}
& +0.15 \\
& +0.15
\end{aligned}
\] & - & - & \[
\begin{aligned}
& +0.15 \\
& +0.15
\end{aligned}
\] & V \\
\hline Driver Output Short Circuit Current
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{los}(D) \\
& \text { IOS(DS) } \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& -5.0 \\
& -5.0
\end{aligned}
\] & - & - & \[
\begin{array}{r}
-5.0 \\
-5.0 \\
\hline
\end{array}
\] & mA \\
\hline Driver Output Reverse Leakage Current
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{I L}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.11 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.11 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \text { IOR1 } \\
& \text { IOR2 }
\end{aligned}
\] & - & - & \[
\begin{aligned}
& +100 \\
& +200
\end{aligned}
\] & \[
-
\] & - & \[
\begin{aligned}
& +100 \\
& +200
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline High-Level Driver Output Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}\right)
\] & \(\mathrm{V}_{\mathrm{OH}(\overline{\mathrm{D}})}\) & - & - & - & 2.5 & 3.0 & - & V \\
\hline Low-Level Driver Output Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=+8.0 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{OL}(\overline{\mathrm{D}})}\) & - & - & - & - & - & 0.5 & V \\
\hline Driver Output Short Circuit Current \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}\), only one output shorted at a time) \(\mathrm{V}_{\mathrm{CC}}=5.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}\), only one output shorted at a time) & \[
\begin{gathered}
\operatorname{IOS}(\overline{\mathrm{D}}) \\
\mathrm{I} \mathrm{OS}(\overline{\mathrm{D} S})
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & -
- & -
- & \[
\begin{aligned}
& -15 \\
& -15
\end{aligned}
\] & -60
- & \[
\begin{aligned}
& -100 \\
& -110
\end{aligned}
\] & mA \\
\hline High-Level \(\overline{\text { Fault Flag Output Voltage }}\)
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}\right)
\] & \(\mathrm{V}_{\mathrm{OH}(\overline{\mathrm{F}})}\) & 2.5 & 3.0 & - & - & - & - & V \\
\hline \begin{tabular}{l}
Low-Level Fault Flag Output Voltage
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=+8.0 \mathrm{~mA},\right.
\] \\
Driver Output shorted to Ground
\end{tabular} & \(\mathrm{V}_{\mathrm{OL}(\overline{\mathrm{F}})}\) & - & - & 0.5 & - & - & 0.5 & V \\
\hline \(\overline{\text { Fault Flag Output Short Circuit Current }}\) \(\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}\right.\), only one output shorted at a time) \(\left(\mathrm{V}_{\mathrm{CC}}=5.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V}\right.\), only one output shorted at a time) & \[
\begin{aligned}
& \mathrm{IOS}(\overline{\mathrm{~F}}) \\
& \mathrm{IOS}(\overline{\mathrm{FS}})
\end{aligned}
\] & \[
\begin{aligned}
& -15 \\
& -15
\end{aligned}
\] & - & \[
\begin{aligned}
& -100 \\
& -110
\end{aligned}
\] & -
- & -
- & - & mA \\
\hline High-Level Fault Flag Output Current
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=5.95 \mathrm{~V}\right)
\] & \({ }^{\prime} \mathrm{OH}(\overline{\mathrm{F}})\) & - & - & - & - & - & +100 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { High-Level Power Supply Current } \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}\right. \text {, no output loading) } \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}\right. \text {, no output loading) }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I} \mathrm{CCH} \\
& { }^{\mathrm{I}} \mathrm{CCHS}
\end{aligned}
\] & - & 50 & \[
\begin{aligned}
& 70 \\
& 80
\end{aligned}
\] & - & 55 & \[
\begin{array}{r}
75 \\
85 \\
\hline
\end{array}
\] & mA \\
\hline Low-Level Power Supply Current \(\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}\right.\), no output loading) (\(\mathrm{V}_{\mathrm{CC}}=5.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}\), no output loading) & \[
\begin{aligned}
& \mathrm{I}^{\mathrm{I} C L} \\
& \mathrm{I}^{\mathrm{CCLSS}}
\end{aligned}
\] & - & \[
35
\] & \[
\begin{aligned}
& 55 \\
& 70
\end{aligned}
\] & - & 35
- & \[
\begin{aligned}
& 55 \\
& 70
\end{aligned}
\] & mA \\
\hline
\end{tabular}

MAXIMUM RATINGS (\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Rating} & Symbol & Value & Unit \\
\hline Power Supply Voltage & & \(\mathrm{V}_{\text {CC }}\) & +7.0 & V \\
\hline Input Voltage & & \(V_{1}\) & 10 & V \\
\hline Driver Output Voltage & & \(\mathrm{V}_{\mathrm{O}}\) & 5.5 & V \\
\hline Power Dissipation (Package Limitation) Derate Above \(T_{A}=25^{\circ} \mathrm{C}\) & Ceramic Package Plastic Package & \[
\begin{gathered}
P_{D} \\
1 / R_{\theta J A}
\end{gathered}
\] & \[
\begin{gathered}
1150 \\
962 \\
7.7 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
mW \\
\(\mathrm{mW} /{ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Operating Ambient Temperature Range & & \(\mathrm{T}_{\text {A }}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & Ceramic Package Plastic Package & TJ & \[
\begin{aligned}
& +175 \\
& +150
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (See Note 1. Unless otherwise noted, these specifications apply over recommended temperature range. I/ O Driver characteristics are guaranteed for \(V_{C C}=5.0 \mathrm{~V} \pm 10 \%\) and Select-Out Driver characteristics are guaranteed for \(V_{C C}=5.25\) to 5.95 V . Typical values measured at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{C C}=5.0 \mathrm{~V}\). See Tables 1 and 2, Figures 1 and 2 for load conditions.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Propagation Delay Time \\
High-to-Low-Level, Driver Output \\
As I/O Driver \\
As Select-Out Driver \\
Low-to-High-Level, Driver Output \\
As I/O Driver \\
As Select-Out Driver \\
High-to-Low-Level, Driver Output \\
As I/O Driver \\
As Select-Out Driver \\
Low-to-High-Level, \(\overline{\text { Driver Output }}\) \\
As I/O Driver \\
As Select-Out Driver \\
High-to-Low-Level, \(\overline{\text { Fault Flag }}\) - MC3481 \\
As I/O Driver \\
As Select-Out Driver \\
Low-to-High-Level, \(\overline{\text { Fault Flag }}\) - MC3481 \\
As I/O Driver \\
As Select-Out Driver
\end{tabular} & & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \begin{tabular}{l}
18
19 \\
20 \\
21 \\
25 \\
26 \\
25 \\
26 \\
45 \\
47 \\
40 \\
42
\end{tabular} & -
-
-
-
-
-
-
-
-
-
-
- & ns \\
\hline Ratio of Propagation Delay Times As I/O Driver & \[
\frac{\mathrm{tPLH}(\mathrm{D})}{\mathrm{t} P \mathrm{HL}(\mathrm{D})}
\] & - & 1.0 & - & \\
\hline
\end{tabular}

Note 1. Reference IBM specification' GA22-6974-3 for test terminology.
2. The fault protection circuitry of the \(M C 3481 / 85\) requires relatively clean input voltage waveforms for current operation. Noise pulses which enter the threshold region (0.8 to 2.0 V) may cause the output to enter the fault protect mode. To exit the protect mode, it is necessary to gate an input of the effected driver to the low logic state.

FIGURE 1 - MC3481 AC TEST CIRCUIT AND WAVEFORMS

* Load Capacitance shown includes

Fixture and Probe Capacitance
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{\multicolumn{2}{|c|}{\begin{tabular}{c}
Table \\
\multicolumn{1}{|c|}{1}
\end{tabular}}} & \multicolumn{2}{c|}{ Driver Application } \\
\cline { 2 - 3 } & \(1 / 0\) & Select-Out \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & 3.11 V & 3.9 V \\
\hline Input Frequency & 5 MHz & 1 MHz \\
\hline Input Pulse Width & 100 ns & 500 ns \\
\hline Input Amplitude & 0 V to 4 V & 0 V to 4 V \\
\hline Input tTLH & \(\leqslant 6 \mathrm{~ns}\) & \(\leqslant 6 \mathrm{~ns}\) \\
\hline Input tTHL & \(\leqslant 6 \mathrm{~ns}\) & \(\leqslant 6 \mathrm{~ns}\) \\
\hline Load Resistance \(\left(\mathrm{R}_{\mathrm{L}}\right)\) & 50 & 90 \\
\hline
\end{tabular}

FIGURE 2 - MC3485 AC TEST CIRCUIT AND WAVEFORMS

\section*{QUAD EIA-422/423 LINE RECEIVER}

Motorola's Quad EIA-422/3 Receiver features four independent receiver chains which comply with EIA Standards for the Electrical Characteristics of Balanced/Unbalanced Voltage Digital Interface Circuits. Receiver outputs are 74LS compatible, three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms. A summary of MC3486 features include:
- Four Independent Receiver Chains
- Three-State Outputs
- High Impedance Output Control Inputs (PIA Compatible)
- Internal Hysteresis - 30 mV (Typ) @ Zero Volts Common Mode
- Fast Propagation Times - 25 ns (Typ)
- TTL Compatible
- Single 5.0 V Supply Voltage
- DS 3486 Provides Second Source

\section*{QUAD EIA-422/3 LINE RECEIVER} WITH THREE-STATE OUTPUTS

\section*{SILICON MONOLITHIC INTEGRATED CIRCUIT}

L SUFFIX
CERAMIC PACKAGE CASE 620-10

D SUFFIX PLASTIC PACKAGE CASE 751B-03 SO-16

P SUFFIX
PLASTIC PACKAGE CASE 648-06

\section*{RECEIVER CHAIN BLOCK DIAGRAM}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\text {CC }}\) & 8.0 & Vdc \\
\hline Input Common Mode Voltage & VICM & \(\pm 15\) & Vdc \\
\hline Input Differential Voltage & \(V_{\text {ID }}\) & \(\pm 25\) & Vdc \\
\hline Three－State Control Input Voltage & \(V_{1}\) & 8.0 & Vdc \\
\hline Output Sink Current & 10 & 50 & mA \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & －65 to＋150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Junction Temperature \\
Ceramic Package Plastic Package
\end{tabular} & TJ & \[
\begin{array}{r}
+175 \\
+150 \\
\hline
\end{array}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 4.75 to 5.25 & Vdc \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Input Common Mode Voltage Range & \(\mathrm{V}_{\text {ICR }}\) & -7.0 to +7.0 & Vdc \\
\hline Input Differential Voltage Range & \(\mathrm{V}_{\text {IDR }}\) & 6.0 & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS（Unless otherwise noted minimum and maximum limits apply over recommended temperature and power supply voltage ranges．Typical values are for \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{V}_{1 \mathrm{~K}}=0 \mathrm{~V}\) ． See Note 1．）
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Input Voltage－High Logic State （Three－State Control） & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & － & － & V \\
\hline Input Voltage－Low Logic State （Three－State Control） & \(\mathrm{V}_{\text {IL }}\) & － & － & 0.8 & V \\
\hline Differential Input Threshold Voltage，Note 2
\[
\begin{gathered}
\left(-7.0 \mathrm{~V} \leqslant \mathrm{~V}_{I C} \leqslant 7.0 \mathrm{~V}, \mathrm{~V}_{I H}=2.0 \mathrm{~V}\right) \\
\left(I_{\mathrm{O}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}} \geqslant 2.7 \mathrm{~V}\right) \\
\left(I_{\mathrm{O}}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}} \geqslant 0.5 \mathrm{~V}\right)
\end{gathered}
\] & \(\mathrm{V}_{\text {TH（D）}}\) & － & － & \[
\begin{gathered}
0.2 \\
-0.2
\end{gathered}
\] & V \\
\hline \[
\begin{aligned}
& \text { Input Bias Current } \\
& \left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.25\right) \text { (Other Inputs at } 0 \mathrm{~V} \text {) } \\
& \left(\mathrm{V}_{1}=-10 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=-3.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=+3.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=+10 \mathrm{~V}\right)
\end{aligned}
\] & IIB（D） & 二 & 二 & \[
\begin{array}{r}
-3.25 \\
-1.50 \\
+1.50 \\
+3.25 \\
\hline
\end{array}
\] & mA \\
\hline Input Balance and Output Level
\[
\begin{aligned}
& \left(-7.0 \mathrm{~V} \leqslant \mathrm{~V}_{I C} \leqslant 7.0 \mathrm{~V}, \mathrm{~V}_{I H}=2.0 \mathrm{~V}\right. \text {, Note 3) } \\
& \left(\mathrm{IO}_{\mathrm{O}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{I D}=0.4 \mathrm{~V}\right) \\
& \left(1 \mathrm{O}=8.0 \mathrm{~mA}, \mathrm{~V}_{I D}=-0.4 \mathrm{~V}\right)
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\)
\end{tabular} & 2.7 & 二 & \(\overline{0.5}\) & V \\
\hline Output Third State Leakage Current
\[
\begin{aligned}
& \left(\mathrm{V}_{\mid(\mathrm{D})}=+3.0 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{I}(\mathrm{D})}=-3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V}\right)
\end{aligned}
\] & IOZ & － & － & \[
\begin{gathered}
-40 \\
40 \\
\hline
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Output Short－Circuit Current
\[
\left(\mathrm{V}_{1(\mathrm{D})}=3.0 \mathrm{~V}, \mathrm{~V}_{I H}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V},\right. \text { Note 4) }
\] & IOS & －15 & － & －100 & mA \\
\hline \[
\begin{aligned}
& \text { Input Current - Low Logic State (Three-State Control) } \\
& \left(\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)
\end{aligned}
\] & IIL & － & － & －100 & \(\mu \mathrm{A}\) \\
\hline Input Current－High Logic State（Three－State Control）
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}\right)
\end{aligned}
\] & IIH & 二 & － & \[
\begin{gathered}
20 \\
100 \\
\hline
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Input Clamp Diode Voltage（Three－State Control）
\[
\left(I_{\mathrm{IK}}=-10 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{IK}}\) & － & － & －1．5 & V \\
\hline Power Supply Current
\[
\left(\mathrm{V}_{\mathrm{IL}}=2.0 \mathrm{~V}\right)
\] & ICC & － & － & 85 & mA \\
\hline
\end{tabular}

\section*{NOTES：}
．All currents into device pins are shown as positive，out of device pins are negative．All voltages referenced to ground unless otherwise noted．
2．Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case．
3．Refer to EIA－422／3 for exact conditions．Input balance and guaranteed output levels are done simultaneously for worst case．
4．Only one output at a time should be shorted．

SWITCHING CHARACTERISTICS (Unless otherwise noted, \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Propagation Delay Time - Differential \\
Inputs to Output \\
(Output High to Low) \\
(Output Low to High)
\end{tabular} & & & & & \\
\hline ns \\
\hline Propagation Delay time - Three-State & & & & \\
Control to Output & & - & - & 35 \\
(Output Low to Third State) & & - & & \\
(Output High to Third State) & & & & \\
(Output Third State to High) & tPLZ & - & & \\
(Output Third State to Low) & tPHZ & - & - & 30 \\
\hline
\end{tabular}

FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS
Propagation Delay Differential Input to Output

FIGURE 2 - PROPAGATION DELAY THREE-STATE CONTROL INPUT TO OUTPUT

Motorola's Quad EIA-422 Driver features four independent driver chains which comply with EIA Standards for the Electrical Characteristics of Balanced Voltage Digital Interface Circuits. The outputs are three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power up and power down. A summary of MC3487 features include:
- Four Independent Driver Chains
- Three-State Outputs
- PNP High Impedance Inputs (PIA Compatible)
- Fast Propagation Times (Typ 15 ns)
- TTL Compatible
- Single 5 V Supply Voltage
- Output Rise and Fall Times Less Than 20 ns
- DS 3487 Provides Second Source

P SUFFIX
PLASTIC PACKAGE CASE 648-06

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ TRUTH TABLE } \\
\hline Input & \begin{tabular}{c}
Control \\
Input
\end{tabular} & \begin{tabular}{c}
Non-Inverting \\
Output
\end{tabular} & \begin{tabular}{c}
Inverting \\
Output
\end{tabular} \\
\hline H & H & H & L \\
L & H & L & H \\
X & L & Z & Z \\
\hline \multicolumn{4}{|c|}{} \\
\multicolumn{4}{|c|}{ L \(=\) Low Logic State } \\
& H \(=\) High Logic State \\
& X \(=\) Irrelevant \\
& Z \(=\) Third-State (High Impedance) \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 8.0 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\mathbf{I}}\) & 5.5 & Vdc \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Operating Junction Temperature Range \\
Ceramic Package \\
Plastic Package
\end{tabular} & \(\mathrm{T}_{\mathrm{J}}\) & 175 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & 150 & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply \(4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}\) and \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}\). Typical values measured at \(\mathrm{V}_{C C}=5.0 \mathrm{~V}\), and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Input Voltage - Low Logic State & \(V_{\text {IL }}\) & - & - & 0.8 & Vdc \\
\hline Input Voltage - High Logic State & \(\mathrm{V}_{1} \mathrm{H}\) & 2.0 & - & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Current - Low Logic State } \\
& \left(V_{I L}=0.5 \mathrm{~V}\right)
\end{aligned}
\] & IIL & - & - & -400 & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Input Current - High Logic State } \\
& \left(\mathrm{V}_{1 H}=2.7 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1 H}=5.5 \mathrm{~V}\right) \\
& \hline
\end{aligned}
\] & I/H & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & & \[
\begin{gathered}
+50 \\
+100
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Input Clamp Voltage (\(I_{1 K}=-18 \mathrm{~mA}\)) & VIK & - & - & -1.5 & V \\
\hline Output Voltage - Low Logic State
\[
(1 \mathrm{OL}=48 \mathrm{~mA})
\] & \(\mathrm{V}_{\text {OL }}\) & - & - & 0.5 & V \\
\hline Output Voltage - High Logic State
\[
\left(I_{\mathrm{OH}}=-20 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 2.5 & - & - & V \\
\hline Output Short-Circuit Current (\(\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}\), Note 1) & 'os & -40 & - & -140 & mA \\
\hline \[
\begin{gathered}
\text { Output Leakage Current }-\mathrm{Hi}-\mathrm{Z} \text { State } \\
\left(\mathrm{V}_{1 \mathrm{~L}}=0.5 \mathrm{~V}, \mathrm{~V}_{I L(Z)}=0.8 \mathrm{~V}\right) \\
\left(\mathrm{V}_{1 H}=2.7 \mathrm{~V}, \mathrm{~V}_{I L(Z)}=0.8 \mathrm{~V}\right)
\end{gathered}
\] & \({ }^{\text {I OL }}(\mathrm{Z})\) & - & - & \[
\begin{array}{r}
\pm 100 \\
\pm 100 \\
\hline
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Output Leakage Current - Power OFF
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{OH}}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{OL}}=-0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right)
\end{aligned}
\] & IOL(off) & - & - & \[
\begin{aligned}
& +100 \\
& -100 \\
& \hline
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Output Offset Voltage Difference (Note 2) & \(\mathrm{v}_{\mathrm{OS}}-\overline{\mathrm{V}}_{\mathrm{OS}}\) & - & - & \(\pm 0.4\) & V \\
\hline Output Differential Voltage (Note 2) & \(\mathrm{V}_{\mathrm{OD}}\) & 2.0 & - & - & V \\
\hline Output Differential Voltage Difference (Note 2) & \(\left|\Delta \mathrm{V}_{\text {OD }}\right|\) & - & - & \(\pm 0.4\) & V \\
\hline ```
Power Supply Current
 (Control Pins = Gnd, Note 3)
 (Control Pins =2.0 V)
``` & \[
\begin{aligned}
& \operatorname{Iccx} \\
& \text { Icc }
\end{aligned}
\] & - &  & \[
\begin{gathered}
105 \\
85
\end{gathered}
\] & mA \\
\hline
\end{tabular}

Notes: 1. Only one output may be shorted at a time.
2. See EIA Specification EIA-422 for exact test conditions.
3. Circuit in three-state condition.

SWITCHING CHARACTERISTICS \(\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Propagation Delay Times & & & & & ns \\
\hline High to Low Output & \({ }^{\text {t PHL }}\) & - & - & 20 & \\
\hline Low to High Output & \({ }_{\text {t PLH }}\) & - & - & 20 & \\
\hline Output Transition Times - Differential & & & & & ns \\
\hline High to Low Output & \({ }^{\text {t }}\) THL & - & - & 20 & \\
\hline Low to High Output & \({ }^{\text {t TLH }}\) & - & - & 20 & \\
\hline Propagation Delay - Control to Output & & & & & ns \\
\hline \(\left(R_{L}=200 \Omega, C_{L}=50 \mathrm{pF}\right)\) & \({ }^{\text {t P }}\) HZ \((E)\) & - & - & 25 & \\
\hline \(\left(R_{L}=200 \Omega, C_{L}=50 \mathrm{pF}\right)\) & \({ }^{\text {t P PLZ }}\) (E) & - & - & 25 & \\
\hline \(\left(R_{L}=\infty, C_{L}=50 \mathrm{pF}\right)\) & tPZH(E) & - & - & 30 & \\
\hline \(\left(R_{L}=200 \Omega, C_{L}=50 \mathrm{pF}\right)\) & \({ }^{\text {t P Z L }}\) (E) & - & - & 30 & \\
\hline
\end{tabular}

FIGURE 1 - THREE-STATE ENABLE TEST CIRCUIT AND WAVEFORMS


FIGURE 2 - PROPAGATION DELAY TIMES INPUT TO OUTPUT WAVEFORMS AND TEST CIRCUIT


FIGURE 3 - OUTPUT TRANSITION TIMES TEST CIRCUIT AND WAVEFORMS


FIGURE 4 - OUTPUT CURRENT versus OUTPUT VOLTAGE


FIGURE 5 - OUTPUT SINK CURRENT versus OUTPUT VOLTAGE


\section*{DUAL EIA-423/EIA-232C LINE DRIVER}

The MC3488A dual single-ended line driver has been designed to satisfy the requirements of EIA standards EIA-423 and EIA-232C, as well as CCITT X.26, X. 28 and Federal Standard FIDS1030. It is suitable for use where signal wave shaping is desired and the output load resistance is greater than 450 ohms. Output slew rates are adjustable from \(1.0 \mu \mathrm{~s}\) to \(100 \mu \mathrm{~s}\) by a single external resistor. Output level and slew rate are insensitive to power supply variations. Input undershoot diodes limit transients below ground and output current limiting is provided in both output states.
The MC3488A has a standard 1.5 V input logic threshold for TTL or NMOS compatibility.
- PNP Buffered Inputs to Minimize Input Loading
- Short Circuit Protection
- Adjustable Slew Rate Limiting
- MC3488A Equivalent to 9636A
- Output Levels and Slew Rates are Insensitive to Power Supply Voltages
- No External Blocking Diode Required for \(\mathrm{V}_{\mathrm{EE}}\) Supply
- Second Source \(\mu\) A9636A

DUAL
EIA-423/EIA-232C
DRIVER
SILICON MONOLITHIC INTEGRATED CIRCUIT


\section*{TYPICAL APPLICATION}


\section*{MC3488A}

ABSOLUTE MAXIMUM RATINGS (Note 1)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltages & \(\mathrm{V}_{\mathrm{CC}}\) & +15 & V \\
& \(\mathrm{~V}_{\mathrm{EE}}\) & -15 & \\
\hline Output Current & & & +150 \\
Source & \(\mathrm{I}_{+}\) & mA \\
Sink & \(\mathrm{I}_{-}\) & -150 & \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature Range & \(\mathrm{TJ}_{\mathrm{J}}\) & & \({ }^{\circ} \mathrm{C}\) \\
Ceramic Package & & 175 & \\
Plastic Package & & 150 & \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voltages & \(\mathrm{V}_{\mathrm{CC}}\) & 10.8 & 12 & 13.2 & V \\
& \(\mathrm{~V}_{\mathrm{EE}}\) & -13.2 & -12 & -10.8 & \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 & 25 & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Wave Shaping Resistor & RWS & 10 & - & 1000 & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}

TARGET ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over recommended operating conditions)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Input Voltage - Low Logic State & \(\mathrm{V}_{\text {IL }}\) & - & - & 0.8 & V \\
\hline Input Voltage - High Logic State & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & - & - & V \\
\hline Input Current - Low Logic State
\[
\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right)
\] & IIL & -80 & - & - & \(\mu \mathrm{A}\) \\
\hline Input Current - High Logic State
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{l}_{\mathrm{H} 1} \\
& \mathrm{I}_{\mathrm{H} 2}
\end{aligned}
\] & - & - & \[
\begin{gathered}
10 \\
100
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Input Clamp Diode Voltage
\[
\left(I_{\mathrm{K}}=-15 \mathrm{~mA}\right)
\] & \(V_{\text {IK }}\) & \(-1.5\) & - & - & V \\
\hline \[
\begin{array}{ll}
\hline \text { Output Voltage } & \text { Low Logic State } \\
\left(R_{L}=\infty\right) & \text { EIA-423 } \\
\left(R_{L}=3.0 \mathrm{k} \Omega\right) & \text { EIA-232C } \\
\left(R_{L}=450 \Omega\right) & \text { EIA-423 } \\
\hline
\end{array}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{aligned}
& -6.0 \\
& -6.0 \\
& -6.0 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& -5.0 \\
& -5.0 \\
& -4.0 \\
& \hline
\end{aligned}
\] & V \\
\hline \[
\begin{array}{ll}
\hline \text { Output Voltage } & \text { High Logic State } \\
\left(R_{L}=\infty\right) & \text { EIA-423 } \\
\left(R_{L}=3.0 \mathrm{k} \Omega\right) & \text { EIA-232C } \\
\left(R_{L}=450 \Omega\right) & \text { EIA-423 } \\
\hline
\end{array}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& 4.0
\end{aligned}
\] & — & \[
\begin{aligned}
& 6.0 \\
& 6.0 \\
& 6.0
\end{aligned}
\] & V \\
\hline Output Resistance
\[
\left(R_{L} \geqslant 450 \Omega\right)
\] & \(\mathrm{R}_{\mathrm{O}}\) & - & 25 & 50 & \(\Omega\) \\
\hline Output Short-Circuit Current (Note 2)
\[
\begin{aligned}
& \left(V_{\text {in }}=V_{\text {out }}=0 \mathrm{~V}\right) \\
& \left(V_{\text {in }}=V_{\text {IH }}(\text { Min }), V_{\text {out }}=0 \mathrm{~V}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \text { IOSH } \\
& \text { IOSL }
\end{aligned}
\] & \[
\begin{gathered}
-150 \\
+15
\end{gathered}
\] & - & \[
\begin{array}{r}
-15 \\
+150
\end{array}
\] & mA \\
\hline Output Leakage Current (Note 3)
\[
\left(V_{C C}=V_{E E}=0 \mathrm{~V},-6.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant 6.0 \mathrm{~V}\right)
\] & \(\mathrm{I}_{\mathrm{OX}}\) & -100 & - & 100 & \(\mu \mathrm{A}\) \\
\hline Power Supply Currents
\[
\left(R_{W}=100 \mathrm{k} \Omega, R_{\mathrm{L}}=\infty, V_{\mathrm{IL}} \leqslant V_{\text {in }} \leqslant V_{\mathrm{IH}}\right)
\] & \[
\begin{aligned}
& \mathrm{I} \mathrm{CC} \\
& \mathrm{IEE}
\end{aligned}
\] & \[
\overline{-18}
\] & - & \[
+18
\] & mA \\
\hline
\end{tabular}

Note 1: Devices should not be operated at these values. The "Electrical Characteristics" provide conditions for actual device operation.
2: One output shorted at a time.
3: No \(V_{E E}\) diode required.

\section*{MC3488A}

TRANSITION TIMES (Unless otherwise noted, \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{V}_{\mathrm{CC}}=-\mathrm{V}_{\mathrm{EE}}=12.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=450\) \(\Omega\). Transition times measured \(10 \%\) to \(90 \%\) and \(90 \%\) to \(10 \%\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Transition Time, Low-to-High State Output
\[
\begin{aligned}
& \left(R_{W}=10 \mathrm{k} \Omega\right) \\
& \left(\mathrm{R}_{W}=100 \mathrm{k} \Omega\right) \\
& \left(\mathrm{R}_{W}=500 \mathrm{k} \Omega\right) \\
& \left(\mathrm{R}_{W}=1000 \mathrm{k} \Omega\right)
\end{aligned}
\] & \({ }^{\text {t }}\) LLH & \[
\begin{aligned}
& 0.8 \\
& 8.0 \\
& 40 \\
& 80 \\
& \hline
\end{aligned}
\] & — & \[
\begin{gathered}
1.4 \\
14 \\
70 \\
140 \\
\hline
\end{gathered}
\] & \(\mu \mathrm{S}\) \\
\hline Transition Time, High-to-Low State Output
\[
\begin{aligned}
& (R W=10 \mathrm{k} \Omega) \\
& (\mathrm{RW}=100 \mathrm{k} \Omega) \\
& (\mathrm{RW}=500 \mathrm{k} \Omega) \\
& \left(\mathrm{R}_{W}=1000 \mathrm{k} \Omega\right)
\end{aligned}
\] & \({ }^{\text {t }}\) HL & \[
\begin{aligned}
& 0.8 \\
& 8.0 \\
& 40 \\
& 80 \\
& \hline
\end{aligned}
\] & — & \[
\begin{gathered}
1.4 \\
14 \\
70 \\
140 \\
\hline
\end{gathered}
\] & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR TRANSITION TIMES


FIGURE 2 - OUTPUT TRANSISTION TIMES versus WAVE SHAPE RESISTOR VALUE

FIGURE 3 - INPUT/OUTPUT CHARACTERISTICS versus TEMPERATURE


FIGURE 4 - OUTPUT CURRENT versus OUTPUT VOLTAGE



FIGURE 5 - SUPPLY CURRENT versus
TEMPERATURE


\section*{MC6875 \\ MC6875A}

\section*{Specifications and Applications Information}

\section*{M6800 CLOCK GENERATOR}

Intended to supply the non-overlapping \(\phi 1\) and \(\phi 2\) clock signals required by the microprocessor, this clock generator is compatible with \(1.0,1.5\), and 2.0 MHz versions of the MC 6800 . Both the oscillator and high capacitance driver elements are included along with numerous other logic accessory functions for easy system expansion.

Schottky technology is employed for high speed and PNP-buffered inputs are employed for NMOS compatibility. A single +5 V power supply, and a crystal or RC network for frequency determination are required.



ABSOLUTE MAXIMUM RATINGS (Unless otherwise noted \(T_{A}=25^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(V_{C C}\) & +7.0 & Vdc \\
\hline Input Voltage & \(V_{1}\) & +5.5 & Vdc \\
\hline Operating Ambient Temperature Range
\[
\begin{aligned}
& \text { MC6875L } \\
& \text { MC6875AL }
\end{aligned}
\] & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-55 \text { to }+125
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature & TJ & 175 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE:
Operation of the MC6875AL over the full military temperature range (to maximum \(T_{A}\) ) will result in excessive operating junction temperature.
The use of a clip on 16 pin heat sink similar to AAVID Engineering, Inc., Model \(5007\left(R_{\theta C A}=18^{\circ} \mathrm{C} / \mathrm{W}\right)\) is recommended above \(T_{A} \approx 95^{\circ} \mathrm{C}\).
RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +4.75 to +5.25 & Vdc \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
(Contact AAVID Engineering, Inc. 30 Cook Court
Laconia, New Hampshire 03246 Tel. (603) 524-4443

\section*{ELECTRICAL CHARACTERISTICS}
(Unless otherwise noted specifications apply over recommended power supply and temperature ranges.
Typical values measured at \(V_{C C}=5.0 \mathrm{~V}\) and \(T_{A}=25^{\circ} \mathrm{C}\).)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Output Voltage - High Logic State \\
MPU \(\phi 1\) and \(\phi 2\) Outputs
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, 1_{\mathrm{OHM}}=-200 \mu \mathrm{~A}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, 1_{\mathrm{OHMK}}=+5.0 \mathrm{~mA}\right)
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OHM}} \\
& \mathrm{v}_{\mathrm{OHMK}}
\end{aligned}
\] & \(v_{\text {CC }}-0.6\)
- & - & \[
v_{C C}+1.0
\] & \(V\) \\
\hline Bus \(\phi 2\) Output
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OHB}}=-10 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{OHBK}}=+5.0 \mathrm{~mA}\right)
\end{aligned}
\] & \[
\begin{gathered}
v_{\mathrm{OHB}} \\
v_{\mathrm{OHBK}} \\
\hline
\end{gathered}
\] & \[
2.4
\] & - & \[
v_{C C}+1.0
\] & V \\
\hline \(4 \times\) fo Output
\[
\left(V_{C C}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH} 4 \mathrm{X}}=-500 \mu \mathrm{~A}\right)
\] & \(\mathrm{V}_{\mathrm{OH} 4 \mathrm{X}}\) & 2.4 & - & - & V \\
\hline \(2 \times\) fo, DMA/Refresh Grant and Memory Clock Outputs \(\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}\right)\) & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & - & - & V \\
\hline Reset Output
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}} \bar{R}=-100 \mu \mathrm{~A}\right)
\] & \(\mathrm{V}_{\mathrm{OHR}}\) & 2.4 & - & - & V \\
\hline \begin{tabular}{l}
Output Voltage - Low Logic State \\
MPU \(\phi 1\) and \(\phi 2\) Outputs
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OLM}}=+200 \mu \mathrm{~A}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OLMK}}=-5.0 \mathrm{~mA}\right)
\end{aligned}
\]
\end{tabular} & \[
\begin{gathered}
v_{\text {OLM }} \\
v_{\text {OLMK }} \\
\hline
\end{gathered}
\] & - & - & \[
\begin{array}{r}
0.4 \\
-1.0
\end{array}
\] & V \\
\hline Bus \(\phi 2\) Output
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OLB}}=+48 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OLBK}}=-5.0 \mathrm{~mA}\right)
\end{aligned}
\] & \[
\begin{gathered}
v_{\text {OLB }} \\
v_{\text {OLBK }} \\
\hline
\end{gathered}
\] & - & - & \[
\begin{array}{r}
0.5 \\
-1.0
\end{array}
\] & V \\
\hline \(4 \times\) fo Output
\[
\left(V_{C C}=4.75 \mathrm{~V}, V_{1 \mathrm{~L}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL} 4 \mathrm{X}}=16 \mathrm{~mA}\right)
\] & \(\mathrm{VOL4X}\) & - & - & 0.5 & V \\
\hline \(2 \times\) fo, DMA/Refresh Grant and Memory Clock Outputs
\[
\left(\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\text {OL }}\) & - & - & 0.5 & V \\
\hline \(\overline{\text { Reset Output }}\)
\[
\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}} \overline{\mathrm{R}}=3.2 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\text {OL/ }}\) & - & - & 0.5 & V \\
\hline Input Voltage - High Logic State Ext. In. Memory Ready and DMA/Refresh Request Inputs & \(V_{\text {IH }}\) & 2.0 & - & - & V \\
\hline Input Voltage - Low Logic State Ext. In, Memory Ready and DMA/Refresh Request Inputs & VIL & - & - & 0.8 & V \\
\hline \begin{tabular}{l}
Input Thresholds - \(\overline{\text { Power-On Reset Input (See Figure 2) }}\) \\
Output Low to High \\
Output High to Low
\end{tabular} & \[
\begin{aligned}
& V_{\text {ILH }} \\
& \text { VIHL }^{\text {IH }}
\end{aligned}
\] & \[
0.8
\] & \[
\begin{aligned}
& 2.8 \\
& 1.4
\end{aligned}
\] & 3.6 & V \\
\hline \begin{tabular}{l}
Input Clamp Voltage \\
MC6875L
\[
\left(V_{C C}=4.75 \mathrm{~V}, I_{\mathrm{IC}}=-5.0 \mathrm{~mA}\right)
\]
\end{tabular} & \(V_{\text {IK }}\) & - & - & \[
\begin{aligned}
& -1.0 \\
& -1.5
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
Input Current - High Logic State \\
Ext. In, Memory Ready and DMA/Refresh Request Inputs
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.0 \mathrm{~V}\right) \\
& \text { Power-On Reset } \\
& \left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=5.0 \mathrm{~V}\right)
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& I_{I H} \\
& I_{1 H \bar{R}}
\end{aligned}
\] & -
- & -
- & \[
25
\]
\[
50
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Input Current - Low Logic State \\
Ext. In, Memory Ready and DMA/Refresh Request Inputs
\[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right) \\
\text { Power-On Reset Input }{ }^{1} \\
\left(\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}\right)
\end{gathered}
\]
\end{tabular} & \[
\begin{aligned}
& \text { IIL } \\
& I_{\text {ILR }}
\end{aligned}
\] & -
- & -
- & \[
\begin{aligned}
& -250 \\
& -250
\end{aligned}
\] & \(\mu A\)
\(\mu A\) \\
\hline
\end{tabular}

OPERATING DYNAMIC POWER SUPPLY CURRENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Power Supply Currents
\[
\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=8.0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V}\right)
\] \\
Normal Operation \\
(Memory Ready and DMA/Refresh Request Inputs at High Logic State)
\end{tabular} & ICCN & - & - & 150 & mA \\
\hline Memory Ready Stretch Operation (Memory Ready Input at Low Logic State; DMA/Refresh Request Input at High Logic State) & ICCMR & - & - & 135 & mA \\
\hline \(\overline{\text { DMA/Refresh Request Stretch Operation }}\) (Memory Ready Input at High Logic State; DMA/Refresh Request Input at Low Logic State) & ICCDR & - & - & 135 & mA \\
\hline
\end{tabular}

\section*{SWITCHING CHARACTERISTICS}
(These specifications apply whether the Internal Oscillator (see Figure 9) or an External Oscillator is used (see Figure 10).
Typical values measured at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), fo \(=1.0 \mathrm{MHz}\) (see Figure 8).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{MPU \(\phi 1\) AND \(\phi 2\) CHARACTERISTICS} \\
\hline Output Period (Figure 3) & \(t_{0}\) & 500 & - & - & ns \\
\hline \[
\begin{gathered}
\text { Pulse Width (Figure 3) } \\
\text { (fo }=1.0 \mathrm{MHz} \text { ) } \\
\text { (fo }=1.5 \mathrm{MHz} \text { ) } \\
\text { (fo }=2.0 \mathrm{MHz} \text { ) }
\end{gathered}
\] & \({ }^{\text {t PWWM }}\) & \[
\begin{aligned}
& 400 \\
& 230 \\
& 180 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & - & ns \\
\hline \[
\begin{aligned}
& \text { Total Up Time (Figure 3) } \\
& \text { (fo }=1.0 \mathrm{MHz} \\
& \text { (fo }=1.5 \mathrm{MHz}) \\
& \text { (fo }=2.0 \mathrm{MHz} \text { ) }
\end{aligned}
\] & t UPM & \[
\begin{aligned}
& 900 \\
& 600 \\
& 440
\end{aligned}
\] & - & - & ns \\
\hline Delay Time Referenced to Output Complement (Figure 3) Output High to Low State (Clock Overlap at 1.0 V ) & tPLHM & 0 & - & - & ns \\
\hline Delay Times Referenced to \(2 \times\) fo (Figure 4 MPU \(\phi 2\) only) Output Low to High Logic State Output High to Low Logic State & tPLHM2X
tPHLM2X & - & - & \[
\begin{aligned}
& 85 \\
& 70
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \hline
\end{aligned}
\] \\
\hline Transition Times (Figure 3) Output Low to High Logic State Output High to Low Logic State & \({ }^{t}\) TLHM t THLM & - & - & \[
\begin{aligned}
& 25 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline
\end{tabular}

BUS \(\phi 2\) CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Pulse Width - Low Logic State (Figure 4) } \\
& \text { (fo }=1.0 \mathrm{MHz} \text { ) } \\
& \text { (fo }=1.5 \mathrm{MHz} \text { ) } \\
& \text { (fo }=2.0 \mathrm{MHz} \text { ) }
\end{aligned}
\] & tPWLB & \[
\begin{aligned}
& 430 \\
& 280 \\
& 210
\end{aligned}
\] & - & - & ns \\
\hline \[
\begin{aligned}
& \text { Pulse Width - High Logic State } \\
& \text { (fo }=1.0 \mathrm{MHz} \text { ) } \\
& \text { (fo }=1.5 \mathrm{MHz} \text { ) } \\
& \text { (fo }=2.0 \mathrm{MHz} \text { ) }
\end{aligned}
\] & tPWHB & \[
\begin{aligned}
& 450 \\
& 295 \\
& 235
\end{aligned}
\] & - & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & ns \\
\hline \begin{tabular}{l}
Delay Times - (Referenced to MPU \(\phi 1\) ) (Figure 4) \\
Output Low to High Logic State
\[
\begin{aligned}
& (\text { fo }=1.0 \mathrm{MHz}) \\
& (\mathrm{fo}=1.5 \mathrm{MHz}) \\
& (\mathrm{fo}=2.0 \mathrm{MHz})
\end{aligned}
\] \\
Output High to Low Logic State
\[
\begin{aligned}
& \left(C_{L}=300 \mathrm{pF}\right) \\
& \left(C_{L}=100 \mathrm{pF}\right)
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
tPLHBM1 \\
tPHLBM1
\end{tabular} & \[
\begin{aligned}
& 480 \\
& 320 \\
& 240
\end{aligned}
\] & - & \[
\begin{aligned}
& 25 \\
& 20
\end{aligned}
\] & ns \\
\hline Delay Times (Referenced to MPU \(\phi 2\) ) (Figure 4) Output Low to High Logic State Output High to Low Logic State & \begin{tabular}{l}
tPLHBM2 \\
tPHLBM2
\end{tabular} & \[
\begin{gathered}
-30 \\
0
\end{gathered}
\] & - & \[
\begin{aligned}
& +25 \\
& +40
\end{aligned}
\] & \\
\hline Transition Times (Figure 4) Output Low to High Logic State Output High to Low Logic State & \[
\begin{aligned}
& \text { t TLHB } \\
& \text { t THLB }
\end{aligned}
\] & - & - & 20
20 & ns \\
\hline
\end{tabular}

\section*{MC6875, MC6875A}

SWITCHING CHARACTERISTICS (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{MEMORY CLOCK CHARACTERISTICS} \\
\hline Delay Times (Referenced to MPU \(\phi\) 2) (Figure 4) Output Low to High Logic State Output High to Low Logic State & \begin{tabular}{l}
tPLHCM \\
tPHLCM
\end{tabular} & \[
\begin{gathered}
-50 \\
0
\end{gathered}
\] & - & \[
\begin{aligned}
& +25 \\
& +40
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline Delay Times (Referenced to \(2 \times\) fo) (Figure 4) Output Low to High Logic State Output High to Low Logic State & \[
\begin{aligned}
& \text { tPLHC2X } \\
& \text { t PHLC2X }
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 65 \\
& 85
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline Transition Times (Figure 4) Output Low to High State Output High to Low State & \begin{tabular}{l}
t TLHC \\
\({ }^{t}\) THLC
\end{tabular} & - & - & \[
\begin{aligned}
& 25 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline
\end{tabular}
\(2 \mathbf{x}\) fo CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Delay Times (Referenced to \(4 \times\) fo) (Figure 4) Output Low to High Logic State Output High to Low Logic State & \[
\begin{aligned}
& \text { tpLH2X } \\
& \text { tPHL2X }
\end{aligned}
\] & & & \[
\begin{aligned}
& 50 \\
& 65
\end{aligned}
\] & ns \\
\hline Delay Time (Referenced to MPU \(\phi 1\) ) (Figure 4) Output High to Low Logic State
\[
\begin{aligned}
& (f o=1.0 \mathrm{MHz}) \\
& (\mathrm{fo}=1.5 \mathrm{MHz})
\end{aligned}
\] & tPHL2XM1 & \[
\begin{aligned}
& 365 \\
& 220
\end{aligned}
\] & - & - & ns \\
\hline Transition Times (Figure 4) Output Low to High Logic State Output High to Low Logic State & \begin{tabular}{l}
tTLH2X \\
tTHL2X
\end{tabular} & - & - & 25
25 & ns
ns \\
\hline
\end{tabular}
\(4 \times\) fo CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l} 
Delay Times (Referenced to Ext. In) (Figure 4) \\
Output Low to High Logic State \\
Output High to Low Logic State
\end{tabular} & \begin{tabular}{c} 
tPLH4X \\
tPHL4X
\end{tabular} & - & - & - \\
\hline Transition Time (Figure 4) & & 50 \\
Output Low to High Logic State & tTLH4X & - & ns \\
Output High to Low Logic State & tTHL4X & - & - & 30 \\
\hline
\end{tabular}

MEMORY READY CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l} 
Set-Up Times (Figure 5) \\
Low Input Logic State \\
High Input Logic State
\end{tabular} & \({ }^{\text {t SMRL }}\) & 55 & - & - \\
\hline \begin{tabular}{l} 
Hold Time (Figure 5) \\
Low Input Logic State
\end{tabular} & & 75 & - & ns \\
\hline
\end{tabular}

DMA/REFRESH REQUEST CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Set-Up Times (Figure 6)} \\
\hline Low Input Logic State & \({ }^{\text {t SDRL }}\) & 65 & - & - & ns \\
\hline High Input Logic State & \({ }^{\text {t SDRH }}\) & 75 & - & - & ns \\
\hline Hold Time (Figure 6) Low Input Logic State & \({ }^{\text {t HDRL }}\) & 10 & - & - & ns \\
\hline
\end{tabular}

\section*{DMA/REFRESH GRANT CHARACTERISTICS}
\begin{tabular}{|l|c|c|c|c|}
\hline Delay Time Referenced to Memory Clock (Figure 6) & & & & \\
\begin{tabular}{l} 
Output Low to High Logic State \\
Output High to Low Logic State
\end{tabular} & \begin{tabular}{l} 
tPLHG \\
tPHLG
\end{tabular} & -15 & -25 & - \\
\hline Trasition Times (Figure 6) & & & \\
Output Low to High Logic State & tTLHG & - & & \\
Output High to Low Logic State & tTHLG & - & - & 25 \\
\hline
\end{tabular}

RESET CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l} 
Delay Time Referenced to Power-On Reset (Figure 7) \\
Output Low to High Logic State \\
Output High to Low Logic State
\end{tabular} & \begin{tabular}{c} 
tPLH \(\bar{R}\) \\
tPHL \(\bar{R}\)
\end{tabular} & - & - & 1000 \\
\hline Transition Times (Figure 7) & & - & ns \\
Output Low to High Logic State & t TLH \(\bar{R}\) & - & & \\
Output High to Low Logic State & t THL \(\bar{R}\) & - & - & 100 \\
\hline
\end{tabular}

\section*{DESCRIPTION OF PIN FUNCTIONS}
\begin{tabular}{|c|c|c|c|}
\hline fo & - A free running oscillator at four times the MPU clock rate useful for a system sync signal. & \$2 & - An output nominally in phase with MPU \(\phi 2\) having MC8T26A type drive capability. \\
\hline - \(2 \times\) fo & - A free running oscillator at two times the MPU clock rate. & - memory clock & An output nominally in phase with MPU \(\phi 2\) which free runs during a refresh request cycle. \\
\hline - DMA/REF REQ & - An asynchronous input used to freeze the MPU clocks in the \(\phi 1\) high, \(\phi 2\) low state for dynamic memory refresh or cycle steal DMA (Direct Memory Access). & POWER-ON RE & A Schmitt trigger input which controls Reset. A capacitor to ground is required to set the desired time constant. Internal 50 k resistor to \(\mathrm{V}_{\mathrm{CC}}\). See General Design Suggestions for \\
\hline REF GRANT & - A synchronous output used to synchronize the refresh or DMA operation to the MPU. & & Manual Reset Operation. \\
\hline - MEMORY READY & - An asynchronous input used to freeze the MPU clocks in the \(\phi 1\) low, \(\phi 2\) high state for slow & - RESET & - An output to the MPU and I/O devices. \\
\hline - MPU \(\phi_{1}\) & - Capable of driving the \(\phi 1\) and \(\phi 2\) inputs on two MC6800s. & - Ext in & - Allows driving by an external TTL signal to synchronize the MPU to an external system. \\
\hline
\end{tabular}

FIGURE 1 - BLOCK DIAGRAM


FIGURE 2 - TYPICAL HYSTERESIS CHARACTERISTIC OF RESET FUNCTION


FIGURE 3 - TIMING DIAGRAM FOR MPU \(\phi \mathbf{1}\) AND \(\phi \mathbf{2}\)

\(V_{O V}=1.0 \mathrm{~V}=\) Clock Overlap
measurement point


DMA/Refresh Grant

FIGURE 5 - TIMING DIAGRAM FOR MEMORY READY STRETCH OPERATION
(Minimum Stretch Shown)
Input Voltage: 3.0 to \(0 \mathrm{~V}, \mathrm{t}^{\text {THLMR }}=\mathrm{t}\) TLHMR \(=5.0 \mathrm{~ns}\)



\footnotetext{
DMA/Refresh Grant
(Low)
}



\section*{MC6875, MC6875A}

FIGURE 7 - \(\overline{\text { POWER ON RESET }}\)
Input Voltage: 0 to \(5.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}\) - Pulse Width \(=1.0 \mu \mathrm{~s}, \mathrm{t} \mathrm{TLH}=\mathrm{t} \mathrm{THL}=25 \mathrm{~ns}\)


FIGURE 8 - LOAD CIRCUITS


\section*{APPLICATIONS INFORMATION}

FIGURE 9 - TYPICAL RC FREQUENCY versus VOLTAGE


FIGURE 10 - TYPICAL RC FREQUENCY versus TEMPERATURE


FIGURE 11 - TYPICAL FREQUENCY versus RESISTANCE FOR C VARIABLE


\section*{GENERAL}

The MC6875 Clock Generator/Driver should be located on the same board and within two inches of the MC6800 MPU. Series damping resistors of \(10-30\) ohms may be utilized between the MC6875 and the MC6800 on the \(\phi 1\) and \(\phi 2\) clocks to suppress overshoot and reflections.

The \(V_{C C}\) pin (pin 16) of the MC6875 should be bypassed to the ground pin (pin 8) at the package with a \(0.1 \mu \mathrm{~F}\) capacitor. Because of the high peak currents associated with driving highly capacitive loads, an adequately large ground strip to pin 8 should be used on the MC6875. Grounds should be carefully routed to minimize coupling of noise to the sensitive oscillator inputs. Unnecessary grounds or ground planes should be avoided near pin 2 or the frequency determining components. These components should be located as near as possible to the respective pins of the MC6875. Stray capacitance near pin 2 or the crystal, can affect the frequency. The can of the crystal should not be grounded. The ground side of the crystal or the C of the R-C oscillator should be connected as directly as possible to pin 8.

Unused inputs should be connected to \(V_{C C}\) or ground. Memory Ready, DMA/Refresh Request and Power-On \(\overline{R e s e t}\) should be connected to \(V_{C C}\) when not used. The External Input should be connected to ground when not used.

\section*{OSCILLATOR}

A tank circuit tuned to the desired crystal frequency connected between terminals \(X_{1}\) and \(X_{2}\) as shown in Figure 12, is recommended to prevent the oscillator from starting at other than the desired frequency. The \(1 \mathrm{k} \Omega\) resistor reduces the Q sufficiently to maintain stable crystal control. Crystal manufacturers may recommend a capacitance ( \(C_{L}\) ) to be used in series with the crystal for optimum performance at series resonance.

See Figures 9 and 10 for typical oscillator temperature and \(V_{C C}\) supply dependence for \(R-C\) operation.

FIGURE 12 - OSCILLATOR-CRYSTAL OPERATION

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{TANK CIRCUIT PARAMETERS} & \multicolumn{4}{|c|}{APPROXIMATE CRYSTAL PARAMETERS} & \multirow[t]{2}{*}{CTS KNIGHTS 400 REIMANN AVE. SANDWICH, IL 60548 (815) 786-8411} & \multirow[t]{2}{*}{\begin{tabular}{l}
McCOY ELECT. CO. \\
WATTS \& CHESTNUTS STS. \\
MT. HOLLY SPRING, PA 17065 \\
(717) 486-3411
\end{tabular}} & \multirow[t]{2}{*}{```
TYCO CRYSTAL PRODUCTS
    3940 W. MONTECITO
        PHOENIX, AZ
            85019
        (602) 272-7945
```} \\
\hline \[
\begin{aligned}
& L_{T} \\
& \mu \mathrm{H}
\end{aligned}
\] & \[
C_{T}
\]
\[
\mathrm{pF}
\] & \(\mathrm{R}_{\mathrm{S}}\) Ohms & \[
\begin{aligned}
& \text { Co } \\
& \text { pF }
\end{aligned}
\] & \[
\begin{gathered}
C_{1} \\
\mathrm{mpF}
\end{gathered}
\] & fo MHz & & & \\
\hline 10 & 150 & 15-75 & 3-6 & 12 & 4.0 & \[
\begin{aligned}
& \text { MP-04A } \\
& * 390 \mathrm{\rho F}
\end{aligned}
\] & 113-31 & 150-3260 \\
\hline 4.7 & 82 & 8-45 & 4-7 & 23 & 8.0 & \[
\begin{aligned}
& \text { MP-080 } \\
& * 47 \mathrm{pF}
\end{aligned}
\] & 113-32 & 150-3270 \\
\hline
\end{tabular}

FIGURE 13

To precisely time a crystal to desired frequency, a variable trimmer capacitor in the range of 7 to 40 pF would typically be used. Note it is not a recommended practice to tune the crystal with a parallel load capacitance.

The table above shows typical values for \(C_{T}\) and \(L T\), typical crystal characteristics, and manufacturers' part numbers for 4.0 and 8.0 megahertz operation.

The MC6875 will function as an R-C oscillator when connected as shown in Figure 13. The desired output frequency \((M \phi 1)\) is approximately:
\[
\begin{aligned}
& \text { Formula } \\
& 4 \times \text { fo } \approx \frac{320}{\mathrm{C}(\mathrm{R}+.27)+23}
\end{aligned}
\]
\(C\) in picofarads
\(R\) in \(K\) ohms
\(4 \times\) fo in Megahertz
(See Figure 11)
\[
4 x \text { fo in Megahertz }
\]

It would be desirable to select a capacitor greater than 15 pF to minimize the effects of stray capacitance. It is also desirable to keep the resistor in the 1 to \(5 \mathrm{k} \Omega\) range. There is a nominal \(270 \Omega\) resistor internally at \(X_{1}\) which is in series with the external \(R\). By keeping the external \(R\) as large as possible, the effects due to process variations of the internal resistor on the frequency will be reduced. There will, however, still be some variation in frequency in a production lot both from the resistance variations, external and internal, and process variations of the input switching thresholds. Therefore, in a production system, it is recommended a potentiometer be placed in series with a fixed \(R\) between \(X_{1}\) and \(X_{2}\).

\section*{POWER-ON RESET}

As the power to the MC6875 comes up, the \(\overline{\text { Reset }}\) Output will be in a high impedance state and will not give
a solid \(V_{O L}\) output level until \(V_{C C}\) has reached 3.5 to 4.0 V. During this time transients may appear on the clock outputs as the oscillator begins to start. This happens at approximately \(V_{C C}=3 \mathrm{~V}\). At some \(V_{C C}\) level above that, where \(\overline{\text { Reset Output }}\) goes low, all the clock outputs will begin functioning normally. This phenomenon of the start-up sequence should not cause any problems except possibly in systems with battery back-up memory. The transients on the clock lines during the time the Reset Output is high impedance could initiate the system in some unknown mode and possibly write into the backup memory system. Therefore in battery backup systems, more elaborate reset circuitry will be required.

Please note that the Power-On Reset input pin of the MC6875 is not suitable for use with a manual MPU reset switch if the \(\overline{\text { DMA/Ref Req }}\) or Memory Ready inputs are going to be used. The power on reset circuitry is used to initialize the internal control logic and whenever the input is switched low, the MC6875 is irresponsive to the \(\overline{\text { DMA/Ref Req }}\) or Memory Ready inputs. This may result in the loss of dynamic memory and/or possibly a byte of slow static memory. The circuit of Figure 14 is recommended for applications which do not utilize the \(\overline{\text { DMA/Ref Req }}\) or Memory Ready inputs. The circuit of Figure 15 is recommended for those applications that do. FIGURE 14 - MANUAL RESET FOR APPLICATIONS NOT USING DMA/REFRESH REQUEST OR MEMORY READY INPUTS

FIGURE 15 - MANUAL RESET FOR SYSTEMS USING DYNAMIC RAM OR SLOW STATIC RAM IN CONJUNCTION WITH MEMORY READY OR DMA/REFRESH REQUEST INPUTS

\section*{Advance Information}

\section*{DUAL EIA-422/423 TRANSCEIVER}

The MC34050/51 are dual transceivers which comply with EIA Standards EIA-422 (Balanced line) and EIA-423 (Unbalanced line). Each device contains two drivers and two receivers.
The MC34050 has a DRIVER ENABLE (for both drivers) and a RECEIVER ENABLE (for both receivers). Connecting the two ENABLES together provides Driver-to-Receiver switching from a single line.
The MC34051 has a DRIVER ENABLE for each driver. The two receivers are permanently enabled.
The Driver inputs, Receiver outputs, and Enable inputs are 74LS TTL compatible.
- Two Independent Drivers and Receivers Per Package
- 3-State Outputs
- Single 5 Volt Supply
- Internal Hysteresis (50 mV Typical) on Receivers
- Receivers Provide Fail-Safe Function. Output Stays High if Inputs are Open, Shorted (floating), or Terminated (floating)
- Receivers May Be Used in EIA-422 or 423 Systems
- Drivers Meet Full EIA-422 Standards
- Drivers' Outputs are Short Circuit Protected

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Driver } & \multicolumn{3}{c|}{ Receiver } \\
\hline Data & EN & Inv. Out & Noninv. Out & Input & EN & Output \\
\hline L & H & H & L & \(>+0.2\) V Diff. & L & H \\
H & H & L & H & <-0.2 V Diff. & L & L \\
X & L & Z & Z & X & H & Z \\
\hline
\end{tabular}

\footnotetext{
This document contains information on a new product. Specifications and information herein are subject to change without notice.
}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Value & Units \\
\hline Power Supply Voltage (VCC) & 7.0 & Vdc \\
\hline Input Common Mode Voltage (Receivers) & \(\pm 25\) & Vdc \\
\hline Input Differential Voltage (Receivers) & \(\pm 25\) & Vdc \\
\hline Output Sink Current (Receivers) & 50 & mA \\
\hline Enable Input Voltage (Drivers and Receivers) & 5.5 & Vdc \\
\hline Input Voltage (Drivers) & 5.5 & Vdc \\
\hline Applied Output Voltage (3-State mode) - Receivers & -1.0 to +7.0 & Vdc \\
\hline Applied Output Voltage (3-State mode) - Drivers & -1.0 to +7.0 & \(\mathrm{Vdc}^{\prime}\) \\
\hline Junction Temperature & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Devices should not be operated at these values. The "Recommended Operating Limits" provide for actual device operation.

RECOMMENDED OPERATING LIMITS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Min & Typ & Max & Units \\
\hline Power Supply Voltage & +4.75 & +5.0 & +5.25 & Vdc \\
\hline Input Common Mode Voltage (Receivers) & -7.0 & - & +7.0 & Vdc \\
\hline Input Differential Voltage (Receivers) & -6.0 & - & +6.0 & Vdc \\
\hline Enable Input Voltage (Drivers and Receivers) & 0 & - & +5.25 & Vdc \\
\hline Input Voltage (Drivers) & 0 & - & +5.25 & Vdc \\
\hline Ambient Temperature Range & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply for \(4.75<\mathrm{V}_{\mathrm{CC}}<5.25\) volts, and \(0^{\circ}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}\)).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline \multicolumn{6}{|l|}{DRIVERS} \\
\hline Input Voltage - Low & VILD & - & - & 0.8 & Vdc \\
\hline Input Voltage - High & \(\mathrm{V}_{\text {IHD }}\) & 2.0 & - & - & Vdc \\
\hline Input Current @ \(\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}\) & IILD & -360 & - & - & \(\mu \mathrm{A}\) \\
\hline & IHD & - & - & \[
\begin{aligned}
& +20 \\
& +100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Clamp Voltage (\(\mathrm{I}_{\mathrm{K}}=-18 \mathrm{~mA}\)) & VIKD & -1.5 & - & - & Vdc \\
\hline Output Voltage - Low (\(\mathrm{IOL}^{\text {a }}=20 \mathrm{~mA}\)) & \(V_{\text {OLD }}\) & - & - & 0.5 & Vdc \\
\hline Output Voltage - High (\(\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}\)) & \(\mathrm{V}_{\text {OHD }}\) & 2.5 & - & - & Vdc \\
\hline Output Offset Voltage Difference (Note 1) & \(V_{\text {OSD }}\) & -0.4 & - & +0.4 & Vdc \\
\hline Output Differential Voltage (Note 1) & \(\mathrm{V}_{\mathrm{T}}\) & 2.0 & - & - & Vdc \\
\hline Output Differential Voltage Difference (Note 1) & \(V_{\text {TD }}\) & -0.4 & - & \(+0.4\) & Vdc \\
\hline Short Circuit Current (\(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\)) (From High Output, Note 2) & IOSD & -150 & - & -30 & mA \\
\hline \[
\begin{gathered}
\text { Output Leakage Current }-\mathrm{Hi} \text { - Z State } \\
\left(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}, \mathrm{DR} \mathrm{EN}=0.8 \mathrm{~V}\right) \\
\left(\mathrm{V}_{\text {out }}=2.7 \mathrm{~V}, \mathrm{DR} \mathrm{EN}=0.8 \mathrm{~V}\right)
\end{gathered}
\] & IOZD & \[
\begin{array}{r}
-100 \\
-100 \\
\hline
\end{array}
\] & \[
-
\] & \[
\begin{aligned}
& +100 \\
& +100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Output Leakage - Power Off } \\
& \left(\mathrm{V}_{\text {out }}=-0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\text {out }}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right)
\end{aligned}
\] & IO(off) & \[
-100
\] & - & \[
+\overline{100}
\] & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Notes: 1) See EIA Standard EIA-422 and Figure 1 for exact test conditions.
2) Only one output in a package should be shorted at a time, for no longer than 1 second.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply for \(4.75<\mathrm{V}_{\mathrm{CC}}<5.25\) volts,
and \(0^{\circ}<T_{A}<70^{\circ} \mathrm{C}\)).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline \multicolumn{6}{|l|}{RECEIVERS} \\
\hline Differential Input Threshold Voltage (Note 3)
\[
\begin{aligned}
& \left(-7.0 \mathrm{~V}<V_{\text {ICM }}<+7.0, V_{\text {out }} \geqslant 2.7 \mathrm{~V}\right) \\
& \left(-7.0 \mathrm{~V}<\mathrm{V}_{\text {ICM }}<+7.0, V_{\text {out }} \leqslant 0.45 \mathrm{~V}\right)
\end{aligned}
\] & \(\mathrm{V}_{\text {THR }}\) & \[
\overline{-0.2}
\] & & \[
+0.2
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Input Bias Current } \\
& \left(0 \leqslant V_{C C} \leqslant 5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=+15 \mathrm{~V}\right) \\
& \left(0 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=-15 \mathrm{~V}\right)
\end{aligned}
\] & IIBR & \[
-\overline{2.8}
\] & - & \[
+2.3
\] & mA \\
\hline Input Balance and Output Level
\[
\begin{aligned}
& \left(-7.0 \leqslant V_{I C M} \leqslant+7.0 \mathrm{~V}\right) \\
& \left(V_{I D}=+0.4 \mathrm{~V}, 10=-400 \mu \mathrm{~A}\right) \\
& \left(\mathrm{V}_{\text {ID }}=-0.4 \mathrm{~V}, 10=8.0 \mathrm{~mA}\right)
\end{aligned}
\] & \begin{tabular}{l}
\(V_{\text {OHR }}\) \\
\(V_{\text {OLR }}\)
\end{tabular} & & - & \[
\overline{0.45}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Leakage Current }-3 \text {-State (Pin } 4=2.0 \mathrm{~V}, \mathrm{MC} 34050 \text { only) } \\
& \left(\mathrm{V}_{I D}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{I D}=-3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V}\right)
\end{aligned}
\] & IozR & \[
\begin{aligned}
& -100 \\
& -100
\end{aligned}
\] & - & \[
\begin{aligned}
& +100 \\
& +100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Output Short Circuit Current (Note 2, \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\)) (\(\mathrm{V}_{\text {ID }}=+3.0 \mathrm{~V}, \mathrm{MC} 34050 \operatorname{Pin} 4=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\)) & IOSR & -85 & - & -15 & mA \\
\hline
\end{tabular}

ENABLES
\(\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Input Voltage - Low } & \mathrm{V}_{\mathrm{ILE}} & - & - & 0.8 & \mathrm{Vdc} \\ \hline \text { Input Voltage }- \text { High } & \mathrm{V}_{\text {IHE }} & 2.0 & - & - & \mathrm{Vdc} \\ \hline \text { Input Current @ } \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V} \text { (Receiver EN) } \\ \text { (Driver EN) }\end{array}\right)\)

POWER SUPPLY
\begin{tabular}{|l|l|l|l|l|l|}
\hline Power Supply Current @ \(V_{C C}=5.25 \mathrm{~V}\) & \(I_{C C}\) & - & 55 & 80 & mA \\
\hline
\end{tabular}

Notes: 1) See EIA Standard EIA-422 and Figure 1 for exact test conditions.
2) Only one output in a package should be shorted at a time, for no longer than 1 second.
3) Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case.
4) All currents into a device pin are positive, those out of a pin are negative. Voltages are referenced to ground. Algebraic convention rather than magnitude is used to define limits.

DRIVER SWITCHING CHARACTERISTICS \(\left(V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), See Figure 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline Propagation Delay & & & & & ns \\
\hline Data Input to Output High-to-Low & tPHLD & - & - & 20 & \\
\hline Data Input to Output Low-to-High & tpLHD & - & - & 20 & \\
\hline Output Skew (|tpHL - tplel each driver) & tSKD & - & - & 8 & \\
\hline Enable Input to Output & & & & & \\
\hline \(C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=75 \Omega\) to Gnd & tPHZD & - & - & 30 & \\
\hline \(\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=180 \Omega\) to V CC & tPLZD & - & - & 35 & \\
\hline \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=75 \Omega\) to Gnd & tPZHD & - & - & 40 & \\
\hline \(C_{L}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=180 \Omega\) to \(\mathrm{V}_{\mathrm{CC}}\) & tPZLD & - & - & 45 & \\
\hline Maximum Data Input Transition Time (10-90\%) & tTRD & - & 50 & - & ns \\
\hline
\end{tabular}

RECEIVER SWITCHING CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), Figure 3)
\begin{tabular}{|l|l|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Symbol & Min & Typ & Max & Units \\
\hline Propagation Delay & & & & & \\
Differential Input to Output - High-to-Low & tPHLR & - & - & 30 \\
Differential Input to Output - Low-to-High & tPLHR & - & - & 30 & \\
Enable Input - Output Low to 3-State* & - & - & 35 & \\
Enable Input - Output High to 3-State* & tPLZR & - & - & 35 & \\
Enable Input - Output 3-State to High* & tPHZR & - & - & - & 30 \\
Enable Input - Output 3-State to Low* & tPZHR & - & - & \\
\hline
\end{tabular}
*MC34050 Only.

FIGURE 1 - DRIVER OUTPUT TEST CIRCUIT

FIGURE 2 - DRIVER SWITCHING TEST CIRCUITS

FIGURE 3 - RECEIVER SWITCHING TEST CIRCUITS

MC34050 Only
SG: \(1.0 \mathrm{MHz}, 50 \%\) duty cycle, \(\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}=6.0 \mathrm{~ns}(10-90 \%)\)
\(\mathrm{Va}=+1.5 \mathrm{~V}\) for tPHZ, tPZH; \(\mathrm{Va}=-1.5 \mathrm{~V}\) for tPLZ, tPZL
S1, S2 closed for tPHZ, tpLZ; S1 open, S2 closed for tPZH; S1 closed, S2 open for tPZL.

FIGURE 4 - DRIVER INPUT CHARACTERISTICS

FIGURE 6 - DRIVER OUTPUT VOLTAGE

FIGURE 8 - RECEIVER OUTPUT VOLTAGE

FIGURE 5 - DRIVER DIFFERENTIAL OUTPUT CHARACTERISTICS

FIGURE 7 - DRIVER OUTPUT VOLTAGE

FIGURE 9 - RECEIVER OUTPUT VOLTAGE

FIGURE 12 - RECEIVER INPUT CHARACTERISTICS

FIGURE 14 - DRIVER OUTPUT VOLTAGE

FIGURE 11 - ENABLE INPUT CHARACTERISTICS

FIGURE 13 - RECEIVER OUTPUT LEAKAGE

FIGURE 15 - DRIVER OUTPUT LEAKAGE

FIGURE 16 - EIA-422 APPLICATION

Notes: 1) RT must equal characteristic impedance of the cable.
2) Individual receivers may be MC34050, MC34051, MC3486, or AM26LS32.
3) System ground may be made through cable shield as shown, or through chassis ground. Common mode differences and signal quality must be considered when choosing a ground path.

\section*{DUAL LINE RECEIVERS}

The MC75107 and MC75108 are MTTL compatible dual line receivers featuring independent channels with common voltage supply and ground terminals. The MC75107 circuit features an active pull-up (totem-pole) output. The MC75108 circuit features an open-collector output configuration that permits the Wired-OR logic connection with similar outputs (such as the MC5401/MC7401 MTTL gate or additional MC75108 receivers). Thus a level of logic is implemented without extra delay.

The MC75107 and MC75108 circuits are designed to detect input signals of greater than 25 millivolts amplitude and convert the polarity of the signal into appropriate MTTL compatible output logic levels.
- High Common-Mode Rejection Ratio
- High Input Impedance
- High Input Sensitivity
- Differential Input Common-Mode Voltage Range of \(\pm 3.0 \mathrm{~V}\)
- Differential Input Common-Mode Voltage of More Than \(\pm 15 \mathrm{~V}\) Using External Attenuator
- Strobe Inputs for Receiver Selection
- Gate Inputs for Logic Versatility
- MTTL or MDTL Drive Capability
- High DC Noise Margins
- MC55107 Available as JM38510/10401

\section*{DUAL LINE RECEIVERS}

SILICON MONOLITHIC INTEGRATED CIRCUITS

L SUFFIX CERAMIC PACKAGE CASE 632-08

P SUFFIX
PLASTIC PACKAGE
CASE 646-06

Components shown with dashed lines are applicable to the MC75107 only.

MAXIMUM RATINGS (\(T_{A}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltages & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}} \\
& \mathrm{~V}_{\mathrm{EE}}
\end{aligned}
\] & \[
\begin{array}{r}
+7.0 \\
-7.0 \\
\hline
\end{array}
\] & Vdc \\
\hline Differential-Mode Input Signal Voltage Range & \(V_{\text {ID }}\) & \(\pm 6.0\) & Vdc \\
\hline Common-Mode Input Voltage Range & \(V_{\text {ICR }}\) & \(\pm 5.0\) & Vdc \\
\hline Strobe Input Voltage & \(V_{1(S)}\) & 5.5 & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation (Package Limitation) \\
Plastic and Ceramic Dual-In-Line Packages Derate above \(T_{A}=+25^{\circ} \mathrm{C}\)
\end{tabular} & \({ }^{\text {P }}\) & \[
\begin{array}{r}
625 \\
3.85 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C} \text {. }
\end{gathered}
\] \\
\hline Operating Ambient Temperature Range & TA & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voltages & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}} \\
& \mathrm{~V}_{\mathrm{EE}}
\end{aligned}
\] & \[
\begin{aligned}
& +4.75 \\
& -4.75
\end{aligned}
\] & \[
\begin{array}{r}
+5.0 \\
-5.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
+5.25 \\
-5.25
\end{array}
\] & Vdc \\
\hline Output Sink Current & IOS & - & - & -16 & mA \\
\hline Differential-Mode Input Voltage Range & \(\mathrm{V}_{\text {IDR }}\) & -5.0 & - & +5.0 & Vdc \\
\hline Common-Mode Input Voltage Range & \(V_{\text {ICR }}\) & -3.0 & - & +3.0 & Vdc \\
\hline Input Voltage Range, any differential input to ground & \(V_{\text {IR }}\) & -5.0 & - & +3.0 & Vdc \\
\hline Operating Temperature Range & \({ }^{T}\) A & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DEFINITIONS OF INPUT LOGIC LEVELS
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Test Fig. & Min & Max & Unit \\
\hline High-Level Input Voltage (between differential inputs) & \(\mathrm{V}_{1 \mathrm{DH}}\) & 1 & 0.025 & 5.0 & Vdc \\
\hline Low-Level Input Voltage (between differential inputs) & \(\mathrm{V}_{1 \mathrm{DL}}\) & 1 & \(-5.0 \dagger\) & -0.025 & Vdc \\
\hline High-Level Input Voltage (at strobe inputs) & \(\mathrm{V}_{\mathrm{IH}(\mathrm{S})}\) & 3 & 2.0 & 5.5 & Vdc \\
\hline Low-Level Input Voltage (at strobe inputs) & \(\mathrm{V}_{\mathrm{IL}(\mathrm{S})}\) & 3 & 0 & 0.8 & Vdc \\
\hline
\end{tabular}
\(\dagger\) The algebraic convention, where the most positive limit is designated maximum, is used with Low Level Input Voltage Level (VIDL)
ELECTRICAL CHARACTERISTICS (\(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Test Fig. & Min & Typ \# & Max & Unit \\
\hline ```
High-Level Input Current to 1A or 2A Input
 \(\mathrm{IV}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{EE}}=\operatorname{Max}, \mathrm{V}_{\mathrm{ID}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=-3.0 \mathrm{~V}\)
 to +3.0 V) \(\ddagger\)
``` & \(\mathrm{I}_{1} \mathrm{H}\) & 2 & - & 30 & 75 & \(\mu \mathrm{A}\) \\
\hline Low-Level Input Current to 1A or 2A Input
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{EE}}=\text { Max, } \mathrm{V}_{\mathrm{ID}}=-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=-3.0 \mathrm{~V}\right. \\
& \text { to }+3.0 \mathrm{~V}) \ddagger
\end{aligned}
\] & IIL & 2 & - & - & -10 & \(\mu \mathrm{A}\) \\
\hline High-Level Input Current to 1G or 2G Input \(\left(V_{C C}=M a x, V_{E E}=\operatorname{Max}, V_{I H}(S)=2.4 \mathrm{~V}\right) \ddagger\) \(\left(\mathrm{V}_{\mathrm{CC}}=\right.\) Max, \(\mathrm{V}_{\mathrm{EE}}=\) Max, \(\left.\mathrm{V}_{\mathrm{IH}}(\mathrm{S})=\mathrm{V}_{\mathrm{CC}} \mathrm{Max}\right) \ddagger\) & \({ }^{1 / H}\) & 4 & - & - & \[
\begin{aligned}
& 40 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Low-Level Input Current to 1G or 2G Input \(\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}(\mathrm{S})}=0.4 \mathrm{~V}\right) \ddagger\) & IIL & 4 & - & - & -1.6 & mA \\
\hline \[
\begin{aligned}
& \text { High-Level Input Current to } S \text { Input } \\
& \left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{I H}(S)=2.4 \mathrm{~V}\right) \ddagger \\
& \left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{\text {IH }}(S)=V_{C C} M a x\right) \ddagger
\end{aligned}
\] & \({ }^{1 / H}\) & 4 & - & - & \[
\begin{aligned}
& 80 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Low-Level Input Current to \(S\) Input
\[
\left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{I L}(S)=0.4 V\right) \ddagger
\] & I/L & 4 & - & - & -3.2 & mA \\
\hline High-Level Output Voltage
\[
V_{C C}=\operatorname{Min}, V_{E E}=M \operatorname{Min}, I_{\text {load }}=-400 \mu \mathrm{~A} \text {, }
\]
\[
\left.V_{\text {IC }}=-3.0 \vee \text { to }+3.0 \mathrm{~V}\right) \ddagger
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 3 & - & - & - & V \\
\hline \[
\begin{aligned}
& \text { Low-Level Output Voltage } \\
& \left(V_{C C}=M i n, V_{E E}=M i n, I_{\text {sink }}=16 \mathrm{~mA}\right. \\
& \left.V_{I C}=-3.0 \mathrm{~V} \text { to }+3.0 \mathrm{~V}\right) \ddagger
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & 3 & - & - & 0.4 & V \\
\hline High-Level Leakage Current
\[
\left(V_{C C}=\operatorname{Min}, V_{E E}=\operatorname{Min}, V_{O H}=V_{C C} M a x\right) \ddagger
\] & \({ }^{\text {I CEX }}\) & 3 & - & - & 250 & \(\mu \mathrm{A}\) \\
\hline Short-Circuit Output Current \#\#
\[
\left(V_{C C}=M a x, V_{E E}=M a x\right) \ddagger
\] & 'osc & 5 & - & - & - & mA \\
\hline \[
\begin{aligned}
& \text { High Logic Level Supply Current from } V_{C C} \\
& \quad\left(V_{C C}=\text { Max, } V_{E E}=\text { Max, } V_{I D}=25 \mathrm{mV}, T_{A}=+25^{\circ} \mathrm{C}\right) \ddagger
\end{aligned}
\] & \({ }^{1} \mathrm{CCH}^{+}\) & 6 & - & 18 & 30 & mA \\
\hline High Logic Level Supply Current from \(\mathrm{V}_{\mathrm{EE}}\)
\[
\left(V_{C C}=\text { Max, } V_{E E}=\text { Max, } V_{I D}=25 m V, T_{A}=+25^{\circ} \mathrm{C}\right) \ddagger
\] & \({ }^{1} \mathrm{CCH}^{-}\) & 6 & 0 & 8.4 & -15 & mA \\
\hline
\end{tabular}
\(\ddagger\) For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type.
\#All typical values are at \(V_{C C}=+5.0 \mathrm{~V}, V_{E E}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
\# \#Not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Test Fig. & Min & Typ & Max & Unit \\
\hline Propagation Delay Time, low-to-high level from differential inputs \(A\) and \(B\) to output
\[
\begin{aligned}
& \left(R_{L}=390 \Omega, C_{L}=50 \mathrm{pF}\right) \\
& \left(R_{L}=390 \Omega, C_{L}=15 \mathrm{pF}\right)
\end{aligned}
\] & tPLH(D) & 7 & - & \[
19
\] & \[
25
\] & ns \\
\hline Propagation Delay Time, high-to-low level from differential inputs \(A\) and \(B\) to output
\[
\begin{aligned}
& \left(R_{L}=390 \Omega, C_{L}=50 \mathrm{pF}\right) \\
& \left(R_{L}=390 \Omega, C_{L}=15 \mathrm{pF}\right)
\end{aligned}
\] & tPHL(D) & 7 & - & \[
19
\] & \[
25
\] & ns \\
\hline Propagation Delay Time, low-to-high level, from strobe input \(G\) or \(S\) to output
\[
\begin{aligned}
& \left(R_{L}=390 \Omega, C_{L}=50 \mathrm{pF}\right) \\
& \left(R_{L}=390 \Omega, C_{L}=15 \mathrm{pF}\right)
\end{aligned}
\] & tPLH(S) & 7 & - & \[
13
\] & 15 & ns \\
\hline Propagation Delay Time, high-to-low level, from strobe input \(G\) or \(S\) to output
\[
\begin{aligned}
& \left(R_{\mathrm{L}}=390 \Omega, C_{L}=50 \mathrm{pF}\right) \\
& \left(\mathrm{R}_{\mathrm{L}}=390 \Omega, C_{\mathrm{L}}=15 \mathrm{pF}\right)
\end{aligned}
\] & \({ }^{\text {tPHLIS }}\) ) & 7 & - & \[
13
\] & \[
20
\] & \\
\hline
\end{tabular}

TEST CIRCUITS

FIGURE 1 - \(V_{\text {IDH }}\) and \(V_{\text {IDL }}\)


NOTE: When testing one channel, the inputs of the other channel are grounded.


FIGURE 3 - \(V_{I H}(S), V_{I L}(S), V_{O H}, V_{O L}\), and \(I_{O H}\)


TEST CIRCUITS (continued)
FIGURE 4 - \(I_{I H(G)}, I_{I L(G)}, I_{I H(S)}\), and \(I_{I L(S)}\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline TEST & INPUT 1A & INPUT 2A & STROBE 1G & STROBE S & STROBE 2G \\
\hline \(1 / \mathrm{H}\) at Strobe 1G & +25 mV & Gnd & \(V_{\text {IH(S) }}\) & Gnd & Gnd \\
\hline \({ }^{1 / H}\) at Strobe 2G & Gnd & +25 mV & Gnd & Gnd & V (H)(S) \\
\hline \(1 / \mathrm{H}\) at Strobe S & +25 mV & +25 mV & Gnd & \(\mathrm{V}_{\text {IH ( }}\) ) & Gnd \\
\hline \(1 / \mathrm{LL}\) at Strobe 1G & -25 mV & Gnd & \(\mathrm{V}_{\text {IL }}\) ( S ) & 4.5 V & Gnd \\
\hline IIL at Strobe 2G & Gnd & -25 mV & Gnd & 4.5 V & \(\mathrm{V}_{\text {IL }}(\mathrm{S})\) \\
\hline \(1 / \mathrm{L}\) at Strobe S & -25 mV & \(-25 \mathrm{mV}\) & 4.5 V & \(\mathrm{V}_{\text {IL }}(\mathrm{S})\) & 4.5 V \\
\hline
\end{tabular}


NOTES: 1. Each channel is tested separately.
2. Not more than one output should be tested at one time.

TEST CIRCUITS (continued)
FIGURE 7 - PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS



NOTES: 1. The puise generators have the following characteristics: \(z_{0}=50 \Omega, t_{r}=t_{f}=10 \pm 5 \mathrm{~ns}, t_{p 1}=500 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}\) \(\mathrm{t}_{\mathrm{p} 2}=1 \mu \mathrm{~s}, \mathrm{PRR}=500 \mathrm{kHz}\).
2. Strobe input puise is applied to Strobe 1 G when Inputs \(1 \mathrm{~A}-1 \mathrm{~B}\) are being tested, to Strobe S when Inputs \(1 \mathrm{~A}-1 \mathrm{~B}\) or \(2 \mathrm{~A}-2 \mathrm{~B}\) are being tested, and to Strobe 2G when inputs 2A-2B are being tested.
3. \(C_{L}\) includes probe and jig capacitance.
4. All diodes are 1 N916 or equivalent.

\section*{MONOLITHIC DUAL LINE DRIVER}

The MC75S110 dual line driver features independent channels with common voltage supply and ground terminals. Each driver circuit provides a constant output current that switches to either of two output terminals subject to the appropriate logic levels at the input.terminals. Output current can be switched "off" (inhibited) by appropriate logic levels at the inhibit inputs. Output current is nominally twelve milliamperes.

The inhibit feature permits use in party-line or data-bus applications. A strobe or inhibitor, common to both drivers, is included to increase driver-logic versatility. With output current in the inhibited mode, \({ }^{\mathrm{O}}\) (off) is specified so that minimum line loading occurs when the driver is used in a party-line system with other drivers. Output impedance of the driver in inhibited mode is very high (the output impedance of a transistor biased to cutoff).

All driver outputs have a common-mode voltage range of -3.0 volts to +3.0 volts, allowing common-mode voltage on the line without affecting driver performance.
- Insensitive to Supply Variations Over the Entire Operating Range
- MTTL Input Compatibility
- Current-Mode Output (12 mA Typical)
- High Output Impedance
- Common-Mode Output Voltage Range
\[
(-3.0 \mathrm{~V} \text { to }+3.0 \mathrm{~V})
\]
- Inhibitor Available for Driver Selection

\section*{DUAL LINE DRIVERS}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT


L SUFFIX
CERAMIC PACKAGE
CASE 632-08


P SUFFIX
PLASTIC PACKAGE CASE 646-06


TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ LOGIC INPUTS } & \multicolumn{2}{|c|}{\begin{tabular}{c} 
INHIBITOR \\
INPUTS
\end{tabular}} & \multicolumn{2}{c|}{ OUTPUTS } \\
\hline A & B & C & D & Y & Z \\
\hline L or H & L or H & L & L or H & H & H \\
L or H & L or H & L or H & L & H & H \\
L & L or H & H & \(H\) & L & H \\
L or H & L & H & H & L & H \\
H & \(H\) & H & \(H\) & \(H\) & L \\
\hline
\end{tabular}

Low output represents the "on" state.
High output represents the "off" state.

MAXIMUM RATINGS \(\left(T_{A}=0\right.\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Ratings } & Symbol & Value & Unit \\
\hline \begin{tabular}{c} 
Power Supply Voltages \\
(See Note 1)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{V}_{\mathrm{CC}}\) \\
\(\mathrm{V}_{\mathrm{EE}}\)
\end{tabular} & \begin{tabular}{c}
+7.0 \\
-7.0
\end{tabular} & Volts \\
\hline \begin{tabular}{c} 
Logic and Inhibitor Input Voltages \\
(See Note 1)
\end{tabular} & \(\mathrm{V}_{\text {in }}\) & 5.5 & Volts \\
\hline \begin{tabular}{c} 
Common-Mode Output Voltage Range \\
(See Note 1)
\end{tabular} & \(\mathrm{V}_{\mathrm{OCR}}\) & -5.0 to +7.0 & Volts \\
\hline \begin{tabular}{l} 
Power Dissipation (Package Limitation) \\
Plastic and Ceramic Dual In-Line Packages \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{P}_{\mathrm{D}}\) & & 1000 \\
\hline Operating Temperature Range & & 3.85 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE 1. These voltage values are with respect to the ground terminal.

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Nom & Max & Unit \\
\hline Power Supply Voltages & \(V_{C C}\) & +4.75 & +5.0 & +5.25 & Volts \\
& \(V_{E E}\) & -4.75 & -5.0 & -5.25 & \\
\hline Common-Mode Output Voltage Range & \(V_{\mathrm{OCR}}\) & -3.0 & - & +3.0 & Volts \\
\hline
\end{tabular}

NOTE 2. When using only one channel of the line drivers, the other channel should be inhibited and/or its outputs grounded.
DEFINITIONS OF INPUT LOGIC LEVELS*
\begin{tabular}{|l|c|c|c|c|c|}
\hline Characteristic & Symbol & Test Figure & Min & Max & Unit \\
\hline High-Level Input Voltage (at any input) & \(\mathrm{V}_{\mathrm{IH}}\) & 1,2 & 2.0 & 5.25 & Volts \\
\hline Low-Level Input Voltage (at any input) & \(\mathrm{V}_{\mathrm{IL}}\) & 1,2 & 0 & 0.8 & Volts \\
\hline
\end{tabular}
* The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.

\section*{THERMAL INFORMATION}

The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
\[
P_{D}\left(T_{A}\right)=\frac{T_{J(\max )}-T_{A}}{R_{\theta J A}\left(T_{y p}\right)}
\]

Where: \(P_{D}\left(T_{A}\right)=\) Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply volt-
ages and supply currents at the worst case operating condition.
\(T_{J(\text { max })}=\) Maximum Operating Junction Temperature as listed in the Maximum Ratings Section
\(\mathrm{T}_{\mathrm{A}}=\) Maximum Desired Operating Ambient Temperature
\(R_{\theta J A}(\) Typ \()=\) Typical Thermal Resistance Junction to Ambient

ELECTRICAL CHARACTERISTICS ( \(\mathrm{T}_{\mathbf{A}}=0\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic** & Symbol & Test Figure & Min & Typ* & Max & Unit \\
\hline High-Level Input Current to 1A, 1B, 2A or 2B \(\left(V_{C C}=\operatorname{Max}, V_{E E}=\operatorname{Max}, V_{I H}=2.4 \mathrm{~V}\right)^{*}\) \(\left(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{EE}}=\operatorname{Max}, \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}\right.\) Max) & \({ }_{1 H}{ }_{L}\) & 1 & - & - & \[
\begin{aligned}
& 40 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Low-Level Input Current to 1A, 1B, 2A or 2B
\[
\left(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{EE}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right)
\] & \(11 L_{L}\) & 1 & - & - & -3.0 & mA \\
\hline \begin{tabular}{l}
High-Level Input Current into 1C or 2C \\
\(\left(\mathrm{V}_{\mathrm{CC}}=\right.\) Max, \(\mathrm{V}_{\mathrm{EE}}=\) Max, \(\left.\mathrm{V}_{\mathrm{IH}_{\mathrm{I}}}=2.4 \mathrm{~V}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{EE}}=\right.\) Max, \(\mathrm{V}_{\mathrm{HH}_{I}}=\mathrm{V}_{\mathrm{CC}}\) Max)
\end{tabular} & \({ }_{1 / 4}\) & 1 & - & - & \[
\begin{aligned}
& 40 \\
& 1.0
\end{aligned}
\] & \[
\begin{gathered}
\mu \mathrm{A} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline Low-Level Input Current into 1C or 2C
\[
\left(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}\right)
\] & ILI & 1 & - & - & -3.0 & mA \\
\hline \begin{tabular}{l}
High-Level Input Current into D \\
\(\left(V_{C C}=\right.\) Max, \(V_{E E}=\) Max, \(\left.V_{I_{H}}=2.4 \mathrm{~V}\right)\) \\
\(\left(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{EE}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}_{1}}=\mathrm{V}_{\mathrm{CC}} \operatorname{Max}\right)\)
\end{tabular} & \({ }_{1 / H}\) & 1 & & - & \[
\begin{aligned}
& 80 \\
& 2.0
\end{aligned}
\] & \[
{ }_{\mathrm{mA}}^{\mu \mathrm{A}}
\] \\
\hline Low-Level Input Current into D
\[
\left(V_{C C}=\operatorname{Max}, V_{E E}=M a x, V_{I L}=0.4 \mathrm{~V}\right)
\] & \(1{ }^{\text {ILI }}\) & 1 & - & - & -6.0 & mA \\
\hline \[
\begin{aligned}
& \text { Output Current ("on" state) } \\
& \text { (VCC } \left.=\text { Max, } V_{E E}=\text { Max }\right) \\
& \left(V_{C C}=\text { Min, } V_{E E}=\right.\text { Min) }
\end{aligned}
\] & 'O(on) & 2 & \[
\overline{6.5}
\] & 12 & 15 & mA \\
\hline \[
\begin{aligned}
& \text { Output Current ("off" state) } \\
& \left.\qquad V_{C C}=M a x, V_{E E}=M a x\right) \\
& \left(V_{C C}=M i n, V_{E E}=M i n\right)
\end{aligned}
\] & lo(off) & 2 & - & & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Supply Current from \(\mathrm{V}_{\mathrm{CC}}\) (with driver enabled)
\[
\left(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}} \mathrm{H}_{\mathrm{I}}=2.0 \mathrm{~V}\right)
\] & \({ }^{\text {I CCC(on) }}\) & 3 & - & - & 35 & mA \\
\hline Supply Current from \(\mathrm{V}_{\mathrm{EE}}\) (with driver enabled)
\[
\left(\mathrm{V}_{\mathrm{IL}_{\mathrm{L}}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{HH}_{I}}=2.0 \mathrm{~V}\right)
\] & \({ }^{\text {E E ( }}\) (on) & 3 & - & - & -50 & mA \\
\hline Supply Current from \(\mathrm{V}_{\mathrm{CC}}\) (with driver inhibited)
\[
\left(V_{I L_{L}}=0.4 \mathrm{~V}, \mathrm{~V}_{I L_{\mathrm{I}}}=0.4 \mathrm{~V}\right)
\] & 'CC(off) & 3 & - & - & 35 & mA \\
\hline Supply Current from \(V_{E E}\) (with driver inhibited)
\[
\left(\mathrm{V}_{\mathrm{IL}_{\mathrm{L}}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}_{\mathrm{I}}}=0.4 \mathrm{~V}\right)
\] & IEE(off) & 3 & - & - & -50 & mA \\
\hline
\end{tabular}
*All typical values are at \(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\).
**For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions.

SWITCHING CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\).)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Test Figure & Min & Typ & Max & Unit \\
\hline Propagation Delay Time from Logic Input A or B to Output Y or \(\mathrm{Z}\left(\mathrm{R}_{\mathrm{L}}=50 \mathrm{ohms}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}\right)\) & \begin{tabular}{l}
\({ }^{\text {tpLHL }}\) \\
\({ }^{\text {tpHLL}}\)
\end{tabular} & 4 & - & \[
\begin{aligned}
& 9.0 \\
& 9.0
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & ns \\
\hline Propagation Delay Time from Inhibitor Input C or D to Output Y or \(\mathrm{Z}\left(\mathrm{R}_{\mathrm{L}}=50\right.\) ohms, \(\left.\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}\right)\) & tpLH| \({ }^{\text {tPHL }}\) & 4 & - & \[
\begin{aligned}
& 16 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 25
\end{aligned}
\] & ns \\
\hline
\end{tabular}

\section*{TEST CIRCUITS}

FIGURE 1 - IIH, ILL


TEST TABLE
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
TEST AT \\
ANY INPUT
\end{tabular} & \begin{tabular}{c} 
ADJACENT INPUTS \\
NOT UNDER TEST
\end{tabular} \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & GND \\
\hline \(\mathrm{I}_{\mathrm{L}}\) & 4.5 V \\
\hline
\end{tabular}

FIGURE 2 - IO(on) and IO(off)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
TEST \\
Ground all output pins not under test.
\end{tabular}}} & \multicolumn{2}{|l|}{LOGIC INPUTS} & \multicolumn{2}{|l|}{INHIBITOR INPUTS} \\
\hline & & 1A or 2A & 1B or 2B & 1C or 2C & D \\
\hline \multirow{3}{*}{'0(on)} & \multirow{3}{*}{at output 1 Y or 2 Y} & \(\mathrm{V}_{\text {IL }}\) & \(\mathrm{V}_{\text {IL }}\) & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{IH}}\)} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{IH}}\)} \\
\hline & & \(\mathrm{V}_{\text {IL }}\) & \(\mathrm{V}_{\mathrm{IH}}\) & & \\
\hline & & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{V}_{\text {IL }}\) & & \\
\hline IO(on) & at output \(1 Z\) or \(2 Z\) & \(\mathrm{V}_{\mathrm{IH}}\) & \(V_{\text {IH }}\) & \(\mathrm{V}_{\text {IH }}\) & \(\mathrm{V}_{\mathrm{IH}}\) \\
\hline IO(off) & \begin{tabular}{l}
at output \\
1 Y or 2 Y
\end{tabular} & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{V}_{\mathrm{IH}}\) \\
\hline \multirow{3}{*}{IO(off)} & \multirow{3}{*}{at output 12 or \(2 Z\)} & \(V_{\text {IL }}\) & \(\mathrm{V}_{\text {IL }}\) & \multirow{3}{*}{\(\mathrm{V}_{1 \mathrm{H}}\)} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{IH}}\)} \\
\hline & & \(\mathrm{V}_{\text {IL }}\) & \(\mathrm{V}_{\mathrm{IH}}\) & & \\
\hline & & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{V}_{\text {IL }}\) & & \\
\hline \multirow{3}{*}{IO(off)} & \multirow{3}{*}{at output \(1 \mathrm{Y}, 2 \mathrm{Y}, 1 \mathrm{Z}\), or 2 Z} & \multirow{3}{*}{Either state} & \multirow{3}{*}{Either state} & VIL & \(\mathrm{V}_{\text {IL }}\) \\
\hline & & & & \(\mathrm{V}_{\text {IL }}\) & \(\mathrm{V}_{\mathrm{IH}}\) \\
\hline & & & & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{V}_{\text {IL }}\) \\
\hline
\end{tabular}

TEST CIRCUITS (continued)
FIGURE 3 - ICC and IEE


TEST TABLE
\begin{tabular}{|c|c|c|}
\hline TEST & \begin{tabular}{c} 
ALL LOGIC \\
INPUTS
\end{tabular} & \begin{tabular}{c} 
ALL INHIBITOR \\
INPUTS
\end{tabular} \\
\hline\(I_{\text {CC }}\) (on) & Driver enabled & \(\mathrm{V}_{\text {IL }}\) \\
\(\mathrm{I}_{\mathrm{EE}}\) (on) & Driver enabled & \(\mathrm{V}_{\text {IL }}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) (off) & Driver inhibited & \(\mathrm{V}_{\text {IL }}\) \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) (off) & Driver inhibited & \(\mathrm{V}_{\text {IL }}\) \\
\hline
\end{tabular}


NOTES: 1. The pulse generators have the following characteristics: \(z_{0}=50 \Omega, t_{r}=t_{f}=10 \pm 5.0 \mathrm{~ns} t_{p 1}=500 \mathrm{~ns}, P R R=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{p} 2}=1.0 \mathrm{~ms}\), \(P R R=500 \mathrm{kHz}\).
2. \(\mathrm{C}_{\mathrm{L}}\) includes probe and jig capacitance.
3. For simplicity, only one channel and the inhibitor connections are shown.

SEVEN CHANNEL LINE RECEIVERS

\section*{SEVEN CHANNEL LINE RECEIVERS}

The MC75125 and MC75127 are seven-channel line receivers designed to satisfy the requirements of the input/output interface specification for IBM 360/370.

Special low-power design and Schottky-diode-clamped transistors allow low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs. The MC75125 and MC75127 are characterized for operation from 0 to \(70^{\circ} \mathrm{C}\).
- Meets IBM 360/370 I/O Specification
- Input Resistance \(-7 \mathrm{k} \Omega\) to \(20 \mathrm{k} \Omega\)
- Output Compatible with DTL or TTL
- Schottky-Clamped Transistors
- Operates from a Single 5 Volt Supply
- High-Speed - Low Propagation Delay
- Ratio Specification - tPLH/tPHL
- Seven Channels in One 16-Pin Package
- Standard VCC and Ground Positioning on MC75127



\section*{MC75125, MC75127}

MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +7.0 & V \\
\hline Input Voltage & \(\mathrm{V}_{\mathrm{I}}\) & -2.0 to +7.0 & V \\
\hline Power Dissipation (Package Limitation) & & & \\
Ceramic Package & \(\mathrm{P}_{\mathrm{D}}\) & 1150 & mW \\
Plastic Package & & 960 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\(\quad\) Derate Above \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & \(1 / \mathrm{R}_{\theta \mathrm{JA}}\) & 7.7 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & +175 & \\
Ceramic Package & & +150 & \\
\hline Plastic Package & & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 \\
\hline Storage Temperature Range & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 4.5 & 5.0 & 5.5 & Vdc \\
\hline High Level Output Current & \(\mathrm{I}_{\mathrm{OH}}\) & - & - & -0.4 & mA \\
\hline Low Level Output Current & \(\mathrm{IOL}_{\mathrm{OL}}\) & - & - & 16 & mA \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}
(Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline High-Level Input Voltage & \(\mathrm{V}_{1 \mathrm{H}}\) & 1.7 & - & - & V \\
\hline Low-Level Input Voltage & \(\mathrm{V}_{\text {IL }}\) & - & - & 0.7 & V \\
\hline High-Level Output Voltage ( \(\left.\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.7 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & 3.1 & - & V \\
\hline Low-Level Output Voltage ( \(\left.\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.7 \mathrm{~V}, \mathrm{IOL}=16 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.4 & 0.5 & V \\
\hline High-Level Input Current ( \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=3.11 \mathrm{~V}\) ) & \({ }_{1 / \mathrm{H}}\) & 0.2 & 0.3 & 0.42 & mA \\
\hline Low-Level Input Current ( \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0.15 \mathrm{~V}\) ) & IIL & - & - & -0.24 & mA \\
\hline Short Circuit Output Current* ( \(\left.\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0\right)\) & Ios & -18 & - & -60 & mA \\
\hline Input Resistance ( \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, 0 \mathrm{~V}\), or Open, \(\Delta \mathrm{V}_{1}=0.15 \mathrm{~V}\) to 4.15 V ) & \(\mathrm{r}_{\mathrm{i}}\) & 7.4 & - & 20 & \(k \Omega\) \\
\hline \begin{tabular}{l}
Power Supply Current \\
Outputs High-Logic State ( \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}\), all inputs at 0.7 V\()\)
\end{tabular} & \({ }^{1} \mathrm{CCH}\) & - & 15 & 25 & mA \\
\hline \begin{tabular}{l}
Power Supply Current \\
Outputs Low-Logic State \(\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I} \mathrm{OL}=16 \mathrm{~mA}\right.\), all inputs at 4.0 V\()\)
\end{tabular} & \({ }^{1} \mathrm{CCL}\) & - & 28 & 47 & mA \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS \(\left(V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.\), unless otherwise noted. See Figure 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC75125} & \multicolumn{3}{|c|}{MC75127} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Propagation Delay Time & & & & & & & & ns \\
\hline Low-to-High-Level Output & tPLH & 7.0 & 14 & 25 & 7.0 & 14 & 25 & \\
\hline High-to-Low-Level Output & tPHL & 10 & 18 & 30 & 10 & 18 & 30 & \\
\hline Ratio of Propagation Delay Times & tPLH/tpHL & 0.5 & 0.8 & 1.3 & 0.5 & 0.8 & 1.3 & \\
\hline Transition Time, Low-to-High-Level Output & t \({ }_{\text {tLH }}\) & 1.0 & 7.0 & 12 & 1.0 & 7.0 & 12 & ns \\
\hline Transition Time, High-to-Low Level Output & \({ }^{\text {t }}\) HL & 1.0 & 3.0 & 12 & 1.0 & 3.0 & 12 & ns \\
\hline
\end{tabular}
*No more than one output should be shorted at a time.

FIGURE 1 - PARAMETER MEASUREMENT INFORMATION


FIGURE 2 - SCHEMATIC (EACH RECEIVER)


TYPICAL CHARACTERISTICS


FIGURE 7 - SUPPLY CURRENT versus SUPPLY VOLTAGE


\section*{EIGHT-CHANNEL LINE RECEIVERS}

The MC75128 and MC75129 are eight-channel line receivers designed to satisfy the requirements of the input/output interface specification for IBM 360/370. Both devices feature common strobes for each group of four receivers. The MC75128 has an active high strobe; the MC75129 has an active low strobe.

Special low-power design and Schottky-diode-clamped transistors allow low supply current requirements while maintaining fast switching speeds and high-current TTL outputs. Both devices are characterized for operation from 0 to \(70^{\circ} \mathrm{C}\).
- Meets IBM 360/370 I/O Specification
- Input Resistance - \(7 \mathrm{k} \Omega\) to \(20 \mathrm{k} \Omega\).
- Output Compatible with DTL or TTL
- Schottky-Clamped Transistors
- Operates from a Single 5 Volt Supply
- High-Speed - Low Propagation Delay
- Ratio Specification - tpLH/tPHL
- Common Strobe for Each Group of Four Receivers
- MC75128 Strobe - Active-High

MC75129 Strobe - Active-Low



TYPICAL APPLICATION

MAXIMUM RATINGS (TA \(=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +7.0 & V \\
\hline A Input Voltage & \(V_{\text {IA }}\) & -0.15 to +7.0 & V \\
\hline Strobe Input Voltage & \(V_{\text {IS }}\) & +7.0 & V \\
\hline \begin{tabular}{l}
Power Dissipation (Package Limitation) \\
Ceramic Package \\
Plastic Package \\
Derate Above \(T_{A}=25^{\circ} \mathrm{C}\)
\end{tabular} & \[
\begin{gathered}
P_{D} \\
1 / R_{\theta J A}
\end{gathered}
\] & \[
\begin{gathered}
1150 \\
960 \\
-7.7
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Operating Ambient Temperature Range & TA & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature Ceramic Package Plastic Package & TJ & \[
\begin{aligned}
& +175 \\
& +150 \\
& \hline
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 4.5 & 5.0 & 5.5 & Vdc \\
\hline High Level Output Current & \(\mathrm{I}_{\mathrm{OH}}\) & - & - & -0.4 & mA \\
\hline Low Level Output Current & \(\mathrm{I}^{\mathrm{OL}}\) & - & - & 16 & mA \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
(Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
High-Level Input Voltage \\
A Inputs \\
\(S\) Inputs
\end{tabular} & \(\mathrm{V}_{\text {IH }}\) & \[
\begin{aligned}
& 1.7 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
Low-Level Input Voltage \\
A Inputs \\
S Inputs
\end{tabular} & VIL & \[
-
\] & - & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & V \\
\hline High-Level Output Voltage ( \(\left.\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.7 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & 3.1 & - & V \\
\hline Low-Level Output Voltage ( \(\left.\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.7 \mathrm{~V}, \mathrm{IOL}=16 \mathrm{~mA}\right)\) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.4 & 0.5 & V \\
\hline Input Clamp Voltage ( \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, 11=-18 \mathrm{~mA}, \mathrm{~S}\) Inputs) & \(V_{\text {IK }}\) & - & - & -1.5 & V \\
\hline \begin{tabular}{ll} 
High-Level Input Current & \(\left(V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=3.11 \mathrm{~V}, \mathrm{~A}\right.\) Inputs) \\
& \(\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}, \mathrm{~S}\right.\) Inputs \()\)
\end{tabular} & \({ }^{1} \mathrm{H}\) & - & \[
0.3
\] & \[
\begin{gathered}
0.42 \\
20
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \(\begin{array}{ll}\text { Low-Level Input Current } & \left(V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=0.15 \mathrm{~V}, \mathrm{~A} \text { Inputs) }\right. \\ & \left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}, \mathrm{~S} \text { Inputs }\right)\end{array}\) & \({ }^{\text {IIL }}\) & - & - & \[
\begin{gathered}
-0.24 \\
-0.4
\end{gathered}
\] & mA \\
\hline Short Circuit Output Current \({ }^{*}\left(\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0\right)\) & \(\mathrm{I}^{\text {OS }}\) & -18 & - & -60 & mA \\
\hline Tnput Resistance ( \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, 0 \mathrm{~V}\), or Open, \(\Delta \mathrm{V}_{1}=0.15 \mathrm{~V}\) to 4.15 V\()\) & \(\mathrm{r}_{\mathrm{i}}\) & 7.0 & - & 20 & \(k \Omega\) \\
\hline \[
\begin{aligned}
& \hline \text { Power Supply Current - Outputs High-Logic State, all inputs at } 0.7 \mathrm{~V} \\
&\left(V_{C C}=5.5 \mathrm{~V} \text {, Strobe at } 2.4 \mathrm{~V}-\mathrm{MC} 75128\right) \\
&\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {, Strobe at } 0.4 \mathrm{~V}-\mathrm{MC} 75129\right)
\end{aligned}
\] & \({ }^{1} \mathrm{CCH}\) & - & \[
\begin{aligned}
& 19 \\
& 19
\end{aligned}
\] & \[
\begin{array}{r}
31 \\
31 \\
\hline
\end{array}
\] & mA \\
\hline \begin{tabular}{l}
Power Supply Current - Outputs Low-Logic State, all inputs at 4.0 V \(\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right.\), Strobe at \(\left.2.4 \mathrm{~V}-\mathrm{MC} 75128\right)\) \\
\(\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right.\), Strobe at \(\left.0.4 \mathrm{~V}-\mathrm{MC} 75129\right)\)
\end{tabular} & \({ }^{\text {I CCL }}\) & \[
\begin{aligned}
& \text { - } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 32
\end{aligned}
\] & \[
\begin{aligned}
& 53 \\
& 53
\end{aligned}
\] & mA \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS \(\quad\left(V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.\), unless otherwise noted, See Figures 1 and 2\()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Characteristic} & \multirow[t]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC75128} & \multicolumn{3}{|c|}{MC75129} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Propagation Delay Time - From A Inputs Low-to-High-Level Output High-to-Low-Level Output & \[
\begin{aligned}
& \mathrm{tpLH}^{(\mathrm{A})} \\
& \mathrm{tpHL}^{(\mathrm{A})}
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 18
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 30
\end{aligned}
\] & & \[
\begin{aligned}
& 14 \\
& 18
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 30
\end{aligned}
\] & ns \\
\hline Propagation Delay Time - From S Inputs Low-to-High-Level Output High-to-Low-Level Output & \[
\begin{aligned}
& \text { tpLH }(S) \\
& \text { tpHL }(S)
\end{aligned}
\] & - & \[
\begin{aligned}
& 26 \\
& 22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 35 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 20 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 30
\end{aligned}
\] & ns \\
\hline Ratio of Propagation Delay Times - A Inputs & \(\mathrm{tPLH}^{(\mathrm{A}) / \mathrm{tPHL}}\) ( A\()\) & 0.5 & 0.8 & 1.3 & 0.5 & 0.8 & 1.3 & \\
\hline Transition Time, Low-to-High-Level Output & tTLH & 1.0 & 7.0 & 12 & 1.0 & 7.0 & 12 & ns \\
\hline Transition Time, High-to-Low-Level Output & \({ }^{\text {t }}\) HL & 1.0 & 3.0 & 12 & 1.0 & 3.0 & 12 & ns \\
\hline
\end{tabular}
*No more than one output should be shorted at a time.

\section*{FIGURE 1 - PARAMETER MEASUREMENT INFORMATION}

\section*{LOAD CIRCUIT \\ VOLTAGE WAVEFORMS}


INPUT
(See Notes
A, D, and E)

B. Includes probe and jig capacitance.

OUTPUT
NOTES: A. Input pulses are supplied by a generator having the following characteristics: \(Z_{0}=50 \Omega, P R R=5 \mathrm{MHz}\).
B. Includes probe and jig capacitance.
D. The strobe inputs of MC75129 are in-phase with the output.
E. \(V_{\text {ref1 }}=0.7 V\) and \(V_{\text {ref2 }}=1.7 \mathrm{~V}\) for testing data (A) Inputs, \(V_{\text {ref1 }}=V_{\text {ref2 }}=1.3 \vee\) for strobe inputs.

FIGURE 2 - SCHEMATIC (EACH RECEIVER)


TYPICAL CHARACTERISTICS


FIGURE 5 - INPUT CURRENT versus INPUT VOLTAGE


FIGURE 4 - VOLTAGE TRANSFER CHARACTERISTIC


VI, INPUT VOLTAGE (V)

FIGURE 6 - LOW-LEVEL OUTPUT VOLTAGE versus OUTPUT CURRENT


\section*{SN75172 SN75174}

\section*{Product Preview}

\section*{QUAD LINE DRIVERS WITH NAND ENABLED THREE-STATE OUTPUTS}

The Motorola SN75172/174 are monolithic quad differential line drivers with three-state outputs. They are designed specifically to meet the requirements of EIA-485, EIA-422A Standards and CCITT recommendations V. 11 and X. 27 .
The device is optimized for balanced multipoint bus transmission at rates up to 4 megabits per second. Each driver features wide positive and negative common-mode output voltage ranges making it suitable for party-line applications in noisy environments.
The SN75172/174 provides positive- and negative-current limiting and thermal shutdown for protection from line fault conditions on the transmission bus line. Shutdown occurs at a junction temperature of approximately \(150^{\circ} \mathrm{C}\). These devices offer optimum performance when used with the SN75173 or SN75175 quadruple differential line receivers.
- Meets EIA-485 Standard for Party-Line Operation
- Meets EIA Standard EIA-422A and CCITT Recommendations V. 11 and X. 27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common Mode Output Voltage Range ... -7.0 V to 12 V
- Active High and Active Low Enables
- Thermal Shutdown Protection
- Positive and Negative Current Limiting
- Operates from Single 5.0 Volt Supply
- Low Power Requirements
- Functionally Interchangeable With

AM26LS31 (SN75172)
MC3487 (SN75174)

QUAD EIA-485 LINE DRIVERS WITH THREE-STATE OUTPUTS

SILICON MONOLITHIC INTEGRATED CIRCUIT


This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

\section*{SN75172}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ TRUTH TABLE } \\
\hline Input & \begin{tabular}{c} 
Control \\
Inputs \\
(E/E)
\end{tabular} & \begin{tabular}{c} 
Noninverting \\
Output
\end{tabular} & \begin{tabular}{c} 
Inverting \\
Output
\end{tabular} \\
\hline H & H/L & H & L \\
L & \(\mathrm{H} / \mathrm{L}\) & L & H \\
X & L/H & Z & Z \\
\hline \multicolumn{4}{|c|}{\(\mathrm{L}=\) Low LLogic State } \\
& \(\mathrm{H}=\) High Logic State \\
& X \(=\) Irrelevant \\
Z & \(=\) Third-State (High Impedance) \\
\hline
\end{tabular}

SN75174
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ TRUTH TABLE } \\
\hline Input & \begin{tabular}{c} 
Control \\
Input
\end{tabular} & \begin{tabular}{c} 
Noninverting \\
Output
\end{tabular} & \begin{tabular}{c} 
Inverting \\
Output
\end{tabular} \\
\hline H & H & H & L \\
L & H & L & H \\
X & L & Z & Z \\
\hline \multicolumn{4}{|c|}{ L \(=\) Low Logic State } \\
H \(=\) High Logic State \\
X \(=\) Irrelevant \\
Z \(=\) Third-State (High Impedance) \\
\hline
\end{tabular}

> SN75173
> SN75175

\section*{Advance Information}

\section*{QUAD EIA-485 LINE RECEIVERS}

The Motorola SN75173/175 are monolithic quad differential line receivers with three-state outputs. They are designed specifically to meet the requirements of EIA-485, EIA-422A/23A Standards and CCITT recommendations.
The devices are optimized for balanced multipoint bus transmission at rates up to 10 megabits per second. They also feature high input impedance, input hysteresis for increased noise immu-

\section*{QUAD EIA-485}

LINE RECEIVERS WITH THREE-STATE OUTPUTS

\section*{SILICON MONOLITHIC INTEGRATED CIRCUITS} nity, and input sensitivity of \(\pm 200\) millivolts over a common mode input voltage range of -12 volts to 12 volts. The SN75173/175 are designed for optimum performance when used with the SN75172 or SN75174 quad differential line drivers.
- Meets EIA Standards EIA-422A and EIA-423A, EIA-485
- Meets CCITT Recommendations V.10, V.11, X.26, and X. 27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Input Voltage Range ... - 12 V to 12 V
- Input Sensitivity ... \(\pm 200 \mathrm{mV}\)
- Input Hysteresis ... 50 mV Typ
- High Input Impedance . . . 1 EIA-485 Unit Load
- Operates from Single 5.0 V Supply
- Low Power Requirements
- Plug-In Replacement for MC3486 (SN75175)

AM26LS32 (SN75173)


\footnotetext{
This doc ument contains information on a new product. Specifications and information herein
}
are subject to change without notice

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Input Common Mode Voltage & \(\mathrm{V}_{\mathrm{ICM}}\) & \(\pm 25\) & Vdc \\
\hline Input Differential Voltage & \(\mathrm{V}_{\mathrm{ID}}\) & \(\pm 25\) & Vdc \\
\hline Three-State Control Input Voltage & \(\mathrm{V}_{\mathrm{I}}\) & 7.0 & Vdc \\
\hline Output Sink Current & \(\mathrm{I}_{\mathrm{O}}\) & 50 & mA \\
\hline Storage Temperature & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Junction Temperature - Ceramic Package & \(\mathrm{TJ}_{\mathrm{J}}\) & +175 & \({ }^{\circ} \mathrm{C}\) \\
& & +150 & \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 4.75 to 5.25 & Vdc \\
\hline Operating Ambient Temperature & TA & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Input Common Mode Voltage Range & \(V_{\text {ICM }}\) & -12 to +12 & Vdc \\
\hline Input Differential Voltage Range & \(V_{\text {IDR }}\) & -12 to +12 & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{ICM}}=0 \mathrm{~V}\) ) (Note 1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Differential Input Threshold Voltage (Note 2)
\[
\begin{gathered}
\left(-12 \mathrm{~V} \leqslant \mathrm{~V}_{I C M} \leqslant 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}\right) \\
\left(I_{\mathrm{O}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}} \geqslant 2.7 \mathrm{~V}\right) \\
\left(I_{\mathrm{O}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}} \leqslant 0.5 \mathrm{~V}\right)
\end{gathered}
\] & \(\mathrm{V}_{\mathrm{TH}(\mathrm{D})}\) & - & & \[
\begin{array}{r}
0.2 \\
-0.2
\end{array}
\] & V \\
\hline Input Hysteresis & \(\mathrm{V}_{\mathrm{T}_{+}-} \mathrm{V}_{\mathrm{T}_{-}}\) & - & 50 & - & mV \\
\hline Input Line Current (Differential Inputs) (Unmeasured Input at 0 V - Note 3)
\[
\begin{aligned}
& \left(\mathrm{V}_{1}=+12 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=-7.0 \mathrm{~V}\right)
\end{aligned}
\] & I & - & & \[
\begin{array}{r}
1.0 \\
-0.8
\end{array}
\] & mA \\
\hline Input Resistance (Note 4) & \(\mathrm{r}_{\mathrm{i}}\) & 1 Unit Load & - & - & \\
\hline Input Balance and Output Level (Note 3)
\[
\begin{gathered}
\left(-12 \mathrm{~V} \leqslant \mathrm{~V}_{I C M} \leqslant 12 \mathrm{~V}, \mathrm{~V}_{I H}=2.0 \mathrm{~V}\right) \\
\left(I_{\mathrm{O}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{I D}=0.2 \mathrm{~V}\right) \\
\left(I_{\mathrm{O}}=8.0 \mathrm{~mA}, \mathrm{~V}_{I D}=-0.2 \mathrm{~V}\right) \\
\left(I_{\mathrm{O}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=-0.2 \mathrm{~V}\right)
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{OH}}\) \\
VOL \\
\(V_{O L}\)
\end{tabular} & \[
\begin{gathered}
2.7 \\
-
\end{gathered}
\] & -- & \[
\begin{gathered}
0.45 \\
0.5
\end{gathered}
\] & V \\
\hline Input Voltage - High Logic State (Three-State Control) & \(\mathrm{V}_{\text {IH }}\) & 2.0 & - & - & V \\
\hline Input Voltage - Low Logic State (Three-State Control) & \(\mathrm{V}_{\text {IL }}\) & - & - & 0.8 & V \\
\hline ```
Input Current - High Logic State (Three-State Control)
    \(\left(\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}\right)\)
    \(\left(\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}\right)\)
``` & IIH & - & - & \[
\begin{array}{r}
20 \\
100
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Input Current - Low Logic State (Three-State Control) } \\
& \left(V_{I L}=0.4 \mathrm{~V}\right)
\end{aligned}
\] & ILL & - & - & -100 & \(\mu \mathrm{A}\) \\
\hline Input Clamp Diode Voltage (Three-State Control)
\[
\left(1 \mathrm{IK}_{\mathrm{K}}=-18 \mathrm{~mA}\right)
\] & \(V_{\text {IK }}\) & - & - & -1.5 & v \\
\hline Output Third State Leakage Current
\[
\begin{aligned}
& \left(V_{I(D)}=3.0 \mathrm{~V}, V_{I L}=0.8 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}\right) \\
& \left(V_{I(D)}=-3.0 \mathrm{~V}, V_{I L}=0.8 \mathrm{~V}, V_{O}=2.4 \mathrm{~V}\right)
\end{aligned}
\] & \({ }^{1} \mathrm{OZ}\) & - & - & \[
\begin{array}{r}
-20 \\
20
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Output Short-Circuit Current (Note 5)
\[
\left(\mathrm{V}_{I(D)}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}\right)
\] & 'os & -15 & - & -85 & mA \\
\hline Power Supply Current (\(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\)) (All Inputs Grounded) & \({ }^{1} \mathrm{CC}\) & - & - & 70 & mA \\
\hline
\end{tabular}

NOTES:
1. All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless other wise noted.
2. Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case
3. Refer to EIA-485 for exact conditions. Input balance and guarRefer to EIA-485 for exact conditions. Input balance and guar
anteed output levels are done simultaneously for worst case.
4. Input resistance should be derived from input line current specifications and is shown for reference only. See EIA-485 and input fications and is shown for reference only. See EIA-485 and inpu
line current specifications for more specific input resistance information.
5. Only one output at a time should be shorted.

