(4)
 MOTOFOLA ING.

MECL DEVICE DATA

GENERAL INFORMATION

MECL 10KH

PHASE-
LOCKED LOOP

MECL 10KH, MECL, MECL 10K, MECL 10,000, MECL III, MCA, MOSAIC, MTTL, and QUIL are trademarks of Motorola Inc.

(4)
 MOTOROLA MECL INTEGRATED CIRCUITS

Prepared by
Technical Information Center

This book presents technical data for a broad line of MECL integrated circuits. Complete specifications for the individual circuits are provided in the form of data sheets. In addition, selector guides are included to simplify the task of choosing the best combination of circuits for optimum system architecture.

The information in this book has been carefully checked and is believed to be reliable; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent right of any manufacturer.

CONTENTS

Page
DEVICE INDEX ii
CHAPTER 1 -GENERAL INFORMATION 1-1
High-Speed Logics 1-2
MECL Products/General Characteristics 1-2
MECL in Perspective 1-3
MECL Applications 1-3
Basic Considerations for High-Speed Logic Design 1-3
Circuit Description 1-4
Definitions of Letter Symbols and Abbreviations 1-5
Technical Data 1-8
General Characteristics and Specifications 1-8
Letter Symbols and Abbreviations 1-8
Maximum Ratings 1-8
MECL Transfer Curves 1-9
Noise Margin 1-10
AC/Switching Parameters 1-11
Setup and Hold Times 1-12
Operational Data 1-13
Power Supply Considerations 1-13
Power Dissipation 1-13
Loading Characteristics 1-13
Unused MECL Inputs 1-14
System Design Considerations 1-15
Thermal Management 1-15
Air Flow 1-16
Thermal Effects on Noise Margin 1-18
Mounting and Heat Sink Suggestions 1-18
Interfacing MECL to Slower Logic Types 1-19
Circuit Interconnections 1-19
Clock Distribution 1-21
Logic Shortcuts 1-22
System Considerations-A Summary of Recommendations 1-23
Package Outline Dimensions 1-24
Supplementary Literature and Application Notes 1-30
CHAPTER 2 - MECL 10KH 2-1
CHAPTER 3-MECL 10K 3-1
CHAPTER 4-MECL III 4-1
CHAPTER 5-MECL MEMORIES 5-1
CHAPTER 6-MCA 6-1
CHAPTER 7-PHASE-LOCKED LOOP 7-1
CHAPTER 8-QUALITY AND RELIABILITY 8-1
Jadec Processed Product 8-8
MIL-M- 38510 JAN-Qualified Product 8-9
MECL MC10500/10600 Series Military Temperature Range 8-13

DEVICE INDEX

Device Number Function Page
MC1OH016 Binary Counter2-7
MC1OH100Quad 2-Input "NOR" Gate with Strobe2-9
MC1OH101/MC1OH102/
MC1OH105 Gate Functions 2-10
MC1OH103 Quad 2-Input "OR'' Gate 2-12
MC1OH104/MC1OH107/
MC1OH109 Gate Functions 2-13
MC1OH106 Triple 4-3-3 Input "NOR" Gate 2-15
MC1OH113 Quad Exclusive "OR' Gate 2-16
MC1OH115 Quad Line Receiver 2-17
MC1OH116 Triple Line Receiver 2-18
MC1OH117/MC1OH118 Dual 2-Wide "OR-AND/OR-AND-INVERT" Gates 2-20
MC1OH119/MC1OH121 4-Wide "OR-AND/OR-AND-INVERT" Gates 2-21
MC1OH123 Triple 4-3-3 Input Bus Driver (25 ohms) 2-22
MC1OH124 Quad TTL-to-MECL Translator 2-24
MC1OH125 Quad MECL-to-TTL Translator 2-26
MC1OH130 Dual Latch 2-28
MC1OH131 Dual Typed Master-Slave Flip-Flop 2-30
MC10H135 Dual J-K Master-Slave Flip-Flop 2-32
MC1OH136 Universal Hexadecimal Counter 2-33
MC10H141 Four-Bit Universal Shift Register 2-35
MC1OH145 16×4-Bit Register File 2-37
MC1OH158 Quad 2-Input Multiplexer (Non-Inverting) 2-40
MC10H159 Quad 2-Input Multiplexer (Inverting) 2-41
MC10H160 12-Bit Parity Generator-Checker 2-43
MC1OH161 Binary to 1-8 Decoder (Low) 2-44
MC1OH162 Binary to 1-8 Decoder (High) 2-46
MC1OH164 8-Line Multiplexer 2-48
MC1OH165 8-Input Priority Encoder 2-50
MC1OH166 5-Bit Magnitude Comparitor 2-53
MC1OH173 Quad 2-Input Multiplexer/Latch 2-56
MC1OH174 Dual 4-to-1 Multiplexer 2-58
MC1OH175 Quint Latch 2-59
MC1OH176 Hex "D" Master-Slave Flip-Flop 2-61
MC1OH179 Look Ahead Carry Block 2-63
MC1OH180 Dual High-Speed Adder/Subtractor 2-66
MC1OH181 4-Bit ALU 2-68
MC1OH186A Hex "D' Master-Slave Flip-Flop/with Reset 2-71
MC1OH188 Hex Buffer w/Enable 2-73
MC1OH189 Hex Inverter w/Enable 2-75

DEVICE INDEX (continued)

Device Number Function Page
MC1OH2O9Dual 4-5-Input "OR/NOR" Gate2-77
MC1OH210/MC1OH211 Dual 3-Input 3-Output "OR" Gate, "NOR" Gate 2-78
MC1OH330 Quad Bus-Driver/Receiver with 2-to-1 Output Multiplexers 2-79
MC1OH332 Dual Bus Driver/Receiver with 4-to-1 Output Multiplexers 2-81
MC1OH334 Quad Bus Driver/Receiver with Transmit and Receiver Latches 2-83
MC1OH350 Quad MECL-to-TTL Translator Single Power Supply (-5.2 V or +5.0 V) 2-87
MC1OH423 Triple 3-Input Bus Driver with Enable (25 ohm) 2-88
MC1OH4242-89
MC1648/MC1648M Voltage-Controlled Oscillator 4-3
MC1650/MC1651 Dual A/D Converter 4-11
MC1654 Binary Counter 4-21
MC1658 Voltage-Controlled Multivibrator 4-23
MC1660Dual 4-Input Gate4-27
MC1662 MC1662 Quad 2-Input NOR Gate 4-28
MC1664Quad 2-Input OR Gate4-29
MC1666 Dual Clocked R-S Flip-Flop 4-30
MC1668 Dual Clocked Latch 4-31
MC1670 Master-Slave Flip-Flop 4-32
MC1672 Triple 2-Input Exclusive-OR Gate 4-35
MC1674 Triple 2-Input Exclusive-NOR Gate 4-36
MC1678 Bi-Quinary Counter 4-37
MC1688 Dual 4-5-Input OR/NOR Gate 4-39
MC1690 UHF Prescaler Type D Flip-Flop 4-40
MC1692 Quad Line Receiver 4-42
MC1694 4-Bit Shift Register 4-44
MC1697 1-GHz Divide-by-Four Prescaler 4-45
MC1699Divide-by-Four Gigahertz Counter4-48
MC4316/MC4016/
MC4317/MC4017/
MC4318/MC4018/
MC4319/MC4019 Programmable Modulo-N Counters 7-4
MC4324/MC4024 Dual Voltage-Controlled Multivibrator 7-19
MC4344/MC4044 Phase-Frequency Detector 7-25
MC10100 Quad 2-Input NOR Gate with Strobe 3-4
MC10101 Quad OR/NOR Gate 3-6
MC10102 Quad 2-Input NOR Gate 3-8
MC10103 Quad 2-Input OR Gate 3-10
MC10104 Quad 2-Input AND Gate 3-12
MC10105 Triple 2-3-2-Input OR/NOR Gate 3-14
MC10106 Triple 4-3-3-Input NOR Gate 3-16
MC10107 3-18

DEVICE INDEX (continued)

Device Number Function Page
MC10109MC10110Dual 4-5-Input "OR/NOR" Gate3-20
Dual 3-Input 3-Output "OR" Gate 3-22
MC10111 Dual 3-Input 3-Output "NOR" Gate 3-24
MC10113 Quad Exclusive OR Gate 3-26
MC10114 Triple Line Receiver 3-28
MC10115 Quad Line Receiver 3-30
MC10116 Triple Line Receiver 3-32
MC10117 Dual 2-Wide 2-3-Input "OR-AND/OR-AND-INVERT"' Gate 3-34
MC10118 Dual 2-Wide 3-Input "OR-AND" Gate 3-36
MC10119
MC10121
4-Wide 4-3-3-3-Input "OR-AND" Gate 3-38
4-Wide "OR-AND/OR-AND-INVERT" Gate 3-40
MC10123 Triple 4-3-3-Input Bus Driver 3-42
MC10124 Quad TTL to MECL Translator 3-44
MC10125 Quad MECL to TTL Translator 3-47
MC10128 Bus Driver 3-50
MC10129 Bus Receiver 3-56
MC10130 Dual Latch 3-60
MC10131 Dual Type D Master-Slave Flip-Flop 3-62
MC10132 Dual Multiplexer with Latch and Common Reset 3-64
MC10133 Quad Latch 3-66
MC10134 Dual Multiplexer with Latch 3-68
MC10135 Dual J-K Master-Slave Flip-Flop 3-70
MC10136/MC10136B Universal Hexadecimal Counter 3-72
MC10137 Universal Decade Counter 3-77
MC10138 Bi-Quinary Counter 3-81
MC10141 Four-Bit Universal Shift Register 3-83
MC10153 Quad Latch 3-86
MC10154 Binary Counter 3-88
MC10158 Quad 2-Input Multiplexer (Non-Inverting) 3-90
MC10159 Quad 2-Input Multiplexer (Inverting) 3-92
MC10160 12-Bit Parity Generator-Checker 3-94
MC10161 Binary to 1-8 Decoder (Low) 3-96
MC10162 Binary to 1-8 Decoder (High) 3-99
MC10163/MC10193 Error Detection-Correction Circuit 3-101
MC10164 8-Line Multiplexer 3-108
MC10165 8-Input Priority Encoder MC10165 3-111
MC10166 5-Bit Magnitude Comparator 3-115
MC10168 Quad Latch 3-118
MC10170 9×2-Bit Parity Generator-Checker 3-120

DEVICE INDEX (continued)

Device NumberFunctionPage
MC10171
MC10172
Binary to 1-4 Decoder (Low) 3-122
MC10173 Quad 2-Input Multiplexer/Latch 3-126Dual Binary to 1-4 Decoder (High)3-124
MC10174 Dual 4-to-1 Multiplexer 3-128
MC10175 Quint Latch 3-130
MC10176 Hex "D" Master-Slave Flip-Flop 3-132
MC10177 Triple MECL to NMOS Translator 3-134
MC10178 Binary Counter 3-137
MC10179 Look-Ahead Carry Block 3-139
MC10180 Dual 2-Bit Addex/Subtractor 3-142
MC10181 4-Bit Arithmetic Logic Unit/Function Generator 3-144
MC10182 2-Bit Arithmetic Logic Unit/Function Generator 3-148
MC10183 4×2 Multiplier 3-152
MC10186 Hex "D" Master-Slave Flip-Flop/with Reset 3-158
MC10188 Hex Buffer with Enable 3-160
MC10189 Hex Inverter with Enable 3-162
MC10190 Quad MST to MECL 10,000 Translator 3-164
MC10191
Hex MECL 10,000 to MST Translator 3-167
MC10192 Quad Bus Driver 3-170
MC10194 Dual Simultaneous Bus Transceiver 3-172
MC10195 Hex Inverter/Buffer 3-176
MC10197 Hex "AND" Gate 3-178
MC10198 Monostable Multivibrator 3-180
MC10210 Dual 3-Input 3-Output "OR" Gate 3-187MC10211Dual 3-Input 3-Output "NOR" Gate3-189
MC10212 High-Speed Dual 3-Input 3-Output OR/NOR Gate 3-191
MC10216 High-Speed Triple Line Receiver 3-193
MC10231 High-Speed Dual Type D Master-Slave Flip-Flop 3-195
MC10287 High-Speed 2×1 Array Multiplier Block 3-197
MC10900 MECL-LSI 8-Bit Parity ALU Slice 6-3
MC10901 MECL-LSI 8×8-Bit Multiplier 6-14
MC10902 MECL-LSI 8-Bit Binary/BCD ALU Slice 6-22
MC10904 8-Bit Micro Code Sequencer Slice 6-32
MC10905 Error Detect and Correct Circuit 6-41
MC12000 Digital Mixer/Translator 7-43
MC12002/MC12502 Analog Mixer 7-54
MC12009/MC12509/
MC12011/MC12511/
MC12013/MC12513 Two-Modulus Prescalers 7-60
MC12014/MC12514 Counter Control Logic 7-72
MC12015/MC12016/
MC12017Two-Modulus Prescalers7-86

DEVICE INDEX (continued)

Device Number

Function

PageMC12018MC12019
Low-Power Two-Modulus $\div 128 / \div 129,520 \mathrm{MHz}$ 7-87
Low-Power Two-Modulus $\div 20 / \div 21,225 \mathrm{MHz}$ 7-88
Low-Power Two-Modulus $\div 128 / \div 129,1.0 \mathrm{GHz}$ 7-89
Low-Power $\div 64$ Prescaler, 225 MHz , 3.2 to 5.5 VCC 7-90
Phase-Frequency Detector 7-91
MC12061/MC12561 Crystal Oscillator 7-95
MC1 2071High-Speed Prescaler7-101
MC12073 Low-Power $\div 64$ Prescaler, 1.1 GHz 7-105
MC12074 Low-Power $\div 256$ Prescaler, 1.1 GHz 7-106
MC12090 UHF Prescaler ($\div 2$), 750 MHz 7-107
MCA2500ECL
MCM10139
2500ECL Macrocell Array 6-60
32×8-Bit Programmable Read-Only Memory 5-3
8×2 Multiport Register File (RAM) 5-8
MCM10143
256×1-Bit Random Access Memory 5-12
64-Bit Register File (RAM) 5-16
MCM10145 MCM10145
1024×1-Bit Random Access Memory 5-20
MCM10146
5-24
MCM10147 128-Bit Random Access Memory
5-28
5-28
1024-Bit Programmable Read-Only Memory
1024-Bit Programmable Read-Only Memory
5-32
5-32
256×1-Bit Random Access Memory
256×1-Bit Random Access Memory
MCM10152
MCM10415-15/MCM10415-205-36
MCM10422-10/MCM10422-15MCM10470-15/MCM10470-25
MCM10474-15/MCM10474-25MC1 2022MC1 2023MC12040/MC12540$1024 \times 1$-Bit Random Access Memory
256×4-Bit Random Access Memory 5-39
4096×1-Bit Random Access Memory 5-43
1024×4-Bit Random Access Memory 5-47

GENERAL INFORMATION SECTION 1 - HIGH-SPEED LOGICS

High speed logic is used whenever improved system performance would increase a product's market value. For a given system design, high-speed logic is the most direct way to improve system performance and emittercoupled logic (ECL) is today's fastest form of digital logic. Emitter-coupled logic offers both the logic speed and logic features to meet the market demands for higher performance systems.

MECL PRODUCTS

Motorola introduced the original monolithic emittercoupled logic family with MECL I (1962) and followed this with MECL II (1966). These two families are now obsolete and have given way to the MECL III (MC1600 series), MECL 10K, PLL (MC12000 series) and the new MECL. 10KH families.

Chronologically the third family introduced, MECL III (1968) is a higher power, higher speed logic. Typical 1 ns edge speeds and propagation delays along with greater than 500 MHz flip-flop toggle rates, make MECL III useful for high-speed test and communications equipment. Also, this family is used in the high-speed sections and critical timing delays of larger systems. For more general purpose applications, however, trends in large highspeed systems showed the need for an easy-to-use logic family with propagation delays on the order of 2 ns . To match this requirement, the MECL 10,000 Series was introduced in 1971.

An important feature of MECL 10 K is its compatibility with MECL III to facilitate using both families in the same system. A second important feature is its significant power economy - MECL 10K gates use less than onehalf the power of MECL: III. Finally, low gate power and advanced circuit design techniques have permitted a new level of complexity for MECL 10 K circuits. For example, the complexity of the MC10901 8X8-Bit Multiplier Function compares favorably to that of any bipolar integrated circuit on the market.
Motorola introduced the MECL 10KH product family in 1981. This latest MECL family features 100% improvements in propagation delay and clock speeds while maintaining power supply currents equal to MECL 10K. MECL 10 KH is voltage compensated allowing guaranteed dc and switching parameters over a $\pm 5 \%$ power supply range. Noise margins have been improved by 75% over the MECL 10 K series.

Compatibility with MECL 10 K and MECL III is a key element in allowing users to enhance existing systems by increasing the speed in critical timing areas. Also, many MECL 10 KH devices are pin out/functional duplications of the MECL 10 K series devices. The emphasis of this new family will be placed on more powerful logic functions having more complexity and greater performance. With 1.0 ns propagation delays and 25 mW per gate, MECL 10 KH features the best speed-power product of any ECL logic family available today.

MECL FAMILY COMPARISONS

Feature	MECL 10KH	MECL 10K		MECL III
		10,100 Series 10,500 Series	10,200 Series 10,600 Series	
1. Gate Propagation Delay 2. Output Edge Speed 3. Flip-Flop Toggle Speed 4. Gate Power 5. Speed Power Product	1.0 ns 1.5 ns 250 MHz min 25 mW 25 pJ	2 ns 3.5 ns 125 MHz min 25 mW 50 pJ	1.5 ns 2.5 ns 200 MHz min 25 mW 37 pJ	$\begin{gathered} 1 \mathrm{~ns} \\ 1 \mathrm{~ns} \\ 300-500 \mathrm{MHz} \mathrm{~min} \\ 60 \mathrm{~mW} \\ 60 \mathrm{pJ} \\ \hline \end{gathered}$

FIGURE 1a - GENERAL CHARACTERISTICS

Ambient Temperature Range	MECL 10KH	MECL 10K	MECL III	PLL
0° to $75^{\circ} \mathrm{C}$	MC10H100 Series		MC1697P	MC12000 Series
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		MC10100 Series MC10200 Series	MC1600 Series	MC12000 Series
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-	MC10500 Series MC10600 Series MCM10500 Series	MC1648M	MC12500 Series

MECL IN PERSPECTIVE

In evaluating any logic line, speed and power requirements are the obvious primary considerations. Figure 1 provides the basic parameters of the MECL 10KH, MECL 10K, and MECL III families. But these provide only the start of any comparative analysis, as there are a number of other important features that make MECL highly desirable for system implementation. Among these:

Complementary Outputs cause a function and its complement to appear simultaneously at the device outputs, without the use of external inverters. It reduces package count by eliminating the need for associated invert functions and, at the same time, cuts system power requirements and reduces timing differential problems arising from the time delays introduced by inverters.
High Input Impedance and Low Output Impedance permit large fan out and versatile drive characteristics.

Insignificant Power Supply Noise Generation, due to differential amplifier design which eliminates current spikes even during signal transition period.

Nearly Constant Power Supply Current Drain simplifies power-supply design and reduces costs.
Low Cross-Talk due to low-current switching in signal path and small (typically 850 mV) voltage swing, and to relatively long rise and fall times.
Wide Variety of Functions, including complex functions facilitated by low power dissipation (particularly in MECL 10KH and MECL 10 K series). A basic MECL 10K gate consumes less than 8 mW in on-chip power in some complex functions.
Wide Performance Flexibility due to differential amplifier design which permits MECL circuits to be used as linear as well as digital circuits.

Transmission Line Drive Capability is afforded by the open emitter outputs of MECL devices. No "Line Drivers" are listed in MECL families, because every device is a line driver.
Wire-ORing reduces the number of logic devices required in a design by producing additional OR gate functions with only an interconnection.
Twisted Pair Drive Capability permits MECL circuits to drive twisted-pair transmission lines as long as 1000 feet.

Wire-Wrap Capability is possible with MECL 10KH and the MECL 10 K family because of the slow rise and fall time characteristic of the circuits.

Open Emitter-Follower Outputs are used for MECL outputs to simplify signal line drive. The outputs match any line impedance and the absence of internal pulldown resistors saves power.

Input Pulldown Resistors of approximately $50 \mathrm{k} \Omega$ permit unused inputs to remain unconnected for easier circuit board layout.

MECL APPLICATIONS

Motorola's MECL product lines are designed for a wide range of systems needs. Within the computer market, MECL 10 K is used in systems ranging from special purpose peripheral controllers to large mainframe computers. Big growth areas in this market include disk and communication channel controllers for larger systems and high performance minicomputers.

The industrial market primarily uses MECL for high performance test systems such as IC or PC board testers.

However, the high bandwidths of MECL 10KH, MECL 10K, MECL III, and MC12,000 are required for many frequency synthesizer systems using high speed phase lock loop networks. MECL will continue to grow in the industrial market through complex medical electronic products and high performance process control systems.

MECL 10K and MECL III have been accepted within the Federal market for numerous signal processors and navigation systems. Full military temperature range MECL 10K is offered in the MC10500 and MC10600 Series, and in the PLL family as the MC12500 Series.

BASIC CONSIDERATIONS FOR HIGH-SPEED LOGIC DESIGN

High-speed operation involves only four considerations that differ significantly from operation at low and medium speeds:

1. Time delays through interconnect wiring, which may have been ignored in medium-speed systems, become highly important at state-of-the-art speeds.
2. The possibility of distorted waveforms due to reflections on signal lines increases with edge speed.
3. The possibility of "crosstalk" between adjacent signal leads is proportionately increased in high-speed systems.
4. Electrical noise generation and pick-up are more detrimental at higher speeds.

In general, these four characteristics are speed- and frequency-dependent, and are virtually independent of the type of logic employed. The merit of a particular logic family is measured by how well it compensates for these deleterious effects in system applications.

The interconnect-wiring time delays can be reduced only by reducing the length of the interconnecting lines. At logic speeds of two nanoseconds, an equivalent "gate delay" is introduced by every foot of interconnecting wiring. Obviously, for functions interconnected within a single monolithic chip, the time delays of signals travelling from one function to another are insignificant. But for a great many externally interconnected parts, this can soon add up to an appreciable delay time. Hence, the greater the number of functions per chip, the higher the system speed. MECL circuits, particularly those of the MECL 10 K and MECL 10 KH Series are designed with a propensity toward complex functions to enhance overall system speed.

Waveform distortion due to line reflections also becomes troublesome principally at state-of-the-art speeds. At slow and medium speeds, reflections on interconnecting lines are not usually a serious problem. At higher speeds, however, line lengths can approach the wavelength of the signal and improperly terminated lines can result in reflections that will cause false triggering (see Figure 2). The solution, as in RF technology, is to employ "transmission-line" practices and properly terminate each signal line with its characteristic impedance at the end of its run. The low-impedance, emitter-follower outputs of MECL circuits facilitate transmission-line practices without upsetting the voltage levels of the system.

The increased affinity for crosstalk in high-speed circuits is the result of very steep leading and trailing edges (fast rise and fall times) of the high-speed signal. These steep wavefronts are rich in harmonics that couple readily to adjacent circuits. In the design of MECL 10 K and

MECL 10KH, the rise and fall times have been deliberately slowed. This reduces the affinity for crosstalk without compromising other important performance parameters.

From the above, it is evident that the MECL logic line is not simply capable of operating at high speed, but has been specifically designed to reduce the problems that are normally associated with high-speed operation.

CIRCUIT DESCRIPTION

The typical MECL 10K circuit, Figure 3, consists of a differential-amplifier input circuit, a temperature and voltage compensated bias network, and emitter-follower outputs to restore dc levels and provide buffering for transmission line driving. High fan-out operation is possible be-

FIGURE 2a-UNTERMINATED
TRANSMISSION LINE
(No Ground Plane Used)

FIGURE 2b - PROPERLY TERMINATED
TRANSMISSION LINE
(Ground Plane Added)

FIGURE 3 - MECL 10K GATE STRUCTURE AND SWITCHING BEHAVIOR
cause of the high input impedance of the differential amplifier input and the low output impedance of the emitter follower outputs. Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides for simultaneous output of both the OR function and its complement, the NOR function. The design of the MECL 10KH gate is unchanged, with two exceptions. The bias network has been replaced with a voltage regulator, and the differential amplifier source resistor has been replaced with a constant current source. (See section 2 for additional MECL 10KH information.)
Power-Supply Connections - Any of the power supply levels, $\mathrm{V}_{\mathrm{TT}}, \mathrm{V}_{\mathrm{CC}}$, or V_{EE} may be used as ground; however, the use of the $V_{C C}$ node as ground results in best noise immunity. In such a case: $\mathrm{V}_{\mathrm{CC}}=0, \mathrm{~V}_{\mathrm{TT}}$ $=-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$.
System Logic Specifications - The output logic swing of 0.85 V , as shown by the typical transfer characteristics curve, varies from a LOW state of $\mathrm{V}_{\mathrm{OL}}=-1.75 \mathrm{~V}$ to a HIGH state of $\mathrm{V}_{\mathrm{OH}}=-0.9 \mathrm{~V}$ with respect to ground.
Positive logic is used when reference is made to logical " 0 's" or " 1 's." Then

$$
\begin{aligned}
& " 0^{\prime \prime}=-1.75 \mathrm{~V}=\mathrm{LOW} \quad \text { typical } \\
& " 1 \prime=-0.9 \mathrm{~V}=\text { HIGH }
\end{aligned}
$$

Circuit Operation - Beginning with all logic inputs LOW (nominal -1.75 V), assume that Q 1 through Q 4 are cut off because their P-N base-emitter junctions are not
conducting, and the forward-biased 05 is conducting. Under these conditions, with the base of 05 held at -1.29 V by the V_{BB} network, its emitter will be one diode drop $(0.8 \mathrm{~V}$) more negative than its base, or -2.09 V . (The 0.8 V differential is a characteristic of this P-N junction.) The base-to-emitter differential across $\mathbf{Q 1}$ - $\mathbf{Q 4}$ is then the difference between the common emitter voltage (-2.09 V) and the LOW logic level (-1.75 V) or 0.34 V . This is less than the threshold voltage of Q1 through Q4 so that these transistors will remain cut off.
When any one (or all) of the logic inputs are shifted upward from the -1.75 V LOW state to the -0.9 V HIGH state, the base voltage of that transistor increases beyond the threshold point and the transistor turns on. When this happens, the voltage at the common-emitter point rises from -2.09 V to -1.7 (one diode drop below the -0.9 V base voltage of the input transistor), and since the base voltage of the fixed-bias transistor (05) is held at -1.29 V , the base-emitter voltage 05 cannot sustain conduction. Hence, this transistor is cut off.
This action is reversible, so that when the input signal(s) return to the LOW state, $\mathrm{Q} 1-\mathrm{Q4}$ are again turned off and Q5 again becomes forward biased. The collector voltages resulting from the switching action of Q 1 - Q 4 and 05 are transferred through the output emitterfollower to the output terminal. Note that the differential action of the switching transistors (one section being off when the other is on) furnishes simultaneous complementary signals at the output. This action also maintains constant power supply current drain.

DEFINITIONS OF LETTER SYMBOLS AND ABBREVIATIONS

Current:	
ICC	Total power supply current drawn from the positive supply by a MECL unit under test.
${ }^{\text {ICBO }}$	Leakage current from input transistor on MECL devices without pulldown resistors when test voltage is applied.
${ }^{1} \mathrm{CCH}$	Current drain from VCC power supply with all inputs at logic HIGH level.
${ }^{\text {I CCL }}$	Current drain from V_{CC} power supply with all inputs at logic LOW level.
${ }^{\prime} \mathrm{E}$	Total power supply current drawn from a MECL test unit by the negative power supply.
I^{\prime}	Forward diode current drawn from an input of a saturated logic-to-MECL translator when that input is at ground potential.
1 in	Current into the input of the test unit when a maximum logic HIGH ($\mathrm{V}_{\mathrm{IH} \text { max }}$) is applied at that input.
IINH	HIGH level input current into a node with a specified HIGH level ($\mathrm{V}_{\text {IH max }}$) logic voltage applied to that node. (Same as lin for positive logic.)
IINL	LOW level input current, into a node with a specified LOW level (V_{IL} min) logic voltage applied to that node.
${ }^{\text {L }}$	Load current that is drawn from a MECL circuit output when measuring the output HIGH level voltage.

$\mathrm{IOH} \quad$ HIGH level output current: the current flowing into the output, at a specified HIGH level output voltage.
IOL LOW level output current: the current flowing
IOL LOW level output current: the current flowing put voltage.
IOS Output short circuit current.
lout
$I_{R} \quad$ Reverse current drawn from a transistor input of a test unit when V_{EE} is applied at that input.
ISC Short-circuit current drawn from a translator saturating output when that output is at ground potential.

Voltage:

$V_{B B} \quad$ Reference bias supply voltage.
$V_{B E} \quad$ Base-to-emitter voltage drop of a transistor at specified collector and base currents.
$V_{C B} \quad$ Collector-to-base voltage drop of a transistor at specified collector and base currents.
$V_{C C} \quad$ General term for the most positive power supply voltage to a MECL device (usually ground, except for translator and interface circuits).
$V_{\text {CC1 }} \quad$ Most positive power supply voltage (output devices). (Usually ground for MECL devices.)
Output current (from a device or circuit, under such conditions mentioned in context).

Voltage (cont.):
$V_{C C 2} \quad$ Most positive power supply voltage (current switches and bias driver). (Usually ground for MECL devices.)
VEE Most negative power supply voltage for a circuit (usually -5.2 V for MECL devices).
$V_{F} \quad$ Input voltage for measuring I_{F} on TTL interface circuits.
$V_{I H} \quad$ Input logic HIGH voltage level (nominal value).
$V_{\text {IH max }}$ Maximum HIGH level input voltage: The most positive (least negative) value of high-level input voltage, for which operation of the logic element within specification limits is guaranteed.
$V_{\text {IHA }} \quad$ Input logic HIGH threshold voltage level.
$V_{\text {IHA min }}$ Minimum input logic HIGH level (threshold) voltage for which performance is specified.
V_{IH} min Minimum HIGH level input voltage: The least positive (most negative) value of HIGH level input voltage for which operation of the logic element within specification limits is guaranteed.
$V_{\mathrm{IL}} \quad$ Input logic LOW voltage level (nominal value).
$V_{\text {IL max }}$ Maximum LOW level input voltage: The most positive (least negative) value of LOW level input voltage for which operation of the logic element within specification limits is guaranteed.
VILA Input logic LOW threshold voltage level.
VILA max Maximum input logic LOW level (threshoid) voltage for which performance is specified.
V_{IL} min Minimum LOW level input voltage: The least positive (most negative) value of LOW level input voltage for which operation of the logic element within specification limits is guaranteed.
$V_{\text {in }} \quad$ Input voltage (to a circuit or device).
$V_{\text {max }} \quad$ Maximum (most positive) supply voltage, permitted under a specified set of conditions.
$\mathrm{V}_{\mathrm{OH}} \quad$ Output logic HIGH voltage level: The voltage level at an output terminal for a specified output current, with the specified conditions applied to establish a HIGH level at the output.
VOHA Output logic HIGH threshold voltage level.
$V_{\text {OHA min }}$ Minimum output HIGH threshold voltage level for which performance is specified.
$\mathrm{V}_{\mathrm{OH} \text { max }}$ Maximum output HIGH or high-level voltage for given inputs.
$\mathrm{V}_{\mathrm{OH} \text { min }}$ Minimum output HIGH or high-level voltage for given inputs.
$\mathrm{V}_{\mathrm{OL}} \quad$ Output logic LOW voltage level: The voltage level at the output terminal for a specified output current, with the specified conditions applied to establish a LOW level at the output.
VOLA Output logic LOW threshold voltage level.
$V_{\text {OLA max }}$ Maximum output LOW threshold voltage level for which performance is specified.

VOL max Maximum output LOW level voltage for given inputs.
VOL min Minimum output LOW level voltage for given inputs.
$V_{T T} \quad$ Line load-resistor terminating voltage for outputs from a MECL device.
VOLS1 Output logic LOW level on MECL 10,000 line receiver devices with all inputs at V_{EE} voltage level.
VOLS2 Output logic LOW level on MECL 10,000 line receiver devices with all inputs open.

Time Parameters:

t+ Waveform rise time (LOW to HIGH), 10\% to 90%, or 20% to 80%, as specified.
t- Waveform fall time (HIGH to LOW), 90% to 10%, or 80% to 20%, as specified.
$t_{r} \quad$ Same as $t+$
$\mathrm{t}_{\mathrm{f}} \quad$ Same as t -
$\mathbf{t + -} \quad$ Propagation Delay, see Figure 9.
$t-+\quad$ Propagation Delay, see Figure 9.
$t_{\text {pd }}$ Propagation delay, input to output from the 50% point of the input waveform at pin \times
${ }^{t_{\mathbf{x}} \pm \mathbf{y}} \quad$ (falling edge noted by - or rising edge noted by +) to the 50% point of the output waveform at pin y (falling edge noted by - or rising edge noted by +). (Cf Figure 9.)
$\mathrm{t}_{\mathbf{x}+} \quad$ Output waveform rise time as measured from 10% to 90% or 20% to 80% points on waveform (whichever is specified) at pin x with input conditions as specified.
$\mathbf{t}_{\mathbf{x}} \quad$ Output waveform fall time as measured from 90% to 10% or 80% to 20% points on waveform (whichever is specified) at pin x, with input conditions as specified.
fog Toggle frequency of a flip-flop or counter device.
$\mathrm{f}_{\text {shift }} \quad$ Shift rate for a shift register.

Read Mode (Memories)

tACS Chip Select Access Time
$t_{\text {RCS }} \quad$ Chip Select Recovery Time
taA Address Access Time

Write Mode (Memories)

tw Write Pulse Width
tWSD Data Setup Time Prior to Write
tWHD Data Hold Time After Write
tWSA Address setup time prior to write
tWHA Address hold time after write
tWSCS Chip select setup time prior to write
tWHCS Chip select hold time after write
tWS Write disable time
tWR Write recovery time

Temperature:

$T_{\text {stg }} \quad$ Maximum temperature at which device may be stored without damage or performance degradation.
TJ Junction (or die) temperature of an integrated circuit device.
$T_{A} \quad$ Ambient (environment) temperature existing in the immediate vicinity of an integrated circuit device package.

JJA \quad Thermal resistance of an IC package, junction to ambient.
JJC Thermal resistance of an IC package, junction 2 to case.
Ifpm Linear feet per minute.
${ }^{\theta}$ CA Thermal resistance of an IC package, case to ambient.

Miscellaneous:
$\mathrm{e}_{\mathrm{g}} \quad$ Signal generator inputs to a test circuit.
$T P_{\text {in }} \quad$ Test point at input of unit under test.
TP ${ }_{\text {out }}$ Test point at output of unit under test.
D.U.T. Device under test.
$\mathrm{C}_{\mathrm{in}} \quad$ Input capacitance.
Cout Output capacitance.
$Z_{\text {out }} \quad$ Output impedance.
PD The total dc power applied to a device, not including any power delivered from the device to a load.
$R_{L} \quad$ Load Resistance.
$R_{T} \quad$ Terminating (load) resistor.
$R_{p} \quad$ An input pull-down resistor (i.e., connected to the most negative voltage).
P.U.T. Pin under test.

GENERAL CHARACTERISTICS AND SPECIFICATIONS

(See pages 1-5 through 1-7 for definitions of symbols and abbreviations.)

In subsequent sections of this Data Book, the important MECL parameters are identified and characterized, and complete data provided for each of the functions. To make this data as useful as possible, and to avoid a great deal of repetition, the data that is common to all functional blocks in a line is not repeated on each individual sheet. Rather, these common characteristics, as well as the application information that applies to each family, are discussed in this section.

In general, the common characteristics of major importance are:

Maximum Ratings, including both dc and ac characteristics and temperature limits;

Transfer Characteristics, which define logic levels and switching thresholds;

DC Parameters, such as output levels, threshold levels, and forcing functions.

AC Parameters, such as propagation delays, rise and fall times and other time dependent characteristics.
In addition, this section will discuss general layout and design guides that will help the designer in building and testing systems with MECL circuits.

LETTER SYMBOLS AND ABBREVIATIONS

Throughout this section, and in the subsequent data sheets, letter symbols and abbreviations will be used in discussing electrical characteristics and specifications. The symbols used in this book, and their definitions, are listed on the preceding pages.

MAXIMUM RATINGS

The limit parameters beyond which the life of the devices may be impaired are given in Figure 4a. In addition, Table 4b provides certain limits which, if exceeded, will not damage the devices, but could degrade the performance below that of the guaranteed specifications.

FIGURE 4a - LIMITS BEYOND WHICH DEVICE LIFE MAY BE IMPAIRED

Characteristic	Symbol	Unit	MECL 10KH	MECL 10K	MECL III
Power Supply	$V_{E E}$	Vdc	-8.0 to 0	-8.0 to 0	-8.0 to 0
Input Voltage ($\mathrm{V}_{\mathrm{CC}}=0$)	$V_{\text {in }}$	Vdc	0 to V_{EE}	0 to V_{EE}	0 to V_{EE}
Output Source Current Continuous	lout	mAdc	50	50	40
Output Source Current Surge	lout	mAdc	100	100	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	${ }^{\circ} \mathrm{C}$	-55 to +150	-55 to +150	-55 to +150
Junction Temperature Ceramic Package (1)	TJ	${ }^{\circ} \mathrm{C}$	165	165	165 (2)
Junction Temperature Plastic Package	TJ	${ }^{\circ} \mathrm{C}$	140	140	140

NOTES: 1. Maximum T_{J} may be exceeded $\left(\leqslant 250^{\circ} \mathrm{C}\right.$) for short periods of time ($\leqslant 240$ hours) without significant reduction in device life.
2. Except MC1666-MC1670 which have maximum junction temperatures $=145^{\circ} \mathrm{C}$.
3. For long term ($\geqslant 10 \mathrm{yrs}$.) max T_{J} of $110^{\circ} \mathrm{C}$ required. Max T_{J} may be exceeded $\left(\leqslant 175^{\circ} \mathrm{C}\right.$) for short periods of time $(\leqslant 240$ hours) without significant reduction in device life.

FIGURE 4b - LIMITS BEYOND WHICH PERFORMANCE MAY BE DEGRADED

Characteristics	Symbol	Unit	MECL 10KH	MECL 10 K	MECL III
Operating Temperature Range Commercial (1)	T_{A}	${ }^{\circ} \mathrm{C}$	O to +75	-30 to +85	-30 to +85
Operating Temperature Range MIL (1)	T_{A}	${ }^{\circ} \mathrm{C}$	-	-55 to +125	$\begin{aligned} & -55 \text { to }+125 \\ & \text { (MC1648M) } \end{aligned}$
Supply Voltage ($\mathrm{V}_{\mathrm{CC}}=0$)	$\mathrm{V}_{\text {EE }}$	Vdc	-4.94 to -5.46 (5)	-4.68 to -5.72 (2)	-4.68 to -5.72(2)
Supply Voltage ($\mathrm{V}_{\mathrm{CC}}=0$)	$\mathrm{V}_{\text {TT }}$	Vdc	-	-	-
Output Drive Commercial	-	Ω	50Ω to -2.0 Vdc	50Ω to -2.0 Vdc	50Ω to -2.0 Vdc 4 (
Output Drive MIL	-	Ω	-	100Ω to -2.0 Vdc	-
Maximum Clock Input Rise and Fall Time (20% to 80%)	$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}$	ns	-	-	(3)

NOTES: 1. With airflow $\geqslant 500$ lfpm.
2. Functionality only. Data sheet limits are specified for $-5.2 \mathrm{~V} \pm 0.010 \mathrm{~V}$.
3. 10 ns maximum limit for MC1690, MC1697, and MC1699.
4. Except MC1648 which has an internal output pulldown resistor.
5. Functional and Data sheet limits.

b) MECL 10 KH

MECL TRANSFER CURVES

For MECL logic gates, the dual (complementary) outputs must be represented by two transfer curves: one to describe the OR switching action and one to describe the NOR switching action. Typical transfer curves and associated data for the MECL $10 \mathrm{~K} / 10 \mathrm{KH}$ family are shown in Figure 5.a and 5.b respectively.
It is not necessary to measure transfer curves at all points of the curves. To guarantee correct operation it is sufficient merely to measure two sets of $\mathrm{min} / \mathrm{max}$ logic level parameters.

The first set is obtained for 10 K by applying test voltages, $V_{\text {IL }}$ min and $V_{\text {IH }} \max$ (sequentially) to the gate inputs, and measuring the OR and NOR output levels to make sure they are between $V_{O L}$ max and $V_{O L}$ min, and $V_{O H}$ max and $V_{O H}$ min specifications.
The second set of logic level parameters relates to the switching thresholds. This set of data is distinguished by an " A " in symbol subscripts. A test voltage, VILA max, is applied to the gate and the NOR and OR outputs are measured to see that they are above the $\mathrm{V}_{\mathrm{OHA}}$ min and below the VOLA max levels, respectively. Similar checks are made using the test input voltage $\mathrm{V}_{\text {IHA }}$ min.
The result of these specifications insures that:
a) The switching threshold ($\approx V_{B B}$) falls within the darkest rectangle; i.e. switching does not begin outside this rectangle;
b) Quiescent logic levels fall in the lightest shaded ranges;
c) Guaranteed noise immunity is met.

As shown in Figure 6, MECL 10K outputs rise with increasing ambient temperature. All circuits in each
family have the same worst-case output level specifications regardless of power dissipation or junction temperature differences to reduce loss of noise margin due to thermal differences.
All of these specifications assume -5.2 V power supply operation. Operation at other power-supply voltages is possible, but will result in further transfer curve changes. Figure 7 gives rate of change of output voltages as a function of power supply.

FIGURE 6 - TYPICAL TRANSFER CHARACTERISTICS AS A FUNCTION OF TEMPERATURE (MECL 10K)

INPUT VOLTAGE (VOLTS)

FIGURE 7 - TYPICAL LEVEL CHANGE RATES

Voltage	MECL 10KH	MECL 10K*	MECL III
$\Delta \mathrm{V}_{\mathrm{OH}} / \Delta \mathrm{V}_{\mathrm{EE}}$	0.008	0.016	
$\Delta \mathrm{~V}_{\mathrm{OL}} / \Delta \mathrm{V}_{\mathrm{EE}}$	0.020	0.250	0.270
$\Delta \mathrm{~V}_{\mathrm{BB}} / \Delta \mathrm{V}_{\mathrm{EE}}$	0.010	0.148	0.140

* and subsets: 10,200; 10,500; 10,600.

NOISE MARGIN

"Noise margin" is a measure of logic circuit's resistance to undesired switching. MECL noise margin is defined in terms of the specification points surrounding the switching threshold. The critical parameters of interest here are those designated with the " A " subscript (VOHA min, VOLA max, VIHA min, VILA max) in the transfer characteristic curves. MECL 10KH is specified and tested with V_{OH} min equal V_{OH} min. V_{OL} max equal $V_{O L}$ max, $V_{\text {IHA }}$ min equal $V_{I H}$ min and $V_{\text {ILA }}$ max equal $V_{\text {IL }}$ max. Guaranteed noise margin (NM) is defined as follows:

$$
\begin{aligned}
& \text { NM } M_{\text {IGH LEVEL }}=V_{O H A} \text { min }-V_{\text {IHA }} \text { min } \\
& \text { NM }
\end{aligned}
$$

To see how noise margin is computed, assume a MECL gate drives a similar MECL gate, Figure 8.

At a gate input (point B) equal to $V_{\text {ILA max }}$ MECL gate \#2 can begin to enter the shaded transition region.
This is a "worst case" condition, since the VOLA max specification point guarantees that no device can enter the transition region before an input equal to VILA max is reached. Clearly then, VILA max is one critical point for noise margin computation, since it is the edge of the transition region.

To find the other critical voltage, consider the output from MECL gate \#1 (point A). What is the most positive value possible for this voltage (considering worst case specifications)? From Figure 8 it can be observed that the $V_{\text {OLA max }}$ specification insures that the LOW state OR output from gate \#1 can be no greater than VOLA max-
Note that VOLA max is more negative than VILA max Thus, with V OLA max at the input to gate \#2, the transition region is not yet reached. (The input voltage to gate \#2 is still to the left of VILA max on the transfer curve.)

In order to ever run the chance of switching gate \#2, we would need an additional voltage, to move the input
from VOLA max to ${ }_{\text {ILA }}$ max. This constitutes the "safety factor" known as noise margin. It can be calculated as the magnitude of the difference between the two specification voltages, or for the MECL 10K levels shown:

$$
\begin{aligned}
\text { NMLOW } & -V_{\text {ILA }} \max -V_{\text {OLA }} \max \\
& --1.475 \mathrm{~V}-(-1.630 \mathrm{~V}) \\
& -155 \mathrm{mV} .
\end{aligned}
$$

Similarly, for the HIGH state:
NM $_{\text {HIGH }}-V_{\text {OHA min }}-V_{\text {IHA }}$ min

$$
\begin{aligned}
& --0.980 \mathrm{~V}-(-1.105 \mathrm{~V}) \\
& -125 \mathrm{mV}
\end{aligned}
$$

Analogous results are obtained when considering the "NOR" transfer data.
Note that these noise margins are absolute worst case conditions. The lessor of the two noise margins is that for the HIGH state, 125 mV . This then, constitutes the guaranteed margin against signal undershoot, and power or thermal disturbances.

As shown in the table, typical noise margins are usually better than guaranteed - by about 75 mV . For MECL 10KH the "noise margin" is 150 mV for NM low and NM high. (See Section 3 for details.)

Noise margin is a dc specification that can be calculated, since it is defined by specification points tabulated on MECL data sheets. However, by itself, this specification does not give a complete picture regarding the noise immunity of a system built with a particular set of circuits. Overall system noise immunity involves not only noisemargin specifications, but also other circuit-related factors that determine how difficult it is to apply a noise signal of sufficient magnitude and duration to cause the circuit to propagate a false logic state. In general, then, noise immunity involves line impedances, circuit output impedances, and propagation delay in addition to noisemargin specifications. This subject is discussed in greater detail in Application Note AN-592.

*VOHA min $=V_{O H}$ min, VOLA max $=$
VOL max, $V_{I H A} \min =V_{I H} \min$ and
$V_{\text {ILA }}$ max $=V_{\text {IL }}$ max for MECL 10 KH .
Noise Margin Computations

Family	Guaranteed Worst-Case dc Noise Margin (V)	Typical dc Noise Margin (V)
MECL 10kH	0.150	0.270
MECL 10k	0.125	0.210
MECL III	0.115	0.200

AC OR SWITCHING PARAMETERS

Time-dependent specifications are those that define the effects of the circuit on a specified input signal, as it travels through the circuit. They include the time delay involved in changing the output level from one logic state to another. In addition, they include the time required for the output of a circuit to respond to the input signal,
designated as propagation delay, MECL waveform and propagation delay terminologies are depicted in Figure 9. Specific rise, fall, and propagation delay times are given on the data sheet for each specific functional block, but like the transfer characteristics, ac parameters are temperature and voltage dependent. Typical variations for MECL 10K are given in the curves of Figure 10.

FIGURE 9 - TYPICAL LOGIC WAVEFORMS

MECL WAVEFORM TERMINOLOGY

MECL III Rise and Fall Times

$t-=t_{f} \quad t+=t_{r}$
MECL 10kH Rise and Fall Times

MECL Propagation Delay

FIGURE 10a - TYPICAL PROPAGATION DELAY \mathbf{t} - - versus Vee And temperature (MECL 10K)

FIGURE 10c - TYPICAL FALL TIME (90\% to 10\%) versus TEMPERATURE AND SUPPLY VOLTAGE (MECL 10K)

FIGURE 10b - TYPICAL PROPAGATION DELAY $\mathbf{t}+\boldsymbol{+}$ versus Vee AND TEMPERATURE (MECL 10K)

FIGURE 10d - TYPICAL RISE TIME (10\% to 90\%) versus TEMPERATURE AND SUPPLY VOLTAGE (MECL 10K)

SETUP AND HOLD TIMES

Setup and hold times are two ac parameters which can easily be confused unless clearly defined. For MECL logic devices, $\mathrm{t}_{\text {setup }}$ is the minimum time $(50 \%-50 \%)$ before the positive transition of the clock pulse (C) that information must be present at the Data input (D) to insure proper operation of the device. The thold is defined similarly as the minimum time after the positive transition of the clock pulse (C) that the information must remain unchanged at the Data input (D) to insure proper operation. Setup and hold waveforms for logic devices are shown in Figure 11.

FIGURE 11 - SETUP AND HOLD WAVEFORMS FOR MECL LOGIC DEVICES

TESTING MECL 10KH, MECL 10K and MECL III

To obtain results correlating with Motorola circuit specifications certain test techniques must be used. A schematic of a typical gate test circuit is shown in

Figure 12. This test circuit is the standard ac test configuration for most MECL devices. (Exceptions are shown with the device specification.)

A solid ground plane is used in the test setup, and capacitors bypass $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC} 2}$, and V_{EE} pins to ground. All power leads and signal leads are kept as short as possible.

The sampling scope interface runs directly to the 50ohm inputs of Channel A and B via 50 -ohm coaxial cable. Equal-length coaxial cables must be used between the test set and the A and B scope inputs. A 50-ohm coax cable such as RG58/U or RG188A/U, is recommended.
Interconnect fittings should be 50 -ohm GR, BNC, Sealectro Conhex, or equivalent. Wire length should be < $1 / 4$ inch from $T P_{\text {in }}$ to input pin and $T P_{\text {out }}$ to output pin.
The pulse generator must be capable of 2.0 ns rise and fall times for MECL 10 K and 1.5 ns for MECL 10 KH and MECL III. In addition, the generator voltage must have an offset to give MECL signal swings of $\approx \pm 400 \mathrm{mV}$ about a threshold of $\approx+0.7 \mathrm{~V}$ when $\mathrm{V}_{\mathrm{CC}}=+2.0 \mathrm{~V}$ and V_{EE} $=-3.2 \mathrm{~V}$ for ac testing of logic devices.

The power supplies are shifted +2.0 V , so that the device under test has only one resistor value to load into - the precision 50 -ohm input impedance of the sampling oscilloscope. Use of this technique yields a close correlation between Motorola and customer testing. Unused outputs are loaded with a 50 -ohm resistor (100 -ohm for MC105XX devices) to ground. The positive supply (VCC) should be decoupled from the test board by RF type $25 \mu \mathrm{~F}$ capacitors to ground. The $V_{C C}$ pins are bypassed to ground with $0.1 \mu \mathrm{~F}$, as is the V_{EE} pin.
Additional information on testing MECL 10K and understanding data sheets is found in Application Notes AN-579 and AN-701.

FIGURE 12 - MECL LOGIC SWITCHing time test setup

SECTION III - OPERATIONAL DATA

POWER SUPPLY CONSIDERATIONS

MECL circuits are characterized with the $V_{C C}$ point at ground potential and the V_{EE} point at -5.2 V . While this MECL convention is not necessarily mandatory, it does result in maximum noise immunity. This is so because any noise induced on the $\mathrm{V}_{\text {EE }}$ line is applied to the circuit as a common-mode signal which is rejected by the differential action of the MECL input circuit. Noise induced into the $V_{C C}$ line is not cancelled out in this fashion. Hence, a good system ground at the V_{CC} bus is required for best noise immunity. Also, MECL 10KH circuits may be operated with $V_{E E}$ at -4.5 V with a negligible loss of noise immunity.

Power supply regulation which will achieve 10% regulation or better at the device level is recommended. The -5.2 V power supply potential will result in best circuit speed. Other values for $V_{E E}$ may be used. A more negative voltage will increase noise margins at a cost of increased power dissipation. A less negative voltage will have just the opposite effect. (Noise margins and performance specifications of MECL 10KH are unaffected by variations in $V_{E E}$ because of the internal voltage regulation.)
On logic cards, a ground plane or ground bus system should be used. A bus system should be wide enough to prevent significant voltage drops between supply and device and to produce a low source inductance.
Although little power supply noise is generated by MECL logic, power supply bypass capacitors are recommended to handle switching currents caused by stray capacitance and asymmetric circuit loading. A parallel combination of a $1.0 \mu \mathrm{~F}$ and a 100 pF capacitor at the power entrance to the board, and a $0.01 \mu \mathrm{~F}$ low-inductance capacitor between ground and the -5.2 V line every four to six packages, are recommended.

Most MECL 10KH, MECL 10 K and MECL III circuits have two $V_{C C}$ leads. $V_{\text {CC1 }}$ supplies current to the output transistors and V_{CC} is connected to the circuit logic transistors. The separate $V_{C C}$ pins reduce cross-coupling between individual circuits within a package when the outputs are driving heavy loads. Circuits with large drive capability, similar to the MC10110, have two VCC1 pins. All $V_{C C}$ pins should be connected to the ground plane or ground bus as close to the package as possible.

For further discussion of MECL power supply considerations to be made in system designing, see MECL System Design Handbook.

POWER DISSIPATION

The power dissipation of MECL functional blocks is specified on their respective data sheets. This specification does not include power dissipated in the output devices due to output termination. The omission of internal output pulldown resistors permits the use of external terminations designed to yield best system performance. To obtain total operating power dissipation of a particular functional block in a system, the dissipation of the output transistor, under load, must be added to the circuit power dissipation.

The table in Figure 13 lists the power dissipation in the output transistors plus that in the external terminating
resistors, for the more commonly used termination values and circuit configurations. To obtain true package power dissipation, one output-transistor power-dissipation value must be added to the specified package power dissipation for each external termination resistor used in conjunction with that package. To obtain system power dissipation, the stated dissipation in the external terminating resistors must be added as well. Unused outputs draw no power and may be ignored.

FIGURE 13 - AVERAGE POWER DISSIPATION IN OUTPUT CIRCUIT WITH EXTERNAL TERMINATING RESISTORS

Terminating Resistor Value	Output Transistor Power Dissipation (mW)	Terminating Resistor Power Dissipation (mW)
150 ohms to -2.0 Vdc	5.0	4.3
100 ohms to -2.0 Vdc	7.5	6.5
75 ohms to -2.0 Vdc	10	8.7
50 ohms to -2.0 Vdc	15	13
2.0 k ohms to V_{EE}	2.5	7.7
1.0 k ohm to V_{EE}	4.9	15.4
680 ohms to V_{EE}	7.2	22.6
510 ohms to V_{EE}	9.7	30.2
270 ohms to V_{EE}	18.3	57.2
82 ohms to V_{CC} and	15	140
130 ohms to V_{EE}		

LOADING CHARACTERISTICS

The differential input to MECL circuits offers several advantages. Its common-mode-rejection feature offers immunity against power-supply noise injection, and its relatively high input impedance makes it possible for any circuit to drive a relatively large number of inputs without deterioration of the guaranteed noise margin. Hence, dc fanout with MECL circuits does not normally present a design problem.

Graphs showing typical output voltage levels as a function of load current for MECL 10KH, MECL 10K and MECL III shown in Figure 14. These graphs can be used to determine the actual output voltages for loads exceeding normal operation.

While dc loading causes a change in output voltage levels, thereby tending to affect noise margins, ac loading increases the capacitances associated with the circuit and, therefore, affects circuit speed, primarily rise and fall times.

MECL circuits typically have a 7 ohm output impedance and are relatively unaffected by capacitive loading on a positive-going output signal. However, the negativegoing edge is dependent on the output pulldown or termination resistor. Loading close to a MECL output pin will cause an additional propagation delay of 0.1 ns per fanout load with a 50 ohm resistor to $\mathbf{- 2 . 0} \mathrm{Vdc}$ or 270 ohms to -5.2 Vdc . A 100 ohm resistor to -2.0 Vdc or

510 ohms to -5.2 Vdc results in an additional 0.2 ns propagation delay per fanout load.

Terminated transmission line signal interconnections are used for best system performance. The propagation delay and rise time of a driving gate are affected very liitle by capacitance loading along a matched parallelterminated transmission line. However, the delay and characteristic impedance of the transmission line itself are affected by the distributed capacitance. Signal propagation down the line will be increased by a factor, $\sqrt{1+C_{d} / C_{0}}$. Here C_{o} is the normal intrinsic line capaci-

FIGURE 14 - OUTPUT VOLTAGE LEVELS versus DC LOADING

tance, and C_{d} is the distributed capacitance due to loading and stubs off the line.

Maximum allowable stub lengths for loading off of a MECL 10 K transmission line vary with the line impedance. For example, with $Z_{o}=50$ ohns, maximum stub length would be 4.5 inches (1.8 in . for MECL III). But when $Z_{0}=100$ ohms, the maximum allowable stub length is decreased to 2.8 inches (1.0 in . for MECL III).

The input loading capacitance of a MECL 10KH and MECL 10 K gate is about 2.9 pF and 3.3 pF for MECL III. To allow for the IC connector or solder connection and a short stub length, 5 to 7 pF is commonly used in loading calculations.

UNUSED MECL INPUTS

The input impedance of a differential amplifier, as used in the typical MECL input circuit, is very high when the applied signal level is low. Under low-signal conditions, therefore, any leakage to the input capacitance of the gate could cause a gradual buildup of voltage on the input lead, thereby adversely affecting the switching characteristics at low repetition rates.

All single-ended input MECL logic circuits contain input pulldown resistors between the input transistor bases and V_{EE}. As a result, unused inputs may be left unconnected (the resistor provides a sink for ICBO leakage currents, and inputs are held sufficiently negative that circuits will not trigger due to noise coupled into such inputs). Input pulldown resistor values are typically 50 $k \Omega$ and are not to be used as pulldown resistors for preceding open-emitter outputs.

MECL devices do not have input pulldowns. Examples are the differential line receivers. If a single differential receiver within a package is unused, one input of that receiver must be tied to the $V_{B B}$ pin provided, and the other input goes to $V_{E E}$.

MECL circuits do not operate properly when inputs are connected to V_{CC} for a HIGH logic level. Proper design practice is to set a HIGH level as about-0.9 volts below $V_{C C}$ with a resistor divider, a diode drop, or an unused gate output.

THERMAL MANAGEMENT

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the IC junction temperatures low.

Electrical power dissipated in any integrated circuit is a source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature of $25^{\circ} \mathrm{C}$ in still air. The temperature increase, then, depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point.

The temperature at the junction is a function of the packaging and mounting system's ability to remove heat generated in the circuit - from the junction region to the ambient environment. The basic formula (a) for converting power dissipation to estimated junction temperature is:
or

$$
\begin{equation*}
T_{J}=T_{A}+P_{D}\left(\bar{\theta}_{\mathrm{J}} \mathrm{C}+\bar{\theta}_{\mathrm{CA}}\right) \tag{1}
\end{equation*}
$$

where

$$
\mathrm{T}_{\mathrm{J}} \quad=\text { maximum junction temperature }
$$

$T_{A}=$ maximum ambient temperature

PD = calculated maximum power dissipation including effects of external loads (see Power Dissipation in section III).
$\bar{\theta}_{\mathrm{\theta}} \mathrm{CC}=$ average thermal resistance, junction to case
$\bar{\theta} \mathrm{CA}=$ average thermal resistance, case to ambient
$\bar{\theta}_{\mathrm{JA}}=$ average thermal resistance, junction to ambient

This Motorola recommended formula has been approved by RADC and DESC for calculating a "practical" maximum operating junction temperature for MIL-M38510 (JAN) MECL 10K devices.

Only two terms on the right side of equation (1) can be varied by the user - the ambient temperature, and the device case-to-ambient thermal resistance, $\bar{\theta}_{\mathrm{CA}}$. (To some extent the device power dissipation can be also controlled, but under recommended use the V_{EE} supply and loading dictate a fixed power dissipation.) Both system air flow and the package mounting technique affect the $\bar{\theta}_{\mathrm{CA}}$ thermal resistance term. $\bar{\theta}_{\mathrm{J}} \mathrm{C}$ is essentially independent of air flow and external mounting method, but is sensitive to package material, die bonding method, and die area.

FIGURE 15 - THERMAL RESISTANCE VALUES FOR STANDARD MECLI/C PACKAGES

THERMAL RESISTANCE IN STILL AIR										
PACKAGE DESCRIPTION							${ }^{\theta}$ JA $1^{\circ} \mathrm{C} /$ WATT)		$\begin{gathered} { }^{\theta} \mathrm{JC} \\ \left({ }^{\circ} / \text { WATT }\right) \end{gathered}$	
No.	BODY	BODY	BODY	DIE	DIE AREA	FLAG AREA (SQ. MILS)				
LEADS	STYLE	MATERIAL	WxL	BOND	(SQ. MILS)		AVG.	MAX.	AVG.	MAX.
8	DIL	EPOXY	1/4"x3/8"	EPOXY	2496	8100	102	133	50	80
8	DIL	ALUMINA	$1 / 4 " \times 3 / 8{ }^{\prime \prime}$	GOLD	2496	N/A	140	182	35	56
14	FLAT	Alumina	1/4"x1/4"	GOLD	4096	N/A	165	215	28	45
14	DIL	EPOXY	1/4"x3/4"	EPOXY	4096	6400	84	109	38	61
14	DIL	Alumina	1/4"x3/4"	GOLD	4096	N/A	100	130	25	40
16	FLAT	BEO	1/4"x3/8"	GOLD	4096	N/A	88	114	13	21
16	FLAT	ALUMINA	$1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$	GOLD	4096	N/A	140	182	24	38
16	DIL	EPOXY	1/4"x3/4"	EPOXY	4096	12100	70	91	34	54
16	DIL	ALUMINA	1/4"x3/4"	GOLD	4096	N/A	100	130	25	40
24	FLAT	BEO	$3 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}$	GOLD	8192	N/A	40	52	6	10
24	FLat	Alumina	$3 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}$	GOLD	8192	N/A	64	83	11	18
24	DIL	EPOXY	1/2"x1-1/4"	EPOXY	8192	22500	67	87	31	50
24	DIL	ALUMINA	1/2"x1-1/4"	GOLD	8192	N/A	50	65	10	16

NOTES:

1. All plastic packages use copper lead frames-ceramic packages use alloy 42 frames.
2. Body style DIL is "Dual-In-Line".
3. BEO body material is only used for military temperature range products.
4. Standard Mounting Methods:
a. Dual-In-Line In Socket or P / C board with no contact between bottom of package and socket or P / C board.
b. Flat Pack-Bottom of package in direct contact with non-metallized area of P / C board.

For applications where the case is held at essentially a fixed temperature by mounting on a large or temper-ature-controlled heat sink, the estimated junction temperature is calculated by:

$$
\begin{equation*}
T_{J}=T_{C}+P_{D}\left(\bar{\theta}_{J C}\right) \tag{3}
\end{equation*}
$$

where $T_{C}=$ maximum case temperature and the other parameters are as previously defined.

The maximum and average thermal resistance values for standard MECL IC packages are given in Figure 15. In Figure 16, this basic data is converted into graphs showing the maximum power dissipation allowable at various ambient temperatures (still air) for circuits mounted in the different packages, taking into account the maximum permissible operating junction temperature for long term life ($\geqslant 100,000$ hours).

AIR FLOW

The effect of air flow over the packages on $\bar{\theta}$ JA (due to a decrease in $\bar{\theta}$ CA) is illustrated in the graphs of Figure 17. This air flow reduces the thermal resistance of the package, therefore permitting a corresponding increase in power dissipation without exceeding the maximum permissible operating junction temperature.

As an example of the use of the information above, the maximum junction temperature for a 16 lead ceramic dual-in-line packaged MECL 10K quad OR/NOR gate (MC10101L) loaded with four 50 ohm loads can be calculated. Maximum total power dissipation (including 4 output loads) for this quad gate is 195 mW . Assume for this thermal study that air flow is 500 linear feet per minute. From Figure $17, \bar{\theta}_{\mathrm{JA}}$ is $50^{\circ} \mathrm{C} / \mathrm{W}$. With T_{A} (air flow temperature at the device) equal to $25^{\circ} \mathrm{C}$, the following maximum junction temperature results:

$$
\begin{gathered}
T_{J}=P_{D}\left(\bar{\theta}_{J A}\right)+T_{A} \\
T_{J}=(0.195 \mathrm{~W})\left(50^{\circ} \mathrm{C} / \mathrm{W}+25^{\circ} \mathrm{C}=34.8^{\circ} \mathrm{C}\right.
\end{gathered}
$$

Under the above operating conditions, the MECL 10k quad gate has its junction elevated above ambient temperature by only $9.8^{\circ} \mathrm{C}$.

Even though different device types mounted on a printed circuit board may each have different power dissipations, all will have the same input and output levels provided that each is subject to identical air flow and the same ambient air temperature. This eases design, since the only change in levels between devices is due to the increase in ambient temperatures as the air passes over

FIGURE 17A-AIRFLOW VERSUS THERMAL RESISTANCE (CERAMIC DUAL-IN-LINE PACKAGE)

FIGURE 16B-AMBIENT TEMPERATURE DERATING CURVES (CERAMIC FLAT PACKAGE)

FIGURE 16C-AMBIENT TEMPERATURE DERATING CURVES (PLASTIC DUAL-IN-LINE PACKAGE)

FIGURE 17B-AIRFLOW VERSUS THERMAL RESISTANCE (CERAMIC FLAT PACKAGE)

FIGURE 17C-AIRFLOW VERSUS THERMAL RESISTANCE (PLASTIC DUAL-IN-LINE PACKAGE)

the devices, or differences in ambient temperature between two devices.

The majority of MECL 10KH, MECL 10K, and MECL III users employ some form of air-flow cooling. As air passes over each device on a printed circuit board, it absorbs heat from each package. This heat gradient from the first package to the last package is a function of the air flow rate and individual package dissipations. Figure 18 provides gradient data at power levels of $200 \mathrm{~mW}, 250 \mathrm{~mW}$, 300 mW , and 400 mW with an air flow rate of 500 lfpm. These figures show the proportionate increase in the junction temperature of each dual in-line package as the air passes over each device. For higher rates of air flow the change in junction temperature from package to package down the airstream will be lower due to greater cooling.

FIGURE 18 - THERMAL GRADIENT OF JUNCTION TEMPERATURE
 (16-Pin MECL Dual-In-Line Package)

Power Dissipation (mW)	Junction Temperature Gradient (${ }^{\circ} \mathrm{C} /$ Package)
200	0.4
250	0.5
300	0.63
400	0.88

Devices mounted on $0.062^{\prime \prime}$ PC board with Z axis spacing of $0.5^{\prime \prime}$. Air flow is 500 Ifpm along the Z axis.

THERMAL EFFECTS ON NOISE MARGIN

The data sheet dc specifications for standard MECL 10K and MECL III devices are given for an operating temperature range from $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(0^{\circ}\right.$ to $+75^{\circ} \mathrm{C}$ for MECL 10 KH and memories.) These values are based on having an airflow of 500 lfpm over socket or P/C board mounted packages with no special heat sinking (i.e., dual-in-line package mounted on lead seating plane with no contact between bottom of package and socket or P/C board and flat package mounted with bottom in direct contact with non-metallized area of P/C board). Under these conditions, adequate cooling is provided to keep the maximum operating junction temperatures below $145^{\circ} \mathrm{C}$ for MECL III device types $1666-1670$ and below $165^{\circ} \mathrm{C}$ for all other MECL device types.

The designer may want to use MECL devices under conditions other than those given above. The majority of the low-power device types may be used without air and with higher $\bar{\theta}_{J}$. However, the designer must bear in mind that junction temperatures will be higher for higher $\bar{\theta}_{J A}$, even though the ambient temperature is the same. Higher junction temperatures will cause logic levels to shift.
As an example, a 300 mW 16 lead dual-in-line ceramic device operated at $\bar{\theta} \mathrm{JA}=100^{\circ} \mathrm{C} / \mathrm{W}$ (in still air) shows a HIGH logic level shift of about 21 mV above the HIGH logic level when operated with 500 Ifpm air flow and a $\bar{\theta}_{J A}=50^{\circ} \mathrm{C} / \mathrm{W}$. (Level shift $=\Delta \mathrm{T}_{\mathrm{J}} \times 1.4 \mathrm{mV} /{ }^{\circ} \mathrm{C}$).

If logic levels of individual devices shift by different amounts (depending on P_{D} and $\theta_{J A}$), noise margins are
somewhat reduced. Therefore, the system designer must lay out his system bearing in mind that the mounting procedures to be used should minimize thermal effects on noise margin.
The following sections on package mounting and heat sinking are intended to provide the designer with sufficient information to insure good noise margins and high reliability in MECL system use.

MOUNTING AND HEAT SINK SUGGESTIONS

With large high-speed logic systems, the use of multilayer printed circuit boards is recommended to provide both a better ground plane and a good thermal path for heat dissipation. Also, a multilayer board allows the use of microstrip line techniques to provide transmission line interconnections.
Two-sided printed circuit boards may be used where board dimensions and package count are small. If possible, the V $V_{C C}$ ground plane should face the bottom of the package to form the thermal conduction plane. If signal lines must be placed on both sides of the board, the V_{EE} plane may be used as the thermal plane, and at the same time may be used as a pseudo ground plane. The pseudo ground plane becomes the ac ground reference under the signal lines placed on the same side as the $V_{C C}$ ground plane (now on the opposite side of the board from the packages), thus maintaining a microstrip signal line environment.
Two-ounce copper P/C board is recommended for thermal conduction and mechanical strength. Also, mounting holes for low power devices may be countersunk to allow the package bottom to contact the heat plane. This technique used along with thermal paste will provide good thermal conduction.

Printed channeling is a useful technique for conduction of heat away from the packages when the devices are soldered into a printed circuit board. As illustrated in Figure 19, this heat dissipation method could also serve as $V_{E E}$ voltage distribution or as a ground bus. The channels should terminate into channel strips at each side or the rear of a plug-in type printed circuit board. The heat can then be removed from the circuit board, or board slide rack, by means of wipers that come into thermal contact with the edge channels.

FIGURE 19 - CHANNELWIPER HEAT SINKING ON DOUBLE LAYER BOARD

For operating some of the higher power device types*in 16 lead dual-in-line packages in still air, requiring $\bar{\theta}_{J A}$ $<100^{\circ} \mathrm{C} / \mathrm{W}$, a suitable heat sink is the IERC LIC-214A2WCB shown in Figure 20. This sink reduces the still air $\bar{\theta}_{J A}$ to around $55^{\circ} \mathrm{C} / \mathrm{W}$. By mounting this heat sink directly on a copper ground plane (using silicone paste) and passing 500 Ifpm air over the packages, $\bar{\theta}_{\mathrm{JA}}$ is reduced to approximately $35^{\circ} \mathrm{C} / \mathrm{W}$, permitting use at higher ambient temperatures than $+85^{\circ} \mathrm{C}\left(+75^{\circ} \mathrm{C}\right.$ for MECL 10 KH memories) or in lowering TJ for improved reliability.

FIGURE 20 - MECL HIGH-POWER DUAL-IN-LINE PACKAGE MOUNTING METHOD

It should be noted that the use of a heat sink on the top surface of the dual-in-line package is not very effective in lowering the $\bar{\theta}_{\mathrm{JA}}$. This is due to the location of the die near the bottom surface of the package. Also, very little ($<10 \%$) of the internal heat is withdrawn through the package leads due to the isolation from the ceramic by the solder glass seals and the limited heat conduction from the die through 1.0 to 1.5 mil aluminum bonding wires.

INTERFACING MECL TO SLOWER LOGIC TYPES

MECL circuits are interfaceable with most other logic forms. For MECLTTLIDTL interfaces, when MECL is operated at the recommended -5.2 volts and TTL/DTL at +5.0 V supply, currently available translator circuits, such as the MC10124 and MC10125, may be used.

For systems where a dual supply (-5.2 V and +5 V) is not practical, the MC12000 includes a single supply MECL to TTL and TTL to MECL translator, or a discrete component translator can be designed. For details, see MECL System Design Handbook. Such circuits can easily be made fast enough for any available TTL.

[^0]MECL also interfaces readily with MOS. With CMOS operating at +5 V , any of the MECL to TTL translators works very well. On the other hand, CMOS will drive MECL directly when using a common -5.2 V supply.
Specific circuitry for use in interfacing MECL families to other logic types is given in detail in the MECL System Design Handbook.
Complex MECL 10K devices are presently available for interfacing MECL with MOS logic, MOS memories, TTL three-state circuits, and IBM bus logic levels. See Application Note AN-720 for additional interfacing information.

CIRCUIT INTERCONNECTIONS

Though not necessarily essential, the use of multilayer printed circuit boards offers a number of advantages in the development of high-speed logic cards. Not only do multilayer boards achieve a much higher package density, interconnecting leads are kept shorter, thus minimizing propagation delay between packages. This is particularly beneficial with MECL III which has relatively fast (1 ns) rise and fall times. Moreover, the unbroken ground planes made possible with multilayer boards permit much more precise control of transmission line impedances when these are used for interconnecting purposes. Thus multilayer boards are recommended for MECL III layouts and are justified when operating MECL 10KH and MECL 10 K at top circuit speed, when high-density packaging is a requirement, or when transmission line interconnects are used.

Point-to-point back-plane wiring without matched line terminations may be employed for MECL interconnections if line runs are kept short. At MECL 10K speeds, this applies to line runs up to 6 inches, for MECL 10 KH up to $3.5^{\prime \prime}$, and for MECL III up to 1 inch (Maximum open wire lengths for less than 100 mV undershoot). But, because of the open-emitter outputs of MECL 10KH, MECL 10K and MECL III circuits, pull-down resistors are always required. Several ways of connecting such pull-down resistors are shown in Figure 21.
Resistor values for the connection in Figure 21a may range from 270 ohms to $k \Omega$ depending on power and load requirements. (See MECL System Design Handbook.) Power may be saved by connecting pull-down resistors in the range of 50 ohms (100 ohm minimum for MC10,500 and MC10,600 Series parts) to 150 ohms, to -2.0 Vdc , as shown in Figure 21 b . Use of a series damping resistor, Figure 21c, will extend permissible lengths of unmatched-impedance interconnections, with some loss of edge speed.
With proper choice of the series damping resistor, line lengths can be extended to any length,** while limiting overshoot and undershoot to a predetermined amount. Damping resistors usually range in value from 10 ohms to 100 ohms, depending on the line length, fanout, and line impedance. The open emitter-follower outputs of MECL 10 KH , MECL III and MECL 10 K give the system designer all possible line driving options.
One major advantage of MECL over saturated logic is its capability for driving matched-impedance transmis-

[^1]sion lines. Use of transmission lines retains signal integrity over long distances. The MECL 10KH and MECL 10K emitter-follower output transistors will drive a 50 -ohm transmission line (100 ohms or greater MECL 10,500 and MC10,600 Series) terminated to -2.0 Vdc . This is the equivalent current load of 22 mA in the HIGH logic state and 6 mA in the LOW state.

FIGURE 21 - PULL-DOWN RESISTOR TECHNIQUES

Parallel termination of transmission lines can be done in two ways. One, as shown in Figure 22a, uses a single resistor whose value is equal to the impedance $\left(Z_{0}\right)$ of the line. A terminating voltage $\left(\mathrm{V}_{\mathrm{TT}}\right)$ of -2.0 Vdc must be supplied to the terminating resistor.

Another method of parallel termination uses a pair of resistors, R1 and R2. Figure 22b illustrates this method. The following two equations are used to calculate the values of R1 and R2:

$$
\begin{aligned}
& \mathrm{R} 1=1.6 \mathrm{Z}_{\mathrm{O}} \\
& \mathrm{R} 2=2.6 \mathrm{Z}_{\mathrm{O}}
\end{aligned}
$$

Another popular approach is the series-terminated transmission line (see Figure 23). This differs from parallel termination in that only one-half the logic swing is propagated through the lines. The logic swing doubles at the end of the transmission line due to reflection on an open line, again establishing a full logic swing.

FIGURE 22a - PARALLEL TERMINATED LINE

FIGURE 22b - PARALLEL TERMINATION—THEVENIN EQUIVALENT

To maintain clean wave fronts, the input impedance of the driven gate must be much greater than the characteristic impedance of the transmission line. This condition is satisfied by MECL circuits which have high impedance inputs. Using the appropriate terminating resistor (R_{S}) at point A (Figure 23), the reflections in the transmission line will be terminated.

FIGURE 23 - SERIES TERMINATED LINE

The advantages of series termination include ease of driving multiple series-terminated lines, low power consumption, and low cross talk between adjacent lines. The disadvantage of this system is that loads may not be distributed along the transmission line due to the onehalf logic swing present at intermediate points.
For board-to-board interconnections, coaxial cable may be used for signal conductors. The termination techniques just discussed also apply when using coax. Coaxial cable has the advantages of good noise immunity and low attenuation at high frequencies.
Twisted pair lines are one of the most popular methods of interconnecting cards or panels. The complementary outputs of any MECL function may be connected to one end of the twisted pair line, and any MECL differential line receiver to the other as shown in the example, Figure 24. R_{T} is used to terminate the twisted pair line. The 1 to 1.5 V common-mode noise rejection of the line receiver ignores common-mode cross talk, permitting multiple twisted pair lines to be tied into cables. MECL signals may be sent very long distances (> 1000 feet) on twisted pair, although line attenuation will limit bandwidth, degrading edge speeds when long line runs are made.
If timing is critical, parallel signals paths (shown in Figure 25) should be used when fanout to several cards
is required. This will eliminate distortion caused by long stub lengths off a signal path.

Wire-wrapped connections can be used with MECL 10 KH and MECL 10K. For MECL III, the fast edge speeds (1 ns) create a mismatch at the wire-wrap connections which can cause reflections, thus reducing noise immunity, The mismatch occurs also with MECL 10K, but the distance between the wire-wrap connections and the end of the line is generally short enough so the reflections cause no problem.

Series damping resistors may be used with wirewrapped lines to extend permissible backplane wiring lengths. Twisted pair lines may be used for even longer distances across large wire-wrapped cards. The twisted pair gives a more defined characteristic impedance (than a single wire), and can be connected either single-ended, or differentially using a line receiver.

The recommended wire-wrapped circuit cards have a ground plane on one side and a voltage plane on the other side to insure a good ground and a stable voltage source for the circuits. In addition, the ground plane near the wire-wrapped lines lowers the impedance of those lines and facilitates terminating the line. Finally, the ground plane serves to minimize cross talk between parallel paths in the signal lines. Point-to-point wire routing is recommended because cross talk will be minimized and line lengths will be shortest. Commercial wire-wrap boards designed for MECL 10K are available from several vendors.

FIGURE 24 - TWISTED PAIR LINE DRIVER/RECEIVER

FIGURE 25 - PARALLEL FANOUT TECHNIQUES

Microstrip and Stripline

Microstrip and stripline techniques are used with printed circuit boards to form transmission lines. Microstrip consists of a constant-width conductor on one side of a circuit board, with a ground plane on the other side (shown in Figure 26). The characteristic impedance is determined by the width and thickness of the conductor, the thickness of the circuit board, and the dielectric constant of the circuit board material.

FIGURE 26 - PC INTERCONNECTION LINES FOR USE WITH MECL

Stripline is used with multilayer circuit boards as shown in Figure 26. Stripline consists of a constant-width conductor between two ground planes.

Refer to MECL System Design Handbook for a full discussion of the properties and use of these.

CLOCK DISTRIBUTION

Clock distribution can be a system problem. At MECL 10K speeds, either coaxial cable or twisted pair line (using the MC10101 and MC10115) can be used to distribute clock signals throughout a system. Clock line lengths should be controlled and matched when timing could be critical. Once the clocking signals arrive on card, a tree distribution should be used for large-fanouts at high frequency. An example of the application of ths technique is shown in Figure 27.

Because of the very high clock rates encountered in MECL III systems, rules for clocking are more rigorous than in slower systems.

The following guidelines should be followed for best results:

A. On-card Synchronous Clock Distribution via Transmission Line

1. Use the NOR output in developing clock chains or trees. Do not mix OR and NOR outputs in the chain.
2. Use balanced fanouts on the clock drivers.
3. Overshoot can be reduced by using two parallel drive lines in place of one drive line with twice the lumped load.

FIGURE 27 - 64 FANOUT CLOCK DISTRIBUTION (PROPER TERMINATION REQUIRED)

4. To minimize clock skewing problems on synchronous sections of the system, line delays should be matched to within 1 ns.
5. Parallel drive gates should be used when clocking repetition rates are high, or when high capacitance loads occur. The bandwidth of a MECL III gate may be extended by paralleling both halves of a dual gate. Approximately 40 or 50 MHz bandwidth can be gained by paralleling two or three clock driver gates.
6. Fanout limits should be applied to clock distribution drivers. Four to six loads should be the maximum load per driver for best high speed performance. Avoid large lumped loads at the end of lines greater than 3 inches. A lumped load, if used, should be four or fewer loads.
7. For wire-OR (emitter dotting), two-way lines (busses) are recommended. To produce such lines, both ends of a transmission line are terminated with 100 -ohms impedance. This method should be used when wire-OR connections exceed 1 inch apart on a drive line.

B. Off-Card Clock Distribution

1. The OR/NOR outputs of an MC1660 may be used to drive into twisted pair lines or into flat, fixed-impedance ribbon cable. At the far end of the twisted pair an MC1692 differential line receiver is used. The line should be terminated as shown in Figure 24. This method not only provides high speed, board-to-board clock distribution, but also provides system noise margin advantages. Since the line receiver operates independently of the V_{BB} reference voltage (differential inputs) the noise margin from board to board is also independent of temperature differentials.

LOGIC SHORTCUTS

MECL circuitry offers several logic design conveniences. Among these are:

1. Wire-OR (can be produced by wiring MECL output emitters together outside packages).
2. Complementary Logic Outputs (both OR and NOR are brought out to package pins in most cases).
An example of the use of these two features to reduce gate and package count is shown in Figure 28.

The connection shown saves several gate circuits over performing the same functions with non-ECL type logic. Also, the logic functions in Figure 29 are all accomplished with one gate propagation delay time for best system speed. Wire-ORing permits direct connections of MECL circuits to busses. (MECL System Design Handbook and Application Note AN-726).

Propagation delay is increased approximately 50 ps per wire-OR connection. In general, wire-OR should be limited to 6 MECL outputs to maintain a proper LOW logic level. The MC10123 is an exception to this rule because it has a special V_{OL} level that allows very high fanout on a bus or wire-OR line. The use of a single output pulldown resistor is recommended per wire-OR, to economize on power dissipation. However, two pull-down resistors per wired-OR can improve fall times and be used for double termination of busses.

Wire-OR should be done between gates in a package or nearby packages to avoid spikes due to line propagation delay. This does not apply to bus lines which activate only one driver at a time.

FIGURE 28 - USE OF WIRE-OR AND COMPLEMENTARY OUTPUTS

SYSTEM CONSIDERATIONS - A SUMMARY OF RECOMMENDATIONS

	MECL 10KH	MECL 10K	MECL III
Power Supply Regulation	$\pm 5 \%$ (1)	10\% (2)	10\% (2)
On-Card Temperature Gradient	$20^{\circ} \mathrm{C}$	Less Than $25^{\circ} \mathrm{C}$	Less Than $25^{\circ} \mathrm{C}$
Maximum Non-Transmission Line Length (No Damping Resistor)	$4 "$	$8{ }^{\prime \prime}$	$1{ }^{\prime \prime}$
Unused Inputs	Leave Open ${ }^{(3)}$	Leave Open (3)	Leave Open(3)
PC Board	Standard 2-Sided or Multilayer	Standard 2-Sided or Multilayer	Multilayer
Cooling Requirements	500 Ifpm Air	500 Ifpm Air	500 Ifpm Air
Bus Connection Capability	Yes (Wire-OR)	Yes (Wire-OR)	Yes (Wire-OR)
MSI/LSI Parts	Yes	Yes	Yes (MSI)
Maximum Twisted Pair Length (Differential Drive)	Limited By Cable Response Only, Usually $>1000^{\prime}$ \qquad	Limited by Cable Response Only, Usually \qquad $>1000^{\prime}$	Limited by Cable Response Only, Usually \qquad $>1000^{\prime}$
The Ground Plane to Occupy Percent Area of Card	> 75%	>50\%	> 75%
Wire Wrap may be used	Yes	Yes.	Not Recommended
Compatible with MECL 10,000	Yes	-	Yes

(1) All dc and ac parameters guaranteed for $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$.
(2) At the devices (functional only).
(3) Except special functions without input puil-down resistors.

A letter suffix to the MECL logic function part number is used to specify the package style (see drawings below). See appropriate selector guide for specific packaging available for a given device type.

P SUFFIX PLASTIC PACKAGE CASE 707-02	P SUFFIX PLASTIC PACKAGE CASE 724-02
 NOTES POSITIONAL TOLERANCE OF LEADS (D) MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND RELATION TO SEATING PLANE AND EACH OTHER. 2. DIMENSION L TO CENTER OF LEADS 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.	 Note: 1. Leads, true positioned within $0.25 \mathrm{~mm}(0.0101)$ IIA AT SEATING conoition (OIM D).
L SUFFIX CERAMIC PACKAGE CASE 726-04 NOTES: 1. LEADS, TRUE POSITIONED WITHIN $0.25 \mathrm{~mm}(0.010)$ DIA. AT SEATING PLANE, AT MAXIMUM MATERIAL CONDITION. 2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIM " A " \& " B " INCLUDES MENISCUS.	L SUFFIX CERAMIC PACKAGE CASE 732-03 NOTES: 1. LEADS WITHIN $0.25 \mathrm{~mm}(0.010)$ DIA, TRUE POSITION AT MEATING PLANE, AT MAXIMUM 2. DIM L TO CENTER OF WHEN FORMED PARALLEL 3. DIM A ANO B INCLUDES MENISCUS.

1. "Improve Fast-Logic Designs," by Bill Blood, Electronic Design, May 10, 1973.
2. "Interface TTL Systems with ECL Circuits," by George Adams, EDN, September 5, 1973.
3. "Increasing Minicomputer Speed with EmitterCoupled Logic," by Jon De Laune, Computer Design, February 1974.
4. "An Engineering Comparison Study MECL 10,000 and Schottky TTL," Motorola Inc., 1974.
5. "ECL Circuits Drive Light-Emitting Diodes," by Bill Blood, EDN, January 20, 1974.
6. "Four-Digit BCD Programmability Featured in Variable Modulus 60 MHz Counter," by Tom Balph and Bill Blood, Electronic Design, March 15, 1974.
7. "Build a Low Cost ECL Logic Probe," by Tom Baiph, Electronic Design, August 16, 1974.
8. "A CAD Program for High Speed Logic Element Interconnections," by Thomas Balph, William Blood, and Jerry Prioste, Computer Design, May 1975.
9. "Build a Clock Bias Circuit for ECL Flip-Flops," by T. Balph and H. Gnauden, EDN, May 5, 1975.
10. "Get the Best Processor Performance by Building It From ECL Bit Slices," By Tom Balph and Bill Blood, Electronic Design, June 7, 1977.
11. "MECL System Design Handbook," by Bill Blood, Motorola Inc.

APPLICATION NOTES

Copies of these Application Notes and Engineering Bulletins can be obtained from your Motorola representative or authorized distributor, or from Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036.

AN-270 Nanosecond Pulse Handling Techniques
AN-504 The MC1600 Series MECL III Gates
AN-535 Phase-Locked Loop Design Fundamentals
AN-553 A New Generation of Integrated Avionic Synthesizers
AN-556 Interconnection Techniques for Motorola's MECL 10K Series Emitter Coupled Logic
AN-565 Using Shift Registers as Pulse Delay Networks
AN-567 MECL Positive and Negative Logic
AN-579 Testing MECL 10K Integrated Logic Circuits
AN-581 An MSI 500 MHz Frequency Counter Using MECL and TTL
AN-586 Measure Frequency and Propagation Delay with High Speed MECL Circuits
AN-592 AC Noise Immunity of MECL 10K Integrated Circuits
AN-700 Simulate MECL System Interconnections with a Computer Program

AN-701 Understanding MECL 10K DC and AC Data Sheet Specifications
AN-709 MECL 10k Arithmetic Elements, MC10179, MC10180, MC10181
AN-720 Interfacing with MECL 10K Integrated Circuits
AN-726 Bussing with MECL 10 K Integrated Circuits
AN-730 A High-Speed FIFO Memory Using the MECL MCM10143 Register File
AN-742 A 200 MHz Autroranging MECL-McMOS Frequency Counter
AN-774 A Simple High Speed Bipolar Microprocessor Illustrates System Design and Microprogram Techniques
AN-827 Technique of Direct Programming Using TwoModulus Prescaler
EB-47 Event Counter and Storage Latches for High Frequency, High Resolution Counters
EB-48 A Time Base and Control Logic Subsystem for High Frequency, High Resolution Counters

Standard Packages

Special Packages

Function Selection-(0 to $\left.+75^{\circ} \mathrm{C}\right)$

Function	Device	Case
NOR Gate		
Quad-2-Input with Strobe	MC10H100	620, 648
Quad-2-Input	MC10H102	620,648
Triple 4-3-3 Input	MC10H106	620,648
Dual 3-Input 3-Output	MC1OH211	620,648
OR Gate		
Quad 2-Input	MC10H103	620,648
Dual 3-Input 3-Output	$\mathrm{MC1OH} 210$	620,648
AND Gates		
Quad AND	MC1OH104	620,648
Complex Gates		
Quad OR/NOR	MC10H101	620,648
Triple 2-3-2 Input OR/NOR	MC10H105	620,648
Triple Exclusive OR/NOR	MC10H107	620,648
Dual 4-5 Input OR/NOR	MC10H109	620,648
Quad Exclusive OR	MC10H113	620, 648
Dual 2-Wide OR-AND/OR-AND INVERT	MC10H117	620,648
Dual 2-Wide 3-Input OR/AND	MC10H118	620,648
4-Wide 4-3-3-3 Input OR-AND	MC10H119	620,648
4-Wide OR-AND/OR-AND INVERT	MC1OH121	620,648
Hex Buffer w/Enable	MC10H188	620,648
Hex Inverter w/Enable	MC10H189	620,648

Function	Device	Case
Translators		
Quad TTL to MECL	MC1OH124	620, 648
Quad MECL TO TTL	MC10H125	620,648
Quad MECL-to-TTL Translator, Single Power Supply (-5.2 V or +5.0 V)	MC10H350	620, 648
Quad TTL to MECL, ECL Strobe	MC1OH424	620, 648

Receivers

Quad Line Receiver	MC1OH115	620,648
Triple Line Receiver	MC1OH116	620,648

Flip-Flop Latches		
Dual D Master Slave Flip-Flop	MC1OH131	620,648
Dual J-K Master Slave Flip-Flop	$\mathrm{MC1OH} 135$	620,648
Hex D Flip-Flop	$\mathrm{MC1OH} 176$	620,648
Dual D Latch	$\mathrm{MC1OH130}$	620,648
Quint Latch	$\mathrm{MC1OH} 175$	620,648
Hex D Flip-Flop	$\mathrm{MC1OH} 186 \mathrm{~A}$	620,648
w/Common Reset		

[^2]| Function | Device | Case |
| :--- | :---: | :---: |
| Encoders Decoders | MC1OH161 | 620,648 |
| Binary to 1-8 (Low) | MC1OH162 | 620,648 |
| Binary to 1-8 (High) | MC1OH171 | 620,648 |
| Dual Binary to 1-4 (Low) | MC1OH172 | 620,648 |
| Dual Binary to 1-4 (High) | MC1OH165 | 620,648 |

Data Selector Multiplexer

Quad Bus Driver/Receiver with 2-to-1 Output Multiplexers Dual Bus Driver/Receiver with 4-to-1 Output Multiplexers	MC1OH330	758,724
Quad 2-Input Multiplexers		
(Noninverting)	MC1OH158	620,648
Quad 2-Input Multiplexers		732,738
(Inverting)	MC1OH159	620,648
8-Line Multiplexer	MC1OH164	620,648
Quad 2-Input Multiplexer Latch	MC1OH173	620,648
Dual 4-1 Multiplexer	MC1OH174	620,648

Counters

Universal Hexadecimal	MC1OH136	620,648				
Binary Counter	MC1OHO16	620,648		Arithmetic Functions	Look Ahead Carry Block	MC1OH179
:---	:---	:---				
Dual High Speed Adder/	MC1OH180,648	620,648				
Subtractor	MC1OH181	623,649				
4-Bit ALU		724,758				

Function	Device	Case
Special Function		
4-Bit Universal Shift Register	MC10H141	620,648
16×4 Bit Register File	MC10H145	620,648
5-Bit Magnitude Comparator	MC10H166	620,648
Quad Bus Driver/Receiver with Transmit and Receiver Latches	MC10H334	732,738
Memories		
16×4 Bit Register File	MC1OH145	620,648
8×2 Bit Content Addressable Memory		
Bus Driver (25 ohm outputs)		
(25 Ohms)	MC10H123	620,648
Quad Bus Driver/Receiver with		
2-to-1 Output Multiplexers	MC10H330	724,758
Dual Bus Driver/Receiver with		
4-to-1 Output Multiplexers	MC1OH332	732,738
Quad Bus Driver/Receiver with	MC10H334	732,738
Transmit and Receiver Latches Triple 3-Input Bus Driver with	MC1OH334	732,738
Enable (25 Ohm)	MC10H423	620,648
OR/NOR Gate		
Dual 4-5-Input OR/NOR Gate	MC1OH209	620,648

MECL 10KH INTRODUCTION

Motorola's new MECL 10KH family features 100% improvement in propagation delay and clock speeds while maintaining power supply current equal to MECL 10K. This new MECL family is voltage compensated which allows guaranteed dc and switching parameters over a $\pm 5 \%$ power supply range. Noise margins of MECL 10KH are 75% better than the MECL 10 K series over the $\pm 5 \%$ power supply range. MECL 10 KH is compatible with MECL 10 K and MECL III, a key element in allowing users to enhance existing systems by increasing the speed in critical timing areas. Also, many MECL 10KH devices are pinout/functional duplications of the MECL 10K series devices.

FIGURE 1 - MECL 10K versus MECL 10KH GATE DESIGN

The schematics in Figure 1 compare the basic gate structure of the MECL 10KH to that of MECL 10K devices. The gate switch current is established with a current source in the MECL 10KH family as compared to a resistor source in MECL 10K. The bias generator in the MECL 10K device has been replaced with a voltage regulator in the MECL 10KH series. The advantages of these design changes are: current-sources permit-matched collector resistors that yield correspondingly better matched delays, less variation in the output-voltage level with power supply changes, and matched output-tracking rates with temperature. These circuit changes increase complexity at the gate level; however, the added performance more than compensates.

The MECL 10 KH family is being fabricated using Motorola's MOSAIC I (Motorola Oxide Self Aligned Implanted Circuits). The switching transistor's geometries obtained in the MOSAIC I process show a two-fold improvement in $\mathrm{f} \tau$, a reduction of more than 50% in parasitic capacitance and a decrease in device area of almost 76\%.

FIGURE 2 - MOSAIC versus MECL 10K SWITCHING TRANSISTOR GEOMETRY

With improved geometry, the MECL 10KH switching transistors (left) are one-seventh the size of the older MECL 10K transistors (right). Along with the smaller area comes an improved \dagger_{T} and reduced parasitic capacitances.

Figure 2 illustrates the relative size difference between the junction isolated transistor of MECL 10 K and the MOSAIC I transistor of MECL 10KH. This suggests that performance could be improved twofold at lower power levels. However, at the gate level, the power of the output transistor cannot be reduced without sacrificing output characteristics because of the 50 ohm drive requirements of MECL. In more complex functions, where part of the delay is associated with internal gates, MECL 10KH devices use less power than the equivalent MECL 10K devices and provide an even more significant improvement in ac performance.

Table 1. - TYPICAL FAMILY CHARACTERISTICS FOR 10K AND 10KH CIRCUITS

	10K	10KH
Propagation delay (ns)	2.0	1.0
Power (mW)	25	25
Power-speed product (pJ)	50	25
Rise/fall times (ns)	2.0	1.5
(20-80\%)		
Temperature. range (${ }^{\circ} \mathrm{C}$)	-30 to +85	0 to +75
Voltage regulated	No	Yes
Technology	Junction	Oxide
	isolated	isolated
$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$		

Supply \& Temperature Variation

MECL 10 KH temperature and voltage compensation is designed to guarantee compatibility with MECL 10 K , MECL III, MECL Memories and the MC10900 and Macrocell Array products. Table 1 summarizes some performance characteristics of the MECL 10 K and 10KH logic families in a 16 -pin DIP. The MECL 10KH devices offer typical propagation delays of 1.0 ns at 25 mW per gate when operated from a V_{EE} of -5.2 V . The resulting speed-power product of 25 picojoules is the best of any ECL logic family available today.

The operating temperature range is changed from $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ of the MECL 10 K family to the narrower range of $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ for MECL 10 KH . This change matches the constraints established by the memory and array products. Operation at $-30^{\circ} \mathrm{C}$ would require compromises in performance and power. With few exceptions, commercial applications are satisfied by $0^{\circ} \mathrm{C}$ min.

Table 2. - MECL 10KH AC SPECIFICATIONS AND TRACKING

Parameter	$0^{\circ} \mathrm{C}$ Min Typ Max	Min Typ Max	$\operatorname{Min} 7$	$\begin{aligned} & 75^{\circ} \mathrm{C} \\ & \text { Typ Max } \end{aligned}$	Units
tPD	$\begin{array}{llll}0.7 & 1.1 & 1.6\end{array}$	$\begin{array}{llll}0.7 & 1.0 & 1.5\end{array}$	0.7	1.11 .7	ns
$t_{R}(20-80 \%)$	Min Max	Min Max	Min Max		ns
	$0.8 \quad 2.2$	0.72 .0	0.8	2.2	
$\mathrm{tF}^{(20-80 \%)}$	$0.8 \quad 2.2$	$0.7 \quad 2.0$	0.8	2.2	ns
$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$					
Parameter	Propagation delay (ns)*	Delay variation vs temp (ps $/{ }^{\circ} \mathrm{C}$)		Delay variation vs supply (ps / V)	
	Typ Max	Typ M	Max	Typ	Max
tpd 10 K	2.02 .9	2.0	7.0	80	
10KH	1.01 .5	0.5	4.0	0	0

${ }^{*} \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, Temp $=25^{\circ} \mathrm{C}$
AC specifications of MECL 10KH products appear in Table 2. In the MECL 10KH family, all ac specifications have guaranteed minimums and maximums for extremes of both temperature and supply - a first in ECL logic. In addition, flip flops, latches and counters will have guaranteed limits for setup time, hold time, and clock pulse width. The limits in Table 2 are guaranteed for a power supply variation of $\pm 5 \%$. MECL 10 K typically has a propagation delay (t_{PD}) variation of $80 \mathrm{ps} / \mathrm{V}$ with no guaranteed maximum. The typical variation in tPD for MECL 10 KH circuits is only 38 ps typically over the entire specified temperature range and power-supply tolerance, and is guaranteed not to exceed 300 ps .

The improved performance in temperature over MECL 10 K are a result of the internal voltage regulator. The primary difference being the flatter tracking rate of the output " 0 " level voltage (V_{OL}). This difference does not affect the compatibility with existing MECL families.

Changes in output " 1 " level voltages $\left(\mathrm{VOH}_{\mathrm{OH}}\right)$ with supply variations are 10 mVN less for the MECL 10KH family. $\mathrm{VOH}_{\mathrm{OH}}$ varies with the supply, primarily because of changes in chip temperature caused by the changes in power dissipation. However, the current in the MECL 10KH circuits remains almost constant with supply changes, since the circuits are voltage compensated and use current sources for all internal emitter followers. Threshold voltage (V_{BB})

Table 3. - LOGIC LEVEL DC TRACKING RATE FOR 10K AND 10KH CIRCUITS

		Min	Typ	Max
$\Delta \mathrm{VOH}^{/} / \Delta \mathrm{T}$	10 KH	1.2	1.3	1.5
$\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right.$)	10K	1.2	1.3	1.5
$\Delta \mathrm{V}_{\mathrm{BB}} / \Delta \mathrm{T}$	10KH	0.8	1.0	1.2
$\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right.$)	10K	0.8	1.0	1.2
$\Delta \mathrm{V}_{\mathrm{OL}} / \Delta \mathrm{T}$	10 KH	0	0.4	0.6
$\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right.$)	10K	0.35	0.5	0.75
		0.75	1.0	1.55
$\Delta \mathrm{V}_{\mathrm{OH}} / \Delta \mathrm{V}_{\mathrm{EE}}$	10 KH	-20		0
$(\mathrm{mV} / \mathrm{V})$	10K	-30		0
$\Delta V_{B B} / \Delta V_{E E}$	10 KH	0	10	25
$(\mathrm{mV} / \mathrm{N})$	10K	110	150	190
$\Delta V_{O L} / \Delta V_{E E}$	10 KH	0	20	50
$(\mathrm{mV} / \mathrm{V})$	10K	200	250	320

and output " 0 " level voltage $\left(\mathrm{V}_{\mathrm{OL}}\right)$ variations are shown with respect to MECL 10K in Table 3. In both cases voltage compensation has reduced the variations significantly.

Noise Margin Considerations

Specification of input voltage levels ($\mathrm{V}_{\text {IHA }}, \mathrm{V}_{\text {ILA }}$) are changed from those of MECL 10K resulting in improved noise margins for MECL 10KH.

The MECL 10 K circuits have two sets of output voltage specifications ($\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OLA}}$). The first output voltage specification in each set (V_{OH} and V_{OL}) are guaranteed maximum and minimum output levels for typical input levels. The second specification in each set ($V_{\text {OHA }}$ and $\mathrm{V}_{\text {OLA }}$) is the guaranteed worst-case output level for input threshold voltages. System analysis for worst-case noise margin considers $\mathrm{V}_{\mathrm{OHA}}$ and $\mathrm{V}_{\mathrm{OLA}}$ only. The MECL 10 KH family has only one set of output voltages $\left(\mathrm{V}_{\mathrm{OH}}\right.$ and $\left.\mathrm{V}_{\mathrm{OL}}\right)$ with minimum and maximum values specified. The minimum value of V_{OH} and the maximum value for V_{OL} of the MECL 10 KH family is synonomous with the $V_{\text {OHA }}$ and $V_{\text {OLA }}$ specifications of MECL 10 K family.

The V_{OH} values for the MECL 10 KH circuits are equal to or better than the MECL 10K levels at all temperatures. Input threshold voltages (VIHA and $V_{\text {ILA }}$, which are synonymous with $V_{\text {IH }}$ min and $V_{\text {IL }}$ max for 10 KH) are also improved and guaranteed $V_{\text {IHA }}$ has been decreased by 25 mV over the entire operating temperature range, resulting ina " 1 "level noise margin of 150 mV (compared to

Table 4. - NOISE MARGIN versus POWER-SUPPLY CONDITIONS

Parameter		$V_{E E}$ -10% Typ Min		$\begin{aligned} & \text { VEE } \\ & -5 \% \end{aligned}$		VEE		$\begin{aligned} & \text { VEE } \\ & +5 \% \end{aligned}$			
		Typ	Min	Typ	Min	Typ	Min				
Noise Margin High	10KH			224	150	227	150	230	150	233	150
$\mathrm{V}_{\mathrm{NH}}(\mathrm{mV})$	10K	127	47	166	86	205	125	241	164		
Noise Margin Low	10KH		150	267	150	270	150	273	150		
$\mathrm{V}_{\mathrm{NL}}(\mathrm{mV})$	10K	223	103	249	129	275	155	301	181		

[^3]125 mV for the MECL 10K circuits). VILA has been decreased by 5.0 mV , providing a " 0 " level noise margin equal to the " 1 " level noise margin. The V_{OL} minimum of the MECL 10 KH is more negative than for MECL 10 K $(-1950 \mathrm{mV}$ instead of $-1850 \mathrm{mV})$. The V_{OL} level for the MECL 10 K family was selected to ensure that the gate would not saturate at high temperatures and high supply voltages. The reduction in operating temperature range for the MECL 10KH family and the improvement in tracking rate allow the lower V_{OL} level. The change in this level does not affect system noise margins. Although some of the interface levels change with temperature, the changes in voltage levels are well within the tolerance ranges that would keep the families compatible. Table 4 lists some noise margins for $V_{E E}$ supply variations.

The compatibility of MECL 10KH with MECL 10K may be demonstrated by applying the tracking rates in Table 3 to the dc specifications. The method for determining compatibility is to show acceptable noise margins for MECL $10 \mathrm{KH}, \mathrm{MECL} 10 \mathrm{~K}$ and mixed MECL $10 \mathrm{~K} / \mathrm{MECL} 10 \mathrm{KH}$ systems. The asssumption is that the families are compatible if the noise margin for a mixed system is equal to or better than the same system using only the MECL 10 K series.

Using an all MECL 10 K system as a reference, three possible logic mixes must be considered: MECL 10K driving MECL 10KH; MECL 10KH driving MECL 10K; and MECL 10KH driving MECL 10 KH . The system noise margin for the three configurations can now be calculated for the following cases (See Figure 3):

In Case 1, the system uses multiple power supplies, each independently voltage regulated to some percentage tolerance. Worst-case is where one device is at the plus extreme and the other device is at the minus extreme of the supply tolerance.
In Case 2, a system operates on a single supply or several supplies slaved to a master supply. The entire system can drift, but all devices are at the same supply voltage.
In Case 3, a system has excessive supply drops throughout. Supply gradients are due to resistive drops in $V_{E E}$ bus.
The analysis indicates that the noise margins for a MECL $10 \mathrm{~K} / 10 \mathrm{KH}$ system equal or exceed the margins for an all 10 K system for supply tolerance up to $\pm 5 \%$. The results of the analysis are shown in Figure 3.

FIGURE 3 - NOISE MARGIN versus POWER-SUPPLY VARIATION

Case 1

Case 2

Case 3

A. MECL 10K DRIVING MECL 10K B. MECL 10K DRIVING MECL 10KH C. MECL 10KH DRIVING MECL 10K D. MECL 10KH DRIVING MECL10KH

Advance Information

MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H016 is a member of Motorola's new MECL family. The MC1OHO16 is a high-speed synchronous, presettable, cascadable 4-bit binary counter. It is useful for a large number of conversion, counting and digital integration applications.

- Counting Frequency, 200 MHz Minimum
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{EE}	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{I}	0 to V_{EE}	Vdc
Output Current - Continuous - Surge	$\mathrm{I}_{\mathrm{out}}$	50	mA
Operating Temperature Range		100	
Storage Temperature Range - Plastic			
	T_{A}	0 to +75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$) (See Note)

Characteristic	Symbol	0°		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	le	-	126	-	115	-	126	mA
Input Current High All Except MR Pin 12 MR	tinH	-	$\begin{gathered} 450 \\ 1190 \end{gathered}$	-	$\begin{aligned} & 265 \\ & 700 \end{aligned}$	-	$\begin{aligned} & 265 \\ & 700 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	$\mathrm{l}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	V_{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	V_{IH}	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$V_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	t_{pd}							ns
Clock to Q								
Clock to $\overline{T C}$		0.7	3.5	0.7	3.2	0.7	3.5	
MR to O		0.7	3.5	0.7	3.2	0.7	3.5	
Set-up Time		0.7	3.5	0.7	3.0	0.7	3.5	
P_{n} to Clock	$\mathrm{t}_{\text {set }}$							ns
$\overline{\mathrm{CE}}$ or $\overline{\mathrm{PE}}$ to Clock		2.0	-	2.0	-	2.0	-	
Hold Time		2.5	-	2.5	-	2.5	-	
Clock to P_{n}								
Clock to $\overline{\mathrm{CE}}$ or $\overline{\mathrm{PE}}$			1.0	-	1.0	-	1.0	-
Counting Frequency	$\mathbf{f}_{\text {count }}$	200	-	200	-	200	-	MHz
Rise Time	$\mathrm{t}_{\mathbf{r}}$	0.7	2.3	0.7	2.1	0.7	2.3	ns
Fall Time	t_{f}	0.7	2.3	0.7	2.1	0.7	2.3	ns

NOTE:

Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 -ohm resistor to $\mathbf{- 2 . 0}$ volts

This document contains information on a new product. Specifications and information herein are subject to change without notice.

4-Bit binary counter logic diagram

Note that this diagram is provided for understanding of logic operation only. It should not be used for evaluation of propaga-
tion delays as many gate functions are achieved internally without incurring a full gate delay.

Advance Information

MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H100 is a member of Motorola's new MECLfamily. This MECL 10 KH part is a functional/pinout duplication of the standard MECL 10 K family part, with 100% improvement in propagation delay, and no increases in power supply current.

- Propagation Delay, 1.0 ns Typical
- 25 mW Typ/Gate (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K—Compatible

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ($\mathrm{V}_{\mathrm{CC}}=0$)	$V_{\text {EE }}$	-8.0 to 0	Vdc
Input Voltage ($\mathrm{V}_{\mathrm{CC}}=0$)	V_{1}	0 to V_{EE}	Vdc
$\begin{aligned} & \text { Output Current } \text { - Continuous } \\ &- \text { Surge } \\ & \hline \end{aligned}$	Iout	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to }+150 \\ & -55 \text { to }+165 \end{aligned}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$) (See Note)

Characteristic	Symbol	0°		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	${ }_{\text {I }}$	-	29	-	26	-	29	mA
Input Current High Pin 9 All Other Inputs	linH	-	$\begin{aligned} & 900 \\ & 500 \end{aligned}$	-	$\begin{aligned} & 560 \\ & 310 \end{aligned}$	-	$\begin{aligned} & 560 \\ & 310 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	$\mathrm{l}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	V_{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	V_{IH}	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$V_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	t_{pd}	0.7	1.5	0.7	1.5	0.7	1.7	ns
Rise Time	t_{r}	0.7	1.9	0.7	1.9	0.7	2.3	ns
Fall Time	t_{f}	0.7	1.7	0.7	1.8	0.7	2.0	ns

NOTE:
Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circ uit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a $50-\mathrm{ohm}$ resistor to -2.0 volts.

[^4]

Quad 2-Input NOR Gate With Strobe

$$
\begin{aligned}
V_{C C 1} & =\operatorname{Pin} 1 \\
V_{C C 2} & =\operatorname{Pin} 16 \\
V_{E E} & =\operatorname{Pin} 8
\end{aligned}
$$

The MC1OH100 is a quad NOR gate. Each gate has 3 inputs, two of which are independent and one of which is tied common to all four gates.

MC10H101 MC10H102 MC1OH105

Advance Information

MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH101, MC1OH102 and MC1OH105 are members of Motorola's new MECL family. These MECL 10 KH parts are functional/pinout duplications of the standard MECL 1OK family parts, with 100% improvement in propagation delay, and no increases in power-supply current.

- Propagation Delay, 1 ns typical
- Power Dissipation $25 \mathrm{~mW} /$ Gate (same as MECL 1OK)
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{EE}	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{1}	0 to V_{EE}	Vdc
Output CurrentContinuous - Surge	$\mathrm{I}_{\mathrm{out}}$	50	mA
Operating Temperature Range		T_{A}	$0-75$
Storage Temperature Range - Plastic			
	$\mathrm{T}_{\mathrm{Stg}}$	-55 to 150 -55 to 165	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (VEE $=-5.2 \mathrm{~V} \pm 5 \%$)

Characteristic	Symbol	0°		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { Power Supply Current } \\ & \text { MC1OH101, } 102 \\ & \text { MC1OH105 } \end{aligned}$	${ }^{\prime} E$	-	$\begin{aligned} & 29 \\ & 23 \end{aligned}$	-	$\begin{aligned} & 26 \\ & 21 \end{aligned}$	-	$\begin{aligned} & 29 \\ & 23 \end{aligned}$	mA
Input Current High $\mathrm{MC1OH} 101,102,105$ MC1OH101 (Pin 12 only)	$\mathrm{I}_{\mathrm{inH}}$	-	$\begin{aligned} & 425 \\ & 850 \end{aligned}$	-	$\begin{aligned} & 265 \\ & 535 \end{aligned}$	-	$\begin{aligned} & 265 \\ & 535 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	InL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	V_{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	V_{lH}	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$V_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	t_{pd}	0.7	1.6	0.7	1.5	0.7	1.7	ns
Rise Time	t_{r}	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	t_{f}	0.7	2.2	0.7	2.0	0.7	2.2	ns

NOTE:

Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a $50-\mathrm{ohm}$ resistor to $\mathbf{- 2 . 0}$ volts.

[^5]

LSUFFIX CERAMIC PACKAGE CASE 620

Quad OR/NOR Gate

Quad 2-Input NOR Gate

MC10H105

Triple 2-3-2 Input OR/NOR Gate

SWITCHING TIME COMPARISON MECL 10 KH versus MECL 10 K

NOR OUTPUTS

$\mathrm{t}_{\mathrm{f}}(\mathrm{ns})$
MC1OH1O1 - 1.49
MC10101 - 2.4

t_{r} (ns)
MC1OH1O1-1.48
MC10101 - 2.51

t_{r} (ns)
MC1OH101-1.52
MC10101 - 2.62

OR OUTPUTS

$\mathrm{t}_{\mathrm{f}}(\mathrm{ns})$
MC10H101-1.42
MC10101 - 2.45

MC10H103

Advance Information

MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH103 is a member of Motorola's new MECL family. This MECL 10 KH part is a functional/pinout duplication of the standard MECL 10K family part with 100% improvement in propagation delay, and no increases in power-supply current.

- Propagation Delay, 1.0 ns Typical
- Power Dissipation $25 \mathrm{~mW} /$ Gate (Same as MECL 10K)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ($\mathrm{V}_{\mathrm{CC}}=0$)	$V_{E E}$	-8.0 to 0	Vdc
Input Voltage ($\mathrm{V}_{\mathrm{CC}}=0$)	Vi	0 to VEE	Vdc
$\begin{aligned} \text { Output Current } & \text { - Continuous } \\ & - \text { Surge } \end{aligned}$	Iout	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0-+75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to }+150 \\ & -55 \text { to }+165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%\right.$) (See Note)

Characteristic	Symbol	0°		25°		75°		Unit
			Min	Max	Min	Max	Min	

AC PARAMETERS

Propagation Delay	t_{pd}	0.7	1.6	0.7	1.5	0.7	1.7	ns
Rise Time	t_{r}	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	t_{f}	0.7	2.2	0.7	2.0	0.7	2.2	ns

NOTE:

Each MECL 10 KH series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a 50 ohm resistor to -2.0 volts.
This document contains information on a new product. Specifications and information herein are subject to change without notice. MECL. MECL 10K, and MECL 10KH are trademarks of Motorola, Inc

QUAD 2-INPUT OR GATE

Advance Information

MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH104, MC1OH107 and MC1OH109 are members of Motorola's new MECL family. These MECL 10KH parts are functional/pinout duplications of the standard MECL 10K family parts, with 100\% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1 ns Typical
- Power Dissipation $35 \mathrm{~mW} /$ Gate Typical (same as MECL 10K)
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ($\mathrm{V}_{\mathrm{CC}}=0$)	V_{EE}	-8.0 to 0	Vdc
Input Voltage ($\mathrm{V}_{\mathrm{CC}}=0$)	V_{1}	0 to V_{EE}	Vdc
$\begin{gathered} \text { Output Current - Continuous } \\ \text { - Surge } \end{gathered}$	tout	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0-75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS (VEE $=5.2 \mathrm{~V} \pm 5 \%$) (See Note)

Characteristic	Symbol	0°		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current MC1OH104	${ }^{\prime} \mathrm{E}$	-	39	-	35	-	39	mA
MC10H107		-	31	-	28	-	31	
MC10H109		-	15	-	14	-	15	
Input Current High	$\mathrm{l}_{\mathrm{inH}}$	-	425	-	265	-	265	mA
Input Current Low	$\mathrm{l}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voitage	V_{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	V_{IH}	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95,	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	t_{pd}							ns
MC1OH104		0.7	2.2	0.7	2.0	0.7	2.2	
MC1OH107		0.7	2.0	0.7	1.9	0.7	2.0	
MC1OH109		0.7	1.6	0.7	1.5	0.7	1.7	
Rise Time	t_{r}	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	t_{f}	0.7	2.2	0.7	2.0	0.7	2.2	ns

NOTE:

Each MECL 10KH series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to $\mathbf{- 2 . 0}$ volts.

[^6]

MC10H107

Triple 2-Input Exclusive OR/NOR Gate

SWITCHING TIME COMPARISON MECL 10 KH versus MECL 10 K

NOR OUTPUTS

If (ns)
MC1OH101-1.49
MC10101-2.4

$\mathrm{t}_{\mathrm{r}}(\mathrm{nS})$
MC1OH1O1 - 1.48
MC10101 - 2.51

tr (ns)
MC10H101 - 1.52
MC10101-2.62

OR OUTPUTS

it_{f} (ins)
MCIOH101- 1.42
MC10101-2.45

Advance Information

MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H106 is a member of Motorola's new MECL family. This device is a triple 4-3-3 input NOR gate. This 10 KH part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in propagation delay and no increase in power-supply current.

- Propagation Delay, 1.0 ns Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ($\mathrm{V}_{\mathrm{CC}}=0$)	$V_{E E}$	-8.0 to 0	Vdc
Input Voltage ($\mathrm{V}_{\mathrm{CC}}=0$)	V_{1}	0 to V_{EE}	Vdc
$\begin{aligned} & \hline \text { Output Current } \text { - Continuous } \\ & \text { - Surge } \\ & \hline \end{aligned}$	lout	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0-+75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to }+150 \\ & -55 \text { to }+165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS $\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.$) (See Note)

Characteristic	Symbol	0°		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	I_{E}	-	23	-	21	-	23	mA
Input Current High	$\mathrm{I}_{\mathrm{inH}}$	-	500	-	310	-	310	$\mu \mathrm{~A}$
Input Current Low	$\mathrm{I}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	V_{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	V_{IH}	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	V_{IL}	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	t_{pd}	0.7	1.6	0.7	1.5	0.7	1.7	ns
Rise Time	t_{r}	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	t_{f}	0.7	2.2	0.7	2.0	0.7	2.2	ns

NOTE

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 ohm resistor to -2.0 volts.

[^7]MC10H106

 NOR GATE

PSUFFIX
PLASTIC PACKAGE CASE 648

LSUFFIX
CERAMIC PACKAGE CASE 620

Advance Information

QUAD EXCLUSIVE OR GATE

The MC1OH113 is a member of Motorola's new MECL family. The MC1OH113 is a Quad Exclusive OR Gate with an enable common to all four gates. The outputs may be wire-ORed together to perform a 4-bit comparison function ($A=B$). The enable is active LOW.

- Propagation delay 1.3 ns typ.
- Power dissipation 175 mw typ/pkg (no load)
- Improved noise margin 150 mV (over operating voltage and temperature range)
- Voltage compensated
- MECL 10K-compatible

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ($\left.\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{EE}	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{I}	0 to V_{EE}	Vdc
Output Current - Continuous	$\mathrm{I}_{\mathrm{out}}$	50	mA
- Surge		100	
Operating Temperature Range	T_{A}	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic			
	$\mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.$) (See Note)

Characteristic	Symbol	0°		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	I_{E}	-	46	-	42	-	46	mA
Input Current High Pins 5, 7, 11, 13 Pins 4, 6, 10, 12 Pin 9	$\mathrm{linH}^{\text {in }}$	-	$\begin{array}{r} 430 \\ 510 \\ 1100 \end{array}$	-	$\begin{aligned} & 270 \\ & 320 \\ & 740 \end{aligned}$	-	$\begin{aligned} & 270 \\ & 320 \\ & 740 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	$\mathrm{l}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	V_{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\text {IH }}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$V_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	t_{pd}							ns
Data		0.7	2.5	0.7	2.3	0.7	2.5	
Enable		0.7	2.8	0.7	2.5	0.7	2.8	
Rise Time	t_{r}	0.7	2.4	0.7	2.2	0.7	2.4	ns
Fall Time	t_{f}	0.7	2.4	0.7	2.2	0.7	2.4	ns

NOTE:

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 ohm resistor to -2.0 volts

Advance Information

MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH115 is a member of Motorola's new MECL family. The MC10H115 is a quad differential amplifier designed for use in sensing differential signals over long lines. This MECL 10KH part is a functional/pinout duplication of the standard MECL 10K family part, with 100% improvement in counting frequency and no increase in power-supply current.
The base bias supply (V_{BB}) is made available at Pin 9 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary. Active current sources provide the $\mathrm{MC1OH} 115$ with excellent common mode rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (Pin 9) to prevent upsetting the current source bias network.
Propagation Delay, 1.0 ns Typical

- Voltage Compensated
- Power Dissipation 110 mW Typ/Pkg (No Load) - MECL 10K-Compatible
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ($\mathrm{V}_{\mathrm{CC}}=0$)	$V_{\text {EE }}$	-8.0 to 0	Vdc
Input Voltage ($\mathrm{V}_{\mathrm{CC}}=0$)	V_{1}	0 to V_{EE}	Vdc
$\begin{aligned} \text { Output Current } & \text { - Continuous } \\ & - \text { Surge } \end{aligned}$	lout	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0-+75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to }+150 \\ & -55 \text { to }+165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS $\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.$) (See Note)

Characteristic	Symbol	0°		25°		75°		Unit
			Min	Max	Min	Max	Min	
Power Supply Current	I_{E}	-	29	-	26	-	29	mA
Input Current	$\mathrm{I}_{\mathrm{inH}}$	-	150	-	95	-	95	$\mu \mathrm{~A}$
	$\mathrm{I}_{\mathrm{CBO}}$	-	1.5	-	1.0	-	1.0	$\mu \mathrm{~A}$
High Output Voltage	V_{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	V_{IH}	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	V_{IL}	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc
Reference Voltage	V_{BB}	-1.42	-1.28	-1.35	-1.23	-1.295	-1.15	Vdc

AC PARAMETERS

Propagation Delay	t_{pd}	0.7	1.6	0.7	1.5	0.7	1.7	ns
Rise Time	t_{r}	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	tf_{f}	0.7	2.2	0.7	2.0	0.7	2.2	ns

NOTE:
Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 ffpm is maintained. Outputs are terminated through a 50 ohm resistor to -2.0 volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

QUAD LINE RECEIVER

LSUFFIX
CERAMIC PACKAGE
CASE 620
P SUFFIX
PLASTIC PACKAGE CASE 648

Advance Information

MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH1 16 is a member of Motorola's new MECL family. It is a functional/pinout duplication of the MC10116, with 100\% improvement in propagation delay and no increase in power-supply current.

- Propagation Delay, 1 ns typical
- Power Dissipation 85 mW typ/pkg (same as MECL 10K)
- Improved Noise Margin 150 mV (over operating voltage and temperature range) (1)
- Voltage Compensated
- MECL 10K Compatible.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{EE}	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{I}	0 to V_{EE}	Vdc
Output Current - - Continuous	$\mathrm{I}_{\mathrm{out}}$	50	mA
Operating Temperature Range		100	
Storage Temperature Range - Plastic			
- Ceramic	T_{A}	$0-75$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{E E}=5.2 \mathrm{~V} \pm 5 \%\right)(2)$

Characteristic	Symbol	0°		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	${ }^{\prime} \mathrm{E}$	-	23	-	21	-	23	mA
Input Current High	$\mathrm{l}_{\text {inH }}$	-	150	-	95	-	95	$\mu \mathrm{A}$
Input Leakage Current	${ }^{\text {I CBO }}$	-	1.5	-	1.0	-	1.0	$\mu \mathrm{A}$
Reference Voltage	$V_{B B}$	-1.42	-1.28	-1.35	-1.23	-1.29	-1.15	Vdc
High Output Voltage	V_{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage (1)	V_{IH}	\|-1.17	-0.84	-1.13	$1-0.81$	-1.07	-0.735	Vdc
Low Input Voltage (1)	V_{IL}	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc
Common Mode Range (3)	$\mathrm{V}_{\text {CMR }}$	-	-	-2.85 to -0.8		-	-	Vdc
Input Sensitivity (4)	$V_{P P}$	-	-	150 typ		-	-	mVPP

AC PARAMETERS

Propagation Delay	t_{pd}	0.7	1.6	0.7	1.5	0.7	1.7	ns
Rise Time	t_{r}	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	t_{f}	0.7	2.2	0.7	2.0	0.7	2.2	ns

NOTES:

1. When $V_{B B}$ is used as the reference voltage
2. Each MECL 10KH series circuit has been designed to meet the specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to $\mathbf{- 2 . 0}$ volts.
3. Differential input not to exceed 1.0 Vdc
4. Differential input required to obtain full logic swing on output.

TRIPLE LINE RECEIVER

LSUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX

PLASTIC PACKAGE CASE 648

MC1OH116

Triple Line Receiver

The MC1OH116 is designed to be used in sensing differential signals over long lines. The bias supply (V_{BB}) is made available to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide these receivers with excellent common-mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} to prevent unbalancing the current-source bias network.

The MC1OH116 does not have internal-input pull-down resistors. This provides high impedance to the amplifier input and facilitates differential connections.

Applications:

- Low Level Receiver
- Schmitt Trigger
- Voltage Level Interface

This document contains information on a new product. Specifications and information herein are subject to change without notice.

SWITCHING TIME COMPARISON MECL 10 KH versus MECL 10 K

tf (ns)
MC10H116-1.08
MC10116-1.74

t_{r} (ns)
MC10H116-1.23
MC10116-1.98

NOR OUTPUTS

$\mathrm{t}_{\mathrm{r}}(\mathrm{ns})$
MC10H116-1.12
MC10116-1.86

OR OUTPUTS

tf_{f} (ns)
MC1OH116 - 1.21
MC10116-1.84

MC10H117
MC10H118

Advance Information

MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH117 and MC1OH118 are members of Motorola's new MECL family. These MECL 10KH parts are functional/pinout duplications of the standard MECL 10K family parts, with 100% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1 ns Typical
- Power Dissipation $100 \mathrm{~mW} /$ Gate Typical (same as MECL 10K)
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{EE}	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{1}	0 to V_{EE}	Vdc
Output Current - Continuous	$\mathrm{I}_{\mathrm{out}}$	50	mA
- Surge		100	
Operating Temperature Range	T_{A}	$0-75$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic			
	$\mathrm{T}_{\mathrm{stg}}$	-55 to 150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (VEE $=5.2 \mathrm{~V} \pm 5 \%$) (See Note)

Characteristic	Symbol	0°		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	${ }_{\text {I }}$ (29		26		29	mA
Input Current High Pins 3*, 4, 5, 12, 13, 14* Pins 6, 7, 10, 11 Pin 9	$\mathrm{l}_{\mathrm{inH}}$	*	$\begin{aligned} & 465 \\ & 545 \\ & 710 \end{aligned}$		$\begin{aligned} & 275 \\ & 320 \\ & 415 \end{aligned}$		$\begin{aligned} & 275 \\ & 320 \\ & 415 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	$\mathrm{l}_{\text {inL }}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	V_{OH}	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	V_{OL}	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	V_{IH}	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$V_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	t_{pd}	0.7	2.0	0.7	1.8	0.8	1.9	ns
Rise Time	t_{r}	0.7	2.0	0.7	2.0	0.7	2.2	ns
Fall Time	t_{f}	0.7	2.0	0.7	2.0	0.7	2.2	ns
MC10H1 18 only NOTE: Each MECL 1OKH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.								

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC10H117

Dual 2-Wide 2-3 Input OR-AND/OR-AND-INVERT Gate

MC10H118

Dual 2-Wide 3-Input OR-AND Gate

Advance Information

MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH119 and MC1OH121 are members of Motorola's new MECL family. These MECL 10KH parts are functional/pinout duplications of the standard MECL 10 K family parts, with 100% improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1 ns Typical
- Power Dissipation 100 mW /Gate Typical (same as MECL 10K)
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ($\mathrm{V}_{\mathrm{CC}}=0$)	$V_{E E}$	-8.0 to 0	Vdc
Input Voltage ($\mathrm{V}_{\mathrm{CC}}=0$)	V_{1}	0 to V_{EE}	Vdc
$\begin{aligned} & \text { Output Current }- \text { Continuous } \\ &- \text { Surge } \\ & \hline \end{aligned}$	Iout	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0-75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{EE}}=5.2 \mathrm{~V} \pm 5 \%$) (See Note)

Characteristic	Symbol	0°		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	I_{E}		29		26		29	mA
```Input Current High Pins 3*, 4, 5, 6, 7, 9, 11,12,13, 14, 15 Pin 10```	$\mathrm{l}_{\mathrm{inH}}$		$\begin{aligned} & 500 \\ & 610 \\ & \hline \end{aligned}$		$\begin{aligned} & 295 \\ & 360 \end{aligned}$		$\begin{aligned} & 295 \\ & 360 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	1 inL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voitage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\text {IH }}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

## AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$	0.7	2.4	0.7	2.3	0.7	2.4	ns
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.4	0.7	2.3	0.7	2.4	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	2.4	0.7	2.3	0.7	2.4	ns

*MC1OH119 only
NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice.


2


## Advance Information

## TRIPLE 4-3-3 INPUT BUS DRIVER

The MC10H123 is a member of Motorola's new MECL family. The device is a triple 4-3-3 Input Bus Driver.
The MC1OH123 consists of three NOR gates designed for bus driving applications on card or between cards. Output low logic levels are specified with $\mathrm{V}_{\mathrm{OL}} \leqslant-2.0 \mathrm{Vdc}$ so that the bus may be terminated to -2.0 Vdc . The gate output, when low, appears as a high impedance to the bus, because the output emitter-followers of the MC1OH123 are "turned-off." This eliminates discontinuities in the characteristic impedance of the bus.
The $\mathrm{V}_{\mathrm{OH}}$ level is specified when driving a 25 -ohm load terminated to -2.0 Vdc , the equivalent of a 50 -ohm bus terminated at both ends. Although 25 ohms is the lowest characteristic impedance that can be driven by the MC 10 H 123 , higher impedance values may be used with this part. A typical 50 -ohm bus is shown in Figure 1.

- Propagation Delay, 1.5 ns Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{E E}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $V_{E E}$	Vdc
$\begin{aligned} \hline \text { Output Current } & - \text { Continuous } \\ & - \text { Surge } \end{aligned}$	${ }^{\text {out }}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	${ }^{\text {TA }}$	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic   - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to }+150 \\ & -55 \text { to }+165 \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$\mathbf{7 5}^{\circ}$		
		Min	Max	Min	Max	Min	Max	Unit
Power Supply Current	IE	-	60	-	56	-	60	mA
Input Current High	$\mathrm{l}_{\mathrm{inH}}$		495		310		310	$\mu \mathrm{~A}$
Input Current Low	$\mathrm{I}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-2.1	-2.03	-2.1	-2.03	-2.1	-2.03	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\mathrm{IL}}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

## AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$	0.7	2.3	0.7	2.3	0.7	2.3	ns
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.5	0.7	2.5	0.7	2.5	ns
Fall Time	$\mathrm{tf}_{\mathrm{f}}$	0.7	2.5	0.7	2.5	0.7	2.5	ns

## NOTE:

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 ffpm is maintained. Outputs are terminated through a 50 ohm resistor to -2.0 volts.


TRIPLE 4-3-3 INPUT BUS DRIVER


## PIN ASSIGNMENT



## FIGURE 1-50-OHM BUS DRIVER



## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H124 is a member of Motorola's new MECL family. The MC10H124 is a quad translator for interfacing data and control signals between a saturated logic section and the MECL section of digital systems. The 10 KH part is a functional/pinout duplication of the standard MECL 10 K family part, with $100 \%$ improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 1.5 ns Typical - Voltage Compensated
- Improved Noise Margin 150 mV - MECL 10K-Compatible
(Over Operating Voltage and Temperature Range)


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Power Supply $\left(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}\right)$	$\mathrm{V}_{\mathrm{CC}}$	0 to +7.0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \mathrm{TTL}$	$\mathrm{V}_{\mathrm{I}}$	0 to $\mathrm{V}_{\mathrm{CC}}$	Vdc
Output Current- Continuous   - Surge	$\mathrm{I}_{\mathrm{out}}$	50   100	mA
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic			
	$\mathrm{T}_{\text {stg }}$	-55 to +150   -55 to +165	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5.0 \%\right.$ )

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	
Negative Power Supply Drain Current	IE	-	72	-	66	-	72	mAdc
Positive Power Supply Drain Current	ICCH	-	16	-	16	-	18	mAdc
	ICCL	-	25	-	25	-	25	mAdc
Reverse Current $\begin{aligned} & \text { Pin } 6 \\ & \operatorname{Pin} 7\end{aligned}$	IR	-	$\begin{gathered} 200 \\ 50 \end{gathered}$	-	200 50	-	$\begin{gathered} 200 \\ 50 \end{gathered}$	$\mu \mathrm{Adc}$
Forward Current $\begin{aligned} & \text { Pin } 6 \\ & \text { Pin } 7\end{aligned}$	${ }^{\prime} \mathrm{F}$	-	$\begin{array}{\|c\|} \hline-12.8 \\ -3.2 \\ \hline \end{array}$	-	$\begin{array}{\|c\|} \hline-12.8 \\ -3.2 \end{array}$	-	$\begin{gathered} -12.8 \\ -3.2 \\ \hline \end{gathered}$	mAdc
Input Breakdown Voltage	$V_{(B R) \text { in }}$	5.5	-	5.5	-	5.5	-	Vdc
Input Clamp Voltage	$\mathrm{V}_{1}$	-	-1.5	-	-1.5	-	-1.5	Vdc
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	$-0.92$	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	2.0	-	2.0	-	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-	0.8	-	0.8	-	0.8	Vdc

## AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$	0.7	2.5	0.7	2.2	0.7	2.5	ns
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	1.5	0.7	1.5	0.7	1.7	ns
Fall Time	$\mathrm{tf}_{\mathrm{f}}$	0.7	1.5	0.7	1.5	0.7	1.7	ns

## NOTE:

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a $50-\mathrm{ohm}$ resistor to -2.0 volts.
This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC1OH124


QUAD TTL-TO-MECL TRANSLATOR


## APPLICATIONS INFORMATION

The MC10H124 has TTL-compatible inputs and MECL complementary open-emitter outputs that allow use as an inverting/non-inverting translator or as a differential line driver. When the common strobe input is at the low-logic level, it forces all true outputs to a MECL lowlogic state and all inverting outputs to a MECL highlogic state.

An advantage of this device is that TTL-level information can be transmitted differentially, via balanced twisted pair lines, to MECL equipment, where the signal can be received by the MC10H115 or MC10H116 differential line receivers. The power supply requirements are ground, +5.0 volts, and -5.2 volts.

MC10H125

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER -COUPLED LOGIC

The MC10H125 is a member of Motorola's new MECL family. The MC10H125 is a quad translator for interfacing data and control signals between the MECL section and saturated logic section of digital systems. The 10 KH part is a functional/pinout duplication of the standard MECL 10K family part, with $100 \%$ improvement in propagation delay, and no increase in power-supply current.

- Propagation Delay, 2.5 ns Typical - Voltage Compensated
- Improved Noise Margin 150 mV - MECL 10K-Compatible (Over Operating Voltage and Temperature Range)

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Power Supply ( $\mathrm{VEE}=-5.2 \mathrm{~V}$ )	$\mathrm{V}_{\mathrm{CC}}$	0 to +7.0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ )	$V_{1}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +75	${ }^{\circ} \mathrm{C}$
$\begin{aligned} \hline \text { Storage Temperature Range } & \text { - Plastic } \\ & \text { Ceramic } \end{aligned}$	${ }^{\text {stg }}$ g	$\begin{aligned} & -55 \text { to }+150 \\ & -55 \text { to }+165 \end{aligned}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5.0 \%\right.$ )(See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	
Negative Power Supply Drain Current	${ }^{\prime} \mathrm{E}$	-	44	-	40	-	44	mAdc
Positive Power Supply Drain Current	${ }^{\text {ICCH }}$	-	63	-	63	-	63	mAdc
	$\mathrm{I}_{\mathrm{CCL}}$	-	40	-	40	-	40	mAdc
Input Current	I inH	-	225	-	145	-	145	$\mu \mathrm{Adc}$
Input Leakage Current	ICBO	-	1.5	-	1.0	-	1.0	$\mu \mathrm{Adc}$
High Output Voltage $I_{O H}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH}}$	2.5	-	2.5	-	2.5	-	Vdc
Low Output Voltage $\mathrm{IOL}=+20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	0.5	-	0.5	-	0.5	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\mathrm{IL}}$	-1.95	-1.48	-1.95	-1.48	-1.95	$-1.45$	Vdc
Short Circuit Current	Ios	60	150	60	150	60	150	mAdc
Reference Voltage	$\mathrm{V}_{B B}$	-1.42	-1.28	-1.35	-1.23	-1.295	-1.15	Vdc

## AC PARAMETERS

Propagation Delay*	$\mathrm{t}_{\mathrm{pd}}$	1.0	3.6	1.0	3.6	1.0	3.6	ns
Rise Time	$\mathrm{t}_{\mathrm{r}}$	-	2.0	-	2.0	-	2.0	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	-	2.0	-	2.0	-	2.0	ns

NOTE: Each MECL 1OKH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

## QUAD MECL-TO-TTL

 TRANSLATOR

Gnd $=\operatorname{Pin} 16$
$V_{c c}(+5.0 \mathrm{Vdc})=\operatorname{Pin} 9$
$V_{E E}(-5.2 \mathrm{Vdc})=\operatorname{Pin} 8$

## PIN ASSIGNMENT



## APPLICATION INFORMATION

The MC10H125 incorporates differential inputs and Schottky TTL "totem pole" outputs. Differential inputs allow for use as an inverting/non-inverting translator or as a differential line receiver. The $\mathrm{V}_{\mathrm{BB}}$ reference voltage is available on Pin 1 for use in single-ended input biasing. The outputs of the MC10H125 go to a low-logic
level whenever the inputs are left floating.
An advantage of this device is that MECL-level information can be received, via balanced twisted pair lines, in the TTL equipment. This isolates the MECL-logic from the noisy TTL environment. Power supply requirements are ground, +5.0 volts and -5.2 volts.

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH130 is a member of Motorola's new MECL family. This MECL 10 KH part is a functional/pinout duplication of the standard MECL 10 K family part, with $100 \%$ improvement in clock speed and propagation delay and no increase in power-supply current.

- Propagation Delay, 1 ns Typical
- Power Dissipation, 155 mW Typical
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{E E}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $V_{E E}$	Vdc
$\begin{aligned} & \text { Output Current } \text { Continuous } \\ & \text { - Surge } \end{aligned}$	Iout	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temper ature Range	$\mathrm{T}_{\text {A }}$	0-75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {Stg }}$	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS (VEE $=-5.2 \mathrm{~V} \pm 5 \%$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	${ }^{\prime} \mathrm{E}$	-	38	-	35	-	38	mA
Input Current High   Pins 6, 11   Pins 7, 9, 10   Pins 4, 5, 12, 13	$\mathrm{l}_{\mathrm{inH}}$	- - -	$\begin{aligned} & 468 \\ & 545 \\ & 434 \end{aligned}$	- - -	$\begin{aligned} & 275 \\ & 320 \\ & 255 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 275 \\ & 320 \\ & 255 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	1 inL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	$-0.735$	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\text {IH }}$	-1.17	-0.84	-1.13	-0.81	-1.07	$-0.735$	Vdc
Low Input Voltage	$\mathrm{V}_{1 L}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\text {pd }}$						ns	
Data, Set, Reset		0.7	2.0	0.7	1.8	0.7	2.0	
Clock		0.7	2.2	0.7	2.1	0.7	2.2	
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns
Setup Time	$\mathrm{t}_{\text {set }}$	2.2	-	2.2	-	2.2	-	ns
Hold Time	$\mathrm{t}_{\text {hold }}$	0.7	-	0.7	-	0.7	-	ns

NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.

MECL is a trademark of Motorola Inc.
This document contains information on a new product. Specifications and information herein are subject to change without notice.


P SUFFIX
PLASTIC PACKAGE
CASE 648

L SUFFIX
CERAMIC PACKAGE
CASE 620


DUAL LATCH


TRUTH TABLE
$D$ $\bar{C}$ $\bar{C} E$ $Q_{n+1}$   $L$ $L$ $L$ $L$   $H$ $L$ $L$ $H$   $\phi$ $L$ $H$ $Q_{n}$   $\phi$ $H$ $L$ $Q_{n}$   $\phi$ $H$ $H$ $Q_{n}$
Don' Care

$\phi$ - Don't Care

## APPLICATION INFORMATION

The MC1OH130 is a clocked dual D type latch. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable (CE) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock $(\bar{C})$.

Any change at the D input will be reflected at the output
while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.

The set and reset inputs do not override the clock and D inputs. They are effective only when either $\overline{\mathrm{C}}$ or $\overline{\mathrm{CE}}$ or both are high.

## SWITCHING TIME COMPARISON MECL 10KH versus MECL 10K

Clock to 0

$\mathrm{t}_{\mathrm{r}}$ (ns)
MC1OH130-1.4 ns
MC10130-2.0 ns


Clock to $\overline{\mathrm{D}}$

$\mathrm{t}_{\mathrm{f}}(\mathrm{ns})$
MC1OH130-1.2 ns
MC10130-1.4ns

tf (ns)
$\mathrm{MClOH13O}-1.2 \mathrm{~ns}$
MC10130-1.5 ns

MC1OH131

## 2

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H131 is a member of Motorola's new MECL family. This MECL $10 K \mathrm{H}$ part is a functional/pinout duplication of the standard


## DUAL TYPE D MASTER-SLAVE FLIP FLOP

 MECL 10 K family part, with $100 \%$ improvement in clock speed and propagation delay and no increase in power-supply current.- Propagation Delay, 1 ns Typical
- Power Dissipation, 235 mW Typical
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{E E}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
$\begin{aligned} & \text { Output Current } \text { - Continuous } \\ & \text { - Surge } \end{aligned}$	- 'out	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0-75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic   - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	${ }^{\prime} \mathrm{E}$	-	62	-	56	-	62	mA
Input Current High   Pins 6, 11   Pin 9   Pins 7, 10   Pins 4, 5, 12, 13	$\mathrm{I}_{\mathrm{inH}}$	-	$\begin{aligned} & 530 \\ & 660 \\ & 485 \\ & 790 \end{aligned}$	-	$\begin{aligned} & 310 \\ & 390 \\ & 285 \\ & 465 \end{aligned}$	-	$\begin{aligned} & 310 \\ & 390 \\ & 285 \\ & 465 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	$l_{\text {inL }}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02.	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$V_{1 H}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
L.ow Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$							
Clock		0.7	2.0	0.7	2.0	0.7	2.1	ns
Set, Reset		0.7	2.0	0.7	2.0	0.7	2.1	
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.3	0.7	2.3	0.7	2.5	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	2.3	0.7	2.3	0.7	2.5	ns
Setup Time	$\mathrm{t}_{\text {set }}$	0.7	-	0.7	-	0.7	-	ns
Hold Time	$\mathrm{t}_{\text {hold }}$	0.7	-	0.7	-	0.7	-	ns
Toggle Frequency	$\mathrm{f}_{\mathrm{tog}}$	250	-	250	-	250	-	MHz

## NOTE:

Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equifibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.
MECL is a trademark of Motorola Inc.
This document contains information on a new product. Specifications and information herein are subject to change without notice.

P SUFFIX
PLASTIC PACKAGE
CASE 648

LSUFFIX CERAMIC PACKAGE CASE 620


MC1OH131
RS TRUTH TABLE

$R$	$S$	$Q_{n+1}$
$L$	$L$	$Q_{n}$
$L$	$H$	$H$
$H$	$L$	$L$
$H$	$H$	$N . D$

N.D. $=$ Not Defined

CLOCKED TRUTH TABLE

$C$	$D$	$Q_{n+1}$
$L$	$\phi$	$Q_{n}$
$H$	$L$	$L$
$H$	$H$	$H$

$\phi=$ Don't Care
$\mathrm{C}=\overline{\mathrm{C}}_{\mathbf{E}}+\mathrm{C}_{\mathrm{C}}$
A clock H is a clock transition from a low to a high state.

Dual D Master-Slave Flip-Flop

## MC10H131

## APPLICATION INFORMATION

The MC1OH131 is a dual master-slave type D flip-flop. Asynchronous Set ( S ) and Reset ( R ) override Clock ( $\mathrm{C}_{\mathrm{C}}$ ) and Clock Enable ( $\overline{\mathrm{CE}}$ ) inputs. Each flip-flop may be clocked separately by holding the common clock in the new low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the low state.

In this case, the enable inputs perform the function of controlling the common clock.
The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data (D) input will not affect the output information at any other time due to master slave construction.

## SWITCHING TIME COMPARISON MECL 10KH versus MECL 10K

Clock to 0


Set/Reset to 0

$\mathrm{tr}_{\mathrm{r}}$ (ns)
MC10H131-1.5ns
MC10131 - 2.1 ns

Clock to $\overline{0}$

$\mathrm{t}_{\mathrm{r}}$ (ns)
MC1OH131-1.2 ns
MC10131 - 1.4 ns

Set/Reset to $\overline{0}$

$\mathrm{t}_{\mathrm{r}}$ ( ns )
MC1OH131 - 1.2 ns
MC10131-1.5ns

## Advance Information

## 2

## DUAL J-K MASTER SLAVE FLIP-FLOP

The MC1OH135 is a member of Motoroia's new MECL family. The $\mathrm{MC1OH} 135$ is a dual J-K master slave flip-flop. The device is provided with an asynchronous set(s) and reset(R). These set and reset inputs overide the clock.

A common clock is provided with separate $\bar{J}-\bar{K}$ inputs. When the clock is static, the $\bar{J} \mathrm{~K}$ inputs do not effect the output. The output states of the flip flop change on the positive transition of the clock.

- Propagation Delay, 1.5 ns Typical - Improved Noise Margin 150 mV
- Power Dissipation, 280 mW

Typical/Pkg. (No Load)

- $\mathrm{f}_{\mathrm{tog}} 250 \mathrm{MHz}$ Max

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{E E}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
$\begin{aligned} \text { Output Current } & \text { - Continuous } \\ & \text { - Surge } \end{aligned}$	$\mathrm{I}_{\text {out }}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to + 75	${ }^{\circ} \mathrm{C}$
$\begin{aligned} \text { Storage Temperature Range } & \text { - Plastic } \\ & \text { - Ceramic } \end{aligned}$	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to }+150 \\ & -55 \text { to }+165 \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (VE $=-5.2 \mathrm{~V} \pm 5 \%$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	$l_{E}$	-	75	-	68	-	75	mA
Input Current High   Pins 6, 7, 10, 11   Pins 4, 5, 12, 13   Pin 9	$\mathrm{l}_{\mathrm{inH}}$	$_$	$\begin{aligned} & 460 \\ & 800 \\ & 675 \end{aligned}$	$-$	$\begin{aligned} & 285 \\ & 500 \\ & 420 \end{aligned}$	-	$\begin{aligned} & 285 \\ & 500 \\ & 420 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	l inL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	-1.13	-0.81	-1.07	$-0.735$	Vdc
Low Input Voltage	$\mathrm{V}_{\mathrm{IL}}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay   Set, Reset, Clock	$\mathrm{t}_{\mathrm{pd}}$	0.7	2.6	0.7	2.3	0.7	2.6	ns
Rise Time		$\mathrm{t}_{\mathrm{r}}$	0.7	2.2	0.7	2.0	0.7	2.2
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns
Set-up Time	$\mathrm{t}_{\text {set }}$	1.5	-	1.5	-	1.5	-	ns
Hold Time	$\mathrm{t}_{\text {hold }}$	1.0	-	1.0	-	1.0	-	ns
Toggle Frequency	$\mathrm{f}_{\text {tog }}$		250		250		250	MHz

## NOTE:

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a 50 ohm resistor to -2.0 volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

## DUAL J-K MASTER SLAVE FLIP-FLOP


N.D. $=$ Not Defined
*Output states change on positive transition of clock for $\bar{J}-\bar{K}$ input condition present.
PIN ASSIGNMENT


## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H136 is a member of Motorola's new MECL family. The $\mathrm{MC1OH1} 36$ is a high speed synchronous hexadecimal counter. This 10KH part is a functional/pinout duplication of the standard MECL 10K family part, with $100 \%$ improvement in counting frequency and no increase in power-supply current.

- Counting frequency, 250 MHz minimum
- Voltage Compensated
- Power Dissipation, 625 mW Typical
- MECL 10K-Compatible
- Improved Noise Margin 150 mV (over operating voltage and temperature range)


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathbf{1}}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
Output Current- Continuous   - Surge	$\mathrm{I}_{\text {out }}$	50	mA
Operating Temperature Range		100	
Storage Temperature Range - Plastic			
	$\mathrm{T}_{\mathrm{A}}$	$0-75$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	${ }^{\prime} \mathrm{E}$	-	165	-	150	-	165	mA
Input Current High   Pins 5, 6, 11, 12, 13   Pin 9   Pin 7   Pin 10	linH	-	$\begin{aligned} & 430 \\ & 670 \\ & 535 \\ & 380 \end{aligned}$	-	$\begin{aligned} & 275 \\ & 420 \\ & 335 \\ & 240 \end{aligned}$	-	$\begin{aligned} & 275 \\ & 420 \\ & 335 \\ & 240 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	I inL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\text {IH }}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$V_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay   Clock to Q   Clock to Carry Out   Carry in to Carry Out	${ }^{\text {tpd }}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.7 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 7.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.7 \\ & 3.5 \end{aligned}$	ns
Set-up Time Data (DO to C) Select (S to C) Carry $\ln \left(\mathrm{C}_{\text {in }}\right.$ to C$)$ ( $C$ to $\mathrm{C}_{\text {in }}$ )	$\mathrm{t}_{\text {set }}$	$\begin{gathered} 2.0 \\ 3.5 \\ 2.0 \\ 0 \end{gathered}$	- - -	$\begin{gathered} 2.0 \\ 3.5 \\ 2.0 \\ 0 \end{gathered}$	- - - -	$\begin{gathered} 2.0 \\ 3.5 \\ 2.0 \\ 0 \end{gathered}$	-	ns
Hold Time   Data (C to DO)   Select (C to S)   Carry $\ln$ ( C to $\mathrm{C}_{\mathrm{in}}$ )   ( $\mathrm{C}_{\text {in }}$ to C )	thold	$\begin{gathered} 0 \\ -0.5 \\ 0 \\ 2.2 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0 \\ -0.5 \\ 0 \\ 2.2 \end{gathered}$	-	$\begin{gathered} 0 \\ -0.5 \\ 0 \\ 2.2 \end{gathered}$	-	ns
Counting Frequency	${ }^{\text {f }}$ count	250	-	250	-	250	-	M Hz
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.3	0.7	2.1	0.7	2.3	ns
Fall Time	$t_{f}$	0.7	2.3	0.7	2.1	0.7	2.3	ns

NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.


## UNIVERSALHEXADECIMAL COUNTER


-Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.
high logic level.

MECL is a trademark of Motorola Inc

This document contains information on a new product. Specifications and information herein are subject to change without notice

## HEXADECIMAL COUNTER



## APPLICATION INFORMATION

The MC10H136 is a high speed synchronous counter that operates at 250 MHz . Counter operating modes include count up, count down, pre-set and hold count. This device allows the designer to use one basic counter for many applications.

The S1, S2, control lines determine the operating modes of the counter. In the pre-set mode, a clock pulse is necessary to load the counter with the information present on the data inputs (D0, D1, D2, and D3). Carry out goes low on the terminal count or when the counter is being pre-set.

## Advance Information

## MECL 10KH HIGH－SPEED EMITTER－COUPLED LOGIC

The MC10H141 is a four－bit universal shift register．This device is a functional／pinout duplication of the standard MECL 10 K part with $100 \%$ improvement in propagation delay and operation fre－ quency and no increase in power supply current．
－Shift frequency， 250 MHz Min
－Power Dissipation， 425 mW Typical
－Improved Noise Margin 150 mV （over operating voltage and temperature range）
－Voltage Compensated
－MECL 10K－Compatible

## MAXIMUM RATINGS

Advance Information								
The MC10H141 is a four－bit universal shift register．This devic is a functional／pinout duplication of the standard MECL 10 K par with $100 \%$ improvement in propagation delay and operation fre quency and no increase in power supply current．   －Shift frequency， 250 MHz Min   －Power Dissipation， 425 mW Typical   －Improved Noise Margin 150 mV （over operating voltage and temperature range）   －Voltage Compensated   －MECL 10K－Compatible								
MAXIMUM RATINGS								
Characteristic				nbol				
Power Supply（ $\mathrm{V}_{\mathrm{CC}}=0$ ）				EE	－8．0	to 0	V	
Input Voltage（ $\mathrm{V}_{\mathrm{CC}}=0$ ）				1	0 to	$\mathrm{V}_{\mathrm{EE}}$	V	
$\begin{aligned} & \hline \text { Output Current } \text { - Continuous } \\ & \text { - Surge } \\ & \hline \end{aligned}$				ut			m	
Operating Temperature Range				A				
Storage Temperature Range－Plastic   －Ceramic				g				
ELECTRICAL CHARACTERISTICS（ $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$ ）								
Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	IE		112		102		112	mA
Input Current High   Pins 5，6，9，11，12， 13   Pin 7，10   Pin 4	linH	－	$\begin{aligned} & 405 \\ & 416 \\ & 510 \end{aligned}$	－	255 260 320	二	255   260   320	$\mu \mathrm{A}$
Input Current Low	linL	0.5	－	0.5	－	0.3	－	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	－1．02	－0．84	－0．98	－0．81	－0．92	－0．735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	－1．95	$-1.63$	－1．95	－1．63	－1．95	－1．60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	－1．17	－0．84	－1．13	－0．81	－1．07	－0．735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	－1．95	－1．48	－1．95	－1．48	－1．95	－1．45	Vdc
AC PARAMETERS								
Propagation Delay	tpd	1.1	2.0	1.0	1.9	1.1	2.1	ns
Hold Time	thold	1.0	－	1.0	－	1.0	－	ns
Set up Time   Data   Select	$\mathrm{t}_{\text {set }}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	－	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	－	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	－	ns
Rise Time Fall Time	$\begin{aligned} & \mathrm{tr}_{\mathrm{r}} \\ & \mathrm{tf}^{2} \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	ns
Shift Frequency	$\mathrm{f}_{\text {shift }}$	250	－	250	－	250	－	MHz
NOTE：   Each MECL 10 KH series circuit has been designed to meet the de specifications shown in the test table，after thermal equilibrium has been established．The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained．Outputs are terminated through a 50 －ohm resistor to -2.0 volts．								

ELECTRICAL CHARACTERISTICS（VEE $=-5.2 \mathrm{~V} \pm 5 \%$ ）

Advance Information								
The MC10H141 is a four－bit universal shift register．This devic is a functional／pinout duplication of the standard MECL 10 K par with $100 \%$ improvement in propagation delay and operation fre quency and no increase in power supply current．   －Shift frequency， 250 MHz Min   －Power Dissipation， 425 mW Typical   －Improved Noise Margin 150 mV （over operating voltage and temperature range）   －Voltage Compensated   －MECL 10K－Compatible								
MAXIMUM RATINGS								
Characteristic				nbol				
Power Supply（ $\mathrm{V}_{\mathrm{CC}}=0$ ）				EE	－8．0	to 0	V	
Input Voltage（ $\mathrm{V}_{\mathrm{CC}}=0$ ）				1	0 to	$\mathrm{V}_{\mathrm{EE}}$	V	
$\begin{aligned} & \hline \text { Output Current } \text { - Continuous } \\ & \text { - Surge } \\ & \hline \end{aligned}$				ut			m	
Operating Temperature Range				A				
Storage Temperature Range－Plastic   －Ceramic				g				
ELECTRICAL CHARACTERISTICS（ $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$ ）								
Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	IE		112		102		112	mA
Input Current High   Pins 5，6，9，11，12， 13   Pin 7，10   Pin 4	linH	－	$\begin{aligned} & 405 \\ & 416 \\ & 510 \end{aligned}$	－	255 260 320	二	255   260   320	$\mu \mathrm{A}$
Input Current Low	linL	0.5	－	0.5	－	0.3	－	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	－1．02	－0．84	－0．98	－0．81	－0．92	－0．735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	－1．95	$-1.63$	－1．95	－1．63	－1．95	－1．60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	－1．17	－0．84	－1．13	－0．81	－1．07	－0．735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	－1．95	－1．48	－1．95	－1．48	－1．95	－1．45	Vdc
AC PARAMETERS								
Propagation Delay	tpd	1.1	2.0	1.0	1.9	1.1	2.1	ns
Hold Time	thold	1.0	－	1.0	－	1.0	－	ns
Set up Time   Data   Select	$\mathrm{t}_{\text {set }}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	－	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	－	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	－	ns
Rise Time Fall Time	$\begin{aligned} & \mathrm{tr}_{\mathrm{r}} \\ & \mathrm{tf}^{2} \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	ns
Shift Frequency	$\mathrm{f}_{\text {shift }}$	250	－	250	－	250	－	MHz
NOTE：   Each MECL 10 KH series circuit has been designed to meet the de specifications shown in the test table，after thermal equilibrium has been established．The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained．Outputs are terminated through a 50 －ohm resistor to -2.0 volts．								

## AC PARAMETERS

Advance Information								
The MC10H141 is a four－bit universal shift register．This devic is a functional／pinout duplication of the standard MECL 10 K par with $100 \%$ improvement in propagation delay and operation fre quency and no increase in power supply current．   －Shift frequency， 250 MHz Min   －Power Dissipation， 425 mW Typical   －Improved Noise Margin 150 mV （over operating voltage and temperature range）   －Voltage Compensated   －MECL 10K－Compatible								
MAXIMUM RATINGS								
Characteristic				mbol		ting		
Power Supply（ $\mathrm{V}_{\mathrm{CC}}=0$ ）				EE		to 0		
Input Voltage（ $\mathrm{V}_{\mathrm{CC}}=0$ ）				I		$\mathrm{V}_{\mathrm{EE}}$	Vd	
$\begin{aligned} \text { Output Current - Continuous } \\ \text { - Surge } \end{aligned}$				ut			m	
Operating Temperature Range				A		－75		
Storage Temperature Range－Plastic				stg		$\begin{aligned} & \text { to } 150 \\ & \text { to } 165 \\ & \hline \end{aligned}$		
ELECTRICAL CHARACTERISTICS（ $\mathrm{V}_{\text {EE }}=-5.2 \mathrm{~V} \pm 5 \%$ ）								
Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	IE		112		102		112	mA
Input Current High Pins 5，6，9，11，12， 13 Pin 7，10 Pin 4	linH	二	$\begin{aligned} & 405 \\ & 416 \\ & 510 \end{aligned}$	二	$\begin{aligned} & 255 \\ & 260 \\ & 320 \end{aligned}$	－	255 260 320	$\mu \mathrm{A}$
Input Current Low	linL	0.5	－	0.5	－	0.3	－	$\mu \mathrm{A}$
High Output Voltage	V OH	－1．02	－0．84	－0．98	－0．81	－0．92	－0．735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	－1．95	－1．63	－1．95	－1．63	－1．95	－1．60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	－1．17	－0．84	－1．13	－0．81	－1．07	－0．735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	－1．95	－1．48	－1．95	－1．48	－1．95	－1．45	Vdc
AC PARAMETERS								
Propagation Delay	tpd	1.1	2.0	1.0	1.9	1.1	2.1	ns
Hold Time	thold	1.0	－	1.0	－	1.0	－	ns
$\begin{aligned} & \text { Set up Time } \\ & \text { Data } \\ & \text { Select } \end{aligned}$	${ }_{\text {tset }}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	－	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	－	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	－	ns
Rise Time Fall Time	$\begin{aligned} & \mathrm{tr}_{\mathrm{r}} \\ & \mathrm{tff}^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & \hline 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	ns
Shift Frequency	$\mathrm{f}_{\text {shift }}$	250	－	250	－	250	－	MHz
NOTE：   Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table，after thermal equilibrium has been established．The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained．Outputs are terminated through a 50 －ohm resistor to -2.0 volts．								

## NOTE：

Each MECL 10 KH series circuit has been designed to meet the de specifications shown in the test table，after thermal equilibrium has been established．The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained．Outputs are terminated through a 50 －ohm resistor to -2.0 volts．

## MC1OH141

[^8]

＊Outputs as exist after pulse appears at＂ C ＂input with input conditions as shown（Pulse Positive transition of clock input）．

## LOGIC DIAGRAM



## APPLICATION INFORMATION

The MC10H141 is a four-bit universal shift register which performs shift left, or shift right, serial/parallel in, and serial/parallel out operations with no external gating. Inputs S1 and S2 control the four possible operations of the register without external gating of the clock. The flip-flops shift information on the positive edge of
the clock. The four operations are stop shift, shift left, shift right, and parallel entry of data. The other six inputs are all data type inputs; four for parallel entry data, and one for shifting in from the left (DL) and one for shifting in from the right (DR).

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H145 is a member of Motorola's new MECL family. The MC1OH145 is a $16 \times 4$ bit register file. The active-low chip select allows easy expansion.

The operating mode of the register file is controlled by the $\overline{W E}$ input. When WE is "low" the device is in the write mode, the outputs are "low" and the data present at $D_{n}$ input is stored at the selected address. when $\overline{W E}$ is "high", the device is in the read mode - the data state at the selected location is present at the $Q_{n}$ outputs.

Address Access Time, 3.5 ns Typical

- Power Dissipation, 700 mW Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated

MECL 10K-Compatible

## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathbf{I}}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
Output Current - Continuous	$\mathrm{I}_{\text {out }}$	50	mA
- Surge		100	
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic	$\mathrm{T}_{\text {Stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
		-55 to +165	

ELECTRICAL CHARACTERISTICS $\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.$ ) (See Note)

Characteristic	$\mathbf{S y m b o l}^{*}$	$\mathbf{0}^{\circ}$		$\mathbf{2 5}^{\circ}$		$\mathbf{7 5}^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	$\mathrm{I}_{\mathrm{E}}$	-	165	-	150	-	165	mA
Input Current High	$\mathrm{I}_{\mathrm{inH}}$	-	375	-	220	-	220	$\mu \mathrm{~A}$
Input Current Low	$\mathrm{I}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\mathrm{IL}}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

## NOTE

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice. MECL, MECL 10 K and MECL 10 KH are trademarks of Motorola Inc.

PIN ASSIGNMENT


TRUTH TABLE				
MODE INPUT  OUTPUT    $\overline{\text { CS }}$ $\overline{\text { WE }}$ $\mathrm{D}_{\mathbf{n}}$   Write "O" L L L   $\mathbf{n}$      Write "1" L L H   Read L H $\phi$   Disabled H $\phi$ $\phi$				

$\phi=$ Don't Care
Q-State of Addressed Cell

## MC10H145

AC PARAMETERS

Characteristics	Symbol	$\begin{gathered} \text { MC10H145 } \\ T_{A}=0 \text { to }+75^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \% \\ \hline \end{gathered}$		Unit	Conditions
		Min	Max		
Read Mode   Chip Select Access Time Chip Select Recovery Time Address Access Time	$\begin{aligned} & { }^{{ }^{\text {t}} \mathrm{ACS}} \\ & t_{\mathrm{t}} \mathrm{ACS} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 6.0 \end{aligned}$	ns	Measured from $50 \%$ of input to $50 \%$ of output. See Note 2.
Write Mode   Write Pulse Width Data Setup Time Prior to Write Data Hold Time After Write Address Setup Time Prior to Write Address Hold Time After Write Chip Select Setup Time Prior to Write Chip Select Hold Time After Write Write Disable Time Write Recovery Time	tw   tWSD   tWHD   tWSA   tWHA   twscs   twhes   tws   twr	$\begin{gathered} 4.0 \\ 0 \\ 1.5 \\ 3.5 \\ 0.5 \\ 0 \\ 1.5 \\ 1.0 \\ 1.0 \end{gathered}$	- - - - - 6.0 6.0	ns	tWSA $=3.5 \mathrm{~ns}$   Measured at $50 \%$ of input to $50 \%$ of output. tw $=4.0 \mathrm{~ns}$.
Chip Enable Strobe Mode Data Setup Prior to Chip Select Write Enable Setup Prior to Chip Select Address Setup Prior to Chip Select Data Hold Time After Chip Select Write Enable Hold Time After Chip Select Address Hold Time After Chip Select Chip Select Minimum Pulse Width	${ }^{t}$ CSD tcsw tCSA ${ }^{\text {t }}$ CHD ${ }^{\text {t CHW }}$ ${ }^{\text {t }}$ CHA ${ }^{t} \mathrm{CS}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 1.0 \\ 0 \\ 2.0 \\ 10 \end{gathered}$	-	ns	Guaranteed but not tested on standard product. See Figure 1.
Rise and Fall Time Address to Output CS to Output	$t_{\text {r }}, \mathrm{t}_{f}$	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	ns	Measured between $20 \%$ and $80 \%$. points.
Capacitance Input Capacitance Output Capacitance	$\begin{aligned} & \mathrm{C}_{\text {in }} \\ & \mathrm{C}_{\text {out }} \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	pF	Measured with a pulse technique.

NOTES: 1. Test circuit characteristics: $\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{MC} 10 \mathrm{H} 145 . \mathrm{C}_{\mathrm{L}} \leqslant 5.0 \mathrm{pF}$ (including jig and Stray Capacitance). Delay should be derated $30 \mathrm{ps} / \mathrm{pF}$ for capacitive loads up to 50 pF
2. The maximum Address Access Time is guaranteed to be the worst-case bit in the memory.
3. For proper use of MECL in a system environment, consult MECL System Design Handbook.

FIGURE 1 - CHIP ENABLE STROBE MODE



## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH158 is a member of Motorola's new MECL family. The $\mathrm{MC1OH} 158$ is a quad two channel multiplexer with common input select. A "high" level select enables input DOO, D10, D20 and D30 and a "low" level select enables input D01, D11, D21 and D31. This MECL 10KH part is a functional/pinout duplication of the standard MECL 10K family part, with $100 \%$ improvement in propagation delay and no increase in power-supply current.

- Propagation Delay, 1.5 ns Typical
- Power Dissipation, 197 mW Typical
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{E E}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
$\begin{aligned} \text { Output Current } & \text { - Continuous } \\ & - \text { Surge } \end{aligned}$	'out	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0-75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 165 \end{aligned}$	$\begin{aligned} & \circ \\ & \\ & \\ & \\ & \\ & \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS (VEE $=-5.2 \mathrm{~V} \pm 5 \%$ )

Characteristic	Symbol	$0{ }^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	$l_{E}$	-	53	-	48	-	53	mA
Input Current High Pin 9 Pins 3-6 and 10-13	$\mathrm{I}_{\mathrm{inH}}$	-	$\begin{aligned} & 475 \\ & 515 \end{aligned}$	-	$\begin{aligned} & 295 \\ & 320 \end{aligned}$	-	$\begin{aligned} & 295 \\ & 320 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	$\mathrm{l}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	$-1.13$	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$							ns
Data		1.0	1.9	1.0	1.8	1.0	2.0	
Select		1.0	2.9	1.0	2.7	1.0	2.9	
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns

NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts

This document contains information on a new product. Specifications and information herein are subject to change without notice.

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH159 is a member of Motorola's new MECL family. The MC1OH159 is a quad 2 -input multiplexer with enable. This MECL 10 KH part is a functional/pinout duplication of the standard MECL 10K family part, with $100 \%$ improvement in propagation delay and no increase in power-supply current.

- Propagation Delay, 1.5 ns Typical
- Power Dissipation, 218 mW Typical
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible


L SUFFIX
CERAMIC PACKAGE
CASE 620
P SUFFIX
PLASTIC PACKAGE CASE 648


## APPLICATION INFORMATION

The MC1OH159 is a quad two channel multiplexer with enable. It incorporates common enable and common data select inputs. The select input determines which data inputs are enabled. A high $(H)$ level enables data inputs

D0 0, D1 0, D2 0, and D3 0. A low (L) level enables data inputs D0 1, D1 1, D2 1, and D3 1. Any change on the data inputs will be reflected at the outputs while the enable is low. Input levels are inverted at the output.

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H160 is a member of Motorola's new MECL family. The MC1OH160 is a 12-bit parity generator-checker. The output goes high when an odd number of inputs are high providing the odd parity function. Unconnected inputs are pulled to a logic low allowing parity detection and generation for less than 12 bits. The MC10H160 is a functional pin duplication of the standard 10K family part with 100\% improvement in propagation delay and no increase in power-supply current.

- Propagation Delay, 2.5 ns Typical
- Power Dissipation, 320 mW Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{I}}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
Output Current   - Continuous   - Surge	$\mathrm{I}_{\mathrm{out}}$	50	mA
Operating Temperature Range		100	
Storage Temperature Range - Plastic			
	$\mathrm{T}_{\mathrm{A}}$	$0-+75$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	${ }^{\prime} \mathrm{E}$	-	88	-	78	-	86	mA
Input Current High   Pins 3,5,7,10,12,14   Pins 4,6,9,11,13,15	$\mathrm{linH}_{\text {in }}$	-	$\begin{aligned} & 391 \\ & 457 \end{aligned}$	-	$\begin{aligned} & 246 \\ & 285 \end{aligned}$	-	$\begin{aligned} & 246 \\ & 285 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	$\mathrm{l}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High İnput Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

## AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$	0.7	4.8	0.7	4.5	0.7	4.8	ns
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.0	0.7	1.9	0.7	2.0	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	1.5	0.7	1.4	0.7	1.45	ns

## NOTE:

Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a 50 ohm resistor to $\mathbf{- 2 . 0}$ volts.

12-BIT PARITY GENERATOR-CHECKER


TRUTH TABLE

INPLUT	OUTPUT
Sum of   High Level   Inputs	Pin 2
Even	Low
Odd	High

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH161 is a member of Motorola's new MECL family. This part provides parallel decoding of a three bit binary word to one of eight lines. The MC1OH161 is useful in high-speed multiplexer/ demultiplexer applications.

- Propagation Delay, 1 ns Typical
- Power Dissipation 315 mW Typical (same as MECL 10K)
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
$\begin{gathered} \text { Output Current }- \text { Continuous } \\ - \text { Surge } \\ \hline \end{gathered}$	$\mathrm{I}_{\text {out }}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0-75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{E E}=-5.2 \mathrm{~V} \pm 5 \%$ ) (See Note).

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	$I_{E}$	-	84	-	76	-	84	mA
Input Current High	$\mathrm{linH}_{\text {in }}$	-	465	-	275	-	275	$\mu \mathrm{A}$
Input Current Low	linL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	$-0.735$	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	$-1.13$	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$V_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$	0.7	3.1	0.7	3.0	0.7	3.2	ns
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns

## NOTE:

Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

## TYPICAL APPLICATIONS

FIGURE 1 - HIGH SPEED 16-BIT MULTIPLEXER/DEMULTIPLEXER


FIGURE 2 - 1-OF-64 LINE MULTIPLEXER


MC10H162

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH162 is a member of Motorola's new MECL family. This part provides parallel decoding of a three bit binary word to one of eight lines. The MC1OH162 is useful in high-speed multiplexer/ demultiplexer applications.

- Propagation Delay, 1 ns Typical
- Power Dissipation 315 mW Typical (same as MECL 10K)
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
$\begin{aligned} & \text { Output Current } \text { - Continuous } \\ &- \text { Surge } \\ & \hline \end{aligned}$	lout	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0-75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic   - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\text {EE }}=-5.2 \mathrm{~V} \pm 5 \%$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	${ }_{\text {I }}$	-	84	-	76	-	84	mA
Input Current High	$\mathrm{l}_{\mathrm{inH}}$	-	465	-	275	-	275	$\mu \mathrm{A}$
Input Current Low	l inL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\text {IH }}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$V_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$	0.7	3.1	0.7	3.0	0.7	3.2	ns
Rise Time	$\mathrm{t}_{\mathbf{r}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns

NOTE:
Each MECL: 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice.



INPUTS					OUTPUTS							
E0	E1	C	B	A	00	C1	102	203	04	05	06	07
L	L	L	L	L	H	L	L	L	L	L	L	L
L	L	$\llcorner$	L	H	L	н	L	L	L	L	L	L
ᄂ	L	$\llcorner$	H	L	L	L	H	L	L	L	L	L
L	L	L	H	H	L	L	L	H	L	L	L	L
L.	L	${ }_{\mathrm{H}}$	L	L	L	L	L	L.	H	L	L	L
ᄂ	L	H	L	H	L	L	L	L	L	H	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L
L	L	H	H	H	L	L	L	L	L	L	L	H
H	¢	${ }_{+}$	¢	$\phi$	L	L	L	$\llcorner$	L	L	L	L
$\Phi$	H	¢	¢	¢	L	L	L	L	L	L	L	L

The MC10H162 is designed to decode a three bit input word to one of eight output lines. The MC 10 H 162 output will be high when selected while all other output are low. The enable inputs, when either or both are high, force all outputs low.
The MC1OH162 is a true parallel decoder. This eliminates unequal parallel path delay times found in other decoder designs. These devices are ideally suited for multiplexer/demultiplexer applications.

TYPICAL APPLICATIONS

FIGURE 1 - HIGH SPEED 16-BIT MULTIPLEXER/DEMULTIPLEXER
Contral Selection


MC10H164

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH164 is a member of Motorola's new MECL family. This MECL 10 KH part is a functional/pinout duplication of the standard MECL 10 K family part, with $100 \%$ improvement in propagation delay, and no increase in power supply current.

## - Propagation Delay, 1 ns Typical

- Power Dissipation 310 mW Typical (same as MECL 10K)
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{I}}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
Output Current   - Continuous   - Surge	$\mathrm{I}_{\mathrm{out}}$	50	mA
Operating Temperature Range		100	
Storage Temperature Range - Plastic			
	$\mathrm{T}_{\mathrm{A}}$	$0-75$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{EE}},=-5.2 \mathrm{~V} \pm 5 \%$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	$\mathrm{I}_{\mathrm{E}}$	-	83	-	75	-	83	mA
Input Current High	$\mathrm{l}_{\mathrm{inH}}$	-	512	-	320	-	320	$\mu \mathrm{A}$
Input Current Low	$\mathrm{l}_{\text {inL }}$	0.7	-	0.7	-	0.7	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-0.735	-1.60	Vdc
High Input Voltage	$V_{\text {IH }}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$							
$\mathrm{X}_{0}-\mathrm{X}_{7}$		1.0	2.8	0.7	2.7	0.7	2.9	ns
$\mathrm{~A}, \mathrm{~B}, \mathrm{C}$		1.0	3.8	0.7	3.6	0.7	3.9	
$\overline{\text { Enable }}$		1.0	1.9	0.7	1.7	0.7	1.9	
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.1	0.7	2.0	0.7	2.2	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	2.1	0.7	2.0	0.7	2.2	ns

## NOTE:

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socke or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 voits

This document contains information on a new product. Specifications and information herein are subject to change without notice.

## TYPICAL APPLICATIONS

FIGURE 1 - HIGH SPEED 16-BIT MULTIPLEXER/DEMULTIPLEXER


FIGURE 2-1-OF-64 LINE MULTIPLEXER


MC10H165

## Advance Information

## 8-INPUT PRIORITY ENCODER

The MC10H165 is a member of Motorola's new MECL family. The MC10H165 is an 8 -Input Priority Encoder. This 10KH part is a functional/pinout duplication of the standard MECL 10 K family part, with $100 \%$ improvement in propagation delay, and no increases in power supply current.

- Propagation Delay, Data-to-Output, 2.2 ns Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{\text {EE }}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
	lout	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to }+150 \\ & -55 \text { to }+165 \end{aligned}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\text {EE }}=-5.2 \mathrm{~V} \pm 5.0 \%$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	$l_{\text {E }}$	-	144	-	131	-	144	mA
Input Current High Pin 4   Data Inputs	linH	-	$\begin{aligned} & 510 \\ & 600 \end{aligned}$	-	$\begin{aligned} & 320 \\ & 370 \end{aligned}$	-	$\begin{aligned} & 320 \\ & 370 \end{aligned}$	$\mu \mathrm{Adc}$
Input Current Low	l inL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay   Data input $\rightarrow$ Output   Clock Input $\rightarrow$ Output	${ }^{\text {t }}$ d	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 2.2 \end{aligned}$	0.7 0.7	3.2 2.0	0.7 0.7	$\begin{aligned} & 3.4 \\ & 2.2 \end{aligned}$	ns
Setup Time	$\mathrm{t}_{\text {set }}$	3.0	-	3.0	-	3.0	-	ns
Hold Time	thold	0.5	-	0.5	-	0.5	-	ns
Rise Time	$\mathrm{tr}_{r}$	0.7	2.4	0.7	2.2	0.7	2.4	ns
Fall Time	$\mathrm{tf}_{f}$	0.7	2.4	0.7	2.2	0.7	2.4	ns

## NOTE:

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 -ohm resistor to $\mathbf{- 2 . 0}$ volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

## PIN ASSIGNMENT



TRUTH TABLE

DATA INPUTS								OUTPUTS			
D0	D1	D2	D3	D4	D5	D6	D7	Q3	02	Q1	Q0
H	$\phi$	¢	$\phi$	$\phi$	$\phi$	$\phi$	¢	H	L	L	L
L	H	¢	$\phi$	¢	¢	¢	$\phi$	H	L	L	H
L	L	H	¢	$\phi$	$\phi$	¢	$\phi$	H	L	H	L
L	L	L	H	$\phi$	$\phi$	$\phi$	$\phi$	H	L	H	H
L	L	L	L	H	$\phi$	$\phi$	¢	H	H	L	L
L	L	L	L	L	H	¢	$\phi$	H	H	L	H
L	L	L	L	L	$L$	H	$\phi$	H	H	H	L
L	L	L	L	L	L	L	H	H	H	H	H
L	L	L	L	L	L	$L$	$L$	L	L	L	L

## 8-INPUT PRIORITY ENCODER

The MC10H165 is a device designed to encode eight inputs to a binary coded output. The output code is that of the highest order input. Any input of lower priority is ignored. Each output incorporates a latch allowing synchronous operation. When the clock is low the outputs follow the inputs and latch when the clock goes high. This device is very useful for a variety of applications in checking system status in control processors, peripheral controllers, and testing systems.

The input is active when high, (e.g., the three binary outputs are low when input D0 is high). The Q 3 output is high when any input is high. This allows direct extension into another priority encoder when more than eight inputs are necessary. The MC10H165 can also be used to develop binary codes from random logic inputs, for addressing ROMs, RAMs, or for multiplexing data.

## LOGIC DIAGRAM



Numbers at ends of terminals denote pin numbers for $L$ and $P$ packages.

## APPLICATION INFORMATION

A typical application of the MC10H165 is the decoding of system status on a priority basis. A 64-line priority encoder is shown in the figure below. System status lines are connected to this encoder such that, when a given condition exists, the respective input will be at a logic high level. This scheme will select the one
of 64 different system conditions, as represented at the encoder inputs, which has priority in determining the next system operation to be performed. The binary code showing the address of the highest priority input present will appear at the encoder outputs to control other system logic functions.

64-LINE PRIORITY ENCODER


MC10H166

## Advance Information

## 5-BIT MAGNITUDE COMPARATOR

The MC10H166 is a member of Motorola's new MECL family. The MC10H166 is a 5 -Bit Magnitude Comparator and is a functional/pinout duplication of the standard MECL 10 K part with $100 \%$ improvement in propagation delay and no increase in power-supply current.

The MC10H166 is a high-speed expandable 5-bit comparator for comparing the magnitude of two binary words. Two outputs are provided: $\mathrm{A}<\mathrm{B}$ and $\mathrm{A}>\mathrm{B}$. The $\mathrm{A}=\mathrm{B}$ function can be obtained by wire-ORing these outputs (a low level indicates $A=B$ ) or by wire-NORing the outputs ( $a$ high level indicates $A=B$ ). A high level on the enable function forces both outputs low.

- Propagation Delay, Data-to-Output, 2.0 ns Typical
- Power Dissipation 440 mW Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
$\begin{aligned} & \text { Output Current } \text { Continuous } \\ &- \text { Surge } \\ & \hline \end{aligned}$	lout	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic   - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to }+150 \\ & -55 \text { to }+165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5.0 \%\right)$ (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	IE	-	117	-	106	-	117	mA
Input Current High	linH	-	350	-	220	-	220	$\mu \mathrm{A}$
Input Current Low	linL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	VOH	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	VOL	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voitage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	VIL	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

## AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\text {pd }}$							ns				
Data-to-Output												
Enable-to-Output									$\quad$	0.7	4.1	0.7
:---	:---:	:---										
	3.8	0.7										
4.1												
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7										
2.0	2.2	0.7										
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7										

[^9] subject to change without notice.


# 5-BIT MAGNITUDE COMPARATOR 



TRUTH TABLE				
Inputs			Outputs	
$\overline{\mathrm{E}}$	A	B	A < B	A $>$ B
H	X	X	L	L
L	Word	rd B	L	L
L	Wor	rd B	L	H
L	Wor	rd B	H	L

## MC10H166

## LOGIC DIAGRAM



NOTE:
Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 -ohm resistor to $\mathbf{- 2 . 0}$ volts.

FIGURE 1 - 9 -BIT MAGNITUDE COMPARATOR


For longer word lengths, the MC 10 H 166 can be serially expanded or cascaded. Figure 1 shows two devices in a serial expansion for a 9 -bit word length. The $A>B$ and $A<B$ outputs are fed to the $A 0$ and $B 0$ inputs
respectively of the next device. The connection for an $A=B$ output is also shown. The worst case delay time of serial expansion is equal to the number of comparators times the data-to-output delay.

FIGURE 2 - 25-BIT MAGNITUDE COMPARATOR


For shorter delay times than possible with serial expansion, devices can be cascaded. Figure 2 shows a 25 -bit cascaded comparator whose worst case delay is two data-to-output delays. The cascaded scheme can be extended to longer word lengths.

## (A) MOTOROLA

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC 10 H 173 is a quad 2 -input multiplexer with latch. This device is a functional/pinout duplication of the standard MECL 10K part, with $100 \%$ improvement in propagation delay and no increase in power supply current.

- Data Propagation Delay, 1.5 ns Typica
- Voltage Compensated
- Power Dissipation, 275 mW Typical
- MECL 10K-Compatible
- Improved Noise Margin 150 mV (over operating voltage and temperature range)

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\left.\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{I}}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
Output Current - Continuous   - Surge	$\mathrm{I}_{\mathrm{out}}$	50	mA
Operating Temperature Range		100	
Storage Temperature Range - Plastic			
	$\mathrm{T}_{\mathrm{A}}$	$0-75$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.$ ) (See note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	$l_{\text {I }}$		73		66		73	mAdc
Input Current High Pins 3-7 \& 10-13 Pin 9	1 inH		$\begin{aligned} & 510 \\ & 475 \end{aligned}$		$\begin{aligned} & 320 \\ & 300 \end{aligned}$		$\begin{aligned} & 320 \\ & 300 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	1 inL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	V OH	-1.02	-0.84	-0.98	-0.81	-0.92	$-0.735$	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	-1.13	-0.81	-1.07	$-0.735$	Vdc
Low Input Voltage	$V_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay   Data   Clock   Select	${ }^{\text {p }}$ pd	0.7 1.0 1.0	2.3 3.7 3.6	0.7 1.0 1.0	2.1 3.5 3.4	0.7 1.0 1.0	2.3 3.7 3.6	ns
Set Up Time Data Select	${ }^{\text {tset }}$	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$	-	0.7 1.0	-	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$	-	ns
Hold Time Data Select	thold	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$	-	0.7 1.0	-	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$	-	ns
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.4	0.7	2.1	0.7	2.4	ns
Fall Time	$t_{f}$	0.7	2.4	0.7	2.1	0.7	2.4	ns
NOTE:   Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.								

This document contains information on a new product. Specifications and information herein are subject to change without notice.


LSUFFIX CERAMIC PACKAGE CASE 620

P SUFFIX
PLASTIC PACKAGE CASE 648


Quad 2-input Multiplexer/Latch

truth table

SELECT	CLOCK	$\mathbf{Q 0}_{\boldsymbol{n}+\mathbf{1}}$
$H$	L	D 00
L	L	D 01
$\phi$	$H$	$\mathrm{Q} 0_{\mathrm{n}}$

$\phi=$ Don't Care

## APPLICATION INFORMATION

The MC10173 is a quad two-channel multiplexer with latch. It incorporates common clock and common data select inputs. The select input determines which data input is enabled. A high $(H)$ level enables data inputs D00, D10, D20, and D30 and a low (L) level enables data inputs D01, D11, D21, D31. Any change on the data input
will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.

MC10H174

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H174 is a Dual 4-to-1 Multiplexer. This device is a functional/pinout duplication of the standard MECL 10K part, with 100\% improvement in propagation delay and no increase in power supply current.

- Propagation Delay, 1.5 ns Typical
- Power Dissipation, 305 mW Typical
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{E E}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $V_{E E}$	Vdc
$\begin{gathered} \text { Output Current - Continuous } \\ \text { - Surge } \end{gathered}$	lout	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	TA	0-75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic   - Ceramic	${ }^{\text {stg }}$	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%\right.$ ) (See note)

Characteristic	Symbol	$0^{\circ}$		25 ${ }^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	lE		80		73		80	mAdc
Input Current High Pins 3-7 \& 9-13 Pin 14	linH		$\begin{aligned} & 475 \\ & 670 \end{aligned}$		$\begin{array}{r} 300 \\ 420 \end{array}$		$\begin{aligned} & 300 \\ & 420 \end{aligned}$	$\mu$ Adc
Input Current Low	linL	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	V OH	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	VOL	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	VIH	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	$\mathrm{tpd}_{\mathrm{p}}$							ns
Data		1.0	2.9	0.7	2.7	0.7	2.9	
Select (A, B)		1.0	3.8	0.7	3.6	0.7	3.8	
Enable		1.0	1.9	0.7	1.7	0.7	1.9	
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	2.2	0.7	2.0	0.7	2.2	ns

## NOTE:

Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a $\mathbf{5 0}$-ohm resistor to $\mathbf{- 2 . 0}$ volts.

[^10] without notice.

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC1OH175 is a member of Motorola's new MECL family. The MC1OH1 75 is a quint D type latch with common reset and clock lines. This MECL 10 KH part is a functional/pinout duplication of the standard MECL 10K family part, with $100 \%$ improvement in propagation delay and no increase in power-supply current.

- Propagation Delay, 1.2 ns Typical
- Power Dissipation, 400 mW Typical
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\left.\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{I}}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
Output Current   - Continuous   - Surge	$\mathrm{I}_{\mathrm{out}}$	50	mA
Operating Temperature Range		100	
Storage Temperature Range - Plastic			
	$\mathrm{T}_{\mathrm{A}}$	$0-75$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	$l_{\text {E }}$	-	107	-	97	-	107	mA
Input Current High Pins 5,6,7,9,10,12,13 Pin 11	linH	-	$\begin{gathered} 565 \\ 1120 \end{gathered}$	-	$\begin{aligned} & 335 \\ & 660 \end{aligned}$	-	$\begin{aligned} & 335 \\ & 660 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	$\mathrm{l}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$							ns
Data		0.7	1.8	0.7	1.7	0.7	1.8	
Clock		0.7	2.3	0.7	2.2	0.7	2.2	
Reset		0.7	2.1	0.7	2.0	0.7	2.1	
Set-up Time	$\mathrm{t}_{\text {set }}$	1.5	-	1.5	-	1.5	-	ns
Hold Time	$\mathrm{t}_{\text {hold }}$	1.0	-	1.0	-	1.0	-	ns
Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.7	1.8	0.7	1.8	0.7	1.9	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.7	1.8	0.7	1.8	0.7	1.9	ns

NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to $\mathbf{- 2 . 0}$ volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice.


$$
\begin{aligned}
& V_{C C 1}=P_{\text {in } 1} \\
& V_{C C 2}=P_{\text {in } 16} \\
& V_{E E}=P \text { in } 8
\end{aligned}
$$



## APPLICATION INFORMATION

The MC1OH175 is a high speed, low power quint latch. It features five D type latches with common reset and a common two-input clock. Data is transferred on the negative edge of the clock and latched on the positive edge. The two clock inputs are "OR"ed together.

Any change on the data input will be reflected at the
outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information. The reset input is enabled only when the clock is in the high state.

## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage ( $\mathrm{V}_{\mathrm{CC}}=0$ )	$V_{1}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
$\begin{aligned} & \hline \text { Output Current } \text { Continuous } \\ &- \text { Surge } \end{aligned}$	lout	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
Operating Temperature Range	$\mathrm{T}_{\text {A }}$	0-75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range - Plastic - Ceramic	$\mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 165 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS (VEE $=-5.2 \mathrm{~V} \pm 5 \%$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	$I_{E}$	-	123	-	112	-	123	mA
Input Current High   Pins 5,6,7,10,11,12   Pin 9	linH	-	$\begin{aligned} & 425 \\ & 670 \end{aligned}$	-	$\begin{aligned} & 265 \\ & 420 \end{aligned}$		$\begin{aligned} & 265 \\ & 420 \end{aligned}$	$\mu \mathrm{A}$
Input Current Low	$\mathrm{l}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{1 \mathrm{H}}$	-1.17	-0.84	$-1.13$	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vde

AC PARAMETERS

Propagation Delay	$\mathrm{t}_{\mathrm{pd}}$	1.0	2.9	1.0	2.7	1.0	3.0	ns
Set-up Time	$\mathrm{t}_{\mathrm{set}}$	1.5	-	1.5	-	1.5	-	ns
Hold Time	$\mathrm{t}_{\text {hold }}$	0.8	-	0.8	-	0.8	-	ns
Rise Time	$\mathrm{t}_{\mathrm{f}}$	0.8	2.5	0.7	2.4	0.8	2.6	ns
Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.8	2.5	0.7	2.4	0.8	2.6	ns
Toggle Frequency	$\mathrm{f}_{\text {tog }}$	250	-	250	-	250	-	MHz

NOTE:
Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a $\mathbf{5 0}$-ohm resistor to $\mathbf{- 2 . 0}$ volts.

[^11] subject to change without notice.

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC



The MC1OH176 is a member of Motorola's new MECL family. The MC1OH176 contains six master slave type " $D$ " flip-flops with a common clock. This MECL 10KH part is a functional/pinout duplication of the standard MECL 10 K family part, with $100 \%$ improvement in clock frequency and propagation delay and no increase in powersupply current.

- Propagation Delay 1.7 ns Typical
- Power Dissipation, 460 mW Typical
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible


P SUFFIX
PLASTIC PACKAGE CASE 648


RAMIC PACKAGE CASE 620


## MC10H176

## APPLICATION INFORMATION

The MC1OH176 contains six high-speed, master slave type " $D$ " flip-flops. Data is entered into the master when the clock is low. Master-to-slave data transfer takes place on the positive-going Clock transition. Thus, outputs may
change only on a positive-going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device.

## Advance Information

## MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC

The MC10H179 is a member of Motorola's new MECL family. It is a functional/pinout duplication of the standard MECL 10K part, with $100 \%$ improvement in propagation delay and no increase in power supply current.

- Power Dissipation, 300 mW Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible


## MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{EE}}$	-8.0 to 0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\mathrm{I}}$	0 to $\mathrm{V}_{\mathrm{EE}}$	Vdc
Output Current   - Continuous   - Surge	$\mathrm{I}_{\text {out }}$	50   100	mA
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	$0-+75$	${ }^{\circ} \mathrm{C}$
Storage    $\mathrm{T}_{\mathrm{stg}}$	-55 to +150   -55 to +165	${ }^{\circ} \mathrm{C}$   ${ }^{\circ} \mathrm{C}$	



LOOK-AHEAD CARRY BLOCK


ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\text {EE }}=-5.2 \mathrm{~V} \pm 5 \%$ ) (See Note)

Characteristic	Symbol	$0^{\circ}$		$25^{\circ}$		$75^{\circ}$		Unit
		Min	Max	Min	Max	Min	Max	
Power Supply Current	IE	-	79	-	72	-	79	mA
Input Current High Pins 5 and 9	linH	-	465	-	275	-	75	$\mu \mathrm{A}$
Pins 4, 7 and 11		-	545	-	320	-	320	
Pin 14		-	705	-	415	-	415	
Pin 12		-	790	-	465	-	465	
Pins 10 and 13		-	870	-	510	-	510	
Input Current Low	$\mathrm{I}_{\mathrm{inL}}$	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
Low Output Voltage	$\mathrm{VOL}^{\text {O}}$	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
High Input Voltage	$\mathrm{V}_{\mathrm{IH}}$	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
Low Input Voltage	$\mathrm{V}_{\text {IL }}$	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ```
Propagation Delay
Pins 5, 7, 9, 10, 11,
13 to 3 or 6
G to GG
P to PG
P to GG