SWITCHING CHARACTERISTICS (Unless otherwise noted, \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Characteristic} & \multirow{2}{*}{Symbol} & \multicolumn{3}{|c|}{SN75173} & \multicolumn{3}{|c|}{SN75175} & \multirow{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline \begin{tabular}{l}
Propagation Delay Time - Differential Inputs to Output (Output High to Low) \\
(Output Low to High)
\end{tabular} & \[
\begin{aligned}
& \text { tPHL(D) } \\
& \text { tPLH(D) }
\end{aligned}
\] & -- & \[
\begin{aligned}
& 25 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] & - & \[
\begin{aligned}
& 25 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] & ns \\
\hline \begin{tabular}{l}
Propagation Delay Time - Three-State Control to Output (Output Low to Third State) \\
(Output High to Third State) \\
(Output Third State to High) \\
(Output Third State to Low)
\end{tabular} & \[
\begin{aligned}
& \text { tpLZ } \\
& \text { tPHZ } \\
& \text { tPZH } \\
& \text { tpZL }
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& 16 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 30 \\
& 22 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 19 \\
& 11 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 35 \\
& 30 \\
& 30
\end{aligned}
\] & ns \\
\hline
\end{tabular}

SN75173
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Differential Inputs} & \multicolumn{2}{|l|}{3-State Control} & \multirow[t]{2}{*}{Output Y} \\
\hline & 4 & 12 & \\
\hline \(\mathrm{V}_{\text {ID }} \geqslant 0.2 \mathrm{~V}\) & H
\(\times\) & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline \(-0.2 \mathrm{~V}<\mathrm{V}_{\mathrm{ID}}<0.2 \mathrm{~V}\) & H
\(\times\) & K & \[
\begin{aligned}
& ? \\
& ?
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\text {ID }} \leqslant-0.2 \mathrm{~V}\) & H
\(\times\) & \[
\begin{aligned}
& X \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] \\
\hline X & L & H & Z \\
\hline
\end{tabular}

SN75175
FUNCTION TABLE (EACH RECEIVER)
\begin{tabular}{|c|c|c|}
\hline Differential Inputs & \begin{tabular}{c}
3-State \\
Control
\end{tabular} & \begin{tabular}{c}
Output \\
\(\mathbf{Y}\)
\end{tabular} \\
\hline \(\mathrm{V}_{\mathrm{ID}} \geqslant 0.2 \mathrm{~V}\) & H & H \\
\hline\(-0.2 \mathrm{~V}<\mathrm{V}_{\text {ID }}<0.2 \mathrm{~V}\) & H & \(?\) \\
\hline \(\mathrm{~V}_{\text {ID }} \leqslant-0.2 \mathrm{~V}\) & H & L \\
\hline \multicolumn{1}{|l|}{X} & L & Z \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\mathrm{H}=\) high level \\
\(\mathrm{L}=\) low level \\
\(X=\) irrelevant
\end{tabular}

\section*{SWITCHING TEST CIRCUIT AND WAVEFORMS}

FIGURE 1 - PROPAGATION DELAY, DIFFERENTIAL INPUT TO OUTPUT

\section*{SWITCHING TEST CIRCUIT AND WAVEFORMS (continued)}

FIGURE 2 - PROPAGATION DELAY, THREE-STATE CONTROL INPUT TO OUTPUT

Input Pulse Characteristics -
\(\mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}}=6.0 \mathrm{~ns}(10 \%\) to \(90 \%)\) PRR \(=1.0 \mathrm{MHz}, 50 \%\) Duty Cycle

FIGURE 4 - OUTPUT VOLTAGE versus 3-STATE CONTROL VOLTAGE

FIGURE 6 - HIGH LEVEL OUTPUT VOLTAGE versus OUTPUT CURRENT

FIGURE 8 - HIGH LEVEL OUTPUT VOLTAGE versus TEMPERATURE

FIGURE 5 - OUTPUT VOLTAGE versus (INVERTED) 3-STATE CONTROL VOLTAGE - SN75173

FIGURE 7 - LOW LEVEL OUTPUT VOLTAGE versus OUTPUT CURRENT

FIGURE 9 - LOW LEVEL OUTPUT VOLTAGE versus TEMPERATURE

\begin{tabular}{lcl}
\hline Device & Temperature Range & \multicolumn{1}{c}{ Package } \\
\hline TCF6000 & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
TCF6000D & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic SO-8
\end{tabular}

\section*{TCF6000}

\section*{Advance Information}

\section*{PERIPHERAL CLAMPING ARRAY}
... designed to protect input/output lines of microprocessor systems against voltage transients.
- Optimized for HMOS System
- Minimal Component Count
- Low Board Space Requirement
- No P.C.B. Track Crossovers Required
- Applications Areas Include Automotive, Industrial, Telecommunications and Consumer Goods

\section*{PERIPHERAL CLAMPING ARRAY \\ SILICON MONOLITHIC INTEGRATED CIRCUIT}

MAXIMUM RATINGS \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted, Note 1.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 6.0 & V \\
\hline Supply Current & \(\mathrm{I}_{\mathrm{i}}\) & 300 & mA \\
\hline Clamping Current & \(\mathrm{I}_{\mathrm{I}}\) & \(\pm 50\) & mA \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Dissipation \(\left(\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\right)\) & \(\mathrm{P}_{\mathrm{D}}\) & 400 & mW \\
\hline Thermal Resistance (Junction-Ambient) & \(\theta_{\mathrm{JA}}\) & 100 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: Values beyond which damage may occur.

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, 4.5 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}\right.\); if not otherwise noted.)
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Max & Unit \\
\hline Positive Clamping Voltage (Note 2)
\[
\left(I_{\mathrm{K}}=10 \mathrm{~mA},-40^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}\right)
\] & \(\mathrm{V}_{(\text {IK) }}\) & - & \(\mathrm{V}_{\mathrm{CC}}+1.0\) & V \\
\hline Positive Peak Clamping Current & IIK(P) & - & 20 & mA \\
\hline Negative Peak Clamping Voltage
\[
\left(I_{\mathrm{K}}=-10 \mathrm{~mA},-40^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}\right. \text {) }
\] & \(\mathrm{V}_{\text {(IK) }}\) & -0.3 & - & V \\
\hline Negative Peak Clamping Current & IIK(P) & -20 & - & mA \\
\hline \[
\begin{aligned}
& \text { Output Leakage Current } \\
& \left(0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant \mathrm{V}_{\mathrm{CC}}\right) \\
& \left(0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant \mathrm{V}_{\mathrm{CC}},-40^{\circ} \mathrm{C} \leqslant T_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IL} \\
& \mathrm{ILT}
\end{aligned}
\] & & \[
\begin{aligned}
& 1.0 \\
& 5.0
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Channel Crosstalk (\(\mathrm{A}_{C T}=20 \log \mathrm{~L}^{\prime} / /_{\mathrm{K}}\)) & ACT & 100 & - & dB \\
\hline Quiescent Current (Package) & \(\mathrm{I}_{\mathrm{B}}\) & - & 2.0 & mA \\
\hline
\end{tabular}

Note 2: The device might not give 100\% protection in CMOS applications.

\section*{CIRCUIT DESCRIPTION}

To ensure the reliable operation of any integrated circuit based electronics system, care has to be taken that voltage transients do not reach the device I/O pins. Most NMOS, HMOS and Bipolar integrated circuits are particularly sensitive to negative voltage peaks which can provoke latch-up or otherwise disturb the normal functioning of the circuit, and in extreme cases may destroy the device.

Generally the maximum rating for a negative voltage transients on integral circuits is -0.3 V over the whole temperature range. Classical protection units have consisted of diode/resistor networks as shown in Figures 2a and 2 b .

The arrangement in Figure 2a does not, in general, meet the specification and is therefore inadequate.
The problem with the solution shown in Figure \(2 b\) lies mainly with the high current drain through the biassing devices \(R_{1}\) and \(D_{3}\). A second problem exists if the input line carries an analog signal. When \(\mathrm{V}_{\text {in }}\) is close to the ground potential, currents arising from leakage and mismatch between \(D_{3}\) and \(D_{2}\) can be sourced into the input line, thus disturbing the reading.

Figure 3 shows the clamping characteristics which are common to each of the six cells in the Peripheral Clamping Array.
As with the classical protection circuits, positive voltage transients are clamped by means of a fast diode to the \(V_{C C}\) supply line.

FIGURE 3 - CLAMPING CHARACTERISTICS

\section*{APPLICATIONS INFORMATION}

Figure 4 depicts a typical application in a microcomputer based automotive ignition system.
The TCF6000 is being used not only to protect the system's normal inputs but also the (bidirectional) serial diagnostics port.
The value of the input resistors, \(\mathrm{R}_{\mathrm{in}}\), is determined by the clamping current and the anticipated value of the spikes.

Thus:
\begin{tabular}{rl}
\(R_{\text {in }}\) & \(=\frac{V}{I I K}\) Ohms \\
where & \(V\) \\
\(V\) & \(=\) Peak volts (Volts) \\
\(I_{\mathrm{K}}\) & \(=\) Clamping current (Amps)
\end{tabular}

So, taking
\(\mathrm{V}=300 \mathrm{~V}\) typically (SAE J1211)
\(I_{\mathrm{K}}=10 \mathrm{~mA}\) (recommended)
gives
\[
\mathrm{R}_{\mathrm{in}}=30 \mathrm{k}
\]

Resistors of this value will not usually cause any problems in MOS systems, but their presence needs to be taken into account by the designer. Their effect will normally need to be compensated for in Bipolar systems.

FIGURE 4 - TYPICAL AUTOMOTIVE APPLICATION

The use of \(\mathrm{C}_{\mathrm{in}}\) is not mandatory, and is not recommended where the lines to be protected are used for output or for both input and output. For digital input lines, the use of a small capacitor in the range of 50 to 220 pF is recommended as this will reduce the rate of rise of voltage seen by the TCF6000 and hence the possibility of overshoot.
In the case of the analog inputs, such as that from the pressure sensor, the capacitor \(\mathrm{C}_{\mathrm{in}}\) is necessary for devices, such as the MC6805S2 shown, which present a low impedance during the sampling period. The maximum value for \(\mathrm{C}_{\mathrm{in}}\) is determined by the accuracy required, the time taken to sample the input and the input impedance during that time, while the maximum value is determined by the required frequency response and the value of \(\mathrm{R}_{\mathrm{in}}\).

Thus for a resistive input A/D connector where:
TS = Sample time (Seconds)
\(\mathrm{R}_{\mathrm{D}}=\) Device input resistance (Ohms)
\(\mathrm{V}_{\text {in }}=\) Input voltage (Volts)
\(\mathrm{k}=\) Required accuracy (\%)
\(\mathrm{Q}_{1}=\) Charge on capacitor before sampling
\(\mathrm{O}_{2}=\) Charge on capacitor after sampling
ID \(=\) Device input current (Amps)

Thus:
\[
\begin{aligned}
& \mathrm{Q}_{1}-\mathrm{Q}_{2}=\frac{\mathrm{k} \cdot \mathrm{Q}_{1}}{100} \\
& \text { but } \quad \mathrm{Q}_{1}=\mathrm{C}_{\mathrm{in}} \mathrm{~V}_{\text {in }} \\
& \text { and } \quad Q_{1}-Q_{2}=I D \cdot T S \\
& \text { so that } \quad I_{D} T_{S}=\frac{k \cdot C_{i n}-V_{\text {in }}}{100} \\
& \text { and } \quad C_{i n}(\min)=\frac{\mathrm{I}_{\mathrm{D}} \cdot \mathrm{~T}_{\mathrm{S}}}{\mathrm{~V}_{\mathrm{in} \cdot} \cdot \mathrm{k}} \text { Farad } \\
& \text { so } \quad C_{i n}(\min)=\frac{100 . T_{S}}{k \cdot R_{D}} \text { Farad }
\end{aligned}
\]

The calculation for a sample and hold type converter is even simpler:
k = Required accuracy (\%)
\(\mathrm{C}_{\mathrm{H}}=\) Hold capacitor (Farad)
\(C_{\text {in }}(\min)=\frac{100 . C_{H}}{k}\) Farad
For the MC6805S2 this comes out at:
\(C_{\text {in }}(\min)=\frac{100.25 \mathrm{pF}}{0.25}=10 \mathrm{nF}\) for \(1 / 4 \%\) accuracy

\section*{QUAD 1.5 A SINKING HIGH CURRENT SWITCH}

The ULN2068B is a high-voltage, high-current quad Darlington switch array designed for high current loads, both resistive and reactive, up to 300 watts.
It is intended for interfacing between low level (TTL, DTL, LS and 5.0 V CMOS) logic families and peripheral loads such as relays, solenoids, dc and stepping motors, multiplexer LED and incandescent displays, heaters, or other high voltage, high current loads.
The Motorola ULN2068B is specified with minimum guaranteed breakdown of 50 V and is \(100 \%\) tested for safe area using an inductive load. It includes integral transient suppression diodes. Use of a predriver stage reduces input current while still allowing the device to switch 1.5 Amps.
It is supplied in an improved 16 -Pin plastic DIP package with heat sink contact tabs (Pins 4, 5 and 12,13). A copper alloy lead frame allows maximum power dissipation using standard cooling techniques. The use of the contact tab lead frame facilitates attachment of a DIP heat sink while permitting the use of standard layout and mounting practices.
- TTL, DTL, LS, CMOS Compatible Inputs
- 1.5 Amp Maximum Output Current
- Low Input Current
- Internal Freewheeling Clamp Diodes
- \(100 \%\) Inductive Load Tested
- Heat Tab Copper Alloy Lead Frame for Increased Dissipation

MAXIMUM RATINGS (\(T_{A}=25^{\circ} \mathrm{C}\) and ratings apply to any one device in the package unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Output Voltage & \(\mathrm{V}_{\mathrm{O}}\) & 50 & V \\
\hline Input Voltage (Note 1) & \(\mathrm{V}_{\mathrm{I}}\) & 15 & V \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{S}}\) & 10 & V \\
\hline Collector Current (Note 2) & \(\mathrm{I}^{\mathrm{C}}\) & 1.75 & A \\
\hline Input Current (Note 3) & I & 25 & mA \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathbf{s t g}}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Notes: \\
1. Input voltage referenced to ground. \\
2. Allowable output conditions shown in Figures \\
3. May be limited by max input voltage.
\end{tabular} & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION* } \\
\hline Device & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline ULN2068B & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline \begin{tabular}{l}
* Other options of this ULN2060/2070 series are avail- \\
able for volume applications. Contact your local Mo- \\
torola Sales Representative.
\end{tabular} \\
\hline
\end{tabular}

\section*{ULN2068B}

ELECTRICAL CHARACTERISTICS \({ }^{(T} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Fig. & Symbol & Min & Typ & Max & Unit \\
\hline Output Leakage Current
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\right)
\end{aligned}
\] & 1 & ICEX & - & - & \[
\begin{aligned}
& 100 \\
& 500
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Collector-Emitter Saturation Voltage
\[
\left.\begin{array}{l}
\text { (I } C=500 \mathrm{~mA} \\
\text { I }=750 \mathrm{~mA} \\
\text { (I } \mathrm{C}=1.0 \mathrm{~A} \\
\text { (I } \mathrm{C}=1.25 \mathrm{~A}
\end{array}\right\} \mathrm{V}_{\mathrm{in}}=2.4 \mathrm{~V} \text {) }
\] & 2 & \(\mathrm{V}_{\text {CE }}\) (sat) & - & - & \[
\begin{aligned}
& 1.13 \\
& 1.25 \\
& 1.40 \\
& 1.60
\end{aligned}
\] & V \\
\hline Input Current - On Condition
\[
\begin{aligned}
& \left(V_{1}=2.4 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=3.75 \mathrm{~V}\right)
\end{aligned}
\] & 4 & II(on) & - & - & \[
\begin{gathered}
0.25 \\
1.0
\end{gathered}
\] & mA \\
\hline Input Voltage - On Condition
\[
\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~A}\right)
\] & 5 & \(V_{\text {I }}(\mathrm{on)}\) & - & - & 2.4 & V \\
\hline Inductive Load Test
\[
\begin{aligned}
& \left(\mathrm{V} \mathrm{~V}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=24.5 \mathrm{~V},\right. \\
& \mathrm{t} \mathrm{PW}=4.0 \mathrm{~ms})
\end{aligned}
\] & 3 & \(\Delta \mathrm{V}_{\text {out }}\) & - & - & 100 & mV \\
\hline Supply Current
\[
\left(I_{C}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{in}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5.5 \mathrm{~V}\right. \text {) }
\] & 8 & IS & - & - & 6.0 & mA \\
\hline Turn-On Delay Time (\(50 \% \mathrm{E}_{1}\) to \(50 \% \mathrm{E}_{\mathrm{O}}\)) & - & \({ }_{\text {tPHL }}\) & - & - & 1.0 & \(\mu \mathrm{s}\) \\
\hline Turn-Off Delay Time (\(50 \% \mathrm{E}_{1}\) to \(50 \% \mathrm{E}_{\mathrm{O}}\)) & - & \({ }^{\text {tPLH }}\) & - & - & 4.0 & \(\mu \mathrm{s}\) \\
\hline Clamp Diode Leakage Current
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\right)
\end{aligned}
\] & 6 & IR & - & - & \[
\begin{gathered}
50 \\
100
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Clamp Diode Forward Voltage
\[
\begin{aligned}
& \left(I_{F}=1.0 \mathrm{~A}\right) \\
& \left(I_{F}=1.5 \mathrm{~A}\right)
\end{aligned}
\] & 7 & \(\mathrm{V}_{\mathrm{F}}\) & - & - & \[
\begin{gathered}
1.75 \\
2.0
\end{gathered}
\] & V \\
\hline
\end{tabular}

\section*{TEST FIGURES}

FIGURE 1

FIGURE 2

\section*{ULN2068B}

\section*{TEST FIGURES (CONTINUED)}

TYPICAL CHARACTERISTIC CURVES - \(\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}\)

FIGURE 9 - INPUT CURRENT versus INPUT VOLTAGE

FIGURE \(11-T_{A}=70^{\circ} \mathrm{C}\) w/o HEAT SINK

FIGURE 10 - COLLECTOR CURRENT versus INPUT CURRENT

FIGURE \(12-\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \mathbf{w} / \mathrm{STAVER}\) V-8 HEAT SINK (\(37.5^{\circ} \mathrm{C} / \mathrm{W}\))

\section*{ULN2068B}

FIGURE \(15-T_{A}=50^{\circ} \mathrm{C} \mathbf{w} /\) STAVER V-8 HEAT SINK (\(37.5^{\circ} \mathrm{C} / \mathrm{W}\))

FIGURE \(14-T_{A}=50^{\circ} \mathrm{C}\) w/o HEAT SINK

FIGURE \(16-T_{A}=50^{\circ} \mathrm{C}\) w/STAVER V-7 HEAT SINK (\(27.5^{\circ} \mathrm{C} / \mathrm{W}\))

\section*{QUAD 1.5 A SINKING HIGH CURRENT SWITCH}

The ULN2074B is a high voltage, high current quad Darlington switch array designed for high current loads, both resistive and reactive, up to 300 watts.
It is intended for interfacing between low level (TTL, DTL, LS and 5.0 V CMOS) logic families and peripheral loads such as relays, solenoids, dc and stepping motors, multiplexer LED and incandescent displays, heaters, or other high-voltage, high current loads.
The Motorola ULN2074B is specified with minimum guaranteed breakdown of 50 V and is \(100 \%\) tested for safe area using an inductive load.
It is supplied in an improved 16-Pin plastic DIP package with heat sink contact tabs (Pins 4, 5 and 12,13). A copper alloy lead frame allows maximum power dissipation using standard cooling techniques. The use of the contact tab lead frame facilitates attachment of a DIP heat sink while permitting the use of standard layout and mounting practices.
- TTL, DTL, LS, CMOS Compatible Inputs

- 1.5 Amp maximum Output Current
- Low Input Current
- 100\% Inductive Load Tested
- Heat Tab Copper Alloy Lead Frame for Increased Dissipation

MAXIMUM RATINGS \({ }^{(T}{ }_{\mathbf{A}}=25^{\circ} \mathrm{C}\) and ratings apply to any one device in the package unless otherwise noted).
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Output Voltage & \(\mathrm{V}_{\mathrm{O}}\) & 50 & V \\
\hline Input Voltage (Note 1) & \(\mathrm{V}_{\mathrm{I}}\) & 30 & V \\
\hline Collector Current (Note 2) & \(\mathrm{I}_{\mathrm{C}}\) & 1.75 & A \\
\hline Input Current (Note 3) & \(\mathrm{I}_{\mathrm{I}}\) & 25 & mA \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Input voltage referenced to ground (substrate).
2. Allowable output conditions shown in Figures 8 and 9
3. May be limited by max input voltage.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION* } \\
\hline Device & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline ULN2074B & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}
* Other options of this ULN2060/2070 series are available for volume applications. Contact your local Motorola Sales Representative.

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Fig. & Symbol & Min & Typ & Max & Unit \\
\hline Output Leakage Current
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\right)
\end{aligned}
\] & 1 & ICEX & - & - & \[
\begin{aligned}
& 100 \\
& 500
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Collector-Emitter Saturation Voltage
\[
\begin{aligned}
& \left(I_{C}=500 \mathrm{~mA}, I_{I}=625 \mu \mathrm{~A}\right) \\
& \left(I_{C}=750 \mathrm{~mA}, I_{I}=935 \mu \mathrm{~A}\right) \\
& \left(I_{C}=1.0 \mathrm{~A}, I=1.25 \mathrm{~mA}\right) \\
& \left(I_{C}=1.25 \mathrm{~A}, I_{I}=2.0 \mathrm{~mA}\right)
\end{aligned}
\] & 2 & \(\mathrm{V}_{\text {CE(sat) }}\) & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 1.13 \\
& 1.25 \\
& 1.40 \\
& 1.60
\end{aligned}
\] & V \\
\hline Input Current - On Condition
\[
\begin{aligned}
& \left(V_{1}=2.4 \mathrm{~V}\right) \\
& \left(V_{1}=3.75 \mathrm{~V}\right)
\end{aligned}
\] & 4 & I(on) & \[
\begin{aligned}
& 2.0 \\
& 4.5
\end{aligned}
\] & - & \[
\begin{aligned}
& 4.3 \\
& 9.6
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { Input Voltage }- \text { On Condition } \\
\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=1.0 \mathrm{~A}\right) \\
\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=1.5 \mathrm{~A}\right) \\
\hline
\end{gathered}
\] & 5 & \(V_{1}(\mathrm{on})\) & - & - & \[
\begin{aligned}
& 2.0 \\
& 2.5
\end{aligned}
\] & V \\
\hline Inductive Load Test
\[
\left(\mathrm{V}_{\mathrm{CC}}=24.5 \cdot \mathrm{~V}, \mathrm{t} \mathrm{PW}=4.0 \mu \mathrm{~s}\right)
\] & 3 & \(\Delta V_{\text {out }}\) & - & - & 100 & mV \\
\hline Turn-On Delay Time (\(50 \% \mathrm{E}_{\mathrm{l}}\) to \(50 \% \mathrm{E}_{\mathrm{O}}\)) & - & tPHL & - & - & 1.0 & \(\mu \mathrm{S}\) \\
\hline Turn-Off Delay Time (\(50 \% \mathrm{E}_{\mathrm{I}}\) to \(50 \% \mathrm{E}_{\mathrm{O}}\)) & - & tPLH & - & - & 1.5 & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}

\section*{TEST FIGURES}

FIGURE 1

FIGURE 2

FIGURE 4

\section*{FIGURE 5}

TYPICAL CHARACTERISTIC CURVES

FIGURE 6 - INPUT CURRENT versus INPUT VOLTAGE

FIGURE \(8-T_{A}=70^{\circ} \mathrm{C} w / o\) HEAT SINK

FIGURE 7 - COLLECTOR CURRENT versus INPUT CURRENT

FIGURE \(9-\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \mathbf{w} /\) STAVER V-8 HEAT SINK (\(37.5^{\circ} \mathrm{C} / \mathrm{W}\))

\section*{ULN2074B}

FIGURE \(12-T_{A}=50^{\circ} \mathrm{C} \mathbf{w} /\) STAVER V-8 HEAT SINK (\(37.5^{\circ} \mathrm{C} / \mathrm{W}\))

FIGURE 11 - \(\mathbf{T}_{A}=50^{\circ} \mathrm{C} \mathbf{w} / \mathrm{o}\) HEAT SINK

FIGURE \(13-\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C} \mathbf{w} /\) STAVER V-7 HEAT SINK (\(27.6^{\circ} \mathrm{C} / \mathrm{W}\))

\section*{OCTAL HIGH VOLTAGE, HIGH CURRENT DARLINGTON TRANSISTOR ARRAYS}

The eight NPN Darlington connected transistors in this family of arrays are ideally suited for interfacing between low logic level digital circuitry (such as TTL, CMOS or PMOS/NMOS) and the higher current/voltage requirements of lamps, relays, printer hammers or other similar loads for a broad range of computer, industrial, and consumer applications. All devices feature opencollector outputs and free wheeling clamp diodes for transient suppression.

The ULN2801 is a general purpose device for use with CMOS, PMOS or TTL logic. The ULN2802 contains a zener diode and resistor in series with the input to limit input currents and assure compatibility with 14 to 25 volt PMOS logic. The ULN2803 is designed to be compatible with standard TTL families while the ULN2804 is optimized for 6 to 15 volt high level CMOS or PMOS.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{MAXIMUM RATINGS (\(T_{A}=25^{\circ} \mathrm{C}\) and rating apply to any one device in the package unless otherwise noted.)} \\
\hline Rating & Symbol & Value & Unit \\
\hline Output Voltage & \(\mathrm{V}_{\mathrm{O}}\) & 50* & V \\
\hline Input Voltage (Except ULN2801) & \(\mathrm{V}_{1}\) & 30 & V \\
\hline Collector Current - Continuous & \({ }^{\prime}\) & 500 & mA \\
\hline Base Current - Continuous & \(\mathrm{I}_{\mathrm{B}}\) & 25 & mA \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\text {A }}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & TJ & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
\[
\mathrm{R}_{\theta \mathrm{JA}}=55^{\circ} \mathrm{C} / \mathrm{W}
\] \\
Do not exceed maximum current limit per driver. \\
*Higher voltage selection available. See your local representative.
\end{tabular}} \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{DEVICE} & \multicolumn{3}{|l|}{CHARACTERISTICS} \\
\hline & INPUT COMPATIBILITY & & \(\mathrm{T}_{\mathbf{A}}\) \\
\hline ULN2801A & General Purpose CMOS, PMOS & \(50 \mathrm{~V} / 500 \mathrm{~mA}\) & 0 to \(+70^{\circ} \mathrm{C}\) \\
\hline ULN2802A & 14-25 Volt PMOS & \(50 \mathrm{~V} / 500 \mathrm{~mA}\) & 0 to \(+70^{\circ} \mathrm{C}\) \\
\hline ULN2803A & TTL, 5.0 V CMOS & \(50 \mathrm{~V} / 500 \mathrm{~mA}\) & 0 to \(+70^{\circ} \mathrm{C}\) \\
\hline ULN2804A & 6-15 V CMOS, PMOS & \(50 \mathrm{~V} / 500 \mathrm{~mA}\) & 0 to \(+70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{OCTAL PERIPHERAL DRIVER ARRAYS}

SILICON MONOLITHIC INTEGRATED CIRCUITS

A SUFFIX
PLASTIC PACKAGE CASE 707-02

\section*{PIN CONNECTIONS}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Characteristic} & Fig. & Symbol & Min & Typ & Max & Unit \\
\hline Output Leakage Current
\[
\begin{aligned}
& \left({ }^{*} \mathrm{~V}_{\mathrm{O}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right) \\
& \left({ }^{*} \mathrm{~V}_{\mathrm{O}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{V}_{\mathrm{O}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}, \mathrm{~V}_{1}=6.0 \mathrm{~V}\right) \\
& \left({ }^{*} \mathrm{~V}_{\mathrm{O}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}, \mathrm{~V}_{1}=1.0 \mathrm{~V}\right)
\end{aligned}
\] & \begin{tabular}{l}
All Types \\
All Types \\
ULN2802 \\
ULN2804
\end{tabular} & 1 & 'CEX & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
100 \\
50 \\
500 \\
500
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Collector-Emitter Saturation Voltage
\[
\begin{aligned}
& \left(I_{C}=350 \mathrm{~mA}, I_{\mathrm{B}}=500 \mu \mathrm{~A}\right) \\
& \left(I_{C}=200 \mathrm{~mA}, I_{\mathrm{B}}=350 \mu \mathrm{~A}\right) \\
& \left(I_{C}=100 \mathrm{~mA}, I_{\mathrm{B}}=250 \mu \mathrm{~A}\right)
\end{aligned}
\] & All Types All Types All Types & 2 & \(\mathrm{V}_{\text {CE(sat) }}\) & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
1.1 \\
0.95 \\
0.85 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.3 \\
& 1.1
\end{aligned}
\] & V \\
\hline Input Current - On Condition
\[
\begin{aligned}
& \left(V_{1}=17 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=3.85 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=5.0 \mathrm{~V}\right) \\
& \left(\mathrm{V}_{1}=12 \mathrm{~V}\right)
\end{aligned}
\] & \begin{tabular}{l}
ULN2802 \\
ULN2803 \\
ULN2804 \\
ULN2804
\end{tabular} & 4 & I(on) & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
0.82 \\
0.93 \\
0.35 \\
1.0
\end{gathered}
\] & \[
\begin{gathered}
1.25 \\
1.35 \\
0.5 \\
1.45
\end{gathered}
\] & mA \\
\hline Input Voltage - On Condition
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}\right) \\
& \left(\mathrm{V} C E=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}\right) \\
& \left(\mathrm{V} C E=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA}\right) \\
& \left(\mathrm{V} C E=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}\right) \\
& \left(\mathrm{V} C E=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=275 \mathrm{~mA}\right) \\
& \left(\mathrm{V} C E=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}\right)
\end{aligned}
\] & \begin{tabular}{l}
ULN2802 \\
ULN2803 \\
ULN2803 \\
ULN2803 \\
ULN2804 \\
ULN2804 \\
ULN2804 \\
ULN2804
\end{tabular} & 5 & \(V_{1(0 n)}\) & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & -
-
-
-
-
-
-
- & \[
\begin{aligned}
& 13 \\
& 2.4 \\
& 2.7 \\
& 3.0 \\
& 5.0 \\
& 6.0 \\
& 7.0 \\
& 8.0
\end{aligned}
\] & V \\
\hline Input Current - Off Condition
\[
\left(I_{C}=500 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)
\] & All Types & 3 & '/(off) & 50 & 100 & - & \(\mu \mathrm{A}\) \\
\hline DC Current Gain
\[
\left(\mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}\right)
\] & ULN2801 & 2 & \(\mathrm{h}_{\text {FE }}\) & 1000 & - & - & - \\
\hline Input Capacitance & & & \(C_{1}\) & - & 15 & 25 & pF \\
\hline Turn-On Delay Time (50\% \(\mathrm{E}_{1}\) to \(50 \% \mathrm{E}_{\mathrm{O}}\)) & & & \(t_{\text {on }}\) & - & 0.25 & 1.0 & \(\mu \mathrm{S}\) \\
\hline Turn-Off Delay Time (50\% \(E_{1}\) to \(50 \% E_{0}\)) & & & \({ }^{\text {toff }}\) & - & 0.25 & 1.0 & \(\mu \mathrm{S}\) \\
\hline Clamp Diode Leakage Current
\[
\left(V_{R}=50 \mathrm{~V}\right)
\] & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& T_{A}=+70^{\circ} \mathrm{C}
\end{aligned}
\] & 6 & \(I_{R}\) & - & - & \[
\begin{array}{r}
50 \\
100
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Clamp Diode Forward Voltage
\[
\left(I_{F}=350 \mathrm{~mA}\right)
\] & & 7 & \(V_{F}\) & - & 1.5 & 2.0 & V \\
\hline
\end{tabular}
*Higher voltage selections available, contact your local representative.

\section*{ULN2801, ULN2802, ULN2803, ULN2804}

\section*{TEST FIGURES}
(SEE FIGURE NUMBERS IN ELECTRICAL CHARACTERISTICS TABLES)

FIGURE 1

FIGURE 6

TYPICAL CHARACTERISTIC CURVES - \(\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
(unless otherwise noted)
OUTPUT CHARACTERISTICS

INPUT CHARACTERISTICS

In Brief...
RF
Radio communication has greatly expanded its scope in the past several years. Once dominated by public safety radio, the 30 to 1000 MHz spectrum is now packed with personal and low cost business radio systems. The vast majority of this equipment uses FM or FSK modulation and is targeted at short range applications. From mobile phones and VHF marine radios to garage door openers and radio controlled toys, these new systems have become a part of our lifestyle. Motorola linear products has focused on this technology adding a wide array of new products including complete receivers processed in our exclusive 3 GHz MOSAIC 1.5 process. New surface mount packages, for high density assembly, are available for all of these products, as is a growing family of supporting applications notes and development kits.

\section*{Telephone \& Voice/Data}

Traditionally, an office environment has utilized two distinctly separate wired communications systems - Telecommunications and Datacommunications. Each had its individual hardware components complement and each required its own independent transmission line system: twisted wire pairs for Telecom and relatively high priced coax cable for Datacom. But times have changed. Today, Telecom and Datacom coexist comfortably on inexpensive twisted wire pairs and utilize a significant number of components in common. This has led to the development and enhancement of PBX (Private Branch Exchanges) to the point where the long heralded "office of the future," with simultaneous voice and data communications capability at each station, is no longer of the future at all. The capability is here today!

Motorola semiconductor components serve a wide range of requirements for the voice/data marketplace. They encompass both CMOS and linear technologies, each to its best advantage, and upgrade the conventional analog voice systems and establish new capabilities in digital communications. Early products, such as the solid-state single-chip crosspoint switch, the more recent monolithic Subscriber-Loop-Interface Circuit (SLIC), a single-chip Codec/Filter (Monocircuit) the latest Universal Digital Loop Transceivers (UDLT), and singlechip telephone circuits are just a few examples of Motorola leadership in the voice/data area.
Selector GuideRF Communications8-2
Telecommunications 8-4
Alphanumeric Listing 8-11
Related Application Notes 8-12
Data Sheets 8-13

\section*{Communication Circuits}

\section*{RF Communications}

Narrowband Dual Conversion Receivers. 8-2
AM Receiver, Medium/Short Wave 8-2
Wideband Data Receivers 8-2
Narrowband IFs . 8-2
Transmitters . 8-2
Balanced Modulator/Demodulator 8-3

Telecommunications
Subscriber Loop Interface 8-4
Electronic Telephone 8-5
Tone Ringers 8-6
Speech Networks 8-7
Speakerphone 8-8
Telephone Accessory 8-9
CVSD Modulator/Demodulator 8-10

\section*{RF Communications}

Narrowband Dual Conversion Receivers - FM/FSK - VHF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & VCC & ICC & Sensitivity & \begin{tabular}{c}
RF \\
Input \\
(Max)
\end{tabular} & \begin{tabular}{c}
IF1 \\
(Max)
\end{tabular} & \begin{tabular}{c}
IF2 \\
(limiter \\
in)
\end{tabular} & Mute & RSSI & \begin{tabular}{c}
Max \\
Data \\
Rate
\end{tabular} & Notes & Package & \begin{tabular}{c}
Case \\
Suffix
\end{tabular} \\
\hline MC3362 & \(2-7 \mathrm{~V}\) & 3 mA & \(<1 \mu \mathrm{~V}\) & 180 MHz & 10.7 MHz & 455 kHz & - & \(\checkmark\) & 1.2 kb & \begin{tabular}{l}
Includes \\
buffered VCO \\
output
\end{tabular} & \begin{tabular}{c}
24 Pin \\
DIP, \\
SOIC
\end{tabular} & \begin{tabular}{c}
P/724 \\
DW/751E
\end{tabular} \\
\hline MC3363 & \(2-7 \mathrm{~V}\) & 4 mA & \(<1 \mu \mathrm{~V}\) & 180 MHz & 10.7 MHz & 455 kHz & \(\checkmark\) & \(\checkmark\) & 1.2 kb & \begin{tabular}{l}
Includes RF \\
amp, mute
\end{tabular} & \begin{tabular}{c}
28 Pin \\
SOIC
\end{tabular} & DW/751F \\
\hline
\end{tabular}

AM Receiver Medium/Short Wave
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MC 13041 & \(6.5-16.5 \mathrm{~V}\) & 25 mA & \(6 \mu \mathrm{~V}\) & 10 MHz & 455 kHz & - & - & \(\checkmark\) & - & \begin{tabular}{l}
Includes scan \\
stop
\end{tabular} & \begin{tabular}{c}
20 Pin \\
DIP
\end{tabular} & \begin{tabular}{c}
P/738 \\
\(\mathrm{DW} / 751 \mathrm{D}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Wideband Data (FM/FSK) Receiver - VHF}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & VCC & ICC & Sensitivity & \begin{tabular}{c}
IF1 \\
(Max)
\end{tabular} & \begin{tabular}{c}
IF2 \\
(limiter \\
in)
\end{tabular} & Mute & RSSI & \begin{tabular}{c}
Max \\
Data \\
Rate
\end{tabular} & Notes & Package & \begin{tabular}{c}
Case \\
Suffix
\end{tabular} \\
\hline MC3356 & \(3-9 \mathrm{~V}\) & 25 mA & \(30 \mu \mathrm{~V}\) & 200 MHz & 10.7 MHz & \(\checkmark\) & \(\checkmark\) & 500 kb & \begin{tabular}{l}
Includes front end \\
mixer/L.O.
\end{tabular} & \begin{tabular}{c}
20 Pin \\
DIP/PLCC
\end{tabular} & \begin{tabular}{c}
P/738 \\
FN/775
\end{tabular} \\
\hline
\end{tabular}

Narrowband IF's - Wideband (FM/FSK) IF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MC3357 & 4-8V & 5 mA & \(5 \mu \mathrm{~V}\) & 45 MHz & 455 kHz & \(\checkmark\) & - & - & & \[
\begin{gathered}
16 \text { Pin } \\
\text { DIP/SOIC }
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{P} / 648 \\
& \mathrm{D} / 751 \mathrm{~B}
\end{aligned}
\] \\
\hline MC3359 & \(4-9 \mathrm{~V}\) & 7 mA & \(2 \mu \mathrm{~V}\) & 45 MHz & 455 kHz & \(\checkmark\) & - & - & & \[
\begin{aligned}
& 18 \text { Pin } \\
& \text { DIP/SOIC }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{P} / 707 \\
\mathrm{DW} / 751 \mathrm{C}
\end{gathered}
\] \\
\hline MC3361 & 2-8 V & 6 mA & \(2 \mu \mathrm{~V}\) & 60 MHz & 455 kHz & \(\checkmark\) & - & - & & \[
\begin{aligned}
& 16 \text { Pin } \\
& \text { DIP/SOIC }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{P} / 648 \\
\mathrm{D} / 751 \mathrm{~B}
\end{gathered}
\] \\
\hline MC3367 & 1-5V & 1 mA & \(<1 \mu \mathrm{~V}\) & 75 MHz & 455 kHz & \(\checkmark\) & - & 1.2 kb & 1 Cell Operation & \[
\begin{gathered}
28 \text { Pin } \\
\text { SOIC }
\end{gathered}
\] & DW/751F \\
\hline MC3371 & 2-8 V & 6 mA & \(2 \mu \mathrm{~V}\) & 60 MHz & 455 kHz & \(\checkmark\) & \(\checkmark\) & - & (3088 Intro) & \[
\begin{gathered}
16 \text { Pin } \\
\text { DIP/SOIC }
\end{gathered}
\] & \[
\begin{gathered}
\text { P/648 } \\
\mathrm{D} / 751 \mathrm{~B}
\end{gathered}
\] \\
\hline MC13055 & 3-12 V & 25 mA & \(20 \mu \mathrm{~V}\) & - & 40 MHz & \(\checkmark\) & \(\checkmark\) & 2 Mb & Wideband Data IF & \[
\begin{array}{|c|}
16 \text { Pin } \\
\text { DIP/SOIC } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{P} / 648 \\
\mathrm{D} / 751 \mathrm{~B}
\end{gathered}
\] \\
\hline
\end{tabular}

Transmitters - FM/FSK
\begin{tabular}{|c|c|c|c|c|c|c|c|l|c|c|}
\hline \multicolumn{1}{|c|}{ Type } & VCC & ICC & Pout & \begin{tabular}{c}
Max RF \\
Freq. \\
Out
\end{tabular} & \begin{tabular}{c}
Battery \\
Check
\end{tabular} & \begin{tabular}{c}
Tone \\
OSC
\end{tabular} & \begin{tabular}{c}
Max \\
Mod. \\
Freq.
\end{tabular} & \multicolumn{1}{c|}{ Notes } & Package & Case \\
Suffix
\end{tabular}

Balanced Modulator/Demodulator

\section*{Low Power FM Transmitter System \\ MC2831A - \(\mathrm{T}_{\mathrm{A}}=-30^{\circ}\) to \(+75^{\circ} \mathrm{C}\), Case 648, 751B}
- Complete VHF FM Transmitter/Exciter
- Mike Preamp with Limiting
- Tone Generator for CTSS or AFSK
- Crystal or L-C VCO Operation
- Buffer/Multiplier Output Stage
- Low Voltage (internal reference) Warning Circuit
- Easily Partitioned for Semicustom Applications

MC2831A

\section*{Low Voltage FM Narrowband} Receiver
MC3367- \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\), Case 751F
- Single Cell Operation to \(0.9 \mathrm{~V}_{\mathrm{CC}}\)
- Single Conversion Operation to 75 MHz
- Current Drain of 1 mA
- Split I.F. Amplifier for Single or Dual Filters
- Analog and Data Outputs
- Sensitivity of \(0.7 \mu \mathrm{~V}\) Typ for 20 dB Quieting
- Low Battery Voltage Indicator

MOSAIC \({ }^{\circledR} 1.5\)
VHF Narrowband Dual-Conversion
Receivers
MC3362/MC3363- \(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\), Case 724, 751A
- Operation to 180 MHz
- 2-8 V dc Supply
- \(>1 \mu \mathrm{~V}\) for 20 dB Quieting Sensitivity
- Analog and Data Modulation Recovery
- >60 dB Dynamic Range RSSI
- Crystal or VCO First L.O. Operation
- On-Chip RF Amp/MC3363

\section*{Telecommunications}

\section*{Subscriber Loop Interface Circuit (SLIC)}

MC3419-1L - Case 726

The replacement of two-to-four wire conversion hybrid transformers in Central Office, PBX, and Subscriber Carrier equipment with the SLIC has resulted in major improvement in telephony equipment. The SLIC family performs this task, along with all the other BORSH \(\dagger\) functions required by signal transmission. These include the provision of dc power to the telephone (Battery); Overvoltage protection; Ring trip detection; Supervisory features such as hook status and dial pulsing; 2-to-4 wire conversion, suppression of longitudinal signals (Hybrid); and Testing.
- All Key Parameters Externally Programmable
- Current Sensing Outputs Monitor Status of Both Tip and Ring Leads
- On-Hook Power Below 5.0 mW
- Digital Hook Status Output
- Power Down Input
- Ground Fault Protection
- Size and Weight Reduction Over Conventional Approaches
- The sale of this product is licensed under patent No. 4,004,109. All royalties related to this patent are included in the unit price.

\section*{Electronic Telephone}

\section*{The Complete Electronic}

\section*{Telephone Circuit}

MC34010/11A - \(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+60^{\circ} \mathrm{C}\), Case 711, 777

The conventional transformer-driven telephone handset is undergoing major innovations. The bulky transformer is disappearing. So are many of its discrete components, including the familiar telephone bell. They are being replaced with integrated circuits that perform all the major handset functions simply, reliably and inexpensively ... functions such as \(2-\mathrm{to}-4\) wire conversion, DTMF dialing, tone ringing, and a variety of related activities.
The culmination of these capabilities is the Electronic Telephone Circuit, the MC34010/11A. These IC's place all of the above mentioned functions on a single monolithic chip.
These telephone circuits utilize advanced bipolar linear (\({ }^{2} \mathrm{~L}\)) technology and provide all the necessary elements of a modern tone-dialing telephone. The MC34010 even incorporates an MPU interface circuit for the inclusion of automatic dialing in the final system.

\section*{Features}
- Provides All Basic Telephone Functions, Including DTMF Dialer, Tone Ringer, Speech Network and Line Voltage Regulator
- DTMF Generator Uses Low-Cost Ceramic Resonator with Accurate Frequency Synthesis Technique
- Tone Ringer Drives Piezoelectric Transducer and Satisfies EIA-470 Requirements
- Speech Network Provides Two-Four Wire Conversion with Adjustable Sidetone Utilizing an Electret Transmitter
- On-Chip Regulator Insures Stable Operation Over Wide Range of Loop Lengths
- 12 L Technology Provides Low 1.4 Volt Operation and High Static Discharge Immunity
- MC34010P Provides Microprocessor Interface Port for Automatic Dialing Features

\section*{Tone Ringers}

The MC34012 and MC34017 Tone Ringers are designed to replace the bulky bell assembly of a telephone, while providing the same function and performance under a variety of conditions. The operational requirements spelled out by the FCC and the EIA, simply stated, are that a ringer
circuit MUST function when a ringing signal is provided, and MUST NOT ring when other signals (speech, dialing signals, noise) are on the line. The MC34012 series and the MC34017 series were designed to meet those requirements.

MC34012- \(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+60^{\circ} \mathrm{C}\), Case 626, 751

- Complete Telephone Bell Replacement Circuit with Minimum External Components
- On-Chip Diode Bridge and Transient Protection
- Direct Drive for Piezoelectric Transducers
- Base Frequency Options - MC34012-1: 1.0 kHz

MC34012-2: 2.0 kHz
MC34012-3: 500 Hz
- Push-Pull Output Stage for Greater Output Power Capability (MC34017)
- Base Frequency Options - MC34017-1: 1.0 kHz

MC34017-2: 2.0 kHz
MC34017-3: 500 Hz
- Input Impedance Signature Meets Bell and EIA Standards
- Rejects Rotary Dial Transients

MC34017- \(T_{A}=-20^{\circ}\) to \(+60^{\circ} \mathrm{C}\), Case 626, 751

\section*{Speech Networks}

\section*{Telephone Speech Network and Tone Dialer} MC34013A - \(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+60^{\circ} \mathrm{C}\), Case 710,776
- Linear \(/{ }^{2}\) L Technology Provides Low 1.4 Volt Operation in Both Speech and Dialing Modes
- Speech Network Provides 2-4 Wire Conversion with Adjustable Sidetone Utilizing an Electret Microphone
- DTMF Generator Uses Low-Cost Ceramic Resonator with Accurate Frequency Synthesis Technique
- On-Chip Regulator Insures Stable Operation Over Wide Range of Loop Lengths
- Dialer Mutes Speech Network with Internal Delay for Click Suppression on DTMF Key Release

\section*{Speech Network with Dialer Interface}

MC34014-TA \(=-20^{\circ}\) to \(+60^{\circ} \mathrm{C}\), Case 707, 775
The MC34014 is a Telephone Speech Network integrated circuit which incorporates adjustable transmit, receive, and sidetone functions, line interface circuit, dialer interface, and a regulated output voltage for a dialer circuit. It includes an equalization circuit to compensate for various line lengths and the conversion from 2-to-4 wire is accomplished with supply voltages as low as 1.5 volts.
- Transmit, Receive, and Sidetone Gains Set By External Resistors
- Loop Length Equalization for Transmit, Receive, and Sidetone Functions
- Operates Down to 1.5 Volts (\(\mathrm{V}+\)) in Speech Mode
- Provides Regulated Voltage for CMOS Dialer
- Speech Amplifiers Muted During Pulse and Tone Dialing
- DTMF Output Level Adjustable with a Single Resistor
- Compatible with 2-Terminal Electret Microphones
- Compatible with Receiver Impedances of \(150 \Omega\) and Higher

\section*{Telephone Speech Network with Dialer Interface}

MC34114- \(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 707, 751D
- Operation Down to 1.2 Volts
- Externally Adjustable Transmit, Receive, and Sidetone Gains
- Differential Microphone Amplifier Input Minimizes RFI
- Transmit, Receive, and Sidetone Equalization on both Voice and DTMF Signals
- Regulated 1.7 Volts Output for Biasing Microphone
- Regulated 3.3 Volts Output for Powering External Dialer
- Microphone and Receive Amplifiers Muted During Dialing
- Differential Receive Amplifier Output Eliminates Coupling Capacitor
- Operates with Receiver Impedances of \(150 \Omega\) and Higher
- MC34114 Complies with Bell Telephone and BT Standards

\section*{Voice Switched Speakerphone Circuit \\ MC34018- \(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+60^{\circ} \mathrm{C}\), Case 710, 776}

The MC34018 Speakerphone integrated circuit incorporates the necessary amplifiers, attenuators, and control functions to produce a high quality hands-free speakerphone system. Included are a microphone amplifier, a power audio amplifier for the speaker, transmit and receive attenuators, a monitoring system for background sound level, and an attenuation control system which responds to the relative transmit and receive levels as well as the background level. Also included are all necessary regulated voltages for both internal and external circuitry, allowing linepowered operation (no additional power supplies required). A Chip Select pin allows the chip to be powered down when not in use. A volume control function may be implemented with an external potentiometer. MC34018 applications include speakerphones for household and business use, intercom systems, automotive telephones, and others.

- All Necessary Level Detection and Attenuation Controls for a Hands-Free Telephone in a Single Integrated Circuit
- Background Noise Level Monitoring with Long Time Constant
- Wide Operating Dynamic Range Through Signal Compression
- On-chip Supply and Reference Voltage Regulation
- Typical 100 mW Output Power (into \(25 \Omega\)) with Peak Limiting to Minimize Distortion
- Chip Select Pin for Active/Standby Operation
- Linear Volume Control Function

\section*{Voice Switched Speakerphone Circuit \\ MC34118- \(\mathrm{T}_{\mathrm{A}}=-20^{\circ}\) to \(+60^{\circ} \mathrm{C}\), Case 710, 751F}

The MC34118 Voice Switched Speakerphone Circuit incorporates the necessary amplifiers, attenuators, level detectors, and control algorithm to form the heart of a high quality hands-free speakerphone system. Included are a microphone amplifier with adjustable gain and MUTE control, Transmit and Receive attenuators which operate in a complementary manner, level detectors at both input and output of both attenuators, and background noise monitors for both the transmit and receive channels. A Dial Tone Detector prevents the dial tone from being attenuated by the Receive background noise monitor circuit. Also included are two line driver amplifiers which can be used to form a hybrid network in conjunction with an external coupling transformer. A high-pass filter can be used to filter out 60 Hz noise in the receive channel, or for other filtering functions. A Chip Disable pin permits powering down the entire circuit to conserve power on long loops where loop current is at a minimum.
The MC34118 may be operated from a power supply, or it can be powered from the telephone line, requiring typically 5.0 mA . The MC34118 can be interfaced directly to Tip and Ring (through a coupling transformer) for stand-alone operation, or it can be used in conjunction with a handset speech network and/or other features of a featurephone.

- Improved Attenuator Gain Range: 52 dB Between Transmit and Receive
- Low Voltage Operation for Line-Powered Applications (3.0-6.5 V)
- 4-Point Signal Sensing for Improved Sensitivity
- Background Noise Monitors for Both Transmit and Receive Paths
- Microphone Amplifier Gain Set by External Resistors - Mute Function Included
- Chip Disable for Active/Standby Operation
- On Board Filter Pinned-Out for User Defined Function
- Dial Tone Detector to Inhibit Receive Idle Mode During Dial Tone Presence
- Compatible with MC34119 Speaker Amplifier

\section*{Telephone Accessory Circuits}

\author{
Audio Amplifier \\ MC34119 - \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 626, 751
}

A low power audio amplifier circuit intended (primarily) for telephone applications, such as speakerphones. Provides differential speaker outputs to maximize output swing at low supply voltages (2 volt min.). Coupling capacitors to the speaker, and snubbers, are not required. Overall gain is externally adjustable from 0 to 46 dB . A Chip Disable pin permits powering-down to mute the audio signal and reduce power consumption.
- Drives a Wide Range of Speaker Loads (16-100 \(\Omega\))
- Output Power Exceeds 250 mW with \(32 \Omega\) Speaker
- Low Distortion (THD \(=0.4 \%\) Typical)
- Wide Operating Supply Voltage (2-16 Volts) - Allows Telephone Line Powered Applications.
- Low Quiescent Supply Current (2.5 mA Typical)
- Low Power-Down Quiescent Current (\(60 \mu \mathrm{~A}\) Typical)

\section*{Current Mode Switching Regulator MC34129-TA \(=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 646, 751A}

High performance current mode switching regulator for lowpower digital telephones. Unique internal fault timer provides automatic restart for overload recovery. A start/run comparator is included to implement bootstrapped operation of \(\mathrm{V}_{\mathrm{CC}}\).
Although primarily intended for digital telephone systems, these devices can be used cost effectively in many other applications.
On-chip functions and features include:
- Current Mode Operation to 300 kHz
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-By-Cycle Current Limiting
- Latched-Off or Continuous Retry after Fault Timeout
- Soft-Start with Maximum Peak Switch Current Clamp
- Internally Trimmed 2\% Bandgap Reference
- Input Undervoltage Lockout

* \(=\) Optional

Differential Gain \(=2 \times \frac{R f}{R i}\)

\section*{Continuously Variable Slope Delta (CVSD) Modulator/Demodulator}

\section*{COMMUNICATION CIRCUITS}

\section*{RF Communications}
\begin{tabular}{|c|c|c|}
\hline Device & Function & Page \\
\hline MC1496 & Balanced Modulator/Demodulator & 8-13 \\
\hline MC1596 & Balanced Modulator/Demodulator & 8-13 \\
\hline MC2831A & Low Power FM Transmitter System & 8-23 \\
\hline MC2833 & Low Power FM Transmitter System & 8-26 \\
\hline MC3356 & Wideband FSK Receiver & 8-29 \\
\hline MC3357 & Low Power FM IF & 8-35 \\
\hline MC3359 & Low Power Narrowband FM IF & 8-39 \\
\hline MC3361 & Low Voltage Narrowband FM IF & 8-45 \\
\hline MC3362 & Low Power Dual Conversion FM Receiver & 8-47 \\
\hline MC3363 & Low Power Dual Conversion FM Receiver & 8-52 \\
\hline MC3367 & Low Voltage FM Narrowband Receiver & 8-59 \\
\hline MC13041 & AM Receiver Subsystem. & See Chapter 9 \\
\hline MC13055 & Wideband FSK Receiver . & . . 8-65 \\
\hline
\end{tabular}

\section*{Telecommunications}
\begin{tabular}{|c|c|c|}
\hline Device & Function & Page \\
\hline MC3417 & Continuously Variable Slope Delta Modulator/Demodulator & * \\
\hline MC3418 & Continuously Variable Slope Delta Modulator/Demodulator & \\
\hline MC3419-1L & Telephone Line-Feed Circuit & * \\
\hline MC3517 & Continuously Variable Slope Delta Modulator/Demodulator & * \\
\hline MC3518 & Continuously Variable Slope Delta Modulator/Demodulator & * \\
\hline MC33129 & High Performance Current Mode Controller & * \\
\hline MC34010 & Electronic Telephone Circuit & * \\
\hline MC34011A & Electronic Telephone Circuit & * \\
\hline MC34012-1,-2,-3 & Telephone Tone Ringer & * \\
\hline MC34013A & Speech Network and Tone Ringer & * \\
\hline MC34014 & Telephone Speech Network with Dialer Interface & * \\
\hline MC34017 & Telephone Tone Ringer & * \\
\hline MC34018 & Voice Switched Speakerphone Circuit & * \\
\hline MC34114 & Telephone Speech Network with Dialer Interface & * \\
\hline MC34115 & Continuously Variable Slope Delta Modulator/Demodulator & * \\
\hline MC34118 & Voice Switched Speakerphone Circuit & * \\
\hline MC34119 & Low Power Audio Amplifier. & \\
\hline MC34120 & Subscriber Loop Interface Circuit & * \\
\hline MC34129 & High Performance Current Mode Controller & \\
\hline
\end{tabular}

\footnotetext{
*See Telecommunications Device Data (DL136/R1)
}

\section*{RELATED APPLICATION NOTES}
\begin{tabular}{|c|c|c|}
\hline Application Note & Title & Related Device \\
\hline AN531 & MC1596 Balanced Modulator & MC1596 \\
\hline AN933 & A Variety of Uses for the MC34012/MC34017 & \\
\hline & Tone Ringers & \[
\begin{aligned}
& \text { MC34012-1,-2,-3, } \\
& \text { MC34017 }
\end{aligned}
\] \\
\hline AN937 & A Telephone Ringer which Complies with FCC and EIA Impedance Standards & MC34012, MC34017 \\
\hline AN957 & Interfacing the Speakerphone to the MC34010/11/13 Speech Networks & MC34010, MC34011A, MC34013A \\
\hline AN959 & A Speakerphone with Receive Idle Mode & MC34018 \\
\hline AN960 & Equalization of DTMF Signals Using the MC34014 & MC34014 \\
\hline AN976 & A New High Performance Current Mode Controller Teams Up with Current Sensing Power MOSFETs & MC34129 \\
\hline AN980 & Low Power FM Dual Conversion Receivers & MC3362, MC3363 \\
\hline AN1002 & A Handsfree Featurephone Design Using the MC34114 Speech Network and the MC34018 Speakerphone ICs & MC34018, MC34114 \\
\hline ANHK07 & \begin{tabular}{l}
A High Performance, Manual-Tuned AM Stereo Receiver for Automotive Application Using Motorola ICs: \\
MC13021, MC13020 \& MC13041
\end{tabular} & MC13041 \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline Device & Temperature Range & Package \\
\hline MC1496D & \multirow{4}{*}{\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)} & SO-14 \\
\hline MC1496G & & Metal Can \\
\hline MC1496L & & Ceramic DIP \\
\hline MC1496P & & Plastic DIP \\
\hline MC1596G & \multirow{2}{*}{\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)} & Metal Can \\
\hline MC1596L & & Ceramic DIP \\
\hline
\end{tabular}

\section*{Specifications and Applications \\ Information}

\section*{BALANCED MODULATORI DEMODULATOR}
designed for use where the output voltage is a product of an input voltage (signal) and a switching function (carrier). Typical applications include suppressed carrier and amplitude modulation, synchronous detection, FM detection, phase detection, and chopper applications. See Motorola Application Note AN-531 for additional design information.
- Excellent Carrier Suppression - 65 dB typ @ 0.5 MHz
-50 dB typ @ 10 MHz
- Adjustable Gain and Signal Handling
- Balanced Inputs and Outputs
- High Common Mode Rejection - 85 dB typ

MAXIMUM RATINGS* (\(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \[
\begin{aligned}
& \text { Applied } \text { Voltage }^{\left(v_{6}-v_{7}, v_{8}-v_{1}, v_{9}-v_{7}, v_{9}-v_{8}, v_{7}-v_{4}, v_{7}-v_{1}\right.} \\
& \left.v_{8}-v_{4}, v_{6}-v_{8}, v_{2}-v_{5}, v_{3}-v_{5}\right)
\end{aligned}
\] & \(\Delta V\) & 30 & Vdc \\
\hline Differential Input Signal & \[
\begin{aligned}
& v_{7}-v_{8} \\
& v_{4}-v_{1} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
+5.0 \\
\pm\left(5+I_{5} R_{e}\right)
\end{gathered}
\] & Vdc \\
\hline Maximum Bias Current & \(\mathrm{I}_{5}\) & 10 & mA \\
\hline Thermal Resistance, Junction to Air Ceramic Dual In-Line Package Plastic Dual In-Line Package Metal Package & \(\mathrm{R}_{\theta \mathrm{JA}}\) & \[
\begin{aligned}
& 100 \\
& 100 \\
& 160
\end{aligned}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \(\begin{array}{ll}\text { Operating Temperature Range } & \\ & \text { MC1496 } \\ \\ \text { MC1596 }\end{array}\) & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-55 \text { to }+125
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS* \(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-8.0 \mathrm{Vdc}, \mathrm{I}_{5}=1.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{e}}=1.0 \mathrm{k} \Omega\),
\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted) (All input and output characteristics are single-ended unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Fig.} & \multirow[b]{2}{*}{Note} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC1596} & \multicolumn{3}{|c|}{MC1496} & \multirow[b]{2}{*}{Unit} \\
\hline & & & & Min & Typ & Max & Min & Typ & Max & \\
\hline \begin{tabular}{l}
Carrier Feedthrough \\
\(\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV}(\mathrm{rms})\) sine wave and
\[
\mathrm{f}_{\mathrm{C}}=1.0 \mathrm{kHz}
\] \\
offset adjusted to zero
\[
\mathrm{fC}=10 \mathrm{MHz}
\] \\
\(\mathrm{V}_{\mathrm{C}}=300 \mathrm{mVp}-\mathrm{p}\) square wave: \\
offset adjusted to zero \\
\(\mathrm{f}_{\mathrm{C}}=1.0 \mathrm{kHz}\) \\
offset not adjusted \\
\(\mathrm{f}_{\mathrm{C}}=1.0 \mathrm{kHz}\)
\end{tabular} & 5 & 1 & \(V_{\text {CFT }}\) & & \[
\begin{gathered}
40 \\
140 \\
0.04 \\
20
\end{gathered}
\] & \[
\begin{gathered}
- \\
- \\
0.2 \\
100
\end{gathered}
\] & - & \[
\begin{gathered}
40 \\
140 \\
\\
0.04 \\
20
\end{gathered}
\] & \[
\begin{gathered}
- \\
- \\
0.4 \\
20
\end{gathered}
\] & \(\mu \mathrm{V}\) (rms)
\[
\mathrm{mV}(\mathrm{rms})
\] \\
\hline ```
Carrier Suppression
 fS = 10 kHz, 300 mV(rms)
 fC = 500 kHz,60 mV(rms) sine wave
 fC}=10\textrm{MHz},60\textrm{mV}(\textrm{rms})\mathrm{ sine wave
``` & 5 & 2 & \(\mathrm{V}_{\text {CS }}\) & 50 & 65
50 & - & 40 & 65
50 & - & dB \\
\hline \begin{tabular}{l}
Transadmittance Bandwidth (Magnitude) ( \(\mathrm{R}_{\mathrm{L}}=50\) ohms) \\
Carrier Input Port, \(\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV}(\mathrm{rms})\) sine wave fs \(=1.0 \mathrm{kHz}, 300 \mathrm{mV}(\mathrm{rms})\) sine wave \\
Signal Input Port, \(\mathrm{V}_{\mathrm{S}}=300 \mathrm{mV}(\mathrm{rms})\) sine wave
\[
\left|\mathrm{V}_{\mathrm{C}}\right|=0.5 \mathrm{Vdc}
\]
\end{tabular} & 8 & 8 & \(\mathrm{BW}_{3 \mathrm{~dB}}\) &  & \[
\begin{aligned}
& 300 \\
& 80
\end{aligned}
\] & \[
-
\] & \[
-
\] & \[
\begin{aligned}
& 300 \\
& 80
\end{aligned}
\] &  & MHz \\
\hline Signal Gain
\[
\mathrm{V}_{\mathrm{S}}=100 \mathrm{mV}(\mathrm{rms}), \mathrm{f}=1.0 \mathrm{kHz} ;\left|\mathrm{V}_{\mathrm{C}}\right|=0.5 \mathrm{Vdc}
\] & 10 & 3 & Avs & 2.5 & 3.5 & - & 2.5 & 3.5 & - & \(\mathrm{V} N\) \\
\hline Single-Ended Input Impedance, Signal Port, \(f=5.0 \mathrm{MHz}\) Parallel Input Resistance Parallel Input Capacitance & 6 & - & \[
\begin{aligned}
& r_{i p} \\
& c_{i p} \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{r}
200 \\
2.0 \\
\hline
\end{array}
\] & - & - & \[
\begin{gathered}
200 \\
2.0
\end{gathered}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Single-Ended Output Impedance, \(\mathrm{f}=10 \mathrm{MHz}\) \\
Parallel Output Resistance \\
Parallel Output Capacitance
\end{tabular} & 6 & - & \[
\begin{aligned}
& \text { rop } \\
& c_{00}
\end{aligned}
\] & - & \[
\begin{array}{r}
40 \\
5.0 \\
\hline
\end{array}
\] & - & - & \[
\begin{aligned}
& 40 \\
& 5.0
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline Input Bias Current
\[
I_{b S}=\frac{I_{1}+I_{4}}{2} ; I_{b c}=\frac{I_{7}+I_{8}}{2}
\] & 7 & - & \[
\begin{aligned}
& \mathrm{Ibs} \\
& \mathrm{lbc} \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 25
\end{aligned}
\] & - & 12
12 & \[
\begin{array}{r}
30 \\
30 \\
\hline
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Input Offset Current
\[
I_{\mathrm{ioS}}=I_{1}-I_{4} ; I_{\mathrm{ioC}}=I_{7}-I_{8}
\] & 7 & - & \[
\begin{array}{|}
\left|\begin{array}{l}
\| \mathrm{ios} \\
\mathrm{ioCl} \\
\hline
\end{array}\right|
\end{array}
\] & & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 7.0
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Average Temperature Coefficient of Input Offset Current
\[
\left(T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)
\] & 7 & - & \({ }^{\text {| }} \mathrm{C}_{\text {liol }}\) | & - & 2.0 & - & - & 2.0 & - & \(n /^{\prime} \mathrm{C}\) \\
\hline Output Offset Current ( \(1_{6}-19\) ) & 7 & - & \(\|_{\text {ool }}\) & - & 14 & 50 & - & 14 & 80 & \(\mu \mathrm{A}\) \\
\hline Average Temperature Coefficient of Output Offset Current
\[
\left(T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)
\] & 7 & - & \({ }^{\text {TC }} \mathrm{C}_{\text {lool }}\) & - & 90 & - & - & 90 & - & nA/ \({ }^{\circ} \mathrm{C}\) \\
\hline Common-Mode Input Swing, Signal Port, fS \(=1.0 \mathrm{kHz}\) & 9 & 4 & CMV & - & 5.0 & - & - & 5.0 & - & Vp-p \\
\hline Common-Mode Gain, Signal Port, fs \(=1.0 \mathrm{kHz}\),
\[
\left|\mathrm{V}_{\mathrm{C}}\right|=0.5 \mathrm{Vdc}
\] & 9 & - & ACM & - & -85 & - & - & -85 & - & dB \\
\hline Common-Mode Quiescent Output Voltage (Pin 6 or Pin 9) & 10 & - & \(V_{\text {out }}\) & - & 8.0 & - & - & 8.0 & - & Vp-p \\
\hline Differential Output Voltage Swing Capability & 10 & - & \(\mathrm{V}_{\text {out }}\) & - & 8.0 & - & - & 8.0 & - & Vp-p \\
\hline Power Supply Current
\[
\begin{gathered}
I_{6}+I_{9} \\
I_{10} \\
\hline
\end{gathered}
\] & 7 & 6 & \[
\begin{aligned}
& \text { ICC } \\
& \mathrm{I}_{\mathrm{EE}}
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 4.0
\end{aligned}
\] & - & & \[
\begin{aligned}
& 4.0 \\
& 5.0
\end{aligned}
\] & mAdc \\
\hline DC Power Dissipation & 7 & 5 & PD & - & 33 & - & - & 33 & - & mW \\
\hline
\end{tabular}
* Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

Note 1 - Carrier Feedthrough
Carrier feedthrough is defined as the output voltage at carrier frequency with only the carrier applied (signal voltage \(=0\) ).

Carrier null is achieved by balancing the currents in the differential amplifier by means of a bias trim potentiometer ( \(\mathrm{R}_{1}\) of Figure 5).

\section*{Note 2 - Carrier Suppression}

Carrier suppression is defined as the ratio of each sideband output to carrier output for the carrier and signal voltage levels specified.

Carrier suppression is very dependent on carrier input level, as shown in Figure 22. A low value of the carrier does not fully switch the upper switching devices, and results in lower signal gain, hence lower carrier suppression. A higher than optimum carrier level results in unnecessary device and circuit carrier feedthrough, which again degenerates the suppression figure. The MC1596 has been characterized with a \(60 \mathrm{mV}(\mathrm{rms})\) sinewave carrier input signal. This level provides optimum carrier suppression at carrier frequencies in the vicinity of 500 kHz , and is generally recommended for balanced modulator applications.

Carrier feedthrough is independent of signal level, \(\mathrm{V}_{\mathrm{S}}\). Thus carrier suppression can be maximized by operating with large signal levels. However, a linear operating mode must be maintained in the signal-input transistor pair - or harmonics of the modulating signal will be generated and appear in the device output as spurious sidebands of the suppressed carrier. This requirement places an upper limit on input-signal amplitude (see Note 3 and Figure 20). Note also that an optimum carrier level is recommended in Figure 22 for good carrier suppression and minimum spurious side.band generation.

At higher frequencies circuit layout is very important in order to minimize carrier feedthrough. Shielding may be necessary in order to prevent capacitive coupling between the carrier input leads and the output leads.

\section*{Note 3 - Signal Gain and Maximum Input Level}

Signal gain (single-ended) at low frequencies is defined as the voltage gain,
\[
A_{V S}=\frac{V_{0}}{V_{S}}=\frac{R_{L}}{R_{e}+2 r_{e}} \text { where } r_{e}=\frac{26 \mathrm{mV}}{1_{5}(\mathrm{~mA})}
\]

A constant dc potential is applied to the carrier input terminals to fully switch two of the upper transistors "on" and two transistors "off" ( \(\left.\mathrm{V}_{\mathrm{C}}=0.5 \mathrm{Vdc}\right)\). This in effect forms a cascode differential amplifier.

Linear operation requires that the signal input be below a critical value determined by \(R_{E}\) and the bias current \(I_{5}\)
\[
V_{S} \leq 15 R_{E}(\text { Volts peak })
\]

Note that in the test circuit of Figure 10, \(\mathrm{V}_{\mathrm{S}}\) corresponds to a maximum value of 1 volt peak.

\section*{Note 4 - Common-Mode Swing}

The common-mode swing is the voltage which may be applied to both bases of the signal differential amplifier, without saturating the current sources or without saturating the differential amplifier itself by swinging it into the upper switching devices. This swing is variable depending on the particular circuit and biasing conditions chosen (see Note 6).

\section*{Note 5 - Power Dissipation}

Power dissipation, \(\mathrm{P}_{\mathrm{D}}\), within the integrated circuit package should be calculated as the summation of the voltage-current products at each port, i.e. assuming \(\mathrm{V}_{9}=\mathrm{V}_{6}, I_{5}=I_{6}=I_{9}\) and ignoring
base current, \(P_{D}=2 I_{5}\left(V_{6}-V_{10}\right)+I_{5}\left(V_{5}-V_{10}\right)\) where subscripts refer to pin numbers.

\section*{Note 6 - Design Equations}

The following is a partial list of design equations needed to operate the circuit with other supply voltages and input conditions. See Note 3 for \(\mathrm{R}_{\mathrm{e}}\) equation.
A. Operating Current

The internal bias currents are set by the conditions at pin 5 . Assume:
\[
\begin{aligned}
& I_{5}=I_{6}=I_{9} \\
& I_{B} \ll I_{C} \text { for all transistors }
\end{aligned}
\]
then:
\[
\begin{aligned}
\mathrm{R}_{5}=\frac{\mathrm{V}--\phi}{I_{5}}-500 \Omega \quad \text { where: } \quad \begin{aligned}
& \mathrm{R}_{5} \text { is the resistor between pin } \\
& 5 \text { and ground } \\
& \phi=0.75 \mathrm{~V} \text { at } \mathrm{T}_{A}=+25^{\circ} \mathrm{C}
\end{aligned}
\end{aligned}
\]

The MC1596 has been characterized for the condition \(I_{5}=1.0\) mA and is the generally recommended value.
B. Common-Mode Quiescent Output Voltage
\[
v_{6}=v_{9}=v^{+}-I_{5} R_{L}
\]

\section*{Note 7 - Biasing}

The MC1596 requires three dc bias voltage levels which must be set externally. Guidelines for setting up these three levels include maintaining at least 2 volts collector-base bias on all transistors while not exceeding the voltages given in the absolute maximum rating table;
\[
\begin{aligned}
& 30 \mathrm{Vdc} \geq\left[\left(\mathrm{V}_{6}, \mathrm{~V}_{9}\right)-\left(\mathrm{V}_{7}, \mathrm{~V}_{8}\right)\right] \geq 2 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \geq\left[\left(\mathrm{V}_{7}, \mathrm{~V}_{8}\right)-\left(\mathrm{V}_{1}, \mathrm{~V}_{4}\right)\right] \geq 2.7 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \geq\left[\left(\mathrm{V}_{1}, \mathrm{~V}_{4}\right)-\left(\mathrm{V}_{5}\right)\right] \geq 2.7 \mathrm{Vdc}
\end{aligned}
\]

The foregoing conditions are based on the following approximations:
\[
v_{6}=v_{9}, \quad v_{7}=v_{8}, \quad v_{1}=v_{4}
\]

Bias currents flowing into pins 1, 4, 7, and 8 are transistor base currents and can normally be neglected if external bias dividers are designed to carry 1.0 mA or more.

\section*{Note 8 - Transadmittance Bandwidth}

Carrier transadmittance bandwidth is the \(3-\mathrm{dB}\) bandwidth of the device forward transadmittance as defined by:
\[
\left.v_{21 C}=\frac{i_{0}(\text { each sideb and })}{v_{s}(\text { signal })} \right\rvert\, v_{0}=0
\]

Signal transadmittance bandwidth is the \(3-\mathrm{dB}\) bandwidth of the device forward transadmittance as defined by:
\[
\left.\mathrm{y}_{21 \mathrm{~S}}=\frac{\mathrm{i}_{\mathrm{o}}(\text { signal })}{v_{\mathrm{s}}(\text { signal })} \right\rvert\, \mathrm{V}_{\mathrm{c}}=0.5 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{o}}=0
\]
*Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

Note 9 - Coupling and Bypass Capacitors \(\mathrm{C}_{\mathbf{1}}\) and \(\mathrm{C}_{\mathbf{2}}\)
Capacitors \(C_{1}\) and \(C_{2}\) (Figure 5) should be selected for a reactance of less than 5.0 ohms at the carrier frequency.

Note 10 - Output Signal, \(\mathrm{V}_{\mathrm{o}}\)
The output signal is taken from pins 6 and 9 , either balanced or single-ended. Figure 12 shows the output levels of each of the two output sidebands resulting from variations in both the carrier and modulating signal inputs with a single-ended output connection.

Note 11 - Negative Supply, VEE
\(V_{E E}\) should be dc only. The insertion of an RF choke in series with \(V_{E E}\) can enhance the stability of the internal current sources.

\section*{Note 12 - Signal Port Stability}

Under certain values of driving source impedance, oscillation may occur. In this event, an RC suppression network should be connected directly to each input using short leads. This will reduce the Q of the source-tuned circuits that cause the oscillation.


An alternate method for low-frequency applications is to insert a 1 k -ohm resistor in series with the inputs, pins 1 and 4 . In this case input current drift may cause serious degradation of carrier suppression.

\section*{TEST CIRCUITS}

FIGURE 5 - CARRIER REJECTION AND SUPPRESSION

be needed to properly
perform these tests.

FIGURE 7 - BIAS AND OFFSET CURRENTS


FIGURE 6 - INPUT-OUTPUT IMPEDANCE


FIGURE 8 - TRANSCONDUCTANCE BANDWIDTH


\footnotetext{
NOTE: Pin number references pertain to th is device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.
}

TEST CIRCUITS (continued)

FIGURE 9 - COMMON-MODE GAIN


FIGURE 10 - SIGNAL GAIN AND OUTPUT SWING


> NOTE: Pin number references pertain to th is device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

TYPICAL CHARACTERISTICS (continued)
Typical characteristics were obtained with circuit shown in Figure \(5, f_{C}=500 \mathrm{kHz}\) (sine wave),
\(V_{C}=60 \mathrm{mV}(\mathrm{rms}), \mathrm{f}_{\mathrm{S}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=300 \mathrm{mV}(\mathrm{rms}), T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted.



FIGURE 12 - SIGNAL-PORT PARALLEL-EUUIVALENT INPUT RESISTANCE versus FREQUENCY


FIGURE 14 - SINGLE-ENDED OUTPUT IMPEDANCE versus FREQUENCY


TYPICAL CHARACTERISTICS (continued)
Typical characteristics were obtained with circuit shown in Figure \(5, f_{C}=500 \mathrm{kHz}\) (sine wave), \(V_{C}=60 \mathrm{mV}(\mathrm{rms}), \mathrm{f}_{S}=1 \mathrm{kHz}, V_{S}=300 \mathrm{mV}(\mathrm{rms}), T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted.



FIGURE 19 - CARRIER FEEDTHROUGH versus FREQUENCY


FIGURE 16 - CARRIER SUPPRESSION versus TEMPERATURE


FIGURE 18 - CARRIER SUPPRESSION versus FREQUENCY


FIGURE 20 - SIDEBAND HARMONIC SUPPRESSION versus INPUT SIGNAL LEVEL


\section*{TYPICAL CHARACTERISTICS (continued)}


\section*{OPERATIONS INFORMATION}

The MC1596/MC1496, a monolithic balanced modulator circuit, is shown in Figure 23.

This circuit consists of an upper quad differential amplifier driven by a standard differential amplifier with dual current sources. The output collectors are cross-coupled so that full-wave balanced multiplication of the two input voltages occurs. That is, the output signal is a constant times the product of the two input signals.

Mathematical analysis of linear ac signal multiplication indicates that the output spectrum will consist of only the sum and difference of the two input frequencies. Thus, the device may be used as a balanced modulator, doubly balanced mixer, product detector, frequency doubler, and other applications requiring these particular output signal characteristics.

The lower differential amplifier has its emitters connected to the package pins so that an external emitter resistance may be used. Also, external load resistors are employed at the device output.

\section*{Signal Levels}

The upper quad differential amplifier may be operated either in a linear or a saturated mode. The lower differential amplifier is operated in a linear mode for most applications.

For low-level operation at both input ports, the output signal will contain sum and difference frequency components and have an amplitude which is a function of the product of the input signal amplitudes.

For high-level operation at the carrier input port and linear operation at the modulating signal port, the output signal will contain sum and difference frequency components of the modulating signal frequency and the fundamental and odd harmonics of the carrier frequency. The output amplitude will be a constant times the modulating signal amplitude. Any amplitude variations in the carrier signal will not appear in the output.


\footnotetext{
NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.
}

\section*{OPERATIONS INFORMATION (continued)}

The linear signal handling capabilities of a differential amplifier are well defined. With no emitter degeneration, the maximum input voltage for linear operation is approximately 25 mV peak. Since the upper differential amplifier has its emitters internally connected, this voltage applies to the carrier input port for all conditions.

Since the lower differential amplifier has provisions for an external emitter resistance, its linear signal handling range may be adjusted by the user. The maximum input voltage for linear operation may be approximated from the following expression:
\[
V=\left(1_{5}\right)\left(R_{E}\right) \text { volts peak. }
\]

This expression may be used to compute the minimum value of \(R_{E}\) for a given input voltage amplitude.

FIGURE 25 - TABLE 1
VOLTAGE GAIN AND OUTPUT FREQUENCIES
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Carrier Input \\
Signal ( \(\left.V_{C}\right)\)
\end{tabular} & \begin{tabular}{c} 
Approximate \\
Voltage \(G\) ain
\end{tabular} & \begin{tabular}{c} 
Output Signal \\
Frequency \((s)\)
\end{tabular} \\
\hline \hline Low-level dc & \(\frac{R_{L} V_{C}}{2\left(R_{E}+2 r_{e}\right)\left(\frac{K T}{q}\right)}\) & \(f_{M}\) \\
\hline High-level dc & \(\frac{R_{L}}{R_{E}+2 r_{e}}\) & \(f_{M}\) \\
\hline Low-level ac & \(\frac{R_{L} V_{C}(r m s)}{2 \sqrt{2}\left(\frac{K T}{q}\right)\left(R_{E}+2 r_{e}\right)}\) & \(f_{C} \pm f_{M}\) \\
\hline High-level ac & \(\frac{0.637 R_{L}}{R_{E}+2 r_{e}}\) & \begin{tabular}{c}
\(f_{C} \pm f_{M}, 3 f_{C} \pm f_{M}\), \\
\(5 f_{C} \pm f_{M}, \cdots\)
\end{tabular} \\
\hline
\end{tabular}

The gain from the modulating signal input port to the output is the MC1596/MC1496 gain parameter which is most often of interest to the designer. This gain has significance only when the lower differential amplifier is operated in a linear mode, but this includes most applications of the device.

As previously mentioned, the upper quad differential amplifier may be operated either in a linear or a saturated mode. Approximate gain expressions have been developed for the MC1596/ MC1496 for a low-level modulating signal input and the following carrier input conditions:
1) Low-level dc
2) High-level dc
3) Low-level ac
4) High-level ac

These gains are summarized in Table 1, along with the frequency components contained in the output signal.

\section*{NOTES:}
1. Low-level Modulating Signal, \(\mathrm{V}_{\mathrm{M}}\), assumed in all cases. \(\mathrm{V}_{\mathrm{C}}\) is Carrier Input Voltage.
2. When the output signal contains multiple frequencies, the gain expression given is for the output amplitude of each of the two desired outputs, \(f_{C}+f_{M}\) and \(f_{C}-f_{M}\).
3. All gain expressions are for a single-ended output. For a differential output connection, multiply each expression by two.
4. \(R_{L}=\) Load resistance.
5. \(R_{E}=\) Emitter resistance between pins 2 and 3.
6. \(r_{e}=\) Transistor dynamic emitter resistance, at \(+25^{\circ} \mathrm{C}\);
\[
r_{e} \approx \frac{26 \mathrm{mV}}{15(\mathrm{~mA})}
\]
7. \(K=\) Boltzmann's Constant, \(T=\) temperature in degrees Kelvin, \(q=\) the charge on an electron.
\[
\frac{K T}{q} \approx 26 \mathrm{mV} \text { at room temperature }
\]

\section*{APPLICATIONS INFORMATION}

Double sideband suppressed carrier modulation is the basic application of the MC1596/MC1496. The suggested circuit for this application is shown on the front page of this data sheet.

In some applications, it may be necessary to operate the MC1596/MC1496 with a single dc supply voltage instead of dual supplies. Figure 26 shows a balanced modulator designed for operation with a single +12 Vdc supply. Performance of this circuit is similar to that of the dual supply modulator.

\section*{AM Modulator}

The circuit shown in Figure 27 may be used as an amplitude modulator with a minor modification.

All that is required to shift from suppressed carrier to \(A M\) operation is to adjust the carrier null potentiometer for the proper amount of carrier insertion in the output signal.

However, the suppressed carrier null circuitry as shown in Figure 27 does not have sufficient adjustment range. Therefore, the modulator may be modified for AM operation by changing two resistor values in the null circuit as shown in Figure 28.

\section*{Product Detector}

The MC1596/MC1496 makes an excellent SSB product detector (see Figure 29).

This product detector has a sensitivity of 3.0 microvolts and a dynamic range of 90 dB when operating at an intermediate frequency of 9 MHz .

The detector is broadband for the entire high frequency range. For operation at very low intermediate frequencies down to 50 kHz the \(0.1 \mu \mathrm{~F}\) capacitors on pins 7 and 8 should be increased to \(1.0 \mu \mathrm{~F}\). Also, the output filter at pin 9 can be tailored to a specific intermediate frequency and audio amplifier input impedance.

As in all applications of the MC1596/MC1496, the emitter resistance between pins 2 and 3 may be increased or decreased to adjust circuit gain, sensitivity, and dynamic range.

This circuit may also be used as an AM detector by introducing carrier signal at the carrier input and an AM signal at the SSB input.

The carrier signal may be derived from the intermediate frequency signal or generated locally. The carrier signal may be introduced with or without modulation, provided its level is sufficiently high to saturate the upper quad differential amplifier. If the carrier signal is modulated, a \(300 \mathrm{mV}(\mathrm{rms})\) input level is recommended.

\section*{APPLICATIONS INFORMATION (continued)}

\section*{Doubly Balanced Mixer}

The MC1596/MC1496 may be used as a doubly balanced mixer with either broadband or tuned narrow band input and output networks.

The local oscillator signal is introduced at the carrier input port with a recommended amplitude of 100 mV (rms).

Figure 30 shows a mixer with a broadband input and a tuned output.

\section*{Frequency Doubler}

The MC1596/MC1496 will operate as a frequency doubler by introducing the same frequency at both input ports.

Figures 31 and 32 show a broadband frequency doubler and a tuned output very high frequency (VHF) doubler, respectively.

\section*{Phase Detection and FM Detection}

The MC1596/MC1496 will function as a phase detector. Highlevel input signals are introduced at both inputs. When both inputs are at the same frequency the MC1596/MC1496 will deliver an output which is a function of the phase difference between the two input signals.

An FM detector may be constructed by using the phase detector principle. A tuned circuit is added at one of the inputs to cause the two input signals to vary in phase as a function of frequency. The MC1596/MC1496 will then prowide an output which is a function of the input signal frequency.
```

NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin
numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet

```

\section*{TYPICAL APPLICATIONS}


FIGURE 27 - BALANCED MODULATOR-DEMODULATOR


FIGURE 28 - AM MODULATOR CIRCUIT

( +12 Vdc SINGLE SUPPLY)


FIGURE 30 - DOUBLY BALANCED MIXER (BROADBAND INPUTS, 9.0 MHz TUNED OUTPUT)


FIGURE 31 - LOW-FREQUENCY DOUBLER


FIGURE 32 - 150 to 300 MHz DOUBLER


NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

\section*{LOW POWER FM TRANSMITTER SYSTEM}

The MC2831A is a one-chip FM transmitter subsystem designed for cordless telephone and FM communication equipment. It includes a Microphone Amplifier, Pilot Tone Oscillator, Voltage Controlled Oscillator and Battery Monitor.
- Wide Range of Operating Supply Voltage (3.0 V-8.0 V)
- Low Drain Current ( 4.0 mA Typ Full Operation at \(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}\) )
- Battery Checker ( \(290 \mu \mathrm{~A}\) Typ at \(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}\) )
- Low Number of External Parts Required

LOW POWER FM TRANSMITTER SYSTEM

SILICON MONOLITHIC INTEGRATED CIRCUIT

FIGURE 1 - FUNCTIONAL BLOCK DIAGRAM



P SUFFIX
PLASTIC PACKAGE CASE 648-06


PLASTIC PACKAGE
CASE 751B-03
SO-16
PIN ASSIGNMENTS


MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Pin & Symbol & Value & Unit \\
\hline Power Supply Voltage & 4,12 & \(\mathrm{~V}_{\mathrm{CC}}\) & 10 & Vdc \\
\hline Operating Supply Voltage Range & 4,12 & \(\mathrm{~V}_{\mathrm{CC}}\) & 3.0 to 8.0 & Vdc \\
\hline Battery Checker Output Sink Current & 10 & \(\mathrm{I}_{\mathrm{LED}}\) & 25 & mA \\
\hline Junction Temperature & - & \(\mathrm{T}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & - & \(\mathrm{T}_{\mathrm{A}}\) & -30 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & - & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{CC} 1}=4.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC} 2}=4.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Pin & Min & Typ & Max & Unit \\
\hline Drain Current & ICC1 & 12 & 150 & 290 & 420 & \(\mu \mathrm{~A}\) \\
\hline Drain Current & ICC2 & 4 & 2.2 & 3.6 & 6.5 & mA \\
\hline
\end{tabular}

BATTERY CHECKER
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Threshold Voltage (LED Off \(\rightarrow\) On) & \(V_{\text {TB }}\) & 11 & 1.0 & 1.2 & 1.4 & Vdc \\
\hline \begin{tabular}{l} 
Output Saturation Voltage \\
(Pin \(11=0\) V, Pin 10 Sink Current \(=5.0 \mathrm{~mA})\)
\end{tabular} & VOSAT & 10 & - & 0.15 & 0.5 & Vdc \\
\hline
\end{tabular}

\section*{MIC AMPLIFIER}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Voltage Gain, Closed Loop
\[
\left(\mathrm{V}_{\mathrm{in}}=1.0 \mathrm{mV}_{\mathrm{rms}}, \mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}\right)
\] & - & 5, 6 & 27 & 30 & 33 & dB \\
\hline Output dc Voltage & - & 6 & 1.1 & 1.4 & 1.7 & Vdc \\
\hline Output Swing ( \(\mathrm{V}_{\text {in }}=30 \mathrm{mV}\) rms, \(\mathrm{f}_{\text {in }}=1.0 \mathrm{kHz}\) ) & - & 6 & 0.8 & 1.2 & 1.6 & Vp-p \\
\hline Total Harmonic Distortion
\[
\left(\mathrm{V}_{0}=31 \mathrm{mV} \mathrm{rms}, \mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}\right)
\] & THD & 6 & - & 0.7 & - & \% \\
\hline
\end{tabular}

PILOT TONE OSCILLATOR (250 \(\Omega\) LOADING)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Output AF Voltage ( \(\mathrm{f}_{\mathrm{O}}=5.0 \mathrm{kHz}\) ) & - & 8 & - & 50 & - & mV rms \\
\hline Output dc Voltage & - & 8 & - & 1.4 & - & Vdc \\
\hline Total Harmonic Distortion
\[
\left(f_{\mathbf{O}}=5.0 \mathrm{kHz}, \mathrm{~V}_{\mathrm{AF}}=150 \mathrm{mV} \mathrm{rms}\right)
\] & - & 8 & - & 1.8 & 5.0 & \% \\
\hline Tone Switch Threshold & - & 7 & 1.1 & 1.4 & 1.7 & Vdc \\
\hline
\end{tabular}

FM MODULATOR ( \(120 \Omega\) LOADING)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Output RF Voltage ( \(\mathrm{f}_{\mathrm{O}}=16.6 \mathrm{MHz}\) ) & VRFO & 14 & - & 40 & - & \(\mathrm{mV} \mathrm{rms}^{\text {rma }}\) \\
\hline Output dc Voltage & - & 14 & - & 1.3 & - & Vdc \\
\hline Modulation Sensitivity (Note 1)
\[
\left(\mathrm{V}_{\mathrm{in}}=1.0 \mathrm{~V} \pm 0.2 \mathrm{~V}\right)
\] & - & 3, 14 & 6.0 & 10 & 18 & \(\mathrm{Hz} / \mathrm{mVdc}\) \\
\hline Maximum Deviation (Note 1)
\[
\left(\mathrm{V}_{\mathrm{in}}=0 \mathrm{~V} \text { to }+2.0 \mathrm{~V}\right)
\] & - & 3, 14 & \(\pm 2.5\) & \(\pm 5.0\) & \(\pm 12.5\) & kHz \\
\hline RF Frequency Range & - & 14 & - & - & 60 & MHz \\
\hline
\end{tabular}

Note 1. Modulation sensitivity and maximum deviation are measured at 49.815 MHz , which is the third harmonic of the crystal frequency.

FIGURE 2 - TEST CIRCUIT

L1 Toko America 7PA Type 126AN - 6708X

FIGURE 3 - SINGLE CHIP FM VHF TRANSMITTER AT 49.7 MHz


NOTES:

S1 is a normally closed push button type switch.
The crystal used is fundamental mode, calibrated for parallel resonance with a 32 pF load. The 49.7 MHz output is generated in the output buffer, which generates useful harmonics to 60 MHz .

The network on the output at Pin 14 provides output tuning and impedance matching to \(50 \Omega\) at 49.7 MHz . Harmonics are suppressed by more than 25 dB .

Battery checker circuit (Pins 10, 11) is not used in this application.
All capacitors in microfarads, inductors in Henries and resistors in Ohms, unless otherwise specified.

MC2833

\section*{Product Preview}

\section*{LOW POWER FM TRANSMITTER SYSTEM}

MC2833 is a one-chip FM transmitter subsystem designed for cordless telephone and FM communication equipment. It includes a microphone amplifier, voltage controlled oscillator and two auxiliary transistors.
- Wide Range of Operating Supply Voltage (2.8-9.0 V)
- Low Drain Current (ICC \(=2.9 \mathrm{~mA}\) Typ)
- Low Number of External Parts Required
- -30 dBm Power Output to 60 MHz Using Direct RF Output
\(\bullet+10 \mathrm{dBm}\) Power Output Attainable Using On-Chip Transistor Amplifiers
 to change or discontinue this product without notice.

\section*{MC2833}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Ratings } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & \(10(\mathrm{max})\) & V \\
\hline Operating Supply Voltage Range & \(\mathrm{V}_{\mathrm{CC}}\) & \(2.8-9.0\) & V \\
\hline Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -30 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Pin & Min & Typ & Max & Unit \\
\hline Drain Current (No input signal) & ICC & 10 & 1.7 & 2.9 & 4.3 & mA \\
\hline
\end{tabular}

\section*{FM MODULATOR}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Output RF Voltage ( \(\left.\mathrm{f}_{\mathrm{O}}=16.6 \mathrm{MHz}\right)\) & \(\mathrm{V}_{\text {out }} \mathrm{RF}\) & 14 & 60 & 90 & 130 & mVrms \\
\hline Output DC Voltage (No input signal) & Vdc & 14 & 2.2 & 2.5 & 2.8 & V \\
\hline Modulation Sensitivity \(\left(\mathrm{f}_{\mathrm{O}}=16.6 \mathrm{MHz}\right)\) \\
\(\left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}\right.\) to 1.2 V\()\) & SEN & 3.0 & 7.0 & 10 & 15 & \(\mathrm{~Hz} / \mathrm{mVdc}\) \\
\hline Maximum Deviation ( \(\left.\mathrm{f}_{\mathrm{O}}=16.6 \mathrm{MHz}\right)\) \\
\(\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right.\) to 2.0 V\()\) & & 14 & - & - & - & \\
\hline
\end{tabular}

MIC AMPLIFIER
\(\left.\begin{array}{|l|c|c|c|c|c|c|}\left.\hline \text { Closed Loop Voltage Gain ( } \mathrm{V}_{\mathrm{in}}=3.0 \mathrm{mVrms}\right) \\ \left(\mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}\right)\end{array}\right)\)

\section*{AUXILIARY TRANSISTOR STATIC CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Collector Base Breakdown Voltage ( \({ }^{\prime} \mathrm{C}=5.0 \mu \mathrm{~A}\) ) & \(\mathrm{V}_{\text {(BR) }} \mathrm{VBO}\) & 15 & 45 & - & V \\
\hline Collector Emitter Breakdown Voltage ( \(\mathrm{I} \mathrm{C}=200 \mu \mathrm{~A}\) ) & \(V_{\text {(BR)CEO }}\) & 10 & 15 & - & V \\
\hline Collector Substrate Breakdown Voltage ( \({ }^{1} \mathrm{C}=50 \mu \mathrm{~A}\) ) & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CSO}}\) & - & 70 & - & V \\
\hline Emitter Base Breakdown Voltage ( \(\mathrm{I}_{\mathrm{E}}=50 \mu \mathrm{~A}\) ) & \(\mathrm{V}_{\text {(BR) }} \mathrm{V}^{\text {ebo }}\) & - & 6.2 & - & V \\
\hline Collector Base Cut Off Current ( \(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}\) ) ( \(I_{E}=0\) ) & Icbo & - & - & 200 & nA \\
\hline \[
\begin{array}{r}
\left.\hline \text { DC Current Gain ( } \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~mA}\right) \\
\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V}\right) \\
\hline
\end{array}
\] & hFE & 40 & 150 & - & - \\
\hline
\end{tabular}

\section*{AUXILIARY TRANSISTOR DYNAMIC CHARACTERISTICS}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Current Gain Bandwidth Product \\
\(\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V}\right)\) \\
\(\left(\mathrm{IC}_{\mathrm{C}}=3.0 \mathrm{~mA}\right)\)
\end{tabular} & \(\mathrm{f}_{\mathrm{T}}\) & - & 500 & - & MHz \\
\hline Collector Base Capacitance \begin{tabular}{l}
\(\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V}\right)\) \\
\((\mathrm{IC}=0)\)
\end{tabular} & \(\mathrm{C}_{\mathrm{CB}}\) & - & 2.0 & - & pF \\
\hline \begin{tabular}{c} 
Collector Substrate Capacitance \(\left(\mathrm{V}_{\mathrm{CS}}=3.0 \mathrm{~V}\right)\) \\
\((\mathrm{IC}=0)\)
\end{tabular} & \(\mathrm{C}_{\mathrm{CS}}\) & - & 3.3 & - & pF \\
\hline
\end{tabular}

\section*{MC2833}

FIGURE 1 - TEST CIRCUIT


FIGURE 2 - SINGLE CHIP FM VHF TRANSMITTER AT 49.7 MHz


NOTES: The crystal used is fundamental mode, calibrated for parallel resonance with a 32 pF load. The 49.7 MHz output is generated in the output buffer, which is being used as a frequency tripler in this application.
The networks in the output stages provide frequency selectivity and impedance matching at 49.7 MHz .

The RF output is +10 dBm ( 10 mW into \(50 \Omega\) load) at 49.7 MHz , with all harmonics reduced by more than 50 dB . All capacitors in microfarads, inductors in Henries and resistors in Ohms unless otherwise specified.
\(0.22 \mu \mathrm{H}\) inductors are Toko B199SN-T1048Z \(3.3 \mu \mathrm{H}\) inductor is Toko B199KN-T1055Z

\section*{MC3356}
 Detector, Audio Buffer, Squelch, Meter Drive, Squelch Status output, and Data Shaper comparator. The MC3356 is designed for use in digital data communications equipment.
- Data Rates up to 500 kilobaud
- Excellent Sensitivity: -3 dB Limiting Sensitivity
\[
30 \mu \mathrm{Vrms} @ 100 \mathrm{MHz}
\]
- Highly versatile, full-function device, yet few external parts are required

FIGURE 1 - FUNCTIONAL BLOCK DIAGRAM


MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}(\mathrm{max})\) & 15 & Vdc \\
\hline Operating Power Supply Voltage Range (Pins 6, 10) & \(\mathrm{V}_{\mathrm{CC}}\) & 3.0 to 9.0 & Vdc \\
\hline Operating R.F. Supply Voltage Range (Pin 4) & R.F. \(\mathrm{V}_{\mathrm{CC}}\) & 3.0 to 12.0 & Vdc \\
\hline Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Dissipation, Package Rating & \(\mathrm{P}_{\mathrm{D}}\) & 1.25 & W \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=5.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{o}}=100 \mathrm{MHz}, \mathrm{f}_{\mathrm{osc}}=110.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 75 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, 50 \Omega\right.\) source, \(T_{A}=25^{\circ} \mathrm{C}\), test circuit of Figure 3, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristics & Min & Typ & Max & Unit \\
\hline Drain Current Total, RF V CC and \(\mathrm{V}_{\mathrm{CC}}\) & - & 20 & 25 & mAdc \\
\hline Input for -3 dB limiting & - & 30 & - & \(\mu\) Vrms \\
\hline Input for 50 dB quieting \(\left(\frac{\mathrm{S}+\mathrm{N}}{\mathrm{N}}\right)\) & - & 60 & - & \(\mu \mathrm{Vrms}\) \\
\hline Mixer Voltage Gain, Pin 20 to Pin 5 & 2.5 & - & - & \\
\hline Mixer Input Resistance, 100 MHz & - & 260 & - & \(\Omega\) \\
\hline Mixer Input Capacitance, 100 MHz & - & 5.0 & - & pF \\
\hline Mixer/Oscillator Frequency Range (Note 1) & - & 0.2 to 150 & - & MHz \\
\hline IF/Quadrature Detector Frequency Range (Note 1) & - & 0.2 to 50 & - & MHz \\
\hline AM Rejection ( \(30 \%\) AM, RF Vin \(=1.0 \mathrm{mVrms}\) ) & - & 50 & - & dB \\
\hline Demodulator Output, Pin 13 & - & 0.5 & - & Vrms \\
\hline Meter Drive & - & 7.0 & - & \(\mu \mathrm{A} / \mathrm{dB}\) \\
\hline Squelch Threshold & - & 0.8 & - & Vdc \\
\hline
\end{tabular}

Note 1: Not taken in Test Circuit of Figure 3; new component values required.

FIGURE 3 - TEST CIRCUIT


FIGURE 4 - OUTPUT COMPONENTS OF SIGNAL, NOISE, AND DISTORTION


\section*{GENERAL DESCRIPTION}

This device is intended for single and double conversion VHF receiver systems, primarily for FSK data transmission up to 500 K baud ( 250 kHz ). It contains an oscillator, mixer, limiting IF, quadrature detector, signal strength meter drive, and data shaping amplifier.

The oscillator is a common base Colpitts type which can be crystal controlled, as shown in Figure 1, or L-C controlled as shown in the other figures. At higher \(\mathrm{V}_{\mathrm{CC}}\), it has been operated as high as 200 MHz . A mixer/ oscillator voltage gain of 2 up to approximately 150 MHz , is readily achievable.

The mixer functions well from an input signal of 10 \(\mu \mathrm{Vrms}\), below which the squelch is unpredictable, up to about 10 mVrms , before any evidence of overload. Operation up to 1.0 Vrms input is permitted, but nonlinearity of the meter output is incurred, and some oscillator pulling is suspected. The AM rejection above 10 mVrms is degraded.

The limiting IF is a high frequency type, capable of being operated up to 50 MHz . It is expected to be used at 10.7 MHz in most cases, due to the availability of standard ceramic resonators. The quadrature detector is internally coupled to the IF, and a 5.0 pF quadrature capacitor is internally provided. The -3 dB limiting sensitivity of the IF itself is approximately \(50 \mu \mathrm{~V}\) (at Pin 7), and the IF can accept signals up to 1.0 Vrms without distortion or change of detector quiescent dc level.
The IF is unusual in that each of the last 5 stages of the 6 state limiter contains a signal strength sensitive, current sinking device. These are parallel connected and buffered to produce a signal strength meter drive which is fairly linear for IF input signals of \(10 \mu \mathrm{~V}\) to 100 mVrms . (See Figure 5.)
A simple squelch arrangement is provided whereby the meter current flowing through the meter load resistance flips a comparator at about 0.8 Vdc above ground. The signal strength at which this occurs can be

FIGURE 5 - METER CURRENT versus SIGNAL INPUT

adjusted by changing the meter load resistor. The comparator ( + ) input and output are available to permit control of hysteresis. Good positive action can be obtained for IF input signals of above \(30 \mu \mathrm{Vrms}\). The \(130 \mathrm{k} \Omega\) resistor shown in the test circuit provides a small amount of hysteresis. Its connection between the 3.3 k resistor to ground and the 3.0 k pot, permits adjustment of squelch level without changing the amount of hysteresis.
The squelch is internally connected to both the quadrature detector and the data shaper. The quadrature detector output, when squelched, goes to a dc level approximately equal to the zero signal level, unsquelched. The squelch causes the data shaper to produce a high ( \(\mathrm{V}_{\mathrm{CC}}\) ) output.

The data shaper is a complete "floating" comparator, with back to back diodes across its inputs. The output of the quadrature detector can be fed directly to either input of this amplifier to produce an output that is either at \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{EE}}\), depending upon the received frequency. The impedance of the biasing can be varied to produce an amplifier which "follows" frequency detuning to some degree, to prevent data pulse width changes.

When the data shaper is driven directly from the demodulator output, Pin 13, there may be distortion at Pin 13 due to the diodes, but this is not important in the data application. A useful note in relating high/low input frequency to logic state: low IF frequency corresponds to low demodulator output. If the oscillator is above the incoming RF frequency, then high RF frequency will produce a logic low. (Input to ( + ) input of Data Shaper as shown in figures 1 and 3.)


\section*{APPLICATION NOTES}

The MC3356 is a high frequency/high gain receiver that requires following certain layout techniques in designing a stable circuit configuration. The objective is to minimize or eliminate, if possible, any unwanted feedback.

Shielding, which includes the placement of input and output components, is important in minimizing electrostatic or electromagnetic coupling. The MC3356 has its pin connections such that the circuit designer can place the critical input and output circuits on opposite ends of the chip. Shielding is normally required for inductors in tuned circuits.

The MC3356 has separate \(V_{C C}\) 's and grounds for the RF and IF sections which allows good external circuit isolation by minimizing common ground paths.
Note that the circuits of figures 1 and 3 have RF, oscillator, and IF circuits predominantly referenced to the plus supply rails. Figure 6, on the other hand, shows a suitable means of ground referencing. The two methods produce identical results when carefully executed. It is important to treat Pin 19 as a ground node for either approach. The RF input should be "grounded" to

Pin 1 and then the input and the mixer/oscillator grounds (or RF \(V_{\text {CC }}\) bypasses) should be connected by a low inductance path to Pin 19. IF and detector sections should also have their bypasses returned by a separate path to Pin 19. \(V_{C C}\) and RF \(V_{C C}\) can be decoupled to minimize feedback, although the configuration of Figure 3 shows a successful implementation on a common 5.0 supply. Once again, the message is: define a supply node and a ground node and return each section to those nodes by separate, low impedance paths.
The test circuit of Figure 3 has a 3 db limiting level of \(30 \mu \mathrm{~V}\) which can be lowered 6 db by a 1:2 untuned transformer at the input as shown in figures 6 and 7. For applications that require additional sensitivity, an RF amplifier can be added, but with no greater than 20 db gain. This will give a 2.0 to \(2.5 \mu \mathrm{~V}\) sensitivity and any additional gain will reduce receiver dynamic range without improving its sensitivity. Although the test circuit operates at +5.0 V , the mixer/oscillator optimum performance is at +8.0 V to 12 V . A minimum of +8.0 V is recommended in high frequency applications (above 150 MHz ), or in PLL applications where the oscillator drives a prescaler.

FIGURE 7 - APPLICATION WITH SELF-ADJUSTING BIAS ON DATA SHAPER


\section*{APPLICATION NOTES (continued)}

Depending on the external circuit, inverted or noninverted data is available at Pin 18. Inverted data makes the higher frequency in the FSK signal a 'one' when the local oscillator is above the incoming RF. Figure 6 schematic shows the comparator with hysteresis. In this circuit the dc reference voltage at Pin 17 is about the same as the demodulated output voltage (Pin 13) when no signal is present. This type circuit is preferred for systems where the data rates can drop to zero. Some systems have a low frequency limit on the data rate, such as systems using the MC3850 ACIA that has a start or stop bit. This defines the low frequency limit that can appear in the data stream. Figure 6 circuit can then be
changed to a circuit configuration as shown in Figure 7. In Figure 7 the reference voltage for the comparator is derived from the demodulator output through a low pass circuit where \(\tau\) is much lower than the lowest frequency data rate. This and similar circuits will compensate for small tuning changes (or drift) in the quadrature detector.

Squelch status (Pin 15) goes high (squelch off) when the input signal becomes greater than some preset level set by the resistance between Pin 14 and ground. Hysteresis is added to the circuit externally by the resistance from Pin 14 to Pin 15.

FIGURE 8 - INTERNAL SCHEMATIC
\begin{tabular}{c} 
Advance Information \\
\begin{tabular}{l} 
LOW POWER NARROWBAND FM IF \\
... includes Oscillator, Mixer, Limiting Amplifier, Quadrature \\
\begin{tabular}{l} 
Discriminator, Active Fiiter, Squelch, Scan Control, and Mute \\
Switch. The MC3357 is designed for use in FM dual conversion \\
communications equipment.
\end{tabular} \\
- Low Drain Current ( 3.0 mA (Typ) @ \(\left.\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}\right)\) \\
- Excellent Sensitivity: Input Limiting Voltage - \\
(-3.0 dB) \(=5.0 \mu \mathrm{~V}\) (Typ) \\
- Low Number of External Parts Required
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{c} 
LOW POWER \\
FM IF \\
SILICON MONOLITHIC \\
INTEGRATED CIRCUIT \\
\hline
\end{tabular}


MAXIMUM RATINGS \({ }^{(T}{ }_{A}=25^{\circ} \mathrm{C}\), unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Pin & Symbol & Value & Unit \\
\hline Power Supply Voltage & 4 & \(\mathrm{~V}_{\mathrm{CC}}(\mathrm{max})\) & 12 & Vdc \\
\hline Operating Supply Voltage Range & 4 & \(\mathrm{~V}_{\mathrm{CC}}\) & 4 to 8 & Vdc \\
\hline Detector Input Voltage & 8 & - & 1.0 & \(\mathrm{Vp}_{\mathrm{p}} \mathrm{p}\) \\
\hline Input Voltage (V \(\mathrm{V}_{\mathrm{CC}} \geqslant 6.0\) Volts) & 16 & \(\mathrm{~V}_{16}\) & 1.0 & \(\mathrm{~V}_{\mathrm{RMS}}\) \\
\hline Mute Function & 14 & \(\mathrm{~V}_{14}\) & -0.5 to 5.0 & \(\mathrm{~V}_{\mathrm{pk}}\) \\
\hline Junction Temperature & - & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & - & \(\mathrm{T}_{\mathrm{A}}\) & -30 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & - & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left({ }^{\mathrm{V}} \mathrm{CC}=6.0 \mathrm{Vdc}, \mathrm{fo}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin & Min & Typ & Max & Unit \\
\hline Drain Current Squelch Off Squelch On & 4 & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\overline{5.0}
\] & mA \\
\hline Input Limiting Voltage (-3 dB Limiting) & 16 & - & 5.0 & 10 & \(\mu \mathrm{V}\) \\
\hline Detector Output Voltage & 9 & - & 3.0 & - & Vdc \\
\hline Detector Output Impedance & - & - & 400 & - & \(\Omega\) \\
\hline Recovered Audio Output Voltage
\[
\left(V_{\mathrm{in}}=10 \mathrm{mV}\right)
\] & 9 & 200 & 350 & - & mVrms \\
\hline \[
\begin{gathered}
\text { Filter Gain }(10 \mathrm{kHz}) \\
\left(\mathrm{V}_{\mathrm{in}}=5 \mathrm{mV}\right)
\end{gathered}
\] & - & 40 & 46 & - & dB \\
\hline Filter Output Voltage & 11 & 1.8 & 2.0 & 2.5 & Vdc \\
\hline Trigger Hysteresis & - & - & 100 & - & mV \\
\hline Mute Function Low & 14 & - & 15 & 50 & S2 \\
\hline Mute Function High & 14 & 1.0 & 10 & - & MS2 \\
\hline Scan Function Low (Mute Off) ( \(\mathrm{V}_{12}=2 \mathrm{Vdc}\) ) & 13 & - & 0 & 0.5 & Vdc \\
\hline Scan Function High (Mute On) ( \(\mathrm{V}_{12}=\mathrm{Gnd}\) ) & 13 & 5.0 & - & - & Vdc \\
\hline Mixer Conversion Gain & 3 & - & 20 & - & dB \\
\hline Mixer Input Resistance & 16 & - & 3.3 & - & \(k \Omega\) \\
\hline Mixer Input Capacitance & 16 & - & 2.2 & - & pF \\
\hline
\end{tabular}


\section*{CIRCUIT DESCRIPTION}

The MC3357 is a low power FM IF circuit designed primarily for use in voice communication scanning receivers.
The mixer-oscillator combination converts the input frequency (e.g., 10.7 MHz ) down to 455 kHz , where, after external bandpass filtering, most of the amplification is done. The audio is recovered using a conventional quadrature FM detector. The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band" is monitored by an active filter and a detector. A squelch trigger circuit indicates the presence of noise (or a tone) by an output which can be used to control scanning. At the same time, an internal switch is operated which can be used to mute the audio.

The oscillator is an internally-biased Colpitts type with the collector, base, and emitter connections at Pins 4, 1 , and 2 respectively. A crystal can be used in place of the usual coil.

The mixer is doubly-balanced to reduce spurious responses. The input impedance at Pin 16 is set by a 3.0 \(\mathrm{k} \Omega\) internal biasing resistor and has low capacitance, allowing the circuit to be preceded by a crystal filter. The collector output at Pin 3 must be dc connected to \(\mathrm{B}+\), below which it can swing 0.5 V .

After suitable bandpass filtering (ceramic or LC) the signal goes to the input of a five-stage limiter at Pin 5. The output of the limiter at Pin 7 drives a multiplier,
both internally directly, and externally through a quadrature coil, to detect the FM. The output at Pin 7 is also used to supply dc feedback to Pin 5. The other side of the first limiter stage is decoupled at Pin 6.
The recovered audio is partially filtered, then buffered giving an impedance of around \(400 \Omega\) at Pin 9. The signal still requires de-emphasis, volume control and further amplification before driving a loudspeaker.

A simple inverting op amp is provided with an output at Pin 11 providing dc bias (externally) to the input at Pin 10 which is referred internally to 2.0 V . A filter can be made with external impedance elements to discriminate between frequencies. With an external AM detector the filtered audio signal can be checked for the presence of noise above the normal audio band, or a tone signal. This information is applied to Pin 12.

An external positive bias to Pin 12 sets up the squelch trigger circuit such that Pin 13 is low at an impedance level of around \(60 \mathrm{k} \Omega\), and the audio mute ( \(\operatorname{Pin} 14\) ) is open circuit. If Pin 12 is pulled down to 0.7 V by the noise or tone detector, Pin 13 will rise to approximately 0.5 Vdc below supply where it can support a load current of around \(500 \mu \mathrm{~A}\) and Pin 14 is internally short-circuited to ground. There is 100 mV of hysteresis at Pin 12 to prevent jitter. Audio muting is accomplished by connecting Pin 14 to a high-impedance ground-reference point in the audio path between Pin 9 and the audio amplifier.


\section*{LOW POWER NARROWBAND FM IF}
. . . includes oscillator, mixer, limiting amplifier, AFC, quadrature discriminator, op/amp, squelch, scan control, and mute switch. The MC3359 is designed to detect narrowband FM signals using a 455 kHz ceramic filter for use in FM dual conversion communications equipment. The MC3359 is similar to the MC3357 except that the MC3359 has an additional limiting IF stage, an AFC output, and an opposite polarity Broadcast Detector. The MC3359 also requires fewer external parts.
- Low Drain Current: 3.6 mA (Typ) (a VCC \(=6.0 \mathrm{Vdc}\)
- Excellent Sensitivity: Input Limiting Voltage -
\(-3.0 \mathrm{~dB}=2.0 \mu \mathrm{~V}\) (Typ)
- Low Number of External Parts Required


\begin{tabular}{|c|}
\hline HIGH GAIN \\
LOW POWER \\
FM IF \\
SILICON MONOLITHIC \\
INTEGRATED CIRCUIT \\
\hline
\end{tabular}


MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Pin & Symbol & Value & Unit \\
\hline Power Supply Voltage & 4 & \(\mathrm{~V}_{\mathrm{CC}}(\mathrm{max})\) & 12 & \(\mathrm{~V}_{\mathrm{dc}}\) \\
\hline Operating Supply Voltage Range & 4 & \(\mathrm{~V}_{\mathrm{CC}}\) & 4 to 9 & Vdc \\
\hline Input Voltage ( \(\mathrm{V}_{\mathrm{CC}} \geqslant 6.0\) Volts) & 18 & \(\mathrm{~V}_{18}\) & 1.0 & \(\mathrm{~V}_{\mathrm{rms}}\) \\
\hline Mute Function & 16 & \(\mathrm{~V}_{16}\) & -0.7 to 12 & \(\mathrm{~V}_{\mathrm{pk}}\) \\
\hline Junction Temperature & - & \(\mathrm{TJ}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & - & \(\mathrm{T}_{\mathrm{A}}\) & -30 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & - & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ}{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=6.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \Delta f= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, 50 \Omega\right.\) source,
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) test circuit of Figure 3, unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristics & Min & Typ & Max & Units \\
\hline Drain Current (Pins 4 and 8) \(\begin{aligned} & \text { Squelch Off } \\ & \text { Squelch On }\end{aligned}\) & - & \[
\begin{aligned}
& 3.6 \\
& 5.4
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 7.0
\end{aligned}
\] & mA \\
\hline Input for 20 dB Quieting & - & 8.0 & - & \(\mu \mathrm{Vrms}\) \\
\hline Input for -3.0 dB Limiting & - & 2.0 & - & \(\mu\) Vrms \\
\hline Mixer Voltage Gain (Pin 18 to Pin 3, Open) & - & 46 & - & \\
\hline Mixer Third Order Intercept, \(50 \Omega\) Input & - & -1.0 & - & dBm \\
\hline Mixer Input Resistance & - & 3.6 & - & \(\mathrm{k} \Omega\) \\
\hline Mixer Input Capacitance & - & 2.2 & - & pF \\
\hline Recovered Audio, Pin 10 (Input Signal 1.0 mVrms ) & 450 & 700 & - & mVrms \\
\hline Detector Center Frequency Slope, Pin 10 & - & 0.3 & - & V/kHz \\
\hline AFC Center Slope, Pin 11, Unloaded & - & 12 & - & \(\mathrm{V} / \mathrm{kHz}\) \\
\hline Filter Gain (test circuit of Figure 3) & 40 & 51 & - & dB \\
\hline Squelch Threshold, Through 10K to Pin 14 & - & 0.62 & - & Vdc \\
\hline \begin{tabular}{rr} 
Scan Control Current, Pinh \(15 \quad\) Pin \(14-\) High \\
& - Low
\end{tabular} & \[
2.0
\] & \[
\begin{gathered}
0.01 \\
2.4 \\
\hline
\end{gathered}
\] & \[
1.0
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Mute Switch Impedance \\
Pin 14 - High \\
Pin 16 to Ground \\
- Low
\end{tabular} & - & \[
\begin{aligned}
& 5.0 \\
& 1.5
\end{aligned}
\] & \[
10
\] & \[
\begin{gathered}
\Omega \\
\mathrm{M} \Omega
\end{gathered}
\] \\
\hline
\end{tabular}

FIGURE 3 - TEST CIRCUIT


FIGURE 4 - MIXER VOLTAGE GAIN


FIGURE 6 - MIXER THIRD ORDER INTERMODULATION PERFORMANCE


FIGURE 8 - RELATIVE MIXER GAIN


FIGURE 5 - LIMITING I.F. FREQUENCY RESPONSE


FIGURE 7 - DETECTOR AND AFC RESPONSES


FIGURE 9 - OVERALL GAIN, NOISE, AND A.M. REJECTION


FIGURE 10 - OUTPUT COMPONENTS OF SIGNAL, NOISE, AND DISTORTION


FIGURE 12 - L/C OSCILLATOR, TEMPERATURE AND POWER SUPPLY SENSITIVITY


FIGURE 14 - L/C OSCILLATOR RECOMMENDED COMPONENT VALUES


FIGURE 11 - AUDIO OUTPUT AND TOTAL CURRENT DRAIN versus SUPPLY VOLTAGE


FIGURE 13 - OP AMP GAIN AND PHASE RESPONSE


FIGURE 15 - THE OP AMP AS A BANDPASS FILTER



FIGURE 16 - CIRCUIT SCHEMATIC

\section*{CIRCUIT DESCRIPTION}

The MC3359 is a low-power FM IF circuit designed primarily for use in voice-communication scanning receivers. It is also finding a place in narrowband data links.

In the typical application (Figure 1), the mixer-oscillator combination converts the input frequency ( 10.7 MHz ) down to 455 kHz , where, after external bandpass filtering, most of the amplification is done. The audio is recovered using a conventional quadrature FM detector. The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band" is monitored by an active filter and a detector. A squelch-trigger circuit indicates the presence of noise (or a tone) by an output which can be used to control scanning. At the same time, an internal switch is operated which can be used to mute the audio.

\section*{APPLICATION}

The oscillator is an internally biased Colpitts type with the collector, base, and emitter connections at Pin 4, 1, and 2, respectively. The crystal is used in fundamental mode, calibrated for parallel resonance at 32 pF load capacitance. In theory this means that the two capacitors in series should be 32 pF , but in fact much larger values do not significantly affect the oscillator frequency, and provide higher oscillator output.

The oscillator can also be used in the conventional L/C Colpitts configuration without loss of mixer conversion gain. This oscillator is, of course, much more sensitive to voltage and temperature as shown in Figure 12. Guidelines for choosing L and \(C\) values are given in Figure 14.

The mixer is doubly balanced to reduce spurious responses. The mixer measurements of Figure 4 and 6 were made using an external \(50 \Omega\) source and the internal 1.8 k at Pin 3 . Voltage gain curves at several \(V_{C C}\) voltages are shown in Figure 4. The Third Order Intercept curves of Figure 6 are shown using the conventional dBm scales. Measured power gain (with the 50 \(\Omega\) input) is approximately 18 dB but the useful gain is much higher because the mixer input impedance is over \(3 \mathrm{k} \Omega\). Most applications will use a \(330 \Omega 10.7 \mathrm{MHz}\) crystal filter ahead of the mixer. For higher frequencies, the relative mixer gain is given in Figure 8.

Following the mixer, a ceramic bandpass filter is recommended. The 455 kHz types come in bandwidths from \(\pm 2 \mathrm{kHz}\) to \(\pm 15 \mathrm{kHz}\) and have input and output impedances of 1.5 k to 2.0 k. For this reason, the Pin 5 input to the 6 stage limiting IF
has an internal 1.8 k resistor. The IF has a 3 dB limiting sensitivity of approximately \(100 \mu \mathrm{~V}\) at Pin 5 and a useful frequency range of about 5 MHz as shown in Figure 5. The frequency limitation is due to the high resistance values in the IF, which were necessary to meet the low power requirement. The output of the limiter is internally connected to the quadrature detector, including the 10 pF quadrature capacitor. Only a parallel \(\mathrm{L} / \mathrm{C}\) is needed externally from Pin 8 to \(\mathrm{V}_{\mathrm{CC}}\). A shunt resistance can be added to widen the peak separation of the quadrature detector.

The detector output is amplified and buffered to the audio output, Pin 10, which has an output impedance of approximatley \(300 \Omega\). Pin 9 provides a high impedance ( 50 k ) point in the output amplifier for application of a filter or de-emphasis capacitor. Pin 11 is the AFC output, with high gain and high output impedance (1 M). If not needed, it should be grounded, or it can be connected to Pin 9 to double the recovered audio. The detector and AFC responses are shown in Figure 7.

Overall performance of the MC3359 from mixer input to audio output is shown in Figure 9 and 10. The MC3359 can also be operated in "single conversion" equipment; i.e., the mixer can be used as a 455 kHz amplifier. The oscillator is disabled by connecting Pin 1 to Pin 2. In this mode the overall performance is identical to the 10.7 MHz results of Figure 9.

A simple inverting op amp is provided with an output at Pin 13 providing dc bias (externally) to the input at Pin 12, which is referred internally to 2.0 V . A filter can be made with external impedance elements to discriminate between frequencies. With an external AM detector, the filtered audio signal can be checked for the presence of either noise above the normal audio, or a tone signal.

The open loop response of this op amp is given in Figure 13. Bandpass filter design information is provided in Figure 15.

A low bias to Pin 14 sets up the squelch-trigger circuit such that Pin 15 is high, a source of at least 2.0 mA , and the audio mute (Pin 16) is open-circuit. If Pin 14 is raised to 0.7 V by the noise or tone detector, Pin 15 becomes open circuit and Pin 16 is internally short circuited to ground. There is no hysteresis. Audio muting is accomplished by connecting Pin 16 to a highimpedance ground-reference point in the audio path between Pin 10 and the audio amplifier. No dc voltage is needed, in fact it is not desirable because audio "thump" would result during the muting function. Signal swing greater than 0.7 V below ground on Pin 16 should be avoided.

\section*{MC3361}

\section*{Advance Information}

\section*{LOW POWER NARROWBAND FM IF}
... includes Ocillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Active Filter, Squelch, Scan Control, and Mute Switch. The MC3361 is designed for use in FM dual conversion communications equipment.
- Operates From 1.8 V to 7.0 V
- Low Drain Current 4.0 mA Typ @ \(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}\)
- Excellent Sensitivity: Input Limiting Voltage -\(-3.0 \mathrm{~dB}=2.0 \mu \mathrm{~V}\) Typ
- Low Number of External Parts Required

FIGURE 1 - FUNCTIONAL BLOCK DIAGRAM


MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|}
\hline Rating & Pin & Symbol & Value & Unit \\
\hline Power Supply Voltage & 4 & \(\mathrm{V}_{\mathrm{CC}}\) (max) & 8.0 & Vdc \\
\hline Operating Supply Voltage Range & 4 & \(V_{\text {CC }}\) & 1.8 to 7.0 & Vdc \\
\hline Detector Input Voltage & 8 & - & 1.0 & Vp-p \\
\hline Input Voltage (V \(\mathrm{CC} \geqslant 4.0\) Volts) & 16 & \(\mathrm{V}_{16}\) & 1.0 & \(V_{\text {RMS }}\) \\
\hline Mute Function \({ }_{\text {see }}\) & 14 & \(V_{14}\) & -0.5 to 5.0 & \(\mathrm{V}_{\mathrm{pk}}\) \\
\hline Junction Temperature & - & \(\mathrm{T}_{J}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & - & \(\mathrm{T}_{\mathrm{A}}\) & -30 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & - & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V} C C=4.0 \mathrm{Vdc}\right.\), fo \(=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin & Min & Typ & Max & Unit \\
\hline Drain Current Squelch Off Squelch On & 4 & - & \[
\begin{aligned}
& 4.0 \\
& 6.0
\end{aligned}
\] & - & mA \\
\hline Input Limiting Voltage ( -3.0 dB Limiting) & 16 & - & 2.0 & - & \(\mu \mathrm{V}\) \\
\hline Detector Output Voltage & 9 & - & 2.0 & - & Vdc \\
\hline Detector Output Impedance & - & - & 400 & - & \(\Omega\) \\
\hline Recovered Audio Output Voltage ( \(\mathrm{V}_{\text {in }}=10 \mathrm{mV}\) ) & 9 & 100 & 150 & - & mVrms \\
\hline Filter Gain ( 10 kHz )
\[
\left(\mathrm{V}_{\mathrm{in}}=5.0 \mathrm{mV}\right)
\] & - & 40 & 48 & - & dB \\
\hline Filter Output Voltage & 11 & - & 1.5 & - & Vdc \\
\hline Trigger Hysteresis & - & - & 50 & & mV \\
\hline Mute Function Low & 14 & - & 10 & - & \(\Omega\) \\
\hline Mute Function High & 14 & - & 10 & - & \(\mathrm{M} \Omega\) \\
\hline Scan Function Low (Mute Off)
\[
\left(\mathrm{V}_{12}=2.0 \mathrm{Vdc}\right)
\] & 13 & - & - & 0.5 & Vdc \\
\hline Scan Function High (Mute On)
\[
\left(\mathrm{V}_{12}=\mathrm{Gnd}\right)
\] & 13 & 3.0 & - & - & Vdc \\
\hline Mixer Conversion Gain & 3 & - & 24 & - & dB \\
\hline Mixer Input Resistance & 16 & - & 3.3 & - & \(\mathrm{k} \Omega\) \\
\hline Mixer Input Capacitance & 16 & - & 2.2 & - & pF \\
\hline
\end{tabular}


\section*{Advance Information}

\section*{LOW POWER NARROWBAND FM RECEIVER}
...includes dual FM conversion with oscillators, mixers, quadrature detector, and meter drive/carrier detect circuitry. The MC3362 also has buffered first and second local oscillator outputs and a comparator circuit for FSK detection.
- Wide Input Bandwidth
- 200 MHz using Internal Local Oscillator
- 450 MHz using External Local Oscillator
- Complete Dual Conversion Circuitry
- Low Voltage: \(\mathrm{V}_{\mathrm{CC}}=2.0\) to 7.0 Vdc
- Low Drain Current ( 3.6 mA (Typ) ( \(\mathrm{a}_{\mathrm{CC}}=3.0 \mathrm{Vdc}\) )
- Excellent Sensitivity: Input \(0.7 \mu \mathrm{~V}\) (Typ) for 12 dB SINAD
- Data Shaping Comparator
- Received Signal Strength Indicator (RSSI) with 60 dB Dynamic Range
- Low Number of External Parts Required
- Manufactured in Motorola's MOSAIC Process Technology



GURE 2 - PIN CONNECTIONS AND FUNCTIONAL BLOCK DIAGRAM


MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Pin & Symbol & Value & Unit \\
\hline Power Supply Voltage & 6 & \(\mathrm{~V}_{\mathrm{CC}(\mathrm{max})}\) & 8.0 & Vdc \\
\hline Operating Supply Voltage Range (Recommended) & 6 & \(\mathrm{~V}_{\mathrm{CC}}\) & 2.0 to 7.0 & Vdc \\
\hline Input Voltage (VCC \(\geqslant 5.0 \mathrm{Vdc})\) & 1,24 & \(\mathrm{~V}_{1-24}\) & 1.0 & Vrms \\
\hline Junction Temperature & - & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & - & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & - & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=49.7 \mathrm{MHz}\right.\), Deviation \(=3.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Test Circuit of Figure 3 unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Pin & Min & Typ & Max & Units \\
\hline Drain Current (Carrier Detect Low - See Figure 5) & 6 & - & 4.5 & 7.0 & mA \\
\hline Input for - 3.0 dB Limiting & - & - & 0.7 & 2.0 & \(\mu\) Vrms \\
\hline Recovered Audio (RF signal level \(=10 \mathrm{mV}\) ) & 13 & - & 350 & - & mVrms \\
\hline Noise Output (RF signal level \(=0 \mathrm{mV}\) ) & 13 & - & 250 & - & mVrms \\
\hline Carrier Detect Threshold (below \(\mathrm{V}_{\mathrm{CC}}\) ) & 10 & - & 0.64 & - & Vdc \\
\hline Meter Drive Slope & 10 & - & 100 & - & \(\mathrm{nA} / \mathrm{dB}\) \\
\hline Input for 20 dB (S+N)/N (See Figure 7) & - & - & 0.7 & - & \(\mu \mathrm{Vrms}\) \\
\hline First Mixer 3rd Order Intercept (Input) & - & - & -22 & - & dBm \\
\hline First Mixer Input Resistance (Rp) & - & - & 690 & - & \(\Omega\) \\
\hline First Mixer Input Capacitance (Cp) & - & - & 7.2 & - & pF \\
\hline First Mixer Conversion Voltage Gain & - & - & 18 & - & dB \\
\hline Second Mixer Conversion Voltage Gain & - & - & 21 & - & dB \\
\hline Detector Output Resistance & 13 & - & 1.4 & - & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}

FIGURE 3 - TEST CIRCUIT


FIGURE 4 - IMETER versus INPUT


FIGURE 6 - SIGNAL LEVELS


FIGURE 5 - DRAIN CURRENT, RECOVERED AUDIO versus SUPPLY


FIGURE \(7-S+N, N, A M R\) versus INPUT


FIGURE 9 - DETECTOR OUTPUT versus FREQUENCY


\section*{MC3362}

\section*{CIRCUIT DESCRIPTION}

The MC3362 is a complete FM narrowband receiver from antenna input to audio preamp output. The low voltage dual conversion design yields low power drain, excellent sensitivity and good image rejection in narrowband voice and data link applications.

In the typical application (Figure 1), the first mixer amplifies the signal and converts the RF input to 10.7 MHz . This IF signal is filtered externally and fed into the second mixer, which further amplifies the signal and converts it to a 455 kHz IF signal. After external bandpass filtering, the low IF is fed into the limiting amplifier and detection circuitry. The audio is recovered using a conventional quadrature detector. Twice-IF filtering is provided internally.

The input signal level is monitored by meter drive circuitry which detects the amount of limiting in the limiting amplifier. The voltage at the meter drive pin determines the state of the carrier detect output, which is active low.

\section*{APPLICATION}

The first local oscillator can be run using a freerunning LC tank, as a VCO using PLL synthesis, or driven from an external crystal oscillator. It has been run to 190 MHz .* A buffered output is available at Pin 20. The second local oscillator is a common base Colpitts type which is typically run at 10.245 MHz under crystal control. A buffered output is available at Pin 2. Pins 2 and 3 are interchangeable.

The mixers are doubly balanced to reduce spurious responses. The first and second mixers have conversion gains of 18 dB and 22 dB (typical), respectively, as seen in Figure 6. Mixer gain is stable with respect to supply voltage. For both conversions, the mixer impedances and pin layout are designed to allow the user to employ low cost, readily available ceramic filters. Overall sensitivity and AM rejection are shown in Figure 7. The input level for \(20 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}\) is 0.7 \(\mu \mathrm{V}\) using the two-pole post-detection filter pictured.

\footnotetext{
*If the first local oscillator (Pins 21 and/or 22) is driven from a strong external source ( 100 mVrms ), the mixer can be used to over 450 MHz .
}

Following the first mixer, a 10.7 MHz ceramic bandpass filter is recommended. The 10.7 MHz filtered signal is then fed into one second mixer input pin, the other input pin being connected to \(\mathrm{V}_{\mathrm{CC}}\).

The 455 kHz IF is typically filtered using a ceramic bandpass filter then fed into the limiter input pin. The limiter has \(10 \mu \mathrm{~V}\) sensitivity for -3.0 dB limiting, flat to 1.0 MHz .
The output of the limiter is internally connected to the quadrature detector, including a quadrature capacitor. A parallel LC tank is needed externally from Pin 12 to \(V_{\text {CC. }}\) A \(68 \mathrm{k} \Omega\) shunt resistance is included which determines the peak separation of the quadrature detector; a smaller value will increase the spacing and linearity but decrease recovered audio and sensitivity.
A data shaping circuit is available and can be coupled to the recovered audio output of Pin 13. The circuit is a comparator which is designed to detect zero crossings of FSK modulation. Data rates of 2000 to 35000 baud are detectable using the circuit of Figure 1. Hysteresis is available by connecting a high-valued resistor from Pin 15 to Pin 14. Values below \(120 \mathrm{k} \Omega\) are not recommended as the input signal cannot overcome the hysteresis.
The meter drive circuitry detects input signal level by monitoring the limiting of the limiting amplifier stages. Figure 4 shows the unloaded current at Pin 10 versus input power. The meter drive current can be used directly (RSSI) or can be used to trip the carrier detect circuit at a specified input power. To do this, pick an RF trip level in dBm. Read the corresponding current from Figure 4 and pick a resistor such that:
\[
\mathrm{R}_{10} \approx 0.64 \mathrm{Vdc} / \mathrm{I}_{10}
\]

Hysteresis is available by connecting a high-valued resistor \(R_{H}\) between Pins 10 and 11. The formula is:
\[
\text { Hyst. }=V_{C C} /\left(R_{H} \times 10^{-7}\right) d B
\]


\section*{Advance Information}

\section*{LOW POWER DUAL CONVERSION FM RECEIVER}

The MC3363 is a single chip narrowband VHF FM radio receiver. It is a dual conversion receiver with RF amplifier transistor, oscillators, mixers, quadrature detector, meter drive/carrier detect and mute circuitry. The MC3363 also has a buffered first local oscillator output for use with frequency synthesizers, and a data slicing comparator for FSK detection.
- Wide Input Bandwidth - 200 MHz Using Internal Local Oscillator - 450 MHz Using External Local Oscillator
- RF Amplifier Transistor
- Muting Operational Amplifier
- Complete Dual Conversion
- Low Voltage: \(\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}\) to 7.0 V
- Low Drain Current: ICC \(=3.6 \mathrm{~mA}\) (Typ) at \(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\), Excluding RF Amplifier Transistor
- Excellent Sensitivity: Input \(0.3 \mu \mathrm{~V}\) (Typ) for 12 dB SINAD Using Internal RF Amplifier Transistor
- Data Shaping Comparator
- Received Signal Strength Indicator (RSSI) with 60 dB Dynamic Range
- Low Number of External Parts Required
- Manufactured in Motorola's MOSAIC Process Technology
- See AN980 For Additional Design Information

\section*{LOW POWER DUAL CONVERSION FM RECEIVER}

SILICON MONOLITHIC INTEGRATED CIRCUIT

FIGURE 1 - PIN CONNECTIONS AND FUNCTIONAL BLOCK DIAGRAM


This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Pin & Symbol & Value & Unit \\
\hline Power Supply Voltage & 8 & \(\mathrm{~V}_{\mathrm{CC}(\text { max })}\) & 8.0 & Vdc \\
\hline \begin{tabular}{l} 
Operating Supply Voltage Range \\
(Recommended)
\end{tabular} & 8 & \(\mathrm{~V}_{\mathrm{CC}}\) & 2.0 to 7.0 & Vdc \\
\hline Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}\right)\) & 1,28 & \(\mathrm{~V}_{1-28}\) & 1.0 & Vrms \\
\hline Mute Output Voltage & 19 & \(\mathrm{~V}_{19}\) & -0.7 to 8.0 & Vpk \\
\hline Junction Temperature & - & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & - & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & - & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=49.7 \mathrm{MHz}\right.\), Deviation \(= \pm 3.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Mod} 1.0 \mathrm{kHz}\),
Test Circuit of Figure 2 unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin & Min & Typ & Max & Unit \\
\hline Drain Current (Carrier Detect Low) & 8 & - & 4.5 & 8.0 & mA \\
\hline -3.0 dB Limiting Sensitivity (RF Amplifier Not Used) & - & - & 0.7 & 2.0 & \(\mu \mathrm{Vrms}\) \\
\hline \(20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}\) Sensitivity (RF Amplifier Not Used) & - & - & 1.0 & - & \(\mu \mathrm{Vrms}\) \\
\hline 1st Mixer Input Resistance (Parallel - Rp) & 1,28 & - & 690 & - & Ohm \\
\hline 1st Mixer Input Capacitance (Parallel - Cp) & 1,28 & - & 7.2 & - & pF \\
\hline 1st Mixer Conversion Voltage Gain ( \(\mathrm{AvC1}\), Open Circuit) & - & - & 18 & - & dB \\
\hline 2nd Mixer Conversion Voltage Gain ( Vvc , Open Circuit) & - & - & 21 & - & dB \\
\hline 2nd Mixer Input Sensitivity ( \(20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}\) ) ( \(10.7 \mathrm{MHz} \mathrm{i/p}\) ) & 21 & - & 10 & - & \(\mu \mathrm{Vrms}\) \\
\hline Limiter Input Sensitivity ( \(20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}\) ) ( \(455 \mathrm{kHz} \mathrm{i/p}\) ) & 9 & - & 100 & - & \(\mu \mathrm{Vrms}\) \\
\hline RF Transistor DC Current Drain & 4 & 1.0 & 1.5 & 2.5 & mAdc \\
\hline Recovered Audio (RF Signal Level \(=1.0 \mathrm{mV}\) ) & 16 & 120 & 200 & - & mVrms \\
\hline Noise Output Level (RF Signal \(=0 \mathrm{mV}\) ) & 16 & - & 70 & - & mVrms \\
\hline THD of Recovered Audio (RF Signal \(=1.0 \mathrm{mV}\) ) & 16 & - & 2\% & - & \% \\
\hline Detector Output Impedance & 16 & - & 400 & - & Ohm \\
\hline Data (Comparator) Output Voltage - High - Low & \[
\begin{aligned}
& 18 \\
& 18 \\
& \hline
\end{aligned}
\] & \[
\overline{0.1}
\] & \[
\overline{0.1}
\] & \[
\overline{v_{C C}}
\] & \begin{tabular}{l}
Vdc \\
Vdc
\end{tabular} \\
\hline Data (Comparator) Threshold Voltage Difference & 17 & 70 & 110 & 150 & mV \\
\hline Meter Drive Slope & 12 & 70 & 100 & 135 & \(n \mathrm{n} / \mathrm{dB}\) \\
\hline Carrier Detect Threshold (Below \(\mathrm{V}_{\mathrm{CC}}\) ) & 12 & 0.53 & 0.64 & 0.77 & Vdc \\
\hline Mute Output Impedance - High - Low & \[
\begin{aligned}
& 19 \\
& 19
\end{aligned}
\] & - & \[
\begin{aligned}
& 10 \\
& 25
\end{aligned}
\] & - & Mohm Ohm \\
\hline
\end{tabular}


\section*{MC3363}

\section*{CIRCUIT DESCRIPTION}

The MC3363 is a complete FM narrowband receiver from RF amplifier to audio preamp output. The low voltage dual conversion design yields low power drain, excellent sensitivity and good image rejection in narrowband voice and data link applications.

In the typical application, the input RF signal is amplified by the RF transistor and then the first mixer amplifies the signal and converts the RF input to 10.7 MHz . This IF signal is filtered externally and fed into the second mixer, which further amplifies the signal and converts it to a 455 kHz IF signal. After external bandpass filtering, the low IF is fed into the limiting amplifier and detection circuitry. The audio is recovered using a conventional quadrature detector. Twice-IF filtering is provided internally.

The input signal level is monitored by meter drive circuitry which detects the amount of limiting in the limiting amplifier. The voltage at the meter drive pin determines the state of the carrier detect output, which is active low.

\section*{APPLICATION}

The first local oscillator is designed to serve as the VCO in a PLL frequency synthesized receiver. The MC3363 can operate together with the MC145166/7 to provide a two-chip ten channel frequency synthesized receiver in the \(46 / 49\) cordless telephone band. The MC3363 can also be used with the MC14515X series of CMOS PLL synthesizers and MC120XX series of ECL prescalers in VHF frequency synthesized applications to 200 MHz .

For single channel applications the first local oscillator can be crystal controlled. The circuit of Figure 4 has been used successfully up to 60 MHz . For higher frequencies an external oscillator signal can be injected into Pins 25 and/or 26 - a level of approximately 100 mVrms is recommended. The first mixer's transfer characteristic is essentially flat to 450 MHz when this approach is used (keeping a constant 10.7 MHz IF frequency). The second local oscillator is a Colpitts type which is typically run at 10.245 MHz under crystal control.

The mixers are doubly balanced to reduce spurious responses. The first and second mixers have conversion gains of 18 dB and 21 dB (typical), respectively. Mixer gain is stable with respect to supply voltage. For both conversions, the mixer impedances and pin layout are designed to allow the user to employ low cost, readily available ceramic filters.

Following the first mixer, a 10.7 MHz ceramic bandpass filter is recommended. The 10.7 MHz filtered signal is then fed into the second mixer input Pin 21, the other input Pin 22 being connected to \(\mathrm{V}_{\mathrm{CC}}\).

The 455 kHz IF is filtered by a ceramic narrow bandpass filter then fed into the limiter input Pin 9. The limiter has \(10 \mu \mathrm{~V}\) sensitivity for -3.0 dB limiting, flat to 1.0 MHz .

The output of the limiter is internally connected to the quadrature detector, including a quadrature capacitor. A parallel LC tank is needed externally from Pin 14 to \(V_{\text {CC }}\). A 68 kOhm shunt resistance is included which determines the peak separation of the quadrature detector; a smaller value will lower the Q and expand the deviation range and linearity, but decrease recovered audio and sensitivity.

A data shaping circuit is available and can be coupled to the recovered audio output of Pin 16. The circuit is a comparator which is designed to detect zero crossings of FSK modulation. Data rates of 2000 to 35000 baud are detectable using the comparator. Best sensitivity is obtained when data rates are limited to 1200 baud maximum. Hysteresis is available by connecting a high-valued resistor from Pin 17 to Pin 18. Values below 120 kOhm are not recommended as the input signal cannot overcome the hysteresis.

The meter drive circuitry detects input signal level by monitoring the limiting of the limiting amplifier stages. Figure 5 shows the unloaded current at Pin 12 versus input power. The meter drive current can be used directly (RSSI) or can be used to trip the carrier detect circuit at a specified input power.

A muting op amp is provided and can be triggered by the carrier detect output (Pin 13). This provides a carrier level triggered squelch circuit which is activated when the RF input at the desired input frequency falls below a preset level. The level at which this occurs is determined by the resistor placed between the meter drive output (Pin 12) and \(V_{\text {CC }}\). Values between 80-130 kOhms are recommended. This type of squelch is pictured in Figures 3 and 4.

Hysteresis is available by connecting a high-valued resistor Rh between Pins 12 and 13. The formula is:
\[
\text { Hyst }=\mathrm{V}_{\mathrm{CC}} /\left(\mathrm{Rh} \times 10^{-7}\right) \mathrm{dB}
\]

The meter drive can also be used directly to drive a meter or to provide AGC. A current to voltage converter or other linear buffer will be needed for this application.

A second possible application of the op amp would be in a noise triggered squelch circuit, similar to that used with the MC3357/MC3359/MC3361 FM I.F.'s. In this case the op amp would serve as an active noise filter, the output of which would be rectified and compared to a reference on a squelch gate. The MC3363 does not have a dedicated squelch gate, but the NPN RF input stage or data shaping comparator might be used to provide this function if available. The op amp is a basic type with the inverting input and the output available. This application frees the meter drive to allow it to be used as a linear signal strength monitor.

The circuit of Figure 4 is a complete 50 MHz receiver from antenna input to audio preamp output. It uses few components and has good performance. The receiver operates on a single channel and has input sensitivity of \(<0.3 \mu \mathrm{~V}\) for 12 dB SINAD.

FIGURE 3 - TYPICAL APPLICATION IN A PLL FREQUENCY SYNTHESIZED RECEIVER






\section*{Product Preview}

\section*{LOW VOLTAGE FM NARROWBAND RECEIVER}
. . . with single conversion circuitry including oscillator, mixer, IF amplifiers, limiting IF circuitry, and quadrature discriminator. The MC3367 is perfect for narrowband audio and data applications up to 75 MHz which require extremely low power consumption. Battery powered applications down to \(\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}\) are possible. The MC3367 also includes an on-board voltage regulator, low battery detection circuitry, a receiver enable allowing a power down "sleep mode," two undedicated buffer amplifiers to allow simultaneous audio and data reception, and a comparator for enhancing FSK (Frequency Shift Keyed) data reception.
- Low Supply Voltage: \(\mathrm{V}_{\mathrm{CC}}=1.1\) to 3.0 Vdc
- Low Power Consumption: \(\mathrm{PD}_{\mathrm{D}}=1.5\) to 5.0 mW
- Input Bandwidth 75 MHz
- Excellent Sensitivity: Input Limiting Voltage ( -3.0 dB ) \(=0.2 \mu \mathrm{Vrms}\)
- Voltage Regulator Available (Source Capability 3.0 mA )
- Receiver Enable to Allow Active/Standby Operation
- Low Battery Detection Circuitry
- Self Biasing Audio Buffer with Nominal Gain \(A V=4.0\)
- Data Buffer with Nominal Gain AV \(=3.2\)
- Comparator with \(>25 \mathrm{kHz}\) ( 50 kbaud ) Capability
- Standard 28-Lead Surface Mount (SOIC) Package


This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

\section*{LOW VOLTAGE SINGLE CONVERSION} FM RECEIVER

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT


PIN CONNECTIONS
\begin{tabular}{|c|c|c|c|}
\hline Mixer Dcpl. & 1 & 28 & 2nd IF Amp In \\
\hline Mixer Out & 2 & 27 & \(\square\) Data Buffer Out \\
\hline Mixer \(\ln \square\) & 3 & 26 & \(\square\) Data Buffer In \\
\hline Osc. Dcpl. & 4 & 25 & \(\square\) 1st IF Amp Out \\
\hline Osc. Base & 5 & 24 & \(\square \mathrm{V}_{\text {CC3 }}\) \\
\hline Osc. Emit. & 6 & 23 & \(\square 1\) st IF Amp In \\
\hline Isrc Dcpl. & 7 & 22 & \(\square\) Audio Buffer Out \\
\hline IF Gnd & 8 & 21 & \(\square\) Audio Buffer In \\
\hline \(\mathrm{V}_{\mathrm{CC} 2}\) & 9 & 20 & Low Battery Det. \\
\hline Rec. Audio & 10 & 19 & 1.2 V Select \\
\hline Quad Tank & 11 & 18 & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline Quad Tank & 12 & 17 & \(V_{\text {reg }}\) \\
\hline Demod. Gnd & 13 & 16 & \(\square\) Receiver Enable \\
\hline mparator I/P & 14 & 15 & ]Comparator O/P \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS (Voltages referred to Pin \(12 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) )
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Pin & Value & Units \\
\hline Supply Voltage & 18 & 5.0 & Vdc \\
\hline RF Input Signal & 3 & 1.0 & Vrms \\
\hline Audio Buffer Input & 21 & 1.0 & Vrms \\
\hline Data Buffer Input & 26 & 1.0 & Vrms \\
\hline Comparator Input & 14 & 1.0 & Vrms \\
\hline Junction Temperature & - & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & - & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Devices should not be operated at or outside these values. The "Recommended Operating Limits" provide for actual device operation.

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Pin & Value & Units \\
\hline Supply Voltage & 18 & 1.1 to 3.0 & Vdc \\
\hline Receiver Enable Voltage & 16 & 0 or \(\mathrm{V}_{\mathrm{CC}}\) & \\
\hline 1.2 V Select Voltage & 19 & \(\mathrm{~V}_{\mathrm{CC}}\) & \\
\hline RF Input Signal & 3 & 0.001 to 100 & Vdc \\
\hline RF Input Frequency & 3 & 0 to 75 & mVrms \\
\hline Intermediate Frequency (IF) & - & 455 & MHz \\
\hline Audio Buffer Input & 21 & 0 to 75 & kHz \\
\hline Data Buffer Input & 26 & 0 to 75 & mVrms \\
\hline Comparator Input & 14 & 10 to 300 & mVrms \\
\hline Ambient Temperature & - & 0 to 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

FIGURE 2 - TEST CIRCUIT
(All capacitors in \(\mu \mathrm{F}\) unless otherwise stated. Resistors in ohms. Inductors in Henries.)


ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=1.3 \mathrm{~V}, \mathrm{f}_{\mathrm{o}}=45 \mathrm{MHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}\right.\), Deviation \(=3.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Test Circuit of Figure 2 unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin & Min & Typ & Max & Units \\
\hline \multicolumn{6}{|l|}{OVERALL MC3367 PERFORMANCE} \\
\hline \begin{tabular}{rl} 
Drain Current - Pin 15 & \(=\mathrm{V} \mathrm{CC}\) \\
\(-\operatorname{Pin} 15\) & \(=0 \mathrm{Vdc}\)
\end{tabular} & - & - & \[
\begin{aligned}
& 1.4 \\
& 0.5
\end{aligned}
\] & \[
3.0
\] & \[
{ }_{\mu \mathrm{A}}^{\mathrm{mA}}
\] \\
\hline Recovered Audio (RF Input \(=10 \mathrm{mV}\) ) & 10 & - & 13 & - & mVrms \\
\hline Noise Output (RF Input \(=0 \mathrm{mV}\) ) & 10 & - & 4.5 & - & mVrms \\
\hline Input for -3.0 dB Limiting & 3 & - & 0.2 & - & \(\mu\) Vrms \\
\hline
\end{tabular}

MIXER
\begin{tabular}{|l|c|c|c|c|c|}
\hline Mixer Input Resistance (Rp) & 3 & - & 3.0 & - & \(\mathrm{k} \Omega\) \\
\hline Mixer Input Capacitance (Cp) & 3 & - & 9.0 & - & pF \\
\hline
\end{tabular}

FIRST IF AMPLIFIER
\begin{tabular}{|l|l|l|l|l|l|}
\hline First IF Amp Voltage Gain & - & - & 25 & - & dB \\
\hline
\end{tabular}
AUDIO BUFFER
\begin{tabular}{|l|c|c|c|c|c|}
\hline Voltage Gain & - & - & 4.0 & - & \(\mathrm{V} /\) \\
\hline Input Resistance & 21 & - & 125 & - & k \(\Omega\) \\
\hline Maximum Input for Undistorted Output & 21 & - & 70 & - & mVrms \\
\hline Maximum Output Swing & 22 & - & 800 & - & mVpp \\
\hline Output Resistance & 22 & - & 680 & - & \(\Omega\) \\
\hline
\end{tabular}

DATA BUFFER
\begin{tabular}{|l|c|c|c|c|c|}
\hline Voltage Gain & - & - & 3.2 & - & \(\mathrm{V} / \mathrm{V}\) \\
\hline Input Resistance & 26 & - & 8.0 & - & \(\mathrm{M} \Omega\) \\
\hline Maximum Input for Undistorted Output & 26 & - & 70 & - & mVrms \\
\hline Maximum Output Swing & 27 & - & 600 & - & mVpp \\
\hline Output Resistance & 27 & - & 1.5 & - & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}

COMPARATOR
\begin{tabular}{|l|c|c|c|c|c|}
\hline Minimum Input for Triggering & 14 & - & 7.0 & -4 & mVrms \\
\hline Maximum Input Frequency \(\left(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right)\) & 14 & - & 25 & - & kHZ \\
\hline Rise Time \(\left(10-90 \% ; \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right)\) & 15 & - & 5.0 & - & \(\mu \mathrm{s}\) \\
\hline Fall Time \(\left(90-10 \% ; \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.\) ) & 15 & - & 0.4 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

LOW BATTERY DETECTOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Low Battery Trip Point & 18 & - & 1.09 & - & Vdc \\
\hline Low Battery Output \(-\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}\) & 20 & - & 0.2 & - & Vdc \\
\(-\mathrm{V}_{\mathrm{CC}}=1.3 \mathrm{~V}\) & 20 & - & \(\mathrm{V}_{\mathrm{CC}}\) & - & Vdc \\
\hline
\end{tabular}

\section*{VOLTAGE REGULATOR}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Regulated Output (see Figure 6) & 17 & - & 0.95 & - & Vdc \\
\hline Source Capability & 17 & - & - & 3.0 & mA \\
\hline
\end{tabular}

FIGURE 3 - RECOVERED AUDIO versus SUPPLY


FIGURE \(5 \mathbf{-} \mathbf{S}+\mathbf{N}, \mathbf{N}\) versus INPUT


\section*{CIRCUIT DESCRIPTION}

The MC3367 is an FM narrowband receiver capable of operation to 75 MHz . The low voltage design yields low power drain and excellent sensitivity in narrowband voice and data link applications. In the typical application the mixer amplifies the incoming RF or IF signal and converts the RF or IF frequency to 455 kHz . This signal is then filtered by a 455 ceramic filter and applied to the first intermediate frequency (IF) amplifier input. This amplifier amplifies the 455 kHz IF before it is filtered by a second ceramic filter. The modulated IF signal is then applied to the limiting IF amplifier and detector circuitry. Audio is recovered by a conventional quadrature detector.

Features available include buffers for audio/data amplification and active filtering, on board voltage regulator, low battery detection circuitry with programmable level, and receiver disable circuitry. The MC3367 is an FM utility receiver to be used for voice and/or narrowband data reception, especially suitable where extremely low power consumption and high design flexibility are required.

FIGURE 4 - DRAIN versus SUPPLY


FIGURE 6 - VREG versus SUPPLY


\section*{APPLICATION}

The MC3367 can be used as a high performance FM IF for use in low power dual conversion receivers. Because of the MC3367's extremely good sensitivity ( \(0.6 \mu \mathrm{~V}\) for \(20 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}\), see Figure 5 ), it can also be used as a stand alone single conversion narrowband receiver to 75 MHz for applications not sensitive to image frequency interference.

The oscillator is a Colpitts type which can be run as an LC oscillator or under crystal control. The crystal in Figure 2 is a 3rd overtone series mode type, and the \(1.2 \mu \mathrm{H}\) coil (L1) and \(1.0 \mathrm{k} \Omega\) resistor are needed to ensure proper operation. For fundamental mode crystals, the inductor L1 can be omitted.

The best adjacent channel and sensitivity response occur when two 455 kHz ceramic filters are used, as shown in Figure 2. Either can be replaced by a \(0.1 \mu \mathrm{~F}\) coupling capacitor to reduce cost, but some degradation in sensitivity and/or stability is suspected.

The detector is a quadrature type, with the connection from the limiter output to the detector input provided internally as with the MC3359 and the MC3361.

\section*{FIGURE 7 －CIRCUIT SCHEMATIC}


A 455 kHz LC tank circuit must be provided externally. One of the tank pins (Pin 11) must be decoupled using a \(0.1 \mu \mathrm{~F}\) capacitor. The \(56 \mathrm{k} \Omega\) damping resistor shown in Figure 2 determines the peak separation (and thus the detector bandwidth) of the detector. Smaller values will increase the separation and bandwidth but decrease recovered audio and sensitivity.
The data buffer is a non-inverting amplifier with a nominal voltage gain of 3.2 V/V. This buffer needs its dc bias (approx. 250 mV ) provided externally or else debiasing will occur. A single-pole RC filter as shown in Figure 5 connecting the recovered audio output to the data buffer input provides the necessary dc bias and some post-detection filtering. The buffer can also be used as an active filter.

The audio buffer is a non-inverting amplifier with a nominal voltage gain of \(4.0 \mathrm{~V} / \mathrm{V}\). This buffer is selfbiasing so its input should be ac coupled. The two buffers, when used as active filters, can be used together to allow simultaneous audio and very lowspeed data reception. Another possible configuration is to receive audio only and include a noise-triggered squelch.

The comparator is a non-inverting type with an open collector output. Typically the pull-up resistor used between \(\operatorname{Pin} 15\) and \(V_{C C}\) is \(100 \mathrm{k} \Omega\). With \(R_{\mathrm{L}}=100 \mathrm{k} \Omega\)
the comparator is capable of operation up to 25 kHz . This circuit is self-biasing, so its input should be ac coupled.

The regulator is a 0.95 V reference capable of sourcing 3.0 mA . This pin (Pin 17) needs to be decoupled using a \(1.0-10 \mu \mathrm{~F}\) capacitor to maintain stability of the MC3367.

All three \(\mathrm{V}_{\mathrm{CC}}\) 's on the \(\mathrm{MC3367}\left(\mathrm{~V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC} 2}, \mathrm{~V}_{\mathrm{CC}}\right)\) run on the same supply voltage. \(V_{C C}\) is typically decoupled using capacitors only. VCC2 and VCC3 should be bypassed using the RC bypasses shown in Figure 2. Eliminating the resistors on the \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{CC}}\) bypasses may be possible in some applications, but a reduction in sensitivity and quieting will likely occur.

The low battery detection circuit gives an NPN open collector output at Pin 20 which drops low when the MC3367 supply voltage drops below 1.1 V . Typically it would be pulled up via a \(100 \mathrm{k} \Omega\) resistor to supply.

The 1.2 V Select pin, when connected to the MC3367 supply, programs the low battery detector to trip at \(\mathrm{V}_{\mathrm{CC}}\) \(<1.1 \mathrm{~V}\). Leaving this pin open raises the trip voltage on the low battery detector.

Pin 16 is a receiver enable, which is connected to \(V_{C C}\) for normal operation. Connecting this pin to ground shuts off receiver and reduces current drain to ICC \(<\) \(0.5 \mu \mathrm{~A}\).

\section*{WIDEBAND FSK RECEIVER}

The MC13055 is intended for RF data link systems using carrier frequencies up to 40 MHz and FSK (frequency shift keying) data rates up to 2.0 M Baud ( 1.0 MHz ). This design is similar to the MC3356, except that it does not include the oscillator/mixer. The IF bandwidth has been increased and the detector output has been revised to a balanced configuration. The received signal strength metering circuit has been retained, as has the versatile data slicer/ comparator.
- Input Sensitivity \(20 \mu \mathrm{~V}\) ( \(\mathrm{a}^{40 \mathrm{MHz}}\)
- Signal Strength Indicator Linear Over 3 Decades
- Available in Surface Mount Package
- Easy Application, Few Peripheral Components

\section*{WIDEBAND \\ FSK RECEIVER}

MONOLITHIC SILICON INTEGRATED CIRCUIT


PLASTIC PACKAGE CASE 648-06


D SUFFIX
PLASTIC PACKAGE
CASE 751B-03
SO-16

FIGURE 1 - BLOCK DIAGRAM AND APPLICATION CIRCUIT


MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}(\max )}\) & 15 & Vdc \\
\hline Operating Supply Voltage Range & \(\mathrm{V} 2, \mathrm{~V} 4\) & 3.0 to 12 & Vdc \\
\hline Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Dissipation, Package Rating & \(\mathrm{PD}_{\mathrm{D}}\) & 1.25 & W \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
\(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=40 \mathrm{MHz}, \mathrm{f}_{\bmod }=1.0 \mathrm{MHz}, \Delta \mathrm{f}= \pm 1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), Test circuit of Figure 2)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Characteristics} & Measure & Min & Typ & Max & Unit \\
\hline Total Drain Current & & \(12+14\) & - & 20 & 25 & mA \\
\hline Data Comparator Pull-Down Current & & 116 & - & 10 & - & mA \\
\hline Meter Drive Slope versus Input & & 112 & 4.5 & 7.0 & 9.0 & \(\mu \mathrm{A} / \mathrm{dB}\) \\
\hline Carrier Detect Pull-Down Current & & 113 & - & 1.3 & - & mA \\
\hline Carrier Detect Pull-Up Current & & 113 & - & 500 & - & \(\mu \mathrm{A}\) \\
\hline Carrier Detect Threshold Voltage & & V12 & 700 & 800 & 900 & mV \\
\hline DC Output Current & & 110, 111 & - & 430 & - & \(\mu \mathrm{A}\) \\
\hline Recovered Signal & & V10 - V11 & - & 350 & - & mVrms \\
\hline Sensitivity for \(20 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}, \mathrm{BW}=5.0 \mathrm{MHz}\) & & VIN & - & 20 & - & \(\mu\) Vrms \\
\hline \(\mathrm{S}+\mathrm{N} / \mathrm{N}\) at \(\mathrm{V}_{\text {in }}=50 \mu \mathrm{~V}\) & & V10 - V11 & - & 30 & - & dB \\
\hline Input Impedance (a 40 MHz & \[
\begin{aligned}
& \mathrm{R}_{\text {in }} \\
& \mathrm{C}_{\text {in }} \\
& \hline
\end{aligned}
\] & Pin 5, Ground & - & \[
\begin{aligned}
& 4.2 \\
& 4.5 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline Quadrature Coil Loading & \[
\begin{aligned}
& \mathrm{R}_{\text {in }} \\
& \mathrm{C}_{\text {in }} \\
& \hline
\end{aligned}
\] & Pin 9 to 8 & - & \[
\begin{aligned}
& 7.6 \\
& 5.2 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF} \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{FIGURE 2 - TEST CIRCUIT}


Coils - Shielded
Coilcraft UNI-10/142
L1 Gray 8-1/2 Turns, nominal \(300 \mu \mathrm{H}\) L2 Black 10-1/2 Turns, nominal \(380 \mu \mathrm{H}\)
or
TOKO Series E526HNA
L1 Part No. 100301
L2 Part No. 100079

All curves taken with test conditions of ELECTRICAL CHARACTERISTICS, unless otherwise noted

FIGURE 3 - OVERALL GAIN, NOISE, AM REJECTION


FIGURE 5 - UNTUNED INPUT: LIMITING SENSITIVITY versus FREQUENCY


FIGURE 7 - LIMITING SENSITIVITY AND DETUNING versus SUPPLY


FIGURE 4 - METER CURRENT versus SIGNAL


FIGURE 6 - UNTUNED INPUT: METER CURRENT versus FREQUENCY


FIGURE 8 - DETECTOR CURRENT AND POWER SUPPLY CURRENT versus SUPPLY VOLTAGE


FIGURE 9 - RECOVERED AUDIO versus TEMPERATURE


FIGURE 11 - METER CURRENT versus TEMPERATURE


FIGURE 10 - CARRIER DETECT THRESHOLD versus TEMPERATURE


FIGURE 12 - INPUT LIMITING versus TEMPERATURE



\section*{FIGURE 14 - INTERNAL SCHEMATIC}

\section*{GENERAL DESCRIPTION}

The MC13055 is an extended frequency range FM IF, quadrature detector, signal strength detector and data shaper. It is intended primarily for FSK data systems. The design is very similar to MC3356 except that the oscillator/mixer has been removed, and the frequency capability of the IF has been raised about \(2: 1\). The detector output configuration has been changed to a balanced, open-collector type to permit symmetrical drive of the data shaper (comparator). Meter drive and squelch features have been retained.

The limiting If is a high frequency type, capable of being operated up to 100 MHz . It is expected to be used at 40 MHz in most cases. The quadrature detector is internally coupled to the IF, and a 2.0 pF quadrature capacitor is internally provided. The 20 dB quieting sensitivity is approximately \(20 \mu \mathrm{~V}\), tuned input, and the IF can accept signals up to 220 mVrms without distortion or change of detector quiescent dc level.

The IF is unusual in that each of the last 5 stages of the 6 stage limiter contains a signal strength sensitive, current sinking device. These are parallel connected and buffered to produce a signal strength meter drive which
is fairly linear for IF input signals of \(20 \mu \mathrm{~V}\) to 20 mVrms . (See Figure 4.)

A simple squelch arrangement is provided whereby the meter current flowing through the meter load resistance flips a comparator at about 0.8 Vdc above ground. The signal strength at which this occurs can be adjusted by changing the meter load resistor. The comparator( + ) input and output are available to permit control of hysteresis. Good positive action can be obtained for IF input signals of above \(20 \mu \mathrm{Vrms}\). A resistor R from Pin 13 to Pin 12 will provide \(\mathrm{V}_{\mathrm{CC}} / \mathrm{R}\) of feedback current. This current can be correlated to an amount of signal strength hysteresis by using Figure 4.

The squelch is internally connected to the data shaper. Squelch causes the data shaper to produce a high ( \(\mathrm{V}_{\mathrm{CC}}\) ) output.

The data shaper is a complete "floating" comparator, with diodes across its inputs. The outputs of the quadrature detector can be fed directly to either or preferably both inputs of the comparator to produce a squared output swinging from \(V_{C C}\) to ground in inverted or noninverted form.


In Brief . . .
. . . reflecting Motorola's continuing commitment to semiconductor products necessary for consumer system designs. This tabulation is arranged to simplify first= order selection of consumer integrated circuit devices that satisfy the primary functions for home entertainment products, including Television, Hi-Fi Audio and AM/FM Radio.
Selector Guide Entertainment Radio Receiver Circuits9-2
Video Circuits ..... 9-3
Remote Control Circuits ..... 9-5
Alphanumeric Index ..... 9-6
Related Application Notes ..... 9-6
Data Sheets ..... 9-7
ConsumerElectronic Circuits

\section*{Consumer Electronic Circuits}
Entertainment Radio Receiver CircuitsC-QUAM \({ }^{\circledR}\) AM Stereo Decoders9-2
FM Stereo Decode ..... 9-2
Audio Amplifiers ..... 9-2
Audio Attenuators/Controls ..... 9-2
Video Circuits9-3
Demodulators ..... 9-3
9-4
Tuning System Circuits
Deflection-
Sound ..... 9-4
Transistor Arrays ..... 9-4
Television Subsystems ..... 9-4
Video IF Amplifiers ..... 9-4
Remote Control Circuits ..... 9-5

\section*{Entertainment Radio Receiver Circuits}

C-QUAM \({ }^{\circledR}\) AM Stereo Decoders
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Features } & Suffix/Case & Device \\
\hline Basic AM Stereo Decoder & Monaural/Stereo AM Detector, Indicator, 6-10 V Operation & P/738 & MC13020 \\
\hline Advanced AM Stereo Decoder & Medium Voltage 2-8 V, Decoder and IF Amp & DW/751F & MC13022 \\
\hline AM Front End & Tuning Stabilizer for MC13022 & P/738 & MC13023 \\
\hline AM Stereo Personal Radio & Complete Low Voltage AM Stereo Receiver & P/724 & MC13024 \\
\hline Tuning Stabilizer & Companion for MC13020 for Manual Tuned Receivers & \(P / 648\) & MC13021 \\
\hline AM Broadcast Receiver & AM Receiver Subsystem - Ideal Companion for MC13020 & P/738 & MC13041 \\
\hline
\end{tabular}

\section*{FM Stereo Decoder}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Function & \begin{tabular}{c} 
Channel \\
Separation \\
dB Typ
\end{tabular} & \begin{tabular}{c} 
THD \\
\(\%\) Typ
\end{tabular} & \begin{tabular}{c} 
Stereo/Indicator \\
Lamp Driver \\
mA Max
\end{tabular} & Features & Suffix/Case & Device \\
\hline FM Multiplex Stereo Decoder & 62 & 0.1 & 100 & \begin{tabular}{l} 
Low Signal Blend \\
for Noise Reduction
\end{tabular} & \(-/ 648\) & TCA4500A \\
\hline
\end{tabular}

\section*{Audio Amplifiers}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Function & Po Watts & \begin{tabular}{l}
\(V_{C C}\) \\
Vdc Max
\end{tabular} & \[
\begin{gathered}
V_{\text {in }} \\
@ \text { rated } P_{0} \\
\text { mV Typ }
\end{gathered}
\] & \[
\mathrm{mA}_{\text {Iyp }}
\] & \[
\begin{gathered}
R_{\mathrm{L}} \\
\text { Ohms }
\end{gathered}
\] & Suffix/Case & Type \\
\hline Mini Watt SOIC Audio Amp & 1.0 W & 35 & 80 & 11 & 16 & D/751 & MC13060 \\
\hline Low Power Audio Amp & 400 mW & 16 & - & 2.5 mA & 8-100 & \[
\begin{aligned}
& \mathrm{D} / 751 \\
& \mathrm{P} / 626
\end{aligned}
\] & MC34119 \\
\hline
\end{tabular}

\section*{Audio Attenuators/Controls}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & \begin{tabular}{c} 
VCC \\
Range \\
Vdc
\end{tabular} & \begin{tabular}{c} 
THD \\
\(\%\)
\end{tabular} & \begin{tabular}{c} 
Tone \\
Control \\
Range \\
dB Typ
\end{tabular} & \begin{tabular}{c} 
Attenuation \\
Range \\
dB Typ
\end{tabular} & Suffix/Case & Device \\
\hline Stereo, Volume, Bass, Treble, Balance & \(8.5-18\) & 0.1 Typ & \(\pm 14\) & 80 & P/707 & TCA5550 \\
\hline Stereo, Volume, Bass, Treble, Balance & \(3-18\) & 0.5 Max & \(\pm 15\) & 80 & P/707 & TDA1524 \\
\hline
\end{tabular}


When AM stereo broadcasting was sanctioned by the F.C.C. in 1982, there were five different systems vying for user approval. Since then C-QUAM \({ }^{\circledR}\) has become the defacto standard in the U.S.A., as the market and broadcasters recognize its performance advantages. It is the legal standard in Canada, Australia and Brazil where A.M. is the dominant radio medium. C-QUAM is available from nearly 50 automobile radio makers and a dozen home receiver builders (for as little as \(\$ 60\) in a basic tuner).

Based on the field-proven C-Quam performance, Motorola has developed a low-cost, high performance C-Quam AM Stereo Decoder chip, with fully compatible, no-compromise mono performance, as the basis for both broadcast and receiving equipment. Additional IC components from Motorola's inventory offer a single supply source for state-of-the-art radio receiver designs. New products cover virtually every type of receiver - home, auto, and personal portable.

\section*{Radio Circuits (See Communications Section)}

\section*{Video Circuits}

\section*{Modulators}
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Features } & Suffix/Case & Device \\
\hline TV Modulator (Hi Quality) & RF Oscillator/Modulator, and FM Sound Oscillator/Modulator & P/646 & MC1374 \\
\hline Video RGB to PAL/NTSC Encoder & \begin{tabular}{l} 
RGB and Sync Inputs, Composite Video Out - PAL/NTSC \\
Switch Selectable
\end{tabular} & P/738 & MC1377 \\
\hline Video Synchronizer & Complete Color TV Video Overlay Synchronizer & P/711 & MC1378 \\
\hline
\end{tabular}

\section*{Demodulators}
\begin{tabular}{|l|l|l|l|}
\hline Color Processor & \begin{tabular}{l} 
PAL/NTSC Input, RGB Output, also RGB Inputs, Plus Fast \\
Blanking Input. Ideal for Text, Graphics, Overlays
\end{tabular} & P/711 & \begin{tabular}{l} 
TDA3301 \\
TDA3303
\end{tabular} \\
\hline Color Processor & PAL/NTSC Input, RGB Outputs, On-Chip Hue Control & P/724 & TDA3330 \\
\hline Color Processor & PAL/NTSC Input, Color Difference Outputs On-Chip Hue Control & P/707 & TDA3333 \\
\hline
\end{tabular}

\section*{Tuning System}
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Features } & Suffix/Case & Device \\
\hline Remote Control Amplifier & Infrared Diode Signal Amplifier Shaper & P/626 & MC3373 \\
\hline PLL-Tuning Circuit & TV Tuning System - Prescaler - M-Bus Control & DW/751C & MC44802 \\
\hline
\end{tabular}

\section*{Deflection}
\begin{tabular}{|l|l|l|l|}
\hline Horizontal Processor & \begin{tabular}{l} 
Linear Balanced Phase Detector, Oscillator and Predriver, \\
Adjustable dc Loop Gain, Adjustable Duty Cycle
\end{tabular} & P/626 & MC1391 \\
\hline
\end{tabular}

\section*{Sound}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Sound IF Detector, dc Volume \\
Control, Preamplifier
\end{tabular} & \(30 \mu \mathrm{~V}, 3.0 \mathrm{~dB}\) Limiting, Excellent AMR & \(-/ 646\) & TBA120C \\
\hline \begin{tabular}{l} 
Sound IF, Low Pass Filter, \\
\begin{tabular}{l} 
Detector, dc Volume Control, \\
Preamplifier
\end{tabular}
\end{tabular} & \begin{tabular}{l} 
Complete TV Sound System; \(100 \mu \mathrm{~V}, 3 \mathrm{~dB}\) Limiting Sensitivity; \\
4 Watts Output; \(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega\)
\end{tabular} & \(\mathrm{P} / 648 \mathrm{C}\) & TDA3190 \\
\cline { 2 - 4 } & 750 mW Output & \(\mathrm{P} / 648 \mathrm{C}\) & TDA1190 \\
\hline Stereo Sound Control System & Stereo Balance, Volume, Bass, Treble Control & P/707 & TCA55550 \\
\hline
\end{tabular}

\section*{Transistor Arrays}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & \begin{tabular}{c}
\(\mathbf{I C ( m a x )}\) \\
\(\mathbf{m A}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{V}_{\mathbf{C E O}}\) \\
Volts Max
\end{tabular} & \begin{tabular}{c}
\(\mathbf{V}_{\mathbf{C B O}}\) \\
Volts Max
\end{tabular} & \begin{tabular}{c}
\(\mathbf{V}_{\text {EBO }}\) \\
Volts Max
\end{tabular} & Suffix/Case & Device \\
\hline \begin{tabular}{l} 
One Differentially Connected Pair and Three \\
Isolated Transistors
\end{tabular} & 50 & 15 & 20 & 5.0 & \begin{tabular}{c} 
P/646 \\
D/751A
\end{tabular} & MC3346 \\
\hline \begin{tabular}{l} 
Dual Independent Differential Amplifiers with \\
Associated Constant Current Transistors
\end{tabular} & 50 & 15 & 20 & 5.0 & P/646 & CA3054 \\
\hline
\end{tabular}

\section*{Television Subsystems}
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Features } & Suffix/Case & Device \\
\hline \begin{tabular}{l} 
MONOMAX - 1-Chip \\
Black and White TV \\
Subsystem
\end{tabular} & \begin{tabular}{l} 
Video IF, Detector, AGC, Video Amplifier, Horizontal Processor, \\
Vertical Processor, and Sync For 525 Line Systems
\end{tabular} & P/710 & MC13001X \\
\cline { 2 - 4 } & Same as Above Except For 625 Line Systems & P/710 & MC13002X \\
\hline \begin{tabular}{l} 
Sound IF, Low Pass Filter, \\
Detector, dc Volume Control, \\
Preamplifier, Power Amplifier
\end{tabular} & \begin{tabular}{l} 
Complete TV Sound System; \(100 \mu \mathrm{~V}, 3\) dB Limiting Sensitivity; \\
4 Watts Output; \(V\) CC \(=24 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega\)
\end{tabular} & P/648C & TDA3190 \\
\cline { 2 - 5 } & Same as TDA1190Z Except for 750 mW Output & P/648C & TDA1190 \\
\hline MONOMAX Audio/Vertical Output & High Level 750 mW Audio Output - Vertical Yoke Driver & P/648C & MC13014 \\
\hline
\end{tabular}

\section*{Video IF Amplifiers}
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Features } & Suffix/Case & Device \\
\hline 1st and 2nd Video IF Amplifier & IF Gain (a 45 MHz = 50 dB typ, AGC Range = 60 dB min & \(\mathrm{P} / 626\) & MC1350 \\
\hline \begin{tabular}{l} 
3rd IF, Video Detector, Video \\
Buffer, and AFC Buffer
\end{tabular} & \begin{tabular}{l} 
Low Level Detection, Low Harmonic Generation, Zero Signal \\
dc Output Voltage of 7.0 to 8.2 V
\end{tabular} & \(\mathrm{P} / 626\) & MC1330A1P \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Same as MC1330A1 Except Zero Signal dc Output Voltage of \\
7.8 to 9.0 V
\end{tabular} & \(\mathrm{P} / 626\) & MC1330A2P \\
\hline \begin{tabular}{l} 
SAW Preamp, IF Amplifier, \\
Detector, AGC, AFC
\end{tabular} & \begin{tabular}{l} 
Complete Video IF or Parallel Sound IF System Complete AFT \\
System with Simple Quadrature Detector
\end{tabular} & P/707 & MC13010P \\
\hline Advanced Video IF & \begin{tabular}{l} 
Complete Video/Audio IF System for High Performance \\
Analog TV Receivers
\end{tabular} & DW/751F & MC44301 \\
\hline
\end{tabular}

\section*{Remote Control Circuits}

The MC3373 remote control receiver is specifically designed for infra-red link systems where high sensitivity and good noise immunity are critical. The MC3373 incorporates a high gain detector diode preamp driving an envelope detector and data wave shaper for accurate data recovery. Provision is also made to use an external L-C tank circuit at the carrier frequency, normally 30 to 60 kHz , for extended range
low noise systems. Applications include TV remote control, short range data links (up to several hundred feet), door openers and security systems. The MC14497 is an ideal companion transmitter, where a simple D.T.M.F. like key-pad control is desired. The Motorola discrete opto division also has several high sensitivity detectors and emitters which match up well to the MC1373 system.

Functional Block Diagram of Remote Control System


\section*{CONSUMER ELECTRONIC PRODUCTS}

\section*{ENTERTAINMENT RADIO RECEIVER CIRCUITS}
Device Function Page
MC13020P C-QUAM \({ }^{\circledR}\) AM Stereo Decoder ..... 9-84
MC13021 Motorola C-QUAM \({ }^{\circledR}\) AM Stereo Tuning Stabilizer ..... 9-89
MC13022 Advanced Medium Voltage AM Stereo Decoder ..... 9-91
MC13023 C-QUAM \({ }^{\circledR}\) AM Receiver Front End and Tuner Stabilizer ..... 9-95
MC13024 Low Voltage Motorola C-QUAM \({ }^{\circledR}\) AM Stereo Receiver ..... 9-101
MC13041 AM Receiver Subsystem ..... 9-104
MC13055 Wideband FSK Receiver See Chapter 8
MC13060 Mini-Watt Audio Output ..... 9-110
MC34119 Low Power Audio Amplifier ..... 9-114
TCA4500A FM Stereo Demodulator ..... 9-142
TCA5550 Stereo Sound Control System ..... 9-149
TDA1524A Stereo Tone Control System ..... 9-156
VIDEO CIRCUITS
Device Function Page
CA3054
MC1330A1P
Dual Differential Amplifier ..... 9-7
Low Level Video Detector ..... 9-9
MC1330A2P Low Level Video Detector ..... 9-15
IF Amplifier ..... 9-19
MC1374
Color Television RGB to PALNTSC Encoder ..... 9-27
Complete Color TV Video Overlay Synchronizer ..... 9-31
TV Horizontal Processor ..... 9-35
Differential Audio Amplifier ..... See Chapter 2
General Purpose Transistor Array ..... 9-40
Remote Control Wideband Amplifier-Detector ..... 9-43
Triple 4-Bit Color Palette Video DAC ..... 9-47
Triple 4-Bit Color Palette Video DAC ..... 9-47
Monomax Black and White TV Subsystem ..... 9-64
Monomax Black and White TV Subsystem ..... 9-64
TV Parallel Sound IF and AFT ..... 9-73
Companion Audio/Vertical Subsystem ..... \(9-18\)
\(9-123\)
PLL Tuning Circuit with 1.3 GHz Prescaler ..... 9-129
Video Amplifier ..... See Chapter 2
Video Amplifier ..... See Chapter 2
FM IF Amplifier, Limiter and Detector ..... 9-137
Stereo Sound Control System ..... 9-149
TV Sound System ..... 9-153
TV Sound System ..... 9-153
TV Color Processor ..... 9-161
TV Color Processor ..... 9-161
TV Color Processor ..... 9-175
TV Color Difference Demodulator ..... 9-183
REMOTE CONTROL CIRCUIT
Device Function Page
Remote Control Wideband Amplifier-Detector ..... 9-43
RELATED APPLICATION NOTES
\begin{tabular}{|c|c|c|}
\hline Application Note & Title & Related Device \\
\hline AN545A & Television Video IF Amplifier Using Integrated Circuits & MC1350 \\
\hline AN829 & Application of the MC1374 TV Modulator & MC1374 \\
\hline AN932 & Application of the MC1377 Color Encoder & MC1377 \\
\hline AN879 & Monomax-Application of the MC13001 Monochrome TV IC & MC13001 \\
\hline ANHK07 & A High Performance, Manual-Tuned AM Stereo Receiver for Automotive Application Using Motorola ICs: MC13020, & MC13020,21 \\
\hline
\end{tabular}

\section*{DUAL INDEPENDENT DIFFERENTIAL AMPLIFIER}

The CA3054 consists of two independent differential amplifiers with associated constant-current transistors on a common monolithic substrate. The six NPN transistors which comprise the amplifiers are general purpose devices useful from dc to 120 MHz .

The monolithic construction of the CA3054 provides close electrical and thermal matching of the amplifiers which makes this device particularly useful in dual channel applications where matched performance of the two channels is required.
- Two differential amplifiers on a common substrate
- Independently accessible inputs and outputs
- Maximum input offset voltage \(- \pm 5 \mathrm{mV}\)

GENERAL PURPOSE TRANSISTOR ARRAY

SILICON MONOLITHIC INTEGRATED CIRCUIT


P SUFFIX PLASTIC PACKAGE CASE 646-06

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Collector-Emitter Voltage & \(\mathrm{V}_{\mathrm{CEO}}\) & 15 & Vdc \\
\hline Collector-Base Voltage & \(\mathrm{V}_{\mathrm{CBO}}\) & 20 & Vdc \\
\hline Emitter-Base Voltage & \(\mathrm{V}_{\mathrm{EB}}\) & 5.0 & Vdc \\
\hline Collector-Substrate Voltage & \(\mathrm{V}_{\mathrm{CIO}}\) & 20 & Vdc \\
\hline Collector Current - Continuous & \(\mathrm{I}_{\mathrm{C}}\) & 50 & mAdc \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \({ }^{(T} A=25^{\circ} \mathrm{C}\), unless otherwise noted).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{STATIC CHARACTERISTICS FOR EACH DIFFERENTIAL AMPLIFIER} \\
\hline Input Offset Voltage \(\left(\mathrm{V}_{\mathrm{CB}}=3.0 \mathrm{Vdc}\right)\) & \(\mathrm{V}_{10}\) & - & - & 5.0 & mV \\
\hline \[
\begin{aligned}
& \text { Input Offset Current } \\
& \quad\left(V_{C B}=3.0 \mathrm{Vdc}\right)
\end{aligned}
\] & 110 & - & - & 2.0 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current \(\left(\mathrm{V}_{\mathrm{CB}}=3.0 \mathrm{Vdc}\right)\) & \({ }_{1} \mathrm{~B}\) & - & - & 24 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

STATIC CHARACTERISTICS FOR EACH TRANSISTOR
\begin{tabular}{|c|c|c|c|c|c|}
\hline Base-Emitter Voltage
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CB}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A}\right) \\
& \left(\mathrm{V}_{\mathrm{CB}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\mathrm{CB}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~mA}\right) \\
& \left(\mathrm{V}_{\mathrm{CB}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\right)
\end{aligned}
\] & \(\mathrm{V}_{\text {BE }}\) & - & -
-
- & \[
\begin{aligned}
& 0.70 \\
& 0.80 \\
& 0.85 \\
& 0.90
\end{aligned}
\] & Vdc \\
\hline Collector Cutoff Current
\[
\left(V_{C B}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)
\] & 'CBO & - & - & 100 & nA \\
\hline Collector-Emitter Breakdown Voltage
\[
\left({ }^{( } \mathrm{C}=1.0 \mathrm{~mA}\right)
\] & \(V_{\text {(BR) CEO }}\) & 15 & - & - & Vdc \\
\hline \[
\begin{aligned}
& \text { Collector-Base Breakdown Voltage } \\
& \text { (I } \mathrm{C}=10 \mu \mathrm{~A} \text { ) }
\end{aligned}
\] & \(V_{\text {(BR) }}\) CBO & 20 & - & - & Vdc \\
\hline Collector-Substrate Breakdown Voltage
\[
(1 C=10 \mu \mathrm{~A})
\] & \(V_{(B R) C I O}\) & 20 & - & - & Vdc \\
\hline Emitter-Base Breakdown Voltage
\[
\left(1_{E}=10 \mu \mathrm{~A}\right)
\] & \(V_{\text {(BR)EBO }}\) & 5.0 & - & - & Vdc \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{ccc}
\hline Device & Temperature Range & Package \\
\hline MC1330A1P & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
MC1330A2P & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP
\end{tabular}

\section*{LOW LEVEL VIDEO DETECTOR}
... an integrated circuit featuring very linear video characteristics and wide bandwidth. Designed for color and monochrome television receivers, replacing the third IF, detector, video buffer and AFC buffer.
- Conversion Gain - 33 dB (Typ)
- Excellent Differential Phase and Gain
- High Rejection of IF Carrier Feedthrough
- High Video Output - 8.0 V (p-p)
- Fully Balanced Detector
- Output Temperature Compensated
- Improved Versions of the MC1330P

\section*{CIRCUIT DESCRIPTION}

The MC1330A video detector is a fully balanced multiplier detector circuit that has linear amplitude and phase characteristics. The signal is divided into two channels, one a linear amplifier and the other a limiting amplifier that provides the switching carrier for the detector.

The switching carrier has a buffered output for use in providing the AFT function.

The video amplifier output is an improved design that reduces the differential gain and phase distortion associated with previous video output systems. The output is wide band, \(>8.0 \mathrm{MHz}\), with normal negative polarity. A separate narrow bandwidth, positive video output is also provided.

\section*{LOW LEVEL VIDEO DETECTOR}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT


P SUFFIX
PLASTIC PACKAGE CASE 626-05

\section*{OUTPUT VOLTAGE SELECTION}

The MC1330A1P is identical to the MC1330A2P with the following exception:

ZERO SIGNAL DC OUTPUT VOLTAGE
7.0 to 8.2 Vdc
7.8 to 9.0 Vdc


\section*{MC1330A1P, MC1330A2P}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Value & Unit \\
\hline Power Supply Voltage & 24 & Vdc \\
\hline DC Video Output Current & 5.0 & mAdc \\
\hline DC AFT Output Current & 2.0 & mAdc \\
\hline Junction Temperature & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temptrature Range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{Vdc}, \mathrm{Q}=40, \mathrm{fc}=45.75 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Characteristic & MC1330A1P & Pin & Min & Typ & Max & Unit \\
\hline Zero Signal dc Output Voltage & 4 & 7.0 & - & 8.2 & Vdc \\
& MC1330A2P & 4 & 7.8 & - & 9.0 & Vdc \\
\hline Supply Current & 5,6 & 11 & 17.5 & 20 & mA \\
\hline Maximum Signal dc Output Voltage & 4 & - & 0 & 0.5 & Vdc \\
\hline \begin{tabular}{l} 
Conversion Gain for 1.O Vp-p Output \\
(30\% Modulation)
\end{tabular} & & 7 & 25 & 36 & 65 & mVrms \\
\hline AFT Buffer Output at Carrier Frequency & & 1 & 300 & 475 & 650 & \(\mathrm{mVp-p}\) \\
\hline
\end{tabular}

FIGURE 3 - INPUT ADMITTANCE

FIGURE 2 - TEST FIXTURE CIRCUIT



FIGURE 4 - VIDEO DETECTOR OUTPUT RESISTANCE


DESIGN CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{Vdc}, \mathrm{Q}=40, \mathrm{f}_{\mathrm{C}}=45.75 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|}
\hline Characteristic & Pin & Typ & Unit \\
\hline Input Resistance Input Capacitance & \[
\begin{aligned}
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& 4.9 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline Internal Resistance (Across Tuned Circuit) Internal Capacitance (Across Tuned Circuit) & \[
\begin{aligned}
& 2,3 \\
& 2,3
\end{aligned}
\] & \[
\begin{aligned}
& 4.4 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline Negative Video Output Bandwidth (Figure 10) Positive Video Output Bandwidth (Figure 10) & \[
\begin{array}{r}
4 \\
5
\end{array}
\] & \[
\begin{gathered}
10.8 \\
2.2
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Differential Phase @ \(3.58 \mathrm{MHz}, 100 \%\) Modulated \\
Staircase, 3.0 Vp-p Detected Video Pin 5 Tied to Pin 6 Differential Gain @ \(3.58 \mathrm{MHz}, 100 \%\) Modulated \\
Staircase, 3.0 Vp-p Detected Video Pin 5 Tied to Pin 6
\end{tabular} & 4
4 & \[
\begin{aligned}
& 7.0 \\
& 4.0
\end{aligned}
\] & \begin{tabular}{l}
Degrees \\
\%
\end{tabular} \\
\hline \begin{tabular}{l}
Differential Phase @ \(3.58 \mathrm{MHz}, 100 \%\) Modulated \\
Staircase, 3.0 Vp-p Detected Video, R Pin \(5=4.3 \mathrm{k} \Omega\) \\
Differential Gain @ \(3.58 \mathrm{MHz}, 100 \%\) Modulated \\
Staircase, 3.0 Vp-p Detected Video, R Pin \(5=4.3 \mathrm{k} \Omega\)
\end{tabular} & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 6.0
\end{aligned}
\] & Degrees
\% \\
\hline 920 kHz Beat Output (dB Below 100\% Modulated Video, See Figure 11)
```