``` & \({ }^{\text {t }}\) pd & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& 0.7 \\
& 0.7
\end{aligned}
\] & 2.8

2.8
2.0
2.8 & 0.7

0.7
0.7
0.7 & 2.5

2.5
1.8
2.5 & 0.7

0.7
0.7
0.7 & 2.8

2.8
2.0
2.8 & ns \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{r}}\) & 0.7 & 2.4 & 0.7 & 2.2 & 0.7 & 2.4 & ns \\
\hline Fall Time & \({ }_{\text {f }}\) & 0.7 & 2.4 & 0.7 & 2.2 & 0.7 & 2.4 & ns \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
NOTE: \\
Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.
\end{tabular}} \\
\hline
\end{tabular}

PIN ASSIGNMENT

This document contains information on a new product. Specifications and information herein are subject to change without notice.

\section*{TYPICAL APPLICATIONS}

The MC10H179 is a high-speed, low-power, standard MECL complex function that is designed to perform the look-ahead carry function. This device can be used with the MC1OH181 4-bit ALU directly, or with the MC1OH180 dual arithmetic unit in any computer, instrumentation or digital communication application requiring high speed arithmetic operation on long words.
When used with the MC1OH181, the MC1OH179 performs a second order or higher look-ahead. Figure 2 shows
a 16-bit look-ahead carry arithmetic unit. Second order carry is valuable for longer binary words. As an example, addition of two 32 -bit words is improved from 30 nanoseconds with ripple-carry techniques. A block diagram of a 32-bit ALU is shown in Figure 1. The MC1OH179 may also be used in many other applications. It can, for example, reduce system package count when used to generate functions of several variables.

FIGURE 1 - 32-BIT ALU WITH CARRY LOOK-AHEAD

FIGURE 2 - 16-BIT FULL LOOK-AHEAD CARRY ARITHMETIC LOGIC UNIT

\section*{Advance Information}

\section*{MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC}

The MC10H180 is a member of Motorola's new MECL family. It is a high-speed, low-power, general-purpose adder/subtractor. It is designed to be used in special purpose adders/subtractors or in high-speed multiplier arrays.
Inputs for each adder are Carry-in, Operand A, and Operand B; outputs are Sum, \(\overline{\text { Sum }}\) and Carry-out. The common select inputs serve as a control line to Invert A for subtract, and a control line to Invert B.
- Propagation Delay, 1.8 ns Typical, Operand and Select to Output
- Power Dissipation, 360 mW Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
The MC10H180 is a member of Motorola's new MECL family. It is a high-speed, low-power, general-purpose adder/subtractor. It is designed to be used in special purpose adders/subtractors or in high-speed multiplier arrays. \\
Inputs for each adder are Carry-in, Operand A, and Operand B; outputs are Sum, \(\overline{\text { Sum }}\) and Carry-out. The common select inputs serve as a control line to Invert A for subtract, and a control line to Invert B. \\
- Propagation Delay, 1.8 ns Typical, Operand and Select to Output \\
- Power Dissipation, 360 mW Typical \\
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range) \\
- Voltage Compensated \\
- MECL 10K-Compatible
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{MAXIMUM RATINGS} \\
\hline Characteristic & Symbol & Rating & Unit \\
\hline Power Supply (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(\mathrm{V}_{\mathrm{EE}}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(\mathrm{V}_{1}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Current } \text { - Continuous } \\
&- \text { Surge }
\end{aligned}
\] & lout & \[
\begin{gathered}
50 \\
100
\end{gathered}
\] & mA \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {A }}\) & 0-+75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\begin{aligned} \text { Storage Temperature Range } & \text { - Plastic } \\ & \text { - Ceramic }\end{aligned}\) & \(\mathrm{T}_{\text {stg }}\) & \[
\begin{aligned}
& -55 \text { to }+150 \\
& -55 \text { to }+165
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(\mathrm{VEE}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%\)) (See Note)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|r|}{\(0^{\circ}\)} & \multicolumn{2}{|r|}{\(25^{\circ}\)} & \multicolumn{2}{|c|}{\(75^{\circ}\)} & \multirow[t]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & \(\mathrm{I}_{\mathrm{E}}\) & - & 95 & - & 86 & - & 95 & mA \\
\hline \begin{tabular}{l}
Input Current High \\
Pins 4, 12 \\
Pins 7, 9 \\
Pin 5, 6, 10, 11
\end{tabular} & linH & - & \[
\begin{aligned}
& 665 \\
& 515 \\
& 410
\end{aligned}
\] & - & \[
\begin{aligned}
& 417 \\
& 320 \\
& 255
\end{aligned}
\] & - & \[
\begin{aligned}
& 417 \\
& 320 \\
& 255
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Current Low & l inL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.020 & -0.840 & -0.980 & -0.810 & -0.920 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\text {IL }}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

AC PARAMETERS
\begin{tabular}{|l|c|c|c|c|c|c|c|l|}
\hline Propagation Delay & \(\mathrm{t}_{\mathrm{pd}}\) & & & & & & & ns \\
Operand to Output & & 0.7 & 3.8 & 0.7 & 3.5 & 0.7 & 3.8 & \\
Select to Output & & 0.7 & 3.8 & 0.7 & 3.5 & 0.7 & 3.8 & \\
Carry-in to Output & & 0.7 & 2.1 & 0.7 & 1.8 & 0.7 & 2.1 & \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{r}}\) & 0.7 & 2.2 & 0.7 & 2.0 & 0.7 & 2.2 & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{f}}\) & 0.7 & 2.2 & 0.7 & 2.0 & 0.7 & 2.2 & ns \\
\hline NOTE: \\
Each MECL 10KH series circuit has been designed to meet the dc specifications shown in \\
the test table, after thermal equilibrium has been established. The circuit is in a test socket \\
or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is main- \\
tained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.
\end{tabular}

This document contains information on a new product. Specifications and information herein are subject to change without notice.

FUNCTION SELECT TABLE
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{Sel}_{\text {A }}\) & Sel \({ }_{\text {B }}\) & Function \\
\hline H & H & S = A plus B \\
\hline H & L & \(S=A\) minus \(B\) \\
\hline L & H & \(S=B\) minus \(A\) \\
\hline L & L & \(\mathrm{S}=0\) minus A minus B \\
\hline
\end{tabular}

TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FUNCTION} & \multicolumn{5}{|c|}{INPUTS} & \multirow[b]{2}{*}{S0} & \multirow[b]{2}{*}{S]} & \multirow[b]{2}{*}{Cout} \\
\hline & Sela & \(\mathrm{Sel}_{\mathrm{B}}\) & AO & B0 & \(\mathrm{c}_{\text {in }}\) & & & \\
\hline \multirow[t]{8}{*}{ADD} & H & H & L & L & L & L & H & L \\
\hline & H & H & L & - L & H & H & L & L \\
\hline & H & H & L & H & L & H & L & L \\
\hline & H & H & L & H & H & L & H & H \\
\hline & H & H & H & L & L & H & L & L \\
\hline & H & H & H & L & H & L & H & H \\
\hline & H & H & H & H & L & L & H & H \\
\hline & H & H & H & H & H & H & L & H \\
\hline \multirow[t]{8}{*}{SUBTRACT} & H & L & L & L & L & H & L & L \\
\hline & H & L & L & L & H & L & H & H \\
\hline & H & L & L & H & L & L & H & 1 \\
\hline & H & L & L & H & H & H & L & L \\
\hline & H & L & H & L & L & L & H & H \\
\hline & H & L & H & L & H & H & L & H \\
\hline & H & L & H & H & L & H & L & L \\
\hline & H & \(L\) & H & H & H & L & H & H \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FUNCTION} & \multicolumn{5}{|c|}{INPUTS} & \multirow[b]{2}{*}{S0} & \multirow[b]{2}{*}{So} & \multirow[b]{2}{*}{\(\mathrm{C}_{\text {out }}\)} \\
\hline & Sola & \(\mathrm{Sel}_{\mathrm{B}}\) & AO & B0 & \(\mathrm{C}_{\text {in }}\) & & & \\
\hline \multirow[t]{16}{*}{REVERSE SUBTRACT} & L & H & L & L & L & H & L & L \\
\hline & L & H & L & L & H & L & H & H \\
\hline & L & H & L & H & L & L & H & H \\
\hline & \(L\) & H & L & H & H & H & L & H \\
\hline & L & H & H & L & L & L & H & \(\checkmark\) \\
\hline & L & H & H & \(L\) & H & H & L & L \\
\hline & L & H & H & H & L & H & L & L \\
\hline & \(L\) & H & H & H & H & \(L\) & H & H \\
\hline & L & L & L & L & L & L & H & H \\
\hline & L & L & L & L & H & H & L & H \\
\hline & L & L & L & H & \(L\) & H & L & L \\
\hline & L & L & \(L\) & H & H & L & H & H \\
\hline & L & L & H & 1 & L & H & L & L \\
\hline & \(L\) & L & H & L & H & L & H & H \\
\hline & \(L\) & 1 & H & H & L & L & H & \(L\) \\
\hline & L & L & H & H & H & H & L & \(L\) \\
\hline
\end{tabular}

\section*{Advance Information}

\section*{MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC}

The MC10H181 is a high-speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two four-bit words. Full internal carry is incorporated for ripple through operation.

Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S 0 through S3) as indicated in the tables of arithmetic/logic functions. Group carry propagate (\(\mathrm{P}_{\mathrm{G}}\)) and carry generate (\(\mathrm{G}_{\mathrm{G}}\)) are provided to allow fast operations on very long words using a second order look-ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).

When used with the MC10H179, full-carry look-ahead, as a second order look-ahead block, the MC10H181 provides high-speed arithmetic operations on very long words.

This 10 KH part is a functional/pinout duplication of the standard MECL 10K family part with \(100 \%\) improvement in propagation delay and no increase in power supply current.
- Improved Noise Margin, 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated - MECL 10K - Compatible

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Rating & Unit \\
\hline Power Supply \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{EE}}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{1}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline Output Current \begin{tabular}{l}
- Continuous \\
- Surge
\end{tabular} & \(\mathrm{I}_{\mathrm{out}}\) & \begin{tabular}{c}
50 \\
100
\end{tabular} & mA \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range - Plastic \\
& \(\mathrm{T}_{\mathrm{stg}}\) & \begin{tabular}{c}
-55 to +150 \\
-55 to +165
\end{tabular} & \begin{tabular}{c}
\({ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline
\end{tabular}

This document contains information on a new product. Specifications and information herein are subject to change without notice.

2-68

4-BIT ARITHMETIC LOGIC UNIT/ FUNCTION GENERATOR

PIN ASSIGNMENT

ELECTRICAL CHARACTERISTICS (VE \(=-5.2 \mathrm{~V} \pm 5.0 \%\)) (See Note)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \multicolumn{2}{|c|}{\(25^{\circ}\)} & \multicolumn{2}{|c|}{\(75^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & IE & - & 159 & - & 145 & - & 159 & mA \\
\hline \begin{tabular}{l}
Input Current High \\
Pin 22 \\
Pins 14,23 \\
Pins \(13,15,17\) \\
Pins \(10,16,18,21\) \\
Pins \(9,11,19,20\)
\end{tabular} & linH & 二 & \[
\begin{aligned}
& 720 \\
& 405 \\
& 515 \\
& 475 \\
& 465
\end{aligned}
\] & 二 & \[
\begin{aligned}
& 450 \\
& 255 \\
& 320 \\
& 300 \\
& 275
\end{aligned}
\] & - & \[
\begin{aligned}
& 450 \\
& 255 \\
& 320 \\
& 300 \\
& 275
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Current Low Pins 9-11, 13-22 & linL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\mathrm{IL}}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a 50 -ohm resistor to \(\mathbf{- 2 . 0}\) volts.
AC PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Input} & \multirow[b]{3}{*}{Output} & \multirow[b]{3}{*}{Conditionst} & \multicolumn{7}{|c|}{AC Switching Characteristics} \\
\hline & & & & & \multicolumn{2}{|r|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+75^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & & & & Min & Max & Min & Max & Min & Max & \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t + + , t - -} \\
t+, t-
\end{gathered}
\] & \[
\begin{aligned}
& C_{n} \\
& C_{n} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& C_{n+4} \\
& C_{n+4} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2, \mathrm{~A} 3 \\
\mathrm{~A} 0, \mathrm{~A} 1, \mathrm{~A} 2, \mathrm{~A} 3
\end{array}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Propagation Delay \\
Rise Time, Fall Time
\end{tabular} & \[
\begin{gathered}
\mathbf{t}++, \mathbf{t}+- \\
\mathbf{t}-+, \mathrm{t}-\mathrm{-} \\
\mathbf{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& C_{n} \\
& C_{n} \\
& C_{n} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { F1 } \\
& \text { F1 } \\
& \text { F1 }
\end{aligned}
\] & A0 & \[
\begin{aligned}
& \hline 0.7 \\
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.8 \\
& 3.8 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.8 \\
& 3.8 \\
& 2.2
\end{aligned}
\] & ns \\
\hline \begin{tabular}{l}
Propagation Delay \\
Rise Time, Fall Time
\end{tabular} & \[
\begin{gathered}
\mathbf{t}++, \mathbf{t}+- \\
\mathbf{t}-+, \mathbf{t}-- \\
\mathbf{t}+, \mathbf{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \text { A1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { F1 } \\
& \text { F1 } \\
& \text { F1 }
\end{aligned}
\] & & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& 0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 5.5 \\
& 2.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& 0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& 0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 5.5 \\
& 2.2 \\
& \hline
\end{aligned}
\] & ns \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}++, \mathbf{t}-\mathbf{-} \\
\mathbf{t}+, \mathbf{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \text { A1 } \\
& \text { A1 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{PG} \\
& \mathrm{PG}^{2} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { S0,S3 } \\
& \text { so,S3 }
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.8 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.8 \\
& 2.2
\end{aligned}
\] & ns
ns \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}++, \mathbf{t}-\mathbf{-} \\
\mathbf{t}+, \mathbf{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{A} 1 \\
& \mathrm{~A} 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G}_{\mathrm{G}} \\
& \mathrm{G}_{\mathrm{G}}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} 0, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{C}_{\mathrm{n}} \\
& \mathrm{~A} 0, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{C}_{\mathrm{n}}
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 2.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 2.2 \\
& \hline
\end{aligned}
\] & ns
ns \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}+-, \mathrm{t}-+ \\
\mathrm{t}+, \mathrm{t}- \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{A} 1 \\
& \mathrm{~A} 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& C_{n+4} \\
& C_{n+4} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{A} 0, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{C}_{\mathrm{n}} \\
\mathrm{~A} 0, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{C}_{\mathrm{n}} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 2.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.4 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 2.2 \\
& \hline
\end{aligned}
\] & ns
ns \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}++, \mathrm{t}-+ \\
\mathrm{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{B} 1 \\
& \mathrm{~B} 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { F1 } \\
& \text { F1 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} 3, \mathrm{C}_{n} \\
& \mathrm{~S}, \mathrm{C}_{n}
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 2.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 6.5 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}++, \mathrm{t}-\mathrm{-} \\
\mathrm{t}+\mathrm{t}-\mathrm{O} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{B} 1 \\
& \mathrm{~B} 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{PG} \\
& \mathrm{PG}_{\mathrm{G}} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { S0,A1 } \\
& \text { S0,A1 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.8 \\
& 2.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.8 \\
& 2.2
\end{aligned}
\] & ns \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}++, \mathrm{t}-\mathrm{-} \\
\mathbf{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G}_{\mathrm{G}} \\
& \mathrm{G}_{\mathrm{G}}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} 3, \mathrm{C}_{\mathrm{n}} \\
& \mathrm{~S} 3, \mathrm{C}_{\mathrm{n}}
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 2.2
\end{aligned}
\] & ns
ns \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}+-, \mathbf{t}-+ \\
\mathbf{t}+, \mathbf{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{B} 1 \\
& \mathrm{~B} 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& C_{n+4} \\
& C_{n+4} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& S 3, C_{n} \\
& \text { S3, } c_{n}
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.4 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 2.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}++, \mathbf{t}+- \\
\mathbf{t}+, \mathbf{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{M} \\
& \mathrm{M}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F} 1 \\
& \mathrm{~F} 1
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.7 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & 3.7
2.2 & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}+-, \mathbf{t}-+ \\
\mathbf{t}+, \mathbf{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { S1 } \\
& \text { S1 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { F1 } \\
& \text { F1 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} 1, \mathrm{~B} 1 \\
& \mathrm{~A} 1, \mathrm{~B} 1
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}-+, \mathrm{t}+- \\
\mathrm{t}+\mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \text { S1 } \\
& \text { S1 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{PG}_{\mathrm{G}} \\
& \mathrm{PG}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} 3, \mathrm{~B} 3 \\
& \mathrm{~A} 3, \mathrm{~B} 3
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & 3.8
2.2 & 0.7
0.7 & \begin{tabular}{l}
3.5 \\
2.0 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \begin{tabular}{l}
3.8 \\
2.2 \\
\hline
\end{tabular} & ns
ns \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t}+-, \mathrm{t}-+ \\
\mathrm{t}+\mathrm{t}- \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { S1 } \\
& \text { S1 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& C_{n+4} \\
& c_{n+4} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} 3, \mathrm{~B} 3 \\
& \mathrm{~A} 3, \mathrm{~B} 3
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 2.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\begin{aligned}
& 5.4 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & 6.0
2.2 & \begin{tabular}{l}
ns \\
ns \\
\hline
\end{tabular} \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathbf{t + - , t - +} \\
\mathbf{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { S1 } \\
& \text { S1 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G}_{\mathrm{G}} \\
& \mathrm{G}_{\mathrm{G}} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { A3,B3 } \\
& \text { A3,B3 }
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & 5.0
2.2 & 0.7
0.7 & \begin{tabular}{l}
4.5 \\
2.0 \\
\hline
\end{tabular} & 0.7
0.7 & \begin{tabular}{l}
5.0 \\
2.2 \\
\hline
\end{tabular} & ns
ns \\
\hline
\end{tabular}
tLogic high level (+1.11 Vdc) applied to pins listed. All other
input pins are left floating or tied to +0.31 Vdc .
\(\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC}} 2=+2.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-3.2 \mathrm{Vdc}\)

\section*{MC10H186A}

\section*{Advance Information}

\section*{MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC}

The MC10H186A is a member of Motorola's new MECL family. The MC10H186A is a hex D type flip-flop with common reset and clock lines. This MECL 10KH part is a functional/pinout duplication of the standard MECL 10K family part, with \(100 \%\) improvement in clock toggle frequency and propagation delay and no increase in powersupply current.
- Propagation Delay, 1.7 ns Typical
- Power Dissipation, 460 mW Typical
- Improved Noise Margin 150 mV (over operating koltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Rating & Unit \\
\hline Power Supply \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{EE}}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{1}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline \begin{tabular}{c}
Output Current \\
— Continuous \\
- Surge
\end{tabular} & \(\mathrm{I}_{\text {out }}\) & 50 & mA \\
\hline Operating Temperature Range & & 100 & \\
\hline Storage Temperature Range - Plastic \\
& \(\mathrm{T}_{\mathrm{A}}\) & \(0-75\) & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%\)) (See Note)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \multicolumn{2}{|c|}{\(25^{\circ}\)} & \multicolumn{2}{|r|}{\(75^{\circ}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & \(I_{E}\) & - & 121 & - & 110 & - & 121 & mA \\
\hline \begin{tabular}{l}
Input Current High \\
Pins 5,6,7,10,11,12 \\
Pin 9 \\
Pin 1
\end{tabular} & linH & - & \[
\begin{array}{r}
430 \\
670 \\
1900
\end{array}
\] & - & \[
\begin{array}{r}
265 \\
420 \\
1200
\end{array}
\] & - & \[
\begin{gathered}
265 \\
420 \\
1200
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline Input Current Low & l inL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\text {IH }}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\text {IL }}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

\section*{AC PARAMETERS}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Propagation Delay & \(\mathrm{t}_{\mathrm{pd}}\) & 0.7 & 3.0 & 0.7 & 2.7 & 0.7 & 3.0 & ns \\
\hline Set-up Time & \(\mathrm{t}_{\text {set }}\) & 1.5 & - & 1.5 & - & 1.5 & - & ns \\
\hline Hold Time & \(\mathrm{t}_{\text {hold }}\) & 1.0 & - & 1.0 & - & 1.0 & - & ns \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{r}}\) & 0.7 & 2.6 & 0.7 & 2.4 & 0.7 & 2.6 & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{f}}\) & 0.7 & 2.6 & 0.7 & 2.4 & 0.7 & 2.6 & ns \\
\hline Toggle Frequency & \(\mathrm{f}_{\text {tog }}\) & 250 & - & 250 & - & 250 & - & MHz \\
\hline Reset Recovery Time \(\left(\mathrm{t}_{1-9+}\right)\) & \(\mathrm{t}_{\mathrm{rr}}\) & 3.0 & - & 3.0 & - & 3.0 & - & ns \\
\hline
\end{tabular}

\section*{NOTE:}

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a \(\mathbf{5 0}\)-ohm resistor to \(\mathbf{- 2 . 0}\) volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

\section*{HEX-D FLIP FLOP}

\section*{CLOCKED TRUTH TABLE}
\begin{tabular}{|c|c|c|c|}
\hline\(R\) & \(C\) & \(Q\) & Qn+1 \\
\hline\(L\) & \(L\) & \(\phi\) & On \\
\hline\(L\) & \(H^{*}\) & \(L\) & \(L\) \\
\hline\(L\) & \(H^{*}\) & \(H\) & \(H\) \\
\hline\(H\) & \(I_{\phi}\) & \(\phi\) & \(L\) \\
\hline
\end{tabular}

\footnotetext{
\(\phi\) : Don't Care
}
- A clock \(H\) is a clock transition from a low to a high state.

\section*{APPLICATION INFORMATION}

The MC10H186A contains six high-speed, master slave type " \(D\) " flip-flops. Data is entered into the master when the clock is low. Master-to-slave data transfer takes place on the positive-going Clock transition. Thus outputs may change only on a positive-going Clock transition. A change
in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device. A common Reset is included in this circuit. The Reset overrides the clock.

\section*{(4) MOTOROLA}

\section*{Advance Information}

\section*{MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC}

The MC1OH188 is a member of Motorola's new MECL family. The MC1OH188 is a high-speed Hex Buffer with a common Enable input. When Enable is in the high-state, all outputs are in the low-state. When Enable is in the low-state, the outputs take the same state as the inputs.

This MECL 10 KH part is a functional/pinout duplication of the standard MECL 10K family part, with \(100 \%\) improvement in propagation delay and no increase in power-supply current.
- Propagation Delay, 1.3 ns Typical Data-to-Output
- Power Dissipation 180 mW Typ/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Characteristic & Symbol & Rating & Unit \\
\hline Power Supply (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{E E}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{1}\) & 0 to VEE & Vdc \\
\hline \begin{tabular}{l}
Output Current - Continuous \\
- Surge
\end{tabular} & lout & \[
\begin{gathered}
50 \\
100
\end{gathered}
\] & mA \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathbf{A}}\) & 0-+75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range - Plastic - Ceramic & \(\mathrm{T}_{\text {stg }}\) & \[
\begin{aligned}
& -55 \text { to }+150 \\
& -55 \text { to }+165
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.\)) (See Note)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \multicolumn{2}{|c|}{\(25^{\circ}\)} & \multicolumn{2}{|r|}{\(75^{\circ}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & \(I_{E}\) & - & 46 & - & 42 & - & 46 & mA \\
\hline Input Current High & 1 inH & - & 495 & - & 310 & - & 310 & \(\mu \mathrm{A}\) \\
\hline Input Current Low & l inL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\text {IL }}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

AC PARAMETERS
\begin{tabular}{|l|c|c|c|c|c|c|c|l|}
\hline \begin{tabular}{l}
Propagation Delay \\
Enable \\
Data
\end{tabular} & \(\mathbf{t}_{\mathbf{p d}}\) & 0.7 & 2.2 & 0.7 & 2.0 & 0.7 & 2.2 & ns \\
\hline Rise Time & & 0.7 & 1.9 & 0.7 & 1.7 & 0.7 & 1.9 & \\
\hline Fall Time & \(\mathrm{t}_{\mathbf{r}}\) & 0.7 & 2.4 & 0.7 & 2.2 & 0.7 & 2.4 & ns \\
\hline NOTE: \\
\begin{tabular}{l}
Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test \\
table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a \\
printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are \\
terminated through a 50 ohm resistor to -2.0 volts.
\end{tabular} \\
\hline
\end{tabular}

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC1OH188

\section*{TRUTH TABLE}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Inputs } & Output \\
\hline X & Y & OUT \\
\hline L & L & L \\
\hline L & H & H \\
\hline H & L & L \\
\hline\(H\) & \(H\) & L \\
\hline
\end{tabular}

\section*{Advance Information}

\section*{MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC}

The MC10H189 is a member of Motorola's new MECL family. The MC10H189 is a Hex Inverter with a common Enable input. The hex inverting function is provided when Enable is in the low-state. When Enable is in the high-state, all outputs are low.
This MECL 10KH part is a functional/pinout duplication of the standard MECL 10K family part, with \(100 \%\) improvement in propagation delay and no increase in power-supply current.
- Propagation Delay, 1.3 ns Typical Data-to-Output
- Power Dissipation 180 mW Typ/Pkg (No Load)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Characteristic & Symbol & Rating & Unit \\
\hline Power Supply (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{E E}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{1}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline & Iout & \[
\begin{gathered}
50 \\
100
\end{gathered}
\] & mA \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {A }}\) & 0-+75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range - Plastic - Ceramic & \(\mathrm{T}_{\text {stg }}\) & \[
\begin{aligned}
& -55 \text { to }+150 \\
& -55 \text { to }+165
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.\)) (See Note)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & \multirow{2}{*}{ Symbol } & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \multicolumn{2}{c|}{\(25^{\circ}\)} & \multicolumn{2}{c|}{\(75^{\circ}\)} & \multirow{2}{*}{ Unit } \\
\cline { 3 - 10 } & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & \(\mathrm{I}_{\mathrm{E}}\) & - & 46 & - & 42 & - & 46 & mA \\
\hline Input Current High & \(\mathrm{I}_{\mathrm{inH}}\) & - & 495 & - & 310 & - & 310 & \(\mu \mathrm{~A}\) \\
\hline Input Current Low & \(\mathrm{I}_{\mathrm{inL}}\) & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\mathrm{IL}}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

AC PARAMETERS
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Propagation Delay \\
Enable \\
Data
\end{tabular} & \(\mathrm{t}_{\mathrm{pd}}\) & 0.7 & 2.2 & 0.7 & 2.1 & 0.7 & 2.3 & ns \\
\hline Rise Time & & 0.7 & 1.9 & 0.7 & 1.7 & 0.7 & 1.9 & \\
\hline Fall Time & \(\mathrm{t}_{\mathbf{r}}\) & 0.7 & 2.4 & 0.7 & 2.2 & 0.7 & 2.4 & ns \\
\hline
\end{tabular}

\section*{NOTE:}

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 ohm resistor to -2.0 volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

LSUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE CASE 648

TRUTH TABLE
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Inputs } & Output \\
\hline X & Y & OUT \\
\hline L & L & H \\
\hline L & H & L \\
\hline\(H\) & L & L \\
\hline\(H\) & \(H\) & L \\
\hline
\end{tabular}

\section*{Advance Information}

\section*{MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC}

The MC10H209 is a member of Motorola's new MECL family. It is a Dual 4-5-Input OR/NOR Gate. This MECL part is a functional/ pinout duplication of the MECL III part MC1 688.
- Propagation Delay Average, 0.75 ns Typical
- Power Dissipation 125 mW Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Characteristic & Symbol & Rating & Unit \\
\hline Power Supply (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(\mathrm{V}_{\mathrm{EE}}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{1}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline \[
\begin{gathered}
\text { Output Current - Continuous } \\
\text { - Surge }
\end{gathered}
\] & Iout & \[
\begin{gathered}
50 \\
100
\end{gathered}
\] & mA \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0-75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Storage Temperature Range - Plastic \\
- Ceramic
\end{tabular} & \({ }^{\text {stg }}\) & \[
\begin{aligned}
& -55 \text { to }+150 \\
& -55 \text { to }+165
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.\)) (See Note)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\multirow{2}{*}{ Characteristic }} & \multirow{2}{*}{ Symbol } & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \multicolumn{2}{c|}{\(25^{\circ}\)} & \multicolumn{2}{c|}{\(75^{\circ}\)} & \multirow{2}{*|}{ Unit } \\
\cline { 3 - 11 } & & & Min & Max & Min & Max & Min & Max \\
\hline Power Supply Current & \(\mathrm{I}_{\mathrm{E}}\) & - & - & - & 30 & - & - & mA \\
\hline Input Current High & \(\mathrm{I}_{\mathrm{inH}}\) & - & 640 & - & 400 & - & 400 & \(\mu \mathrm{~A}\) \\
\hline Input Current Low & \(\mathrm{I}_{\mathrm{inL}}\) & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\mathrm{IL}}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

Dual 4-5-Input OR/NOR Gate
P SUFFIX
PLASTIC PACKAGE CASE 648

LSUFFIX
CERAMIC PACKAGE CASE 620

AC PARAMETERS
\begin{tabular}{|l|c|c|c|c|c|c|c|l|}
\hline Propagation Delay & \(\mathrm{t}_{\mathrm{pd}}\) & 0.4 & 1.0 & 0.4 & 1.0 & 0.4 & 1.1 & ns \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{r}}\) & 0.4 & 1.5 & 0.4 & 1.5 & 0.4 & 1.6 & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{f}}\) & 0.4 & 1.5 & 0.4 & 1.5 & 0.4 & 1.6 & ns \\
\hline
\end{tabular}

NOTE:
Each MECL 10KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a 50 ohm resistor to -2.0 volts.
\(V_{\mathrm{CC} 1}=\operatorname{Pin} 1\)
\(V_{C C 2}=\operatorname{Pin} 16\)
\(\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 8\)

\section*{Advance Information}

\section*{MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC}

The MC1OH210 and MC1OH211 are members of Motorola's new MECL family. These devices are dual 3-input, 3-output "OR" and "NOR" gates respectively. These MECL 10KH parts are functional/ pinout duplications of the standard MECL 10K family parts, with \(100 \%\) improvement in propagation delay and no increase in powersupply current.
- Propagation Delay, 1.0 ns Typical
- Power Dissipation, 160 mW Typical
- Improved Noise Margin 150 mV (over operating voltage and temperature range)
- Voltage Compensated
- MECL 10K-Compatible

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Rating & Unit \\
\hline Power Supply \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{EE}}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{I}}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline \begin{tabular}{c}
Output Current \\
- Continuous \\
- Surge
\end{tabular} & \(\mathrm{I}_{\text {out }}\) & 50 & mA \\
\hline Operating Temperature Range & & 100 & \\
\hline Storage Temperature Range - Plastic \\
& \(\mathrm{T}_{\mathrm{A}}\) & \(0-75\) & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(\mathrm{VEE}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%\)) (See Note)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \multicolumn{2}{|c|}{\(25^{\circ}\)} & \multicolumn{2}{|r|}{\(75^{\circ}\)} & \multirow[t]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & \(\mathrm{I}_{\mathrm{E}}\) & - & 42 & - & 38 & - & 42 & mA \\
\hline Input Current High & 1 linH & - & 720 & - & 450 & - & 450 & \(\mu \mathrm{A}\) \\
\hline Input Current Low & \(\mathrm{l}_{\mathrm{inL}}\) & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\text {IH }}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\text {IL }}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

AC PARAMETERS
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Propagation Delay & \(\mathrm{t}_{\mathrm{pd}}\) & 0.7 & 1.6 & 0.7 & 1.5 & 0.7 & 1.7 & ns \\
\hline Rise Time & \(\mathrm{t}_{\mathbf{r}}\) & 0.7 & 2.2 & 0.7 & 2.0 & 0.7 & 2.2 & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{f}}\) & 0.7 & 2.2 & 0.7 & 2.0 & 0.7 & 2.2 & ns \\
\hline
\end{tabular}
\({ }^{*}\) Pin 1 and 15 internally connected.
NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to \(\mathbf{- 2 . 0}\) volts.

This document contains information on a new product. Specifications and information herein are subject to change without notice.
Note: If crosstalk is present, double bypass capacitor to \(0.2 \mu \mathrm{~F}\).

L SUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE CASE 648

MC10H210
3-INPUT 3-OUTPUT "OR' GATE

\(V_{\mathrm{CC} 1}=\operatorname{Pin} 1,15^{*}\)
\(V_{C C 2}=P\) in 16
\(V_{E E}=P\) in 8

MC1OH211
3-INPUT 3-OUTPUT ''NOR'' GATE

\section*{Advance Information}

\section*{QUAD BUS DRIVER/RECEIVER WITH 2-TO-1 OUTPUT MULTIPLEXERS}

The MC10H330 is a member of Motorola's new MECL family. The MC10H330 is a Quad Bus Driver/Receiver with two-to-one output multiplexers. These multiplexers have a common select and output enable. When disabled, \((\overline{\mathrm{OE}}=\) high \()\) the bus outputs go to \(\mathbf{- 2 . 0} \mathrm{V}\). The receivers have 200 mV of hysteresis on their bus inputs. Their output can be brought to a low state (\(\mathrm{V}_{\mathrm{OL}}\)) by applying a high level to the receiver enable (\(\overline{\mathrm{RE}}=\mathrm{High}\)). The parameters specified are with \(25 \Omega\) loading on the bus drivers and \(50 \Omega\) loads on the receivers.
- Propagation Delay 1.5 ns Typical Data-to-Output
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Characteristic & Symbol & Rating & Unit \\
\hline Power Supply (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{E E}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage (\(\mathrm{VCC}^{\text {c }}=0\)) & \(\mathrm{V}_{1}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline \begin{tabular}{l}
Output Current - Continuous \\
- Surge
\end{tabular} & lout & \[
\begin{gathered}
50 \\
100
\end{gathered}
\] & mA \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {A }}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Storage Temperature Range - Plastic \\
- Ceramic
\end{tabular} & \(\mathrm{T}_{\text {stg }}\) & \[
\begin{aligned}
& -55 \text { to }+150 \\
& -55 \text { to }+165 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{E E}=-5.2 \mathrm{~V} \pm 5.0 \%\right)\) (See Note)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|r|}{\(0^{\circ}\)} & \multicolumn{2}{|r|}{\(25^{\circ}\)} & \multicolumn{2}{|c|}{\(75^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & \({ }_{\mathrm{I}}^{\mathrm{E}}\) & - & 157 & - & 143 & - & 157 & mA \\
\hline \begin{tabular}{l}
Input Current High \\
Pins 5-8, 17-20 \\
Pins 16, 21 \\
Pin 9
\end{tabular} & 1 inH & - & \begin{tabular}{l}
667 \\
514 \\
475
\end{tabular} & - & \[
\begin{aligned}
& 417 \\
& 321 \\
& 297
\end{aligned}
\] & - & \[
\begin{aligned}
& 417 \\
& 321 \\
& 297
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Current Low & linL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & VOH & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & \(-1.95\) & \(-1.60\) & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & -1.17 & -0.84 & \(-1.13\) & -0.81 & -1.07 & \(-0.735\) & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\text {IL }}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

\section*{AC PARAMETERS}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Propagation Delay & \(\mathrm{t}_{\text {pd }}\) & & & & & & & ns \\
Data-to-Bus Output & & 0.8 & 2.0 & 0.8 & 2.0 & 0.8 & 2.2 & \\
Select-to-Bus Output & & 1.0 & 3.2 & 1.0 & 3.2 & 1.0 & 3.4 & \\
OE-to-Bus Output & & 1.0 & 2.4 & 1.0 & 2.4 & 1.0 & 2.5 & \\
Bus-to-Input & & 0.8 & 2.1 & 0.8 & 2.1 & 0.8 & 2.4 & \\
\(\overline{R E}\)-to-Input & & 0.8 & 2.2 & 0.8 & 2.2 & 0.8 & 2.5 & \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{r}}\) & 0.8 & 2.0 & 0.8 & 2.0 & 0.8 & 2.1 & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{f}}\) & 0.8 & 2.0 & 0.8 & 2.0 & 0.8 & 2.1 & ns \\
\hline
\end{tabular}

\footnotetext{
This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.
}
\[
2-79
\]

2

\section*{QUAD BUS DRIVER/RECEIVER WITH 2-TO-1 OUTPUT MULTIPLEXERS}

\section*{NOTE:}

Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a 50 -ohm resistor to \(\mathbf{- 2 . 0}\) volts.

LOGIC DIAGRAM

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{MULTIPLEXER TRUTH TABLE} \\
\hline \(\overline{\mathbf{O E}}\) & s & WBus & \(\mathrm{X}_{\text {Bus }}\) & Y \({ }_{\text {Bus }}\) & \(\mathrm{Z}_{\text {Bus }}\) \\
\hline H & x & \(-2.0 \mathrm{~V}\) & \(-2.0 \mathrm{~V}\) & -2.0 V & -2.0 V \\
\hline L & L & W0 & X0 & Y0 & Z0 \\
\hline \(L\) & H & W1 & X1 & Y1 & Z1 \\
\hline
\end{tabular}
RECEIVER TRUTH TABLE
\begin{tabular}{|c||c|c|c|c|}
\hline\(\overline{\text { RE }}\) & \(\mathbf{W}_{\text {in }}\) & \(\mathbf{X}_{\text {in }}\) & \(\mathbf{Y}_{\text {in }}\) & \(\mathbf{Z}_{\text {in }}\) \\
\hline \hline H & L & L & L & L \\
\hline L & \(\mathrm{W}_{\text {Bus }}\) & X Bus & Y Bus & \(\mathbf{Z}_{\text {Bus }}\) \\
\hline
\end{tabular}

\section*{(A) MOTOROLA}

\section*{Advance Information}

\section*{DUAL BUS DRIVER/RECEIVER WITH 4-TO-1 OUTPUT MULTIPLEXERS}

The MC10H332 is a member of Motorola's new MECL family. The MC10H332 is a Dual Bus Driver/Receiver with four-to-one output multiplexers. These multiplexers have common selects and output enable. When disabled, \((\overline{\mathrm{OE}}=\) high \()\) the bus outputs go to -2.0 V . The receivers have 200 mV of hysteresis on their bus inputs. The parameters specified are with \(25 \Omega\) loading on the bus drivers and \(50 \Omega\) loads on the receivers.
- Propagation Delay, 1.5 ns Typical Data-to-Output
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K - Compatible

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Characteristic & Symbol & Rating & Unit \\
\hline Power Supply (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(\mathrm{V}_{\mathrm{EE}}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(\mathrm{V}_{1}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline \[
\begin{gathered}
\text { Output Current }- \text { Continuous } \\
- \text { Surge } \\
\hline
\end{gathered}
\] & lout & \[
\begin{gathered}
50 \\
100 \\
\hline
\end{gathered}
\] & mA \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {A }}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Storage Temperature Range - Plastic \\
- Ceramic
\end{tabular} & \(\mathrm{T}_{\text {stg }}\) & \[
\begin{aligned}
& -55 \text { to }+150 \\
& -55 \text { to }+165 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5.0 \%\right.\)) (See Note)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \multicolumn{2}{|c|}{\(25^{\circ}\)} & \multicolumn{2}{|r|}{\(75^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & \({ }_{\mathrm{I}} \mathrm{E}\) & - & 115 & - & 110 & - & 115 & mA \\
\hline \begin{tabular}{l}
Input Current High \\
Pins 3,4,5,6,14,15,16,17 \\
Pins 7,8 \\
Pin 13,18
\end{tabular} & \(\mathrm{l}_{\mathrm{inH}}\) & - & \[
\begin{aligned}
& 667 \\
& 437 \\
& 456
\end{aligned}
\] & - & \[
\begin{aligned}
& 417 \\
& 273 \\
& 285
\end{aligned}
\] & - & \[
\begin{aligned}
& 417 \\
& 273 \\
& 285
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Current Low & l inL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\text {OL }}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\text {IL }}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

\section*{AC PARAMETERS}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Propagation Delay & \(\mathrm{t}_{\text {pd }}\) & & & & & & & ns \\
Data-to-Bus Output & & 1.0 & 3.2 & 1.0 & 3.2 & 1.0 & 3.4 & \\
Select-to-Bus Output & & 1.0 & 3.6 & 1.0 & 3.6 & 1.0 & 4.0 & \\
OE-to-Bus Output & & 0.8 & 2.4 & 0.8 & 2.2 & 0.8 & 2.6 & \\
Bus-to-Input & & 0.8 & 2.1 & 0.8 & 2.1 & 0.8 & 2.4 & \\
RE-to-Input & & 0.8 & 2.2 & 0.8 & 2.2 & 0.8 & 2.5 & \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{r}}\) & 0.8 & 2.0 & 0.8 & 2.0 & 0.8 & 2.1 & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{f}}\) & 0.8 & 2.0 & 0.8 & 2.0 & 0.8 & 2.1 & ns \\
\hline
\end{tabular}

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice

P SUFFIX
PLASTIC CASE CASE 738

NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is main tained. Outputs are terminated through a 50 -ohm resis tor to \(\mathbf{- 2 . 0}\) volts.

\section*{RECEIVER TRUTH}
\begin{tabular}{c|c|c|}
\multicolumn{1}{c}{ TABLE } \\
\begin{tabular}{|c|c|}
\hline\(\overline{\mathbf{R E}}\) & \(\mathbf{X}_{\text {in }}\) \\
\(\mathbf{Y}_{\text {in }}\) \\
\hline \hline\(H\) & L \\
L \\
\hline L & \(\mathrm{X}_{\text {Bus }}\)
\end{tabular} Y \(_{\text {Bus }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\overline{\mathbf{O E}}\) & S1 & so & X \({ }_{\text {Bus }}\) & \(\mathrm{Y}_{\text {Bus }}\) \\
\hline H & x & X & \(-2.0 \mathrm{~V}\) & \(-2.0 \mathrm{~V}\) \\
\hline L & L & L & x0 & Yo \\
\hline L & L & H & x 1 & Y1 \\
\hline L & H & L & x2 & Y2 \\
\hline L & H & H & X3 & Y3 \\
\hline \multicolumn{5}{|c|}{x - Don't care} \\
\hline
\end{tabular}

LOGIC DIAGRAM

\section*{Advance Information}

\section*{QUAD BUS DRIVER/RECEIVER WITH TRANSMIT AND RECEIVER LATCHES}

The MC10H334 is a member of Motorola's new MECL family. The MC10H334 is a Quad Bus Driver/Receiver with transmit and receiver latches. When disabled, \((\overline{\mathrm{OE}}=\) high \()\) the bus outputs will fall to -2.0 V . Data to be transmitted or received is passed through its respective latch when the respective latch enable (\(\overline{\mathrm{DLE}}\) and \(\overline{R L E}\)) is at a low level. Information is latched on the positive transition of DLE and \(\overline{\operatorname{RLE}}\). The receivers have 200 mV of hysteresis on their bus inputs. The parameters specified are with \(25 \Omega\) loading on the bus drivers and \(50 \Omega\) loads on the receivers.
- Propagation Delay, 1.6 ns Typical Data-to-Output
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Rating & Unit \\
\hline Power Supply \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{EE}}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathbf{I}}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline Output Current -\begin{tabular}{c}
Continuous \\
- Surge
\end{tabular} & \(\mathrm{I}_{\mathrm{out}}\) & \begin{tabular}{c}
50 \\
100
\end{tabular} & mA \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range - Plastic \\
& \(\mathrm{T}_{\mathrm{stg}}\) & \begin{tabular}{c}
-55 to +150 \\
-55 to +165
\end{tabular} & \begin{tabular}{c}
\({ }^{\circ} \mathrm{C}\) \\
\\
\\
\hline
\end{tabular} \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5.0 \%\right.\)) (See Note)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|r|}{\(0^{\circ}\)} & \multicolumn{2}{|r|}{\(25^{\circ}\)} & \multicolumn{2}{|r|}{\(75^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & IE & - & 161 & - & 161 & - & 161 & mA \\
\hline Input Current High Pins 5,6,15,16 Pin 7, 14 Pin 17 & l inH & - & \[
\begin{aligned}
& 397 \\
& 460 \\
& 520
\end{aligned}
\] & 二 & \[
\begin{aligned}
& 273 \\
& 297 \\
& 357
\end{aligned}
\] & - & \[
\begin{aligned}
& 273 \\
& 297 \\
& 357
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Current Low & linL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\text {IH }}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\text {IL }}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

\section*{AC PARAMETERS}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Propagation Delay & \(\mathrm{t}_{\text {pd }}\) & - & & & & & & ns \\
Data-to-Bus Output & & - & 2.5 & - & 2.5 & - & 2.5 & \\
\(\overline{\text { DLE-to-Bus Output }}\) & & - & 2.7 & - & 2.7 & - & 3.0 & \\
\(\overline{\text { OE-to-Bus Output }}\) & & - & 2.5 & - & 2.5 & - & 2.5 & \\
Bus-to-RO & & - & 1.9 & - & 1.9 & - & 1.9 & \\
\hline RLE-to-RO & & - & 2.1 & - & 2.0 & - & 2.1 & \\
\hline Rise Time & \(\mathrm{t}_{\mathbf{r}}\) & 0.8 & 2.2 & 0.7 & 2.0 & 0.8 & 2.2 & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathbf{f}}\) & 0.8 & 2.2 & 0.7 & 2.0 & 0.8 & 2.2 & ns \\
\hline
\end{tabular}

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

QUAD BUS DRIVER/RECEIVER WITH TRANSMIT AND RECEIVER LATCHES

PIN ASSIGNMENT

NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 -ohm resistor to \(\mathbf{- 2 . 0}\) volts.

\section*{(4) \\ MOTOROLA}

\section*{Advance Information}

\section*{SINGLE ECL TO TTL TRANSLATOR SUPPLY}

The MC10H350 is a member of Motorola's new MECL family, MECL 10KH. The MC1OH350 is an ECL to TTL translator which was designed to operate from a single power supply of either \(\mathrm{V}_{\mathrm{C}}=+5.0 \mathrm{~V}\) or \(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}\).

The MC10H350 incorporates ECL differential inputs and Schottky 3-state outputs. Differential inputs allow for use as an inverting/non-inverting translator, as a differential line receiver or as a high performance comparator. The 3-state outputs produce a high impedance output when the output enable \((\overline{O E})\) is brought high.
- Propagation Delay, 3.5 ns Typical
- MECL 10K-Compatible
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline Characteristic & Symbol & Rating & Unit \\
\hline Power Supply (VEE \(=\) Gnd) & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range—Plastic \\
—Ceramic & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
-55 to +165 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\)) (See Note)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & \\
\hline Power Supply Current \(\begin{array}{ll}\text { TTL } \\ \text { ECL }\end{array}\) & Icc & & \[
\begin{aligned}
& 27 \\
& 3.0
\end{aligned}
\] & mA \\
\hline \(\begin{array}{ll}\text { Input Current High } & \text { TTL } \\ & \text { ECL }\end{array}\) & IIH & & \[
\begin{aligned}
& 20 \\
& 50
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \(\begin{array}{ll}\text { Input Current Low } & \text { TTL } \\ & \text { ECL }\end{array}\) & ILL & & \[
\begin{gathered}
-0.6 \\
50
\end{gathered}
\] & \[
{ }_{\mu \mathrm{A}}^{\mathrm{mA}}
\] \\
\hline Input Voltage High TTL & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & & Vdc \\
\hline Input Voltage Low TTL & \(\mathrm{V}_{\text {IL }}\) & & 0.8 & Vdc \\
\hline Differential Input Voltage & \(\mathrm{V}_{\text {DIFF }}\) & 200 & & mV \\
\hline Voltage Common Mode & \(\mathrm{V}_{\text {CM }}\) & 2.8 & 5.0 & Vdc \\
\hline Output Voltage High
\[
\mathrm{IOH}=3 \mathrm{~mA}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 2.7 & & Vdc \\
\hline Output Voltage Low
\[
I_{O L}=20 \mathrm{~mA}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & & 0.5 & Vdc \\
\hline Short Circuit Current \(V_{\text {OUT }}=O V\) & Ios & -60 & -150 & mA \\
\hline Output Disable Current High \(V_{\text {OUT }}=2.7 \mathrm{~V}\) & \({ }^{\text {IOZH }}\) & & 50 & \(\mu \mathrm{A}\) \\
\hline Output Disable Current Low \(V_{\text {OUT }}=0.5 \mathrm{~V}\) & IOZL & & -50 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

AC PARAMETERS (\(\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{PF}\right)\left(\mathrm{V}_{\mathrm{CC}}=5.0 \pm 5 \%\right)\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.\) to \(\left.75^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
Propagation Delay \\
Data \\
Enable
\end{tabular}} & \multirow[t]{2}{*}{\(t_{\text {pd }}\)} & & & \\
\hline & & - & 5.0 & ns \\
\hline & tPLZ & - & 7.0 & ns \\
\hline & \({ }^{\text {tPHZ }}\) & - & 8.0 & ns \\
\hline & tpZL & - & 5.0 & ns \\
\hline & tpZ & - & 5.5 & ns \\
\hline
\end{tabular}

NOTE: Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC1OH350

ECL TO TTL TRANSLATOR

\section*{MC10H350}

2

\section*{Advance Information}

\section*{TRIPLE 3 INPUT BUS DRIVER WITH ENABLE}

The MC1OH423 is a member of Motorola's new MECL family. The MC1OH423 is a triple 3 Input Bus Driver with a common enable.
The MC1OH423 consists of three NOR gates designed for bus driving applications on card or between cards. Output low logic levels are specified with \(\mathrm{V}_{\mathrm{OL}} \leqslant-2.0 \mathrm{Vdc}\) so that the bus may be terminated to -2.0 Vdc . The gate output, when low, appears as a high impedance to the bus, because the output emitter-followers of the MC10H423 are "turned off." This eliminates discontinuities in the characteristic impedance of the bus.
The \(\mathrm{V}_{\mathrm{OH}}\) level is specified when driving a \(\mathbf{2 5}\)-ohm load terminated to -2.0 Vdc , the equivalent of a 50 -ohm bus terminated at both ends. Although 25 ohms is the lowest characteristic impedance that can be driven by the MC10H423, higher impedance values may be used with this part. A typical 50 -ohm bus is shown in Figure 1.
- Propagation Delay, 1.5 ns Typical
- Voltage Compensated
- Improved Noise Margin 150 mV (Over - MECL 10K-Compatible Operating Voltage and Temperature Range)

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Rating & Unit \\
\hline Power Supply \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{EE}}\) & -8.0 to 0 & Vdc \\
\hline Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{1}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline Output Current - Continuous \\
- Surge & \(\mathrm{I}_{\text {out }}\) & 50 & mA \\
\hline Operating Temperature Range & & 100 & \\
\hline Storage Temperature Range - Plastic & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline & \(\mathrm{T}_{\mathrm{Stg}}\) & -55 to +150 & \({ }^{\circ}{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{E E}=-5.2 \mathrm{~V} \pm 5 \%\right.\)) (See Note)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \multicolumn{2}{|c|}{\(25^{\circ}\)} & \multicolumn{2}{|r|}{\(75^{\circ}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & \({ }^{\prime} \mathrm{E}\) & - & 60 & - & 56 & - & 60 & mA \\
\hline Input Current High Pins 4,5,6,9,10,11,12, 13,14 Pin 7 & \(\mathrm{linH}^{\text {in }}\) & - & \[
\begin{aligned}
& 495 \\
& 765
\end{aligned}
\] & - & \[
\begin{aligned}
& 310 \\
& 475
\end{aligned}
\] & -
- & \[
\begin{array}{r}
310 \\
475 \\
\hline
\end{array}
\] & \(\mu \mathrm{A}\) \\
\hline Input Current Low & \(\mathrm{l}_{\mathrm{inL}}\) & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & VOH & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -2.1 & -2.03 & -2.1 & -2.03 & -2.1 & -2.03 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\text {IH }}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\text {IL }}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

AC PARAMETERS
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Propagation Delay & \(\mathrm{t}_{\mathrm{pd}}\) & 0.7 & 2.3 & 0.7 & 2.3 & 0.7 & 2.3 & ns \\
\hline Rise Time & \(\mathrm{t}_{\mathbf{r}}\) & 0.7 & 2.5 & 0.7 & 2.5 & 0.7 & 2.5 & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{f}}\) & 0.7 & 2.5 & 0.7 & 2.5 & 0.7 & 2.5 & ns \\
\hline
\end{tabular}

NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 ohm resistor to -2.0 volts.
This document contains information on a new product. Specifications and information herein are subject to change without notice.

TRIPLE 3 INPUT BUS DRIVER WITH ENABLE

L SUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE CASE 648

PIN ASSIGNMENT

\section*{(A) MOTOROLA}

\section*{Advance Information}

\section*{MECL 10KH HIGH-SPEED EMITTER-COUPLED LOGIC}

The MC10H424 is a member of Motorola's new MECL family. The MC10H424 is a Quad TTL-to-ECL translator with an ECL strobe. Power supply requirements are ground, +5.0 volts, and - 5.2 volts.
- Propagation Delay, 1.5 ns Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K -Compatible

\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Characteristic & Symbol & Rating & Unit \\
\hline Power Supply (\(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)) & VEE & -8.0 to 0 & Vdc \\
\hline Power Supply (VEE \(=-5.2 \mathrm{~V}\)) & \(\mathrm{V}_{\mathrm{CC}}\) & 0 to +7.0 & Vdc \\
\hline Input Voltage (ECL) & \(V_{1}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline Input Voltage (TTL) & \(V_{1}\) & 0 to \(\mathrm{V}_{\mathrm{CC}}\) & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Current }- \text { Continuous } \\
&- \text { Surge } \\
& \hline
\end{aligned}
\] & lout & \[
\begin{gathered}
50 \\
100 \\
\hline
\end{gathered}
\] & mA \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {A }}\) & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Storage Temperature Range - Plastic \\
- Ceramic
\end{tabular} & \(T_{s t g}\) & \[
\begin{aligned}
& -55 \text { to }+150 \\
& -55 \text { to }+165
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|r|}{\(0^{\circ}\)} & \multicolumn{2}{|l|}{\(25^{\circ}\)} & \multicolumn{2}{|r|}{\(75^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Negative Power Supply Drain Current & \({ }^{\prime} \mathrm{E}\) & - & 72 & - & 66 & - & 72 & mAdc \\
\hline \multirow[t]{2}{*}{Positive Power Supply Drain Current} & \({ }^{\text {I CHH }}\) & - & 16 & - & 16 & - & 18 & mAdc \\
\hline & ICCL & - & 25 & - & 25 & - & 25 & mAdc \\
\hline Reverse Current Pin
\[
5,7,10,11
\] & IR & - & 50 & - & 50 & - & 50 & \(\mu \mathrm{Adc}\) \\
\hline Forward Current Pin 5,7,10,11 & \({ }^{\text {I }}\) & - & -3.2 & - & -3.2 & - & -3.2 & mAdc \\
\hline Input HIGH Current Pin 6 & linH & - & 450 & - & 310 & - & 310 & \(\mu \mathrm{Adc}\) \\
\hline Input LOW Current Pin 6 & l inL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{Adc}\) \\
\hline Input Breakdown Voltage & \(V_{(B R) \text { in }}\) & 5.5 & - & 5.5 & - & 5.5 & - & Vdc \\
\hline Input Clamp Voltage & \(V_{1}\) & - & -1.5 & - & -1.5 & - & -1.5 & Vdc \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage Pin 5,7,10,11 & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & - & 2.0 & - & \(+2.0\) & - & Vdc \\
\hline Low Input Voltage Pin 5,7,10,11 & \(\mathrm{V}_{\text {IL }}\) & - & 0.8 & - & 0.8 & - & 0.8 & Vdc \\
\hline High Input Voltage Pin 6 & \(\mathrm{V}_{\mathrm{IH}}\) & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 & Vdc \\
\hline Low Input Voltage Pin 6 & \(\mathrm{V}_{\text {IL }}\) & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.45 & Vdc \\
\hline
\end{tabular}

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC1OH424

\section*{2} QUAD TTL-TO-ECL TRANSLATOR WITH AN ECL STROBE
 QUAD TTL-TO-ECL
TRANSLATOR (ECL STROBE)

Gnd \(=\operatorname{Pin} 16\)
\(V_{C C}(+5.0 \mathrm{Vdc})=\operatorname{Pin} 9\)
\(V_{E E}(-5.2 \mathrm{Vdc})=\operatorname{Pin} 8\)

AC PARAMETERS
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Propagation Delay & \(\mathrm{t}_{\text {pd }}\) & 0.7 & 3.4 & 0.7 & 3.0 & 0.7 & 3.4 & ns \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{r}}\) & 0.7 & 2.2 & 0.7 & 2.0 & 0.7 & 2.2 & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{f}}\) & 0.7 & 2.2 & 0.7 & 2.0 & 0.7 & 2.2 & ns \\
\hline
\end{tabular}

NOTE:
Each MECL 10 KH series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.

\section*{APPLICATIONS INFORMATION}

The MC10H424 has TTL-compatible inputs, an ECL strobe and MECL complementary open-emitter outputs that allow use as an inverting/non-inverting translator or as a differential line driver. When the common strobe input is at the low-logic level, it forces all true outputs to a MECL low-logic state and all inverting
outputs to a MECL high-logic state.
An advantage of this device is that TTL-level information can be transmitted differentially, via balanced twisted pair lines, to MECL equipment, where the signal can be received by the MC 10 H 115 or MC 10 H 116 differential line receivers.

\section*{MECL 10K \\ INTEGRATED CIRCUITS}

Function Selection- \(\left(-30^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{3}{|c|}{ Function } \\
\hline NOR Gates \\
\hline Quad 2-Input Gate/Strobe & MC10100 & 620,648 \\
Quad 2-Input Gate & MC10102 & 620,648 \\
Triple 4-3-3 Input Gate & MC10106 & 620,648 \\
Dual 3-Input 3-Output Gate & MC10111 & 620,648 \\
Dual 3-Input 3-Output Gate & MC10211 & 620,648 \\
\hline
\end{tabular}

\section*{OR Gates}
\begin{tabular}{|l|l|l|}
\hline Quad 2-Input Gate & MC10103 & 620,648 \\
Dual 3-Input 3-Output Gate & MC10110 & 620,648 \\
Dual 3-Input 3-Output Gate & MC10210 & 620,648 \\
\hline
\end{tabular}

\section*{AND Gates}
\begin{tabular}{|l|l|l|}
\hline Quad 2-Input Gate & MC10104 & 620,648 \\
Hex Gate & MC10197 & 620,648 \\
\hline
\end{tabular}

\section*{Complex Gates}
Quad OR/NOR Gate
Triple 2-3-2 Input OR/NOR Gate
Dual 4-5 Input OR/NOR Gate
Dual 3-Input 3-Output
OR/NOR Gate
Triple 2-Input Exclusive
OR/NOR Gate
Quad 2-Input Exclusive
OR/NOR Gate
Dual 2-Wide 2-3 Input OR-AND/
OR-AND INVERT
Dual 2-Wide 3-Input OR-AND
4-Wide 4-3-3-3 Input OR-AND
4-Wide 3-Input OR-AND/
OR-AND-INVERT
\begin{tabular}{|c|c|}
\hline\(M C 10101\) & 620,648 \\
\(M C 10105\) & 620,648 \\
\(M C 10109\) & 620,648 \\
\(M C 10212\) & 620,648 \\
& \\
\(M C 10107\) & 620,648 \\
\(M C 10113\) & 620,648 \\
& \\
\(M C 10117\) & 620,648 \\
\(M C 10118\) & 620,648 \\
MC10119 & 620,648 \\
MC10121 & 620,648 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function & Device & Case \\
\hline \multicolumn{3}{|l|}{Buffers/Inverters} \\
\hline Hex Buffer/Enable & MC10188 & 620,648 \\
\hline Hex Inverter/Enable & MC10189 & 620,648 \\
\hline Hex Inverter/Buffer & MC10195 & 620,648 \\
\hline \multicolumn{3}{|l|}{Line Drivers/Line Receivers} \\
\hline Triple Line Receiver & MC10114 & 620, 648 \\
\hline Quad Line Receiver & MC10115 & 620,648 \\
\hline Triple Line Receiver & MC10116 & 620,648 \\
\hline Quad Bus Receiver & MC10129 & 620, 648 \\
\hline Quad Bus Driver & MC10192 & 620,648 \\
\hline Triple Line Receiver & MC10216 & 620, 648 \\
\hline Triple 4-3-3 Input Bus Driver & MC10123 & 620, 648 \\
\hline Dual Bus Driver & MC10128 & 620 \\
\hline Dual Transceiver & MC10194 & 620, 648 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\multicolumn{4}{l|}{ Translators } \\
\begin{tabular}{|l|l|l|}
\hline Quad TTL-MECL & MC10124 & 620,648 \\
Quad MECL-TTL & MC10125 & 620,648 \\
Triple MECL-MOS & MC10177 & 620,648 \\
Quad MST to MECL & MC10190 & 620,648 \\
Hex MECL-MST & MC10191 & 620,648 \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & Device & Case \\
\hline
\end{tabular} \begin{tabular}{|l|l|c|}
\hline Flip-Flop/Latches \\
\hline Dual D Master Slave Flip-Flop & MC10131 & 620,648 \\
Dual J-K Master Slave Flip-Flop & MC10135 & 620,648 \\
Hex D Master Slave Flip-Flop & MC10176 & 620,648 \\
Hex D Common Reset Flip-Flop & MC10186 & 620,648 \\
Dual D Master Slave Flip-Flop & MC10231 & 620,648 \\
Quad Latch & MC10133 & 620,648 \\
Quint Latch & MC10175 & 620,648 \\
Quad/Common Clock Latch & MC10168 & 620,648 \\
Quad/Negative Clock Latch & MC10153 & 620,648 \\
Dual Latch & MC10130 & 620,648 \\
\hline
\end{tabular}

\section*{Encoders}
\begin{tabular}{|l|l|l|}
\hline 8-Input Encoder & MC10165 & 620,648 \\
\hline Decoders \\
\hline Binary to 1-8 (Low) & MC10161 & 620,648 \\
Binary to 1-8 (High) & MC10162 & 620,648 \\
Dual Binary to 1-4 (Low) & MC10171 & 620,648 \\
Dual Binary to 1-4 (High) & MC10172 & 620,648 \\
\hline
\end{tabular}

\section*{Parity Generator/Checkers}
\begin{tabular}{|l|l|l|}
\hline 12-Bit Parity Generator-Checker & MC10160 & 620,648 \\
\(9+2\) Bit Parity & MC10170 & 620,648 \\
\hline
\end{tabular}

Error Detector/Correction
\begin{tabular}{|l|l|l|}
\hline IBM Code & MC10163 & 620,648 \\
Motorola Code & MC10193 & 620,648 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function & Device & Case \\
\hline \multicolumn{3}{|l|}{Counters} \\
\hline Hexadecimal & MC10136 & 620,648 \\
\hline Decade & MC10137 & 620, 648 \\
\hline Biquinary & MC10138 & 620, 648 \\
\hline Binary Down Counter & MC10154 & 620,648 \\
\hline Binary & MC10178 & 620,648 \\
\hline \multicolumn{3}{|l|}{Arithmetic Functions} \\
\hline 5-Bit Magnitude Comparator & MC10166 & 620,648 \\
\hline Look Ahead Carry Block & MC10179 & 620,648 \\
\hline Dual 2-Bit Adder/Subtractor & MC10180 & 620, 648 \\
\hline 4-Bit Arithmetic Function Gen. & MC10181 & 620, 648 \\
\hline 2-Bit Arithmetic Function Gen. & MC10182 & 620,648 \\
\hline \(4 \times 2\) Multiplier & MC10183 & 623 \\
\hline 2-Bit Multiplier & MC10287 & 620,648 \\
\hline \multicolumn{3}{|l|}{Shift Register} \\
\hline 4-Bit Universal & MC10141 & 620,648 \\
\hline \multicolumn{3}{|l|}{Multivibrators} \\
\hline Monostable Multivibrators & MC10198 & 620,648 \\
\hline \multicolumn{3}{|l|}{Multiplexer} \\
\hline Quad 2-Input/Noninverting & MC10158 & 620,648 \\
\hline Dual Multiplexer/Latch & MC10132 & 620,648 \\
\hline Dual Multiplexer/Latch & MC10134 & 620, 648 \\
\hline Quad 2-Input/Inverting & MC10159 & 620,648 \\
\hline 8 -Line & MC10164 & 620,648 \\
\hline Quad 2-Input/Latch & MC10173 & 620,648 \\
\hline Dual 4-1 & MC10174 & 620,648 \\
\hline
\end{tabular}

\section*{MECL 1OK sernes}

\section*{QUAD 2-INPUT NOR GATE WITH STROBE} four gates.

The MC10100 is a quad NOR gate. Each gate has 3 inputs, two of which are independent and one of which is tied common to all
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =25 \mathrm{~mW} \text { typ/gate (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20-80 \%)
\end{aligned}
\]

QUAD 2-INPUT NOR GATE WITH STROBE

\section*{LOGIC DIAGRAM}

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

Individually test each input applying \(\mathrm{V}_{1 \mathrm{H}}\) or \(\mathrm{V}_{\mathrm{IL}}\) to input under test.

\section*{MECL 1OK series}

\section*{QUAD OR/NOR GATE}

The MC10101 is a quad 2-input OR/NOR gate with one input from each gate common to pin 12.
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=25 \mathrm{~mW} \text { typ/gate (No Load) } \\
& \mathrm{t}_{\mathrm{pd}}=2.0 \mathrm{~ns} \text { typ } \\
& \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{QUAD OR/NOR GATE}

\section*{LOGIC DIAGRAM}

\(V_{C C 1}=\operatorname{Pin} 1\)
\(V_{C C 2}=\operatorname{Pin} 16\)
\(\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 8\)

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline shown for only one gate. & oth & ates & te & in the & same & , & & & & & & & & & & \\
\hline den & 兂 & & & & & & & & & & & & (Volts) & & & \\
\hline & & & & & & & & & Temp & rature & \(\mathrm{V}_{1 H \text { max }}\) & \(\mathrm{V}_{\mathrm{IL} \text { min }}\) & \(\mathrm{V}_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{EE}}\) & \\
\hline & & & & & & & & & & \(30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205. & -1.500 & -5.2 & \\
\hline & & & & & & & & & & \(\mathbf{2 5}^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & \(8^{\circ}{ }^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline & & & & & & 1010 & Test Lim & nits & & & & OLtage & LIED TO P & ISTED BEL & & \\
\hline & & Under & -30 & & & \(+25^{\circ} \mathrm{C}\) & & & \(5^{\circ} \mathrm{C}\) & & & & & & & \\
\hline Characteristic & Symbol & Test & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{V}_{1 \mathrm{H} \text { max }}\) & \(V_{\text {IL }}\) min & \(\mathrm{V}_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{EE}}\) & Gnd \\
\hline Power Supply Drain Current & \({ }_{\text {E }}\) E & 8 & - & 29 & - & 20 & 26 & - & 29 & mAdc & - & - & - & - & 8 & 1,16 \\
\hline Input Current & \({ }^{1} \mathrm{inH}\) & \[
\begin{gathered}
\hline 4 \\
12
\end{gathered}
\] & - & \[
\begin{aligned}
& 425 \\
& 850
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 265 \\
& 535
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& 265 \\
& 535
\end{aligned}
\] & \(\mu \mathrm{Adc}\) \(\mu\) Adc & \[
\begin{gathered}
4 \\
12
\end{gathered}
\] & - & - & - & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline & \(\mathrm{l}_{\mathrm{inL}}\). & \[
\begin{gathered}
\hline 4 \\
12
\end{gathered}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \hline 0.3 \\
& 0.3
\end{aligned}
\] & - & \begin{tabular}{l}
\(\mu \mathrm{Adc}\) \\
- \(\mu \mathrm{Adc}\)
\end{tabular} & - & \[
\begin{gathered}
4 \\
12
\end{gathered}
\] & - & - & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Logic "1" \\
Output Voltage
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& 5 \\
& 5 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{array}{|r|}
\hline-1.060 \\
-1.060 \\
-1.060 \\
-1.060 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.890 \\
-0.890 \\
-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.960 \\
-0.960 \\
-0.960 \\
-0.960 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
-0.810 \\
-0.810 \\
-0.810 \\
-0.810
\end{array}
\] & \[
\begin{array}{|c|}
\hline-0.890 \\
-0.890 \\
-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.700 \\
-0.700 \\
-0.700 \\
-0.700 \\
\hline
\end{array}
\] & & \[
\begin{gathered}
12 \\
4 \\
-
\end{gathered}
\] & -
- & -
-
- & - & \[
8
\] & \[
1,16
\] \\
\hline \[
\begin{aligned}
& \text { Logic " } 0 \text { "' } \\
& \text { Output Voltage }
\end{aligned}
\] & \(\mathrm{v}_{\mathrm{OL}}\) & \[
\begin{aligned}
& 5 \\
& 5 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.890 \\
-1.890 \\
-1.890 \\
-1.890 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-1.675 \\
-1.675 \\
-1.675 \\
-1.675
\end{array}
\] & \[
\begin{array}{|l|}
\hline-1.850 \\
-1.850 \\
-1.850 \\
-1.850
\end{array}
\] & -- & \[
\begin{array}{r}
-1.650 \\
-1.650 \\
-1.650 \\
-1.650 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-1.825 \\
-1.825 \\
-1.825 \\
-1.825
\end{array}
\] & \[
\begin{aligned}
& -1.615 \\
& -1.615 \\
& -1.615 \\
& -1.615
\end{aligned}
\] & & \[
\begin{gathered}
- \\
- \\
12 \\
4
\end{gathered}
\] & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & \[
8
\] & \[
\begin{gathered}
1,16 \\
1
\end{gathered}
\] \\
\hline Logic " 1 "
Threshold Voltage & VOHA & \[
\begin{aligned}
& 5 \\
& 5 \\
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.080 \\
-1.080 \\
-1.080 \\
-1.080 \\
\hline
\end{array}
\] & \(\stackrel{-}{-}\) & \[
\begin{array}{|l|}
\hline-0.980 \\
-0.980 \\
-0.980 \\
-0.980 \\
\hline
\end{array}
\] & -
-
-
- & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & \[
\begin{array}{|l|}
\hline-0.910 \\
-0.910 \\
-0.910 \\
-0.910 \\
\hline
\end{array}
\] & -
-
- & & -
-
- & \begin{tabular}{l}
- \\
- \\
\hline
\end{tabular} & 12
4
-
- & -
-
12
4 & 1 & \[
\stackrel{1,16}{1}
\] \\
\hline \[
\begin{aligned}
& \text { Logic " } 0^{\prime \prime} \\
& \text { Threshold Voltage }
\end{aligned}
\] & \(\mathrm{V}_{\text {OLA }}\) & \[
\begin{aligned}
& 5 \\
& 5 \\
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & -
-
- & -1.655
-1.655
-1.655
-1.655 & - & - & \[
\begin{aligned}
& -1.630 \\
& -1.630 \\
& -1.630 \\
& -1.630
\end{aligned}
\] & -
-
- & \[
\begin{aligned}
& -1.595 \\
& -1.595 \\
& -1.595 \\
& -1.595 \\
& \hline
\end{aligned}
\] & & - & -
-
-
- & \begin{tabular}{c}
- \\
\hline 12 \\
4
\end{tabular} & 12
4
- & 8 & \[
\begin{gathered}
1,16 \\
1
\end{gathered}
\] \\
\hline Switching Times (50 -ohm load) & & & & & & & & & & & & & Puise In & Pulse Out & -3.2V & +2.0 V \\
\hline Propagation Delay & \[
\begin{aligned}
& \mathrm{t}_{4+2-} \\
& \mathrm{t}_{4-2+} \\
& \mathrm{t}_{4+5+} \\
& \mathrm{t}_{4-5-5-}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 5 \\
& 5
\end{aligned}
\] & & \[
1
\] & \[
1.0
\] & \[
{ }^{2.0}
\] & \[
{ }_{1}^{2.9}
\] & \[
\int_{1}^{1.0}
\] & \[
{ }_{1}^{3.3}
\] & \[
i_{1}^{n s}
\] & -
-
- & \[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\] & & \[
\begin{aligned}
& 2 \\
& 2 \\
& 5 \\
& 5
\end{aligned}
\] & \[
8
\] & \[
1.16
\] \\
\hline Rise Time (20 to 80\%) & \[
\begin{aligned}
& \mathrm{t}_{2} \\
& \mathrm{t}_{5}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 5
\end{aligned}
\] & \[
i^{1}
\] & \[
3
\] & \[
1.1
\] & & \[
3.3
\] & \[
1.1
\] & \[
3.7
\] & & \(\stackrel{-}{-}\) & - & & \[
\begin{aligned}
& 2 \\
& 5
\end{aligned}
\] & & , \\
\hline Fall Time (20 to \(80 \%\)) & \[
\begin{aligned}
& \mathrm{t}_{2}- \\
& \mathrm{t}_{2}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 5
\end{aligned}
\] & \[
\dagger
\] & \[
\dagger
\] & & \[
\dagger
\] & \(\dagger\) & \[
\dagger
\] & 1 & & - & - & \[
1
\] & \[
\begin{aligned}
& 2 \\
& 5
\end{aligned}
\] & \(\dagger\) & 1 \\
\hline
\end{tabular}

\section*{QUAD 2-INPUT NOR GATE}

The MC10102 is a quad 2 -input NOR gate. The MC10102 provides one gate with OR/NOR outputs.
\[
\begin{aligned}
\mathrm{PD}_{\mathrm{D}} & =25 \mathrm{~mW} \text { typ/gate (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{MECL 1OK sermes}

QUAD 2-INPUT NOR GATE

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline one gate. The other gates & tes & th & e & er. & & & & & & & & & (Volts) & & & \\
\hline & & & & & & & & & \[
\begin{array}{r}
@ \top \\
\text { Tempe }
\end{array}
\] & ature & \(\mathrm{V}_{1} \mathrm{H}_{\text {max }}\) & \(\mathrm{V}_{\text {IL }}\) min & \(\mathrm{V}_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(V_{\text {EE }}\) & \\
\hline & & & & & & & & & & \(30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 & \\
\hline & & & & & & & & & & \(25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & \(85^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline & & & & & & C1010 & Test Li & mits & & & & OLTAGE & PLIED TO PI & LISTED BE & & \\
\hline & & Under & -30 & & & \(\underline{+25}{ }^{\circ} \mathrm{C}\) & & & \(5^{\circ} \mathrm{C}\) & & & & & & & (\(\mathrm{V}_{\mathrm{cc}}\)) \\
\hline Characteristic & Symbol & Test & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{V}_{1 \mathrm{H}_{\text {max }}}\) & \(V_{\text {IL }}\) min & \(\mathrm{V}_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{EE}}\) & Gnd \\
\hline Power Supply Drain Current & \({ }_{\text {I }}\) E & 8 & - & 29 & - & 20 & 26 & - & 29 & mAdc & - & - & - & - & 8 & 1.16 \\
\hline Input Current & \(\mathrm{I}_{\mathrm{inH}}\) & 12 & - & 425 & - & - & 265 & - & 265 & \(\mu \mathrm{Adc}\) & 12 & - & - & - & 8 & 1,16 \\
\hline & \(\mathrm{I}_{\mathrm{inL}}\) & 12 & 0.5 & - & 0.5 & - & - & 0.3 & - & \(\mu\) Adc & - & 12 & - & - & 8 & 1.16 \\
\hline \[
\begin{aligned}
& \text { Logic "1" } \\
& \text { Output Voltage }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{gathered}
\hline 9 \\
9 \\
15 \\
15 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|r|}
\hline-1.060 \\
-1.060 \\
-1.060 \\
-1.060 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.890 \\
-0.890 \\
-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.960 \\
-0.960 \\
-0.960 \\
-0.960 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& - \\
& \text { - } \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& \hline-0.810 \\
& -0.810 \\
& -0.810 \\
& -0.810 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-0.890 \\
-0.890 \\
-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.700 \\
-0.700 \\
-0.700 \\
-0.700 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 12 \\
& 13 \\
& - \\
& \hline
\end{aligned}
\] & - & - & - & \[
1
\] & \[
\begin{gathered}
1,16 \\
1 \\
\hline
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { Logic " } 0 \text { " } \\
& \text { Output Voltage }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{gathered}
\hline 9 \\
9 \\
15 \\
15 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|l|}
\hline-1.890 \\
-1.890 \\
-1.890 \\
-1.890 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-1.675 \\
-1.675 \\
-1.675 \\
-1.675 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -1.850 \\
& -1.850 \\
& -1.850 \\
& -1.850 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& \hline-1.650 \\
& -1.650 \\
& -1.650 \\
& -1.650 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.825 \\
-1.825 \\
-1.825 \\
-1.825 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline-1.615 \\
-1.615 \\
-1.615 \\
-1.615 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& - \\
& - \\
& 12 \\
& 13 \\
& \hline
\end{aligned}
\] & -
-
- & -
-
- & -
-
- & \[
8
\] & \[
\begin{gathered}
1,16 \\
\hline
\end{gathered}
\] \\
\hline Logic " 1 "
Threshold Voltage & \(\mathrm{V}_{\text {OHA }}\) & \[
\begin{gathered}
\hline 9 \\
9 \\
15 \\
15 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|r|}
\hline-1.080 \\
-1.080 \\
-1.080 \\
-1.080 \\
\hline
\end{array}
\] & -
-
- & \[
\begin{array}{|l|}
\hline-0.980 \\
-0.980 \\
-0.980 \\
-0.980 \\
\hline
\end{array}
\] & - & -
-
- & \[
\begin{array}{|}
-0.910 \\
-0.910 \\
-0.910 \\
-0.910 \\
\hline
\end{array}
\] & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & & -
-
- & - & \[
\begin{aligned}
& 12 \\
& 13 \\
& - \\
& -
\end{aligned}
\] & -
-
12
13 & \[
1
\] & \[
1,16
\] \\
\hline \[
\begin{aligned}
& \text { Logic "0" } \\
& \text { Threshold Voltage }
\end{aligned}
\] & \(\mathrm{V}_{\text {OLA }}\) & \[
\begin{aligned}
& 9 \\
& 9 \\
& 15 \\
& 15
\end{aligned}
\] & -
-
- & \[
\begin{array}{|l|}
\hline-1.655 \\
-1.655 \\
-1.655 \\
-1.655 \\
\hline
\end{array}
\] & -
-
- & - & \[
\begin{aligned}
& \hline-1.630 \\
& -1.630 \\
& -1.630 \\
& -1.630 \\
& \hline
\end{aligned}
\] & -
-
- & \[
\begin{aligned}
& \hline-1.595 \\
& -1.595 \\
& -1.595 \\
& -1.595 \\
& \hline
\end{aligned}
\] & & - & -
-
- & \[
\begin{aligned}
& -12 \\
& 13
\end{aligned}
\] & \begin{tabular}{l}
12 \\
13 \\
- \\
- \\
\hline
\end{tabular} & 1 & \[
1,16
\] \\
\hline Switching Times (50-ohm load) & & & & & & & & & & & & & Pulse In & Pulse Out & -3.2 V & +2.0 V \\
\hline Propagation Delay & \[
\begin{gathered}
\mathrm{t}_{12+15-} \\
\mathrm{t}_{12-15+} \\
\mathrm{t}_{12+9+} \\
\mathrm{t}_{12-9-}
\end{gathered}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 9 \\
& 9
\end{aligned}
\] & \[
i_{1}^{10}
\] & \[
{ }_{1}^{3.1}
\] & \[
\stackrel{1.0}{\downarrow}
\] & \[
{ }^{2.0}
\] & \[
1.9
\] & \[
i^{1.0}
\] & \[
1_{1}^{3.3}
\] & \({ }^{\text {ns }}\) & -
-
- & -
-
- & \[
{ }_{1}^{12}
\] & \[
\begin{gathered}
15 \\
15 \\
9 \\
9
\end{gathered}
\] & \[
8^{8}
\] & \[
\begin{gathered}
1,16 \\
\hline
\end{gathered}
\] \\
\hline Rise Time (20 to 80\%) Fall Time (20 to 80\%) & \[
\begin{gathered}
\mathrm{t}_{15+} \\
\mathrm{t}_{9+} \\
\mathrm{t}_{15-} \\
\mathrm{t}_{9-}
\end{gathered}
\] & \[
\begin{gathered}
15 \\
9 \\
15 \\
9
\end{gathered}
\] & \[
1_{1}^{1.1}
\] & \[
i^{3.6}
\] & \[
1.1
\] & & \[
1
\] & \[
1.1
\] & & 1 & -
-
- & -
-
- & \[
1
\] & \[
\begin{gathered}
15 \\
9 \\
15 \\
9
\end{gathered}
\] & 1 & \(\downarrow\) \\
\hline
\end{tabular}

\section*{MECL dOK series}

\section*{QUAD 2-INPUT OR GATE}

The MC10103 is a quad 2-input OR gate. The MC10103 provides one gate with OR/NOR outputs.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =25 \mathrm{~mW} \text { typ/gate (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{LOGIC DIAGRAM}

\(\begin{aligned} V_{C C 1} & =\operatorname{Pin} 1 \\ V_{\mathrm{CC2}} & =\operatorname{Pin} 16 \\ V_{\mathrm{EE}} & =\operatorname{Pin} 8\end{aligned}\)

P SUFFIX PLASTIC PACKAGE CASE 648

L. SUFFIX CERAMIC PACKAGE CASE 620

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

*Individually test each input applying \(V_{I H}\) or \(V_{I L}\) to input under test

\section*{MECL LOK series}

QUAD 2-INPUT AND GATE
The MC10104 is a quad 2-input AND gate. One of the gates has both AND/NAND outputs available.
\[
\begin{aligned}
P_{D} & =35 \mathrm{~mW} \text { typ/gate (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.7 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{QUAD 2-INPUT AND GATE}

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\) ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

Inputs 4, 7, 10, and 13 will behave similarly for ac and \(I_{\text {inH }}\) values.
Inputs 5, 6, 11, and 12 will behave similarly for \(a c\) and \(\mathrm{I}_{\text {inH }}\) values.

\section*{MECL LOK semes}

TRIPLE 2-3-2-INPUT OR/NOR GATE
The MC10105 is a triple 2-3-2 input OR/NOR gate.
\(\mathrm{P}_{\mathrm{D}}=30 \mathrm{~mW}\) typ/gate (No Load)
\(\mathrm{t}_{\mathrm{pd}}=2.0 \mathrm{~ns}\) typ
\(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}\) typ \((20 \%-80 \%)\)

\section*{TRIPLE 2-3-2-INPUT} OR/NOR GATE

\section*{LOGIC DIAGRAM}

\[
\begin{aligned}
V_{C C 1} & =\operatorname{Pin} 1 \\
V_{C C 2} & =\operatorname{Pin} 16 \\
V_{E E} & =\operatorname{Pin} 8
\end{aligned}
\]

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are ested in the same manner.

\section*{MC10106}

\section*{MECL LOK series}

TRIPLE 4-3-3-INPUT NOR GATE
The MC10106 is a triple 4-3-3 input NOR gate.
\(\mathrm{P}_{\mathrm{D}}=30 \mathrm{~mW}\) typ/gate (No Load)
\(\mathrm{t}_{\mathrm{pd}}=2.0 \mathrm{~ns}\) typ
\(\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}\) typ \((20 \%-80 \%)\)

\section*{TRIPLE 4-3-3-INPUT NOR GATE}
\begin{tabular}{rl}
\(\mathrm{P}_{\mathrm{D}}\) & \(=30 \mathrm{~mW}\) typ/gate (No Load) \\
\(\mathrm{t}_{\mathrm{pd}}\) & \(=2.0 \mathrm{~ns}\) typ \\
\(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & \(=2.0 \mathrm{~ns}\) typ \((20 \%-80 \%)\)
\end{tabular}

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

\section*{MECL 1OK sermes}

TRIPLE 2-INPUT EXCLUSIVE "OR"/EXCLUSIVE "NOR"
\(\mathrm{P}_{\mathrm{D}}=40 \mathrm{~mW}\) typ/gate (No Load)
\(\mathrm{t}_{\mathrm{pd}}=2.8 \mathrm{~ns}\) typ
\(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}\) typ \((20 \%-80 \%)\)

\section*{LOGIC DIAGRAM}

\[
\begin{gathered}
3=(4 \cdot 5)+(\overline{4} \cdot 5) \\
2=(\overline{4} \cdot 5)+(4 \cdot 5) \\
\\
V_{C C 1}=\operatorname{Pin} 1 \\
V_{C C 2}=\operatorname{Pin} 16 \\
V_{E E}=\operatorname{Pin} 8
\end{gathered}
\]

PIN ASSIGNMENT

*NC = No Connection

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

Individually test each input applying \(\mathrm{V}_{1 \mathrm{H}}\) or \(\mathrm{V}_{1 \mathrm{~L}}\) to input under test.

\section*{DUAL 4-5-INPUT "OR/NOR" GATE}

The MC10109 is a dual 4-5 input OR/NOR gate.
\(P_{D}=30 \mathrm{~mW}\) typ/gate (No Load)
\(\mathrm{t}_{\mathrm{pd}}=2.0 \mathrm{~ns}\) typ
\(t_{r}, t_{f}=2.0 n s \operatorname{typ}(20 \%-80 \%)\)

\section*{MECL LOK series}

DUAL 4-5-INPUT "OR/NOR" GATE

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

\section*{MECL 1OK series} and package count. are provided and each one should be used.

\section*{DUAL 3-INPUT 3-OUTPUT "OR" GATE}

The MC10110 is designed to drive up to three transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR" ing of several levels of gating for minimization of gate

The ability to control three parallel lines from a single point makes the MC10110 particularly useful in clock distribution applications where minimum clock skew is desired. Three \(\mathrm{V}_{\mathrm{CC}}\) pins
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=80 \mathrm{~mW} \text { typ/gate (No Load) } \\
& \mathrm{t}_{\mathrm{pd}}=2.4 \mathrm{~ns} \text { typ (All Outputs Loaded) } \\
& \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.2 \mathrm{~ns} \text { typ (} 20 \%-80 \% \text {) }
\end{aligned}
\]

DUAL 3-INPUT 3-OUTPUT "OR" GATE

\section*{LOGIC DIAGRAM}

\(V_{C C 1}=\) Pin 1, 15
\(V_{C C 2}=\operatorname{Pin} 16\)
\(V_{E E}=\operatorname{Pin} 8\)

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

*Individually test each input using the pin connections shown.

\section*{MC10111}

\section*{MECL 1OK series}

\section*{DUAL 3-INPUT 3-OUTPUT "NOR" GATE}

The MC10111 is designed to drive up to three transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines from a single point makes the MC10111 particularly useful in clock distribution applications where minimum clock skew is desired. Three \(V_{C C}\) pins are provided and each one should be used.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =80 \mathrm{~mW} \text { typ/gate (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.4 \mathrm{~ns} \text { typ (All Outputs Loaded) } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.2 \mathrm{~ns} \text { typ (} 20 \%-80 \% \text {) }
\end{aligned}
\]

P SUFFIX
PLASTIC PACKAGE
CASE 648

L SUFFIX CERAMIC PACKAGE CASE 620

\section*{LOGIC DIAGRAM}

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

*Individually test each input using the pin connections shown.

\section*{M/ECL 1OK series}

\section*{QUAD EXCLUSIVE OR GATE}

The MC10113 is a quad Exclusive OR gate, with an enable common to all four gates. The outputs may be wire-ORed together to perform a 4-bit comparison function (\(A=B\)). The enable is active low.

\section*{QUAD EXCLUSIVE OR GATE}
\(P_{D}=175 \mathrm{~mW}\) typ/pkg (No Load)
\[
\mathrm{t}_{\mathrm{pd}}=2.5 \mathrm{~ns} \text { typ }
\]
\[
t_{r}, t_{f}=2.0 \text { ns typ }(20 \% \text { to } 80 \%)
\]

P SUFFIX PLASTIC PACKAGE CASE 648

LSUFFIX CERAMIC PACKAGE CASE 620

\section*{LOGIC DIAGRAM}

\[
\begin{aligned}
V_{C C 1} & =\operatorname{Pin} 1 \\
V_{\mathrm{CC} 2} & =\operatorname{Pin} 16 \\
V_{\mathrm{EE}} & =\operatorname{Pin} 8
\end{aligned}
\]

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are ested in a similar manner.

*Individually test each input applying \(\mathrm{V}_{I H}\) or \(\mathrm{V}_{I L}\) to input under test.

\section*{TRIPLE LINE RECEIVER}

The MC10114 is a triple line receiver designed for use in sensing differential signals over long lines. An active current source and translated emitter follower inputs provide the line receiver with a common mode noise rejection limit of one volt in either the positive or the negative direction. This allows a large amount of common mode noise immunity for extra long lines.
Another feature of the MC10114 is that the OR outputs go to a logic low level whenever the inputs are left floating. The outputs are each capable of driving 50 ohm transmission lines.
This device is useful in high speed central processors, minicomputers, peripheral controllers, digital communication systems, testing and instrumentation systems. The MC10114 can also be used for MOS to MECL interfacing and it is ideal as a sense amplifier for MOS RAM's.
A \(\mathrm{V}_{\mathrm{BB}}\) reference is provided which is useful in making the MC10114 a Schmitt trigger, allowing single-ended driving of the inputs, or other applications where a stable reference voltage is necessary.
\(\mathrm{P}_{\mathrm{D}}=145 \mathrm{~mW}\) typ \(/ \mathrm{pkg}\)
\(\mathrm{t}_{\mathrm{pd}}=2.4 \mathrm{~ns}\) typ (Single Ended Input)
\(\mathrm{t}_{\mathrm{pd}}=2.0 \mathrm{~ns}\) typ (Differential Input)
\(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.1 \mathrm{~ns}\) typ (20\% to \(\left.80 \%\right)\)

\section*{LOGIC DIAGRAM}
\[
\begin{aligned}
V_{C C 1} & =\operatorname{Pin} 1 \\
V_{C C 2} & =\operatorname{Pin} 16 \\
V_{E E} & =\operatorname{Pin} 8
\end{aligned}
\]

\section*{MIECL 1OK series}

TRIPLE LINE RECEIVER

MC10114

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner

* \(\mathrm{V}_{\text {IHH }}\) - Input logic " 1 " level shifted positive one volt for common mode rejection tests \(V_{\text {ILH }}\) - Input logic " 0 " level shifted positive one volt for common mode rejection tests \(V_{\text {IHL }}\) - Input logic " 1 " level shifted negative one volt for common mode rejection tests VILL - Input logic " 0 " level shifted negative one volt for common mode rejection tests **Delay is 2.0 ns with differential input

\section*{MC10115}

\section*{MECL 10 K series}

\section*{QUAD LINE RECEIVER}

The MC10115 is a quad differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (\(\mathrm{V}_{\mathrm{BB}}\)) is made available at pin 9 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the MC10115 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to \(V_{B B}\) (pin 9) to prevent upsetting the current source bias network.
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=110 \mathrm{~mW} \text { typ/pkg (No Load) } \\
& \mathrm{t}_{\mathrm{pd}}=2.0 \mathrm{~ns} \text { typ } \\
& \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{QUAD LINE RECEIVER}

P SUFFIX PLASTIC PACKAGE

CASE 648

LSUFFIX
CERAMIC PACKAGE
CASE 620

\section*{LOGIC DIAGRAM}

\(\begin{aligned} V_{C C 1} & =\operatorname{Pin} 1 \\ V_{C C 2} & =\operatorname{Pin} 16 \\ V_{E E} & =\operatorname{Pin} 8\end{aligned}\)

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & & & & & & & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{@ Test Temperature}} & \multicolumn{6}{|c|}{TEST Voltage values} & \multirow[b]{8}{*}{\[
\begin{gathered}
\left(V_{c c}\right) \\
\text { Gnd }
\end{gathered}
\]} \\
\hline & & & & & & & & & & \(\mathrm{V}_{\mathrm{IH} \text { max }}\) & \(\mathrm{V}_{\mathrm{IL} \text {. } \text { min }}\) & \(V_{1 H A}\) min & \(V_{\text {ILA }}\) max & \(V_{B B}\) & \(V_{\text {EE }}\) & \\
\hline & & & & & & & & & \(-30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205 & -1.500 & Fr & -5.2 & \\
\hline & & & & & & & & & \(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & Pin & -5.2 & \\
\hline & & & & & & & & & \(+85^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & 9 & -5.2 & \\
\hline & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Pin Under Test} & \multicolumn{7}{|c|}{MC10115 Test Limits} & \multicolumn{6}{|c|}{\multirow[b]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW:}} & \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & & \\
\hline Characteristic & & & Min & Max & Min & Max & Min & Max & & \(\mathrm{V}_{1 \mathrm{H} \text { max }}\) & \(\mathrm{V}_{1 \mathrm{~L} \text { min }}\) & \(\mathrm{V}_{1} \mathrm{HA}^{\text {min }}\) & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\text {BB }}\) & \(V_{\text {EE }}\) & \\
\hline Power Supply Drain Current & \(\mathrm{I}_{\text {E }}\) & 8 & - & 29 & - & 26 & - & 29 & mAdc & - & 4,7,10,13 & - & - & 5,6,11,12 & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{Input Current} & 1 inH & 4 & - & 150 & - & 95 & - & 95 & \(\mu \mathrm{Adc}\) & 4 & 7.10,13 & - & - & 5,6,11,12 & 8 & 1,16 \\
\hline & \({ }^{\text {I CBO }}\) & 4 & - & 1.5 & - & 1.0 & - & 1.0 & \(\mu \mathrm{Adc}\) & - & 7,10,13 & - & - & 5,6,11,12 & 8,4 & 1,16 \\
\hline Logic "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & 2 & -1.060 & -0.890 & -0.960 & -0.810 & -0.890 & -0.700 & Vdc & 7,10,13 & 4 & - & - & 5,6,11,12 & 8 & 1,16 \\
\hline Logic "0" Output Voitage & \(\mathrm{V}_{\mathrm{OL}}\) & 2 & -1.890 & -1.675 & -1.850 & -1.650 & -1.825 & -1.615 & Vdc & 4 & 7,10,13 & - & - & 5,6,11.12 & 8 & 1,16 \\
\hline Logic "1" Threshoid Voltage & \(\mathrm{V}_{\text {OHA }}\) & 2 & -1.080 & - & -0.980 & - & -0.910 & - & Vdc & - & 7,10,13 & - & 4 & 5,6,11,12 & 8 & 1,16 \\
\hline Logic "0" Threshold Voltage & \(V_{\text {OLA }}\) & 2 & - & -1.655 & - & -1.630 & - & -1.595 & Vdc & - & 7,10,13 & 4 & - & 5,6,11,12 & 8 & 1,16 \\
\hline Reference Voltage & \(\mathrm{V}_{\text {BB }}\) & 9 & 1.420 & 1.280 & -1.350 & -1.230 & 1.295 & -1.150 & Vdc & - & - & - & - & 5,6,11,12 & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{Switching Times (\(50 \Omega\) Load) Propagation Delay} & & & & & & & & & \multirow[b]{4}{*}{} & \multicolumn{2}{|c|}{Pulse In} & \multicolumn{2}{|c|}{Pulse Out} & \multirow[b]{2}{*}{\[
5,6,11,12
\]} & -3.2 V & +2.0 \\
\hline & \({ }^{\text {t } 4-2+}\) & 2 & 1.0
1.0 & \[
\begin{aligned}
& 3.1 \\
& 3.1
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.9 \\
& 2.9
\end{aligned}
\] & 1.0 & \[
\begin{aligned}
& 3.3 \\
& 3.3
\end{aligned}
\] & & \multicolumn{2}{|c|}{\multirow[t]{3}{*}{\[
1
\]}} & \multicolumn{2}{|c|}{\multirow[t]{3}{*}{\[
1
\]}} & & 8 & \\
\hline Rise Time (20\% to 80\%) & \(\mathrm{t}_{2+}\) & 2 & 1.1 & 3.6 & 1.1 & 3.3 & 1.1 & 3.7 & & & & & & & & \\
\hline Fall Time (\(20 \%\) to \(80 \%\)) & \(\mathrm{t}_{2}\) & 2 & 1.1 & 3.6 & 1.1 & 3.3 & 1.1 & 3.7 & & & & & & \(\dagger\) & \(\dagger\) & \(\dagger\) \\
\hline
\end{tabular}

\section*{MC10116}

The MC10116 is a triple differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (\(\mathrm{V}_{\mathrm{BB}}\)) is made available at pin 11 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the MC10116 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to \(V_{B B}\) (pin 11) to prevent upsetting the current source bias network.

Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to provide complement outputs of the input logic function.
\[
\begin{aligned}
P_{D} & =85 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{MECL LOK series}

TRIPLE LINE RECEIVER

LSUFFIX CERAMIC PACKAGE CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

\section*{LOGIC DIAGRAM}

\[
\begin{aligned}
V_{C C 1} & =\operatorname{Pin} 1 \\
V_{C C 2} & =\operatorname{Pin} 16 \\
V_{E E} & =\operatorname{Pin} 8
\end{aligned}
\]

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & voltage & Values & & & \\
\hline gate. The other g & & & & & & & & & & & & & (Volts) & & & & \\
\hline & & & & & & & & & & mperature & \(\mathrm{V}_{1 \mathrm{H}_{\text {max }}}\) & \(\mathrm{V}_{\mathrm{IL} . \text { min }}\) & \(V_{\text {IHA min }}\) & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\text {BB }}\) & VEE & \\
\hline & & & & & & & & & & \(-30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205 & -1.500 & From & -5.2 & \\
\hline & & & & & & & & & & \(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & Pin & -5.2 & \\
\hline & & & & & & & & & & \(+85^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & 11 & -5.2 & \\
\hline & & & & & & 10116 & Test Limi & & & & & & & & & & \\
\hline & & Under & & \(0^{\circ} \mathrm{C}\) & & \(+25^{\circ} \mathrm{C}\) & & & & & & vo & APPL & OPINS B & ow: & & \\
\hline Characteristic & Symbol & Test & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{VIH}_{\text {max }}\) & \(V_{\text {IL }}\) min & \(V_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{BB}}\) & \(\mathrm{V}_{\mathrm{EE}}\) & Gnd \\
\hline Power Supply Drain Current & \({ }^{\text {I }}\) E & 8 & - & 23 & - & 17 & 21 & - & 23 & mAdc & - & 4,9,12 & \(\cdots\) & -- & 5,10.13 & 8 & 1.16 \\
\hline Input Current & \(\mathrm{I}_{\mathrm{inH}}\) & 4 & - & 150 & - & - & 95 & - & 95 & \(\mu \mathrm{Adc}\) & 4 & 9,12 & - & - & 5,10,13 & 8 & 1.16 \\
\hline & \({ }^{\text {'CBO }}\) & 4 & - & 1.5 & - & - & 1.0 & - & 1.0 & \(\mu \mathrm{Adc}\) & - & 9,12 & -- & - & 5,10,13 & 8,4 & 1.16 \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& 2 \\
& 3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.060 \\
& -1.060 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-0.960 \\
-0.960 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& \hline-0.810 \\
& -0.810 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.700 \\
-0.700 \\
\hline
\end{array}
\] & Vdc Vdc & \[
\begin{gathered}
4 \\
9.12
\end{gathered}
\] & \[
\begin{gathered}
9,12 \\
4 \\
\hline
\end{gathered}
\] & - & - & \[
\begin{aligned}
& 5,10,13 \\
& 5,10,13
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{aligned}
& 2 \\
& 3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -1.890 \\
& -1.890 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.675 \\
-1.675 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -1.850 \\
& -1.850 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& \hline-1.650 \\
& -1.650 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.825 \\
& -1.825 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.615 \\
-1.615 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Vdc} \\
& \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & \[
9,12
\] & \[
\begin{gathered}
4 \\
9.12 \\
\hline
\end{gathered}
\] & - & - & \[
\begin{aligned}
& 5,10,13 \\
& 5,10,13
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline High Threshold Voltage & \(v_{\text {OHA }}\) & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{array}{r}
\hline-1.080 \\
-1.080 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline-0.980 \\
& -0.980
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& \hline-0.910 \\
& -0.910
\end{aligned}
\] & - & Vdc Vdc & \[
9,12
\] & \[
9,12
\] & 4 & \[
\overline{4}
\] & \[
\begin{aligned}
& 5,10,13 \\
& 5,10,13
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1.16 \\
& \hline
\end{aligned}
\] \\
\hline Low Threshold Voltage & vola & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & - & \[
\begin{array}{|l|}
\hline-1.655 \\
-1.655 \\
\hline
\end{array}
\] & - & - & \[
\begin{array}{r}
\hline-1.630 \\
-1.630 \\
\hline
\end{array}
\] & - & \[
\begin{array}{r}
-1.595 \\
-1.595 \\
\hline
\end{array}
\] & Vdc Vdc & \[
9,12
\] & \[
9,12
\] & \(\overline{4}\) & 4 & \[
\begin{array}{|l|}
\hline 5,10,13 \\
5,10,13 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline Reference Voltage & \(V_{B B}\) & 11 & -1.420 & -1.280 & -1.350 & - & -1.230 & -1.295 & -1.150 & Vdc & - & - & - & - & 5,10,13 & 8 & 1.16 \\
\hline Switching Times (50 s 2 Load) & & & Min & Max & Min & Typ & Max & Min & Max & & & & Pulse In & Pulse Out & & -3.2 V & +2.0 V \\
\hline Propagation Delay & \[
\begin{aligned}
& \mathbf{t}_{4+2+} \\
& t_{4-2-} \\
& t_{4+3-} \\
& \mathbf{t}_{4-3+}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 3 \\
& 3
\end{aligned}
\] & & \[
1
\] & \[
1
\] & \[
2.0
\] & \[
2.9
\] & \[
1.0
\] & \[
1_{1}^{3.3}
\] & ns & -
-
- & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & \[
4
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 3 \\
& 3
\end{aligned}
\] & \[
5,10,13
\] & \[
8
\] & \[
1.16
\] \\
\hline Rise Time (20\% to \(80 \%\)) & \[
\begin{aligned}
& \mathrm{t}_{2+}+ \\
& \mathrm{t}_{3+}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \[
1.1
\] & \[
3.6
\] & \[
1.25
\] & - & \[
3.3
\] & \[
1.1
\] & \[
3.7
\] & , & - & - & & 2 & & & \\
\hline Fall Time (20\% to \(80 \%\)) & \[
\begin{aligned}
& \mathrm{t}_{2}- \\
& \mathrm{t}_{3}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \[
\dagger
\] & \(\nabla\) & \[
\dagger
\] & 1 & \[
\downarrow
\] & \(\dagger\) & \[
\dagger
\] & \(\dagger\) & - & - & \[
1
\] & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \[
\downarrow
\] & \(\dagger\) & \(\dagger\) \\
\hline
\end{tabular}

MC10117

\section*{MECL LOK series}

DUAL 2-WIDE 2-3-INPUT "OR-AND/OR-AND-INVERT" GATE

The MC10117 is a general purpose logic element designed for use in data control, such as digital multiplexing or data distribution. Pin 9 is common to both gates.

\section*{DUAL 2-WIDE 2-3-INPUT "OR-AND/OR-AND-INVERT" GATE}
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=100 \mathrm{~mW} \text { typ/pkg (No Load) } \\
& \mathrm{t}_{\mathrm{pd}}=2.3 \mathrm{~ns} \text { typ } \\
& \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.2 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

P SUFFIX
PLASTIC PACKAGE CASE 648

L SUFFIX CERAMIC PACKAGE CASE 620

\section*{LOGIC DIAGRAM}

\(\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 1\)
\(V_{C C 2}=\operatorname{Pin} 16\)
\(\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 8\)

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

* Inputs 4, 5, 12 and 13 Have Same lin H Limit Inputs 6, 7, 10 and 11 Have Same Iin H Limit

\section*{MECL LOK series}

\section*{DUAL 2-WIDE 3-INPUT \\ "OR-AND" GATE}

The MC10118 is a basic logic building block providing the OR/ AND function, useful in data control and digital multiplexing applications.
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=100 \mathrm{~mW} \text { typ/pkg (No Load) } \\
& \mathrm{t}_{\mathrm{pd}}=2.3 \mathrm{~ns} \text { typ } \\
& \mathrm{t}_{\mathrm{r}, \mathrm{t}}=2.5 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

DUAL 2-WIDE 3-INPUT "OR-AND" GATE

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner

*Inputs \(3,4, \overline{5}, 12,13\) and 14 Have Same lin H Limit
Inputs 6, 7, 10 and 11 have same \(l_{\text {in }} \mathrm{H}\) Limit

\section*{MC10119}

\section*{MECL LOK serines}

\section*{4-WIDE 4-3-3-3-INPUT \\ "OR-AND" GATE}

The MC10119 is a 4-Wide 4-3-3-3-Input OR/AND gate with one input from two gates common to pin 10.
\(\mathrm{P}_{\mathrm{D}}=100 \mathrm{~mW}\) typ/pkg (No Load)
\(\mathrm{t}_{\mathrm{pd}}=2.3 \mathrm{~ns}\) typ
\(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}\) typ \((20 \%-80 \%)\)

P SUFFIX PLASTIC PACKAGE CASE 648
 CERAMIC PACKAGE CASE 620

\section*{LOGIC DIAGRAM}

\(\mathrm{V}_{\mathrm{CC} 1}=\operatorname{Pin} 1\)
\(V_{C C 2}=\operatorname{Pin} 16\) \(V_{E E}=\operatorname{Pin} 8\)

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner

* Inputs 3,4,5,6,7,9,11,12,13,14,15 Have Same lin H Limi

\section*{(4) motorola}

MC10121

\section*{MECL 1OK sernes}

\section*{4-WIDE}

\section*{"OR-AND/OR-AND-INVERT" GATE}

The MC10121 is a basic logic building block providing the simultaneous OR-AND/OR-AND-INVERT function, useful in data control and digital multiplexing applications.
\[
\begin{aligned}
\mathrm{PD}_{\mathrm{D}} & =100 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathbf{t}_{\mathrm{pd}} & =2.3 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.5 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{LOGIC DIAGRAM}

PIN ASSIGNMENT

\[
\begin{aligned}
V_{C C 1} & =\operatorname{Pin} 1 \\
V_{C C 2} & =P \text { Pin } 16 \\
V_{E E} & =P \text { in } 8
\end{aligned}
\]

4-WIDE
"OR-AND/OR-AND-INVERT"
GATE

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner

\footnotetext{
"This is advance information and specificationsat subect to change without notice.
}

\section*{TRIPLE 4-3-3 INPUT BUS DRIVER}

The MC10123 consists of three NOR gates designed for bus driving applications on card or between cards. Output low logic levels are specified with \(\mathrm{V}_{\mathrm{OL}} \leqslant-2.0 \mathrm{Vdc}\) so that the bus may be terminated to -2.0 Vdc . The gate output, when low, appears as a high impedance to the bus, because the output emitter-followers of the MC10123 are "turned-off." This eliminates discontinuities in the characteristic impedance of the bus.

The \(\mathrm{V}_{\mathrm{OH}}\) level is specified when driving a 25 -ohm load terminated to \(\mathbf{- 2 . 0} \mathrm{Vdc}\), the equivalent of a 50 -ohm bus terminated at both ends. Although \(\mathbf{2 5}\) ohms is the lowest characteristic impedance that can be driven by the MC10123, higher impedance values may be used with this part. A typical 50 -ohm bus is shown in Figure 1
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =310 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =3.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.5 \mathrm{~ns} \text { typ }(20 \%-80 \% 9
\end{aligned}
\]

\section*{MFCL 1OK serues}

TRIPLE 4-3-3 INPUT BUS DRIVER

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(25-\) ohm resistor to -2.1 volts. Test procedures are shown for only one input an one output. The other inputs and outputs are tested in the same manner

\section*{QUAD TTL TO MECL TRANSLATOR}

The MC10124 is a quad translator for interfacing data and control signals between a saturated logic section and the MECL section of digital systems. The MC10124 has TTL compatible inputs, and MECL complementary open-emitter outputs that allow use as an inverting/non-inverting translator or as a differential line driver. When the common strobe input is at the low logic level, it forces all true outputs to a MECL low logic state and all inverting outputs to a MECL high logic state.

Power supplỳ requirements are ground, +5.0 Volts, and -5.2 Volts. Propagation delay of the MC10124 is typically 3.5 ns . The dc levels are standard or Schottky TTL in, MECL 10,000 out.

An advantage of this device is that TTL level information can be transmitted differentially, via balanced twisted pair lines, to the MECL equipment, where the signal can be received by the MC10115 or MC10116 differential line receivers. The MC10124 is useful in computers, instrumentation, peripheral controllers, test equipment, and digital communications systems.
\[
\begin{array}{ll}
\mathrm{P}_{\mathrm{D}} & =380 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =3.5 \mathrm{~ns} \text { typ (+ } 1.5 \mathrm{Vdc} \text { in to } 50 \% \text { out) } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.5 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)
\end{array}
\]

\section*{MECL LOK series}

\section*{QUAD TTL TO MECL TRANSLATOR}

P SUFFIX
PLASTIC PACKAGE
CASE 648

LSUFFIX CERAMIC PACKAGE CASE 620

LOGIC DIAGRAM

Gnd \(=\operatorname{Pin} 16\)
\(V_{C C}(+5.0 \mathrm{Vdc})=\operatorname{Pin} 9\)
\(V_{E E}(-5.2 \mathrm{Vdc})=\operatorname{Pin} 8\)

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 0,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one translator. The other translators are tested in the same manner.

\footnotetext{
See swiching ime hest circui. Propagaion deay for his ciculis speer.
}

50 -ohm termination to ground located in each scope channel input.

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be \(<1 / 4\) inch from \(T P_{\text {in }}\) to input pin and TP out to output pin.

NOTE: All power supply and logic levels are shown shifted 2 volts positive.

\section*{QUAD MECL TO TTL TRANSLATOR}

The MC10125 is a quad translator for interfacing data and control signals between the MECL section and saturated logic sections of digital systems. The MC10125 incorporates differential inputs and Schottky TTL "totem pole" outputs. Differential inputs allow for use as an inverting/non-inverting translator or as a differential line receiver. The \(V_{B B}\) reference voltage is available on pin 1 for use in single-ended input biasing. The outputs of the MC10125 go to a low logic level whenever the inputs are left floating.

Power supply requirements are ground, +5.0 Volts and -5.2 Volts. Propagation delay of the MC10125 is typically 4.5 ns . The MC10125 has fanout of 10 TTL loads. The dc levels are MECL 10,000 in and Schottky TTL, or TTL out. This device has an input common mode noise rejection of \(\pm 1.0\) Volt.

An advantage of this device is that MECL level information can be received, via balanced twisted pair lines, in the TTL equipment. This isolates the MECL logic from the noisy TTL environment. This device is useful in computers, instrumentation, peripheral controllers, test equipment and digital communications systems.
\begin{tabular}{ll}
\(\mathrm{P}_{\mathrm{D}}\) & \(=380 \mathrm{~mW}\) typ \(/ \mathrm{pkg}\) (No Load) \\
\(\mathrm{t}_{\mathrm{pd}}\) & \(=4.5 \mathrm{~ns}\) typ \((50 \%\) to +1.5 Vdc out \()\) \\
\(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & \(=2.5 \mathrm{~ns}\) typ \((1.0 \mathrm{~V}\) to 2.0 V\()\)
\end{tabular}

\section*{LOGIC DIAGRAM}

\section*{MECL LOK series}

\section*{QUAD MECL TO TTL TRANSLATOR}

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test procedures are shown for only one translator. The other translators are tested in the same manner.
\begin{tabular}{|c|}
\hline & & & & & & & & & & & \multicolumn{11}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
test voltage values \\
(Volts)
\end{tabular}}} & \multirow[b]{9}{*}{Gnd} & \multirow[b]{9}{*}{\[
\left\lvert\, \begin{gathered}
\text { Output } \\
\text { Condition }
\end{gathered}\right.
\]} \\
\hline & & & & & & & & & \multicolumn{2}{|l|}{\multirow[b]{5}{*}{\begin{tabular}{r}
\(@\) Test \\
Temperature \\
\(-300^{\circ} \mathrm{C}\) \\
\(+5^{\circ} \mathrm{C}\) \\
\(+85^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}}} & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & \(\mathrm{V}_{1+\text { max }}\) & \(\mathrm{V}_{1 \mathrm{~L} \text { min }}\) & \(\mathrm{V}_{1} \mathrm{~A}_{\text {min }}\) & \(\mathrm{V}_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{HH}}\) & \(\mathrm{V}_{\text {ILH }}\) & \(\mathrm{V}_{\mathbf{H L}}\) & \(\mathrm{V}_{\text {ILL }}\) & \(V_{B B}\) & \(\mathrm{v}_{\text {cc }}\) & \(\mathrm{V}_{\text {EE }}\) & & \\
\hline & & & & & & & & & & & -0.890 & -1.890 & -1.205 & -1.500 & +0.110 & -0.890 & -1.890 & -2890 & & +5.0 & -5.2 & & \\
\hline & & & & & & & & & & & -0.810 & -1.850 & -1.105 & -1.475 & +0.190 & -0.850 & -1.810 & -2850 & Pin & +5.0 & -5.2 & & \\
\hline & & & & & & & & & & & -0.700 & -1.825 & -1.035 & -1.440 & +0300 & -0.825 & -1.700 & -2825 & 1 & +5.0 & -5.2 & & \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Pin } \\
\text { Under } \\
\text { Test }
\end{gathered}
\]} & \multicolumn{8}{|c|}{mC10125 Test Limits} & \multicolumn{11}{|c|}{\multirow[t]{2}{*}{test voltage applied to pins listed below:}} & & \\
\hline & & & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(\underline{+25^{\circ} \mathrm{C}}\)} & \multicolumn{2}{|r|}{\({ }^{+85^{\circ} \mathrm{C}}\)} & \multirow[b]{2}{*}{Unit} & & & & & & & & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(\mathrm{V}_{\text {IH } \text { max }}\) & \(\mathrm{V}_{\mathrm{IL} \text { min }}\) & \(\mathrm{V}_{\text {IHA }}\) min & \(V_{1 L A}\) max & \(\mathrm{V}_{\mathrm{IHH}}\) & \(\mathrm{V}_{\text {ILH }}\) & \(\mathrm{v}_{\mathrm{HL}}\) & \(\mathrm{v}_{\text {ILL }}\) & \(\mathrm{V}_{\text {BB }}\) & \(\mathrm{v}_{\mathrm{cc}}\) & \(\mathrm{V}_{\mathrm{EE}}\) & & \\
\hline Negative Power Supply
Drain Current & \({ }^{\text {I }}\) E & 8 & - & 44 & - & - & 40 & - & 44 & mAdc & - & - & - & \(\cdots\) & - & - & - & - & 3,7.11,15 & 9 & 8 & 16 & - \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Positive Power Supply } \\
& \text { Drain Current }
\end{aligned}
\]} & \({ }^{\text {I CCH }}\) & 9 & - & 52 & - & - & 52 & - & 52 & mAdc & 2.6.10,14 & - & - & - & - & - & - & - & 3,7.11,15 & 9 & 8 & 16 & - \\
\hline & \({ }_{\text {ICCL }}\) & 9 & - & 39 & - & - & 39 & - & 39 & mAdc & - & 2,6,10,14 & - & - & - & - & - & - & 3,7,11,15 & 9 & 8 & 16 & - \\
\hline Input Current & \(\mathrm{I}_{\mathrm{in}} \mathrm{H}\) (1) & 2 & - & 180 & - & - & 115 & - & 115 & \(\mu \mathrm{Adc}\) & 2,6,10,14 & - & - & - & - & - & - & - & 3,7,11,15 & 9 & 8 & 16 & - \\
\hline Input Leakage Current & \({ }^{\text {croo }}\) & 2 & - & 1.5 & - & - & 1.0 & - & 1.0 & \(\mu \mathrm{Adc}\) & - & - & - & - & - & - & - & - & 3,7,11,15 & 9 & 2,6,8,10,14 & 16 & -- \\
\hline High Output Voltage & \({ }^{\text {VOH }}\) & 4 & 2.5 & - & 2.5 & - & - & 2.5 & - & Vdc & - & 2,6,10,14 & - & - & - & - & - & - & 3.7.11.15 & 9 & 8 & 16 & \(-2.0 \mathrm{~mA}\) \\
\hline Low.Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & 4 & - & 0.5 & - & - & 0.5 & - & 0.5 & Vdc & 2,6,10,14 & - & - & - & - & - & - & - & 3,7,11,15 & 9 & 8 & 16 & 20 mA \\
\hline High Threshold Voitzege & \(\mathrm{V}_{\mathrm{OHA}}\) & 4 & 2.5 & - & 2.5 & - & - & 2.5 & - & V dc & - & 6.10.14 & - & 2 & - & - & - & - & 3,7.11,15 & 9 & 8 & 16 & \(-2.0 \mathrm{~mA}\) \\
\hline Low Threshold Voltage & Vola & 4 & \(-\) & 0.5 & - & - & 0.5 & - & 0.5 & Vdc & 6,10,14 & - & 2 & - & - & - & - & - & 3.7.11.15 & 9 & 8 & 16 & 20 mA \\
\hline \multirow[t]{2}{*}{Indeterminate Input Protection Tests} & Vols1 & 4 & - & 0.5 & - & - & 0.5 & - & 0.5 & Vdc & - & - & \(\sim\) & - & - & - & - & - & - & 9 & \[
\begin{array}{|c|}
\hline 2,3,6,7,8, \\
10,11,14,15 \\
\hline
\end{array}
\] & 16 & 20 mA \\
\hline & \(\mathrm{v}_{\text {OLS2 }}\) & 4 & - & 0.5 & - & - & 0.5 & - & 0.5 & Vdc & - & - & - & - & - & - & - & - & - & 9 & 8 & 16 & 20 mA \\
\hline Shor-Circuit Current & Ios & 4 & 40 & 100 & 40 & - & 100 & 40 & 100 & mA & - & 2.6,10,14 & - & - & - & - & - & - & 3,7.11,15 & 9 & 8 & 4.16 & - \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Reference Voltage \\
\hline \begin{tabular}{c}
Common Mode \\
Rejection Tests
\end{tabular} \\
\hline
\end{tabular}} & \(\mathrm{V}_{\text {BB }}\) & 1 & -1.420 & -1.28 & -1.350 & - & -1.230 & -1.295 & -1.150 & Vdc & - & 2,6,10,14 & - & - & - & - & - & - & 3,7,11,15 & - & - & - & - \\
\hline & \(\mathrm{V}_{\mathrm{OH}}\) & 4 & 2.5 & - & 2.5 & - & - & 2.5 & -- & Vdc & - & - & - & - & 3 & 2 & - & - & - & 9 & 8 & 16 & \(-2.0 \mathrm{~mA}\) \\
\hline & & 4 & 2.5 & - & 2.5 & - & - & 2.5 & - & & - & -. & - & - & - & - & 3 & 2 & - & 9 & 8 & 16 & \(-2.0 \mathrm{~mA}\) \\
\hline & vol & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & vdc & - & - & - & - & \[
2
\] & \[
3
\] & & \[
\overline{3}
\] & - & \[
\begin{aligned}
& 9 \\
& 9
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 16
\end{aligned}
\] & \[
20 \mathrm{~mA}
\]
\[
20 \mathrm{~mA}
\] \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Switching Times \\
Propagation Detay \\
\(\quad(50 \%\) to \(+1.5 \mathrm{Vdc})\) \\
\\
Rise Time \((+1.0 \mathrm{Vdc}\) to 2.0 Vdc\()\) \\
Fall Time \((+1.0 \mathrm{Vdc}\) to 2.0 Vdc\()\) \\
\hline
\end{tabular}} & & & & & & & & & & & Putse In & Pulse Out & \(\mathrm{C}_{\mathrm{L}}(\mathrm{p} F)\) & & & & & & & & & & \\
\hline & & 5
5
4
1
1 & & \[
\begin{aligned}
& 6.0 \\
& 1.3 \\
& 3.3
\end{aligned}
\] & \[
\stackrel{10}{1.0}
\] & \[
\stackrel{4}{4.5}
\] & \[
\left.\right|_{3.3} ^{6.0}
\] & \[
\begin{array}{|}
1.0 \\
- \\
- \\
-
\end{array}
\] & \[
\bigoplus_{3.3}^{6.0}
\] & \[
\left.\right|^{\text {ns }}
\] & 6
6
2
2
1 & 5
5
4
1 & \(\left.\right|_{1} ^{25}\) & -
-
-
- & -
-
-
-
-
- & -
-
-
-
-
- & -
-
-
-
- & -
-
-
-
- & & 1 & \({ }_{1}^{8}\) & 1 & -
-
-
- \\
\hline
\end{tabular}

\footnotetext{
(a) individually test each input, apply \(\mathrm{V}_{1 \mathrm{H}}\) max to pin under test.
}

\section*{SWITCHING TIME TEST CIRCUIT}

\section*{BUS DRIVER}

The MC10128 is designed to provide outputs which are compatible with IBM-type bus levels; or, if desired, it will drive TTL type loads and/or provide TTL three-state outputs. The inputs accept MECL 10,000 levels. The MC10128 output levels can be accepted by the MC10129 Bus Receiver.
The operating mode IBM or TTL is selected by tying the external control pins to ground or leaving them open. Leaving a control pin open selects the TTL mode, and tying a control pin to ground selects the IBM mode.
The TTL mode will drive a 25 -ohm load, terminated to +1.5 Vdc or a 50 -ohm load, terminated to ground. The device has totem-pole type outputs, but it also has a disable input for threestate logic operation when the circuit is used in the TTL mode. When in the high state the disable input causes the output to exhibit a high impedance state when it would normally be a positive logic " 1 " state. When the strobe is in the high state it inhibits the output data in the low state.

Latches are provided on each data input for temporary storage. When the clock input is in the low logic state, information present at the data inputs D1 and D2 will be fed directly to the latch output. When the clock goes high, the input data is latched. The outputs are gated to allow full bus driving and strobing capability.
The MC10128 is useful in interfacing and bus applications in central processors, mini-computers, and peripheral equipment.

MECL 1OK serines

BUS DRIVER

L SUFFIX
CERAMIC PACKAGE CASE 620

\section*{PIN ASSIGNMENT}

ELECTRICAL CHARACTERISTICS — TTL MODE
Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

- Apply \(V_{I L}\) min individually to pin under test.
(1) Output latched to logic Low state prior to test.
(2) Output latched to logic High state prior to test.
(3) A pulse is applied to pin 10.

\section*{ELECTRICAL CHARACTERISTICS}

\section*{- IBM MODE}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

\section*{SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ \(25^{\circ} \mathrm{C}-\mathrm{TTL}\) MODE}

\(0 \longrightarrow\)

50 -ohm termination to ground located in each scope channel input.
All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be \(<1 / 4\) inch from \(T_{\text {in }}\) to input pin and \(T P_{\text {out }}\) to output pin.

\section*{SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ \(25^{\circ} \mathrm{C}\) - IBM MODE}

50-ohm termination to ground located in each scope channel input.

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be \(<1 / 4\) inch from TP in to input pin and TP out to output pin.

\section*{VOLTAGE WAVEFORMS}

DATA INPUT

STROBE INPUT

RESET INPUT

TTL - MODE
\(\mathrm{V}_{\mathrm{OL}}=0.5\) Volts Max
\(\mathrm{V}_{\mathrm{OH}}=2.5\) Volts Min

IBM - MODE
\(\mathrm{V}_{\mathrm{OL}}=0.25\) Volts Max
\(\mathrm{V}_{\mathrm{OH}}=3.11\) Volts Min

The MC10129 bus receiver works in conjunction with the MC10128 to allow interfacing of MECL 10,000 to other forms of logic and logic buses. The data inputs are compatible with, and accept TTL logic levels as well as levels compatible with IBMtype buses. The clock, strobe, and reset inputs accept MECL 10,000 logic levels.

The data inputs accept the bus levels, and storage elements are provided to yield temporary latch storage of the information after receiving it from the bus. The outputs can be strobed to allow accurate synchronization of signals and/or connection to MECL 10,000 level buses. When the clock is low, the outputs will follow the \(D\) inputs, and the reset input is disabled. The latches will store the data on the rising edge of the clock. The outputs are enabled when the strobe input is high. Unused D inputs must be tied to \(V_{C C}\) or Gnd. The clock, strobe, and reset inputs each have 50 k ohm pulldown resistors to \(\mathrm{V}_{\mathrm{EE}}\). They may be left floating, if not used.

The MC10129 will operate in either of two modes. The first mode is obtained by tying the hysteresis control input to \(\mathrm{V}_{\mathrm{EE}}\). In this mode, the input threshold points of the \(D\) inputs are fixed. The second mode is obtained by tying the hysteresis control input to ground. In this mode, input hysteresis is achieved as shown in the test table. This hysteresis is desirable where extra noise margin is required on the \(D\) inputs. The outer input pins are unaffected by the mode of operation used.

The MC10129 is especially useful in interface applications for central processors, mini-computers, and peripheral equipment.
\(P_{D}=750 \mathrm{~mW}\) typ/pkg (No Load)
\(t_{p d}=10 \mathrm{~ns}\) typ
\(\mathrm{V}_{\mathrm{CC}} \operatorname{Max}=7.0 \mathrm{Vdc}\)

\title{
MFOL 6OK \\ series
}

\section*{QUAD BUS RECEIVER}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input/output combination. Other combinations are tested in the same manner

Operation and limits sto wn atso apply for \(\mathrm{V} \mathrm{VC}=+6.0 \mathrm{~V}\)
Input level on data inout taken from +0.4 V up po voltage level given.
(3) Input tevel on datat input taken from +4.0 V dow

\section*{SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ \(25^{\circ} \mathrm{C}\)}

50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be \(<1 / 4\) inch from TP in to input pin and \(T P_{\text {out }}\) to output pin.

Unused outputs
connected to a 50 -ohm resistor to ground.

NOTE: All power supplies and logic levels are shifted 2 volts positive.

FIGURE 1 - DATA to OUTPUT (Clock and Reset are low, Strobe is high)

FIGURE 2 - STROBE to OUTPUT (Data is high, Clock and Reset are low)

FIGURE 4 - CLOCK to OUTPUT (Reset is low, Strobe is high)

FIGURE 3 - RESET to OUTPUT (Data and Strobe are high)

FIGURE 5 - TSET UP AND THOLD WAVEFORMS

MC10130

\section*{DUAL LATCH}

The MC10130 is a clocked dual D type latch. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable \(\left(\bar{C}_{E}\right)\) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (\(\overline{\mathrm{C}}\)).
Any change at the \(D\) input will be reflected at the output while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.
The set and reset inputs do not override the clock and \(D\) inputs. They are effective only when either \(\overline{\mathrm{C}}\) or \(\overline{\mathrm{C}} \mathrm{E}\) or both are high.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =155 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathbf{t}_{\mathrm{pd}} & =2.5 \mathrm{~ns} \text { typ } \\
\mathbf{t}_{\mathbf{r}}, \mathrm{t}_{\mathrm{f}} & =2.7 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{MECL 1OK \\ series}

\section*{DUAL LATCH}

PIN ASSIGNMENT

\(V_{C C 1}=\operatorname{Pin} 1\)
\(V_{C C 2}=\operatorname{Pin} 16\)
\(\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 8\)

TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline D & \(\overline{\mathrm{C}}\) & \(\overline{\mathrm{C}} \mathrm{E}\) & \(\mathrm{a}_{\mathrm{n}+1}\) \\
\hline L & L & L & L \\
\hline H & L & L & H \\
\hline\(\phi\) & L & H & \(\mathrm{a}_{\mathrm{n}}\) \\
\hline\(\phi\) & H & L & \(\mathrm{a}_{\mathrm{n}}\) \\
\hline\(\phi\) & H & H & \(\mathrm{a}_{\mathrm{n}}\) \\
\hline
\end{tabular}
\[
\phi=\text { Don't Care }
\]

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The other latch is tested in the same manner.

*All other inputs are tested in the same manner

\section*{DUAL TYPE D MASTER-SLAVE FLIP-FLOP}

The MC10131 is a dual master-slave type D flip-flop. Asynchronous Set (S) and Reset (R) override Clock (\(\mathrm{C}_{\mathrm{C}}\)) and Clock Enable \(\left(C_{E}\right)\) inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the low state. In this case, the enable inputs perform the function of controlling the common clock.
The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data (D) input will not affect the output information at any other time due to master slave construction.
\[
\begin{aligned}
P_{D} & =235 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{f} \mathrm{Tog} & =160 \mathrm{MHz} \text { typ } \\
\mathbf{t}_{\mathrm{pd}} & =3.0 \mathrm{~ns} \text { typ } \\
\mathbf{t}_{\mathrm{r}}, \mathrm{t}_{\mathbf{f}} & =2.5 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{MECL 10 K serines}

\section*{DUAL TYPE D MASTER-SLAVE} FLIP-FLOP

\section*{LOGIC DIAGRAM}

\(\begin{aligned} V_{C C 1} & =\operatorname{Pin} 1 \\ V_{C C 2} & =\operatorname{Pin} 16 \\ V_{\text {EE }} & =\operatorname{Pin} 8\end{aligned}\)
\(V_{E E}=\operatorname{Pin} 8\)
CLOCKED TRUTH TABLE
\begin{tabular}{|c|c|c|}
\hline C & D & \(\mathrm{a}_{\mathrm{n}+\boldsymbol{1}}\) \\
\hline L & \(\phi\) & \(\mathrm{Q}_{\mathrm{n}}\) \\
\hline \(\mathrm{H} \uparrow\) & L & L \\
\hline \(\mathrm{H} \uparrow\) & H & H \\
\hline
\end{tabular}
\(\phi=\) Don't Care
\(C=C_{E}+C_{C}\).
A clock H is a clock transition from a low to a high state.
R-S TRUTH TABLE
\begin{tabular}{|c|c|c|}
\hline\(R\) & \(S\) & \(\mathbf{a}_{\mathbf{n}+1}\) \\
\hline\(L\) & \(L\) & \(\mathbf{a}_{\boldsymbol{n}}\) \\
\hline\(L\) & \(H\) & \(H\) \\
\hline\(H\) & \(L\) & \(L\) \\
\hline\(H\) & \(H\) & N.D. \\
\hline
\end{tabular}
N.D. \(=\) Not Defined

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-30^{\circ} \mathrm{C} \\
+25^{\circ} \mathrm{C} \\
+85^{\circ} \mathrm{C}
\end{array}
\]} & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 & \multirow[b]{6}{*}{\[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{cc}}\right) \\
\text { Gnd }
\end{gathered}
\]} \\
\hline \multirow[t]{2}{*}{} & & & & & & & & & & & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10131 Test Limits} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{VOLTAGE APPLIED TO PINS LISTED BELOW:}} & \\
\hline & & & -30 & & & \(+25^{\circ} \mathrm{C}\) & & & \({ }^{\circ} \mathrm{C}\) & & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & Unit & \(V_{1 H}\) max & \(V_{\text {IL min }}\) & \(\mathrm{V}_{\text {IHA }}\) min & \(V_{\text {ILA }}^{\text {max }}\) & \(\mathrm{V}_{\text {EE }}\) & \\
\hline Power Supply Drain Current & IE & 8 & - & 62 & - & 45 & 56 & - & 62 & mAdc & - & - & - & - & 8 & 1,16 \\
\hline \multirow[t]{5}{*}{Input Current} & \multirow[t]{5}{*}{1 inH} & 4 & - & 525 & - & -- & 330 & - & 330 & \(\mu \mathrm{Adc}\) & 4 & - & - & - & 8 & 1,16 \\
\hline & & 5 & - & 525 & -- & -- & 330 & - & 330 & & 5 & - & - & - & & \\
\hline & & 6 & - & 350 & - & - & 220 & - & 220 & & 6 & - & - & - & & \\
\hline & & 7 & - & 390 & - & - & 245 & - & 245 & & 7 & - & - & - & & \\
\hline & & 9 & - & 425 & - & - & 265 & - & 265 & \(\dagger\) & 9 & - & - & - & \(\dagger\) & \(\dagger\) \\
\hline \multirow[t]{2}{*}{Input Leakage Current} & \multirow[t]{2}{*}{\(\mathrm{I}_{\text {inL }}\)} & 4,5,* & 0.5 & \({ }^{-}\). & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & * & - & - & 8 & 1, 16 \\
\hline & & 6,7,9* & 0.5 & - & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & * & - & - & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{Logic " 1 " Output Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & 2 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 5 & - & - & - & 8 & 1,16 \\
\hline & & \(2 \dagger\) & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 7 & - & -- & - & 8 & 1, 16 \\
\hline \multirow[t]{2}{*}{Logic " 0 " Output Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & 3 & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 & -1.615 & Vdc & 5 & - & - & - & 8 & 1, 16 \\
\hline & & \(3 \dagger\) & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 & -1.615 & Vdc & 7 & - & - & - & 8 & 1, 16 \\
\hline \multirow[t]{2}{*}{Logic "1" Threshold Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OHA }}\)} & 2 & -1.080 & - & -0.980 & - & - & -0.910 & - & Vdc & - & - & 5 & - & 8 & 1,16 \\
\hline & & \(2 \dagger\) & -1.080 & - & -0.980 & - & - & -0.910 & - & Vdc & - & - & 7 & 9 & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Logic " 0 " \\
Threshold Voltage
\end{tabular}} & \multirow[t]{2}{*}{Vola} & 3 & - & -1.655 & - & - & -1.630 & - & -1.595 & Vdc & - & - & 5 & - & 8 & 1,16 \\
\hline & & \(3 \dagger\) & - & -1.655 & - & - & -1.630 & - & -1.595 & Vdc & - & - & 7 & 9 & 8 & 1.16 \\
\hline \multirow[b]{8}{*}{\(\begin{aligned} & \text { Switching Times } \\ & \text { Cloch Input } \\ & \text { Propagation Delay }\end{aligned}\)

Rise Time (20 to 80\%)
Fall Time (20 to 80\%)} & \multirow[b]{6}{*}{\[
\begin{aligned}
& \text { t9+2- } \\
& \mathrm{t}^{2+2+} \\
& \mathrm{t}_{6+2+} \\
& \mathrm{t}_{6+2-}
\end{aligned}
\]} & & & & & & & & & & +1.11 Vdc & & Pulse In & Pulse Out & -3.2 Vdc & +2.0 Vdc \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & 2 & 1.7 & 4.6 & 1.8 & 3.0 & 4.5 & 1.8 & 5.0 & ns & - & - & 9 & 2 & 8 & 1,16 \\
\hline & & 2 & & & & & & & & & 7 & - & 9 & 2 & & \\
\hline & & 2 & \(\checkmark\) & & & - & & & - & & 7 & - & 6 & 2 & & \\
\hline & & 2 & & & 1 & \(\dagger\) & & & 1 & & - & - & 6 & 2 & & \\
\hline & \(\mathrm{t}_{2+}\) & 2 & 1.0 & & 1.1 & 2.5 & & 1.1 & 4.9 & & 7 & - & 9 & 2 & & \\
\hline & \(\mathrm{t}_{2}\) & 2 & 1.0 & \(\dagger\) & 1.1 & 2.5 & \(\dagger\) & 1.1 & 4.9 & \(\checkmark\) & - & - & 9 & 2 & \(\dagger\) & \(\nabla\) \\
\hline \multirow[t]{5}{*}{Set Input
Propagation Delay} & \multirow[b]{5}{*}{\[
\begin{gathered}
\mathrm{t}_{5+2+}+ \\
\mathrm{t}_{12+15+} \\
\mathrm{t}_{5+3-} \\
\mathrm{t}_{12+14-}
\end{gathered}
\]} & & & & & & & & & & & & & & & \\
\hline & & 2 & & & & 2.8 & 4.3 & & & & & - & 5 & 2 & 8 & 1, 16 \\
\hline & & 15 & & & & & & & & & 6 & - & 12 & 15 & & \\
\hline & & 3 & \(\dagger\) & & & & & 1 & 1 & & \(\stackrel{\square}{\square}\) & - & 5 & 3 & - & \\
\hline & & 14 & 1 & \(\checkmark\) & 1 & 1 & 1 & \(\checkmark\) & 1 & \(\checkmark\) & 9 & -- & 12 & 14 & \(\checkmark\) & \(V\) \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\hline \text { Reset Input } \\
\text { Propagation Delay }
\end{array}
\]} & \multirow[b]{4}{*}{\[
\begin{gathered}
\mathbf{t} 4+2- \\
\mathrm{t} 13+15- \\
\mathrm{t}+3- \\
\mathrm{t} 13+14+ \\
\hline
\end{gathered}
\]} & & & & & & & & & & & - & 4 & 2 & & \\
\hline & & 15 & & & & & & & & & 6 & - & 13 & 15 & & \\
\hline & & 3 & & 1 & & & & & 1 & & - & - & 4 & 3 & & \\
\hline & & 14 & , & 1 & - & 1 & \(\dagger\) & \(\nabla\) & \(V\) & \(\dagger\) & 9 & - & 13 & 14 & \(\dagger\) & \(\dagger\) \\
\hline Setup Time & \(\mathrm{t}_{\text {setup }}\) & 7 & 2.5 & - & 2.5 & - & - & 2.5 & - & ns & - & - & 6,7 & 2 & 8 & 1.16 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline Hold Time \\
\hline Toggle Frequency (Max) \\
\hline
\end{tabular}} & thold & 7 & 1.5 & - & 1.5 & - & - & 1.5 & - & ns & - & - & 6,7 & 2 & 8 & 1,16 \\
\hline & \({ }^{\text {f }}\) Tog & 2 & 125 & - & 125 & 160 & - & 125 & - & MHz & - & - & 6 & 2 & 8 & 1,16 \\
\hline
\end{tabular}
*Individually test each input; apply \(\mathrm{V}_{\mathrm{IL}}\) min to pin under test
\({ }^{\dagger}\) Output level to be measured after a clock pulse has been applied to the \(\overline{\mathrm{c}}_{\mathrm{E}}\) input (pin 6) \(] \square \mathrm{V}_{1 \mathrm{H} \text { max }}\)

\section*{DUAL MULTIPLEXER WITH LATCH AND COMMON RESET}

The MC10132 is a dual multiplexer with clocked D type latches. It incorporates common data select and reset inputs. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for a clocking function. If the common clock is to be used to clock the latch, the clock enable (\(\overline{\mathrm{CE}}\)) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (\(C_{C}\)).