45.75 MHz = Reference
42.17 MHz = - 6 dB
41.25 MHz = -20 dB

``` & 4 & -38 & dB \\
\hline Video Output Resistance @ \(1 \mathrm{MHz}, 2 \mathrm{~mA}\) & 4 & 94 & \(\Omega\) \\
\hline \begin{tabular}{cl} 
Input Overload (Carrier Level at Input to & \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}\) \\
Caused Detector Output, Pin 4, & \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{Vdc}\) \\
To Go Positive 0.1 Vdc From & \(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{Vdc}\) \\
Ground.) & \(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}\)
\end{tabular} & 7 & \[
\begin{aligned}
& 2.0 \\
& 2.6 \\
& 3.6 \\
& 4.6
\end{aligned}
\] & Volts \\
\hline Power Supply Voltage Range & 5 & 10 to 24 & Volts \\
\hline
\end{tabular}

FIGURE 5 -DIFFERENTIAL. PHASE AND GAIN TEST SET UP


TYPICAL CHARACTERISTICS
\(\left(V_{C C}=+20 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) Unless Otherwise Noted)

FIGURE 6 - OUTPUT VOLTAGE TRANSFER FUNCTION


FIGURE 8 - OUTPUT VOLTAGE, SUPPLY CURRENT


FIGURE 10 - VIDEO OUTPUT RESPONSE


FIGURE 7 - OUTPUT VOLTAGE TRANSFER FUNCTION


FIGURE 9 - AFT LIMITING


FIGURE 11 - VIDEO OUTPUT PRODUCTS


\section*{TV-IF Amplifier Information}

A very compact high performance IF amplifier constructed as shown in Figure 14 minimizes the number of overall components and alignment adjustments. It can be readily combined with normal tuners and input tuningtrapping circuitry to provide the performance demanded of high quality receivers. This configuration will provide approximately 93 dB voltage gain and can accomodate the usual low impedance input network or, if desired, can take advantage of an impedance step-up from tuner to MC1349P input.

The burden of selectivity, formerly found between the third IF and detector, must now be placed at the interstage. The nominal 3 volt peak-to-peak output can be varied from 0 to 7.0 V with excellent linearity and freedom from spurious output products.

Alignment is most easily accomplished with an AM generator, set at a carrier frequency of 45.75 MHz , modulated with a video frequency sweep. This provides the proper realistic conditions necessary to operate to low-level detector (LLD). The detector tank is first adjusted for maximum detected dc (with a CW input), next, the video sweep modulation is applied and the interstage and input circuits aligned, step by step, as in a standard IF amplifier.

Note: A normal IF sweep generator, essentially an FM generator, will not serve properly without modification. The LLD tank attempts to "follow" the sweep input frequency, and results in variations of switching amplitude in the detector. Hence, the apparent overall response becomes modified by the response of the LLD tank, which a real signal doesn't do.

This effect can be prevented by resistively adding a 45.75 MHz CW signal to the output of the sweep generator approximately 3 dB greater than the sweep amplitude. See Figures 12 and 13 below. For a more detailed description of the MC1330AP see application note AN-545.

\section*{MC1330A General Information}

The MC1330A offers the designer a new approach to an old problem. Now linear detection can be performed at

\section*{FIGURE 12 - BANDPASS DISPLAYED BY CONVENTIONAL SWEEP}

much lower power signal levels than possible with a detector diode.

Offering a number of distinct advantages, its easy implementation should meet with ready acceptance for television designs. Some specific features and information on systems design with this device are given below:
1. The device provides excellent linearity of output versus input, as shown in Figures 6 and 7. These graphs also show that video peak-to-peak amplitude (ac) does not change with supply voltage variation. (Slopes are parallel. Visualize a given variation of input CW and use the figure as a transfer function.)
2. The dc output level does change linearly with supply voltage shown in Figure 8. This can be accommodated by regulating the supply or by referencing the subsequent video amplifier to the same power supply.
3. The choice of \(Q\) for the tuned circuit of pins 2 and 3 is not critical. The higher the Q , the better the rejection of 920 kHz products but the more critical the tuning accuracy required. See Figure 11. Values of \(Q\) from 20 to 50 are recommended. (Note the internal resistance.)
4. A video output with positive-going sync is available at pin 5 if required. This signal has a higher output impedance than pin 4 so it must be handled with greater care. If not used, pin 5 may be connected directly to the supply voltage (pin 6). The video response will be altered somewhat. See Figure 10.
5. An AFT output (pin1) provides 460 mV of IF carrier output, sufficient voltage to drive an AFT ratio detector, with only one additional stage.
6. AGC lockout can occur if the input signal presented in the MC1330A is greater than that shown in the input overload section of the design characteristics shown on Page 3. If these values are exceeded, the turns ratio between the primary and secondary of \(T_{1}\) should be increased. Another solution to the problem is to use an input clamp diode \(\mathrm{D}_{1}\) shown in Figure 14.
7. The total I.F. noise figure at high gain reductions can be improved by reflecting \(\approx 1 \mathrm{k}\) source impedance to the input of the MC1330AP. This will cause some loss in overall IF voltage gain.

FIGURE 13 - BANDPASS DISPLAY WITH THE ADDITION OF CARRIER INJECTION



FIGURE 15 - PRINTED CIRCUIT BOARD PARTS LAYOUT


FIGURE 16 - PRINTED CIRCUIT BOARD LAYOUT


IF AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT
. . . an integrated circuit featuring wide range AGC for use as an IF amplifier in radio and TV over the temperature range 0 to \(+75^{\circ} \mathrm{C}\). The MC1352 is similar in design but has a keyed-AGC amplifier as an integral part of the same chip.
- Power Gain - 50 dB Typ at 45 MHz
- 48 dB Typ at 58 MHz
- AGC Range - 60 dB Min, dc to 45 MHz
- Nearly Constant Input and Output Admittance Over the Entire AGC Range
- \(\mathrm{y}_{21}\) Constant ( -3.0 dB ) to 90 MHz
- Low Reverse Transfer Admittance - \(\ll 1.0 \mu \mathrm{mho}\) Typ
- 12-Volt Operation, Single-Polarity Power Supply

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}^{+}\) & +18 & Vdc \\
\hline Output Supply Voltage & \(\mathrm{V}_{1}, \mathrm{~V}_{8}\) & +18 & Vdc \\
\hline AGC Supply Voltage & \(\mathrm{V}_{\mathrm{AGC}}\) & \(\mathrm{V}^{+}\) & Vdc \\
\hline Differential Input Voltage & \(\mathrm{V}_{\text {in }}\) & 5.0 & Vdr \\
\hline \begin{tabular}{l} 
Power Dissipation (Package Limitation) \\
Plastic Package \\
Derate above 25
\end{tabular}\({ }^{\circ} \mathrm{C}\) & \(\mathrm{PD}_{\mathrm{D}}\) & & \begin{tabular}{c}
625 \\
mW \\
\(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Operating Temperature Range & & 5.0 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}^{+}=+12 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline AGC Range, 45 MHz ( 5.0 V to 7.0 V ) (Figure 1) & & 60 & 68 & - & dB \\
\hline \begin{tabular}{cl} 
Power Gain (Pin 5 grounded via a \(5.1 \mathrm{k} \Omega\) resistor) \\
\(\mathrm{f}=58 \mathrm{MHz}, \mathrm{BW}=4.5 \mathrm{MHz}\) & See Figure 6(a) \\
\(\mathrm{f}=45 \mathrm{MHz}, \mathrm{BW}=4.5 \mathrm{MHz}\) & See Figure 6(a), (b) \\
\(\mathrm{f}=10.7 \mathrm{MHz}, \mathrm{BW}=350 \mathrm{kHz}\) & See Figure 7 \\
\(\mathrm{f}=455 \mathrm{kHz}, \mathrm{BW}=20 \mathrm{kHz}\) & \\
\end{tabular} & \(A_{p}\) & \[
\overline{46}
\] & \[
\begin{aligned}
& 48 \\
& 50 \\
& 58 \\
& 62 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & dB \\
\hline \begin{tabular}{l}
Maximum Differential Voltage Swing 0 dB AGC \\
-30 dB AGC
\end{tabular} & \(\mathrm{V}_{0}\) & - & \[
\begin{aligned}
& 20 \\
& 8.0
\end{aligned}
\] & - & \(V_{p-p}\) \\
\hline Output Stage Current (Pins 1 and 8) & \(l_{1}+l_{8}\) & - & 5.6 & - & mA \\
\hline Total Supply Current (Pins 1, 2 and 8) & Is & - & 14 & 17 & mAdc \\
\hline Power Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & - & 168 & 204 & mW \\
\hline
\end{tabular}

DESIGN PARAMETERS, Typical Values \(\left(\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Symbol} & \multicolumn{4}{|c|}{Frequency} & \multirow[b]{2}{*}{Unit} \\
\hline & & 455 kHz & 10.7 MHz & 45 MHz & 58 MHz & \\
\hline Single-Ended Input Admitance & \[
\begin{aligned}
& g_{11} \\
& \mathrm{~b}_{11}
\end{aligned}
\] & \[
\begin{gathered}
0.31 \\
0.022
\end{gathered}
\] & \[
\begin{aligned}
& 0.36 \\
& 0.50
\end{aligned}
\] & \[
\begin{aligned}
& 0.39 \\
& 2.30
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.5 \\
& 2.75
\end{aligned}
\] & mmhos \\
\hline Input Admittance Variations with AGC ( 0 to 60 dB ) & \[
\begin{aligned}
& \Delta \mathrm{g}_{11} \\
& \Delta \mathrm{~b}_{11}
\end{aligned}
\] & - & - & \[
\begin{gathered}
60 \\
0
\end{gathered}
\] & - & \(\mu \mathrm{mhos}\) \\
\hline Differential Output Admittance & \[
\begin{aligned}
& \mathrm{g}_{22} \\
& \mathrm{~b}_{2}
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 4.4 \\
& 110
\end{aligned}
\] & \[
\begin{array}{r}
30 \\
390 \\
\hline
\end{array}
\] & \[
\begin{gathered}
60 \\
510
\end{gathered}
\] & \(\mu \mathrm{mhos}\) \\
\hline Output Admittance Variations with AGC ( 0 to 60 dB ) & \[
\begin{aligned}
& \Delta \mathrm{g}_{22} \\
& \Delta \mathrm{~b}_{22}
\end{aligned}
\] & & & \[
\begin{aligned}
& 4.0 \\
& 90
\end{aligned}
\] & - & \(\mu \mathrm{mhos}\) \\
\hline Reverse Transfer Admittance (Magnitude) & \(\left|\mathrm{y}_{12}\right|\) & <<1.0 & <<1.0 & <<1.0 & <<1.0 & \(\mu \mathrm{mho}\) \\
\hline Forward Transfer Admittance Magnitude Angle ( 0 dB AGC) Angle ( -30 dB AGC) & \[
\begin{aligned}
& \left|y_{21}\right| \\
& <y_{21} \\
& <y_{21}
\end{aligned}
\] & \[
\begin{gathered}
160 \\
-5.0 \\
-3.0
\end{gathered}
\] & \[
\begin{aligned}
& 160 \\
& -20 \\
& -18
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& -80 \\
& -69
\end{aligned}
\] & \[
\begin{gathered}
180 \\
-105 \\
-90
\end{gathered}
\] & mmhos degrees degrees \\
\hline Single-Ended Input Capacitance & \(\mathrm{C}_{\text {in }}\) & 7.2 & 7.2 & 7.4 & 7.6 & pF \\
\hline Differential Output Capacitance & \(\mathrm{C}_{0}\) & 1.2 & 1.2 & 1.3 & 1.6 & pF \\
\hline
\end{tabular}

FIGURE 2 - TYPICAL GAIN REDUCTION
(Figures 6 and 7)


FIGURE 3 - NOISE FIGURE
(Figure 6)


\section*{GENERAL OPERATING INFORMATION}

The input amplifiers (Q1 and Q2) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac) with identical results. Terminals 4 and 6 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

\section*{FIGURE 4 - CIRCUIT SCHEMATIC}


AGC action occurs as a result of an increasing voltage on the base of Q4 and Q5 causing these transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q3 and Q6. The output amplifiers are supplied from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant. Collector voltage for the output amplifier must be supplied through a centertapped tuning coil to Pins 1 and 8 . The 12 -volt supply \((\mathrm{V}+)\) at Pin 2 may be used for this purpose, but output admittance remains more nearly constant if a separate 15-volt supply ( \(\mathrm{V}^{+}+\)) is used, because the base voltage on the output amplifier varies with AGC bias.

FIGURE 5 - TEST CIRCUIT RESPONSE CURVE
( 45 and 58 MHz )


FIGURE 6 - POWER GAIN, AGC AND NOISE FIGURE TEST CIRCUITS

*Connect to ground for maximum power gain test. All power-supply chokes ( \(L_{p}\) ), are self-resonant at input frequency. \(L_{p} \geqslant 20 \mathrm{k} \Omega\)
See figure 5 for frequency response curve.
L1 (a \(45 \mathrm{MHz}=71 / 4\) Turns on a \(1 / 4^{\prime \prime}\) coil form
(a) \(58 \mathrm{MHz}=6\) Turns on a \(1 / 4^{\prime \prime}\) coil form

T1 Primary Winding \(=18\) Turns on a \(1 / 4^{\prime \prime}\) coil form, center-tapped, \#26 AWG Secondary Winding \(=2\) Turns centered over Primary Winding (a 45 MHz \(=1\) Turn (a 58 MHz
Slug = Carbonyl E or J
\begin{tabular}{|l|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \multicolumn{2}{c|}{45 MHz} & \multicolumn{2}{c|}{58 MHz} \\
\hline L 1 & \(0.4 \mu \mathrm{H}\) & \(\mathrm{Q} \geqslant 100\) & \(0.3 \mu \mathrm{H}\) & \(\mathrm{Q} \geqslant 100\) \\
\hline T1 & \(1.3-3.4 \mu \mathrm{H}\) & \(\mathrm{Q} \geqslant 100 @ 2.0 \mu \mathrm{H}\) & \(1.2-3.8 \mu \mathrm{H}\) & \(\mathrm{Q} \geqslant 100 @ 2.0 \mu \mathrm{H}\) \\
\hline C1 & \multicolumn{2}{c|}{\(50-160 \mathrm{pF}\)} & \multicolumn{2}{c|}{\(8-60 \mathrm{pF}\)} \\
\hline C2 & \multicolumn{2}{c|}{\(8-60 \mathrm{pF}\)} & \multicolumn{2}{c|}{\(3-35 \mathrm{pF}\)} \\
\hline
\end{tabular}
(b) Alternate \(45 \mathbf{M H z}\)

\begin{tabular}{|c|c|}
\hline L1 & \begin{tabular}{c} 
Ferrite Core \\
14 Turns 28 S.W.G
\end{tabular} \\
\hline C1 & \(5-25 \mathrm{pF}\) \\
C2 & \(5-25 \mathrm{pF}\) \\
C3 & \(5-25 \mathrm{pF}\) \\
\hline
\end{tabular}

GENERAL OPERATING INFORMATION (continued)

FIGURE 7 - POWER GAIN AND AGC TEST CIRCUIT ( \(455 \mathbf{~ k H z}\) and 10.7 MHz )

Input

\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{ Frequency } \\
\cline { 2 - 3 } Component & \(\mathbf{4 5 5} \mathbf{~ k H z}\) & \(\mathbf{1 0 . 7} \mathbf{~ M H z}\) \\
\hline C 1 & - & \(80-450 \mathrm{pF}\) \\
C 2 & - & \(5.0-80 \mathrm{pF}\) \\
C 3 & \(0.05 \mu \mathrm{~F}\) & \(0.001 \mu \mathrm{~F}\) \\
C 4 & \(0.05 \mu \mathrm{~F}\) & \(0.05 \mu \mathrm{~F}\) \\
C 5 & \(0.001 \mu \mathrm{~F}\) & 36 pF \\
C 6 & \(0.05 \mu \mathrm{~F}\) & \(0.05 \mu \mathrm{~F}\) \\
C 7 & \(0.05 \mu \mathrm{~F}\) & \(0.05 \mu \mathrm{~F}\) \\
L 1 & - & \(4.6 \mu \mathrm{H}\) \\
T1 & Note 1 & Note 2 \\
\hline
\end{tabular}

Note 1. Primary: \(120 \mu \mathrm{H}\) (center-tapped) \(\mathrm{a}_{\mathrm{u}}=140\) at 455 kHz Primary: Secondary turns ratio \(\approx 13\)
Note 2. Primary: \(6.0 \mu \mathrm{H}\)
Primary winding \(=\mathbf{2 4}\) turns \#36 AWG (close-wound on \(1 / 4\) " dia. form)
Core \(=\) Carbonyl E or J
Secondary winding \(=1-1 / 2\) turns \#36 AWG, \(1 / 4^{\prime \prime}\) dia. (wound over center-tap)

TYPICAL CHARACTERISTICS
\(\left(\mathrm{V}+=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\)

FIGURE 8 - SINGLE-ENDED INPUT ADMITTANCE


FIGURE 10 - DIFFERENTIAL OUTPUT ADMITTANCE


For additional information see "A High-Performance Monolithic IF Amplifier Incorporating Electronic Gain

FIGURE 9 - FORWARD TRANSFER ADMITTANCE


FIGURE 11 - differential output voltage


Control," by W. R. Davis and J. E. Solomon, IEEE Journal on Solid State Circuits, December 1968.

\section*{TV MODULATOR CIRCUIT}

The MC1374 includes an FM audio modulator, sound carrier oscillator, RF oscillator, and RF dual input modulator. It is designed to generate a TV signal from audio and video inputs. The MC1374's wide dynamic range and low distortion audio make it particularly well suited for applications such as video tape recorders, video disc players, T.V. games and subscription decoders.
- Single Supply, 5 V to 12 V
- Channel 3 or 4 Operation
- Variable Gain RF Modulator
- Wide Dynamic Range
- Low Intermodulation Distortion
- Positive or Negative Sync
- Low Audio Distortion
- Few External Components
- Single Supply, 5 V to 12 V

\section*{TV MODULATOR CIRCUIT}

SILICON MONOLITHIC integrated circuit


FIGURE 1 - TYPICAL APPLICATION


MAXIMUM RATINGS ( \(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Value & Unit \\
\hline Supply Voltage & 14 & Vdc \\
\hline Operating Ambient Temperature Range & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Power Dissipation, Package \\
Derate above \(25^{\circ} \mathrm{C}\)
\end{tabular} & 1.25 & Watts \\
\hline
\end{tabular}

\section*{AM OSCILLATOR/MODULATOR}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{C}}=67.25 \mathrm{MHz}\right.\), Figure 4 circuit, unless noted)
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Min & Typ & Max & Unit \\
\hline Operating Supply Voltage & 5.0 & 12 & 12 & V \\
\hline Supply Current (Figure 1) & - & 13 & - & mA \\
\hline Video Input Dynamic Range (Sync Amplitude) & 0.25 & 1.0 & 1.0 & V Pk \\
\hline RF Output (Pin 9, R7 = 75 \(\Omega\), No External Load) & - & 170 & - & mV pp \\
\hline Carrier Suppression & 36 & 40 & - & dB \\
\hline Linearity ( \(75 \%\) to \(12.5 \%\) Carrier, 15 kHz to 3.58 MHz ) & - & - & 2.0 & \% \\
\hline Differential Gain Distortion (IRE Test Signal) & 5.0 & 7.0 & 10 & \% \\
\hline Differential Phase Distortion (3.58 MHz IRE Test Signal) & - & 1.5 & 2.0 & Degrees \\
\hline 920 kHz Beat (3.58 MHz @ 30\%, 4.5 MHz @ 25\%) & - & -57 & - & dB \\
\hline Video Bandwidth ( \(75 \Omega\) Input Source) & 30 & - & - & MHz \\
\hline Oscillator Frequency Range & -- & 105 & - & MHz \\
\hline Internal Resistance across Tank (Pin 6 to Pin 7) Internal Capacitance across Tank (Pin 6 to Pin 7) & - & \[
\begin{aligned}
& 1.8 \\
& 4.0
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{nF}
\end{aligned}
\] \\
\hline
\end{tabular}

FM OSCILLATOR/MODULATOR
ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, 4.5 \mathrm{MHz}\right.\), Test circuit of Figure 11 unless noted)
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Frequency Range of Modulator \\
Frequency Shift versus Temperature (Pin 14 open) \\
Frequency Shift versus \(\mathrm{V}_{\mathrm{CC}}\) (Pin 14 open) \\
Output Amplitude (Pin 3 not loaded) \\
Output Harmonics, Unmodulated
\end{tabular} & \[
1.4
\]
-
\[
-
\] & \[
\begin{gathered}
4.5 \\
0.2 \\
- \\
900 \\
-
\end{gathered}
\] & \[
\begin{gathered}
14 \\
0.3 \\
4.0 \\
\hline-40
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{MHz} \\
\mathrm{kHz} /{ }^{\circ} \mathrm{C} \\
\mathrm{kHz} / \mathrm{V} \\
\mathrm{mVp}-\mathrm{p} \\
\mathrm{~dB}
\end{gathered}
\] \\
\hline Modulation Sensitivity \begin{tabular}{r}
1.7 MHz \\
4.5 MHz \\
10.7 MHz
\end{tabular} & - & \[
\begin{aligned}
& 0.20 \\
& 0.24 \\
& 0.80
\end{aligned}
\] & - & \(\mathrm{MHz} / \mathrm{V}\) \(\mathrm{MHz} / \mathrm{V}\) \(\mathrm{MHz} / \mathrm{V}\) \\
\hline Audio Distortion ( \(\pm 25 \mathrm{kHz}\) Deviation ,Optimized Bias Pin 14) Audio Distortion ( \(\pm 25 \mathrm{kHz}\) Deviation, Pin 14 self biased) Incidental AM ( \(\pm 25 \mathrm{kHz}\) FM) & \[
\underline{\square}
\] & \[
\begin{aligned}
& 0.6 \\
& 1.4 \\
& 2.0
\end{aligned}
\] & \[
1.0
\] & \% \\
\hline Audio Input Resistance (Pin 14 to ground) Audio Input Capacitance (Pin 14 to ground) & - & \[
\begin{aligned}
& 6.0 \\
& 5.0
\end{aligned}
\] & - & \[
\begin{aligned}
& k \Omega \\
& n F
\end{aligned}
\] \\
\hline Stray Tuning Capacitance (Pin 3 to ground) Effective Oscillator Source Impedance (Pin 3 to load) & - & \[
\begin{aligned}
& 5.0 \\
& 2.0
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{k} \Omega
\end{aligned}
\] \\
\hline
\end{tabular}

FIGURE 2 - TV MODULATOR


\section*{GENERAL DESCRIPTION}

The MC1374 contains an RF oscillator, RF modulator, and a phase-shift type FM modulator, arranged to permit good printed circuit layout of a complete T.V. modulation system. The RF oscillator is similar to the one used in MC1372 and MC1373, and is coupled internally in the same way. It's frequency is controlled by an external tank on Pins 6 and 7, or by a crystal circuit, and will operate to approximately 105 MHz . The video modulator is a balanced type as used in the well known MC1496. Modulated sound carrier and composite video information can be put in separately on pins 1 and 11 to minimize unwanted crosstalk. A single resistor on Pins 12 and 13 is selected to set the modulator gain. The RF output at Pin 9 is a current source which drives a load connected from \(\operatorname{Pin} 9\) to \(\mathrm{V}_{\mathrm{CC}}\).

The FM system was designed specifically for the T.V. intercarrier function. For circuit economy, one phase shift circuit was built into the chip. Still, it will operate from 1.4 MHz to 14 MHz , low enough to be used in a cordless
telephone base station ( 1.76 MHz ), and high enough to be used as an FM IF test signal source ( 10.7 MHz ). At 4.5 MHz , a deviation of \(\pm 25 \mathrm{kHz}\) can be achieved with \(0.6 \%\) distortion (typical).

In the circuit above devices Q 1 through \(\mathrm{Q7}\) are active in the oscillator function. Differential amplifier Q3, Q4, Q5, and Q6 acts as a gain stage, sinking current from input section Q1, Q2 and the phase shift network R17, C1. Input amplifier Q1, Q2 can vary the amount of "in phase" Q4 current to be combined with phase shifter current in load resistor R16. The R16 voltage is applied to emitter follower Q7 which drives an external L-C circuit. Feedback from the center of the L-C circuit back to the base of Q6 closes the loop. As audio input is applied which would offset the stable oscillatory phase, the frequency changes to counteract. The input to Pin 14 can include a dc feedback current for AFC over a limited range.

The modulated FM signal from Pin 3 is coupled to Pin 1 of the RF modulator and is then modulated onto the AM carrier.

\section*{THE AM SECTION}

The AM modulator transfer function in Figure 3 shows that the video input can be of either polarity (and can be applied at either input). When the voltages on Pin 1 and Pin 11 are equal, the RF output is theoretically zero. As the difference between \(V_{\text {Pin }} 11\) and \(V_{\text {Pin }} 1\) increases, the RF output increases linearly until all of the current from both \(\mathrm{I}_{1}\) current sources ( O 8 and Q 9 ) is flowing in one side of the modulator. This occurs when \(\pm\left(V_{\text {Pin }} 11-V_{\text {Pin } 1)}\right.\) \(=I_{1} R_{G}\), where \(I_{1}\) is typically 1.15 mA . The peak-to-peak RF output is then \(211_{1} R_{L}\). Usually the value of \(R_{L}\) is chosen to be \(75 \Omega\) to ease the design of the output filter and match into T.V. distribution systems. The theoretical range of input voltage and \(\mathrm{R}_{\mathrm{G}}\) is quite wide, but noise and available sound level limit the useful video (sync tip) amplitude to between 0.25 and 1.0 Vpk . It is recommended that the value of \(R_{G}\) be chosen so that only about half of the dynamic range will be used at sync tip level.

The operating window of Figure 5 shows a cross-hatched area where Pin 1 and Pin 11 voltages must always be in order to avoid saturation in any part of the modulator. (The letter \(\phi\) represents one diode drop, or about 0.75 V .) The oscillator Pins 6 and 7 must be biased to a level of \(\mathrm{V}_{\mathrm{CC}}-\phi-21{ }_{1} \mathrm{R}_{\mathrm{L}}\) (or lower) and the input Pins 1 and 11 must always be at least \(2 \phi\) below that. It is permissible to operate down to 1.6 V , saturating the current sources, but whenever possible, the minimum should be \(3 \phi\) above ground.

The oscillator will operate dependably up to about 105 MHz with a broad range of tank circuit components values. It is desirable to use a small \(L\) and a large \(C\) to minimize the dependence on I.C. internal capacitance. An operating Q between 10 and 20 is recommended. The values of \(R_{1}, R_{2}\) and \(R_{3}\) are chosen to produce the desired \(Q\) and to set the Pin 6 and 7 d.c. voltage as discussed above. Unbalanced operation; i.e., Pin 6 or 7 bypassed to ground, is not recommended. Although the oscillator will still run, and the modulator will produce a useable signal, this mode causes substantial base-band video feedthrough. Bandswitching, as Figure 1 shows, can still be accomplished economically without using the unbalanced method.

The oscillator frequency with respect to temperature in the test circuit shows less than \(\pm 20 \mathrm{kHz}\) total shift from \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\) as shown in Figure 7. At higher temperatures the slope approaches \(2.0 \mathrm{kHz} /{ }^{\circ} \mathrm{C}\). Improvement in this region would require a temperature compensating tuning capacitor of the N75 family.

Crystal control is feasible using the circuit shown in Figure 21. The crystal is a 3rd overtone series type, used in series resonance. The L1, C2 resonance is adjusted well below the crystal frequency and is sufficiently tolerant to permit fixed values. A frequency shift versus temperature of less than \(1.0 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}\) can be expected from this approach. The resistors \(R a\) and \(R b\) are to suppress parasitic resonances.

Coupling of output RF to wiring and components on Pins 1 and 11 can cause as much as 300 kHz shift in carrier (at 67 MHz ) over the video input range. A careful layout can keep this shift below 10 kHz . Oscillator may also be inadvertently coupled to the RF output, with the undesired effect of preventing a good null when \(\mathrm{V}_{11}=\mathrm{V}_{1}\). Reasonable care will yield carrier rejection ratios of 36 to 40 dB below sync tip level carrier.

In television, one of the most serious concerns is the prevention of the intermodulation of color ( 3.58 MHz ) and sound ( 4.5 MHz ) frequencies, which causes a 920 kHz signal to appear in the spectrum. Very little (3rd order) nonlinearity is needed to cause this problem. The results in Figure 6 are unsatisfactory, and demonstrate that too much of the available dynamic range of the MC1374 has been used. Figures 8 and 10 show that by either reducing standard signal level, or reducing gain, acceptable results may be obtained.

At VHF frequencies, small imbalances within the device introduce substantial amounts of 2 nd harmonic in the RF output. At 67 MHz , the 2 nd harmonic is only 6 to 8 dB below the maximum fundamental. For this reason a double pi low pass filter is shown in the test circuit of Figure 3 and works well for channel 3 and 4 lab work. For a fully commercial application, a vestigial sideband filter will be required. The general form and approximate values are shown in Figure 19. It must be exactly aligned to the particular channel.

FIGURE 3 - AM MODULATOR TRANSFER FUNCTION


FIGURE 4 - AM TEST CIRCUIT



FIGURE 7 - RF OSCILLATOR FREQUENCY versus TEMPERATURE


FIGURE 9 - RF OSCILLATOR FREQUENCY versus SUPPLY VOLTAGE


FIGURE 6 - 920 kHz BEAT


FIGURE \(8 \mathbf{- 9 2 0} \mathbf{k H z}\) BEAT


FIGURE \(10 \mathbf{- 9 2 0} \mathbf{k H z}\) BEAT


\section*{FM SECTION}

The oscillator center frequency is approximately the resonance of the inductor \(L_{2}\) from \(\operatorname{Pin} 2\) to \(P\) in 3 and the effective capacitance \(C_{3}\) from \(\operatorname{Pin} 3\) to ground. For overall oscillator stability, it is best to keep \(X_{L}\) in the range of \(300 \Omega\) to \(1.0 \mathrm{k} \Omega\).

The modulator transfer characteristic at 4.5 MHz is shown in Figure 15. Transfer curves at other frequencies have a very similar shape, but differ in deviation per input volt, as shown in Figures 13 and 17.
Most applications will not require dc connection to the audio input, Pin 14. However, some improvements can be achieved by the addition of biasing circuitry. The unaided device will establish its own Pin 14 bias at \(4 \theta\), or about 3.0 V . This bias is a little too high for optimum modulation linearity. Figure 14 shows better than 2-to-1 improvement in distortion between the unaided device and pulling Pin 14 down to 2.6 to 2.7 V . This can be accomplished by a simple divider, if the supply voltage is relatively constant.

The impedance of the divider has a bearing on the frequency versus temperature stability of the FM system. A divider of \(180 \mathrm{k} \Omega\) and \(30 \mathrm{k} \Omega\) (for \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\) ) will give good temperature stabilization results. However, as Figure 18 shows, a divider is not a good method if the supply voltage varies. The designer must make the decisions here, based on considerations of economy, distortion and temperature requirements and power supply capability. If the distortion requirements are not stringent, then no bias components are needed. If, in this case, the temperature compensation needs to be improved in the high ambient area, the tuning capacitor from Pin 3 to ground can be selected from N75 or N150 temperature compensation types.

Another reason for dc input to Pin 14 is the possibility of automatic frequency control. Where high accuracy of intercarrier frequency is required, it may be desirable to feed back the dc output of an AFC or phase detector for nominal carrier frequency control. Only limited control range could be used without adversely affecting the distortion performance, but very little frequency compensation will be needed.

One added convenience in the FM section is the separate Pin "oscillator B+" which permits disabling of the sound system during alignment of the AM section. Usually it can be hard wired to the \(V_{C C}\) source without decoupling

Standard practice in television is to provide preemphasis of higher audio frequencies at the transmitter and a matching de-emphasis in the T.V. receiver audio amplifier. The purpose of this is to counteract the fact that less energy is usually present in the higher frequencies, and also that fewer modulation sidebands are within the deviation window. Both factors degrade signal to noise ratio. Pre-emphasis of \(75 \mu \mathrm{~s}\) is standard practice. For cases where it has not been provided, a suitable preemphasis network is covered in Figure 20.

It would seem natural to take the FM system output from Pin 2, the emitter follower output, but this output is high in harmonic content. Taking the output from Pin 3 sacrifices somewhat in source impedance but results in a clean output fundamental, with all harmonics more than 40 dB down. This choice removes the need for additional filtering
components. The source impedance of \(\operatorname{Pin} 3\) is approximately \(2.0 \mathrm{k} \Omega\), and the open circuit amplitude is about 900 mV p-p for the test circuit shown in Figure 11.

The application circuit of Figure 1 shows the recommended approach to coupling the FM output from Pin 3 to the AM modulator input, Pin 1. The input impedance at Pin 1 is very high, so the intercarrier level is determined by the source impedance of \(\operatorname{Pin} 3\) driving through C 4 into the video bias circuit impedance of R4 and R5, about 2.2 K . This provides an intercarrier level of 500 mV p-p, which is correct for the 1.0 V peak video level chosen in this design. Resistor R6 and the input capacitance of Pin 1 provide some decoupling of stray pickup of RF oscillator or AM output which may be coupled to the sound circuitry.

\section*{FIGURE 11 - FM TEST CIRCUIT}


FIGURE 12 - MODULATOR SENSITIVITY


FIGURE 13 - MODULATOR TRANSFER FUNCTION ( 1.76 MHz )


FIGURE 15 - MODULATOR TRANSFER FUNCTION (4.5 MHz)


FIGURE 17 - MODULATOR TRANSFER FUNCTION ( \(\mathbf{1 0 . 7} \mathbf{~ M H z}\) )


FIGURE 14 - DISTORTION versus MODULATION DEPTH


FIGURE 16 - FM SYSTEM FREQUENCY
versus TEMPERATURE


FIGURE 18 - FM SYSTEM FREQUENCY versus \(V_{C C}\)



FIGURE 21 - CRYSTAL CONTROLLED RF OSCILLATOR FOR CHANNEL \(3,61.25 \mathrm{MHz}\)


FIGURE 20 - AUDIO PRE-EMPHASIS CIRCUIT


See Application Note AN829 for further information.


\section*{Advance Information}

\section*{COLOR TELEVISION RGB to PAL/NTSC ENCODER}
... an integrated circuit used to generate a composite TV signal from baseband red, blue, green and sync inputs. The MC1377 has color subcarrier oscillator, voltage controlled \(90^{\circ}\) phase shifter, two DSB suppressed carrier chroma modulators, RGB input matrices and blanking level clamps. It can be operated with very few external parts, but has the pinouts for a fully implemented, top quality composite signal. It is ideal for encoding signals from color cameras and graphics generators.
- Reference Oscillator Self-Contained Or Externally Driven
- Nominal \(90^{\circ} \pm 3.0^{\circ}\) Axes Are Optionally Trimmable
- Simple PAL/NTSC Switch
- Luminance And Chroma Channels Can Accept Dełay Line/Bandpass Elements Or Direct Connection
- Provides dc Reference To Permit Direct Drive To RF Modulator

\section*{COLOR TELEVISION RGB to PAL/NTSC ENCODER}

SILICON MONOLITHIC INTEGRATED CIRCUIT


\footnotetext{
This document contains information on a new product. Specifications and information herein
are subject to change without notice.
}

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 15 & Vdc \\
\hline 8.2 Vdc Regulator Output Current & IREG & 10 & mAdc \\
\hline Operating Temperature & TAMB & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J} \text { (max) }}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Dissipation, package Derate above \(\mathbf{2 5}^{\circ} \mathrm{C}\) & PD & \[
\begin{gathered}
1.25 \\
10 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{W} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|}
\hline Supply Voltage & \(12 \pm 1.2\) & Vdc \\
\hline Sync Tip Level & \begin{tabular}{c}
-0.5 to +1.0 \\
+1.7 to +8.2
\end{tabular} & Vdc \\
Sync, Blanking Level & 1.0 & \(V_{p-p}\) \\
\hline Red, Green, Blue Inputs (Saturated) & \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{V} C \mathrm{CC}=12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Circuit Of Figure 1 Unless Otherwise Noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin No. & Min & Typ & Max & Unit \\
\hline Supply Current & 14 & 20 & 32 & 40 & mAdc \\
\hline Oscillator Amplitude & 18 & - & 0.5 & - & \(V_{(p-p)}\) \\
\hline External Subcarrier Input (Oscillator Components Removed) & 17 & - & 0.25 & - & VRMS \\
\hline Subcarrier Input: Resistance Capacitance & 17 & - & \[
\begin{aligned}
& 5.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & - & \[
\begin{gathered}
\mathrm{k} \Omega \\
\mathrm{pF}
\end{gathered}
\] \\
\hline Modulation Angle ( \(R-Y\) ) to ( \(B-Y\) ) & - & 85 & 90 & 95 & Degrees \\
\hline ( \(R-Y\) ) Angle Adjustment & 19 & - & 0.25 & - & Deg/ \(/ \mathrm{A}\) \\
\hline R, G, B Input For 100\% Color Saturation & 3, 4, 5 & - & 1.0 & - & \(V_{(p-p)}\) \\
\hline R, G, B Input: \begin{tabular}{l} 
Resistance \\
Capacitance
\end{tabular} & 3, 4, 5 & - & \[
\begin{array}{r}
10 \\
2.0 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline Sync Threshold (See Figure 2e) & 2 & - & 1.7 & - & V \\
\hline Sync Input Resistance (Input \(>1.7 \mathrm{~V}\) ) & 2 & - & 10 & - & k \(\Omega\) \\
\hline Chroma Output Level At 100\% Saturation & 13 & - & 1.0 & - & \(V_{(p-p)}\) \\
\hline Chroma Output Resistance & 13 & - & 50 & - & \(\Omega\) \\
\hline Chroma Input Level For 100\% Saturation & 10 & - & 0.7 & - & \(V_{(p-p)}\) \\
\hline Chroma Input: \begin{tabular}{l} 
Resistance \\
Capacitance
\end{tabular} & 10 & - & \[
\begin{array}{r}
10 \\
2.0 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\(\left.\begin{array}{l}\text { Composite Output, } \\
\text { 100\% Saturation } \\
\text { (See Figure 2d) }\end{array}\right\} \quad\left\{\begin{array}{l}\text { Sync } \\
\text { Luminance } \\
\text { Chroma } \\
\text { Burst }\end{array}\right.\) \\
\hline
\end{tabular} & 9 & - & \[
\begin{aligned}
& 0.6 \\
& 1.4 \\
& 1.7 \\
& 0.6
\end{aligned}
\] & - & \(V(p-p)\) \\
\hline Output Impedance (See Note 1) & 9 & - & 50 & - & \(\Omega\) \\
\hline Luminance Bandwidth ( 3 dB ), Less Delay Line & 9 & - & 8.0 & - & MHz \\
\hline Subcarrier Leakage In Output & 9 & - & 20 & - & \(\mathrm{mV}(\mathrm{p}-\mathrm{p})\) \\
\hline
\end{tabular}

Note 1: Output Impedance can be reduced to less than \(10 \Omega\) by using a \(150 \Omega\) output load from Pin 9 to ground. Power supply current will increase to about 60 mA .

See Application Note AN932 for further information.

FIGURE 2 - SIGNAL VOLTAGES (CIRCUIT VALUES OF FIGURE 1)
(a)

(b)
 100\% Red Input (Pin 3)
(c)

(d)

(e)

(f)

(h)

(i)

Luminance Input (Pin 8)

\section*{APPLICATION NOTES}
R.G.B. Inputs should be set up to be 1.0 V p-p for fully saturated levels. This is not arbitrary, since sync and burst levels are internally fixed. The large ( \(15 \mu \mathrm{~F}\) ) input capacitors of Figure 1 are needed for the \(50 / 60 \mathrm{~Hz}\) vertical component.

Subcarrier Oscillator. The internal common-collector Colpitts can be free run or it can easily be pulled in by a lightly coupled signal from a "master" into Pin 17. Also, it can be disabled entirely and a 0.25 V \(_{\text {RMS }}\) signal driven into Pin 17.

Modulator Phase Angles are quite accurately established internally. Taking (B-Y) as \(0^{\circ}\), burst is at \(180^{\circ}\), and the angle of ( \(R-Y\) ) is \(90^{\circ} \pm 3.0^{\circ}\). The ( \(R-Y\) ) angle can be "tweaked." For example, \(470 \mathrm{k} \Omega\) from Pin 19 to ground will increase the ( \(\mathrm{R}-\mathrm{Y}\) ) to ( \(\mathrm{B}-\mathrm{Y}\) ) angle about \(3.0^{\circ}\). Pulling Pin 19 up will decrease the angle.

Composite Output is dc referenced and can be direct coupled to an RF modulator as shown in Figure 3. In this case, the 8.2 V regulator output of the MC1377 is divided down to 5.8 V to provide the zero carrier reference to Pin 1 of the MC1374.

Burst Generation is provided by a sync triggered ramp on Pin 1 and two internal level sensors. Since the early part of this ramp is used, it is quite accurate. Fixed \(R-C\) values are feasible, as shown in Figure 3.

Sync Input can be varied over a wide latitude but neverless must be applied correctly. The typical ac coupled sync signal has very little positive value and will require a pull-up resistor to 8.2 Vdc at the input. The sync input is a \(10 \mathrm{k} \Omega / 10 \mathrm{k} \Omega\) divider in the base of a common emitter stage. For PAL operation, the correctly serrated vertical sync interval must be used, in order to continuously trigger the PAL flip-flop. "Block" vertical sync can be used for NTSC.
\((\mathbf{R}-\mathbf{Y})(\mathbf{B}-\mathbf{Y})(-\mathbf{Y})\) signals are generated to NTSC values \(( \pm 5.0 \%)\) in the input matrices. They are dc clamped at black level by a sync driven clamp. Burst amplitude is internally fixed to correspond to sync level, allowing for 3.0 dB loss in the chroma bandpass filter. If the filter is not used, as shown in Figure 3, a resistor divider should be inserted between Pin 13 and Pin 10 to provide the proper chroma level. When the chroma bandpass is not used, the \((-Y)\) delay line should also be removed, but the \(1.0 \mathrm{k} / 1.0 \mathrm{k}\) divider from Pin 6 to Pin 8 should be retained.

\section*{MC1377}

FIGURE 3 - COUPLING THE MC1377 TO THE MC1374 RF MODULATOR


FIGURE 4 - VECTORSCOPE DISPLAY OF 100\% SATURATED NTSC COLOR BARS


FIGURE 5 - 100\% SATURATED PAL COLOR BARS ON NTSC VECTORSCOPE


\section*{Product Preview}

\section*{COLOR TELEVISION COMPOSITE VIDEO OVERLAY SYNCHRONIZER}
... a bipolar composite video overlay encoder and microcomputer synchronizer. The MC1378 contains the complete encoder function of the MC1377, i.e. quadrature color modulators, RGB matrix, and blanking level clamps, plus a complete complement of synchronizers to lock a microcomputer-based video source to any remote video source. The MC1378 is especially tailored to work with the Motorola RMS (Raster Memory System), but it can be applied to other controllable video sources. It can be used as a local system timing and encoding source, but it is most valuable when used to lock the microcomputer source to a remotely originated video signal.
- Contains All Needed Reference Oscillators
- Can Be Operated in PAL or NTSC Mode, 625 or 525 Line
- Wideband, Full-Fidelity Color Encoding
- Local or Remote Modes of Operation
- Minimal External Components
- Designed to Operate from 5.0 V Supply
- Will Work with Non-standard Video


\section*{COLOR TELEVISION COMPOSITE VIDEO OVERLAY SYNCHRONIZER}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT


PIN ASSIGNMENTS

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 6.0 & Vdc \\
\hline Operating Temperature & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}(\max )}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Power Dissipation (Package) \\
Derate above \(25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{PD}_{\mathrm{D}}\) & 1.25 & \(\mathrm{~W}^{\mathrm{W}}\) \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Condition } & Pin No. & Value & Unit \\
\hline Supply Voltage & 28,36 & \(5.0 \pm 0.25\) & Vdc \\
\hline RGB Input for \(100 \%\) Saturation & \(14,15,16\) & 1.0 & V \(_{\text {p-p }}\) \\
\hline Color Oscillator Input Level & 8 & 0.5 & V \(_{\text {p-p }}\) \\
\hline Video Input, Positive & 24 & 1.0 & V \(_{\text {p-p }}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) Circuit of Figure 4 or 5)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin No. & Min & Typ & Max & Unit \\
\hline Supply Current & 28, 36 & - & 100 & - & mAdc \\
\hline Video Output, Open Circuit, Positive & 27 & - & 2.0 & 9.4 & \(V_{p-p}\) \\
\hline Modulation Angle ( \(\mathrm{R}-\mathrm{Y}\) ) to ( \(\mathrm{B}-\mathrm{Y}\) ) & - & 87 & 90 & 93 & Degrees \\
\hline RGB Input Impedance & 14, 15, 16 & - & 10 & - & \(\mathrm{k} \Omega\) \\
\hline Local/Remote Switch (TTL) \(\begin{array}{ll}\text { High } \\ \text { Low }\end{array}\) & 1 & - & Remote Local & - & - \\
\hline Horizontal Sync Input, Negative Going (TTL) & 40 & - & 4.3 & - & \(V_{p-p}\) \\
\hline \begin{tabular}{l}
Vertical Sync Output, Negative Going, Remote Mode \\
(TTL)
\end{tabular} & 38 & - & 4.3 & - & \(V_{p-p}\) \\
\hline Composite Sync Output, Negative Going (TTL) & 39 & - & 4.3 & - & \(V_{p-p}\) \\
\hline Burst Gate Output, Positive Going (TTL) & 5 & - & 4.3 & - & \(V_{p-p}\) \\
\hline
\end{tabular}

\section*{DESCRIPTION OF OPERATION — Refer to Figures 3, 4}

\section*{REMOTE MODE \\ The incoming remote video signal (Pin 24) supplies all synchronizing information. A discussion of the function of the} phase detectors helps to clarify the lockup method:

PD1 - locks the internally counted-down 4 MHz horizontal VCO to the incoming horizontal sync. It is fast acting, to follow VCR source fluctuations.
PD2 - locks the 36 MHz clock VCO, which is divided down by the RMS, to the divided down horizontal VCO.
PD3 - is a gated phase detector which locks the 14 MHz crystal oscillator, divided by 4 , to the incoming color burst.
PD4 - controls an internal phase shifter to assure that the outgoing color burst is the same phase as incoming burst at PD3.
PD5 - not used in REMOTE MODE
Vertical lock is obtained by continuously resetting the sync generator in the RMS with separated vertical sync from the MC1378, Pin 38. This signal is TTL level vertical block sync, negative going. The horizontal sync from the RMS to Pin 40 is also TTL level with sync negative going. The local/remote switch, Pin 1, is in local mode when grounded, remote mode when taken to 5.0 V . The overlay control, \(\operatorname{Pin} 25\), has an analog characteristic, centered about 1.0 V , which allows fading from local to remote.

\section*{LOCAL MODE}

The MC1378 and RMS combine to provide a fully synchronized standard signal source. In this case, composite sync must be supplied by the RMS or other time base system. In the MC1378 the phase detectors operate as follows:

PD1 - locks the internally counted-down 4 MHz horizontal VCO to a Horizontal Sync signal (at Pin 40) from the RMS (counted down from 36 MHz ).
PD2 - not used in LOCAL MODE.
PD3 - not used in LOCAL MODE.
PD4 - active, but providing an arbitrary phase shift setting between the color oscillator and the output burst phase.
PD5 - locks the 36 MHz clock VCO (which is divided down by the RMS) to the 14 MHz (crystal) color oscillator. The 14 MHz is, therefore, the system standard in LOCAL MODE, and it is not dc controlled.

\section*{COMPOSITE VIDEO GENERATION}

The color encoding at the RGB signals is done exactly as in the MC1377. Composite chroma is looped out at Pins 18 and 20 to allow the designer to choose band shaping. Luminance is similarly brought out (Pins 17 and 22) to permit installation of the appropriate delay.

Composite sync output, Pin 39, and burst gate output, Pin 5, are provided for convenience only.



\section*{TV HORIZONTAL PROCESSOR}
low-level horizontal sections including phase detector, oscillator and pre-driver - a device designed for use in all types of television receivers.
- Internal Shunt Regulator
- Preset Hold Control Capability
- \(\pm 300 \mathrm{~Hz}\) Typical Pull-In
- Linear Balanced Phase Detector
- Variable Output Duty Cycle for Driving Tube or Transistor
- Low Thermal Frequency Drift
- Small Static Phase Error
- Adjustable dc Loop Gain
- Positive Flyback Inputs


P SUFFIX
PLASTIC PACKAGE CASE 626-05


MOTOROLA LINEAR/INTERFACE DEVICES

MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Value & Unit \\
\hline Supply Current & 40 & mAdc \\
\hline Output Voltage & 40 & Vdc \\
\hline Output Current & 30 & mAdc \\
\hline Sync Input Voltage (Pin 3) & 5.0 & \(\mathrm{~V}_{(\mathrm{p}-\mathrm{p})}\) \\
\hline Flyback Input Voltage (Pin 4) & 5.0 & \(\mathrm{~V}_{(\mathrm{p}-\mathrm{p})}\) \\
\hline Power Dissipation (Package Limitation) & 625 & mW \\
Plastic Package \\
Derate above \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & 5.0 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range (Ambient) & 0 to \(+70^{\circ}\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.) (See Test Circuit of Figure 2, all switches in position 1.)
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Min & Typ & Max & Unit \\
\hline Regulated Voltage (Pin 6) & 8.0 & 8.6 & 9.4 & Vdc \\
\hline Supply Current (Pin 6) & - & 20 & - & mAdc \\
\hline Collector-Emitter Saturation Voltage (Output Transistor Q1 in Figure 6) ( \(I_{C}=20 \mathrm{~mA}, P\) in 1) Vdc & - & 0.15 & 0.25 & Vdc \\
\hline Voltage ( \(\operatorname{Pin} 4\) ) & - & 2.0 & - & V dc \\
\hline Oscillator Pull-in Range (Adjust \(\mathrm{R}_{\mathrm{H}}\) in Figure 2) & - & \(\pm 300\) & - & Hz \\
\hline Oscillator Hold-in Range (Adjust \(\mathrm{R}_{\mathrm{H}}\) in Figure 2) & - & \(\pm 900\) & - & Hz \\
\hline Static Phase Error
\[
(\Delta f=300 \mathrm{~Hz})
\] & - & 0.5 & - & \(\mu \mathrm{s}\) \\
\hline Free-running Frequency Supply Dependance (S1 in position 2) & - & \(\pm 3.0\) & - & \(\mathrm{Hz} / \mathrm{Vdc}\) \\
\hline \begin{tabular}{l}
Phase Detector Leakage (Pin 5) \\
(All switches in position 2)
\end{tabular} & - & - & \(\pm 1.0\) & \(\mu \mathrm{A}\) \\
\hline Sync Input Voltage (Pin 3) & 2.0 & - & 5.0 & \(V(p-p)\) \\
\hline Sawtooth Input Voltage (Pin 4) & 1.0 & - & 3.0 & \(V(p-p)\) \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS
( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)

FIGURE 2 - TEST CIRCUIT


FIGURE 3 - FREQUENCY versus TEMPERATURE




FIGURE 6 - CIRCUIT SCHEMATIC


\section*{CIRCUIT OPERATION}

The MC1391P contains the oscillator, phase detector and predriver sections needed for a television horizontal APC loop.
The oscillator is an RC type with one pin (Pin 7) used to control the timing. The basic operation can be explained easily. If it is assumed that \(\mathrm{Q7}\) is initially off, then the capacitor connected from Pin 7 to ground will be charged by an external resistor ( \(\mathrm{R}_{\mathrm{C}}\) ) connected to Pin 6. As soon as the voltage at Pin 7 exceeds the potential set at the base of Q8 by resistors R8 and R10, 07 will turn on and Q 6 will supply base current to Q5 and Q10. Transistor Q10 will set a new, lower potential at the base of Q8 determined by R8, R9 and R10. Then, transistor Q5 will discharge the capacitor through R4 until the base bias of Q7 falls below that of Q8, at which time Q7 will turn off and the cycle repeats.
The sawtooth generated at the base of Q 4 will appear across R3 and turn off Q3 whenever it exceeds the bias set on Pin 8. By adjusting the potential at Pin 8, the duty cycle (MSR) at the predriver output pin (Pin 1) can be changed to accommodate
either tube or transistor horizontal output stages.
The phase detector is isolated from the remainder of the circuit by R14 and Z2. The phase detector consists of the comparator Q15, Q16 and the gated current source Q17. Negative going sync pulses at Pin 3 turn off Q 12 and the current division between Q15 and Q16 will be determined by the phase relationship of the sync and the sawtooth waveform at Pin 4, which is derived from the horizontal flyback pulse. If there is no phase difference between the sync and sawtooth, equal currents will flow in the collectors of Q15 and Q16 each for half the sync pulse period. The current in Q15 is turned around by Q18 so that there is no net output current at Pin 5 for balanced conditions. When a phase offset occurs, current will flow either in or out of Pin 5. This pin is connected via an external low-pass filter to Pin 7, thus controlling the oscillator.
Shunt regulation for the circuit is obtained with a zero temperature coefficient from the series combination of D1, D2 and \(Z 1\).

\section*{APPLICATION INFORMATION}

Although it is an integrated circuit, the MC1391P has all the flexibility of a conventional discrete component horizontal APC loop.

The internal temperature compensated voltage regulator allows a wide supply voltage variation to be tolerated, enabling operation from nonregulated power supplies. A minimum value for supply current into Pin 6 to maintain zener regulation is about 18 mA . Allowing 2 mA for the external dividers
\[
R_{A}+R_{B}=\frac{V_{\text {nonreg }}(\min )-8.8}{20 \times 10^{-3}}
\]

Components \(R_{A}, R_{B}\) and \(C_{A}\) are used for ripple rejection. If the supply voltage ripple is expected to be less than 100 mV (for a 30 Volt supply) then \(R_{A}\) and \(R_{B}\) can be combined and \(\mathrm{C}_{\mathrm{A}}\) omitted.

The output pulse width can be varied from \(6 \mu \mathrm{~s}\) to \(48 \mu \mathrm{~s}\) by changing the voltage at Pin 8 (see Figure 5). However, care should be taken to keep the lead lengths to Pin 8 as short as possible to prevent ringing which can result in erroneous output pulses at Pin 1. The parallel impedance of \(R_{D}\) and \(R_{E}\) should be close to \(1 \mathrm{k} \Omega\) to ensure stable pulse widths.
For 15 mA drive at saturation
\[
\mathrm{R}_{\mathrm{F}}=\frac{\mathrm{V}_{\text {nonreg }}-0.3}{15 \times 10^{-3}}
\]

The oscillator free-running frequency is set by \(R_{C}\) and \(C_{B}\) connected to Pin 7 . For values of \(\mathrm{R}_{\mathrm{C}} \gg \mathrm{R}_{\text {discharge }}\) (R4 in Figure 6 ), a useful approximation for the free-running frequency is
\[
f_{O}=\frac{1}{0.6 R_{C} C_{B}}
\]

Proper choice of \(R_{C}\) and \(C_{B}\) will give a wide range of oscillator frequencies - operation at 31.5 kHz for count-down circuits is possible for example. As long as the product \(R_{C} C_{B} \approx\) \(10^{-4}\) many combinations of values of \(R_{C}\) and \(C_{B}\) will satisfy the free-running frequency requirement of 15.734 kHz . However, the sensitivity of the oscillator ( \(\beta\) ) to control-current from the phase detector is directly dependent on the magnitude of \(\mathrm{R}_{\mathrm{C}}\), and this provides a convenient method of adjusting the dc loop gain (fc).
For a given phase detector sensitivity \((\mu)=1.60 \times 10^{-4} \mathrm{~A} / \mathrm{rad}\)
\[
\mathrm{fc}=\mu \beta \text { and } \beta=3.15 \times \mathrm{R}_{\mathrm{C}} \mathrm{~Hz} / \mathrm{mA}
\]

Increasing \(R_{C}\) will raise the dc loop gain and reduce the static phase error (S.P.E.) for a given frequency offset. Secondary effects are to increase the natural resonant frequency of the loop ( \(\omega_{n}\) ) and give a wider pull-in range from an out-of-lock condition. The loop will also tend to be underdamped with fast pull-in times, producing good airplane flutter performance. However, as the loop becomes more underdamped impulse noise can cause shock excitation of the loop. Unlimited increase in the dc loop gain will also raise the noise bandwidth excessively causing horizontal jitter with thermal noise. Once the dc loop gain has been selected for adequate S.P.E. performance, the loop filter can be used to produce the balance between other desirable characteristics. Damping of the loop is achieved most directly by changing the resistor \(R_{X}\) with respect to RY which modifies the ac/dc gain ratio ( \(m\) ) of the loop. Lowering this ratio will reduce the pull-in range and noise bandwidth (fnn). (Note: very large values of Ry will limit the control capability of the phase detector with a corresponding reduction in hold-in range.)

Static phasing can be adjusted simply by adding a small resistor between the flyback pulse integrating capacitor and ground. The sync coupling capacitor should not be too small or it can charge during the vertical pulse and this may result in picture bends at the top of the CRT.

\section*{NOTE:}

In adjusting the loop parameters, the following equations may prove useful:
\(\mathrm{f}_{\mathrm{nn}}=\frac{1 \times \chi^{2} \mathrm{~T} \omega_{\mathrm{C}}}{4 \chi \mathrm{~T}}\)
\(\omega_{n}=\sqrt{\frac{\omega_{c}}{(1+x) T}}\)
\(K=\frac{\chi^{2} T \omega_{C}}{4}\)
\(x=\frac{R_{X}}{R_{Y}}\)
\(\omega_{\mathrm{C}}=2 \pi \mathrm{fc}\)
\(T=R_{y} C_{C}\)
where:
\(K=\) loop damping coefficient

ORDERING INFORMATION
\begin{tabular}{rcc}
\hline Device & Temperature Range & Package \\
\hline MC3346D & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & SO-14 \\
MC3346P & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{MAXIMUM RATINGS} \\
\hline Rating & Symbol & Value & Unit \\
\hline Collector-Emitter Voltage & \(V_{\text {CEO }}\) & 15 & Vdc \\
\hline Collector-Base Voltage & \(\mathrm{V}_{\text {CBO }}\) & 20 & Vdc \\
\hline Emitter-Base Voltage & \(V_{\text {EB }}\) & 5.0 & Vdc \\
\hline Collector-Substrate Voltage & \(\mathrm{V}_{\mathrm{CIO}}\) & 20 & Vdc \\
\hline Collector Current - Continuous & \({ }^{\prime} \mathrm{C}\) & 50 & mAdc \\
\hline \begin{tabular}{l}
Total Power Dissipation @ TA \(=25^{\circ} \mathrm{C}\) \\
Derate above \(25^{\circ} \mathrm{C}\) \\
Derate Each Transistor @ \(\mathbf{2 5}{ }^{\circ} \mathrm{C}\)
\end{tabular} & \({ }^{\text {P }}\) & \[
\begin{gathered}
1.2 \\
10 \\
300 \\
\hline
\end{gathered}
\] & Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & TA & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


GENERAL PURPOSE TRANSISTOR ARRAY

SILICON MONOLITHIC INTEGRATED CIRCUIT


P SUFFIX
PLASTIC PACKAGE CASE 646-06


D SUFFIX
PLASTIC PACKAGE
CASE 751A-02
SO-14

\footnotetext{
Pin 13 is connected to substrate and must remain at the lowest circuit potential.
}

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{STATIC CHARACTERISTICS} \\
\hline Collector-Base Breakdown Voltage
\[
\left({ }^{I} \mathrm{C}=10 \mu \mathrm{Adc}\right)
\] & \(V_{\text {(BR)CBO }}\) & 20 & 60 & - & Vdc \\
\hline Collector-Emitter Breakdown Voltage
\[
\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}\right)
\] & \(V_{\text {(BR)CEO }}\) & 15 & - & - & Vdc \\
\hline Collector-Substrate Breakdown Voltage
\[
\left(I_{C}=10 \mu \mathrm{~A}\right)
\] & \(V_{(B R) C I O}\) & 20 & 60 & - & Vdc \\
\hline Emitter-Base Breakdown Voltage
\[
\left(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{Adc}\right)
\] & \(V_{\text {(BR)EBO }}\) & 5.0 & 7.0 & - & Vdc \\
\hline Collector-Base Cutoff Current
\[
\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)
\] & ICBO & - & - & 40 & nAdc \\
\hline \[
\begin{aligned}
& \text { DC Current Gain } \\
& \left(I_{C}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}\right) \\
& \text { (IC } \left.=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}\right) \\
& \left(I_{C}=10 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}\right)
\end{aligned}
\] & \(h_{\text {FE }}\) & \[
\overline{40}
\] & \[
\begin{gathered}
140 \\
130 \\
60 \\
\hline
\end{gathered}
\] & — & - \\
\hline Base-Emitter Voltage
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=1.0 \mathrm{mAdc}\right) \\
& \left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}\right)
\end{aligned}
\] & \(V_{B E}\) & - & \[
\begin{gathered}
0.72 \\
0.8
\end{gathered}
\] & - & Vdc \\
\hline Input Offset Current for Matched Pair Q1 and Q2
\[
\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}\right)
\] & \[
\begin{aligned}
& \mid 1 \mathrm{IO} 1^{-} \\
& |\mathrm{IO2}|
\end{aligned}
\] & - & 0.3 & 2.0 & \(\mu \mathrm{Adc}\) \\
\hline Magnitude of Input Offset Voltage \(\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}\right)\) & - & - & 0.5 & 5.0 & mVdc \\
\hline Temperature Coefficient of Base-Emitter Voltage
\[
\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}\right)
\] & \[
\frac{\Delta V_{\mathrm{BE}}}{\Delta \mathrm{~T}}
\] & - & -1.9 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Temperature Coefficient & \[
\frac{\left|\Delta \mathrm{V}_{10}\right|}{\Delta \mathrm{T}}
\] & - & 1.0 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Collector-Emitter Cutoff Current
\[
\left(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right)
\] & ICEO & - & - & 0.5 & \(\mu\) Adc \\
\hline
\end{tabular}

DYNAMIC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Low Frequency Noise Figure
\[
\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{Adc}, \mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}\right)
\] & NF & - & 3.25 & - & dB \\
\hline Forward Current Transfer Ratio
\[
\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{kHz}\right)
\] & \(h_{\text {FE }}\) & - & 110 & - & - \\
\hline Short-Circuit Input Impedance \(\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}\right)\) & \(\mathrm{hie}^{\text {l }}\) & - & 3.5 & - & k \(\Omega\) \\
\hline Open-Circuit Output Impedance \(\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}\right)\) & \(h_{\text {oe }}\) & - & 15.6 & - & \(\mu \mathrm{mhos}\) \\
\hline Reverse Voltage Transfer Ratio
\[
\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}\right)
\] & \(h_{\text {re }}\) & - & 1.8 & - & \(\times 10^{-4}\) \\
\hline Forward Transfer Admittance
\[
\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)
\] & Yfe & - & 31-j1.5 & - & - \\
\hline Input Admittance
\[
\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)
\] & \(Y_{i e}\) & - & \(0.3+\mathrm{j} 0.04\) & - & - \\
\hline Output Admittance
\[
\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)
\] & Yoe & - & \(0.001+\mathrm{j} 0.03\) & - & - \\
\hline Current-Gain - Bandwidth Product \(\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{mAdc}\right)\) & \(\mathrm{f}^{\mathbf{T}}\) & 300 & 550 & - & MHz \\
\hline Emitter-Base Capacitance \(\left(\mathrm{V}_{\mathrm{EB}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)\) & \(\mathrm{C}_{\mathrm{eb}}\) & - & 0.6 & - & pF \\
\hline Collector-Base Capacitance
\[
\left(\mathrm{V}_{\mathrm{CB}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right\rangle
\] & \(\mathrm{C}_{\mathrm{cb}}\) & - & 0.58 & - & pF \\
\hline Collector-Substrate Capacitance
\[
\left(\mathrm{V}_{\mathrm{CS}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)
\] & \(\mathrm{C}_{\mathrm{Cl}}\) & - & 2.8 & - & pF \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS


FIGURE 5 - DC CURRENT GAIN


\section*{REMOTE CONTROL AMPLIFIER-DETECTOR}

The MC3373 is intended for application in infrared remote controls. It provides the high gain and pulse shaping needed to couple the signal from an IR receiver diode to the tuning control system logic.
- High Gain Pre-Amp
- Envelope Detector for PCM Demodulation
- Simple Interface to Microcomputer Remote Control Decoder
- May Be Used with Tuned Circuit for Narrow Bandwidth, Lower Noise Operation
- Small Package Size
- Minimum External Components
- Wide Operating Supply Voltage Range
- Low Current Drain
- Improved retrofit for NEC part no. \(\mu\) PC1373

\section*{REMOTE CONTROL WIDEBAND \\ AMPLIFIER WITH DETECTOR}

SILICON MONOLITHIC INTEGRATED CIRCUIT


FIGURE 1 - REMOTE CONTROL APPLICATION


MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 15 & Vdc \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to 75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Power Dissipation, Package Rating \\
Derate above \(25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{PD}_{\mathrm{C}}\) & 1.25 & \begin{tabular}{c} 
Watts \\
\\
\hline
\end{tabular} \(\mathrm{IW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Voltage \(\left(25^{\circ} \mathrm{C}\right)\) & \(V_{C C}\) & 4.75 & - & 15 & Vdc \\
\hline Power Supply Voltage \(\left(0^{\circ} \mathrm{C}\right)\) & \(V_{C C}\) & 5.0 & - & 15 & Vdc \\
\hline Input Frequency & \(\mathrm{f}_{\mathrm{in}}\) & 30 & 40 & 80 & kHz \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{f}_{\text {in }}=40 \mathrm{kHz}\right.\), Test circuit of Figure 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Current & ICC & 1.5 & 2.5 & 3.5 & mAdc \\
\hline Input Terminal Voltage & V(Pin 7) & 2.4 & 2.8 & 3.0 & Vdc \\
\hline Input Voltage Threshold & \(\mathrm{V}_{\text {in }}\) & - & 50 & 100 & \(\mu V_{\text {P-P }}\) \\
\hline Input Amplifier Voltage Gain (V[Pin 3] \(=500 \mathrm{mV}\) P-P) & AV & - & 60 & - & dB \\
\hline Input Impedance & \(\mathrm{r}_{\text {in }}\) & 40 & 60 & 80 & k \(\Omega\) \\
\hline Output Voltage, \(\mathrm{V}_{\text {in }}=1.0 \mathrm{mV} \mathrm{P}_{\text {P-P }}\) & V OL & - & - & 0.5 & V \\
\hline Output Leakage, \(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{OH}}=15 \mathrm{Vdc}\) & \({ }^{1} \mathrm{OH}\) & - & - & 2.0 & \(\mu \mathrm{A}\) \\
\hline Output Voltage, Input Open & VOH & - & - & 5.0 & Vdc \\
\hline
\end{tabular}

FIGURE 2 - TEST CIRCUIT


FIGURE 3 - BLOCK DIAGRAM


FIGURE 4 - INPUT AMPLIFIER GAIN


FIGURE 6 - TYPICAL SIGNAL WAVEFORMS


FIGURE 5 - DETECTOR THRESHOLD


\section*{APPLICATIONS INFORMATION}

The MC3373 is designed to amplify and detect the signal from an infrared receiver diode in a remote control system. The signal is generally in the form of ultrasonic bursts, ranging in amplitude from \(50 \mu V_{P-P}\) to several hundred millivolts. The receiver diode may be directly connected to the MC3373 to save parts; the input is internally compensated by an ABLC (automatic bias level control). However, it is advantageous to ac couple the input, as shown in Figure 1, in order to provide attenuation of the power line frequency IR inputs, which are plentiful in most cases.

The input amplifier gain is approximately equal to the load impedance at Pin 3, divided by the resistor from Pin 6 to ground. Again, the low frequency gain can be reduced by using a small coupling capacitor in series with the Pin 6 resistor.


The load may be resistive, as shown in the application circuit, or tuned, as in the test circuit. The amplifier output is limited by back-to-back clamping diodes, level shifted, buffered and fed to a negative peak detector. The detector threshold is set by the external resistor on Pin 4, and an internal \(6.8 \mathrm{k} \Omega\) resistor and diode to \(\mathrm{V}_{\mathrm{CC}}\). The capacitor from \(V_{\mathrm{CC}}\) to Pin 4 quickly charges during the negative peaks and then settles toward the set-up voltage between signal bursts at a rate roughly determined by the value of the capacitor and the 6.8 k resistor. The external capacitor at Pin 2 filters the ultrasonic carrier from the pulses.

\section*{Circuit Description (Refer to Figure 7)}

Q1-04 set the bias on the amplifier input at approximately 2.8 V . Q6-Q10 form the input amplifier, which has a gain of about 80 dB when \(\mathrm{R}(\mathrm{Pin} 6)=0.05\) sinks input current from the photo diode and keeps the amplifier properly biased. Q18-020 level shift and buffer the signal to the negative peak detector, Q22 and O23. Output devices Q26 and Q27 conduct during peaks and pull the output, Pin 1, low. The capacitor on Pin 2 filters out the carrier.

\section*{Specifications and Applications Information}

\section*{TRIPLE 4-BIT COLOR PALETTE VIDEO DAC}

The MC10320 integrates a triple 4-bit digital-to-analog converter and a \(16 \times 12\) color look-up table into a single 28 pin IC for use in a high resolution color graphics display system. The outputs are EIA-343-A compatible red, blue, and green video signals capable of driving single or doubly terminated 50 ohm or 75 ohm cables directly. Complementary outputs are provided for custom displays.

Control inputs include \(\overline{\text { BLANK }}\) and \(\overline{\text { SYNC }}\) to produce the levels required for vertical and horizontal retrace.
The color look-up table allows up to 16 color combinations (out of a palette of 4096 possible colors) on the screen at any one time. The table can be updated as often as required.
The lower speed digital inputs (WRITE, DATA, and \(\overline{\text { SYNC }}\) ) are TTL compatible, whereas the high speed inputs (ADDRESS, PIXEL CLOCK, and BLANK) can be user programmed to either ECL or TTL compatability. The address and blank signals are latched into input registers, facilitating the timing requirements for those signals. Additional registers frame the data as it is presented to the three DACs, ensuring low glitch area and matched response.
Innovative level translators permit the MC10320 series to be used in single or dual supply systems, permitting compatability with most any system configuration. The MC10320 series is fabricated with Motorola's MOSAIC process, which provides both low power consumption and high speed.
- Triple 4-Bit Video DAC with \(16 \times 12\) Color Look-Up Table
- 125 MHz Max Pixel Rate (MC10320), 90 MHz Max (MC10320-1)
- User Selectable TTL or ECL Compatability on High Speed Inputs
- Single/Dual Supply Operation (Inputs and/or Outputs May Be Above/Below Ground)
- Supply Sensitivity Typically - 34 dB
- EIA-343-A Compatible Output Levels
- Directly Drives 50 or 75 Ohm Cables
- Low Power Dissipation - 684 mW Typical
- Internal Bandgap Reference
- \(\overline{\mathrm{SYNC}}\) and \(\overline{\mathrm{BLANK}}\) Control Inputs

TRIPLE 4-BIT COLOR PALETTE VIDEO DAC

SILICON MONOLITHIC INTEGRATED CIRCUIT



ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Maximum \\
Pixel Rate
\end{tabular} & Device \\
\hline 125 MHz & MC10320L \\
\hline 90 MHz & MC10320L-1 \\
\hline
\end{tabular}


ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|c|}
\hline Parameter & Value & Units \\
\hline \begin{tabular}{l}
Supply Voltages \\
\(\mathrm{V}_{\mathrm{CC} 1}\) (Measured to \(\mathrm{V}_{\mathrm{EE} 1}\) ) \\
\(\mathrm{V}_{\mathrm{CC}}\) (Measured to \(\mathrm{V}_{\mathrm{EE} 2}\) ) \\
\(\mathrm{V}_{\mathrm{EE}}\) (Measured to \(\mathrm{V}_{\mathrm{EE} 2}\) ) \\
\(\mathrm{V}_{\mathrm{CC}}\) (Measured to \(\mathrm{V}_{\mathrm{EE} 1}\) )
\end{tabular} & \[
\begin{aligned}
& -0.5,+7.0 \\
& -0.5,+7.0 \\
& -0.5,+7.0 \\
& -0.5,+7.0
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Input Voltages \\
(Address, Data, \(\overline{\text { WR }}, \overline{W G}, \overline{W B}, \overline{S Y N C}, \overline{B L A N K}, ~ P C L K\), and Threshold Control) \\
RSET (Pin 21) \\
RSET External Resistor
\end{tabular} & \[
\begin{gathered}
\mathrm{V}_{\mathrm{EE} 1}-0.5, \mathrm{~V}_{\mathrm{CC} 1}+0.5 \\
\mathrm{~V}_{\mathrm{EE} 2}-0.5, \mathrm{~V}_{\mathrm{CC} 2} \\
0,3.0 \mathrm{k} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Vdc \\
Vdc \\
\(\Omega\)
\end{tabular} \\
\hline Outputs (VR, \(\overline{\mathrm{VR}}, \mathrm{VG}, \overline{\mathrm{VG}}, \mathrm{VB}, \overline{\mathrm{VB}}\) Measured to VEE2) & +2.5, +8.0 & Vdc \\
\hline Junction Temperature & \(-55,+150\) & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
"Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The "Recommended Operating Limits" provide for actual device operation.
RECOMMENDED OPERATING LIMITS
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Units \\
\hline Single Supply \(-V_{C C 1}, V_{C C 2}\)
\(V_{E E 1}, V_{E E 2}\)
or \(V_{C C 1}, V_{C C 2}\)
\(V_{E E 1}, V_{E E 2}\)
Dual Supply \(-V_{C C 1}\)
\(V_{C C 2}\)
\(V_{E E 1}\)
\(V_{E E 2}\) & \[
\begin{array}{r}
4.5 \\
- \\
-4.5 \\
4.5 \\
- \\
-4.5
\end{array}
\] & \[
\begin{gathered}
5.0 \\
0 \\
0 \\
-5.0 \\
5.0 \\
0 \\
0 \\
-5.0
\end{gathered}
\] & \[
\begin{gathered}
5.5 \\
- \\
-5.72 \\
5.5 \\
- \\
-5.72
\end{gathered}
\] & Vdc \\
\hline RSET (Between \(V_{C C 2}\) and Pin 21) ISET (Determined by RSET) \(\mathrm{R}_{\mathrm{L}}\) (Load Resistance at Each Output) & \[
\begin{gathered}
500 \\
0.55 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& 1.0 \mathrm{k} \\
& 1.25
\end{aligned}
\] & \[
\begin{gathered}
2.0 \mathrm{k} \\
2.8 \\
75
\end{gathered}
\] & \[
\begin{gathered}
\Omega \\
\mathrm{mA} \\
\Omega
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Input Voltages - Threshold Control (Pin 11, See Text) \\
TTL High (Pins 1-3, 5-10, 23, 25-28, \\
TTL Low Pin 11 connected to \(\mathrm{V}_{\mathrm{EE} 1}\) ) \\
ECL High (Pins 5-10 only, Pin 11 \\
ECL Low connected to \(\mathrm{V}_{\mathrm{CC} 1}\) )
\end{tabular} & \[
\begin{gathered}
\mathrm{V}_{\mathrm{EE} 1} \\
\mathrm{~V}_{\mathrm{EE} 1}+2.0 \\
\mathrm{~V}_{\mathrm{EE} 1} \\
\mathrm{~V}_{\mathrm{CC} 1}-1.13 \\
\mathrm{~V}_{\mathrm{EE} 1} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
V_{\mathrm{CC} 1} \\
\mathrm{~V}_{\mathrm{CC} 1} \\
\mathrm{~V}_{\mathrm{EE} 1}+0.8 \\
V_{\mathrm{CC} 1} \\
\mathrm{~V}_{\mathrm{CC} 1}-1.48 \\
\hline
\end{gathered}
\] & Vdc \\
\hline Output Compliance (Measured to \(\mathrm{V}_{\mathrm{CC} 2}\) ) Ambient Temperature & \[
\begin{gathered}
-2.0 \\
0
\end{gathered}
\] & 0 & \[
\begin{aligned}
& +2.0 \\
& +70
\end{aligned}
\] & Vdc \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (See Figure \(1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline Resolution (Each DAC) & Res & 4.0 & 4.0 & 4.0 & Bits \\
\hline Palette Colors (Active) (Total Available) & — & - & - & \[
\begin{gathered}
16 \\
4096
\end{gathered}
\] & Colors Colors \\
\hline Integral Nonlinearity & INL & \(-1 / 4\) & 0 & +1/4 & LSB \\
\hline Differential Nonlinearity & DNL & -1/4 & 0 & +1/4 & LSB \\
\hline Monotinicity & - & \multicolumn{4}{|c|}{Guaranteed*} \\
\hline \begin{tabular}{l}
Output Levels ( \(\omega\) VR, VG, VB, relative to \(V_{C C 2}\) unless otherwise noted. \\
Ref. White Offset (DAC Input \(=1111\) ) \\
\(\overline{\text { BLANK, }} \overline{\text { SYNC }}=1\) \\
Ref. Black (DAC Input \(=0000\) ) Relative to Ref. White, \(\overline{B L A N K}, \overline{\text { SYNC }}=1\) \\
Blank Level Relative to Ref. Black
\[
\overline{\text { BLANK }}=0, \overline{\text { SYNC }}=1
\] \\
Sync Level - VG Only, Relative to Blank \(\overline{\text { SYNC, }}\), \(\overline{\text { LANK }}=0\)
\end{tabular} & \begin{tabular}{l}
IOW \\
VOW \\
\({ }^{1} \mathrm{OB}\) \\
\(V_{\text {OB }}\) \\
IOBK \\
VOBK \\
IOSY \\
VOSY
\end{tabular} & \[
\begin{array}{r}
-15 \\
-15 \\
16.1 \\
-682 \\
1.17 \\
-56.2 \\
6.71 \\
-320
\end{array}
\] & \[
\begin{array}{r}
50 \\
-1.9 \\
17.2 \\
-645 \\
1.33 \\
-50 \\
7.63 \\
-286
\end{array}
\] & \[
\begin{array}{r}
400 \\
- \\
18.2 \\
-604 \\
1.5 \\
-43.9 \\
8.54 \\
-251
\end{array}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mV \\
mA \\
mV \\
mA \\
mV \\
mA \\
mV
\end{tabular} \\
\hline Total Error (Each DAC, Ref. White to Ref. Black) & GER & -6.0 & 0 & +6.0 & \% \\
\hline Gain Tracking Error (Any two DACs @ Ref. Black) & \(\mathrm{G}_{\text {TR }}\) & -3.0 & 0 & +3.0 & \% \\
\hline Output Impedance @ VR, VG, VB & \(\mathrm{Z}_{0}\) & 10 & 100 & - & \(\mathrm{k} \Omega\) \\
\hline \begin{tabular}{l}
Reference Voltage ( \(\mathrm{V}_{\mathrm{CC} 2}-\mathrm{V}_{\mathrm{RSET}}, \mathrm{R}_{\text {SET }}=1.0 \mathrm{k} \Omega\) ) \\
Pin 21 Output DC Resistance ( \(0 \mathrm{~mA}<\mathrm{I}_{\text {REF }}<3.0 \mathrm{~mA}\) )
\end{tabular} & \(\mathrm{V}_{\text {REF }}\) & -1.4 & \[
\begin{gathered}
-1.25 \\
3.0 \\
\hline
\end{gathered}
\] & -1.1 & \begin{tabular}{l}
Vdc \\
\(\Omega\)
\end{tabular} \\
\hline \begin{tabular}{l}
Input Voltage High (Data, \(\overline{W R}, \overline{W G}, \overline{W B}, \overline{\mathrm{SYNC}}\) ) Low (Data, \(\overline{\mathrm{WR}}, \overline{\mathrm{WG}}, \overline{\mathrm{WB}}, \overline{\mathrm{SYNC}})\) \\
Input Voltage High (Address, PCLK, \(\overline{\text { BLANK }}\) ) \\
(Threshold Control @ VEE1 [TTL Mode]) \\
(Threshold Control @ VCC1 [ECL Mode]) \\
Input Voltage Low (Address, PCLK, \(\overline{\text { BLANK }}\) ) \\
(Threshold Control @ VEE1 [TTL Mode]) \\
(Threshold Control @ VCC1 [ECL Mode])
\end{tabular} & \begin{tabular}{l}
\(V_{\text {IHA }}\) \\
VILA \\
\(V_{\text {IHB }}\) \\
\(\mathrm{V}_{\mathrm{IHC}}\) \\
\(V_{\text {ILB }}\) \\
VILC
\end{tabular} & \[
\begin{gathered}
\mathrm{V}_{\mathrm{EE} 1}+2.0 \\
\mathrm{~V}_{\mathrm{EE} 1} \\
\\
\mathrm{~V}_{\mathrm{EE} 1}+2.0 \\
\mathrm{~V}_{\mathrm{CC} 1}-1.13 \\
\\
\mathrm{~V}_{\mathrm{EE} 1} \\
\mathrm{~V}_{\mathrm{EE} 1} \\
\hline
\end{gathered}
\] & —
- & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC} 1} \\
\mathrm{~V}_{\mathrm{EE} 1}+0.8 \\
\\
\mathrm{~V}_{\mathrm{CC} 1} \\
\mathrm{~V}_{\mathrm{CC} 1} \\
\\
\mathrm{~V}_{\mathrm{EE} 1}+0.8 \\
\mathrm{~V}_{\mathrm{CC} 1}-1.48 \\
\hline
\end{gathered}
\] & Vdc \\
\hline ```
Input Current @ 2.4 V (TTL Mode) (All Input Pins
    @ 0.4 V (TTL Mode) Except Pin 11)
Input Current @ VCC1 - 0.8 V (ECL Mode)
    (a)}\mp@subsup{V}{CC1}{}-1.8V (ECL Mode
Input Current @ Pin 11(Pin 11 = VCC1)
    @ Pin 11(Pin 11= VEE1)
``` & \begin{tabular}{l}
IIHA \\
ILA \\
IIHB \\
IILB \\
ITH \\
IITL
\end{tabular} & \[
\begin{gathered}
- \\
- \\
- \\
-5.0 \\
-1.0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
50 \\
10 \\
100 \\
70 \\
0 \\
-0.4 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
150 \\
100 \\
250 \\
200 \\
-
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline ```
Signal Feedthrough to Outputs Due to
 Pixel Clock (@ 125 MHz for MC10320,
 BLANK }\quad90\textrm{MHz MC10320-1)
 Data
``` & SRR & - & \[
\begin{aligned}
& -50 \\
& -50 \\
& -60 \\
& \hline
\end{aligned}
\] & - & dB \\
\hline ```
Power Supply Rejection Ratio (All DACs)
    V
    VCC1@ 1.0 MHz
    VCC1@ 50 MHz
    VEE2@1.0 kHz
    VEE2@ 1.0 MHz
    VEE2@ @0 MHz
Power Supply Sensitivity**
``` & PSRR & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
60 \\
45 \\
30 \\
50 \\
33 \\
12 \\
0.02
\end{gathered}
\] & & dB
\%/\% \\
\hline \begin{tabular}{l}
Power Supply Requirements (See Figure 1) \\
\(\mathrm{V}_{\mathrm{CC}} 1\) Current \(\left(\mathrm{V}_{\mathrm{CC} 1}-\mathrm{V}_{\mathrm{EE} 1}=5.0 \mathrm{~V}\right)\) \\
\(\mathrm{V}_{\mathrm{EE} 1}\) Current \(\left(\mathrm{V}_{\mathrm{CC} 1}-\mathrm{V}_{\mathrm{EE} 1}=5.0 \mathrm{~V}\right)\) \\
\(\mathrm{V}_{\mathrm{CC}}\) Current \(\left(\mathrm{V}_{\mathrm{CC}} 2-\mathrm{V}_{\mathrm{EE} 2}=5.0 \mathrm{~V}\right)\) \\
\(\mathrm{V}_{\mathrm{EE} 2}\) Current \(\left(\mathrm{V}_{\mathrm{CC}} 2-\mathrm{V}_{\mathrm{EE} 2}=5.0 \mathrm{~V}\right.\), \\
Includes output currents) \\
Power Dissipation (@ 5.0 volt supplies)
\end{tabular} & \[
\begin{aligned}
& \text { ICC1 } \\
& \text { IEE1 } \\
& \text { ICC2 } \\
& \text { IEE } \\
& \mathrm{P}_{\mathrm{D}}
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
50 \\
-50 \\
28 \\
-92 \\
\\
684 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
70 \\
-70 \\
45 \\
-120 \\
\\
894 \\
\hline
\end{array}
\] & \[
\mathrm{mA}
\]
\[
\mathrm{mW}
\] \\
\hline
\end{tabular}
*Guaranteed by linearity tests.
\({ }^{* *}\left(\mathrm{~V}_{\mathrm{CC} 1}-\mathrm{V}_{\mathrm{EE} 1}\right)\) and \(\left(\mathrm{V}_{\mathrm{CC} 2}-\mathrm{V}_{\mathrm{EE} 2}\right)\) are each varied from 4.5 to 5.72 volts, but not simultaneously.

\section*{MC10320, MC10320-1}

TIMING CHARACTERISTICS (See Timing Diagram - Figure 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Typ & Max & Units \\
\hline READ Cycle (Display Mode) & & & & & \\
\hline Address, BLANK Setup Time & trsA & - & 1.5 & - & ns \\
\hline Address, BLANK Hold Time & trHA & - & 1.5 & - & ns \\
\hline Clock Pulse Width - High & tPWH & - & 3.0 & - & ns \\
\hline Clock Pulse Width - Low & tPWL & - & 3.0 & - & ns \\
\hline Pipeline Delay & tPIPE & 1.0 & 1.0 & 1.0 & clk cycle \\
\hline DAC Prop Delay (PCLK to 50\% Point) & \({ }^{\text {t }}\) DPD & - & 9.0 & - & ns \\
\hline DAC Prop Delay Difference (DAC to DAC) & tDPD \({ }^{\text {d }}\) & - & 0.5 & - & ns \\
\hline SYNC Prop Delay & \({ }^{\text {t SPD }}\) & - & 6.0 & - & ns \\
\hline Output Settling Time (\(\pm 1 / 2\) LSB to \(\pm 1 / 2\) LSB) & \({ }^{\text {t }}\) S & - & 3.0 & - & ns \\
\hline Output Slew Rate & SR & - & 300 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Glitch Area & \(A_{G}\) & - & 20 & - & pV-S \\
\hline WRITE Cycle (RAM Update Mode) & & & & & ns \\
\hline Address Setup Time & tWSA & - & 1.5 & - & \\
\hline Address Hold Time & tWHA & - & 1.5 & - & \\
\hline Clock Setup Time & tWSC & - & 5.0 & - & \\
\hline Clock Hold Time & tWHC & - & 10 & - & \\
\hline Data Setup Time & tWSD & - & 90 & - & \\
\hline Data Hold Time & tWHD & - & 10 & - & \\
\hline Write Pulse Width & tWPW & - & 90 & - & \\
\hline
\end{tabular}

TEMPERATURE CHARACTERISTICS \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Typ & Units \\
\hline Offset (at Ref. White) & \(\pm 20\) & \(\mathrm{ppm} \mathrm{GS} /{ }^{\circ} \mathrm{C}\) \\
\hline DAC Gain & \(\pm 100\) & \(\mathrm{ppm} \mathrm{GS} /{ }^{\circ} \mathrm{C}\) \\
\hline Gain Tracking (any 2 DACs (a) Ref. Black) & \(\pm 50\) & \(\mathrm{ppm} \mathrm{GS} /{ }^{\circ} \mathrm{C}\) \\
\hline Linearity & \(\pm 100\) & \(\mathrm{ppm} \mathrm{GS} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note: ppm GS \(/{ }^{\circ} \mathrm{C}=\) Parts Per Million of Grey Scale \(/{ }^{\circ} \mathrm{C}\).

Note:
Electrical Characteristics are tested with both single and dual supply configurations at the typical supply voltages listed in the "Recommended Operating Limits." Input levels are TTL or ECL, as appropriate. Threshold control input is set at \(\mathrm{V}_{\mathrm{CC}} 1\), or \(\mathrm{V}_{\mathrm{EE}} 1\), as appropriate. Exceptions to these conditions are noted in the Characteristics.

\section*{MC10320, MC10320-1}

FIGURE 2 - TIMING DIAGRAM

WRITE CYCLE (RAM UPDATE MODE)

PIN DESCRIPTIONS
\begin{tabular}{|c|c|c|}
\hline Symbol & Pin & Description \\
\hline \(\overline{W R}\) & 1 & Write Enable (Red) - Taking this pin low enables the data (Pins 25-28) to be written into the selected address location for the RED look-up table. The data is latched in the RAM when the pin is high. \\
\hline \(\overline{W G}\) & 2 & Write Enable (Green) - Same as Pin 1, except for the GREEN table. \\
\hline \(\overline{\text { WB }}\) & 3 & Write Enable (Blue) - Same as Pin 1, except for the BLUE table. \\
\hline \(\mathrm{V}_{\mathrm{EE} 1}\) & 4 & Power supply pin for all circuitry prior to the supply option translators (See Block Diagram). This is the reference for \(\mathrm{V}_{\mathrm{CC}} 1\), and is typically 5.0 volts below it. Internally it is connected to Pin 22. This pin and Pin 22 must be connected externally for proper operation. \\
\hline A0-A3 & 5-8 & Address lines - They are used to select one of sixteen 12 -bit words in the color look-up table for both reading and writing. The address is latched on the PCLK rising edge, and presented to the DACs on the following rising edge. Pin 5 is A3 (MSB), and \(\operatorname{Pin} 8\) is AO (LSB). \\
\hline PCLK & 9 & Pixel clock - Address and \(\overline{\text { BLANK }}\) signals are latched on the rising edge of this clock. The following rising edge presents the data in the look-up table (of the selected address) to the DACs. \(\overline{\text { SYNC }}\) is independent from PCLK. \\
\hline \(\overline{\text { BLANK }}\) & 10 & Blanking - A logic low overrides the color look-up table, and forces the three DACs to the blanking level. The BLANK input is latched, the same as the address lines. \\
\hline ThCntl & 11 & Threshold Control - When tied to \(\mathrm{V}_{\mathrm{CC}} 1\), the PCLK, A0-A3, and BLANK inputs are at ECL levels with respect to \(\mathrm{V}_{\mathrm{CC}}\). When tied to \(\mathrm{V}_{\mathrm{EE} 1}\) (Pin 4 or 22), the same inputs are at TTL levels with respect to \(\mathrm{V}_{\mathrm{EE} 1}\). \\
\hline \(V_{\text {EE2 }}\) & 12 & Power supply pin for the circuitry to the right of the supply option translators (See Block Diagram). This is the reference for \(\mathrm{V}_{\mathrm{CC} 2}\), and is typically 5.0 volts below it. It is internally connected to Pin 20. This pin and Pin 20 must be connected externally. \\
\hline VB & 13 & The output of the BLUE 4-bit DAC. Output compliance is \(\pm 2.0\) volts with respect to \(\mathrm{V}_{\mathrm{CC} 2}\), and output impedance is typically \(100 \mathrm{k} \Omega\). Designed for a typical load of 37.5 \(\Omega\), the load may be between 0 and \(75 \Omega\). The output is a current sink. \\
\hline \(\overline{\mathrm{VB}}\) & 14 & The complementary output of the BLUE DAC. This output may be used in conjunction with Pin 13 for twisted pair signal transmission or for custom interface schemes. If unused, it must be tied to \(\mathrm{V}_{\mathrm{CC} 2}\). \\
\hline
\end{tabular}

PIN DESCRIPTIONS
\begin{tabular}{|c|c|c|}
\hline Symbol & Pin & Description \\
\hline VG & 15 & Same as Pin 13, except for the GREEN DAC. The SYNC signal appears at this output. Waveform polarity is "sync down." \\
\hline \(\overline{\mathrm{VG}}\) & 16 & Same as Pin 14, except for the GREEN DAC. The SYNC signal appears at this output. Waveform polarity is "sync up." \\
\hline VR & 17 & Same as Pin 13, except for the RED DAC. \\
\hline \(\overline{\mathrm{VR}}\) & 18 & Same as Pin 14, except for the RED DAC. \\
\hline \(\mathrm{V}_{\mathrm{CC} 2}\) & 19 & Power supply pin for the circuitry to the right of the supply option translators (See Block Diagram). Its reference is \(\mathrm{V}_{\mathrm{EE} 2}\), and is nominally 5.0 volts more positive than \(V_{E E 2}\). \\
\hline VEE2 & 20 & Power supply pin for the circuitry to the right of the supply option translators (See Block Diagram). This is the reference for \(\mathrm{V}_{\mathrm{CC} 2}\), and is typically 5.0 volts below it. It is internally connected to Pin 12. This pin and Pin 12 must be connected externally. \\
\hline RSET & 21 & Current setting resistor - A user supplied low inductance resistor is to be connected between \(\mathrm{V}_{\mathrm{C} C}\) 2 and this pin to set the DAC's full scale current. An RSET of \(1.0 \mathrm{k} \Omega\), combined with load resistors of \(37.5 \Omega\) (at Pins \(13,15,17\)) provides output signals consistent with EIA-343-A. The RSET resistor is to be between \(500 \Omega\) to \(2.0 \mathrm{k} \Omega\). The voltage at this pin is 1.25 volts below \(\mathrm{V}_{\mathrm{CC} 2}\). \\
\hline \(\mathrm{V}_{\mathrm{EE} 1}\) & 22 & Power supply pin for all circuitry prior to the supply option translators (See Block Diagram). This is the reference for \(\mathrm{V}_{\mathrm{CC}}\), and is typically 5.0 volts below it. Internally it is connected to Pin 4. This pin and Pin 4 must be connected externally for proper operation. \\
\hline SYNC & 23 & A logic low on this input forces the GREEN DAC to increase its output current by 7.6 mA (RSET \(=1.0 \mathrm{k} \Omega\)), providing the sync level of \(286 \mathrm{mV}\left(\mathrm{R}_{\mathrm{L}}=37.5 \Omega\right)\) below blanking. The BLANK input must have been asserted previously. \(\overline{\text { SYNC }}\) is independent of PCLK. \\
\hline \(\mathrm{V}_{\mathrm{CC} 1}\) & 24 & Power supply pin for the circuitry to the left of the supply option translators (See Block Diagram). Its reference is \(\mathrm{V}_{\mathrm{EE} 1}\), and is nominally 5.0 volts more positive than \(\mathrm{V}_{\mathrm{EE}}\). \\
\hline D0-D3 & 25-28 & Data inputs - Information on these pins is written into the color look-up table, at the locations specified by the address lines, by taking the appropriate Write pin low. Pin 28 is D0 (LSB), and Pin 25 is D3 (MSB). \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION}

\section*{GENERAL}

The MC10320 is a triple video DAC, with a 16 location color palette RAM, designed for high resolution graphics systems. The maximum pixel speed capability is 125 MHz for the MC 10320 , and 90 MHz for the MC10320-1. The input configurations are compatible with TTL or ECL systems, and the outputs are directly compatible with monitors having \(50 \Omega\) or \(75 \Omega\) RGB inputs. Using the external components recommended in this data sheet, the outputs will conform to EIA-343A levels. The output levels are adjustable by means of the RSET resistor.

The MC10320 contains three 4-bit DACs whose inputs are fed from a color palette RAM (data is loaded by the user). The RAM contains 16 locations (each 12 bits wide). Each 4-bit nibble of each RAM address can be individually loaded, so that every address location can have any one of a possible 4096 codes. The DAC output levels are determined by the contents of the selected RAM address (by means of the address inputs).

The MC10320 contains an input register to accept the address and Blanking information, and a second register located between the RAM and the DAC inputs. This arrangement ensures that the RAM data is presented to the 3 DACs simultaneously, which ensures the DAC outputs will transition simultaneously. The registers are toggled by the PCLK input's rising edge.

The BLANK input overrides the RAM data to the DACs, and forces the outputs to the Blanking level. The \(\overline{\text { SYNC }}\) input goes directly to the Green DAC, bypassing the RAM and the latches, forcing the green DAC output to shift. The combination of \(\overline{B L A N K}\) and \(\overline{\text { SYNC }}\) produce the video sync level.

Referring to the Block Diagram, the input stage (circuitry to the left of the Supply Option Translators) and the output stage (to the right of the Translators) can be operated at different supply voltages. The only restriction is that the output stage cannot be more positive than the input stage.

\section*{INPUTS}

\section*{Address, PCLK, \(\overline{\text { BLANK }}\)}

The Address, PCLK (pixel clock), and \(\overline{\text { BLANK }}\) inputs are the "high speed" inputs capable of the maximum pixel clock rates mentioned above. The Address and \(\overline{B L A N K}\) are latched into the input register on the rising edge of the PCLK, as long as the required setup and hold times are adhered to. The data at that RAM address (or the BLANK signal) is then presented to the DAC inputs on the next PCLK rising edge.
The BLANK input, when taken to a Logic " 0 " and clocked in as described above, will override the RAM data presented to the DACs, and force the 3 DAC outputs to the Blanking level (see Figure 2).

These 6 input pins can accept either TTL or ECL signals. With the Threshold Control pin (Pin 11) connected to \(V_{E E 1}\), the inputs are TTL compatible with respect to \(V_{E E 1}\), having a nominal threshold of 1.5 volts above
\(\mathrm{V}_{\mathrm{EE} 1}\), independent of \(\mathrm{V}_{\mathrm{CC} 1}\). With Pin 11 connected to \(\mathrm{V}_{\mathrm{CC}} 1\), the inputs are fully compatible with the 10 KH family of ECL devices, having a nominal threshold of 1.3 volts below \(V_{C C 1}\), independent of \(V_{E E 1}\).

Figure 3 depicts a typical input stage configuration, and Figure 4 indicates the typical input current. Figure 4 applies to both ECL and TTL modes of operation. The inputs should be kept within the range of \(\mathrm{V}_{\mathrm{EE}} 1\) to \(\mathrm{V}_{\mathrm{CC}} 1\). If an input is taken more than 0.3 volt below \(V_{E E 1}\), or more than 0.5 volts above \(\mathrm{V}_{\mathrm{CC}}\), excessive currents will flow through that input, and the DAC output waveforms will be distorted.

\section*{\(\overline{\text { SYNC }}\)}

The \(\overline{\text { SYNC }}\) input goes directly to the green DAC, independent of the clock. When taken to a Logic " 0 ", the output current at VG is forced to increase by \(6.1 \times\) ISET. For a standard EIA-343-A system, the shift is 7.63 mA , resulting in a 286 mV change in the output voltage. The \(\overline{\text { SYNC }}\) input does not override the RAM data, requiring that the \(\overline{B L A N K}\) input have been asserted (Logic " 0 ") previously in order to obtain a proper video sync level. The \(\overline{S Y N C}\) input does not affect the red or blue DACs.
The \(\overline{\text { SYNC }}\) input is always TTL compatible, with a nominal threshold of 1.5 volts above \(\mathrm{V}_{\mathrm{EE}}\), independent of \(\mathrm{V}_{\mathrm{CC}}\).

Figure 3 depicts the input stage configuration, and Figure 4 indicates the typical input current. The input should be kept within the range of \(\mathrm{V}_{\text {EE1 }}\) to \(\mathrm{V}_{\mathrm{CC}}\). If the input is taken more than 0.3 volt below \(\mathrm{V}_{\mathrm{EE}}\), or more than 0.5 volts above \(\mathrm{V}_{\mathrm{CC}}\), excessive currents will flow through the input, and the DAC output waveforms will be distorted.

\section*{DATA (1-4), \(\overline{\mathbf{W R}}, \overline{\mathrm{WB}}, \overline{\mathbf{W G}}\)}

The data (D0, D1, D2, D3), and WRITE inputs are the "low speed" inputs, as they do not have to operate at the same high speed as the above mentioned inputs. These inputs are independent of the PCLK, although they are normally used in conjunction with the clock.

Pins 25-28 are the data inputs to the color palette RAM, and are used for updating the RAM information. The information is written into the RAM at the address which was previously clocked into the input register, while the appropriate WRITE input is low, and then latched in when the \(\overline{\text { WRITE }}\) input is taken high. The required data setup and hold times (mentioned in the Timing Characteristics) are with respect to the rising edge of the WRITE input. If the same data is to be loaded into different nibbles (color sections) of the same address, the appropriate \(\overline{\text { WRITE }}\) inputs may be taken low simultaneously, or sequentially. \(\overline{W R}, \overline{W B}\), and \(\overline{W G}\) control the loading of data into the red, blue and green nibbles respectively.

The data and WRITE inputs are always TTL compatible, with a nominal threshold of 1.5 volts above \(V_{E E 1}\), independent of \(\mathrm{V}_{\mathrm{CC}}\).

\section*{MC10320, MC10320-1}

In most applications, it will be advantageous to set the Blanking level while updating the RAM. If Blanking is not set, the DAC outputs will change unpredictably while new data is being written into the RAM.
Figure 3 depicts a typical input stage configuration, and Figure 4 indicates the typical input current. The inputs should be kept within the range of \(\mathrm{V}_{\mathrm{EE} 1}\) to \(\mathrm{V}_{\mathrm{CC}}\). If an input is taken more than 0.3 volt below \(\mathrm{V}_{\mathrm{EE}}\), or more than 0.5 volts above \(\mathrm{V}_{\mathrm{CC}}\), excessive currents will flow through the input, and the DAC output waveforms will be distorted.

FIGURE 3 - TYPICAL INPUT STAGE

FIGURE 4 - INPUT CURRENT AT PINS 1-3, 5-10, 23, 25-28

\section*{THRESHOLD CONTROL}

The Threshold Control input (Pin 11) is to be connected directly to \(\mathrm{V}_{\mathrm{CC}}\) to set Pins 5-10 to ECL compatibility, or directly to \(\mathrm{V}_{\mathrm{EE} 1}\) to set the pins to TTL compatibility. A series resistor should not be used with this input, and it should not be connected to any other voltage as an incorrect threshold will result at Pins 5-10. Bias current at Pin 11 is approximately 400 \(\mu \mathrm{A}\) out of the pin when at \(\mathrm{V}_{\mathrm{EE}}\), and \(0 \mu \mathrm{~A}\) when at \(\mathrm{V}_{\mathrm{CC}}\). If the pin is taken more than 0.3 volt below \(\mathrm{V}_{\mathrm{EE} 1}\), excessive currents will flow through this input, and the DAC output waveforms will be distorted.

\section*{OUTPUTS}

The six DAC outputs (VB, \(\overline{\mathrm{VB}}, \mathrm{VG}, \overline{\mathrm{VG}}, \mathrm{VR}, \overline{\mathrm{VR}}\)) at Pins 13-18 are high impedance current sink outputs, with the current flow into the pins, never out. VG, VB, and VR provide the conventional video polarity (sync down), while the complementary outputs provide a "sync up" waveform. The output loads must be connected from the outputs to \(\mathrm{V}_{\mathrm{C}} 2\), or to a pullup voltage, such that the output voltages are within \(\pm 2.0\) volts of \(\mathrm{V}_{\mathrm{CC}}\). Unused outputs must be connected to \(\mathrm{V}_{\mathrm{CC}}\), and not left open.

The output current (for the gray scale) at Pins 13, 15, and 17 is related to the digital inputs (of the DACs) and the reference current (ISET at Pin 21, equal to \(1.25 \mathrm{~V} /\) \(\mathrm{R}_{\text {SET }}\)) by the following equation:
\(\operatorname{lOUT}(\mathrm{GS})=\frac{(15-\mathrm{A}) \times \operatorname{ISET} \times 14.63}{16} \quad\) (nominal value)
where \(A=\) binary value of the digital input (\(0-15\)). \(A\) digital input of 1111 (15) produces no output current, and therefore the most positive output voltage, referred to as "Reference White." An input code of 0000 (0) results in the maximum current, and therefore the gray scale's most negative output voltage, referred to as "Reference Black."
After the BLANK input is asserted and clocked in as described above, the RAM data to the DACs is overriden, and the output current is set at:

IOUT(BLANK) \(=\) ISET \(\times 14.864 \quad\) (nominal value)
When the \(\overline{\text { SYNC }}\) input is asserted, the output current at VG is increased by:
\(\Delta^{\prime}\) OUT(SYNC) \(=\) ISET \(\times 6.1\) (nominal value)
The four outputs of the red and blue DACs are not affected by \(\overline{\text { SYNC. The current increase at VG results }}\) regardless of the digital input to the Green DAC. To obtain the correct (EIA-343-A) sync level, the BLANK output level must have previously been set. Otherwise the green output will simply shift by the above amount from the grey scale level in effect at the time the SYNC input was asserted. If both BLANK and SYNC are asserted, the output current at VG is:
\(\operatorname{IOUT}(S Y N C)=\) ISET \(\times 20.97 \quad\) (nominal value)
The sum of the currents into each pair of outputs is a constant equal to \([20.93 \times\) ISET] for the VG/VG pair, and [\(14.824 \times\) ISET] for the VR/VR, and VB/VB pairs. Table 1 summarizes the above information.

The voltage levels generated at the outputs depend on the value of ISET and the load impedance. An RSET of \(1.0 \mathrm{k} \Omega\) (ISET \(=1.25 \mathrm{~mA}\)), and a load of \(37.5 \Omega\) (doubly terminated \(75 \Omega\) system) at each output will generate the standard EIA-343-A levels. The output voltages must be kept within the range of +2.0 to -2.0 volts with respect to VCC2. If any part of the output's waveform is outside this range, its linearity will be affected.

TABLE 1
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Video Level} & \multicolumn{4}{|l|}{Output Current (mA) at:} \\
\hline & VR, VB & VG & \(\overline{\mathrm{VR}}, \overline{\mathrm{VB}}\) & \(\overline{\text { VG }}\) \\
\hline Gray Scale & \(\left(\frac{(15-A) \times \mathrm{I}}{} \frac{1.09}{1.0}\right)\) & Same as VB, VR & \(\left(\frac{(\mathrm{A}) \times \mathrm{I} \mathrm{SET}}{1.09}+1.06 \mathrm{ISET}\right)\) & \(\left(\frac{(\mathrm{A}) \times \mathrm{I} \mathrm{SET}}{1.09}+7.17 \mathrm{ISET}\right)\) \\
\hline Blank & ISET \(\times 14.824\) & Same as VB, VR & 0 mA & ISET \(\times 6.1\) \\
\hline Sync + Blank & ISET \(\times 14.824\) & ISET \(\times 20.93\) & 0 mA & 0 mA \\
\hline
\end{tabular}
\(A=\) DAC digital input (binary value), ISET is the current into Pin 21.

\section*{REFERENCE VOLTAGE (RSET)}

The reference current for the DACs is supplied from an internal band-gap reference with a typical TC of \(\approx \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). The voltage at RSET (Pin 21) is a constant 1.25 volts below \(V_{C C 2}\), and an external resistor \(R_{\text {SET }}\) is to be connected from \(V_{C C 2}\) to Pin 21. The current ISET is therefore equal to \(1.25 \mathrm{~V} / \mathrm{RSET}\). Internally, equal reference currents are supplied to the three DACs such that their outputs are matched within \(\pm 3.0 \%\).
\(R_{\text {SET }}\) should normally be between \(500 \Omega\) and \(2.0 \mathrm{k} \Omega\). With values less than \(500 \Omega\), the current at Pin 21 approaches an upper limit, resulting in a nonlinear relationship for the MC10320. With values greater than \(2.0 \mathrm{k} \Omega\), instability and oscillations of the reference amplifier will result. For this reason, current to Pin 21 should not be supplied from a current source. Additionally, the resistor should be noninductive (non-wirewound). Metal film resistors, available with low TCs, are recommended. The resistor should be physically adjacent to the MC10320 to avoid the inductive effects of long PC board tracks. Figure 5 indicates the voltage/current characteristics at Pin 21.

FIGURE 5 - \(\mathbf{V}_{\text {ref }}\) versus ISET

\section*{POWER SUPPLIES}

The MC10320 may be used in a single or dual supply system, depending on the system logic levels, and/or the output requirements (See the Applications Section). Table 2 indicates permissable configurations. The only restriction is that the output stage \(\left(\mathrm{V}_{\mathrm{CC} 2} / \mathrm{V}_{\mathrm{EE} 2}\right)\) cannot be more positive than the input stage. The positive supplies may range from +4.5 to +5.5 volts, and negative supplies may range from -4.5 to -5.72 volts.

TABLE 2
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ System } & VCC1 & VEE1 & VCC2 & V \(_{\text {EE2 }}\) \\
\hline Single Supply & +5.0 V & Gnd & +5.0 V & Gnd \\
\hline Single Supply & Gnd & -5.0 V & Gnd & -5.0 V \\
\hline Dual Supply & +5.0 V & Gnd & Gnd & -5.0 V \\
\hline
\end{tabular}

The current requirement for the input stage (\(\mathrm{I}_{\mathrm{C} 1}\)) is typically 50 mA , and the majority of that current \((+0\), -4.0 mA) flows out of \(\mathrm{V}_{\mathrm{EE}} 1\). The current requirement for the output stage (\(\mathrm{I}_{\mathrm{C}} 2\)) is typically 28 mA . Out of \(V_{\text {EE2 }}\) flows that current, plus the current due to the outputs and ISET. In a typical application the output currents total \(\approx 63 \mathrm{~mA}\), and ISET is \(\approx 1.25 \mathrm{~mA}\), giving a total \(I_{E E 2}\) of \(\approx 92 \mathrm{~mA}\).

The minimum voltage at \(\mathrm{V}_{\mathrm{CC} 1}\) for memory retention is \(\approx 1.5\) volts.
Proper bypassing of the supplies at the IC is critical due to the high frequencies involved. Further information can be found in the Applications section.

\section*{TIMING}

Timing diagrams for the Read (display) mode and the Write (RAM update) mode are shown in Figure 2.

In the READ mode, the clock may be any frequency up to 125 MHz for the MC10320, and up to 90 MHz for the MC10320-1. Duty cycle is not important as long as the minimum low and high times are observed. On each clock's rising edge, a new address is clocked in, and the previous address' information is supplied to the DACs from the look-up table. If the BLANK line is taken to a Logic " 0 ", it will override the information to the DACs on the next clock rising edge, and the 3 DACs will be taken to the blanking level. The \(\overline{\mathrm{SYNC}}\) input, when taken to a Logic " 0 ", drives the Green DAC directly with only a small internal propagation delay. The output of the Green DAC will then change with respect to the last address input. For this reason, the \(\overline{\text { SYNC }}\) input should normally be used only after asserting the BLANK input.
In the WRITE mode, the clock is used only to enter the address where the new data is to be written. The PCLK input may continue to toggle if the address inputs are stable during the write period, or the clock may be stopped while writing. Data is then entered into each of 3 color sections of that address by taking low the appropriate WRITE lines (\(\overline{W R}, \overline{W G}, \overline{W B}\)). If the same four bits are to be stored in different color locations of the same address, the appropriate WRITE lines may be taken low simultaneously. If the \(\overline{B L A N K}\) input is held low during the Write operation, the DAC outputs will be held in a known state.

\section*{APPLICATIONS INFORMATION}

\section*{POWER SUPPLIES, GROUNDING}

The PC board layout, and the quality of the power supplies and the ground system at the IC are very important in order to obtain proper operation. Noise, from any source, coming into the device can result in an incorrect output due to interaction with the analog portion of the circuit. At the same time, noise generated within the MC10320 can cause incorrect operation if that noise does not have a clear path to ac ground.

The power supply pins at both the input and output sections of the MC10320 must be decoupled to ground at the IC (within \(1^{\prime \prime}\) max) with a \(10 \mu \mathrm{~F}\) tantalum and a \(0.1 \mu \mathrm{~F}\) ceramic. Tantalum capacitors are recommended since electrolytic capacitors simply have too much inductance at the frequencies of interest. The quality of the \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{EE}}\) supplies should then be checked at the IC with a high frequency scope. Noise spikes (always present among digital circuits) can easily exceed 400 mV peak, and if they get into the analog portion of the IC, the output waveforms can be disrupted. Noise can be reduced by inserting resistors and/or inductors between the supplies and the IC.
If switching power supplies are used, there will usually be spikes of 0.5 volts or greater at frequencies of \(50-200 \mathrm{kHz}\). These spikes are generally more difficult to reduce because of their greater energy content. In extreme cases, 3-terminal regulators (MC78L05ACP, MC7805.2CT), with appropriate high frequency filtering, should be used and dedicated to the MC10320.

The ripple content of the supplies should not allow their magnitude to exceed the values in the Recommended Operating Limits.
The PC board tracks supplying \(V_{C C}\) and \(V_{E E}\) to the MC10320 should preferably not be at the tail end of the bus distribution, after passing through a maze of digital circuitry. The MC10320 should be close to the power supply, or the connector where the supply voltages enter the board. If the \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{EE}}\) lines are supplying considerable current to other parts of the board, then it is preferable to have dedicated lines from the supply or connector directly to the MC10320.
The two \(\mathrm{V}_{\mathrm{EE} 1}\) pins (4 and 22) must be connected directly together. Likewise, the two VEE2 pins (12 and 20) must be connected directly together. Any long path between them can cause stability problems due to the inductance (@125 MHz) of the PC tracks. The ground return for the analog signals must be noise free.

\section*{PC Board Layout}

Due to the high frequencies involved, and in particular, the fast edges of the various digital signals, proper PC board layout is imperative. A solid ground plane is necessary in order to have known transmission characteristics, and also to minimize coupling of the digital signals into the analog section. Use of wire wrapped boards should definitely be avoided.
Each PC track should be considered a transmission line, and if they are of any considerable length (more
than a few inches), they should be terminated according to transmission line theory. Otherwise reflections back to the signal sources can occur, disrupting their operation. Additionally, the overshoots and undershoots which will occur at the MC10320's input pins can cause its operation to be disrupted, resulting in an incorrect output.
Additional information regarding the transmission characteristics of PC board tracks can be found in Motorola's MECL System Design Handbook (HB205R1).

\section*{Input Configurations}

The unique configuration of the MC10320's power supply system permits its use in an all TTL, or all ECL, or mixed TTL/ECL environments, with the secondary capability of having the output levels be above or below ground. For standard TTL inputs refer to Figure 7. For systems using "above ground ECL" (ECL circuitry operated between ground and +5.0 volts, rather than -5.2 volts), refer to Figure 8. The MC10H350 translators will change the above ground ECL levels to the TTL levels required by the SYNC, Data and WRITE infuts, while the Threshold Control will set the thresholds of the Address, Clock and BLANK inputs to the ECL levels. For standard (below ground) ECL levels, refer to Figure 9. Since \(V_{C C 2}\) cannot be more positive than \(V_{C C}\), they are both connected to ground level in this case.
In the case where all inputs are above ground, but the low speed inputs (Data, WRITE, and SYNC) are connected to TTL circuits, while the high speed inputs are connected to above ground ECL circuits, refer to Figure 10. In the case where the low speed inputs are connected to standard TTL, and the high speed inputs are connected to standard (below ground) ECL, refer to Figure 11.

\section*{Output Configurations}

The output waveforms may be above or below ground, depending on the choice of supply voltages for \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{EE} 2}\), but the output voltages are always referenced to \(\mathrm{V}_{\mathrm{CC}}\). In Figure 12, the outputs are referenced to +5.0 V , and produce a 1.0 volt p - p waveform when used with a doubly terminated \(75 \Omega\) load, and an RSET of \(1.0 \mathrm{k} \Omega\). The +5.0 volt supply is the "ac ground" in this case. If the outputs must be referenced to system ground rather than the +5.0 volt supply, the circuit of Figure 13 will provide the required level shifting. Figure 14 provides ground referenced outputs with a range of 0 to -1.0 volt. In Figure 15, the outputs are pulled up to a voltage different from \(\mathrm{V}_{\mathrm{CC}}\), providing an offset (+1.0 volt offset in the figure). In Figure 15 the complementary outputs should be connected to the +1.0 volt pullup voltage. The voltage at VR, VG, and VB (and the complementary outputs) must always lie within the range of \(\pm 2.0\) volts with respect to \(\mathrm{V}_{\mathrm{CC}} 2\).

Figure 6 illustrates the output voltage range, with respect to \(\mathrm{V}_{\mathrm{CC}}\) or a pullup voltage, of the six outputs \(\left(\mathrm{R}_{\mathrm{L}}=37.5 \Omega, \mathrm{R}_{\mathrm{SET}}=1.0 \mathrm{k} \Omega\right)\) :

FIGURE 6 - OUTPUT LEVELS

Note: RSET \(=1.0 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=37.5 \Omega\), above values are typical.

FIGURE 7 - TTL INPUTS

FIGURE 8 - ABOVE GROUND ECL INPUTS

Note: \(\mathrm{V}_{\mathrm{CC} 2} / \mathrm{V}_{\mathrm{EE}}\) may
be above or below ground.

FIGURE 9 - STANDARD ECL INPUTS

\section*{MC10320, MC10320-1}

FIGURE 10 - LOW SPEED INPUTS @ TTL,
HIGH SPEED INPUTS @ ABOVE GROUND ECL

FIGURE 11 - LOW SPEED INPUTS @ TTL, HIGH SPEED INPUTS @ STANDARD ECL

FIGURE 12 - SINGLE + 5.0 VOLT SUPPLY, OUTPUTS ABOVE GROUND

FIGURE 13 - SINGLE +5.0 VOLT SUPPLY, OUTPUTS REFERENCED TO GROUND

FIGURE 14 - SINGLE OR DUAL SUPPLY,

FIGURE 15 - SINGLE OR DUAL SUPPLY, OUTPUTS ABOVE GROUND, REFERENCED TO GROUND

\section*{GLOSSARY}

BANDGAP REFERENCE - A temperature stable voltage reference circuit based on the predictable base-emitter voltage of a transistor.

BIPOLAR INPUT/OUTPUT - A mode of operation whereby the analog input (of an \(A / D\)), or output (of a DAC), includes both negative and positive values. Examples are -5.0 to +5.0 V , -2.0 to +8.0 V , etc.

DAC CURRENT GAIN - The internal gain the DAC applied to the reference current to determine the full scale output current. The actual maximum current out of a DAC is one LSB less than the fuil scaie current.

DIFFERENTIAL GAIN - In video systems, differential gain is a component's change in gain as a function of luminance level. In a color picture, saturation will be distorted if the differential gain is not zero.

DIFFERENTIAL NON-LINEARITY - The maximum deviation in the actual step size (one transition level to another) from the ideal step size. The ideal step size is defined as the Full Scale Range divided by \(2^{n}\). This error must be within \(\pm 1\) LSB for proper operation.

DIFFERENTIAL PHASE - In video systems, differential phase is the change in the phase modulation of the chrominance signal as a function of the luminance level. The hue in a color picture will be distorted if the differential phase is not zero.

ECL - Emitter coupled logic.
FULL SCALE RANGE (Actual) - The difference between the actual minimum and maximum end points of the analog input (of an A/D), or output (of a DAC).

FULL SCALE RANGE (Ideal) - The difference between the actual minimum and maximum end points of the analog input (of an A/D), or output (of a DAC), plus one LSB.

GAIN ERROR - The difference between the actual and theoretical gain (end point to end point), with respect to the reference, of a data converter. The gain error is usually expressed in LSBs.

GLITCH AREA - The energy content of a glitch, specified in volt-seconds. It is the area under the curve of the glitch waveform.

GREY CODE - Also known as reflected binary code, it is a digital code such that each code differs from adjacent codes by only one bit. Since more than one bit is never changed at each transition, race condition errors are eliminated.

INTEGRAL NON-LINEARITY - The maximum error of an \(A / D\), or \(D A C\), transfer function from the ideal straight line connecting the analog end points. This parameter is sensitive to dynamics, and test conditions must be specified in order to be meaningful. This parameter is the best overall indicator of the device's performance.

LSB - Least Significant Bit. It is the lowest order bit of a binary code.

LINE REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the input to the regulator is varied. The error is typically expressed as a percent of the nominal output voltage.

LOAD REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the load current is varied. The error is typically expressed as a percent of the nominal output voltage.

MONOTONICITY - The characteristic of the sansfer function whereby increasing the input code (of a DAC), or the input signal (of an A/D), results in the output never decreasing. Non-monotonicity occurs if the differential non-linearity exceeds -1 LSB.

MSB - Most Significant Bit. It is the highest order bit of a binary code.

NATURAL BINARY CODE - A binary code defined by:
\[
N=A_{n} 2^{n}+\ldots+A_{3} 2^{3}+A_{2} 2^{2}+A_{1} 2^{1}+A_{0} 2^{0}
\]
where each " \(A\) " coefficient has a value of 1 or 0 .
NYOUIST THEORY - See Sampling Theorem.
OFFSET BINARY CODE - Applicable only to bipolar input (or output) data converters, it is the same as Natural Binary, except that all zeroes corresponds to the most negative output voltage (of an DAC), while all ones corresponds to the most positive output.

OUTPUT COMPLIANCE - The maximum voltage range to which the DAC outputs can be subjected, and still meet all of the specifications.

POWER SUPPLY REJECTION RATIO - The ability of a device to reject noise and/or ripple on the power supply pins from appearing at the outputs. An ac measurement, this parameter is usually expressed in dB rejection.

POWER SUPPLY SENSITIVITY - The change in a data converters performance with changes in the power supply voltage(s). A dc measurement, this parameter is usually expressed in percent of full scale versus a percent change in the power supply voltage.

PROPAGATION DELAY - For a video DAC, the time from when the clock input crosses its threshold to when the DAC output(s) reach the \(50 \%\) point of the transition.

QUANTITIZATION ERROR - Also known as digitization error or uncertainty. It is the inherent error involved in digitizing an analog signal due to the finite number of steps at the digital output versus the infinite number of values at the analog input. This error is a minimum of \(\pm 1 / 2\) LSB.

RESOLUTION - The smallest change which can be discerned by an A/D converter, or produced by a DAC. It is usually expressed as the number of bits, \(n\), where the converter has \(2^{n}\) possible states.

SAMPLING THEOREM - Also known as the Nyquist Theorem. It states that the sampling frequency of an A/D must be no less than \(2 x\) the highest frequency (of
interest) of the analog signal to be digitized in order to preserve the information of that analog signal.

SETTLING TIME - For a video DAC, the time required for the output to change (and settle in) from an initial \(\pm 1 / 2\) LSB error band to the final \(\pm 1 / 2\) LSB error band.

TTL — Transistor-transistor logic.
TWO'S COMPLEMENT CODE - A binary code applicable to bipolar operation, in which the positive and negative codes of the same analog magnitude sum to all zeroes, plus a carry. It is the same as Offset Binary Code, with the MSB inverted.

UNIPOLAR INPUT - A mode of operation whereby the analog input range (of an \(A / D\)), or output range (of a DAC), includes values of a single polarity. Examples are 0 to \(+10 \mathrm{~V}, 0\) to \(-5.0 \mathrm{~V},+2.0\) to +8.0 V , etc.

\section*{Advance Information}

\section*{MONOMAX BLACK AND WHITE TV SUBSYSTEM}

The MONOMAX is a single-chip IC that will perform the electronic functions of a monochrome TV receiver, with the exception of the tuner, sound channel, and power output stages. The MC13001XP and MC13002XP will function as drop-in replacements for MC13001P and MC13002P, but some external IF components can be removed for maximum benefit. IF AGC range has been increased, video output impedance lowered, and horizontal driver output current capability increased.
- Full Performance Monochrome Receiver with Noise and Video Processing - Black Level Clamp, DC Contrast, Beam Limiter
- Video IF Detection on Chip - No Coils, No Pins, except Inputs
- Noise Filtering on Chip - Minimum Pins and Externals
- Oscillator Components on Chip - No Precision Capacitors Required
- MC13001XP for 525 Line NTSC and MC13002XP for 625 Line CCIR
- Low Dissipation in All Circuit Sections
- High-Performance Vertical Countdown
- 2-Loop Horizontal System with Low Power Start-Up Mode
- Noise Protected Sync and Gated AGC System
- Designed to work with TDA1190P or TDA3190P Sound IF and Audio Output Devices
- Reverse RF AGC Types are Available: MC13008XP, MC13009XP

This document contains information on a new product. Specifications and information herein are subject to change without notice.

\section*{MC13001XP, MC13002XP}

MAXIMUM RATINGS (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage - Pin 18 & \(\mathrm{V}_{\mathrm{CC}}\) & +16 & Vdc \\
\hline Power Dissipation & PD & 1.0 & Watts \\
\hline Horizontal Driver Current - Pin 17 & I HOR & -20 & mA \\
\hline RF AGC Current - Pin 11 & IRFAGC & 20 & mA \\
\hline Video Detector Current - Pin 24 & IVID & 5.0 & mA \\
\hline Vertical Driver Current - Pin 22 & IVERT & 5.0 & mA \\
\hline Auxiliary Regulator Current - Pin 19 & IREG & 35 & mA \\
\hline Thermal Resistance Junction-to-Case & R \(_{\theta J C}\) & 60 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Maximum Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & \(0^{\circ}\) to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Horizontal Output Drive Current & IHOR & \(\leqslant 10\) & mA \\
\hline RF AGC Current & IRFAGC & \(\leqslant 10\) & mA \\
\hline Regulator Current & IREG & \(\leqslant 20\) & mA \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (VCC \(=11.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|ll|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Current & Pins \(18 \& 19\) & ICC & 44 & - & 76 & mA \\
\hline Regulator Voltage & Pin 19 & VREG & 7.2 & 8.2 & 8.8 & Vdc \\
\hline
\end{tabular}

HORIZONTAL SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Oscillator Frequency (Nominal) Pin 12 & fHOR(NOM) & 13 & - & 19 & kHz \\
\hline Oscillator Sensitivity & & - & 230 & - & \(\mathrm{Hz} / \mu \mathrm{A}\) \\
\hline Start-Up Frequency
\[
\left(I_{18}=4.0 \mathrm{~mA}\right)
\] & \(\mathrm{f}_{\mathrm{HOR}}\) & -10 & - & +10 & \% \\
\hline Oscillator Temperature Stability
\[
\left(0 \leqslant T A \leqslant 75^{\circ} \mathrm{C}\right)
\] & \(\mathrm{f}_{\mathrm{HOR}}\) & - & 50 & - & Hz \\
\hline Phase Detector 1 (Charge/Discharge Current) (Non Standard Frame) (Standard Frame) & \({ }^{1}{ }_{\phi} 1\) & & \[
\begin{aligned}
& \pm 900 \\
& \pm 400
\end{aligned}
\] & & \(\mu \mathrm{A}\) \\
\hline Phase Detector 1 (Output Voltage Limits) & \(\mathrm{V}_{\boldsymbol{\phi} 1}\) & - & \[
\begin{aligned}
& 7.5 \text { (Max) } \\
& 2.5 \text { (Min) }
\end{aligned}
\] & - & Vdc \\
\hline Phase Detector 1 (Leakage Current) & & - & - & 2.0 & \(\mu \mathrm{A}\) \\
\hline Phase Detector 2 (Charge/Discharge Current) & \({ }^{\prime}{ }_{\phi} 2\) & - & \[
\begin{array}{r}
+1.0 \\
-0.6
\end{array}
\] & & mA \\
\hline Phase Detector 2 (Output Voltage Limits) & \(\mathrm{V}_{\phi 2}\) & & \[
\begin{aligned}
& \hline 7.7 \text { (Max) } \\
& 1.5 \text { (Min) }
\end{aligned}
\] & & Vdc \\
\hline Phase Detector 2 (Leakage Current) & & - & - & 3.0 & \(\mu \mathrm{A}\) \\
\hline Horizontal Delay Range (Sync to Flyback) & & & \[
\begin{aligned}
& 18 \text { (Max) } \\
& 5.0 \text { (Min) }
\end{aligned}
\] & & \(\mu \mathrm{s}\) \\
\hline Horizontal Output Saturation Voltage
\[
\left(I_{17}=15 \mathrm{~mA}\right)
\] & \(V_{17}(S A T)\) & - & - & 0.3 & Vdc \\
\hline Phase Detector 1 (Gain Constant) (Out-of-Lock) (In-Lock) & & - & \[
\begin{aligned}
& 5.0 \\
& 10
\end{aligned}
\] & - & \(\mu \mathrm{A} / \mu \mathrm{s}\) \\
\hline Horizontal Pull-In Range & & \(\pm 500\) & \(\pm 750\) & & Hz \\
\hline
\end{tabular}

VERTICAL SPECIFICATIONS
\begin{tabular}{|ll|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & Min & Typ & Max & Unit \\
\hline Output Current & Pin 22 & \(I_{22}\) & -0.6 & - & - & mA \\
\hline Feedback Leakage Current & Pin 21 & \(I_{21}\) & - & - & 6.0 & \(\mu \mathrm{~A}\) \\
\hline Ramp Retrace Current & Pin 20 & \(I_{20}\) & 500 & - & 900 & \(\mu \mathrm{~A}\) \\
\hline Ramp Leakage Current & Pin 20 & & - & - & 0.3 & \(\mu \mathrm{~A}\) \\
\hline Feedback Maximum Voltage & & \(\mathrm{V}_{21}\) & - & 5.1 & - & Vdc \\
\hline
\end{tabular}

IF SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Regulator Voltage & \(\mathrm{V}_{4}\) & - & 7.5 & - & Vdc \\
\hline Input Bias Voltage & \(\mathrm{V}_{2,6}\) & - & 4.2 & - & Vdc \\
\hline Input Resistance Input Capacitance (\(\mathrm{V}_{\text {AGC }}\) Pin \(8=4.0 \mathrm{~V}\)) & \[
\begin{aligned}
& R_{I N} \\
& \mathrm{C}_{\text {IN }}
\end{aligned}
\] & & \[
\begin{aligned}
& \hline 6.0 \\
& 2.0
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline Sensitivity
\[
\left(\mathrm{V}_{8}=0 \mathrm{~V}, 400 \mathrm{~Hz} 30 \% \mathrm{MOD}, \mathrm{~V}_{28}=0.8 \mathrm{~V} \mathrm{pp}\right)
\] & & - & 80 & - & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline Bandwidth & & - & 75 & - & MHz \\
\hline
\end{tabular}

VIDEO SPECIFICATIONS
\begin{tabular}{|ll|l|l|l|l|c|}
\hline Zero Carrier Voltage (See Figure 5) & Pin 28 & & - & 7.0 & - & Vdc \\
\hline \begin{tabular}{l}
Output Voltage (See Figure 6) \\
White to Back Porch
\end{tabular} & Pin 24 & & - & 1.4 & - & V \\
\hline \begin{tabular}{l}
Differential Gain \\
Differential Phase \\
(IRE Test Method)
\end{tabular} & & - & 6 & - & \% \\
\hline Contrast Bias Current & & & & & & \\
\hline Contrast Control Range & & & & & & \\
\hline Beam Limiting Voltage 26 & & & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

AGC \& SYNC
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{c}
R.F. (Tuner) AGC Output Current \\
\(\left(V_{11}=5.5\right.\) V)
\end{tabular} & \(I_{11}\) & 5.0 & - & - & mA \\
\hline AGC Delay Bias Current & \(\mathrm{I}_{10}\) & - & -10 & - & \\
\hline AGC Feedforward Current & \(\mathrm{I}_{2}\) & - & 1.0 & - & mA \\
\hline \begin{tabular}{l}
AGC Threshold \\
(Sync Tip at Pin 28)
\end{tabular} & \(\mathrm{V}_{28}\) & 4.7 & - & 5.1 & Vdc \\
\hline Sync Separator Operating Point & \(\mathrm{V}_{7}\) & - & 4.2 & - & Vdc \\
\hline Sync Separator Charge Current & \(\mathrm{l}_{7}\) & - & 5.0 & - & mA \\
\hline
\end{tabular}

FIGURE 2 - MONOMAX AGC CHARACTERISTICS

FIGURE 3 - VIDEO OUTPUT RESPONSE

\section*{GENERAL DESCRIPTION}

The Video IF Amplifier is a four-stage design with 80 \(\mu \mathrm{V}\) sensitivity. It uses a 6.2 V supply decoupled at Pin 4. The first two stages are gain controlled, and to ensure optimum noise performance, the first stage control is delayed until the second stage has been gain reduced by 15 dB . To bias the amplifier, balanced dc feedback is used which is decoupled at Pins 2 and 6 and then fed to the input Pins 3 and 5 by internal 3.9 k resistors. The nominal bias voltage at these input pins is approximately 4.2 Vdc. The input, because of the high IF gain, should be driven from a balanced differential source. For the same reason, care must be taken with the IF decoupling.
The IF output is rectified in a full wave envelope detector and detector nonlinearity is compensated by using a similar nonlinear element in a feedback output buffer amplifier. The detected \(1.9 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\) video at Pin 28 contains the sound intercarrier signal, and Pin 28 is normally used as the sound takeoff point. The video frequency response, detector to Pin 28, is shown in Figure 3 and the detector intermodulation performance can be seen by reference to Figure 4. Typical Pin 28 video waveforms and voltage levels are shown in Figure 5.

The video processing section of Monomax contains a contrast control, black level clamp, a beam current

FIGURE 5 - PIN 28 SOUND OUTPUT

limiter and composite blanking. The video signal first passes through the contrast control. This has a range of \(14: 1\) for a 0 V to 5.0 V change of voltage on Pin 26 , which corresponds to a change of video amplitude at Pin 24 of 1.4 V to 0.1 V (black to white level). The beam current limiter operates on the contrast control, reducing the video signal when the beam current exceeds the limit set by external components. As the beam current increases, the voltage at Pin 27 moves negatively from its normal value of 1.5 V , and at 1.0 V operates the contrast control, thus initiating beam limiting action. After the contrast control, the video is passed through a buffer amplifier and dc restored by the black level clamp circuit before being fed to Pin 24 where it is blanked. The black level clamp, which is gated "on" during the second half of the flyback, maintains the video black level at \(2.4 \mathrm{~V} \pm 0.1 \mathrm{~V}\) under all conditions, including changes in contrast, temperature and power supply. The loop integrating capacitor is at Pin 25 and is normally at a voltage of 3.3 V . The frequency response of the video at Pin 24 is shown in Figure 3 and it is blanked to within 0.5 V of ground.
The AGC loop is a gated system, and for all normal variations of the IF input signal maintains the sync tip of a noise filtered video signal at a reference voltage

FIGURE 6 - PIN 24 - VIDEO OUTPUT

(5.1 V Pin 28). The strobe for the AGC error amplifier is formed by gating together the flyback pulse with the separated sync pulse. Integration of the error signal is performed by the capacitor at Pin 8, which forms the dominant AGC time constant. Improved noise performance is obtained by the use of a gated AGC system, noise protected by a dc coupled noise canceling circuit. The false AGC lock conditions, which can result from this combination, are prevented by an anti lockout circuit connected to the sync separator at Pin 7. AGC lockout conditions, which occur due to large rapid changes of signal level are detected at Pin 7 and recovery is ensured under these conditions by changing the AGC into a mean level system. The voltage at Pin 10 sets the point at which tuner AGC takeover occurs and positive going tuner control, suitable for an NPN RF transistor, is available at Pin 11 . The maximum output is 5.5 V at 5.0 mA . A feed-forward output is provided at Pin 9. This enables the AGC control voltage to be ac coupled into the tuner takeover control at Pin 10. The coupling allows additional IF gain reduction during signal transient conditions, thus compensating for variations of AGC loop gain at the tuner AGC takeover point. In this way the AGC system stability and response are not degraded.
The previously mentioned noise protection is effected by detecting negative-going noise spikes at the video detector output. A dc coupled detector is used which turns on when a noise spike exceeds the video sync tip by 1.4 V . This pulse is then stretched and used to cancel the noise present on the delayed video at the input to the sync separator. Cancellation is performed by blanking the video to ground. Complete cancellation of the noise spike results from the stretching of the blanking pulse and the delay of the noise spike at the input to the sync separator. Protection of both the horizontal PLL and the AGC stems from the fact that both circuits use the noise cancelled sync for gating.
The composite sync is stripped from a delayed and filtered video in a peak detecting type of sync separator.

The components connected to Pin 7 determine the slice and tilt levels of the sync separator. For ideal horizontal sync separation and to ensure correct operation of AGC anti-lockup circuit, a relatively short time constant is required at Pin 7. This time constant is less than optimum for good noise free vertical separation, giving rise to a vertical slice level near sync tip. An additional, longer, time-constant is therefore coupled to the first via a diode. With the correct choice of time constants, the diode is non conducting during the horizontal sync period, but conducts during the longer vertical period. This connects the longer time constant to the sync separator for the vertical period and stops the slice level from moving up to the sync tip. The separated composite sync is integrated internally, and the time constant is such that only the longer period vertical pulses produce a significant output pulse. The output is then fed to the vertical sync separator, which further processes the vertical pulse and provides increased noise protection. The selection of the external components connected to the vertical separator at Pin 23 permits a wide range of performance options. A simple resistor divider from the 8.2 V regulated supply gives adequate performance for most conditions. The addition of an RC network will make the slice level adapt to varying sync amplitude and give improved weak signal performance. A resistor to the AGC voltage on Pin 9 enables the sync slice level to be changed as a function of signal level. This further improves the low signal level separation while at the same time giving increased impulse noise protection on strong signals.

\section*{HORIZONTAL OSCILLATOR}

The horizontal PLL (see Figure 7) is a 2 -loop system using a 31.5 kHz oscillator which after a divider stage is locked to the sync pulse using phase detector 1 . The control signal derived from this phase detector on Pin 13 is fed via a high-value resistor to the frequencycontrol point on Pin 12. The same divided oscillator

FIGURE 7 - HORIZONTAL OSCILLATOR SYSTEMS

frequency is also fed to phase detector 2 , where the flyback pulse is compared with it and the resulting error used to change a variable slice level on the oscillator ramp waveform. This therefore changes the timing of the output square wave from the slicer and hence the timing of the buffered horizontal output on Pin 17 (see Figure 8). The error on phase detector 2 is reduced until the phasing of the flyback pulse is correct with respect to the divided oscillator waveform, and hence with respect to the sync pulse.
To improve the pull-in and noise characteristics of the first PLL, the phase detector current is increased when the vertical lock indicator signals an unlocked condition and is decreased when locked. This increases the loop bandwidth and pull-in range when out of lock and decreases the loop bandwidth when in lock, thus improving the noise performance. In addition, the phase detector current during the vertical period is reduced in order to minimize the disturbance to the horizontal caused by the longer period vertical phase detector pulses.

The oscillator itself is a novel design using an on-chip 50 pF silicon nitride capacitor which has a temperature drift of only \(70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) and negligible long term drift. This, in conjunction with an external resistor, gives a drift of horizontal frequency of less than \(1 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}\) - i.e., less than 100 Hz over the full operating temperature range of the chip. The pull-in range of the PLL is about \(\pm 750 \mathrm{~Hz}\), so normally this would eliminate the need for any customer adjustment of the frequency.

The second significant feature of this design is the use of a virtual ground at the frequency control point which floats at a potential derived from a divider across the power supply and this is the same divider which determines the end-points of the oscillator ramp. The frequency adjustment which is necessary to take up tolerances in the on-chip capacitor is fed in as a current to this virtual ground and when this adjustment current is derived from an external potentiometer across the same supply there is no frequency variation with supply voltage. Moreover, using the voltage from a potentiometer for the adjustment instead of the simple variable resistor normally used in RC oscillators makes the frequency independent of the value of the potentiometer and hence its temperature coefficient. The frequency control current from the first phase detector is fed into this same virtual ground and as the sensitivity of the control is about \(230 \mathrm{~Hz} / \mu \mathrm{A}\) a high value resistor can be used (\(680 \mathrm{k} \Omega\)) and this can be directly connected to the phase detector filter without significant loading.

This oscillator operates with almost constant frequency to below 4.0 volts and as the total PLL system consumes less than 4.0 mA at this voltage, this gives an ideal start-up characteristic for receivers using deflection-derived power supplies.

The flyback gating input is on Pin 15 which is internally clamped to 0.7 V in both directions and requires a negative input current of 0.6 mA to operate the gate circuit. This input can be a raw flyback pulse simply fed via a suitable resistor.

FIGURE 8 - HORIZONTAL WAVEFORMS

\section*{VERTICAL SYSTEM}

An output switching signal is taken from the 31.5 kHz oscillator to clock the vertical counter which is used in place of a conventional vertical oscillator circuit. The counter is reset by the vertical sync pulse but the period during which it is permitted to reset is controlled by the window control. Normally, when the counter is running synchronously, the window is narrow to give some protection against spurious noise pulses in the sync signal. If the counter output is not coincident with sync however, after a short period the window opens to give reset over a much wider count range, leading to a fast picture roll towards lock. At weak signal, i.e., less than \(200 \mu \mathrm{~V}\) IF input, the vertical system is forced to narrow mode to give a steadier picture for commonly occurring types of noise. The vertical sync, gated by the counter, then resets a ramp generator on Pin 20 and the 1.5 volt p-p ramp is buffered to Pin 22 by the vertical preamplifier. A differential input to the preamp on Pin 21 compares the signal generated across the resistor in series with the deflection coils with the generated ramp and thus controls shape and amplitude of the coil current.

The basic block diagram of the countdown system is shown in Figure 9. The \(31.5 \mathrm{kHz}\left(2 \mathrm{FH}^{\mathrm{H}}\right)\) clock from the horizontal oscillator drives a 10 -stage counter circuit which is normally reset by the vertical sync pulse via the sync gate, OR gate and D flip-flop. This D input is also used to initiate discharge of the ramp capacitor and hence causes picture flyback.

The period during which sync can reset the counter and cause flyback is determined by the window control which defines a count range during which the gate is open. One of two ranges is selected according to the condition of the signal. The normal "narrow" range is 514 to 526 counts for a 525 line system and is selected after the coincidence detector indicates that the reset is coincident, twice in succession, with the 525 count from the counter. When the detector indicates noncoincidence 8 times in succession, then the window control switches to the "wide" mode (384 to 544 counts) to achieve rapid re-synchronization. For the 625 line version the counts are 614 to 626 for narrow mode and

FIGURE 9 - MONOMAX VERTICAL COUNTDOWN

484 to 644 for wide mode. Note that the OR gate after the sync gate is used to terminate the count at the end of the respective window if a sync pulse has not appeared.

This method accepts non-standard signals almost in the same way as a conventional triggered RC oscillator and has a similar fast lock-in time. However, the use of a window control on the counter reset ensures that when locked with a normal standard broadcast signal the counter will reject most spurious noise pulses.

The blanking output is provided from a latch which is set by the counter reset pulse and terminated by count 20 from the counter chain.

FIGURE 10 - VERTICAL WAVEFORMS

\section*{POWER SUPPLY}

The power supply regulator, although of simple design, provides two independent power supplies - one for the horizontal PLL section and the other for the remainder of the chip. The supplies share the same reference voltage but the design of the main regulator is such that it can be switched on independently to give minimum loading on the "bleed" voltage source during start-up phase of a deflection-derived supply system.

FIGURE 11 - POWER SUPPLY CIRCUIT

See Application Note AN879 for further information.

\section*{TV PARALLEL SOUND IF AND AFT}

The PSIF is a single-chip IC that enhances the performance of a color TV, audio and video/chroma system. It eliminates bandpass compromises which normally tradeoff 920 kHz video beat with sound performance. The chip also includes a surface wave filter preamplifier and an AFT circuit.
- Low Noise Preamplifier for SAW Filter
- Wideband IF Amplification with Mean Level AGC
- Intercarrier Detector for Sound Carrier Output
- Reduces 920 kHz Beat
- AFT Discriminator with Output Polarity Selection
- Internal Voltage Regulator 8.2 V
- 30 mA Available from 8.2 V Internal Regulator

TV PARALLEL SOUND
IF/AFT
SILICON MONOLITHIC INTEGRATED CIRCUIT

PIN CONNECTIONS

\section*{MC13010P}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CCC}}\) & 16 & Vdc \\
\hline Regulator Output Current & \(\mathrm{I}_{\mathrm{reg}}\) & 30 & mAdc \\
\hline Thermal Resistance & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 70 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Power Dissipation (Package Limitation) & \(\mathrm{P}_{\mathrm{D}}\) & 1.1 & W \\
\hline Maximum Junction Temperature & \(\mathrm{T}_{\mathrm{J}(\max)}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), Test Circuit of Figure 2, unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Static Characteristics } & Symbol & Min & Typ & Max & Unit \\
\hline Supply Current & \(I_{\text {CC }}\) & 30 & - & 60 & mAdc \\
\hline Regulator Voltage, Pin 12 & \(V_{\text {reg }}\) & 7.6 & 8.2 & 8.8 & Vdc \\
\hline RF Supply Voltage, Pin 18 & \(V_{\text {RF }}\) & 5.8 & 6.5 & 7.2 & Vdc \\
\hline Preamplifier Current, Pins 6, 7 & & 4.0 & 6.6 & 7.5 & mAdc \\
\hline
\end{tabular}

Dynamic Characteristics
\begin{tabular}{|c|c|c|c|c|c|}
\hline Preamp Gain (Differential Output, \(50 \Omega\) Loads) & Av & - & \(-3.0\) & - & dB \\
\hline \begin{tabular}{l}
IF Sensitivity, Output \(1.5 \mathrm{~V}_{\mathrm{pp}}\) \\
Input \(45.75 \mathrm{MHz}, 30 \%\) AM @ 1.0 kHz Differential Pins 2, 3
\end{tabular} & & - & 80 & - & \(\mu \mathrm{V}_{\text {rms }}\) \\
\hline AGC Range, Input CW for Output Change of \(\pm 0.25 \mathrm{Vdc}\) & & - & 48 & - & dB \\
\hline Intercarrier Sound Output (Beat), Input \(45.75 \mathrm{MHz}, 7.0 \mathrm{mV}\) rms \(; 41.25 \mathrm{MHz}, 2.2 \mathrm{mV}\) rms & & 100 & 200 & 400 & mV rms \\
\hline IF Bandwidth (3.0 dB) & \(f_{\text {max }}\) & - & 80 & - & MHz \\
\hline Preamplifier Input Resistance Preamplifier Input Capacitance & \[
\begin{aligned}
& \mathrm{R}_{\text {in }} \\
& \mathrm{C}_{\text {in }} \\
& \hline
\end{aligned}
\] & - & \[
\begin{gathered}
1.5 \\
11.5 \\
\hline
\end{gathered}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline IF Input Resistance IF Input Capacitance & \[
\begin{aligned}
& \mathrm{R}_{\text {in }} \\
& \mathrm{C}_{\text {in }} \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.2 \\
& 4.0 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline Preamplifier Max Input Signal (Single Ended) & \(V_{\text {in }}\) & - & 50 & - & mV rms \\
\hline IF Max Input Signal (Differential) & \(\mathrm{V}_{\text {in }}\) & - & 50 & - & mV rms \\
\hline Noise Figure IF, Max Gain Noise Figure Preamplifier & & - & \[
\begin{aligned}
& 6.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & - & dB \\
\hline AFT Center-Frequency Slope & & - & 4.0 & - & \(\mu \mathrm{A} / \mathrm{kHz}\) \\
\hline AFT Output Max, 1.0 MHz Detuning & & - & \(\pm 300\) & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

FIGURE 2 - TEST CIRCUIT

\section*{DESCRIPTION}

The MC13010 TV Parallel Sound IF/AFT is designed to be part of a high performance color television system. Its primary function is to provide a complete separate IF amplifier for sound, leaving the normal IF to be concerned only with video. Secondary functions include an AFT detector and a SAW preamp.
In most present day color television receivers, sound and video are processed by the same IF amplifier and, in many cases, the same synchronous or pseudosynchronous detector. This imposes undesirable compromises in video and sound performance. Particularly in the U.S., the avoidance of a color/sound beat product (920 kHz) can only be achieved at the expense of sound quieting and sensitivity. Earlier solutions involved a single IF amplifier driving two detectors, with numerous interstage alignments required.
A method of solving these problems is to process the sound and video separately, directly from the tuner output. The MC13010 provides the second complete IF channel, with its own wideband detector and AGC. This permits both video IF and sound IF to be free of tuned elements, except at their inputs. (See Figure 3.)
quiring only one external filter. The general characteristic of the IF gain and gain control are given in Figure 4. The intercarrier sound output (Pin i1) is typically about \(200 \mathrm{mV}_{\mathrm{rms}}\), which easily overcomes a lossy intercarrier filter and meets the input needs of even the least sensitive FM sound IF ICs.

\section*{AFT}

The AFT detector is a quadrature type operating at the picture IF frequency, with only one external L-C to be aligned. The polarity of the AFT output may be changed by taking the mode control (Pin 16) high or low. If the control pin is left open, the AFT is defeaied.

\section*{ADDITIONAL APPLICATIONS}

The MC13010 is an ideal part for stand-alone AFT. I contains the entire active system to provide a tuner with "self control". (See Figure 6.)

This device performs AM detection at the intercarrier sound output. Therefore, AM modulated digital data may be recovered. This function may be useful in cable systems where digital coding is employed.

FIGURE 3 - BLOCK DIAGRAM OF T.V. APPLICATION OF MC13010

\section*{PREAMPLIFIER}

The preamp is included to compensate for the high insertion loss of a Surface Acoustic Wave filter. This SAW filter may have two outputs with different responses, or it may serve only the video signal path. The preamp is optional if an LC filter is used. In any case, the selectivity ahead of the video IF must provide deep trapping of the sound carrier, while the sound bandpass is relatively broad and flat between the picture and sound carriers.

\section*{THE SOUND IF}

The overall gain of 80 dB and gain control range of 48 dB equals the video IF's of earlier designs. This allows the full improvement of the system architecture to be realized. The AGC in the MC13010 is a peak-detecting type, driven internally from the sound detector, and re-

FIGURE 4 - GAIN AND AGC CHARACTERISTICS

FIGURE 5(A) - TYPICAL TV APPLICATION

Shown above are two approaches to using the MC13010 in TV designs. The simpler circuit 5(a) offers the lowest cost, but the 12 dB of preamp gain does not overcome the 20 to 25 dB of SAW filter loss. (Bearing in mind that discrete L/C approaches also incur some loss at this point, the \(5(\mathrm{a})\) circuit is probably about equal in gain.) The transformer T4 in Figure 5(b) takes advantage of the high impedance current source nature of the preamp outputs, Pins 6 and 7, to pick up another 6.0 dB of gain. Even more may be possible with more primary turns. When using the coil information given at the right, note that it is based on very limited experience and is offered only as a general guideline.

Experimental values for 45 MHz IF:
T1 - Primary: TOKO E502LN-4000034
Secondary: TOKO E502LN-7000037 in shield case

T2 - Video IF Surface Acoustic Wave (SAW) Filter: muRata, SAF 45MC02Z

T3 - Ceramic Intercarrier Output Filter: muRata SFE 4.5 MB

T4 - TOKO KANAS-K7060EK
L1 - TOKO E502LN-4000034 J.W. Miller 48A147MPC with shield case, tuned to \(45.75, \mathrm{~L} \approx 0.12 \mu \mathrm{H}\).

L2 - Same part as L1, except tuned to 44 MHz and loaded with \(270 \Omega\)

R1 and R2 - Adjust for nominal tuning voltage
R3 - Chosen for tuning voltage swing required. Note that Pin 15 can source or sink \(300 \mu \mathrm{~A}\) (typ) at the extremes of control range

\section*{Channel 3 Component Values}

T1 - Made from two coils positioned side by side, without shields, on \(0.38^{\prime \prime}\) centers Coils are COILCRAFT part no. T7-142 (violet 7-1/2 turns), each with its own slug, Carbonal E, adjusted to 63 MHz \((\approx 0.4 \mu \mathrm{H})\). This should give a slightly overcoupled response. A sheild to surround the coils may be required.

L1 -- COILCRAFT UNI-7/150 (blue 6-1/2 turns) or UNI-10/144 (green 5-1/2 turns) shielded, adjusted to \(61.25 \mathrm{MHz}(\approx 0.14 \mu \mathrm{H})\)

R1 and R2 - Adjust for nominal tuning voltage
R3 - Chosen for tuning voltage swing required. Note that Pin 15 can source or sink \(300 \mu \mathrm{~A}\) (typ) at the extremes of control range

FIGURE 1 - BLOCK DIAGRAM, TYPICAL APPLICATION,MONOCHROME TV RECEIVER

\footnotetext{
This document contains information on a new product. Specifications and information herein
are subject to change without notice.
}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage (Pins 1, 7, 16) & \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {boost }}\) & +40 & V \\
\hline Power Supply Voltage, Audio Section (Pin 14) & \(\mathrm{V}_{\mathrm{CC}}{ }^{\prime}\) & +35 & V \\
\hline Audio Input & \(\mathrm{V}_{\text {IS }}\) & 1.0 & V p-p \\
\hline Thermal Resistance, Junction to Air & \(\mathrm{R}_{\text {AJA }}\) & 80 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {Op }}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS - AUDIO SECTION \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), Circuit of Figure 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Current, No Signal, Pin 14 & ICC & - & 11 & 19 & mAdc \\
\hline Gain & \(\mathrm{A}_{0}\) & - & 50 & - & \(\mathrm{V} / \mathrm{V}\) \\
\hline Distortion at 50 mW Output 1.0 kHz & \(V_{\text {out }}\) THD & - & 0.1 & 1.0 & \% \\
\hline Distortion at 750 mW Output 1.0 kHz & \(\mathrm{V}_{\text {Out }}\) THD & - & 0.5 & - & \% \\
\hline Quiescent Output Voltage, No Signal & \(V_{\text {Pin }} 10\) & - & 8.0 & - & Vdc \\
\hline Input Bias & \(V_{\text {Pin }} 9, V_{\text {Pin }} 15\) & - & 0.7 & - & Vdc \\
\hline Input Resistance & \(\mathrm{R}_{\text {in }} \operatorname{Pin} 15\) & - & 28 & - & \(\mathrm{k} \Omega\) \\
\hline Output Noise (\(50 \mathrm{~Hz}-15 \mathrm{kHz}\)) Input \(50 \Omega\) & \(\mathrm{V}_{\text {out }}\) & - & 0.5 & 4.0 & \(\mathrm{mV} \mathrm{V}_{\text {RS }}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS - VERTICAL SECTION \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), Circuit of Figure 3)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline Output Current, Max Height Control & I yoke & - & 500 & - & mApp \\
\hline Power Supply Current & ICC & - & 75 & - & mAdc \\
\hline Flyback Voltage, Pin 6 & VPin 6 & - & 30 & - & Vpk \\
\hline Pull-Up Current, Max Height Control & VPin 2 & - & 250 & - & mApk \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS - COMBINATION (TA \(=25^{\circ} \mathrm{C}\), Circuits of Figures 2 and 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{c}
Residual Vertical Buzz-In Audio Output, \\
Vertical Set at 400 mA p-p Output
\end{tabular} & - & - & 6.0 & - & mV \\
\hline
\end{tabular}

FIGURE 2 - TEST CIRCUIT AND TYPICAL APPLICATION, AUDIO SECTION

\section*{CIRCUIT DESCRIPTION AND APPLICATION}

\section*{AUDIO SECTION}

The audio amplifier is a rather conventional IC implementation capable of over 1.0 watt output if applied to a \(16 \Omega\) speaker at 16 V . However, since the chip is also required to do the vertical output task, it is recommended that the audio section be used with \(32 \Omega\) speakers and 16 V , or \(16 \Omega\) and 12 V . Either condition will keep power output to about 750 mW at \(10 \%\) THD. The output (Pin 10) should have the usual \(3.0 \Omega / 0.1 \mu \mathrm{~F}\) snubber located close to the IC for prevention of high frequency oscillation. Voltage gain is set by the resistor divider feeding back to Pin 9. Both the input (Pin 15) and feedback (Pin 9) are internally biased to 0.7 Vdc , and should never be driven below ground.

The designer should keep in mind that this is a Class \(B\) audio section, and although it can be operated from supply voltages from 6.0 Vdc to 35 Vdc , there is no escaping the direct relationship of power supply ripple current to output current. The effect of this ripple on power supplies throughout the TV receiver must be minimized by normal external choices. If the TV is totally operated from a very solidly regulated source, the problems are minimal. If it is a low cost line-operated set, as illustrated in Figure 6, then good isolation can be more difficult. One suggestion is illustrated in Figure 6, where a horizontally derived +30 V supply is used to provide the vertical circuit with a vertical pulse clamping voltage and then is considerably decoupled (160 \(\Omega\) and \(50 \mu \mathrm{~F})\) to provide the audio supply. This offers a good bit of protection from loading effects, and for the most common low audio duty cycles, will given a good supply voltage. It will, of course, sag badly at a steady high output, and is offered for consideration. It is more viable here than in most cases, due to the wide power supply tolerance of this IC.

\section*{VERTICAL SECTION}

The vertical amplifier takes the approximately 1.5 Vp-p sawtooth output from Pin 22 of MONOMAX and converts it to an output sawtooth of up to \(600 \mathrm{~mA} p-\mathrm{p}\) in the vertical yoke. Yoke impedances of up to \(40 \Omega\) can be accommodated by operating from a primary power supply voltage (Pin 16) of up to 20 Vdc .

The MC13014P uses a boost switch to "step up" the operating voltage during retrace. This offers the benefits of keeping IC dissipation low, by allowing minimum \(V_{C C}\) during forward scan and permitting rapid retrace by having a highly effective clamp voltage. A comparator senses when the output at Pin 6 rises 0.7 V above the \(\mathrm{V}_{\mathrm{CC}}\) on Pin 16, and turns the boost transistor on, which quickly pulls up the operating voltage at Pin 7. The boost voltage can be provided either of two ways: a higher (than \(V_{C C}\)) supply, up to 40 V , can be connected to Pin 1 as shown in Figure 4, or the self boost configuration of Figure 3. In this application the \(50 \mu \mathrm{~F}\) (Fin 7 to \(\operatorname{Pin} 2\)) charges the \(V_{C C}\) during forward scan, through the \(150 \Omega\). When retrace triggers the boost switch, this voltage is added to the \(\mathrm{V}_{\mathrm{CC}}\), nearly doubling the operating voltage at Pin 7 during retrace. The \(50 \mu \mathrm{~F}\) is selected to prevent excessive voltage change during retrace.

The vertical output, Pin 6, can source or sink 300 mA , and the boost switch has 300 mA pull-up capability. Supply voltage of \(8-20 \mathrm{Vdc}\) is recommended for \(\mathrm{V}_{\mathrm{CC}}\) in both Figures 3 and 4. Boost voltage for Figure 4 should be \(25-40 \mathrm{~V}\). There must be a good ground for Pins 4, 5, 12 and 13 , which are both substrate and circuit ground, to avoid adding a vertical signal to the audio.

\section*{DISSIPATION AND THERMAL CONSIDERATIONS}

The 16-pin copper lead frame has excellent thermal characteristics, but these are two big jobs, so attention to \(P_{D}\) is in order. The vertical application of Figure 3 at \(400 \mathrm{~mA} p-\mathrm{p}\) has a vertical section (IC) dissipation of about 300 mW . If the audio section Figure 2, is at a comparatively high output of 500 mW , the dissipation in that section is about 600 mW . Note that the rated \(\mathrm{R}_{\theta J A}\) of \(80^{\circ} \mathrm{C} / \mathrm{W}\) is for a worst case situation, with no help from a PC board, or any conducted heat from the pins. In a practical PC board effort, the R \(\mathrm{R}_{\theta J}\) can be reduced to approximately \(50^{\circ} \mathrm{C} / \mathrm{W}\). With less than 1.0 watt dissipation, there is considerable safety margin, even at an ambient of \(70^{\circ} \mathrm{C}\). A maximum junction temperature of \(125^{\circ} \mathrm{C}\) for proper operation is recommended.

\section*{MC13014P}

FIGURE 3 - TEST CIRCUIT VERTICAL SECTION AND TYPICAL APPLICATION - SELF BOOST

FIGURE 4 - ALTERNATE VERTICAL APPLICATION FOR TWO SUPPLIES

\section*{MOTOROLA C-QUAM® AM STEREO DECODER}

This circuit is a complete one chip, full feature AM stereo decoding and pilot detection system. It employs full-wave envelope signal detection at all times for the \(L+R\) signal, and decodes \(L\)
- R signais oniy in the presence of valid stereo transmission.
- No Adjustments, No Coils
- Few Peripheral Components
- True Full Wave Envelope Detection for \(L+R\)
- PLL Detection For L-R
- 25 Hz Pilot Presence Required To Receive L-R
- Pilot Acquisition Time 300 ms For Strong Signals, Time Extended For Noise Conditions To Prevent "Falsing"
- Internal Level Detector Can Be Used As AGC Source

\section*{MOTOROLA C-QUAM® AM STEREO DECODER}

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX
PLASTIC PACKAGE
CASE 738-03

FIGURE 1 - TYPICAL APPLICATION

\footnotetext{
The purchase of the Motorola C-QUAM \({ }^{\oplus}\) AM Stereo Decoder does not carry with such purchase any license by implication, estoppel or otherwise, under any patent rights of Motorola or others covering any combination of this decoder with other elements including use in a radio receiver. Upon application by an interested party, licenses are available from Motorola on its patents applicable to AM Stereo radio receivers.
}

\section*{MC13020P}

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 14 & Vdc \\
\hline Pilot Lamp Current, Pin 15 & & 50 & mAdc \\
\hline Operating Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}(\max)}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Power Dissipation \\
Derate above \(25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{P}_{\mathrm{D}}\) & 1.25 & W \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=8.0 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C}\right.\), Input Signal \(=200 \mathrm{mVRMS}\) (Unmodulated Carrier, Circuit Of Figure 1 Unless Otherwise Noted.)
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Min & Typ & Max & Unit \\
\hline Power Supply Operating Range & - & 6.0 to 10 & - & Vdc \\
\hline Supply Line Current Drain, Pin 6 & 20 & 30 & 40 & mAdc \\
\hline Input Signal Level, Unmodulated, Pin 3, for Full Operation & 100 & 200 & 357 & mVRMS \\
\hline Audio Output Level, 50\% Modulation, L only or R only & 160 & 220 & 280 & mVRMS \\
\hline Audio Output Level, 50\% Modulation, Monaural & 80 & 110 & 140 & mVRMS \\
\hline Output THD, 50\% Modulation \(\begin{array}{r}\text { Monaural } \\ \text { Stereo }\end{array}\) & - & \[
\begin{aligned}
& 0.5 \\
& 1.0
\end{aligned}
\] & - & \% \\
\hline Channel Separation, L only or R only, 50\% Modulation & - & 30 & - & dB \\
\hline Pilot Acquisition Time, VCO locked, after release of forced monaural & - & 300 & - & ms \\
\hline Input Impedance \(\begin{array}{ll} \\ \mathrm{R}_{\text {in }} \\ \mathrm{C}_{\text {in }}\end{array}\) & \[
20
\] & \[
\begin{aligned}
& 27 \\
& 6.0
\end{aligned}
\] & - & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline Output Impedance & - & 100 & 150 & \(\Omega\) \\
\hline Level Detector Filter Voltage, Pin 4, \(\begin{array}{r}0 \text { signal } \\ 200 \mathrm{mVRMS} \text { Signal }\end{array}\) & \[
1.4
\] & \[
\begin{aligned}
& 1.7 \\
& 2.5 \\
& \hline
\end{aligned}
\] & 2.0 & Vdc \\
\hline Lock Detector Filter Voltage, Pin \(10 \times \begin{array}{r}\text { In Lock } \\ \text { Out of Lock }\end{array}\) & - & \[
\begin{aligned}
& 7.8 \\
& 0.8 \\
& \hline
\end{aligned}
\] & - & Vdc \\
\hline Force to Monaural, Pin 9, Pull Down for Monaural Mode & \[
2.0
\]
\[
-
\] & \[
\begin{gathered}
2.5 \\
0.15 \\
\hline
\end{gathered}
\] & \[
\overline{1.0}
\] & \begin{tabular}{l}
Vdc \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline Force to Monaural, Pin 9, Pull Up for Automatic Mode & - & \[
\begin{gathered}
3.5 \\
<0.001
\end{gathered}
\] & \[
\begin{aligned}
& 3.7 \\
& 1.0
\end{aligned}
\] & \begin{tabular}{l}
Vdc \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline
\end{tabular}

FIGURE 2 - BASIC QUADRATURE AM (QUAM)

FIGURE 3 - MOTOROLA C-QUAM \({ }^{\text {® }}\)

FIGURE 4 - BLOCK DIAGRAM
 defined for receiver front end with L.O. above signal frequency.

\section*{MOTOROLA C-QUAM \({ }^{\circledR}\) - COMPATIBLE QUADRATURE AM STEREO}

\section*{INTRODUCTION}

In C-QUAM \({ }^{\circledR}\), conventional quadrature amplitude modulation has been modified by multiplying each axis by \(\cos \theta\) as shown in Figures 2 and 3. The resulting carrier envelope is \(1+L+R\), i.e., a correct sum signal for monaural receivers and for stereo receivers operating in monaural mode. A 25 Hz pilot signal is added to the L-R information at a \(4 \%\) modulation level.

\section*{THE DECODER}

The MC13020P takes the output of the AM IF amplifier and performs the complete C-QUAM \({ }^{(1)}\) decoding function. In the absence of a good stereo signal, it produces an undegraded monaural output. Note in Figure 4 that the \(L+R\) information delivered to the output always comes from the envelope detector (Env DET).

The MC13020P decodes the stereo information by first converting the C-QUAM \({ }^{\circledR}\) signal to QUAM, and then detecting QUAM. The conversion is accomplished by comparing the output of the Env DET and the I DET in the Err AMP. This provides the \(1 / \cos \theta\) correction factor, which is then multiplied by the C-QUAM \({ }^{\text {® }}\) incoming signal in the Var Gain block. Thus, the output of the Var Gain block is a QUAM signal, which can then be syn-
chronously detected by conventional means. The I and \(Q\) detectors are held at \(0^{\circ}\) and \(90^{\circ}\) relative demodulation angles by reference signals from the phase-locked, divided-down VCO. The output of the I DET is \(1+L+R\), with the added benefit (over the Env DET) of being able to produce a negative output on strong co-channel or noise interference. This is used to tell the Lock circuit to go to monaural operation. The output of the Q DET is the \(L-R\) and pilot information.

\section*{THE VCO}

The VCO operates at 8 times the IF input frequency, which ensures that it is out-of-band, even when a 260 kHz IF frequency is used. Typically a 450 kHz IF frequency is used with synthesized front ends. This places the VCO at 3.6 MHz , which permits economic crystal and ceramic resonators. A crystal VCO is very stable, but cannot be pulled very far to follow front-end mistuning. Pull-in capability of \(\pm 100 \mathrm{~Hz}\) at 450 kHz is typical, and de-Q-ing with a resistor (see Figure 7) can increase the range only slightly. Therefore, the crystal approach can only be used with very accurate, stable front-ends. By comparison, ceramic and L-C VCO circuits offer pull-in range in the order of \(\pm 2.5 \mathrm{kHz}\) (at 450 kHz). Ceramic devices accurate enough to avoid trimming adjustment can be obtained with a matched capacitor for Cs (see Figures 1 and 5).

In the PLL filter circuit on Pin 19, C1 is the primary factor in setting a loop corner frequency of \(8-10 \mathrm{~Hz}\), inlock. An internally controlled fast pull-in is provided. R2 is selected to slightly overdamp the control loop, and C2 prevents high frequency instability.

The Level DET block senses carrier level and provides an optional tuner AGC source. It also operates on the Q AGC block to provide a constant amplitude of 25 Hz pilot at Pin 11, and it delivers information to the pilot decoder regarding signal strength.

\section*{PILOT AND CO-CHANNEL FILTERS}

The Q AGC output drives a low pass filter, made up of \(400 \Omega\) internal, and \(430 \Omega\) and \(5 \mu \mathrm{~F}\) external. From this point, an active 25 Hz band-pass filter is coupled to the Pilot Decoder, Pin 14, and another low-pass filter is connected to the Co-channel Input, Pin 12. A 2:1 reduction of 25 Hz pilot level to the Pilot Decode circuit will cause the system to go monaural, with the components shown. Refer to Figure 8 for the formulas governing the active band-pass filter. The co-channel input signal contains any low frequency intercarrier beat notes, and, at the selected level, prevents the Pilot Decode circuit from going into stereo. The co-channel input, Pin 12, gain can be adjusted by changing the external 1.5 k resistor. The values shown set the "trip" level at about \(7 \%\) modulation. The 25 Hz pilot signal at the output of the active filter is opposite in phase to the pilot signal coming from the second low-pass filter. The 56 k resistor from Pin 14 to Pin 12 causes the pilot to be cancelled at the co-channel input. This allows a more sensitive setting of the co-channel trip level.

\section*{THE PILOT DECODER}

The Pilot Decoder has two modes of operation. When signal conditions are good, the decoder will switch to stereo after 7 consecutive cycles of the 25 Hz pilot tone. When signal conditions are bad, the detected interference changes the pilot counter so as to require 37 consecutive cycles of pilot to go to stereo. In a frequency synthesized radio, the logic that mutes the audio when tuning can be connected to Pin 9. When this pin is held low it holds the decoder in monaural mode and switches it to the short count. This pin should be held low until the synthesizer and decoder have both locked onto a new station. A 300 ms delay should be sufficient. If the synthesizer logic does not provide sufficient delay, the circuit shown in Figure 9 may be added. Once Pin 9 goes high, the Pilot Decoder starts counting. If no pilot is detected for seven consecutive counts, it is assumed to be a good monaural station and the decoder is switched to the long count. This reduces the possibility of false stereo triggering due to signal level fluctuation or noise. If the PLL goes out of lock, or interference is detected by the co-channel protection circuit before seven cycles are counted, the decoder goes into the long count mode. Each disturbance will reset the counter to zero. The Level Detector will keep the decoder from going into stereo if the IF input level drops 10 dB , but will not change the operation of the pilot counter.

Once the decoder has gone into the stereo mode, it will go instantly back to monaural if either the lock detector on Pin 10 goes low, or if the carrier level drops
below the preset threshold. Seven consecutive counts of no pilot will also put the decoder in monaural. In stereo, the co-channel input is disabled, and co-channel or other noise is detected by negative excursions of the I DET, as mentioned earlier. When these excursions reach a level caused by approximately \(20 \%\) modulation of co-channel, the lock detector puts the system in monaural, even though the PLL may still actually be locked. This higher level of co-channel tolerance provides the hysteresis to prevent chattering in and out of stereo on a marginal signal.

When all inputs to the Pilot Decode block are correct, and it has completed its count, it turns on the Switch, sending the L-R to the Matrix, and switches the pilot lamp pin to a low impedance to ground.

\section*{SUMMARY}

It should be noted that in C-QUAM \({ }^{\circledR}\), with both channels AM modulated, the noise increase in stereo is a maximum of 3.0 dB , less on program material. Therefore, this is not the major concern in the choice of monaural to stereo switching point as it was in FM, and blend is not needed.

\section*{PIN DESCRIPTIONS}

Pin 1,2 - Detector Filters, \(\mathrm{R}_{\text {out }}=4.3 \mathrm{k}\), recommend \(0.0033 \mu \mathrm{~F}\) to \(\mathrm{V}_{\mathrm{CC}}\) to filter 450 kHz components.
Pin 3 - IF Signal Input
Pin 4 - Level Detector filter pin, \(\mathrm{R}_{\text {out }}=8.2 \mathrm{k}, 10 \mu \mathrm{~F}\) to ground sets the AGC time constant. High impedance output, needs buffer.
Pin 5 - Error Amp compensation to stabilize the Var Gain feedback loop
Pin \(6-\mathrm{V}_{\mathrm{CC}}, 6-10 \mathrm{Vdc}\), suitable for low \(\mathrm{V}_{\text {batt }}\) automotive operation, but must be protected from "high line" condition.
Pin 7, 8 - Left and Right Outputs, NPN emitter followers
Pin 9 - Forced Monaural, MOS or TTL controllable
Pin 10 - Lock detector filter, \(R_{\text {out }}=27 \mathrm{k}\), recommend \(2.2 \mu \mathrm{~F}\) to ground.
Pin 11 - AGC'd Q output, NPN emitter follower with \(400 \Omega\) from emitter to Pin 11
Pin 12 - Co-channel Input, 2.0 k series in and 47 k feedback
Pin 13 - Pilot Filter Input to op amp, see Figure 8
Pin 14 - Pilot Decode input (op amp output) emitter follower, \(\mathrm{R}_{\text {out }}=100 \Omega\)
Pin 15 - Stereo Lamp, open-collector of an NPN common emitter stage, can sink 50 mA , \(\mathrm{V}_{\text {sat }}=0.3 \mathrm{~V}\) at 5.0 mA
Pin 16 - Ground
Pin 17 - Oscillator input, \(\mathrm{R}_{\mathrm{in}}=10 \mathrm{k}\), do not dc connect to Pin 18 or ground
Pin 18 - Oscillator feedback, NPN emitter, Rout \(=\) \(100 \Omega\)
Pin 19 - Phase Detector Output, current source to filter
Pin 20 - Detector Filter, Rout \(=4.3 \mathrm{k}\), recommend \(0.0033 \mu \mathrm{~F}\) to \(\mathrm{V}_{\mathrm{CC}}\) to filter 450 kHz

FIGURE 7 - CRYSTAL VCO

FIGURE 9 - FORCED MONAURAL OPTIONAL DELAY CIRCUIT

FIGURE 6 - L-C VCO

FIGURE 8 - ACTIVE BAND-PASS FILTER

where, in this application:
\(\mathrm{f}_{\mathrm{O}}=\) center frequency \(=25 \mathrm{~Hz}\)
\(A_{0}=\) gain at \(f_{0} \leqslant 25\)
\(Q \leqslant 10\)
Choose values for \(f_{0}, A_{0}, Q\), and
convenient \(C\), solve for
resistors
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{C} \pm 5 \%\) & \(\mathrm{R}_{\mathrm{a}} \pm 5 \%\) & \(\mathrm{R}_{\mathrm{b}} \pm 1 \%\) & \(\mathrm{R}_{\mathrm{C}} \pm 1 \%\) \\
\hline \(0.47 \mu \mathrm{~F}\) & 4.7 k & 910 & 220 k \\
\hline \(0.33 \mu \mathrm{~F}\) & 8.2 k & 1.3 k & 330 k \\
\hline
\end{tabular}

Note: Capacitor C should be a good grade, low ESR.

\section*{Product Preview}

\section*{AM STEREO TUNING STABILIZER}

AM stereo systems are basically microphonic. They require a high degree of local oscillator stability in the receiver front end, particularly with respect to mechanical vibration in the audible range. Motion of physical components which affect oscillator frequency can generate significant audio output via the L-R or stereo information channel. To date, this has meant that most quality AM stereo implementations were done with PLL synthesized tuners. The MC13021 offers a low cost means of obtaining PLL stability in conventional mechanically tuned radios.
- Provides AFC for Tuning Accuracy and Ease
- Eliminates Microphonic Responses
- Provides Tuning Lock Indication
- Uses Existing Mechanical Tuning Elements

The MC13021 is appropriate at both ends of the cost spectrum, from low priced mechanical auto radios to high end component hi-fi receivers using non-varactor tuning. The oscillator drive comes out at two levels to accommodate inductively or capacitively tuned systems. It is designed to work with the MC13020 C-QUAM decoder and any discrete or IC AM front end, such as the MC13041 (ULN3841).

\section*{MOTOROLA C-QUAM \({ }^{\text {® }}\) AM STEREO TUNING STABILIZER}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT

This document contains information on a product under development. Motorola reserves the right to change or discortinue this product without notice.

\section*{AM STEREO TUNING STABILIZER}

In the Tuning Mode (Figure 1) the loop utilizes the existing tuner oscillator coil as a frequency discriminator to generate a dc voltage which is used to steer a voltage controlled oscillator (VCO). The VCO output is applied to the discriminator to close the loop, forcing the VCO to track the resonant frequency of the tuner oscillator coil.

The output of the VCO is used as the receiver local oscillator. In this mode the amount of the noise reduction is limited by the need to track the manual tuning control without producing a delay that is perceptible to the user, and it must be able to follow the rapid tuning changes which are incurred in a push-button tuner. A forced monaural output prevents the stereo decoder from going stereo in this mode.

Upon acquiring a usable carrier, the system switches from the Tuning Mode to the Tuned Mode. (See Figure 2.) In this mode the FLL steering voltage is derived from the error voltage line of the MC13020 AM stereo decoder PLL, forming what is effectively a classical automatic frequency control.

\section*{Product Preview}

\section*{ADVANCED, MEDIUM VOLTAGE AM STEREO DECODER}

The MC13022 is designed for home, portable, and automotive AM stereo radio applications. The circuits and functions included in the design allow implementation of a full-featured C-QUAM AM stereo radio with relatively few, inexpensive external parts. It is available in either 28 -lead DIP or EIAJ compatible wide-bodied 28 -lead SOIC.
- Operation from 4.0 V to 10 V Supply with Current Drain of 18 mA Typ
- IF Amplifier with Two Speed AGC
- Post Detection Filters with 10 kHz Notch that Allow User or Automatic Adjustable Audio Bandwidth Control
- Signal Quality Controlled Stereo Blend and Noise Reduction
- Noise and Co-Channel Discriminating Stop-On-Station
- Signal Strength Indicator Output for RF AGC and/or Meter Drive
- Signal Strength Controlled IF Bandwidth
- Noise Immune Pilot Detector Needs no Precision Filter Components

\section*{C-QUAM \({ }^{\circledR}\) \\ ADVANCED, MEDIUM VOLTAGE AM STEREO DECODER}

SILICON MONOLITHIC INTEGRATED CIRCUIT

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 12 & Vdc \\
\hline Pilot Lamp Current, Pin 21 & & 30 & mAdc \\
\hline Operating Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}(\text { max })}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Power Dissipation \\
Derate above \(25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{P}_{\mathrm{D}}\) & 1.25 & \begin{tabular}{c}
W \\
\(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Min & Typ & Max & Unit \\
\hline Power Supply Operating Range & - & 4.0 to 10 & - & Vdc \\
\hline Supply Line Current Drain, Pin 25 & - & 18 & - & mAdc \\
\hline Input Signal Level, Unmodulated, Pin 5, for Full Operation & - & 5.0 & - & mVrms \\
\hline Audio Output Level, 50\% Modulation, L only or R only & - & 120 & - & mVrms \\
\hline Audio Output Level, 50\% Modulation, Monaural & - & 60 & - & mVrms \\
\hline Output THD, 50\% Modulation & Monaural & - & 0.2 & - \\
\hline
\end{tabular}

FIGURE 2 - BLOCK DIAGRAM

FIGURE 3 - OVERALL SELECTIVITY OF A TYPICAL RECEIVER versus FILTER CONTROL VOLTAGE

FIGURE 4 - RF AGC/SIGNAL STRENGTH OUTPUT versus INPUT SIGNAL

\section*{EXPLANATION OF FEATURES}

\section*{BLEND AND NOISE REDUCTION}

Although AM stereo does not have the extreme difference in \(S / N\) between mono and stereo that FM does (typically less than 3.0 dB versus greater than 20 dB for FM), sudden switching between mono and stereo is quite apparent. Some forms of interference such as cochannel have a large \(L\) - \(R\) component that makes them more annoying than would ordinarily be expected for the measured level. The MC13022 measures the interference level and reduces \(L-R\) as interference increases, blending smoothly to mono. The pilot indicator remains on as long as a pilot signal is detected, even when interference is severe, to minimize annoying pilot light flickering.

\section*{RF AGC/METER DRIVE}

A dc voltage proportional to the log of signal strength is provided at Pin 6. This can be used for RF AGC, signal strength indication, and/or control of the post detection filter. Normal operation is above 2.2 V as shown in Figure 4.

\section*{STOP SENSE}

Multiplexed with the signal strength information is the stop sense signal. The stop sense is activated when scanning by externally pulling the blend capacitor on Pin 23 below 0.5 V . This would typically be done from the mute line in a frequency synthesizer.

If at any time Pin 23 is low and there is either no signal in the IF or a noisy signal of a predetermined interfer-
ence level, Pin 6 will go low. This low can be used to tell the frequency synthesizer to immediately scan to the next channel. The interference detection prevents stopping on many unlistenable stations, a feature particularly useful at night when many frequencies may have strong signals from multiple co-channel stations.

\section*{IF BANDWIDTH CONTROL}

IF AGC attenuates the signal by shunting the signal at the IF input. This widens the IF bandwidth by decreasing the loaded Q of the input coupling coil as signal strength increases.

\section*{POST DETECTION FILTERING}

With weak, noisy signals, high frequency rolloff greatly improves the sound. Conventional tone controls do not attenuate the highs sufficiently to control noise without also significantly affecting the mid-range. Also, notch filters are necessary with any wide-band AM radio to eliminate the 10 kHz whistle from adjacent stations.

By using a twin-T filter with variable feedback to the normally grounded center leg, a variable Q notch filter is formed that provides both the 10 kHz notch and variable high frequency rolloff functions. Typical range of response is shown in Figure 3. Response is controlled by the dc voltage on Pin 15.

Pin 15 could interface with a dc operated tone control such as the TDA1524, or could be tied to Pin 6 for automatic audio bandwidth control as a function of signal strength.

MC13023

\section*{Product Preview}

\section*{AM STEREO FRONT END AND TUNER STABILIZER}

The MC13023 is a companion part to the MC13022 C-QUAM AM STEREO DECODE.R. It provides the mixer, local oscillator, and IF amplifier to make a complete AM stereo tuner system. Also included is all circuitry needed to provide the tuning function for high performance manually tuned radios, and a wideband RF AGC circuit for very wide dynamic range systems. The wideband AGC can be disabled to save current in battery powered applications where it is not needed.
For Manual and Electronically Tuned Radios:
- Operation from 4.0 V to 10 V Supply
- Complete "Front End" for Home and Portable Radios
- Wideband AGC for External RF Amplifier in Automotive Type Radios
- Local Oscillator Unaffected by RF Signal Variations

For Manually Tuned Radios:
- Provides AFC for Tuning Ease and Accuracy
- Eliminates Microphonic Responses
- Provides Tuned Lock Indication
- Uses Existing Mechanical Tuning Elements
- Narrows Audio Bandwidth in MC13022 While Tuning to Reduce Interstation Noise

MOTOROLA C-QUAM \({ }^{\text {® }}\) AM RECEIVER FRONT END AND TUNER STABILIZER

\section*{SILICON MONOLITHIC INTEGRATED CIRCUIT}

FIGURE 1 - MANUALLY TUNED SYSTEM

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 12 & Vdc \\
\hline Pilot Lamp Current, Pin 9 & & 20 & mAdc \\
\hline Operating Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{TJ}^{\mathrm{O}}(\max)\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Power Dissipation \\
Derate above \(25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{PD}_{\mathrm{D}}\) & 1.25 & W \\
\hline
\end{tabular}

\section*{CIRCUIT DESCRIPTION}

\section*{MIXER}

The mixer is doubly balanced and has an extended dynamic range. The output is single ended and works into a resistive load, which gives a better impedance match to a ceramic IF filter than a tuned circuit and simplifies alignment.

\section*{IF AMPLIFIER}

The first IF amplifier is a wide dynamic range design that needs no AGC. All IF AGC is done in the MC13022 by a shunt attenuator preceding the second IF stage. The shunt attenuator has the additional benefit of providing a variable load on the IF coupling coil, which reduces the bandwidth at low signal amplitudes.

\section*{OSCILLATOR}

The single pin oscillator runs at four times the local oscillator mixer injection frequency. The VCLO is varactor tuned by the frequency synthesizer in electronically tuned applications and by internal varactor drive control in manually tuned applications. The frequency divider isolates the VCLO from any load changes caused by varying incoming RF signal strength. There is also a local oscillator buffered output for driving a frequency synthesizer in electronically tuned applications. This output drives a discriminator coil in manually tuned applications.

\section*{WIDEBAND AGC}

The wideband AGC is used to prevent receiver front end overload in very wide dynamic range applications such as automotive radios. The wideband AGC has an independent input and a current drive output to allow maximum flexibility of application. Grounding the input will turn off most of the circuit to save current in battery powered applications where the wideband AGC is not needed.

\section*{MANUAL TUNING, GENERAL DESCRIPTION}

The local oscillator, consisting of a VCLO and four times frequency divider, is varactor controlled. When stopped on a station, the varactor is controlled by the same loop filter voltage that controls the VCO in the

FIGURE 2 - PIN DESCRIPTION

(1) Manualiy Tuned Application only -- not used for ETR
(2) Manually Tuned Application only - disabled by 100 K Ohm to 3.0 V for ETR

MC13022. In this mode the local oscillator is completely immune from mechanical vibration of the tuning elements.

The mechanical input for manual tuning changes the center frequency of a wide-band discriminator. The reference frequency for the discriminator comes from the VCLO divider. When the discriminator has been tuned more than \(\pm 7.0 \mathrm{kHz}\) from the reference, a high current drive from the discriminator to the VCLO is switched on to rapidly retune the local oscillator frequency so as to follow the center of the discriminator. At the same time the MC13022 is forced into the mono mode, via connection to the MC13022 blend line, to prevent any audible effects from tuning.

When tuning is stopped and the MC13022 locks on the new station, the discriminator VCLO control current is switched off and the "tuned" indicator is turned on. The MC13022 VCO loop filter control voltage will then AFC the VCLO to put the IF frequency on center.

\section*{MANUAL TUNING, DESCRIPTION OF CONTROL SEQUENCE}

Assuming that the radio has been tuned to a stereo station, the MC13022 blend voltage would be at 3.6 V and the stop-sense voltage greater than 2.3 V . The MC13023 VCLO, see Figure 3, would have the varactor controlled through a buffer from the MC13022 VCO control. Q1 and Q2 are off and the "tuned" light is on, the latch being in the reset condition from the high on the stop-sense line. When the mechanical tuning control is moved to change to a new station the discriminator is tuned to a new frequency. The out-of-window detector immediately turns on Q1 to pull down the stop-sense/ meter drive line of the MC13022. Where this line is also used to provide automatic audio bandwidth control, the pull-down reduces the bandwidth to approximately 2.0 kHz , thereby minimizing the annoying interstation noise.

As the stop-sense goes below 0.4 V , the blend line of the MC13022 is pulled down by 02 , controlled by the signal through gates G1 and G2. Between 2.2 V and 1.5 V on the blend line, the MC13022 blends the audio from stereo to mono. Below 0.7 V the pilot detector is turned off.
When the blend line goes below 0.4 V , the latch is set through Gate 3, the "tuned" light is turned off, and the
control of the VCLO is switched to the discriminator.
In the MC13022 the low blend voltage activates the fast AGC on the 2nd IF amplifier, sets a latch that will allow fast acquisition of stereo when pilot is detected, and activates the stop-sense. With the blend held low the stop-sense will act as a lock detector, staying low until the MC13022 VCO locks.

With the discriminator in control, the VCLO will be pulled to center the local oscillator frequency in the discriminator. Once within the tuned window, the window detector will release the pull-down on the stopsense line. If the discriminator was not tuned on a station the MC13022 will not lock and will hold the stop-sense low, preventing any further action.
Assuming that the MC13022 does lock on to a station, the stop-sense will rise. At 1.5 V the latch will be reset, turning on the "tuned" light, releasing the pull-down on the blend line, and switching off the discriminator control of the VCLO.
The MC13022 decoder PLL will AFC the VCLO to put the IF frequency in the center of the IF as determined by the tuning of the VCO coil of the MC13022. The tuning control can now be adjusted within the \(\pm 7.0 \mathrm{kHz}\) tuned window to fine tune the RF selectivity.

FIGURE 4 - MANUALLY TUNED APPLICATION

\section*{ELECTRONICALLY TUNED RECEIVERS}

Figure 5 is a block diagram showing the MC13023 in an electronically tuned system. Except for the four times oscillator and divider, it is similar to most standard AM radio systems. The RF stage and wideband AGC would typically be used in automobile radios. A home type receiver with loop antenna would not normally require the RF stage.

\section*{TYPICAL ETR APPLICATION}

The performance of AM radios is limited primarily by overload problems such as desensitization, crossmodulation and intermodulation. Problems are caused by nonlinearities in the front end of the radio.

The most severe signal environment is seen by automotive radios as they pass through strong RF fields of nearby stations, and, for this reason, most applications use some form of front end AGC. A typical front end design is shown in Figure 6. This system uses a FET RF stage with AGC applied to a cascode transistor in series with the FET. The wideband AGC turns down the RF gain any time there is a strong signal present in a wide band of frequencies determined only by the selectivity of the first RF coil.

\section*{A HIGH PERFORMANCE ETR TUNER}

Improvement in overload performance requires multiple solutions, since when one element of the circuit is improved, another part of the circuit will overload a few dB higher.

In the MC13023, the mixer, which is normally the first element to overload and become nonlinear on nearby
signals, has been degenerated to give 8.0 to 10 dB improvement over a normal mixer. The mixer is protected by the total amount of RF selectivity for signals further out in frequency.

The next most vulnerable element is usually the tuning varactor on the first RF coil, followed by the wideband AGC elements and RF stage. Figure 7 shows a high performance front end circuit that is much better for overload than the circuit of Figure 6. The circuitry around the MC13022 remains the same.

A light dependent resistor (LDR) is used in front of the RF amplifier for attenuation. The LDR is much more linear and has a greater dynamic range than diodes or transistors that are sometimes used for RF AGC. The current through the LED, which in turn controls the resistance of the LDR, is varied by the wideband AGC. .

The first RF coil is tuned with two back-to-back varactors, as is typically done in FM receivers, to make the circuit more linear. The second RF coil varactor is sufficiently protected by the first coil so that two varactors are not needed.

With the above improvements, the wideband AGC input can be taken after the second RF coil. This will prevent strong signals distant in frequency from a weak desired station from causing unnecessary attenuation or drop-out of the desired station.

The performance with the above improvements is now limited by overload in the FET RF amplifier. Slight degeneration with unbypassed source resistance greatly improves the overload performance with only a slight reduction in sensitivity.

FIGURE 6 - ELECTRONICALLY TUNED APPLICATION
 outputs.
- Pilot Tone Detector

\section*{Product Preview}

\section*{LOW VOLTAGE MOTOROLA C-QUAM \({ }^{\circledR}\) AM STEREO RECEIVER}

The MC13024 is intended to serve the manually tuned portable and pocket radio mass market. This part includes all receiver and stereo decoding functions, from antenna to Left and Right audio
- Full Operation from 1.8 V to 8.0 Vdc Supply
- Low Power, Current Drain (typ) 5.0 mA
- Typical Distortion \(<1 \%\) at \(90 \% \mathrm{~L}+\mathrm{R}\) or \(50 \%\) Single Channel
- Typical Channel Separation \(>25 \mathrm{~dB}\)
- Combined Tuning and Stereo Indicator
- "Blend On" Stereo Mode and Lamp Drive
- High Accuracy, Fast Locking VCLO
- Controlled Return to Monaural Under Adverse Conditions
- Minimized "Tweets and Birdies"
- Minimized Tuning Transients

\section*{LOW VOLTAGE MOTOROLA C-QUAM \({ }^{\text {® }}\) AM STEREO RECEIVER}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT

This document contains information on a product under development. Motorola reserves the right
to change or discontinue this product without notice.

\section*{GENERAL DESCRIPTION}

The MC13024 is a complete C-QUAM \({ }^{\circledR}\) AM stereo receiver, from the antenna to low level audio. All that is needed make a complete AM stereo radio is the addition of the appropriate audio output amplifier. The MC13024 is intended for use in most types of manually tuned receivers: pocket portables, "boom boxes," table radios, etc. It will operate from 1.8 Vdc to 8.0 Vdc and requires typically 5.0 mA (not including LED). This broad supply voltage tolerance and low power consumption makes it ideal for portables using as few as 2 battery cells. The radios which can be built using this part can be quite low in cost, while still benefiting from a high degree of functional sophistication.

\section*{FEATURES}

The MC13024 contains a wide dynamic range mixer, IF, AGC, AFC, C-QUAM \({ }^{\circledR}\) decoder, stereo pilot tone detector, and a signal quality detector. The stereo decoding and pilot detection are similar to the wellestablished MC13020, except for reduced peripheral components, and the phase-locked loop used for the L-R detection now is looped around the entire receiver. In other words, the PLL controls the tuner local oscillator (VCLO) rather than a detector loop after the IF. The advantage of this, in manually tuned AM stereo, is significant, because it assures that the signal will always be properly centered in the IF bandpass, which is critical to good channel separation. This architecture also gives the radio an AFC tuning behavior which makes it easy to tune. The PLL has two "speeds," provided by current ratios of \(50: 1\), which give fast lock and low distortion, respectively.
A signal quality detector circuit monitors lock condition, excess in-phase modulation due to interference, pilot presence and amplitude, and the movement of the
tuning element by the user. A proper level of pilot must be present for several cycles before stereo mode will be enabled. When all conditions are correct, the transition from monaural to stereo is done gradually to prevent a transient "pop." Under aberrated conditions, the audio may either blend to mono or make an immediate change to mono, depending on the detected condition. The LED pin drives a dual purpose indicator: low current for PLL lock, and full current for stereo mode. Again, the switching is done "softly" to prevent transient loading of a weak battery.
The IF gain and the mixer RF gain are each reduced, in turn, as signal strength increases, to optimize \(\mathrm{S} / \mathrm{N}\) and prevent overload. The receiver is capable of 20 dB \(\mathrm{S} / \mathrm{N}\) at \(2.5 \mu \mathrm{~V} / 50\) ohm input. At weak signals, the reference oscillator and quadrature divider are shut off to minimize "tweets and birdies."

\section*{RADIO CONSTRUCTION}

Layout is not much more critical than any high performance AM receiver. Care must be taken to provide a good ground plane and short leads on signal paths. Take special care to keep the reference oscillator components close to Pin 22 and protected from coupling from the pilot bandpass output, Pin 24. Also take care with the ever present threat of RF radiation from the audio output back into the antenna. This can be controlled by proper component location and good (close) RF bypass on the amplifier \(V_{\mathrm{CC}}\) and good snubbers on the audio outputs. Keeping in mind that this is a phasedetecting receiver, it is important to mount coils securely and avoid movable wires in tuned circuits. A lot of individual preference will go into each implementation; the components shown here are only intended to provide a good working start.

\footnotetext{
The purchase of the Motorola C-QUAM AM Stereo Decoder does not carry with such purchase any license by implication, estoppel or otherwise, under any patent rights of Motorola or others covering any combination of this decoder with other elements including use in a radio receiver. Upon application by an interested party, licenses are available from Motorola on its patents applicable to AM Stereo radio receivers.
}

FIGURE 2 - APPLICATION CIRCUIT, MANUALLY TUNED HEADPHONE RADIO

\section*{Product Preview}

\section*{AM RECEIVER SUBSYSTEM}

This circuit is the core of an AM broadcast receiver. The MC13041 is ideal as the front end for AM stereo radios using electronic tuning. The scan detection system operates with both frequency and signal amplitude data for "no false" tuning.
- Electrically Equivalent to ULN3841
- Full AM Receiver Function Including: L.O., Balanced Mixer, IF Amp, AM Detector, Scan Control Detectors, and an Internal Switchable Voltage Regulator
- Companion Device to MC13020 C-QUAM \({ }^{\circledR}\) AM Stereo Decoder
- Wideband (RF) Delayed AGC
- Optional Narrowband FM Output
- Tailored to Interface with Synthesizers in Scanning E.T.R. Applications
- Stop Detection Independent of AGC Time Constant

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage Pin 6 & \(\mathrm{V}_{\mathrm{CC}}\) & 18 & Vdc \\
\hline Thermal Resistance, Junction to Ambient & \(\mathrm{R}_{\theta \mathrm{JA}}\) & 75 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

MC13041

\section*{AM RECEIVER SUBSYSTEM}

SILICON MONOLITHIC INTEGRATED CIRCUIT

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=14.4 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\), RF Input Frequency \(=1.0 \mathrm{MHz}, \mathrm{I}_{\mathrm{F}}=450 \mathrm{kHz}, \mathrm{FMOD}=1.0 \mathrm{kHz}\), Modulation \(=30 \%\), Test Circuit of Figure 2, unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Test Condition & Min & Typ & Max & Unit \\
\hline Operating Supply Voltage Range & \(\mathrm{V}_{\mathrm{CC}}\) & & - & 6.5-16.5 & - & Vdc \\
\hline Supply Current & ICC & No Input Signal & - & 25 & 33 & mAdc \\
\hline RF Sensitivity & \(R F_{\ln }\) to Pin 18 & Pin 5 Audio Out Equals 50 mV & - & 2.6 & 10 & \(\mu \mathrm{Vrms}\) \\
\hline Usable Sensitivity & \[
R F_{\ln } \text { to }
\]
\[
\text { Pin } 18
\] & \[
\text { At } \operatorname{Pin} 5 \frac{S+N}{N}=20 \mathrm{~dB}
\] & - & 5.6 & 10 & \(\mu \mathrm{Vrms}\) \\
\hline Recovered Audio & Audio Out at \(\operatorname{Pin} 5\) & 1.0 mV RF ln at \(\operatorname{Pin} 18\) & 173 & 240 & 346 & mVrms \\
\hline Total Harmonic Distortion & THD at Pin 5 & \[
1.0 \mathrm{mVRF} \text { in } 80 \%
\] modulation at Pin 5 & - & 0.5 & 3.0 & \% \\
\hline Oscillator Output & \(\mathrm{V}_{\text {OSC }}\) & RF Out at Pin 14 & - & 330 & - & mVrms \\
\hline Stop Voltage & \begin{tabular}{l}
\(V_{\text {STOP }}\) \\
Pin 11
\end{tabular} & No Input at Pin 18 & 4.3 & 5.2 & - & Vdc \\
\hline Stop Sensitivity & \(V_{\text {STP SEN }}\) Pin 18 RF & Pin 11 Equals 1.5 Vdc & 27 & 40 & 80 & \(\mu \mathrm{Vrms}\) \\
\hline Stop Bandwidth & \(V_{\text {STOP }}\) BW & \[
\begin{aligned}
& \text { Pin } 18=1.0 \mathrm{mVrms} \\
& \text { Pin } 11=1.5 \mathrm{Vdc}
\end{aligned}
\] & - & \(\pm 4.7\) & - & kHz \\
\hline \multirow[b]{2}{*}{RF AGC} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { V }_{\text {AGC }} \\
& \text { Pin } 12
\end{aligned}
\]} & RF Pin \(16=0 \mathrm{mVrms}\) & - & - & 0.15 & \multirow[b]{2}{*}{Vdc} \\
\hline & & RF Pin \(16=20 \mathrm{mVrms}\) & 0.8 & - & - & \\
\hline Overload & THD at Pin 5 Audio Out & \(\mathrm{RF}_{\text {In }}\) at \(\operatorname{Pin} 18=25 \mathrm{mVrms}\) Modulation \(=80 \%\) & - & 1.2 & - & \% \\
\hline AGC Figure of Merit & Pin 5 Audio Drop to 10 dB Below Ref & RF \(\ln\) at Pin 18 dB Below 30 mV & - & 75 & - & dB \\
\hline
\end{tabular}

NOTE: Pin 9 voltage regulator output for local oscillator only.

FIGURE 2 - TEST CIRCUIT

TAKEN IN TEST CIRCUIT OF FIGURE 2

FIGURE 5 - AM AFC

FIGURE 7 - FREQUENCY WINDOW

FIGURE 4 - RF INPUT AT AUDIO OUTPUT \(=\mathbf{5 0} \mathbf{~ m V r m s ~}\)

FIGURE 6 - STOP LEVEL

FIGURE 8 - FREQUENCY WINDOW

FIGURE 9 - MC13041 BLOCK DIAGRAM

\[
\begin{array}{lll}
\text { T1, T2 } & \text { RF } & \text { Toko RWOS6A7894AO } \\
\text { T3 } & \text { Osc } & \text { Toko 7TRS-T1078AO } \\
\text { T4 } & \text { Ant } & \text { Toko 7HN-60064CY } \\
\text { T5 } & \text { Det } & \text { Toko 7NRES-T1080AAG } \\
\text { T6 } & \text { Mix } & \text { Toko 7NRES-T1079EK } \\
\text { F1 } & \text { IF } & \text { muRata SFG450F - } 6.0 \mathrm{kHz} \\
& & \text { or SFG450E - 7.5 kHz } \\
& & \text { or SFG450D - 10 kHz } \\
\text { Res } & & \text { muRata CSA3.60MGF101 }
\end{array}
\]

FIGURE 11 - RECEIVER GAIN-REDUCTION VOLTAGES

FIGURE 12 - RECEIVER RECOVERED AUDIO

... a rugged and versatile power amplifier in a remarkable plastic power package.
- Supply Voltages from 6-35 Vdc
- 2.0 Watts Output (\(1170^{\circ} \mathrm{C}\) Ambient on PC Board with Good Copper Ground Plane
- Self Protecting Thermal Shutdown
- Easy to Apply, Few Components
- Gain Externally Determined
- Output is Independent of Supply Voltage Over a Wide Range

FIGURE 1 - TYPICAL APPLICATION
FIGURE 2 - THERMAL RESISTANCE AND MAXIMUM POWER DISSIPATION versus P.C. BOARD COPPER

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 35 & V \\
\hline Audio Input, Pin 5 & & 1.0 & \(\mathrm{~V}_{\text {p-p }}\) \\
\hline Thermal Resistance, Junction to Air & \(\mathrm{R}_{\theta J A}\) & 160 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance, Junction to Case & \(\mathrm{R}_{\theta J \mathrm{C}}\) & 25 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS - AUDIO SECTION \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), Circuit of Figure 3 unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Power Supply Current, No Signal & ICC & - & 13 & - & mAdc \\
\hline Gain & \(\mathrm{A}_{0}\) & - & 50 & - & V/V \\
\hline Distortion at 62.5 mW Output, 1.0 kHz & THD & - & 0.2 & 1.0 & \% \\
\hline Distortion at 900 mW Output, 1.0 kHz & THD & - & 0.5 & 3.0 & \% \\
\hline Quiescent Output Voltage, No Signal & \(V_{\text {Pin }} 1\) & - & 8.4 & - & Vdc \\
\hline Input Bias & \(\mathrm{V}_{\text {Pin } 5}, \mathrm{~V}_{\text {Pin } 8}\) & - & 0.7 & - & Vdc \\
\hline Input Resistance & \(\mathrm{R}_{\text {in }}, \operatorname{Pin} 5\) & - & 28 & - & \(\mathrm{k} \Omega\) \\
\hline Output Noise (\(50 \mathrm{~Hz}-15 \mathrm{kHz}\)) Input \(50 \Omega\) & \(\mathrm{V}_{\text {out }}\) & - & 0.5 & 4.0 & mVrms \\
\hline
\end{tabular}

FIGURE 3 - TEST CIRCUIT

\section*{DESCRIPTION}

The MC13060 is a quasi-complementary audio power amplifier, mounted in the SOP 8 (power SOIC package). It is well suited to a variety of 1.0 and 2.0 watt applications in radio, TV, intercoms, and other speaker driving tasks. It requires the usual external components for high frequency stability and for gain adjustment.
The output signal voltage and the power supply drain current are very linearly related, as shown in Figure 5. Both are quite constant over wide variation of the power supply voltage (above min \(\mathrm{V}_{\mathrm{C}}\) for clipping, of course).

The amplifier can best be described as a voltage source with about \(1.0 A_{p-p}\) capability. On a good heat sink, it can deliver over 2.0 watts at \(70^{\circ} \mathrm{C}\) ambient.

The MC13060 will automatically go into shut-down at a die temperature of about \(150^{\circ} \mathrm{C}\), effectively protecting itself, even on fairly stiff power supplies. This eliminates the need for decoupling the power supply, which degrades performance and requires extra components. Input Pins 5 and 8 are internally biased at 0.7 Vdc and should not be driven below ground.

ALL CURVES TAKEN IN THE TEST CIRCUIT OF FIGURE 3 UNLESS OTHERWISE NOTED

FIGURE 4 - QUIESCENT SUPPLY CURRENT AND OUTPUT VOLTAGE versus SUPPLY VOLTAGE

FIGURE 6 - DISTORTION AND GAIN versus FREQUENCY

FIGURE 5 - SUPPLY CURRENT versus OUTPUT

FIGURE 7 - DISTORTION versus POWER OUTPUT

FIGURE 8 - DISSIPATION versus OUTPUT POWER - \(32 \Omega\) LOAD

FIGURE 9 - DISSIPATION versus OUTPUT POWER - \(16 \Omega\) LOAD

FIGURE 10 - INTERNAL SCHEMATIC

\section*{Specifications and Applications Information}

\section*{LOW POWER AUDIO AMPLIFIER}

The MC34113 is a low power audio amplifier integrated circuit intended (primarily) for telephone applications, such as in speakerphones. It provides differential speaker outputs to maximize output swing at low supply voltages (2.0 volts minimum). Coupling capacitors to the speaker are not required. Open loop gain is 80 dB , and the closed loop gain is set with two external resistors. A Chip Disable pin permits powering down and/or muting the input signal. The MC34119 is available in a standard 8 -pin DIP or a surface mount package.
- Wide Operating Supply Voltage Range (2-16 volts) - Allows Telephone Line Powered Applications
- Low Quiescent Supply Current (2.7 mA Typical) for Battery Powered Applications
- Chip Disable Input to Power Down the IC
- Low Power-Down Quiescent Current (\(65 \mu \mathrm{~A}\) Typical)
- Drives a Wide Range of Speaker Loads (8 Ohms and Up)
- Output Power Exceeds 250 mW with 32 Ohm Speaker
- Low Total Harmonic Distortion (0.5\% Typical)
- Gain Adjustable from \(<0 \mathrm{~dB}\) to \(>46 \mathrm{~dB}\) for Voice Band
- Requires Few External Components

LOW POWER AUDIO AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX
PLASTIC PACKAGE CASE 626-05

D SUFFIX
PLASTIC PACKAGE
CASE 751-02 SO-8

PIN CONNECTIONS

\section*{MC34119}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Value & Units \\
\hline Supply Voltage & -1.0 to +18 & Vdc \\
\hline Maximum Output Current at VO1, VO2 & \(\pm 250\) & mA \\
\hline Maximum Voltage \((a\) Vin, FC1, FC2, CD & \(-1.0, \mathrm{~V}_{\mathrm{CC}}+1.0\) & Vdc \\
\hline Applied Output Voltage to VO1, VO2 when disabled & \(-1.0, \mathrm{~V}_{\mathrm{CC}}+1.0\) & Vdc \\
\hline Junction Temperature & \(-55,+140\) & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Devices should not be operated at these values. The "Recommended Operating Limits" provide for actual device operation.
RECOMMENDED OPERATING LIMITS
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Symbol & Min & Typ & Max & Units \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +2.0 & - & +16 & Vdc \\
\hline Load Impedance & \(\mathrm{R}_{\mathrm{L}}\) & 8.0 & - & 100 & \(\Omega\) \\
\hline Peak Load Current & \(\mathrm{I}_{\mathrm{L}}\) & - & - & \(\pm 200\) & mA \\
\hline Differential Gain (5.0 kHz bandwidth) & AVD & 0 & - & 46 & dB \\
\hline Voltage (il CD (Pin 1) & VCD & 0 & - & \(\mathrm{V}_{\mathrm{CC}}\) & Vdc \\
\hline Ambient Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -20 & - & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Units \\
\hline \multicolumn{6}{|l|}{AMPLIFIERS (AC CHARACTERISTICS)} \\
\hline AC Input Resistance (\(\left(a, \mathrm{~V}_{\text {in }}\right.\)) & \(\mathrm{r}_{\mathrm{i}}\) & - & \(>30\) & - & \(\mathrm{M} \Omega\) \\
\hline Open Loop Gain (Amplifier \#1, \(\mathrm{f}<100 \mathrm{~Hz}\)) & Avoli & 80 & - & - & dB \\
\hline Closed Loop Gain (Amplifier \#2)
\[
\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=32 \Omega\right)
\] & AV2 & \(-0.35\) & 0 & +0.35 & dB \\
\hline Gain Bandwidth Product & GBW & - & 1.5 & - & MHz \\
\hline & \begin{tabular}{l}
\(P_{\text {out3 }}\) \\
Pout6 \\
Pout12
\end{tabular} & \[
\begin{gathered}
55 \\
250 \\
400
\end{gathered}
\] & - & - & mW \\
\hline \[
\begin{aligned}
& \text { Total Harmonic Distortion }(f=1.0 \mathrm{kHz}) \\
& \left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{P}_{\text {out }}=125 \mathrm{~mW}\right) \\
& \left(\mathrm{V}_{\mathrm{C}} \geqslant 3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.0 \Omega, \mathrm{P}_{\text {out }}=20 \mathrm{~mW}\right) \\
& \left(\mathrm{V}_{\mathrm{CC}} \geqslant 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{P}_{\text {out }}=200 \mathrm{~mW}\right)
\end{aligned}
\] & THD & - & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.6
\end{aligned}
\] & \[
1.0
\] & \% \\
\hline Power Supply Rejection (\(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}\))
\[
\begin{aligned}
& (\mathrm{C} 1=\infty, \mathrm{C} 2=0.01 \mu \mathrm{~F}) \\
& (\mathrm{C} 1=0.1 \mu \mathrm{~F}, \mathrm{C} 2=0, \mathrm{f}=1.0 \mathrm{kHz}) \\
& (\mathrm{C} 1=1.0 \mu \mathrm{~F}, \mathrm{C} 2=5.0 \mu \mathrm{~F}, \mathrm{f}=1.0 \mathrm{kHz})
\end{aligned}
\] & PSRR & \[
50
\] & \[
12
\]
\[
52
\] & - & dB \\
\hline Muting (\(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, 1.0 \mathrm{kHz} \leqslant \mathrm{f} \leqslant 20 \mathrm{kHz}, \mathrm{CD}=2.0 \mathrm{~V}\)) & GMT & - & \(>70\) & - & dB \\
\hline
\end{tabular}

\section*{AMPLIFIERS (DC CHARACTERISTICS)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Output DC Level @ VO1, VO2, } \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=16 \Omega \\
& \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\
&\left.\mathrm{R}_{\mathrm{f}}=75 \mathrm{k}\right) \mathrm{V}_{\mathrm{CC}} \\
&=12 \mathrm{~V} \\
& \hline
\end{aligned}
\] & VO(3) VO(6) VO(12) & \[
1.0
\] & \[
\begin{aligned}
& 1.15 \\
& 2.65 \\
& 5.65 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
1.25 \\
- \\
-
\end{gathered}
\] & Vdc \\
\hline Output High Level (\(\mathrm{l}_{\text {out }}=-75 \mathrm{~mA}, 2.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 16 \mathrm{~V}\)) & \(\mathrm{V}_{\mathrm{OH}}\) & - & \(\mathrm{V}_{\text {CC }}-1.0\) & - & Vdc \\
\hline Output Low Level (\(\mathrm{l}_{\text {out }}=75 \mathrm{~mA}, 2.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 16 \mathrm{~V}\)) & \(\mathrm{V}_{\mathrm{OL}}\) & - & 0.16 & - & Vdc \\
\hline Output DC Offset Voltage (VO1-VO2)
\[
\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=75 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=32 \Omega\right)
\] & \(\Delta \mathrm{V}_{\mathrm{O}}\) & -30 & 0 & \(+30\) & mV \\
\hline Input Bias Current \(@ \mathrm{~V}_{\text {in }}\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}\right)\) & I/B & - & -100 & -200 & \(n \mathrm{~A}\) \\
\hline Equivalent Resistance @ FC1 (\(\left.\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}\right)\) & \(\mathrm{R}_{\mathrm{FC} 1}\) & 100 & 150 & 220 & k \(\Omega\) \\
\hline Equivalent Resistance @ FC2 (VCC \(=6.0 \mathrm{~V}\)) & RFC2 & 18 & 25 & 40 & k \(\Omega\) \\
\hline
\end{tabular}

CHIP DISABLE (Pin 1)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Input Voltage - Low & \(\mathrm{V}_{\mathrm{IL}}\) & - & - & 0.8 & Vdc \\
\hline Input Voltage - High & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & - & - & Vdc \\
\hline Input Resistance \(\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CD}}=16 \mathrm{~V}\right)\) & \(\mathrm{R}_{\mathrm{CD}}\) & 50 & 90 & 175 & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}

\section*{POWER SUPPLY}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Power Supply Current & & & \\
\(\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{CD}=0.8 \mathrm{~V}\right)\) & \(\mathrm{ICC3}\) & - & 2.7 & 4.0 & mA \\
\(\left(\mathrm{~V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{CD}=0.8 \mathrm{~V}\right)\) & ICC16 & - & 3.3 & 5.0 \\
\(\left(\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{CD}=2.0 \mathrm{~V}\right)\) & ICCD & - & 65 & 100 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

Note: Currents into a pin are positive, currents out of a pin are negative.

\section*{PIN DESCRIPTION}
\begin{tabular}{|c|c|c|}
\hline Symbol & Pin & Description \\
\hline CD & 1 & Chip Disable - Digital input. A Logic " 0 " (\(<0.8 \mathrm{~V}\)) sets normal operation. A Logic " 1 " (\(\geqslant 2.0 \mathrm{~V}\)) sets the power down mode. Input impedance is nominally \(90 \mathrm{k} \Omega\). \\
\hline FC2 & 2 & A capacitor at this pin increases power supply rejection, and affects turn-on time. This pin can be left open if the capacitor at FC1 is sufficient. \\
\hline FC1 & 3 & Analog Ground for the amplifiers. A \(1.0 \mu \mathrm{~F}\) capacitor at this pin (with a \(5.0 \mu \mathrm{~F}\) capacitor at Pin 2) provides (typically) 52 dB of power supply rejection. Turn-on time of the circuit is affected by the capacitor on this pin. This pin can be used as an alternate input. \\
\hline \(V_{\text {in }}\) & 4 & Amplifier input. The input capacitor and resistor set low frequency rolloff and input impedance. The feedback resistor is connected to this pin and VO1. \\
\hline V01 & 5 & Amplifier Output \#1. The dc level is \(\approx\left(\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}\right) / 2\). \\
\hline \(\mathrm{V}_{\text {CC }}\) & 6 & DC supply voltage (+2.0 to +16 volts) is applied to this pin. \\
\hline GND & 7 & Ground pin for the entire circuit. \\
\hline VO2 & 8 & Amplifier Output \#2. This signal is equal in amplitude, but \(180^{\circ}\) out of phase with that at VO1. The dc level is \(\approx\left(\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}\right) / 2\). \\
\hline
\end{tabular}

TYPICAL TEMPERATURE PERFORMANCE \(\left(-20^{\circ}<T_{A}<+70^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & Typical Change & Units \\
\hline Input Bias Current \(\left(\left(a V_{\text {in }}\right)\right.\) & \(\pm 40\) & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Total Harmonic Distortion & +0.003 & \(\% /{ }^{\circ} \mathrm{C}\) \\
\(\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{P}_{\text {out }}=125 \mathrm{~mW}, \mathrm{f}=1.0 \mathrm{kHz}\right)\) & & \\
\hline Power Supply Current & & \(\mu \mathrm{A} /{ }^{\circ} \mathrm{C}\) \\
\(\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=x, \mathrm{CD}=0 \mathrm{~V}\right)\) & -2.5 & \\
\(\left(\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=x, \mathrm{CD}=2.0 \mathrm{~V}\right)\) & -0.03 & \\
\hline
\end{tabular}

\section*{DESIGN GUIDELINES}

\section*{GENERAL}

The MC34119 is a low power audio amplifier capable of low voltage operation (\(\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}\) minimum) such as that encountered in line-powered speakerphones. The circuit provides a differential output (VO1-VO2) to the speaker to maximize the available voltage swing at low voltages. The differential gain is set by two external resistors. Pins FC1 and FC2 allow controlling the amount of power supply and noise rejection, as well as providing alternate inputs to the amplifiers. The CD pin permits powering down the IC for muting purposes and to conserve power.

\section*{AMPLIFIERS}

Referring to the block diagram, the internal configuration consists of two identical operational amplifiers. Amplifier \#1 has an open loop gain of \(\geqslant 80 \mathrm{~dB}\) (at \(f \leqslant 100 \mathrm{~Hz}\)), and the closed loop gain is set by external resistors \(R_{f}\) and \(R_{j}\). The amplifier is unity gain stable, and has a unity gain frequency of approximately 1.5 MHz . In order to adequately cover the telephone voice band (\(300-3400 \mathrm{~Hz}\)), a maximum closed loop gain of 46 dB is recommended. Amplifier \#2 is internaliy set to a gain of \(-1.0(0 \mathrm{~dB})\).

The outputs of both amplifiers are capable of sourcing and sinking a peak current of 200 mA . The outputs can typically swing to within \(\approx 0.4\) volts above ground, and to within \(\approx 1.3\) volts below \(V_{C C}\), at the maximum current. See Figures 18 and 19 for \(V_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}}\) curves.

The output dc offset voltage (VO1-VO2) is primarily a function of the feedback resistor (\(\mathrm{R}_{\mathrm{f}}\)), and secondarily due to the amplifiers' input offset voltages. The input offset voltage of the two amplifiers will generally be
similar for a particular IC, and therefore nearly cancel each other at the outputs. Amplifier \#1's bias current, however, flows out of \(\mathrm{V}_{\text {in }}(\operatorname{Pin} 4)\) and through \(\mathrm{R}_{\mathrm{f}}\), forcing VO1 to shift negative by an amount equal to [\(\mathrm{R}_{\mathrm{f}} \times\left.\right|_{\mid \mathrm{B}}\)]. VO2 is shifted positive an equal amount. The output offset voltage specified in the Electrical Characteristics is measured with the feedback resistor shown in the Typical Application Circuit, and therefore takes into account the bias current as well as internal offset voltages of the amplifiers. The bias current is constant with respect to \(\mathrm{V}_{\mathrm{CC}}\).

\section*{FC1 and FC2}

Power supply rejection is provided by the capacitors (C1 and C2 in the Typical Application Circuit) at FC1 and FC2. C2 is somewhat dominant at low frequencies, while C1 is dominant at high frequencies, as shown in the graphs of Figures 4-7. The required values of C1 and C2 depend on the conditions of each application. A line powered speakerphone, for example, will require more filtering than a circuit powered by a well regulated power supply. The amount of rejection is a function of the capacitors, and the equivalent impedance looking into FC1 and FC2 (listed in the Electrical Characteristics as \(\mathrm{R}_{\mathrm{FC} 1}\) and \(\mathrm{R}_{\mathrm{FC} 2}\)).
In addition to providing filtering, C1 and C2 also affect the turn-on time of the circuit at power-up, since the two capacitors must charge up through the internal 50 k and \(125 \mathrm{k} \Omega\) resistors. The graph of Figure 1 indicates the turn-on time upon application of \(\mathrm{V}_{\mathrm{CC}}\) of +6.0 volts. The turn-on time is \(\approx 60 \%\) longer for \(V_{C C}\) \(=3.0\) volts, and \(\approx 20 \%\) less for \(V_{C C}=9.0\) volts. Turnoff time is \(<10 \mu \mathrm{~s}\) upon removal of \(\mathrm{V}_{\mathrm{CC}}\).

FIGURE 1 - TURN-ON TIME versus C1, C2 AT POWER-ON

\section*{CHIP DISABLE}

The Chip Disable (Pin 1) can be used to power down the IC to conserve power, or for muting, or both. When at a Logic " 0 " (0 to 0.8 volts), the MC34119 is enabled for normal operation. When Pin 1 is at a Logic " 1 " (2.0 to \(V_{C C}\) volts), the IC is disabled. If Pin 1 is open, that is equivalent to a Logic " 0 ," although good design practice dictates that an input should never be left open. Input impedance at Pin 1 is a nominal \(90 \mathrm{k} \Omega\). The power supply current (when disabled) is shown in Figure 15.
Muting, defined as the change in differential gain from normal operation to muted operation, is in excess of 70 dB . The turn-off time of the audio output, from the application of the CD signal, is \(<2.0 \mu \mathrm{~s}\), and turn on-time is \(12-15 \mathrm{~ms}\). Both times are independent of C 1 , C 2 , and \(\mathrm{V}_{\mathrm{CC}}\).

When the MC34119 is disabled, the voltages at FC1 and FC2 do not change as they are powered from \(\mathrm{V}_{\mathrm{CC}}\). The outputs, VO1 and VO2, change to a high impedance condition, removing the signal from the speaker. If signals from other sources are to be applied to the outputs (while disabled), they must be within the range of \(V_{C C}\) and Ground.

\section*{POWER DISSIPATION}

Figures 8-10 indicate the device dissipation (within the IC) for various combinations of \(\mathrm{V}_{\mathrm{C}}, \mathrm{R}_{\mathrm{L}}\), and load
power. The maximum power which can safely be dissipated within the MC34119 is found from the following equation:
\(P_{D}=\left(140^{\circ} \mathrm{C}-T_{A}\right)^{\prime} / J_{A}\)
where \(T_{A}\) is the ambient temperature;
and \(\theta_{\mathrm{JA}}\) is the package thermal resistance \(\left(100^{\circ} \mathrm{C} W\right.\) for the standard DIP package, and \(180^{\circ} \mathrm{C} / \mathrm{W}\) for the surface mount package.)

The power dissipated within the MC34119, in a given application, is found from the following equation:
\(P_{D}=\left(V_{C C} \times I_{C C}\right)+\left(I_{R M S} \times V_{C C}\right)-\left(R_{L} \times I_{R M S}{ }^{2}\right)\)
where \(\mathrm{I}_{\mathrm{CC}}\) is obtained from Figure 15;
and IRMS is the RMS current at the load; and \(R_{L}\) is the load resistance.

Figures 8-10, along with Figures 11-13 (distortion curves), and a peak working load current of \(\pm 200 \mathrm{~mA}\), define the operating range for the MC34119. The operating range is further defined in terms of allowable load power in Figure 14 for loads of \(8.0 \Omega, 16 \Omega\), and \(32 \Omega\). The left (ascending) portion of each of the three curves is defined by the power level at which \(10 \%\) distortion occurs. The center flat portion of each curve is defined by the maximum output current capability of the MC34119. The right (descending) portion of each curve is defined by the maximum internal power dissipation of the IC at \(25^{\circ} \mathrm{C}\). At higher ambient temperatures, the maximum load power must be reduced according to the above equations. Operating the device beyond the current and junction temperature limits will degrade long term reliability.

\section*{LAYOUT CONSIDERATIONS}

Normally a snubber is not needed at the output of the MC34119, unlike many other audio amplifiers. However, the PC board layout, stray capacitances, and the manner in which the speaker wires are configured, may dictate otherwise. Generally the speaker wires should be twisted tightly, and be not more than a few inches in length.

\section*{TYPICAL CHARACTERISTICS}

FIGURE 2 - AMPLIFIER \#1 OPEN LOOP GAIN AND PHASE

FIGURE 3 - DIFFERENTIAL GAIN versus FREQUENCY

\section*{POWER SUPPLY REJECTION versus FREQUENCY}

FIGURE \(6-\mathrm{C} 2=1.0 \mu \mathrm{~F}\)

FIGURE \(7-\mathbf{C 2}=0\)

FIGURE 10 - DEVICE DISSIPATION \(32 \Omega\) LOAD

FIGURE 12 - DISTORTION versus POWER \(f=3.0 \mathrm{kHz}, \mathrm{AVD}=34 \mathrm{~dB}\)

FIGURE 9 - DEVICE DISSIPATION \(16 \Omega\) LOAD

FIGURE 11 - DISTORTION versus POWER \(f=1.0 \mathrm{kHz}, \mathrm{AVD}=34 \mathrm{~dB}\)

FIGURE 13 - DISTORTION versus POWER
\[
f=1,3.0 \mathrm{kHz}, \mathrm{AVD}=12 \mathrm{~dB}
\]

\section*{MC34119}

FIGURE 16 - SMALL SIGNAL RESPONSE

FIGURE 18 - \(\mathbf{V C C}^{-} \mathbf{V}_{\mathbf{O H}} @\) VO1, VO2 versus LOAD CURRENT

FIGURE 15 - POWER SUPPLY CURRENT

FIGURE 17 - LARGE SIGNAL RESPONSE

FIGURE 19 - VOL@ VO1, VO2 versus LOAD CURRENT

FIGURE 20 - INPUT CHARACTERISTICS @ CD (PIN 1)

FIGURE 22 - AUDIO AMPLIFIER WITH BASS SUPPRESSION

FIGURE 24 - AUDIO AMPLIFIER WITH BANDPASS

FIGURE 21 - AUDIO AMPLIFIER WITH HIGH INPUT IMPEDANCE

FIGURE 23 - FREQUENCY RESPONSE OF FIGURE 22

FIGURE 26 - SPLIT SUPPLY OPERATION

\section*{Product Preview}

\section*{SYSTEM 4 \\ HIGH PERFORMANCE COLOR TV IF}

The MC44301 is a single channel TV IF and PLL detector system for all standard transmission systems. This device enables the designer to produce a high quality IF system with white spot inversion, AFT and AGC. The MC44301 was designed with an emphasis on linearity to minimize sound/picture intermodulation.
- Single Coil Adjustment for AFT and PLL
- VCO at \(1 / 2\) IF for Minimum Beats
- Simple Circuitry for Low System Cost
- White Spot Inversion
- Symmetrical \(\pm 2.0 \mathrm{MHz}\) Pull-In
- Detects Positive or Negative Modulation
- Auxiliary AM Detector for AM Sound
- Simple Alignment Procedure

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

\section*{MC44301}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Units \\
\hline Power Supply Voltage - Pin 22 & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Gating Pulse Amplitude & \(\mathrm{V}_{13}\) & \(\pm 500\) & mApk \\
\hline Operating Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & TJ Max & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l|c|}
\hline Power Dissipation \\
Derate above \(25^{\circ} \mathrm{C}\) & \(\mathrm{PD}_{\mathrm{C}}\) \\
1.25 & W \\
\hline
\end{tabular} \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pins & Min & Typ & Max & Units \\
\hline Operating Supply Voltage Range & 22 & 4.5 & - & 5.5 & Vdc \\
\hline Supply Current & 22 & - & 50 & - & mÁdc \\
\hline Differential Input Sensitivity for Full Output & 6, 7 & - & 20 & - & \(\mu \mathrm{V}_{\mathrm{rms}}\) \\
\hline Bandwidth & - & - & 120 & - & MHz \\
\hline AGC Range & - & - & 80 & - & dB \\
\hline Noise Figure & - & - & 7.0 & - & dB \\
\hline Lock-Up Time & - & - & 5.0 & - & ms \\
\hline Video Amplitude (100\% mod depth) & 2,3 & - & 2.4 & - & VPP \\
\hline Tuner AGC Current & 10 & 5.0 & - & - & mAdc \\
\hline Differential Gain Distortion & 2 & - & - & 5.0 & \% \\
\hline Differential Phase Distortion & 2 & - & - & 2.0 & degrees \\
\hline Video Bandwidth & 2, 3 & - & 8.0 & - & MHz \\
\hline Sound Subcarrier Output (-20 dB to PIX) & 24 & - & 0.1 & - & \(\mathrm{V}_{\text {rms }}\) \\
\hline AGC Gate Pulse (R pin \(13 \approx 5.0 \mathrm{k}\)) & 13 & - & \(\pm 0.3\) & - & mApk \\
\hline Differential Input Impedance \(\begin{aligned} & \mathrm{R}_{\text {in }} \\ & \mathrm{C}_{\text {in }}\end{aligned}\) & 6,7 & - & \[
\begin{aligned}
& 3.4 \\
& 3.0 \\
& \hline
\end{aligned}
\] & — & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline
\end{tabular}

FIGURE 2 - TEST CIRCUIT

\section*{CIRCUIT DESCRIPTION}

\section*{Design Aims}

The MC44301 performs the functions of IF amplification, AGC, AFT and demodulation of a TV IF signal for both positive and negative modulation systems. In this respect it is similar to other circuits already on the market. However, in the means of obtaining these functions the MC44301 is very different compared to traditional designs. A unique approach was needed for several reasons. Tuned circuits associated with the IF amplifier output had to be eliminated to enable the part to be easy to use with the minimum of adjustments and external components. With this approach a high degree of IF stability could be obtained with a reduction in cost. Secondly, new techniques were required to improve performance in certain critical areas (differential phase and gain, etc.). This was especially so in view of the removal of the above mentioned tuned circuits. The basic idea therefore, was to produce an advanced, high performance multistandard IF system which would be economical and easy to use. Such a device can successfully compete with the already established IF amplifiers now available.

\section*{System Description}

Despite the extra complications compared to pseudo synchronous demodulation, true synchronous demodulation seemed to be the only way in which enhanced performance could be achieved. The basic system is shown in Figure 1 in block diagram form. The IF amplifier is a four stage, AC coupled design having a sensitivity of about \(20 \mu \mathrm{~V}\). With a low loss SAW filter and 3.0 to 6.0 dB extra gain in the tuner, there is no need for a SAW preamp. The TV set signal to noise performance is acceptable, while the net savings in cost is considerable. The AGC is a conventional gated system with the usual RF AGC output and RF AGC adjustment. Three stages of the amplifier are gain controlled to give an extended AGC range of 80 dB with improved intermodulation, signal handling, and differential phase and gain performance. The AGC reference is switched when positive modulation is selected, via the mode switch, to ensure the video level remains constant. Under these circumstances the AGC must be gated by a pulse which will sample the back porch, as opposed to negative modulation where flyback can be used. In both cases a positive or negative-going pulse may be used. To ensure that the improvements in performance mentioned above were not lost elsewhere, great care was taken in the design of the video demodulator and video amplifiers. An example of this care is the placing of the phase shift required by the video demodulator on the signal side instead of on the oscillator side of the demodulator as is common practice. The \(90^{\circ}\) phase shift is produced by replacing the usual emitter resistors by capacitors in the differential amplifier (Figure 3) feeding the video demodulator. The output currents are \(90^{\circ}\) with respect to the input voltage over a wide band of frequencies and the small phase errors caused by the tran-
sistor small signal emitter resistances (re) are corrected by the cross-coupled resistors. This arrangement leads to a simpler design, the ability to adjust the demodulation angle, and lower distortion than is normal at the IF amplifier/demodulator interface. The dynamic emitter resistances, which can give rise to distortion, are now in quadrature with the capacitive reactance and, therefore, contribute very little to the resultant output.

FIGURE 3 - \(90^{\circ}\) PHASE SHIFT AMPLIFIER

Following the IF amplifier and preceding the PLL phase detector is a two stage limiter with a gain of 100 and overall dc feedback. This contrasts with the usual single stage of limiting with no dc feedback and a tuned circuit with diodes at it's output. With two stages of limiting, the minimum gain required to remove signal amplitude modulation can be designed-in without the large voltage swings of a single stage with the same gain. Large voltage swings lead to poor differential phase and gain performance, hence the need for a tuned circuit and diodes as used in previous designs. The dc feedback removes the effects of input offsets which are another source of differential phase and gain problems. The combination of low swing per stage and dc feedback removes the need for having a tuned circuit at the output of the limiter and reduces the danger of IF instability and radiation. The only problem in using this technique is the potential for extra static phase shift and resultant errors in the demodulating angles at the video and sound demodulators. However, by putting a similar two stage limiter, with matching phase shift, on the oscillator side of the phase detector, the demodulating angles can be restored to the correct phases \(\left(0,90^{\circ}\right)\). Having processed the signal in this way, the VCO is then phase locked at \(90^{\circ}\) to the noniimited signal. The only unusual feature of the loop just described is that the VCO runs at half frequency, and is frequency doubled on-chip. This means radiation from the external frequency determining components will be at "half IF" and so will not desensitize the system even if picked up by the amplifier input leads (this could cause what is known as PLL push-off). Running the oscillator at twice IF frequency and dividing down, which is another way of
solving this problem has several disadvantages. First and foremost, radiation into the antenna at twice IF produces channel 6 and channel 8 problems in the USA. Secondly, it is easier to produce a stable VCO at half IF.

After attaining phase lock, demodulation of the video is achieved by multiplying the signal (nonlimited) with the regenerated vision carrier (VCO) in a double balanced multiplier, the phase relationship between the two waveforms being zero degrees. Both positive and negative sync video outputs are produced.

FIGURE 4 - PIN 2 VIDEO OUTPUT WITH WHITE SPOT INVERSION

FIGURE 5 - PIN 3 VIDEO OUTPUT FOR DRIVE TO A SYNC SEPARATOR

The negative sync output is intended to be used as the actual video and is acted upon by the white spot noise inverter. This effectively removes the "whiter than white" noise produced by a true synchronous demodulator and prevents the CRT from being over driven and defocused. The positive sync video output is not acted on by a white spot noise inverter and of course the noise output from a synchronous detector does not contain a dc component. Hence, this drive should be used as the sync separator drive because a simple preseparator low pass noise filter will produce optimum sync performance. Note the sense of the video signals at the outputs remain the same whether positive or negative modulation is being received. Positive or negative modulation is selected externally by the mode switch pin. The sound intercarrier is recovered by
another demodulator similar to the video, except that the phase relationship between the signal and the VCO is \(90^{\circ}\) instead of \(0^{\circ}\). A consequence of this phase relationship is that video interference of the intercarrier signal at the detector output is minimized by suppression of the lower frequency video components. Should the sound carrier contain amplitude information, as in the French TV system or as in some scrambled cable signals, this information can be recovered by feeding the sound intercarrier output back into the circuit through a bandpass filter if so desired, to the amplitude detector provided on chip.

The AFT portion of the circuit is the most unconventional in form. Essentially, AFT is derived by amplifying the error signai diving the VCO after phase Iock, and applying this to the local oscillator in the tuner, thus eliminating a coil and a potential IF instability problem. After acquisition, and when the circuit has settled down, due to the much higher gain in the LO loop, the VCO will have moved a small amount (\(\Delta \mathrm{fv}\)) from it's nominal frequency, and almost all the original error frequency (\(\Delta \mathrm{fe}\)) between LO and VCO will have been corrected by the change in LO frequency (\(\Delta \mathrm{fl}\)). In this way, provided the PLL can be initially locked to the incoming IF signal, the VCO can be used as the frequency reference for the AFT system. It follows from the above therefore, because the system is phase locked, that \(\Delta \mathrm{fe}=(\Delta \mathrm{f})+\) \(\Delta f v)\). The combination of the local VCO loop and the loop produced by feedback to the LO forms a double loop PLL. Analysis shows that overall system stability can be assured by treating the VCO loop as a stand alone PLL, provided its bandwidth is much wider than the LO loop. The VCO loop therefore is a low gain wideband loop which guarantees initial capture, while the LO loop is basically a high gain dc loop used to keep frequency and phase offsets to a minimum. Large phase offsets can also be caused by dc offsets in the phase detector and AFT amplifier. These are removed by the use of commutation on both the phase and AFT outputs. This eliminates the need for external phase adjustment, while at the same time minimizing distortion by maintaining the correct phase angles at the demodulators.

The AFT system has been designed to acquire the vision carrier, without false locking to the sound or adjacent sound carriers, with an initial LO frequency error of \(\pm 2.0 \mathrm{MHz}\), reducing this initial error to 3.0 to 10 kHz when locked. This contrasts to the discriminator type of AFT's which have highly asymmetric lock characteristics \(\{-2.0 \mathrm{MHz}+1.0 \mathrm{MHz}\rangle\), because of the effects of the IF filter, and large frequency errors caused by limited loop gain. To achieve this level of performance without encountering the normal AFT problems associated with high loop gain, a novel approach has been taken to locking up to the PLL. In the absence of an IF signal, the acquisition circuitry examines the state of the video (I) and sound (Q) demodulators and detects the lack of a signal. It then clamps the LO drive to a reference dc level and applies a -2.0 MHz offset to the VCO. This is done so that the nominal IF (should a signal appear), and the VCO, are sitting in the center of the IF filter passband. Therefore, even if the LO drifts high by +2.0

MHz , the signal will not be significantly attenuated by the filter. When the acquisition circuit detects the appearance of a signal, beat notes are produced at the output of the demodulators, a sweep generator is switched on, and immediately sweeps the VCO an additional -2.0 MHz from it's out of lock nominal frequency.

During this negative sweep, the PLL phase detector is switched off so phase lock cannot be obtained. The VCO is then swept positive from -2.0 MHz to +2.0 MHz of nominal with the phase detector switched on. The PLL will therefore lock to the first carrier it encounters. This in fact must be the vision carrier because the sound carrier is more negative than -2.0 MHz from nominal and the adjacent sound carrier is higher than the vision carrier. On achieving phase lock, the AFT clamp is released, the VCO offset is slowly removed, the sweep is inhibited and the phase detector remains enabled. With the AFT clamp removed, a large error voltage appears at the AFT output, driving the system back towards the correct frequency. Since the LO loop is slow and the VCO is fast, the IF changes slowly and the VCO tracks it, maintaining phase lock until the final static conditions are reached. For large frequency errors during this period the slew rate of the LO loop is increased,
but not to the extent where it would cause any VCO tracking problems. This technique allows the acquisition time of the circuit to be considerably shortened while still using a larger than normal time constant in the LO loop. To accommodate all types of tuners and LO's, positive or negative LO drive can be selected externally by operation of the AFT switch. The AFT switch also has a third position which disconnects the drive to the tuner. Under this condition the TV set can be tuned in the normal manner and so appears to have a conventional type of AFT. Other PLL AFT systems cannot be manually tuned in this way having an abrupt capture characteristic when tuned, and because of this, have not gained general acceptance in industry.

\section*{ALIGNMENT}

The alignment is very simple and inexpensive compared to other IF amplifier circuits, especially those using a PLL. With a CW input signal of correct picture carrier frequency, the LO side of the 22 k resistor in series with the loop is connected to a dc supply. The dc supply (approximately 2.5 V) is adjusted until the output of the tuner is 45.75 MHz . The VCO coil is adjusted until lock is obtained and the voltage across the 22 k resistor

FIGURE 6 - THE AFT SYSTEM IN ACTION

is zero. The dc supply is then removed.
A digital AFT up/down output having a \(\pm 30 \mathrm{kHz}\) dead zone is also provided by the circuit. Again, as in the case of the analog output, the digital output polarity can be controlled externally by the AFT switch.

\section*{Note:}

Most pins on the IC have electrostatic protection diodes to V \(C C\) and ground. It is therefore imperative that no pin is taken below ground or above \(\mathrm{V}_{\mathrm{CC}}\) by more than one diode drop without current limiting.

FIGURE 7 - ALIGNMENT CONFIGURATION

\section*{Product Preview}

\section*{PLL TUNING CIRCUIT WITH 1.3 GHz PRESCALER}

The MC44802 is a tuning circuit for TV applications. It contains on one chip all the functions required for PLL control of a VCO. This integrated circuit also contains a high frequency prescaler (which can be bypassed by software control) and thus can handle frequencies up to 1.3 GHz .

The MC44802 is manufactured on a single silicon chip using Motorola's high density bipolar process, MOSAIC (Motorola Oxide Self Aligned Implanted Circuits).
- Complete Single Chip System for MPU Control (IIC Bus)
- Selectable Divide-by-8 Prescaler Accepts Frequencies \(>1.0 \mathrm{GHz}\)
- 15-Bit Programmable Divider Accepts Input Frequencies \(>125 \mathrm{MHz}\)
- Programmable Reference Divider
- Tri-State Phase/Frequency Comparator
- Op Amp for Direct Tuning Voltage Output (33 V)
- Seven High Current Output Buffers (10 mA)
- Output Options for 62.5 kHz , Reference Frequency and the Programmable Divider
- Software Compatible with MC44810

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.
MAXIMUM RATINGS (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Ratings } & Pin & Value & Unit \\
\hline Power Supply Voltage \(\mathrm{V}_{\mathrm{CC} 1}\) & 3 & 6.0 & V \\
\hline Band Buffer "OFF" Voltage & 7 to 13 & 15 & V \\
\hline Band Buffer "ON" Current & 7 to 13 & 15 & mA \\
\hline Op Amp Power Supply Voltage \(\mathrm{V}_{\mathrm{CC} 2}\) & 2 & 36 & V \\
\hline Op Amp Short Circuit Duration (0 to \(\left.\mathrm{V}_{\mathrm{CC} 2}\right)\) & 1 & Continuous & V \\
\hline Storage Temperature & © & & -65 to +150 \\
\hline Operating Temperature Range & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}} 1=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=32 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin & Min & Typ & Max & Unit \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) S Supply Voltage Range & 3 & 4.5 & 5.0 & 5.5 & V \\
\hline \(\mathrm{V}_{\text {CC1 }}\) Supply Current (\(\mathrm{V}_{\text {CC1 }}=5.0 \mathrm{~V}\)) (Note 1) & 3 & - & 60 & 90 & mA \\
\hline \(\mathrm{V}_{\mathrm{CC} 2}\) Supply Voltage Range & 2 & 25 & 30 & 35 & V \\
\hline \(\mathrm{V}_{\text {CC2 }}\) Supply Current (Output Open) & 2 & - & 0.8 & 2.0 & mA \\
\hline Band Buffer Leakage Current When "OFF" at 12 V & 7 to 13 & - & 0.01 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Band Buffer Saturation Voltage When "ON" at 10 mA & 7 to 13 & - & 0.6 & 1.0 & V \\
\hline Data/Clock Current at 0 V & 14, 15 & -10 & - & 0 & \(\mu \mathrm{A}\) \\
\hline Clock Current at 5.0 V & 14 & 0 & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline Data Current at 5.0 V Acknowledge "OFF" & 15 & 0 & 一 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Data Saturation Voltage at 15 mA Acknowledge "ON" & 15 & - & - & 1.0 & V \\
\hline Data/Clock Input Voltage Low & 14, 15 & - & - & 1.5 & V \\
\hline Data/Clock Input Voltage High & 14, 15 & 3.0 & - & - & V \\
\hline Clock Frequency Range & 14 & 0 & - & 100 & kHz \\
\hline Phase Detector Tri-State Current & 17 & -15 & 0 & 15 & nA \\
\hline Phase Detector High-State Source Current (\((1.5 \mathrm{~V}\)) & 17 & -3.0 & -2.2 & -1.5 & mA \\
\hline Phase Detector Low-State Sink Current (@3.5 V) & 17 & 2.0 & 3.0 & 4.0 & mA \\
\hline Op Amp Internal Reference Voltage & - & 2.0 & - & 3.0 & \(\checkmark\) \\
\hline Op Amp Input Current & 18 & -15 & 0 & 15 & \(n A\) \\
\hline DC Open Loop Gain & - & 5000 & - & - & \\
\hline Gain Bandwidth Product (\(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\)) & - & 0.3 & - & - & MHz \\
\hline Phase Margin (\(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\)) & - & 50 & - & - & Deg. \\
\hline \(V_{\text {out }}\) Low, Sinking \(50 \mu \mathrm{~A}\) & 1 & - & 0.1 & 0.3 & V \\
\hline \(\mathrm{V}_{\text {out }}\) High, Sourcing \(50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{C} C 2}\) & 1 & -4.0 & -3.0 & - & V \\
\hline
\end{tabular}

HF CHARACTERISTICS (See Figure 1)
\begin{tabular}{|l|c|c|c|c|}
\hline HF In/Ref DC Bias & 4,5 & - & 1.6 & - \\
\hline HF Voltage Range Prescaler "OFF" \(10-150 \mathrm{MHz}\) & 5 & 20 & - & 1500 \\
\hline HF Voltage Range Prescaler "ON" \(50-950 \mathrm{MHz}\) & 5 & 30 & - & 1500 \\
\hline HF Voltage Range Prescaier "ON" \(950-1300 \mathrm{MHz}\) & 5 & 5 rms \\
\hline
\end{tabular} NOTE
1. When prescaler "OfF," typical supply current is decreased by 20 mA .

FIGURE 1 - HF SENSITIVITY TEST CIRCUIT

FIGURE 2 - PIN 5 INPUT IMPEDANCE (TYP)

PIN FUNCTION DESCRIPTION (See Figure 3)
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Pin } & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Description } \\
\hline 1 & Out & Operational amplifier output which provides the tuning voltage \\
\hline 2 & \(\mathrm{~V}_{\mathrm{CC} 2}\) & Operational amplifier positive supply \\
\hline 3 & \(\mathrm{~V}_{\mathrm{CC} 1}\) & Positive supply of the circuit (except op amp) \\
\hline 4 & \begin{tabular}{l}
\(\mathrm{HF}_{\text {in }}\) or HF ref \\
\(\mathrm{HF}_{\text {in }}\) or HF \\
ref
\end{tabular} & Either of the inputs may be used as reference \\
\hline 5 & Gnd & Ground \\
\hline 6 & B0, B1,.......B7 & Band buffer output can drive up to 10 mA \\
\hline \(7,8,9,10,11,12,13\) & SCL & Clock Input (supplied by the microprocessor via IIC bus) \\
\hline 14 & SDA & Data Input \\
\hline 15 & XTAL & Crystal Input (4.0 MHz) \\
\hline 16 & PHD & Phase Comparator Output \\
\hline 17 & In & Negative Operational Amplifier Input \\
\hline 18 & & \\
\hline
\end{tabular}

FIGURE 3 - PIN CIRCUIT SCHEMATIC

\section*{MC44802}

FUNCTIONAL DESCRIPTION
A representative block diagram and a typical system application are shown in Figures 4 and 5. A discussion
of the features and function of each of the internal blocks is given below.

FIGURE 5 - TYPICAL TUNER APPLICATION

\section*{DATA FORMAT AND BUS RECEIVER}

The circuit receives the information for tuning and control via a two-wire bus (Motorola Bus, IIC compatible). The incoming information consisting of a chip address byte followed by two or four data bytes, is treated in the IIC bus receiver. The definition of the permissible bus protocol is shown below:
\begin{tabular}{llllll}
1_STA & CA & CO & BA & STO & \\
2_STA & CA & FM & FL & STO & \\
3_STA & CA & CO & BA & FM & FL \\
STO \\
4__STA & CA & FM & FL & CO & BA \\
STO \\
STA \(=\) Start Condition & & & \\
STO \(=\) Stop Condition \\
CA \(=\) Chip Address Byte \\
CO \(=\) Data Byte for Control Information \\
FM \(=\) Data Byte for Frequency Information (MSB' S) \\
FL \(=\) Data Byte for Frequency Information (LSB' S) \\
BA \(=\) Band Information
\end{tabular}

Frequency information is preceeded by a Logic " 0. ." If the function bit is Logic " 1 " the two following bytes contain control and band information where the bits have the following functions
- Bit R0 and R1

Define the reference divider division ratio.
Four ratios are available (see Table 1).
- Bit R2 and R3

Are used to switch internal signals to the buffer outputs. Pin 10 and 11 (see Table 2).
- Bit R2, R6 and T

Are used to control the phase comparator output stage (see Table 3).
- Bit P

Switches the prescaler in and out. At Logic " 1 " the prescaler is bypassed and the power supply of the prescaler is switched off.

Figure 6 shows the five bytes of information that are needed for circuit operation: there is the chip address, two bytes of control and band information and two bytes of frequency information.

After the chip address, two or four data bytes may be received: if three data bytes are received the third data byte is ignored.

If five or more data bytes are received the fifth and following data bytes are ingored and the last acknowledge pulse is sent at the end of the fourth data byte.

The first and the third data bytes contain a function bit which allow the IC to distinguish between frequency information and control plus band information.

FIGURE 6 - DEFINITION OF BYTES

TABLE 1
\begin{tabular}{|cc|c|}
\hline \multicolumn{2}{|c|}{ Input Data } & Reference Divider \\
\hline R1 & R0 & Division Ratio \\
\hline 0 & 0 & 2048 \\
\hline 0 & 1 & 1024 \\
\hline 1 & 0 & 512 \\
\hline 1 & 1 & 256 \\
\hline
\end{tabular}

TABLE 2
\begin{tabular}{|cc|cc|}
\hline \multicolumn{2}{|c|}{ Input Data } & \multicolumn{2}{c|}{ Test Outputs on Buffers } \\
\hline R2 & R3 & Pin 10 & Pin 11 \\
\hline 0 & 0 & - & - \\
\hline 0 & \(i\) & 62.5 kHz & - \\
\hline 1 & 0 & Fref & FBY2 \\
\hline 1 & 1 & - & - \\
\hline
\end{tabular}

Bit B4 has to be "zero" when Pin 10 is used to output 62.5 kHz .

Bit 4 and B5 have to "zero" to output Fref and FBY2. FBY2 is the programmable divider output frequency divided by two.

TABLE 3
\begin{tabular}{|ccc|c|}
\hline \multicolumn{3}{|c|}{ Input Data } & Output State of the Phase Comparator \\
\cline { 1 - 2 } \(\mathbf{R 2}\) & R6 & \(\mathbf{T}\) & \\
\cline { 1 - 2 } 0 & 0 & 0 & Normal Operation \\
0 & 0 & 1 & Off (High Impedance) \\
0 & 1 & 0 & High \\
0 & 1 & 1 & Low \\
1 & 0 & 0 & Normal Operation \\
1 & 0 & 1 & Off \\
1 & 1 & 0 & Normal Operation \\
1 & 1 & 1 & Off \\
\hline
\end{tabular}

\section*{THE BAND BUFFERS}
BA_Band Information \begin{tabular}{|llllllllll}
B7 & B6 & B5 & B4 & \(X\) & \(B 2\) & \(B 1\) & \(B 0\) & ACK \\
\hline
\end{tabular}

The band buffers are open collector transistors and are active "low" at \(\mathrm{Bn}=1\). They are designed for 10 mA with a typical on-resistance of 70 ohms. These buffers are designed to withstand relative high output voltage in the off-state.

B4 and B5 buffers (Pins 10 and 11) may also be used to output internal IC signals (reference frequency and programmable divider output frequency divided by 2) for tests purposes.

Buffer B4 may also be used to output a 62.5 kHz frequency for an intermediate stage of the reference divider. The bit B4 and/or B5 have to be zero if the buffers are used for these additional functions.

\section*{THE PROGRAMMABLE DIVIDER}

The programmable divider is a presettable down counter. When it has counted to zero it takes its required division ratio out of the latches \(B\). Latches \(B\) are loaded from latches A by means of signal TDI which is synchronous to the programmable divider output signal.

Since latches A receive the data asynchronously with the programmable divider, this double latch scheme is needed to assure correct data transfer to the counter.

The division ratio definition is given by:
\(N=16384 \times N 14+8132 \times N 13+\ldots . .+4 \times N 2+2 \times N 1+N 0\)
Max Ratio 32767
Min Ratio 17
Where N0.......N14 are the different bits for frequency information.

The counter may be used for any ratio between 17 and 32767 and reloads correctly as long as its output frequency does not exceed 1.0 MHz .

The data transfer between latches \(A\) and \(B\) (signal TDI) is also initiated by any start condition on the IIC bus.
At power-on the whole bus receiver is reset and the
programmable divider is set to a counting ratio of \(N=\) 256 or higher.

\section*{THE PRESCALER}

The prescaler has a preamplifier which guarantees high input sensitivity. The prescaler may be by-passed (Bit P) and the signal then passes through preamp 2.

\section*{THE PHASE COMPARATOR}

The phase comparator is phase and frequency sensitive and has very low output leakage current in the high impedance state.

\section*{THE OPERATIONAL AMPLIFIER}

The operational amplifier is designed for very low noise, low input bias current and high power supply rejection. The positive input is biased internally. The op amp needs 31 V supply (\(\mathrm{V}_{\mathrm{CC} 2}\)) as minimum voltage for a guaranteed maximum tuning voltage of 28 V .

Figure 1 shows a possible filter arrangement. The component values depend very much on the application (tuner characteristic, reference frequency, etc.);

As a starting point for optimization, the components values in Figure 1 may be used for 7.8125 kHz reference frequency in a multiband TV tuner.

\section*{THE OSCILLATOR}

The oscillator uses a 4.0 MHz crystal tied to ground or \(\mathrm{V}_{\mathrm{CC} 1}\) through a capacitor, used in the series resonance mode.

The voltage at Pin 16, "crystal," has low amplitude and low harmonic distortion.

\section*{SYSTEM APPLICATION}

Table 4 is a summary of the circuit applications using a 4.0 MHz crystal.

TABLE 4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Input Data}} & \multirow[b]{2}{*}{Ref. Divider Div. Ratio} & \multirow[b]{2}{*}{Reference Frequency Hz (1)} & \multicolumn{2}{|l|}{With Int. Prescaler
\[
P=0
\]} & \multicolumn{2}{|l|}{Without Prescaler
\[
P=1
\]} \\
\hline & & & & Frequency Steps kHz & Max. Input Frequency MHz & Frequency Steps kHz & Max. Input Frequency MHz \\
\hline 0 & 0 & 2048 & 1953.125 & 15.625 & 512 & 1.953125 & 64 \\
\hline 0 & 1 & 1024 & 3906.25 & 31.25 & 1024 & 3.90625 & 128 \\
\hline 1 & 0 & 512 & 7812.5 & 62.5 & 1300(2) & 7.8125 & 165(3) \\
\hline 1 & 1 & 256 & 15625.0 & 125 & 1300(2) & 15.625 & 165(3) \\
\hline \multicolumn{3}{|r|}{(1) With 4.0 MHz Crystal} & \multicolumn{2}{|l|}{(2) Limit of Prescaler} & \multicolumn{3}{|l|}{(3) Limit of Programmable Divider} \\
\hline
\end{tabular}

\section*{TBA120C}

FM IF AMPLIFIER, LIMITER AND DETECTOR

An integrated circuit specifically designed for use in the sound section of TV receivers and the FM/IF portion of radio receivers.
The TBA120C is pin for pin and function compatible with the proelectron type TBA120S but includes an improved dc volume control, which makes "grouping" or selection unnecessary.
- Excellent 3.0 dB Limiting
- High A.M. Rejection
- Wide Supply Voltage Range
- Auxiliary Zener Diode and Transistor
- Minimum Number of External Components Required

\section*{FM IF AMPLIFIER, LIMITER, FM DETECTOR AND AUDIO PREAMPLIFIER}

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE

MAXIMUM RATINGS \(\left(\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Value & Unit \\
\hline Power Supply Voltage & +18 & Vdc \\
\hline Power Dissipation (Package Limitation) & & \\
Plastic Package & 625 & mW \\
Derate above \(\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}\) & 5.0 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}=20 \mathrm{k}\), Test circuit: Figure 1)
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Min & Typ & Max & Unit \\
\hline Supply Voltage Range & 6.0 & - & 18 & Volts \\
\hline Supply Current & 10 & 14 & 18 & mA \\
\hline Audio Output \(\left(\mathrm{f}_{\mathrm{O}}=5.5 \mathrm{MHz}, \Delta \mathrm{f}=50 \mathrm{kHz}, \mathrm{Q}=45\right)\) & - & 1.0 & - & Volts RMS \\
\hline Audio Output \(\left(\mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \Delta \mathrm{f}=75 \mathrm{kHz}, \mathrm{Q}=35\right)\) & - & 0.38 & - & Volts RMS \\
\hline 3.0 dB Limiting \(\left(\mathrm{f}_{\mathrm{O}}=5.5 \mathrm{MHz}, \Delta \mathrm{f}=50 \mathrm{kHz}, \mathrm{Q}=45\right)\) & - & 30 & 60 & \(\mu \mathrm{VRMS}\) \\
\hline 3.0 dB Limiting \(\left(\mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \Delta \mathrm{f}=75 \mathrm{kHz}, \mathrm{Q}=35\right)\) & - & 40 & - & \(\mu \mathrm{VRMS}\) \\
\hline A.M. Rejection \(\left(\mathrm{f}_{\mathrm{O}}=5.5 \mathrm{MHz}, \mathrm{RF}\right.\) Input: \(\left.500 \mu \mathrm{~V}\right)\) & 45 & - & - & dB \\
\hline A.M. Rejection \(\left(\mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \mathrm{RF}\right.\) Input: \(\left.500 \mu \mathrm{~V}\right)\) & 40 & - & - & dB \\
\hline Volume Control Range & 65 & 75 & - & dB \\
\hline Output Impedance & - & 2.6 & - & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS OF AUXILIARY Z DIODE AND TRANSISTOR \(045\left(T_{A}=+25^{\circ}\right)\)
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Min & Typ & Max & Unit \\
\hline Z-Voltage @ \(5.0 \mathrm{~mA}(\) Pin 12) & 11.2 & - & 13.2 & Volts \\
\hline Z-Resistance (Pin 12) @ 1.0 kHz, 5.0 mA & - & 15 & - & \(\Omega\) \\
\hline O45 Breakdown Voltage \(\mathrm{V}_{\text {CEO }}\) & 13 & - & - & Volts \\
\hline Q45 Current Gain @ IC \(=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}\) & 40 & 100 & - & - \\
\hline
\end{tabular}

FIGURE 1 - TEST CIRCUIT

FIGURE 2 - AUDIO OUTPUT AND \(\mathbf{S} / \mathrm{N}\) versus INPUT SIGNAL LEVEL AT 5.5 AND 6.0 MHz

FIGURE 4 - A.M. REJECTION versus INPUT SIGNAL LEVEL AT 5.5 AND 6.0 MHz
(30\% A.M., 50 kHz F.M.)

COMPONENT VALUES:
\begin{tabular}{rccc}
& L & \(\mathrm{C}_{1}\) & Q \\
5.5 MHz & \(0.55 \mu \mathrm{H}\) & 1.5 nF & 45 \\
6.0 MHz & \(0.55 \mu \mathrm{H}\) & 1.2 nF & 45 \\
10.7 MHz & \(2.2 \mu \mathrm{H}\) & 100 pF & 35
\end{tabular}
\(\mathrm{C} 2=0.022 \mu \mathrm{~F}\), together with the integrated resistor of \(2.6 \mathrm{k} \Omega\) (Pin 8) gives the deemphasis and can be reduced if required. For stereo 470 pF should be used to provide H.F. decoupling.

FIGURE 3 - AUDIO OUTPUT AND \(\mathrm{S} / \mathrm{N}\) versus INPUT SIGNAL LEVEL AT 10.7 MHz

FIGURE 5 - A.M. REJECTION versus INPUT SIGNAL LEVEL AT \(10.7 \mathbf{M H z}\)
(30\% A.M., 75 kHz FM)

FIGURE 8 - OUTPUT SIGNAL ATTENUATION versus VOLUME CONTROL RESISTANCE

FIGURE 10 - AUDIO PREAMPLIFIER TEST CIRCUIT

FIGURE 7 - T.H.D. + NOISE versus ATTENUATION (D.C. VOLUME CONTROL)

FIGURE 9 - OUTPUT SIGNAL ATTENUATION versus D.C. VOLTAGE AT PIN 5

FIGURE 11 - T.H.D. versus OUTPUT VOLTAGE FOR AUDIO PREAMPLIFIER SHOWN IN FIGURE 10

FIGURE 12 - TYPICAL APPLICATION FOR 5.5 MHz WITH L-C INPUT FILTER

FIGURE 13 - TYPICAL APPLICATION FOR 5.5 MHz WITH CERAMIC INPUT FILTER

FIGURE 14 - TYPICAL APPLICATION FOR 10.7 MHz WITH CERAMIC FILTER

\section*{Advance Information}

\section*{FM STEREO DEMODULATOR \\ DESIGNED FOR USE IN HI-FI STEREO RECEIVERS AND CAR RADIOS}

FM STEREO DEMODULATOR

\section*{SILICON MONOLITHIC INTEGRATED CIRCUIT}
- Wide Suppiy Range: 8 - 16 Vdc
- Excellent Channel Separation Maintained Over Entire Audio Frequency Range (Fixed or Adjustable)
- Variable Blend Control
- Low Distortion: 0.3\% THD at \(2.5 \mathrm{Vp}-\mathrm{p}\) Composite Input Signal
- Excellent Rejection of ARI Subcarrier (57 kHz)
- Excellent Rejection of Pilot Tone Harmonics including 114 kHz
- Wide Dynamic Range: 0.5 - 2.5 Vp -p Composite Input Signal
- Up to 6 dB Gain (Monaural)
- Low Output Impedance
- Transient-free Mono/Stereo Switching
- 50 dB Supply Ripple Rejection
- Integrated Stereo/Monaural Switch - 100 mA Lamp Driving Capability
- Requires No Inductors

FIGURE 1 - TYPICAL APPLICATION AND TEST CIRCUIT

\section*{PIN FUNCTIONS}

1 - Input
2 - Preamplifier output
3 - Left amplifier input
4 - Left channel output
5 - Right channel output
6 - Right amplifier input
7 - Stereo indicator Lamp
8-Ground
9 - Stereo switch filter
10 - Stereo switch filter
\(11-19 \mathrm{kHz}\) output/blend
12 - Modulator input
13 - Loop filter
14 - Loop filter
15 - Oscillator RC network
\(16-V_{C C}\)

\footnotetext{
This document contains information on a new product. Specifications and information herein are subject to change without notice.
}

MAXIMUM RATINGS (\(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Value & Unit \\
\hline Power Supply Voltage & 16 & Volts \\
\hline \begin{tabular}{l}
Power Dissipation (Package limitation) \\
Derate above \(\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}\)
\end{tabular} & 1800 & mW \\
\(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range (Ambient) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Lamp Drive Voltage (Max. voltage at Pin 7 with lamp " \(\mathrm{off}^{\prime \prime}\)) & 30 & Volts \\
\hline Lamp Current & 100 & mA \\
\hline Blend Control Input Voltage (Pin 11) & 10 & Volts \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS Unless otherwise noted: \(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 2.5 \mathrm{Vp}\)-p standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with \(10 \%\) pilot level, using circuit of Figure 1.
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Min. & Typ. & Max. & Unit \\
\hline Stereo Channel Separation: Unadjusted Optimised on other channel \({ }^{1}\) & \[
\begin{aligned}
& 30 \\
& 40
\end{aligned}
\] & - & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & dB \\
\hline Monaural Voltage Gain \({ }^{1}\) & 0.8 & 1.0 & 1.2 & \\
\hline THD at 2.5 Vp -p Composite Input Signal at 1.5 Vp -p Composite Input Signal & - & \[
0.2
\] & \[
0.3
\] & \% \\
\hline Signal/Noise Ratio RMS \(20 \mathrm{~Hz}-15 \mathrm{kHz}\) & - & 90 & - & dB \\
\hline Ultrasonic Frequency Rejection \begin{tabular}{l}
19 kHz \\
38 kHz
\end{tabular} & - & \[
\begin{aligned}
& 31 \\
& 50
\end{aligned}
\] & - & dB \\
\hline Stereo Switch Level (19 kHz input level for lamp "on") Hysteresis & \[
12
\] & \[
\begin{aligned}
& 16 \\
& 6.0
\end{aligned}
\] & \[
20
\] & mVrms dB \\
\hline Quiescent Output Voltage Change with Mono/Stereo Switching & - & 5.0 & 20 & mVdc \\
\hline \begin{tabular}{lr}
Stereo Blend Control Voltage (Pin 11) & 3 dB Separation \\
(see Figure 2) & 30 dB Separation
\end{tabular} & - & \[
\begin{aligned}
& \hline 0.7 \\
& 1.7
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline Minimum Separation (Pin 11 at 0 V) & - & - & 1.0 & dB \\
\hline Monaural Channel Imbalance (pilot tone off) & - & - & 0.3 & dB \\
\hline ARI 57 kHz Pilot Tone Influence on THD \({ }^{2}\) & - & - & 0.5 & \% \\
\hline \begin{tabular}{lr}
Sub-carrier Harmonic Rejection & 76 kHz \\
& 114 kHz \\
& 152 kHz
\end{tabular} & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 50 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & dB \\
\hline Supply Ripple Rejection & - & 50 & - & dB \\
\hline Input Impedance & - & 50 & - & K \(\Omega\) \\
\hline Output Impedance & - & 100 & - & \(\Omega\) \\
\hline Blend Control Current \({ }^{1}\) & - & - & -300 & \(\mu \mathrm{A}\) \\
\hline Capture Range & - & \(\pm 5.0\) & - & \% \\
\hline Operating Supply Voltage & 8.0 & - & 16 & V \\
\hline Current Drain (lamp off) & - & 35 & - & mA \\
\hline
\end{tabular}

Notes: \({ }^{1}\) See Applications Information and Circuit Description
2 ARI Test - Input signal: \(1.5 \mathrm{Vp}-\mathrm{p}\) standard composite signal, 1 kHz modulation added to a CW 50 mVrms signal at 57.3 kHz .

\section*{TCA4500A}

TYPICAL CHARACTERISTICS
Unless otherwise noted \(V_{C C}=+12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), Input Signal is Modulated L or R with \(10 \%\) Pilot Level. (See Fig. 16.) ———: High Loop Gain Circuit
ー - - : Normal Circuit

FIGURE 2 - CHANNEL SEPARATION versus
COMPOSITE INPUT LEVEL

FIGURE 4 - STEREO SWITCH LEVEL versus \(V_{\text {Co }}\) FREE-RUNNING FREQUENCY

FIGURE 6 - THD versus COMPOSITE INPUT LEVEL

FIGURE 3 - VCOFREE-RUNNING FREQUENCY versus TEMPERATURE

FIGURE 5 - SUPPLY RIPPLE REJECTION versus SUPPLY VOLTAGE

FIGURE 7 - CAPTURE and HOLDING RANGE WITH 20 mV PILOT LEVEL

\(V_{C O}\) FREE-RUNNING FREQUENCY (kHz)

FIGURE 10 - SYSTEM BLOCK DIAGRAM

\section*{CIRCUIT DESCRIPTION}

\section*{INTRODUCTION}

The TCA4500A is a phase-lock-loop stereo decoder which incorporates a variable separation control, and in which sensitivity to the third harmonics of both the pilot and sub-carrier frequencies has been eliminated by the use of appropriate, digitally generated, waveforms in the phase-lock-loop and decoder sections.

The variable separation control may be operated manually, or by a receiver's AGC or S meter signals, to provide smooth transitions between monaural and stereo reception. It operates only during stereo reception: the circuit switches automatically to monaural if the 19 kHz pilot tone is absent.

The elimination of sensitivity to the third harmonic (114 kHz) of the sub-carrier (38 kHz) excludes interference from the 100 kHz (European Spacing) spaced side bands of adjacent transmitters, while elimination of sensitivity to the third harmonic (57 kHz) of the pilot tone \((19 \mathrm{kHz})\) excludes interference from the ARI* system employed in Europe.
*Auto Radio Information.

\section*{CIRCUIT OPERATION}

The block diagram of the circuit, shown in Fig. 10, consists of three sections: the phase-lock-loop, including the digital waveform generator: the stereo switch: and the decoder, in which the composite stereo signal is demodulated and matrixed to separate \(L\) and \(R\) channels.

In the phase-lock-loop the internal RC oscillator, operating at 228 kHz , feeds a 3 stage Johnson counter, via a binary divider, to generate a series of 19 kHz square waves. By the use of suitably connected NAND and EXCLUSIVE OR gates, the waveforms shown in Fig. 11, which are used to drive the various modulators in the circuit, are developed.

The use of such drive waveforms produces the modulating functions also shown in Fig. 11. The usual squarewaveforms have been replaced in the PLL and decoder sections by 3-level forms which contain no third harmonic (actually no harmonics which are multiples of 2 or 3 are present). This eliminates the frequency translation of interference from these bands into the low frequency region. Such translation may produce audible components in the decoder section from the sidebands of adjacent channel FM signals, and may produce phase jitter, and consequent intermodulation distortion, in the PLL, from the modulated 57 kHz tones of the ARI system. The TCA 4500A is inherently free from these effects.

The stereo switch section is of conventional form (e.g. MC1310).

The decoder section consists of a modulator (driven by the waveforms shown in Fig. 11) whose outputs are the inverted and non-inverted channel difference signals. These signals pass to the output amplifiers via the variable
blend circuit in which they are partially combined, and hence mutually attenuated, according to the control voltage applied.

Matrixing occurs at the inputs of the output amplifiers, where the unmodified composite signal is added to the blended channel difference signals. The stereo separation may be progressively reduced from maximum to zero, dependent on the blending. The control law has been made non-linear, as the major redistribution of sound energy occurs at very low separation levels. For monaural, or very weak stereo signals, the modulator in the decoder section is disactivated by the stereo switch circuit. The variable separation control is thus, also, automatically disabled.

FIGURE 11 - DIGITAL WAVEFORM

\section*{APPLICATION INFORMATION}

\section*{GAIN AND DE-EMPHASIS}

The gain and de-emphasis characteristics of the circuit are defined by shunt feedback via the external RC networks (R3, C6, R4, C7 of Fig. 1) around the output amplifiers. The gain is unity when resistors of \(5.1 \mathrm{k} \Omega\) are used. Higher gains may be obtained by using networks of the form shown in Fig. 12.