The data select (A) input determines which data input is enabled. A high (H) level enables data inputs D12 and D22 and a low (L) level enables data inputs D11 and D21. Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information. The reset input is enabled when the clock is in the high state, and disabled when the clock is low.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =225 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =3.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.5 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{MECL 1OK series}

DUAL MULTIPLEXER WITH LATCH AND COMMON RESET

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The outer latches are tested in the same manner.

*All other inputs tested in the same manner. (CE).

\section*{QUAD LATCH}

The MC10133 is a high speed, low power, quad latch consisting of four bistable latch circuits with \(D\) type inputs and gated 0 outputs, allowing direct wiring to a bus. When the clock is high, outputs will follow D inputs. Information is latched on the negative going transition of the clock.
The outputs are gated when the output enable (\(\overline{\mathbf{G}}\)) is low. All four latches may be clocked at one time with the common clock \({ }^{\left(C_{C}\right)}\)), or each half may be clocked separately with its clock enable
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =310 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =4.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{MECL LOK serues}

\section*{QUAD LATCH}

LOGIC DIAGRAM

TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline \(\bar{G}\) & \(C\) & \(D\) & \(Q_{n+1}\) \\
\hline\(H\) & \(\phi\) & \(\phi\) & \(L\) \\
\(L\) & \(L\) & \(\phi\) & \(Q_{n}\) \\
\(L\) & \(H\) & \(L\) & \(L\) \\
\(L\) & \(H\) & \(H\) & \(H\) \\
\hline
\end{tabular}
\(\phi=\) Don't Care
\(C=C_{C}+C E\)

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

\({ }^{\dagger}\) Output level to be measured after a clock pulse has been applied to the clock input (Pin 4). \(\square^{-} \mathrm{V}_{1 \mathrm{H} \text { max }}\)
\({ }^{t}\) Data input at proper high/low level while clock pulse is high so that device latches at proper
high/low level for test. Levels are measured after device has latched.

\section*{DUAL MULTIPLEXER WITH LATCH}

The MC10134 is a dual multiplexer with clocked \(D\) type latches. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable (\(\overline{\mathrm{CE}}\)) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (\(\mathrm{C}_{\mathrm{C}}\)).
The data select inputs determine which data input is enabled. A high \((\mathrm{H})\) level on the AO input enables data input D12 and a low \((L)\) level on the A0 input enables data input D11. A high (H) level on the A1 input enables data input D22 and a low (L) level on the A1 input enables data input D21.
Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.

\section*{MECL LOK series \\ DUAL MULTIPLEXER WITH LATCH}
\(P_{D}=225 \mathrm{~mW}\) typ/pkg (No Load)
\(\mathrm{t}_{\mathrm{pd}}=3.0 \mathrm{~ns}\) typ \(\mathbf{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}\) typ (20\%-80\%)

P SUFFIX
PLASTIC PACKAGE
CASE 648

L SUFFIX
CERAMIC PACKAGE CASE 620

LOGIC DIAGRAM

TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline C & A 0 & D 11 & D 12 & \(\mathrm{Q}_{\mathrm{n}+1}\) \\
\hline L & L & L & \(\phi\) & L \\
\hline L & L & H & \(\phi\) & H \\
\hline L & H & \(\phi\) & L & L \\
\hline L & H & \(\phi\) & H & H \\
\hline H & \(\phi\) & \(\phi\) & \(\phi\) & \(\mathrm{a}_{\mathrm{n}}\) \\
\hline
\end{tabular}

\footnotetext{
\(\phi=\) Don't Care
\(C=\overline{C E}+C_{C}\)
}
\[
\begin{aligned}
V_{C C 1} & =\operatorname{Pin} 1 \\
V_{C C 2} & =\operatorname{Pin} 16 \\
V_{E E} & =\operatorname{Pin} 8
\end{aligned}
\]

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The other latches are tested in the same manner.

\footnotetext{
路
}

\section*{MC10135}

\section*{MECL 10K \\ serues}

\section*{DUAL J-K MASTER-SLAVE FLIP-FLOP}

The MC10135 is a dual master-slave dc coupled J-K flip-flop. Asynchronous set (S) and reset (R) are provided. The set and reset inputs override the clock.
A common clock is provided with separate \(\bar{J}-\bar{K}\) inputs. When the clock is static, the \(J-\bar{K}\) inputs do not effect the output.

The output states of the flip-flop change on the positive transition of the clock.
\[
\begin{aligned}
\mathrm{PD}_{\mathrm{D}} & =280 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{f} \mathrm{Tog} & =140 \mathrm{MHz} \text { typ } \\
\mathrm{t}_{\mathrm{pd}} & =3.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.5 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\(V_{C C 1}=P\) in 1
\(\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 16\)
\(\mathrm{~V}_{\mathrm{EE}}=\cdot \operatorname{Pin} 8\)

R-S TRUTH TABLE
\begin{tabular}{|c|c|c|}
\hline\(R\) & \(S\) & \(Q_{n+1}\) \\
\hline\(L\) & \(L\) & \(Q_{n}\) \\
\(L\) & \(H\) & \(H\) \\
\(H\) & \(L\) & \(L\) \\
\(H\) & \(H\) & \(N . D\). \\
\hline
\end{tabular}
N.D. \(=\) Not Defined

CLOCK J-K TRUTH TABLE*
\begin{tabular}{|c|c|c|}
\hline \(\bar{J}\) & \(\bar{K}\) & \(\mathrm{a}_{\boldsymbol{n}+1}\) \\
\hline\(L\) & \(L\) & \(\overline{Q_{n}}\) \\
\(H\) & \(L\) & \(L\) \\
\(L\) & \(H\) & \(H\) \\
\(H\) & \(H\) & \(Q_{n}\) \\
\hline
\end{tabular}
*Output states change on positive transition of clock for \(\overline{\mathrm{J}}-\overline{\mathrm{K}}\) input condition present.

L SUFFIX CERAMIC PACKAGE CASE 620

P SUFFIX
PLASTIC PACKAGE CASE 648

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of \(25^{\circ} \mathrm{C}\), while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to \(-\mathbf{2 . 0}\) volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

NOTES:
(1) Individually test each input; apply \(V_{1 H}\) max to pin under test.
(2) Individually test each input; apply \(V_{I L}\) min to pin under test.
4. Output level to be mesured after a clock pulse has been applied to the \(C\) input (pin 9)
(5) See Figure 2 for timing test diagram.

\section*{MECL 1OK sernes}

\section*{UNIVERSAL HEXADECIMAL COUNTER}

The MC10136 is a high speed synchronous counter that can count up, count down, preset, or stop count at frequencies exceeding 100 MHz . The flexibility of this device allows the designer to use one basic counter for most applications, and the synchronous count feature makes the MC10136 suitable for either computers or instrumentation.

Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the counter. Carry Out goes low on the terminal count, or when the counter is being preset.

This device is not designed for use with gated clocks. Control is via S1 and S2.
\[
\begin{aligned}
\mathrm{PD}_{\mathrm{D}}= & 625 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{f}_{\mathrm{count}} & =150 \mathrm{MHz} \text { typ } \\
\mathrm{t}_{\mathrm{pd}}= & =3.3 \mathrm{~ns} \text { typ }(\mathrm{C}-\mathrm{Q}) \\
& 7.0 \mathrm{~ns} \text { ty }\left(\mathrm{C}-\mathrm{C}_{\text {out }}\right) \\
& 5.0 \mathrm{~ns} \text { typ }\left(\mathrm{C}_{\text {in }}-\mathrm{C}_{\text {out }}\right)
\end{aligned}
\]

\section*{UNIVERSAL HEXADECIMAL} COUNTER

LSUFFIX CERAMIC PACKAGE CASE 620

PIN ASSIGNMENT

LOGIC DIAGRAM

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{INPUTS} & \multicolumn{5}{|c|}{OUTPUTS} \\
\hline S1 & S2 & D0 & D1 & D2 & D3 & \[
\overline{\frac{\text { Carry }}{\text { In }}}
\] & \begin{tabular}{l}
Clock \\
**
\end{tabular} & 00 & Q1 & 02 & 03 & \[
\frac{\overline{\text { Carry }}}{\overline{O u t}}
\] \\
\hline L & L & L & L & H & H & \(\phi\) & H & L & L & H & H & L \\
\hline L & H & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & L & H & H & L & H & H & H \\
\hline \(L\) & H & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & L & H & L & H & H & H & H \\
\hline L & H & \(\phi\) & ¢ & \(\phi\) & \(\phi\) & L & H & H & H & H & H & L \\
\hline L & H & \(\phi\) & ¢ & \(\phi\) & \(\phi\) & H & L & H & H & H & H & H \\
\hline L & H & \(\phi\) & ¢ & \(\phi\) & \(\phi\) & H & H & H & H & H & H & H \\
\hline H & H & \(\phi\) & \(\phi\) & ¢ & ¢ & \(\phi\) & H & H & H & H & H & H \\
\hline L & L & H & H & L & L & \(\phi\) & H & H & H & L & L & L \\
\hline H & L & \(\phi\) & ¢ & \(\phi\) & \(\phi\) & L & H & L & H & L & L & H \\
\hline H & L & \(\phi\) & ¢ & \(\phi\) & \(\phi\) & L & H & H & L & L & L & H \\
\hline H & L & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & L & H & L & L & L & L & L. \\
\hline H & L & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & L & H & H & H & H & H & H \\
\hline
\end{tabular}
\(\phi=\) Don't care.
* Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.
** A clock H is defined as a clock input transition from a low to a high logic level.

ELECTRICAL CHARACTERISTICS
Each MECL 10,000 series circuit has been designed to meet the dc specifi cations shown in the test table, after thermal equilibrium has been estab lished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test procedures are shown for only one output. The other outputs are tested in the same manner

(1) Individually apply \(V_{I L}\) min to pin under test.
(2) Measure output after clock pulse \(\mathrm{V}_{\mathrm{IL}} \int^{\mathrm{V}_{1 \mathrm{H}}}\) appears at clock input (pin 13)

To preserve reliable performance, the MC10136 (plastic-packaged device 500 Ifpm blown air or equivalent heat sinking is provided

\section*{SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ \(25^{\circ} \mathbf{C}\)}

NOTE:
\(\mathrm{t}_{\text {setup }}\) is the minimum time before the positive transition of the clock pulse (C) that information must be present at the input \(D\) or \(S\).
thold is the minimum time after the positive transition of the clock pulse (C) that information must remain unchanged at the input \(D\) or \(S\).
Input Pulse
\(\mathrm{t}+=\mathrm{t}-=2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}\) (20 to \(80 \%\))

Clock

Q Output

\section*{SET UP AND HOLD TIMES}
(a) is the minimum time to wait after the counter has been enabled to clock it. (b) is the minimum time before the counter has been disabled that it may be clocked.
(c) is the minimum time before the counter is enabled that a clock. pulse may be applied with no affect on the state of the counter. state of the counter
(d) is the minimum time to wait after the counter is disabled that a clock pulse may be applied with no effect in the state of the counter
(b) and (c) may be negative numbers.

\section*{MC10136}

\section*{APPLICATIONS INFORMATION}

To provide more than four bits of counting capability several MC10136 counters may be cascaded. The Carry In input overrides the clock when the counter is either in the increment mode or the decrement mode of operation. This input allows several devices to be cascaded in a fully synchronous multistage counter as illustrated in Figure 1. The carry is advanced between stages as shown with no external gating. The Carry In of the first device may be left open. The system clock is common to all devices.

The various operational modes of the counter make it useful for a wide variety of applications. If used with MECL III devices, prescalers with input toggle frequencies in excess of 300 MHz are possible. Figure 2 shows such a prescaler using the MC10136 and MC1670. Use of the MC10231 in place of the MC1670 permits 200 MHz operation.

The MC10136 may also be used as a programmable counter. The configuration of Figure 3 requires no additional gates, although maximum frequency is limited to about 50 MHz . The divider modulus is equal to the program input plus one (\(M=N+1\)), therefore, the counter will divide by a modulus varying from 1 to 16.

A second programmable configuration is also illustrated in Figure 4. A pulse swallowing technique is used to speed the counter operation up to 110 MHz typically. The divider modulus for this figure is equal to the program input (\(\mathbf{M}=\mathbf{N}\)). The minimum modulus is 2 because of the pulse swallowing technique, and the modulus may vary from 2 to 15 . This programmable configuration requires an additional gate, such as \(1 / 2 \mathrm{MC10109}\) and a flipflop such as \(1 / 2 \mathrm{MC} 10131\).

FIGURE 1 - 12 BIT SYNCHRONOUS COUNTER

FIGURE 2 - \(\mathbf{3 0 0} \mathbf{~ M H z}\) PRESCALER

FIGURE 3 - 50 MHz PROGRAMMABLE COUNTER

FIGURE \(4 \mathbf{- 1 0 0} \mathbf{~ M H z}\) PROGRAMMABLE COUNTER

\section*{MC10137}

\section*{MECL LOK series}

\section*{UNIVERSAL DECADE COUNTER}

The MC10137 is a high speed synchronous counter that can count up, down, preset, or stop count at frequencies exceeding 100 MHz . The flexibility of this device allows the designer to use one basic counter for most applications. The synchronous count feature makes the MC10137 suitable for either computers or instrumentation.
Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the counter. Carry Out goes low on the terminal count. The Carry Out on the MC10137 is partially decoded from Q1 and Q2 directly, so in the preset mode the condition of the Carry Out after the Clock's positive excursion will depend on the condition of Q1 and/or Q2. The counter changes state only on the positive going edge of the clock. Any other input may change at any time except during the positive transition of the clock. The sequence for counting out of improper states is as shown in the State Diagrams.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =625 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{f}_{\mathrm{count}} & =150 \mathrm{MHz} \text { typ } \\
\mathrm{t}_{\mathrm{pd}} & =3.3 \mathrm{~ns} \text { typ }(\mathrm{C}-\mathrm{Q}) \\
& =7.0 \mathrm{~ns} \text { typ }\left(\mathrm{C}-\overline{\mathrm{C}}_{\text {out }}\right) \\
& =5.0 \mathrm{~ns} \text { typ }\left(\overline{\mathrm{C}}_{\text {in }}-\mathrm{C}_{\text {out }}\right)
\end{aligned}
\]

\section*{STATE DIAGRAMS}

COUNT UP

COUNT DOWN

FUNCTION SELECT TABLE
\begin{tabular}{|c|c|l|}
\hline S1 & S2 & \multicolumn{1}{|c|}{ Operating Mode } \\
\hline L & L & Preset (Program) \\
\hline L & H & Increment (Count Up) \\
\hline H & L & Decrement (Count Down) \\
\hline H & H & Hold (Stop Count) \\
\hline
\end{tabular}

UNIVERSAL DECADE COUNTER

P SUFFIX
PLASTIC PACKAGE
CASE 648

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test Procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

(1) Individually apply \(\mathrm{V}_{\mathrm{IL}}\) min to pin under test.
(2) Measure output after clock pulse \(\mathrm{V}_{1 \mathrm{~L}}-\Gamma^{\mathrm{V}_{1 \mathrm{H}}}\) appears at clock input (pin 13)
(3) Before test set Q 1 and Q 2 outputs to a logic low.

\section*{SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ \(25^{\circ} \mathbf{C}\)}

(a) is the minimum time to wait after the counter has been enabled to clock it. (b) is the minimum time before the counter has been disabled that it may be clocked.
(c) is the minimum time before the counter is enabled that a clock pulse may be applied with no effect on the state of the counter.
(d) is the minimum time to wait after the counter is disabled that a clock pulse may be applied with no effect in the state of the counter.
(b) and (c) may be negative numbers.

\(+1.11 \mathrm{~V}\)
\(+0.31 \mathrm{~V}\)
50 -ohm termination to ground located in each scope channel input.

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be \(1 / 4\) inch from \(T P_{\text {in }}\) to input pin and TP out to output pin.
Unused outputs are connected to a 50 ohm resistor to ground.

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been estab lished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test Procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

\(\begin{array}{lll}\text { (1) Individualiv apply } V_{I L} \text { min to pin under test. } & \text { (2) Measure output after clock pulse } V_{I L} \Gamma^{-} V_{1 H} \text { appears at clock input (pin 13) (3) Before test set } Q 1 \text { and } Q 2 \text { outputs to a logic low }\end{array}\)

\section*{SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ \(\mathbf{2 5}^{\circ} \mathbf{C}\)}

NOTE:
\(t_{\text {setup }}\) is the minimum time before the positive transition of the clock pulse (C) that information must be present at the input \(D\) or \(S\).
thold is the minimum time after the positive transition of the clock pulse (C) that information must remain unchanged at the input \(D\) or \(S\).
\[
\begin{aligned}
& \text { Input Pulse } \\
& \mathrm{t}+=\mathrm{t}-=2.0 \pm 0.2 \mathrm{~ns} \\
& (20 \text { to } 80 \%)
\end{aligned}
\]

(a) is the minimum time to wait after the counter has been enabled to clock it.
(b) is the minimum time before the counter has been disabled that it may be clocked.
(c) is the minimum time before the counter is enabled that a clock pulse may be applied with no effect on the state of the counter.
(d) is the minimum time to wait after the counter is disabled that a clock pulse may be applied with no effect in the state of the counter.
(b) and (c) may be negative numbers.

\(+1.11 \mathrm{~V}\)

\(+0.31 \mathrm{~V}\)
50 -ohm termination to ground located in each scope channel input.

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be. 1/4 inch from TP in to input pin and TP out to output pin.
Unused outputs are connected to a 50 -ohm resistor to ground.

\section*{BI-QUINARY COUNTER}

The MC10138 is a four bit counter capable of divide by two, five, or ten functions. It is composed of four set-reset master-slave flip-flops. Clock inputs trigger on the positive going edge of the clock pulse.

Set or reset input override the clock, allowing asynchronous "set" or "clear." Individual set and common reset inputs are provided, as well as complementary outputs for the first and fourth bits.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =370 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{f}_{\mathrm{tog}} & =150 \mathrm{MHz} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.5 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

COUNTER TRUTH TABLES

BI-QUINARY
(Clock connected to C2 and Q3 connected to C 1)
\begin{tabular}{|c|c|c|c|c|}
\hline COUNT & Q1 & Q2 & Q3 & Q0 \\
\hline 0 & L & L & L & L \\
1 & H & L & L & L \\
2 & L & H & L & L \\
3 & H & H & L & L \\
\hline 4 & L & L & H & L \\
5 & L & L & L & H \\
6 & H & L & L & H \\
7 & L & H & L & H \\
\hline 8 & H & H & L & H \\
9 & L & L & H & H \\
\hline
\end{tabular}

BCD
(Clock connected to C1 and \(\overline{\mathrm{QO}}\) connected to C 2)
\begin{tabular}{|c|c|c|c|c|}
\hline COUNT & Q0 & Q1 & Q2 & Q3 \\
\hline 0 & L & L & L & L \\
1 & H & L & L & L \\
2 & L & H & L & L \\
3 & H & H & L & L \\
\hline 4 & L & L & H & L \\
5 & H & L & H & L \\
6 & L & H & H & L \\
7 & H & H & H & L \\
\hline 8 & L & L & L & H \\
9 & H & L & L & H \\
\hline
\end{tabular}

\section*{MECL 1OK series}

\section*{BI-QUINARY COUNTER}

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(\mathbf{5 0 - o h m}\) resistor to \(\mathbf{- 2 . 0}\) volts.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Pin Under Test} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{\(-30^{\circ} \mathrm{C}\)}} & \multicolumn{2}{|r|}{MC10138} & \multicolumn{4}{|l|}{Test Limits} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW}} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { (VCC) } \\
& \text { Gnd }
\end{aligned}
\]} \\
\hline & & & & & & \(25^{\circ} \mathrm{C}\) & & & \({ }^{\circ} \mathrm{C}\) & & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{V}_{\text {IH }}\) max & \(V_{1 / \text { min }}\) & \(\mathrm{V}_{\text {IHAmin }}\) & \(V_{\text {ILAmax }}\) & \(V_{E E}\) & \\
\hline Power Supply Drain Current & \({ }^{\prime} \mathrm{E}\) & 8 & . & 97 & \(\cdots\) & 70 & 88 & & 97 & mAdc & 9 & -- & -. & - & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{Input Current} & 1 in H & \begin{tabular}{|c}
12 \\
\(5,6,10,11\) \\
7 \\
9
\end{tabular} & -- & \[
\begin{aligned}
& \frac{350}{390} \\
& 460 \\
& \hline 6501
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 220 \\
& 245 \\
& 290 \\
& 410 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
- \\
- \\
- \\
- \\
\hline
\end{tabular} & \[
\begin{aligned}
& \frac{220}{245} \\
& 290 \\
& 410 \\
& \hline
\end{aligned}
\] & \(\downarrow\) & \begin{tabular}{c}
12 \\
\(5,6,10,11\) \\
7 \\
9 \\
\hline
\end{tabular} & - & - & \(\cdots\) & \[
\sqrt{1}
\] & 1 \\
\hline & 1 in L & All & 0.5 & - & 0.5 & \(\cdots\) & & 0.3 & - & \(\mu \mathrm{Adc}\) & - & * & -. & -- & 8 & 1,16 \\
\hline Logic " 1 " Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{array}{|c|}
\hline 3,14(2) \\
2,4,13,15 \\
(1) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -1.060 \\
& -1.060
\end{aligned}
\] & \[
\begin{aligned}
& -0.890 \\
& -0.890
\end{aligned}
\] & \[
\begin{aligned}
& -0.960 \\
& -0.960
\end{aligned}
\] & -- & \[
\begin{aligned}
& -0.810 \\
& -0.810
\end{aligned}
\] & \[
\begin{aligned}
& -0.890 \\
& -0.890
\end{aligned}
\] & \[
\begin{aligned}
& -0.700 \\
& -0.700
\end{aligned}
\] & \begin{tabular}{l}
Vdc \\
Vdc
\end{tabular} & \[
\begin{array}{c|}
\hline 9 \\
5,6,10,11
\end{array}
\] & -- & - & - & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline Logic "0" Output Voltage & \(\mathrm{v}_{\mathrm{OL}}\) & \[
\begin{array}{|c|}
\hline 3,14 \text { (1) } \\
2,4,13,15 \\
(2) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -1.890 \\
& -1.890
\end{aligned}
\] & \[
\begin{aligned}
& -1.675 \\
& -1.675
\end{aligned}
\] & \[
\begin{aligned}
& -1.850 \\
& -1.850
\end{aligned}
\] & \(\cdots\) & \[
\begin{aligned}
& -1.650 \\
& -1.650
\end{aligned}
\] & \[
\begin{aligned}
& -1.825 \\
& -1.825
\end{aligned}
\] & \[
\begin{aligned}
& -1.615 \\
& -1.615
\end{aligned}
\] & \begin{tabular}{l}
Vdc \\
Vdc
\end{tabular} & \(5,6,10,11\)
9 & -- & * & - & 8 & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Logic "1" \\
Threshold Voltage
\end{tabular} & \(\mathrm{V}_{\text {OHA }}\) & \[
\begin{array}{|c|}
\hline 2,4,13,15 \\
\text { (1) } \\
3,14 \text { (2) } \\
13,15(1) \\
\hline
\end{array}
\] & & -
- & \[
\left.\right|_{1} ^{-0.980}
\] & - & -
- & \[
\left.\right|_{1} ^{-0.910}
\] & - & & - & - & \[
\begin{gathered}
\hline 5,6,10,11 \\
9 \\
7,12
\end{gathered}
\] & - & 1 & \({ }^{1,16}\) \\
\hline Logic "0" Threshold Voltage & VOLA & \[
\begin{array}{|c|}
\hline 2,4,13,15 \\
\hline 2 \\
3,14(1) \\
13,15(2) \\
\hline
\end{array}
\] & " & \[
\begin{array}{|c}
-1.655 \\
7
\end{array}
\] & - & -- & & - & \[
\square_{\square}^{-1.595}
\] & \[
\stackrel{V d c}{V}
\] & - & - & - & \[
\begin{gathered}
5,6,10,11 \\
9 \\
7,12 \\
\hline
\end{gathered}
\] & \({ }^{8}\) & \(\underbrace{1,16}\) \\
\hline \multirow[t]{13}{*}{\begin{tabular}{l}
Switching Times (50-ohm Load) \\
Propagation Delay \\
Clock Delays \(50 \Omega\) Loads
\end{tabular}} & & & & & & & & & & & & & Puise In & Pulse Out & -3.2V & +2.0 V \\
\hline & & & & & & & & & & & & & & & & \\
\hline & \({ }^{\text {t }} 12+15+\) & 15 & 1.4 & 5.0 & 1.5 & 3.5 & 4.8 & 1.5 & 5.3 & ns & - & - & 12 & 15 & 8 & 1,16 \\
\hline & \(\mathrm{t}_{12+14+}\) & 14 & & 5.0 & & & 4.8 & & 5.3 & & - & - & 12 & 14 & & \\
\hline & \({ }^{\text {t }}+{ }_{+13+}\) & 13 & & 5.2 & & & 5.0 & & 5.5 & & - & - & 7 & 13 & & \\
\hline & \(17+4+\) & 4 & & \[
1
\] & & & \[
1
\] & & \[
1
\] & & -- & - & & 4 & & \\
\hline & 17+2+ & 2 & & \[
1
\] & & & \[
\downarrow
\] & & & & - & - & \[
\downarrow
\] & 2 & & \\
\hline & t7+3+ & 3 & & 5 & & & & & , & & -- & - & \(\checkmark\) & 3 & & \\
\hline & t12+15- & 15 & & 5.0 & & & 4.8 & & 5.3 & & -- & - & 12 & 15 & & \\
\hline & t12+14- & 14 & & 5.0 & & & 4.8 & & 5.3 & & - & - & 12 & 14 & & \\
\hline & \({ }^{7} 7+13-\) & 13 & & 5.2 & & & 5.0 & & 5.5 & & - & - & 7 & 13 & & \\
\hline & 17+4- & 4 & & \[
1
\] & & , & & & & & - & - & \[
1
\] & 4 & & \\
\hline & \[
17+2-
\] & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & & \[
\downarrow
\] & & & & & & & -- & -- & & 2
3 & & \\
\hline \multirow[t]{2}{*}{Set Delay} & \(\mathrm{t}_{11+15+}\) & 15 & & 5.2 & & - & & & & & - & - & 11 & 15 & & \\
\hline & \(\mathrm{t}_{11+14}\) & 14 & & 5.2 & & - & & & & & - & - & 11 & 14 & & \\
\hline \multirow[t]{2}{*}{Reset Delay} & t9+14+ & 14 & 1 & 1 & 1 & - & 1 & 1 & 1 & & - & - & 9 & 14 & & \\
\hline & t9+15- & 15 & 1 & & \[
V
\] & - & \(V\) & \[
\nabla
\] & 1 & \(\gamma\) & - & - & 9 & 15 & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Rise Time
\[
\text { (} 20 \% \text { to } 80 \% \text {) }
\] \\
Fall Time
\[
\text { (} 20 \% \text { to } 80 \% \text {) }
\] \\
Counting Frequency
\end{tabular}} & \({ }^{1} 14+\) & 14 & 1.1 & 4.7 & 1.1 & 2.5 & 4.5 & 1.1 & 5.0 & ns & -- & - & 11 & 14 & & \\
\hline & \({ }^{\text {t } 15+}\) & 15 & 1.1 & 4.7 & 1.1 & & 4.5 & 1.1 & 5.0 & & - & - & 11 & 15 & & \\
\hline & \({ }^{14}\) - & 14 & \[
\downarrow
\] & \[
\downarrow
\] & \[
\downarrow
\] & & \[
\downarrow
\] & \[
\downarrow
\] & \[
1
\] & & - & -- & 9 & 14 & & \\
\hline & \({ }^{1} 15-\) & 15 & \[
V
\] & & \[
\nabla
\] & \[
\nabla
\] & \[
\gamma
\] & & \[
7
\] & \[
\nabla
\] & - & - & 9 & 15 & & \\
\hline & \({ }^{\text {f }}\) count & \[
\begin{gathered}
2 \\
15
\end{gathered}
\] & \[
\begin{aligned}
& 125 \\
& 125
\end{aligned}
\] & & \[
\begin{aligned}
& 125 \\
& 125
\end{aligned}
\] & 150
150 & \(\checkmark\) & 125
125 & - & MHz
MHz & - & - & 7
12 & \[
\begin{gathered}
2 \\
15
\end{gathered}
\] & \(\gamma\) & \(\dagger\) \\
\hline
\end{tabular}

Individually apply \(V_{I L \min }\) to pin under test.
(1) Set all four flip-flops by applying pulse
(2) Reset all four flip-flops by applying pulse

to pins 5,6,10,11 prior to applying test voltage indicated
\(V_{\text {IHmax }}\) to pin 9 prior to applying test voltage indicated.
\(-V_{1}\) min

\(\overline{\mathrm{OO}}\) connected to C 2

\section*{FOUR-BIT UNIVERSAL SHIFT REGISTER}

The MC10141 is a four-bit universal shift register which performs shift left, or shift right, serial/parallel in, and serial/parallel out operations with no external gating. Inputs S1 and S2 control the four possible operations of the register without external gating of the clock. The flip-flops shift information on the positive edge of the clock. The four operations are stop shift, shift left, shift right, and parallel entry of data. The other six inputs are all data type inputs; four for parallel entry data, and one for shifting in from the left (DL) and one for shifting in from the right (DR).
\[
\begin{aligned}
P_{D} & =425 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{f}_{\text {Shift }} & =200 \mathrm{MHz} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)
\end{aligned}
\]

\section*{LOGIC DIAGRAM}

TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SELECT} & \multirow[b]{2}{*}{OPERATING MODE} & \multicolumn{4}{|c|}{OUTPUTS} \\
\hline S1 & S2 & & \(00_{n+1}\) & \(01_{n+1}\) & Q2n+1 & \(03_{n+1}\) \\
\hline L & L & Parallel Entry & D0 & D1 & D2 & D3 \\
\hline L & H & Shift Right* & Q1n & \(\mathrm{O}_{2} \mathrm{n}\) & \(\mathrm{Q3}_{\mathrm{n}}\) & DR \\
\hline H & L & Shift Left* & DL & \(00{ }_{n}\) & Q1n & Q2n \\
\hline H & H & Stop Shift & \(00_{n}\) & Q1n & Q2n & \(\mathrm{O3}_{\mathrm{n}}\) \\
\hline
\end{tabular}

\footnotetext{
*Outputs as exist after pulse appears at " C " input with input conditions as shown. (Pulse = Positive transition of clock input).
}

\section*{MECL LOK series}

FOUR-BIT UNIVERSAL SHIFT REGISTER

P SUFFIX
PLASTIC PACKAGE
CASE 648
LSUFFIX
CERAMIC PACKAGE CASE 620

PIN ASSIGNMENT

\section*{SHIFT FREQUENCY TEST CIRCUIT}

Test Procedures:
1. Set D1, D2, D3 \(=+0.31 \mathrm{Vdc}(\) Logic \(L)\) \(D 0=+1.11 \mathrm{Vdc}(\) Logic H\()\)
2. Apply Clock pulse \(\int_{V_{1 L}}^{-V_{1 H}}\) to set \(Q O\) high.
3. Maintain Clock Low.

Set S1 \(=+0.31 \mathrm{Vdc}(\) Logic L\()\) \(\mathrm{S} 2=+1.11 \mathrm{Vdc}(\) Logic H\()\)
4. Test Shift Frequency

ELECTRICAL CHARACTERISTICS
Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of \(25^{\circ} \mathrm{C}\), while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[b]{3}{*}{@ Test Temperature}} & \multicolumn{5}{|c|}{TESt Voltage values} & \multirow[b]{8}{*}{P1} & \multirow[b]{8}{*}{P2} & \multirow[b]{8}{*}{P3} & \multirow[b]{8}{*}{\[
\begin{gathered}
\left(\mathrm{VCC}_{\mathrm{cc}}{ }_{\mathrm{Gnd}}\right. \\
\hline
\end{gathered}
\]} \\
\hline & & & \multicolumn{5}{|c|}{(Volts)} & & & & \\
\hline & & & \(\mathrm{V}_{\text {IH }}\) max & \(V_{\text {IL }}\) min & \(V_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{EE}}\) & & & & \\
\hline \multicolumn{3}{|r|}{\multirow[t]{3}{*}{\(-30^{\circ} \mathrm{C}\)
\(+25^{\circ} \mathrm{C}\)
\(+85^{\circ} \mathrm{C}\)}} & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 & & & & \\
\hline & & & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & & & & \\
\hline & & & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & & & & \\
\hline \multicolumn{2}{|l|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & \multicolumn{5}{|l|}{test voltage applied to pins listed below:} & & & & \\
\hline Min & Max & & \(\mathrm{V}_{\mathrm{IH} \text { max }}\) & \(\mathrm{V}_{\text {IL }}\) min & \(V_{1 H A}\) min & \(V_{\text {ILA max }}\) & \(\mathrm{V}_{\mathrm{EE}}\) & & & & \\
\hline - & 112 & mAdc & - & - & - & - & 8 & - & - & - & 1,16 \\
\hline - & 220 & \multirow[t]{4}{*}{} & 5 & - & - & - & 8 & - & - & \(\cdots\) & \multirow[t]{4}{*}{} \\
\hline - & 220 & & 6 & - & - & - & 1 & - & - & - & \\
\hline - & 245 & & 7 & - & - & - & 1 & - & - & - & \\
\hline - & 265 & & 4 & - & - & - & 1 & - & - & - & \\
\hline 0.3 & - & \(\mu\) Adc & \[
\begin{array}{|c|}
\hline 4,5,6,7,9 \\
10,11,13 \\
\hline
\end{array}
\] & 12 & - & - & 8 & - & -- & - & 1,16 \\
\hline . 890 & -0.700 & Vdc & 6 & - & - & - & 8 & 4 & - & - & 1,16 \\
\hline . 825 & -1.615 & Vdc & - & - & - & - & 8 & 4 & - & - & 1,16 \\
\hline . 910 & - & \multirow[t]{4}{*}{} & - & & 6 & - & 8 & 4 & - & - & 1,16 \\
\hline & - & & 6 & & - & 7 & & 4 & - & - & 1 \\
\hline & - & & 6 & (4) & - & - & - & - & 4 & - & \\
\hline & & & - & & - & - & & - & - & & \\
\hline - & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & - & & - & 6 & 8 & 4 & - & - & 1,16 \\
\hline - & & & - & (5) & - & 7 & & 4 & - & - & \\
\hline - & & & - & (5) & - & - & I & - & 4 & - & \\
\hline & & & 6 & & - & - & 1 & - & - & 4 & 1 \\
\hline 2.0 & 4.2 & ns & (2) & - & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & -3.2 V & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} & \multirow[t]{2}{*}{\[
\frac{+2.0 \mathrm{~V}}{116}
\]} \\
\hline 2.5 & - & \multirow[b]{6}{*}{\[
\mathrm{MHz}
\]} & & - & & & 8 & & & & \\
\hline 5.5 & - & & - & - & - & - & & - & - & - & \\
\hline 1.5 & - & & \(\stackrel{-}{-}\) & - & - & - & & - & - & - & \\
\hline 1.1 & 3.6 & & (2) & - & - & - & & - & - & - & \\
\hline 1.1 & 3.6 & & (2) & - & - & - & , & - & - & - & \\
\hline 50 & - & & (3) & - & - & - & \(\dagger\) & - & - & - & \(\dagger\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{Pin Under Test} & \multicolumn{6}{|c|}{MC10141 Test Limits} \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \(+85^{\circ} \mathrm{C}\) \\
\hline & & & Min & Max & Min & Typ & Max & Min \\
\hline Power Supply Drain Current & 'E & 8 & - & 112 & - & 82 & 102 & - \\
\hline \multirow[t]{2}{*}{Input Current} & Iin H & \[
\begin{aligned}
& \hline 5 \\
& 6 \\
& 7 \\
& 4 \\
& \hline
\end{aligned}
\] & -
-
- & \[
\begin{aligned}
& 350 \\
& 350 \\
& 390 \\
& 425 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline- \\
& - \\
& - \\
& -
\end{aligned}
\] & \begin{tabular}{l}
220 \\
220 \\
245 \\
265 \\
\hline
\end{tabular} & -
-
-
- \\
\hline & \({ }^{\text {in }} \mathrm{L}\) & 12 & 0.5 & - & 0.5 & - & - & 0.3 \\
\hline Logic "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & 3 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 \\
\hline \[
\begin{aligned}
& \text { Logic " " } 0 \text { " } \\
& \text { Output Voltage }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & 3 & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 \\
\hline \begin{tabular}{l}
Logic " 1 " \\
Threshold Voltage
\end{tabular} & VOHA (1) & & \[
{ }^{-1.080}
\] & -
-
- & \[
{ }^{-0.980}
\] & - & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & \[
1_{1}^{-0.910}
\] \\
\hline \[
\begin{aligned}
& \text { Logic " "0" } \\
& \text { Threshold Voltage }
\end{aligned}
\] & VOLA & 1 & -
-
- & & -
-
- & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & & -
-
- \\
\hline \begin{tabular}{l}
Switching Times (\(50 \Omega\) Load) \\
Propagation Delay \\
Setup Time (t setup) \\
Hold Time (\(t_{\text {hold }}\)) \\
Rise Time (\(20 \%\) to \(80 \%\)) \\
Fall Time (\(20 \%\) to \(80 \%\)) \\
Shift Frequency
\end{tabular} & \[
\begin{gathered}
\mathrm{t}_{4+3+} \\
\mathrm{t}_{12+4+} \\
\mathrm{t}_{10+4+} \\
\mathrm{t}_{4+12+} \\
\mathrm{t}_{3+} \\
\mathrm{t}_{3-} \\
\mathrm{f}_{\text {Shift }}
\end{gathered}
\] & \[
\begin{gathered}
3 \\
14 \\
14 \\
14 \\
3 \\
3 \\
3
\end{gathered}
\] & \[
\begin{array}{r}
1.7 \\
2.5 \\
5.5 \\
1.5 \\
1.0 \\
1.0 \\
150
\end{array}
\] & 3.9
-
-
-
3.4
3.4 & \[
\begin{gathered}
1.8 \\
2.5 \\
5.0 \\
1.5 \\
1.1 \\
1.1 \\
150
\end{gathered}
\] & \[
\begin{gathered}
2.9 \\
- \\
- \\
- \\
2.0 \\
2.0 \\
200
\end{gathered}
\] & \[
\begin{gathered}
3.8 \\
- \\
- \\
3.3 \\
3.3
\end{gathered}
\] & \[
\begin{array}{r}
2.0 \\
2.5 \\
5.5 \\
1.5 \\
1.1 \\
1.1 \\
150
\end{array}
\] \\
\hline & \multicolumn{4}{|r|}{\(P 2 \square-\mathrm{V}_{\mathrm{IHA}}\)} & \multicolumn{2}{|c|}{P3} & & \[
\begin{aligned}
& -v_{I L A} \\
& -v_{I L}
\end{aligned}
\] \\
\hline
\end{tabular}
(1) These tests to be performed in sequence as shown.
2) See switching time test circuit for test procedures
(3) See shift frequency test circuit for test procedures.
4) Reset to zero before performing test
5) Reset to one before performing test.

\section*{MC10153}

\section*{MECL 1OK series}

\section*{QUAD LATCH}

The MC10153 is a high speed, low power, MECL quad latch consisting of four bistable latch circuits with D type inputs and gated Qoutputs. Open emitters allow a large number of outputs to be wire-ORed together. Latch outputs are gated, allowing direct wiring to a bus. When the clock is low, outputs will follow D inputs. Information is latched on positive going transition of the clock. The MC10153 provides the same logic function as the MC10133, except for inversion of the clock.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =310 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =4.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{QUAD LATCH}

LSUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs are tested in a similar manner
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{6}{*}{Characteristic} & & & & & & & & & & & & & & & & \multirow[b]{6}{*}{\[
\begin{aligned}
& \text { (Vcc) } \\
& \text { Gnd }
\end{aligned}
\]} \\
\hline & & & & & & & & & & \[
+25^{\circ} \mathrm{C}
\] & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & \[
+85^{\circ} \mathrm{C}
\] & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Pin Under Test} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{\(-30^{\circ} \mathrm{C}\)}} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{\(\frac{\text { MC10153 }}{}+\frac{\text { Test Limit }}{}\)}} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{\(+85^{\circ} \mathrm{C}\)}} & \multirow[b]{3}{*}{Unit} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW:}} & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(\mathrm{V}_{\text {IH }}\) max & \(\mathrm{V}_{\mathrm{IL} \text { min }}\) & \(V_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(V_{\text {EE }}\) & \\
\hline Power Supply Drain Current & IE & 8 & - & 83 & - & - & 75 & - & 83 & mAdc & - & 13 & - & - & 8 & 1,16 \\
\hline \multirow[t]{5}{*}{Input Current} & \multirow[t]{4}{*}{1 inH} & 3 & - & 390 & - & - & 245 & - & 245 & \multirow[t]{4}{*}{} & 3 & - & - & - & 8 & 1,16 \\
\hline & & 4 & - & 390 & - & - & 245 & - & 245 & & 4 & - & - & - & 1 & , \\
\hline & & 5 & - & 560 & - & - & 350 & - & 350 & & 5 & - & - & - & , & \\
\hline & & 13 & - & 460 & - & - & 290 & - & 290 & & 13 & - & - & - & 1 & \\
\hline & \(\mathrm{t}_{\text {inL }}\) & 3 & 0.5 & - & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & 3 & - & - & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{Logic "1" Output Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & 2 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 3 & 4 & - & - & 8 & 1,16 \\
\hline & & 2 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 3 & 13 & - & - & 8 & 1,16 \\
\hline Logic " 0 " Output Voltage & \(\mathrm{v}_{\mathrm{OL}}\) & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline-1.890 \\
\hline
\end{array}
\] & & & - & & \[
-\frac{-1.825}{1}
\] & \[
-\frac{-1.615}{}
\] & & - \({ }^{-}\) & \[
\begin{gathered}
\hline 3,13 \\
13 \\
3,4
\end{gathered}
\] & - & - & 8
\(\downarrow\) & \[
1.16
\] \\
\hline \multirow[t]{7}{*}{Logic " 1 " Threshold Voltage} & \multirow[t]{7}{*}{\(\mathrm{V}_{\text {OHA }}\)} & 2 & -1.080 & \(\square\) & -0.980 & - & - & -0.910 & - & Vdc & 3 & 4 & - & 5 & 8 & 1,16 \\
\hline & & 2 & & - & & - & - & & - & & - & 4 & 3 & - & & + \\
\hline & & 2 & & - & & - & - & & - & & 3 & 4 & - & - & & \\
\hline & & \(2 \dagger\) & & - & & - & - & & - & & 3 & - & - & - & & \\
\hline & & \(2 \dagger \dagger\) & & - & & - & - & & - & & - & - & - & - & & \\
\hline & & \(2 \dagger \dagger\) & & - & & - & - & & - & & - & - & - & - & & \\
\hline & & 2 & \(\dagger\) & - & \(\dagger\) & - & - & \(\dagger\) & - & 7 & 3
3 & - & - & 4 & 1 & 1 \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Logic " 0 " \\
Threshold Voltage
\end{tabular}} & \multirow[t]{5}{*}{VOLA} & & & & & & & & & & & & & & & \\
\hline & & 2 & - & & & & -1.63 & - & & & 3 & 4 & 5 & - & 8 & 1,16 \\
\hline & & 2 & - & & - & - & & - & & & - & 4 & - & 3 & 1 & 1 \\
\hline & & \(2 \dagger\) & - & & - & - & & - & & & - & - & - & - & & \\
\hline & & \(2 \dagger+\) & - & 1 & - & - & \(\dagger\) & - & \(\checkmark\) & 1 & 3 & - & - & - & & \\
\hline \multirow[t]{7}{*}{Switching Times (\(50 \Omega\) Load) Propagation Delay} & \multirow[t]{7}{*}{} & & & \multirow[t]{4}{*}{} & & & \multirow[t]{5}{*}{} & \multirow[t]{7}{*}{} & \multirow[t]{9}{*}{} & & & \multirow[t]{3}{*}{} & \multirow[b]{2}{*}{Puise In} & \multirow[b]{2}{*}{Pulse Out} & \multirow[b]{3}{*}{\(\frac{-3.2 \mathrm{~V}}{8}\)} & \\
\hline & & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & & & & \multirow[t]{8}{*}{} & \multirow[t]{2}{*}{\[
\frac{+1.11 \mathrm{~V}}{-}
\]} & & & & & \multirow[t]{2}{*}{\(\underline{+2.0 \mathrm{~V}}\) 1,16} \\
\hline & & & & & & & & & & & & & & 2 & & \\
\hline & \multicolumn{12}{|l|}{\multirow[t]{6}{*}{}} & & & & \\
\hline & & & & \[
\begin{aligned}
& 5.6 \\
& 3.2
\end{aligned}
\] & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline Rise Time (20\% to 80\%) & & & & & & & & & & & & & & & & \\
\hline Fall Time (\(20 \%\) to 80\%) & & & & & & & & & & & & & & & \(\dagger\) & \(\nabla\) \\
\hline
\end{tabular}
toutput level to be measured after a clock pulse has been applied to the clock input (Pin 4).
\(\dagger \dagger\) Data input at proper high/low level while clock pulse is low so that device latches at proper \(\rightarrow \int_{V_{I L} \text { min }}^{V_{I H}}\)
*Latch set to zero state before test.
high low lovel for test Lels are measured after device has latched

\section*{BINARY COUNTER}

The MC10154 is a four-bit counter capable of divide-by-two, divide-by-four, divide-by-eight or a divide-by-sixteen function.
Clock inputs trigger on the positive going edge of the clock pulse. Set and Reset inputs override the clock, allowing asynchronous "set" or "clear." Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits.

PD \(\quad=370 \mathrm{~mW}\) typ./pkg. (No Load)
\(f_{\text {toggle }}=150 \mathrm{~m} \mathrm{~Hz}\) (typ.)
\({ }^{t_{\text {pd }}}=3.5\) ns typ. (C to \(\mathrm{Q}_{0}\))
\(t_{p d} \quad=11\) ns typ. (\(C\) to \(\mathrm{O}_{3}\))

\section*{MECL 10K \\ series}

BINARY COUNTER

L SUFFIX
CERAMIC PACKAGE CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to \(\mathbf{- 2 . 0}\) volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & & & & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{@ Test Temperature}} & & & & & & \multirow{8}{*}{\[
\left(v_{c c}\right)
\]} \\
\hline & & & & & & & & & & & \(V_{1 H \text { max }}\) & \(V_{\text {IL min }}\) & \(V_{\text {IHAmin }}\) & \(V_{\text {ILAmax }}\) & VEE & \\
\hline & & & & & & & & & & \(-30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 & \\
\hline & & & & & & & & & & \(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & \(+85^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10154 Test Limits} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW:}} & \\
\hline & & & & & & \(25^{\circ} \mathrm{C}\) & & & \({ }^{\circ} \mathrm{C}\) & \multirow[b]{2}{*}{Unit} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(V_{1 H_{\text {max }}}\) & \(V_{\text {IL min }}\) & VIHAmin & VILAmax & \(V_{\text {EE }}\) & \\
\hline Power Supply Drain Current & IE & 8 & - & 97 & - & - & 88.5 & - & 97 & mAdc & 9 & - & - & - & 8 & 1,16 \\
\hline \multirow[t]{4}{*}{Input Current} & \multirow[t]{3}{*}{1 inH} & 12 & - & 390 & - & - & 245 & - & 245 & \(\mu \mathrm{Adc}\) & 12 & - & - & - & 8 & 1,16 \\
\hline & & 11 & - & 350 & - & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & 11 & - & - & - & 8 & 1,16 \\
\hline & & 9 & - & 650 & - & - & 410 & - & 410 & \(\mu\) Adc & 9 & - & - & - & 8 & 1,16 \\
\hline & \multirow[t]{2}{*}{\[
\frac{l_{\mathrm{inL}}}{\mathrm{~V}_{\mathrm{OH}}}
\]} & * & 0.5 & - & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & * & - & - & 8 & 1,16 \\
\hline Logic "1" Output Voltage & & \[
\begin{aligned}
& 14 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.060 \\
& -1.060
\end{aligned}
\] & \[
\begin{array}{l|}
\hline-0.890 \\
-0.890
\end{array}
\] & \[
\begin{aligned}
& -0.960 \\
& -0.960
\end{aligned}
\] & - & \[
\begin{aligned}
& -0.810 \\
& -0.810
\end{aligned}
\] & \[
\begin{array}{l|}
\hline-0.890 \\
-0.890
\end{array}
\] & \[
\begin{aligned}
& \hline-0.700 \\
& -0.700
\end{aligned}
\] & Vdc Vdc & \[
\begin{gathered}
9 \\
\hline 11
\end{gathered}
\] & - & - & - & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline Logic '0' Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{aligned}
& 14 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.890 \\
& -1.890
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.675 \\
& -1.675
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.850 \\
& -1.850
\end{aligned}
\] & - & \[
\begin{aligned}
& -1.650 \\
& -1.650
\end{aligned}
\] & \[
\begin{aligned}
& -1.825 \\
& -1.825
\end{aligned}
\] & \[
\begin{aligned}
& -1.615 \\
& -1.615
\end{aligned}
\] & Vdc Vdc & \[
\begin{gathered}
11 \\
9
\end{gathered}
\] & - & - & - & 8 & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline Logic "1" Threshold Voltage & \(\mathrm{V}_{\mathrm{OHA}}\) & \[
\begin{gathered}
\hline 3 \\
14 \\
15
\end{gathered}
\] & \[
\begin{aligned}
& \hline-1.080 \\
& -1.880 \\
& -1.080
\end{aligned}
\] & - & \[
\begin{aligned}
& \hline-0.980 \\
& -0.980 \\
& -0.980
\end{aligned}
\] & - & - & \[
\begin{aligned}
& -0.910 \\
& -0.910 \\
& -0.910
\end{aligned}
\] & - & Vdc
Vdc
Vdc & - & - & 5
11
9 & - & 8
8
8 & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline Logic " 0 " Threshold Voltage & \(V_{\text {OLA }}\) & \[
\begin{gathered}
\hline 3 \\
14 \\
15
\end{gathered}
\] & - & \[
\begin{aligned}
& -1.655 \\
& -1.655 \\
& -1.655
\end{aligned}
\] & - & - & \[
\begin{aligned}
& -1.630 \\
& -1.630 \\
& -1.630
\end{aligned}
\] & - & \[
\begin{aligned}
& -1.595 \\
& -1.595 \\
& -1.595
\end{aligned}
\] & Vdc
Vdc
Vdc & - & - & - & \[
\begin{gathered}
\hline 5 \\
11 \\
9
\end{gathered}
\] & \[
\begin{aligned}
& \hline 8 \\
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{Switching Times Clock Input Propagation Delay} & \multirow[b]{5}{*}{\[
\begin{aligned}
& t_{12+15+} \\
& t_{12-13-} \\
& t_{12+4-}
\end{aligned}
\]} & \multirow[b]{5}{*}{\[
\begin{gathered}
15 \\
13 \\
4 \\
3
\end{gathered}
\]} & \multirow[b]{5}{*}{\[
\begin{aligned}
& 1.4 \\
& 1.9 \\
& 2.9 \\
& 3.9
\end{aligned}
\]} & \multirow[b]{5}{*}{\[
\begin{array}{r}
5.0 \\
9.4 \\
12.3 \\
14.9
\end{array}
\]} & \multirow[b]{5}{*}{\[
\begin{aligned}
& 1.5 \\
& 2.0 \\
& 3.0 \\
& 4.0
\end{aligned}
\]} & \multirow[b]{5}{*}{\[
\begin{gathered}
3.5 \\
6.0 \\
8.5 \\
11
\end{gathered}
\]} & \multirow[b]{5}{*}{\[
\begin{array}{r}
4.8 \\
9.2 \\
12 \\
14.5
\end{array}
\]} & \multirow[b]{5}{*}{\[
\begin{aligned}
& 1.5 \\
& 2.0 \\
& 3.0 \\
& 4.0
\end{aligned}
\]} & \multirow[b]{5}{*}{\[
\begin{array}{r}
5.3 \\
9.8 \\
12.8 \\
15.5
\end{array}
\]} & \multirow[b]{7}{*}{\[
\left.\right|_{1} ^{\text {ns }}
\]} & \multirow[b]{7}{*}{\[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\]} & \multirow[b]{7}{*}{\[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\]} & Pulse In & Pulse Out & -3.2 Vdc & +2.0 Vdc \\
\hline & & & & & & & & & & & & & \multirow[t]{6}{*}{\[
\left.\right|^{12}
\]} & \multirow[t]{6}{*}{15
13
4
3
15
15} & \multirow[t]{6}{*}{\[
8
\]} & \multirow[t]{6}{*}{} \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Rise Time (20 to 80\%) \\
Fall Time (\(\mathbf{2 0}\) to \(\mathbf{8 0 \%}\)) \\
Set Input \\
Reset Input \\
Counting Frequency
\end{tabular}} & \({ }^{1} 15+\) & 15 & 1.1 & 4.7 & 1.1 & 2.5 & 4.5 & 1.1 & 5.0 & & & & & & & \\
\hline & t15- & 15 & 1.1 & 4.7 & 1.1 & 2.5 & 4.5 & 1.1 & 5.0 & & & & & & & \\
\hline & t11-15+ & 15 & 1.4 & 5.2 & 1.5 & - & 5.0 & 1.5 & 5.5 & ns & - & - & 11 & 15 & 8 & 1,16 \\
\hline & t9-15+ & 15 & 1.4 & 5.2 & 1.5 & - & 5.0 & 1.5 & 5.5 & ns & - & - & 9 & 15 & 8 & 1.16 \\
\hline & \({ }^{\text {f }}\) count & 15 & 125 & - & 125 & 150 & - & 125 & - & MHz & - & - & 12 & 15 & 8 & 1,16 \\
\hline
\end{tabular}
*Individually test each input applying \(\mathrm{V}_{\text {IL }}\) to input under test.

\section*{QUAD 2-INPUT MULTIPLEXER (NON-INVERTING)}

The MC10158 is a quad two channel multiplexer. A common select input determines which data inputs are enabled. A high \((\mathrm{H})\) level enables data inputs D00, D10, D20, and D30 and a low (L) level enables data inputs D01, D11, D21, and D31.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}}= & 197 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}}= & 2.5 \mathrm{~ns} \text { typ (Data to } \mathrm{Q}) \\
& 3.2 \mathrm{~ns} \text { typ (Select to } \mathrm{Q}) \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}= & 2.5 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline Select & D0 & D1 & Q \\
\hline L & \(\phi\) & L & L \\
\hline L & \(\phi\) & H & H \\
\hline H & L & \(\phi\) & L \\
\hline H & H & \(\phi\) & H \\
\hline
\end{tabular}
\(V_{C C}=P\) in 16
\(V_{E E}=\operatorname{Pin} 8\)

\section*{MECL 1OK serues}

\section*{QUAD 2-INPUT MULTIPLEXER (NON-INVERTING)}

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\) ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs are tested in a similar manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{TEST VOLTAGE VALUES} & \multirow[b]{9}{*}{(\(\mathrm{v}_{\mathrm{Cc}}\)) Gnd} \\
\hline \multirow[b]{8}{*}{Characteristic} & & & & & & & & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
@ Test \\
Temperature
\end{tabular}}} & & & (Volts) & & & \\
\hline & & & & & & & & & & & \(\mathrm{V}_{1 H}\) max & \(V_{1 L}\) min & \(V_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{EE}}\) & \\
\hline & & & & & & & & & & \(-30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 & \\
\hline & & & & & & & & & & \(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & \(+85^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10158 TEST LIMITS} & \multicolumn{5}{|l|}{\multirow[b]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW:}} & \\
\hline & & & \multicolumn{2}{|r|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(\mathrm{V}_{\mathrm{IH} \text { max }}\) & \(V_{1 L}\) min & \(V_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{EE}}\) & \\
\hline Power Supply Drain Current & \({ }^{\prime} \mathrm{E}\) & 8 & - & 53 & - & 38 & 48 & - & 53 & mAdc & - & - & - & - & 8 & 16 \\
\hline \multirow[t]{2}{*}{Input Current} & \(\mathrm{I}_{\mathrm{inH}}\) & \[
9
\] & - & \[
\begin{aligned}
& 360 \\
& 400
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 225 \\
& 250
\end{aligned}
\] & - & \[
\begin{aligned}
& 225 \\
& 250
\end{aligned}
\] & \(\mu \mathrm{Adc}\) \(\mu\) Adc & \[
\begin{aligned}
& 9 \\
& 5
\end{aligned}
\] & - & - & - & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& \hline 16 \\
& 16
\end{aligned}
\] \\
\hline & \(\mathrm{I}_{\text {inL }}\) & 5 & 0.5 & & 0.5 & & \(\checkmark\) & 0.3 & - & \(\mu \mathrm{Adc}\) & - & 5 & - & - & 8 & 16 \\
\hline \[
\begin{aligned}
& \hline \text { Logic "1" } \\
& \text { Output Voltage } \\
& \hline
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 1 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 5 & - & - & - & 8 & 16 \\
\hline \[
\begin{aligned}
& \text { Logic "0" } \\
& \text { Output Voltage }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OL}}\) & 1 & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 & -1.615 & Vdc & - & - & - & - & 8 & 16 \\
\hline ```
Threshold Voltage
``` & VOHA & 1 & -1.080 & - & -0.980 & - & - & -0.910 & - & Vdc & - & - & 5 & - & 8 & 16 \\
\hline  & VOLA & 1 & - & -1.655 & - & - & -1.630 & - & -1.595 & Vdc & - & - & - & 5 & 8 & 16 \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Switching Times \\
( \(50 \Omega\) Load) \\
Pfopagation Delay \\
Data Input \\
Select Input \\
Rise Time \\
( \(20 \%\) to \(80 \%\) ) \\
Fall Time (20\% to \(80 \%\) )
\end{tabular}} & \multirow[b]{7}{*}{\[
\begin{gathered}
\mathrm{t}_{5-1-1} \\
\mathrm{t}_{9+1+} \\
\mathrm{t}_{1+} \\
\mathrm{t}_{1-}
\end{gathered}
\]} & \multirow[t]{3}{*}{} & \multirow[b]{5}{*}{\[
\begin{aligned}
& 1.3 \\
& 2.5
\end{aligned}
\]} & & & & & & & & +1.11 Vdc & +0.31 Vdc & Puise In & Pulse Out & -3.2 Vdc & +2.0 Vdc \\
\hline & & & & & & & & & & ns & & & & & & \\
\hline & & & & & & & & & & & & & & & 8 & 16 \\
\hline & & 1 & & & 1.2 & 2.5 & 3.0 & 1.3 & 3.2 & & - & - & 5 & 1 & & \\
\hline & & \multirow[t]{2}{*}{1} & & 4.8 & 2.4 & 3.2 & 4.5 & 2.5 & 4.8 & & 6 & - & 9 & 1 & & \\
\hline & & & 1.6 & 3.4 & 1.5 & 2.5 & 3.3 & 1.6 & 3.4 & & - & - & 5 & 1 & & \\
\hline & & 1 & 1.6 & 3.4 & 1.5 & 2.5 & 3.3 & 1.6 & 3.4 & \(\dagger\) & - & - & 5 & 1 & \(\dagger\) & \(\dagger\) \\
\hline
\end{tabular}

\section*{MC10159}

\section*{QUAD 2-INPUT MULTIPLEXER (INVERTING)}

The MC10159 is a quad two channel multiplexer with enable. It incorporates common enable and common data select inputs. The select input determines which data inputs are enabled. A high (H) level enables data inputs D00, D10, D20, and D30. A low (L) level enables data inputs D01, D11, D21, and D31. Any change on the data inputs will be reflected at the outputs while the enable is low. Input levels are inverted at the output.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}}= & 218 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}}= & 2.5 \mathrm{~ns} \text { typ (Data to } \mathrm{Q}) \\
& 3.2 \mathrm{~ns} \text { typ (Select to } \mathrm{Q}) \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}= & 2.5 \mathrm{~ns} \text { typ ( } 20 \%-80 \% \text { ) }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline Enable & Select & D0 & D1 & Q \\
\hline L & L & \(\phi\) & L & H \\
\hline L & L & \(\phi\) & H & L \\
\hline L & H & L & \(\phi\) & H \\
\hline L & H & H & \(\phi\) & L \\
\hline H & \(\phi\) & \(\phi\) & \(\phi\) & L \\
\hline
\end{tabular}
\(\phi=\) Don't Care

\section*{PIN ASSIGNMENT}


\section*{MECL LOK serines}

QUAD 2-INPUT MULTIPLEXER (INVERTING)


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs are tested in a similar manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|r|}{\multirow[t]{2}{*}{\[
+85^{\circ} \mathrm{C}
\]}} & \multirow[t]{2}{*}{\[
-0.700
\]} & \multirow[t]{2}{*}{\[
-1.825
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{5}{*}{\[
\begin{aligned}
& \left(V_{\mathbf{c c}}\right) \\
& \text { Gnd } \\
& \hline
\end{aligned}
\]} \\
\hline & & & & & & & & & & & & & & & & \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10159 Test Limits} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW:}} & \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(\mathrm{V}_{1} \mathrm{H}_{\text {max }}\) & \(\mathrm{V}_{\mathrm{IL} \text { min }}\) & \(V_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & VEE & \\
\hline Power Supply Drain Current & 'E & 8 & - & 58 & - & 42 & 53 & - & 58 & mAdc & - & - & - & - & 8 & 16 \\
\hline \multirow[t]{3}{*}{Input Current} & \(\mathrm{I}_{\mathrm{inH}}\) & 9 & - & 360 & - & - & 225 & - & 225 & \(\mu \mathrm{Adc}\) & 9 & - & - & - & 8 & 16 \\
\hline & & 5 & - & 400 & - & - & 250 & \(-\) & 250 & \(\mu \mathrm{Adc}\) & 5 & - & - & - & 8 & 16 \\
\hline & \(\mathrm{I}_{\text {in } \mathrm{L}}\) & 5 & 0.5 & & 0.5 & & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & 5 & - & - & 8 & 16 \\
\hline Logic "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & 1 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & - & - & - & - & 8 & 16 \\
\hline Logic "0" Output Voltage & \(\mathrm{v}_{\mathrm{OL}}\) & 1 & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 & -1.615 & Vdc & 5 & - & - & - & 8 & 16 \\
\hline Logic "1" Threshold Voltage & \(\mathrm{V}_{\text {OHA }}\) & 1 & -1.080 & - & -0.980 & - & - & -0.910 & - & Vdc & 9 & - & - & 6 & 8 & 16 \\
\hline \begin{tabular}{l}
Logic " 0 " \\
Threshold Voltage
\end{tabular} & \(\mathrm{V}_{\text {OLA }}\) & 1 & - & -1.655 & - & - & -1.630 & - & -1.595 & Vdc & 9 & - & 6 & - & 8 & 16 \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Switching Times \\
( \(50 \Omega\) Load) \\
Propagation Delay \\
Data Input \\
Select Input \\
Enable Input \\
Rise Time \\
(20\% to 80\%) \\
Fall Time (20\% to 80\%)
\end{tabular}} & & & & & & & & & & & +1.11 Vdc & +0.31 Vdc & Pulse In & Pulse Out & -3.2 Vdc & +2.0 Vdc \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & t5 + 1- & 1 & 1.1 & 3.8 & 1.2 & 2.5 & 3.3 & 1.1 & 3.8 & & - & - & 5 & 1 & | & | \\
\hline & t9+1- & 1 & 1.5 & 5.3 & 1.5 & 3.2 & 5.0 & 1.5 & 5.3 & & 6 & - & 9 & 1 & & \\
\hline & \({ }^{17+1-}\) & 1 & 1.4 & 5.3 & 1.5 & 2.5 & 5.0 & 1.4 & 5.3 & & 3,12 & - & 7 & 1 & & \\
\hline & \(\mathrm{t}_{1}+\) & 1 & 1.0 & 3.7 & 1.1 & 2.5 & 3.5 & 1.0 & 3.7 & & 9 & - & 5 & 1 & & \\
\hline & \({ }^{1} 1\) - & 1 & 1.0 & 3.7 & 1.1 & 2.5 & 3.5 & 1.0 & 3.7 & \(\dagger\) & 9 & - & 5 & 1 & \(\dagger\) & \(\dagger\) \\
\hline
\end{tabular}

\section*{12-BIT PARITY GENERATOR-CHECKER}

The MC10160 consists of nine EXCLUSIVE-OR gates in a single package, internally connected to provide odd parity checking or generation. Output goes high when an odd number of inputs are high. Unconnected inputs are pulled to low logic levels allowing parity detection and generation for less than 12 bits.
\[
\begin{aligned}
\mathrm{PD}_{\mathrm{D}} & =320 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =5.0 \mathrm{~ns} \mathrm{typ} \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{MECL LOK series}

\section*{12-BIT PARITY GENERATOR-CHECKER}

LSUFFIX CERAMIC PACKAGE CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648


\section*{LOGIC DIAGRAM}

PIN ASSIGNMENT


ELECTRICAL CHARACTERISTICS
Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for one set of conditions. Complete testing according to truth table.

*Pins 3, 6, 7, 11, 12, 15 are similar
Pins 4, 5, 9, 10, 13, 14 are similar

\section*{BINARY TO 1-8 DECODER (LOW)}

The MC10161 is designed to decode a three bit input word to a one of eight line output. The selected output will be low while all other outputs will be high. The enable inputs, when either or both are high, force all outputs high.

The MC10161 is a true parallel decoder. No series gating is used internally, eliminating unequal delay times found in other decoders. This design provides the identical 4 ns delay from any address or enable input to any output.
A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 1. This system, using the MC10136 control counters, has the capability of incrementing, decrementing or holding data channels. When both S0 and S1 are low, the index counters reset, thus initializing both the mux and demux units. The four binary outputs of the counter are buffered by the MC10101s to send twisted-pair select data to the multiplexer/ demultiplexer units.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =315 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =4.0 \mathrm{~ns} \text { type } \\
\mathrm{t}_{\mathrm{r},}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{MFOL 1OK \\ sermes}

\section*{BINARY TO 1-8 DECODER} (LOW)

\(V_{C C 1}=\operatorname{Pin} 1\)
\(V_{C C 2}=\operatorname{Pin} 16\)
\(\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 8\)
TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{ENABLE INPUTS} & \multicolumn{3}{|l|}{INPUTS} & \multicolumn{8}{|c|}{OUTPUTS} \\
\hline E1 & EO & C & B & A & 00 & Q1 & Q2 & Q3 & 04 & 05 & 06 & Q7 \\
\hline L & L & L & L & L & L & H & H & H & H & H & H & H \\
\hline L & L & L & L & H & H & L & H & H & H & H & H & H \\
\hline L & L & L & H & L & H & H & L & H & H & H & H & H \\
\hline L & L & L & H & H & H & H & H & L & H & H & H & H \\
\hline 1 & L & H & L & L & H & H & H & H & L & H & H & H \\
\hline L & L & H & L & H & H & H & H & H & H & L & H & H \\
\hline L & L & H & H & L & H & H & H & H & H & H & L & H \\
\hline L & L & H & H & H & H & H & H & H & H & H & H & L \\
\hline H & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & H & H & H & H & H & H & H & H \\
\hline \(\phi\) & H & \(\phi\) & \(\phi\) & \(\phi\) & H & H & H & H & H & H & H & H \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifi cations shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input/output combination. Other combinations are tested according to the truth table.



\section*{BINARY TO 1-8 DECODER (HIGH)}

The MC10162 is designed to convert three lines of input data to a one-of-eight output. The selected output will be high while all other outputs are low. The enable inputs, when either or both are high, force all outputs low.
The MC10162 is a true parallel decoder. No series gating is used internally, eliminating unequal delay times found in other decoders.
This device is ideally suited for demultiplexer applications. One of the two enable inputs is used as the data input, while the other is used as a data enable input.
A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 1 of the MC10161 data sheet.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =315 \mathrm{~ns} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =4.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

LOGIC DIAGRAM

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{INPUTS} & \multicolumn{8}{|c|}{OUTPUTS} \\
\hline Ē0 & Ē1 & C & B & A & 00 & Q1 & 02 & Q3 & 04 & 05 & Q6 & 07 \\
\hline L & L & L & L & L & H & L & L & L & L & L & L & L \\
\hline L & L & L & L & H & L & H & L & L & L & L & L & L \\
\hline L & L & L & H & L & L & L & H & L & L & L & L & L \\
\hline L & L & L & H & H & L & L & L & H & L & L & L. & L \\
\hline L & \(L\) & H & L & L & L & L & L & L & H & & L & L \\
\hline L & L & H & L & H & L & L & L & L & L & H & L & L \\
\hline L & L & H & H & L & L & \(L\) & L & L & L & L & H & L \\
\hline L & L & H & H & H & L & L & L & L & L & L & L & H \\
\hline H & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & L & L & & L & L & L & L & L \\
\hline \(\phi\) & H & \(\phi\) & \(\phi\) & \(\phi\) & L & L & L & L & L & L & L & L \\
\hline
\end{tabular}

\footnotetext{
\(\phi=\) Don't Care
}

\section*{MECL 1OK serimes}

BINARY TO 1-8 DECODER (HIGH)

P SUFFIX
PLASTIC PACKAGE
CASE 648
L SUFFIX CERAMIC PACKAGE CASE 620


\section*{PIN ASSIGNMENT}


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only input/output combination. Other combinations are tested according to the truth table.


\section*{ERROR DETECTION- CORRECTION CIRCUIT}

The MC10163 and the MC10193 are error detection and correction circuits. They are building blocks designed for use with memory systems. They offer economy in the design of error detection/ correction subsystems for mainframe and add-on memory systems. For example, using eight MC10163s together with eight 12-bit parity checkers (MC10160), single-bit error detection/correction and double-bit error detection can be done on a word of 64-bit length. Only eight check bits (B0-B7) need be added to the word. A useful feature of this building block is that the MC10193 option generates the parity of all inputs to the block. Thus, if the MC10193 is applied in a byte sequence, individual byte parity is automatically available.

\section*{MECL LOK series}

ERROR DETECTION CORRECTION CIRCUIT


PLASTIC PACKAGE CASE 648


CERAMIC PACKAGE CASE 620


IBM CODE
\(\mathrm{PO}_{\mathrm{A}}=\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 4, \mathrm{~B} 7\)
\(\mathrm{PO}_{\mathrm{B}}=\mathrm{BO}, \mathrm{B} 3, \mathrm{~B} 5, \mathrm{~B} 6\)
\(P 1=B 1, B 3, B 5, B 7\)
\(P 2=B 2, B 3 B 6, B 7\)
\(P 3=B 4, B 5, B 6, B 7\)
\(V_{C C 1}=\operatorname{Pin} 1\)
\(V_{C C 2}=\operatorname{Pin} 16\)
\[
V_{E E}=\operatorname{Pin} 8
\]
\(\mathrm{P}_{\mathrm{D}}=520 \mathrm{~mW}\) typ/pkg (No Load) \({ }^{t_{p d}}=5.0\) ns typ

MC10193 LOGIC DIAGRAM


MOTOROLA CODE
P1 \(=\mathrm{B} 1, \mathrm{~B} 3, \mathrm{~B}, \mathrm{~B} 7\)
\(P 2=B 2, B 3, B 6, B 7\)
\(P 3=B 4, B 5, B 6, B 7\)
P4 = B1, B2, B4, B7
\(P 5=\) Byte (BO 1, 2, 3, 4, 5, 6, 7)
\[
\begin{aligned}
\mathrm{V}_{\mathrm{CC} 1} & =\operatorname{Pin} 1 \\
\mathrm{~V}_{\mathrm{CC} 2} & =\operatorname{Pin} 16 \\
\mathrm{~V}_{\mathrm{EE}} & =\operatorname{Pin} 8
\end{aligned}
\]
\(\mathrm{P}_{\mathrm{D}}=520 \mathrm{~mW}\) typ/pkg (No Load)
\(\mathrm{t}_{\mathrm{pd}}=7.5 \mathrm{~ns}\) typ (pin 7 to pin 2)
\(\mathrm{t}_{\mathrm{pd}}=5.0 \mathrm{~ns}\) typ (pin 7 to pin 14)

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are ested in a similar manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \multirow[t]{3}{*}{\[
\begin{array}{r}
-30^{\circ} \mathrm{C} \\
+25^{\circ} \mathrm{C} \\
+85^{\circ} \mathrm{C}
\end{array}
\]} & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 & \multirow[b]{6}{*}{\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{cc}}\right) \\
& \text { Gnd }
\end{aligned}
\]} \\
\hline & & & & & & & & & & & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10163 Test Limits} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW:}} & \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(\mathrm{V}_{\text {IH max }}\) & \(V_{\text {ILImin }}\) & \(V_{\text {IHAmin }}\) & VILAmax & \(V_{E E}\) & \\
\hline Power Supply Drain Current & \(\mathrm{IE}_{\mathrm{E}}\) & 8 & - & 137 & - & - & 125 & - & 137 & mAdc & - & - & - & - & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{Input Current} & \(\mathrm{I}_{\mathrm{inH}}\) & \[
\begin{gathered}
4,6,10 \\
5,7,9,11,12
\end{gathered}
\] & - & \[
\begin{aligned}
& 350 \\
& 425
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 220 \\
& 265
\end{aligned}
\] & - & \[
\begin{aligned}
& 220 \\
& 265
\end{aligned}
\] & \(\mu \mathrm{Adc}\) \(\mu \mathrm{Adc}\) & \[
\begin{gathered}
4,6,10 \\
5,7,9,11,12
\end{gathered}
\] & - & - & - & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{\[
\frac{\mathrm{I}_{\mathrm{inL}}}{\mathrm{~V}_{\mathrm{OH}}}
\]} & * & 0.5 & - & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & * & - & - & 8 & 1.16 \\
\hline Logic "1" Output Voltage & & \[
\begin{gathered}
2 \\
3 \\
13 \\
14
\end{gathered}
\] &  &  & \[
{ }^{-0.960}
\] & -
-
- &  &  &  &  & \[
\begin{gathered}
\hline 4 \\
4 \\
11 \\
11
\end{gathered}
\] & -
-
- & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & 1 &  \\
\hline Logic " 0 " Output Voltage & \(\mathrm{v}_{\mathrm{OL}}\) & \[
\begin{gathered}
\hline 2 \\
3 \\
13 \\
14 \\
\hline
\end{gathered}
\] &  &  &  & -
-
-
- &  &  &  &  & - & \[
\begin{gathered}
\hline 4 \\
11 \\
11 \\
11 \\
\hline
\end{gathered}
\] & - & \begin{tabular}{l}
- \\
- \\
\hline
\end{tabular} & 1 & \({ }_{1}^{1,16}\) \\
\hline Logic "1" Threshold Voltage & VOHA & \[
\begin{gathered}
2 \\
3 \\
13 \\
14 \\
\hline
\end{gathered}
\] &  & -
-
-
- &  & -
-
-
- & - &  & -
-
- &  & - & - & 5
11
5
4 & -
-
- & 1 & \({ }^{1,16}\) \\
\hline Logic " 0 " Threshold Voltage & \(\mathrm{V}_{\text {OLA }}\) & \[
\begin{gathered}
2 \\
3 \\
13 \\
14
\end{gathered}
\] & -
-
-
- &  & -
-
-
- & -
-
-
- &  & -
-
-
- &  &  & - & -
-
- & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & 5
11
5
4 & 1 & \({ }_{7}^{1,16}\) \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Switching Times ( \(50 \Omega\) Load) Propagation Delay \\
Rise Time ( \(20 \%\) to \(80 \%\) ) Fall Time ( \(20 \%\) to \(80 \%\) )
\end{tabular}} & \multirow[b]{5}{*}{\[
\begin{gathered}
t_{7+15+} \\
t_{4+14+} \\
t_{15} \\
t_{15-}
\end{gathered}
\]} & & & & & & & & & & +1.11 V & & Pulse In & Pulse Out & -3.2 V & +2.0 V \\
\hline & & 15 & 1.3 & 6.8 & 1.5 & 5.0 & 6.5 & 1.5 & 7.1 & & & & 7 & 15 & & \\
\hline & & 14 & 1.3 & 6.8 & 1.5 & 5.0 & 6.5 & 1.5 & 7.1 & , & - & - & & 14 & | & 1. \\
\hline & & 15 & 1.1 & 4.2 & 1.1 & 2.0 & 3.9 & 1.1 & 4.4 & 1 & - & - & 7 & 15 & 1 & 1 \\
\hline & & 15 & 1.1 & 4.2 & 1.1 & 2.0 & 3.9 & 1.1 & 4.4 & \(\nabla\) & -- & - & 7 & 15 & \(\nabla\) & \\
\hline
\end{tabular}

\footnotetext{
Individually test each input, apply \(V_{\text {ILmin }}\) to pin under test
}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 voits. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

*Individually test each input, apply \(V_{I L \min }\) to pin under test.

\section*{MC10163 APPLICATIONS INFORMATION}

The MC10163 is a building block for generating the modified Hamming single-error-correction, double-errordetection (SEC-DED) code used in the IBM 370/145 memory. While the MC10163 can also be used for generating other patterns, it is optimized for generating the pattern shown in the H matrix of Figure 1.

When writing into a memory, the MC10163 is used to generate the eight check bits (C0-C32, CT) which are stored with the 65 data bits ( \(B 0-B 63\) ). These check bits are generated by taking the parity of all data bits marked with an \(X\) in the appropriate row of the H matrix. (CO, C 1 , C32, CT, are even parity; C2, C4, C8, C17, are odd parity.) To generate these check bits with the building blocks, eight MC10163s and eight MC10160 parity checkers are used. One MC10163 is connected to each byte of data and the outputs of these building blocks are connected to the eight MC10160 parity checkers, one for each check bit. Figure 2 shows which connections are required (i.e., C 0 is the even parity of output \(\mathrm{PO}_{\mathrm{A}}\) of the MC10163 on the "zero" byte of data, output \(\mathrm{PO}_{\mathrm{B}}\) of the "zero" byte, \({ }^{P 0} A\) of the "one" byte,,\(- ~ P 0_{B}\) of the "three" byte and data bit 32.)

During the memory read operation, the fetched check bits previously generated (as described) are exclusiveORed with newly generated C0-C32 to generate syndrome bits S0-S32. Syndrome ST is a special case where ST is the even parity of all eight fetched check bits and all 64 fetched data bits. For determining the type and location of an error:
1. If all syndromes (S0-S32 and ST) are false, there is no error.
2. If ST is true and SO-S32 are false, the CT is in error.
3. If ST is false and one or more of \(\mathrm{S} 0-\mathrm{S} 32\) is true, an uncorrectable error has occurred.
4. If ST is true and one or more of S0-S32 is true, simply add the S1-S32 bits to get the binary location of the error ( S 1 has weight, 1, S2 weight 2, S4 weight 4, etc.)
Data bits B0 and B32 are special cases of this location technique: B0 is in error if ST, S0, and S32 are true; B32 is in error if \(\mathrm{ST}, \mathrm{S} 0, \mathrm{~S} 1\), and S 32 are true.

FIGURE 1 - 370/145 PATTERN

FIGURE 2 - 370/145 PATTERN GENERATION


\section*{MC10193 APPLICATIONS INFORMATION}

The MC10193 is a building block for generating modified Hamming SEC-DED codes. It can be used for any length data word and for a variety of codes. The MC10193 is optimized for codes organized on a byte repetitive basis and has the advantage of automatically supplying whole byte parity (P5 output). While it is possible to use a number of criteria for choosing a pattern, the pattern of Figure 3 was chosen on the basis of speed and ease of error location decode. As can be seen in the H matrix of Figure 3 , the pattern is repetitive by byte with the various rows generated by only five combinations of bit parities within the bytes. For the 64 bit data word in the example of Figure 3, the eight check bits (B64 to B71) are generated by the odd parity of all data bits indicated by an -X in the appropriate row. The syndromes S1 to S8 are generated by including the fetched check bits in the same generator that originally generated the check bits.
The pattern of Figure 3 is easily generated by using eight MC10193 devices, one for each data byte and eight MC10160 parity checkers, one for each syndrome/check bit. The connections of building blocks and parity checkers are shown in tabular form in Figure 4 and in schematic form in Figure 6.

Once the syndrome bits ( \(\mathbf{S 1}\) to S 8 ) have been formed from fetched data ( B 0 to B 63 ) and fetched check bits ( B 64 to B71), the determination of type and location of error is simply done:
1. If all syndromes are false, there is no error.
2. If one syndrome is true, the corresponding check bit is in error.
3. If more than one syndrome is true, and the parity of all syndromes is even, a multiple (uncorrectable) error has occurred.
4. If more than one syndrome is true, and the parity of all syndromes is odd, a single error has occurred and is easily located by the circuit of Figure 5.
Figure 5 gives the error location circuit for the example pattern. The outputs EB0 to EB7 are a one-of-eight-high code giving the byte in error. Outputs ECO to EC3 give the binary location of the bit in error within the located byte. Since this location process can occur simultaneously with the determination of error type described, the entire error correction sequence (using a toggling fetched data latch) takes less than 20 ns . This is because an error occurrence detector is a simple ORing of S1 to S8. The error locator has simultaneously located the error which is then corrected as though the error was a single (and therefore correctable) error. The parity of syndromes then determines if the error was indeed single, and interrupts the CPU if the error was an uncorrectable (multiple) error. Since uncorrectable data is unusable without special handling, the CPU would be interrupted anyway; therefore this automatic correction of any error as if it were single does not create any problems. This fast error correction technique allows single error correction on a noninterrupt basis with only a 20 ns memory system access time penalty.
These techniques can, of course, be extended to large or smaller data words.

FIGURE 4 - M2 PATTERN BUILDING BLOCK
\begin{tabular}{lllllllll}
\(\mathrm{S} 1=\mathrm{P} 10\) & P 11 & P 12 & P 13 & P 54 & P 55 & P 56 & \(\mathrm{~B}(64)\) \\
\(\mathrm{S} 2=\) & P 20 & P 21 & P 22 & P 23 & P 54 & P 55 & P 57 & \(\mathrm{~B}(65)\) \\
\(\mathrm{S} 3=\) & P 30 & P 31 & P 32 & P 33 & P 54 & P 56 & P 57 & \(\mathrm{~B}(66)\) \\
\(\mathrm{S} 4=\) & P 40 & P 41 & P 42 & P 43 & P 55 & P 56 & P 57 & \(\mathrm{~B}(67)\) \\
\(\mathrm{S}=\mathrm{P} 14\) & P 15 & P 16 & P 17 & P 50 & P 51 & P 52 & \(\mathrm{~B}(68)\) \\
\(\mathrm{S} 6=\) & P 24 & P 25 & P 26 & P 27 & P 50 & P 51 & P 53 & \(\mathrm{~B}(69)\) \\
\(\mathrm{S} 7=\) & P 34 & P 35 & P 36 & P 37 & P 50 & P 52 & P 53 & \(\mathrm{~B}(70)\) \\
\(\mathrm{S} 8=\) & P 44 & P 45 & P 46 & P 47 & P 51 & P 52 & P 53 & \(\mathrm{~B}(71)\)
\end{tabular}

Where for \(P_{N M}: N=\) MC10193 Output \(\mathrm{M}=\) Byte Number

FIGURE 5 - M2 PATTERN CORRECTION MATRIX


FIGURE 6 - SYNDROME AND CHECK BIT GENERATOR, M2 PATTERN


\section*{8-LINE MULTIPLEXER}

The MC10164 is a high speed, low power eight-channel data selector which routes data present at one-of-eight inputs to the output. The data is routed according to the three bit code present on the address inputs. An enable input is provided for easy bit expansion.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =310 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =3.0 \mathrm{~ns} \text { typ (Data to Output) } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ ( } 20 \%-80 \% \text { ) }
\end{aligned}
\]


\section*{MECL LOK series}

8-LINE MULTIPLEXER

PIN ASSIGNMENT


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of \(25^{\circ} \mathrm{C}\), while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \multirow[t]{3}{*}{\[
\begin{aligned}
& +25^{\circ} \mathrm{C} \\
& +85^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\]} & & & & \multicolumn{2}{|l|}{} & \multirow[b]{6}{*}{\[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{cc}}\right) \\
\mathrm{Gnd}
\end{gathered}
\]} \\
\hline & & & & & & & & & & & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{\begin{tabular}{l}
Pin \\
Under \\
Test
\end{tabular}} & \multicolumn{8}{|r|}{MC10164 Test Limits} & \multicolumn{5}{|l|}{\multirow[b]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW}} & \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(V_{1 H}\) max & \(V_{1 L}\) min & \(V_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(V_{\text {EE }}\) & \\
\hline Power Supply Drain Current & 'E & 8 & - & 83 & - & 60 & 75 & - & 83 & mAdc & - & - & - & - & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{Input Current} & \(l_{\text {in }} \mathrm{H}\) & 2 & - & 425 & - & - & 265 & - & 265 & \(\mu \mathrm{Adc}\) & 4 & - & - & - & 8 & 1,16 \\
\hline & \(\mathrm{t}_{\text {in } L}\) & 4 & 0.5 & - & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & 4 & - & - & 8 & 1,16 \\
\hline \begin{tabular}{l}
Logic "1" \\
Output Voltage
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & 15 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 4,9 & - & - & - & 8 & 1,16 \\
\hline Logic " 0 " Output Voltage & \(\mathrm{v}_{\mathrm{OL}}\) & 15 & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 & -1.615 & Vdc & 9 & - & - & - & 8 & 1,16 \\
\hline \begin{tabular}{l}
Logic " 1 " \\
Threshold Voltage
\end{tabular} & V \({ }_{\text {OHA }}\) & 15 & -1.080 & - & -0.980 & - & - & -0.910 & - & Vdc & 4,9 & - & - & 2 & 8 & 1,16 \\
\hline \begin{tabular}{l}
Logic "0" \\
Threshold Voltage
\end{tabular} & VOLA & 15 & - & -1.655 & - & - & -1.630 & - & -1.595 & Vdc & 9 & - & - & 2 & 8 & 1,16 \\
\hline \multirow[t]{7}{*}{Switching Times ( \(50 \Omega\) Load) Propagation Delay} & & & & & & & & & & & +1.11 V & & Pulse In & Pulse Out & -3.2 V & +2.0 V \\
\hline & \({ }^{\text {t }}\) + \({ }^{\text {15 }}\) + & 15 & 1.5 & 4.7 & 1.5 & 3.0 & 4.5 & 1.6 & \multirow[t]{2}{*}{4.8} & \multirow[t]{8}{*}{} & & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{4} & & & \\
\hline & t4-15- & 15 & 1.5 & 4.7 & 1.5 & 3.0 & 4.5 & 1.6 & & & 9 & & & \[
15
\] & & 1,16 \\
\hline & t7+15+ & 15 & 1.9 & 6.3 & 2.0 & 4.0 & 6.0 & 2.2 & 6.5 & & 5 & - & 7 & & & \\
\hline & \({ }_{\text {t7-15- }}\) & 15 & 1.9 & 6.3 & 2.0 & 4.0 & 6.0 & 2.2 & 6.5 & & 5 & - & 7 & & - & , \\
\hline & t2+15- & 15 & 0.9 & 3.3 & 1.0 & 2.0 & 2.9 & 1.0 & 3.1 & & 7.5 & - & 2 & & & , \\
\hline & t2-15+ & 15 & & 1 & 1.0 & 2 & 2.9 & 1.0 & 3.1 & & 7.5 & - & 2 & & & \\
\hline Rise Time (20\% to 80\%) & \(\mathrm{t}^{+}\) & 15 & 1 & 1 & 1.1 &  & 3.3 & 1.2 & 3.6 & & 9 & & 4 & , & 1 & \\
\hline Fall Time (20\% to 80\%) & t- & 15 & \(\gamma\) & \(\nabla\) & 1.1 & \(\nabla\) & 3.3 & 1.2 & 3.6 & & 9 & - & 4 & \(\dagger\) & \(\dagger\) & \(\dagger\) \\
\hline
\end{tabular}

\section*{APPLICATION INFORMATION}

The MC10164 can be used wherever data multiplexing or parallel to serial conversion is desirable. Full parallel gating permits equal delays through any data path. The output of the MC10164 incorporates a buffer gate with
eight data inputs and an enable. A high level on the enable forces the output low. The MC10164 can be connected directly to a data bus, due to its open emitter output and output enable.

Figure one illustrates how a 1-of-64 line multiplexer can be built with eight MC10164's wire ORed at their outputs and one MC10161 to drive the enables on each multiplexer, without speed degradation over a single MC10164 being experienced.

FIGURE 1 - 1-OF-64 LINE MULTIPLEXER


\section*{8-INPUT PRIORITY ENCODER}

The MC10165 is a device designed to encode eight inputs to a binary coded output. The output code is that of the highest order input. Any input of lower priority is ignored. Each output incorporates a latch allowing synchronous operation. When the clock is low the outputs follow the inputs and latch when the clock goes high. This device is very useful for a variety of applications in checking system status in control processors, peripheral controllers, and testing systems.

The input is active when high, (e.g., the three binary outputs are low when input D0 is high). The Q 3 output is high when any input is high. This allows direct extension into another priority encoder when more than eight inputs are necessary. The MC10165 can also be used to develop binary codes from random logic inputs, for addressing ROMs, RAMs, or for multiplexing data.
\[
\begin{aligned}
P_{D} & =545 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =4.5 \mathrm{~ns} \text { typ (Data to Output) } \\
\mathbf{t r}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(2 \%-80 \%)
\end{aligned}
\]

\section*{MECL LOK series}

\section*{8-INPUT PRIORITY ENCODER MC10165}


\section*{PIN ASSIGNMENT}


\section*{LOGIC DIAGRAM}


Numbers at ends of terminals denote pin numbers for \(L\) and \(P\) packages.
Numbers in parenthesis denote pin numbers for \(F\) package.

Each MECL. 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of \(25^{\circ} \mathrm{C}\), while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline in an ambient temperatur & f \(25^{\circ} \mathrm{C}\) & while & e ci & is & a tes & ck & & & & & & TEST & OLTAGE V & LUES & & \\
\hline mounted on a printed circu & board & d tran & sverse & ir flow & great & han & & & & & & & (Volts) & & & \\
\hline linear fpm is maintained. to \(\mathbf{- 2 . 0}\) volts. Test proced & s are & wn & or on & ne i & it, or & & & & Temp & Test erature & \(\mathrm{V}_{1 \mathrm{H} \text { max }}\) & \(V_{1 L}\) min & \(\mathrm{V}_{1} \mathrm{HA}_{\text {min }}\) & \(V_{\text {ILA }}\) max & \(V_{\text {EE }}\) & \\
\hline of input conditions. Other & uts te & in & sa & man & & & & & & \(-30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 & \\
\hline & & & & & & & & & & \(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & \(+85{ }^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline & & & & & & 10165 & Test Lim & & & & TEST VO & TAGE AP & LIED TO P & NS LISTED & ELOW: & \\
\hline & & Under & & & & \(+25^{\circ} \mathrm{C}\) & & & \({ }^{\circ} \mathrm{C}\) & & & & & & & \\
\hline Characteristic & Symbol & Test & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{V}_{\text {IH max }}\) & \(V_{\text {IL min }}\) & \(\mathrm{V}_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & VEE & Gnd \\
\hline Power Supply Drain Current & \({ }_{\text {t }}\) E & 8 & - & 144 & - & 105 & 131 & - & 144 & mAdc & - & - & - & - & 8 & 1,16 \\
\hline Input Current & \(\mathrm{I}_{\text {in }} \mathrm{H}\) & \[
\begin{aligned}
& 4 \\
& 5
\end{aligned}
\] & - & \[
\begin{aligned}
& 390 \\
& 350
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 245 \\
& 220
\end{aligned}
\] & - & \[
\begin{aligned}
& 245 \\
& 220
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{Adc}\) \\
\(\mu\) Adc
\end{tabular} & \begin{tabular}{l}
4 \\
5 (1)
\end{tabular} & - & - & - & \[
\begin{aligned}
& \hline 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline & 1 inL & \[
\begin{aligned}
& 4 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & - & \[
\begin{aligned}
& \hline 0.5 \\
& 0.5
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \hline 0.3 \\
& 0.3
\end{aligned}
\] & - & \(\mu \mathrm{Adc}\) \(\mu \mathrm{Adc}\) & - & \[
\begin{aligned}
& \hline 4 \\
& 5(1)
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \hline 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Logic "1" } \\
& \text { Output Voltage }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{gathered}
2 \\
3 \\
14 \\
15
\end{gathered}
\] & \[
\begin{array}{|l}
\hline-1.060 \\
-1.060 \\
-1.060 \\
-1.060 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.890 \\
-0.890 \\
-0.890 \\
-0.890
\end{array}
\] & -0.960
-0.960
-0.960
-0.960 & - & \[
\begin{aligned}
& -0.810 \\
& -0.810 \\
& -0.810 \\
& -0.810
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-0.890 \\
-0.890 \\
-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-0.700 \\
-0.700 \\
-0.700 \\
-0.700
\end{array}
\] & \[
1
\] & \[
1
\] & 1 & - & - & 1 & \({ }_{1}^{1,16}\) \\
\hline Logic "0" Output Voltage & \(\mathrm{V}_{\text {OL }}\) & \[
\begin{aligned}
& \hline 2 \\
& 3 \\
& 14 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -1.890 \\
& -1.890 \\
& -1.890 \\
& -1.890 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.675 \\
-1.675 \\
-1.675 \\
-1.675 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -1.850 \\
& -1.850 \\
& -1.850 \\
& -1.850 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& \hline-1.650 \\
& -1.650 \\
& -1.650 \\
& -1.650 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l}
\hline-1.825 \\
-1.825 \\
-1.825 \\
-1.825 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline-1.615 \\
& -1.615 \\
& -1.615 \\
& -1.615 \\
& \hline
\end{aligned}
\] &  & - & 1 & - & - & 1 & \({ }_{1}^{1,16}\) \\
\hline Logic "1"
Threshold Voltage & \(\mathrm{V}_{\text {OHA }}\) & \[
\begin{gathered}
2 \\
3 \\
14 \\
15
\end{gathered}
\] & \[
\begin{aligned}
& \hline-1.080 \\
& -1.080 \\
& -1.080 \\
& -1.080 \\
& \hline
\end{aligned}
\] & - & -0.980
-0.980
-0.980
-0.980 & - & - & \[
\begin{array}{|l|}
\hline-0.910 \\
-0.910 \\
-0.910 \\
-0.910 \\
\hline
\end{array}
\] & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} &  & - & 1 & \(1^{6}\) & - & 1 & \({ }_{1}^{1,16}\) \\
\hline \begin{tabular}{l}
Logic " 0 " \\
Threshold Voltage
\end{tabular} & \(\mathrm{v}_{\text {OLA }}\) & \[
\begin{gathered}
2 \\
3 \\
14 \\
15
\end{gathered}
\] & \begin{tabular}{l} 
- \\
- \\
- \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline-1.655 \\
& -1.655 \\
& -1.655 \\
& -1.655
\end{aligned}
\] & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & - & \[
\begin{aligned}
& \hline-1.630 \\
& -1.630 \\
& -1.630 \\
& -1.630 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& -1.595 \\
& -1.595 \\
& -1.595 \\
& -1.595
\end{aligned}
\] &  & -
-
- & 1 & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & \[
1
\] & 1 & \({ }_{1}^{1,16}\) \\
\hline Switching Times ( 50 -ohm Load) & & & & & & & & & & Unit & +1.11 V & +0.31 V & Pulse In & Pulse Out & -3.2 V & +2.0 V \\
\hline Data Input & \[
\begin{gathered}
t_{5+14+} \\
t_{5-14} \\
t_{7} 7+3+ \\
t_{1+1+15+} \\
t_{13+2+}
\end{gathered}
\] & \[
\begin{gathered}
14 \\
14 \\
3 \\
15 \\
2
\end{gathered}
\] & \[
{ }_{\nabla}^{2.0}
\] & \[
\overbrace{7}^{7.0}
\] & \[
\left.\right|_{1} ^{3.0}
\] & -
-
- & \[
\|^{7.0}
\] & \[
{ }^{2.0}
\] & \[
\left.\right|^{8.0}
\] & ns & \begin{tabular}{l}
- \\
- \\
- \\
- \\
\hline
\end{tabular} & \[
\left.\right|_{1} ^{4}
\] & \[
\begin{gathered}
5 \\
5 \\
7 \\
71 \\
13
\end{gathered}
\] & \[
\begin{gathered}
14 \\
14 \\
3 \\
15 \\
2
\end{gathered}
\] & \[
8
\] & \[
{ }^{1,16}
\] \\
\hline Clock Input & \[
\begin{gathered}
t_{4-3+} \\
t_{4-3-} \\
t_{4-14+} \\
t_{4-14-1}
\end{gathered}
\] & \[
\begin{aligned}
& 3 \text { 3 (2) } \\
& 3 \\
& 14(2) \\
& 14(3)
\end{aligned}
\] & \[
1
\] & \[
\downarrow^{4.5}
\] & \[
\stackrel{2.0}{\square}
\] & - &  & \[
1.5
\] & \[
\int^{4.5}
\] & & 7
7
7 & - & \[
1
\] & \[
\begin{gathered}
3 \\
3 \\
14 \\
14
\end{gathered}
\] & & \\
\hline Setup Time & \(\mathrm{t}_{\text {setup }} \mathrm{H}\) \(\mathrm{t}_{\text {setup }} \mathrm{L}\) & \[
1
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & - & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & 3.4
3.0 & - & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & - & & - & - & \[
4,7
\] & \[
3
\] & & \\
\hline Hold Time & thold H thold L & & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& -2.3 \\
& -2.7
\end{aligned}
\] & - & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & - & & - & - & \[
\downarrow
\] & & & \\
\hline \begin{tabular}{l}
Rise Time (20\% to \(\mathbf{8 0 \%}\) ) \\
Fall Time ( \(20 \%\) to \(80 \%\) )
\end{tabular} & \[
\begin{aligned}
& \mathrm{t}_{3+} \\
& \mathrm{t}_{3}
\end{aligned}
\] & 1 & \[
\begin{aligned}
& 1.1 \\
& 1.1
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 1.1
\end{aligned}
\] & 2.0
2.0 & \[
\begin{aligned}
& 3.3 \\
& 3.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 1.1
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 3.5
\end{aligned}
\] & \(\checkmark\) & - & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 7
\end{aligned}
\] & \[
1
\] & \(\dagger\) & \(\dagger\) \\
\hline
\end{tabular}

\footnotetext{
(1) The same limit applies for all \(D\) type input pins. To test input currents for other \(D\) inputs,
individually apply proper voltage to pin under test.
(2) Output latched to low state prior to test.
(3) Output latched to high state prior to test.
}

To preserve reliable perfor mance, the MC10165P (plastic-packaged device only)
is to be operated in ambient temperatures above \(70^{\circ} \mathrm{C}\) only when 500 Ifpm blown air or equivalent heat sinking is provided.

\section*{APPLICATION INFORMATION}

A typical application of the MC10165 is the decoding of system status on a priority basis. A 64 line priority encoder is shown in the figure below. System status lines are con-
nected to this encoder such that, when a given condition exists, the respective input will be at a logic high level. This scheme will select the one of 64 different system conditions, as represented at the encoder inputs, which has priority in determining the next system operation to be performed. The binary code showing the address of the highest priority input present will appear at the encoder outputs to control other system logic functions.

\section*{64-LINE PRIORITY ENCODER}


\section*{5-BIT MAGNITUDE COMPARATOR}

The MC10166 is a high speed expandable 5-bit comparator for comparing the magnitude of two binary words. Two outputs are provided: \(\mathrm{A}<\mathrm{B}\) and \(\mathrm{A}>\mathrm{B}\). \(\mathrm{A}=\mathrm{B}\) can be obtained by NORing the two outputs with an additional gate. A high level on the enable function forces both outputs low. Multiple MC10166s may be used for larger word comparisons.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}}= & 440 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}}= & \text { Data to output } 6.0 \mathrm{~ns} \text { typ } \\
& \overline{\mathrm{E}} \text { to output } 2.5 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}= & 2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{LOGIC DIAGRAM}


TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Inputs } & \multicolumn{2}{c|}{ Outputs } \\
\hline\(\overline{\text { E }}\) & A & B & A \(<\) B & A \(>\) B \\
\hline H & X & X & L & L \\
\hline L & \multicolumn{2}{|c|}{ Word A \(=\) Word B } & L & L \\
\hline L & \multicolumn{2}{|c|}{ Word A \(>\) Word B } & L & H \\
\hline L & \multicolumn{2}{|c|}{ Word A \(<\) Word B } & H & L \\
\hline
\end{tabular}

\section*{MECL WOK series}

5-BIT MAGNITUDE COMPARATOR

P SUFFIX
PLASTIC PACKAGE
CASE 648
L. SUFFIX CERAMIC PACKAGE CASE 620


PIN ASSIGNMENT


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to \(\mathbf{- 2 . 0}\) volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs are tested in a similar manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{兂} & & & & & & & & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
@ Test \\
Temperature
\end{tabular}}} & \multicolumn{5}{|c|}{Volts} & \multirow{8}{*}{(VCc)
Gnd} \\
\hline & & & & & & & & & & & \(\mathrm{V}_{\text {IHmax }}\) & \(\mathrm{V}_{\text {IL min }}\) & \(V_{\text {IHAmin }}\) & VILAmax & \(\mathrm{V}_{\mathrm{EE}}\) & \\
\hline & & & & & & & & & & \(-30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 & \\
\hline & & & & & & & & & & \(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & \(+85^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10166 Test Limits} & \multicolumn{5}{|l|}{\multirow[b]{2}{*}{VOLTAGE APPLIED TO PINS LISTED BELOW:}} & \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(\mathrm{V}_{\text {IHmax }}\) & \(\mathrm{V}_{\text {IL min }}\) & ViHamin & \(V_{\text {ILAmax }}\) & VEE & \\
\hline Power Supply Drain Current & IE & 8 & - & 117 & - & 85 & 106 & - & 117 & mAdc & - & 4,7,10,11,14 & - & - & 8 & 1.16 \\
\hline \multirow[t]{2}{*}{Input Current} & \(\mathrm{l}_{\mathrm{inH}}\) & 5 & - & 350 & - & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & 5 & - & - & - & 8 & 1,16 \\
\hline & 1 inL & 5 & 0.5 & - & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & 5 & - & - & 8 & 1,16 \\
\hline Logic "1" Output Voltage & \(\mathrm{V}^{\mathrm{OH}}\) & \[
\begin{array}{r}
2 \\
-\quad 3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-1.060 \\
-1.060 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-0.960 \\
-0.960 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& -0.810 \\
& -0.810
\end{aligned}
\] & \[
\begin{aligned}
& \hline-0.890 \\
& -0.890 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -0.700 \\
& -0.700 \\
& \hline
\end{aligned}
\] & Vdc Vdc & \[
\begin{aligned}
& 5 \\
& 4 \\
& \hline
\end{aligned}
\] & - & - & - & 8 & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline Logic " 0 " Output Voltage & \(\mathrm{v}_{\mathrm{OL}}\) & \[
\begin{aligned}
& \hline 2 \\
& 3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-1.890 \\
-1.890 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline-1.675 \\
& -1.675 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -1.850 \\
& -1.850 \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{r}
-1.650 \\
-1.650 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\hline-1.825 \\
-1.825 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline-1.615 \\
& -1.615 \\
& \hline
\end{aligned}
\] & Vdc Vdc & \[
\begin{aligned}
& 5,15 \\
& 4,15 \\
& \hline
\end{aligned}
\] & - & - & - & \[
\begin{aligned}
& \hline 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline Logic "1" Threshold Voltage & VOHA & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{array}{r}
-1.080 \\
-1.080 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& \hline-0.980 \\
& -0.980
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \hline-0.910 \\
& -0.910 \\
& \hline
\end{aligned}
\] & - & Vdc Vdc & 5
4 & - & - & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline Logic "0" Threshold Voltage & \(v_{\text {OLA }}\) & \[
\begin{aligned}
& \hline 2 \\
& 3 \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{r}
-1.655 \\
-1.655 \\
\hline
\end{array}
\] & - & - & \[
\begin{aligned}
& -1.630 \\
& -1.630 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& \hline-1.595 \\
& -1.595 \\
& \hline
\end{aligned}
\] & Vdc Vdc & \[
\begin{aligned}
& 5 \\
& 4
\end{aligned}
\] & - & \[
\begin{aligned}
& 15 \\
& 15 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& \hline 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline \multirow[t]{6}{*}{Switching Times ( \(50 \Omega\) Load) Propagation Delay Data to Output} & \multirow[b]{11}{*}{\[
\begin{gathered}
\mathrm{t}_{\mathrm{t}+2+}+ \\
\mathrm{t} 9-2- \\
\mathrm{t} 11-2+ \\
\mathrm{t}_{11+2-} \\
\mathrm{t} 7+3+ \\
\mathrm{t} 7-3- \\
\mathrm{t}_{15-3+} \\
\mathrm{t}_{15+3-} \\
\mathrm{t}_{2+} \\
\mathrm{t}_{2-}- \\
\hline
\end{gathered}
\]} & \multirow[b]{11}{*}{2
2
2
2
3
3
3
3
2
2} & \multirow[b]{11}{*}{} & \multirow[b]{11}{*}{\[
\begin{aligned}
& 8.0 \\
& 1 \\
& \hline \\
& \hline 3.8 \\
& 3.8 \\
& 3.6 \\
& 3.6
\end{aligned}
\]} & \multirow[b]{11}{*}{\[
{ }_{1}^{1.0}
\]} & \multirow[b]{11}{*}{\[
\begin{array}{|}
1 \\
\hline \\
2.5 \\
2.5 \\
2.0 \\
2.0
\end{array}
\]} & \multirow[b]{11}{*}{\[
\left.\right|_{7} ^{7.6}
\]} & \multirow[b]{11}{*}{\[
\left.\right|_{1.0} ^{1.0}
\]} & \multirow[b]{11}{*}{\[
\begin{gathered}
8.4 \\
4.0 \\
4.0 \\
3.8 \\
3.8
\end{gathered}
\]} & \multirow[b]{11}{*}{} & +1.11 V & & Puise In & Pulse Out & -3.2 V & +2.0 V \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & - & - & 9 & 2 & & 1,6 \\
\hline & & & & & & & & & & & 12 & - & 11 & 2 & & \\
\hline & & & & & & & & & & & 12 & - & 11 & 2 & & \\
\hline & & & & & & & & & & & 6 & - & 7 & 3 & & \\
\hline & & & & & & & & & & & 6 & - & 7 & 3 & & \\
\hline Enable to Output & & & & & & & & & & & 10 & - & 15 & 3 & & \\
\hline & & & & & & & & & & & 10 & - & 15 & 3 & & \\
\hline Rise Time ( \(20 \%\) to 80\%) & & & & & & & & & & & - & - & 9 & 2 & 1 & \\
\hline Fall Time ( \(20 \%\) to \(80 \%\) ) & & & & & & & & & & & - & - & 9 & 2 & \(\gamma\) & \(\gamma\) \\
\hline
\end{tabular}

\section*{APPLICATION INFORMATION}

FIGURE 1 - 9-BIT MAGNITUDE COMPARATOR


\section*{QUAD LATCH}

The MC10168 is a Quad Latch with common clocking to all four latches. Separate output enabling gates are provided for each latch, allowing direct wiring to a bus. When the clock is high, outputs will follow the D inputs. Information is latched on the negative-going transition of the clock.
\[
\begin{aligned}
P_{D}= & 310 \mathrm{~mW} \text { typ } / \mathrm{pkg}(\mathrm{No} \text { Load) }) \\
\mathrm{t}_{\mathrm{pd}}= & \overline{\mathrm{G}} \text { to } Q=2 \mathrm{~ns} \text { typ } \\
& \mathrm{D} \text { to } Q=3 \mathrm{~ns} \text { typ } \\
& C \text { to } Q=4 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}= & 2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{LOGIC DIAGRAM}
\(V_{C C 1}=\operatorname{Pin} 1\)
\(V_{C C 2}=\operatorname{Pin} 16\)
\(V_{E E}=\operatorname{Pin} 8\)
\begin{tabular}{|c|c|c|c|}
\hline \(\bar{G}\) & \(C\) & \(D\) & \(\mathrm{a}_{\mathrm{n}+1}\) \\
\hline H & \(\phi\) & \(\phi\) & L \\
\hline L & L & \(\phi\) & \(\mathrm{a}_{\mathrm{n}}\) \\
\hline L & H & L & L \\
\hline L & H & H & H \\
\hline
\end{tabular}
\(\phi=\) don't care

\section*{MECL 1OK series}

\section*{QUAD LATCH}


LSUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648


PIN ASSIGNMENT


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. The other inputs and outputs are tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & & & & & & & & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{@ Test Temperature}} & \multicolumn{5}{|c|}{(Volts)} & \multirow[b]{7}{*}{( \(\mathrm{V}_{\mathrm{cc}}\) )} \\
\hline & & & & & & & & & & & \(V_{1 H_{\text {max }}}\) & \(V_{1 L \text { min }}\) & \(V_{1 H A m i n}\) & \(V_{\text {ILAmax }}\) & \(\mathrm{V}_{\mathrm{EE}}\) & \\
\hline & & & & & & & & & & \(-30^{\circ} \mathrm{C}\) & -1.890 & -1.890 & -1.205 & -1.500 & -5.2 & \\
\hline & & & & & & & & & & \(+25^{\circ} \mathrm{C}\) & -1.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & \(+85^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10168 Test Limits} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW:}} & \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{V}_{1 \mathrm{H}_{\text {max }}}\) & \(V_{\text {ILmin }}\) & \(V_{\text {IHAmin }}\) & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{EE}}\) & \\
\hline Power Supply Drain Current & \({ }^{\text {E }}\) E & 8 & - & 82 & - & 60 & 75 & - & 82 & mAdc & - & - & - & - & 8 & 1.16 \\
\hline \multirow[t]{4}{*}{Input Current} & \multirow[t]{3}{*}{\(\mathrm{I}_{\text {inH }}\)} & 3,7,9,14 & - & 390 & - & - & 245 & - & 245 & \(\mu \mathrm{Adc}\) & * & -- & - & - & 8 & 1,16 \\
\hline & & 4,5,10,12 & - & 425 & - & - & 265 & - & 265 & & * & - & - & - & & \\
\hline & & 13 & - & 460 & - & - & 290 & - & 290 & & 13 & - & -- & - & & \\
\hline & \multirow[t]{2}{*}{\[
\frac{l_{\text {inL }}}{V_{\mathrm{OH}}}
\]} & * & 0.5 & - & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & -- & * & - & - & 8 & 1.16 \\
\hline Logic "1" Output Voltage & & \[
\begin{aligned}
& 2 \\
& 6
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.060 \\
-1.060 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -0.890 \\
& -0.890
\end{aligned}
\] & \[
\begin{aligned}
& -0.960 \\
& -0.960
\end{aligned}
\] & - & \[
\begin{aligned}
& -0.810 \\
& -0.810
\end{aligned}
\] & \[
\begin{aligned}
& -0.890 \\
& -0.890
\end{aligned}
\] & \[
\begin{aligned}
& \hline-0.700 \\
& -0.700
\end{aligned}
\] & Vdc \(\vee \mathrm{dc}\) & \[
\begin{aligned}
& 3,13 \\
& 7.13
\end{aligned}
\] & - & - & - & \[
\begin{aligned}
& \hline 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline Logic "0" Output Voltage & \(\mathrm{v}_{\text {OL }}\) & \[
\begin{aligned}
& \hline 2 \\
& 6
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.890 \\
-1.890 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -1.675 \\
& -1.675 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -1.850 \\
& -1.850 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& \hline-1.650 \\
& -1.650 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.825 \\
& -1.825
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.615 \\
& -1.615 \\
& \hline
\end{aligned}
\] & Vdc Vdc & \[
\begin{aligned}
& 3.5 \\
& 4.7
\end{aligned}
\] & \(\checkmark\) & - & - & \[
\begin{aligned}
& 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline Logic "1" Threshold Voltage & VOHA & \[
\begin{aligned}
& 2 \\
& 6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.080 \\
-1.080 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& -0.980 \\
& -0.980 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{array}{r}
-0.910 \\
-0.910 \\
\hline
\end{array}
\] & - & Vdc Vdc & \[
\begin{aligned}
& 13 \\
& 13
\end{aligned}
\] & - & \[
\begin{aligned}
& 3 \\
& 7 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1,16 \\
1,16 \\
\hline
\end{array}
\] \\
\hline Logic "0" Threshold Voltage & \(v_{\text {OLA }}\) & \[
\begin{aligned}
& 2 \\
& 6 \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{r}
-1.655 \\
-1.655 \\
\hline
\end{array}
\] & - & - & \[
\begin{array}{r}
-1.630 \\
-1.630 \\
\hline
\end{array}
\] & - & \[
\begin{array}{r}
-1.595 \\
-1.595 \\
\hline
\end{array}
\] & Vdc Vdc & \[
\begin{aligned}
& 13 \\
& 13 \\
& \hline
\end{aligned}
\] & - & - & 3
7 & 8 & \[
\begin{array}{r}
1,16 \\
1,16 \\
\hline
\end{array}
\] \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Switching Times ( \(50 \Omega 2\) Load) \\
Propagation Delay: Data Gate Clock \\
Setup Time \\
Hold Time \\
Rise Time ( \(20 \%\) to \(80 \%\) ) \\
Fall Time (20\% to 80\%)
\end{tabular}} & \multirow[b]{8}{*}{\[
\begin{gathered}
{ }^{t} 3+2+ \\
t^{t} 5-2+ \\
t^{2} 13+2+ \\
t^{2}+13+ \\
t^{t} 13+3+ \\
t_{2+}+ \\
t^{2}+
\end{gathered}
\]} & & & & & & & & & & +1.11 V & & Puise In & Pulse Out & -3.2V & +2.0 V \\
\hline & & 2 & 1.0 & 5.6 & 1.0 & 3.0 & 5.4 & 1.1 & 5.9 & ns & & & & & & \\
\hline & & 2 & & 3.2 & & 2.0 & 3.1 & 1.0 & 3.4 & & - & - & 5 & 2 & & , \\
\hline & & 2 & V & 5.8 & & 4.0 & 5.6 & 1.2 & 6.2 & & - & - & 13 & 2 & & \\
\hline & & 2 & 2.5 & - & 2.5 & - & - & 2.5 & - & & - & - & & & & \\
\hline & & 2 & 1.0 & - & 1.0 & - & - & 1.0 & - & & - & - & & & & \\
\hline & & 2 & & 3.6 & 1.1 & 2.0 & 3.5 & 1.1 & 3.8 & & - & - & 3 & 2 & , & \\
\hline & & 2 & \(\gamma\) & 3.6 & 1.1 & 2.0 & 3.5 & 1.1 & 3.8 & \(\nabla\) & - & - & 3 & 2 & \(\dagger\) & \(\dagger\) \\
\hline
\end{tabular}
*Individually test each input applying \(V_{I H}\) or \(V_{I L}\) to input under test

\section*{9 + 2-BIT PARITY GENERATOR-CHECKER}

The MC10170 is a 11-bit parity circuit, which is segmented into 9 data bits and 2 control bits.

Output A generates odd parity on 9 bits; that is, Output A goes high for an odd number of high logic levels on the bit inputs in only 2 gate delays.

The Control Inputs can be used to expand parity to larger numbers of bits with minimal delay or can be used to generate even parity. To expand parity to larger words, the MC10170 can be used with the MC10160 or other MC10170's. The MC10170 can generate both even and odd parity.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}}= & 300 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}}= & 2.5 \mathrm{~ns} \text { typ (Control Inputs to B Output) } \\
& 4.0 \mathrm{~ns} \text { typ (Data Inputs to A Output) } \\
& 6.0 \mathrm{~ns} \text { typ (Data Inputs to B Output) } \\
\mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}=}= & 2.0 \mathrm{~ns} \text { typ ( } 20 \%-80 \% \text { ) }
\end{aligned}
\]

\section*{MECL dOK series}

9 + 2-BIT PARITY GENERATOR-CHECKER


\section*{PIN ASSIGNMENT}


\section*{ELECTRICAL CHARACTERISTICS}

Each MECI 10,000 series circuit has been designed to meet the dc specifi－ cations shown in the test table，after thermal equilibrium has been estab－ lished．The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained．Outputs are terminated through a 50 －ohm resistor to -2.0 volts．Test procedures are shown for only selected inputs and outputs．Other inputs and outputs tested in the same manner．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{Mc10170 Test Limits} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW：}} & \multirow[b]{3}{*}{\[
\begin{gathered}
\left(\mathrm{V}_{\mathbf{c c}}\right) \\
\mathrm{Gnd}
\end{gathered}
\]} \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(\mathrm{V}_{1 \text { H }}\) max & \(V_{\text {ILImin }}\) & \(\mathrm{V}_{\text {IHAmin }}\) & \(V_{\text {ILAmax }}\) & VEE & \\
\hline Power Supply Drain Current & IE & 8 & －－ & 78 & － & 57 & 71 & － & 78 & mAdc & － & － & － & － & － & 1.16 \\
\hline \multirow[t]{2}{*}{Input Current} & \(\mathrm{I}_{\mathrm{inH}}\) & \[
\begin{aligned}
& \hline 3 \\
& 5
\end{aligned}
\] & － & \[
\begin{aligned}
& 350 \\
& 350
\end{aligned}
\] & - & － & \[
\begin{aligned}
& \hline 200 \\
& 220
\end{aligned}
\] & - & \[
\begin{aligned}
& 220 \\
& 220
\end{aligned}
\] & \(\mu \mathrm{Adc}\) \(\mu A d c\) & \[
\begin{aligned}
& \hline 3 \\
& 5
\end{aligned}
\] & － & & － & \[
\begin{aligned}
& \hline 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline & \(\mathrm{l}_{\text {in }}\) & 3 & 0.5 & － & 0.5 & － & － & 0.3 & － & \(\mu \mathrm{Adc}\) & － & 3 & － & － & 8 & 1，16 \\
\hline Logic＂1＂Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{gathered}
2 \\
15
\end{gathered}
\] & \[
\begin{aligned}
& \hline-1.060 \\
& -1.060 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline-0.890 \\
& -0.890 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -0.960 \\
& -0.960 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-0.810 \\
-0.810 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-0.700 \\
-0.700 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Vdc} \\
& \mathrm{Vdc}
\end{aligned}
\] & \[
\begin{gathered}
3,4,5 \\
14
\end{gathered}
\] & - & － & － & \[
\begin{aligned}
& \hline 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline Logic＂0＂Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{gathered}
2 \\
15
\end{gathered}
\] & \[
\begin{aligned}
& -1.890 \\
& -1.890
\end{aligned}
\] & \[
\begin{aligned}
& -1.675 \\
& -1.675
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.850 \\
& -1.850
\end{aligned}
\] & － & \[
\begin{aligned}
& \hline-1.650 \\
& -1.650
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.825 \\
& -1.825
\end{aligned}
\] & \[
\begin{array}{r}
\hline-1.615 \\
-1.615
\end{array}
\] & Vdc Vdc & \[
\begin{gathered}
\hline 4,5 \\
13,14
\end{gathered}
\] & － & － & & \[
\begin{aligned}
& \hline 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline Logic＂1＂Threshold Voltage & \(\mathrm{V}_{\mathrm{OHA}}\) & \[
\begin{gathered}
\hline 2 \\
15 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|l|}
\hline-1.080 \\
-1.080 \\
\hline
\end{array}
\] & － & \[
\begin{array}{|l|}
\hline-0.980 \\
-0.980 \\
\hline
\end{array}
\] & - & － & \[
\begin{aligned}
& -0.910 \\
& -0.910 \\
& \hline
\end{aligned}
\] & － & Vdc Vdc & - & \[
-
\] & \[
\begin{gathered}
\hline 5 \\
13
\end{gathered}
\] & － & \[
\begin{aligned}
& 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline Logic＂0＂Threshold Voltage & V OLA & \[
\begin{gathered}
2 \\
15 \\
\hline
\end{gathered}
\] & － & \[
\begin{aligned}
& -1.655 \\
& -1.655 \\
& \hline
\end{aligned}
\] & - & － & \[
\begin{array}{r}
-1.630 \\
-1.630 \\
\hline
\end{array}
\] & -
- & \[
\begin{aligned}
& -1.595 \\
& -1.595 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Vdc} \\
& \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & － & － & － & \[
\begin{gathered}
\hline 5 \\
13
\end{gathered}
\] & \[
\begin{aligned}
& \hline 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Switching Times（ 50 －ohm Load） Propagation Delay} & \multirow[b]{2}{*}{\[
\begin{gathered}
t_{13+15+} \\
t_{14-15-} \\
t_{3+2}- \\
t_{3-15+} \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
15 \\
15 \\
2 \\
15 \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 1.5 \\
& 1.5 \\
& 2.0 \\
& 4.0 \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{array}{r}
4.2 \\
4.2 \\
6.6 \\
9.5 \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 1.5 \\
& 1.5 \\
& 2.0 \\
& 4.0 \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& 4.0 \\
& 6.0 \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& 6.0 \\
& 8.8 \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 1.5 \\
& 1.5 \\
& 2.0 \\
& 4.0 \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 4.4 \\
& 4.4 \\
& 6.6 \\
& 9.5 \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & Pulse In & Pulse Out & －3．2 V & ＋2．0 V \\
\hline & & & & & & & & & & & & & \[
\begin{gathered}
13 \\
14 \\
3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
15 \\
15 \\
2 \\
15
\end{gathered}
\] & 1 & \(\stackrel{1,16}{1}\) \\
\hline \[
\begin{array}{|l|}
\hline \text { Rise Time } \\
\text { (20\% to } 80 \% \text { ) } \\
\hline
\end{array}
\] & \(\mathrm{t}_{2}+\) & 2 & 1.5 & 4.3 & 1.5 & 2.0 & 3.9 & 1.5 & 4.3 & ns & － & － & 3 & 2 & 8 & 1，16 \\
\hline \[
\begin{array}{|l}
\hline \text { Fall Time } \\
\text { (20\% to } 80 \% \text { ) }
\end{array}
\] & \({ }^{\text {2 }}\)－ & 2 & 1.5 & 4.3 & 1.5 & 2.0 & 3.9 & 1.5 & 4.3 & ns & － & － & 3 & 2 & 8 & 1，16 \\
\hline
\end{tabular}

\section*{MC10171}

\section*{BINARY TO 1-4-DECODER (LOW)}

The MC10171 is a binary coded 2 line to dual 4 line decoder with selected outputs low. With either \(\overline{\mathrm{E}} 0\) or \(\overline{\mathrm{E}} 1\) high, the corresponding selected 4 outputs are high. The common enable \(\overline{\mathrm{E}}\), when high, forces all outputs high.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =325 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =4.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{ENABLE INPUTS} & \multicolumn{2}{|l|}{INPUTS} & \multicolumn{8}{|c|}{OUTPUTS} \\
\hline \(\overline{\mathrm{E}}\) & E0 & \(\overline{\mathrm{E}} 1\) & A & B & 010 & 011 & 012 & 013 & Q00 & 001 & 002 & 003 \\
\hline L & L & L & L & L & L & H & H & H & L & H & H & H \\
\hline L & L & L & L & H & H & L & H & H & H & 1 & H & H \\
\hline L & L & L & H & L & H & H & L & H & H & H & L & H \\
\hline L & L & L & H & H & H & H & H & L & H & H & H & L \\
\hline L & L & H & L & L & H & H & H & H & L & H & H & H \\
\hline L & H & L & L & L & L & H & H & H & H & H & H & H \\
\hline H & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & H & H & H & H & H & H & H & H \\
\hline
\end{tabular}

\footnotetext{
\(\phi=\) Don't Care
}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifi－ cations shown in the test table，after thermal equilibrium has been estab－ lished．The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained．Outputs are terminated through a 50 －ohm resistor to -2.0 volts．Test Procedures are shown only for selected inputs and outputs．Other inputs and outputs are tested in a similar manner．


\section*{DUAL BINARY TO 1-4-DECODER (HIGH)}

The MC10172 is a binary-coded 2 line to dual 4 line decoder with selected outputs high. With either E 0 or \(\bar{E} 1\) low, the corresponding selected 4 outputs are low. The common enable \(\bar{E}\), when high, forces all outputs low.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =325 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =4.0 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathbf{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

LOGIC DIAGRAM

\[
\begin{aligned}
\mathrm{V}_{\mathrm{CC} 1} & =\operatorname{Pin} 1 \\
\mathrm{~V}_{\mathrm{CC} 2} & =\operatorname{Pin} 16 \\
\mathrm{~V}_{\mathrm{EE}} & =\operatorname{Pin} 8
\end{aligned}
\]

TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\bar{E}\) & \(\bar{E} 1\) & \(\bar{E} 0\) & A & B & Q1 0 & Q1 1 & Q1 2 & Q1 3 & Q0 0 & Q0 1 & Q0 2 & Q0 3 \\
\hline L & H & H & L & L & H & L & L & L & H & L & L & L \\
L & H & H & L & H & L & H & L & L & L & H & L & L \\
L & \(H\) & H & H & L & L & L & H & L & L & L & H & L \\
L & L & H & H & H & L & L & L & H & L & L & L & H \\
L & H & L & L & L & H & L & L & L & H & L & L & L \\
H & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & L & L & L & L & L & L & L & L \\
\hline
\end{tabular}

\footnotetext{
\(\phi=\) Don't Care
}

\section*{MECL LOK series}

DUAL
BINARY TO 1-4-DECODER (HIGH)


PIN ASSIGNMENT


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been estab lished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.


\section*{QUAD 2-INPUT MULTIPLEXER/LATCH}

The MC10173 is a quad two channel multiplexer with latch. It incorporates common clock and common data select inputs. The select input determines which data input is enabled. A high \((\mathrm{H})\) level enables data inputs D00, D10, D20, and D30 and a low (L) level enables data inputs D01, D11, D21, D31. Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =275 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.5 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]


ELECTRICAL CHARACTERISTICS
Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to \(\mathbf{- 2 . 0}\) volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& +25^{\circ} \mathrm{C} \\
& +85^{\circ} \mathrm{C}
\end{aligned}
\]}} & \multirow[t]{2}{*}{\[
\begin{gathered}
-0.810 \\
\hline-0.700
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline-1.850 \\
& \hline-1.825
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& -1.105 \\
& \hline-1.035
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\frac{-1.475}{-1.440}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline-5.2 \\
\hline-5.2
\end{gathered}
\]} & \multirow[b]{5}{*}{\[
\begin{gathered}
\left(\mathrm{V}_{\mathrm{cc}}\right) \\
\text { Gnd }
\end{gathered}
\]} \\
\hline & & & & & & & & & & & & & & & & \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10173 Test Limits} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{VOLTAGE APPLIED TO PINS LISTED BELOW:}} & \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(\mathrm{V}_{1 \mathrm{H}_{\text {max }}}\) & \(V_{\text {IL }}\) min & \(V_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(V_{\text {EE }}\) & \\
\hline Power Supply Drain Current & \({ }^{\prime} \mathrm{E}\) & 8 & - & 73 & - & -- & 66 & - & 73 & mAdc & - & -- & - & -. & 8 & 16 \\
\hline Input Current & 1 inH & \[
\begin{aligned}
& \hline 5 \\
& 6 \\
& 7 \\
& 9 \\
& \hline
\end{aligned}
\] & -
-
- & \[
\begin{array}{r}
470 \\
470 \\
400 \\
400 \\
\hline
\end{array}
\] & -
-
-
- & -
-
-
- & \[
\begin{aligned}
& 295 \\
& 295 \\
& 250 \\
& 250 \\
& \hline
\end{aligned}
\] & -
-
-
- & \[
\begin{aligned}
& 295 \\
& 295 \\
& 250 \\
& 250 \\
& \hline
\end{aligned}
\] & \(\mu \mathrm{Adc}\)
\[
\downarrow
\] & \[
\begin{aligned}
& 5 \\
& 6 \\
& 7 \\
& 9 \\
& \hline
\end{aligned}
\] &  & \(-\) & \(-\) & \[
1
\] & \({ }_{1}^{16}\) \\
\hline Input Leak age Current & \(\mathrm{I}_{\mathrm{inL}}\) & All & 0.5 & - & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & \(\cdots\) & * & - & - & 8 & 16 \\
\hline \[
\begin{aligned}
& \text { Logic " } 1 \text { " } \\
& \text { Output Voltage }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{array}{r}
1 \\
2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-1.060 \\
-1.060 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\hline-0.960 \\
-0.960 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& -0.810 \\
& -0.810
\end{aligned}
\] & \[
\begin{aligned}
& -0.890 \\
& -0.890
\end{aligned}
\] & \[
\begin{aligned}
& -0.700 \\
& -0.700
\end{aligned}
\] & \begin{tabular}{l}
Vdc \\
Vdc
\end{tabular} & \[
\begin{gathered}
6,9 \\
5
\end{gathered}
\] & 7 & -- & -- & \[
\begin{aligned}
& 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 16
\end{aligned}
\] \\
\hline Logic "0' Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& -1.890 \\
& -1.890 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-1.675 \\
-1.675 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -1.850 \\
& -1.850 \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{r}
-1.650 \\
-1.650 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-1.825 \\
-1.825 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -1.615 \\
& -1.615
\end{aligned}
\] & Vdc Vdc & 9 & 7 & - & - & 8 & 16
16 \\
\hline Logic "1" Threshold Voltage & VOHA & \[
\begin{aligned}
& 1 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-1.080 \\
-1.080 \\
\hline
\end{array}
\] & - & \[
\begin{array}{r}
-0.980 \\
-0.980 \\
\hline
\end{array}
\] & - & - & \[
\begin{aligned}
& \hline-0.910 \\
& -0.910 \\
& \hline
\end{aligned}
\] & - & Vdc Vdc & 9 & 7 & \begin{tabular}{l}
6 \\
5 \\
\hline
\end{tabular} & - & 8 & 16
16 \\
\hline Logic " 0 " Threshold Voltage & \(\mathrm{v}_{\text {OLA }}\) & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & - & \[
\begin{aligned}
& -1.655 \\
& -1.655
\end{aligned}
\] & - & - & \[
\begin{aligned}
& -1.630 \\
& -1.630
\end{aligned}
\] & -- & \[
\begin{array}{r}
-1.595 \\
-1.595 \\
\hline
\end{array}
\] & Vdc
\[
\mathrm{Vdc}
\] & 9 & 7
7 & - & 6
5 & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & 16
16 \\
\hline Switching Times & & & & & & & & & & & +1.11 Vdc & +0.31 Vdc & Pulse in & Pulse Out & \(-3.2 \mathrm{Vdc}\) & \(+2.0 \mathrm{Vdc}\) \\
\hline Data Input & \(\mathrm{t}_{6+1+}\) & 1 & 0.8 & 3.7 & 1.0 & 2.5 & 3.5 & 1.1 & 5.3 & ns & 9 & 7 & & & & \\
\hline  & \[
\begin{aligned}
& \mathrm{t}_{6-1-} \\
& \mathrm{t}_{5+1+}
\end{aligned}
\]
\[
\mathrm{t}_{5-1}
\] & & \[
1
\] & \[
1
\] & \[
1
\] &  & \[
1
\] &  &  & & \begin{tabular}{c}
9 \\
- \\
- \\
\hline
\end{tabular} & \[
1
\] & 6
6
5
5 & 1 & \[
8
\] & \[
16
\] \\
\hline Clock Input & t7-1+ & & 1.6 & 7.2 & 1.6 & 4.5 & 6.8 & 1.4 & 6.8 & & - & - & 5,7 & & & \\
\hline & \(\mathrm{t}_{7-1-}\) & & 1.6 & 7.2 & 1.6 & 4.5 & 6.8 & 1.4 & 6.8 & & - & - & 5.7 & & & \\
\hline Select Input & \[
\begin{aligned}
& \operatorname{tg} 9+1+ \\
& \operatorname{tg}+1- \\
& \operatorname{tg}-1+ \\
& \operatorname{tg-1-}
\end{aligned}
\] & & \[
\left.\right|_{\square} ^{1.1}
\] & \[
\int_{1}^{6.2}
\] & \[
\int_{1}^{1,3}
\] & \[
\left.\right|_{1} ^{3.5}
\] & \[
\int^{5.7}
\] & \[
\int_{1}^{1.2}
\] & \[
\int^{6.7}
\] & & \[
\begin{aligned}
& 6 \\
& 5 \\
& 5 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 7
\end{aligned}
\] & \[
{ }^{9}
\] & & & \\
\hline Setup Time & & &  & \[
\nabla
\] &  & \[
\downarrow
\] & \[
\downarrow
\] & \[
\downarrow
\] & \[
\dagger
\] & & & \(\dagger\) & \(\dagger\) & & & \\
\hline Data Input Select Input & \({ }_{\text {t }}^{\substack{\text { setup } \\ \mathrm{t}_{\text {setup }}}}\) & & 2.0
3.0 & - & 2.0
3.0 & 1.5
2.5 & - & 2.0
3.0 & - & & - & - & 5.7 & & & \\
\hline \begin{tabular}{l}
Select input \\
Hold Time
\end{tabular} & \({ }^{\text {tsetup }}\) & & 3.0 & - & 3.0 & 2.5 & - & 3.0 & - & & 6 & - & 7,9 & & & \\
\hline Data Input & \({ }^{\text {thold }}\) & & 2.5 & - & 2.5 & 0.0 & - & 2.5 & - & & - & - & 5,7 & & & \\
\hline Select Input & thold & & 1.5 & - & 1.5 & -0.5 & - & 1.5 & - & & 6 & - & 7,9 & & & \\
\hline \[
\begin{aligned}
& \text { Rise Time } \\
& \quad(20 \text { to } 80 \%)
\end{aligned}
\] & t+ & & 1.2 & 4.0 & 1.5 & 2.0 & 3.5 & 1.4 & 4.0 & \[
1
\] & 5 & - & 7 &  &  &  \\
\hline Fall Time (20 to 80\%) & t- & \(\dagger\) & 1.2 & 4.0 & 1.5 & 2.0 & 3.5 & 1.4 & 4.0 & \(\dagger\) & - & - & 7 & \(\dagger\) & \(\dagger\) & \(\dagger\) \\
\hline
\end{tabular}
* \(V_{\text {ILmin }}\) applied to each input pin, one at a time.

\section*{DUAL 4 TO 1 MULTIPLEXER}

The MC10174 is a high speed dual channel multiplexer with output enable capability. The select inputs determine one of four active data inputs for each multiplexer. An output enable forces both outputs low when in the high state.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =305 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =3.5 \mathrm{~ns} \text { typ (Data to output) } \\
\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ ( } 20 \%-80 \% \text { ) }
\end{aligned}
\]


PIN ASSIGNMENT


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of \(25^{\circ} \mathrm{C}\), while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
@Test \\
Temperature
\end{tabular}} & \multicolumn{5}{|c|}{TEST Voltage values} \\
\hline & \multicolumn{5}{|c|}{(Volts)} \\
\hline & \(\mathrm{V}_{1 \mathrm{H} \text { max }}\) & \(V_{I L}\) min & \(V_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(V_{\text {EE }}\) \\
\hline \(-30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 \\
\hline \(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 \\
\hline \(+85^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 \\
\hline
\end{tabular}


MC10175

\section*{QUINT LATCH}

The MC10175 is a high speed, low power quint latch. It features five \(D\) type latches with common reset and a common two-input clock. Data is transferred on the negative edge of the clock and latched on the positive edge. The two clock inputs are "OR"ed together.

Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information. The reset input is enabled only when the clock is in the high state.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =400 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.5 \mathrm{~ns} \text { typ (Data to Output) } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ ( } 20 \%-80 \% \text { ) }
\end{aligned}
\]

\section*{MECL LOK series}

QUINT LATCH


PIN ASSIGNMENT


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

(1) Individually test each input; apply \(V_{I L}\) min to pin under test
(2) Output latched to high logic state prior to test.

\section*{HEX "D" MASTER-SLAVE FLIP-FLOP}

The MC10176 contains six high-speed, master slave type "D" flip-flops. Clocking is common to all six flip-flops. Data is entered into the master when the clock is low. Master to slave data transfer takes place on the positive-going Clock transition. Thus, outputs may change only on a positive-going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device.
\[
\begin{aligned}
\mathrm{P}_{D} & =460 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{f}_{\text {toggle }} & =150 \mathrm{MHz} \text { (typ) } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathbf{f}} & =2.0 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)
\end{aligned}
\]

\section*{LOGIC DIAGRAM}


Clocked truth table
\begin{tabular}{|c|c|c|}
\hline\(C\) & \(D\) & \(\mathrm{a}_{\mathrm{n}+1}\) \\
\hline L & \(\phi\) & \(\mathrm{a}_{\mathrm{n}}\) \\
\hline \(\mathrm{H}^{*}\) & L & L \\
\hline \(\mathrm{H}^{*}\) & H & H \\
\hline
\end{tabular}
\(\mathrm{V}_{\mathrm{CC} 1}=\operatorname{Pin} 1\)
\(V_{C C 2}=\operatorname{Pin} 16\)
\(V_{E E}=\operatorname{Pin} 8\)
\[
\phi=\text { Don't Care }
\]
*A clock H is a clock transition from a low to a high state.

\section*{MECL LOK serues}

HEX "D" MASTER-SLAVE FLIP-FLOP

P SUFFIX
PLASTIC PACKAGE
CASE 648


LsuFfix
CERAMIC PACKAGE
CASE 620

PIN ASSIGNMENT


ELECTRICAL CHARACTERISTICS
Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one data input, and the clock input, and for one output. Other inputs and outputs tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|r|}{\(+85^{\circ} \mathrm{C}\)} & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \multirow[b]{4}{*}{\[
\begin{array}{r}
\left(\mathrm{V}_{\mathrm{cc}}\right) \\
\text { Gnd }
\end{array}
\]} \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{\begin{tabular}{l}
Pin \\
Under \\
Test
\end{tabular}} & \multicolumn{8}{|c|}{MC10176 Test Limits} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{test voltage applied to pins listed below:}} & \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\({ }^{+85}{ }^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{\(V_{\text {IHmax }}\)} & & & & \multirow[b]{2}{*}{VEE} & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & & \(V_{\text {ILImin }}\) & VIHAmin & \(V_{\text {ILAmax }}\) & & \\
\hline Power Supply Drain Current & \({ }^{\prime} \mathrm{E}\) & 8 & - & 121 & - & 88 & 110 & - & 121 & mAdc & - & - & - & - & 8 & 1,16 \\
\hline Input Current & \(\mathrm{I}_{\mathrm{in} \mathrm{H}}\) & \[
\begin{aligned}
& 5 \\
& 9
\end{aligned}
\] & - & 350
495 & - & - & \[
\begin{aligned}
& 220 \\
& 310
\end{aligned}
\] & - & \[
\begin{gathered}
220 \\
310
\end{gathered}
\] & \(\mu \mathrm{Adc}\) & \[
\begin{aligned}
& 5 \\
& 9
\end{aligned}
\] & - & - & - & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline Input Leakage Current & \(\mathrm{r}_{\text {inL }}\) & \[
\begin{aligned}
& 5 \\
& 9
\end{aligned}
\] & 0.5
0.5 & - & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & - & - & 0.3
0.3 & - & \begin{tabular}{l}
\(\mu \mathrm{Adc}\) \\
\(\mu\) Adc
\end{tabular} & - & 5
9 & - & - & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Logic "1" \\
Output Voltage
\end{tabular} & \(\mathrm{VOH}^{\text {O }}\) & \[
\begin{gathered}
2 \dagger \\
15 \dagger
\end{gathered}
\] & \[
\begin{array}{|l}
-1.060 \\
-1.060
\end{array}
\] & \[
\begin{aligned}
& -0.890 \\
& -0.890
\end{aligned}
\] & \[
\begin{aligned}
& -0.960 \\
& -0.960
\end{aligned}
\] & - & \[
\begin{array}{|l|}
-0.810 \\
-0.810
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.890 \\
-0.890
\end{array}
\] & \[
\begin{aligned}
& -0.700 \\
& -0.700
\end{aligned}
\] & Vdc Vdc & 5
12 & - & - & - & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline Logic " 0 " Output Voltage & \(\mathrm{v}_{\mathrm{OL}}\) & \[
\begin{gathered}
2 \dagger \\
15 \dagger
\end{gathered}
\] & \[
\left|\begin{array}{r}
-1.890 \\
-1.890
\end{array}\right|
\] & \[
\begin{aligned}
& -1.675 \\
& -1.675
\end{aligned}
\] & \[
\begin{aligned}
& -1.850 \\
& -1.850
\end{aligned}
\] & -- & \[
\begin{array}{|l|}
\hline-1.650 \\
-1.650
\end{array}
\] & \[
\begin{array}{|l}
-1.825 \\
-1.825
\end{array}
\] & \[
\begin{aligned}
& -1.615 \\
& -1.615
\end{aligned}
\] & \begin{tabular}{l}
Vdc \\
Vdc
\end{tabular} & - & \[
\begin{gathered}
5 \\
12
\end{gathered}
\] & - & & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Logic "1" \\
Threshold Voltage
\end{tabular} & VOHA & \[
\begin{gathered}
2 \dagger \\
15 \dagger
\end{gathered}
\] & \[
\left\lvert\, \begin{aligned}
& -1.080 \\
& -1.080
\end{aligned}\right.
\] & - & \[
\begin{aligned}
& -0.980 \\
& -0.980
\end{aligned}
\] & - & - & -0.910
-0.910 & - & \[
\begin{aligned}
& \text { Vdc } \\
& \text { Vdc }
\end{aligned}
\] & - & - & 5
12 & - & 8 & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline Logic " 0 " Threshold Voltage & VOLA & \[
\begin{gathered}
2 \dagger \\
15 \dagger
\end{gathered}
\] & - & \[
\begin{aligned}
& -1.655 \\
& -1.655
\end{aligned}
\] & - & - & \[
\begin{array}{|l|}
\hline-1.630 \\
-1.630
\end{array}
\] & - & \[
\begin{aligned}
& -1.595 \\
& -1.595
\end{aligned}
\] & Vdc Vdc & -- & - & - & \[
\begin{array}{r}
5 \\
12
\end{array}
\] & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,16 \\
& 1,16
\end{aligned}
\] \\
\hline Switching Times & & & & & & & & & & & +1.11 Vdc & +0.31 Vdc & Pulse In & Pulse Out & \[
\begin{aligned}
& -3.2 \\
& \mathrm{Vdc}
\end{aligned}
\] & \[
\begin{aligned}
& +2.0 \\
& \mathrm{Vdc}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Progagation Delay \\
Rise Time (20 to 80\%) \\
Fall Time (20 to 80\%)
\end{tabular} & \[
\begin{gathered}
\mathrm{t} 9+2+ \\
\mathrm{t} 9+2- \\
\mathrm{t}_{2+}+ \\
\mathrm{t}_{2-}
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.6 \\
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 4.6 \\
& 4.6 \\
& 4.1 \\
& 4.1
\end{aligned}
\] & 1.6
1.6
1.1
1.1 & - & 4.5
4.5
4.0
4.0 & 1.6
1.6
1.1
1.1 & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& 4.4 \\
& 4.4
\end{aligned}
\] & \(\left.\right|^{\text {ns }}\) & -
-
- & -
-
-
- & \[
\left.\right|^{5,9}
\] & 1 & 1 & \(\overbrace{}^{1.16}\) \\
\hline Setup Time & \({ }^{\text {tsetup }}\) & 2 & 2.5 & - & 2.5 & - & - & 2.5 & \(\cdots\) & ns & - & - & 5.9 & 2 & 8 & 1,16 \\
\hline Hold Time & thold & 2 & 1.5 & - & 1.5 & - & - & 1.5 & - & ns & - & - & 5.9 & 2 & 8 & 1,16 \\
\hline Toggle Frequency & \(f_{\text {tog }}\) & 2 & 125 & - & 125 & 150 & - & 125 & - & MHz & - & - & - & - & 8 & 1.16 \\
\hline
\end{tabular}
\(\dagger\) Output level to be measured after a clock pulse has been applied to \(C\) input (pin 9) \(\quad \square \square\)

\section*{TRIPLE MECL TO NMOS TRANSLATOR}

The MC10177 consists of three MECL to MOS translators which convert MECL 10,000 logic levels to NMOS levels. It is designed for use in N -channel memory systems as a Read/Write, Data/Address driver. It may also be used as a high fanout (30) MECL to TTL translator, or in other applications requiring the capability to drive high capacitive loads. A separate lead from each of the three translators is brought out of the package. These leads may be connected to \(\mathrm{V}_{\mathrm{SS}}\) or to an external capacitor ( 0.01 to \(0.05 \mu \mathrm{~F}\) to ground), for waveform improvement, and short circuit protection. When connection is made to an external capacitor, \(\mathrm{V}_{\mathrm{SS}}\) line fluctuations due to transient currents are also reduced.

Max Load: 350 pF
\(P_{D}=1.0 \mathrm{~W}\) typ/pkg @ 5.0 MHz
Operating rate: 5.0 MHz typ.
(all 3 translators in use simultaneously)
INPUT: MECL 10,000 (differential)
OUTPUT: NMOS \(+0.5 \mathrm{~V} \mathrm{~V}_{\text {OLmax }}\)
\[
+3.0 \mathrm{VV}_{\mathrm{OHmin}^{*}}{ }^{*}
\]
\(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)\)
*May be raised by increasing \(V_{\text {SS }}\).


\section*{MECL IOK \\ series}

TRIPLE MECL TO NMOS TRANSLATOR


\section*{PIN ASSIGNMENT}


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.
In general test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner.

\#See test circuit.

SWITCHING TIME TEST CIRCUIT


SWITCHING WAVEFORMS @ \(25^{\circ} \mathrm{C}\)

Switching times are measured after the device under test reaches a stabilized temperature (air flow \(\geqslant 500\) (fpm)


MC10178

\section*{BINARY COUNTER}

The MC10178 is a four-bit counter capable of divide-by-two, divide-by-four, divide-by-eight or a divide-by-sixteen function.

Clock inputs trigger on the positive going edge of the clock pulse. Set and Reset inputs override the clock, allowing asynchronous "set" or "clear." Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits.
\[
\begin{aligned}
\mathrm{P}_{D} & =370 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{f}_{\text {toggle }} & =150 \mathrm{MHz} \text { (typ) } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.7 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]


\section*{MECL dOK series}

BINARY COUNTER



\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{5}{*}{Characteristic} & & & & & & & & & & \multirow[t]{2}{*}{\[
+85^{\circ} \mathrm{C}
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{array}{|c|}
\hline-0.810 \\
\hline-0.700 \\
\hline
\end{array}\right.
\]} & \multirow[t]{2}{*}{\[
\frac{-1.850}{-1.825}
\]} & -1.10 & 1.475 & -5.2 & \multirow[b]{5}{*}{( \(\mathrm{v}_{\mathrm{CC}}\) ) Gnd} \\
\hline & & & & & & & & & & & & & -1.035 & -1.440 & -5.2 & \\
\hline & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10178 Test Limits} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{test voltage applied to PINS LISTED BELOW:}} & \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(\mathrm{V}_{1 \text { I max }}\) & \(V_{\text {ILmin }}\) & \(V_{1 H A m i n}\) & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{EE}}\) & \\
\hline Power Supply Drain Current & 1 E & 8 & - & 97 & - & - & 88 & - & 97 & mAdc & 9 & - & - & - & 8 & 1.16 \\
\hline \multirow[t]{4}{*}{Input Current} & \multirow[t]{3}{*}{\(\mathrm{I}_{\text {in }}\)} & 12 & - & 390 & - & - & 245 & - & 245 & \(\mu \mathrm{Adc}\) & 12 & - & - & - & 8 & 1,16 \\
\hline & & 11 & - & 350 & - & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & 11 & - & - & - & 8 & 1,16 \\
\hline & & 9 & - & 650 & - & - & 410 & - & 410 & \(\mu \mathrm{Adc}\) & 9 & - & - & - & 8 & 1,16 \\
\hline & \(\mathrm{I}_{\text {in }}\) & * & 0.5 & -- & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & * & - & - & 8 & 1.16 \\
\hline Logic "1" Output Voltage & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & 14 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 9 & - & - & - & 8 & \[
1,16
\] \\
\hline & & 15 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 11 & - & - & - & & \[
1,16
\] \\
\hline \multirow[t]{2}{*}{Logic "1" Threshold Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OHA }}\)} & 14 & -1.080 & - & -0.980 & - & - & -0.910 & - & Vdc & -- & - & 11 & - & 8 & 1,16 \\
\hline & & 15 & -1.080 & - & -0.980 & - & - & -0.910 & - & Vdc & - & - & 9 & - & 8 & 1,16 \\
\hline \multirow[t]{3}{*}{Logic ' 0 ' Threshold Voltage} & \multirow[t]{3}{*}{\(\mathrm{v}_{\text {OLA }}\)} & 3 & - & -1.655 & - & - & -1.630 & - & -1.595 & Vdc & - & - & - & 5 & 8 & 1,16 \\
\hline & & 14 & - & -1.655 & - & - & -1.630 & - & -1.595 & Vdc & - & - & - & 11 & 8 & 1.16 \\
\hline & & 15 & - & -1.655 & - & - & -1.630 & - & -1.595 & Vdc & - & - & - & 9 & 8 & 1,16 \\
\hline \multirow[t]{5}{*}{Switching Times Clock Input Propagation Delay} & \multirow[b]{5}{*}{\[
\begin{aligned}
& \mathrm{t}_{12+15+} \\
& \mathrm{t}_{12-13-} \\
& \mathrm{t}_{12+4-} \\
& \mathrm{t}_{12-3+}
\end{aligned}
\]} & \multirow[b]{5}{*}{\[
\begin{aligned}
& 15 \\
& 13 \\
& 4 \\
& 3
\end{aligned}
\]} & \multirow[b]{5}{*}{\[
\begin{aligned}
& 1.4 \\
& 1.9 \\
& 2.9 \\
& 3.9
\end{aligned}
\]} & \multirow[b]{5}{*}{\[
\begin{gathered}
5.0 \\
9.4 \\
12.3 \\
14.9
\end{gathered}
\]} & & & & & \multirow[b]{5}{*}{\[
\begin{gathered}
5.3 \\
9.8 \\
12.8 \\
15.5
\end{gathered}
\]} & \multirow[b]{7}{*}{\[
\left.\right|_{1} ^{\mathrm{ns}}
\]} & \multirow[b]{7}{*}{\[
\begin{aligned}
& \text { - } \\
& \text { - } \\
& - \\
& - \\
& -
\end{aligned}
\]} & \multirow[b]{7}{*}{\[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\]} & Pulse In & \multirow[t]{7}{*}{\begin{tabular}{|c|}
\hline Pulse Out \\
\hline 15 \\
13 \\
4 \\
3 \\
15 \\
15 \\
\hline
\end{tabular}} & -3.2 Vdc & +2.0 Vdc \\
\hline & & & & & 1.5 & 3.5 & 4.8 & \multirow[t]{6}{*}{\[
\begin{aligned}
& 1.5 \\
& 2.0 \\
& 3.0 \\
& 4.0 \\
& 1.1 \\
& 1.1
\end{aligned}
\]} & & & & & \multirow[t]{6}{*}{\[
\left.\right|_{1} ^{12}
\]} & & \multirow[t]{6}{*}{\[
8
\]} & \multirow[t]{6}{*}{} \\
\hline & & & & & 2.0 & 6.0 & 9.2 & & & & & & & & & \\
\hline & & & & & 3.0 & 8.5 & 12 & & & & & & & & & \\
\hline & & & & & 4.0 & 11 & 14.5 & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rise Time (20 to \(80 \%\) )} & \multirow[t]{2}{*}{\[
\begin{aligned}
& t_{15}+ \\
& t_{15} \\
& \hline
\end{aligned}
\]} & 15 & 1.1 & 4.7 & 1.1 & 2.5 & 4.5 & & 5.0 & & & & & & & \\
\hline & & 15 & 1.1 & 4.7 & 1.1 & 2.5 & 4.5 & & 5.0 & & & & & & & \\
\hline Set Input & t11-15+ & 15 & 1.4 & 5.2 & 1.5 & - & 5.0 & 1.5 & 5.5 & ns & - & - & 11 & 15 & 8 & 1.16 \\
\hline Reset input & '9-15+ & 15 & 1.4 & 5.2 & 1.5 & - & 5.0 & 1.5 & 5.5 & ns & - & - & 9 & 15 & 8 & 1.16 \\
\hline Counting Frequency & \(\mathrm{f}_{\text {count }}\) & 15 & 125 & - & 125 & 150 & - & 125 & - & MHz & - & - & 12 & 15 & 8 & 1,16 \\
\hline
\end{tabular}
*individually test each input applying \(V_{I L}\) to input under test

\section*{LOOK-AHEAD CARRY BLOCK}

The MC10179 is a high speed, low power, standard MECL complex function that is designed to perform the look-ahead carry function. This device can be used with the MC10181 4-bit ALU directly, or with the MC10180 dual arithmetic unit in any computer, instrumentation or digital communication application requiring high speed arithmetic operation on long words.
When used with the MC10181, the MC10179 performs a second order or higher look-ahead. Figure 2 shows a 16 -bit look-ahead carry arithmetic unit. Second order carry is valuable for longer binary words. As an example, addition of two 32 -bit words is improved from 30 nanoseconds with ripple-carry techniques. A block diagram of a 32-bit ALU is shown in Figure 1. The MC10179 may also be used in many other applications. It can, for example, reduce system package count when used to generate functions of several variables.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}}= & 300 \mathrm{~mW} \text { typ } / \mathrm{pkg} \text { (No Load) } \\
\mathrm{t}_{\mathrm{pd}}= & 3.0 \mathrm{~ns} \text { typ (Carry, Propogate) } \\
& 4.0 \mathrm{~ns} \text { typ (Generate) } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}= & 2.3 \mathrm{~ns} \text { typ (20\%-80\%) }
\end{aligned}
\]

\section*{MECL 1OK \\ series}

\section*{LOOK-AHEAD CARRY BLOCK}

\[
\begin{aligned}
\mathrm{P}_{\mathrm{G}}= & \mathrm{P} 0+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3 \\
\mathrm{G}_{\mathrm{G}}= & (\mathrm{G} 0+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3)(\mathrm{G} 1+\mathrm{P} 2+\mathrm{P} 3)(\mathrm{G} 2+\mathrm{P} 3) \mathrm{G} 3 \\
\mathrm{C}_{\mathrm{n}+2}= & \left(\mathrm{C}_{\mathrm{n}}+\mathrm{P} 0+\mathrm{P} 1\right)(\mathrm{G} 0+\mathrm{P} 1) \mathrm{G} 1 \\
\mathrm{C}_{\mathrm{n}+4}= & \left(\mathrm{C}_{\mathrm{n}}+\mathrm{P} 0+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3\right)(\mathrm{G} 0+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3)(\mathrm{G} 1+\mathrm{P} 2+\mathrm{P} 3) \\
& (\mathrm{G} 2+\mathrm{P} 3) \mathrm{G} 3
\end{aligned}
\]

\section*{PIN ASSIGNMENT}


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series device has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.



FIGURE 2-16-BIT FULL LOOK-AHEAD CARRY ARITHMETIC LOGIC UNIT


\section*{DUAL 2-BIT ADDER/SUBTRACTOR}

The MC10180 is a high speed, low power general-purpose adder/subtractor. It is designed to be used in special purpose adders/ subtractors or in high speed multiplier arrays. The MC10180 can be used in any piece of equipment where these operations are necessary.
Inputs for each adder are Carry-in, operand A, and operand B; outputs are Sum, Sum, and Carry-out. The common Select inputs serve as a control line to invert A for subtract, and a control line to invert \(B\).
\[
\begin{aligned}
\mathrm{PD}_{\mathrm{D}} & =360 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{C}_{\text {in }} \text { to } \mathrm{C}_{\text {out }} & =2.2 \mathrm{~ns} \\
\mathrm{~A} 0 \text { to } \mathrm{S} 0 & =4.5 \mathrm{~ns} \\
\mathrm{~A} 0 \text { to } \mathrm{C}_{\text {out }} & =4.5 \mathrm{~ns} \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.4 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)
\end{aligned}
\]
\(V_{C C}=\operatorname{pin} 16\)
\(V_{E E}=\operatorname{pin} 8\)
FUNCTION SELECT TABLE
\begin{tabular}{|c|c|l|}
\hline Sel \(_{A}\) & Sel \(_{B}\) & \multicolumn{1}{|c|}{ Function } \\
\hline\(H\) & \(H\) & \(S=A\) plus \(B\) \\
\hline\(H\) & \(L\) & \(S=A\) minus \(B\) \\
\hline\(L\) & \(H\) & \(S=B\) minus \(A\) \\
\hline\(L\) & \(L\) & \(S=0\) minus \(A\) minus \(B\) \\
\hline
\end{tabular}
\[
A^{\prime}=\overline{A \oplus \operatorname{Sel}_{A}}=A \odot \operatorname{Sel}_{A}
\]
\[
\mathrm{B}^{\prime}=\overline{\mathrm{B} \oplus \mathrm{Sel}_{\mathrm{B}}}=\mathrm{B} \odot \mathrm{Sel}_{\mathrm{B}}
\]
\[
\mathrm{S}=\overline{\mathrm{C}}_{\mathrm{in}}\left(\overline{\mathrm{~A}^{\prime}} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \overline{\mathrm{B}^{\prime}}\right)+
\]
\[
C_{i n}\left(A^{\prime} B^{\prime}+\overline{A^{\prime}} \overline{B^{\prime}}\right)
\]
\[
C_{\text {out }}=C_{\text {in }} A^{\prime}+C_{\text {in }} B^{\prime}+A^{\prime} B^{\prime}
\]
TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FUNCTION} & \multicolumn{5}{|c|}{INPUTS} & \multirow[b]{2}{*}{S0} & \multirow[b]{2}{*}{So} & \multirow[b]{2}{*}{Cout} \\
\hline & \(\mathrm{Sel}_{\mathrm{A}}\) & \(\mathrm{Sel}_{\mathrm{B}}\) & A0 & B0 & \(\mathrm{C}_{\text {in }}\) & & & \\
\hline \multirow[t]{8}{*}{ADD} & H & H & L & L & 1 & L & H & L \\
\hline & H & H & L & L & H & H & L & L \\
\hline & H & H & L & H & Ł & H & L & L \\
\hline & H & H & L & H & H & L & H & H \\
\hline & H & H & H & L & L & H & L & L \\
\hline & H & H & H & L & H & L & H & H \\
\hline & H & H & H & H & L & L & H & H \\
\hline & H & H & H & H & H & H & L & H \\
\hline \multirow[t]{8}{*}{SUBTRACT} & H & L & L & L & L & H & L & L \\
\hline & H & L & L & L & H & L & H & H \\
\hline & H & \(L\) & L & H & L. & L & H & L \\
\hline & H & L & L & H & H & H & L & 1 \\
\hline & H & L & H & L & L & L & H & H \\
\hline & H & L & H & 1 & H & H & L & H \\
\hline & H & \(L\) & H & H & L & H & L & L \\
\hline & H & L & H & H & H & L & H & H \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FUNCTION} & \multicolumn{5}{|c|}{INPUTS} & \multirow[b]{2}{*}{So} & \multirow[b]{2}{*}{So} & \multirow[b]{2}{*}{Cout} \\
\hline & \(\mathrm{Sel}_{A}\) & \(\mathrm{Sel}_{\mathrm{B}}\) & A0 & Bo & \(\mathrm{c}_{\text {in }}\) & & & \\
\hline \multirow[t]{16}{*}{REVERSE SUBTRACT} & L & H & L & L & L & H & L & L \\
\hline & L & H & L & L. & H & 1 & H & H \\
\hline & L & H & L & H & L & L & H & H \\
\hline & L & H & L & H & H & H & L & H \\
\hline & L & H & H & L & L & L & H & L \\
\hline & \(L\) & H & H & L & H & H & L & L \\
\hline & L & H & H & H & L & H & L & 1 \\
\hline & L & H & H & H & H & L & H & H \\
\hline & L & L & L & L & L & L & H & H \\
\hline & L & L & 1 & L & H & H & L & H \\
\hline & L & L & L & H & L & H & L & L \\
\hline & L & L & L & H & H & L & H & H \\
\hline & L & L & H & L & L & H & L & L. \\
\hline & L & L & H & L & H & L & H & H \\
\hline & L & L & H & H & L & L & H & L \\
\hline & L & L & H & H & H & H & L & L \\
\hline
\end{tabular}

DUAL 2-BIT ADDER/SUBTRACTOR


PIN ASSIGNMENT


ELECTRICAL CHARACTERISTICS
Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts.

*Individually apply \(V_{I L}\) min to pin under test.

\section*{4-BIT ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR}

The MC10181 is a high-speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two four-bit words. Full internal carry is incorporated for ripple through operation.
Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S0 through S3) as indicated in the tables of arithmetic/logic functions. Group carry propagate ( \(\mathrm{P}_{\mathrm{G}}\) ) and carry generate ( \(\mathrm{G}_{\mathrm{G}}\) ) are provided to allow fast operations on very long words using a second order look ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).
When used with the MC10179, full-carry look-ahead, as a second order look ahead block, the MC10181 provides high speed arithmetic operations on very long words.
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=600 \mathrm{~mW} \text { typ/pkg (No Load) } \\
& \mathrm{t}_{\mathrm{pd}} \text { (typ): } \mathrm{A} 1 \text { to } \mathrm{F}=6.5 \mathrm{~ns} \\
& \mathrm{C}_{\mathrm{n}} \text { to } \mathrm{C}_{\mathrm{n}+4}=3.1 \mathrm{~ns} \\
& \mathrm{~A} 1 \text { to } \mathrm{P}_{\mathrm{G}}=5.0 \mathrm{~ns} \\
& \mathrm{~A} 1 \text { to } \mathrm{G}_{\mathrm{G}}=4.5 \mathrm{~ns} \\
& \mathrm{~A} 1 \text { to } \mathrm{C}_{\mathrm{n}+4}=5.0
\end{aligned}
\]

\section*{MECL LOK series}

\section*{4-BIT ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR}

CERAMIC PACKAGE
CASE 620
P SUFFIX
PLASTIC PACKAGE


PIN ASSIGNMENT


\section*{POSITIVE LOGIC DIAGRAM}


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.


\footnotetext{
Test all input-output combinations according to Function Table.
}
* For threshold level test, apply threshold input level to only one input pin at a time
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Input} & \multirow[b]{3}{*}{Output} & \multirow[b]{3}{*}{Conditions \({ }^{\dagger}\)} & \multicolumn{8}{|c|}{AC Switching Character istics} \\
\hline & & & & & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\) *} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+85^{\circ} \mathrm{C}\) *} & \multirow[b]{2}{*}{Unit} \\
\hline & & & & & Min & Max & Min & Typ & Max & Min & Max & \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathrm{t}++, \mathrm{t}-\mathrm{-} \\
\mathrm{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& C_{n} \\
& C_{n}
\end{aligned}
\] & \[
\begin{aligned}
& C_{n+4} \\
& C_{n+4}
\end{aligned}
\] & \[
\begin{aligned}
& A 0, A 1, A 2, A 3 \\
& A 0, A 1, A 2, A 3
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.1 \\
& 3.2
\end{aligned}
\] & \[
\begin{aligned}
& 1.1 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.1 \\
& 2.0
\end{aligned}
\] & 5.0
3.0 & \[
\begin{aligned}
& 1.1 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline 5.4 \\
& 3.2
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Propagation Delay \\
Rise Time, Fall Time
\end{tabular} & \[
\begin{aligned}
& \mathrm{t}++, \mathrm{t}+- \\
& \mathrm{t}-+, \mathrm{t}-- \\
& \mathrm{t}+, \mathrm{t}-
\end{aligned}
\] & \[
c_{n}
\] & \[
\begin{gathered}
\text { F1 } \\
\\
\hline
\end{gathered}
\] &  & \[
\begin{aligned}
& 1.7 \\
& 1.7 \\
& 1.3
\end{aligned}
\] & \[
\begin{array}{r}
7.2 \\
7.2 \\
5.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 4.5 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
7.0 \\
7.0 \\
5.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5 \\
& 5.3
\end{aligned}
\] & \[
\left.\right|_{1} ^{\mathrm{ns}}
\] \\
\hline \begin{tabular}{l}
Propagation Delay \\
Rise Time, Fall Time
\end{tabular} & \[
\begin{array}{r}
\mathrm{t}++, \mathrm{t}+- \\
\mathrm{t}-+, \mathrm{t}-\mathrm{-} \\
\mathrm{t}+\mathrm{t}- \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { A1 } \\
i
\end{gathered}
\] & F1 & & \[
\begin{aligned}
& \hline 2.6 \\
& 2.6 \\
& 1.3 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10.4 \\
10.4 \\
5.4 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline 3.0 \\
& 3.0 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6.5 \\
& 6.5 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
10 \\
5.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10.8 \\
10.8 \\
5.3
\end{gathered}
\] & ns \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathrm{t}++, \mathrm{t}-\mathrm{-} \\
\mathrm{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P}_{\mathrm{G}} \\
& \mathrm{P}_{\mathrm{G}} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { S0,S3 } \\
& \text { S0,S3 }
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 0.8
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 3.7
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 1.1
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 2.0
\end{aligned}
\] & 6.5
3.5 & 2.0
1.1 & \[
\begin{aligned}
& 7.0 \\
& 3.8
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Propagation Delay \\
Rise Time, Fall Time
\end{tabular} & \[
\begin{gathered}
t++, t-- \\
t+, t-
\end{gathered}
\] & \[
\begin{aligned}
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G}_{\mathrm{G}} \\
& \mathrm{G}_{\mathrm{G}}
\end{aligned}
\] & \[
\begin{aligned}
& A 0, A 2, A 3, C_{n} \\
& A 0, A 2, A 3, C_{n}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1.1 \\
& 1.2 \\
& \hline
\end{aligned}
\] & \[
7.4
\] & \[
\begin{aligned}
& 2.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 7.7 \\
& 5.3
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Falf Time & \[
\begin{gathered}
\mathrm{t}+-, \mathrm{t}-+ \\
\mathrm{t}, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & \[
\begin{aligned}
& C_{n+4} \\
& C_{n+4}
\end{aligned}
\] & \[
\begin{aligned}
& A 0, A 2, A 3, C_{n} \\
& A 0, A 2, A 3, C_{n}
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
7.3 \\
3.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & 7.0
3.0 & 2.0
1.0 & \[
\begin{aligned}
& 7.8 \\
& 3.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathrm{t}++, \mathrm{t}-\mathrm{+} \\
\mathrm{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{B} 1 \\
& \mathrm{~B} 1
\end{aligned}
\] & \[
\begin{aligned}
& F_{1} \\
& F_{1}
\end{aligned}
\] & \[
\begin{aligned}
& S 3, C_{n} \\
& S 3, C_{n}
\end{aligned}
\] & \[
\begin{aligned}
& 2.7 \\
& 1.2
\end{aligned}
\] & \[
\begin{gathered}
11.3 \\
5.3
\end{gathered}
\] & \[
\begin{aligned}
& 3.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 11 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{gathered}
11.9 \\
5.3
\end{gathered}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
t++, t- \\
t^{+}, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{B} 1 \\
& \mathrm{~B} 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P}_{\mathrm{G}} \\
& \mathrm{P}_{\mathrm{G}}
\end{aligned}
\] & \[
\begin{aligned}
& \text { So, A1 } \\
& \text { So, A1 }
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.7 \\
& 3.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 1.1
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
7.5 \\
3.5 \\
\hline
\end{tabular} & 2.0
1.1 & \[
\begin{aligned}
& 8.0 \\
& 3.9
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathrm{t}++, \mathrm{t}-\mathrm{-} \\
\mathrm{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{B} 1 \\
& \text { B } 1
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G}_{\mathrm{G}} \\
& \mathrm{G}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \text { S3. C } C_{n} \\
& \text { S3.C }
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 1.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.2 \\
& 5.2
\end{aligned}
\] & 2.0
1.5 & 6.0
3.0 & 8.0
5.0 & \[
\begin{aligned}
& 2.0 \\
& 1.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.6 \\
& 5.4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \hline
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathrm{t}+-, \mathrm{t}-\mathrm{+} \\
\mathrm{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \text { B } 1 \\
& \text { B } 1
\end{aligned}
\] & \[
\begin{aligned}
& C_{n+4} \\
& C_{n+4}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} 3, \mathrm{C}_{\mathrm{n}} \\
& \mathrm{~S} 3, \mathrm{C}_{\mathrm{n}}
\end{aligned}
\] & 1.8
0.9 & \[
\begin{aligned}
& 8.2 \\
& 3.1 \\
& \hline
\end{aligned}
\] & 2.0
1.0 & 6.0
2.0 & 8.0
3.0 & 2.0
1.0 & \[
\begin{aligned}
& 8.7 \\
& 3.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathrm{t}++, \mathrm{t}+- \\
\mathrm{t}+\mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& M \\
& M
\end{aligned}
\] & \[
\begin{aligned}
& \text { F1 } \\
& \text { F1 }
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.4 \\
& 1.1
\end{aligned}
\] & \[
\begin{gathered}
10.3 \\
5.1
\end{gathered}
\] & \[
\begin{aligned}
& 3.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 6.5 \\
& 4.0
\end{aligned}
\] & \begin{tabular}{l}
10 \\
5.0 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 3.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{gathered}
10.8 \\
5.3
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathrm{t}+\mathrm{t}, \mathrm{t}-\mathrm{t} \\
\mathrm{t}+, \mathrm{t}- \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline \mathrm{S} 1 \\
& \mathrm{~S} 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { F1 } \\
& \text { F }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} 1, \mathrm{~B} 1 \\
& \mathrm{~A} 1, \mathrm{~B} 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10.7 \\
5.4 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
3.0 \\
1.5 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 6.5 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
5.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.0 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10.8 \\
5.4 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \hline
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathrm{t}-+, \mathrm{t}+\mathrm{-} \\
\mathrm{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \text { S1 } \\
& \text { S } 1
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P}_{\mathrm{G}} \\
& \mathrm{PGG}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& A 3, B 3 \\
& A 3, B 3
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 0.8
\end{aligned}
\] & \[
\begin{aligned}
& 8.3 \\
& 5.1
\end{aligned}
\] & 2.0
1.1 & 6.0
3.0 & 8.0
5.0 & 2.0
1.1 & \[
\begin{aligned}
& 8.4 \\
& 5.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathrm{t}+\mathrm{-}, \mathrm{t}-\mathrm{+} \\
\mathrm{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \text { S1 } \\
& \text { S } 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& C_{n+4} \\
& C_{n+4} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} 3, \mathrm{~B} 3 \\
& \mathrm{~A} 3, \mathrm{~B} 3
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 0.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.3 \\
& 5.3 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
2.0 \\
1.1 \\
\hline
\end{tabular} & \begin{tabular}{l}
6.0 \\
3.0 \\
\hline 6
\end{tabular} & \begin{tabular}{l}
9.0 \\
5.0 \\
\hline
\end{tabular} & \begin{tabular}{l}
2.0 \\
1.0 \\
\hline 1
\end{tabular} & \[
\begin{aligned}
& 9.9 \\
& 5.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \hline
\end{aligned}
\] \\
\hline Propagation Delay Rise Time, Fall Time & \[
\begin{gathered}
\mathrm{t}+-, \mathrm{t}-+ \\
\mathrm{t}+, \mathrm{t}-
\end{gathered}
\] & \[
\begin{aligned}
& \text { S1 } \\
& \text { S } 1
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{G}_{\mathrm{G}} \\
& \mathrm{G}_{\mathrm{G}}
\end{aligned}
\] & \[
\begin{aligned}
& A 3, B 3 \\
& A 3, B 3
\end{aligned}
\] & 1.5
0.8 & 9.6
6.2 & \begin{tabular}{l}
2.0 \\
0.8 \\
\hline
\end{tabular} & 6.0
3.0 & 9.0
6.0 & 1.9
0.8 & 9.7
6.5 & ns \\
\hline
\end{tabular}
thogic high level \((+1.11 \mathrm{Vdc})\) applied to pins listed. All other
input pins are left floating or tied to +0.31 Vdc .
\(V_{C C 1}=V_{C C 2}=+2.0 \mathrm{Vdc}, V_{E E}=-3.2 \mathrm{Vdc}\).

\section*{2-BIT ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR}

The MC10182 is a high-speed arithmetic logic unit capable of performing 4 logic operations and 4 arithmetic operations on two 2-bit words. Full internal carry is incorporated for arithmetic operation.

Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs ( S 0 and S 1 ) as indicated in the tables of arithmetic/logic functions. Group carry propagate ( \(\mathrm{P}_{\mathrm{G}}\) ) and carry generate ( \(\mathrm{G}_{\mathrm{G}}\) ) are provided for a second order look ahead carry using the MC10179. The internal carry is enabled by applying a low level voltage to the mode control input (M).

The MC10182 provides an alternate to the MC10181 four-bit ALU for applications not requiring the extended functions of the MC10181 or for applications requiring a 16 -pin package. The MC10182 also differs from the MC10181 in that Word A and Word \(B\) are treated equally for addition and subtraction (A plus B, A minus \(\mathrm{B}, \mathrm{B}\) minus A ).
\(P_{D}=575 \mathrm{~mW}\) typ/pkg (No Load)
\(\mathrm{t}_{\mathrm{pd}}\) (typ): A 1 to \(F=7.5 \mathrm{~ns}\)
\(C_{n}\) to \(C_{n+2}=2.7 \mathrm{~ns}\)
A1 to \(P_{G}=6.5 \mathrm{~ns}\)
A 1 to \(\mathrm{G}_{\mathrm{G}}=5.5 \mathrm{~ns}\)
A1 to \(C_{n+2}=7.0 \mathrm{~ns}\)
\(t_{r}, t_{f}=2.5\) ns typ ( \(20 \%-80 \%\) )

\section*{LOGIC DIAGRAM}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Function Select} & \multicolumn{2}{|r|}{POSITIVE LOGIC} \\
\hline Fun
S1 & Solect & Logic Function \(M\) is High \(F\) & Arithmetic Operation \(M\) is Low F \\
\hline L & L & \(F=A \odot B\) & \(F=A\) plus B plus Carry \\
\hline L & H & \(F=A \oplus B\) & \(F=\bar{A}\) plus \(\mathrm{B}_{\mathrm{B}}\) plus Carry \\
\hline H & L & \(F=A \bullet B\) & \(F=A\) plus \(\bar{B}\) plus Carry \\
\hline H & H & \(F=A+B\) & \(F=A\) times 2 \\
\hline
\end{tabular}

\section*{MECL 10K series}

\section*{2-BIT ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR}


LSUFFIX
CERAMIC PACKAGE
CASE 620

PIN ASSIGNMENT


POSITIVE LOGIC DIAGRAM

truth table


These outputs are not normaliy used during logic operation

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.


\section*{4 X 2 MULTIPLIER}

The MC10183 is a \(4 \times 2\) bit multiplier that can multiply 2 's complement numbers producing a 2 's complement product without correction. The device can be used as a \(4 \times 2\) bit multiplier cell to build larger iterative arrays.
The part performs the function defined as \(F=X Y+K\), where \(K\) is an input field used to add partial products in an array or to add a constant to the least significant part of the array product. The algorithm used is a modified Booth's algorithm or multiplier coding technique. The device consists of a shift network and an adder/subtracter in which 0,1 times \(X\), or 2 times \(X\) is either added or subtracted to input constant \(K\). The Y inputs control multiplication as shown in the Truth Table.
The most significant digit in a word carries a negative weight allowing 2's complement numbers of various lengths to be multiplied. An M -bit by N -bit multiplication produces an \(\mathrm{M}+\mathrm{N}\) bit product.
The \(\overline{\mathrm{P}}\) polarity input allows multiplication in either positive logic ( \(\bar{P}=\) high \()\) or negative logic ( \(\bar{P}=\) low \()\) representation. Also, mode control \(M\) inverts \(\bar{C}_{n}\) when high and passes \(\overline{\mathrm{C}}_{\mathrm{n}}\) directly when left low.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =760 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =50 \mathrm{~ns} \text { typ ( } 8 \times 8 \text { bit product) } \\
\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}} & =3.5 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)
\end{aligned}
\]

LOGIC DIAGRAM

\begin{tabular}{|c|c|}
\hline \(\mathrm{X}-1, \mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3\) & Multiplicand Inputs \\
\hline Y-1, Y0, Y1 & Multiplier Inputs \\
\hline K0, K1, K2, K3 & Constant Inputs \\
\hline \(\overline{\underline{C}}_{n}\) & Carry Input \\
\hline \[
\overline{\bar{p}}
\] & Polarity Control \\
\hline M & Mode Control \\
\hline S0, S1, S2, S3, S4, S5 & Product Output \\
\hline \(\bar{C}_{n+4}\) & Carry Output \\
\hline
\end{tabular}

TRUTH TABLE
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Y-2 & YO & Y1 & \(\overline{\text { P }}\) & A & B & C & Operation & Complementor \\
\hline L & L & L & L & L & L & L & Add Zero & Direct \\
H & L & L & L & H & L & L & Add 1X & Direct \\
L & H & L & L & H & L & L & Add 1X & Direct \\
H & H & L & L & L & H & L & Add 2X & Direct \\
L & L & H & L & L & H & H & Sub 2X & Invert \\
H & L & H & L & H & L & H & Sub 1X & Invert \\
L & H & H & L & H & L & H & Sub 1X & Invert \\
H & H & H & L & L & L & H & Sub Zero & Invert \\
\hline L & L & L & H & L & L & L & Sub Zero & Direct \\
H & L & L & H & H & L & H & Sub 1X & Invert \\
L & H & L & H & H & L & H & Sub 1X & Invert \\
H & H & L & H & L & H & H & Sub 2X & Invert \\
L & L & H & H & L & H & L & Add 2X & Direct \\
L & L & H & H & H & L & L & Add 1X & \\
H & H & H & H & H & L & L & Add 1X & Direct \\
\hline
\end{tabular}

\section*{MECL LOK series}

\section*{4 X 2 MULTIPLIER}


L SUFFIX CERAMIC PACKAGE CASE 623

PIN ASSIGNMENT


\section*{POSITIVE LOGIC DIAGRAM}


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs are tested in a similar manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ner. & & & & & & & & & & mperature & \(\mathrm{V}_{1 \text { ITmax }}\) & \(V_{1 \text { Imin }}\) & \(\mathrm{V}_{\text {IHAmin }}\) & \(V_{\text {ILAmax }}\) & \(V_{\text {EE }}\) & \\
\hline & & & & & & & & & & \(-30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 & \\
\hline & & & & & & & & & & \(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & \(+85^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline & & & & & & 0183 & ST LIMIT & & & & VOL & & & & & \\
\hline & & Under & & & & \(+25^{\circ} \mathrm{C}\) & & & & & OLT & Ge APPL & D PINS & STED BELO & & \\
\hline Characteristic & Symbol & Test & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{V}_{1}\) Hmax & \(V_{\text {IL }}\) min & \(\mathrm{V}_{1 \text { HAmin }}\) & \(V_{\text {ILAmax }}\) & \(\mathrm{V}_{\mathrm{EE}}\) & Gnd \\
\hline Power Supply Drain Current & \({ }^{1} \mathrm{E}\) & 12 & - & 201 & - & 146 & 183 & - & 201 & mAdc & - & - & - & - & 12 & 24 \\
\hline Input Current & \(\mathrm{I}_{\mathrm{inH}}\) & 6 & - & 390 & - & - & 245 & - & 245 & \(\mu \mathrm{Adc}\) & 6 & - & - & - & 12 & 24 \\
\hline & & 8 & - & 350 & - & - & 220 & - & 220 & & 8 & - & - & - & & \\
\hline & & 18 & - & 320 & - & - & 200 & - & 220 & \(\downarrow\) & 18 & - & - & - &  & \(\checkmark\) \\
\hline & \(\mathrm{l}_{\text {inL }}\) & 8 & 0.5 & - & 0.5 & - & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & 8 & - & - & 12 & 24 \\
\hline \begin{tabular}{l}
Logic "1" \\
Output Voltage
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & 2 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & \(V\) dc & 8,16,19 & - & - & - & 12 & 24 \\
\hline & & 21 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 8,16,19 & - & - & - & 12 & 24 \\
\hline Logic "0" & VOL & 2 & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 & -1.615 & \(V \mathrm{dc}\) & 17,18,19,20 & - & - & - & 12 & 24 \\
\hline Output Voltage & & 21 & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 & -1.615 & \(V \mathrm{dc}\) & 17,18,19,20 & - & - & - & 12 & 24 \\
\hline Logic "1" & V OHA & 2 & -1.080 & - & -0.980 & - & - & -0.910 & - & V dc & 8,16,19 & - & - & 5 & 12 & 24 \\
\hline Threshold Voltage & & 21 & -1.080 & - & -0.980 & - & - & -0.910 & - & \(V \mathrm{dc}\) & 8,16,19 & - & - & 15 & 12 & 24 \\
\hline Logic " 0 " & \(V_{\text {OLA }}\) & 2 & - & -1.655 & - & - & -1.630 & - & -1.595 & \(V \mathrm{dc}\) & 8,16,19 & - & 5 & - & 12 & 24 \\
\hline Threshold Voltage & & 21 & - & -1.655 & - & - & -1.630 & - & -1.595 & Vdc & 8,16,19 & - & 10 & - & 12 & 24 \\
\hline Switching Times & & & & & & & & & & & & & Pulse In & Pulse Out & -3.2 Vdc & -2.0 Vdc \\
\hline Propagation Delay & \({ }^{\text {t }} 20+2-\) & 2 & 1.0 & 5.3 & 1.0 & 4.5 & 5.0 & 1.0 & 5.5 & ns & - & - & 20 & 2 & & \\
\hline & \({ }^{2} 20+22+\) & 22 & 1.8 & 8.4 & 1.8 & 6.0 & 8.0 & 1.8 & 8.8 & & - & _ & 20 & 22 & & 1 \\
\hline & t20+3- & 3 & 1.8 & 8.4 & 1.8 & 8.0 & 8.0 & 1.8 & 8.8 & & - & - & 20 & 3 & & \\
\hline & t9+2- & 2 & 1.6 & 7.3 & 1.6 & 5.5 & 7.0 & 1.6 & 7.7 & & - & - & 9 & 2 & & \\
\hline & t9+1+ & 1 & 2.5 & 11 & 2.5 & 8.0 & 10.5 & 2.5 & 11.5 & & - & - & 9 & 1 & & \\
\hline & \(\mathrm{t}_{14+3-}\) & 3 & 2.5 & 11 & 2.5 & 8.5 & 10.5 & 2.5 & 11.5 & & - & - & 14 & 3 & & \\
\hline & \({ }^{\text {t }} 10-2+\) & 2 & 1.8 & 8.4 & 1.8 & 6.0 & 8.0 & 1.8 & 8.8 & & - & - & 10 & 2 & & \\
\hline & t13+23+ & 23 & 2.5 & 11 & 2.5 & 9.5 & 10.5 & 2.5 & 11.5 & & - & - & 13 & 23 & & \\
\hline & t14-3+ & 3 & 2.5 & 11 & 2.5 & 10.0 & 10.5 & 2.5 & 11.5 & & - & - & 14 & 3 & & \\
\hline & \({ }^{\text {t }} 15\) - 2 - & 2 & 3.2 & 14.1 & 3.2 & 10.5 & 13.5 & 3.2 & 14.8 & & - & - & 15 & 2 & & \\
\hline & \({ }^{\text {t }} 15+23+\) & 23 & & & & 10.5 & & & 1 & & - & - & 15 & 23 & 1 & \\
\hline & & 3 & \(\gamma\) & 1 & \(\dagger\) & 11.5 & & & & \(\dagger\) & - & - & 15 & 3 & \(\dagger\) & \(\dagger\) \\
\hline \[
\begin{aligned}
& \text { Rise Time } \\
& (20 \% \text { to } 80 \%)
\end{aligned}
\] & \({ }^{\text {t } 22+}\) & 22 & 1.0 & 6.3 & 1.0 & 3.5 & 6.0 & 1.0 & 6.6 & ns & - & - & 9 & 22 & 12 & 24 \\
\hline \[
\begin{aligned}
& \text { Fall Time } \\
& \quad(20 \% \text { to } 80 \%)
\end{aligned}
\] & \({ }^{\text {t22- }}\) & 22 & 1.0 & 6.3 & 1.0 & 3.5 & 6.0 & 1.0 & 6.6 & ns & - & - & 9 & 22 & 12 & 24 \\
\hline
\end{tabular}

\section*{MC10183 APPLICATIONS INFORMATION}

The MC10183 is a \(4 \times 2\) bit multiplier that uses a modified Booth's algorithm or multiplier coding technique. The device generates the function: \(S=X \cdot Y+K\)
where
\(X=4\)-bit multiplicand
\(Y=2\)-bit multiplier
\(K=4\)-bit constant
The addition of the constant allows the device to be used in an iterative array of parts for larger words. The algorithm for multiplication is:
\begin{tabular}{|c|c|c|c|}
\hline \(y_{i-1}\) & Yi & \(\mathrm{Y}_{\mathrm{i}+1}\) & Operation \\
\hline 0 & 0 & 0 & add zero \\
\hline 1 & 0 & 0 & add multiplicand \\
\hline 0 & 1 & 0 & add multiplicand \\
\hline 1 & 1 & 0 & add 2 times multiplicand \\
\hline 0 & 0 & 1 & sub 2 times multiplicand \\
\hline 1 & 0 & 1 & sub multiplicand \\
\hline 0 & 1 & 1 & sub multiplicand \\
\hline 1 & 1 & 1 & sub zero \\
\hline
\end{tabular}

\section*{DEVICE OPERATION}

The device consists of three main sections; a decoder, a shifter, and a high speed lookahead carry adder/subtractor.
1. The decoder uses the \(Y\) inputs to generate the control signals for the shifter and the adder/subtractor. Also, the polarity control \(\bar{P}\) is used to allow operation in either positive or negative logic. Referring to the logic diagram, the control signals are:
\[
\begin{aligned}
A= & Y_{-1} \oplus Y_{0}(1 \text { times multiplicand }) \\
B= & Y_{-1} Y_{0} \bar{Y}_{1}+\bar{Y}_{-1} \bar{Y}_{0} Y_{1} \\
& (2 \text { times multiplicand }) \\
\bar{C}= & \bar{P}_{1}+\bar{Y}_{-1} \bar{Y}_{0} \bar{Y}_{1}+P Y_{1}\left(\bar{Y}_{-1}+\bar{Y}_{0}\right) \\
& (\text { add/subtract })
\end{aligned}
\]

The \(\bar{P}\) input is tied to a high logic level or ground for positive logic operation.
2. The shift network is a multiplexer that ripples through number \(X(1\) times multiplicand), shifts number \(X\) by one bit ( 2 times multiplicand), or sets the output to zero. The network is controlled by decoder functions \(A\) and B which are generated in accordance with the multiply algorithm.
3. The adder/subtractor follows the shift network which performs the actual multiplication. The adder/subtractor produces the sum or difference of the newly formed partial product and the accumulated partial product (constant K). Subtraction is accomplished by inverting the shifted product and doing a two's complement addition. The carry in of the least significant bit must be a logic one during subtraction.

The two most significant bits of the product are used for sign detection and overflow for a two's complement multiply. These outputs are used only as the two most significant bits of the accumulated product at each addition level with in a multiplier array.

Overflow can occur either as the result of 2 times the multiplicand, and/or of an addition or subtraction. To show all possible conditions (including overflow), the most significant bit (S5) must carry a negative binary weight. To show this for a \(4 \times 2\) bit multiply plus constant, consider the following addition:
\[
\begin{aligned}
X_{4}^{\prime} \cdot X_{3}^{\prime} X_{2}^{\prime} X_{1}^{\prime} X_{0}^{\prime} & \text { shifter outputs } \\
+K 3 \cdot K 3 K 2 K 1 K 0 & \text { constant } \\
\hline \text { S5 S4•S3S2S1S0 } & \text { sum }
\end{aligned}
\]

The shift network produces 5 product bits (maximum value of 2 times multiplicand) and a 4 -bit constant is added to the least signficant end of the product. The K3 bit is repeated to hold the proper binary weight. Because S 5 has a negative weight all possible combinations are represented properly.

If no overflow occurs S4 \(=\) S5, and S4 can be used as a sign bit. Under overflow conditions S4 \(\neq \mathrm{S} 5\), and overflow can be detected by EXCLUSIVE-ORing S4 and S5.

\section*{USAGE RULES}

The MC10183 can be used in larger arrays to produce a two's complement product of 2 two's complement numbers. The following rules apply:
1. For an M -bit by N -bit multiplier, an \((M+N)\)-bit product is formed. The number of MC10183's equals ( \(M\) * \(N\) )/8. As an example, an \(8 \times 8\) bit (Figure 1) array requires \((8 \times 8) / 8=\) 8 packages.
2. The MC10183 can be used directly for both positive logic and negative logic representations. The \(\bar{P}\) input can be tied to ground or to a high logic level for positive logic operation, or left at a low logic level for negative logic operation.
3. The M mode control input is used to invert \(\overline{\mathrm{C}}_{\mathrm{n}}\) when placed at a high logic level or ground, or passes \(\overline{\mathrm{C}}_{\mathrm{n}}\) directly when left as a low logic level. When \(\bar{C}_{n}\) is driven from \(\bar{C}_{n+4}\) of a preceding device, \(M\) control is left in a low logic state. When \(\bar{C}_{n}\) is the least significant input carry bit for a level of addition with in an array, \(\bar{C}_{n}\) is tied to \(Y_{1}\) of the same device, and the \(M\) input is placed at a high logic level. \(Y_{1}\) controls when subtraction occurs, and carry in must be equal to a logic one during subtraction.


FIGURE \(1-8\)-BIT \(\times 8\)-BIT 2's COMPLEMENT MULTIPLIER

\section*{\(8 \times 4\) BIT EXAMPLE}

Figure 2 shows 4 MC10183's in an \(8 \times 4\) bit array. A 12-bit two's complement product is produced from a 4-bit multiplier and an 8-bit multiplicand. The array is used for positive logic representation, and all \(\bar{P}\) inputs are tied to ground. At the first level of multiplication, the \(X_{--1}\) and \(Y_{-1}\) inputs are left open (logic " 0 ") because the initial condition is treated as an add operation. The \(K\) inputs are used to add the accumulated partial product at each level of the array. If the initial partial product is zero, the least significant \(K\) inputs are left at a zero logic state (CONSTANT inputs in the figure). However, these inputs can also be used to add a constant to the least significant end of the product.

When the MC10183 is expanded to longer numbers, the carry out \(\left(\bar{C}_{n+4}\right)\) of a device must be rippled to the carry in ( \(\bar{C}_{n}\) ) of the next most significant device at the same level of multiplication. The least significant device must have the carry input equal to zero for an add and equal to one for a subtraction. In observing the multiplication algorithm \(y_{i+1}\) is always equal to 1 for a subtraction, and the carry input can be tied to \(Y_{1}\). However, the \(M\) mode input must be tied to ground for this device to invert the carry input ( \(\bar{C}_{n}\) ) because the input requires a complemented signal.

The S4 and S5 outputs are used only at the most significant part of the array. These two sum outputs only have meaning as the two most significant bits of a two's complement number.

\section*{OTHER ARRAYS}

The normal parallelogram structure consists of several stages, each multiplying two bits of multiplier times the multiplicand and adds the partial product. In larger arrays, faster configurations can be made by moving some multiplier blocks while maintaining the relative weight of each partial product. The typical times possible for various \(N\)-bit \(\times N\)-bit arrays are:
\begin{tabular}{ccc}
\begin{tabular}{c} 
Number \\
of \\
Bits
\end{tabular} & \begin{tabular}{c} 
Total \\
Multiply \\
Time (ns)
\end{tabular} & \begin{tabular}{c} 
Package \\
Count
\end{tabular} \\
\cline { 1 - 1 } \begin{tabular}{c}
8
\end{tabular} & 43 & 8 \\
12 & 67 & 18 \\
16 & 90 & 32
\end{tabular}

The times do not include wiring delays.
Because of the versatility of the MC10183, many other types of arrays can also be built. Faster arrays using additional adders, pipeline techniques, one's complement and magnitude multipliers, and truncated product multipliers can all be built.

Multiplicand


FIGURE 2 - 8-BIT BY 4-BIT 2's COMPLEMENT MULTIPLIER

\section*{HEX "D" MASTER-SLAVE \\ FLIP-FLOP/WITH RESET}

The MC10186 contains six high-speed, master slave type " \(D\) " flip-flops. Clocking is common to all six flip-flops. Data is entered into the master when the clock is low. Master to slave data transfer takes place on the positive-going Clock transition. Thus, outputs may change only on a positive-going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device. A common Reset is included in this circuit. Reset only functions when clock is low.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =460 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{f}_{\text {toggle }} & =150 \mathrm{MHz}(\mathrm{typ}) \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)
\end{aligned}
\]

\section*{MECL 1OK serines \\ HEX "D" MASTER-SLAVE FLIP-FLOP/WITH RESET}

\section*{LOGIC DIAGRAM}
\(V_{\mathrm{CC}}=\operatorname{Pin} 16\)
\(\mathrm{~V}_{\mathrm{EE}}=\operatorname{Pin} 8\)
CLOCKED TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline\(R\) & \(C\) & \(Q\) & \(Q_{n+1}\) \\
\hline\(L\) & \(L\) & \(\phi\) & \(Q_{n}\) \\
\hline\(L\) & \(H\) & \(L\) & \(L\) \\
\hline\(L\) & \(H\) & \(H\) & \(H\) \\
\hline\(H\) & \(L\) & \(\phi\) & \(L\) \\
\hline
\end{tabular}

\footnotetext{
\(\phi=\) Don't Care
*A clock H is a clock transition from a low to a high state.
}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been estabished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one data input, the clock input, and the reset input, and for one output. Other inputs and outputs tested in the same manner.

tOutput level to be measured after a clock pulse.
\(V_{I L} \longrightarrow V_{1}\)
\(\mathrm{V}_{\text {IH }}\) appears at clock input (pin 9).
VIL

\section*{MECL LOK serurs}

\section*{HEX BUFFER WITH ENABLE}

The MC10188 is a high-speed hex buffer with a common Enable input. When Enable is in the high state, all outputs are in the low state. When Enable is in the low state, the outputs take the same state as the inputs.
\[
\begin{aligned}
\text { Power Dissipation }= & 180 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\text { Propagation Delay }= & 2.0 \mathrm{~ns} \text { typ }(B-Q) \\
& 2.5 \mathrm{~ns} \text { typ }(A-Q)
\end{aligned}
\]


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for one set of conditions. Complete testing according to truth table.


\section*{MECL 10 K series}

\section*{HEX INVERTER WITH ENABLE}

The MC10189 provides a high-speed Hex Inverter with a common Enable input. The hex inverting function is provided when Enable is in the low state. When Enable is in the high state all outputs are low.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =200 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.0 \mathrm{~ns} \text { typ }(\mathrm{B}-\mathrm{Q}) \\
& =2.5 \mathrm{~ns} \text { typ }(\mathrm{A}-\mathrm{Q})
\end{aligned}
\]
\(\mathrm{V}_{\text {CC1 }}=\operatorname{Pin} 1\)
\(\mathrm{~V}_{\mathrm{CC}}=\operatorname{Pin} 16\)
\(\mathrm{V}_{\mathrm{CC} 2}=\operatorname{Pin} 16\)
\(\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 8\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Inputs } & Output \\
\hline X & Y & OUT \\
\hline L & L & H \\
\hline L & H & L \\
\hline H & L & L \\
\hline H & H & L \\
\hline
\end{tabular}


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for one set of conditions. Complete testing according to truth table


\section*{MECL LOK serues}

\section*{QUAD MST TO MECL 10,000 TRANSLATOR}

The MC101090 is a quad translator for interfacing from IBM MST-type logic signals to standard MECL 10,000 logic levels. This circuit features differential inputs for high noise environments or may be used with single ended lines by tieing one of the inputs to ground. Since the MC10190 is designed to accept signals centered around ground, it is a useful interface element for many communication systems. When pin 9 is connected to \(V_{C C}\) the circuit becomes a line receiver for MECL signals. The outputs go to a low level whenever the inputs are left floating.
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=215 \mathrm{~mW} \text { typ/pkg (No Load) } \\
& \mathrm{t}_{\mathrm{pd}}=2.5 \mathrm{~ns} \text { typ } \\
& \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

QUAD MST TO MECL 10,000 TRANSLATOR

P SUFFIX
PLASTIC PACKAGE CASE 648


SUFFIX CERAMIC PACKAGE CASE 620

\section*{LOGIC DIAGRAM}

\section*{PIN ASSIGNMENT}


\section*{ELECTRICAL CHARACTERISTICS}
Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbot} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Pin } \\
\text { Under } \\
\text { Test }
\end{gathered}
\]} & \multicolumn{8}{|c|}{MC10190 Test Limits} & \multicolumn{12}{|c|}{\multirow[t]{2}{*}{TEST VOLTAGE APPLIED TO PINS LISTED BeLow:}} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{cc}} \mathrm{G}^{\mathrm{Gnnd}}\right.
\end{aligned}
\]} \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\({ }^{+85^{\circ} \mathrm{C}}\)} & & & & & & & & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{V}_{\mathrm{IH} \text { max }}\) & \(V_{\text {IL min }}\) & \(\mathrm{V}_{\text {ILA } \text { min }}\) & \(V_{\text {ILAmax }}\) & \(\mathrm{V}_{\text {IHM }}\) & \(V_{\text {ILM* }}\) & \(\mathrm{V}_{1 \mathrm{HH}}\) & \(\mathrm{V}_{\text {ILH* }}\) & \(\mathrm{V}_{\mathrm{iHL}}\) & \(\mathrm{V}_{\text {ILL }}\) * & \(\mathrm{v}_{\text {SS* }}\) & \(\mathrm{V}_{\text {EE }}\) & \\
\hline \multirow[t]{2}{*}{Power Supply Drain Current} & IE & 8 & - & 57 & - & 41 & 52 & - & 57 & mAdc & 46,10,12 & 5,7,11,13 & - & - & - & - & \(\bigcirc\) & - & - & - & 9 & 8 & 1,16 \\
\hline & ICC & 9 & - & 27 & - & 22 & 27 & - & 27 & mAdc & 46,10,12 & 5,7,11,13 & - & - & - & - & - & - & - & - & 9 & 8 & 1,16 \\
\hline Input Current & \(\mathrm{I}_{\text {in }}\) & 4 & - & \[
\begin{aligned}
& 70 \\
& 70
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 45 \\
& 45
\end{aligned}
\] & - & \[
\begin{aligned}
& 45 \\
& 45
\end{aligned}
\] & \({ }_{\text {u }}^{\mu \text { Adc }}\) & 4 & 5
4 & - & - & - & - & - & - & - & - & 9
9 & 8
8
8 & 1,16
1,16 \\
\hline Reverse Leakage Current & \({ }^{\text {ICBO }}\) & 4 & - & 1.5 & 1.0 & - & - & - & 1.0 & \(\mu \mathrm{Adc}\) & - & - & - & - & - & \(\checkmark\) & - & - & - & - & 9 & 4,8 & 1.16 \\
\hline Logic "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline-1.060 \\
& -1.060 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-0.960 \\
-0.960 \\
\hline
\end{array}
\] &  & \[
\begin{array}{r}
-0.810 \\
-0.810 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -0.890 \\
& -0.890 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-0.700 \\
-0.700 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Vdc} \\
& \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & 5 & - & - & - & \[
\overline{7}
\] & 4 & - & - & - & - & 9 & \[
\begin{array}{r}
\hline 8 \\
8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1,9,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline Logic "0" Output Voltage & VOL & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l}
\hline-1.890 \\
-1.890 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -1.675 \\
& -1.675 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -1.850 \\
& -1.850 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-1.650 \\
-1.650 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline-1.825 \\
-1.825 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-1.615 \\
-1.615 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& v_{d c} \\
& v_{d c}
\end{aligned}
\] & 4 & 5 & - & \(-\) & 4 & \[
\begin{gathered}
\overline{-} \\
\hline
\end{gathered}
\] & - & - & - & - & \(\overline{9}\) & \[
\begin{aligned}
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 1,9,16 \\
& 1,16 \\
& \hline
\end{aligned}
\] \\
\hline Logic "1" Threshold Voltage & \(\mathrm{V}_{\text {OHA }}\) & 2 & -1.080 & - & -0.980 & - & - & -0.910 & - & Vdc & - & - & 5 & 4 & - & - & - & - & - & - & - & 8 & 1,9,16 \\
\hline Logic "0" Threshold Voltage & VOLA & 2 & - & -1.655 & - & - & \({ }^{-1.630}\) & - & -1.595 & Vdc & - & - & 4 & 5 & - & - & - & - & - & - & - & 8 & 1,9,16 \\
\hline \multirow[t]{2}{*}{Common Miode Rejection Test} & V OH & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\left[\begin{array}{l}
-1.060 \\
-1.060 \\
\hline
\end{array}\right.
\] & \[
\begin{aligned}
& -0.890 \\
& -0.890
\end{aligned}
\] & \[
\begin{array}{|r|}
\hline-0.960 \\
-0.960 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& - \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r|}
\hline-0.810 \\
-0.810 \\
\hline
\end{array}
\] & \[
\begin{array}{|}
\hline-0.890 \\
-0.890 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline-0.700 \\
-0.700 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Vdc} \\
& \mathrm{Vdc} \\
& \hline
\end{aligned}
\] & - & - & - & - & - & - & 5 & 4 & 5 & - & - & \[
\begin{aligned}
& 8 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1,9,16 \\
& 1,9,16 \\
& \hline
\end{aligned}
\] \\
\hline & \(\mathrm{v}_{\text {OL }}\) & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.890 \\
-1.890
\end{array}
\] & \[
\begin{array}{|l|}
\hline-1.675 \\
-1.675
\end{array}
\] & \[
\begin{aligned}
& -1.850 \\
& -1.850
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& \hline-1.650 \\
& -1.650
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-1.825 \\
-1.825
\end{array}
\] & \[
\begin{aligned}
& -1.615 \\
& -1.615
\end{aligned}
\] & \[
\begin{aligned}
& \text { Vdc } \\
& \text { Vdc }
\end{aligned}
\] & - & - & - & - & - & - & \[
4
\] & \[
5
\] & \[
\overline{4}
\] & \[
\overline{5}
\] & - & \[
\begin{array}{r}
\hline 8 \\
8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1,9,16 \\
& 1,9,16
\end{aligned}
\] \\
\hline Switching Times
(50 ohm load)
Propagation Delay & \[
\begin{aligned}
& \mathrm{t}_{4-2+} \\
& \mathrm{t}_{4+2-2}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.9 \\
& 3.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
2.5 \\
2.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.7 \\
& 3.7
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4.1 \\
& 4.1
\end{aligned}
\] & ns & -- & - & Pulse In & Pulse Out & - & - & - & - & - & - & \begin{tabular}{|c|}
+3.25 v \\
\hline 9 \\
9 \\
9
\end{tabular} & \begin{tabular}{c}
-3.2 \(\overline{\mathrm{v}}\) \\
\hline 8 \\
8 \\
\hline 8
\end{tabular} & \begin{tabular}{|c|}
\hline\(+\mathbf{2 . 0} \mathrm{V}\) \\
\hline \(1,5,6,11,12\) \\
\(1,5,6,11,12\)
\end{tabular} \\
\hline \[
\begin{array}{|l|}
\hline \text { Rise Time } \\
(20 \% \text { to } 80 \%) \\
\hline
\end{array}
\] & \({ }^{\text {t } 2+}\) & 2 & 1.1 & 4.5 & 1.5 & 2.0 & 4.3 & 1.1 & 4.7 & ns & - & - & 4 & 2 & - & - & - & - & - & - & 9 & 8 & 1,5,6.11,12 \\
\hline \[
\begin{array}{|l|}
\hline \text { Fali Time } \\
(20 \% \text { to } 80 \%) \\
\hline
\end{array}
\] & \({ }^{\text {t2- }}\) & 2 & 1.1 & 4.5 & 1.5 & 2.0 & 4.3 & 1.1 & 4.7 & ns & - & - & 4 & 2 & - & - & - & - & - & - & 9 & 8 & 1,5,6,11,12 \\
\hline
\end{tabular}
\({ }^{*} V_{\text {SS }}=1\) IBM Supply Voltage.
\(V_{\text {IHM }}=\) Input Logic " 1 " for IBM level
\(V_{\text {ILM }}=\) Input Logic " " 0 " for IBM level.
\(V_{\text {IHH }}=\) Input logic " 1 " level shifted positive for common mode rejection tests.
\(V_{1 L H}=\) input logic " 0 " level shifted positive for common mode rejection tests
de reection tests.

SWITCHING tIME TEST CIRCUIT


\section*{HEX MECL 10,000 TO MST TRANSLATOR}

The MC10191 is a hex MECL to IBM MST type logic translator. A common enable (active low) is provided for gating. Open emitter outputs are provided for gating. Open emitter outputs are provided to permit direct transmission line driving.

The MC10191 is useful for interfacing to both MST-II and MST-IV systems.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =170 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.2 \mathrm{~ns} \text { typ Input to Output } \\
& =3.3 \mathrm{~ns} \text { typ Enable to Output }
\end{aligned}
\]

\section*{LOGIC DIAGRAM}

\begin{tabular}{|c|c|c|} 
Data & Common & Output \\
\hline L & L & L \\
L & H & L \\
H & L & H \\
H & H & L \\
\hline
\end{tabular}

\section*{MEOL 1OK sERIES}

\section*{HEX MECL 10,000 TO MST TRANSLATOR}


\section*{PIN ASSIGNMENT}


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test procedures are shown for only one translator. The other translators are tested in the same manner.


\section*{SWITCHING TIME TEST CIRCUIT}


50 -ohm termination to ground located in each scope channel input.

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be \(<1 / 4\) inch from \(T P_{\text {in }}\) to input pin and \(T P_{\text {out }}\) to output pin.

\section*{MC10192}

\section*{QUAD BUS DRIVER}

The MC10192 contains four line drivers with complementary outputs. Each driver has a Data (D) input and shares an Enable ( \(\bar{E}\) ) input with another driver. The two driver outputs are the uncommitted collectors of a pair of NPN transistors operating as a current switch. Each driver accepts 10K MECL input signals and provides a nominal signal swing of 800 mV across a \(50 \Omega\) load at each output collector. Outputs can drive higher values of load resistance, provided that the combination of \(I_{R}\) drop and load return voltage \(\mathrm{V}_{\mathrm{LR}}\) does not cause an output collector to go more negative than -2.4 V with respect to \(\mathrm{V}_{\mathrm{C}}\). To avoid output transistor breakdown, the load return voltage should not be more positive than +5.5 V with respect to \(\mathrm{V}_{\mathrm{CC}}\). When the \(\overline{\mathrm{E}}\) input is high, both output transistors of a driver are nonconducting. When not used, the \(\bar{E}\) inputs, as well as the \(D\) inputs, may be left open.

> Open Collector Outputs Drive Terminated Lines or Transformers \(50 \mathrm{k} \Omega\) Input Pulldown Resistors on All Inputs (Unused Inputs May Be Left Open) Power Dissipation \(=575 \mathrm{~mW}\) typ/pkg (No Load) Propagation Delay \(=\begin{aligned} 3.5 \mathrm{~ns} \text { typ }(\overline{\mathrm{E}}-\text { Output) } \\ 3.0 \mathrm{~ns} \text { typ }(\mathrm{D}-\text { Output) })\end{aligned}\)

\section*{MECL 1OK series}

QUAD BUS DRIVER


\section*{LOGIC DIAGRAM}


\section*{TRUTH TABLE}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Inputs } & \multicolumn{3}{|c|}{ Output } \\
\hline \(\bar{E}\) & D & Z & \(\bar{Z}\) \\
\hline H & X & H & H \\
\hline L & H & H & L \\
\hline L & L & L & H \\
\hline
\end{tabular}
\(H=\) HIGH Voltage Level
L= LOW Voltage Level
X = Don't Care
\(V_{C C}=\operatorname{Pin} 16\)
\(\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 8\)

PIN ASSIGNMENT


\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to ground volts. Test procedures are shown for one set of conditions. Complete testing according to truth table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline table. & & & & & & & & & rature & \(\mathrm{V}_{\text {IHmax }}\) & \(\mathrm{V}_{\text {ILImin }}\) & \(\mathrm{V}_{\text {IHAmin }}\) & VILAmax & VEE & \\
\hline & & & & & & & & & \(-30^{\circ} \mathrm{C}\) & -0.890 & -1.890 & -1.205 & -1.500 & -5.2 & \\
\hline & & & & & & & & & \(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & \(+85^{\circ} \mathrm{C}\) & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline & & & & & Test & mits & & & & & & & & & \\
\hline & & Pin Under & & & & & & & & & T VOLtage & PLIED TO P & ISTED BEL & & ( \(\mathrm{V}_{\mathrm{cc}}\) ) \\
\hline Characteristic & Symbol & Test & Min & Max & Min & Max & Min & Max & Unit & VIHmax & VILImin & \(\mathrm{V}_{\text {IHAmin }}\) & \(V_{\text {ILAmax }}\) & VEE & Gnd \\
\hline Power Supply Drain Current & IE & 8 & - & 154 & - & 140 & - & 154 & mAdc & - & - & - & - & 8 & 16 \\
\hline Input Current & linH & 5 & - & 350 & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & 5 & - & - & - & 8 & 16 \\
\hline & & 5 & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{Adc}\) & - & 5 & - & - & 8 & 16 \\
\hline \[
\begin{aligned}
& \text { Logic "1" } \\
& \text { Output Current High } \\
& \hline
\end{aligned}
\] & \({ }^{\mathrm{O}} \mathrm{H}\) & 2 & - & - & - & 2.0 & - & - & mAdc & - & 5,6,10,11 & - & - & 8 & 16 \\
\hline ```
Logic " 0"
    Output Current Low
``` & \({ }^{\prime} \mathrm{OL}\) & 2 & 13.5 & +18 & 14 & 18 & 14 & 19 & mAdc & 5,6,10,11 & - & - & - & 8 & 16 \\
\hline \[
\begin{aligned}
& \text { Logic "1" } \\
& \quad \text { Output Current High } \\
& \hline
\end{aligned}
\] & IOHC & 2 & - & 2.0 & - & 2.0 & - & 2.0 & mAdc & - & 5,7,9,10,11 & - & 6 & 8 & 16 \\
\hline \[
\begin{aligned}
& \text { Logic " } 0 \text { " } \\
& \text { Output Current Low }
\end{aligned}
\] & IOLC & 2 & 13.5 & - & 14 & - & 14 & - & mAdc & 5,10,11 & 7,9 & 6 & - & 8 & 16 \\
\hline \[
\begin{aligned}
& \text { Logic " } 0 \text { " } \\
& \text { Output Sink Current Low }
\end{aligned}
\] & Ios & 2 & 13.3 & - & 13.9 & - & 13.3 & - & mAdc & 5,6,10,11 & - & - & - & 8 & 16 \\
\hline Load Return Voltage Absolute Max Rating (Note 1) & \(V_{\text {LR }}\) & & & 5.5 & & 5.5 & & 5.5 & Volts & \(\square\)
- & - & - & - & 8 & 16 \\
\hline Output Voltage Low (Note 2) & VOLS & & & & -2.4 & & & & Volts & - & - & - & - & 8 & 16 \\
\hline \begin{tabular}{l}
Switching Times \\
(\(50 \Omega\) Load) Propagation Delay \\
E to Output \\
D to Output \\
Rise Time, Fall Time (20\% to 80\%)
\end{tabular} & \begin{tabular}{l}
tPHL tplH \\
tTLH \\
tTHL
\end{tabular} & - & - & - & \[
\begin{aligned}
& 2.0 \\
& 1.5 \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 4.5 \\
& 3.3
\end{aligned}
\] & - & - & ns & * & & & & & \\
\hline
\end{tabular}

NOTE 1 The 5.5 V value is a maximum rating, do not exceed. A 270 OHM resistor will prevent output transistor breakdown.
NOTE 2 Limitations of load resistor and load return voltage combinations. Refer to page 1 description.

\section*{DUAL SIMULTANEOUS \\ BUS TRANSCEIVER}

The MC10194 is a dual line driver/receiver which is capable of transmitting and receiving full duplex digital signals on a high speed bus line. Because of the current source line driver, two independent messages may be transmitted on one line at the same time.
The MC10194 is designed to work with a wide range of line impedances by connecting a resistor equal to one half the line impedance between the \(R_{E 1}\) and \(R_{E 2}\) inputs and \(V_{E E}\). Each driver in the circuit will drive lines down to 75 ohms or the two drivers may be operated in parallel for lines down to 37 ohms. The data inputs and outputs on the MC10194 are fully compatible with other MECL 10,000 circuits.
\[
\begin{aligned}
\mathrm{PD}_{\mathrm{D}} & =405 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.5 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

LOGIC DIAGRAM

TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Inputs } & \multicolumn{2}{c|}{ Outputs } \\
\hline\(D_{\text {in }} 1\) & \(D_{\text {in }} 2\) & Bus & \(D_{\text {out }}\) \\
\hline\(L\) & \(L\) & \(V_{\text {BusO }}\) & \(H\) \\
\hline\(H\) & \(L\) & \(V_{\text {Bus }}\) & \(H\) \\
\hline\(L\) & \(H\) & \(V_{B u s H}\) & \(H\) \\
\hline\(H\) & \(H\) & \(V_{\text {BusH }}\) & \(H\) \\
\hline L & L & \(V_{\text {BusH }}\) & L \\
\hline\(H\) & L & \(V_{\text {BusL }}\) & L \\
\hline L & \(H\) & \(V_{\text {BusL }}\) & L \\
\hline\(H\) & \(H\) & \(V_{\text {BusL }}\) & \(L\) \\
\hline
\end{tabular}

\section*{MECL 10K \\ sernes}

DUAL SIMULTANEOUS BUS TRANSCEIVER

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Data outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedure are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{gathered}
\text { @ Test } \\
\text { Temperature }
\end{gathered}
\]} & \multicolumn{10}{|c|}{test voltage/current values} \\
\hline & \multicolumn{3}{|c|}{(mAdc)} & \multicolumn{7}{|c|}{(Volts)} \\
\hline & ICs1 & \({ }^{\text {c csoa }}\) & ICS1A & \(\mathrm{V}_{\text {IH max }}\) & \(\mathrm{V}_{\text {ILmin }}\) & \(\mathrm{V}_{\text {IHAmin }}\) & \(\mathrm{V}_{\text {ILAmax }}\) & \(\mathrm{v}_{\text {CL }}\) & \(\mathrm{v}_{\mathrm{CH}}\) & \(\mathrm{V}_{\mathrm{EE}}\) \\
\hline \(-30^{\circ} \mathrm{C}\) & -21.1 & 6.35 & 14.50 & -0.890 & -1.890 & -1.205 & -1.500 & -1.508 & 0 & -5.2 \\
\hline \(+25^{\circ} \mathrm{C}\) & -22.6 & 6.80 & 15.27 & -0.810 & -1.850 & -1.105 & -1.475 & -1.618 & 0 & -5.2 \\
\hline \(+85^{\circ} \mathrm{C}\) & -24.2 & 7.27 & 16.35 & -0.700 & -1.825 & -1.035 & -1.440 & -1.738 & 0 & -5.2 \\
\hline
\end{tabular}

TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW:
\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Pin } \\
\text { Under } \\
\text { Test }
\end{gathered}
\]} & \multicolumn{8}{|c|}{TEST LIMITS} & \multicolumn{10}{|c|}{\multirow[t]{2}{*}{test voltage/current applied to pins listed below:}} & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline\left(\begin{array}{l}
\mathrm{cc}) \\
\text { Gnd }
\end{array}\right. \\
\hline
\end{array}
\]} \\
\hline & & & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & ICS1 & I'cs0A & \({ }^{\text {C }}\) C1A & \(\mathrm{V}_{\text {IH max }}\) & \(\mathrm{V}_{\text {IL }}\) min & \(\mathrm{V}_{\text {IHAmin }}\) & \(\mathrm{V}_{\text {ILAmax }}\) & \(\mathrm{V}_{\text {cL }}\) & \(\mathrm{V}_{\mathrm{CH}}\) & \(\mathrm{V}_{\mathrm{EE}}\) & \\
\hline Power Supply Drain Current & \({ }_{\text {I }} \mathrm{E}\) & 8 & - & 107 & - & 78 & 97 & - & 107 & mAdc & - & - & - & - & 3,4,13,14 & - & - & - & - & 8 & 1.16 \\
\hline Input Current & 1 inH & 3 & - & 525 & - & - & 330 & - & 330 & \(\mu \mathrm{Adc}\) & - & - & - & 3 & - & - & - & - & - & 8 & 1,16 \\
\hline & & 7 & - & 40 & & - & 25 & - & 25 & \(\mu \mathrm{Adc}\) & - & - & - & - & - & - & - & - & 7 & 8 & 1,16 \\
\hline Input Leakage Current & 1 inL & 4 & - & 32 & 0.5 & - & 2.0 & - & 20 & \(\mu \mathrm{Adc}\) & - & - & - & 3,13,14 & - & - & - & - & - & 8 & 1.16 \\
\hline & & 7 & - & 32 & - & - & 20 & - & 20 & \(\mu \mathrm{Adc}\) & - & - & - & - & - & - & - & 7 & - & 8 & 1,16 \\
\hline Logic "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & 2 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & - & - & - & 3,4 & - & - & - & - & - & 8 & 1,16 \\
\hline Logic "0" Output Voltage & \(\mathrm{V}_{\text {OL }}\) & 2 & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 & -1.615 & Vdc & 7 & - & - & 3.4 & - & - & - & - & - & 8 & 1,16 \\
\hline Logic " 1 " Threshold Voltage & \(\mathrm{V}_{\mathrm{OHA}}\) & 2 & -1.080 & - & -0.980 & - & - & -0.910 & - & Vdc & - & 7 & - & (1) & (1) & - & - & - & - & 8 & 1.16 \\
\hline Logic "0" Threshold Voltage & VOLA & 2 & - & -1.655 & - & - & -1.630 & - & -1.595 & Vdc & - & - & 7 & (1) & (1) & - & - & - & - & 8 & 1,16 \\
\hline Bus Driver Zero Voltage Level & \(\mathrm{V}_{\text {Bus0 }}\) & 7 & -10 & +10 & - 10 & - & +10 & -10 & +10 & mVdc & - & - & - & - & - & - & - & - & - & 8 & 1,16 \\
\hline Bus Driver High Voltage Level & \(V_{\text {BusH }}\) & 7 & -0.915 & -0.715 & -0.970 & - & -0.770 & -1.030 & -0.830 & vdc & - & - & - & 3,4 & - & - & - & - & - & 8 & 1,16 \\
\hline Bus Driver Low Voltage Level & \({ }^{\text {BusL }}\) & 7 & -1.708 & -1.508 & --1.818 & - & -1.618 & -1.938 & -1.738 & Vdc & 7 & - & - & 3,4 & - & - & - & - & - & 8 & 1,16 \\
\hline Bus Driver Zero Threshold Voltage Leve: & \(V_{\text {Bus } 0 \mathrm{~A}}\) & 7 & -30 & - & -30 & - & - & -30 & - & mvdc & - & - & - & - & - & - & 3.4 & - & - & 8 & 1,16 \\
\hline Bus Drivet High Threshold Voltage Level & \[
\underset{\text { (2) }}{\mathrm{V}_{\text {BusHA+ }}}
\] & 7 & -0.935 & -0.695 & -0.990 & - & -0.750 & -1.050 & -0.810 & Vdc & - & - & - & - & - & 3,4 & - & - & - & 8 & 1,16 \\
\hline Bus Driver High Threshold Voltage Level & \begin{tabular}{l}
VBusHA- \\
(3)
\end{tabular} & 7 & -0.935 & -0.695 & -0.990 & - & -0.750 & -1.050 & -0.810 & Vdc & 7 & - & - & - & - & - & 3.4 & - & - & 8 & 1.16 \\
\hline Bus Driver Low Threshold Voltage Level & VBusLA & 7 & - & -1.488 & - & - & -1.598 & - & -1.718 & Vdc & 7 & - & - & - & - & 3,4 & - & - & - & 8 & 1,16 \\
\hline & & & & & & & & & & & & & & & \(\mathrm{R}_{\mathrm{E} 1}{ }^{*}\) & \(\mathrm{R}_{\mathrm{E} 2}{ }^{*}\) & +0.31Vdc & Pulse in & Pulse Out & -3.2 v & +2.0 V \\
\hline Switching Times 150 -ohm load) Propagation Delay & \[
\begin{aligned}
& 13-7+ \\
& 13+7- \\
& \text { t } 7-2- \\
& 17+2+ \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \[
\stackrel{1.0}{1}
\] & \[
\begin{aligned}
& 3.1 \\
& 3.1 \\
& 4.5 \\
& 4.5
\end{aligned}
\] & \[
\stackrel{1.0}{\downarrow}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.5 \\
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.9 \\
& 2.9 \\
& 4.3 \\
& 4.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.2 \\
& 3.2 \\
& 4.7 \\
& 4.7 \\
& \hline
\end{aligned}
\] & \[
\|^{n s}
\] & & -
-
- & & -
-
- & \[
1
\] & & \[
\begin{gathered}
4 \\
4 \\
3.4 \\
3.4
\end{gathered}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 7 \\
& 2 \\
& 2 \\
& 2
\end{aligned}
\] & \[
1_{1}^{8}
\] & \\
\hline Rise Time (20\% to 80\%) & \(\mathrm{t}_{2}+\) & 2 & 1.1 & 4.4 & 1.1 & 2.0 & 4.2 & 1.1 & 4.6 & ns & - & - & - & - & 5 & 7 & 4 & 7 & 2 & 8 & 1,16 \\
\hline \[
\begin{aligned}
& \text { Fall Time } \\
& \quad(20 \% \text { to } 80 \%)
\end{aligned}
\] & t \(2-\) & 2 & 1.1 & 3.5 & 1.1 & 2.0 & 3.3 & 1.1 & 3.6 & ns & - & - & - & - & 5 & 7 & 4 & 7 & 2 & 8 & 1.16 \\
\hline
\end{tabular}
(1) \(V_{O H A}\) and \(V_{O L A}\) threshold test limits remain the same with \(V_{\text {IHmax }}\) or \(V_{\text {ILmin }}\) applied.
(2) \(V_{\text {BusHA }}\) denotes the upper output threshold level with \(V_{\text {IHAmin }}\) applied and the external current source, ICS of
\(*^{*} \mathrm{E}_{\mathrm{E}}=37.5\) ohms connected to \(\mathrm{V}_{\mathrm{EE}}, \mathrm{R}_{\mathrm{E} 2}=37.5\) ohms connected to \(\mathrm{V}_{\mathrm{CC}}\).

Definitions
\(V_{C L}\) Low bias voltage for testing bus driver input loading
\(\mathrm{CH}=\) High bias vol tage for testing bus driver input loading
ICS1A = Upper threshold level of external current source input to the bus driver
ICSOA = Lower threshald level of external current source input to the bus driver

\section*{SWITCHING TIME TEST CIRCUIT}

\section*{DC LOGIC LEVEL DESCRIPTION}

The bus terminal (pin 7) can be at any one of three possible levels \(\mathrm{V}_{\mathrm{BusO}}, \mathrm{V}_{\mathrm{BusH}}\), or \(\mathrm{V}_{\text {BusL }}\) depending upon the combination of inputs applied. The MECL inputs (pins 3 and 4) cause the bus terminal to switch between two levels, \(\mathrm{V}_{\mathrm{BusO}}\) and \(\mathrm{V}_{\mathrm{Bu}} \mathrm{H}\) when the external current source (\(\mathrm{I}_{\mathrm{CS}}\)) is off, and \(\mathrm{V}_{\text {BusH }}\) and \(\mathrm{V}_{\text {BusL }}\) when the external current source is on. The bus ouput threshold voltage levels caused by applying input threshold voltages VILA and \(V_{\text {IHA }}\) at pins 3 and 4 , are also translated depending upon the state of \(\mathrm{I}_{\mathrm{CS}}\). These threshold levels are \(\mathrm{V}_{\mathrm{BusOA}}\) and \(\mathrm{V}_{\mathrm{BusHA}}^{+}\) when \(I_{C S}\) is off, and \(V_{\text {BusHA- and }} V_{\text {BusLA }}\) when ICS is on. These relative voltage levels are shown in the figure on the right.

DC TEST CONFIGURATION

\section*{APPLICATIONS INFORMATION}

The MC10194 Dual Simultaneous Bus Driver/Receiver is designed for high speed data transfer over multi-port bus lines. Full duplex data transmission can improve system performance by increasing message density and overcoming the requirement to wait two line propagation delay times between messages.

Figure 1 illustrates system uses for the MC10194. One mode of operation is with two drivers on the bus line at locations \(X\) and \(Z\). Any input to \(D_{\text {in }} X\) is seen at \(D_{\text {out }} Z\) one tine propagation delay later. Similarly, any input to \(\mathrm{D}_{\text {in }} \mathrm{Z}\) is transmitted to \(\mathrm{D}_{\text {out }} \mathrm{X}\). Each driver inhibits the data being sent on the bus from appearing at its receiver output, so full duplex signal transmission is possible. In addition, current source drivers allow two messages to pass on the same line so there are no timing restrictions between sending messages.

A second type of system operation is with a multiterminal bus as illustrated in Figure 1 by points \(X, Y\), and Z. In this mode, any one terminal can transmit data and all other points will receive the message. Alternately, any two terminals can simultaneously exchange data, but the other receivers will not see valid data.

The MC10194 uses current source line driving and is designed to operate with a load to \(\mathrm{V}_{\mathrm{CC}}\) (normally ground). This load is usually the line termination resistors at each end of the line as shown in Figure 2. In addition, to match the driver to a given impedance line, an external resistor equal to one-half the line termination resistor value is connected between the RE output and \(V_{E E}\).

When the circuit is used with a multi-terminal bus, each driver must have the resistor between \(R_{E}\) and \(V_{E E}\), but the termination resistors are required only at each end of the bus line.

Each MC10194 driver in a package is capable of driving 75 -ohm tines. Higher impedance lines may be used with no loss of performance if the line is properly matched with \(\mathrm{R}_{\mathrm{E}}\). If it is desirable to drive 50 -ohm lines, both drivers in a package should be operated in parallel with each having 50 -ohm resistors at \(R_{E}\) and the driver outputs both connected to the 50 -ohm bus line.

To allow very high data rates, the rise and fall times on the bus line are quite fast (typically 1.0 ns). With full duplex operation, it is possible to get a crosstalk pulse of several hundred mV at a receiver output. A \(10-20 \mathrm{pF}\) capacitor connected between each driver output and VEE will slow down the rise and fall times, greatly reduce any crosstalk pulse, and still give good system performance.

The adjustable current source drive feature of the MC10194 makes this circuit a useful output driver for many applications. For example, it is possible to drive the 50 -ohm to ground load required by many interface systems. This driver will sink the 14 to 18 mA required to meet the AEC Committee specification for Nuclear Instrument Modules. The MC10114 MECL Line Receiver makes a good interface receiver for the MC10194 driver in these applications.

FIGURE 2 - BUS LINE INTERFACE

\section*{MECL LOK series}

HEX INVERTER/BUFFER
The MC10195 is a Hex Buffer Inverter which is built using six EXCLUSIVE NOR gates. There is a common input to these gates which when placed low or left open allows them to act as inverters. With the common input connected to a high logic level the MC10195 is a hex buffer, useful for high fanout clock driving and reducing stub lengths on long bus lines.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =200 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.8 \mathrm{~ns} \operatorname{typ}(\mathrm{~B}-\mathrm{Q}) \\
\mathrm{t}_{\mathrm{pd}} & =3.8 \mathrm{~ns} \operatorname{typ}(\mathrm{~A}-\mathrm{Q}) \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.5 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)
\end{aligned}
\]

\section*{HEX INVERTER/BUFFER}

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifi cations shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.

\section*{MC10197}

\section*{MECL LDK series}

\section*{HEX "AND" GATE}

The MC10197 provides a high speed hex AND function with strobe capability.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =200 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2.8 \mathrm{~ns} \operatorname{typ}(\mathrm{~B}-\mathrm{Q}) \\
\mathrm{t}_{\mathrm{pd}} & =3.8 \mathrm{~ns} \operatorname{typ}(\mathrm{~A}-\mathrm{Q}) \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =2.5 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)
\end{aligned}
\]

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.

\section*{MONOSTABLE MULTIVIBRATOR}

The MC10198 is a retriggerable monostable multivibrator. Two enable inputs permit triggering on any combination of positive or negative edges as shown in the accompanying table. The trigger input is buffered by Schmitt triggers making it insensitive to input rise and fall times.
The pulse width is controlled by an external capacitor and resistor. The resistor sets a current which is the linear discharge rate of the capacitor. Also, the pulse width can be controlled by an external current source or voltage (see applications information).
For high-speed response with minimum delay, a hi-speed input is also provided. This input bypasses the internal Schmitt triggers and the output responds within 2 nanoseconds typically.
Output logic and threshold levels are standard MECL 10,000. Test conditions are per Table 2. Each "Precondition" referred to in Table 2 is per the sequence of Table 1.
\[
\begin{aligned}
\mathrm{PD}= & 415 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}}= & 4.0 \mathrm{~ns} \text { typ Trigger Input to } \mathrm{Q} \\
& 2.0 \mathrm{~ns} \text { typ Hi-Speed Input to } \mathrm{O}
\end{aligned}
\]

> Min Timing Pulse Width
> Max Timing Pulse Width Min Trigger Pulse Width Min Hi-Speed Trigger Pulse Width
> Enable Setup Time
> Enable Hold Time
> \({ }^{1} \mathrm{C}_{\text {Ext }}=0\) (Pin 4 open), \(R_{\text {Ext }}=0\)
> (Pin 6 to \(\mathrm{V}_{\mathrm{EE}}\))
> \({ }^{2} \mathrm{C}_{\text {Ext }}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {Ext }}=2.7 \mathrm{k} \Omega\)

\section*{MECL LOK series}

MONOSTABLE MULTIVIBRATOR

SUFFIX CERAMIC PACKAGE CASE 620

P SUFFIX
PLASTIC PACKAGE CASE 648

PIN ASSIGNMENT

TRUTH TABLE
\begin{tabular}{|c|c|l|}
\hline \multicolumn{2}{|c|}{ INPUT } & \multicolumn{1}{c|}{ OUTPUT } \\
\hline \(\bar{E}_{\text {Pos }}\) & \(\bar{E}_{\text {Neg }}\) & \\
\hline L & L & Triggers on both positive \& negative input slopes \\
L & H & Triggers on positive input slope \\
H & L & Triggers on negative input slope \\
\(H\) & \(H\) & Trigger is disabled \\
\hline
\end{tabular}

TABLE 1 - PRECONDITION SEQUENCE

1. At \(\mathbf{t}=0 \quad\) a.) Apply \(V_{1 H m a x}\) to \(\operatorname{Pin} 5\) and 10.
b.) Apply VILmin to Pin 15.
c.) Ground Pin 4.
2. At \(t \geqslant 10 \mathrm{~ns}\)
a.) Open Pin 1.
b.) Apply -3.0 Vdc to \(\operatorname{Pin} 4\). Hold these conditions for \(\geqslant 10 \mathrm{~ns}\).
3. Return Pin 4 to Ground and perform test as indicated in Table 2.

\section*{TABLE 2 - CONDITIONS FOR TESTING OUTPUT LEVELS}
(See Table 1 for Precondition Sequence)

Pins 1, \(16=V_{C C}=\) Ground
Pins 6, \(8=V_{E E}=5.2 \mathrm{Vdc}\)
Outputs loaded \(50 \Omega\) to -2.0 Vdc
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Pin Conditions} \\
\hline Test P.U.T. & 5 & 10 & 13 & 15 \\
\hline Precondition & & & & \\
\hline \(\mathrm{V}_{\mathrm{OH}} 2\) & & & \(\mathrm{V}_{\mathrm{IL}}\) min & \\
\hline \(\mathrm{V}_{\mathrm{OH}} 3\) & & & P1 & \\
\hline Precondition & & & & \\
\hline \(\mathrm{V}_{\mathrm{OL}} 3\) & & & \(V_{\text {IL }}\) min & \\
\hline \(\mathrm{V}_{\mathrm{OL}} \quad 2\) & & & P1 & \\
\hline Precondition & & & & \\
\hline \(V_{\text {OHA }} 2\) & & & & \(V_{\text {ILA }}\) max \\
\hline \(\mathrm{V}_{\text {OHA }} 3\) & & & & \(\mathrm{V}_{\text {IHA }}\) min \\
\hline Precondition & & & & \\
\hline \(V_{\text {OHA }} 2\) & & & \(V_{\text {IL }}\) min & \\
\hline VOHA 3 & & & P3 & \\
\hline Precondition & & & & \\
\hline \(\mathrm{V}_{\text {OHA }} 2\) & & & P2 & \\
\hline VOHA 3 & & & P3 & \\
\hline Precondition & & & & \\
\hline \(\mathrm{V}_{\text {OHA }} 2\) & & \(V_{\text {IH max }}\) & P2 & \\
\hline \(V_{\text {OHA }} 3\) & & \(V_{\text {IH }}\) max & P3 & \\
\hline Precondition & & & & \\
\hline VOHA 2 & & \(\mathrm{V}_{\mathrm{IH} \text { max }}\) & P1 & \\
\hline \(V_{\text {OHA }} 3\) & & \(V_{\text {IH max }}\) & P1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Test P.U.T.} & \multicolumn{3}{|r|}{Pin Conditions} & \\
\hline & 5 & 10 & 13 & 15 \\
\hline Precondition & & & & \\
\hline VOHA 2 & & \(V_{\text {IHA }}\) min & P1 & \\
\hline VOHA 3 & & \(V_{\text {ILA }}^{\text {max }}\) & P1 & \\
\hline Precondition & & & & \\
\hline Vola 3 & & & & \(V_{\text {ILA }}\) max \\
\hline VOLA 2 & & & & \(V_{\text {IHA }}\) min \\
\hline Precondition & & & & \\
\hline VOLA 2 & & & \(V_{\text {IL }}\) min & \\
\hline VOLA 3 & & & \(V_{\text {IL }}\) min & \\
\hline Precondition & & & & \\
\hline Vola 3 & & & P2 & \\
\hline VOLA 2 & & & P3 & \\
\hline Precondition & & & & \\
\hline VOLA 3 & & \(\mathrm{V}_{\text {IH }}\) max & P2 & \\
\hline VOLA 2 & & \(\mathrm{V}_{\mathrm{IH}}\) max & P3 & \\
\hline Precondition & & & & \\
\hline VOLA 3 & \(V_{\text {IHA }}\) min & \(\mathrm{V}_{\text {IH }}\) max & P1 & \\
\hline VOLA 2 & \(V_{\text {ILA }}\) max & \(V_{1 H}\) max & P1 & \\
\hline Precondition & & & & \\
\hline VOLA 3 & \(\mathrm{V}_{\mathrm{IH} \text { max }}\) & VIHA min & P1 & \\
\hline VOLA 2 & \(\mathrm{V}_{\text {IH max }}\) & VILA max & P1 & \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been estab lished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.

Notes: (1) The monostable is in the timing mode at the time of this tes
(2) \(C_{E X T}=0\) (Pin 4 open)
(3) \(C_{E X T}=0\) PIn 6 tied to \(V_{E E}\)
(3) \(\mathrm{C}_{\text {EXT }}=10 \mu \mathrm{~F}\) (Pin 4)

REXT \(=2.7 \mathrm{k} \quad\) (Pin 6)
(4) \(\int_{P_{1}}-V_{I L}\)

\section*{SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ \(25^{\circ} \mathrm{C}\)}
 pin and TP out to output pin.

High-Speed
Trigger Input

\section*{APPLICATIONS INFORMATION}

\section*{CIRCUIT OPERATION:}
1. PULSE WIDTH TIMING - The pulse width is determined by the external resistor and capacitor. The MC10198 also has an internal resistor (nominally 284 ohms) that can be used in series with R Ext. Pin 7, the external pulse width control, is a constant voltage node (-3.60 V nominally). A resistance connected in series from this node to \(\mathrm{V}_{\mathrm{EE}}\) sets a constant timing current \(\mathrm{I}_{\mathrm{T}}\). This current determines the discharge rate of the capacitor:
\[
I_{T}=C_{E x t} \frac{\Delta V}{\Delta T}
\]
where
\(\Delta T=\) pulse width
\(\Delta V=1.9 \mathrm{~V}\) change in capacitor voltage

Then:
\[
\Delta T=C_{E x t} \frac{1.9 \mathrm{~V}}{\mathrm{I}_{\mathrm{T}}}
\]

If \(R_{E x t}+R_{\text {Int }}\) are in series to \(V_{E E}\) :
\(I_{T}=[(-3.60 \mathrm{~V})-(-5.2 \mathrm{~V})] \div\left[R_{E x t}+284 \Omega\right]\)
\(\mathrm{I}_{\mathrm{T}}=1.6 \mathrm{~V} /\left(\mathrm{R}_{\mathrm{Ext}}+284\right)\)
The timing equation becomes:
\[
\begin{aligned}
& \Delta T=\left[\left(C_{E x t}\right)(1.9 \mathrm{~V})\right] \div\left[1.6 \mathrm{~V} /\left(R_{\mathrm{Ext}}+284\right)\right] \\
& \Delta T=\mathrm{C}_{\mathrm{Ext}}\left(R_{\mathrm{Ext}}+284\right) 1.19 \\
& \text { where } \Delta T=\mathrm{Sec} \\
& R_{\text {Ext }}=\text { Ohms } \\
& C_{E x t}=\text { Farads }
\end{aligned}
\]

FIGURE 1 -

Figure 2 shows typical curves for pulse width versus \(\mathrm{C}_{\mathrm{Ext}}\) and \(\mathrm{R}_{\mathrm{Ext}}\) (total resistance includes \(\mathrm{R}_{\text {Int }}\)). Any low leakage capacitor can be used and \(R_{\text {Ext }}\) can vary from 0 to 16 k -ohms.
2. TRIGGERING - The \(\bar{E}_{\text {Pos }}\) and \(\overline{\mathrm{E}}_{\text {Neg }}\) inputs control the trigger input. The MC10198 can be programmed to trigger on the positive edge, negative edge, or both. Also, the trigger input can be totally disabled. The truth table is shown on the first page of the data sheet.

The device is totally retriggerable. However, as duty cycle approaches \(100 \%\), pulse width jitter can occur due to the recovery time of the circuit. Recovery time is basically dependent on capacitance \(\mathrm{C}_{\text {Ext }}\). Figure 3 shows typical recovery time versus capacitance at \(I_{\top}\) \(=5 \mathrm{~mA}\).

FIGURE 2 - TIMING PULSE WIDTH versus CExt and RExt

CExt - timing capacitance

FIGURE 3 - RECOVERY TIME versus \(\mathbf{C E x t}\) @ \(\mathbf{I T}_{\mathbf{T}}=\mathbf{5 m A}\)

3. HI-SPEED INPUT - This input is used for stretching very narrow pulses with minimum delay between the output pulse and the trigger pulse. The trigger input should be disabled when using the high-speed input. The MC10198 triggers on the rising edge, using this input, and input pulse width should narrow, typically less than 10 nanoseconds.

\section*{USAGE RULES:}
1. Capacitor lead lengths should be kept very short to minimize ringing due to fast recovery rise times.
2. The \(\bar{E}\) inputs should not be tied to ground to establish a high logic level. A resistor divider or diode can be used to establish a -0.7 to -0.9 voltage level.
3. For optimum temperature stability; 0.5 mA is the best timing current \(\mathrm{I}_{\mathrm{T}}\). The device is designed to have a constant voltage at the EXTERNAL PULSE WIDTH CONTROL over temperature at this current value.
4. Pulse Width modulation can be attained with the EXTERNAL PULSE WIDTH CONTROL. The timing current can be altered to vary the pulse width. Two schemes are:
(a) The internal resistor is not used. A dependent current source is used to set the timing current as shown in Figure 4. A graph of pulse width versus timing current (\(\mathrm{C}_{\mathrm{Ext}}=13 \mathrm{pF}\)) is shown in Figure 5.

FIGURE 4 -

FIGURE 5 - PULSE WIDTH versus \({ }^{1}\) @ \(\mathbf{C}_{\text {Ext }}=13 \mathrm{pF}\)

(b) A control voltage can also be used to vary the pulse width using an additional resistor (Figure 6). The current (\(I_{T}+{ }_{C}\)) is set by the voltage drop across \(R_{\text {Int }}+R_{\text {Ext }}\). The control current IC modifies \(I_{T}\) and alters the pulse width. Current \(I_{C}\) should never force \(I_{T}\) to zero. \(R_{C}\) typically \(1 \mathrm{k} \Omega\).

FIGURE 6 -

5. The MC10198 can be made non-retriggerable. The O output is fed back to disable the trigger input during the triggered state (Logic Diagram). Figure 7 shows a positive triggered configuration; a similar configuration can be made for negative triggering.

FIGURE 7 -

\section*{MECL LOK sERIES}

\section*{DUAL 3-INPUT 3-OUTPUT "OR" GATE}

The MC10210 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR" -ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines with minimum propagation delay from a single point makes the MC10210 particularly useful in clock distribution applications where minimum clock skew is desired.
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=160 \mathrm{~mW} \text { typ/pkg (No Loads) } \\
& \mathrm{t}_{\mathrm{pd}}=1.5 \mathrm{~ns} \text { typ (All Output Loaded) } \\
& \mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}=1.5 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)
\end{aligned}
\]

\section*{LOGIC DIAGRAM}

\[
\begin{aligned}
V_{C C 1} & =\operatorname{Pin} 1,15 \\
V_{C C 2} & =\operatorname{Pin} 16 \\
V_{E E} & =\operatorname{Pin} 8
\end{aligned}
\]

\section*{PIN ASSIGNMENT}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been estab lished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gate is tested in the same manner.

MC10211

\section*{MECL 1OK \\ series}

DUAL 3-INPUT 3-OUTPUT "NOR" GATE
The MC10211 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines with minimum propagation delay from a single point makes the MC10211 particularly useful in clock distribution applications where minimum clock skew is desired.
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=160 \mathrm{~mW} \text { typ/pkg (No Loads) } \\
& \mathrm{t}_{\mathrm{pd}}=1.5 \mathrm{~ns} \text { typ (All Output Loaded) } \\
& \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=1.5 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)
\end{aligned}
\]

\section*{DUAL 3-INPUT 3-OUTPUT "NOR" GATE}

\section*{LOGIC DIAGRAM}

\(V_{C C 1}=\operatorname{Pin} 1,15\)
\(\mathrm{V}_{\mathrm{CC} 2}=\operatorname{Pin} 16\)
\(V_{E E}=\operatorname{Pin} 8\)
 \(V_{E E}=\operatorname{Pin} 8\)

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts. Test procedures are shown for only one gate. The other gate is tested in the same manner.

\section*{MECL 1OK series}

\section*{HIGH SPEED DUAL 3-INPUT 3-OUTPUT OR/NOR GATE}

The MC10212 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR"-ing of several levels of gating for minimization of gate and package count.
The ability to control three parallel lines with minimum propagation delay from a single point makes the MC10212 particularly useful in clock distribution applications where minimum clock skew is desired.
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=160 \mathrm{~mW} \text { typ } / \mathrm{pkg} \text { (No Load) } \\
& \mathrm{t}_{\mathrm{pd}}=1.5 \mathrm{~ns} \text { typ (All Outputs Loaded) } \\
& \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=1.5 \mathrm{~ns} \text { typ (} 20 \% \text { to } 80 \% \text {) }
\end{aligned}
\]

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specification shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to \(-\mathbf{2 . 0}\) volts. Test procedures are shown for only one gate. The other gate is tested in the same manner.

\section*{HIGH SPEED TRIPLE LINE RECEIVER}

The MC10216 is a high speed triple differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (\(\mathrm{V}_{\mathrm{BB}}\)) is made available at pin 11 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.
Active current sources provide the MC10216 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to \(V_{B B}\) (pin 11) to prevent upsetting the current source bias network.

Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to provide complement outputs of the input logic function.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =100 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =1.8 \mathrm{~ns} \text { typ (Single ended) } \\
& =1.5 \mathrm{~ns} \text { typ (Differential) } \\
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & =1.5 \mathrm{~ns} \text { typ (} 20 \%-80 \% \text {) }
\end{aligned}
\]

\section*{MECL 1OK serues}

HIGH SPEED TRIPLE LINE RECEIVER

\section*{LOGIC DIAGRAM}

\[
\begin{aligned}
\mathrm{V}_{\mathrm{CC1}} & =\operatorname{Pin} 1 \\
\mathrm{~V}_{\mathrm{CC2}} & =\operatorname{Pin} 16 \\
\mathrm{~V}_{\mathrm{EE}} & =\operatorname{Pin} 8
\end{aligned}
\]

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

Delay is 1.5 ns when inputs are driven differentially
Delay is 1.8 ns when inputs are driven single ended

\section*{HIGH SPEED DUAL TYPE D MASTER-SLAVE F́LIP-FLOP}

The MC10231 is a dual master-slave type D flip-flop. Asynchronous Set (S) and Reset (R) override Clock (\(\mathrm{C}_{\mathrm{C}}\)) and Clock Enable \(\left(\bar{C}_{E}\right)\) inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enabie inputs must be in the low state. In this case, the enable inputs perform the function of controlling the common clock.

The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data (D) input will not affect the output information at any other time due to master-slave construction.
\[
\begin{aligned}
\mathrm{P}_{\mathrm{D}} & =270 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{t}_{\mathrm{pd}} & =2 \mathrm{~ns} \text { typ } \\
\mathrm{t}_{\mathrm{Tog}} & =225 \mathrm{MHz} \text { typ } \\
\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}} & =2.0 \mathrm{~ns} \text { typ }(20 \%-80 \%)
\end{aligned}
\]

\section*{MECL LOK series}

HIGH SPEED DUAL TYPE D MASTER-SLAVE FLIP-FLOP

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table after the thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{5}{*}{Characteristic} & & & & & & & & & & \multirow[t]{2}{*}{\[
\begin{array}{r}
+25^{\circ} \mathrm{C} \\
+85^{\circ} \mathrm{C}
\end{array}
\]} & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 & \multirow[b]{5}{*}{\[
\begin{gathered}
\left(V_{\mathrm{cc}}\right) \\
\mathrm{Gnd}
\end{gathered}
\]} \\
\hline & & & & & & & & & & & -0.700 & -1.825 & -1.035 & -1.440 & -5.2 & \\
\hline & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10231 Test Limits} & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{VOLTAGE APPIIIED TO PINS LISTED BELOW:}} & \\
\hline & & & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & \(\mathrm{V}_{\mathrm{IH} \text { max }}\) & \(\mathrm{V}_{\mathrm{IL} \text { min }}\) & \(\mathrm{V}_{\text {IHA }}\) min & VILA max & Vee & \\
\hline Power Supply Drain Current & \({ }^{\prime} \mathrm{E}\) & 8 & - & 72 & - & 52 & 65 & - & 72 & madc & - & -- & - & - & 8 & 1,16 \\
\hline \multirow[t]{5}{*}{Input Current} & \multirow[t]{5}{*}{\(\mathrm{l}_{\mathrm{inH}}\)} & 4 & - & 650 & - & - & 410 & - & 410 & \multirow[t]{5}{*}{\[
\begin{gathered}
\mu \mathrm{Adc} \\
\hline
\end{gathered}
\]} & 4 & - & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{\[
\begin{aligned}
& 8 \\
& 1
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
1,16
\]} \\
\hline & & 5 & & 650 & & - & 410 & & 410 & & & & & & & \\
\hline & & 6 & - & 350 & - & - & 220 & - & 220 & & 6 & - & & & & \\
\hline & & 7 & - & 350 & - & - & 220 & - & 220 & & 7 & - & & & & \\
\hline & & 9 & - & 460 & - & - & 290 & -- & 290 & & 9 & - & & & & \\
\hline \multirow[t]{2}{*}{Input Leakage Current} & \multirow[t]{2}{*}{1 inL} & 4.5.********) & - & - & 0.5 & - & - & & - & \(\mu\) Adc & - & * & - & - & 8 & 1.16
1.16 \\
\hline & & & -- & - & 0.5 & - & - & - & - & & - & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Logic "1' } \\
& \text { Output Voltage }
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & 2 & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 5 & - & - & - & 8 & 1.16 \\
\hline & & \(2 \dagger\) & -1.060 & -0.890 & -0.960 & - & -0.810 & -0.890 & -0.700 & Vdc & 7 & - & .- & - & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Logic " } 0 \text { " } \\
& \text { Output Voltage } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OL }}\)} & 3 & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 & -1.615 & Vdc & 5 & - & - & - & 8 & 1, 16 \\
\hline & & \(3+\) & -1.890 & -1.675 & -1.850 & - & -1.650 & -1.825 & -1.615 & Vdc & 7 & - & - & - & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Logic "1" \\
Threshold Voltage
\end{tabular}} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OHA }}\)} & 2 & -1.080 & - & -0.980 & \(\cdots\) & - & -0.910 & - & Vdc & - & - & 5 & - & 8 & 1,16 \\
\hline & & \(2 \dagger\) & -1.080 & .- & -0.980 & - & - & -0.910 & - & Vdc & - & - & 7 & 9 & 8 & 1,16 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Logic "0" } \\
& \text { Threshold Voltage }
\end{aligned}
\]} & \multirow[t]{2}{*}{VOLA} & 3 & - & \multirow[t]{2}{*}{\begin{tabular}{|}
-1.655 \\
-1.655 \\
\hline
\end{tabular}} & - & - & -1.630 & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline-1.595 \\
-1.595 \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{Vdc Vdc} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{\(\overline{9}\)} & 8 & 1. 16 \\
\hline & & \(3 \dagger\) & - & & - & - & -1.630 & & & & & & & & 8 & 1, 16 \\
\hline \multirow[b]{6}{*}{\begin{tabular}{l}
Switching Times \\
Clock Input \\
Propagation Delay \\
Rise Time (20 to \(80 \%\)) \\
Fall Time (20 to 80\%)
\end{tabular}} & \multirow[b]{6}{*}{\[
\begin{gathered}
\mathrm{t} 9+2- \\
\mathrm{t}_{6+2+}+ \\
\mathrm{t}_{2+} \\
\mathrm{t}_{2-}- \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{} & \multirow[b]{4}{*}{\[
\begin{aligned}
& 1.5 \\
& 1.5
\end{aligned}
\]} & \multirow[b]{4}{*}{\[
\begin{aligned}
& 3.4 \\
& 3.4
\end{aligned}
\]} & \multirow[b]{4}{*}{\[
\begin{aligned}
& 1.5 \\
& 1.5
\end{aligned}
\]} & \multirow[b]{4}{*}{\[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\]} & \multirow[b]{3}{*}{3.3} & \multirow[b]{3}{*}{1.6} & \multirow[b]{4}{*}{\[
\begin{aligned}
& 3.7 \\
& 3.7
\end{aligned}
\]} & \multirow[b]{6}{*}{\[
\left.\right|_{\dagger} ^{\mathrm{ns}}
\]} & \multirow[b]{2}{*}{+1.11 Vdc} & \multirow[t]{2}{*}{} & & Pulse & & \\
\hline & & & & & & & & & & & & & In & Out & -3.2 Vdc & +2.0 Vdc \\
\hline & & \multirow[b]{2}{*}{2} & & & & & & & & & & & & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{8} & 1,16 \\
\hline & & & & & & & 3.3 & 1.6 & & & 7 & - & 6 & & & \multirow[t]{3}{*}{} \\
\hline & & 2 & 0.9 & 3.3 & 1.0 & 1.3 & 3.1 & 1.0 & 3.6 & & 7 & - & 9 & 2 & \multirow[b]{2}{*}{\(\dagger\)} & \\
\hline & & 2 & 0.9 & 3.3 & 1.0 & 1.3 & 3.1 & 1.0 & 3.6 & & & - & 9 & 2 & & \\
\hline \multirow[t]{5}{*}{Set Input Propagation Delay} & & & & & & & & & & & & & & & \multirow{5}{*}{8} & \multirow[b]{5}{*}{\[
\begin{gathered}
1.16 \\
\square
\end{gathered}
\]} \\
\hline & \({ }^{\text {t5 }}+2+\) & 2 & 1.1 & 3.4 & 1.1 & 2.0 & 3.3 & & & & - & - & 5 & 2 & & \\
\hline & \(\mathrm{t}_{12+15+}\) & 15 & & & & & & & & & 6 & - & 12 & 15 & & \\
\hline & \({ }_{\text {t }}^{5}+3+\) & 3 & & & & & & & & & - & - & 5 & 3 & & \\
\hline & \({ }^{\text {t }} 12+14\) - & 14 & 1 & \(V\) & \(V\) & 1 & \(V\) & \(\checkmark\) & \(V\) & 1 & 9 & - & 12 & 14 & & \\
\hline \multirow[t]{4}{*}{Reset Input
Propagation Delay} & t4+2- & 2 & \multirow[t]{4}{*}{\[
1.1
\]} & \multirow[t]{4}{*}{\[
\stackrel{3.4}{\downarrow}
\]} & \multirow[t]{4}{*}{\[
1.1
\]} & \multirow[t]{4}{*}{\[
\stackrel{2.0}{1}
\]} & \multirow[t]{4}{*}{\[
\stackrel{3.3}{1}
\]} & \multirow[t]{4}{*}{\[
1.2
\]} & \multirow[t]{4}{*}{\[
1
\]} & \multirow[b]{4}{*}{\[
\stackrel{\text { ns }}{\mid}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
- \\
\hline \\
\hline
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& - \\
& - \\
& -
\end{aligned}
\]} & \multirow[b]{4}{*}{\[
\begin{gathered}
13 \\
4 \\
13
\end{gathered}
\]} & \multirow[b]{4}{*}{\[
\begin{gathered}
2 \\
15 \\
3 \\
3 \\
14
\end{gathered}
\]} & \multirow[t]{4}{*}{\[
1
\]} & 1,16 \\
\hline & \(\mathrm{t}_{1} 13+15-\) & 15 & & & & & & & & & & & & & & \multirow[t]{3}{*}{\[
1
\]} \\
\hline & \(\mathrm{t}^{\mathrm{t} 4+3-}\) & 3 & & & & & & & & & & & & & & \\
\hline & t13+14+ & 14 & & & & & & & & & & & & & & \\
\hline Setup Time & \({ }^{\text {tSetup }}\) & 7 & 1.5 & - & 1.0 & - & - & 1.5 & - & ns & - & -- & 6.7 & 2 & 8 & 1,16 \\
\hline Hold Time & \({ }^{\text {thold }}\) & 7 & 0.9 & - & 0.75 & - & - & 0.9 & - & ns & - & - & 6,7 & 2 & 8 & 1,16 \\
\hline Toggle Frequency (Max) & \({ }^{\text {f }}\) Tog & 2 & 200 & - & 200 & 225 & - & 200 & - & MHz & * * & - & 6 & 2 & 8 & 1,16 \\
\hline
\end{tabular}

Individually test each input; apply \(V_{1 L}\) min to pin under test
\({ }^{\dagger}\) Output level to be measured after a clock pulse has been applied to the \(\overline{\mathrm{c}}_{\mathrm{E}}\) input (pin 6) \(] \quad \square \mathrm{V}_{1 H}\) max

\section*{HIGH SPEED \\ \(2 \times 1\) BIT ARRAY MULTIPLIER BLOCK}

The MC10287 is a dual high speed iterative multiplier. It is designed for use as an array multiplier block. Each device is a modified full adder/subtractor that forms a single-bit binary product at each operand input of the adder. Internal carry lookahead is employed for high speed operation.

An addition or subtraction is selected by mode controls (MO, M1). The mode controls are buffered such that they can be grounded or taken to a standard high logic level to accomplish subtraction. When left open or taken to a low logic level, M0 and M1 cause addition.
\(P_{D}=400 \mathrm{~mW}\) typ/pkg (No Load)
\(\mathrm{t}_{\mathrm{pd}}\) : (Outputs loaded \(1 \mathrm{k} \Omega\) to \(\mathrm{V}_{\mathrm{EE}}\))
C0 to C2 \(=1.7\) ns typ
a 0 to \(\mathrm{C} 2=2.8\)
a 0 to \(\mathrm{SO}=2.7\)
b0 to \(\mathrm{S} 0=3.1\)
a 0 to \(\mathrm{S} 1=3.9\)
b0 to S1 \(=4.4\)
M 0 to \(\mathrm{S} 1=8.7\)

\section*{LOGIC DIAGRAM}

\section*{MECL 10K \\ series}

HIGH SPEED
\(2 \times 1\) BIT ARRAY MULTIPLIER BLOCK

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\) ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner

*Apply +0.31 V to all other inputs.

\section*{APPLICATION INFORMATION}

The MC10287 is a stand alone fully iterative dual multiplier cell. It is intended for use in parallel multiplier arrays where maximum speed is desired. Each cell is a modified gated adder/subtractor individually controlled by a mode select line. Internal carry lookahead (also called anticipated carry) is used to minimize sum and carry out delay times.
The mode controls are specifically buffered such that they can be grounded. Normally, MECL 10,000 device inputs should not be placed at ground to establish a high logic level. However, M0 and M1 can be used at ground potential for ease of layout in large arrays.
An array multiplier is defined as a multi-input, multioutput combinational logic circuit that forms the product of two binary numbers. Binary multiplication can be treated in two categories, that is, simple magnitude multiplication and 4 -quadrant multiplication (requiring both positive and negative numbers).

\section*{MAGNITUDE BINARY MULTIPLICATION}

Magnitude multiplication consists of the product of two binary numbers in which all digits are number bits (no sign bit). Magnitude representation then includes only positive numbers.
Thus, for a 4-bit number \(X\) the representation is:
\[
x=x_{3} x_{2} x_{1} x_{0}
\]

A 4-bit by 4-bit product becomes:
\[
Z=X \cdot Y=\left(x_{3} x_{2} x_{1} x_{0}\right) \cdot\left(y_{3} y_{2} y_{1} y_{0}\right)
\]

The product consists of the sum of the single-bit products formed by this expression. The standard "paral-
lelogram" matrix of the single-bit products (or summands) can be written:

The MC10287 is used in an array summing the singlebit products to form the final result. It is observed that the arithmetic product of binary digits \(x_{j}\) and \(y_{i}\) is also the logical product (\(x_{j}\) times \(y_{i}=x_{j}\) AND \(y_{j}\)). The AND function on the operand inputs of the MC10287 forms the single-bit products of the matrix directly and sums them internally. For magnitude binary multiplication, the MC10287 functions as a dual full adder (M0, M1 and both low).

The partial product array can be summed using a number of different techniques. The fastest technique is some form of matrix reduction scheme that prevents carry propagation until the final level of summation. Several of these schemes are discussed in detail in Reference 1.
As an example, if the matrix is rearranged and written in a different form:
\begin{tabular}{llllllll}
& & & & \(x_{0} y_{3}\) & & \\
& & \(x_{1} y_{3}\) & \(x_{3} y_{0}\) & \(x_{2} y_{0}\) & \(x_{1} y_{0}\) & \(x_{0} y_{0}\) \\
& \(x_{2} y_{3}\) & \(x_{3} y_{1}\) & \(x_{2} y_{1}\) & \(x_{1} y_{1}\) & \(x_{0} y_{1}\) & \\
& \(x_{3} y_{3}\) & \(x_{3} y_{2}\) & \(x_{2} y_{2}\) & \(x_{1} y_{2}\) & \(x_{0} y_{2}\) & & \\
\hline\(z_{7}\) & \(z_{6}\) & \(z_{5}\) & \(z_{4}\) & \(z_{3}\) & \(z_{2}\) & \(z_{1}\) & \(z_{0}\)
\end{tabular}

FIGURE 1 - 4-BIT BY 4-BIT MAGNITUDE ARRAY MULTIPLIER
\begin{tabular}{|c|c|c|}
\hline Number of Bits & \begin{tabular}{c}
Total Multiply Time \\
(ns)
\end{tabular} & Package Count \\
\hline 4 & 14 & 6 \\
8 & 25 & 28 \\
12 & 39 & 66 \\
16 & 44 & 120 \\
\hline
\end{tabular}

A basic adder/subtractor can then handle all the varying situations that appear in the multiplication matrix.
If the 2 's complement matrix is rearranged:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multicolumn{7}{|c|}{\(\times{ }_{0} \mathrm{~V}_{3}\)} \\
\hline & & & \(-x_{1} y_{3}\) & \(-x_{3} \mathrm{Y}_{0}\) & \(\times 2 \mathrm{Y} 0\) & \(\mathrm{x}_{1} \mathrm{y} 0\) & \(\mathrm{x}_{0} \mathrm{Y} 0\) \\
\hline & & \(-\mathrm{x}_{2} \mathrm{Y}_{3}\) & \(-x_{3}{ }_{1}\) & \(\mathrm{x}_{2} \mathrm{Y}_{1}\) & \(\mathrm{x}_{1} \mathrm{Y} 1\) & \(\mathrm{x}_{0} \mathrm{y} 1\) & \\
\hline & \(\mathrm{X}_{3} \mathrm{y}_{3}\) & \(-x_{3} V_{2}\) & \(\mathrm{X}_{2} \mathrm{~V}_{2}\) & \(\mathrm{x}_{1} \mathrm{y}_{2}\) & \(\mathrm{x}_{0} \mathrm{Y}_{2}\) & & \\
\hline - \(\mathrm{z}_{7}\) & \({ }^{2} 6\) & 25 & \(z_{4}\) & 23 & \(z_{2}\) & \(\mathrm{z}_{1}\) & 20 \\
\hline
\end{tabular}

The adder/subtractor array for this configuration is shown in Figure 2. Care must be taken to insure that the proper mode of operation (add or subtract) appears at each summing node as a function of the positive and negative weighted inputs.
The summand matrix can be altered different ways to speed up the multiplier array. Reference 2 discusses the algorithm used with the MC10287 in detail. Also, the techniques of Reference 1 also apply to 2's complement arrays using the MC10287.
Table 2 gives typical multiply times for 2's complement arrays for n -bit by n -bit multipliers.

TABLE 2 - TYPICAL MULTIPLY TIME FOR AN n-BIT BY n-BIT 2's COMPLEMENT ARRAY MULTIPLIER
\begin{tabular}{|c|c|c|}
\hline Number of Bits & \begin{tabular}{c}
Total Multiply Time \\
(ns)
\end{tabular} & Package Count \\
\hline 4 & 14 & 6 \\
8 & 25 & 28 \\
12 & 39 & 66 \\
16 & 44 & 120 \\
\hline
\end{tabular}

\section*{IMPROVED SWITCHING DELAYS}

The specified ac switching delays are given for output loading of \(50 \Omega\) to -2 volts. With lower output current, propagation delays will be improved and decreased multiply times can result. For output loading of \(1 \mathrm{k} \Omega\) to \(\mathrm{V}_{\mathrm{EE}}\), the following delays are typical.
\begin{tabular}{ccc}
Input & Output & Delay (ns) \\
C0 & C2 & 1.7 \\
A0 & C2 & 2.8 \\
A0 & S0 & 2.8 \\
B0 & S0 & 3.1 \\
A0 & S1 & 3.9 \\
B0 & S1 & 4.4 \\
M0 & S1 & 8.7
\end{tabular}

\section*{REFERENCE AND ACKNOWLEDGEMENT}

The techniques for implementing the MC10287 in multiplier arrays resulted from work done originally at M.I.T. Lincoln Laboratories. Also, applications information presented here developed in part from personal correspondence with P. Blankenship of Lincoln Labs. The following references are useful in developing multipliers using the MC10287:
1. A. Habibi and P. A. Wintz, "Fast Multipliers," IEEE Trans. Computers (Short Notes), Vol. C-19, Feb. 1970, pp. 153-157.
2. S. D. Pezaris, "A \(40-\mathrm{ns} 17\)-Bit by 17 -Bit Array Multiplier," IEEE Trans. Computers, Vol. C-20, Number 4, April, 1971; pp. 442-447.

FIGURE 2 - 4-BIT BY 4-BIT 2's COMPLEMENT ARRAY MULTIPLIER

The summation of the partial products for this configuration is shown in Figure 1. The number of MC10287's for an \(n\)-bit by \(n\)-bit array is \(n(n-1) / 2\). Note also that the least significant product bit (\(z_{0}=x_{0} y_{0}\)) is formed by an individual AND gate (negative logic).

Table 1 gives package count and typical multiplication times for \(n\)-bit by \(n\)-bit magnitude multiplier arrays. The multiply times do not include wiring delays, and the package count does not include the gate for the least significant product bit.

\section*{FOUR-QUADRANT MULTIPLICATION}

Sign-magnitude and 2's complement representations are commonly used for 4-quadrant multiplication. For sign-magnitude representation, the binary word consists of a sign bit and magnitude bits which indicate the absolute value of the number. For a 4-bit example:
\[
x=x_{s} x_{2} x_{1} x_{0}
\]

For \(X \cdot Y=Z\)
\[
Z=X \cdot Y=\left(x_{s} x_{2} x_{1} x_{0}\right) \cdot\left(y_{s} y_{2} y_{1} y_{0}\right)
\]

An array multiplier for this representation consists of an (\(n-1\))-bit by \((n-1)\)-bit magnitude multiplier that produces the product of the magnitude bits of \(X\) and \(Y\) and of logic that produces the proper product sign bit (\(z_{s}=\) \(x_{s} \bigcirc y_{s}\)).
2's complement representation also includes a sign bit which is a negative bit. That is:
\[
x=-x_{3} x_{2} x_{1} x_{0}
\]
where \(x_{3}\) is the sign bit. The product of two 4 -bit 2 's complement numbers becomes:
\[
Z=X \cdot Y=\left(-x_{3} x_{2} x_{1} x_{0}\right) \cdot\left(-y_{3} y_{2} y_{1} y_{0}\right)
\]

The matrix for this expression is:
\[
\begin{array}{rrrrr}
-x_{3} y_{1} & x_{3} y_{0} x_{1} & x_{2} y_{0} & x_{1} y_{1} & x_{0} y_{0} \\
& x_{0} y_{1}
\end{array}
\]
\begin{tabular}{llllllll}
\(-z_{7}\) & \(z_{6}\) & \(z_{5}\) & \(z_{4}\) & \(z_{3}\) & \(z_{2}\) & \(z_{1}\) & \(z_{0}\)
\end{tabular}

The product is the sum of this array of single-bit products. However, notice that several summands are negative quantities. Therefore, they can not be simply added as is the magnitude binary multiplier. The subtraction capability of the MC10287 is utilized when considering these negative quantities.

A standard full adder is symbolized as:

in which all inputs are positive quantities. If one input is negative (such as B), the outputs \(C_{\text {out }}\) and \(S\) must be coded such that they can represent the 4 possible output conditions. If \(B\) can be a negative one or zero, the net output can then be:
\[
\text { net output }=\left\{\begin{array}{r}
-1 \\
0 \\
+1 \\
+2
\end{array}\right.
\]

If \(C_{\text {out }}\), whose weight is twice that of \(S\), is assigned a positive value and \(S\) is a negative value, the above values can be represented:
\[
\text { net output }=2 \cdot C_{\text {out }}-S
\]
where:
\[
\begin{aligned}
-1 & =0-1 \\
0 & =0-0 \\
+1 & =2-1 \\
+2 & =2-0
\end{aligned}
\]

If the truth table is written and logic equations generated, the result is a subtractor. That is, a subtractor used in place of a full adder produces the proper outputs. The symbol for the subtractor is:

Also, if the input variables are multiplied by -1 , the outputs also are multiplied by \(\mathbf{- 1}\). Thus, the following devices are equivalent:

MC10287 FUNCTIONAL TRUTH TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
\mathrm{M} 1 \\
\hline 14
\end{array}
\]} & M0 & b1b1'a1 a \({ }^{\prime}\) & \multicolumn{3}{|l|}{b0 b0' a0 a0'} & CO & & S1 & & \multirow[b]{2}{*}{Word} \\
\hline & 3 & 13121110 & 45 & 56 & & 9 & 2 & 1 & & \\
\hline L & H & H H H H & L L & L H & H & H & L & H & H & 68 \\
\hline L & H & H H H H & L L & L H & H & L & H & H & H & 69 \\
\hline L & H & H HHH & & L L & L & H & H & H & H & 70 \\
\hline L & H & H H H H & & 1 L & L & L & L & L & H & 71 \\
\hline L & H & H H L L & H & H H & H & H & H & L & H & 72 \\
\hline L & H & H H L L & H & H H & H & L & L & H & L & 73 \\
\hline L & H & H H L L & H H & H L & L & H & L & H & L & 74 \\
\hline L & H & H H L L & H & H L & L & L & H & H & L & 75 \\
\hline L & H & H H L L & & L H & H & H & L & L & H & 76 \\
\hline L & H & H H L L & L & L H & H & L & H & L & H & 77 \\
\hline L & H & H H L L & L & L L & L & H & H & L & H & 78 \\
\hline L & H & H H L L & L L & L L & L & L & L & H & L & 79 \\
\hline L & H & L L H H & & H H & H & H & H & L & H & 80 \\
\hline L & H & L L H H & H & HH & H & L & L & H & L & 81 \\
\hline L & H & L L H H & H H & H L & L & H & L & H & L & 82 \\
\hline L & H & L L H H & & H L & L & L & H & H & L & 83 \\
\hline L & H & L L H H & & L H & H & H & L & L & H & 84 \\
\hline L & H & L L H H & & L H & H & L & H & L & H & 85 \\
\hline L & H & L L H H & L L & L L & L & H & H & L & H & 86 \\
\hline L & H & L L H H & L & L L & L & L & L & H & L & 87 \\
\hline L & H & L L L L & H H & H H & H & H & H & H & L & 88 \\
\hline L & H & L L L L & H H & H H & H & L & L & L & L & 89 \\
\hline L & H & L L L L & H H & H L & L & H & L & L & L & 90 \\
\hline L & H & L L L L & H H & H L & L & L & H & L & L & 91 \\
\hline L & H & L L L L & L & L H & H & H & L & H & L & 92 \\
\hline L & H & L L L L & & L H & H & L & H & H & L & 93 \\
\hline L & H & L L L L & L L & L L & L & H & H & H & L & 94 \\
\hline L & H & L L L L & & L L & L & L & L & L & L & 95 \\
\hline L & L & H H H H & & H H & H & H & H & H & H & 96 \\
\hline L & L & HHHH & H H & H H & H & L & L & H & H & 97 \\
\hline L & L & H HHH & H & H L & L & H & L & H & H & 98 \\
\hline L & L & H H H H & H & H L & L & L & H & L & H & 99 \\
\hline L & L & H H H H & & L H & H & H & L & H & H & 100 \\
\hline L & L & H H H H & & L H & H & L & H & L & H & 101 \\
\hline L & L & H H H H & L & L L & L & H & H & L & H & 102 \\
\hline L & L & HHHH & L L & L L & L & L & L & L & H & 103 \\
\hline L & L & H H L L & H H & H H & H & H & H & L & H & 104 \\
\hline L & L & H H L L & H H & H H & H & L & L & L & H & 105 \\
\hline L & L & H H L L & H H & H L & L & H & L & L & H & 106 \\
\hline L & L & H H L L & H H & H L & L & L & H & H & L & 107 \\
\hline L & L & H H L L & & L H & H & H & L & L & H & 108 \\
\hline L & L & H H L L & L L & L H & H & L & H & H & L & 109 \\
\hline L & L & H H L L & L L & L L & L & H & H & H & L & 110 \\
\hline L & L & H H L L & & L L & L & L & L & H & L & 111 \\
\hline L & \(L\) & L L H H & H H & H H & H & H & H & L & H & 112 \\
\hline L & L & L L H H & H & H H & H & L & L & L & & 113 \\
\hline L & L & L L H H & H H & H L & L & H & L & L & H & 114 \\
\hline L & L & L L H H & H & H L & L & L & H & H & L & 115 \\
\hline L & L & L L H H & L L & L H & H & H & L & L & H & 116 \\
\hline L & L & L L H H & L & L H & H & L & H & H & L & 117 \\
\hline L & L & L L H H & L L & L L & L & H & H & H & L & 118 \\
\hline L & L & L L H H & L L & L L & L & L & L & H & L & 119 \\
\hline L & L & L L L L & H H & H H & H & H & H & H & L & 120 \\
\hline L & L & L L L L & H H & H H & H & L & L & H & L & 121 \\
\hline L & L & L L L L & H H & H L & L & H & L & H & & 122 \\
\hline L & L & L L L L & & H L & & L & H & L & L & 123 \\
\hline L & \(L\) & L L L L & L L & L H & H & H & L & H & L & 124 \\
\hline L & \(L\) & L L L L & L L & L H & H & L & H & L & L & 125 \\
\hline L & L & L L L L & L L & L L & L & H & H & L & L & 126 \\
\hline L & L & L L L L & L L & L L & L & L & L & L & L & 127 \\
\hline L & L & H L L L & L L & L L & L & L & L & H & L & 128 \\
\hline L & L & L H L L & L L & L L & L & L & L & H & L & 129 \\
\hline L & L & L L H L & L L & L L & L & L & L & H & L & 130 \\
\hline L & L & L L L H & L L & L L & L & L & L & H & L & 131 \\
\hline L & L & L L L L & H & L L & L & L & H & L & L & 132 \\
\hline L & L & L L L L & L H & H L & L & L & H & L & L & 133 \\
\hline L & L & L L L L & 1 & L H & L & L & H & L & L & 134 \\
\hline 1 & L & L L L L & L L & L L & & L & H & L & L & 135 \\
\hline
\end{tabular}

Function Selection-(-30 to \(\left.+85^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & Device & Case \\
\hline Gates \\
\hline Dual 4-Input OR/NOR & MC1660 & 620 \\
Dual 4-5-Input OR/NOR & MC1688 & 620,650 \\
Quad 2-Input NOR & MC1662 & 620 \\
Triple 2-Input Exclusive NOR & MC1674 & 620 \\
Quad 2-Input OR & MC1664 & 620 \\
Triple 2-Input Exclusive OR & MC1672 & 620 \\
\hline
\end{tabular}
Flip-Flops
\begin{tabular}{|l|c|c|}
\hline Dual Clocked R-S & MC1666 & 620 \\
Dual Clocked Latch & MC1668 & 620 \\
Master-Slave Type D & MC1670 & 620 \\
UHF Prescaler Type D & MC1690 & 620 \\
\hline Counters \\
\hline Binary & MC1654 & 620 \\
Bi-Quinary & MC1678 & 620 \\
1 GHz Divide-by-Four & MC1699 & 620,648 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function & Device & Case \\
\hline \multicolumn{3}{|l|}{Shift Register} \\
\hline 4-Bit Shift & MC1694 & 620 \\
\hline \multicolumn{3}{|l|}{Multivibrator} \\
\hline Voltage-Controlled & MC1658 & 620,648 \\
\hline \multicolumn{3}{|l|}{Oscillator} \\
\hline Emitter Coupled & MC1648 & \[
\begin{gathered}
607,632 \\
646
\end{gathered}
\] \\
\hline \multicolumn{3}{|l|}{Comparator} \\
\hline Dual A/D & MC1650/ MC1651 & 620,650 \\
\hline \multicolumn{3}{|l|}{Receiver} \\
\hline Quad-Line & MC1692 & 620,650 \\
\hline \multicolumn{3}{|l|}{Prescaler} \\
\hline 1 GHz Divide-by-Four & MC1697* & 626,693 \\
\hline
\end{tabular}

\section*{MC1648/MC1648M}

VOLTAGE-CONTROLLED OSCILLATOR

FIGURE 1 - CIRCUIT SCHEMATIC

FIGURE 2 －SPECTRAL PURITY OF SIGNAL AT OUTPUT

B．W．\(=10 \mathrm{kHz}\)
Center Frequency \(=100 \mathrm{MHz}\)
Scan Width \(=50 \mathrm{kHz} / \mathrm{div}\)
Vertical Scale \(=10 \mathrm{~dB} / \mathrm{di}\)

＊The 1200 ohm resistor and the scope termina tion impedance constitute a \(25: 1\) attenuato probe．Coax shall be CT－070－50 or equivalent

\begin{tabular}{l|l|l|l|l|}
& \(+30^{\circ} \mathrm{C}\) & +2.00 & +1.50 & 5.0 \\
\hline\(+25^{\circ} \mathrm{C}\) & +1.85 & +1.35 & 5.0 & -5.0 \\
\cline { 2 - 5 }\(+85^{\circ} \mathrm{C}\) & +1.70 & +1.20 & 5.0 & -5.0 \\
\cline { 2 - 5 } & &
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
& \(-55^{\circ} \mathrm{C}\) & +2.07 & +1.57 & 5.0 \\
\hline & \(+25^{\circ} \mathrm{C}\) & +1.85 & +1.35 & 5.0 \\
\hline\(+125^{\circ} \mathrm{C}\) & +1.60 & +1.10 & 5.0 & -5.0 \\
\cline { 2 - 4 } & &
\end{tabular}
\(\qquad\)
\(\stackrel{A}{+}\) ELECTRICAL CHARACTERISTICS
Supply Voltage \(=+5.0\) Volts
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & & Max & & \\
\hline Power Supply Drain Current & \(l_{\text {I }}\) & － & & － & － & & － & － & & 41 & － & & － & － & & － & mAdc & Inputs and outputs open． \\
\hline Logic＂1＂Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & 3.92 & & 4.13 & 3.95 & & 4.185 & 4.04 & & 4.25 & 4.11 & & 4.36 & 4.16 & & 4.40 & Vdc & \(V_{\text {IL min }}\) to Pin \(12, \mathrm{I}_{\mathrm{L}} @ \operatorname{Pin} 3\). \\
\hline Logic＂0＂Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & 3.13 & & 3.38 & 3.16 & & 3.40 & 3.20 & & 3.43 & 3.22 & & 3.475 & 3.23 & & 3.51 & Vdc & \(\mathrm{V}_{\text {IHmax }}\) to Pin 12， \(\mathrm{I}_{\mathrm{L}}\)＠Pin 3. \\
\hline Bias Voltage & \(V_{\text {Bias＊}}\) & 1.67 & & 1.97 & 1.60 & & 1.90 & 1.45 & & 1.75 & 1.30 & & 1.60 & 1.20 & & 1.50 & Vdc & \(V_{\text {ILmin }}\) to \(\operatorname{Pin} 12\). \\
\hline & & Min & Typ & Max & & \\
\hline Peak－to－Peak Tank Voltage & \(V_{\text {P－P }}\) & － & － & － & － & － & － & － & 400 & － & － & － & － & － & － & － & mV & \\
\hline Output Duty Cycle & \(V_{D C}\) & － & － & － & － & － & － & － & 50 & － & － & － & － & － & － & － & \％ & See Figure 3. \\
\hline Oscillation Frequency & \(f_{\text {max }}{ }^{*}\) & － & 225 & － & － & 225 & － & 200 & 225 & － & － & 225 & － & － & 225 & － & MHz & \\
\hline
\end{tabular}
＊This measurement guarantees the dc potential at the bias point for purposes of incorporating a varactor turning diode at this point．
\({ }^{* *}\) Frequency variation over temperature is a direct function of the \(\Delta C / \Delta\) Temperature and \(\Delta L / \Delta\) Temperature．
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
@ Test \\
Temperature
\end{tabular}} & \multicolumn{4}{|c|}{TEST VOLTAGE/CURRENT VALUES} \\
\hline & \multicolumn{3}{|c|}{(Volts)} & mAdc \\
\hline & \(\mathrm{V}_{\text {IHmax }}\) & \(V_{1 \text { Imin }}\) & \(\mathrm{v}_{\mathrm{CC}}\) & IL \\
\hline \multicolumn{5}{|c|}{MC1648} \\
\hline \(-30^{\circ} \mathrm{C}\) & \(-3.20\) & -3.70 & -5.2 & -5.0 \\
\hline \(+25^{\circ} \mathrm{C}\) & -3.35 & -3.85 & -5.2 & -5.0 \\
\hline \(+85^{\circ} \mathrm{C}\) & \(-3.50\) & -4.00 & -5.2 & -5.0 \\
\hline \multicolumn{5}{|c|}{MC1648M} \\
\hline \(-55^{\circ} \mathrm{C}\) & -3.13 & -3.63 & -5.2 & -5.0 \\
\hline \(+25^{\circ} \mathrm{C}\) & -3.35 & -3.85 & -5.2 & -5.0 \\
\hline \(+125^{\circ} \mathrm{C}\) & -3.60 & -4.10 & -5.2 & -5.0 \\
\hline
\end{tabular}
i ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & \multicolumn{2}{|l|}{Min} & Max & & \\
\hline Power Supply Drain Current & IE & \multicolumn{2}{|l|}{-} & - & \multicolumn{2}{|l|}{-} & - & \multicolumn{2}{|l|}{-} & 41 & \multicolumn{2}{|l|}{-} & - & \multicolumn{2}{|l|}{-} & - & mAdc & Inputs and outputs open. \\
\hline Logic "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & \multicolumn{2}{|l|}{-1.080} & -0.870 & \multicolumn{2}{|l|}{-1.045} & -0.815 & \multicolumn{2}{|l|}{-0.960} & -0.750 & \multicolumn{2}{|l|}{-0.890} & -0.640 & \multicolumn{2}{|l|}{-0.840} & -0.600 & Vdc & \(V_{\text {ILmin }}\) to Pin 12, \(\mathrm{I}_{\mathrm{L}}\) @ Pin 3. \\
\hline Logic '0" Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & \multicolumn{2}{|l|}{-1.920} & -1.670 & \multicolumn{2}{|l|}{-1.890} & -1.650 & \multicolumn{2}{|l|}{-1.850} & -1.620 & \multicolumn{2}{|l|}{-1.830} & -1.575 & \multicolumn{2}{|l|}{-1.820} & -1.540 & Vdc & \(\mathrm{V}_{\text {IH max }}\) to Pin 12, \(\mathrm{I}_{\text {L }}\) @ Pin 3. \\
\hline Bias Voltage & \(V_{\text {Bias* }}\) & \multicolumn{2}{|l|}{-3.53} & -3.23 & \multicolumn{2}{|l|}{-3.60} & -3.30 & \multicolumn{2}{|l|}{-3.75} & -3.45 & \multicolumn{2}{|l|}{\(-3.90\)} & -3.60 & \multicolumn{2}{|l|}{-4.00} & -3.70 & Vdc & \(V_{\text {ILmin }}\) to \(\operatorname{Pin} 12\). \\
\hline & & Min & Typ & Max & Min & Typ & - Max & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & \multirow[b]{2}{*}{mV} & \multirow{4}{*}{See Figure 3.} \\
\hline Peak-to-Peak Tank Voltage & \(V_{\text {P-P }}\) & - & - & - & - & - & - & - & 400 & - & - & - & - & - & - & - & & \\
\hline Output Duty Cycle & \(\mathrm{V}_{\mathrm{DC}}\) & - & - & - & - & - & - & - & 50 & - & - & - & - & - & - & - & \% & \\
\hline Oscillation Frequency & \({ }_{\text {max** }}\) & - & 225 & - & - & 225 & - & 200 & 225 & -- & - & 225 & - & - & 225 & - & MHz & \\
\hline
\end{tabular}
*This measurement guarantees the de potential at the bias point for purposes of incorporating a varactor turning diode at this point
\({ }^{* *}\) Frequency variation over temperature is a direct function of the \(\Delta \mathrm{C} / \Delta\) Temperature and \(\Delta \mathrm{L} / \Delta\) Temperature.

OPERATING CHARACTERISTICS

Figure 1 illustrates the circuit schematic for the MC1648. The oscillator incorporates positive feedback by coupling the base of transistor \(Q 6\) to the collector of 07 . An automatic gain control (AGC) is incorporated to limit the current through the emitter-coupled pair of transistors (Q7 and Q6:) and allow optimum frequency response of the oscillator.

In order to maintain the high \(Q\) of the oscillator, and provide high spectral purity at the output, transistor Q4 is used to translate the oscillator signal to the output differential pair Q2 and Q3. Q2 and Q3, in conjunction with output transistor Q1, provides a highly buffered output which produces a square wave. Transistors Q9 and Q11 provide the bias drive for the oscillator and output buffer. Figure 2 indicates the high spectral purity of the oscillator output (pin 3).

When operating the oscillator in the voltage controlled mode (Figure 4), it should be noted that

FIGURE 4 - THE MC1648 OPERATING IN THE VOLTAGE CONTROLLED MODE

the cathode of the varactor diode (D) should be biased at least \(2 \vee_{B E}\) above \(V_{E E}(\approx 1.4 \vee\) for positive supply operation).

When the MC1648 is used with a constant dc voltage to the varactor diode, the output frequency will vary slightly because of internal noise. This variation is plotted versus operating frequency in Figure 5.

FIGURE 5 - NOISE DEVIATION TEST CIRCUIT AND WAVEFORM

TRANSFER CHARACTERISTICS IN THE VOLTAGE CONTROLLED MODE USING EXTERNAL VARACTOR DIODE AND COIL. \(T_{A}=25^{\circ} \mathrm{C}\)

FIGURE 6

FIGURE 7

Figure 8

Typical transfer characteristics for the oscillator in the voltage controlled mode are shown in Figures 6, 7, and 8. Figures 6 and 8 show transfer characteristics employing only the capacitance of the varactor diode (plus the input capacitance of the oscillator, 6 pF typical). Figure 7 illustrates the oscillator operating in a voltage controlled mode with the output frequency range limited. This is achieved by adding a capacitor in parallel with the tank circuit as shown. The \(1 \mathrm{k} \Omega\) resistor in Figures 6 and 7 is used to protect the varactor diode during testing. It is not necessary as long as the dc input voltage does not cause the diode to become forward biased. The larger-valued resistor (\(51 \mathrm{k} \Omega\)) in Figure 8 is required to provide isolation for the high-impedance junctions of the two varactor diodes.

The tuning range of the oscillator in the voltage controlled mode may be calculated as:
\[
\frac{f_{\text {max }}}{f_{\min }}=\frac{\sqrt{C_{D}(\max)+c_{S}}}{\sqrt{C_{D}(\min)+c_{S}}}
\]
where \(f_{\min }=\frac{1}{2 \pi \sqrt{L\left(C_{D}(\max)+C_{S}\right)}}\)
\(\mathrm{C}_{\mathrm{S}}=\) shunt capacitance (input plus external capacitance).
\(C_{D}=\) varactor capacitance as a function of bias voltage.

Good RF and low-frequency bypassing is necessary on the power supply pins. (See Figure 2.)

Capacitors (C1 and C2 of Figure 4) should be used to bypass the AGC point and the VCO input (varactor diode), guaranteeing only dc levels at these points.

For output frequency operation between 1 MHz and 50 MHz a \(0.1 \mu \mathrm{~F}\) capacitor is sufficient for C1 and C2. At higher frequencies, smaller values of capacitance should be used; at lower frequencies, larger values of capacitance. At high frequencies the value of bypass capacitors depends directly upon the physical layout of the system. All bypassing should be as close to the package pins as possible to minimize unwanted lead inductance.

The peak-to-peak swing of the tank circuit is set internally by the AGC circuitry. Since voltage swing of the tank circuit provides the drive for the output buffer, the AGC potential directly affects the output waveform. If it is desired to have a sine wave at the output of the MC1648, a series resistor is tied from the AGC point to the most negative power potential (ground if +5.0 volt supply is used, -5.2 volts if a negative supply is used) as shown in Figure 10.

At frequencies above 100 MHz typ, it may be desirable to increase the tank circuit peak-to-peak voltage in order to shape the signal at the output of the MC1648. This is accomplished by tying a series resistor (\(1 \mathrm{k} \Omega\) minimum) from the \(A G C\) to the most positive power potential \((+5.0\) volts if a +5.0 volt supply is used, ground if a -5.2 volt supply is used). Figure 11 illustrates this principle.

\section*{APPLICATIONS INFORMATION}

The phase locked loop shown in Figure 9 illustrates the use of the MC1648 as a voltage controlled oscillator. The figure illustrates a frequency synthesizer useful in tuners for FM broadcast, general aviation, maritime and landmobile communications, amateur and CB receivers. The system operates from a single +5.0 Vdc supply, and requires no internal translations, since all components are compatible.

Frequency generation of this type offers the advantages of single crystal operation, simple channel selection, and elimination of special circuitry to prevent harmonic lockup. Additional features include de digital switching
(preferable over RF switching with a multiple crystal system), and a broad range of tuning (up to 150 MHz , the range being set by the varactor diode).

The output frequency of the synthesizer loop is determined by the reference frequency and the number programmed at the programmable counter; \(f_{\text {out }}=N f_{r e f}\). The channel spacing is equal to frequency (\(f_{r e f}\)).

For additional information on applications and designs for phase locked-loops and digital frequency synthesizers. see Motorola Application Notes AN-532A, AN-535, AN-553, AN564 or AN594.

\section*{FIGURE 9 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION}

\(N=N_{P} \bullet P+A\)

Figure 10 shows the MC1648 in the variable frequency mode operating from a +5.0 Vdc supply. To obtain a sine wave at the output, a resistor is added from the AGC circuit (pin 5) to VEE.

Figure 11 shows the MC1648 in the variable frequency mode operating from \(a+5.0 \mathrm{Vdc}\) supply. To extend the useful range of the device (maintain a square wave output above 175 MHz), a resistor is added to the AGC circuit at pin 5 (1 k -ohm minimum).

FIGURE 10 - METHOD OF OBTAINING A SINE.WAVE OUTPUT

Figure 12 shows the MC1648 operating from +5.0 Vdc and +9.0 Vdc power supplies. This permits a higher voltage swing and higher output power than is possible from the MECL output (pin 3). Plots of output power versus total collector load resistance at pin 1 are given in Figures 13 and 14 for 100 MHz and 10 MHz operation. The total collector load includes \(R\) in parallel with \(R p\) of \(L 1\) and C 1 at resonance. The optimum value for \(R\) at 100 MHz is approximately 850 ohms.

FIGURE 11 - METHOD OF EXTENDING THE USEFUL RANGE OF THE MC1648 (SQUARE WAVE OUTPUT)

FIGURE 12 - CIRCUIT USED FOR COLLECTOR OUTPUT OPERATION

FIGURE 13 - POWER OUTPUT versus COLLECTOR LOAD

figure 14 - power output versus Collector load

\section*{MC1650/MC1651}

\(V_{C C}=+5.0 \mathrm{~V}=\operatorname{Pin} 7,10 \cdot(11),(14)\)
\(V_{E E}=-5.2 \mathrm{~V}=\operatorname{Pin} 8(12)\)
Gnd \(=\operatorname{Pin} 1,16(4)(5)\)
- \(P_{D}=330 \mathrm{~mW}\) typ/pkg (No Load)
- \(\quad \begin{aligned} t_{p d} & =3.5 \mathrm{~ns} \text { typ (MC1650) } \\ & =3.0 \mathrm{~ns} \text { typ (MC1651) }\end{aligned}\)
\(S \frac{15.295 V}{43.7 \mathrm{~ns}}\)
\(=500 \mathrm{~V} / \mu \mathrm{s}(\mathrm{MC1651})\)
- Differential Input Voltage:
\(5.0 \vee\left(-30^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
- Common Mode Range:
\(-3.0 \vee\) to \(+2.5 \vee\left(-30^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)(\mathrm{MC} 1651)\)
-2.5 V to \(+3.0 \mathrm{~V}\left(-30^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)(\mathrm{MC1650})\)
- Resolution: \(\leqslant 20 \mathrm{mV}\left(-30^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
- Drives \(50 \Omega\) lines

Number at end of terminal denotes pin number for L package (Case 620). Number in parenthesis denotes pin number for F package (Case 650).

The MC1650 and the MC1651 are very high speed comparators utilizing differential amplifier inputs to sense analog signals above or below a reference level. An output latch provides a unique sample-hold feature. The MC1650 provides high impedance Darlington inputs, while the MC1651 is a lower impedance option, with higher input slew rate and higher speed capability.

The clock inputs (\(\bar{C}_{a}\) and \(\bar{C}_{b}\)) operate from MECL III or MECL 10,000 digital levels. When \(\overline{\mathrm{C}}_{\mathrm{a}}\) is at a logic high level, QO will be at a logic high level provided that \(V_{1}>V_{2}\left(V_{1}\right.\) is more positive than \(V_{2}\)). \(\overline{\mathrm{Q} O}\) is the logic complement of QO. When the clock input goes to a low logic level, the outputs are latched in their present state.

Assessment of the performance differences between the MC1650 and the MC1651 may be based upon the relative behaviors shown in Figures 4 and 7.
\begin{tabular}{l}
\begin{tabular}{|c|c|c|c|}
\hline \(\bar{C}\) & \(V_{1}, V_{2}\) & \(\mathrm{QO}_{n+1}\) & \(\overline{\mathrm{O}}_{n+1}\) \\
\hline\(H\) & \(V_{1}>V_{2}\) & \(H\) & \(L\) \\
\hline\(H\) & \(V_{1}<V_{2}\) & \(L\) & \(H\) \\
\hline\(L\) & \(\phi \quad \phi\) & \(Q 0_{n}\) & \(\overline{\mathrm{O}} 0_{n}\) \\
\hline
\end{tabular} \\
\hline\(=\) Don't Care
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|r|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & \multicolumn{10}{|c|}{TEST VOLTAGE APPLIED TO PINS LISTED BELOW} & \multirow[b]{2}{*}{Gnd} \\
\hline & & Min & Max & Min & Max & Min & Max & & \(\mathrm{V}_{\text {IH } \text { max }}\) & \(V_{\text {IL min }}\) & \(V_{\text {IHAmin }}\) & \(V_{\text {ILAmax }}\) & \(\mathrm{V}_{\text {A1 }}\) & \(\mathrm{V}_{\text {A2 }}\) & \(\mathrm{V}_{\text {A3 }}\) & \(\mathrm{V}_{\text {A4 }}\) & VA5 & VA6 & \\
\hline Power Supply Drain Current Positive Negative & \[
\begin{gathered}
I^{I} C C \\
{ }^{\prime} E
\end{gathered}
\] & - & - & - & \[
\begin{aligned}
& 25^{*} \\
& 55^{*}
\end{aligned}
\] & - & - & mAdc & \[
-\overline{-13}
\] & \[
4.13
\] & - & & \[
\begin{aligned}
& 6,12 \\
& 6,12
\end{aligned}
\] & - & - & -- & - & - & \[
\begin{aligned}
& 1,5,11,16 \\
& 1,5,11,16
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Input Current \\
MC 1650 \\
MC1651
\end{tabular} & \({ }^{\text {in }}\) & - & - & - & \[
\begin{aligned}
& 10 \\
& 40
\end{aligned}
\] & - & - & \(\mu \mathrm{Adc}\) & 4 & 13 & - & - & 12 & - & 6 & - & - & - & 1,5,11,16 \\
\hline \begin{tabular}{l}
Input Leakage Current \\
MC 1650 \\
MC 1651
\end{tabular} & \({ }^{\prime} \mathrm{R}\) & - & - & - & \[
\begin{aligned}
& 7.0 \\
& 10 \\
& \hline
\end{aligned}
\] & \(-\) & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \(\mu \mathrm{Adc}\) & 4 & 13 & - & - & 12 & - & - & - & 6 & - & 1,5,11,16 \\
\hline Clock Input Current & \(\mathrm{I}_{\mathrm{inH}}\) & - & - & - & 350 & - & - & \(\mu \mathrm{Adc}\) & 4 & 13 & -- & - & 6.12 & - & - & - & - & - & 1,5,11,16 \\
\hline Logic "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.045 & -0.875 & 0.960 & -0.810 & -0.890 & -0.700 & \(V \mathrm{dc}\) & \[
\left.\right|_{1} ^{4,13}
\] & & & & \[
\begin{gathered}
6.12 \\
- \\
- \\
- \\
- \\
5.11 \\
-
\end{gathered}
\] & \[
\begin{gathered}
- \\
5.11 \\
- \\
- \\
6.12 \\
- \\
-
\end{gathered}
\] & \[
6.12
\] & \[
\begin{array}{|c}
- \\
- \\
5.11 \\
- \\
- \\
- \\
6.12 \\
- \\
\hline
\end{array}
\] & \[
5.11
\]
\[
\begin{aligned}
& - \\
& -
\end{aligned}
\]
\[
6,12
\] & \[
\begin{gathered}
- \\
- \\
- \\
6.12 \\
- \\
- \\
- \\
5,11
\end{gathered}
\] & \begin{tabular}{c}
\(1,5,11,16\) \\
\(1,5,11,16\) \\
\(1.6,12,16\) \\
1,16 \\
1,16 \\
\(1,5.11,16\) \\
\(1,6,12,16\) \\
1,16 \\
1,16 \\
\hline
\end{tabular} \\
\hline Logic "0" Output Voltage & \(\mathrm{v}_{\mathrm{OL}}\) & -1.890 & -1.650 & -1.850 & -1.620 & -1.830 & -1.575 & Vóc & \[
4,13
\] & & & & \[
\begin{gathered}
- \\
5,11 \\
- \\
- \\
6,12
\end{gathered}
\] & \begin{tabular}{l}
\[
6,12
\] \\
-
\[
5, \overline{11}
\]
\end{tabular} & \[
\begin{gathered}
- \\
- \\
5.11 \\
- \\
- \\
- \\
6.12 \\
-
\end{gathered}
\] & \[
\begin{gathered}
- \\
- \\
6.12 \\
- \\
- \\
- \\
5.11
\end{gathered}
\] & \[
6,12
\]
\[
-
\]
\[
-
\]
\[
5,11
\] & \[
5,11
\]
-
\[
6,12
\] & \begin{tabular}{c}
\(1,5,11,16\) \\
\(1.6,12,16\) \\
1,16 \\
1,16 \\
\(1,5,11,16\) \\
\(1,6,12,16\) \\
1,16 \\
1,16 \\
\hline
\end{tabular} \\
\hline Logic "1" Threshold Voltage (2) & \(\mathrm{V}_{\text {OHA }}\) & -1.065 & \(\cdots\) & -0.980 & \(\cdots\) & -0.910 & - & Vdc & -- & \[
13
\] & \[
4
\] & \[
\begin{aligned}
& 4 \\
& - \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& - \\
& - \\
& 6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
- \\
6 \\
6 \\
\hline \\
\hline
\end{array}
\] & - & \begin{tabular}{l}
- \\
- \\
- \\
\hline
\end{tabular} & -
-
-
- & - & \[
\left.\right|_{7} ^{1,5,16}
\] \\
\hline \[
\begin{gathered}
\text { Logic " } 0 \text { " Threshold } \\
\text { Voltage (2) }
\end{gathered}
\] & VOLA & - & -1.630 & . & -1.600 & - & -1.555 & Vdc & \(\stackrel{-}{-}\) & \[
\left.\right|_{1} ^{13}
\] & \begin{tabular}{l}
4 \\
- \\
4 \\
- \\
\hline
\end{tabular} & \begin{tabular}{l}
4 \\
\hline \\
4 \\
\hline
\end{tabular} & \begin{tabular}{l}
6 \\
- \\
\hline \\
\hline
\end{tabular} & -
6
6 & \begin{tabular}{l}
- \\
- \\
- \\
- \\
\hline
\end{tabular} & \begin{tabular}{l}
- \\
- \\
- \\
- \\
\hline
\end{tabular} & - & - & \[
\left.\right|_{f} ^{1,5,16}
\] \\
\hline
\end{tabular}

NOTES: (1) All data is for \(1 / 2 \mathrm{MC} 1650\) or MC1651, except data marked (*) which refers to the entire package (2) These tests done in order indicated. See Figure 5.
(3) Maximum Power Supply Voltages (beyond which device life may be impaired)
\(\left|V_{E E}\right|+\left|V_{C C}\right| \geqslant 12 V d c\)
(4)
\begin{tabular}{|c|c|c|c|c|}
\hline All Temperatures & \(V_{A 3}\) & \(V_{A 4}\) & \(V_{A 5}\) & \(V_{A 6}\) \\
\hline\(M C 1650\) & +3.000 & +2.980 & -2.500 & -2.480 \\
\hline\(M C 1651\) & +2.500 & +2.480 & -3.000 & -2.980 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
@ Test \\
Temperature
\end{tabular}} & \multicolumn{6}{|c|}{SWITCHING TEST VOLTAGE VALUES} \\
\hline & \multicolumn{6}{|c|}{(Volts)} \\
\hline & VR1 & \(\mathrm{V}_{\mathrm{R} 2} \mathrm{~V}_{\mathrm{R} 3}\) & \(\mathrm{V}_{\mathrm{X}}\) & \(\mathrm{V}_{\mathbf{X X}}\) & \(\mathrm{v}_{\mathrm{cc}}\) (1) & \(\mathrm{V}_{\mathrm{EE}}\) (1) \\
\hline \(-30^{\circ} \mathrm{C}\) & +2.000 & \multirow{3}{*}{See Note (4)} & +1.040 & +2.00 & +7.00 & -3.20 \\
\hline \(+25^{\circ} \mathrm{C}\) & +2.000 & & +1.110 & +2.00 & +7.00 & -3.20 \\
\hline \(+85^{\circ} \mathrm{C}\) & \(+2.000\) & & +1.190 & +2.00 & +7.00 & -3.20 \\
\hline
\end{tabular}

NOTES: (1) Maximum Power Supply Voltages (beyond which device life may be impaired: \(\left|V_{\mathrm{CC}}\right|+\left|V_{\mathrm{EE}}\right| \geqslant 12 \mathrm{Vdc}\).

\footnotetext{
Unused clock inputs may be tied to ground.
(3) See Figure 3.
}
(4) All Temperatures \begin{tabular}{|c|c|c|}
\hline \(\mathbf{V}_{\mathbf{R} 2}\) & \(\mathbf{V}_{\mathbf{R} 3}\) \\
\hline MC1650 & +4.900 & -0.400 \\
\hline MC1651 & +4.400 & -0.900 \\
\hline
\end{tabular}

FIGURE 1 - SWITCHING TIME TEST CIRCUIT @ \(25^{\circ} \mathrm{C}\)

Note: All power supply and logic levels are shown shifted 2 volts positive.

50-ohm termination to ground located in each scope channel input.
All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable.

FIGURE 2 - SWITCHING AND PROPAGATION WAVEFORMS @ \(25^{\circ} \mathrm{C}\)

The pulse levels shown are used to check ac parameters over the full common-mode range.

\section*{V - Input to Output}

TEST PULSE LEVELS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{\(\mathrm{P}^{2}\)} & \multicolumn{2}{c|}{\(\mathrm{P}^{2}\)} & \multicolumn{2}{c|}{P 3} \\
\hline & \(M C 1650\) & \(M C 1651\) & \(M C 1650\) & \(M C 1651\) & \(M C 1650\) & \(M C 1651\) \\
\hline \(\mathrm{~V}_{1 \mathrm{H}}\) & +2.100 V & +2.100 V & +5.000 V & +4.500 V & -0.300 V & -0.800 V \\
\hline \(\mathrm{~V}_{\mathrm{R}}\) & +2.000 V & +2.000 V & +4.900 V & +4.400 V & -0.400 V & -0.900 V \\
\hline \(\mathrm{~V}_{\mathrm{IL}}\) & +1.900 V & +1.900 V & +4.800 V & +4.300 V & -0.500 V & -1.000 V \\
\hline
\end{tabular}

FIGURE 3 - CLOCK ENABLE AND APERTURE TIME TEST CIRCUIT AND WAVEFORMS @ \(25^{\circ} \mathrm{C}\)

50.0 hm termination to ground located
in each scope channel input.
All input and output cables to the scope are equal lengths of 50.0 hm coaxial cable.

Analog Signal Positive and Negative Slew Case

- Clock enable time \(=\) minimum time between analog and clock signal such that output switches, and tpd (analog to \(Q\)) is not degraded by more than 200 ps.
Clock aperture time \(=\) time difference between clock enable time and time that output does not switch and \(V\) is less than 150 mV .

Note: All power supply and logic levets are shown shifted 2 volts positive.

FIGURE 4 - PROPAGATION DELAY \(\left(t_{p d}\right)\) versus INPUT PULSE AMPLITUDE AND CONSTANT OVERDRIVE

Positive Pulse Diagram
Negative Pulse Diagram

Input switching time is constant at \(1.5 \mathrm{~ns} \mathrm{(} 10 \%\) to \(90 \%\)).

FIGURE 4 (continued)

FIGURE 5 - LOGIC THRESHOLD TESTS (WAVEFORM SEQUENCE DIAGRAM)

FIGURE 6 - TRANSFER CHARACTERISTICS (\(\mathbf{Q}\) versus \(\mathbf{V}_{\text {in }}\))

Test Configuration

Typical Transfer Curves

\(V_{\text {in }}\). DIFFERENTIAL INPUT VOLTAGE (m VOLTS)

FIGURE 7 - OUTPUT VOLTAGE SWING versus FREQUENCY

FIGURE 8 - INPUT CURRENT versus INPUT VOLTAGE

\section*{MC1654}

BINARY COUNTER

\(V_{C C}=1,16\)
\(V_{E E}=8\)

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|r|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & \(I_{E}\) & - & - & - & 200 & - & - & mAdc \\
\hline Input Current & \(\mathrm{l}_{\mathrm{inH}}\) & & & & & & & mAdc \\
\hline Reset & & - & - & - & 1.00 & - & - & \\
\hline Set, Clock & & - & - & - & 0.60 & - & - & \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Switching Times \\
Propagation Delay \\
Clock (Pin 2 or 15 to pins 4, 5) \\
Set, Reset \\
Rise Time (10\% to 90\%) \\
Fall Time (\(10 \%\) to \(90 \%\)) \\
Maximum Toggle Frequency
\end{tabular}} & \multirow{4}{*}{\({ }^{\text {t }}\) pd} & \multirow[b]{4}{*}{\[
\begin{aligned}
& 1.0 \\
& 2.0 \\
& \hline
\end{aligned}
\]} & \multirow[b]{4}{*}{\[
\begin{aligned}
& 2.9 \\
& 3.9
\end{aligned}
\]} & \multirow[b]{4}{*}{\[
\begin{array}{r}
1.0 \\
2.0 \\
\hline
\end{array}
\]} & \multirow[b]{4}{*}{\[
\begin{aligned}
& 2.7 \\
& 3.7
\end{aligned}
\]} & \multirow[b]{3}{*}{1.0} & \multirow[b]{3}{*}{3.1} & \multirow[t]{4}{*}{ns} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & 2.0 & 4.1 & \\
\hline & t+ & 1.0 & 2.9 & 1.0 & 2.7 & 1.0 & 3.1 & ns \\
\hline & t- & 1.0 & 2.8 & 1.0 & 2.6 & 1.0 & 3.0 & ns \\
\hline & \(f_{\text {tog }}\) & 260 & - & 300 & - & 260 & - & MHz \\
\hline
\end{tabular}
(1) For \(V_{O H} / V_{O L}\) testing reset all four flip-flops by applying \(R_{A 1}\) to Reset and apply \(V_{I L}\) imin to Set inputs, or set all four flip-flops by applying \(R_{A 1}\) simultaneously to all Set inputs and apply \(V_{\text {ILmin }}\) to Reset. For \(V_{O H A} / V_{\text {OLA }}\) testing follow the same procedure using \(P_{A 2}\) and \(V_{\text {ILAmax }}\).

\(\mathrm{P}_{\mathrm{A} 2} \longrightarrow-\mathrm{V}_{1 \text { HA }}\)

\section*{MC1658}

VOLTAGE-CONTROLLED MULTIVIBRATOR

The MC1658 is a voltage-controlled multivibrator which provides appropriate level shifting to produce an output compatible with MECL III and MECL 10,000 logic levels. Frequency control is accomplished through the use of voltage-variable current sources which control the slew rate of a single external capacitor.

The bias filter may be used to help eliminate ripple on the output voltage levels at high frequencies and the input filter may be used to decouple noise from the analog input signal.

LSUFFIX
CERAMIC PACKAGE
CASE 620

FIGURE 1 - CIRCUIT SCHEMATIC

\section*{AC CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{\begin{tabular}{l}
Rise Time (10\% to 90\%) \\
Fall Time (\(10 \%\) to \(90 \%\)) \\
Oscillator Frequency
\end{tabular}} & Symbol & Min & Max & Min & Typ & Max & Min & Max & Unit & Conditions See Figure 2. \\
\hline & t+ & - & 2.7 & - & 1.6 & 2.7 & - & 3.0 & ns & \multirow{3}{*}{\(V_{\text {IHA }}\) to \(V_{C X}, C \times 2(5)\) from pin 11 to pin 14.} \\
\hline & t- & - & 2.7 & - & 1.4 & 2.7 & - & 3.0 & ns & \\
\hline & \(\mathrm{f}_{\mathrm{osc}} 1\) & 130 & - & 130 & 155 & 175 & 110 & - & MHz & \\
\hline & fosc & - & - & 78 & 90 & 100 & - & - & MHz & \(\mathrm{V}_{1 \text { HA }}\) to \(\mathrm{V}_{\mathrm{CX}}, \mathrm{CX1}\) (4) from pin 11 to pin 14. \\
\hline Tuning Ration Test & TR (3) & - & - & 3.1 & 4.5 & - & - & - & - & cx1 (4) from pin 11 to pin 14. \\
\hline
\end{tabular}Germanium diode (0.4 drop) forward biased from 11 to 14 (11 _ 14)Germanium diode (0.4 drop) forward biased from 14 to 11 (11 _-14).
(4) \(\mathrm{C}_{\mathrm{X} 1}=10 \mathrm{pF}\) connected from pin 11 to pin 14.
(5) \(\mathrm{C}_{\mathrm{X} 2}=5 \mathrm{pF}\) connected from pin 11 to pin 14 .
(3) \(T R=\frac{\text { Output frequency at } V_{C X}=G \text { nd }}{\text { Output frequency at } V_{C X}=-2.0 \mathrm{~V}}\)

FIGURE 3 - OUTPUT FREQUENCY versus CAPACITANCE FOR VARIOUS VALUES OF INPUT VOLTAGE

FIGURE 4 - RMS NOISE DEVIATION versus OPERATING FREQUENCY

FIGURE 5 - FREQUENCY-CAPACITANCE PRODUCT versus CONTROL VOLTAGE (\(V_{C X}\))
\({ }^{\prime} 0 \cdot C_{X}\); FREQUENCY-CAPACITANCE PRODUCT (\(\mathrm{MHz}-\mathrm{pF}\))

\(V_{C X}\) INPUT VOLTAGE (Vdc)

\section*{MC1660}

\section*{DUAL 4-INPUT GATE}

Numbers at ends of terminals denote pin numbers for \(L\) package
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & 'E & - & - & - & 28 & - & - & mAdc \\
\hline Input Current & 1 linH & - & - & - & 350 & - & - & \(\mu\) Adc \\
\hline Switching Times Propagation Delay & \[
\begin{aligned}
& \mathrm{t}^{+-} \\
& \mathrm{t}^{-+}
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.8 \\
& 1.6
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.9 \\
& 1.7
\end{aligned}
\] & ns \\
\hline Rise Time, Fall Time (10\% to \(90 \%\)) & \(\mathrm{t}^{+}, \mathrm{t}^{-}\) & 0.6 & 2.2 & 0.6 & 2.1 & 0.6 & 2.3 & ns \\
\hline
\end{tabular}

\[
X=\overline{A+B}
\]
\[
\begin{aligned}
V_{C C 1} & =\operatorname{Pin} 1 \\
V_{C C 2} & =\operatorname{Pin} 16 \\
V_{E E} & =\operatorname{Pin} 8
\end{aligned}
\]
\(t_{p d}=0.9 \mathrm{~ns}\) typ (510.0 hm load)
\(=1.1 \mathrm{~ns}\) typ (50-ohm load)
\(P_{D}=240 \mathrm{~mW}\) typ/pkg (No load)
Full Load Current, \(I_{L}=-25 \mathrm{mAdc} \max\)
 CASE 620

Number at end of terminals denotes pin number of L package.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Max & Max & Min & Max & \\
\hline Power Supply Drain Current & IE & - & - & - & 56 & - & - & mAdc \\
\hline Input Current & 1 inH & - & - & - & 350 & - & - & \(\mu \mathrm{Adc}\) \\
\hline Switching Times Propagation Delay & \[
\begin{aligned}
& \mathbf{t}^{+} \\
& \mathbf{t}^{+-}
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 1.9
\end{aligned}
\] & ns \\
\hline Rise Time, Fall Time (10\% to 90\%) & \(\mathrm{t}^{+}, \mathrm{t}^{-}\) & 0.6 & 2.2 & 0.6 & 2.1 & 0.6 & 2.3 & ns \\
\hline
\end{tabular}

\section*{MC1664}

\section*{QUAD 2-INPUT OR GATE}

Number at end of terminals denotes pin number of \(L\) package.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & \({ }^{\text {I }}\) E & - & - & - & 56 & - & - & mAdc \\
\hline Input Current & 1 inH & - & - & - & 350 & - & - & \(\mu \mathrm{Adc}\) \\
\hline Switching Times Propagation Delay & \[
\begin{aligned}
& \mathrm{t}^{++} \\
& \mathrm{t}^{--}
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.8
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 1.9
\end{aligned}
\] & ns \\
\hline Rise Time, Fall Time (10\% to \(90 \%\)) & \(\mathrm{t}^{+}, \mathrm{t}^{-}\) & 0.6 & 2.2 & 0.6 & 2.1 & 0.6 & 2.3 & ns \\
\hline
\end{tabular}

\section*{MC1666}

\section*{DUAL CLOCKED R-S FLIP-FLOP}

TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline\(S\) & \(R\) & \(C\) & \(\mathrm{O}_{\mathrm{n}+1}\) \\
\hline\(\phi\) & \(\phi\) & 0 & \(\mathrm{O}_{\mathrm{n}}\) \\
0 & 0 & 1 & \(\mathrm{O}_{\mathrm{n}}\) \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & N.D. \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\phi=\) Don't Care
\end{tabular}
\(\mathrm{N} . \mathrm{D}\) =
N.D. = Not Defined
\(t_{p d}=1.6 \mathrm{~ns} \operatorname{typ}(510\)-ohm load \()\)
\(V_{\mathrm{CC} 1}=\operatorname{Pin} 1\)
\(=1.8 \mathrm{~ns}\) typ (50-ohm load)
\(P_{D}=220 \mathrm{~mW}\) typ/pkg (No Load)
\(V_{\text {CC2 }}=\operatorname{Pin} 16\)
\(V_{E E}=\operatorname{Pin} 8\)

Number at end of terminal denotes pin number for \(L\) package
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & IE & - & - & - & 55 & - & - & mAdc \\
\hline Input Current Set, Reset Clock & \(\mathrm{l}_{\mathrm{inH}}\) & - & - & - & \[
\begin{aligned}
& 370 \\
& 225
\end{aligned}
\] & - & - & \(\mu \mathrm{Adc}\) \\
\hline Switching Times Propagation Delay Clock Set, Reset & \({ }^{\text {tpd }}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.7 \\
& 2.5
\end{aligned}
\] & 1.0
1.1 & \[
\begin{aligned}
& 2.5 \\
& 2.3
\end{aligned}
\] & 1.1
1.1 & \[
\begin{aligned}
& 2.8 \\
& 2.7
\end{aligned}
\] & ns \\
\hline Rise Time (10\% to 90\%) & t+ & 0.8 & 2.8 & 0.8 & 2.5 & 0.9 & 2.9 & ns \\
\hline , Fall Time (10\% to 90\%) & t- & 0.5 & 2.4 & 0.5 & 2.2 & 0.5 & 2.6 & ns \\
\hline
\end{tabular}

\section*{MC1668}

\section*{DUAL CLOCKED LATCH}

Number at end of terminal denotes pin number for \(L\) package
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & \(I_{E}\) & - & - & - & 55 & - & - & mAdc \\
\hline Input Current Data, Set, Reset Clock & 1 inH & - & - & - & \[
\begin{aligned}
& 370 \\
& 225
\end{aligned}
\] & - & - & \(\mu\) Adc \\
\hline Switching Times Propagation Delay Clock Set, Reset & \({ }^{t} \mathrm{pd}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.7 \\
& 2.5
\end{aligned}
\] & 1.0
1.0 & 2.5
2.3 & 1.1
1.1 & \[
\begin{aligned}
& 2.8 \\
& 2.7
\end{aligned}
\] & ns \\
\hline Rise Time (\(10 \%\) to \(90 \%\)) & t+ & 0.8 & 2.8 & 0.9 & 2.5 & 0.9 & 2.9 & ns \\
\hline Fall Time (10\% to 90\%) & t- & 0.5 & 2.4 & 0.5 & 2.2 & 0.5 & 2.6 & ns \\
\hline
\end{tabular}

TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline R & S & D & C & \(Q_{n+1}\) \\
\hline L & H & \(\phi\) & \(\phi\) & \({ }^{+}\) \\
\hline H & L & \(\phi\) & \(\phi\) & L \\
\hline H & H & \(\phi\) & \(\phi\) & N.D. \\
\hline L & L & L & L & \(Q_{n}\) \\
\hline L & L & L & - & L \\
\hline L & L & L & H & \(Q_{n}\) \\
\hline L & L & H & L & \(a_{n}\) \\
\hline L & L & H & \(\checkmark\) & H \\
\hline L & L & H & H & \(\mathrm{Q}_{\mathrm{n}}\) \\
\hline
\end{tabular}
\(\phi=\) Don't Care
ND \(=\) Not Defined
\(C=C 1+C 2\)

Master slave construction renders the MC1670 relatively insensitive to the shape of the clock waveform, since only the voltage levels at the clock inputs control the transfer of information from data input (D) to output.

When both clock inputs (C1 and C2) are in the low state, the data input affects only the "Master" portion of the flip-flop. The data present in the "Master" is transferred to the "Slave" when clock inputs (C1 "OR" C2) are taken from a low to a high level. In other words, the output state of the flip-flop changes on the positive transition of the clock pulse.

While either C1 "OR" C2 is in the high state, the "Master" (and data input) is disabled.

Asynchronous Set (S) and Reset (\(R\)) override Clock (C) and Data (D) inputs.

Power Dissipation \(=220 \mathrm{~mW}\) typical (No Load) \(f_{\text {Tog }}=350 \mathrm{MHz}\) typ

LSUFFIX CERAMIC PACKAGE CASE 620

Number at end of terminal denotes pin number for L package
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & \(\mathrm{I}_{\mathrm{E}}\) & - & - & - & 48 & - & - & mAdc \\
\hline \begin{tabular}{l}
Input Current \\
Set, Reset Clock Data
\end{tabular} & 1 inH & - & - & - & \[
\begin{aligned}
& 550 \\
& 250 \\
& 270
\end{aligned}
\] & - & - & \(\mu \mathrm{Adc}\) \\
\hline Switching Times Propagation Delay & \({ }^{\text {tpd }}\) & 1.0 & 2.7 & 1.1 & 2.5 & 1.1 & 2.9 & ns \\
\hline Rise Time (10\% to 90\%) & t+ & 0.9 & 2.7 & 1.0 & 2.5 & 1.0 & 2.9 & ns \\
\hline Fall Time (10\% to 90\%) & t- & 0.5 & 2.1 & 0.6 & 1.9 & 0.6 & 2.3 & ns \\
\hline Setup Time & \[
\begin{aligned}
& \mathrm{t}^{\prime}{ }^{\prime \prime} 1^{\prime \prime} \\
& \mathrm{t}^{\prime \prime}{ }^{\prime \prime}
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 0.4 \\
& 0.5
\end{aligned}
\] & - & & - & - ns \\
\hline Hold Time & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{H}^{\prime \prime} 1^{\prime \prime}} \\
& \mathrm{t}^{\prime \prime}{ }^{\prime \prime} \mathrm{O}^{\prime \prime} \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \hline 0.3 \\
& 0.5 \\
& \hline
\end{aligned}
\] & - & - & - & ns \\
\hline Toggle Frequency & \({ }^{\text {f }}\) Tog & 270 & - & 300 & - & 270 & - & MHz \\
\hline
\end{tabular}

FIGURE 1 - TOGGLE FREQUENCY WAVEFORMS

FIGURE 2 - MAXIMUM TOGGLE FREQUENCY (TYPICAL)

Figure 2 illustrates the variation in toggle frequency with the dc offset voltage (\(V_{\text {Bias }}\)) of the input clock signal.

Figures 4 and 5 illustrate minimum clock pulse width recommended for reliable operation of the MC1670.

FIGURE 3 - TYPICAL MAXIMUM TOGGLE FREQUENCY versus TEMPERATURE

Note: All power supply and logic levels are shown shifted 2 volts positive.

FIGURE 4 - MINIMUM "DOWN TIME" TO CLOCK OUTPUT LOAD \(=50 \Omega\)

FIGURE 5 - MINIMUM "UP TIME" TO CLOCK OUTPUT LOAD \(=50 \Omega\)

\section*{TRIPLE 2-INPUT \\ EXCLUSIVE-OR GATE}
\[
\begin{aligned}
& V_{C C 1}=\operatorname{Pin} 1 \\
& V_{C C 2}=\operatorname{Pin} 16 \\
& V_{E E}=\operatorname{Pin} 8
\end{aligned}
\] CERAMIC PACKAGE CASE 620
\(t_{p d}=1.1 \mathrm{~ns}\) typ (510-ohm load)
\(=1.3 \mathrm{~ns}\) typ (50-ohm load)
\(P_{D}=220 \mathrm{~mW}\) typ/pkg
Full Load Current, \(\mathrm{I}_{\mathrm{L}}=-25 \mathrm{mAdc}\) max

Number at end of terminal denotes pin number for L package.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & IE & - & - & - & 55 & - & - & mAdc \\
\hline \multirow[t]{3}{*}{\begin{tabular}{|l|}
Input Current \\
\\
\\
\\
\\
A Inputs \\
B Inputs
\end{tabular}} & & & & & & & & \(\mu \mathrm{Adc}\) \\
\hline & \(\mathrm{l}_{\mathrm{inH}}\) & - & - & - & 350 & - & - & \\
\hline & \[
I_{\mathrm{inH}}
\] & - & - & - & 270 & - & - & \\
\hline \multirow[t]{7}{*}{Switching Times
Propagation Delay A Inputs \(\{\)
B Inputs \(\{\)} & & & & & & & & ns \\
\hline & t++, t-+ & - & 2.0 & - & 1.8 & - & 2.3 & \\
\hline & \(t+-, t-\) & - & 2.1 & - & 1.9 & - & 2.4 & \\
\hline & t++, t-+ & - & 2.5 & - & 2.3 & - & 2.8 & \\
\hline & t+-, \(\mathrm{t}-\mathrm{-}\) & - & 2.5 & - & 2.3 & - & 2.8 & \\
\hline & t+ & - & 2.7 & - & 2.5 & - & 2.9 & ns \\
\hline & t- & - & 2.4 & - & 2.2 & - & 2.6 & ns \\
\hline
\end{tabular}

\section*{MC1674}

TRIPLE 2-INPUT
EXCLUSIVE-NOR GATE

\(V_{\mathrm{CC}_{1}}=\operatorname{Pin} 1\)

LSUFFIX CERAMIC PACKAGE CASE 620
\(V_{C C 2}=\operatorname{Pin} 16\)
\(V_{E E}=\operatorname{Pin} 8\)
\(V_{E E}=\operatorname{Pin} 8\)
\(t_{\text {pd }}=1.1 \mathrm{~ns} \operatorname{typ}(510\)-ohm load)
\(=1.3 \mathrm{~ns}\) typ (50 -ohm load)
\(P_{D}=220 \mathrm{~mW}\) typ/pkg
Full Load Current, \(I_{L}=-25 \mathrm{mAdc}\) max

Number at end of terminal denotes pin number for \(L\) package.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & \(l_{E}\) & - & - & - & 55 & - & - & mAdc \\
\hline \multirow[t]{3}{*}{\begin{tabular}{|c}
Input Current \\
\\
A Inputs \\
B Inputs
\end{tabular}} & & & & & & & & \(\mu \mathrm{Adc}\) \\
\hline & inH & - & - & - & 350 & - & - & \\
\hline & 1 inH & - & - & - & 270 & - & - & \\
\hline \multirow[t]{7}{*}{Switching Times
Propagation Delay A Inputs \(\{\)
B Inputs \(\{\)} & & & & & & & & ns \\
\hline & t++, t-+ & - & 2.0 & - & 1.8 & - & 2.3 & \\
\hline & t+-, \(\mathrm{t}-\mathrm{-}\) & - & 2.1 & - & 1.9 & - & 2.4 & \\
\hline & t++, t-+ & - & 2.5 & - & 2.3 & - & 2.8 & \\
\hline & t+-, \(\mathrm{t}-\mathrm{-}\) & - & 2.5 & - & 2.3 & - & 2.8 & \\
\hline & t+ & - & 2.7 & - & 2.5 & - & 2.9 & ns \\
\hline & t- & - & 2.4 & - & 2.2 & - & 2.6 & ns \\
\hline
\end{tabular}

\section*{MC1678}

\section*{BI-QUINARY COUNTER}

The MC1678 is a four-bit counter capable of divide-by-two, divide-by-five, or divide-by-10 functions. When used independently, the divide-by-two section will toggle at 350 MHz typically, while the divide-by-five section will toggle at 325 MHz typically. Clock inputs trigger on the positive going edge of the clock pulse.