The resistors R6, R7 are added to correct the output quiescent voltage levels which are optimized for R3, R4 = \(5.1 \mathrm{k} \Omega\) and which would, if uncorrected, become too low with higher value resistors. Suitable network values are as follows:

FIGURE 12 - OUTPUT AMPLIFIER FEEDBACK NETWORKS

\section*{APPLICATION INFORMATION (continued)}
\begin{tabular}{|c|c|c|c|c|}
\hline Gain (dB) & R3, R4 & \multicolumn{2}{|c|}{C6, C7} & R6, R7 \\
\hline & & \(50 \mu \mathrm{~s}\) & \(75 \mu \mathrm{~s}\) & \\
\hline 0 & \(5.1 \mathrm{k} \Omega\) & 10 nF & 15 nF & \\
\hline 3 & \(6.8 \mathrm{k} \Omega\) & 6.8 nF & 10 nF & \(47 \mathrm{k} \pm 10 \%\) \\
\hline 6 & 10k & 4.7 nF & 6.8 nF & 27k \(\pm 10 \%\) \\
\hline
\end{tabular}

The maximum output level is 1 Vrms ; consequently the max. input is limited to \(1.4 \mathrm{Vp}-\mathrm{p}\) if the gain is set to 6 dB .

\section*{SEPARATION ADJUSTMENT}

A separation adjustment may be added, as shown below, (Fig. 13), to compensate for the receiver's IF characteristics.

FIGURE 13 - NETWORK PROVIDING ADJUSTABLE SEPARATION

This network reduces the amplification of the channel sum signal in the decoder, to compensate the attenuation of the channel difference signal in the receiver's IF section. The network shown will compensate for up to 2 dB attenuation at 38 kHz . The decoder gain is, obviously, reduced by an amount equal to the compensation required. When used as described, the adjustment also corrects the inherent separation of the decoder, which may be optimized on one channel. Optimization of both channels is possible if separate potentiometers are used to feed each output amplifier.

FIGURE 14 - BLEND CONTROL INPUT CIRCUIT

\section*{VARIABLE SEPARATION (BLEND) CONTROL AND} 19 kHz OUTPUT

To retain the 16 -pin package, the blend control has been combined with the 19 kHz output on pin 11 . The internal circuit providing this combination is shown in Fig. 14.

If pin 11 is left open-circuit, the 19 kHz signal appears at a mean dc level of 4 V . The blend circuit is inoperative at this level and the decoder provides full separation. The 19 kHz signal can be used to tune the internal oscillator.

To reduce the separation, the voltage on pin 11 is lowered. At \(3.2 \mathrm{~V}, \mathrm{~T} 2\) ceases conduction and the 19 kHz signal disappears.

At 2.3 V , the blend circuit comes into operation and the separation decreases according to the curve shown in Fig. 15.

\section*{FIGURE 15 - SEPARATION CONTROL VOLTAGE}

FIGURE 16 - OSCILLATOR NETWORK FOR DIRECT FREQUENCY MEASUREMENT

OSCILLATOR TUNING
If the variable separation facility is not required, pin 11 is left open-circuit and the 19 kHz signal which then appears may be used to indicate the oscillator frequency. If the variable separation is used, and the drive circuit prevents access to the 19 kHz signal, then the oscillator frequency must be measured directly. A test point should be obtained by modifying the oscillator RC network as shovwn in Fig. 16.

The output is a pulse train of approximately 1.5 Volts amplitude. Connecting frequency counters of up to 300 pF input capacitance produces less than \(0.3 \%\) change of the oscillator frequency, which should be set to 228 kHz .

\section*{HIGH LOOP GAIN COMPONENTS}

For applications demanding operation under low pilot level (e.g., car radio) the following component changes to Fig. 1 are recommended.
\[
\begin{array}{ll}
\mathrm{R} 1=12 \mathrm{k} & \mathrm{C} 3=150 \mathrm{pF} \\
\mathrm{R} 2=1.5 \mathrm{k} & \mathrm{C} 4=330 \mathrm{nF} \\
\mathrm{R} 8=330 & \mathrm{C} 5=150 \mathrm{nF} \\
\mathrm{P} 1=10 \mathrm{k} &
\end{array}
\]

\section*{EXTERNAL MONO-STEREO SWITCHING AND OSCILLATOR KILLING}

If required, the TCA 4500A can be forced into mono mode simply by grounding pin 9 (see Fig. 1). The 228 kHz oscillator will be automatically killed.

The conditions governing Mono/Stereo switching on
pin 9 are the following:
- Quiescent voltage: +2.3 Vdc
- Current required to ensure mono operaton (with 100 mVrms pilot level): \(10 \mu \mathrm{~A}\) (from pin 9 to ground) Hysteresis: \(0.7 \mu \mathrm{~A}\)
- Stereo/mono switching and oscillator killing: less than \(+500 \mathrm{mV}\)
- Maximum stray capacitance between pin 9 and ground: 100 pF

\section*{EXTERNAL COMPONENT FUNCTIONS}

P1 \(\quad-19 \mathrm{kHz}\) frequency adjustment
P2 - channel separation adjustment and compensation for IF roll-off.
R3, R6- gain fixing resistors. The values shown in the schematic are for unity gain.
C6, C7- de-emphasis capacitors. Value to give: \(R C=50 \mu \mathrm{~s}\).

Values shown in Fig. 1 are recommended for applications with input level higher than 1.0 Vrms .

\section*{(4) \\ MOTOROLA}

\section*{STEREO SOUND CONTROL SYSTEM}

The TCA5550 is a single chip stereo balance, volume, bass and treble control circuit designed for use in car radios, TV, and audio systems. Simple dc inputs allow the control to be effected by four inexpensive potentiometers or a remote control system. The bass and treble responses are defined by a single capacitor per control per channel.
- Four High Impedance dc Controls - Vol, Bass, Treble, Balance
- A Single External Capacitor Defines Each Tone Control Characteristic
- Low Distortion, 0.1\% at Nominal Input Level, Unity Gain with the Tone Controls Flat
- Channel Separation Better Than 45 dB
- Wide Power Supply Tolerance, 10 to 16 Vdc
- \(\pm 14 \mathrm{~dB}\) of Tone Control
- More Than 75 dB of Volume Control
- Wide Dynamic Range: 100 mV to 500 mV rms Input Signal
- Low Output Impedance

\section*{STEREO SOUND CONTROL SYSTEM}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Value & Unit \\
\hline Power Supply Voltage & 18 & Volts \\
\hline Power Dissipation (Package Limitation) & 1250 & mW \\
Derate above \(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}\) & 10 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range (Ambient) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin & Min & Typ & Max & Unit \\
\hline Supply Voltage & 13 & 10 & - & 16 & Vdc \\
\hline \begin{tabular}{ll}
Supply Current & \begin{tabular}{l}
Min Gain \\
Max Gain
\end{tabular}
\end{tabular} & & - & \[
\begin{aligned}
& 30 \\
& 15
\end{aligned}
\] & - & mA \\
\hline \begin{tabular}{l}
Regulated Output Voltage \({ }^{1}\) \\
Current
\end{tabular} & 5 & - & \[
5.0
\] & \[
\overline{3.0}
\] & \[
\underset{\mathrm{mA}}{\mathrm{~V}}
\] \\
\hline \begin{tabular}{l}
Input Levels \\
Max Gain \\
With Reduced Gain \({ }^{3}\)
\end{tabular} & 12, 16 & - & \[
100
\] & \[
\overline{500}
\] & \(\mathrm{m} \mathrm{V}_{\mathrm{rms}}\) \\
\hline Input Impedance & 12, 16 & - & 100 & - & k \(\Omega\) \\
\hline Output Impedance & 2,8 & - & 300 & - & \(\Omega\) \\
\hline \begin{tabular}{l}
Tone Control Range (at 70 Hz \& 10 kHz\()^{2}\) \\
With Pins 3 \& 4@0.5 V \\
With Pins 3 \& 4@2.3V \\
With Pins 3 \& 4@4.1 V
\end{tabular} & 3,4 & - & \[
\begin{array}{r}
-14 \\
0 \\
+14
\end{array}
\] & - & dB \\
\hline \begin{tabular}{|ll}
Balance Control Range & Min Gain \\
(Constant Power Law) & Max Gain \\
Voltage on Pin 6 for Balanced Gain & \\
\hline
\end{tabular} & 6 & \[
-
\] & \[
\begin{array}{r}
-35 \\
+3.0 \\
2.3 \\
\hline
\end{array}
\] & \[
\bar{Z}
\] & \[
\begin{gathered}
\hline \mathrm{dB} \\
\mathrm{~dB} \\
\mathrm{v}
\end{gathered}
\] \\
\hline Volume Control Range With Pin 7 @ 0 V With Pin 7 @ 3.1 V With Pin 7 @ VPIN 5 & 7 & \[
\begin{aligned}
& - \\
& \text { - }
\end{aligned}
\] & \[
\begin{array}{r}
80 \\
+10 \\
-20 \\
-70
\end{array}
\] & \[
\begin{aligned}
& \text { - } \\
& \text { - }
\end{aligned}
\] & dB \\
\hline Control Input Currents & 3, 4, 6, 7 & - & - & \(\pm 1.0\) & \(\mu \mathrm{A}\) \\
\hline Channel Separation & & 45 & - & - & dB \\
\hline Distortion (at 1.0 kHz) at 300 mV rms \({ }^{\text {Output }}{ }^{3}\) & & - & 0.1 & - & \% \\
\hline \begin{tabular}{l}
Signal : Noise Ratio \\
50 Hz to \(15 \mathrm{kHz}, 10 \mathrm{~dB}\) Gain, Tone Controls Flat
\end{tabular} & & - & 70 & - & dB \\
\hline Noise Level 50 Hz to 15 kHz , Min Gain & & - & 50 & - & \({ }^{\mu} \mathrm{V}_{\text {rms }}\) \\
\hline
\end{tabular}

NOTES:
1. The control potentiometers to this point, see Figure 7.
2. These figures are functions of the capacitors on Pins \(1,9,10,11,17 \& 18\). See the application diagram, Figure 7 .
3. The input level may be increased to 500 mV rms but the user controls must be adjusted to ensure that the output level does not exceed 300 mV rms.

PERFORMANCE CHARACTERISTICS, FIGURES 2-7, TAKEN IN CIRCUIT OF FIGURE 8, \(\mathbf{V}_{\text {CC }}=12 \mathbf{V}\)

FIGURE 2 - MIDBAND DISTORTION

FIGURE 4 - TONE CONTROL CHARACTERISTICS

FIGURE 6 - LOW FREQUENCY DISTORTION

FIGURE 3 - VOLUME CONTROL CHARACTERISTICS

FIGURE 5 - HIGH FREQUENCY DISTORTION

FIGURE 7 - BALANCE CONTROL CHARACTERISTIC

FIGURE 8 - APPLICATION CIRCUIT

TDA1190P
TDA3190P

TV SOUND SYSTEM
SILICON MONOLITHIC INTEGRATED CIRCUIT Thd related applications. The TDA1190P is a low-power version. Functions performed by these devices include: IF Limiting, IF amplifier, low pass filter, FM detector, DC volume control, audio preamplifier, and audio power amplifier.
- 4.2 Watts Output Power - TDA3190P
\[
\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=16 \Omega\right)
\]
- 1.3 Watts Output Power - TDA1190P
\(\left(\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega\right)\)
- Linear Volume Control
- High AM Rejection
- Low Harmonic Distortion
- High Sensitivity

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & TDA3190P & TDA1190P & Unit \\
\hline Supply Voltage Range & \(\mathrm{V}_{\mathrm{CC}}\) & 9.0 to 28 & 9.0 to 22 & V \\
\hline Output Peak Current (Nonrepetitive) & \(\mathrm{I}_{\mathrm{o}}\) & 2.0 & 1.5 & A \\
(Repetitive) & & 1.5 & 1.0 & \\
\hline Input Signal Voltage & \(\mathrm{V}_{\mathrm{I}}\) & \multicolumn{2}{|c|}{1.0} & V \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & \multicolumn{2}{|c|}{0 to +75} & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & \multicolumn{2}{|c|}{150} & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz}, \Delta \mathrm{f}= \pm 25 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Quiescent Output Voltage (Pin 11) & \(\mathrm{V}_{\mathrm{O}}\) & \[
\begin{aligned}
& 11 \\
& 8.0 \\
& 5.1
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 9.0 \\
& 6.0
\end{aligned}
\] & \[
\begin{gathered}
13 \\
10 \\
6.9
\end{gathered}
\] & V \\
\hline \begin{tabular}{l}
Quiescent Drain Current
\[
\begin{gathered}
(\mathrm{P} 1=22 \mathrm{k} \Omega) \\
\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{CC}}=12 \mathrm{~V}
\end{gathered}
\] \\
TDA3190P
TDA1190P
\end{tabular} & ID & \[
\begin{aligned}
& 11 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& 22 \\
& 22 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 35 \\
& -
\end{aligned}
\] & mA \\
\hline \begin{tabular}{rr}
\begin{tabular}{c}
Output Power \\
\(\left(\mathrm{d}=10 \%, \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}\right)\)
\end{tabular} & \\
\(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=16 \Omega\) & TDA3190P \\
\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.0 \Omega\) & TDA3190P \\
\(\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega\) & TDA1190P \\
\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=16 \Omega\) & TDA1190P \\
\(\left(\mathrm{d}=2 \%, \mathrm{fm}_{\mathrm{m}}=400 \mathrm{~Hz}\right)\) & \\
\(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=16 \Omega\) & TDA3190P \\
\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.0 \Omega\) & TDA3190P \\
\(\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega\) & TDA1190P \\
\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=16 \Omega\) & TDA1190P
\end{tabular} & \(\mathrm{PO}_{0}\) & \[
\begin{aligned}
& - \\
& 1.0 \\
& 0.7 \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 4.2 \\
& 1.5 \\
& 1.3 \\
& 0.9 \\
& 3.5 \\
& 1.4 \\
& 1.0 \\
& 0.7
\end{aligned}
\] & -
-
-
-
-
- & W \\
\hline \begin{tabular}{l}
Input Limiting Threshold Volts (-3.0 dB) at Pin 1
\[
\Delta f= \pm 7.5 \mathrm{kHz}, \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz} \text {, Set } \mathrm{P} 1 \text { for } 2.0 \mathrm{Vrms} \text { on Pin } 11
\] \\
TDA3190P \\
TDA1190P
\end{tabular} & \(V_{1}\) & - & \[
\begin{aligned}
& 40 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \(\mu \mathrm{V}\) \\
\hline Distortion
\[
\begin{array}{rlrl}
\left(\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}, \mathrm{f}_{\mathrm{m}}\right. & =400 \mathrm{~Hz}, \Delta \mathrm{f}= \pm 7.5 \mathrm{kHz}) & & \\
\mathrm{V}_{\mathrm{CC}} & =24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} & =16 \Omega & \\
\mathrm{~V}_{\mathrm{CC}} & =18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} & =32 \Omega & \\
\mathrm{~V}_{\mathrm{CC}} & =12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} & =16 \Omega & \\
\text { TDA1190P } \\
\text { Both }
\end{array}
\] & & - & \[
\begin{gathered}
0.75 \\
1.0 \\
1.0
\end{gathered}
\] & - & \% \\
\hline \[
\begin{aligned}
& \text { Frequency Response of Audio Amplifier }(-3.0 \mathrm{~dB}) \\
& \qquad \begin{array}{l}
\left(\mathrm{R}_{\mathrm{L}}=16 \Omega, \mathrm{C}_{10}=120 \mathrm{pF}, \mathrm{C}_{12}=470 \mathrm{pF}, \mathrm{P}_{1}=22 \mathrm{k} \Omega\right) \\
\mathrm{R}_{\mathrm{f}}=82 \Omega \\
\mathrm{R}_{\mathrm{f}}=47 \Omega
\end{array}
\end{aligned}
\] & B & - & \[
\begin{aligned}
& 70 \text { to } 12 \mathrm{k} \\
& 70 \text { to } 7.0 \mathrm{k}
\end{aligned}
\] & - & Hz \\
\hline Recovered Audio Voltage (Pin 16)
\[
\left(\mathrm{V}_{1} \geqslant 1.0 \mathrm{mV}, \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}, \Delta \mathrm{f}= \pm 7.5 \mathrm{kHz}, \mathrm{P}_{1}=0\right)
\] & \(\mathrm{V}_{0}\) & - & 120 & - & mV \\
\hline Amplitude Modulation Rejection
\[
\left(\mathrm{V}_{1} \geqslant 1.0 \mathrm{mV}, \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}, \mathrm{~m}=30 \%\right)
\] & AMR & - & 55 & - & dB \\
\hline Signal and Noise to Noise Ratio
\[
\left(\mathrm{V}_{\mathrm{I}} \geqslant 1.0 \mathrm{mV}, \mathrm{~V}_{\mathrm{o}}=4.0 \mathrm{~V}, \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}\right)
\] & \[
\frac{S+N}{N}
\] & 50 & 65 & - & dB \\
\hline Input Resistance (Pin 1)
\[
\left(V_{1}=1.0 \mathrm{mV}\right)
\] & \(\mathrm{r}_{\mathrm{i}}\) & - & 30 & - & k \(\Omega\) \\
\hline Input Capacitance (Pin 1)
\[
\left(\mathrm{V}_{\mathrm{I}}=1.0 \mathrm{mV}\right)
\] & \(\mathrm{C}_{\mathrm{i}}\) & - & 5.0 & - & pF \\
\hline DC Volume Control Attenuation
\[
(\mathrm{P} 1=12 \mathrm{k} \Omega)
\] & - & - & 90 & - & dB \\
\hline
\end{tabular}

TEST CIRCUIT

\section*{TYPICAL CIRCUIT CONFIGURATION}

\section*{STEREO TONE CONTROL SYSTEM}

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX
PLASTIC PACKAGE CASE 707-02

\section*{TDA1524A}

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Value & Units \\
\hline Power Supply Voltage & 20 & V \\
\hline \begin{tabular}{l}
Power Dissipation \\
Derate above \(25^{\circ} \mathrm{C}\)
\end{tabular} & 1250 & mW \\
\hline Operating Temperature Range & 10 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\), circuit of Figure \(2, \mathrm{SW} 1\) at "contour on", \(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{g}}, \mathrm{V}_{10}, \mathrm{~V}_{16}=1.9 \mathrm{~V}\), unless otherwise noted)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Pin & VCc (Vdc) & Min & Typ & Max & Units \\
\hline Supply Voltage, VCC & 3 & - & 7.5 & - & 16.5 & Vdc \\
\hline Supply Current & 3 & 8.5 & 19 & 27 & 35 & mA \\
& & 12 & - & 35 & - & \\
\hline DC Input Level & & 15 & - & 43 & - \\
& 4,15 & 8.5 & 3.8 & 4.25 & 4.7 & Vdc \\
\hline DC Output Level & & 12 & - & 5.9 & - & \\
& & 15 & - & 7.3 & - \\
\hline Regulator Output Voltage & 8,11 & 8.5 & 3.3 & 4.25 & 5.2 & Vdc \\
& & 12 & - & 6.0 & - & \\
\hline Regulator Output Voltage, SW1 in "Linear" Position & 15 & - & 7.5 & - & \\
\hline
\end{tabular}

FIGURE 2 - TEST CIRCUIT

AC CHARACTERISTICS \(\left(V_{C C}=8.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\), circuit of Figure 2, contour switch (SW1) to "Linear" position, frequency 1.0 kHz , gains expressed as 20 log [voltage ratio] unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Characteristic & \(\mathrm{V}_{1}\) & \(\mathbf{V} 9\) & \(\mathrm{V}_{10}\) & \(\mathrm{V}_{16}\) & \[
\begin{aligned}
& \text { Measure } \\
& \text { Pin(s) }
\end{aligned}
\] & Min & Typ & Max & Units \\
\hline \begin{tabular}{l}
Gain at Max Volume Control (Input \(=50 \mathrm{mVrms}\)) Distortion at 1.8 Vrms Output (Output signal handling) AC Input Resistance \\
Output to Output Separation, One Input Driven (100 mVrms) Noise Output (\(20 \mathrm{~Hz}-20 \mathrm{kHz}\), Inputs are Grounded)
\end{tabular} & \(\mathrm{V}_{17}\) & \[
\frac{V_{17}}{2}
\] & \[
\frac{V_{17}}{2}
\] & \[
\frac{V_{17}}{2}
\] & \begin{tabular}{l}
8, 11 \\
8, 11 \\
4, 15 \\
8, 11 \\
8, 11
\end{tabular} & \[
\begin{aligned}
& 20 \\
& \hline 10 \\
& 60 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& - \\
& - \\
& 250
\end{aligned}
\] & \[
\begin{gathered}
24 \\
0.5 \\
- \\
- \\
400
\end{gathered}
\] & \begin{tabular}{l}
dB \\
\% \\
\(\mathrm{k} \Omega\) \\
dB \(\mu\) Vrms
\end{tabular} \\
\hline \begin{tabular}{l}
Gain at Mid Volume, Left Channel (Input \(=100 \mathrm{mVrms}\)) \\
Gain Difference Left to Right
\end{tabular} & \[
\frac{V_{17}}{2}
\] & \[
\frac{V_{17}}{2}
\] & \[
\frac{V_{17}}{2}
\] & \[
\frac{V_{17}}{2}
\] & 8, 11 & \[
-12
\] & \[
-9.0
\] & \[
\begin{gathered}
-6.0 \\
1.5
\end{gathered}
\] & dB \\
\hline \begin{tabular}{l}
70 Hz Gain Difference Output to Output (Input \(=100 \mathrm{mVrms}\)) \\
70 Hz Gain at Mid Bass Setting \\
(Input \(=100 \mathrm{mVrms}\)) \\
70 Hz Bass Control - Boost \\
- Cut
\end{tabular} & 2.1 & \[
\begin{gathered}
\frac{v_{17}}{2} \\
v_{17} \\
0
\end{gathered}
\] & \[
\frac{V_{17}}{2}
\] & \[
\frac{V_{17}}{2}
\] & 8, 11 & \[
10
\]
\[
10
\] & \[
0
\] & \[
\begin{gathered}
2.5 \\
- \\
- \\
-
\end{gathered}
\] & dB \\
\hline ```
16 kHz Gain at Mid Treble Setting
 (Input = 100 mVrms)
16 kHz Gain Difference Output to Output
16 kHz Treble Control - Boost
 -Cut
``` & 2.1 & \[
\frac{V_{17}}{2}
\] & \[
\begin{gathered}
\frac{v_{17}}{2} \\
v_{17} \\
0
\end{gathered}
\] & \[
\frac{v_{17}}{2}
\] & 8, 11 & \[
\begin{aligned}
& - \\
& - \\
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& -
\end{aligned}
\] & \[
2.5
\] & dB \\
\hline Balance Control Range of Right Channel Balance Control Range of Left Channel Output Ripple (No Signal, 200 mVrms @ 120 Hz Added to \(\mathrm{V}_{\mathrm{CC}}\) ) & 2.1 & \[
\frac{V_{17}}{2}
\] & \[
\frac{V_{17}}{2}
\] & \[
\begin{aligned}
& \mathrm{Adj}^{\mathrm{Adj}} \\
& \mathrm{Adj}^{\mathrm{V}} \\
& \frac{\mathrm{~V} 17}{2}
\end{aligned}
\] & \[
\begin{gathered}
8 \\
11 \\
8,11
\end{gathered}
\] & \[
\begin{aligned}
& 35 \\
& 35 \\
& -
\end{aligned}
\] & - & \[
\frac{-}{3.5}
\] & \begin{tabular}{l}
dB \\
dB \\
mVrms
\end{tabular} \\
\hline \begin{tabular}{l}
1.0 kHz Gain (Input \(=1.8 \mathrm{Vrms}\) ) \\
Noise Output ( \(20 \mathrm{~Hz}-20 \mathrm{kHz}\), Inputs ac Grounded) \\
Distortion (Input \(=1.4 \mathrm{Vrms}\) ) \\
Distortion (Input \(=1.8 \mathrm{Vrms}\) ) \\
(Input Signal Handling)
\end{tabular} & \[
\begin{aligned}
& 1.6 \\
& 2.0
\end{aligned}
\] & \[
\frac{V_{17}}{2}
\] & \[
\frac{V_{17}}{2}
\] & \[
\left.\frac{V_{17}}{2} \right\rvert\,
\] & 8, 11 & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
-20 \\
75 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& 120 \\
& 0.5 \\
& 0.7
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{dB} \\
\\
\mu \mathrm{Vrms} \\
\% \\
\% \\
\hline
\end{gathered}
\] \\
\hline ```
1.0 kHz Gain (Input = 2.0 Vrms)
Gain Difference Output to Output
Contour Boost at 70 Hz
    (Contour Switch in "Contour On" Position)
``` & 1.3 & \[
\frac{v_{17}}{2}
\] & \[
\frac{V_{17}}{2}
\] & \[
\frac{V_{17}}{2}
\] & 8, 11 & \[
\begin{gathered}
- \\
- \\
8
\end{gathered}
\] & \[
-40
\] & \[
\begin{aligned}
& - \\
& 6.0 \\
& \hline
\end{aligned}
\] & dB \\
\hline Gain at Minimum Volume (Input 2.0 Vrms) & 0 & \(\frac{V_{17}}{2}\) & \(\frac{V_{17}}{2}\) & \[
\frac{V_{17}}{2}
\] & 8, 11 & - & - & -70 & dB \\
\hline
\end{tabular}

Adj* - means vary the control over the full range from \(\mathrm{V}_{17}\) to 0 .
(All curves taken in the test circuit of Figure 2, \(\mathrm{V}_{\mathrm{CC}}=8.5 \mathrm{Vdc}\), unless otherwise noted)

FIGURE 3 - VOLUME CONTROL CHARACTERISTIC

FIGURE 4 - BALANCE CONTROL CHARACTERISTIC

FIGURE 5 - BASS CONTROL CHARACTERISTIC

FIGURE 7 - TOTAL HARMONIC DISTORTION versus FREQUENCY

FIGURE 9 - TONE CONTROL RESPONSE WITH SINGLE POLE LOW-PASS FILTER

FIGURE 6 - TREBLE CONTROL CHARACTERISTIC

FIGURE 8 - TOTAL HARMONIC DISTORTION versus OUTPUT

FIGURE 10 - TONE CONTROL RESPONSE WITH DOUBLE POLE LOW-PASS FILTER

FIGURE 11 - SINGLE POLE LOW-PASS FILTER

FIGURE 13 - VOLUME CONTROL RESPONSE WITH SINGLE POLE LOW-PASS FILTER

FIGURE 15 - NOISE OUTPUT VOLTAGE (20 Hz to \(\mathbf{2 0} \mathbf{~ k H z) ~}\)

FIGURE 12 - DOUBLE POLE LOW-PASS FILTER

FIGURE 14 - VOLUME CONTROL RESPONSE WITH DOUBLE POLE LOW-PASS FILTER

\section*{APPLICATION NOTES}

The use of dc feedback stabilizes the dc output voltage at approximately \(\mathrm{V}_{\mathrm{CC}} / 2\) and assures large output swing capability without distortion. If this dc feedback is not used, the dc output will vary from part to part and available headroom will be somewhat reduced.

The loading of the regulator output, Pin 17 has an abrupt effect on switching the contour function and is not intended to be applied in any intermediate degree. The tests assure that the part is in linear mode for total loading of Pin 17 less than \(3.0 \mathrm{k} \Omega\), and is in contour mode for a total load on Pin 17 greater than \(10 \mathrm{k} \Omega\).

\section*{TV COLOR PROCESSOR}

These devices will accept a PAL or NTSC composite video signal and output the three color signals, needing only a simple driver amplifier to interface to the picture tube. The provision of high bandwidth on-screen display inputs makes them suitable for text display, TV games, cameras, etc. The TDA3301 differs from the TDA3303 in its user control laws, and also a phase shift control which operates in PAL, as well as NTSC.

\section*{TV COLOR PROCESSOR}

SILICON MONOLITHIC INTEGRATED CIRCUIT
- Automatic Black Level Setup
- Beam Current Limiting
- Uses Inexpensive 4.43/3.58 MHz Crystal
- No Oscillator Adjustment Required
- Three OSD Inputs Plus Fast Blanking Input
- Four DC, High Impedance User Controls
- Interfaces with TDA3030B SECAM Adaptor
- Single 12 V Supply
- Low Dissipation, Typically 600 mW

FIGURE 1 - PIN ASSIGNMENT

MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise stated)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Pin & Value & Unit \\
\hline Supply Voltage & 39 & 14 & Vdc \\
\hline Operating Temperature Range & & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin & Min & Typ & Max & Unit \\
\hline Supply Voltage Supply Current & 39 & \[
10.8
\] & \[
\begin{aligned}
& 12 \\
& 45
\end{aligned}
\] & \[
\begin{gathered}
13.2 \\
60
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline Composite Video Input Video Input Resistance Video Gain to Pin 35 Input Window & 37 & \[
\begin{gathered}
\overline{13} \\
2.7 \\
0.8-3
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
18 \\
3.2 \\
0.7-3.2
\end{gathered}
\] & \[
\begin{aligned}
& 23 \\
& 3.6
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Vp-p} \\
\mathrm{k} \Omega \\
\mathrm{Vp-p} \\
\mathrm{~V}
\end{gathered}
\] \\
\hline Chroma Input (Burst) Input Resistance ACC Effectiveness & \[
\begin{aligned}
& 1 \\
& 1 \\
& 4
\end{aligned}
\] & \[
10
\] & \[
\begin{aligned}
& 100 \\
& 5.0 \\
& 1.2 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
200 \\
3.0 \\
\hline
\end{gathered}
\] & \(m V p-p\) \(\mathrm{k} \Omega\) dB \\
\hline \begin{tabular}{l}
OSD Input \\
OSD Drive Impedance \\
OSD Frequency Response (-3.0 dB) \\
OSD Max Gain \\
Gain Difference Between Any Two
\end{tabular} & 24,25,26 & \[
\begin{gathered}
0.5 \\
\hline 9.0 \\
- \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.7 \\
\frac{-}{7.2} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.0 \\
& 180 \\
& - \\
& -15
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V} \\
\Omega \\
\mathrm{MHz} \\
\mathrm{MHz} \\
\%
\end{gathered}
\] \\
\hline Beam Current Ref. Threshold Differential Voltage Beam Current Ref. Input Current Differential Current & 16,19,22 & \begin{tabular}{l}
1.7 \\
- \\
-
\end{tabular} & \[
\begin{aligned}
& 2.0 \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 2.3 \\
20 \\
+1.5 /-0.5 \\
1.0 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{mV} \\
\mu \mathrm{~A} \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Luminance Gain Between Pin 36 and Outputs (depends on \(R_{33}\) and \(R_{34}\)) \\
Luminance Bandwidth (-3.0 dB) \\
Output Resistance \\
Residual Carrier (\(4.43 \mathrm{Mc} / \mathrm{s}\)) \\
PAL Offset (\(\mathrm{H} / 2\)) \\
Difference in Gain Between \(Y\) Input and any RGB o/p
\end{tabular} & 14,17,20 & \[
\begin{aligned}
& \overline{9.0} \\
& 120 \\
& -
\end{aligned}
\] & \[
\begin{gathered}
\frac{4.7}{-} \\
170 \\
30 \\
- \\
5.0
\end{gathered}
\] & \[
\begin{gathered}
- \\
\hline- \\
300 \\
150 \\
50 \\
-
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{MHz} \\
\Omega \\
\mathrm{mVp}-\mathrm{p} \\
\mathrm{mVp}-\mathrm{p} \\
\%
\end{gathered}
\] \\
\hline U Input Sensitivity for 5.0 V Blue Output & 8 & - & 340 & - & mVp-p \\
\hline Matrix Error & 14,17,20 & - & - & 10 & \% \\
\hline Oscillator Capture Range & & 350 & - & - & Hz \\
\hline U Ref. Phase Error & & - & - & 5.0 & 。 \\
\hline V Ref. Phase Error & & - & - & 5.0 & - \\
\hline Color Kill Attenuation & 14,17,20 & 50 & - & - & dB \\
\hline Contrast Tracking OSD/Luma/Chroma & 14,17,20 & - & - & - & dB \\
\hline OSD Contrast Tracking & 14,17,20 & - & - & \(\pm 2.0\) & dB \\
\hline OSD Enable Slice Level & 23 & - & 0.7 & - & V \\
\hline ```
Sandcastle Slice Level
 Burst Gate
 Line Blanking
 R Input V 27 > 7.0 V
 V27}<7.0\textrm{V
``` & 27 & 6.5
2.0
- & \[
\begin{aligned}
& 7.2 \\
& 2.6 \\
& 5.0 \\
& 22 \\
& \hline
\end{aligned}
\] & 8.0
3.0
- & \[
\begin{gathered}
V \\
V \\
\mathrm{k} \Omega \\
\mathrm{k} \Omega
\end{gathered}
\] \\
\hline Frame Slice Level R Input & 28 & 2 & \[
\begin{gathered}
2.8 \\
15 \\
\hline
\end{gathered}
\] & 3.6 & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{k} \Omega
\end{gathered}
\] \\
\hline Peak Beam Limiter Threshold
\[
\left(I_{29} \mathrm{Min}=250 \mu \mathrm{~A}\right)
\] & & \(3.4 \times{ }^{29}\) & \(4 \times 129\) & \(4.6 \times \mathrm{l}_{29}\) & \\
\hline Pin 29 Input Resistance & 29 & - & 5.0 & - & k \(\Omega\) \\
\hline Pin 29 Open Circuit Voltage & 29 & - & 10.6 & - & V \\
\hline
\end{tabular}

\section*{INPUT/OUTPUT FUNCTIONS}


FIGURE 3 - SATURATION CONTROL VOLTAGE


Pin 5 is automatically pulled to ground with a misidentified PAL signal.

Note: Nominal \(100 \%\) saturation point is given by choice of \(R_{2}\) which sets ACC operating point.

The brilliance control operates by adding a pedestal to the output signals. The amplitude of the pedestal is controlled by Pin 30.

During CRT beam current sampling a standard pedestal is substituted, its value being equivalent to the value given by \(V_{30}\) Nom. Brightness at black level with \(V_{30}\) Nom is given by the sum of three gun currents at the sampling level, i.e. \(3 \times 20 \mu \mathrm{~A}\) with 100 k reference resistors on Pins 16, 19, and 22.

During picture blanking the brilliance pedestal is zero; therefore the output voltage during blanking is always the minimum brilliance black level (Note: Signal channels are also gain blanked).


Note: Pin 32 is pulled down by the operation of the peak beam limiter.

FIGURE 5 - BLOCK DIAGRAM



\section*{CIRCUIT OPERATION}

\section*{CHROMINANCE DECODER SECTION}

The chrominance decoder section of the TDA3301 consists of the following blocks:

Phase-locked reference oscillator - Figures 7, 8 and 9 Phase-locked 90 degree servo loop - Figures 9 and 10 U and V axis decoders
ACC detector and identification detector - Figure 11
Identification circuits and PAL bistable - Figure 12
Color difference filters and matrixes with fast blanking circuits.

The major design considerations apart from optimum performance were:
- a minimum number of factory adjustments
- a minimum number of external components
- compatibility with the SECAM adapter TDA3030B
- low dissipation
— use of a standard 4.433618 MHz Crystal rather than a 2.0 fc Crystal with divider.

\section*{REFERENCE REGENERATION}

The crystal VCO is of the phase shift variety in which the frequency is controlled by varying the phase of the feedback. A great deal of care was taken to ensure that the oscillator loop gain and the crystal loading impedance were held constant in order to ensure that the circuit functions well with low grade crystal (crystals having high magnitude spurious responses can cause bad phase jitter). It is also necessary to ensure that the gain at third harmonic is low enough to ensure absence of oscillation at this frequency.

FIGURE 7 - VOLTAGE CONTROLLED OSCILLATOR (VCO)


FIGURE 8 - VECTOR DIAGRAM FOR VCO


By referring to Figures 7 and 8 it can be seen that the necessary \(\pm 45^{\circ}\) phase shift is obtained by variable addition of two currents \(\mathrm{I}_{1}\) and \(\mathrm{I}_{2}\) which are then fed into the load resistance of the crystal tuned circuit \(\mathrm{R}_{1}\). Feedback is taken from the crystal load capacitance which gives a voltage VF lagging the crystal current by \(90^{\circ}\).
The RC network in \(T_{1}\) collector causes \(I_{1}\) to lag the collector current of \(T_{1}\) by \(45^{\circ}\).
For SECAM operation the currents \(\mathrm{I}_{1}\) and \(\mathrm{I}_{2}\) are added together in a fixed ratio giving a frequency close to nominal.
When decoding PAL there are two departures from normal chroma reference regeneration practice:
a) The loop is locked to the burst entering from the PAL delay line matrix \(U\) channel and hence there is no alternating component. A small improvement in signal noise ratio is gained but more important
is that the loop filter is not compromised by the 7.8 kHz component normally required at this point for PAL identification.
b) The \(\mathrm{H} / 2\) switching of the oscillator phase is carried out before the phase detector. This implies any error signal from the phase detector is a signal at 7.8 kHz and not dc. A commutator at the phase detector output also driven from the PAL bistable converts this ac signal to a dc prior to the loop filter. The purpose of this is that constant offsets in the phase detector are converted by the commutator to a signal at 7.8 kHz which is integrated to zero and does not give a phase error.
When used for decoding NTSC the bistable is inhibited, and slightly less accurate phasing is achieved; however, as a hue control is used on NTSC this cannot be considered to be a serious disadvantage.

FIGURE 9 - BLOCK DIAGRAM OF REFERENCE SECTION


\section*{\(90^{\circ}\) REFERENCE GENERATION}

To generate the \(U\) axis reference a variable all-pass network is utilized in a servo loop. The output of the allpass network is compared with the oscillator output with a phase detector of which the output is filtered and corrects the operating point of the variable all-pass network (see Figure 10).
As with the reference loop the oscillator signal is taken after the \(\mathrm{H} / 2\) phase switch and a commutator inserted before the filter so that constant phase detector errors are cancelled.

For SECAM operation the loop filter is grounded causing near zero phase shift so that the two synchronous detectors work in phase and not in quadrature.

The use of a 4.4 MHz oscillator and a servo loop to generate the required \(90^{\circ}\) reference signal allows the use of a standard, high volume, low cost crystal and gives an extremely accurate \(90^{\circ}\) which may be easily switched to \(0^{\circ}\) for decoding AM SECAM generated by the TDA3030B adapter.

FIGURE 10 - VARIABLE ALL-PASS NETWORK


FIGURE 11 - ACC AND IDENTIFICATION DETECTORS


\section*{ACC AND IDENTIFICATION DETECTORS}

During burst gate time the output components of the U and also the V demodulators are steered into PNP emitters. One collector current of each PNP pair is mirrored and balanced against its twin giving push-pull current sources for driving the ACC and the identification filter capacitors.

The identification detector is given an internal offset by making the NPN current mirror emitter resistors unequal. The resistors are offset by \(5 \%\) such that the identification detector pulls up on its filter capacitor with zero signal.

\section*{IDENTIFICATION}

See Figure 12 for definitions.
\(\begin{array}{ll}\text { Monochrome } & I_{1}>I_{2} \\ \text { PAL ident. OK } & I_{1}<I_{2} \\ \text { PAL ident. } X & I_{1}>I_{2} \\ \text { NTSC } & I_{3}>I_{2}\end{array}\)
Only for correctly identified PAL signal is the capacitor voltage held low since \(I_{2}\) is then greater than \(I_{1}\).

For monochrome and incorrectly identified PAL signals \(I_{1}>I_{2}\) hence voltage \(V_{C C}\) rises with each burst gate pulse.

When \(\mathrm{V}_{\text {ref }}\) is exceeded by 0.7 V latch 1 is made conducting which increases rate of voltage rise on C . Maximum current is limited by \(\mathrm{R}_{1}\).

When \(\mathrm{V}_{\text {ref }} 2\) is exceeded by 0.7 V then latch 2 is made conducting until C is completely discharged and the current drops to a value insufficient to hold on latch 2.
As latch 2 turns on latch 1 must turn off.
Latch 2 turning on gives extra trigger pulse to bistable to correct identification.
The inhibit line on latch 2 restricts latch 2 conduction to alternate lines as controlled by the bistable. This function allows the SECAM switching line to inhibit the bistable operation by firing latch 2 in the correct phase for SECAM. For NTSC latch 2 is fired by current injected on Pin 6.

If the voltage on C is greater than 1.4 V then the saturation is held down. Only for SECAM/NTSC with latch 2 on or correctly identified PAL can the saturation control be anywhere but minimum.

\section*{NTSC SWITCH}

NTSC operation is selected when current \(\left(l_{3}\right)\) is injected into Pin 6.
On the TDA3301 this current must be derived externally by connecting Pin 6 to +12 V via a resistor (as on TDA3300B).

On the TDA3303 \(I_{3}\) is supplied internally when \(\mathrm{V}_{40}\) falls below 8.0 V ;
For normal PAL operation on both versions Pin 40 should be connected to +12 V and Pin 6 to the filter capacitor.

FIGURE 12 - IDENTIFICATION CIRCUIT


COLOR DIFFERENCE MATRIXING, COLOR KILLING, AND CHROMA BLANKING

During picture time the two demodulators feed simple RC filters with emitter follower outputs. Color killing and blanking is performed by lifting these outputs to a voltage above the maximum value that the color difference signal could supply.

The color difference matrixing is performed by 2 differential amplifiers each with one side split to give the correct values of the \(-(B-Y)\) and \(-(R-Y)\) signals. These are added to give the ( \(\mathrm{G}-\mathrm{Y}\) ) signal.

The 3 color difference signals are then taken to the virtual earths of the video output stages together with luminance signal.

FIGURE 13 - COLOR DIFFERENCE STAGES


\section*{SANDCASTLE SELECTION}

The TDA3301/3303 may be used with a two level sandcastle and a separate frame pulse to Pin 28, or with only a 3 level (super) sandcastle. In the latter case a resistor of \(1 \mathrm{M} \Omega\) is necessary from +12 volts to \(\operatorname{Pin} 28\) and a 470 pF capacitor from Pin 28 to ground.

FIGURE 14 －TIMING DIAGRAM

\section*{TIMING COUNTER FOR SAMPLE CONTROL}

In order to control the beam current sampling at the beginning of each frame scan two edge triggered flipflops are used.

The output \(\bar{A}\) of the first flip-flop \(A\) is used to clock the second flip-flop B. Clocking of A by the burst gate is inhibited by a count of \(A \cdot \bar{B}\).

The count sequence can only by initiated by the trail-
ing edge of the frame pulse. In order to provide control signals for:
Luma/Chroma blanking,
Beam current sampling,
On-screen display blanking,
Brilliance control.
The appropriate flip-flop outputs are matrixed with sandcastle and frame signals by an emitter follower matrix.


\section*{ON-SCREEN DISPLAY INPUTS}

Each section of the OSD stages consists of a common emitter input stage feeding a diversion gate controlled by the contrast control. During burst gate time a feedback loop is activated which clamps the signal at the
input coupling capacitor. This ensures that the current in the diversion gate is zero at black level and makes the OSD black level insensitive to contrast control, also the inputs ignore signals below black, e.g. sync, pulses.

FIGURE 16 - OSD STAGE


\section*{FIGURE 17 - VIDEO OUTPUT SECTION}

Each video output stage consists of a feedback amplifier in which the input signal is a current drive to the virtual earth from the luminance, color difference and on-screen display stages.

A further drive current is used to control the dc operating point; this is derived from the sample and hold stage which samples the beam current after frame flyback.


FIGURE 18 - COMPLETE VIDEO OUTPUT SECTIONS



FIGURE 20 - CLASS A VIDEO OUTPUT STAGE WITH DIRECT FEEDBACK




This device will accept a PAL or NTSC composite video signal and output the three color signals, needing only a simple driver amplifier to interface to the picture tube.

Its simplified approach makes it particularly suitable for low cost CTV systems.
- No Oscillator Adjustment Required
- Four dc High Impedance User Controls
- Uses Inexpensive 4.43/3.58 MHz Crystals
- Interfaces With TDA3030B SECAM Adaptor
- Uses Horizontal Flyback or Super Sandcastle Pulse
- Single 12 V Supply
- Low Dissipation

\section*{TV COLOR PROCESSOR}

Uses Inexpensive 4.43/3.58 MHz Crystals



P SUFFIX
PLASTIC PACKAGE CASE 724-03

FIGURE 1 - PIN ASSIGNMENT


MAXIMUM RATINGS ( \(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise stated)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Pin & Value & Unit \\
\hline Supply Voltage & 20 & 14 & Vdc \\
\hline Operating Temperature Range & & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Pin & Min & Typ & Max & Unit \\
\hline Supply Voltage Supply Current & 20 & \[
10.8
\] & \[
12
\] & \[
\begin{gathered}
13.2 \\
50
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline Composite Video Input Video Input Resistance Burst Gate On Off & 17 &  & \[
\begin{aligned}
& 1.0 \\
& 5.0 \\
& 1.5
\end{aligned}
\] & - & \[
\begin{gathered}
\mathrm{Vp}-\mathrm{p} \\
\mathrm{k} \Omega \\
\mathrm{M} \Omega
\end{gathered}
\] \\
\hline Chroma Input (Burst) Input Resistance ACC Effectiveness & \[
\begin{gathered}
22 \\
22 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10 \\
-1.5
\end{gathered}
\] & \[
\begin{gathered}
100 \\
5.0 \\
0 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
200 \\
-1.5 \\
\hline
\end{array}
\] & \(\mathrm{mVp}-\mathrm{p}\) k \(\Omega\) dB \\
\hline \begin{tabular}{l}
Luminance Gain between Pin 17 and Outputs (Contrast max) \\
Luminance Bandwidth ( -3.0 dB ) \\
Output Resistance \\
Residual Carrier ( 4.43 MHz ) \\
PAL Offset (H/2)
\end{tabular} & 12, 13, 14 & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 5.0 \\
& 170 \\
& -
\end{aligned}
\] & \[
\begin{gathered}
- \\
\bar{Z} \\
200 \\
50
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{MHz} \\
\Omega \\
\mathrm{mVp}-\mathrm{p} \\
\mathrm{mVp}-\mathrm{p}
\end{gathered}
\] \\
\hline U Input Sensitivity for 5.0 V Blue Output & 5 & - & 340 & - & \(\mathrm{mVp}-\mathrm{p}\) \\
\hline Matrix Error & 12, 13, 14 & - & - & 10 & \% \\
\hline Oscillator Capture Range & & 300 & 500 & - & Hz \\
\hline U Reference Phase Error & & - & - & 5.0 & 。 \\
\hline V Reference Phase Error & & - & - & 5.0 & 。 \\
\hline Color Kill Attenuation & 12, 13, 14 & 50 & - & - & dB \\
\hline Contrast Tracking Luma/Chroma & 12, 13, 14 & - & 0 & 2.0 & dB \\
\hline \[
\begin{aligned}
& \text { Sandcastle Slice Level } \\
& \text { Burst Gate } \\
& \text { Line Blanking } \\
& \text { R Input } V_{15}>7.0 \mathrm{~V} \\
& \mathrm{~V}_{15}<7.0 \mathrm{~V}
\end{aligned}
\] & 15 & - 0 & \[
\begin{aligned}
& 7.2 \\
& 1.5 \\
& 5.0 \\
& 10 \\
& \hline
\end{aligned}
\] & 8.0
2.5
- & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mathrm{k} \Omega \\
\mathrm{k} \Omega
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{INPUT/OUTPUT FUNCTIONS}

FIGURE 2 - BRIGHTNESS CONTROL


FIGURE 3 - SATURATION CONTROL VOLTAGE
\(V_{2}\) (VOLTS)


Pin 2 is automatically pulled to ground with a misidentified PAL signal.
Note: Nominal \(100 \%\) saturation point is given by choice of \(R_{\text {pin }} 23\) which sets ACC operating point.

FIGURE 4 - CONTRAST CONTROL



Pin 21 is also used to select NTSC when \(V_{21}<8.0 \mathrm{~V}\) and thus the control will operate only in this mode. NTSC selection means the PAL phase switching is turned off. Delay-line and filter switching must be implemented externally.

FIGURE 6 - BLOCK DIAGRAM


\section*{CIRCUIT OPERATION}

\section*{CHROMINANCE DECODER SECTION}

The chrominance decoder section of the TDA3330 consists of the following blocks:
Phase-locked reference oscillator - Figures 7, 8 and 9 Phase-locked 90 degree servo loop - Figures 9 and 10 U and V axis decoders
ACC detector and identification detector - Figure 11
Identification circuits and PAL bistable - Figure 12
Color difference filters and matrixes with fast blanking circuits.
The major design considerations apart from optimum performance were:
- a minimum number of factory adjustments
- a minimum number of external components
- compatibility with the SECAM adapter TDA3030B
- low dissipation
- use of a standard 4.433618 MHz crystal rather than a 2.0 fc crystal with divider, (or standard 3.579545 MHz for NTSC).

\section*{REFERENCE REGENERATION}

The crystal VCO is of the phase shift variety in which the frequency is controlled by varying the phase of the feedback. Much care was taken to ensure that the oscillator loop gain and the crystal loading impedance were held constant in order to ensure that the circuit functions well with low grade crystals ( crystals having high magnitude spurious responses can cause bad phase jitter). It is also necessary to ensure that the gain at third harmonic is low enough to ensure absence of oscillation at this frequency.
By referring to Figures 7 and 8 it can be seen that the necessary \(\pm 45^{\circ}\) phase shift is obtained by variable addition of two currents \(I_{1}\) and \(I_{2}\) which are then fed into the load resistance of the crystal tuned circuit \(\mathrm{R}_{1}\). Feedback is taken from the crystal load capacitance which gives a voltage VF lagging the crystal current by \(90^{\circ}\).
The RC network in 01 collector causes \(\mathrm{I}_{1}\) to lag the collector current of Q1 by \(45^{\circ}\).
For SECAM operation the currents \(I_{1}\) and \(I_{2}\) are added together in a fixed ratio giving a frequency close to nominal.
When decoding PAL there are two departures from normal chroma reference regeneration practice:
a) The loop is locked to the burst entering from the PAL delay line matrix \(U\) channel and hence there is no alternating component. A small improvement in signal noise ratio is gained but more important is that the loop filter is not compromised by the 7.8 kHz component normally required at this point for PAL identification.

FIGURE 7 - VOLTAGE CONTROLLED OSCILLATOR (VCO)


FIGURE 8 - VECTOR DIAGRAM FOR VCO

b) The \(\mathrm{H} / 2\) switching of the oscillator phase is carried out before the phase detector. This implies any error signal from the phase detector is a signal at 7.8 kHz and not DC. A commutator at the phase detector output also driven from the PAL bistable converts this AC signal to a DC prior to the loop filier. The purpose of this is that constant offsets in the phase detector are converted by the commutator to a signal at 7.8 kHz which is integrated to zero and does not give a phase error.
When used for decoding NTSC the bistable is inhibited, and slightly less accurate phasing is achieved; however, as a hue control is used on NTSC this cannot be considered to be serious disadvantage.

\section*{\(90^{\circ}\) REFERENCE GENERATION}

To generate the \(U\) axis reference a variable all-pass network is utilized in a servo loop. The output of the allpass network is compared with the oscillator output with a phase detector of which the output is filtered and corrects the operating point of the variable all-pass network. (See Figure 10.)

As with the reference loop the oscillator signal is taken after the \(\mathrm{H} / 2\) phase switch and a commutator inserted before the filter so that constant phase detector errors are cancelled.
For SECAM operation with TDA3030B the loop filter is grounded causing near zero phase shift so that the two synchronous detectors work in phase and not in quadrature.
The use of a 4.4 MHz oscillator and a servo loop to generate the required \(90^{\circ}\) reference signal allows the use of a standard, high volume, low cost crystal and gives an extremely accurate \(90^{\circ}\) which may be easily switched to \(0^{\circ}\) for decoding AM SECAM generated by the TDA3030B adapter.

FIGURE 9 - BLOCK DIAGRAM OF REFERENCE SECTION


\section*{ACC AND IDENTIFICATION DETECTORS}

During burst gate time the output components of the \(U\) and also the V demodulators are steered into PNP emitters. One collector current of each PNP pair is mirrored and balanced against its twin giving push pull current sources for driving the ACC and the identification filter capacitors.
The identification detector is given an internal offset by making the NPN current mirror emitter resistors unequal. The resistors are offset by \(5 \%\) such that the identification detector pulls up on its filter capacitor with zero signal.

\section*{IDENTIFICATION}

See Figure 12 for definitions.
Monochrome \(\quad I_{1}>I_{2}\)
PAL ident. OK \(\quad I_{1}<I_{2}\)
PAL ident. \(X \quad I_{1}>I_{2}\)
NTSC \(\quad I_{3}>I_{2}\)
Only for correctly identified PAL signal is the capacitor voltage held low since \(I_{2}\) is then greater than \(I_{1}\).

FIGURE 10 - VARIABLE ALL-PASS NETWORK


For monochrome and incorrectly identified PAL signals \(I_{1}>I_{2}\) hence voltage \(V_{C}\) rises with each burst gate pulse.

When \(\mathrm{V}_{\text {ref }} 1\) is exceeded by 0.7 V latch 1 is made conducting which increases rate of voltage rise on C . Maximum current is limited by \(\mathrm{R}_{1}\).

When \(\mathrm{V}_{\text {ref }} 2\) is exceeded by 0.7 V then latch 2 is made conducting until C is completely discharged and the current drops to a value insufficient to hold on latch 2.
As latch 2 turns on latch 1 must turn off.
Latch 2 turning on gives extra trigger pulse to bistable to correct identification.

The inhibit line on latch 2 restricts latch 2 conduction to alternate lines as controlled by the bistable. This function allows the SECAM switching line to inhibit the bistable operation by firing latch 2 in the correct phase for SECAM. For NTSC latch 2 is fired by current \(\left(I_{3}\right)\) injected into Pin 3 by the NTSC switch. This is supplied internally when \(\mathrm{V}_{21}\) falls below 8.0 V .

If the voltage on C is greater than 1.4 V then the saturation is held down. Only for SECAM/NTSC with latch 2 on or correctly identified PAL can the saturation control be anywhere but minimum.

FIGURE 11 - ACC AND IDENTIFICATION DETECTORS


FIGURE 12 - IDENTIFICATION CIRCUIT


\section*{COLOR DIFFERENCE MATRIXING, COLOR KILLING, AND CHROMA BLANKING}

During picture time the two demodulators feed simple RC filters with emitter follower outputs. Color killing and blanking is performed by lifting these outputs to a voltage above the maximum value that the color difference signal could supply.

The color difference matrixing is performed by 2 differential amplifiers each with one side split to give the correct values of the - \((B-Y)\) and \(-(R-Y)\) signals. These are added to give the ( \(\mathrm{G}-\mathrm{Y}\) ) signal.
The 3 color difference signals are then taken to the virtual earths of the video output stages together with luminance signal.


\section*{SANDCASTLE SECTION}

The input signal is sliced at 2 levels, 1.5 V and 7.2 V . Above 1.5 V is used for blanking, above 7.2 V for burst gating provided level on Pin 16 is below 0.7 V . If a normal Sandcastle is used, it is recommended to ground the

Pin 16. This input is used to inhibit the burst gate. This is used if a true Sandcastle is not available; in this case horizontal flyback may be used instead and differentiated flyback applied to the \(\frac{d f}{d t}\) pin (input resistance \(1.0 \mathrm{k} \Omega\) ).

FIGURE 14 - DC REFERENCE AND BLANKING SECTION


The DC Reference and Blanking section is used to bias the Video output stages. The temperature coefficient is arranged to be a \(V_{B E}\) drift less than the Red, Green and Blue outputs.

FIGURE 15 - TYPICAL PAL APPLICATION


FIGURE 16 - TYPICAL NTSC APPLICATION
 recommendations.
\(\mathbf{R}_{1}\) - Should be selected to give approximately 10-12 V pulse at Pin 15 (approximately 5.0 k internal resistance).
\(\mathbf{R}_{2}\) - Should be selected to give approximately 4.0 to 5.0 V pulse at Pin 15 (approximately 10 k internal resistance).


FIGURE 1 - PIN ASSIGNMENT


MAXIMUM RATINGS \(\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise stated)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Pin & Value & Unit \\
\hline Supply Voltage & 39 & 14 & Vdc \\
\hline Operating Temperature Range & & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right.\) )
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Pin & Min & Typ & Max & Unit \\
\hline Supply Voltage & 14 & 10.8 & 12 & 13.2 & V \\
\hline Chroma Input & 16 & 10 & 100 & 200 & \begin{tabular}{c}
mVp Vp \\
(burst)
\end{tabular} \\
\hline ACC Effectiveness & & 1 & - & 1.2 & 3.0 \\
\hline Matrix Error & & - & - & 10 & \(\%\) \\
\hline Oscillator Capture Range & & 350 & - & - & Hz \\
\hline U Ref. Phase Error & & - & - & 5.0 & 0 \\
\hline V Ref. Phase Error & & & - & - & 5.0 \\
\hline U Input Sensitivity for 1.0 Vp-p & (B-Y) Output & 5 & - & 70 & - \\
\hline Max Output (Limiting) & B-Y & 12 & - & 4.2 & - \\
& R-Y & 13 & - & 2.4 & - \\
\hline DC Output & B-Y & 12 & - & 9.2 & - \\
& R-Y & 13 & - & 10.1 & - \\
\hline Output Resistance & B-Y & 12 & - & 100 & - \\
\hline
\end{tabular}

FIGURE 2 - BLOCK DIAGRAM


FIGURE 3 - SATURATION CONTROL VOLTAGE


FIGURE 4 - HUE CONTROL


Note: Hue control acts only during burst gating with
\(\mathrm{V}_{15}<8\) Volts.
This condition also selects NTSC mode

\section*{CHROMINANCE DECODER SECTION}

The chrominance decoder consists of the following blocks:
Phase-locked reference oscillator - Figures 5, 6, and 7
Phase-locked 90 degree servo loop - Figures 7 and 8
U and V axis decoders
ACC detector and identification detector - Figure 9
Identification circuits and PAL bistable - Figure 10
Color difference filters and matrixes with fast blanking circuits.
The major design considerations apart from optimum performance were:
- a minimum number of factory adjustments
- a minimum number of external components
- compatibility with the SECAM adapter TDA3030B
- low dissipation
- use of a standard 4.433618 MHz Crystal rather than a 2.0 fc Crystal with divider.

\section*{REFERENCE REGENERATION}

The Crystal VCO is of the phase shift variety in which the frequency is controlled by varying the phase of the feedback. A great deal of care was taken to ensure that the oscillator loop gain and the Crystal loading impedance were held constant in order to ensure that the circuit functions well with low grade Crystals (Crystals having high magnitude spurious responses can cause bad phase jitter). It is also necessary to ensure that the gain at third harmonic is low enough to ensure absence of oscillation at this frequency.

By referring to Figures 5 and 6 it can be seen that the necessary \(\pm 45^{\circ}\) phase shift is obtained by variable addition of two currents \(I_{1}\) and \(I_{2}\) which are then fed into the load resistance of the Crystal tuned circuit \(\mathrm{R}_{1}\). Feedback is taken from the Crystal load capacitance which gives a voltage VF lagging the Crystal current by \(90^{\circ}\).

The RC network in \(\mathrm{T}_{1}\) collector causes \(\mathrm{I}_{1}\) to lag the collector current of \(T_{1}\) by \(45^{\circ}\).

For SECAM operation the currents \(\mathrm{I}_{1}\) and \(\mathrm{I}_{2}\) are added together in a fixed ratio giving a frequency close to nominal.

When decoding PAL there are two departures from normal chroma reference regeneration practice:
a) The loop is locked to the burst entering from the PAL delay line matrix \(U\) channel and hence there is no alternating component. A small improvement in signal/noise ratio is gained but more important

FIGURE 5 - VOLTAGE CONTROLLED OSCILLATOR (VCO)


FIGURE 6 - VECTOR DIAGRAM FOR VCO

is that the loop filter is not compromised by the 7.8 kHz component normally required at this point for PAL identification.
b) The \(\mathrm{H} / 2\) switching of the oscillator phase is carried out before the phase detector. This implies any error signal from the phase detector is a signal at 7.8 kHz and not dc. A commutator at the phase detector output also driven from the PAL bistable converts this ac signal to a dc prior to the loop filter. The purpose of this is that constant offsets in the phase detector are converted by the commutator to a signal at 7.8 kHz which is integrated to zero and does not give a phase error.
When used for decoding NTSC the bistable is inhibited, and slightly less accurate phasing is achieved; however, as a hue control is used on NTSC, this cannot be considered to be a serious disadvantage.

FIGURE 7 - BLOCK DIAGRAM OF REFERENCE SECTION


To generate the \(U\) axis reference a variable all-pass network is utilized in a servo loop. The output of the allpass network is compared with the oscillator output with a phase detector of which the output is filtered and corrects the operating point of the varible all-pass network (see Figure 8).
As with the reference loop the oscillator signal is taken after the \(\mathrm{H} / 2\) phase switch and a commutator inserted before the filter so that constant phase detector errors are cancelled.

For SECAM operation the loop filter is grounded causing near zero phase shift so that the two synchronous detectors work in phase and not in quadrature.

The use of a 4.4 MHz oscillator and a servo loop to generate the required \(90^{\circ}\) reference signal allows the use of a standard, high volume, low cost crystal and gives an extremely accurate \(90^{\circ}\) which may be easily switched to \(0^{\circ}\) for decoding AM SECAM generated by the TDA3030B Adapter.

\section*{ACC AND IDENTIFICATION DETECTORS}

During burst gate time the output components of the \(U\) and also the \(V\) demodulators are steered into PNP emitters. One collector current of each PNP pair is mirrored and balanced against its twin giving push-pull

FIGURE 8 - VARIABLE ALL-PASS NETWORK

current sources for driving the ACC and the identification filter capacitors.
The identification detector is given an internal offset by making the NPN current mirror emitter resistors unequal. The resistors are offset by \(5 \%\) such that the identification detector pulls up on its filter capacitor with zero signal.

\section*{IDENTIFICATION}

> Monochrome \(l_{1}>l_{2}\)
> PAL ident. OK \(\mathrm{I}_{1}<\mathrm{l}_{2}\)
> \(\begin{array}{ll}\text { PAL ident. } X \quad I_{1}>I_{2} \\ \text { NTSC }\end{array}\)

Only for correctly identified PAL signal is the capacitor voltage held low since \(I_{2}\) is then greater than \(I_{1}\).

For monochrome and incorrectly identified PAL signals \(I_{1}>I_{2}\) hence voltage \(V_{C}\) rises with each burst gate pulse.
When \(\mathrm{V}_{\text {ref }}\) is exceeded by 0.7 V latch 1 is made conducting which increases rate of voltage rise on C . Maximum current is limited by \(\mathrm{R}_{1}\).
When \(\mathrm{V}_{\text {ref }}\) is exceeded by 0.7 V then latch 2 is made conducting until C is completely discharged and the current drops to a value insufficient to hold on latch 2.
As latch 2 turns on latch 1 must turn off.
Latch 2 turning on gives extra trigger pulse to bistable to correct identification.

The inhibit line on latch 2 restricts latch 2 conduction to alternate lines as controlled by the bistable. This function allows the SECAM switching line to inhibit the bistable operation by firing latch 2 in the correct phase for SECAM. For NTSC latch 2 is fired by current injected
externally on the filter capacitor.
If the voltage on C is greater than 1.4 V then the saturation is held down. Only for SECAM/NTSC with latch 2 on or correctly identified PAL can the saturation control be anywhere but minimum.

FIGURE 9 - ACC AND IDENTIFICATION DETECTORS


FIGURE 10 - IDENTIFICATION CIRCUIT


NTSC switch operates when \(\mathrm{V}_{15}<8.0 \mathrm{~V}\).

\section*{COLOR DIFFERENCE MATRIXING, COLOR KILLING,}

\section*{AND CHROMA BLANKING}

During picture time the two demodulators feed simple RC filters with emitter follower outputs. Color killing and blanking is performed by lifting these outputs to a voltage above the maximum value that the color difference signal could supply.

The R-Y and B-Y demodulators have equal conversion gains. The demodulated signals are therefore fed through differential amplifiers with a gain ratio \(G(B-Y) / G(R-Y)\) \(=1.78\) in order to give correctly proportioned \(B-Y\) and \(R-Y\) signals at the output.

\section*{FIGURE 11 - COLOR DIFFERENCE STAGES}


\section*{FIGURE 12 - TYPICAL PAL APPLICATION}



In Brief...

Motorola Linear has established itself as the leader in custom bipolar integrated circuits in the American and European automotive markets. These products are key elements in the rapidly growing engine control and body electronics portions of modern automobiles. Today, based on this new technology, Motorola offers a wide array of standard products to serve the broad base of manufacturers who support this industry. These products range from rugged high current "smart" fuel injector drivers which control and protect the fuel management system, through the rigors of the underhood environment, to the latest in BiMOS switches and series transient protectors. Several devices are targeted to support microprocessor housekeeping and data line protection. A wide range of packaging is available, from die and SOICs for high density layouts, to low thermal resistance multi-pin, single-in-line types for high power control ICs.
Selector Guide
Voltage Regulators ..... 10-2
Electronic Ignition ..... 10-2
Special Functions ..... 10-2
Alphanumeric Index ..... 10-4
Related Application Notes ..... 10-4
Data Sheets ..... 10-5

\section*{Automotive Electronic Circuits}
Voltage Regulators ..... 10-2
Electronic Ignition ..... 10-2
Special Functions ..... 10-2
Automotive High-Side Driver Switch ..... 10-3
Universal Microprocessor Power Supply Controller ..... 10-3
Automotive Direction Indicator ..... 10-3

\section*{Voltage Regulators}
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & & \multicolumn{1}{c|}{\begin{tabular}{c} 
Case \\
Suffix
\end{tabular}} & Device \\
\hline Automotive Voltage Regulator & \begin{tabular}{l} 
Designed for use with NPN Darlington, Overvoltage Protection; \\
"Open Sense" Shut Down; Selectable Temperature Coefficient for \\
Use in a Floating Field Alternator Charging System
\end{tabular} & \(\mathrm{P} / 646\) & MC3325 \\
\hline Low Dropout Voltage Regulator & \begin{tabular}{l} 
Positive fixed and adjustable output voltage regulators which \\
maintain regulation with very low input to output voltage \\
differential.
\end{tabular} & Z/29, & LM2931,C \\
\hline Low Dropout Dual Regulator & \begin{tabular}{l} 
Positive low voltage differential regulator which features dual 5 V \\
outputs, with currents in excess of 750 mA and 10 mA standby, \\
and a low quiescent current of 3 mA or less.
\end{tabular} & T/314D & LM2935 \\
\hline
\end{tabular}

\section*{Electronic Ignition}
\begin{tabular}{|l|l|c|c|}
\hline Electronic Ignition Circuit & \begin{tabular}{l} 
Designed for Use in High Energy Variable Dwell Electronic Ignition \\
Systems with Variable Reluctance Sensors. Dwell and Spark Energy \\
are Externally Adjustable
\end{tabular} & \begin{tabular}{c} 
P/626, \\
D/751
\end{tabular} & MC3334 \\
\hline \begin{tabular}{l} 
Flip-Chip Electronic \\
Ignition Circuit
\end{tabular} & \begin{tabular}{l} 
Same as MC3334 - Mirror Image Die for Inverted "Bumped" \\
Mounting to Substrate
\end{tabular} & - & MCCF3334 \\
\hline
\end{tabular}

\section*{Special Functions}
\begin{tabular}{|l|l|l|c|}
\hline Injector Driver & \begin{tabular}{l} 
Power Driver for Automotive Fuel Injection Systems, \\
Reduced Hold Current MC3484S2-2 Amps \\
MC3484S4-4 Amps
\end{tabular} & S/314D & MC3484 \\
\hline Transient Suppressor & Series Transient, opens circuit to protect & T/314D & MC33999T \\
\hline High Side Driver Switch & \begin{tabular}{l} 
Drives loads from positive side of power supply and protects \\
against high-voltage transients.
\end{tabular} & T/221A, & MC3397T \\
\hline Automotive Direction Indicator & \begin{tabular}{l} 
Detects defective lamps and protects against overvoltage and short \\
circuit hazards.
\end{tabular} & P/626 & UAA1041 \\
\hline Peripheral Clamping Array & Protects up to six MPU I/O lines against voltage transients. & 626 & TCF6000 \\
\hline \begin{tabular}{l} 
Pressure Transducer \\
Amplifier
\end{tabular} & \begin{tabular}{l} 
Consists of 2 Low Power Operational amplifiers with identical \\
characteristics, except for the outputs.
\end{tabular} & 626, D/751 & TCF7000 \\
\hline
\end{tabular}

\author{
Automotive High-Side Driver Switch \\ MC3399T - \(\mathrm{T}_{\mathrm{J}}=-40^{\circ}\) to \(+150^{\circ} \mathrm{C}\), Case 314 D
}

The MC3399T is a High-Side Driver Switch that is designed to drive loads from the positive side of the power supply. The output is controlled by a TTL compatible Enable pin. In the ON state, the device exhibits very low saturation voltages for load currents in excess of 750 mA . The device also protects the load from positive or negative going high voltage transients by becoming an open circuit and isolating the transient for its duration from the load.

\section*{Universal Microprocessor Power Supply Controller}

TCA5600- \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+75^{\circ} \mathrm{C}\), Case 707

This device is a versatile power supply control circuit for microprocessor based systems and mainly intended for automotive applications and battery powered instruments. To cover a wide range of applications, the device offers high circuit flexibility with minimum of external components.

Functions included in this IC are a temperature compensated voltage reference, on-chip dc/dc converter, programmable and remote controlled voltage regulator, fixed 5.0 V supply voltage regulator with external PNP power device, undervoltage detection circuit, power-on RESET delay and watchdog feature for orderly microprocessor operations.

\section*{Automotive Direction Indicator}

UAA1041, \(D-T_{A}=-40^{\circ}\) to \(+100^{\circ} \mathrm{C}\), Case 626, 751
... designed for use in conjunction with a relay in automotive applications. It is also applicable for other warning lamps like "handbrake on" etc.
- Defective Lamp Detection
- Overvoltage Protection
- Short Circuit Detection and Relay Shutdown to Prevent Risk of Fire
- Reverse Battery Connection Protection
- Integrated Suppression Clamp Diode


\section*{AUTOMOTIVE ELECTRONIC CIRCUITS \\ VOLTAGE REGULATORS}
\begin{tabular}{|c|c|c|}
\hline Device & Function & Page \\
\hline LM2931 Series MC3325 & Low Dropout Voltage Regulator Automotive Voltage Regulator & \begin{tabular}{l}
See Chapter 3 \\
........ 10-5
\end{tabular} \\
\hline
\end{tabular}

\section*{ELECTRONIC IGNITION}
\begin{tabular}{|c|c|c|}
\hline Device & Function & Page \\
\hline MC3334 & High Energy Ignition Circuit & 10-9 \\
\hline MCC3334 & High Energy Ignition Circuit & 10-9 \\
\hline MCCF3334 & High Energy Ignition Circuit & 10-9 \\
\hline
\end{tabular}

SPECIAL FUNCTIONS
\begin{tabular}{|c|c|c|}
\hline Device & Function & Page \\
\hline MC3397T & Transient Suppressor & 10-13 \\
\hline MC3399T & Automotive High Side Driver Switch & 10-16 \\
\hline \[
\begin{aligned}
& \text { MC3484S2-1, } \\
& \text { MC3484S4-1 }
\end{aligned}
\] & Integrated Solenoid Driver & 10-19 \\
\hline TCA5600 & Universal Microprocessor Power Supply Controller & See Chapter 3 \\
\hline TCF6000 & Peripheral Clamping Array. & See Chapter 7 \\
\hline TCF7000 & Pressure Transducer Amplifier & 10-25 \\
\hline UAA1041 & Automotive Direction Indicator & 10-27 \\
\hline
\end{tabular}

\section*{RELATED APPLICATION NOTES}
\begin{tabular}{lll}
\begin{tabular}{l} 
Application \\
Note
\end{tabular} & Title \\
AN840 & Temperature Compensation Methods for the Motorola X-Ducer \\
& Pressure Sensor Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . TCF7000
\end{tabular}


\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Current Into Pins 5, 6, and 7 & \(\mathrm{I}_{5,6, \text { or } 7}\) & 50 & mA \\
\hline Current Into Pin 3 & \(\mathrm{I}_{3}\) & 20 & mA \\
\hline Current Into Pin 4 & \(\mathrm{I}_{4}\) & 20 & mA \\
\hline Current Into Pin 2 & \(\mathrm{I}_{2}\) & 120 & mA \\
\hline Current Into Pin 8 & \(\mathrm{I}_{8}\) & 50 & mA \\
\hline Current Into Pin 9 & \(\mathrm{I}_{9}\) & 50 & mA \\
\hline Current Into Pin 10 & \(\mathrm{I}_{10}\) & 50 & mA \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Diode TC Adjust: Threshold Voltage on Pin 8 (Figure 1) & \(\mathrm{V}_{8}\) & 7.9 & - & 8.95 & V \\
\hline Battery Sense: Threshold Voltage on Pin 5 (Figure 1) & \(\mathrm{V}_{5}\) & 11.8 & - & 13.45 & V \\
\hline Battery Sense: Threshold Voltage on Pin 6 (Figure 1) & \(\mathrm{V}_{6}\) & 11.1 & - & 12.75 & V \\
\hline Battery Sense: Threshold Voltage on Pin 7 (Figure 1) & \(\mathrm{V}_{7}\) & 10.5 & - & 11.9 & V \\
\hline Battery Sense Loss Detect: Threshold Current Into Pin 4 (Figure 2) & 14 & - & - & 600 & \(\mu \mathrm{A}\) \\
\hline Battery Sense Loss Detect: Threshold Voltage at Pin 4 \(\left(I_{4} \leqslant 400 \mu \mathrm{~A}\right.\), Figure 2) & \(\mathrm{V}_{4}\) & 1.3 & - & 1.7 & V \\
\hline Overvoltage Sense: Threshold Current Into Pin 3 (Figure 2) & \({ }^{3}\) & - & - & 600 & \(\mu \mathrm{A}\) \\
\hline Overvoltage Sense: Threshold Voltage at Pin 3 ( \(\mathrm{I}_{3} \leqslant 400 \mu \mathrm{~A}\), Figure 2) & \(\mathrm{V}_{3}\) & 6.7 & - & 9.0 & V \\
\hline Output Drive Adjust: Voltage Drop from Pin 2 to Pin 10 \(\left(I_{2}=10 \mathrm{~mA}\right.\), Figure 3) & \(\mathrm{V}_{2}\) & 1.9 & - & 2.4 & V \\
\hline Low State Output Voltage at Pin 10 \(\left(I_{3}=12 \mathrm{~mA}, \mathrm{I}_{2}=120 \mathrm{~mA}\right.\), Figure 4) & \(\mathrm{V}_{10}\) & - & - & 0.7 & v \\
\hline
\end{tabular}

TEST CIRCUITS

\section*{FIGURE 1}


FIGURE 2


FIGURE 4


*Note: The temperature coefficient of the battery voltage sense terminal is determined by the number of diodes used in the diode string (i.e., whether Pin 5,6 , or 7 is used). The approximate temperature coefficient for a diode at 1.0 mA is \(-2.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}\), and for a zener diode it is \(+3.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). Counting from ground (see circuit schematic) we have -2.0 mV for Q5, -2.0 mV for Q4, +3.0 mV for \(\mathrm{Z1},-8.0 \mathrm{mV}\) for D5 thru D8, and an additional -2.0 mV each for D9 and D10 if used. The total temperature coefficient can be varied from approximately \(-9.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) to \(-13 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) depending on the number of the diodes in the diode string that are utilized.

\section*{APPLICATIONS CIRCUIT INFORMATION}

\section*{(See Figure 5)}

R1 Determines the temperature coefficient by setting the value of current in the diode string. As the value of R1 decreases, so does the effective TC. R1 should be chosen so that the current in the diode string is between 0.5 mA and 1.0 mA .
R5 This resistor determines the \(\mathrm{V}_{\text {reg }}\) voltage as defined by the following equation:
\[
\begin{aligned}
& V_{\text {reg }}=\left(1+\frac{R 5}{R 1}\right) 8.4+\left(n+\frac{R 5}{5 K}\right)(0.7) \\
& n=\text { number of diodes used in diode string } \\
& \quad(4 \leqslant n \leqslant 6)
\end{aligned}
\]

R4 Used as a current limiting resistor on Pin 4 in case of an open battery voltage sense lead.
R3 Used as a current limiting resistor on Pin 3 in case of overvoltage at the diode trio. Voltage at Pin 3 will run approximately 7.5 volts. R3 should be chosen so that the current \(\left(I_{3}\right)\) at maximum over-
voltage is between 2.0 mA and 6.0 mA .
R2 This resistor determines the output drive current. Refer to specifications for the darlington driver and select the value for R2 that will provide enough drive to the output when the diode trio voltage is at a minimum.
\[
I_{\text {Drive }} \cong \frac{V_{\min }-2.8 \mathrm{~V}}{R 2+50 \Omega}
\]

R6 This resistor in conjunction with R3 is used to set the threshold of overvoltage action.
Threshold \(\cong \frac{\mathrm{R} 3+\mathrm{R} 6}{\mathrm{R} 6}\) (7.5)
R7 Used for compensation
(Approximately \(3.0 \mathrm{k} \Omega\) )
C1, Used for compensation
C2 (Approximately \(0.01 \mu \mathrm{~F}\) )

\section*{(4) \\ MOTOROLA}


MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage - Steady State Transient 300 ms or less & \(\mathrm{V}_{\text {BATT }}\) & \[
\begin{aligned}
& 24 \\
& 90
\end{aligned}
\] & Volts \\
\hline Output Sink Current - Steady State Transient 300 ms or less & lout & \[
\begin{array}{r}
300 \\
1.0
\end{array}
\] & \begin{tabular}{l}
mA \\
Amps
\end{tabular} \\
\hline Junction Temperature & \(T_{J}(\) max \()\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {A }}\) & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Dissipation, Package Derate above \(25^{\circ} \mathrm{C}\) & PD & \[
\begin{gathered}
1.25 \\
10
\end{gathered}
\] & Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

HIGH ENERGY IGNITION CIRCUIT
SILICON MONOLITHIC INTEGRATED CIRCUIT


FIGURE 1 - BLOCK DIAGRAM AND TYPICAL APPLICATION


ELECTRICAL CHARACTERISTICS ( \(T_{A}=-40\) to \(+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BA}} T \mathrm{~T}=13.2 \mathrm{Vdc}\), circuit of Figure 1 , unless noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Internal Supply Voltage, Pin 6
\[
\begin{aligned}
\mathrm{V}_{\mathrm{BATT}}= & 4.0 \mathrm{Vdc} \\
& 8.0 \mathrm{Vdc} \\
& 12.0 \\
& 14.0
\end{aligned}
\] & \(V_{C C}\) & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
3.5 \\
7.2 \\
10.4 \\
11.8
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & Vdc \\
\hline Ignition Coil Current Peak, Cranking RPM \(2.0-27 \mathrm{~Hz}\)
\[
\begin{aligned}
\mathrm{V}_{\mathrm{BATT}}= & 4.0 \mathrm{Vdc} \\
& 6.0 \\
& 8.0 \\
& 10.0
\end{aligned}
\] & lo(pk) & \[
\begin{aligned}
& 3.0 \\
& 4.0 \\
& 4.6 \\
& 5.1
\end{aligned}
\] & \[
\begin{aligned}
& 3.4 \\
& 5.2 \\
& 5.3 \\
& 5.4
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & A pk \\
\hline Ignition Coil Current Peak, Normal RPM
\[
\text { Freq. } \begin{aligned}
& 33 \mathrm{~Hz} \\
& 133 \mathrm{~Hz} \\
& 200 \mathrm{~Hz} \\
& 267 \mathrm{~Hz} \\
& 333 \mathrm{~Hz}
\end{aligned}
\] & \(\mathrm{l}_{\mathrm{o}}(\mathrm{pk})\) & \[
\begin{aligned}
& 5.1 \\
& 5.1 \\
& 4.2 \\
& 3.4 \\
& 2.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 5.5 \\
& 5.4 \\
& 4.4 \\
& 3.4
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & A pk \\
\hline Ignition Coil On-Time, Normal RPM Range
\[
\begin{aligned}
& \text { Freq. }= 33 \mathrm{~Hz} \\
& 133 \mathrm{~Hz} \\
& 200 \mathrm{~Hz} \\
& 267 \mathrm{~Hz} \\
& 333 \mathrm{~Hz}
\end{aligned}
\] & \(t_{0}\) & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 5.0 \\
& 4.0 \\
& 3.0 \\
& 2.3
\end{aligned}
\] & \[
\begin{gathered}
14.0 \\
5.9 \\
4.6 \\
3.6 \\
2.8
\end{gathered}
\] & ms \\
\hline Shutdown Voltage & \(V_{\text {BATT }}\) & 25 & 30 & 35 & Vdc \\
\hline \begin{tabular}{l}
Input Threshold (Static Test) \\
Turn-on \\
Turn-off
\end{tabular} & \(\mathrm{V}_{\mathrm{S} 2}-\mathrm{V}_{\mathrm{S} 1}\) & - & \[
\begin{gathered}
360 \\
90
\end{gathered}
\] & - & \(m V d c\) \\
\hline Input Threshold Hysteresis & \(\mathrm{V}_{\mathrm{S} 2}-\mathrm{V}_{\mathrm{S} 1}\) & 75 & - & - & mVdc \\
\hline \begin{tabular}{l}
Input Threshold (Active Operation) \\
Turn-on \\
Turn-off
\end{tabular} & \(\mathrm{v}_{\text {S } 2}\) & \[
-
\] & \[
\begin{aligned}
& 1.8 \\
& 1.5
\end{aligned}
\] & \[
-
\] & Vdc \\
\hline Total Circuit Lag from \(\mathrm{t}_{\mathbf{s}}\) (Figure 1) until Ignition Coil Current Falls to 10\% & & - & 60 & 120 & \(\mu \mathrm{S}\) \\
\hline Ignition Coil Current Fall Time ( \(90 \%\)-10\%) & & - & 4.0 & - & \(\mu \mathrm{S}\) \\
\hline \[
\begin{aligned}
& \text { Saturation Voltage I.C. Output (Pin 7) (RDRIVE }=100 \Omega) \\
& \begin{aligned}
V_{B A T T}= & 10 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \\
& 50 \mathrm{Vdc}
\end{aligned}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{CE} \text { (sat) }}\) & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 120 \\
& 280 \\
& 540
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \(m \mathrm{Vdc}\) \\
\hline Current Limit Reference, Pin 8 & \(V_{\text {ref }}\) & 120 & 160 & 190 & mVdc \\
\hline
\end{tabular}

FIGURE 2 - IGNITION COIL CURRENT versus FREQUENCY/PERIOD


The MC3334 high energy ignition circuit was designed to serve aftermarket Delco five terminal ignition applications. This device, driving a high voltage Darlington transistor, offers an ignition system which optimizes spark energy at minimum power dissipation. The IC is pinned out to permit thick film or printed circuit module design without any crossovers.

\section*{CIRCUIT DESCRIPTION}

The basic function of an ignition circuit is to permit build-up of current in the primary of a spark coil, and then to interrupt the flow at the proper firing time. The resulting flyback action in the ignition coil induces the required high secondary voltage needed for the spark. In the simplest systems, fixed dwell angle produces a fixed duty cycle, which can result in too little stored energy at high RPM, and/or wasted power at low RPM. The MC3334 uses a variable dc voltage reference, stored on CDWELL, and buffered to the bottom end of the reluctor pickup (S1) to vary the duty cycle at the spark coil. At high RPM, the MC3334 holds the output "off" for approximately 1.0 ms to permit full energy discharge from the previous spark; then it switches the output Darlington transistor into full saturation. The current ramps up at a slope dictated by \(\mathrm{V}_{\mathrm{BA}}\) and the coil L . At very high RPM the peak current may be less than desired, but it is limited by the coil itself.
As the RPM decreases, the ignition coil current builds up and would be limited only by series resistance losses. The MC3334 provides adjustable peak current regulation sensed by \(\mathrm{R}_{\mathrm{S}}\) and set by \(\mathrm{R}_{\mathrm{D} 1}\), in this case at 5.5 A, as shown in Figure 2. As the RPM decreases further, the coil current is held at 5.5 A for a short period. This provides a reserve for sudden acceleration, when discharge may suddenly occur earlier than expected. The peak hold period is about \(20 \%\) at medium RPM, decreasing to about 10\% at very low RPM. (Note: 333 \(\mathrm{Hz}=5000\) RPM for an eight cylinder four stroke engine.) At lower VBATT, the "on" period automatically stretches to accommodate the slower current build-up. At very low VBATT and low RPM, a common condition during cold starting, the "on" period is nearly the full cycle to permit as much coil current as possible.
The output stage of the IC is designed with an OVP circuit which turns it on at \(\mathrm{V}_{\mathrm{BATT}} \approx 30 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}} \approx 22 \mathrm{~V}\right)\), holding the output Darlington off. This protects the IC and the Darlington from damage due to load dump or other causes of excessive \(\mathrm{V}_{\mathrm{BAT}}\).

\section*{COMPONENT VALUES}

PICKUP - series resistance \(=800 \Omega \pm 10 \% @ 25^{\circ} \mathrm{C}\) inductance \(=1.35 \mathrm{H} @ 1.0 \mathrm{kHz} @ 15\) Vrms.
COIL - leakage \(L=0.6 \mathrm{mH}\)
primary \(\mathrm{R}=0.43 \Omega \pm 5 \% @ 25^{\circ} \mathrm{C}\)
primary \(\mathrm{L}=7.5\) to \(8.5 \mathrm{mH} @ 5.0 \mathrm{~A}\)
\(\mathrm{R}_{\mathrm{L}} \quad\) - load resistor for pick-up \(=10 \mathrm{k} \Omega \pm 20 \%\)
\(R_{A}, R_{B}\) - input buffer resistors, provide additional transient protection to the already clamped inputs \(=20 \mathrm{k} \pm 20 \%\)
C1, C2 - for reduction of high frequency noise and spark transients induced in pick-up and leads; optional and non-critical
RBATT - provides load dump protection (but small enough to allow operation at \(\mathrm{V}_{\text {BATT }}=\) \(4.0 \mathrm{~V})=300 \Omega \pm 20 \%\)
CFILTER - transient filter on \(\mathrm{V}_{\mathrm{CC}}\), non-critical
CDWELL - stores reference, circuit designed for 0.1 \(\mu \mathrm{F} \pm 20 \%\)
\(\mathrm{R}_{\mathrm{GAIN}}-\mathrm{R}_{\mathrm{GAIN}} / \mathrm{R}_{\mathrm{D} 1}\) sets the dc gain of the current regulator \(=5.0 \mathrm{k} \pm 20 \%\)
\(R_{D 2} \quad-R_{D 2} / R_{D 1}\) set up voltage feedback from \(R_{S}\)
\(R_{S} \quad-\) sense resistor (PdAg in thick film techniques) \(=0.075 \Omega \pm 30 \%\)
RDRIVE - low enough to supply drive to the output Darlington, high enough to keep \(\mathrm{V}_{\mathrm{CE}}\) (sat) of the IC below Darlington turn-on during load dump \(=100 \Omega \pm 20 \%\), 5.0 W
\(\mathrm{R}_{\mathrm{D} 1}\) - starting with \(35 \Omega\) assures less than 5.5 A , increasing as required to set 5.5 A
\[
\mathrm{R}_{\mathrm{D} 1}=\frac{\mathrm{l}_{\mathrm{o}(\mathrm{pk})} \mathrm{R}_{\mathrm{S}}-\mathrm{V}_{\mathrm{ref}}}{\frac{\mathrm{~V}_{\mathrm{ref}}}{R_{\mathrm{D} 2}}-\frac{1.4}{R_{\mathrm{GAIN}}}} \approx 100 \Omega \text { (nom) }
\]

\section*{GENERAL LAYOUT NOTES}

The major concern in the substrate design should be to reduce ground resistance problems. The first area of concern is the metallization resistance in the power ground to module ground and the output to the RDRIVE resistor. This resistance directly adds to the \(\mathrm{V}_{\text {CE }}\) (sat) of the IC power device and if not minimized could cause failure in load dump. The second concern is to reference the sense ground as close to the ground end of the sense resistor as possible in order to further remove the sensitivity of ignition coil current to ground I.R. drops.
All versions were designed to provide the same pinout order viewed from the top (component side) of the board or substrate. This was done to eliminate conductor cross-overs. The standard MC3334 plastic device is numbered in the industry convention, counter-clockwise viewed from the top. The MCC3334 chip version is made from the same die artwork, so it is also counterclockwise viewed from the top, or bonding pad side. The MCCF3334 "flip" or "bump" chip is made from reversed artwork, so it is numbered clockwise viewed from its bump side. Since this chip is mounted face down, the resulting assembly still has the same counterclockwise order viewed from above the component surface. All chips have the same size and bonding pad spacing. See Figure 4 for dimensions.

FIGURE 3 - INTERNAL SCHEMATIC


FIGURE 4 - MCCF3334 IGNITION CIRCUIT BUMP SIDE VIEW


\section*{Product Preview}

The MC3397T is a Series Switch Transient Protection Circuit. Under normal operating voltage conditions, the device acts as a saturated series pass element with a very low voltage drop for load currents in excess of 750 mA . In the event of an over voltage condition ( \(\geqslant 17.5 \mathrm{~V}\) typ) or high voltage transient of either positive or negative polarity, the MC3397T instantaneously switches to an open circuit (OFF) state, interrupting power to the load and protecting the load during this potentially destructive condition. The device will immediately recover to an ON state when supply voltages fall within the normal operating range.

The MC3397T is fabricated on a power BiMOS process which combines the best features of Bipolar and MOS technologies. The mixed technology provides higher gain PNP output devices and results in Power Integrated Circuits with reduced quiescent current.

The device operates in its ON state over a wide power supply voltage range of 4.0 V to 16 V and can withstand voltage transients (positive or negative) of \(\pm 125 \mathrm{~V}\). A rugged PNP output stage along with active clamp circuitry, current limit and thermal shutdown permits driving of all types of loads including inductive. The MC3397T is specified over a wide junction temperature of \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and is ideally suited for industrial and automotive applications where harsh environments exist.
- Transient Protection Up to \(\pm 125 \mathrm{~V}\)
- Load Currents in Excess of 750 mA
- Low Switch Voltage Drop
- Low Quiescent Current
- Fast Shutdown and Recovery Response to Transients
- On-Chip Current Limit and Thermal Shutdown Circuitry
- Capacitor May Be Used to Support Load During Transient

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Input Voltage - Continuous & \(\mathrm{V}_{\text {in }}\) & \(\pm 85\) & Vdc \\
\hline \[
\begin{aligned}
\text { Input Voltage - Transient }(\mathrm{t} & =100 \mathrm{~ms}) \\
(\mathrm{t} & =1.0 \mathrm{~ms})
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{in}(\mathrm{t})}\) & \(\pm 125\) & V \\
\hline Output Current & Io & Internally Limited & A \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Ambient
\[
{ }^{T} C=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Case
\end{tabular} & \begin{tabular}{l}
PD \\
\({ }^{1 / \theta J A}\) \\
\(\theta\) JA \\
PD \\
1/OJA \\
\(\theta\) JA
\end{tabular} & \[
\begin{gathered}
2.0 \\
16 \\
62.5 \\
25 \\
200 \\
5.0 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature Range & TJ & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{SERIES SWITCH TRANSIENT PROTECTION CIRCUIT}

SILICON MONOLITHIC INTEGRATED CIRCUIT


BLOCK DIAGRAM



This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {in }}=+12 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA},-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant+125^{\circ} \mathrm{C}\right.\) unless otherwise noted)*
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Minimum Operating Voltage & \(\mathrm{V}_{\text {in }}(\) min \()\) & - & 2.5 & 4.5 & V \\
\hline Quiescent Current
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=+4.5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{L}}=500 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=+12 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{L}}=750 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=+16 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{B}}\) & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 8.0 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 30 \\
& 50 \\
& \hline
\end{aligned}
\] & mA \\
\hline Switch Voltage Drop
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=+4.5 \mathrm{~V} \\
& \mathrm{~L}=500 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=+12 \mathrm{~V} \\
& \mathrm{~L}_{\mathrm{L}}=750 \mathrm{~mA}, \mathrm{~V}_{\text {in }}=+16 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{v}_{\text {in }}-\mathrm{v}_{\mathrm{O}}\) & - & \[
\begin{aligned}
& 175 \\
& 300 \\
& 425 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 500 \\
& 750 \\
& \hline
\end{aligned}
\] & mV \\
\hline Output Current Limit
\[
\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}
\] & Isc & 0.8 & 1.5 & 2.5 & A \\
\hline Output Leakage Current
\[
36 \mathrm{v}<\mathrm{v}_{\text {in }} \leqslant 55 \mathrm{v}, \mathrm{v}_{\mathrm{O}}=0 \mathrm{v}
\] & \({ }^{\prime}\) Leak & - & 10 & - & mA \\
\hline Over Voltage Shutdown Threshold
\[
\mathrm{I}_{\mathrm{L}} \leqslant 100 \mu \mathrm{~A}
\] & \(\mathrm{v}_{\text {in }}(\mathrm{OV})\) & 16 & 17.25 & 18.5 & v \\
\hline \begin{tabular}{l}
Output Turn-Off Delay Time \\
\(\left(T_{J}=+25^{\circ} \mathrm{C}\right.\) ) to Over Voltage Condition, \(\mathrm{V}_{\text {in }}\) stepped from 12 V to 40 V \\
\(\mathrm{V} \leqslant 0.9 \mathrm{~V}_{\mathrm{O}}\) (Figure 2)
\end{tabular} & \({ }^{\text {t DLY }}\) (OV) & - & 14 & - & \(\mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
Output Recovery Delay Time ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) \\
\(\mathrm{V}_{\text {in }}\) stepped from 40 V to \(12 \mathrm{~V}, \mathrm{~V} \geqslant 0.9 \mathrm{~V}_{\mathrm{O}}\) (Figure 2)
\end{tabular} & trcvy & - & 7.0 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}
\({ }^{*}\) Typical Values Represent Characteristics of Operation at \(T_{J}=+25^{\circ} \mathrm{C}\).

FIGURE 1 - TRANSIENT RESPONSE TEST CIRCUIT


NOTE:
*Depending on Load Current and Transient Duration, an Output Capacitor ( \(\mathrm{C}_{\mathrm{O}}\) ) of sufficient value may. be used to hold up Output Voltage during the Transient, and absorb Turn-off Delay Voltage Overshoot.

\section*{MC3397T}

FIGURE 2 - RESPONSE TIME DIAGRAM


FIGURE 3 - SWITCH DROP versus LOAD CURRENT


FIGURE 4 - QUIESCENT CURRENT versus LOAD CURRENT


\section*{Advance Information}

\section*{AUTOMOTIVE HIGH-SIDE DRIVER SWITCH}

The MC3399T is a High-Side Driver Switch that is designed to drive loads from the positive side of the power supply. The output is controlled by a TTL compatible Enable pin. In the ON state, the device exhibits very low saturation voltages for load currents in excess of 750 mA . The device also protects the load from positive or negative going high voltage transients by becoming an open circuit and isolating the transient for its duration from the load.
The MC3399T is fabricated on a power BIMOS process which combines the best features of Bipolar and MOS technologies. The mixed technology provides higher gain PNP output devices and results in Power Integrated Circuits with reduced quiescent current.
The device operates over a wide power supply voltage range and can withstand voltage transients (positive or negative) of \(\pm 100\) V. A rugged PNP output stage along with active clamp circuitry, current limit and thermal shutdown permits driving of all types of loads including inductive. The MC3399T is specified over a wide junction temperature of \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and is ideally suited for industrial and automotive applications where harsh environments exist.
- Low Switch Voltage Drop
- Load Currents in Excess of 750 mA
- Low Quiescent Current
- Transient Protection Up to \(\pm 100 \mathrm{~V}\)
- TTL Compatible Enable Input
- On-Chip Current Limit and Thermal Shutdown Circuitry

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Ignition Input Voltage - Continuous & VIGN & \[
\begin{aligned}
& +25 \\
& -12
\end{aligned}
\] & Vdc \\
\hline \[
\begin{aligned}
& \text { Ignition Input Voltage - Transient } \\
& t-100 \mathrm{~ms} \\
& t=1.0 \mathrm{~ms}
\end{aligned}
\] & VIGN & \[
\begin{gathered}
\pm 60 \\
\pm 100
\end{gathered}
\] & V \\
\hline Input Voltage & \(v_{\text {in }}\) & -0.3 to +7.0 & V \\
\hline Output Current & Io & internally Limited & A \\
\hline \begin{tabular}{l}
Power Dissipation and Thermal Characteristics
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Ambient
\[
\mathrm{T}^{\mathrm{C}} \mathrm{C}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}\) \\
Thermal Resistance Junction to Case
\end{tabular} & \begin{tabular}{l}
PD \\
1/期 \\
\({ }^{\text {JJA }}\) \\
PD \\
1/日JA \\
\({ }^{\theta}\) JA
\end{tabular} & \[
\begin{gathered}
2.0 \\
16 \\
65 \\
25 \\
200 \\
5.0
\end{gathered}
\] & \begin{tabular}{l}
Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C} / \mathrm{W}\) Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \({ }^{\circ} \mathrm{C} / \mathrm{W}\)
\end{tabular} \\
\hline Operating Junction Temperature Range & TJ & -40 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


This document contains information on a new product. Specifications and information herein are subject to change without notice.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{IGN}}=+12 \mathrm{~V}, \mathrm{IL}=150 \mathrm{~mA},-40^{\circ} \mathrm{C} \leqslant \mathrm{TJ}_{\mathrm{J}}=+125^{\circ} \mathrm{C}, \mathrm{V}\right.\) Input \(=" 1\) " unless noted)*
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Operating Voltage & \(\mathrm{V}_{\mathrm{IGN}}(\mathrm{min})\) & 4.5 & - & - & V \\
\hline Switch Voltage Drop (Saturation) & \(\mathrm{V}_{\text {IGN }} \mathrm{V}^{\text {V }}\) &  & \[
\begin{aligned}
& 0.2 \\
& 0.3 \\
& 0.3 \\
& 0.3 \\
& 0.3 \\
& 0.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.5 \\
& 0.7 \\
& 0.7 \\
& 0.7
\end{aligned}
\] & V \\
\hline Quiescent Current
\[
\begin{array}{rlrl}
V_{I G N}=12 \mathrm{~V} I_{\mathrm{O}} & =150 \mathrm{~mA} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\
\mathrm{I}_{\mathrm{O}} & =550 \mathrm{~mA} & \mathrm{TJ}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \\
\mathrm{I}_{\mathrm{O}} & =300 \mathrm{~mA} \quad \mathrm{~T}_{J}=125^{\circ} \mathrm{C}
\end{array}
\] & IGND & I & \[
\begin{aligned}
& 12 \\
& 25 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
50 \\
100 \\
50
\end{gathered}
\] & mA \\
\hline Output Current Limit
\[
\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}
\] & Isc & - & 1.6 & 2.5 & A \\
\hline Output Leakage Current
\[
\text { VIGN }=12 \mathrm{~V} \text {, Input }=" 0^{\prime \prime}
\] & Leak & - & 10 & 150 & \(\mu \mathrm{A}\) \\
\hline Input Voltage High Logic State Low Logic State & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\] & 2.0 & - & \(\overline{0.8}\) & v \\
\hline \begin{tabular}{l}
Input Current \\
High Logic State ( \(\mathrm{V}_{1 \mathrm{H}}=5.5 \mathrm{~V}\) ) \\
Low Logic State ( \(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\) )
\end{tabular} & \[
\begin{aligned}
& \mathrm{IIH}_{1} \\
& \mathrm{IIL}^{2}
\end{aligned}
\] & - & \[
\begin{gathered}
120 \\
20
\end{gathered}
\] & - & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Output Turn-On Delay Time \\
Input \(="{ }^{\prime \prime} 0^{\prime \prime} \rightarrow{ }^{\prime} 1, " \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) (Figures 1 and 2 )
\end{tabular} & \({ }^{\text {t }}\) LLY(on) & - & 50 & - & \(\mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
Output Turn-Off Delay Time \\
Input \(=" 1 " \rightarrow " 0, " T_{J}=+25^{\circ} \mathrm{C}\) (Figures 1 and 2)
\end{tabular} & \({ }^{\text {t }} \mathrm{DLY}\) (off) & - & 5.0 & - & \(\mu \mathrm{s}\) \\
\hline Over Voltage Shutdown Threshoid & \(\left.\mathrm{V}_{\text {in( }} \mathrm{OV}\right)\) & 26 & 31 & 36 & V \\
\hline Output Turn-Off Delay Time ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) to Over Voltage Condition, \(\mathrm{V}_{\text {in }}\) stepped from 12 V to 40 V , \(\mathrm{V} \leqslant 0.9 \mathrm{~V}_{\mathrm{O}}\) (Figures 1 and 2) & toly & - & 2.0 & - & \(\mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
Output Recovery Delay Time ( \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\) ) \\
\(\mathrm{V}_{\mathrm{IGN}}\) stepped from 40 V to \(12 \mathrm{~V}, \mathrm{~V} \geqslant 0.9 \mathrm{~V}_{\mathrm{O}}\) (Figures 1 and
\end{tabular} & trevy & - & 5.0 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

NOTE:
*Typical Values Represent Characteristics of Operation at \(\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}\).

FIGURE 1 - TRANSIENT RESPONSE TEST CIRCUIT


NOTE:
*Depending on Load Current and Transient Duration, an Output Capacitor ( \(\mathrm{C}_{\mathrm{O}}\) ) of sufficient value may be used to hold up Output Voltage during the Transient, and absorb Turn-off Delay Voltage Overshoot.

FIGURE 2 - RESPONSE TIME DIAGRAM


FIGURE 3 - SWITCH VOLTAGE DROP versus LOAD CURRENT


FIGURE 4 - QUIESCENT CURRENT versus LOAD CURRENT


\section*{INTEGRATED SOLENOID DRIVER}

The MC3484 is an integrated monolithic solenoid driver. Its typical function is to apply full battery voltage to fuel injector(s) for rapid current rise, in order to produce positive injector opening. When load current reaches a preset level (4.0 A in MC3484S4 or 2.4 A in MC3484S2) the injector driver reduces the load current by a 4 -to- 1 ratio and operates as a constant current supply. This condition holds the injector open and reduces system dissipation. Other solenoid or relay applications could be served by the MC3484. Two high impedance inputs are provided which permit a variety of control options and can be driven by TTL or CMOS logic.
- Microprocessor Compatible Inputs
- On-Chip Power Device
\[
\begin{array}{lll}
\text { MC3484S2-1 } & \text { 2.4 A Peak } & \text { 0.6 A Sustain } \\
\text { MC3484S4-1 } & \text { 4.0 A Peak } & \text { 1.0 A Sustain }
\end{array}
\]
- Low Thermal Resistance to Grounded Tab - R QJC \(=2.5^{\circ} \mathrm{C} / \mathrm{W}\)
- Overvoltage Protection Cutoff
- Low Saturation Voltage - \(\mathrm{V}_{\text {CE(sat) }}=1.6 \mathrm{~V}\) Typ ( ( 4.0 A
- Uncompromised Performance \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) Junction Temperature
- Fully Functional from \(\mathrm{V}_{\text {bat }}=4.0 \mathrm{~V}\) to 24 V
- High \(\mathrm{V}_{\mathrm{CEO}}(\mathrm{sus})=42 \mathrm{~V}\) min (" ISUSTAIN
- Alternate Lead Forms are Available
\begin{tabular}{|c|}
\hline SOLENOID DRIVER \\
2.4 A - S2 \\
4.0 A - S4 \\
SILICON MONOLITHIC \\
INTEGRATED CIRCUIT \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION } \\
\hline Device & \begin{tabular}{c} 
Tested Ambient \\
Temperature Range
\end{tabular} & \begin{tabular}{c} 
Peak \\
Current
\end{tabular} \\
\hline MC3484S2-1 & -40 to \(+85^{\circ} \mathrm{C}\) & 2.4 A \\
\hline \(\mathrm{MC} 3484 \mathrm{~S} 4-1\) & -40 to \(+85^{\circ} \mathrm{C}\) & 4.0 A \\
\hline
\end{tabular}

FIGURE 1 - TYPICAL APPLICATION
Single Injector with Overvoltage Protection at \(30 \mathrm{~V}\left(\mathrm{~V}_{\text {bat }}\right)\)


\section*{MC3484S2-1, MC3484S4-1}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage (V \({ }_{\text {bat }}\) ) & \(\mathrm{V}_{\text {bat }}\) & 24 & Volts \\
\hline Input (Pin 1) & \(\mathrm{V}_{\text {in }}\) & -6.0 to +24 & V \\
\hline Control (Pin 2) & \(\mathrm{V}_{\text {cont }}\) & 0 to +5.0 & V \\
\hline Internal Regulator (Pin 5) & - & 50 & mA \\
\hline Junction Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature (Tab Temperature) \({ }^{\circ}\) & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +105 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\text {Stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance, Junction to Case & \(\theta_{\mathrm{JC}}\) & 2.5 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\text {bat }}=12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=-40^{\circ}\right.\) to \(+85^{\circ} \mathrm{C}\), test circuit of Figure 2, unless noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Characteristic} & Symbol & Min & Typ & Max & Unit \\
\hline Output Peak Current & \[
\begin{aligned}
& \text { S4-1 } \\
& \text { S2-1 }
\end{aligned}
\] & Ipk(sense) & \[
\begin{aligned}
& 3.6 \\
& 1.7
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 2.4
\end{aligned}
\] & \[
\begin{aligned}
& 5.2 \\
& 2.9
\end{aligned}
\] & A \\
\hline Output Sustaining Current & & \(\mathrm{I}_{\text {sus }}\) & \[
\begin{aligned}
& 0.95 \\
& 0.50
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 0.7
\end{aligned}
\] & A \\
\hline \(\mathrm{V}_{\text {CEO }}\) (sus) \({ }^{(11} 2.0 \mathrm{~A}\) & & - & 42 & 50 & - & V \\
\hline \begin{tabular}{l}
Output Voltage in Saturated Mode \\
S2 (a 1.5 A \\
S4 (11 3.0 A
\end{tabular} & & \(\mathrm{V}_{\text {out }}\) & - & \[
\begin{aligned}
& 1.2 \\
& 1.6
\end{aligned}
\] & - & v \\
\hline Internal Regulated Voltage (V) \({ }_{\text {CC }}\), Figure 2) & & \(\mathrm{V}_{\text {reg }}\) & - & 7.1 & - & V \\
\hline Input "On" Threshold Voltage & & \(v_{\text {on }}\) & - & 1.4 & 2.0 & V \\
\hline Input "Off" Threshold Voltage & & \(V_{\text {off }}\) & 0.7 & 1.3 & - & v \\
\hline Input "On" Current ( \(11 \mathrm{~V}_{1}=2.0 \mathrm{Vdc}\) (a \(\mathrm{V}_{\mathrm{I}}=5.0 \mathrm{Vdc}\) & & lin & \[
-
\] & \[
\begin{gathered}
50 \\
220
\end{gathered}
\] & - & \(\mu \mathrm{A}\) \\
\hline Control "On" Threshold Voltage (Pin 2) & & \(\mathrm{V}_{\text {cont }}\) & - & 1.5 & - & V \\
\hline Control "On" Current & & 1 in2 & - & 75 & - & \(\mu \mathrm{A}\) \\
\hline Control Pin Impedance & & \(\mathrm{V}_{1}\) Low & - & 10 & - & kS2 \\
\hline Input Turn On Delay & & \(\mathrm{t}_{\mathrm{i}}\) & - & 0.5 & - & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{I}_{\mathrm{pk}}\) sense to \(\mathrm{I}_{\text {sus }}\) delay & & \(\mathrm{t}_{\mathrm{p}}\) & - & 60 & - & \(\mu \mathrm{s}\) \\
\hline Control Signal Delay & & \(t_{t}\) & - & 15 & - & \(\mu \mathrm{s}\) \\
\hline Input Turn Off from Saturated Mode Delay & & \(t_{s}\) & - & 1.0 & - & \(\mu \mathrm{s}\) \\
\hline Input Turn Off from Sustain Mode Delay & & \(t_{d}\) & - & 0.2 & - & \(\mu \mathrm{s}\) \\
\hline Output Voltage Rise Time & & \(t_{v}\) & - & 0.4 & - & \(\mu \mathrm{s}\) \\
\hline Output Current Fall Time & \[
\begin{aligned}
& 2.0 \mathrm{~A} \\
& 4.0 \mathrm{~A}
\end{aligned}
\] & \(\mathrm{t}_{\mathrm{f}}\) & - & \[
\begin{aligned}
& \hline 0.3 \\
& 0.6 \\
& \hline
\end{aligned}
\] & \[
-
\] & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}


\section*{GENERAL INFORMATION}

Inductive actuators such as automotive electronic fuel injectors, relays, solenoids and hammer drivers can be powered more efficiently by providing a high current drive until actuation (pull-in) occurs and then decreasing the drive current to a level which will sustain actuation. Pull-in and especially drop-out times of the actuators are also improved.

The fundamental output characteristic of the MC3484 provides a low impedance saturated power switch until the load current reaches a predetermined high-current level and then changes to a current source of lower magnitude until the device is turned off. This output characteristic allows the inductive load to control its actuation time during turn-on while minimizing power and stored energy during the sustain period, thereby promoting a fast turn-off time.

Automotive injectors at present come in two types. The large throttle body injectors have an impedance of about 2.0 mH and \(1.2 \Omega\) and require the MC3484S4 driver. The smaller type, popular world-wide, has an impedance of 4.0 mH and \(2.4 \Omega\) and needs about a 2.0 A pulse for good results. Some designs are planned which employ two of the smaller types in parallel. The inductance of an injector is much larger at low current, decreasing due to armature movement and core saturation to the values above at rated current.

Operating frequencies range from 5.0 Hz to 250 Hz depending on the injector location and engine type. Duty cycle in some designs reaches \(80 \%\).

\section*{APPLICATIONS INFORMATION}

The MC3484 is provided with an input pin (Pin 1) which turns the injector driver "on" and "off." This pin has a nominal trip level of 1.4 V and an input impedance of \(20 \mathrm{k} \Omega\). It is internally protected against negative voltages and is compatible with TTL and most other logic.

There is also a control pin (Pin 2) which may be used as an overvoltage, load dump, shutdown. When a nominal 1.5 V is applied to \(\operatorname{Pin} 2\), via a \(20: 1\) voltage divider the driver and circuit are set in a safe off state at 30 V ( \(V_{\text {bat }}\) ).

Figure 3 shows the operating waveforms for the simplest mode; i.e., with control Pin 2 grounded. When the driver is turned on, the current ramps up to the peak current sense level, where some overshoot occurs because of internal delay. The MC3484 then reduces its output to \(I_{\text {sus. }}\). The fall time of the device is very rapid ( \(\leqslant 1.0 \mu \mathrm{~s}\) ), but the decay of the load current takes 150 to \(220 \mu \mathrm{~s}\), while dumping the load energy into the protection zener clamp. It is essential that the zener voltage

FIGURE 3 - OPERATING WAVEFORMS (Max Frequency 250 Hz, Pin 2 Grounded)

be lower than the \(V_{\text {CEO }}\) (sus), but not so low as to greatly stretch the load current decay time. Without the zener, the discharge of the load energy would be totally into the MC3484, which, for the high current applications, could cause the device to fail. (See SOA, Figure 11.)

Also in Figure 3 is the graphically derived instantaneous power dissipation of the MC3484. It shows that, for practical purposes, the worst case dissipation is less than (Isus) (V \(\mathrm{V}_{\text {bat }}\) ) (duty cycle).

Provided in Figures 3 and 4 are definitions of the switching intervals specified in the Electrical Characteristics. Figure 5 shows that the critical switching parameters stay under control at elevated temperatures.

FIGURE 4 - SWITCHING WAVEFORMS
(Expanded Time Scale)


FIGURE 5 - SWITCHING SPEED versus TEMPERATURE


TYPICAL CHARACTERISTICS
(Unless otherwise noted: Test circuit of Figure 2, \(\mathrm{V}_{\text {bat }}=12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), 250 Hz square wave input)

FIGURE 6 - OUTPUT CURRENT versus TEMPERATURE


FIGURE 7 - SATURATION VOLTAGE


TYPICAL CHARACTERISTICS
(Unless otherwise noted: Test circuit of Figure 2, \(\mathrm{V}_{\text {bat }}=12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), 250 Hz square wave input)


FIGURE 10 - BREAKDOWN VOLTAGE versus TEMPERATURE


FIGURE 9 - OPERATING VOLTAGES



FIGURE 12 - INTERNAL SCHEMATIC


\section*{Advance Information}

\section*{PRESSURE TRANSDUCER AMPLIFIER}

This circuit is ideal for automotive and industrial applications and consists of two low power operational amplifiers with identical characteristics except the outputs which have the following configurations:

\section*{PRESSURE TRANSDUCER}

SILICON MONOLITHIC INTEGRATED CIRCUIT

\section*{AMPLIFIER A - NPN Transistor driving an on-chip current source}

AMPLIFIER B - NPN Transistor with pull-up resistor
- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation 4 to 20 Volts
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Large Output Voltage Swing from Gnd to VCC
- Large Current Drive Capability
- Very Low Input Offset Voltage
- Operating Ambient Temperature Range of \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)


\section*{AMPLIFIER}

INTEGRATED CIRCUIT


FIGURE 1 - TYPICAL APPLICATION


ELECTRICAL CHARACTERISTICS (at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
Power Supply Output \\
Short Circuit Duration \\
Source Current (Amp. A) \\
Sink Current \\
High Voltage at \(\mathrm{I}_{\mathrm{L}}=-5.0 \mathrm{~mA}(\mathrm{Amp} . \mathrm{A})\) \\
Low Voltage at \(\mathrm{I}_{\mathrm{L}}=5.0 \mathrm{~mA}\) \\
Pull Up Resistor (Amp. B)
\end{tabular} & \begin{tabular}{l}
\(V_{C C}\) \\
IL \\
\(\mathrm{V}_{\mathrm{OH} 1}\) \\
VOL
\end{tabular} & \begin{tabular}{l}
\[
4.0
\] \\
3.0 \\
-
\end{tabular} & \[
\begin{gathered}
- \\
\text { Continuous } \\
5.0 \\
50 \\
\mathrm{~V}_{\mathrm{CC}}-0.12 \\
0.12 \\
2.0 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
20 \\
- \\
- \\
- \\
3.0
\end{tabular} & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA} \\
\mathrm{~mA} \\
\mathrm{~V} \\
\mathrm{~V} \\
\text { KOhm }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Input \\
Common Mode Voltage Range \\
Offset Voltage \\
Temperature Coefficient of Offset Voltage \\
Offset Current \\
Bias Current \\
Large Signal Open Loop Gain \\
Bandwidth Unity Gain
\end{tabular} & & \[
1.0
\] & \[
\begin{gathered}
- \\
1.0 \\
2.0 \\
3.0 \\
30 \\
100 \\
100
\end{gathered}
\] & \begin{tabular}{l}
\[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}-1 \\
3.0
\end{gathered}
\] \\
- \\
- \\
-
\end{tabular} & \[
\begin{gathered}
\mathrm{mV} \\
\mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
\mathrm{nA} \\
\mathrm{nA} \\
\mathrm{~V} / \mathrm{mV} \\
\mathrm{kHz}
\end{gathered}
\] \\
\hline Common Mode Rejection & & 50 & 100 & - & dB \\
\hline Power Supply Rejection & & 50 & 80 & - & dB \\
\hline Power Supply Current (Outputs High State) & & - & 2.2 & - & mA \\
\hline
\end{tabular}

FIGURE 2 - OUTPUT CONFIGURATION


\section*{AUTOMOTIVE DIRECTION INDICATOR}
...designed for use in conjunction with a relay in automotive applications. It is also applicable for other warning lamps such as "handbrake ON," etc.
- Defective Lamp Detection
- Overvoltage Protection
- Short Circuit Detection and Relay Shutdown to Prevent Risk of Fire
- Reverse Battery Connection Protection
- Integrated Suppression Clamp Diode


\section*{UAA1041}

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Pin & Value & Unit \\
\hline Current: Continuous/Pulse \({ }^{*}\) & 1 & \(+150 /+500\) & mA \\
& & \(-35 /-5000\) & \\
& 2 & \(+/-350 / 1900\) & \\
& 3 & \(+/-30 / 100\) & \\
\hline Junction Temperature & 8 & \(+/-25 / 50\) & \\
\hline Operating Ambient Temperature Range & \(\mathrm{TJ}_{\mathrm{A}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -60 to +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
*One pulse with an exponential decay and with a time constant of 500 ms .

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{T}_{1}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Battery Voltage Range (normal operation) & \(\mathrm{V}_{\mathrm{B}}\) & 8.0 & - & 18 & V \\
\hline Overvoltage Detector Threshold \(\quad\left(\mathrm{V}_{\text {Pin2 }}-\mathrm{V}_{\text {Pin }}\right)\) & \(\mathrm{D}_{\mathrm{th}}(\mathrm{OV})\) & 19 & 20.2 & 21.5 & V \\
\hline Clamping Voltage \(\quad\left(\mathrm{V}_{\text {Pin2 }}-\mathrm{V}_{\text {Pin1 }}\right)\) & \(\mathrm{V}_{\text {IK }}\) & 29 & 31.5 & 34 & V \\
\hline Short Circuit Detector Threshold \(\quad\left(\mathrm{V}_{\text {Pin2 }}-\mathrm{V}_{\text {Pin7 }}\right)\) & \(\mathrm{D}_{\text {th( }}(\mathrm{SC})\) & 0.63 & 0.7 & 0.77 & V \\
\hline Output Voltage ( \({ }_{\text {relay }}=-250 \mathrm{~mA}\) ) \(\quad\left(\mathrm{V}_{\text {Pin2 }}-\mathrm{V}_{\text {Pin3 }}\right)\) & \(\mathrm{V}_{\mathrm{O}}\) & - & - & 1.5 & V \\
\hline Starter Resistance \(\mathbf{R}_{\text {st }}=\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\text {Lamp }}\) & \(\mathrm{R}_{\text {st }}\) & - & - & 3.6 & k \(\Omega\) + \\
\hline Oscillator Constant (normal operation) & Kn & 1.4 & 1.5 & 1.6 & - \\
\hline Temperature Coefficient of Kn & kn & - & \(-1.5 \times 10^{-3}\) & - & \(1 /{ }^{\circ} \mathrm{C}\) \\
\hline Duty Cycle (normal operation) & - & 45 & 50 & 55 & \% \\
\hline Oscillator Constant - (1 lamp defect of 21 W ) & KF & 0.63 & 0.68 & 0.73 & - \\
\hline Duty Cycle (1 lamp defect of 21 W) & - & 35 & 40 & 45 & \% \\
\hline Oscillator Constant & \[
\begin{aligned}
& \text { K1 } \\
& \text { K2 } \\
& \text { K3 }
\end{aligned}
\] & \[
\begin{gathered}
\hline 0.167 \\
0.25 \\
0.126 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline 0.18 \\
& 0.27 \\
& 0.13 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
0.193 \\
0.29 \\
0.14
\end{gathered}
\] & - \\
\hline \[
\begin{aligned}
& \text { Current Consumption (relay off) } \\
& \text { Pin 1; at } V_{\text {Pin2 }}-V_{\text {Pin1 }}=8.0 \mathrm{~V} \\
&=13.5 \mathrm{~V} \\
&=18 \mathrm{~V}
\end{aligned}
\] & Icc & \[
-2.5
\] & \[
\begin{array}{r}
-0.9 \\
-1.6 \\
-2.2
\end{array}
\] & \begin{tabular}{c}
-1.0 \\
- \\
\hline
\end{tabular} & mA \\
\hline \[
\begin{aligned}
& \text { Current Consumption (relay on) } \\
& \text { Pin 1; at } V_{\text {Pin2 }}-V_{\text {Pin } 1}=8.0 \mathrm{~V} \\
&=13.5 \mathrm{~V} \\
&=18 \mathrm{~V}
\end{aligned}
\] & - & 二 & \[
\begin{aligned}
& -3.8 \\
& -5.6 \\
& -6.9
\end{aligned}
\] & - & mA \\
\hline Defect Lamp Detector Threshold at \(\mathrm{V}_{\text {Pin2 }}\) to \(-\mathrm{V}_{\mathrm{B}}=8.0 \mathrm{~V}\) and \(\mathrm{R}_{3}=220 \Omega\)
\[
\begin{aligned}
& =13.5 \mathrm{~V} \\
& =18 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& V_{\text {Pin2 }}-V_{\text {Pin7 }} \\
& V_{\text {Pin2 }}-V_{\text {Pin7 }} \\
& V_{\text {Pin2 }}-V_{\text {Pin }}
\end{aligned}
\] & \[
\overline{79}
\] & \[
\begin{gathered}
67 \\
85.3 \\
100
\end{gathered}
\] & \(\overline{91}\)
- & mV \\
\hline
\end{tabular}
tSee Note 1 of Application Information

\section*{CIRCUIT DESCRIPTION}

The circuit is designed to drive the direction indicator flasher relay. Figure 2 shows the typical system configuration with the external components. It consists of a network ( \(\mathrm{R} 1, \mathrm{C} 1\) ) to determine the oscillator frequency, shunt resistor \(\left(R_{S}\right)\) to detect defective bulbs and short circuits in the system, and two current limiting resistors ( \(\mathrm{R}_{2} / \mathrm{R}_{3}\) ) to protect the IC against load dump transients. The circuit can be used either with or without shortcircuit detection.

The lightbulbs L2, L3, L4, L5 are the turn signal indicators with the dashboard-light L6. When switch S1 is closed, after a time delay of \(\mathrm{t}_{1}\) (in our example \(\mathrm{t}_{1}=75\) \(\mathrm{ms})\), the relay will be actuated. The corresponding lightbulbs L2, L3 (or L4, L5) will flash at the oscillator frequency, independent of the battery voltage of 8.0 V to 18 V . The flashing cycle stops and the circuit is reset to the initial position when the switch S1 is open.
The circuit features overvoltage, defective lamp and short circuit detection.

\section*{Overvoltage detection:}

Senses the battery voltage. When this voltage exceeds 20.2 V (this is the case when two batteries are connected in series), the relay will be turned off to protect the lightbulbs.

\section*{Lightbulb defect detector:}

Senses the current through the shunt resistor \(R_{S}\). When one of the lightbulbs is defective, the failure is indicated by doubling the flashing frequency.

\section*{Short circuit detector:}

Detects excessive current ( \(I_{s h}>25\) A) flowing in the shunt resistor \(\mathrm{R}_{\mathbf{S}}\). The detection takes place after a time delay of \(\mathrm{t}_{3}\left(\mathrm{t}_{3}=55 \mathrm{~ms}\right)\). In this case, the relay will be turned off. The circuit is reset by switching S1 to the off position.

\section*{Operation with short circuit detection:}

Pin 6 has to be left open and a capacitor \(C_{2}\) has to be connected between Pin 1 and Pin 2.

\section*{Operation without short circuit detection:}

Pin 6 has to be connected to Pin 2 and the use of capacitor \(C_{2}\) is not necessary.

The circuit can also be used for other warning flashers. In our example, handbrake engaged is signaled by the light L1.

\section*{APPLICATION INFORMATION}
1. The flashing cycle is started by closing S1.

The switch position is sensed across resistor \(R_{2}\) and \(R_{\text {Lamp }}\) by input 8.
\(R_{\text {st }}=R_{2}+R_{\text {Lamp }}\).
The condition for the start is: \(\mathrm{R}_{\mathrm{st}}<3.6 \mathrm{k} \Omega\)
For correct operation leakage resistance from Pin 8 to ground must be greater than \(5.6 \mathrm{k} \Omega\).
2. \(f_{n}\) : Flashing frequency: \(f_{n}=\frac{1}{R_{1} C_{1} K_{n}}\)
3. \(\mathrm{f}_{\mathrm{F}}\) : Flashing frequency in the case of one defective lightbulb of 21 W
\(f_{F}=\frac{1}{R_{1} C_{1} K_{F}} K_{n}=2,2 K_{F}\)
4. \(t_{1}\) : delay at the moment when \(S 1\) is closed and first flash \(\mathrm{t}_{1}=\mathrm{K}_{1} \mathrm{R}_{1} \mathrm{C}\)
5. \(t_{2}\) : defective lightbulb detection delay \(t_{2}=K_{2} R_{1} C_{1}\)
6. \(\mathrm{t}_{3}\) : short circuit detection delay \(\mathrm{t}_{3}=\mathrm{K}_{1} \mathrm{R}_{1} \mathrm{C}_{1}\)

In the case of short circuit:
- it is assumed that the voltage \(V_{P i n 2}-V_{P i n 1} \geqslant 8.0\) V .
- The relay will be turned off after delay \(t_{3}\).
- The circuit is reset by switching S1 to the off position.
7. The capacitor C 2 is not obligatory when the short circuit detector is not used. In this case Pin 6 has to be connected to Pin 2.
8. When overvoltage is sensed \(\left(V_{\operatorname{Pin} 2}-V_{\operatorname{Pin} 1}\right)\) the relay is turned off to protect the relay and the lightbulbs against excessive currents.


Relay - Coil Resistance Range 60 to \(800 \Omega\)

Note: Per text connect jumper JU-1 to bypass short circuit detector. C2 may be deleted also.


In Brief...
A variety of other analog circuits are provided for special applications with both bipolar and CMOS technologies. These circuits range from the industrystandard analog timing circuits and multipliers.

Selector Guide

Timing Circuits ..... 11-2
Multipliers ..... 11-2
Alphanumeric Listing ..... 11-3
Related Application Notes ..... 11-3
Data Sheets ..... 11-4

\section*{Other Linear Circuits}

\section*{Timing Circuits}

These highly stable timers are capable of producing accurate time delays or oscillation. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two exter-

\author{
Singles \\ MC1455G, P1, U T \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 601, 626, 693 MC1455BP1 TA \(=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\), Case 626
}

\section*{Multipliers}

\section*{Linear Four-Quadrant Multipliers}

Multipliers are designed for use where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide, square, root-mean-square, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

MC1594L TA \(=-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case 620
MC1494L \(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 620
The MC1594/MC1494 is a Variable Transconductance Multiplier with internal level-shift circuitry and voltage regulator. Scale factor, input offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages are provided to simplify offset adjustment and improve power-supply rejection.
nal resistors and one capacitor. The output structure can source or sink up to 200 mA or drive TTL circuits. Timing intervals from microseconds through hours can be obtained. The typical timing error for the MC1455 is 1.0\%.

\section*{Duals}

MC3556L \(\mathrm{T}_{\mathrm{A}}=-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case 632 MC3456L,P \(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 632, 646

\author{
MC1595L \(\mathrm{T}_{\mathrm{A}}=-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\), Case 632 \\ MC1495L \(T_{A}=0^{\circ}\) to \(+70^{\circ} \mathrm{C}\), Case 632
}
... designed for uses where the output is a linear product of two input voltages. Maximum versatility is assured by allowing the user to select the level shift method. Typical applications include: multiply, divide*, square root,* mean square*, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.
*When used with an operational amplifier.

\section*{OTHER LINEAR CIRCUITS}

\section*{TIMING CIRCUITS}
\begin{tabular}{|c|c|c|}
\hline Device & Function & Page \\
\hline MC1455 & Timing Circuit & . 11-4 \\
\hline MC3456 & Dual Timing Circuit & 11-40 \\
\hline MC3556 & Dual Timing Circuit & 11-40 \\
\hline \multicolumn{3}{|l|}{MULTIPLIERS} \\
\hline Device & Function & Page \\
\hline MC1494L & Four-Quadrant Multiplier & 11-11 \\
\hline MC1495L & Four-Quadrant Multiplier & 11-25 \\
\hline MC1496 & Balanced Modulator-Demodulator & See Chapter 8 \\
\hline MC1594L & Four-Quadrant Multiplier & 11-11 \\
\hline MC1595L & Four-Quadrant Multiplier & . 11-25 \\
\hline MC1596 & Balanced Modulator-Demodulator & See Chapter 8 \\
\hline
\end{tabular}

\section*{RELATED APPLICATION NOTES}
\begin{tabular}{|c|c|c|}
\hline Application Note & Title & Related Device \\
\hline AN489 & Analysis and Basic Operation of the MC1595 & MC1595L \\
\hline AN531 & MC1596 Balanced Modulator & MC1596 \\
\hline
\end{tabular}

\section*{Specifications and Applications Information}

\section*{TIMING CIRCUIT}

The MC1455 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits.
- Direct Replacement for NE555 Timers
- Timing From Microseconds Through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Current Output Can Source or Sink 200 mA
- Output Can Drive MTTL
- Temperature Stability of \(0.005 \%\) per \({ }^{\circ} \mathrm{C}\)
- Normally "On" or Normally "Off" Output

FIGURE 1 - 22-SECOND SOLID-STATE TIME DELAY RELAY CIRCUIT


FIGURE 2 - BLOCK DIAGRAM


\section*{TIMING CIRCUIT}

\section*{SILICON MONOLITHIC} INTEGRATED CIRCUIT


ORDERING INFORMATION
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ Device } & Alternate & \begin{tabular}{c} 
Temperature \\
Range
\end{tabular} & \multicolumn{1}{|c|}{ Package } \\
\hline MC1455G & - & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Metal Can \\
MC1455P1 & NE555V & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
MC1455D & - & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & SO-8 \\
MC1455U & - & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
MC1455BP1 & - & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic DIP \\
\hline
\end{tabular}

MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & +18 & Vdc \\
\hline Discharge Current (Pin 7) & 17 & 200 & mA \\
\hline Power Dissipation (Package & \(\mathrm{P}_{\mathrm{D}}\) & & \\
Limitation) & & 680 & mW \\
Metal Can & & 4.6 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
Derate above \(\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}\) & & 625 & mW \\
Plastic Dual In-Line Package & & 5.0 & \(\mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
Derate above \(\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}\) & & & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating Temperature & \(\mathrm{T}_{\mathrm{A}}\) & & \\
Range (Ambient) & & -40 to +85 & \\
MC1455B & & 0 to +70 & \\
\hline MC1455 & & & \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

FIGURE 3 - GENERAL TEST CIRCUIT


Test Circuit for Measuring dc Parameters: (to set output and measure parameters) a) When \(V_{S} \geqslant 2 / 3 V_{C C}, V_{O}\) is low.
b) When \(V_{S} \leqslant 1 / 3 V_{C C}, V_{O}\) is high
c) When \(\mathrm{V}_{\mathrm{O}}\) is low, pin 7 sinks current. To test for Reset, set \(\mathrm{V}_{\mathrm{O}}\), high, apply Reset voltage, and test for current flowing into pin 7. When Reset is not in use, it should be tied to \(V_{C C}\)

ELECTRICAL CHARACTERISTICS ( \(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}\) to +15 V unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline Operating Supply Voltage Range & \(V_{\text {CC }}\) & 4.5 & - & 16 & V \\
\hline Supply Current
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\
& \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\
& \text { Low State, (Note 1) }
\end{aligned}
\] & ICC & - & \[
\begin{gathered}
3.0 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& 6.0 \\
& 15
\end{aligned}
\] & mA \\
\hline Timing Error (Note 2) \(\mathrm{R}=1.0 \mathrm{k} \Omega\) to \(100 \mathrm{k} \Omega\) Initial Accuracy C \(=0.1 \mu \mathrm{~F}\) Drift with Temperature Drift with Supply Voltage & & \[
-
\] & \[
\begin{aligned}
& 1.0 \\
& 50 \\
& 0.1
\end{aligned}
\] & — &  \\
\hline Threshold Voltage & \(V_{\text {th }}\) & - & 2/3 & - & \(\mathrm{xV}_{\mathrm{CC}}\) \\
\hline Trigger Voltage
\[
\begin{aligned}
& V_{C C}=15 \mathrm{~V} \\
& V_{C C}=5.0 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{T}}\) & - & \[
\begin{gathered}
5.0 \\
1.67
\end{gathered}
\] & - & V \\
\hline Trigger Current & IT & - & 0.5 & - & \(\mu \mathrm{A}\) \\
\hline Reset Voltage & \(\mathrm{V}_{\mathrm{R}}\) & 0.4 & 0.7 & 1.0 & V \\
\hline Reset Current & \(I_{R}\) & - & 0.1 & - & mA \\
\hline Threshold Current (Note 3) & \({ }_{\text {th }}\) & - & 0.1 & 0.25 & \(\mu \mathrm{A}\) \\
\hline Discharge Leakage Current (Pin 7) & Idis & - & - & 100 & nA \\
\hline Control Voltage Level
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{CL}}\) & \[
\begin{aligned}
& 9.0 \\
& 2.6
\end{aligned}
\] & \[
\begin{gathered}
10 \\
3.33
\end{gathered}
\] & \[
\begin{aligned}
& 11 \\
& 4.0
\end{aligned}
\] & V \\
\hline Output Voltage Low
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \\
& I_{\text {sink }}=10 \mathrm{~mA} \\
& I_{\text {sink }}=50 \mathrm{~mA} \\
& I_{\text {sink }}=100 \mathrm{~mA} \\
& I_{\text {sink }}=200 \mathrm{~mA} \\
& \left(\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \\
& I_{\text {sink }}=8.0 \mathrm{~mA} \\
& I_{\text {sink }}=5.0 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
0.1 \\
0.4 \\
2.0 \\
2.5 \\
\\
\hline \\
\hline 0.25 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.25 \\
0.75 \\
2.5 \\
- \\
- \\
0.35 \\
\hline
\end{gathered}
\] & V \\
\hline \[
\begin{aligned}
& \text { Output Voltage High } \\
& \left(I_{\text {source }}=200 \mathrm{~mA}\right) \\
& V_{C C}=15 \mathrm{~V} \\
& \left(I_{\text {source }}=100 \mathrm{~mA}\right) \\
& V_{C C}=15 \mathrm{~V} \\
& V_{C C}=5.0 \mathrm{~V} \\
& \hline
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{gathered}
- \\
12.75 \\
2.75
\end{gathered}
\] & \[
\begin{gathered}
12.5 \\
\\
13.3 \\
3.3
\end{gathered}
\] & - & V \\
\hline Rise Time of Output & \({ }^{\text {tolH }}\) & - & 100 & - & ns \\
\hline Fall Time of Output & \({ }^{\text {t }} \mathrm{OHL}\) & - & 100 & - & ns \\
\hline
\end{tabular}

NOTES:
1. Supply current when output is high is typically 1.0 mA less.
2. Tested at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\).

Monostable mode
3. This will determine the maximum value of \(R_{A}+R_{B}\) for 15 V operation. The maximum total \(R=20\) megohms.

TYPICAL CHARACTERISTICS
( \(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)

FIGURE 5 - SUPPLY CURRENT


FIGURE 8 - LOW OUTPUT VOLTAGE @ \(\mathbf{V C C}=\mathbf{1 0} \mathbf{V d c}\)


FIGURE 10 - DELAY TIME versus SUPPLY VOLTAGE


FIGURE 11 - DELAY TIME versus TEMPERATURE


FIGURE 6 - HIGH OUTPUT VOLTAGE


FIGURE 9 - LOW OUTPUT VOLTAGE @ VCC \(=15\) Vdc


FIGURE 12 - PROPAGATION DELAY versus TRIGGER VOLTAGE

( \(\mathrm{X} \mathrm{V}_{\mathrm{CC}}=\mathrm{Vdc}_{\mathrm{C}}\) )

FIGURE 13 - REPRESENTATIVE CIRCUIT SCHEMATIC


\section*{GENERAL OPERATION}

The MC1455 is a monolithic timing circuit which uses as its timing elements an external resistor - capacitor network. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-flop and digital output are included. The comparator reference voltages are always a fixed ratio of the supply voltage thus providing output timing independent of supply voltage.

\section*{Monostable Mode}

In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode, refer to circuit Figure 14. When the input voltage to the trigger comparator falls below \(1 / 3 \mathrm{~V}_{\mathrm{CC}}\) the comparator output triggers the flip-flop so that it's output sets low. This turns the capacitor discharge transistor "off" and drives the digital output to the high state. This condition allows the capacitor to charge at an exponential rate which is set by the RC time constant. When the capacitor voltage reaches \(2 / 3 \mathrm{~V}_{\mathrm{CC}}\) the threshold comparator resets the flip-flop. This action discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered until the present timing period has been completed. The time that the output is high is given by the equation \(t=1.1\) RA \(^{C}\). Various combinations of \(R\) and C and their associated times are shown in Figure 16. The trigger pulse width must be less than the timing period.

A reset pin is provided to discharge the capacitor thus interrupting the timing cycle. As long as the reset pins is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use.

FIGURE 14 - MONOSTABLE CIRCUIT


GENERAL OPERATION (continued)

FIGURE 15 - MONOSTABLE WAVEFORMS

\(\mathrm{t}=50 \mu \mathrm{~s} / \mathrm{cm}\)
\(\left(R_{A}=10 \mathrm{k} \Omega, C=0.01 \mu F, R_{L}=1.0 \mathrm{k} \Omega, V_{C C}=15 \mathrm{~V}\right)\)

FIGURE 17 - ASTABLE CIRCUIT


\section*{Astable Mode}

In the astable mode the timer is connected so that it will retrigger itself and cause the capacitor voltage to oscillate between \(1 / 3 \mathrm{~V}_{\mathrm{CC}}\) and \(2 / 3 \mathrm{~V}_{\mathrm{CC}}\). See Figure 17.

The external capacitor charges to \(2 / 3 V_{C C}\) through \(R_{A}\) and \(R_{B}\) and discharges to \(1 / 3 V_{C C}\) through \(R_{B}\). By varying the ratio of these resistors the duty cycle can be varied. The charge and discharge times are independent of the supply voltage.
The charge time (output high) is given by: \(t_{1}=0.695\left(R_{A}+R_{B}\right) C\) The discharge time (output low) by: \(\mathrm{t}_{2}=0.695\left(\mathrm{R}_{\mathrm{B}}\right) \mathrm{C}\)
Thus the total period is given by: \(T=t_{1}+t_{2}=0.695\left(R_{A}+2 R_{B}\right) C\)
The frequency of oscillation is then: \(f=\frac{1}{T}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}\)
and may be easily found as shown in Figure 19.
The duty cycle is given by: \(D C=\frac{R_{B}}{R_{A}+2 R_{B}}\)
To obtain the maximum duty cycle \(R_{A}\) must be as small as possible; but it must also be large enough to limit the discharge current (pin 7 current) within the maximum rating of the discharge transistor ( 200 mA ).

The minimum value of \(R_{A}\) is given by:
\[
R_{A} \geqslant \frac{V_{C C}\left(V_{d c}\right)}{I_{7}(A)} \geqslant \frac{V_{C C}(V d c)}{0.2}
\]

FIGURE 16 - TIME DELAY


FIGURE 18 - ASTABLE WAVEFORMS

\(t=20 \mu \mathrm{~s} / \mathrm{cm}\)
\(\left(R_{A}=5.1 \mathrm{k} \Omega, C=0.01 \mu F, R_{L}=1.0 \mathrm{k} \Omega\right.\);
\(\left.\mathrm{R}_{\mathrm{B}}=3.9 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}\right)\)

FIGURE 19 - FREE-RUNNING FREQUENCY


\section*{MC1455}

\section*{APPLICATIONS INFORMATION}

\section*{Linear Voltage Ramp}

In the monostable mode, the resistor can be replaced by a constant current source to provide a linear ramp voltage. The capacitor still charges from 0 to \(2 / 3 \mathrm{~V}_{\mathrm{CC}}\). The linear ramp time is given by \(t=\frac{2}{3} \frac{V_{\mathrm{CC}}}{1}\)
where \(I=\frac{V_{C C}-V_{B}-V_{B E}}{R_{E}}\). If \(V_{B}\) is much larger than \(V_{B E}\), then \(t\) can be made independent of \(V_{C C}\).

FIGURE 20 - LINEAR VOLTAGE SWEEP CIRCUIT


FIGURE 21 - LINEAR VOLTAGE RAMP WAVEFORMS \(\left(R_{E}=10 \mathrm{k} \Omega, R 2=100 \mathrm{k} \Omega, R 1=39 \mathrm{k} \Omega, C=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{C}} \mathrm{C}=15 \mathrm{~V}\right)\)

\(\mathrm{t}=100 \mu \mathrm{~s} / \mathrm{cm}\)

\section*{Missing Pulse Detector}

The timer can be used to produce an output when an input pulse fails to occur within the delay of the timer. To accomplish this, set the time delay to be slightly longer than the time between successive input pulses. The timing cycle is then continuously reset by the input pulse train until a change in frequency or a missing pulse allows completion of the timing cycle, causing a change in the output level.

FIGURE 22


FIGURE 23 - MISSING PULSE DETECTOR WAVEFORMS
\(\left(R_{A}=2.0 \mathrm{k} \Omega, R_{\mathrm{L}}=1.0 \mathrm{k} \Omega, C=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\right)\)

\(\mathrm{t}=500 \mu \mathrm{~s} / \mathrm{cm}\)

\section*{Pulse Width Modulation}

If the timer is triggered with a continuous pulse train in the monostable mode of operation, the charge time of the capacitor can be varied by changing the control voltage at pin 5 . In this manner, the output pulse width can be modulated by applying a modulating signal that controls the threshold voltage.

FIGURE 24


FIGURE 25 - PULSE WIDTH MODULATION WAVEFORMS
\(\left(R_{A}=10 \mathrm{k} \Omega, C=0.02 \mu \mathrm{~F}, \mathrm{~V}_{\mathbf{C C}}=15 \mathrm{~V}\right)\)

\(\mathrm{t}=0.5 \mathrm{~ms} / \mathrm{cm}\)

\section*{Test Sequences}

Several timers can be connected to drive each other for sequential timing. An example is shown in Figure 26 where the sequence is started by triggering the first timer which runs for 10 ms . The output then switches low momentarily and starts the second timer which runs for 50 ms and so forth.

FIGURE 26


\section*{Specifications and Applications Information}

\section*{MONOLITHIC FOUR-QUADRANT MULTIPLIER}
designed for use where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide, square root, mean square, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

The MC1594/1494 is a variable transconductance multiplier with internal level-shift circuitry and voltage regulator. Scale factor, input offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages are provided to simplify offset adjustment and improve power-supply rejection.
- Operates With \(\pm 15 \mathrm{~V}\) Supplies
- Excellent Linearity - Maximum Error (X or \(Y\) ): \(\pm 0.5 \%\) (MC1594)
- Wide Input Voltage Range \(- \pm 10\) volts
- Adjustable Scale Factor, K (0.1 nominal)
- Single-Ended Output Referenced to Ground
- Simplified Offset Adjust Circuitry
- Frequency Response ( 3 dB Small-Signal) -1.0 MHz
- Power Supply Sensitivity \(-30 \mathrm{mV} / \mathrm{V}\) typical

\section*{LINEAR FOUR-QUADRANT MULTIPLIER INTEGRATED CIRCUIT}

SILICON MONOLITHIC EPITAXIAL PASSIVATED


FOUR-QUADRANT
MULTIPLIER TRANSFER CHARACTERISTIC


TYPICAL LINEARITY ERROR versus TEMPERATURE

\begin{tabular}{|lcl|}
\hline & \begin{tabular}{c} 
CONTENTS \\
Specification \\
Page No.
\end{tabular} & Subject Sequence
\end{tabular}

MC1494L, MC1594L
MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \[
\begin{aligned}
& v^{+} \\
& v^{-}
\end{aligned}
\] & \[
\begin{aligned}
& +18 \\
& -18
\end{aligned}
\] & Vdc \\
\hline Differential Input Signal & \[
\begin{gathered}
V_{9}-V_{6} \\
V_{10}-V_{13} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \pm\left|6+1_{1} R_{Y}\right|<30 \\
& \pm\left|6+1_{1} R_{X}\right|<30
\end{aligned}
\] & Vdc \\
\hline Common-Mode Input Voltage
\[
\begin{aligned}
& V_{C M Y}=V_{9}=V_{6} \\
& V_{C M X}=V_{10}=V_{13}
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{CMY}}\) \\
\(V_{C M X}\)
\end{tabular} & \[
\begin{aligned}
& \pm 11.5 \\
& \pm 11.5
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{l}
Power Dissipation (Package Limitation)
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Derate above \(T_{A}=+25^{\circ} \mathrm{C}\)
\end{tabular} & \[
\begin{gathered}
\mathrm{PD}_{\mathrm{D}} \\
1 / \mathrm{JA}^{2}
\end{gathered}
\] & \[
\begin{aligned}
& 750 \\
& 5.0
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline \(\begin{array}{ll}\text { Operating Temperature Range } & \text { MC1594 } \\ \\ \text { MC1494 }\end{array}\) & \(\mathrm{T}_{\mathrm{A}}\) & \[
\begin{gathered}
-55 \text { to }+125 \\
0 \text { to }+70
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\mathrm{IV}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R} 1=16 \mathrm{k} \Omega, \mathrm{RX}=30 \mathrm{k} \Omega, \mathrm{RY}=62 \mathrm{k} \Omega\),
\(R_{L}=47 \mathrm{k} \Omega\), unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Fig.} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC1594} & \multicolumn{3}{|c|}{MC1494} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min & Typ & Max & Min & Typ & Max & \\
\hline \begin{tabular}{l}
Linearity \\
Output error in Percent of full scale
\[
\begin{aligned}
& -10 \mathrm{~V}<\mathrm{V}_{\mathrm{X}}<+10 \mathrm{~V}(\mathrm{~V} Y= \pm 10 \mathrm{~V}) \\
& -10 \mathrm{~V}<\mathrm{V} \mathrm{~V}_{\mathrm{Y}}<+10 \mathrm{~V}(\mathrm{~V} \mathrm{X}=+10 \mathrm{~V}) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}(1) \\
& \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { (2) }
\end{aligned}
\]
\end{tabular} & 1 & \(E_{R X}\) or \(E_{R Y}\) & - & \(\pm 0.3\) & \[
\begin{aligned}
& \pm 0.5 \\
& \pm 0.8 \\
& \pm 0.8 \\
& \hline
\end{aligned}
\] & - & \(\pm 0.5\) & \[
\begin{array}{r} 
\pm 1.0 \\
\pm 1.3 \\
\pm 1.3 \\
\hline
\end{array}
\] & \% \\
\hline \begin{tabular}{l}
Input \\
Voltage Range ( \(\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\text {in }}\) ) \\
Resistance ( \(X\) or \(Y\) Input) \\
Offset Voltage ( X Input) (Note 1) \\
(Y Input) (Note 1) \\
Bias Current ( X or Y Input) \\
Offset Current (X or Y Input)
\end{tabular} & 2,3,4 & \begin{tabular}{l}
\(V_{\text {in }}\) \(\mathrm{R}_{\text {in }}\) \\
\(\left|V_{\text {iox }}\right|\) \(\left|V_{i o y}\right|\) lb \(\left|{ }_{\text {io }}\right|\)
\end{tabular} & \begin{tabular}{l}
\(\pm 10\) \\
- \\
- \\
-
\end{tabular} & \begin{tabular}{l}
300 \\
0.1 \\
0.4 \\
0.5 \\
28
\end{tabular} & \[
\begin{aligned}
& \overline{1.6} \\
& 1.6 \\
& 1.5 \\
& 150
\end{aligned}
\] & \[
\begin{gathered}
\pm 10 \\
- \\
- \\
-
\end{gathered}
\] & \[
\begin{array}{r}
- \\
300 \\
0.2 \\
0.8 \\
1.0 \\
50 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& - \\
& 2.5 \\
& 2.5 \\
& 2.5 \\
& 400
\end{aligned}
\] & \begin{tabular}{l}
\(V_{p k}\) \\
M \(\Omega\) \\
V \\
\(\mu \mathrm{A}\) \\
nA
\end{tabular} \\
\hline \begin{tabular}{l}
Output \\
Voltage Swing Capability Impedance Offset Voltage (Note 1) Offset Current (Note 1)
\end{tabular} & 3,4 & \[
\begin{gathered}
V_{0} \\
R_{0} \\
\left|V_{o o}\right| \\
\left|V_{00}\right|
\end{gathered}
\] & \[
\begin{gathered}
\pm 10 \\
- \\
-
\end{gathered}
\] & \begin{tabular}{l}
850 \\
0.8 \\
17
\end{tabular} & \[
\begin{aligned}
& - \\
& \overline{1.6} \\
& 34
\end{aligned}
\] & \[
\begin{gathered}
\pm 10 \\
- \\
-
\end{gathered}
\] & \[
\begin{array}{r}
- \\
850 \\
1.2 \\
25 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& - \\
& \frac{-}{2.5} \\
& 52
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V}_{\mathrm{pk}} \\
\mathrm{k} \Omega \\
\mathrm{~V} \\
\mu \mathrm{~A}
\end{gathered}
\] \\
\hline ```
Temperature Stability (Drift)
    \(T_{A}=T_{\text {high }}\) to \(T_{\text {low }}\)
    Output Offset ( \(X=0, Y=0\) ) Voltage
                                Current
    \(X\) Input Offset \((Y=0)\)
    \(Y\) Input Offset ( \(\mathrm{X}=0\) )
    Scale Factor
Total dc Accuracy Drift ( \(X=10, Y=10\) )
``` & & \(\left|\mathrm{TCV}_{\text {oo }}\right|\) \(\left|\mathrm{TCl}_{\mathrm{oo}}\right|\) TCV \({ }_{\text {iox }}\) \(\left|T^{\prime} V_{\text {ioy }}\right|\) |TCK| |TCE & - & \[
\begin{gathered}
1.3 \\
27 \\
0.3 \\
1.5 \\
0.07 \\
0.09
\end{gathered}
\] & - & - & \[
\begin{gathered}
1.3 \\
27 \\
0.3 \\
1.5 \\
0.07 \\
0.09
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\(n A /^{\circ} \mathrm{C}\) \\
\(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\(\% /{ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Dynamic Response \\
Small Signal (3.0 dB) \\
Power Bandwidth (47 k) \(3^{\circ}\) Relative Phase Shift 1\% Absolute Error
\end{tabular} & 5 & \[
\begin{gathered}
\mathrm{BW}_{3}^{\mathrm{dB}}(\mathrm{X}) \\
\text { BW3 } \mathrm{dB}(\mathrm{Y}) \\
\mathrm{P}_{\mathrm{BW}} \\
\mathrm{f} \phi \\
\mathrm{f} \theta
\end{gathered}
\] & - & \[
\begin{gathered}
0.8 \\
1.0 \\
440 \\
240 \\
30
\end{gathered}
\] & - & - & \[
\begin{gathered}
0.8 \\
1.0 \\
440 \\
240 \\
30
\end{gathered}
\] & - & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{kHz}
\end{aligned}
\] \\
\hline Common Mode Input Swing (X or Y) Gain (X or Y) & 6 & \[
\begin{aligned}
& \mathrm{CMV} \\
& \mathrm{~A}_{\mathrm{CM}}
\end{aligned}
\] & \[
\pm 10.5
\] & \[
\overline{-65}
\] & - & \(\pm 10.5\) & \[
\overline{-65}
\] & - & \(\mathrm{V}_{\mathrm{pk}}\) \\
\hline \begin{tabular}{l}
Power Supply \\
Current \\
Quiescent Power Dissipation Sensitivity
\end{tabular} & 7 & \[
\begin{gathered}
\mathrm{I}_{\mathrm{d}}+ \\
\mathrm{I}_{\mathrm{d}}- \\
\mathrm{P}_{\mathrm{d}} \\
\mathrm{~S}^{+} \\
\mathrm{S}-
\end{gathered}
\] & - & \[
\begin{gathered}
6.0 \\
6.5 \\
185 \\
13 \\
30
\end{gathered}
\] & \[
\begin{gathered}
9.0 \\
9.0 \\
260 \\
50 \\
100
\end{gathered}
\] & - & \[
\begin{gathered}
6.0 \\
6.5 \\
185 \\
13 \\
30
\end{gathered}
\] & \[
\begin{gathered}
12 \\
12 \\
350 \\
100 \\
200
\end{gathered}
\] & \begin{tabular}{l}
mAdc \\
mW \\
\(\mathrm{mV} / \mathrm{N}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Regulated Offset Adjust Voltages \\
Positive \\
Negative \\
Temperature Coefficient (\(\mathrm{V}_{\mathrm{R}}+\) or \(\mathrm{V}_{\mathrm{R}}\)) \\
Power Supply Sensitivity (\(\mathrm{V}_{\mathrm{R}}+\) or \(\mathrm{V}_{\mathrm{R}}-\))
\end{tabular} & 7 & \[
\begin{gathered}
\mathrm{V}_{\mathrm{R}^{+}} \\
\mathrm{V}_{\mathrm{R}^{-}} \\
\mathrm{TCV}_{\mathrm{R}^{-}} \\
\mathrm{S}_{\mathrm{R}^{+}, \mathrm{S}_{\mathrm{R}^{-}}}
\end{gathered}
\] & \[
\begin{gathered}
+3.5 \\
-3.5 \\
-
\end{gathered}
\] & \[
\begin{gathered}
+4.3 \\
-4.3 \\
0.03 \\
0.6
\end{gathered}
\] & +5.0
-5.0
- & \[
\begin{gathered}
+3.5 \\
-3.5 \\
-
\end{gathered}
\] & \[
\begin{gathered}
+4.3 \\
-4.3 \\
0.03 \\
0.6
\end{gathered}
\] & \[
\begin{gathered}
+5.0 \\
-5.0 \\
-
\end{gathered}
\] & \begin{tabular}{l}
Vdc \\
\(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\(\mathrm{mV} / \mathrm{N}\)
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Note 1: Offsets can be adjusted to zero with external potentiomers.} & \multicolumn{3}{|l|}{\[
\begin{aligned}
(1) \mathrm{T}_{\text {high }}= & +125^{\circ} \mathrm{C} \text { for MC1594 } \\
& +70^{\circ} \mathrm{C} \text { for MC1494 }
\end{aligned}
\]} & \multicolumn{4}{|r|}{\[
\text { (2) } \mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C} \text { for MC1594 }
\]} \\
\hline
\end{tabular}