Set and Reset inputs override the clock. allowing asynchronous "set" or "clear". Individual Set and common Reset inputs are
provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits.
\[
\text { DC Input Loading Factor } \quad \begin{aligned}
R & =2.40 \\
C 1 & =0.77 \\
C 2 & =1.23 \\
S & =1.00
\end{aligned}
\]

DC Output Loading Factor \(=70\)
Power Dissipation \(=750 \mathrm{~mW}\) typ
\({ }^{f}\) Tog \(=350 \mathrm{MHz}\) typ

COUNTER TRUTH TABLES

BCD
(Clock connected to C 1 and \(\bar{Q} 0\) connected to C 2)
\begin{tabular}{|c|c|c|c|c|}
\hline COUNT & Q0 & Q1 & Q2 & Q3 \\
\hline 0 & \(L\) & \(L\) & \(L\) & \(L\) \\
1 & \(H\) & \(L\) & \(L\) & \(L\) \\
2 & \(L\) & \(H\) & \(L\) & \(L\) \\
3 & \(H\) & \(H\) & \(L\) & \(L\) \\
\hline 4 & \(L\) & \(L\) & \(H\) & \(L\) \\
5 & \(H\) & \(L\) & \(H\) & \(L\) \\
6 & \(L\) & \(H\) & \(H\) & \(L\) \\
7 & \(H\) & \(H\) & \(H\) & \(L\) \\
\hline 8 & \(L\) & \(L\) & \(L\) & \(H\) \\
9 & \(H\) & \(L\) & \(L\) & \(H\) \\
\hline
\end{tabular}

BI-QUINARY
(Clock connected to C 2
and \(\bar{Q} 3\) connected to C 1)
\begin{tabular}{|c|c|c|c|c|}
\hline COUNT & Q1 & Q2 & Q3 & Q0 \\
\hline 0 & L & L & L & L \\
1 & \(H\) & L & L & L \\
2 & L & \(H\) & L & L \\
3 & \(H\) & \(H\) & L & L \\
\hline 4 & L & L & \(H\) & L \\
5 & L & L & L & \(H\) \\
6 & \(H\) & L & L & \(H\) \\
7 & L & \(H\) & L & \(H\) \\
\hline 8 & \(H\) & \(H\) & L & \(H\) \\
9 & L & L & \(H\) & \(H\) \\
\hline
\end{tabular}

\(\phi=\) Don't Care ND \(=\) Not Defined

COUNTER STATE DIAGRAM - POSITIVE LOGIC

\(\overline{\mathrm{O}}\) connected to \(\mathbf{C 2}\)

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & \({ }^{\text {E }}\) & - & - & - & 200 & - & - & mAdc \\
\hline Input Current Reset C2 Set, Clock & 1 linH & - & - & - & \[
\begin{aligned}
& 1.00 \\
& 0.70 \\
& 0.45
\end{aligned}
\] & - & - & mAdc \\
\hline \begin{tabular}{l}
Switching Times Propagation Delay Clock to \(\overline{\mathrm{Q}} 0, \mathrm{QO}\) C2 to Q1, Q2, Q3, \(\overline{\mathrm{Q}} 3\) \\
Set, Reset
\end{tabular} & \({ }^{\text {tpd }}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.9 \\
& 3.2 \\
& 3.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.7 \\
& 3.0 \\
& 3.7
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.1 \\
& 3.4 \\
& 4.1
\end{aligned}
\] & ns \\
\hline Rise Time (10\% to 90\%) & t+ & 1.0 & 2.9 & 1.0 & 2.7 & 1.0 & 3.1 & ns \\
\hline Fall Time (\(10 \%\) to 90\%) & t- & 1.0 & 2.8 & 1.0 & 2.6 & 1.0 & 3.0 & ns \\
\hline \[
\begin{aligned}
& \text { Toggle Frequency } \\
& \text { Q0 } \\
& \text { Q3 } \\
& \hline
\end{aligned}
\] & \({ }^{\text {f }}\) Tog & 260
250 & - & 300
275 & - & 260
250 & - & MHz \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

With the addition of a single gate package, the MC1678 will count in a fully synchronous mode, as shown below.

\section*{MC1688}

\section*{DUAL 4-5-INPUT OR/NOR GATE}

\[
\begin{aligned}
& V_{C C 1}=\operatorname{Pin} 1(5) \\
& V_{C C 2}=\operatorname{Pin} 16(4) \\
& V_{E E}=\operatorname{Pin} 8(12)
\end{aligned}
\]
\(\mathrm{t}_{\mathrm{pd}}=0.8 \mathrm{~ns}\) typ
\(P_{D}=125 \mathrm{~mW}\) typ/pkg (No Load)

F SUFFIX ceramic package CASE 650

Number at end of terminal denotes pin number for \(L\) package
Number in parenthesis denotes pin number for \(F\) package
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & \(I_{E}\) & - & - & - & 28 & - & - & mAdc \\
\hline Input Current & 1 inH & - & - & - & 350 & - & - & \(\mu\) Adc \\
\hline Switching Times Propagation Delay & \({ }_{t} \mathrm{pd}\) & 0.5 & 1.5 & 0.5 & 1.3 & 0.5 & 1.5 & ns \\
\hline Rise Time, Fall Time (10\% to 90\%) & t+, \({ }^{-}\) & 0.5 & 1.6 & 0.5 & 1.4 & 0.5 & 1.6 & ns \\
\hline
\end{tabular}

\section*{MC1690}

\section*{UHF PRESCALER}

TYPE D FLIP-FLOP

\section*{TRUTH TABLE}
\begin{tabular}{|c|c|c|}
\hline\(C\) & \(D\) & \(Q_{n+1}\) \\
\hline\(L\) & \(\phi\) & \(Q_{n}\) \\
\hline\(H\) & \(\phi\) & \(Q_{n}\) \\
\hline- & \(L\) & \(L\) \\
\hline- & \(H\) & \(H\) \\
\hline
\end{tabular} \begin{tabular}{l}
\(C=C 1+C 2\) \\
\(D=D 1+D 2\)
\end{tabular}
\(V_{C C 1}=P\) in 1
\(V_{C C 2}=P\) in 16
\(V_{E E}=P\) in 8
\(P_{D}=200 \mathrm{~mW}\) typ/pkg (No Load)
\({ }^{f}{ }^{T}\) og \(=500 \mathrm{MHz} \mathrm{min}\)

Number at end of terminal denotes pin number for L package
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & \multicolumn{2}{|l|}{Min} & Max & Min & Max & \\
\hline Power Supply Drain Current & 'E & - & - & \multicolumn{2}{|l|}{-} & 59 & - & - & mAdc \\
\hline \begin{tabular}{l}
Input Current \\
Pins 7,9 \\
Pins 11,12
\end{tabular} & \(\mathrm{I}_{\mathrm{inH}}\) & - & - & \multicolumn{2}{|l|}{-} & \[
\begin{aligned}
& 250 \\
& 270
\end{aligned}
\] & - & - & \(\mu \mathrm{Adc}\) \\
\hline Switching Times & \multirow[b]{2}{*}{\({ }^{t} \mathrm{pd}\)} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} & Min & Typ & Max & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} & \multirow[t]{2}{*}{ns} \\
\hline Propagation Delay & & & & - & 1.5 & - & & & \\
\hline Rise Time, Fall Time (10\% to \(90 \%\)) & t+, t- & - & - & - & 1.3 & - & - & - & ns \\
\hline Setup Time & \({ }^{\text {tsetup }}\) & - & - & - & 0.3 & - & - & - & ns \\
\hline Hold Time & thold & - & - & - & 0.3 & - & - & - & \\
\hline Toggle Frequency & \({ }^{\text {f Tog }}\) & 500 & - & 500 & 540 & - & 500 & - & MHz \\
\hline
\end{tabular}

FIGURE 1 - TOGGLE FREQUENCY TEST CIRCUIT

FIGURE 2 - TOGGLE FREQUENCY WAVEFORMS

Note: All power supply and logic levels are shown shifted 2 volts positive.

\section*{MC1692}

\section*{QUAD LINE RECEIVER}
(9)

(6)
(11)
(10)
 3 (7)
(14)

(2)
(1)
(16)

\(V_{C C 1}=\operatorname{Pin} 1(5)\)
\(V_{\mathrm{CC} 2}=\operatorname{Pin} 16(4)\)
\(V_{E E}=\operatorname{Pin} 8\) (12)
 CERAMIC PACKAGE CASE 650
\(t_{p d}=0.9 \mathrm{~ns} \operatorname{typ}(510\)-ohm load)
\(=1.1 \mathrm{~ns}\) typ (50-ohm load)
\(P_{D}=220 \mathrm{~mW}\) typ/pkg (No Load)
Full Load Current, \(I_{L}=-25 \mathrm{mAdc} \max\)

Numbers at ends of terminals denote pin numbers for L package
Numbers in parenthesis denote pin numbers for \(F\) package
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|r|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & 'E & - & - & - & 50 & - & - & mAdc \\
\hline Input Current & 1 in & - & - & - & 250 & - & - & \(\mu \mathrm{Adc}\) \\
\hline Input Leakage Current & \(1_{R}\) & - & - & - & 100 & - & - & \(\mu \mathrm{Adc}\) \\
\hline Reference Voltage & \(\mathrm{V}_{\text {BB }}\) & -1.375 & -1.275 & -1.35 & -1.25 & -1.30 & -1.20 & Vdc \\
\hline Switching Times Propagation Delay & \[
\begin{aligned}
& \mathrm{t}^{-+} \\
& \mathrm{t}^{+-} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.7 \\
& 1.9
\end{aligned}
\] & ns \\
\hline Rise Time, Fall Time (10\% to 90\%) & \(\mathrm{t}^{+}, \mathrm{t}^{-}\) & 0.6 & 2.2 & 0.6 & 2.1 & 0.6 & 2.3 & ns \\
\hline
\end{tabular}

\section*{MC1692}

\section*{APPLICATION INFORMATION}

The MC1692 quad line receiver is used primarily to receive data from balanced twisted pair lines, as indicated in Figure 1. The line is driven with a MC1660 OR/NOR gate. The MC 1660 is terminated with 50 ohm resistors to -2.0 volts. At the end of the twisted pair a 100 ohm termination resistor is placed across the differential line receiver inputs of the MC1692. Illustrated in Figure 2 is the sending and receiving waveforms at a data rate of 400 megabits per second over an 18 foot twisted pair cable. The
waveform picture of Figure 3 shows a 5 nanosecond pulse being propagated down the 18 foot line. The delay time for the line is \(1.68 \mathrm{~ns} / \mathrm{foot}\).

The MC1692 may also be applied as a high frequency schmitt trigger as illustrated in Figure 4. This circuit has been used in excess of 200 MHz . The MC1692 when loaded into 50 ohms will produce an output rising edge of about 1.5 nanoseconds.

FIGURE 1 - LINE DRIVER/RECEIVER

FIGURE 2 - 400 MBS WAVEFORMS

FIGURE 3 - PULSE PROPAGATION WAVEFORMS

FIGURE 4-200 MHz SCHMITT TRIGGER

\section*{MC1694}

4-BIT SHIFT REGISTER

FLIP-FLOP TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Inputs } & Output \\
\hline\(D\) & \(C\) & \(R\) & \(S\) & \(Q_{n}\) \\
\hline 0 & 0 & 0 & 0 & \(Q_{n-1}\) \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 &. \\
\hline 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & \\
\hline 1 & 0 & 0 & 0 & \(Q_{n-1}\) \\
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & \(\cdot\) \\
\hline 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & \\
\hline
\end{tabular}
*Output State Undefined
\(V_{\mathrm{CC} 1}=1\)
\(V_{C C 2}=16\)
\(V_{E E}=8\)

The MC1694 is a 4-Bit register capable of shift rates up to 325 MHz (typical) in the shift-right mode, accepting serial data at either data input D1 or D2. A master reset and individual set inputs override the clock allowing asynchronous entry of information.

DC Input Loading Factors
Reset \(=2.5\) Set \(=1.0\)
Clock \(=1.6\) Data \(=0.9\)
DC Output Loading Factor \(=70\)
Total Power Dissipation \(=750 \mathrm{~mW}\) typ/pkg
Shift Frequency \(=325 \mathrm{MHz}\) typ

LSUFFIX CERAMIC PACKAGE CASE 620
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & \(I_{E}\) & - & - & - & 200 & - & - & mAdc \\
\hline \begin{tabular}{l}
Input Current \\
Pin 9 \\
Pin 7 \\
Pins 2, 3, 6, 10 \\
Pins 14,15
\end{tabular} & 1 inH & -
-
-
- & -
-
-
- & -
-
- & \[
\begin{array}{r}
1.0 \\
0.75 \\
0.6 \\
0.5
\end{array}
\] & -
-
- & - & mAdc \\
\hline \begin{tabular}{l}
Switching Times Propagation Delay Clock \\
Set, Reset
\end{tabular} & \({ }^{\text {tpd }}\) & 1.0
2.0 & 3.2
3.9 & 1.0
2.0 & 3.0
3.7 & 1.0
2.0 & \[
\begin{aligned}
& 3.4 \\
& 4.1
\end{aligned}
\] & ns \\
\hline Rise Time (10\% to 90\%) & t+ & 1.0 & 2.9 & 1.0 & 2.7 & 1.0 & 3.1 & ns \\
\hline Fall Time (10\% to 90\%) & t- & 1.0 & 2.8 & 1.0 & 2.6 & 1.0 & 3.0 & ns \\
\hline Shift Rate & & 240 & - & 275 & - & 250 & - & MHz \\
\hline
\end{tabular}

\section*{MC1697}

\section*{1-GHz DIVIDE-BY-FOUR PRESCALER}

The MC1697 is a divide-by-four gigahertz prescaler in an 8 pin package. The clock input requires an ac coupled driving signal of 800 mV amplitude (typical). The clock toggles two divide-by-two stages, and the complementary outputs (\(50 \%\) duty cycle) are taken from the second stage.

The complementary outputs are capable of driving 50-ohm lines.
Pin 6 is available for connection of a decoupling capacitor to ground. This capacitor stabilizes the reference point which is internally coupled to the clock input.

PIN ASSIGNMENT

P SUFFIX
PLASTIC PACKAGE CASE 626

L SUFFIX CERAMIC PACKAGE CASE 693

MC 1697
ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multicolumn{6}{|c|}{MC1697P Test Limits} & \multirow[b]{3}{*}{Unit} \\
\hline & & \multicolumn{2}{|c|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+75^{\circ} \mathrm{C}\)} & \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Drain Current & \(\mathrm{I}_{\mathrm{E}}\) & - & - & - & 57 & - & - & mAdc \\
\hline Toggle Frequency (high frequency operation) & \({ }^{\text {f }}\) 'og & 1.0 & - & 1.0 & - & 1.0 & - & GHz \\
\hline Toggle Frequency (low frequency sine wave input) & \({ }^{\text {f }}\) ¢og & - & - & - & 100 & - & - & MHz \\
\hline
\end{tabular}

\section*{COUNT FREQUENCY TEST CIRCUIT}

Note: All power supply and logic levels are shown shifted 2 volts positive.

TIMING DIAGRAM

\section*{APPLICATION INFORMATION}

The MC1697 is a very high speed divide-by-four prescaler designed to operate on a nominal supply voltage of -7.0 volt. In some applications it may be necessary to interface the output of the MC1697 with other MECL circuits requiring a supply voltage of -5.2 volts. One method of interfacing the circuits is shown below. This configuration is adequate for frequencies up to 1 GHz over the temperature range of \(0^{\circ}\) to \(+75^{\circ} \mathrm{C}\). For best performance it is recommended that separate regulated supplies be used.

METHOD OF INTERFACING MC1697 WITH STANDARD MECL. CIRCUITS

The MC1699 is a divide-by-four gigahertz counter. The clock input requires an ac coupled driving signal of 800 mV amplitude (typical). The clock toggles two divide-by-two stages, and the complementary outputs (\(50 \%\) duty cycle) are taken from the second stage.

The MC1699 includes clock enable and reset. The reset is compatible with MECL \(\| I\) voltage levels. The enable input requires a \(V_{I L}\) of -2.0 V max. Reset operates only when either the clock or the enable is high.

Pin 11 (13) is available for connection of a decoupling capacitor to ground. This capacitor stabilizes the reference point which is internally coupled to the clock input.

Number at end of terminal denotes pin number for \(L\) package (Case 620), P package (Case 648).

TIMING DIAGRAM

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|r|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline Power Supply Drain Current & \({ }^{\prime} \mathrm{E}\) & - & - & - & 57 & - & - & mAdc & All inputs and outputs open except Clock \(=V_{\text {IHC }} \cong\) \(-4.0 \mathrm{Vdc}\) \\
\hline \begin{tabular}{l}
Input Current \\
Reset Enable
\end{tabular} & \(\mathrm{I}_{\text {inH }}\) & - & - & - & \[
\begin{aligned}
& 500 \\
& 265
\end{aligned}
\] & - & - & \(\mu \mathrm{Adc}\) & \(V_{\text {IHmax }}\) to Reset, \(V_{I L}\) to Enable, \(V_{E E}\) to Clock. \(V_{\text {ILmin }}\) to reset, \(V_{\text {IHmax }}\) to Enable, \(V_{E E}\) to Clock. \\
\hline Logic "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.085 & -0.875 & -1.000 & -0.810 & -0.930 & -0.700 & V dc & \multirow[t]{2}{*}{See Note (2) . Or, apply P1 to Reset and \(\mathrm{V}_{1} \mathrm{H}\) max to Enable} \\
\hline Logic "0' Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & - & -1.630 & - & -1.600 & - & -1.555 & Vdc & \\
\hline Toggle Frequency (high frequency operation) & \({ }^{\text {f Tog }}\) & 1.0 & - & 1.0 & - & 1.0 & - & GHz & \multirow[t]{2}{*}{\begin{tabular}{l}
\(V_{I L}(1)\) to Enable. \\
See Test Circuit and Application Information on next page.
\end{tabular}} \\
\hline Toggle Frequency (low frequency sine wave input) & \({ }^{\text {f }}\) \%og & - & - & - & 100 & - & - & MHz & \\
\hline
\end{tabular}Enable input requires \(\mathrm{V}_{\mathrm{IL}}=-2.0 \mathrm{~V}\) max.
(2) Reset counter by applying pulse P1 to pin 14, then toggle outputs by applying pulse P2 to pin 4 for 2 cycles. Hold power during pulse sequence. Hold clock input @ \(V_{E E}\).

\section*{MC1699}

\section*{TOGGLE FREQUENCY TEST CIRCUIT}

\section*{APPLICATION INFORMATION}

The MC1699 is a very high speed divide-byfour counter intended for prescaler applications. The reset provides increased flexibility for counter and time measuring requirements.

The clock input is designed to accept a capacitor-coupled sine wave signal for frequencies above 100 MHz . Below 100 MHz waveshaping is recommended to obtain good MECL III or MECL 10,000 edge speeds.

With a continuous input signal the clock can be capacitor-coupled with no problems. How-
ever, if the clock is interrupted and the clock input floats to the bias point reference voltage, the counter may oscillate. To prevent this oscillation, an external resistor can be added as shown in Figure 1. This resistor is recommended only when the clock is interrupted and serves no useful function with a continuous signal. Also, this external resistor is not required when the enable input is used to gate the clock signal.

FIGURE 1

\section*{MECL Memories \\ INTEGRATED CIRCUITS}

\begin{tabular}{|c|c|c|c|c|}
\hline Device & \begin{tabular}{c}
Organization \\
\((\) Word \(\times\) Bit \()\)
\end{tabular} & \begin{tabular}{c}
Access \\
Time
\end{tabular} & Pins & Case \\
\hline
\end{tabular}

ECL 10K, 10KH
\begin{tabular}{|l|r|r|r|c|}
\hline MC1OH145 & & & \\
MCM10143 & \(16 \times 4\) & 6 & 16 & 620,648 \\
MCM10144 & \(8 \times 2\) & 15.3 & 24 & 623,652 \\
MCM10145 & \(256 \times 1\) & 26 & 16 & 620,650 \\
MCM10146 & \(16 \times 4\) & 15 & 16 & 620,650 \\
MCM10147 & \(1024 \times 1\) & 29 & 16 & 620,650 \\
MCM10148 & \(128 \times 1\) & 15 & 16 & 620,650 \\
MCM10152 & \(64 \times 1\) & 15 & 16 & 620,650 \\
MCM10415-20 & \(256 \times 1\) & 15 & 16 & 620,650 \\
MCM10415-15 & \(1024 \times 1\) & 20 & 16 & 620,650 \\
MCM10415-10* & \(1024 \times 1\) & 15 & 16 & 620,650 \\
MCM10422-15* & \(1024 \times 1\) & 10 & 16 & 620,650 \\
MCM10422-10* & \(256 \times 4\) & 15 & 24 & 748 \\
MCM10470-25* & \(256 \times 4\) & 10 & 24 & 748 \\
MCM10470-15* & \(4096 \times 1\) & 25 & 18 & 680,747 \\
MCM10474-25* & \(4096 \times 1\) & 15 & 18 & 680,747 \\
MCM10474-15* & \(1024 \times 4\) & 25 & 24 & 748 \\
MCM10480-20* & \(1024 \times 4\) & 15 & 24 & 748 \\
MCM10484-20* & \(16384 \times 1\) & 20 & 20 & 747,748 \\
\hline
\end{tabular}

\section*{ECL 100K}
\begin{tabular}{|c|r|c|c|c|}
\hline MCM100415-10 & \(1024 \times 1\) & 10 & 16 & 620,650 \\
MCM100422-10 & \(256 \times 4\) & 10 & 24 & 652,748 \\
MCM100470-15 & \(4096 \times 1\) & 15 & 18 & 726,747 \\
MCM100474-15 & \(1024 \times 4\) & 15 & 24 & 748 \\
MCM100480-20 & \(16384 \times 1\) & 20 & 20 & 747,748 \\
MCM100484-20 & \(4096 \times 4\) & 20 & TBD & TBD \\
\hline
\end{tabular}

\section*{PROMS}
\begin{tabular}{|l|c|c|c|c|}
\hline MCM10139* & \(32+8\) & 20 & 16 & 620,650 \\
MCM10149** & \(256+4\) & 25 & 16 & 620,650 \\
MCM10149A* & \(256+4\) & 15 & 16 & 620,650 \\
\hline
\end{tabular}

\footnotetext{
*-To be introduced.
}
** Available in 10500 series \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range.

\section*{256-BIT PROGRAMMABLE READ ONLY MEMORY (PROM)}

The MCM10139 is a 256 -bit programmable read only memory (PROM). The circuit is organized as 32 words of 8 bits. Prior to programming, all stored bits are at logic 0 (low) levels. The logic state of each bit can then be changed by on-chip programming circuitry. The MCM10139 has a single negative logic chip enable. When the chip is disabled (\(\overline{\mathrm{CS}}=\) high), all outputs are forced to a logic 0 (low).

The MCM10139 is fully compatible with the MECL 10,000 logic family. It is designed for use in microprogramming, code conversion, logic simulation, and look-up table storage.
\(P_{D}=520 \mathrm{~mW}\) typ/pkg (No Load)
\({ }^{\text {t }}\) Access \(=15\) ns typ (Address Inputs)

MCM10139

\section*{MECL}

\section*{32 X 8 BIT PROGRAMMABLE READ-ONLY MEMORY}

LSUFFIX ceramic package CASE 620

F SUFFIX
CERAMIC PACKAGE CASE 650

PIN ASSIGNMENT

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{EE}}\) & -8 to 0 & Vdc \\
\hline Base Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\text {in }}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline \begin{tabular}{c}
Output Source Current \\
- Continuous \\
- Surge
\end{tabular} & \(\mathrm{I}_{\mathrm{O}}\) & \begin{tabular}{c}
\(<50\) \\
\(<100\)
\end{tabular} & mAdc \\
\hline Junction Operating Temperature & \(\mathrm{T}_{\mathrm{J}}\) & \(<165\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{\begin{tabular}{c}
DC Test Voltage Values \\
(Volts)
\end{tabular}} \\
\hline Test Temperature & \(V_{\text {IHmax }}\) & \(V_{\text {ILmin }}\) & \(V_{\text {IHAmin }}\) & \(V_{\text {ILAmax }}\) & \(V_{\text {EE }}\) \\
\hline \(0^{\circ} \mathrm{C}\) & -0.840 & -1.870 & -1.145 & -1.490 & -5.2 \\
\hline\(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 \\
\hline\(+75^{\circ} \mathrm{C}\) & -0.720 & -1.830 & -1.045 & -1.450 & -5.2 \\
\hline
\end{tabular}

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DC Characteristics} & \multirow[b]{3}{*}{Symbol} & \multicolumn{6}{|c|}{MCM10139 Test Limits} & \multirow[b]{3}{*}{Unit} & \multirow[b]{3}{*}{Conditions} \\
\hline & & \multicolumn{2}{|l|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+75^{\circ} \mathrm{C}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline Power Supply Drain Current & \(l_{\text {e }}\) & - & 150 & - & 145 & - & 140 & mAdc & Typ \(\mathrm{I}_{\mathrm{EE}} @ 25^{\circ} \mathrm{C}=100 \mathrm{~mA}\). All out puts and inputs open. Measure pin 8. \\
\hline Input Current High & \(\mathrm{I}_{\mathrm{in}} \mathrm{H}\) & - & 265 & - & 265 & - & 265 & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open. \(V_{\text {in }}=V_{I H}\). \\
\hline Input Current Low & \(\mathrm{I}_{\text {in }} \mathrm{L}\) & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open. \(V_{\text {in }}=V_{\text {IL }}\). \\
\hline Logic " 1 " Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.000 & -0.840 & -0.960 & -0.810 & -0.900 & -0.720 & Vdc & Load \(50 \Omega\) to -2.0 V. \\
\hline Logic " 0 " Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -2.010 & -1.665 & -1.990 & -1.650 & -1.970 & -1.625 & Vdc & \\
\hline \begin{tabular}{l}
Logic "1" \\
Threshold Voltage
\end{tabular} & \(\mathrm{V}_{\text {OHA }}\) & -1.020 & - & -0.980 & - & -0.920 & - & Vdc & Threshold testing is performed and guaranteed on one input at a time. \\
\hline \begin{tabular}{l}
Logic " 0 " \\
Threshold Voltage
\end{tabular} & \(\mathrm{v}_{\text {OLA }}\) & - & -1.645 & - & -1.630 & - & -1.605 & Vdc & \(V_{\text {in }}=V_{\text {ILH }}\) or \(V_{\text {ILA }}\). Load \(50 \Omega\) to -2.0 V . \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS \(\left(T_{A}=0^{\circ}\right.\) to \(+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \%\); Output Load-See Figure 1 and Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{Test Limits} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Typ & Max & & \\
\hline Chip Select Access Time & \({ }^{t}\) ACS & - & 10 & 15 & ns & See Figures 2 and 3. \\
\hline Chip Select Recovery Time & \({ }^{\text {t }}\) RCS & - & 10 & 15 & ns & Measured from 50\% of input to 50\% \\
\hline Address Access Time & \({ }^{\text {t }}\) AA & - & 15 & 20 & ns & of output. See Note 2. \\
\hline Output Rise and Fall Time & \(t_{r}, \mathrm{t}_{\mathrm{f}}\) & - & 3.0 & - & ns & Measured between 20\% and 80\% points. \\
\hline Input Capacitance & \(\mathrm{C}_{\text {in }}\) & - & 4.0 & 5.0 & pF & \\
\hline Output Capacitance & Cout & - & 7.0 & 8.0 & pF & \\
\hline
\end{tabular}

Notes: 1. Contact your Motorola Sales Representative for details if extended temperature operation is desired.
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the memory.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

FIGURE 2 - CHIP SELECT ACCESS TIME

FIGURE 3 - ADDRESS ACCESS TIME

\section*{RECOMMENDED PROGRAMMING PROCEDURE*}

The MCM10139 is shipped with all bits at logical " 0 " (low). To write logical " 1 s ", proceed as follows.

\section*{MANUAL (See Figure 4)}

Step 1 Connect \(V_{E E}(\operatorname{Pin} 8)\) to -5.2 V and \(V_{C C}\) (Pin 16) to 0.0 V . Address the word to be programmed by applying -1.2 to -0.6 volts for a logic " 1 " and -5.2 to -4.2 volts for a logic " 0 " to the appropriate address inputs.

Step 2 Raise \(V_{C C}(\operatorname{Pin} 16)\) to +6.8 volts.
Step 3 After \(V_{C C}\) has stabilized at +6.8 volts (including any ringing which may be present on the \(V_{C C}\) line), apply a current pulse of 2.5 mA to the output pin corresponding to the bit to be programmed to a logic " 1 ".

Step 4 Return \(V_{C C}\) to 0.0 Volts.

\section*{CAUTION}

To prevènt excessive chip temperature rise, \(\mathrm{V}_{\mathrm{CC}}\) should not be allowed to remain at +6.8 volts for more than 1 second.

Step 5 Verify that the selected bit has programmed by connecting a \(460 \Omega\) resistor to -5.2 volts and measuring the voltage at the output pin. If a logic " 1 " is not detected at the output, the procedure should be repeated once. During verification \(V_{\text {IH }}\) should be -1.0 to -0.6 volts.

Step 6 If verification is positive, proceed to the next bit to be programmed.

\section*{AUTOMATIC (See Figure 5)}

Step 1 Connect \(V_{E E}(\operatorname{Pin} 8)\) to -5.2 volts and \(V_{C C}\) (Pin 16) to 0.0 volts. Apply the proper address data and raise \(V_{\mathrm{CC}}\) (\(\operatorname{Pin} 16\)) to +6.8 volts.

Step 2 After a minimum delay of \(100 \mu \mathrm{~s}\) and a maximum delay of 1.0 ms , apply a 2.5 mA current pulse to the first bit to be programmed (\(0.1 \leqslant \mathrm{PW} \leqslant 1 \mathrm{~ms}\)).

Step 3 Repeat Step 2 for each bit of the selected word specified as a logic " 1 ". (Program only one bit at a time. The delay between output programming pulses should be equal to or less than 1.0 ms .)

Step 4 After all the desired bits of the selected word have been programmed, change address data and repeat Steps 2 and 3.
NOTE: If all the maximum times listed above are maintained, the entire memory will program in less than 1 second. Therefore, it would be permissible for \(V_{C C}\) to remain at +6.8 volts during the entire programming time.

Step 5 After stepping through all address words, return \(V_{C C}\) to 0.0 volts and verify that each bit has programmed. If one or more bits have not programmed, repeat the entire procedure once. During verification \(V_{1 H}\) should be -1.0 to -0.6 volts.
*NOTE: For devices that program incorrectly-return serialized units with individual truth tables. Noncompliance voids warranty.

PROGRAMMING SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{Limits} & \multirow[b]{2}{*}{Units} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Typ & Max & & \\
\hline Power Supply Voltage & \(V_{\text {EE }}\) & -5.46 & -5.2 & -4.94 & \(V\) dc & \\
\hline To Program & \(V_{\text {CCP }}\) & +6.04 & +6.8 & +7.56 & Vdc & \\
\hline To Verify & \(\mathrm{V}_{\text {CCV }}\) & 0 & 0 & 0 & Vdc & \\
\hline Programming Supply Current & \({ }^{\text {I CCP }}\) & - & 200 & 600 & mA & \(\mathrm{V}_{\mathrm{CC}}=+6.8 \mathrm{Vdc}\) \\
\hline Address Voltage & \(\mathrm{V}_{\text {IH }}\) Program & -1.2 & - & -0.6 & Vdc & \\
\hline Logical "1" & \(V_{\text {IH }}\) Verify & -1.0 & - & -0.6 & Vdc & \\
\hline Logical "0" & \(V_{\text {IL }}\) & -5.2 & - & -4.2 & Vdc & \\
\hline Maximum Time at \(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCP}}\) & - & - & - & 1.0 & sec & \\
\hline Output Programming Current & \(\mathrm{I}_{\mathrm{OP}}\) & 2.0 & 2.5 & 3.0 & mAdc & \\
\hline Output Program Pulse Width & \(t_{p}\) & 0.5 & - & 1.0 & ms & \\
\hline Output Pulse Rise Time & - & - & - & 10 & \(\mu \mathrm{s}\) & \\
\hline Programming Pulse Delay (1) & & & & & & \\
\hline Following \(V_{\mathrm{CC}}\) change Between Output Pulses & \[
\begin{gathered}
t_{d} \\
t_{d} 1
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
0.01
\end{gathered}
\] & - & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ms} \\
& \mathrm{~ms}
\end{aligned}
\] & \\
\hline
\end{tabular}

NOTE 1. Maximum is specified to minimize the amount of time \(V_{C C}\) is at +6.8 volts.

FIGURE 4 - MANUAL PROGRAMMING CIRCUIT

FIGURE 5 - AUTOMATIC PROGRAMMING CIRCUIT

\section*{\(8 \times 2\) MULTIPORT REGISTER FILE (RAM)}

The MC10143 is an 8 word by 2 bit multiport register file (RAM) capable of reading two locations and writing one location simultaneously. Two sets of eight latches are used for data storage in this LSI circuit.

\section*{WRITE}

The word to be written is selected by addresses \(A_{0}-A_{2}\). Each bit of the word has a separate write enable to allow more flexibility in system design. A write occurs on the positive transition of the clock. Data is enabled by having the write enables at a low level when the clock makes the transition. To inhibit a bit from being written, the bit enable must be at a high level when the clock goes low and not change until the clock goes high. Operation of the clock and the bit enables can be reversed. While the clock is low a positive transition of the bit enable will write that bit into the address selected by \(A_{0}-A_{2}\)

\section*{READ}

When the clock is high any two words may be read out simultaneously, as selected by addresses \(\mathrm{B}_{0}-\mathrm{B}_{2}\) and \(\mathrm{C}_{0}-\mathrm{C}_{2}\), including the word written during the preceding half clock cycle. When the clock goes low the addressed data is stored in the slaves. Level changes on the read address lines have no effect on the output until the clock again goes high. Read out is accomplished at any time by enabling output gates (\(\mathrm{B}_{0}-\mathrm{B}_{1}\)), (\(\mathrm{C}_{0}-\mathrm{C}_{1}\)).
\({ }^{\mathrm{t}} \mathrm{pd}\) :
Clock to Data out = 5 ns (typ) (Read Selected)
Address to Data out \(=10 \mathrm{~ns}\) (typ)
(Clock High)
\(\overline{\text { Read Enable to Data out }=2.8 \mathrm{~ns}(\text { typ }) ~}\)
(Clock high, Addresses present)
\(P_{D}=610 \mathrm{~mW} / \mathrm{pkg}\) (typ no load)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{TRUTH TABLE} \\
\hline - MODE & \multicolumn{7}{|c|}{InPUT} & \multicolumn{4}{|c|}{OUTPUT} \\
\hline & \({ }^{*}\) Clock & \(\overline{W E}{ }_{0}\) & \(\overline{W E}_{1}\) & \(\mathrm{D}_{0}\) & \(\mathrm{D}_{1}\) & \(\overline{R E}_{B}\) & \(\overline{\text { RE }}_{\text {C }}\) & \(\mathrm{QB}_{0}\) & QB1 & \(\mathrm{QC}_{0}\) & QC 1 \\
\hline Write & \(\mathrm{L} \rightarrow \mathrm{H}\) & L & L & H & H & H & \({ }^{H}\) & L & L & L & L \\
\hline Read & H & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & L & \(L\) & H & H & H & H \\
\hline Read & \(\mathrm{H} \rightarrow \mathrm{L}\) & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & L & L & H & H & H & H \\
\hline Read & \(\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}\) & H & H & \(\phi\) & \(\phi\) & L & L & H & H & H & H \\
\hline Write & \(\mathrm{L} \rightarrow \mathrm{H}\) & L & L & L & H & H & H & L & 1. & L & L \\
\hline Read & H & \(\phi\) & \(\phi\) & \(\phi\) & \(\phi\) & L & L & 1 & H & L & H \\
\hline
\end{tabular}
**Note: Clock occurs sequentially through Truth Table
*Note: AO-A2, BO-B2, and CO-C2 are all set to same address location throughout Table.
\(\phi=\) Don't Care

\section*{MECL}
\(8 \times 2\) MULTIPORT REGISTER
FILE (RAM)

PIN ASSIGNMENT

\section*{BLOCK DIAGRAM}

\(\overline{\operatorname{RE}}_{\mathrm{C}} 0^{20}\)

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V E E\) & -8 to 0 & Vdc \\
\hline Base Input Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{\text {in }}\) & 0 to \(V_{\text {EE }}\) & Vdc \\
\hline \[
\begin{aligned}
& \hline \text { Output Source Current } \text { - Continuous } \\
&- \text { Surge } \\
& \hline
\end{aligned}
\] & 10 & \[
\begin{aligned}
& <50 \\
& <100
\end{aligned}
\] & mAdc \\
\hline Junction Operating Temperature & TJ & < 165 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
ELECTRICAL CHARACTERISTICS
\left.\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ DC TEST VOLTAGE VALUES } \\
(VoIts)
\end{tabular}\(\right]\)

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equitibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 inear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 vol ts.

SWITCHING CHARACTERISTICS (TA \(=0^{\circ}\) to \(+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \%\))

(1)AC timing figures do not show all the necessary presetting conditions.

WRITE TIMING DIAGRAM

Enable Setup

FIGURE 5

\section*{Enable Hold}

\section*{FIGURE 6}

Address

\section*{\(256 \times 1\)-BIT RANDOM ACCESS MEMORY}

The MCM10144 is a 256 word \(\times 1\)-bit Read/Write Random Access Memory. Data is accessed or stored by means of an 8-bit address decoded on chip. It has a non-inverting data out, a separate data in line and 3 active-low chip select lines. It has a typical access time of 17 ns and is designed for high-speed scratch pad, control, cache, and buffer storage applications.
- Typical Address Access Time \(=17 \mathrm{~ns}\)
- Typical Chip Select Access Time \(=4.0 \mathrm{~ns}\)
- Operating Temperature Range \(=0^{\circ}\) to \(+75^{\circ} \mathrm{C}\)
- Open Emitter Output Permits Wired-OR for Easy Memory Expansion
- \(50 \mathrm{k} \Omega\) Input Pulldown Resistors on Chip Select
- Power Dissipation Decreases with Increasing Temperature
- Fully Compatible with MECL 10,000 Logic Family
- Pin-for-Pin Replacement for F10410

LSUFFIX CERAMIC PACKAGE CASE 620

F SUFFIX CERAMIC PACKAGE CASE 650

PIN ASSIGNMENT

PIN NOTATION
\begin{tabular}{ll}
CS & Chip Select Input \\
AO thru A7 & Address Inputs \\
Din \(_{\text {in }}\) & Data Input \\
Dout & Data Output \\
WE & Write Enable Input
\end{tabular}

TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline MODE & \multicolumn{3}{|c|}{ INPUT } & OUTPUT \\
\hline & \(\overline{\mathrm{CS}}{ }^{*}\) & \(\overline{\text { WE }}\) & \(\mathrm{D}_{\text {in }}\) & Dout \(^{\text {Write }{ }^{\prime} 0^{\prime \prime}}\) \\
\hline L & L & L & L \\
\hline Write "1" & L & L & H & L \\
\hline Read & L & H & \(\phi\) & Q \\
\hline Disabled & H & \(\phi\) & \(\phi\) & L \\
\hline
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION:}

The MCM10144 is a 256 word \(\times 1\)-bit RAM. Bit selection is achieved by means of an 8-bit address A0 thru A7.

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM (\(\overline{\mathrm{CS}}\) inputs low) is controlled by the \(\overline{W E}\) input. With \(\overline{W E}\) low the chip is in the write mode-the output is low and the data present at \(D_{\text {in }}\) is stored at the selected address. With \(\overline{W E}\) high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at \(D_{\text {out }}\).

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{\text {EE }}\) & -8 to 0 & Vdc \\
\hline Base Input Voltage (\(\mathrm{VCC}=0\)) & \(V_{\text {in }}\) & 0 to \(\mathrm{V}_{\text {EE }}\) & Vdc \\
\hline \[
\begin{aligned}
& \text { Output Source Current }- \text { Continuous } \\
&- \text { Surge } \\
& \hline
\end{aligned}
\] & 10 & \[
\begin{array}{r}
<50 \\
<100 \\
\hline
\end{array}
\] & mAdc \\
\hline Junction Operating Temperature & TJ & < 165 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & Tstg & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
\left.\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ DC TEST VOLTAGE VALUES } \\
(Volts)
\end{tabular}\(\right]\)

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DC Characteristics} & \multirow[b]{3}{*}{Symbol} & \multicolumn{6}{|c|}{MCM10144 Test Limits} & \multirow[b]{3}{*}{Unit} & \multirow[b]{3}{*}{Conditions} \\
\hline & & \multicolumn{2}{|r|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+75^{\circ} \mathrm{C}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline Power Supply Drain Current & lee & - & 130 & - & 125 & - & 120 & mAdc & Typ EEE \(^{\circ} 25^{\circ} \mathrm{C}=90 \mathrm{~mA}\) All outputs and inputs open. Measure pin 8. \\
\hline Input Current High & \(\mathrm{I}_{\text {in }} \mathrm{H}\) & - & 220 & - & 220 & - & 220 & \(\mu\) Adc & Test one input at a time, all other inputs are open.
\[
V_{\text {in }}=V_{1 H} .
\] \\
\hline Input Current Low & 1 in L & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open.
\[
v_{\text {in }}=V_{I L}
\] \\
\hline Logic "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.000 & -0.840 & -0.960 & -0.810 & -0.900 & -0.720 & Vdc & Load \(50 \Omega\) to -2.0 V \\
\hline Logic " 0 " Output Voltage & VOL & \(-1.870\) & -1.665 & -1.850 & -1.650 & -1.830 & -1.625 & Vdc & \\
\hline Logic " 1 " Threshold Voltage & \(\mathrm{V}_{\mathrm{OHA}}\) & -1.020 & - & -0.980 & - & -0.920 & - & Vdc & Threshold testing is performed and guaranteed on one input at \\
\hline Logic " 0 " Threshold Voltage & \(V_{\text {OLA }}\) & - & -1.645 & - & -1.630 & - & -1.605 & Vdc & a. time. \(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IHA }}\) or \(\mathrm{V}_{\text {ILA }}\). Load \(50 \Omega\) to -2.0 V . \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS \(\left(T_{A}=0^{\circ}\right.\) to \(+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \%\); Output Load see Figure 1 ; see Note 1 \& 3.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{Test Limits} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Typ & Max & & \\
\hline Read Mode Chip Select Access Time Chip Select Recovery Time Address Access Time & \begin{tabular}{l}
t ACS \\
tres \\
\({ }^{t}\) AA
\end{tabular} & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 7.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& 17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& 26 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \mathrm{~ns}
\end{aligned}
\] & \begin{tabular}{l}
See Figures 2 and 3. \\
Measured from \(50 \%\) of input to \(50 \%\) of output. See Note 2.
\end{tabular} \\
\hline \begin{tabular}{l}
Write Mode \\
Write Pulse Width \\
Data Setup Time Prior to Write \\
Data Hold Time After Write \\
Address Setup Time Prior to Write \\
Address Hold Time After Write \\
Chip Select Setup Time Prior to Write \\
Chip Select Hold Time After Write \\
Write Disable Time \\
Write Recovery Time
\end{tabular} & \begin{tabular}{l}
\({ }^{t} W\)
\({ }^{t} W S D\) \\
\({ }^{t}\) WHD \\
tWSA \\
tWHA \\
\({ }^{t}\) WSCS \\
\({ }^{t}\) WHCS \\
tws \\
\({ }^{t}\) WR
\end{tabular} & \[
\begin{aligned}
& 25 \\
& 2.0 \\
& 2.0 \\
& 8.0 \\
& 0.0 \\
& 2.0 \\
& 2.0 \\
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
6.0 \\
-3.0 \\
-3.0 \\
0 \\
-4.0 \\
-3.0 \\
-3.0 \\
5.0 \\
5.0 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& - \\
& - \\
& 10 \\
& 10
\end{aligned}
\] & & \begin{tabular}{l}
\[
{ }^{t} \text { WSA }=8.0 \mathrm{~ns}
\] \\
Measured at \(50 \%\) of input to \(50 \%\) of output. \\
\(t^{t} \mathbf{W}=25 \mathrm{~ns}\). See Figure 4.
\end{tabular} \\
\hline Rise and Fall Time Output Rise and Fall Time Output Rise and Fall Time & \[
\begin{aligned}
& t_{r}, t_{f} \\
& t_{r}, t_{f} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
7.0 \\
5.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \hline
\end{aligned}
\] & Measured between 20\% and 80\% points. When driven from Address inputs. When driven from \(\overline{\mathrm{CS}}\) or \(\overline{\mathrm{WE}}\) inputs. \\
\hline Capacitance Input Capacitance Output Capacitance & \begin{tabular}{l}
\(C_{i n}\) \\
Cout
\end{tabular} & - & \[
\begin{aligned}
& 4.0 \\
& 7.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] & \\
\hline
\end{tabular}

Notes: (1) Contact your Motorola Sales Representative for details if extended temperature operation is desired.
(2) The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
(3) For proper use of MECL Memories in a system environment, consult: "MECL System Design Handbook."

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

INPUT LEVELS

All timing measurements referenced to \(50 \%\) of input levels.
\(R_{T}=50 \Omega\)
\(C_{L} \leqslant 5.0 \mathrm{pF}\) (including jig and stray capacitance)
Delay should be derated \(30 \mathrm{ps} / \mathrm{pF}\) for capacitive load up to 50 pF

FIGURE 2 - CHIP SELECT ACCESS TIME

FIGURE 3 - ADDRESS ACCESS TIME

FIGURE 4 - WRITE MODE

\section*{(4) \\ MOTOROLA}

\section*{64-BIT REGISTER FILE (RAM)}

The MCM10145 is a 64-Bit RAM organized as a \(16 \times 4\) array. This organization and the high speed make the MCM10145 particularly useful in register file or small scratch pad applications. Fully decoded inputs, together with a chip enable, provide expansion of memory capacity. The Write Enable input, when low, allows data to be entered; when high, disables the data inputs. The \(\overline{\mathrm{Chip}}\) \(\overline{\text { Select }}\) input when low, allows full functional operation of the device; when high, all outputs go to a low logic state. The Chip Select, together with open emitter outputs allow full wire-ORing and data bussing capability. On-chip input pulldown resistors allow unused inputs to remain open.
- Typical Address Access Time \(=10 \mathrm{~ns}\)
- Typical Chip Select Access Time \(=4.5 \mathrm{~ns}\)
- Operating Temperature Range \(=0^{\circ}\) to \(+75^{\circ} \mathrm{C}\)
- \(50 \mathrm{k} \Omega\) Pulldown Resistors on All Inputs
- Fully Compatible with MECL 10,000
- Pin-for-Pin Compatible with the F10145

LSUFFIX CERAMIC PACKAGE CASE 620

F SUFFIX CERAMIC PACKAGE CASE 650

PIN ASSIGNMENT

PIN NOTATION

CS
AO thru A3 DO thru D3 QO thru Q3 WE

Chip Seiect Input Address Inputs
Data inputs
Data Outputs Write Enable Input

TRUTH TABLE
\begin{tabular}{|l|c|c|c|c|}
\hline MODE & \multicolumn{3}{|c|}{ INPUT } & OUTPUT \\
\hline & \(\overline{C S}\) & \(\overline{W E}\) & \(\mathrm{D}_{\mathrm{n}}\) & \(\mathrm{Q}_{\mathrm{n}}\) \\
\hline Write "O" & L & L & L & L \\
\hline Write "1" & L & L & H & L \\
\hline Read & L & H & \(\phi\) & Q \\
\hline Disabled & H & \(\phi\) & \(\phi\) & L \\
\hline
\end{tabular}
\(\phi=\) Don't Care

\section*{FUNCTIONAL DESCRIPTION:}

The MCM10145 is a 16 word \(\times 4\)-bit RAM. Bit selection is achieved by means of a 4 -bit address A0 thru A3.

The active-low chip select allows memory expansion up to 32 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM (\(\overline{\mathrm{CS}}\) input low) is controlled by the \(\overline{W E}\) input. With \(\overline{W E}\) low the chip is in the write mode-the output is low and the data present at \(D_{n}\) is stored at the selected address. With \(\overline{W E}\) high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at \(\mathrm{Q}_{\mathrm{n}}\).

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{\text {EE }}\) & -8 to 0 & Vdc \\
\hline Base Input Voltage (\(\mathrm{VCC}^{\text {c }}=0\)) & \(V_{\text {in }}\) & 0 to \(V_{\text {EE }}\) & Vdc \\
\hline \[
\begin{aligned}
\text { Output Source Current } & - \text { Continuous } \\
& - \text { Surge }
\end{aligned}
\] & 10 & \[
\begin{aligned}
& <50 \\
& <100
\end{aligned}
\] & mAdc \\
\hline Junction Operating Temperature & \(T_{J}\) & < 165 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
\left.\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ DC TEST VOLTAGE VALUES } \\
(Volts)
\end{tabular}\(\right]\)

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DC Characteristics} & \multirow[b]{3}{*}{Symbol} & \multicolumn{6}{|c|}{MCM10145 Test Limits} & \multirow[b]{3}{*}{Unit} & \multirow[b]{3}{*}{Conditions} \\
\hline & & \multicolumn{2}{|r|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+75^{\circ} \mathrm{C}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline Power Supply Drain Current & \({ }^{\prime} \mathrm{EE}\) & -- & 130 & - & 125 & - & 120 & mAdc & Typ \(\mathrm{I}_{\mathrm{EE}} @ 25^{\circ} \mathrm{C}=90 \mathrm{~mA}\) All outputs and inputs open. Measure pin 8. \\
\hline Input Current High & 1 inH & - & 220 & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open.
\[
V_{\text {in }}=V_{\text {IH }} .
\] \\
\hline Input Current Low & 1 inL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open.
\[
v_{\text {in }}=v_{\text {IL }} .
\] \\
\hline Logic "1" Output Voltage & VOH & -1.000 & -0.840 & -0.960 & -0.810 & -0.900 & -0.720 & Vdc & Load \(50 \Omega\) to -2.0 V \\
\hline Logic " 0 " Output Voltage & VOL & -1.870 & -1.665 & -1.850 & \(-1.650\) & -1.830 & -1.625 & Vdc & \\
\hline \begin{tabular}{l}
Logic "1" \\
Threshold Voltage
\end{tabular} & \(\mathrm{V}_{\text {OHA }}\) & -1.020 & - & -0.980 & - & -0.920 & - & Vdc & Threshold testing is performed and guaranteed on one input at \\
\hline Logic "0" Threshold Voltage & VOLA & - & -1.645 & - & -1.630 & - & -1.605 & Vdc & a time. \(\mathrm{V}_{\text {in }}=\) V IHA \(^{\text {or }}\) VILA. Load \(50 \Omega\) to -2.0 V . \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (\(\mathrm{T}_{\mathrm{A}}=0^{\circ}\) to \(+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5^{\circ}\); Output Load see Figure 1; see Note 2.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{Test Limits} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Typ & Max & & \\
\hline Read Mode Chip Select Access Time Chip Select Recovery Time Address Access Time & \[
\begin{aligned}
& t_{\mathrm{A}}^{\mathrm{ACS}} \\
& \mathrm{t}_{\mathrm{RCS}} \\
& \mathrm{t}_{\mathrm{AA}} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 5.0 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns } \\
& \text { ns } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
See Figures 2 and 3. \\
Measured from 50\% of input to \(50 \%\) of output. See Note 1.
\end{tabular} \\
\hline \begin{tabular}{l}
Write Mode \\
Write Pulse Width \\
Data Setup Time Prior to Write Data Hold Time After Write Address Setup Time Prior to Write Address Hold Time After Write Chip Select Setup Time Prior to Write Chip Select Hold Time After Write Write Disable Time Write Recovery Time
\end{tabular} & \begin{tabular}{l}
\({ }^{t}\) W \\
\({ }^{t}\) WSD \\
\({ }^{t}\) WHD \\
tWSA \\
tWHA \\
\({ }^{t}\) WSCS \\
twhCs \\
tws \\
\({ }^{t}\) WR
\end{tabular} & \[
\begin{gathered}
8.0 \\
0 \\
3.0 \\
5.0 \\
1.0 \\
0 \\
0 \\
2.0 \\
2.0
\end{gathered}
\] & \[
\begin{gathered}
- \\
-6.0 \\
0 \\
1.0 \\
-3.0 \\
-5.0 \\
-6.0 \\
5.0 \\
5.0
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& - \\
& - \\
& - \\
& 8.0 \\
& 8.0
\end{aligned}
\] & & \begin{tabular}{l}
\[
\text { tWSA }=5 \text { ns }
\] \\
Measured at 50\% of input to 50\% of output.
\[
\mathrm{tw}=8 \mathrm{~ns} . \text { See Figure } 4
\]
\end{tabular} \\
\hline \begin{tabular}{l}
Chip Enable Strobe Mode \\
Data Setup Prior to Chip Select \\
Write Enable Setup Prior to Chip Select \\
Address Setup Prior to Chip Select Data Hold Time After Chip Select Write Enable Hold Time After Chip Select \\
Address Hold Time After Chip Select Chip Select Minimum Pulse Width
\end{tabular} & \[
\begin{aligned}
& { }^{\mathrm{t}} \mathrm{CSD} \\
& { }^{\mathrm{t}} \mathrm{CSW} \\
& \\
& { }^{\mathrm{t}} \mathrm{CSA} \\
& { }^{\mathrm{t}} \mathrm{CHD} \\
& { }^{\mathrm{t}} \mathrm{CHW} \\
& \\
& { }^{\mathrm{t}} \mathrm{CHA} \\
& { }^{\mathrm{t}} \mathrm{CS} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0.0 \\
2.0 \\
0 \\
4.0 \\
18 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
-6.0 \\
-3.0 \\
-3.0 \\
-1.0 \\
-6.0 \\
\\
-1.0 \\
12
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & ns ns ns ns ns ns ns & Guaranteed but not tested on standard product. See Figure 5. \\
\hline Rise and Fall Time Address to Output \(\overline{\mathrm{CS}}\) to Output & \[
\begin{aligned}
& t_{r}, t_{f} \\
& t_{r}, t_{f}
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] & Measured between \(20 \%\) and \(80 \%\) points. \\
\hline Capacitance Input Capacitance Output Capacitance & \(C_{\text {in }}\) Cout & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 8.0
\end{aligned}
\] & pF pF & \\
\hline
\end{tabular}

Notes:
1. The maximum Address Access Time is guaranteed to be the worst-case bit in the memory.
2. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

> Input Pulse
> \(t_{r}=t_{f}=2.0 \pm 0.2 \mathrm{~ns}\)
(20 to \(80 \%\))
\(V_{\text {IH }}=-0.9 \mathrm{~V}\)
\(V_{I L}=-1.7 \mathrm{~V}\)

Unused outputs connected to a 50 -ohm resistor to ground. All timing measurements referenced to \(50 \%\) of input levels. \(R_{T}=50 \Omega\)
\(C_{L} \leqslant 5.0\) pF (Including Jig and Stray Capacitance)
Delay should be derated \(30 \mathrm{ps} / \mathrm{pF}\) for capacitive loads up to 50 pF .

FIGURE 2 - CHIP SELECT ACCESS TIME

FIGURE 4 - WRITE MODE

FIGURE 5 - CHIP ENABLE STROBE MODE

\section*{\(1024 \times 1\)-BIT RANDOM ACCESS MEMORY}

The MCM10146/10415 is a 1024-bit Read/Write Random Access Memory organized 1024 words by 1 bit. Data is selected or stored by means of a 10 -bit address (A0 through A9) decoded on the chip. The chip is designed with a separate data in line, a non-inverting data output, and an active-low chip select.

This device is designed for use in high-speed scratch pad, control, cache and buffer storage applications.
- Fully Compatible with MECL 10,000
- Pin-for-Pin Compatible with the 10415
- Temperature Range of \(0^{\circ}\) to \(75^{\circ} \mathrm{C}\) (see note 1)
- Emintter-Follower Output Permits Full Wire-ORing (see note 3)
- Power Dissipation Decreases with Increasing Temperature
- Typical Address Access of 24 ns
- Typical Chip Select Access of 4.0 ns

\section*{PIN DESIGNATION}
\begin{tabular}{ll}
CS & Chip Select Input \\
A0 to A9 & Address Inputs \\
\(D_{\text {in }}\) & Data Inputs \\
\(D_{\text {out }}\) & Data Output \\
WE & Write Enable Input
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION:}

This device is a \(1024 \times 1\)-bit RAM. Bit selection is achieved by means of a 10 -bit address, A0 to A9.

The active-low chip select is provided for memory expansion up to 2048 words.

The operating mode of the RAM (CS input low) is controlled by the \(\overline{W E}\) input. With \(\overline{W E}\) low, the chip is in the write mode, the output, \(D_{\text {out }}\), is low and the data state present at \(D_{\text {in }}\) is stored at the selected address. With \(\overline{W E}\) high, the chip is in the read mode and the data stored at the selected memory location will be presented noninverted at \(\mathrm{D}_{\text {out }}\). (See Truth Table)

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{\text {EE }}\) & -8 to 0 & \(V \mathrm{dc}\) \\
\hline Base Input Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{\text {in }}\) & 0 to \(V_{\text {EE }}\) & Vdc \\
\hline \[
\begin{aligned}
\hline \text { Output Source Current } & - \text { Continuous } \\
& - \text { Surge }
\end{aligned}
\] & 10 & \[
\begin{aligned}
& <50 \\
& <100
\end{aligned}
\] & mAdc \\
\hline Junction Operating Temperature & \(T_{J}\) & \(<165\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\left.\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{ DC TEST VOLTAGE VALUES } \\
(Volts)
\end{tabular}\(\right]\)

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DC Characteristics} & \multirow[b]{3}{*}{Symbol} & \multicolumn{6}{|c|}{MCM10146 Test Limits} & \multirow[b]{3}{*}{Unit} & \multirow[b]{3}{*}{Conditions} \\
\hline & & \multicolumn{2}{|c|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+75^{\circ} \mathrm{C}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline Power Supply Drain Current & \({ }^{\prime} \mathrm{EE}\) & - & 150 & - & 145 & - & 125 & mAdc & Typ \(I_{E E} @ 25^{\circ} \mathrm{C}=100 \mathrm{~mA}\) All outputs and inputs open. Measure pin 8. \\
\hline Input Current High & \(\mathrm{i}_{\text {in }} \mathrm{H}\) & - & 220 & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open.
\[
v_{i n}=V_{1 H}
\] \\
\hline Input Current Low & \(\mathrm{I}_{\text {in }} \mathrm{L}\) & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open.
\[
v_{\text {in }}=V_{I L}
\] \\
\hline Logic " 1 " Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.000 & -0.840 & -0.960 & -0.810 & -0.900 & -0.720 & Vdc & Load \(50 \Omega\) to -2.0 V \\
\hline \[
\begin{aligned}
& \text { Logic " "0" } \\
& \text { Output Voltage } \\
& \hline
\end{aligned}
\] & \(V_{\text {OL }}\) & -1.920 & -1.665 & -1.900 & \(-1.650\) & \(-1.880\) & \(-1.625\) & Vdc & \\
\hline \begin{tabular}{l}
Logic "1" \\
Threshold Voltage
\end{tabular} & VOHA & \[
-1.020
\] & - & -0.980 & - & -0.920 & - & Vdc & Threshold testing is performed and guaranteed on one input at \\
\hline Logic "0' Threshold Voltage & VOLA & - & -1.645 & - & -1.630 & - & -1.605 & Vdc & a time. \(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IHA }}\) or VILA. \(^{\text {IL }}\) Load \(50 \Omega\) to -2.0 V . \\
\hline
\end{tabular}

\section*{FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS}

Guaranteed with \(V_{E E}=-5.2 \mathrm{Vdc} \pm 5.0 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) (see Note 1). Output Load see Figure 1.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|l|}{MCM10146 Test Limits} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Typ & Max & & \\
\hline \begin{tabular}{l}
Read Mode \\
Chip Setect Access Time \\
Chip Select Recovery Time \\
Address Access Time
\end{tabular} & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{ACS}} \\
& \mathrm{t}_{\mathrm{RCS}} \\
& { }^{\mathrm{t} A A} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& 24 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 7.0 \\
& 29
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \mathrm{~ns}
\end{aligned}
\] & \begin{tabular}{l}
See Figures 2 and 3. \\
Measured at \(50 \%\) of input to \(50 \%\) of output. \\
See Note 2.
\end{tabular} \\
\hline \begin{tabular}{l}
Write Mode \\
Write Pulse Width \\
(To guarantee writing) \\
Data Setup Time Prior to Write \\
Data Hold Time After Write \\
Address Setup Time Prior to Write \\
Address Hold Time After Write \\
Chip Select Setup Time Prior to Write \\
Chip Select Hold Time After Write \\
Write Disable Time \\
Write Recovery Time
\end{tabular} & \begin{tabular}{l}
tWSD \\
tWHD \\
tWSA \\
tWHA \\
twSCS \\
tWHCS \\
tws \\
tWR
\end{tabular} & \[
\begin{aligned}
& 25 \\
& 5.0 \\
& 5.0 \\
& 8.0 \\
& 2.0 \\
& 5.0 \\
& 5.0 \\
& 2.8 \\
& 2.8
\end{aligned}
\] & \[
\begin{gathered}
20 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
5.0 \\
5.0
\end{gathered}
\] & & \begin{tabular}{l}
ns \\
ns
\end{tabular} & \begin{tabular}{l}
See Figure 4. \\
\({ }^{t}\) WSA \(=8.0 \mathrm{~ns}\). \\
Measured at \(50 \%\) of input to \(50 \%\) of output.
\[
\mathrm{t}_{\mathrm{W}}=25 \mathrm{~ns}
\]
\end{tabular} \\
\hline Rise and Fall Time Output Rise and Fall Time Output Rise and Fall Time & \[
\begin{aligned}
& t_{r}, t_{f} \\
& t_{r}, t_{f}
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
2.5 \\
4.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \hline
\end{aligned}
\] & Measured between \(20 \%\) and \(80 \%\) points. When driven from \(\overline{\mathrm{CS}}\) or \(\overline{\mathrm{WE}}\) inputs. When driven from Address inputs. \\
\hline \begin{tabular}{l}
Capacitance \\
Input Lead Capacitance \\
Output Lead Capacitance
\end{tabular} & \begin{tabular}{l}
\(C_{\text {in }}\) \\
Cout
\end{tabular} & - & 4.0
7.0 & 5.0
8.0 & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] & Measured with a puise technique. \\
\hline
\end{tabular}

Notes:
(1) Contact your Motorola Sales Representative for details if extended temperature operation is desired.
(2) The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
(3) For proper use of MECL Memories in a system environment, consult: "MECL System Design Handbook."
(4) Typical limits are at \(V_{E E}=-5.2 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and standard loading.

FIGURE 2 - CHIP SELECT ACCESS TIME

FIGURE 3 - ADDRESS ACCESS TIME

FIGURE 4 - WRITE STROBE MODE

\section*{\(128 \times 1\)-BIT RANDOM ACCESS MEMORY}

The MCM10147 is a 128 -word \(\times 1\)-bit Read/Write Random Access Memory. Data is accessed or stored by means of a 7 -bit address decoded on chip. It has a non-inverting data out, a separate data in line and 2 active-low chip select lines. It has a typical access time of 10 ns and is designed for high-speed scratch pads, control, cache, and buffer storage applications.
- Typical Address Access Time \(=10 \mathrm{~ns}\)
- Typical Chip Select Access Time \(=5.0 \mathrm{~ns}\)
- Operating Temperature Range \(=0^{\circ}\) to \(+75^{\circ} \mathrm{C}\)
- Open Emitter Output Permits Wired-OR for Easy Memory Expansion
- \(50 \mathrm{k} \Omega\) Input Pulldown Resistors on All Inputs
- Power Dissipation Decreases with Increasing Temperature
- Fully Compatible with MECL 10,000 Logic Family
- Similar to F10405.

\section*{MECL}

128-BIT RANDOM ACCESS MEMORY

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ TRUTH TABLE } \\
\hline MODE & \multicolumn{3}{|c|}{ INPUT } & OUTPUT \\
\hline & \(\overline{C S} *\) & \(\overline{\text { WE }}\) & \(D_{\text {in }}\) & Dout \(_{\text {out }}\) \\
\hline Write "0" & L & L & L & L \\
\hline Write "1" & L & L & H & L \\
\hline Read & L & H & \(\phi\) & Q \\
\hline Disabled & H & \(\phi\) & \(\phi\) & L \\
\hline
\end{tabular}
\[
\begin{aligned}
v_{C C 1} & =\operatorname{Pin} 1 \\
v_{C C 2} & =\operatorname{Pin} 16 \\
v_{E E} & =\operatorname{Pin} 8
\end{aligned}
\]

- \(\overline{\mathrm{CS}}=\overline{\mathrm{CS} 1}+\overline{\mathrm{CS} 2}\)

\section*{MCM10147}

\section*{FUNCTIONAL DESCRIPTION}

The MCM 10147 is a 128 word \(\times 1\)-bit RAM. Bit selection is achieved by means of a 7 -bit address A0 thru A6.

The active-low chip select allows memory expansion up to 512 words. The fast chip select access time allows memory eẍpansion without affecting system performance.

The operating mode of the RAM (\(\overline{\mathrm{CS}}\) inputs low) is controlled by the \(\overline{W E}\) input. With \(\overline{W E}\) low the chip is in the write mode-the output is low and the data present at \(\mathrm{D}_{\text {in }}\) is stored at the selected address. With \(\overline{\mathrm{WE}}\) high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at \(D_{\text {out }}\).

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{EE}}\) & -8 to 0 & Vdc \\
\hline Base Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\text {in }}\) & 0 to VEE & Vdc \\
\hline \begin{tabular}{l}
Output Source Current \\
- Continuous \\
- Surge
\end{tabular} & \(\mathrm{I}_{\mathrm{O}}\) & \begin{tabular}{c}
\(<50\) \\
\(<100\)
\end{tabular} & mAdc \\
\hline Junction Operating Temperature & \(\mathrm{T}_{\mathrm{J}}\) & \(<165\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
\left.\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ DC TEST VOLTAGE VALUES } \\
(VoIts)
\end{tabular}\(\right]\)

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DC Characteristics} & \multirow[b]{3}{*}{Symbol} & \multicolumn{6}{|c|}{MCM10144 Test Limits} & \multirow[b]{3}{*}{Unit} & \multirow[b]{3}{*}{Conditions} \\
\hline & & \multicolumn{2}{|r|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+75^{\circ} \mathrm{C}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline Power Supply Drain Current. & IEE & - & 105 & - & 100 & - & 95 & mAdc & \begin{tabular}{l}
\[
\text { Typ } \mathrm{I}_{\mathrm{EE}} @ 25^{\circ} \mathrm{C}=80 \mathrm{~mA}
\] \\
All outputs and inputs open. Measure pin 8.
\end{tabular} \\
\hline Input Current High & \(\mathrm{I}_{\text {in }} \mathrm{H}\) & - & 220 & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open.
\[
V_{\text {in }}=V_{1 H}
\] \\
\hline Input Current Low & \(\mathrm{I}_{\mathrm{in}} \mathrm{L}\) & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu\) Adc & Test one input at a time, all other inputs are open.
\[
v_{\text {in }}=V_{\text {IL }}
\] \\
\hline Logic "1" Output Voltage & VOH & -1.000 & -0.840 & -0.960 & -0.810 & -0.900 & -0.720 & Vdc & Load \(50 \Omega\) to -2.0 V \\
\hline Logic " 0 " Output Voltage & VOL & -1.870 & -1.665 & -1.850 & -1.650 & -1.830 & -1.625 & Vdc & \\
\hline \begin{tabular}{l}
Logic '1" \\
Threshold Voltage
\end{tabular} & VOHA & -1.020 & - & -0.980 & - & -0.920 & - & Vdc & Threshold testing is performed and guaranteed on one input at \\
\hline \begin{tabular}{l}
Logic " 0 " \\
Threshold Voltage
\end{tabular} & \(\mathrm{V}_{\text {OLA }}\) & - & \(-1.645\) & - & -1.630 & - & -1.605 & Vdc & a time. \(V_{\text {in }}=V_{\text {IHA }}\) or \(V_{\text {ILA }}\). Load \(50 \Omega\) to -2.0 V . \\
\hline
\end{tabular}

\section*{MCM10147}

SWITCHING CHARACTERISTICS \(\left(T_{A}=0^{\circ}\right.\) to \(+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \%\); Output Load see Figure 1; see Note \(\left.1 \& 3.\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{Test Limits} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Typ & Max & & \\
\hline Read Mode Chip Select Access Time Chip Select Recovery Time Address Access Time & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{ACS}} \\
& \mathrm{t}_{\mathrm{RCS}} \\
& \mathrm{t}_{\mathrm{AA}}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
5.0 \\
5.0 \\
10 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns } \\
& \text { ns } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
See Figures 2 and 3. \\
Measured from 50\% of input to \(50 \%\) of output. See Note 2.
\end{tabular} \\
\hline \begin{tabular}{l}
Write Mode \\
Write Pulse Width \\
Data Setup Time Prior to Write \\
Data Hold Time After Write \\
Address Setup Time Prior to Write \\
Address Hold Time After Write \\
Chip Select Setup Time Prior to Write \\
Chip Select Hold Time After Write \\
Write Disable Time \\
Write Recovery Time
\end{tabular} & \begin{tabular}{l}
\({ }^{t}\) W \\
\({ }^{t}\) WSD \\
\({ }^{t}\) WHD \\
tWSA \\
tWHA \\
twsCS \\
\({ }^{t}\) WHCS \\
tws \\
tWR
\end{tabular} & \[
\begin{aligned}
& 8.0 \\
& 1.0 \\
& 3.0 \\
& 4.0 \\
& 3.0 \\
& 1.0 \\
& 1.0 \\
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{gathered}
6.0 \\
-5.0 \\
-2.0 \\
0 \\
0 \\
-5.0 \\
-5.0 \\
5.0 \\
5.0 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& - \\
& - \\
& 8.0 \\
& 8.0
\end{aligned}
\] & & \begin{tabular}{l}
\[
\mathrm{t} \text { WSA }=4.0 \mathrm{~ns}
\]
\[
{ }^{t} W=8.0 \mathrm{~ns} . \text { See Figure } 4
\] \\
Measured at 50\% of input to 50\% of output.
\end{tabular} \\
\hline Rise and Fall Time Output Rise and Fall Time & \(t_{r}, t_{f}\) & 1.5 & 3.0 & 5.0 & ns & Measured between 20\% and 80\% points. \\
\hline Capacitance Input Capacitance Output Capacitance & \(\mathrm{C}_{\text {in }}\) Cout & - & \[
\begin{aligned}
& 4.0 \\
& 7.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 8.0
\end{aligned}
\] & pF pF & \\
\hline
\end{tabular}

Notes: (1) Contact your Motorola Sales Representative for details if extended temperature operation is desired.
(2) The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
(3) For proper use of MECL Memories in a system environment, consult: "MECL System Design Handbook."

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

INPUT LEVELS

All timing measurements referenced to \(50 \%\) of input levels.
\(\mathrm{R}_{\mathbf{T}}=50 \Omega\)
\(\mathrm{C}_{\mathrm{L}} \leqslant 5.0 \mathrm{pF}\) (including jig and stray capacitance)
Delay should be derated \(30 \mathrm{ps} / \mathrm{pF}\) for capacitive load up to 50 pF

FIGURE 2 - CHIP SELECT ACCESS TIME

FIGURE 3 - ADDRESS ACCESS TIME

FIGURE 4 - WRITE MODE

\section*{(A) MOTOROLA}

\section*{\(256 \times 4\)-BIT PROGRAMMABLE READ-ONLY MEMORY}

This device is a 256 -word \(\times 4\)-bit field programmable read only memory (PROM). Prior to programming, all stored bits are at logic 1 (high) levels. The logic state of each bit can then be changed by on-chip programming circuitry. The memory has a single negative logic chip enable. When the chip is disabled (\(\overline{\mathrm{CS}}=\) high), all outputs are forced to a logic 0 (low).
- Typical Address Access Time of 20 ns
- Typical Chip Select Access Timeof 8.0 ns
- \(50 \mathrm{k} \Omega\) Input Pulldown Resistors on All Inputs
- Power Dissipation (540 mW typ \(@ 25^{\circ} \mathrm{C}\))

Decreases with Increasing Temperature

PIN ASSIGNMENT

\section*{MCM10149}

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+75{ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+125^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & \\
\hline Power Supply Drain Current & IEE & - & 160 & - & 155 & - & 150 & - & 145 & - & 145 & mAdc \\
\hline Input Current High & 1 inH & - & 450 & - & 265 & -- & 265 & - & 265 & - & 265 & \(\mu \mathrm{Adc}\) \\
\hline
\end{tabular}
\(-55^{\circ} \mathrm{C}\) and \(+125^{\circ} \mathrm{C}\) test values apply to MC105xx devices only.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Forcing Function & Parameter & \(-55^{\circ} \mathrm{C}^{\text {(1) }}\) & \(0^{\circ} \mathrm{C}\) (3) & \(25^{\circ} \mathrm{C}^{(2)}\) & \(25^{\circ} \mathrm{C}^{(1)}\) & \(75^{\circ} \mathrm{c}^{(2)}\) & \(125^{\circ} \mathrm{C}^{\text {(1) }}\) \\
\hline \multirow[b]{2}{*}{\(V_{\text {IHmax }}\)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& V_{\text {OHmax }} \\
& v_{\text {OHmin }}
\end{aligned}
\]} & MCM10500 & MCM10100 & MCM10100 & MCM10500 & MCM10100 & MCM10500 \\
\hline & & \[
\begin{aligned}
& -0.880 \\
& -1.080
\end{aligned}
\] & \[
\begin{array}{r}
-0.840 \\
-1.000
\end{array}
\] & \[
\begin{aligned}
& -0.810 \\
& -0.960
\end{aligned}
\] & \[
\begin{array}{r}
-0.780 \\
-0.930
\end{array}
\] & \[
\begin{array}{r}
-0.720 \\
-0.900
\end{array}
\] & \[
\begin{array}{r}
-0.630 \\
-0.825
\end{array}
\] \\
\hline \(V_{\text {IHAmin }}\) & \({ }^{\text {OHAmin }}\) & \[
\begin{array}{r}
-1.100 \\
-1.175
\end{array}
\] & \[
\begin{aligned}
& -1.020 \\
& -1.130
\end{aligned}
\] & \[
\begin{array}{r}
-0.980 \\
-1.105
\end{array}
\] & \[
\begin{aligned}
& -0.950 \\
& -1.105
\end{aligned}
\] & \[
\begin{aligned}
& -0.920 \\
& -1.045
\end{aligned}
\] & \[
\begin{aligned}
& -0.845 \\
& -1.000
\end{aligned}
\] \\
\hline \(V_{\text {ILAmax }}\) & \begin{tabular}{l}
\(V_{\text {OLAmax }}\) \\
\(V_{\text {OLmax }}\)
\end{tabular} & \[
\begin{aligned}
& -1.510 \\
& -1.635 \\
& -1.655
\end{aligned}
\] & \[
\begin{aligned}
& -1.490 \\
& -1.645 \\
& -1.665
\end{aligned}
\] & \[
\begin{aligned}
& -1.475 \\
& -1.630 \\
& -1.650
\end{aligned}
\] & \[
\begin{aligned}
& -1.475 \\
& -1.600 \\
& -1.620
\end{aligned}
\] & \[
\begin{aligned}
& -1.450 \\
& -1.605 \\
& -1.625
\end{aligned}
\] & \[
\begin{aligned}
& -1.400 \\
& -1.525 \\
& -1.545
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\text {ILImin }}\) & \({ }^{\text {OLmin }}\) & -1.920 & -1.870 & -1.850 & -1.850 & -1.830 & -1.820 \\
\hline \(V_{\text {ILmin }}\) & \({ }^{\prime}\) NLmin & 0.5 & 0.5 & 0.5 & 0.5 & 0.3 & 0.3 \\
\hline
\end{tabular}

NOTES: (1) MCM10500 series specified driving \(100 \Omega\) to -2.0 V .
(2) Memories (MCM10100) specified \(0 \cdot 75^{\circ} \mathrm{C}\) for commercial temperature range, \(50 \Omega\) to -2.0 V . Military temperature range memories (MCM10500) specified per Note 1.

SWITCHING CHARACTERISTICS (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristics} & \multirow[b]{3}{*}{Symbol} & \multicolumn{2}{|c|}{MCM10149} & \multicolumn{2}{|c|}{MCM10549} & \multirow[b]{3}{*}{Unit} & \multirow[b]{3}{*}{Conditions} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=0 \text { to }+75^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{E}}=-5.2 \mathrm{Vdc} \pm 5 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=-55 \mathrm{to}+125^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5 \%
\end{aligned}
\]} & & \\
\hline & & Min & Max & Min & Max & & \\
\hline \begin{tabular}{l}
Read Mode \\
Chip Select Access Time \\
Chip Select Recovery Time \\
Address Access Time
\end{tabular} & \[
\begin{aligned}
& { }^{\mathrm{t}} \mathrm{ACS} \\
& { }^{\mathrm{t} R C S} \\
& { }^{\mathrm{t} A A}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 7.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& 25
\end{aligned}
\] & * & * & ns & Measured from 50\% of input to 50\% of output See Note 1. \\
\hline Rise and Fall Time & \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\) & 1.5 & 7.0 & * & * & ns & Measured between 20\% and 80\% points. \\
\hline Capacitance Input Capacitance Output Capacitance & \begin{tabular}{l}
\(\mathrm{C}_{\text {in }}\) \\
Cout
\end{tabular} & - & 5.0
8.0 & - & \[
\begin{aligned}
& 5.0 \\
& 8.0
\end{aligned}
\] & pF & Measured with a pulse technique. \\
\hline
\end{tabular}

NOTES: 1. Test circuit characteristics: \(R_{T}=50 \Omega\), MCM10149; \(100 \Omega\), MCM10549.
\(C_{L} \leqslant 5.0 \mathrm{pF}\) (including jig and stray capacitance)
Delay should be derated \(30 \mathrm{ps} / \mathrm{pF}\) for capacitive load up to 50 pF
2. The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
3. For proper use of MECL Memories in a system environment, consult MECL System Design Handbook.
4. \(V_{C P}=V_{C C}=\) Gnd for normal operation.
*To be determined; contact your Motorola representative for up-to-date information.

\section*{PROGRAMMING THE MCM10149 \(\dagger\)}

During programming of the MCM 10149, input pins 7 , 9 , and 10 are addressed with standard MECL 10K logic levels. However, during programming input pins 2, 3, 4, 5 , and 6 are addressed with \(0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IH}} \leqslant+0.25 \mathrm{~V}\) and \(V_{E E} \leqslant V_{\text {IL }} \leqslant-3.0 \mathrm{~V}\). It should be stressed that this deviation from standard input levels is required only during the programming mode. During normal operation, standard MECL 10,000 input levels must be used.

With these requirements met, and with \(V_{C P}=V_{C C}=\)

0 V and \(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%\), the address is set up. After a minimum of 100 ns delay, \(V_{C P}\) (\(\operatorname{pin} 1\)) is ramped up to \(+12 \mathrm{~V} \pm 0.5 \mathrm{~V}\) (total voltage \(\mathrm{V}_{\mathrm{CP}}\) to \(\mathrm{V}_{\mathrm{EE}}\) is now 17.2 V . \(+12 \mathrm{~V}-[-5.2 \mathrm{~V}])\). The rise time of this \(\mathrm{V}_{\mathrm{CP}}\) voltage pulse should be in the \(1-10 \mu \mathrm{~s}\) range, while its pulse width (\(\mathrm{t}_{\mathrm{W}} 1\)) should be greater than \(100 \mu \mathrm{~s}\) but less than 1 ms . The \(\mathrm{V}_{\mathrm{CP}}\) supply current at +12 V will be approximately 525 mA while current drain from \(\mathrm{V}_{\mathrm{CC}}\) will be approximately 175 mA . A current limit should therefore be

\section*{MCM10149}
set on both of these supplies. The current limit on the \(\mathrm{V}_{\mathrm{CP}}\) supply should be set at 700 mA while the \(\mathrm{V}_{\mathrm{CC}}\) supply should be limited to 250 mA . It should be noted that the \(V_{E E}\) supply must be capable of sinking the combined current of the \(\mathrm{V}_{C C}\) and \(\mathrm{V}_{\mathrm{CP}}\) supplies while maintaining a voltage of \(-5.2 \mathrm{~V} \pm 5 \%\).

Coincident with, or at some delay after the \(\mathrm{V}_{\mathrm{CP}}\) pulse has reached its \(100 \%\) level, the desired bit to be fused can be selected. This is done by taking the corresponding output pin to a voltage of \(+2.85 \mathrm{~V} \pm 5 \%\). It is to be noted that only one bit is to be fused at a time. The other three unselected outputs should remain terminated through their 50 ohm load resistor (100 ohm for MCM 10549) to - 2.0 V . Current into the selected output is 5 mA maximum.

After the bit select pulse has been applied to the appropriate output, the fusing current is sourced out of the chip select pin 13 . The \(0 \%\) to \(100 \%\) rise time of this current pulse should be \(\mathbf{2 5 0}\) ns max. It pulse width should be greater than \(100 \mu \mathrm{~s}\). Pulse magnitude is \(50 \mathrm{~mA} \pm 5.0 \mathrm{~mA}\). The voltage clamp on this current source is to be -6.0 V .

After the fusing current source has returned 0 mA , the bit select pulse is returned to it initial level, i.e., the output is returned through its load to -2.0 V . Thereafter, \(\mathrm{V}_{\mathrm{CP}}\) is returned to 0 V . Strobing of the outputs to determine success in programming should occur no sooner than 100 ns after \(\mathrm{V}_{\mathrm{CP}}\) has returned to 0 V . The remaining bits are programmed in a similar fashion.
\(\dagger\) NOTE: For devices that program incorrectly, return serialized units with individual truth tables. Non compliance voids warranty.

\section*{PROGRAMMING SPECIFICATIONS}

The following timing diagrams and fusing information represent programming specifications for the MCM10149.

The timing diagram is shown for programming one bit. Note that only one bit is blown at a time. All addressing must be done 100 ns prior to the beginning of the \(V_{C P}\) pulse, i.e., \(V_{C P}=0 \mathrm{~V}\). Likewise, strobing of the outputs to determine success in programming should occur no sooner than 100 ns after \(V_{C P}\) returns to 0 V .

Note that the fusing current is defined as a positive current out of the chip select, pin 13. A programming duty cycle of \(\leqslant 15 \%\) is to be observed.

Definitions and values of timing symbols are as follows.
\begin{tabular}{|c|c|c|}
\hline Symbol & Definition & Value \\
\hline \(t_{r 1}\) & Rise Time, Programming Voltage & \(\geqslant 1 \mu \mathrm{~s}\) \\
\hline \(t_{w 1}\) & Pulse Width, Programming Voltage & \(\geqslant 100 \mu \mathrm{~s}<1 \mathrm{~ms}\) \\
\hline \({ }^{t} \mathrm{D} 1\) & \begin{tabular}{l}
Delay Time, \\
Programming Voltage \\
Pulse to Bit \\
Select Pulse
\end{tabular} & \(\geqslant 0\) \\
\hline \(t_{w} 2\) & Pulse Width, Bit Select & \(\geqslant 100 \mu \mathrm{~s}\) \\
\hline \({ }^{t} \mathrm{D} 2\) & \begin{tabular}{l}
Delay Time, Bit Select \\
Pulse to Programming \\
Voltage Pulse
\end{tabular} & \(\geqslant 0\) \\
\hline \({ }^{t}\) D3 & Delay Time, Bit Select Pulse to Programming Current Pulse & \(\geqslant 1 \mu \mathrm{~s}\) \\
\hline \(\mathrm{t}_{\mathrm{r}} 3\) & Rise Time, Programming Current Pulse & 250 ns max \\
\hline \(t_{w 3}\) & Pulse Width, Programming Current Pulse & \(\geqslant 100 \mu \mathrm{~s}\) \\
\hline \({ }^{t}\) D4 & \begin{tabular}{l}
Delay Time, \\
Programming Current \\
Pulse to Bit \\
Select Pulse
\end{tabular} & \(\geqslant 1 \mu \mathrm{~s}\) \\
\hline
\end{tabular}

\section*{MANUAL PROGRAMMING CIRCUIT}

\section*{\(256 \times 1\)-BIT RANDOM ACCESS MEMORY}

The MCM10152 is a 256 word \(\times 1\)-bit Read/Write Random Access Memory. Data is accessed or stored by means of an 8 -bit address decoded on chip. It has a non-inverting data out, a separate data in line and 3 active-low chip select lines. It has a typical access time of 11 ns and is designed for high-speed scratch pad, control, cache, and buffer storage applications.
- Typical Address Access Time \(=11 \mathrm{~ns}\)
- Typical Chip Select Access Time \(=4.0 \mathrm{~ns}\)
- Operating Temperature Range \(=0^{\circ}\) to \(+75^{\circ} \mathrm{C}\)
- Open Emitter Output Permits Wired-OR for Easy Memory Expansion
- \(50 \mathrm{k} \Omega\) Input Pulldown Resistors on All Inputs
- Power Dissipation Decreases with Increasing Temperature
- Fully Compatible with MECL 10,000 Logic Family

\section*{FUNCTIONAL DESCRIPTION:}

The MCM 10152 is a 256 word \(\times 1\)-bit RAM. Bit selection is achieved by means of an 8 -bit address AO thru A7.

The active-low chip select allows memory expansion up to 2048 words. The fast chip select access time allows memory expansion without affecting system performance.

The operating mode of the RAM (\(\overline{\mathrm{CS}}\) inputs low) is controlled by the \(\overline{W E}\) input. With \(\overline{W E}\) low the chip is in the write mode-the output is low and the data present at \(D_{\text {in }}\) is stored at the selected address. With \(\overline{W E}\) high the chip is in the read mode-the data state at the selected memory location is presented non-inverted at \(D_{\text {out }}\).

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{\text {EE }}\) & -8 to 0 & Vdc \\
\hline Base Input Voltage (\(\left.\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(V_{\text {in }}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline \[
\begin{aligned}
& \hline \text { Output Source Current } \text { - Continuous } \\
&- \text { Surge } \\
& \hline
\end{aligned}
\] & 10 & \[
\begin{gathered}
<50 \\
<100 \\
\hline
\end{gathered}
\] & mAdc \\
\hline Junction Operating Temperature & TJ & < 165 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
\left.\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ DC TEST VOLTAGE VALUES } \\
(Volts)
\end{tabular}\(\right]\)

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts.

SWITCHING CHARACTERISTICS \(\left(T_{A}=0^{\circ}\right.\) to \(+75^{\circ} \mathrm{C}, \mathrm{V}_{\text {EE }}=-5.2 \mathrm{VdC} \pm 5 \%\); Output Load see Figure 1; see Note \(\left.1 \& 3.\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{Test Limits} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Typ & Max & & \\
\hline Read Mode Chip Select Access Time Chip Select Recovery Time Address Access Time & \[
\begin{aligned}
& { }^{\mathrm{t}} \mathrm{ACS} \\
& \mathrm{t}_{\mathrm{RCS}} \\
& \mathrm{t}_{\mathrm{AA}}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 7.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& 11 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns } \\
& \text { ns }
\end{aligned}
\] & \begin{tabular}{l}
See Figures 2 and 3. \\
Measured from \(50 \%\) of input to \(50 \%\) of output. See Note 2.
\end{tabular} \\
\hline \begin{tabular}{l}
Write Mode \\
Write Pulse Width \\
Data Setup Time Prior to Write \\
Data Hold Time After Write \\
Address Setup Time Prior to Write \\
Address Hold Time After Write \\
Chip Select Setup Time Prior to Write \\
Chip Select Hold Time After Write \\
Write Disable Time \\
Write Recovery Time
\end{tabular} & \begin{tabular}{l}
\({ }^{t}\) W \\
\({ }^{t}\) WSD \\
\({ }^{t}\) WHD \\
\({ }^{t}\) WSA \\
tWHA \\
t WSCS \\
\({ }^{t}\) WHCS \\
\({ }^{t}\) WS \\
\({ }^{t}\) WR
\end{tabular} & \[
\begin{aligned}
& 10 \\
& 2.0 \\
& 2.0 \\
& 5.0 \\
& 3.0 \\
& 2.0 \\
& 2.0 \\
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
6.0 \\
-3.0 \\
-2.0 \\
3.0 \\
0 \\
-3.0 \\
-3.0 \\
5.0 \\
5.0 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& - \\
& - \\
& 7.5 \\
& 7.5
\end{aligned}
\] & & \begin{tabular}{l}
\({ }^{t}\) WSA \(=5.0 \mathrm{~ns}\) \\
Measured at \(50 \%\) of input to \(50 \%\) of output. \\
\(t_{W}=10 \mathrm{~ns}\). See Figure 4.
\end{tabular} \\
\hline Rise and Fall Time Output Rise and Fall Time & \(t_{r}, t_{f}\) & 1.5 & 3.0 & 5.0 & ns & Measured between \(20 \%\) and \(80 \%\) points. \\
\hline Capacitance Input Capacitance Output Capacitance & \(\mathrm{C}_{\text {in }}\) Cout & \[
-
\] & \[
\begin{aligned}
& 4.0 \\
& 7.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] & \\
\hline
\end{tabular}

Notes: (1) Contact your Motorola Sales Representative for details if extended temperature operation is desired.
(2) The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
(3) For proper use of MECL Memories in a system environment, consult: "MECL System Design Handbook."

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

All timing measurements referenced to \(50 \%\) of input levels.
\(\mathrm{R}_{\boldsymbol{T}}=50 \Omega\)
\(\mathrm{C}_{\mathrm{L}} \leqslant 5.0 \mathrm{pF}\) (including jig and stray capacitance)
Delay should be derated \(30 \mathrm{ps} / \mathrm{pF}\) for capacitive load up to 50 pF

FIGURE 2 - CHIP SELECT ACCESS time

FIGURE 3 - ADDRESS ACCESS TIME

FIGURE 4 - WRITE MODE

\section*{\(1024 \times 1\)-BIT RANDOM ACCESS MEMORY}

The MCM10415 is a 1024-bit Read/Write Random Access Memory organized 1024 words by 1 bit. Data is selected or stored by means of a 10-bit address (A0 through A9) decoded on the chip. The chip is designed with a separate data in line, a noninverting data output, and an active-low chip select.

This device is designed for use in high-speed scratch pad, control, cache and buffer storage applications.
- Address Access Time: MCM10415-20 20 ns (Max) MCM10415-15 15 ns (Max)
- Fully Compatible with MECL \(10 \mathrm{~K} / 10 \mathrm{KH}\)
- Temperature Range of \(0^{\circ}\) to \(75^{\circ} \mathrm{C}\)
- Emitter-Follower Output Permits Full Wire-ORing
- Power Dissipation Decreases with Increasing Temperature

\section*{FUNCTIONAL DESCRIPTION:}

This device is a \(1024 \times 1\)-bit RAM. Bit selection is achieved by means of a 10 -bit address, \(A 0\) to \(A 9\).
The active-low chip select is provided for memory expansion up to 2048 words.

The operating mode of the RAM (CS input low) is controlled by the \(\overline{W E}\) input. With \(\overline{W E}\) low, the chip is in the write mode, the output, \(\mathrm{D}_{\text {out }}\), is low and the data state present at \(D_{\text {in }}\) is stored at the selected address. With WE high, the chip is in the read mode and the data stored at the selected memory location will be presented noninverted at \(\mathrm{D}_{\text {out }}\). (See Truth Table)

TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline MODE & \multicolumn{3}{|c|}{ INPUT } & OUTPUT \\
\hline & \(\overline{\mathrm{CS}}\) & \(\overline{\text { WE }}\) & \(\mathrm{D}_{\text {in }}\) & \(\mathrm{D}_{\text {out }}\) \\
\hline Write " 0 " & L & L & L & L \\
\hline Write " 1 " & L & L & H & L \\
\hline Read & L & H & \(\phi\) & Q \\
\hline Disabled & H & \(\phi\) & \(\phi\) & L \\
\hline
\end{tabular}
\(\phi=\) Don't Care.

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Power Supply Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(V_{\text {EE }}\) & -8 to 0 & Vdc \\
\hline Base Input Voltage (\(\mathrm{V}_{\mathrm{CC}}=0\)) & \(\mathrm{V}_{\text {in }}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline \[
\begin{aligned}
\text { Output Source Current } & \text { Continuous } \\
& - \text { Surge }
\end{aligned}
\] & \({ }^{1} \mathrm{O}\) & \[
\begin{aligned}
& <50 \\
& <100
\end{aligned}
\] & mAdc \\
\hline Junction Operating Temperature & TJ & \(<165\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{\begin{tabular}{c}
DC TEST VOLTAGE VALUES \\
(Volts)
\end{tabular}} \\
\hline \begin{tabular}{c}
Test \\
Temperature
\end{tabular} & \(\mathbf{V}_{\text {IHmax }}\) & \(\mathbf{V}_{\text {ILmin }}\) & \(\mathbf{V}_{\text {IHAmin }}\) & \(\mathbf{V}_{\text {ILAmax }}\) & \(\mathbf{V}_{\text {EE }}\) \\
\hline \(0^{\circ} \mathrm{C}\) & -0.840 & -1.870 & -1.145 & -1.490 & -5.2 \\
\hline\(+25^{\circ} \mathrm{C}\) & -0.810 & -1.850 & -1.105 & -1.475 & -5.2 \\
\hline\(+75^{\circ} \mathrm{C}\) & -0.720 & -1.830 & -1.045 & -1.450 & -5.2 \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to -2.0 volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DC Characteristics} & \multirow[b]{3}{*}{Symbol} & \multicolumn{6}{|c|}{MCM10415 Test Limits} & \multirow[b]{3}{*}{Unit} & \multirow[b]{3}{*}{Conditions} \\
\hline & & \multicolumn{2}{|r|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+75^{\circ} \mathrm{C}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline Power Supply Drain Current & 'EE & - & 150 & - & 145 & - & 125 & mAdc & Typ IEE @ \(25^{\circ} \mathrm{C}=100 \mathrm{~mA}\) All outputs and inputs open. Measure Pin 8. \\
\hline Input Current High & linH & - & 220 & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open.
\[
v_{\text {in }}=v_{I H} .
\] \\
\hline Input Current Low (CS only) Input Curent Low (All Others) & \(\mathrm{l}_{\text {inL }}\) & \[
\begin{aligned}
& 0.5 \\
& -50
\end{aligned}
\] & - & \[
\begin{aligned}
& \hline 0.5 \\
& -50
\end{aligned}
\] & - & \[
\begin{gathered}
0.3 \\
-50
\end{gathered}
\] & - & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open.
\[
v_{\text {in }}=v_{\text {IL }} .
\] \\
\hline Logic " 1 " Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & \(-1.000\) & -0.840 & \(-0.960\) & \(-0.810\) & -0.900 & \(-0.720\) & Vdc & Load \(50 \Omega\) to -2.0 V \\
\hline \[
\begin{aligned}
& \text { Logic " } 0 \text { " } \\
& \text { Output Voltage }
\end{aligned}
\] & VOL & -1.870 & -1.665 & \(-1.850\) & -1.650 & -1.830 & -1.625 & Vdc & \\
\hline ```
Logic "1"
 Threshold Voltage
``` & \(\mathrm{V}_{\text {OHA }}\) & \(-1.020\) & - & -0.980 & - & -0.920 & - & Vdc & Threshold testing is performed and guaranteed \\
\hline Logic " 0 " Threshold Voltage & V OLA & - & -1.645 & - & -1.630 & - & -1.605 & Vdc & \begin{tabular}{l}
on one input at a time. \\
\(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IHA }}\) or \(\mathrm{V}_{\text {ILA }}\). \\
Load \(50 \Omega\) to -2.0 V .
\end{tabular} \\
\hline
\end{tabular}

Guaranteed with \(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5.0 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) (see Note 1). Output Load see Figure 1.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{MCM10415-20} & \multicolumn{2}{|l|}{MCM10415-15} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Max & Min & Max & & \\
\hline \begin{tabular}{l}
Read Mode \\
Chip Select Access Time \\
Chip Select Recovery Time Address Access Time
\end{tabular} & \begin{tabular}{l}
\({ }^{t}\) ACS \\
\(t_{\text {RCS }}\) \\
\({ }^{t} A A\)
\end{tabular} & - & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& 20 \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 7.0 \\
& 7.0 \\
& 15
\end{aligned}
\] & \begin{tabular}{l}
ns \\
ns \\
ns
\end{tabular} & \begin{tabular}{l}
See Figures 2 and 3. \\
Measured at \(50 \%\) of input to \(50 \%\) of output. \\
See Note 2.
\end{tabular} \\
\hline \begin{tabular}{l}
Write Mode \\
Write Pulse Width (To guarantee writing) \\
Data Setup Time Prior to Write Data Hold Time After Write Address Setup Time Prior to Write \\
Address Hold Time After Write Chip Select Setup Time Prior to Write Chip Select Hold Time After Write Write Disable Time Write Recovery Time
\end{tabular} & \begin{tabular}{l}
tWSD \\
tWHD \\
tWSA \\
tWHA \\
twscs \\
tWHCS \\
tws \\
tWR
\end{tabular} & 14


3.0
3.0
3.0
3.0
3.0
3.0 & \begin{tabular}{l}
- \\
\hline \\
8.0 \\
8.0
\end{tabular} & \begin{tabular}{l}
12 \\
2.0 \\
1.0 \\
2.0 \\
1.0 \\
2.0 \\
1.0
\end{tabular} & \[
\begin{aligned}
& \overline{-} \\
& 7.0 \\
& 7.0 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
ns \\
ns ns ns ns ns ns ns ns
\end{tabular} & \begin{tabular}{l}
See Figure 4. \\
\({ }^{t}\) WSA \(=3.0 \mathrm{~ns}-\) MCM10415-20 \\
\({ }^{\text {tWSA }}=2.0 \mathrm{~ns}-\) MCM10415-15 \\
Measured at \(50 \%\) of input to \(50 \%\) of output.
\[
\begin{aligned}
& \mathrm{t} W=14 \mathrm{~ns}-\text { MCM10415-20 } \\
& \mathrm{tW}=12 \mathrm{~ns}-\text { MCM10415-15 }
\end{aligned}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
Rise and Fall Time \\
Output Rise and Fall Time Output Rise and Fall Time
\end{tabular} & \[
\begin{aligned}
& t_{r}, t_{f} \\
& t_{r}, t_{f} \\
& \hline
\end{aligned}
\] & 1.5
1.5 & & \[
\begin{aligned}
& 1.5 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 8.0
\end{aligned}
\] & ns & \begin{tabular}{l}
Measured between 20\% and 80\% points. \\
When driven from \(\overline{\mathrm{CS}}\) or \(\overline{\mathrm{WE}}\) inputs. When driven from Address inputs.
\end{tabular} \\
\hline \begin{tabular}{l}
Capacitance \\
Input Lead Capacitance Output Lead Capacitance
\end{tabular} & \(\mathrm{C}_{\text {in }}\) Cout & - & \[
\begin{aligned}
& 5.0 \\
& 8.0
\end{aligned}
\] & - & 5.0
8.0 & pF & Measured with a pulse technique. See Note 4. \\
\hline
\end{tabular}

\section*{Notes:}
(1) Contact your Motorola Sales Representative for details if extended temperature operation is desired.
(2) The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
(3) For proper use of MECL Memories in a System environment, consult: "MECL System Design Handbook."
(4) Typical ratings are 3.0 pF for \(\mathrm{C}_{\mathrm{in}}\) and 5.0 pF for \(\mathrm{C}_{\text {out }}\).

FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS


\section*{Advance Information}

\section*{\(256 \times 4\)-BIT RANDOM ACCESS MEMORY}

The MCM10422 is a high-speed 1024-bit Read/Write RAM organized 256 words by 4 bits, designed for high speed scratch pad, control, cache, and buffer storage applications. Four independent active-low Block Selects permit use in \(1024 \times 1\) and \(512 \times 2\)-bit applications. It has full address decoding on chip, separate data inputs, noninverting data outputs, and an active-low Write Enable.
- Address Access Time:

MCM10422-15 15 ns (Max)
MCM10422-10 10 ns (Max)
- Power Dissipation Decreases with Increasing Temperature
- Fully Compatible with MECL 10 K and 10 KH
- Operating Temperature Range \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\)
- Four Independent Block Selects
- Emitter-Follower Outputs Permits Full Wire-OR'ing
- Standard 24-Pin, 400 Mil Wide, Dual In-Line Package

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right.\) & \(0)\) & \(\mathrm{V}_{\mathrm{EE}}\) & -8 to 0 \\
\hline Vase Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\text {in }}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline Output Source Current & \(\mathrm{I}^{\mathrm{O}}\) & \(<50\) & mAdc \\
\hline Junction Operating Temperature & \(\mathrm{T}_{\mathrm{J}}\) & \(<165\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{BLOCK DIAGRAM}


This document contains information on a new product. Specifications and information herein are subject to change without notice.


L SUFFIX
CERAMIC PACKAGE CASE 748-01 ORDERING INFORMATION

Suffix Denotes
MCM10422L10 - Ceramic Dual-in-Line Package MCM10422L15 - Ceramic Dual-in-Line Package

\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ TRUTH TABLE } \\
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ MODE } & \multicolumn{3}{|c|}{ INPUT } \\
\hline & \(\overline{B S}_{\mathrm{n}}\) & \(\overline{\mathrm{WE}}\) & \(\mathrm{D}_{\text {in }}\) \\
\hline Write " 0 " & L & L & L \\
out \\
\hline Write " 1 " & L & L & H \\
\hline Read & L & H & \(\phi\) \\
\hline \begin{tabular}{l} 
Block \\
Disabled
\end{tabular} & H & \(\phi\) & L \\
\hline
\end{tabular}
\end{tabular}
\(\phi\) Don't Care NOTE: Blocks Enable Independently

\section*{FUNCTIONAL DESCRIPTION:}

This device is a \(256 \times 4\)-bit RAM. Word selection is achieved by means of an 8-bit address, A0-A7.

The operating mode of each block ( \(\overline{B S}_{\mathrm{n}}\) input low) is controlled by the \(\overline{W E}\) input. With \(\overline{W E}\) low, the block is in the write mode, the output \(\mathrm{O}_{\text {out }}\) is low and the data state present at \(D_{i n}\) is stored at the selected address in block \(n\). With \(\overline{W E}\) high, the block is in the read mode and the data stored at the selected memory location will be presented non-inverted at \(Q_{\text {out }}\).

DC OPERATING CONDITIONS AND CHARACTERISTICS
\left.\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ DC TEST VOLTAGE VALUES } \\
(Volts)
\end{tabular}\(\right]\)

The independent, active-low Block Selects and the wire-OR capability of the emitter-follower outputs permit use as a \(1024 \times 1\) or \(512 \times 2\)-bit RAM. For example, for use as a \(1024 \times 1\)-bit RAM tie all \(D_{\text {in }}\) inputs together to form a single \(D_{\text {in }}\), wire-OR the \(Q_{\text {out }}\) lines together to form a single \(Q_{\text {out }}\) line, and drive the Block Selects with a 1-of-4 low decoder.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DC Characteristics} & \multirow[b]{3}{*}{Symbol} & \multicolumn{6}{|c|}{MCM10422 Test Limits} & \multirow[b]{3}{*}{Unit} & \multirow[b]{3}{*}{Conditions} \\
\hline & & \multicolumn{2}{|r|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+75^{\circ} \mathrm{C}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline Power Supply Drain Current & 'EE & - & 200 & - & 195 & - & 185 & mAdc & All outputs and inputs open. Measure Pin 12. \\
\hline Input Current High & \(\mathrm{l}_{\mathrm{inH}}\) & - & 220 & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open.
\[
V_{\text {in }}=V_{I H(\max )}
\] \\
\hline Input Current Low (Block Selects) & l inL & 0.5 & - & 0.5 & - & 0.5 & - & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open. \\
\hline Input Current Low* & l inL & -50 & - & -50 & - & -50 & - & \(\mu \mathrm{Adc}\) & \(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}(\mathrm{min})}\) \\
\hline Logic " 1 " Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.000 & \(-0.840\) & -0.960 & \(-0.810\) & -0.900 & -0.720 & Vdc & Load \(50 \Omega\) to -2.0 V \\
\hline Logic " 0 " Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.870 & \(-1.665\) & \(-1.850\) & -1.650 & -1.830 & -1.625 & Vdc & \\
\hline \begin{tabular}{l}
Logic " 1 " \\
Threshold Voltage
\end{tabular} & V \({ }_{\text {OHA }}\) & -1.020 & - & -0.980 & - & -0.920 & - & Vdc & Threshold testing is performed and guaranteed \\
\hline Logic " 0 " Threshold Voltage & V OLA & - & -1.645 & - & -1.630 & - & -1.605 & Vdc & \begin{tabular}{l}
on one input at a time. \\
\(V_{\text {in }}=V_{\text {IHA }}\) or \(V_{\text {ILA }}\). \\
Load \(50 \Omega\) to -2.0 V .
\end{tabular} \\
\hline
\end{tabular}
*Minimum limit equals the maximum negative current the driving circuitry will be required to sink.
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{ Package } & \multicolumn{2}{|c|}{ OJA (Junction to Ambient) } & \multirow{2}{*}{\begin{tabular}{c} 
日JC \\
\cline { 2 - 3 } \\
(Junction to Case)
\end{tabular}} \\
\hline L Suffix & \(35^{\circ} \mathrm{C} / \mathrm{W}\) & \(55^{\circ} \mathrm{C} / \mathrm{W}\) & \(15^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}
*500 linear ft. per minute blown air.

\section*{FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS}


AC OPERATING CONDITIONS AND CHARACTERISTICS
Guaranteed with \(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5.0 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) (see Note 1). Output Load see Figure 1.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characterstic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{MCM10422-15} & \multicolumn{2}{|l|}{MCM10422-10} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Max & Min & Max & & \\
\hline \begin{tabular}{l}
Read Mode \\
Block Select Access Time Block Select Recovery Time Address Access Time
\end{tabular} & \({ }^{t}\) ABS \(t^{t}\) RBS tAA & - & \[
\begin{aligned}
& 6.0 \\
& 6.0 \\
& 15
\end{aligned}
\] & - & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \mathrm{~ns}
\end{aligned}
\] & \begin{tabular}{l}
See Figures 2 and 3. \\
Measured at 50\% of input to \(50 \%\) of output. \\
See Note 1.
\end{tabular} \\
\hline Write Mode Write Pulse Width (To guarantee writing) & \({ }^{\text {t }} \mathrm{W}\) & 10 & - & 7.0 & - & ns & \begin{tabular}{l}
See Figure 4. \\
tWSA \(=2.0 \mathrm{~ns}\). MCM10422-15 \\
tWSA \(=1.0 \mathrm{~ns}\) MCM10422-10 \\
Measured at \(50 \%\) of input to \(50 \%\) of output.
\end{tabular} \\
\hline Data Setup Time Prior to Write & tWSD & 1.0 & - & 1.0 & - & ns & \\
\hline Data Hold Time After Write & tWHD & 4.0 & - & 2.0 & - & ns & \\
\hline Address Setup Time Prior to Write & tWSA & 2.0 & - & 1.0 & - & ns & \[
\begin{aligned}
& \mathrm{t} W=10 \mathrm{~ns} \text { MCM10422-15 } \\
& \mathrm{t} W=7.0 \mathrm{~ns} \text { MCM10422-10 }
\end{aligned}
\] \\
\hline Address Hold Time After Write & tWHA & 3.0 & - & 2.0 & - & ns & \\
\hline Block Select Setup Time Prior to Write & tWSBS & 2.0 & - & 1.0 & - & ns & \\
\hline Block Select Hold Time After Write & tWHBS & 3.0 & - & 2.0 & - & ns & \\
\hline Write Disable Time & tWS & - & 5.0 & - & 5.0 & ns & \\
\hline Write Recovery Time & tWR & - & 9.0 & - & 9.0 & ns & \\
\hline \multirow[t]{2}{*}{Rise and Fall Time Output Rise and Fall Time} & \multirow[b]{2}{*}{\(t_{r}, t_{f}\)} & \multicolumn{4}{|c|}{TYPICAL} & & Measured between 20\% and 80\% \\
\hline & & & & 0 & & ns & points. \\
\hline \multirow[t]{2}{*}{Capacitance Input Lead Capacitance Output Lead Capacitance} & \multirow[b]{2}{*}{\(C_{\text {in }}\) Cout} & \multicolumn{4}{|c|}{TYPICAL} & & Measured with a pulse technique. \\
\hline & & \multicolumn{4}{|c|}{\[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\]} & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Notes:}
(1) The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
(2) For proper use of MECL Memories in a system environment, consult: "MECL System Design Handbook."

FIGURE 2 - block SELECT ACCESS time


FIGURE 3 - ADDRESS ACCESS TIME


FIGURE 4 - WRITE STROBE MODE



MOTOROLA

\section*{SEMICONDUCTORS}
P.O. BOX 20912 • PHOENIX, ARIZONA 85036

\section*{Advance Information}

\section*{\(4096 \times 1\)-BIT RANDOM ACCESS MEMORY}

The MCM10470 is a 4096-bit Read/Write RAM organized for 4096 words by 1 bit. Data is selected or stored by means of a 12bit address (A0 through A11) decoded on the chip. The chip is designed with a separate data-in line, a noninverting data output, and an active-low chip select.

This device is designed for use in high-speed scratch pad, control, cache and buffer storage applications.
- Fully Compatible with MECL \(10 \mathrm{~K} / 10 \mathrm{KH}\)
- Pin-for-Pin Compatible with the Industry's Standard 10470
- Temperature Range of \(0^{\circ}\) to \(75^{\circ} \mathrm{C}\)
- Emitter-Follower Output Permits Full Wire-ORing
- Power Dissipation Decreases with Increasing Temperature
- Address Access Time: MCM10470-25 25 ns (Max)

MCM10470-15 15 ns (Max)

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{EE}}\) & -8.0 to 0 & Vdc \\
\hline Base Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\text {in }}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline Output Source Current & \(\mathrm{I}_{\mathrm{O}}\) & -30 & mAdc \\
\hline Junction Operating Temperature & \(\mathrm{TJ}_{\mathrm{J}}\) & \(\leqslant 165\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{Stg}}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


This document contains information on a new product Specifications and information herein are subject to change without notice.

MCM10470-15 MCM10470-25

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PIN ASSIGNMENT} \\
\hline 1 D out & \(\mathrm{V}_{C C} \sqsupseteq 18\) \\
\hline \(2 \square A 0\) & \(\mathrm{Din}_{\text {in }}-17\) \\
\hline \(3 \square 11\) & \(\overline{C S}=16\) \\
\hline \(4 』 A 2\) & \(\overline{W E}=15\) \\
\hline 5 A 3 & A11 \(\rightleftharpoons 14\) \\
\hline 6 A4 & A10 13 \\
\hline \(7 \square \mathrm{~A} 5\) & A9 \(\square 12\) \\
\hline \(8 \square A 6\) & A8 11 \\
\hline \(9 \square V_{E E}\) & A7 10 \\
\hline VEE & A) -10 \\
\hline PIN DE & SIGNATION \\
\hline \(\overline{\mathrm{CS}}\) & Chip Select \\
\hline AO-A11 & Address Inputs \\
\hline \(\overline{W E}\) & Write Enable \\
\hline \(\mathrm{D}_{\text {in }}\) & Data Input \\
\hline Dout & Data Output \\
\hline
\end{tabular}

\section*{MCM10470}

\section*{FUNCTIONAL DESCRIPTION:}

This device is a \(4096 \times 1\)-bit RAM. Bit selection is achieved by means of a 12-bit address, A0 to A11.

The active-low chip select is provided for memory expansion.
The operating mode of the RAM (CS input low) is controlled by the \(\overline{W E}\) input. With \(\overline{W E}\) low, the chip is in the write mode, the output, \(D_{\text {out, }}\) is low and the data state present at \(D_{\text {in }}\) is stored at the selected address. With \(\overline{W E}\) high, the chip is in the read mode and the data stored at the selected memory location will be presented noninverted at Dout. (See Truth Table)

DC OPERATING CONDITIONS AND CHARACTERISTICS
\left.\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ DC TEST VOLTAGE VALUES } \\
(Volts)
\end{tabular}\(\right]\)

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a \(50-\) ohm resistor to -2.0 volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DC Characteristics} & \multirow[b]{3}{*}{Symbol} & \multicolumn{6}{|c|}{MCM10470 Test Limits} & \multirow[b]{3}{*}{Unit} & \multirow[b]{3}{*}{Conditions} \\
\hline & & \multicolumn{2}{|c|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+75^{\circ} \mathrm{C}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline Power Supply Drain Current MCM10470 MCM10470A & IEE & - & \[
\begin{aligned}
& \overline{\overline{2}} \\
& 205 \\
& 205
\end{aligned}
\] & - & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & - & \[
\begin{aligned}
& \overline{190} \\
& 190
\end{aligned}
\] & mAdc & All outputs and inputs open. Measure Pin 9. \\
\hline Input Current High & linH & - & 220 & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & Test one input at a time, ail other inputs are open.
\[
v_{\text {in }}=v_{I H(\max )} .
\] \\
\hline Input Current Low Chip Select & linL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open. \\
\hline Input Current Low* & \(\operatorname{linL}\) & -50 & - & -50 & - & -50 & - & \(\mu\) Adc & \(\mathrm{V}_{\text {in }}=\mathrm{V}_{1 L}(\mathrm{~min})\). \\
\hline \begin{tabular}{l}
Logic "1" \\
Output Voltage
\end{tabular} & \(\mathrm{V}_{\mathrm{OH}}\) & -1.000 & -0.840 & -0.960 & -0.810 & -0.900 & -0.720 & Vdc & Load \(50 \Omega\) to -2.0 V \\
\hline Logic " 0 ' Output Voltage & VOL & -1.870 & -1.665 & -1.850 & -1.650 & -1.830 & -1.625 & Vdc & \\
\hline \begin{tabular}{l}
Logic " 1 " \\
Threshold Voltage
\end{tabular} & VOHA & -1.020 & - & -0.980 & - & -0.920 & - & Vdc & Threshold testing is performed and guaranteed on one input at \\
\hline \begin{tabular}{l}
Logic " 0 " \\
Threshold Voltage
\end{tabular} & \(\mathrm{V}_{\text {OLA }}\) & - & -1.645 & - & -1.630 & - & -1.605 & Vdc & a time. \(V_{\text {in }}=V_{\text {IHA }}\) or \(V_{\text {ILA }}\). Load \(50 \Omega\) to -2.0 V . \\
\hline
\end{tabular}
* Minimum limit equals the maximum negative current the driving circuitry will be required to sink.

FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS
\begin{tabular}{|c|c|c|}
\hline TESTING COND & NS
\[
-D_{i n}
\] & \begin{tabular}{l}
INPUT LEVELS \\
All Timing Measurements Referenced to \(\mathbf{5 0 \%}\) of Input Levels \(C_{L} \leqslant 5.0 \mathrm{pF}\) including Jig and Stray Capacitance
\[
\mathrm{R}_{\mathrm{T}}=50 \Omega
\] \\
Delay Should be Derated by \(30 \mathrm{ps} / \mathrm{pF}\) for Capacitive Loading Up To 50 pF .
\end{tabular} \\
\hline
\end{tabular}

\section*{AC OPERATING CONDITIONS AND CHARACTERISTICS}

Guaranteed with \(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc} \pm 5.0 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) (see Note 1 ). Output Load see Figure 1.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{MCM10470-25} & \multicolumn{2}{|l|}{MCM10470-15} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Max & Min & Max & & \\
\hline \begin{tabular}{l}
Read Mode \\
Chip Select Access Time Chip Select Recovery Time Address Access Time
\end{tabular} & \[
\begin{aligned}
& { }^{\text {t} A C S} \\
& { }^{\text {tRCS }} \\
& { }^{\text {taA }}
\end{aligned}
\] & - & \[
\begin{aligned}
& 10 \\
& 10 \\
& 25
\end{aligned}
\] & - & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \mathrm{~ns}
\end{aligned}
\] & \begin{tabular}{l}
See Figures 2 and 3. \\
Measured at \(50 \%\) of input to \(50 \%\) of output. \\
See Note 2.
\end{tabular} \\
\hline Write Mode Write Pulse Width (To guarantee writing) & tw & 25 & - & 15 & - & ns & \begin{tabular}{l}
See Figure 4. \\
tWSA \(=3.0 \mathrm{~ns}\) MCM10470-25 \\
twSA \(=3.0 \mathrm{~ns}\) MCM10470-15 \\
Measured at \(50 \%\) of input to \(50 \%\) of output.
\end{tabular} \\
\hline Data Setup Time Prior to Write & tWSD & 2.0 & - & 2.0 & - & ns & \\
\hline Data Hold Time After Write & twhD & 2.0 & - & 2.0 & - & ns & \\
\hline Address Setup Time Prior to Write & tWSA & 3.0 & - & 3.0 & - & ns & \begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{W}=25 \mathrm{~ns}\) MCM10470-25 \\
t \(W=15\) ns MCM10470-15
\end{tabular} \\
\hline Address Hold Time After Write & twha & 2.0 & - & 2.0 & - & ns & \\
\hline Chip Select Setup Time Prior to Write & twSCS & 2.0 & - & 2.0 & - & ns & \\
\hline Chip Select Hold Time After Write & tWHCS & 2.0 & - & 2.0 & - & ns & \\
\hline Write Disable Time & tws & - & 10 & - & 8.0 & ns & \\
\hline Write Recovery Time & tWR & - & 10 & - & 8.0 & ns & \\
\hline Rise and Fall Time & & \multicolumn{4}{|c|}{Typical} & & Measured between \(20 \%\) and \(80 \%\) \\
\hline Output Rise and Fall Time & \(t_{r}, t_{f}\) & \multicolumn{4}{|c|}{2.0} & ns & \\
\hline Capacitance & \multirow[b]{2}{*}{\(\mathrm{C}_{\mathrm{in}}\) Cout} & \multicolumn{4}{|c|}{Typical} & \multirow[b]{2}{*}{pF} & \multirow[t]{2}{*}{Measured with a pulse technique.} \\
\hline Input Lead Capacitance Output Lead Capacitance & & \multicolumn{4}{|c|}{\[
\begin{aligned}
& 3.0 \\
& 5.0
\end{aligned}
\]} & & \\
\hline
\end{tabular}

\section*{Notes:}
(1) Contact your Motorola Sales Representative for details if extended temperature operation is desired.
(2) The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
(3) For proper use of MECL Memories in a system environment, consult: "MECL System Design Handbook."

FIGURE 2 - CHIP SELECT ACCESS TIME


FIGURE 3 - ADDRESS ACCESS TIME


FIGURE 4 - WRITE STROBE MODE


\section*{(4) \\ MOTOROLA}

\section*{Advance Information}

\section*{\(1024 \times 4\)-BIT RANDOM ACCESS MEMORY}

The MCM10474 is a 4096-bit Read/Write RAM organized for 1024 words by 4 bits. Data is selected or stored by means of a \(10-\) bit address ( A 0 through A9) decoded on the chip. The chip is designed with 4 separate data-in lines, 4 noninverting data outputs, and an active-low chip select.

This device is designed for use in high-speed scratch pad, control, cache and buffer storage applications.
- Fully Compatible with MECL \(10 \mathrm{~K} / 10 \mathrm{KH}\)
- Pin-for-Pin Compatible with the Industry's Standard 10474
- Temperature Range of \(0^{\circ}\) to \(75^{\circ} \mathrm{C}\)
- Emitter-Follower Output Permits Full Wire-ORing
- Power Dissipation Decreases with Increasing Temperature
- Address Access Time: MCM10474-25 25 ns (Max)

MCM10474-15 15 ns (Max)
- Chip Select Access Time: MCM10474-25 10 ns (Max)

MCM10474-15 8.0 ns (Max)

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{EE}}\) & -8.0 to 0 & Vdc \\
\hline Base Input Voltage \(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\) & \(\mathrm{V}_{\mathrm{in}}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline Output Source Current & \(\mathrm{I}_{\mathrm{O}}\) & \(<50\) & mAdc \\
\hline Junction Operating Temperature & \(\mathrm{T}_{\mathrm{J}}\) & \(\leqslant 165\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathrm{Stg}}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


This document contains information on a new product. Specifications and information herein are subject to change: without notice.

\section*{MCM10474}

\section*{FUNCTIONAL DESCRIPTION:}

This device is a \(1024 \times 4\)-bit RAM. Bit selection is achieved by means of a 10-bit address, A0 to A9.

The active-low chip select is provided for memory expansion.
The operating mode of the RAM ( \(\overline{\mathrm{CS}}\) input low) is controlled by the \(\overline{W E}\) input. With \(\overline{W E}\) low, the chip is in the write mode, the output, \(Q_{\text {out }}\), is low and the data state present at \(D_{\text {in }}\) is stored at the selected address. With \(\overline{W E}\) high, the chip is in the read mode and the data stored at the selected memory location will be presented noninverted at \(\mathrm{Q}_{\text {out }}\). (See Truth Table)

DC OPERATING CONDITIONS AND CHARACTERISTICS
\left.\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ DC TEST VOLTAGE VALUES } \\
(VoIts)
\end{tabular}\(\right]\)

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL Memory circuit has been designed to meet the dc and ac specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a \(50-\) ohm resistor to \(\mathbf{- 2 . 0}\) volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DC Characteristics} & \multirow[b]{3}{*}{Symbol} & \multicolumn{6}{|c|}{MCM10474 Test Limits} & \multirow[b]{3}{*}{Unit} & \multirow[b]{3}{*}{Conditions} \\
\hline & & \multicolumn{2}{|c|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+75^{\circ} \mathrm{C}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline Power Supply Drain Current & IEE & - & 200 & - & 195 & - & 185 & mAdc & All outputs and inputs open. Measure Pin 12. \\
\hline Input Current High & \(\operatorname{inH}\) & - & 220 & - & 220 & - & 220 & \(\mu \mathrm{Adc}\) & Test one input at a time, all other inputs are open.
\[
V_{\text {in }}=V_{\text {IH }}(\max )
\] \\
\hline Input Current Low Chip Select & 1 inL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu\) Adc & Test one input at a time, all other inputs are open. \\
\hline Input Current Low* & 1 inL & -50 & - & -50 & - & -50 & - & \(\mu \mathrm{Adc}\) & \(V_{\text {in }}=V_{\text {IL }}(\min )\). \\
\hline Logic "1" Output Voltage & VOH & -1.000 & -0.840 & -0.960 & -0.810 & -0.900 & -0.720 & Vdc & Load \(50 \Omega\) to -2.0 V \\
\hline Logic " 0 " Output Voltage & VOL & -1.870 & -1.665 & -1.850 & -1.650 & -1.830 & -1.625 & Vdc & \\
\hline \begin{tabular}{l}
Logic " 1 " \\
Threshold Voltage
\end{tabular} & \(\mathrm{V}_{\text {OHA }}\) & -1.020 & - & -0.980 & - & -0.920 & - & Vdc & Threshold testing is performed and guaranteed on one input at \\
\hline \begin{tabular}{l}
Logic " 0 " \\
Threshold Voltage
\end{tabular} & VOLA & - & -1.645 & - & -1.630 & - & -1.605 & Vdc & a time. \(V_{\text {in }}=V_{\text {IHA }}\) or \(V_{\text {ILA }}\). Load 50 s 2 to -2.0 V . \\
\hline
\end{tabular}

\footnotetext{
*Minimum limit equals the maximum negative current the driving circuitry will be required to sink.
}

\section*{MCM10474}

FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS
TESTING CONDITIONS

\section*{AC OPERATING CONDITIONS AND CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{MCM10474-25} & \multicolumn{2}{|l|}{MCM10474-15} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Max & Min & Max & & \\
\hline \begin{tabular}{l}
Read Mode \\
Chip Select Access Time Chip Select Recovery Time Address Access Time
\end{tabular} & \[
\begin{aligned}
& { }^{{ }^{t} A C S} \\
& { }^{\text {tRCS }} \\
& \text { taA }
\end{aligned}
\] & 二 & \[
\begin{aligned}
& 10 \\
& 10 \\
& 25 \\
& \hline
\end{aligned}
\] & 二 & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& 15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns } \\
& \text { ns }
\end{aligned}
\] & See Figures 2 and 3. Measured at \(50 \%\) of input to \(50 \%\) of output. \\
\hline \begin{tabular}{l}
Write Mode \\
Write Pulse Width (To guarantee writing) \\
Data Setup Time Prior to Write Data Hold Time After Write Address Setup Time Prior to Write Address Hold Time After Write Chip Select Setup Time Prior to Write Chip Select Hold Time After Write Write Disable Time Write Recovery Time
\end{tabular} & \begin{tabular}{l}
tWSD \\
tWHD \\
tWSA \\
tWHA \\
twSCS \\
twHCS \\
tws \\
tWR
\end{tabular} & \[
\begin{aligned}
& 25 \\
& \\
& 5.0 \\
& 5.0 \\
& 8.0 \\
& 5.0 \\
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& \text { — } \\
& \overline{-} \\
& \overline{10} \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 2.0 \\
& 2.0 \\
& 3.0 \\
& 2.0 \\
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& 8.0 \\
& 8.0
\end{aligned}
\] &  & \begin{tabular}{l}
See Figure 4. \\
tWSA \(=8.0 \mathrm{~ns}\) MCM10474-25 \\
tWSA \(=3.0 \mathrm{~ns}\) MCM10474-15 \\
Measured at \(50 \%\) of input to \(50 \%\) of output. \\
tw \(=25\) ns MCM10474-25 \\
tw \(=15 \mathrm{~ns}\) MCM10474-15
\end{tabular} \\
\hline Rise and Fall Time Output Rise and Fall Time & \(t_{r}, t_{f}\) & \multicolumn{4}{|c|}{Typical 2.5} & ns & Measured between 20\% and 80\% points. \\
\hline Capacitance Input Lead Capacitance Output Lead Capacitance & \[
\begin{gathered}
\mathrm{C}_{\text {in }} \\
\mathrm{C}_{\text {out }} \\
\hline
\end{gathered}
\] & \multicolumn{4}{|c|}{\[
\begin{aligned}
& 4.0 \\
& 7.0 \\
& \hline
\end{aligned}
\]} & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] & Measured with a pulse technique. \\
\hline
\end{tabular}

\section*{Notes:}
(1) The maximum Address Access Time is guaranteed to be the Worst-Case Bit in the Memory.
(2) For proper use of MECL Memories in a system environment, consult: "MECL System Design Handbook."

FIGURE 2 - CHIP SELECT ACCESS TIME


FIGURE 3 - ADDRESS ACCESS TIME


FIGURE 4 - WRITE STROBE MODE



Data Shects
6


\section*{MECL Macrocell Array \\ INTEGRATED CIRCUITS}

The Macrocell Array Concept combines a pre-diffused array of components with computer aided design techniques to offer system designers a rapid, cost-effective means of developing semi-custom high-speed digital logic systems with VLSI circuitry. Compared with the conventional approach to custom LSI circuits, the Macrocell approach offers a tremendous reduction in development time.
MECL Macrocell Array family members presently consist of the MCA600ECL array, MCA1200ECL array, MCA2500ECL array and the MC10900 family.
The MC10900 family is a series of very high performance LSI functions designed from the Macrocell Array product. While the Macrocell Array is normally used for custom circuits, the MC10900 family is a standard product offering.
\begin{tabular}{|l|c|}
\hline Function & Device \\
\hline 8-Bit ALU with Parity & \(\mathrm{MC10900Z}\) \\
\(8 \times 8\) Bit Expandable Multiplier & \(\mathrm{MC10901Z}\) \\
8-Bit BCD/Binary ALU & \(\mathrm{MC10902Z}\) \\
8-Bit Micro Code & \(\mathrm{MC10904Z}\) \\
Sequencer Slice & \\
Error Detect \& Correct Circuit & \(\mathrm{MC10905Z}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
MCA \\
600ECL
\end{tabular} & \begin{tabular}{c} 
MCA \\
\(1200 E C L\)
\end{tabular} & \begin{tabular}{c} 
MC \\
\(\mathbf{2 5 0 0 E C L}\)
\end{tabular} \\
\hline MAX GATE EQUIVALENT & 652 & 1192 & 2472 \\
MAJOR MACROCELLS & 24 & 48 & 110 \\
INPUT/INTERFACE CELLS & 25 & 32 & - \\
OUTPUT MACROCELLS & 18 & 26 & 68 \\
MEMORY BITS & - & - & - \\
MAX. GATE DELAY & 1.2 & 1.2 & 0.5 \\
MAX. TOGGLE FREQ. & 160 & 160 & 300 \\
POWER DISSIPATION & 2.2 & 4.0 & 8 \\
PACKAGE: DUAL-IN-LINE & 28,40 & - & - \\
PACKAGE: CHIP CARRIER & 68 & \(68,68 P G\) & \(149 P G\) \\
TEMPERATURE RANGE & \(0-70\) & \(0-70\) & \(0-70\) \\
IO INTERFACE & \(10 K\) & \(10 K\) & \(10 K H / 100 K\) \\
DESIGN INTERFACE & CAD & CAD & CAD \\
AVAILABILITY & NOW & NOW & NOW \\
\hline
\end{tabular}

\section*{Advance Information}

\section*{8-BIT PARITY ALU SLICE}

The MC10900 8-Bit Parity ALU Slice is an LSI building block for digital processors. This circuit performs the necessary logic and arithmetic functions required to execute the various machine instructions. Each part is 8 -bits wide and is "sliced" parallel to data flow. The MC10900 is fully expandable to larger word lengths by connecting circuits in parallel.

The 8-Bit Parity ALU Slice as shown in the block diagram contains logic functions, shift network, arithmetic logic, input-output latches, and parity detect logic in a single bipolar circuit. Six select lines and four latch lines are used to control all operations within the part.
- Two Input Data Ports
- Internal Lookahead Carry with Propagate and Generate Outputs
- Status Outputs: Carryout, Zero Detect, Parity Error Detect, Internal Carry Signal for Overflow Detect
- Each Port Is 8 -Bits Wide and the Circuit Can be Operated in Parallel to Form Any Word Size in Increments of 4 Bits.
- Single-Bit and 4-Bit Shift Operations
- The Parity Bit Is Generated with Separate Internal Logic for Each ALU Operation.


FIGURE 1 - 8-BIT PARITY ALU SLICE BLOCK DIAGRAM MSB-LSB MSB-LSB


PIN ASSIGNMENTS
\begin{tabular}{|c|c|c|}
\hline Pin Name & Pin Number & Description \\
\hline XO & 50 & Input Bus - LSB Input \\
\hline X1 & 48 & Input Bus \\
\hline X 2 & 46 & Input Bus \\
\hline X3 & 44 & Input Bus \\
\hline X4 & 41 & Input Bus \\
\hline X5 & 39 & Input Bus \\
\hline X6 & 37 & Input Bus \\
\hline X7 & 35 & Input Bus - MSB Input \\
\hline X8 & 62 & Shift Interconnect - MSB \\
\hline XL & 31 & X Latch Enable \\
\hline XP & 32 & X Input Parity \\
\hline \(\mathrm{Xin}_{\text {in }}\) & 63 & Shift Interconnect - LSB \\
\hline YO & 51 & Input Bus - LSB Input \\
\hline Y1 & 49 & Input Bus \\
\hline Y2 & 47 & Input Bus \\
\hline Y3 & 45 & Input Bus \\
\hline Y4 & 42 & Input Bus \\
\hline Y5 & 40 & Input Bus \\
\hline Y6 & 38 & Input Bus \\
\hline Y7 & 36 & Input Bus - MSB Input \\
\hline YL & 52 & Y Latch Enable \\
\hline YP & 34 & Y Input Parity \\
\hline \(\mathrm{C}_{\text {in }}\) & 25 & Carry Input \\
\hline \(\mathrm{C}_{\text {out }}\) & 17 & Carry Output \\
\hline PG & 18 & Group Propagate Output \\
\hline GG & 13 & Group Generate Output \\
\hline CN3 & 7 & Carry-In to Z3 \\
\hline CN7 & 8 & Carry-In to Z7 \\
\hline SRO & 27 & Shift Right Input to Z4 \\
\hline SR1 & 29 & Shift Right Input to \(\mathrm{Z5}\) \\
\hline SR2 & 28 & Shift Right Input to Z6 \\
\hline SR3 & 30 & Shift Right Input to \(\mathrm{Z7}\) \\
\hline SL4 & 53 & Shift Left Input to ZO \\
\hline SL5 & 33 & Shift Left Input to Z1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Pin Name & Pin Number & Description \\
\hline SL6 & 59 & Shift Left Input to Z2 \\
\hline SL7 & 58 & Shift Left Input to Z3 \\
\hline ZO & 4 & Output Bus - LSB Output \\
\hline Z1 & 2 & Output Bus \\
\hline Z2 & 1 & Output Bus \\
\hline 23 & 68 & Output Bus \\
\hline Z4 & 19 & Output Bus \\
\hline Z5 & 5 & Output Bus \\
\hline Z6 & 10 & Output Bus \\
\hline Z7 & 21 & Output Bus - MSB Output \\
\hline ZD3 & 14 & Zero Detect \\
\hline ZD7 & 16 & Zero Detect \\
\hline ZP & 6 & Parity Output \\
\hline ZL & 24 & Z Latch Enable \\
\hline ZErr & 11 & Bus Error Detect Output \\
\hline TErr & 12 & Test Error Detect Input \\
\hline Comp & 57 & Control Input Complement \\
\hline CD60 & 56 & Control Input \\
\hline CD61 & 55 & Control Input \\
\hline CD62 & 54 & Control Input \\
\hline HSC & 65 & Half Sum Check Output \\
\hline OPA & 64 & Control Input \\
\hline OPB & 61 & Control Input \\
\hline \(V_{E E}\) & 9 & -5.2-Volt Supply \\
\hline VEE & 43 & -5.2-Volt Supply \\
\hline \(V_{\text {CC }}\) & 26 & Ground \\
\hline \(V_{C C}\) & 20 & Ground \\
\hline \(\mathrm{V}_{\mathrm{CCO}}\) & 3 & Ground \\
\hline \(\mathrm{V}_{\mathrm{CCO}}\) & 15 & Ground \\
\hline \(V_{\text {CCO }}\) & 20 & Ground \\
\hline \(\mathrm{V}_{\mathrm{CCO}}\) & 66 & Ground \\
\hline CL & 22 & Carry Latch Enable \\
\hline TD & 67 & Test Diode \\
\hline NC & 23 & Not Used \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS (see Note 1)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline \begin{tabular}{c} 
Supply Voltage \\
\(\left(V_{C C}=0\right)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{EE}}\) & -8 to 0 & Vdc \\
\hline \begin{tabular}{c} 
Input Voltage \\
\(\left(\mathrm{V}_{\mathrm{CC}}=0\right)\)
\end{tabular} & \(\mathrm{V}_{\text {in }}\) & 0 to \(\mathrm{V}_{\mathrm{EE}}\) & Vdc \\
\hline \begin{tabular}{c} 
Output Source Current - Continuous \\
- Surge
\end{tabular} & \(\mathrm{I}_{\mathrm{o}}\) & \begin{tabular}{c}
\(<30\) \\
\(<100\)
\end{tabular} & mAdc \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 165 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

FIGURE 2 - INPUT/OUTPUT DIAGRAM


\section*{ARCHITECTURAL DESCRIPTION}

The MECL LSI 8-Bit Parity ALU Slice is a member of the M10900 family utilizing the MECL 10,000 Macrocell Array. The parity ALU slice has the capability of performing logic operations and binary arithmetic on combinations of one and two variables, \(X B\) us and \(Y\) Bus. Single-bit data paths \(\overline{\mathrm{C}_{\mathrm{in}}}, \overline{\mathrm{C}_{\mathrm{ou}}}, \mathrm{X}_{\mathrm{in}}\), and X 8 and four-bit data paths SL and SR are used to interconnect parallel MC10900s for larger word lengths. These data bits allow for arithmetic and shift operations on larger word lengths. Group propagate and group generate outputs can be used in conjunction with external lookahead carry logic for faster system operation. Two zero detect bits signal the all low condition of bits \(\mathrm{Z7}-\mathrm{Z4}\) or \(\mathrm{Z3}-\mathrm{Z0}\) of the \(Z\) output bus. Carry signals generated within the
adder of the ALU, \(\overline{\mathrm{CN} 3}\) and \(\overline{\mathrm{CN} 7}\), are made available as outputs for determining overflow conditions. The circuit also contains two parity error signals which continuously checks data flow within the 8 -bit ALU slice.

Data enters the ALU through the \(X\) Bus and \(Y\) Bus and exits through the \(Z\) bus. Each port is 9 bits wide consisting of 8 data bits, 1 odd parity bit, and a 9 -bit latch. \(X\) and \(Y\) input data is routed to four logic networks which generate a 1 -bit shift right or left of \(X\), a complement of \(Y\), a logic OR of \(X\) and \(Y\), and a logical AND of \(X\) and \(Y\). The adder network generates the arithmatic sum and the logical Exclusive-OR from the outputs of the shift and complement logic. Two 1-of-4 multiplexors select the data path to the \(Z\) output bus.

NOTE: All truth tables are expressed in positive logic.

\section*{Input X Bus}

The \(X\) input bus consists of eight bits which serve as input data paths to an internal latch in the ALU. Data is passed through the latch when the latch control bit \(\overline{X L}\) is at a logic \(L\). Data is latched into the ALU when \(\overline{X L}\) is at a logic H . The inputs are designated with \(\mathrm{X7}\) as the most significant bit (MSB) and XO as the least signficant bit (LSB).

\section*{Input \(Y\) Bus}

The \(Y\) input bus function is identical to the \(X\) bus described above.

\section*{Parity Inputs XP and YP}

Parity input bits, XP and YP are used to detect system errors in data handling. With a single parity bit, it is possible to detect a single bit error or any combination of an odd number of bit errors.
\(X P\) is used to input the parity of the \(X\) bus. Likewise, \(Y P\) is the parity input for the \(Y\) bus. These bits are used in determining the \(Z\) parity output, \(Z P\), and parity error signals, HSC and ZErr.

\section*{Shift Interconnects}
\(X_{\text {in }}, X 8, S L\), and SR inputs are provided to interconnect 8 -bit slice circuits for shift operations. For a 1 -bit shift left, \(X_{i n}\) is shifted into the \(X 0\) position. For a 1 -bit shift right, \(X 8\) is shifted into the \(X 7\) position.
SLand SR inputs are provided for 4-bit shift operations. For a 4-bit shift left, bits SL7-SL4 are shifted into Z3-Z0, respectively, while the results of the OR function bits ( \(\mathrm{X}+\mathrm{Y}\) ) \(3-(\mathrm{X}+\mathrm{Y}) 0\) are shifted into \(\mathrm{Z7}\)-Z4, respectively. For a 4-bit shift right, bits SR3-SRO are shifted into Z7-Z4, respectively, while the results of the OR function bits \((X+Y) 7-(X+Y) 4\), are shifted into \(Z 3-Z 0\), respectively.

\section*{Half Sum Check}

Half sum check, HSC, is a parity check of X Bus and \(Y\) Bus along with an error check of the half sum adder network. The half sum check will detect a single-bit error or any combination of an odd number of bit errors.

Half sums are generated by the bit-by-bit Exclusive-OR of the \(X\) bus and \(Y\) bus. These half sum bits, along with the input parity bits \(X P\) and \(Y P\), are used to determine the error check. (See Table 3.)
HSC \(=\) HS7 \(\uparrow\) HS6 \(\oplus\) HS5 \(\uparrow\) HS4 \(\oplus\) HS3 \(\oplus\) HS2 \(\oplus: ~\) HS1 \(\oplus\) HSO \(\oplus\) XP \(\oplus\) YP \(\oplus\) Shift PAR

\section*{Carry Signals}

Carry Signals, \(\overline{\mathrm{CN}} 3\) and \(\overline{\mathrm{CN} 7}\), can be used to detect system overflow. Overflow detects when the maximum system word or byte value has been exceeded. In a system, only the overflow from the 8 -bit slice operating on the most significant bits of the data word is used.

Overflow can be detected by the Exclusive-OR of the carry out and carry in of the most significant bit in a system. In an eight-bit increment system (, 16, 24, ...) overflow can be generated by the Exclusive-OR of signals \(\overline{\mathrm{C}_{\text {out }}}\) and \(\overline{\mathrm{CN7}}\) :
\[
\mathrm{OF}=\overline{\mathrm{C}_{\text {out }}} \oplus \overline{\mathrm{CN7}}
\]

In a four-bit increment system (4, 12,20 \(\ldots\) ) overflow can be generated by the Exclusive-NOR of signals \(\mathrm{Z4}\) and \(\overline{\mathrm{CN3}}\) : \(\mathrm{OF}=\overline{\mathrm{Z4} \oplus \overline{\mathrm{CN}} \mathbf{3}}\)
Z4 is in effect the carry out of the 8 -bit slice ALU operating in a 4 -bit slice mode

\section*{Carry In}

Carry in, \(\overline{\mathrm{C}_{\mathrm{in}}}\), is used to interconnect 8 -bit slice circuits in a system. For ripple carry, carry in is connected to
carry out of the preceding 8-bit slice. Carry in is only used for arithmetic operations and has no effect on any logic operation.

\section*{Carry Out}

Carry out, \(\overline{C_{\text {out }}}\), signals that the calculated value within the ALU has exceeded the maximum capacity. Any binary count over 255 results in a carry out. When ripple carry is used, carry out is connected to carry in of the following 8 -bit slice. The carry out in the 8 -bit ALU is generated by lookahead carry logic. This improves speed for multi-slice systems. \(\mathrm{C}_{\text {out }}=\mathrm{PG} \cdot \mathrm{C}_{\text {in }}+\mathrm{GG}\).

\section*{Output Z Bus}

The Z output bus, Z0-Z7, consists of eight bits which serve as the output data paths from the ALU. Data passes through an internal latch and onto the \(Z\) bus when the latch control bit ZL is at a logic H. Data is latched onto the \(Z\) bus when \(Z L\) is at a logic \(L\). The inputs are designated with \(\mathrm{Z7}\) as the most significant bit and ZO as the least significant bit. (See Table 5.)

\section*{Zero Detect}

Zero detect, \(\overline{\mathrm{ZD7}}\) and \(\overline{\mathrm{ZD3}}\), signals the all low condition at the output of \(Z\) latches. \(\overline{Z D 7}\) signals that \(Z 7-Z 4\) are all low (0000) and \(\overline{\mathrm{ZD} 3}\) signals that \(\mathrm{Z3}-\mathrm{ZO}\) are all low. Zero detect is defined by the following equations:
\[
\begin{aligned}
& \overline{\mathrm{ZD7}}=\mathrm{Z7}+\mathrm{Z} 6+\mathrm{Z} 5+\mathrm{Z4} \\
& \overline{\mathrm{ZD3}}=\mathrm{Z} 3+\mathrm{Z2}+\mathrm{Z} 1+\mathrm{Z} 0
\end{aligned}
\]

\section*{Z Bus Error}

Z bus error, \(\mathrm{Z}_{\mathrm{Err}}\), is used to detect a single-bit error or any combination of an odd number of bit errors associated with data flow through the multiplexors and output latches. The output parity bit, ZP is compared with the parity of the \(Z\) bus output. If no error exists, \(Z_{E r r}\) will be at a logic \(L\). If an error exists, \(Z_{E r r}\) will be at a logic \(H\).
\(Z_{E r r}=[Z O \oplus Z 1 \oplus Z 2 \oplus Z 3 \oplus Z 4 \oplus Z 5 \oplus Z 6 \oplus Z 7] \oplus \mathbf{Z P}\)

\section*{Test Error}

Test error bit; \(\mathrm{T}_{\text {Err }}\), is used to test the Z bus error signal, \(Z_{\text {Err }} \cdot T_{\text {Err }}\) is enabled only when an arithmetic operation is being performed. A logic \(H\) on the \(T_{E r r}\) input will result in an incorrect parity of the arithmetic operation output. This will be detected by the \(Z\) bus error logic (see Figure 1 ).

\section*{Parity Output}

Parity output, \(Z P\), is used to output the parity of the \(Z\) bus. ZP is generated independently of the Z bus, which adds another level of system error check. (See Tables 2, 3, 5.)

\section*{Group Propagate and Group Generate}

The group propagate, PG, and group generate, GG, outputs are used in conjuction with external lookahead carry logic for faster system operation. Using this technique, the carry in signals to the 8 -bit slice circuits are generated faster than with ripple carry.
\(\mathrm{PG}=\mathrm{P} 7 \cdot \mathrm{P} 5 \cdot \mathrm{P} 3 \cdot \mathrm{P} 1\)
\(\mathrm{GG}=\mathrm{G} 7+\mathrm{P} 7 \cdot \mathrm{G} 5+\mathrm{P} 7 \cdot \mathrm{P} 5 \cdot \mathrm{G} 3+\mathrm{P} 7 \cdot \mathrm{P} 5 \cdot \mathrm{P} 3 \cdot \mathrm{G} 1\)
Where \(P_{i}=\left\langle A_{i} \oplus B_{i}\right) \cdot\left(A_{i-1} \oplus B_{i-1}\right)\)
\[
G_{i}=A_{i} \cdot B_{i}+\left(A_{i}+B_{i}\right) \cdot\left(A_{i-1} \cdot B_{i-1}\right)
\]
\(A\) is the output of the one-bit shifter and
\(B\) is the output of the complementer going to the adder. (See Figure 1.)

\section*{Test Diode}

A test diode, TD, is connected to Pin 67 for use in testing the junction temperature. Pin 66 is connected to the anode and Pin 67 is the cathode.

\section*{SELECT LINE OPERATION}

\section*{One-Bit Shift Select}

Control inputs CD60, CD61, and CD62 are used to give the MECL 8-bit slice a one-bit shift left or a one bit shift right. A logic L on CD62 results in a 1 -bit shift left whereas a logic H results in a 1 -bit shift right operation. When CD60 is held at a logic \(L\) or CD61 is held at a logic \(H\), no shift operation is performed. Table 1 illustrates the 1 -bit shift operation. During a \(S L\), the \(X_{\text {in }}\) input is shifted into the LSB of the adder. During a SR the \(X 8\) input is shifted into the MSB of the adder.

TABLE 1
\begin{tabular}{|c|c|c|c|}
\hline CD60 & CD61 & CD62 & Operation \\
\hline L & X & X & No Shift \\
X & \(H\) & X & No Shift \\
H & L & L & 1 Bit Shift Left, XSL \\
\(H\) & L & \(H\) & 1 Bit Shift Right, XSR \\
\hline
\end{tabular}

\section*{Mux B Select}

Control inputs CD60, CD61, and CD62 are used to select the data path to the ALU output latch. When CD61 is held at a logic \(H\), Mux \(B\) is enabled. CD60 and CD62 select ALU functions pass \(X\), pass \(Y\), shift left 4 bits or shift right 4 bits.

TABLE 2
\begin{tabular}{|c|c|c|c|c|}
\hline CD61 & CD60 & CD62 & Function & ZP \\
\hline L & X & X & Not Enabled & See Table 3 \\
H & L & L & Pass X & XP \\
H & L & H & Pass Y & YP \\
H & H & L & Shift Left 4 Bits & SL4 PAR \\
H & H & H & Shift Right 4 Bits & SR4 PAR \\
\hline
\end{tabular}
\(\begin{aligned} \text { SL4 PAR }= & {[S L 4 \oplus \text { SL5 } \oplus \text { SL6 } \oplus \text { SL } 7] \bar{\oplus} \oplus } \\ & {[(X 0+Y 0) \oplus(X 1+Y 1) \oplus(X 2+Y 2) \oplus(X 3+Y 3)] }\end{aligned}\)
SR4 PAR \(=[\) SRO \(\oplus\) SR1 \(\oplus\) SR2 \(\oplus\) SR3] \(\oplus\) \([(X 4+Y 4) \oplus(X 5+Y 5) \oplus(X 6+Y 6) \oplus(X 7+Y 7)]\)

\section*{Mux A Select}

Control inputs OPA, OPB, and CD61 are used to select the data path to the ALU output latch. When CD61 is held at a logic \([\), Mux \(A\) is enabled, OPA and OPB select ALU functions Sum, \(X O R, X+Y\), or \(X \cdot Y\) (see Figure 1).

TABLE 3
\begin{tabular}{|c|c|c|c|c|}
\hline CD61 & OPA & OPB & Function & ZP \\
\hline\(H\) & \(X\) & \(X\) & Not Enabled & See Table 2 \\
L & L & L & Sum & Sum PAR \\
L & L & \(H\) & XOR & XOR PAR \\
L & \(H\) & L & \(X \cdot Y\) & AND PAR \\
L & \(H\) & \(H\) & \(X+Y\) & OR PAR \\
\hline
\end{tabular}

XOR PAR \(=(\) Shift PAR) \(\bar{\oplus}[X P \oplus Y P]\) where
Shift PAR \(=\left[X 7 \oplus X_{i n}\right) \cdot \overline{C D 62}+(X 8 \oplus X 0)\).
CD62] \(\mathrm{CD60} \cdot \overline{\mathrm{CD61}}\)
AND PAR \(=[(X 0 \cdot Y 0) \oplus(X 1 \cdot Y 1) \oplus(X 2 \cdot Y 2) \oplus \therefore\) \((X 3 \cdot Y 3)] \oplus[(X 4 \cdot Y 4) \oplus(X 5 \cdot Y 5) \oplus \therefore\) \((X 6 \cdot Y 6) \oplus(X 7 \cdot Y 7)]\)
\(O R P A R=[A N D P A R) \oplus(X O R P A R)\)
Sum PAR \(=\mathrm{C}_{\mathrm{in}} \oplus \mathrm{C} 1 \oplus \mathrm{C} 9 \oplus \mathrm{C} 3 \oplus \mathrm{C} 4 \oplus \mathrm{C} 5 \oplus\) \(\mathrm{C} 6 \oplus \mathrm{C} 7 \oplus \mathrm{~T}_{\mathrm{Err}} \oplus(\mathrm{XOR}\) PAR)
where \(c_{i}\) is the carry-in for generating bit \(Z_{i}\) for \(i=1\) to 7 .

\section*{Complement \(Y\) Select}

Control input Comp inhibits or enables the complement operation. When Comp is at a logic L, Y data is passed. When Comp is at a logic \(H, Y\) is complemented.

TABLE 4
\begin{tabular}{|c|c|}
\hline Comp & Operation \\
\hline\(L\) & Pass \(Y\) \\
\(H\) & Complement \(Y\) \\
\hline
\end{tabular}

TABLE 5
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CD61 & CD60 & CD62 & OPA & OPB & Comp & Function & 2P \\
\hline L & L & X & L & L & L & \(X\) Plus \(Y\) Plus \(\mathrm{C}_{\text {in }}\) & Sum PAR \\
\hline L & L & \(x\) & L & L & H & \(X\) Plus \(\bar{Y}\) Plus \(C_{i n}\) & Sum PAR \\
\hline L & L & \(x\) & L & H & L & \(X \oplus Y\) & XOR PAR \\
\hline L & L & X & L & H & H & \(X \oplus \bar{Y}\) & XOR PAR \\
\hline L & H & L & L & L & L & XSL Plus Y Plus \(\mathrm{C}_{\text {in }}\) & Sum PAR \\
\hline L & H & L & L & L & H & \(X\) SL Plus \(\bar{Y}\) Plus \(C_{i n}\) & Sum PAR \\
\hline L & H & L & L & H & L & \(X S L \oplus Y\) & XOR PAR \\
\hline L & H & L & L & H & H & \(X S L ¢ Y\) & XOR PAR \\
\hline L & H & H & L & L & L & XSR Plus \(Y\) Plus \(C_{\text {in }}\) & Sum PAR \\
\hline L & H & H & L & L & H & XSR Pius \(\bar{Y}\) Pius \(C_{i n}\) & Sum PAR \\
\hline L & H & H & L & H & L & \(X S R \oplus Y\) & XOR PAR \\
\hline L & H & H & L & H & H & \(X S R ¢ \bar{Y}\) & XOR PAR \\
\hline L & X & X & H & L & X & \(X \cdot Y\) & AND PAR \\
\hline L & X & X & H & H & \(x\) & \(X+Y\) & OR PAR \\
\hline H & L & L & \(X\) & \(X\) & X & \(X\) & XP \\
\hline H & L & H & \(x\) & \(x\) & \(x\) & \(Y\) & YP \\
\hline H & H & L & \(x\) & X & \(x\) & Shift Left 4 Bits ( 2 ) & SL4 PAR \\
\hline H & H & H & \(x\) & X & X & Shift Right 4 Bits (1) & SR4 PAR \\
\hline
\end{tabular}
(1) The most significant 4 bits of \(X\) OR \(Y\) are shifted into the least significant 4 bits. The 4 most significant bits are replaced with SR3-SRO inputs. (2) The least significant 4 bits of \(X\) OR \(Y\) are shifted into the most significant 4 bits. The 4 least significant bits are replaced with SL7-SL4 inputs. ( Logical Exclusive-OR + Logical Inclusive-OR
- Logical AND


TABLE 6 - RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Symbol & Value & Unit \\
\hline \begin{tabular}{c} 
Supply Voltage \\
\(\left(V_{\mathrm{CC}}=0\right.\) Volts)
\end{tabular} & \(\mathrm{V}_{\mathrm{EE}}\) & -4.68 to -5.72 & Vdc \\
\hline \begin{tabular}{c} 
Operating Temperature \\
(Functional)
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Output Drive & - & \(50 \Omega\) to -2.0 Vdc & - \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 130 max & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table (Table 7), after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board with heat sink and transverse air flow greater than 1000 linear fpm is maintained. Outputs are terminated through a 50 -ohm transistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

TABLE 7 - ELECTRICAL CHARACTERISTICS


NOTE: All inputs have input pulldown resistors \((\sim 68 \mathrm{k} \Omega)\) between the input and \(V_{E E}\).

\section*{SWITCHING CHARACTERISTICS OVER OPERATING VOLTAGE AND TEMPERATURE RANGE}

Tables 8 and 9 define timing characteristics of the MC10900 over operating voltage and temperature ranges. Worst-Case Setup and Hold and Propagation Delays are calculated for \(V_{E E}=-5.2\) Volts \(\pm 10 \%\) and a \(\mathrm{T}_{\mathrm{Jmax}}=115^{\circ} \mathrm{C}\). The maximum recommended operating junction temperature is \(+130^{\circ} \mathrm{C}\).

Calculated limits are based on several performance factors as described in Motorola's Preliminary Design

Manual for the MECL 10,000 Macrocell Array. Factors include worst-case delays due to Macro selections, Fan-Out, Metal Lengths, Wire-OR, and Input Follower options. AC measurements are performed on each device to assure process integrity; however, Motorola does not guarantee limits at this time.

TABLE 8 - SETUP AND HOLD TIMES (nanoseconds)*
\(0^{\circ}\) to \(+70^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}\) ( \(\mathrm{T}_{\mathrm{J}}\) not to exceed \(+115^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|}
\hline Input & Clock (Ref. Edge) & Output & Setup (Min) & Hold (Min) \\
\hline X Bus, XP & \(\overline{X L}(\mathrm{~L} \rightarrow \mathrm{H})\) & All & 1.6 & +1.0 \\
\hline Y Bus, YP & \(\overline{\mathrm{YL}}(\mathrm{L}-\mathrm{H})\) & All & 1.6 & \(+1.0\) \\
\hline \multirow{3}{*}{X Bus, Y Bus, Comp} & \multirow{2}{*}{\(\mathrm{ZL}(\mathrm{H} \rightarrow \mathrm{L})\)} & Z Bus & 17.8 & 0 \\
\hline & & ZP & 19.2 & 0 \\
\hline & \(\mathrm{CL}(\mathrm{H}-\mathrm{L})\) & \(\overline{\mathrm{CN}}\), \(\overline{\mathrm{CN}} 7\) & 14.5 & 0 \\
\hline XP, YP & \(\mathrm{ZL}(\mathrm{H} \rightarrow \mathrm{L})\) & ZP & 11.7 & 0 \\
\hline \multirow{3}{*}{\(\overline{\mathrm{C}_{\text {in }}}\)} & \multirow{2}{*}{ZL ( \(\mathrm{H}-\mathrm{L}\) )} & Z Bus & 12.0 & -1.0 \\
\hline & & ZP & 14.3 & -1.0 \\
\hline & \(C L(H-L)\) & \(\overline{\mathrm{CN} 3}, \overline{\mathrm{CN} 7}\) & 8.6 & -1.0 \\
\hline \multirow{2}{*}{SL, SR} & \multirow{2}{*}{\(\mathrm{ZL}(\mathrm{H} \rightarrow \mathrm{L})\)} & Z Bus & 6.1 & +0.5 \\
\hline & & ZP & 12.0 & 0 \\
\hline \multirow{3}{*}{X8, \(\mathrm{Xin}_{\text {in }}\)} & \multirow{2}{*}{\(\mathrm{ZL}(\mathrm{H} \rightarrow \mathrm{L})\)} & Z Bus & 15.5 & -1.0 \\
\hline & & ZP & 17.2 & -1.0 \\
\hline & \(\mathrm{CL}(\mathrm{H} \rightarrow \mathrm{L})\) & \(\overline{\mathrm{CN} 3}, \overline{\mathrm{CN} 7}\) & 12.1 & -1.0 \\
\hline OPA, OPB & \(\mathrm{ZL}(\mathrm{H}-\mathrm{L})\) & Z Bus, ZP & 10.6 & +0.5 \\
\hline \multirow{3}{*}{CD60, CD61, CD62} & \multirow{2}{*}{ZL \((\mathrm{H}-\mathrm{L})\)} & Z Bus & 24.2 & +0.5 \\
\hline & & ZP & 26.1 & 0 \\
\hline & \(\mathrm{CL}(\mathrm{H} \rightarrow \mathrm{L})\) & \(\overline{\mathrm{CN}}\), \(\overline{\mathrm{CN}} 7\) & 21.1 & -1.0 \\
\hline \multirow{3}{*}{\(\overline{X!}, \overline{Y L}(H-L\) Edge \()\)} & \multirow{2}{*}{\(\mathrm{ZL}(\mathrm{H} \rightarrow \mathrm{L})\)} & Z Bus & 18.9 & -0.5 \\
\hline & & ZP & 20.4 & -1.0 \\
\hline & \(\mathrm{CL}(\mathrm{H} \rightarrow \mathrm{L})\) & \(\overline{\mathrm{CN}}, \overline{\mathrm{CN}} 7\) & 15.5 & -1.0 \\
\hline \(\mathrm{T}_{\mathrm{Err}}\) & \(\mathrm{ZL}(\mathrm{H} \rightarrow \mathrm{L})\) & ZP & 7.0 & 0 \\
\hline
\end{tabular}

\footnotetext{
*See Figures 4 and 5 for test definitions and circuit
}

TABLE 9 - PROPAGATION DELAY (nanoseconds)*
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Input} & \multicolumn{2}{|c|}{Path} & \multirow[b]{2}{*}{Output} & \multicolumn{2}{|l|}{\(0^{\circ}\) to \(70^{\circ} \mathrm{C} \mathrm{T}_{\text {A }}\left(\mathrm{T}_{\mathrm{J}}\right.\) not to exceed \(\left.115^{\circ}\right)\)} \\
\hline & Via & Mode & & Typ & Max \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\(X\) Bus \\
Y Bus \\
Comp
\end{tabular}} & \begin{tabular}{l}
Adder \\
Adder \\
Mux B
\end{tabular} & \begin{tabular}{l}
XOR \\
Arith \\
Logical
\end{tabular} & \begin{tabular}{l}
Z Bus \\
ZBus \\
Z Bus
\end{tabular} & \[
\begin{array}{r}
7.9 \\
11.6 \\
6.8
\end{array}
\] & \[
\begin{aligned}
& 12.2 \\
& 17.8 \\
& 10.8
\end{aligned}
\] \\
\hline & Adder & Arith & \[
\begin{gathered}
\frac{\mathrm{ZP}}{\mathrm{C}_{\mathrm{out}}} \\
\overline{\mathrm{CN3}, \overline{\mathrm{CN7}}} \\
\overline{\mathrm{ZD7}}, \overline{\mathrm{ZD} 3} \\
\mathrm{HSC} \\
\mathrm{Z}_{\mathrm{Err}} \\
\overline{\mathrm{PG}} \\
\overline{\mathrm{GG}}
\end{gathered}
\] & \[
\begin{array}{r}
12.5 \\
7.5 \\
9.4 \\
13.9 \\
9.8 \\
16.7 \\
7.5 \\
7.4
\end{array}
\] & \[
\begin{aligned}
& 19.2 \\
& 11.5 \\
& 14.4 \\
& 20.7 \\
& 15.1 \\
& 25.7 \\
& 11.5 \\
& 11.3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& X P \\
& Y P
\end{aligned}
\] & & & \[
\begin{gathered}
\text { ZP } \\
\mathrm{HSC} \\
\mathrm{Z}_{\mathrm{Err}}
\end{gathered}
\] & \[
\begin{array}{r}
7.6 \\
6.8 \\
10.5
\end{array}
\] & \[
\begin{aligned}
& 11.7 \\
& 10.4 \\
& 16.2
\end{aligned}
\] \\
\hline \(\mathrm{C}_{\text {in }}\) & Adder & Arith & \[
\begin{gathered}
\begin{array}{c}
\text { Z Bus } \\
\text { ZP }
\end{array} \\
\frac{\text { Cout }}{\mathrm{C}_{\mathrm{out}}} \\
\hline \mathrm{CN3}, \overline{\mathrm{CN7}} \\
\hline \mathrm{ZD7}, \overline{\mathrm{ZD3}} \\
\mathrm{Z}_{\mathrm{Err}}
\end{gathered}
\] & \[
\begin{array}{r}
7.8 \\
9.3 \\
2.8 \\
5.5 \\
10.0 \\
12.3
\end{array}
\] & \[
\begin{array}{r}
12.0 \\
14.3 \\
4.3 \\
8.5 \\
15.3 \\
18.9
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { SL } \\
& \text { SR }
\end{aligned}
\] & Mux B & Shift 4 Bits & \[
\begin{gathered}
\text { Z Bus } \\
\text { ZP } \\
\overline{\text { ZD7, }} \overline{\text { ZDB3 }}
\end{gathered}
\] & \[
\begin{aligned}
& 4.0 \\
& 7.8 \\
& 6.3
\end{aligned}
\] & \[
\begin{array}{r}
6.1 \\
12.0 \\
9.7
\end{array}
\] \\
\hline \[
\begin{aligned}
& x 8 \\
& x_{\text {in }}
\end{aligned}
\] & Adder & Shift 1 Bit & \[
\begin{gathered}
\begin{array}{c}
\text { Z Bus } \\
\text { ZP }
\end{array} \\
\overline{\overline{\mathrm{C}} \mathrm{out}} \\
\overline{\mathrm{CN3}}, \overline{\mathrm{CN} 7} \\
\overline{\mathrm{ZD7}, \overline{\mathrm{ZD3}}} \\
\overline{\mathrm{PG}} \\
\overline{\mathrm{GG}} \\
\mathrm{HSC} \\
\mathrm{Z}_{\mathrm{Err}}
\end{gathered}
\] & \[
\begin{array}{r}
\hline 10.1 \\
11.2 \\
6.0 \\
7.8 \\
12.3 \\
6.0 \\
5.8 \\
8.6 \\
15.5
\end{array}
\] & \[
\begin{array}{r}
15.5 \\
17.2 \\
9.2 \\
12.0 \\
18.9 \\
9.2 \\
8.9 \\
13.2 \\
23.8
\end{array}
\] \\
\hline TErr & & Z Parity Error Check & \[
\begin{gathered}
\mathrm{ZP} \\
\mathrm{Z}_{\mathrm{Err}}
\end{gathered}
\] & \[
\begin{aligned}
& 4.5 \\
& 7.5
\end{aligned}
\] & \[
\begin{array}{r}
7.0 \\
11.5
\end{array}
\] \\
\hline \(\frac{\overline{X L}}{\overline{Y L}}\) & Latch & Latch X, Y & \begin{tabular}{c} 
Z Bus \\
\(\frac{\mathrm{ZP}}{\overline{\mathrm{C}_{\mathrm{Out}}}}\) \\
\hline \(\mathrm{CN3}, \overline{\mathrm{CN7}}\) \\
\(\overline{\mathrm{ZD7}}, \overline{\mathrm{ZD} 3}\) \\
HSC \\
\(\frac{\mathrm{Z}}{\mathrm{Err}}\) \\
\(\overline{\mathrm{PG}}\) \\
\(\overline{\mathrm{GG}}\)
\end{tabular} & \[
\begin{array}{r}
12.3 \\
13.3 \\
8.3 \\
10.0 \\
14.5 \\
10.5 \\
17.4 \\
8.2 \\
8.1
\end{array}
\] & \[
\begin{aligned}
& 18.9 \\
& 20.4 \\
& 12.7 \\
& 15.4 \\
& 22.0 \\
& 16.2 \\
& 26.8 \\
& 12.6 \\
& 12.4
\end{aligned}
\] \\
\hline OPA OPB & Mux A & Select & \[
\begin{gathered}
\text { Z Bus } \\
\begin{array}{c}
\text { ZP } \\
\text { ZD7, } \\
\text { ZD3 } \\
\text { Zrr }
\end{array}
\end{gathered}
\] & \[
\begin{array}{r}
6.9 \\
5.9 \\
9.4 \\
11.4
\end{array}
\] & \[
\begin{array}{r}
10.6 \\
9.1 \\
14.4 \\
17.5
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { CD60 } \\
& \text { CD61 } \\
& \text { CD62 }
\end{aligned}
\] & Adder & Shift 1 Bit & \[
\begin{gathered}
\begin{array}{c}
\text { Z Bus } \\
\text { ZP }
\end{array} \\
\overline{C_{o u t}} \\
\overline{\mathrm{CN3}}, \overline{\mathrm{CN7}} \\
\overline{\mathrm{ZD7}}, \overline{\mathrm{ZD} 3} \\
\mathrm{HSC} \\
\mathrm{Z} \mathrm{Err} \\
\overline{\mathrm{PG}} \\
\overline{\mathrm{GG}}
\end{gathered}
\] & \[
\begin{aligned}
& 15.7 \\
& 17.0 \\
& 11.6 \\
& 13.7 \\
& 18.0 \\
& 14.4 \\
& 21.3 \\
& 12.0 \\
& 11.9
\end{aligned}
\] & \[
\begin{aligned}
& 24.2 \\
& 26.1 \\
& 17.9 \\
& 21.0 \\
& 27.7 \\
& 22.1 \\
& 32.7 \\
& 18.5 \\
& 18.3
\end{aligned}
\] \\
\hline ZL & Latch & Latch Z & \[
\begin{gathered}
\mathrm{Z} \mathrm{Bus,} \mathrm{ZP} \\
\text { ZD7, ZD3 } \\
Z_{\text {Err }}
\end{gathered}
\] & \[
\begin{aligned}
& 3.3 \\
& 5.5 \\
& 7.0
\end{aligned}
\] & \[
\begin{array}{r}
5.0 \\
8.7 \\
11.6 \\
\hline
\end{array}
\] \\
\hline CL & Latch & Arith & \(\overline{\mathrm{CN} 3}, \overline{\mathrm{CN7}}\) & 2.8 & 4.3 \\
\hline
\end{tabular}
*See Figures 4 and 5 for test definitions and circuit.


FIGURE 5 - SWITCHING TIME TEST CIRCUIT
d in each scope
50 -ohm termination to ground located in each scope channel input.

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length shouid be \(<1 / 4\) inch from \(T P_{\text {in }}\) to input pin and \(T P_{\text {out }}\) to output pin.

FIGURE 6 - THERMAL CHARACTERISTICS
(TYPICAL)


Heat Sink \#1 is from THERMALLOY \#15832-1, 3 Horizontal Fins, 0.563 inches square, Model No. 2284C. Heat Sink \#2 is from WAKEFIELD \#4493, Vertical Fins, 0.5 inches square
NOTE: \(T_{J}=\left(\theta_{\mathrm{JA}}\right)\left(\mathrm{P}_{\mathrm{D}}\right)+T_{\mathrm{A}}\) WHERE \(\mathrm{T}_{\mathrm{J}}\) is the Junction Temperature, \(\mathrm{T}_{\mathrm{A}}\) is the Ambient Temperature, \(P_{D}=\left(l_{E E}\right)\left(V_{E E}\right)+(15 \mathrm{~mW})\) (number of \(50 \Omega\) outputs).
Still air \(\bar{\theta} J A\) (no heat sink) \(=35^{\circ} \mathrm{C} / \mathrm{W}\).

\section*{Advance Information}

\section*{\(8 \times 8\) BIT EXPANDABLE MULTIPLIER}

The MC10901 is a high speed \(8 \times 8\)-bit multiplier that can multiply two eight-bit unsigned or signed 2 's complement numbers and generate the sixteen-bit unsigned or signed product. The device can be used as a stand-alone eight-bit multiplier or as a building block for larger multiplier arrays.
The part performs the algebraic function defined as \(P=X Y\) \(+K+M+C 7\), where \(K\) and \(M\) are 8 -bit input fields used to add partial products in an array or to add a constant to the least significant part of the array product. The algorithm used is an asynchronous, sequential add technique. This algorithm eliminates the need for subtractors which simplifies the multiplier network.
- \(8 \times 8\)-Bit Parallel Multiplication.
- Two's complement, Unsigned Magnitude, or Mixed Mode Multiplication.
- Two 8-Bit Expansion Inputs for Summing Partial Products.
- Easily Expandable Into Larger Arrays.
- Single Chip, Bipolar Technology.
- 17 Nanosecond Typical Multiply Time.


The MC10901 is a high-speed programmable \(8 \times 8\)-bit multiplier utilizing the MECL Macrocell Array. The MC10901 uses an asynchronous, sequential add technique for multiplying two numbers in either straight magnitude or two's complement notation. The device generates the function: \(P=X \cdot Y+K+M+C 7\), where;
. = times
\(+=\) plus
\(X=8\)-bit multiplicand where \(X 0\) is LSB, XS is MSB
\(Y=8\)-bit multiplier where \(Y 0\) is LSB, YS is MSB
\(K=8\)-bit constant where K0 is LSB, K7 is MSB
\(M=8\)-bit constant where M0 is LSB, M7 is MSB
\(C 7=1\)-bit constant in bit position \(2^{7}\)
\(P=16\)-bit product where PO is LSB and PS is MSB
Two control inputs, \(\overline{\mathrm{C}} 1\) and \(\overline{\mathrm{C}} 2\), are provided for simplifying expansion to larger array sizes. The control inputs can be programmed to select either two's complement or straight magnitude multiplication. A carrylookahead technique is used to further improve multiplier performance.

\section*{DEVICE OPERATION}

The multiplication matrix for the MC10901 is shown in Table 1. This matrix shows how the MC10901 calculates the product. The product is the binary sum of all the terms in the matrix. Note that all the terms in the matrix show positive values. The MC10901 requires negative or inverted inputs and produces a product of negative or inverted outputs when positive logic is used. If negative logic is used, no inversion is
required on the inputs, while the outputs will be the "true" value.

Operation and expansion of the device are controlled by two inputs \(\overline{\mathrm{C}} 1\) and \(\overline{\mathrm{C}} 2\). When \(\overline{\mathrm{C}} 2\) is at a logic H , the X inputs are in straight magnitude form. A low on \(\overline{\mathrm{C}} 2\) indicates the \(X\) inputs are in two's complement form. The \(Y\) inputs and \(\overline{\mathrm{C}} 1\) function the same as above. For a straight multiply, control inputs are programmed in the high state. For a two's complement multiply \(\overline{\mathrm{C}} 1\) and \(\overline{\mathrm{C}} 2\) are programmed in the low state. Due to the nature of the algorithm, correction terms need to be added to obtain the correct two's complement signed product. The sign bits of the \(X\) and \(Y\) inputs must be added to the product in their respective bit locations. This can be accomplished by connecting \(\bar{X} s\) and \(\bar{Y}_{s}\) to the \(\bar{M} 7\) and \(\bar{K} 7\) inputs, see figure 1 . For expansion into larger arrays, an additional input, \(\overline{\mathrm{C}} 7\), has been provided. \(\overline{\mathrm{C}} 7\) accomplishes the same function as a \(\overline{\mathrm{M}} 7\) or \(\overline{\mathrm{K}} 7\) input. If a straight magnitude number is to be multiplied by a two's complement number only the sign bit of the two's complement number is to be added in as correction.

\section*{EXPANSION RULES}

The MC10901 can be used in larger arrays to produce a two's complement product of 2 two's complement numbers. The following rules apply:
1. For an M -bit by N -bit multiplier, an ( \(\mathrm{M}+\mathrm{N}\) ) bit product is formed. The number of MC10901's equals ( \(\mathrm{M} \times \mathrm{N}\) ) /64. As an example, a \(32 \times 32\)-bit array (figure 3) requires \((32 \times 32) / 64=16\) packages.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C1.C2 & \(\mathrm{C} 1 \cdot \mathrm{C} 2 \cdot \overline{\mathrm{YS}}\)
\(\mathrm{C} 1 \cdot \mathrm{C} 2 \cdot \overline{\mathrm{XS}}\)
\(\mathrm{C} 1 \cdot \overline{\mathrm{C} 2} \cdot \overline{\mathrm{XS}} \cdot \mathrm{YS}\)
\(\overline{\mathrm{C} 1} \cdot \mathrm{C} 2 \cdot \mathrm{XS} \cdot \overline{\mathrm{YS}}\)
\(\mathrm{XS} \cdot \mathrm{YS} \cdot(\mathrm{C} 1 \oplus \mathrm{C} 2)\) & \[
\begin{array}{|l|}
X S \cdot(C 2 \oplus Y 6) \\
Y S \cdot(C 1 \oplus X 6) \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
X S \cdot(C 2 \oplus Y 5) \\
X 6 \cdot Y 6 \\
Y S \cdot(C 1 \oplus X 5) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
X S \cdot(C 2 \oplus Y 4) \\
X 6 \cdot Y 5 \\
X 5 \cdot Y 6 \\
Y S \cdot(C 1 \oplus X 4) \\
\hline
\end{array}
\] & \[
\left|\begin{array}{c}
\mathrm{XS} \cdot(\mathrm{C} 2 \oplus \mathrm{Y} 3) \\
\mathrm{X} \cdot \cdot \mathrm{Y} 4 \\
\mathrm{X} \cdot \mathrm{Y} 5 \\
\mathrm{X} 4 \cdot \mathrm{Y} 6 \\
\mathrm{YS} \cdot(\mathrm{C} 1 \oplus \mathrm{X})
\end{array}\right|
\] & \[
\begin{array}{|c}
X S \cdot(C 2 \oplus Y 2) \\
X 6 \cdot Y 3 \\
X 5 \cdot Y 4 \\
X 4 \cdot Y 5 \\
X 3 \cdot Y 6 \\
Y S \cdot(C 1 \oplus X 2) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
X S \cdot(C 2 \oplus Y 1) \\
X 6 \cdot Y 2 \\
X 5 \cdot Y 3 \\
X 4 \cdot Y 4 \\
X 3 \cdot Y 5 \\
X 2 \cdot Y 6 \\
Y S \cdot(C 1 \oplus X 1) \\
\hline
\end{array}
\] &  & \(K 6\)
\(M 6\)
\(X 6 \cdot Y 0\)
\(X 5 \cdot Y 1\)
\(X 4 \cdot Y 2\)
\(X 3 \cdot Y 3\)
\(X 2 \cdot Y 4\)
\(X 1 \cdot Y 5\)
\(X 0 \cdot Y 6\) & \[
\begin{gathered}
K 5 \\
\text { M5 } \\
X 5 \cdot Y 0 \\
X 4 \cdot Y 1 \\
X 3 \cdot Y 2 \\
X 2 \cdot Y 3 \\
X \\
X 1 \cdot Y 4 \\
X 0 \cdot Y 5
\end{gathered}
\] & \(K 4\)
\(M 4\)
\(X 4 \cdot Y 0\)
\(X 3 \cdot Y 1\)
\(X 2 \cdot Y 2\)
\(X 1 \cdot Y 3\)
\(X 0 \cdot Y 4\) & \[
\begin{gathered}
K 3 \\
\text { M3 } \\
X 3 \cdot Y 0 \\
X 2 \cdot Y 1 \\
X 1 \cdot Y 2 \\
X 0 \cdot Y 3
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{K} 2 \\
\mathrm{M} 2 \\
\mathrm{X} 2 \cdot \mathrm{Y} 0 \\
\mathrm{X} 1 \cdot \mathrm{Y} 1 \\
\mathrm{X} 0 \cdot \mathrm{Y} 2
\end{gathered}
\] & \[
\left|\begin{array}{c}
\mathrm{K} 1 \\
\mathrm{M} 1 \\
\mathrm{X} 1 \cdot \mathrm{YO} \\
\mathrm{XO} \cdot \mathrm{Y} 1
\end{array}\right|
\] & \[
\left.\begin{array}{|c}
\mathrm{KO} \\
\mathrm{M} 0 \\
\mathrm{XO} 0 \mathrm{yo}
\end{array} \right\rvert\,
\] \\
\hline PS & P14 & P13 & P12 & P11 & P10 & P9 & P8 & P7 & P6 & P5 & P4 & P3 & P2 & P1 & PO \\
\hline
\end{tabular}

\footnotetext{
Note: For magnitude operations \((C 1=0, C 2=0\) or \(C 1=H, C 2=H\) ), the \(C 7\) input must be tied to a "High" voltage state in order to eliminate the possibility of overflow and invalid results. For \(X=255, Y=255, K=255\), and \(M=255\), the product will be the maximum value possible of 65,535 ( \(\mathrm{PS}-\mathrm{PO}=1\) ). If C 7 was also used as an input during magnitude operations, the most significant product bit, PS will be a " 1 " ( \(\mathrm{PS}=\mathrm{L}\) ) during an overflow condition where the result exceeds 65,535.

For 2's complement or mixed mode multiplications, the multiplication matrix (Table 1) produces the proper product at the PS through P0 outputs.
}
2. The normal parallelogram structure consists of several stages, each multiplying 8 bits of multiplier times 8 bits of multiplicand and adds the partial products.
3. The sign bits of the multiplicand and multiplier must be added to the product. As an example, an \(8 \times 16\)-bit multiplier would require the sign bit of the 8 -bit word to be added to the least significant 8 th bit of the product. Likewise the sign bit of the 16 -bit word is to be added to the least significant 16th bit of the product. The \(X\) sign bit and \(Y\) sign bit must be added to the product with a binary weight (power of 2) equivalent to their respective binary weights.
4. The control inputs \(\overline{\mathrm{C} 1}\) and \(\overline{\mathrm{C} 2}\) must be programmed correctly depending on the multiplier type and on the position of the MC10901 within the array:
A) For magnitude arrays, all control inputs are programmed " H ".
B) For two's complement arrays, the programming is controlled by the position of the multiplier and the terms required by the algorithm. A simple means of determining the required control line states is shown in the following table:
\begin{tabular}{|l|l|l|}
\hline Multiplication Inputs & \multicolumn{1}{|c|}{\(\overline{\mathbf{C 1}}\)} & \multicolumn{1}{|c|}{\(\overline{\mathbf{C 2}}\)} \\
\hline NO SIGN BITS & HI & HI \\
XS ONLY & HI & LOW \\
XS ONLY & LOW & HI \\
BOTH SIGN BITS & LOW & LOW \\
\hline
\end{tabular}

The maximum times possible for various N -bit by N bit arrays are:
\begin{tabular}{lll} 
& Total & \\
Number & Multiply & \\
Of & Time (ns) & Package \\
Bits & Max. & Count \\
& & \\
8 & 24.3 & 1 \\
16 & 51.8 & 4 \\
24 & 81.5 & 9 \\
32 & 111.2 & 16
\end{tabular}

Because of the versatility of the MC10901, many other arrays can be built. Faster arrays using additional adders, pipeline techniques, one's complement and magnitude multipliers, and truncated product multipliers can be constructed. Applications of such arrays include digital filters, FFT's, complex multipliers, and recursive and nonrecursive filter elements.

FIGURE 1
\(8 \times 8\)-Bit 2's Complement Multiplier


\section*{\(16 \times 16-\) BIT EXAMPLE}

Figure 2 shows 4 MC10901's in a \(16 \times 16\)-bit array. A 32-bit two's complement product is produced from a 16-bit multiplier and a 16-bit multiplicand. At the first level of multiplication, no partial products have been obtained so the \(\bar{K}\) and \(\bar{M}\) expansion inputs are tied high. These inputs on the first level can be used to add a constant to the least significant end of the product. Further levels require the \(\bar{K}\) and \(\bar{M}\) inputs to add the accumulated partial products. Control inputs \(\overline{\mathrm{C}} 1\) and \(\overline{\mathrm{C}} 2\) are programmed according to their relative position of each device in the array. Since both \(\bar{X}\) and \(\bar{Y}\) are in two's complement form, their respective sign
bits must be added to the accumulated products for correction. This can be accomplished by inputing the sign bit of the \(\bar{X}\) input to \(\bar{C} 7\) of device \(B\) and sign bit of the \(\overline{\mathrm{Y}}\) bus to \(\overline{\mathrm{C}} 7\) of device C . The same expansion techniques are extended to the \(32 \times 32\)-bit multiplier in Figure 3.
However, when adding the sign bits to the array for correction, the sign bits must be added to the \(\overline{\mathrm{C}} \overline{\mathrm{C}}\) input of the devices that have \(\overline{\mathrm{C} 1}=\mathrm{H}, \overline{\mathrm{C} 2}=\mathrm{L}\) or \(\overline{\mathrm{C} 1}=\mathrm{L}\), \(\overline{\mathrm{C} 2}=\mathrm{H}\) in the 32nd bit of the product, as indicated in Figure 3. The sign bits cannot be added to the \(\overline{\mathrm{C} 7}\) input of devices that have \(\overline{\mathrm{C} 1}=\mathrm{H}\) and \(\overline{\mathrm{C} 2}=\mathrm{H}\), as indicated in Table 1.

FIGURE 2 - \(16 \times 16\)-BIT 2'S COMPLEMENT MULTIPLIER


FIGURE 3 - \(32 \times 32\)-BIT 2'S COMPLEMENT MULTIPLIER


TABLE 2 - ABSOLUTE MAX RATINGS
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TABLE 2 - ABSOLUTE MAX RATINGS} \\
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage
\[
\left(V_{C C}=0\right)
\] & \(V_{E E}\) & -8 to 0 & Vdc \\
\hline Input Voltage
\[
\left(V_{C C}=0\right)
\] & \(V_{\text {in }}\) & 0 to VEE & Vdc \\
\hline \[
\begin{aligned}
\text { Output Source Current } & - \text { Continuous } \\
& - \text { Surge }
\end{aligned}
\] & \(\mathrm{I}_{0}\) & \[
\begin{array}{r}
<30 \\
<100 \\
\hline
\end{array}
\] & mAdc \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & TJ & 165 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

\section*{TABLE 4 - ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board with heatsink and transverse air flow greater than 1000 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

TABLE 3 - RECOMMENDED OPERATING CONDITIONS MC10901
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Symbol & Value & Unit \\
\hline \begin{tabular}{c} 
Supply Voltage \\
\(\left(V_{\mathrm{CC}}=0\right.\) Volts)
\end{tabular} & \(\mathrm{VEE}_{\mathrm{EE}}\) & -4.68 to -5.72 & Vdc \\
\hline \begin{tabular}{c} 
Operating Temperature \\
(Functional)
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Output Drive & - & \begin{tabular}{c}
\(50 \Omega\) to -2.0 \\
Vdc
\end{tabular} & - \\
\hline Max Junction Temp & \(\mathrm{TJ}^{\text {O }}\) & 130 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


NOTE: All inputs have input pulldown resistors ( \(\sim 68 \mathrm{~K} \Omega\) ) between the input and \(V_{E E}\)

\section*{MC10901}

\section*{SWITCHING CHARACTERISTICS OVER OPERATING VOLTAGE AND TEMPERATURE RANGE}

Table 5 defines the timing characteristics of the MC10901 over operating voltage and temperature ranges. Worst-Case Setup and Hold and Propagation Delays are calculated for \(\mathrm{V}_{\mathrm{EE}}=-5.2\) Volts \(\pm 10 \%\) and a \(T_{J m a x}=115^{\circ} \mathrm{C}\). The maximum recommended operating junction temperature is \(+130^{\circ} \mathrm{C}\).

Calculated limits are based on several performance factors as described in Motorola's Preliminary Design Manual for the MECL 10,000 Macrocell Array. Factors include worst-case delays due to Macro selections, Fan-Out, Metal Lengths, Wire-OR, and Input Follower options. AC measurements are performed on each device to assure process integrity; however, Motorola does not guarantee limits at this time.

FIGURE 4 - SWITCHING WAVEFORM DEFINITION Propagation Delays


TABLE 5 - PROPAGATION DELAY (Nanoseconds)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Input} & \multirow[t]{2}{*}{Output} & \multicolumn{2}{|l|}{0 to \(70^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}\) ( \(\mathrm{T}_{\mathrm{J}}\) not to exceed \(115^{\circ} \mathrm{C}\) )} \\
\hline & & Typ & Max \\
\hline \[
\overline{\mathrm{X} 7}-\frac{\overline{\mathrm{X}},}{\overline{\mathrm{C}} 1}, \frac{\overline{\mathrm{Y}}}{\mathrm{C} 2}-\overline{\mathrm{Y} 0},
\] & \[
\begin{gathered}
\hline \overline{\mathrm{P} 6}-\overline{\mathrm{PO}} \\
\frac{\overline{\mathrm{P}}}{} \overline{\mathrm{P} 14}-\overline{\mathrm{P} 8} \\
\overline{\mathrm{PS}} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 13.9 \\
& 13.0 \\
& 17.0 \\
& 16.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 19.9 \\
& 18.6 \\
& 24.3 \\
& 23.3 \\
& \hline
\end{aligned}
\] \\
\hline \(\overline{\mathrm{M} 7}-\overline{\mathrm{M}}\) & \[
\begin{gathered}
\hline \overline{\mathrm{P} 6}-\overline{\mathrm{PO}} \\
\frac{\overline{\mathrm{P}}}{} \overline{\mathrm{P} 14}-\overline{\mathrm{P} 8} \\
\overline{\mathrm{PS}}
\end{gathered}
\] & \[
\begin{aligned}
& 7.8 \\
& 6.9 \\
& 9.3 \\
& 8.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
11.2 \\
9.8 \\
13.3 \\
12.3 \\
\hline
\end{array}
\] \\
\hline \(\overline{\mathrm{K} 4}-\overline{\mathrm{K} 0}\) & \[
\begin{aligned}
& \overline{\mathrm{P} 6}-\overline{\mathrm{P0}} \\
& \frac{\overline{\mathrm{P} 7}}{\overline{\mathrm{P} 14}-\overline{\mathrm{P} 8}} \frac{{ }^{\mathrm{PS}}}{}
\end{aligned}
\] & \[
\begin{aligned}
& 8.2 \\
& 7.2 \\
& 9.7 \\
& 8.9
\end{aligned}
\] & \[
\begin{aligned}
& 11.7 \\
& 10.3 \\
& 13.8 \\
& 12.7
\end{aligned}
\] \\
\hline \(\overline{\mathrm{K}}, \overline{\mathrm{K} 5}\) & \[
\begin{gathered}
\overline{\mathrm{P} 6}-\overline{\mathrm{P0}} \\
\frac{\overline{\mathrm{P} 7}}{\mathrm{P} 14}-\overline{\mathrm{P} 8} \\
\overline{\mathrm{PS}}
\end{gathered}
\] & \[
\begin{array}{r}
9.4 \\
10.5 \\
12.9 \\
12.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 13.4 \\
& 15.0 \\
& 18.4 \\
& 17.4 \\
& \hline
\end{aligned}
\] \\
\hline \(\overline{\mathrm{K}}\) & \[
\frac{\overline{\mathrm{P} 7}}{\overline{\mathrm{P} 14}-\overline{\mathrm{P} 8}} \frac{\overline{\mathrm{PS}}}{}
\] & \[
\begin{array}{r}
9.9 \\
13.9 \\
12.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 14.1 \\
& 19.9 \\
& 18.8 \\
& \hline
\end{aligned}
\] \\
\hline \(\overline{\mathrm{C7}}\) & \[
\frac{\overline{\mathrm{P} 7}}{\overline{\mathrm{P} 14}-\overline{\mathrm{P} 8}} \frac{\mathrm{PS}^{2}}{}
\] & \[
\begin{aligned}
& 10.8 \\
& 14.9 \\
& 14.1
\end{aligned}
\] & \[
\begin{aligned}
& 15.4 \\
& 21.2 \\
& 20.1
\end{aligned}
\] \\
\hline
\end{tabular}

FIGURE 5 - SWITCHING TEST CIRCUIT


\section*{FIGURE 6 - THERMAL CHARACTERISTICS} (TYPICAL)


Heat Sink \#1 is from THERMALLOY \#15832-1. 3 Horizontal Fins, 0.563 inches square, Model No. 2284C Heat Sink \#2 is from WAKEFIELD \#4493. Vertical Fins, 0.5 inches square
NOTE: \(T_{J}=(\theta J A)\left(P_{D}\right)+T_{A}\) WHERE \(T_{J}\) is the Junction Temperature, \(T_{A}\) is the Ambient Temperature,
\(P_{D}=\left(I_{E E}\right)\left(V_{E E}\right)+(15 \mathrm{~mW})\) (number of \(50 \Omega\) outputs).
Still air \(\overline{0} J A\) (with no heat sink) \(=35^{\circ} \mathrm{C} / \mathrm{W}\).

\section*{Advance Information}

\section*{8-BIT BINARY/BCD ALU SLICE}

The MC10902 is a high speed ALU building block for digital processors. The circuit operates directly on BCD data in addition to doing normal logic, shift, and binary arithmetic operations. Each part is 8 bits wide and is "sliced" parallel to data flow. The MC10902 easily expands to larger word lengths by connecting circuits in parallel, either with ripple or look-ahead carry.

The MC10902 as illustrated in the logic diagram below contains independently controlled holding latches on all three data inputs. Five function (F) lines select data inputs and logic or arithmetic circuit operation.
- Member of the M10900 Family utilizing the MECL 10,000 Macrocell Array.
- 34 functions including logic, shift, and both binary and BCD arithmetic.
- Internal 8-bit accumulator with externally available reset, clock, and clock enable.
- Internal look-ahead carry with Propagate and Generate outputs.
- Zero detects for upper and lower 4 bits.
- Select pin for logic or arithmetic shift right.

\section*{MECL-LSI 8-BIT BINARY/BCD ALU SLICE}


CASE 745 68 Pin, JEDEC Std. Leadless Package

FIGURE 1 - 8-BIT BINARY/BCD ALU SLICE BLOCK DIAGRAM


\section*{PIN ASSIGNMENTS}
\begin{tabular}{|c|c|c|}
\hline Pin Name & Number & Description \\
\hline \(\overline{\mathrm{A} 0}\) & 46 & \(\overline{\text { A }}\) Input Bus - LSB \\
\hline \(\overline{\mathrm{A} 1}\) & 49 & A \(\bar{A}\) Input Bus \\
\hline A2 & 54 & A A Input Bus \\
\hline A3 & 57 & \(\overline{\text { A }}\) Input Bus \\
\hline A4 & 39 &  \\
\hline \(\overline{\text { A5 }}\) & 36 & A \({ }^{\text {A }}\) Input Bus \\
\hline A6 & 32 & A A Input Bus \\
\hline A7 & 29 & \(\bar{A}\) Input Bus - MSB \\
\hline B0 & 47 & B \({ }^{\text {B }}\) Input Bus - LSB \\
\hline B1 & 52 & B \({ }^{\text {B }}\) Input Bus \\
\hline B2 & 55 & B \({ }^{\text {B }}\) Input Bus \\
\hline B3 & 59 & \(\bar{B}\) Input Bus \\
\hline B4 & 38 & B \({ }^{\text {B }}\) Input Bus \\
\hline B5 & 35 & \(\bar{B}\) B Input Bus \\
\hline B6 & 31 & B \({ }^{\text {B }}\) Input Bus \\
\hline B7 & 28 & B Input Bus - MSB \\
\hline CO & 48 & C \({ }_{\text {C }}\) Input Bus - LSB \\
\hline C1 & 53 & \(\overline{\text { C }}\) C Input Bus \\
\hline C2 & 56 & \(\bar{C}\) C Input Bus \\
\hline C3 & 61 & C C Input Bus \\
\hline C4 & 37 & \({ }^{\text {C }}\) C Input Bus \\
\hline C5 & 33 & C \({ }^{\text {C }}\) Input Bus \\
\hline C6 & 30 & \(\overline{\mathrm{C}}\) Input Bus \\
\hline C7 & 27 & \(\overline{\text { C }}\) Input Bus - MSB \\
\hline YO & 63 & \(\bar{Y}\) Output Bus - LSB \\
\hline Y1 & 64 & \(\stackrel{Y}{Y}\) Output Bus \\
\hline Y2 & 67 & \(\bar{Y}\) Output Bus \\
\hline Y3 & 7 & \(\bar{Y}\) Output Bus \\
\hline Y4 & 23 & \(\bar{Y}\) Output Bus \\
\hline Y5 & 21 & \(\bar{Y}\) Output Bus \\
\hline Y6 & 19 & \(\bar{Y}\) Output Bus \\
\hline Y7 & 14 & \(\bar{Y}\) Output Bus - MSB \\
\hline EA & 51 & \(\overline{\bar{A}}\) Latched When \(\overline{E A}=\mathrm{H}\) \\
\hline EB & 50 & \(\bar{B}\) Latched When \(\overline{E B}=\mathrm{H}\) \\
\hline EC & 34 & \(\overline{\mathrm{C}}\) Latched When \(\overline{\mathrm{EC}}=\mathrm{H}\) \\
\hline F1 & 45 & Function Select (See Table 1) \\
\hline F2 & 44 & Function Select (See Table 1) \\
\hline F3 & 41 & Function Select (See Table 1) \\
\hline F4 & 42 & Function Select (See Table 1) \\
\hline F5 & 40 & Function Select (See Table 1) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Pin Name & Number & Description \\
\hline \(\overline{C_{\text {out }} 1}\) & 1 & Pins 1 and 2 Tied Together Form \(\overline{\mathrm{C}_{\text {out }}}\) Output \\
\hline \(\overline{\text { Cout } 2}\) & 2 & Pins 1 and 2 tied together Form \(\overline{C_{\text {out }}}\) Output \\
\hline \(\overline{\mathrm{C}} \mathrm{in}\) & 65 & Carry In \\
\hline \(\overline{\mathrm{PG}}\) & 8 & Group Propagate Output \\
\hline \(\overline{\mathrm{GG}}\) & 68 & Group Generate Output \\
\hline OV1 & 16 & Overflow Output for Binary Arithmetic Operations \\
\hline OV2 & 17 & Overflow Output for Shift Left \\
\hline ALU/R SEL & 22 & Selects ALU or R REG for \(\bar{Y}\) Outputs \\
\hline ALU/R SIGN SEL & 13 & Selects ALU 7 or R 7 for Sign Output \\
\hline \(\overline{\text { SIGN }}\) & 18 & SIGN Output \\
\hline ZDL & 10 & \[
\begin{aligned}
& \text { Zero Detect }=L \text { for ALU } \\
& 0-1-2-3=L
\end{aligned}
\] \\
\hline \(\overline{\mathrm{ZDH}}\) & 11 & \[
\begin{aligned}
& \text { Zero Detect }=L \text { for ALU } \\
& -4-5-6-7=L
\end{aligned}
\] \\
\hline OUTPUT ENABLE & 4 & \(\bar{Y}\) Enabled if \(L\),
\[
\bar{Y}=\mathrm{L} \text { if Pin } 4=\mathrm{H}
\] \\
\hline RESET & 6 & Reset R Register When Pin 6=H \\
\hline CLOCK & 5 & Clock R Register on \(L\) to H Edge \\
\hline \(\overline{\text { CLOCK ENABLE }}\) & 12 & Enable Clock When Pin \(12=\mathrm{L}\) \\
\hline \(\overline{\mathrm{SHO}}\) & 62 & \(\overline{\text { ALUO }}\) to \(\overline{\mathrm{SHO}}\) for Shift Right Output (LSB) \\
\hline & & Left Input \\
\hline \(\overline{\mathrm{SH} 7}\) & 24 & \(\overline{\mathrm{SH7}}\) to \(\overline{\mathrm{ALU7}}\) for Shift Right (PIN \(25=\mathrm{L}\) ) \\
\hline & & \(\overline{\mathrm{ALU7}}\) to \(\overline{\mathrm{SH}} \overline{7}\) for Shift Left Output (MSB) \\
\hline A/L SHIFT SEL & 25 & \[
\begin{aligned}
& L=\text { Logic Shift Right } \\
& H=\text { Arithmetic Shift Right }
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{EE}}\) & 9,43 & -5.2 V Supply \\
\hline \(V_{\text {CC }}\) & 26,60 & Ground for Internal Logic \\
\hline \[
\begin{aligned}
& \mathrm{v}_{\mathrm{CCO}} \\
& \mathrm{NC}
\end{aligned}
\] & \[
\begin{gathered}
3,15,20,66 \\
58
\end{gathered}
\] & Ground for Output Drivers Not Used \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS (see Note 1)
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage
\[
\left(V_{C C}=0\right)
\] & \(V_{E E}\) & -8 to 0 & Vdc \\
\hline Input Voltage
\[
\left(V_{C C}=0\right)
\] & \(\mathrm{v}_{\text {in }}\) & 0 to \(\mathrm{V}_{\text {EE }}\) & Vdc \\
\hline \[
\begin{aligned}
\text { Output Source Current } & - \text { Continuous } \\
& - \text { Surge }
\end{aligned}
\] & 10 & \[
\begin{aligned}
& <30 \\
& <100
\end{aligned}
\] & mAdc \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & TJ & 165 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: 1. Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

\section*{FIGURE 2 - INPUT/OUTPUT DIAGRAM}


\section*{ARCHITECTURAL DESCRIPTION}

The MECL 8-bit BCD/Binary ALU Slice is a member of the M10900 family utilizing the MECL \(10,000 \mathrm{Ma}\) crocell Array. The ALU performs logic, shift, binary arithmetic and BCD arithmetic operations on one or two of three input variables, \(\overline{\mathrm{A}}\) Bus, \(\overline{\mathrm{B}}\) Bus, and \(\overline{\mathrm{C}}\) Bus. Single bit data paths \(\overline{\mathrm{C}_{\text {in }}}, \overline{\mathrm{C}_{\text {out }}}, \overline{\mathrm{C}_{\text {out } 2}}, \overline{\mathrm{SH0}}\), and \(\overline{\mathrm{SH} 7}\) interconnect MC10902s for longer word lengths. Group propagate and group generate outputs can be used with external look-ahead carry logic for faster system performance.

A \(\bar{Y}\) output multiplexer selects output data from either the ALU or R Register outputs. Sign select input
selects the ALU or R Register MSB for a special SIGN condition code output. Independent selects permit monitoring the ALU sign bit while reading the R Register in a pipelined structure. Other condition code outputs such as zero detect, carry out, and overflow are taken directly off the ALU. Zero Detect is divided into \(\overline{Z D L}\) for bits 0 through 3 and \(\overline{Z D H}\) for bits 4 through 7 allowing zero detect of BCD digits. The \(\overline{C_{\text {out }} 1}\) and \(\overline{C_{\text {out } 2}}\) must be connected together externally to form Cout-

TABLE 1 - MC10902 ALU LOGIC FUNCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{LOGIC FUNCTIONS} \\
\hline Function No. & F5 & F4 & F3 & F2 & F1 & A/L & ALU Function & Y (ALU Output) \\
\hline \[
\begin{array}{r}
16 \\
18 \\
0 \\
2
\end{array}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x
\end{aligned}
\] & \begin{tabular}{l}
OR \\
OR \\
NOR \\
NOR
\end{tabular} & \[
\begin{aligned}
& A+B \\
& C+B \\
& \hline A+B \\
& \hline C+B
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
21 \\
5 \\
7 \\
12
\end{array}
\] & \[
\begin{aligned}
& H \\
& L \\
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x \\
& \hline
\end{aligned}
\] & AND NAND Logic 1 Logic 0 & \[
\frac{A \cdot B}{A \cdot B}
\] \\
\hline \[
\begin{array}{r}
8 \\
10 \\
11 \\
6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{x} \\
& \mathrm{X} \\
& \mathrm{x} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
EX OR \\
EX OR \\
EX NOR \\
Invert
\end{tabular} & \[
\begin{aligned}
& A \oplus B \\
& C \oplus B \\
& \hline A \oplus B \\
& \hline C
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
4 \\
9 \\
14
\end{array}
\] & L
L
L & \[
\begin{aligned}
& \text { L } \\
& \text { H } \\
& \text { H }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \text { L } \\
& \text { L } \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & Invert Logic Logic & \[
\begin{aligned}
& \overline{\mathrm{A}} \\
& \mathrm{~A}+\overline{\mathrm{B}} \\
& \mathrm{C} \cdot \overline{\mathrm{~B}}
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE 2 - MC10902 ALU ARITHMETIC FUNCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ARITHMETIC FUNCTIONS} \\
\hline Function No. & F5 & F4 & F3 & F2 & F1 & A/L & ALU Function & Y (ALU Output) \\
\hline \[
\begin{aligned}
& 28 \\
& 30 \\
& 29 \\
& 31 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Binary Add \\
Binary Add \\
Binary Sub \\
Binary Sub
\end{tabular} & A Plus B Plus \(\mathrm{C}_{\text {in }}\) C Plus B Plus \(\mathrm{C}_{\text {in }}\) A Plus \(\bar{B}\) Plus \(C_{i n}\) B Plus \(\bar{A}\) Plus \(C_{\text {in }}\) \\
\hline 24 & H & H & L & L & L & X & BCD Add* & A Plus B Plus \(\mathrm{C}_{\text {in }}\) \\
\hline 26 & H & H & L & H & L & X & BCD Add* & C Plus B Plus \(\mathrm{C}_{\mathrm{in}}\) \\
\hline 25 & H & H & L & L & H & X & BCD Sub* & A Plus (9's Complement of \(B\) ) Plus \(\mathrm{C}_{\text {in }}\) \\
\hline 27 & H & H & L & H & H & x & BCD Sub* & B Plus (9's Complement of A) Plus \(\mathrm{C}_{\text {in }}\) \\
\hline 20 & H & L & H & L & L & X & Increment & A Plus \(\mathrm{C}_{\text {in }}\) \\
\hline 23 & H & L & H & H & H & X & Increment & B Plus \(\mathrm{C}_{\text {in }}\) \\
\hline 22 & H & L & H & H & L & X & Increment & \(\underline{C}\) Plus \(\mathrm{C}_{\text {in }}\) \\
\hline 15 & L & H & H & H & H & X & Complement & \(\overline{\text { A }}\) Plus \(\mathrm{C}_{\text {in }}\) \\
\hline 13 & L & H & H & L & H & X & Complement & \(\bar{B}\) Plus \(\mathrm{C}_{\text {in }}\) \\
\hline
\end{tabular}
*NOTE: For BCD, each four-bit BCD (binary coded decimal) number must have a decimal equivalent of 0 to 9 to be a valid input where \(A 7, A 6, A 5, A 4\) is the most significant \(B C D\) Digit and \(A 3, A 2, A 1, A 0\) is the least significant digit (the B BUS and C BUS inputs are similar).

TABLE 3 - MC10902 ALU SHIFT FUNCTIONS
\begin{tabular}{|c|ccccc|c|c|c|}
\hline \multicolumn{9}{|c|}{ SHIFT FUNCTIONS } \\
\hline \begin{tabular}{c} 
Function \\
No.
\end{tabular} & F5 & F4 & F3 & F2 & F1 & A/L & ALU Function & Y (ALU Output) \\
\hline 1 & L & L & L & L & H & L & Logic Shift Right & A \\
1 & L & L & L & L & H & H & Arithmetic Shift Right & A \\
3 & L & L & L & H & H & L & Logic Shift Right & B \\
3 & L & L & L & H & H & H & Arithmetic Shift Right & B \\
17 & H & L & L & L & H & X & Shift Left & A \\
19 & H & L & L & H & H & X & Shift Left & B \\
\hline
\end{tabular}

\section*{Function Select - F1, F2, F3, F4, and F5}

F1 through F5 inputs control the ALU function and select from \(\bar{A}, \bar{B}\), and \(\bar{C}\) Bus inputs. (See Tables 1, 2, and 3.) Two instructions, shift right \(\bar{A}\) Bus and shift right \(\bar{B}\) Bus, use the A/L SHIFT SELECT input to control the sign bit for arithmetic or logic shifts. Tables 1, 2, and 3 define ALU operation at \(A, B, C\), and \(Y\) nodes which are complemented at the package pins.

\section*{Data Inputs - \(\overline{\mathbf{A O}-A 7}, \overline{\mathbf{B 0}-\mathrm{B7}}\), and \(\overline{\mathbf{C 0}-\mathbf{C 7}}\)}

Data enters the MC10902 through three 8-bit data ports. Bit 0 is always the least significant and Bit 7 is the most significant. Each port can be latched independently.

\section*{Input Latch Enables - \(\overline{E A}, \overline{E B}\), and \(\overline{E C}\)}

Each input bus is routed through an 8-bit latch controlled by independent latch enable pins. A low logic level (L) on the enable opens the latch allowing input data to ripple through. A high ( H ) level latches the circuit holding ALU inputs constant independent of data changes on the bus ports.

\section*{Data Outputs - Y0-Y7}

Data exits the MC10902 through \(\bar{Y}\) Bus outputs. As with input data, bit \(0(\overline{Y O})\) is the least significant and \(\bar{Y} 7\) the most significant. \(\bar{Y}\) output data can be selected from either the ALU or R Register.

\section*{Output Mux Controls - ALU/R SEL and OUT ENABLE}

Output MUX control is shown in Table 4. \(\overline{\text { OUT }}\) ENABLE forces the \(\bar{Y}\) outputs to a MECL low logic level simplifying computer bus architectures.

TABLE 4 - OUTPUT MUX CONTROL
\begin{tabular}{|c|c|l|}
\hline ALU/R SEL & \multicolumn{1}{|c|}{\(\overline{1} \overline{\text { OUT EN }}\)} & \multicolumn{1}{|c|}{ YUS } \\
\hline\(L\) & \(L\) & \(\overline{\text { R REGISTER }}\) \\
\(H\) & \(L\) & \(\overline{\text { ALU }}\) \\
\(X\) & \(H\) & OUTPUT LOW (L) \\
\hline
\end{tabular}

Sign Bit and Control - \(\overline{\text { SIGN }}\) and ALU/R Sign SEL
A sign bit condition code output displays the most significant bit of the R Register or ALU as selected by the ALU/R SIGN SEL input. A low ( \(L\) ) on the select input gives the R Register MSB and a high ( H ) selects the ALU MSB.

Note if ALU/R SEL and ALU/R SIGN SEL inputs are connected together, SIGN will be the same as \(\overline{Y 7}\) when the \(\bar{Y}\) output is enabled ( \(\overline{O U T E N}=\mathrm{L}\) ).

\section*{Carry In - \(\overline{\mathbf{C}_{\text {in }}}\)}
\(\overline{\mathrm{C}_{\text {in }}}\) is used to interconnect ALUs for word lengths longer than 8 bits. \(\overline{\mathrm{C}_{\text {in }}}\) connects \(\overline{\mathrm{C}_{\text {out }}}\) of the previous ALU for ripple carry or to look-ahead carry logic for
look-ahead carry. Carry-in functions only for arithmetic operations and has no effect on logic, see Tables 1, 2, and 3.

\section*{Carry Out - \(\overline{\mathbf{C}_{\text {out }}} 1\) and \(\overline{\mathbf{C}_{\text {out }} 2}\)}

Carry out, Cout, for the MC10902 is equal to logic \(\overline{C_{\text {out }} 1}\) OR \(\overline{C_{\text {out }} 2}\). IMPORTANT the OR function is implemented externally by connecting pins 1 and 2 together forming a MECL wired OR. Carry out automatically adjusts to binary or BCD arithmetic operations. Carry out may be high or low during ALU logic and shift functions and should be ignored since this is a "don't care" condition.

\section*{Group Propagate and Generate - \(\overline{\mathbf{P G}}\) and \(\overline{\mathbf{G G}}\)}

Group propagate and group generate connect to external look-ahead carry logic (MC10179 or equivalent logic) for best performance when several MC10902 circuits operate in parallel. \(\overline{\mathrm{PG}}\) output goes to a low (L) state when the value of a binary arithmetic calculation is 255 or a BCD calculation is 99 (not including \(\left.\overline{C_{\text {in }}}\right)\). GG goes to a low level when a binary calculation exceeds 255 or a BCD calculation exceeds 99 (not including \(\overline{\mathrm{C}_{\mathrm{in}}}\) ) and is a high for all other numbers. The PG output will be a high level when the value of a binary calculation is less than 255 or a BCD calculation is less than 99 (not including \(\overline{\mathrm{C}_{\mathrm{in}}}\) ). Propagate and generate may be high or low during ALU logic and shift functions and should be ignored since this is a "don't care" condition.

\section*{Overflow - OV1 and OV2}

OV1 is the overflow for binary arithmetic operations, while OV2 is the overflow for shift left operations. These two signals can be connected together (wire ORed) so that either condition will cause an overflow condition. In a system, the most significant slice is used to form the overflow function.
1. OV1 is enabled only during binary arithmetic operations (OV1 \(=\mathrm{L}\) for all non-binary arithmetic operations). OV1 \(=\mathrm{H}\) means that the sign bit (MSB) is in error due to the result exceeding the maximum positive or negative word value. OV \(1=\left\langle C_{\text {out }} \oplus\right.\) C7) • (function No. 13, 15, 20, 22, 23, 28-31) where C 7 is the carry-in for generating ALU bit Y7.
2. OV2 is enabled only during shift left operations (OV2 \(=\mathrm{L}\) for all other operations). OV2 \(=\mathrm{H}\) means the sign bit has changed state due to the shift left operation. OV2 \(=(\mathrm{SH} 7 \oplus \mathrm{Y} 7) \cdot(\) function 17,19\()\)

\section*{Zero Detect - \(\overline{\mathbf{Z D L}}\) and \(\overline{\mathbf{Z D H}}\)}

Zero Detects show when the lower ( \(\overline{\mathrm{ZDL}}\) ) or upper \((\overline{\mathrm{ZDH}})\) four bits of the ALU results are all positive logic zero (low L logic state). \(\overline{\mathrm{ZDL}}\) and \(\overline{\mathrm{ZDH}}\) can be externally connected together generating an 8-bit \(\overline{\mathrm{ZD}}\). Zero detect outputs are defined by the following equations:
\[
\begin{aligned}
& \overline{\mathrm{ZDL}}=\mathrm{ALU} 0+\mathrm{ALU} 1+\mathrm{ALU} 2+\mathrm{ALU} 3 \\
& \overline{\mathrm{ZDH}}=\mathrm{ALU} 4+\mathrm{ALU} 5+\mathrm{ALU} 6+\mathrm{ALU7}
\end{aligned}
\]

\section*{MC10902}

\section*{Shift Signals - \(\overline{\mathbf{S H O}}, \overline{\mathbf{S H 7}}\), and A/L Shift Select}
\(\overline{\mathrm{SH0}}\) and \(\overline{\mathrm{SH} 7}\) are bidirectional single bit data lines. For shift right, \(\overline{\mathrm{SH}}\) is an output and \(\overline{\mathrm{SH} 7}\) is an input. For shift left, \(\overline{\mathrm{SH}} \mathbf{~ i s ~ a n ~ i n p u t ~ a n d ~} \overline{\mathrm{SH} 7}\) is an output. In addition, shift right may be logic or arithmetic controlled by the A/L SHIFT SELECT as shown below. The \(\overline{\mathrm{SHO}}\) and \(\overline{\mathrm{SH} 7}\) are "low" for all ALU operations not requiring shift right or shift left.

SHIFT LEFT (A/L SEL = DON'T CARE)


LOGIC SHIFT RIGHT (A/L SEL = L)


ARITHMETIC SHIFT RIGHT (A/L SEL \(=H\) )


\section*{R Register Control - CLOCK, CLOCK EN, and RESET}

The MC10902 has a built in 8-bit register, R Register (composed of master/slave flip-flops), primarily in-
tended for pipeline system structures. The R Register can also function as an accumulator by connecting the \(\overline{\mathrm{Y}}\) outputs to one of the three input buses. The respective bus input latch can hold accumulator data, thus freeing the \(\bar{Y}\) Bus for ALU output results.

CLOCK and CLOCK EN are equal inputs, logic ORed together as shown on the Page 1 logic diagram. Either input will clock the R Register on a low to high transition if the other input is low (L). Assigning pin 5 as CLOCK, pin 12 can be used for clock enable. A logic low (L) on CLOCK EN enables CLOCK to update R Register with ALU results on each positive going CLOCK transition. A high (H) on CLOCK EN disables the CLOCK. Care should be taken to disable the clock, low to high transition on CLOCK EN, while the CLOCK is high. Otherwise CLOCK EN could clock the R REGISTER.

Reset sets the R Register to all bits equal logic low ( L ). ( \(\bar{Y}\) bus output \(=H\) when \(R\) register is selected).
Reset R Register \(=\) Reset \(\cdot(C L O C K+\overline{C L O C K ~ E N})\)
Reset can be made to appear independent of clocking signals (asynchronous) by connecting RESET to CLOCK EN forcing both high at the same time. However, a narrow positive going spike ( 1 to 2 ns wide) on the R Register output can result on the leading edge of Reset. This narrow pulse can also occur if the Reset \(=\mathrm{H}\) while clocking the R register (CLK switches from L to H while \(\overline{\text { CLOCK EN }}=\mathrm{L}\) ).

\section*{Positive versus Negative Logic}

System designers use MECL 10,000 in both positive and negative logic formats. Positive logic has MECL VOH (approx. -0.9 V ) for logic 1 and MECL VOL (approx -1.7 V ) for logic 0 . Negative logic reverses logic 1 and 0 voltage definitions with VOL being a logic 1. This data sheet is written around positive logic definitions. Tables and descriptions are written in terms of high (H) and low (L) logic levels to simplify translation between formats.

\section*{FIGURE 3 - 16-BIT ALU EXAMPLE}

Most Significant Slice


TABLE 5 - RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Parameter } \\
Symbol & Value & Unit \\
\hline \begin{tabular}{c} 
Supply Voltage \\
(VCC \(=0\) Volts)
\end{tabular} & \(\mathrm{V}_{\mathrm{EE}}\) & -4.68 to -5.72 & Vdc \\
\hline \begin{tabular}{c} 
Operating Temperature \\
(Functional)
\end{tabular} & \(\mathrm{TA}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Output Drive & - & \(50 \Omega\) to -2.0 Vdc & - \\
\hline Junction Temp & \(\mathrm{TJ}_{J}\) & 130 Max & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{TABLE 6 - ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board with heat sink and transverse air flow greater than 1000 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristics} & \multirow{3}{*}{Symbol} & \multirow[t]{3}{*}{Pin Under Test} & \multicolumn{8}{|c|}{MC10902 Test Limits} & \multicolumn{5}{|c|}{\multirow[b]{2}{*}{Voltage Applied to Pins Listed Below}} & \multirow[b]{3}{*}{\[
\begin{gathered}
\left(\mathrm{VCcO}_{\mathrm{cco}}\right) \\
\left(\mathrm{V}_{\mathrm{cc}}\right) \\
\text { Gnd }
\end{gathered}
\]} \\
\hline & & & \multicolumn{2}{|c|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+70^{\circ} \mathrm{C}\)} & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{V}_{\mathrm{IH} \text { max }}\) & \(\mathrm{V}_{\mathrm{IL}}\) min & \(\mathrm{V}_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & VEE & \\
\hline Power Supply Drain Current & IEE & 9,43 & - & 890 & - & 712 & 890 & - & 890 & mAdc & - & - & - & - & \multirow[t]{10}{*}{\({ }^{9,43}\)} & \[
\begin{gathered}
3,15,20 \\
26,60,66
\end{gathered}
\] \\
\hline \multirow{5}{*}{Input Current} & \multirow{4}{*}{linH} & 4 & - & 1750 & - & - & 1750 & - & 1750 & \(\mu\) Adc & 4 & - & - & - & & \\
\hline & & \[
\begin{array}{r}
40 \\
45,42 \\
\hline
\end{array}
\] & - & 750 & - & - & 750 & - & 750 & \(\mu\) Adc & 40 & - & - & - & & \\
\hline & & \[
\begin{gathered}
24, \\
44,41, \\
50,51, \\
65,34, \\
12,5, \\
22,6 \\
\hline
\end{gathered}
\] & - & 550 & - & - & 550 & - & 550 & \(\mu\) Adc & 65 & - & - & - & & \\
\hline & & * & - & 200 & - & - & 200 & - & 200 & \(\mu\) Adc & 46 & - & - & - & & \\
\hline & linL & * & 0.5 & - & 0.5 & - & - & 0.5 & - & \(\mu\) Adc & - & 46 & & & & \\
\hline Logic "1" Output Voltage & V OH & 63 & -1.000 & -0.840 & -0.960 & - & -0.810 & -0.905 & -0.730 & \(\mathrm{V}_{\mathrm{dc}}\) & \[
\begin{gathered}
\hline 5,6,13,22 \\
25,65 \\
\hline
\end{gathered}
\] & - & - & - & & \\
\hline Logic " 0 " Output Voltage & V OL & 63 & \(-1.950\) & -1.665 & -1.950 & - & -1.650 & \(-1.950\) & \(-1.625\) & \(\mathrm{V}_{\mathrm{dc}}\) & \[
\begin{array}{|c|}
\hline 13,22,25 \\
41,44,45,65 \\
\hline
\end{array}
\] & - & - & - & & \\
\hline ```
Logic "1"
    Threshold Voltage
``` & \(\mathrm{V}_{\text {OHA }}\) & 63 & -1.02 & - & -0.980 & - & - & -0.925 & - & \(\mathrm{V}_{\mathrm{dc}}\) & - & - & \[
\begin{gathered}
5,6,13,22 \\
25,65 \\
\hline
\end{gathered}
\] & - & & \\
\hline \[
\begin{aligned}
& \text { Logic " } 0 \text { " } \\
& \text { Threshold Voltage } \\
& \hline
\end{aligned}
\] & VOLA & 63 & & -1.645 & - & - & -1.630 & - & -1.605 & \(\mathrm{V}_{\mathrm{dc}}\) & - & - & \[
\begin{gathered}
13,22,25,41 \\
44,45,65 \\
\hline
\end{gathered}
\] & - & & \(\dagger\) \\
\hline
\end{tabular}
*All or All Other Inputs
NOTE: All inputs have input pulldown resistors (\(\sim 68 \mathrm{k} \Omega\)) between input and \(V_{E E}\)

\section*{Switching Characteristics Over Operating Voltage and Temperature Range}

Tables 7 and 8 define timing characteristics of the MC10900 over operating voltage and temperature ranges. Worst case Setup and Hold and Propagation Delays are calculated for VEE \(=-5.2\) volts \(\pm 10 \%\) and a \(T_{J} \max =115^{\circ} \mathrm{C}\). The maximum recommended operating junction temperature is \(+130^{\circ} \mathrm{C}\).

Calculated limits are based on several performance factors as described in Motorola's Preliminary Design Manual for the MECL 10,000 Macrocell Array. Factors include worst case delays due to Macro selections, Fan-Out, Metal Lengths, Wire-Or, and Input Follower options. AC measurements are performed on each device to assure process integrity; however, Motorola does not guarantee limits at this time.

TABLE 7 - SET UP AND HOLD TIMES (NANOSECONDS) 0 to \(70^{\circ} \mathrm{C} \mathrm{T}_{\mathbf{A}}\left(\mathrm{T}_{\mathrm{J}} \text { NOT TO EXCEED } 115^{\circ} \mathrm{C}\right)^{*}\)
\begin{tabular}{|c|c|c|c|}
\hline Input & \begin{tabular}{l}
Clock \\
(Ref. Edge L To H)
\end{tabular} & Set up (Min) & Hold (Min) \\
\hline \(\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}\) BUS & \(\overline{\mathrm{EA}}, \overline{\mathrm{EB}}, \overline{\mathrm{EC}}\) & 1.6 & +0.6 \\
\hline \(\bar{A}, \bar{B}, \bar{C}, ~ B U S\) & CLK, CLK EN & 16.3 & -2.0 \\
\hline F1, F2, F3, F4, F5 & CLK, CLK EN & 17.9 & -0.9 \\
\hline \(\overline{\mathrm{SH}}, \underline{\mathrm{SHO}}, \mathrm{Al}\) & CLK, CLK EN & 8.7 & -0.8 \\
\hline SHIFT SEL & & & \\
\hline & CLK, CLK EN & 8.9 & -0.2 \\
\hline \(\overline{E A}, \overline{E B}, \overline{E C}(H \rightarrow L ~ E D G E) ~\) & CLK, CLK EN & 17.0 & -2.5 \\
\hline CLOCK EN (\(\mathrm{H} \rightarrow\) L EDGE) & CLK & 4.4 & +0.4 \\
\hline
\end{tabular}
*See Figures 4 and 5 for test definitions and circuit

TABLE 8 - PROPAGATION DELAY (NANOSECONDS)
0 TO \(\mathbf{7 0}{ }^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}\left(\mathrm{T}_{\mathrm{J}}\right.\) NOT TO EXCEED \(115^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|}
\hline Input & Output & Max \\
\hline \(\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}\) BUS & \(\bar{Y}\) OUTPUT, \(\overline{Z D H}, \overline{\text { ZDL }}\), \(\overline{\text { SIGN }}\) & 17.9 \\
\hline \(\overline{\mathrm{EA}}, \overline{\mathrm{EB}}, \overline{\mathrm{EC}}\) & Y OUTPUT, \(\overline{\text { ZDH }}\), \(\overline{\mathrm{ZDL}}\), SIGN & 18.7 \\
\hline F1, F2, F3, F4, F5 & \(\bar{Y}\) OUTPUT, \(\overline{\text { ZDH }}\), \(\overline{\mathrm{ZDL}}, \overline{\text { SIGN }}\) & 19.6 \\
\hline \(\overline{\mathrm{SH}} \overline{7}, \overline{\mathrm{SHO}}, \mathrm{A} / \mathrm{L}\) SHIFT SELECT & \(\bar{Y}\) OUTPUT, \(\bar{Z} \overline{\text { LDH,}}\), \(\overline{\text { ZDL }}\), SIGN & 10.3 \\
\hline \(\overline{C_{i n}}\) & \(\bar{Y}\) OUTPUT, \(\overline{\text { ZDH, }} \overline{\text { ZDL, }}\), \(\overline{\text { SIGN }}\) & 10.5 \\
\hline CLK, CLK EN & \(\bar{Y}\) Y OUTPUT, \(\overline{\text { SIGN }}\) & 5.8 \\
\hline ALU/R SEL, & \(\bar{Y}\) OUTPUT, SIGN & 4.4 \\
\hline ALU/R SIGN SEL & & \\
\hline \(\frac{\text { RESET }}{\text { OUT EN }}\) & Y OUTPUT, SIGN & 7.8 \\
\hline OUT EN & \(\bar{Y}\) OUPUT, SIGN & 5.4 \\
\hline \(\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}\) BUS & \(\overline{\mathrm{C}_{\text {out } 1}}, \overline{\mathrm{C}_{\text {out } 2}}, \overline{\mathrm{PG}}, \overline{\mathrm{GG}}\) & 11.5 \\
\hline \(\overline{\mathrm{EA}}, \overline{\mathrm{EB}}, \overline{\mathrm{EC}}\) & \(\overline{C_{\text {out } 11}}, \overline{\mathrm{C}_{\text {out } 2}}, \overline{\mathrm{PG}}\), \(\overline{\mathrm{GG}}\) & 13.0 \\
\hline F1, F2, F3, F4, F5 & \(\overline{C_{\text {out } 1}}, \overline{\text { Cout } 2, ~ \overline{P G}, ~ \overline{G G}}\) & 12.8 \\
\hline \(\bar{C}\) & Cout 2 & 4.3 \\
\hline F1, F2, F3, F4, F5 & OV1, OV2 & 17.3 \\
\hline \(\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}\) BUS & OV1, OV2 & 16.2 \\
\hline \(\overline{\mathrm{EA}}, \overline{\mathrm{EB}}, \mathrm{EC}\) & OV1, OV2 & 17.5 \\
\hline \(\overline{C_{i n}}\) & OV1 & 9.5 \\
\hline \(\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}\) BUS & \(\overline{\mathrm{SHO}}, \overline{\mathrm{SH} 7}\) & 8.6 \\
\hline \(\overline{\mathrm{EA}}, \overline{\mathrm{EB}}, \overline{\mathrm{EC}}\) & SH0, \({ }^{\text {SH7 }}\) & 9.5 \\
\hline F1, F2, F3, F4, F5 & SHO, \(\mathrm{SH}^{\text {7 }}\) & 9.7 \\
\hline
\end{tabular}

FIGURE 4 - SWITCHING WAVEFORMS

\section*{FIGURE 5 - SWITCHING TIME TEST CIRCUIT}

50 -ohm termination to ground located in each scope channel input.

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be \(<1 / 4\) inch from \(T P_{\text {in }}\) to input pin and \(T P_{\text {out }}\) to output pin.

INPUT PULSE
\(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=1.0 \mathrm{~ns}\) (20 to \(80 \%\))
\(\mathrm{V}_{\mathrm{OH}}=+1.11 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{OL}}=+0.31 \mathrm{~V}\)

FIGURE 6 - THERMAL CHARACTERISTICS (TYPICAL)

Heat Sink \#1 is from THERMALLOY \#15832-1. 3 Horizontal Fins, 0.563 inches square, Model No. 2284C.
Heat Sink \#2 is from WÁKEFIELD \#4493, Vertical Fins, 0.5 inches square.
NOTE: \(T_{J}=(\theta \mathrm{JA})\left(\mathrm{P}_{\mathrm{D}}\right)+T_{\mathrm{A}}\) WHERE \(\mathrm{T}_{\mathrm{J}}\) is the Junction Temperature, \(\mathrm{T}_{\mathrm{A}}\) is the Ambient Temperature,
\[
P_{D}=(I E E)\left(V_{E E}\right)+(15 \mathrm{~mW}) \text { (number of } 50 \Omega \text { outputs). }
\]

Still air \(\bar{\theta} J A\) (no heat sink) \(=35^{\circ} \mathrm{C} / \mathrm{W}\).

\section*{Product Preview}

\section*{8-BIT MICRO-CODE SEQUENCER}

The MC10904 is a high speed, expandable micro-code sequencer slice. This circuit, along with other members of the M10900 family, provides LSI logic building blocks for state-of-the-art computers, controllers, and other uses of high performance digital logic. The MC10904 as diagrammed in Figure 1 contains two main sections, condition input control and micro-code address control. Features include:
- Member of the M10900 family utilizing the MECL 10,000 Macrocell Array.
- 8-Bit slice, expandable to 24 bits (3 chips) with no extra logic.
- 4 level subroutine stack that can be pushed and popped simultaneously.
- Two direct data inputs for jump and conditional branch destinations.
- A special P counter pin (\(\overline{\mathrm{P}})\) simplifies loading RAM writeable macroprogram memory. The input can also be used to hold the system on a microinstruction for diagnostics.
- Multi-way branch on the lowest 4 P output bits allows a 16 -way branch.
- Six branch condition inputs can be combined in 14 logic patterns to minimize external branch control logic.
- R register for holding microprogram address information.
- An 8-bit counter for repeating instructions or sequences. Can also be used to count events, conditions, or time.

MECL-LSI 8-BIT MICRO-CODE SEQUENCER SLICE

CASE 745 68 Pin, JEDEC Std. Leadless Package

FIGURE 2 - INPUT/OUTPUT DIAGRAM

\section*{ARCHITECTURAL DESCRIPTION}

The M10900 family is a line of high performance standard digital LSI products designed around the MECL Macrocell Array. The MC10904 8-bit Micro-code Sequencer circuit controls a microprogram by generating microcode memory addresses, providing a means for sequencing through programs, and making micro-code conditional branch decisions. Each part is 8 bits wide and circuits are easily combined to meet microprogram memory size requirements.

The MC10904 P Register (Figure 1) holds the current micro-code address and supplies address information on outputs PO-P7. Next address is computed from inputs DA0-DA7, inputs DB0-DB7, and several points internal to the circuit including \(P\) Register incrementer, 4 deep subroutine stack, and the R Register. Select lines and conditional branch inputs control circuit op-
eration. The 4 bottom \(P\) address outputs are gated with force inputs F0-F3, thus providing 16-multiway branch capability.

Each MC10904 handles up to six condition inputs divided into groups of four (CAO-CA3), and two (CBOCB1). One bit from each group can be used by itself or logically combined with a bit from the other group to determine branch condition status. For example, a single micro-code instruction could incorporate "branch if less than or equal" by having an ALU sign bit on one set of condition inputs and zero detect on the other, then with S2-S5 select "A or B" in the Conditional Combinational Logic. The six condition inputs expand with additional sequencer circuits. Two MC10904s can address 64 K micro-code words and provide up to 12 conditional branch inputs.

\section*{PIN FUNCTION DESCRIPTION}

\section*{Data Inputs - DA0-DA7 and DB0-DB7}

Two 8-bit ports, DA and DB, are direct inputs for next address information. Bit 0 is the least significant bit and bit 7 the most significant. Either DA or DB may be selected by the D MUX and routed to the \(P\) Register. In addition, DB has a direct path to the R Register so that DA can be routed to the \(P\) register and DB simultaneously loaded into the R Register for storage. Either DA or DB can be selected to the Event (E) Counter. In some applications the DA inputs could come from an initial address lookup table (or similar function) while DB inputs connect to microcode memory next address field.

\section*{Program Address Outputs - P0-P7}

P0 through P7 display current micro-code address held in the P Register. The four lowest bits PO through P3 can be overridden and forced high (positive logic 1) by \(F\) inputs. \(P\) outputs normally connect directly to microcode memory address inputs.

\section*{Multi-Way Branch Inputs - F0-F3}

Four input pins F0, F1, F2, and F3 force P0, P1, P2, and P3 respectively high for multi-way branches. Unused \(F\) inputs should be held at a low logic level (L).
Incrementer Enable Inputs - \(\overline{\mathrm{IA}}\) and \(\overline{\mathrm{IB}}\)
Incrementer enable inputs, when both low, enable the P Register incrementer (+1 block in Figure 1) to function. If either enable input is high the incrementer is disabled and output equals input. \(\overline{\mathrm{IA}}\) and \(\overline{\mathrm{IB}}\) are either connected to a previous stage MC10904 \(\overline{\mathrm{IO}}\) output or used as a control input to override the incrementer. Unused inputs should be held low.

\section*{Incrementer Carry Output - \(\overline{\mathbf{I O}}\)}

Carry output indicates that the current count in the \(P\) register is maximum (all 1 bits) and the next cycle, if enabled, will roll the \(P\) Register to zero. Carry out is actually an anticipation of carry because the carry enable inputs are not used to derive the signal. \(\overline{10}\) connects to either \(\overline{\mathrm{IA}}\) or \(\overline{\mathrm{B}}\) inputs of all MC10904 circuits above it.

\section*{Select D Input - SD}

SD controls an 8-bit, 2-input multiplexer that selects either DA or DB inputs to an internal 8-bit bus. The bus goes to both the \(P\) Register and \(E\) counter. (See Table 1.) This bit is normally driven by the microcode memory.

TABLE 1 - SELECT DATA OPERATION
\begin{tabular}{|c|l|}
\hline SD & \multicolumn{1}{|c|}{ Register/Counter Input } \\
\hline L & DA Input \\
H & DB Input \\
\hline
\end{tabular}

\section*{LOAD R REGISTER - \(\overline{\text { RLD }}\)}
\(\overline{R L D}\) enables the R Register to be loaded from the DB inputs on a positive going clock, CLK, input. (See Table 2.)

TABLE 2 - R REGISTER OPERATION
\begin{tabular}{|c|l|}
\hline\(\overline{\text { RLD }}\) & \multicolumn{1}{c|}{ R Register } \\
\hline L & Parallel Load \\
H & Hold Data \\
\hline
\end{tabular}

\section*{Load and Enable E Counter - ELD and EEN}

ELD enables the E Counter to be parallel loaded from the D MUX output on a positive going clock (CLK) edge. \(\overline{\mathrm{EEN}}\) enables the E counter to decrement by 1 on each positive going clock edge. (See Table 3.)

TABLE 3 - COUNTER OPERATION
\begin{tabular}{|c|c|l|}
\hline ELD & EEN & \multicolumn{1}{|c|}{ E Count Output } \\
\hline L & L & Parallel Load \\
L & H & Parallel Laad \\
H & L & Decrement \\
H & H & No Change \\
\hline
\end{tabular}

Note: The E Counter will only decrement to zero, then will hold that value until loaded with a non-zero value (e.g., the counter does not rollover past zero). ELD is normally driven by microcode memory while \(\overline{E E N}\) is connected as required.
E Counter Zero Detect Output - Z
Zero Detect signifies all E Counter bits are low. (See Table 4.) The counter equals zero state disables the decrement function in Table 3.

TABLE 4 - ZERO DETECT OPERATIONS
\begin{tabular}{|c|cc|}
\hline \(\mathbf{Z}\) & & E Counter \\
\hline\(L\) & \(\overline{\text { Zero }}\) & \\
\(H\) & Zero & \\
\hline
\end{tabular}

\section*{Condition Inputs - CO, C1, and C2}

The logic OR of \(\mathrm{CO}, \mathrm{C} 1\), and C 2 , Table 5 is the test point (C) for conditional branch decisions, refer to Ta ble 6. Test node C also affects stack push and pop operations as shown in Tables 7 and 8. The three condition inputs C0, C1, and C2 interconnect to MC10904 condition, COND, outputs insuring multiple parts all test the same branch point. See the condition output description for additional details. Unused C0, C1, or C2 inputs should be held low.

TABLE 5 - CONDITION INPUT OPERATIONS
\begin{tabular}{|c|c|c|c|}
\hline C0 & C1 & C2 & C (Internal Test Point) \\
\hline L & L & L & L \\
H & X & X & H \\
X & H & X & H \\
X & X & H & \(H\) \\
\hline
\end{tabular}

Conditional Branch Input - CNB
\(\overline{\mathrm{CNB}}\) selects between conditional branch and unconditional jump. A low (L) level on this input enables the MC10904 to test C0, C1, and C2 and determine the next \(P\) Register address. A high (\(H\)) level on \(\overline{C N B}\) overrides the C inputs enabling a direct jump. (See Table 6.) \(\overline{\mathrm{CNB}}\) also affects stack push and pop operations as shown in Tables 7 and 8.

TABLE 6 - P REGISTER SOURCE CONTROL
\begin{tabular}{|l|c|c|c|l|l|}
\hline S1 & S0 & CNB & C* & \multicolumn{1}{|c|}{ Next P } & \multicolumn{1}{|c|}{ Instruction } \\
\hline L & L & X & X & P Incr & Increment \\
L & H & H & X & D Bus & Direct Jump \\
L & H & L & H & D Bus & Br. Cond. Met \\
L & H & L & L & P Incr & Br. Cond. Failed \\
H & L & H & X & R Reg & Direct Jump \\
H & L & L & H & R Reg & Br. Cond. Met \\
H & L & L & L & P Incr & Br. Cond. Failed \\
H & H & H & X & Stack & Direct Jump/Pop \\
H & H & L & H & Stack & Br. Cond. Met/Pop \\
H & H & L & L & P Incr & Br. Cond. Failed \\
\hline \multicolumn{7}{l|}{} \\
\hline
\end{tabular}

\section*{Branch Selection Inputs - S0 and S1}

These two inputs are decoded to select a source for the next \(P\) Register address. The selection may be modified for conditional branch instructions as shown in Table 6. S0 and S1 also control stack operation as shown in Table 8. These bits are normally driven by microcode memory.

\section*{Stack Push Input - Push}

When pushed, the incremented \(P\) count is written into the top of the stack and all previous stack contents are pushed down by one. There is no check for overflow on a stack push or underflow on stack pop. Simultaneous stack push and pop results when jumping or branching to the stack (Table 6) and asserting a PUSH command (Table 7). The stack is automatically popped on any stack to \(P\) Register transfer except simultaneous push and pop and does not require external control. Figure 3 illustrates the various stack operations. Note the simultaneous push/pop saves the previous stack top even though the system jumped to that address.

\section*{FIGURE 3 - MC10904 Stack Operation}

Tables 7 and 8 define stack push and pop operation. Push is normally driven from microcode memory.

TABLE 7 - STACK PUSH OPERATION
\begin{tabular}{|c|c|c|c|l|}
\hline\(\overline{\text { CNB }}\) & C & Push & Stack Push & \multicolumn{1}{|c|}{ Instruction } \\
\hline X & X & L & No & No Stack Push \\
L & H & H & Yes & Push On Cond. Met \\
H & X & H & Yes & Push Always \\
L & L & H & No & Push On Cond. Failed \\
\hline
\end{tabular}

TABLE 8 - STACK POP OPERATION
\begin{tabular}{|l|c|c|c|c|c|l|}
\hline S1 & So & CNB & C & Push & Stack Pop & \multicolumn{1}{|c|}{ Instruction } \\
\hline L & L & X & X & X & No & Increment P \\
L & H & X & X & X & No & Select D Bus \\
H & L & X & X & X & No & Select R Register \\
H & H & H & X & L & Yes & Jump to Stack \\
H & H & L & H & L & Yes & Branch to Stack Cond. Met \\
H & H & L & L & X & No & Branch to Stack Cond. Fail \\
H & H & H & X & H & No & Simultaneous Push Pop \\
H & H & L & H & H & No & Simultaneous Push Pop \\
\hline
\end{tabular}

Condition A Inputs - CAO, CA1, CA2, CA3, S6 and S7

One of four external test conditions CAO-CA3 can be selected by S 6 and S 7 to an internal node, CA. (See Figure 1.) CA test selection is defined in Table 9.

TABLE 9 - CA CONDITION TEST POINT
\begin{tabular}{|c|c|c|}
\hline S6 & S7 & CA Test Point \\
\hline L & L & CA0 \\
H & L & CA1 \\
L & H & CA2 \\
H & H & CA3 \\
\hline
\end{tabular}

\section*{Condition B Inputs - CB0, CB1, and S8}

One of two external test conditions CB0 or CB1 can be selected by S 8 to an internal node, CB. CB test selection is defined in Table 10.

TABLE 10 - CB CONDITION TEST POINT SELECTION
\begin{tabular}{|c|c|}
\hline S8 & CB Test Point \\
\hline\(L\) & CB0 \\
\(H\) & CB1 \\
\hline
\end{tabular}

\section*{Conditional Branch Combination Logic Select - S2, S3, S4, and S5}

S2 through S5 are decoded into 14 different logic selections. (See Table 11.) Final decoded condition selection is presented on the COND output. Table 11 uses CA and CB test points previously defined in tables 9 and 10.

TABLE 11 - CONDITION LOGIC COMBINATION SELECTION
\begin{tabular}{|c|c|c|c|c|}
\hline S5 & S4 & S3 & S2 & COND \\
\hline L & L & L & L & L \\
\hline L & L & L & H & CA \\
\hline L & L & H & L & CB \\
\hline L & L & H & H & \(C A\) and \(C B\) \\
\hline 1 & H & L & L & CA or CB \\
\hline L & H & L & H & \(C A\) and \(\overline{C B}\) \\
\hline L & H & H & L & CA or \(\overline{\mathrm{CB}}\) \\
\hline L & H & H & H & L \\
\hline H & L & L & L & H \\
\hline H & L & L & H & \(\overline{C A}\) \\
\hline H & L & H & L & \(\overline{C B}\) \\
\hline H & L & H & H & \(\overline{C A}\) or \(\overline{C B}\) \\
\hline H & H & L & L & \(\overline{C A}\) and \(\overline{C B}\) \\
\hline H & H & L & H & \(\overline{C A}\) or CB \\
\hline H & H & H & L & \(\overline{C A}\) and CB \\
\hline H & H & H & H & H \\
\hline
\end{tabular}

\section*{Condition Output - COND}

COND output is the result of selecting CAO through CA3, CB0 or CB1, and logically combining the selections. The COND output of one MC10904 goes to a condition input \(\mathrm{C}, \mathrm{C} 1\), or C 2 of itself and other parallel MC10904 circuits. Three MC10904s would be interconnected by tying COND output of one to all three C0 inputs, COND output of the second to all C1 inputs, and COND output of the third to all C2 inputs.

\section*{Increment \(\mathbf{P}\) Input - \(\overline{\mathbf{P}}\)}

The increment \(P\) register input is normally used to provide micro-code addressing at system start up when it is required to load read/write RAM microprogram storage. \(\overline{\mathrm{IP}}\) overrides all input controls except F0 through F3 inputs and Reset, causing the MC10904 to function in an Increment \(P\) Register mode only. A second \(\overline{\mathrm{P}}\) function could be to halt system operation by forcing \(\overline{\mathrm{IP}}\) low and disabling the incrementer with \(\overline{\mathrm{IA}}\) and \(\overline{\mathrm{IB}}\) inputs. \(\overline{\mathrm{P}}\) operation is shown in Table 12.

TABLE 12 - \(\overline{\mathrm{IP}}\) FORCED INCREMENT CONTROL
\begin{tabular}{|c|l|}
\hline\(\overline{\mathbf{I P}}\) & \multicolumn{1}{|c|}{\(\mathbf{P}\) Register Operation } \\
\hline\(L\) & Increment \(\mathbf{P}\) \\
\(H\) & Normal \\
\hline
\end{tabular}

Note that if \(\overline{\mathbb{P}}\) is held low and the clock input (CLK) continues running and both \(\overline{\mathrm{IA}}\) and \(\overline{\mathrm{I}}\) are low then the MC10904 will increment the \(P\) counter at the clock rate. To load a microcode memory from a slow data source either clock must be slowed or, \(\overline{\mathrm{IA}}\) or \(\overline{\mathrm{IB}}\) held high while accessing a new data word.

\section*{Reset - RST}

Reset overrides all other inputs including \(\overline{\mathrm{P}}\) and forces the PRegister to all logic low outputs (positive logic 0). Reset is a clocked function and operates on the positive going clock edge. Even though \(P\) Register is reset, F0 through F3 inputs can override the four least significant \(P\) outputs. Reset would be commonly used at system start up, after loading micro-code, to locate a predefined starting address. Reset also zeros the E counter and sets the microprogram stack to the first location. Reset is normally at a low logic level (L) and is taken high for reset.

\section*{Clock - CLK}

All registers and counters are activated on a positive going (LOW to HIGH) clock edge.

\section*{APPLICATIONS INFORMATION}

Two MC10904 circuits, interconnected as shown in Figure 4, generate up to 16 -bit micro-code addresses. The right side MC10904 handles the 8 least significant bits and the left side up to 8 most significant bits. Not using all 8 most significant bits adapts the circuit to microprogram memory size.

Parallel address paths DA and DB go to both circuits with least significant address bits going to the right side MC10904. DA and DB inputs normally require the same number of bits as P micro-code address outputs. Control signals are divided into three groups as shown in Figure 4. Common controls go to the same input on both circuits. Common controls handle data transfers and subroutine stack operations, thus insuring both parts perform the same next address function. Each MC10904 also requires separate control inputs, primarily for selecting branch decision test points.

Separate controls on the least significant MC10904 operate the E Counter through \(\overline{E L D}\) and \(\overline{\mathrm{EEN}}\) inputs. The E Counter is limited to 8 bits since there is no provision for carry between circuits. \(Z\) output from the E Counter is routed to any CA or CB input on either part (CAO on the right side MC10904 in the Figure 4 example). The figure only shows multi-way branch \(F\) inputs on the least significant stage providing branches to 16 consecutive addresses. Page branches may also be possible with \(F\) inputs on the left side MC10904.
The \(P\) incrementer is interconnected by tying \(\overline{10}\) of the first circuit to \(\overline{\bar{B}}\) of the second. Common control \(\overline{I A}\) provides for overriding the incrementer, if desired. COND output of the first MC10904 connects to both C0 inputs and the second stage COND to both C1 inputs. This insures both circuits test the same branch condition regardless of CA inputs, CB inputs, or S 2 through S 8 selections.

Tables 1 through 12 provide for a wide range of next address sequence instructions and various address input sources. Table 13 illustrates input selections for common next address examples. Other variations are possible and may be selected to better fit program flow requirements.

\section*{MC10904}

The C column in Table 13 is the logic OR of \(\mathrm{C} 0, \mathrm{C} 1\), and C2 as described in Table 5. This is the test point for all conditional branch decisions. Most of the instructions are self explanatory and source selections between DA, DB, and R Register are more for programming example than system architecture. Instruction 9 loads the E Counter to set up a repeat instruction sequence. The repeat is shown in instruction 10 where the microprogram would continue executing the com-
mand defined by the \(R\) Register address until \(E\) Counter equals zero. Selecting \(\overline{\mathbf{Z}}\) for the test condition is easily accomplished with condition combinational logic (Table 11). Repeating a given subroutine could be accomplished with the following commands: 1) Set E Counter, 2) Jump to Subroutine, 3) Decrement the E Counter once during the subroutine, and 4) Return on Condition from Subroutine. Failure to return would cause a jump to subroutine start.

TABLE 13 - MC10904 SEQUENCE INSTRUCTION EXAMPLES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SD & \(\overline{\text { RLD }}\) & ELD & EEN & S1 & So & CNB & PUSH & C & INSTRUCTION \\
\hline 1 & X & H & H & H & L & L & X & L & X & Increment \\
\hline 2 & H & H & H & H & L & H & H & L & X & JUMP TO DB BUS \\
\hline 3 & L & L & H & H & L & H & H & L & X & JUMP TO DA BUS, DB BUS TO R REG \\
\hline 4 & x & H & H & H & H & L & L & & C & CONDITIONAL BRANCH TO R REG \\
\hline 5 & L & H & H & H & L & H & H & H & \(\times\) & JUMP TO SUBROUTINE AT DA BUS \\
\hline 6 & x & H & H & H & H & H & H & L & X & RETURN FROM SUBROUTINE \\
\hline 7 & H & H & H & H & L & H & L & H & C & COND. BRANCH TO SUBROUTINE AT DB \\
\hline 8 & x & H & H & H & H & H & L & L & C & COND. RETURN FROM SUBROUTINE \\
\hline 9 & L & H & L & H & L & L & x & L & \(\underline{x}\) & INCREMENT, DA TO E COUNTER \\
\hline 0 & X & H & H & L & H & L & L & L & \(\frac{\chi}{z}\) & JUMP TO R UNTIL E COUNT \(=\) ZERO \\
\hline
\end{tabular}

FIGURE 4-16 BIT MICRO-CODE SEQUENCER EXAMPLE

\section*{TABLE 14 - RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Symbol & Value & Unit \\
\hline \begin{tabular}{c}
Supply Voltage \\
\(\left(V_{C C}=0\right.\) Volts)
\end{tabular} & \(\mathrm{V}_{\mathrm{EE}}\) & -4.68 to -5.72 & Vdc \\
\hline \begin{tabular}{c}
Operating Temperature \\
(Functional)
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Output Drive & - & \(50 \Omega\) to -2.0 Vdc & - \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 130 max & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table (Table 15), after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 1000 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

TABLE 15 - ELECTRICAL CHARACTERISTICS

\footnotetext{
NOTE: All inputs except pins \(1,2,17,18,19,67\), and 68 have input puldown resistors (\(\sim 68 \mathrm{k} \Omega\)) between the input and \(\mathrm{V}_{\mathrm{EE}}\). These 7 inputs, if unused, must be tied to \(V_{\mathrm{OL}}\) or \(\mathrm{V}_{\text {TT }}\).
}

\section*{Switching Characteristics Over Operating Voltage and Temperature Range}

Tables 16 and 17 define timing characteristics of the MC10904 over operating voltage and temperature ranges. Worst-case Setup and Hold and Propagation Delays are calculated for \(V_{E E}=-5.2\) volts \(\pm 10 \%\) and a Tjmax \(=115^{\circ} \mathrm{C}\). The maximum recommended operating junction temperature is \(+130^{\circ} \mathrm{C}\).

TABLE 16 - SETUP AND HOLD TIMES (NANOSECONDS)
\(0^{\circ}\) to \(70^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}\) (\(\mathrm{T}_{\mathrm{J}}\) not to exceed \(+115^{\circ} \mathrm{C}\))
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ From } & To & \begin{tabular}{c}
Setup \\
(Min)
\end{tabular} & \begin{tabular}{c}
Hold \\
(Min)
\end{tabular} \\
\hline DA BUS, DB BUS & CLOCK & 1.0 & 9.0 \\
PUSH, SD, \(\overline{\operatorname{RLD}}, \overline{\mathrm{ELD}}, \overline{\mathrm{EEN}}\) & CLOCK & 4.0 & 7.0 \\
\(\overline{\mathrm{IA}}, \overline{\mathrm{IB}}\) & CLOCK & 4.6 & 2.0 \\
S0, S1, \(\overline{\mathrm{CNB}}\) & CLOCK & 2.0 & 8.0 \\
C0, C1, C2 & CLOCK & 2.0 & 8.0 \\
\(\overline{\mathrm{P}, \overline{\mathrm{RST}} \overline{\mathrm{T}}}\) & CLOCK & 2.5 & 8.0 \\
\hline
\end{tabular}

Calculated limits are based on several performance factors as described in Motorola's Preliminary Design Manual for the MECL 10,000 Macrocell Array. Factors include worst case delays due to Macro selections, Fan-Out, Metal Lengths, Wire-OR, and Input Follower options. AC measurements are performed on each device to assure process integrity; however, Motorola does not guarantee limits at this time.

TABLE \(\begin{gathered}17 \\ \mathbf{0}^{\circ} \text { to } \\ 70^{\circ} \mathrm{T}_{\mathbf{A}}\left(\mathrm{T}_{\mathrm{J}} \text { not to exceed }+115^{\circ} \mathrm{C}\right)\end{gathered}\)
\begin{tabular}{|l|l|r|r|}
\hline \multicolumn{1}{|c|}{ Input } & \multicolumn{1}{|c|}{ Output } & \multicolumn{1}{c|}{ Typ } & \multicolumn{1}{c|}{ Max } \\
\hline CLOCK & P4-P7 & 9.1 & 14.0 \\
CLOCK & PO-P3 & 9.1 & 14.0 \\
CLOCK & IO & 11.1 & 17.0 \\
CLOCK & Z & 15.7 & 24.0 \\
FO-F3 & PO-P3 & 2.9 & 4.5 \\
S2S5 & COND & 6.5 & 10.0 \\
S6-S8 & COND & 7.2 & 11.0 \\
CA0-3, CB0-1 & COND & 6.9 & 10.5 \\
\hline
\end{tabular}

FIGURE 5 - SWITCHING WAVEFORMS

\section*{FIGURE 6 - SWITCHING TIME TEST CIRCUIT}

50 -ohm termination to ground located in each scope channel input.

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be \(<1 / 4\) inch trom TPin to input pin and TP out \(_{\text {to }}\) output pin.

FIGURE 7 - THERMAL CHARACTERISTICS (TYPICAL)

Heat Sink \#1 is from THERMALLOY \#15832-1. 3 Horizontal Fins, 0.563 inches square, Model No. 2284C.
Heat Sink \#2 is from WAKEFIELD \#4493, Vertical Fins, 0.5 inches square.
NOTE: \(T_{J}=\left(\theta_{J A}\right)\left(P_{D}\right)+T_{A}\) WHERE \(T_{J}\) is the Junction Temperature, \(T_{A}\) is the Ambient Temperature.
\(P_{D}=\left(I_{E E}\right)\left(V_{E E}\right)+(15 \mathrm{~mW})\) (number of \(50 \Omega\) outputs).

\section*{MC10905}

\section*{Advance Information}

\section*{16-BIT EXPANDABLE ERROR DETECTION AND CORRECTION UNIT}

The MC10905 is a high speed 16-bit error detection and correction unit that is easily expandable to handle up to 96 data bits. The unit is designed to improve the reliability of memory systems by detecting and correcting any single bit error while detecting all double bit errors and some multiple bit errors. A high speed pipelined architecture is an important feature providing separate input and output data ports which improves the performance and simplifies the system design.
- High Speed Pipelined Architecture.
- On-Chip Latches for Input Data, Check Bits, Output Data, and Error Flags.
- Separate Input and Output Data Ports.
- Expandable to 96 Bits.
- Full Single Error Correction and Double Error Detection.
- During a Read or Check Mode, Data Correction Can Be Disabled While Checking for Errors.
- Very Fast Error Detect

For 16 Bits, 17.2 ns Max.
For 32 Bits, 21 ns Max.
For 48 through 96 Bits, 28.2 ns Max.
- Very Fast Data Correct

For 16 Bits, 19.7 ns Max.
For 32 Bits, 28 ns Max.
For 48 through 96 Bits, 31.3 ns Max.
- Very Fast Check Bit Generate

For 16 Bits, 10.7 ns Max.
For 32 Bits, 17 ns Max.
For 48 through 96 Bits, 17.8 ns Max.

MECL-LSI
16-BIT EXPANDABLE ERROR DETECTION AND CORRECTION UNIT

Pin Assignments and Definitions (See Figure 2.)
\begin{tabular}{|c|c|c|}
\hline Pin Name & Number & Definition and Description \\
\hline \(\mathrm{Dl}_{0-15}\) & \[
\begin{gathered}
42-35, \\
33-27,25
\end{gathered}
\] & DATA IN, bits 0 through 15: These 16 data inputs are connected to a data input latch which is then used in error detection and/or correction, and for generating check bits. \\
\hline \begin{tabular}{l}
\(\mathrm{CBl}_{\mathrm{O}} / \mathrm{NC}\) \\
\(\mathrm{CBI}_{1} / \mathrm{GEN}\) \\
\(\mathrm{CBI}_{2}\) \\
\(\mathrm{CBl}_{3}\) \\
\(\mathrm{CBl}_{4}\) \\
\(\mathrm{CBI}_{5} / \mathrm{GEN}\) \\
\(\mathrm{CBI}_{6} / \mathrm{NC}\)
\end{tabular} & \[
\begin{aligned}
& 50 \\
& 49 \\
& 48 \\
& 47 \\
& 46 \\
& 45 \\
& 44
\end{aligned}
\] & \begin{tabular}{l}
CHECK BITS IN/NO CORRECTION/GENERATE: These input pins can serve one of three functions depending on the selected slice position as described in Table 2. As an example, for slice position 32B, these input pins are all used to input the check bits. For slice position 64A/32A, the first five pins are "don't cares" while pin 45 is GENERATE. Pin 44 is NO CORRECTION. \\
The Check Bits are connected to an input latch which is then used to help generate the syndrome bits used in error detection. (See Table 4). \\
The GENERATE pin when a HIGH selects the generate check bit mode and when a LOW selects the read mode for error checking and/or correction of the input data and check bits. \\
The NO CORRECTION pin, when HIGH during the read mode (\(G E N=L\)), disables the data correction while continuing to check for errors. When the pin is LOW during the read mode, the data correction circuitry is enabled. \\
If the NO CORRECTION pin is HIGH when the GENERATE pin is HIGH, the diagnostic write mode is selected. This can be used to check the error detection and correction circuitry of the MC10905.
\end{tabular} \\
\hline \(V_{E E}\) & 9,43 & -5.2 Volt Supply \\
\hline \(V_{C C}\) & 26,60 & Ground for Internal Logic \\
\hline \(\mathrm{V}_{\mathrm{CCO}}\) & 3, 15, 20, 66 & Ground for Output Drivers \\
\hline \[
\begin{aligned}
& \mathrm{SYI}_{0} / \mathrm{PCB}_{0} \\
& \mathrm{SYI}_{1} / \mathrm{PCB}_{1} \\
& \mathrm{SYI}_{2} / \mathrm{PCB}_{2} \\
& \mathrm{SYI}_{3} / \mathrm{PCB}_{3} \\
& \mathrm{SYI}_{4} / \mathrm{PCB}_{4} \\
& \mathrm{SYI}_{5} / \mathrm{PCB}_{5} \\
& \mathrm{SYI} / \mathrm{NC}_{6} \\
& \mathrm{SYI} / \mathrm{GEN}
\end{aligned}
\] & \begin{tabular}{l}
51 \\
52 \\
53 \\
54 \\
55 \\
56 \\
57 \\
58
\end{tabular} & \begin{tabular}{l}
SYNDROME IN, bits 0-7/PARTIAL CHECK bits \(0-5 /\) NO CORRECTION/GENERATE: These input pins perform more than one function depending on the selected slice position (as described in Table 2). \\
The \(\mathrm{SYI}_{\mathrm{O}-7}\) pins are used to input the syndrome bits (for slice positions 64D, 64B/C, and 64A/32A) for decoding the error status and correcting the single data bit errors. (See Tables \(6 \mathrm{c}, \mathrm{d}\), and e.) \\
The \(\mathrm{PCB}_{0-5}\) pins are used in the 32 -bit data configuration by slice 32 B in order to generate the complete check bit and syndrome bit information (See Table 4 and Figure 4.) \\
In the 16-bit slice position, pins 51-56 are don't care conditions. Pin 57 is NC and pin 58 is the GEN signal for slice positions 16 and 32B. The NC and GEN signal definitions are described above.
\end{tabular} \\
\hline \[
\begin{aligned}
& \mathrm{MA} \\
& \mathrm{MB} \\
& \mathrm{SYO}_{6} / \mathrm{CBO}_{6} / \\
& \quad \mathrm{MC}
\end{aligned}
\] & \[
\begin{aligned}
& 61 \\
& 59 \\
& 65
\end{aligned}
\] & SLICE POSITION MODE SELECT: These pins are used to select the slice position as shown in Table 1. Pin 65 is a bidirectional pin that is used as an input (when \(M A=H\) and \(M B=L\)) for selecting between slice position 16 or \(64 \mathrm{~A} / 32 \mathrm{~A}\). Pin 65 is an output (syndrome or check bit output, bit 6) for slice position 64D, 64 B/C, and 32B. \\
\hline \[
\begin{aligned}
& \mathrm{SYO}_{0} / \mathrm{CBO}_{0} \\
& \mathrm{SYO}_{1} / \mathrm{CBO}_{1} \\
& \mathrm{SYO}_{2} / \mathrm{CBO}_{2} \\
& \mathrm{SYO}_{3} / \mathrm{CBO}_{3} \\
& \mathrm{SYO}_{4} / \mathrm{CBO}_{4} \\
& \mathrm{SYO}_{5} / \mathrm{CBO}_{5} \\
& \mathrm{SYO}_{6} / \mathrm{CBO}_{6} / \\
& \mathrm{MC}
\end{aligned}
\] & \[
\begin{gathered}
5 \\
4 \\
2 \\
1 \\
68 \\
67 \\
65
\end{gathered}
\] & SYNDROME OUTPUT/CHECK BIT OUTPUT: When GEN \(=L\), the syndrome output appears at the pe pins, and when \(G E N=H\), the generated check bits appear. The truth table for the se outputs is shown in Table 4. Note that pin 65 is used as a slice position input (MC) when \(M A=H\) and \(M B=L\). \\
\hline \(\mathrm{DO}_{0-15}\) & \[
\begin{gathered}
6-8,10-14 \\
16-19,21-24
\end{gathered}
\] & DATA OUT, bits 0 through 15: These 16 data outputs come from a data out latch. The inputs to the data out latch are the contents of the data input latch as modified by the data correction network. The truth table for \(\mathrm{DO}_{0-15}\) is shown in Table 5. \\
\hline ERROR & 63 & ERROR output: This ERROR flag is the output of a latch. The input to the latch comes from the error detection circuitry. When in the read mode (\(G E N=L\)), the ERROR Line is LOW if no errors are detected and it is HIGH if one or more errors are detected. \\
\hline SE & 64 & SINGLE ERROR: The SINGLE ERROR flag is the output of a latch with the input of the latch coming from the error detection circuitry. When in the read mode (GEN \(=L\)), the SINGLE ERROR output is HIGH if an error has occurred that can be corrected, and the output is low if no error has been detected or if two or more errors are detected. The truth tables for the error outputs are shown in Tables 5 and 6. \\
\hline \(\overline{\mathrm{LLE}}\) & 34 & INPUT LATCH ENABLE: This input is used to latch the data at the DI and CBlinput pins. When the input is LOW, the latches are enabled with the data at the latch output following the input. When the input is high, the data is latched in the previous state. \\
\hline OLE & 62 & OUTPUT LATCH ENABLE: This input is used to control the output latches for \(\mathrm{DO}_{0-15}, \mathrm{SE}\), and ERROR. When the input is HIGH, the latches are enabled, and if the input is LOW, the information is latched in the previous state. OLE and ILE can be tied together for pipelining the data flow. \\
\hline
\end{tabular}

\section*{ARCHITECTURAL DESCRIPTION}

The M10900 family is a line of high performance standard digital LSI products designed around the MECL Macrocell Array. The MC10905 provides an error detection and correction unit (EDCU) between the memory and the CPU that improves system reliability by virtually eliminating system downtime due to memory errors without sacrificing performance. For high speed memory systems it is important that the EDCU be as fast as possible since the delay for detecting errors can add directly to the memory access time.

The dual bus, pipelined architecture (Figure 1) of the MC10905 simplifies system design, reduces the part count, and provides the fastest EDCU on the market. A masterslave data transfer can be accomplished by connecting the latch enables (\(\overline{L L E}\) and OLE) together. Error logging can be accomplished by monitoring the syndrome output. Catastrophic memory failures (all 1 's or 0 's) are also detected. A diagnostic write mode is a special feature which can be used to test the error checking of the MC10905.
In most high performance memory systems, separate MC10905 configurations will be used for writing and reading data to and from memory using separate input and
output data buses. Bidirectional data buses slow the performance of high speed memory systems by requiring additional components in the data path such as multiplexors and buffers, and complicating transmission line terminations.

\section*{FUNCTIONAL DESCRIPTION}
- The MC10905 uses a modified Hamming code that allows single error correction with single and double error detection. When writing data to memory, check bits are generated by the MC10905 from selected bits of the data word and stored in memory along with the data word. For a 16 -bit wide data word, 6 check bits are required, while 32 -bit and 64-bit data words require 7 and 8 check bits respectively. When reading the data from memory, the MC10905 regenerates the check bits and exclusive OR's them with the check bits read from memory producing syndrome bits. If the syndrome bits are all LOW, no errors are detected. If one or more of the syndrome bits are HIGH, an error has been detected. The syndrome bits identify the bit-in-error for single errors, all double errors, and some multiple errors. If a single data bit is in error, the data correction logic inverts this bit (if \(\mathrm{NC}=0\)), thus correcting the data word.

\section*{SLICE POSITION SELECT - MA, MB, AND MC}

The MC10905 can be configured to handle 16-, 32-, 48 -, 64-, 76-, 88 - and 96 -bit data words. Figures 3, 4, 5, and 6 show the different data configurations (48-bit configuration is a subset of the 64-bit configuration). Table 1 shows logic levels that must be applied to the slice position mode inputs (MA, MB, MC) in order to select the chip position for the chosen data configuration. Note that Pin 65 is a bidirectional pin that is used as an input (only when \(M A=H\) and \(M B=L\)) for selecting between chip positions 16 or \(64 \mathrm{~A} / 32 \mathrm{~A}\). Pin 65 is an output (syndrome or check bit output, bit 6) for chip positions 64D, 64B/C, and 32B.
Some input pins have different signal assignments that are dependent on the selected chip position as shown in

Table 2. The GEN (also NC) signal can be 1 of 3 pins depending on the chip position. GEN is pin 45 for slice positions 64 D and \(64 \mathrm{~A} / 32 \mathrm{~A}\), pin 58 for positions 16 and 32 B , and pin 49 for positions 64B/C. Pins 51-56 are the syndrome bit inputs that are used to decode the error, except for position 32B where these inputs are the partial check bits (\(\mathrm{PCB}_{0-5}\)) driven by position 32A (Figure 4).

\section*{INPUT LATCH ENABLE - ILE}

The Data and Check Bit inputs are connected to latches. A LOW (L) logic level on the ILE pin opens the latches allowing data to ripple through. A HIGH(H) level latches the input data and check bits as shown in Table 3.

TABLE 1 - SLICE POSITION SELECTION
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Mode Inputs} & \multirow[b]{2}{*}{Chip Position} \\
\hline \[
\begin{gathered}
\text { MA } \\
\text { Pin } 61
\end{gathered}
\] & \[
\begin{gathered}
\text { MB } \\
\text { Pin } 59
\end{gathered}
\] & \[
\begin{gathered}
\text { MC } \\
\text { Pin } 65
\end{gathered}
\] & \\
\hline L & L & * & 64 D - Handles DATA BITS 48-63 in 64-bit configuration \\
\hline L & H & * & 64B/C - Handles DATA BITS 16-31 or 32-47 in 64-bit configuration. \\
\hline H & L & L & \(64 \mathrm{~A} / 32 \mathrm{~A}\) - Handles DATA BITS 0-15 in the 64 or 32 -bit configuration. \\
\hline H & L & H & 16 - Handles DATA BITS 0-15 in the 16 -bit configuration. \\
\hline H & H & * & 32 B - Handles DATA BITS 16-31 in the 32-bit configuration. \\
\hline
\end{tabular}

NOTES:
1. *indicates that \(\operatorname{Pin} 65\) is an output \(\left(\mathrm{SYO}_{6} / \mathrm{CBO}_{6}\right)\) for all slice positions except 64 A 32 A and 16 . The output gate connected to Pin 65 is forced to the "LOW" state when MA = " \(H\) " and \(M B=\) " \(L\) " so that Pin 65 can be used as an input.
2. Inputs requiring a "LOW" state can be left floating (including Pin 65) since an input pull-down resistor (\(\sim 68 \mathrm{k} \Omega\)) is used on all inputs.
3. Chip position \(64 \mathrm{~B} / \mathrm{C}\) can also be used to handle data bits \(64-75\) in a 76 -bit data configuration and data bits \(76-87\) in an 88 -bit data configuration. Chip position 64D can also be used to handle data bits \(88-95\) in a 96 -bit configuration.

TABLE 2 - INPUT PIN ASSIGNMENTS AS A FUNCTION OF SLICE POSITION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{Pin Name and Pin Number} \\
\hline Position (See Table 1) & \[
\begin{gathered}
\mathrm{CBI}_{0} / \mathrm{NC} \\
50
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CBI}_{1} / \mathrm{GEN} \\
49
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CBI}_{2} \\
48
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CBI}_{3} \\
47
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CBI}_{4} \\
46
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CBI}_{5} / \mathrm{GEN} \\
45
\end{gathered}
\] & \[
\underset{44}{\mathrm{CBI}_{6} / \mathrm{NC}}
\] & \[
\begin{gathered}
\mathrm{SYI}_{0-5} / \mathrm{PCB}_{0-5} \\
51-56
\end{gathered}
\] & \[
\underset{57}{\mathrm{SY}_{6} / \mathrm{NC}}
\] & \[
\begin{gathered}
\mathrm{SYI}_{7} / \mathrm{GEN} \\
58
\end{gathered}
\] \\
\hline 64 D & \(\mathrm{CBI}_{0}\) & \(\mathrm{CBI}_{1}\) & \(\mathrm{CBI}_{2}\) & \(\mathrm{CBI}_{3}\) & \(\mathrm{CBI}_{4}\) & GEN & NC & \(\mathrm{SYI}_{0-5}\) & \(\mathrm{SYI}_{6}\) & \(\mathrm{SYH}_{7}\) \\
\hline 64B/C & NC & GEN & X & X & X & \(\mathrm{CBI}_{5}\) & \(\mathrm{CBI}_{6}\) & SYIO-5 & \(\mathrm{SYI}_{6}\) & \(\mathrm{SYI}_{7}\) \\
\hline \(64 \mathrm{~A} / 32 \mathrm{~A}\) & X & X & X & X & X & GEN & NC & SYIO-5 & \(\mathrm{SYI}_{6}\) & \(\mathrm{SYI}_{7}\) \\
\hline 16 & \(\mathrm{CBI}_{0}\) & \(\mathrm{CBI}_{1}\) & \(\mathrm{CBI}_{2}\) & \(\mathrm{CBl}_{3}\) & \(\mathrm{CBI}_{4}\) & \(\mathrm{CBI}_{5}\) & \(\times\) & \(\times\) & NC & GEN \\
\hline 32B & \(\mathrm{CBI}_{0}\) & \(\mathrm{CBI}_{1}\) & \(\mathrm{CBI}_{2}\) & \(\mathrm{CBi}_{3}\) & \(\mathrm{CBI}_{4}\) & \(\mathrm{CBI}_{5}\) & \(\mathrm{CBI}_{6}\) & \(\mathrm{PCBO}_{-5}\) & NC & GEN \\
\hline
\end{tabular}

\section*{NOTES:}
1. " \(X\) " is a don't care condition, Input is not used.
2. For position 32A, Pin 58 must be left open or connected to a \(\mathrm{V}_{\mathrm{OL}}\) voltage.
3. In the generate check-bit mode (\(\mathrm{GEN}=\mathrm{H}\)), the \(S \mathrm{SY}_{\mathrm{i}}\) inputs are not used for slice positions \(64 \mathrm{D}, 64 \mathrm{~B} / \mathrm{C}\) and \(64 \mathrm{~A} / 32 \mathrm{~A}\). The CBI i inputs are also not used; however, the input check-bit latches are functional.

TABLE 3 - TRUTH TABLE FOR INTERNAL DATA IN AND CHECK BIT LATCHES
\begin{tabular}{|c||c|c|}
\hline \begin{tabular}{c}
\(\overline{I L E}\) \\
\((\) Pin 34)
\end{tabular} & \multicolumn{2}{|c|}{ Internal Latch Outputs } \\
DLO-15 & CLO-6 \(_{0}\) \\
\hline L & \(\mathrm{DI}_{0-15}\) & \(\mathrm{CBI}_{0-6}\) \\
\hline H & - & - \\
\hline
\end{tabular}

NOTES
1. -- denotes NO CHANGE. Outputs are latched.
2. Latches are enabled when \(\overline{\mathrm{LL} E}=\) ' \(L\) '

TABLE 4 - SYNDROME OR CHECK BIT OUTPUT AS A FUNCTION OF THE SLICE POSITION AND OPERATING MODE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Operating Mode} & \multicolumn{3}{|c|}{Inputs} & \multicolumn{7}{|c|}{Syndrome or Check Bit Outputs} \\
\hline & \multicolumn{2}{|l|}{(See Table 2)} & \multirow[t]{2}{*}{(See Table 1) Slice Positions} & \multirow[b]{2}{*}{\[
\begin{gathered}
(\operatorname{Pin} 5) \\
\mathrm{SYO}_{0} / \mathrm{CBO}_{0}
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
(\operatorname{Pin} 4) \\
\text { SYO }_{1} / \mathrm{CBO}_{1}
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\left|\begin{array}{c}
(\text { Pin 2) } \\
\mathrm{SYO}_{2} / \mathrm{CBO}_{2}
\end{array}\right|
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
(\operatorname{Pin} 1) \\
\mathrm{SYO}_{3} / \mathrm{CBO}_{3}
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\left\lvert\, \begin{gathered}
(\text { Pin } 68) \\
\mathrm{SYO}_{4} / \mathrm{CBO}_{4}
\end{gathered}\right.
\]} & \multirow[b]{2}{*}{\[
\left\lvert\, \begin{gathered}
(\text { Pin } 67) \\
\mathrm{SYO}_{5} / \mathrm{CBO}_{5}
\end{gathered}\right.
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
(\text { Pin } 65) \\
\mathrm{SYO}_{6} / \mathrm{CBO}_{6}
\end{gathered}
\]} \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Write Mode Generate Check Bits} & \multirow[t]{5}{*}{H} & \multirow[t]{5}{*}{L} & 64D & PO & P1 & P2 & P3 & P4 & P5A & P6 \\
\hline & & & 64B/C & PO & P1 & P2 & P3 & P4 & P5B & P6 \\
\hline & & & \(64 \mathrm{~A} / 32 \mathrm{~A}\) & PO & \(\overline{\text { P1 }}\) & \(\overline{\text { P2 }}\) & P3 & P4 & P5A & L. \\
\hline & & & 16 & 'PO & \(\overline{\mathrm{P} 1}\) & \(\overline{\text { P2 }}\) & P3 & P4 & P5A & - \\
\hline & & & 32 B & \(\mathrm{PO} \oplus \mathrm{PCB}_{0}\) & P1 \(¢ \mathrm{PCB}_{1}\) & \(\mathrm{P} 2 \oplus \mathrm{PCB}_{2}\) & P3 \(\oplus \mathrm{PCB}_{3}\) & \(\mathrm{P} 4 \oplus \mathrm{PCB}_{4}\) & P5B \(\oplus\) ¢ \(\mathrm{PCB}_{5}\) & P6 \\
\hline Diagnostic & \multirow[t]{2}{*}{H} & \multirow[t]{2}{*}{H} & 64 D & L & L & L & L & L & L & L \\
\hline \begin{tabular}{l}
Write Mode \\
Initialize \\
Check Bits
\end{tabular} & & & \[
\begin{gathered}
64 \mathrm{~B} / \mathrm{C}, \\
64 \mathrm{~A} / 32 \mathrm{~A}, \\
16.32 \mathrm{~B}
\end{gathered}
\] & L & H & H & L & L & L & L \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Read Mode \\
Check Data \\
and Check Bits \\
and Generate \\
Syndrome Bits
\end{tabular}} & \multirow[t]{5}{*}{L} & \multirow[t]{5}{*}{x} & 64 D & \(\mathrm{PO} \oplus \mathrm{CL}_{0}\) & \(\mathrm{P} 1 \oplus \mathrm{CL}_{1}\) & \(\mathrm{P} 2 \oplus \mathrm{Cl}_{2}\) & \(\mathrm{P} 3 \times \mathrm{Cl}_{3}\) & \(\mathrm{P} 4 \oplus^{+} \mathrm{CL}_{4}\) & P5A & P6 \\
\hline & & & \(64 \mathrm{~B} / \mathrm{C}\) & PO & P1 & P2 & P3 & P4 & P5B \(\oplus \mathrm{CL}_{5}\) & P6 © CL6 \\
\hline & & & 64A/32A & PO & P1 & P2 & P3 & P4 & P5A & \(L\) \\
\hline & & & 16 & PO \(\oplus \mathrm{CL}_{0}\) & \(\overline{\mathrm{P1}} \oplus \mathrm{CL}_{1}\) & \(\overline{\mathrm{P} 2} \oplus \mathrm{CL}_{2}\) & \(\mathrm{P} 3 \oplus \mathrm{CL}_{3}\) & \(\mathrm{P} 4 \oplus \mathrm{CL}_{4}\) & P5A \(\odot \mathrm{CL}_{5}\) & - \\
\hline & & & 32B & \[
\begin{gathered}
\mathrm{PO} \oplus \mathrm{PCB}_{0} \\
\oplus \mathrm{CL}_{0} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{P} 1^{\oplus} \oplus \mathrm{PCB}_{1} \\
\oplus \mathrm{CL}_{1} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{P} 2 \oplus \mathrm{PCB}_{2} \\
\oplus \mathrm{CL}_{2} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{P} 3 \oplus \mathrm{PCB}_{3} \\
\oplus \mathrm{CL}_{3} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{P} 4 \odot \mathrm{PCB}_{4} \\
\oplus \mathrm{CL}_{4} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{P} 5 \mathrm{~B} \oplus \mathrm{PCCB}_{5} \\
\oplus \mathrm{CL}_{5} \\
\hline
\end{gathered}
\] & \(\mathrm{P} 6 \mathrm{C}^{\mathrm{CL}_{6}}\) \\
\hline
\end{tabular}

\section*{NOTES:}
1. \(\mathrm{PO}=\mathrm{DL}_{0} \oplus \mathrm{DL}_{1} \oplus \mathrm{DL}_{2} \oplus \mathrm{DL}_{4} \oplus \mathrm{DL}_{6} \oplus \mathrm{DL}_{8} \oplus \mathrm{DL}_{10} \oplus \mathrm{DL}_{12}\)
\(\mathrm{P} 1=\mathrm{DL}_{0} \oplus \mathrm{DL}_{1} \oplus \mathrm{DL}_{3} \oplus \mathrm{DL}_{5} \oplus \mathrm{DL}_{7} \oplus \mathrm{DL}_{9} \oplus \mathrm{DL}_{11} \oplus \mathrm{DL}_{13}\)
\(\mathrm{P} 2=\mathrm{DL}_{0} \oplus \mathrm{DL}_{2} \oplus \mathrm{DL}_{3} \oplus \mathrm{DL}_{4} \oplus \mathrm{DL}_{5} \oplus \mathrm{DL}_{8} \oplus \mathrm{DL}_{9} \oplus \mathrm{DL}_{14}\)
\(\mathrm{P} 3=\mathrm{DL}_{1} \oplus \mathrm{DL}_{2} \oplus \mathrm{DL}_{3} \oplus \mathrm{DL}_{6} \oplus \mathrm{DL}_{7} \oplus \mathrm{DL}_{10} \oplus \mathrm{DL}_{11} \oplus \mathrm{DL}_{15}\)
\(\mathrm{P} 4=\mathrm{DL}_{4} \oplus \mathrm{DL}_{5} \oplus \mathrm{DL}_{6} \oplus \mathrm{DL}_{7} \oplus \mathrm{DL}_{12} \oplus \mathrm{DL}_{13} \oplus \mathrm{DL}_{14} \oplus \mathrm{DL}_{15}\)
\(\mathrm{P} 5 \mathrm{~A}=\mathrm{DL}_{8} \oplus \mathrm{DL}_{9} \oplus \mathrm{DL}_{10} \oplus \mathrm{DL}_{11} \oplus \mathrm{DL}_{12} \oplus \mathrm{DL}_{13} \oplus \mathrm{DL}_{14} \oplus \mathrm{DL}_{15}\)
\(\mathrm{P} 5 \mathrm{~B}=\mathrm{DL}_{0} \oplus \mathrm{DL}_{1} \oplus \mathrm{DL}_{2} \oplus \mathrm{DL}_{3} \oplus \mathrm{DL}_{4} \oplus \mathrm{DL}_{5} \oplus \mathrm{DL}_{6} \oplus \mathrm{DL}_{7}\)
\(P 6=P 5 A \oplus P 5 B\)
where \(D L_{i}\) is the output of bit \(i\) of the DATA IN LATCH.
2. \(\mathrm{CL}_{\mathrm{i}}\) is the output of bit \(i\) of the CHECK BIT LATCH.
3. \(\mathrm{PCB}_{0-5}\) are the partial check bit inputs (pins 51-56) for slice position 32B (See Table 2 and Figure 4)
4. *indicates that for slice position 16 , pin 65 is a slice position mode input (\(M C\)) that must be externally connected to an " \(H\) " or \(V_{O H}\) voltage level (see Table 1).

FIGURE 3 - 16-BIT DATA CONFIGURATION

FIGURE 4 - 32-BIT DATA CONFIGURATION

\section*{OPERATING MODES - GEN, NC}

Four different operating modes can be selected with the GEN and NC inputs which are described in Table 7. Also, tables 4 and 5 show truth tables using the GEN and NC inputs as a function of the slice position.

The Read and Correct Mode (\(\mathrm{GEN}=\mathrm{L}, \mathrm{NC}=\mathrm{L}\)) checks the data and check bits received from memory for errors. If an error occurs, the ERROR flag is activated, and if it is a single bit error, the Single Error flag is also activated and the data is corrected. The syndrome bits are also made available to the designer.

The Read and Check Only Mode (GEN = L, NC = H) also checks the data and check bits from memory for errors. However, if a single bit error occurs, the data is not corrected. With the data correction disabled, the propagation delay from data input to data output is shortened significantly. If the ERROR flag is activated to the CPU, the current cycle could be delayed to correct the data (by making \(\mathrm{NC}=\mathrm{L}\)) if the SE flag is also activated, or a diagnostic routine could be initiated. If a single bit error is detected, the corrected data
should be rewritten into the same memory location in order to reduce the chance of getting a double bit error later. A "soft" error that is allowed to remain in memory will increase the probability of getting a double bit error.

The Write Mode (\(\mathrm{GEN}=\mathrm{H}, \mathrm{NC}=\mathrm{L}\)) generates new check bits from the data word that is to be stored in memory. The generated check bits are stored with the data word in memory. Table 4 shows the equations for generating the check bits. Also, Table 8 shows a chart that defines the check bit generation.

The Diagnostic Write Mode (GEN = H, NC = H) forces the check bit outputs \(\mathrm{C}_{0}\) through \(\mathrm{C}_{7}\) to LHHLLLL (logic output for the all zero-data word) while passing Data-In to the Data-Out pins. In this mode, data patterns are written into memory to cause different types of errors. The MC10905 error detection circuitry can be checked by comparing the data-in and data-out with the syndrome error decode and error flags. Table 9 shows the syndrome bit decoding for the data configurations shown in Figure 3, 4 and 5.

FIGURE 5 - 64-BIT DATA CONFIGURATION

NOTES:
1. For position 64 B / C with data bits \(32-47\), the syndrome output S 6 must be connected to the \(\mathrm{SY} \mathrm{I}_{7}\) input while the S 7 output must be connected to \(\mathrm{SYI}_{6}\).
2. For a 48 -bit data configuration, the position 64A is eliminated and the S 1 and S 2 output gates must be changed from EXCLUSIVE OR to EXCLUSIVE NOR.
3. The ERROR output information is the same on all 4 devices.
4. The SE outputs are connected together (WIRE ORed) to form the SINGLE ERROR output.
5. The MC10163 can be used to provide two 4 -input EXCLUSIVE OR gates.

FIGURE 6 - 96-BIT DATA CONFIGURATION

5. The MC10163 provides two 4 -input XOR gates while the \(\mathrm{MC1OH} 160\) provides one 12 -input XOR gate. 4. The \(\mathrm{SYO}_{0-6} \mathrm{CBO}_{0}-6\) outputs for the bottom three devices are rotated (see Table 8) to the XOR gat

Data

\section*{SYNDROME/CHECK BIT OUTPUTS -\(\mathrm{SYO}_{0-6} / \mathrm{CBO}_{0-6}\)}

The logic equations for the syndrome or check bit outputs are shown in Table 4 as a function of the slice position and operating mode. These outputs contain the check bits during write to memory (GEN \(=\mathrm{H}, \mathrm{NC}=\mathrm{L}\)). For a real cycle (GEN \(=\mathrm{L}\)), these outputs contain the syndrome bits used for error identification. Table 8 shows a chart for check bit generation for various data configurations. Note that for data configurations of greater than 32 bits, exclusive OR gates must be used to generate the total syndrome or check bit field as shown in Figures 5 and 6. For the 32-bit data configuration (see Figure 4), the partial check bits generated by one MC10905 (32A) are passed to another MC10905 (32B) for generating the complete syndrome/check bit field without additional hardware.

The code used to generate the check bit patterns is based on the parity of selected data bits. An all LOW syndrome field indicates that no errors have been detected. If an even number of HIGH's occur in the syndrome field, a double error has been detected, while an odd number of HIGH's indicate a single error or multiple error has been detected. Table 9 shows the syndrome bit decoding.

Note that the generated parity (P 1 and P 2) is inverted on the \(\mathrm{SYO}_{1} / \mathrm{CBO}_{1}\), and \(\mathrm{SYO}_{2} / \mathrm{CBO}_{2}\) outputs for slice positions 16 and 64A/32A. This allows for the detection of catastrophic errors such as all 1's or 0's in the data and check bit field.

\section*{OUTPUT LATCH ENABLE - OLE}

The internal data and error outputs are connected to latches. A HIGH (H) logic level on the OLE pin opens the latches allowing the information to flow through. A LOW(L) level latches the data and the SE and ERROR outputs as shown in Table 5

\section*{DATA OUTPUT - DOO-15}

The unmodified contents of the Data-In latches(DLO-15) are connected to the inputs of the Data-Out latches for all modes except when GEN = L and NC = L (check and correct data mode) as shown in Table 5 . If the data is to be corrected (\(\mathrm{GEN}=\mathrm{L}\) and \(\mathrm{NC}=\mathrm{L}\)), the data correction network will invert any single bit error of the Data-In latch before placing it at the input of the Data-Out latch (see Tables 5 and 6).

\section*{SINGLE ERROR AND ERROR FLAGS - SE, ERROR}

In the write mode (\(G E N=H\)), a LOW is forced on the inputs of the error flag latches as shown in Table 5. In the read mode (\(\mathrm{GEN}=\mathrm{L}\)), Table 6 defines the error flags for the various slice positions. The input to the ERROR latch is a LOW only if no errors are detected (data is valid) and it is a HIGH if one or more errors are detected. The input to the Single Error latch is HIGH only if a single bit error has been detected in the Data-In or Check Bit latches.

TABLE 5 - DATA OUT, SE, AND ERROR OUTPUTS AS A FUNCTION OF THE SLICE POSITION AND OPERATING MODE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Operating Mode} & \multirow[b]{2}{*}{OLE} & \multicolumn{3}{|c|}{INPUTS (See Table 2)} & \multirow[t]{2}{*}{(See Note 2) \(S_{0-6}\)} & \multirow[t]{2}{*}{(See Table 1) Slice Position} & \multicolumn{3}{|c|}{OUTPUTS} \\
\hline & & GEN & NC & \(\mathrm{SYI}_{0-7}\) & & & \(\mathrm{DO}_{0-15}\) & SE & ERROR \\
\hline Output Latched & L & X & X & X & X & X & - & - & - \\
\hline WRITE Mode & H & H & X & X & X & X & \(\mathrm{DL}_{0-15}\) & L & L \\
\hline \multirow[t]{5}{*}{READ Mode No Data Correction} & \multirow[t]{5}{*}{H} & \multirow[t]{5}{*}{L} & \multirow[t]{5}{*}{H} & X & See Table 6a & 16 & DL-15 & & le 6 a \\
\hline & & & & Partial Check Bit Input & See Table 6b & 32 B & DL0-15 & & e 6b \\
\hline & & & & See Table 6c & X & 64A/32A & DL \(0-15\) & & le 6c \\
\hline & & & & See Table 6d & X & 64B/C & DL-0-15 & & le 6d \\
\hline & & & & See Table 6e & \(x\) & 64D & DL0-15 & & le 6 e \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
READ Mode \\
Check and Correct Data
\end{tabular}} & \multirow[t]{5}{*}{H} & \multirow[t]{5}{*}{L} & \multirow[t]{5}{*}{L} & X & See Table 6a & 16 & See Note 6 & & e 6 a \\
\hline & & & & Partial Check Bit Input & See Table 6b & 32B & See Note 6 & & le 6b \\
\hline & & & & See Table 6c & X & 64A/32A & See Note 6 & & le 6 c \\
\hline & & & & See Table 6d & X & 64B/C & See Note 6 & & le 6d \\
\hline & & & & See Table 6e & X & 64 D & See Note 6 & & le 6 e \\
\hline
\end{tabular}

\section*{NOTES:}
1. \(\mathrm{X}=\) Input don't care Condition.
2. \(\mathrm{SD}_{0-6}\) are the internal syndromes which are equal to the syndrome output \(\mathrm{SYO}_{0-6}\) (see Table 4).
3. Tables 6a-6e describe the outputs in the READ mode as a function of the syndrome bits.
4. - denotes NO CHANGE. Outputs are latched. Outputs are enabled when OLE = " H ".
5. \(L_{0-15}\) is the output of the DATA IN latches.
6. If a single data bit error occurs (see tables 6a-6e), the data bit in error will be corrected (by inverting it) while the other 15 bits from \(\mathrm{DL}_{0-15}\) wifl appear unchanged at \(\mathrm{DO}_{0-15}\)

\section*{DATA CONFIGURATIONS}

A single MC1 0905 will handle 16 data bits plus 6 check bits while two MC10905's will handle 32 data bits plus 7 check bits without additional hardware (see Figures 3 and 4). For the 64-bit configuration, four MC10905s are required, plus some additional exclusive OR (XOR) gates as shown in Figure 5. A 48-bit configuration can be generated from Figure 5 by eliminating the MC10905 in position 64A and changing the S 1 and S 2 output gates from XOR to XNOR
(exclusive NOR). The MC10163, MC10107, MC10H107, or MC10H160 can be used to provide the XOR/XNOR functions.

Tables 7, 8 and 9 show the operating modes, the parity tree chart for the check bits, and the syndrome bit decoding, respectively. Table 10 was generated for use in calculating the delays of the important propagation delay paths for multi-chip data configurations. The maximum propagation delays specified in Tables 14 and 15 are used in these calculations.

\section*{TABLE 6 - TRUTH TABLES FOR BIT-IN-ERROR, AND THE SE AND ERROR OUTPUTS WHEN IN THE READ OR CHECK MODE (GEN = L)}
(a) FOR SLICE POSITION 16
\begin{tabular}{|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \(\mathrm{sD}_{5}\) & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{н} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{н} \\
\hline & & \(\mathrm{SD}_{4}\) & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{н} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{н} & \multicolumn{3}{|c|}{H} \\
\hline & & \(\mathrm{SD}_{3}\) & \multicolumn{3}{|l|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} \\
\hline \(\mathrm{SO}_{\mathbf{0}}\) & SD & \(\mathrm{SO}_{2}\) & \[
\begin{array}{|l|l}
\hline \text { Bit } \\
\text { in } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & \[
\begin{gathered}
\text { Bit } \\
\text { in } \\
\text { Error }
\end{gathered}
\] & SE & Error & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { in } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { In } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { In } \\
\text { EFror } \\
\hline
\end{array}
\] & SE & Error & \[
\begin{array}{|c|c|}
\hline \text { Bit } \\
\text { In } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & \[
\begin{gathered}
\text { Bit } \\
\text { in } \\
\text { Error }
\end{gathered}
\] & SE & Error & \[
\begin{array}{|l|l|}
\hline \text { Bit } \\
\text { In } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error \\
\hline L & L & L & - & L & \(\checkmark\) & \(\mathrm{CL}_{5}\) & H & H & \(\mathrm{CL}_{4}\) & H & H & - & L & н & \(\mathrm{CL}_{3}\) & H & H & - & L & н & - & 1 & H & \(\mathrm{OL}_{15}\) & H & H \\
\hline \(\llcorner\) & L & н & \(\mathrm{CL}_{2}\) & H & H & - & L & H & - & L & H & \(\mathrm{DL}_{14}\) & н & H & - & L & H & - & L & H & - & 1 & H & - & L & H \\
\hline L & H & L & \(\mathrm{CL}_{1}\) & H & H & - & L & H & - & L & H. & \(\mathrm{DL}_{13}\) & H & H & - & L & H. & \(\mathrm{DL}_{11}\) & H & H & \(\mathrm{DL}_{7}\) & H & H & - & L & н \\
\hline L & н & H & - & ᄂ & H & DLg & H & H & \(\mathrm{DL}_{5}\) & H & H & - & \(\llcorner\) & H & \(\mathrm{DL}_{3}\) & н & H & - & L & H & - & L & H & - & \(\llcorner\) & H \\
\hline H & L & L & \(\mathrm{CL}_{0}\) & H & H & - & L & H & - & \(\stackrel{\square}{\square}\) & H & \(\mathrm{DL}_{12}\) & H & H & - & L & H & \(\mathrm{L}_{10}\) & H & H & \(\mathrm{DL}_{6}\) & H & H & - & L & н \\
\hline H & \(\llcorner\) & н & - & L & H & \(\mathrm{DL}_{8}\) & H & н & \(\mathrm{DL}_{4}\) & H & H & - & L & H & \(\mathrm{DL}_{2}\) & н & H & - & L & H & - & 1 & H & - & L & H \\
\hline H & н & L & - & L & H & - & L & H & - & \(\stackrel{1}{\square}\) & H & - & \(\llcorner\) & H & \(\mathrm{DL}_{1}\) & н & H & - & L & H & - & \(\llcorner\) & H & - & L & H \\
\hline H & H & H & DLo & H & H & - & L & H & - & \(\llcorner\) & H & - & L & H & - & ᄂ & H & - & L & H & - & L & H & - & - & H \\
\hline
\end{tabular}

NOTES: \(1 . S D_{i}\) is the internal syndrome, bit \(i\), which is equal to the syndrome output bit, \(S Y O_{i}\) (see Table 4).
2. \(-=\) NO BITS ARE CORRECTED; \(\mathrm{DO}_{0-15}=\mathrm{DL}_{-0-15}\)
* \(=\) NO ERRORS
3. \(D_{i}=\) SINGLE BIT ERROR in the DATA-IN LATCH output, bit \(i\). If NC \(=0\), data bit will be corrected by inverting it.
4. \(\mathrm{CL}_{i}=\) SINGLE BIT ERROR in the CHECK BIT LATCH output, bit \(i\).
5. BIT IN ERROR specifies the single bit in error detected by the indicated slice position.
6. Unlisted input SYI combinations in tables 6c, 6d, and 6e perform no data correction, SE = "L", and ERROR = "H"
7. The SE and ERROR output latches (for Table 6) are enabled, OLE = "H"
(b) FOR SLICE POSITION 32b
\begin{tabular}{|c|}
\hline & & & \(\mathbf{S D}_{6}\) & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} \\
\hline & & & \(\mathrm{SD}_{5}\) & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} \\
\hline & & & \(\mathrm{SD}_{4}\) & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} \\
\hline \(\mathbf{S D}_{0}\) & SD1 & \(\mathrm{SD}_{2}\) & \(\mathrm{SD}_{3}\) & \begin{tabular}{l}
Bit \\
In \\
Error
\end{tabular} & SE & Error & Bit In Error & SE & Error & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { In } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & Bit in Error & SE & Error & \[
\begin{gathered}
\text { Bit } \\
\text { In } \\
\text { Error }
\end{gathered}
\] & SE & Error & Bit In Error & SE & Error & \[
\begin{gathered}
\text { Bit } \\
\text { In } \\
\text { Error }
\end{gathered}
\] & SE & Error & Bit In Error & SE & Error \\
\hline L & L & L & 1 & \(\mathrm{CL}_{6}\) & H & H & - & L & H & - & L & H & -. & L & H & - & L & \(L\) & \(\mathrm{Cl}_{4}\) & H & H & \(\mathrm{CL}_{5}\) & H & H & - & L & H \\
\hline \(L\) & L & 1 & H & - & 1 & H & \(\mathrm{OL}_{15}\) & H & H & - & L & H & - & 1 & H & \(\mathrm{Cl}_{3}\) & H & H & - & L & H & - & \(L\) & H & - & \(L\) & H \\
\hline L & \(L\) & H & L & - & L & H & \(\mathrm{DL}_{14}\) & H & H & - & L & H & - & L & H & \(\mathrm{Cl}_{2}\) & H & H & - & L & H & - & L & H & - & L & H \\
\hline L & L & H & H & - & L & H & - & L & H & - & 1 & H & - & 1 & H & - & L & H & - & L & H & - & 1 & H & - & \(L\) & H \\
\hline \(L\) & H & L & 1 & - & L & H & \(\mathrm{DL}_{13}\) & H & H & - & L. & H & - & L & H & \(\mathrm{CL}_{1}\) & H & H & - & L & H & - & L & H & - & L & H \\
\hline \(L\) & H & 1 & H & \(\mathrm{DL}_{11}\) & H & H & - & L & H & - & L & H & \(\mathrm{OL}_{7}\) & H & H & -- & L & H & - & L & H & - & L & H & - & L & H \\
\hline 1 & H & H & L & \(\mathrm{DL}_{9}\) & H & H & - & L & H & - & 1 & H & \(\mathrm{DL}_{5}\) & H & H & - & L & H & - & L & H & - & \(L\) & H & - & \(L\) & H \\
\hline \(L\) & H & H & H & - & L & H & - & L & H & \(\mathrm{DL}_{3}\) & H & H & - & L & H & - & L & H & - & 1 & H & - & 1 & H & - & 1 & H \\
\hline H & \(L\) & 1 & L & - & L & H & \(\mathrm{DL}_{12}\) & H & H & - & 1 & H & - & L. & H & \(\mathrm{CL}_{0}\) & H & H & - & L & H & - & L & H & - & L & H \\
\hline H & L & L & H & \(\mathrm{DL}_{10}\) & H & H & - & L & H & - & 1 & H & \(\mathrm{OL}_{6}\) & H & H & - & L & H & - & L & H & - & L & H & - & 1 & H \\
\hline H & L & H & 1 & \(\mathrm{OL}_{8}\) & H & H & - & L & H & - & L & H & \(\mathrm{DL}_{4}\) & H & H & - & L & H & - & L & H & - & \(L\) & H & - & \(t\) & H \\
\hline H & \(L\) & H & H & - & L & H & - & 1 & H & \(\mathrm{DL}_{2}\) & H & H & - & L & H & - & L & H & - & \(L\) & H & - & L & H & - & \(L\) & H \\
\hline H & H & L & L & - & \(L\) & H & - & L & H & - & \(L\) & H & - & L & H & - & L & H & - & \(L\) & H & - & \(L\) & H & - & L & H \\
\hline H & H & 1 & H & - & L & H & - & 1 & H & \(\mathrm{DL}_{1}\) & H & H & - & L & H & - & L' & H. & - & 1 & H & - & 1 & H & - & L & H \\
\hline H & H & H & 1 & - & \(L\) & H & - & L & H & DLo & H & H & - & L & H & - & L & H & - & L & H & - & \(L\) & H & - & \(L\) & H \\
\hline H & H & H & H & - & 1 & H & - & L & H & \(-\) & L & H & - & L & H & - & L & H & - & \(\llcorner\) & H & - & L & H & - & L & H \\
\hline
\end{tabular}

\section*{TABLE 6 - (continued)}
(c) FOR SLICE POSITION 64A/32
\begin{tabular}{|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} & S \(\mathbf{S Y I}_{7}\) & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} \\
\hline & & & \(\mathrm{SYI}_{6}\) & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{\(\llcorner\)} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{1} \\
\hline & & & \(\mathrm{SYI}_{5}\) & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} \\
\hline & & & \(\mathrm{SYI}_{4}\) & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{1} \\
\hline \(\mathbf{S Y I O}_{0}\) & \(\mathrm{SYI}_{1}\) & \(\mathrm{SYI}_{2}\) & \(\mathrm{SYI}_{3}\) & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { In } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { In } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { In } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { in } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { In } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { In } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error \\
\hline L & L & L & L & - & L & L & \(\mathrm{CL}_{4}\) & H & H & \(\mathrm{CL}_{5}\) & H & H & - & L & H & \(\mathrm{CL}_{6}\) & H & \({ }^{\text {H }}\) & \(\mathrm{CL}_{7}\) & H & H \\
\hline L & L & ᄂ & H & \(\mathrm{CL}_{3}\) & H & H & - & L & H & - & L & H & \(\mathrm{OL}_{15}\) & H & H & - & L & H & - & L & H \\
\hline L & L & H & L & \(\mathrm{CL}_{2}\) & H & H & - & L & H & - & ᄂ & H & \(\mathrm{DL}_{14}\) & H & H & - & L & H & - & L & H \\
\hline L & L & H & H & - & L & H & - & L & H & - & \(\llcorner\) & H & - & 1 & H & - & L & H & - & L & H \\
\hline L & H & L & L & \(\mathrm{CL}_{1}\) & H & H & - & L & H & - & L & H & \(\mathrm{DL,}_{13}\) & H & H & - & L & H & - & 1 & H \\
\hline L & H & L & H & - & L & H & \(\mathrm{OL}_{7}\) & H & H & \(\mathrm{OL}_{11}\) & H & H & - & 1 & H & - & L & H & - & L & H \\
\hline \(\llcorner\) & H & H & L & -- & L & H & \(\mathrm{DL}_{5}\) & H & H & \(\mathrm{OL}_{9}\) & \(\mathrm{H}^{\circ}\) & H & - & L & H & - & L & H & - & L & H \\
\hline L & H & H & H & \(\mathrm{DL}_{3}\) & H & H & - & L & H & - & L & H & - & L & H & - & L & H & - & L & H \\
\hline H & L & L & L & \(\mathrm{CL}_{0}\) & H & H & - & L & H & - & 1 & H & \(\mathrm{DL}_{12}\) & H & H & - & \(\llcorner\) & H & - & \(\llcorner\) & H \\
\hline H & L & L & H & - & L & H & \(\mathrm{OL}_{6}\) & H & H & \(\mathrm{OL}_{10}\) & H & H & - & L & H & - & L & H & - & L & H \\
\hline H & L & H & L & - & L & H & \(\mathrm{DL}_{4}\) & H & H & \(\mathrm{DL}_{8}\) & H & H & - & L & H & - & 1 & H & - & 1 & H \\
\hline H & L & H & H & \(\mathrm{DL}_{2}\) & H & H. & - & \(\llcorner\) & H & - & L & H & - & L & H & - & L & H & - & 1 & H \\
\hline H & H & L & L & - & L & H & - & L & H & - & L & H & - & \(\llcorner\) & H & - & L & H & - & 1 & H \\
\hline H & H & L & H & \(\mathrm{DL}_{1}\) & H & H & - & L & H & - & L & H & - & L & H & - & L & H & - & L & H \\
\hline H & H & H & 1 & \(\mathrm{DL}_{0}\) & H & H & - & L & H & - & L & H & - & \(\llcorner\) & H & - & 1 & H & - & L & H \\
\hline H & H & H & H & - & L & H & - & L & H & - & L & H & - & L & H & - & L & H & - & L & H \\
\hline
\end{tabular}
(d) FOR SLICE POSITION 64B/C

\begin{tabular}{|c|}
\hline & & & \(\mathrm{SYI}_{7}\) & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} \\
\hline & & & \(\mathrm{SYY}_{6}\) & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{\({ }_{\mathrm{H}}\)} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{\(\llcorner\)} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{1} \\
\hline & & & \(\mathrm{SYY}_{5}\) & \multicolumn{3}{|c|}{\(\stackrel{1}{ }\)} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{1} \\
\hline & & & \(\mathrm{SYH}_{4}\) & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{H} & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{L} & \multicolumn{3}{|c|}{1} \\
\hline SYio & \(\mathrm{SYI}_{1}\) & \(\mathrm{Sr}_{2}\) & \(\mathrm{SYH}_{3}\) & \begin{tabular}{|l|l}
\hline Bit \\
in \\
Error
\end{tabular} & SE & Error & \begin{tabular}{|l|}
\hline Bit \\
In \\
Error
\end{tabular} & SE & Error & \begin{tabular}{|c|}
\hline Bit \\
In \\
Efror
\end{tabular} & SE & Error & \(\square\) & SE & Error & \begin{tabular}{|l|}
\hline Bit \\
In \\
Error \\
\hline
\end{tabular} & SE & Error & \begin{tabular}{|l|}
\hline Bit \\
In \\
Error \\
\hline
\end{tabular} & SE & Error & \begin{tabular}{|c|}
\hline Bir \\
In \\
Error
\end{tabular} & SE & Error & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { In } \\
\text { Error } \\
\hline
\end{array}
\] & SE & Error & \begin{tabular}{|c|}
\hline Bit \\
In \\
Error \\
\hline
\end{tabular} & SE & Error \\
\hline L & L & L & L & - & L & H & - & L & H & - & \(\llcorner\) & H & - & L & H & - & L & 1 & \(\mathrm{CL}_{4}\) & H & H & \(\mathrm{CL}_{5}\) & H & H & \(\mathrm{CL}_{6}\) & H & H & \(\mathrm{Cl}_{7}\) & H & H \\
\hline L & L & 1 & H & - & L & H & - & L & H & - & L & H & \(\mathrm{DL}_{15}\) & H & H & \(\mathrm{CL}_{3}\) & H & H & - & L & H & - & L & H & - & L & H & - & L & H \\
\hline L & L & H & L & - & L & H & - & L & H & - & L & H & \(\mathrm{DL}_{14}\) & H & H & \(\mathrm{CL}_{2}\) & H & H & - & 1 & H & - & \(\llcorner\) & H & - & L & H & - & L & H \\
\hline 1 & L & H & H & - & \(\llcorner\) & H & - & \(\llcorner\) & H & - & \(\stackrel{1}{L}\) & H & - & L & H & - & L & H & - & L & H & - & L & H & - & L & H & - & \(\llcorner\) & H \\
\hline 1 & H & L & L & - & L & H & - & \(\llcorner\) & H & - & L & H & \(\mathrm{DL}_{13}\) & H & H & \(\mathrm{CL}_{1}\) & H & H & - & L & H & - & L & H & - & L & H & - & L & н \\
\hline L & H & 1 & н & - & L & H & \(\mathrm{OL}_{7}\) & H & H & \(\mathrm{OL}_{11}\) & H & H & - & L & H & - & L & H & - & L & H & - & L & H & - & L & H & - & \(\llcorner\) & H \\
\hline \(L\) & H & H & L & - & 1 & H & \(\mathrm{DL}_{5}\) & H & H & \(\mathrm{DL}_{9}\) & H & H & -- & L & H & - & L & H & - & 1 & H & - & L & H & - & \(\llcorner\) & H & - & L & H \\
\hline 1 & н & H & н & \(\mathrm{Or}_{3}\) & н & H & - & \(\stackrel{1}{L}\) & H & - & L & H & - & L & H & - & L & H. & - & L & H & - & \(\llcorner\) & H & - & L & H & - & \(\llcorner\) & H \\
\hline H & L & L & L & - & L & H & - & 1 & H & -- & 1 & H & \(\mathrm{DL}_{12}\) & H & H & \(\mathrm{CL}_{0}\) & H & H & - & L & H & - & L & H & - & L & H & - & 1 & H \\
\hline H & L & L & H & - & \(\llcorner\) & H & \(\mathrm{OL}_{6}\) & H & H & \(\mathrm{OL}_{10}\) & H & H & - & L & H & - & 1 & H & - & 1 & H & - & \(\llcorner\) & H & - & \(\llcorner\) & H & - & L & H \\
\hline H & L & H & L & - & 1 & H & \(\mathrm{OL}_{4}\) & H & H & \(\mathrm{DL}_{8}\) & H & H & - & \(\llcorner\) & H & - & 1 & H & - & L & H & - & L & H & - & \(\llcorner\) & H & - & 1 & H \\
\hline H & 1 & H & H & DL2 & H & H & - & L & H & - & 1 & H & - & 1 & H & - & L & H & - & L & H & - & L & H & - & L & H & - & 1 & H \\
\hline H & H & L & L & - & L & H & - & L & H & - & L & H & - & L & H & - & \(\llcorner\) & H & - & 1 & H & - & 1 & H & - & L & H & - & \(\llcorner\) & H \\
\hline H & H & L & H & \(\mathrm{DL}_{1}\) & H & H & - & L & H & - & L & H & - & 1 & H & - & L & H & - & L & H & - & \(\llcorner\) & H & - & \(\llcorner\) & H & - & \(\llcorner\) & H \\
\hline H & H & H & L & \(\mathrm{D}_{6}\) & H & H & - & L & H & - & L & H & - & 1 & H & - & L & H & - & L & H & - & \(\llcorner\) & H & \(-\) & \(\llcorner\) & H & - & \(\llcorner\) & H \\
\hline H & H & H & H & - & 1 & H & - & 1 & H & - & L & H & - & 1 & H & - & \(\llcorner\) & H & - & 1 & H & - & 1 & H & - & 1 & H & - & L & H \\
\hline
\end{tabular}

TABLE 7 - OPERATING MODE SELECTION FOR 16, 32, 48, AND 64-BIT DATA CONFIGURATIONS
\begin{tabular}{|c|c||c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c}
Generate \\
Check
\end{tabular}} & \begin{tabular}{c}
No \\
Corection
\end{tabular} \\
\hline L & L & \begin{tabular}{c}
READ MODE. Check for errors, generate syndrome bits SO-S7, and correct single \\
data bit errors.
\end{tabular} \\
\hline L & H & \begin{tabular}{l}
READ MODE. Check for errors, generate syndrome bits SO-S7, but do not correct \\
single data bit errors.
\end{tabular} \\
\hline H & L & \begin{tabular}{l}
WRITE MODE. Generate check bits CO-C7, pass data through, and force inputs to \\
the error latches to the "LOW" state.
\end{tabular} \\
\hline H & H & \begin{tabular}{l}
DIAGNOSTIC WRITE MODE. Force the check bits CO through C7 to a LH H L L LLL \\
respectively, pass data through, and force inputs to the error latches to the \\
"LOW" state.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Check Bits} & \multirow[t]{2}{*}{Parity Operation} & \multicolumn{16}{|c|}{Position 16 or 64A32A - Data in 0-15} & \multicolumn{16}{|c|}{Position 32B or 648/C - Data In 16-31} \\
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 \\
\hline \(\mathrm{C}_{0}\) & XOR & \(x\) & x & x & - & X & - & X & - & X & - & X & - & X & - & - & - & X & X & X & - & X & - & X & - & X & - & X & - & X & - & - & - \\
\hline \(\mathrm{C}_{1}\) & XNOR & \(x\) & \(\times\) & - & x & - & x & 二 & x & - & \(x\) & - & x & - & X & - & - & X & x & - & \(x\) & - & X & - & \(\times\) & - & X & - & X & - & X & - & - \\
\hline \(\mathrm{C}_{2}\) & XNOR & x & - & \(x\) & \(x\) & x & x & - & - & X & \(\times\) & - & - & - & - & x & - & X & - & \(x\) & \(x\) & \(\times\) & \(\times\) & - & - & \(\times\) & x & - & - & - & - & X & - \\
\hline \(\mathrm{C}_{3}\) & XOR & - & x & X & x & - & - & x & \(x\) & - & - & x & x & - & - & - & x & - & \(\times\) & X & x & - & - & \(x\) & \(\times\) & - & - & x & \(\times\) & - & - & - & \(x\) \\
\hline \(\mathrm{C}_{4}\) & XOR & - & - & - & - & x & x & x & x & - & - & - & - & \(x\) & \(x\) & x & \(x\) & - & - & - & - & x & \(x\) & \(x\) & \(x\) & - & - & - & - & x & x & x & \(\times\) \\
\hline \(\mathrm{C}_{5}\) & XOR & - & - & - & - & - & - & - & - & x & x & x & x & x & \(\times\) & x & x & x & \(x\) & x & \(x\) & x & \(x\) & \(x\) & \(x\) & - & - & - & - & - & - & - & - \\
\hline \(\mathrm{C}_{6}\) & XOR & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & X & X & X & X & X & \(x\) & X & x & X & X & X & X & X & \(\times\) & X & \(\times\) \\
\hline \(\mathrm{C}_{7}\) & XOR & - & - & - & - & - & - & - & - & & - \\
\hline
\end{tabular}
- -
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Check Bits} & \multicolumn{6}{|c|}{Position 64D - Data In 88-95} \\
\hline & - 8889 - & - \(90-\) & - 91 - - & 9293 & 394 & \\
\hline \(\mathrm{c}_{0}\) & - & \(\times \times \times \times\) & - - - & \(\times \times\) & \(x \times\) & \(x\) \\
\hline \(\mathrm{c}_{1}\) & - - - - & - - - - & \(x \times \mathrm{x} \times\) & \(\times \mathrm{x}\) & \(x \mathrm{x}\) & \(x\) \\
\hline \(\mathrm{c}_{2}\) & \(\times \mathrm{x} \times \mathrm{x}\) & \(x \times \mathrm{x}\) & \(x \times \mathrm{x} \times\) & \(x\) & \(x \times\) & \(x\) \\
\hline \(\mathrm{C}_{3}\) & \(\mathrm{x} \times \mathrm{x} \times \mathrm{x}\) & \(\mathrm{x} \times \mathrm{x} \times\) & \(\mathrm{x} \times \mathrm{x} \times\) & x & \(\mathrm{x} \times\) & \(x\) \\
\hline \(\mathrm{C}_{4}\) & \(x-x\) x & \(x \times-\) & \(x \times-\) & - - & x & - \\
\hline \(\mathrm{c}_{5}\) & \(x \times-x\) & \(-x-x\) & \(-x-x\) & - x & x - & - \\
\hline \(\mathrm{c}_{6}\) & \(x \times x-\) & \(x-x-\) & \(x-x-\) & \(\times\) & - & - \\
\hline \(\mathrm{C}_{7}\) & \(-\times \times \times\) & - - x & - \(\quad\) x x & - - & - - & \(\times\) \\
\hline
\end{tabular}

NOTES:
1. The check bits are derived by performing the indicated parity operation on the data bits marked with an " X " in each row. \(\mathrm{XOR}=\) EXCLUSIVE OR, XNOR \(=\) EXCLUSIVE NOR. The XNOR is performed internally for check bits outputs \(\mathrm{CBO}_{1}\), and \(\mathrm{CBO}_{2}\) in position and \(64 \mathrm{~A} / 32 \mathrm{~A}\).
2. If C 5 is translated by the equation \(\mathrm{C} 5 \mathrm{~A}=\mathrm{C}_{5} \oplus \mathrm{C}_{6} \oplus \mathrm{C}_{7}\), then the binary code of \(C_{4}, C_{5 A}, C_{6}\), and \(C_{7}\) define each 4bit data group in a binary sequence, for data configurations of 64 bits or less.

\section*{Positive Versus Negative Logic}

System designers use MECL 10,000 in both positive and negative logic formats. Positive logic has MECL \(V_{\mathrm{OH}}\) (approx. -0.9 V) for Logic 1 and MECL \(\mathrm{V}_{\mathrm{OL}}\) (approx. -1.7 V) for Logic 0 . Negative logic reverses Logic 1 and

0 voltage definitions with \(V_{O L}\) being a Logic 1 . This data sheet is written around positive logic definitions. Tables and descriptions are written in terms of high \((\mathrm{H})\) and low (L) logic levels to simplify translation between formats.

TABLE 9 - SYNDROME BIT DECODING FOR 96-BIT DATA

* \(=\) No Errors
\(\mathrm{C}_{\mathrm{i}}=\) Single Bit Error in Check Bit i
\(\mathrm{D}_{\mathrm{i}}=\) Single Bit Error in Data Bit i
T = Two Errors
\(M=\) Multiple Bit Errors (More Than Two
\(S_{i}=\) Syndrome Bit \(i\) Output for 16, 32, 64, and 96 Data Configurations (see Figures 3, 4, 5, and 6)

NOTE:
For data configurations of less than 96 bits, unused data bits in the above table should be replaced with an " \(M\) " (for multiple bit error).