MC1494L, MC1594L

TEST CIRCUITS
FIGURE 1 - LINEARITY
FIGURE 2 - INPUT RESISTANCE

FIGURE 4 - INPUT BIAS CURRENT/INPUT OFFSET CURRENT, OUTPUT RESISTANCE

FIGURE 5 - FREQUENCY RESPONSE

FIGURE 7 - POWER-SUPPLY SENSITIVITY

FIGURE 6 - COMMON.MODE

TYPICAL CHARACTERISTICS
(Unless otherwise noted, \(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{R} 1=16 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{X}}=30 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{Y}}=62 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=47 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\))

FIGURE 11 - LARGE SIGNAL VOLTAGE versus FREQUENCY

FIGURE 13 - LINEARITY versus RX \(_{X}\) OR RY WITH K = 1

FIGURE 10 - FREQUENCY RESPONSE OF
\(X\) INPUT versus LOAD RESISTANCE

FIGURE 12 - LINEARITY versus RX OR Ry WITH K = \(\mathbf{1 / 1 0}\)

FIGURE 14 - SCALE FACTOR (K) versus TEMPERATURE

\section*{GENERAL INFORMATION}
1. CIRCUIT DESCRIPTION
1.1 Introduction

The MC1594 is a monolithic, four-quadrant multiplier that operates on the principle of variable transconductance. It features a single-ended current output referenced to ground and provides two complementary regulated voltages for use
with the offset adjust circuits to virtually eliminate sensitivity of the offset voltage nulls to changes in supply voltage.
As shown in Figure 15, the MC1594 consists of a multiplier proper and associated peripheral circuitry to provide these features.

FIGURE 15

1.2 Regulator (Figure 15)

The regulator biases the entire MC1594 circuit making it essentially independent of supply variation. It also provides two convenient regulated supply voltages which can be used in the offset adjust circuitry. The regulated output voltage at pin 2 is approximately +4.3 V while the regulated voltage at pin 4 is approximately -4.3 V . For optimum temperature stability of these regulated voltages, it is recommended that \(\left|\left.\right|_{2}\right|=\left|1_{4}\right|=1.0 \mathrm{~mA}\) (equivalent load of \(8.6 \mathrm{k} \Omega 2\)). As will be shown later, there will normally be two 20 k -ohm potentiometers and one 50 k -ohm potentiometer connected between pins 2 and 4.
The regulator also establishes a constant current reference that controls all of the constant current sources in the MC1594. Note that all current sources are related to current i 1 which is determined by R1. For best temperature performance, \(R 1\) should be \(16 \mathrm{k} \Omega\) so that \(\mathrm{I}_{1} \approx 0.5 \mathrm{~mA}\) for all applications.
1.3 Multiplier (Figure 15)

The multiplier section of the MC1594 (center section of Figure 15) is nearly identical to the MC1595 and is discussed in detail in Application Note AN-489, "Analysis and Basic Operation of the MC1595". The result of this analysis is that the differential output current of the multiplier is given by:
\[
I_{A}-I_{B}=\Delta I \approx \frac{2 V_{X} V_{Y}}{R_{X} R_{Y} I_{1}^{\prime}}
\]

Therefore, the output is proportional to the product of the two input voltages
1.4 Differential Current Converter (Figure 15)

This portion of the circuitry converts the differential output current (\({ }^{\prime} A^{-1} B\)) of the multiplier to a single-ended output current (\({ }_{0}\)):
\[
I_{0}=I_{A}-I_{B}
\]
or
\[
I_{0}=\frac{2 V_{X} V_{Y}}{R_{X} X^{R} y_{1}}
\]

The output current can be easily converted to an output voltage by placing a load resistor \(R_{L}\) from the output (pin 14) to ground (Figure 17) or by using an op-ampl. as a current-to-voltage converter (Figure 16). The result in both circuits is that the output voltage is given by:
\[
\begin{aligned}
& \qquad V_{0}=\frac{2 R_{L} V_{X} V_{Y}}{\left.R_{X} R_{Y}\right|_{1}}=K V_{X} V_{Y} \\
& \text { where } K \text { (scale factor) }=\frac{2 R_{L}}{R_{X} R_{Y^{\prime} 1}}
\end{aligned}
\]

\section*{2. DC OPERATION}
2.1 Selection of External Components

For low frequency operation the circuit of Figure 16 is recommended. For this circuit, \(\mathrm{R}_{X}=30 \mathrm{ks} 2, \mathrm{R}_{\mathrm{Y}}=62 \mathrm{ks}\), \(R 1=16 \mathrm{ks} 2\) and hence \(I_{1} \approx 0.5 \mathrm{~mA}\). Therefore, to set the scale factor, \(K\), equal to \(1 / 10\), the value of \(R_{L}\) can be calculated to be
\[
\begin{aligned}
K & =\frac{1}{10}=\frac{2 R_{L}}{\left.R_{X} R_{Y}\right|_{1}} \\
\text { or } \quad R_{L} & =\frac{R_{X} R_{Y} 1_{1}}{(2)(10)}=\frac{(30 \mathrm{k})(62 \mathrm{k})(0.5 \mathrm{~mA})}{20} \\
R_{L} & =46.5 \mathrm{k}
\end{aligned}
\]

Thus, a reasonable accuracy in scale factor can be achieved by making \(R_{L}\) a fixed \(47 \mathrm{k} \Omega 2\) resistor. However, if it is desired

FIGURE 16 - TYPICAL MULTIPLIER CONNECTION

that the scale factor be exact, \(R_{L}\) can be comprised of a fixed resistor and a potentiometer as shown in Figure 16. It should be pointed out that there is nothing magic about setting the scale factor to \(1 / 10\). This is merely a convenient factor to use if the \(V_{X}\) and \(V_{Y}\) input voltages are expected to be large, say \(\pm 10 \mathrm{~V}\). Obviously with \(V_{X}=V_{Y}=10 \mathrm{~V}\) and a scale factor of unity, the device could not hope to provide a 100 V output, so the scale factor is set to \(1 / 10\) and provides an output scaled down by a factor of ten. For many applications it may be desirable to set \(K=1 / 2\) or \(K=1\) or even \(K=100\). This can be accomplished by adjusting \(R_{X}, R_{Y}\) and \(\mathrm{R}_{\mathrm{L}}\) appropriately.
The selection of \(R_{L}\) is arbitrary and can be chosen after resistors \(R_{X}\) and \(R_{Y}\) are found. Note in Figure 16 that \(R_{Y}\) is \(62 \mathrm{k} \Omega\) while \(R_{X}\) is \(30 \mathrm{k} \Omega\). The reason for this is that the " \(Y\) " side of the multiplier exhibits a second order nonlinearity whereas the " \(X\) " side exhibits a simple non-linearity By making the \(R_{Y}\) resistor approximately twice the value of the \(R_{X}\) resistor, the linearity on both the " \(X\) " and " \(Y\) " sides are made equal. The selection of the \(R_{X}\) and \(R_{Y}\) resistor values is dependent upon the expected amplitude of \(V_{X}\) and \(V_{Y}\) inputs. To maintain a specified linearity, resistors \(R_{X}\) and \(R_{Y}\) should be selected according to the following equations:
\(R_{X} \geq 3 V_{X}\) (max) in \(k \Omega\) when \(V_{X}\) is in volts
\(R_{Y} \geq 6 V_{Y}\) (max) in \(k \Omega\) when \(V_{Y}\) is in volts
For example, if the maximum input on the " \(X\) " side is \(\pm 1\) volt, resistor \(R_{X}\) can be selected to be \(3 \mathrm{k} \Omega \Omega\). If the maximum input on the " \(Y\) " side is also \(\pm 1\) voit, then resistor Ry can be selected to be \(6 \mathrm{k} \Omega 2(6.2 \mathrm{k} \Omega\) nominal value). If a scale factor of \(K=10\) is desired, the load resistor is found to be \(47 \mathrm{k} \Omega\). In this example, the multiplier provides a gain of 20 dB .
2.2 Operational Amplifier Selection

The operational amplifier connection in Figure 16 is a simple but extremely accurate current-to-voltage converter. The output current of the multiplier flows through the feedback resistor \(R_{L}\) to provide a low impedance output voltage from the op-ampl. Since the offset current and bias currents of the op-ampl. will cause errors in the output voltage, particularly with temperature, one with very low bias and offset currents is recommended. The MC1556/MC1456 or MC1741/ MC1741C are excellent choices for this application.
Since the MC1594 is capable of operation at much higher frequencies than the op-ampl., the frequency characteristics of the circuit in Figure 16 will be primarily dependent upon the op-ampl.

\subsection*{2.3 Stability}

The current-to-voltage converter mode is a most demanding application for an operational amplifier. Loop gain is at its maximum and the feedback resistor in conjunction with stray or input capacitance at the multiplier output adds additional phase shift. It may therefore be necessary to add (particularly in the case of internally compensated op-ampls.) a small feedback capacitor to reduce loop gain at the higher frequencies. A value of 10 pF in parallel with \(R_{L}\) should be adequate to insure stability over production and temperature variations, etc.
An externally compensated op-ampl. might be employed using slightly heavier compensation than that recommended for unity-gain operation.

\subsection*{2.4 Offset Adjustment}

The non-inverting input of the op-ampl. provides a convenient point to adjust the output offset voltage. By connecting this point to the wiper arm of a potentiometer (P3), the output
offset voltage can be adjusted to zero (see offset and scale factor adjustment procedure).
The input offset adjustment potentiometers, \(P 1\) and \(P 2\) will be necessary for most applications where it is desirable to take advantage of the multiplier's excellent linearity characteristics. Depending upon the particular application, some of the potentiometers can be omitted (see Figures 17, 19, 22, 24 and 25).

Offset and Scale Factor Adjustment Procedure
The adjustment procedure for the circuit of Figure 16 is:
A. XInput Offset
(a) connect oscillator (\(1 \mathrm{kHz}, 5 \mathrm{Vpp}\) sinewave) to the " \(Y\) " input (pin 9)
(b) connect " \(X\) " input (pin 10) to ground
(c) adjust X -offset potentiometer, P 2 for an ac null at the output
B. Y Input Offset
(a) connect oscillator (\(1 \mathrm{kHz}, 5 \mathrm{Vpp}\) sinewave) to the " X " input (pin 10)
(b) connect " \(Y\) " input (pin 9) to ground
(c) adjust Y -offset potentiometer, P1 for an ac null at the output
C. Output Offset
(a) connect both " \(X\) " and " \(Y\) " inputs to ground
(b) adjust output offset potentiometer, P3, until the output voltage \(V_{0}\), is zero volts dc
D. Scale Factor
(a) apply +10 Vdc to both the " \(X\) " and " \(Y\) " inputs
(b) adjust P 4 to achieve -10.00 V at the output
(c) apply -10 Vdc to both " \(X\) " and " \(Y\) " inputs and check for \(V_{O}=-10.00 \mathrm{~V}\)
E. Repeat steps \(A\) through \(D\) as necessary.

The ability to accurately adjust the MC1594 is dependent on the offset adjust potentiometers. Potentiometers should be of the "infinite" resolution type rather than wirewound. Fine adjustments in balanced-modulator applications may require two potentiometers to provide "coarse" and "fine" adjustment. Potentiometers should have low temperature coefficients and be free from backlash.
2.6 Temperature Stability

While the MC1594 provides excellent performance in itself, overall performance depends to a large degree on the quality of the external components. Previous discussion shows the direct dependence on \(R_{X}, R_{Y}\), and \(R_{L}\) and indirect dependence on R1 (through \(I_{1}\)). Any circuit subjected to temperature variations should be evaluated with these effects in mind.

\section*{Bias Currents}

The MC1594 multiplier, like most linear IC's, requires a dc bias current into its input terminals. The device cannot be capacitively coupled at the input without regard for this bias current. If inputs \(V_{X}\) and \(V_{Y}\) are able to supply the small bias current (\(\approx 0.5 \mu \mathrm{~A}\)) resistors, R (Figure 16) can be omitted. If the MC1594 is used in an ac mode of operation and capacitive coupling is used the value of resistor \(R\) can be any reasonable value up to \(100 \mathrm{k} \Omega\). For minimum noise and optimum temperature performance, the value of resistor \(R\) should be as low as practical.

\subsection*{2.8 Parasitic Oscillation}

When long leads are used on the inputs, oscillation may occur. In this event, an RC parasitic suppression network similar to the ones shown in Figure 16 should be connected directly to each input using short leads. The purpose of the network
s to reduce the " \(Q\) " of the source-tuned circuits which cause the oscillation

Inability to adjust the circuit to within the specified accuracy may be an indication of oscillation.

\section*{3. AC OPERATION}
3.1 General

For ac operation, such as balanced modulation, frequency doubler, AGC, etc., the op-ampl. will usually be omitted as well as the output offset adjust potentiometer. The output offset adjust potentiometer is omitted since the output will normally be ac-coupled and the dc voltage at the output is of no concern providing it is close enough to zero volts that it will not cause clipping in the output waveform. Figure 17

FIGURE 17 - WIDEBAND MULTIPLIER

shows a typical ac multiplier circuit with a scale factor \(K \approx 1\) Again, resistor \(R_{X}\) and \(R_{Y}\) are chosen as outlined in the previous section, with \(R_{L}\) chosen to provide the required scale factor.

The offset voltage then existing at the output will be equal to the offset current times the load resistance. The output offset current of the MC1594 is typically \(17 \mu \mathrm{~A}\) and \(35 \mu \mathrm{~A}\) maximum. Thus, the maximum output offset would be about 160 mV .

The bandwidth of the MC1594 is primarily determined by two factors. First, the dominant pole will be determined by the load resistor and the stray capacitance at the oupput terminal. For the circuit shown in Figure 17, assuming a total output capacitance (\(\mathrm{C}_{0}\)) of 10 pF , the 3 dB bandwidth would be approximately 3.4 MHz . If the load resistor were \(47 \mathrm{k} \Omega\), the bandwidth would be approximately 340 kHz .
Secondly, a "zero" is present in the frequency response characteristic for both the " \(X\) " and " \(Y\) " inputs which causes the output signal to rise in amplitude at a 6 dB /octave slope at frequencies beyond the breakpoint of the "zero". The "zero" is caused by the parasitic and substrate capacitance which is related to resistors \(R_{X}\) and \(R_{Y}\) and the transistors associated with them. The effect of these transmission
"zeros" is seen in Figures 9 and 10. The reason for this increase in gain is due to the bypassing of \(R_{X}\) and \(R_{Y}\) at high frequencies. Since the \(R_{Y}\) resistor is approximately twice the value of the \(\mathrm{R}_{\mathrm{X}}\) resistor, the zero associated with the " \(Y\) " input will occur at approximately one octave below the zero associated with the " \(X\) " input. For \(R_{X}=30 \mathrm{k} \Omega\) and \(R_{Y}=62 \mathrm{k} \Omega\), the zeros occur at 1.5 MHz for the " X " input and 700 kHz for the " \(Y\) " input. These two measured break points correspond to a shunt capacitance of about 3.5 pF . Thus, for the circuit of Figure 17, the " \(X\) " input zero and " \(Y\) " input zero will be at approximately 15 MHz and 7 MHz respectively
It should be noted that the MC1594 multiplies in the time domain, hence, its frequency response is found by means of complex convolution in the frequency (Laplace) domain. This means that if the " \(X\) " input does not involve a frequency. it is not necessary to consider the " \(X\) " side frequency response in the output product. Likewise, for the " \(Y\) " side. Thus, for applications such as a wideband linear AGC amplifier which has a dc voltage as one input, the multiplier frequency response has one zero and one pole. For applications which involve an ac voltage on both the " X " and " Y " side, such as a balanced modulator, the product voltage response will have two zeros and one pole, hence, peaking may be present in the output.
From this brief discussion, it is evident that for ac applications; (1) the value of resistors \(R_{X}, R_{Y}\) and \(R_{L}\) should be kept as small as possible to achieve maximum frequency response, and (2) it is possible to select a load resistor \(R_{L}\) such that the dominant pole (\(\mathrm{R}_{\mathrm{L}}, \mathrm{C}_{\mathrm{O}}\)) cancels the input zero (\(\mathrm{R}_{\mathrm{X}}, 3.5 \mathrm{pF}\) or \(\mathrm{R}_{\mathrm{Y}}, 3.5 \mathrm{pF}\)) to give a flat amplitude characteristic with frequency. This is shown in Figures 9 and 10 Examination of the frequency characteristics of the " \(X\) " and " \(Y\) " inputs will demonstrate that for wideband amplifier applications, the best tradeoff with frequency response and gain is achieved by using the " \(Y\) " input for the ac signal.
For ac applications requiring bandwidths greater than those specified for the MC1594, two other devices are recommended. For modulator-demodulator applications, the MC1596 may be used up to 100 MHz . For wideband multiplier applications, the MC1595 (using small collector loads and ac coupling) can be used.

Slew-Rate
The MC1594 multiplier is not slew-rate limited in the ordinary sense that an op-ampl. is. Since all the signals in the multiplier are currents and not voltages, there is no charging and discharging of stray capacitors and thus no limitations beyond the normal device limitations. However, it should be noted that the quiescent current in the output transistors is 0.5 mA and thus the maximum rate of change of the output voltage is limited by the output load capacitance by the simple equation:
\[
\text { Slew-Rate } \frac{\Delta V_{0}}{\Delta T}=\frac{I_{0}}{C}
\]

Thus, if \(\mathrm{C}_{\mathrm{o}}\) is 10 pF , the maximum slew-rate would be:
\[
\frac{\Delta V_{0}}{\Delta T}=\frac{0.5 \times 10^{-3}}{10 \times 10^{-12}}=50 \mathrm{~V} / \mu \mathrm{s}
\]

This can be improved if necessary by addition of an emitterfollower or other type of buffer.

\section*{Phase-Vector Error}

All multipliers are subject to an error which is known as the phase-vector error. This error is a phase error only and does not contribute an amplitude error per se. The phase-vector
error is best explained by an example. If the " \(X\) " input is described in vector notation as
\[
x=A \Varangle 0^{\circ}
\]
and the " \(Y\) " input is described as
\[
Y=B \quad 0^{0}
\]
then the output product would be expected to be
\[
V_{0}=A B \not \subset 0^{\circ}(\text { see Figure } 18)
\]

However, due to a relative phase shift between the " \(X\) " and " \(Y\) " channels, the output product will be given by
\[
V_{0}=A B \not \subset \phi
\]

Notice that the magnitude is correct but the phase angle of the product is in error. The vector, \(V\), associated with this error is the "phase-vector error". The startling fact about the phase-vector error is that it occurs and accumulates much more rapidly than the amplitude error associated with frequency response. In fact, a relative phase shift of only \(0.57^{\circ}\) will result in a \(1 \%\) phase-vector error. For most applications, this error is meaningless. If phase of the output product is not important, then neither is the phase-vector error. If phase is important, such as in the case of double sideband modulation or demodulation, then a \(1 \%\) phase-vector error will represent a \(1 \%\) amplitude error at the phase angle of interest.

FIGURE 18 - PHASE.VECTOR ERROR

Circuit Layout
If wideband operation is desired, careful circuit layout must be observed. Stray capacitance across \(R_{X}\) and \(R_{Y}\) should be avoided to minimize peaking (caused by a zero created by the parallel RC circuit).

\section*{4. DC APPLICATIONS}
4.1 Squaring Circuit

If the two inputs are connected together, the resultant function is squaring:
\[
v_{0}=K v^{2}
\]
where \(K\) is the scale factor (see Figure 19).
However, a more careful look at the multiplier's defining equation will provide some useful information. The output voltage, without initial offset adjustments is given by:
\(V_{o}=K\left(V_{x}+V_{\text {iox }}-V_{x \text { off }}\right)\left(V_{y}+V_{\text {ioy }}-V_{y \text { off }}\right)+V_{o o}\)
(See "Definitions" for an explanation of terms).
With \(V_{x}=V_{y}=V\) (squaring) and defining
\[
\begin{aligned}
& \epsilon_{\mathrm{x}}=\mathrm{V}_{\text {iox }}-V_{\mathrm{x} \text { off }} \\
& \epsilon_{\mathrm{y}}=V_{\text {ioy }}-V_{\mathrm{y} \text { off }}
\end{aligned}
\]

The output voltage equation becomes
\[
v_{o}=K v_{x}^{2}+K V_{\mathbf{x}}\left(\epsilon_{\mathbf{x}}+\epsilon_{\mathbf{y}}\right)+K \epsilon_{\mathbf{x}} \epsilon_{\mathbf{y}}+v_{o o}
\]

This shows that all error terms can be eliminated with only three adjustment potentiometers, eliminating one of the input offset adjustments. For instance, if the " \(X\) " input offset adjustment is eliminated, \(\epsilon_{\mathrm{X}}\) is determined by the internal offset, \(V_{\text {iox }}\), but \(\epsilon_{y}\) is adjustable to the extent that the (\(\epsilon_{\mathrm{x}}+\epsilon_{\mathrm{y}}\)) term can be zeroed. Then the output offset adjustment is used to adjust the \(V_{o o}\) term and thus zero the remaining error terms. An ac procedure for nulling with three adjustments is:
A. AC Procedure
1. Connect oscillator (\(1 \mathrm{kHz}, 15 \mathrm{Vpp}\)) to input
2. Monitor output at 2 kHz with tuned voltmeter and adjust P4 for desired gain (Be sure to peak response of voltmeter)
3. Tune voltmeter to 1 kHz and adjust P 1 for a minimum output voltage
4. Ground input and adjust P3 (output offset) for zero volts dc out
5. Repeat steps 1 through 4 as necessary.

B. DC Procedure:
1. Set \(V_{X}=V_{Y}=0 V\) and adjust \(P 3\) (output offset potentiometer) such that \(\mathrm{V}_{0}=0.0 \mathrm{Vdc}\)
2. Set \(V_{X}=V_{Y}=1.0 \mathrm{~V}\) and adjust \(P 1(Y\) input offset potentiometer) such that the output voltage is -0.100 volts
3. Set \(V_{X}=V_{Y}=10 \mathrm{Vdc}\) and adjust \(P 4\) (load resistor) such that the output voltage is -10.00 volts
4. Set \(V_{X}=V_{Y}=-10 \mathrm{Vdc}\) and check that \(V_{O}=-10 V\) Repeat steps 1 through 4 as necessary.

\section*{Divide}

Divide circuits warrant a special discussion as a result of their special problems. Classic feedback theory teaches that if a multiplier is used as a feedback element in an operational amplifier circuit, the divide function results. Figure 20 illustrates the theoretical simplicity of such an approach and a practical realization is shown in Figure 21.
The characteristic "failure" mode of the divide circuit is latch-up. One way it can occur is if \(V_{X}\) is allowed to go negative or, in some cases, if \(V_{X}\) approaches zero.
Figure 20 illustrates why this is so. For \(V_{X}>0\) the transfer function through the multiplier is non-inverting. Its output is fed to the inverting input of the op-ampl. Thus, operation is in the negative feedback mode and the circuit is dc stable.

FIGURE 20 - BASIC DIVIDE CIRCUIT USING MULTIPLIER

Should \(\mathrm{V}_{\mathrm{X}}\) change polarity, the transfer function through the multiplier becomes inverting, the amplifier has positive feedback and latch-up results. The problem resulting from \(V_{X}\) being near zero is a result of the transfer through the multiplier being near zero. The op-ampl. is then operating with a very high closed loop gain and error voltages can thus become effective in causing latch-up.
The other mode of latch-up results from the output voltage of the op-ampl. exceeding the rated common-mode input voltage of the multiplier. The input stage of the multiplier becomes saturated, phase reversal results, and the circuit is latched up. The circuit of Figure 21 protects against this happening by clamping the output swing of the op-ampl. to approximately \(\pm 10.7\) volts. Five-percent tolerance, 10 -volt zeners are used to assure adequate output swing but still limit the output voltage of the op-ampl. from exceeding the common-mode input range of the MC1594.
Setting up the divide circuit for reasonably accurate operation is somewhat different from the procedure for the multiplier itself. One approach, however, is to break the feedback loop, null out the multiplier circuit, and then close the loop.
A simpler approach, since it does not involve breaking the loop (thus making it more practical on a production basis), is:
1. Set \(V_{Z}=0\) volts and adjust the output offset potentiometer (P 3) until the output voltage (\(\mathrm{V}_{0}\)) remains at some (not necessarily zero) constant value as \(V_{X}\) is varied between +1.0 volt and +10 volts.
2. Maintain \(V_{Z}\) at 0 volts, set \(V_{X}\) at +10 volts and adjust the \(Y\) input offset potentiometer (P 1) until \(\mathrm{V}_{\mathrm{O}}=0\) volts.
3. With \(V_{X}=V_{Z}\), adjust the \(X\) input offset potentiometer (P2) until the output voltage remains at some (not necessarily -10 volts) constant value as \(V_{Z}=V_{X}\) is varied between +1.0 volt and +10 volts.
4. Maintain \(V_{X}=V_{Z}\) and adjust the scale factor potentiometer (\(R_{L}\)) until the average value of \(V_{0}\) is -10 volts as \(V_{Z}=V_{X}\) is varied between +1.0 volt and +10 volts.
5. Repeat steps 1 through 4 as necessary to achieve optimum performance.

Users of the divide circuit should be aware that the accuracy to be expected decreases in direct proportion to the denomi-

FIGURE 21 - PRACTICAL DIVIDE CIRCUIT

FIGURE 22 - BASIC SQUARE ROOT CIRCUIT

nator voltage. As a result, if \(V_{x}\) is set to 10 volts and \(0.5 \%\) accuracy is available, then \(5 \%\) accuracy can be expected when \(V_{X}\) is only 1 volt.
In accordance with an earlier statement, \(V_{X}\) may have only one polarity, positive, while \(V_{Z}\) may be either polarity.

\subsection*{4.3 Square Root}

A special case of the divide circuit in which the two inputs to the multiplier are connected together results in the square root function as indicated in Figure 22. This circuit too may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 23) protects against accidental latch-up.
This circuit too, may be adjusted in the closed-loop mode:
1. Set \(V_{Z}=-0.01 \mathrm{Vdc}\) and adjust \(P 3\) (output offset) for \(V_{\mathrm{O}}=0.316 \mathrm{Vdc}\).
2. Set \(V_{Z}\) to -0.9 Vdc and adjust \(P 2\) (" \(X^{\prime \prime}\) adjust) for \(V_{0}=\) +3 Vdc .
3. Set \(V_{Z}\) to -10 Vdc and adjust P 4 (gain adjust) for \(\mathrm{V}_{\mathrm{O}}=\) +10 Vdc .

Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.
Note: Operation near zero volts input may prove very inaccurate, hence, it may not be possible to adjust \(\mathrm{V}_{0}\) to \(\mathbf{0}\) but rather only to within \(\mathbf{1 0 0}\) to \(\mathbf{4 0 0} \mathrm{mV}\) of zero.

\section*{5. AC APPLICATIONS}
5.1 Wideband Amplifier With Linear AGC

If one input to the MC1594 is a dc voltage and a signal voltage is applied to the other input, the amplitude of the output signal can be controlled in a linear fashion by varying. the dc voltage. Hence, the multiplier can function as a dc coupled, wideband amplifier with linear AGC control.
In addition to the advantage of Linear AGC control, the multiplier has three other distinct advantages over most other types of AGC systems. First, the AGC dynamic range is theoretically infinite. This stems from the basic fact that with zero volts dc applied to the AGC, the output will be zero regardless of the input. In practice, the dynamic range is limited by the ability to adjust the input offset adjust potentiometers. By using cermet multi-turn potentiometers, a dynamic range of 80 dB can be obtained. The second advantage of the multiplier is that variation of the AGC voltage has no effect on the signal handling capability of the signal port, nor does it alter the input impedance of the signal port. This feature is particularly important in AGC systems which are phase sensitive. A third advantage of the multiplier is that the output-voltage-swing capability and output impedance are unchanged with variations in AGC voltage.
The circuit of Figure 24 demonstrates the linear AGC amplifier. The amplifier can handle \(1 \mathrm{~V}(\mathrm{rms})\) and exhibits a gain of approximately 20 dB . It is AGC'd through a 60 dB dynamic range with the application of an AGC voltage from 0 Vdc to 1 Vdc . The bandwidth of the amplifier is determined by the load resistor and output stray capacitance. For this reason, an emitter-follower buffer has been added to extend the bandwidth in excess of 1 MHz .

\subsection*{5.2 Balanced Modulator}

When two time variant signals are used as inputs, the result-

FIGURE 23 - SQUARE ROOT CIRCUIT

ing output is suppressed-carrier double-sideband modulation. In terms of sinusoidal inputs, this can be seen in the following equation:
\[
V_{0}=K\left(e_{1} \cos \omega_{m} t\right)\left(e_{2} \cos \omega_{c} t\right)
\]
where \(\omega_{m}\) is the modulation frequency and \(\omega_{c}\) is the carrier frequency. This equation can be expanded to show the suppressed carrier or balanced modulation:
\[
v_{o}=\frac{K e_{1} e_{2}}{2}\left[\cos \left(\omega_{c}+\omega_{m}\right) t+\cos \left(\omega_{c}-\omega_{m}\right) t\right]
\]

Unlike many modulation schemes, which are non-linear in nature, the modulation which takes place when using the MC1594 is linear. This means that for two sinusoidal inputs, the output will contain only two frequencies, the sum and difference, as seen in the above equation. There will be no spectrum centered about the second harmonic of the carrier, or any multiple of the carrier. For this reason, the filter requirements of a modulation system are reduced to the minimum. Figure 25 shows the MC1594 configuration to perform this function.

FIGURE 24 - WIDEBAND AMPLIFIER WITH LINEAR AGC

Notice that the resistor values for \(R_{X}, R_{Y}\), and \(R_{L}\) have been modified. This has been done primarily to increase the bandwidth by lowering the output impedance of the MC1594 and then lowering \(R_{X}\) and \(R_{Y}\) to achieve a gain of 1 . The \(e_{c}\) can be as large as 1 volt peak and \(e_{m}\) as high as 2 volts peak. No output offset adjust is employed since we-are interested only in the ac output components.
The input R's are used to supply bias current to the multiplier inputs as well as provide matching input impedance. The output frequency range of this configuration is determined by the 4.7 k ohm output impedance and capacitive loading. Assuming a 6 pF load, the small-signal bandwidth is 5.5 MHz .
The circuit of Figure \(\mathbf{2 5}\) will provide a typical carrier rejection of \(\mathbf{Z 7 0 ~ d B}\) from 10 kHz to 1.5 MHz .

FIGURE 25 - BALANCED MODULATOR

The adjustment procedure for this circuit is quite simple.
(1) Place the carrier signal at pin 10. With no signal applied to pin 9, adjust potentiometer P1 such that an ac null is obtained at the output.
(2) Place a modulation signal at pin 9. With no signal applied to pin 10, adjust potentiometer P2 such that an ac null is obtained at the output.
Again, the ability to make careful adjustment of these offsets will be a function of the type of potentiometers used for P1 and P2. Multiple turn cermet type potentiometers are recommended
5.3 Frequency Doubler

If for Figure 25 both inputs are identical;
\[
e_{m}=e_{c}=E \cos \omega t
\]

Then the output is given by
\[
e_{o}=e_{m} e_{c}=E^{2} \cos ^{2} \omega t
\]
which reduces to
\[
e_{0}=\frac{E^{2}}{2}(1+\cos 2 \omega t)
\]

This equation states that the output will consist of a dc term equal to one half the peak voltage squared and the second harmonic of the input frequency. Thus, the circuit acts as a frequency doubler. Two facts about this circuit are worthy of note. First, the second harmonic of the input frequency is the only frequency appearing at the output. The fundamental does not appear. Second, if the input is sinusoidal, the output will be sinusoidal and requires no filtering
The circuit of Figure 25 can be used as a frequency doubler with input frequencies in excess of 2 MHz .

\subsection*{5.4 Amplitude Modulator}

The circuit of Figure 25 is also easily used as an amplitude modulator. This is accomplished by simply varying the input offset adjust potentiometer (P1) associated with the modu-
lation input. This procedure places a dc offset on the modulation input of the multiplier such that the carrier still passes thru the multiplier when the modulating signal is zero. The result is amplitude modulation. This is easily seen by examining the basic mathematical expression for amplitude modulation given below. For the case under discussion, with \(K=1\),
\[
e_{o}=\left(E+E_{m} \cos \omega_{m} t\right\rangle\left\langle E_{c} \cos \omega_{c} t\right)
\]
where \(E\) is the dc input offset adjust voltage. This expression can be written as
\[
\begin{aligned}
& e_{\mathrm{O}}=E_{\mathrm{O}}\left(1+M \cos \omega_{\mathrm{C}} t\right) \cos \omega_{\mathrm{c}} t \\
& \text { where } E_{\mathrm{O}}=E E_{\mathrm{C}} \\
& \text { and } \quad M=\frac{E_{m}}{E}=\text { modulation index }
\end{aligned}
\]

This is the standard equation for amplitude modulation From this, it is easy to see that \(100 \%\) modulation can be achieved by adjusting the input offset adjust voltage to be exactly equal to the peak value of the modulation, \(E_{m}\). This is done by observing the output waveform and adjusting the input offset potentiometer, P1, until the output exhibits the familiar amplitude modulation waveform.

\subsection*{5.5 Phase Detecto}

If the circuit of Figure 25 has as its inputs two signals of identical frequency but having a relative phase shift the out put will be a de signal which is directly proportional to the cosine of phase difference as well as the double frequency term.
\[
\begin{aligned}
e_{c} & =E_{c} \cos \omega_{c} t \\
e_{m} & =E_{m} \cos \left(\omega_{C} t+\phi\right) \\
e_{0}=e_{C} e_{m} & =E_{C} E_{m} \cos \omega_{c} t \cos \left(\omega_{c} t+\phi\right) \\
e_{0} & =\frac{E_{C} E_{m}}{2}\left[\cos \phi+\cos \left(2 \omega_{c} t+\sigma\right)\right.
\end{aligned}
\]

The addition of a simple low pass filter to the output (which eliminates the second cosine term) and return of \(R_{L}\) to an offset adjustment potentiometer will result in a dc output voltage which is proportional to the cosine of the phase dif ference. Hence, the circuit functions as a synchronous detector.

\section*{6. DEFINITIONS OF SPECIFICATIONS}

Because of the unique nature of a multiplier, i.e., two inputs and one output, operating specifications are difficult to define and interpret. Indeed the same specification may be defined in several completely different ways depending upon which manufacturer is doing the defining. In order to clear up some of this mystery, the following definitions and examples are presented.
6.1 Multiplier Transfer Function

The output of the multiplier may be expressed by this equation:
\[
V_{0}=K\left(V_{x} \pm V_{\text {iox }}-V_{x \text { off }}\right)\left(V_{y} \pm V_{\text {ioy }}-V_{y \text { off }}\right) \pm V_{\text {oo }}
\]
where \(K=\) scale factor (see 6.5)
\[
\begin{aligned}
V_{x} & =\text { " } x \text { " input voltage } \\
V_{y} & =\text { " } y \text { " input voltage } \\
V_{\text {iox }} & =\text { " } x \text { " input offset voltage } \\
V_{\text {ioy }} & =\text { " } y \text { " input offset voltage } \\
V_{x \text { off }} & =\text { ' } x \text { '' input offset adjust voltage }
\end{aligned}
\]

\section*{\(V_{y \text { off }}=\) " \(v\) " input offset adjust voltage \\ \(\mathrm{V}_{\text {oO }}=\) output offset voltage}

The voltage transfer characteristic below indicates " \(X\) ", " \(Y\) " and output offset voltages.

\section*{FIGURE 26}

\(\left(v_{v}+10 v\right)\)

\(\left(V_{x}: 10 \mathrm{~V}\right)\)
6.2 Linearity

Linearity is defined to be the maximum deviation of output voltage from a straight line transfer function. It is expressed as a percentage of full-scale output and is measured for \(V_{x}\) and \(V_{Y}\) separately either using an " \(X \cdot Y\) " plotter (and checking the deviation from a straight line) or by using the method shown in Figure 1. The latter method nulls the output signal with the input signal, resulting in distortion components proportional to the linearity.
Example: \(0.35 \%\) linearity means
\[
v_{0}=\frac{v_{x} v_{v}}{10} \pm(0.0035)(10 \mathrm{volts})
\]
6.3 Input Offset Voitage

The input offset voltage is defined from Equation (1). It is measured for \(V_{x}\) and \(V_{Y}\) separately and is defined to be that dc input offset adjust voltage (" \(x\) " or " \(y\) ") that will result in minimum ac output when ac (\(5 \mathrm{Vpp}, 1 \mathrm{kHz}\)) is applied to the other input (" \(y\) " or " \(x\) " respectively). From Equation (1) we have:
\[
V_{o(a c)}=K\left(0 \pm V_{\text {iox }}-V_{x \text { off }}\right)(\sin \omega t)
\]
adjust \(V_{x \text { off }}\) so that \(\left(\pm V_{\text {iox }}-V_{x \text { off }}\right)=0\).
6.4 Output Offset Current and Voltage

Output offset current (\(1_{00}\)) is the dc current flowing in the output lead when \(V_{x}=V_{y}=0\) and " \(X\) " and " \(Y\) " offset voltages are adjusted to zero.
Output offset voltage (\(V_{00}\)) is:
\[
V_{00}=I_{00} R_{L}
\]
where \(R_{L}\) is the load resistance.
Note: Output offset voltage is defined by many manufacturers with all inputs at zero but without adjusting " \(X\) " and " \(Y\) " offset voltages to zero. Thus it includes input offset terms, an output offset term and a scale factor term.
6.5 Scale Factor

Scale factor is the \(K\) term in Equation (1). It determines the "gain" of the multiplier and is expressed approximately by the following equation.
\[
K=\frac{2 R_{L}}{R_{x} R_{y} l_{1}} \text { where } R_{x} \text { and } R_{y} \gg \frac{k T}{q I_{1}}
\]
and \(I_{1}\) is the current out of pin 1 .
6.6 Total DC Accuracy

The total dc accuracy of a multiplier is defined as error in multiplier output with dc (\(\pm 10 \mathrm{Vdc})\) applied to both inputs. It is expressed as a percent of full scale. Accuracy is not specified for the MC1594 because error terms can be nulled by the user.
6.7 Tempèrature Stability (Drift)

Each term defined above will have a finite drift with temperature. The temperature specifications are obtained by readjusting the multiplier offsets and scale factor at each new temperature (see previous definitions and the adjustment procedure) and noting the change.
Assume inputs are grounded and initial offset voltages have been adjusted to zero. Then output voltage drift is given by:
\(\left.\therefore V_{0}= \pm[K \pm K(T C K)(: T)] \mid\left(T C V_{\text {iox }}\right)(\Delta T)\right]\left[\left(T C V_{\text {ioy }}\right)\right.\)
\((\Delta T)\} \pm\left(T C V_{O O}\right)(\Delta T)\)
6.8 Total DC Accuracy Drift

This is the temperature drift in output voltage with 10 volts applied to each input. The output is adjusted to 10 volts at \(T_{A}=+25^{\circ} \mathrm{C}\). Assuming initial offset voltages have been adjusted to zero at \(T_{A}=+25^{\circ} \mathrm{C}\), then:
\(V_{0}=\{K \pm K(T C K)(\Delta T)]\left[10 \pm\left(T C V_{i o x}\right)(\triangle T)\right][10 \pm\) \(\left.\left(T C V_{\text {ioy }}\right)(\Delta T)\right) \pm\left(\mathrm{TCV}_{\text {oo }}\right)(\wedge T)\)
6.9 Power Supply Rejection

Variation in power supply voltages will cause undesired variation of the output voltage. It is measured by superimposing a 1 -volt, \(100-\mathrm{Hz}\) signal on each supply (\(\pm 15 \mathrm{~V}\)) with each input grounded. The resulting change in the output is expressed in \(\mathrm{mV} / \mathrm{V}\).
6.10 Output Voltage Swing

Output voltage swing capability is the maximum output voltage swing (without clipping) into a resistive load (noteoutput offset is adjusted to zerol.
If an op-ampl. is used, the multiplier output becomes a virtual ground - the swing is then determined by the scale factor and the op-ampl. selected.

\section*{GENERAL INFORMATION INDEX}

\section*{CIRCUIT DESCRIPTION}

Introduction
Regulator
Multiplier
Differential Current Converter
DC OPERATION
Selection of External Components
Operational Amplifier Selection
Stability
Offset Adjustment
Offset and Scale Factor Adjustment Procedure
Temperature Stability
Bias Currents
Parasitic Oscillation
AC OPERATION
General
Bandwidth
Slew-Rate
Phase-Vector Error
Circuit Layout
DC APPLICATIONS
Squaring Circuit
Divide
Square Root
AC APPLICATIONS
Wideband Amplifier with Linear AGC
Balanced Modulator
Frequency Modulator
Amplitude Modulator
Phase Detector
DEFINITIONS OF SPECIFICATIONS
6.1 Multiplier Transfer Function
6.2 Linearity
6.3 Input Offset Voltage
6.4 Output Offset Current and Voltage
6.5 Scale Factor
6.6 Total DC Accuracy
6.7 Temperature Stability (Drift)
6.8 Total DC Accuracy Drift
6.9 Power Supply Rejection
6.10 Output Voltage Swing

ORDERING INFORMATION
\begin{tabular}{ccc}
\hline Device & Temperature Range & Package \\
\hline MC1495L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
MC1595L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
\hline
\end{tabular}

\section*{Specifications and Applications Information}

\section*{WIDEBAND MONOLITHIC} FOUR-QUADRANT MULTIPLIER
designed for uses where the output is a linear product of two input voltages. Maximum versatility is assured by allowing the user to select the level shift method. Typical applications include: multiply, divide*, square root*, mean square*, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.
*When used with an operational amplifier.
- Wide Bandwidth
- Excellent Linearity - 1\% max Error on X-Input, 2\% max Error on Y-Input - MC1595L
- Excellent Linearity - 2\% max Error on X-Input, 4\% max Error on Y-input - MC1495L
- Adjustable Scale Factor, K
- Excellent Temperature Stability
- Wide Input Voltage Range \(- \pm 10\) Volts
- \(\pm 15\) Volt Operation

\section*{LINEAR FOUR-QUADRANT MULTIPLIER}

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE

CASE 632-08

FIGURE 2 - TRANSCONDUCTANCE BANDWIDTH

MC1495L, MC1595L
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}^{+}=+32 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{l}_{3}=\mathrm{I}_{13}=1.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{X}}=\mathrm{R}_{\mathrm{Y}}=15 \mathrm{k} \Omega\right.\),
\(R_{\mathrm{L}}=11 \mathrm{k} \Omega\) unless otherwise noted)

\section*{MC1495L, MC1595L}

MAXIMUM RATINGS (\(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline \[
\begin{aligned}
& \text { Applied Voltage } \\
& \left(v_{2}-v_{1}, v_{14}-v_{1}, v_{1}-v_{9}, v_{1}-v_{12}, v_{1}-v_{4}\right. \\
& \left.v_{1}-v_{8}, v_{12}-v_{7}, v_{9}-v_{7}, v_{8}-v_{7}, v_{4}-v_{7}\right)
\end{aligned}
\] & \(\Delta V\) & 30 & Vdc \\
\hline Differential Input Signal & \[
\begin{aligned}
& \mathrm{V}_{12-}-\mathrm{V}_{9} \\
& \mathrm{~V}_{4}-\mathrm{V}_{8}
\end{aligned}
\] & \[
\begin{aligned}
& \pm\left(6+113 R_{x}\right) \\
& \pm\left(6+13 R_{y}\right) \\
& \hline
\end{aligned}
\] & Vdc Vdc \\
\hline Maximum Bias Current & \[
\begin{array}{r}
13 \\
113 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & mA \\
\hline Power Dissipation (Package Limitation) Ceramic Pack age Derate above \(T_{A}=+25^{\circ} \mathrm{C}\) & \(P_{\text {D }}\) & \[
\begin{aligned}
& 750 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
Operating Temperature Range \\
MC1495 \\
MC1595
\end{tabular} & \(\mathrm{T}_{\text {A }}\) & \[
\begin{gathered}
0 \text { to }+70 \\
-55 \text { to }+125
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{o}^{\circ} \mathrm{C} \\
& \mathrm{o}^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

TEST CIRCUITS

FIGURE 6 - INPUT AND OUTPUT CURRENT

FIGURE 8 - OUTPUT RESISTANCE

FIGURE 10 - BANDWIDTH (\(R_{L}=50 \Omega\))

FIGURE 7 - INPUT RESISTANCE

FIGURE 9 - BANDWIDTH (\(\mathbf{R}_{\mathbf{L}}=11 \mathrm{k} \Omega\))

FIGURE 11 - COMMON-MODE GAIN and COMMON-MODE INPUT SWING

\section*{MC1495L, MC1595L}

\section*{TEST CIRCUITS (continued)}

FIGURE 14 - OFFSET ADJUST CIRCUIT (ALTERNATE)

TYPICAL CHARACTERISTICS

FIGURE 19 - MAXIMUM ALLOWABLE INPUT VOLTAGE versus VOLTAGE AT PIN 1 OR PIN 7

\section*{OPERATION AND APPLICATIONS INFORMATION}

\section*{1. Theory of Operation}

The MC1595 (MC1495) is a monolithic, four-quadrant multiplier which operates on the principle of variable transconductance. The detailed theory of operation is covered in Application Note AN-489, Analysis and Basic Operation of the MC1595. The result of this analysis is that the differential output current of the multiplier is given by
\[
I_{A}-I_{B}=\Delta t=\frac{2 V_{X} V_{Y}}{R_{X} V_{Y}^{\prime} I_{3}}
\]
where \(I_{A}\) and \(I_{B}\) are the currents into pins 14 and 2 , respectively, and \(V_{X}\) and \(V_{Y}\) are the \(X\) and \(Y\) input voltages at the multiplier input terminals.

\section*{2. Design Considerations}

\subsection*{2.1 General}

The MC1595 (MC1495) permits the designer to tailor the multiplier to a specific application by proper selection of external components. External components may be selected to optimize a given parameter (e.g. bandwidth) which may in turn restrict another parameter (e.g. maximum output voltage swing). Each important parameter is discussed in detail in the following paragraphs.
2.1.1 Linearity, Output Error, \(E_{R X}\) or \(E_{R Y}\)

Linearity error is defined as the maximum deviation of output voltage from a straight line transfer function. It is expressed as error in percent of full scale (see figure below).

For example, if the maximum deviation, \(V_{E(\max)}\), is \(\pm 100 \mathrm{mV}\) and the full scale output is 10 volts, then the percentage error is
\[
E_{R}=\frac{V_{E(\max)}}{V_{o(\max)}} \times 100=\frac{100 \times 10^{-3}}{10} \times 100= \pm 1.0 \%
\]

Linearity error may be measured by either of the following methods:
1. Using an \(X-Y\) plotter with the circuit shown in Figure 5 , obtain plots for \(X\) and \(Y\) similar to the one shown above.
2. Use the circuit of Figure 4. This method nulls the level shifted output of the multiplier with the original input. The peak output of the null operational amplifier will be equal to the error voltage, \(\mathrm{V}_{\mathrm{E}(\max)}\).
One source of linearity error can arise from large signal nonlinearity in the X and Y -input differential amplifiers. To avoid introducing error from this source, the emitter degeneration resistors \(R_{X}\) and \(R_{Y}\) must be chosen large enough so that nonlinear base-emitter voltage variation can be ignored. Figures 17 and 18 show the error expected from this source as a function of the values of \(R_{X}\) and \(R_{Y}\) with an operating current of 1.0 mA in each side of the differential amplifiers (i.e., \(I_{3}=I_{13}=1.0 \mathrm{~mA}\)).

\subsection*{2.1.2 3 dB -Bandwidth and Phase Shift}

Bandwidth is primarily determined by the load resistors and the stray multiplier output capacitance and/or the operational amplifier used to level shift the output. If wideband operation is desired, low value load resistors and/or a wideband operational amplifier should be used. Stray output capacitance will depend to a large extent on circuit layout.

Phase shift in the multiplier circuit results from two sources: phase shift common to both \(X\) and \(Y\) channels (due to the load resistor-output capacitance pole mentioned above) and relative phase shift between \(X\) and \(Y\) channels (due to differences in transadmittance in the \(X\) and \(Y\) channels). If the input to output phase shift is only \(0.6^{\circ}\), the output product of two sine waves will exhibit a vector error of \(1 \%\). A \(3^{\circ}\) relative phase shift between \(V_{X}\) and \(V_{Y}\) results in a vector error of \(5 \%\).

\subsection*{2.1.3 Maximum Input Voltage}
\(\left.V_{X(\text { max }}\right), V_{Y(\text { max })}\) maximum input voltages must be such that:
\[
\begin{aligned}
& V_{X(\max)}<1_{13} R_{Y} \\
& V_{Y(\max)}<1_{3} R_{Y} .
\end{aligned}
\]

Exceeding this value will drive one side of the input amplifier to "cutoff" and cause non-linear operation.

Currents \(I_{3}\) and \(1_{13}\) are chosen at a convenient value (observing power dissipation limitation) between 0.5 mA and 2.0 mA , approximately 1.0 mA . Then \(R_{X}\) and \(R_{Y}\) can be determined by considering the input signal handling requirements.
\[
\begin{gathered}
\text { For } V_{X(\max)}=V_{Y(\max)}=10 \text { volts; } \\
R_{X}=R_{Y}>\frac{10 \mathrm{~V}}{1.0 \mathrm{~mA}}=10 \mathrm{ks} .
\end{gathered}
\]

The equation \(I_{A} \cdot I_{B}=\frac{2 V_{X} V_{Y}}{R_{X} R_{Y} I_{3}}\)
is derived from \(I_{A} \cdot I_{B}=\frac{2 V_{X} V_{Y}}{\left(R X+\frac{2 k T}{q I_{13}}\right)\left(R_{Y}+\frac{2 k T}{q I_{3}}\right) I_{3}}\)
with the assumption \(R_{X} \gg \frac{2 k T}{q^{l_{13}}}\) and \(R_{Y} \gg \frac{2 k T}{q_{3}}\).
At \(T_{A}=+25^{\circ} \mathrm{C}\) and \(\mathrm{I}_{13}=\mathrm{I}_{3}=1 \mathrm{~mA}\),
\[
\frac{2 k T}{q^{\prime} 13}=\frac{2 k T}{q^{\prime} 3}=52 \Omega .
\]

Therefore, with \(R_{X}=R_{Y}=10 \mathrm{k} \Omega\) the above assumption is valid. Reference to Figure 19 will indicate limitations of \(V_{X(\max)}\) or \(V_{Y(\max)}\) due to \(V_{1}\) and \(V_{7}\). Exceeding these limits will cause saturation or "cutoff" of the input transistors. See Step 4 of Section 3 (General Design Procedure) for further details.

\subsection*{2.1.4 Maximum Output Voltage Swing}

The maximum output voltage swing is dependent upon the factors mentioned below and upon the particular circuit being considered.

For Figure 20 the maximum output swing is dependent upon \(\mathrm{V}^{+}\)for positive swing and upon the voltage at pin 1 for negative swing. The potential at pin 1 determines the quiescent level for transistors \(\mathrm{Q}_{5}, \mathrm{Q}_{6}, \mathrm{Q}_{7}\), and \(\mathrm{Q}_{8}\). This potential
should be related so that negative swing at pins 2 or 14 does not saturate those transistors. See Section 3 for further information regarding selection of these potentials.

FIGURE 20 - BASIC MULTIPLIER

If an operational amplifier is used for level shift, as shown in Figure 21, the output swing (of the multiplier) is greatly reduced. See Section 3 for further details.

\section*{3. General Design Procedure}

Selection of component values is best demonstrated by the following example: assume resistive dividers are used at the \(X\) and \(Y\) inputs to limit the maximum multiplier input to \(\pm 5.0\) volts (\(V X=\) \(V_{Y[\text { max }}\)) for a \(\pm 10\)-volt input (\(V_{X^{\prime}}=V_{Y^{\prime}}[\) max \(]\)). (See \(F\) igure 21). If an overall scale factor of \(1 / 10\) is desired, then
\[
V_{0}=\frac{V_{X} V_{Y^{\prime}}}{10}=\frac{\left(2 V_{X}\right)\left(2 V_{Y}\right)}{10}=4 / 10 V_{X} V_{Y}
\]

Therefore, \(K=4 / 10\) for the multiplier (excluding the divider network).

Step 1. The first step is to select current \(I_{3}\) and current 1 1.3. There are no restrictions on the selection of either of these currents except the power dissipation of the device. 13 and 13 will normally be one or two milliamperes. Further, 13 does not have to be equal to \(\mathrm{I}_{13}\), and there is normally no need to make them different. For this example, let
\[
I_{3}=I_{13}=1 \mathrm{~mA}
\]

To set currents \(I_{3}\) and 113 to the desired value, it is only necessary to connect a resistor between pin 13 and ground, and between pin 3 and ground. From the schematic shown in Figure 3.

FIGURE 21 - MULTIPLIER WITH OP-AMPL. LEVEL SHIFT

\section*{OPERATION AND APPLICATIONS INFORMATION (continued)}
it can be seen that the resistor values necessary are given by:
\[
\begin{aligned}
& R_{13}+500 \Omega=\frac{\left|V^{-}\right|-0.7 \mathrm{~V}}{113} \\
& R_{3}+500 \Omega=\frac{\left|V^{-}\right|-0.7 \mathrm{~V}}{I_{3}} \\
& \text { Let } V^{-}=-15 \mathrm{~V} \\
& \text { Then } R_{13}+500=\frac{14.3 \mathrm{~V}}{1 \mathrm{~mA}} \text { or } R_{13}=13.8 \mathrm{k} \Omega \\
& \text { Let } R_{13}=12 \mathrm{k} \Omega \\
& \text { Similarly, } R_{3}=13.8 \mathrm{k} \Omega \\
& \text { Let } R_{3}=15 \mathrm{k} \Omega
\end{aligned}
\]

However, for applications which require an accurate scale factor, the adjustment of \(R_{3}\) and consequently, \(l_{3}\), offers a convenient method of making a final trim of the scale factor. For this reason, as shown in Figure 21, resistor \(\mathrm{R}_{3}\) is shown as a fixed resistor in series with a potentiometer

For applications not requiring an exact scale factor (balanced modulator, frequency doubler, AGC amplifier, etc.), pins 3 and 13 can be connected together and a single resistor from pin 3 to ground can be used. In this case, the single resistor would have a value of one-half the above calculated value for \(\mathrm{R}_{13}\).

Step 2. The next step is to select \(R_{X}\) and \(R_{Y}\). To insure that the input transistors will always be active, the following conditions should be met:
\[
\frac{V_{X}}{R_{X}}<I_{13} \quad \frac{V_{Y}}{R_{Y}}<1_{3}
\]

A good rule of thumb is to make \(I_{3} R_{Y} \geqslant 1.5 \mathrm{~V}_{Y}(\) max \()\) and \(113 R X \geqslant 1.5 \mathrm{~V}_{\mathrm{X}}\) (max).

The larger the \(I_{3} R_{Y}\) and \(I_{13} R_{X}\) product in relation to \(V_{Y}\) and \(V_{X}\) respectively, the more accurate the multiplier will be (see Figures 17 and 18).
\[
\begin{aligned}
& \text { Let } R_{X}=R_{Y}=10 \mathrm{k} \Omega \\
& \text { Then } 1_{3} R_{Y}=10 \mathrm{~V} \\
& \qquad I_{13} R_{X}=10 \mathrm{~V}
\end{aligned}
\]
since \(V_{X(\max)}=V_{Y(\max)}=5.0\) volts the value of \(R_{X}=R_{Y}=10 \mathrm{k} \Omega\) is sufficient.

Step 3. Now that \(R_{X}, R_{Y}\) and \(I_{3}\) have been chosen, \(R_{L}\) can be determined:
\[
\begin{aligned}
& K=\frac{2 R_{L}}{R_{X} R_{Y} /_{3}}=\frac{4}{10} \\
& \text { or } \frac{(2)\left(R_{L}\right)}{(10 \mathrm{k})(10 \mathrm{k})(1 \mathrm{~mA})}=\frac{4}{10} \\
& \text { Thus } R_{L}=20 \mathrm{k} \Omega
\end{aligned}
\]

Step 4. To determine what power-supply voltage is necessary for this application, attention must be given to the circuit schematic shown in Figure 3. From the circuit schematic it can be seen that in order to maintain transistors \(Q_{1}, Q_{2}, Q_{3}\) and \(Q_{4}\) in an active
region when the maximum input voltages are applied \(\left(V X^{\prime}=V_{Y^{\prime}}=\right.\) 10 V or \(\mathrm{V}_{\mathrm{X}}=5.0 \mathrm{~V}, \mathrm{~V}_{Y}=5.0 \mathrm{~V}\)), their respective collector voltage should be at least a few tenths of a volt higher than the maximum input voltage. It should also be noticed that the collector voltage of transistors \(\mathrm{Q}_{3}\) and \(\mathrm{Q}_{4}\) are at a potential which is two diode-drops below the voltage at pin 1 . Thus, the voltage at pin 1 should be about two volts higher than the maximum input voltage. Therefore, to handle +5.0 volts at the inputs, the voltage at pin 1 must be at least +7.0 volts. Let \(V_{1}=9.0 \mathrm{Vdc}\)

Since the current following into pin 1 is always equal to \(21_{3}\), the voltage at pin 1 can be set by placing a resistor, \(R_{1}\) from pin 1 to the positive supply:
\[
\begin{aligned}
& R_{1}=\frac{V^{+}-V_{1}}{2 I_{3}} \\
& \text { Let } V^{+}=+15 \mathrm{~V} \\
& \text { Then } R_{1}=\frac{15 \mathrm{~V}-9 \mathrm{~V}}{(2)(1 \mathrm{~mA})} \\
& R_{1}=3 \mathrm{k} \Omega
\end{aligned}
\]

Note that the voltage at the base of transistors \(\mathrm{Q}_{5}, \mathrm{Q}_{6}, \mathrm{Q}_{7}\) and \(\mathrm{Q}_{8}\) is one diode-drop below the voltage at pin 1 . Thus, in order that these transistors stay active, the voltage at pins 2 and 14 should be approximately halfway between the voltage at pin 1 and the positivesupply voltage. For this example, the voltage at pins 2 and 14 should be approximately 11 volts.

Step 5. Level Shifting
For dc applications, such as the multiply, divide and squareroot functions, it is usually desirable to convert the differential output to a single-ended output voltage referenced to ground. The circuit shown in Figure 22 performs this function. It can be shown that the output voltage of this circuit is given by:
\[
V_{0}=\left(I_{2}-I_{14}\right) R_{L}
\]

And since \(I_{A}-I_{B}=I_{2}-1_{14}=\frac{2 I_{X} I_{Y}}{I_{3}}=\frac{2 V_{X} V_{Y}}{I_{3}^{R} X^{R}{ }_{Y}}\)
Then \(V_{0}=\frac{2 R_{L} V_{X} V_{Y^{\prime}}}{4 R_{X} R_{X}{ }^{\prime} 3}\) where \(V_{X} V_{Y^{\prime}}\) is the voltage at the input to the voltage dividers.

FIGURE 22 - LEVEL SHIFT CIRCUIT

The choice of an operational amplifier for this application should have low bias currents, low offset current, and a high common-mode input voltage range as well as a high common-mode rejection ratio. The MC1556, and MC1741 operational amplifiers meet these requirements.

Referring to Figure 21, the level shift components will be determined. When \(V_{X}=V_{Y}=0\), the currents \(I_{2}\) and \(I_{14}\) will be equal to l13. In Step 3, \(R_{L}\) was found to be \(20 \mathrm{k} \Omega\) and in Step \(4, V_{2}\) and \(V_{14}\) were found to be approximately 11 volts. From this information, \(R_{0}\) can be found easily from the following equation (neglecting the operational amplifiers bias current):
\[
\frac{V_{2}}{R_{L}}+I_{13}=\frac{V^{+}-V_{2}}{R_{0}}
\]

And for this example, \(\frac{11 \mathrm{~V}}{20 \mathrm{k} \Omega}+1 \mathrm{~mA}=\frac{15 \mathrm{~V}-11 \mathrm{~V}}{\mathrm{R}_{\mathrm{o}}}\)

Solving for \(R_{0}, R_{0}=2.6 \mathrm{k} \Omega\)
Thus, select \(R_{0}=3.0 \mathrm{k} \Omega\)
For \(R_{0}=3.0 \mathrm{ks} \Omega\), the voltage at pins 2 and 14 is calculated to be
\[
v_{2}=v_{14}=10.4 \text { volts }
\]

The linearity of this circuit (Figure 21) is likely to be as good or better than the circuit of Figure 5. Further improvements are
possible as shown in Figure 23 where \(R_{Y}\) has been increased substantially to improve the \(Y\) linearity, and \(R_{X}\) decreased somewhat so as not to materially affect the \(X\) linearity, this avoids increasing \(\mathrm{R}_{\mathrm{L}}\) significantly in order to maintain a K of 0.1 .

The versatility of the MC1595 (MC1495) allows the user to to optimize its performance for various input and output signal levels.
4. Offset and Scale Factor Adjustment
4.1 Offset Voltages

Within the monolithic multiplier (Figure 3) transistor baseemitter junctions are typically matched within 1 mV and resistors are typically matched within \(2 \%\). Even with this careful matching, an output error can occur. This output error is comprised of X -input offset voltage, Y -input offset voltage, and outputoffset voltage. These errors can be adjusted to zero with the techniques shown in Figure 21. Offset terms can be shown analytically by the transfer function:
\(V_{O}=K\left(V_{X} \pm V_{\text {IO }} \pm V_{X \text { off }}\right)\left(V_{Y} \pm V_{\text {IO }} \pm V_{Y \text { off }}\right) \pm V_{\text {Oo }}\)
Where \(K\) = scale factor
\(V_{X}=X\) input voltage
\(V_{Y}=Y\) input voltage
\(V_{\text {IOX }}=X\) input offset voltage
\(V_{\text {IO }} Y=Y\) input offset voltage
\(V_{X}\) off \(=X\) input offset adjust voltage
\(V_{Y}\) off \(=Y\) input offset adjust voltage
\(\mathrm{V}_{\mathrm{OO}}=\) output offset voltage.

FIGURE 23 - MULTIPLIER WITH IMPROVED LINEARITY

\section*{OPERATION AND APPLICATIONS INFORMATION (continued)}

For most dc applications, all three offset adjust potentiometers (\(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{4}\)) will be necessary. One or more offset adjust potentiometers can be eliminated for ac applications (See Figures \(28,29,30,31\)).

If well regulated supply voltages are available, the offset adjust circuit of Figure 13 is recommended. Otherwise, the circuit of Figure 14 will greatly reduce the sensitivity to power supply changes.
4.2 Scale Factor

The scale factor, \(K\), is set by \(P_{3}\) (Figure 21). \(P_{3}\) varies \(I_{3}\) which inversely controls the scale factor \(K\). It should be noted that current \(I_{3}\) is one-half the current through \(R_{1}\). \(R_{1}\) sets the bias level for \(\mathrm{Q}_{5}, \mathrm{Q}_{6}, \mathrm{Q}_{7}\), and \(\mathrm{Q}_{8}\) (See Figure 3). Therefore, to be sure that these devices remain active under all conditions of input and output swing, care should be exercised in adjusting \(\mathrm{P}_{3}\) over wide voltage ranges (see Section 3, General Design Procedure).

\subsection*{4.3 Adjustment Procedures}

The following adjustment procedure should be used to null the offsets and set the scale factor for the multiply mode of operation. (See Figure 21)
1. XInput Offset
(a) Connect oscillator (\(1 \mathrm{kHz}, 5 \mathrm{Vpp}\) sinewave) to the " \(Y\) " input (pin 4)
(b) Connect " \(X\) " input (pin 9) to ground
(c) Adjust \(X\) offset potentiometer, \(P_{2}\), for an ac null at the output
2. Y Input Offset
(a) Connect oscillator (\(1 \mathrm{kHz}, 5 \mathrm{Vpp}\) sinewave) to the " X " input (pin 9)
(b) Connect " \(Y\) " input (pin 4) to ground
(c) Adjust " \(Y\) "' offset potentiometer, \(P_{1}\), for an ac null at the output
3. Output Offset
(a) Connect both " \(X\) " and " \(Y\) " inputs to ground
(b) Adjust output offset potentiometer, \(\mathrm{P}_{4}\), until the output voltage \(\mathrm{V}_{\mathrm{O}}\) is zero volts \(d c\)
4. Scale Factor
(a) Apply +10 Vdc to both the " X " and " Y " inputs
(b) Adjust \(P_{3}\) to achieve +10.00 V at the output. 5. Repeat steps 1 through 4 as necessary.

The ability to accurately adjust the MC1595 (MC1495) depends upon the characteristics of potentiometers \(\mathrm{P}_{1}\) through \(\mathrm{P}_{4}\). Multi-turn, infinite resolution potentiometers with low-temperature coefficients are recommended.
5. DC Applications
5.1 Multiply

The circuit shown in Figure 21 may be used to multiply signals from dc to 100 kHz . Input levels to the actual multiplier are 5.0 V (max). With resistive voltage dividers the maximum could be very large - however, for this application two-to-one dividers have been used so that the maximum input level is 10 V . The maximum output level has also been designed for 10 V (max).

\subsection*{5.2 Squaring Circuit}

If the two inputs are tied together, the resultant function is squaring; that is \(V_{0}=K V^{2}\) where \(K\) is the scale factor. Note that all error terms can be eliminated with only three adjustment potentiometers, thus eliminating one of the input offset adjustments. Procedures for nulling with adjustments are given as follows:
1. AC Procedure:
(a) Connect oscillator (\(1 \mathrm{kHz}, 15 \mathrm{Vpp}\)) to input
(b) Monitor output at 2 kHz with tuned voltmeter and adjust \(P_{3}\) for desired gain (be sure to peak response of the voltmeter)
(c) Tune voltmeter to 1 kHz and adjust \(\mathrm{P}_{1}\) for a minimum output voltage
(d) Ground input and adjust \(\mathrm{P}_{4}\) (output offset) for zero volts dc output
(e) Repeat steps a through d as necessary.
2. DC Procedure:
(a) Set \(V_{X}=V_{Y}=0 V\) and adjust \(P_{4}\) (output offset potentiometer) such that \(V_{O}=0.0 \mathrm{Vdc}\)
(b) Set \(V_{X}=V_{Y}=1.0 \mathrm{~V}\) and adjust \(P_{1}(Y\) input offset potentiometer) such that the output voltage is +0.100 volts
(c) Set \(V_{X}=V_{Y}=10 \mathrm{Vdc}\) and adjust \(P_{3}\) such that the output voltage is +10.00 volts
(d) Set \(V_{X}=V_{Y}=-10 \mathrm{Vdc}\). Repeat steps a through d as necessary.

FIGURE 24 - BASIC DIVIDE CIRCUIT

5.3 Divide Circuit

Consider the circuit shown in Figure 24 in which the multiplier is placed in the feedback path of an operational amplifier. For this configuration, the operational amplifier will maintain a "virtual ground" at the inverting (-) input. Assuming that the bias current of the operational amplifier is negligible, then \(I_{1}=\) \(I_{2}\) and
\[
\begin{equation*}
\frac{K V_{X} V_{Y}}{R 1}=\frac{-V_{Z}}{R 2} \tag{1}
\end{equation*}
\]

Solving for \(V_{Y}\),
\[
\begin{equation*}
V_{Y}=\frac{-R 1}{R 2 K} \frac{V_{Z}}{V_{X}} . \tag{2}
\end{equation*}
\]

If \(\quad R 1=R 2\)

If \(\quad R 1=K R 2\)
\[
\begin{equation*}
v_{Y}=\frac{-v_{Z}}{K v_{X}} \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
v_{Y}=\frac{-v_{Z}}{v_{X}} \tag{4}
\end{equation*}
\]

Hence, the output voltage is the ratio of \(V_{Z}\) to \(V_{X}\) and provides a divide function. This analysis is, of course, the ideal condition. If the multiplier error is taken into account, the output voltage is found to be
\[
\begin{equation*}
V_{Y}=-\left[\frac{R 1}{R 2 K}\right] \frac{V_{Z}}{V_{X}}+\frac{\Delta E}{K V_{X}} . \tag{5}
\end{equation*}
\]
where \(\Delta E\) is the error voltage at the output of the multiplier. From this equation, it is seen that divide accuracy is strongly dependent upon the accuracy at which the multiplier can be set, particularly at small values of \(\mathrm{V}_{\mathrm{Y}}\). For example, assume that R1 \(=\mathrm{R} 2\), and \(K=1 / 10\). For these conditions the output of the divide circuit is given by:
\[
\begin{equation*}
V_{Y}=\frac{-10 V_{Z}}{V_{X}}+\frac{10 \Delta E}{V_{X}} . \tag{6}
\end{equation*}
\]

From equation 6, it is seen that only when \(\mathrm{V}_{\mathrm{X}}=10 \mathrm{~V}\) is the error voltage of the divide circuit as low as the error of the multiply circuit. For example, when \(V_{X}\) is small, (0.1 volt) the error voltage of the divide circuit can be expected to be a hundred times the error of the basic multiplier circuit.

In terms of percentage error,
\[
\text { percentage error }=\frac{\text { error }}{\text { actual }} \times 100 \%
\]
or from equation (5),
\[
\text { P.E.D }=\frac{\frac{\Delta E}{K V_{X}}}{\left[\frac{R 1}{R 2 K}\right] \frac{V_{Z}}{V_{X}}}=\left[\frac{R 2}{R 1}\right] \frac{\Delta E}{V_{Z}} .
\]

From equation 7, the percentage error is inversely related to voltage \(\mathrm{V}_{\mathrm{Z}}\) (i.e., for increasing values of \(\mathrm{V}_{\mathrm{Z}}\), the percentage error decreases).

A circuit that performs the divide function is shown in Figure 25.
Two things should be emphasized concerning Figure 25.
1. The input voltage (\(V^{\prime} X\)) must be greater than zero and must be positive. This insures that the current out of pin 2 of the multiplier will always be in a direction compatible with the polarity of \(\mathrm{V}_{\mathrm{Z}}\).
2. Pins 2 and 14 of the multiplier have been interchanged in respect to the operational amplifiers input terminals. In this instance, Figure 25 differs from the circuit connection shown in Figure 21; necessitated to insure negative feedback around the loop.

A Suggested Adjustment Procedure for the Divide Circuit
1. Set \(V_{Z}=0\) volts and adjust the output offset potentiometer (\(\mathrm{P}_{4}\)) until the output voltage \(\left(\mathrm{V}_{0}\right)\) remains at some (not necessarily zero) constant value as \(\mathrm{V}_{\mathrm{X}}\) is varied between +1.0 volt and +10 volts.
2. Keep \(V_{Z}\) at 0 volts, set \(V_{X}{ }^{\prime}\) at +10 volts and adjust the \(Y\) input offset potentiometer (\(P_{1}\)) until \(V_{0}=0\) volts.
3. Let \(V_{X}{ }^{\prime}=V_{Z}\) and adjust the \(X\) input offset potentiometer (\(\mathrm{P}_{2}\)) until the output voltage remains at some (not necessarily -10 volts) constant value as \(V_{Z}=V_{X}\) is varied between +1.0 and +10 volts.
4. Keep \(V^{\prime}{ }^{\prime}=V_{Z}\) and adjust the scale factor potentiometer \(\left(P_{3}\right)\) until the average value of \(V_{0}\) is -10 volts as \(V_{Z}=\) \(V_{X}\) ' is varied between +1.0 volt and +10 volts.
5. Repeat steps 1 through 4 as necessary to achieve optimum performance.

\subsection*{5.4 Square Root}

A special case of the divide circuit in which the two inputs to the multiplier are connected together is the square root function

FIGURE 25 - DIVIDE CIRCUIT

FIGURE 26 - BASIC SQUARE ROOT CIRCUIT

as indicated in Figure 26. This circuit may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 27) protects against accidental latch-up.

This circuit also may be adjusted in the closed-loop mode as follows:
1. Set \(V_{Z}\) to -0.01 volts and adjust \(P_{4}\) (output offset) for \(V_{0}=+0.316\) volts, being careful to approach the output from the positive side to preclude the effect of the output diode clamping.
2. Set \(V_{Z}\) to -0.9 volts and adjust \(P_{2}(X\) adjust \()\) for \(V_{0}=\) +3.0 volts.
3. Set \(V_{Z}\) to -10 volts and adjust \(P_{3}\) (scale factor adjust) for \(V_{0}=+10\) volts.
4. Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.

\section*{6. AC Applications}

The applications that follow demonstrate the versatility of the monolithic multiplier. If a potted multiplier is used for these cases, the results generally would not be as good because the potted units have circuits that, although they optimize dc multiplication operation, can hinder ac applications:
6.1 Frequency doubling often is done with a diode where the fundamental plus a series of harmonics are generated. However, extensive filtering is required to obtain the desired harmonic, and the second harmonic obtained under this technique usually is small in magnitude and requires amplification.

When a multiplier is used to double frequency the second harmonic is obtained directly, except for a dc term, which can be removed with ac coupling.
\[
\begin{aligned}
& e_{\cap}=K E^{2} \cos ^{2} \omega t \\
& e_{n}=\frac{K E^{2}}{2}(1+\cos 2 \omega t) .
\end{aligned}
\]

A potted multiplier can be used to obtain the double frequency component, but frequency would be limited by its internal level-shift amplifier. In the monolithic units, the amplifier is omitted.

In a typical doubler circuit, conventional \(\pm 15\)-volt supplies are used. An input dynamic range of 5.0 volts peak-to-peak is allowed. The circuit generates wave-forms that are double frequency; less than \(1 \%\) distortion is encountered without filtering. The configuration has been successfully used in excess of 200 kHz ; reducing the scale factor by decreasing the load resistors can further expand the bandwidth.

A slightly modified version of the MC1595 (MC1495) the MC1596 (MC1496) - has been successfully used as a doubler to obtain 400 MHz . (See Figure 28.)
6.2 Figure 29 represents an application for the monolithic multiplier as a balanced modulator. Here, the audio input signal is 1.6 kHz and the carrier is 40 kHz .

FIGURE 27 - SQUARE ROOT CIRCUIT

\section*{OPERATION AND APPLICATIONS INFORMATION (continued)}

FIGURE 28 - FREQUENCY DOUBLER

When two equal cosine waves are applied to \(X\) and \(Y\), the result is a wave shape of twice the input frequency. For this example the input was a 10 kHz signal, output was 20 kHz .

FIGURE 29 - BALANCED MODULATOR

(B)

The defining equation for balanced modulation is
\[
\begin{aligned}
& K\left(E_{m} \cos \omega_{m} t\right)\left(E_{c} \cos \omega_{c} t\right)= \\
& \frac{K E_{c} E_{m}}{2}\left[\cos \left(\omega_{c}+\omega_{m}\right) t+\cos \left(\omega_{c}-\omega_{m}\right) t\right]
\end{aligned}
\]
where \(\omega_{\mathrm{C}}\) is the carrier frequency, \(\omega_{\mathrm{m}}\) is the modulator frequency and \(K\) is the multiplier gain constant.

AC coupling at the output eliminates the need for level translation or an operational amplifier; a higher operating frequency results.

A problem common to communications is to extract the intelligence from single-sideband received signal. The ssb signal is of the form
\[
e_{s s b}=A \cos \left(\omega_{c}+\omega_{m}\right) t
\]
and if multiplied by the appropriate carrier waveform, \(\cos \omega_{C} t\),
\[
e_{s s b} e_{\text {carrier }}=\frac{A K}{2}\left[\cos \left(2 \omega_{c}+\omega_{m}\right) t+\cos \left(\omega_{c}\right) t\right]
\]

If the frequency of the band-limited carrier signal, \(\omega_{c}\), is ascertained in advance the designer can insert a low-pass filter and obtain the \((A K / 2)\left(\cos \omega_{c} t\right)\) term with ease. He also can use an operational amplifier for a combination level shift-active filter, as an external component. But in potted multipliers, even if the frequency range can be covered, the operational amplifier is inside and not accessible, so the user must accept the level shifting provided, and still add a low-pass filter.

\subsection*{6.3 Amplitude Modulation}

The multiplier performs amplitude modulation, similar to balanced modulation, when a dc term is added to the modulating signal with the \(Y\) offset adjust potentiometer. (See Figure 30.)

Here, the identity is
\[
\begin{gathered}
E_{m}\left(1+m \cos \omega_{m} t\right) E_{c} \cos \omega_{c} t=K E_{m} E_{c} \cos \omega_{c} t+ \\
\frac{K E_{m} E_{c} m}{2}\left[\cos \left(\omega_{c}+\omega_{m}\right) t+\cos \left(\omega_{c}-\omega_{m}\right) t\right]
\end{gathered}
\]
where \(m\) indicates the degree of modulation. Since \(m\) is adjustable, via potentiometer \(\mathrm{P}_{1}, 100 \%\) modulation is possible. Without extensive tweaking, \(96 \%\) modulation may be obtained where \(\omega_{\mathrm{c}}\) and \(\omega_{\mathrm{m}}\) are the same as in the balanced-modulator example.

\subsection*{6.4 Linear Gain Control}

To obtain linear gain control, the designer can feed to one of the two MC1595 (MC1495) inputs a signal that will vary the unit's gain. The following example demonstrates the feasibility of this application. Suppose a 200 kHz sine wave, 1.0 volt peak-to-peak, is the signal to which a gain control will be added. The dynamic range of the control voltage \(V_{C}\) is 0 to +1.0 volt. These must be ascertained and the proper values of \(R_{X}\) and \(R_{Y}\) can be selected for optimum performance. For the \(200-\mathrm{kHz}\) operating frequency, load resistors of 100 ohms were chosen to broaden the operating bandwidth of the multiplier, but gain was sacrificed. It may be made up with an amplifier operating at the appropriate frequency. (See Figure 31.)

FIGURE 30 - AMPLITUDE MODULATION

(B)

The signal is applied to the unit's \(Y\) input. Since the total input range is limited to 1.0 volt \(\mathrm{p}-\mathrm{p}\), a 2.0 -volt swing, a current source of 2.0 mA and an \(\mathrm{R}_{\mathrm{Y}}\) value of 1.0 kilohm is chosen. This takes best advantage of the dynamic range and insures linear operation in the Y -channel.

Since the \(X\) input varies between 0 and +1.0 volt, the current source selected was 1.0 mA and the \(R_{X}\) value chosen was 2.0 kilohms. This also insures linear operation over the \(X\) input dynamic range.

Choosing \(R_{L}=100\) assures wide-bandwidth operation. Hence, the scale factor for this configuration is
\[
\begin{aligned}
K & =\frac{R_{L}}{R_{X} R_{Y}{ }^{\prime} 3} \\
& =\frac{100}{(2 k)(1 k)\left(2 \times 10^{+3}\right)} V^{-1} \\
& =\frac{1}{40} V^{-1}
\end{aligned}
\]

The 2 in the numerator of the equation is missing in this scalefactor expression because the output is single-ended and ac coupled.

To recover the gain, an MC1552 video amplifier with a gain of 40 is used. An operational amplifier also could have been used with frequency compensation to allow a gain of 40 at 200 kHz . The MC1539 operational amplifier can be tailored for this use; and the MC1520 operational amplifier does it directly.

FIGURE 31 - LINEAR GAIN CONTROL

\begin{tabular}{lccc}
\hline \multicolumn{1}{c}{ Device } & Alternate & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline MC3456D & - & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & SO-14 \\
MC3456L & - & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Ceramic DIP \\
MC3456P & NE556A & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & Plastic DIP \\
MC3556L & - & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & Ceramic DIP \\
NE556D & - & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & SO-14 \\
\hline
\end{tabular}

\section*{Specifications and Applications Information}

\section*{DUAL TIMING CIRCUIT}

The MC3556/MC3456 dual timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor per timer. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor per timer. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits.
- Direct Replacement for NE556/SE556 Timers
- Timing From Microseconds Through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Current Output Can Source or Sink 200 mA
- Output Can Drive MTTL
- Temperature Stability of \(0.005 \%\) per \({ }^{\circ} \mathrm{C}\)
- Normally "On" or Normally "Off" Output
- Dual Version of the Popular MC1455 Timer

FIGURE 1 - 22-SECOND SOLID-STATE TIME DELAY RELAY CIRCUIT

FIGURE 2 - BLOCK DIAGRAM (1/2 SHOWN)

P SUFFIX
PLASTIC PACKAGE

D SUFFIX
PLASTIC PACKAGE
CASE 751-02

\section*{TYPICAL APPLICATIONS}
- Time Delay Generation
- Sequential Timing
- Linear Sweep Generation
- Precision Timing
- Pulse Generation
- Pulse Shaping
- Missing Pulse Detection
- Pulse Width Modulation
- Pulse Position Modulation

MAXIMUM RATINGS (\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\text {CC }}\) & +18 & Vdc \\
\hline Discharge Current & 'dis & 200 & mA \\
\hline Power Dissipation (Package Limitation) Ceramic Dual-In-Line Package Derate above \(T_{A}=+25^{\circ} \mathrm{C}\) Plastic Dual In-Line Package Derate above \(T_{A}=+25^{\circ} \mathrm{C}\) & \({ }^{\text {P }}\) & \[
\begin{gathered}
1000 \\
6.6 \\
625 \\
5.0
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
\mathrm{~mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Operating Ambient Temperature Range MC3556 MC3456 & TA & \[
\begin{gathered}
-55 \text { to }+125 \\
0 \text { to }+70 \\
\hline
\end{gathered}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

FIGURE 3 - GENERAL TEST CIRCUIT

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}\right.\) to +15 V unless otherwise noted. 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MC3556} & \multicolumn{3}{|c|}{MC3456} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Supply Voltage & \(V_{\text {CC }}\) & 4.5 & - & 18 & 4.5 & - & 16 & V \\
\hline \[
\begin{aligned}
& \text { Supply Current } \\
& V_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\
& \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\
& \text { Low State, (Note 1) }
\end{aligned}
\] & \({ }^{1} \mathrm{CC}\) & - & \[
\begin{aligned}
& 6.0 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 24
\end{aligned}
\] & - & \[
\begin{aligned}
& 6.0 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 30
\end{aligned}
\] & mA \\
\hline \begin{tabular}{l}
Timing Error (Note 2) \\
Monostable Mode \(R_{A}=2.0 \mathrm{k} \Omega\) to 100 ks 2 Initial Accuracy C \(=01 \mu \mathrm{~F}\) Drift with Temperature Drift with Supply Voltage \\
Astable Mode
\[
\begin{aligned}
& R_{A}=R_{B}=2.0 \mathrm{k} \Omega \text { to } 100 \mathrm{ks} 2 \\
& C=0.01 \mu \mathrm{~F}
\end{aligned}
\] \\
Initial Accuracy \\
Drift with Temperature \\
Drift with Supply Voltage
\end{tabular} & & & \[
\begin{gathered}
0.5 \\
30 \\
0.15 \\
\\
\\
1.5 \\
90 \\
0.15
\end{gathered}
\] & \[
\begin{aligned}
& 1.5 \\
& 100 \\
& 0.2
\end{aligned}
\]
\[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
0.75 \\
50 \\
0.1 \\
\\
\\
2.25 \\
150 \\
0.3
\end{gathered}
\] & & \\
\hline Threshold Voltage & \(V_{\text {th }}\) & - & 2/3 & - & - & 2/3 & - & \(\times \mathrm{V}_{\text {cc }}\) \\
\hline \[
\begin{gathered}
\hline \text { Trigger Voltage } \\
V_{C C}=15 \mathrm{~V} \\
V_{C C}=5.0 \mathrm{~V} \\
\hline
\end{gathered}
\] & \(\mathrm{V}_{\mathrm{T}}\) & \[
\begin{gathered}
4.8 \\
1.45
\end{gathered}
\] & \[
\begin{gathered}
5.0 \\
1.67 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 5.2 \\
& 1.9 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 5.0 \\
& 1.67 \\
& \hline
\end{aligned}
\] & - & \(\checkmark\) \\
\hline Trigger Current & \(1 T\) & - & 0.5 & - & - & 0.5 & - & \(\mu \mathrm{A}\) \\
\hline Reset Voltage & \(\mathrm{V}_{\mathrm{R}}\) & 0.4 & 0.7 & 1.0 & 0.4. & 0.7 & 1.0 & V \\
\hline Reset Current & \({ }^{\prime} \mathrm{R}_{\text {R }}\) & - & 0.1 & - & - & 0.1 & - & mA \\
\hline Threshold Current (Note 3) & \(\mathrm{I}_{\text {th }}\) & - & 0.03 & 0.1 & - & 0.03 & 0.1 & \(\mu \mathrm{A}\) \\
\hline Control Voltage Level
\[
\begin{aligned}
& \mathrm{V}_{C C}=15 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{CL}}\) & \[
\begin{aligned}
& 9.6 \\
& 2.9 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10 \\
3.33
\end{gathered}
\] & \[
\begin{gathered}
10.4 \\
3.8 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 9.0 \\
& 2.6 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10 \\
3.33
\end{gathered}
\] & \[
\begin{array}{r}
11 \\
4.0 \\
\hline
\end{array}
\] & \(\checkmark\) \\
\hline Output Voltage Low
\[
\begin{aligned}
& \left(V_{C C}=15 \mathrm{~V}\right) \\
& I_{\text {sink }}=10 \mathrm{~mA} \\
& I_{\text {sink }}=50 \mathrm{~mA} \\
& I_{\text {sink }}=100 \mathrm{~mA} \\
& I_{\text {sink }}=200 \mathrm{~mA} \\
& \left(V_{C C}=5.0 \mathrm{~V}\right) \\
& I_{\text {sink }}=8.0 \mathrm{~mA} \\
& I_{\text {sink }}=5.0 \mathrm{~mA}
\end{aligned}
\] & \(V_{\text {OL }}\) & - & \begin{tabular}{l}
0.1 \\
0.4 \\
2.0 \\
2.5 \\
\(0.1^{\circ}\)
\end{tabular} & \[
\begin{gathered}
0.15 \\
0.5 \\
2.25 \\
- \\
0.25
\end{gathered}
\] & - & \[
\begin{aligned}
& 0.1 \\
& 0.4 \\
& 2.0 \\
& 2.5 \\
& - \\
& 0.25 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
0.25 \\
0.75 \\
2.75 \\
- \\
- \\
0.35 \\
\hline
\end{gathered}
\] & V \\
\hline \begin{tabular}{l}
Output Voltage High \\
(\(1_{\text {source }}=200 \mathrm{~mA}\)) \\
\(V_{C C}=15 \mathrm{~V}\) \\
(1 source \(=100 \mathrm{~mA}\)) \\
\(V_{C C}=15 \mathrm{~V}\) \\
\(V_{C C}=5.0 \mathrm{~V}\)
\end{tabular} & V OH & \[
\begin{aligned}
& - \\
& 13 \\
& 3.0
\end{aligned}
\] & \[
\begin{gathered}
12.5 \\
\\
13.3 \\
3.3 \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
- \\
12.75 \\
2.75
\end{gathered}
\] & \[
\begin{gathered}
12.5 \\
13.3 \\
3.3 \\
\hline
\end{gathered}
\] & - & V \\
\hline Toggle Rate (Figures 17, 19)
\[
R_{A}=3.3 \mathrm{k} \Omega, R_{B}=6.8 \mathrm{k} \Omega, C=0.003 \mu \mathrm{~F}
\] & - & - & 100 & - & - & 100 & - & kHz \\
\hline Discharge Leakage Current & Idis & - & 20 & 100 & - & 20 & 100 & nA \\
\hline Rise Time of Outout & TOLH & - & 100 & - & - & 100 & - & ns \\
\hline Fall Time of Output & \({ }^{1} \mathrm{OHL}\) & - & 100 & - & - & 100 & - & ns \\
\hline \begin{tabular}{l}
Matching Characteristics Between Sections \\
(Monostable) \\
Initial Timing Accuracy \\
Timing Drift with Temperature \\
Drift with Supply Voltage
\end{tabular} & & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
0.5 \\
\pm 10 \\
0.1
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
- \\
0.2
\end{gathered}
\] & - & \[
\begin{gathered}
1.0 \\
\pm 10 \\
0.2
\end{gathered}
\] & \[
\frac{2.0}{-}
\] & \[
\begin{gathered}
\% \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\% / \mathrm{V}
\end{gathered}
\] \\
\hline
\end{tabular}

NOTES: 1. Supply current is typically 1.0 mA less for each output which is high.
2. Tested at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\).
3. This will determine the maximum value of \(R_{A}+R_{B}\) for 15 V operation. The maximum total \(\mathrm{R}=20\) megohms.

TYPICAL CHARACTERISTICS
(\(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise noted.)

FIGURE 4 - TRIGGER PULSE WIDTH

FIGURE 7 - LOW OUTPUT VOLTAGE @ \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}\)

FIGURE 10 - DELAY TIME versus SUPPLY VOLTAGE

FIGURE 5 - SUPPLY CURRENT

FIGURE 8 - LOW OUTPUT VOLTAGE @ \(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{Vdc}\)

FIGURE 11 - DELAY time versus TEMPERATURE

FIGURE 6 - HIGH OUTPUT VOLTAGE

FIGURE 9 - LOW OUTPUT VOLTAGE @ \(V_{C C}=15\) Vdc

FIGURE 12 - PROPAGATION DELAY versus TRIGGER VOLTAGE

FIGURE 13-1/2 REPRESENTATIVE CIRCUIT SCHEMATIC

\section*{GENERAL OPERATION}

The MC3556 is a dual timing circuit which uses as its timing elements an external resistor - capacitor network. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-fiop and digital output are included. The comparator reference voltages are always a fixed ratio of the supply vol tage thus providing output timing independent of supply voltage.

\section*{Monostable Mode}

In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode, refer to circuit Figure 14. When the input voltage to the trigger comparator falls below \(1 / 3 \mathrm{~V}_{\mathrm{CC}}\) the comparator output triggers the flip-flop so that it's output sets low. This turns the capacitor discharge transistor "off" and drives the digital output to the high state. This condition allows the capacitor to charge at an ex ponential rate which is set by the RC time constant. When the capacitor voltage reaches \(2 / 3 \mathrm{~V}_{\mathrm{CC}}\) the threshold comparator resets the flip-flop. This action discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered until the present timing period has been completed. The time that the output is high is given by the equation \(t=1.1 R_{A} C\). Various combinations of \(R\) and \(C\) and their associated times are shown in Figure 16. The trigger pulse width must be less than the timing period.

A reset pin is provided to discharge the capacitor thus interrupting the timing cycle. As long as the reset pin is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use.

FIGURE 14 - MONOSTABLE CIRCUIT

FIGURE 15 - MONOSTABLE WAVEFORMS

\(\mathrm{t}=50 \mu \mathrm{~s} / \mathrm{cm}\)
\(\left(\mathrm{R}_{\mathrm{A}}=10 \mathrm{k} \Omega, \mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right)\)
FIGURE 16 - TIME DELAY

\section*{Astable Mode}

In the astable mode the timer is connected so that it will retrigger itself and cause the capacitor voltage to oscillate between \(1 / 3 V_{C C}\) and \(2 / 3 V_{C C}\). See Figure 17.

The external capacitor charges to \(2 / 3 \mathrm{~V}_{C C}\) through \(R_{A}\) and \(R_{B}\) and discharges to \(1 / 3 \vee_{C C}\) through \(R_{B}\). By varying the ratio of these resistors the duty cycle can be varied. The charge and discharge times are independent of the supply voltage.
The charge time (output high) is given by: \(t_{1}=0.695\left(R_{A}+R_{B}\right) C\)
The discharge time (output low) by: \(t_{2}=0.695\left(R_{B}\right) C\)
Thus the total period is given by: \(T=t_{1}+t_{2}=0.695\left(R_{A}+2 R_{B}\right) C\)
The frequency of oscillation is then: \(f=\frac{1}{T}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}\)
and may be easily found as shown in Figure 19.
The duty cycle is given by: \(D C=\frac{R_{B}}{R_{A}+2 R_{B}}\)
To obtain the maximum duty cycle \(R_{A}\) must be as small as possible; but it must also be large enough to limit the discharge current (pin 7 current) within the maximum rating of the discharge transistor (200 mA).

The minimum value of \(R_{A}\) is given by:
\[
\mathrm{R}_{\mathrm{A}} \geqslant \frac{\mathrm{~V}_{\mathrm{CC}}(\mathrm{Vdc})}{17(\mathrm{~A})} \geqslant \frac{\mathrm{V}_{\mathrm{CC}}(\mathrm{Vdc})}{0.2}
\]

FIGURE 17 - ASTABLE CIRCUIT

FIGURE 18 - ASTABLE WAVEFORMS

FIGURE 19 - FREE-RUNNING FREQUENCY

\section*{APPLICATIONS INFORMATION}

\section*{TONE BURST GENERATOR}

For a tone burst generator the first timer is used as a monostable and determines the tone duration when triggered by a positive pulse at Pin 6. The second timer is enabled by the high output of the monostable. It is connected as an astable and determines the frequency of the tone.

\section*{DUAL ASTABLE MULTIVIBRATOR}

This dual astable multivibrator provides versatility not available with single timer circuits. The duty cycle can be adjusted from 5\% to \(95 \%\). The two outputs provide two phase clock signals often required in digital systems. It can also be inhibited by use of either reset terminal.

FIGURE 20 - TONE BURST GENERATOR

FIGURE 21 - DUAL ASTABLE MULTIVIBRATOR

\section*{Pulse Width Modulation}

If the timer is triggered with a continuous pulse train in the monostable mode of operation, the charge time of the capacitor can be varied by changing the control voltage at pin 3. In this manner, the output pulse width can be modulated by applying a modulating signal that controls the threshoid voltage.

FIGURE 22

FIGURE 23 - PULSE WIDTH MODULATION WAVEFORMS \(\left(R_{A}=10 \mathrm{k} \Omega, \mathbf{C}=\mathbf{0 . 0 2 \mu} \mu, \mathrm{V}_{\mathbf{C C}}=15 \mathrm{~V}\right)\)

t \(0.5 \mathrm{~ms} / \mathrm{cm}\)

\section*{Test Sequences}

Several timers can be connected to drive each other for sequential timing. An example is shown in Figure 24 where the sequence is started by triggering the first timer which runs for 10 ms . The output then switches low momentarily and starts the second timer which runs for 50 ms and so forth.

FIGURE 24

\section*{In Brief . . .}

Surface Mount Technology is now being utilized to offer answers to many problems that have been created in the use of insertion technology.
Limitations have been reached with insertion packages and PC board technology. Surface Mount Technology offers the opportunity to continue to advance the State-of-the-Art designs that cannot be accomplished with Insertion Technology.

Surface Mount Packages allow more optimum device performance with the smaller Surface Mount configuration. Internal lead lengths, parasitic capacitance and inductance that placed limitations on chip performance has been reduced.
The lower profile of Surface Mount Packages allows more boards to be utilized in a given amount of space. They are stacked closer together and utilize less total volume than insertion populated PC boards.

Printed circuit costs are lowered with the reduction of the number of board layers required. The elimination or reduction of the number of plated through holes in the board, contribute significantly to lower PC board prices.

Surface Mount assembly does not require the preparation of components that are common on insertion technology lines. Surface Mount components are sent directly to the assembly line, eliminating an intermediate step.

Automatic placement equipment is available that can place Surface Mount components at the rate of a few thousand per hour to hundreds of thousands of components per hour.

Surface Mount Technology is cost effective, allowing the manufacturer the opportunity to produce smaller units and offer increased functions with the same size product.

Linear and Interface Devices. 12-2
Tape and Reel . 12-5

\section*{Surface Mount Technology}

\section*{Surface Mount Technology}
Linear and Interface Devices 12-2
Tape and Reel
Standard Bipolar Logic, Bipolar Analog and
MOS Integrated Circuits

\section*{Linear and Interface}

All the major bipolar analog families are now represented in surface mount packaging. Standard SOIC and PLCC packages are augmented by SOP-8 and DPAK for Linear regulators. In addition, tape and reel shipping to
the updated EIA-481A is now on line for the industry's largest array of op-amps, regulators, interface, data conversion, consumer, telecom and automotive Linear ICs.
\begin{tabular}{|c|c|c|}
\hline Device & Function & Package \\
\hline DAC-08CD,ED & High-Speed 8-Bit Multiplying D-to-A Converter & SO-16 \\
\hline LF347D & Quad BIFET Operational Amplifiers & SO-14 \\
\hline LF351D & Single BIFET Operational Amplifier & SO-8 \\
\hline LF353D & Dual BIFET Operational Amplifiers & SO-8 \\
\hline LF412CD & Dual BIFET High Power Operational Amplifiers & SO-8 \\
\hline LF441CD & Single BIFET Low Power Operational Amplifier & SO-8 \\
\hline LF442CD & Dual BIFET Low Power Operational Amplifiers & SO-8 \\
\hline LF444CD & Quad BIFET Low Power Operational Amplifiers & SO-14 \\
\hline LM201AD & General Purpose Adjustable Operational Amplifier & SO-8 \\
\hline LM208D,AD & Precision Operational Amplifier & SO-8 \\
\hline LM211D & High Performance Voltage Comparator & SO-8 \\
\hline LM224D & Quad Low Power Operational Amplifiers & SO-14 \\
\hline LM239D,AD & Quad Single Supply Comparators & SO-14 \\
\hline LM258D & Dual Low Power Operational Amplifiers & SO-8 \\
\hline LM293D & Dual Comparators & SO-8 \\
\hline LM301AD & General Purpose Adjustable Operational Amplifier & SO-8 \\
\hline LM308D,AD & Precision Operational Amplifier & SO-8 \\
\hline LM311D & High Performance Voltage Comparator & SO-8 \\
\hline LM317LD & Positive Adjustable 100 mA Voltage Regulator & SOP-8 \\
\hline LM324D,AD & Quad Low Power Operational Amplifiers & SO-14 \\
\hline LM339D,AD & Quad Single Supply Comparators & SO-14 \\
\hline LM348D & Quad MC1741 Operational Amplifiers & SO-14 \\
\hline LM358D & Dual Low Power Operational Amplifiers & SO-8 \\
\hline LM385D-1.2 & Micropower Voltage Reference Diodes & SO-8 \\
\hline LM385D-2.5 & Micropower Voltage Reference Diodes & SO-8 \\
\hline LM393D & Dual Comparators & SO-8 \\
\hline LM833D & Dual Audio Amplifiers & SO-8 \\
\hline LM2901D & Quad Single Supply Comparators & SO-14 \\
\hline LM2902D & Quad Low Power Operational Amplifiers & SO-14 \\
\hline LM2903D & Dual Comparators & SO-8 \\
\hline LM2904D & Dual Low Power Operational Amplifiers & SO-8 \\
\hline LM2931AD-5.0,D-5.0 & Low Dropout Voltage Regulator & SOP-8 \\
\hline LM2931CD* & Adjustable Low Dropout Voltage Regulator & SOP-8 \\
\hline LM3900D & Quad Single Supply Operational Amplifiers & SO-14 \\
\hline MC1377DW* & Color Television RGB to PAL/NTSC Encoder & SO-20 \\
\hline MC1378FN & Video Overlay Synchronizer & PLCC-44 \\
\hline MC1403D & Precision Low Voltage Reference & SO-8 \\
\hline MC1413D & Peripheral Driver Array & SO-16 \\
\hline MC1436D, CD & High Voltage Operational Amplifier & SO-8 \\
\hline MC1455D & Timing Circuit & SO-8 \\
\hline MC1458D,CD & Dual Operational Amplifiers & SO-8 \\
\hline MC1458SD & High Slew Rate Dual Operational Amplifiers & SO-8 \\
\hline MC1488D & Quad EIA-232C Drivers & SO-14 \\
\hline MC1489D & Quad EIA-232C Receivers & SO-14 \\
\hline MC1496D & Balanced Modulator-Demodulator & SO-14 \\
\hline MC1723CD & Adjustable Positive Or Negative Voltage Regulator & SO-14 \\
\hline MC1733CD & Differential Video Amplifier & SO-14 \\
\hline MC1741CD & General Purpose Operational Amplifier & SO-8 \\
\hline MC1741SCD & High Slew Rate Operational Amplifier & SO-8 \\
\hline MC1747CD & Dual MC1741 Operational Amplifiers & SO-14 \\
\hline \begin{tabular}{l}
MC1776CD \\
MC26LS31D
\end{tabular} & Programmable Operational Amplifier Quad EIA-422/3 Drivers & \[
\begin{gathered}
\text { SO-8 } \\
\text { SO-16 }
\end{gathered}
\] \\
\hline
\end{tabular}
*To Be introduced.

\section*{LINEAR AND INTERFACE (continued)}
\begin{tabular}{|c|c|c|}
\hline Device & Function & Package \\
\hline MC26LS32D & Quad EIA-422 Receivers & SO-16 \\
\hline MC2831AD & FM Transmitter & SO-16 \\
\hline MC3346D & General Purpose Transistor Array & SO-14 \\
\hline MC3356FN & FSK Receiver & PLCC-20 \\
\hline MC3357D & Low Power FM IF Amplifier & SO-16 \\
\hline MC3359DW & Low Power Narrowband FM IF Amplifier & SO-20 \\
\hline MC3361D & Low Voltage Narrowband FM IF Amplifier & SO-16 \\
\hline MC3362DW & Dual Conversion Receivers & SO-28 \\
\hline MC3363DW* & Dual Conversion Receivers & SO-28 \\
\hline MC3367DW & Low Voltage VHF Receiver & SO-28 \\
\hline MC3371D* & Low Voltage FM Receiver with RSSI & SO-16 \\
\hline MC3401D & Quad Operational Amplifiers & SO-14 \\
\hline MC3403D & Quad Differential-Input Operational Amplifiers & SO-14 \\
\hline MC3423D & Overvoltage Sensing Circuit & SO-8 \\
\hline MC3448AD & Quad GPIB Transceivers & SO-16 \\
\hline MC3450D & Quad Line Receivers & SO-16 \\
\hline MC3452D & Quad Line Receivers & SO-16 \\
\hline MC3458D & Dual Low Power Operational Amplifiers & SO-8 \\
\hline MC3486D & Quad EIA-422/3 Receivers & SO-16 \\
\hline MC3487D & Quad EIA-422 Drivers & SO-16 \\
\hline MC4558CD & Dual High Frequency Operational Amplifiers & SO-8 \\
\hline MC4741CD & Quad MC1741 Operational Amplifiers & SO-14 \\
\hline MC78L05ACD & Positive Voltage Regulator, \(5 \mathrm{~V}, 100 \mathrm{~mA}\) & SOP-8 \\
\hline MC78L08ACD & Positive Voltage Regulator, \(8 \mathrm{~V}, 100 \mathrm{~mA}\) & SOP-8 \\
\hline MC78L12ACD & Positive Voltage Regulator, \(12 \mathrm{~V}, 100 \mathrm{~mA}\) & SOP-8 \\
\hline MC78L15ACD & Positive Voltage Regulator, \(15 \mathrm{~V}, 100 \mathrm{~mA}\) & SOP-8 \\
\hline MC78M05CDT** & Positive Voltage Regulator, \(5 \mathrm{~V}, 500 \mathrm{~mA}\) & DPAK \\
\hline MC78M12CDT* & Positive Voltage Regulator, \(12 \mathrm{~V}, 500 \mathrm{~mA}\) & DPAK \\
\hline MC78M15CDT* & Positive Voltage Regulator, \(15 \mathrm{~V}, 500 \mathrm{~mA}\) & DPAK \\
\hline MC79L05ACD & 3-Terminal Negative Fixed Voltage Regulator, -5V, 100 mA & SOP-8 \\
\hline MC79L12ACD & 3-Terminal Negative Fixed Voltage Regulator, -12 V, 100 mA & SOP-8 \\
\hline MC79L15ACD & 3-Terminal Negative Fixed Voltage Regulator, -15 V, 100 mA & SOP-8 \\
\hline MC79M05CDT** & 3-Terminal Negative Fixed Voltage Regulator, \(-5 \mathrm{~V}, 500 \mathrm{~mA}\) & DPAK \\
\hline MC79M12CDT** & 3-Terminal Negative Fixed Voltage Regulator, -12 V, 500 mA & DPAK \\
\hline MC79M15CDT* & 3-Terminal Negative Fixed Voltage Regulator, -15 V, 500 mA & DPAK \\
\hline MC13022DW* & Medium Voltage AM Stereo C-QUAM Decoder & SO-28 \\
\hline MC13024DW* & Low Voltage C-QUAM Receiver & SO-24 \\
\hline MC13041DW* & AM Receiver Subsystem & SO-20 \\
\hline MC13055D & VHF LAN Receiver - FSK & SO-16 \\
\hline MC13060D & 1 Watt Audio Amp & SOP-8 \\
\hline MC33077D & Dual, Low Noise High Frequency Operational Amplifiers & SO-8 \\
\hline MC33078D & Dual Audio, Low Noise Operational Amplifiers & SO-8 \\
\hline MC33079D & Low Power, Single Supply Operational Amplifier & SO-14 \\
\hline MC33171D & Single, Low Power, Single Supply Operational Amplifier & SO-8 \\
\hline MC33172D* & Dual, Low Power, Single Supply Operational Amplifiers & SO-8 \\
\hline MC33174D* & Quad, Low Power, Single Supply Operational Amplifiers & SO-14 \\
\hline MC33282D* & Dual Precision Low Input JFET Operational Amplifiers & SO-14 \\
\hline MC33284D* & Quad Precision JFET Operational Amplifiers (Trim-in-the-Package) & SO-14 \\
\hline MC34001D,AD,BD & Single JFET Input Operational Amplifier & SO-8 \\
\hline MC34002D,AD,BD & Dual JFET Input Operational Amplifiers & SO-8 \\
\hline MC34004D,BD & Quad JFET Input Operational Amplifiers & SO-14 \\
\hline MC34011AFN & Electronic Telephone Circuit & PLCC-44 \\
\hline MC34012-1D & Telephone Tone Ringer & SO-8 \\
\hline MC34012-2D & Telephone Tone Ringer & SO-8 \\
\hline MC34012-3D & Telephone Tone Ringer & SO-8 \\
\hline MC34013AFN & Speech Network and Tone Dialer & PLCC-28 \\
\hline MC34014FN & Telephone Speech Network with Dialer Interface & PLCC-20 \\
\hline MC34017-1D & Telephone Tone Dialer & SO-8 \\
\hline MC34017-2D & Telephone Tone Dialer & SO-8 \\
\hline MC34017-3D MC34018DW & Telephone Tone Dialer
Voice Switched Speakerphone Circuit & \[
\begin{aligned}
& \text { SO-8 } \\
& \text { SO-28 }
\end{aligned}
\] \\
\hline
\end{tabular}
*To Be Introduced.

\section*{LINEAR AND INTERFACE (continued)}
\begin{tabular}{|c|c|c|}
\hline Device & Function & Package \\
\hline MC34018FN & Voice Switched Speakerphone Circuit & PLCC-28 \\
\hline MC34060AD* & Switchmode Pulse Width Modulation Control Circuit & SO-14 \\
\hline MC34063AD & Precision DC-to-DC Converter Control Circuit & SO-8 \\
\hline MC34071D & Single, High Speed, Single Supply Operational Amplifier & SO-8 \\
\hline MC34072D* & Dual, High Speed, Single Supply Operational Amplifiers & SO-8 \\
\hline MC34074D* & Quad, High Performance, Single Supply Operational Amplifiers & SO-14 \\
\hline MC34080D & High Speed Decompensated (AVCL \(\geqslant 2\)) JFET Input Operational Amplifier & SO-8 \\
\hline MC34081D & High Speed JFET Input Operational Amplifier & SO-8 \\
\hline MC34114DW & Speech Network II & SO-18 \\
\hline MC34118DW & Speakerphone II & SO-28 \\
\hline MC34119D & Telephone Speaker Amplifier & SO-8 \\
\hline MC34129D & Power Supply Controller & SO-14 \\
\hline MC34I81D & Single, Low Power, High Speed JFET Operational Amplifier & SO-8 \\
\hline MC34182D & Dual, Low Power, High Speed JFET Operational Amplifiers & SO-8 \\
\hline MC34184D & Quad, Low Power, High Speed JFET Operational Amplifiers & SO-14 \\
\hline MC44301DW* \(\dagger\) & High Performance Video IF & SO-28 \\
\hline NE592D & Video Amplifier & SO-14 \\
\hline TL061CD & Single BIFET Low Power Operational Amplifier & SO-8 \\
\hline TL062CD & Dual BIFET Low Power Operational Amplifiers & SO-8 \\
\hline TL064CD & Quad BIFET Low Power Operational Amplifiers & SO-14 \\
\hline TL071CD,ACD, BCD & Single, Low Noise JFET Input Operational Amplifier & SO-8 \\
\hline TL072CD,ACD, BCD & Dual, Low Noise JFET Input Operational Amplifiers & SO-8 \\
\hline TL074CD,ACD,BCD & Quad, Low Noise JFET Input Operational Amplifiers & SO-14 \\
\hline TL081CD,ACD,BCD & Single, JFET Input Operational Amplifier & SO-8 \\
\hline TL082CD,ACD,BCD & Dual, JFET Input Operational Amplifiers & SO-8 \\
\hline TL084CD,ACD,BCD* & Quad, JFET Input Operational Amplifiers & SO-14 \\
\hline TL431CD & Programmable Precision Reference & SOP-8 \\
\hline TYA1350D & IF Amplifier (M1350D) & SO-8 \\
\hline UAA1041D & Automotive Direction Indicator & SO-8 \\
\hline UC2842AD & Off-Line Current Mode PWM Controller & SO-14 \\
\hline UC2843AD & Current Mode PWM Controller & SO-14 \\
\hline UC3842AD & Off-Line Current Mode PWM Controller & SO-14 \\
\hline UC3843AD & Current Mode PWM Controller & SO-14 \\
\hline
\end{tabular}
*To Be Introduced.
Formerly MC13011DW

\section*{\(\longrightarrow\) Tape and Reel \\ Standard Bipolar Logic, Bipolar Analog and MOS Integrated Circuits}

Motorola has now added the convenience of Tape and Reel packaging for our growing family of standard Integrated Circuit products. Two reel sizes are available, for all but the largest types, to support the requirements of both first and
second generation pick-and-place equipment. The packaging fully conforms to the latest EIA-481A specification. The antistatic embossed tape provides a secure cavity, sealed with a peel-back cover tape.

SOIC DEVICES

Mechanical Polarization

USER DIRECTION OF FEED
\begin{tabular}{|c|c|c|c|c|c|}
\hline Package & Tape Width (mm) & Device per Reel & Reel Size* (inch) & Tape \& Reel Lot Size \({ }^{(1)}\) (Min) & Device Suffix \\
\hline \multirow[t]{2}{*}{SO-8, SOP-8} & 12 & 750 & 7 & 5,000 & R1 \\
\hline & 12 & 2,500 & 13 & 5,000 & R2 \\
\hline \multirow[t]{2}{*}{SO-14} & 16 & 750 & 7 & 5,000 & R1 \\
\hline & 16 & 2,500 & 13 & 5,000 & R2 \\
\hline \multirow[t]{2}{*}{SO-16} & 16 & 750 & 7 & 5,000 & R1 \\
\hline & 16 & 2,500 & 13 & 5,000 & R2 \\
\hline \multirow[t]{2}{*}{SO-16L (WIDE)} & 16 & 250 & 7 & 5,000 & R1 \\
\hline & 16 & 1,000 & 13 & 5,000 & R2 \\
\hline \multirow[t]{2}{*}{SO-20L (WIDE)} & 24 & 250 & 7 & 5,000 & R1 \\
\hline & 24 & 1,000 & 13 & 5,000 & R2 \\
\hline \multirow[t]{2}{*}{SO-24L (WIDE)} & 24 & 250 & 7 & 5,000 & R1 \\
\hline & 24 & 1,000 & 13 & 5,000 & R2 \\
\hline \multirow[t]{2}{*}{SO-28L (WIDE)} & 24 & 200 & 7 & 3,000 & R1 \\
\hline & 24 & 1,000 & 13 & 3,000 & R2 \\
\hline \multirow[t]{2}{*}{PLCC-20} & 16 & 200 & 7 & 3,000 & R1 \\
\hline & 16 & 1,000 & 13 & 3,000 & R2 \\
\hline \multirow[t]{2}{*}{PLCC-28} & 24 & 200 & 7 & 2,400 & R1 \\
\hline & 24 & 500 & 13 & 2,500 & R2 \\
\hline \multirow[t]{2}{*}{PLCC-44} & 32 & 200 & 7 & 2,000 & R1 \\
\hline & 32 & 500 & 13 & 2,000 & R2 \\
\hline PLCC-52 & 32 & 500 & 13 & 2,000 & R2 \\
\hline PLCC-68 & 44 & 250 & 13 & 2,000 & R2 \\
\hline PLCC-84 & 44 & 250 & 13 & 2,000 & R2 \\
\hline TO-226AA \({ }^{(2)}\) & 18 & 1800 & 13 & 10,000 & RA, RB or RP only \\
\hline
\end{tabular}

Notes: 1. Minimum lot size information applies to OEM customers. Distributors may break lots or reels at their option, however broken reels may not be returned.
2. Integrated Circuits in TO-226AA packages are available in Styles A and B only, with optional "Ammo Pack" (Suffix RP)

For ordering information please contact your local Motorola Semiconductor Sales Office.
Distribution minimum order quantity is 1 reel.
*Reel Size: 7 " \(/ 178 \mathrm{~mm}, 13^{\prime \prime} / 330 \mathrm{~mm}\).

MOTOROLA LINEAR/INTERFACE DEVICES

\section*{Case Outline Dimensions}

The packaging availability for each device type is indicated on the individual data sheets and the Selector Guide. All of the outline dimensions for the packages are given in this section.

The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature can be found from the equation:
\[
P_{D\left(T_{A}\right)}=\frac{T_{J(\max)}-T_{A}}{R_{\theta J A}\left(T_{y p}\right)}
\]
where: \(\mathrm{P}_{\mathrm{D}}\left(\mathrm{T}_{\mathrm{A}}\right)=\) Power Dissipation allowable at a given operating ambient temperature. This must be greater - than the sum of the products of the supply voltages and supply currents at the worst case operating condition.
\(T_{J(\max)}=\) Maximum Operating Junction Temperature as listed in the Maximum Ratings Section. See individual data sheets for \(\mathrm{T}_{J(\max)}\) information.
\(\mathrm{T}_{\mathrm{A}}=\) Maximum Desired Operating Ambient Temperature
\(\mathrm{R}_{\theta J A(T y p)}=\) Typical Thermal Resistance Junction to Ambient

\section*{K SUFFIX}

\section*{CASE 1-03}

Metal Package
\(\mathrm{R}_{\theta \mathrm{JA}}=45^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{Typ})\)

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ MILLMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline B & - & 22.23 & - & 0.875 \\
\hline C & 6.35 & 11.43 & 0.250 & 0.450 \\
\hline D & 0.97 & 1.09 & 0.038 & 0.043 \\
\hline E & - & 3.43 & - & 0.135 \\
\hline F & \multicolumn{2}{|c|}{30.15 BSC } & 1.187 & BSC \\
\hline G & \multicolumn{2}{|c|}{10.92 BSC } & \multicolumn{2}{|c|}{0.430} \\
BSC \\
\hline H & \multicolumn{2}{|c|}{5.46 BSC } & 0.215 & BSC \\
\hline J & \multicolumn{2}{|c|}{\(16.89 ~ B S C ~\)} & \multicolumn{2}{|c|}{0.665} \\
\hline BSC \\
\hline K & 7.92 & - & 0.312 & - \\
\hline \(\mathbf{Q}\) & 3.84 & 4.09 & 0.151 & 0.161 \\
\hline \(\mathbf{S}\) & - & 13.34 & - & 0.525 \\
\hline \(\mathbf{T}\) & - & 4.78 & - & 0.188 \\
\hline \(\mathbf{V}\) & 3.84 & 4.09 & 0.151 & 0.161 \\
\hline
\end{tabular}

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH referenced to-204AA OUTLINE SHALL APPLY.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & 4.32 & 5.33 & 0.170 & 0.210 \\
\hline B & 4.45 & 5.20 & 0.175 & 0.205 \\
\hline C & 3.18 & 4.19 & 0.125 & 0.165 \\
\hline D & 0.41 & 0.55 & 0.016 & 0.022 \\
\hline F & 0.41 & 0.48 & 0.016 & 0.019 \\
\hline G & 1.15 & 1.39 & 0.045 & 0.055 \\
\hline H & - & 2.54 & - & 0.100 \\
\hline J & 2.42 & 2.66 & 0.095 & 0.105 \\
\hline K & 12.70 & - & 0.500 & - \\
\hline L & 6.35 & - & 0.250 & - \\
\hline N & 2.04 & 2.66 & 0.080 & 0.105 \\
\hline P & 2.93 & - & 0.115 & - \\
\hline R & 3.43 & - & 0.135 & - \\
\hline S & 0.39 & 0.50 & 0.015 & 0.020 \\
\hline
\end{tabular}

NOTES:
1. CONTOUR OF PACKAGE BEYOND ZONE " \(P\) " IS UNCONTROLLED
2. DIM "F" APPLIES BETWEEN "H" AND "L". DIM "D" \& "S" APPLIES BETWEEN "L" \& 12.70 mm \(\left(0.5^{\prime \prime}\right)\) FROM SEATING PLANE. LEAD DIM IS UNCONTROLLED IN "H" \& BEYOND 12.70 mm (0.5") FROM SEATING PLANE.
3. CONTROLLING DIM: INCH.

\section*{G, H SUFFIX}

\section*{CASE 79-05}

Metal Package
\(R_{\theta J A}=185^{\circ} \mathrm{C} / \mathrm{W}\) (Typ)

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION J MEASURED FROM DIMENSION A MAXIMUM.
4. DIMENSION B SHALL NOT VARY MORE THAN 0.25 (0.010) IN ZONE R. THIS ZONE CONTROLLED FOR AUTOMATIC HANDLING.
5. DIMENSION F APPLIES BETWEEN DIMENSION \(P\) AND L. DIMENSION D APPLIES BETWEEN DIMENSION L AND K MINIMUM. LEAD DIAMETER IS UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

KC, T SUFFIX
CASE 221A-04
Plastic Package
\(\mathrm{R}_{\theta \mathrm{JA}}=65^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{Typ})\)

\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MLLLMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 14.48 & 15.75 & 0.570 & 0.620 \\
\hline B & 9.66 & 10.28 & 0.380 & 0.405 \\
\hline C & 4.07 & 4.82 & 0.160 & 0.190 \\
\hline D & 0.64 & 0.88 & 0.025 & 0.035 \\
\hline F & 3.61 & 3.73 & 0.142 & 0.147 \\
\hline G & 2.42 & 2.66 & 0.095 & 0.105 \\
\hline H & 2.80 & 3.93 & 0.110 & 0.155 \\
\hline J & 0.36 & 0.55 & 0.014 & 0.022 \\
\hline K & 12.70 & 14.27 & 0.500 & 0.562 \\
\hline L & 1.15 & 1.39 & 0.045 & 0.055 \\
\hline N & 4.83 & 5.33 & 0.190 & 0.210 \\
\hline \(\mathbf{Q}\) & 2.54 & 3.04 & 0.100 & 0.120 \\
\hline R & 2.04 & 2.79 & 0.080 & 0.110 \\
\hline S & 1.15 & 1.39 & 0.045 & 0.055 \\
\hline T & 5.97 & 6.47 & 0.235 & 0.255 \\
\hline U & 0.00 & 1.27 & 0.000 & 0.050 \\
\hline V & 1.15 & - & 0.045 & - \\
\hline \(\mathbf{Z}\) & - & 2.04 & - & 0.080 \\
\hline
\end{tabular}

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIM Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

T SUFFIX
CASE 314D-01
Plastic Package
\(\mathrm{R}_{\theta \mathrm{JA}}=65^{\circ} \mathrm{C} / \mathrm{W}\) (Typ)

\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 15.49 & 15.87 & 0.610 & 0.625 \\
\hline B & 9.91 & 10.41 & 0.390 & 0.410 \\
\hline C & 4.32 & 4.57 & 0.170 & 0.180 \\
\hline D & 0.51 & 1.01 & 0.020 & 0.040 \\
\hline G & 1.45 & 1.96 & 0.057 & 0.077 \\
\hline J & 0.38 & 0.63 & 0.015 & 0.025 \\
\hline K & 12.70 & - & 0.500 & - \\
\hline \(\mathbf{Q}\) & 3.53 & 3.73 & 0.139 & 0.147 \\
\hline R & 0.89 & 1.39 & 0.035 & 0.055 \\
\hline T & 9.02 & 9.39 & 0.355 & 0.370 \\
\hline U & 12.70 & 13.69 & 0.500 & 0.539 \\
\hline
\end{tabular}

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH.

\section*{DT-1 SUFFIX}

\section*{CASE 369-03}

Plastic Package

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & 5.97 & 6.22 & 0.235 & 0.245 \\
\hline B & 6.35 & 6.73 & 0.250 & 0.265 \\
\hline C & 2.19 & 2.38 & 0.086 & 0.094 \\
\hline D & 0.64 & 0.88 & 0.025 & 0.035 \\
\hline E & 0.97 & 1.06 & \multicolumn{2}{|c|}{0.038} \\
\hline G & \multicolumn{2}{|c|}{2.29 BSC } & \multicolumn{2}{|c|}{0.090 BSC } \\
\hline J & 0.46 & 0.58 & 0.018 & 0.023 \\
\hline K & 8.89 & 9.65 & 0.350 & 0.380 \\
\hline L & 0.89 & 1.27 & 0.035 & 0.050 \\
\hline S & 5.21 & 5.46 & 0.205 & 0.215 \\
\hline V & 0.77 & 1.14 & 0.030 & 0.045 \\
\hline W & 0.84 & 0.94 & 0.033 & 0.037 \\
\hline Y & 1.91 & 2.28 & 0.075 & 0.090 \\
\hline
\end{tabular}

NOTES:
1. SURFACE " \(T\) " IS BOTH A DATUM AND A MOUNTING SURFACE
2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
3. CONTROLLING DIMENSION: INCH.

DT SUFFIX
CASE 369A-03
Plastic Package DPAK
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILLMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 5.97 & 6.22 & 0.235 & 0.245 \\
\hline B & 6.35 & 6.73 & 0.250 & 0.265 \\
\hline C & 2.19 & 2.38 & 0.086 & 0.094 \\
\hline D & 0.69 & 0.88 & 0.027 & 0.035 \\
\hline E & 0.97 & 1.06 & 0.038 & 0.042 \\
\hline F & 0.64 & 0.88 & 0.025 & 0.035 \\
\hline G & 4.588 BSC & 0.180 BSC \\
\hline H & 2.29 BSC & \multicolumn{2}{|c|}{0.090 BSC } \\
\hline J & 6.46 & 0.58 & 0.018 & 0.023 \\
\hline K & 2.59 & 2.89 & 0.102 & 0.114 \\
\hline L & 0.89 & 1.27 & 0.035 & 0.050 \\
\hline S & 5.21 & 5.46 & 0.205 & 0.215 \\
\hline \(\mathbf{U}\) & 0.51 & - & 0.020 & - \\
\hline \(\mathbf{V}\) & 0.77 & 1.14 & 0.030 & 0.045 \\
\hline \(\mathbf{W}\) & 0.84 & 0.94 & 0.033 & 0.037 \\
\hline \(\mathbf{Y}\) & 4.32 & - & 0.170 & - \\
\hline
\end{tabular}

H, G SUFFIX
CASE 601-04
Metal Package
\(R_{\theta J A}=160^{\circ} \mathrm{C} / \mathrm{W}\) (Typ)

\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ MILIMETERS } & \multicolumn{2}{|c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 8.51 & 9.40 & 0.335 & 0.370 \\
\hline B & 7.75 & 8.51 & 0.305 & 0.335 \\
\hline C & 4.19 & 4.70 & 0.165 & 0.185 \\
\hline D & 0.41 & 0.48 & 0.016 & 0.019 \\
\hline E & 0.25 & 1.02 & 0.010 & 0.040 \\
\hline F & 0.25 & 1.02 & 0.010 & 0.040 \\
\hline G & 5.08 BSC & \multicolumn{2}{|c|}{0.200 BSC } \\
\hline H & 0.71 & 0.86 & 0.028 & 0.034 \\
\hline J & 0.74 & 1.14 & 0.029 & 0.045 \\
\hline K & 12.70 & - & 0.500 & - \\
\hline L & 3.05 & 4.06 & 0.120 & 0.160 \\
\hline M & \multicolumn{2}{|c|}{\(45^{\circ}\) BSC } & \multicolumn{2}{|c|}{\(45^{\circ}\) BSC } \\
\hline N & 2.41 & 2.67 & 0.095 & 0.105 \\
\hline
\end{tabular}

NOTE:
1. LEADS WITHIN \(0.25 \mathrm{~mm}(0.010)\) DIA OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.

\section*{L SUFFIX \\ CASE 623-05}

Ceramic Package
\(R_{\theta J A}=53^{\circ} \mathrm{C} / \mathrm{W}\) (Typ)

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ MILLMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & 31.24 & 32.77 & 1.230 & 1.290 \\
\hline B & 12.70 & 15.49 & 0.500 & 0.610 \\
\hline C & 4.06 & 5.59 & 0.160 & 0.220 \\
\hline D & 0.41 & 0.51 & 0.016 & 0.020 \\
\hline F & 1.27 & 1.52 & 0.050 & 0.060 \\
\hline G & \multicolumn{2}{|c|}{2.54} & BSC & \multicolumn{2}{c|}{0.100} & BSC \\
\hline J & 0.20 & 0.30 & 0.008 & 0.012 \\
\hline K & 3.18 & 4.06 & 0.125 & 0.160 \\
\hline L & \multicolumn{2}{|c|}{15.24} & BSC & \multicolumn{2}{|c|}{0.600} & BSC \\
\hline M & \(0^{\circ}\) & \(15^{\circ}\) & \multicolumn{2}{c|}{\(0^{\circ}\)} \\
\hline N & 0.51 & 1.27 & \multicolumn{2}{|c|}{0.020} \\
\hline
\end{tabular}

NOTES:
1. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED PARALLEL).

DP1, N, P, P1 SUFFIX
CASE 626-05
Plastic Package
\(\mathrm{R}_{\theta \mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}\) (Typ)

NOTES:
1. LEAD POSITIONAL TOLERANCE
\begin{tabular}{|l|l|l|l|l|}
\hline\(母\) & \(\phi 0.13(0.005)(M)\) & \(T\) & A (M) & B (M) \\
\hline
\end{tabular}
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL
3. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
4. DIMENSIONS A AND B ARE DATUMS.
5. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & 9.40 & 10.16 & 0.370 & 0.400 \\
\hline B & 6.10 & 6.60 & 0.240 & 0.260 \\
\hline C & 3.94 & 4.45 & 0.155 & 0.175 \\
\hline D & 0.38 & 0.51 & 0.015 & 0.020 \\
\hline F & 1.02 & 1.52 & 0.040 & 0.060 \\
\hline G & \multicolumn{2}{|c|}{2.54 BSC } & \multicolumn{2}{|c|}{0.100} \\
BSC \\
\hline H & 0.76 & 1.27 & 0.030 & 0.050 \\
\hline J & 0.20 & 0.30 & 0.008 & 0.012 \\
\hline K & 2.92 & 3.43 & 0.115 & 0.135 \\
\hline L & \multicolumn{2}{|c|}{7.62} & BSC & 0.300 \\
\hline M & - & \(10^{\circ}\) & - & \(10^{\circ}\) \\
\hline N & 0.76 & 1.01 & 0.030 & 0.040 \\
\hline
\end{tabular}

J, F, L SUFFIX
CASE 632-08
Ceramic Package
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
\(R_{\theta J A}=100^{\circ} \mathrm{C} / \mathrm{W}\) (Typ)

FORMED PARALLEL
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

NOTES:

N, P, N-14, P2 SUFFIX

\section*{646-06}

Plastic Package
\(\mathrm{R}_{\theta J \mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{Typ})\)

1. LEADS WITHIN \(0.13 \mathrm{~mm}(0.005)\) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL
3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
4. ROUNDED CORNERS OPTIONAL.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 18.16 & 19.56 & 0.715 & 0.770 \\
\hline B & 6.10 & 6.60 & 0.240 & 0.260 \\
\hline C & 3.69 & 4.69 & 0.145 & 0.185 \\
\hline D & 0.38 & 0.53 & 0.015 & 0.021 \\
\hline F & 1.02 & 1.78 & 0.040 & 0.070 \\
\hline G & 2.54 & BSC & \multicolumn{2}{|c|}{0.100} \\
BSC \\
\hline H & 1.32 & 2.41 & 0.052 & 0.095 \\
\hline J & 0.20 & 0.38 & 0.008 & 0.015 \\
\hline K & 2.92 & 3.43 & 0.115 & 0.135 \\
\hline L & 7.62 & BSC & 0.300 & BSC \\
\hline M & \(0^{\circ}\) & \(10^{\circ}\) & \(0^{\circ}\) & \(10^{\circ}\) \\
\hline N & 0.39 & 1.01 & 0.015 & 0.039 \\
\hline
\end{tabular}

\section*{N, P SUFFIX}

CASE 648-06
Plastic Package
\(\mathrm{R}_{\theta \mathrm{JA}}=67^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{Typ})\)

NOTES:
1. LEADS WITHIN \(0.13 \mathrm{~mm}(0.005)\) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
4. "F" DIMENSION IS FOR FULL LEADS.
5. ROUNDED CORNERS OPTIONAL.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & 18.80 & 21.34 & 0.740 & 0.840 \\
\hline B & 6.10 & 6.60 & 0.240 & 0.260 \\
\hline C & 3.69 & 4.69 & 0.145 & 0.185 \\
\hline D & 0.38 & 0.53 & 0.015 & 0.021 \\
\hline F & 1.02 & 1.78 & 0.040 & 0.070 \\
\hline G & \multicolumn{2}{|c|}{2.54} & BSC & \multicolumn{2}{|c|}{0.100} & BSC \\
\hline H & 0.38 & 2.41 & 0.015 & 0.095 \\
\hline J & 0.20 & 0.38 & 0.008 & 0.015 \\
\hline K & 2.92 & 3.43 & \multicolumn{2}{|c|}{0.115} \\
\hline L & \multicolumn{2}{|c|}{7.62} & BSC & 0.135 \\
\hline M & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \(10^{\circ}\) & \multicolumn{2}{c|}{0.300} & BSC \\
\hline N & 0.39 & 1.01 & 0.015 & \(10^{\circ}\) \\
\hline
\end{tabular}
P SUFFIX
CASE 648C-02
Plastic Package
\(\mathrm{R}_{\theta \mathrm{JA}}=52^{\circ} \mathrm{C} / \mathrm{W}\)

\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 18.80 & 21.34 & 0.740 & 0.840 \\
\hline B & 6.10 & 6.60 & 0.240 & 0.260 \\
\hline C & 3.69 & 4.69 & 0.145 & 0.185 \\
\hline D & 0.38 & 0.53 & 0.015 & 0.021 \\
\hline F & 1.02 & 1.78 & \multicolumn{2}{|c|}{0.040} \\
\hline G & \multicolumn{2}{|c|}{2.54 BSC } & \multicolumn{2}{|c|}{0.100} \\
\hline H & 0.38 & 2.41 & 0.015 & 0.095 \\
\hline J & 0.20 & 0.38 & 0.008 & 0.015 \\
\hline K & \multicolumn{2}{|c|}{2.92} & 3.43 & 0.115 \\
\hline L & \multicolumn{2}{|c|}{7.62 BSC } & 0.135 \\
\hline M & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \(10^{\circ}\) & \multicolumn{2}{|c|}{0.300} & \(0^{\circ}\) & BSC \\
\hline N & \multicolumn{2}{|c|}{0.39} & 1.01 & 0.015 \\
\hline
\end{tabular}

\section*{A, B, N, P SUFFIX}

\section*{CASE 707-02}

Plastic Package
\(\mathrm{R}_{\theta J A}=100^{\circ} \mathrm{C} / \mathrm{W}\) (Typ)

\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 22.22 & 23.24 & 0.875 & 0.915 \\
\hline B & 6.10 & 6.60 & 0.240 & 0.260 \\
\hline C & 3.56 & 4.57 & 0.140 & 0.180 \\
\hline D & 0.36 & 0.56 & 0.014 & 0.022 \\
\hline F & \multicolumn{2}{|c|}{1.27} & 1.78 & \multicolumn{2}{|c|}{0.050} & 0.070 \\
\hline G & 2.54 & BSC & \multicolumn{2}{|c|}{0.100 BSC } \\
\hline H & 1.02 & 1.52 & 0.040 & 0.060 \\
\hline J & 0.20 & 0.30 & 0.008 & 0.012 \\
\hline K & 2.92 & 3.43 & \multicolumn{1}{|c|}{0.115} & 0.135 \\
\hline L & \multicolumn{2}{|c|}{7.62 BSC } & 0.300 \\
\hline M & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \(15^{\circ}\) & \multicolumn{2}{|c|}{\(0^{\circ}\)} & BSC \\
\hline N & 0.51 & \(15^{\circ}\) \\
\hline
\end{tabular}

NOTES:
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN \(0.25 \mathrm{~mm}(0.010)\) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

\section*{P SUFFIX}

CASE 708-04
Plastic Package
\(\mathrm{R}_{\theta J A}=71^{\circ} \mathrm{C} / \mathrm{W}\) (Typ)

NOTES

1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN \(0.25 \mathrm{~mm}(0.010)\) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILLMETERS } & \multicolumn{2}{|c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 27.56 & 28.32 & 1.085 & 1.115 \\
\hline B & 8.64 & 9.14 & 0.340 & 0.360 \\
\hline C & 3.94 & 5.08 & 0.155 & 0.200 \\
\hline D & 0.36 & 0.56 & 0.014 & 0.022 \\
\hline F & 1.27 & 1.78 & 0.050 & 0.070 \\
\hline G & \multicolumn{2}{|c|}{2.54} & BSC & \multicolumn{2}{|c|}{0.100} \\
\hline BSC \\
\hline J & 1.02 & 1.52 & 0.040 & 0.060 \\
\hline J & 0.20 & 0.38 & 0.008 & 0.015 \\
\hline K & 2.92 & 3.43 & 0.115 & 0.135 \\
\hline L & \multicolumn{2}{|c|}{10.16 BSC } & \multicolumn{2}{|c|}{0.400} & BSC \\
\hline M & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \(15^{\circ}\) & \(0^{\circ}\) & \(15^{\circ}\) \\
\hline N & 0.51 & 1.02 & 0.020 & 0.040 \\
\hline
\end{tabular}

\section*{P SUFFIX}

CASE 709-02
Plastic Package
\(\mathrm{R}_{\text {日JA }}=71^{\circ} \mathrm{C} / \mathrm{W}\) (Typ)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 31.37 & 32.13 & 1.235 & 1.265 \\
\hline B & 13.72 & 14.22 & 0.540 & 0.560 \\
\hline C & 3.94 & 5.08 & 0.155 & 0.200 \\
\hline D & 0.36 & 0.56 & 0.014 & 0.022 \\
\hline F & 1.02 & 1.52 & 0.040 & 0.060 \\
\hline G & \multicolumn{2}{|c|}{2.54} & BSC & \multicolumn{2}{|c|}{0.100 BSC } \\
\hline H & 1.65 & 2.03 & 0.065 & 0.080 \\
\hline J & 0.20 & 0.38 & 0.008 & 0.015 \\
\hline K & 2.92 & 3.43 & 0.115 & 0.135 \\
\hline L & \multicolumn{2}{|c|}{15.24 BSC } & \multicolumn{2}{|c|}{0.600 BSC } \\
\hline M & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \(15^{\circ}\) & \(0^{\circ}\) & \(15^{\circ}\) \\
\hline N & 0.51 & 1.02 & 0.020 & 0.040 \\
\hline
\end{tabular}

NOTES:
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN \(0.25 \mathrm{~mm}(0.010)\) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

\section*{CASE 762-01}

Plastic Medium Power Package SIP 9
\(\mathrm{R}_{\theta \mathrm{JA}}=70^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{Typ})\)
\(R_{\theta J C}=15^{\circ} \mathrm{C} / \mathrm{W}\) (Typ)

NOTES:
1. DIMENSIONS A, AND C ARE DATUMS. AND -T- IS A DATUM PLANE. 2. POSITIONAL TOLERANCE FOR LEAD DIMENSION D:
\begin{tabular}{|l|l|l|l|}
\hline-1 & \(\phi .25(0.010)\) \\
\hline
\end{tabular}
3. POSITIONAL TOLERANCE FOR LEAD DIMENSION J:
 4. POSITIONAL TOLERANCE FOR LEAD DIMENSION Q:

5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1982.
6. CONTROLIING DIMENSION: MLLIMETER.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{MILLIMETERS} & \multicolumn{2}{|r|}{INCHES} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & 22.40 & 23.00 & 0.873 & 0.897 \\
\hline B & 6.40 & 6.60 & 0.252 & 0.260 \\
\hline C & 3.45 & 3.65 & 0.135 & 1.143 \\
\hline D & 0.40 & 0.55 & 0.015 & 0.021 \\
\hline E & 9.35 & 9.60 & 0.368 & 0.377 \\
\hline F & 1.40 & 1.60 & 0.055 & 0.062 \\
\hline G & \multicolumn{2}{|r|}{2.54 BSC} & \multicolumn{2}{|l|}{0.100 BSC} \\
\hline H & 1.51 & 1.71 & 0.059 & 0.067 \\
\hline \(J\) & 0.360 & 0.400 & 0.014 & 0.015 \\
\hline \(K\) & 3.95 & 4.20 & 0.155 & 0.165 \\
\hline M & \multicolumn{2}{|c|}{\(30^{\circ} \mathrm{BSC}\)} & \multicolumn{2}{|r|}{\(30^{\circ} \mathrm{BSC}\)} \\
\hline N & 2.50 & 2.70 & 0.099 & 0.106 \\
\hline 0 & 3.15 & 3.45 & 0.124 & 0.135 \\
\hline R & 13.60 & 13.90 & 0.535 & 0.547 \\
\hline S & 1.65 & 1.95 & 0.064 & 0.076 \\
\hline U & 22.00 & 22.20 & 0.866 & 0.874 \\
\hline V & 0.55 & 0.75 & 0.021 & 0.029 \\
\hline W & \multicolumn{2}{|r|}{2.89 BSC} & \multicolumn{2}{|l|}{0.113 BSC} \\
\hline \(\boldsymbol{X}\) & 0.65 & 0.75 & 0.025 & 0.029 \\
\hline Y & 2.70 & 2.80 & 0.106 & 0.110 \\
\hline
\end{tabular}

\section*{FN SUFFIX}

\section*{CASE 775-02}

Plastic Package
PLCC-20
\(\mathrm{R}_{\theta \mathrm{JA}}=72^{\circ} \mathrm{C} / \mathrm{W}\) (Typ) (5K SQML)

NOTES
1. DATUMS -L-, - \(\mathrm{M}-,-\mathrm{N}-\), AND -P- DETERMINED WHERE TOP OF LEAD SHOULDER EXIT PLASTIC BODY AT MOLD PARTING LINE.
2. DIM GI, TRUE POSTION TO BE MEASURED AT DATUM -T-, SEATING PLANE
3. DIM R AND U DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS \(0.25(0.010)\) PER SIDE.
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
5. CONTROLLING DIMENSION: INCH.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ DIM } & \multicolumn{2}{|c|}{ MILLIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } & MIN & MAX & MIN & MAX \\
\hline A & 9.78 & 10.03 & 0.385 & 0.395 \\
\hline B & 9.78 & 10.03 & 0.385 & 0.395 \\
\hline C & 4.20 & 4.57 & 0.165 & 0.180 \\
\hline E & 2.29 & 2.79 & 0.090 & 0.110 \\
\hline F & 0.33 & 0.48 & 0.013 & 0.019 \\
\hline G & \multicolumn{2}{|c|}{1.27 BSC } & \multicolumn{2}{|c|}{0.050} \\
\hline HSC & 0.66 & 0.81 & 0.026 & 0.032 \\
\hline J & 0.51 & - & 0.020 & - \\
\hline K & 0.64 & - & 0.025 & - \\
\hline R & 8.89 & 9.04 & 0.350 & 0.356 \\
\hline U & 8.89 & 9.04 & 0.350 & 0.356 \\
\hline V & 1.07 & 1.21 & 0.042 & 0.048 \\
\hline W & 1.07 & 1.21 & 0.042 & 0.048 \\
\hline \(\mathbf{X}\) & 1.07 & 1.42 & 0.042 & 0.056 \\
\hline Y & - & 0.50 & - & 0.020 \\
\hline Z & \(2^{\circ}\) & \(10^{\circ}\) & \(2^{\circ}\) & \(10^{\circ}\) \\
\hline G1 & 7.88 & 8.38 & 0.310 & 0.330 \\
\hline K1 & 1.02 & - & 0.040 & - \\
\hline Z1 & \(2^{\circ}\) & \(10^{\circ}\) & \(2^{\circ}\) & \(10^{\circ}\) \\
\hline
\end{tabular}

\section*{FN SUFFIX}

\section*{CASE 776-02}

Plastic Package
PLCC-28

\(\mathrm{R}_{\theta \mathrm{JA}}=66^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{Typ})\) (5K SQML)

\section*{FN SUFFIX}

\section*{CASE 777-02}

Plastic Package
PLCC-44
\(\mathrm{R}_{\theta \mathrm{JA}}=55^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{Typ})\) (10K SQML)

Notes
1. DUE TO SPACE LIMITATION, CASE 776-02 SHALL BE REPRESENTED BY A GENERAL (SMALLER) CASE OUTLINE DRAWING RATHER THAN SHOWING ALL 28 LEADS.
2. DATUMS -L-, -M-, - N, AND -P. DETERMINED WHERE TOP OF LEAD SHOULDER EXIT PLASTIC BODY AT MOLD PARTING LINE
3. DIM G1, TRUE POSITION TO BE MEASURED AT DATUM -T., SEATING PLANE.
4. DIM R AND U DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS \(0.25(0.010)\) PER SIDE
5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
6. CONTROLLING DIMENSION: \(\operatorname{INCH}\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{MILLIMETERS} & \multicolumn{2}{|c|}{INCHES} \\
\hline & MIN & MAX & MIN & MAX \\
\hline A & 12.32 & 12.57 & 0.485 & 0.495 \\
\hline B & 12.32 & 12.57 & 0.485 & 0.495 \\
\hline C & 4.20 & 4.57 & 0.165 & 0.180 \\
\hline E & 2.29 & 2.79 & 0.090 & 0.110 \\
\hline F & 0.33 & 0.48 & 0.013 & 0.019 \\
\hline G & \multicolumn{2}{|r|}{1.27 BSC} & \multicolumn{2}{|l|}{0.050 BSC} \\
\hline H & 0.66 & 0.81 & 0.026 & 0.032 \\
\hline \(J\) & 0.51 & - & 0.020 & - \\
\hline K & 0.64 & - & 0.025 & - \\
\hline R & 11.43 & 11.58 & 0.450 & 0.456 \\
\hline U & 11.43 & 11.58 & 0.450 & 0.456 \\
\hline V & 1.07 & 1.21 & 0.042 & 0.048 \\
\hline W & 1.07 & 1.21 & 0.042 & 0.048 \\
\hline X & 1.07 & 1.42 & 0.042 & 0.056 \\
\hline Y & - & 0.50 & - & 0.020 \\
\hline 2 & \(2^{\circ}\) & \(10^{\circ}\) & \(2^{\circ}\) & \(10^{\circ}\) \\
\hline G1 & 10.42 & 10.92 & 0.410 & 0.430 \\
\hline K1 & 1.02 & - & 0.040 & - \\
\hline 21 & \(2^{\circ}\) & \(10^{\circ}\) & \(2^{\circ}\) & \(10^{\circ}\) \\
\hline
\end{tabular}

NOTES:
1. DUE TO SPACE LIMITATION, CASE 777-02 SHALL BE REPRESENTED BY A GENERAL (SMALLER) CASE OUTLINE DRAWING RATHER THAN SHOWING ALL 44 LEADS.
2. DATUMS -L-, -M-, - N-, AND -P- DETERMINED WHERE TOP OF LEAD SHOULDER EXIT PLASTIC BODY AT MOLD PARTING LINE.
3. DIM G1, TRUE POSITION TO BE MEASURED AT DATUM -T. SEATING PLANE.
4. DIM R AND U DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.25 (0.010) PER SIDE
5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
6. CONTROLLING DIMENSION: \(\operatorname{INCH}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ MILLMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 17.40 & 17.65 & 0.685 & 0.695 \\
\hline B & 17.40 & 17.65 & 0.685 & 0.695 \\
\hline C & 4.20 & 4.57 & 0.165 & 0.180 \\
\hline E & 2.29 & 2.79 & 0.090 & 0.110 \\
\hline F & 0.33 & 0.48 & 0.013 & 0.019 \\
\hline G & 1.27 & BSC & \multicolumn{2}{|c|}{0.050} & BSC \\
\hline H & 0.66 & 0.81 & 0.026 & 0.032 \\
\hline J & 0.51 & - & 0.020 & - \\
\hline K & 0.64 & - & 0.025 & - \\
\hline R & 16.51 & 16.66 & 0.650 & 0.656 \\
\hline U & 16.51 & 16.66 & 0.650 & 0.656 \\
\hline V & 1.07 & 1.21 & 0.042 & 0.048 \\
\hline W & 1.07 & 1.21 & 0.042 & 0.048 \\
\hline X & 1.07 & 1.42 & 0.042 & 0.056 \\
\hline Y & - & 0.50 & - & 0.020 \\
\hline Z & \(2^{\circ}\) & \(10^{\circ}\) & \(2^{\circ}\) & \(10^{\circ}\) \\
\hline G1 & 15.50 & 16.00 & 0.610 & 0.630 \\
\hline K1 & 1.02 & - & 0.040 & - \\
\hline Z1 & \(2^{\circ}\) & \(10^{\circ}\) & \(2^{\circ}\) & \(10^{\circ}\) \\
\hline
\end{tabular}
*NO. 6 SHEET METAL SCREWS B51564F003

INSULATOR (3 OPTIONS AVAILABLE) MICA - B52600F011 FIBERGLASS - B51080A001 ANODIZED ALUMINUM ANODIZED ALUMIN
B51078A001

SEMICONDUCTOR TO-204

*Longer screws (not available from Motorola) and multiple bushings may be required for thick chassis or heat sink

\section*{(4) \\ MOTOROLA}

\section*{MOUNTING HARDWARE TO-220AB}

PREFERRED ARRANGEMENT
for Isolated or Non-isolated Mounting. Screw is at Semiconductor Case Potential. 6-32 Hardware is Úsed.

Choose from Parts Listed
Below.

ALTERNATE ARRANGEMENT
for Isolated Mounting
when Screw must be at
Heat-Sink Potential.
4-40 Hardware is Used.
Use Parts Listed Below.

 B51547F019

RECTANGULAR STEEL

(1) Used with thin chassis and/or large hole.
(2) Used when isolation is required.
3) Required when nylon bushing and lock washer are used.
(4) Compression washer preferred when plastic insulating material is used.

TORQUE REQUIREMENTS
Insulated \(0.68 \mathrm{~N}-\mathrm{M}\) (6 in -lbs) max Noninsulated \(0.9 \mathrm{~N}-\mathrm{M}(8 \mathrm{in}\)-lbs) max

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIM \(Z\) DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ MILIMETERS } & \multicolumn{2}{c|}{ INCHES } \\
\cline { 2 - 5 } DIM & MIN & MAX & MIN & MAX \\
\hline A & 14.48 & 15.75 & 0.570 & 0.620 \\
\hline B & 9.66 & 10.28 & 0.380 & 0.405 \\
\hline C & 4.07 & 4.82 & 0.160 & 0.190 \\
\hline D & 0.64 & 0.88 & 0.025 & 0.035 \\
\hline F & 3.61 & 3.73 & 0.142 & 0.147 \\
\hline G & 2.42 & 2.66 & 0.095 & 0.105 \\
\hline H & 2.80 & 3.93 & 0.110 & 0.155 \\
\hline J & 0.36 & 0.55 & 0.014 & 0.022 \\
\hline K & 12.70 & 14.27 & 0.500 & 0.562 \\
\hline L & 1.15 & 1.39 & 0.045 & 0.055 \\
\hline N & 4.83 & 5.33 & 0.190 & 0.210 \\
\hline Q & 2.54 & 3.04 & 0.100 & 0.120 \\
\hline R & 2.04 & 2.79 & 0.080 & 0.110 \\
\hline S & 1.15 & 1.39 & 0.045 & 0.055 \\
\hline T & 5.97 & 6.47 & 0.235 & 0.255 \\
\hline U & 0.00 & 1.27 & 0.000 & 0.050 \\
\hline V & 1.15 & - & 0.045 & - \\
\hline \(\mathbf{Z}\) & - & 2.04 & - & 0.080 \\
\hline
\end{tabular}

\section*{MOUNTING HARDWARE TO-220AB}

DIMENSIONS - MILLIMETER (INCH)
NYLON BUSHING
\begin{tabular}{|c|l|l|l|l|l|}
\hline PART NO. & \multicolumn{1}{|c|}{ DIM A } & \multicolumn{1}{|c|}{ DIM B } & \multicolumn{1}{c|}{ DIM C } & \multicolumn{1}{c|}{ DIM D } & \multicolumn{1}{c|}{ DIM E } \\
\hline \multirow{2}{*}{ B51547F005 } & \(9.40-9.65\) & \multicolumn{1}{|c|}{} \\
& \((0.370-0.380)\) & \((0.151-0.161)\) & \(2.16-2.41\) & \(6.10-6.35\) & \(1.02-1.27\) \\
\hline \multirow{2}{*}{ B51547F019 } & \(5.59-6.10\) & \(3.05-0.095)\) & \((0.240-0.250)\) & \((0.040-0.050)\) \\
& \((0.220-0.240)\) & \((0.120-0.124)\) & \(1.73-1.91\) & \(3.61-3.68\) & \(0.51-0.64\) \\
& \((0.068-0.075)\) & \((0.142-0.145)\) & \((0.020-0.025)\) \\
\hline
\end{tabular}

HEX NUT
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE & PART NO. & DIM G & DIM H & DIM J & DIM K \\
\hline \(4-40\) & BO9490A005 & \(6.12-6.35(0.241-0.250)\) & \(6.98-7.34(0.275-0.289)\) & \(2.21-2.49(0.087-0.098)\) & 2.84 NOM \((0.112\) NOM \()\) \\
\hline \(6-32\) & BO9490AOO6 & \(7.67-7.92(0.302-0.312)\) & \(8.74-9.17(0.344-0.361)\) & \(2.59-2.90(0.102-0.114)\) & 3.50 NOM \((0.138\) NOM \()\) \\
\hline
\end{tabular}

HEX HEAD SCREW
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE & PART NO. & DIM M & DIM N & DIM P & DIM Q & DIM R \\
\hline \(4-40\) & B09489A034 & \(0.112-40\) & \(1.57(0.62)\) & \(1.24-1.52(0.049-0.060)\) & \(5.13 \mathrm{MIN}(0.202 \mathrm{MIN})\) & \(4.60-4.75(0.181-0.187)\) \\
\hline 6.32 & B09489A035 & \(0.138-32\) & \(1.57(0.62)\) & \(2.03-2.36(0.080-0.093)\) & \(6.91 \mathrm{MIN}(0.272 \mathrm{MIN})\) & \(6.20-6.35(0.244-0.250)\) \\
\hline
\end{tabular}

\section*{SOIC MINIATURE IC PLASTIC PACKAGE}

\section*{Thermal Information}

The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:
\[
\mathrm{P}_{\left(\mathrm{DT}_{\mathrm{A}}\right)}=\frac{\mathrm{T}_{\mathrm{J}(\max)}-\mathrm{T}_{\mathrm{A}}}{\mathrm{R}_{\theta \mathrm{JA}}(\mathrm{Typ})}
\]

Where: \(\mathrm{P}_{\mathrm{D}}\left(\mathrm{T}_{\mathrm{A}}\right)=\) power dissipation allowable at a given operating ambient temperature.
\(\mathrm{T}_{\mathrm{J}(\max)}=\) Maximum operating junction temperature as listed in the maximum ratings section
\(\mathrm{T}_{\mathrm{A}}=\) Desired operating ambient temperature
\(\mathrm{R}_{\text {日JA }}(\mathrm{Typ})=\) Typical thermal resistance junction to ambient
Maximum Ratings
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & \begin{tabular}{c}
0 to +70 \\
-40 to +85
\end{tabular} & \begin{tabular}{c}
\({ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Operating Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DATA TAKEN USING PHILIPS SO TEST BOARD \#7322-078, 80873 *SOP-8 USING STANDARD SO-8 FOOTPRINT - MIN PAD SIZE

Figure 1. Thermal Resistance, Junction-toAmbient (\({ }^{\circ} \mathrm{C} / \mathrm{W}\))

Figure 2. Thermal Resistance for SOP-8 Package Die 2K mils \({ }^{2}\)

\section*{THERMAL RESISTANCE OF SOIC PACKAGES}

Measurement specimens are solder mounted on a Philips SO test board \#7322-078, 80873 in still air. No auxiliary thermal conduction aids are used. As thermal resistance varies inversely with die area, a given package takes thermal resistance values between the max and min curves shown. These curves represent the smallest (2000 square mils) and largest (8000 square mils) die areas expected to be assembled in the SOIC package.

\section*{Quality and} Reliability Assurance

\section*{Quality Concepts}

The word Quality has been used to describe many things, such as fitness for use, customer satisfaction, customer enthusiasm, what the customer says quality is, etc. These descriptions convey important truths, however quality should be described in a way that precipitates immediate action. With that in mind quality can be described as reduction of variability around a target, so that conformance to customer requirements/expectations can be achieved in a cost effective way. This definition provides direction and potential for immediate action for a person desiring to improve quality. Quality Improvement for a task or a process can be quickly described in terms of the target, current status with respect to target (variability), reduction of variability (commitment to never ending improvement), customer requirements (who receives output, what are person's requirements/expectations) and economics (cost of nonconformance; loss function, etc.).

The definition of quality as described above can be applied to a task, process or a whole company. If we are to reap the benefits of quality and obtain a competitive advantage, quality must be applied to the whole company.

Application of quality to the whole company has come to be known by such names as "Total Quality Control" (TQC); "Company Wide Quality Control" (CWQC); "Total Quality Excellence" (TQE); "Total Quality Involvement" (TQI). These names attempt to convey the idea that quality is a process (a way of acting continuously) rather than a program (implying a beginning and an end). Nevertheless for this process to be successful it must be able to show measurable results.

Implementation of quality ideas, company, wide requires a quality plan showing: A philosophy (belief) of operation, measurable goals, training of individuals and methods of communicating this philosophy of operation to the whole organization.

Motorola, for example, believes that quality and reliability are the responsibility of every person. Participative Management Program (PMP) is the process by which problem solving and quality improvement are facilitated at all levels of the organization. Continuous improvement for the individual is facilitated by a broad educational program covering on-site, university and college courses. The Motorola Training and Education Center (MTEC) provides leadership and administers this educational effort on a company wide basis.
Another key belief is that quality excellence is accomplished by people doing things right the first time and committed to never ending improvement. The Six Sigma \((6 \boldsymbol{\sigma})\) challenge is designed to convey and facilitate the idea of continuous improvement at all levels.
"Six Sigma is the required capability level to approach the standard. The standard is zero defects. Our goal is to be Best-In-Class in product, sales and service." (For a more detailed explanation, contact your Motorola Representative for a pamphlet of the Six Sigma Challenge.)

Quick insight into Six Sigma is obtained if we realize that a Six Sigma process has variability which is one half of the variation allowed (tolerance; spread) by the customer requirements (i.e. natural variation is one half of the customer spec-
ification range for a given characteristic). When Six Sigma is achieved, virtually zero defects are observed in the output of a process/product even allowing for potential process shifts (Figure 1).

FIGURE 1 - A SIX SIGMA PROCESS HAS VIRTUALLY ZERO DEFECTS ALLOWING FOR \(1.5 \sigma\) SHIFT

Policies, objectives and five year plans are the mechanisms for communicating the key beliefs and measurable goals to all personnel and continuously keeping them in focus. This is done at the corporate, sector, group, division, and department levels.

The Analog Division, for example, evaluates performance to the corporate goals of 10 Fold Improvement by 1989; 100 Fold Improvement by 1991 and achievement of Six Sigma capability by 1992 by utilizing indices such as Outgoing Electrical and Visual Mechanical Quality (AOQ) in terms of PPM (parts per million or sometimes given in 'parts per billion'); \% of devices with zero PPB; product quality returns (RMR); number of processes/products with specified capability indices (cp; cpk); Six Sigma capability roadmaps; failure rates for various reliability tests (operating life, temperature humidity bias, hast, temperature cycling, etc.); on time delivery; customer product evaluation and failure analysis turnaround; cost of nonconformance; productivity improvement and personnel development.

Figure 2 shows the improvement in electrical outgoing quality for bipolar analog products over recent years in a normalized form.

Documentation control is an important part of statistical process control. Process flow charting with documentation identified allows visualization and therefore optimization of the process. Figure 4 shows a portion of a flow chart for Wafer Fabrication. Control plans are an important part of Statistical Process Control, these plans identify in detail critical points where data for process control is taken, parameters measured, frequency of measurements, type of control device used, measuring equipment, responsibilities and reaction plans. Figure 5 shows a portion of a control plan for wafer fabrication. These flow charts and control plans exist for all product flows.

Six Sigma progress is tracked by roadmaps. A portion of a roadmap is shown for example on Figure 6.

On Time Delivery is of great importance, with the current emphasis on just-in-time systems. Tracking is done on an overall basis, and at the device level.

FIGURE 2 - OUTGOING ELECTRICAL QUALITY (AOQ) TREND/NORMALIZED \(1980=\mathbf{1 0 0 \%}\)

FIGURE 3 - PERCENT (\%) OF DEVICES WITH ZERO PARTS PER BILLION (AOQ)

FIGURE 4 - PORTION OF A PROCESS FLOW CHART FROM WAFER FAB, SHOWING DOCUMENTATION CONTROL AND SPC
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Characteristics: & \[
\begin{gathered}
\text { Code } \\
\text { A. } \\
\text { B. } \\
\text { C. } \\
\text { D. }
\end{gathered}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
Description \\
VISUAL DEFECTS \\
VISUAL DEFECTS . . . MICROSCOPE \\
PARTICLE ... MONITOR \\
FILM THICKNESS
\end{tabular}} & \[
\begin{gathered}
\text { Code } \\
\text { E. } \\
\text { F. } \\
\text { G. } \\
\text { H. }
\end{gathered}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
Description \\
FILM SHEET RESISTANCE REFRACTIVE INDEX \\
CRITICAL DIMENSION \\
CV PLOT
\end{tabular}} & \\
\hline Process Location & \begin{tabular}{l}
Ref. \\
No.
\end{tabular} & Characteristic Affected & Part/Process Detail & Measurements
\(\qquad\) & Analysis Methods & Frequency Sample Size & Reaction Plan: Point out of Limit (3) (4) \\
\hline B.L. OXIDE & 1 & D & \begin{tabular}{l}
OXIDE \\
THICKNESS
\end{tabular} & NANOMETRIC & CONTROL GRAPH & EVERY RUN 3 WFR/RUN & IMPOUND LOT (1) ADJUST TIME TO CENTER PROCESS PER SPEC \\
\hline EPI & 2 & D & THICKNESS & DIGILAB & \(\overline{\mathrm{X}}\) R CHART & EVERY RUN 5SITESNFR & IMPOUND LOT (1) NOTIFY ENGR. \\
\hline \multirow[t]{2}{*}{QA} & & D & THICKNESS & DIGILAB & \(\bar{x}\) R CHART & WWFR/SHIFT 5SITESNFR & IMPOUND LOT (2) NOTIFY ENGR. \\
\hline & & E & FILM RESISTIVITY & 4PT PROBE & \(\overline{\mathrm{X}}\) R CHART & EVERY RUN 5SITESNFR & IMPOUND LOT (1) NOTIFY ENGR. \\
\hline QA & & \[
E
\] & \[
\begin{gathered}
\text { FILM } \\
\text {-aIctivity }
\end{gathered}
\] & 4PT PROBE & \(\bar{X}\) R CHART & 1WFR/SHIFT 5SITESNFR & IMPOUND LOT (2) NOTIFY ENGR. \\
\hline & & & & AOBE & MOVING R & EVERY LOT 1 CTRL WFR PER LOT & IMPOUND LOT NOTIFY LPR An. \\
\hline
\end{tabular}

FIGURE 5 - PART OF A WAFER FAB CONTROL PLAN, SHOWING STATISTICAL PROCESS CONTROL DETAILS

FIGURE 6 - PART OF SIX SIGMA (\(6 \boldsymbol{\sigma}\)) ROADMAP SHOWING STEPS TO SIX SIGMA CAPABILITY

\section*{Reliability Concepts}

Reliability is the probability that a Linear integrated circuit will perform its specified function in a given environment for a specified period of time. This is the classical definition of reliability applied to Linear integrated circuits.
Another way of thinking about reliability is in relationship to quality. While quality is a measure of variability (extending to potential nonconformances-rejects) in the population domain, reliability is a measure of variability (extending to potential nonconformances-failures) in the population, time and environmental conditions domain. In brief reliability can be thought of as quality over time and environmental conditions.
The most frequently used reliability measure for integrated circuits is the failure rate expressed in percent per thousand device hours \((\% / 1000 \mathrm{hrs}\).\() . If the time interval is small the\) failure rate is called "Instantaneous Failure Rate" \([\lambda(t)]\) or "Hazard Rate." If the time interval is long (for example total operational time) the failure rate is called "Cumulative Failure Rate."
The number of failures observed, taken over the number of device hours accumulated at the end of the observation period and expressed as a percent is called the point estimate failure rate. This however, is a number obtained from observations from a sample of all integrated circuits. If we are to use this number to estimate the failure rate of all integrated circuits (total population), we need to say something about the risk we are taking by using this estimate. A risk statement is provided by the confidence level expressed together with the failure rate. For example, a \(0.1 \%\) per 1000 device hours failure rate at \(90 \%\) confidence level can be thought of as \(90 \%\) of the integrated circuits will have a failure rate below \(0.1 \% /\) 1000 hours. Mathematically the failure rate at a given con-
fidence level is obtained from the point estimate and the CHI square (\(\mathrm{X}^{2}\)) distribution. (The \(\mathrm{X}^{2}\) is a statistical distribution used to relate the observed and expected frequencies of an event.) In practice, a reliability calculator rule is used which gives the failure rate at the confidence level desired for the number of failures and device hours under question.

As the number of device hours increases, our confidence in the estimate increases. In integrated circuits, it is preferred to make estimates on the basis of failures per 1,000,000,000 (\(10^{9}\)) device hours (FITS) or more. If such large numbers of device hours are not available for a particular device, then the point estimate is obtained by pooling the data from devices that are similar in process, voltage, construction, design, etc., and for which we expect to see the same failure modes in the field.

The environment is specified in terms of the temperature, electric field, relative humidity, etc., by an Eyring type equation of the form:
\[
\lambda=A e-\frac{\varnothing}{K T} \quad \ldots e-\frac{B}{R H} \quad \ldots e-\frac{C}{E} \quad \ldots
\]

Where \(A, B, C, \varnothing \& K\) are constants, \(T\) is temperature, RH is relative humidity, E is the electric field, etc.
The most familiar form of this equation deals with the first exponential which shows an Arrhenious type relationship of the failure rate versus the junction temperature of integrated circuits, while the causes of failure generally remain the same. Thus, we can test devices near their maximum junction temperatures, analyze the failures to assure that they are the types that are accelerated by temperature and then applying known acceleration factors, estimate the failure rates for lower junction temperatures. Figure 7 shows an
example of a curve which gives estimates of typical failure rates versus temperature for integrated circuits.

Arrhenious type of equation: \(\lambda=\mathrm{Ae}-\frac{\varnothing}{\mathrm{KT}}\)
Where: \(\lambda=\) Failure Rate
A = Constant
\(\mathrm{e}=2.72\)
Ø = Activation Energy
K = Botzman's Constant
T = Temperature in Degrees Kelvin
\(T_{J}=T_{A}+\theta_{J A} P_{D}\) or \(T_{j}=T_{C}+\theta_{J C} P_{D}\)
Where: \(\mathrm{T}_{\mathrm{J}}=\) Junction Temperature
\(\mathrm{T}_{\mathrm{A}}=\) Ambient Temperature
\(\mathrm{T}_{\mathrm{C}}=\) Case Temperature
\(\theta_{J A}=\) Junction to Ambient Thermal Resistance
\(\theta_{\mathrm{JC}}=\) Junction to Case Thermal Resistance
\(\mathrm{P}_{\mathrm{D}}=\) Power Dissipation
Failure rate curves for equipment and devices can be represented by an idealized graph called the Bathtub Curve (Figure 8).

FIGURE 7 - TYPICAL FAILURE RATE versus JUNCTION TEMPERATURE

FIGURE 8 - FAILURE RATE versus time (BATHTUB CURVE)

There are three important regions identified on this curve. In Region A, the failure rate decreases with time and it is generally called infant mortality or early life failure region. In Region B, the failure rate has reached a relatively constant level and it is called constant failure rate or useful life region. In the third region, the failure rate increases again and it is called wearout region. Modern integrated circuits generally do not reach the wearout portion of the curve when operated under normal use conditions.

The wearout portion of the curve can usually be identified by using highly accelerated test conditions. For modern integrated circuits, even the useful life portion of the curve is characterized by so few failures compared to the accumulated device hours, that the useful life portion of the curve looks like a continuously decreasing failure rate curve (Figure 8, dotted line).

The infant mortality portion of the curve is of most interest to equipment manufacturers because of its impact on customer perception and potential warranty costs. In recent years the infant mortality portion of the curve for integrated circuits, and even equipment, has been drastically reduced (Figure 8, note arrows showing reduction of infant mortality). The reduction was accomplished by improvements in technology, emphasis on statistical process control, reliability modeling in design and reliability in manufacturing (wafer reliability, assembly reliability, etc.). In this respect many integrated circuit families have a continuously decreasing failure rate curve.

Does a user still need to consider burn-in? For this question to be answered properly the IC user must consider the target failure rate of the equipment, apportioned to the components used, application environment, maturity of equipment and components (new versus mature technology), the impact of a failure (i.e. safety versus casual entertainment), maintenance costs, etc. Therefore, if the IC user is going through these considerations for the first time, the question of burnin at the component level should be discussed during a uservendor interface meeting.

A frequently asked question is about the reliability differences between plastic versus hermetic packaged integrated circuits. In general, for all bipolar integrated circuits including linear, the field removal rates are the same for normal use environments, with many claims of plastic being better because of their "solid block" structure.

The tremendous inc"ease in reliability of plastic packages has been accomplished by the continuous improvements in piece parts, materials and processes. Nevertheless differences can still be observed under highly accelerated environmental conditions. For example, if a bimetallic (gold wire and aluminum metallization) system is used in plastic packages and they are placed on a high temperature operating life test \(\left(125^{\circ} \mathrm{C}\right)\) then failures in the form of opens will be observed after 10,000 hours of continuous operating ifife at the gold to aluminum interface. Packages, whether plastic or hermetic, with a monometallic system (aluminum wire to aluminum metallization) will have no opens because of the absence of the gold to aluminum interface. As a result, a difference in failure rates will be observable.

Differences in failure rates between plastics and hermetics could be observed if devices from both packaging systems are placed in an environment of \(85^{\circ} \mathrm{C} ; 85 \% \mathrm{RH}\) with bias applied. At some point in time plastic encapsulated ICs should fail since they are considered pervious by moisture, (the failure mechanism being corrosion of the aluminum metallization) while hermetic packages should not fail since they are considered impervious by moisture. The reason the word
"should" was used is because advances in plastic compounds, package piece parts, encapsulation processes and final chip passivation have made plastic integrated circuits capable of operating more than 5000 hours without failures in an \(85^{\circ} \mathrm{C} ; 85 \%\) RH environment. Differences in failure rates due to internal corrosion between plastic and hermetic packages may not be observable until well after 5000 operating hours.

The aforementioned two examples had environments substantially more accelerated than normal life so these two issues discussed are not even a factor under normal use conditions. In addition, mechanisms inherent in hermetic packages but absent in plastics were not even considered here. Improved reliability of plastic encapsulated ICs has decreased demand of hermetic packages to the point where many devices are offered only in plastic packages. The user then should feel comfortable in using the present plastic packaging systems.

A final question that is asked by the IC users is: how can one be assured that the reliability of standard product does not degrade over time? This is accomplished by our emphasis on statistical process control, in-line reliability assessment and reliability auditing by periodic and strategic sampling and accelerated testing of the various integrated circuit device packaging systems. A description of these audit programs follows below.

\section*{Linear Reliability Audit Program}

The reliability of a product is a function of design and manufacturing. Inherent reliability is the reliability which a product would have if there were no imperfections in the materials, piece parts and manufacturing processes of the product. The presence of imperfections gives risk to the actual reliability of the product.
Motorola uses on-line and off-line reliability monitoring in an attempt to prevent situations which could degrade reliability. On-line reliability monitoring is at the wafer and assembly levels while off-line reliability monitoring involves reliability assessment of the finished product through the use of accelerated environmental tests.
Continuous monitoring of the reliability of Linear integrated circuits is accompished by the Linear Reliability Audit Program, which is designed to compare the actual reliability to that specified. This objective is accomplished by periodic and strategic sampling of the various integrated circuit device packaging systems. The samples are tested by subjecting them to accelerated environmental conditions and the results are reviewed for unfavorable trends that would indicate a degradation of the reliability or quality of a particular packaging system. This provides the trigger mechanism for initiating an investigation for cause and corrective action. Concurrently, in order to provide a minimum of interruption of product flow and assure that the product is fit for use, a lot by lot sampling or a nondestructive type \(100 \%\) screen is used to assure that a particular packaging system released for shipment does have the expected reliability. This rigorous surveillance is continued until there is sufficient proof (many consecutive lots) that the problem has been corrected.

The Standard Logic and Analog Integrated Circuits Group has used reliability audits since the late sixties. Such programs have been identified by acronyms such as CRP (Consumer Reliability Program), EPIIC (Environmental Package Indicators for Integrated Circuits), LAPP (Linear Accelerated

Punishment Program), and RAP (Reliability Audit Program) Currently, the Bipolar Analog Reliability Audit Program consists of a Weekly Reliability Audit and a Quarterly Reliability Audit. The Weekly Reliability Audit consists of rapid (short time) types of tests used to monitor the production lines on a real time basis. This type of testing is performed at the assembly/test sites worldwide. It provides data for use as an early warning system for identifying negative trends and triggering investigations for causes and corrective actions.

The Quarterly Reliability Audit consists of long term types of tests and is performed at the U.S. Bipolar Analog Division Center. The data obtained from the Quarterly Reliability Audit is used to assure that the correlation between the short term weekly tests and long term quarterly tests has not changed, and a new failure mechanism has not appeared.

A large data base is established by combining the results from the Weekly Reliability Audit with the results from the Quarterly Reliability Audit. Such a data base is necessary for estimating long term failure rates and evaluating potential process improvement changes. Also, after a process improvement change has been implemented, the Linear Reliability Audit Program provides a system for monitoring the change and the past history data base for evaluating the affect of the change.

\section*{Weekly Reliability Audit}

The Weekly Reliability Audit is performed by each assembly/test site worldwide. The site must have capability for final electrical and quality assurance testing; reliability testing and first level of failure analysis. The results are reviewed on a continuous basis and corrective action is taken when appropriate. The results are accumulated on a monthly basis and published.

The Reliability Audit test plan is as follows:

Electrical Measurements: Performed initially and after each reliability test, consists of critical parameters and functional testing at \(25^{\circ} \mathrm{C}\) on a go-no-go basis.

High Temperature Operating Life: Performed to detect failure mechanisms that are accelerated by a combination of temperature and electric fields. Procedure and conditions are per the MIL-STD-883, Method 1015 with an ambient temperature of \(145^{\circ} \mathrm{C}\) for 40 hours or equivalent based on a 1.0 eV activation energy and the Arrhenious equation.

Approximate Accelerated Factors
\begin{tabular}{lcc}
& \(\frac{125^{\circ} \mathrm{C}}{4}\) & \(\frac{50^{\circ} \mathrm{C}}{4000}\) \\
\(145^{\circ} \mathrm{C}\) & 4 & \\
\(125^{\circ} \mathrm{C}\) & 1 & 1000
\end{tabular}

Temperature Cycling/Thermal Shock: Performed to detect mechanisms related to thermal expansion and contraction of dissimilar materials, etc. Procedures and conditions are per MIL-STD-883, Methods 1010 or 1011, with ambient temperatures of \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) or \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) (JEDEC-STD-22-A104), minimum of 100 cycles.

Pressure Temperature Humidity (Autoclave): Performed to measure the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanisms due to free ionic contaminants that may have entered the package during the manufacturing processes. Conditions are per

JEDEC-STD-22, Method 102, a temperature of \(121^{\circ} \mathrm{C}\), steam environment and 15psig. The duration of the test is 48 hours.

Analysis Procedure: Devices failing to meet the electrical criteria after being subjected to an accelerated environment type test are verified and characterized electrically, then submitted for failure analysis.

\section*{Quarterly Reliability Audit}

The Quarterly Bipolar Analog Reliability Audit Program is performed at the U.S. Bipolar Analog Division Center. This testing is designed to assure that the correlation between the short term weekly tests and the longer quarterly tests has not changed and that no new failure mechanisms have appeared. It also provides additional long term information for a data base for estimating failure rates and evaluation of potential process improvement changes.

Electrical Measurements: Performed initially and at interim readouts, consist of all standard dc and functional parameters at \(25^{\circ} \mathrm{C}\), measured on a go-no-go basis.

High Temperature Operating Life Test: Performed to detect failure mechanisms that are accelerated by a combination of temperature and electric fields. Procedure and conditions are per MIL-STD-883, Method 1015, with an ambient temperature of \(145^{\circ} \mathrm{C}\) for 40 and 250 hours or equivalent, based on 1.0 eV activation energy and the Arrhenious equation.

Approximate Acceleration Factors
\begin{tabular}{lcc}
& \(\frac{125^{\circ} \mathrm{C}}{4}\) & \(\frac{50^{\circ} \mathrm{C}}{4000}\) \\
\(145^{\circ} \mathrm{C}\) & 1 & \\
\(125^{\circ} \mathrm{C}\) & 1000
\end{tabular}

Temperature Cycling/Thermal Shock: Performed to detect mechanisms related to thermal expansion and contraction, mismatch effects, etc. Procedure and conditions are per MIL-STD-883, Methods 1010 or 1011, with ambient temperatures of \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) or \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) (JEDEC-STD-22-A104) for 100 and 1000 cycles. Temperature Cycling and Thermal Shock are used interchangeably.

Pressure Temperature Humidity (Autoclave): Performed to measure the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanism due to free ionic contaminants that may have entered the package during the manufacturing processes. Conditions are per JEDEC-STD-22, Method 102, a temperature of \(121^{\circ} \mathrm{C}\), steam environment and 15 psig. The duration of the test is for 96 hours, with a 48 hour interim readout.

Pressure Temperature Humidity Bias (Biased Autoclave): This test measures the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanism due to free and bounded ionic contaminants that may have entered the package during the manufacturing processes, or they may be bound in the materials of the integrated circuit packaging system and activated by the moisture and the applied electric fields. Conditions are per JEDEC-STD-22, Method 102, with bias applied. Temperature is \(121^{\circ} \mathrm{C}\), steam environment and 15 psig. Duration is for 32 hours, with a 16 hour interim readout. This test detects the same type of failures as the Temperature Humidity Bias \(\left(85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}\right.\), with bias) test, only faster. The acceleration factor between PTHB and THB is between 20 and 40 times, depending on the type of corrosion mechanism, electric field and packaging system.

Temperature, Humidity and Bias (THB): This test measures the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanisms due to free and bounded ionic contaminants that may have entered the package during the manufacturing processes, or they may be bound in the materials of the integrated circuit packaging system and activated by moisture and the applied electric fields. Conditions are per JEDEC-STD-22, Method \(102\left(85^{\circ} \mathrm{C}\right.\), \(85 \%\) RH), with bias applied. The duration is for 1008 hours, with a 504 hour interim readout. The acceleration factor between THB (\(85^{\circ} \mathrm{C}, 85 \%\) RH and bias) and the \(30^{\circ} \mathrm{C}, 90 \%\) RH is typically \(40-50\) times, depending on the type of corrosion mechanism, electric field and packaging system.

Analysis Procedure: Devices failing to meet the electrical criteria after being subjected to an accelerated environment type test are verified and characterized electrically, then submitted for failure analysis.

\section*{Applications Literature}

The application literature listed in this section has been prepared to acquaint the circuits and systems engineer with Motorola Linear integrated circuits and their applications. To obtain copies of the notes, simply list the publication number or numbers and send your request on your company letterhead to: Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036.

\section*{Application Note Abstracts}

\section*{AN273A Getting More Value Out of an Integrated Operational Amplifier Data Sheet}

The operational amplifier has become a basic building block in present day solid state electronic systems. The purpose of this application note is to provide a better understanding of the open loop characteristics of the amplifier and their significance to overall circuit operation. Also each parameter is defined and reviewed with respect to closed loop considerations. The importance of loop gain stability and bandwidth is discussed at length. Input offset voltage and current and resultant drift effects in the circuit are also reviewed with respect to closed loop operation.

\section*{AN489 Analysis and Basic Operation of the MC1595}

The MC1595 monolithic linear four-quadrant multiplier is discussed. The equations for the analysis are given along with performance that is characteristic of the device. A few basic applications are given to assist the designer in system design.

\section*{AN513 A High Gain Integrated Circuit RF-IF Amplifier with Wide Range AGC}

This note describes the operation and application of the MC1590G, a monolithic RF-IF amplifier. Included are several applications for IF amplifiers, a mixer, video amplifiers, single and two-stage RF amplifiers.

\section*{AN531 MC1596 Balanced Modulator}

The MC1596 monolithic circuit is a highly versatile communications building block. In this note, both theoretical and practical information are given to aid the designer in the use of this part. Applications include modulators/demodulators for AM, SSB, and suppressed carrier AM; frequency doublers and HF/VHF double balanced mixers.

\section*{AN545A Television Video IF Amplifier Using Integrated Circuits}

This applications note considers the requirements of the video IF amplifier section of a television receiver, and gives working circuit schematics using integrated circuits which have been specifically designed for consumer oriented products. The integrated circuits used are the MC1350, MC1352, and the MC1330.

\section*{AN587 Analysis and Design of the Op Amp Current Source}

A voltage controlled current source utilizing an operational amplifier is discussed. Expressions for the transfer function and output impedances are developed using both the ideal and non-ideal op amp models. A section on analysis of the effects of op amp parameters and temperature variations on circuit performance is presented.

\section*{AN703 Designing Digitally-Controlled Power Supplies}

This application note shows two design approaches; a basic low voltage supply using an inexpensive MC1723 voltage regulator and a high current, high voltage, supply using the MC1466 floating regulator with optoelectronic isolation. Various circuit options are shown to allow the designer maximum flexibility in an application.

\section*{AN708A Line Driver and Receiver Considerations}

This report discusses many line driver and receiver design considerations such as system description, definition of terms, important parameter measurements, design procedures and application examples. An extensive line of devices is available from Motorola to provide the designer with the tools to implement the data transmission requirements necessary for almost every type of transmission system.

\section*{AN727 Television Horizontal APC/AFC Loops: The Last 10 Percent}

A discussion of some common problems that may be encountered with the design of Horizontal APC/AFC loops and methods to avoid or overcome them.

\section*{AN778 Mounting Techniques for Power Semiconductors}

For reliable operation, semiconductors must be properly mounted. Discussed are aspects of preparing the mounting surface, using thermal compounds, insulation techniques, fastening techniques, handling of leads and pins, and evaluation methods for the thermal system.

\section*{AN781A Revised Data Interface Standards}

This application note provides a brief overview and comparison of communication interface standards EIA-232-C, EIA-422A, EIA-423, EIA-449 and EIA-485 for the hardware designer. A listing of the standard's specifications and appropriate Motorola devices are included.

\section*{AN829 Application of the MC1374 TV Modulator}

The MC1374 was designed for use in applications where separate audio and composite video signals are available, which need converting to a high quality VHF television signal. It's idealy suited as an output device for subscription TV decoders, video disk and video tape players.

\section*{AN879 Monomax - Application of the MC13001 Monochrome Television Integrated Circuit}

This application note presents a complete \(12^{\prime \prime}\) black and white line-operated television receiver, including artwork for the printed circuit board. It is intended to provide a good starting point for the first-time user. Some of the most common pitfalls are overcome, and the significance of component selections and locations are discussed.

\section*{AN917 Reading and Writing in Floppy Disk Systems Using Motorola Integrated Circuits}

The floppy disk system has become a widely used means for storing and retrieving both programs and data. A floppy disk drive requires precision controls to position and load the head as well as defined read/write signals in order to be a viable system. This application note describes the use of the

\section*{APPLICATIONS LITERATURE (continued)}

MC3469 and MC3471 Write Control ICs and the MC3470 Read Amplifier which provide the necessary head and erase control, timing functions, and filtering.

\section*{AN920A Theory and Applications of the MC34063 and \(\mu\) A78S40 Switching Regulator Control Circuits}

This paper describes in detail the principle of operation of the MC34063 and \(\mu \mathrm{A} 78 \mathrm{~S} 40\) switching regulator subsystems. Several converter design examples and numerous applications circuits with test data are included.

\section*{AN926 Techniques for Improving the Settling Time of a DAC \& Op Amp Combination}

This application note describes some techniques which were tested for the purpose of optimizing settling time of a DAC/op amp combination. The objective of the experimentation was to obtain a settling time of under \(1.0 \mu \mathrm{~s}\) for 12 bit (\(\pm 0.012 \%\)) accuracy. Op amps chosen for this exercise are high speed, yet inexpensive monolithic devices.

\section*{AN932 Application of the MC1377 Color Encoder}

The MC1377 is an economical, high quality, RGB encoder for NTSC or PAL applications. It accepts red, green, blue, and composite sync inputs and delivers IVpp composite NTSC or PAL video output into a 75 ohm load. It can provide its own color oscillator and burst gating, or it can be easily driven from external sources. Performance virtually equal to high cost studio equipment is possible with common color receiver components. The following note is intended to explain the operation of the device and guide the prospective user in selecting the optimum circuit for his needs.

\section*{AN933 A Variety of Uses for the MC34012 and MC34017 Tone Ringers}

The MC34012 and MC34017 electronic tone ringers were developed to replace the bulky electromechanical bell assembly of a telephone, while providing the same basic function. When used in conjunction with a piezo ceramic transducer, these circuits will output a warbling sound in response to the applied ringing voltage. With some imagination, however, the circuits can be used in a variety of ways, including non-telephone applications, - wherever an alerting sound or indication is required. Applications include appliance buzzers, burglar alarms, safety alerting functions, special sound effects, visual ringing indicators, and others. The circuits in this application note show how a variety of effects can be obtained.

\section*{AN937 A Telephone Ringer Which Complies with FCC and EIA Impedance Standards}

The MC34012 and MC34017 Tone Ringers are designed to replace the bulky bell assembly of a telephone, while providing the same function and performance under a variety of conditions. The operational requirements spelled out by the FCC and the EIA, simply stated, are that a ringer circuit MUST function when a ringing signal is provided, and MUST NOT ring when other signals (speech, dialing signals, noise) are on the line. This application note discusses how the IC's operate, the specific operational requirements to be met, and how they are met. Only "on-hook" requirements are discussed since off-hook operation is not applicable.

\section*{AN954 A Unique Converter Configuration Provides Step-Up/Down Functions \\ The use of switching regulators in new portable equipment}
designs is becoming more pronounced over that of linear regulators. This is primarily due to the need for reductions in size and weight which dictate an ever increasing demand for higher power conversion efficiency from a battery pack. When designing at the board level it sometimes becomes necessary to generate a constant output voltage that is less than that of the battery. The step-down circuit will perform this function efficiently. However, as the battery discharges, its terminal voltage will eventually fall below the desired output, and in order to utilize the remaining battery energy, the step-up circuit will be required.

\section*{AN957 Interfacing the Speakerphone to the MC34010/11/13 Speech Networks}

Interfacing the MC34018 speakerphone circuit to the MC34010 series of telephone circuits is described in this application note. The series includes the MC34010, MC34011, MC34013, and the new " \(A\) " version of each of those. The interface is applicable to existing designs, as well as to new designs.

\section*{AN958 Transmit Gain Adjustments for the MC34014 Speech Network}

The MC34014 telephone speech network provides for direct connection to an electret microphone and to Tip and Ring. In between, the circuit provides gain, drive capability, and determination of the ac impedance for compatability with the telephone lines. Since different microphones have different sensitivity levels, different gain levels are required from the microphone to the Tip and Ring lines. This application note will discuss how to change the gain level to suit a particular microphone while not affecting the other circuit parameters.

\section*{AN959 A Speakerphone with Receive Idle Mode}

The MC34018 speakerphone system operates on the principle of comparing the transmit and receive signals to determine which is stronger, and then switching the circuit into that mode. Under conditions where noise from the telephone line (in the receive path) exceeds the background noise in the transmit path, the speakerphone will switch easily, or even lock, into the receive mode. Under these conditions the conversation will sound "dead" to the party at the far-end. It will also be more difficult for the near-end party to activate the transmit channel since the transmit detection is at the output of the transmit attenuator, which will be at maximum attenuation during this time. The addition of a receive idle mode can alleviate this problem by ensuring that the transmit and receive gains will be approximately equal when no voice signals are present. This allows the far-end party to hear ambient noises, and also increases the sensitivity to transmit signals.

\section*{AN960 Equalization of DTMF Signals Using the MC34014}

This application note will describe how to obtain equalization (line length compensation) of the DTMF dialing tones using the MC34014 speech network. While the MC34014 does not have an internal dialer, it has the interface for a dialer so as to provide the means for putting the DTMF tones onto the Tip \& Ring lines. The Equalization amplifier, whose gain varies with loop current, was meant primarily to equalize the speech signals. However, by adding one resistor, it can be used to equalize the DTMF signals as well.

\section*{AN963 Interfacing the MC6108 A/D to a Microprocessor - It's Easier Than You Think!}

This application note will supplement information in the

\section*{APPLICATIONS LITERATURE (continued)}

MC6108 data sheet by describing the detailed requirements for interfacing the Analog-to-Digital converter to a microprocessor. The hardware requirements, and the programming necessary to execute a conversion and read the data, in several different configurations, will be discussed. The microprocessor used in developing this application note is the MC6802 (operating off a 3.58 MHz crystal), a representative sample of the MC6800 family.
Because of the short conversion time of the MC6108, "Wait" states and "Wait for Interrupt" instructions are generally not needed with most microprocessors. The microprocessor can issue a CONVERT instruction, and immediately thereafter, issue a READ instruction, regardless of whether the MC6108 is read through a port (MC6821), or read off the bus directly.

\section*{AN976 A New High Performance Current Mode Controller Teams Up with Current Sensing Power MOSFETs}

A new current mode control IC that interfaces directly with current sensing power MOSFETs is described. Its second generation architecture is shown to provide a variety of advantages in current mode power supplies. The most notable of these advantages is a "lossless" current sensing capability that is provided when used with current sensing MOSFETs.
Included in the discussion are subtle factors to watch out for in practical designs, and an applications example.

\section*{AN980 Low Power FM Dual Conversion Receivers MC3362/3/4}

Motorola has recently developed a series of low power FM dual conversion receivers in monolithic silicon integrated circuits. The MC3362/3/4 series is ideal for application in cordless phones, narrowband voice and data receivers, CB and amateur band radios, RF security devices, and other applications through 150 MHz .

\section*{AN983 A Simplified Power Supply Design Using the TL494 Control Circuit}

This describes the operation and characteristics of the TL494 Switchmode \({ }^{\text {TM }}\) Voltage Regulator and shows its application in a 400 -watt off-line power supply.
The TL494 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply.

\section*{AN1002 A Handsfree Featurephone Design Using the MC34114 Speech Network and the MC34018 Speakerphone ICs}

This application note describes the procedure for combining the MC34114 speech network with the MC34018 speakerphone circuit into a featurephone which includes the following functions: ten number memory pulse/tone dialer, tone ringer, a "Privacy" (Mike Mute) function, and line length compensation for both handset and speakerphone operation.
Three circuits are developed in this discussion: a line-pow-
ered featurephone, a line-powered featurephone with a booster (for using the speakerphone on long lines), and one powered from a power supply. The circuits are nearly identical, except for the Tip/Ring interface. Their performance, however, differs noticeably, particularly in the low loop current range. Initially, the discussion will focus on the line-powered circuit.

\section*{ANE002 130 W Ringing Choke Power Supply Using TDA4601}

The architecture is based on the fly-back mode working in a free switching mode. Frequency range varies between 20 kHz at full load and 70 kHz in the standby condition (also called sleep-mode). Input power is from the line (220 Vac) and is completely isolated from the output. Control and regulation are achieved by the TDA4601.
The power supply presents a linear foldback characteristic and is short circuit proof. An undervoltage inhibit provides a protection against low line voltage.
The complete system is an excellent compromise between complexity, cost and performance.

\section*{AN-HK-07 A High Performance Manually Tuned AM Stereo Receiver for Automotive Application Using MOTOROLA ICs MC13021, MC13020 and MC13041}

This application note presents a high performance manually tuned automotive AM stereo receiver design using MOTOROLA AM stereo ICs; MC13021, MC13020 and the MC13041. It is intended to provide radio design engineers with a good start in automotive AM stereo receiver design. The note consists of two parts; the first describes all relative important principles of a manually tuned AM stereo receiver, and the second part details the AM stereo receiver design for automotive application.

\section*{Article Reprints}

\section*{AR115}

A bipolar quad op amp having a JFET-like 4.5 MHz bandwidth resolves common mode input voltages and sinks output current close to the ground rail - even with a single +5.0 V supply.

\section*{Engineering Bulletin Abstracts}

\section*{EB20 Multiplier/Op Amp Circuit Detects True RMS}

Two op amps and two multipliers are used in the circuit described in EB20 to obtain the true rms of an input voltage ranging from 2.0 to 10 Vpk .

\section*{EB51 Successive Approximation BCD A/D Converter}

A successive approximation \(A / D\) converter in which a dig-ital-to-analog converter in a feedback loop produces a BCD digital output from an analog input is described in EB51.

Amplifiers
and Comparators

Power/Motor
Control Circuits

\section*{5}

Voltage References

\section*{6}

Data Conversion

\section*{7}

Interface Circuits
Communication Circuits

\section*{9}

Consumer
Electronic Circuits
Automotive Electronic Circuits

\section*{11 Other Linear Circuits}

Surface Mount Technology
13 Packaging Information
14 Quality and
Reliability Assurance
15 Applications Literature

\section*{Literature Distribution Centers:}

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands Milton Keynes, MK145BP, England ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong.```

[^0]: * See Telecommunication Device Data (DL136).

[^1]: * See Telecommunication Device Data (DL136).

[^2]: * See Telecommunication Device Data (DL136)

[^3]: *NOTE: The LF357/357B are designed for wider bandwidth applications. They are decompensated ($A V_{\text {min }}=5$).

[^4]: (1) $T_{\text {low }}=0^{\circ} \mathrm{C}$ for $\mathrm{MC1439}$ $-55^{\circ} \mathrm{C}$ for MC 1539
 $T_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC1439

[^5]: ${ }^{*} T_{\text {high }}=125^{\circ} \mathrm{C}$ for MC1741 and $70^{\circ} \mathrm{C}$ for MC1741C
 $\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC1741 and $0^{\circ} \mathrm{C}$ for MC1741C

[^6]: ${ }^{*} T_{\text {high }}=125^{\circ} \mathrm{C}$ for MC4558 and $70^{\circ} \mathrm{C}$ for MC4558C and MC4558AC.
 $\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC4558 and $0^{\circ} \mathrm{C}$ for MC4558C and MC4558AC.
 \dagger^{\prime} IB is out of the amplifier due to PNP input transistors.

[^7]: Notes: (continued)
 3. $\mathrm{T}_{\text {low }}=-55^{\circ} \mathrm{C}$ for MC35171/MC35172/MC35174
 $=-40^{\circ} \mathrm{C}$ for $\mathrm{MC} 33171 / \mathrm{MC} 33172 / \mathrm{MC} 33174$

[^8]: $T_{\text {high }}=+125^{\circ} \mathrm{C}$ for $\mathrm{MC} 35171 / \mathrm{MC} 35172 / \mathrm{MC} 35174$
 $=+85^{\circ} \mathrm{C}$ for $\mathrm{MC} 33171 / \mathrm{MC} 33172 / \mathrm{MC} 33174$