TABLE 10 - PROPAGATION DELAY EQUATIONS FOR MULTI-CHIP DATA CONFIGURATIONS
\begin{tabular}{|c|c|c|}
\hline Path & Data
Bit
Configuration & Propagation Delay Equation \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Data In to \\
Check Bit Out (Use Table 14)
\end{tabular}} & 32 & \((\mathrm{DI}\) to CBO, pos. 32A) \(+(\mathrm{PCB}\) to CBO, pos. 32B) \(=10.7 \mathrm{~ns}+6.3 \mathrm{~ns}=17 \mathrm{~ns}\) \\
\hline & 48, 64, 76, 88, 96 & (DI to CBO, pos. 64 A) \(+\mathrm{XOR}=10.7 \mathrm{~ns}+\mathrm{XOR}\) \\
\hline \multirow[t]{2}{*}{Data In to Error Detect (Use Table 15)} & 32 & \((\mathrm{DI}\) to SYO, pos. 32A) \(+(\) SYI to Error, pos. 32 B) \(=10.7 \mathrm{~ns}=10.3 \mathrm{~ns}=21 \mathrm{~ns}\) \\
\hline & 48, 64, 76, 88, 96 & ```
(DI to SYO, pos. 64B/C) + XOR + (SYI to Error, pos. 64A) = 13.2 ns + XOR +
 7.9 ns = 21.1 ns + XOR
``` \\
\hline \multirow[t]{2}{*}{Data In
to
Correct
Data Out
(Use Table 15)} & 32 & \[
\begin{aligned}
& \text { (DI to SYO, pos. } 32 \mathrm{~A})+(\text { SYI to } \mathrm{SYO}, \text { pos. } 32 \mathrm{~B})+(\text { SY| to } D O, \text { pos. } 32 \mathrm{~A})=10.7 \mathrm{~ns} \\
& \quad+6.3 \mathrm{~ns}+11 \mathrm{~ns}=28 \mathrm{~ns}
\end{aligned}
\] \\
\hline & 48, 64, 76, 88, 96 & \[
\begin{aligned}
& \text { (DI to SYO, pos. } 64 \mathrm{~B} / \mathrm{C})+\mathrm{XOR}+(\mathrm{SYI} \text { to DO, pos. } 64 \mathrm{~A})=13.2 \mathrm{~ns}+\mathrm{XOR} \\
& +11 \mathrm{~ns}=24.2 \mathrm{~ns}+\mathrm{XOR}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Data In to Single Error (SE) Out (Use Table 15)} & 32 & \[
\begin{aligned}
&(\text { DI to SYO, pos. } 32 \mathrm{~A})+(\text { SYI to SYO, pos. } 32 \mathrm{~B})+(\text { SYI to SE, pos. } 32 \mathrm{~A})=10.7 \mathrm{~ns} \\
&+6.3 \mathrm{~ns}+11.8 \mathrm{~ns}=28.8 \mathrm{~ns}
\end{aligned}
\] \\
\hline & 48, 64, 76, 88, 96 & \[
\begin{aligned}
& \text { (DI to SYO, pos. } 64 \mathrm{~B} / \mathrm{C})+\mathrm{XOR}+(\mathrm{SYI} \text { to } \mathrm{SE}, \text { pos. } 64 \mathrm{~A})=13.2 \mathrm{~ns}+\mathrm{XOR}+ \\
& 11.8 \mathrm{~ns}=25 \mathrm{~ns}+\mathrm{XOR}
\end{aligned}
\] \\
\hline
\end{tabular}

Note* Calculations do not include circuit board wiring delays.
table 11 - ABSOLUTE MAX RATINGS
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Supply Voltage
\[
\left(V_{C C}=0\right)
\] & \(V_{E E}\) & -7.0 to 0 & Vdc \\
\hline Input Voltage \({ }^{2}\)
\[
\left(V_{C C}=0\right)
\] & \(V_{\text {in }}\) & 0 to \(V^{\prime} E E\) & Vdc \\
\hline \[
\begin{array}{r}
\text { Output Source Current - Continuous } \\
\text { - Surge }
\end{array}
\] & 10 & \[
\begin{aligned}
& <30 \\
& <100
\end{aligned}
\] & mAdc \\
\hline Storage Temperature & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & TJ & 165 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES
1. Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability
2. Input voltage limit is \(\mathrm{V}_{\mathrm{CC}}\) to \(-\mathbf{2 . 0}\) voits for bidirectional Pin 65 when used as an input (slice position 16 or \(64 \mathrm{~A} / 32 \mathrm{~A}\) ).

TABLE 13 - ELECTRICAL CHARACTERISTICS
Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board with heatsink and transverse air flow greater than 1000 Ifpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\multirow[t]{6}{*}{Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board with heatsink and transverse air flow greater than 1000 lfpm is maintained. Outputs are terminated through a 50-ohm resistor to - 2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.}} & \multicolumn{2}{|l|}{\multirow[b]{6}{*}{\[
\begin{aligned}
& \text { @ Test } \\
& \text { Temperature } \\
& 0^{\circ} \mathrm{C} \\
& +25^{\circ} \mathrm{C} \\
& +70^{\circ} \mathrm{C}
\end{aligned}
\]}} & \multicolumn{5}{|c|}{Test Voltage Values} & \\
\hline & & & & & & & & & & & \multicolumn{5}{|c|}{Volts} & \\
\hline & & & & & & & & & & & \(\mathrm{V}_{\text {IH }}\) max & \(\mathrm{V}_{\text {IL }}\) min & \(\mathrm{V}_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{EE}}\) & \\
\hline & & & & & & & & & & & -0.840 & -1.95 & -1.145 & -1.490 & -5.2 & \\
\hline & & & & & & & & & & & -0.810 & -1.95 & -1.105 & -1.475 & -5.2 & \\
\hline & & & & & & & & & & & -0.730 & -1.95 & -1.050 & -1.450 & -5.2 & \\
\hline & & Pin & & & & 0905 & Test Limit & & & & & & & & & \(\left(\mathrm{V}_{\mathrm{CcO}}\right)\) \\
\hline Characteristics & Symbol & Under & & & & \(25^{\circ} \mathrm{C}\) & & & \(+70^{\circ} \mathrm{C}\) & & & tage Appl & d to Pins L & ted Below & & ( \(\mathrm{V}_{\mathrm{Cc}}\) ) \\
\hline & & Test & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{V}_{\text {IH }}\) max & \(\mathrm{V}_{\mathrm{IL}}\) min & \(\mathrm{V}_{\text {IHA }}\) min & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\mathrm{EE}}\) & Gnd \\
\hline Power Supply Drain Current & IEE & 9,43 & - & 897 & - & 717 & 897 & - & 897 & mAdc & - & - & - & - & 9.43 & \[
\begin{gathered}
3,15,20 \\
26,60,66
\end{gathered}
\] \\
\hline Input Current & & & & & & & & & & & & & & & & \\
\hline \[
\mathrm{Dl}_{0-15}
\] & l inH & 27 & - & 200 & - & - & 200 & - & 200 & \(\mu\) Adc & 27 & - & - & - & & \\
\hline \(\mathrm{SYI}_{6}, \mathrm{SYI}_{7}\) & \(\mathrm{l}_{\text {inH }}\) & 57, 58 & - & 400 & - & - & 400 & - & 400 & \(\mu\) Adc & 57 & - & - & - & & \\
\hline OLE, \(\mathrm{SYI}_{5}\) & linH & 62, 56 & - & 350 & - & - & 350 & - & 350 & \(\mu\) Adc & 62 & - & - & - & & \\
\hline All Others & \(\mathrm{I}_{\mathrm{inH}}\) & 47 & - & 300 & - & - & 300 & - & 300 & \(\mu\) Adc & 47 & - & - & - & & \\
\hline All Except Pin 65 & 1 INL & 47 & 0.5 & - & 0.5 & - & - & 0.5 & - & \(\mu \mathrm{Adc}\) & - & 47 & - & - & & \\
\hline Logic "H" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & 2 & -1.000 & -0.840 & -0.960 & - & -0.810 & -0.905 & \(-0.730\) & Vdc & 44, 45, 61 & - & - & - & & \\
\hline \begin{tabular}{l}
Logic "L" \\
Output Voltage
\end{tabular} & \(\mathrm{V}_{\mathrm{OL}}\) & 2 & -1.950 & -1.665 & -1.950 & - & \(-1.650\) & -1.950 & -1.625 & Vdc & 44, 45 & - & - & - & & \\
\hline \begin{tabular}{l}
Logic "H" \\
Threshold Voltage
\end{tabular} & \(\mathrm{V}_{\text {OHA }}\) & 2 & -1.02 & - & -0.980 & - & - & \(-0.925\) & - & Vdc & - & - & 44, 45, 61 & - & & \\
\hline \begin{tabular}{l}
Logic "L" \\
Threshold Voltage
\end{tabular} & \(V_{\text {OLA }}\) & 2 & - & -1.645 & - & - & -1.630 & - & -1.605 & Vdc & - & -- & 44, 45 & - & & \\
\hline
\end{tabular}

NOTE: All inputs have pulldown resistors ( \(\sim 68 \mathrm{k} \Omega\) ) between the input and \(\mathrm{V}_{\mathrm{EE}}\) including Pin 65.

TABLE 12 - RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Symbol & Value & Unit \\
\hline \begin{tabular}{c} 
Supply Voltage \\
\(\left(V_{\mathrm{CC}}=0\right.\) Volts)
\end{tabular} & \(\mathrm{V}_{\mathrm{EE}}\) & -4.68 to -5.72 & Vdc \\
\hline \begin{tabular}{c} 
Operating Temperature \\
(Functional)
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Output Drive & - & \begin{tabular}{c}
\(50 \Omega\) to -2.0 \\
Vdc
\end{tabular} & - \\
\hline Max Junction Temp & \(\mathrm{T}_{\mathrm{J}}\) & 130 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{@ Test} Temperature
\(0^{\circ} \mathrm{C}\)

\section*{MC10905}

Switching Characteristics Over Operating Voltage and Temperature Range

Tables 14-17 define timing characteristics of the MC10905 over operating voltage and temperature ranges. Worst-case Setup and Hold and Propagation Delays are calculated for \(V_{E E}=-5.2\) volts \(\pm 10 \%\) and \(T_{J m a x}=115^{\circ} \mathrm{C}\). The maximum recommended operating junction temperature is \(+130^{\circ} \mathrm{C}\).

Calculated limits are based on several performance factors as described in Motorola's Preliminary Design Manual for the MECL 10,000 Macrocell Array. Factors include worst case delays due to Macro selections, FanOut, Metal Lengths, Wire-OR, and Input Follower options. AC measurements are performed on each device to assure process integrity

TABLE 14 - MAXIMUM PROPAGATION DELAY (IN NANOSECONDS) FOR THE WRITE MODE ( \(\mathbf{G E N}=\mathrm{H}\) ), \(\mathbf{O}\) to \(70^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}\) ( \(\mathrm{T}_{\mathrm{J}}\) NOT TO EXCEED \(115^{\circ} \mathrm{C}\) )
\begin{tabular}{|l|c|c|c|}
\hline To Output & & \multicolumn{2}{|c|}{\begin{tabular}{c} 
CBO O-6 \\
Position
\end{tabular}} \\
From Input & DO \(_{\mathbf{0 - 1 5}}\) & 32B & Others \\
\hline \(\mathrm{DI}_{\mathrm{O}-15}\) & 7.6 & 13.2 & 10.7 \\
\hline\(\overline{\mathrm{LE}}\) & 10.0 & 15.6 & 13.1 \\
\hline \(\mathrm{PCB}_{\mathrm{O}-5}\) & & 6.3 & \\
\hline NC & & 21.1 & 18.7 \\
\hline
\end{tabular}

TABLE 15 - MAXIMUM PROPAGATION DELAY (IN NANOSECONDS) FOR THE READ MODE (GEN = L), 0 to \(70^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}\left(\mathrm{T}_{\mathrm{J}}\right.\) Not to Exceed \(115^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline To Output & & \(\mathrm{DO}_{0-15}\) & & & \(\mathrm{O}_{0-6}\) & & & ROR & & E \\
\hline From Input & \begin{tabular}{l}
16 \\
Corrected
\[
N C=L
\]
\end{tabular} & \begin{tabular}{l}
Position or 32 B \\
No Correction
\[
\mathbf{N C}=\mathbf{H}
\]
\end{tabular} & Others & 32A/64A & 32B & Others & \[
\begin{array}{|c}
\text { Po: } \\
16 \text { or } \\
32 B
\end{array}
\] & \begin{tabular}{l}
sition \\
Others
\end{tabular} & \[
\begin{aligned}
& \text { Po } \\
& 16 \text { or } \\
& 32 B
\end{aligned}
\] & \begin{tabular}{l}
ition \\
Others
\end{tabular} \\
\hline \(\mathrm{SYI}_{0-7}\) & 12.9 & & 11.0 & \(\bigcirc\) & 6.3 & & 10.3 & 7.9 & 13.7 & 11.8 \\
\hline \(\mathrm{Dl}_{\mathrm{O}-15}\) & 19.7 & 7.6 & 7.6 & 10.7 & \multicolumn{2}{|c|}{13.2} & 17.2 & & 20.6 & \\
\hline \(\overline{\mathrm{ILE}}\) & 22.1 & 10.0 & 10.0 & 13.1 & \multicolumn{2}{|c|}{15.6} & 19.7 & & 23.0 & \\
\hline \(\mathrm{CBI}_{0} \mathrm{O}\) & 14.8 &  & \(>\) & \(\rightarrow\) & \multicolumn{2}{|c|}{8.2} & 12.2 & & 15.6 & \\
\hline NC & \multicolumn{3}{|c|}{10.2} & \multicolumn{7}{|l|}{} \\
\hline
\end{tabular}

TABLE 16 - MAXIMUM PROPAGATION DELAY (IN
NANOSECONDS) FOR GEN, OLE, AND THE SLICE POSITION SELECT INPUTS, 0 TO \(70^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}\left(\mathrm{T}_{J}\right.\) NOT TO EXCEED \(115^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
To Output \\
From Input
\end{tabular}} & \(\mathrm{DO}_{0-15}\) & \(\mathrm{SYO}_{0-6}\) & Error & SE \\
\hline \multicolumn{2}{|l|}{OLE} & 6.3 & - & 4.5 & 4.5 \\
\hline \multicolumn{2}{|l|}{GEN ( \(\mathrm{L} \rightarrow \mathrm{H}\) )} & 12.5 & 14.5 & 7.9 & 7.9 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { GEN } \\
& (\mathrm{H} \rightarrow \mathrm{~L})
\end{aligned}
\]} & \(\mathrm{NC}=\mathrm{L}\) & 18.4 & 11.8 & 15.8 & 19.2 \\
\hline & \(\mathrm{NC}=\mathrm{H}\) & 27.4** & 19.3 & 23.7 & 26.7 \\
\hline \multicolumn{2}{|l|}{MA, MB, MC} & 40.2 & 33.6 & 37.5 & 41.0 \\
\hline
\end{tabular}

\footnotetext{
* NC and GEN are both switched simultaneously H - L.
}

\section*{TABLE 17 - SETUP AND HOLD TIMES (IN NANOSECONDS) 0 TO \(70^{\circ} \mathrm{C}\) TA ( \(\mathrm{T}_{\mathrm{J}}\) NOT TO EXCEED \(115^{\circ} \mathrm{C}\) )}
\begin{tabular}{|c|c|c|c|c|}
\hline Input & Clock (Ref. Edge) & Conditions & Set Up (Min) & \begin{tabular}{l}
Hold \\
(Min)
\end{tabular} \\
\hline \(\mathrm{DlO}_{0-15}\) & \(\overline{\mathrm{ILE}}(\mathrm{L} \rightarrow \mathrm{H})\) & - & 1.5 & 2.4 \\
\hline \(\mathrm{CBI}_{0-6}\) & \(\overline{\mathrm{ILE}}(\mathrm{L} \rightarrow \mathrm{H})\) & - & 1.5 & 2.4 \\
\hline \multirow[b]{2}{*}{DIO-15} & \multirow[b]{2}{*}{OLE ( \(\mathrm{H} \rightarrow \mathrm{L}\) )} & \(\mathrm{GEN}=\mathrm{L}\), Position -16 or 32B & 20.7 & 0.9 \\
\hline & & All Others & 6.3 & 0.9 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \overline{\text { ILE }} \\
& (H \rightarrow L)
\end{aligned}
\]} & \multirow[b]{2}{*}{OLE ( \(\mathrm{H} \rightarrow \mathrm{L}\) )} & GEN \(=\) L, Position -16 or 32 B & 23.1 & 0 \\
\hline & & All Others & 8.7 & 0 \\
\hline \multirow[b]{2}{*}{SYIO-7} & \multirow[b]{2}{*}{OLE ( \(\mathrm{H} \rightarrow \mathrm{L}\) )} & Position - 32B & 13.8 & -0.5 \\
\hline & & Position - Others & 11.9 & 0.2 \\
\hline \(\mathrm{CBl}_{0}-6\) & OLE ( \(\mathrm{H} \rightarrow \mathrm{L}\) ) & Position - 16 or 32B & 15.7 & -1.0 \\
\hline NC & OLE ( \(\mathrm{H} \rightarrow \mathrm{L}\) ) & - & 8.9 & 0.5 \\
\hline GEN (L \(\rightarrow\) H) & OLE ( \(\mathrm{H} \rightarrow \mathrm{L}\) ) & - & 11.3 & 0 \\
\hline GEN & & \(N \mathrm{C}=\mathrm{L}\) & 19.3 & 0 \\
\hline \((\mathrm{H} \rightarrow \mathrm{L})\) & - L) & \(\mathrm{NC}=\mathrm{H}\) & 26.8 & 0 \\
\hline MA, MB, MC & OLE ( \(\mathrm{H} \rightarrow \mathrm{L}\) ) & - & 41.1 & 0 \\
\hline
\end{tabular}

TABLE 18 - MINIMUM PULSE WIDTHS
(IN NANOSECONDS)
\begin{tabular}{|c|c|}
\hline Inputs & PW (Min) \\
\hline\(\overline{\mathrm{ILE}}, \mathrm{OLE}\) & 5 \\
\hline
\end{tabular}

FIGURE 7 - THERMAL CHARACTERISTICS (TYPICAL)


Heat Sink \#1 is from THERMALLOY \#15832-1, 3 Horizontal Fins, 0.563 inches square, Model No. 2284C. Heat Sink \#2 is from WAKEFIELD \#4493, Vertical Fins, 0.5 inches square.
NOTE: \(T_{J}=\left(\theta_{J A}\right)\left(P_{D}\right)+T_{A}\) WHERE \(T_{J}\) is the Junction Temperature, \(T_{A}\) is the Ambient Temperature, \(P_{D}=\left(\left.\right|_{E E}\right)\left(V_{E E}\right)+(15 \mathrm{~mW})\) (number of \(50 \Omega\) outputs).

FIGURE 8 - SWITCHING WAFEFORM DEFINITION
Propagation Delays


\section*{Setup and Hold}

\section*{TEST PROCEDURE}
a) Establish setup time with long thold
b) Keeping the leading edge of the input constant ('setup) vary the tralling edge of the input to deter. mine thold

\section*{FIGURE 9 - SWITCHING TIME TEST CIRCUIT}

50 -ohm termination to ground located in each scope channel input

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be -14 inch from \(T P_{\text {in }}\) to input pin and \(T P_{\text {out }}\) to output pin


INPUT PULSE
\(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=1.0 \mathrm{~ns}(20\) to \(80 \%)\)
\(\mathrm{V}_{\mathrm{OH}}=+1.11 \mathrm{~V}\)
\(\mathrm{VOL}_{\mathrm{OL}}=+0.31 \mathrm{~V}\)

\section*{Advance Information}

\section*{MCA2500ECL MACROCELL ARRAY}

This specification establishes design and performance requirements for the MCA2500ECL, first in a new series of ultra highperformance bipolar arrays. Built with a high density MOSAIC II process, the circuit contains the logic power of over 2500 equivalent subnanosecond gates on one integrated circuit chip. The routing flexibility and macrocell structures are designed to meet the market needs for next generation computer systems.
- Logic Function Specified By User
- Metal Mask Programmable (Three Unique Masks)
- Up to 2800 Equivalent Gates
- Internal Gate Delays - 0.30 ns Typical
- Output Gate Delays - 0.75 ns Typical
- Power Dissipation - 6.5 Watts Typical
- Supported By Complete CAD Development System
- Interfaces with MECL10K/10KH or ECL 100 K
- On-Chip System Design Aids


FIGURE 1 - MCA2500ECL MACROCELL ARRAY LAYOUT


M - Major (Internal) Cells
Divisible to Four \(1 / 4\) Cells 110 Total

0 - Output Cells
68 Total
C - Clock Generator
G - Master Bias Generator

\section*{PRODUCT DESCRIPTION}

The MCA2500ECL Macrocell Array is a 300 picosecond, 2500 equivalent gate density LSI monolithic integrated circuit designed around the MOSAIC II oxide isolated, walled-base, walled-emitter process. The array is composed of two types of macrocells; M for major cells and \(O\) for output cells. Macrocells are similar to ECL integrated circuit packages. A macrocell library provides a selection of fully characterized logic functions, similar to an IC data book. Using the library, a designer can draw schematics for LSI macrocell array circuits similar to drawing printed circuit board schematics. The only restrictions are that designs are limited to logic functions within the library, the number of macrocell positions on the array, and the number of package l/O pins. The MCA2500ECL consists of 178 cells organized as shown in Figure 1. There are 110 major ( M ) cells, and 68 output ( O ) cells.

Most of the circuit logic is accomplished using major macrocells. Many of the M macrocell logic functions may be subdivided into half macrocells, such that different type cells can be placed into one \(M\) location for more efficient logic utilization. Simple logic functions are further divided into quarter macrocells so that it is possible to mix four different logic circuits within one M location to achieve maximum array utilization. Input signals can go directly to M or O macrocell inputs that are not marked with an asterisk (*). A signal leaving the array must go through an output (O) macrocell.

The MCA2500ECL array uses three layers of metal to accomplish the required routing and power distribution. Each cell location is comprised of uncommitted transistors and resistors, as shown in Figures 2 and 3, which are automatically interconnected with the first layer of metal forming the chosen library macro logic function. Power distribution (fixed-metal) is contained almost entirely on third layer metal and is common to all array designs. Both cell intraconnection and routing of power signals are invisible to the user. The interconnection among macrocell functions and I/O pins are accomplished with a grid of horizontal and vertical routing channels. Vertical channels are positioned between and outside the columns of cell locations, using the first layer of metal. Horizontal channels are second layer
metal and capable of routing across macrocells and vertical channels such that placement of a macro on the array never obstructs these routing channels. The three layers of metal are separated by an isolation and can be connected through "VIA's." The use of ECL seriesgated techniques yield improved circuit performance and reduces routing channel requirements, thus greatly simplifying the Computer Aided Design interconnection task.

Motorola's MCA-CAD (Macrocell Array - Computer Aided Design) system is the engineering design interface between Motorola and customers developing macrocell circuits (MCA options). Customers can either use terminals at their own geographic location or access CAD software at a Motorola customer CAD design center, in both cases, over phone lines or Data Comm network. The CAD software contains programs to assist in each stage of option design with the addition of several special programs to catch syntactical errors or design violations during the design procedure rather than at test.

The CAD system is common to a variety of MCA products such that designing with one array is only "cosmetically" different than designing with another. Motorola offers a family of array products so that array size, performance, power dissipation, and package can be optimized to match system requirements. Library macrocell functions (macros) are also common to several array types.

Compared with gate arrays, the use of higher component density and more efficiently designed subcircuits (macros) yield a substantial improvement in performance (circuit speed), while a greater utilization of on-chip components reduces potential system costs.
The high packing density of MCA2500ECL arrays offer up to 100-to-1 reduction in system component count when compared with equivalent systems developed using conventional logic (separately packaged SSI/MSI logic functions). System power dissipation is also reduced by as much as 12 -to- 1 . Because a large degree of optimization is possible, the user obtains performance similar to that of a full custom design, and the accelerated turnaround time of a conventional semicustom array.

TABLE 1 - BASIC MCA2500ECL ARRAY FEATURES
1. \(\mathbf{1 7 8}\) total cells with 120 Input/Output ports.
2. Up to 2800 equivalent gates if full adders and latches are used in all cells.
3. Up to 2100 equivalent gates if flip-flops and latches are used in all cells.
4. Power Dissipation - 6.5 watts typical.
5. Major cell delays -0.30 to 0.9 ns typical.
6. Output cell delays -0.60 to 1.25 ns typical.
7. Up to 38 cells can drive 25 ohm loads (all outputs can drive \(50 \Omega\) loads).
8. Edge speed -1.0 ns typical 20 to \(80 \%\).
9. Ambient temperature range (with heat sink and 750 Ifpm air) \(-0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\).
10. \(\theta_{J A}=3.3^{\circ} \mathrm{C} / \mathrm{W}\) typical with heatsink and 750 Ifpm air flow in 149 pin grid array package.
11. Voltage compensated, \(\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{Vdc}\) to -4.8 Vdc .
12. Interfaces with MECL \(10 \mathrm{~K} / 10 \mathrm{KH}\) or ECL 100 K .

FIGURE 2 - \(1 / 4\) MAJOR CELL (M) SCHEMATIC
(Repeated 4X per M Cell)


The value of series-gating can be seen by the logic equation for the 4 -input exclusive OR gate shown in Figure 4. To implement this function with gates would require eight 4 -input AND gates plus one 8 -input OR gate. Gates also might be required to form the true and complement of each input.

About 40 connections would be required if gates were

FIGURE 3 - OUTPUT CELL (O) SCHEMATIC

 \(\}\) 5

used, compared to five connections for the series-gated macro. Each output of the cell has a two-emitter transistor that allows a 1.0 mA or 2.0 mA emitter follower selection for power/speed optimization. This also provides the emitter-dotting capability and at the same time maintains the non-dotted output function through the second emitter.

FIGURE 4- SCHEMATIC OF 4-INPUT EXCLUSIVE OR GATE \((Y=A \bar{B} \bar{C} C D+\bar{A} B C D+A B \bar{C} D+A B C \bar{D}+A \bar{B} \bar{C} \bar{D}+\bar{A} B \bar{C} \bar{D}+\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} \bar{C} D)\)


FIGURE 5 - CROSS SECTION of MOSAIC II PROCESS

M. G. Farrell and S. Mastroianni, U.S. Patent 4,199,380, April 22, 1980.

\section*{PROCESS DESCRIPTION}

The MCA2500ECL has been fabricated by the MOSAIC II (Motorola Oxide-isolated Self-Aligned Implanted Circuits) process utilizing a walled-emitter structure and a three layer metallization system. Usage of a walledemitter greatly reduces device area and parasitic capacitances associated with the device. A cross-section of the transistor is shown in Figure 5. Collector-toemitter leakage current has been minimized by using a reverse master mask technique (RMMT). The reverse master mask structures in Figure 5 are the inactive base areas covered by oxide on either side of the emitter. The active base and emitter are both implanted using
this oxide for mask edge definition so that both are implanted without an intermediate masking step. Eliminating the intermediate step minimizes the collectoremitter leakage found in conventional walled-emitter structures. Separating the active and inactive base implants also reduces series base resistance without compromising the current gain of the active device. Reduced series base resistance is critical to building small transistors with high performance characteristics. Collector resistance is minimized by use of a thin epi and a deep \(\mathrm{n}^{+}\)collector. Three levels of metallization have been used, two for interconnection wiring and the third for power buses only.

TABLE 2 - MCA1200ECL/MCA2500ECL MACROCELL ARRAY COMPARISON
\begin{tabular}{|c|c|c|}
\hline FEATURE & MCA1200ECL & MCA2500ECL \\
\hline Interface Levels & MECL10K & 10KH/100K/10K \\
\hline 1/O Ports & 60 & 120 \\
\hline Major Cells (M) & 48 & 110 \\
\hline Output Cells (0) & 26 & 68 \\
\hline Interface Cells (I) & 32 & - \\
\hline Clock Generator & NO & YES \\
\hline Minimum Cell Partition & 1/2Cell & \(1 / 4\) Cell \\
\hline Diagnostics & YES & Modified LSSD Macro \\
\hline Basic Gate Delay (Typical) & 0.65 ns & 0.30 ns \\
\hline 4-Input OR/NOR & 1.2 ns Max & 0.5 ns Max \\
\hline D Flip-Flop (Clock) & 1.5 ns Max & 0.7 ns Max \\
\hline 4-to-1 Multiplexer & 1.4 ns Max & 0.6 ns Max \\
\hline Full Adder & 2.8 ns Max & 1.1 ns Max \\
\hline Output OR Gate & 3.1 ns Max & 1.0 ns Max \\
\hline Power (Typical) & 4 Watts & 6.5 Watts \\
\hline Package & 68 Leadless & 149-Pin Grid Array \\
\hline Routing Channels: & & \\
\hline Vertical & 84 & 220 \\
\hline Horizontal & 104 (2) & 426 ( \({ }^{\text {2 }}\) \\
\hline Process
Personalization Layers & MOSAIC I (2-Layer Metal) 3 (2 Metal and 1 VIA) & \begin{tabular}{l}
MOSAIC II (3-Layer Metal) \\
3 (2 Metal and 1 VIA)
\end{tabular} \\
\hline
\end{tabular}

\section*{PERFORMANCE COMPARISON}

Although the MCA2500ECL array uses many features pioneered with Motorola's MOSAIC I macrocell array family, it is a totally new design representing the latest in high-speed array concepts. The MCA2500ECL array follows Motorola's plan to continually match the latest bipolar processing technology with innovative circuit concepts. Table 2 provides a comparison between Motorola's MOSAIC I technology, MCA1200ECL array introduced in 1979, and the state-of-art MOSAIC II technology MCA2500ECL macrocell array.
In addition to improved performance and greater density, the MCA2500ECL has eliminated the need for simple I Cells by allowing each Major Cell to be partitioned into quarter cells. SSI complexity functions are implemented in quarter cells. In addition, by locating all power buses on third layer metal, a significant increase in the number of routing channels was accomplished while maintaining minimum chip dimensions.

The number of \(1 / O\) ports has been increased to a full 120 channels with up to 68 outputs.

\section*{SPECIAL DESIGN FEATURES}

Innovative design features have been incorporated into the MCA2500ECL array to simplify system design and enhance performance.

\section*{Clock Pulse Generator Cell (Figure 6)}

The on-chip clock generator is capable of producing a narrow, edge-triggered pulse, controiled by Input A. The output signal from the generator is produced by a 10 mA emitter-follower and is capable of driving heavy loads with minimized speed degradation. Use of the generator eliminates the necessity of supplying a narrow clock pulse to the chip. Only a single clock edge needs to be supplied to the chip when the generator is used. The output of the generator can be forced high or low by using control inputs B and C .

\section*{Optional Edge Rate Selection}

The typical output rise-time ( 20 to \(80 \%\) ) or fall-time ( 80 to \(20 \%\) ) is 1.0 ns . For situations where slower edge rates are desirable, such as reducing cross talk or passing signals across board connectors, Motorola offers an optional output edge rate slowdown. Once selected (via
(via CAD interface) the typical output rise- or fall-time is increased to 1.5 ns .

These values are specified for the output package pin driving 50 ohms ( 25 ohms for bus drivers) to -2.0 Volts.

\section*{MACROCELL LIBRARY - M CELL and O CELL}

Each macrocell \(M\) and \(O\) cell location contains a number of conventional transistors and resistors that can be interconnected with CAD selected metal patterns to form logic functions. A computer-stored macrocell library contains pre-defined metal patterns for more than 60 different \(M\) and \(O\) logic functions, all available to the engineer designing an LSI circuit (macrocell array option). Designers have the freedom to select any of the macrocell functions for any M or O cell location. However, an \(O\) cell macro cannot be placed in an \(M\) cell location and visa versa. Thus, an M cell - a multiplexer, or dual flip-flop, or LSSD type diagnostic cell could be formed in any or all M locations, but not in an O location. The functions available to the designer are similar to those defined in Motorola's MOSAIC I array family, however performance is greatly improved. A list of macrocell functions currently stored in the library is shown in Table 3.

\section*{Major Cells (M)}

The Major Cells in the array comprise the internal area on the chip and are used for the majority of logic capability. Each Major Cell contains 56 transistors and 56 resistors as shown in Figure 2. These components are connected together on first layer metal to form logic functions with up to four series-gated structures. The macros in the Major Cell Library can use \(1 / 4,1 / 2,3 / 4\) or 1 entire major cell. Each macro specifies how much of the cell is needed to implement that particular function.

Worst case propagation delay is specified for \(\mathrm{V}_{\mathrm{EE}}\) \(=-4.2 \mathrm{Vdc}\) to -4.8 Vdc and a maximum junction temperature of \(\mathrm{T}_{\mathrm{J}} \max =115^{\circ} \mathrm{C}\). In general, a lower junction temperature can result in faster propagation delays. Macrocell power dissipation is specified at \(\mathrm{V}_{\mathrm{EE}}=\) -4.5 V.

The worst case setup and hold times are also listed for all flip-flops and latches.

The worst case minimum pulse width (tpW) is specified for the clock inputs of flip-flops and latches to insure proper operation.

FIGURE 6 - LOGIC SCHEMATIC of CLOCK PULSE GENERATOR


\section*{Examples of Major Cell Macros}

For complete Macrocell Library, consult Motorola's MCA II Design Manual.

M201 - 4-Input OR/NOR

\(A, B, C, D\) to \(Y A, Y B, Y C, Y D=500 \mathrm{ps}\) \(\mathrm{P}_{\mathrm{D}}=3.0 \mathrm{~mW}\)

M203 - 8-Input OR/NOR \(1 / 2\) Cell

2-to-1 Multiplexer w/Gated Inputs

M293 - D Latch
\(1 / 4\) Cell

\begin{tabular}{|l|c|c|c|c|}
\hline & & & \multicolumn{2}{|c|}{ C,D \(\uparrow\)} \\
\cline { 4 - 5 } & YA & YD & Set & Hold \\
\hline A,B & 575 & 575 & 750 & 0 \\
Enable & 700 & 700 & - & - \\
\hline Reset & 1000 & 1000 & - & - \\
\hline
\end{tabular}
\(P_{D}=14.4 \mathrm{~mW}\)

M291 \(\underset{1 / 2 \text { Cell }}{\text { D Flip-Flop }}\)

*E


Min. Reset Pulse Width \(=1250\)
Min. + Clock Width \(=1250\)
Min. - Clock Width \(=1250\)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{2}{|c|}{ Clock \(\uparrow\)} \\
\cline { 5 - 7 } & YA & YD & YE & YH & Set & Hold \\
\hline A,B & 575 & 575 & - & - & 750 & 0 \\
Clock \(\downarrow\) & 700 & 700 & - & - & - & - \\
Clock \(\uparrow\) & - & - & 700 & 700 & - & - \\
\hline Reset & 875 & 875 & 1750 & 1750 & - & - \\
\hline
\end{tabular}
\(P_{D}=26.0 \mathrm{~mW}\)
Min. Clock Period \(=2500\)
Max. Toggle Frequency \(\approx 400 \mathrm{MHz}\)

NOTES:
1. Values given for propagation delay, \(t_{p d}\), are max for 1.0 mA output follower current driving a fan-out of 1 . Values given for power dissipation, \(\mathrm{PD}_{\mathrm{D}}\) , are typical with unloaded outputs. Output follower current can be selected for either 0.0 or 1.0 mA . Numbers enclosed in parenthesis at the inputs indicate fan-in other than 1.
2. Unmarked upper level inputs and \(\circledast\) inputs can be connected to package pins.
3. *Inputs are connected to an input follower. Numbers enclosed in parenthesis at the output indicate the total number of internal wire OR's.

\section*{Examples of Major Cell Macros (continued)}


\begin{tabular}{|l|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|c|}{ CLOCK \(\uparrow\)} \\
\cline { 5 - 6 } & YA,YD & YG,YH & YL,YM & Set & Hold \\
\hline A,B,H & 1225 & - & - & 1400 & 0 \\
C,D,E,F,G & 1125 & - & - & 1300 & 0 \\
Clock \(\downarrow\) & 700 & - & - & - & - \\
Clock \(\uparrow\) & - & 700 & 700 & - & - \\
\hline Reset & 875 & 1750 & 1750 & - & - \\
\hline
\end{tabular}
\(P_{D}=41.8 \mathrm{~mW}\)

\section*{MCA2500ECL}

\section*{Output Cells (O)}

The Output Cells are located at the top and bottom of the array. These macros can use 1 or 2 output cells. The macro library specifies how many output cells are needed for each macro.

The Output Cells are primarily used to provide the interface between internal logic and logic outside the
package by supplying 50 ohm and 25 ohm drive capability. These macros also provide extra logic capability with logic functions such as OR-AND, Exclusive OR with enable, 2-to-1 multiplexer with enable, latches and flip-flops. The Output Cell Library provides macros with a similar logic capability to \(1 / 4\) of a Major Cell.

\section*{Examples of Output Cell Macros}


\section*{X253 - 2-to-1 Multiplexer w/Enable One Cell}
(4)

\(A, B\) to \(X A, Z A=900 \mathrm{ps}\)
\(C, D\) to \(X A, Z A=1275 \mathrm{ps}\)
\(P_{D}=21.2 \mathrm{~mW}\)


\section*{X291 - Gated Flip-Flop Two Cells}
(4)

(4)

Min. + Clock Width \(=2000 \mathrm{ps}\)
Min. - Clock Width \(=2000\) ps Min. Reset Pulse Width \(=2000\) ps
\begin{tabular}{|l|c|c|c|c|}
\hline & & \multirow{2}{|c|}{ XA, } & \multirow{2}{|c|}{ XC, } & \multicolumn{2}{|c|}{ Clock \(\uparrow\)} \\
\cline { 4 - 5 } & XB & XD & Set & Hold \\
\hline A,B & 925 ps & - & 1000 ps & 0 ps \\
Clock \(\uparrow\) & - & 1200 ps & - & - \\
Clock \(\downarrow\) & 1150 ps & - & - & - \\
\hline Reset & 1550 & 3100 & - & - \\
\hline
\end{tabular}
\(\mathrm{P}_{\mathrm{D}}=56.0 \mathrm{~mW}\)

NOTE: All X outputs come off the collector and must be routed to the large output devices near the bonding pads. All Z outputs have a 1.0 mA emitter follower and may be used for driving internally on the chip.

TABLE 3 - MCA2500ECL MACROCELL LIBRARY
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Major Cells} & No. of M-Cells \\
\hline M200 & 5-Input OR/NOR & \(1 / 4\) \\
\hline M201 & 4-Input OR/NOR & \(1 / 4\) \\
\hline M202 & 2-input OR/NOR & \(1 / 4\) \\
\hline M203 & 8-Input OR/NOR & \(1 / 2\) \\
\hline M204 & 12-Input OR/NOR & 1 \\
\hline M211 & 2-2 OR/AND & \(1 / 4\) \\
\hline M212 & 3-2-2-2 OR/AND & \(1 / 2\) \\
\hline M213 & 4-3-3-3 OR/AND & , \\
\hline M214 & 2-2-2-2-1-1-1-1 OR/AND & 1 \\
\hline M215 & 2-2-3-3-3 OR/AND & 1 \\
\hline M216 & 4-2-3-2-3 OR/AND & 1 \\
\hline M217 & 5-3-4-2 OR/AND & 1 \\
\hline M218 & 5-4-3-2-1 OR/AND & 1 \\
\hline M219 & 3-3 OR/AND & 1/4 \\
\hline M221 & 2-2 OR/EX NOR & 1/4 \\
\hline M222 & Dual 2-2 OR/AND/EX NOR & 1 \\
\hline M223 & 4-Input EX NOR & 1/2 \\
\hline M224 & 4-Input EX OR & \(1 / 2\) \\
\hline M225 & 2-1-1-2 OR/AND/EX OR & 1/2 \\
\hline M226 & 2-1-1-2 EX NOR & \(1 / 2\) \\
\hline M227 & 2-1 EX OR/AND/NAND & \(1 / 2\) \\
\hline M228 & 2-1 AND/EX NOR & \(1 / 4\) \\
\hline M231 & D Flip-Flop & \(1 / 2\) \\
\hline M232 & D Flip-Flop w/MUX & \(3 / 4\) \\
\hline M241 & D Latch & \(1 / 4\) \\
\hline M242 & Dual D Latch & 1/2 \\
\hline M243 & D Latch w/MUX & \(1 / 2\) \\
\hline M244 & Gated 2-Way D Latch & \(1 / 2\) \\
\hline M245 & Gated 4-Way D Latch & \(3 / 4\) \\
\hline M246 & EX NOR D Latch & \(1 / 2\) \\
\hline M251 & 4-to-1 MUX w/Enable (Low) & 1 \\
\hline M252 & Quad 2-to-1 MUX & 1 \\
\hline M253 & 2-to-1 MUX w/Enable (Low) & \(1 / 4\) \\
\hline M254 & 2-to-1 MUX w/Gated Inputs & \(1 / 4\) \\
\hline M255 & Dual 2-to-1 MUX w/Com. SEL. & 1/2 \\
\hline M256 & 2-to-1 MUX & \(1 / 2\) \\
\hline M258 & 4-to-1 MUX w/Enable (High) & 1 \\
\hline M261 & 1-of-4 Decode (Low) & \(1 / 2\) \\
\hline M263 & 1-of-4 Decode (High) & 1 \\
\hline M281 & Full Adder & 1 \\
\hline M282 & Full Adder & 1/2 \\
\hline M283 & 2-Bit Look-Ahead-Carry Block & 1 \\
\hline M284 & Half Adder & \(1 / 4\) \\
\hline M290 & D Flip-Flop w/Asyn. Set/Reset & 1/2 \\
\hline M291 & D Flip-Flop & \(1 / 2\) \\
\hline M292 & D Flip-Flop w/MUX & \(3 / 4\) \\
\hline M293 & D Latch & \(1 / 4\) \\
\hline M294 & D Latch w/MUX & \(1 / 2\) \\
\hline M295 & Gated 2-Way D Latch & \(1 / 2\) \\
\hline M296 & EX NOR D Latch & 1/2 \\
\hline M297 & Gated 4-Way D Latch & \(3 / 4\) \\
\hline M298 & Dual D Latch & 1/2 \\
\hline M299 & Diagnostic D Flip-Flop & 1 \\
\hline M310 & 4-4-4-4 AND/OR & 1 \\
\hline M311 & 3-3-3-3 AND/OR & 1 \\
\hline M312 & 3-3-3 AND/OR & 1/2 \\
\hline M313 & 2-2 OR/AND & \(1 / 4\) \\
\hline M315 & 2-2-1-1 OR/AND & 1/2 \\
\hline M331 & 3-2-2 AND/OR & 1/2 \\
\hline M332 & Gated OR & \(1 / 2\) \\
\hline M333 & Gated OR & 1/2 \\
\hline M393 & D Latch w/OR Enable Neg. Edge & \(1 / 4\) \\
\hline
\end{tabular}
\begin{tabular}{|ll|c|}
\hline Output Cells & \begin{tabular}{c} 
No. of \\
O-Cells
\end{tabular} \\
\hline X201 & 2-Input OR/NOR & 1 \\
X202 & 4-Input OR/NOR & 1 \\
X203 & 2-2 OR Gates & 1 \\
\hline X211 & 2-2 OR/AND & 1 \\
X221 & 2-2 OR/EX NOR & 1 \\
X231 & D Flip-Flop & 2 \\
\hline X232 & D Latch & 1 \\
X233 & Dual D Latch & 2 \\
X291 & Gated Flip-Flop & 2 \\
\hline X292 & D Latch & 1 \\
X293 & Dual D Latch & 2 \\
X251 & 2-to-1 MUX & 1 \\
\hline X252 & Dual 2-to-1 MUX & 2 \\
X253 & 2-to-1 MUX w/Enable & 1 \\
X261 & 25 Ohm OR/NOR Driver & 1 \\
\hline
\end{tabular}

\section*{DEVELOPMENT INTERFACE SYSTEM}

To develop an MCA2500ECL circuit, a designer first determines the logic function to be performed by each LSI circuit. Then, using remote terminals, he defines the logic to Motorola's Western Area Computer Center in Arizona. Computer programs simplify circuit design by simulating the design logic function, placing Macrocells within the array, and automatically routing signals between the Macrocells and to the I/O package pins.

Successful implementation of a major array program such as the MCA2500ECL depends on a CAD system that accepts user design information, helps verify design accuracy and converts user data into a format compatible with semiconductor mask-making and test equipment. The Motorola CAD system accomplishes these objectives. Its data input format is easily understood and requires no special computer programming knowledge.

\section*{CAD Design Features}

The CAD system can handle all design functions associated with semiconductor products, including the selection of first or second layer metal, metal widths and spacing, metal internal to Macrocells and power distribution. Macrocell Array designers use skills common to printed circuit board design, yet, with help from the CAD system, convert the equivalent of a small pc board full of SSI/MSI circuits to a high-performance custom LSI Macrocell Array device.
To help with this process, the Macrocell Array CAD system provides the following design features:
- LOGCAP functional simulation
- Error checking of data input
- Fault grading to identify any untested nodes
- Auto place and route
- AC performance simulation to verify input to output propagation delay or performance of internal paths
- Auto definition of longest delay path between selected input and output points
- CAD data base conversion to electron beam exposure mask generation
- CAD generation of Development/Production test programs
- Customer documentation for every design

\section*{Hardware}

Macrocell array CAD software resides on IBM-compatible computer systems located in Scottsdale, Arizona at the Motorola Western Area Computer Center (WACC). CAD software is available to macrocell array customers on a time-share basis over normal telephone lines or datacomm network at 300 or 1200 baud data rates.
Several pieces of hardware are required at users' locations:
- Tektronix 4112, 4113 or equivalent computer display terminal
- Tektronix 4662 or 4663 interactive digital plotter (Optional)
- 300- or 1200-baud modem
- TTY-compatible keyboard/printer terminal

The appropriate CAD interface hardware is also available through Motorola Regional CAD Design Centers.

FIGURE 8 - MACROCELL ARRAY OPTION
DEVELOPMENT FLOW

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Customer } & \multicolumn{1}{c|}{ Motorola } \\
\hline \begin{tabular}{ll} 
1. Defines the circuit & 1. Defines the \\
function. & Macrocell Array. \\
2. Selects the & 2. Designs and controls \\
macrocells from the & diffusion masks. \\
Motorola library. & 3. Develops Macrocell \\
3. Generates metal & Array. \\
interconnect pattern & 4. Provides CAD \\
on CAD. & \begin{tabular}{l} 
System to help \\
4. Generates the test \\
sequence on CAD.
\end{tabular} \\
& design options. \\
& 5rocesses the \\
& circuits. \\
& 6. Tests the final \\
& product. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Program Management}

Upon completion of a three-day training course, each customer is assigned a program manager to focus all technical communications during design development. The program manager serves as both engineer and administrator to assure on-time shipment of fully tested prototypes.

FIGURE 9 - MACROCELL ARRAY PROGRAM MANAGER CONCEPT


\section*{PACKAGING}

The MCA2500ECL macrocell array is offered in the 149-pin grid package as shown in Figure 10.
The package has \(120 \mathrm{I} / \mathrm{O}\) pins, \(6 \mathrm{~V}_{\mathrm{EE}}\) pins, \(6 \mathrm{~V}_{\mathrm{CC}}\) pins, \(16 \mathrm{~V}_{\mathrm{CCO}}\) pins, and one orientation pin. All contacts are positioned in a uniform rectangular grid on 100 mil centers. Alumina standoffs in each corner of the package provide a 0.050 inch clearance between PC board and package surface. The macrocell array chip is dieattached to the ceramic substrate using a preform to provide excellent thermal coupling between the die and the ceramic. Thermal resistance from junction to case is less than \(2^{\circ} \mathrm{C} / \mathrm{W}\).
In the schematic view of the MCA2500ECL package (Figure 12), separate power and signal metallization layers are provided to minimize lead resistance and inductance. This in turn allows up to 38 outputs to switch simultaneously into 25 ohm loads without creating excessive inductive noise. The die is mounted inverted (away from the PC board) onto a ceramic disk which is in turn brazed to an all alumina substrate. This configuration provides an elevated primary heat conducting surface which is ideally suited to conventional forced air-cooled heat sinks. The central die cavity is square to allow matched lead lengths and voltage drops. Hermiticity is provided with a solder-sealed kovar lid.

\section*{HEAT SINKS AND THERMAL CHARACTERISTICS}

Worst case propagation delay in the MCA2500ECL is specified for a maximum junction temperature of \(115^{\circ} \mathrm{C}\). In order to meet this specification, a heat sink and air flow are required. The thermal resistance from junction-

\section*{MCA2500ECL}

\section*{TABLE 4 - ELECTRICAL CHARACTERISTICS}

Consistent with industry LSI design requirements, the MCA2500ECL array is voltage-compensated and available in either MECL \(10 \mathrm{~K} / 10 \mathrm{KH}\) temperature tracking or ECL 100 K temperature compensation. The array is voltage compensated over a range of \(\mathrm{V}_{\mathrm{EE}}\) values from -4.2 Vdc to -4.8 Vdc .

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Value & Unit \\
\hline Supply Voltage ( \(\mathrm{V}_{\mathrm{CC}}=0\) ) & \(\mathrm{V}_{\mathrm{EE}}\) & -4.2 to -4.8 & \(\mathrm{Vdc}^{\prime}\) \\
\hline Operating Temperature with Heat Sink and 750 Ifpm & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{c} 
Maximum Junction Temperature \\
(for ac Specifications)
\end{tabular} & \(\mathrm{T}_{\mathrm{J}}\) & 115 & \({ }^{\circ} \mathrm{C}\) \\
\hline Maximum Clock Input Rise and Fall Times (20 to \(80 \%\) ) & \(\mathrm{t}_{\mathrm{r}, \mathrm{tf}}\) & 10 & ns \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
Input \\
Forcing \\
Voltages
\end{tabular}} & \multirow[b]{4}{*}{Parameter} & \multicolumn{3}{|c|}{MECL 10K/10KH Compatible} & ECL 100 K Compatible & \multirow[b]{4}{*}{Unit} \\
\hline & & \multicolumn{3}{|c|}{Spec Limits(1)} & Spec Limits(1) & \\
\hline & & \multicolumn{3}{|c|}{Ambient Temperature} & Ambient & \\
\hline & & \(0^{\circ} \mathrm{C}\) & \(25^{\circ} \mathrm{C}\) & \(70^{\circ} \mathrm{C}\) & 0 to \(70^{\circ} \mathrm{C}\) & \\
\hline \multirow{6}{*}{\(\mathrm{V}_{\text {IH }}\) Max and \(V_{\text {IL }}\) Min} & \(\mathrm{V}_{\mathrm{OH}}\) Max & -0.840 & -0.810 & -0.740 & -0.880 & Vdc \\
\hline & \(\mathrm{V}_{\mathrm{OH}} \mathrm{Min}\) & -1.000 & -0.960 & -0.900 & -1.025 & Vdc \\
\hline & \(\mathrm{V}_{\mathrm{OL}}\) Max & -1.650 & -1.650 & -1.620 & -1.620 & \multirow[t]{2}{*}{Vdc} \\
\hline & \(\mathrm{V}_{\text {OL }}\) Max \({ }^{2}\) & -1.950 & -1.950 & -1.950 & -1.950 & \\
\hline & \(\mathrm{V}_{\text {OL }}\) Min & -1.950 & -1.950 & -1.950 & -1.810 & \multirow[t]{2}{*}{Vdc} \\
\hline & \(\mathrm{V}_{\text {OL }} \mathrm{Min}^{2}\) & -2.020 & -2.020 & -2.020 & -2.020 & \\
\hline \multirow[t]{3}{*}{\(\mathrm{V}_{\text {IHA }}\) Min and VILA Max} & \(\mathrm{V}_{\text {OHA }}\) Min & -1.020 & -0.980 & -0.920 & -1.035 & Vdc \\
\hline & \(V_{\text {OLA }}\) Max & -1.630 & -1.630 & -1.600 & -1.610 & Vdc \\
\hline & VOLA Max \({ }^{2}\) & -1.950 & -1.950 & -1.950 & -1.950 & Vdc \\
\hline \(\mathrm{V}_{\text {IH }}\) Max & IINH Max \({ }^{3}\) & - & - & - & - & \(\mu \mathrm{A}\) \\
\hline \multirow{4}{*}{Input Voltage Values} & \(\mathrm{V}_{\text {IH }}\) Max & -0.840 & -0.810 & -0.730 & -0.880 & Vdc \\
\hline & \(\mathrm{V}_{\text {IL }}\) Min & -1.950 & -1.950 & -1.950 & - 1.810 & Vdc \\
\hline & \(\mathrm{V}_{\text {IHA }}\) Min & -1.170 & -1.130 & -1.070 & -1.165 & Vdc \\
\hline & VILA & -1.480 & -1.480 & -1.450 & -1.475 & Vdc \\
\hline
\end{tabular}

NOTES:
1. DC test limits are specified after thermal equilibrium has been established with the MCA device having an attached heat sink and a transverse air flow of Ifpm. \(V_{E E}=-4.5 \mathrm{~V} \pm 0.3 \mathrm{~V}\). All outputs are loaded with \(50 \Omega\) to -2.0 V except the \(25 \Omega\) drivers which are loaded with \(25 \Omega\) to -2.0 V .
2. These voltage limits are for the driver output of macros with \(\mathrm{V}_{\mathrm{OL}}\) in the cutoff mode.
3. \(\mathrm{I}_{\mathrm{INH}}\) is \(50 \mu \mathrm{~A}\) per input fan-in.
to-case is typically \(1.2^{\circ} \mathrm{C} / \mathrm{W}\) while the junction-to-ambient thermal is a function of heat sink configuration, mounting technique, and air flow.

Figure 11 shows typical thermal characteristics for the MCA2500ECL using a heat sink designed by Motorola. Selection of an optimum heat sink configuration takes into consideration overall height restrictions, weight, the desirability of omnidirectionality, and the need to obtain reasonably high convection coefficients. In Figure 13, a prototype heat sink was constructed from un-
coated 6061 aluminum. For attachment of heat sink to package Aremco 568 . Hi-thermal conductivity adhesive was screen printed to approximately 0.0025 inch thickness on both package substrate and heat sink. Pressure was applied to remove air bubbles and ensure proper mating. The adhesive was cured at \(200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)\) for 30 minutes.

Care must be taken when selecting a heat sink and attachment procedures to assure mechanical integrity and reliable junction temperatures in any given system.

\section*{MCA2500ECL}

FIGURE 10 - PACKAGE DIMENSIONS


FIGURE 12 - CONSTRUCTION PROFILE
Silicon Chip



\footnotetext{
*Heat Sink -6 plates \(1.25 \times 1.25 \times 0.04\) inches spaced 0.0625 inch apart, mounted on 0.5 inch diameter spindle - omnidirectional.
}


Data Sheets

\section*{PHASE-LOCKED LOOP INTEGRATED CIRCUITS}

Motorola offers the designer an array of devices to perform phase-locked loop functions, such as phase detectors, dividers, and oscillators. These devices include MECL, linear, TTL and CMOS technologies covered both in this data book and in other Motorola literature.

Detailed specification of these devices may be obtained from Motorola sales offices or authorized distributors.
\begin{tabular}{|c|c|c|c|c|}
\hline & & \multicolumn{2}{|c|}{ Devices } & \\
& Function & Family & \(-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & 0 to \(+75^{\circ} \mathrm{C}\) \\
Case \\
\hline
\end{tabular}

Combination Functions
\begin{tabular}{|l|c|c|c|c|}
\hline Frequency Synthesizer & CMOS & & - & MC145104 \\
Frequency Synthesizer & CMOS & - & MC145106 & 680,707 \\
Frequency Synthesizer & CMOS & - & MC145107 & 620,648 \\
Frequency Synthesizer & CMOS & - & MC145109 & 620,648 \\
Frequency Synthesizer & CMOS & - & MC145112 & 680,707 \\
Frequency Synthesizer & CMOS & - & MC145143 & 620,648 \\
Frequency Synthesizer & CMOS & - & MC145144 & 680,707 \\
Frequency Synthesizer & CMOS & - & MC145145 & 680,707 \\
Frequency Synthesizer & CMOS & - & MC145146 & 729,738 \\
Frequency Synthesizer & CMOS & - & MC145151 & 719,710 \\
Frequency Synthesizer & CMOS & - & MC145152 & 733,710 \\
Frequency Synthesizer & CMOS & - & MC145155 & 680,707 \\
Frequency Synthesizer & CMOS & - & MC145156 & 729,738 \\
Frequency Synthesizer & CMOS & - & MC145157 & - \\
Frequency Synthesizer & CMOS & - & MC145158 & - \\
Frequency Synthesizer & CMOS & - & MC145159 & - \\
Phase Comp/Prog. Counter & CMOS & MC14568BA & MC14568BC & 620,648 \\
Phase Comp/VCO & CMOS & MC14046BA & MC14046BC & 620,648 \\
Phase-Locked Loop & - & NE565N & 646 \\
\hline
\end{tabular}

Oscillators
\begin{tabular}{|l|c|c|c|c|}
\hline Crystal Oscillator & MECL & \(\mathrm{MC12561}\) & \(\mathrm{MC12061}\) & 620,648 \\
Voltage-Controlled Oscillator & MECL & \(\mathrm{MC1648M}\) & \(\mathrm{MC} 1648 \#\) & 632,646 \\
Voltage-Controlled Multivibrator & MECL & - & \(\mathrm{MC} 1658 \#\) & 620,648 \\
Dual Voltage-Controlled Multivibrator & TTL & \(\mathrm{MC4324}\) & MC 4024 & \(632,646,607\) \\
Voltage-Controlled Oscillator & \(\mathrm{TTL} / \mathrm{LS}\) & - & SN74LS724 & 626 \\
\hline
\end{tabular}

Phase Detectors
\begin{tabular}{|c|c|c|c|c|}
\hline Digital & & & & \\
\hline Digital Mixer & MECL & - & MC12000 & 632, 646 \\
\hline Phase-Frequency Detector & MECL & MC12540 & MC12040 & 632, 646 \\
\hline Phase-Frequency Detector & TTL & MC4344 & MC4044 & 632, 646, 607 \\
\hline Analog & & & & \\
\hline Analog Mixer - Double Balanced & MECL & MC12502 & MC12002\# & 632, 646 \\
\hline Modulator/Demodulator & Linear & MC1594 & MC1494 & 632, 646 \\
\hline Modulator/Demodulator & Linear & MC1595 & MC1495 & 632, 646 \\
\hline Modulator/Demodulator & Linear & MC1596 & MC1496 & 632,646 \\
\hline
\end{tabular}

Control Functions
\begin{tabular}{|l|c|c|c|}
\hline Counter-Control Logic & MECL & MC12514 & MC12014 \\
\hline Notes: \\
\({ }^{*}\) To be introduced. \\
\({\text { \#TA }=-30^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} .}\)\begin{tabular}{l} 
A \(=\) Announced. \\
\\
\\
\\
\\
\\
\({ }^{2}\) Plastic package available for commerical temperature range only. \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multirow{2}{|c|}{ Devices } & \\
Function & \multicolumn{2}{|c|}{ Case } \\
& & -55 to \(+125^{\circ} \mathrm{C}\) & 0 to \(+75^{\circ} \mathrm{C}\) & Case \\
\hline
\end{tabular}

Prescalers/Counters
\begin{tabular}{|c|c|c|c|c|}
\hline UHF Prescaler ( \(\div 2\) ) & MECL & - & MC1690\# & 626,693 \\
\hline \(\div 4\) Counter, 1.0 GHz & MECL & - & MC1697 & 620 \\
\hline \(\div 4\) Counter, 1.0 GHz & MECL & - & MC1699\# & 620,648 \\
\hline Two-Modulus \(\div 5 / \div 6,600 \mathrm{MHz}\) Typ & MECL & MC12509 & MC12009\# & 620,648 \\
\hline Two-Modulus \(\div 8 / \div 9,600 \mathrm{MHz} \mathrm{Typ}\) & MECL & MC12511 & MC12011\# & 620, 648 \\
\hline Two-Modulus \(\div 10 / \div 11,600 \mathrm{MHz}\) Typ & MECL & MC12513 & MC12013\# & 620,648 \\
\hline Two-Modulus \(\div 32 / \div 33,225 \mathrm{MHz}\) & MECL & - & MC12015\#\# & 626 \\
\hline Two-Modulus \(\div 40 / \div 41,225 \mathrm{MHz}\) & MECL & - & MC12016\#\# & 626 \\
\hline Two-Modulus \(\div 64 / \div 65,225 \mathrm{MHz}\) & MECL & - & MC12017\#\# & 626 \\
\hline Low-Power Two-Modulus \(\div 128 / \div 129,520 \mathrm{MHz}\) & MECL & - & MC12018\#\# & 626 \\
\hline Low-Power Two-Modulus \(\div 20 / \div 21,225 \mathrm{MHz}\) & MECL & - & MC12019\#\# & 626 \\
\hline Low-Power Two-Modulus \(\div 128 / \div 129,1.0 \mathrm{GHz}\) & MECL & - & MC12022\#\# & 626 \\
\hline Low-Power \(\div 64\) Prescaler, 225 MHz , 3.2 to 5.5 V CC & MECL & - & MC12023 & 626 \\
\hline VHF/UHF \(\div 64 / \div 256\) & MECL & - & MC12071 & 626 \\
\hline Low-Power \(\div 64\) Prescaler, 1.1 GHz & MECL & - & MC12073 & 626 \\
\hline Low-Power \(\div 256\) Prescaler, 1.1 GHz & MECL & - & MC12074 & 626 \\
\hline UHF Prescaler ( \(\div 2\) ), 750 MHz & MECL & - & MC12090 & 626 \\
\hline Programmable \(\div \mathrm{N}\) Decade \({ }^{3}\) & TL & MC4316 & MC4016 & 620, 648, 650 \\
\hline Programmable \(\div \mathrm{N}(\div 0-1, \div 0-4)\) & TLL & MC4317 & MC4017 & 620, 648, 650 \\
\hline Programmable \(\div \mathrm{N}\) Hexadecimal \({ }^{4}\) & TTL & MC4018 & MC4318 & 620, 648, 650 \\
\hline Programmable \(\div \mathrm{N}(\div 0-3 \div-0-3)\) & TTL & MC4319 & MC4019 & 620, 648, 650 \\
\hline Programmable \(\div \mathrm{N}\) Decade & TL/LS & SN54LS716 & SN74LS716 & 620,648 \\
\hline Programmable \(\div \mathrm{N}\) Binary & TL/LS & SN54LS718 & SN74LS718 & 620,648 \\
\hline
\end{tabular}

\section*{Notes}
\(\# T_{A}=-30^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\).
\(\# \# T_{A}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\).
\({ }^{3}\) SN74LS716 is TTL/LS version of MC4016
\({ }^{4}\) SN74LS718 is TTL/LS version of MC4018.
\(\dagger\) PLL = Phase-Locked Loop indicates that no external synthesizer would be required to implement Electronic Tuning Systems.
** Temperature to be determined.
TBD = To be determined .

\section*{PROGRAMMABLE MODULO-N COUNTERS}

The monolithic devices are programmable, cascadable, modulo-N-counters. The MC4316/4016 can be programmed to divide by any number ( N ) from 0 thru 9, the MC4318/4018 from 0 thru 15. The MC4317/4017 consists of a modulo 2 counter which can be programmed to divide by 0 or 1 and a modulo 5 counter which can be programmed to divide by any number from 0 to 4 . The MC4319/4019 contains two modulo 4 counters which can be programmed to divide by any number from 0 to 3 .
The parallel enable ( \(\overline{\mathrm{PE}}\) ) input enables the parallel data inputs D0 thru D3. All zeros are entered into the counter by applying a
 the counter to stop counting (count \(=0\) ). All data inputs are independent of the logic level of the Clock.
Modulo-N counters are useful in frequency synthesizers, in phase-locked loops, and in other applications where a simple method for frequency division is needed.

\section*{All Types:}

Input Loading Factor:
Clock, \(\overline{\mathrm{PE}}=2\)
D0, D1, D2, D3, Gate \(=1\) \(\overline{M R}=4\)
Output Loading Factor \(=8\)

Total Power Dissipation = 250 mW typ/pkg Propagation Delay Time: Clock to Q3 \(=50 \mathrm{~ns}\) typ Clock to Bus \(=35\) ns typ

PROGRAMMABLE MODULO-N COUNTERS

L. SUFFIX

CERAMIC PACKAGE
CASE 620

F SUFFIX
CERAMIC PACKAGE CASE 650


P SUFFIX
PLASTIC PACKAGE
CASE 648


\section*{LOGIC DIAGRAMS}

MC4316/4016


MC4317/4017


\section*{LOGIC DIAGRAMS (continued)}

MC4318/4018

\(V_{C C}=\operatorname{Pin} 16\) \(G N D=\operatorname{Pin} 8\)


\section*{ELECTRICAL CHARACTERISTICS}

Tests are shown for one output only. Others are tested in the same manner.

*For MC4317/4017 and MC4319/4019 also test pin 13 using the same procedure except \(V_{\text {IL }}\) applied to pin 13
*Test all inputs in the same manner.
\#Test applies only to MC4316/4016 and MC4318/4018

\section*{SWITCHING TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS}


SWITCHING TIME TEST PROCEDURES ( \(T_{A}=25^{\circ} \mathrm{C}\) )
(Letters shown in test columns refer to waveforms.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{TEST} & \multirow[b]{3}{*}{SYMBOL} & \multicolumn{4}{|c|}{INPUT} & \multicolumn{2}{|c|}{OUTPUT} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{LIMITS}} \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
Clock \\
Pin 6
\end{tabular}} & \multirow[t]{2}{*}{Gate
\[
\text { Pin } 4
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { D0, D1, D2 } \\
& \text { Pins } 5,11,14
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
D3, \(\overline{\mathrm{P}}, \overline{\mathrm{MR}}\) \\
Pins 2,3,10
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Bus } \\
\text { Pin } 12
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Q3 } \\
\text { Pin. } 1
\end{gathered}
\]} & & & \\
\hline & & & & & & & & Min & Max & Unit \\
\hline Toggle Frequency (Check before measuring propagation delay.) & \({ }^{\text {f }}\) tog & T & T & Gnd & 2.5 V & - & U & 8.0 & - & MHz \\
\hline Propagation Delay Clock to Bus & \({ }^{\text {P }}\) LH & V & V & Gnd & 2.5 V & W & - & - & 65 & ns \\
\hline Propagation Delay Gate to Q3 & \({ }^{\text {tPLH}}\) & Y & Y & Gnd & 2.5 V & - & z & - & 35 & ns \\
\hline ```
Propagation Delay
    Clock 1 to O3
        MC4316, 17/4016,17
        MC4318, 19/4018,19
``` & \({ }^{\text {tPHL }}\) & V & v & Gnd & 2.5 V & - & x & - & \begin{tabular}{l}
45 \\
78 \\
\hline
\end{tabular} & ns \\
\hline
\end{tabular}

\section*{OPERATING CHARACTERISTICS}

MC4316/4016, MC4318/4018

Operation of both counters is essentially the same. The MC4316/4016 has a maximum modulus of ten while the MC4318/4018 is capable of dividing by up to sixteen. Minor differences in the programming procedure will be covered in the discussion of cascaded stages.

Suitable connections for operating a single stage are shown in Figure 1, as well as appropriate waveforms. The desired modulus is applied to the data inputs D0, D1, D2, and D3 in binary (MC4018) or binary coded decimal (MC4016) positive logic format. If a number greater than nine (BCD 1001) is applied to the MC4016, it treats the most significant bit position as a zero; if for example, binary fourteen (1110) were applied to an MC4016, the counter would divide by six. BCD eight is programmed in Figure 1. As \(\overline{\mathrm{PE}}\) is taken low the states on the parallel inputs are transferred to their respective outputs. Subsequent positive transitions of the input clock will decrement the counter until the all zero state is detected by the bus gate. The resulting positive transition of the bus line is internally inverted and fed back to the preset gating circuitry but does not yet preset the counter since the gateclock input is still high. As the clock returns to the low state the counter is set to the programmed state, taking the bus line low. The net result is one positive pulse on the bus line for every N clock pulses. The output pulse width is approximately equal to one clock pulse high time.

Operation will continue in this fashion until the data on the programmable inputs is changed. Since the preset circuitry is inhibited except when the counter is in the
zero state, preset data may be changed while clocking is occurring. If it is necessary to enter a new number before the counter has reached zero this can be done by momentarily taking \(\overline{P E}\) low. Countdown will continue from the new number on the next positive clock transition.

The counters can be made to divide by 10 (MC4016) or 16 (MC4018) by inhibiting the preset logic. This may be done by either holding the gate input high or by holding the bus line low.
The normal connections for cascading stages are indicated in Figure 2, with the appropriate waveforms. Note that the gate input of each stage is connected to the clock; all bus outputs are tied to one of the internal pullup resistors, R. The total modulus for cascaded MC4016s is determined from \(N_{T}=N_{0}+10 N_{1}+100 N_{2}+\ldots ; N_{T}\) for MC4018s is given by \(\mathrm{N}_{\mathrm{T}}=\mathrm{N}_{0}+16 \mathrm{~N}_{1}+256 \mathrm{~N}_{2}\) \(+\ldots\) Stated another way, the BCD equivalent of each decimal digit is applied to respective MC4016 stages while the data inputs of the MC4018 stages are treated as part of one long binary number. The difference in programming is illustrated in Figure 2 where \(\mathrm{N}_{\mathrm{T}}=245\) is coded for both counter types.

Cascaded operation can be further clarified by referring to the timing diagram of Figure 2. For the MC4016, counting begins with the first positive clock transition after the data has been set in. After the five clock pulses, the leastsignificant stage has been counted down to zero. The bus line does not go high at this time since the three bus terminals are wire-ORed and the other two stages are not in the zero state. Since no reset occurs, the next positive

FIGURE 1 - SINGLE-STAGE OPERATION

\section*{OPERATING CHARACTERISTICS: MC4316/4016, MC4318/4018}
clock edge advances the least significant stage to the nine (1001) state, causing the second stage to be decremented. The process continues in this manner with the least significant stage now dividing by ten. The second stage eventually counts down to zero and also reverts to di-
viding by ten. Each pulse out of the second stage decrements the third until it reaches zero. At this time the bus line goes high; it remains high until the clock goes low, causing all three stages to be reset to the programmed count again.

FIGURE 2 - CASCADED OPERATION

\section*{OPERATING CHARACTERISTICS: MC4316/4016, MC4318/4018}
figure 3 - increasing operating range

\author{
OPERATING CHARACTERISTICS: MC4316/4016, MC4318/4018
}

Maximum operating frequency of the basic MC4016/ 4018 counter is limited by the time required for reprogramming at the end of each count down cycle. Operation can be extended to approximately 25 MHz by adding an "early decode" feature as shown in Figure 3. The appropriate connections for three stages are shown; however up to eight stages can be satisfactorily cascaded. Note the following differences between this and the nonextended method: the counter gate inputs are not connected to the input clock; all Parallel Enables are connected to the \(\overline{\mathrm{Q}}\) output of a type D flip-flop formed by gates G1 through G6; the bus terminal of the least significant stage is grounded; all other bus terminals and one internal resistor, \(R\), are connected together and serve as a data input to the flip-flop. Four additional data inputs are provided for decoding the "two" state of the least significant stage. Circuit operation is illustrated in the waveforms of Figure 3 where the timing for the end of
a count-down cycle is shown in expanded form. The counter parallel inputs are assumed to have \(\mathrm{N}=245\) applied. Timing is not shown for the third stage since it has already been counted down to the all zero state. As the next-to-least significant stage reaches zero, the common bus line goes high. Count down of the least significant stage continues until the "two" state is reached. This condition causes the remaining \(D\) inputs to the flipflop to be high. The next-to-last clock pulse of the cycle then triggers the flip-flop Q output high. \(\overline{\mathrm{Q}}\) simultaneously takes the parallel enable of all stages low, resetting the programmed data to the outputs. The next input pulse clocks \(Q\) (\(f_{\text {out }}\)) back to the zero state since the data inputs to the flip-flop are no longer all high. The positive output pulse is one input clock period in duration. Note that division by \(\mathbf{N}\) equal to 1 or 2 is not available using this method.

\section*{OPERATING CHARACTERISTICS}

MC4317/4017, MC4319/4019

The MC4317/4017 consists of a modulo 2 and a modulo 5 programmable counter. The MC4319/4019 contains two modulo 4 programmable counters. Both parts are implemented in the same manner as the MC4316/4016 and MC4318/4018, however in these devices the output of the appropriate flip-flop is disconnected from the input of the next flip-flop. This input is then brought out as the second clock input for the package (see logic diagrams on page 2 of this data sheet). The resistor existing on the MC4316/ 4016 and MC4318/4018 is eliminated on the MC4317/4017 and MC4319/4019 in order not to exceed 16 pins. Elimination of the resistor causes no problems because only one resistor is required per divider chain and these parts will normally be used with the MC4316/4016 and/or MC4318/4018. In applications where the parts are used alone, an external resistor is connected to the bus output.

To operate the MC4317/4017 as a modulo 2 programmable counter, the modulo 5 programmable counter
must be disabled by programming it to zero (D1, D2, and D3 grounded). Likewise, to use the device as a modulo 5 programmable counter the modulo 2 counter must be disabled (D0 grounded). Operation of the MC4319/4019 is similar in that the modulo 4 counter not being used must be disabled by programming it to zero (D0 thru D1 grounded or D2 and D3 grounded).
When cascading packages for large divide ratios, the most significant Q output of the modulo counter being used provides the input for the next package and all bus outputs are tied together. This method of connection is the same as for the MC4316/4016 and MC4318/4018.
The MC4317/4017 and MC4319/4019 can be made to perform the same function as the MC4316/4016 and MC4318/4018, respectively, by externally connecting the last Q output of one counter to the clock input of the other counter and programming inputs in the normal manner.

\section*{APPLICATIONS INFORMATION}

A typical system application for programmable counters is illustrated in the frequency synthesizer shown in Figure 4. There the counter provides a means of digitally selecting some integral multiple of a stable reference frequency. The circuit phase locks the output, fVCO, of a voltage controlled oscillator to a reference frequency, \(\mathrm{f}_{\text {ref. }}{ }^{1}\) Circuit operation is such that \(\mathrm{fVCO}=\mathrm{Nf}_{\text {ref }}\), where N is the divider ratio of the feedback counter.

In many synthesizer applications the VCO is operated at VHF frequencies too high for direct division by TTL counters. In these cases the VCO output is usually prescaled by using a suitable fixed divide-by-M ECL circuit as shown in Figure 5. For this configuration, fVCO \(=\) \(\mathrm{NMf}_{\text {ref, }}\), where N is variable (programmable) and M is fixed. Design of the optimum loop filter requires that the input reference frequency be as high as possible where

FIGURE 4 - MTTL PHASE-LOCKED LOOP

FIGURE 5 - MTTL-MECL PHASE-LOCKED LOOP

\footnotetext{
1 See Motorola Application Note AN-535 and the MC4344/4044 Data Sheet for detailed explanation of overall circuit operation.
}

FIGURE 6 - FEEDBACK COUNTERS WITH DUAL MODULUS PRESCALER

the upper limit is established by the required channel spacing. Since fVCO \(=N f_{\text {ref }}\) in the non-prescaled case, if \(N\) is changed by one, the VCO output changes by \(f_{\text {ref }}\), or the synthesizer channel spacing is just equal to \(f_{\text {ref }}\) When the prescaler is used as in Figure 5,fVCO \(=\) NMf \(_{\text {ref }}\), and a change of one in N results in the VCO changing by \(\mathrm{Mf}_{\text {ref }}\) i.e., if \(\mathrm{f}_{\text {ref }}\) is set equal to the minimum permissible channel spacing as is desirable, then only every M channels in a given band can be selected. One solution is to set \(\mathrm{f}_{\text {ref }}=\) channel spacing \(/ \mathrm{M}\) but this leads to more stringent loop filter requirements.

An alternate approach that avoids this problem is provided by the counter configuration shown in Figure \(6 .{ }^{2}\) It too uses a prescaler ahead of a programmable counter, however the modulus of the prescaler is now controlled by a third counter, causing it to alternate between \(M\) and \(\mathbf{M}+1\). Operation is best explained by assuming that all three counters have been set for the beginning of a cycle: the prescaler for division by \((M+1)\), the modulus control
counter for division by \(N_{m c}\), and the programmable counter for division by \(\mathrm{N}_{\mathrm{pc}}\). The prescaler will divide by (\(M+1\)) until the modulus control counter has counted down to zero; at this time, the all zero state is detected and causes the prescaler to divide by \(M\) until the programmable counter has also counted down to zero. When this occurs, a cycle is complete and each counter is reset to its original modulus in readiness for the next cycle. For this configuration,
\[
f_{o u t}=\frac{f_{\text {in }}}{M N_{p c}+N_{\mathrm{mc}}}
\]

In terms of the synthesizer application, \(\mathrm{fVCO}=\left(\mathrm{MN}_{\mathrm{pc}}\right.\) \(+\mathrm{N}_{\mathrm{mc}}\)) \(\mathrm{f}_{\mathrm{ref}}\) and channels can be selected every \(\mathrm{f}_{\text {ref }}\) by letting \(N_{p c}\) and \(N_{m c}\) take on suitable integer values, including zero.

A simplified example of this technique is shown in Figure 7. The MC12013 Dual Modulus Prescaler divides by either 10 or 11 when connected as shown in Figure 7. If the E3 and E4 Enable inputs are high at the start of a prescaler cycle, division by 10 results; if the Enable inputs are low at the beginning of the cycle, division by 11 results. The zero detection circuitry of the MC12014 Counter Control Logic is connected to monitor the outputs of the modulus control counter; this provides a suitable enable signal at E0 as the modulus control counter reaches its terminal (zero) count. The remainder of the MC12014 is connected to extend the operating frequency of the programmable counter chain.

A specific example of this technique is shown in Figure 8. There the feedback divider circuitry required for generating frequencies between 144 MHz and 178 MHz with 30 kHz channel spacing is shown. \({ }^{2}\)

FIGURE 7 - FREQUENCY DIVISION: \(\mathrm{fo}_{\mathrm{O}}=\mathrm{f}_{\mathbf{i n}} / \mathrm{MN}_{\mathrm{pc}}+\mathrm{N}_{\mathrm{mc}}\)

\footnotetext{
2. This application is discussed in greater detail in the MC12014 Counter Control Logic data sheet.
}

Figure 9 shows a frequency synthesizer system for the aircraft band of 108 to 136 MHz with a channel spacing of 50 kHz . The use of the MC4017 as a modulo 2 programmable counter is shown in Figure 9A, while Figure 9B shows the same system implemented using the MC4016. For a system of this type it is desirable to use direct-reading thumbwheel switches for channel selection. To implement this system with these constraints, it is necessary to calculate the required reference frequency (\(\mathrm{f}_{\text {ref }}\)). Using the equations in Figure 9A, the required reference is 50 kHz and N 4 must be programmed to 0 and 1 . Figure \(9 B\) requires a reference frequency of 10 kHz and N 4 must be programmed to only 0 and 5.

For any phase-locked loop system it is desirable to maintain as high a reference frequency as possible while
meeting the system requirements. The higher the reference frequency, the higher the number of sampling pulses received by the phase detector per unit time. This results in (1) easier filtering of the control voltage, (2) faster lock-up time, and (3) less noise in the output spectrum. The higher reference frequency is also desirable because the reference frequency appears as sidebands on the output frequency and the farther the sidebands are away from the output the better the system. Another advantage of the higher reference frequency is the smaller divide ratio required in the programmable counter chain. This is advantageous when calculating realizable resistors for the filter. For these reasons, the system using the MC4017 is superior to the one using the MC4016.

FIGURE 9 - 108 TO 136 MHz FREQUENCY SYNTHESIZER WITH 50 kHz CHANNEL SPACING

Figure 10 shows the implementation of the aircraft band synthesizer with 25 kHz channel spacing (the 25 kHz spacing has been proposed to the FCC). The system is implemented in Figure 10A using the MC4019, and has
a reference frequency of 25 kHz . Figure 10B shows the system using an MC4018 as the first counter, and has a reference frequency of 6.25 kHz to obtain the direct programming.

\section*{FIGURE 10 - 108 TO \(\mathbf{1 3 6}\) MHz FREQUENCY SYNTHESIZER WITH \(\mathbf{2 5} \mathbf{~ k H z ~ C H A N N E L ~ S P A C I N G ~}\)}

A - Using MC4019

\(N=400 N_{1}+40 N_{2}+4 N_{3}+N_{4}\)

> B - Using MC4018

\[
N=1600 N_{1}+160 N_{2}+16 N_{3}+N_{4}
\]

Figures 11A and 11B show the FM band implemented with MC4017 (used as a modulo 5 counter) and MC4016, respectively. The first system has a 200 kHz reference frequency, and the second system has a 100 kHz reference frequency. These systems using the MC4017/19 offer the same advantages over the MC4016/18 as with the aircraft band systems.
These examples illustrate the desirability of the MC4317/ 4017 for phase-locked loop applications where the chan-
nel spacing is \(2 \times 10^{\mathrm{n}} \mathrm{Hz}\) when used as a modulo 5 programmable counter, and \(5 \times 10^{\mathrm{n}} \mathrm{Hz}\) when used as a modulo 2 programmable counter. The MC4319/4019 is for applications with a channel spacing of \(2.5 \times 10^{\mathrm{n}} \mathrm{Hz}\). The MC4316/4016 covers phase-locked loop applications where the channel spacing is \(1 \times 10^{\mathrm{n}} \mathrm{Hz}\). The MC4318/ 4018 is used when the most significant digit is between 9 and 15.

FIGURE 11 - 88 TO 108 MHz FREQUENCY SYNTHESIZER WITH 200 kHz CHANNEL SPACING

A - Using MC4017

\section*{DUAL VOLTAGE-CONTROLLED MULTIVIBRATOR}

The MC4324/4024 consists of two independent voltagecontrolled miltivibrators with output buffers. Variation of the output frequency over a 3.5-to-1 range is guaranteed with an input dc control voltage of 1.0 to 5.0 voltage.

Operating frequency is specified at 25 MHz at \(25^{\circ} \mathrm{C}\). Operation to 15 MHz is possible over the specified temperature range. For higher frequency requirements, see the MC1648 \((200 \mathrm{MHz})\) or the MC1658 (125 MHz) data sheet.

This device was designed specifically for use in phase-locked loops for digital frequency control. It can also be used in other applications requiring a voltage-controlled frequency, or as a stable fixed frequency oscillator (3.0 MHz to 15 MHz) by replacing the external control capacitor with a series mode crystal.

Maximum Operating Frequency \(=25 \mathrm{MHz}\) Guaranteed @ \(25^{\circ} \mathrm{C}\)
Power Dissipation \(=150 \mathrm{~mW}\) typ/pkg
Output Loading Factor \(=7\)

\section*{TYPICAL APPLICATIONS}

FIGURE 1 - ASTABLE MULTIVIBRATOR
FIGURE 2 - CRYSTAL CONTROLLED MULTIVIBRATOR

Crystal frequency can be pulled slightly by adjusting P1.

FIGURE 3 - VOLTAGE-CONTROLLED MULTIVIBRATOR

\[
\begin{aligned}
V_{\text {in }} & =2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\
\mathrm{f}_{\text {out }} & =1.0 \mathrm{MHz} \mathrm{~min}, 5.0 \mathrm{MHz} \text { max }
\end{aligned}
\]

\section*{DUAL VOLTAGE-CONTROLLED MULTIVIBRATOR}

LSUFFIX CERAMIC PACKAGE

CASE 632 (TO-116)

F SUFFIX
CERAMIC PACKAGE
CASE 607

PIN ASSIGNMENT

VCC: \(\begin{aligned} & \text { VCM }=1,13 \\ & \text { Output Buffer }=14\end{aligned}\)
Gnd: VCM \(=5,9\)
Output Buffer = 7
External Capacitor for
Frequency Range Determination
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & TEST & RREN & TAGE & & \\
\hline (a Test & & mA & & & & & \\
\hline Temperature & IOL1 & 1012 & IOH & \(\mathrm{V}_{\mathrm{IH}}\) & Vcc & \(\mathrm{V}_{\text {cCL }}\) & \(\mathrm{V}_{\mathrm{CCH}}\) \\
\hline (\(-55^{\circ} \mathrm{C}\) & 9.8 & 11.2 & -1.6 & 5.0 & 5.0 & 4.5 & 5.5 \\
\hline MC4324 \({ }^{\text {a }}+25^{\circ} \mathrm{C}\) & 9.8 & 11.2 & -1.6 & 5.0 & 5.0 & 4.5 & 5.5 \\
\hline + \(+125^{\circ} \mathrm{C}\) & 9.8 & 11.2 & -1.6 & 5.0 & 5.0 & 4.5 & 5.5 \\
\hline \(0^{\circ} \mathrm{C}\) & 9.8 & 11.2 & -1.6 & 5.0 & 5.0 & 4.75 & 5.25 \\
\hline MC4024 \({ }^{\text {a }}+25^{\circ} \mathrm{C}\) & 9.8 & 11.2 & -1.6 & 5.0 & 5.0 & 4.75 & 5.25 \\
\hline + \(75^{\circ} \mathrm{C}\) & 9.8 & 11.2 & -1.6 & 5.0 & 5.0 & 4.75 & 5.25 \\
\hline
\end{tabular}
TEST CURRENTNOLTAGE APPLIED TO PINS LISTED BELOW:

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline IOL1 & 1 LL 2 & IOH & \(\mathbf{V I H}^{\text {I }}\) & VCC & VCCL & VCCH & Gnd \\
\hline - & - & - & \[
\begin{gathered}
2 \\
12 \\
\hline
\end{gathered}
\] & 二 & - & \[
\begin{aligned}
& 14 \\
& 14
\end{aligned}
\] & \[
\begin{array}{r}
5,7,9 \\
5,7,9 \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
6 \\
8 \\
- \\
\hline
\end{tabular} & \[
\begin{aligned}
& - \\
& \hline 6 \\
& 8 \\
& 8
\end{aligned}
\] & - & \[
\begin{gathered}
2 \\
12 \\
2 \\
12
\end{gathered}
\] & -
-
- & \[
\begin{gathered}
1,4,14 \\
10,13,14
\end{gathered}
\] & \[
\begin{gathered}
\overline{-} \\
1,4,14 \\
10,13,14
\end{gathered}
\] & \\
\hline - & - & \[
\begin{aligned}
& \hline 6 \\
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
2 \\
12 \\
\hline
\end{gathered}
\] & 二 & \[
\begin{gathered}
1,3,14 \\
11,13,14 \\
\hline
\end{gathered}
\] & - & \[
\begin{aligned}
& 5,7,9 \\
& 5,7,9 \\
& \hline
\end{aligned}
\] \\
\hline - & - & - & \[
\begin{gathered}
\hline 2 \\
12 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1,3,14 \\
11,13,14
\end{gathered}
\] & \[
-
\] & - & \[
\begin{aligned}
& 5,6,7,9 \\
& 5,7,8,9 \\
& \hline
\end{aligned}
\] \\
\hline - & - & - & 2,4,10,12 & 1,13,14 & - & - & 5,7,9 \\
\hline
\end{tabular}

FIGURE 5 - FREQUENCY-CAPACITANCE PRODUCT

FIGURE 7 - TYPICAL FREQUENCY DEVIATION versus SUPPLY VOLTAGE

FIGURE 9 - FREQUENCY DEVIATION versus AMBIENT TEMPERATURE

FIGURE 6 - FREQUENCY-VOLTAGE GAIN CHARACTERISTICS

FIGURE 8 - TYPICAL FREQUENCY DEVIATION versus SUPPLY VOLTAGE

FIGURE 10 - RMS NOISE DEVIATION versus OSCILLATOR FREQUENCY

NOTE: Curves labeled as \(3 \sigma\) limits denote that \(99.7 \%\) of the devices tested fell within these limits.

\section*{FIGURE 11 - NOISE DEVIATION TEST CIRCUIT}

Frequency Deviation \(=\frac{(\text { HP5210A output voltage) (Full Scale Frequency) }}{1.0 \text { Volt }}\)
NOTE: Frequency deviation values of either the signal generator or power supply should be determined prior to testing.

\section*{APPLICATIONS INFORMATION}

\section*{Suggested Design Practices}

Three power supply and three ground connections are provided in this circuit (each multivibrator has separate power supply and ground connections, and the output buffers have common power supply and ground pins). This provides isolation between VCM's and minimizes the effect of output buffer transients on the multivibrators in critical applications. The separation of power supply and ground lines also provides the capability of disabling one VCM by disconnecting its \(V_{C C}\) pin. However, all ground lines must always be connected to insure substrate grounding and proper isolation.

General design rules are:
1. Ground pins 5,7 , and 9 for all applications, including those where only one VCM is used.
2. Use capacitors with less than 50 nA leakage at plus and minus 3.0 volts. Capacitance values of 15 pF or greater are acceptable.
3. When operated in the free running mode, the minimum voltage applied to the DC Control input should be \(60 \%\) of \(V_{\text {CC }}\) for good stability. The maximum voltage at this input should be \(\mathrm{V}_{\mathrm{C}}+0.5\) volt.
4. When used in a phase-locked loop, the filter design should have a minimum DC Control input voltage of 1.0 volt and a maximum voltage of \(V_{C C}+0.5\) volt. The maximum restriction may be waived if the output impedance of the driving device is such that it will not source more than 10 mA at a voltage of \(\mathrm{V}_{\mathrm{CC}}+0.5\) volt.
5. The power supply for this device should be bypassed with a good quality RF-type capacitor of 500 to 1000 pF . Bypass capacitor lead lengths should be kept as short as possible. For best results, power
supply voltage should be maintained as close to +5.0 V as possible. Under no conditions should the design require operation with a power supply voltage outside the range of 5.0 volts \(\pm 10 \%\).

\section*{External Control Capacitor (CX) Determination (See Table 1)}

The operating frequency range of this multivibrator is controlled by the value of an external capacitor that is connected between X 1 and X 2 . A tuning ratio of 3.5 -to1 and a maximum frequency of 25 MHz are guaranteed under ideal conditions \(\left(V_{C C}=5.0\right.\) volts. \(\left.\mathrm{T}_{A}=25^{\circ} \mathrm{C}\right)\). Under actual operating conditions, variations in supply voltage, ambient temperature, and internal component tolerances limit the tuning ratio (see Figures 7 thru 12). An improvement in tuning ratio can be achieved by providing a variable tuning capacitor to facilitate initial alignment of the circuit.

Figures 5 through 9 show typical and suggested design limit information for important VCM characteristics. The suggested design limits are based on operation over the specified temperature range with a supply voltage of 5.0 volts \(\pm 5 \%\) unless otherwise noted. They include a safety factor of three times the estimated standard deviation.

Figures 5 and 6 provide data for any external control capacitor value greater than 100 pF . With smaller capacitor values, the curves are effectively moved downward. For example, a typical curve of frequency versus control voltage would be very nearly identical to the lower suggested design limit of Figure 5 if a 15 pF capacitor is used. To use Figure 5 divide on the ordinate by the capacitor

TABLE 1 - EXTERNAL CONTROL CAPACITOR VALUE DETERMINATION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CONFIGURATION} & \multirow[b]{2}{*}{\(\mathrm{T}_{\text {A }}\)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{CC}}\)} & \multicolumn{5}{|c|}{VALUES OF K} \\
\hline & & & K1 & K2 & K3 & K4 & K5 \\
\hline \multirow[t]{2}{*}{} & \multirow{3}{*}{\[
\begin{aligned}
& 25^{\circ} \mathrm{C} \\
& \pm 3^{\circ} \mathrm{C}
\end{aligned}
\]} & 5.0 V & 385 & 150 & 600 & 110 & 1.0 \\
\hline & & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& \pm 5 \%
\end{aligned}
\] & 325 & 175 & 680 & 125 & 1.14 \\
\hline \multirow[b]{7}{*}{\begin{tabular}{l}
Choose C \(_{X F}\) and \(\mathrm{CXV}^{2}\) such that \(\mathrm{C}_{\mathrm{X}}\) can be adjusted to:
\[
\frac{\mathrm{K} 1}{\mathrm{fOH}^{\prime}}-5 \leqslant \mathrm{C}_{\mathrm{X}} \leqslant \frac{\mathrm{~K} 3}{\mathrm{fOH}^{2}}-5
\] \\
With \(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\), adjust \(C_{X}\) to obtain: \\
\(\mathrm{f}_{\mathrm{out}}=\mathrm{K} 5(\mathrm{fOH})\) \\
Then:
\[
\mathrm{fOL} \leqslant \frac{\mathrm{~K} 4}{\mathrm{~K} 1} \mathrm{fOH}
\]
\end{tabular}} & & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& \pm 10 \%
\end{aligned}
\] & 290 & 190 & 750 & 140 & 1.25 \\
\hline & \multirow{3}{*}{\[
\begin{gathered}
0^{\circ} \mathrm{C} \\
\text { to } \\
75^{\circ} \mathrm{C}
\end{gathered}
\]} & 5.0 V & 335 & 165 & 660 & 120 & 1.10 \\
\hline & & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& \pm 5 \%
\end{aligned}
\] & 280 & 190 & 750 & 140 & 1.25 \\
\hline & & \[
\begin{gathered}
5.0 \mathrm{~V} \\
\pm 10 \%
\end{gathered}
\] & 250 & 200 & 840 & 150 & 1.40 \\
\hline & \multirow{3}{*}{\[
\begin{gathered}
-55^{\circ} \mathrm{C} \\
\text { to } \\
125^{\circ} \mathrm{C}
\end{gathered}
\]} & 5.0 V & 300 & 175 & 690 & 125 & 1.15 \\
\hline & & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& \pm 5 \%
\end{aligned}
\] & 260 & 200 & 780 & 145 & 1.30 \\
\hline & & \[
\begin{aligned}
& 5.0 \mathrm{~V} \\
& +10 \%
\end{aligned}
\] & 230 & 210 & 860 & 155 & 1.45 \\
\hline
\end{tabular}

Definitions: \(\mathrm{fOH}=\) Output frequency with \(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}\)
\(\mathrm{f}_{\mathrm{OL}}=\) Output frequency with \(\mathrm{V}_{\text {in }}=2.5 \mathrm{~V}\)
(Frequencies in \(\mathrm{MHz}, \mathrm{CX}_{\mathrm{X}}\) in pF)
value in picofarads to obtain output frequency in megahertz. In Figure 6 the ordinate axis is multiplied by the capacitor value in picofarads to obtain the gain constant \(\left(K_{V}\right)\) in radians/second/volt.

\section*{Frequency Stability}

When the MC4324/4024 is used as a fixed-frequency oscillator (\(\mathrm{V}_{\text {in }}\) constant), the output frequency wll vary slightly because of internal noise. This variation is indicated by Figure 10 for the circuit of Figure 11. These variations are relatively independent (\(<10 \%\)) of changes in temperature and supply voltage.

\section*{10-to-1 Frequency Synthesizer}

A frequency synthesizer covering a 10-to-1 range is shown in Figure 14.Three packages are required to complete the loop: The MC4344/4044 phase-frequency detector, the MC4324/4024 dual voltage-controlled multivibrator, and the MC4318/4018 programmable counter.

Two VCM's (one package) are used to obtain the required frequency range. Each VCM is capable of operating over a 3-to-1 range, thus VCM1 is used for the lower portion of the times ten range and VCM2 covers the upper end. The proper divide ratio is set into the programmable counter and the VCM for that frequency is selected by control gates. The other VCM is left to be free running since its output is gated out of the feedback path.

Normally with a single VCM the loop gain would vary over a 10-to-1 range due to the range of the counter ratios. This affects the bandwidth, lockup time, and damping ratio severely. Utilizing two VCM's reduces this change in loop gain rom 10-to-1 to 3-to-1 as a result of the different sensitivities of the two VCM's due to the different frequency ranges. This change of VCM sensitivity (3-to1) is of such a direction of compensate for loop gain variations due to the programmable counter.

The overall concept of multi-VCM operation can be expanded for ranges greater than 10 -to-1. Four VCM's (two packages) could be used to cover a 100-to-1 range.

FIGURE 12 - 10-TO-1 FREQUENCY SYNTHESIZER

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\div \mathrm{N}\)} & \multicolumn{4}{|c|}{Input} & \multirow[b]{2}{*}{A} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { VCM1 } \\
& \mathrm{kHz}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { VCM2 } \\
\mathrm{kHz}
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { fout } \\
& \mathrm{kHz}
\end{aligned}
\]} \\
\hline & D3 & D2 & D1 & D0 & & & & \\
\hline 1 & 0 & 0 & 0 & 1 & 1 & 1 & X & 1 \\
\hline 2 & 0 & 0 & 1 & 0 & 1 & 2 & X & 2 \\
\hline 3 & 0 & 0 & 1 & 1 & 1 & 3 & X & 3 \\
\hline 4 & 0 & 1 & 0 & 0 & 0 & X & 4 & 4 \\
\hline 5 & 0 & 1 & 0 & 1 & 0 & X & 5 & 5 \\
\hline 6 & 0 & 1 & 1 & 0 & 0 & X & 6 & 6 \\
\hline 7 & 0 & 1 & 1 & 1 & 0 & X & 7 & 7 \\
\hline 8 & 1 & 0 & 0 & 0 & 0 & X & 8 & 8 \\
\hline 9 & 1 & 0 & 0 & 1 & 0 & x & 9 & \\
\hline 10 & 1 & 0 & 1 & 0 & 0 & X & 10 & 10 \\
\hline
\end{tabular}

\section*{PHASE-FREQUENCY DETECTOR}

The MC4344/4044 consists of two digital phase detectors, a charge pump, and an amplifier. In combination with a voltage controlled multivibrator (such as the MC4324/4024 or MC1648), it is useful in a broad range of phase-locked loop applications. The circuit accepts TTL waveforms at the \(R\) and \(V\) inputs and generates an error voltage that is proportional to the frequency and/or phase difference of the input signals. Phase detector \#1 is intended for use in systems requiring zero frequency and phase difference at lock. Phase detector \#2 is used if quadrature lock is desired. Phase detector \#2 can also be used to indicate that the main loop, utilizing phase detector \#1, is out of lock.

Input Loading Factor: R, V \(=3\) Output Loading Factor \((\) Pin 8\()=10\)
Total Power Dissipation \(=85 \mathrm{~mW}\) typ/pkg
Propagation Delay Time \(=9.0 \mathrm{~ns}\) typ (thru phase detector)

\section*{PHASE-FREQUENCY DETECTOR}

ELECTRICAL CHARACTERISTICS

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ INPUT } & \multicolumn{2}{|c|}{ INPUT } & \multicolumn{4}{|c|}{ OUTPUT } \\
\cline { 2 - 7 } STATE & R & \(V\) & U1 & D1 & U2 & D2 \\
\hline 1 & 0 & 0 & \(\times\) & \(\times\) & 1 & 1 \\
2 & 1 & 0 & \(\times\) & \(\times\) & 0 & 1 \\
3 & 1 & 1 & \(\times\) & \(\times\) & 1 & 0 \\
4 & 1 & 0 & \(\times\) & \(\times\) & 0 & 1 \\
\hline 5 & 0 & 0 & \(\times\) & \(\times\) & 1 & 1 \\
6 & 1 & 0 & \(\times\) & \(\times\) & 0 & 1 \\
7 & 0 & 0 & 0 & 1 & 1 & 1 \\
8 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 9 & 0 & 0 & 0 & 1 & 1 & 1 \\
10 & 0 & 1 & 0 & 1 & 1 & 1 \\
11 & 0 & 0 & 1 & 1 & 1 & 1 \\
12 & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline 13 & 0 & 0 & 1 & 0 & 1 & 1 \\
14 & 0 & 1 & 1 & 0 & 1 & 1 \\
15 & 0 & 0 & 1 & 0 & 1 & 1 \\
16 & 1 & 0 & 1 & 0 & 0 & 1 \\
17 & 0 & 0 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{TRUTH TABLE}

This is not strictly a functional truth table; i.e., it does not show all possible modes of operation. It is useful for dc testing.
1. \(X\) indicates output state unknown.
2. U1 and D1 outputs are sequential; i.e., they must be sequenced in order shown.
3. U2 and D2 outputs are combinational; i.e., they need only inputs shown to obtain outputs.

Note 1. The output state of Pin 2 or Pin 13 depends upon the sequence that has been applied to the \(R\) and \(V\) inputs as shown in the Truth
Table. sn testing output voltage, the outputs of the device are tested by sequencing through the indicated input states according to
Table. In testing output woltage, the outputs of the device are tested by sequencing through the indicated input states according to
the Truth Table. Procedures identified by a double asterisk (*) are necessary to change the state of the sequential logic. When testing
los and lolk on Pins 2 or 13 , a single asterisk (\({ }^{(}\)) indicates that the \(R\) and \(V\) inputs are sequenced per the Truth Table to input
state 11 where the tests are performed. All input, power supply, and ground voltages must be maintained while sequencing and testing
uniess otherwise noted.

\section*{APPLICATION}

Operation of the MC4344/4044 is best explained by initially considering each section separately. If phase detector \#1 is used, loop lockup occurs when both outputs U1 and D1 remain high. This occurs only when all the negative transitions on \(R\), the reference input, and \(V\), the variable or feedback input, coincide. The circuit responds only to transitions, hence phase error is independent of input waveform duty cycle or amplitude variation. Phase detector \#1 consists of sequential logic circuitry, therefore operation prior to lockup is determined by initial conditions.
When operation is initiated, by either applying power to the circuit or active input signals to \(R\) and \(V\), the circuitry can be in one of several states. Given any particular starting conditions, the flow table of Figure 1 can be used to determine subsequent operation. The flow table indicates the status of U1 and D1 as the R and V inputs are varied. The numbers in the table which are in parentheses are arbitrarily assigned labels that correspond to stable states that can result for each input combination. The numbers without parentheses refer to unstable conditions. Input changes are traced by horizontal movement in the table; after each input change, circuit operation will settle in the numbered state indicated by moving horizontally to the appropriate \(\mathrm{R}-\mathrm{V}\) column. If the number at that location is not in parentheses, move vertically to the number of the same value that is in parentheses. For a given input pair, any one of three stable states can exist. As an example, if \(R=1\) and \(V=0\), the circuit will be in one of the stable states (4), (8), or (12).

FIGURE 1 - PHASE DETECTOR \#1 FLOW TABLE

\begin{tabular}{|c|c|c|c|c|c|}
\hline\(R-V\) & \(R-V\) & \(R-V\) & \(R-V\) & \multirow{2}{*}{ U1 } & D 1 \\
\hline \(0-0\) & \(0-1\) & \(1-1\) & \(1-0\) & & \\
\hline\((1)\) & 2 & 3 & \((4)\) & 0 & 1 \\
5 & \((2)\) & \((3)\) & 8 & 0 & 1 \\
\((5)\) & 6 & 7 & 8 & 1 & 1 \\
9 & \((6)\) & 7 & 12 & 1 & 1 \\
5 & 2 & \((7)\) & 12 & 1 & 1 \\
1 & 2 & 7 & \((8)\) & 1 & 1 \\
\((9)\) & \((10)\) & 11 & 12 & 1 & 0 \\
5 & 6 & \((11)\) & \((12)\) & 1 & 0 \\
\hline
\end{tabular}

Use of the table in determining circuit operation is illustrated in Figure 2. In the timing diagram, the input to \(R\) is the reference frequency; the input to \(V\) is the same frequency but lags in phase. Stable state (4) is arbitrarily assumed as the initial condition. From the timing diagram and flow table, when the circuit is in stable state (4), outputs U1 and D1 are " 0 " an " 1 " respectively. The next input state is \(R-V=1-1\); moving horizontally from stable state (4) under R-V \(=1-0\) to the \(R-V=1-1\) column, state 3 is indicated. However, this is an unstable condition and the circuit will assume the state indicated by moving vertically in the \(R-V=1-1\) column to stable state (3). In this

FIGURE 2 - PHASE DETECTOR \#1 TIMING DIAGRAM

instance, outputs U1 and D1 remain unchanged. The input states next become \(\mathrm{R}-\mathrm{V}=0-1\); moving horizontally to the \(R-V=0-1\) column, stable state (2) is indicated. At this point there is still no change in U1 or D1. The next input change shifts operation to the \(R-V=0-0\) column where unstable state 5 is indicated. Moving vertically to stable state (5), the outputs now change state to U1-D1 \(=1-1\). The next input change, \(R-V=1-0\), drives the circuitry to stable state (8), with no change in U1 or D1. The next input, \(\mathrm{R}-\mathrm{V}=1-1\), leads to stable state (7) with no change in the outputs. The next two input state changes cause U1 to go low between the negative transitions of \(R\) and \(V\). As the inputs continue to change, the circuitry moves repeatedly through stable states (2), (5), (8), (7), (2), etc., as shown, and a periodic waveform is obtained on the U1 terminal while D1 remains high.

A similar result is obtained if \(V\) is leading with respect to \(R\), except that the periodic waveform now appears on D1 as shown in rows e-h of the timing diagram of Figure 2. In each case, the average value of the resulting waveform is proportional to the phase difference between the two inputs. In a closed loop application, the error signal for controlling the VCO is derived by translating and filtering these waveforms.

The results obtained when R and V are separated by a fixed frequency difference are indicated in rows \(i-1\) of the timing system. For this case, the U1 output goes low when \(R\) goes low and stays in that state until a negative transition on \(V\) occurs. The resulting waveform is similar
to the fixed phase difference case, but now the duty cycle of the U1 waveform varies at a rate proportional to the difference frequency of the two inputs, \(R\) and \(V\). It is this characteristic that permits the MC4344/4044 to be used as a frequency discriminator; if the signal on \(R\) has been frequency modulated and if the loop bandwidth is selected to pass the deviation frequency but reject \(R\) and V , the resulting error voltage applied to the VCO will be the recovered modulation signal.

Phase detector \#2 consists only of combinatorial logic, therefore its characteristics can be determined from the simple truth table of Figure 3 . Since circuit operation requires that both inputs to the charge pump either be high or have the same duty cycle when lock occurs, using this phase detector leads to a quadrature relationship between \(R\) and \(V\). This is illustrated in rows a-d of the timing diagram of Figure 3. Note that any deviation from a fifty percent duty cycle on the inputs would appear as phase error.

Waveforms showing the operation of phase detector \#2 when phase detector \#1 is being used in a closed loop are indicated in rows e-j. When the main loop is locked, U2 remains high. If the loop drifts out of lock in either direction a negative pulse whose width is proportional to the amount of drift appears on U2. This can be used to generate a simple loss-of-lock indicator.

Operation of the charge pump is best explained by considering it in conjunction with the Darlington amplifier included in the package (see Figure 4). There will be

FIGURE 3 - PHASE DETECTOR \#2 OPERATION

\begin{tabular}{|c|c|c|c|}
\hline\(R\) & \(V\) & \(U 2\) & \(D 2\) \\
\hline 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 1 \\
\hline 1 & 1 & 1 & 0 \\
\hline
\end{tabular}

a pulsed waveform on either PD or PU, depending on the phase-frequency relationship of R and V . The charge pump serves to invert one of the input waveforms (D1) and translates the voltage levels before they are applied to the loop filter. When PD is low and PU is high, Q1 will be conducting in the normal direction and Q 2 will be off. Current will be flowing through Q3 and CR2; the base of Q3 will be two \(V_{\text {BE }}\) drops above ground or approximately 1.5 volts. Since both of the resistors connected to the base of Q3 are equal, the emitter of Q 4 (base of \(\mathrm{O5}\)) will be approximately 3.0 volts. For this condition, the emitter of Q 5 (DF) will be on \(\mathrm{V}_{\mathrm{BE}}\) below this voltage, or about 2.25 volts. The PU input to the charge pump is high (\(>2.4\) volts) and CR1 will be reverse biased. Therefore Q5 will be supplying current to Q6. This will tend to lower the voltage at the collector of Q7, resulting in an error signal that lowers the VCO frequency as required by a "pump down" signal.

\section*{FIGURE 4 - CHARGE PUMP OPERATION}

When PU is low and PD is high, CR1 is forward biased and UF will be approximately one \(V_{B E}\) above ground (neglecting the \(V_{C E}(\) sat \()\) of the driving gate). With PD high, Q1 conducts in the reverse direction, supplying base current for Q 2 . While Q 2 is conducting, Q 4 is prevented from supplying base drive to Q 5 ; with Q 5 cut off and UF low there is no base current for Q 6 and the voltage at the collector of 07 moves up, resulting in an increase in the VCO operating frequency as required by a "pump up" signal.

If both inputs to the charge pump are high (zero phase difference), both CR1 and the base-emitter junction of Q5 are reverse biased and there is no tendency for the error voltage to change. The output of the charge pump varies between one \(V_{B E}\) and three \(V_{B E}\) as the phase difference of \(R\) and \(V\) varies from minus \(2 \pi\) to plus \(2 \pi\). If this signal is filtered to remove the high-frequency components, the phase detector transfer function, \(\mathrm{K}_{\phi}\), of approximately \(0.12 \mathrm{volt} /\) radian is obtained (see Figure 5).

The specified gain constant of 0.12 volt/radian may not be obtained if the amplifier/filter combination is improperly designed. As indicated previously, the charge pump delivers pump commands of about 2.25 volts on the positive swings and 0.75 volt on the negative swings for a mean no-pump value of 1.5 volts. If the filter amplifier is biased to threshold "on" at 1.5 volts, then the pump up
and down voltages have equal effects. The pump signals are established by \(V_{B E S}\) of transistors with milliamperes of current flowing. On the other hand, the transistors included for use as a filter amplifier will have very small currents flowing and will have correspondingly lower \(\mathrm{V}_{\mathrm{BES}}\) - on the order of 0.6 volt each for a threshold of 1.2 volts. Any displacement of the threshold from 1.5 volts causes an increase in gain in one direction and a reduction in the other. The transistor configuration provided is hence not optimum but does allow for the use of an additional transistor to improve filter response. This addition also results in a non-symmetrical response since the threshold is now approximately 1.8 volts. The effective positive swing is limited to 0.45 volt while the negative swing below threshold can be greater than 1.0 volt. This means that the loop gain when changing from a high frequency to a lower frequency is less than when changing in the opposite direction. For type two loops this tends to increase overshoot when going from low to high and increases damping in the other direction. These problems and the selection of external filter components are intimately related to system requirements and are discussed in detail in the filter design section.

FIGURE 5 - PHASE DETECTOR TEST

Shown for positive phase angle. Reverse \(A\) and \(B\) for negative phase angle.

\section*{PHASE-LOCKED LOOP COMPONENTS}

\section*{General}

A basic phase-locked loop, when operating properly, will acquire ('"lock on") an input signal, track it in frequency, and exhibit a fixed phase relationship relative to the input. In this basic loop, the output frequency will be identical to the input frequency (Figure 6). A fundamental loop consists of a phase detector, amplifier/filter, and voltage-controlled oscillator (Figure 7). It appears and acts like a unity gain feedback loop. The controlled variable is phase; any error between \(f_{i n}\) and \(f_{\text {out }}\) is amplified and applied to the VCO in a corrective direction.

\section*{FIGURE 6 - BASIC PHASE-LOCKED LOOP FREQUENCY RELATIONSHIP}

FIGURE 7 - FUNDAMENTAL PHASE-LOCKED LOOP

Simple phase detectors in digital phase-locked loops usually put out a series of pulses. The average value of these pulses is the "gain constant," \(\mathrm{K}_{\phi}\), of the phase detector - the volts out for a given phase difference, expressed as volts/radian.

The VCO is designed so that its output frequency range is equal to or greater than the required output frequency range of the system. The ratio of change in output frequency to input control voltage is called "gain constant," \(\mathrm{K}_{\mathrm{O}}\). If the slope of \(\mathrm{f}_{\text {out }}\) to \(\mathrm{V}_{\text {in }}\) is not linear (i.e., changes greater than \(25 \%\)) over the expected frequency range, the curve should be piece-wise approximated and the appropriate constant applied for "best" and "worst" case analysis of loop performance.

System dynamics when in lock are determined by the amplifier/filter block. Its gain determines how much phase error exists between \(f_{\text {in }}\) and \(f_{\text {out }}\), and filter characteristics shape the capture range and transient performance. This will be discussed in detail later.

\section*{Loop Filter}

Fundamental loop characteristics such as capture range, loop bandwidth, capture time, and transient response are controlled primarily by the loop filter. The loop behavior is described by gains in each component block of Figure 8. The output to input ratio reflects a second order low pass filter in frequency response with a static gain of N :
\[
\frac{\theta_{\mathrm{O}}(\mathrm{~s})}{\theta_{\mathrm{i}}(\mathrm{~s})}=\frac{\mathrm{K}_{\phi} K_{\mathrm{F}} \mathrm{~K}_{V}}{s+\frac{K_{\phi} K_{F} K_{V}}{N}}
\]
\[
\begin{equation*}
\text { where: } \quad K_{F}=\frac{1+T_{1} s}{T_{2} s} \tag{2}
\end{equation*}
\]
\(T_{1}=R_{2} C\) and \(T_{2}=R_{1} C\) of Figure 4. Therefore,
\[
\begin{equation*}
\frac{\theta_{\mathrm{O}}(\mathrm{~s})}{\theta_{\mathrm{i}}(\mathrm{~s})}=\frac{\mathrm{N}\left(1+\mathrm{T}_{1} \mathrm{~s}\right)}{\frac{s^{2} \mathrm{NT} T_{2}}{\mathrm{~K}_{\phi} K_{V}}+T_{1} s+1} \tag{3}
\end{equation*}
\]

FIGURE 8 - GAIN CONSTANTS

Both \(\omega_{\mathrm{n}}\) (loop bandwidth or natural frequency) and \(\zeta\) (damping factor) are particularly important in the transient response to a step input of phase or frequency (Figure 9), and are defined as:
\[
\begin{gather*}
\omega_{n}=\sqrt{\frac{K_{\phi} K_{V}}{N T_{2}}} \tag{4}\\
\zeta=\sqrt{\frac{K_{\phi} K_{V}}{N T_{2}}}\left(\frac{T_{1}}{2}\right) \tag{5}
\end{gather*}
\]

Using these terms in Equation 3,
\[
\begin{equation*}
\frac{\theta_{\mathrm{O}}(\mathrm{~s})}{\theta_{\mathrm{i}}(\mathrm{~s})}=\frac{N\left(1+T_{1} s\right)}{\frac{s^{2}}{\omega_{n}^{2}}+\frac{2 \zeta s}{\omega_{n}}+1} \tag{6}
\end{equation*}
\]

In a well defined system controlling factors such as \(\omega_{\mathrm{n}}\) and \(\zeta\) may be chosen either from a transient basis (time domain response) or steady state frequency plot (roll-off point and peaking versus frequency). Once these two design goals are defined, synthesis of the filter is relatively straight-forward.

Constants \(\mathrm{K}_{\phi}, \mathrm{K}_{\mathrm{V}}\), and N are usually fixed due to other design constraints, leaving \(T_{1}\) and \(T_{2}\) as variables to set \(\omega_{n}\) and \(\zeta\). Since only \(T_{2}\) appears in Equation 4, it is the easiest to solve for initially.
\[
\begin{equation*}
T_{2}=\frac{K_{\phi} K V}{N \omega_{n}^{2}} \tag{7}
\end{equation*}
\]

From Equation 5, we find
\[
\begin{equation*}
T_{1}=\frac{2 \zeta}{\omega_{n}} \tag{8}
\end{equation*}
\]

FIGURE 9 - TYPE 2 SECOND ORDER STEP RESPONSE

Using relationships 7 and 8, actual resistor values may be computed:
\[
\begin{align*}
R_{1} & =\frac{K \phi K V}{N \omega_{n}^{2} C} \tag{9}\\
R_{2} & =\frac{2 \zeta}{\omega_{n} C} \tag{10}
\end{align*}
\]

Although fundamentally the range of \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) may be from several hundred to several thousand ohms, sideband considerations usually force the value of \(R_{1}\) to be set first, and then \(R_{2}\) and \(C\) computed.
\[
\begin{equation*}
C=\frac{K_{\phi} K V}{N \omega_{n}{ }^{2} R_{1}} \tag{11}
\end{equation*}
\]

Calculation of passive components \(R_{2}\) and \(C\) (in synthesizers) is complicated by incomplete information on \(N\), which is variable, and the timits of \(\omega_{n}\) and \(\zeta\) during that variance. Equally important are changes in \(\mathrm{K}_{\mathrm{V}}\) over the output frequency range. Minimum and maximum values of \(\omega_{n}\) and \(\zeta\) can be computed from Equations 4 and 5 when the appropriate worst case numbers are known for all the factors.

Amplifier/filter gain usually determines how much phase error exists between \(f_{\text {in }}\) and \(f_{\text {out, }}\) and the filter characteristic shapes capture range and transient performance. A relatively simple, low gain amplifier may usually be used in the loop since many designs are not constrained so much by phase error as by the need to make \(f_{\text {in }}\) equal \(f_{\text {out }}\). Unnecessarily high gains can cause
problems in linear loops when the system is out of lock if the amplifier output swing is not adequately restricted since integrating operational amplifier circuits will latch up in time and effectively open the loop.

The internal amplifier included in the MC4344/4044 may be used effectively if its limits are observed. The circuit configuration shown in Figure 10 illustrates the placement of \(R_{1}, R_{2}, C\), and load resistor \(R_{L}(1 k \Omega)\). Due to the non-infinite gain of this stage (\(A_{V} \approx 30\)) and other non-ideal characteristics, some restraint must be placed on passive component selection. Foremost is a lower limit on the value of \(R_{2}\) and an upper limit on \(R_{1}\). Placed in order of priority, the recommendations are as follows: (a) \(\mathrm{R} 2>50 \Omega\), (b) R2/R1 \(\leqslant 10\), (c) \(1 \mathrm{k} \Omega<\mathrm{R} 1<5 \mathrm{k} \Omega\).

FIGURE 10 - USING MC4344/4044 LOOP AMPLIFIER

Limit (c) is the most flexible and may be violated with either higher sidebands and phase error \(\left(R_{1}>5 \mathrm{k} \Omega\right)\) or lower phase detector gain (\(\mathrm{R}_{1}<1 \mathrm{k} \Omega\)). If limit (b) is exceeded, loop bandwidth will be less than computed and may not have any similarity to the prediction. For an accurate reproduction of calculated loop characteristics one should go to an operational amplifier which has sufficient gain to make limit (b) readily satisfied. Limit (a) is very important because \(T_{1}\) in Equation 5 is in reality composed of three elements:
\[
\begin{equation*}
T_{1}=C\left(R_{2}-\frac{1}{g_{m}}\right) \tag{12}
\end{equation*}
\]
where \(\mathrm{g}_{\mathrm{m}}=\) transconductance of the common emitter amplifier.

Normally \(g_{m}\) is large and \(T_{1}\) nearly equals \(R_{2} C\), but resistance values below \(50 \Omega\) can force the phase-compensating "zero" to infinity or worse (into the right half plane) and give an unstable system. The problem can be circumvented to a large degree by buffering the feedback with an emitter follower (Figure 11). Inequality (a) may then be reduced by at least an order of magnitude (\(\mathrm{R}_{2}\) \(>5 \Omega\)) keeping in mind that electrolytic capacitors used

FIGURE 11 - AMPLIFIER CAPABLE OF HANDLING LOWER R2

as C may approach this value by themselves at the frequency of interest (\(\omega_{n}\)).
Larger values of \(\mathrm{R}_{1}\) may be accommodated by either using an operational amplifier with a low bias current (\(\mathrm{I}_{\mathrm{b}}<1.0 \mu \mathrm{~A}\)) as shown in Figure 12 or by buffering the internal Darlington pair with an FET (Figure 13). It is vitally important, however, that the added device be operated at zero \(\mathrm{V}_{\mathrm{GS}}\). Source resistor \(\mathrm{R}_{4}\) should be adjusted for this condition (which amounts to IDSS current for the FET). This insures that the overall amplifier input threshold remains at the proper potential of approximately two base-emitter drops. Use of an additional emitter follower instead of the FET and \(\mathrm{R}_{4}\) (Figure 14) gives a threshold near the upper limit of the phase detector charge pump, resulting in an extremely unsymmetrical phase detector gain in the pump up versus pump down mode. It is not unusual to note a \(5: 1\) difference in \(\mathrm{K}_{\phi}\) for circuits having the bipolar buffer stage. If the initial design can withstand this variation in loop gain and remain stable, the approach should be considered since there are no critical adjustments as in the FET circuit.

FIGURE 12 - USING AN OPERATIONAL AMPLIFIER TO EXTEND THE VALUE OF R1

FIGURE 13 - FET BUFFERING TO RAISE AMPLIFIER INPUT IMPEDANCE

FIGURE 14 - EMITTER FOLLOWER BUFFERING OF AMPLIFIER INPUT

\section*{DESIGN PROBLEMS AND THEIR SOLUTIONS}

\section*{Dynamic Range}

A source of trouble for all phase-locked loops, as well as most electronics is simply overload or lack of sufficient dynamic range. One limit is the amplifier output drive to the VCO. Not only must a designer note the outside limits of the dc control voltage necessary to give the output frequency range, he must also account for the worst case of overshoot expected for the system. Relatively large damping factors \((\zeta=0.5)\) can contribute significant amounts of overshoot (\(30 \%\)). To be prepared for the worst case output swing the amplifier should have as much margin to positive and negative limits as the expected swing itself. That is, if a two-volt swing is sufficient to give the desired output frequency excursion, there should be at least a two-volt cushion above and below maximum expected steady-state values on the control line.

This increase in range, in order to be effective, must of course by followed by an equivalent range in the VCO or there is little to be gained. Any loss in loop gain will in general cause a decrease in \(\zeta\) and a consequent increase in overshoot and ringing. If the loss in gain is caused by saturation or near saturation conditions, the problem tends to accelerate towards a situation where the system settles in not only a slow but oscillator manner as well.
Loss of amplifier gain may not be due entirely to normal system damping considerations. In loops employing digital phase detectors, an additional problem is likely to appear. This is due to amplifier saturation during a step input when there is a maximum phase detector output simultaneous with a large transient overshoot. The phase detector square wave rides on top of the normal transient and may even exceed the amplifier output limits imposed above. Since the input frequency will exceed the \(\mathrm{R}_{2} \mathrm{C}\) time constant, gain \(\mathrm{K}_{\mathrm{F}}\) for these annoying pulses will be \(R_{2} / R_{1}\). Ordinarily this ratio will be less than 1 , but some circumstances dictate a low loop gain commensurate with a fairly high \(\omega_{n}\). For these cases, \(R_{2} / R_{1}\) may be higher than 10 and cause pulse-wise saturation of the amplifier. Since the dc control voltage is an average of phase detector pulses, clipping can be translated into a reduction in gain with all the "benefits" already outlined, i.e., poor settling time. An easy remedy to apply in many cases is a simple RC low pass section preceding or together with the integrator-lag section. To make transient suppression independent of amplifier response, the network may be imbedded within the input resistor \(\mathrm{R}_{1}\) (Figure 15) or be implemented by placing a feedback capacitor across \(R_{2}\) (Figure 16). Besides rounding off and inhibiting pulses, these networks add an additional pole to the loop and may cause further overshoot if the cutoff frequency \(\left(\omega_{c}\right)\) is too close to \(\omega_{n}\). If at all possible the cutoff point should be five to ten times \(\omega_{n}\). How far \(\omega_{c}\) can be placed from \(\omega_{n}\) depends on the input frequency relationship to \(\omega_{n}\) since \(f_{i n}\) is, after all, what is being filtered. A side benefit of this simple RC pulse "flattener" is a reduction in \(f_{i n}\) sidebands around \(f_{\text {out }}\) for synthe-
sizers with \(N>1\). However, a series of RC filters is not recommended for either extended pulse suppression or sideband improvement as excess phase will begin to build up at the loop crossover (\(\approx \omega_{n}\)) and tend to cause instability. This will be discussed in more detail later.

FIGURE 15 - IMPROVED TRANSIENT SUPPRESSION
WITH R1 - \(\mathrm{C}_{\mathrm{C}}\)

FIGURE 16 - IMPROVED TRANSIENT SUPPRESSION WITH R2-C \(\mathbf{C}\)

\section*{Spurious Outputs}

Although the major problem in phase-locked loop design is defining loop gain and phase margin under dynamic operating conditions, high-quality synthesizer designs also require special consideration to minimize spurious spectral components - the worst of which is reference-frequency sidebands. Requirements for good sideband suppression often conflict with other performance goals - loop dynamic behavior, suppression of VCO noise, or suppression of other in-loop noise. As a result, most synthesizer designs require compromised specifications. For a given set of components and loop dynamic conditions, reference sidebands should be predicted and checked against design specifications before any hardware is built.

Any steady-state signal on the VCO control will produce sidebands in accordance with normal FM theory. For small spurious deviations on the VCO, relative sideband-to-carrier levels can be predicted by:
\[
\begin{equation*}
\frac{\text { sidebands }}{\text { carrier }} \cong \frac{V_{\text {ref }} K_{V}}{2 \omega_{\text {ref }}} \tag{13}
\end{equation*}
\]
where \(V_{\text {ref }}=\) peak voltage value of spurious frequency at the VCO input.

Unwanted control line modulation can come from a variety of sources, but the most likely cause is phase detector pulse components feeding through the loop fil-
ter. Although the filter does establish loop dynamic conditions, it leaves something to be desired as a low pass section for reference frequency components.

For the usual case where \(\omega_{\text {ref }}\) is higher than \(1 / T_{2}\), the \(\mathrm{K}_{\mathrm{F}}\) function amounts to a simple resistor ratio:
\[
K_{F}(j \omega) \left\lvert\, \begin{align*}
& \cong-\frac{R_{2}}{R_{1}} \tag{14}\\
& \omega=\omega_{r e f}
\end{align*}\right.
\]

By substitution of Equations 9 and 10, this signal transfer can be related to loop parameters.
\[
\mathrm{K}_{\mathrm{F}(\mathrm{j} \omega)} \left\lvert\, \begin{align*}
& \cong \frac{2 \zeta \mathrm{~N} \omega_{\mathrm{n}}}{\mathrm{~K}_{\phi} \mathrm{K}_{\mathrm{V}}}=\frac{\mathrm{V}_{\mathrm{ref}}}{\mathrm{~V}_{\phi}} \tag{15}\\
& \omega=\omega_{\mathrm{ref}}
\end{align*}\right.
\]
where \(V_{\text {ref }}=\) peak value of reference voltage at the VCO input, and
\(V_{\phi}=\) peak value of reference frequency voltage at the phase detector output.

Sideband levels relative to reference voltage at the phase detector output can be computed by combining Equations 13 and 15:
\[
\begin{equation*}
\frac{\text { sideband level }}{f_{\text {out }} \text { level }}=v_{\phi}\left(\frac{\zeta N \omega_{\mathrm{n}}}{\omega_{\mathrm{ref}} \mathrm{~K}_{\phi}}\right) \tag{16}
\end{equation*}
\]

From Equation 16 we find that for a given phase detector, a given value of \(R_{1}\) (which determines \(V_{\phi}\)), and given basic system constraints (\(N, f_{\text {ref }}\)), only \(\zeta\) and \(\omega_{n}\) remain as variables to diminish the sidebands. If there are few limits on \(\omega_{n}\), it may be lowered indefinitely until the desired degree of suppression is obtained. If \(\omega_{n}\) is not arbitrary and the sidebands are still objectionable, additional filtering is indicated.

One item worthy of note is the absence of \(\mathrm{K}_{\mathrm{V}}\) in Equation 16. From Equation 15 it might be concluded that decreasing \(K_{V}\) would be another means for reducing spurious sidebands, but for constant values of \(\zeta\) and \(\omega_{n}\) this is not a free variable. In a given loop, varying \(K_{V}\) will certainly affect sideband voltage, but will also vary \(\zeta\) and \(\omega_{n}\).

On the other hand, the choice of \(\omega_{n}\) may well affect spectral purity near the carrier, although reference sideband levels may be quite acceptable.

In computing sideband levels, the value of \(\mathrm{V}_{\phi}\) must be determined in relation to other loop components. Residual reference frequency components at the phase detector output are related to the dc error voltage necessary to supply charge pump leakage current and amplifier bias current. From these average voltage figures, spectral components of the reference frequency and its harmonics can be computed using an approximation that the phase detector output consists of square waves \(\tau\) seconds
wide repeated at t second intervals (Figure 17). A Fourier analysis can be summarized for small ratios of \(\tau / \mathrm{t}\) by:
(1) the average voltage \(\left(V_{\mathrm{avg}}\right)\) is \(\mathrm{A}(\tau / \mathrm{t})\)
(2) the peak reference voltage value \(\left(V_{\phi}\right)\) is twice \(V_{\text {avg }}\), and
(3) the second harmonic (\(2 f_{\text {ref }}\)) is roughly equal in amplitude to the fundamental.

By knowing the requirements for (1) due to amplifier bias and leakage currents, values for (2) and (3) are uniquely determined.

FIGURE 17 - PHASE DETECTOR OUTPUT

An example of this sideband approximation technique can be illustrated using the parameters specified for the synthesizer design included in the applications information section.
\[
\begin{aligned}
\mathrm{N}_{\max } & =30 & \omega_{\mathrm{n}} & =4500 \mathrm{rad} / \mathrm{s} \\
\mathrm{~K}_{\mathrm{V}} & =11.2 \times 10^{6} \mathrm{rad} / \mathrm{s} / \mathrm{V} & \mathrm{R}_{1} & =2 \mathrm{k} \Omega \\
\mathrm{~K}_{\phi} & =0.12 \mathrm{~V} / \mathrm{rad} & f_{\text {ref }} & =100 \mathrm{kHz} \\
\zeta & =0.8 & &
\end{aligned}
\]

Substituting these numbers into Equation 16:
\[
\begin{align*}
\frac{\text { sideband }}{f_{\text {out }}} & =\mathrm{V}_{\phi} \frac{(0.8)(30)(4500)}{2 \pi\left(10^{5}\right)(0.111)} \tag{17}\\
& =\mathrm{V}_{\phi}(1.55) \tag{18}
\end{align*}
\]

The result illustrates how much reference feedthrough will affect sideband levels. If 1.0 mV peak of reference appears at the output of the phase detector, the nearest sideband will be down 56.2 dB .

If the amplifier section included in the MC4344/4044 is used, with \(R_{L}=1 \mathrm{k} \Omega\), some approximations of the value of \(\mathrm{V}_{\phi}\) can be made based on the input bias current and the value of \(\mathrm{R}_{1}\). The phase detector must provide sufficient average voltage to supply the amplifier bias current, \(l_{b}\), through \(R_{1}\); when the bias current is about \(5.0 \mu \mathrm{~A}\) and \(R_{1}\) is \(2 \mathrm{k} \Omega, \mathrm{V}_{\text {avg }}\) must be 10 mV . From the assumptions earlier concerning the Fourier transform, and with the help of Figure 18, we can see that the phase detector duty cycle will be about \(1.7 \%(\mathrm{~A}=0.6 \mathrm{~V})\), giving a fundamental (reference) of 20 mV peak. If this value for \(\mathrm{V}_{\phi}\) is substituted into Equation 18, the resulting sideband ratio represents 30 dB suppression due to this component alone.
In addition to the amplifier bias current, another factor to consider is transistor 05 reverse leakage current \(I_{L}\) flowing into pin 10 of the MC4344/4044 charge pump. IL is generally less than \(1.0 \mu \mathrm{~A}\) and is no more than \(5.0 \mu \mathrm{~A}\) over the temperature range. A typical design value for \(25^{\circ} \mathrm{C}\) is \(0.1 \mu \mathrm{~A}\). Both \(\mathrm{I}_{\mathrm{L}}\) and amplifier bias current \(\mathrm{I}_{\mathrm{B}}\) are
in a direction to deplenish the charge on filter capacitor C. A second charge pump leakage, \(\mathrm{L}^{\prime}\); attributed by diode CR1 flows out of pin 5 . This current, however, is in a direction to help supply \(\mathrm{I}_{\mathrm{B}}\) and \(\mathrm{I}_{\mathrm{L}}\) and thus tends to minimize the discharge of \(C\). Typically \(\mathrm{I}^{\prime}\) ' is much less than \(I_{L}\) and, since it is also in a direction to minimize discharge of the filter capacitor, it will be ignored in the following discussion. The total charge removed from C must be replaced by current supplied by the charge pump during the next up-date opportunity. This current flows through R1. To minimize the effects of \(I_{B}\) and \(I_{L}\) a relative small value of R 1 should be chosen. A minimum value of \(1 \mathrm{k} \Omega\) is a good choice.

\section*{FIGURE 18 - OUTPUT ERROR} CHARACTERISTICS
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
DUTY \\
CYCLE \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
PHASE \\
ERROR \\
(Deg)
\end{tabular} & \begin{tabular}{c}
\\
\(V_{\text {avg }}\) \\
\((\mathrm{mV})\)
\end{tabular} & \begin{tabular}{c}
\(V_{\phi(\text { peak })}\) \\
\((\mathrm{mV})\)
\end{tabular} \\
\hline 0.1 & 0.36 & 0.6 & 1.2 \\
0.2 & 0.72 & 1.2 & 2.4 \\
0.3 & 1.08 & 1.8 & 3.6 \\
0.4 & 1.44 & 2.4 & 4.8 \\
\hline 0.5 & 1.80 & 3.0 & 6.0 \\
0.6 & 2.16 & 3.6 & 7.2 \\
0.7 & 2.52 & 4.2 & 8.4 \\
0.8 & 2.88 & 4.8 & 9.6 \\
0.9 & 3.24 & 5.4 & 10.8 \\
\hline 1.0 & 3.60 & 6.0 & 12.0 \\
2.0 & 7.2 & 12.0 & 24.0 \\
3.0 & 10.8 & 18.0 & 35.9 \\
4.0 & 14.4 & 24.0 & 47.9 \\
5.0 & 18.0 & 30.0 & 59.8 \\
\hline 6.0 & 21.6 & 36.0 & 71.6 \\
7.0 & 25.2 & 42.0 & 83.3 \\
8.0 & 28.8 & 48.0 & 95.0 \\
9.0 & 32.4 & 54.0 & 106.6 \\
10.0 & 36.0 & 60.0 & 118.0 \\
\hline
\end{tabular}

After values for \(C\) and \(R_{2}\) have been computed on the basis of loop dynamic properties, the overall sideband to \(f_{\text {out }}\) ratio computation can be simplified.

Since
\[
\begin{array}{rlrl}
V_{\phi} & =2 V_{a v g} & =2 R_{1}\left(I_{b}+I_{L}\right)\left(\frac{R_{2}}{R_{1}}\right) \\
V_{a v g} & =\left(I_{b}+I_{L}\right) R_{1} \\
V_{\phi} & =2\left(I_{b}+I_{L}\right) R_{1} \\
V_{\text {ref }} & =V_{\phi}\left(\frac{R_{2}}{R_{1}}\right) & =2 R_{2}\left(I_{b}+I_{L}\right)
\end{array}
\]
we find that
\[
\begin{gather*}
\frac{\text { sideband }}{f_{\text {out }}}=\frac{V_{\text {ref }} K_{V}}{2 \omega_{\text {ref }}} \tag{19}\\
\frac{\text { sideband }}{f_{\text {out }}}=\frac{2 R_{2}\left(l_{b}+l_{L}\right) K V}{2 \omega_{\text {ref }}} \tag{20}
\end{gather*}
\]

Equation 20 indicates that excellent suppression could be achieved if the bias and leakage terms were nulled by current summing at the amplifier input (Figure 19). This has indeed proved to be the case. Experimental results indicate that greater than 60 dB rejection can routinely
be achieved at a constant temperature. However when nulling fairly large values (\(>100 \mathrm{nA}\)), the rejection becomes quite sensitive since leakages are inherently a function of temperature. This technique has proved useful in achieving improved system performance when used in conjunction with good circuit practice and reference filtering.

\section*{FIGURE 19 - COMPENSATING FOR BIAS AND LEAKAGE CURRENT}

\section*{Additional Loop Filtering}

So far, only the effects of fundamental loop dynamics on resultant sidebands have been considered. If further sideband suppression is required, additional loop filtering is indicated. However, care must be taken in placement of any low pass rolloff with regard to the loop natural frequency \(\left(\omega_{n}\right)\). On one hand, the "corner" should be well below (lower than) \(\omega_{\text {ref }}\) and yet far removed (above) from \(\omega_{n}\). Although no easy method for placing the roll-off point exists, a rule of thumb that usually works is: \(\quad \omega_{\mathrm{c}}=5 \omega_{\mathrm{n}}\)
(21)

Reference frequency suppression per pole is the ratio of \(\omega_{c}\) to \(\omega_{r e f}\).
\[
\begin{equation*}
\mathrm{SB}_{\mathrm{dB}} \cong \mathrm{n} 20 \log _{10}\left(\frac{\omega_{\mathrm{C}}}{\omega_{\text {ref }}}\right) \tag{22}
\end{equation*}
\]
where n is the number of poles in the filter.
Equation 22 gives the additional loop suppression to \(\omega_{\text {ref; }}\) this number should be added to whatever suppression already exists.

For non-critical applications, simple RC networks may suffice, but if more than one section is required, loop dynamics undergo undesirable changes. Loop damping factor decreases, resulting in a high percentage of overshoot and increased ringing since passive RC sections tend to accumulate phase shift more rapidly than signal suppression and part of this excess phase subtracts from the loop phase margin. Less phase margin translates into a lower damping factor and can, in the limit, cause outright oscillation.

A suitable alternative is an active RC section, Figure 20, compatible with the existing levels and voltages. An active two pole filter (second order section) can realize a more gradual phase shift at frequencies less than the cutoff point and still get nearly equal suppression at frequencies above the cutoff point. Sections designed with a slight amount of peaking (\(\zeta \cong 0.5\)) show a good compromise between excess phase below cutoff (\(\omega_{\mathrm{C}}\)), without peaking enough to cause any danger of raising the loop gain for frequencies above \(\omega_{n}\). A fairly non-critical section may simply use an emitter follower as the active device
with two resistors and capacitors completing the circuit (Figure 21). This provides a \(-12 \mathrm{~dB} /\) octave (\(-40 \mathrm{~dB} / \mathrm{dec}\) ade) rolloff characteristic above \(\omega_{n}\), though the attenuation may be more accurately determined by Equation 22. If the sideband problem persists, an additional section may be added in series with the first. No more than two sections are recommended since at that time either (1) the constraint between \(\omega_{n}\) and \(\omega_{\text {ref }}\) is too close, or (2) reference voltage is modulating the VCO from a source other than the phase detector through the loop amplifier.

FIGURE 20 - OPERATIONAL AMPLIFIER LOW PASS FILTER

FIGURE 21 - EMITTER FOLLOWER LOW PASS FILTER

NOTE: If \(\mathrm{V}_{\mathrm{O}} \geqslant \mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}\), this stage is susceptible to power supply noise.

Operation without charge pump phase detector \#1 of the MC4344/4044 can be implemented quite successfully in many applications without using the charge pump and internal darlington amplifier approach. An operational amplifier filter can be used to process the error information appearing at U1 and D1 (pins 13 and 2) directly (Figure 22).This phase detector/filter approach offers a potentially superior performing system because:
a. Charge pump delay time is eliminated.
b. Charge pump input signed threshold level need not be overcome before error information is obtained. This can result in a substantial improvement in the FIGURE 22-TYPICAL FILTER AND SUMMING NETWORK

4044's transfer function linearity in the vicinity of zero phase error between the R and V inputs.
c. The filter amplifier ground location can be separated from the phase detector ground.
d. An "optimum" filter amplifier input threshold of approximately two diode drops need not be established.
The filter discussions and relationships developed for integrator-log filter sections can be applied to the system of Figure 22 and the previously derived equations can be: used to determine values for R1, R2 and C.

It may be desirable to split each of the R1 resistors and incorporate a capacitor to ground in a manner similar to that shown in Figure 15. This should improve transient suppression and provide integration of the U1 and D1 signals to better enable the operational amplifier to develop corrective error information from very narrow U1 and D1 pulse widths.

Phase error for the circuit in Figure 22 will result from input offset voltage in the operational amplifier, resistor mismatch and mismatch between the phase detector output states appearing at U1 and D1. Phase error can be trimmed to zero initially by adjusting either the amplifier input offset or one of the R1 resistors.

\section*{VCO Noise}

Effects of noise within the VCO itself can be evaluated by considering a closed loop situation with an external noise source, \(e_{n}\), introduced at the VCO (Figure 23). Resultant modulation of the VCO by error voltage, \(\varepsilon\), is a second order high pass function:
\[
\begin{align*}
\frac{\varepsilon}{e_{n}} & =\frac{S^{2}}{S^{2}+\frac{S T_{1} K \phi K_{V}}{T_{2} N}+\frac{K \phi K_{V}}{T_{2} N}} \tag{23}\\
& =\frac{S_{2}}{S^{2}+2 \zeta \omega_{n} S+\omega_{n}^{2}}
\end{align*}
\]

\section*{FIGURE 24 - LOOP RESPONSE TO VCO NOISE}
\(\left|\epsilon / e_{n}\right|\), RESPONSE (dB)

\section*{Other Spurious Responses}

Spurious components appearing in the output spectrum are seldom due to reference frequency feedthrough alone. Modulation of any kind appearing on the VCO control line will cause spurious sidebands and can come in through the loop amplifier supply, bias circuitry in the control path, a translator, or even the VCO supply itself. Some VCOs have a relatively high sensitivity to power supply variation. This should be investigated and its effects considered. Problems of this nature can be minimized by operating all devices except the phase detector, charge pump, and VCO from a separate and well isolated supply. A common method uses a master supply of about 10 or 12 volts and two regulators to produce voltages for the PLL - one for all the logic (including the phase detector) and the other for all circuitry associated with the VCO control line.

Sideband and noise performance is also a function of good power supply and regulator layout. As mentioned earlier, extreme care should be exercised in isolating the control line voltage to the VCO from influences other than the phase detector. This not only means good voltage regulation but ac bypassing and adherence to good grounding techniques as well. Figure 25 shows two separate regulators and their respective loads. Resistor \(R_{S}\) is a small stray resistance due to a common thin ground return for both \(R_{L 1}\) and \(R_{L 2}\). Any noise in \(R_{L 2}\) is now reproduced (in a suppressed form) across \(R_{L 1}\). Load current from \(R_{L 1}\) does not affect the voltage across \(R_{L 2}\). Even though the regulators may be quite good, they can hold \(V_{O}\) constant only across their outputs, not necessarily across the load (unless remote sensing is used).

\section*{FIGURE 25 - LOOP VOLTAGE REGULATION}

One solution to the ground-coupled noise problem is to lay out the return path with the most sensitive regulated circuit at the farthest point from power supply entry as shown in Figure 26.

Even for regulated subcircuits, accumulated noise on the ground bus can pose major problems since although the cross currents do not produce a differential load voltage directly, they do produce essentially common mode noise on the regulators. Output differential load noise then is a function of the input regulation specification. By far the best way to sidestep the problem is to connect each subcircuit ground to the power supply entry return line as shown in Figure 27.

FIGURE 26 - REGULATOR LAYOUT

FIGURE 27 - REGULATOR GROUND CONNECTION

In Figures 25 and 27, \(R_{L 1}\) and \(R_{L 2}\) represent component groups in the system. The designer must insure that all ground return leads in a specific component group are returned to the common ground. Probably the most overlooked components are bypass capacitors. To minimize sidebands, extreme caution must be taken in the area immediately following the phase detector and through the VCO. A partial schematic of a typical loop amplifier and filter is shown inFigure 28 to illustrate the common grounding technique.

Bypassing in a phase-locked loop must be effective at both high frequencies and low frequencies. One capacitor in the \(1.0-\mathrm{to}-10 \mu \mathrm{~F}\) range and another between 0.01 and \(0.001 \mu \mathrm{~F}\) are usually adequate. These can be effectively utilized both at the immediate circuitry (between supply and common ground) and the regulator if it is some distance away. When used at the regulator, a single electrolytic capacitor on the output and a capacitor pair at the input is most effective (Figure 29). It is important, again, to note that these bypasses go from the input/ output pins to as near the regulator ground pin as possible.

\section*{FIGURE 29 - SUGGESTED BYPASSING PROCEDURE}

Return

\section*{APPLICATIONS INFORMATION}

\section*{Frequency Synthesizers}

The basic PLL discussed earlier is actually a special case of frequency synthesis. In that instance, \(f_{\text {out }}=f_{\text {in }}\), although normally a programmable counter in the feedback loop insures the general rule that \(\mathrm{f}_{\mathrm{out}}=\mathrm{Nf}_{\text {in }}\) (Figure 30). In the synthesizer \(f_{\text {in }}\) is usually constant (crystal controlled) and \(f_{\text {out }}\) is changed by varying the programmable divider (\(\div \mathrm{N}\)). By stepping N in integer increments, the output frequency is changed by \(\mathrm{f}_{\text {in }}\) per increment. In com-

FIGURE 30 - PHASE-LOCKED LOOP WITH PROGRAMMABLE COUNTER

FIGURE 28 - PARTIAL SCHEMATIC OF LOOP AMPLIFIER AND FILTER

munication use, this input frequency is called the "channel spacing" or, in general, it is the reference frequency.
There is essentially no difference in loop dynamic problems between the basic PLL and synthesizers except that synthesizer designers must contend with problems peculiar to loops where \(\mathbf{N}\) is variable and greater than 1. Also, sidebands or spectral purity usually require special attention. These and other aspects are discussed in greater detail in AN-535. The steps for a suitable synthesis procedure may be summarized as follows:

\section*{Synthesis Procedure}
1. Choose input frequency. (\(\mathrm{f}_{\mathrm{ref}}=\) channel spacing)
2. Compute the range of digital division:
\[
\begin{aligned}
& N_{\max }=\frac{f_{\max }}{f_{\text {ref }}} \\
& N_{\min }=\frac{f_{\min }}{f_{r e f}}
\end{aligned}
\]
3. Compute needed VCO range:
\[
\left(2 f_{\max }-f_{\min }\right)<f_{V C O}<\left(2 f_{\min }-f_{\max }\right)
\]
4. Choose minimum \(\zeta\) from transient response plot, Figure 9. A good starting point is \(\zeta=0.5\).
5. Choose \(\omega_{\mathrm{n}}\) from needed response time (Figure 9):
\[
\omega_{n}=\frac{\omega_{n} t}{t}
\]
6. Compute C:
\[
C=\frac{K_{\phi} K_{V}}{N_{\max ^{\omega}{ }_{n}{ }^{2} R_{1}}}
\]
7. Compute \(\mathbf{R}_{\mathbf{2}}\) :
\[
\mathrm{R}_{2}=\frac{2 \zeta_{\min }}{\omega_{\mathrm{n}} \mathrm{C}}
\]
8. Compute \(\zeta_{\text {max }}\) :
\[
\zeta_{\max }=\zeta_{\min } \sqrt{\frac{N_{\max }}{N_{\min }}}
\]
9. Check transient response of \(\zeta_{\text {max }}\) for compatibility with transient specification.
10. Compute expected sidebands:
\[
\begin{equation*}
\frac{\text { sideband }}{f_{\text {out }}} \cong \frac{\left(I_{b}+I_{L}\right) R_{2} K_{V}}{\omega_{\text {ref }}} \tag{A}
\end{equation*}
\]
(\(\mathrm{L}_{\mathrm{L}}\) is about 100 nA at \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\).)
11. If step 10 yields larger sidebands than are acceptable, add a single pole at the loop amplifier by splitting \(\mathrm{R}_{1}\) and adding \(\mathrm{C}_{\mathrm{C}}\) as shown in Figure 15:
\[
C_{c} \cong \frac{0.8}{R_{1} \omega_{n}}
\]

Added sideband suppression (dB) is:
\[
\begin{equation*}
d B \cong 20 \log _{10} \frac{1}{\sqrt{1+\frac{\omega_{r e f}{ }^{2}}{25\left(\omega_{n}\right)^{2}}}} \tag{B}
\end{equation*}
\]
12. If step 11 still does not give the desired results, add a second order section at \(\omega_{c}=5 \omega_{n}\) using either the configuration of Figure 20 or 21 . The expected improvement is twice that of the single pole in step 11.
\[
\begin{equation*}
\mathrm{dB} \cong 40 \log _{10} \frac{1}{\sqrt{1+\frac{\omega_{\mathrm{ref}}{ }^{2}}{25\left(\omega_{\mathrm{n}}\right)^{2}}}} \tag{C}
\end{equation*}
\]

Total sideband rejection is then the total of \(20 \log _{10}(\mathrm{~A})\) \(+(B)+(C)\).

\section*{Design Example (Figure 31)}

Assume the following requirements:
Output frequency, \(\mathrm{f}_{\text {out }}=2.0 \mathrm{MHz}\) to 3.0 MHz
Frequency steps, \(\mathrm{f}_{\mathrm{in}}=100 \mathrm{kHz}\)
Lockup time between channels (to \(5 \%\)) \(=1.0 \mathrm{~ms}\)
Overshoot < 20\%.
Minimum sideband suppression \(=-30 \mathrm{~dB}\)
From the steps of the synthesis procedure:
1. \(f_{\text {ref }}=f_{\text {in }}=100 \mathrm{kHz}\)
2. \(N_{\max }=\frac{f_{\text {max }}}{f_{\text {ref }}}=\frac{3.0 \mathrm{MHz}}{0.1 \mathrm{MHz}}=30\)
\(N_{\min }=\frac{f_{\text {min }}}{f_{\text {ref }}}=\frac{2.0 \mathrm{MHz}}{0.1 \mathrm{MHz}}=20\)
3. VCO range:

The VCO output frequency range should extend beyond the specified minimum-maximum limits to accommodate the overshoot specification. In this instance fout should be able to cover an additional \(20 \%\) on either end. End limits on the VCO are:
\[
\begin{aligned}
& \mathrm{f}_{\text {out }} \max \geqslant 3.0+0.2(1.0)=3.2 \mathrm{MHz} \\
& \mathrm{f}_{\text {out }} \min \leqslant 2.0-0.2(1.0)=1.8 \mathrm{MHz}
\end{aligned}
\]

This VCO range \((\approx 1.8: 1)\) is realizable with the MC4324/4024 voltage controlled multivibrator. From Figure 7 of the MC4324/4024 data sheet we find the required tuning capacitor value to be 120 pF and the VCO gain, KV, typically \(11 \times 10^{6} \mathrm{rad} / \mathrm{s} / \mathrm{v}\).
4. From the step response curve of Figure \(9, \zeta=0.8\) will produce a peak overshoot less than \(20 \%\).
5. Referring to Figure 9, overshoot with \(\zeta=0.8\) will settle to within \(5 \%\) at \(\omega_{n} t=4.5\). Since the required lock-up time is 1.0 ms ,
\[
\omega_{n}=\frac{\omega_{n} t}{t}=\frac{4.5}{t}=\frac{4.5}{0.001}=(4.5)\left(10^{3}\right) \mathrm{rad} / \mathrm{s}
\]
6. In order to compute C, phase detector gain and R1 must be selected. Phase detector gain, \(\mathrm{K}_{\phi}\), for the MC4344/4044 is approximately 0.1 volt/radian with \(\mathrm{R}_{1}=1 \mathrm{k} \Omega\). Therefore,
\[
C=\frac{(0.1)\left(11 \times 10^{6}\right)}{(30)\left(4.5 \times 10^{3}\right)^{2}\left(10^{3}\right)}=1.8 \mu \mathrm{~F}
\]
7. At this point, \(\mathrm{R}_{\mathbf{2}}\) can be computed:
\(R_{2}=\frac{2 \zeta_{\min }}{\omega_{n} C}=\frac{1.6}{\left(4.5 \times 10^{3}\right)\left(1.8 \times 10^{-6}\right)}=200 \Omega\)
8. \(\zeta_{\max }=\zeta_{\min } \sqrt{\frac{N_{\text {max }}}{N_{\min }}}=0.98\)
9. Figure 9 shows that \(\zeta=0.98\) will meet the settling time requirement.
10. Sidebands may be computed for two cases: (1) with \(l_{L}\) (charge pump leakage current) nominal (100 nA), and (2) with \(I_{L}\) maximum (\(5.0 \mu \mathrm{~A}\)). A value of \(5 \mu \mathrm{~A}\) will also be assumed for the amplifier bias current, ib.
\(\left.\frac{\text { sideband }}{f_{\text {out }}}\right|_{\max }=\frac{\left(10 \times 10^{-6}\right)(200)\left(11 \times 10^{6}\right)}{6.28 \times 10^{5}} \cong 35 \times 10^{-3}\)
The sideband-to-center frequency ratio nominally will be:
\[
\begin{aligned}
& \left.\frac{\text { sideband }}{f_{\text {out }}}\right|_{\text {nom }}=\frac{5.1}{10} \times 35 \times 10^{-3} \\
& =20 \log _{10}\left(17.85 \times 10^{-3}\right) \cong-35 \mathrm{~dB}
\end{aligned}
\]

If desired additional sideband filtering can be obtained as noted in steps 11 and 12.
11. By splitting \(R_{1}\) and \(C_{C}\), further attenuation can be gained. The magnitude of \(\mathrm{C}_{\mathrm{C}}\) is approximately:
\[
C_{C}=\frac{0.8}{R_{1} \omega_{n}}=\frac{0.8}{\left(10^{3}\right)(4.5)\left(10^{3}\right)} \cong 0.18 \mu \mathrm{~F}
\]

Improvement in sidebands will be:
\[
20 \log _{10} \frac{1}{\sqrt{1+\frac{\left(2 \pi \times 10^{5}\right)^{2}}{25\left(4.5 \times 10^{3}\right)^{2}}}}=-28 \mathrm{~dB}
\]

Nominal suppression is now -63 dB . Worst-case is 6 dB higher than nominal suppression of -57 dB . This is well within the -30 dB design requirement, step 12 is included for completeness only.
12. Attenuation of a second order filter is double that of the single order filter sectiondescribed in step11. The calculations for a second order filter indicate an additional -56 dB of sideband rejection. Figures 20 and 21 show two second order filter configurations. If \(R\) is assigned a value of \(10 \mathrm{k} \Omega\) then \(C\) may be calculated.
\[
C=\frac{0.1}{\omega_{n} R}=\frac{0.1}{\left(4.5 \times 10^{3}\right)\left(10^{4}\right)}=0.0022 \mu \mathrm{~F}
\]

FIGURE 31 - CIRCUIT DIAGRAM OF TYPE 2
PHASE-LOCKED LOOP

\section*{Clock Recovery from Phase-Encoded Data}

The electro-mechanical system used for recording digital data on magnetic tape often introduces random variations in tape speed and data spacing. Because of this and the encoding technique used, it is usually necessary to regenerate a synchronized clock from the data during this read cycle. One method for doing this is to phaselock a voltage controlled multivibrator to the data as it is read (Figure 32).

A typical data block using the phase encoded format is shown in row 1 of Figure 33.The standard format calls for recording a preamble of forty " 0 "'s followed by a single " 1 "; this is followed by from 18 to 2048 characters of data and a postamble consisting of a " 1 " followed by forty " 0 " \(s\). The encoding format records a " 0 " as a transition from low to high in the middle of a data cell. A " 1 " is indicated by a transition from high to low at the data cell midpoint. When required, phase transitions occur at the end of data cells. If a string of either consecutive " 0 " \(s\) or consecutive " 1 " \(s\) is recorded, the format duplicates the original clock; the clock is easily recovered by straight forward synchronization with a phase-locked loop. In the general case, where the data may appear in any order, the phase-encoded data must be processed to obtain a single pulse during each data cell before it is applied to the phase detector. For example, if the data
consisted only of alternating " 1 " \(s\) and " 0 " \(s\), the phaseencoded format would result in a waveform equal to onehalf the original clock frequency. If this were applied directly to the loop, the VCM would of course move down to that frequency. The encoding format insures that there will be a transition in the middle of each data time. If only these transitions are sensed they can be used to regenerate the clock. The schematic diagram of Figure 32 indicates one method of accomplishing this.
The logic circuitry generates a pulse at the midpoint of each data cell which is then applied to the reference input of the phase detector. The loop VCM is designed to operate at some multiple of the basic clock rate. The VCM frequency selected depends on the decoding resolution desired and other system timing requirements. In this example, the VCM operates at twenty-four times the clock rate (Figure 33, Row 12).
Referring to Figure 32 and the timing diagram of Figure 33, the phase-encoded data (Figure 33, Row 1) is combined with a delayed version of itself (output of flip-flop A row 3) to provide a positive pulse out of G3 for every transition of the input signal. Portions of the data block are shown expanded in row 2 of Figure 33. Flip-flop A delays the incoming data of one-half of a VCM clock period. Gates G1, G2 and G3 implement the logic Exclusive OR of waveforms 1 and 3 except when inhibited by DGATE (row 4) or the output of G12 (row 7). DGATE and

FIGURE 32 - CLOCK RECOVERY FROM PHASE-ENCODED DATA

its complement, \(\overline{\text { DGATE }}\), serve to initialize the circuitry and insure that the first transition of the data block (a phase transition) is ignored. The MC7493 binary counter and the G5-G12 latch generate a suitable signal for gating out G3 pulses caused by phase transitions at the end of a data cell, such as the one shown dashed in row 6.

The initial data pulse from G3 sets G12 low and is combined with DGATE in G7 to reset the counter to its zero state. Subsequent VCM clock pulses now cycle the counter and approximately one-third of the way through the next data cell the counter's full state is decoded by G11, generating a negative transition. This causes G12 to go high, removing the inhibit signal until it is again reset by the next data transition. This pulse also resets the counter, continuing the cycle and generating a positive pulse at the midpoint of each data cell as required.

Acquisition time is reduced if the loop is locked to a frequency approximately the same as the expected data rate during inter-block gaps. In Figure 32,this is achieved by operating the remaining half of the dual VCM at slightly less than the data rate and applying it to the reference input of the phase detector via the G8-G9-G10 data selector. When data appears, DGATE and DGATE cause the output of G3 to be selected as the reference input to the loop.

The loop parameters are selected as a compromise between fast acquisition and jitter-free tracking once synchronization is achieved. The resulting filter component values indicated in Figure 32 are suitable for recovering the clock from data recorded at a 120 kHz rate, such as would result in a tape system operating at 75 i.p.s. with a recording density of 1600 b.p.i. Synchronization is achieved by approximately the twenty-fourth bit time of the preamble. The relationship between system requirements and the design procedure is illustrated by the following sample calculation:

Assume a -3.0 dB loop bandwidth much less than the input data rate (\(\approx 120 \mathrm{kHz}\)), say 10 kHz . Further, assume a damping factor of \(\zeta=0.707\). From the expression for loop bandwidth as a function of damping factor and undamped natural frequency, \(\omega_{n}\), calculate \(\omega_{n}\) as:
\[
\begin{equation*}
\omega_{-} 3 \mathrm{~dB}=\omega_{n}\left(1+2 \zeta^{2}+\sqrt{2+4 \zeta 2+4 \zeta 4}\right)^{1 / 2} \tag{24}
\end{equation*}
\]
or for \(\omega_{-} 3 \mathrm{~dB}=(2 \pi) 10^{4} \mathrm{rad} / \mathrm{s}\) and \(\zeta=0.707\) :
\[
\omega_{\mathrm{n}}=\frac{(2 \pi) 10^{4}}{2.06}=(3.05) 10^{4} \mathrm{rad} / \mathrm{s}
\]

As a rough check on acquisition time, assume that lockup should occur not later than half-way through a 40bit preample, or for twenty \(8.34 \mu \mathrm{~s}\) data periods.
\[
\begin{equation*}
\omega_{n} t=(3.05) 10^{4}(20)(8.34) 10^{-6}=5.1 \tag{26}
\end{equation*}
\]

From Figure 9, the output will be within 2 to \(3 \%\) of its final value for \(\omega_{n} t \approx 5\) and \(\zeta=0.707\). The filter components are calculated by:
\[
\begin{equation*}
\frac{K_{\phi} K V}{R_{1} C N}=\omega_{n}^{2} \tag{27}
\end{equation*}
\]
and
\[
\begin{equation*}
\frac{K_{\phi} K_{V} R_{2}}{R_{1} N}=2 \zeta \omega_{n} \tag{28}
\end{equation*}
\]
where
\[
\begin{aligned}
\mathrm{K}_{\phi} & =0.115 \mathrm{v} / \mathrm{rad} \\
\mathrm{~K}_{\mathrm{V}} & =(18.2) 10^{6} \mathrm{rad} / \mathrm{s} / \mathrm{volt} \\
\mathrm{~N} & =24=\mathrm{Feedback} \text { divider ratio } \\
\omega_{\mathrm{n}} & =(3.05) 10^{4} \mathrm{rad} / \mathrm{s} \\
\zeta & =0.707 \\
\frac{\mathrm{~K}_{\phi} \mathrm{K}}{\mathrm{~K}} & =\frac{(0.115)(18.2) 10^{6}}{24}=(8.72) 10^{4}
\end{aligned}
\]

From Equation 27:
\[
R_{1} C=\frac{K_{\phi} K V}{N \omega_{n}{ }^{2}}=\frac{(8.72) 10^{4}}{(3.05)^{2} 10^{8}}=(9.34) 10^{-5}
\]

From Equation 28:
\[
\frac{R_{2}}{R_{1}}=\frac{2 \zeta \omega_{n} N}{K_{\phi} K V}=\frac{2(0.707)(3.05) 10^{4}}{(8.72) 10^{4}}=0.494 \approx 1 / 2
\]

Let \(R_{1}=3.0 \mathrm{k} \Omega\); then \(R_{2}=1.5 \mathrm{k} \Omega\) and
\[
C=\frac{(9.34) 10^{-5}}{(3.0) 10^{3}}=(3.1) 10^{-8}
\]
or using a close standard value, use \(\mathrm{C}=0.033 \mu \mathrm{~F}\). Now add the additional prefiltering by splitting \(\mathrm{R}_{1}\) and selecting a time constant for the additional section so that it is large with respect to \(\mathrm{R}_{2} \mathrm{C}_{2}\).
\[
10\left(1 / 2 R_{1}\right) C_{C}=R_{2} C
\]
or
\[
C_{C}=\frac{2 R_{2} C}{10 R_{1}}=\frac{2(1.5) 10^{3}(3.3) 10^{-8}}{10(3.0) 10^{3}}=3300 \mathrm{pF}
\]

FIGURE 33 - TIMING DIAGRAM - CLOCK RECOVERY FROM PHASE-ENCODED DATA

\section*{DIGITAL MIXER/TRANSLATOR \\ (D Flip-Flop w/Translator)}

\section*{DIGITAL MIXER/TRANSLATOR}

The MC12000 is intended for use as a digital mixer in phaselocked loop frequency synthesizers and other applications where a MECL " \(D\) " flip-flop with translators is required. Toggle frequency is typically 250 MHz . TTL to MECL and MECL to TTL translators are provided to facilitate interfacing with MECL or TTL circuits.

The MC12000 is designed to operate from a single power supply of either +5.0 Vdc or -5.2 Vdc .

P SUFFIX PLASTIC PACKAGE

CASE 646

L SUFFIX
CERAMIC PACKAGE CASE 632

\section*{LOGIC DIAGRAM}

\begin{tabular}{|c|c|c|}
\hline\(D\) & \(a_{n}\) & \(a_{n+1}\) \\
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular}
\(V_{C C}=\operatorname{Pin} 14\)
\(\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 7\)

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

\section*{Supply Voltage \(=+5.0 \mathrm{~V}\)}
\begin{tabular}{|c|}
\hline & & & & & & & & & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\[
\underset{\substack{\text { @ Test } \\ \text { Temperature }}}{\substack{\text { an }}}
\]}} & \multicolumn{14}{|c|}{TEST VOLTAGE/CURRENT VALUES} & \\
\hline & & & & & & & & & & & \multicolumn{11}{|c|}{Yolts} & \multicolumn{3}{|c|}{mA} & \\
\hline & & & & & & & & & & & \(\mathrm{V}_{\text {IH }}\) max & \(V_{\text {IL }}\) min & \(\mathrm{V}_{\text {IHAmin }}\) & \(\mathrm{V}_{\text {ILA }}\) max & \(\mathrm{v}_{12}\) & \(\mathrm{V}_{1 H}\) & \(\mathrm{V}_{\text {IHA }}\) & \(\mathrm{v}_{\mathrm{R}}\) & \(\mathrm{v}_{\mathrm{HT}}\) & \(\mathrm{V}_{\text {ILT }}\) & \(\mathrm{v}_{\mathrm{cc}}\) & IL & 1 OL & \({ }^{1} \mathrm{OH}\) & \\
\hline & & & & & & & & & & \(0^{\circ} \mathrm{C}\) & +4.25 & +3.130 & +3.855 & +3.49 & +0.5 & +2.4 & +5.0 & +4.5 & +2.0 & +0.8 & +5.0 & -2.5 & 16 & -0.4 & \\
\hline & & & & & & & & & & \(255^{\circ} \mathrm{C}\) & +4.28 & +3.150 & +3.895 & +3.525 & +0.5 & +2.4 & +5.0 & +4.5 & +2.0 & +0.8 & +5.0 & -2.5 & 16 & -0.4 & \\
\hline & & & & & & & & & & \(75^{\circ} \mathrm{C}\) & \(+4.37\) & +3.170 & +3.955 & +3.550 & +0.5 & +2.4 & +5.0 & +4.5 & +2.0 & +0.8 & +5.0 & -2.5 & 16 & -0.4 & \\
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{\[
\begin{array}{|c|}
\text { Pin } \\
\text { Under } \\
\text { Test } \\
\hline
\end{array}
\]} & \multicolumn{8}{|c|}{MC 12000} & \multicolumn{14}{|c|}{\multirow[t]{2}{*}{test voltage/current applied to pins listed below:}} & \multirow[b]{3}{*}{\[
\begin{array}{c|c}
\\
\hline & \left(V_{E E}\right) \\
\mathrm{Gnd}
\end{array}
\]} \\
\hline & & & & & & +25 \({ }^{\circ} \mathrm{C}\) & & & & & & & & & & & & & & & & & & & \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & Unit & \(\mathrm{V}_{\text {IH }}\) max & \(V_{\text {IL }}\) min & \(\mathrm{V}_{\text {IHAmin }}\) & \(\mathrm{V}_{\text {ILAmax }}\) & VIL & \(\mathrm{V}_{\mathrm{IH}}\) & \(\mathrm{V}_{\mathrm{IHH}}\) & \(\mathrm{V}_{\mathrm{R}}\) & viHT & VILT & \(\mathrm{v}_{\mathrm{cc}}\) & IL & 'OL & \({ }^{1} \mathrm{OH}\) & \\
\hline Power Supply Drain Current & \({ }_{\text {E }}\) E & 7 & - & - & - & 85 & 117 & - & - & mAdc & - & - & - & - & - & - & \(\cdots\) & - & \(\cdots\) & - & 14 & - & - & - & 7 \\
\hline \multirow[t]{11}{*}{Input Current} & IINH1 & 1 & - & - & - & - & 200 & - & & \(\mu \mathrm{Adc}\) & 1 & 2 & & & & & & & & & & & & & \\
\hline & & 2 & - & - & - & - & 200 & - & - & - & 2 & 1 & - & - & - & - & - & - & - & - & 1 & - & - & - & 1 \\
\hline & & 3 & - & - & - & - & 200 & - & - & & 3 & - & \(\sim\) & - & - & - & - & - & \(-\) & - & & - & - & -- & \\
\hline & 1:NH2 & 5 & - & 40 & - & - & 40 & - & 40 & \(\dagger\) & - & - & - & - & - & - & 5 & - & - & - & & - & - & - & \\
\hline & 'ın+3 & 8 & - & - & 1.4 & - & 3.6 & - & - & madc & 9 & 8 & - & - & - & - & - & - & - & - & \(\downarrow\) & - & - & - & \(\dagger\) \\
\hline & & & - & & - & - & & - & - & & 9 & 8 & \(=\) & & & & & & & & & & & & \\
\hline & & \({ }_{2}^{1}\) & - & - & - & - & 2.0
2.0 & - & - & \({ }^{\mu \text { Adc }}\) & - & - & - & - & - & - & - & - & - & - & & - & - & - & 1.7
2.7 \\
\hline & Current) & 3 & - & - & - & - & 2.0 & - & - & 1 & - & - & - & - & - & - & - & - & - & - & & - & - & - & 3.7 \\
\hline & lincz & 5 & - & +1.6 & - & - & +1.6 & - & +1.6 & madc & - & - & - & - & 5 & - & - & - & - & - & & - & - & - & 7 \\
\hline & IINL3 & 8 & - & - & 2.0 & - & 5.0 & - & - & 1 & 8 & 9 & \(\checkmark\) & - & - & \(-\) & - & - & - & - & \(\downarrow\) & - & \(-\) & - & \(\downarrow\) \\
\hline & \({ }^{1} \mathrm{NLL} 4\) & 9 & - & - & 0.8 & - & 2.0 & - & - & \(\dagger\) & 8 & 9 & - & - & - & - & - & \(=\) & - & - & & - & - & - & \\
\hline \multirow[t]{5}{*}{Logic "1" Output Voltage} & \({ }^{\mathrm{V} \mathrm{OH} 1}\) & \(\stackrel{4}{10}\) & 4.000 & 4.25 & 4.040 & - & 4.28 & 4.100 & 4.37 & Vdc & - & 3 & \(\stackrel{\square}{-}\) & - & - & 5 & - & - & - & - & 14 & 4 & - & - & 7 \\
\hline & & 10 & & & & - & & & & & \(\overline{3}\) & 3 & - & - & - & & -- & & & - & & 10 & & & \\
\hline & & 11
\(12 \dagger\) & & \(\cdots\) & * & - & \(\downarrow\) & , & - & , & \({ }^{3}\) & - & - & - & - & - & - & - & - & - & , & 11
12 & - & - & * \\
\hline & & \(13 \uparrow\) & 1 & & 1 & - & & 1 & & 1 & 1 & 1 & - & - & - & - & - & & - & - & 1 & & & & \\
\hline & VOH & 6 & 2.400 & - & 2.400 & - & - & 2.400 & - & Vdc & 9 & 8 & - & - & - & - & - & - & - & - & 14 & - & - & 6 & 7 \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { Logic " "0" } \\
& \text { Output Voltage }
\end{aligned}
\]} & VOL1 & & & & 3.05 & - & & 3.07 & 3.46 & vac & - & - & - & - & 5 & - & - & & - & - & & & & & \\
\hline & & 10
11
11 & & & & - & & & & & 3 & \(\overline{3}\) & - & - & - & - & - & - & - & - & & 10
11 & - & - & , \\
\hline & & \(12 \dagger\) & \(\downarrow\) & \(\dagger\) & \(\downarrow\) & - & , & \(\downarrow\) & + & \(\downarrow\) & 1 & - & - & - & - & - & - & - & - & - & - & 12 & - & - & \(\downarrow\) \\
\hline & & & & & & & & & & & - & 1 & - & - & & & - & & - & & & & & & \\
\hline & \(\mathrm{V}_{\text {OL2 }}\) & 6 & \(-\) & 0.500 & - & - & 0.500 & - & 0.500 & Vdc & 8 & 9 & - & - & - & - & - & - & - & - & 14 & - & 6 & - & 7 \\
\hline Logic "1" & \(\mathrm{V}_{\text {OHA }}\) & \({ }_{4}^{4}\) & & - & 4.020 & - & - & 4.080 & - & Vdc & - & - & - & - & - & - & - & - & 5 & - & 14 & 4 & - & - & 7 \\
\hline Threshold Voltage & & 10 & & - & & - & - & & - & & - & - & - & 3 & - & - & - & - & - & - & 1 & 10 & - & - & 1 \\
\hline & & \begin{tabular}{|c}
11 \\
\(12+\) \\
\hline 1
\end{tabular} & \(\downarrow\) & - & * & - & - & , & - & , & - & - & 3 & \(\overline{1}\) & - & - & - & - & - & - & . & 11
12 & - & - & , \\
\hline & & \(13+\) & & - & + & - & - & * & & - & - & - & & 1 & - & - & - & - & - & & & 13 & - & & 1 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Logic "0" } \\
& \text { Threshold Voltage }
\end{aligned}
\]} & \multirow[t]{4}{*}{\(v_{\text {OLA }}\)} & 4 & - & 3.390 & - & - & 3.400 & & 3.430 & & \(\checkmark\) & - & \(\bar{\square}\) & - & - & \(\checkmark\) & - & - & - & 5 & & & - & - & 7 \\
\hline & & 10
11 & - & 1 & - & - & & - & 1 & & - & - & 3 & \(\overline{3}\) & - & - & - & - & - & - & , & 10
11 & - & - & 1 \\
\hline & & \({ }_{72 \dagger}+\) & - & , & - & - & & - & & & - & - & \(\overline{1}\) & \(\underline{-}\) & - & - & - & - & - & - & & 12 & - & - & , \\
\hline & & 131 & - & 1 & - & - & 1 & - & \(\dagger\) & 1 & - & - & - & 1 & - & - & - & - & - & - & 1 & 13 & - & - & \\
\hline Short Circuit Current & Isc & 6 & -65 & -20 & -65 & - & -20 & -65 & -20 & mAdc & 9 & 8 & - & - & - & - & - & - & - & - & 14 & - & - & - & 6,7 \\
\hline \multicolumn{26}{|l|}{toutput Level to be measured after a clock pulse has been applied to the C input (pin 2) \(\mathrm{V}_{1 \mathrm{H} \text { max }}\) \(\Omega v_{1 L \text { min }}\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Cbaracteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Pin } \\
& \text { Under } \\
& \text { Test }
\end{aligned}
\]} & \multicolumn{8}{|c|}{MC12000} & \multicolumn{6}{|l|}{TEST VOLTAGES/WAVEFORMS APPLIED TO PINS LISTED BELOW:} \\
\hline & & & \multicolumn{2}{|r|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\({ }^{+25^{\circ} \mathrm{C}}\)} & \multicolumn{2}{|l|}{+75 \({ }^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Pulse Gen. 1} & \multirow[b]{2}{*}{Pulse Gen. 2} & \multirow[b]{2}{*}{Pulse Gen. 3} & \multirow[b]{2}{*}{Pulse Out} & \multirow[t]{2}{*}{\[
\begin{gathered}
V_{E E} \\
-3.2 \mathrm{Vor}-3.0 \mathrm{~V} \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\mathrm{v}_{\mathrm{cc}} \\
+2.0 \mathrm{v}
\end{array}
\]} \\
\hline & & & Min & Max & Min & Typ & Max & Min & Max & & & & & & & \\
\hline \multirow[t]{12}{*}{\[
\begin{aligned}
& \text { Propagation Delay } \\
& \text { (See Figure 4) }
\end{aligned}
\]} & t2+13+ & 2,13 & - & - & - & 2.4 & 3.5 & - & - & ns & 2 & 1 & - & 13 & 7 & 14 \\
\hline & \(\mathrm{t}_{2+13}\) & 2,13 & - & - & - & 2.4 & 3.5 & - & - & ns & 2 & 1 & - & 13 & 7 & 14 \\
\hline & \(\mathrm{t}_{2+12+}\) & 2.12 & - & - & - & 2.4 & 3.5 & - & - & ns & 2 & 1 & - & 12 & 7 & 14 \\
\hline & \(\mathrm{t}_{2+12}\) & 2,12 & - & - & - & 2.4 & 3.5 & - & - & ns & 2 & 1 & - & 12 & 7 & 14 \\
\hline & \({ }^{\text {t }} 3+11+\) & 3,11 & - & - & - & 1.5 & 2.5 & - & - & ns & 3 & - & - & 11 & 7 & 14 \\
\hline & t3-11- & 3,11 & - & - & - & 1.5 & 2.5 & - & - & ns & 3 & - & - & 11 & 7 & 14 \\
\hline & \(\mathrm{t}_{3+10}\) & 3,10 & - & - & - & 1.5 & 2.5 & - & - & ns & 3 & - & - & 10 & 7 & 14 \\
\hline & \({ }^{\text {t3-10+ }}\) & 3,10 & - & - & - & 1.5 & 2.5 & - & - & ns & 3 & - & - & 10 & 7 & 14 \\
\hline & \({ }^{\text {t }}+4+\) & 5,4 & - & - & - & 3 & 4.5 & - & - & ns & - & - & 5 & 4 & 7 & 14 \\
\hline & t5-4- & 5,4 & - & - & - & 1.5 & 2.5 & - & - & ns & - & - & 5 & 4 & 7 & 14 \\
\hline & t9+6+ & 9.6 & - & - & - & 8.0 & 12.0 & - & - & ns & A & - & - & 6 & 7 & 14 \\
\hline & t9-6- & 9.6 & - & - & \(-\) & 5.0 & 10.0 & - & - & ns & A & - & - & 6 & 7 & 14 \\
\hline \multirow[t]{5}{*}{Output Rise Time (See Figure 4)} & \({ }^{1} 13+\) & 13 & - & - & - & 2.8 & 3.5 & - & - & ns & 2 & 1 & - & 13 & 7 & 14 \\
\hline & \({ }_{1}{ }^{2+}\) & 12 & - & - & - & 2.8 & & - & - & ns & 2 & 1 & - & 12 & 7 & 14 \\
\hline & \({ }_{1} 11+\) & 11 & - & - & - & 2.0 & & - & - & ns & 3 & - & - & 11 & 7 & 14 \\
\hline & \({ }^{1} 10+\) & 10 & - & - & - & 2.0 & & - & - & ns & 3 & - & - & 10 & 7 & 14 \\
\hline & \(\mathrm{t}_{4+}\) & 4 & - & - & - & 2.4 & 1 & - & - & ns & - & - & 5 & 4 & 7 & 14 \\
\hline \multirow[t]{5}{*}{Output Fall Time (See Figure 4)} & \({ }^{1} 13\) - & 13 & - & - & - & 2.8 & & - & - & ns & 2 & 1 & - & 13 & 7 & 14 \\
\hline & \({ }^{12}\) & 12 & - & - & - & 2.8 & & - & - & ns & 2 & 1 & - & 12 & 7 & 14 \\
\hline & \({ }_{111}\) & 11 & - & - & - & 2.0 & & - & - & ns & 3 & - & - & 11 & 7 & 14 \\
\hline & \({ }_{10}\) & 10 & - & - & - & 2.0 & & - & - & ns & 3 & - & - & 10 & 7 & 14 \\
\hline & t4- & 4 & - & - & - & 2.4 & 1 & - & - & ns & - & - & 5 & 4 & 7 & 14 \\
\hline \multirow[t]{4}{*}{Setup Time (See Figure 5) Hold Time (See Figure 5)} & \(\mathrm{t}_{\text {setup }}\) '1" \(^{\prime \prime}\) & 13 & - & - & - & 0.2 & - & - & - & ns & 2 & 1 & - & - & 7 & 14 \\
\hline & \(\mathrm{t}_{\text {setup }{ }^{\text {a }} \text { " }}\) & 13 & - & - & - & 0.7 & - & - & - & ns & 2 & 1 & - & - & 7 & 14 \\
\hline & thold" 1 " & 13 & - & - & - & 0.0 & - & - & - & ns & 2 & 1 & - & - & 7 & 14 \\
\hline & thold "0" & 13 & - & - & - & 1.0 & - & - & - & ns & 2 & 1 & - & - & 7 & 14 \\
\hline Toggle Frequency (See Figure 6) & \({ }_{\text {fog }}\) & 13 & 200 & - & 200 & 250 & - & 200 & - & MHz & - & - & - & - & 7 & 14 \\
\hline
\end{tabular}

FIGURE 2 - TYPICAL DIGITAL MIXER

FIGURE 3 - SWITCHING TIME TEST CIRCUIT

FIGURE 4 - AC TEST VOLTAGE WAVEFORMS

NOTES:
. \(V_{E E}+1.5 \mathrm{~V}\)
\(V_{E E}+0.5 V_{\text {max }}\)

FIGURE 5 - SETUP AND HOLD TIME WAVEFORMS (See Figure 3)

FIGURE 6 - TOGGLE FREQUENCY TEST CIRCUIT

The maximum Toggle Frequency of MC12000 has been exceeded when either:
1. The output Peak-to-Peak voltage swing
falls below 600 mV
or
2. The devices cease to Toggle (divide by 2).

\section*{MC12000 DIGITAL MIXER}

This device is a digital mixer designed to operate with logic levels at its input and output ports. In operation it is an MECL type "D" flip-flop with level translators to and from TTL to accomodate most interfacing demands. Output frequency (\(\mathrm{f}_{\mathrm{Q}}\)) as a function of " D " and clock inputs is shown in Figure 7. It can be seen that either direct or harmonic mixing may be employed, that is, \(\mathrm{f}_{\mathrm{Q}}\) may be either the difference between \(\mathrm{f}_{\mathrm{D}}\) and \(\mathrm{f}_{\mathrm{C}}\) or the difference between \(f D\) and the Nth harmonic of \(f \mathrm{C}\).

One particular advantage of mixing in phase locked loops (PLL) is that lower frequencies may be generated for use in portions of the circuit where digital processing is done (with divide-by-P network and/or phase detector). Lower frequency operation often reduces overall system cost since a less expensive logic form may be utilized. However use of the mixing technique is not a panacea for all VHF applications and the design of such synthesizer systems must be approached with care.

FIGURE 7

Use of the MC12000 in a non-harmonic PLL is straightforward (Figure 8). Output frequency is the sum of both input quantities (\(f_{1}+f_{C}\)) as long as \(f_{1}\) is less than \(f_{C} / 2\) (See Figure 7), since \(f_{Q}\) can go no higher than that. Unless VCO output range is restricted somewhat there is a chance also that the loop may operate at the second harmonic of \(\mathrm{f}_{\mathrm{C}}\). This problem is minimal in the loop of Figure 8, however, since the output frequency would have to vary more than 2:1.

Mixing is used because the digital phase detector has an upper frequency limit of about 10 MHz and many loops require direct locks at 20 MHz or more. Direct downmixing does not change any loop characteristics except the sampling rate which restricts loop natural frequency to about \(\mathrm{f}_{\mathrm{C}} / 10\) in practical circuits. Although output fre-

quency may be changed by varying either \(f_{1}\) or \(f_{C}\), the clock input is usually crystal controlled since it is of the same magnitude as \(f_{D}\) and more difficult to stabilize.

FIGURE 9

Combining a standard synthesis configuration with the mixer yields a circuit capable of high frequency operation at low cost (Figure 9), if the output frequency range is relatively small (\(P_{\max }-P_{\min }\)) \(f_{1}<f_{C} / 2\). In fact the choice of harmonic or non-harmonic mixing is largely based on the availability of a suitable crystal or other reference source for \(\mathrm{f}_{\mathrm{C}}\) versus the needed frequency coverage. Considering all the restrictions on \(\mathrm{f}_{\mathrm{C}}\), its value (and the maximum harmonic number \(N\)) are dictated by the following expressions:
\[
\begin{align*}
& N<\frac{f_{D}(\min)-f_{1}}{2 \Delta f_{D}} \tag{1}\\
& N_{f c}=f_{D}(\min)-f_{1} \tag{2}
\end{align*}
\]
where \(\Delta f_{D}=\) change in output frequency.

FIGURE 10

Using Equations (1) and (2) above the minimum value of \(\mathrm{f}_{\mathrm{C}}\) may be found for the circuit of Figure 10 and still get adequate frequency coverage. In this minimum configuration all necessary output frequencies may be generated by programming the " \(P\) " count string. But the divide number might bear no obvious relation to the output frequency such as often happens with non-mixing synthesizers.

\section*{DESIGN EXAMPLES}

\section*{Example \#1}

Output Frequency: \(48-54 \mathrm{MHz}\)
Frequency Increments: 10 kHz
Using Equations (1) and (2), a minimum frequency (\(\mathrm{f}_{\mathrm{C}}\)) version can be designed:
\[
\begin{align*}
& f_{1}=\text { increment }=10 \mathrm{kHz} \\
& \mathrm{~N}<\frac{48 \mathrm{MHz}-10 \mathrm{kHz}}{2(54-48) \mathrm{MHz}} \\
& \mathrm{~N}<4 \\
& \text { Let } \mathrm{N}=3 \\
& \mathrm{Nf}_{\mathrm{C}}= 47.99 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{C}}= \frac{\mathrm{Nf} \mathrm{C}}{\mathrm{~N}}=\frac{47.99}{3}=15.99666 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{C}}= 15.996666 \mathrm{MHz} \\
& \mathrm{P}_{\min }= 1 \\
& \mathrm{P}_{\max }=\frac{\Delta \mathrm{f}_{\mathrm{D}}}{10 \mathrm{kHz}}+\mathrm{P}_{\min } \tag{3}\\
& \mathrm{P}_{\max }=\frac{6 \mathrm{MHz}}{10 \mathrm{kHz}}+\mathrm{P}_{\min } \\
& \mathrm{P}_{\max }= 601 \\
& \mathrm{f}_{\mathrm{Q}}(\max)= \mathrm{P}_{\max } \mathrm{f}_{1} \\
&= 6.01 \mathrm{MHz} \tag{4}
\end{align*}
\]

Equation (4) above puts the divider string (divide-by-P) into a medium frequency situation where devices such as the MC4016/4316 may be utilized. Note that the divider number now indicates the channel selected rather than output frequency. That is, at \(\mathrm{f}_{\mathrm{D}}=48.000 \mathrm{MHz}, \mathrm{P}=1\); at \(\mathrm{f}_{\mathrm{D}}=54.000 \mathrm{MHz}, \mathrm{P}=601\).
If "proper" divide-by-P readings are desired for direct frequency readout a slight circuit modification is necessary. To enable a division at 48.000 MHz the first divide-by-P must be 100 rather than 1 , and \(P_{\text {max }}\) would then be 700 to cover all 6 MHz . Recalculating \(\mathrm{f}_{\mathrm{Q}}(\max)\) from Equation 4 we still find that the 7 MHz maximum value allows use of the same components. The next question concerns the allowable range of \(f_{Q}\) in relation to \(f_{C}\left(f_{Q}<f_{C} / 2\right)\). Since \(f_{C}\) is nearly 16 MHz , the range of \(f_{Q}\) can be contained. A cosmetic change to the most significant digit switch completes the design. Instead of reading 1 through 7 it must be modified to display 48 through 54.

\section*{Example \#2}

Output Frequency: \(144-148 \mathrm{MHz}\)
Frequency Increments: 10 kHz
\[
\begin{aligned}
f_{1} & =\text { increment }=10 \mathrm{kHz} \\
\mathrm{~N} & <\frac{144.00-0.01}{2(4)} \\
\mathrm{N} & <18 \\
\text { Let } \mathrm{N} & =17 \\
\mathrm{Nf}_{\mathrm{C}} & =144.00-0.01 \mathrm{MHz} \\
& =143.99 \\
\mathrm{f}_{\mathrm{C}} & =\frac{\mathrm{Nf} \mathrm{C}}{\mathrm{~N}}=8.470 \mathrm{MHz} \\
\mathrm{P}_{\min } & =1 \\
\mathrm{P}_{\max } & =\frac{4 \mathrm{MHz}}{10 \mathrm{kHz}}+1 \\
& =401 \\
\mathrm{f}_{\mathrm{Q}(\max } & =\mathrm{P}_{\max } \mathrm{f}_{1}=4.01 \mathrm{MHz}
\end{aligned}
\]

Maximum frequency seen by the divide-by- \(P\) chain is still well within the MC4016 rating.

When converting this synthesizer to one that needs frequency directly, a " 1 " is again added to the most significant digit (MSD). This results in a \(\mathrm{P}_{\text {min }}\) of 100 to \(\mathrm{P}_{\text {max }}\) of 500 . In this example, however, \(\mathrm{f}_{\mathrm{Q}}(\max)\) is 5 MHz which easily exceeds \(\mathrm{f}_{\mathrm{C}} / 2\). To alleviate this difficulty, the " N " factor must be decreased in order to raise \(f_{C}\) to at least 10 MHz .
\[
N<\frac{f(\min)-f_{1}}{f_{C}}
\]

Let \(\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}\)
\[
N<\sim 14.4
\]

Let \(\mathrm{N}=14\)
\(\mathrm{Nf}_{\mathrm{C}}=143.99\) (from above)
\({ }^{\mathrm{f}} \mathrm{C}=\frac{\mathrm{Nf}_{\mathrm{C}}}{\mathrm{N}}=\frac{143.99}{14}\)
\[
\begin{equation*}
\mathrm{f} \mathrm{C}=10.28540 \mathrm{MHz} \tag{5}
\end{equation*}
\]

\section*{VCO RANGE RESTRICTIONS}

As in all harmonically locked PLL's, it is possible for the loop to lock on the wrong harmonic if there is too wide a range in the VCO. This situation is shown in Figure 11 where the possible false lock areas are indicated near the \((N-1)\) and \((N+1)\) harmonic points. The problem of VCO restraint however is more than just making sure that output frequency \(f_{D}\) isn't able to go to \(B\) or \(A^{\prime}\) (the closest false lock points). Actual operating limits are C and \(\mathrm{C}^{\prime}\), symmetrically placed frequencies corresponding to \(\mathrm{f}_{\mathrm{D}(\mathrm{min})}\) about \(\mathrm{Nf}_{\mathrm{C}}\) and \(\mathrm{f}_{\mathrm{D}(\mathrm{max})}\) about (\(\mathrm{Nf}+1 / 2\)) \(\mathrm{f}_{\mathrm{C}}\). If the VCO drops below \(C\) while the feedback counter is at \(P_{\min }\) the phase detector will try to push fD even lower, toward the stable condition at \(A\) (Figure 12). Likewise, at \(\mathrm{C}^{\prime}\) (when \(\mathrm{P}=\mathrm{P}_{\text {max }}\)) the tendency is for the loop to accelerate toward lockup at \(\mathrm{B}^{\prime}\) (Figure 13). When C or \(\mathrm{C}^{\prime}\) are exceeded the loop will "hang up" and not attain the proper lock.

FIGURE 11

FIGURE 12

FIGURE 13

The VCO frequency constraints may be quite severe if the minimum \({ }^{f} \mathrm{C}\) formulation is followed and the Nth harmonic is quite high. Where VCO constraint may pose a problem, decrease N below the maximum indicated by Equation (1) until sufficient room is generated by placing the operating range of \(f_{Q}\) on only a small part of the \(f_{D}\) slope (Figure 14). Note that \({ }^{f} \mathrm{C}\) goes up as we approach the more idealized case (Equation 5).

FIGURE 14

The most likely reasons for a "latched up" state in a harmonic loop are turn-on transients and loop overshoot when changing frequency abruptly from one end of the range to the other.

\section*{SUMMARY OF SYNTHESIS PROCEDURE}
1. Compute harmonic number N
\[
N<\frac{f(\min)-f_{1}}{2 \Delta f_{D}}
\]
where \(\Delta f_{D}=\) change in output frequency
\(\mathrm{f}_{1}=\) channel spacing
2. Compute minimum mixing frequency \(\mathrm{f}_{\mathrm{C}}\)
\[
f_{C}=\frac{f_{D}(\min)-f_{1}}{N}
\]
3. Calculate feedback divider's maximum value
\[
P_{\max }=\frac{\Delta f_{D}}{f_{1}}+P_{\min }
\]
where \(P_{\min }=1\) for minimum \(\mathrm{f}_{\mathrm{C}}\).
4. Find maximum divide-by-P frequency
\[
f_{Q}(\max)=\Delta f_{D}+f_{1}
\]
5. Calculate allowable VCO swing
\[
\mathrm{Nf}_{\mathrm{C}}-\mathrm{f}_{1}<\mathrm{fVCO}_{\mathrm{VCO}}<(\mathrm{N}+1) \mathrm{f}_{\mathrm{C}}-\mathrm{f}_{\mathrm{Q}}(\max)
\]
6. If the above constraints are too tight choose the next lower number for N and repeat steps 2 and 5 until satisfied.

\section*{SKIP-LOCK TUNING}

Harmonic mixing provides an alternate means to frequency synthesis without the feedback divide-by-P network. In this instance the design objective is to provide a large frequency coverage with a set (and relatively wide) channel spacing. The configuration is identical to a single frequency PLL (Figure 15) except it operates in the harmonic mode and tuning is accomplished at the VCO. Output frequency is fixed as being \(f_{1}\) above all harmonics of \(\mathrm{f}_{\mathrm{C}}\). As the VCO is tuned through its range, the loop will acquire and lose signals spaced \(\mathrm{f}_{\mathrm{C}}\) apart. Since there must be some frequency for the phase detector to operate with, the output frequency cannot be a direct harmonic of \(f \mathrm{C}\). This facet of the circuit often causes users to refer to \(f_{1}\) as the "offset" frequency.

The value of \(f_{1}\) is often dictated by output frequency and channel spacing requirements. However the rela-

FIGURE 15

tionship of \(f_{1}\) to \(f_{C}\) has a large effect on the tunability both up and down the frequency range. If, for example, the loop were locked at point A (Figure 16) and B were the next desired point, then the VCO must be "dragged" from \(A\) to \(A^{\prime}\) before lock can be achieved. This frequency adjustment may be quite critical since the frequency difference between \(A^{\prime}\) and \(B\) is only \(2 f_{1}\). If the VCO is tuned past \(B\) the opportunity for lock has been passed.

On the other hand, in going from \(B\) to \(A\), the upper end of the VCO control range must only cross \(A^{\prime}\) before the loop acquires frequency \(A\). In either case it's apparent that the loop will not "jump" from one lock point to another and some indication of loop lock should be added. This is normally done by monitoring the VCO dc control line with a pair of comparators and noting when the line reaches its limits.

FIGURE 16

MC12002/
MC12502

\section*{ANALOG MIXER}

\section*{ANALOG MIXER}

The MC12002/MC12502 is a double balanced analog mixer, including an input amplifier feeding the mixer carrier port and a temperature compensated bias regulator. The input circuits for both the amplifier and mixer are differential amplifier circuits. The on-chip regulator provides all of the required biasing.
This circuit is designed for use as a balanced mixer in highfrequency wide-band circuits. Other typical applications include suppressed carrier and amplitude modulation, synchronous AM detection, FM detection, phase detection, and frequency doubling, at frequencies up to UHF.

\section*{LOGIC DIAGRAM}

*Note: AC Gain is a function of collector load impedance

FIGURE 1 - A.C. GAIN TEST

Note 1:
\(V_{\text {IL }}=-3.0 \mathrm{~V}\) on pin 3 when pin 8 is under test.
\(V_{\text {IL }}=-3.0 \mathrm{~V}\) on \(\operatorname{pin} 9\) when \(\operatorname{pin} 2\) is under test.

Signal \(A=30 \mathrm{mV}\) p-p
Signal \(B=300 \mathrm{mV}\) p-p

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable.
The unused output is connected to a 50 -ohm resistor to ground.

Freq. \(=100 \mathrm{MHz}\)

Signal A
Input (Pin 2)

Output (Pin 12)

Output (Pin 11)

Signal 8 Input (Pin 8)

Output (Pin 12)

Output (Pin 11)

FIGURE 2 - CARRIER FEEDTHROUGH TEST CIRCUITS

fIGURE 3 - CARRIER FEEDTHROUGH VERSUS FREQUENCY (Test 1)

FIGURE 4 - CARRIER FEEDTHROUGH VERSUS FREQUENCY (Test 2)

FIGURE 5 - CARRIER SUPPRESSION TEST CIRCUIT

FIGURE 6 - CARRIER SUPPRESSION VERSUS FREQUENCY (Test 1)

FIGURE 7 - CARRIER SUPPRESSION VERSUS FREQUENCY (Test 2)

FIGURE 8 - CARRIER SUPPRESSION

\section*{VERSUS TEMPERATURE}

FIGURE 9 - OUTPUT OFFSET CURRENT (IOO) VERSUS TEMPERATURE

FIGURE 10 - OUTPUT OFFSET CURRENT VERSUS TEMPERATURE

FIGURE 11 - TYPICAL INPUT IMPEDANCE
VERSUS FREQUENCY (NO CIRCUIT)

\section*{TWO-MODULUS PRESCALER}

These devices are two-modulus prescalers which will divide by 5 and 6, 8 and 9, and 10 and 11, respectively. A MECL-to-TTL translator is provided to interface directly with the MC12014 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source. Details of operation are on the MC12012 data sheet.

600 MHz (Typ) Toggle Frequency
MC12009 \((\div 5 / 6)\), MC12011 \((\div 8 / 9)\) MC12013
\((\div 10 / 11)\)
MECL to TTL Translator on Chip
MECL and TTL Enable Inputs
+5.0 or -5.2 V Operation*
Buffered Clock Input - Series Input RC Typ, 20 Ohms
and 4 pF
VBB Reference Voltage
310 Milliwatts (Typ)
*When using +5.0 V supply, apply +5.0 V to pin \(1\left(\mathrm{~V}_{\mathrm{CCO}}\right)\), pin 6 (TTL \(\left.\mathrm{V}_{\mathrm{CC}}\right)\), pin \(16\left(\mathrm{~V}_{\mathrm{CC}}\right)\), and ground pin \(8\left(\mathrm{~V}_{\mathrm{EE}}\right)\). When using -5.2 V supply, ground pin \(1\left(\mathrm{~V}_{\mathrm{CCO}}\right)\), pin \(6\left(T \mathrm{TL} \mathrm{V}_{\mathrm{CC}}\right)\), and pin \(16\left(\mathrm{~V}_{\mathrm{CC}}\right)\) and apply -5.2 V to pin \(8\left(\mathrm{~V}_{\mathrm{EE}}\right)\). If the translator is not required, pin 6 may be left open to conserve dc power drain.

\section*{LOGIC DIAGRAM}

\(\begin{aligned} V_{C C O} & =\operatorname{pin} 1 \\ V_{C C} & =\operatorname{pin} 16 \\ V_{E E} & =\operatorname{pin} 8\end{aligned}\)

TWO-MODULUS PRESCALER

PIN ASSIGNMENT

\(\mathrm{V}_{\mathrm{EE}}=\operatorname{pin} 8\)

MC12011

MC12013
\(\div 10\) for one or all
E1 thru E5 high
\(\div 11\) for all
E1 thru E5 low
Tie unused gate inputs low.

Pull-down resistors required on
Pins 2, 3 when not connected
to translator.
Basic IC Capability: \(\div 10 / 11\)
FIGURE 2 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION

\section*{ELECTRICAL CHARACTERISTICS}
\(\qquad\) Supply Voltage - 5.2 V
These devices are designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. Outputs are terminated through a 50 -ohm resistor to -2.0 Vdc
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{@Test Temperature} & \multicolumn{12}{|c|}{TEST VOLTAGE/CURRENT VALUES} \\
\hline & \multicolumn{9}{|c|}{Volts} & \multicolumn{3}{|c|}{mA} \\
\hline & \(\mathrm{V}_{1 H_{\text {max }}}\) & \(V_{1 L_{\text {min }}}\) & \(V_{\text {IHAmin }}\) & \(V_{\text {ILAmax }}\) & \(\mathrm{V}_{\mathbf{I H}}\) & \(V_{\text {IL }}\) & \(\mathrm{V}_{\text {IHT }}\) & \(V_{\text {ILT }}\) & \(V_{\text {EE }}\) & \(1 /\) & \({ }^{1} \mathrm{OL}\) & \({ }^{\prime} \mathrm{OH}\) \\
\hline \(-30^{\circ} \mathrm{C}\) & -0.890 & -1.990 & -1.205 & -1.500 & -2.8 & -4.7 & -3.2 & -4.4 & -5.2 & -0.25 & 16 & -0.40 \\
\hline \(+25^{\circ} \mathrm{C}\) & -0.810 & -1.950 & -1.105 & -1.475 & -2.8 & -4.7 & -3.2 & 4.4 & -5.2 & -0.25 & 16 & -0.40 \\
\hline \(+85^{\circ} \mathrm{C}\) & -0.700 & -1.925 & -1.035 & -1.440 & -2.8 & -4.7 & -3.2 & -4.4 & -5.2 & -0.25 & 16 & -0.40 \\
\hline
\end{tabular}

(1) Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be mtaintained between tests. The clock input is the waveform shown.
(2) In addition to meeting the output levels specified, the device must divide by 5,8 , or 10 during this test. The clock input is the waveform shown
(3) In addition to meeting the output levels specified, the device must divide by 6, 9 , or 11 during this test. The clock input is the waveform shown
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
@ Test \\
Temperature
\end{tabular}} & \multicolumn{12}{|c|}{TEST VOLTAGE/CURRENT VALUES} \\
\hline & \multicolumn{9}{|c|}{Volts} & \multicolumn{3}{|c|}{mA} \\
\hline & \(\mathrm{V}_{\text {IH max }}\) & \(\mathrm{V}_{\text {ILmin }}\) & \(\mathrm{V}_{\text {IHAmin }}\) & \(V_{\text {ILA }}\) max & \(\mathrm{V}_{\text {IH }}\) & \(\mathrm{V}_{\text {IL }}\) & \(\mathrm{V}_{1 \mathrm{HT}}\) & \(\mathrm{V}_{\text {ILT }}\) & \(\mathrm{V}_{\mathrm{cc}}\) & IL & \({ }^{\text {IOL}}\) & \({ }^{1} \mathrm{OH}\) \\
\hline \(-55^{\circ} \mathrm{C}\) & +4.120 & +3.040 & +3.745 & +3.500 & +2.4 & +0.5 & +2.0 & +0.8 & +5.0 & -0.25 & 16 & -0.40 \\
\hline \(+25^{\circ} \mathrm{C}\) & +4.220 & +3.110 & +3.895 & +3.525 & +2.4 & +0.5 & +2.0 & +0.8 & +5.0 & -0.25 & 16 & -0.40 \\
\hline \(+125^{\circ} \mathrm{C}\) & +4.370 & +3.140 & +4.000 & +3.560 & +2.4 & +0.5 & +2.0 & +0.8 & +5.0 & -0.25 & 16 & -0.40 \\
\hline
\end{tabular}

(1) Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be mtaintained between tests. The clock input is the waveform shown.
(2) In addition to meeting the output levels specified, the device must divide by 5, 8, or 10 during this test. The clock input is the waveform shown.

In addition to meeting the output levels specified, the device must divide by 6,9 , or 11 during this test. The clock input is the waveform shown.

Clock Input
\(\square^{\mathrm{Clock}_{\text {Input }}}\)

\section*{ELECTRICAL CHARACTERISTICS}

Supply Voltage - 5.2 V
These devices are designed to meet the dc specifications shown in the test able after thermal equilibrium has been established. Outputs are terminated through a 50 -ohm resistor to -2.0 Vdc

(1) Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be mtaintained between tests. The clock input is the waveform shown.
(2) In addition to meeting the output levels specified, the device must divide by 5,8 , or 10 during this test. The clock input is the waveform shown

In addition to meeting the output levels specified, the device must divide by 6,9, or 11 during this test. The clock input is the waveform shown

ELECTRICAL CHARACTERISTICS
These devices are designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. Outputs are terminated through a \(50-\mathrm{ohm}\) resistor to +3.0 Vdc .

(1) Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be mtaintained between tests.
(2) In addition to meeting the output levels specified, the device must divide by 5,8 , or 10 during this test. The clock input is the waveform shown
(3) In addition to meeting the output levels specified, the device must divide by 6,9, or 11 during this test. The clock input is the waveform shown

SWITCHING CHARACTERISTICS
\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Pin } \\
& \text { Under } \\
& \text { Test }
\end{aligned}
\]} & \multicolumn{9}{|c|}{MC12009, MC12011, MC12013} & \multicolumn{9}{|r|}{TEST VOLTAGES/WAVEFORMS APPLIED TO PINS LISTED BELOW:} \\
\hline & & & \multicolumn{3}{|c|}{\(-30^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pulse \\
Gen. 1
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pulse \\
Gen. 2
\end{tabular}} & \multirow[t]{2}{*}{Pulse Gen. 3} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {IHmin }}\) \(\uparrow\)} & \multirow[t]{2}{*}{\[
\underset{t}{V_{\text {ILmin }}}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
V_{F} \\
-3.0 \mathrm{~V}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{VEE} \\
& -3.0 \mathrm{~V}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{v}_{\mathrm{CC}} \\
& +2.0
\end{aligned}
\]} \\
\hline & & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & & & & & & & & & \\
\hline Propagation Delay & +15+2+ & 2 & -- & - & 8.1 & -- & - & 8.1 & -- & -- & 8.9 & ns & 15 & - & - & - & 11,12,13 & 9.10 & 8 & 1,6,16 \\
\hline (See Figures 3 and 5) & t15+2- & 2 & - & - & 7.5 & - & - & 7.5 & - & - & 8.2 & & 15 & - & - & - & 11,12,13 & 9.10 & 8 & 1,6,16 \\
\hline & '5+7+ & 7 & - & - & 8.4 & - & - & 8.1 & - & - & 8.9 & \(\checkmark\) & A & - & - & - & - & - & 8 & 1,6,16 \\
\hline & 15-7- & 7 & - & - & 6.5 & - & -- & 6.5 & - & - & 7.1 & \(\checkmark\) & A & - & - & - & - & - & 8 & 1,6,16 \\
\hline Setup Time & \(\mathrm{t}_{\text {setup } 1}\) & 11 & 5.0 & - & - & 5.0 & - & - & 5.0 & - & - & ns & 15 & - & -- & - & - & 9.10 & 8 & 1,6,16 \\
\hline (See Figures 4 and 5) & \(\mathrm{t}_{\text {setup }}\) & 9 & 50 & - & - & 5.0 & - & - & 5.0 & - & - & ns & 15 & - & + & - & 11,12,13 & * & 8 & 1,6,16 \\
\hline Release Time & - trel1 & 11 & 5.0 & - & - & 5.0 & - & - & 5.0 & - & - & ns & 15 & * & - & - & - & 9,10 & 8 & 1,6,16 \\
\hline (See Figures 4 and 5) & \(\mathrm{t}_{\mathrm{rel}}\) & 9 & 5.0 & - & - & 5.0 & - & - & 5.0 & - & - & ns & 15 & - & - & - & 11,12,13 & . & 8 & 1,6,16 \\
\hline Toggle Frequency (See Figure 6) & \(f_{\text {max }}\) & 2 & & & & & & & & & & MHz & & & & & & & & \\
\hline MC12009 : \(5 / 6\) & & & 440 & - & - & 480 & - & - & 440 & & - & & - & - & - & 11 & - & - & 8 & 16 \\
\hline MC12011:8/9 & & & 500 & - & - & 550 & - & - & 500 & - & - & & - & - & - & 11 & - & - & 8 & 16 \\
\hline MC12013: 10/11 & & & 500 & - & - & 550 & - & - & 500 & - & - & & - & - & - & 11 & - & - & 8 & 16 \\
\hline
\end{tabular}

Test inputs sequentially, with Pulse Generator 2 or 3 as indicated connected to input under test, and the voltage indicated applied to the other input(s) of the same type (i.e., MECL or MTTL).
\begin{tabular}{|l|l|l|l|l|}
\hline & \(-30^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+85^{\circ} \mathrm{C}\) & \\
\cline { 2 - 4 } & \(+\mathrm{V}_{\text {IHmin }}\) & +1.03 & +1.115 & +1.20 \\
\hline\(\dagger \mathrm{Vdc}\) \\
\hline \(\mathrm{V}_{\text {IL }}\) & \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS
\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[t]{3}{*}{Pin Under Test} & \multicolumn{9}{|c|}{MC12509, MC12511, MC12513} & \multicolumn{9}{|r|}{TEST VOLTAGES/WAVEFORMS APPLIED TO PINS LISTED BELOW:} \\
\hline & & & \multicolumn{3}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+125^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pulse \\
Gen. 1
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pulse \\
Gen. 2
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pulse \\
Gen. 3
\end{tabular}} & \multirow[t]{2}{*}{\(V_{\text {IHmin }}\)} & \multirow[t]{2}{*}{\[
\underset{t}{V_{\text {ILmin }}}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
V_{F} \\
-3.0 \mathrm{~V}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
V_{E E} \\
-3.0 \mathrm{~V}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& v_{\mathrm{CC}} \\
& +2.0
\end{aligned}
\]} \\
\hline & & & Min & Typ & Max & Min & Typ & Max & Min & Typ & Max & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Propagation Delay (See Figures 3 and 5)} & \({ }^{\text {t }} 15+2+\) & 2 & \(\sim\) & - & 8.1 & - & - & 8.1 & - & - & 9.4 & \multirow[t]{4}{*}{\[
\stackrel{1}{n s}^{n s}
\]} & 15 & - & - & - & 11,12,13 & 9,10 & 8 & 1,6,16 \\
\hline & t15+2- & 2 & - & - & 7.5 & - & - & 7.5 & - & - & 8.7 & & 15 & - & - & - & 11,12,13 & 9,10 & 8 & 1,6,16 \\
\hline & \({ }^{15} 5+7+\) & 7 & - & - & 8.4 & - & - & 8.1 & - & - & 9.4 & & A & -- & -- & - & - & - & 8 & 1,6,16 \\
\hline & t5-7- & 7 & - & - & 6.5 & - & - & 6.5 & - & - & 7.6 & & A & - & - & - & - & - & 8 & 1,6,16 \\
\hline Setup Time & \({ }^{\text {t }}\) setup1 & 11 & 5.0 & - & - & 5.0 & - & - & 5.0 & - & - & ns & 15 & * & - & - & - & 9,10 & 8 & 1,6,16 \\
\hline (See Figures 4 and 5) & \(\mathrm{t}_{\text {setup }}\) & 9 & 5.0 & - & - & 5.0 & \(-\) & - & 5.0 & - & - & ns & 15 & - & - & - & 11,12,13 & * & 8 & 1,6,16 \\
\hline Release Time & \(\mathrm{t}_{\mathrm{rel}} 1\) & 11 & 5.0 & - & - & 5.0 & - & - & 5.0 & - & - & ns & 15 & * & - & - & * & 9,10 & 8 & 1,6,16 \\
\hline (See Figures 4 and 5) & \(\mathrm{t}_{\mathrm{re}} \mathrm{l}^{2}\) & 9 & 5.0 & - & - & 5.0 & - & - & 5.0 & - & - & ns & 15 & - & * & - & 11,12,13 & - & 8 & 1,6,16 \\
\hline Toggle Frequency (See Figure 6) & \(f_{\text {max }}\) & 2 & & & & & & & & & & MHz & & & & & & & & \\
\hline MC12509 \(\div 5 / 6\) & & & 420 & - & - & 480 & - & - & 420 & & - & & & - & - & 11 & - & - & 8 & 16 \\
\hline MC12511 \(\div 8 / 9\) & & & 500 & - & - & 550 & - & - & 500 & - & - & & - & - & - & 11 & - & - & 8 & 16 \\
\hline MC12513 \(\div 10 / 11\) & & & 500 & - & - & 550 & - & - & 500 & - & - & & -- & - & - & 11 & - & - & 8 & 16 \\
\hline
\end{tabular}

Test inputs sequentially, with Pulse Generator 2 or 3 as indicated connected to input under test, and the voltage indicated applied to the other input (s) of the same type (i.e., MECL or MTTL).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \\
\hline \(+\mathrm{V}_{1} \mathrm{H}\) min & + 1.02 & +1.15 & + 1.27 & Vdc \\
\hline \(+V_{\text {ILImin }}\) & +0.165 & +0.215 & +0.260 & Vdc \\
\hline
\end{tabular}

FIGURE 3 - AC VOLTAGE WAVEFORMS

FIGURE 4 - SETUP AND RELEASE TIME WAVEFORMS

FIGURE 5 - AC TEST CIRCUIT

\section*{\(P R F=10 \mathrm{MHz}\)}

PW = 50\% Duty Cycle \(\mathrm{t}+=\mathrm{t}-=2.0 \pm 0.2 \mathrm{~ns}\)
Pulse Generator 3:
\(\mathrm{PRF}=2.0 \mathrm{MHz}\)
PW \(=50 \%\) Duty Cycle \(\mathrm{t}+=\mathrm{t}-=5.0 \pm 0.5 \mathrm{~ns}\)

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable.
The 1950 -ohm resistor at pin 7 and the scope termination impedance constitute a \(40: 1\) attenuator probe.
\(C_{\top}=15 \mathrm{pF}=\) total parasitic capacitance which includes probe, wiring, and load capacitance.
Unused output connected to a 50-ohm resistor to ground (MC12009, MC12011, MC12013), 100-ohm resistor to ground (MC12509, MC12511, MC12513).

FIGURE 6 - MAXIMUM FREQUENCY TEST CIRCUIT

Unused output connected to a 50-ohm resistor to ground (MC12009, MC12011, MC12013), 100-ohm resistor to ground (MC12509, MC12511, MC12513)

DIVIDE BY 6

DIVIDE BY 9

FIGURE 7 - STATE DIAGRAM
DIVIDE BY 5/6 (MC12009/MC12509)

DIVIDE BY \(8 / 9\) (MC12011/MC12511)
\(\quad\)\begin{tabular}{|c|c|c|c|}
\hline Q 1 & Q 2 & Q 3 & Q 4 \\
\hline 1 & 1 & 1 & 1 \\
\hline 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 1 & 1 \\
\hline 1 & 0 & 0 & 1 \\
\hline 1 & 1 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{c}
Enable \(=0\)
\end{tabular}

DIVIDE BY 10/11 (MC12013/MC12513)

NOTES:
--- Enable \(=1\).
The State of the Enable is important only for the positive Clock Transition when the counter is in state 1100.

\section*{APPLICATIONS INFORMATION}

The primary application of these devices is as a highspeed variable modulus prescaler in the divide by N section of a phase-locked loop synthesizer used as the local oscillator of two-way radios. The theory and advantages of variable modulus prescaling, along with typical applications, are covered in detail on the data sheet for the MC12012.

Proper VHF termination techniques should be followed when the clock is separated from the prescaler by any appreciable distance.

In their basic form, these devices will divide by \(5 / 6\), \(8 / 9\), or \(10 / 11\). Division by 5,8 , or 10 occurs when any one or all of the five gate inputs E1 through E5 are high. Division by 6, 9, or 11 occurs when all inputs E1 through E5 are low. (Unconnected TTL inputs are normally high, unconnected MECL inputs are normally low.) With the addition of extra parts, many different division configurations may be obtained (20/21, 40/41, 50/51, 100/101, etc.). A few of the many configurations are shown below, only for the MC12013/MC12513.

FIGURE 8 - DIVIDE BY 10/11 (MC12013/MC12513)

\(\left.\longrightarrow \left\lvert\, \begin{array}{|c|c|c|c|}\hline \text { O1 } & \text { Q2 } & \text { Q3 } & \text { Q4 } \\ \hline 1 & 1 & 1 & 1 \\ \hline 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 \\ \hline\end{array} \quad \begin{array}{l}\text { Enable }=1 \\ \hline\end{array}\right.\right]\)

FIGURE 9 - DIVIDE BY 20/21 (MC12013/MC12513)

To obtain an TTL output, connect pins 5 and 4 to pins 2 and 3 respectively. Termination resistors for the MECL outputs are not shown, but are. required except for the flip-flop driving the translator section.
The \(\div 20 / 21\) counter may also be built using an TTL flip-flop by connecting pins 5 and 4 to pins 2 and 3 respectively, and driving the TTL flip-flop with pin 7. MC12013 inputs E4 and E5 are used rather than E1 With E1 \(+E 2+E 3=0\), operation remains as shown.

FIGURE 10 - DIVIDE BY 40/41 (MC12013/MC12513)

Termination resistors for MECL outputs are not shown, but are required except for the flip-flop driving the translator section.

\section*{COUNTER CONTROL} LOGIC

The MC12014 monolithic counter control logic unit is designed for use with the MC12013 Two-Modulus Prescaler and the MC4016 Programmable Counter to accomplish direct high-frequency programming. The MC12014 consists of a zero detector which controls the modulus of the MC12013, and an early decode function which controls the MC4016. The early decode feature also increases the useful frequency range of the MC4016 from 8.0 MHz to 25 MHz .

COUNTER CONTROL LOGIC

\section*{ELECTRICAL CHARACTERISTICS}

Test procedures are shown for the \(\mathrm{f}_{\mathrm{in}}, \overline{\mathrm{Z}} 0\),
B1 and P1 inputs. All other inputs are tested in the same manner as the Z 0 input.

AC ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}\), waveform letters refer to waveforms on next page.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Pin Under Test}} & \multicolumn{7}{|c|}{Test Limits (ns)} & \multicolumn{2}{|l|}{Pulse Gen. 1} & \multicolumn{2}{|l|}{Pulse Gen. 2} & \multicolumn{2}{|l|}{Pulse Out} & \multicolumn{2}{|l|}{Voltage Applied to Pins Listed Below} \\
\hline & & & & \multicolumn{2}{|c|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(+75^{\circ} \mathrm{C}\)} & \multirow[t]{2}{*}{Waveform} & \multirow[b]{2}{*}{Pin} & \multirow[t]{2}{*}{Waveform} & \multirow[b]{2}{*}{Pin} & \multirow[t]{2}{*}{Waveform} & \multirow[b]{2}{*}{Pin} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}\)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}\)} \\
\hline & & In & Out & Min & Max & Min & Typ & Max & Min & Max & & & & & & & & \\
\hline \multirow[t]{5}{*}{Propagation Delay} & tPLH1 & 1 & 9 & 7.0 & 15 & 7.0 & 10 & 15 & 7.0 & 17 & A & 1 & \(J\) & 10 & K & 9 & 11,12,13 & 14 \\
\hline & tPHL1 & 1 & 9 & 7.0 & 16 & 7.0 & 11 & 16 & 7.0 & 18 & A & 1 & J & 10 & K & 9 & 11,12,13 & 14 \\
\hline & \({ }^{\text {tPLH2 }}\) & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
\] & \[
7
\] & \[
1_{1}^{5,0}
\] & \[
12
\] & \[
1
\] & \[
8
\] & \[
1_{1}^{12}
\] & \[
5.0
\] & \[
14
\] & A & \[
\sqrt{1}
\] & \(\stackrel{H}{H}\) & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& \hline
\end{aligned}
\] & \[
1
\] & \[
1
\] & \[
\begin{aligned}
& 3,4,5,11,12,13 \\
& 2,4,5,11,12,13 \\
& 2,3,5,11,12,13 \\
& 2,3,4,11,12,13
\end{aligned}
\] & \\
\hline & tPHL2 & 1 & 7 & 7.0 & 16 & 7.0 & 11 & 16 & 7.0 & 18 & A & 1 & H & 2 & L & 7 & 3,4,5,11,12,13 & 6,10,14 \\
\hline & tplH3 & 6 & 7 & 7.0 & 16 & 7.0 & 11 & 16 & 7.0 & 18 & A & 1 & J & 6 & L & 7 & 2,3,4,5,11,12,13 & 10,14 \\
\hline \multirow[t]{2}{*}{Setup Time} & \(\mathrm{t}_{\text {setup }}{ }^{\prime \prime} 1\) " & \[
\begin{aligned}
& 10 \\
& 11 \\
& 12 \\
& 13 \\
& 14 \\
& \hline
\end{aligned}
\] & -
-
-
-
- & -
-
-
-
- & -
-
-
-
- & -
-
-
-
- & \[
\begin{gathered}
1.0 \\
7.0 \\
1 \\
1.0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
12 \\
\vdots \\
2.0 \\
\hline
\end{gathered}
\] & -
-
-
-
- & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & & 1 & \({ }_{1}^{8}\) & \[
\begin{aligned}
& 10 \\
& 11 \\
& 12 \\
& 13 \\
& 14 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{G} \\
\mathrm{~F} \\
\mathrm{G}
\end{gathered}
\] & & \[
\begin{gathered}
11,12,13 \\
12,13 \\
11,13 \\
11,12 \\
11,12,13 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
14 \\
10,14 \\
10 \\
\hline
\end{gathered}
\] \\
\hline & \(\mathrm{t}_{\text {setup }}{ }^{\prime \prime} 0^{\prime \prime}\) & \[
\begin{aligned}
& 10 \\
& 11 \\
& 12 \\
& 13 \\
& 14
\end{aligned}
\] & \begin{tabular}{l}
- \\
- \\
- \\
- \\
- \\
\hline
\end{tabular} & -
-
-
-
- & \begin{tabular}{l}
- \\
- \\
- \\
- \\
\hline
\end{tabular} & -
-
-
-
- & \[
\begin{gathered}
4.5 \\
5.0 \\
\downarrow \\
4.5
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
9.0 \\
1 \\
8.0
\end{gathered}
\] & \begin{tabular}{l}
- \\
- \\
- \\
- \\
- \\
\hline
\end{tabular} & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & & 1 & C & \[
\begin{aligned}
& 10 \\
& 11 \\
& 12 \\
& 13 \\
& 14 \\
& \hline
\end{aligned}
\] & F
G
F
F & 1 & \[
\begin{gathered}
\hline 11,12,13 \\
12,13 \\
11,13 \\
11,12 \\
11,12,13 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
14 \\
10,14 \\
10 \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Hold Time} & thold"1" & \[
\begin{aligned}
& 10 \\
& 11 \\
& 12 \\
& 13 \\
& 14 \\
& \hline
\end{aligned}
\] & -
-
-
-
- & -
-
-
-
- & \begin{tabular}{l}
- \\
- \\
- \\
- \\
- \\
\hline
\end{tabular} & -
-
-
- & \[
\begin{gathered}
4.0 \\
5.0 \\
1.0
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
10 \\
\downarrow \\
8.0
\end{gathered}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \({ }_{1}^{A}\) & 1 & 1 & \[
\begin{aligned}
& 10 \\
& 11 \\
& 12 \\
& 13 \\
& 14 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{G} \\
\mathrm{~F} \\
\mathrm{l} \\
\mathrm{G}
\end{gathered}
\] & \({ }_{9}^{9}\) & \[
\begin{gathered}
11,12,13 \\
12,13 \\
11,13 \\
11,12 \\
11,12,13 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
14 \\
10,14 \\
10 \\
\hline
\end{gathered}
\] \\
\hline & thold " 0 " & 10
11
12
13
14 & -
-
-
-
- & -
-
-
-
- & -
-
-
-
- & -
-
-
-
- & \[
\begin{gathered}
1.0 \\
7.5 \\
\downarrow \\
1.0
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
14 \\
\downarrow \\
1 \\
2.0
\end{gathered}
\] & -
-
-
-
- & -
-
-
-
- & \(\stackrel{\text { A }}{1}\) & 1 & \({ }^{E}\) & 10
11
12
13
14 & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{G} \\
& \downarrow
\end{aligned}
\] & 9 & \[
\begin{gathered}
11,12,13 \\
12,13 \\
11,13 \\
11,12 \\
11,12,13
\end{gathered}
\] & \[
\begin{gathered}
14 \\
10,14 \\
1 \\
10 \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{SWITCHING TIME TEST CIRCUIT AND WAVEFORMS}

Two pulse generators are required and must be slaved together to provide the waveforms shown.
\(C_{T}=15 \mathrm{pF}=\) total parasitic capacitance, which includes probe, wiring, and load capacitances.

The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50 ohm impedance. The 950 -ohm resistor and the scope termination impedance constitute a 20:1 attenuator probe. Coax shall be CT 070.50 or equivalent.

\section*{APPLICATIONS INFORMATION}

The MC12014 Counter Control Logic incorporates two features for enhancing operation of the MC4016/4018 Programmable Counters. \({ }^{1}\) Maximum operating frequency of the counters is limited by the time required for re-programming at the end of each count-down cycle. Operation can be extended to approximately 25 MHz by using the "early decode" feature included in the MC12014. The appropriate connections are shown in Figure 2. Only three counter stages are shown; however, up to eight stages can be satisfactorily cascaded. Note the following differences between this and the non-extended method: the counter gate inputs are not connected to the input clock; all parallel enables are connected to the \(\overline{\mathrm{Q}}\) output (\(f_{\text {out }}\)) of a type D flip-flop formed by gates G2 through G7 in the MC12014 package; the bus terminal of the least significant stage is grounded; all other bus terminals and one internal resistor, R , are connected together and serve as a data input, B1, to the flip-flop. Four additional data inputs, \(\overline{\mathrm{P}} 0\) through \(\overline{\mathrm{P}} 3\), serve to decode the "two" state of the least significant counter stage. Circuit operation is illustrated in waveforms of Figure 2, where the timing for the end of a count-down cycle is shown in expanded form. The counter parallel inputs are assumed to have \(N=245\) programmed. Timing is not shown for the third stage since it has already been counted down to the all zero state. As the next-to-least significant stage reaches zero, the common bus line goes high. Count down of the least significant stage continues until the "two" state is reached, causing the remaining data inputs to the flipflop to go high. The next-to-last clock pulse of the cycle then triggers the flip-flop \(\overline{\mathrm{Q}}\) output low. This takes the parallel enables of all three counter stages low, resetting
the programmed data to the outputs. The next input pulse clocks \(\overline{\mathrm{Q}}\) back to the high state since the data inputs to the flip-flop are no longer all high. The resulting negative output pulse at \(f_{\text {out }}\) is one input clock period in duration. Note that division by N equal to 001 or 002 is not available using this method.

The frequency synthesizer shown in Figure 8 requires that the programmable counters be quickly stopped after reaching their terminal (zero) count. This can be simply accomplished by taking the master reset of all stages low at the appropriate time. The bus output of the counters could be used for this function since a transition there signals the end of a count-down sequence. However, due to the relatively long delay between the last positive clock transition and the bus transition a faster method is required in this application.

The "zero detection" feature of the MC12014 provides a convenient means of implementing a faster method. Gates G12 through G19 form a latch whose output goes high if B2 is high and low logic levels are applied to the Z0 thru Z3 inputs. When once set to a one by appropriate input conditions, the output of G19 remains high until it is reset by the circuit comprised of gates G8 through G11. Note that since the required information is stored, the counter can be allowed to continue cycling.

The G8-G11 circuit monitors the G7 output of the "early decode" type D flip-flop. When the counter stage connected to the \(\bar{P} 0\) thru \(\overline{\mathrm{P}} 3\) inputs has counted down to its two state the output of G7 goes high; this enables the G8-G11 circuitry and the next positive clock transition causes the output of G11 to go high, resetting the output of G19 to zero.

FIGURE 1 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION

\section*{MC12014}

FIGURE 2 - INCREASING THE OPERATING RANGE OF MC74416/74418 PROGRAMMABLE COUNTERS USING MC12014

\footnotetext{
1 See the MC54416/54418 data sheet for additional information.
}

Operation of the Counter Control Logic can be further clarified by considering a typical system application for programmable counters illustrated in the frequency synthesizer shown in Figure 3. There the counter provides a means of digitally selecting some integral multiple of a stable reference frequency. The circuit phase locks the output, fVCO, of a voltage controlled oscillator to a reference frequency, \(f_{\text {ref. }}{ }^{2}\) Circuit operation is such that \(\mathrm{f}_{\mathrm{VCO}}=\mathrm{Nf}\) ref, where N is the divider ratio of the feedback counter, permitting frequency selection by means of thumbwheel switches.
In many synthesizer applications the VCO is operated at VHF frequencies too high for direct division by TTL counters. In these cases the VCO output is usually prescaled by using a suitable fixed divide-by-M ECL circuit as
shown in Figure 4. For this configuration, \(\mathrm{fVCO}=\mathrm{NMf}_{\text {ref }}\), where \(N\) is variable (programmable) and \(M\) is fixed. Design of the optimum loop filter requires that the input reference frequency be as high as possible where the upper limit is established by the required channel spacing. Since \(\mathrm{f}_{\mathrm{VCO}}=\mathrm{Nf}_{\text {ref }}\) in the non-prescaled case, if N is changed by one, the VCO output changes by \(f_{r e f}\), or the synthesizer channel spacing is just equal to \(f_{\text {ref }}\). When the prescaler is used as in Figure 4, fVCO \(=\mathrm{NMf}_{\text {ref }}\), and a change of one in N results in the VCO changing by \(\mathrm{Mf}_{\text {ref }}\), i.e., if \(\mathrm{f}_{\text {ref }}\) is set equal to the minimum permissible channel spacing as is desirable, then only every M channels in a given band can be selected. One solution is to set \(f_{\text {ref }}=\) channel spacing/ \(M\) but this leads to more stringent loop filter requirements.

FIGURE 3 - TTL PHASE-LOCKED LOOP

FIGURE 4 - TTL-MECL PHASE-LOCKED LOOP

\footnotetext{
2 See Motorola Application Notes AN-535, AN-532, and the MC4344/4044 Data Sheet for detailed explanation of over-all circuit operation.
}

An alternate approach that avoids this problem is provided by the counter configuration shown in Figure 5. It too uses a prescaler ahead of a programmable counter, however the modulus of the prescaler is now controlled by a third counter, causing it to alternate between \(M\) and \(M+1\). Operation is best explained by assuming that all three counters have been set for the beginning of a cycle: the prescaler for division by \((M+1)\), the modulus control counter for division by \(\mathrm{N}_{\mathrm{mc}}\), and the programmable counter for division by \(\mathrm{N}_{\mathrm{pc}}\). The prescaler will divide by (\(\mathrm{M}+1\)) until the modulus control counter has counted down to zero; at this time, the all zero state is detected and causes the prescaler to divide by \(M\) until the programmable counter has also counted down to zero. When this occurs, a cycle is complete and each counter is reset to its original modulus in readiness for the next cycle.
To determine the relationship between \(f_{\text {out }}\) and \(f_{i n}\), let \(\mathrm{T}_{1}\) be the time required for the modulus control counter to reach its terminal count and let \(T_{2}\) be the remainder of one cycle. That is, \(T_{2}\) is the time between terminal count in the modulus control counter and terminal count in the programmable counter. When the modulus control counter reaches zero, \(\mathrm{N}_{\mathrm{mc}}\) pulses will have entered it at a rate given by \(\mathrm{f}_{\mathrm{in}} /(M+1)\) pulses/second or \(T_{2}\) is:
\[
\begin{equation*}
T_{1}=\frac{(M+1)}{f_{i n}} \cdot N_{m c} \tag{1}
\end{equation*}
\]

At this time, \(N_{\text {mc }}\) pulses have also entered the programmable counter and it will reach its terminal counter \(\operatorname{after}\left(N_{p c}-N_{m c}\right)\) more pulses have entered. The rate of entry is now \(f_{i n} / M\) pulses/second since the prescaler is now dividing by M . From this \(\mathrm{T}_{2}\) is given by:
\[
\begin{gather*}
T_{2}=\frac{M}{f_{i n}} \cdot\left(N_{p c}-N_{m c}\right) \tag{2}\\
\text { Since } f=\frac{1}{T}: \\
f_{\text {out }}=\frac{1}{T_{\text {total }}}=\frac{1}{T_{1}+T_{2}}=\frac{1}{\frac{(M+1) N_{m c}}{f_{i n}}+\frac{M\left(N_{p c}-N_{m c}\right)}{f_{i n}}}{ }^{(3)} \\
f_{\text {out }}=\frac{f_{\text {in }}}{(M+1) N_{m c}+M\left(N_{p c}-N_{m c}\right)} \\
=\frac{f_{i n}}{M N_{m c}+N_{m c}+M N_{p c}-M N_{m c}} \\
=\frac{f_{\text {in }}}{M N_{p c}+N_{m c}}
\end{gather*}
\]

In terms of the synthesizer application, \(f \mathrm{VCO}=\left(\mathrm{MN}_{\mathrm{pc}}\right.\) \(+N_{\text {mc }}\)) \(f_{\text {ref }}\) and channels can be selected every \(f_{\text {ref }}\) by letting \(N_{p c}\) and \(N_{m c}\) take on suitable integer values, including zero.

\section*{FIGURE 5 - FEEDBACK COUNTERS WITH DUAL MODULUS PRESCALER}

A simplified example of this technique is shown in Figure 6. The MC12013 Dual Modulus Prescaler divides by either 10 or 11 when connected as shown in Figure 6. If the E3 and E4 Enable inputs are high at the start of a prescaler cycle, division by 10 results; if the Enable inputs are low at the beginning of the cycle, division by 11 results. The zero detection circuitry of the MC12014 Counter Control Logic is connected to monitor the outputs of the modulus control counter; this provides a suitable enable signal at E0 as the modulus control counter reaches its terminal (zero) count. The remainder of the MC12014 is connected to extend the operating frequency of the programmable counter chain. Appropriate waveforms for division by 43 are shown in Figure 7a.

The beginning of the timing diagram indicates circuit status just prior to the end of a countdown cycle, i.e., the modulus control counter has been counted down to one and the programmable counter is in the two state. The next positive transition from the prescaler (f 1 in the timing diagram) then initiates the following sequence of events. Since the two state of the programmable counter enables the early decode circuitry in the MC12014, the positive \(f 1\) transition causes \(f_{\text {out }}\) to go low. Since \(f_{\text {out }}\) is connected to the Parallel Enables of all the MC4016 counters this low signal will re-program the counters in readiness for another cycle. However, due to the propagation time through the decode circuitry, the programmable and modulus control counters are briefly decremented to one and zero, respectively, before reprogramming occurs. The momentary zero state of the modulus control counter is detected, setting \(\mathrm{E}_{\mathrm{O}}\) of the MC12014 high, enabling the MC12013 for division by ten during its next cycle. After eleven more \(f_{i n}\) pulses \(\left(E_{O}\right.\) went high after the beginning of the prescaler cycle and so doesn't change the modulus until the next prescaler cycle), f1 again goes high, causing fout to return to the one state. This releases the Parallel Enables and simultaneously resets \(\mathrm{E}_{\mathrm{O}}\) to zero. However, since \(\mathrm{E}_{\mathrm{O}}\) was high when the current prescaler cycle began, the next positive f1 transition occurs only ten \(\mathrm{f}_{\text {in }}\) pulses later. Subsequent f1 transitions now decrement the MC4016 counters down through another cycle with the prescaler dividing by eleven. From the waveforms, \(11+10+11+11=43\) input pulses occur for each output pulse.

FIGURE 6 - FREQUENCY DIVISION: \(\mathrm{fo}_{\mathrm{O}}=\mathrm{f}_{\mathrm{in}} /\left(\mathrm{MN}_{\mathrm{pc}}+\mathrm{N}_{\mathrm{mc}}\right)\)

Division by 42 is shown in Figure 7b. Operation is similar except that the modulus control counter reaches its terminal count one \(\mathrm{f1}\) cycle earlier than before. Since \(\mathrm{E}_{\mathrm{O}}\) is reset by the trailing edge of the fout pulse, \(\mathrm{E}_{\mathrm{O}}\) now remains high for two prescaler cycles leading to \(10+10\) \(+11+11=42\) input pulses for each output pulse.

Other combinations lead to similar results, however note that \(N_{p c}\) must be greater than or equal to \(N_{m c}\) for operation as described. If \(\mathrm{N}_{\mathrm{mc}}\) is greater than \(\mathrm{N}_{\mathrm{pc}}\) erroneous results are obtained, however this is not a serious restriction since \(N_{p c}\) is greater than \(N_{m c}\) in most practical applications.

The synthesizer shown in Figure 8 generates frequencies in the range from 144 to 178 MHz with 30 kHz channel spacing. It uses the dual modulus prescaler approach discussed earlier. General synthesizer design considerations are detailed in the publications listed in footnote

2, hence only the feedback counter is discussed here. Requirements for the feedback divider are determined from:

Minimum Divider Ratio \(=N_{\text {Tmin }}=\frac{144.00 \mathrm{MHz}}{30 \mathrm{kHz}}=4800\)

Maximum Divider Ratio \(=N_{\text {Tmax }}=\frac{177.99 \mathrm{MHz}}{30 \mathrm{kHz}}=5933\)

If the prescaler divides by at least ten, the maximum input frequency to the TTL counters will be 17.799 MHz , allowing use of MC4016 Programmable Counters with the MC12014 frequency extension feature.

FIGURE 7a - DIVISION BY 43

FIGURE 7b — DIVISION BY 42

FIGURE 8 - 144 TO 178 MHz FREQUENCY SYNTHESIZER WITH 30 kHz CHANNEL SPACING

FIGURE 9 - \(N_{\text {pc }}\) PROM PROGRAMMING
\begin{tabular}{|c|}
\hline \multirow[b]{13}{*}{(144 MHz)} & SW & SW & & & \#1 & & & & N \#2 & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { PROM } \\
& \text { WORD }
\end{aligned}
\]} & \multicolumn{9}{|c|}{PROM OUTPUT} & \multirow[b]{3}{*}{480} \\
\hline & \#1 & \#2 & & & A5 & A4 & A3 & & & AO & & \multicolumn{4}{|c|}{M.S.B.} & \multicolumn{4}{|c|}{L.S.B.} & \(\mathrm{N}_{\mathrm{pc}}\) & \\
\hline & 44
45
46 & & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & 4
5
6 & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 1
1
1
1 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 48 \\
& 48 \\
& 48
\end{aligned}
\] & \\
\hline & \[
\begin{aligned}
& 47 \\
& 48 \\
& 49
\end{aligned}
\] & & 0
0
0 & 1
1
1 & 0
0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 8 \\
& 9
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 1 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 49 \\
& 49 \\
& 49
\end{aligned}
\] & \\
\hline & 50
51
52 & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0 \\
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 17 \\
& 18
\end{aligned}
\] & 0
0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 1
0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& 50
\end{aligned}
\] & \\
\hline & 53
54
55 & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 20 \\
& 21
\end{aligned}
\] & 0
0
0
0 & \[
\begin{aligned}
& \hline 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& \hline
\end{aligned}
\] & 0
0
0
0 & \[
\begin{aligned}
& \mathrm{o} \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 51 \\
& 51 \\
& 51 \\
& \hline
\end{aligned}
\] & \\
\hline & 56
57
58 & & 0
0
0
0 & \begin{tabular}{l}
1 \\
1 \\
1 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 22 \\
& 23 \\
& 24 \\
& \hline
\end{aligned}
\] & O
0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & O & \[
\begin{aligned}
& \mathrm{o} \\
& \mathrm{o} \\
& \mathrm{o}
\end{aligned}
\] & 1
7
1 & \[
\begin{aligned}
& 10 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 52 \\
& 52 \\
& 52
\end{aligned}
\] & \\
\hline & 59
60
61 & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 32 \\
& 33
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 53 \\
& 53 \\
& 53
\end{aligned}
\] & \\
\hline & 62
63
64 & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 34 \\
& 35 \\
& 36
\end{aligned}
\] & 0
0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & O & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 54 \\
& 54 \\
& 54
\end{aligned}
\] & \\
\hline & \[
\begin{aligned}
& 65 \\
& 66 \\
& 67 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& 38 \\
& 39
\end{aligned}
\] & 0
0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & O & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 55 \\
& 55 \\
& 55
\end{aligned}
\] & \\
\hline & \[
\begin{aligned}
& 68 \\
& 69 \\
& 70
\end{aligned}
\] & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 41 \\
& 48
\end{aligned}
\] & 0
0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 1
1
1 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 56 \\
& 56 \\
& 56 \\
& \hline
\end{aligned}
\] & \\
\hline & \begin{tabular}{l}
71 \\
72 \\
73 \\
\hline
\end{tabular} & & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 49 \\
& 50 \\
& 51 \\
& \hline
\end{aligned}
\] & 0
0
0 & 1
1
1 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 1
1
1 & \begin{tabular}{l}
1 \\
1 \\
1 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 57 \\
& 57 \\
& 57 \\
& \hline
\end{aligned}
\] & \\
\hline & 74
75
76
77 & & 0
0
0
0 & 1
1
1
1 & 1
1
1
1 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 52 \\
& 53 \\
& 54 \\
& 55 \\
& \hline
\end{aligned}
\] & O & \begin{tabular}{l}
1 \\
1 \\
1 \\
1 \\
\hline
\end{tabular} & 0
0
0
0 & 1
1
1
1 & 1
1
1
1
1 & 0
0
0
0 & 0
0
0
0 & 1
0
0
1
1 & \[
\begin{aligned}
& 58 \\
& 58 \\
& 58 \\
& 59
\end{aligned}
\] & 590 \\
\hline
\end{tabular}

The required divider range, 4800 to 5933 , is obtained in the following manner: the MC12013 Dual Modulus Prescaler is connected in the divide by \(10 / 11\) mode; the modulus control counter uses two MC4016 stages with \(\mathrm{N}_{\mathrm{mc}}\) ranging from 00 to 99 , establishing the two least significant digits of \(\mathrm{N}_{\mathrm{T}}\). The remaining two digits of \(\mathrm{N}_{\mathrm{T}}\) are obtained from a three stage programmable counter generating \(N_{p c}\). The least significant stage of the \(N_{p c}\) counter is fixed programmed to zero. The required programming for all remaining stages is derived from four channel selector BCD thumbwheel switches. The relationship between \(N_{T}\) and the counters is given by \(N_{T}\) \(=M N_{p c}+N_{m c}\); for a typical channel, say 144.33 MHz, \(N_{T}=4811\) requires that \(M=10, N_{p c}=480\), and \(N_{\mathrm{mc}}\) \(=11\), or \(N_{\top}=(10)(480)+11=4811\).
A general problem associated with synthesizer design arises from the fact that there is not always a one-to-one correspondence between the code provided by the channel selector switches and the code required for proper programming of the counters. For instance, in the example above where 144.33 MHz was selected, the channel selector switches are set to 44.33 while the required divider ratio is 4811 . There are numerous solutions for a given translation requirement, however the method shown here using read only memories offers a straightforward design method. While field programmable read only memories (PROMs) \({ }^{3}\) are shown, they would normally be used only during development; suitable fixed ROMs are more economical in production quantities. The design procedure for the code conversion is illustrated in Figure 9. The required programming for the two most
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{WORD} & \multicolumn{8}{|c|}{BIT} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 0 & - & - & - & - & - & - & - & - \\
\hline 1 & - & - & - & - & - & - & - & - \\
\hline 2 & - & - & - & - & - & -- & - & - \\
\hline 3 & - & - & - & - & - & -- & & - \\
\hline 4 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 5 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 6 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 7 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 8 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 9 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 10 & - & -- & - & - & - & - & - & \(\cdots\) \\
\hline 11 & - & - & - & - & - & - & - & - \\
\hline 12 & - & - & - & - & \(\cdots\) & - & - & - \\
\hline 13 & - & - & - & - & - & - & - & - \\
\hline 14 & - & - & - & - & - & - & - & -- \\
\hline 15 & - & - & - & - & - & - & - & -- \\
\hline 16 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 17 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 18 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 19 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 20 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 21 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 22 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 23 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 24 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 25 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline 26 & -- & - & - & - & - & - & - & - \\
\hline 27 & - & - & - & - & -- & - & - & - \\
\hline 28 & - & - & - & -- & - & - & - & - \\
\hline 29 & - & - & - & - & - & - & - & - \\
\hline 30 & - & - & - & - & - & - & - & - \\
\hline 31 & - & - & - & - & - & - & - & - \\
\hline 32 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline 33 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline 34 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline 35 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline 36 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline 37 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 38 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 39 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 40 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 41 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 42 & - & - & - & - & - & - & - & - \\
\hline 43 & - & - & - & - & - & - & - & - \\
\hline 44 & - & - & - & - & - & - & - & - \\
\hline 45 & - & - & - & - & - & - & - & - \\
\hline 46 & - & - & - & - & - & -- & - & - \\
\hline 47 & - & - & - & - & - & - & - & - \\
\hline 48 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 49 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 50 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 51 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 52 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 53 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 54 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 55 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\hline 56 & - & - & - & - & - & - & - & - \\
\hline 57 & - & - & - & - & - & - & - & - \\
\hline 58 & - & - & - & - & - & - & - & - \\
\hline 59 & - & - & - & - & - & - & - & - \\
\hline 60 & - & - & - & - & - & - & - & - \\
\hline 61 & - & - & - & - & - & - & - & - \\
\hline 62 & - & - & - & - & - & - & - & - \\
\hline 63 & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

3 See the MCM5003 data sheet and AN-550 for details of operation; briefly, one of 64 eight-bit output words is selected by a six-bit address applied to the input. The word located at each address can be field programmed by the user.

FIGURE 10 - N mc PROM \#1 PROGRAMMING
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{13}{*}{(144)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SW } \\
& \text { \#3 }
\end{aligned}
\]} & \multicolumn{3}{|r|}{SW \#3} & \multicolumn{4}{|c|}{SW \#4} & \multirow[t]{2}{*}{PROM WORD} & \multicolumn{9}{|c|}{PROM OUTPUT} \\
\hline & & & & A5 A4 & A3 & A2 & A1 & AO & & & M.S & & & & & B & & \(\mathrm{N}_{\mathrm{mc}}\) \\
\hline & \[
\begin{array}{r}
.00 \\
.03 \\
.06 \\
\hline
\end{array}
\] & & \[
\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
\] & \[
\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 3 \\
& 6
\end{aligned}
\] & 0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
0 & 0
0
0 & 0
0
1 & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 00 \\
& 01 \\
& 02 \\
& \hline
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& .09 \\
& .12 \\
& .15
\end{aligned}
\] & & \[
\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
\] & \[
\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 1
\end{array}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{gathered}
9 \\
18 \\
21 \\
\hline
\end{gathered}
\] & 0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & 0
0
0
0 & 0
1
1 & 1
0
0 & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 03 \\
& 04 \\
& 05 \\
& \hline
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& .18 \\
& .21 \\
& .24
\end{aligned}
\] & & \[
\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 24 \\
& 33 \\
& 36 \\
& \hline
\end{aligned}
\] & 0
0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
0 \\
0 \\
1 \\
\hline
\end{tabular} & 1
1
0 & 1
1
0 & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 06 \\
& 07 \\
& 08 \\
& \hline
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& .27 \\
& .30 \\
& .33 \\
& \hline
\end{aligned}
\] & 0 & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 1
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{array}{r}
39 \\
48 \\
51 \\
\hline
\end{array}
\] & 0
0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 1 \\
& \hline
\end{aligned}
\] & 1
0
0 & 0
0
0 & 0
0
0 & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 09 \\
& 10 \\
& 11 \\
& \hline
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& .36 \\
& .39 \\
& .42
\end{aligned}
\] & 0
0
0 & \[
\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
54 \\
57 \\
2 \\
\hline
\end{gathered}
\] & 0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 0
0
0
0 & 0
0
1 & 1
1
0 & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 13 \\
& 14 \\
& \hline
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& .45 \\
& .48 \\
& .51
\end{aligned}
\] & 0
0
0 & \[
\begin{array}{ll}
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}
\] & \[
\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{gathered}
\hline 5 \\
8 \\
17 \\
\hline
\end{gathered}
\] & 0
0
0 & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& \hline
\end{aligned}
\] & 0
0
0 & \begin{tabular}{l}
1 \\
1 \\
1 \\
\hline
\end{tabular} & 0
1
1 & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 16 \\
& 17 \\
& \hline
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& .54 \\
& .57 \\
& .60
\end{aligned}
\] & O & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{array}{ll}
0 & 1 \\
0 & 1 \\
1 & 0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 23 \\
& 32 \\
& \hline
\end{aligned}
\] & 0
0
0 & 0
0
0 & \begin{tabular}{l}
0 \\
0 \\
1 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & 1
1
0 & 0
0
0 & 0
0
0 & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{array}{r}
18 \\
19 \\
20 \\
\hline
\end{array}
\] \\
\hline & \[
\begin{aligned}
& .63 \\
& .66 \\
& .69
\end{aligned}
\] & O & \[
\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 1 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 38 \\
& 41 \\
& \hline
\end{aligned}
\] & 0
0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & 0
0
0 & 0
0
0 & 0
1
1 & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 21 \\
& 22 \\
& 23 \\
& \hline
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& .72 \\
& .75 \\
& .78
\end{aligned}
\] & 0
0
0
0 & \[
\begin{array}{ll}
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}
\] & \[
\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 49 \\
& 53 \\
& 56 \\
& \hline
\end{aligned}
\] & 0
0
0
0 & 0
0
0 & 1
1
1 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & 0
0
0 & 1
1 & 0
0
1 & 0
1
0 & \[
\begin{aligned}
& 24 \\
& 25 \\
& 26 \\
& \hline
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& .81 \\
& .84 \\
& .87 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
1 \\
1 \\
1 \\
\hline 1
\end{tabular} & \[
\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
\hline 0 & 0 \\
0 & 0 \\
0 & 0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 4 \\
& 7 \\
& \hline
\end{aligned}
\] & 0
0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & 0
1
1
1 & 1
0
0 & 1
0
0 & \[
\begin{aligned}
& 1 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 27 \\
& 28 \\
& 29 \\
& \hline
\end{aligned}
\] \\
\hline & .90
.93
.96
.99 & 1
1
1
1
1 & \[
\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
\hline 0 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 1 \\
\hline
\end{array}
\] & 0
0
0
0
1 & 1
0
1
1
0 & 0
1
1
0 & \[
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 19 \\
& 22 \\
& 25
\end{aligned}
\] & 0
0
0
0
0 & 0
0
0
0 & 1
1
1
1
1 & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 1
0
0
0
0 & 0
0
0
0 & 0
0
1
1 & 0
1
0
1 & \[
\begin{aligned}
& 30 \\
& 31 \\
& 32 \\
& 33
\end{aligned}
\] \\
\hline
\end{tabular}

Use with frequency ranges:
\begin{tabular}{ll}
\(144.00-144.99\) & \(162.00-162.99\) \\
\(147.00-147.99\) & \(165.00-165.99\) \\
\(150.00-150.99\) & \(168.00-168.99\) \\
\(153.00-153.99\) & \(171.00-171.99\) \\
\(156.00-156.99\) & \(174.00-174.99\) \\
\(159.00-159.99\) & \(177.00-177.99\)
\end{tabular}
significant digits of \(N_{p c}\) is shown versus the code provided by switches \#1 and \#2 of the channel selector. If the four outputs of switch \#2 and the two least significant outputs of switch \#1 are regarded as address bits A0 through A5 for an MCM5003 PROM, a memory location can be associated with each switch setting. The required \(\mathrm{N}_{\mathrm{pc}}\) programming for each switch setting is then set into the appropriate memory location by the user. In Figure 9 , the required programming has been transferred into a truth table to be used while programming the PROM. A similar result for the \(\mathrm{N}_{\mathrm{mc}}\) programming is shown in Figure 10. Note that the PROM shown, \(\mathrm{N}_{\mathrm{mc}}\) PROM \#1, selects only \(\mathrm{N}_{\mathrm{mc}}\) numbers 00 through 33 . This means that the synthesizer as shown in Figure 8 selects only the adjacent channels in a one megahertz slice of the total band. The frequency ranges that can be selected using \(\mathrm{N}_{\mathrm{mc}}\) PROM \#1 are summarized in Figure 10. For other ranges, \(\mathrm{N}_{\mathrm{mc}}\) PROM \#1 must be replaced by one of two additional PROMs required for generating the remaining \(N_{\mathrm{mc}}\) numbers. Appropriate truth tables along with the ranges they can be used with are shown in Figures 11 and 12.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{WORD} & \multicolumn{8}{|c|}{BIT} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
\hline 2 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 4 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\hline 5 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 6 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 7 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline 8 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 9 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 10 & - & - & - & \(-\) & - & - & - & - \\
\hline 11 & - & - & - & - & - & - & -- & - \\
\hline 12 & - & - & - & - & - & \(\square\) & - & - \\
\hline 13 & - & - & - & - & - & - & - & - \\
\hline 14 & - & - & - & - & - & -- & - & - \\
\hline 15 & - & - & - & - & - & - & - & \(\square\) \\
\hline 16 & 0 & 0 & 1. & 1 & 0 & 0 & 0 & 0 \\
\hline 17 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 18 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 19 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline 20 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 21 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline 22 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline 23 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\hline 24 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline 25 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline 26 & - & - & - & - & - & - & - & \(\ldots\) \\
\hline 27 & - & - & - & - & - & - & - & - \\
\hline 28 & - & - & - & - & - & - & \(\cdots\) & - \\
\hline 29 & - & - & - & - & - & - & -- & - \\
\hline 30 & - & - & - & - & \(-\) & - & \(\cdots\) & - \\
\hline 31 & - & \(\cdots\) & - & - & - & - & \(\cdots\) & - \\
\hline 32 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 33 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 34 & - & - & - & - & - & - & - & -- \\
\hline 35 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 36 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 37 & - & - & - & - & - & - & - & - \\
\hline 38 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline 39 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 40 & - & - & - & - & - & - & - & - \\
\hline 41 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
\hline 42 & - & - & - & - & - & - & - & - \\
\hline 43 & - & - & - & - & - & \(\cdots\) & - & - \\
\hline 44 & - & - & - & - & - & - & - & - \\
\hline 45 & - & - & - & - & - & - & - & - \\
\hline 46 & - & - & - & - & - & - & - & - \\
\hline 47 & - & - & - & - & - & - & - & - \\
\hline 48 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 49 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline 50 & - & - & - & - & - & - & - & - \\
\hline 51 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 52 & - & - & - & - & - & - & - & - \\
\hline 53 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 54 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 55 & - & - & - & - & - & - & - & - \\
\hline 56 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
\hline 57 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline 58 & - & - & - & - & - & - & - & - \\
\hline 59 & - & - & - & - & - & - & - & - \\
\hline 60 & - & - & - & - & - & - & - & - \\
\hline 61 & - & - & - & - & - & - & - & - \\
\hline 62 & \(-\) & - & - & - & - & - & - & - \\
\hline 63 & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

FIGURE 11 - \(\mathrm{N}_{\mathrm{mc}}\) PROM \#2 TRUTH TABLE
FIGURE 12 - Nmc PROM \#3 TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{WORD} & \multicolumn{8}{|c|}{BIT} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 2 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\hline 3 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 4 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 5 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
\hline 6 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline 7 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 8 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
\hline 9 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
\hline 10 & - & - & - & - & - & - & - & - \\
\hline 11 & - & - & - & - & - & - & - & - \\
\hline 12 & - & - & - & - & - & - & - & - \\
\hline 13 & \(\cdots\) & - & - & - & - & - & - & - \\
\hline 14 & - & - & - & - & - & - & - & - \\
\hline 15 & - & - & - & - & - & - & - & - \\
\hline 16 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 17 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
\hline 18 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline 19 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 20 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline 21 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 22 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 23 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
\hline 24 & 0 & 1 & \(\dagger\) & 0 & 0 & 1 & 1 & 0 \\
\hline 25 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline 26 & - & - & - & - & - & - & - & - \\
\hline 27 & - & - & - & - & - & - & - & - \\
\hline 28 & - & - & - & \(\rightarrow\) & - & - & - & - \\
\hline 29 & - & - & - & - & - & - & - & - \\
\hline 30 & - & - & - & - & - & - & - & - \\
\hline 31 & - & - & - & - & - & - & - & - \\
\hline 32 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 33 & - & - & - & - & - & - & - & - \\
\hline 34 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline 35 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 36 & - & - & - & - & - & - & - & - \\
\hline 37 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 38 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 39 & - & \(\cdots\) & - & - & - & - & - & - \\
\hline 40 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 41 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 42 & - & - & - & - & - & - & - & - \\
\hline 43 & - & - & - & - & - & - & - & - \\
\hline 44 & - & - & - & - & - & - & - & - \\
\hline 45 & - & - & - & - & - & - & - & - \\
\hline 46 & - & - & - & - & - & - & - & - \\
\hline 47 & - & - & - & -- & - & \(\cdots\) & \(\cdots\) & - \\
\hline 48 & - & \(-\) & - & - & - & - & - & - \\
\hline 49 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 50 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 51 & - & - & - & - & - & - & - & - \\
\hline 52 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 53 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline 54 & - & - & - & - & - & - & - & - \\
\hline 55 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1. \\
\hline 56 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline 57 & - & - & - & - & - & - & - & - \\
\hline 58 & - & - & - & - & - & - & - & - \\
\hline 59 & - & \(\cdots\) & - & - & - & - & - & - \\
\hline 60 & - & - & - & - & - & - & - & - \\
\hline 61 & - & - & - & - & - & - & - & - \\
\hline 62 & - & \(\sim\) & - & - & - & - & - & - \\
\hline 63 & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

Use with frequency ranges:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{WORD} & \multicolumn{8}{|c|}{BIT} \\
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
\hline 2 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 4 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
\hline 5 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 6 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 7 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline 8 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 9 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 10 & - & - & - & - & - & - & - & - \\
\hline 11 & - & - & - & - & - & - & \(\cdots\) & - \\
\hline 12 & - & - & - & - & - & - & - & - \\
\hline 13 & - & - & - & - & - & - & - & - \\
\hline 14 & - & - & - & - & - & - & - & - \\
\hline 15 & - & - & \(\cdots\) & - & - & - & - & - \\
\hline 16 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
\hline 17 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 18 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 19 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline 20 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 21 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline 22 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline 23 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\hline 24 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline 25 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline 26 & - & - & - & - & - & - & - & - \\
\hline 27 & - & - & - & - & - & - & - & - \\
\hline 28 & - & - & - & - & - & - & - & \(\rightarrow\) \\
\hline 29 & - & - & - & - & - & -- & - & - \\
\hline 30 & - & - & - & - & - & - & - & - \\
\hline 31 & - & - & \(\cdots\) & - & - & - & - & - \\
\hline 32 & - & - & - & - & - & - & - & - \\
\hline 33 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 34 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
\hline 35 & - & - & - & - & - & - & - & - \\
\hline 36 & - & - & - & - & - & - & \(\rightarrow\) & - \\
\hline 37 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
\hline 38 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 39 & 1 & 0 & 0 & 0 & \(\dagger\) & 0 & 0 & 1 \\
\hline 40 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
\hline 41 & - & - & - & - & - & - & - & - \\
\hline 42 & - & - & - & - & - & - & - & - \\
\hline 43 & - & - & - & - & - & - & - & - \\
\hline 44 & - & - & - & - & - & - & - & - \\
\hline 45 & - & - & - & - & - & - & - & - \\
\hline 46 & - & - & - & - & - & - & - & - \\
\hline 47 & - & - & - & - & - & - & - & - \\
\hline 48 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 49 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
\hline 50 & - & - & - & - & - & - & - & - \\
\hline 51 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 52 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline 53 & - & - & - & - & - & - & - & - \\
\hline 54 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 55 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
\hline 56 & - & - & - & - & - & - & - & - \\
\hline 57 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 58 & \(\cdots\) & - & - & - & - & - & - & - \\
\hline 59 & - & - & - & - & - & - & - & - \\
\hline 60 & - & - & - & - & - & - & - & - \\
\hline 61 & - & - & - & - & - & - & - & - \\
\hline 62 & - & - & - & - & - & - & - & - \\
\hline 63 & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{Use with frequency ranges:}
\begin{tabular}{ll}
\(146.01-146.97\) & \(164.01-164.97\) \\
\(149.01-149.97\) & \(167.01-167.97\) \\
\(152.01-152.97\) & \(170.01-170.97\) \\
\(155.01-155.97\) & \(173.01-173.97\) \\
\(158.01-158.97\) & \(176.01-176.97\) \\
\(161.01-161.97\) &
\end{tabular}

\section*{Advance Information}

\section*{LOW-POWER TWO-MODULUS PRESCALER}

The MC12015, MC12016 and MC12017 are two-modulus prescalers which will divide by 32 and 33,40 and 41 , and 64 and 65 respectively. An internal regulator is provided to allow these devices to be used over a wide range of power-supply voltages. Regulated operation is obtained by connecting supply voltages of 4.5 to 5.5 V to both Pin 7 and Pin 8 . Unregulated operation is obtained by connecting voltages greater than 5.5 to Pin 8 and leaving Pin 7 open.
- 225 MHz Toggle Frequency
- Low-Power-7.5 mA Max at 6.8 V
- Control Input and Output are Compatible with Standard CMOS
- Connecting Pins 2 and 3 Allows Driving One TTL Load
- Supply Voltage 4.5 V to 9.5 V

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Range & Unit \\
\hline Regulated Voltage, Pin 7 & \(\mathrm{V}_{\text {reg }}\) & 8.0 & Vdc \\
\hline Power Supply Voltage, Pin 8 & \(\mathrm{V}_{\mathrm{CC}}\) & 10.0 & Vdc \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=5.5\right.\) to \(9.5, \mathrm{~V}_{\text {reg }}=4.5\) to 5.5 V
\[
\left.T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multirow[t]{2}{*}{Toggle Frequency (Sine wave input)} & \({ }^{\text {f max }}\) & 225 & - & - & MHz \\
\hline & \(f_{\text {min }}\) & - & - & 35 & MHz \\
\hline Supply Current & \({ }^{\text {c }}\) C & - & 6.0 & 7.8 & mA \\
\hline Control Input High (\(\div 32,40\) or 64) & & 2.0 & - & - & V \\
\hline Control Input Low \((\div 33,41\) or 65\()\) & & - & - & 0.8 & V \\
\hline Output Voltage High*
\[
\left(1_{\text {source }}=50 \mu \mathrm{~A}\right)
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 2.5 & - & - & V \\
\hline Output Voltage Low*
\[
\left(I_{\text {sink }}=2 \mathrm{~mA}\right)
\] & \(\mathrm{V}_{\mathrm{OL}}\) & - & - & 0.5 & V \\
\hline Input Voltage Sensitivity
\[
\begin{aligned}
& 35 \mathrm{MHz} \\
& 50-255 \mathrm{MHz}
\end{aligned}
\] & \(V_{\text {in }}\) & \[
\begin{aligned}
& 400 \\
& 200
\end{aligned}
\] & \[
-
\] & \[
\begin{aligned}
& 800 \\
& 800
\end{aligned}
\] & mVPP \\
\hline PLL Response Time (Notes 1 and 2) & tPLL & - & - & \(\mathrm{t}_{\text {out }}\)-70 & ns \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Notes: \\
1. \({ }^{\text {tPLL }}=\) the period of time the PLL has from the prescaler rising output transition (50\%) to the modulus control input edge transition \((50 \%)\) to ensure proper modulus selection. \\
2. \(t_{\text {out }}=\) period of output waveform.
\end{tabular}} \\
\hline
\end{tabular}

\section*{MECL PLL COMPONENTS}

LOW-POWER
TWO - MODULUS PRESCALER

P SUFFIX
PLASTIC PACKAGE
CASE 626

\section*{PRESCALER BLOCK DIAGRAM}

Control

\section*{Product Preview}

\section*{\(\div 128 / 129 \quad 520 \mathrm{MHz}\) LOW-POWER TWO-MODULUS PRESCALER}

The MC12018 is a two-modulus prescaler which divides by 128 and 129. An internal regulator is provided to allow this device to be used over a wide range of power-supply voltages. Regulated operation is obtained by connecting supply voltages of 4.5 to 5.5 V to both Pin 7 and Pin 8. Unregulated operation is obtained by connecting voltages greater than 5.5 to Pin 8 and leaving Pin 7 open.
- 520 MHz Toggle Frequency
- Low-Power - 7.0 mA Typical
- Control Input Is Compatible with Standard CMOS and TTL
- Supply Voltage 4.5 V to 9.5 V
- The Specifications of This Product Preview Are Design Goals Only

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Range & Unit \\
\hline Regulated Voltage, Pin 7 & \(\mathrm{V}_{\text {reg }}\) & 8.0 & Vdc \\
\hline Power Supply Voltage, Pin 8 & \(\mathrm{V}_{\mathbf{C C}}\) & 10.0 & Vdc \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathbf{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\mathbf{s t g}}\) & -65 to +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\(\mathrm{V}_{\mathrm{CC}}=5.5\) to \(9.5, \mathrm{~V}_{\text {reg }}=4.5\) to 5.5 V
ELECTRICAL CHARACTERISTICS \(T_{A}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Toggle Frequency (Sine Wave Input) & \(f_{\text {max }}\) & 520 & - & - & MHz \\
\hline Supply Current (Pin 8) & \({ }^{1} \mathrm{CC}\) & - & 7.0 & - & mA \\
\hline Control Input High
\[
(\div 128)
\] & \(\mathrm{V}_{\text {IH }}\) & 2.0 & - & - & V \\
\hline Control Input Low
\[
(\div 129)
\] & \(V_{\text {IL }}\) & - & - & 0.8 & V \\
\hline Differential Output Voltage (\(I_{\text {sink }}=200 \mu \mathrm{~A}\)) & \(V_{\text {out }}\) & 0.8 & 1.0 & - & V \\
\hline PLL Response Time (Notes 1 and 2) & tPLL & - & - & \(\mathrm{t}_{\text {out }}{ }^{-35}\) & ns \\
\hline Input Voltage Sensitivity & \(V_{\text {in }}\) & 200 & - & 800 & mVpp \\
\hline
\end{tabular}

\section*{Notes}
1. tPLL \(=\) the period of time the PLL has from the prescaler rising output transition (50\%) to the modulus control input edge transition (\(50 \%\)) to ensure proper modulus selection.
2. \(t_{\text {out }}=\) period of output waveform

\section*{MECL PLL COMPONENTS}
\(\div 128 / 129\)
LOW-POWER TWO-MODULUS PRESCALER

PRESCALER BLOCK DIAGRAM

This document contains information on a new product. Specifications and information herein are subject to change without notice.

\section*{Advance Information}

\section*{LOW-POWER TWO-MODULUS PRESCALER}

The MC1 2019 is a divide by 20 and 21 two-modulus prescaler. It will divide by 20 when the modulus control input is high and by 21 when the modulus control input is low.
- 225 MHz Toggle Frequency
- Low-Power-7.5 mA Max at 5.5 V
- Control Input Compatible with Standard Motorola CMOS Synthesizers
- Emitter Follower Outputs

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Range & Unit \\
\hline Power Supply Voltage, Pin 7 & \(\mathrm{V}_{\mathrm{CC}}\) & 8.0 & Vdc \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {Stg }}\) & -65 to +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=4.5\right.\) to \(5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ}\) to \(+85^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Characteristic} & \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|r|}{\(-40^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(85^{\circ} \mathrm{C}\)} & \multirow[t]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Toggle Frequency (Sine wave input) & \begin{tabular}{l}
\({ }^{f}{ }_{\text {max }}\) \\
\(f_{\text {min }}\)
\end{tabular} & \[
225
\] & \[
35
\] & \[
225
\] & \[
\overline{35}
\] & \begin{tabular}{c}
225 \\
- \\
\hline
\end{tabular} & \[
\overline{35}
\] & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline Supply Current & \({ }^{\text {c CC }}\) & - & 7.5 & - & 7.5 & - & 7.5 & mA \\
\hline Control Input High
\[
(\div 20)
\] & & 2.0 & - & 2.0 & - & 2.0 & - & V \\
\hline Control Input Low
\[
(\div \mathbf{2 0})
\] & & - & 0.8 & - & 0.8 & - & 0.8 & v \\
\hline Output Voltage Swing & \(\mathrm{V}_{\text {out }}\) & - & 600 & - & 600 & - & 600 & mV Vp \\
\hline Input Voltage Sensitivity 35 MHz \(50-255 \mathrm{MHz}\) & \(v_{\text {in }}\) & \[
\begin{aligned}
& 400 \\
& 200
\end{aligned}
\] & \[
\begin{aligned}
& 800 \\
& 800
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 200
\end{aligned}
\] & \[
\begin{aligned}
& 800 \\
& 800
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 200
\end{aligned}
\] & \[
\begin{aligned}
& 800 \\
& 800
\end{aligned}
\] & \\
\hline PLL Response Time (Notes 1 and 2) & tplL & - & \(\mathrm{t}_{\text {out }} \mathbf{7 0}\) & - & tout-70 & - & tout \({ }^{\text {-70 }}\) & ns \\
\hline
\end{tabular}

\section*{Notes:}
1. \(\operatorname{tPLL}=\) the time the PLL has from the prescaler rising output transition \((50 \%)\) to the modulus control input edge transition (\(50 \%\)) to ensure proper modulus selection.
2. \(t_{\text {out }}=\) period of output waveform.

\section*{MECL PLL COMPONENTS}

LOW-POWER TWO - MODULUS PRESCALER

P SUFFIX PLASTIC PACKAGE CASE 626

PRESCALER BLOCK DIAGRAM

Control

\section*{Product Preview}

\section*{\(\div 128 / 129 \quad 1.0 \mathrm{GHz}\) \\ LOW-POWER TWO-MODULUS PRESCALER}

The MC12O22 is a two-modulus prescaler which divides by 128 and 129. An internal regulator is provided to allow this device to be used over a wide range of power-supply voltages. Regulated operation is obtained by connecting supply voltages of 4.5 to 5.5 V to both Pin 7 and Pin 8. Unregulated operation is obtained by connecting voltages greater than 5.5 to Pin 8 and leaving Pin 7 open.
- 1.0 GHz Toggle Frequency
- Low-Power 14 mA Typical
- Control Input Is Compatible with Standard CMOS and TTI
- Supply Voltage 4.5 V to 9.5 V
- Propagation Delay 25 ns Typical
- The Specifications of This Product Preview Are Design Goals Only

\section*{MAXIMUM RATINGS}
\begin{tabular}{l|c|c|c}
\hline \multicolumn{1}{c|}{ Characteristic } & Symbol & Range & Unit \\
\hline Regulated Voltage, Pin 7 & \(\mathrm{V}_{\text {reg }}\) & 8.0 & Vdc \\
\hline Power Supply Voltage, Pin 8 & \(\mathrm{V}_{\mathrm{CC}}\) & 10.0 & Vdc \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -40 to +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\mathrm{V}_{C C}=5.5\) to \(9.5, \mathrm{~V}_{\text {reg }}=4.5\) to 5.5 V
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{c}
Toggle Frequency \\
(Sine Wave Input)
\end{tabular} & \(\mathrm{f}_{\text {max }}\) & 1.0 & - & - & GHz \\
\hline Supply Current (Pin 8) & I CC & - & 14 & - & mA \\
\hline \begin{tabular}{c}
Control Input High \\
\((\div 128)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{IH}}\) & 2.0 & - & - & V \\
\hline \begin{tabular}{c}
Control Input Low \\
\((\div 129)\)
\end{tabular} & \(\mathrm{V}_{\mathrm{IL}}\) & - & - & 0.8 & V \\
\hline \begin{tabular}{c}
Differential Output Voltage \\
\(\left(I_{\text {sink }}=200 \mu \mathrm{~A}\right)\)
\end{tabular} & \(\mathrm{V}_{\text {out }}\) & 0.8 & 1.0 & - & V \\
\hline \begin{tabular}{c}
PLL Response Time \\
(Notes 1 and 2)
\end{tabular} & \(\mathrm{t}_{\mathrm{PLL}}\) & - & - & \(\mathrm{t}_{\mathrm{out}}-50\) & ns \\
\hline Input Voltage Sensitivity & \(\mathrm{V}_{\text {in }}\) & 200 & - & 800 & mVpp \\
\hline
\end{tabular}

\section*{Notes}
1. \(t_{P L L}=t\) he period of time the PLL has from the prescaler rising output transition (\(50 \%\)) to the modulus control input edge transition (\(50 \%\)) to ensure proper modulus selection
2. \(t_{\text {out }}=\) period of output waveform.

\section*{MECL PLL COMPONENTS}

\section*{\(\div 128 / 129\)}

LOW-POWER TWO-MODULUS PRESCALER

\section*{PRESCALER BLOCK DIAGRAM}

\section*{Advance Information}

64, 225 MHz, LOW-POWER PRESCALER

The MC12023 is a new member of Motorola's PLL family. The MC12023 is a prescaler which will divide by 64 . This device may be operated over a wide range of supply voltages (3.2 to 5.5 V). Because of this range of supply voltages the MC12023 is very suitable for hand-held, battery-operated devices.
- 225 MHz Toggle Frequency
- Low-Power - 4.0 mA Maximum at 5.5 V
- Operating Supply Voltage -3.2 V to 5.5 V
- Connecting Pins 2 and 3 Allows Driving One TTL Load

\section*{MECL PLL COMPONENTS}

LOW-POWER PRESCALER
\(\div 64\)

P SUFFIX
PLASTIC PACKAGE
CASE 626

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Range & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 0 to +7.0 & Vdc \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(\mathrm{V} \mathrm{CC}=3.2\) to \(5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline \multirow[t]{2}{*}{Toggle Frequency (Sine wave input)} & \(f_{\text {max }}\) & 225 & - & - & MHz \\
\hline & \(f_{\text {min }}\) & - & - & 20 & MHz \\
\hline Supply Current & Icc & - & 3.5** & 4.0 & mA \\
\hline Output Voltage High*
\[
\left(l_{\text {source }}=50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=3.2 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 1.2 & 1.4 & - & V \\
\hline Output Voltage High*
\[
\left(l_{\text {source }}=50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 3.5 & - & - & V \\
\hline Output Voltage Low*
\[
\left(l_{\text {sink }}=2.0 \mathrm{~mA}\right)
\] & VOL & - & - & 0.5 & V \\
\hline Input Voltage Sensitivity
\[
\begin{aligned}
& 35 \mathrm{MHz} \\
& 50-225 \mathrm{MHz}
\end{aligned}
\] & \(\mathrm{v}_{\text {in }}\) & \[
\begin{aligned}
& 400 \\
& 200 \\
& \hline
\end{aligned}
\] & - & \[
\begin{array}{r}
800 \\
800 \\
\hline
\end{array}
\] & mVpp \\
\hline AC Input Resistance & \(\mathrm{R}_{\text {in }}\) & - & TBA & - & k \(\Omega\) \\
\hline Input Capacitance & \(\mathrm{C}_{\text {in }}\) & - & TBA & - & pF \\
\hline
\end{tabular}
*Pin 2 connected to Pin 3
TBA - To Be Announced.
\({ }^{* *} V_{C C}=4.5 \mathrm{~V}\)
This document contains information on a new product. Specifications and information herein are subject to change without notice.

\section*{PHASE-FREQUENCY DETECTOR}

The MC12040 is a phase-frequency detector intended for use in systems requiring zero phase and frequency difference at lock. In combination with a voltage controlled oscillator (such as the MC1648), it is useful in a broad range of phase-locked loop applications. Operation of this device is identical to that of Phase Detector \#1 of the MC4044. A discussion of the theory of operation and applications information is given on the MC4344/4044 data sheet.

Operating Frequency \(=80 \mathrm{MHz}\) typical

\section*{LOGIC DIAGRAM}

\[
\begin{aligned}
& V_{\mathrm{CC} 1}=\operatorname{Pin} 1 \\
& \mathrm{~V}_{\mathrm{CC} 2}=\operatorname{Pin} 14 \\
& \mathrm{~V}_{\mathrm{EE}}=\operatorname{Pin} 7
\end{aligned}
\]

\section*{TRUTH TABLE}

This is not strictly a functional truth table; i.e., it does not cover all possible modes of operation. However it gives a sufficient number of tests to ensure that the device will function properly in all modes of operation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ INPUT } & \multicolumn{4}{|c|}{ OUTPUT } \\
\hline \(\mathbf{R}\) & \(\mathbf{V}\) & \(\mathbf{U}\) & \(\mathbf{D}\) & \(\overline{\mathbf{U}}\) & \(\overline{\mathbf{D}}\) \\
\hline 0 & 0 & X & X & X & X \\
0 & 1 & X & X & X & X \\
1 & 1 & X & X & X & X \\
0 & 1 & X & X & X & X \\
\hline 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & \(\mathbf{1}\) & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 \\
\hline 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
\hline 1 & 1 & 0 & 1 & 1 & 0 \\
0 & \(\mathbf{1}\) & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}
\(X=\) Don't Care

\section*{PHASE-FREQUENCY DETECTOR}

PIN ASSIGNMENT

\section*{ELECTRICAL CHARACTERISTICS}

The MC12040 has been designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. Outputs are terminated through a 50 ohm resistor to +3.0 V for +5.0 V tests and through a 50 ohm resistor to -2.0 V for -5.2 V tests.

\section*{MC12040}

\section*{AC TESTS}

PRF \(=5.0 \mathrm{mHz}\)
Duty Cycle \(=50 \%\)
\(\mathrm{t}+=\mathrm{t}-=1.5 \mathrm{~ns} \pm 0.2 \mathrm{~ns}\)

\section*{NOTES:}
1. All input and output cables to the scope are equal lengths of \(50 \Omega\) coaxial cable.
2. Unused input and outputs are connected to a \(50 \Omega\) resistor to ground.
3. The device under test must be preconditioned before performing the ac tests. Preconditioning may be accomplished by applying pulse generator 1 for a minimum of two pulses prior to pulse generator 2. The device must be preconditioned again when inputs to pins 6 and 9 are interchanged. The same technique applies.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristic} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\text { Pin } \\
\text { Under } \\
\text { Test }
\end{array}
\]} & \multirow[b]{3}{*}{Output Waveform} & \multicolumn{3}{|c|}{MC12040} & \multicolumn{3}{|c|}{MC12540} & \multirow[b]{3}{*}{Unit} & \multicolumn{4}{|l|}{TEST VOLTAGES/WAVEFORMS APPLIED TO PINS LISTED BELOW:} \\
\hline & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0^{\circ} \mathrm{C} \\
& \hline \operatorname{Max}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\frac{+25^{\circ} \mathrm{C}}{\operatorname{Max}}
\]} & \multirow[t]{2}{*}{\[
\frac{+75^{\circ} \mathrm{C}}{\text { Max }}
\]} & \multirow[t]{2}{*}{\[
\frac{-55^{\circ} \mathrm{C}}{\text { Max }}
\]} & \multirow[t]{2}{*}{\[
\frac{+25^{\circ} \mathrm{C}}{\text { Max }}
\]} & \multirow[t]{2}{*}{\[
\frac{+125^{\circ} \mathrm{C}}{\text { Max }}
\]} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Pulse \\
Gen. 1
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pulse \\
Gen. 2
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
V_{E E} \\
-3.0 \text { or }-3.2 \mathrm{~V}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
v_{c c} \\
+2.0 \mathrm{~V} \\
\hline
\end{gathered}
\]} \\
\hline & & & & & & & & & & & & & & \\
\hline \multirow[t]{8}{*}{Propagation Delay} & \(\mathrm{t}_{6+4+}\) & 6,4 & B & 4.6 & 4.6 & 5.6 & 4.6 & 4.6 & 5.0 & ns & 6 & 9 & 7 & 1,14 \\
\hline & \({ }^{\text {t } 6+12+}\) & 6,12 & A & 6.0 & 6.0 & 7.2 & 6.0 & 6.0 & 6.6 & & 9 & 6 & & \\
\hline & \(\mathrm{t}_{6+3}\) - & 6,3 & A & 4.5 & 4.5 & 5.5 & 4.5 & 4.5 & 4.9 & & 6 & 9 & & \\
\hline & \({ }^{1} 6+11-\) & 6,11 & B & 6.4 & 6.4 & 7.7 & 6.4 & 6.4 & 7.0 & & 9 & 6 & & \\
\hline & t9+11+ & 9,11 & B & 4.6 & 4.6 & 5.6 & 4.6 & 4.6 & 5.0 & & 9 & 6 & & \\
\hline & t9+3+ & 9,3 & A & 6.0 & 6.0 & 7.2 & 6.0 & 6.0 & 6.6 & & 6 & 9 & & \\
\hline & \({ }^{\text {t9 }} 9+12-\) & 9.12 & A & 4.5 & 4.5 & 5.5 & 4.5 & 4.5 & 4.9 & & 9 & 6 & & \\
\hline & t9+4- & 9,4 & B & 6.4 & 6.4 & 7.7 & 6.4 & 6.4 & 7.0 & \(\dagger\) & 6 & 9 & 1 & \(\dagger\) \\
\hline Output Rise Time & \({ }^{+} 3+\) & 3 & A & 3.4 & 3.4 & 3.8 & 3.4 & 3.4 & 3.8 & ns & 6 & 9 & 7 & 1,14 \\
\hline & \({ }^{1} 4+\) & 4 & B & & & & & & & & 6 & 9 & & \\
\hline & \({ }^{\text {t }} 11+\) & 11 & B & & & & & & & & 9. & 6 & & \\
\hline & \({ }^{1} 12+\) & 12 & A & \(\dagger\) & 9 & 6 & \(\dagger\) & 1 \\
\hline Output Fall Time & \({ }^{\text {t }} 3\) & 3 & A & 3.4 & 3.4 & 3.8 & 3.4 & 3.4 & 3.8 & ns & 6 & 9 & 7 & 1,14 \\
\hline & \({ }^{4} 4\) - & 4 & B & & & & & & & & 6 & 9 & & \\
\hline & \({ }^{1} 11-\) & 11 & B & & & & & & & & 9 & 6 & & \\
\hline & t12- & 12 & A & \(\dagger\) & \(\dagger\) & \(\dagger\) & \(\dagger\) & 1 & \(\dagger\) & \(\dagger\) & 9 & 6 & \(\dagger\) & \(\dagger\) \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

The MC12040 is a logic network designed for use as a phase comparator for MECL-compatible input signals. It determines the "lead" or "lag" phase relationship and the time difference between the leading edges of the waveforms. Since these edges occur only once per cycle, the detector has a range of \(\pm 2 \pi\) radians.

Operation of the device may be illustrated by assuming two waveforms, \(R\) and \(V\) (Figure 1), of the same frequency but differing in phase. If the logic had established by past history that R was leading V , the U output of the detector (pin 4) would produce a positive pulse width equal to the phase difference and the D output (pin 11) would simply remain low.

On the other hand, it is also possible that V was leading \(R\) (Figure 1), giving rise to a positive pulse on the D output and a constant low level on the \(U\) output pin. Both outputs for the sample condition are valid since the determination of lead or lag is dependent on past edge crossing and initial conditions at start-up. A stable phase-locked loop will result from either condition.

Phase error information is contained in the output duty cycle - that is, the ratio of the output pulse width to total period. By integrating or low-pass filtering the outputs of the detector and shifting the level to accommodate ECL swings, usable analog information for the voltagecontrolled oscillator can be developed. A circuit useful for this function is shown in Figure 2.

Proper level shifting is accomplished by differentially

FIGURE 1 - TIMING DIAGRAM

driving the operational amplifier from the normally high outputs of the phase detector (\(\bar{U}\) and \(\overline{\mathrm{D}}\)). Using this technique the quiescent differential voltage to the operational amplifier is zero (assuming matched " 1 " levels from the phase detector). The \(\bar{U}\) and \(\bar{D}\) outputs are then used to pass along phase information to the operational amplifier. Phase error summing is accomplished through resistors R1 connected to the inputs of the operational amplifier. Some R-C filtering imbedded within the input network (Figure 2) may be very beneficial since the very narrow correctional pulses of the MC12040 would not normally be integrated by the amplifier. General design guides for calculating R1, R2, and C are included in the MC4044 data sheet. Phase detector gain for this configuration is approximately 0.16 volts/radian.
System phase error stems from input offset voltage in the operational amplifier, mismatching of nominally equal resistors, and mismatching of phase detector "high" states between the outputs used for threshold setting and phase measuring. All these effects are reflected in the gain constant. For example, a 16 mV offset voltage in the amplifier would cause an error of 0.016/ \(0.16=0.1\) radian or 5.7 degrees of error. Phase error can be trimmed to zero initially by trimming either input offset or one of the threshold resistors (R1 in Figure 2). Phase error over temperature depends on how much the offending parameters drift.

FIGURE 2 - TYPICAL FILTER AND SUMMING NETWORK

\section*{CRYSTAL OSCILLATOR}

The MC12061 and MC120561 are designed for use with an external crystal to form a crystal controlled oscillator. In addition to the fundamental series mode crystal, two bypass capacitors are required (plus usual power supply pin bypass capacitors). Translators are provided internally for MECL and TTL outputs.

Frequency Range \(=2.0 \mathrm{MHz}\) to 20 MHz
Single Supply Operation: +5.0 Vdc or -5.2 Vdc
Three Outputs Available:
1. Complementary Sine Wave (\(600 \mathrm{mVp}-\mathrm{p}\) typ)
2. Complementary MECL
3. Single Ended TTL

CRYSTAL OSCILLATOR

LOGIC DIAGRAM

TYPICAL CIRCUIT CONFIGURATIONS Note: \(0.1 \mu \mathrm{~F}\) power supply pin bypass capacitors not shown.

FIGURE 2 -
SINE WAVE OUTPUT

FIGURE 3 - MTTL OUTPUT

FIGURE 5 - MECL OUTPUT (-5.2 V Supply)

\section*{CRYSTAL} REQUIREMENTS
Note: Start-up stabilization time is a function of crystal series resistance. The lower the resistance, the faster the circuit stabilizes.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & MC12061/12561 \\
\hline Mode of Operation & Fundamental Series Resonance \\
\hline Frequency Range & \(2.0 \mathrm{MHz}-20 \mathrm{MHz}\) \\
\hline Series Resistance, R1 & Minimum at Fundamental \\
\hline Maximum Effective Resistance, \(\mathrm{R}_{\mathrm{E}(\max)}\) & 155 ohms \\
\hline
\end{tabular}

-Devices will meet standard MECL logic levels using \(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}\) and \(\mathrm{V}_{\mathrm{CC}}=0\)

FIGURE 6 - AC CHARACTERISTICS - MECL AND TTL OUTPUTS

FIGURE 7 - AC TEST CIRCUIT - SINE WAVE OUTPUT

\section*{Crystal - Reeves Hoffman Series Mode, Series Resistance Minimum at Fundamental MC12061/12561:}
\[
\mathrm{f}=10 \mathrm{MHz}
\]
\(R_{E}=5 \Omega\)
*RS is inserted only for test purposes. When used with the above specified crystal, it guarantees oscillation with any crystal which has an equivalent series resistance \(\leqslant 155 \Omega\) for MC12061/12561.

All output cables to the scope are equal lengths of \(50 \Omega\) coaxial cable. All unused cables must be terminated with a \(50 \Omega \pm 1 \%\) resistor to ground.
\(450 \Omega\) resistor and the scope termination impedance constitute a 10:1 attenuator probe.

\section*{OPERATING CHARACTERISTICS}

The MC12061/12561 consist of three basic sections: an oscillator with AGC and two translators (Figure 1). Buffered complementary sine wave outputs are available from the oscillator section. The translators convert these sine wave outputs to levels compatible with MECL and/ or TTL.

Series mode crystals should be used with the oscillator. If it is necessary or desirable to adjust the crystal frequency, a reactive element can be inserted in series with the crystal - an inductor to lower the frequency or a capacitor to raise it. When such an adjustment is necessary, it is recommended that the crystal be specified slightly lower in frequency and a series trimmer capacitor be added to bring the oscillator back on frequency. As the oscillator frequency is changed from the natural resonance of the crystal, more and more dependence is placed on the external reactance, and temperature drift of the trimming components then affects overall oscillator performance.

The MC12061/12561 are designed to operate from a single supply - either +5.0 Vdc or -5.2 Vdc . Although each translator has separate \(V_{C C}\) and \(V_{E E}\) supply pins, the circuit is NOT designed to operate from both voltage levels at the same time. The separate \(V_{E E}\) pin from the TTL translator helps minimize transient disturbance. If neither translator is being used, all unused pins (9 thru 16) should be connected to \(\mathrm{V}_{\mathrm{EE}}\) (pin 8). With the translators not powered, supply current drain is typically reduced from 42 mA to 23 mA for the MC12061/12561.

\section*{Frequency Stability}

Output frequency of different oscillator circuits (of a given device type number) will vary somewhat when used with a given test setup, however the variation should be within approximately \(\pm 0.001 \%\) from unit to unit.

Frequency variations with temperature (independent of the crystal, which is held at \(25^{\circ} \mathrm{C}\)) are small - about \(-0.08 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) for MC12061/12561 operating at 8.0 MHz .

\section*{Signal Characteristics}

The sine wave outputs at either pin 2 or pin 3 will typically range from \(800 \mathrm{mVp}-\mathrm{p}\) (no load) to \(500 \mathrm{mVp}-\mathrm{p}\) (120 ohm ac load). Approximately \(500 \mathrm{mVp}-\mathrm{p}\) can be provided across 50 ohms by slightly increasing the dc current in the output buffer by the addition of an external resistor (680 ohms) from pin 2 or 3 to ground, as shown in Figure 9. Frequency drift is typically less than \(0.0003 \%\) when going from a high-impedance load (1 megohm, 15 pF) to the 50 -ohm load of Figure 9. The dc voltage level at pin 2 or 3 is nominally 3.5 Vdc with \(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}\).

Harmonic distortion content in the sine wave outputs is crystal as well as circuit dependent. The largest harmonic (third) will usually be at least 15 dB down from the fundamental. The harmonic content is approximately load independent except that the higher harmonic levels
(greater than the fifth) are increased when the MECL translator is being driven.

Typically, the MECL outputs (pins 12 and 13) will drive up to five gates, as defined in Figure 10, and the TTL output (pin 10) will drive up to ten gates, as defined in Figure 11.

\section*{Noise Characteristics}

Noise level evaluation of the sine wave outputs using the circuit of Figure 12, with operation at 9.0 MHz , indicates the following characteristics:
1. Noise floor (200 kHz from oscillator center frequency) is approximately -122 dB when referenced to a 1.0 Hz bandwidth. Noise floor is not sensitive to load conditions and/or translator operation.
2. Close-in noise \((100 \mathrm{~Hz}\) from oscillator center frequency) is approximately -88 dB when referenced to a 1.0 Hz bandwidth.

FIGURE 8 - FREQUENCY SHIFT VERSUS TEMPERATURE

FIGURE 9 - DRIVING LOW-IMPEDANCE LOADS

FIGURE 10 - MECL TRANSLATOR LOAD CAPABILITY

FIGURE 11 - TTL TRANSLATOR LOAD CAPABILITY

FIGURE 12 - NOISE MEASUREMENT TEST CIRCUIT

\section*{HIGH-SPEED PRESCALER}

The MC12071 is a high-speed prescaler designed for use in communications and instrumentation systems. In the UHF mode, it performs division by 256 , and divides by 64 in the VHF mode.

A bandswitch mode control line selects the mode of operation between the UHF and VHF input pins.

UHF operation is selected by applying a high-level (logical 1) to the bandswitch input. A low-level (logical 0) is applied to the bandswitch input to obtain the VHF mode. An internal amplifier/ multiplexer is used to isolate both inputs, amplify the input signal, and improve sensitivity.

Inputs are designed for ac-coupled sine wave signals, but can be dc-coupled if proper bias levels are maintained. Normally used single-ended, the inputs can also be operated with complementary input signals if required.

Circuit outputs are complementary emitter-follower type which can drive a \(33-\mathrm{pF}\) or equivalent load. Maintaining a balanced load and controlling rise and fall times will reduce harmonic outputs.

\section*{Broadband Operation}

High Sensitivity
Standard 5 Volt Power Supply
VHF/UHF - Dual Mode Operation
Complementary Emitter-Follower Outputs
Independent VHF and UHF Input Pins

\section*{HIGH-SPEED} PRESCALER

MAXIMUM RATING
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Symbol & Value & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Operating Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & \(5.0 \pm 10 \%\) & Vdc \\
\hline Bandswitch Voltage & \(\mathrm{V}_{\mathrm{BH}}\) & 20 & Vdc \\
\hline Input Voltage & \(\mathrm{V}_{\text {in }}\) & 0.5 & \(\mathrm{~V}_{\mathrm{RMS}}\) \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\mathrm{o}} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & \(\mathrm{T}_{\mathrm{J}}\) & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Ratings above which devjce life may be impaired.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & Symbol & Min & Typ & Max & Unit \\
\hline \multicolumn{6}{|l|}{STATIC} \\
\hline Supply Current (Pins 1 \& 2) & ICC & 30 & 60 & 90 & mA \\
\hline Bandswitch Voltage, Low High & \[
\begin{aligned}
& \hline \mathrm{v}_{\mathrm{BL}} \\
& \mathrm{v}_{\mathrm{BH}} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\hline 0 \\
2.4
\end{gathered}
\] & - & \[
\begin{aligned}
& \hline 0.8 \\
& 20 \\
& \hline
\end{aligned}
\] & Vdc \\
\hline \begin{tabular}{rl}
& \\
Bandswitch current 0 to 0.8 V \\
2.4 to 20 V
\end{tabular} & \[
\begin{aligned}
& I_{\mathrm{BL}} \\
& \mathrm{I}_{\mathrm{BH}} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
-0.5 \\
-
\end{gathered}
\] & & \[
\begin{gathered}
- \\
0.5
\end{gathered}
\] & mA \\
\hline Output Voltage, High & \(\mathrm{V}_{\mathrm{OH}}\) & & 4.2 & & Vdc \\
\hline Output Voltage, Low & \(\mathrm{V}_{\text {OL }}\) & & 3.0 & & Vdc \\
\hline
\end{tabular}

\section*{DYNAMIC (See Fig. 2)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline UHF Input Sensitivity Range (See note)
\[
\begin{aligned}
& \mathrm{f}_{\text {in }}=450 \text { to } 950 \mathrm{MHz}, V_{\mathrm{BH}} \\
& \mathrm{f}_{\text {in }}=80 \text { to } 450 \mathrm{MHz}, \mathrm{~V}_{\mathrm{BH}}
\end{aligned}
\] & \(\mathrm{UHF}_{\text {in }}\) & \[
\begin{gathered}
60 \\
150
\end{gathered}
\] & - & \[
\begin{gathered}
* 200 \\
500
\end{gathered}
\] & \(m V_{\text {RMS }}\) \\
\hline VHF Input Sensitivity Range (See note)
\[
\mathrm{f}_{\mathrm{in}}=90 \text { to } 275 \mathrm{MHz}, \mathrm{~V}_{\mathrm{BL}}
\] & \(\mathrm{VHF}_{\text {in }}\) & 40 & - & 500 & \(m V_{\text {RMS }}\) \\
\hline Output Voltage & \(V_{\text {out }}\) & 0.65 & 1.2 & 1.6 & Vp-p \\
\hline Output Rise or Fall Time & \(t_{r}, t_{f}\) & 40 & 70 & 110 & nS \\
\hline
\end{tabular}

NOTE:
UHF inpuit sensitivity as measured in test fixture shown in Figure 2. Devices may overload if the input signal exceeds the maximum level specified.
* Overload levels are very layout sensitive and will probably require correlation in customer circuits. Overload levels of 500 mVRMS can easily be attained with various layouts.

\section*{FIGURE 2 - AC TEST CIRCUIT}

\section*{STANDARD TEST FIXTURE}

TOP

\section*{TEST FIXTURE CONSIDERATIONS}

Pictured above is our standard MC12071 test fixture. High-frequency construction and design techniques are a must if the operation of the test fixture is to be stable and repeatable. Listed below are some considerations which must be observed to insure proper operation of the test circuit.
- Use a good ground plane with frequent ground connections.
- Use best available high-frequency type socket.
- Maintain a \(50 \Omega\) environment on inputs except where it is necessary for the signal to pass through a component.
- Use best available high-frequency components and keep lead length to an absolute minimum. (Chip type ceramic capacitors are preferable.)
- Pin bypasses should be placed as close to the device as possible.

Note: Even after implementing the above fixture design and construction techniques some minimal correlation differences may exist due to inherent highfrequency characteristics variations.

\section*{MC12071}

FIGURE 3 - TYPICAL UHF INPUT SENSITIVITY

FIGURE 4 - TYPICAL VHF INPUT SENSITIVITY

FIGURE 5 - TYPICAL INPUT IMPEDANCE

\section*{Product Preview}

\section*{\(\div 64\) LOW-POWER PRESCALER}

The MC12073 is a new member of Motorola's PLL family. It is a high-speed, low-power prescaler which divides by 64 . The MC12073 can be used in all frequency synthesis applications. Typical applications include electronically tuned TV/CATV and communication systems as well as instrumentation.
An internal preamplifier is included in the MC12073. This preamplifier isolates the differential inputs and provides gain for the input signal. The MC12073 is pin compatible with Plessey's SP4632 and has differential outputs.
- 1.1 GHz Toggle Frequency
- Low-Power: 25 mA Typical @ \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)
- High Input Sensitivity
- 800 mV Minimum Peak-Peak Output Swing
- This Product Preview's Specifications are Design Goals Only

\section*{MAXIMUM RATINGS}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Range & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(\mathrm{V}_{\mathrm{CC}}=4.5\) to \(5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\))
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{c}
Toggle Frequency \\
(Sine wave input)
\end{tabular} & \(\mathrm{f}_{\text {max }}\) & 1.1 & - & - & GHz \\
\hline Supply Current & \(\mathrm{I}_{\mathrm{CC}}\) & - & 25 & - & mA \\
\hline \begin{tabular}{c}
Output Voltage \\
(Load \(=10 \mathrm{pF}\), \\
\(\mathrm{I}_{\text {sink }}=200 \mu \mathrm{~A}\))
\end{tabular} & \(\mathrm{V}_{\text {out }}\) & 0.8 & 1.0 & - & \(\mathrm{V}_{\mathrm{pp}}\) \\
\hline Input Voltage Sensitivity & \(\mathrm{V}_{\text {in }} \mathrm{Min}\) & - & 10 & - & \(\mathrm{mV}_{\text {rms }}\) \\
\hline Input Overload & \(\mathrm{V}_{\text {in }} \mathrm{Max}\) & 200 & - & - & \(\mathrm{mV} \mathrm{V}_{\mathrm{rms}}\) \\
\hline AC Input Resistance & \(\mathrm{R}_{\text {in }}\) & - & \(\mathrm{TBD}^{*}\) & - & \(\mathrm{k} \Omega\) \\
\hline Input Capacitance & \(\mathrm{C}_{\text {in }}\) & - & \(\mathrm{TBD}^{*}\) & - & pF \\
\hline
\end{tabular}
*To be determined.
This document contains information on a new product. Specifications and information herein are subject to change without notice.

\section*{MECL PLL COMPONENTS}

LOW-POWER PRESCALER \(\div 64\)

\section*{Product Preview}

\section*{\(\div \mathbf{2 5 6}\) LOW-POWER PRESCALER}

The MC12074 is a new member of Motorola's PLL family. It is a high-speed, low-power prescaler which divides by 256 . The MC12074 can be used in all frequency synthesis applications. Typical applications include electronically tuned TV/CATV and communication systems as well as instrumentation.
An internal preamplifier is included in the MC12074. This preamplifier isolates the differential inputs and provides gain for the input signal. The MC12074 is pin compatible with Plessey's SP4653 and has differential outputs.
- 1.1 GHz Toggle Frequency
- Low-Power: 25 mA Typical @ \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)
- High Input Sensitivity
- 800 mV Minimum Peak-Peak Output Swing
- This Product Preview's Specifications are Design Goals Only

MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Range & Unit \\
\hline Power Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 7.0 & Vdc \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{CC}}=4.5\right.\) to \(5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(\left.+70^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Min & Typ & Max & Unit \\
\hline \begin{tabular}{c}
Toggle Frequency \\
(Sine wave input)
\end{tabular} & \(\mathrm{f}_{\text {max }}\) & 1.1 & - & - & GHz \\
\hline Supply Current & ICC & - & 25 & - & mA \\
\hline \begin{tabular}{l}
Output Voltage \\
(Load \(=10 \mathrm{pF}\), \\
\(\left.\mathrm{I}_{\text {sink }}=200 \mu \mathrm{~A}\right)\)
\end{tabular} & \(\mathrm{V}_{\text {out }}\) & 0.8 & 1.0 & - & \(\mathrm{V}_{\mathrm{pp}}\) \\
\hline Input Voltage Sensitivity & \(\mathrm{V}_{\text {in }} \mathrm{Min}\) & - & 10 & - & mV rms \\
\hline Input Overload & \(\mathrm{V}_{\text {in }} \mathrm{Max}\) & 200 & - & - & mV rms \\
\hline AC Input Resistance & \(\mathrm{R}_{\text {in }}\) & - & \(\mathrm{TBD}^{*}\) & - & \(\mathrm{k} \Omega\) \\
\hline Input Capacitance & \(\mathrm{C}_{\text {in }}\) & - & \(\mathrm{TBD}^{*}\) & - & pF \\
\hline
\end{tabular}
*To be determined.
This document contains information on a new product. Specifications and information herein are subject to change without notice.

MECL PLL COMPONENTS
LOW-POWER PRESCALER \(\div \mathbf{2 5 6}\)

P SUFFIX
PLASTIC PACKAGE
CASE 626

PRESCALER BLOCK DIAGRAM

MC12090

\section*{Advance Information}

\section*{UHF PRESCALER}

The MC1 2090 is a high-speed D master-slave flip-flop capable of toggle rates of over 700 MHz . It was designed primarily for highspeed prescaling applications in communications and instrumentation. This device employs two data inputs, two clock inputs as well as complementary Q and \(\overline{\mathrm{Q}}\) outputs. There are no SET or RESET inputs.

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(0^{\circ}\)} & \multicolumn{2}{|c|}{\(25^{\circ}\)} & \multicolumn{2}{|r|}{\(75^{\circ}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Power Supply Current & \(l_{\text {E }}\) & - & 65 & - & 59 & - & 65 & mA \\
\hline Input Current High Pin 7, 9 Pin 11, 12 & \(\mathrm{linH}_{\mathrm{in}}\) & - & \[
\begin{aligned}
& 400 \\
& 435
\end{aligned}
\] & - & \[
\begin{aligned}
& 260 \\
& 280
\end{aligned}
\] & - & \[
\begin{aligned}
& 260 \\
& 280
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Current Low & linL & 0.5 & - & 0.5 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline High Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 & Vdc \\
\hline Low Output Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.60 & Vdc \\
\hline High Input Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & -1.17 & -0.84 & -1.13 & -0.81 & \(-1.70\) & -0.735 & Vdc \\
\hline Low Input Voltage & \(\mathrm{V}_{\text {IL }}\) & -1.87 & \(-1.495\) & -1.85 & -1.48 & -1.83 & -1.45 & Vdc \\
\hline
\end{tabular}

\section*{AC PARAMETERS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(75^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & Min & Max & Min & Max & \\
\hline Toggle Frequency & \(f_{\text {tog }}\) & 700 & - & 750 & - & 700 & - & MHz \\
\hline \multicolumn{9}{|c|}{Typical (\(25^{\circ} \mathrm{C}\))} \\
\hline Propagation Delay (Clock to Output Pins 7 \& \(9 \rightarrow 2\)) & \({ }^{\text {p }}\) d & \multicolumn{6}{|c|}{1.3} & ns \\
\hline Setup Time \({ }^{\text {t }}\) setup H tsetup L & \({ }^{\text {ts }}\) & \multicolumn{6}{|c|}{\[
\begin{array}{r}
0.3 \\
0.3 \\
\hline
\end{array}
\]} & ns \\
\hline \begin{tabular}{l}
Hold Time \\
thold H \\
thold L
\end{tabular} & \(t_{h}\) & \multicolumn{6}{|c|}{\[
\begin{array}{r}
0.2 \\
0.3 \\
\hline
\end{array}
\]} & ns \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{r}}\) & \multicolumn{6}{|c|}{0.9} & ns \\
\hline Fall Time & \(t_{f}\) & \multicolumn{6}{|c|}{0.9} & ns \\
\hline
\end{tabular}

\footnotetext{
This document contains information on a new product. Specifications and information herein
} are subject to change without notice

FIGURE 1 - GUARANTEED RANGE OF OPERATION
(TEMP \(=75^{\circ} \mathrm{C}\), \# DEVICES = FIVE;
\(\mathrm{v}_{\mathrm{CC}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-\mathbf{3 . 2} \mathrm{V}, \mathrm{V}_{\text {BIAS }}=0.710 \mathrm{~V}\))

FIGURE 2 - GUARANTEED RANGE OF OPERATION
(TEMP = \(25^{\circ} \mathrm{C}\), \# DEVICES = FIVE;
\(V_{C C}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=0.710 \mathrm{~V}\))

The "BETTER" program is offered on ECL, in dual-in-line ceramic and plastic packages.

Motorola standard commercial integrated circuits are manufactured under stringent inprocess controls and quality inspections combined with the industries' finest outgoing quality inspections. The "BETTER" program offers three levels of extra processing, each tailored to meet different user needs at nominal costs.

The program is designed to:
- Reduces incoming electrical inspection.
- Eliminate need for independent test labs and associated extra time and costs
- Reduce field failures
- Reduce service calls
- Reduce equipment downtime
- Reduce board and system rework
- Reduce infant mortality
- Save time and money
- Increase end-customer satisfaction

Motorola's reliability enhancement program was developed to provide improved levels of reliability for standard commercial products.

\section*{BETTER PROCESSING -} STANDARD PRODUCT PLUS:

LEVEL I (Suffix S)
- 100\% temperature cycling per MIL-STD-883. Method 1010, ten cycles from \(-25^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\).
- 100\% functional and dc parametric tests at maximum rated temperature.

\section*{LEVEL II (Suffix D)}
- 100\% burn-in to MIL-STD-883 test conditions -160 hours at \(+125^{\circ} \mathrm{C}\) or 1.0 eV Arrhenius time/temperature equivalent.
- 100\% post burn-in functional and dc parametric tests at \(25^{\circ} \mathrm{C}\) (or max rated \(T_{A}\) at Motorola's option). Maximum PDA of 2\% (functional) and 5\% (DC and functional).

LEVEL III (Suffix DS)
- Combination of Levels I and II above.
"MOTOROLA" AQL GUARANTEES
\begin{tabular}{l|c|c|c|c}
\hline TEST & \multirow{2}{*}{ CONDITION } & & AQL \(^{1}\) & \\
\cline { 3 - 5 } & & LEVEL I & LEVEL II & LEVEL III \\
\hline HIGH TEMPERATURE FUNCTIONAL & \(T_{A}=\mathrm{MAX}\) & 0.05 & 0.05 & 0.05 \\
\hline DC PARAMETRIC & \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\) & 0.05 & 0.05 & 0.05 \\
\hline DC PARAMETRIC & \(\mathrm{TA}_{\mathrm{A}} \mathrm{MIN}, \mathrm{TA}_{\mathrm{A}} \mathrm{MAX}\) & 0.25 & 0.25 & 0.25 \\
\hline AC PARAMETRIC & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 0.05 & 0.05 & 0.05 \\
\hline EXTERNAL VISUAL AND MECHANICAL & MAJOR/MINOR & 0.05 & 0.05 & 0.05 \\
\hline \begin{tabular}{l}
HERMETICITY \\
(NOT APPLICABLE TO PLASTIC PACKAGES)
\end{tabular} & GROSS/FINE & 0.15 & 0.15 & 0.15 \\
\hline
\end{tabular}
1. " \(A Q L\) " values shown are for reference only-" \(L T P D^{\prime \prime}\) type sampling plans are used that are equal to or tighter than values indicated. Also, the guaranteed electrical and visual/mechanical AOL levels will be progressively tightened. Contact Motorola sales office for latest values.

\section*{PART MARKING}

The Standard Motorola part number with the corresponding "BETTER" suffix can be ordered from your local authorized Motorola distributor or Motorola sales offices.
"BETTER" pricing will be quoted as an adder to standard commercial product price.

\title{
GENERALIZED "BETTER" PRODUCT FLOW FOR MECL
}

Scanning Electron Microscope Wafer Process Control Monitor. To control oxide step profiles, contact coverage, and metallization integrity. (Engineering option.)
CV Plot Wafer Process Control Monitor: To control field inversion potential, base inversion surface channel formation, and to detect any spurious contamination problems. (Engineering option.)

Performed at final wafer probe (or, optionally, at final electrical test) to screen out potential pinhole shorts, interlayer metal shorts, \(\mathrm{N}+\) crossunder shorts, diffusion faults, and similar defects that cannot be detected by visual die high-power inspection.

Die High-Power Sample Gate Inspection: Performed by in-process Q.A. to an 5.5\% AQL to detect any damage caused by \(100 \%\) wafer probe or mechanical scribe and bi tak operation, or any scratches, metallization smears, or glass on bonding pads.

Combined Die Bond and Wire Bond Sample Gate Inspection: Performed by in-process Q.A. to \(0.65 \% \mathrm{AQL}\) to detect any misaligned or lifted die, to assure adequate "wetting" for low thermal resistance and high die shear strength, and to detect any improper wire bonds or wire dress, and any wire bonder damage.

Wire Pull Monitor: Performed by in-process Q.A. to maintain process control of bond strength values per MIL-STD-883. Method 2011, Condition D

Motorola Proprietary Epoxy Molding Compound: Meets or exceeds U.L. flame-retarding level UL94V-1.

Post Encapsulation Bake: Eight hours at \(150^{\circ} \mathrm{C}\) (or six hours at \(175^{\circ} \mathrm{C}\)). Final cure for molding compound; also stresses wire and die bonds and helps eliminate marginal devices.
\(100 \%\) Temperature Cycling. MIL-STD-883, Method 1010, ten cycles \(-25^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\). Exercising circuits ten times over a \(175^{\circ} \mathrm{C}\) range stresses the die and wire bonds and generally eliminates any marginal bonds and also screens out some types of wafer defects (pinholes, interlayer metal shorts, marginal step coverage, \(N+\) crossunder shorts) and marginal seals in hermetic packages. This screening is superior to thermal shock screening because it does not introduce latent failures in ceramic packages (microcracks in seals) or in plastic packages (entrapped liquid) that can result from liquid-to-liquid thermal shock.
Hermeticity Monitor: Hermetic packages only - combination fine/gross leak test per modification of MIL-STD-883, Method 1014B. (\(5 \times 10^{-8}\) ATM CC/SEC to \(1 \times 10^{-4}\) ATM CC/SEC). Sampled to a \(0.25 \%\) AQL.
\(100 \%\) Electrical: Functional and dc parametrics at \(25^{\circ} \mathrm{C}\) or max rated \(\mathrm{T}_{\mathrm{A}}\) (optional). \(100 \%\) Burn-In: MIL-STD-883, Method 1015, for 160 hours minimum at \(\mathrm{T}_{\mathrm{A}}\) of \(125^{\circ} \mathrm{C}\) minimum (or equivalent, per Arrhenius equation with 1.0 eV activation energy). Test condition depends on device type, but generally condition A or C .
\(100 \%\) Electrical: Level I and III Functional tests at max rated \(\mathrm{T}_{\mathrm{A}}\). Level II Functional and all DC parametrics at \(25^{\circ} \mathrm{C}\) or max rated \(\mathrm{T}_{\mathrm{A}}\) at Motorola's option. Maximum PDA of 2\% (Functional) and 5\% (DC and Functional).

100\% High-Temperature Functional Tests: Devices are tested at maximum rated operating temperatures assuring reliable operation at elevated temperatures and screening out marginally performing devices that could otherwise lower field reliability. Although epoxy molding compounds have essentially eliminated the thermal intermittent failure mode, this screen provides protection from any "maverick" intermittent device being shipped to a customer. This screening is more effective than hot rail "continuity" testing because non-functional devices can often pass a continuity test.
Q.A. Electrical and Mechanical Final Acceptance Tests: Sampled to the AQL levels of Table 1.

Hermeticity Monitor: Hermetic packages only. Combination fine/gross leak test per modification of MIL-STD-883, Method 1014B (\(5 \times 10^{-8}\) ATM CC/SEC to \(1 \times 10^{-4}\) ATM CC/SEC). Sampled to a \(0.15 \% \mathrm{AQL}\).

\title{
"RAP" \\ RELIABILITY AUDIT PROGRAM for BIPOLAR DIGITAL INTEGRATED CIRCUITS
}

\subsection*{1.0 INTRODUCTION}

In January, 1977, Motorola Bipolar Digital Reliability Engineering implemented "RRAP" (Rapid Reliability Assessment Program) to provide rapid assessment of the reliability of newly introduced TTL Low-Power Schottky (LS) devices. This RRAP concept permits rapid feedback of information on any reliability problems to the Product Engineering group so that corrective action can be quickly implemented. The RRAP program is performed by the Reliability Engineering Department on samples submitted by Product, Process, or Package Engineering for obtaining a rapid look at the reliability of new products, processes, or packages. This program has now been extended to standard ALS, TTL, TTL Memories, MDTL, MHTL, MECL III, MECL 10 K and 10 KH , MECL Memories, Macrocell Arrays, and Phase Lock Loop (PLL) product families. The details of the RRAP program are outlined in Section 2.0.

In March, 1977, an addition was made to the RRAP program for the purpose of auditing the reliability of outgoing product. This audit, called the Reliability Audit Program ("RAP"), is performed weekly by the Quality Assurance Group and reported monthly by Bipolar Digital Reliability Engineering. The details of this "RAP" program are outlined in Section 3.0.

\subsection*{2.0 RAPID RELIABILITY ASSESSMENT PROGRAM (RRAP)}

\subsection*{2.1 Hermetic Packaged Devices (50 Units minimum per Evaluation Sample)}
a. Electrical I (initial rejects removed from test)
b. Temp Cycling -100 cycles \(\left(-65^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C}\right)\) per Method 1010 C
c. Electrical I (plus Hermeticity per Method 1014 B \& C for package evaluations only)
d. "Equivalent" Burn-in for 40 hrs at \(145^{\circ} \mathrm{C}\) per Method 1015 A or C
e. Electrical I
2.2 Plastic Packaged Devices (100 Units minimum per Evaluation Sample)

\section*{S/G 1 (30 Units)}

\section*{S/G 2 (40 Units)}

S/G 3 (30 Units)
a. Electrical I
b. Thermal Shock -200 cycles \(\left(-55^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C}-30 \mathrm{Sec}\right.\). dwell)
Method 1011B, modified
c. Electrical I
a. Electrical
b. \(16 \mathrm{hrs}, \mathrm{PTHB}\); Rated \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{EE}}\) (15 psig, \(100 \%\) RH, \(121^{\circ} \mathrm{C}\)) Motorola test method
c. Electrical I
a. Electrical I
b. Temp Cycling -100 cycles \(\left(-65^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C}\right)\). Method 1010 C
c. Electrical I
d. "Equivalent" Burn-ln (40 hrs@ \(145^{\circ} \mathrm{C}\)) per Method 1015 A or C
e. Electrical

\section*{NOTES:}
1. All tests per MIL-STD-883 unless stated otherwise.
2. Electrical I=DC @ \(25^{\circ} \mathrm{C}\) and functional @ \(25^{\circ} \mathrm{C}-\mathrm{Go} / \mathrm{No}\) /Go
3. \(40 \mathrm{hr} / 145^{\circ} \mathrm{C}\) burn-in is "equivalent" to \(160 \mathrm{hr} / 125^{\circ} \mathrm{C}\) burn-in using 1.0 eV activation energy and the Arrhenius equation for determining acceleration factor.
4. 16 hrs of PTHB testing is equivalent to approximately 800 hrs of standard \(85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}\) THB testing for \(\mathrm{V}_{\mathrm{CC}} \leqslant 15 \mathrm{~V}\), based on comparative tests performed by Motorola Reliability Engineering.
5. For each evaluation, the goal is zero failures. Any indicated failure is first verified and then submitted to the Product Analysis Lab for detailed analysis. Results of evaluation, along with analysis of any failure(s), are reviewed promptly with responsible design, product, process and package engineers.

\subsection*{3.0 RELIABILITY AUDIT PROGRAM (RAP) (per Motorola specification 12 MRM15301A)}
3.1 PTHB - \(15 \mathrm{psig} / 121^{\circ} \mathrm{C} / 100 \% \mathrm{RH}\) at rated \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\mathrm{EE}}\) for 16 hours - performed on a weekly basis - 0 rejects allowed out of 45 devices. (To be performed on plastic encapsulated devices only.) 48 hour read out also included for reliability engineering information only.
3.2 Temp Cycling - MIL-STD-833, Method 1010, 1000 cycles, Condition C, \(-65^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C}\). Interim readout at 100 cycles (plastic and hermetic packages). Sample pulled on weekly basis - 0 rejects allowed out of 45 devices after 100 cycles; 1 reject allowed out of 45 devices after 1000 cycles.
3.3 Op. Life Test - MIL-STD-883, Method 1005, Condition A (Reverse Bias) or C (Power plus Reverse Bias), \(\mathrm{T}_{\mathrm{A}}=145^{\circ} \mathrm{C}\); readouts at 40 hrs and 250 hrs (plastic and hermetic packages). Sample pulled on weekly basis -1 reject allowed out of 55 devices at 40 hr readout. No additional rejects allowed at 250 hrs . If no rejects at \(40 \mathrm{hrs}, 1\) reject allowed at 250 hrs .
3.4 Report - Monthly Reliability Engineering computer printout summarizing test results.

\section*{NOTES:}
1. All standard \(25^{\circ} \mathrm{C}\) dc and functional parameters will be measured \(\mathrm{Go} / \mathrm{No} / \mathrm{Go}\) at each readout.
2. Any indicated failure is first verified and then submitted to the Product Analysis Lab for detailed analysis.
3. If both plastic and hermetic packages are available, package type will be alternated weekly. Hermetic packages will include both cerdip CERDIP and LCC types.
4. Device types sampled will be by generic type within each digital I/C product family (MDTL, MECL, TTL-LS, etc.) and will include all major package assembly options (U/S bond, ball bond, etc.) and all assembly locations (Korea, Philippines, Malaysia, etc.).
5. 16 hrs PTHB is equivalent to approximately 800 hrs of \(85^{\circ} \mathrm{C} / 85 \%\) RH THB for \(\mathrm{V}_{\mathrm{CC}} \leqslant\) 15 V .
6. Only moisture related failures (like corrosion) are criteria for failure on PTHB test.
7. \(40 \mathrm{hr} / 145^{\circ} \mathrm{C} \mathrm{Op}\) Life is equivalent to \(160 \mathrm{hr} / 125^{\circ} \mathrm{C}\) using 1.0 eV in Arrhenius equation.
8. \(250 \mathrm{hrs} / 145^{\circ} \mathrm{C}\) Op Life is equivalent to \(1000 \mathrm{hrs} / 125^{\circ} \mathrm{C}\) using 1.0 eV in Arrhenius equation.
9. Special device specifications (48A's) for digital products will reference 12MRM15301A as source of generic data for any customer required monthly audit reports.

\section*{HIGH RELIABILITY}

\section*{STANDARD PROGRAMS}
\begin{tabular}{|c|c|c|c|c|}
\hline MIL-STD-883 OPERATIONS METHOD & \[
\begin{gathered}
\text { PROCESSING } \\
\text { PER } \\
5004 / 5005
\end{gathered}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
HI-REL JEDEC \\
PROCESSED PROGRAMS
\end{tabular}} & MIL-M-38510 JAN QUALIFIED \\
\hline SCREEN & CLASS B METHOD & CLASS B & CLASS C & CLASSS B \\
\hline Internal Visual (Precap) & 2010 Condition B and 38510 & 100\% & 100\% & 100\% \\
\hline Stabilization Bake & 1008 Condition C or Equivalent & 100\% & 100\% & 100\% \\
\hline Temperature Cycting & 1010 Condition C & 100\% & 100\% & 100\% \\
\hline Constant Acceleration & 2001 Condition E (min.) \(Y^{1}\) Plane & 100\% & 100\% & 100\% \\
\hline \begin{tabular}{l}
Seal (a) Fine \\
(b) Gross
\end{tabular} & 1014, Condition B 1014, Condition C & \[
\begin{aligned}
& 100 \% \\
& 100 \%
\end{aligned}
\] & \[
\begin{aligned}
& \hline 100 \% \\
& 100 \%
\end{aligned}
\] & \[
\begin{aligned}
& \hline 100 \% \\
& 100 \%
\end{aligned}
\] \\
\hline Interim Electrical Parameters & Per applicable device specification & Optional \({ }^{1}\) & & Optional \({ }^{1}\) \\
\hline Burn-in Test & 1015160 Hrs. @ \(125^{\circ}\) C Min. (4) & 100\% & & 100\% \\
\hline \begin{tabular}{l}
Final Electrical Tests \\
(a) Static tests \\
(1) \(25^{\circ} \mathrm{C}\) (subgroup 1 , table 1,5005) \\
(2) Max. and min . rated operating temp. (subgroups 2 and 3, table 1, 5005) \\
(b) Dynamic tests and/or switching tests @ \(25^{\circ} \mathrm{C}\) (subgroup 4 and 9 , table 1, 5005) \\
(c) Functional test @ \(25^{\circ} \mathrm{C}\) (subgroup 7, table 1, 5005)
\end{tabular} & Per applicable device specification & \[
\begin{aligned}
& 100 \% \\
& 100 \%{ }^{(5)} \\
& 100 \% \\
& 100 \%
\end{aligned}
\] & \begin{tabular}{l}
100\% \\
(2) \\
(2) 100\%
\end{tabular} & \[
\begin{aligned}
& 100 \% \\
& 100 \%^{(5)} \\
& 100 \% \\
& 100 \%
\end{aligned}
\] \\
\hline Qualification or Quality Conformance Inspection & 5005 & Group \(\mathrm{A}^{3}\) & Group \(\mathrm{A}^{3}\) & per 38510 \({ }^{3}\) \\
\hline External Visual & 2009 & 100\% & 100\% & 100\% \\
\hline
\end{tabular}
1. When specified in the applicable device specification, \(100 \%\) of the devices shall be tested at Manufacturer's option.
2. Sample at Group A.
3. Full 5005 Conformance testing performed on Jan qualified product. Group A performed on Motorola HI-REL JEDEC processed product with either Generic or group B, C, D testing available.
4. Optional 0.44 eV time-temperature "equivalent" burn-in per Figure 1015-1.
5. AC sample testing at \(+125^{\circ} \mathrm{C}\) and \(-55^{\circ} \mathrm{C}\) on those types which require subgroup 10 and 11 testing per MIL-M-38510 Slash Sheet Specifications.

\section*{JEDEC Processed Product} IIIIII

\section*{Screening Levels Available: \\ Class B \& Class C}

\section*{How to order}

JEDEC
Processed Product*
\begin{tabular}{ccccc}
XXXXX/ & \(\mathbf{Y}\) & \(\mathbf{Y}\) & \(\mathbf{Y}\) & JC \\
| & | & | & | & | \\
MOTOROLA & CLASS B, OR C & CASE OUTLINE & LEAD FINISH & JEDEC DESIGNATOR \\
DEVICE TYPE & (SEE DEVICE & (SEE CASE & (SEE LEAD & PER JEDEC \\
(WITHOUT & CLASS TABLE) & OUTLINE TABLE) & FINISH TABLE) & PUBLICATION NO. \\
LETTER & & & & 101 \\
PREFIX) & & & &
\end{tabular}

\section*{Case Outline Table}

Source: MIL-M-38510D Amendment I
\begin{tabular}{|c|c|c|}
\hline Letter & Appendix C Designation & Description \\
\hline A & F-1 & 14-lead FP (\(1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}\)) \\
\hline B & F-3 & 14-lead FP (\(3 / 16^{\prime \prime} \times 1 / 4^{\prime \prime}\)) \\
\hline C & D-1 & 14-lead DIP (\(\left.1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}\right)\) \\
\hline D & F-2 & 14-lead FP (\(\left.1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}\right)\) \\
\hline E & D-2 & 16-lead DIP (\(\left.1 / 4^{\prime \prime} \times 7 / 8^{\prime \prime}\right)\) \\
\hline F & F-5 & 16-lead FP (\(\left.1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}\right)\) \\
\hline G & A-1 & 8 -lead can \\
\hline H & F-4 & 10-lead FP (\(1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}\)) \\
\hline 1 & A-2 & 10-lead can \\
\hline \(J\) & D-3 & 24-lead DIP (\(1 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}\)) \\
\hline K & F-6 & 24-lead FP (\(3 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}\)) \\
\hline L & NONE & NONE \\
\hline M & A-3 & 12-lead can \\
\hline N & NONE & NONE \\
\hline P & D-4 & 8 -lead DIP (1/4" \(\times 3 / 8^{\prime \prime}\)) \\
\hline 0 & D-5 & 40-lead DIP (9/16" \(\times 21 / 16^{\prime \prime}\)) \\
\hline R & D-8 & 20-lead DIP (\(\left.1 / 4^{\prime \prime} \times 11 / 16^{\prime \prime}\right)\) \\
\hline S & F-9 & 20-lead FP (\(\left.1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}\right)\) \\
\hline T & NONE & NONE \\
\hline U & C-2 & 20 terminal leadless chip carrier \\
\hline V & D-6 & 18 -lead DIP (\(\left.0.300^{\prime \prime} \times 1^{\prime \prime}\right)\) \\
\hline W & D-7 & 22-lead DIP (0.400" \(\times 1.1^{\prime \prime}\)) \\
\hline X & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Dual-in-line packages not listed above Flat packages not listed above All other configurations not listed above. Note: When ordering Z Case outline, Motorola case number and/or package classification (TO-3, TO-39, TO-66, etc.) must be referenced.}} \\
\hline Y & & \\
\hline z & & \\
\hline & & \\
\hline
\end{tabular}

\section*{Features:}
1. Lower cost than JAN-Qualified.
2. Devices manufactured using design and processing guidelines contained in MIL-M-38510 and MIL-STD-883
3. Product supplied with Motorola standard data sheet electricals

Example of JEDEC
Processed Markings
MARKING: 10501/BEBJC

\section*{Lead Finish Table}

A - Type A or B Per MIL-M-38510 with hot solder dip
B - Type A or B Per MIL-M-38510 with tin plate
C - Type A or B Per MIL-M-38510 with gold plate
\(X\) - Any of the above, for ordering purposes only.

\section*{Screening Levels Available: \\ Class B \& Class C}

\author{
How to order \\ MIL-M-38510 \\ JAN-Qualified Product
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline J & M38510 & /XXX & XX & Y & Y & Y \\
\hline | & & & & & & \\
\hline INDICATES A & MILITARY & DETAIL & DEVICE TYPE & CLASS B, OR C & CASE & LEAD \\
\hline QUALIFIED & DESIGNATOR & SPECIFICATION & WITHIN DETAIL & (SEE DEVICE & OUTLINE & FINISH \\
\hline DEVICE & & NUMBER & SPECIFICATION & CLASS TABLE) & (SEE CASE & (SEE LEAD \\
\hline & & & & & OUTLINE TABLE) & FINISH TABLE) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Case Outline Table \\
Source: MIL-M-38510D Amendment I
\end{tabular}} \\
\hline Letter & Appendix C Designation & Description \\
\hline \[
\begin{aligned}
& \hline \mathrm{A} \\
& \mathrm{~B} \\
& \mathrm{C} \\
& \mathrm{D} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F}-1 \\
& \mathrm{~F}-3 \\
& \mathrm{D}-1 \\
& \mathrm{~F}-2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 14-lead FP }\left(1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}\right) \\
& \text { 14-lead FP }\left(3 / 16^{\prime \prime} \times 1 / 4^{\prime \prime}\right) \\
& \text { 14-lead DIP }\left(1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}\right) \\
& \text { 14-lead FP }\left(1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}\right)
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{E} \\
& \mathrm{~F} \\
& \mathrm{G} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{D}-2 \\
& \mathrm{~F}-5 \\
& \mathrm{~A}-1 \\
& \mathrm{~F}-4
\end{aligned}
\] & ```
16-lead DIP (1/4" x 7/8")
16-lead FP (1/4" x 3/8')
 8-lead can
10-lead FP (1/4" x 1/4")
``` \\
\hline \[
\begin{aligned}
& \mathrm{I} \\
& \mathrm{~J} \\
& \mathrm{~K} \\
& \mathrm{~L}
\end{aligned}
\] & \begin{tabular}{l}
A-2 \\
D-3 \\
F-6 \\
NONE
\end{tabular} & ```
10-lead can
24-lead DIP (1/4" x 1 1/4")
24-lead FP (3/8' }\times5/\mp@subsup{8}{}{\prime\prime}
NONE
``` \\
\hline \[
\begin{aligned}
& \hline \mathrm{M} \\
& \mathrm{~N} \\
& \mathrm{P} \\
& \mathrm{Q} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
A-3 \\
NONE \\
D-4 \\
D-5
\end{tabular} & ```
12-lead can
NONE
 8-lead DIP (1/4" x 3/8')
40-lead DIP (9/16" x 2 1/16")
``` \\
\hline \[
\begin{aligned}
& \hline R \\
& S \\
& T \\
& U
\end{aligned}
\] & \[
\begin{aligned}
& \text { D-8 } \\
& \text { F-9 } \\
& \text { NONE } \\
& \text { C-2 }
\end{aligned}
\] & ```
20-lead DIP (1/4" x 1 1/16").
20-lead FP (1/4" x 1/2")
NONE
20 terminal leadless chip
carrier
``` \\
\hline \[
\begin{aligned}
& v \\
& w
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{D}-6 \\
& \mathrm{D}-7
\end{aligned}
\] & \[
\begin{aligned}
& \text { 18-lead DIP }\left(0.300^{\prime \prime} \times 1^{\prime \prime}\right) \\
& \text { 22-lead DIP }\left(0.400^{\prime \prime} \times 1.1^{\prime \prime}\right)
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline X \\
& Y \\
& Z \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{Reserved for use with "special" non-standard case outlines which are specified in the individual detail specifications.} \\
\hline
\end{tabular}

\section*{Features:}
1. Manufactured in a government-approved facility.
2. G.S.I. (Government Source Inspection)

Example of MIL-M-38510 JANQualified markings
ORDER: JM38510/00104BCB
MARKING: JM38510/00104BCB

Lead Finish Table
A - Type A or B Per MIL-M-38510 with hot solder dip
B - Type A or B Per MIL-M-38510 with tin plate
C - Type A or B Per MIL-M-38510 with gold plate
\(X\) - Any of the above, for ordering purposes only

\section*{JAN Qualified MECL Devices}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Function and MC10500 Equivalent } & MIL-M-38510 Device* \\
\hline Quad OR/NOR Gate (MC10501) & MIL-M-38510/06001 \\
Quad 2-Input NOR Gate (MC10502) & MIL-M-38510/06002 \\
Triple 2-3-2 OR/NOR Gate (MC10505) & MIL-M-38510/06003 \\
Triple 4-3-3 NOR Gate (MC10506) & MIL-M-38510/06004 \\
Triple 2-Input Exclusive OR/Exclusive NOR Gate (MC10507) & MIL-M-38510/06005 \\
Dual 4-5 Input OR/NOR Gate (MC10509) & MLL-M-38510/06006 \\
Quad 2-Input AND (MC10504) & MIL-M-38510/06201 \\
Hex AND (MC10597) & MIL-M-38510/06202 \\
Quad MTTL to MECL Translator (MC10524) & MIL-M-38510/06301 \\
Quad MECL to MTTL Translator (MC10525) & MIL-M-38510/06302 \\
Dual D Flip-Flop (MC10531) & MIL-M-38510/06001 \\
Dual D Flip-Flop (MC10631) & MIL-M-38510/06002 \\
Hex D Flip-Flop (MC10576) & MIL-M-38510/06003 \\
Dual J-K Flip-Flop (MC10535) & MIL-M-38510/06007 \\
\hline
\end{tabular}
*JAN devices must have complete part number description.

Function Selection \(-\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\)

\section*{NOR Gates}
\begin{tabular}{|l|l|}
\hline Quad 2-Input Gate Strobe & MC10500 \\
Quad 2-Input Gate & MC10502 \\
Triple 4-3-3 Input Gate & MC10506 \\
Dual 3-Input 3-Output Gate & MC10611 \\
\hline
\end{tabular}

\section*{OR Gates}
\begin{tabular}{|l|l|}
\hline Quad 2-Input Gate & MC10503 \\
Dual 3-Input 3-Output Gate & MC10610 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline AND Gates & MC10504 \\
\hline Quad 2-Input Gate & MC10597 \\
\hline
\end{tabular}
Complex
\begin{tabular}{|l|l|}
\hline Quad OR/NOR Gate & MC10501 \\
Triple 2-3-2 Input OR/NOR Gate & MC10505 \\
Dual 4-5 Input OR/NOR Gate & MC10509 \\
Dual 3-Input 3-Output OR/NOR Gate & MC10612 \\
Exclusive Triple 2-Input Gate & MC10507 \\
Exclusive Quad 2-Input Gate & MC10513 \\
Complex OR/AND Gate Function & MC10517 \\
Complex OR/AND Gate Function & MC10518 \\
Complex OR/AND Gate Function & MC10519 \\
Complex OR/AND Gate Function & MC10521 \\
\hline \multicolumn{3}{|l|}{ Buffers/Inverters } \\
\hline Hex Inverter/Buffer & MC10595 \\
\hline
\end{tabular}

All devices have standard case 620 or 650 .

Function Selection \(-\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Function } & Device \\
\hline \multicolumn{1}{|c|}{ Line Drivers/Line Receivers } \\
\hline Triple Line Receiver & MC10514 \\
Quad Line Receiver & MC10515 \\
Triple Line Receiver & MC10516 \\
Triple 4-3-3-Input Bus Driver & MC10523 \\
Triple Line Receiver & MC10616 \\
Dual Transceiver & MC10594 \\
\hline
\end{tabular}

Flip-Flop/Latches
\begin{tabular}{|l|l|}
\hline Dual D Master Slave Flip-Flop & MC10531 \\
Dual J-K Master Slave Flip-Flop & MC10535 \\
Hex D Master Slave Flip-Flop & MC10576 \\
Hex D Common Reset Flip-Flop & MC10586 \\
Dual D Master Slave Flip-Flop & MC10631 \\
Quad Latch & \(\mathrm{MC10533}\) \\
Quint Latch & \(\mathrm{MC10575}\) \\
Quad/Common Clock Latch & \(\mathrm{MC10568}\) \\
Quad/Negative Clock Latch & \(\mathrm{MC10553}\) \\
Dual Latch & \(\mathrm{MC10530}\) \\
\hline
\end{tabular}

\section*{Multiplexer}

Quad 2 Input/Noninverting
MC10558
Dual Multiplexer/Latch
Dual Multiplexer/Latch
Quad 2-Input/Inverting
8-Line
Quad 2-Input Multiplexer with Latch
Dual 4-1
\begin{tabular}{|c|c|}
\hline Function & Device \\
\hline \multicolumn{2}{|l|}{Decoders} \\
\hline Binary to 1-8 (Low) & MC10561 \\
\hline Binary to 1-8 (High) & MC10562 \\
\hline Dual 4-Line (Low) & MC10571 \\
\hline Dual 4-Line (High) & MC10572 \\
\hline \multicolumn{2}{|l|}{Counters} \\
\hline Hexadecimal & MC10536 \\
\hline Decade & MC10537 \\
\hline Biquinary & MC10538 \\
\hline Binary Down Counter & MC10554 \\
\hline Binary & MC10578 \\
\hline \multicolumn{2}{|l|}{Arithmetic Functions} \\
\hline 12-Bit Parity Generator & MC10560 \\
\hline Error Detection/Correction & MC10563 \\
\hline 8-Input Priority Encoder & MC10565 \\
\hline 5-Bit Magnitude Comparator & MC10566 \\
\hline \(9+2\) Bit Parity Checker & MC10570 \\
\hline Look Ahead Carry Block & MC10579 \\
\hline Dual 2-Bit Adder/Subtractor & MC10580 \\
\hline 4-Bit Arithmetic Function Gen. & MC10581 \\
\hline 2-Bit Arithmetic Function Gen. & MC10582 \\
\hline Error Detection/Correction & MC10593 \\
\hline 2-Bit Multiplier & MC10687 \\
\hline \multicolumn{2}{|l|}{Translators} \\
\hline Quad TTL-MECL & MC10524 \\
\hline Quad MECL-TTL & MC10525 \\
\hline Quad MST to MECL & MC10590 \\
\hline Hex MECL-MST & MC10591 \\
\hline \multicolumn{2}{|l|}{Special Function} \\
\hline 4-Bit Shift Register & MC10541 \\
\hline
\end{tabular}

\footnotetext{
*Contact your Motorola sales office or Motorola distributor for details on availability of special packages.
}

All devices have standard case 620 or 650.

\section*{MC10500/10600 Series}

The MC10500/10600 series is a military temperature range \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) version of the \(\mathrm{MC} 10100 / 10200\) series. Much of the design information contained in the General Information Section of this book is applicable to the MC10500/10600 series. However, specified limits differ over the extended temperature range. The

MC10500/10600 series selector guide lists the device and case types available.
Table I defines the forcing functions and associated dc parameters at the operating temperature limits of the MC10500/10600 series. The dc parameters of Table I are specified driving loads of 100 ohms to -2.0 V .

Table I MC10500/10600 Series Transfer Data for Temperature Variations
\begin{tabular}{|c|c|c|c|c|c|}
\hline Forcing Function & Parameter & \(-55^{\circ} \mathrm{C}{ }^{1}\) & \(25^{\circ} \mathrm{C}{ }^{1}\) & \(125^{\circ} \mathrm{C}{ }^{1}\) & Unit \\
\hline & & MC10500 MC10600 & \[
\begin{aligned}
& \text { MC10500 } \\
& \text { MC10600 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MC10500 } \\
& \text { MC10600 } \\
& \hline
\end{aligned}
\] & \\
\hline \(\mathrm{V}_{\text {IHmax }}\) & \begin{tabular}{l}
\(V_{\text {OHmax }}\) \\
\(\mathrm{V}_{\mathrm{OH} \text { min }}\)
\end{tabular} & \[
\begin{aligned}
& -0.880 \\
& -1.080
\end{aligned}
\] & \[
\begin{aligned}
& -0.780 \\
& -0.930
\end{aligned}
\] & \[
\begin{aligned}
& -0.630 \\
& -0.825
\end{aligned}
\] & Vdc \\
\hline \(\mathrm{V}_{\text {IHAmin }}\) & \(\mathrm{V}_{\text {OHAmin }}\) & \[
\begin{aligned}
& -1.100 \\
& -1.255
\end{aligned}
\] & \[
\begin{aligned}
& -0.950 \\
& -1.105
\end{aligned}
\] & \[
\begin{aligned}
& -0.845 \\
& -1.000
\end{aligned}
\] & Vdc \\
\hline \(V_{\text {ILAmax }}\) & \(V_{\text {OLAmax }}\) & \[
\begin{aligned}
& -1.510 \\
& -1.635
\end{aligned}
\] & \[
\begin{array}{r}
-1.475 \\
-1.600
\end{array}
\] & \[
\begin{aligned}
& -1.400 \\
& -1.525
\end{aligned}
\] & Vdc \\
\hline \(\mathrm{V}_{\text {ILmin }}\) & \begin{tabular}{l}
\(V_{\text {OLmax }}\) \\
\(V_{\text {OLmin }}\)
\end{tabular} & \[
\begin{aligned}
& -1.655 \\
& -1.920
\end{aligned}
\] & \[
\begin{aligned}
& -1.620 \\
& -1.850
\end{aligned}
\] & \[
\begin{aligned}
& -1.545 \\
& -1.820
\end{aligned}
\] & Vdc \\
\hline \(\mathrm{V}_{\text {ILImin }}\) & I/NLmin & 0.5 & 0.5 & 0.3 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 1 MC10500, MC10600, and series specified driving \(100 \Omega\) to -2.0 V .

MECL III

PHASE-
LOCKED LOOP```

[^0]: * MC1654, 1678, 1694, 10128, 10129, 10136, 10137, 10177, 10182, and 10804, MaxPD>800mW.

[^1]: ** Limited only by line attenuation and band-width characteristics.

[^2]: Parity Checker

[^3]: ${ }^{*}$ Temp $=0$ to $75^{\circ} \mathrm{C}$

[^4]: This document contains information on a new product. Specifications and information herein are subject to change without notice. MECL, MECL III, MECL 10 K and MECL 10 KH are trademarks of Motorola Inc.

[^5]: This document contains information on a new product. Specifications and information herein are subject to change without notice.

[^6]: This document contains information on a new product. Specifications and information herein are subject to change without notice.

[^7]: This document contains information on a new product. Specifications and information herein are subject to change without notice.

[^8]: This document contains information on a new product．Specifications and information herein are subject to change without notice．

[^9]: This document contains information on a new product Specifications and information herein is

[^10]: This document contains information on a new product. Specifications and information herein are subject to change

[^11]: This document contains information on a new product. Specifications and information herein are

